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SUMMARY

Cancer is a disease of aberrant cell proliferation and tumour growth arising from the per-
turbation of the epigenetically defined, regulated and maintained cell identity by genetic muta-
tions. It is a leading cause of death worldwide and most cancer types remain incurable. Omics
technologies are quantitative analytical assays that allow high-quality and high-throughput
measurements of different aspects of cellular regulation including genomics, transcriptomics,
epigenomics, proteomics and metabolomics. These high-throughput technologies transformed
the way cancer research is done, leading to tremendous advances in our understanding of cancer
biology and modern targeted therapies.

Integrative analysis of multi-omics datasets in cancer research requires use of dedicated al-
gorithms, data analysis and visualization tools. These are developed and applied in interdisci-
plinary teams of scientists and clinicians working on collaborative projects. Both the technical
complexities of data analysis and their integration, and the efficient independent exploration of
the observations by all project partners are contemporary research challenges. This dissertation
presents results addressing a broad spectrum of these questions.

Chapter 1, Replacing the CNS-PNET Superentity with Four Novel Molecularly De-
fined Entities Driven by Structural Variants: Central nervous system primitive neuroecto-
dermal tumours (CNS-PNETs) were a heterogeneous family of paediatric brain tumours with
no histopathological markers, challenging diagnosis and poor prognosis. My work as a com-
putational biologist contributed to the comprehensive description of this entity. In this study,
we applied an integrative omics data analysis of methylomes, transcriptomes and genomes
revealing that CNS-PNETs are a combination of a large group of misdiagnosed cases from
other entities and four novel molecularly defined entities. I showed that these novel entities are
driven by distinct and recurrent molecular drivers altered by different mechanisms of structural
variants: the FOXR2 oncogene and MNI, CIC and BCOR tumour suppressors. Our results
contributed to the elimination of CNS-PNETS as an officially recognized cancer entity and the
recognition of four novel paediatric brain tumour entities in the World Health Organization
classification of brain tumours.

Chapter 2, SOPHIA, Structural Rearrangement Detection Based on Supplementary
Alignments and a Population Background Model: Building on my work on structural vari-
ation in our study of CNS-PNETs, I developed the SOPHIA algorithm for detecting SVs in
cancer genomes based on a large population background database and a corresponding bioin-
formatics tool written allowing fast detection of SVs from short read cancer genome sequencing
datasets. SOPHIA later became the standard tool for structural variant detection in the DKFZ’s
cancer genome analysis workflow.

Chapter 3, EPISTEME, an Interactive and Integrative Platform for Analysing, In-
terpreting and Sharing Multi-Omics Data: During the development of SOPHIA and my
research in projects analysing and interpreting structural variant data, I developed experiences
analysing structural variant data detected by SOPHIA, integrating them with different omics
layers such as gene expressions, interpreting, visualizing and sharing them with collaborators

who were not computational scientists. Based on these experiences and using modern tools
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of interactive data visualization, I developed an interactive platform for integrative omics data
analysis and visualization named EPISTEME, with the aim of facilitating omics data analysis
by scientists with conceptual knowledge of cancer omics but no programming skills. EPIS-
TEME is a comprehensive tool integrating genome, transcriptome, methylome and proteome
data with clinical metadata in a user-friendly web-based system with in-browser statistical
analyses and publication-quality vector graphics output.

Chapter 4, SOPHIA-EPISTEME integration in DKFZ Cancer Genomics Projects Re-
veals Novel Disease Subtypes and Insights Across Cancer Types: With the integration of
SOPHIA and EPISTEME in an integrative omics data analysis setting, my work identified
novel oncogenes activated by enhancer hijacking and revealed novel molecularly defined sub-
types in refractory multiple myeloma (MYCN enhancer hijacking via immunoglobulin rear-
rangements as a MYC replacement), adult acute myeloid leukaemia (MNX/ activation via en-
hancer hijacking putatively acting as a differentiation block mechanism) and paediatric neurob-
lastoma (ATOH 1 activation via enhancer hijacking putatively acting as a MYCN replacement)
in projects supported by the DKFZ Heidelberg Center for Personalized Oncology (DKFZ-
HIPO) and the German Society for Paediatric Oncology and Haematology (GPOH) cancer

research programmes.



ZUSAMMENFASSUNG

Krebs entsteht infolge von deregulierter Zellteilung, starker Expansion der betroffenen
Zellpopulationen und dem resultierendem Wachstum von Tumoren. Dies ist auf genetische
Mutationen zuriickzufiihren, welche die epigenetisch definierte, regulierte Zellidentitit storen.
Krebs gehort zu den weltweit fithrenden Todesursachen und die meiste Krebsarten sind bisher
unheilbar. Omics-Technologien sind quantitative analytische Untersuchungsmethoden, die eine
Analyse verschiedener Aspekte der zelluldren Steuerung mit hohem Durchsatz und hoher Qualitit
ermdglichen. Hierzu gehoren die Bereiche Genomik, Transkriptomik, Proteomik und Metabolomik.
Diese Hochdurchsatztechnologien haben die Methodik der Krebsforschung grundlegend gewan-
delt, und zu enormen Fortschritten im Verstindnis der Krebsbiologie und der modernen geziel-
ten Krebstherapien gefiihrt. Die Integrative Analyse von Multi-Omics-Datensitzen in der Kreb-
sforschung benotigt maBigeschneiderte Algorithmen und Programme zur Datenanalyse und
Datenvisualisierung. Diese Werkzeuge werden in interdisziplindren kooperierenden Forscherteams
entwickelt und eingesetzt, die sowohl aus Wissenschaftlern als auch aus Klinikern bestehen.
Sowohl die technische Komplexititen der Datenanalyse von Omics-Datensdtzen und deren In-
tegration, als auch die Moglichkeit zur effizienten und unabhingigen Erkundung der Datensitzen
von allen Projektpartnern sind aktuelle Forschungsfragen. Die vorliegende Dissertation adressiert
eine umfangreiche Auswahl dieser Fragen zur integrativen Analyse von Omics-Datensitzen.

Kapitel 1, Die Supraentitit ZNS-PNET wird durch vier neue molekular definierte
Krebsarten ersetzt, die durch strukturelle Varianten getrieben werden: Primitive neuroek-
todermale Tumoren des Zentralnervensystems (ZNS-PNETs) waren eine heterogene Familie
von pidiatrischen Hirntumoren mit schlechter Prognose, ohne definierte histopathologischen
Marker und somit mit herausfordernder Diagnose. Meine bioinformatischen Arbeiten haben
zur umfassenden Beschreibung dieser Supraentitit beigetragen. In dieser Studie haben wir die
integrative Omics-Datenanalyse vom Methylomen, Transkriptomen und Genomen durchgefiihrt
und gezeigt, dass ZNS-PNETs neben einer groB3en Gruppe von fehldiagnostizierten anderen
Krebsentititen, vier neue molekular definierte Krebsarten umfassen. Ich habe entdeckt dass
diese neuen Krebsarten von ausgeprégten rekurrenten strukturellen Genverdnderungen getrieben
werden die das FOXR2 Onkogen und die MNI CIC und BCOR Tumorsuppressorgene betreffen.
Unsere Resultate haben dazu beigetragen, dass ZNS-PNETs von der World Health Organiza-
tion nicht mehr offiziell als eine Krebsentitit anerkannt werden.

Kapitel 2, SOPHIA, Erkennung struktureller Varianten durch Supplementary Align-
ments und ein Populationshintergrundmodell: Meine Forschung zu strukturellen Varianten
innerhalb der ZNS-PNETs Studie habe ich fortgesetzt indem ich den SOPHIA Algorithmus
zur Erkennung von strukturellen Verdnderungen in Krebsgenomen basierend auf einem grof3en
Populationshintergrundmodell und eine dazugehorige Bioinformatik-Software entwickelt habe.
Diese Werkzeuge ermoglichen eine schnelle Erkennung von strukturellen Verdnderungen in
short read Krebsgenomdatensidtzen. SOPHIA ist derzeit die Standardsoftware zur Erkennung
von strukturellen Verdnderungen in den Pipelines zur Analyse von Hochdurchsatzkrebsgenomen
des Deutschen Krebsforschungszentrums in Heidelberg.

Kapitel 3, EPISTEME, eine interaktive und integrative Omics-Datenanalyseplattform



fiir die Analyse, Auswertung und zum Austausch von Multi-Omics-Datensitzen: Im Laufe
der Entwicklung von SOPHIA habe ich zusitzlich zur Analyse und Auswertung von struk-
turellen Varianten andere Omics-Datensitze wie Genexpression integriert, die entsprechenden
Resultate ausgewertet, visualisiert und an Kooperationspartner vermittelt, die keinen bioinfor-
matischen Forschungshintergrund haben. Auf diese Erfahrungen beruhend und mittels mod-
erner Software fiir interaktive Datenvisualisierung habe ich eine interaktive Omics-Datenanalyseplattform
fiir die integrative Analyse und Visualisierung namens EPISTEME entwickelt. Der Zweck
dieser Entwicklung war die Moglichkeit zur Analyse der Omics-Datensitze fiir Wissenschaftler
mit Kenntnissen liber Krebs-Omics-Daten aber ohne Programmierkenntnisse. EPISTEME
ist eine umfangreiche Omics-Datenanalyseplattform und integriert Genom-, Transkriptom-,
Methylom- und Proteom-Daten mit klinischen Metadaten in einem benutzerfreundlichen, Web-
basierten System. EPISTEME bietet die Durchfiihrung von statistischen Analysen und Erstel-
lung von publikationsreifen Vektorgrafiken.

Kapitel 4, SOPHIA-EPISTEME Integration in DKFZ Krebsgenomanalyseprojekten
zeigt neue Krebsuntergruppen und ermoglicht neue Einblicke fiir verschiedene Kreb-
sarten: Durch die Integration von SOPHIA und EPISTEME als Teil einer integrativen Omics-
Datenanalyse, hat meine Arbeit neue, durch enhancer hijacking aktivierte Onkogene identi-
fiziert und ermoglicht somit die Charakterisierung neuer molekularer Untergruppen von re-
fraktdren multiplen Myelomen (MYCN enhancer hijacking via Immunoglobulintranslokatio-
nen), akuter myeloischer Leukdmie (MNX/ enhancer hijacking als mutmaBlicher Mechanis-
mus von Dedifferenzierung) und pédiatrischen Neuroblastomen (ATOHI enhancer hijacking
als mutmaBlicher Ersatz fiir MYCN) in Forschungsprojekten unterstiitzt vom DKFZ Heidel-
berg Center for Personalized Oncology (DKFZ-HIPO) und der Deutschen Gesellschaft fiir
Padiatrische Onkologie und Himatologie (GPOH).



INTRODUCTION

Life is a complex and interlinked network of information flow. The simplest form of this infor-
mation flow, the passing of genetic information, genetic inheritance, was known by humankind
since pre-historic times: consanguinity has been avoided in complex mating networks [1] and
later via social and religious norms [2], plants and animals were domesticated selecting for
desired traits [3], showing some level of recognition of heredity by humankind. A systematic
description of the processes governing genetic inheritance of traits was first presented by Gre-
gor Mendel’s work [4], contemporary to the first model of evolution via natural selection by
Charles Darwin [5].

These phenotypic observation based explanations for genetic inheritance and evolution
were expanded by a molecular understanding of the building blocks of genetic information,
deoxyribonucleic acid (DNA) [6]. Identification of the structure of the DNA as a double-helix
of deoxy-ribonucleotides which can replicate across cell divisions [7] followed by the hypo-
thetical proposal and experimental verification of the "messenger” compounds ribonucleic acid
(RNA) [8] [9], which led to an understanding of the way proteins were synthesized in life’s cel-
lular processes. The relationship and information flow from the DNA to RNA and to proteins
was a proposed model by James Watson named the Central Dogma of molecular biology [10],
where the following “general transfers” were named without detailed mechanistic models for
all stages: DNA is replicated and confers the hereditary characteristics to cells [11], RNA is
transcribed using DNA as a template from genes [12] [13], peptide chains consisting of amino
acids are translated using messenger RNA (mRNA) as a template and transfer RNA (tRNA) as
part of the machinery. Some special transfers” such as RNA tanscribing DNA hypothesized
by James Watson in his Central Dogma article were later experimentally confirmed [14] [15].

The Central Dogma proposes a model for the information flow in individual cells of an
organism starting from their underlying genetics and how this translates to differences in their
protein usage, which determine both the structure and chemical/enzymatic control of all bio-
chemical processes. The underlying genetic differences trivially account for the differences
between organisms. What the central dogma does not cover is the differences between cells
of a multicellular organism: by the process of DNA replication, genetic material (DNA se-
quences) is, ideally faithfully ([16], [17], [18]), distributed to daughter cells which make up
the organism, so the question remains as to how different cells of a multicellular organism get
their different identity and function in this higher order organization despite sharing near-equal
genetic material. Epigenetics is the study of cell identity and non-genetic regulation thereof
[19]. Cell identity is determined by a combination of DNA methylation and histone marks,
which are inherited across cell divisions.

DNA methylation is a non-genetic, reversible modification of DNA structure, but not DNA
sequence. First shown in prokaryotes [20], DNA methylation is largely confined to Cytosine
bases followed by Guanine (CpG) in mammals [21] except for the brief developmental state of
embryonal stem cells which also shows CpH (Cytosine followed by non-guanine) methylation

[22]. During embryonal development, the genome is reaches a demethylated state in a wave of



demethylation prior to differentiation [23]. DNA is then methylated in tissue specific patterns
[24] [21]. An important property of DNA methylation is that it is stable across cell divisions:
DNA methylation is transferred to elongating replicating DNA via DNA methyltransferases
[25], which contributes to establishment of mature cell identity across cell divisions in tissue
development starting from the globally demethylated embryonal state [26]. DNA Methylation
is associated with closed, inactive chromatin regions [27] and repression of promoter regions
of genes and consequently gene expression [28].

The second major mechanism of epigenetic regulation is histone marks: DNA is orga-
nized in higher order physical structures within a hierarchy named the nucleosome [29]. DNA,
starting from a simple double-helix chain of nucleotides is packed by a family of DNA bind-
ing proteins called histones [30], and creates distinct patterns of open chromatin (also called
euchromatin) [31] and constitutively condensed chromatin (heterochromatin), together with
regions of non-constitutive openness defining chromatin accessibility [32]. On a larger scale,
DNA is organized into local domains named TADs [33] [34] which carry co-regulated genes
and are stable across tissues/cell types but are differentially activated across different cell types.
Beyond the local-level organization in TADs, DNA chromatin forms loops [35] enabling long-
range interactions of DNA domains. Chromatin states are determined by post translational
modifications of histones [36] [37], and their binding patterns on DNA are called histone marks.
The most important and well studied of these are acetlyation of lysine residues of the H3 and
H4 histone subunits [38] and methylation of lysine residues of the H3 histone subunit [39]. On
the most basic level, histone acetylation is associated with open chromatin [40] and histone
methylation can either be associated with open chromatin or closed chromatin depending on
the amino acid residues and the number of methyl groups added to the histone protein [41].

The relationship between DNA methylation and histone modifications are complex: while
DNA methylation and histone acetylation suggest a reciprocal relationship, predicting a 1:1
mapping of histone mark states from DNA methylation levels is currently not possible, even
though some limited relationships between DNA methylation machinery and histone modi-
fications have been established [42], [43]. Recently, experimentally induced demethylation
was shown to lead to increased chromatin accessibility in only a very limited subset of the
genome [44], suggesting at least a transient mechanism to maintain histone-DNA binding pat-
terns across cell divisions even in the absence of maintained methylation patterns.

Cell identity is established during development starting from embryonal development and
continuing throughout infancy, childhood, adolescence and even later in life using the described
mechanisms of epigenetic programming [45] [46] [47]. Starting from pluripotent or multipo-
tent states [48], stem cells undergo cell divisions, losing their differentiation potency and yield-
ing daughter cells which mature into stable states called the cell fate [49]. Establishment of cell
identity happens in steps following a cell lineage [50] [51]. Previous work increased estimated
number of (final) cell types from around 200 [52] to 1058 [53]. These estimates are expected to
increase with single cell sequencing technologies showing an untapped diversity of cell types
in mouse [54], which will be followed by the work of the Human Cell Atlas consortium [55].
Even though the number of cell types shows a large diversity, the number of cell lineages are

comparatively small and these are governed by core transcription factors that confer lineage



commitment, which can be experimentally reprogrammed by manipulating core transcription
factor activity [56].

In their mature states, cells perform defined functions following a defined and regulated
transcriptomic and metabolic programme [57]. Organs of higher multicellular organisms are
developed as well-defined compartments using transcriptional regulatory mechanisms [58]. In
adult humans, most cell types are terminally differentiated, meaning that they are in their ma-
ture state having reached their cell fate and do not undergo further cell divisions as well as
further differentiation [59]. Some non-quiescent cell types which are replenished include ep-
ithelial lining of the small intestine and colon [60] [61], epithelial lining of the breast duct [62],
epihelial lining of the airways (e.g. lung) [63], epithelial lining of the the prostate [64], the
haematopoietic system [65] and epidermal cells of the skin [66]. Cell differentiation through
a lineage and tissue organization is tightly regulated by programmed cell death with diverse
mechanisms [67], of which the most common and important is apoptosis [68]. Dysregulation
of cell division and bypassing of programmed cell death leads to formation of tumours (or neo-
plasia), which can develop into cancer if differentiation and established cell identity are also
dysregulated in a process called malignant transformation.

Non-communicable diseases including cancer that affect older individuals are assuming
an increasing role as a cause of death [69]. Cancer is currently the second leading cause of
death worldwide [70] and the US [71]. Cancer can arise from the wide spectrum of paediatric
cell lineages of the developing body and adult cell lineages undergoing renewal [72]. By far
the most common adult cancer types, and cancer cases overall, arise from epithelial linings
of diverse organs, collectively named carcinomas [71]. If left untreated, cancer is lethal al-
most without exception, with diverse causes of death such as local tumour effects like brain
herniation due to increased intracranial pressure [73], bleeding predominantly seen in haema-
tological malignancies [74], electrolyte abnormalities such as hypercalcemia seen across can-
cer types [75], infection commonly seen across cancer types intrinsically or in a treatment
associated manner [76]. The earliest known cancer surgery dates to ancient Egypt [77], but
the greatest advances in surgery followed the development of anaesthetics [78]. Advances in
surgery were followed by the introduction of radiation therapy into clinical practice [79]. Can-
cer treatment by medication, chemotherapy, started with successes from hormonal therapies
and alkylating agents [80]. Chemotherapy drugs target biological processes that are more ac-
tive in cancer, or specific weaknesses of cancer: alkylating agents (Cyclophosphamide, Temo-
zolomide, Cisplatin, Oxaliplatin etc.) induce DNA damage that cancer cells cannot repair
[81], topoisomerase inhibitors (Irinotecan, Topotecan, Etoposide, Doxorubicin, etc.) target the
DNA replication process in cell division [82] [83], mitotic inhibitors (Paclitaxel, Vinblastine,
etc.) which disrupt microtubule formation necessary for cell division [84], antimetabolites (5-
Fluorouracil, Gemcitabine etc.) block usage of metabolites used in DNA production [85] [86],
hormonal therapy (Everolimus, Letrozole, Leuprorelin, Tamoxifen, Flutamide, etc.) which tar-
get hormone dependent cancers such as some subtypes of breast cancer [87] and prostate cancer
[88]. As chemotherapy targets dividing/replenishing cell populations with the intent of killing
proliferating cancer cells, it also targets healthy cells with regulated proliferation such as the

haematopoietic system or intestinal epithelial tissue. Therefore chemotherapy has been known



to be cause of severe side effects such as diarrhoea, nausea, potentially lethal neutropenia,
potentially lethal bleeding, among others. Despite advances in the understanding of cancer bi-
ology and improvements of treatment strategies that followed, outcomes for most cancer types
remain poor [89], reinforcing the great societal and research interest on the biology and clinical
management of cancer.

Cancer is governed by the overarching biological concepts formally and extensively dis-
cussed in the seminal publication series Hallmarks of Cancer by Douglas Hanahan and Robert
Weinberg [90] [91]. These reviews were written after a near century of molecular biologi-
cal studies of cancer including high-throughput technologies, investigating in great detail the
aetiology, biological mechanisms and treatment strategies of cancer. Hanahan and Weinberg
proposed 6 hallmarks and later extended them by 4 new hallmarks termed enabling character-

istics ():

1. Evading growth suppressors: cancer cells bypass molecular signals that are part of nor-

mal cell lineages commanding cells to stop proliferation.

2. Sustaining proliferative signalling: cancer cells have the ability to control their own cell

division (mitogenic) signalling, and ignoring the homoeostatic tissue regulation.

3. Resisting cell death: cancer cells bypass programmed cell death mechanisms of apopto-
sis and autophagy, and rather die using the necrosis type of cell death, promoting tumour

growth.

4. Enabling replicative immortality: cancer cells can replenish or maintain their telomeres
via different mechanisms which allow them to replicate indefinitely without DNA dam-

age due to lack of telomeric protection.

5. Inducing angiogenesis: tumours promote the formation of blood vessels that ensure the

availability of biomaterials to sustain their growth.

6. Activating invasion and metastasis: cancer cells invade into healthy tissue and tumours
release cancer cells into the bloodstream or the lymphatic system which can seed into

distant locations growing new tumours called metastases.

7. Genome instability and mutation *: cancer cells develop and accumulate somatic muta-
tions and other genomic alterations altering gene function, activity and regulation, en-

abling the other hallmarks listed here.

8. Deregulating cellular energetics “: cancer cells adapt their metabolism to hypoxic con-
ditions that arise due to deregulated rapid and dense growth, first described by Otto
Warburg [92].

9. Tumour promoting inflammation *: tumours have an inflammatory microenvironment
and are infiltrated by immune cells where the wound healing and dead cell and cellular
debris removal functions of innate immune system are hijacked to promote and sustain

their growth.



10. Avoiding immune destruction “: through the accumulation of somatic mutations through
mutagens or DNA damage repair deficiencies (cancer neoantigens), cancer cells assume
a genetic makeup different enough for the immune system to recognize them as foreign
organisms and targets of immune response. The immune surveillance system consisting
of T cells, nacrophages and natural killer cells both pre-emptively kill transformed cells
and infiltrate established tumours as part of an anti-tumour immune response. Cancer

cells evade this immune response in a process called immune escape.

An aspect of cancer biology, partially covered under “genome instability and mutation”
but not explicitly discussed as a hallmark of cancer by Hanahan and Weinberg is the concept
of somatic or clonal cancer evolution: cancer cells, once free of regulated tissue homoeostasis
enter an independent evolutionary programme following the general principles of evolution by
natural selection. This evolutionary process allows tumours to develop traits to optimize their
growth characteristics or to evade treatment due to resistant cell subpopulations [93] [94] [95].

Cancer starts from somatically mutated precursor cells that continue to accumulate muta-
tions over the course of the tumour evolution. Diverse gene types recurrently undergo somatic
mutations across different cancer types, promoting functions that sustain their proliferative pro-
gram through pressures like oxidative stress and cancer treatment. The following is a list of
main classes of genes that are frequently mutated in different cancer types, along mentions of

key genes and reviews.

» Pathways promoting growth such as RAS or NOTCH can be constitutively activated by
mutations of key genes: KRAS, HRAS, NRAS [96], BRAF [97], NOTCH1 [98] [99].

* Genes encoding growth factors can be aberrantly activated or amplified to promote con-
stitutive growth: IGF2 [100], EGFR [101], ERBB2 [102], FGFRI and FGFR3 [103].

* Genes encoding cyclin dependent kinases and cyclins can be amplified like CDK4 CDK6
[104] CCNDI1 [105], or cyclin dependent kinase inhibitors can be lost like CDKN2A
CDKN?2B [106] to disrupt the G1/S mitotic chekpoint leading to constitutive growth.

* DNA damage response genes blocking cell division are also targets of inactivating mu-
tations: 7P53 [107], CHEK?2 [108].

» Suppression of growth regulation signals can be achieved by loss of function mutations
or homozygous losses: RBI [109], PTEN [110], PTCHI [111], NF1 [112], NF2 [113],
SMADA4 [114].

» Evasion of apoptosis can be achieved by loss of function APC [115], BAX [116], TP53
[107], or aberrant activation of apoptosis evasion genes BCL2 [117], YAPI [118].

» Epigenetic dysregulation can be achieved by diverse mutations of histone demethylases
KDMO6A [119], histone methyltransferases KMT2A [120], subunits of the polycomb re-
pressive complex 2 with histone methyltransferase activity EZH2 [121], SUZI12 [122],
DNA methyltransferases DNMT3A [123], histone subunits H3F3A [124] or SWI/SWF
complex chromatin modelling genes SMARCBI, SMARCA4, ARIDI1A [125] [126].



Basic helix loop helix (BHLH) transcription factors can be aberrantly activated and pro-
mote growth and ”stemness”: MYC MYCN MYCL [127] TALI [128]. The same effect
can be created by inactivating mutations of MAX [129].

Aberrant activation of homeobox transcription factors can dysregulate cell identity: MNX]
[130] NKX2-1 [131].

Transcriptional (co-)repressors can be inactivated like BCOR and CIC or aberrantly ac-
tivated like GFI1B [132] leading to dysregulation of gene expression.

DNA damage repair pathways can be dysregulated by deactivation of key genes allow-
ing further accumulation of tumour promoting mutations and chromosomal alterations:
BRCAI and BRCA2 [133] [134], ATM [135], MLHI, POLE [136].

Immune evasion can be supported by amplification of CD274 (PD-LI) [137] or loss of
HLA class I antigen genes [138].

Protein kinases are frequent targets of mutations with diverse functional consequences:
ALK [139], FLT3 [140], NTRK1 [141], KIT [142], PIK3CA [143], JAK2 [144].

Telomere maintenance and consequent cell immortalization can be achieved by TERT
activation [145] or ATRX [146] inactivation.

Ubiquitin ligases that regulate protein degradation can either act as tumour suppressors
when inactivated, like VHL [147] or oncogenes when aberrantly activated, like MDM?2

[148] depending on downstream targets.

Mutations of metabolic enzymes can lead to aberrant production of growth promoting
metabolites and develop resistance against the oxidative stress conditions arising due to
rapid tumour growth: IDHI and IDH?2 [149].

RNA processing and silencing genes have also been implicated as mutational drivers of
cancer: POLR2A [150], DICERI [151].

Identifying the importance of mutations promoting different aspects of tumour biology

allowed the development of diverse modern therapies of cancer, that directly target a mu-

tated/activated oncogene or oncogenic pathway or a pathway that emerges as a weakness due

to loss of a tumour suppressor or via exploiting immune characteristics of the tumour [152].

These biomarker-based targeted therapies are promising with regards to reduction of side ef-

fects by targeting cancer cells not with respect to proliferation characteristics but molecularly

defined targets.

* The RAS oncogene family is currently not directly targetable but MEK inhibition is
a promising avenue to indirectly target RAS-mutant cancers [153]. BRAF [154] and
NOTCH family genes [155] are targeted by clinically approved inhibitors.

* Growth factors can be targeted by inhibitor or antibody based strategies: IGF (exper-
imental) [156], EGFR (cetuximab, antibody) [157] (lapatinib, inhibitor) [158], ERBB2
(lapatinib) [159] (trastuzumab, antibody) [160].



Cyclin dependent kinases are targetable by selective kinase inhibitors: CDK4 CDK6
[161].

DNA damage response genes blocking cell division are currently not directly targetable
such as TP53 and CHEK?2.

Loss of growth signal suppressing genes remains mostly not directly actionable with
genes such as RB1, PTEN, NF1, NF2, SMAD4 lost in cancers without a direct rationale
for therapeutic molecular targeting. PTCH 1 or SMO mutations and consequent activation
of the sonic hedgehog pathway can be targeted by SMO or GLI inhibitors [162].

Evasion of apoptosis is also generally not targetable even though exceptions exist such

as BCL2 inhibition in haematological cancers [163].

Epigenetic dysregulation is a broadly targetable process with drugs both available and
in advanced trials that target aberrant histone deacetylation (HDAC inhibitors) or aber-
rant cancer methylomes arising due to DNA methylase mutations (demethylating agents)
[164], [165].

Aberrant activation of Basic helix loop helix (BHLH) or homeobox transcription factors
is currently only indirectly targetable, with direct TF inhibition generally currently not
possible [166] [167].

Loss of transcriptional (co-)repressors is currently not a targetable process in cancer.

Deficiencies in DNA damage repair pathways is a well-targetable process with double
strand break repair deficiency (e.g. caused by BRCA mutations) treated by PARP in-
hibitors [168]. Mismatch repair deficiency leading to microsatellite instability and hy-
permutation arising due to MLHI or POLE mutations can be rationale for checkpoint
blockade immunotherapy [169] [170].

Immune evasion is an actionable biological property of cancers and is a promising treat-
ment avenue of great clinical and research interest, most notably via checkpoint blockade
by PD1 PD-L1 and CTLA-4 inhibition via monoclonal antibodies [171] [172]. Never-
theless, loss of HLA class I antigen genes remains not actionable, and is even a resistance

mechanism against checkpoint blockade immunotherapy [173].

Kinase inhibitors [174], with approved inhibitor drugs for all of the hitherto discussed
protein kinases such as the NTRK family [175] ALK [139] KIT [176], JAK family [177],
PIK3CA [178] and FLT3 [179].

Dysregulated telomere maintenance via TERT activation and the ALT phenotype as a
consequence of ATRX mutations is currently not actionable. Availability of inhibitors
and in vitro results [180] did not translate to a clinically approved strategy of TERT

inhibition.

Aberrations of ubiquitin ligases have currently no approved therapies but MDM?2 inhibi-

tion is a subject of study both on the research and clinical trial level [181].



* Mutations of metabolic enzymes can be biomarkers for targeted treatment with both
IDHI1 [182] and IDH2 [183] as targets of selective and clinically approved inhibitors.

* Among the RNA processing and silencing genes implicated in cancer POLR2A targeting
is a subject of pre-clinical research [184] [185], while DICER]1 is not targetable.

Overall, diverse families of genes with broad biological functions are mutated in cancer,
of which many are actionable with modern targeted treatments. A general pattern is that gene
activation or activating mutations can be candidates for direct targeting, whereas loss of func-
tion mutations or loss of genes can only be targeted indirectly by pathway-level strategies or
via synthetic lethality. Biomarkers can make not only therapy recommendations but rather
rule out therapies: for instance, RAS family or BRAF mutant colorectal cancer are resistant to
anti-EGFR therapy [186], which constitutes a negative recommendation. Even with no directly
actionable consequences, particular biomarkers can affect therapy decisions like germline TP53
mutations ruling out neoadjuvant radiotherapy [187].

Similar to targets of somatic mutations, the mechanisms of somatic mutations also show

diversity in cancer biology:

* Point mutations, (also named single nucleotide variants, SNVs) or small insertions or
deletions (indels) can constitutively activate proto-oncogenes in gain of function events
by inducing precise changes in protein structure, for instance in the activating oncogenic

mutations of the RAS family.

* SNVs or small indels can deactivate tumour suppressors by precise amino acid substi-
tutions (missense mutations, in-frame indels) or large-scale changes in protein structure

(nonsense stopgain/stoploss SNVs, frameshift indels) [188].

* Splice site mutations can lead to loss of regulated splicing patterns and aberrations in

spliced transcripts including chain terminations [189].

* Mutations in promoter regions can aberrantly activate oncogenes like TERT [190].

For inactivating mutations of tumour suppressors, mutations are often paired with a con-
comitant loss of the second allele of the gene by a prior or following copy number loss, a prior
copy neutral loss of heterozygosity (LOH) event, or a direct mutation of the second allele possi-
bly starting from the germline. Chromosome arm level losses via chromosome missegregation
during cell division followed by apoptosis are common across cancer types and frequently
happen on chromosome arms carrying core tumour suppressors like 7P53 or VHL [191] [192].

A large class of somatic alterations in cancer are collectively named structural variation.
These are large-scale changes in chromosome structure such as the deletion, duplication, in-
version of large chromosomal segments possibly leading to copy number changes and creating
complex patterns of chromosomal alterations such as chromothripsis or chromoplexty [193].

Structural variants can have significant oncogenic effects in almost all cancer types with a

variety of mechanisms. They can,

* create chimeric oncogenic fusion genes with functions combining those of the fusion
partners or deleting tumour-suppressing domains of one or both partners such as BCR-
ABLI [194] PML-RARA [195], CBFB-MYH11 [196], and TMPRSS2-ERG [197],



* alter protein structure by targeted insertion or deletion of sequences as part of in-frame
indels such as FLT3 [140] and BCOR [198],

» amplify genes for oncogene overexpression and oncogenic transformation such as ERBB2
[199], MYCN [200] and EGFR [201],

* (focally) delete tumour suppressor genes such as TP53 [202] VHL [203] RB1 [204]
CDKN2A/B locus [205] and PTEN [206] which sometimes happens in a two-hit setting
[207] or in a haploinsufficient setting [208],

* activate oncogenes by hijacking of active enhancers as part of normal haematological
process of V(D)J or CSR recombination in B-cells [209] and T-cells [210],

* activate oncogenes by hijacking of active enhancers in a more general context on genes
such as GFIIB [132] PRDM6 [211] TERT [212] EVII [213] and IGF2 and IRS4 [100],

* activate oncogenes by deletion of insulator regions such as PDGFRA [214],

* truncate tumour suppressor genes by intragenic duplications or deletions spanning mul-
tiple exons such as MLH1 [215] and ATRX [146],

* truncate tumour suppressor genes by interchromosomal structural variants hitting the
gene body such as 7P53 in Osteosarcoma [216] or RB/ in Multiple Myeloma [217],

* activate oncogenes by insertion of mitochondrial sequences to gene promoters such as
FOXR?2 [218].

Discovery of cancer related genes followed two separate methodological trajectories for tu-
mour suppressor genes that are lost or deactivated and oncogenes that are amplified or activated
by gain of function mutations.

Tumour suppressor genes were first hypothesized to exist due to the familial nature of
the retinoblastoma disease, where Alfred Knudson observed the discrepancy in age of onset
for familial and sporadic cases of retinoblastoma and postulated that two hits on the genetic
material of a patient is required for onset of retinoblastoma [207]. This observation was later
confirmed by observations suggesting that the dual deletion of the RBI gene is observed in
retinoblastoma patients [219] [220].

Oncogenes were first discovered following studies of transforming animal oncoviruses that
induced tumours upon infection of a host [221]. These viruses were found to harbour onco-
genes that were observed to have homologs in humans as part of their normal, non-viral ge-
netic material [222] [223]. Key genes that confer transforming properties were described and
hypothesized to be altered by mutations conferring [224] aberrant activation. These hypothe-
ses were shortly thereafter confirmed by the discovery of activating mutations of the HRAS
[225], and KRAS [226] oncogenes using DNA cloning followed by sequencing [223]. Later,
chromosomal translocations were shown to be a second oncogenic activation mechanism in B
cell lymphoma [227]. This was followed by gene amplifications as a third oncogenic activation
mechanism with the MYCN oncogene shown to be amplified in neuroblastoma cell lines [228]

and tumours [200] indicating a poor prognosis.



Early studies on oncogenes and tumour suppressors led Kenneth Kinzler and Bert Vogel-
stein to postulate a progression of cancer from preneoplastic lesions to malignant tumours
with accumulation of mutations in multiple steps [229]. These pioneering studies on molecu-
lar genetics of cancer development used low throughput techniques such as linkage analysis,
Giemsa banding, gene cloning, DNA sequencing also called ”Sanger sequencing” and in situ
chromosome hybridization allowing simultaneous study of only single genes or loci, limiting
their scope of analysis. Of these, Sanger sequencing [230] was instrumental in facilitating the
assembly of the genomes of viruses phi X174 [231], SV40 [232], followed by the human mito-
chondrial genome [233]. The assembly of the human genome itself was a considerably tougher
challenge costing 2.7 billion USD (1991 values) [234] and was greatly facilitated by the method
of shotgun sequencing [235]. Genomes of model organisms were similarly assembled, support-
ing experimental studies of oncogenic processes and treatment modalities [236] [237]. While
the first human reference genome was based on few individuals, the 1000 Genomes Project”
expanded our knowledge of population-based variation in human genomes from 2504 individ-
uals across 26 populations using the methods of whole genome sequencing and genotyping by
single nucleotide polymorphism (SNP) arrays [238].

Development of high-throughput analytical techniques and the availability of reference
genomes enabled broader and more advanced analyses of the cancer genome, starting the era
of cancer omics. As the genome (DNA), transcriptome (RNA), epigenome (DNA methylation
and histone marks), proteome (proteins) and metabolome (metabolites) are all dysregulated
in cancer, cancer research uses methods of analytical chemistry and computational analysis
to measure and analyse all of these biological processes. A typical cancer genomics project
focuses on one or more of these processes and data types in a cohort of cases representing a
disease of interest. This is followed by more detailed investigation of findings such as novel
oncogenes or dysregulated pathways, which can form the basis of preclinical drug development
in an area of research named translational genomics [239] [240].

RNA microarrays based on oligonucleotide probes of complementary DNA (cDNA) were
the first high-throughput transcriptome analysis technology [241]. Using selected probes in
the order of tens of thousands representing genes, enables quantitative molecular profiling of
tumours based on gene expressions. Gene expression based molecular profiling and classi-
fication was applied to gastrointestinal cancers [242], lung adenocarcinoma [243] and breast
cancer [244]. On the example of breast cancer, gene expression profiling made a major clinical
impact: Breast cancer subtypes based on gene expression profiling have first been introduced
by hierarchical clustering [245] and the field’s consensus converged to a set of 5 intrinsic ex-
pression subtypes with strong predictive powers for prognosis [246]. Later, these expression
subtypes were used to train a classifier based on 50 genes [247], which did not need microarray
or RNA-Sequencing data and could be run on paraffin embedded tissue using a cost-effective
quantitative polymerase chain reaction (QPCR) assay [248]. This classifier was named Predic-
tion Analysis of Microarray 50 (PAMS0), later commercialized as the Prosigna Breast Cancer
Gene Signature Assay established in clinical practice [249].

RNA Sequencing extended the transcriptome analysis capacities offered by microarrays

[250], [251]: sequencing of individual transcripts enables the detection of unannotated tran-
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scripts [252] and de novo transcriptome assembly [253], alternative splicing and alternative
transcript start site usage [254], detection of genomic variants on the transcriptome level [255],
detection of gene fusions [256]. RNA-Seq has therefore largely replaced microarrays in cancer
research. The Genotype-Tissue Expression (GTEX) project was an international effort to study
various tissue-specific aspects (gene expression, alternative transcript usage, protein truncation
by variants) of the transcriptome in healthy individuals using RNA sequencing [257].

DNA analysis in cancer, ’cancer genomics” improved greatly under evolving technologies:

* Already in 2004, a first census of 291 human cancer genes was published based on es-
tablished knowledge from low throughput technologies before results from larger cancer
genome sequencing studies were available [258]. Using such known gene lists, 188 lung
cancer cases were sequenced with targeted sequencing of 623 polymerase chain reaction
(PCR) amplified genes in 2008 [259]. A mass spectrometry based large-scale analysis
of 1000 tumours across 17 cancer types investigated 238 targeted cancer genes in 2007,
reporting a diverse set of mutations [260], but mass spectrometry was not widely used

thereafter in cancer genomics.

* The first (2006) large-scale sequencing of genes in cancer was on breast and colorectal
cancer genomes, where 13023 genes were sequenced by PCR amplification followed by
Sanger sequencing [261]. This study served as a pilot for future whole exome and whole
genome sequencing projects with more cost-effective technologies, with study design

recommendations presented here guiding future projects.

* A series of very expensive and pioneering cancer genome sequencing projects at a near
whole-exome level with the cost of around 100000 USD per case are published using
PCR amplification followed by Sanger sequencing: breast and colorectal cancer 11 cases
each (2007) [262], pancreatic cancer 24 cases (2008) [263], glioblastoma multiforme 22
cases (2008) [264].

* A series of new sequencing technologies called next-generation sequencing (NGS) or
short-read sequencing drastically lowered sequencing costs with the tradeoff of higher
computational complexity of data analysis and increased difficulty of recovering higher
order genome structure (SV detection, genome assembly) [265] [266] [267] [268] [269].
NGS allowed the expansion of the scope of cancer genome sequencing by enabling
whole genome sequencing (WGS) and making the whole genome sequencing (WES)

of larger cohorts possible.

* The first cancer WGS projects are published with limited cohort sizes, revealing mu-
tations of the non-coding genome and structural variation outside of the scope of WES:
breast cancer 1 case (2009) [270], prostate cancer 7 cases (2011) [271], multiple myeloma
23 cases (2011) [272], colorectal cancer 9 cases (2011) [273].

Following this very early era of cancer genomics pre- and post- NGS [274], the United
States” Cancer Genome Atlas (TCGA) [275] and the International Cancer Genome Consor-
tium (ICGC) [276] acquired, analysed and presented integrative genomics, transcriptomics,

epigenomics and to a limited extent proteomics data from a broad range of cancers, sharing
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them openly with the public, cancer research and clinical communities [277] [278]. Genome
sequencing costs have maintained their downward trend to allow WGS analysis of very large
cohorts with paired normals such as 500 breast cancer genomes [279] or 491 medulloblas-
toma genomes [211], yielding insights on mutational processes in cancer [280] and enabling
use of WGS in a clinical setting [281]. Thanks to large-scale cancer WES and WGS studies,
the accumulated knowledge of cancer related genes and their mutations expanded dramatically
[282], with the curated Catalogue Of Somatic Mutations In Cancer (COSMIC) presenting 719
cancer genes with “almost 6 million coding mutations across 1.4 million tumour samples, cu-
rated from over 26000 publications” as of 2018 [283], underlining the current scope of cancer
genomics. The article titled ”Comprehensive Characterization of Cancer Driver Genes and
Mutations” published by Bailey and colleagues in 2018 as part of the TCGA Pan-Cancer Atlas
project concludes with the statement that the field of cancer omics research is expected to enter
a new era, moving beyond gene-centric analysis of driver mutations and towards integration of
other data sources such as the tumour microenvironment [282]. Based on the numerous large-
scale studies on most cancer types characterizing their mutational landscapes, this statement
might be true, with less opportunities to reach insights with a genomics-only strategy. How-
ever, the TCGA’s analysis was mostly based on whole exome sequencing data and constrained
to the coding genome. An unpublished preprint from the PCAWG structural variation working
group states that the accumulated WGS dataset analysed in the largest WGS pan-cancer anal-
ysis to date is still insufficient to address the diversity and the complexity of the structurally
altered cancer genome, recommending both larger WGS studies and use of newer technologies
to improve SV research in cancer [284].

The analysis of the cancer epigenome encompasses the methylome, histone marks, chro-

matin accessibility and chromatin interactions with dedicated methods for each data type:

* The cancer methylome can be analysed by dense methylation arrays [285] or the much
denser whole genome bisulfite sequencing (WGBS) technology measuring every CpG,
first applied to colorectal cancer [21]. Methylation array analysis was a central technique
in the TCGA projects with 9759 of 11286 analysed cases across 33 cancer types having
available methylation array data [275]. Methylation arrays can be used for cell type
determination, promoter methylation status and copy number analysis, while WGBS
can additionally reveal partially methylated domains, variably methylated regions, high-
resolution methylation profiles of individual genes as shown on medulloblastoma [286]
and B cell lymphoma [287].

¢ Chromatin immunoprecipitation (ChIP) sequencing is the capture of DNA binding pro-
teins such as histones or transcription factors with post-translational modification-specific
antibodies, followed by the isolation and sequencing of the DNA sequences bound to the
captured target proteins. This technology has been instrumental in defining chromatin

states of healthy tissues [288] and cancer types like medulloblastoma [289].

* Chromatin accessibility was first assessed by DNase-I hypersensitive sites [32]. De-
velopment of the rapid and cost-effective Assay for Transposase-Accessible Chromatin

using sequencing (ATAC-Seq) assay [290] and improvements allowing its use in frozen
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tissues [291] led to its wide-spread application on cancer genomes with data released on
410 tumours from 23 cancer types by the TCGA [292].

* Chromatin interactions can be analysed by chromosome conformation capture tech-
niques with different scopes addressing different biological questions: 4-C can be used
to investigate interactions of a selected regulatory region with all other genomic regions
it is interacting with in a targeted manner [293], often used as a validation in SV studies.
On the other hand, Hi-C is used to analyse genome-wide chromatin interactions [294],
enabling the discovery of the TAD concept and definition of TAD boundaries [33]. Hi-C
can be combined with chromatin immunoprecipitation to study both chromatin interac-

tions and a target protein such as a H3K27ac for defining active enhancers or [295]

Using these analytical techniques, broad and high-quality repositories of epigenome data were
made available to the scientific community by international consortia such as the Encyclopedia
of DNA elements (ENCODE) [296] [297] and the NIH Epigenome Roadmap [298].

(Methods of cancer proteomics and metabolomics will not be introduced here as they are
outside of the scope of this dissertation.)

A central theme in omics research is integration of different layers of omics data [299].
Integrative omics goes beyond the identification of genomic variants or dysregulation of gene
expression or disease subtypes defined by methylomes, but rather integrates these data types
arising from interdependent biological processes. For instance, the link between oncogene
amplifications such as MYCN or EGFR and the corresponding increases in gene expressions
between amplified and non-amplified subpopulations in a cohort integrate genomic and tran-
scriptomic data. Taking this one step further, the “enhancer hijacking”, i.e. activation of
the proto-oncogene GFII/GFIIB by a structural variant in the Group 3 and Group 4 sub-
types of medulloblastoma integrates methylome-based classification, oncogenic overexpres-
sion, genomic structural variant information and histone marks indicating chromatin states
[132]. Deeper analysis of this example not explicitly discussed in [132] could yield insights
such as lack of mutations co-occurring with GFI1/GFIIB, suggesting them to be sole driver
mutations in another level of genomic integration. Similarly, description of transcriptomic
changes driven by GFII/GFI1B activation in medulloblastoma would constitute another level
of transcriptomic integration. Integrative omics presents a challenge both in terms of data
analysis, visualization and sharing.

High-throughput data generation enabled by omics technologies co-evolved with corre-
sponding algorithms to address the data analysis challenges posed by its nature. Cancer ge-
nomics, transcriptomics and epigenomics all make use of advanced bioinformatics algorithms
to process raw high-throuput data output of omics assays to results that can be analysed towards
dissecting the complex biology of cancer samples and cohorts. In a typical cancer omics project
analysing multiple omics data types, a diverse set of bioinformatics tools and algorithms are
used. Vice versa, large genome sequencing projects spur the development and optimization of
bioinformatics tools and workflows.

In genomics data analysis, the bioinformatics workflow starts from the alignment of raw
short reads produced by the sequencer to the used reference genome. Sequence alignment
algorithms evolved from the BLAST algorithm [300] to the fast BWA algorithm [301] based
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on the Burrows-Wheeler transform [302], which established itself as the de facto standard for
the alignment of genome sequences obtained by NGS. DNA alignment is followed by variant
calling for various genomic variant types. Single nucleotide variants (SN'Vs) can be called
by the mpileup algorithm under the Samtools suite [303] or the CaVEMan algorithm [304].
Algorithms like DeconstructSigs are used to investigate mutational signatures taking the SNV
output as their input [305]. An algorithm like Platypus is used to call small insertions and
deletions [306]. SNV and indel calling is followed by variant annotation on criteria such as
genomic context, predicted impact, novelty or lack of novelty, clinical actionability using a
tool like VEP [307]. Larger scale variants such as SVs and copy number variants (CNVs) are
called by other dedicated tools like Delly [308] and ACEseq [309], respectively. Annotation
and interpretation of impact of SVs is a task requiring more progress. Tools like CESAM [100]
are promising regarding the study of SV impact with a multi-omics strategy combining genome
transcriptome and chromatin interaction data.

Transcriptomics by RNA (cDNA) microarrays requires normalization to regress out vari-
ation due to hidden technical variables like dye imbalances [310]. Normalized gene expres-
sions obtained by RNA microarrays can be compared between groups using the limma pack-
age [311]. RNA Sequencing also requires an alignment step similar to DNA sequencing, but
the aligner needs to be splice-aware”, meaning that reads obtained from spliced transcripts
should be correctly aligned to exons that are separated by introns with gapped alignments.
STAR [312] performs well in its two-pass mode in benchmarks [313] and is a commonly used
RNA aligner. Counts of reads aligned to the reference genome in a splice-aware manner are
counted by a tool like featureCounts [314] which are then normalized by a normalization al-
gorithm like TMM [315]. Normalized transcript counts of RNA-Seq data can be analysed in
differential comparison using DESeq which can address confounders in the data by integrating
metadata information [316]. Alternative splicing and alternative transcript usage is typically
analysed by the DEXSeq algorithm [317]. RNA-Seq enables gene fusion detection by chimeric
transcript alignments in STAR or dedicated algorithms like deFuse [318].

Methylome array analysis can be done using Minfi [319] or RnBeads [320]. Copy number
profiles of tumour samples can be extracted using methylome array data with the conumee
[321] or ChAMP algorithms [322]. (WGBS algorithms and tools are omitted as they are outside
of the scope of this dissertation)

Multi-omics data integration via statistical algorithms is a recent development in cancer
omics, and is used for the identification of latent variables spanning multiple omics layers such
as copy number profiles, transcriptome and methylome. MOFA [323] and iCluster [324] are
among the tools to cluster cases using data from multiple omics layers.

General statistical analysis of high dimensional data such as transcriptome or metyhlome
analysis encompasses dimensionality reduction algorithms based on manifold learning like t-
SNE [325], clustering by a diverse selection of algorithms which are selected based on the
expected structure of the data with HDBSCAN being one example unifying hierarchical and
density-based approaches [326]. Dimensionality reduction, clustering and further supervised
and unsupervised machine learning algorithms are available in the Scikit-learn library [327].

Processed, analysed and integrated multi-omics data is presented in internal meetings or
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with external audiences using data visualization tools. General-purpose tools such as ggplot2
[328] produce static images based on a descriptive grammar of data visualization. Modern data
visualization approaches prioritize interactivity with D3.js being the most commonly used tool
for interactive graphics [329]. The data analysis requirements of the field of (cancer-) omics
have motivated the development of dedicated data visualization tools such as ggbio specializing
in the display of local genomic regions [330], ComplexHeatmap for advanced heatmaps and
oncoplots[331], and Circos for interactions of genomic loci in SVs or as part of chromatin
interactions[332].

This prevalence of computational tools in cancer omics research requires expertise in their
development and use in collaborative projects. As science becomes more interdisciplinary
[333], cancer research is no exception to this trend [334] [335]. With the collaborative work
of medical doctors, biologists, bioinformaticians and computational biologists, a contemporary
cancer omics project presents challenges in data sharing and communication between experts
from different scientific backgrounds. This is partially addressed by availability of omics data
visualization portals such as the cBioPortal [336] and R2 [337] facilitating access of non-
computational scientists to high-throughput multi-omics data.

With the advanced and cost-effective analytical chemistry methods yielding high-throughput
omics data, which are analysed by dedicated bioinformatics algorithms, the state of the art in
cancer omics research offers the availability of large and high quality multi-omics datasets.
The current aims of omics technology-driven cancer research are broad and cover both the

fundamental biology of cancer and clinical applications. Some of them are:

* Determining mutational drivers and biological mechanistic properties of rare cancers and

rare subtypes of common cancers.

* Analysing the similarity of cancer types in pan-cancer analyses [275] for rational design
of basket clinical trials [338].

* Determining molecular biomarkers for prognosis, treatment response and resistance mech-
anisms for targeted treatments, establishing a knowledge basis for personalized medicine
[339] [340] [281].

* Developing new and improved statistical methods and bioinformatics tools for compu-
tational biology, broadly supporting each field of cancer omics. This includes more
accurate or faster sequence alignment algorithms, more sensitive or specific variant call-
ing algorithms, statistical methods to integrate high-dimensional data across data layers
or to reduce them to lower dimensions, better and more intuitive and interactive ways to

visualize the complex datasets obtained in multi-omics.

In this context, my doctoral research as a bioinformatician and computational biologist
aimed to address the following research questions, each presented in individual chapters of this

dissertation titled Integrative Analysis of Omics Datasets:

I. Replacing the CNS-PNET Superentity with Four Novel Molecularly Defined Enti-
ties Driven by Structural Variants: My work as a computational biologist contributed

to the comprehensive description of central nervous system primitive neuroectodermal
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tumours (CNS-PNETs). In this study we applied integrative omics data analysis of
methylomes, genomes and transcriptomes revealing that CNS-PNETs are a combination
of a large group of misdiagnosed cases from other entities and four novel molecularly
defined entities. I showed that these novel entities are driven by distinct and recurrent
molecular drivers altered by different mechanisms of structural variants: the FOXR2
oncogene and MNI, CIC and BCOR tumour suppressors. Our results contributed to the
elimination of CNS-PNETS as an officially recognized cancer entity and the recognition

of four novel paediatric brain tumour entities in the WHO classification of brain tumours.

II. SOPHIA, Structural Rearrangement Detection Based on Supplementary Align-
ments and a Population Background Model: Building on my work on structural varia-
tion in our study of CNS-PNETs, I developed the SOPHIA algorithm for detecting SVs
in cancer genomes based on a large population background database and a correspond-
ing bioinformatics tool written allowing fast detection of SVs from short read cancer
genome sequencing datasets. SOPHIA later became the standard tool for SV detection

in the DKFZ’s cancer genome analysis workflow.

III. EPISTEME, an Interactive and Integrative Platform for Analysing, Interpreting
and Sharing Multi-Omics Data: During the development of SOPHIA and my research
in projects analysing and interpreting structural variant data, I developed experiences
analysing SV data detected by SOPHIA, integrating them with different omics layers
such as gene expressions, interpreting, visualizing and sharing them with collaborators
who were not computational scientists. Based on these experiences and using modern
tools of interactive data visualization, I developed an interactive platform for integrative
omics data analysis and visualization named EPISTEME, with the aim of facilitating
omics data analysis by scientists with conceptual knowledge of cancer omics but no
programming skills. EPISTEME is a comprehensive tool integrating genome, transcrip-
tome, methylome and proteome data with clinical metadata in a user-friendly web-based
system with in-browser statistical analyses and publication-quality vector graphics out-

put.

IV. SOPHIA-EPISTEME integration in DKFZ Cancer Genomics Projects Reveals Novel
Disease Subtypes and Insights Across Cancer Types: With the integration of SOPHIA
and EPISTEME in an integrative omics data analysis setting, my work identified novel
oncogenes activated by enhancer hijacking and revealed novel molecularly defined sub-
types in refractory multiple myeloma (MYCN enhancer hijacking via immunoglobulin
rearrangements as a MYC replacement), adult acute myeloid leukaemia (MNX/ activa-
tion via enhancer hijacking putatively acting as a differentiation block mechanism) and
paediatric neuroblastoma (ATOH1 activation via enhancer hijacking putatively acting as
a MYCN replacement) in projects supported by the DKFZ-HIPO and GPOH cancer re-

search programmes.

(The source code used in the generation of the data presented in all parts of this disser-

tation is available from the repository https://github.com/umut-h-toprak/PhD_

16



Dissertation_codebase. Externally used repositories are cited and documented as ap-

propriate.)
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CHAPTER 1
REPLACING THE CNS-PNET SUPERENTITY WITH FOUR NOVEL
MOLECULARLY DEFINED ENTITIES DRIVEN BY STRUCTURAL VARIANTS

1.1 Introduction

In human cancers, the cell of origin is a strong indicator of disease progression, sensitivity to
treatment and is consequently an integral part of establishing the correct diagnosis and prog-
nosis [275]. The cell of origin also indirectly, via chromatin states, influence the mutational
profile of a tumour [341]. Before the quantitative tools of omics- or array-based technolo-
gies measuring the transcriptome or the methylome of a sample were available for molecular
pathology, the only means of establishing a tumour classification was a combination of radiol-
ogy, classical histopathology and the experience of physicians. This approach works well for
tumour types that have distinct localization patterns, macroscopic manifestations, histopatho-
logical signatures of cell shapes or established molecular markers with available antibodies
[342]. For example, histopathological classification of invasive breast carcinoma follows a
two-pronged strategy involving tumour morphology (lobular, tubular, cribriform, medullary-
like, micropapillary, papillary, metaplastic, no-special-type), and marker status (oestrogen re-
ceptor positive, progesterone receptor positive, epidermal growth factor receptor HER2/ERBB?2
positive, triple-negative) [343]. Thanks to the low diversity of cell types in mammary tissue,
there is no ambiguity in the diagnosis of breast carcinoma by classical histopathology. How-
ever, tumours with dedifferentiated/anaplastic/high-grade or primitive cells of origin present a
more difficult challenge to pathologists.

Tissues harbouring diverse cell types such as the brain or mesenchymal tissue from which
sarcomas arise are another challenging diagnosis and research question to pathologists. Espe-
cially soft tissue sarcoma has a considerable variety of subtypes (and implicitly cells of origin)
with more than 100 described in the latest WHO classification [344]. Similarly, the human
brain both in its adult and developing form, harbours a diverse set of cell types with distinct
transcriptomic (and implicitly epigenomic) profiles [257] which have recently been described
with further precision using the new technology of single-cell RNA sequencing [345] [346].
This diversity of cell types also reflects in the diversity of tumours originating from the central
nervous system [347].

Frequently, methods of classical histopathology had been found to be insufficient in ad-
dressing the diagnostics needs for the diverse landscape of brain tumours. For instance, in the
case of Medulloblastoma, a paediatric tumour type with great clinical significance, age and
resection/metastasis status based risk estimation supporting classical histopathology was con-
sidered insufficient [348] [349], and was supported by methods such as transcriptome profiling
[350], mutation detection [351]. Methylome profiling is based on the hypothesis that the cell of
origin determines the type and correct diagnosis of a tumour even in the absence of appropriate
histopathological markers, and that cell of origin is imprinted in the methylome which can be

quantified by methylome array of whole genome bisulfite sequencing (WGBS) technologies.
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Methylome profiling has been successfully applied as a critical component of ICGC-Pedbrain
for classification of tumours into molecularly defined entities starting with molecular classi-
fication of medulloblastoma[352]. The method has been iteratively improved culminating in
a recent landmark study describing the molecular classification of “approximately 100 known
tumour types” of the central nervous system [353]. The study describes a mature, comprehen-
sive and accessible set of methods and a web portal for molecularly classifying tumours of the
central nervous system with the claim of outperforming classical histopathology, with 12% of
analysed cases correctly reclassified thanks to molecular classification analysis.

A key milestone in the progression to this mature molecular classification methodology
was the detailed dissection of the CNS-PNET superentity. CNS-PNETs is an abbreviation for
Central Nervous System Primitive Neuroectodermal Tumours. As the name implies, the cell
of origin is “primitive” cells of neuroectodermal lineage. This group of embryonal tumours
originally encompassed the medulloblastoma entity, previously named as PNET of the Cere-
bellum [354]. Cerebral PNETs are considerably rarer at 20% incidence and generated contro-
versy in the history of pathological diagnosis [355]. With unknown driver genes, a difficult
pathological profile making them prone to misdiagnosis and aggressive clinical characteristics,
dissecting the biological background of this superentity was of great clinical and research in-
terest. Equipped by the methylome-based classification method developed and implemented
during ICGC-PedBrain, an international collaboration was set up involving numerous centres
with large biospecimen banks worldwide (Germany: main coordinator groups Pfister & Kool
at DKFZ and Korshunov at Uni. Heidelberg, USA: main coordinator group Ellison at St. Jude
Children’s Research Hospital, Canada, UK, Australia among others) in order to collect rare
CNS PNET specimens with sufficient quality for molecular assays and sufficient quantity for
letting subtypes emerge.

This chapter of my dissertation describes this study where we described a tumour super-
entity, CNS-PNETS to be a combination of a large group of misdiagnosed cases from other
entities and four novel molecularly defined entities with distinct molecular drivers and pre-
sented our results to the community in the journal Cell [218]. In this study, I was the leading
bioinformatics contributor in the effort of dissecting the molecular mutational drivers of the
four novel brain tumour entities. For each of these four novel tumour entities, I managed to
present a convincing driver gene and mechanism(s): MN1 fusions, CIC Fusions, BCOR Inter-
nal Tandem Duplications, FOXR2 activation by Structural Rearrangements. My contributions
to this study encompass the methods and results Sections 1.2.7, 1.2.11, 1.2.12, 1.2.13, 1.3.2,
1.3.3, 1.3.4, 1.3.5 where the remaining sections are included to ensure the completeness of
presentation in my dissertation. Parts of the study and the resulting article that are not directly
related to my work as prerequisites or consequences are omitted for the sake of brevity and

more clearly outlining my own contributions
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1.2 Methods

1.2.1 Study Design

Participating centres provided specimens of cases diagnosed as CNS-PNETSs from their patho-
logical archives. Considering the high rarity of the disease, FFPE (Formalin-fixed, Paraffin-
embedded) specimens were collected in addition to higher quality fresh-frozen specimens.
Specimens that were unable to provide sufficient quality DNA for a methylome analysis were
excluded from the study.

The aims of the study were to investigate if the CNS-PNET diagnosis truly has a high misdi-
agnosis rate, if it encompasses a new or multiple novel tumour entities and how histopatholog-
ical diagnoses are in agreement with an expert panel review (Section 1.2.2) and with molecular
classification and to describe the mutational drivers of any new tumour entities if applicable.

All collected samples were subjected to methylome analysis for classification and copy
number profiling (Section 1.2.3) and gene expression analysis via Affymetrix microarrays for
secondary classification and determination of candidate genes via differential expression anal-
ysis (Section 1.2.6) where sufficient RNA quality was available. After each sample was classi-
fied, samples belonging to novel tumour classifications with specimens where fresh-frozen ma-
terial was available, were also submitted for sequencing by whole genome sequencing (along
with matching blood controls) and RNA sequencing for determination of mutational drivers
(Section 1.2.8).

1.2.2  Histopathological Review

For establishing a high quality histopathological diagnosis, each sample accepted in the study
was reviewed by an experienced panel of experts that participated in the study (Brent A. Orr,
David Capper, David W. Ellison, Andrey Korshunov). The results were classified as 1) Histo-
logically matching PNET: Classic PNET, i) Small-cell tumours with increased nuclear content
and without specific markers for definite differentiation between HGG (high grade glioma) and
PNET: PNET/HGNET, iii) Cases where the PNET diagnosis is considered questionable upon
expert review: HGNET with different diagnosis favored, iv) Cases where the PNET diagnosis
is considered inaccurate upon expert review.

No samples were excluded from the study including cases classified as questionable or
inaccurate upon expert review: while the study had the privilege of having access to the services
of world-class neuropathologists, the study is designed to help reduce or solve the controversy
around the CNS-PNET pathology worldwide, where the availability of such an expert panel
review though desirable cannot be expected. Hence, the study investigates the full spectrum of
CNS-PNETs based on institutional diagnosis.

In forming the consensus expert panel opinion, each case was systematically investigated
for the following morphological signatures, which were then presented in the manuscript:
1) hemorrhage, 2) small cell, 3) cell size (small/intermediate/large), 4) neurophil, 5) ependy-
moblastic rosettes, 6) perivascular rosettes, 7) vasculo-centric, 8) Homer Wright rosettes, 9) mi-
toses per 10 hpf, 10) apoptosis, 11) apoptosis score (low/intermediate/abundant), 12) fibrillar

processes, 13) infiltration, 14) necrosis, 15) secondary structures, 16) ganglion cells, 17) neu-
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rocytes, 18) pallisades, 19) vascular proliferation, 20) capillary network, 21) hyaline, 22) cal-
cification, 23) papillary growth, 24) pseudopapillary growth, 25) epithelial surfaces, 26) tissue
amount (scant/low/intermediate/abundant), 27) myxoid material, 28) nucleoli, 29) rhabdoid

cells, 30) giant cells, 31) inflammation, 32) anaplasia, 33) macrophages.

1.2.3 DNA Methylation Array Processing

DNA methylation profiling was performed using the Infinium HumanMethylation450 Bead-
Chip array (450k array) following manufacturer instructions (Illumina, San Diego, USA) as de-
scribed in [352]. The following participating centres contributed to the joint metyhlome profil-
ing effort i) DKFZ Genomics and Proteomics Core Facility (Heidelberg, Germany), ii) St. Jude
Children’s Research Hospital (Memphis, USA), iii) NYU Langone Medical Center (New York,
USA), iv) McGill University and Génome Québec Innovation Centre (Montreal, Canada).

For most fresh-frozen samples, > 500ng of DNA was submitted for methylome analysis.
250ng of DNA was used for most FFPE tissues. Quality control was done by checking on-chip
quality metrics and unexpected genotype matches by pairwise comparison of the 65 genotyping
probes on the 450k array.

Data analysis was performed in R version 3.2.0 (R Development Core Team, 2015). Raw
signal intensities were obtained from IDAT-files using the minfi Bioconductor package version
1.14.0 [319]. Samples were individually normalized by a background correction (shifting of
the 5 % percentile of negative control probe intensities to 0) and a dye-bias correction (scal-
ing of the mean of normalization control probe intensities to 10000)for both color channels.
This approach was tested against the functional normalization method [356], and determined
to perform similarly. Furthermore, probes were filtered/removed from the analysis with the
following criteria for more accurate clustering i) Probes mapping to the X and Y chromosomes
(n = 11551), ii) Probes containing a single-nucleotide polymorphism (dbSNP132 Common)
within five base pairs of and including the targeted CpG-site (n = 24536), iii) Probes not map-
ping uniquely to the human reference genome (hg19) allowing for one mismatch (n = 9993).

438370 probes were kept for analysis following this filtering step.

1.2.4 DNA Methylation Based Clustering

DNA Methylation Based Clustering was performed in the following configurations: i) samples
diagnosed as PNETs (n = 323), ii) reference samples where the histopathological and molec-
ular analysis defines the tumour entity without ambiguity including some non-neoplastic brain
tissue samples (n = 211), iii) the combination of PNETs and reference samples (n = 534).
The PNET-reference combination configuration was performed with the aim of exploring the
hypothesis that PNETs commonly include misdiagnosed cases because misdiagnosed PNETSs
would cluster with the reference samples where applicable, and pure clusters of PNET cases
would indicate novel entities for which no reference samples exist. Following this step, the
PNET-only clustering would reveal how cases diagnosed as PNETs are distributed between
novel entities and known entities. The reference-only clustering is performed with the motiva-
tion of controlling if the chosen reference samples act as an unbiased reference.

Unsupervised hierarchical clustering of samples was performed on the 10000 most variably
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methylated probes, with 1-Pearson correlation coefficient as the distance measure. Average
linkage was used to generate dendrograms. The same distance matrix was used to gener-
ate t-SNE visualizations (t-Distributed Stochastic Neighbour Embedding [325], Rtsne package
version 0.11) with the following non-default parameters: theta=0, isdistance=T, pca=F, max-
iter=10000. Individual clustering of CNS-PNET samples, reference samples and additional
CNS tumor samples was performed with a similar approach. Specimen type (i.e. FFPE or
fresh-frozen) was checked and determined not to influence on unsupervised clustering in the
form of enrichments of a specimen type within clusters.

The Kruskal-Wallis test was used to compare CpG methylation values between the four
new CNS tumor entities. P-values were adjusted for multiple testing using the Benjamini-
Hochberg procedure, followed by Dunn’s test for post-hoc pairwise comparisons. CpG sites
were reported entity-specifically methylated if for all pairwise comparisons p < 0.001 and
pairwise mean methylation difference > 1/3.

Following the identification of the four novel tumour entities, a larger repository of CNS
tumour methylomes (n > 10000) was used in a correlation analysis to identify further cases
where the initial diagnosis was not a PNET but the molecular pathology indicates an incidence
of one of the four novel entities. A new set of reference samples including the four new entities
was formed (n = 159) and was subjected to methylome clustering as described with candidates
from the master repository matching the four new entities (n = 59). This was done with the
motivation of maximizing the number of captured cases of novel molecular groups, including

previously “missed” cases.

1.2.5 DNA Methylation Based Copy-Number Variation Analysis

Copy-number variation (CNV) analysis was performed using the conumee Bioconductor pack-
age version 1.0.0. Two sets of 50 control samples displaying a balanced copy-number profile
from both male and female donors were used. Scoring of focal amplifications and deletions

and chromosomal gains and losses was performed by manual inspection of each profile.

1.2.6 Gene Expression Array Processing

Samples for which RNA of sufficient quantity and quality was available were analysed on the
Affymetrix GeneChip Human Genome U133 Plus 2.0 Array at the Microarray Department
of the University of Amsterdam, the Netherlands. Sample library preparation, hybridization,
and quality control were performed according to manufacturer’s protocols. Expression data
were normalized using the MASS5.0 algorithm of the GCOS program (Affymetrix, Santa Clara,
USA). Processed data was deposited in the R2 platform in a private session totalling 2273 brain
tumours and healthy brain tissue controls to facilitate analysis [337].

1.2.7 Differential Gene Expression Analysis for Candidate Gene Discovery

We used the R2 platform to perform differential expression analysis and subsequent gene ex-
pression visualizations [337]. The statistical test ANOVA was applied to the microarray dataset
normalized as explained in Section 1.2.6. Results were filtered to contain p-values below 0.01

and corrected for multiple testing using the Benjamini-Hochberg procedure.
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Each of the four novel tumour entities with unknown candidate driver genes was subjected
to a differential expression analysis in a 1 vs 3” configuration with the intrinsic assumption
that each group is embryonal and the inter-entity differences would allow a specific differential
expression analysis revealing tumour pathways rather than only strongly enriching cell of origin
related differences.

Following the identification of candidate overexpressed/underexpressed genes, candidate
genes were plotted in a box-dotplot configuration with all tumour entities included in the n =
2273 R2 brain tumour repository. These include 35 tumour types and 1 group of normal brain
tissue. The aim here was to indicate if results from the 1 vs 3” comparisons also held in a
more general analysis without pooling a large number of tumours from very different brain
cell lineages. Each outlier candidate was thus visually confirmed for novel group specificity.
The shortlisted candidates were prioritized for further cross-omics-layer analysis in terms of

dysregulation by gene fusions or enhancer hijacking events using next generation sequencing.

1.2.8 Next Generation Sequencing

As described in [357], paired-end (PE) DNA library preparation was carried out using Illumina,
Inc. v2 protocols. In brief, 1 — 5ug of genomic DNA were fragmented to ~300 bp (PE) insert-
size with a Covaris device, followed by size selection through agarose gel excision. Deep
sequencing was carried out with the HiSeq2000 instrument.

Paired-end RNAseq libraries were prepared with purified polyA+ RNA fractions using
methods preserving the strand specificity, following the dUTP-based protocol as described in
[358], featuring cDNA fragmentation after mRNA priming with a mixture of random hexamers
(dN)6 and oligo (dT) primers. A fraction of the libraries was constructed with a modified
protocol where the polyA+ RNA fraction was fragmented at 70°C for 5 minutes using RNA
fragmentation reagents (Ambion, Cat. #AM8740),according to the manufacturer’s instructions;
first strand synthesis was then performed with random hexamers (dN)6 only (and the cDNA

fragmentation step was omitted).

1.2.9 Next Generation Sequencing Analysis: Alignment of DNA sequences

For each sequencing lane, read pairs were aligned against human reference genome includ-
ing decoy sequences (hs37d5) using BWA mem [359] version 0.7.8 with default parame-
ters and -T=0 . Single lane bam files were post-processed using biobambam [360] (version
0.0.148): the lanes were sorted by bamsort and were merged with duplicates marked using
bammarkduplicates. This workflow is also known as the PCAWG workflow because it was
used in the Pan-Cancer Analysis of Whole Genomes project as the uniform alignment work-
flow for all participating centres. This workflow forms the backbone of our whole-genome
sequencing data processing in the DKFZ and is used for all data presented in this disserta-
tion, including the other chapters. The workflow is described in [361] and is available from
https://github.com/ICGC-TCGA-PanCancer/Seqware-BWA-Workflow
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1.2.9.1 SNV Calling

As described in [357], single nucleotide variant (SN'V) detection integrates publicly available
tools with custom in-house software and applies several filtering and annotation steps. SNV
calling is based on samtools mpileup [303] and bcftools [362] (version 0.1.17), using param-
eter adjustments to allow calling of somatic variants. Initial SNV candidates were identified
by using samtools mpileup for each tumour sample considering only reads with a minimum
mapping quality of 30 and bases with a minimum base quality of 13, after application of the
extended base alignment quality (BAQ) model. BAQ is the Phred-scaled probability of a read
base being misaligned [363], and it is designed to reduce false SNV calls caused by misalign-
ments. After the pile up of high quality bases at each position of the input BAM file, beftools
applies the prior and performs the actual SNV calling. We changed the default probability of
calling a variant if P(ref||D) < 0.5 to 1.0, which results in all positions containing at least
one high quality non-reference base to be reported as a variant. This initial SNV call set, rich
in false positives, is further filtered: SNVs covered by fewer than three reads in the tumour and
control sample, with somatic allele frequency < 5%, or with only one read supporting the vari-
ant were excluded. If the variant call was supported by reads from only one strand, the £10
bases around the SNV were automatically screened for Illumina specific error profiles [364]
and excluded if a profile was matched.

For all tumour SNV calls the pipeline generates a pileup of the bases in the normal sample
considering only uniquely mapping reads. SNV calls were categorized as germline or somatic
according to whether there was evidence for the same event at the same locus in the BAM file
of the tumour-matched control sample.

This workflow described in [357] did not yield candidate driver genes (recurrently mutated)
for the analysed novel tumour entities in the presented study. The analysis was performed by
Dr. Ivo Buchhalter, was not included in the final manuscript and is presented here for the sake

of completion

1.2.10 Next Generation Sequencing Analysis: InDel Calling

As described in [357], small insertions and deletions were identified with samtools [303] and
beftools [362]. The InDel discovery pipeline is similar to the SNV pipeline (as described
above), but using default bcftools parameters, to reduce the known high false positive rate
(~60%) associated with InDel detection methods for deep sequencing data. To call an indel a
germline event, we only required one InDel supporting read in the matching normal sample,
again to reduce the high fraction of false positive somatic InDel calls. Calls overlapping simple
repeat or microsatellite regions were excluded as such regions are commonly observed to yield
false positive calls. Annotation of InDels was identical to SNV annotation. All coding somatic
InDel calls were manually reviewed using the Integrative Genomics Viewer (IGV) [365].

This workflow described in [357] did not yield candidate driver genes (recurrently mutated)
for the analysed novel tumour entities in the presented study. The analysis was performed by
Dr. Ivo Buchhalter, was not included in the final manuscript and is presented here for the sake

of completion
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1.2.11 Next Generation Sequencing Analysis: Analysis of Chimeric Fusion Transcripts

I detected chimeric fusion transcripts from RNA-Seq FastQ files by de novo annotation of
fusion transcripts using the deFuse algorithm, version 0.6.1 [318] with default parameters using
a pipeline developed by Dr. Zuguang Gu. Results were filtered to exclude chimera arising
from differential splicing and chimera of adjacent genes. DNA breakpoints of the structural
rearrangements leading to the chimeric fusions were then detected as described in Section
1.2.12.

1.2.12 Next Generation Sequencing Analysis: Analysis of Structural Rearrangements

Our in-house experiences with CREST [366], LUMPY [367] the publicly available version of
Delly [308] at the time of the PNET study were not straightforward or positive (personal com-
munication). Generally, Delly, in the hands of dedicated experts, was known to perform better
with better specificity, but Delly was unable to capture mid-sized indels (~50 < I < ~1000bps)
at the time this study was running. The analysis described in Section 1.2.7 revealed a small
number of key candidate overexpressed genes and two of the four novel entities (Sections 1.3.2
& 1.3.3) were explained by the procedure described in Section 1.2.11. Thus, for the remaining
two groups we decided from the ground-up to favour a manual inspection approach which had
normally been applied in a validation setting as described in Section 1.2.10.

I used the Integrative Genomics Viewer (IGV) [365] to manually inspect the genomic
neighbourhoods of the candidate genes obtained from the procedure described in Section 1.2.7.
As recurrently mutated genes via small variants (SNVs and small InDels) were shown to be
unlikely by the analysis described in Sections 1.2.9.1 and 1.2.10, I prioritized my search for
structural rearrangements. After opening both the tumour and control alignments in IGV with
the non-default alignment display parameters i) disable downsampling, ii) show soft-clipped
bases, iii) do not filter supplementary alignments, iv) do not filter secondary alignments, I
checked each gene’s gene body and 5° and 3’ neighbourhoods up to 2 megabases away. I
specifically looked in the tumour alignments for features of soft-clipped reads with match-
ing hard-clipped supplementary alignments falling on consistent genomic positions, with high
quality bases in the split reads’ overhang sequences and absence of such features in the control
alignments. Each detected finding was validated by cross-checking other tumours in the same
molecular type and also chemically validated using PCR or FISH (Dr. Dominik Sturm and

colleagues) where sufficient quality DNA remained from the initial tumour specimen.

1.2.13  Data Availability

The data generated in this study was provided to the community in three sets, where I was

responsible for setting up the controlled-access release of the next-generation sequencing data:

Dataset (*controlled) Data Repository Accession Number
Methylome Arrays NCBI Gene Expression Omnibus GSE73801

Gene Expression Arrays | NCBI Gene Expression Omnibus GSE73038

NGS Data* European Genome-phenome Archive | EGAS00001001632

25



1.3 Results

1.3.1 Methylome Clustering of Reference Paediatric Central Nervous System Tumours and
CNS-PNETs Reveals a High Rate of Misdiagnosis and Novel Molecular Subgroups for
CNS-PNETs

The merged clustering approach described in Section 1.2.4 revealed a striking pattern of em-
bryonal tumours misdiagnosed as PNETs. More than half of the cases 196/323(61%) clus-
tered with other reference tumour entities, indicating a major clinical problem that should
be addressed (Section 1.1). Upon further investigation of the entities most prone to mis-
diagnosis, we observed as the most frequent sources of misdiagnosis Embryonal Tumours
with Multilayered Rosettes-ETMRs (36/323, 11%) [368] [369], MYCN-amplified high-grade
gliomas-HGG vy on (28/323,9%) and IDH/H3F3A wild-type HGG from receptor tyrosine
kinase (RTK) subgroups-HGGrrx (28/323,9%) [370]. This is followed by entities that
are less prone to misdiagnosis as PNET: IDH-mutant HGG-HGG;py (17/323,5%), H3F3A
G34-mutant HGG-HGGgs34 (17/323,5%), supratentorial ependymomas-EPN (15/323,5%),
AT/RTs (14/323,4%), H3F3A K27-mutant diffuse midline gliomas-HGG o7 (10/323,3%),
pineal tumors-PIN (8/323,2%), Ewing sarcomas-EWS (5/323, 2%), choroid plexus carcinomas-
CPC (2/323,1%), pleomorphic xanthoastrocytomas-PXA (1/323,< 1%), or meningiomas-
MNG (1/323, < 1%).
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Figure 1.1: Merged clustering of case diagnosed as PNETSs and reference tumours using methy-
lation and gene expression profiles (Figure 1 of [218]). A: Methylome hierarchical clustering
of 534 CNS tumour samples of which 323 are institutional PNET diagnoses (black bars) and
211 are reference specimens of confidently molecularly diagnosed reference instances of other
CNS tumour entities (coloured bars). PNET-diagnosed cases disperse to diverse non-PNET en-
tities, 4 novel molecularly defined entities and unspecified clusters. B:Methylome tSNE of the
analysed CNS tumour cohort shows the 4 novel clusters as distinct clusters. C: The numbers

of cases that were assigned to one of the 4 novel clusters from the original collection of 323
institutional PNET diagnoses.

Having established the previously hypothesized but not molecularly shown a high misdi-
agnosis rate involving PNETSs, we searched for bona fide ”PNETs” belonging to previously
unknown entities. We observed that such cases exist and fall into five categories: i) small,
inhomogeneous clusters (< 5 tumours) or distant outliers which failed to group with each
other or any of the reference tumour entities, possibly representing exceedingly rare entities
(50/323,15%), and ii) four separate and homogeneous clusters clearly distinct from reference
entities (77/323,24%). At that point, the observation that there is not one but four “real”
PNET clusters with distinct cells of origins and likely distinct drivers further emphasized the
difficulties of PNETsS for histopathological diagnosis.

The four new tumor entities were provisionally and finally named

1) PNET with chrlq gains and chrl6q losses, PNET 1q-16q — "CNS neuroblastoma with
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FOXR?2 activation” CNS NB-FOXR?2 (44/323,14%),

ii) Ewing Sarcoma-like PNET, PNET-EWS-like — “CNS Ewing Sarcoma family tumor
with CIC alteration” CNS EFT-CIC (12/323,4%),

iii) PNET with chr16q losses and chr22q losses, PNET 16g-22q — “"CNS high-grade neu-
roepithelial tumor with MN1 alteration” CNS HGNET-MN1I (11/323,3%), and

iv) PNET with WNT pathway activation, PNET-WNT — “CNS high-grade neuroepithelial
tumor with BCOR alteration” CNS HGNET-BCOR (10/323,3%).

These provisional names were proposed by copy number variation analysis and pathway en-
richment analysis which will not be discussed here (details available in [218], Supplementary
Figure 5, Figure 7 and Supplementary Figure 7). The provisional names were used during the
analysis of our results leading to the presented study, before their respective driver genes and
mechanisms were discovered (Sections 1.3.2, 1.3.3, 1.3.4 and 1.3.5) and their final names were
determined.

Our next step was to confirm that the PNET diagnoses that did not fit the new four entities
but rather other reference entities were indeed a correct match to those entities not only in
terms of methylome (cell of origin) profiles but also with respect to known hallmark genomic

alterations (Figure 1.2).

i) Cases of the ETMR cluster were checked following [369] for C1I9MC amplifications
(33/36,92%,p < 0.001) and high LIN28A protein expression (17/17,100%; p <
0.001),

ii) Cases of the AT/RT cluster were checked following [371] for SMARCBI mutations
and/or deletions (14/14,100%; p < 0.001) and loss of the SMARCBI protein prod-
uct INI-1 (5/5,100%; p < 0.001),

iii) Cases of the HGGp g cluster were checked for IDH I mutations using targeted sequenc-
ing (15/15100%; p < 0.001),

iv) Cases of the HGGg34 cluster were checked for H3F3A G34 mutations using targeted
sequencing (17/17100%; p < 0.001),

v) Cases of the HGG7 cluster were checked for H3F3A K27 mutations using targeted
sequencing (4/757%; p < 0.001),

vi) Cases of the HGG sy ¢y cluster were checked for MYCN amplifications revealing (20/2871%; p <
0.001) and MYCN-ID2 co-amplifications (12/2843%; p < 0.001). The latter was a
novel observation at the time of this study

vii) Cases of the HGGrrk cluster showed copy-number alterations, and half (14/28,50%)
harboured focal amplifications and/or deletions of known oncogenes and/or tumor sup-
pressor genes (MDM2(4), CDK4(3), PDGFRA(2), MYCN(2), MYC(1), CDKN2A(4),
PTEN(2), RBI1(1)),

viii) Cases of the EWS cluster were confirmed to harbour EWSRI rearrangements using FISH.
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Figure 1.2: Confirmation of misdiagnosis of PNETs and accurate diagnosis into known non-
PNET tumour entities (Figure 2 of [218]). A: PNET-diagnosed cases reclassified as embry-
onal tumours with multilayered rosettes (ETMR) harbour C/9MC amplifications as shown by
metyhlome based CNV analysis and FISH and express LIN28A as shown by immunohisto-
chemistry (IHC), hallmarks of ETMR. B: PNET-diagnosed cases reclassified as atypical ter-
atoid rhabtoid tumours (ATRT) harbour SMARCBI deletions as shown by metyhlome based
CNV analysis and show loss of INI-1 expression (IHC) as hallmarks of ATRT. C: PNET-
diagnosed cases reclassified as IDHI mutant or H3F3A mutant high grade glioma (HGG)
harbour the respective hallmark mutations as confirmed by Sanger sequencing. D: PNET-
diagnosed cases reclassified as MYCN-amplified HGG harbour MYCN amplifications as shown
by metyhlome based CNV analysis and FISH. E-H: the reclassified cases show spatial and age-
related distributions that are in line with established knowledge representing the entities.

Having thus confirmed the prevalence of misdiagnosis and the existence of four new tumour
entities, we later used a larger methylome array repository encompassing all available brain
tumours (n = 10000) to look for new cases that belong to the four new entities but were
previously not diagnosed as PNETs and were thus not part of the initial candidate case list
(n = 323) as described in the last paragraph of Section 1.2.4. We found the following 77 new
cases with this approach (Figure 1.3)

1) PNET with chrlq gains and chr16q losses, PNET 1g-16q — “CNS neuroblastoma with
FOXR?2 activation” CNS NB-FOXR2: 2 new cases,
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ii) Ewing Sarcoma-like PNET, PNET-EWS-like — ”CNS Ewing sarcoma family tumor
with CIC alteration” CNS EFT-CIC: 3 new cases,

iii) PNET with chr16q losses and chr22q losses, PNET 16g-22q — “CNS high-grade neu-
roepithelial tumor with MNI alteration” CNS HGNET-MN1: 30 new cases,

iv) PNET with WNT pathway activation, PNET-WNT — “CNS high-grade neuroepithelial
tumor with BCOR alteration” CNS HGNET-BCOR: 24 new cases.

Both these counts and the presented results in Figure 1.3 A-B show an imbalance between

the numbers of new recovered cases across different entities of previous diagnosis. This imbal-

ance will be explained in the corresponding sections of the new entities (Sections 1.3.2, 1.3.3,
1.3.4 and 1.3.5).
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Figure 1.3: Recovery of additional cases belonging to the 4 novel entities from initial diagnoses
of non-PNET entities (Figure 3 of [218]

). A: hierarchical clustering of the recovered 77 new cases, 159 reference samples and 59 ad-
ditional samples reveals the recovery of additional cases to the 4 novel entities. B: The 4 novel
entities represent different misdiagnosis incidence profiles with the CNS NB-FOXR2 and CNS
EFT-CIC groups representing the highest bona fide PNET diagnosis likelihood and the CNS
HGNET-MNI group receiving a large number of cases from the astroblastoma entity. C-F: The
spatial, age and gender distribution characteristics of the four entities following establishment
of final cohorts from initial PNET diagnoses and later recovery from other entities as initially

diagnosed.)
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All new entities have homogeneous localization in the brain (Figure 1.3C-F). As per study
design, we required a PNET diagnosis and cerebellar PNETSs have historically been histopatho-
logically diagnosed as Medulloblastoma and not as PNET. The inclusion of new cases by this
analysis extended the entities from purely cerebral to cerebral and cerebellar. Overall, follow-

ing the initial and secondary clustering, we obtained the following numbers.

Entity (Provisional) | Entity (Final) Nrotar | Nwas | NrNAseq | Nootn
PNET 16qg-22q CNS HGNET-MNI 41 1 4 0
PNET EWS-like CNS EFT-CIC 15 0 2 0
PNET WNT CNS HGNET-BCOR | 34 3 8 0
PNET 1qg-16q CNS NB-FOXR2 46 5 4 1

1.3.2 MNI1 Fusions, mainly MN1-BEND?2, Drive a Subgroup of CNS-PNETsSs

I ran a gene fusion analysis on the PNET 16q-22q subgroup as described in Section 1.2.11,
which revealed MN1 chimeric fusions in all samples with available RNA-Seq data. In (3/4, 75%)
of the cases the partner was the BEND?2 gene, whereas the remaining case had a MNI-CXXC5
fusion (Representative fusions in Figure 1.4). In the absence of other recurrent genomic alter-
ations and considering the 100% recurrence of MNI fusions, we designated MN1 as a primary

candidate gene of interest for this entity.
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Figure 1.4: Representative MN/ fusions MNI-BEND2 and MN1-CXXCS5 as displayed on IGV.
Extracted from Supplementary Figure 6 of [218]. Left: a MNI-BEND? fusion with breakpoints
denoted by sharp coverage drops and gains and split read mapping to the partner site marked
by orange and black coloured guide rectangles. Right: a MNI-CXXC5 fusion case with the

same visualization principles.

I first investigated if the MN1 fusions lead to overexpression or suppression of MN/ in this
entity compared to other brain tumour entities and observed that MN/ in the PNET 16g-22q

group does not have a strikingly different expression profile (Figure 1.5).
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Figure 1.5: MN1 expression across brain tumour entities shows no outlier characteristics in the
candidate pnet-16q-22q subcohort (dataset ps-mkheidel-mkdkfz2273-u133p2 in R2 [337])

Next, I investigated if the frequent translocation partner of MN1, BEND?2 has a significantly
different/altered expression profile and observed that BEND?2 is uniquely and recurrently acti-
vated in the PNET 16q-22q subgroup (Figures 1.6, and 1.7F). The cohort where this analysis
was run is a microarray-based gene expression profiling cohort for which RNA-Seq data is not
available apart from the aforementioned 4 cases. However, we observed that BEND2 was acti-
vated in (7/887.5%) cases whereas the CXXC5 fusion detected from RNA-Seq data remained

the only exception also in the larger cohort.
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Figure 1.6: BEND?2 expression across brain tumour entities shows a unique and significant up-
regulation in the candidate pnet-16q-22q subcohort (dataset ps-mkheidel-mkdkfz2273-u133p2
in R2 [337])

Having established MN/ as the chief partner of recurrent gene fusion events with the signif-

icantly preferred secondary partner BEND2, we named this new entity Central nervous system
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high-grade neuroepithelial tumour with MN/ alteration (CNS HGNET-MN/) (Figure 1.7).

D E F
| 229121 40
T ) )

g
o

[nd
o

= B poctve

] MN1-CXXC5
[ I negative
[na

S (DT D

= il

S 8

;

D : K

5 —_— °
(7]

T £

2 2

o

5

BEND2 expression
[intensity x 1,000]
5 @

o
4
2

0 ole — o —_—

R BB\ OO P
RGN
\\(}\

Exon 7-14

3,

2
' ¢
BEND2:MN1 & ¢ SO O
£ & &

Figure 1.7: Description of the CNS HGNET-MN/ entity. Extracted from Figure 6 of [218].
D: MNI-BEND?2 fusions shown on an example of typical breakpoint locations. E: RNA-
sequencing and FISH analyses confirm MNI fusions and MNI in the entity. We validated
our findings in the initial larger cohort from which the methylome analysis was run. In the
13 specimens with sufficient material, we ran FISH assays targeting MNI with break-apart
probes. 3 of those cases had matching RNA-Seq data for establishing concordance between
RNA-sequencing and FISH. We confirmed all MN/ fusions detected by RNA-Sequencing and
observed that all but one of the cases with sufficient material were positive for MNI breaks F:

BEND? activation is a unique and recurrent characteristic of the entity.

CNS HGNET-MNI showed a high rate of new case recovery from a large group of tumours
initially not diagnosed as CNS-PNETs (Figure 1.3). We observed that the brain tumour en-
tity astroblastoma [372] [373] accounted for 16/41 of our CNS HGNET-MNI cohort and that
these 16 cases were 16,/23 of our entire astroblastoma collection. We thus postulated that the
entity previously known as Astroblastoma was not a bona fide brain tumour entity but rather
a collection of CNS HGNET-MN/ and a heterogeneous set of tumours from other entities.
Our assessment was approved by the WHO classification of Tumours of the Central Nervous
System, 2016 [374] where astroblastoma was removed as an entity. Under histopathological
investigation, CNS HGNET-MNI revealed itself as a heterogeneous entity where only some
cases had an Astroblastoma-like histopathology.

We then investigated if the gene MNI is a candidate oncogene for tumourigenesis in this
new proposed entity with either of the two detected fusion partners BEND2 and CXXC5. MN1
is disrupted in balanced translocations in meningioma [375] and is part of the MNI-ETV6
chimeric fusion oncogene in myeloproliferative disorders such as myeloid leukemia [376].
The MNI-ETV6 oncogene was described as an oncogenic transcription factor [377] with a
dominant negative effect on the wild-type allele of MNI [378]. The MNI-BEND? fusion in the
CNS HGNET-MNI entity fuses the transactivating domains of MNI with the BEN domains of
BEND?2, previously suggested to mediate protein-DNA and protein-protein interactions during
chromatin organization and transcription [379]. As BEND2, ETV6 and CXXC5 are all DNA
binding proteins, we hypothesized that MNI-BEND2 and other MNI fusions such as MNI-
CXXC5 have similar oncogenic mechanisms to MNI-ETV6. In the absence of a viable cell line

or other models, we were unable to further test this hypothesis in this study.
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1.3.3 CIC Fusions, mainly CIC-NUTMI, Drive a Subgroup of CNS-PNETSs

I ran a gene fusion analysis on the PNET EWS-like subgroup as described in Section 1.2.11,
which revealed CIC chimeric fusions in 2/3 of samples with available RNA-Seq data. In
both the cases the partner was the NUTM1 gene, whereas the negative case had a frameshift
deletion on CIC. In both detected fusion events, exon 16 of CIC was fused in-frame to exon
4 of NUTM1, retaining the DNA-binding high mobility group (HMG) box domain of CIC
(Figure 1.8). In the absence of other recurrent genomic alterations and considering the 100%
involvement of the CIC gene, we designated CIC as a primary candidate gene of interest for

this subgroup.
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Figure 1.8: A representative CIC-NUTM 1 fusion as displayed on IGV. Extracted from Supple-
mentary Figure 6 of [218]

I first investigated if CIC fusions lead to overexpression or suppression of CIC in this entity

compared to other brain tumour entities (Figure 1.9).
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Figure 1.9: CIC expression across brain tumour entities: CIC in the PNET EWS-like group
does not have a strikingly different expression profile (dataset ps-mkheidel-mkdkfz2273-
ul33p2 in R2 [337])

Next, [ investigated if the frequent translocation partner of CIC, NUTM1 has a significantly
different/altered expression profile (Figures 1.10 and 1.11C).
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Figure 1.10: NUTM1 expression across brain tumour entities: NUTM is recurrently activated
in the PNET EWS-like subgroup, leading to median and upper quartile values significantly
higher than most other CNS tumour entities (dataset ps-mkheidel-mkdkfz2273-u133p2 in R2
[337D

Having established CIC as the recurrently implicated gene in this entity, we named it CNS
Ewing Sarcoma Family Tumor with CIC Alteration (CNS EFT-CIC) (Figure 1.11).
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Figure 1.11: Description of the CNS EFT-CIC entity. Extracted from Figure 6 of [218]. A:
exon 16 of CIC is fused in-frame to exon 4 of NUTM I, retaining the DNA-binding high mobil-
ity group (HMG) box domain of CIC. B: We validated our findings in the initial larger cohort
from which the methylome analysis was run. In the 9 specimens with sufficient material, we
ran Fluorescence in Situ Hybridization assays targeting CIC with break-apart probes. 2 of those
cases had matching RNA-Seq data for establishing concordance between RNA-sequencing and
FISH, including the case with no CIC-NUTM1 fusion with the CIC frameshift deletion. All
tested cases apart from the mentioned case were positive for CIC breaks. Furthermore, we also
tested stained the specimens with sufficient material with the NUTM 1 antibody in an immuno-
histochemistry (IHC) procedure. All but one tested case tested positive for the NUTM1 gene,
hinting at the recurrent nature of CIC-NUTM|1 fusions even in cases where assays for fusion

detection cannot be run. C: NUTM1 is recurrently activated in the PNET EWS-like subgroup.

Under histopathological investigation, CNS EFT-CIC was characterized by a small-cell
phenotype but with variable histology. The tumour architecture included both alveolar and
fascicular patterns of growth. Although tumors were uniformly high grade, the CNS EFT-CIC
entity lacked defining histological features and failed to express markers of differentiation,
reinforcing the challenges it poses to classical histopathology. However, this entity, along with
CNS NB-FOXR?2 had the most consistent clinical PNET diagnoses, and had relatively few
gains of new cases from the extension analysis described in Section 1.2.4 (Figure 1.3).

As CIC-DUX fusions were previously described in a subgroup of pediatric primitive round
cell sarcomas [380] and shown to have a distinct transcriptional signature [381], we analyzed
CNS EFT-CIC tumors for similar gene expression patterns, confirming transcriptional changes
(Figure 1.12).
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Figure 1.12: Selected targets of the CIC-NUTM1 oncogene in CNS EFT-CIC (Extracted from
Supplementary Figure 6 of [218]). Members of the ETS transcription factor family, includ-
ing ETVI, ETV4, ETVS, FLII, and ETSI were specifically upregulated in this group as also
observed in peripheral EWS.

We later investigated if the gene CIC is a candidate oncogene for tumourigenesis in this new
proposed entity as part of the CIC-NUTM 1 chimeric fusion gene. Oncogenic re-arrangements
of NUTM1 are known to be the main driver of NUT midline carcinomas, most frequently in-
volving BRD4 [382]. Considering the preferred location of CIC-NUTM fusions on an exonic
level, we hypothesized a molecular mode of action of CIC-NUTM|1 fusions in which specific
CIC target genes are transcriptionally activated by the NUTMI moiety via the recruitment of
histone acetyl transferases, similar to a model of how BRD4-NUTM 1 might block differenti-
ation in NMC [382]. In the absence of a viable cell line or other models, we were unable to

further test this hypothesis in this study.

1.3.4 BCOR Internal In-Frame Tandem Duplications Drive a Subgroup of CNS-PNETs

In the investigation of the PNET-WNT subgroup, neither small mutation and SV calling from 3
WGS specimens, nor a gene fusion analysis from 8 cases led to a recurrent candidate gene for
further investigation. I thus used the 1-vs-3 comparison approach described in Section 1.2.7
and looked for overexpressed oncogene candidates with potentially unknown or unrecoverable
activation mechanisms. This approach yielded the candidate gene BCOR, which is recurrently
and significantly upregulated in the PNET-WNT group compared to all brain tumour entities

with sufficient sample sizes (Figure 1.13).
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Figure 1.13: BCOR expression across brain tumour entities: BCOR is recurrently and sig-
nificantly upregulated in the pnet-wnt group (dataset ps-mkheidel-mkdkfz2273-u133p2 in R2
[337])

I ran a manual inspection of BCOR both on RNA-Seq and WGS data in IGV as described in
Section 1.2.12, which revealed recurrent and very similar in-frame internal tandem duplications
(ITDs) on the exon 15 of BCOR (10/13). Two cases had frameshift mutations detected by WES
in an extension cohort (data not discussed) (2/13). One exceptional case where we no BCOR
overexpression was observed had an in-frame deletion between the exons 14 and 15 of BCOR,

directly targeting the frequently duplicated domain on exon 15 (1/3).

Chromosome X Chromosome X

———— == H T

C ummmmne-
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X:39,911,360-39,911,560 X:39,911,428-39,913,297

Figure 1.14: A representative BCOR ITD and the exceptional BCOR-deletion case as displayed
on IGV on RNA-Seq data (extracted from Supplementary Figure 6 of [218]). Left: the proto-
typical ITD events on BCOR exon 15 as denoted by the coverage increase and split read map-
ping indicating the tandem duplication, with the in-frame nature of the duplication confirmed
in other analyses. Right: one case had an in-frame deletion of BCOR and no concomitant
overexpression, with the deletion shown by the coverage drop and split reads mapping to the

sequences flanking the deletion breakpoints.

I then investigated if the recurrently duplicated region on BCOR has a conserved sequence
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on the protein level. I reconstructed the translated protein sequence of BCOR following the
duplications for each case where an ITD was detected (Figure 1.15). This analysis confirmed

that the ITDs are indeed similar, and revealed that there are two main classes of duplicated
sequences in our cohort: i) Subsequences of VSASLLFCSKDLEAFNPESKELLDLVEFT-
NEIQTLL, and ii) Subsequences of SASLLFCSKDLEAFNPESKELLDLVEFTNEIQTLLGSSVEW.
All cases had the minimally duplicated sequence DLVEFTNEIQTLL.
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Figure 1.15: Conserved duplicated peptide sequences following ITDs on BCOR exon 15. (ex-
tracted from Supplementary Figure 6 of [218])

Having established BCOR as a target of recurrent target of in-frame ITDs, we named this
new entity Central nervous system high-grade neuroepithelial tumour with BCOR alteration
(CNS HGNET-BCOR) (Figure 1.16G).
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Figure 1.16: Description of the CNS HGNET-BCOR entity (extracted from Figure 6 of [218]).
G: BCOR Exon 15 I'TDs as the hallmark event of the CNS HGNET-BCOR entity. H: validation
of BCOR ITDs with a PCR designed using our knowledge of the conserved ITDs. (11/14) of
the cases with available material were found to be harbouring ITDs of the described type on
BCOR. I: BCOR is recurrently and significantly upregulated in the CNS HGNET-BCOR entity.

A protein motif search using the Motif search tool of GenomeNet [383] yielded hits from
NCBI-CDD [384] and Pfam [385], indicating a duplication affecting the PCGF Ub-like fold
discriminator of the BCOR protein which binds the RAWUL (RING finger and WD40-associated
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ubiquitin-like) domain of the polycomb-group RING finger homologs PCGF1 and PCGF3
[386].

Next, our pathologist colleagues investigated the histopathological patterns of CNS HGNET-
BCOR. This entity consisted of relatively compact tumours containing a combination of cells
with shapes ranging from spindle to oval. Tumours were observed to often exhibit perivascu-
lar pseudorosettes, giving them an ependymoma-like appearance. Tumours frequently showed
fibrillary processes, typically observed in glial differentiation, and only rarely exhibited a true
embryonal pattern. This diversity of histopathological patterns is reflected in the high rate
of new case recovery from a large group of tumours initially not diagnosed as CNS-PNETSs
(Figure 1.3).

Shortly before the submission and eventual acceptance of our study, a similar finding on
BCOR ITDs was published by a different group in Japan, on a different paediatric disease:
Clear Cell Sarcoma of the Kidney (CCSK) [198] (Figure 1.17). Their results were in a remark-
ably significant agreement with ours in terms of the location and minimum conserved peptide
sequence of the ITDs, with an almost total match of the ITD sequences. These results later
led to differing viewpoints on entity classification where one study claimed that CNS HGNET-
BCOR and CCSK-BCOR were local variants of the same entity [387] whereas another study
focusing on the comparison of CNS HGNET-BCOR and CCSK-BCOR [388] claimed that the
former is of neuroepithelial origin and the latter is of mesenchymal origin and should be con-

sidered as distinctly different entities.
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Figure 1.17: Conserved duplicated peptide sequences following ITDs on BCOR exon 15 in
CCSK (Figure 1 of [198])
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The most comprehensive analysis of BCOR-ITD in CCSK to date was published in 2015
following the initial report on CCSK [389], again before our study. Recently another entity,
high-grade uterine sarcoma was found to have a rare subgroup affecting young adults (average
age 24) [390] carrying BCOR-ITDs with the exact same conserved sequence of duplications.
Neither of these three studies and ours managed to dissect the functional effect of BCOR-ITD
in either of the three entities, and were mainly limited to a descriptive treatment of the subject

using omics technologies and histopathology.

1.3.5 FOXR2 Activation via Diverse Mechanisms Drive a Subgroup of CNS-PNETSs

In the investigation of the PNET 1qg-16q subgroup, neither small mutation and algorithmic SV
detection (with Delly [308] by Jan Korbel’s team, EMBL, results not shown) from 5 specimens
with available WGS data, nor a gene fusion analysis from 4 cases led to a recurrently altered
candidate gene for further investigation. I thus used the 1-vs-3 comparison approach described
in Section 1.2.7 and looked for overexpressed oncogene candidates with potentially unknown

or unrecoverable activation mechanisms, yielding the candidate gene FOXR2 (Figure 1.18).
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Figure 1.18: FOXR2 expression across brain tumour entities: FOXR?2 is recurrently and signif-

icantly upregulated in the PNET 1q-16q group compared to all brain tumour entities

FOXR?2 is in normal tissues only expressed in the testis (Figure 1.19) according to RNA-
Sequencing data from the GTEx Consortium [257].

41



ENSG00000189299.5 Gene Expression

TPM

Figure 1.19: FOXR2 expression across healthy human tissues is confined to the testis (GTEx

Consortium)

I ran a manual inspection of FOXR2 both on RNA-Seq and WGS data in IGV as described
in Section 1.2.12 revealing the activation of a novel transcript of the gene (Figure 1.20). This
novel transcript was first predicted in [391] as a putative long transcript and is an entry named
FOXR?2, alternative variant aAugl0 in AceView [392].
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Figure 1.20: The canonical and novel (long) isoforms of FOXR2, together with locations of
a subset of detected rearrangements (extracted from Supplementary Figure 5 of [218]). The
GENCODE annotation of FOXR2 does not accurately represent the isoform detected to be ac-
tivated in the CNS NB-FOXR? entity, where a diverse set of recurrent structural rearrangements

target a previously unknown promoter of a novel long isoform transcript.

Contrary to the other three entities discussed here, mechanisms of FOXR?2 activation showed

a great level of diversity. We observed by WGS and RNA-Seq data analysis:
i) 2 intrachromosomal deletions (~35kb) fusing the MAGEHI promoter with the USP51
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gene body upstream of long-FOXR2 (Figure 1.21C-D),

ii) 2 tandem duplications fusing long-FOXR2 with the JPX 5’UTR and LOC550643 5’UTR
(Figure 1.21C-D),

iii) 1 interchromosomal translocation t(10,X) fusing the 5’UTR of JMJDIC with the pro-
moter of long-FOXR?2 (Figure 1.21C-D),

iv) 1 mitochondrial insertion on the USP51 gene body upstream of long-FOXR?2 leading to
a novel promoter and another novel FOXR?2 transcript (Figure 1.21C-D-E).

Furthermore, analysis of copy number variation patterns from methylation arrays revealed
a number of other patterns of structural rearrangements in cases where sequencing data was
not available (Figure 1.21D):

i) 4 intrachromosomal deletions (~500kb) connecting the MAGED?2 locus with the FOXR2

locus,
ii) 2 intrachromosomal deletions (~3 Mb) targeting the FOXR?2 locus,
iii) 1 intrachromosomal deletion (~8 Mb) targeting the FOXR?2 locus,

iv) 1 case of chromothripsis [393] on chromosome X with FOXR2 on one of the amplified
loci.

43



FOXR2  msmeererare

X:55,562,000-55,562,100

| 0C550643
X:56,758,609-56,758,759

Chr. X

FOXR2
X:55,634,559-55,634,659

|
= |
m——JPX 0
1

X:73,164,465-73,164,565

FOXR2 memmmmmmmy

X:55,562,000-55,562,100

Chr. X | Chr. X
oo : m——
.-
1
1
1
1
1
1
i
1
1
e i USP51 CEE———
X:55,480,700-55,480,800 I X:55,515,360-55,515,460
E Chr. X MT () MT (=) Chr. X
55,513,580 15,386 14,793 55,513,581
594 bp

TGCTCARACC GGAGGTGATT

TGAATGAGTG GCTTGAGATG

i
29 supporting read pairs

o ——
Q
@ ———
<
4 17 supporting read pairs
o
:
§ {45 supporting read pairs
I
x i 36 supporting read pairs
|
|

spliced to FOXR2-long exon 2

novel promoter

<
USP51

MT-CYB

<
USP51

Chromosome X

(TN N TN T |

Interchromosomal translocation

3

2

o5

gis

i

o

x x
a

S S

e

Niey
Qi
g
~ 8 Mb Deletion
Chr. X deletion sparing ~ 3 Mb
]
% Chromothripsis
(o}
(g

R Y

Mitochondrial-nuclear insertion

CNS NB-FOXR2

;
;é%éé

7

m

SN

Gene expression
[Log, intensity]
5

O > N\ SV
0 @«9@ ¢ & &
3 »00 K\

)

©

MYC expression
[Log, intensity]

=)

Chromosome X

(INTAN TN Y

. e
4}2!|mb . 60|mbg 80mb ™
‘e
c
S
2
E
3
: |
]
3
2
§
o
o
c
S
]
o
2
=
(=3
3
] ]
A ‘ ‘ F' ‘ }
| FoXRr2
| ——
0.8 0.0 -0.8
CNS NB-FOXR2
9
°
o © S %]
° g s
° [}6) e 7 23
g 82
T2
. 5 &
) R
o 2
0© 4 32
w
(] © [ ) 3 ©
2
2 <
s W
O s
£

Figure 1.21: Diverse activation mechanisms of FOXR?2 (extracted from Supplementary Figure

5 from [218]).

With all presented mechanisms a common pattern was the activation of a putative onco-

gene by structural rearrangements connecting actively expressed genomic regions to the inac-

tive oncogene. This mode of activation is known as enhancer hijacking [394] was previously

shown to be the main driver of subsets of Group 3 and Group 4 Medulloblastoma [132] [211]
by activation of the GFIIB and PRDM6 genes. The FOXR?2 activating partner genes are tran-

scriptionally active (Figure 1.21F).

There were only two exceptions to the recurrent pattern of FOXR?2 activation via SVs in this
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novel entity (Figure 1.22B): i) One case had no FOXR?2 activation on the transcriptome level,
but carried a focal amplification of MYC (Figure 1.21G, and ii) One case had FOXR?2 activation
determined by RNA microarray analysis, no SV detected by very detailed manual inspection
+ 4MB starting from FOXR2, and no CNVs to explain the mode of FOXR2 activation. Due
to lack of RNA-Sequencing data we also couldn’t determine what kind of FOXR?2 isoform was
transcribed.

Having established FOXR?2 activating rearrangements are the main driver of this novel en-
tity and due to its neuroblastoma-like histopathological characteristics, we named it central
nervous system neuroblastoma with FOXR?2 activation (CNS NB-FOXR?2) (Figure 1.22A).
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Figure 1.22: Description of the CNS NB-FOXR?2 entity (Figure 5 from [395]). A: A rep-
resentative FOXR2-activating rearrangement showing the long FOXR?2 transcript. B: FOXR2
alterations detected by WGS (6/8) and methylome arrays (13/46) C: FOXR? is recurrently and
significantly upregulated in the CNS NB-FOXR?2 entity

Next, our pathologist colleagues investigated the histopathological patterns of CNS NB-
FOXR2, noting embryonal architectural and cytological features with a small-cell phenotype,
frequently with areas of differentiation in the form of neuropil, neurocytic cells, or ganglion
cells. Some specimens showed frequent perivascular anuclear zones (“vascular pseudorosettes”),
nuclear palisades, and Homer Wright rosettes. Tumours of this entity nearly uniformly ex-
pressed OLIG?2 and the neuronal antigen synaptophysin. Overall, CNS NB-FOXR?2 showed a
histopathological profile most closely matching the classical definition of CNS-PNETSs, which
is reflected in the lowest rate of new case recovery from a large group of tumours initially not
diagnosed as CNS-PNETs (Figure 1.3).

Following our study, it has been published that FOXR?2 acts with MYC in a stable com-
plex FOXR2-MYC-MAX complex to promote MYC transcriptional activities in adult cancers
[396]. This fits our data that one exceptional case of the CNS NB-FOXR?2 entity had a MYC
amplification instead of FOXR?2 activation: If the downstream targets and activated pathways
are identical for both oncogenes, the same cell of origin that requires the activation of this
pathway for oncogenic transformation, can in principle use either mechanism. However, it is
not known why FOXR?2 is preferentially activated in the CNS NB-FOXR?2 entity with such a
strong bias as suggested by our data whereas MYC amplifications are not common in this cell
of origin. As with the other entities introduced here, there exist to date no cell lines of CNS
NB-FOXR? that allow a precise study of the role of FOXR?2 in this cell type.
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1.4 Discussion

1.4.1 Interpretation of our findings and their impact on the field of paediatric neurooncology

Our study had a significant impact on the field of paediatric neurooncology and indirectly,
cancer research as a whole. We showed that CNS-PNETSs are not a monolithic entity and
the CNS-PNET diagnosis coming from classical histopathological methods are error-prone.
Our findings both emphasized the limitations of classical histopathology and proved molecular
pathology via methylome profiling as a viable method of overcoming one of the most chal-
lenging diagnostic questions in the paediatric neurooncology. Our finding that CNS-PNETSs
are a mixture of other paediatric brain tumour entities, including those with dismal prognosis
such as ETMRs and HGGs led to a reassessment of the similarly dismal expected prognosis of
CNS-PNETs: a clinical trial on CNS-PNETSs was closed for recruitment following our study,
the participating patients were molecularly profiled as presented in our study and it was ob-
served that CNS-PNETSs do not universally have a dismal prognosis when misdiagnosed cases
are withdrawn from analysis [397]. Even though we currently cannot propose molecularly
designed therapies for the four entities discussed in our study, this observation alone has an
appreciable clinical impact: through accurate and molecularly defined diagnosis, patients can
avoid intensive treatments with severe side effects. Indeed, this statement can be extended
to all brain tumour entities and became one of the critical milestones towards the landmark
methylome profiling-based molecular classification of brain tumours [353].

We presented four novel entities of paediatric brain tumours with distinct oncogenes with
a diverse set of activation mechanisms. Thanks to the high quality of our data and the well-
executed classification of the cases, we managed to describe all of these four new entities. Our
findings emphasized the power of using whole genome sequencing and RNA-sequencing for
discovery of driver oncogenes and their mechanisms: Without WGS, the CNS NB-FOXR?2
entity would have remained unexplained, without RNA-Seq both CNS HGNET-MN/ and CNS
EFT-CIC entities would have remained unexplained. Our approach was successful in great part
due to the multi-omics & array approach adopted here.

Following the publication of our study in Cell, the WHO classification of Tumours of the
Central Nervous System, 2016 [374] was updated to remove CNS-PNETs (replaced by the four
new entities and CNS HGNET-NOS), astroblastoma (replaced by CNS HGNET-MNI), CNS
neuroblastoma (replaced by CNS NB-FOXR?2), CNS ganglioneuroblastoma (replaced by CNS
NB-FOXR2).

Our study also led to a number of unpublished follow-up projects: Currently, there is a
large clinical follow-up study investigating the survival characteristics of the four new entities,
as we did not have sufficient sample sizes and availability of survival data for this purpose in
the study presented here. Also, in order to be able to do functional genomics analysis on the
four new entities, mouse models are being developed with considerable success: 3/4 of the new
entities (except for CNS HGNET-BCOR) now have mouse models of the tumours where viable
growth is observed. These models will be used to test treatments in vivo. Worldwide, it is
already leading to impact in personalized medicine with new treatment protocols being tested

in case studies [398].
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1.4.2  Impact of this study on CNS-PNETs on my PhD research

In this study, we successfully integrated methylome, genome and transcriptome data from a
disease type with undefined histopathological characteristics. We applied integrative omics
data analysis methods to classify novel disease subgroups, found aberrantly overexpressed
genes and their underlying genomic mechanisms of dysregulation, identifying recurrent so-
matic structural variants as the drivers of the novel entities.

Our successful application of integrative omics data analysis strongly influenced the rest
of my PhD: I did not continue towards a specialization on omics data analysis of paediatric
brain tumours but rather on algorithm development for systematic detection of structural vari-
ants from whole genome sequencing data. I was most interested and impressed by the diversity
of the structural rearrangements observed in our study: gene fusions, in-frame ITDs, in-frame
deletions, enhancer hijacking via duplications & deletions of diverse sizes as well as interchro-
mosomal translocations, and an entirely novel case of an oncogene activating mitochondrial
promoter gene insertion. In a time of transition where increasingly more studies with large
cohorts had access to the WGS assay, structural rearrangements had great potential to identify
novel oncogenic drivers. There were also practical and organizational concerns: at the time
of this study, the DKFZ’s centralized omics data analysis platform and practices did not have
the tools to call structural variants with high sensitivity, specificity, independent of external
collaborators. This motivated me to pursue algorithm development for detection of structural

variants as my next PhD research subject.
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CHAPTER 2
SOPHIA: STRUCTURAL REARRANGEMENT DETECTION BASED ON
SUPPLEMENTARY ALIGNMENTS AND A POPULATION BACKGROUND MODEL

2.1 Introduction

Structural variants can have significant oncogenic effects in almost all cancer types with a va-
riety of mechanisms and are subject of great and broad interest in cancer research as discussed
in the general introduction of this dissertation and shown on the results on my first doctoral
research project (Chapter 1).

Simple structural variants can broadly be classified into i) Deletions, ii) Duplications,
iii) Inversions, iv) Translocations and arise from a variety of mechanisms and as part of a variety
of higher order complex patterns including [399] [193] i) Double-strand break repair defects
in either homologous recombination or non-homologous end joining, ii) Microhomology me-
diated break-induced replication, iii) Breakage-fusion-break cycles, iv) L1 retrotransposition,
v) Double minute chromosomes and neochromosomes, vi) Regional amplifications via HPV
insertion.

Technologically, structural variants were first detected in low resolution using chromoso-
mal banding” with Giesma Staining [400] which yielded the final karyotype of cells, whether
rearranged or not. Later, the Fluorescence in situ Hybridization (FISH) technology enabled the
detection of the simple building blocks of structural variants by showing the proximity/pairing
of targeted sites in high resolution [401]. Indeed, it was the FISH assay that allowed the discov-
ery of most of the oncogenic structural variant examples of highest significance listed above
starting from the presentation of the BCR-ABLI oncogene and went on to become a standard
clinical assay [402].

With the development of genome sequencing techniques, it became possible to detect struc-
tural variants across the whole genome in an unbiased manner. With genome sequencing, it also
became possible to systematically study the quantitative burden of structural variation [403] as
well as the higher order structures or signatures of structural variants in cancer genomes [193]
[404] [284].

Detection of structural variants by paired-end genome sequencing relies on discordancy of
the mate reads and split reads [366] [308]. Briefly, amplified DNA is fragmented into oligonu-
cleotides of pre-defined lengths (insert size), which are then sequenced from both ends. During
the sequence alignment process, these individual read pairs are mapped to the (human) genome.
If these both ends map to different chromosomes, are unexpectedly distant from or close to each
other, or finally they have the same strand orientation as opposed to different strands (as dic-
tated by the sequencing approach from both ends), this indicates a discordant mapping. As
discordant mate based structural variant detection relies on differences between mate reads,
structural variants smaller than a size range are unable to be detected with this approach. This
size does not have a clear cutoff and is dependent on sequencing technology and library prepa-

ration [405] [406]. Also, a given read in a read-pair can span a breakpoint in which case split
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reads are generated that map to the original site and the aberrant partner site generated by the
structural variant. Such split reads are also capable of detecting small structural variants such
as deletions, duplications or small inversions that are outside of the range of discordant mate
based structural variant detection.

As the current state of genome sequencing technology, “next generation sequencing’ relies
on short reads (151 base pairs as of late 2018, typical previous values included 50 and 100), and
because of the prevalence of repetitive sequences in the human genome, [407], [408], [409],
[410], [411], [412], [413], [414], reads frequently map non-specifically during the sequence
alignment process [415]. This lack of mapping specificity directly clashes with the described
principles of structural variant detection and causes a high prevalence of false positives: a
short repetitive read can align to any location in the reference genome where the repeat is
included, whereas its mate can map properly to a nonrepetitive site. In such cases, the aligner
cannot decide if the fragment arises from a normal sequence flanking a repeat or if the normal
sequence should map a distant repeat in a discordant configuration, and outputs all possible
solutions with ambiguous mapping scores (MAPQ 0) [359]. Long repeats can generate entire
fragments consisting of repetitive sequences. These yield two repetitive mate reads which, in
turn, also have the described discordancy issue. There are also large homologous loci that are
repeated in the human genome such as the pseudoautosomal regions [416]. These regions can
also yield alignments with low quality mapping scores and discordant read pairs even in the
absence of structural variants.

While these described issues can be mitigated using long-read sequencing, the high cost
and low base-level accuracy of the current long-read sequencing technologies do not allow
them to be a desirable tool in cancer genomics: i) the high cost would prevent sequencing with
high coverage and consequently a proper investigation of the clonal heterogeneity of a tumour
specimen, ii) the low base-level accuracy can lead to ambiguities between subclonal single
nucleotide variants and base calling errors. Thus, it is a technological and practical necessity
to develop structural variant detection approaches and algorithms which can work with the
limitations of short-read based DNA sequencing. Due to the strategic importance of the goal of
structural variant detection and the difficulties presented by the employed technology, a number
of different algorithms have been developed which employ different structural variant detection

and filtering strategies. A non-exhaustive list of some prominent tools is as follows:

i) BreakDancer (2009) [417] collects discordant read pairs generated by the aligner and
uses a probabilistic model that compares the discordant read load of a given candidate
region with the expected background discordant read generation parameters. A pool of
samples can be used for the generation of this probabilistic model, which would account
for the artefact-rich repeats in the human genome. BreakDancer does not use the concept

of split reads which leads to sensitivity issues [366].

i) CREST (2011) [366] uses soft clipped reads and assembles reads supporting candidate
breakpoints using CAP3 [418] and aligns to the reference genome using BLAT [419]
to annotate the structural variant. Additional filtering steps are not applied to account
for the effects of genomic repeats, which leads to a loss of specificity. CREST does not

use the concept of discordant read pairs which precludes SVs without aligned split reads
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from being detected.

Delly (2012) [308] combines the concepts of split read and discordant pairs based struc-
tural variant detection and filters variants based on evidence level using a k-mer based
approach. Delly starts from candidate breakpoints proposed by discordant read pairs and
adds split read evidence to strengthen structural variant calls and to make them specific
to the base-pair level. The Delly manuscript does not explicitly discuss further filtering
based on genomic regions prone to the generation of artefacts, which was likely to have
contributed to the specificity issues discussed in [367]. To account for this shortcoming,
we were informed in personal communications that Delly is usually used with in-house
filters that are not part of the official software package. Delly has been a major contribu-
tor to a number of successful studies on the cancer genome including [132] [211] [100]
[420].

Lumpy (2014) [367] uses a generalized probabilistic model for combining all types evi-
dence pertaining to the existence of a structural variant including split reads, discordant
read pairs, copy-number profiles and known structural variants. It was published with a
simulation based benchmark comparing it to other established structural variant detec-
tion tools of the time and claimed superiority from a theoretical standpoint. In practice,
Lumpy has since its publication in 2014, only been cited in two publications of cancer
cohort studies [421] [422] as of December 2018, with most of its citations coming from
non-human studies, human non-cancer studies, or other theoretical publications. While
this does not indicate an indisputable weakness per se, it is currently not widely adopted

in the cancer genomics community.

Manta (2016) uses a graph algorithm based on “Breakend Graphs”. It combines split
reads and discordant mate pairs. It uses custom-designed additional filters such as elim-
inating very-high coverage regions in the control sample in somatic analysis, high ratio
of MAPQO (unspecific mapping in exactly duplicated genomic regions) reads in the call,
large structural variants only with split read support and no discordant mate support, as
well as other internal scores developed with respect to the core graph algorithm of Manta.
Manta has a strong focus on cancer genome analysis and has been used in a number of

cancer genomics publications, including large-scale ones [423] [424].

novoBreak (2017) [425] uses “local assembly”, it generates k-mers of reads that have
common short sections that do not properly map to the reference genome including dis-
cordant mate pairs and split reads, creating assemblies from each k-mer set. The scoring
for each k-mer’s local assembly uses a statistical likelihood model based on the beta-
binomial distribution, where low quality read-ends are trimmed. There is no separate

treatment of repetitive or otherwise artefact-rich regions.

SvABA (2018) [426] similarly uses “local assembly”, also including gapped reads cov-
ering very small insertions and deletions less than 50 base-pairs. It also has additional
features for identifying short templated sequence insertions in the final form of the mod-

elled structural variant following the local assembly procedure, which was presented in a
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large panel of cancer cohorts as a frequent biological process. Interestingly while novo-
Break claims excellent sensitivity in low-coverage regions, SVABA admits the opposite
despite using very similar design principles, citing Lumpy and Delly as more sensitive
tools in the larger structural variant range especially in lower-coverage use cases. Cit-
ing this, the publication recommends SVABA as a structural variant and indel detection
algorithm covering a broad range of events in genomics workflows possibly as a key

component in a multi-tool consensus approach.

viii) BRASS (no publication as of July 2019, https://github.com/cancerit /BRASS)
is an unpublished tool with no open documentation available for its design principles
except for the fact that it uses ”local assembly”. It is included in this list due to its partic-

ipation in the PCAWG Consortium as one of its structural variant detection algorithms.

While the field seems to be converging towards “local assembly” based approaches, the
primary benefit is likely to come from combining multiple types of breakpoint evidence as
opposed to the earlier tools considering only split reads or mate discordancy. Supporting this
point, the recently pre-released results of the PCAWG Consortium’s SV working group [284]
shows that Delly, performs similarly to SYABA, which does use local assembly.

What is not discussed in the majority of the publications are difficulties regarding the anal-
ysis of cancer datasets. Detection of structural variants requires sensitivity for subclonality
arising due to the tissue impurity or inherent clonal heterogeneity, specificity required for deal-
ing with genome artefacts as well as the ability to distinguish somatic and germline structural
variants. Furthermore, significant hallmark Studies, probably for concerns regarding data avail-
ability and controllability, methods publications focused on freely available genomes [427], or
simulations generating diverse types and size of structural variants [428] [429] [430]. Some
of the discussed tools did discuss applications in cancer genomes in a limited number of cases
(novoBreak: 1 case, CREST: 5 cases, Manta: 1 case, SYABA: comprehensive analysis across
multiple cohorts).

None of the articles reviewed here discuss the aspects of lower quality samples, structural
variants of particular detection difficulties, or speed & memory considerations for particularly
challenging inputs. Our institutional experience at the DKFZ (mainly with CREST and Delly)
taught us that all of these aspects are significant practical considerations in a large-scale se-
quencing centre. As of 2015, we had accumulated a massive number of tumour and control
whole genome sequencing runs and accordingly, diverse experiences on the quality control of
whole genome sequencing datasets [431]. This includes experiences on the detection of struc-
tural variants across different cancer cohorts with various algorithms. Frequently, we observed
that runs would entirely fail in some challenging samples or take up to weeks of processing
time. Similarly, it was a common occurrence that CREST or Delly output would contain mas-
sive amounts of false positive calls. These issues were exacerbated in samples with lower
quality sequencing data, which is dependent on both input material and the quality of sequenc-
ing itself. Also, Delly was unable to detect mid-sized indels (50-~1000 bps) until recently,
which covers an important class of structural variants such as BCOR or FLT3 ITDs.

Considering the state of the art at the time, and the necessity to improve detection for a

biologically very important class of structural variation mid-sized indels, we wanted to develop
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an structural variant detecting approach that took full advantage of our rich repository of whole

genome sequencing datasets. Our aims were to achieve
i) ability to capture mid-sized indels

ii) excellent sensitivity capturing disease hallmark structural variants with a negligible fre-
quency of misses and while retaining specificity especially on challenging genomic re-

gions
iii) excellent data processing speed and memory efficiency

iv) excellent robustness with respect to input sample quality, without unreasonable loss of

sensitivity or specificity in cases with low tumour purity or low proper pair ratios

With the SOPHIA algorithm presented here, we have reached all of these goals using a fast
and efficient algorithm developed in C++17 without the complexity introduced by the modern

local assembly approaches.

2.2 Methods

2.2.1 Study Design

SOPHIA uses matched or single alignments of whole genome sequencing data for detection of
structural variants. One particular feature of SOPHIA is to not need a realignment or assembly
step which has great benefits for speed and memory usage as discussed in Section 2.3.4. Instead
of building an assembly for each breakpoint by collecting candidate reads from all over the
genome, SOPHIA reads alignments in a linear stream in a single pass, storing only the currently
read region in memory.

This fast single-pass low memory approach is possible thanks to the already calculated
”supplementary alignments” provided by the aligner BWA-MEM [359]. Supplementary align-
ments propose for split reads one or multiple alternative sites of mapping in the genome. With-
out a consensus building approach via modern local assembly approaches, or without proba-
bilistic model as in Lumpy, such estimates based only on around less than the half of a short
read length are highly error prone due to the inherent issues of genomic repeats and sequencing
quality. Nevertheless, they are a valuable source of information because they contain all the
(split-read mappable) candidate structural variants albeit with a massive load of false positives.
Discordant mate information is similarly error-prone due to sequencing quality and genomic
repeats.

In order to benefit from the integration of pre-calculated supplementary alignments and
discordant mate information while accounting for this inherent and expected high rate of errors,
SOPHIA increases specificity by an integration of i) clinical standard highly sensitive and
specific but targeted FISH data, ii) expert knowledge of biologists in interpreting FISH output,
iii) a background database of control (healthy tissue, most often blood, from donors in cancer
studies), iv) and expert knowledge of bioinformaticians in training a decision tree based on

these criteria (Figure 2.1).
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This integrative approach on both during the candidate proposal stage and the filtering

stage combines to present a fast, sensitive and specific algorithm for the detection of structural

variants.
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Figure 2.1: The general SOPHIA workflow integrating multiple sources of knowledge for de-
tection of structural variants.

SOPHIA is implemented as a C++17 program using no external libraries apart from strtk
(strtk.hpp, Arash Partow http://www.partow.net/programming/strtk/index.
html) for string tokenization and Boost (v1.6.9) for command line input argument parsing.
All remaining code including the SAM parser is written using the C++ standard library.

2.2.2 Classification of Aligned Reads into Quality Categories

The SOPHIA workflow starts by a linear stream of uncompressed alignment output i.e. BAM
files converted to the SAM format, where each line corresponds to an aligned read, generated
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by the view command of the Samtools toolkit (version 1.2 or above). In a decision tree, each
read is either discarded or classified into one of eight read categories. This procedure is based
on a decision tree (Figure 2.2).
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Figure 2.2: Read classification in SOPHIA

Criteria for the decisions are as follows:

i) The discarded reads are decided according their SAM flags and pre-defined cutoffs (Fig-
ure 2.2).

ii) A full-length read is required to have the median base quality 23.

iii) A read is considered to be “clipped” if it has a split-read overhang of at least 10 bases.
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iv) A soft-clipped read’s overhang is required to have the median base quality 23 with no
more than 4 consecutive bases below base quality 12 at the clip’s end otherwise the read

is considered to be low quality.

v) A mapping quality below 13 is considered low, where reads with zero mapping quality
and otherwise high read quality (according to the criteria (i-iv) are classified in a separate
category which allow them to contribute to breakpoint detection without the low-quality

read penalties.
vi) A read is considered discordant if it is on the same strand as its mate as it is inverted.

vii) A read is considered discordant if it is more than 5 standard deviations away from the
median insert size of the merged alignment (bimodal or otherwise multimodal insert size
distributions are not given special consideration) where this value is capped at 4000 base

pairs.

viii) A read is considered gapped if it contains an I or D in its CIGAR string indicating an

insertion or deletion of one or multiple bases.

All read categories except for discarded, gapped and normal are used in the definition of
breakpoints (Section 2.2.3). Breakpoints are subsequently paired to form structural variants

(Section 2.2.5), where the presence of gapped and normal reads are used in some of the filters.

2.2.3 Definition of Breakpoints as Precursors of Structural Variants

SOPHIA collects evidence for a structural variant candidate breakpoint in a single-ended fash-
ion where split read and discordant mate evidence for one breakpoint is gathered on-the-fly
during the linear SAM stream without influence from the candidate partner site(s).
Technically, the algorithm collects any read that is classified as “’discordant” in a pool of
discordant reads during the line-by-line processing of the SAM stream. Each of these reads has
a mate that can be an evidence for a particular imprecise structural variant. For any split read,
soft-clipped (primary, outgoing evidence) or hard-clipped (secondary, incoming evidence) a
new breakpoint is formed if necessary. Any further reads that exactly support this breakpoint
are added as evidence to the previously initialized breakpoint. Right-sided clipped reads are
supported by discordant reads to the left/upstream of the breakpoint, whereas the left-sided
clipped reads are supported by discordant reads to the right/downstream of the breakpoint. We
observed that the range where discordant reads supporting a structural variant are for the vast
majority of true positive cases three times the default read length used by the sequencing tech-
nology (101 bps to 151 bps for our study). Following this guideline, there is a check during the
processing of each SAM line, that breakpoints more than 3z De fault Read Length away in the
upstream direction (less on the coordinate space) than the aligned start position of the current
read are prepared for "finalization”. During finalization, the split read evidence is combined
with discordant mate evidence for a given breakpoint. Split reads propose candidate structural
variant target sites by their ”Supplementary Alignments”, whereas discordant mates propose
candidate structural variant target sites by their mate coordinates. These target positions are

matched by a fuzzy coordinate matching function allowing coordinate mismatches of up to
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100 bases for split read target coordinate matching (required because breakpoint mapping can
be imprecise when the breakpoint location and the split read overhang sequence share a sim-
ilar repetitive pattern or if the breakpoint is on a repeat) and 2.5x De fault ReadLength for
discordant mate based coordinate matching (required because of the inherent imprecise nature
of discordant mate based breakpoint estimation). Despite this fuzzy comparison approach, in
general, SOPHIA reports breakpoints with base-pair resolution provided that at least one split
read is available.

There is a second check during the processing of each SAM line, that the discordant mate
pool with reads at aligned start positions more than 6xDe fault ReadLength are flushed,
which corresponds to the theoretical maximum distance needed to keep reads in the discordant
read pool to ensure availability in breakpoint evidence collection as described. This dynamic
flushing ensures a minimal use of memory and an efficient operation by keeping the discordant
mate pool, and hence the search space for mate-evidence small.

The ideal evidence for a single breakpoint is depicted in Figure 2.3, with the relevant read
classes annotated (Figure 2.1): i) Soft clipped split reads clipped at a consistent breakpoint
location with varying overhang base lengths indicating primary (outgoing) split read evidence,
ii) Hard clipped split reads clipped at a consistent breakpoint location with varying base lengths
indicating secondary (incoming) split read evidence, iii) Discordant reads with mate mapping
locations consistent with each other and the target locations proposed by the split read evidence,
iv) A low number of discordant reads with mate mapping locations that are inconsistent with

the main proposed target, v) A low number of low quality reads.
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Figure 2.3: Extraction of a high-quality breakpoint from sequencing data according to the
SOPHIA read categories. Each coloured bar corresponds to an aligned read. Gray reads are
reads normally aligning to the shown genomic region. Reads with hollow interior have low
mapping quality. Purple reads are discordant supporting the SV. Orange, red and blue reads
are discordant reads not supporting the SV. The dashed line shows the position of the break-
point. Red partial blocks correspond to split read sequences that match to the distant breakpoint

partner of the shown breakpoint.

Split reads can lead to multiple alternative supplementary alignments, where both multi-
ple solutions are possible per read and per breakpoint. SOPHIA builds consensus overhang
sequences starting from the longest split read overhang as a seed and matching each shorter
(or equal) read is matched to all seeds (allowing up to 2 mismatching bases), and generating
new seeds as necessary. Each supplementary alignment proposed by a read belonging to an
overhang consensus is assumed to be supported by all other reads that contribute to the consen-
sus. While this assumption is not theoretically correct and leads to a number of proposed false
positive targets, these false positives are easily eliminated because they would not be supported
by the discordant read evidence and would be eliminated by the filters introduced in Section
2.2.6. While full-size clips i.e. the longest overhang seeds that are observed for a breakpoint,
can intuitively be expected to propose the most correct target location information, complex
structural variants can lead to insertion or deletion of bases at the target site, which can make
the short split read mapping by BWA-mem more difficult. Thus, overall, this procedure sig-
nificantly increases sensitivity thanks to the consideration of full-size clips as well as partial
clips.

Frequently, a breakpoint can be located at a genomic location which does not allow the
precise mapping of split reads, such as repeat regions. In particularly difficult instances of
these cases, it can be that not even a single supporting split read is generated by the alignment
of the rearranged region. SOPHIA can in such cases use unrelated split reads to initialize a

breakpoint and propose a discordant-mate-only solution as (Figure 2.4). Unfortunately, due to
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current algorithmic implementation limitations, clusters of discordant reads in regions without
a single supporting or non-supporting split read cannot be reported. Such structural variants
can still be called in a single-ended fashion if the partner site has sufficient evidence.

1
1
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1
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Clustering Discordant Reads
Unrelated to the Initial Split-Read Seed of the Breakpoint

Figure 2.4: Extraction of an indirectly detected breakpoint from sequencing data according to
the SOPHIA read categories. SOPHIA can use breakpoints with unrelated soft-clipped read
sequences or entirely unrelated breakpoints for estimating inexact breakpoint locations in dis-
cordant read-based breakpoint detection.

Artefact regions generate a number of artefact signatures (Figure 2.5, with the relevant read
classes annotated as in Figure 2.1): i) Inconsistent clipping locations across a repetitive region,
ii) Split read overhangs with low quality base calls, iii) Overall a large ratio of low quality
reads both with respect to mapping quality and base quality, iv) Dispersion of discordant mates
to many different regions in the genome without a consistent clustering that proposes a single
target site, v) Piling up of a large number of low quality reads that leads to an artefactual high
coverage at the artefact breakpoint. These patterns are detected with a variety of mechanisms as
presented in Sections 2.2.4 and 2.2.6 without relying on a theoretical and categorical exclusion

of classes of repeat regions.
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Figure 2.5: Extraction of an artefact breakpoint from sequencing data according to the SOPHIA
read categories. The faded colours of the reads in the diagram correspond to the IGV con-
vention of using hollow reads for non-unique mapping. The variety of colours indicates a
dispersion of mate read mapping locations across different chromosomes.

A final class of structural variant breakpoints that has a particular evidence signature and
different detection considerations is mid-sized duplications and deletions (Figure 2.6). Mid-
sized implies that the event is not small enough to be supported by gapped reads and is not large
enough to generate read pairs with discordant mate characteristics (size | 5 standard deviations
away from the median insert size of the merged alignment (bimodal or otherwise multimodal
insert size distributions are not given special consideration) where this value is capped at 4000
base pairs). Because such structural variants have to entirely rely on split read evidence, i.e.
a single class of evidence, sensitivity is overall lower, and specificity is ensured by different

filters than the larger structural variants, not making use of discordant mate information.
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Figure 2.6: Extraction of the breakpoints of a heterozygous mid-sized deletion from sequencing
data according to the SOPHIA read categories. A mid sized indel generates split reads and

coverage changes (except in the case of inversions) but no discordant mates.
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Currently SOPHIA does not incorporate gapped read evidence in its breakpoint detection
approaches. Consequently, small insertions and deletions are not detected by the SOPHIA al-
gorithm. More appropriate and fast tools such as Platypus [306] can be used for detecting such
indels. However, it is planned to include gapped read evidence into the evidence collection
for indels exactly at the border of the gapped-read domain and the split-read domain. Cur-
rently, SOPHIA could be losing some sensitivity in this indel size range with events that have

combined gapped and split-read evidence.

2.2.4 Generation of a Population Background Database as a Quality Control Tool for Detection

of Structural Variants

One of the cornerstones of the SOPHIA approach to structural variant detection is the training
of a background database of breakpoints from whole genome sequencing data of “normal”
blood tissue from a large number of diseases and ethnicities. We postulated based on previous
experience with (inspecting) NGS data that: i) Artefacts most often emerge in repetitive regions
at imprecise locations on and flanking the repeat, ii) The human genome is also rich in gaps
and common breakpoints of structural variation which should be filtered out especially in the
detection of structural variants without available paired normal data, iii) A common structural
variant in the germline can be misclassified as somatic in regions with low depth of coverage
and thus candidate somatic calls should be compared to a population background rather than
only the available matched normal, iv) An algorithm trained on a large dataset should intuitively
be much stronger than a paired analysis between a tumour sample and its matched normal.

To design a filter based on these expectations, we devised a strategy to collect data from
“normal” samples in “paired normal” analyses in cancer whole genome sequencing projects.
Here, we took advantage of two particular strengths of the DKFZ: i) Our participation in the
Pan-Cancer Analysis of Whole Genomes (PCAWG) project which allowed us to capture a
worldwide diversity of diseases and ethnicities, ii) Our recent acquisition of an Illumina X-Ten
sequencing system which allowed us to build and a panel of artefact and real structural variant
breakpoints from both older and newer sequencers and read lengths. We built a database of
breakpoints from 3417 control samples, of which 2694 were sequenced with a 101bp sequencer
(Ilumina HiSeq 2000/2500 family) and 723 were sequenced with a 151bp sequencer (Illumina
HiSeq X-Ten) covering a diverse range of participating countries and malignancies. A full list
of all contributing projects and countries are available in the appendix of this dissertation.

The chosen samples were processed with the SOPHIA breakpoint extraction algorithm as
described in Section 2.2.3. As the breakpoint database is expected to filter both artefactual
and true breakpoints, breakpoints carrying “low-quality” read evidence (Section 2.2.2) and no
proposed specific structural variant targets are also considered for inclusion in the database.
However, breakpoints with very low numbers of either low- or high-quality reads are spurious
and lead to noise in the database and can reduce sensitivity by making the database-based filters

unnecessarily stricter. In order to avoid these issues, breakpoints were chosen to contain
i) At least 10 split reads with low or high quality, OR

ii) At least 3 gapped reads, OR
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ii1) At least 5 split reads AND an estimated clonality of 0.3, OR

iv) At least 5 split reads AND an estimated clonality of 0.1 AND at least 3 soft clipped
split reads with at least 10 bases of overhangs that match with each other with at most 2

mismatching bases

. In addition to this information, the proposed high quality structural variant partners of each
breakpoint in the database is also stored. This information is later used to capture hits in the
database which do not match at the single base pair level, but rather due to the imprecise match-
ing of the proposed structural variant partners. A crucial example for the importance of this ad-
ditional information is genomic regions with high sequence homologies: In such regions, map-
ping quality is often zero and breaks can be assigned across the region on a non-deterministic
basis by the aligner. This non-deterministic procedure leads to genes with homologies (such
as genes to their pseudogenes, or closely related genes) being misassigned as rearranged with
each other in some samples and not in others.

For each breakpoint in the database, an "artefact ratio” score is stored which is calculated

using Nm'tefactReads
Na'rtefactReads +NhighQualityBreakpointReads +NnormalSpanningReads

of) quality of the stored breakpoint. This score is high for breakpoints originating from poorly

, showing the overall (lack

mapped regions such as centromeres and telomeres but can be low for gaps in the human
genome which are clean breaks. As such, the score does not necessarily indicate a common
breakpoint to be definitely an artefact or a real common variant but it is a useful measure
to investigate in the context of repeats. Therefore, the ArtefactRatio score is not used in the
filtering procedure but rather in the analysis of the breakpoint database described in Section
23.1.

SOPHIA assigns a hit score to each breakpoint using a fast binary search algorithm during
the annotation stage. The database is searched first for the closest existing breakpoint posi-
tion to the exact position of the searched breakpoint. A broad search window of 6 * Le fquit
bps (depending on the technology used for sequencing) is then used to find a matching exist-
ing structural variant that supports the proposed variant (hence, this operation is applied only
in annotation, and not during the initial breakpoint definition as a breakpoint can “propose”
multiple different variants). If there are multiple existing breakpoints that propose a given vari-
ant, the highest (worst-case) hit score is taken for the sake of higher specificity. Breakpoints
are additionally searched within a narrower window (5 bps) compared to the standard search
(6 * Lge faurt bps), which is then taken as the solution if the exact same variant is not known in
the database. As before, if there are multiple breakpoint in the searched 5 bps window in the
database, the highest (worst-case) solution is taken.

Thanks to this approach, SOPHIA can be used for somatic structural variant detection

without paired controls or with low-quality paired controls (e.g. due to DNA degradation).

2.2.5 Pairing of Breakpoints as Candidates for Structural Variants

Breakpoints defined and characterized using the approach described in 2.2.3 need to be paired
for defining simple structural variants. Even though more complex patterns from more than two

breakpoints can emerge, these can be described as combinations of simple structural variants.
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We define simple structural variants as described in [366] and [308] based on split read

orientation. One challenge that should be addressed when breakpoints are only supported by

discordant reads and not split reads is to manage pairings of imprecise locations. Such impre-

cise candidate SVs are mapped to a list of breakpoints by a fuzzy matching approach where an

imprecise match with up to 2.5 * De fault ReadLength is accepted to constitute a match. For

mid-sized SVs, imprecise matches are not accepted. A precise matching is allowed a smaller

acceptable error margin of 0.5 x De fault Read Length.

2.2.6  Filtering Criteria for Structural Variant Candidates

A pair of two breakpoints connected contains a number of data points of evidence which overall

determine the quality of a candidate structural variant. The expert model is built on these

criteria, where quality cutoffs are set based on gold-standard structural variant information

(Figure 2.1).

Evidence Data Type Evidence Type Comments

Mid-sized SV Boolean Neutral Mid-sized SVs incor-
porate no discordant
mate info and require
different filtering cri-
teria

Inverted orientation of | Boolean Neutral Mid-sized inversions

the two breakpoints are more artefact-
prone

Decoy contig | Boolean Negative Breakpoints emerging

breakpoint-1 from decoy contigs are
more artefact-prone

Decoy contig | Boolean Negative

breakpoint-2

MAPQ-0 only evi- | Boolean Negative Breakpoints  emerg-

dence for breakpoint-1 ing from entirely
nonnspecifically
mapped regions
require stronger filters

MAPQ-0 only evi- | Boolean Negative

dence for breakpoint-2

Imprecise  structural | Boolean Negative Imprecise variants are

variant mapping pro- more artefact-prone

posed by breakpoint-1

Imprecise  structural | Boolean Negative

variant mapping pro-

posed by breakpoint-2
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Hits in the population
background database
for breakpoint-1

Hits in the population
background database
for breakpoint-2
Soft-clipped

reads supporting

breakpoint-1

Soft-clipped

reads supporting
breakpoint-2
Hard-clipped

reads supporting

breakpoint-1

Hard-clipped
reads supporting
breakpoint-2
Normal reads span-

ning breakpoint-1

Normal reads span-
ning breakpoint-2
Discordant-mate
reads supporting

breakpoint-1

Discordant-mate
reads supporting

breakpoint-2

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Negative

Negative

Positive

Positive

Positive

Positive

Negative

Negative

Positive

Positive
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A breakpoint over-
represented in the
breakpoint back-
ground database is
likely to be an artefact
or a common poly-
morphism rather than
a real rare structural

variant

Soft-clipped reads
constitute  important
primary evidence for

real structural variants

Hard-clipped  reads
constitute secondary
evidence for real

structural variants

Extremely subclonal
breakpoints are more

artefact-prone

Discordant-mate reads
constitute  important
evidence for real

structural variants



Ratio of discordant- | Real number bounded | Positive Dispersion of discor-
mate reads support- | [0, 1] dant mates to multiple
ing/(supporting+not unrelated locations in-
supporting) dicates artefacts
breakpoint-1

Ratio of discordant- | Real number bounded | Positive

mate reads support- | [0, 1]

ing/(supporting+not

supporting)

breakpoint-2

Estimated  germline | Real number bounded | Negative (only for somatic anal-
clonality of | [0,1] ysis), reads supporting

breakpoint-1

the breakpoint in the
germline indicate
a likely artefact or

structural

germline
variant

Estimated
clonality of | [0,1]

germline | Real number bounded | Negative

breakpoint-2

These parameters are assembled in a complex decision-tree. A text format as in this disser-
tation is not optimal for showing each branch in this decision tree. However, the source code for
SOPHIA is available under https://bitbucket.org/utoprak/sophia/src where
the filters discussed in this section reside in the file SOPHIA/src/SvEvent.cpp. Following this
decision tree, variants are ranked by a score between 1-5 and scores 3-5 are accepted as filtered

structural variant candidates.

2.2.77 Tuning SOPHIA Structural Variant Detection Parameters using FISH Data as a Gold
Standard

One special class of SVs is those created by aberrant actions of the haematological system.
B-cells generate natural rearrangements in the Immunoglobulin loci IGH, IGK and IGA (IGL)
in processes called V(D)J recombination [432] and Class Switch Recombination (CSR) [433].
This process which has the original purpose of generating and extending antigen repertoires,
can lead to malignancies such as B-cell lymphoma, multiple myeloma, chronic lymphocytic
leukemia if it aberrantly targets oncogenic partner loci. T-cells similarly undergo the V(D)J
recombination process in T-Cell receptor loci, whose aberrant action can lead to T-cell malig-
nancies such as T-cell leukemia or T-cell lymphoma.

B-Cell lymphoma frequently harbours rearrangements of the immunoglobluin locus to hall-
mark oncogenes and less frequently to sporadic targets. Of the three immunoglobulin loci IGH,
IGK and IGL, IGH rearrangements are the most common. We analysed hallmark rearrange-

ment target oncogenes of B-Cell Lymphoma MYC, BCL2 and BCL6 as well as the rearrange-
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ments of the IGH locus with break-apart FISH probes acquired by the expert Dr. Cristina
Loépez Gonzalez, who previously ran this assay in Chronic Lymphocytic Leukaemia (CLL) in
a large-scale project [434]. FISH on interphase nuclei was performed on frozen tissue sections
applying the specific probes LSI BCL6, LSI MYC, LSI IGH/MYC, CEPS8 Tricolor, LSI IGH,
and LSI BCL2 as described in [435]. We used the oncogene probes BCL2, BCL6 and MYC for
parameter training, but not the IGH break-apart probes.

The parameters listed in Section 2.2.6 were assembled in a decision tree using high qual-
ity FISH data. FISH on Immunoglobulin translocations were selected because of existing
clinical-grade workflows offering gold standard reference data and the intrinsic difficulty in-
volving the immunoglobulin loci: in immunoglobulin (IG) loci, the genomic complexity is
high, which is exacerbated by the combination of internal rearrangements with oncogenic re-
arrangements variants [436]. Furthermore, immunoglobulin variants are with few exceptions
balanced translocations which lead to two, single-sided breakpoints per variant, providing more
training data, as well as taking out the contribution of coverage differences, which increases
the difficulty scope covered by the training data.

Gold standard IG rearrangements detected by FISH were manually inspected for determin-
ing performance of parameters presented in Section 2.2.6 in an iterative manner. Parameters
were optimized to capture the known variants, while keeping track of the emergence of sub-
clonal variants (more frequently of repetitive regions) to ensure that specificity is not being
unduly lost. Successively, parameters were optimized to capture more and more subclonal and
difficult-to-detect 1G rearrangements with progressing SOPHIA versions.

As part of the collaboration agreement of the ICGC-MMML sequencing consortium, the
Korbel group affiliated with EMBL, Heidelberg provided the consortium with SV calls origi-
nating from their algorithm Delly (called by Stéphanie Sungalee, using v0.5.9 as described in
[435]). We did not use Delly calls for parameter optimization purposes, i.e we did not use SVs
captured by Delly and missed by FISH or SOPHIA for further parameter optimization.

In addition to IG rearrangements, we also used a more global analysis of large variants
using the M-FISH assay [437] which is not a targeted technique unlike FISH, but still is limited
to large variants and offers limited resolution. Nevertheless, it does not suffer from the issues
of short-read sequencing around repetitive regions, and can act as a gold standard provided
that it is executed by an experienced expert. We used Dr. Larisa Savelyeva’s work on the
neuroblastoma cell line NB-69 and further improved SOPHIA filtering parameters especially

in complex genomic regions.

2.2.8 Custom Filters Based on Known Artefact Structural Variants

Systematically established filters are unfortunately insufficient in ensuring a perfect rate of
specificity despite the power of SOPHIA’s breakpoint database. Some of the recurrent artefacts
that we frequently observed in SOPHIA results and needed to develop additional filters for are

as follows:
i) t(X,Y) translocations that emerge due to pseudoautosomal regions,

ii) rearrangements between coding genes and their pseudogenes,
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iii) artefactual mitochondrial insertions into nuclear pseudogenes of mitochondrial DNA,
iv) translocations between NOTCH2 and NOTCH2NL

These filters are all designed to eliminate artefacts arising from sequence homology. While
it was our aim to ensure that the background breakpoint database would account for this type
of error, some additional filtering proved to be necessary based on detailed examination of

SOPHIA results from a large number of projects.

2.2.8.1 Accounting for Sequencing Quality Issues that Lead to Lowered Proper Pairing, Ex-
cessive Mate Dispersion and Loss of Sensitivity and Specificity

We observed lowered proper pairing in a subset of samples across multiple projects, sequencers
and sequencing read lengths. This manifested as a high load of read pairs with incorrect ori-
entation suggesting artefactual inversions, and dispersed mapping of mate reads to diverse
genomic regions and chromosomes suggesting artefactual intrachromosomal and interchromo-
somal translocations. Both of these observations can lead to a high rate of false positives, i.e.
lowered specificity. Compensating for these false positives consequently leads to a high rate of
false positives, i.e. lowered sensitivity. Recognizing this, we nevertheless developed a method
to account for lowered sequencing quality, addressing both of the described types of error. Our
effort to attempt to salvage such samples was motivated by the preciousness of starting material
in human cancer studies.
We modified the SOPHIA workflow in two stages:

i) If a sample has a proper pair ratio” as calculated by samtools flagstats [303] lower
than 90%, the read assignment procedure to breakpoints described in Section 2.2.3 is
modified to expect a background error rate of (100 — P P,44i,)%. Breakpoints with part-
ners beyond the mid-sized structural variant range with Ny, qteSupport / Nitotal Discordant <
(100 — PPratio)/100 are discarded from further analysis, with the assumption that the
suggested structural variant is below the error/noise level. As the formula suggests, the
effect gets progressively stronger as the sequencing quality is decreased, consequently
very low quality samples can be expected to have a large number of false negatives, en-
couraging the removal of the sample from the study or resequencing it if material and

funding is available.

ii) A secondary fix is made after the breakpoints are paired and preliminary filtered struc-
tural variants are obtained: If the total count of preliminary (filtered) structural variant
candidates are above 300 and the ratio of candidates with inverted pairing are over 0.7,
a first clean-up stage is applied where SVs with missing classes of evidence (split reads
and discordant mates for both breakpoints) are removed from further analysis for SVs
larger than mid-sized. During the same clean-up stage, mid-sized SVs with less than 5
supporting reads for either side are also removed. This is followed by a second clean-
up stage which is applied, if more than 200 candidate SVs remain with the ratio of
candidates with inverted pairing over 0.7, which has even stricter filters: Inverted SVs

with imprecise mapping are removed no matter how many reads support them, SVs with
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NsupportingDiscordantMates/Nea:pectedDiscordantMates < 0.6 for both breakp()lnts are re-

moved. Overall, these procedures rescue many clonal variants with strong evidence and
filter out massive numbers of artefact SVs. However, when sufficient material is avail-
able, samples where these filtering levels are applied should be resequenced, especially
if the issues affect the tumour sample. Issues affecting the blood sample only have the
effect of increasing the number of misclassified germline SVs, which is compensated by

the use of the background breakpoint database.

2.2.9 Designation of Structural Variants as Somatic or Germline

For samples where a paired normal sample is available, we started by building a database
of germline breakpoints by processing the paired normal alignment using the procedures de-
scribed in Section 2.2.3. Following the establishment of this database, we used the exact
same procedure as described in Section 2.2.4 for searching for tumour breakpoints, this time
in the paired germline breakpoint database as opposed to the background population break-
point database. In the event that one side is a germline breakpoint, and the other is a somatic
breakpoint, we designated the structural variant as a germline variant, for the sake of protecting
specificity.

During our work on SOPHIA, we encountered two situations which raised the need to

address the specificity of germline-somatic designation:

2.2.9.1 Tumour in Normal (TiN) contamination in Plasma Cell Leukaemic Multiple Myeloma
and MYCN amplified Neuroblastoma have somatic structural variants misclassified

as germline

We observed in an analysis of two different disease types, a prevalence of tumour cells in
blood leading to subclonal evidence in the paired control samples suggesting the existence
of a germline structural variant, which is expected to be a clonal somatic structural variant
according to established knowledge.

The first example of this type of artefactual observation was made in the HIPO-067 re-
fractory multiple myeloma project. In the late stages of this disease, plasma cell leukaemia
[438] where plasma cells circulate in peripheral blood. As the circulating plasma cells are
transformed, and carry the clonal structural variants that led to the neoplasm or evolved with
the neoplasm, sequencing results from a peripheral blood sample used as a matching control
would carry evidence for the somatic structural variant. This would interfere with the correct
classification of these structural variants as somatic. In order to compensate for such artefacts,
users should manually revert to the no-control mode of the SOPHIA workflow. This can be de-
cided by a manual inspection of the results searching for hallmark somatic structural variants
suggested as germline variants, or with a quantitative approach using single nucleotide variants

(SNVs) [439] proving a tumour-in-normal contamination.
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Figure 2.7: A Tumour-in-Normal contamination example involving a prototypical balanced
IGH-NSD2 rearrangement in refractory multiple myeloma. There is strong support for the
rearrangement in the tumour data and weaker, but still significant support in the normal data.
Orange reads indicate reads on the NSD2 locus on chromosome 4 whose mates map to chro-
mosome 14, on the IGH locus. The upper subfigure indicates the tumour sample, whereas the

lower subfigure indicates the matched normal sample with tumour material contamination.

The second observation we made was the existence of MYCN amplifications in the germline
in our analysis of the GPOH Neuroblastoma cohort, as suggested by structural variant calling
using a paired tumour-blood approach. It is known that MYCN amplifications are typically over
10-fold from the baseline state [440] and even a small concentration of tumour cells in blood
can generate enough evidence suggesting MYCN structural variants in blood. Interestingly, we
did not observe this in EGFR or MYEOV amplifications in adult cancers such as Glioblastoma
Multiforme or Head and Neck Cancer, suggesting the higher order amplifications in Neurob-
lastoma to be the main reason of this observation. In order to compensate for such artefacts, we
imposed a condition that evidence suggesting high order amplification in the tumour sample
(> 200 split reads in support of the rearrangement for both breakpoints) constitute somatic

variants.
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Figure 2.8: A Tumour-in-Normal contamination example involving a prototypical high order
MYCN amplification in neuroblastoma. There is strong support for the amplification in the tu-
mour data and remarkably strong support in the normal data. The upper subfigure indicates the
tumour sample, whereas the lower subfigure indicates the matched normal sample with tumour
material contamination. The high coverage increase and the green reads showing distant mate
mapping indicate the amplification event, for which strong evidence exists also in the matched

normal data.

2.2.9.2 Massive germline load of retrotransposons in patients from ethnicities underrepre-
sented in the SOPHIA breakpoint database

We observed a massive load of germline interchromosomal translocations in a small number of
cases across diverse projects. Manual inspection of candidate interchromosomal translocations
suggested them to be not artefacts, but rather retrotransposons where short sequences jump
between chromosomes, which is a normal evolutionary process in mammals [441].

The following representative cases fit this description:

* The case pseudonymized as PCSI_0101 from the Canadian ICGC Pancreatic Cancer

project, originating from Kuwait (personal communication, Dr. Lincoln Stein, OICR)

* The case pseudonymized as 4154480 in the DKFZ RCC1-IRF4 lymphoma project, orig-
inating from South-East Nigeria (personal communication, Cristina Lépez Gonzalez,
Uni. Ulm)

* The case pseudonymized as XI102_AML-3 in the X1102 DKFZ Acute Myeloid leukemia

project, with an unknown ethnic origin

For the last two cases paired normal specimens were not available, which made it impos-
sible to filter out rare ethnicity related transposons from somatic structural variants. For such
cases, there is no currently available solution as our trials with the larger background break-
point database obtained with Lumpy [442] also failed to filter out most of the misclassified

variants on the Nigerian case.
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Samples with the described characteristics should be carefully manually inspected, and be
excluded from germline analysis if paired normal data is available, or be excluded from the
study if only no-control analysis can be run.

A representative example of such a transposable element is a t(2,7)(p22.3;q36.3) from the
Kuwaiti case PCSI_0101, (Figures 2.9 and 2.10).
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Figure 2.9: The jumping transposable element originating from chr7q36.3. Exact base-pair
positions are masked. The light-red reads are reads whose mates map to chromosome 2, specif-
ically chr2p22.3. The coverage increase indicates an extra copy of the sequence being created
before the sequence jumping event. The upper subfigure indicates the tumour sample, whereas
the lower subfigure indicates the matched normal sample indicating the presence of the jumping

sequence in the germline with equal clonality.
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Figure 2.10: Insertion target of the transposed sequence on chr2p22.3. Exact base-pair posi-
tions are masked. The blue reads are reads whose mates map to chromosome 7, specifically
chr7q36.3. The sharp and narrow coverage fall indicates the insertion site for the sequence
jumping event. The upper subfigure indicates the tumour sample, whereas the lower subfigure
indicates the matched normal sample indicating the presence of the jumping sequence in the

germline with equal clonality.

These observations are difficult or impossible to be distinguished from a normal balanced
translocation such as those observed on immunoglobulin loci and their targeted oncogene
translocation partners. Thus, we currently do not have automated methods to specifically
exclude this class of structural variants from further analysis be it in the germline or in the

no-control setting.

2.2.10 Annotations for Structural Variants called by SOPHIA

Structural variants can have significant effects on chromatin conformation and lead to gene
dysregulation even if they are not directly on gene bodies. Thus, the interpretation of struc-
tural variant calls requires an approach to map breakpoint locations to genes. The concept
of Topologically Associating Domains (TADs) [33] introduces a systematic model for the co-
regulation of genes in close proximity. TADs offer a data-driven model of cis-regulation of
genes, and a more advanced approach than fixed windows for the interpretation of breakpoint

effects on genomic regions.

2.2.10.1 Remapping the Human Decoy Chromosome hs37d5

We started the SV effect annotation procedure by remapping breakpoints that initially map to
the human decoy chromosome hs37d5, when appropriate, to other chromosomes or smaller
contigs. We used the definitions of the hs37d5 decoy chromosome provided by Dr. Heng Li’s
repository https://github.com/1h3/misc/tree/master/seq/novoseq. Weused
the mapping files hs37d5cs.bed and hs37d5ss.info to localize the hs37d5 contig segments to
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other genomic regions. We skipped all segments mapping to chrY. We also skipped all seg-
ments with unlocalized anchored 5°, 3* ends as well as and unlocalized top hit to the GRCh37
primary assembly. As a result we remapped 4673 /4715 of the decoy segments to other chro-
mosomes or unlocalized (GL***) sequences.

While this procedure is error-prone, we were motivated by the existence of 9 decoy contigs
mapping to the IGH locus on chr14q32.33. As IGH translocations are important for haemato-
logical malignancies, it is important to characterize them sensitively. Taking this as the starting
motivation, we expanded the correction to other loci, recognizing the possible inaccuracies in-
troduced by this remapping. Hence, the original locations of the structural variant candidates
on the hs37d5 chromosome are kept in SOPHIA outputs.

2.2.10.2  Definition of Consensus TADs from Public Datasets

We first used the list of TADs published in [294] (13 cell lines), [443] (6 cell lines), [444] (5
cell lines), [445] (4 tissues), and [446] (9 tissues) obtained from the chromatin-capture database
processed and provided by the Feng Yue Lab (http://promoter.bx.psu.edu/hi-c/
downloads/hgl9.TADs. zip, obtained 07.01.2018) to build a consensus list of TADs. As
discussed in [446], TADs show a remarkable similarity between different cell types, confirming
previous assumptions of stability across tissues [294], with their level of activation differing
between each tissue depending on its epigenetic development. We took this assumption to be
true and consequently took differences between the TAD boundary measurements coming from
these studies to be due to experimental and technical factors, justifying a consensus approach.
For creating a consensus between 37 datasets with TAD range data, we first converted
TADs to TAD boundaries, which are due to the nature of the Hi-C assay and its data processing
digitized in 40kb windows. Next, we assembled TAD boundaries in clusters where the data
from the 37 datasets is sorted by genomic coordinates, and each TAD boundary is added to
growing clusters if its starting position is at most 120kb away from the current cluster. Clus-
ters of TAD boundaries are then “compressed” into consensus TAD boundaries. These TAD
boundaries are then converted to overlapping TADs. (3246 TADs from chromosomes 1-X)
Due to lack of available data chromosome Y and other contigs were not assembled into

TADs derived from experimental data:

1. There is no chromatin capture-based data for the TADs of chromosome Y in the used data
sources, so we used the existing cytoband definitions for ChrY as a rough replacement

for TADs. (12 TADs from chromosome Y with a cytoband approximation)

2. The mitochondrial chromosome (MT) was not segmented into TADs or cytobands due

to lack of available data. (1 TAD representing the mitochondrial genome)

3. The Epstein-Barr Virus contig (NC_007605) was not segmented into TADs or cytobands
due to lack of available data. (1 TAD representing the EBV contig)

4. The human unlocalized sequences (GL****) were not segmented into TADs or cyto-
bands due to lack of available data. (59 TADs each representing one unlocalized se-

quence)
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5.

The human decoy chromosome hs37dS5 is a collection of independent and unrelated con-
tigs that are not mappable to the normal chromosomes, so each of these contigs were
considered independent TADs and not processed using the approach above. (4715 TADs
representing contigs of the hs37d5 chromosome)

Overall, we generated using this procedure 8201 consensus TADs, of which 3246 stem

from 37 experimentally acquired, Hi-C based chromatin capture datasets.

2.2.10.3 Assignment of Structural Variants to Consensus TADs

For chromosomes with TADs obtained from available chromatin capture data, structural vari-

ants were classified into three groups for the purpose of assigning to ”seed”” TADs:

)

iif)

Interchromosomal translocations: Interchromosomal translocations are considered as a
union of two breakpoints. Breakpoints that are on a TAD boundary are considered to
affect both TADs separated by the boundary. Otherwise, the “seed” TAD is the TAD
which is directly hit for a given breakpoint.

Intrachromosomal structural variants within discordant read supported range: Intrachro-
mosomal SVs are considered in the same manner as interchromosomal translocations.
In addition to the described procedure, the TADs between the two breakpoints are also

considered as affected if the following conditions are met:
* Both breakpoints are on the same chromosome arm
* The spanned genomic range is shorter than 10MB
* There are less than 4 TADs between the smallest and largest seed” TAD

This procedure is important for some focal deletions such as deletions of the CDKN2A/B

locus.
Mid-sized structural variants with no discordant read support:

* Mid-sized SVs that are intergenic, and not spanning a TAD boundary are discarded

from further analysis.

* Mid-sized SVs that are on a TAD boundary are considered to affect both TADs
separated by the boundary, regardless of gene hitting status.

* Mid-sized SVs that are on gene bodies, but intronic and not directly hitting ROADMAP

enhancers are discarded from further analysis.

* Mid-sized SVs that overlap transcribed regions are considered to affect the TAD

which is directly hit.

For all SVs apart from Mid-sized SVs, a TAD offset extension procedure is applied for

investigating possibly affected genes across longer ranges. Following the definition of the

initial ”seed” TADs, extensions at 1, 2, and 3 TAD offsets are calculated in both directions. For

right-sided extensions, the starting position of the extended TAD and for left-sided extension,

the ending position of the extended TAD is tested for closeness to the position of the breakpoint.
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If the distance exceeds SMB, the extension is cancelled. This procedure allows the estimate for
the influence of an SV on TADs that it is not directly hitting, within a sensitivity limit set by
the user.

The results are reported as part of the annotated SOPHIA output both as the indices of
annotated TADs and as lists of the affected genes for each TAD offset level.

For the benchmark presented in Figure 2.3.3, the highest permissible TAD-offset is 1, i.e.
a hallmark gene is considered affected if a filtered SV is estimated to affect the gene’s TAD (or
one of its TADs if the gene spans multiple TADs) or one of its neighbouring TADs in either

direction.

2.2.10.4 Gene Definitions

We used the ENCODE consortium’s gene reference annotation GENCODE [447], version 27
(released 08.2017), lifted over to the GRCh37 genome assembly.

The following gene types were included in the reference used by SOPHIA: IG_C_gene,
IG_C_pseudogene, IG_D _gene, IG_J_gene, IG_J_pseudogene, IG_pseudogene, IG_V _gene, IG_V _pseudogene,
lincRNA, macro_IncRNA, miRNA, polymorphic_pseudogene, processed_pseudogene, unpro-
cessed_pseudogene, protein_coding, transcribed_processed_pseudogene, transcribed_unitary_pseudogene,
transcribed_unprocessed_pseudogene, translated_processed_pseudogene, TR_C_gene, TR_D_gene,
TR_J_gene, TR_J_pseudogene, TR_V_gene, TR_V_pseudogene while the following were dis-
carded from the reference: 3prime_overlapping_ncRNA, bidirectional_promoter_IncRNA, misc_RNA,
Mt_rRNA, Mt_tRNA, non_coding, retained_intron, processed_transcript, IRNA, scRNA, sense_intronic,
sense_overlapping, snoRNA, snRNA, TEC, unitary_pseudogene, unprocessed_pseudogene, vaultRNA

As genes can have multiple alternative transcripts, we attempted to reduce the gene set
as far as possible to the most canonical transcripts in order to facilitate further analysis. To
this end, we ranked isoforms based on their APPRIS [448] scores, in order of precedence:
appris_principal, appris_principal_1, appris_principal 2, appris_principal 3, appris_principal 4,
appris_principal 5, appris_candidate_longest, appris_candidate, appris_alternative_1, appris_alternative_2,
(not available).

Where multiple transcripts exist for a gene and APPRIS scores are not sufficient for tie-
breaking, we used the “transcript_support_level” entry in GENCODE in order of precedence: 1
(all splice junctions of the transcript are supported by at least one non-suspect mRNA), 2 (the
best supporting mRNA is flagged as suspect or the support is from multiple ESTs), 3 (the only
support is from a single EST), 4 (the best supporting EST is flagged as suspect), 5 (no single
transcript supports the model structure), NA (the transcript was not analyzed).

Where multiple transcripts exist for a gene and APPRIS scores and GENCODE tran-
script_support_level” scores are not sufficient for tie-breaking, we used the “level” entry in
GENCODE in order or precedence: 1 (verified loci), 2 (manually annotated loci), 3 (automati-
cally annotated loci).

Where multiple transcripts exist for a gene and APPRIS scores and GENCODE tran-
script_support_level” and GENCODE ”level” scores are not sufficient for tie-breaking, we used
the exon counts of the alternative transcripts as a tie-breaker, taking the transcript with the

highest number of exons as the canonical transcript for the gene model.
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The SOPHIA workflow uses BEDTOOLS [449] for annotating direct gene hits as well as
the nearest genes upstream and downstream of the breakpoint for each of the two breakpoints
that make up an SV.

2.2.11 Gene Expression Data Processing

There are two major technologies for quantitative analysis for gene expression data: array
based technologies, and sequencing based technologies. RNASeq has a number of advantages
over RNA microarrays such as the ability do detect novel transcripts and gene fusion events, do
genotyping, avoiding transcript probe based artefacts. Despite these advantages, RNASeq has
its own challenges such as biases within samples due to transcript length and biases between
samples or batches. Hence, normalization of read counts from RNASeq data is an important
step in ensuring comparability between different genes or samples in a study and is an active
research question with different benchmarking studies and tools on this subject [450] [315]
[451] [452].

Choosing a RNASeq count normalization method depends on the desired application. Com-
parison of a gene across multiple cohorts requires different approaches from the comparison of
a gene across donors in a single cohort. In the cited benchmarks, TMM normalization [315]
offered by the edgeR Bioconductor package [453] was consistently ranked as a top-class nor-
malization algorithm along with the DESeq?2 [454] approach. For the purpose of benchmarking
SOPHIA (Section 2.3.3), we used the TMM normalization in the edgeR package within each
TCGA cohort: Raw read counts were obtained from the Genomics Data Commons (GDC)
mirror of UCSC Xena [455] and pre-normalized by the Counts Per Million (CPM) calcula-
tion. Genes with less than 1 CPM for all samples across a given cohort were discarded from
further analysis. Then edgeR normalization was applied with default parameters on the initial
gene counts of the filtered gene set, followed by another application of CPM and loga(n + 1)
normalization.

For the GPOH-NB project, gene expression read count values were obtained using the
DKFZ RNA-Seq pipeline [456] and normalized as described.

For Medulloblastoma cohort under ICGC-PedBrain, we used the RNA microarray data
instead of RNA-Seq data because of the better coverage of the cohort [211]. Results were
downloaded from the R2: Genomics Analysis and Visualization Platform [337], obtained using
the Affymetrix ul33p2 array and normalized with the MASS5.0 algorithm [457].

Finally, normalized gene expression values were visualized and inspected for “breaks” in-
dicating bimodality at known hallmark genes with oncogenic activation via structural variants,
where the existence of an affecting SV is estimated using the approach described in Section
2.2.10.3.

2.3 Results

2.3.1 Analysis of the SOPHIA Background Breakpoint Database

We analysed the SOPHIA background breakpoint database for behaviour around repeat classes,

both with respect to breakpoint counts and breakpoint quality. For filtering of structural vari-
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ants, we used the merged complete database, while for this analysis, we separated the database
into two components based on the used sequencing technology: 2694 from a 101bp technol-
ogy (Illumina HiSeq 2000/2500 family), and 723 from a 151bp technology (Illumina HiSeq
X-Ten).

First, we investigated how repeat families differ in terms of attracting breakpoints either
due to real germline structural variation or due to sequencing or mapping artefacts (Figure
2.11).
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Figure 2.11: Distribution of database breakpoints across all repeat families and nonrepetitive
sequences. The y-axis corresponds to the number of breakpoints that map to a genomic location

belonging to a given repeat family.

Due to the strong contributions of the top 14 repeat families, we decided to combine the

rest into an “other” category, and focus on the top 14 families (Figure 2.12).
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Figure 2.12: Distribution of database breakpoints across top repeat families with respect to

total numbers of breakpoints from both technologies.

The 151bp breakpoint database consists of data from the DKFZ, which can be assumed to
lead to a significant enrichment for German donors even though we did not run a genotyping
analysis on the cohort. Thus, the 101bp breakpoint database has a greater ethnic diversity as
well as a larger sample size. Consequently, for a given randomly selected set of genomic po-
sitions, it is expected that the larger and more diverse 101bp breakpoint database would have
higher counts of matching breakpoints. In our analysis of repeat families (Figures 2.11 and
2.12), we see this expectation to be confirmed with a few notable exceptions: the 151bp break-
point database outperforms its normal trend (of lower breakpoint counts per repeat family) for
the repeat families simple repeats, satellite repeats and low complexity repeats. This observa-
tion suggests that these repeat families could be less "accessible” with sequencing using shorter
reads.

We then investigated the two breakpoint databases from the perspective of breakpoint qual-

ity for the top repeat families (Figure 2.13).
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Figure 2.13: ArtefactRatio score comparison across the two background population breakpoint
databases. The ArtefactRatio score indicates a lack of breakpoint quality/mappability where
higher values are likely to yield regions with artefactual breakpoints and candidates for false

positive SVs.

The X-Ten sequencer overall yields breakpoints with a higher ArtefactRatio score for most
repeat families (Figure 2.13). Strikingly, the difference between the two databases seems to be
strongest where the 151bp database captures more breakpoints: simple repeats, satellite repeats
and low complexity repeats. Another important observation is that only low complexity and
Alu repeat families are consistently generating predominantly low quality breakpoints, whilst
most other repeat families and also nonrepetitive sequences generate both high and low quality
breakpoints. This observation shows issues with a repeat family-based blacklisting of structural
variant results: filtering SV results based on one of the two breakpoint mapping to blacklisted
repeat family types would yield both false positives and negatives. Though we do not have the
data to conclusively prove this, it could be that the 151bp reads reach some repeat regions that
101bp reads cannot, while still being unable to cleanly resolve them. It will be interesting to
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observe if read lengths will continue to grow as sequencing technology advances, and at which
point the mapping issues on repetitive regions, and especially those of lower complexity, will
be fully addressed.

2.3.2  SOPHIA Detects Hallmark Immunoglobulin Rearrangements in B-Cell Lymphoma with
High Sensitivity

We ran a three-way discrepancy analysis on each of the four FISH break-apart assays (MYC,
BCL2, BCL6, IGH). Because the first three assays were used for parameter optimization pur-
poses, the following three figures 2.14, 2.19 and 2.21 are not intended as proper benchmarks
of SOPHIA’s performance.

MYC
(n=258)

Figure 2.14: Discrepancy analysis of MYC SV detection between FISH-SOPHIA-Delly

In our analysis of MYC breaks, we observed two IGL-MYC rearrangements to be co-
detected by FISH and SOPHIA and being missed by Delly (Figure 2.15). We investigated
and established these false negatives to be due to lack of mappability on the IGL side Figure
2.16. This was our first indication that MAPQ-0 regions were of potential significance in the
detection of biologically important rearrangements.
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Figure 2.15: A discrepant call (detected by SOPHIA and FISH, missed by delly) for an IGL-
MYC rearrangement, on the MY C-side breakpoint. The dark green reads have mates mapping
to chr22, specifically to the IGL locus.
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Figure 2.16: A discrepant call (detected by SOPHIA and FISH, missed by delly) for an IGL-
MYC rearrangement, on the IGL-side breakpoint showing lack of mappability with predomi-
nantly hollow reads with 0 MAPQ.

Two further cases were only positive by SOPHIA. One of these cases is particularly inter-
esting as it involves two sources of errors: First, we observed that there is a two-sided balanced
somatic translocation on the MYC locus as expected (Figure 2.17), what was peculiar was
the concomitant involvement of the chr15q11.2 locus, which harbours a number of inactive
pseudogenes of the immunoglobulin heavy chain genes. Due to the homology between the
canonical IGHV genes and their inactive pseudogene counterparts (IGH orphons), mapping

can be unspecific and interfere with SV detection. Second, we observed that the IGH-side
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of this rearrangement has the effects of a concomitant somatic hypermutation (Figure 2.18),
which reduces the quality of mapping to this region. Though both can in different ways allow
us to speculate for the issues Delly had in detecting this SV, we do not know why FISH failed
to detect this rearrangement.
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Figure 2.17: A discrepant call (detected by SOPHIA, missed by FISH and delly) for an
IGH-MYC rearrangement, on the MYC-side breakpoint, showing concomitant mapping to the
chr14q33.32 (IGH locus, orange reads) and chr15q11.2 loci harbouring IGH orphon genes
(purple reads). The upper subfigure indicates the tumour sample, whereas the lower subfig-
ure indicates the matched normal sample with no evidence for the rearrangement, indicating a

somatic rearrangement.
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Figure 2.18: A discrepant call (detected by SOPHIA, missed by FISH and delly) for an IGH-
MYC rearrangement, on the IGH-side breakpoint showing mate mapping to chr8q24.21 (MYC,
purple reads) concomitant with somatic hypermutation (coloured bars on the upper coverage
layer and individual reads showing base mismatches). The upper subfigure indicates the tumour
sample, whereas the lower subfigure indicates the matched normal sample with no evidence for

the rearrangement, indicating a somatic rearrangement.

The analysis of BCL2 SV detection yielded two types of discrepancies (Figure 2.19): SVs
co-detected by SOPHIA and Delly but not by FISH, and SVs detected only by FISH.

BCL2
(n=251)

Figure 2.19: Discrepancy analysis of BCL2 SV detection between FISH-SOPHIA-Delly
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For one of the 3 cases detected by sequencing and confidently not detected by FISH, we
observed a complex pattern (Figure 2.20): The left-side of the balanced translocation has no
specific partner on chrl4 (lack of orange discordant reads on the left side of the breakpoint).
While the event is well-supported on the right-side of the breakpoint showing a clear mapping
to the IGH locus, the left-side is unspecific, with only a short unspecific consensus split read
overhang and no discordant mate information, hinting at the low complexity of the partner

region. We cannot speculate if this played a part in the lack of detection by FISH.
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Figure 2.20: A discrepant call (detected by SOPHIA and delly, missed by FISH) for an IGH-
BCL2 rearrangement. The rearrangement is balanced and has both left and right-sided split
reads, but the right-sided split reads are few, short, and do not have discordant mate support
mapping to the IGH locus (orange reads). The upper subfigure indicates the tumour sample,
whereas the lower subfigure indicates the matched normal sample with no evidence for the

rearrangement, indicating a somatic rearrangement.

Next, we investigated BCL6 breaks for discrepancies between the three approaches. We
observed a diverse spectrum of discrepancies. 2/2 FISH-only calls had low tumour content
(as estimated by ACEseq [309] using WGS data), again suggesting that FISH can be a more

sensitive method because of its access to single-cell level information.
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BCL6
(n=251)

Figure 2.21: Discrepancy analysis of BCL6 SV detection between FISH-SOPHIA-Delly

We observed a similar case to the previously discussed IGL-MYC case, which was this time
also outside of the detection range of FISH (Figures 2.22, 2.23).
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Figure 2.22: A discrepant call (detected by SOPHIA and FISH, missed by delly) for an IGL-
BCL6 rearrangement, on the BCL6-side breakpoint, with extensive discordant mate support

mapping to the IGL locus (dark green reads). The upper subfigure indicates the tumour sample,
whereas the lower subfigure indicates the matched normal sample with no evidence for the

rearrangement, indicating a somatic rearrangement.
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Figure 2.23: A discrepant call (detected by SOPHIA and FISH, missed by delly) for an IGL-
BCL6 rearrangement, on the IGL-side breakpoint showing lack of mappability (reads depicted
as empty bars), still with discordant mate support mapping to the IGL locus (reads depicted
as faded light green coloured empty bars). The upper subfigure indicates the tumour sample,
whereas the lower subfigure indicates the matched normal sample with no evidence for the

rearrangement, indicating a somatic rearrangement.

A second discrepant case only detected by SOPHIA was a rare instance of a T-cell Receptora
- locus to BCL6 translocation that was missed both by FISH and Delly. As we are dealing with
B-cell lymphoma, this finding was a surprise, but it was not entirely novel [458], [459]. Inter-
estingly, TCRa locus which is intrinsically complex in a similar manner to the IG loci (with
internal rearrangements as part of its normal function), did not pose the issue on this case, it
was rather a GAn simple repeat that made the breakpoint on the BCL6 locus poorly mappable.
This result again reinforces the importance of considering SVs even when only one of the

breakpoints is strongly supported.
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Figure 2.24: A discrepant call (detected by SOPHIA, missed by FISH and delly) for an TCR-
BCL6 rearrangement, on the BCL6-side breakpoint showing a (GA)n repeat interfering with

proper mapping.
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Figure 2.25: A discrepant call (detected by SOPHIA, missed by FISH and delly) for an TCR-
BCL6 rearrangement, on the TCR-side breakpoint showing a clean break

The fourth FISH assay, namely IGH breaks, were not used in SOPHIA parameter optimiza-
tion. We observed a number of discrepant cases between the three assays, (Figure 2.26).
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IGH
(n=252)

Figure 2.26: Discrepancy analysis of IGH SV detection between FISH-SOPHIA-Delly

3/5 cases co-detected by FISH and SOPHIA and missed by Delly were important onco-
genes: 2 cases belonged to a IGH-/RF4 rearrangement positive subtype previously presented
in [460] (Figure 2.27). 1 case had an IGH-PRDM®6 rearrangement, which is novel for the
entity, but is a recognized oncogene in other settings [211]. On the other hand, 3/4 of the
FISH+/SOPHIA-/Delly- cases were marked for low tumour cell content of the starting speci-
men, suggesting a possible explanation for the calls missed by SOPHIA. One further interest-
ing observation was the three cases where sequencing based SV detection succeeded and FISH
failed to yield a positive result. One of these cases was a putative insertions of BCL2 inside the
IGH locus rather than a canonical rearrangement. The other two were regarded as FISH false
positives with regards to IGH breaks in the ICGC MMML project.
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Figure 2.27: A discrepant call (detected by SOPHIA and FISH, missed by delly) for an IGH-
IRF4 rearrangement, with strong discordant mate support mapping to the IGH locus (orange
reads) for a two-sided balanced rearrangement. The upper subfigure indicates the tumour sam-
ple, whereas the lower subfigure indicates the matched normal sample with no evidence for the

rearrangement, indicating a somatic rearrangement.

2.3.3 SOPHIA Detects Hallmark Structural Variants with High Sensitivity Across Cancer
Types Expression Data

Next, we benchmarked SOPHIA across a diverse set of human cancers with publicly available
data from the The Cancer Genome Atlas (TCGA) Consortium with available whole genome
sequencing and matched RNA Sequencing data and published DKFZ projects. We looked for
“expected” structural variants based on differentially expressed cancer hallmark genes with
known dysregulation mechanisms.
While these hallmarks are by nature not necessarily difficult to detect unlike the immunoglob-

ulin translocations that were used in the parameter training stage, they nevertheless provide an
important benchmarking opportunity on clinically relevant events from real datasets and an SV

detection algorithm is expected to show high sensitivity in this analysis.
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Expected  #Detected #Expected
Study Gene Type  (by TADSV) (byexpr) NOtES

BLCA-US CDKN2A | Deletion 13 13
BLCA-US CDKN2ZBE | Deletion 12 14 (1)
BLCA-US EGFR Amplification | 2 2
BRCA-US ERBE2 | Amplification | 20 20
BRCA-US PTEN Deletion 15 15
BRCA-US IGF2 Activation 2 2
GEM-US EGFR Amplification | 18 19
GEM-US CDKN2A | Deletion 18 18
GEM-US CDKNZB | Deletion 17 17
GEM-US CDK4 Amplification | 8 8
GEM-US MDM2 | Amplification | 4 5 (2)
HNSC-US FADD Amplification | 15 15
HNSC-US CDKN2A | Deletion 10 10
HNSC-US CDKNZE | Deletion 9 9
KICH-US TERT Activation 5 5
LUSC-US CDKN2A | Deletion 9 1
LUSC-US CDKNZE | Deletion 10 13
LUSC-US MYEQV | Amplification | 9 12 (3
MB-Group3-DKFZ GFI1B Activation 6 6
MB-Group4-DKFZ GFIlB Activation 3 3
MB-Group4-DKFZ MYCMN Amplification | 9 9
MEB-Group4-DEFZ PRDME | Activation 12 14
MNB-GPOH MYCMN | Amplification | 53 53
MNB(MYCMNwt)-GPOH | TERT Activation 21 27 4)
SARC-US CDK4 Amplification | 18 18
SARC-US MDM2 | Amplification | 20 20
SARC-US CDKN2A | Deletion 9 10
SARC-US CDKENZE | Deletion 8 9
SKCM-US CDKN2A | Deletion 8 10 (5)
STAD-US IGF2 Activation 3 3
UCEC-US ERBEB2 | Amplification | 3 3
COADREAD-US IGF2 Activation 9 10 (6)
MB-GPOH FOXRL | Activation 4 4 (7

Figure 2.28: A comprehensive SV TAD assignment and gene expression bimodality based
benchmark of SOPHIA’s sensitivity. In TCGA and DKFZ studies of diverse cancer types,
hallmark oncogenes or tumour suppressors known to be dysregulated by somatic structural
variants are investigated for gene expression bimodality, and a corresponding SV detection by
SOPHIA, up to 1 TAD away from the gene of interest. The expected number of cases are
defined by the counts of cases belonging to the higher or lower of the modes in the bimodal
gene expression distribution, depending on the expected direction of dysregulation.
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Notes: (1) 1/2 ’negative” cases also shows no copy number differences, (2) The negative”
case also shows no copy number differences, (3) The “negative” cases also show no copy
number differences, (4) It is known that a hitherto unknown mechanism of TERT activation
and promoter mutations exists apart from rearrangements [212], (5) The “negative” cases also
show no copy number differences, (6) 2 positive cases were used in parameter optimization,
(7) One positive case was used in parameter optimization

Overall SOPHIA shows an excellent sensitivity for detection of oncogenic hallmark struc-
tural variants. The only recurrent source of false negatives were putative CDKN2A/B deletions.
Following these benchmarks which were base on parameters trained on FISH and M-FISH
data, we only did further revisions based on two oncogenes, namely undetected /GF2 rear-
rangements in 2 colorectal cancer cases, and one undetected novel interchromosomal FOXR1
rearrangement in neuroblastoma. These secondary optimizations did not further affect results

on hallmark structural variants, but likely improved the overall sensitivity of SOPHIA.

2.3.3.1 Important Structural Variants such as Tandem Duplications upstream of IGF2 can

Have a Breakpoint on Repetitive Regions

Tandem duplications near the /GF2 locus have been reported [100] to cause an increased acti-
vation of the IGF2 oncogene, suggesting it to be a hallmark structural variant in a pan-cancer
setting.

We observed in the TCGA colorectal cancer cohort three cases with increased IGF2 expres-
sion and no nearby rearrangements. In the absence of a known secondary activation mecha-
nism, we assumed these observations to be putative false negatives. We observed that a hotspot
site for the first of the breakpoints of the duplication involving /GF2 is on a (TGGA)_n simple
repeat and that this leads to two types of issues: i) the site on the repeat sequence is frequently
encountered as a common artefact breakpoint in the background breakpoint database (Figure
2.29), ii) the partner site downstream of /GF2 suffers from a mate read dispersion where mul-
tiple distant locations on the (TGGA)_n simple repeat are proposed as the partner breakpoint

and do not form a coherent structural variant with consistent support (Figure 2.30).
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Figure 2.29: The left-hand side of the /IGF2 locus duplication on the (TGGA)_n simple repeat,
donor TCGA-AG-3593 of the TCGA-READ project: the upper subfigure indicates the tumour
sample with green reads indicating discordant reads supporting the duplication, whereas the
middle subfigure indicates the matched normal sample with no evidence for the rearrangement,
indicating a somatic rearrangement. The lowermost subfigure shows multiple (TGGA)_n re-
peats covering the region. A precise breakpoint yielding split reads is not mapped by the

aligner.
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Figure 2.30: The right-hand side of the duplication on the partner site downstream of IGF2,
donor TCGA-AG-3593 of the TCGA-READ project: the lowermost subfigure shows a lack of
repeats and the partner breakpoint to be located on the ASCL2 gene with a precise breakpoint
yielding split reads.

We could address the first issue by relaxing the background breakpoint database hits thresh-
olds when the partner site is clearly somatic and shows strong evidence. However, we could
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not fully address the second issue, for rare cases where the multiple solutions are all weakly
supported and distant from each other.

The representative figure is from the case TCGA-AG-3593 in the TCGA Rectal Cancer
Project (READ-US). The given structural variant has been misclassified as low-quality with
score 2 by SOPHIA even after further tuning, and constitutes the only one of the 15 high
IGF?2 expressor cases in the entire TCGA (breast cancer, colorectal cancer, stomach cancer)
pan-cancer WGS cohort where an /GF2 duplication has been missed by SOPHIA, following a

parameter reoptimization taking into account the observations made on /GF2 described here.

2.3.3.2 A novel interchromosomal FOXRI activating translocation in Neuroblastoma maps

nonspecifically to multiple partner sites

Intrachromosomal rearrangements have previously been shown to activate the FOXRI onco-
gene [461] as sole known driver in a small subset of neuroblastoma cases, and FOXRI can
thus be considered as a hallmark rearrangement of neuroblastoma. In our larger German Pae-
diatric Oncology and Hematology (GPOH) Neuroblastoma cohort, we observed that one (out
of 4) FOXR1 high expressor cases had a somatic interchromosomal rearrangement of FOXR1
t(11,17)(q23.3;p11.2) with unspecific mapping on chr17p11.2: We identified two identical re-
gions flanking the gene GRAPL where precise mapping with the current short read sequencing
technology is not possible. The two possible breakpoints that could be considered to activate
FOXRI were 17:19015973 at 17:19093582. Interestingly, these two regions of full homology
were not annotated as repeats in RepeatMasker. As the two candidate regions are identical,
mapping quality of every (high base-quality) read mapping to these regions is 0. Due to this
important and representative example, we decided to support such regions in SOPHIA, with
counterbalancing caveats. Briefly, we impose the conditions that at least one of the two paired
breakpoints must not be in a MAPQO region, and if one of the two breakpoints is in a MAPQO
region, the supporting read count must be higher than the normally used thresholds.

This representative case GPOH-NB-13264 that led to the described observations (Figures
2.31, 2.32 and 2.33) and allowed us to improve SOPHIA’s detection sensitivity on MAPQO

regions.
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Figure 2.31: The FOXRI(chr11)-side of the FOXRI rearrangement. The purple reads indicate
reads whose mates map to chrl7. With large numbers of supporting discordant reads, avail-
ability of split reads and a high overall sequencing quality in this locus, this breakpoint has the

signatures of a true somatic SV candidate.
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Figure 2.32: The first of the two possible solutions for the chrl7-side of the FOXRI rear-
rangement. This region is entirely a MAPQO region where mapping is not unique (likely same
sequence as the second alternative breakpoint site). Discordant read pairs whose mates map
to chrl1 on the FOXRI locus are visible along with a precise breakpoint generating clean split

reads.
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Figure 2.33: The second of the two possible solutions for the chrl7-side of the FOXRI rear-
rangement. This region is also entirely a MAPQO region where mapping is not unique (likely
same sequence as the first alternative breakpoint site). Discordant read pairs whose mates map
to chrl1 on the FOXRI locus are visible along with a precise breakpoint generating clean split

reads, albeit with less support than the first of the alternative solutions.

MAPQO regions are often discarded by structural variant detection algorithms as a source
of systematic artefacts, as is also suggested by the results presented in Section 2.3.2. We tested
the same case with SYVABA and confirmed that neither of the two solutions were proposed by
their local assembly based approach. This reinforced our opinion that it is justified to study
MAPQ-0 regions for the purpose of detecting structural variants, though additional care is

warranted.

2.3.4 SOPHIA Structural Variant Detection Speed

Due to the single-pass and minimally buffered evidence collection approach of SOPHIA, it
has a number of significant performance advantages. First, the linear single-pass approach is
I/O friendly and allows a fast and efficient parsing of the decompressed alignment in a data
stream. Also, flushing of collected evidence on a per-breakpoint basis rather than a per-SV
basis minimizes RAM usage for the first, and longest stage of the SOPHIA operation.

We ran a benchmark for a large number of SOPHIA runs across diverse projects, the two
different sequencing technologies, tumours and controls, going beyond the usual standards
provided in SV detection algorithm publications. Our aim was to show that SOPHIA runtimes
vary in a robust manner in a narrow range, not influenced by sample type, quality or technology.
As the SOPHIA workflow has two major parts (with separate executables), namely breakpoint
evidence collection (Section 2.2.3) and breakpoint pairing and filtering (Sections 2.2.5 and
2.2.6), we ran benchmarks for these two parts separately. For both parts, we measured CPU
time rather than absolute runtimes (wall time), because it is not sensitive to fluctuations in
computing cluster data I/O performance. SOPHIA uses two cores, expected real runtimes

are roughly a half of the benchmarked CPU time durations in the absence of technical I/O
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Figure 2.34: Benchmark of SOPHIA breakpoint evidence collection speed across sample types
and sequencing technologies. This analysis corresponds to the "SOPHIA breakpoint extrac-
tion” step presented in Figure 2.1, which is run once per the tumour and control bam file each.
Control and tumour alignments as well as those from different read length sequencing tech-
nologies / alignment workflows are analysed in separate categories.

bottlenecks.

For the breakpoint evidence selection stage, the results showed a strikingly narrow variance
for all analysed groups (Figure 2.34). The bimodalities observed in the Hiseq X-Ten system
were due to the 1-lane vs 2-lane choice made by different DKFZ projects depending on their
needs and budgets.The lowest mode represents the 35x coverage level attained by single lane
operation while the second represents the 70x coverage level attained by double lane operation.
The highest runtimes were recorded for tumour samples from the BMBF eMED SYS-GLIO
project, which used higher sequencing depths for tumour evolution modelling purposes as de-
scribed in [462]. The much larger 101bp datasets were harder to interpret due to the diversity
of countries and sequencing centres that provided cases. Overall, the benchmarked runtimes
suggest that breakpoint evidence collection performance in SOPHIA is largely dependent on
sequencing depth and not on other factors such as sample type, read length (within the con-
straint of 101bps vs 151bps) or sample quality. For the breakpoint evidence collection stage,
the RAM usage is held at a 2GB via the tool called mbuffer. However, in exceptional cases
involving large viral loads such as in gastric cancer and the Epstein-Barr Virus, RAM consump-
tion can temporarily spike during processing of viral integration sites or the EBV chromosome
itself. Such cases are exceptional, and it can safely be assumed that a normal SOPHIA break-
point evidence collection run consistently consumes 2GB RAM per sample.

For the breakpoint pairing and filtering stage, we measured both runtime and memory usage
characteristics for both paired and no-control operation, with a single core operation where the
real runtime is approximately equal to the CPU time. The pairing and filtering stage is a
very fast process, with few exceptions (Figures 2.35 and 2.36): In our measurement of 5779
SOPHIA SV pairing and filtering and analyses (of which 5415 corresponded to paired analysis
of tumours and matched normals), we found that only 52 exceeded 10 minutes of operation,
of which only 16 exceeded 20 minutes, with the highest recorded runtime at 133 minutes. The
median runtime for no-control operation was 1.03 minutes, whereas the median runtime for
paired analysis was 2 minutes.

We measured peak memory usage in a similar manner to speed (Figures 2.37, 2.38). In
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Figure 2.35: Benchmark of SOPHIA breakpoint pairing and filtering speed across analysis
types and sequencing technologies. This analysis corresponds to the SOPHIA breakpoint
matching” step in Figure 2.1, which is run once per paired or no-control analysis on the results
on the "SOPHIA breakpoint extraction speed”. Paired and no-control workflows as well as
runs from different read length sequencing technologies / alignment workflows are analysed in
separate categories.
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Figure 2.36: Benchmark of SOPHIA breakpoint pairing and filtering speed across analysis
types and sequencing technologies, limited to 15 minutes for better visibility
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Figure 2.37: Benchmark of SOPHIA breakpoint pairing and filtering peak RAM usage across
analysis types and sequencing technologies

our measurement of 5779 SOPHIA analyses (5415 paired), we found that only 68 exceeded 8
Gigabytes of peak memory usage, of which only 19 exceeded 16 Gigabytes, with the highest
recorded memory usage at 41.1 Gigabytes. The median peak memory usage for no-control
operation was 1.9 Gigabytes, whereas the median peak memory usage for paired analysis was
5 Gigabytes.

Finally we investigated the relationship between RAM usage and speed (Figure 2.39). We
observed that high RAM usage does not generally follow extremely high runtimes.

Poor performance characteristics are often caused by samples that are later excluded from
studies due to poor material quality. SOPHIA deals with such outlier cases without crashing
or needing extremely long runtimes that can take up to days or weeks with other algorithms.
Nevertheless, further reduction of peak RAM usage would be helpful in a cluster environment

and should be a future development goal.

2.4 Discussion

2.4.1 Advantages and Novelties of SOPHIA

SOPHIA, to the best of our knowledge, is the first structural variant detection algorithm that
is based on an expert model combining a rich and diverse set of training data sources such
as FISH, RNA-Seq and known hallmark structural variants. Thanks to its powerful filtering
features, we managed to explore complex regions and complex rearrangements without sacri-
fice of overall specificity. Also thanks to our single-sided evidence collection, we managed to
keep RAM requirements to a minimum while maintaining a linear, single-pass operation for
the majority of the workflow, yielding a fast, lightweight and effective tool for structural variant
detection.

In early stages of SOPHIA’s development we started from a split-read only approach in the
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Figure 2.38: Benchmark of SOPHIA breakpoint pairing and filtering peak RAM usage across
analysis types and sequencing technologies, clamped to 15 Gigabytes for better visibility
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Figure 2.39: Benchmark of SOPHIA breakpoint pairing and filtering peak RAM usage vs speed
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first proof of concept prototypes of the linear, single-pass operation. The discordant mate infor-
mation was added in later versions, supporting SVs first called by split read information. The
first version of SOPHIA used in a publication with my joint-first author contribution used this
split read as primary, discordant mate information as secondary level evidence approach [463].
Our later experiences with a more extensive evaluation of ICGC-MMML FISH and NB69 cell
line M-FISH results prompted us to improve our strategy where breakpoint detection can start
from either split read evidence or discordant mate based evidence, improving the sensitivity of
SOPHIA. This improvement was used in [464] (the follow-up article to [463]) along with other
recent publications [435] and the case study [465], where SOPHIA was used to detect a cryp-
tic IGH-MYC translocation where MYC is inserted into the IGH locus in a Burkitt leukaemia
case which was not detectable by FISH. Our experiences in the evolution of the SOPHIA
algorithm mimic the evolution in the field of SV detection where the first tools were either
discordant-mate-based like BreakDancer [466] or split-read-based like CREST [366]. Delly
became a standard tool in SV calling by combining these two approaches [308] and similar
to the SOPHIA’s population database-based filtering delly uses data from the 1000 genomes
project in its filtering [132], though these specific filters were not openly published. During
the development of SOPHIA, we generated a breakpoint repository including real and arte-
factual breakpoints along with their commonly detected partners obtained from normal tissue
of donors in cancer genomics studies. This database, which will be released with SOPHIA,
could potentially support researchers using other tools for SV detection because the sites of
common artefacts and germline variation is a generally useful resource. As part of the effort
of the development of this database, we compared sequencing data from two generations of
sequencers using the same underlying technology. Our results show slight differences between
the behaviour of these two generations of sequencers with respect to alignment performance
around repeat regions: while the X-Ten system can resolve more breakpoints on/around the re-
peat families simple repeats, satellite repeats and low complexity repeats, this is at the expense
of lower quality breakpoints with regards to base and mapping quality of reads. This suggests
that more breakpoints can be reached with the slightly longer reads produced by the X-Ten
sequencer, while even longer reads are likely to be necessary to get clean signals from these
regions.

The current trend in SV calling approaches seems to be pointing at local assembly where
novoBreak [425] and SvABA [426] both successfully reported results with this approach. We
have not been able to test both approaches simultaneously, but SOPHIA’s breakpoint evidence
collection strategy could be described as a half-local-assembly with each breakpoint being pro-
cessed separately, and later unified as an SV candidate finally being evaluated with SOPHIA’s
expert model-based filters. Evaluating these algorithms in a comprehensive benchmark would
allow us to evaluate if the added computational and memory costs of the full local assembly
process is an acceptable compromise with regards to possible improvements in sensitivity or
specificity.

We showed SOPHIA’s runtime and memory usage performance across a large cohort, with
different sample and sequencing quality characteristics and sequencing depths, where our re-

sults indicated SOPHIA to be robust against sample quality control issues. We have discussed
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here typical quality control issues such as contamination of normal material and low proper
pairing statistics, suggesting strategies to deal with these common issues, an important practi-
cal concern which is not discussed in the discussed SV algorithms’ articles. Overall, SOPHIA
is a successful solution for structural variant detection as of 2019, quickly, robustly and re-
producibly running across tens of cancer genome sequencing projects at the DKFZ with the
DKFZ SV workflow https://github.com/DKFZ-ODCF/SophiaWorkflow. It has
successfully ended the DKFZ’s reliance on external tools and collaborations for the analysis
of structural variants and already allowed us to present some novel findings across different
cancer types in Chapter 4.

In concluding our work on SOPHIA, we will discuss potential avenues for improvement.

2.4.2  Shortcomings of SOPHIA and Suggestions for Potential Improvements

2.4.2.1 Lack of a formal specificity analysis

Our current knowledge and assessment of the specificity performance of SOPHIA are based
on our and our collaborators’ anecdotal institutional experiences with other algorithms such
as delly and CREST. This is a shortcoming of this presented work we would like to improve.
Based on a number of discussions, the following options emerged for a specificity analysis as

preparation for the publication of the SOPHIA algorithm:

1. Using simulated tumour-normal pairs starting from available cell line sequencing data: A
recent work (Nov. 2018) [467] presented a comprehensive simulation based benchmark
of a broad selection of SV calling algorithms. Using the same strategy could be a feasible

goal to assess both the specificity and the sensitivity of SOPHIA.

2. Using the Pan-Cancer Analysis of Whole Genomes Project’s consensus SV dataset: The
PCAWG consortium generated a consensus dataset of somatic SVs from 2693 adult can-
cer cases using four different SV callers BRASS, delly, dRanger and SvABA [284]. This
dataset, when released, could be a very valuable tool to again assess both the specificity
and the sensitivity of SOPHIA. This approach could also be an opportunity to assess the
feasibility of running a consensus-based SV calling approach in the DKFZ’s sequenc-
ing data analysis workflow, similar to the PCAWG consortium’s strategy. To this end, it
would be important to identify which tool would best complement SOPHIA by offering

an expansion of true results with the least amount of redundant overlap possible.

2.4.2.2 Classes of structural variants missed by SOPHIA

In its current design, SOPHIA cannot detect structural variants involving unmapped reads.
This might reduce sensitivity in identifying exact breakpoints of viral integration sites where
one breakpoint correctly maps to the human genome, whereas the second breakpoint doesn’t.
We did not specifically address this question because we did not have a specific project where
these issues posed a detectable problem motivating an immediate improvement of this aspect
in SOPHIA. We would nevertheless like to address this during the transition of SOPHIA to the

GRCh38 reference human genome.
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SOPHIA can also not detect structural variants where both breakpoints of the variant fall on
repetitive regions and consequently common breakpoints in the breakpoint database used for
filtering. As described in Section 2.3.3 on the example of IGF2, strong and reliable evidence
from one of the two breakpoints can be used to overrule the negative effect of strong database
support for the other but it is possible that structural variants can be located in repetitive and
unmappable regions on both ends. SOPHIA currently does not have a solution for such rare
cases. The statement that such cases are rare are based on our extensive studies of disease
hallmark variants across close to a hundred projects where we were unable to determine a
systematically missed class/family of structural variants of this type.

SOPHIA also cannot detect structural variants where BWA-mem cannot propose either a
split read or discordant mate based supplementary alignment as a candidate variant. This is
sometimes the case with medium-sized SVs where the rearranged sequence also contains other
small mutations leading to too many differences in the short split read sequence for BWA-mem
to align it accurately. In such situations, SOPHIA would have no information to start from.

Finally, due to the usage of a population-based filtering approach, SOPHIA is not an appro-
priate tool for studying common germline structural variation. Therefore, its scope is focused
on cancer genomics data analysis of (ideally) whole genome sequencing data where the fo-
cus is to find rare germline structural variation of somatic structural variants from mid-sized
(roughly 20bps-1000bps) to interchromosomal. As this is the defined design scope of SOPHIA,
and this covers our main use cases in cancer genomics projects, this is strictly speaking not a

shortcoming.

2.4.2.3  Shortcomings of the current breakpoint database

As described in Section 2.2.5, we observed cases where the patient’s ethnicity posed issues
in the performance of the breakpoint database-based filtering. While such cases are relatively
easy to detect by a prevalence of large numbers of germline structural variants, especially in-
terchromosomal variants as manifestations of transposons, they are still useful to underline a
weakness of this breakpoint database based filtering approach. However, as SOPHIA’s per-
formance is excellent in many other regards such as speed, sensitivity and specificity, efforts
should probably focus on ensuring a better diversity in the background database rather than
fundamentally changing its concept.

During my thesis project, a similar and very strong effort has been launched [442] to study
the diversity of structural variants in the human genome where 17795 individuals were com-
prehensively characterized to this end. Though this large-scale effort has a distinct similarity

to the SOPHIA background model approach, it diverges on two important aspects:

1) SOPHIA aims to characterize both the artefactual and real breakpoints in control samples
for the purpose of filtering structural variants in cancer genomes whereas the approach

in [442] characterizes only the real germline variants and their effects,

ii) The [442] study presents results of structural variant analysis based on an existing analy-
sis tool, Lumpy, whereas SOPHIA is strongly based on a background breakpoint database

for its function.
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The latter point reveals an interesting conundrum: SOPHIA’s performance strongly relies
on its background database of breakpoints, whereas the quality of the breakpoints presented in
[442] relies on the performance of the Lumpy algorithm that they employed. We believe that
the current performance of SOPHIA is encouraging and the best solution may be to generate a

larger background database of breakpoints covering more ethnicities.

2.4.2.4 Reliance on a very specifically defined set of input prerequisites

SOPHIA relies on alignments from the standard BWA-mem based PCAWG workflow [361] on
the GRCh37 human genome. This alignment methodology has been used in many thousands
of human samples including the PCAWG project encompassing the TCGA, most of the ICGC
project and many published and unpublished DKFZ projects. Thus, it was not illogical to
develop a variant detection approach strongly relying on the conventions and the data from this
workflow. Nevertheless, the workflow is not robust to a change in any parameter: the input
alignments have to be coming from this specific workflow and no changes from this standard
are supported. Any change in alignment parameters would possibly lead to changes in where
artefactual breakpoints would occur, how supplementary alignments are assigned and scored,
among many other changes that cannot be fully described a priori.

Moreover, the background database of breakpoints are obtained from 3417 control samples
coming from this exact same workflow, and have been chosen with meticulous quality checks
discarding cases with excessive numbers of artefactual breakpoints in the germline, mainly due
to DNA degradation in stored blood. Different users outside of large cancer genome research
centres would likely find it difficult to obtain a sufficient number of control samples to build a
satisfactory database of breakpoints.

Thus, SOPHIA is not a universal or easily adaptable solution for the detection of structural
variants. While it is fully conceivable that the fundamental concepts behind SOPHIA would be
applicable in different analysis settings, such as even non-human research, the current SOPHIA
workflow is only available for alignments generated with a specific alignment workflow on a
specific version of the human genome.

Nevertheless, SOPHIA offers a complete and strong solution for detection of structural
variants in the cancer genome with the BWA-mem based PCAWG workflow on the GRCh37
human genome, a standard used in hundreds of projects, and many thousands of samples. We
are already working on offering a similarly complete and strong solution based on the GRCh38
build of the human genome, an investment which will be valid for many years to come. We
thus hope to compensate for the rigidity of SOPHIA’s input expectations by covering a larger

spectrum of use cases.

2.4.3  Outlook for SOPHIA’s Future Development

At the end of this chapter describing SOPHIA, I would hereby like to suggest the following

goals for its development as the developer and heaviest user of SOPHIA:

i) Transition of the SOPHIA workflow to the GRCh38 human genome along with the re-

lease of an updated breakpoint database,
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ii) Developing a method to distinguish mobile sequences such as retrotransposons from

balanced structural variants,

iii) Improvements to systematic weaknesses discovered by the detailed analysis comparing
it to SVABA and other local assembly based algorithms,

iv) More advanced analysis of SV clonality by including more information regarding the

coverage states,

v) Development of a complementary SV-signature [404] pipeline allowing automated de-

tection of SV-signatures,

vi) Development of advanced annotations including predicted effects of intra-exonic vari-
ants such as internal tandem duplications and annotation of ENSEMBL regulatory re-

gions.

An interesting direction to explore would be parameter learning via an automated process,
i.e. machine learning rather than the expert-controlled parameter optimization for SV filter-
ing presented in Section 2.2.6. Methods based on deep learning have been developed for the
detection of point mutations [468] and deletions as an SV class [469]. These methods had
the common concepts of working on images of visualized alignment data, and needing large
training datasets due to the nature of deep learning. Our approach on identification of key
parameters followed by their optimization was also partially built on visual analysis based on
the experiences made in Chapter 1 and close inspection of IGV plots such as those showed
in Section 2.3.2 was instrumental in our workflow. However, following the identification of
parameters, we switched to a quantitative workflow based on read evidence from different SV
evidence categories rather than relying on images. Furthermore, we used only a small train-
ing dataset but were still able to develop well-performing filtering criteria from FISH results.
Following these points, a more appropriate tool could be random forests which automates the
decision tree approach we used [470].

Any change in the SOPHIA algorithm should strive to maintain the standards of excellent
performance and sensitivity set here. Even though this aim is not simply solvable by unit-tests,
future developers of SOPHIA will have access to diverse and large international and DKFZ
datasets for testing its performance following iterative improvements. Speed and memory us-
age are easily measurable and strict standards should be adhered to, rejecting any improvement
that inflates runtimes or memory usage considerably over the current standard. Sensitivity
should be checked by gold standard cohorts, such as the ICGC-MMML for known, hard-to-
detect IG translocations, or ICGC-EOPC [420] for ERG fusions and GPOH-NB for TERT
fusions [212] or the currently unreleased consensus SV dataset from the PCAWG consortium
[284]. Specificity is harder to test in a systematic manner, but developers should pay extra
attention to subclonal structural variants and ensure that these are not spurious, low quality

observations that make it past filters such as those listed in Section 2.2.6.
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CHAPTER 3
EPISTEME: AN INTERACTIVE AND INTEGRATIVE PLATFORM FOR
ANALYSING, INTERPRETING AND SHARING MULTI-OMICS DATA

3.1 Introduction

Cancer omics is a highly collaborative field where medical doctors, biologists, bioinformati-
cians and computational biologists work together to study causes, classifications, mechanisms
and possible treatment avenues for different types of cancer [276], [471]. The role of the bioin-
formatician in this context is broad: they develop statistical methods and fast and efficient
software implementations for analysis of data, run analyses and visualize results sharing them
preferably in an accessible and intuitive manner with the doctor and biologist partners of the
research project, ending with a joint interpretation of the obtained and shared results.
Frequently, individual tasks of the computational biologist on the last two steps, namely
analysis and data visualization are amenable to automation allowing the computational biolo-
gist to focus on more advanced tasks of method development and implementation [456]. This
is accomplished by using modern techniques of interactive data visualization allowing dynamic
execution and representations of complex data analysis tasks without the necessity to express
these tasks in a programmatic manner. This field of interactive data visualization is currently
gaining significant interest [472] with modern web technologies allowing rich interactions with
complex datasets. As of mid-2019, there are both available specialized solutions catering to a
broad set of bioinformatics needs as well as specialized tools that focus on single data types
such as mutations or transcriptome analysis, with both types of tools being a research subject
of great interest [473] [474] and a significant research effort in international cancer genome

analysis consortia [475].

i) R2 (2008) [337] is among the most mature and feature-rich interactive data portals in the
field of omics data visualization. While R2 started mostly as a tool for microarray data
analysis and visualization, today it offers features on diverse fields such as SV visualiza-
tion, ChIP-Seq data visualization and survival analysis. Recently, it served as the official
data portal for the Pediatric PanCancer project [476], where it was used to visualize both
genomics and transcriptomics data. To date, it has not been published in a peer-reviewed

journal.

ii) cBioPortal (2012) [477] is a well-established data portal with an excellent oncoplot (On-
coPrint) feature as well as analysis features on copy numbers, gene expressions, mutation
mutual exclusivity and co-occurence, pathway enrichment etc. As such, it is a mainstay

in data analysis in the field of cancer omics data analysis.

iii) iCanPlot (2012) [478] is an interactive HTMLS5 Canvas plotting library which offers fast
and interactive plots of high-dimensional datasets on scatter plots. At the time, it was a
modern implementation of a new web technology and deserves mention as a technical

accomplishment.
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v)

v)

vi)

vii)

viii)

canEvolve (2012) [479] was another early effort in integrative omics data analysis and
visualization in the web. The analysis features were limited, and relied on storage of
pre-computed values. The visualization features also encompassed a limited number
of basic plots, but integrative data analysis between omics data layers was available.
Unfortunately, its user interface was not intuitive and with its analysis features limited,

it did not get adopted by a large audience.

MAGTI (2015) [480] was a tool dedicated to visualization of genomic aberrations us-
ing oncoprints for mutation incidences across a cohort, “lollipop plots” for mutations
on transcripts, heatmaps for gene expressions, and an UCSC Genome Browser-like ge-
nomic region viewer for copy number variations. MAGI was a tool strictly dedicated to
visualization and offered no user-controlled data analysis features. As it shared a large

domain with cBioPortal, it was not adopted by a large audience.

TumorMap (2017) [481] was the tool to showcase the large-scale sample classification
efforts in the TCGA Pan-Cancer analysis consortia, both in its second generation publi-
cations [275]. It is a dedicated tool for interactive visualization dimensionality reduction
analyses, most often used in pan-cancer analysis. It offers features on user-controlled
custom selections, filtering, pathway enrichment analysis. In its very specific usage do-
main, it is a very good tool albeit with limited performance likely due to the complexity

of the datasets involved.

OncoScape (2018) [482] is a comprehensive integrative omics data analysis and visu-
alization portal. It offers both a broad range of data analysis and visualization features
including PCA, Survival analysis, visualization of mutations among others. It is a rela-

tively new tool, and its adoption in our community is yet difficult to assess.

Vizome (2018) [483] The Beat AML study’s data portal with extensive visualization
features for genomic variants, gene expression, tumour evolution, protein alterating mu-
tation summarization, drug response, clinical metadata and gene set enrichment. It has
excellent features for subcohort definitions but lacks features for user-controlled data
analysis and integrative omics data analysis. Interestingly, it seems to be a prototype

with no information regarding its developer team or its own publication.

The state of the literature for omics data analysis and visualization platforms clearly showed

a lack of development in the visualization of structural variants. This is partially due to the ex-

cellent availability of Whole-Exome Sequencing (WES) data with Whole-Genome Sequencing
(WGS) data lagging behind [275]. Of the tools presented thus far, only R2 and OncoScape have
an interactive Circos plot feature, even though this might change in the future with better avail-

ability of WGS data and libraries to plot Circos plots in the browser such as BioCircos.js [484].

In addition to the (omics) domain-specific visualization libraries and data portals discussed

here, Jeffrey Heer’s (University of Washington) work deserves a mention as his group has been

pioneering in the field of modern interactive data visualization: The Protovis toolkit [485], was

the predecessor of the seminal D3.js data visualization library [329], which has since estab-

lished itself as a standard tool for data visualization in the web. One of the recent innovations
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from this group includes the Vega-Lite algorithm which facilitates automatic interactive plot
generation from simple, declarative, non-programmatical expressions [486], underlining the
powerful capabilities of web-based visualizations. D3.js formed the technical backbone of this
dissertation chapter’s work.

Having developed a well-performing structural variant(SV) detection algorithm in SOPHIA,
and further tools for follow-up analysis studying the impact of SVs on potential target genes,
I turned my attention to the open question of data integration, visualization, and sharing for
multi-omics datasets. One of the primary motivations of investigating SVs is studying their ef-
fects on phenotypes like survival or gene expression, such as gene activations via enhancer hi-
jacking and amplifications or loss of expression via homozygous deletions or loss of proximity
to regulatory activators such as enhancers. Other such interesting processes include “double-
hits” involving the loss of one allele by a copy number loss or a SV and the other via a deac-
tivating small variant, or “multi-mechanism” activations of a gene involving amplifications or
small variants in different patients which are often mutually exclusive. Of course, the eventual
aim of such investigations is to reach biological insights, which is only possible in the context
of established biological knowledge in databases of measurements or publications.

The result of my work was a comprehensive omics data analysis and visualization por-
tal named EPISTEME. EPISTEME addresses the variant-to-variant, variant-to-phenotype, and
observation-to-database integrations in an accessible manner empowering generators of omics
data to rapidly reach and share biological insights without extensive consultation to bioinfor-
matics experts for most steps. Indeed, EPISTEME was to a great extent motivated by my
own experiences in collaborative projects: Following the development of SOPHIA, I had the
opportunity as an ”SV-Expert” to extensively interact with scientists who are not from a com-
putational background, therefore depending on computational biologists to access their data.
This access is enabled by the computational biologist providing them with visualizations on
comprehensively pre-processed, quality-controlled, processed and analysed data. While the
pre-processing, quality-control, processing and some advanced types of data analysis are most
logically executed by a computational expert, most types of data analysis and data visualization
can in principle be executed by any scientist with sufficient domain knowledge. This is partly
due to the great exposure of biologists and medical doctors to the explosive growth in omics
data-driven knowledge, which introduced a broad audience to omics data types and common
visualization approaches [276], [471]. However, in daily practice, execution of simple analy-
ses such as differential gene expression analysis, preparation of simple visualization such as
Circos plots, scatter plots or volcano plots most frequently is the responsibility of the com-
putational biologists. Simple questions like “Which patients have a structural variant on or
near the MYC gene in my cohort?”, "Which patients overexpress the CCNDI gene, and how
many of those cases are 7P53 mutant?”, ”What are the genome-wide SVs observed in these 3
cases, displayed on a Circos plot?” can rapidly accumulate over the course of a collaborative
consortium project, taking valuable time away from computational biologists which could bet-
ter be spent on advanced method development and programming of cutting-edge data analysis
algorithms with the capacity of a bioinformatician. On the other hand, the dependence of the

biologists and medical doctors on other team members for very simple tasks can lead to delays
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in a project’s progression. Based on these observations and my personal experiences in terms
of which analysis tasks are the most common and how amenable they are to computational
biologist-independent execution, I developed EPISTEME.

3.2 Methods

3.2.1 Study Design

EPISTEME is designed to integrate genomic variant data with omics phenotype data and clin-
ical metadata. In its current form, it uses as variant data: SNVs, small indels (defined as
short enough insertions and deletions to map correctly as single gapped reads and not create
split reads in alignment), copy number variants, SVs, and cohort-wide recurrence profiles of
these variant classes. As for phenotype data, it currently uses overall survival data and gene
expression profiles from RNA-sequencing or RNA microarrays as well as beta values from
methylation array assays. Figure 3.1 summarizes the process that EPISTEME uses to generate
integrative cohort-wide and per-patient analyses from genomic variant and multi-omics phe-
notype and clinical (meta-)data, producing interactive, customizable and, publication-quality

visualizations.
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3.2.2 Data Sources

EPISTEME processes and visualizes somatic small variants including single nucleotide vari-
ations (SNVs) and small insertions and deletions, Copy Number Variants(CNVs) and Loss of
Heterozygosity (LOH), and Structural Variants (SVs).

For the detection of somatic small variants, the methods follow those as presented in [211],
using mpileup [362] for SNVs and Platypus for [306] small indels. Mutational signatures are
analysed by DeconstructSigs [305] with standard parameters using “genome” for WGS and
“exome2genome” for WES data.

Small variant annotations are done by ANNOVAR [487] as outlined in the studies cited
for describing the method of detection. The following classes of SNVs were considered func-
tional: nonsynonymous SNVs, stoploss and stopgain variants, frameshift and non-frameshift
indels and splice site variants. In addition, “upstream”, "downstream” and UTR3/5 variants as
annotated by ANNOVAR were included in the variants database for further analysis.

Copy number variants and LOH are called using the ACEseq algorithm [309] developed by
Kortine Kleinheinz in DKFZ Heidelberg using the default DKFZ workflow [309]. The ACESeq
workflow yields segments along with their estimated copy number values and LOH status. As
pre-processing for EPISTEME, homozygously deleted segments smaller than 1000 base-pairs
and Segments on chrY are excluded from the results. The estimated tumour copy number for
each segment is rounded and compared to the rounded estimated base copy number of the tu-
mour. If T'C'Nyegment > T'C Npqse, the segment is considered gained whereas T'C' Nsegment >
3 * T'C Npgse, the segment is considered amplified. Similarly, if T'C' Ngegment < T'C Npgse, the
segment is considered lost, whereas if T'C Nsegment = 0, the segment is considered homozy-
gously deleted.

Structural variants are called using the SOPHIA algorithm described in the Chapter 2.
Recurrence of SVs based on TAD hits is analysed as described in Section 2.2.10.

RNA-Seq and RNA Microarray data is processed as described in Section 2.2.11. For di-
mensionality reduction, top N most variable genes were determined while excluding gonoso-
mal genes.

Methylome data from methylation arrays and Reverse Phase Protein Lysate Microarray
(RPPA) data for TCGA projects are obtained from the Genomics Data Commons (GDC) mir-
ror of UCSC Xena [455] as normalized values without further transformations. Probes were
filtered following the suggestions in [488], filtering out common SNPs, gonosome probes and
underperforming probes as well as non CpG probes.

Genes and TADs are defined as described in Section 2.2.10.3.

3.2.3 Data Storage Backend

EPISTEME efficiently uses a SQL database (MariaDB) for minimizing the persistent data stor-
age inside a given browser session. High-dimensional omics data is fetched dynamically, on

an as-needed basis (Figure 3.2).
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Figure 3.2: Data transfers and processing relations in EPISTEME

Briefly, EPISTEME stores low-dimensional data such as clinical metadata, genomic variant
recurrence and SVs in persistent memory for quick access during a cohort’s initialization while
keeping high-dimensional data such as genomic variant status of each gene, cohort-wide tran-
scriptome and methylome values on the server and fetching the data as needed. This dynamic
fetching can be executed in three forms:

* atargeted fetching of a single gene’s genomic variants or gene/protein expression values
leads to the permanent addition of the fetched data as a quantitative or categorical cohort
metadata category, giving users full power to using the data in scatter plots, box-violin-
jitter plots or in subcohort assignments

* a high-dimensional fetching of expression values of fop N most variable genes/probes
for clustering purposes yields temporary data which are deleted after dimensionality re-

duction/clustering is run

* a genome wide fetching of genomic variant status for all genes for the purpose of show-
ing variant recurrence in a (sub)cohort-wide Circos plot also yields temporary data which
are deleted after the Circos plot is plotted

. This overall lowers memory usage with the tradeoff of occasional SQL queries via AJAX.
As these queries are read-only, the concurrent activity of multiple users do not pose technical
challenges for the database.

3.2.4 Data Visualization on the Frontend

EPISTEME is organized in a modular structure where data is received from the server, pro-
cessed with in-browser algorithms and visualized in interactive visualization, allowing rapid

development of new features (Figure 3.3).
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EPISTEME generates vector graphics using the Web-Standard SVG format. Interactive
visualizations are produced by the JavaScript library D3.js and exported using the svgsaver
package. The only other external visualization library used in this project is venn.js providing
Venn diagrams for the visualization of comparative variant frequency across two subcohorts.

The jQuery-QueryBuilder package is used to give users the ability to generate complex
subcohort selections starting from simple subcohort selections (Section 3.3.8.5).

The user interface is built using Twitter Bootstrap library. jQuery is used to manage the

user interactions.

Analysis Type Repository Version
D3.js github.com /d3/d3 4.13.0
jquery github.com /jquery/jquery 3.3.1
svgsaver github.com /Hypercubed/svgsaver 0.9.0
Bootstrap github.com /twbs/bootstrap 3.3.7
Bootstrap-Slider | github.com /seiyria/bootstrap-slider 10.0.2
QueryBuilder github.com /mistic100/jQuery-QueryBuilder | 2.5.2
Venn Diagrams | github.com /benfred/venn.js 0.2.20

3.2.5 Visualization of Genomic Variants and Genomic Variant Recurrence

EPISTEME's first screen when a cohort is loaded is a cohort-wide Circos plot summarizing
the mutational landscape of a group of patients. It shows variant recurrence for chosen vari-
ant types. Circos plots have become a widely adopted standard for visualizing genome-wide
recurrence information [332] and the genomics community has a strong familiarity with this vi-
sualization. While circular representations lead to a distortion of quantities across the r-axis as
more layers of information are added, there doesn’t exist to date a better class of diagrams for
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visualizing correspondences between chromosomes such as chromatin interactions or translo-
cations. Thus, EPISTEME maintains this standard in visualizing the mutational landscape of a
cancer cohort.

EPISTEME organizes the genome in a hierarchy:

* Chromosomes, used only for visualization and zooming

* Chromosome arms, used only for visualization and zooming

* Cytobands, used for visualization, zooming and annotations

e TADs, used for visualization, annotations, variant recurrence visualization

EPISTEME maps genomic coordinates to © angles in a way allowing a dynamic and rapid
switching between individually controllable magnification levels for each cytoband. Empha-
sizing particular chromosomes, chromosome arms or cytobands and showing regions rich in
important SVs in higher detail is a trivial action in EPISTEME. Because TAD boundaries de-
fine overlapping TADs, the smallest non-overlapping segments of the genome are cytobands.
Each cytoband has a coefficient, which is increased to emphasize, or decreased to de-emphasize
the contributions of the given cytoband to the overall calculation of ©.

Each genomic location is defined as a pairing of chromosome and position on the chromo-
some. This pairing can be converted to an “absolute position” using the following formulas.

Given the genomic location defined on chromosome with the index K, and on position pos,
this position is on the Q™ cytoband of chromosome K, separated from the next chromosome
K + 1 by a padded gap Gap;.

Leapsed(chric, pos)

O(chrg, = , e
(chric, pos) TotalGenomeLengthI/VzthGaps7T+ of fset

K-1
Lelapsed(Chrk’pOS) = Z (LZ + Gapi)“’

i=1
PosOnChrg BeforeCytobandg+
Coef fCytobandg * LenCytobandg

NumCytobands;
L; = Z (Coef fCytoband, x LenCytoband,)
p=1
Q
PosOnChrg Be foreCytobandg = Z (Coef fCytoband, * LenCytoband,,)
p=1

To make this calculation much quicker, EPISTEME stores the Lejqpseq for all cytobands for
a given set of zooming coefficient values. Anytime the user changes a coefficients, this lookup
table is updated. The lookup table simplifies the equation dramatically:
Lelapsed (Ch’l“K 5 pOS)

O(ch = ©
(chric, pos) TotalGenomeLengthWithGaps7T+ of fset
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Lelapsed (Chrk ) pOS) = LE'lapsedBeforeChromosomeKC’ytobandQ +
Coef fCytobandg * LenCytobandg

This very fast memoization of L giapsedBe foreChromosomeK Cytobandq for rapidly calculat-
ing genomic theta values makes the plotting zooming and rotation, of the Circos plots much
faster. The user can interact with the O, ts.; parameter or any of the zooming coefficients
Coef fCytoband to modify the rotation and zooming characteristics of the plot. Zooming
in or out on a chromosome, or chromosome arm sets the coefficients for each cytoband on
the chromosome (arm) to the set value. Finer grained control over zooming is established by
modifying the coefficient for individual cytobands.

As in the Circos package, EPISTEME uses quadratic Bézier curves to represent individual
SVs or small variants. As standard tools in computer graphics, quadratic Bézier curves have an
implementation in the SVG standard and are straightforward to use.

A Bézier curve in 2D space consists of 6 polar coordinates:
° Rstart,@start

° Rcontrol ’ G)comtv"ol
® Rend P @end

Wwith R = Rgtort = Reng.

Ostqrt and O,q are determined by genomic positions as described. The control points are
determined by the type and size of the displayed genomic variant: Roniror = (1 — hyariant) * R
Ocontrol = 0.5 % (Ostart + Ocna)

0.15, SmallVariant
hovariant = { 0.35, MediumV ariant

1, LargeVariant

With small variants are intrachromosomal variants spanning less than 9 MB, medium vari-
ants are intrachromosomal variants spanning less than 18 MB and large variants are any other
variants.

These definitions allow users to visually distinguish between genomic variants of different
sizes.

Genomic variant recurrence is plotted as polar arc spanning a TAD or gene borders. A

polar arc is defined with four coordinates in 2D space:
° RSta’I‘t765ta'f‘t
* Rends@end

Ostart and Oy, 4 are defined using the genomic coordinate to © mapping approach as described.
For TADs, the results are used as calculated, while for genes, if the Oy, — Ostare < 0.01(rad),
it is expanded to as OgtartNew = 0.5 % (Ogpart + Ocng) — 0.005 and O¢pgnew = 0.5 % (O spare +
Ocna) + 0.005.
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Rsiare 1s determined by the starting point of the arc wheel on the Circos plot, which will be

explained in Section 3.3.1. R, is determined by the formula R.,q = min(Ryheel, Rstart +

( TGCU’V”"’CTLCGTAD/Gene ) (
TECUTTENCEmaqrCohort

Ryheel — Rstart))- TECUrTencemarconort 1 @ user-controllable parame-

ter allowing the modulation of the heights of the recurrence of interest, used in the interactions

of Section 3.3.1.

3.2.6 Data Analysis Features

EPISTEME provides a number of data analysis tools, of which most originate from open source

JavaScript repositories. Some useful tools were hand-converted to the web-compatible lan-

guage JavaScript if they were not otherwise available as JavaScript code.

Analysis Type Repository Version Comments
tSNE github.com  /karpa- | - Hand-optimized and
thy/tsnejs added support for
late-exaggeration
UMAP github.com /lm- | 0.3.8 Hand-converted to
cinnes/umap JavaScript
Eigenvalue Decompo- | github.com 5.2.1
sition (for UMAP) /mljs/matrix
PCA github.com /mljs/pca | 2.1.0
Hierarchical Cluster- | github.com /tay- | 0.7.0
ing den/clusterfck
K-means Clustering github.com 1.1.8
/Philmod/node-
kmeans
K-medoids Clustering | github.com /stewart- | 1.0.4
r/k-medoids
Fuzzy DBSCAN | github.com 1.0.1
Clustering /schulzch/fuzzy-
dbscan-js
OPTICS Clustering github.com 1.3.0
/uhho/density-
clustering
Concave Hull fitting github.com /map- | 1.1.1
box/concaveman
Kernel Density Esti- | github.com 0.2.3
mation /Planeshifter/kernel-
smooth
Sheather-Jones Band- | github.com /Neo- | Hand-converted to
width (KDE) jume/pythonABC JavaScript
Kolmogorov-Smirnov | github.com  /pieter- | 0.2.1
Test provoost/jerzy
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T-Test github.com  /pieter- | 0.2.1

provoost/jerzy
Kruskal-Wallis Test lib.stat.cmu.edu - Hand-converted
/apstat/245 JavaScript
Fisher’s Exact Test bioinfo.iric.ca -

/a-javascript-
implementation-
of-the-non-central-
version-of-fishers-

exact-test/

All of these features/analyses run on the client-side with no processing load on the EPIS-
TEME server.

3.2.7 Database Integrations

EPISTEME offers extensive integrations to genomic databases for interactive analysis, which
are tailored to the needs of each visualization type.

Gene names are linked to Genecards [489] [490] regardless of visualization type. Gene
names are additionally linked to PubMed [491] in ”’Variant-Expression Dysregulation Volcano
Plot” and ”Gene / Protein Expression Plot with Variant Annotations” visualizations to check
the novelty of dysregulated genes.

Genomic variant data annotations are linked to UCSC Genome Browser [492]. SV data an-
notations are additionally linked to dbSUPER [493] for superenhancer annotations, and NCBI
BLAST [494] for split read overhang annotations.

Visualizations including gene lists such as Volcano or 1-vs-All Correlation plots are linked
to a number of options for pathway enrichment / gene set analysis: DAVID [495], Reactome
[496], GSEA [497], ConsensusPathDB CPDB [498].

3.2.8 Differential Expression Analysis

Differential expression analysis combines the measures statistical significance” showing the
consistency of a difference across two groups and “fold change” showing the magnitude of
a difference between two groups. Fold change and statistical significance information can be
depicted in a “’volcano plot”, a standard visualization technique for differential gene expression
analysis across the whole measured transcriptome: [499]. Each underlying data point in a
volcano plot represents a gene (or some other single omics phenotype measurement such as
protein expression or metabolite concentration).

EPISTEME approximates statistical significance by four methods:
1) modified Kruskal-Wallis test,
ii) Kolmogorov-Smirnov test,

iii) Student’s T-Test,
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iv) Fisher’s Exact Test on Jenks-Optimized Breaks (only in variant-integrated mode)

For the modified Kruskal-Wallis test, no tie-correction is applied, but rather the input expres-
sions for both groups are shuffled 2 * TiesGroup1, Or 2 * TiesGroup2 Whichever is larger up to a
maximum number of 100 iterations. This procedure is inspired from permutation testing and is
adopted because of some practical issues regarding the tie-correction on some heavily repeated
samples. In its current implementation in EPISTEME, the Kolmogorov-Smirnov test is robust
against this issue and produces similar results, but is slower for in-browser calculations.
EPISTEME measures fold change by trimean, a robust estimator (= W); or
mean, a quantity sensitive to outliers. Robustness is usually a desirable property in statistical
comparisons, but in the context of genomic variant effects on gene expression, rare variants
with strong effects on gene expression leading to outlier observations in a cohort can be bio-
logically very interesting: rare enhancer hijacking events can be important oncogenic events
defining rare cancer subtypes [132]. In calculating fold change, because the underlying phe-
notype quantities are normalized as log,(z + 1), mapping them back to the initial domain and
keeping the +1 increment ensures that each group has nonzero mean or trimean values for a

oValy

fold change comparison: F'C' = logy( + 1). This quantity ensures that events like the

2Valy
activation of a gene from 0 expression can be properly quantified.
EPISTEME offers two types of differential expression analysis for distinctly different pur-

poses:

1. A differential expression analysis comparing two static groups chosen with arbitrary
criteria (expression of an anchor gene, existence of a particular variant, tumour grade,
gender etc.) In this analysis, the group sizes remain constant and results can be filtered
for significance or fold change. In this mode, EPISTEME uses the trimean as the default

fold change measure. This is a common type of bioinformatics data analysis.

2. A differential expression analysis for each gene with dynamic sample sizes based on
variant status, with the aim of studying gene dysregulation. For each gene, the EPIS-
TEME divides a cohort into a Variant, and a Variant. subcohort, which changes for
any gene based on the existence status of the investigated variant types. Consequently,
the sample sizes for each result data point will differ and the results cannot be filtered
by significance or fold change and serve a purely exploratory purpose for discovering
dyresulated genes due to genomic variants. In this mode, EPISTEME uses the mean as
the default fold change measure. This is a non-canonical analysis and a novel approach
offered by EPISTEME.

3.2.8.1 Special Properties of Variant-Integrated Phenotype Dysregulation Analysis

EPISTEME’s variant-integrated phenotype (gene/protein) dysregulation analysis, is exploratory:
EPISTEME makes no attempts to reduce the whole transcriptome to a list of candidate genes of
assumed significance. This has a few underlying reasons, discussed on the particular example
of SVs as variants: 1) as discussed in the unpaired test consideration for the choice of the statis-
tical test, the sample sizes for each group are different for each gene. This excludes the setting

of a single p-value cutoff point, ii) the methods used for estimating the potential effect of an SV
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on gene expression are not an exact indicator for SV-gene associations due to inaccuracies of
TAD boundaries, nested TAD structures, potential impact of long-range interactions that affect
genes on distant TADs and finally SVs that fall on a TAD but have no regulatory effect on a gene
of interest residing on the TAD or one of its neighbours. Hence, there can be false positives
and negatives due to inaccuracies in SV-gene associations, iii) finally, the SV detection algo-
rithm used for this analysis can have false positive and false negative results leading to noise
in the estimated SV-gene-expression associations. If the aim of this analysis is to identify gene
activation or inactivation due to different genomic variants, considering the points discussed
above, the problem statement for variant-gene expression association analysis can be changed
from a simple rank-based comparison of Variant, vs. Variant. groups to the question “are pa-
tients carrying variants of a given class of genomic variants more likely to have higher or lower
gene expression values based on rank?”. In order to address this specific question of enrich-
ment of gene over/underexpression for a variant class, EPISTEME uses a sweeping application
of the statistical testing which attempts to maximize approximated statistical significance by
selectively eliminating Variant, data points, which are estimated to be potentially due to noise.
The following steps are applied: i) the robust estimator, trimean is used to determine the side
of sample eliminations, ii) there are at least two patients with Variant, status, iii) at most 1/4
of samples with Variant, status from the initial state are eliminated, iv) eliminations stop if the
estimated significance is not increased. Within the constraints of exploratory analysis, this pro-
cedure de-emphasizes erroneous, passenger or otherwise noise-related variants from Variant.
cases leading to the opposite effect on gene expression for a gene of interest. This approach,
while making it visually much easier to identify outlier gene candidates in the volcano plot,
would not be mathematically valid in hypothesis testing but is useful especially in the identifi-
cation of rare events of enhancer hijacking. Due to the complexity of this described procedure
and the large number of combinatorial possibilities for allowed variant type combinations, this
analysis is currently implemented as an upstream and precomputed type of analysis, where
EPISTEME fetches results for each affected gene/protein if a variant-expression association
volcano is requested by the user. Hence, it is limited to a visualization on a whole-cohort and
not flexible applications to subsets of patients. Currently, this is the only analysis type with this
weakness, and should be addressed, making this analysis dynamically runnable in the browser.

In addition to this important non-standard approach, Variant-Integrated Phenotype Dys-
regulation Analysis has a statistical test option named Fisher’s Exact Test on Jenks-Optimized
Breaks which divides a cohort into two not based on variant status but rather “breaks” in phe-
notype quantities. Jenks’ natural break optimization algorithm was initially described for op-
timized categorizations in cartography data [500]. While the algorithm is designed to accept
an arbitrary number of expected breaks, for this analysis it is applied with 1 expected break-
point, signifying a bimodal distribution. Using this breakpoint, the cohort is separated into two
subcohorts, Phenop;gh & Phenoyoy, and compared these two groups using fold change measures
as described. For statistical significance, the groups Phenop;zn & Phenoy,y are analysed to-
gether with the groups Variant, & Variant, as a contingency table followed by the application
of Fisher’s Exact Test. This test allows the detection of dysregulated genes with explained

(variant-caused) and unexplained variance/bimodality.
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3.3 Results

In the following sections, all major and most minor data visualization modules of EPISTEME
will be presented, describing their design principles, visualization strategies, data analysis fea-
tures, integrations to other visualizations, user interaction features and database integrations.
The sections are organized in roughly chronological order of feature development, wherever
this does not disturb a logical flow in the presentation. This design should therefore reflect the
evolution of EPISTEME'’s features and concepts. The overarching concept in the introduction
to EPISTEME is the usage of “pilot cohorts”: while introducing each data analysis feature or
data visualization approach “pilot cohorts” of well-studied diseases and established biological

knowledge will be used.

3.3.1 A Cohort-Wide Circos Plot for Visualization of Mutational Landscapes

The cohort-wide Circos plot is the starting figure for any cohort in EPISTEME and serves the
important purpose of summarizing the genomic variant landscape of a cohort. It displays recur-
rence frequencies of flexibly selectable genomic variant types as well as the variants themselves
in an interactive visualization with extensive integrations to databases.

To showcase the features of the cohort-wide Circos plots, the TCGA Glioblastoma Multi-
forme study [501] will serve as the demonstration cohort, focusing on the subset of cases which
were sequenced using Whole Genome Sequencing and analysed in the Pan-Cancer Analysis of

Whole Genomes Project. The motivation in selecting this disease and project were as follows:

1) The TCGA-GBM cohort is a medium-sized (41) cohort with a sufficient size to showcase

its genomic variant landscape features,

ii) The TCGA-GBM cohort is a heterogenous cohort with subpopulations such as EGFR .
TP53mut, CDK4p, PDGFRA 31,

iii) The TCGA-GBM cohort has both chromosome, chromosome arm and focal CNV and
LOH events,

iv) The TCGA-GBM cohort does not have a generally high load of SVs (unlike BRCA) or
SNVs (unlike SKCM or COAD), leading to results being easier to emphasize

Figure 3.4 displays the result of this section’s concepts on visualizing mutational land-

scapes with Circos plots.
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CDKN2A
9p21.3
CDKN2B

Figure 3.4: The mutational landscape of the TCGA-GBM (WGS) study displayed by EPIS-
TEME's Circos plot module. Outermost variant recurrence layer: functional small variants on
genes, middle variant recurrence layer: CNV or LOH (as loss) on TADs, innermost recurrence
layer: SVs on TADs. Inner circle: SVs. Colour code for SVs; green: translocations, blue:
deletions, red: duplications, black: inversions. The following user interactions are showcased:
plot rotation (17°clockwise from default) and chromosome-arm level zooming (chrl2q, 4x),
cytoband level zooming (chr7p11.2 carrying EGFR, 16x), cytoband and gene labelling.

The Circos plot module implements two types of visualizations: variants and variant recur-
rence. Variant recurrence is displayed in recurrence wheels with radial bar charts and variants
and genomic variants are displayed using Bézier Curves as described in Section 3.2.5. The
recurrence wheels can flexibly be selected to show TAD-centric or gene-centric variant recur-

rence in 3 possible layers, selectable in an easy user interface (Figure 3.5).
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Figure 3.5: Flexible data selection for variant recurrence representation in EPISTEME

The displayed data can be modified and labelled through flexible user interactions with

controls (Figure 3.6).
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Figure 3.6: Flexible controls for data display and labelling in EPISTEME

The following subsections will discuss the individual concepts used in reaching this final

result. The following data types will be discussed:
i) Structural variants,
ii) SV recurrence,
iii) CNV/LOH recurrence,

iv) Gene-centric recurrence.

3.3.1.1 Interactive Visualization and Annotation of Genomic Variants

As of the time of this dissertation, EPISTEME displays by default all Structural Variants,
whereas small variants (indels and SNVs) are displayed on-demand, following a focus into
a specific TAD or cytoband. This design decision was motivated by the generally lower counts
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of SVs over a cohort compared to small variants. Furthermore, it is of interest to show what
types of SVs are more common in the cohort in terms of SV type and breakpoint partners.

Overlaying all SVs with predicted functional impact in the TCGA-GBM cohort yields a
visually unappealing and uninformative representation (Figure 3.7, left). EPISTEME uses a
method to reduce the complexity of this visualization by omitting SVs that do not hit recurrently
affected TADs (below a user-determined threshold) and by applying an alpha transparency as
a CSS colour modification. This procedure yields an informative result emphasizing the high
load of SVs on loci important for GBM biology (Figure 3.7, right). Both of these features that
can be adjusted in the user interface (Figure 3.6), serving to reduce visualization complexity in
different ways.

e v -
GBM-US(41/41) . o GBM-US(41/41) o

Figure 3.7: All SVs with predicted functional impact in the TCGA-GBM (WGS) study with
no transparency scaling (left) and a transparency scaling of 3, filtered to show only SVs hitting
TADs with more than 8 recurrence (right). Colour code for SVs; green: translocations, blue:

deletions, red: duplications, black: inversions.

In Circos plots, SVs have the following colour code:
¢ Red: Duplication,

* Green: Translocation

* Blue: Deletion

¢ Black: Inversion.

The colours were selected with the consideration that they will be transparency-modulated
and overlaid. This would rule out combinations such as Red-Blue-Purple. However, the current
convention is unfortunately not safe for colour-blind users.

Users can focus on individual cytobands to show only SVs that hit the selected cytoband.

Focusing on the cytoband chr9p21.3 carrying the CDKN2A/B genes shows detailed cytoband
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annotations with integrations to Genecards and UCSC Genome Browser along with the ability
to fetch small variants on this cytoband (Figure 3.8). The cytoband has also been marked
manually to emphasize its selection. Users can navigate through the cytobands by dedicated

buttons or by clicking on them on the Circos plot.

Cohort- L3 Cytoband Desc. |~ Gene Recurrence. Desc.  SVDesc.  Vdj-SV Desc.
LD 15 16
Variants GBM-US(41/41) % et PN " Mid-sized-SV Desc. ~ SmallVar Desc. @ Cohort Description
Cohort S < Previous Cytoband Next Cytoband >
Metadata The Cytoband 9p21.3 spans the region 9:19900000-25600000 containing the
and genes:
Subcohort IFNA21, SLC24A2, MLLT3, IFNBT, IFNW1, FOCAD, HACDA, MIRA91, AL512635.1,
Analysis IFNWP4, IFNWP9, FOCAD-AST, IFNNP1, C110rf98P1, IFNWP15, IFNA4,
AL163193.1, 12635.1, AL163193.1 9122 MIR4473, MIR4474,
Flexible 1 AL158077.1, AL591222.2, AL390882.1 AL591222.3, MTAP, IFNAS,
Plot , IFNAT, KLHLS, MIR31, IFNA7,
Builder IFNA14, TUBB8P1, KHSRPP1, IFNAT1P,
W 5. 59922.1,
Heatmap 3 K 5: . 3. FRD-3,
Builder - ComNzB, CozA, L . 3
o b 4.1, AL445623.1, LINC01239, CLIC4P1, AL365204.2, AL391117.1,
Survival = { AL353811.1, AL365204.3, AL445623.2, AL391117.1, TUSCT, LINCO1241, FAM71BP1
Analysis By
9p21.3: 1x o

Mark Cytoband (rclick to remove)

Fetch Small Variants.
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Expression
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Variant - st
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Figure 3.8: Focusing on the cytoband chr9p21.3 carrying the CDKN2A/B locus, with corre-
sponding cytoband annotations and navigation features. The right hand side shows the list of
genes on the manually selected cytoband with cancer-genes marked in red. User interactions
include a zooming in-out slider as well as a small variant fetching function that recovers small

variant data from the SQL backend on-demand while SV data is kept in persistent memory.

Zooming 256x into the cytoband chr9p21.3 labels all the genes that are on the cytoband
as well as clearly showing the high load of SVs that affect this important locus in this co-

hort(Figure 3.9).

123



GBM-US(41/41) M : s <

;@ T T \{ Prm—

2 52 2 DELetion £9,9(p22.1:p21.3) In donor TCGA-14-0785-01
. 5 h
% 3

of nterest:

DIMRTA1 1082880 b
ed gene CDKN28 15:
LAVL2 151484 bases away,
gene ELAVL? 151484 bases away,

LPIST LML T didz,

Figure 3.9: Focusing on the cytoband chr9p21.3 carrying the CDKN2A/B locus, with a 256x
zoom, individual SV selections, annotations and navigation features: Users can navigate
through the SVs of the selected cytoband by using dedicated buttons or clicking on the curves
that represent the SVs. Clicking on one of the focal deletions launches a detailed and inter-
active annotation of the SV with integrations to Genecards, BLAST, UCSC Genome Browser,
dbSUPER and PubMed. Here, one of the structural variants is selected with annotations (right).

In particular, the UCSC Genome Browser integration (Figure 3.10) is useful for more de-
tailed annotations of SVs that contain more data sources than currently offered in EPISTEME.
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Figure 3.10: The UCSC Genome browser annotation of a CDKN2A/B focal deletion region in
the GBM patient TCGA-14-0786.

Finally, EPISTEME has a dedicated mode which identifies and labels V(D)J / CSR rear-
rangements (introduced in Section 2.2.7) and their suggested target genes among many can-
didates which can be obtained from a TAD-based analysis. This feature is demonstrated in
Section 4.3.3.1 on the pilot cohort of Multiple Myeloma.

3.3.1.2 Interactive Visualization and Annotation of Structural Variant Recurrence

The method of distributing detected SVs to pre-defined TADs described in Section 2.2.10.3
can be used to visualize the significance of genomic loci with regards to being frequent targets
of SVs. As the displayed information is the number of patients, for which a given TAD is pre-
dicted to be affected by an SV of high functional potential, a radial bar chart is an appropriate

visualization (Figure 3.11).
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GBM-US(41/41)

Figure 3.11: Structural rearrangement recurrence landscape of the TCGA-GBM (WGS) study
across TADs at different assignment sensitivities (innermost: 1-offset, middle: 2-offset, outer-
most: 3-offset). Some frequently targeted loci relevant in this disease type have manually been
selected and labelled: the EGFR oncogene locus, a frequent target of amplifications across
different disease types is the most prominent peak closely followed by the CDKN2A/B locus, a

frequent target of homozygous deletions.

By default, EPISTEME normalizes the height of each TAD-bar to the maximum occurrence
in the cohort (for Figure 3.11, e.g 28/41 on the EGFR locus at allowed TAD offset=1), but this
normalization can easily be altered if it is desired to emphasize the lack of rearrangements in a
cohort or to suppress a locus that dominates over the rest of the genome and make more rarely
hit regions stand out (Figure 3.6).

As with Cytobands and SVs, interactions are provided to investigate SV recurrence. Upon
being clicked, TAD-bars take EPISTEME into a mode which annotates the selected TAD us-

ing the databases GeneCards and UCSC Genome Browser (figure omitted due to similarity to
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cytoband annotations).

3.3.1.3 Interactive Visualization and Annotation of Copy Number Variant and LOH Recur-

rence

CNVs are represented in a very similar way to SVs using a TAD-centric approach. The main
difference here is that CNVs can both be in a ’gain” or "loss” direction. Hence, deviations from
a baseline in each direction are visualized. A given locus (TAD) can be lost in some patients
and gained in others and vice versa.

Figure 3.12 represents the Copy-Neutral-LOH (cnLOH), CNV and combined CNV-LOH
recurrence landscape of TCGA-GBM. The cnLOH contributions to the combined CNV-LOH
recurrence calculation is made on the Copy-Loss side. The results indicate the prevalence
of cnLOH events affecting chrl7p containing the master tumour suppressor gene TP53. The
canonical mechanism of the two-hit loss on 7P53 is via a copy number loss affecting a single
copy and a point mutation affecting the other. TCGA-GBM shows here a different mechanism,
useful for showcasing this visualization in EPISTEME.
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GBM-US(41/41)

Figure 3.12: Genome-wide per TAD Copy-Neutral-LOH recurrence, Copy Number Variant
recurrence, and combined CNV-LOH(as loss) recurrence characteristics of the TCGA-GBM

(WGS) study, in order from inside to outside

3.3.1.4 Interactive Visualization and Annotation of Gene Mutation Recurrence

EPISTEME has a feature for picking different types of genomic variant types for recurrence
analysis (Figure 3.5). The selected types of mutations are combined in an OR relationship and
the result is displayed in a similar manner to TAD-based recurrence, with the exception that the
displayed objects are genes rather than TAD:s.

The TCGA-GBM cohort contains a diverse selection of genomic variant types. EGFR,
TP53 and ATRX are frequently mutated by small mutations whereas TERT is mutated by pro-
moter mutations, and finally as previously discussed EGFR, MDM2, CDK4 and PDGFRA are
frequently amplified during tumour development. Figure 3.13 shows these distinctly different

genomic variant types across the three gene mutation recurrence analysis layers: Functional
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small variant, UTRS/Upstream(promoter) variant, gene amplification in order from inside to

outside.

GBM-US(41/41)

Figure 3.13: Per-gene functional small variant, UTRS5/Upstream(promoter) variant, gene am-
plification recurrence analysis of the TCGA-GBM (WGS) study, in order from inside to out-
side.

Ultimately, EPISTEME cohort-wide genomic variant landscape plots can be a leading fig-
ure in a publication summarizing the main genomic variant classes of a cohort revealing its
most important loci of genomic variation. Users can follow this summary and start investigating
their datasets across other omics data layers such as the transcriptome, proteome, metabolome
and methylome and study possible causal relations between mutational landscapes and cell of

origin or transcriptomic dysregulation.
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3.3.2 ”Single-Phenotype Analysis Plots”

EPISTEME has a number of features for analysing and visualizing phenotype data, such as
quantitative omics data. Gene expression is a crucial source of biological information combin-
ing influences from the cell type and the oncogenic dysregulation that comes on top of the cell
of origin such as homozygous deletions, amplifications or enhancer hijacking events. Thus,
studying the transcriptome motivated a number of both dedicated and generalizable visualiza-
tions of EPISTEME. This section will show a dedicated representation of the transcriptome
and proteome (RPPA) data on the basis of single phenotypic quantities (single genes or RPPA
antibodies), integrated with genomic variant information.

The gene expression for ALK gene in the GPOH-NB study will serve as a pilot for the
demonstration of single-phenotype analysis because it shows both a diversity of genomic vari-
ant types and expression levels. ALK is an oncogene in multiple cancer types including lym-
phoma and non-small cell lung cancer, with the remarkable property that its product protein
is targetable by small inhibitor molecules [139]. In particular, its role in neuroblastoma is of

great interest due to the general lack of targetable alterations in that entity [S02].
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Figure 3.14: Genomic-transcriptomic integrated analysis of the ALK gene in the GPOH-NB
study. Each symbol corresponds to a donor’s gene expression data for the ALK gene, where the
symbol shapes and colours encode the genomic variant status of ALK for the given donor. The

Y axis encodes TMM normalized log2 gene expression values for the ALK gene.

For each donor, the ”x” coordinate is determined by the expression level (’y” coordinate)
of the gene of interest, where the ordering is ascending. The genomic variant information is

encoded with circles:

* A central circle encoding the expression level and SV status (gray-circle: none,gray-X:
no variant data available, black: direct SV hit on the gene body, red: SV hits not directly
hitting the gene body, teal: off-gene small indel hit),
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* Small central circles encoding different types of small variants (yellow: nonsynonymous
SNV, orange: nontruncating/nonframeshift indel, purple: truncating/stopgain/stoploss
SNV, pink: splice-site small variant, pink: synonymous SNV),

* Small left-sided circles encoding upstream (red) and 5’UTR (black) variants,
* Small left-sided circles encoding downstream (yellow) and 3’UTR (black) variants,
* Small upper circles encoding CN gain status (pink: low-order gain, red: amplification),

* Small lower circles encoding CN loss status (green: low-order loss, blue: homozygous
loss, black: LOH),

. This described colouring scheme allows the packing of a large number of variant classes in an
intuitively understandable visualization, where users get a quick overview of the diverse types
of variants that affect a particular gene for each patient in a cohort and associate it visually with
expression changes. Figure 3.14 shows 5 ALK-amplified cases and 19 cases with nonsynony-
mous SNVs with no overlap. Remarkably, both of these variant types are also associated with
higher expression of the gene, which is a nontrivial observation for nonsynonymous SNVs in
contrast to amplifications, where such an upregulation is expected and stronger.

As with other EPISTEME visualizations, single-phenotype plots are also interactive. Users
can enlarge the default sizes of the circles (risking the emergence of hard to read overlaps
between patients), hover on variant circles to find out which patient is showing which type
of genomic variant or click on the different variant circles to get detailed annotations on the

underlying variant call data that led to the variant existence calls (Figure 3.15).
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Figure 3.15: Genomic-transcriptomic integrated analysis of the ALK gene in the GPOH-NB
study with interactions and detailed annotations: a 1.33x enlargement of the default variant
circle size is applied, detailed annotations of the SVs of the donor with the ID 24642 and
hovering on the yellow circle of the donor with the ID 21533 indicates the yellow circle to be

representing a nonsynonymous SNV

Another example that underlines the utility of the described visualization conventions is
to investigate two-hit mutations, first shown as a validation of the Knudson hypothesis on the
example of Retinoblastoma and the RB/! gene [207]. The two-hit hypothesis postulates that
tumour suppressors require two hits on each allele for inactivation leading to tumour develop-
ment. Even though this concept has since been partially supplanted by more advanced ideas
[503], it still holds true for a number of very important genes such as 7P53 [504] across a wide
range of cancer types and VHL [505] in renal cell carcinoma.

The gene-centric visualization in EPISTEME is ideal for showing examples of such two-hit
processes on a single gene, which we show here on the frequent co-occurrence of copy number
losses and nonsynonymous SNVs on 7P53 in Bladder Cancer (Figure 3.16).
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Figure 3.16: Double-hits of copy number losses, LOH and small variants deactivate 7P53 in
the TCGA-BLCA (WGS) study. Small lower circles encoding CN loss status (green: low-
order loss, black: LOH) co-occur with small central circles encoding different types of small
variants (yellow: nonsynonymous SNV, orange: nontruncating/nonframeshift indel), leading
to a two-hit deactivation of TP53

”’Single-Phenotype Analysis Plots” are a fundamentally important visualization in EPIS-
TEME, and are used as auxiliary plots in other visualizations such as the ”Variant-Expression
Dysregulation Volcano Plots” (Section 3.3.3) and Differential Expression Volcano Plots” (Sec-
tion 3.3.9.4).

3.3.2.1 7Two-Phenotype Analysis Plots”

A special case for ”Single-Phenotype Analysis Plots” is the comparison of the expressions of
two entities such as two genes. Taking the X-axis again as the anchor for different donors,
EPISTEME adds a second Y-Axis to accommodate for the addition of a second gene. This
allows the direct comparison of the expression profiles of two genes for each case, showing
co-regulation or anticorrelation.

For this visualization, the different activation mechanisms of the TERT gene in neurob-
lastoma are an appropriate pilot showcase. TERT is normally suppressed in neuronal cells,
including the cell of origin of neuroblastoma as part of neuronal differentiation [395]. In a sub-
set of neuroblastoma cases, TERT is known to be upregulated by MYCN’s transcription factor
activity and/or an enhancer hijacking process with diverse structural rearrangements aberrantly
activating the gene [212]. This dual mode of TERT activation has been discussed as a major
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telomere activation mechanism in high-risk neuroblastoma [506].

We analysed the expressions of the MYCN and TERT genes in the GPOH Neuroblastoma
study (Figure 3.17). This study encompasses low-risk, intermediate-risk and high-risk neu-
roblastoma, presenting a broad range of disease progression characteristics and disease pheno-
types. “Two-Phenotype Analysis Plots” in EPISTEME use one gene as an “anchor” and ranks
patients in ascending order with respect to the anchor gene’s expression. Here we took MYCN
as the anchor gene, showing a clearly bimodal characteristic with the MYCN amplified subtype
with significantly higher expression values. The MYCN amplifications and their corresponding
SVs are observable, strongly suggesting them to be the underlying cause of the gene’s signifi-
cant overexpression. Overlaying TERT expressions using the anchor gene MYCN’s expressions

defining the order of the donors, shows four modes of TERT expression:

* Low TERT, exclusively seen in cases with low MYCN expression

* TERT activation via structural rearrangements (red or black main variant circles), almost
exclusively seen in cases with low MYCN expression,

MYCN-mediated TERT activation,

* non-MYCN-mediated, low-level TERT activation with an unknown mechanism (gray

main variant circles) (as discussed in [212]).
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NB_noCL-DKFZ: MYCN (-) vs TERT (-)

Figure 3.17: Expressions of the TERT and MYCN genes in the GPOH Neuroblastoma study.
Circles representing MYCN expressions are connected by blue lines and scaled by the blue
axis on the left, whereas circles representing 7ERT expressions are connected by red lines and
scaled by the red axis on the right. The anchor gene MYCN’s expressions define the order of
the donors and for each case, a second point is added to represent TERT expression for the
same donor.

“Two-Phenotype Analysis Plots” offer a quick way to compare the per-patient character-
istics of gene expressions across a cohort for two chosen genes of interest. They are used as

auxiliary plots in visualization of global correlation patterns (Section 3.3.10).

3.3.3 ”Variant-Expression Dysregulation Volcano Plots” in EPISTEME

The non-standard differential gene expression analysis strategy described in Section 3.2.8 can
be used to identify genes (or proteins) that are differentially expressed due to the existence of

selected types of genomic variant classes. The selection of the variant classes is flexible as well
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as the type of the applied statistical significance and fold change measures (Figure 3.18). The
default settings correspond to the most likely sources of genomic variant related dysregulation,
SVs that are up to 1 TAD away from the gene of interest, amplifications and homozygous
deletions. The user, however, can decide to add other variant types such as promoter mutations
or focus solely on results coming from promoter mutations. The checkboxes here are combined
in with the OR logical relation, meaning that a patient with either an SV hit on a gene or an

amplification would be considered part of the “variant-positive” group.

¥ Coding¥ lincRNA¥ miRNA"| Pseudol ! IG or T-Cell receptor Genes

1G or T-Cell receptor PseudoGenesl | Others

Gene Radius: 1 .

Min #Patients in either group : 1

Launch Variant Analysis

¥ Gene-body SV hits¥ SVs 0-TadOffset¥! SVs 1-TadOffsetl | SVs 2-TadOffset
SVs 3-TadOffset

¥ cnAmplifications¥) Homozygous Deletions
Low-order cnGainl Low-order cnLoss
Small-MidSized Indels 0-TadOffset! ' Small-MidSized Indels 1-TadOffset
Small-MidSized Indels 2-TadOffset' ' Small-MidSized Indels 3-TadOffset
Splicing Small Variants' Functional Small Variants' ) Synonymous SNV

Upstream Small Variants' | Downstream Small Variants'/ 5’'UTRL 3'UTR
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Trimeans'® Means

Statistical Significance

Kolmogorov-Smirnov Test
® Kruskal-Wallis Test
T-test

Fisher's Exact Test on Jenks-Optimized Breaks

Figure 3.18: Flexible controls for Variant-Expression Dysregulation Volcano Plots in EPIS-
TEME

To showcase this visualization, the TCGA-GBM (WGS) cohort will again serve as a pilot
cohort for a proof-of-concept demonstration. As explained in Section 3.2.5, glioblastoma mul-
tiforme has amplicons upregulating oncogene expression, namely the EGFR, MDM4, CDK4
and PDGFRA loci.
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Figure 3.19: The transcriptomic dysregulation landscape of the TCGA-GBM (WGS) study:
each symbol corresponds to a gene with genes estimated to be cancer-related coloured red. For
each gene, the fold change (difference of log2 of means) and statistical significance (-log10
of Kruskal-Wallis test p Value) measure the differential expression between the cases positive
for the selected genomic variant types and negative/wild-type for the selected genomic variant
types. The upper-left quadrant shows the genes strongly and significantly downregulated by
the allowed genomic variant types. The upper right quadrant likewise shows the genes strongly

and significantly upregulated by the allowed genomic variant types

The upper-left quadrant of the plot in Figure 3.19 shows the genes strongly and signifi-
cantly downregulated by the allowed genomic variant types. As expected, the strongest hits
are the CDKN2A/B genes and their neighbours. The upper right quadrant likewise shows the
genes strongly and significantly upregulated by the allowed genomic variant types. As sug-
gested by the gene labels extended by cytoband information, they cluster remarkably around
the expected amplicons EGFR, MDM2 and CDK4. In order to facilitate the investigation of
rarer and potentially novel gene dysregulation evens, EPISTEME has features to suppress the
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display of the genes on user-determined cytobands. Suppressing the display of the genes on
the cytobands carrying EGFR, CDKN2A/B, MDM?2 and CDK4, a simplified plot emerges (Fig-
ure 3.20). This simplification allows the easier determination of rarer gene activations such
as the PDGFRA locus and confirms the dominance of the GBM gene activation landscape by

common amplicons.
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Figure 3.20: The transcriptomic dysregulation landscape of the TCGA-GBM (WGS) study
after filtering of the most frequent amplicons (EGFR, CDK4, MDM?2) and the CDKN2A/B locus
followed by a rescaling of the p-value axis yields a highly simplified set of genes indicating the
dominance of the hallmark cytobands on the previous genomic variant based transcriptomic
dysregulation results.

Non-transcriptomic data such as proteomics data can also be analysed and visualized in the
same manner. The TCGA acquired Reverse Phase Protein Array (RPPA) for a large number
of cases where material of sufficient quality was available. EPISTEME uses this data in the
same manner as transcriptomic data, mapping genomic variants to normalized RPPA readouts
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for given proteins (Figure 3.21).
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Figure 3.21: The proteomic (RPPA) dysregulation landscape of the TCGA-GBM (WGS) study
cohort: each symbol corresponds to a measured antibody in the RPPA array. A strong dysreg-
ulation of the probes corresponding to the CDKN2A and EGFR proteins is observed as also
expected from transcriptomic data

3.3.3.1 Known and Putative Novel Targets of Enhancer Hijacking in Group 4 Medulloblas-

foma

We then investigated the capacity of EPISTEME to identify enhancer hijacking events on non-
amplified genomic loci in the MB-Group4-DKFZ-PEDBRAIN cohort. In two landmark stud-
ies, the genes GFIIB [132] PRDM6 [211] were previously shown to be targets of recurrent
activating rearrangements in Group 4 medulloblastoma. The analysis in Figure 3.22 confirms
these findings as also presented in Section 2.3.3, showing that the combination of the SOPHIA

detection sensitivity and the EPISTEME exploratory statistical procedures described here cor-
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rectly reveal MYCN(9 cases, co-activated with DDX/), PRDM6(12 cases, co-activated with
PPIC and SNX24) and GFIIB (3 cases). Furthermore, our analysis suggests novel, recurrent,
but rare activations including PKDCC (3 cases), INHBA (3 cases) and SOXS8 (1 case). In par-
ticular, INHBA of the Inhibin gene family [507] [508] and SOXS of the Sox gene family [509]
[510] have important roles in cancer development, including in cancers of nervous system cell
of origin, hence they are of great interest in the context of medulloblastoma. Remarkably, the
INHBC and INHBE genes of the inhibin family located close to the CDK4 amplicon are also

upregulated in GBM suggesting a pan-cancer significance of these gene activations.
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Figure 3.22: The genomic variant-caused transcriptomic dysregulation landscape of the MB-
Group4-DKFZ-PEDBRAIN study.

3.3.3.2 The Landscape of Transcriptomic Dysregulation in Gastric Adenocarcinoma Reveals

Novel Candidates for Enhancer Hijacking

After inspection of all TCGA cohorts with available WGS and RNA-Seq data, we decided
to use the TCGA-STAD study [511] for demonstrating the discovery of novel candidates for

141



enhancer hijacking in EPISTEME.
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Figure 3.23: The transcriptomic dysregulation landscape of the TCGA-STAD (WGS) study

The transcriptomic dysregulation landscape of the TCGA-STAD cohort shows

esting diversity of non-amplicon driven targets of upregulation as (Figure 3.23).

an inter-
The sole

exception to this general trend is the ERBB2 gene on chr17q12, previously shown to be a tar-

get of recurrent amplifications in this entity among other cancer types [512]. We
the oncogenes IGF2, JAK2 and CD274 (PD-LI) to be activated by amplifications

identified

and non-

amplified rearrangements in 3 cases each, where the JAK2 and CD274 activations correspond

to co-activations in (Epstein-Barr Virus) EBV+ gastric adenocarcinoma.

Novel genes showing upregulation co-occurring with non-amplification rearrangements in-
cluded FKBP10 (12 cases upregulated, 10 with detected SVs: 10/12), AZGPI (5/7), WNTI1

(4/4), BPIFBI (3/3), KANK4 (3/3), GC (2/2), TDRD9 (2/2) and NKAINI (2/2).

Of these,

WNTI11 has clear potential for biological significance due to the roles of WNT signalling in

Gastric Adenocarcinoma.
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A particularly strong outlier worthy of mention was the TTYHI gene which is a neuronal
adhesion molecule previously shown to be driving tumor microtube (TM)-mediated brain col-
onization by glioma cells [513]. TTYHI was upregulated in 6 cases where all (6/6) co-occurred
with non-amplification rearrangements. Remarkably, we also identified 7 cases with upregu-
lated NRCAM, a gene with similar functions in the context of neuronal adhesion, of which 6
up-regulations co-occurred non-amplified rearrangements (6/7). The activation profiles of the
TTYHI, NRCAM, KANK4 and TDRD9 genes are shown in Figure 3.24.
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Figure 3.24: Activation of the TTYHI, NRCAM, KANK4 and TDRD?9 genes in the TCGA-
STAD (WGS) study by structural variants (red and black symbols indicating offset SV hits and
direct SV hits on gene bodies, respectively) leading to significant overexpression of the genes
compared to the cases without SVs (gray symbols)

NRCAM was previously claimed to be correlated with poor prognosis in colorectal adeno-
carcinoma [514] and gastric adenocarcinoma [515]. Remarkably, the 13 cases only had one

overlapping case with both genes upregulated, suggesting a mutual exclusivity pattern. Al-
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though a “neuronal subtype” in the sense of the bladder cancer subtype with the same name
[516] does not exist in gastric adenocarcinoma, the concept of neuroendocrine differentiation
does exist [517] [518]. Furthermore, it was recently shown that cancer cell-nerve interactions
in the gastric tumour microenvironment promote tumourigenesis by upregulation of WNT sig-
nalling [519]. Interestingly, the latter study followed earlier work demonstrating the tumour
suppressing effects of denervation in gastric cancer [520]. While we cannot yet propose a
model connecting these concepts to the upregulation of TTYHI or NRCAM, potentially due
to non-amplified rearrangements, EPISTEME provides valuable starting points for hypothesis

building in an easily accessible manner.

3.3.3.3 Interactive features of Volcano Plots in EPISTEME

As with other visualizations, “variant-expression dysregulation volcano plots™ are highly inter-
active, offering modifications of the visualization, and integrations to databases to facilitate the

exploration of the results.

1. The users have the free choice of which variant types to include in the analysis, which
gene types to show, which statistical significance and fold change measures to use (Fig-
ure 3.18)

2. Individual genes or groups of genes on user-selected cytobands can be hidden from view
to facilitate discovery of novel candidate genes by suppressing contributions from known

loci

3. EPISTEME allows users to label genes with draggable labels to improve readability
(Figures 3.19, 3.20, 3.22 and 3.23). Gene labels can be clicked on to go to GeneCards.

4. The list of genes labelled at any time, can be quickly sent to external resources for path-
way enrichment / gene set analysis (DAVID, Reactome, GSEA, CPDB).

5. Genes can be labelled by clicking on the data points on the volcano plot or explicitly
naming the gene to label in a gene selector. The explicit naming of a gene is useful for

finding a gene of interest, particularly if it is not a strong outlier data point.

6. Multiple genes on a cytoband can be labelled by choosing any gene on the cytoband
of interest or explicitly naming the cytoband carrying the genes to label in a cytoband

selector.
7. Multiple genes can also be labelled by dragging a selection box on the volcano plot

8. Clicking on a single data point, in addition to labelling the selected gene (or protein etc.),
launches an auxiliary instance of the Single-Phenotype analysis plot described in Section
3.3.2, (Figure 3.25). This allows the users to get a quick overview on the underlying data
for a given data point in the volcano plot. One can thus investigate why a particular point

is an outlier or not, and which variant types are responsible for a possible dysregulation.
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Figure 3.25: The transcriptomic dysregulation landscape of the TCGA-STAD (WGS) study
extended by the an auxiliary Single-Phenotype analysis plot for TTYHI. Clicking on a gene
on a volcano plot launches an auxiliary single-phenotype analysis plot, showing the underlying
gene expression data for the gene of interest.

Auxiliary Single-Phenotype analysis plots are integrated to PubMed for checking the
novelty of a candidate gene in the context of the studied disease. Users also have the
option to restrict the main volcano plot’s axis maxima based on the X or Y coordinates
of the selected data point. Finally, auxiliary Single-Phenotype analysis plots can be
directly updated to a full Single-Phenotype analysis plot with full interactions described
in Section 3.3.2 including the integration of the underlying genomic variants behind the
data point. This completes the connections from the global overview of dysregulation to
the dysregulation profile of a single data point and finally the genomic variants leading
to the observed dysregulation.

9. In plots where RPPA values are visualized, clicking on a given RPPA, labels all different
RPPA readouts for the gene that the RPPA belongs to (accounting for different protein
isoforms or post-translational modifications). Despite this multi-labelling, EPISTEME
only launches the auxiliary single-phenotype analysis plot for the selected RPPA, while
offering the other possible RPPAs for the same gene in a drop-down menu.

Interactive volcano plots are another central visualization in EPISTEME, and are used
for other types of analysis than genomic variant-driven transcriptomic/proteomic dysregula-
tion such as Differential Expression Volcano Plots” (Section 3.3.9.4), ”Variant Mutex/Co-

Occurrence Plots” (Section 3.3.9.2) and “Expression Correlation Plots™ (Section 3.3.10).
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3.3.4 Managing and Classifying Quantitative and Categorical Data in a Cohort Study in
EPISTEME

EPISTEME parses, processes, automatically categorizes, and flexibly visualizes quantitative
and categorical data in a cohort study. The input data is a spreadsheet where each row corre-
sponds to a patient/donor and each column corresponds to a variable. During cohort initializa-
tion, each donor-variable data point is tested for being a number or not, also taking into account
typical missing value strings "NAN”"NaN”,”"NA”,’N.A” and ”’(blank). Variables with only
numeric or missing values are considered to constitute quantitative data, whereas variables that
do not fulfil this condition constitute categorical data. There is a third, internal, variable type
in EPISTEME, called “multi-categorical”. The semicolon character ;" is considered a spe-
cial character in EPISTEME separating different values for a given donor and variable. For
instance, the value "MYC;CCND1” in a “multi-categorical” ”V(D)J target” column for a given
patient would indicate that both MYC and CCND] genes are targeted by detected V(D)J / CSR
rearrangements for that patient. This allows the consideration of a case to belong to multiple
categories.

The quantitative or categorical nature of the underlying data determines the subcohort se-
lection and data visualization features offered in EPISTEME. The appropriate routine is se-
lected by EPISTEME in the background with no user involvement, and will be described in
Section 3.3.5 for visualizations and Section 3.3.8 for selections.

EPISTEME gives users an overview of the quantitative and categorical metadata with a
sortable and searchable spreadsheet with a “frozen” first column and row, to facilitate the
preliminary exploration of the data. The spreadsheet (Figure 3.26) can be extended by user-
selected data such as chromosome arm variants, cytoband variants, gene expressions, gene
variants and RPPA expressions, which leads to the automatic classification of the added data as
quantitative or categorical and an update of the spreadsheet (Figure 3.27). These user-selected
data can then be used for all subcohort selection and data visualization features of EPISTEME

in the same manner as the original metadata of the cohort.
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Figure 3.26: The metadata spreadsheet of the TCGA-GBM (WGS) study with the demonstra-

tion of the possible extension features: chromosome arm level copy number changes, cytoband

level copy number changes or SV hits, gene expressions, gene variant status, RPPA probe

quantities can be added on-demand to the cohort metadata table.
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Figure 3.27: The metadata spreadsheet of the TCGA-GBM (WGS) study with the manual
extensions for chr7p variants, chr7p21.1 variants, CDKN2A expression, CDKN2A variants,
and EGFR-R-V RPPA expression

Categorical data is often used to designate disease subtypes, dividing a main cohort into
individual, non-overlapping, subcohorts. Subcohorts can be defined based on methylation pro-
files, gene expression profiles, mutation status or tumour histology. To showcase EPISTEME'’s
features on the management, analysis and visualization of categorical data as well as the pre-
sentation of its dimensionality reduction, and subcohort-specific features, the PAMS0 classifi-

cation of Breast cancer is an excellent example due to a number of reasons:

1. Breast cancer is among the most common malignancies, and constitute therefore a sig-
nificant and increasing clinical challenge affecting western populations [521]. With this
motivation, the TCGA’s breast cancer project has been designed as a large study with
excellent availability of mutation, gene expression, methylation and clinical metadata
[522]

2. Breast cancer is known arise from two main cell types with the hallmark of oestrogen
receptor expression (Luminal ER+, and Basal-like ER-) with gene expression profiling
yielding a finer classification of 4 main subtypes [247] (Luminal A, Luminal B, Her?2,
Basal-like) and a secondary gene signature of normal tissues and impure tumour speci-

mens (Normal-like).

3. None of the main 4 subtypes are exceedingly rare, which gives high statistical power to

any analysis conducted with these designations.

148



3.3.5 Flexible 2D Plots in EPISTEME

EPISTEME offers a 2D plot grid where 2D subplots of different sizes can be created with
individual parameters. The individual subplots encode different data types in the X-axis, Y-

axis, colour, symbol and radius, flexibly chosen by the user:

1. X and Y axis data are mandatory and can either be quantitative or categorical. A donor

with missing data on either, will not appear on the plot as a data point.

2. Colour-assigned data can either be quantitative or categorical. If quantitative, a donor
with missing data on the column used for the colour encoding, will not appear on the

plot as a data point. If categorical, missing values will be assigned their own colour.

3. Symbol data must be categorical. Missing values will be assigned their own symbol.
There are up to 7 available symbols, so categorical variables with more than 7 different

values are not encodable by symbols.

4. Radius data must be quantitative. A donor with missing data on the column used for the

radius encoding, will not appear on the plot as a data point.

For figures with encoded colour, symbol or radius data, EPISTEME generates a legend
that describes the data assigned to each encoding. Figure 3.28 is a demonstration of a multiplot
including the following features on the TCGA-BRCA (WGS) cohort:

* Multiplots with different sizes

* X,Y,colour,symbol,radius encoding

* Legend for colour, symbol , radius encodings

* Box-KDE-Jitter plots categorical-quantitative data in two orientations

» Stacked bar chart for categorical-quantitative data for the special case where the donor”

entry corresponds to the categorical data selection

* Scatter plot for quantitative-quantitative data
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Figure 3.28: Demonstration of box-KDE-jitter, stacked bar chart, and scatter plots in a nulti-
plot grid on the TCGA-BRCA (WGS) cohort in EPISTEME. Right panel: settings for the

setup of the grid with default colour, symbol shape and symbol size variables. Left panel,

top-left: scatter plot example showing ESRI expression vs ERBB2 expression. Left panel, top-

middle: vertical box-KDE-jitter plot example showing ERBB2 expression across PAMS50 sub-

types. Left panel, top-right: horizontal box-KDE-jitter plot example showing ESR/ expression

across PAMS50 subtypes. Left panel, middle row: absolute estimated mutational signature con-

tributions for COSMIC mutational signatures. Left panel, bottom row: legend for the colour,

symbol shape and symbol size variables.

The following sections describe and demonstrate the different plot types offered in this

flexible 2D data visualization concept.

3.3.5.1 Box-KDE-Jitter Plots Visualizing Categorical-Quantitative Data in EPISTEME

EPISTEME visualizes the relation of categorical data to quantitative data using a combination
of standard plots: 1. Half-box plots showing the 10th, 25th, 50th, 75th and 90th quantiles of
each group, 2. Kernel Density Estimation (KDE) plots showing the distribution of the values

across each group, 3. Jitter plots showing the individual data points across each group,. The

dual approach for summarizing data allows both the observation of the quantile values as well

as the investigation of possible multimodalities in the groups thanks to the KDE plot.

This visualization can be created in either horizontal or vertical orientation (Figure 3.28,

Figure 3.29 showing the vertical alternative on the ERBB2 gene expression across PAMS0

subtypes in the TCGA-BRCA study).
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Figure 3.29: Vertical Box-KDE-Jitter Plot showing the expression of the ERBB2 gene across
PAMS50 subtypes in the TCGA-BRCA study

As expected from the established knowledge on breast cancer, the Luminal A and B sub-
types express high ESR1, the Her2 subtype can either express low or high ESR/ and the Basal-
like subtype expresses low ESRI.
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The ERBB2 gene shows a bimodal characteristic in the Luminal B but interestingly also in
the Her2 subtype. The low-expressor Her2 cases suggest a similar cell of origin that led to the
Her2 PAMS50 classification but low ERBB2 expression due to low purity or another influence.
As with the ESRI gene, it is invariably expressed with low levels in the Basal-like subtype.

For both genes, the cases with available RNA data but no available PAMS50 classification
(due to lack of metadata) seem to cluster with the Basal-like subtype.

Flexible 2D Plots in EPISTEME are highly interactive like with its other features. Each
data point corresponds to a donor, and donors can be marked using draggable labels either by
clicking or explicit donor selection (Figure 3.29). Multiple donors can be marked to define,

multi-mark or shade a subgroup, which will be discussed in Section 3.3.8.

3.3.5.2 Stacked Bar Charts Visualizing Categorical-Quantitative Data in EPISTEME

A special case in the analysis of categorical-vs-quantitative data arises when the categorical
data column corresponds to the ”donor” data, meaning that for each donor, there can be only
one data point and each donor thus corresponds to a category/group in the categorical variable.
This special configuration can be used to visualize more than one quantitative variable using
’stacked bar charts”. Upon the selection of either the X or Y axis field as donor”, EPISTEME
switches to the stacked bar chart setup mode and offers the users to select one or more quanti-
tative data fields for visualization on the stacked bar chart (Figure 3.30). The stacked bar chart
mode recognizes all quantitative data fields as possible inputs and offers special checkboxes
for mass-selection of mutational signatures for either relative contributions or absolute contri-
butions, so that the users do not have to click on each signature contribution up to 31 times (30

COSMIC signatures + unknown/other contributions).
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Figure 3.30: Horizontal stacked bar chart setup for the visualization of COSMIC signature
contributions for each donor in the TCGA-BRCA (WGS) study.

Figure 3.31 shows a stacked bar chart in horizontal orientation representing the estimated
absolute contributions of each COSMIC mutational signature in the TCGA-BRCA (WGS)
study. What is non-standard compared to normal stacked bar charts is that each bar stacked
is capped by a symbol with modulated shape, size and colour as with the other EPISTEME
flexible 2D plot types. Thus, each case can be labelled and the data encoding features in terms

of symbol type, symbol size and symbol colour are fully taken advantage of.
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Figure 3.31: Horizontal stacked bar charts showing the COSMIC signature contributions for
each donor in the TCGA-BRCA (WGS) study. The heights of the bars correspond to estimated
mutation counts for a given COSMIC signature. Overall, all cases show the ageing-related
signature AC1 (light blue), followed by DNA double-strand break repair defect signature AC3
(green) for cases with intermediate-level and above SNV counts. A strong contribution of the

APOBEC signatures AC2 (light orange) and AC13 (salmon) is observed among the top cases

with respect to somatic SNV load. The top case also has the AC10 (light purple) signature

which is associated with POLE mutations [280], and might explain the high mutational load of

this case.

3.3.5.3  Scatter Plots Visualizing Quantitative-Quantitative Data in EPISTEME

Relation of quantitative data to quantitative data is most naturally visualized as scatter plots.

The upper left subplot of Figure 3.28 shows the expressions of the ESRI gene vs the ERBB2

gene in breast cancer, whereas Figure 3.32 shows the visualization of this relation in a more

detailed manner outside of a multiplot setting.
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Figure 3.32: ESRI vs ERBB2 gene expression in TCGA-BRCA, with labelling applied to se-

lected donors in the TCGA-BRCA study.

Thanks to the colour encoding of the gene expression-based PAMS50 subgrouping and the
X-Y representation of ESRI/ and ERBB?2 expressions, users can quickly draw the following
conclusions: 1. High ERBB2 expressing cases that do not express high ESR/ are rare and ex-
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clusively cluster with the Her2 PAMS0 subtype (Her2 is an alternative name for the ERBB2
gene) 2. Low ERBB2 and low ESRI expressing cases exclusively cluster in the Basal and "un-
known” PAMS0 subtypes 3. ESRI expression does not clearly separate the Luminal A and
Luminal B subtypes.. While these observations do not constitute novel findings, they serve
as a good demonstration of the interpretation of data in a scatter plot in EPISTEME with the
support of its legend feature. The following sections will discuss the dimensionality reduction

and clustering features building on the scatter plot feature of EPISTEME.

3.3.6  Dimensionality Reduction of High-Dimensional Omics Data in EPISTEME

Dimensionality reduction is a central concept in the analysis of high-dimensional omics datasets.
An omics assay such as RNASeq can quantify all genes in a cohort (order of 10000 data points)
or a methylation probe array assay can quantify the methylation states of even more (order of
100000 or 1000000 data points). Such high dimensional data poses challenges such as prob-
lems in the usage of distance functions, overfitting of classifiers, computational difficulties due
to combinatorial explosion of variables. In addition, the human visual perception is limited to
three dimensions and is most efficient in two dimension when interpreting data visualizations
on a computer screen or a paper medium. Thus, dimensionality reduction is useful also for
visualization purposes.

The variance in a dataset is usually captured by the identification of hidden variables that
combine information from multiple dimensions (such as multiple genes, probes etc.) and rep-
resenting them as a single pseudo-dimension. For example, in the usage of the Principle Com-
ponent Analysis (PCA) technique, these pseudo-dimensions are called principle components.
By summarizing the high-dimensional data of omics experiments in low-dimensional spaces,
users get benefits both in analysis and visualization, making such techniques a key component
of successful large cancer omics projects [218] [353], which serves as an important motivator
in making these features available in EPISTEME.

EPISTEME currently offers dimensionality reduction on gene expressions, methylation
probes, TAD-based SV recurrence, TAD-based CNV recurrence and user-selected sets of quan-
titative metadata columns (such as mutational signatures presented in Section 3.3.5.2).

The following sections will describe the different approaches of dimensionality reduction
offered in EPISTEME and how they are visualized using the scatter plots previously described.
For these discussions, the entire cohort of the TCGA-BRCA project will be used as opposed to
the WGS subset. With 1233 donors, of which 1101 correspond to tumours and 132 correspond
to normal tissue that was surgically resected from the same patient along with the tumour,
this cohort is the largest in the whole TCGA study and has multiple subgroups to study, also
according to available classifiers. Thus, the TCGA-BRCA study is an ideal cohort to study
different approaches of dimensionality reduction and EPISTEME's features in this field of data
analysis.

3.3.6.1 PCA in EPISTEME

EPISTEME currently offers and runs a dense, non-incremental PCA algorithm and automati-

cally assigns the top 10 principle components with respect to explained variance in the cohort
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metadata, flexibly runnable for up to a user-determined top-N dimensions to reduce.

Upon the calculation of the PCA, EPISTEME plots a scatter plot, by default showing the
first two principal components (Figure 3.33, on the example of gene expressions in the TCGA-
BRCA study).
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Figure 3.33: PCA of gene expressions with top 500 variance in the TCGA-BRCA study, colour-
coded for the PAMS50 classification showing the first two principal components

Frequently, users are interested in investigating higher order principal components that
explain less of the variance in the data. Thanks to its grid-based multiplotting capabilities,
this is possible in EPISTEME (Figure 3.34). On this plot, the combined PCA analysis of both
the transcriptome and the methylome is shown, clearly indicating the first PCA component of
the transcriptome to successfully separate the Basal and Her2 groups from the Luminal and
Normal groups, while the Normal and Luminal groups cannot be separated by PCA analysis.
The PCA analysis of the methylome yields poorer results with the Basal and Normal groups
clustering away from the Luminal and Her2 groups, but not showing any separation.
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Figure 3.34: PCA matrices of gene expressions and methylome betas in the TCGA-BRCA
study, colour-coded for the PAMS50 classification. Subplots above the main diagonal are methy-
lome PCAs (top 5000 most variable probes), whereas the subplots below are transcriptome
PCAs (top 500 most variable genes). Subplot (7, j) corresponds to the scatter plot of the ith vs
j PCA for the analysed phenotype.

It is by now established that the PCA is not an ideal dimensionality reduction technique in
terms of visualizing data [523], and it was largely supplanted by more modern and non-linear
dimensionality techniques such as tSNE and UMAP, which will be discussed in the following

sections.
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3.3.6.2 tSNE in EPISTEME

t-Distributed Stochastic Neighbor Embedding (tSNE) [325] is a non-linear dimensionality re-
duction technique which has successfully been applied in the dimensionality reduction and
subsequent classification of large cancer omics datasets [218], [353]. tSNE is a highly cus-
tomizable algorithm, but its parameter selection requires great care because it is sensitive to
changes in perplexity and exaggeration strategies [524].

EPISTEME implements flexible controls (with default parameters in parentheses) for top-
N (in terms of variance) items to analyse (500), early exaggeration (12), iterations for early
exaggeration (250), total iterations (1000), late exaggeration (1.5), iterations for late exagger-
ation (100), heavy-tailed kernel coefficient alpha (1) [525], the optional step of applying a
preliminary PCA on the dataset with up to 50 principal components (not applied by default),
and finally and perhaps most importantly perplexity (5). These settings are modifiable in an
intuitive user interface (Figure 3.35). Following parameter selection, tSNE will rapidly be cal-
culated on the client-side with no load on the EPISTEME server, and the results will be output

as a scatter plot.

tSNE
(Heavily modified from) Github
Perplexity: 5.
Learning Rate: 200 '
Iterations: 1000 .

EarlyExaggeration: 12 .

IterationsEarlyExaggeration: 250

LateExaggeration: 1.5 .

IterationsLateExaggeration: 100 ‘

Alpha: 1 .

¥/ PCA First? Dimensions: 50 ‘

Figure 3.35: tSNE settings in EPISTEME

The application of tSNE with appropriate parameters leads to an excellent separation of the
expected gene expression subtypes of breast cancer (Figure 3.36), except for the separation of
the Luminal A and Luminal B groups, where Luminal B cases mostly co-cluster, but do not

separate from the rest of the Luminal group.
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Figure 3.36: tSNE on the top 500 most variable gene expressions from the TCGA-BRCA study
with a preliminary PCA reducing the dimensionality to 50, followed by an application of tSNE
with perplexity 30 and late exaggeration 1.2

This well-performing set of parameters was chosen by a tSNE parameter sweep, taking
advantage of the multiplot grid offered in EPISTEME. The procedure was repeated both with
a preliminary PCA (Figure 3.37) and without (data not shown due to high similarity with a
slight superiority observed in favour of a pre-PCA). Finally, the parameters perplexity 30 and
late exaggeration 1.2 were selected.
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LumA LumB

Basal Her2

Figure 3.37: tSNE parameter sweep on perplexity and late exaggeration on the top 500 most
variable gene expressions from the TCGA-BRCA study with a preliminary PCA reducing the
dimensionality to 50. The perplexity parameter was swept across the X-axis starting from the
left with the steps 5, 15, 30 and the late exaggeration parameter was swept across the Y-axis
starting from the top with the steps 1, 1.2, 1.5.

In particular, late exaggeration seems have the strongest effect despite the small steps used
in its application. While applications with much larger (and often sparse) datasets in the order
of 10* dimensions such as scRNA sequencing are amenable to higher perplexities and higher
late exaggeration values, applications on bulk tumour samples with sample sizes in the order of
10% dimensions with dense data seem to require more modest values. Notably, a combination

of low perplexities, and even moderately high late exaggeration (5-vs-1.2, 5-vs-1.5, 15-vs-
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1.5) leads to an over-fragmentation of the Luminal cluster. While it can be argued that the
15-vs-1.5 configuration has the desirable consequence of separating the LumB cases from the
LumA cases, this separation is also flawed due to the emergence of smaller clusters, hinting at
overfitting.

tSNE can similarly be applied to methylome beta values (obtained by a methylation array
or WGBS) or other data matrices. The application on the methylome will be presented in

Section 3.3.6.4 in comparison with the UMAP algorithm.

3.3.6.3 UMAP in EPISTEME

Uniform Manifold Approximation and Projection (UMAP) is a recently introduced algorithm
for dimensionality reduction [526], which has desirable properties such as quick runtimes,
preservation of global structure and embeddings usable for clustering purposes. A recent study
claimed superiority to tSNE in the field of single-cell RNA sequencing data analysis [527]
most notably in the preservation of global structure and higher reproducibility. It is therefore of
great interest in the cancer omics community. Driven by this interest, it was a great motivation
to implement a user-runnable UMAP algorithm in EPISTEME. Due to the lack of available
JavaScript libraries for this task, the UMAP module of EPISTEME was written from scratch
in JavaScript based on its Python implementation.

EPISTEME offers a highly customizable set of parameters akin to its tSNE features for
running UMAP with defaults as (Figure 3.38). Notably, internal testing showed setting the
parameter set-op-mix-ratio to 0.5 rather than the UMAP default 1 to have desirable effects
in terms of equally weighing global and local structure, leading to tighter and well-separated

clusters.

UMAP
(Rewritten from) Github
n_neighbors: 3.

correlation v
n_epochs: 500 .
learningRate: 1.0 .

Spectral Embedding v
minDist: D.1‘

spread (must be >= minDist): 1.0 .

set_op_mix_ratio : 0.5 .
local_connectivity : 1.0 .
repulsion_strength : 1.0 .
negative_sample_rate: 5 .

PCA First?

GERMAN
z. CANCER RESEARCH CE!

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Figure 3.38: UMAP settings in EPISTEME

Similar to the application of tSNE, UM AP with appropriate parameters leads to an excellent
separation of the expected gene expression subtypes of breast cancer (Figure 3.39), except for
the separation of the Luminal A and Luminal B groups, where Luminal B cases mostly co-
cluster, but do not separate from the rest of the Luminal group. The Her2 group seems to be

“emerging” from the LumB-rich subset of the Luminal group, whereas the normal cases seem
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to be closer a LumA-rich region of the Luminal cluster.
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Figure 3.39: UMAP on the top 500 most variable gene expressions from the TCGA-BRCA
study, with Euclidean Distance, nNeighbors 15 and minDist 0.05

Again, this well-performing set of parameters was chosen by a UMAP parameter sweep,
taking advantage of the multiplot grid offered in EPISTEME. The procedure was repeated both
with the distance measure Euclidean Distance (Figure 3.40) and Correlation Distance (data not
shown due to very high similarity). Finally, the parameters nNeighbors 15 and minDist 0.05
were selected.
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Figure 3.40: UMAP parameter sweep on nNeighbors and minDist on the top 500 most variable
gene expressions from the TCGA-BRCA study. The nNeighbors parameter was swept across
the X-axis starting from the left with the steps 5, 15, 30 and the minDist parameter was swept
across the Y-axis starting from the top with the steps 0.05, 0.25, 0.75.

The minDist parameter seems to have the strongest effect on the global behaviour of the
embeddings, with smaller values leading to significantly tighter clusters. As opposed to the
strong effects of perplexity in the tSNE algorithm, the nNeighbors parameter doesn’t seem to
lead to drastic changes. This can be considered a desirable attribute because it leads to less
assumptions on the expected cluster sizes in the application of the algorithm.

UMAP can also similarly be applied to methylome beta values or other data matrices. The
application on the methylome will be presented in the following Section 3.3.6.4 in comparison
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with the tSNE algorithm.

3.3.6.4 Comparison of Dimensionality Reduction Techniques using a Multi-plot in EPIS-
TEME

Following testing and optimization of parameters for transcriptome analysis by tSNE and
UMAP, it is of interest to compare these two algorithms including their applications to methy-
lome data. In a 2-by-2 multiplot grid, the following configurations are compared using the

optimal parameters obtained from transcriptome analysis:

1) Upper-Left: tSNE-transcriptome (top 500 genes, perplexity 30 and late exaggeration
1.2),

ii) Upper-Right: tSNE-methylome (top 5000 probes, perplexity 30 and late exaggeration
1.2),

iii) Lower-Left: UMAP-transcriptome (top 500 genes, nNeighbors 15 and minDist 0.05),

iv) Lower-Right: UMAP-methylome (top 5000 probes, nNeighbors 15 and minDist 0.05),

Figure 3.41 summarizes the results from this comparison. The general structures are re-
markably similar between the two dimensionality reduction approaches, whereas the transcrip-
tome and methylome analyses yield slightly different results. The Basal-like and Normal-like
groups show excellent separation from the Luminal group in all configurations. The Lumi-
nal B group’s subtle co-clustering in transcriptome analysis is not maintained in methylome
analysis, suggesting a shared cell of origin with slightly different transcriptomic programmes
between the Luminal A and Luminal B groups. Without the colour-coding guiding this pro-
cess, clearly Luminal A and B groups would not emerge as distinct subtypes from any of the

chosen dimensionality techniques.
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Figure 3.41: tSNE and UMAP dimensionality reduction techniques applied to the transcrip-
tome (top 500 most variable genes) and methylome (top 5000 most variable probes) datasets
from the TCGA-BRCA study with the previously chosen best parameters. Upper-left: tSNE
on the transcriptome. Upper-right: tSNE on the methylome. Lower-left: UMAP on the tran-
scriptome. Lower-right: UMAP on the methylome.

Interestingly, the Her2 group seems to get broken into two clusters in methylome analy-
sis, confirmed by both dimensionality reduction approaches, suggesting two different possible
cells of origin yielding a similar and distinct transcriptomic profile due to the ERBB2 gene
amplification. This is best observed in Figure 3.42 where the well-separated Her2-rich cluster
in the Upper-left tSNE-transcriptome subplot was user-selected, prompting a parallel selection

of the same cases across all 4 subplots. This feature can be used for any type of subplots be it

166



scatter plots, stacked bar charts or "Box-KDE-Jitter Plots” where the behaviour of a single case
or a group of cases can be tracked. This facilitates applications such as the test for stability of
clustering approaches, similar to the results presented here.
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Figure 3.42: tSNE and UMAP dimensionality reduction techniques applied to the transcrip-
tome and methylome datasets from the TCGA-BRCA study, with the the user selection of the
well-separated Her2-rich cluster in the Upper-left tSNE-transcriptome subplot.

In summary, EPISTEME offers an extensive and highly customizable and interactive set
of features to apply dimensionality reduction on complex high dimensional datasets and make
them accessible to users without programming knowledge. The dimensionality reduction mod-
ule of EPISTEME along with its grid-based plots, facilitates parameter optimization and guides
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investigations of the existence of cell of origin or transcriptomic regulation based subtypes in

a cohort.

3.3.7 Clustering in EPISTEME

Clustering is a central task in data analysis, giving users the power to detect patterns in un-
labelled data in an unsupervised manner. Clustering algorithms are based on different cluster
models in terms of criteria that determine co-clustering such as distance connectivity, local
density, centroids of a group of data points etc. EPISTEME implements clustering algorithms

from three strategies:

1. Connectivity-based, hierarchical clustering: agglomerative hierarchical clustering is im-
plicitly used in ordering rows and columns in the heatmap feature of EPISTEME (in

prototpye stage) and will not be discussed here
2. Centroid-based clustering: the K-means and K-medoids algorithms
3. Density-based clustering: the fuzzy DBSCAN and OPTICS algorithms

While the K-means and K-medoids algorithms are straightforward in terms of usage, apart
from the choice of an appropriate distance function and a K parameter indicating the expected
number of centroids, the fuzzy DBSCAN and OPTICS algorithms offer more parameters (Fig-
ure 3.43).
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Figure 3.43: Clustering settings offered in EPISTEME

Figure 3.44 summarizes the findings from the K-Means, K-Medoids and OPTICS cluster-
ing algorithms on the TCGA-BRCA transcriptome data following UMAP application with pre-
viously optimized parameters. The UMAP algorithm was chosen for its preservation of global
structure and distances. For the centroid-based algorithms, 5 turned out to be an appropri-
ate number of clusters. Interestingly, both centroid-based approaches successfully recaptured
LuminalB-rich clusters that are well separated from a clusters that consist almost purely of
Luminal A cases. While the K-medoids algorithm was more successful at separating the Her2
cluster from the LuminalB-rich cluster, the bridge between the Her2 cluster and the Luminal
cluster was challenging for all algorithms.
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Figure 3.44: Comparison of the K-Means, K-Medoids and OPTICS clustering algorithms on

the TCGA-BRCA transcriptome data following UMAP application with optimized parameters.
Upper-left: K-means,k=5. Upper-right: K-medoids,k=5. Lower-left: OPTICS.

The DBSCAN algorithm [528], due to its requirement of uniform densities across the clus-

ters, did not perform well in the clustering of UMAP-reduced gene expression data from the
TCGA-BRCA study, and has therefore been omitted from this figure.

Overall, EPISTEME offers a selection of clustering algorithms with user control over dis-

tance measures and other parameters. They can be applied to any kind of scatter plot and are

particularly useful when applied to UMAP outputs in order to detect subgroups in an unsuper-

vised manner in dimensionality-reduced data.
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3.3.8 Subcohort Selections in EPISTEME

In any data analysis setting, discovery and analysis of unknown and known subgroups of the
data is a crucial concept. This is also true for cohort analysis in omics data analysis projects,
where identification and designation of subcohorts opens up avenues for advanced comparative
data analysis approaches and leads to biological insights. EPISTEME offers powerful features
for designation of subcohorts from a number of its standard visualizations.

Subcohort selections are offered both for categorical and quantitative data and are tightly
integrated to previously introduced data visualization modules such as Circos plots and flexible
2D plots. The following comprehensively describe the subcohort designation features of EPIS-

TEME, in the order of previous introduction of the aforementioned data visualization features.

3.3.8.1 Subcohort Selection from Variant Recurrence Selections in Circos Plots

Any recurrence item in a Circos plot discussed in Sections 3.3.1.2, 3.3.1.3, 3.3.1.4 effectively
shows a selection of cases that fulfil a condition while excluding others. This information can
be used to define subcohorts (Figure 3.45), where the gene mutation recurrence layer (Figure
3.4, outermost arc) is used to extract the 7P53 mutant cases in this cohort. EPISTEME thus
gives its users the ability to rapidly isolate the cases that contribute to any type of genomic

variant recurrence.
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Gene Recurrence. Desc. SV Desc. Vdj-SV Desc. Mid-sized-SV Desc.

SmallVar Desc. e Cohort Description Controls

TP53 on 17p13.1 spans the region 17:7565097-7590868 (0.0 Mb)

and overlaps with the TADs 2831, 2832

The following variant classes and donors are displayed on the clicked recurrence layer:
nonsynonymous SNV in 10 donors : TCGA-14-1402-02, TCGA-06-0210-02, TCGA-06-0744-01, TCGA-02-
2483-01, TCGA-02-2485-01, TCGA-06-0152-02, TCGA-14-1034-02, TCGA-06-2570-01, TCGA-06-0190-02,
TCGA-32-1970-01

splicing SNV in 2 donors : TCGA-19-2629-01, TCGA-41-5651-01

The following variant classes and donors have been observed in the cohort but are not displayed on
the clicked recurrence layer:

LOH in 11 donors: TCGA-06-0221-02, TCGA-41-5651-01, TCGA-19-5960-01, TCGA-06-0210-02, TCGA-19-
2629-01, TCGA-02-2483-01, TCGA-06-2557-01, TCGA-14-1034-02, TCGA-06-2570-01, TCGA-14-0786-01,
TCGA-32-1970-01

directSVin 1 donor: TCGA-19-5960-01

indelTadOffset0 in 1 donor: TCGA-14-1402-02

indelTadOffset1 in 2 donors: TCGA-02-2485-01, TCGA-06-0214-01

indelTadOffset3 in 1 donor: TCGA-16-1063-01

loss in 5 donors: TCGA-41-5651-01, TCGA-19-2629-01, TCGA-14-1823-01, TCGA-06-2557-01, TCGA-14-
1034-02

svTadOffset0 in 3 donors: TCGA-06-2557-01, TCGA-14-1034-02, TCGA-19-5960-01

svTadOffset1 in 3 donors: TCGA-14-1823-01, TCGA-06-0190-02, TCGA-19-2624-01

el svTadOffset2 in 4 donors: TCGA-06-0221-02, TCGA-06-0171-02, TCGA-02-2485-01, TCGA-06-5415-01

L DoubleHit (CNV/LOH+Functional SmallVar) in 7 donors: TCGA-41-5651-01, TCGA-06-0210-02, TCGA-19-
2629-01, TCGA-02-2483-01, TCGA-14-1034-02, TCGA-06-2570-01, TCGA-32-1970-01
DoubleHit (CNV/LOH+Functional SmallVar/Direct SV) in 8 donors: TCGA-41-5651-01, TCGA-19-5960-01,
TCGA-06-0210-02, TCGA-19-2629-01, TCGA-02-2483-01, TCGA-14-1034-02, TCGA-06-2570-01, TCGA-32-
1970-01

17p13.1: 1x [=}

Add Gene Expression to Metadata Add Gene Variants to Metadata
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-

tpS3_muiant -> Selected 12 donors: TCGA-14-1402-02,TCGA-06-0210-02, TCGA-06-0744-01,TCGA-02-
2483-01,TCGA-02-2485-01,TCGA-06-0152-02,TCGA-14-1034-02,TCGA-06-2570-01,TCGA-06-0190-
02,TCGA-32-1970-01,TCGA-19-2629-01, TCGA-41-5651-01
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02,TCGA-19-2620-01,TCGA-19-2624-01, TCGA-19-5960-01,TCGA-26-1438-01 TCGA-26-5132-01,TCGA-26-
5135-01,TCGA-27-1831-01,TCGA-27-2523-01,TCGA-27-2528-01

tR53_mutant Subcohort from Visible

Figure 3.45: Subcohort selection from a recurrence item in the Circos plot feature of EPIS-
TEME: selecting for 7P53 functional mutant cases in the TCGA-GBM (WGS) study.

EPISTEME parses the selected cases, and defines a positive selection, namely the TP53
mutant cases (12), unknown cases (0, as all cases have mutational data) and negative cases
(29), assigning them to subcohorts named by the user (tp53-mutant) with appropriate prefixes.
This automatic definition of selections as well as their complements in a manner that takes
data availability into consideration is a key feature facilitating the subcohort operations that are
described in Section 3.3.9.

3.3.8.2  Subcohort Selection from Quantitative Metadata Variables

Quantitative metadata variables defined in Section 3.3.4 can be used for subcohort definitions
with dedicated tools in EPISTEME. For quantitative variables, this is accomplished by a thresh-
olding tool where the quantitative variable of interest is displayed in a helper plot with all dis-
tinct values encountered in the cohort. This helper plot allows rational selection of cutoffs with
relations less-than, less-than-or-equal-to, equal-to, between, greater-than and greater-than-or-
equal-to.

Figures 3.46 and 3.47 showcase this feature both for thresholding based on a low-cutoff and
high-cutoff, on the genes EGFR and CDKN2A respectively. EPISTEME automatically assigns
the cases with unavailable RNA-Seq data into UNKNOWN categories to facilitate accurate
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processing of subcohort-based analyses.

from metadata column

GBM-US_WholeCohort (41/41) M
EGFR_expression v
S v . Allow NaNs/empty values
8.4146 v
14 high_EGFR -> Selected 19 donors: TCGA-02-2485-01,TCGA-06-0125-02,TCGA-06-0152-
L4 02,TCGA-06-0157-01,TCGA-06-0211-02,TCGA-06-0744-01,TCGA-06-0745-01,TCGA-06-2557-
01,TCGA-14-1402-02, TCGA-14-1823-01,TCGA-14-2554-01,TCGA-19-2620-01,TCGA-19-2624-
12 01,TCGA-19-5960-01, TCGA-26-5132-01,TCGA-27-1831-01,TCGA-27-2523-01, TCGA-27-2528-
01,TCGA-32-1970-01
10 e UNKNOWN-high_EGFR -> Selected 9 donors: TCGA-06-0145-01,TCGA-06-0155-01,TCGA-06-
° 0214-01,TCGA-06-1086-01,TCGA-06-5415-01,TCGA-14-0786-01,TCGA-14-1459-01 TCGA-16-
.o 1063-01,TCGA-26-1438-01
8 ve®
L]
oo e NOT-high_EGFR -> Selected 13 donors: TCGA-02-2483-01,TCGA-06-0171-02,TCGA-06-0190-
6 . M 02,TCGA-06-0210-02, TCGA-06-0221-02,TCGA-06-0686-01,TCGA-06-2570-01,TCGA-06-5411-
. 01,TCGA-14-1034-02, TCGA-19-1389-02,TCGA-19-2629-01,TCGA-26-5135-01,TCGA-41-5651-01
a
2
0
‘ high EGFH Submit choices

Figure 3.46: Subcohort selection by thresholding a quantitative variable in EPISTEME: select-
ing for high EGFR expression in the TCGA-GBM (WGS) study.
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Build mini-selection from metadata column

GBM-US_WholeCohort (41/41) M
CDKN2A_expression v
v Allow NaNs/empty values
39161 v
8 low_CDKN2A -> Selected 16 donors: TCGA-06-0125-02,TCGA-06-0152-02,TCGA-06-0171-
- 02,TCGA-06-0210-02, TCGA-06-0211-02 TCGA-06-0221-02,TCGA-06-0744-01,TCGA-06-0745-
ee® . 01,TCGA-06-5411-01,TCGA-14-1402-02 TCGA-14-1823-01,TCGA-14-2554-01,TCGA-19-26 20~
7 (24 01,TCGA-27-1831-01,TCGA-27-2523-01,TCGA-27-2528-01
°®
6 . ° UNKNOWN-low_CDKN2A -> Selected 9 donors: TCGA-06-0145-01,TCGA-06-0155-01,TCGA-06-
. . 0214-01,TCGA-06-1086-01,TCGA-06-5415-01,TCGA-14-0786-01, TCGA-14-1459-01 TCGA-16-

1063-01,TCGA-26-1438-01

NOT-low_CDKN2A -> Selected 16 donors: TCGA-02-2483-01, TCGA-02-2485-01,TCGA-06-0157-
4 01,TCGA-06-0190-02, TCGA-06-0686-01,TCGA-06-2557-01,TCGA-06-2570-01,TCGA-14-1034-
02,TCGA-19-1389-02,TCGA-19-2624-01,TCGA-19-2629-01,TCGA-19-5960-01,TCGA-26-5132-
01,TCGA-26-5135-01,TCGA-32-1970-01,TCGA-41-5651-01

AR
2 .®

...00..

low_CDKN2A Submit choices

Figure 3.47: Subcohort selection by thresholding a quantitative variable in EPISTEME: select-
ing for low CDKNZ2A expression in the TCGA-GBM (WGS) study

With this feature, EPISTEME's users can flexibly designate subcohorts on any quantitative

variable such as age, gene expression and patient survival among others.

3.3.8.3  Subcohort Selection from Categorical Metadata Variables

Categorical metadata variables are best represented as checkboxes for subcohort filtering pur-
poses. Figure 3.48 shows a checkbox-based subcohort designation setup based on the example
of TP53 mutations in the TCGA-GBM (WGS) cohort. All encountered values for the cat-
egorical variable are summarized, with the individual checked items combined in an "OR”
relationship.

Build mini-selection from metadata column

GBM-US_WholeCohort (41/41) v

TP53_variants v

LOH! | svTadOffset2l | loss¥ splicing SNV
¥/ DoubleHit (CNV/LOH+Functional Smallvar)
¥/ DoubleHit (CNV/LOH+Functional Smallvar/Direct SV)_| directSVl | svTadOffset0
¥ nonsynonymous SNV_ indelTadOffset0 | indelTadOffset1. | indelTadOffset3
svTadOffset1 | NONE

tp53_mutants ‘ Submit choices

Figure 3.48: Subcohort selection by checkboxes on a categorical variable in EPISTEME: se-
lecting for functional 7P53 mutations in the TCGA-GBM (WGS) study

174



Build mini-selection from metadata column

GBM-US_WholeCohort (41/41)

donor

¥/ TCGA-02-2483-01

TCGA-02-2485-01

v

TCGA-06-0125-02

TCGA-06-0152-02¥/ TCGA-06-0155-01¢ TCGA-06-0157-01
TCGA-06-0190-02_ ) TCGA-06-0210-02 | TCGA-06-0211-02
TCGA-06-0221-02¥ TCGA-06-0686-01¥) TCGA-06-0744-01
TCGA-06-1086-01¥ TCGA-06-2557-01¥ TCGA-06-2570-01

TCGA-06-5415-01
TCGA-14-1459-01

TCGA-14-0786-01
TCGA-14-1823-01

TCGA-19-1389-02_ ) TCGA-19-2620-01

TCGA-19-5960-01¥ TCGA-26-1438-01
TCGA-27-1831-01¥ TCGA-27-2523-01

TCGA-14-1034-02
TCGA-14-2554-01
TCGA-19-2624-01
TCGA-26-5132-01
TCGA-27-2528-01

This feature also finds a good use for individually selecting cases using the standard “Donor”

column with a flexibility beyond data-driven criteria (Figure 3.49).

v

TCGA-06-0145-01
TCGA-06-0171-02
TCGA-06-0214-01
TCGA-06-0745-01
TCGA-06-5411-01
TCGA-14-1402-02
TCGA-16-1063-01
TCGA-19-2629-01
TCGA-26-5135-01
TCGA-32-1970-01

TCGA-41-5651-01

customSelection Submit choices

Figure 3.49: Subcohort selection by checkboxes on a categorical variable in EPISTEME: se-
lecting individual donors in a custom selection in the TCGA-GBM (WGS) study

With this feature, EPISTEME’s users can flexibly designate subcohorts on any categori-
cal variable such as patient gender, gene mutation status and disease histological type among

others.

3.3.8.4 Subcohort Selection from Flexible 2D Plots

The donor labelling feature of scatter plots in EPISTEME presented in Section 3.3.5.3 lends
itself very well to subcohort designations. Figure 3.50 demonstrates this procedure on the ex-
ample of tSNE plots described in Section 3.3.6.2. In this analysis, the normal tissue samples
have been excluded, leading to only bona fide tumour specimens being considered, and as-
signed to mostly Basal, Her2, Luminal-A and Luminal-B PAMS50 subtypes with a very small
number of cases in the Normal PAMS50 subtype (likely to be specimens with low tumour cell
content). Manual selection of the Basal-rich cluster yields 187 positive, 904 negative and 142
unknown cases, where the unknown cases both correspond to the excluded normal tissue spec-

imens and cases with no available RNA-Seq data.
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Figure 3.50: Subcohort selection from flexible 2D plots in EPISTEME: selecting the Basal-
rich cluster based on PAMS50 classification from a RNA tSNE plot of the TCGA-BRCA study,

excluding normal tissues

The clustering techniques described in Section 3.3.7 automatically generate subcohort def-
initions from the calculated clusters. For instance, all shaded clusters depicted in Figure 3.44
have their corresponding subcohorts generated following the clustering calculation, both for
the positive, unknown and negative prefixes.

In practice, any plot type in the Flexible 2D plot module of EPISTEME can be used for
subcohort designations. This includes bar charts where the capping symbols are used for donor
labelling as well as subcohort definitions (Figure 3.31).

With this feature, EPISTEME’s users can flexibly designate subcohorts from any scatter
plot, kde-box-jitter plot, stacked bar chart, including multiplots. Users can therefore manually
select outlier cases with respect to any user-defined visualization criteria and explore the causes

and consequences of the outlier characteristics in downstream analysis features.

3.3.8.5 Definition of Complex Subcohort Selections Using Logical Expressions on Simple

Subcohort Selections

The hitherto described subcohort definition features share one common, central property: they
describe one condition and one condition only. While the specific implementation of subcohort
selections differ for each underlying data type (thresholding, checkboxes, manual selections

from plot data), there is always one specific selection criterion. EPISTEME’s user interface
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calls these selections mini-selections and offers a feature to build complex selections using
these mini-selections using flexible, nested combinations of the fundamental logical expres-
sions AND, OR and NOT.

EPISTEME offers a flexible tool to build complex logical expressions from individual sub-
cohort selections with an intuitive user interface. Multiple nesting levels are possible. Each
mini-selection is defined along with "UNKNOWN” cases with missing information such as
missing gene expressions. Any mini-selection used in this complex selection building tool
contributes their corresponding "UNKNOWN” cases as also "UNKNOWN” to the resulting
complex selection (Figure 3.51).

Build complex-selection from existing selections

Github
deactivated_TP53 -> Selected 13 donors: TCGA-02-2483-01,TCGA-06-0210-02,TCGA-06-2570-

+ Add rule  © Add group 01,TCGA-14-1034-02, TCGA-19-2629-01,TCGA-19-5960-01, TCGA-32-1970-01,TCGA-41-5651-
01,TCGA-06-0686-01,TCGA-19-1389-02, TCGA-19-2624-01,TCGA-26-5132-01,TCGA-26-5135-01

Subcohort v | equal | high_MDM2 v
UNKNOWN-deactivated_TP53 -> Selected 9 donors: TCGA-06-0145-01,TCGA-06-0155-
TR IGRGHETTE 5 Delets 01,7CGA-06-0214-01,TCGA-06-1086-01 TCGA-06-5415-01,TCGA-14-0786-01 TCGA-14-1459-
01TCGA-16-1063-01TCGA-26-1438-01
Subcohort ¥ equal | mutant_TP53 v
NOT-deactivated_TP53 -> Selected 19 donors: TCGA-02-2485-01,TCGA-06-0125-02,TCGA-06-
. \ B s 0152-02,TCGA-06-0157-01,TCGA-06-0171-02,TCGA-06-0190-02, TCGA-06-0211-02, TCGA-06-
Subcohort v| equal || LOHorLoss TPS3 0221-02,TCGA-06-0744-01 TCGA-06-0745-01 TCGA-06-2557-01 TCGA-06-5411-01 TCGA-14-

1402-02,TCGA-14-1823-01,TCGA-14-2554-01,TCGA-19-2620-01,TCGA-27-1831-01,TCGA-27-

2523-01,TCGA-27-2528-01
Caution: the "NOT-" mode include cases with missing data or NaNs

Reset deactivated TP53

Figure 3.51: Definition of p53 deactivation as a logical expression combining statuses of
MDM?2 expression, TP53 mutation and TP53 copy number and heterozygosity in the TCGA-
GBM (WGS) study: p53 deactivation is thus defined as either a double-hit on the TP53 gene
(AND expression) or an amplification of the MDM?2 gene, which degrades p53 when expressed

in high levels [529]. The resulting selection correctly clasifies 9 cases as unclassifiable.

3.3.8.6 Transformation of Multiple Subcohort Selections to Categorical Variables

Each subcohort selection is, by definition, a categorical variable of boolean type (true/false).
Extending this concept, one can combine multiple subcohort selections into a single categorical
variable. N selections with 2 possible values (true/false) each, yield 2™V possible combinations
for each case, not considering combinations that do not occur within the given dataset. If the
search space is narrowed by mutual exclusivities, the number of possible combinations can
drop dramatically. Figure 3.52 shows the combination of the possible states of EGFR and
CDKN2A expression in the TCGA-GBM study, where high-low-unknown states of both genes
are merged into a categorical variable. Upon displaying the gene expressions, the unknown
cases are excluded due to lack of data, while the mutually exclusive positive-negative states
do not lead to valid combinations and do not yield any results. This effectively reduces the
combinations from 2% = 64 to 22 = 4. The results suggest the lack of mutual exclusivity or
exclusive co-occurrence between EGFR amplification and CDKN2A deactivation in this cohort.
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Create new categorical variable column from existing selections
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Figure 3.52: Definition of a categorical variable from EGFR and CDKN2A expression status in
the TCGA-GBM study. Left: selection of categorical variables to combine using the ”Create
new categorical variable column from existing selections”. Right: EGFR (left subplot) and

CDKNZ2A (right subplot) expressions for the created categorical variables.

As the comparison of of a subcohort selection to its complement is a fundamentally impor-
tant operation in cohort data analysis, each new subcohort selection by default creates a categor-
ical variable from its positive, negative and unknown counterparts. For instance, definition of
the low-CDKN2A group would automatically create the lowCDKN2A-UNKNOWNIowCDKN2A-
NOTIowCDKN2A categorical variable for further use.

This combination approach can also be applied in the reverse manner as a decomposition
of categorical variables into individual mini-selections. For instance, the PAMS50 category of
the TCGA-BRCA study can be, with one user command transformed into the positive, negative
and unknown states of the possible categories Luminal A, Luminal B, Basal, Normal and Her2
(Figure 3.53).
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Divide categorical metadata variable into selections

caseDescription | SNV
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Figure 3.53: Decomposing the PAMS50 subtype variable in the TCGA-BRCA (WGS) study
into individual selections with corresponding inverse and unknown selections. Left: selection
of the PAMSO0 subtype as the categorical variable to decompose into selections. Right: the
resulting selections generated by the decomposition operation applied to the PAMS50 subtype
variable.

3.3.9 Operations on Subcohorts in EPISTEME

The powerful and flexible subcohort definition features of EPISTEME are used in a number
of specialized advanced data visualizations visualizing data from subcohorts and comparing
user-selected subcohorts in a pairwise manner. These features offer tightly integrated flexible
data analysis, visualization and analysis features. The following sections explain the rationale,
design decisions and features of each subcohort-based data analysis and visualization feature
of EPISTEME.

For all features, the focus will be on the comparison of the Basal-rich cluster obtained from
tSNE analysis of RNA-Seq data from the TCGA-BRCA study. For features involving genomic
variants, the WGS cohort is used, whereas all other sections use the full cohort with available
RNA-Seq data. In the reduced, WGS cohort, the Basal-rich cluster consists of 43 cases whereas
the ”Not-Basal-rich” cluster corresponding to Luminal A, Luminal B and Her?2 cases consists
of 49 cases. In the full cohort, the case numbers are 188 and 903, respectively. The choice
of this comparison is due to the diversity of variant landscapes, gene expression profiles and
survival characteristics between these two subtypes of breast cancer.

3.3.9.1 7"Subcohort-wide Circos plots”

Cohort-wide Circos plots which were extensively discussed in Section 3.3.1 can intuitively be
extended for the representation of subcohorts. Instead of the full cohort with all available in

the EPISTEME instance of a cohort, only the genomic variants and genomic variant recurrence
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data from a subcohort of interest is displayed.

Figure 3.54 shows the application of the described concept to the pilot comparison between
the Basal-rich and NOT-Basal-Rich subcohorts of the TCGA-BRCA (WGS) study. From out-
side to inside, the recurrence layers correspond to: functional small variant recurrence, TAD-
based copy number recurrence and TAD-based structural variant recurrence. For both cohorts
and all recurrence layers, the recurrence axis maximum values are manually set to 49, the
size of the larger of the two subcohorts instead of the default practice of normalization. The
higher prevalence of chrl7q copy number gains and structural variants as well as a higher
frequency of PIK3CA mutations define the foremost obvious characteristics of the NOT-Basal-
rich subcohort. The Basal-rich subcohort, on the other hand presents a higher frequency of SVs
converging on the PTEN locus and mutations on the 7P53 gene.

BRCA-US_Basal BRCA-US_NOT-Basal

(43/104) » (49/104)

Figure 3.54: Genomic variant and variant recurrence landscapes of the Basal-rich (left) and
NOT-Basal-Rich (right) subcohorts of the TCGA-BRCA (WGS) study

To make differences between subcohorts more apparent in an easy albeit simplistic manner,
EPISTEME offers the possibility of ”subtracting” subcohorts in Circos plots as set up in Figure
3.55 and displayed on 3.56. In this visualization, TAD or gene-based recurrences are subtracted
in the user-defined directions and minimum resulting recurrence values are clamped at zero as
“negative recurrence” is not defined. copy number recurrences are treated independently in
the loss and gain direction. The results make the previously described differences much more
apparent as well as showing differential copy number profiles involving chr5q, chrl4q and
chr15q which are enriched for losses in the Basal-rich subcohort.
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Figure 3.55: Subcohort Circos plot settings in EPISTEME

BRCA-US _Basal
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BRCA-US_NOT-Basal
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Figure 3.56: Differential subcohort Circos visualization reveals global differences between
the genomic variant and variant recurrence landscapes of the Basal-rich and NOT-Basal-Rich
subcohorts of the TCGA-BRCA (WGS) study

The subcohort subtraction procedure described here is a purely visual aid and works best
when the subcohort sizes are comparable. In strongly imbalanced configurations, especially if
the primary subcohort from which the secondary is subtracted is considerably larger, the results

do not show differential behaviour in a convincing manner.

3.3.9.2  "Variant Mutex/Co-Occurrence Plots”

In order to account for the shortcomings of visual subcohort differentiation described in the
previous section, EPISTEME implements a novel type of subcohort genomic variant landscape
comparison analysis named " Variant Mutex/Co-Occurrence Plot”. For this analysis, valid vari-
ant types and subcohorts to compare are selected in a flexible user selection (Figure 3.57).

Selections of valid variant types are possible in levels from individual genes to TADs, cyto-
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bands and chromosome arms. Thus, a comprehensive and well-controlled comparison of two

subcohorts is facilitated.

Launch Mutex Analysis
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Figure 3.57: Variant Mutex/Co-Occurrence Plot settings in EPISTEME

The method relies on comparing variant frequencies both in terms of differences as in Sec-
tion 3.3.9.1 and in terms of statistical significance. To this end, EPISTEME creates a contin-
gency table with four conditions 1) Positive cases in subcohort 1 ii) Negative cases in subcohort
2 iii) Positive cases in subcohort 2 iv) Negative cases in subcohort 2. Fisher’s exact test is ap-
plied to this comparison table estimating the statistical significance of each variant frequency
comparison. Figure 3.58 shows the result of this analysis, displayed on a volcano-like plot.
The observations previously described for the differences between Basal-rich and not-basal-
rich subcohorts are confirmed with TP53 (37/43 vs 21/49), PIK3CA (3/43 vs 22/49), chrl7q
(carrying ERBB?2 and a number of other co-amplified genes such as CDKI2 (0/43 vs 20/49),
the PTEN locus (25/43 vs 8/49), and the chromosomes 5,14 and 15. Moreover, recurrent SVs
on chr21q21 (carrying NCAM2, 26/43 vs 5/49), chr3p14.2 (carrying FHIT, 29/43 vs 3/49),
chr10p15.1 (27/43 vs 6/49) and chr19q13.2 (25/43 vs 5/49) present themselves as enriched in
the Basal-rich subcohort.

The Basal-rich and non-basal-rich cohorts show different preferences for PI3K/Akt path-
way activation with PIK3CA activating mutations and PTEN losses as described in the literature
[530]. The enrichment of various chromosome arm level losses on chromosomes such as chr14
and 15 in the Basal-rich subcohort has been discussed in [531]. The lack of ERBB2 amplifica-
tions is a well known hallmark of the Basal subtype of breast cancer [532] [522], with a strong
enrichment of lack of chr17q12 amplifications in the Basal-rich subcohort consequently being
an expected result. FHIT losses were previously shown to be enriched in oestrogen and pro-
gesterone receptor negative breast cancer [533]. In summary, EPISTEME’s results shown here
capture the established knowledge regarding Basal-like breast cancer and its distinct genomic

alteration landscape compared to Luminal breast cancer.
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Figure 3.58: Comparative genomic variant landscapes of the Basal-rich subcohort versus
the non-Basal-rich subcohort in the TCGA-BRCA (WGS) study. Left: Variant Mutex/Co-
Occurrence Plot comparing the two subcohorts, where each data point corresponds to a com-
pared gene, TAD or chromosome arm with the data points in the upper-right quadrant of the
plot showing variants enriched in the Basal-rich subcohort and upper-left showing the enrich-
ment in the non-Basal-rich subcohort. Right-middle: Venn diagram showing the exclusivity
of ERBB? alterations to a subset of the non-Basal-rich cases. Right-bottom: Auxiliary gene
expression plot for the ERBB?2 gene.

In a similar manner to ”Variant-Expression Dysregulation Volcano Plots” described in Sec-
tion 3.3.3, ”Variant Mutex/Co-Occurrence Plots” are also a highly interactive visualization.
Upon clicking on a data point, EPISTEME provides an auxiliary Venn diagram summariz-
ing the contingency table that led to the displayed result. For genes, an auxiliary ”Single-
Phenotype Analysis Plots” is launched, which also displays the gene expression and (where
available) RPPA quantities for the clicked gene of interest, with the subcohort information en-
coded as background shadings. The pilot example used for this auxiliary information feature is
the ERBB?2 gene, with its very strong enrichment in the not-Basal-rich subcohort (Figure 3.58).

”Variant Mutex/Co-Occurrence Plots” formalize and make systematic the comparison of
the genomic variant recurrence landscape of two user-selected subcohorts with user-selected
genomic variant types in consideration. This visualization facilitates the exploration of rare

variants and slight enrichments, moving beyond what differential Circos plots can offer.

3.3.9.3 Kaplan-Meier Plots

EPISTEME offers a simple survival visualization tool which supports single, double and higher

order comparative visualizations of user-defined subcohorts with currently no statistical signif-
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icance analysis features. To showcase the preparation of Kaplan-Meier curves, Figures 3.59
and 3.60 compare the RNA-Seq tSNE based Basal-rich vs rest subcohorts and the four PAMS50
subcohorts (excluding the Normal-like subtype), respectively.

X

CA_WES-US: Basal_rich (28/188) NOT-Basal_rich (123/903) (2] Cohort Description Controls
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Figure 3.59: Comparative survival analysis of the Basal-rich subcohort versus the non-Basal-
rich subcohort in the TCGA-BRCA study. Each included subcohort is automatically assigned
a colour, whereas the censoring events are marked as black. The 5-year time-point is marked
with a dashed line and the 50-percent mark in terms of recorded death events is also marked
with a dashed line to guide interpretations of the displayed data.
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Figure 3.60: Comparative survival analysis of the PAMS50 subtypes in the TCGA-BRCA study.
Each included subcohort is automatically assigned a colour, whereas the censoring events are
marked as black. The 5-year time-point is marked with a dashed line and the 50-percent mark
in terms of recorded death events is also marked with a dashed line to guide interpretations of

the displayed data.

Taking the 5-year mark as the anchor point for comparisons, the results show a similar
overall pattern to those presented in ([534], Figure 2), where the demonstration was made on
oestrogen receptor status instead of the Basal-rich tSNE RNA-Seq based subcohort used here:
The Basal-rich subcohort shows a poorer overall survival. This observation seems to be driven
by the prominence of the largest non-Basal subcohort, Luminal A, which shows a favourable
overall survival characteristic. On the other hand, Luminal B and Her2 subcohorts show poorer
survival than the Luminal A subcohort, where the Her2 subcohort showed the poorest survival

characteristics in this dataset.
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3.3.9.4 7 Differential Expression Volcano Plots”

Comparing the global expression characteristics of RNA transcripts (or peptide quantities) be-
tween two sample groups is a central task in computational biology and cancer omics. Iden-
tifying the overexpressed and underexpressed genes between two groups or conditions allows
the assignment of cell identity, identification of the transcriptomic programme used in the anal-
ysed sample groups, determination of the dysregulated genes between two conditions, making
this feature essential to implement in a user-accessible manner in an interactive data analy-
sis system. EPISTEME implements a module for differential gene expression analysis with

user-defined settings (Figure 3.61).
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Figure 3.61: Differential expression and pathway enrichment analysis settings in EPISTEME

The Basal-rich and non-Basal-rich subcohorts of the TCGA-BRCA study as identified by
tSNE based RNA clustering on the top 500 most variable genes in the cohort is the pilot com-
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parison for showcasing differential gene expression analysis. Due to the strong separation of
these two subcohorts already with a top 500 gene based dimensionality reduction, they are
expected to be significantly different in terms of global gene expression profiles. The two
groups also show strongly different methylation profiles in top-5000 most variable probe based
dimensionality reduction analyses with all tested parameters of the two used dimensionality
approaches tSNE and UMAP (Figures 3.37 and 3.40) and consequently are very likely to stem
from a different methylation state arising from a different starting cell type. Therefore, differ-
ent transcriptional programmes are expected to govern these two cell types with a large number
of differentially expressed genes owing purely to gene identity. This hypothesis is confirmed
with a large number of significantly differentially regulated genes (Figure 3.62). Top outliers
include a number of well known genes such as ESRI, ARI, ERBB2, PGR, FOXCI, FOXAI and
GATA3. Dissecting further how strongly and with which profile these genes are differentially
expressed is possible with auxiliary ”Single-Phenotype Analysis Plots”, where the auxiliary
plot in Figure 3.62 shows the gene expression profile of the FOXA I gene, with shading colours
guiding subcohort identification. For this gene of interest, FOXA I, the observed profile shows a
strong and significant suppression of the two compared subcohorts with near perfect separation.
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Figure 3.62: Differential gene expression analysis between the Basal-rich and non-Basal-rich
subcohorts in the TCGA-BRCA study. Left: Differential gene expression volcano plot. Right-
top: user interaction features for a selected gene.Right-bottom: Auxiliary gene expression
plot for the FOXAI gene, where donors with pink-shaded backgrounds are in the Basal-rich
subcohort whereas the donors with light blue-shaded backgrounds are in the non-Basal-rich
subcohort.

Investigating the chosen genes ERBB2, ESRI, PGR and FOXCI (Figure 3.63) reveals the

following characteristics:
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ESRI expression follows a likely cell type dependent profile very similar to the previ-
ously discussed FOXAI gene with near perfect separation of the two compared subco-
horts.

PGR expression follows a likely cell type dependent profile, but not a cell-identity defin-
ing profile for these two subcohorts. Its suppression only in a subset of cases in the
Basal-rich subcohort is in support of the established knowledge that triple (ERBB2,
ESRI, PGR) negative breast cancer is distinct from the Basal-like subtype of breast can-
cer [535].

ERBB?2 expression follows a bimodal profile with high expressors exclusively observed
in ERBB2-amplified cases in the non-Basal-rich subcohort, suggesting a variant depen-
dent profile.

FOXCI expression follows a near-perfect separation similar to that observed in the FOXA [
gene, in the opposite direction. Its expression is exclusively, strongly and significantly
high in the Basal-rich subcohort. Due to its function as a developmental transcription
factor, it can be hypothesized to be a master regulator in the Basal-rich subcohort’s cell
of origin, which is in line with established knowledge regarding this gene and cell type
[536].
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Figure 3.63: ESRI, PGR, ERBB2 and FOXCI expressions across the Basal-rich and the non-
Basal-rich subcohorts in the TCGA-BRCA study, where donors with pink-shaded backgrounds
are in the Basal-rich subcohort whereas the donors with light blue-shaded backgrounds are in
the non-Basal-rich subcohort.

Selecting all genes showing between -3 and +3 log2-Trimean fold change in this compar-
ison and using EPISTEME’s integration to pathway enrichment analysis tools on the example
of MSigDB (Figure 3.64) shows the differentially expressed genes to represent known gene
sets capturing difference of Breast cancer types.
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Figure 3.64: Pathway enrichment analysis of differentially expressed genes between the Basal-
rich and non-Basal-rich subcohorts in the TCGA-BRCA study

EPISTEME offers a flexible differential expression analysis tool where users can determine
the statistical significance estimation strategy as well as the use of a outlier-robust or outlier-
sensitive fold change method. The results of this analysis are tightly coupled to intuitive user
interactions, which facilitates further exploration of outlier data points by auxiliary single-
phenotype plots or with integrations to external pathway enrichment analysis tools. Users can
go move from auxiliary single-phenotype plots to fully-featured single-phenotype plots in order
to view single genes with full detail including specific observations on detected variants such
as SVs.

For many computational biology or cancer omics researchers, differential expression anal-
ysis is probably the first application of subcohort comparisons that comes to mind. Here, it
is presented as the last of EPISTEME’s subcohort analysis features. The reason for this is
the connection to the next section, namely correlation analysis, which is a closely related and

complementary analysis to differential expression analysis.

3.3.10 Correlation Analysis in EPISTEME

Differential gene expression analysis identifies genes that are differentially expressed between

two conditions or subcohorts. A natural question that arises upon identifying genes that are
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differentially expressed if and how they are co-regulated. For instance, considering genes A
and B and subcohorts I and II, A and B can both be strongly differentially expressed between
the two subcohorts with both being exclusively highly expressed in I and vice versa in II. This
does not necessarily mean that all cases within subcohort I that express A medium-high, high,
or very high levels also express B with a similar pattern and vice versa. The existence of such an
agreement / correlation between two genes, regardless of a subcohort relationship, suggests co-
regulation where one of the genes might be activating the other or that they are co-activated by a
common upstream gene. The existence of an opposite relationship might suggest a suppression
of one by the other.

Such relationships can be studied by correlation analysis. EPISTEME analyses two mea-
sures for correlation analysis, visualizing them in a volcano-like plot: Linear correlation (Pear-
son Correlation), which estimates the accuracy of a linear model fit for the expression profiles
of two genes and rank-based correlation (Spearman Correlation), which estimates the consis-
tency of magnitude ranks for the same cases’ gene expressions for two genes of interest. Linear
correlation quantifies the strength of the co-regulation, and can be considered to be similar to
fold change. Rank-based correlation quantifies a rank-based consistency, and can be considered
to be similar to rank-based statistical significance. By default, EPISTEME visualizes correla-
tions as & = |ppearson| and y = PSpearman» Which creates a volcano-like plot analogous to
differential gene expression analysis volcano plots.

EPISTEME analyses correlations of quantitative variables versus gene expressions in a
cohort or confined to a selected subcohort of interest. The quantitative variables which are to
be used as correlation anchors can themselves be gene expressions or any other quantitative
metadata variables such as patient age or survival. Rank-based correlation analysis starts to
become unreliable when there are a large number of ties leading to tied ranks. EPISTEME
uses a shuffling based calculation of Spearman Correlations to alleviate this problem, where
the input expressions for the anchor gene are shuffled 2 % T'ies times up to a maximum number

of 100 iterations.

3.3.10.1 1-vs-all Correlation Analysis based on Gene Expression

The pilot analysis to showcase the correlation analysis features of EPISTEME is the correla-
tion of the gene FOXAI versus all other genes in the TCGA-BRCA study, confined to tumour
samples excluding normal tissue specimens. FOXAI constitutes an ideal showcase gene be-
cause its expression is nonzero for all samples and as a transcription factor, its expression is
expected to be highly correlated with its targets and regulators. Previously shown results in
the context of differential gene expression analysis in Section 3.3.9.4 suggest that the FOXC1
and FOXAI genes might be potent master transcriptional regulators of the Basal-like and Lu-
minal cell types of breast cancer, respectively. In order to investigate if these two genes are
indeed mutually exclusive in terms of transcript factor usage and what genes are co-regulated
by FOXAI, a correlation analysis is the appropriate tool.

Figure 3.65 shows very strong linear and ranked-based correlation and anti-correlation
scores in the global correlation profile analysis of the FOXAI gene, suggesting a role in direct
transcriptional regulatory activity. ESRI, GATA3, TTC6, TTCS8, AR are among the co-regulated
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genes, with PGR showing modest positive correlation. On the other hand, FOXCI, HAPLN3,
BCLIIA and FOXCUT are strongly anti-correlated.

The auxiliary helper plots for volcano-like correlation plots in EPISTEME are ”Two-Phenotype
Analysis Plots” described in Section 3.3.2.1, which provide an intuitive visualization of the two
correlated or anti-correlated gene expression profiles (Figure 3.65, where T7C6 shows a strong
positive correlation with FOXAI expression).
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Figure 3.65: Spearman and Pearson Correlations of all genes vs FOXAI expression in the
TCGA-BRCA study. Left: Correlation plot for genome-wide correlations of gene expressions
vs FOXAI expression, where he x-Axis shows the Pearson correlation coefficient whereas the
y-Axis shows the absolute value of the Spearman correlation coefficient. Right-bottom: auxil-
iary two-phenotype correlation plot with FOXAI as the anchor gene and TTC6 as a representa-
tive gene showing positive correlation.

Figure 3.66 shows the investigation of selected top correlated and anti-correlated genes
with "Two-Phenotype Analysis Plots”. The selected genes for strong positive correlation char-
acteristics are ESRI and GATA3 which show an high correlation with FOXAI but only where
FOXAI is high, and not for FOXAI-low cases which are enriched in the Basal-like subtype.
The same is true for the FOXCI and HAPLN3 genes where the anti-correlation characteristics

are only observed when FOXAI is active.
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Figure 3.66: Correlations of the FOXAI gene expression versus the expressions of the ESRI,
GATA3, FOXCI and HAPLN3 genes in the TCGA-BRCA study.

Overall, these results confirm the role of the FOXA[ as core transcription factor which gives
the Luminal reast cancer cell of origin its gene identity [537] [538] [539]. The anticorrelation
between FOXCI and GATA3 and ESRI has been investigated with molecular biological assays
[540], where the mechanism of action has been shown to be competition for GATA3 binding
sites. Furthermore GATA3 has been shown to act upstream of FOXAI [541], suggesting that it
could be the bridge that drives the anticorrelation between FOXAI and FOXCI.

3.3.10.2  I-vs-all Correlation Analysis based on Arbitrary Quantitative Data Fields

Similar to gene expressions, any quantitative metadata field can be used as an ”anchor” in a ’1-
vs-all” correlation analysis. The only restriction is that all quantities of the selected quantitative
metadata field should be non-negative. Figure 3.67 shows the ”1-vs-all” correlation analysis

where patient at diagnosis age is compared to all gene expressions in this cohort. Interestingly,
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ESRI shows the highest correlation in terms of ranks (Spearman) and is very close to be the

absolute top in terms of non-rank-based correlation (Pearson), where only the DBX2 gene
shows a higher anticorrelation coefficient. It should be noted that all correlations are rather

low, indicating a modest effect of patient age at diagnosis on gene expressions. The high

correlation with ESRI likely shows the effects of the younger age of Basal-like breast cancer
patients, which do have low ESRI expression. [542]
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Figure 3.67: Spearman and Pearson Correlations of all genes vs age at diagnosis in the TCGA-

BRCA study. Age at diagnosis is taken as a quantitative variable analogous to a gene’s expres-

sion values.

The correlation features of EPISTEME facilitate the study of mutually exclusive gene ac-
tivities or targets of transcriptional activators or repressors. It is a useful feature following
results of ”Variant-Expression Dysregulation Volcano” analysis where aberrantly activated or
suppressed genes can be investigated for direct downstream effects. It is also a useful feature
following results of ”Differential Expression Volcano™ analysis as presented here.
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3.4 Discussion

EPISTEME is a comprehensive omics data analysis and visualization tool offering a broad
range of visualization types building on simple, general visualizations to highly integrative vi-
sualizations with rich user interactions bringing together different omics data layers. It is aimed
to improve the analysis and sharing of omics data, facilitating the communication between
computational biologists/bioinformaticians and experts from biological backgrounds, by mak-
ing advanced data analysis tools easily accessible to a broad audience without programming
knowledge required. It runs in the web-browser with all analysis features running on the client-
side with high performance, which removes the need for intensive server-side computations.
Its interactions are intuitive and the create publication-quality, vector-based visualizations with
modifiable font settings.

Comparing EPISTEME in a self-assessed manner to its closest competitors (Figure 3.68),
one can say that it can still grow in terms of data analysis features (R2 has more exten-
sive survival analysis features, OncoScape has more diverse dimensionality reduction features
and a more interactive spreadsheet), visualizations(R2 and OncoScape have more advanced
Heatmaps, cBioPortal has offers Oncoprints) and data scope (R2 has support for epigenetics
data analysis). However, its integrative analysis features across omics data layers, and the
breadth of its interactive features such as highly interactive volcano plots with auxiliary plots
are currently not matched by any of its competitors. In particular, some of EPISTEME’s inte-
grative analysis features such as ”Variant-Expression Dysregulation Volcano Plots” and ™ Vari-
ant Mutex/Co-Occurrence Plots” are novel ways to visualize important omics data analysis
concepts.

Data analysis features XXXX | XXXX XXX
Data visualization features XXX | XXX XXX XX XXXX
Integrative omics analysis X X X XXXX
Client-side computing XXX XXX
Subcohort definitions X X XX XXXX
Rich user interactions X XX X X XXXX
Support for user-provided data | x X X

Epigenetics data visualization | x

Genome Browser X X XX XXX

Figure 3.68: A comparison of EPISTEME'’s features to its closest competitors

In addition to EPISTEME’s ability to capture established biological knowledge, its use as

an accessible tool to reach novel biological insights in the context of diverse disease types
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and hypotheses has not only been shown in the novel enhancer hijacking candidates in gastric
adenocarcinoma in this chapter, but also in a number of DKFZ projects which will be presented

in the next and final Chapter 4 of this dissertation.

3.4.1 Development Roadmap for EPISTEME

EPISTEME is a work under constant development. Thanks to the excellent availability of
genomics data from international consortia and the DKFZ Heidelberg’s wide spectrum of
projects, the flexibility of the D3.js framework under JavaScript, and the growing power of
SVG rendering and interactivity, it is a technically challenging but feasible and rewarding en-
deavour to implement new data types, visualizations and interactions into EPISTEME. The
following is a summary of planned near-term features and possible strategies for EPISTEME
in ascending order of estimated technical challenge of implementation. In general, for each
planned feature, the design effort starts with the classification of the data type as genomic vari-

ant, metadata information, or phenotype and deciding on an appropriate mode of visualization.

* Gene fusion data: Including gene fusion data in EPISTEME is an almost trivial task: fu-
sion genes are clearly genomic variants and each chimeric fusion transcript called from
RNASeq data can be represented as an SV and the gene labelling features shown in Sec-
tion 4.3.3.1 for V(D)J rearrangements can be used to clearly mark the candidate fusion
partners. Similarly, the fusion partner of a gene can be added in the single-gene visual-
ization presented in Section 3.3.2. This is considered a very near-term goal to add as a
data-layer to EPISTEME.

* Dynamic variant-expression dysregulation volcano plots: In their current implementa-
tion, the calculations in Sections 3.2.8.1 and 3.3.3 have a significant technical shortcom-
ing: due to the intensive computation required to run the statistical tests especially con-
sidering the presented sweep-based approach, EPISTEME displays pre-computed values
for the statistical significance and fold change values. Unfortunately, this design decision
takes away the potential ability of dynamically generating different volcano plots based
on subcohorts, a central concept in EPISTEME. This feature will need to be extended in
the short term to address this shortcoming.

* Proteomics data: Though its pre-processing steps such as normalization is not compa-
rable to RNAseq with regards to the requirements and algorithms [543], protein abun-
dance data in its post-processed state, is in principle not different from gene expression
data from a technical perspective. The same SQL-based data storage and single-gene
or cohort-wide-volcano plot visualizations can be directly adopted to be used for pro-
teomics data as phenotype data. The main issue here is the availability of data: none
of the ICGC or DKFZ cohorts used in the development of EPISTEME had a satisfac-
tory proteomics component apart from some TCGA cohorts with a very limited number
of proteins measured by reverse phase protein lysate microarrays, a targeted technique
which is not suitable for discovery analysis. Once a cohort is available with a sufficiently
rich proteomics component in addition to genomics and transcriptomics data tracks, it

will be straightforward to integrate proteomics data into EPISTEME with a simple set of
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features focusing on protein abundance. Such plans are already under way in the DKFZ
Neuroblastoma Genomics research programme.

Germline variants: The challenge of including germline data in EPISTEME is not a
technical challenge within EPISTEME itself but rather upstream, in the definition of
such variants. In general, germline analysis is technically more challenging because it
is more difficult to filter variant calling artefacts due to the absence of a paired “nor-
mal/control” data, and the difficulty of deciding what is a rare germline variant of likely
significant biological impact. Given the availability of “clean” germline variant data,
the existing variant visualization and analysis of infrastructure can be adapted to cover
germline variants. Currently, there are efforts under way to improve the variant calling
algorithms used in [211] and in this version of EPISTEME to call rare germline small
variants of likely functional impact, after which their results will be ported into EPIS-
TEME giving users to run somatic-only, germline-only and somatic-germline-merged
integrative variant analysis.

Methylation data: Inclusion of methylation data in EPISTEME is an interesting chal-
lenge due to the definition of the data class and the diversity of data sources: First,
methylation data can be treated both as genomic variants as in Variably Methylated Re-
gions(VMRs) and as phenotypes such as the methylation value of a single probe of a
methylation array. Second, methylation data can originate either from targeted methy-
lation arrays highly enriched for regulatory regions and gene promoters, or the genome-
wide assay Whole-Genome Bisulfite Sequencing (WGBS).

For cohorts where only methylation array data is available, EPISTEME could adopt
a phenotype-centric approach, and treat each probe as a gene in a genomic variant-
phenotype integrated analysis, where the probe methylation for a given patient would
be the phenotype akin to gene expression for a given patient. However, as there are
many more probes (450.000 to 1.000.000 depending on the technology) than genes, it
will be a challenge to maintain the performance of the SQL backend of EPISTEME.
For cohorts where only WGBS data is available, VMR calls can be sourced externally as
with any other class of genomic variants, and its recurrence can be analysed on a TAD-
basis. For WGBS, in the absence of specific probes, deciding on what values to use as a
phenotypic readout for each gene is an open question.

With adding methylation data into EPISTEME, the challenges are mostly conceptual
and technical as data availability is already good and is getting better with the increas-
ing availability of WGBS assays. For data visualization, the previously published tool
MethCNA could offer design ideas [544].

Improved analysis of survival data: In its current state, EPISTEME’s survival analysis
features are fairly rudimentary, and better statistical tests and visualizations are needed.
Correlation of patient survival with genomic variants is prone to the influence of con-
founders: i) age of diagnosis, ii) disease stage at diagnosis, iii) disease subtype, iv) eth-
nic background, v) treating centre and treatment strategy.. The implemented survival
analysis features should use appropriate methods to account for such confounders. R2’s

advanced survival features could offer design ideas.
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* Analysis of user-provided cohorts: Ultimately EPISTEME could serve the cancer ge-
nomics community not only by hosting public datasets but also by providing a service
for processing and visualizing user-provided private datasets. Due to time and manpower
constraints, this interesting but difficult challenge has not been explored and is not a short
or mid-term priority as accepting user input requires i) the implementation of strong se-
curity measures to protect the data on the EPISTEME server and the user’s private data
from leaking, ii) sanitizing the user input based on a threshold of maximum acceptable
cohort size or variant data size, iii) providing parsers for any realistic combination of
variant callers rather than only mpileup, platypus, ACESeq and SOPHIA, iv) either hav-
ing substantial server-side processing capacity dedicated to processing user inputs or a

huge effort to implement the whole stack of cohort processing in JavaScript.
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CHAPTER 4
SOPHIA-EPISTEME INTEGRATION IN DKFZ CANCER GENOMICS PROJECTS
REVEALS NOVEL DISEASE SUBTYPES AND INSIGHTS ACROSS CANCER
TYPES

4.1 Introduction

We introduced and reported results from a fast, efficient and sensitive Structural Variant(SV)
detection algorithm SOPHIA (Chapter 2), and a comprehensive integrative and interactive
omics data analysis and visualization tool EPISTEME (Chapter 3). The focus in describing
each tool was their design motivations, design principles, major features, unique advantages
and potential avenues for improvement. In both chapters, each SV detection, omics data anal-
ysis or omics data visualization concept was described on established cohorts, or individual
observations where the concept was already established. We thus aimed to reduce the com-
plexity of concepts’ presentation by not introducing new concepts and new biological findings
simultaneously. Furthermore, the biologically established (”pilot”) observations also served as
a confirmation of the validity of the used analysis and visualization approaches.

This chapter presents novel findings using the SOPHIA algorithm and the EPISTEME
platform from unpublished projects of the DKFZ cancer omics research programme with an
integrative omics data analysis strategy. Making use of the well-described concepts of SVs,
enhancer hijacking, EPISTEME’s volcano plots, differential gene expression analysis, gene
correlation analysis, variant mutex analysis, dimensionality reduction (e.g. tSNE) features,
a step-by-step dissection of three different diseases is shown, yielding novel subtypes with
potential implications on disease biology and treatment. The projects are organized in three

case studies:
1. Late-stage, multi-refractory multiple myeloma, a haematological adult malignancy

2. Acute Myeloid Leukaemia (AML) with Chromosome 7q-monosomy (7q-AML), a haema-

tological adult malignancy
3. Neuroblastoma (NB), a solid paediatric peripheral nervous system malignancy.

In each of these projects, I served as a leading bioinformatician contributor, having responsi-
bilities in data pre-processing, quality control, processing, interpretation and presentation. In
this dissertation, the sole focus is on the key findings made with the SOPHIA-EPISTEME in-
tegration, which allowed us to introduce new disease subtypes and put forward hypothesis on

their development.

4.2 Common Methods

All projects described in this section used Whole Genome Sequencing (WGS) and RNA Se-
quencing (RNA-Seq) protocols based on the Illumina HiSeq X-Ten System. The sequencing
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protocols, variant detection pipelines, gene expression counting methods have recently been
described in [464]. All protocols are run on the DKFZ’s One Touch Pipeline (OTP) data pro-
cessing platform [464]. Normalization of RNA-Seq data was executed as described in Section
2.2.11.

4.3 Case Study 1: Late-Refractory Multiple Myeloma has a Diverse Immunoglobulin
and Oncogene Rearrangement Landscape

4.3.1 Introduction

Multiple Myeloma (MM) is a haematological malignancy of older adults defined by the clonal
proliferation of plasma cells of the bone marrow [545]. Plasma cells are a type of immune
(white blood) cells originating from the bone marrow which specializes in producing large
amounts of antibodies. They are differentiated from Memory B Cells, a type of immune
cell which recognize, internalize and store foreign antigens to define an immune response
[546]. In their de-differentiated, “plasmablastic” state, plasma cells divide rapidly, but later
mature into differentiated plasma cells. Dysregulation of this process can lead to a spectrum
of malignancies: MM starts with the asymptomatic phases Monoclonal Gammopathy of Un-
determined Significance (MGUS) [547] and Smouldering (asymptomatic) Multiple Myeloma
(SMM) [548] [549] before progressing into a full-blown MM and possibly extramedullary,
soft tissue plasmacytoma [550] and Plasma Cell Leukaemia (PCL) [551] observed in late-stage
patients.

In its progressed, MM form, this family of plasma cell malignancies are lethal [552], and
pose a clinical challenge despite their rarity. This has fuelled a great interest in investigating the
molecular mutations and mechanisms in MM development, revealing a complex and diverse
set of driver mechanisms and mutations [553], [554], [555], [556]. These omics-based studies,
along with preceding work, contributed significantly to the understanding of MM, where we

now know the main molecular hallmarks of this disease:

* Immunoglobulin rearrangements activating the CCNDI1, MAF, NSD2(MMSET), MYC

oncogenes [557]
* “Hyperdiploidy” (recurrent trisomies of chromosomes 3, 5,7, 9, 11, 15 and 19) [558]
» Somatic rearrangements activating the MYC oncogene [559]
* Activating point mutations on the RAS oncogene family [560]
* Activating point mutations on the BRAF oncogene [561]
* Deactivating mutations of TP53 [562]

* Loss of FAM46C as a tumour-suppressor, often concomitant with MYC activation as part

of a rearrangement [563]

* Homozygous Losses of RBI, FAFI and TRAF3 tumour suppressors [217] [564]
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Along with a better understanding of MM, more advanced treatment strategies (including
targeted treatments) evolved such as proteasome inhibition (Bortezomib [565], Carfilzomib
[566]), immunomodulation (Thalidomide [567], Lenalidomide [568], Pomalidomide [569]),
CD38 Antibodies [570], and autologous stem cell transplantation [571]. These improved
therapies statistically significantly improved survival [572] [573]. Despite these improve-
ments, the current clinical management and prognosis of MM remains as an incurable disease
[574]. The current treatment options inevitably all lead to relapses and the condition called
Relapsed/Refractory Multiple Myeloma [575]. Understanding the mechanisms of relapse in
RMM will be key to further improving survival in MM and potentially making it a curable or
chronic but non-lethal disease. With this motivation, we investigated a cohort of patients which

were refractory to multiple treatment approaches using genomics and transcriptomics assays.

4.3.2 Study Design and Methods

The RMM sequencing project funded as the Heidelberg Institute for Personalized Oncology
(HIPO) HIPO-067 Project, is coordinated by Prof. Marc-Steffen Raab, Dr. Nicola Giesen (née
Lehners) and Dr. Matthias Schlesner. In this project, we collected a cohort of MM patients
that were refractory to at least two regimens of immunomodulatory agents and proteasome
inhibitors or CD38 antibody based immunotherapy. The cohort was selected with or without
prior autologous stem cell transplantation.

A cohort of 44 patients fulfilling these conditions were selected, and sequenced for WGS.
39 Patients with sufficient DNA quality and high quality sequencing data were included in
the study, of which 37 had sufficient RNA quality for RNA-Seq. Just for this dissertation,
this cohort was later expanded by one MYCN expressing patient which did not fulfil the study
conditions (died shortly after initial diagnosis during initial therapy before relapses rather than
being multi-refractory).

The aims of the study were to determine recurrent (novel) drivers and mutational processes
of (R/)RMM. To this end, we also obtained and processed the SMM cohort presented in [549]
for comparisons underlining the differences of early and late stage MM. These comparative

analyses are outside the scope of this dissertation.
4.3.3 Results

4.3.3.1 Immunoglobulin and Oncogene Rearrangement Landscape of Multiple Myeloma

We first investigated the mutational landscape of RMM using a EPISTEME Circos plot with
default settings (SV recurrence, CNV recurrence with no cnLOH, Functional Small variant
Recurrence). As shown in Figure 4.1, the complex mutational landscape of RMM encompasses

the diverse spectrum of variants described in Section 4.3.1.
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Figure 4.1: Mutational landscape of the HIPO Refractory Multiple Myeloma study. Recurrence
layers from outer to inner correspond to (the default settings) gene-based functional small
variant recurrence, TAD-based copy number variant recurrence, TAD-based SV recurrence
(1-TAD offset).

A hallmark of many haematological malignancies if aberrant, oncogenic V(D)J recom-
binations, which correspond to Immunoglobulin locus translocations in B-Cell malignancies
like RMM. In RMM, CCNDI, MAF, NSD2, MYC are recurrent and known hallmark targets
of immunoglobulin translocations. Figure 4.2 shows the immunoglobulin rearrangement land-
scape of RMM, where primary rearrangements are marked in orange and secondary rearrange-
ments are marked in purple. In our RMM study, we observed recurrent immunoglobulin re-
arrangements targeting CCNDI, NSD2, MYC, but not MAF. Notably, we observed recurrent
immunoglobulin rearrangements on the MYCN oncogene which were 2/2 concomitant with
IGH-NSD?2 translocations, of which one was definitely a two-step translocation happening af-
ter the initial NSD2 event. Identifying the importance of this atypical finding, we added one
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IGK-MYCN (direct, without NSD2 involvement) case from an independent MM study which
does not fulfil the conditions of the RMM study, yielding overall 3 cases where MYCN is
targeted by immunoglobulin rearrangements. Remarkably, all IG rearrangement targets ex-
cept for CCNDI(8), NSD2(6), MYC(3) and MYCN(3) were sporadic, with only single pa-
tients. Nevertheless, these singletons included relevant genes for haematology and tumour de-
velopment like PAX5(activating), NFKBI (activating), TAF8(deactivating), EZH I (truncating),
SLAMF I (truncating).

RMM_ext-DKFZ filt
(38/40)

Figure 4.2: Immunoglobulin rearrangement landscape of the HIPO Refractory Multiple
Myeloma study (excluding 2 cases with complex rearrangements of the IG loci). IG rear-
rangements are shown as orange Bézier curves for direct IG translocations and purple Bézier

curves for indirect IG translocations.

Figure 4.2 is prepared with the omission of two cases which showed complex rearrange-
ments involving the IGL and IGK loci, shown in Figure 4.3. In such cases, it becomes difficult

to assign potential targets of the rearrangement, and to predict downstream effects of the IG
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superenhancer’s translocation.

un
RMM_ext-DKFZ: som 1 p RMM_ext-DKFZ:
(H067-UMWUAS/40) - (H067-ZZQ3UP/40)

Figure 4.3: Two cases with complex rearrangements involving the IGL and IGK loci in the
HIPO Refractory Multiple Myeloma study. It was not possible to determine the original, direct

target of the initial catastrophic event involving the respective IG loci.

4.3.3.2 Enhancer Hijacking Events in in Multiple Myeloma

Next, we investigated the transcriptomic changes observed due to genomic variant existence,
with EPISTEME’s default settings (SVs are assumed to affect genes up to 1 TAD away from
the initial hit, amplifications, homozygous deletions), with results in Figure 4.4. We observed
strong and recurrent upregulation of the hallmark oncogenes MYC, NSD2, FGFR3, CCNDI
and MYCN (Figure 4.5, MYCN not shown). Cases with IGL and IGH translocations were
observed to recurrently suppress /GLLS5 and FAM30A, respectively. We also observed a recur-
rent downregulation of the TRAF3, RBI and HLA-DRA and HLA-DRBI genes. Our analysis
yielded no recurrent targets of enhancer hijacking apart from the listed hallmark immunoglob-
ulin rearrangement partners. Sporadic cases of enhancer hijacking includes genes like IGF2
and FOXRI. IGF2 was shown to be a recurrent target of enhancer hijacking across multiple
cancer types [100], whereas FOXRI was shown to be a recurrent target of enhancer hijacking

in paediatric neuroblastoma [461] and B-cell lymphoma [576].
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Figure 4.4: Genomic variant driven transcriptomic dysregulation landscape of the HIPO Re-
fractory Multiple Myeloma study: Strong and recurrent upregulation of the hallmark oncogenes
MYC, NSD2, FGFR3, CCND1 and MYCN. Recurrent downregulation of the TRAF3, RBI and
HILA-DRA and HLA-DRBI genes
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Figure 4.5: Hallmark immunoglobulin rearrangement targets MYC, NSD2, FGFR3 and CCND1
as targets of enhancer hijacking in the HIPO Refractory Multiple Myeloma study. SV-positive
cases are displayed with red (off-gene SV hits) or black(gene-body SV hits) symbols, whereas

SV-negative cases are coloured gray.

4.3.3.3 MYCN is an Oncogene in Multiple Myeloma, Potentially Defining a Subgroup with

Extramedullary Manifestations and Dismal Prognosis

Having identified recurrent immunoglobulin translocations targeting the MYCN oncogene and
having established that these rearrangements lead to the overexpression/activation of MYCN,
we investigated the correlation between MYC and MYCN expression. Figure 4.6 shows three
levels of MYCN expression and three levels of MYC expression: high-MYCN expressors are
the three IG translocated cases, low-MYCN expression seems to be the normal state of this cell
type, and there is a third, unexplained group of 2 intermediate-level MYCN expressors. As

for MYC, there is a low-expressor group, intermediate-expressor group and a high-expressor
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group which is enriched for somatic structural variants. The correlation of MYC and MYCN re-
veals a strong co-occurrence pattern between high MYCN expressors and low MYC expressors,
strongly suggesting that these genes not only replace but also strongly suppress the other. A
similar characteristic is observed in paediatric neuroblastoma but not medulloblastoma group
4 with MYCN amplification (Figure 4.7). This behaviour does not extend to the intermediate-
level expressors, suggesting that MYCN is not active, hence not replacing MYC, in these cases.

RMM_ext-DKFZ: MYC (-) vs MYCN (-)

"

Figure 4.6: The mutually exclusive regulation of MYC and MYCN activity in the HIPO Refrac-
tory Multiple Myeloma study.

207
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m
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Figure 4.7: Transcriptomic correlation of the MYC and MYCN oncogenes in paediatric neurob-
lastoma (GPOH) and medulloblastoma group 4 (ICGC). In neuroblastoma, MYCN and MYC
are in an anticorrelated relationship but not in medulloblastoma group 4.

The only case expressing low levels of MYC without high-level MYCN activation in Figure
4.6 has a MAX mutation. MAX forms a heterodimer with both the MYC and MYCN oncogenes
and their mutations have previously been shown to lead to low MYC expression in MM [577].

Next, we analysed the transcriptomic effects of MYCN activation in RMM using both rank-
based Kruskal-Wallis test and Student’s T-test (Figure 4.8). The differential gene expression
analysis was performed while ignoring the single MAX mutant case and the two intermediate
MYCN expressors, with the motivation of purely comparing the main HighMYCN-LowMYC
and LowMYCN-HighMYC states. The results suggest modest changes with respect to signifi-

cantly and strongly differentially expressed genes.
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Figure 4.8: Transcriptomic effects of MYCN activation in the HIPO Refractory Multiple
Myeloma study, with Kruskal-Wallis Test (left) and T-test(right). Comparison of the 3 MYCN-
activated cases to the rest of the cohort excluding the 2 MYCN-intermediate cases and the 1
MAX-mutant case, thereby focusing on MYC-high and MYCN-low cases. The entry for MYCN
gene is masked from the right panel to improve readability.

Figure 4.9 shows the correlation analysis of MYCN expression with selected genes showing
strong differential expression characteristics.

CDA40 is a B-cell associated antigen highly expressed in MM, with potential functions in
cell-cell interactions [578] and cell migration [579]. Remarkably, because of its high expres-
sion levels in MM, it was recently presented as a potential immunotherapeutic target [S80] via
oncolytic virotherapy. If MYCN-activated MM is indeed suppressing CD40 expression, this
therapeutic strategy would meet a predictable resistance mechanism.

FAM174A showed a strong and consistent downregulation upon MYCN activation, but as
a gene it remains understudied, apart from a recent proposal as a gene fusion partner in early
onset colorectal cancer [581].

ITGA7 was previously shown to be a cancer stem cell marker in [582] in oesophageal
squamous cell carcinoma and its higher expression in Glioma was shown to be correlated with
poorer survival [583].

ATPI0A is a plasma membrane protein which flips the phospholipid bilayer of plasma
membranes and promotes increased endocytosis and cell bending [584], where the authors also
discussed potential implications in cancer cell invasion. In our RMM cohort, its upregulation
correlates with structural variants, low-order copy number gains, nonsynonymous mutations
and most strongly MYCN expression, potentially showing a diverse range of activation mech-
anisms. As both high-level MYCN expressors in our RMM study had extramedullary plasma-
cytoma, it is possible to suggest that the increased migratory capacity conferred by ATP10A

upregulation can facilitate extramedullary invasion of malignant plasma cells.
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The genes presented here were chosen with consideration of the MAX mutant case in order

not to bias the analysis towards effects of low MYC expression without influence from the

MYCN gene itself.
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Figure 4.9: CD40, FAM174A, ITGA7 and ATP10A as putative targets of MYCN in RMM shown

on two-phenotype correlation plots with the MYCN gene as the anchor.

Next, we investigated if MYCN activation can be observed in a larger cohort of early-stage

MM, and if it has an influence on survival in the context of early-stage disease. To this end,

we used the R2 instance of the dataset desribed in [585], where authors did a RNA microarray

analysis on a cohort of 542 cases. The results on Figure 4.10 both confirmed the existence of

a small subset of MYCN overexpressing cases in this larger study (8/542 vs 2/39 in our RMM

study), and that MYCN expression correlates with significantly lower survival, without any

finer classification of the non-MYCN expressor cases.
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Figure 4.10: MYCN activation leads to significantly poorer survival in an independent and

larger Multiple Myeloma project [585].

Finally, we investigated a potential explanation of mechanism for the 2 intermediate MYCN
expressor cases. We visualized the 2-patient subcohort as a Circos plot followed by an appli-
cation of an EPISTEME mutex analysis comparing these two cases to the rest of the cohort
(38 cases). Both cases showed small mutations on HOXA4 (1 frameshift deletion, 1 nonsyn-
onymous mutation), a gene which was not mutated in any other patient in this study. There
is, however, as of 07.2019 no published connection between the HOXA4 and MYCN genes
suggesting co-regulation or binding.

_RMM _ext-DKFZ(40) intermediate MYCN: 2 vs NOT-intermed MYCN: 36

RMM _ext HOXA4 (7p15.2) 8q11.23 Gain
e

q11.22 Gain
. . ——
-DKFZ_intermediate_MY!

Figure 4.11: Intermediate-level MYCN expressing and not MYC-suppressing cases exclusively
have HOXA4 mutations in the HIPO Refractory Multiple Myeloma study.

211



4.3.4 Discussion

We investigated using EPISTEME, genomic and transcriptomic sequencing data from a medium-
sized cohort of highly-selected and highly-refractory MM patients, who underwent disease
relapse under at least 2 treatment strategies. We showed a diverse immunoglobulin translo-
cation landscape with translocation partners of relevant function for MM. We showed a lack
of rare, but recurrent enhancer hijacking events, instead emphasizing the established hallmark
oncogenes and tumour suppressors as the only recurrently dysregulated genes with somatic
genomic variants as the dysregulation mechanism.

We presented MYCN as a rare target of IG rearrangements and consequent enhancer hijack-
ing. MYCN has only on one instance been discussed in the literature as a potential oncogene
in MM: In [586], the authors discovered rare rearrangements of IG loci targeting the MYCN
locus, mentioning a cell line named PE-2 as a prototypical example of such rearrangements.
As of 07.2019, PE-2 is not commercially available and no other studies have been published
using this cell line. The authors also used the dataset described in [585] to underline the rarity
of MYCN expression in MM, but did not proceed to do further analyses on its putative targets.

More samples are needed to dissect the true influence of MYCN and to what extent the tran-
scriptomic dysregulation is due to MYC downregulation and to MYCN activation. The analysis
presented here suffered from low sample sizes (2 in the publication cohort, 3 in this disserta-
tion), and a comparison with a larger MAX-mutant control cohort with low MYC expression
and low MYCN expression would have been very valuable. Another issue in our setting is the
existence of IGH-NSD2/MMSET rearrangements in 2/3 of the MYCN expressors, which adds
another confounder to any analyses investigating MYCN’s true effects in MM. Our study co-
ordinator colleagues created a cell line from one of the MYCN expressor patients, generation
of other such cell lines would undoubtedly be an excellent first step in developing a mecha-
nistic understanding of MYCN function in MM, in the long-run allowing the rational design of

treatment strategies [S87].

4.4 Case Study 2: The MNX1 Oncogene is Activated by Recurrent CDK6-NOM]1 Rear-
rangements in chr7q-Monosomy Acute Myeloid Leukemia

Acute Myeloid Leukaemia (AML) is a haematological malignancy of myeloid cells. Mature
myeloid cells encompass granulocytes and monocytes, which are differentiated from a common
myeloid precursor cell type [588]. AML arises from these myeloid precursor (or stem) cells,
where they are blocked from maturation and clonally expand and proliferate due to diverse
somatic mutations.

The established World Health Organization (WHO) classification of Adult AML [589]

1. AML with certain genetic abnormalities,
2. AML with myelodysplasia-related changes,
3. AML related to previous chemotherapy or radiation and

4. AML not otherwise specified (NOS).
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Of these, only the NOS “subtype” is defined by histopathological/morphological features.
AML currently has the following recognized somatic alterations in the classification of AML:

1. AML with a translocation between chromosomes 8 and 21 t(8;21) involving RUNXI-
RUNXITI fusions [590],

2. AML with t(16;16) or inv(16) involving CBFB-MYH 11 fusions [196],

3. Acute Promyelocytic Leukaemia (APL) involving PML-RARA fusions [195],
4. AML with t(9;11) involving KMT2A-MLLT3 fusions [591],

5. AML with t(6:9) involving DEK-NUP214 (formerly DEK-CAN) fusions [592],

6. AML with a t(3;3) or inv(3) involving RPNI-MECOM (formerly RPNI-EVII) fusions
[593],

7. Megakaryoblastic AML (AMKL) t(1:22) involving RBM15-MKLI fusions ,
8. (Provisional) AML with BCR-ABLI (formerly BCR-ABL) fusions [594],
9. (Provisional) AML with NPM I mutations [595],

10. (Provisional) AML with biallelic CEBPA mutations [596],

11. (Provisional) AML with mutated RUNXI gene [597].

Apart from these recognized, molecular subtype defining somatic genomic alterations,
AML has a diverse landscape of genomic variants as investigated using genome sequencing
in [598] and [483]. Cytogenetic and mutational classification as well as mutational status of
significant genes are now accepted to be a rational predictor of treatment responses [599],
where it was suggested to incorporate the mutational status of NPM1, FLT3, CEBPA, TP53,
SRSF2, ASXLI, DNMT3A and IDH?2 into prognostic guidelines.

Another aspect of AML biology is chromosomal imbalances, and karyotype complex-
ity. Chromosome arm level or focal losses involving known tumour suppressors is a central
theme in tumour biology, where haematological malignancies are no exception [600]. Com-
mon chromosome arm losses such as 5q, 7q have been associated with secondary Myelodys-
plastic Syndrome or AML caused by prior treatment of other conditions such as lymphoma
[601], [602], [603]. Among these, chromosome 7q losses are observed both in de novo and
treatment induced AML [604] and have been of particular interest due to their commonness
[605],[604],[606] and a lack of a strong and validated tumour suppressor candidate, with mul-
tiple having been proposed such as CUXI and EZH?2 [607], [608], [609]. Recently, successful
responses to demetyhlating agents were reported in AML with chr7q loss or chr7 total loss
[610], prompting interest in the roles of key epigenetic genes such as EZH2 and METTL2B on
commonly deleted segments in AML with chr7q-monosomies.

According to the WHO classification of AML, most subtypes of AML are defined by bal-
anced structural rearrangements leading to fusion genes. The WHO classification recognizes

only the most commonly encountered fusion genes, while there are many more rarer balanced
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translocations and gene fusions observed in larger cohorts [611]. A notable subset of such
rare translocations are those encountered in paediatric AML, which are rare in childhood AML
and very rare to non-existent in adult AML and are not recognized as bona fide subtypes of
AML. One of these rare translocations enriched in paediatric AML is the t(7;12)(q36.3;p13.2)
ETV6-MNX] fusion gene. This translocation is observed in a rare subtype of infant AML, with
implications of poor prognosis [612]. Motor Neuron Homeobox 1(MNX1) is a homeobox gene
of the Antennapedia (ANTP) class and Hox-Like (HOXL) family, while originally renamed
HLXB9/HBY, it was later renamed to MNX1 after being classified as the sole member of a gene
family [613]. Its primary function is as a key player in motor neuron differentiation [614],
[615] [616]. In the haematological setting, the roles of MNXI overexpression in t(7;22) in-
fant AML have been investigated in multiple studies, putting forward mechanisms on altered
cell-cell interactions [617] and blockade of haematopoietic differentiation [618].

In this study, we addressed the open question of how interstitial chromosome 7q losses
contribute to the development of AML. Starting with the hypothesis of an elusive tumour sup-
pressor gene residing on chr7q, we designed a project to use the power of WGS on a larger
cohort of chr7g-monosomy patients to study SVs in addition to the coding regions analysed
by the more commonly established WES. Our investigation of this question did not reveal a
recurrently mutated tumour suppressor in a double-hit process, but rather yielded the MNX/
oncogene known from paediatric AML as the putative driver of a subset of AML cases with
chromosome 7q losses via an enhancer hijacking process. With a novel mechanism of enhancer
hijacking via CDK6-NOM|1 rearrangements, the neighbour gene to MNX1, without the direct
involvement of the MNXI gene body, MNX1 is activated by the enhancer of the constitutively
active CDK6 gene. We show that MNX1 expression is tightly regulated and repressed in AML
and only activated by recurrent structural variants targeting chr7q36.3, yielding to significant
and global changes in gene expression patterns, in line with a differentiation block hypothesis,

but with a novel list of key components of haematopoietic regulation being dysregulated.

4.4.1 Study Design and Methods

The chr7q-monosomy AML sequencing project funded as the HIPO-030 Project, is coordi-
nated by Prof. Christoph Plass, Dr. Daniel Lipka and Prof. Konstanze Déhner (University of
Ulm). 19 adult AML cases were collected with matching normal blood samples and sequenced
with WGS and RNA-Seq with the following characteristics: 5 normal karyotype controls, 2
isodicentric 7p cases, 2 case with a balanced translocation on chr7q leading to an aberrant kary-
otype and 10 cases with partial chr7q losses. Cases with centromere-to-telomere full losses of
the chromosome 7q arm were not collected in this project. RNA Sequencing was run on 25
cases, including 6 cases without sufficient DNA quality for WGS.

Following the identification of the MNX/ oncogene as a putative key driver in a subset of
partial 7q-monosomy cases additional AML cases expressing MNXI were collected: 2 pae-
diatric t(7;12)(q36.3;p13.2) ETV6-MNXI cases, the GDM1 adult AML cell line with a MYB-
MNX]1 rearrangement, 1 MNXI expressing AML case with claimed normal karyotype, 2 cases
with MNX1 expression and cytogenetically detected chr7q losses. Unfortunately none of the
cases in the extension cohort have matching normal blood available. Of these cases GDM1 was
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not submitted for RNA-Sequencing due to concerns of lack of comparability with patient data,
1 case is currently being RNA-sequenced, the remaining 4 did not have sufficient RNA quality
for RNA sequencing.

4472 Results

4.4.2.1 Commonly Deleted Segments on the chr7q do not Reveal a Clear Tumour Suppressor
Gene Candidate for AML

We first investigated the somatic genomic variant landscape of the described AML cohort using
EPISTEME'’s cohort-wide Circos plot feature (Figure 4.12), which showed recurrently deleted
segments on chr7q, but no recurrent functional small mutations on any genes residing on the
commonly deleted segments. Expanding the analysis to further mutation types such as direct
gene hits revealed the CDK6, NOM1 and CNTNAP2 genes as the only candidates for direct
involvement along with the likely artefacts MUCI17 and TECPRI. The literature and our ex-
perience with the CNTNAP2 gene from different diseases suggests that it is a very large gene
prone to passenger mutations and fragile site loss based SVs [619]. Because CDK6 and NOM 1
form deletion boundaries, they do not qualify as ’second-hit” candidates for a tumour suppres-

Sor gene.
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Figure 4.12: Mutational landscape of the HIPO 7q-AML study with 8x enlargement of chr7q.

Left: only functional small variants on the outermost variant recurrence layer, Right: functional
small variants, UTR variants, upstream/downstream gene variants and direct SV hits on genes.
For both plots the middle recurrence layer denotes TAD-based CNV recurrences and the inner

recurrence layer denotes TAD-based SV recurrences.

Based on these observations, we concluded that there is likely no common tumour sup-
pressor akin to 7P53 or VHL that is being deactivated in a biallelic manner on the q arm of

chromosome 7 in AML, while not ruling out a role for haploinsufficiency for any genes on the
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commonly lost chr7q segments.

4.4.2.2 MNXI activation by recurrent CDK6-NOM1 rearrangements Defines a Subset of
chr7g-Monosomy AML

We then investigated in EPISTEME the genomic variant driven transcriptomic dysregulation
landscape of our AML cohort with two strategies, including and excluding the effects of
lower-order copy number gains and losses. Apart from known targets of dysregulation such
as MYHI1, CBFB, BMII, SPAG2 (MLLTI0 neighbour), this analysis revealed MNXI as a re-
current target of strong upregulation, which was upon closer investigation revealed to be a total
activation, suggesting total repression in normal conditions with activity entirely dependent on
distal effects of SVs (Figure 4.14). The MNX]I activating SVs were in all cases large deletions
fusing different introns of the CDK6 and NOM I genes in noninverted orientation. As the CDK6
and NOM1 genes reside on opposite strands, this gene fusion does not yield a viable chimeric
fusion, as expected.
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Figure 4.13: Genomic variant driven transcriptomic dysregulation landscape of the HIPO 7q-
AML study. Left: analysis only with direct or nearby SV effects, amplifications and homozy-
gous deletions with the rank-based Kruskal-Wallis test, right: analysis including lower-order

copy number changes with the T-test providing better separation of the genes on chr7q.

216



7qAML-DKFZ: MNX1

(]
[
[
[
°®
9
[ ]
[ ]
(]
L
(]
°®
°®
[
°®

IMLA-0E0H |
XAHIN-0E0H 1
XOINI-0E0H T
Z[YINS-0E0H |
SMED-0E0H |
AVIA-0EOH
65X0-0E0H |
0LvQ-0E0H
£ATL-0E0H
Z4[54Z-0E0H |
INLEDIT-0EOH
NLNE-0EOH |
SAE[0E0H 1|
4aL9-050H |
DL8Y-0E0H
[619-0£0H |
d488-0£0H |
6LIN-0EOH
DANZ-0£0H

Figure 4.14: MNX1 Activation in the HIPO 7q-AML study. The normally repressed expression

of MNX1 is recurrently activated in three cases with off-gene SV hits, denoted by red circles.

Further analysis of lower-order copy number alterations revealed multiple genes with strong
separation of the chr7g-monosomy and chr7g-wild-type cohorts with similar patterns with ex-
pression levels significantly falling but not leading to total suppression. Among these outliers,
EZH2, FASTK, ZNHIT1 and METTL2B are shown in Figure 4.15 due to their functions in

tumour development and epigenetic regulation.
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Figure 4.15: Lower-order copy number losses (green lower circles) leading to downregulation
of EZH2, FASTK, ZNHITI and METTL2B in the HIPO 7q-AML study

Next, we used the described extension cohort, expanding the cohort of MNXI expressing
cases from 3 to 9. Figure 4.16 shows the diverse activation mechanisms of the MNX/ oncogene
in paediatric and adult AML: we hitherto collected 5 cases using the CDK6 enhancer of which
4 cases have the NOM1 gene as deletion partner, 2 cases using the ETV6 enhancer (paediatric
t(7;12) AML), 1 case using the MYB enhancer (GDM1 adult AML cell line), and 1 particularly
interesting case using the T-cell receptor beta locus as an enhancer. This last case was initially
annotated as a "normal karyotype AML” according to clinical cytogenetic analysis because the
loss of the segments between chr7q34 and chr7q36.3 were too subtle for classical cytogenetics.

Furthermore, the use of the T-cell receptor beta locus was unexpected in itself due to its known
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rarity in AML [620].
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Figure 4.16: MNX] activation by diverse enhancer partners and SV mechanisms in the HIPO
7q-AML study. We identified 4 distinct enhancers that are hijacked by MNX/, in order of
frequency: CDK6 (5 deletions) ETV6 (2 translocations, paediatric), MYB (1 translocation),
T-cell receptor beta (1 deletion)

We then investigated if MNXI expressing tumours require or prefer secondary mutations,
focusing on cancer-related genes and especially those described in AML. The analysis revealed
a particularly diverse set of secondary mutations including previously annotated drivers of
AML.

2KFQ: TET2, ASHIL
« 88FP: DDX41 [621], HDAC4, RARB

* MTM9: (high mutational load) BCOR [622], DNMT3A [623], IDHI [624], EIF4E,
NACA

* 6AQ4F8: (high mutational load) BCOR, ETV6, RUNXI [625], FGF6, DISCI

* T1242: (high mutational load, nocontrol case) BCOR, DNMT3A, ABL2, BCR, CUXI,
HECWI, PHF6, ULKI, TET2

* 16054: (high mutational load, nocontrol case) ATF2, NRAS, IRF6, BCOR, PTCH2,
RUNXI, KRAS, PLKI, MLKL, MSH6, NACA, DISCI

* paediatric-T1: (high mutational load, nocontrol case) ALK [626], AFF1, PRDM2, MN1,
HLTF, FOXRI, WRN, ULK]
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* paediatric-T2: (high mutational load, nocontrol case) BRCA2, RELA, BCLYL, POTI,
ZHX2, APC, PIK3R4, MN1, IRF3, KLF2, KDM6B, SP1, ABRAXASI, PIK3R4, ULK1

¢« GDMI cell line: ERG, NFKBI, PRDM?2

Overall, the recurrent secondary hits excluding the GDM1 cell line were BCOR(4/8), ULK1(3/8),
DNMT3A(2/8), RUNXI(2/8), TET2(2/8), NACA(2/8) and MNI1(2/8, paedatric cases). As no
secondary mutations are shared between the adult and paediatric cases, considering only adult
cases the enrichment of BCOR(4/6), DNMT3A(2/6), RUNX1(2/6), TET2(2/6) and NACA(2/6)
become stronger. One weakness of this analysis is the lack of availability of matched nor-

mals for 5/9 of the MNXI expressor cases. In particular, the strongest candidate gene BCOR

is only somatically mutated in 2/4 of the cases with matched normals, but remains as a strong

candidate for secondary mutations due to its well described importance in AML.
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Figure 4.17: Co-mutations enriched in MNX/-Activated AML. Left: all MNXI-Activated case,

Right: Adult MNXI-activated patients.

Having established the activation of MNX1 in a subset of AML cases with chr7q-monosomy,

we investigated if MNXI activation takes place in a distinct transcriptomic or methylome sub-

type of AML. Figure 4.18 shows that MNX] cases cluster similarly but do not form a distinct

group in both analyses.
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Selection_MNX1_SV;NOT-MNX1_S'

MNX1_SV NOT-MNX1_SV

Figure 4.18: MNXI Activated cases (blue) co-cluster but do not form a distinct transcriptome
(left, tSNE top 500 most variable genes, perplexity 5, late-exaggeration 1.1) or methylome
(right, tSNE top 5000 most variable methylation probes, perplexity 5, late-exaggeration 1.1)
subtype in the HIPO 7q-AML study

4.4.2.3 MNXI Activation Leads to Comprehensive Transcriptomic Changes in chr7q-Monosomy
AML

Recognizing the role of MNXI as a key developmental transcription factor, we investigated its
effects on the transcriptome of adult AML upon activation. Using EPISTEME’s differential
expression (Figure 4.19, using the T-test) and correlation analysis (Figure 4.20) features, we
identified massive transcriptomic changes, where large numbers of genes were both strongly
dysregulated and strongly correlated with MNX1 expression.
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Figure 4.19: MNXI Activation Leads to comprehensive transcriptomic changes in the HIPO
7q-AML study

In the double Pearson-vs-Spearman correlation analysis, we ignored the Spearman cor-

relation results (Figure 4.20) because of the misleading nature of rank-based statistics in the

presence of large numbers of ties, which was the case in hand due to the near-total suppression

of AML in most patients in our cohort.
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Figure 4.20: Correlation analysis for MNX/ expression in the HIPO 7q-AML study

Next, we dissected the differential expression characteristics following MNX]/ activation,
focusing on the strongest expression changes due to the low available sample sizes (3-vs-16).
We established the following 40 genes as upregulated: MNXI, FAMI55B, KRT73, KRT72,
WASIR2, STXBP6, KRT2,AL158069.1, BMPRIB, CLDNS,SYT1, CFTR, SLITRKS, ARHGAP39,

PRKGI, COL6A2, SH3PXD2B, PDZD?2,

P2RYI2, ACI117500.2, DLGAP2, PLCB4, LHX6,

BHLHE?23, DSG2, CHRDLI, KCNIP1, FAM167A, MYTI1, SOAT2, ZC3HI2B, GPC6, BEX2,
SDK2, ILI7RE, HTR7, FGFR3, TRIM9, SLITRK6, MIR99AHG And the following 34 genes
as downregulated: INPPLI, TFEC, GAPT, SNTBI1, ACOT9, MYDS88, HLX, COL9A2, TLE4,

HOMER3, GAS7, ALDH3BI1, VIM, PTGER?2

, CPXM1, ACAAI, CRTAP, PRDX4, ST3GALSG,

RGS18, GFll, CLECI2A, CTSG, PIK3CG, FUT4, ACVRIB, CRACR2B, ADA2, TLR2, RALB,
CLN6, SNAPC2, ARHGAPI5, EVI2B.

Using ConsensusPathDB [498] we investigated if the upregulated and downregulated gene
sets are enriched in known pathways and gene ontologies.

Upregulated genes largely followed the expected characteristics from a gene defined as a
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motor neuron homeobox development gene (Figures 4.21 and 4.22).

pathway name

Protein-protein interactions at synapses
Keratinization

Receptor-type tyrosine-protein phosphatases
BMP Signalling Pathway

Signaling by BMP

Developmental Biology

Selective Serotonin Reuptake Inhibitor Pathway, Pharmacodynamics
Platelet activation - Homo sapiens (human)
BMP receptor signaling

Syndecan-1-mediated signaling events
Neurexins and neuroligins

IL-7 signaling

EPO signaling

Neuronal System

VEGF

Long-term depression - Homo sapiens (human)

Cell-cell junction organization

set size

88
129
20
21
26
620
28
123
M
43
57
185
186
368
188
60
64

candidates
contained

4(4.5%)
4(3.1%)
2(10.0%)
2(9.5%)
2(7.7%)
6(1.0%)
2(7.1%)
3(2.4%)
2(4.9%)
2(4.7%)
2(3.5%)
3(1.6%)
3(1.6%)
4(1.1%)
3(1.6%)
2(3.3%)
2(3.2%)

p-value

3.06e-05
0.000136
0.000772
0.000852
0.00131
0.00143
0.00152
0.00205
0.00324
0.00356
0.00619
0.00636
0.00646
0.00657
0.00666
0.00683

0.00751

q-value

0.00196
0.00436
0.0136
0.0136
0.0139
0.0139
0.0139
0.0164
0.0228
0.0228
0.0273
0.0273
0.0273
0.0273
0.0273
0.0273

0.0283

pathway source

Reactome
Reactome
Reactome
HumanCyc
Reactome
Reactome
PharmGKB
KEGG

PID

PID

Reactome

Reactome

KEGG

Reactome

Figure 4.21: Pathways enriched for involvement of genes upregulated by MNX/ activation in

the HIPO 7q-AML study.
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category,

gene ontology term ot setsize ontained pvalue gqvalue
GO:0030154 cell differentiation B8P3 4089 22(0.5%) 232e:07 248005
G0:0048869 cellular developmental process BP2 4275 22(0.5%) 5.28e-07 3.06e-05
GO:0048513 animal organ development BP3 3452 19 (0.6%) 2.23e-06 0.000119
GO:0048731  system development B8P3 4713 20 (0.4%) 6.01e-05 0.00168
GO:0048468 cell development B8P3 2110 13(0.6%) 6.29¢:05 0.00168
G0:0048856 anatomical structure development BP2 5790 22(0.4%) 0000105 0.00305
G0:0007275 multicellular organism development BP2 5289 20 (0.4%) 0000337 0.00651
GO:0009887 animal organ morphogenesis B8P3 981 8(0.8%) 0000367 0.00785
G0:0035988 chondrocyte proliferation BP2 17 2(11.8%) 0000454 0.00658
GO:0009888 tissue development B8P3 1954 11(0.6%) 0000613 0.0109
G0:0005886 plasma membrane 2 5614 20 (0.4%) 0000788 0.0215
GO:0031424 keratinization 8P2 227 4(1.8%) 0000797 0.00925
G0:0048589 developmental growth BP2 631 6(1.0%) 000102 0.00984
GO:0071944 cell periphery 2 5729 20 (0.4%) 000105 0.0215
G0:0092106 ion channel regulator activity MF3 123 3(2.4%) 000156 0.0405
G0:0044087 regulation of cellular component biogenesis BP3 959 7(0.7%) 000172 0.0251
G0:0099536 synaptic signaling B8P3 m 6(0.8%) 000187 0.0251
G0:0007267 cell-cell signaling BP2 1594 9(0.6%) 000215 0.0178
GO:0060322 head development BP3 72 6(0.8%) 000276 0.0328
G0:0016247 channel regulator activity MF2 151 3(2.0%) 000279 0.0489
GO:0098868 bone growth B8P3 a7 2(4.3%) 000348 0.0367
G0:0007155  cell adhesion BP2 1389 8(0.6%) 000349 0.0253
GO:0060076 excitatory synapse 2 a8 2(4.2%) 000363 0.0368
G0:0098609  cell-cell adhesion BP3 819 6(0.7%) 000377 0.0367
G0:0098632 cell-cell adhesion mediator activity MF3 50 2(4.0%) 000393 0.0511
GO:0098978 glutamatergic synapse 2 351 4(1.1%) 000403 0.0368
G0:0044459 plasma membrane part cc2 2876 12/(04%) 000448 0.0368
GO:0001503 ossification BP2 373 4(1.1%) 0.00495 0.0316
G0:0030900 forebrain development B8P3 381 4(1.1%) 000529 0.0472
GO:0098631  cell adhesion mediator activity MF2 59 2(3.4%) 000544, 0.0489
GO:000965: tomical structure mor BP2 2560 11(04%) 000546 0.0316
GO:0050808 synapse organization B8P3 391 4(1.0%) 000585 0.0481
G0:0050432 catecholamine secretion B8P3 66 2(3.1%) 000656 0.0502
GO:0001533 cornified envelope 3 65 2(3.1%) 0.00656 0.189
G0:0005911 cell-cell junction 2 446 4(0.9%) 000931 0.0636

Figure 4.22: Gene Ontology (GO) terms enriched for involvement of genes upregulated by
MNX]1 activation in the HIPO 7q-AML study

Downregulated genes, rather showed characteristics suggesting roles in haematological de-

velopment (Figures 4.23 and 4.24).
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pathway name
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Reactome
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Figure 4.23: Pathways enriched for involvement of genes downregulated by MNX/ activation

in the HIPO 7q-AML study
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category, candidates

gene ontology term level set size contained p-value g-value
G0:0002263 cell activation involved in immune response BP3 709 10 (1.4%) 2.46e-07 3.1e-05
G0:0043299 leukocyte degranulation BP3 539 8(1.5%) 3.32e-06 0.000209
G0:0002443 leukocyte mediated immunity BP3 901 9(1.0%) 1.85e-05 0.000619
G0:0006887 exocytosis BP3 9209 9 (1.0%) 1.96e-05 0.000619
G0:0045321 leukocyte activation P2 1284 10 (0.8%) 4.92e-05 0.00131
G0:0002252 immune effector process BP 2 1287 10 (0.8%) 5.02e-05 0.00131
G0:0006955 immune response BP2 2260 13 (0.6%) 6.34e-05 0.00131
G0:0044281 small molecule metabolic process BP2 2011 12 (0.6%) 9.67e-05 0.0015
G0:0070887 cellular response to chemical stimulus BP3 3148 15 (0.5%) 0.000123 0.0031
GO:0001775 cell activation BP2 1435 10 (0.7%) 0.000126 0.00156
G0:0071216 cellular response to biotic stimulus BP3 227 4(1.8%) 0.000661 0.0139
G0:0032940 secretion by cell BP2 1493 9 (0.6%) 0.000858 0.00887
G0:0009617 response to bacterium BP3 712 6 (0.8%) 0.00134 0.0241
G0:1901615 organic hydroxy compound metabolic process BP3 517 5(1.0%) 0.00198 0.0312
G0:0031983 vesicle lumen @cy 340 4(1.2%) 0.00291 0.0552
GO0:0006066 alcohol metabolic process BP3 351 4(1.1%) 0.00323 0.0448
G0:0048519 negative regulation of hiological process BP3 5219 17 (0.3%) 0.00356 0.0448
G0:0044433 cytoplasmic vesicle part ccs3 1498 8(0.5%) 0.00381 0.0552
G0:0065008 regulation of biological quality BP2 3912 14 (0.4%) 0.00442 0.0391
G0:0010033 response to organic substance BP3 3173 12 (0.4%) 0.00598 0.0685
G0:0044282 small molecule catabolic process BP3 437 4(0.9%) 0.00702 0.0694
G0:0032637 interleukin-8 production BP3 72 2(2.8%) 0.00716 0.0694
G0:0042445 hormone metaboalic process BP2 227 3(1.3%) 0.00739 0.051
G0:0005539 glycosaminoglycan binding MF 3 230 3(1.3%) 0.00766 0.0788
G0:0019904 protein domain specific binding MF3 710 5(0.7%) 0.0077 0.0788
G0:0051707 response to other organism BP2 1020 6 (0.6%) 0.00796 0.051
G0:0043207 response to external biotic stimulus BP3 1022 6 (0.6%) 0.00803 0.0719
G0:0042221 response to chemical BP 2 4656 15 (0.3%) 0.00823 0.051
G0:0042802 identical protein binding MF 3 1733 8(0.5%) 0.0091 0.0788
G0:0009607 response to biotic stimulus BP2 1053 6 (0.6%) 0.00925 0.0521
G0:1901698 response to nitrogen compound BP 3 1051 6 (0.6%) 0.00925 0.0719

Figure 4.24: Gene Ontology (GO) terms enriched for involvement of genes downregulated by
MNX]1 activation in the HIPO 7q-AML study

Due to the large number of differentially expressed genes including key haematological
regulators, we attempted to determine the direct targets of MNX/ with the help of TF motif
binding database information, where we used Motifmap [627], Transcription factor target gene
database [628] with SELEX [629] and TRANSFAC [630] and finally TF2DNA [631] with
SELEX [629], with the databases in great disagreement between each other (Figure 4.25).
These results, and the lack of representation for individually dissected genes showing a great
correlation with MNXI expression led us think to that these databases could be incomplete,

especially with regards to the myeloid tissue relevant for our project.
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TLE4 (down) x x x
VIM (down) X

EVI2B (down) x

ACOTS (down) X

RALB (down) x

TFEC(down) X
GPC6 (up) X

SOAT2 (up) X

DSG2(up) X

PLCB4 (up) X X

IL17RE (up) X

MYT1 (up) X

BMPRIE (up) x

Figure 4.25: Putative direct targets of MNX/ binding among the dysregulated genes in the
HIPO 7q-AML study

Among the upregulated genes, we selected a shortlist with strong differential expression
and high correlation as representative upregulated genes in MNX-activated adult AML: FAM1558B,
KRT72, STXBP6 and ILI7RE. FAM155B is an uncharacterized gene and is activated from zero
expression in our MNX I+ cohort. KRT72 is a member of the large human keratin gene family
[632] and is activated along with KRT2 and KRT73 in our MNX1+ cohort, AML is as a rule
keratin-negative entity and keratinization in AML subtypes has not been shown in the litera-
ture. STXBP6 is a regulator of SNARE proteins, which serve in mediating vesicle fusion such
as synaptic vesicles with the presynaptic membrane in neurons [633]. ILI7RE is a functional
receptor for /LI7C and has functions in the development of immune responses to infection
[634].
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7qAML-DKFZ: MNX1 (-) vs FAM155B (-)

7qAML-DKFZ: MNX1 (-) vs KRT72 (-)

oo o

7qAML-DKFZ: MNX1 (-) vs STXBP6 (-)

7qAML-DKFZ: MNX1 (-) vs IL17RE (-)

Figure 4.26: MNXI1 activates/upregulates FAMI55B, KRT72, STXBP6 and ILI7RE* in the
HIPO 7q-AML study (* predicted direct binding)

To cross-validate our findings in a different cohort with a different, paediatric, setting, we
used the dataset from [635] and generated the Figure 4.27 in R2 [337]. We observed that
the upregulation of KRT72 and STXBP6 are maintained in the paediatric t(7;12) AML, while
FAM155B and ILI7RE are not upregulated in this different age group. This could be due to the
biological differences in infant AML, as /ILI7RE is indeed a predicted direct target of MNX1

according to TF database data.
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Figure 4.27: MNX1 activates/upregulates KRT72 and STXBP6 but not FAM155B and ILI7RE*
in t(7;12) paediatric AML (* predicted direct binding)

Next, we shortlisted 8/34 genes among the downregulated gene list, pritoritizing direct
binding predictions from databases and strong downregulation and inverse correlation charac-
teristics (Figure 4.28). TLE4 has been identified as a tumour suppressor in AML, with antipro-
liferative and apoptotic functions validated in in vitro experiments [636]. GAPT is a regulator
of B-cell proliferation [637], its aberrant expression or mutations have not been described to
date in cancer research. EVI2B is a downstream target of CEBPA and a regulator of granu-
locytic differentiation of myeloid cells [638]. INPPL1 (formerly SHIP2) is a phosphoinositol
phosphatase regulating the PI3K/Akt pathway [639], and along with its homolog INPP5D (for-
merly SHIPI), were shown to lead to haematopoietic perturbations in myeloid cell development
in mice [640], its role in CML but not AML have also been discussed [641].
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Figure 4.28: MNX1 suppresses TLE4*, GAPT, EVI2B* and INPPLI in the HIPO 7q-AML
study (* predicted direct binding)

In cross-validating our results, we established that all four genes TLE4, GAPT, EVI2B and
INPPLI are also significantly and strongly suppressed in t(7;12) AML [635] (Figure 4.29).
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Figure 4.29: MNXI suppresses TLE4*, GAPT*, EVI2B* and INPPLI in t(7,12) paediatric
AML (* predicted direct binding)

We then investigated the next 4 of the shortlisted 8/34 downregulated genes (Figure 4.30).
HLX is a homeobox transcription factor, previously reported as an oncogene in AML where
its overexpression was postulated to lead to a myeloid differentiation block [642] [643], con-
trasting our results showing a strong suppression. MYDS8S is a myeloid differentiation antigen
which is mutated with gain of function mutations in Chronic Lymphocytic Leukaemia (CLL)
[644] and B Cell lymphoma [645], again in contrast to our suppression observation. Vimentin
(VIM) is a well-established histopathological marker of mesenchymally-derived cells in human
cancers, and its suppression in neuronal cells is to be expected, even though its expression in
cells of haematological lineage are also not high [646]. TFEC is an E-box basic helix-oop-
helix transcription factor that acts as a transcriptional repressor of TFE3-based transcription
activation [647] and TFE3 has known oncogenic functions in juvenile renal cell carcinoma and
acts in coordination with Leukaemia Inhibitory Factor (LIF) [648], in our cohort it is among
the most strongly suppressed genes and is a predicted direct target of MNX1I.
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Figure 4.30: MNX1 suppresses HLX, MYDS8S8, VIM* and TFEC* in the HIPO 7q-AML study
(* predicted direct binding)

As with TLE4, GAPT, EVI2B and INPPLI, this second investigated set of genes HLX,
MYDSS, VIM and TFEC are also significantly and strongly suppressed in paediatric t(7;12)
AML [635] (Figure 4.31).
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Figure 4.31: MNXI suppresses HLX, MYDSS8, VIM* and TFEC* in t(7,12) paediatric AML (*
predicted direct binding)

4.4.3 Discussion

We investigated using EPISTEME, genomic and transcriptomic sequencing data from a set of
patients of AML with monosomy on chromosome 7q (7q-AML). We identified CDK6-NOM 1
rearrangements to be a strong activator of the MNX/ oncogene. Further analysis on an exten-
sion cohort strongly suggests that MNX1 activation in AML is dependent on structural variants
targeting MNX/ and activating it via enhancer hijacking.

The classical two-hit model of AML development requires somatic mutations increasing
proliferation functioning in tandem with somatic alterations blocking myeloid cell differenti-
ation. We investigated in great detail the dysregulated transcriptome of 7q-AML, revealing a
strong dysregulation of tumour suppressors, myeloid differentiation genes, homoebox genes.
Our results suggest that MNX activation fulfils the myeloid differentiation block axis of AML
development, whereas the proliferation axis could be coming from secondary mutations such
as BCOR and TET2 in our cohort.

One of the most interesting aspects of MNX/ function seems to be its dual effects on the
myeloid stem cell transcriptome: neuronal development genes are upregulated and myeloid
development genes are downregulated in a process establishing cell identity. In its normal
function as a motor neuron homeobox gene, MNX/ thus seems to suppress developmental
pathways that confer cells a haematological identity. We postulate that this natural function of
MNX1 is hijacked in AML in establishing a differentiation block.

Our results show no similarity to recently published, experimentally obtained in vitro data
using aberrant activation of MNX/ in CD34+ haematopoietic stem cells [618]. While the com-
plete lack of any commonly differentially genes in our patient and our study’s experimental data
would normally be a cause for concern, our cross-validation analyses with a patient-based study
of t(7;12) infant AML [635] largely confirmed our strongest results. Remarkably, we found key
players strongly downregulated upon MNX/ activation such as EVI2B, TLE4, INPPLI(SHIP?2),
HLX, TFEC, GAPT and MYDS&S, and to our surprise saw that none of these key regulators of
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myeloid differentiation and proliferation have been discussed in the context of MNX/ despite
availability of data [635]. In particular, our results are novel in suggesting new mechanisms
in AML dedifferentiation, introducing a direct, TF-promoter-interaction-based suppression of
TLE4 without copy number losses and EVI2B without CEBPA mutations respectively. ChIP-
Seq on MNXI will help determine direct targets beyond motif-based approaches in databases,
which proved unsatisfactory. In parallel, we are going to add 4 more cases of MNX/-activated
adult AML to our study, which would drastically improve the quality of our transcriptomic
analysis.

As MNXI as a homeobox transcription factor, is not a targetable gene, our transcriptome
data could be useful in designing treatment concepts: We observed a strong suppression of
INPPLI (SHIP2) and PIK3CG, which could lead to a treatment strategy targeting the PI3K
pathway. Unfortunately the strongly activated genes FAM155B and KRT2,KRT72, KRT73 are
not appropriate as cancer antigen based immunotherapeutic targeting due to their high expres-
sion in the heart and skin, respectively.

Recently another study postulated that CDK6-MNX1 rearrangements could be activating
MNX]1 due to nuclear reorganization of MNXI location, without discussing the role of CDK6
or other partner enhancers or investigating the mechanistic downstream effects or co-occurring
mutations with MNX1 activation [649]. We believe we have a more correct and complete model
of MNXI-mediated AML oncogenesis with our current data.

Finally, neither of the two major recent publications on AML recognize MNXI-activated
cases as an entity [483] [599], and the WHO classification does not recognize the paediatric
MNX]I-activated AML as a bona fide subtype of AML due to its rarity. It remains to be seen if

our case collection will promote MNX-translocated AML as an officially recognized subtype.

4.5 Case Study 3: ATOH1 is a Novel Target of Enhancer Hijacking in MYCN-Negative
High-Risk Neuroblastoma

Neuroblastoma (NB) is a malignancy of neural crest stem cells. Neural crest cells are transient
and multipotent precursors of a wide variety of neural and non-neuroanal cell types including
sympathoadrenal cells during development. Sympathoadrenal cells encompass sympathetic
neurons and chromaffin cells and constitute the lineage of cells from which NB develops [650].
NB is a childhood disease because neural crest cells are fully differentiated, and do not exist and
consequently cannot generate malignant tumours during adulthood (adult NB is an exceedingly
rare condition with an unclear cell of origin [651] and is outside the scope of this study).
With methods of epigenetic profiling [652] and single cell transcriptomics [653], we are in the
process of delineating the specific cellular origins in NB, which remains an open field similar
to most solid tumour types.

Since early whole exome sequencing based results indicating the low mutational load of NB
[654], it has consistently appeared among the cancer types with the lowest number of somatic
point mutations [655] [476]. The driver mutational processes in NB are known to prefer alter-
ations based on copy number changes, gene amplifications, in a group of alterations which can
be summarized using the structural variation umbrella term. Following the landmark discovery

of the amplification-based activation of the MYCN (formerly and also known as N-MYC) onco-
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gene [656] [200], great progress has been made on the further dissection of this disease with a
risk classification from clinical parameters stage, age, chrlp deletion and MYCN amplification
status [657] effectively guiding clinical decision making. This risk classification was further
improved with a support vector machine based classifier using gene expression profiles [658],
accurately predicting clinical outcome. Interestingly, despite the availability of large-scale and
genome-wide transcriptome datasets [654], [659] [660], there have so far been no efforts to use
modern methods of transcriptomic classification of NB into molecular subtypes. Our knowl-
edge on the NB mutational landscape and biology greatly improved with advances in genome
sequencing technologies and RNA sequencing together revealing mutational drivers of NB. NB
arises due to dysregulation of differentiation of proliferating neural crest stem cells during in-
fant/childhood development and consequently does not have a direct influence of mutagens and
does not carry a high load of somatic mutations including protein coding mutations. Genomic

variant driver hallmarks of NB are in rough order of frequency:
1. Chromosome 17q gains [661]
2. MYCN amplifications [656] [200],
3. Chromosome 1p arm losses or loss of heterozygosity [662],
4. Chromosome 11q losses [663]
5. TERT structural variants leading to activation via enhancer hijacking [212]
6. ATRX truncating deletions and deactivating small mutations [664], [654]
7. ALK co-amplifications [665] [666]
8. CDK4 and MDM?2 amplifications [667]
9. FOXRI structural variants leading to activation via enhancer hijacking [461]
10. LIN28B amplifications [668].

A common theme in the mutational drivers of NB is the concept of telomere maintenance
mechanisms: to maintain proliferative potential, high-risk NB cells need to maintain their
telomeres. The first telomere maintenance mechanism in NB is via TERT expression either
activated by MYCN amplification or by SVs. The second is alternative lengthening of telom-
eres (ALT) [669], which happens in around half of the cases via ATRX deactivating mutations
and in the other half via an unknown mechanism and is detected by an assay named ”C-circle”.
The recently established and current consensus on NB clinical risk characteristics is based on a
combination of telomere maintenance status and RAS mutation status: cases with no telomere
maintenance mechanism are considered low-risk, cases with a telomere maintenance mecha-
nism are high-risk, and cases with both a telomere maintenance mechanism and RAS pathway
mutations are considered very-high-risk [506]. The role of RAS-MAPK pathway genes and
their mutations were previously discussed in a study where they were found to be enriched in

relapsed NB [670], with the current results validating this assessment.
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Neuroblastoma remains to date a clinical challenge: NB is the most common paediatric
cancer type after leukaemia and central nervous system malignancies (such as medulloblas-
toma and PNETs as discussed in Chapter 1). Overall, NB accounts for 8% of all paediatric
cancer cases, shows a heterogeneous clinical course [671] and with cases classified as "high-
risk” remaining largely incurable [672] [506]. Historically, survival rates improved thanks
to aggressive treatment protocols [673] [674]. However, the lack of effective targeted treat-
ments for MYCN amplification, TERT activation or the ALT mechanism and a lack of a mu-
tation/neoantigen load preventing checkpoint blockade based immunotherapeutic strategies,
together lead to a poor prognosis for all cases that fall under the high-risk classification. A
better understanding of the NB biology is therefore urgently required. To address this need, we
designed a project to characterize the molecular subtypes of NB with advanced transcriptome
and methylome based clustering using modern statistical approaches in a larger cohort com-
pared to previous studies such as [675] [676]. We also aimed to use EPISTEME’s genomic
variant-based transcriptomic dysregulation methods to look for novel targets of enhancer hi-
jacking events beyond the established prototypical examples of this mechanism, TERT and
FOXRI.

In this study, we describe the mutational landscape of paediatric NB and discuss a poten-
tial role for a focal-SV-based truncation of tumour suppressor genes ANKSIB, ZFHX3, DLG?2,
CNTNAP2, TENM3, AGBL3 and PTPRD, in line with recent findings from other groups. We
identify for the first time the Basic-Helix-Loop-Helix (BHLH) transcription factor ATOH! as
an oncogene in NB showing that it is recurrently activated by an enhancer hijacking process,
predominantly with the HAND?2 enhancer. We propose first steps towards a novel transcriptome-
based subgroups of NB and show their agreement with methylome-based subgroups. We in-
troduce a novel transcriptome and methylome subtype of ALT NB encompassing two sub-
subtypes with defined driver genes ATOHI among younger patients and ALK among older
patients. Finally, we show results postulating that ATOHI could act as a less potent MYCN
replacement in its function as a BHLH gene, with common targets NHLH2 and DLL3 between
MYCN and ATOH].

4.5.1 Study Design and Methods

In the DKFZ Division of Neuroblastoma Genomics (Dr. Frank Westermann), we ran Whole
Genome Sequencing (WGS) on 246 NB cases from the German GPOH NB Study’s central
sample collection, of which 191 cases had sufficient quality RNA extracted for RNA-Seq and
121 cases were profiled with methylome arrays using the standard DKFZ protocols [353]. 3
specimens (2 patients with rare brain metastasis of NB of which 2 relapses were sampled from
a single case) had RNA-Seq data and no WGS or methylome array data.

Case collection was not made in a prospective or unbiased manner, i.e. patient selection
was enriched for characteristics of interest such as high-risk cases, expressors of rare onco-
genes, ALT cases and ALT cases without ATRX mutations. Therefore, the results presented
here are interpreted and discussed without assumptions on mutation/phenotype frequencies

and epidemiological characteristics.
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4.5.2 Results
4.5.2.1 Mutational Landscape of Neuroblastoma

We first analysed with an EPISTEME cohort-wide Circos plot the mutational landscape of NB
as shown in Figure 4.32. Due to the prevalence and significance of SV-based mutational and
biological mechanisms in NB, the mutation class Direct SV hit on gene body” is included in
the gene-based mutation recurrence layer (outermost layer on the figure). SV recurrence anal-
ysis (innermost layer on the figure) results here largely confirmed the established mutational
drivers in NB such as MYCN, ALK, ATRX, TERT, CDK4, MDM4, and focally converging SVs
on sites of chr17q gains and chrl1q losses. We found with the gene-hit analysis highly recur-
rent SVs and mutations hitting and truncating the genes (SV cases + small variant cases, gene
size): ANKSIB (15+1 cases, 1.3 Mb), ZFHX3 (1242 cases, 0.4 Mb), DLG2 (12+1 cases, 2.2
Mb), CNTNAP2 (23+2 cases, 2.3 Mb), TENM3 (13 cases, 0.7Mb), AGBL3 (12 cases, 1.5Mb),
PTPRD (44 cases, 2.3Mb), SHANK?2 (11+1 cases, 0.6 Mb), DMD (12+3 cases, 2.2Mb), EYS
(15+1, cases 2.0Mb).

NB_noCL-DKFZ

(243/246)

Figure 4.32: Mutational landscape of the GPOH NB study. Recurrence layers from outer to
inner correspond to gene-based functional small variant + direct (gene-body) SV hit recurrence,
TAD-based copy number variant recurrence, TAD-based SV recurrence (1-TAD offset).

Structural variation preferentially affecting larger genes [619] and open chromatin / highly

expressed genes [677] as fragile sites is well-known. Our results here are also in line with pre-
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vious findings on neurite development genes being directly hit by SVs and acting as deactivated
tumour suppressors in NB [678], [679].

4.5.2.2  Discovery of novel targets of Enhancer Hijacking in Neuroblastoma

Next, we investigated the genomic variant driven transcriptomic dysregulation landscape of the
NB cohort (Figure 4.33). In an unbiased analysis, we found the dominating effect of the hall-
mark loci such as MYCN, TERT, ALK, CDK4 and MDM?2 where the amplifications and other
structural rearrangements lead to a broader local activation of neighbour genes. Suppressing
these common loci of genomic variant driven transcriptomic dysregulation, emphasizes or re-
veals less common genes such as LIN28B and FOXRI while ATOH emerges as a potentially
novel candidate of recurrent enhancer hijacking events among others such as FGF19, CIQLI,
S100B and TP73.

+ance25-NB_NOCL-DKFZ(194/246) DirectSv & Sv0 & Sv1 & Amp & Homdel NB _noCL-DKFZ(194/246) DirectSv & Sv0 & Sv1 & Amp & Homdel
1 1.000e-11
. MYCNUT (2p24.3) * MYCN (2p24.3) ~—C1QL1 (17921.31)
+o00e25-|
11000024 . AC010745.1 (2p24.3) . FGF19(11q13.3)

“—PSMC3IP (17q21.2)

- AC010145.1 (2p24.3) AC010745.2 (2p24.3)
LAC130710.1 (2p24.3) “oones +ADANIT (17621:31)
to00e2-{
1000020 roves FAM171A2 (1762131)
1 .. 921.
.DDX1(2p24.3) .. -KIF18B (17q2131)
L AC010745.3 (2p24.3) CLPB(110134) .
NBAS (2p24.3) N
+o0ce15-{ - GACAT3 (2p24.3) e . J

1.000e16 . AC113608.2 (2p24.3) HAP1(1721.2). FY

“LINC01804 (2p24.3) 200066
. SLC6A18 (5p15.33,
+.000e14 'AC010745.4 (2p24.3)

— _TERT(5p15.33)
. .SLCGA19 (5p15.33)
“AC008164.1 (2p24.2)

AC010880.1 (2p24.3)
€1QL1 (1721.31)
- FAMAOA (2p24.2)
+.000e-10- 100064
FGF19(11q13.3)

L TTM2A (Xq21.1)
100085

1.0000.12-f GFAP (17q21.31),

pValLog10 (Kruskal-Wallis Test)
pValLog10 (Kruskal-Wallis Test)

. TP73 (1p36.32)

EXO1 (1943). - LIN28B (6q16.3,6q21)

+NKDZ (5p15.33)
GEN1 (2p24.2) . ATOH1 (4q22.2)
100005 . . FOXR1 (11q23.3)
Cephe LINCOWSGS@R2AD ey ~a00e3 51008 (21q22.3)
/Acfm’us S 35823
HAP1 (17q21.2). £PDIAG (2p25.1)
sones ., :NoL10 (2p25.1) ALB (4q13.3)
. SRR B Hamsan 2p20.3) 10062 ’
GEAP (17021.31), 2025 L) DM (1201
p— T_CORa(12q14.1)
TATOH1 (422.2)
*—FOXR1 (11q23.3) .
. .BEST3(i2q15) +a00e1 = -
100002 :
100010 .
B % i H % 5 11 7 B 7 i 3
Fold Chanae by Difference of loa2FcMean Fold Chanae by Difference of loa2FcMean

Figure 4.33: Genomic variant driven transcriptomic dysregulation landscape of the GPOH NB
study. Left: without restrictions, Right: masking commonly dysregulated cytobands (MYCN,
ch2p24.2, chr2p25.1, TERT, ALK, MDM2, CDK4)

We observed ATOH! to follow a similar profile to FOXRI and TERT activation where the
gene is initially strongly suppressed and activated by nearby SVs in 7/8 cases where it shows
high expression. It is therefore a candidate for a novel hallmark gene. Figure 4.34 shows the
amplification / activation characteristics of the MYCN, TERT, FOXRI (5/5) and ATOH1 (7/8)

genes.
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Figure 4.34: MYCN, TERT, FOXRI and ATOH] as hallmark genes and recurrent targets of
enhancer hijacking in neuroblastoma. Red and black coloured cases respectively have off-gene
and gene-body SV hits activating/upregulating their expression. Amplifications are denoted by
small upper red circles.

It is established that MYCN and TERT expression follow a common and partially interde-
pendent profile (Section 3.3.2.1), but FOXR/ expression is assumed to be mutually exclusive
to both MYCN and TERT based on the early results from [461]. We investigated the hypothesis
that ATOH, due to its precise activation pattern could be part of a broader mutual exclusivity
relationship with MYCN, TERT and FOXRI. Using EPISTEME, we set cutoff points for high
and low MYCN, TERT, FOXRI and ATOH] expression and created high and low expressor
groups of patients. We then created a categorical variable combining the membership to these
binary groups. The results shown on Figure 4.35 show an imperfect but very strong mutual

exclusivity pattern involving these hallmark genes:
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* Out of 8 ATOH] expressor cases, 1 is MYCN amplified and highly expresses MYCN and
TERT, 2 highly express TERT, and 5 are in an ATOH1-only group.

* Out of 5 FOXRI expressor cases, 1 highly expresses TERT, and 4 are in an FOXR-only
group.

* MYCN and TERT are in an expected interdependent relationship where MYCN amplifi-
cation upregulates TERT and a subset of cases have TERT rearrangements and no MYCN

expression.

. Overall, this result establishes a strong likelihood of a main driver candidacy for ATOHI.
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Figure 4.35: MYCN (upper left), TERT (upper right), FOXRI (lower left) and ATOH!I (lower
right) expressions show strong mutual exclusivity patterns as hallmark genes in neuroblastoma.

Blue symbols show expressor cases for each gene.
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Further analysis of all other outlier data points in the genomic variant driven transcrip-
tomic dysregulation landscape plot revealed no other recurrent candidates for SV-based total
(from near-0 expression) activation. We observed FGF19 on chrl1 and C/QIL on chrl7, each
near frequently translocated loci associated with copy number changes, to show significant, but
subtle overexpression patterns (Figure 4.36). We also observed diverse genes with rare overex-
pressions that correlate with existence of SVs in the proximity of the gene. Two selected genes
TP73 and S100B are shown on Figure 4.36.
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Figure 4.36: FGF19, CIQIL, TP73 and S100B are putative novel targets of enhancer hijacking
in neuroblastoma. Red and black coloured cases respectively have off-gene and gene-body SV
hits activating/upregulating their expression.

Our results reveal ATOH! (formerly called MATHI) as the by far strongest new target of
enhancer hijacking in NB. ATOH/! is a Basic Helix-Loop-Helix (BHLH) transcription factor

and a key regulator of proneural development of the cerebellum [680]. As a gene in the same
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family of BHLH genes as MYCN, it could be of great biological and mechanistic importance in
NB. In the rest of this study, we focused on ATOH! as a novel oncogene in NB development,

characterizing its role across NB subtypes.

4.5.2.3 Transcriptome and Methylome Based Subtyping of Neuroblastoma

To characterize the transcriptomic (cell identity / metabolic state) and methylome (cell identity)
profiles of NB, we ran tSNE dimensionality reduction analyses on the top 500 genes and top
5000 CpG probes in terms of intra-cohort variance. The results in Figure 4.37 revealed hetero-
geneity in the cohort both across the transcriptome and methylome. Older patients (shown in
lower panels with larger symbols) co-occurred with the ALT (black symbols) phenotype and

were clustered in distinct methylome clusters.
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Figure 4.37: Transcriptome (left tSNE top 500 genes, perplexity 10, late-exaggeration 1.1) and
Methylome (tSNE top 5000 CpG probes, perplexity 10, late-exaggeration 1.1) based dimen-
sionality reduction reveals distinct molecularly defined subtypes of neuroblastoma. The lower
two panels modulate the data point sizes with the “age at diagnosis”.

Next, we mapped the activation status of the hallmark oncogenic drivers MYCN, TERT,
FOXRI and ATOH] to the transcriptome tSNE map of the NB cohort. Figure 4.38 shows
strong co-clustering patterns for MYCN, TERT, ATOHI but not for FOXRI. MYCN is active
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almost uniquely in the cases on the upper-right of the tSNE map, and in most cases co-activates
TERT downstream. TERT is in addition activated in another subset of cases in the lower-left of
the tSNE map, and co-clusters with ALT (black) cases (Figure 4.37). ATOH 1 is highly enriched
in a distinct ALT cluster of 4/8 cases in the lower-right of the tSNE map.
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Figure 4.38: Hallmark genes MYCN (upper left), TERT (upper right), ATOHI (lower right) but
not FOXRI (lower left) follow strong co-clustering patterns across the transcriptomic subtypes

of neuroblastoma.

Using manual case selection and differential gene expression analysis between the cohorts,
we identified 8 tentative clusters for NB transcriptome profiles.
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4 represent larger clusters:

1.

highMYCN-lowNTRKI: These cases constitute the most aggressive MYCN-amplified
subtype of NB and suppress NTRK and activate BAMBI as the strongest hallmarks

hetMYCN: This is a heterogeneous cluster with an enrichment for MYCN cases, but also

including ALT and intermediate-risk cases

hetLowRisk-rich: This is a cluster enriched for LR-NB, but includes some TERT and
ALT cases. Further dissection of this cluster could yield finer groups, and this cluster

would most likely not be stable under a tSNE parameter sweep.

TERT-ALT-rich: This heterogeneous cluster contains TERT (rearranged) and ALT (both
ATRX mutant and wild-type) cases in roughly equal ratios. Interestingly, the ALT and
TERT groups could not be separated neither in the transcriptome nor in the methylome.

4 of these are smaller clusters:

1.

outlierRNA (8 cases): This is a novel cluster of ALT+, ATRXwt cases and consists of
two distinct subgroups with defined mutational profiles: half of them are older ATOH -

rearranged patients and the other half are 3/4 ALK mutant, even older patients.

lowABR-migratory (6 samples, 5 unique cases): The two rare brain metastasis cases (3
samples) co-clustered with 3 primary tumours of NB. They suppress PLD2 [681] and
ABR [682], suggesting some role for dysregulated cytoskeletal organization in migra-

tory/metastatic processes.

impureRich (5 cases): We identified a small cluster of cases suppressing TTBK1, MYEF?2,
CACNA B, strongly overexpressing SOX17 and RSPO3. These cases have low compu-
tationally estimated tumour purities. As they are not the only impure tumours in our NB
cohort, more work needs to be done to identify the reason for them to co-cluster and to

identify possible lineages of infiltrating cells.

ALT-slow (4 cases): This is a novel cluster of ALT+ ATRXwt cases with suppressed
EZH?2, very low mitotic gene expression such as MKI67, TOP2A, MYBL2, POLE imply-

ing very slow growth, in line with some previous observations [683].
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Figure 4.39: Proposed, tentative transcriptome-based clusters of NB

Next, we identified 5 tentative clusters for NB methylome profiles as shown on Figure 4.40.
1. methMYCN-rich: a cluster of cases consisting almost uniquely of MYCN amplified cases,

2. methALT-TERT: a heterogeneous cluster similar to the TERT-ALT-rich cluster identified
by transcriptome profiling but with a lower incidence of TERT cases,

3. methTERT-LR-rich: a heterogeneous cluster consisting largely of low-risk cases where
some TERT cases co-cluster,

4. methOld-LR: a small cluster consisting almost uniquely of older low-risk cases

5. methOutlierRNA-rich: a cluster similar to the outlierRNA cluster identified by transcrip-

tome profiling, with a less clear separation from the methTERT-LR-rich cluster

. Overall, due to the smaller number of cases with available methylome data, a direct com-

parative analysis is difficult: none of the cases identified as ALT-slow were included in our
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methylome array series. However, the general patterns seem to be in agreement with two ex-
ceptions: 1. The MYCN cluster does not separate into two subclusters. 2. a significant number
of TERT cases co-cluster with LR cases.
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Figure 4.40: Proposed, tentative methylome-based clusters of NB

Due to the expression pattern of the novel enhancer-hijacked oncogene ATOH! and its
distinct expression pattern clearly different from all other NB subtypes across risk groups and
drivers, we focused on the novel transcriptome-based cluster “outlierRNA” in the rest of this

study.

4.5.2.4 A Novel and Distinct Gene Expression and Methylation Cluster in Neuroblastoma
with ATOHI Enhancer Hijacking and ALK Point Mutations as Driver Events

The ”outlierRNA” cluster is a transcriptionally defined cluster of 8 cases, which also co-cluster
and form a less distinct but observable subtype in methylome analysis (Figure 4.41).
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Figure 4.41: A novel and distinct gene expression and methylation cluster in NB is enriched

for ATOH]1 expression (encoded in symbol sizes).

In line with the definition of this novel group of cases by transcriptome analysis, they show

a distinct transcriptomic profile with high expressions of NEUROD6 (formerly called ATOH2),
KCNH7, KCNH5, KCNB?2 (Figure 4.42, left), hinting at a more mature neuronal developmental
state compared to the other NB groups such as MYCN and TERT/ALT. The most strongly

upregulated gene for this cluster NEUROD®6, and the driver gene relevant for half of the cluster
ATOH| are shown on Figure 4.42, right.
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Figure 4.42: Differential gene expression profile of the novel NB subtype.
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Comparing the ATOH1 expressors to the rest of the novel cluster with regards to transcrip-

tomic profiles (Figure 4.43, left) revealed the overexpression of the NHLH2, DOKS5 gene in the

ATOH]1 group along with a downregulation of the RET and VGF genes. ALK mutations are

likely to lead to the activation of the RET and VGF oncogenes, along with the downregulation
of the DOKS5 gene compared to the ATOH -activated group [684]. NHLH?2, on the other hand,
is a BHLH gene and is upregulated by ATOH, which will be shown in the next section. As

this intra-group comparison is expected to regress out the influence of the common cell of ori-

gin, the top differentially regulated genes are those directly dysregulated by somatic variants

and their downstream effects. From this perspective, the top results are in line with expecta-

tions. A systematic comparison of the genomic variant landscapes of the two subgroups(Figure
4.43, right) reveals the discussed prevalence of the ALK somatic mutations (3/4) in the ATOH I-

negative group. ATOHI activation is concomitant with chr6 and chr12 and chr20q gains.
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Figure 4.43: Systematic comparison of the gene expression profiles (left) and variant land-
scapes (right) of ATOHI+ and ATOH - subchohorts of the novel NB subtype

Half of the cases express ATOH! via recurrent enhancer hijacking events along with the
(Figure 4.44, left). The other half have recurrent ALK mutations (Figure 4.44, right). Re-
markably, 2/4 of the ATOH [-negative cases have chr4q rearrangements not activating ATOH1,
suggesting the structural fragility of the chrdq arm in this cell state.
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Figure 4.44: Variant landscapes of ATOH I+ and ATOH - subchohorts of the novel NB subtype

As the initial observation on Figure 4.41 suggests, the two subgroups of this novel NB
subtype show a bimodality with regards to age distribution: Diagnosis of the ATOH [-activated
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cases was observed between 2.5 and 12 years of age whereas, ATOH [-negative cases consisted
of 3 cases with ALK mutations between 10 and 14 years and one 26 year-old case with no clear
driver event. Overall, almost all of these patients can be considered as old in the context of
neuroblastoma (Figure 4.45), the physiopathology and clinical course of adolescent and adult
NB was discussed in [685] and the slow-growing, indolent course of disease described there is
in line with the ALT phenotype observed in this novel subtype of NB.
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Figure 4.45: The ATOHI- subcohort of the novel NB subtype is exclusively seen in older
patients

4.5.2.5 Transcriptomic Downstream Targets of ATOHI in Neuroblastoma

ATOHI] is a BHLH gene, and a transcriptional activator in its normal developmental function
[680], [686]. Therefore, the description of its direct targets are of interest in the NB setting,
where it is aberrantly activated due to somatic structural variants.

BHLH transcription factors are embryonal developmental genes and are organized in 6 phy-
logenetic classses driving distinct transcriptional programmes [687]. ATOHI and NEUROD6
(formerly called ATOH?2) are class A BHLH TFs, whereas MYCN and its heterodimer partner
MAX are class B BHLH TFs. Due to the observation that ATOHI activating rearrangements
are predominantly seen in MYCN-negative and NEURODG-expressing cases, we postulated
that ATOH I might be replacing MYCN, thereby activating some of MYCN’s downstream tar-
gets upon aberrant activation.

In order to investigate the direct targets of ATOHI, and to address the validity of the hy-
pothesis for ATOHI as a MYCN replacement, we did a differential gene expression analysis

with two configurations:
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1. ATOHI-expressor cases compared to all ATOH/-negative cases in the cohort (Figure
4.46, left): this analysis yielded a surprisingly small number of overexpressed genes
such as GNAT3, AC022893.2, KCNB2, CNGA3 and MEISI. Except for MEISI, whose
upregulation was modest, these top candidates have not been shown to have direct roles

in cancer development or to have cancer-related functions.

2. ATOH]I-expressor cases compared to ATOH I-negative cases that are not MYCN ampli-
fied, and not in the novel described NB RNA subtype (Figure 4.46, right): This analysis,
postulating that ATOHI and MYCN share targets, reveals further genes such as KCTDS,
DLL3, HPCAL4 (downregulated) and HMX2.
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Figure 4.46: Transcriptomic changes in neuroblastoma upon ATOH activation (left: ATOHI-
positive vs ATOHI-negative, right: ATOHI-positive vs ATOHI-negative, AND MYCN-
negative, AND NOT in the novel NB subtype)

We observed some of the strongest upregulation characteristics upon ATOH [-activation on
the GNAT3, AC022893.2, KCNB2 and CNGA3 genes (Figure 4.47): GNAT3 is a G-protein
coupled receptor with functions in taste sensing and no prior reports of involvement in cancer
development, it shows a strong and specific activation co-occurring with ATOH] activation.
AC022893.2 is an uncharacterized RNA gene. KCNB2 is an understudied potassium voltage
gated channel with no prior reports of involvement in cancer development. CNGA3 is a cone
photoreceptor cyclic nucleotide-gated channel which is implicated in loss of colour vision but
not cancer [688].

253



NB_noCL-DKFZ: GNAT3 ( ) ( ) NB_noCL-DKFZ: AC022893.2 ( ) ( )

8 s
7
s 3 ’
5 5 o
Jo
el
o
&
4 /’-
3 ....—-—""'"j
P
o~
-
2 in"—'
N
o
-
1 s
,
-
]
e |
NB_noCL-DKFZ: KCNB2 ( ) ) NB_noCL-DKFZ: CNGA3 ( ) )
60
50
55
vl s
50
40
s -
-
)
a0 e 35
s
-
35 /px 30
- I
)
30 -
/’ 25
-~
25 _f o
/ 20
0 - .
LT 15 -
s
15 '," ‘,.
- o
o 10 &
0 ” #
R o~
& g
s o, /
-
e //
00k

Figure 4.47: GNAT3, AC022893.2, KCNB2 and CNGA3 as putative targets of the ATOHI
transcription factor. Cases with pink-shaded backgrounds are in the ATOH I+ group, whereas
cases with blue-shaded backgrounds are in the ATOH - group.

Introducing the additional constraint of MYCN-negative status outside of the novel NB
RNA subtype revealed NHLH2, KCTDS, DLL3 and HPCAL4 (downregulated) as dysregulated
upon ATOH] activation (Figure 4.48), where ATOH [-expressor NB cases show similar profiles
to MYCN-amplified NB cases: NHLH?2 (formerly known as HENZ2) has been described as a
known target of MYCN [689], an oncogene in NB [690], and a target of ATOHI [691]. KCTDS8
is an understudied potassium voltage gated channel with no prior reports of involvement in
cancer development. DLL3, NOTCH]I ligand and a known MYCN target in promoting neuro-
genesis in brain development [692], and a recently discussed cell surface marker [693] in NB.
The DLL family of Notch ligands are on the same pathways as ATOH! in cochlear sensory hair

cell development [694]. HPCALA is an understudied neuron-specific calcium binding protein
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[695] with unknown functions in the context of cancer.
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Figure 4.48: NHLH2, KCTDS, DLL3, and HPCALA4 as targets of the ATOHI transcription
factor, where ATOH! function potentially replaces MYCN amplification. MYCN amplified
cases and cases of the novel NB RNA subtype are on white backgrounds and are not used in
differential gene expression analysis. Cases with pink-shaded backgrounds are in the ATOHI+

group, whereas cases with blue-shaded backgrounds are in the ATOH - group.

Overall the results obtained here strongly support a hypothetical role for ATOH] activa-
tion as a replacement mechanism for MYCN activation in NB. The co-upregulated genes with
known functions in NB NHLH2 (HEN2) and DLL3 were also shown to be direct interactors
of ATOH] in a large-scale screen, which remarkably also returned NEUROD6 as an ATOH]

interacting protein [686].
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4.5.3 Discussion

We investigated the genomic variant landscape of NB and established that it has a rich SV re-
currence profile, directly hitting and truncating neuronal differentiation genes. This aspect of
SVs driving NB development was first explored in [678], followed by a report pre-published
in March 2019 with similar findings to our broader work, [679]. A differentiation block is a cru-
cial component of tumourigenesis of malignancies with dedifferentiated/undifferentiated/primitive
cells of origin. Interestingly, all three case studies (MM, AML, NB) in this dissertation chap-
ter shared this concept with recurrent aberrant activations of transcription factors conferring
cell identity. In the context of NB, the differentiation block is not permanent, and this is used
as part of the standard treatment strategy with retinoic acid [696]. In particular, in MYCN-
nonamplified NB, the TERT and ALT mechanisms ensure telomere maintenance and the pro-
liferative nature of the NB cells come from the stem cell identity of the neural crest cells.
This leaves open questions regarding the origin of the differentiation block in NB, and we here
postulate based on our and others’ results that recurrent SVs truncating neurite differentiation
genes could be contributing to the maintenance of the undifferentiated state of NB cells. Com-
prehensive experimental work will be needed to characterize candidate genes such as ANKS/B,
ZFHX3, DLG2, CNTNAP2, TENM3, AGBL3, PTPRD, SHANK2, DMD, EYS.

We then investigated the landscape of enhancer hijacking in NB. Our comprehensive analy-
sis with high-coverage WGS and high-quality RNA-Seq in a large cohort confirmed established
genes such as MYCN, TERT, FOXRI and LIN28B and revealed only one novel candidate: the
BHLH transcription ATOHI, with a strong activation profile. Subtle upregulation of genes
such as FGFI9 and CIQIL on commonly rearranged loci requires a more stringent analysis
supported by lab assays such as 4-C to validate, therefore we did not focus on them in this
case study. We also did not focus on sporadic cases of enhancer hijacking. In a personal-
ized medicine setting, these might be relevant, and EPISTEME offers an easy tool for clinical
bioinformaticians to recover such events.

We characterized the transcriptome and methylome subtypes of NB with a modern tSNE
based manifold learning strategy, repeatedly used with great success in the paediatric brain
tumour research community [218] [353]. Previous transcriptomic characterization efforts on
NB were based on hierarchical clustering, revealing only the major subtypes of this heteroge-
nous disease [675] [676]. With our large cohort, we identified finely grained subtypes of NB
with distinct biological and phenotypic characteristics such as very slow growth and increased
migratory potential for crossing the blood-brain barrier. Our work revealed a proposed novel
subtype of ATRX wild-type ALT NB with the well-defined drivers ATOHI and ALK, showing
a distinct age profile. This novel subtype of NB could be stemming from a more mature step in
the neural crest cell lineage, and uses the NEUROD6 BHLH TF in contrast to most other cases
of NB using the MYCN-MAX axis. As there are currently no cell lines of this lineage, further
work to characterize this new entity will be challenging. A clinical screening programme for
NEURODG expression in NB histopathological examination or transcriptome analysis could
help prospectively identify new cases, from which new in vitro models can be developed.

Our analysis of ATOH1 in the context of NB revealed a role for ATOH1 beyond its normal
roles in sensory hair cell and cerebellar development [697] [698]. In the context of NB, ATOH
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partners with NEUROD6 (ATOH?2) and upregulates the transcription factor oncogene NHLH?2
(HEN2) [691], and the DLL3 Notch ligand in a shared oncogenic mechanism with MYCN
amplification [689], [692]. To the best of our knowledge, our discovery of the ATOH oncogene
in NB is its first example for somatic activation via genomic alterations, with previous reports
discussing its overexpression without a direct genomic activation [699]. Also to the best of
our knowledge, our discovery also represents the first instance of a somatic genomic activation
of a Class A BHLH TF in NB. ATOHI-activated NB cases in the novel NB subtype were
previously characterized as intermediate-risk (NB2004). With their ALT status, they would,
with our current understanding, be characterized as high-risk NB and considered a clinical
challenge [506]. It is our hope that with powerful in vitro models, the unique clinical challenge
posed by the ATOH1 gene would be better addressed.
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CONCLUSION AND OUTLOOK

My doctoral research on multi-omics data integration with an especially strong focus on SV
analysis from WGS data was on a subject of contemporary interest. With multi-omics data
analysis strategies and method development efforts in the SOPHIA and EPISTEME projects
presented here, I have had the privilege of making major or leading(“) contributions to research
projects on paediatric brain tumours [218]", meningioma [463]", paediatric Burkitt lymphoma
[435] [465], multiple myeloma (ongoing)”,acute myeloid leukaemia (ongoing)”, and paediatric
neuroblastoma (ongoing)”. In these concluding remarks, I will go through the major findings
presented in this dissertation and outline my expectations on how these can be further devel-
oped.

First, I discovered in a large international collaboration recurrent mutational drivers in four
novel molecularly defined paediatric brain tumour entities formerly belonging to a histopatho-
logically poorly defined group of diseased named CNS-PNETs [218]. Our strategy of first
grouping the entities by cell type using the methylome, followed by candidate gene identifi-
cation using the transcriptome, finally discovering the mutational drivers using the genome in
a three-pronged multi-omics approach proved fruitful and impacted established clinical diag-
nostic practices with longer term prospects in changes of treatment strategies. Nevertheless, it
must be recognized that CNS-PNETSs were overall a rare entity and similar new findings will
become more and more difficult with each new publication on other rare diseases such as the
recent finding on infant soft tissue tumours showing EGFR and BRAF ITD events [700]. Nev-
ertheless, the impact of such studies goes beyond epidemiological considerations and clinical
interest: we and the scientific community have not yet characterized the molecular and biolog-
ical function of MNI fusions, CIC fusions, BCOR ITDs as well as the more recently published
EGFR and BRAF ITDs. Molecular functions of FOXR2 also remain unclear apart from pre-
liminary findings on MYC stabilization functions. As these molecularly defined entities enter
clinical practice as recognized tumour entities, their biological basis will drive clinical trials
based on rational targeted approaches. Further work on rare and uncharacterised tumour types
may reveal novel mutational mechanisms and shed light on functions of understudied genes
such as FOXR2 or NUTM1.

In my second project, I developed an SV detection algorithm named SOPHIA. My pri-
orities were fast and efficient execution and achieving high sensitivity, suitable for clinical
projects. I reached these design goals and SOPHIA established itself as a part of DKFZ’s
standard bioinformatics workflow including its biggest personalized medicine projects in the
HIPO framework [281]. In addition to its main task of SV detection, it is indirectly being
used in CNV analysis and RNA fusion analysis workflows as a supporting tool. Nevertheless,
more work is needed to address the need for a systematic specificity benchmark for SOPHIA
and in its transition to the hg38 human reference genome. More broadly, research on SVs has
significant room for improvement: there are still classes of SVs that are not accessible to short-
read sequencing based technologies requiring combinations of different technologies to resolve

[701]. One particularly attractive goal would be to reconstruct cancer karyotypes using a com-
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bination of long-read sequencing, optical mapping and short-read sequencing, addressing the
full spectrum of genomic alterations. Such a strategy is routinely used in genome assembly of
different species [702], but applications in cancer remain uncommon [703], especially on pri-
mary tumour material [704]. Reconstructing a correct karyotype would allow a more precise
understanding of chromatin interactions rather than relying on TADs obtained from cell lines
or tissues without rearrangements. In this context, [705] is a landmark study combining optical
mapping and Hi-C offering simultaneous chromatin interaction, SV calling and karyotyping,
even though it might be difficult for this strategy to find wide-spread adoption in clinical di-
agnostics or even cancer omics research projects due to the material requirements dictating a
need for in vitro material generation such as xenografts, organoids or cell lines. Therefore,
improving SV detection from short-read sequencing data will remain as an important bioin-
formatics task. In this context, balancing sensitivity and specificity is the biggest challenge.
To this end, a consensus approach taking advantage of different algorithms could be a ratio-
nal strategy as adopted by the PCAWG consortium [284]. However, a key concern here is the
general trend of local assembly based algorithms becoming more prevalent would make gains
from a consensus building approach more limited. As SOPHIA is not based on local assembly,
this could be turned into an advantage by pairing it with SYABA [426] or NovoBreak [425].
We are currently in the process of obtaining optical mapping (Bionano) based SV data as part
of the GPOH NB genomics project and over the next years will have the opportunity to assess
and improve SOPHIA both based on data from orthogonal technologies, similar to what we did
with FISH, and as part of a consensus strategy with other tools.

My third project was the development of the EPISTEME integrative omics data analysis
and interactive visualization tool, aiming to make high-throughput and complex cancer multi-
omics datasets accessible to a broader community of users. With high-throughput sequencing
methods becoming cost-effective and published datasets made freely available, we are now in
a period where we have a molecular classification and analysis-based understanding of cancer
and advanced, data-driven concepts of targeted treatments that are part of clinical practices.
Therefore, there is a growing demand in the scientific and medical community to access can-
cer multi-omics datasets without the need for programming skills. Though there are a number
of cancer data portals addressing this demand, EPISTEME has particularly strong features
in multi-omics data integration and user interactions interconnecting the different data lay-
ers, which enables discovery and further characterization of enhancer hijacking candidates or
disease molecular subtypes, as shown on pilot examples from the TCGA Chapter 3 and unpub-
lished DKFZ datasets in Chapter 4. The next challenges for EPISTEME will be in three main

directions:

* Adding support for further layers of omics data: with the cancer proteome [706] [707]
and metabolome [708] [709] attracting interest, they would be powerful additions to the
established features on genomics transcriptomics and methylome data analysis offered
in EPISTEME.

* Increasing the technical scalability of EPISTEME: EPISTEME currently supports hun-
dreds of cases from WGS studies. This should be further scaled up to thousands due

to the requirements of pan-cancer analysis projects such as PCAWG including close to
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2700 WGS samples.

* Developing features for single-cell omics data analysis: In line with anticipated improve-
ments in input data scaling, single cell omics data will need accommodation of tens of
thousands of cells with sparse data structures, and require implementation of sparse data

analysis algorithms.

The first of these goals depends on the availability of data, but will also require new ways
managing omics data due to the dynamic nature of metabolomics data in assays such as flux.
The latter two will need technical improvements in the data management and processing im-
plementation of EPISTEME. These include switching from SVG vector graphics to the faster
WebGL technology, switching from JavaScript to Web Assembly using “web workers” for
computationally heavy algorithms. Along with ongoing work on developing epigenetics fea-
tures such as visualization fof chromatin state and interaction data, these technical tasks will
keep us active on further development of EPISTEME for the next years.

In the final chapter of this dissertation, I presented ongoing progress in DKFZ projects
that was made possible by using SOPHIA and EPISTEME together as part of an integrative
omics data analysis strategy. By only using the currently available feature set of EPISTEME
and structural variant calls from SOPHIA, we managed to identify ATOHI as a novel candi-
date proto-oncogene in paediatric neuroblastoma and revealed the hitherto unstudied functions
of aberrantly activated MNXI in acute myeloid leukaemia and MYCN in multiple myeloma;

characterizing their putative functions in their aberrantly activated state:

* In multiple myeloma, our work could lead to dedicated studies on MYCN-activated mul-
tiple myeloma, studying how the MYC-to-MYCN switch alters the cellular metabolism
of these tumours and if this confers a survival or proliferation advantage, given the poor
survival of MYCN-activated multiple myeloma cases. More participants will need to be

recruited in a targeted manner for further work on this subject.

* In acute myeloid leukaemia, the dual role of the MNX/ homeobox as a transcriptomic
reprogrammer activating motor neuron development genes and suppressing myeloid dif-
ferentiation genes is a novel finding. Though the MNXI gene is of broad interest due
to its known roles in multiple cancer types including infant AML, its likely molecular

function in leukaemogenesis had not been recognized before our findings.

* In neuroblastoma, our work revealed a likely partial MYCN-replacement role for ATOH I
as an oncogene, which could impact our understanding of BHLH transcription factors.
Furthermore, we identified three novel transcriptomic clusters of NB with distinct bio-
logical characteristics. Both ATOHI functions as a proto-oncogene and transcriptomic

classification of NB will require and attract further work.
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APPENDIX A
DONORS IN THE SOPHIA POPULATION BACKGROUND DATABASE

Hiseq family sequencers (101bp) Database

BLCA-US (TCGA) 20 Donors
TCGA-BL-A13] TCGA-BT-A20P TCGA-BT-A20Q TCGA-BT-A20T TCGA-BT-A20V TCGA-BT-A2LA TCGA-
BT-A3PH TCGA-BT-A3PJ TCGA-C4-A0F7 TCGA-CF-A27C TCGA-CF-A3MF TCGA-DK-A1A5 TCGA-DK-
A1A6 TCGA-DK-A1A7 TCGA-DK-A3IL TCGA-FD-A3N5 TCGA-FD-A3N6 TCGA-FT-A3EE TCGA-GD-A2C5
TCGA-H4-A2HQ

BOCA-UK (IGCC) 61 Donors
CGP_donor_1397077 CGP_donor_1397083 CGP_donor_1397084 CGP_donor_1437403 CGP_donor_1437405 CGP_donor_1437406
CGP_donor_1437407 CGP_donor_1437408 CGP_donor_1437409 CGP_donor_1437411 CGP_donor_1437412 CGP_donor_1437413
CGP_donor_1437414 CGP_donor_1437415 CGP_donor_1437416 CGP_donor_1437417 CGP_donor_1437418 CGP_donor_1437419
CGP_donor_1437420 CGP_donor_1437423 CGP_donor_1437424 CGP_donor_1437425 CGP_donor_1475256 CGP_donor_1490914
CGP_donor_1528364 CGP_donor_1528371 CGP_donor_1528374 CGP_donor_1528381 CGP_donor_1602516 CGP_donor_1602529
CGP_donor_1691121 CGP_donor_1691124 CGP_donor_1691131 CGP_donor_1691132 CGP_donor_1691133 CGP_donor_1691135
CGP_donor_1691139 CGP_donor_1691143 CGP_donor_1691145 CGP_donor_1691147 CGP_donor_1691148 CGP_donor_1691149
CGP_donor_1691150 CGP_donor_1691151 CGP_donor_1691152 CGP_donor_1691153 CGP_donor_1691154 CGP_donor_1691205
CGP_donor_1691206 CGP_donor_1691207 CGP_donor_1691208 CGP_donor_1691209 CGP_donor_1691210 CGP_donor_1691211
CGP_donor_1691212 CGP_donor_1691213 CGP_donor_1691214 CGP_donor_1691215 CGP_donor_1691216 CGP_donor_1691217
CGP_donor_1841267

BRCA-EU (IGCC) 75 Donors
CGP_donor_1163904 CGP_donor_1186987 CGP_donor_1186990 CGP_donor_1187025 CGP_donor_1230754 CGP_donor_1230755
CGP_donor_1230796 CGP_donor_1230797 CGP_donor_1232859 CGP_donor_1234120 CGP_donor_1234121 CGP_donor_1234122
CGP_donor_1234123 CGP_donor_1234124 CGP_donor_1234129 CGP_donor_1333047 CGP_donor_1333048 CGP_donor_1337214
CGP_donor_1337217 CGP_donor_1337218 CGP_donor_1337220 CGP_donor_1337222 CGP_donor_1337223 CGP_donor_1337225
CGP_donor_1337226 CGP_donor_1337231 CGP_donor_1337236 CGP_donor_1337237 CGP_donor_1337238 CGP_donor_1337240
CGP_donor_1337241 CGP_donor_1347723 CGP_donor_1347731 CGP_donor_1347742 CGP_donor_1347751 CGP_donor_1347756
CGP_donor_1353426 CGP_donor_1353427 CGP_donor_1353428 CGP_donor_1353429 CGP_donor_1353434 CGP_donor_1364028
CGP_donor_1364029 CGP_donor_1364033 CGP_donor_1374617 CGP_donor_1374618 CGP_donor_1397086 CGP_donor_1397088
CGP_donor_1397260 CGP_donor_1397261 CGP_donor_1397262 CGP_donor_1397263 CGP_donor_1397264 CGP_donor_1397266
CGP_donor_1397277 CGP_donor_1397278 CGP_donor_1397279 CGP_donor_1397281 CGP_donor_1397282 CGP_donor_1397284
CGP_donor_1451422 CGP_donor_1451426 CGP_donor_1451427 CGP_donor_1475201 CGP_donor_1475202 CGP_donor_1503014
CGP_donor_1503016 CGP_donor_1503017 CGP_donor_1503019 CGP_donor_1503020 CGP_donor_1503021 CGP_donor_1503128
CGP_donor_1503140 CGP_donor_1503150 CGP_donor_1503156

BRCA-UK (IGCC) 39 Donors
CGP_donor_1069291 CGP_donor_1114881 CGP_donor_1114929 CGP_donor_1167078 CGP_donor_1167080 CGP_donor_1187030
CGP_donor_1187031 CGP_donor_1187033 CGP_donor_1199129 CGP_donor_1199137 CGP_donor_1199138 CGP_donor_1212361
CGP_donor_1230722 CGP_donor_1230724 CGP_donor_1230728 CGP_donor_1230729 CGP_donor_1230785 CGP_donor_1309223
CGP_donor_1310131 CGP_donor_1337235 CGP_donor_1347720 CGP_donor_1347737 CGP_donor_1347739 CGP_donor_1347745
CGP_donor_1347813 CGP_donor_1353431 CGP_donor_1353432 CGP_donor_1363963 CGP_donor_1363965 CGP_donor_1363969
CGP_donor_1410205 CGP_donor_1410210 CGP_donor_1456607 CGP_donor_1472394 CGP_donor_1472395 CGP_donor_1503143
CGP_donor_1606179 CGP_donor_1654385 CGP_donor_1701345

BRCA-US (TCGA) 88 Donors
TCGA-A1-AOSM TCGA-A2-A04P TCGA-A2-A04T TCGA-A2-A04X TCGA-A2-A0DO TCGA-A2-A0D1 TCGA-
A2-A0D4 TCGA-A2-AOEY TCGA-A2-A0YG TCGA-A2-A259 TCGA-A2-A25B TCGA-A2-A3KC TCGA-A2-
A3XX TCGA-A2-A3Y0 TCGA-A7-AOCE TCGA-A7-A13D TCGA-A7-A26G TCGA-A8-A075 TCGA-A8-A07B
TCGA-A8-A071 TCGA-A8-A08B TCGA-A8-AO8L TCGA-A8-A08S TCGA-A8-A092 TCGA-A8-A094 TCGA-
A8-A09X TCGA-AC-A2BK TCGA-AN-A04D TCGA-AN-AOAT TCGA-AN-A0GO TCGA-AN-AOXR TCGA-
AO-A03L TCGA-AO-A03N TCGA-AO-A0J2 TCGA-AO-A0J4 TCGA-AO-A0J6 TCGA-AO-AO0JM TCGA-AO-
A124 TCGA-AO-A12H TCGA-AQ-A04) TCGA-AR-AOTX TCGA-AR-A1AY TCGA-AR-A24Z TCGA-AR-A256
TCGA-AR-A2LK TCGA-B6-A0I1 TCGA-B6-A016 TCGA-B6-AORT TCGA-B6-AORU TCGA-B6-AOWX TCGA-
B6-A0X5 TCGA-BH-AOAV TCGA-BH-AOBW TCGA-BH-AODG TCGA-BH-AODT TCGA-BH-AOEO TCGA-
BH-AOHO TCGA-BH-AOH6 TCGA-BH-AOWA TCGA-BH-A18R TCGA-BH-A18U TCGA-BH-A1FC TCGA-
C8-A12L TCGA-C8-A12Q TCGA-C8-A130 TCGA-D8-A27F TCGA-D8-A27H TCGA-E2-A109 TCGA-E2-A14P
TCGA-E2-A14X TCGA-E2-A152 TCGA-E2-A156 TCGA-E2-A15E TCGA-E2-A15H TCGA-E2-A15K TCGA-
E2-A1LG TCGA-E2-A1LK TCGA-E2-A1LL TCGA-E9-AINH TCGA-EW-A1J5 TCGA-EW-A1P8 TCGA-EW-
A1PB TCGA-EW-A1PC TCGA-EW-A1PH TCGA-EW-A3U0 TCGA-GI-A2C9 TCGA-GM-A2DF TCGA-GM-
A3XL

BTCA-SG (ICGC) 12 Donors
BTCA _donor_27 BTCA _donor_A035 BTCA _donor_A096 BTCA _donor_A153 BTCA _donor_BO70 BTCA _donor_B083
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BTCA _donor_C080 BTCA _donor_R149 BTCA _donor_Y008 BTCA _donor_Y065 BTCA _donor_Y 140 BTCA _donor_72403

CESC-US (TCGA) 16 Donors
TCGA-C5-A0TN TCGA-C5-A1BF TCGA-C5-A1BN TCGA-C5-A1M9 TCGA-C5-AIMI TCGA-C5-A1ML TCGA-
C5-A1IMQ TCGA-C5-A2LT TCGA-C5-A2LV TCGA-C5-A2LY TCGA-DG-A2KJ TCGA-DS-AOVL TCGA-EK-
A2PK TCGA-EK-A2R9 TCGA-EK-A2RM TCGA-EX-A1HS5

CLLE-ES (ICGC) 95 Donors
10 115 122 125 128 12 134 137 138 139 141 145 148 151 157 15166 16 176 177 179 181 188 192 199 1 20 23
244 2526 277 278 27 282 283 290 296 2 306 308 30 318 32 33 342 343 356 358 367 371 372 386 393 39 3 435
442 44 467 473 477 48 4 519 523 56 577 58 594 5 628 63 64 654 661 677 684 6 723 749 761 776 783 785 795 802
803 824 82 8328384909

CMDI-UK (IGCC) 15 Donors
CGP_donor_1605283_1 CGP_donor_1338575_1 CGP_donor_1364401_1 CGP_donor_1364416_1 CGP_donor_1364444 _1
CGP_donor_1364465_1 CGP_donor_1364470_1 CGP_donor_1405305_1 CGP_donor_1405314_1 CGP_donor_1463315_1
CGP_donor_1500976_1 CGP_donor_1500978_1 CGP_donor_1600817_1 CGP_donor_1600818_1 CGP_donor_1733896_1

COAD-US (TCGA) 40 Donors
TCGA-A6-2680 TCGA-A6-2681 TCGA-A6-3807 TCGA-A6-6141 TCGA-A6-6781 TCGA-A6-A565 TCGA-A6-
A566 TCGA-A6-A567 TCGA-A6-A56B TCGA-AA-3514 TCGA-AA-3518 TCGA-AA-3529 TCGA-AA-3534
TCGA-AA-3555 TCGA-AA-3664 TCGA-AA-3666 TCGA-AA-3685 TCGA-AA-3956 TCGA-AA-3977 TCGA-
AA-3994 TCGA-AA-A01S TCGA-AA-AOIT TCGA-AA-AO01V TCGA-AA-A01X TCGA-AA-A020 TCGA-AA-
A02Y TCGA-AD-6964 TCGA-AD-ASEJ TCGA-AD-ASEK TCGA-AY-A54L TCGA-CA-6717 TCGA-CA-6718
TCGA-D5-6540 TCGA-NH-AS0T TCGA-NH-A50V TCGA-QG-A5YV TCGA-QG-A5YW TCGA-QG-A5YX
TCGA-QG-A5Z1 TCGA-QG-A5Z2

DLBC-US (TCGA) 7 Donors
TCGA-FF-8041 TCGA-FF-8042 TCGA-FF-8043 TCGA-FF-8046 TCGA-FF-8047 TCGA-FF-8061 TCGA-FF-
8062

EOPC-DE (ICGC) 40 Donors
EOPC-010 EOPC-011 EOPC-017 EOPC-018 EOPC-019 EOPC-01 EOPC-021 EOPC-022 EOPC-023 EOPC-024
EOPC-025 EOPC-026 EOPC-029 EOPC-02 EOPC-030 EOPC-031 EOPC-032 EOPC-033 EOPC-034_1 EOPC-
035_.1 EOPC-036_1 EOPC-037_1 EOPC-03 EOPC-040_1 EOPC-041 EOPC-048 EOPC-049 EOPC-04 EOPC-
051 EOPC-052 EOPC-053 EOPC-054 EOPC-056 EOPC-057 EOPC-058 EOPC-05 EOPC-06 EOPC-07 EOPC-08
EOPC-09

ESAD-UK (IGCC) 98 Donors
OCCAMS-AH-011 OCCAMS-AH-014 OCCAMS-AH-021 OCCAMS-AH-036 OCCAMS-AH-039 OCCAMS-
AH-042 OCCAMS-AH-046 OCCAMS-AH-047 OCCAMS-AH-048 OCCAMS-AH-061 OCCAMS-AH-062 OCCAMS-
AH-063 OCCAMS-AH-064 OCCAMS-AH-071 OCCAMS-AH-077 OCCAMS-AH-082 OCCAMS-AH-085 OCCAMS-
AH-086 OCCAMS-AH-088 OCCAMS-AH-091 OCCAMS-AH-096 OCCAMS-AH-108 OCCAMS-AH-112 OCCAMS-
AH-120 OCCAMS-AH-127 OCCAMS-AH-131 OCCAMS-AH-133 OCCAMS-AH-135 OCCAMS-AH-136 OCCAMS-
AH-139 OCCAMS-AH-140 OCCAMS-AH-143 OCCAMS-AH-146 OCCAMS-AH-155 OCCAMS-AH-160 OCCAMS-
AH-167 OCCAMS-AH-173 OCCAMS-AH-174 OCCAMS-AH-182 OCCAMS-AH-183 OCCAMS-AH-196 OCCAMS-
AH-197 OCCAMS-AH-213 OCCAMS-ED-003 OCCAMS-ED-007 OCCAMS-ED-036 OCCAMS-ED-041 OCCAMS-
GS-002 OCCAMS-PS-001 OCCAMS-PS-002 OCCAMS-PS-008 OCCAMS-PS-012 OCCAMS-PS-013 OCCAMS-
PS-014 OCCAMS-QE-095 OCCAMS-RS-006 OCCAMS-RS-007 OCCAMS-RS-008 OCCAMS-RS-010 OCCAMS-
RS-014 OCCAMS-RS-022 OCCAMS-RS-024 OCCAMS-RS-027 OCCAMS-RS-028 OCCAMS-RS-029 OCCAMS-
RS-031 OCCAMS-RS-032 OCCAMS-RS-035 OCCAMS-RS-036 OCCAMS-RS-047 OCCAMS-SH-003 OCCAMS-
SH-020 OCCAMS-SH-024 OCCAMS-SH-038 OCCAMS-SH-051 OCCAMS-SH-071 OCCAMS-ST-020 OCCAMS-
ST-023 OCCAMS-ST-029 OCCAMS-ST-030 OCCAMS-ST-033 OCCAMS-ST-035 OCCAMS-ST-036 OCCAMS-
ST-037 OCCAMS-ST-041 OCCAMS-ST-043 OCCAMS-WG-001 OCCAMS-WG-002 OCCAMS-WG-005 OCCAMS-
WG-006 OCCAMS-WG-008 OCCAMS-WG-009 OCCAMS-WG-019 OCCAMS-ZZ-004 OCCAMS-ZZ-009 OCCAMS-
77-011 OCCAMS-ZZ-016 OCCAMS-ZZ-019

GACA-CN 39 Donors
CGP_donor_GC00001 CGP_donor_GC00002 CGP_donor_GC00003 CGP_donor_GC00004 CGP_donor_GC00005
CGP_donor_GC00007 CGP_donor_.GC00008 CGP_donor_.GC00013 CGP_donor_.GC00014 CGP_donor_GC00015
CGP_donor_GC00016 CGP_donor_.GC00017 CGP_donor_.GC00018 CGP_donor_.GC00019 CGP_donor_GC00020
CGP_donor_GC00021 CGP_donor_GC00022 CGP_donor_GC00026 CGP_donor_GC00027 CGP_donor_GC00028
CGP_donor_GC00029 CGP_donor_.GC00030 CGP_donor_.GC00031 CGP_donor_GC00032 CGP_donor_GC00034
CGP_donor_GC00035 CGP_donor_.GC00037 CGP_donor_.GC00038 CGP_donor_GC00039 CGP_donor_GC00040
CGP_donor_GC00046 CGP_donor_.GC00047 CGP_donor_.GC00048 CGP_donor_.GC00049 CGP_donor_GC00050
CGP_donor_GC00051 CGP_donor_GC00052 CGP_donor_GC00053 CGP_donor_GC00054

GBM-US (TCGA) 32 Donors
TCGA-02-2483 TCGA-02-2485 TCGA-06-0155 TCGA-06-0157 TCGA-06-0190 TCGA-06-0211 TCGA-06-0214
TCGA-06-0221 TCGA-06-0686 TCGA-06-0744 TCGA-06-0745 TCGA-06-1086 TCGA-06-2557 TCGA-06-2570
TCGA-06-5411 TCGA-06-5415 TCGA-14-0786 TCGA-14-1402 TCGA-14-1823 TCGA-14-2554 TCGA-16-1063
TCGA-19-1389 TCGA-19-2620 TCGA-19-2624 TCGA-19-2629 TCGA-19-5960 TCGA-26-5132 TCGA-26-5135
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TCGA-27-1831 TCGA-27-2523 TCGA-27-2528 TCGA-32-1970

HNSC-US (TCGA) 42 Donors
TCGA-BA-4076 TCGA-BA-5149 TCGA-BA-5556 TCGA-BA-6869 TCGA-BA-6872 TCGA-BA-6873 TCGA-
BA-A4IH TCGA-CN-4737 TCGA-CN-5365 TCGA-CN-5374 TCGA-CN-6011 TCGA-CN-6989 TCGA-CN-6994
TCGA-CQ-6228 TCGA-CR-5249 TCGA-CR-5250 TCGA-CR-6467 TCGA-CR-6470 TCGA-CR-6472 TCGA-
CR-6480 TCGA-CR-6482 TCGA-CR-6487 TCGA-CR-6491 TCGA-CR-7382 TCGA-CR-7385 TCGA-CR-7391
TCGA-CR-7404 TCGA-CV-5431 TCGA-CV-5432 TCGA-CV-5442 TCGA-CV-5443 TCGA-CV-5973 TCGA-CV-
6433 TCGA-CV-6956 TCGA-CV-7090 TCGA-CV-7100 TCGA-CV-7180 TCGA-CV-7255 TCGA-CV-7432 TCGA-
CX-7086 TCGA-DQ-5625 TCGA-HD-7753

KICH-US (TCGA) 43 Donors
TCGA-KL-8323 TCGA-KL-8325 TCGA-KL-8326 TCGA-KL-8328 TCGA-KL-8330 TCGA-KL-8331 TCGA-
KL-8332 TCGA-KL-8333 TCGA-KL-8334 TCGA-KL-8340 TCGA-KL-8341 TCGA-KL-8342 TCGA-KL-8343
TCGA-KL-8344 TCGA-KL-8346 TCGA-KM-8438 TCGA-KM-8439 TCGA-KM-8440 TCGA-KM-8441 TCGA-
KM-8442 TCGA-KM-8443 TCGA-KM-8476 TCGA-KM-8477 TCGA-KM-8639 TCGA-KN-8418 TCGA-KN-
8419 TCGA-KN-8421 TCGA-KN-8422 TCGA-KN-8424 TCGA-KN-8425 TCGA-KN-8426 TCGA-KN-8427 TCGA-
KN-8428 TCGA-KN-8429 TCGA-KN-8431 TCGA-KN-8432 TCGA-KN-8434 TCGA-KN-8435 TCGA-KN-8437
TCGA-KO-8405 TCGA-KO-8406 TCGA-KO-8407 TCGA-KO-8411

KIRC-US (TCGA) 32 Donors
TCGA-A3-3308 TCGA-A3-3363 TCGA-A3-3372 TCGA-A3-3387 TCGA-AK-3454 TCGA-AK-3455 TCGA-BO-
5094 TCGA-B0-5693 TCGA-B0-5695 TCGA-B2-4099 TCGA-B2-4101 TCGA-B2-4102 TCGA-BP-4326 TCGA-
BP-4756 TCGA-BP-4807 TCGA-BP-4968 TCGA-BP-5010 TCGA-BP-5168 TCGA-CJ-4639 TCGA-CJ-4870 TCGA-
CJ-4878 TCGA-CJ-4899 TCGA-CJ-5681 TCGA-CJ-5682 TCGA-CJ-6033 TCGA-CW-5585 TCGA-CW-6087 TCGA-
CW-6093 TCGA-CZ-5453 TCGA-CZ-5454 TCGA-CZ-5987 TCGA-DV-5566

KIRP-US (TCGA) 33 Donors
TCGA-A4-A48D TCGA-A4-A4ZT TCGA-A4-A57E TCGA-AL-3466 TCGA-AL-3468 TCGA-AL-3472 TCGA-
AL-3473 TCGA-AL-A5DJ TCGA-B1-A47M TCGA-B1-A47N TCGA-B1-A470 TCGA-B3-3925 TCGA-B3-3926
TCGA-B9-4113 TCGA-B9-4114 TCGA-B9-4115 TCGA-B9-4116 TCGA-B9-4117 TCGA-B9-4617 TCGA-B9-
A44B TCGA-GL-A4EM TCGA-GL-A59R TCGA-HE-A5NF TCGA-HE-A5SNH TCGA-HE-A5NJ TCGA-HE-
ASNL TCGA-TA-A40X TCGA-IA-A40Y TCGA-MH-A55W TCGA-MH-A55Z TCGA-MH-A560 TCGA-MH-
A561 TCGA-MH-A562

LAML-KR 5 Donors
SNU_WGS_01 SNU_WGS_05 SNU_WGS_09 SNU_WGS_10 SNU_WGS_12

LAML-US (TCGA) 9 Donors
TCGA-AB-2906 TCGA-AB-2976 TCGA-AB-2980 TCGA-AB-2983 TCGA-AB-2987 TCGA-AB-2989 TCGA-
AB-2991 TCGA-AB-2993 TCGA-AB-2998

LGG-US (TCGA) 17 Donors
TCGA-CS-5395 TCGA-CS-6668 TCGA-DB-5278 TCGA-DU-5874 TCGA-DU-6401 TCGA-DU-6407 TCGA-
DU-7009 TCGA-DU-7301 TCGA-E1-5318 TCGA-E1-5319 TCGA-EZ-7264 TCGA-FG-5964 TCGA-FG-8182
TCGA-HT-7602 TCGA-HT-7695 TCGA-HW-7487 TCGA-IK-7675

LICA-FR 4 Donors
CHC205 CHC320 CHC322 CHC433

LIHC-US (TCGA) 53 Donors
TCGA-BC-A10Q TCGA-BC-A216 TCGA-BC-A217 TCGA-BW-A5NO TCGA-BW-A5SNP TCGA-BW-A5NQ
TCGA-CC-5260 TCGA-CC-5261 TCGA-CC-5262 TCGA-CC-A1HT TCGA-DD-A1E9 TCGA-DD-A1EB TCGA-
DD-A1ED TCGA-DD-A1EG TCGA-DD-A1EH TCGA-DD-A1EI TCGA-DD-A1EJ TCGA-DD-A1EL TCGA-
DD-A3A6 TCGA-DD-A3A7 TCGA-DD-A3A8 TCGA-DD-A3A9 TCGA-DD-A4NA TCGA-DD-A4NB TCGA-
DD-A4ND TCGA-DD-A4NE TCGA-DD-A4NG TCGA-ED-A459 TCGA-ED-A4XI TCGA-EP-A26S TCGA-EP-
A2KA TCGA-EP-A2KB TCGA-EP-A3RK TCGA-ES-A2HS TCGA-ES-A2HT TCGA-FV-A23B TCGA-FV-A2QQ
TCGA-FV-A310 TCGA-FV-A311 TCGA-FV-A3R2 TCGA-FV-A3R3 TCGA-FV-A495 TCGA-FV-A496 TCGA.-
FV-A47ZQ TCGA-G3-A25S TCGA-G3-A25T TCGA-G3-A25V TCGA-G3-A25W TCGA-G3-A25Y TCGA-G3-
A3CK TCGA-HP-A5MZ TCGA-MR-A520 TCGA-PD-A5DF

LINC-JP 21 Donors
HX18 HX20 HX21 HX22 HX23 HX24 HX25 HX26 HX27 HX28 HX29 HX30 HX31 HX32 HX33 HX34 HX35
HX36 HX37 HX5 HX9

LIRI-JP 218 Donors
RK001 RK002 RK003 RK004 RK005 RK007 RK010 RK012 RK014 RK015 RK016 RK018 RK019 RK020
RK021 RK022 RK023 RK024 RK026 RK027 RK028 RK029 RK030 RK032 RK033 RK034 RK035 RKO037
RK038 RK041 RK042 RK043 RK044 RK048 RK049 RK051 RK052 RK053 RK054 RK055 RK056 RK057
RK058 RK059 RK060 RK061 RK062 RK063 RK064 RK065 RK066 RK067 RK068 RK070 RK071 RK072
RK073 RK074 RK075 RK076 RK077 RK079 RK080 RK081 RK082 RK083 RK084 RK085 RK086 RK088
RK089 RK090 RK092 RK093 RK095 RK096 RK098 RK100 RK102 RK104 RK105 RK106 RK107 RK111
RK113 RK120 RK121 RK122 RK124 RK125 RK126 RK128 RK130 RK133 RK135 RK136 RK137 RK139
RK140 RK142 RK143 RK144 RK146 RK148 RK150 RK151 RK152 RK153 RK154 RK155 RK156 RK163
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RK164 RK166 RK167 RK169 RK170 RK172 RK175 RK176 RK177 RK178 RK181 RK183 RK184 RK185
RK186 RK188 RK190 RK191 RK193 RK194 RK195 RK196 RK197 RK198 RK199 RK200 RK201 RK202
RK205 RK206 RK207 RK208 RK210 RK211 RK213 RK215 RK216 RK217 RK220 RK221 RK222 RK223
RK224 RK225 RK226 RK227 RK228 RK229 RK230 RK232 RK234 RK235 RK236 RK237 RK241 RK243
RK244 RK245 RK254 RK256 RK257 RK258 RK259 RK260 RK262 RK263 RK264 RK265 RK266 RK267
RK268 RK269 RK270 RK272 RK275 RK277 RK278 RK279 RK280 RK282 RK284 RK285 RK297 RK298
RK303 RK304 RK305 RK306 RK307 RK308 RK309 RK310 RK312 RK316 RK317 RK326 RK337 RK338
RKO006_1 RK036_1 RK046_1 RK145_1 RK180_1 RK261_1 RK287_1 RK289_1

LUAD-US (TCGA) 34 Donors
TCGA-05-4389 TCGA-05-4395 TCGA-05-4396 TCGA-05-4397 TCGA-05-4398 TCGA-05-4420 TCGA-05-5429
TCGA-38-4628 TCGA-44-2659 TCGA-44-6148 TCGA-49-4486 TCGA-49-4512 TCGA-49-6742 TCGA-50-5066
TCGA-50-5930 TCGA-50-5932 TCGA-50-6591 TCGA-50-6597 TCGA-55-6972 TCGA-55-6982 TCGA-55-6984
TCGA-55-6986 TCGA-55-7281 TCGA-55-8299 TCGA-64-1678 TCGA-64-1680 TCGA-73-4659 TCGA-75-5147
TCGA-75-6203 TCGA-75-7030 TCGA-78-7158 TCGA-91-6840 TCGA-91-6847 TCGA-97-8171

LUSC-US (TCGA) 35 Donors
TCGA-18-3408 TCGA-18-3415 TCGA-18-4721 TCGA-21-5782 TCGA-22-5477 TCGA-22-5485 TCGA-22-5492
TCGA-33-4586 TCGA-34-2596 TCGA-34-2600 TCGA-34-5240 TCGA-37-4135 TCGA-43-3394 TCGA-43-3920
TCGA-43-5670 TCGA-52-7812 TCGA-56-1622 TCGA-56-7582 TCGA-60-2698 TCGA-60-2711 TCGA-60-2719
TCGA-66-2756 TCGA-66-2789 TCGA-66-2793 TCGA-66-2795 TCGA-68-7755 TCGA-68-8250 TCGA-77-6843
TCGA-77-7139 TCGA-85-8052 TCGA-85-8277 TCGA-92-8064 TCGA-94-7943 TCGA-96-7545 TCGA-98-8022

MB-DKFZ (ICGC) 201 Donors
ICGC_LFS_.MB1ICGC_MB101 ICGC_MB102 ICGC_MB104 ICGC_MB106 ICGC_.MB108 ICGC_MB110ICGC_MB111
ICGC_MB112ICGC_MB113ICGC_MB114ICGC_MB115ICGC_MB117ICGC_MB118 ICGC_MB119ICGC_MB121
ICGC_MB122 ICGC_MB124 ICGC_MB125 ICGC_MB126 ICGC_MB128 ICGC_MB129 ICGC_MB12 ICGC_MB130
ICGC_MB131ICGC_MB132 ICGC_MB134 ICGC_MB136 ICGC_MB139 ICGC_MB140 ICGC_MB141 ICGC_MB 144
ICGC_MB145ICGC_MB146 ICGC_MB151 ICGC_MB152 ICGC_MB 154 ICGC_MB157 ICGC_MB159 ICGC_MB15
ICGC_MBI160 ICGC_MB161 ICGC_MB163 ICGC_MB164 ICGC_MB165 ICGC_MB166 ICGC_MB168 ICGC_MB16
ICGC_MB170ICGC_MB171 ICGC_MB174 ICGC_MB175ICGC_MB176 ICGC_MB177 ICGC_MB178 ICGC_MB179
ICGC_MB180ICGC_MB181 ICGC_MB183 ICGC_MB184 ICGC_MB 185 ICGC_MB188 ICGC_MB189 ICGC_MB18
ICGC_MB193 ICGC_MB194 ICGC_MB198 ICGC_MB199 ICGC_MB19 ICGC_MB1 ICGC_MB204 ICGC_MB205
ICGC_MB206 ICGC_MB20 ICGC_MB213 ICGC_MB214 ICGC_MB216 ICGC_MB217 ICGC_MB21 ICGC_MB224
ICGC_MB225 ICGC_MB226 ICGC_MB227 ICGC_MB228 ICGC_MB229 ICGC_MB230 ICGC_MB232 ICGC_MB233
ICGC_MB234 ICGC_MB235 ICGC_MB236 ICGC_MB237 ICGC_MB239 ICGC_MB23 ICGC_MB240 ICGC_MB241
ICGC_MB242 ICGC_MB243 ICGC_MB244 ICGC_MB246 ICGC_MB247 ICGC_MB248 ICGC_MB249 ICGC_MB24
ICGC_MB250 ICGC_MB256 ICGC_MB260 ICGC_MB261 ICGC_MB262 ICGC_MB264 ICGC_MB265 ICGC_MB266
ICGC_MB268 ICGC_MB269 ICGC_MB26 ICGC_MB270 ICGC_MB272 ICGC_MB274 ICGC_MB275 ICGC_MB276
ICGC_MB277 ICGC_MB278 ICGC_MB279 ICGC_MB280 ICGC_MB281 ICGC_MB282 ICGC_MB284 ICGC_MB285
ICGC_MB286 ICGC_MB287 ICGC_MB288 ICGC_MB289 ICGC_MB28 ICGC_MB290 ICGC_MB291 ICGC_MB292
ICGC_MB295 ICGC_MB297 ICGC_MB299 ICGC_MB2 ICGC_MB302 ICGC_MB307 ICGC_MB31 ICGC_MB32
ICGC_MB35ICGC_MB36 ICGC_MB37 ICGC_MB39 ICGC_MB3 ICGC_MB40 ICGC_MB45 ICGC_MB46 ICGC_MB49
ICGC_MB50 ICGC_MB518 ICGC_MB51 ICGC_MB53 ICGC_MB54 ICGC_MB56 ICGC_MB57 ICGC_MB58
ICGC_MB59 ICGC_MB5 ICGC_MB60 ICGC_MB612 ICGC_MB61 ICGC_MB62 ICGC_MB63 ICGC_MB64 ICGC_MB66
ICGC_MB6 ICGC_MB75 ICGC_MB76 ICGC_MB78 ICGC_MB7 ICGC_MB800 ICGC_MB81 ICGC_MB82 ICGC_MB8&3
ICGC_MB84 ICGC_MB85 ICGC_MB86 ICGC_MB88 ICGC_MB89 ICGC_MB8 ICGC_MB90 ICGC_MB91 ICGC_MB92
ICGC_MB94 ICGC_MB95 ICGC_MB96 ICGC_MB98 ICGC_MB99 ICGC_MB9 MBRep_T27 MBRep_T36 MBRep_T40
MBRep_T41 MBRep-T54 MBRep_-T70 MBRep-T79

MELA-AU (IGCC) 66 Donors
MELA-0001 MELA-0002 MELA-0003 MELA-0005 MELA-0007 MELA-0008 MELA-0009 MELA-0011 MELA-
0012 MELA-0015 MELA-0022 MELA-0034 MELA-0037 MELA-0043 MELA-0046 MELA-0048 MELA-0050
MELA-0051 MELA-0053 MELA-0055 MELA-0056 MELA-0060 MELA-0061 MELA-0064 MELA-0066 MELA-
0067 MELA-0069 MELA-0070 MELA-0075 MELA-0076 MELA-0160 MELA-0161 MELA-0167 MELA-0168
MELA-0169 MELA-0170 MELA-0173 MELA-0174 MELA-0179 MELA-0180 MELA-0183 MELA-0184 MELA-
0185 MELA-0187 MELA-0190 MELA-0192 MELA-0193 MELA-0196 MELA-0197 MELA-0200 MELA-0202
MELA-0203 MELA-0205 MELA-0213 MELA-0228 MELA-0229 MELA-0230 MELA-0231 MELA-0234 MELA-
0236 MELA-0237 MELA-0238 MELA-0239 MELA-0256 MELA-0257 MELA-0259

MMML-DKFZ (ICGC) 196 Donors
4100314 4100636 4101316 4101626 4101815 4102009 4103141 4103434 4103570 4104105 4104893 4105105
4105746 4107137 4107559 4107990 4108101 4108588 4108988 4108992 4109142 4109808 4109956 4110120
4110378 4110498 4110996 4111326 4111337 4112447 4112512 4113140 4113191 4113211 4113825 4113971
4115001 4116268 4116738 4117030 4119027 4119279 4119463 4120157 4120193 4120468 4121263 4121361
4122063 4123945 4124188 4124542 4124795 4125240 4126473 4127766 4128477 4128852 4128970 4130003
4130051 4130194 4131095 4131257 4131738 4131744 4132318 4132950 4133263 4133511 4133863 4134005
4134434 4135099 4135278 4135350 4136702 4138527 4138652 4138885 4139696 4140531 4141476 4142267
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4142605 4142761 4144131 4144366 4144633 4144951 4145056 4145177 4145391 4145528 4146136 4146289
4147081 4147968 4148261 4148771 4149246 4150895 4151028 4152036 4156551 4157186 4158268 4158483
4158726 4158769 4158933 4159170 4160069 4160100 4160468 4160810 4161696 4161781 4162154 4162611
4163297 4163639 4163741 4164943 4165379 4166151 4166503 4166706 4166940 4167381 4168738 4169012
4170577 4170686 4170844 4171706 4171810 4172511 4173863 4174742 4174905 4175837 4176133 4176325
4177175 4177376 4177406 4177434 4177601 4177639 4177810 4177856 4177987 4178310 4178345 4178518
4178655 4179894 4180106 4181037 4181460 4182393 4183136 4183924 4184011 4184094 4187640 4188398
4188800 4188879 4188900 4189035 4189200 4189998 4190231 4190316 4190495 4190784 4191799 4192483
4193278 4193435 4193638 4193646 4194218 4194891 4196654 4196670 4197155 4197438 4198478 4198519
4198542 4199714 4199848 4199996

NB-DKFZ (GPOH) 33 Donors
B087koeln_13264 B087koeln_15239 B087koeln_15303 B087koeln_15403 BO87koeln_16885 BO87koeln_1695 BO87koeln_17240
B087koeln_17344 B087koeln_17612 BO87koeln_17683 BO87koeln_17861 B0O87koeln_18478 BO87koeln_18699 BO87koeln_18728
B087koeln_18972 B087koeln_19537 B087koeln_19751 B0O87koeln_19885 BO87koeln_20471 B0O87koeln_20507 BO87koeln_20807
B087koeln_20865 BO87koeln_20920 B087koeln_21368 B0O87koeln_21442 BO87koeln_21641 B087koeln_21776 B0O87koeln_21924
B087koeln_23067 B0O87koeln_ 23122 B087koeln_23229 B087wgs_13169 BO87wgs_18253

ORCA-IN (ICGC) 13 Donors
OSCC-GB_011301 OSCC-GB_011601 OSCC-GB_011701 OSCC-GB_011801 OSCC-GB_011901 OSCC-GB_012001
OSCC-GB_012101 OSCC-GB_012201 OSCC-GB_012301 OSCC-GB_012401 OSCC-GB_012501 OSCC-GB_012601
OSCC-GB_012701

OV-AU (IGCC) 70 Donors
AOCS-001 AOCS-004 AOCS-005 AOCS-034 AOCS-055 AOCS-056 AOCS-058 AOCS-059 AOCS-060 AOCS-
061 AOCS-063 AOCS-064 AOCS-065 AOCS-075 AOCS-077 AOCS-078 AOCS-079 AOCS-080 AOCS-081 AOCS-
083 AOCS-084 AOCS-085 AOCS-086 AOCS-088 AOCS-090 AOCS-091 AOCS-092 AOCS-093 AOCS-094 AOCS-
095 AOCS-096 AOCS-097 AOCS-104 AOCS-106 AOCS-107 AOCS-108 AOCS-109 AOCS-111 AOCS-112 AOCS-
113 AOCS-114 AOCS-115 AOCS-116 AOCS-117 AOCS-119 AOCS-120 AOCS-128 AOCS-134 AOCS-138 AOCS-
139 AOCS-141 AOCS-142 AOCS-150 AOCS-153 AOCS-155 AOCS-157 AOCS-158 AOCS-159 AOCS-160 AOCS-
161 AOCS-162 AOCS-163 AOCS-164 AOCS-165 AOCS-166 AOCS-167 AOCS-168 AOCS-169 AOCS-170 AOCS-
171

OV-US (TCGA) 38 Donors
TCGA-04-1331 TCGA-04-1347 TCGA-04-1349 TCGA-04-1367 TCGA-04-1514 TCGA-04-1542 TCGA-09-1666
TCGA-09-2045 TCGA-09-2050 TCGA-10-0934 TCGA-10-0937 TCGA-10-0938 TCGA-13-0727 TCGA-13-0906
TCGA-13-0912 TCGA-13-1477 TCGA-13-1487 TCGA-13-1491 TCGA-23-1110 TCGA-23-1118 TCGA-23-1124
TCGA-24-1419 TCGA-24-1466 TCGA-24-1544 TCGA-24-1548 TCGA-24-1552 TCGA-24-1557 TCGA-24-1558
TCGA-24-1562 TCGA-24-1614 TCGA-24-2024 TCGA-24-2290 TCGA-25-1632 TCGA-25-1634 TCGA-25-2391
TCGA-25-2400 TCGA-36-1574 TCGA-61-2000

PACA-AU (IGCC) 94 Donors
ICGC_0006 ICGC_0007 ICGC_0009 ICGC_0020 ICGC_0021 ICGC_0025 ICGC_0026 ICGC_0031 ICGC_0033
ICGC_0037 ICGC_0048 ICGC_0051 ICGC_0052 ICGC_0053 ICGC_0054 ICGC_0059 ICGC_0061 ICGC_0063
ICGC_0066 ICGC_0067 ICGC_0069 ICGC_0075 ICGC_0087 ICGC_0088 ICGC_0099 ICGC_0103 ICGC_0105
ICGC_.0108 ICGC_0109 ICGC_0114 ICGC_0115 ICGC_0124 ICGC_0134 ICGC_.0135 ICGC_.0139 ICGC_0140
ICGC_0141 ICGC_0143 ICGC_0144 ICGC_0146 ICGC_0149 ICGC_0150 ICGC_0153 ICGC_0169 ICGC_0185
ICGC_0192 ICGC_0199 ICGC_0201 ICGC_0205 ICGC_0206 ICGC_0207 ICGC_0212 ICGC_0214 ICGC_0215
ICGC_.0217 ICGC_0223 ICGC_0224 ICGC_0227 ICGC_0230 ICGC_0295 ICGC_0296 ICGC_0300 ICGC_0301
ICGC_0303 ICGC_0304 ICGC_0309 ICGC_0312 ICGC_0313 ICGC_0315 ICGC_0321 ICGC_0326 ICGC_0338
ICGC_0354 ICGC_0365 ICGC_0391 ICGC_0392 ICGC_0393 ICGC_0395 ICGC_0406 ICGC_0412 ICGC_0417
ICGC_.0419 ICGC_0420 ICGC_0486 ICGC_0502 ICGC_0507 ICGC_0518 ICGC_.0521 ICGC_0522 ICGC_0526
ICGC_0533 ICGC_0535 ICGC_0536 ICGC_0543

PACA-CA (ICGC) 107 Donors
PCSI_0001 PCSI_0002 PCSI_0004 PCSI_0015_1 PCSI_0024 PCSI_0074 PCSI_0077 PCSI_0078 PCSI_0080 PCSI_0081
PCSI_0082 PCSI_0083_1 PCSI_0084 PCSI_0096 PCSI_0101 PCSI_0103 PCSI_0105 PCSI_0108 PCSI_0111 PCSI_0132
PCSI_0142 PCSI_0145 PCSI_0146 PCSI_0161 PCSI_0162 PCSI_0164 PCSI_0170 PCSI_0171 PCSI_0173 PCSI_0174
PCSI_0175 PCSI_0208 PCSI_0210 PCSI_0217 PCSI_0226 PCSI_0227 PCSI_0228 PCSI_0230 PCSI_0233 PCSI_0235
PCSI_0239 PCSI_0240 PCSI_0248 PCSI_0250 PCSI_0253 PCSI_0256 PCSI_0264 PCSI_0268 PCSI_0269 PCSI_0274
PCSI_0279 PCSI_0280 PCSI_0281 PCSI_0283 PCSI_0284 PCSI_0285 PCSI_0286 PCSI_0287 PCSI_0290 PCSI_0292
PCSI.0294 PCSI_0297 PCSI_0300 PCSI_0302 PCSI_0324 PCSI_0325 PCSI_0326 PCSI_0328 PCSI_0334 PCSI_0337
PCSI_0338 PCSI_0340 PCSI_0341 PCSI_0345 PCSI_0351 PCSI_0353 PCSI_0375 PCSI_0392 PCSI_0404 PCSI_0406
PCSI_0413 PCSI_0450 PCSI_0451 PCSI_0456 PCSI_0457 PCSI_0463 PCSI_0465 PCSI_0466 PCSI_0467 PCSI_0468
PCSI_0469 PCSI_0472 PCSI_0473 PCSI_0476 PCSI_0477 PCSI_0492 PCSI_0504 PCSI_0506 PCSI_0508 PCSI_0509
PCSI_0527 PCSI_0528 PCSI_0531 PCSI_0537 PCSI_0547 PCSI_0572 PCSI_0352_1

PA-DKFZ (ICGC) 81 Donors
ICGC_PA100 ICGC_PA102 ICGC_PA103 ICGC_PA107 ICGC_PA108 ICGC_PA109 ICGC_PA10 ICGC_PA110
ICGC_PA112ICGC_PA116 ICGC_PA117ICGC_PA11ICGC_PA126 ICGC_PA12 ICGC_PA131 ICGC_PA134ICGC_PA135
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ICGC_PA136 ICGC_PA138 ICGC_PA140 ICGC_PA143 ICGC_PA144 ICGC_PA145 ICGC_PA147 ICGC_PA148
ICGC_PA14ICGC_PA150 ICGC_PA158 ICGC_PA159 ICGC_PA162 ICGC_PA163 ICGC_PA165 ICGC_PA17 ICGC_PA20
ICGC_PA21 ICGC_PA22 ICGC_PA24 ICGC_PA25 ICGC_PA29 ICGC_PA30 ICGC_PA33 ICGC_PA34 ICGC_PA36
ICGC_PA37 ICGC_PA3 ICGC_PA41 ICGC_PA42 ICGC_PA43 ICGC_PA46 ICGC_PA48 ICGC_PA4 ICGC_PA50
ICGC_PA53 ICGC_PA55 ICGC_PA56 ICGC_PA58 ICGC_PA59 ICGC_PAS5 ICGC_PA64 ICGC_PA65 ICGC_PA69
ICGC_PA70 ICGC_PA71 ICGC_PA73 ICGC_PA75ICGC_PA79 ICGC_PA81 ICGC_PA82 ICGC_PA83 ICGC_PAS86
ICGC_PA88 ICGC_PA89 ICGC_PA8 ICGC_PA91 ICGC_PA92 ICGC_PA93 ICGC_PA94 ICGC_PA95 ICGC_PA96
ICGC_PA99 ICGC_PA9

PAEN-AU (IGCC) 102 Donors
ICGC_0425 ICGC_0427 ICGC_0428 ICGC_0431 ICGC_0432 ICGC_0433 ICGC_0434 ICGC_0435 ICGC_0436
ICGC_0437 ICGC_0438 ICGC_0439 ICGC_0440 ICGC_0441 ICGC_0443 ICGC_0446 ICGC_0447 ICGC_0449
ICGC_0452 ICGC_0453 ICGC_0455 ICGC_0456 ICGC_0457 ICGC_0459 ICGC_0489 ICGC_0491 ICGC_0492
ICGC_0497 ICGC_0498 ICGC_0500 ICGC_.0501 ITNET-0026 ITNET-0028 ITNET-0052 ITNET-0087 ITNET-
0100 ITNET-0107 ITNET-0118 ITNET-0128 ITNET-0134 ITNET-0144 ITNET-0148 ITNET-0151 ITNET-0152
ITNET-0673 ITNET-0681 ITNET-0695 ITNET-0700 ITNET-0783 ITNET-0797 ITNET-0809 ITNET-0813 ITNET-
0833 ITNET-0850 ITNET-0900 ITNET-0911 ITNET-0935 ITNET-0938 ITNET-0941 ITNET-0962 ITNET-0968
ITNET-0993 ITNET-1000 ITNET-1001 ITNET-1027 ITNET-1044 ITNET-1047 ITNET-1050 ITNET-1053 ITNET-
1081 ITNET-1257 ITNET-1265 ITNET-1266 ITNET-1270 ITNET-1273 ITNET-1286 ITNET-1288 ITNET-1293
ITNET-1301 ITNET-1304 ITNET-1308 ITNET-1309 ITNET-1312 ITNET-1314 ITNET-1317 ITNET-1320 NE-
0009 NE-0010 NE-0012 NE-0017 NE-0018 NE-0020 NE-0021 NE-0023 NE-0025 NE-0026 NE-0027 NE-0028
NE-0029 NE-0032 NE-0033 NE-0038

PCNSL-DKFZ (H050 A050 & XD013) 11 Donors
HO050-0GUK HO050-46JU H050-6K3Z H050-D7C3 H050-D8YC H050-JVA9 H050-K5AJ HO050-SECM HO050-
TOSR HO50-TY1U HO50-WOIL

PGBM-DKFZ 41 Donors
ICGC_GBM11ICGC_.GBM16 ICGC_.GBM17 ICGC_GBM18 ICGC_GBM19 ICGC_.GBM1 ICGC_GBM22 ICGC_GBM23
ICGC_GBM24 ICGC_GBM25 ICGC_GBM2 ICGC_GBM42 ICGC_GBM43 ICGC_GBM44 ICGC_GBM45 ICGC_GBM48
ICGC_GBM52 ICGC_GBM53 ICGC_GBM54 ICGC_GBM55 ICGC_GBM56 ICGC_GBM57 ICGC_GBM58 ICGC_GBM59
ICGC_GBM5 ICGC_GBM60 ICGC_GBM62 ICGC_GBM63 ICGC_GBM65 ICGC_GBM67 ICGC_GBM6 ICGC_GBM79
ICGC_GBM7 ICGC_GBMS82 ICGC_GBMS83 ICGC_GBM85 ICGC_GBM86 ICGC_GBM96 ICGC_GBM97 ICGC_GBM98
ICGC_GBM9

PNET-DKFZ 7 Donors
ICGC_MB172 ICGC_MB182 ICGC_PNET01 ICGC_PNET02 ICGC_PNET03 ICGC_PNET04 ICGC_PNETO05

PRAD-CA (ICGC) 108 Donors
CPCG0001 CPCG0003 CPCG0020 CPCG0040 CPCG0046 CPCG0047 CPCG0048 CPCG0057 CPCG0063 CPCG0073
CPCGO0078 CPCG0081 CPCG0083 CPCG0087 CPCG0094 CPCG0095 CPCG0098 CPCG0099 CPCG0102 CPCGO121
CPCG0123 CPCG0127 CPCG0128 CPCG0154 CPCG0158 CPCG0166 CPCG0182 CPCG0184 CPCG0185 CPCG0189
CPCG0190 CPCGO0191 CPCG0196 CPCG0199 CPCG0201 CPCG0206 CPCG0208 CPCG0210 CPCG0211 CPCG0213
CPCG0217 CPCG0232 CPCG