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I loved our long conversations about every aspect of life and learned much from him. In a

world full of tension, conflict and high ambition, he lived by impeccable moral values and had

the most gregarious nature and calm demeanour. He perfectly balanced his intellectual and

enlightened mind with an ability to find enjoyment from the simplest things in life, sharing

this at every opportunity. He was an exemplary family man.

Proudly, I dedicate my thesis to his memory. I know he would have been proud of me today.

We all miss you very much, even with your memories that are always with us.



ACKNOWLEDGEMENTS

I would like to thank the following people who were an important part of my life at the

DKFZ both from a scientific and personal perspective:

Roland Eils for accepting me in his group after I decided to resign from an experimental

PhD and wanted to come back to computational science. He gave me the chance to prove

myself as a scientist again and I hope that I managed to deserve this opportunity.

Matthias Schlesner for his scientific supervision, nice conversations, positive attitude, ac-

cessibility and friendliness. As I tell him and others time and again, he is among the most gifted

people I have had the privilege of meeting. He is a brilliant scientist in interpreting observa-

tions, seeing patterns beyond others’ perception. Even at times when we had our differences, I

never stopped thinking that I was very lucky to have learned from him.

Frank Westermann for accepting me into his group in a senior capacity, giving me a

longer term horizon and always being so supportive in every aspect of our working life. His

never-changing positive attitude and calm nature is helping everybody around him. I hope to be

a successful component of his team going forward towards an ambitious future for our group.

Christoph Plass for highly respecting my scientific input and ideas in all the projects we

have been working on. As a young scientist, I always felt honoured to have his trust and respect.

Kai-Oliver Henrich for being a great friend, office-mate and mentor. I am looking forward

to more fun years with him. I especially hope I can get him back into birding!

Edward Oakeley of Novartis and Peter Lichter for supporting me in my thesis committee

in their busy schedules.
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a loyal, old and great friend.

Sema Algedik and Nurettin Algedik for allowing me to use their house in a most beautiful

and peaceful region of Turkey while writing a major part of my dissertation.

My cousin Diren Toprak. You were always an interested and caring friend. You were so

helpful to me in many occasions. I hope I can likewise help you in many ways in our future.

Jing Yang and Huangshan Chen. You are such a truly beautiful family and great friends

to me. I am looking forward to watching Xingzhi grow up, confident that you will raise him as

a great person.

My dear friend Bojana Kriznik. You are truly a great person with so many qualities.

Whenever I talk to you, I remain in awe of your intellect and how you can combine this with

your fun character. May you always be happy!
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SUMMARY

Cancer is a disease of aberrant cell proliferation and tumour growth arising from the per-

turbation of the epigenetically defined, regulated and maintained cell identity by genetic muta-

tions. It is a leading cause of death worldwide and most cancer types remain incurable. Omics

technologies are quantitative analytical assays that allow high-quality and high-throughput

measurements of different aspects of cellular regulation including genomics, transcriptomics,

epigenomics, proteomics and metabolomics. These high-throughput technologies transformed

the way cancer research is done, leading to tremendous advances in our understanding of cancer

biology and modern targeted therapies.

Integrative analysis of multi-omics datasets in cancer research requires use of dedicated al-

gorithms, data analysis and visualization tools. These are developed and applied in interdisci-

plinary teams of scientists and clinicians working on collaborative projects. Both the technical

complexities of data analysis and their integration, and the efficient independent exploration of

the observations by all project partners are contemporary research challenges. This dissertation

presents results addressing a broad spectrum of these questions.

Chapter 1, Replacing the CNS-PNET Superentity with Four Novel Molecularly De-

fined Entities Driven by Structural Variants: Central nervous system primitive neuroecto-

dermal tumours (CNS-PNETs) were a heterogeneous family of paediatric brain tumours with

no histopathological markers, challenging diagnosis and poor prognosis. My work as a com-

putational biologist contributed to the comprehensive description of this entity. In this study,

we applied an integrative omics data analysis of methylomes, transcriptomes and genomes

revealing that CNS-PNETs are a combination of a large group of misdiagnosed cases from

other entities and four novel molecularly defined entities. I showed that these novel entities are

driven by distinct and recurrent molecular drivers altered by different mechanisms of structural

variants: the FOXR2 oncogene and MN1, CIC and BCOR tumour suppressors. Our results

contributed to the elimination of CNS-PNETs as an officially recognized cancer entity and the

recognition of four novel paediatric brain tumour entities in the World Health Organization

classification of brain tumours.

Chapter 2, SOPHIA, Structural Rearrangement Detection Based on Supplementary

Alignments and a Population Background Model: Building on my work on structural vari-

ation in our study of CNS-PNETs, I developed the SOPHIA algorithm for detecting SVs in

cancer genomes based on a large population background database and a corresponding bioin-

formatics tool written allowing fast detection of SVs from short read cancer genome sequencing

datasets. SOPHIA later became the standard tool for structural variant detection in the DKFZ’s

cancer genome analysis workflow.

Chapter 3, EPISTEME, an Interactive and Integrative Platform for Analysing, In-

terpreting and Sharing Multi-Omics Data: During the development of SOPHIA and my

research in projects analysing and interpreting structural variant data, I developed experiences

analysing structural variant data detected by SOPHIA, integrating them with different omics

layers such as gene expressions, interpreting, visualizing and sharing them with collaborators

who were not computational scientists. Based on these experiences and using modern tools

xiii



of interactive data visualization, I developed an interactive platform for integrative omics data

analysis and visualization named EPISTEME, with the aim of facilitating omics data analysis

by scientists with conceptual knowledge of cancer omics but no programming skills. EPIS-

TEME is a comprehensive tool integrating genome, transcriptome, methylome and proteome

data with clinical metadata in a user-friendly web-based system with in-browser statistical

analyses and publication-quality vector graphics output.

Chapter 4, SOPHIA-EPISTEME integration in DKFZ Cancer Genomics Projects Re-

veals Novel Disease Subtypes and Insights Across Cancer Types: With the integration of

SOPHIA and EPISTEME in an integrative omics data analysis setting, my work identified

novel oncogenes activated by enhancer hijacking and revealed novel molecularly defined sub-

types in refractory multiple myeloma (MYCN enhancer hijacking via immunoglobulin rear-

rangements as a MYC replacement), adult acute myeloid leukaemia (MNX1 activation via en-

hancer hijacking putatively acting as a differentiation block mechanism) and paediatric neurob-

lastoma (ATOH1 activation via enhancer hijacking putatively acting as a MYCN replacement)

in projects supported by the DKFZ Heidelberg Center for Personalized Oncology (DKFZ-

HIPO) and the German Society for Paediatric Oncology and Haematology (GPOH) cancer

research programmes.



ZUSAMMENFASSUNG

Krebs entsteht infolge von deregulierter Zellteilung, starker Expansion der betroffenen

Zellpopulationen und dem resultierendem Wachstum von Tumoren. Dies ist auf genetische

Mutationen zurückzuführen, welche die epigenetisch definierte, regulierte Zellidentität stören.

Krebs gehört zu den weltweit führenden Todesursachen und die meiste Krebsarten sind bisher

unheilbar. Omics-Technologien sind quantitative analytische Untersuchungsmethoden, die eine

Analyse verschiedener Aspekte der zellulären Steuerung mit hohem Durchsatz und hoher Qualität

ermöglichen. Hierzu gehören die Bereiche Genomik, Transkriptomik, Proteomik und Metabolomik.

Diese Hochdurchsatztechnologien haben die Methodik der Krebsforschung grundlegend gewan-

delt, und zu enormen Fortschritten im Verständnis der Krebsbiologie und der modernen geziel-

ten Krebstherapien geführt. Die Integrative Analyse von Multi-Omics-Datensätzen in der Kreb-

sforschung benötigt maßgeschneiderte Algorithmen und Programme zur Datenanalyse und

Datenvisualisierung. Diese Werkzeuge werden in interdisziplinären kooperierenden Forscherteams

entwickelt und eingesetzt, die sowohl aus Wissenschaftlern als auch aus Klinikern bestehen.

Sowohl die technische Komplexitäten der Datenanalyse von Omics-Datensätzen und deren In-

tegration, als auch die Möglichkeit zur effizienten und unabhängigen Erkundung der Datensätzen

von allen Projektpartnern sind aktuelle Forschungsfragen. Die vorliegende Dissertation adressiert

eine umfangreiche Auswahl dieser Fragen zur integrativen Analyse von Omics-Datensätzen.

Kapitel 1, Die Supraentität ZNS-PNET wird durch vier neue molekular definierte

Krebsarten ersetzt, die durch strukturelle Varianten getrieben werden: Primitive neuroek-

todermale Tumoren des Zentralnervensystems (ZNS-PNETs) waren eine heterogene Familie

von pädiatrischen Hirntumoren mit schlechter Prognose, ohne definierte histopathologischen

Marker und somit mit herausfordernder Diagnose. Meine bioinformatischen Arbeiten haben

zur umfassenden Beschreibung dieser Supraentität beigetragen. In dieser Studie haben wir die

integrative Omics-Datenanalyse vom Methylomen, Transkriptomen und Genomen durchgeführt

und gezeigt, dass ZNS-PNETs neben einer großen Gruppe von fehldiagnostizierten anderen

Krebsentitäten, vier neue molekular definierte Krebsarten umfassen. Ich habe entdeckt dass

diese neuen Krebsarten von ausgeprägten rekurrenten strukturellen Genveränderungen getrieben

werden die das FOXR2 Onkogen und die MN1 CIC und BCOR Tumorsuppressorgene betreffen.

Unsere Resultate haben dazu beigetragen, dass ZNS-PNETs von der World Health Organiza-

tion nicht mehr offiziell als eine Krebsentität anerkannt werden.

Kapitel 2, SOPHIA, Erkennung struktureller Varianten durch Supplementary Align-

ments und ein Populationshintergrundmodell: Meine Forschung zu strukturellen Varianten

innerhalb der ZNS-PNETs Studie habe ich fortgesetzt indem ich den SOPHIA Algorithmus

zur Erkennung von strukturellen Veränderungen in Krebsgenomen basierend auf einem großen

Populationshintergrundmodell und eine dazugehörige Bioinformatik-Software entwickelt habe.

Diese Werkzeuge ermöglichen eine schnelle Erkennung von strukturellen Veränderungen in

short read Krebsgenomdatensätzen. SOPHIA ist derzeit die Standardsoftware zur Erkennung

von strukturellen Veränderungen in den Pipelines zur Analyse von Hochdurchsatzkrebsgenomen

des Deutschen Krebsforschungszentrums in Heidelberg.

Kapitel 3, EPISTEME, eine interaktive und integrative Omics-Datenanalyseplattform



für die Analyse, Auswertung und zum Austausch von Multi-Omics-Datensätzen: Im Laufe

der Entwicklung von SOPHIA habe ich zusätzlich zur Analyse und Auswertung von struk-

turellen Varianten andere Omics-Datensätze wie Genexpression integriert, die entsprechenden

Resultate ausgewertet, visualisiert und an Kooperationspartner vermittelt, die keinen bioinfor-

matischen Forschungshintergrund haben. Auf diese Erfahrungen beruhend und mittels mod-

erner Software für interaktive Datenvisualisierung habe ich eine interaktive Omics-Datenanalyseplattform

für die integrative Analyse und Visualisierung namens EPISTEME entwickelt. Der Zweck

dieser Entwicklung war die Möglichkeit zur Analyse der Omics-Datensätze für Wissenschaftler

mit Kenntnissen über Krebs-Omics-Daten aber ohne Programmierkenntnisse. EPISTEME

ist eine umfangreiche Omics-Datenanalyseplattform und integriert Genom-, Transkriptom-,

Methylom- und Proteom-Daten mit klinischen Metadaten in einem benutzerfreundlichen, Web-

basierten System. EPISTEME bietet die Durchführung von statistischen Analysen und Erstel-

lung von publikationsreifen Vektorgrafiken.

Kapitel 4, SOPHIA-EPISTEME Integration in DKFZ Krebsgenomanalyseprojekten

zeigt neue Krebsuntergruppen und ermöglicht neue Einblicke für verschiedene Kreb-

sarten: Durch die Integration von SOPHIA und EPISTEME als Teil einer integrativen Omics-

Datenanalyse, hat meine Arbeit neue, durch enhancer hijacking aktivierte Onkogene identi-

fiziert und ermöglicht somit die Charakterisierung neuer molekularer Untergruppen von re-

fraktären multiplen Myelomen (MYCN enhancer hijacking via Immunoglobulintranslokatio-

nen), akuter myeloischer Leukämie (MNX1 enhancer hijacking als mutmaßlicher Mechanis-

mus von Dedifferenzierung) und pädiatrischen Neuroblastomen (ATOH1 enhancer hijacking

als mutmaßlicher Ersatz für MYCN) in Forschungsprojekten unterstützt vom DKFZ Heidel-

berg Center for Personalized Oncology (DKFZ-HIPO) und der Deutschen Gesellschaft für

Pädiatrische Onkologie und Hämatologie (GPOH).



INTRODUCTION

Life is a complex and interlinked network of information flow. The simplest form of this infor-

mation flow, the passing of genetic information, genetic inheritance, was known by humankind

since pre-historic times: consanguinity has been avoided in complex mating networks [1] and

later via social and religious norms [2], plants and animals were domesticated selecting for

desired traits [3], showing some level of recognition of heredity by humankind. A systematic

description of the processes governing genetic inheritance of traits was first presented by Gre-

gor Mendel’s work [4], contemporary to the first model of evolution via natural selection by

Charles Darwin [5].

These phenotypic observation based explanations for genetic inheritance and evolution

were expanded by a molecular understanding of the building blocks of genetic information,

deoxyribonucleic acid (DNA) [6]. Identification of the structure of the DNA as a double-helix

of deoxy-ribonucleotides which can replicate across cell divisions [7] followed by the hypo-

thetical proposal and experimental verification of the ”messenger” compounds ribonucleic acid

(RNA) [8] [9], which led to an understanding of the way proteins were synthesized in life’s cel-

lular processes. The relationship and information flow from the DNA to RNA and to proteins

was a proposed model by James Watson named the Central Dogma of molecular biology [10],

where the following ”general transfers” were named without detailed mechanistic models for

all stages: DNA is replicated and confers the hereditary characteristics to cells [11], RNA is

transcribed using DNA as a template from genes [12] [13], peptide chains consisting of amino

acids are translated using messenger RNA (mRNA) as a template and transfer RNA (tRNA) as

part of the machinery. Some ”special transfers” such as RNA tanscribing DNA hypothesized

by James Watson in his Central Dogma article were later experimentally confirmed [14] [15].

The Central Dogma proposes a model for the information flow in individual cells of an

organism starting from their underlying genetics and how this translates to differences in their

protein usage, which determine both the structure and chemical/enzymatic control of all bio-

chemical processes. The underlying genetic differences trivially account for the differences

between organisms. What the central dogma does not cover is the differences between cells

of a multicellular organism: by the process of DNA replication, genetic material (DNA se-

quences) is, ideally faithfully ([16], [17], [18]), distributed to daughter cells which make up

the organism, so the question remains as to how different cells of a multicellular organism get

their different identity and function in this higher order organization despite sharing near-equal

genetic material. Epigenetics is the study of cell identity and non-genetic regulation thereof

[19]. Cell identity is determined by a combination of DNA methylation and histone marks,

which are inherited across cell divisions.

DNA methylation is a non-genetic, reversible modification of DNA structure, but not DNA

sequence. First shown in prokaryotes [20], DNA methylation is largely confined to Cytosine

bases followed by Guanine (CpG) in mammals [21] except for the brief developmental state of

embryonal stem cells which also shows CpH (Cytosine followed by non-guanine) methylation

[22]. During embryonal development, the genome is reaches a demethylated state in a wave of
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demethylation prior to differentiation [23]. DNA is then methylated in tissue specific patterns

[24] [21]. An important property of DNA methylation is that it is stable across cell divisions:

DNA methylation is transferred to elongating replicating DNA via DNA methyltransferases

[25], which contributes to establishment of mature cell identity across cell divisions in tissue

development starting from the globally demethylated embryonal state [26]. DNA Methylation

is associated with closed, inactive chromatin regions [27] and repression of promoter regions

of genes and consequently gene expression [28].

The second major mechanism of epigenetic regulation is histone marks: DNA is orga-

nized in higher order physical structures within a hierarchy named the nucleosome [29]. DNA,

starting from a simple double-helix chain of nucleotides is packed by a family of DNA bind-

ing proteins called histones [30], and creates distinct patterns of open chromatin (also called

euchromatin) [31] and constitutively condensed chromatin (heterochromatin), together with

regions of non-constitutive openness defining chromatin accessibility [32]. On a larger scale,

DNA is organized into local domains named TADs [33] [34] which carry co-regulated genes

and are stable across tissues/cell types but are differentially activated across different cell types.

Beyond the local-level organization in TADs, DNA chromatin forms loops [35] enabling long-

range interactions of DNA domains. Chromatin states are determined by post translational

modifications of histones [36] [37], and their binding patterns on DNA are called histone marks.

The most important and well studied of these are acetlyation of lysine residues of the H3 and

H4 histone subunits [38] and methylation of lysine residues of the H3 histone subunit [39]. On

the most basic level, histone acetylation is associated with open chromatin [40] and histone

methylation can either be associated with open chromatin or closed chromatin depending on

the amino acid residues and the number of methyl groups added to the histone protein [41].

The relationship between DNA methylation and histone modifications are complex: while

DNA methylation and histone acetylation suggest a reciprocal relationship, predicting a 1:1

mapping of histone mark states from DNA methylation levels is currently not possible, even

though some limited relationships between DNA methylation machinery and histone modi-

fications have been established [42], [43]. Recently, experimentally induced demethylation

was shown to lead to increased chromatin accessibility in only a very limited subset of the

genome [44], suggesting at least a transient mechanism to maintain histone-DNA binding pat-

terns across cell divisions even in the absence of maintained methylation patterns.

Cell identity is established during development starting from embryonal development and

continuing throughout infancy, childhood, adolescence and even later in life using the described

mechanisms of epigenetic programming [45] [46] [47]. Starting from pluripotent or multipo-

tent states [48], stem cells undergo cell divisions, losing their differentiation potency and yield-

ing daughter cells which mature into stable states called the cell fate [49]. Establishment of cell

identity happens in steps following a cell lineage [50] [51]. Previous work increased estimated

number of (final) cell types from around 200 [52] to 1058 [53]. These estimates are expected to

increase with single cell sequencing technologies showing an untapped diversity of cell types

in mouse [54], which will be followed by the work of the Human Cell Atlas consortium [55].

Even though the number of cell types shows a large diversity, the number of cell lineages are

comparatively small and these are governed by core transcription factors that confer lineage
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commitment, which can be experimentally reprogrammed by manipulating core transcription

factor activity [56].

In their mature states, cells perform defined functions following a defined and regulated

transcriptomic and metabolic programme [57]. Organs of higher multicellular organisms are

developed as well-defined compartments using transcriptional regulatory mechanisms [58]. In

adult humans, most cell types are terminally differentiated, meaning that they are in their ma-

ture state having reached their cell fate and do not undergo further cell divisions as well as

further differentiation [59]. Some non-quiescent cell types which are replenished include ep-

ithelial lining of the small intestine and colon [60] [61], epithelial lining of the breast duct [62],

epihelial lining of the airways (e.g. lung) [63], epithelial lining of the the prostate [64], the

haematopoietic system [65] and epidermal cells of the skin [66]. Cell differentiation through

a lineage and tissue organization is tightly regulated by programmed cell death with diverse

mechanisms [67], of which the most common and important is apoptosis [68]. Dysregulation

of cell division and bypassing of programmed cell death leads to formation of tumours (or neo-

plasia), which can develop into cancer if differentiation and established cell identity are also

dysregulated in a process called malignant transformation.

Non-communicable diseases including cancer that affect older individuals are assuming

an increasing role as a cause of death [69]. Cancer is currently the second leading cause of

death worldwide [70] and the US [71]. Cancer can arise from the wide spectrum of paediatric

cell lineages of the developing body and adult cell lineages undergoing renewal [72]. By far

the most common adult cancer types, and cancer cases overall, arise from epithelial linings

of diverse organs, collectively named carcinomas [71]. If left untreated, cancer is lethal al-

most without exception, with diverse causes of death such as local tumour effects like brain

herniation due to increased intracranial pressure [73], bleeding predominantly seen in haema-

tological malignancies [74], electrolyte abnormalities such as hypercalcemia seen across can-

cer types [75], infection commonly seen across cancer types intrinsically or in a treatment

associated manner [76]. The earliest known cancer surgery dates to ancient Egypt [77], but

the greatest advances in surgery followed the development of anaesthetics [78]. Advances in

surgery were followed by the introduction of radiation therapy into clinical practice [79]. Can-

cer treatment by medication, chemotherapy, started with successes from hormonal therapies

and alkylating agents [80]. Chemotherapy drugs target biological processes that are more ac-

tive in cancer, or specific weaknesses of cancer: alkylating agents (Cyclophosphamide, Temo-

zolomide, Cisplatin, Oxaliplatin etc.) induce DNA damage that cancer cells cannot repair

[81], topoisomerase inhibitors (Irinotecan, Topotecan, Etoposide, Doxorubicin, etc.) target the

DNA replication process in cell division [82] [83], mitotic inhibitors (Paclitaxel, Vinblastine,

etc.) which disrupt microtubule formation necessary for cell division [84], antimetabolites (5-

Fluorouracil, Gemcitabine etc.) block usage of metabolites used in DNA production [85] [86],

hormonal therapy (Everolimus, Letrozole, Leuprorelin, Tamoxifen, Flutamide, etc.) which tar-

get hormone dependent cancers such as some subtypes of breast cancer [87] and prostate cancer

[88]. As chemotherapy targets dividing/replenishing cell populations with the intent of killing

proliferating cancer cells, it also targets healthy cells with regulated proliferation such as the

haematopoietic system or intestinal epithelial tissue. Therefore chemotherapy has been known
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to be cause of severe side effects such as diarrhoea, nausea, potentially lethal neutropenia,

potentially lethal bleeding, among others. Despite advances in the understanding of cancer bi-

ology and improvements of treatment strategies that followed, outcomes for most cancer types

remain poor [89], reinforcing the great societal and research interest on the biology and clinical

management of cancer.

Cancer is governed by the overarching biological concepts formally and extensively dis-

cussed in the seminal publication series Hallmarks of Cancer by Douglas Hanahan and Robert

Weinberg [90] [91]. These reviews were written after a near century of molecular biologi-

cal studies of cancer including high-throughput technologies, investigating in great detail the

aetiology, biological mechanisms and treatment strategies of cancer. Hanahan and Weinberg

proposed 6 hallmarks and later extended them by 4 new hallmarks termed enabling character-

istics (*):

1. Evading growth suppressors: cancer cells bypass molecular signals that are part of nor-

mal cell lineages commanding cells to stop proliferation.

2. Sustaining proliferative signalling: cancer cells have the ability to control their own cell

division (mitogenic) signalling, and ignoring the homoeostatic tissue regulation.

3. Resisting cell death: cancer cells bypass programmed cell death mechanisms of apopto-

sis and autophagy, and rather die using the necrosis type of cell death, promoting tumour

growth.

4. Enabling replicative immortality: cancer cells can replenish or maintain their telomeres

via different mechanisms which allow them to replicate indefinitely without DNA dam-

age due to lack of telomeric protection.

5. Inducing angiogenesis: tumours promote the formation of blood vessels that ensure the

availability of biomaterials to sustain their growth.

6. Activating invasion and metastasis: cancer cells invade into healthy tissue and tumours

release cancer cells into the bloodstream or the lymphatic system which can seed into

distant locations growing new tumours called metastases.

7. Genome instability and mutation *: cancer cells develop and accumulate somatic muta-

tions and other genomic alterations altering gene function, activity and regulation, en-

abling the other hallmarks listed here.

8. Deregulating cellular energetics *: cancer cells adapt their metabolism to hypoxic con-

ditions that arise due to deregulated rapid and dense growth, first described by Otto

Warburg [92].

9. Tumour promoting inflammation *: tumours have an inflammatory microenvironment

and are infiltrated by immune cells where the wound healing and dead cell and cellular

debris removal functions of innate immune system are hijacked to promote and sustain

their growth.
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10. Avoiding immune destruction *: through the accumulation of somatic mutations through

mutagens or DNA damage repair deficiencies (cancer neoantigens), cancer cells assume

a genetic makeup different enough for the immune system to recognize them as foreign

organisms and targets of immune response. The immune surveillance system consisting

of T cells, nacrophages and natural killer cells both pre-emptively kill transformed cells

and infiltrate established tumours as part of an anti-tumour immune response. Cancer

cells evade this immune response in a process called immune escape.

An aspect of cancer biology, partially covered under ”genome instability and mutation”

but not explicitly discussed as a hallmark of cancer by Hanahan and Weinberg is the concept

of somatic or clonal cancer evolution: cancer cells, once free of regulated tissue homoeostasis

enter an independent evolutionary programme following the general principles of evolution by

natural selection. This evolutionary process allows tumours to develop traits to optimize their

growth characteristics or to evade treatment due to resistant cell subpopulations [93] [94] [95].

Cancer starts from somatically mutated precursor cells that continue to accumulate muta-

tions over the course of the tumour evolution. Diverse gene types recurrently undergo somatic

mutations across different cancer types, promoting functions that sustain their proliferative pro-

gram through pressures like oxidative stress and cancer treatment. The following is a list of

main classes of genes that are frequently mutated in different cancer types, along mentions of

key genes and reviews.

• Pathways promoting growth such as RAS or NOTCH can be constitutively activated by

mutations of key genes: KRAS, HRAS, NRAS [96], BRAF [97], NOTCH1 [98] [99].

• Genes encoding growth factors can be aberrantly activated or amplified to promote con-

stitutive growth: IGF2 [100], EGFR [101], ERBB2 [102], FGFR1 and FGFR3 [103].

• Genes encoding cyclin dependent kinases and cyclins can be amplified like CDK4 CDK6

[104] CCND1 [105], or cyclin dependent kinase inhibitors can be lost like CDKN2A

CDKN2B [106] to disrupt the G1/S mitotic chekpoint leading to constitutive growth.

• DNA damage response genes blocking cell division are also targets of inactivating mu-

tations: TP53 [107], CHEK2 [108].

• Suppression of growth regulation signals can be achieved by loss of function mutations

or homozygous losses: RB1 [109], PTEN [110], PTCH1 [111], NF1 [112], NF2 [113],

SMAD4 [114].

• Evasion of apoptosis can be achieved by loss of function APC [115], BAX [116], TP53

[107], or aberrant activation of apoptosis evasion genes BCL2 [117], YAP1 [118].

• Epigenetic dysregulation can be achieved by diverse mutations of histone demethylases

KDM6A [119], histone methyltransferases KMT2A [120], subunits of the polycomb re-

pressive complex 2 with histone methyltransferase activity EZH2 [121], SUZ12 [122],

DNA methyltransferases DNMT3A [123], histone subunits H3F3A [124] or SWI/SWF

complex chromatin modelling genes SMARCB1, SMARCA4, ARID1A [125] [126].
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• Basic helix loop helix (BHLH) transcription factors can be aberrantly activated and pro-

mote growth and ”stemness”: MYC MYCN MYCL [127] TAL1 [128]. The same effect

can be created by inactivating mutations of MAX [129].

• Aberrant activation of homeobox transcription factors can dysregulate cell identity: MNX1

[130] NKX2-1 [131].

• Transcriptional (co-)repressors can be inactivated like BCOR and CIC or aberrantly ac-

tivated like GFI1B [132] leading to dysregulation of gene expression.

• DNA damage repair pathways can be dysregulated by deactivation of key genes allow-

ing further accumulation of tumour promoting mutations and chromosomal alterations:

BRCA1 and BRCA2 [133] [134], ATM [135], MLH1, POLE [136].

• Immune evasion can be supported by amplification of CD274 (PD-L1) [137] or loss of

HLA class I antigen genes [138].

• Protein kinases are frequent targets of mutations with diverse functional consequences:

ALK [139], FLT3 [140], NTRK1 [141], KIT [142], PIK3CA [143], JAK2 [144].

• Telomere maintenance and consequent cell immortalization can be achieved by TERT

activation [145] or ATRX [146] inactivation.

• Ubiquitin ligases that regulate protein degradation can either act as tumour suppressors

when inactivated, like VHL [147] or oncogenes when aberrantly activated, like MDM2

[148] depending on downstream targets.

• Mutations of metabolic enzymes can lead to aberrant production of growth promoting

metabolites and develop resistance against the oxidative stress conditions arising due to

rapid tumour growth: IDH1 and IDH2 [149].

• RNA processing and silencing genes have also been implicated as mutational drivers of

cancer: POLR2A [150], DICER1 [151].

Identifying the importance of mutations promoting different aspects of tumour biology

allowed the development of diverse modern therapies of cancer, that directly target a mu-

tated/activated oncogene or oncogenic pathway or a pathway that emerges as a weakness due

to loss of a tumour suppressor or via exploiting immune characteristics of the tumour [152].

These biomarker-based targeted therapies are promising with regards to reduction of side ef-

fects by targeting cancer cells not with respect to proliferation characteristics but molecularly

defined targets.

• The RAS oncogene family is currently not directly targetable but MEK inhibition is

a promising avenue to indirectly target RAS-mutant cancers [153]. BRAF [154] and

NOTCH family genes [155] are targeted by clinically approved inhibitors.

• Growth factors can be targeted by inhibitor or antibody based strategies: IGF (exper-

imental) [156], EGFR (cetuximab, antibody) [157] (lapatinib, inhibitor) [158], ERBB2

(lapatinib) [159] (trastuzumab, antibody) [160].
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• Cyclin dependent kinases are targetable by selective kinase inhibitors: CDK4 CDK6

[161].

• DNA damage response genes blocking cell division are currently not directly targetable

such as TP53 and CHEK2.

• Loss of growth signal suppressing genes remains mostly not directly actionable with

genes such as RB1, PTEN, NF1, NF2, SMAD4 lost in cancers without a direct rationale

for therapeutic molecular targeting. PTCH1 or SMO mutations and consequent activation

of the sonic hedgehog pathway can be targeted by SMO or GLI inhibitors [162].

• Evasion of apoptosis is also generally not targetable even though exceptions exist such

as BCL2 inhibition in haematological cancers [163].

• Epigenetic dysregulation is a broadly targetable process with drugs both available and

in advanced trials that target aberrant histone deacetylation (HDAC inhibitors) or aber-

rant cancer methylomes arising due to DNA methylase mutations (demethylating agents)

[164], [165].

• Aberrant activation of Basic helix loop helix (BHLH) or homeobox transcription factors

is currently only indirectly targetable, with direct TF inhibition generally currently not

possible [166] [167].

• Loss of transcriptional (co-)repressors is currently not a targetable process in cancer.

• Deficiencies in DNA damage repair pathways is a well-targetable process with double

strand break repair deficiency (e.g. caused by BRCA mutations) treated by PARP in-

hibitors [168]. Mismatch repair deficiency leading to microsatellite instability and hy-

permutation arising due to MLH1 or POLE mutations can be rationale for checkpoint

blockade immunotherapy [169] [170].

• Immune evasion is an actionable biological property of cancers and is a promising treat-

ment avenue of great clinical and research interest, most notably via checkpoint blockade

by PD1 PD-L1 and CTLA-4 inhibition via monoclonal antibodies [171] [172]. Never-

theless, loss of HLA class I antigen genes remains not actionable, and is even a resistance

mechanism against checkpoint blockade immunotherapy [173].

• Kinase inhibitors [174], with approved inhibitor drugs for all of the hitherto discussed

protein kinases such as the NTRK family [175] ALK [139] KIT [176], JAK family [177],

PIK3CA [178] and FLT3 [179].

• Dysregulated telomere maintenance via TERT activation and the ALT phenotype as a

consequence of ATRX mutations is currently not actionable. Availability of inhibitors

and in vitro results [180] did not translate to a clinically approved strategy of TERT

inhibition.

• Aberrations of ubiquitin ligases have currently no approved therapies but MDM2 inhibi-

tion is a subject of study both on the research and clinical trial level [181].
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• Mutations of metabolic enzymes can be biomarkers for targeted treatment with both

IDH1 [182] and IDH2 [183] as targets of selective and clinically approved inhibitors.

• Among the RNA processing and silencing genes implicated in cancer POLR2A targeting

is a subject of pre-clinical research [184] [185], while DICER1 is not targetable.

Overall, diverse families of genes with broad biological functions are mutated in cancer,

of which many are actionable with modern targeted treatments. A general pattern is that gene

activation or activating mutations can be candidates for direct targeting, whereas loss of func-

tion mutations or loss of genes can only be targeted indirectly by pathway-level strategies or

via synthetic lethality. Biomarkers can make not only therapy recommendations but rather

rule out therapies: for instance, RAS family or BRAF mutant colorectal cancer are resistant to

anti-EGFR therapy [186], which constitutes a negative recommendation. Even with no directly

actionable consequences, particular biomarkers can affect therapy decisions like germline TP53

mutations ruling out neoadjuvant radiotherapy [187].

Similar to targets of somatic mutations, the mechanisms of somatic mutations also show

diversity in cancer biology:

• Point mutations, (also named single nucleotide variants, SNVs) or small insertions or

deletions (indels) can constitutively activate proto-oncogenes in gain of function events

by inducing precise changes in protein structure, for instance in the activating oncogenic

mutations of the RAS family.

• SNVs or small indels can deactivate tumour suppressors by precise amino acid substi-

tutions (missense mutations, in-frame indels) or large-scale changes in protein structure

(nonsense stopgain/stoploss SNVs, frameshift indels) [188].

• Splice site mutations can lead to loss of regulated splicing patterns and aberrations in

spliced transcripts including chain terminations [189].

• Mutations in promoter regions can aberrantly activate oncogenes like TERT [190].

For inactivating mutations of tumour suppressors, mutations are often paired with a con-

comitant loss of the second allele of the gene by a prior or following copy number loss, a prior

copy neutral loss of heterozygosity (LOH) event, or a direct mutation of the second allele possi-

bly starting from the germline. Chromosome arm level losses via chromosome missegregation

during cell division followed by apoptosis are common across cancer types and frequently

happen on chromosome arms carrying core tumour suppressors like TP53 or VHL [191] [192].

A large class of somatic alterations in cancer are collectively named structural variation.

These are large-scale changes in chromosome structure such as the deletion, duplication, in-

version of large chromosomal segments possibly leading to copy number changes and creating

complex patterns of chromosomal alterations such as chromothripsis or chromoplexty [193].

Structural variants can have significant oncogenic effects in almost all cancer types with a

variety of mechanisms. They can,

• create chimeric oncogenic fusion genes with functions combining those of the fusion

partners or deleting tumour-suppressing domains of one or both partners such as BCR-

ABL1 [194] PML-RARA [195], CBFB-MYH11 [196], and TMPRSS2-ERG [197],
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• alter protein structure by targeted insertion or deletion of sequences as part of in-frame

indels such as FLT3 [140] and BCOR [198],

• amplify genes for oncogene overexpression and oncogenic transformation such as ERBB2

[199], MYCN [200] and EGFR [201],

• (focally) delete tumour suppressor genes such as TP53 [202] VHL [203] RB1 [204]

CDKN2A/B locus [205] and PTEN [206] which sometimes happens in a two-hit setting

[207] or in a haploinsufficient setting [208],

• activate oncogenes by hijacking of active enhancers as part of normal haematological

process of V(D)J or CSR recombination in B-cells [209] and T-cells [210],

• activate oncogenes by hijacking of active enhancers in a more general context on genes

such as GFI1B [132] PRDM6 [211] TERT [212] EVI1 [213] and IGF2 and IRS4 [100],

• activate oncogenes by deletion of insulator regions such as PDGFRA [214],

• truncate tumour suppressor genes by intragenic duplications or deletions spanning mul-

tiple exons such as MLH1 [215] and ATRX [146],

• truncate tumour suppressor genes by interchromosomal structural variants hitting the

gene body such as TP53 in Osteosarcoma [216] or RB1 in Multiple Myeloma [217],

• activate oncogenes by insertion of mitochondrial sequences to gene promoters such as

FOXR2 [218].

Discovery of cancer related genes followed two separate methodological trajectories for tu-

mour suppressor genes that are lost or deactivated and oncogenes that are amplified or activated

by gain of function mutations.

Tumour suppressor genes were first hypothesized to exist due to the familial nature of

the retinoblastoma disease, where Alfred Knudson observed the discrepancy in age of onset

for familial and sporadic cases of retinoblastoma and postulated that two hits on the genetic

material of a patient is required for onset of retinoblastoma [207]. This observation was later

confirmed by observations suggesting that the dual deletion of the RB1 gene is observed in

retinoblastoma patients [219] [220].

Oncogenes were first discovered following studies of transforming animal oncoviruses that

induced tumours upon infection of a host [221]. These viruses were found to harbour onco-

genes that were observed to have homologs in humans as part of their normal, non-viral ge-

netic material [222] [223]. Key genes that confer transforming properties were described and

hypothesized to be altered by mutations conferring [224] aberrant activation. These hypothe-

ses were shortly thereafter confirmed by the discovery of activating mutations of the HRAS

[225], and KRAS [226] oncogenes using DNA cloning followed by sequencing [223]. Later,

chromosomal translocations were shown to be a second oncogenic activation mechanism in B

cell lymphoma [227]. This was followed by gene amplifications as a third oncogenic activation

mechanism with the MYCN oncogene shown to be amplified in neuroblastoma cell lines [228]

and tumours [200] indicating a poor prognosis.
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Early studies on oncogenes and tumour suppressors led Kenneth Kinzler and Bert Vogel-

stein to postulate a progression of cancer from preneoplastic lesions to malignant tumours

with accumulation of mutations in multiple steps [229]. These pioneering studies on molecu-

lar genetics of cancer development used low throughput techniques such as linkage analysis,

Giemsa banding, gene cloning, DNA sequencing also called ”Sanger sequencing” and in situ

chromosome hybridization allowing simultaneous study of only single genes or loci, limiting

their scope of analysis. Of these, Sanger sequencing [230] was instrumental in facilitating the

assembly of the genomes of viruses phi X174 [231], SV40 [232], followed by the human mito-

chondrial genome [233]. The assembly of the human genome itself was a considerably tougher

challenge costing 2.7 billion USD (1991 values) [234] and was greatly facilitated by the method

of shotgun sequencing [235]. Genomes of model organisms were similarly assembled, support-

ing experimental studies of oncogenic processes and treatment modalities [236] [237]. While

the first human reference genome was based on few individuals, the ”1000 Genomes Project”

expanded our knowledge of population-based variation in human genomes from 2504 individ-

uals across 26 populations using the methods of whole genome sequencing and genotyping by

single nucleotide polymorphism (SNP) arrays [238].

Development of high-throughput analytical techniques and the availability of reference

genomes enabled broader and more advanced analyses of the cancer genome, starting the era

of cancer omics. As the genome (DNA), transcriptome (RNA), epigenome (DNA methylation

and histone marks), proteome (proteins) and metabolome (metabolites) are all dysregulated

in cancer, cancer research uses methods of analytical chemistry and computational analysis

to measure and analyse all of these biological processes. A typical cancer genomics project

focuses on one or more of these processes and data types in a cohort of cases representing a

disease of interest. This is followed by more detailed investigation of findings such as novel

oncogenes or dysregulated pathways, which can form the basis of preclinical drug development

in an area of research named translational genomics [239] [240].

RNA microarrays based on oligonucleotide probes of complementary DNA (cDNA) were

the first high-throughput transcriptome analysis technology [241]. Using selected probes in

the order of tens of thousands representing genes, enables quantitative molecular profiling of

tumours based on gene expressions. Gene expression based molecular profiling and classi-

fication was applied to gastrointestinal cancers [242], lung adenocarcinoma [243] and breast

cancer [244]. On the example of breast cancer, gene expression profiling made a major clinical

impact: Breast cancer subtypes based on gene expression profiling have first been introduced

by hierarchical clustering [245] and the field’s consensus converged to a set of 5 intrinsic ex-

pression subtypes with strong predictive powers for prognosis [246]. Later, these expression

subtypes were used to train a classifier based on 50 genes [247], which did not need microarray

or RNA-Sequencing data and could be run on paraffin embedded tissue using a cost-effective

quantitative polymerase chain reaction (qPCR) assay [248]. This classifier was named Predic-

tion Analysis of Microarray 50 (PAM50), later commercialized as the Prosigna Breast Cancer

Gene Signature Assay established in clinical practice [249].

RNA Sequencing extended the transcriptome analysis capacities offered by microarrays

[250], [251]: sequencing of individual transcripts enables the detection of unannotated tran-
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scripts [252] and de novo transcriptome assembly [253], alternative splicing and alternative

transcript start site usage [254], detection of genomic variants on the transcriptome level [255],

detection of gene fusions [256]. RNA-Seq has therefore largely replaced microarrays in cancer

research. The Genotype-Tissue Expression (GTEx) project was an international effort to study

various tissue-specific aspects (gene expression, alternative transcript usage, protein truncation

by variants) of the transcriptome in healthy individuals using RNA sequencing [257].

DNA analysis in cancer, ”cancer genomics” improved greatly under evolving technologies:

• Already in 2004, a first census of 291 human cancer genes was published based on es-

tablished knowledge from low throughput technologies before results from larger cancer

genome sequencing studies were available [258]. Using such known gene lists, 188 lung

cancer cases were sequenced with targeted sequencing of 623 polymerase chain reaction

(PCR) amplified genes in 2008 [259]. A mass spectrometry based large-scale analysis

of 1000 tumours across 17 cancer types investigated 238 targeted cancer genes in 2007,

reporting a diverse set of mutations [260], but mass spectrometry was not widely used

thereafter in cancer genomics.

• The first (2006) large-scale sequencing of genes in cancer was on breast and colorectal

cancer genomes, where 13023 genes were sequenced by PCR amplification followed by

Sanger sequencing [261]. This study served as a pilot for future whole exome and whole

genome sequencing projects with more cost-effective technologies, with study design

recommendations presented here guiding future projects.

• A series of very expensive and pioneering cancer genome sequencing projects at a near

whole-exome level with the cost of around 100000 USD per case are published using

PCR amplification followed by Sanger sequencing: breast and colorectal cancer 11 cases

each (2007) [262], pancreatic cancer 24 cases (2008) [263], glioblastoma multiforme 22

cases (2008) [264].

• A series of new sequencing technologies called next-generation sequencing (NGS) or

short-read sequencing drastically lowered sequencing costs with the tradeoff of higher

computational complexity of data analysis and increased difficulty of recovering higher

order genome structure (SV detection, genome assembly) [265] [266] [267] [268] [269].

NGS allowed the expansion of the scope of cancer genome sequencing by enabling

whole genome sequencing (WGS) and making the whole genome sequencing (WES)

of larger cohorts possible.

• The first cancer WGS projects are published with limited cohort sizes, revealing mu-

tations of the non-coding genome and structural variation outside of the scope of WES:

breast cancer 1 case (2009) [270], prostate cancer 7 cases (2011) [271], multiple myeloma

23 cases (2011) [272], colorectal cancer 9 cases (2011) [273].

Following this very early era of cancer genomics pre- and post- NGS [274], the United

States’ Cancer Genome Atlas (TCGA) [275] and the International Cancer Genome Consor-

tium (ICGC) [276] acquired, analysed and presented integrative genomics, transcriptomics,

epigenomics and to a limited extent proteomics data from a broad range of cancers, sharing
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them openly with the public, cancer research and clinical communities [277] [278]. Genome

sequencing costs have maintained their downward trend to allow WGS analysis of very large

cohorts with paired normals such as 500 breast cancer genomes [279] or 491 medulloblas-

toma genomes [211], yielding insights on mutational processes in cancer [280] and enabling

use of WGS in a clinical setting [281]. Thanks to large-scale cancer WES and WGS studies,

the accumulated knowledge of cancer related genes and their mutations expanded dramatically

[282], with the curated Catalogue Of Somatic Mutations In Cancer (COSMIC) presenting 719

cancer genes with ”almost 6 million coding mutations across 1.4 million tumour samples, cu-

rated from over 26000 publications” as of 2018 [283], underlining the current scope of cancer

genomics. The article titled ”Comprehensive Characterization of Cancer Driver Genes and

Mutations” published by Bailey and colleagues in 2018 as part of the TCGA Pan-Cancer Atlas

project concludes with the statement that the field of cancer omics research is expected to enter

a new era, moving beyond gene-centric analysis of driver mutations and towards integration of

other data sources such as the tumour microenvironment [282]. Based on the numerous large-

scale studies on most cancer types characterizing their mutational landscapes, this statement

might be true, with less opportunities to reach insights with a genomics-only strategy. How-

ever, the TCGA’s analysis was mostly based on whole exome sequencing data and constrained

to the coding genome. An unpublished preprint from the PCAWG structural variation working

group states that the accumulated WGS dataset analysed in the largest WGS pan-cancer anal-

ysis to date is still insufficient to address the diversity and the complexity of the structurally

altered cancer genome, recommending both larger WGS studies and use of newer technologies

to improve SV research in cancer [284].

The analysis of the cancer epigenome encompasses the methylome, histone marks, chro-

matin accessibility and chromatin interactions with dedicated methods for each data type:

• The cancer methylome can be analysed by dense methylation arrays [285] or the much

denser whole genome bisulfite sequencing (WGBS) technology measuring every CpG,

first applied to colorectal cancer [21]. Methylation array analysis was a central technique

in the TCGA projects with 9759 of 11286 analysed cases across 33 cancer types having

available methylation array data [275]. Methylation arrays can be used for cell type

determination, promoter methylation status and copy number analysis, while WGBS

can additionally reveal partially methylated domains, variably methylated regions, high-

resolution methylation profiles of individual genes as shown on medulloblastoma [286]

and B cell lymphoma [287].

• Chromatin immunoprecipitation (ChIP) sequencing is the capture of DNA binding pro-

teins such as histones or transcription factors with post-translational modification-specific

antibodies, followed by the isolation and sequencing of the DNA sequences bound to the

captured target proteins. This technology has been instrumental in defining chromatin

states of healthy tissues [288] and cancer types like medulloblastoma [289].

• Chromatin accessibility was first assessed by DNase-I hypersensitive sites [32]. De-

velopment of the rapid and cost-effective Assay for Transposase-Accessible Chromatin

using sequencing (ATAC-Seq) assay [290] and improvements allowing its use in frozen
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tissues [291] led to its wide-spread application on cancer genomes with data released on

410 tumours from 23 cancer types by the TCGA [292].

• Chromatin interactions can be analysed by chromosome conformation capture tech-

niques with different scopes addressing different biological questions: 4-C can be used

to investigate interactions of a selected regulatory region with all other genomic regions

it is interacting with in a targeted manner [293], often used as a validation in SV studies.

On the other hand, Hi-C is used to analyse genome-wide chromatin interactions [294],

enabling the discovery of the TAD concept and definition of TAD boundaries [33]. Hi-C

can be combined with chromatin immunoprecipitation to study both chromatin interac-

tions and a target protein such as a H3K27ac for defining active enhancers or [295]

Using these analytical techniques, broad and high-quality repositories of epigenome data were

made available to the scientific community by international consortia such as the Encyclopedia

of DNA elements (ENCODE) [296] [297] and the NIH Epigenome Roadmap [298].

(Methods of cancer proteomics and metabolomics will not be introduced here as they are

outside of the scope of this dissertation.)

A central theme in omics research is integration of different layers of omics data [299].

Integrative omics goes beyond the identification of genomic variants or dysregulation of gene

expression or disease subtypes defined by methylomes, but rather integrates these data types

arising from interdependent biological processes. For instance, the link between oncogene

amplifications such as MYCN or EGFR and the corresponding increases in gene expressions

between amplified and non-amplified subpopulations in a cohort integrate genomic and tran-

scriptomic data. Taking this one step further, the ”enhancer hijacking”, i.e. activation of

the proto-oncogene GFI1/GFI1B by a structural variant in the Group 3 and Group 4 sub-

types of medulloblastoma integrates methylome-based classification, oncogenic overexpres-

sion, genomic structural variant information and histone marks indicating chromatin states

[132]. Deeper analysis of this example not explicitly discussed in [132] could yield insights

such as lack of mutations co-occurring with GFI1/GFI1B, suggesting them to be sole driver

mutations in another level of genomic integration. Similarly, description of transcriptomic

changes driven by GFI1/GFI1B activation in medulloblastoma would constitute another level

of transcriptomic integration. Integrative omics presents a challenge both in terms of data

analysis, visualization and sharing.

High-throughput data generation enabled by omics technologies co-evolved with corre-

sponding algorithms to address the data analysis challenges posed by its nature. Cancer ge-

nomics, transcriptomics and epigenomics all make use of advanced bioinformatics algorithms

to process raw high-throuput data output of omics assays to results that can be analysed towards

dissecting the complex biology of cancer samples and cohorts. In a typical cancer omics project

analysing multiple omics data types, a diverse set of bioinformatics tools and algorithms are

used. Vice versa, large genome sequencing projects spur the development and optimization of

bioinformatics tools and workflows.

In genomics data analysis, the bioinformatics workflow starts from the alignment of raw

short reads produced by the sequencer to the used reference genome. Sequence alignment

algorithms evolved from the BLAST algorithm [300] to the fast BWA algorithm [301] based
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on the Burrows-Wheeler transform [302], which established itself as the de facto standard for

the alignment of genome sequences obtained by NGS. DNA alignment is followed by variant

calling for various genomic variant types. Single nucleotide variants (SNVs) can be called

by the mpileup algorithm under the Samtools suite [303] or the CaVEMan algorithm [304].

Algorithms like DeconstructSigs are used to investigate mutational signatures taking the SNV

output as their input [305]. An algorithm like Platypus is used to call small insertions and

deletions [306]. SNV and indel calling is followed by variant annotation on criteria such as

genomic context, predicted impact, novelty or lack of novelty, clinical actionability using a

tool like VEP [307]. Larger scale variants such as SVs and copy number variants (CNVs) are

called by other dedicated tools like Delly [308] and ACEseq [309], respectively. Annotation

and interpretation of impact of SVs is a task requiring more progress. Tools like CESAM [100]

are promising regarding the study of SV impact with a multi-omics strategy combining genome

transcriptome and chromatin interaction data.

Transcriptomics by RNA (cDNA) microarrays requires normalization to regress out vari-

ation due to hidden technical variables like dye imbalances [310]. Normalized gene expres-

sions obtained by RNA microarrays can be compared between groups using the limma pack-

age [311]. RNA Sequencing also requires an alignment step similar to DNA sequencing, but

the aligner needs to be ”splice-aware”, meaning that reads obtained from spliced transcripts

should be correctly aligned to exons that are separated by introns with gapped alignments.

STAR [312] performs well in its two-pass mode in benchmarks [313] and is a commonly used

RNA aligner. Counts of reads aligned to the reference genome in a splice-aware manner are

counted by a tool like featureCounts [314] which are then normalized by a normalization al-

gorithm like TMM [315]. Normalized transcript counts of RNA-Seq data can be analysed in

differential comparison using DESeq which can address confounders in the data by integrating

metadata information [316]. Alternative splicing and alternative transcript usage is typically

analysed by the DEXSeq algorithm [317]. RNA-Seq enables gene fusion detection by chimeric

transcript alignments in STAR or dedicated algorithms like deFuse [318].

Methylome array analysis can be done using Minfi [319] or RnBeads [320]. Copy number

profiles of tumour samples can be extracted using methylome array data with the conumee

[321] or ChAMP algorithms [322]. (WGBS algorithms and tools are omitted as they are outside

of the scope of this dissertation)

Multi-omics data integration via statistical algorithms is a recent development in cancer

omics, and is used for the identification of latent variables spanning multiple omics layers such

as copy number profiles, transcriptome and methylome. MOFA [323] and iCluster [324] are

among the tools to cluster cases using data from multiple omics layers.

General statistical analysis of high dimensional data such as transcriptome or metyhlome

analysis encompasses dimensionality reduction algorithms based on manifold learning like t-

SNE [325], clustering by a diverse selection of algorithms which are selected based on the

expected structure of the data with HDBSCAN being one example unifying hierarchical and

density-based approaches [326]. Dimensionality reduction, clustering and further supervised

and unsupervised machine learning algorithms are available in the Scikit-learn library [327].

Processed, analysed and integrated multi-omics data is presented in internal meetings or
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with external audiences using data visualization tools. General-purpose tools such as ggplot2

[328] produce static images based on a descriptive grammar of data visualization. Modern data

visualization approaches prioritize interactivity with D3.js being the most commonly used tool

for interactive graphics [329]. The data analysis requirements of the field of (cancer-) omics

have motivated the development of dedicated data visualization tools such as ggbio specializing

in the display of local genomic regions [330], ComplexHeatmap for advanced heatmaps and

oncoplots[331], and Circos for interactions of genomic loci in SVs or as part of chromatin

interactions[332].

This prevalence of computational tools in cancer omics research requires expertise in their

development and use in collaborative projects. As science becomes more interdisciplinary

[333], cancer research is no exception to this trend [334] [335]. With the collaborative work

of medical doctors, biologists, bioinformaticians and computational biologists, a contemporary

cancer omics project presents challenges in data sharing and communication between experts

from different scientific backgrounds. This is partially addressed by availability of omics data

visualization portals such as the cBioPortal [336] and R2 [337] facilitating access of non-

computational scientists to high-throughput multi-omics data.

With the advanced and cost-effective analytical chemistry methods yielding high-throughput

omics data, which are analysed by dedicated bioinformatics algorithms, the state of the art in

cancer omics research offers the availability of large and high quality multi-omics datasets.

The current aims of omics technology-driven cancer research are broad and cover both the

fundamental biology of cancer and clinical applications. Some of them are:

• Determining mutational drivers and biological mechanistic properties of rare cancers and

rare subtypes of common cancers.

• Analysing the similarity of cancer types in pan-cancer analyses [275] for rational design

of basket clinical trials [338].

• Determining molecular biomarkers for prognosis, treatment response and resistance mech-

anisms for targeted treatments, establishing a knowledge basis for personalized medicine

[339] [340] [281].

• Developing new and improved statistical methods and bioinformatics tools for compu-

tational biology, broadly supporting each field of cancer omics. This includes more

accurate or faster sequence alignment algorithms, more sensitive or specific variant call-

ing algorithms, statistical methods to integrate high-dimensional data across data layers

or to reduce them to lower dimensions, better and more intuitive and interactive ways to

visualize the complex datasets obtained in multi-omics.

In this context, my doctoral research as a bioinformatician and computational biologist

aimed to address the following research questions, each presented in individual chapters of this

dissertation titled Integrative Analysis of Omics Datasets:

I. Replacing the CNS-PNET Superentity with Four Novel Molecularly Defined Enti-

ties Driven by Structural Variants: My work as a computational biologist contributed

to the comprehensive description of central nervous system primitive neuroectodermal
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tumours (CNS-PNETs). In this study we applied integrative omics data analysis of

methylomes, genomes and transcriptomes revealing that CNS-PNETs are a combination

of a large group of misdiagnosed cases from other entities and four novel molecularly

defined entities. I showed that these novel entities are driven by distinct and recurrent

molecular drivers altered by different mechanisms of structural variants: the FOXR2

oncogene and MN1, CIC and BCOR tumour suppressors. Our results contributed to the

elimination of CNS-PNETs as an officially recognized cancer entity and the recognition

of four novel paediatric brain tumour entities in the WHO classification of brain tumours.

II. SOPHIA, Structural Rearrangement Detection Based on Supplementary Align-

ments and a Population Background Model: Building on my work on structural varia-

tion in our study of CNS-PNETs, I developed the SOPHIA algorithm for detecting SVs

in cancer genomes based on a large population background database and a correspond-

ing bioinformatics tool written allowing fast detection of SVs from short read cancer

genome sequencing datasets. SOPHIA later became the standard tool for SV detection

in the DKFZ’s cancer genome analysis workflow.

III. EPISTEME, an Interactive and Integrative Platform for Analysing, Interpreting

and Sharing Multi-Omics Data: During the development of SOPHIA and my research

in projects analysing and interpreting structural variant data, I developed experiences

analysing SV data detected by SOPHIA, integrating them with different omics layers

such as gene expressions, interpreting, visualizing and sharing them with collaborators

who were not computational scientists. Based on these experiences and using modern

tools of interactive data visualization, I developed an interactive platform for integrative

omics data analysis and visualization named EPISTEME, with the aim of facilitating

omics data analysis by scientists with conceptual knowledge of cancer omics but no

programming skills. EPISTEME is a comprehensive tool integrating genome, transcrip-

tome, methylome and proteome data with clinical metadata in a user-friendly web-based

system with in-browser statistical analyses and publication-quality vector graphics out-

put.

IV. SOPHIA-EPISTEME integration in DKFZ Cancer Genomics Projects Reveals Novel

Disease Subtypes and Insights Across Cancer Types: With the integration of SOPHIA

and EPISTEME in an integrative omics data analysis setting, my work identified novel

oncogenes activated by enhancer hijacking and revealed novel molecularly defined sub-

types in refractory multiple myeloma (MYCN enhancer hijacking via immunoglobulin

rearrangements as a MYC replacement), adult acute myeloid leukaemia (MNX1 activa-

tion via enhancer hijacking putatively acting as a differentiation block mechanism) and

paediatric neuroblastoma (ATOH1 activation via enhancer hijacking putatively acting as

a MYCN replacement) in projects supported by the DKFZ-HIPO and GPOH cancer re-

search programmes.

(The source code used in the generation of the data presented in all parts of this disser-

tation is available from the repository https://github.com/umut-h-toprak/PhD_
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Dissertation_codebase. Externally used repositories are cited and documented as ap-

propriate.)
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CHAPTER 1

REPLACING THE CNS-PNET SUPERENTITY WITH FOUR NOVEL

MOLECULARLY DEFINED ENTITIES DRIVEN BY STRUCTURAL VARIANTS

1.1 Introduction

In human cancers, the cell of origin is a strong indicator of disease progression, sensitivity to

treatment and is consequently an integral part of establishing the correct diagnosis and prog-

nosis [275]. The cell of origin also indirectly, via chromatin states, influence the mutational

profile of a tumour [341]. Before the quantitative tools of omics- or array-based technolo-

gies measuring the transcriptome or the methylome of a sample were available for molecular

pathology, the only means of establishing a tumour classification was a combination of radiol-

ogy, classical histopathology and the experience of physicians. This approach works well for

tumour types that have distinct localization patterns, macroscopic manifestations, histopatho-

logical signatures of cell shapes or established molecular markers with available antibodies

[342]. For example, histopathological classification of invasive breast carcinoma follows a

two-pronged strategy involving tumour morphology (lobular, tubular, cribriform, medullary-

like, micropapillary, papillary, metaplastic, no-special-type), and marker status (oestrogen re-

ceptor positive, progesterone receptor positive, epidermal growth factor receptor HER2/ERBB2

positive, triple-negative) [343]. Thanks to the low diversity of cell types in mammary tissue,

there is no ambiguity in the diagnosis of breast carcinoma by classical histopathology. How-

ever, tumours with dedifferentiated/anaplastic/high-grade or primitive cells of origin present a

more difficult challenge to pathologists.

Tissues harbouring diverse cell types such as the brain or mesenchymal tissue from which

sarcomas arise are another challenging diagnosis and research question to pathologists. Espe-

cially soft tissue sarcoma has a considerable variety of subtypes (and implicitly cells of origin)

with more than 100 described in the latest WHO classification [344]. Similarly, the human

brain both in its adult and developing form, harbours a diverse set of cell types with distinct

transcriptomic (and implicitly epigenomic) profiles [257] which have recently been described

with further precision using the new technology of single-cell RNA sequencing [345] [346].

This diversity of cell types also reflects in the diversity of tumours originating from the central

nervous system [347].

Frequently, methods of classical histopathology had been found to be insufficient in ad-

dressing the diagnostics needs for the diverse landscape of brain tumours. For instance, in the

case of Medulloblastoma, a paediatric tumour type with great clinical significance, age and

resection/metastasis status based risk estimation supporting classical histopathology was con-

sidered insufficient [348] [349], and was supported by methods such as transcriptome profiling

[350], mutation detection [351]. Methylome profiling is based on the hypothesis that the cell of

origin determines the type and correct diagnosis of a tumour even in the absence of appropriate

histopathological markers, and that cell of origin is imprinted in the methylome which can be

quantified by methylome array of whole genome bisulfite sequencing (WGBS) technologies.
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Methylome profiling has been successfully applied as a critical component of ICGC-Pedbrain

for classification of tumours into molecularly defined entities starting with molecular classi-

fication of medulloblastoma[352]. The method has been iteratively improved culminating in

a recent landmark study describing the molecular classification of ”approximately 100 known

tumour types” of the central nervous system [353]. The study describes a mature, comprehen-

sive and accessible set of methods and a web portal for molecularly classifying tumours of the

central nervous system with the claim of outperforming classical histopathology, with 12% of

analysed cases correctly reclassified thanks to molecular classification analysis.

A key milestone in the progression to this mature molecular classification methodology

was the detailed dissection of the CNS-PNET superentity. CNS-PNETs is an abbreviation for

Central Nervous System Primitive Neuroectodermal Tumours. As the name implies, the cell

of origin is ”primitive” cells of neuroectodermal lineage. This group of embryonal tumours

originally encompassed the medulloblastoma entity, previously named as PNET of the Cere-

bellum [354]. Cerebral PNETs are considerably rarer at 20% incidence and generated contro-

versy in the history of pathological diagnosis [355]. With unknown driver genes, a difficult

pathological profile making them prone to misdiagnosis and aggressive clinical characteristics,

dissecting the biological background of this superentity was of great clinical and research in-

terest. Equipped by the methylome-based classification method developed and implemented

during ICGC-PedBrain, an international collaboration was set up involving numerous centres

with large biospecimen banks worldwide (Germany: main coordinator groups Pfister & Kool

at DKFZ and Korshunov at Uni. Heidelberg, USA: main coordinator group Ellison at St. Jude

Children’s Research Hospital, Canada, UK, Australia among others) in order to collect rare

CNS PNET specimens with sufficient quality for molecular assays and sufficient quantity for

letting subtypes emerge.

This chapter of my dissertation describes this study where we described a tumour super-

entity, CNS-PNETs to be a combination of a large group of misdiagnosed cases from other

entities and four novel molecularly defined entities with distinct molecular drivers and pre-

sented our results to the community in the journal Cell [218]. In this study, I was the leading

bioinformatics contributor in the effort of dissecting the molecular mutational drivers of the

four novel brain tumour entities. For each of these four novel tumour entities, I managed to

present a convincing driver gene and mechanism(s): MN1 fusions, CIC Fusions, BCOR Inter-

nal Tandem Duplications, FOXR2 activation by Structural Rearrangements. My contributions

to this study encompass the methods and results Sections 1.2.7, 1.2.11, 1.2.12, 1.2.13, 1.3.2,

1.3.3, 1.3.4, 1.3.5 where the remaining sections are included to ensure the completeness of

presentation in my dissertation. Parts of the study and the resulting article that are not directly

related to my work as prerequisites or consequences are omitted for the sake of brevity and

more clearly outlining my own contributions
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1.2 Methods

1.2.1 Study Design

Participating centres provided specimens of cases diagnosed as CNS-PNETs from their patho-

logical archives. Considering the high rarity of the disease, FFPE (Formalin-fixed, Paraffin-

embedded) specimens were collected in addition to higher quality fresh-frozen specimens.

Specimens that were unable to provide sufficient quality DNA for a methylome analysis were

excluded from the study.

The aims of the study were to investigate if the CNS-PNET diagnosis truly has a high misdi-

agnosis rate, if it encompasses a new or multiple novel tumour entities and how histopatholog-

ical diagnoses are in agreement with an expert panel review (Section 1.2.2) and with molecular

classification and to describe the mutational drivers of any new tumour entities if applicable.

All collected samples were subjected to methylome analysis for classification and copy

number profiling (Section 1.2.3) and gene expression analysis via Affymetrix microarrays for

secondary classification and determination of candidate genes via differential expression anal-

ysis (Section 1.2.6) where sufficient RNA quality was available. After each sample was classi-

fied, samples belonging to novel tumour classifications with specimens where fresh-frozen ma-

terial was available, were also submitted for sequencing by whole genome sequencing (along

with matching blood controls) and RNA sequencing for determination of mutational drivers

(Section 1.2.8).

1.2.2 Histopathological Review

For establishing a high quality histopathological diagnosis, each sample accepted in the study

was reviewed by an experienced panel of experts that participated in the study (Brent A. Orr,

David Capper, David W. Ellison, Andrey Korshunov). The results were classified as i) Histo-

logically matching PNET: Classic PNET, ii) Small-cell tumours with increased nuclear content

and without specific markers for definite differentiation between HGG (high grade glioma) and

PNET: PNET/HGNET, iii) Cases where the PNET diagnosis is considered questionable upon

expert review: HGNET with different diagnosis favored, iv) Cases where the PNET diagnosis

is considered inaccurate upon expert review.

No samples were excluded from the study including cases classified as questionable or

inaccurate upon expert review: while the study had the privilege of having access to the services

of world-class neuropathologists, the study is designed to help reduce or solve the controversy

around the CNS-PNET pathology worldwide, where the availability of such an expert panel

review though desirable cannot be expected. Hence, the study investigates the full spectrum of

CNS-PNETs based on institutional diagnosis.

In forming the consensus expert panel opinion, each case was systematically investigated

for the following morphological signatures, which were then presented in the manuscript:

1) hemorrhage, 2) small cell, 3) cell size (small/intermediate/large), 4) neurophil, 5) ependy-

moblastic rosettes, 6) perivascular rosettes, 7) vasculo-centric, 8) Homer Wright rosettes, 9) mi-

toses per 10 hpf, 10) apoptosis, 11) apoptosis score (low/intermediate/abundant), 12) fibrillar

processes, 13) infiltration, 14) necrosis, 15) secondary structures, 16) ganglion cells, 17) neu-
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rocytes, 18) pallisades, 19) vascular proliferation, 20) capillary network, 21) hyaline, 22) cal-

cification, 23) papillary growth, 24) pseudopapillary growth, 25) epithelial surfaces, 26) tissue

amount (scant/low/intermediate/abundant), 27) myxoid material, 28) nucleoli, 29) rhabdoid

cells, 30) giant cells, 31) inflammation, 32) anaplasia, 33) macrophages.

1.2.3 DNA Methylation Array Processing

DNA methylation profiling was performed using the Infinium HumanMethylation450 Bead-

Chip array (450k array) following manufacturer instructions (Illumina, San Diego, USA) as de-

scribed in [352]. The following participating centres contributed to the joint metyhlome profil-

ing effort i) DKFZ Genomics and Proteomics Core Facility (Heidelberg, Germany), ii) St. Jude

Children’s Research Hospital (Memphis, USA), iii) NYU Langone Medical Center (New York,

USA), iv) McGill University and Génome Québec Innovation Centre (Montreal, Canada).

For most fresh-frozen samples, > 500ng of DNA was submitted for methylome analysis.

250ng of DNA was used for most FFPE tissues. Quality control was done by checking on-chip

quality metrics and unexpected genotype matches by pairwise comparison of the 65 genotyping

probes on the 450k array.

Data analysis was performed in R version 3.2.0 (R Development Core Team, 2015). Raw

signal intensities were obtained from IDAT-files using the minfi Bioconductor package version

1.14.0 [319]. Samples were individually normalized by a background correction (shifting of

the 5 % percentile of negative control probe intensities to 0) and a dye-bias correction (scal-

ing of the mean of normalization control probe intensities to 10000)for both color channels.

This approach was tested against the functional normalization method [356], and determined

to perform similarly. Furthermore, probes were filtered/removed from the analysis with the

following criteria for more accurate clustering i) Probes mapping to the X and Y chromosomes

(n = 11551), ii) Probes containing a single-nucleotide polymorphism (dbSNP132 Common)

within five base pairs of and including the targeted CpG-site (n = 24536), iii) Probes not map-

ping uniquely to the human reference genome (hg19) allowing for one mismatch (n = 9993).

438370 probes were kept for analysis following this filtering step.

1.2.4 DNA Methylation Based Clustering

DNA Methylation Based Clustering was performed in the following configurations: i) samples

diagnosed as PNETs (n = 323), ii) reference samples where the histopathological and molec-

ular analysis defines the tumour entity without ambiguity including some non-neoplastic brain

tissue samples (n = 211), iii) the combination of PNETs and reference samples (n = 534).

The PNET-reference combination configuration was performed with the aim of exploring the

hypothesis that PNETs commonly include misdiagnosed cases because misdiagnosed PNETs

would cluster with the reference samples where applicable, and pure clusters of PNET cases

would indicate novel entities for which no reference samples exist. Following this step, the

PNET-only clustering would reveal how cases diagnosed as PNETs are distributed between

novel entities and known entities. The reference-only clustering is performed with the motiva-

tion of controlling if the chosen reference samples act as an unbiased reference.

Unsupervised hierarchical clustering of samples was performed on the 10000 most variably
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methylated probes, with 1-Pearson correlation coefficient as the distance measure. Average

linkage was used to generate dendrograms. The same distance matrix was used to gener-

ate t-SNE visualizations (t-Distributed Stochastic Neighbour Embedding [325], Rtsne package

version 0.11) with the following non-default parameters: theta=0, isdistance=T, pca=F, max-

iter=10000. Individual clustering of CNS-PNET samples, reference samples and additional

CNS tumor samples was performed with a similar approach. Specimen type (i.e. FFPE or

fresh-frozen) was checked and determined not to influence on unsupervised clustering in the

form of enrichments of a specimen type within clusters.

The Kruskal-Wallis test was used to compare CpG methylation values between the four

new CNS tumor entities. P-values were adjusted for multiple testing using the Benjamini-

Hochberg procedure, followed by Dunn’s test for post-hoc pairwise comparisons. CpG sites

were reported entity-specifically methylated if for all pairwise comparisons p < 0.001 and

pairwise mean methylation difference > 1/3.

Following the identification of the four novel tumour entities, a larger repository of CNS

tumour methylomes (n > 10000) was used in a correlation analysis to identify further cases

where the initial diagnosis was not a PNET but the molecular pathology indicates an incidence

of one of the four novel entities. A new set of reference samples including the four new entities

was formed (n = 159) and was subjected to methylome clustering as described with candidates

from the master repository matching the four new entities (n = 59). This was done with the

motivation of maximizing the number of captured cases of novel molecular groups, including

previously ”missed” cases.

1.2.5 DNA Methylation Based Copy-Number Variation Analysis

Copy-number variation (CNV) analysis was performed using the conumee Bioconductor pack-

age version 1.0.0. Two sets of 50 control samples displaying a balanced copy-number profile

from both male and female donors were used. Scoring of focal amplifications and deletions

and chromosomal gains and losses was performed by manual inspection of each profile.

1.2.6 Gene Expression Array Processing

Samples for which RNA of sufficient quantity and quality was available were analysed on the

Affymetrix GeneChip Human Genome U133 Plus 2.0 Array at the Microarray Department

of the University of Amsterdam, the Netherlands. Sample library preparation, hybridization,

and quality control were performed according to manufacturer’s protocols. Expression data

were normalized using the MAS5.0 algorithm of the GCOS program (Affymetrix, Santa Clara,

USA). Processed data was deposited in the R2 platform in a private session totalling 2273 brain

tumours and healthy brain tissue controls to facilitate analysis [337].

1.2.7 Differential Gene Expression Analysis for Candidate Gene Discovery

We used the R2 platform to perform differential expression analysis and subsequent gene ex-

pression visualizations [337]. The statistical test ANOVA was applied to the microarray dataset

normalized as explained in Section 1.2.6. Results were filtered to contain p-values below 0.01

and corrected for multiple testing using the Benjamini-Hochberg procedure.
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Each of the four novel tumour entities with unknown candidate driver genes was subjected

to a differential expression analysis in a ”1 vs 3” configuration with the intrinsic assumption

that each group is embryonal and the inter-entity differences would allow a specific differential

expression analysis revealing tumour pathways rather than only strongly enriching cell of origin

related differences.

Following the identification of candidate overexpressed/underexpressed genes, candidate

genes were plotted in a box-dotplot configuration with all tumour entities included in the n =

2273 R2 brain tumour repository. These include 35 tumour types and 1 group of normal brain

tissue. The aim here was to indicate if results from the ”1 vs 3” comparisons also held in a

more general analysis without pooling a large number of tumours from very different brain

cell lineages. Each outlier candidate was thus visually confirmed for novel group specificity.

The shortlisted candidates were prioritized for further cross-omics-layer analysis in terms of

dysregulation by gene fusions or enhancer hijacking events using next generation sequencing.

1.2.8 Next Generation Sequencing

As described in [357], paired-end (PE) DNA library preparation was carried out using Illumina,

Inc. v2 protocols. In brief, 1− 5µg of genomic DNA were fragmented to ∼300 bp (PE) insert-

size with a Covaris device, followed by size selection through agarose gel excision. Deep

sequencing was carried out with the HiSeq2000 instrument.

Paired-end RNAseq libraries were prepared with purified polyA+ RNA fractions using

methods preserving the strand specificity, following the dUTP-based protocol as described in

[358], featuring cDNA fragmentation after mRNA priming with a mixture of random hexamers

(dN)6 and oligo (dT) primers. A fraction of the libraries was constructed with a modified

protocol where the polyA+ RNA fraction was fragmented at 70°C for 5 minutes using RNA

fragmentation reagents (Ambion, Cat. #AM8740),according to the manufacturer’s instructions;

first strand synthesis was then performed with random hexamers (dN)6 only (and the cDNA

fragmentation step was omitted).

1.2.9 Next Generation Sequencing Analysis: Alignment of DNA sequences

For each sequencing lane, read pairs were aligned against human reference genome includ-

ing decoy sequences (hs37d5) using BWA mem [359] version 0.7.8 with default parame-

ters and -T=0 . Single lane bam files were post-processed using biobambam [360] (version

0.0.148): the lanes were sorted by bamsort and were merged with duplicates marked using

bammarkduplicates. This workflow is also known as the PCAWG workflow because it was

used in the Pan-Cancer Analysis of Whole Genomes project as the uniform alignment work-

flow for all participating centres. This workflow forms the backbone of our whole-genome

sequencing data processing in the DKFZ and is used for all data presented in this disserta-

tion, including the other chapters. The workflow is described in [361] and is available from

https://github.com/ICGC-TCGA-PanCancer/Seqware-BWA-Workflow
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1.2.9.1 SNV Calling

As described in [357], single nucleotide variant (SNV) detection integrates publicly available

tools with custom in-house software and applies several filtering and annotation steps. SNV

calling is based on samtools mpileup [303] and bcftools [362] (version 0.1.17), using param-

eter adjustments to allow calling of somatic variants. Initial SNV candidates were identified

by using samtools mpileup for each tumour sample considering only reads with a minimum

mapping quality of 30 and bases with a minimum base quality of 13, after application of the

extended base alignment quality (BAQ) model. BAQ is the Phred-scaled probability of a read

base being misaligned [363], and it is designed to reduce false SNV calls caused by misalign-

ments. After the pile up of high quality bases at each position of the input BAM file, bcftools

applies the prior and performs the actual SNV calling. We changed the default probability of

calling a variant if P (ref‖D) < 0.5 to 1.0, which results in all positions containing at least

one high quality non-reference base to be reported as a variant. This initial SNV call set, rich

in false positives, is further filtered: SNVs covered by fewer than three reads in the tumour and

control sample, with somatic allele frequency < 5%, or with only one read supporting the vari-

ant were excluded. If the variant call was supported by reads from only one strand, the ±10

bases around the SNV were automatically screened for Illumina specific error profiles [364]

and excluded if a profile was matched.

For all tumour SNV calls the pipeline generates a pileup of the bases in the normal sample

considering only uniquely mapping reads. SNV calls were categorized as germline or somatic

according to whether there was evidence for the same event at the same locus in the BAM file

of the tumour-matched control sample.

This workflow described in [357] did not yield candidate driver genes (recurrently mutated)

for the analysed novel tumour entities in the presented study. The analysis was performed by

Dr. Ivo Buchhalter, was not included in the final manuscript and is presented here for the sake

of completion

1.2.10 Next Generation Sequencing Analysis: InDel Calling

As described in [357], small insertions and deletions were identified with samtools [303] and

bcftools [362]. The InDel discovery pipeline is similar to the SNV pipeline (as described

above), but using default bcftools parameters, to reduce the known high false positive rate

(∼60%) associated with InDel detection methods for deep sequencing data. To call an indel a

germline event, we only required one InDel supporting read in the matching normal sample,

again to reduce the high fraction of false positive somatic InDel calls. Calls overlapping simple

repeat or microsatellite regions were excluded as such regions are commonly observed to yield

false positive calls. Annotation of InDels was identical to SNV annotation. All coding somatic

InDel calls were manually reviewed using the Integrative Genomics Viewer (IGV) [365].

This workflow described in [357] did not yield candidate driver genes (recurrently mutated)

for the analysed novel tumour entities in the presented study. The analysis was performed by

Dr. Ivo Buchhalter, was not included in the final manuscript and is presented here for the sake

of completion
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1.2.11 Next Generation Sequencing Analysis: Analysis of Chimeric Fusion Transcripts

I detected chimeric fusion transcripts from RNA-Seq FastQ files by de novo annotation of

fusion transcripts using the deFuse algorithm, version 0.6.1 [318] with default parameters using

a pipeline developed by Dr. Zuguang Gu. Results were filtered to exclude chimera arising

from differential splicing and chimera of adjacent genes. DNA breakpoints of the structural

rearrangements leading to the chimeric fusions were then detected as described in Section

1.2.12.

1.2.12 Next Generation Sequencing Analysis: Analysis of Structural Rearrangements

Our in-house experiences with CREST [366], LUMPY [367] the publicly available version of

Delly [308] at the time of the PNET study were not straightforward or positive (personal com-

munication). Generally, Delly, in the hands of dedicated experts, was known to perform better

with better specificity, but Delly was unable to capture mid-sized indels (∼50 < l < ∼1000bps)

at the time this study was running. The analysis described in Section 1.2.7 revealed a small

number of key candidate overexpressed genes and two of the four novel entities (Sections 1.3.2

& 1.3.3) were explained by the procedure described in Section 1.2.11. Thus, for the remaining

two groups we decided from the ground-up to favour a manual inspection approach which had

normally been applied in a validation setting as described in Section 1.2.10.

I used the Integrative Genomics Viewer (IGV) [365] to manually inspect the genomic

neighbourhoods of the candidate genes obtained from the procedure described in Section 1.2.7.

As recurrently mutated genes via small variants (SNVs and small InDels) were shown to be

unlikely by the analysis described in Sections 1.2.9.1 and 1.2.10, I prioritized my search for

structural rearrangements. After opening both the tumour and control alignments in IGV with

the non-default alignment display parameters i) disable downsampling, ii) show soft-clipped

bases, iii) do not filter supplementary alignments, iv) do not filter secondary alignments, I

checked each gene’s gene body and 5’ and 3’ neighbourhoods up to 2 megabases away. I

specifically looked in the tumour alignments for features of soft-clipped reads with match-

ing hard-clipped supplementary alignments falling on consistent genomic positions, with high

quality bases in the split reads’ overhang sequences and absence of such features in the control

alignments. Each detected finding was validated by cross-checking other tumours in the same

molecular type and also chemically validated using PCR or FISH (Dr. Dominik Sturm and

colleagues) where sufficient quality DNA remained from the initial tumour specimen.

1.2.13 Data Availability

The data generated in this study was provided to the community in three sets, where I was

responsible for setting up the controlled-access release of the next-generation sequencing data:

Dataset (∗controlled) Data Repository Accession Number

Methylome Arrays NCBI Gene Expression Omnibus GSE73801

Gene Expression Arrays NCBI Gene Expression Omnibus GSE73038

NGS Data∗ European Genome-phenome Archive EGAS00001001632
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1.3 Results

1.3.1 Methylome Clustering of Reference Paediatric Central Nervous System Tumours and

CNS-PNETs Reveals a High Rate of Misdiagnosis and Novel Molecular Subgroups for

CNS-PNETs

The merged clustering approach described in Section 1.2.4 revealed a striking pattern of em-

bryonal tumours misdiagnosed as PNETs. More than half of the cases 196/323(61%) clus-

tered with other reference tumour entities, indicating a major clinical problem that should

be addressed (Section 1.1). Upon further investigation of the entities most prone to mis-

diagnosis, we observed as the most frequent sources of misdiagnosis Embryonal Tumours

with Multilayered Rosettes-ETMRs (36/323, 11%) [368] [369], MYCN-amplified high-grade

gliomas-HGGMY CN (28/323, 9%) and IDH/H3F3A wild-type HGG from receptor tyrosine

kinase (RTK) subgroups-HGGRTK (28/323, 9%) [370]. This is followed by entities that

are less prone to misdiagnosis as PNET: IDH-mutant HGG-HGGIDH (17/323, 5%), H3F3A

G34-mutant HGG-HGGG34 (17/323, 5%), supratentorial ependymomas-EPN (15/323, 5%),

AT/RTs (14/323, 4%), H3F3A K27-mutant diffuse midline gliomas-HGGK27 (10/323, 3%),

pineal tumors-PIN (8/323, 2%), Ewing sarcomas-EWS (5/323, 2%), choroid plexus carcinomas-

CPC (2/323, 1%), pleomorphic xanthoastrocytomas-PXA (1/323, < 1%), or meningiomas-

MNG (1/323, < 1%).
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Figure 1.1: Merged clustering of case diagnosed as PNETs and reference tumours using methy-

lation and gene expression profiles (Figure 1 of [218]). A: Methylome hierarchical clustering

of 534 CNS tumour samples of which 323 are institutional PNET diagnoses (black bars) and

211 are reference specimens of confidently molecularly diagnosed reference instances of other

CNS tumour entities (coloured bars). PNET-diagnosed cases disperse to diverse non-PNET en-

tities, 4 novel molecularly defined entities and unspecified clusters. B:Methylome tSNE of the

analysed CNS tumour cohort shows the 4 novel clusters as distinct clusters. C: The numbers

of cases that were assigned to one of the 4 novel clusters from the original collection of 323

institutional PNET diagnoses.

Having established the previously hypothesized but not molecularly shown a high misdi-

agnosis rate involving PNETs, we searched for bona fide ”PNETs” belonging to previously

unknown entities. We observed that such cases exist and fall into five categories: i) small,

inhomogeneous clusters (< 5 tumours) or distant outliers which failed to group with each

other or any of the reference tumour entities, possibly representing exceedingly rare entities

(50/323, 15%), and ii) four separate and homogeneous clusters clearly distinct from reference

entities (77/323, 24%). At that point, the observation that there is not one but four ”real”

PNET clusters with distinct cells of origins and likely distinct drivers further emphasized the

difficulties of PNETs for histopathological diagnosis.

The four new tumor entities were provisionally and finally named

i) PNET with chr1q gains and chr16q losses, PNET 1q-16q → ”CNS neuroblastoma with
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FOXR2 activation” CNS NB-FOXR2 (44/323, 14%),

ii) Ewing Sarcoma-like PNET, PNET-EWS-like → ”CNS Ewing Sarcoma family tumor

with CIC alteration” CNS EFT-CIC (12/323, 4%),

iii) PNET with chr16q losses and chr22q losses, PNET 16q-22q → ”CNS high-grade neu-

roepithelial tumor with MN1 alteration” CNS HGNET-MN1 (11/323, 3%), and

iv) PNET with WNT pathway activation, PNET-WNT → ”CNS high-grade neuroepithelial

tumor with BCOR alteration” CNS HGNET-BCOR (10/323, 3%).

These provisional names were proposed by copy number variation analysis and pathway en-

richment analysis which will not be discussed here (details available in [218], Supplementary

Figure 5, Figure 7 and Supplementary Figure 7). The provisional names were used during the

analysis of our results leading to the presented study, before their respective driver genes and

mechanisms were discovered (Sections 1.3.2, 1.3.3, 1.3.4 and 1.3.5) and their final names were

determined.

Our next step was to confirm that the PNET diagnoses that did not fit the new four entities

but rather other reference entities were indeed a correct match to those entities not only in

terms of methylome (cell of origin) profiles but also with respect to known hallmark genomic

alterations (Figure 1.2).

i) Cases of the ETMR cluster were checked following [369] for C19MC amplifications

(33/36, 92%, p < 0.001) and high LIN28A protein expression (17/17, 100%; p <

0.001),

ii) Cases of the AT/RT cluster were checked following [371] for SMARCB1 mutations

and/or deletions (14/14, 100%; p < 0.001) and loss of the SMARCB1 protein prod-

uct INI-1 (5/5, 100%; p < 0.001),

iii) Cases of the HGGIDH cluster were checked for IDH1 mutations using targeted sequenc-

ing (15/15100%; p < 0.001),

iv) Cases of the HGGG34 cluster were checked for H3F3A G34 mutations using targeted

sequencing (17/17100%; p < 0.001),

v) Cases of the HGGK27 cluster were checked for H3F3A K27 mutations using targeted

sequencing (4/757%; p < 0.001),

vi) Cases of the HGGMY CN cluster were checked for MYCN amplifications revealing (20/2871%; p <

0.001) and MYCN-ID2 co-amplifications (12/2843%; p < 0.001). The latter was a

novel observation at the time of this study

vii) Cases of the HGGRTK cluster showed copy-number alterations, and half (14/28, 50%)

harboured focal amplifications and/or deletions of known oncogenes and/or tumor sup-

pressor genes (MDM2(4), CDK4(3), PDGFRA(2), MYCN(2), MYC(1), CDKN2A(4),

PTEN(2), RB1(1)),

viii) Cases of the EWS cluster were confirmed to harbour EWSR1 rearrangements using FISH.
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Figure 1.2: Confirmation of misdiagnosis of PNETs and accurate diagnosis into known non-

PNET tumour entities (Figure 2 of [218]). A: PNET-diagnosed cases reclassified as embry-

onal tumours with multilayered rosettes (ETMR) harbour C19MC amplifications as shown by

metyhlome based CNV analysis and FISH and express LIN28A as shown by immunohisto-

chemistry (IHC), hallmarks of ETMR. B: PNET-diagnosed cases reclassified as atypical ter-

atoid rhabtoid tumours (ATRT) harbour SMARCB1 deletions as shown by metyhlome based

CNV analysis and show loss of INI-1 expression (IHC) as hallmarks of ATRT. C: PNET-

diagnosed cases reclassified as IDH1 mutant or H3F3A mutant high grade glioma (HGG)

harbour the respective hallmark mutations as confirmed by Sanger sequencing. D: PNET-

diagnosed cases reclassified as MYCN-amplified HGG harbour MYCN amplifications as shown

by metyhlome based CNV analysis and FISH. E-H: the reclassified cases show spatial and age-

related distributions that are in line with established knowledge representing the entities.

Having thus confirmed the prevalence of misdiagnosis and the existence of four new tumour

entities, we later used a larger methylome array repository encompassing all available brain

tumours (n = 10000) to look for new cases that belong to the four new entities but were

previously not diagnosed as PNETs and were thus not part of the initial candidate case list

(n = 323) as described in the last paragraph of Section 1.2.4. We found the following 77 new

cases with this approach (Figure 1.3)

i) PNET with chr1q gains and chr16q losses, PNET 1q-16q → ”CNS neuroblastoma with

FOXR2 activation” CNS NB-FOXR2: 2 new cases,
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ii) Ewing Sarcoma-like PNET, PNET-EWS-like → ”CNS Ewing sarcoma family tumor

with CIC alteration” CNS EFT-CIC: 3 new cases,

iii) PNET with chr16q losses and chr22q losses, PNET 16q-22q → ”CNS high-grade neu-

roepithelial tumor with MN1 alteration” CNS HGNET-MN1: 30 new cases,

iv) PNET with WNT pathway activation, PNET-WNT → ”CNS high-grade neuroepithelial

tumor with BCOR alteration” CNS HGNET-BCOR: 24 new cases.

Both these counts and the presented results in Figure 1.3 A-B show an imbalance between

the numbers of new recovered cases across different entities of previous diagnosis. This imbal-

ance will be explained in the corresponding sections of the new entities (Sections 1.3.2, 1.3.3,

1.3.4 and 1.3.5).

Figure 1.3: Recovery of additional cases belonging to the 4 novel entities from initial diagnoses

of non-PNET entities (Figure 3 of [218]

). A: hierarchical clustering of the recovered 77 new cases, 159 reference samples and 59 ad-

ditional samples reveals the recovery of additional cases to the 4 novel entities. B: The 4 novel

entities represent different misdiagnosis incidence profiles with the CNS NB-FOXR2 and CNS

EFT-CIC groups representing the highest bona fide PNET diagnosis likelihood and the CNS

HGNET-MN1 group receiving a large number of cases from the astroblastoma entity. C-F: The

spatial, age and gender distribution characteristics of the four entities following establishment

of final cohorts from initial PNET diagnoses and later recovery from other entities as initially

diagnosed.)
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All new entities have homogeneous localization in the brain (Figure 1.3C-F). As per study

design, we required a PNET diagnosis and cerebellar PNETs have historically been histopatho-

logically diagnosed as Medulloblastoma and not as PNET. The inclusion of new cases by this

analysis extended the entities from purely cerebral to cerebral and cerebellar. Overall, follow-

ing the initial and secondary clustering, we obtained the following numbers.

Entity (Provisional) Entity (Final) NTotal NWGS NRNAseq Nboth

PNET 16q-22q CNS HGNET-MN1 41 1 4 0

PNET EWS-like CNS EFT-CIC 15 0 2 0

PNET WNT CNS HGNET-BCOR 34 3 8 0

PNET 1q-16q CNS NB-FOXR2 46 5 4 1

1.3.2 MN1 Fusions, mainly MN1-BEND2, Drive a Subgroup of CNS-PNETs

I ran a gene fusion analysis on the PNET 16q-22q subgroup as described in Section 1.2.11,

which revealed MN1 chimeric fusions in all samples with available RNA-Seq data. In (3/4, 75%)

of the cases the partner was the BEND2 gene, whereas the remaining case had a MN1-CXXC5

fusion (Representative fusions in Figure 1.4). In the absence of other recurrent genomic alter-

ations and considering the 100% recurrence of MN1 fusions, we designated MN1 as a primary

candidate gene of interest for this entity.

Figure 1.4: Representative MN1 fusions MN1-BEND2 and MN1-CXXC5 as displayed on IGV.

Extracted from Supplementary Figure 6 of [218]. Left: a MN1-BEND2 fusion with breakpoints

denoted by sharp coverage drops and gains and split read mapping to the partner site marked

by orange and black coloured guide rectangles. Right: a MN1-CXXC5 fusion case with the

same visualization principles.

I first investigated if the MN1 fusions lead to overexpression or suppression of MN1 in this

entity compared to other brain tumour entities and observed that MN1 in the PNET 16q-22q

group does not have a strikingly different expression profile (Figure 1.5).
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high-grade neuroepithelial tumour with MN1 alteration (CNS HGNET-MN1) (Figure 1.7).

Figure 1.7: Description of the CNS HGNET-MN1 entity. Extracted from Figure 6 of [218].

D: MN1-BEND2 fusions shown on an example of typical breakpoint locations. E: RNA-

sequencing and FISH analyses confirm MN1 fusions and MN1 in the entity. We validated

our findings in the initial larger cohort from which the methylome analysis was run. In the

13 specimens with sufficient material, we ran FISH assays targeting MN1 with break-apart

probes. 3 of those cases had matching RNA-Seq data for establishing concordance between

RNA-sequencing and FISH. We confirmed all MN1 fusions detected by RNA-Sequencing and

observed that all but one of the cases with sufficient material were positive for MN1 breaks F:

BEND2 activation is a unique and recurrent characteristic of the entity.

CNS HGNET-MN1 showed a high rate of new case recovery from a large group of tumours

initially not diagnosed as CNS-PNETs (Figure 1.3). We observed that the brain tumour en-

tity astroblastoma [372] [373] accounted for 16/41 of our CNS HGNET-MN1 cohort and that

these 16 cases were 16/23 of our entire astroblastoma collection. We thus postulated that the

entity previously known as Astroblastoma was not a bona fide brain tumour entity but rather

a collection of CNS HGNET-MN1 and a heterogeneous set of tumours from other entities.

Our assessment was approved by the WHO classification of Tumours of the Central Nervous

System, 2016 [374] where astroblastoma was removed as an entity. Under histopathological

investigation, CNS HGNET-MN1 revealed itself as a heterogeneous entity where only some

cases had an Astroblastoma-like histopathology.

We then investigated if the gene MN1 is a candidate oncogene for tumourigenesis in this

new proposed entity with either of the two detected fusion partners BEND2 and CXXC5. MN1

is disrupted in balanced translocations in meningioma [375] and is part of the MN1-ETV6

chimeric fusion oncogene in myeloproliferative disorders such as myeloid leukemia [376].

The MN1-ETV6 oncogene was described as an oncogenic transcription factor [377] with a

dominant negative effect on the wild-type allele of MN1 [378]. The MN1-BEND2 fusion in the

CNS HGNET-MN1 entity fuses the transactivating domains of MN1 with the BEN domains of

BEND2, previously suggested to mediate protein-DNA and protein-protein interactions during

chromatin organization and transcription [379]. As BEND2, ETV6 and CXXC5 are all DNA

binding proteins, we hypothesized that MN1-BEND2 and other MN1 fusions such as MN1-

CXXC5 have similar oncogenic mechanisms to MN1-ETV6. In the absence of a viable cell line

or other models, we were unable to further test this hypothesis in this study.
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1.3.3 CIC Fusions, mainly CIC-NUTM1, Drive a Subgroup of CNS-PNETs

I ran a gene fusion analysis on the PNET EWS-like subgroup as described in Section 1.2.11,

which revealed CIC chimeric fusions in 2/3 of samples with available RNA-Seq data. In

both the cases the partner was the NUTM1 gene, whereas the negative case had a frameshift

deletion on CIC. In both detected fusion events, exon 16 of CIC was fused in-frame to exon

4 of NUTM1, retaining the DNA-binding high mobility group (HMG) box domain of CIC

(Figure 1.8). In the absence of other recurrent genomic alterations and considering the 100%

involvement of the CIC gene, we designated CIC as a primary candidate gene of interest for

this subgroup.

Figure 1.8: A representative CIC-NUTM1 fusion as displayed on IGV. Extracted from Supple-

mentary Figure 6 of [218]

I first investigated if CIC fusions lead to overexpression or suppression of CIC in this entity

compared to other brain tumour entities (Figure 1.9).
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Figure 1.11: Description of the CNS EFT-CIC entity. Extracted from Figure 6 of [218]. A:

exon 16 of CIC is fused in-frame to exon 4 of NUTM1, retaining the DNA-binding high mobil-

ity group (HMG) box domain of CIC. B: We validated our findings in the initial larger cohort

from which the methylome analysis was run. In the 9 specimens with sufficient material, we

ran Fluorescence in Situ Hybridization assays targeting CIC with break-apart probes. 2 of those

cases had matching RNA-Seq data for establishing concordance between RNA-sequencing and

FISH, including the case with no CIC-NUTM1 fusion with the CIC frameshift deletion. All

tested cases apart from the mentioned case were positive for CIC breaks. Furthermore, we also

tested stained the specimens with sufficient material with the NUTM1 antibody in an immuno-

histochemistry (IHC) procedure. All but one tested case tested positive for the NUTM1 gene,

hinting at the recurrent nature of CIC-NUTM1 fusions even in cases where assays for fusion

detection cannot be run. C: NUTM1 is recurrently activated in the PNET EWS-like subgroup.

Under histopathological investigation, CNS EFT-CIC was characterized by a small-cell

phenotype but with variable histology. The tumour architecture included both alveolar and

fascicular patterns of growth. Although tumors were uniformly high grade, the CNS EFT-CIC

entity lacked defining histological features and failed to express markers of differentiation,

reinforcing the challenges it poses to classical histopathology. However, this entity, along with

CNS NB-FOXR2 had the most consistent clinical PNET diagnoses, and had relatively few

gains of new cases from the extension analysis described in Section 1.2.4 (Figure 1.3).

As CIC-DUX fusions were previously described in a subgroup of pediatric primitive round

cell sarcomas [380] and shown to have a distinct transcriptional signature [381], we analyzed

CNS EFT-CIC tumors for similar gene expression patterns, confirming transcriptional changes

(Figure 1.12).
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Figure 1.12: Selected targets of the CIC-NUTM1 oncogene in CNS EFT-CIC (Extracted from

Supplementary Figure 6 of [218]). Members of the ETS transcription factor family, includ-

ing ETV1, ETV4, ETV5, FLI1, and ETS1 were specifically upregulated in this group as also

observed in peripheral EWS.

We later investigated if the gene CIC is a candidate oncogene for tumourigenesis in this new

proposed entity as part of the CIC-NUTM1 chimeric fusion gene. Oncogenic re-arrangements

of NUTM1 are known to be the main driver of NUT midline carcinomas, most frequently in-

volving BRD4 [382]. Considering the preferred location of CIC-NUTM1 fusions on an exonic

level, we hypothesized a molecular mode of action of CIC-NUTM1 fusions in which specific

CIC target genes are transcriptionally activated by the NUTM1 moiety via the recruitment of

histone acetyl transferases, similar to a model of how BRD4-NUTM1 might block differenti-

ation in NMC [382]. In the absence of a viable cell line or other models, we were unable to

further test this hypothesis in this study.

1.3.4 BCOR Internal In-Frame Tandem Duplications Drive a Subgroup of CNS-PNETs

In the investigation of the PNET-WNT subgroup, neither small mutation and SV calling from 3

WGS specimens, nor a gene fusion analysis from 8 cases led to a recurrent candidate gene for

further investigation. I thus used the 1-vs-3 comparison approach described in Section 1.2.7

and looked for overexpressed oncogene candidates with potentially unknown or unrecoverable

activation mechanisms. This approach yielded the candidate gene BCOR, which is recurrently

and significantly upregulated in the PNET-WNT group compared to all brain tumour entities

with sufficient sample sizes (Figure 1.13).
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on the protein level. I reconstructed the translated protein sequence of BCOR following the

duplications for each case where an ITD was detected (Figure 1.15). This analysis confirmed

that the ITDs are indeed similar, and revealed that there are two main classes of duplicated

sequences in our cohort: i) Subsequences of VSASLLFCSKDLEAFNPESKELLDLVEFT-

NEIQTLL, and ii) Subsequences of SASLLFCSKDLEAFNPESKELLDLVEFTNEIQTLLGSSVEW.

All cases had the minimally duplicated sequence DLVEFTNEIQTLL.

Figure 1.15: Conserved duplicated peptide sequences following ITDs on BCOR exon 15. (ex-

tracted from Supplementary Figure 6 of [218])

Having established BCOR as a target of recurrent target of in-frame ITDs, we named this

new entity Central nervous system high-grade neuroepithelial tumour with BCOR alteration

(CNS HGNET-BCOR) (Figure 1.16G).

Figure 1.16: Description of the CNS HGNET-BCOR entity (extracted from Figure 6 of [218]).

G: BCOR Exon 15 ITDs as the hallmark event of the CNS HGNET-BCOR entity. H: validation

of BCOR ITDs with a PCR designed using our knowledge of the conserved ITDs. (11/14) of

the cases with available material were found to be harbouring ITDs of the described type on

BCOR. I: BCOR is recurrently and significantly upregulated in the CNS HGNET-BCOR entity.

A protein motif search using the Motif search tool of GenomeNet [383] yielded hits from

NCBI-CDD [384] and Pfam [385], indicating a duplication affecting the PCGF Ub-like fold

discriminator of the BCOR protein which binds the RAWUL (RING finger and WD40-associated
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ubiquitin-like) domain of the polycomb-group RING finger homologs PCGF1 and PCGF3

[386].

Next, our pathologist colleagues investigated the histopathological patterns of CNS HGNET-

BCOR. This entity consisted of relatively compact tumours containing a combination of cells

with shapes ranging from spindle to oval. Tumours were observed to often exhibit perivascu-

lar pseudorosettes, giving them an ependymoma-like appearance. Tumours frequently showed

fibrillary processes, typically observed in glial differentiation, and only rarely exhibited a true

embryonal pattern. This diversity of histopathological patterns is reflected in the high rate

of new case recovery from a large group of tumours initially not diagnosed as CNS-PNETs

(Figure 1.3).

Shortly before the submission and eventual acceptance of our study, a similar finding on

BCOR ITDs was published by a different group in Japan, on a different paediatric disease:

Clear Cell Sarcoma of the Kidney (CCSK) [198] (Figure 1.17). Their results were in a remark-

ably significant agreement with ours in terms of the location and minimum conserved peptide

sequence of the ITDs, with an almost total match of the ITD sequences. These results later

led to differing viewpoints on entity classification where one study claimed that CNS HGNET-

BCOR and CCSK-BCOR were local variants of the same entity [387] whereas another study

focusing on the comparison of CNS HGNET-BCOR and CCSK-BCOR [388] claimed that the

former is of neuroepithelial origin and the latter is of mesenchymal origin and should be con-

sidered as distinctly different entities.

Figure 1.17: Conserved duplicated peptide sequences following ITDs on BCOR exon 15 in

CCSK (Figure 1 of [198])
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gene body upstream of long-FOXR2 (Figure 1.21C-D),

ii) 2 tandem duplications fusing long-FOXR2 with the JPX 5’UTR and LOC550643 5’UTR

(Figure 1.21C-D),

iii) 1 interchromosomal translocation t(10,X) fusing the 5’UTR of JMJD1C with the pro-

moter of long-FOXR2 (Figure 1.21C-D),

iv) 1 mitochondrial insertion on the USP51 gene body upstream of long-FOXR2 leading to

a novel promoter and another novel FOXR2 transcript (Figure 1.21C-D-E).

Furthermore, analysis of copy number variation patterns from methylation arrays revealed

a number of other patterns of structural rearrangements in cases where sequencing data was

not available (Figure 1.21D):

i) 4 intrachromosomal deletions (∼500kb) connecting the MAGED2 locus with the FOXR2

locus,

ii) 2 intrachromosomal deletions (∼3 Mb) targeting the FOXR2 locus,

iii) 1 intrachromosomal deletion (∼8 Mb) targeting the FOXR2 locus,

iv) 1 case of chromothripsis [393] on chromosome X with FOXR2 on one of the amplified

loci.
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Figure 1.21: Diverse activation mechanisms of FOXR2 (extracted from Supplementary Figure

5 from [218]).

With all presented mechanisms a common pattern was the activation of a putative onco-

gene by structural rearrangements connecting actively expressed genomic regions to the inac-

tive oncogene. This mode of activation is known as enhancer hijacking [394] was previously

shown to be the main driver of subsets of Group 3 and Group 4 Medulloblastoma [132] [211]

by activation of the GFI1B and PRDM6 genes. The FOXR2 activating partner genes are tran-

scriptionally active (Figure 1.21F).

There were only two exceptions to the recurrent pattern of FOXR2 activation via SVs in this
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novel entity (Figure 1.22B): i) One case had no FOXR2 activation on the transcriptome level,

but carried a focal amplification of MYC (Figure 1.21G, and ii) One case had FOXR2 activation

determined by RNA microarray analysis, no SV detected by very detailed manual inspection

± 4MB starting from FOXR2, and no CNVs to explain the mode of FOXR2 activation. Due

to lack of RNA-Sequencing data we also couldn’t determine what kind of FOXR2 isoform was

transcribed.

Having established FOXR2 activating rearrangements are the main driver of this novel en-

tity and due to its neuroblastoma-like histopathological characteristics, we named it central

nervous system neuroblastoma with FOXR2 activation (CNS NB-FOXR2) (Figure 1.22A).

Figure 1.22: Description of the CNS NB-FOXR2 entity (Figure 5 from [395]). A: A rep-

resentative FOXR2-activating rearrangement showing the long FOXR2 transcript. B: FOXR2

alterations detected by WGS (6/8) and methylome arrays (13/46) C: FOXR2 is recurrently and

significantly upregulated in the CNS NB-FOXR2 entity

Next, our pathologist colleagues investigated the histopathological patterns of CNS NB-

FOXR2, noting embryonal architectural and cytological features with a small-cell phenotype,

frequently with areas of differentiation in the form of neuropil, neurocytic cells, or ganglion

cells. Some specimens showed frequent perivascular anuclear zones (“vascular pseudorosettes”),

nuclear palisades, and Homer Wright rosettes. Tumours of this entity nearly uniformly ex-

pressed OLIG2 and the neuronal antigen synaptophysin. Overall, CNS NB-FOXR2 showed a

histopathological profile most closely matching the classical definition of CNS-PNETs, which

is reflected in the lowest rate of new case recovery from a large group of tumours initially not

diagnosed as CNS-PNETs (Figure 1.3).

Following our study, it has been published that FOXR2 acts with MYC in a stable com-

plex FOXR2-MYC-MAX complex to promote MYC transcriptional activities in adult cancers

[396]. This fits our data that one exceptional case of the CNS NB-FOXR2 entity had a MYC

amplification instead of FOXR2 activation: If the downstream targets and activated pathways

are identical for both oncogenes, the same cell of origin that requires the activation of this

pathway for oncogenic transformation, can in principle use either mechanism. However, it is

not known why FOXR2 is preferentially activated in the CNS NB-FOXR2 entity with such a

strong bias as suggested by our data whereas MYC amplifications are not common in this cell

of origin. As with the other entities introduced here, there exist to date no cell lines of CNS

NB-FOXR2 that allow a precise study of the role of FOXR2 in this cell type.
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1.4 Discussion

1.4.1 Interpretation of our findings and their impact on the field of paediatric neurooncology

Our study had a significant impact on the field of paediatric neurooncology and indirectly,

cancer research as a whole. We showed that CNS-PNETs are not a monolithic entity and

the CNS-PNET diagnosis coming from classical histopathological methods are error-prone.

Our findings both emphasized the limitations of classical histopathology and proved molecular

pathology via methylome profiling as a viable method of overcoming one of the most chal-

lenging diagnostic questions in the paediatric neurooncology. Our finding that CNS-PNETs

are a mixture of other paediatric brain tumour entities, including those with dismal prognosis

such as ETMRs and HGGs led to a reassessment of the similarly dismal expected prognosis of

CNS-PNETs: a clinical trial on CNS-PNETs was closed for recruitment following our study,

the participating patients were molecularly profiled as presented in our study and it was ob-

served that CNS-PNETs do not universally have a dismal prognosis when misdiagnosed cases

are withdrawn from analysis [397]. Even though we currently cannot propose molecularly

designed therapies for the four entities discussed in our study, this observation alone has an

appreciable clinical impact: through accurate and molecularly defined diagnosis, patients can

avoid intensive treatments with severe side effects. Indeed, this statement can be extended

to all brain tumour entities and became one of the critical milestones towards the landmark

methylome profiling-based molecular classification of brain tumours [353].

We presented four novel entities of paediatric brain tumours with distinct oncogenes with

a diverse set of activation mechanisms. Thanks to the high quality of our data and the well-

executed classification of the cases, we managed to describe all of these four new entities. Our

findings emphasized the power of using whole genome sequencing and RNA-sequencing for

discovery of driver oncogenes and their mechanisms: Without WGS, the CNS NB-FOXR2

entity would have remained unexplained, without RNA-Seq both CNS HGNET-MN1 and CNS

EFT-CIC entities would have remained unexplained. Our approach was successful in great part

due to the multi-omics & array approach adopted here.

Following the publication of our study in Cell, the WHO classification of Tumours of the

Central Nervous System, 2016 [374] was updated to remove CNS-PNETs (replaced by the four

new entities and CNS HGNET-NOS), astroblastoma (replaced by CNS HGNET-MN1), CNS

neuroblastoma (replaced by CNS NB-FOXR2), CNS ganglioneuroblastoma (replaced by CNS

NB-FOXR2).

Our study also led to a number of unpublished follow-up projects: Currently, there is a

large clinical follow-up study investigating the survival characteristics of the four new entities,

as we did not have sufficient sample sizes and availability of survival data for this purpose in

the study presented here. Also, in order to be able to do functional genomics analysis on the

four new entities, mouse models are being developed with considerable success: 3/4 of the new

entities (except for CNS HGNET-BCOR) now have mouse models of the tumours where viable

growth is observed. These models will be used to test treatments in vivo. Worldwide, it is

already leading to impact in personalized medicine with new treatment protocols being tested

in case studies [398].
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1.4.2 Impact of this study on CNS-PNETs on my PhD research

In this study, we successfully integrated methylome, genome and transcriptome data from a

disease type with undefined histopathological characteristics. We applied integrative omics

data analysis methods to classify novel disease subgroups, found aberrantly overexpressed

genes and their underlying genomic mechanisms of dysregulation, identifying recurrent so-

matic structural variants as the drivers of the novel entities.

Our successful application of integrative omics data analysis strongly influenced the rest

of my PhD: I did not continue towards a specialization on omics data analysis of paediatric

brain tumours but rather on algorithm development for systematic detection of structural vari-

ants from whole genome sequencing data. I was most interested and impressed by the diversity

of the structural rearrangements observed in our study: gene fusions, in-frame ITDs, in-frame

deletions, enhancer hijacking via duplications & deletions of diverse sizes as well as interchro-

mosomal translocations, and an entirely novel case of an oncogene activating mitochondrial

promoter gene insertion. In a time of transition where increasingly more studies with large

cohorts had access to the WGS assay, structural rearrangements had great potential to identify

novel oncogenic drivers. There were also practical and organizational concerns: at the time

of this study, the DKFZ’s centralized omics data analysis platform and practices did not have

the tools to call structural variants with high sensitivity, specificity, independent of external

collaborators. This motivated me to pursue algorithm development for detection of structural

variants as my next PhD research subject.
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CHAPTER 2

SOPHIA: STRUCTURAL REARRANGEMENT DETECTION BASED ON

SUPPLEMENTARY ALIGNMENTS AND A POPULATION BACKGROUND MODEL

2.1 Introduction

Structural variants can have significant oncogenic effects in almost all cancer types with a va-

riety of mechanisms and are subject of great and broad interest in cancer research as discussed

in the general introduction of this dissertation and shown on the results on my first doctoral

research project (Chapter 1).

Simple structural variants can broadly be classified into i) Deletions, ii) Duplications,

iii) Inversions, iv) Translocations and arise from a variety of mechanisms and as part of a variety

of higher order complex patterns including [399] [193] i) Double-strand break repair defects

in either homologous recombination or non-homologous end joining, ii) Microhomology me-

diated break-induced replication, iii) Breakage-fusion-break cycles, iv) L1 retrotransposition,

v) Double minute chromosomes and neochromosomes, vi) Regional amplifications via HPV

insertion.

Technologically, structural variants were first detected in low resolution using ”chromoso-

mal banding” with Giesma Staining [400] which yielded the final karyotype of cells, whether

rearranged or not. Later, the Fluorescence in situ Hybridization (FISH) technology enabled the

detection of the simple building blocks of structural variants by showing the proximity/pairing

of targeted sites in high resolution [401]. Indeed, it was the FISH assay that allowed the discov-

ery of most of the oncogenic structural variant examples of highest significance listed above

starting from the presentation of the BCR-ABL1 oncogene and went on to become a standard

clinical assay [402].

With the development of genome sequencing techniques, it became possible to detect struc-

tural variants across the whole genome in an unbiased manner. With genome sequencing, it also

became possible to systematically study the quantitative burden of structural variation [403] as

well as the higher order structures or signatures of structural variants in cancer genomes [193]

[404] [284].

Detection of structural variants by paired-end genome sequencing relies on discordancy of

the mate reads and split reads [366] [308]. Briefly, amplified DNA is fragmented into oligonu-

cleotides of pre-defined lengths (insert size), which are then sequenced from both ends. During

the sequence alignment process, these individual read pairs are mapped to the (human) genome.

If these both ends map to different chromosomes, are unexpectedly distant from or close to each

other, or finally they have the same strand orientation as opposed to different strands (as dic-

tated by the sequencing approach from both ends), this indicates a discordant mapping. As

discordant mate based structural variant detection relies on differences between mate reads,

structural variants smaller than a size range are unable to be detected with this approach. This

size does not have a clear cutoff and is dependent on sequencing technology and library prepa-

ration [405] [406]. Also, a given read in a read-pair can span a breakpoint in which case split
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reads are generated that map to the original site and the aberrant partner site generated by the

structural variant. Such split reads are also capable of detecting small structural variants such

as deletions, duplications or small inversions that are outside of the range of discordant mate

based structural variant detection.

As the current state of genome sequencing technology, ”next generation sequencing” relies

on short reads (151 base pairs as of late 2018, typical previous values included 50 and 100), and

because of the prevalence of repetitive sequences in the human genome, [407], [408], [409],

[410], [411], [412], [413], [414], reads frequently map non-specifically during the sequence

alignment process [415]. This lack of mapping specificity directly clashes with the described

principles of structural variant detection and causes a high prevalence of false positives: a

short repetitive read can align to any location in the reference genome where the repeat is

included, whereas its mate can map properly to a nonrepetitive site. In such cases, the aligner

cannot decide if the fragment arises from a normal sequence flanking a repeat or if the normal

sequence should map a distant repeat in a discordant configuration, and outputs all possible

solutions with ambiguous mapping scores (MAPQ 0) [359]. Long repeats can generate entire

fragments consisting of repetitive sequences. These yield two repetitive mate reads which, in

turn, also have the described discordancy issue. There are also large homologous loci that are

repeated in the human genome such as the pseudoautosomal regions [416]. These regions can

also yield alignments with low quality mapping scores and discordant read pairs even in the

absence of structural variants.

While these described issues can be mitigated using long-read sequencing, the high cost

and low base-level accuracy of the current long-read sequencing technologies do not allow

them to be a desirable tool in cancer genomics: i) the high cost would prevent sequencing with

high coverage and consequently a proper investigation of the clonal heterogeneity of a tumour

specimen, ii) the low base-level accuracy can lead to ambiguities between subclonal single

nucleotide variants and base calling errors. Thus, it is a technological and practical necessity

to develop structural variant detection approaches and algorithms which can work with the

limitations of short-read based DNA sequencing. Due to the strategic importance of the goal of

structural variant detection and the difficulties presented by the employed technology, a number

of different algorithms have been developed which employ different structural variant detection

and filtering strategies. A non-exhaustive list of some prominent tools is as follows:

i) BreakDancer (2009) [417] collects discordant read pairs generated by the aligner and

uses a probabilistic model that compares the discordant read load of a given candidate

region with the expected background discordant read generation parameters. A pool of

samples can be used for the generation of this probabilistic model, which would account

for the artefact-rich repeats in the human genome. BreakDancer does not use the concept

of split reads which leads to sensitivity issues [366].

ii) CREST (2011) [366] uses soft clipped reads and assembles reads supporting candidate

breakpoints using CAP3 [418] and aligns to the reference genome using BLAT [419]

to annotate the structural variant. Additional filtering steps are not applied to account

for the effects of genomic repeats, which leads to a loss of specificity. CREST does not

use the concept of discordant read pairs which precludes SVs without aligned split reads
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from being detected.

iii) Delly (2012) [308] combines the concepts of split read and discordant pairs based struc-

tural variant detection and filters variants based on evidence level using a k-mer based

approach. Delly starts from candidate breakpoints proposed by discordant read pairs and

adds split read evidence to strengthen structural variant calls and to make them specific

to the base-pair level. The Delly manuscript does not explicitly discuss further filtering

based on genomic regions prone to the generation of artefacts, which was likely to have

contributed to the specificity issues discussed in [367]. To account for this shortcoming,

we were informed in personal communications that Delly is usually used with in-house

filters that are not part of the official software package. Delly has been a major contribu-

tor to a number of successful studies on the cancer genome including [132] [211] [100]

[420].

iv) Lumpy (2014) [367] uses a generalized probabilistic model for combining all types evi-

dence pertaining to the existence of a structural variant including split reads, discordant

read pairs, copy-number profiles and known structural variants. It was published with a

simulation based benchmark comparing it to other established structural variant detec-

tion tools of the time and claimed superiority from a theoretical standpoint. In practice,

Lumpy has since its publication in 2014, only been cited in two publications of cancer

cohort studies [421] [422] as of December 2018, with most of its citations coming from

non-human studies, human non-cancer studies, or other theoretical publications. While

this does not indicate an indisputable weakness per se, it is currently not widely adopted

in the cancer genomics community.

v) Manta (2016) uses a graph algorithm based on ”Breakend Graphs”. It combines split

reads and discordant mate pairs. It uses custom-designed additional filters such as elim-

inating very-high coverage regions in the control sample in somatic analysis, high ratio

of MAPQ0 (unspecific mapping in exactly duplicated genomic regions) reads in the call,

large structural variants only with split read support and no discordant mate support, as

well as other internal scores developed with respect to the core graph algorithm of Manta.

Manta has a strong focus on cancer genome analysis and has been used in a number of

cancer genomics publications, including large-scale ones [423] [424].

vi) novoBreak (2017) [425] uses ”local assembly”, it generates k-mers of reads that have

common short sections that do not properly map to the reference genome including dis-

cordant mate pairs and split reads, creating assemblies from each k-mer set. The scoring

for each k-mer’s local assembly uses a statistical likelihood model based on the beta-

binomial distribution, where low quality read-ends are trimmed. There is no separate

treatment of repetitive or otherwise artefact-rich regions.

vii) SvABA (2018) [426] similarly uses ”local assembly”, also including gapped reads cov-

ering very small insertions and deletions less than 50 base-pairs. It also has additional

features for identifying short templated sequence insertions in the final form of the mod-

elled structural variant following the local assembly procedure, which was presented in a
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large panel of cancer cohorts as a frequent biological process. Interestingly while novo-

Break claims excellent sensitivity in low-coverage regions, SvABA admits the opposite

despite using very similar design principles, citing Lumpy and Delly as more sensitive

tools in the larger structural variant range especially in lower-coverage use cases. Cit-

ing this, the publication recommends SvABA as a structural variant and indel detection

algorithm covering a broad range of events in genomics workflows possibly as a key

component in a multi-tool consensus approach.

viii) BRASS (no publication as of July 2019, https://github.com/cancerit/BRASS)

is an unpublished tool with no open documentation available for its design principles

except for the fact that it uses ”local assembly”. It is included in this list due to its partic-

ipation in the PCAWG Consortium as one of its structural variant detection algorithms.

While the field seems to be converging towards ”local assembly” based approaches, the

primary benefit is likely to come from combining multiple types of breakpoint evidence as

opposed to the earlier tools considering only split reads or mate discordancy. Supporting this

point, the recently pre-released results of the PCAWG Consortium’s SV working group [284]

shows that Delly, performs similarly to SvABA, which does use local assembly.

What is not discussed in the majority of the publications are difficulties regarding the anal-

ysis of cancer datasets. Detection of structural variants requires sensitivity for subclonality

arising due to the tissue impurity or inherent clonal heterogeneity, specificity required for deal-

ing with genome artefacts as well as the ability to distinguish somatic and germline structural

variants. Furthermore, significant hallmark Studies, probably for concerns regarding data avail-

ability and controllability, methods publications focused on freely available genomes [427], or

simulations generating diverse types and size of structural variants [428] [429] [430]. Some

of the discussed tools did discuss applications in cancer genomes in a limited number of cases

(novoBreak: 1 case, CREST: 5 cases, Manta: 1 case, SvABA: comprehensive analysis across

multiple cohorts).

None of the articles reviewed here discuss the aspects of lower quality samples, structural

variants of particular detection difficulties, or speed & memory considerations for particularly

challenging inputs. Our institutional experience at the DKFZ (mainly with CREST and Delly)

taught us that all of these aspects are significant practical considerations in a large-scale se-

quencing centre. As of 2015, we had accumulated a massive number of tumour and control

whole genome sequencing runs and accordingly, diverse experiences on the quality control of

whole genome sequencing datasets [431]. This includes experiences on the detection of struc-

tural variants across different cancer cohorts with various algorithms. Frequently, we observed

that runs would entirely fail in some challenging samples or take up to weeks of processing

time. Similarly, it was a common occurrence that CREST or Delly output would contain mas-

sive amounts of false positive calls. These issues were exacerbated in samples with lower

quality sequencing data, which is dependent on both input material and the quality of sequenc-

ing itself. Also, Delly was unable to detect mid-sized indels (50-∼1000 bps) until recently,

which covers an important class of structural variants such as BCOR or FLT3 ITDs.

Considering the state of the art at the time, and the necessity to improve detection for a

biologically very important class of structural variation mid-sized indels, we wanted to develop
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an structural variant detecting approach that took full advantage of our rich repository of whole

genome sequencing datasets. Our aims were to achieve

i) ability to capture mid-sized indels

ii) excellent sensitivity capturing disease hallmark structural variants with a negligible fre-

quency of misses and while retaining specificity especially on challenging genomic re-

gions

iii) excellent data processing speed and memory efficiency

iv) excellent robustness with respect to input sample quality, without unreasonable loss of

sensitivity or specificity in cases with low tumour purity or low proper pair ratios

.

With the SOPHIA algorithm presented here, we have reached all of these goals using a fast

and efficient algorithm developed in C++17 without the complexity introduced by the modern

local assembly approaches.

2.2 Methods

2.2.1 Study Design

SOPHIA uses matched or single alignments of whole genome sequencing data for detection of

structural variants. One particular feature of SOPHIA is to not need a realignment or assembly

step which has great benefits for speed and memory usage as discussed in Section 2.3.4. Instead

of building an assembly for each breakpoint by collecting candidate reads from all over the

genome, SOPHIA reads alignments in a linear stream in a single pass, storing only the currently

read region in memory.

This fast single-pass low memory approach is possible thanks to the already calculated

”supplementary alignments” provided by the aligner BWA-MEM [359]. Supplementary align-

ments propose for split reads one or multiple alternative sites of mapping in the genome. With-

out a consensus building approach via modern local assembly approaches, or without proba-

bilistic model as in Lumpy, such estimates based only on around less than the half of a short

read length are highly error prone due to the inherent issues of genomic repeats and sequencing

quality. Nevertheless, they are a valuable source of information because they contain all the

(split-read mappable) candidate structural variants albeit with a massive load of false positives.

Discordant mate information is similarly error-prone due to sequencing quality and genomic

repeats.

In order to benefit from the integration of pre-calculated supplementary alignments and

discordant mate information while accounting for this inherent and expected high rate of errors,

SOPHIA increases specificity by an integration of i) clinical standard highly sensitive and

specific but targeted FISH data, ii) expert knowledge of biologists in interpreting FISH output,

iii) a background database of control (healthy tissue, most often blood, from donors in cancer

studies), iv) and expert knowledge of bioinformaticians in training a decision tree based on

these criteria (Figure 2.1).
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iv) A soft-clipped read’s overhang is required to have the median base quality 23 with no

more than 4 consecutive bases below base quality 12 at the clip’s end otherwise the read

is considered to be low quality.

v) A mapping quality below 13 is considered low, where reads with zero mapping quality

and otherwise high read quality (according to the criteria (i-iv) are classified in a separate

category which allow them to contribute to breakpoint detection without the low-quality

read penalties.

vi) A read is considered discordant if it is on the same strand as its mate as it is inverted.

vii) A read is considered discordant if it is more than 5 standard deviations away from the

median insert size of the merged alignment (bimodal or otherwise multimodal insert size

distributions are not given special consideration) where this value is capped at 4000 base

pairs.

viii) A read is considered gapped if it contains an I or D in its CIGAR string indicating an

insertion or deletion of one or multiple bases.

All read categories except for discarded, gapped and normal are used in the definition of

breakpoints (Section 2.2.3). Breakpoints are subsequently paired to form structural variants

(Section 2.2.5), where the presence of gapped and normal reads are used in some of the filters.

2.2.3 Definition of Breakpoints as Precursors of Structural Variants

SOPHIA collects evidence for a structural variant candidate breakpoint in a single-ended fash-

ion where split read and discordant mate evidence for one breakpoint is gathered on-the-fly

during the linear SAM stream without influence from the candidate partner site(s).

Technically, the algorithm collects any read that is classified as ”discordant” in a pool of

discordant reads during the line-by-line processing of the SAM stream. Each of these reads has

a mate that can be an evidence for a particular imprecise structural variant. For any split read,

soft-clipped (primary, outgoing evidence) or hard-clipped (secondary, incoming evidence) a

new breakpoint is formed if necessary. Any further reads that exactly support this breakpoint

are added as evidence to the previously initialized breakpoint. Right-sided clipped reads are

supported by discordant reads to the left/upstream of the breakpoint, whereas the left-sided

clipped reads are supported by discordant reads to the right/downstream of the breakpoint. We

observed that the range where discordant reads supporting a structural variant are for the vast

majority of true positive cases three times the default read length used by the sequencing tech-

nology (101 bps to 151 bps for our study). Following this guideline, there is a check during the

processing of each SAM line, that breakpoints more than 3xDefaultReadLength away in the

upstream direction (less on the coordinate space) than the aligned start position of the current

read are prepared for ”finalization”. During finalization, the split read evidence is combined

with discordant mate evidence for a given breakpoint. Split reads propose candidate structural

variant target sites by their ”Supplementary Alignments”, whereas discordant mates propose

candidate structural variant target sites by their mate coordinates. These target positions are

matched by a fuzzy coordinate matching function allowing coordinate mismatches of up to
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100 bases for split read target coordinate matching (required because breakpoint mapping can

be imprecise when the breakpoint location and the split read overhang sequence share a sim-

ilar repetitive pattern or if the breakpoint is on a repeat) and 2.5xDefaultReadLength for

discordant mate based coordinate matching (required because of the inherent imprecise nature

of discordant mate based breakpoint estimation). Despite this fuzzy comparison approach, in

general, SOPHIA reports breakpoints with base-pair resolution provided that at least one split

read is available.

There is a second check during the processing of each SAM line, that the discordant mate

pool with reads at aligned start positions more than 6xDefaultReadLength are flushed,

which corresponds to the theoretical maximum distance needed to keep reads in the discordant

read pool to ensure availability in breakpoint evidence collection as described. This dynamic

flushing ensures a minimal use of memory and an efficient operation by keeping the discordant

mate pool, and hence the search space for mate-evidence small.

The ideal evidence for a single breakpoint is depicted in Figure 2.3, with the relevant read

classes annotated (Figure 2.1): i) Soft clipped split reads clipped at a consistent breakpoint

location with varying overhang base lengths indicating primary (outgoing) split read evidence,

ii) Hard clipped split reads clipped at a consistent breakpoint location with varying base lengths

indicating secondary (incoming) split read evidence, iii) Discordant reads with mate mapping

locations consistent with each other and the target locations proposed by the split read evidence,

iv) A low number of discordant reads with mate mapping locations that are inconsistent with

the main proposed target, v) A low number of low quality reads.
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Currently SOPHIA does not incorporate gapped read evidence in its breakpoint detection

approaches. Consequently, small insertions and deletions are not detected by the SOPHIA al-

gorithm. More appropriate and fast tools such as Platypus [306] can be used for detecting such

indels. However, it is planned to include gapped read evidence into the evidence collection

for indels exactly at the border of the gapped-read domain and the split-read domain. Cur-

rently, SOPHIA could be losing some sensitivity in this indel size range with events that have

combined gapped and split-read evidence.

2.2.4 Generation of a Population Background Database as a Quality Control Tool for Detection

of Structural Variants

One of the cornerstones of the SOPHIA approach to structural variant detection is the training

of a background database of breakpoints from whole genome sequencing data of ”normal”

blood tissue from a large number of diseases and ethnicities. We postulated based on previous

experience with (inspecting) NGS data that: i) Artefacts most often emerge in repetitive regions

at imprecise locations on and flanking the repeat, ii) The human genome is also rich in gaps

and common breakpoints of structural variation which should be filtered out especially in the

detection of structural variants without available paired normal data, iii) A common structural

variant in the germline can be misclassified as somatic in regions with low depth of coverage

and thus candidate somatic calls should be compared to a population background rather than

only the available matched normal, iv) An algorithm trained on a large dataset should intuitively

be much stronger than a paired analysis between a tumour sample and its matched normal.

To design a filter based on these expectations, we devised a strategy to collect data from

”normal” samples in ”paired normal” analyses in cancer whole genome sequencing projects.

Here, we took advantage of two particular strengths of the DKFZ: i) Our participation in the

Pan-Cancer Analysis of Whole Genomes (PCAWG) project which allowed us to capture a

worldwide diversity of diseases and ethnicities, ii) Our recent acquisition of an Illumina X-Ten

sequencing system which allowed us to build and a panel of artefact and real structural variant

breakpoints from both older and newer sequencers and read lengths. We built a database of

breakpoints from 3417 control samples, of which 2694 were sequenced with a 101bp sequencer

(Illumina HiSeq 2000/2500 family) and 723 were sequenced with a 151bp sequencer (Illumina

HiSeq X-Ten) covering a diverse range of participating countries and malignancies. A full list

of all contributing projects and countries are available in the appendix of this dissertation.

The chosen samples were processed with the SOPHIA breakpoint extraction algorithm as

described in Section 2.2.3. As the breakpoint database is expected to filter both artefactual

and true breakpoints, breakpoints carrying ”low-quality” read evidence (Section 2.2.2) and no

proposed specific structural variant targets are also considered for inclusion in the database.

However, breakpoints with very low numbers of either low- or high-quality reads are spurious

and lead to noise in the database and can reduce sensitivity by making the database-based filters

unnecessarily stricter. In order to avoid these issues, breakpoints were chosen to contain

i) At least 10 split reads with low or high quality, OR

ii) At least 3 gapped reads, OR
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iii) At least 5 split reads AND an estimated clonality of 0.3, OR

iv) At least 5 split reads AND an estimated clonality of 0.1 AND at least 3 soft clipped

split reads with at least 10 bases of overhangs that match with each other with at most 2

mismatching bases

. In addition to this information, the proposed high quality structural variant partners of each

breakpoint in the database is also stored. This information is later used to capture hits in the

database which do not match at the single base pair level, but rather due to the imprecise match-

ing of the proposed structural variant partners. A crucial example for the importance of this ad-

ditional information is genomic regions with high sequence homologies: In such regions, map-

ping quality is often zero and breaks can be assigned across the region on a non-deterministic

basis by the aligner. This non-deterministic procedure leads to genes with homologies (such

as genes to their pseudogenes, or closely related genes) being misassigned as rearranged with

each other in some samples and not in others.

For each breakpoint in the database, an ”artefact ratio” score is stored which is calculated

using
NartefactReads

NartefactReads+NhighQualityBreakpointReads+NnormalSpanningReads
, showing the overall (lack

of) quality of the stored breakpoint. This score is high for breakpoints originating from poorly

mapped regions such as centromeres and telomeres but can be low for gaps in the human

genome which are clean breaks. As such, the score does not necessarily indicate a common

breakpoint to be definitely an artefact or a real common variant but it is a useful measure

to investigate in the context of repeats. Therefore, the ArtefactRatio score is not used in the

filtering procedure but rather in the analysis of the breakpoint database described in Section

2.3.1.

SOPHIA assigns a hit score to each breakpoint using a fast binary search algorithm during

the annotation stage. The database is searched first for the closest existing breakpoint posi-

tion to the exact position of the searched breakpoint. A broad search window of 6 ∗ Ldefault

bps (depending on the technology used for sequencing) is then used to find a matching exist-

ing structural variant that supports the proposed variant (hence, this operation is applied only

in annotation, and not during the initial breakpoint definition as a breakpoint can ”propose”

multiple different variants). If there are multiple existing breakpoints that propose a given vari-

ant, the highest (worst-case) hit score is taken for the sake of higher specificity. Breakpoints

are additionally searched within a narrower window (5 bps) compared to the standard search

(6 ∗ Ldefault bps), which is then taken as the solution if the exact same variant is not known in

the database. As before, if there are multiple breakpoint in the searched ±5 bps window in the

database, the highest (worst-case) solution is taken.

Thanks to this approach, SOPHIA can be used for somatic structural variant detection

without paired controls or with low-quality paired controls (e.g. due to DNA degradation).

2.2.5 Pairing of Breakpoints as Candidates for Structural Variants

Breakpoints defined and characterized using the approach described in 2.2.3 need to be paired

for defining simple structural variants. Even though more complex patterns from more than two

breakpoints can emerge, these can be described as combinations of simple structural variants.
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We define simple structural variants as described in [366] and [308] based on split read

orientation. One challenge that should be addressed when breakpoints are only supported by

discordant reads and not split reads is to manage pairings of imprecise locations. Such impre-

cise candidate SVs are mapped to a list of breakpoints by a fuzzy matching approach where an

imprecise match with up to 2.5 ∗DefaultReadLength is accepted to constitute a match. For

mid-sized SVs, imprecise matches are not accepted. A precise matching is allowed a smaller

acceptable error margin of 0.5 ∗DefaultReadLength.

2.2.6 Filtering Criteria for Structural Variant Candidates

A pair of two breakpoints connected contains a number of data points of evidence which overall

determine the quality of a candidate structural variant. The expert model is built on these

criteria, where quality cutoffs are set based on gold-standard structural variant information

(Figure 2.1).

Evidence Data Type Evidence Type Comments

Mid-sized SV Boolean Neutral Mid-sized SVs incor-

porate no discordant

mate info and require

different filtering cri-

teria

Inverted orientation of

the two breakpoints

Boolean Neutral Mid-sized inversions

are more artefact-

prone

Decoy contig

breakpoint-1

Boolean Negative Breakpoints emerging

from decoy contigs are

more artefact-prone

Decoy contig

breakpoint-2

Boolean Negative ...

MAPQ-0 only evi-

dence for breakpoint-1

Boolean Negative Breakpoints emerg-

ing from entirely

nonnspecifically

mapped regions

require stronger filters

MAPQ-0 only evi-

dence for breakpoint-2

Boolean Negative ...

Imprecise structural

variant mapping pro-

posed by breakpoint-1

Boolean Negative Imprecise variants are

more artefact-prone

Imprecise structural

variant mapping pro-

posed by breakpoint-2

Boolean Negative ...
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Hits in the population

background database

for breakpoint-1

Integer Negative A breakpoint over-

represented in the

breakpoint back-

ground database is

likely to be an artefact

or a common poly-

morphism rather than

a real rare structural

variant

Hits in the population

background database

for breakpoint-2

Integer Negative ...

Soft-clipped

reads supporting

breakpoint-1

Integer Positive Soft-clipped reads

constitute important

primary evidence for

real structural variants

Soft-clipped

reads supporting

breakpoint-2

Integer Positive ...

Hard-clipped

reads supporting

breakpoint-1

Integer Positive Hard-clipped reads

constitute secondary

evidence for real

structural variants

Hard-clipped

reads supporting

breakpoint-2

Integer Positive ...

Normal reads span-

ning breakpoint-1

Integer Negative Extremely subclonal

breakpoints are more

artefact-prone

Normal reads span-

ning breakpoint-2

Integer Negative ...

Discordant-mate

reads supporting

breakpoint-1

Integer Positive Discordant-mate reads

constitute important

evidence for real

structural variants

Discordant-mate

reads supporting

breakpoint-2

Integer Positive ...
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Ratio of discordant-

mate reads support-

ing/(supporting+not

supporting)

breakpoint-1

Real number bounded

[0, 1]

Positive Dispersion of discor-

dant mates to multiple

unrelated locations in-

dicates artefacts

Ratio of discordant-

mate reads support-

ing/(supporting+not

supporting)

breakpoint-2

Real number bounded

[0, 1]

Positive ...

Estimated germline

clonality of

breakpoint-1

Real number bounded

[0, 1]

Negative (only for somatic anal-

ysis), reads supporting

the breakpoint in the

germline indicate

a likely artefact or

germline structural

variant

Estimated germline

clonality of

breakpoint-2

Real number bounded

[0, 1]

Negative ...

These parameters are assembled in a complex decision-tree. A text format as in this disser-

tation is not optimal for showing each branch in this decision tree. However, the source code for

SOPHIA is available under https://bitbucket.org/utoprak/sophia/src where

the filters discussed in this section reside in the file SOPHIA/src/SvEvent.cpp. Following this

decision tree, variants are ranked by a score between 1-5 and scores 3-5 are accepted as filtered

structural variant candidates.

2.2.7 Tuning SOPHIA Structural Variant Detection Parameters using FISH Data as a Gold

Standard

One special class of SVs is those created by aberrant actions of the haematological system.

B-cells generate natural rearrangements in the Immunoglobulin loci IGH, IGK and IGλ (IGL)

in processes called V(D)J recombination [432] and Class Switch Recombination (CSR) [433].

This process which has the original purpose of generating and extending antigen repertoires,

can lead to malignancies such as B-cell lymphoma, multiple myeloma, chronic lymphocytic

leukemia if it aberrantly targets oncogenic partner loci. T-cells similarly undergo the V(D)J

recombination process in T-Cell receptor loci, whose aberrant action can lead to T-cell malig-

nancies such as T-cell leukemia or T-cell lymphoma.

B-Cell lymphoma frequently harbours rearrangements of the immunoglobluin locus to hall-

mark oncogenes and less frequently to sporadic targets. Of the three immunoglobulin loci IGH,

IGK and IGL, IGH rearrangements are the most common. We analysed hallmark rearrange-

ment target oncogenes of B-Cell Lymphoma MYC, BCL2 and BCL6 as well as the rearrange-
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ments of the IGH locus with break-apart FISH probes acquired by the expert Dr. Cristina

López Gonzalez, who previously ran this assay in Chronic Lymphocytic Leukaemia (CLL) in

a large-scale project [434]. FISH on interphase nuclei was performed on frozen tissue sections

applying the specific probes LSI BCL6, LSI MYC, LSI IGH/MYC, CEP8 Tricolor, LSI IGH,

and LSI BCL2 as described in [435]. We used the oncogene probes BCL2, BCL6 and MYC for

parameter training, but not the IGH break-apart probes.

The parameters listed in Section 2.2.6 were assembled in a decision tree using high qual-

ity FISH data. FISH on Immunoglobulin translocations were selected because of existing

clinical-grade workflows offering gold standard reference data and the intrinsic difficulty in-

volving the immunoglobulin loci: in immunoglobulin (IG) loci, the genomic complexity is

high, which is exacerbated by the combination of internal rearrangements with oncogenic re-

arrangements variants [436]. Furthermore, immunoglobulin variants are with few exceptions

balanced translocations which lead to two, single-sided breakpoints per variant, providing more

training data, as well as taking out the contribution of coverage differences, which increases

the difficulty scope covered by the training data.

Gold standard IG rearrangements detected by FISH were manually inspected for determin-

ing performance of parameters presented in Section 2.2.6 in an iterative manner. Parameters

were optimized to capture the known variants, while keeping track of the emergence of sub-

clonal variants (more frequently of repetitive regions) to ensure that specificity is not being

unduly lost. Successively, parameters were optimized to capture more and more subclonal and

difficult-to-detect IG rearrangements with progressing SOPHIA versions.

As part of the collaboration agreement of the ICGC-MMML sequencing consortium, the

Korbel group affiliated with EMBL, Heidelberg provided the consortium with SV calls origi-

nating from their algorithm Delly (called by Stéphanie Sungalee, using v0.5.9 as described in

[435]). We did not use Delly calls for parameter optimization purposes, i.e we did not use SVs

captured by Delly and missed by FISH or SOPHIA for further parameter optimization.

In addition to IG rearrangements, we also used a more global analysis of large variants

using the M-FISH assay [437] which is not a targeted technique unlike FISH, but still is limited

to large variants and offers limited resolution. Nevertheless, it does not suffer from the issues

of short-read sequencing around repetitive regions, and can act as a gold standard provided

that it is executed by an experienced expert. We used Dr. Larisa Savelyeva’s work on the

neuroblastoma cell line NB-69 and further improved SOPHIA filtering parameters especially

in complex genomic regions.

2.2.8 Custom Filters Based on Known Artefact Structural Variants

Systematically established filters are unfortunately insufficient in ensuring a perfect rate of

specificity despite the power of SOPHIA’s breakpoint database. Some of the recurrent artefacts

that we frequently observed in SOPHIA results and needed to develop additional filters for are

as follows:

i) t(X,Y) translocations that emerge due to pseudoautosomal regions,

ii) rearrangements between coding genes and their pseudogenes,
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iii) artefactual mitochondrial insertions into nuclear pseudogenes of mitochondrial DNA,

iv) translocations between NOTCH2 and NOTCH2NL

These filters are all designed to eliminate artefacts arising from sequence homology. While

it was our aim to ensure that the background breakpoint database would account for this type

of error, some additional filtering proved to be necessary based on detailed examination of

SOPHIA results from a large number of projects.

2.2.8.1 Accounting for Sequencing Quality Issues that Lead to Lowered Proper Pairing, Ex-

cessive Mate Dispersion and Loss of Sensitivity and Specificity

We observed lowered proper pairing in a subset of samples across multiple projects, sequencers

and sequencing read lengths. This manifested as a high load of read pairs with incorrect ori-

entation suggesting artefactual inversions, and dispersed mapping of mate reads to diverse

genomic regions and chromosomes suggesting artefactual intrachromosomal and interchromo-

somal translocations. Both of these observations can lead to a high rate of false positives, i.e.

lowered specificity. Compensating for these false positives consequently leads to a high rate of

false positives, i.e. lowered sensitivity. Recognizing this, we nevertheless developed a method

to account for lowered sequencing quality, addressing both of the described types of error. Our

effort to attempt to salvage such samples was motivated by the preciousness of starting material

in human cancer studies.

We modified the SOPHIA workflow in two stages:

i) If a sample has a ”proper pair ratio” as calculated by samtools flagstats [303] lower

than 90%, the read assignment procedure to breakpoints described in Section 2.2.3 is

modified to expect a background error rate of (100−PPratio)%. Breakpoints with part-

ners beyond the mid-sized structural variant range with NmateSupport/NtotalDiscordant ≤

(100 − PPratio)/100 are discarded from further analysis, with the assumption that the

suggested structural variant is below the error/noise level. As the formula suggests, the

effect gets progressively stronger as the sequencing quality is decreased, consequently

very low quality samples can be expected to have a large number of false negatives, en-

couraging the removal of the sample from the study or resequencing it if material and

funding is available.

ii) A secondary fix is made after the breakpoints are paired and preliminary filtered struc-

tural variants are obtained: If the total count of preliminary (filtered) structural variant

candidates are above 300 and the ratio of candidates with inverted pairing are over 0.7,

a first clean-up stage is applied where SVs with missing classes of evidence (split reads

and discordant mates for both breakpoints) are removed from further analysis for SVs

larger than mid-sized. During the same clean-up stage, mid-sized SVs with less than 5

supporting reads for either side are also removed. This is followed by a second clean-

up stage which is applied, if more than 200 candidate SVs remain with the ratio of

candidates with inverted pairing over 0.7, which has even stricter filters: Inverted SVs

with imprecise mapping are removed no matter how many reads support them, SVs with
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NsupportingDiscordantMates/NexpectedDiscordantMates < 0.6 for both breakpoints are re-

moved. Overall, these procedures rescue many clonal variants with strong evidence and

filter out massive numbers of artefact SVs. However, when sufficient material is avail-

able, samples where these filtering levels are applied should be resequenced, especially

if the issues affect the tumour sample. Issues affecting the blood sample only have the

effect of increasing the number of misclassified germline SVs, which is compensated by

the use of the background breakpoint database.

2.2.9 Designation of Structural Variants as Somatic or Germline

For samples where a paired normal sample is available, we started by building a database

of germline breakpoints by processing the paired normal alignment using the procedures de-

scribed in Section 2.2.3. Following the establishment of this database, we used the exact

same procedure as described in Section 2.2.4 for searching for tumour breakpoints, this time

in the paired germline breakpoint database as opposed to the background population break-

point database. In the event that one side is a germline breakpoint, and the other is a somatic

breakpoint, we designated the structural variant as a germline variant, for the sake of protecting

specificity.

During our work on SOPHIA, we encountered two situations which raised the need to

address the specificity of germline-somatic designation:

2.2.9.1 Tumour in Normal (TiN) contamination in Plasma Cell Leukaemic Multiple Myeloma

and MYCN amplified Neuroblastoma have somatic structural variants misclassified

as germline

We observed in an analysis of two different disease types, a prevalence of tumour cells in

blood leading to subclonal evidence in the paired control samples suggesting the existence

of a germline structural variant, which is expected to be a clonal somatic structural variant

according to established knowledge.

The first example of this type of artefactual observation was made in the HIPO-067 re-

fractory multiple myeloma project. In the late stages of this disease, plasma cell leukaemia

[438] where plasma cells circulate in peripheral blood. As the circulating plasma cells are

transformed, and carry the clonal structural variants that led to the neoplasm or evolved with

the neoplasm, sequencing results from a peripheral blood sample used as a matching control

would carry evidence for the somatic structural variant. This would interfere with the correct

classification of these structural variants as somatic. In order to compensate for such artefacts,

users should manually revert to the no-control mode of the SOPHIA workflow. This can be de-

cided by a manual inspection of the results searching for hallmark somatic structural variants

suggested as germline variants, or with a quantitative approach using single nucleotide variants

(SNVs) [439] proving a tumour-in-normal contamination.
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Figure 2.7: A Tumour-in-Normal contamination example involving a prototypical balanced

IGH-NSD2 rearrangement in refractory multiple myeloma. There is strong support for the

rearrangement in the tumour data and weaker, but still significant support in the normal data.

Orange reads indicate reads on the NSD2 locus on chromosome 4 whose mates map to chro-

mosome 14, on the IGH locus. The upper subfigure indicates the tumour sample, whereas the

lower subfigure indicates the matched normal sample with tumour material contamination.

The second observation we made was the existence of MYCN amplifications in the germline

in our analysis of the GPOH Neuroblastoma cohort, as suggested by structural variant calling

using a paired tumour-blood approach. It is known that MYCN amplifications are typically over

10-fold from the baseline state [440] and even a small concentration of tumour cells in blood

can generate enough evidence suggesting MYCN structural variants in blood. Interestingly, we

did not observe this in EGFR or MYEOV amplifications in adult cancers such as Glioblastoma

Multiforme or Head and Neck Cancer, suggesting the higher order amplifications in Neurob-

lastoma to be the main reason of this observation. In order to compensate for such artefacts, we

imposed a condition that evidence suggesting high order amplification in the tumour sample

(> 200 split reads in support of the rearrangement for both breakpoints) constitute somatic

variants.
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Figure 2.8: A Tumour-in-Normal contamination example involving a prototypical high order

MYCN amplification in neuroblastoma. There is strong support for the amplification in the tu-

mour data and remarkably strong support in the normal data. The upper subfigure indicates the

tumour sample, whereas the lower subfigure indicates the matched normal sample with tumour

material contamination. The high coverage increase and the green reads showing distant mate

mapping indicate the amplification event, for which strong evidence exists also in the matched

normal data.

2.2.9.2 Massive germline load of retrotransposons in patients from ethnicities underrepre-

sented in the SOPHIA breakpoint database

We observed a massive load of germline interchromosomal translocations in a small number of

cases across diverse projects. Manual inspection of candidate interchromosomal translocations

suggested them to be not artefacts, but rather retrotransposons where short sequences jump

between chromosomes, which is a normal evolutionary process in mammals [441].

The following representative cases fit this description:

• The case pseudonymized as PCSI 0101 from the Canadian ICGC Pancreatic Cancer

project, originating from Kuwait (personal communication, Dr. Lincoln Stein, OICR)

• The case pseudonymized as 4154480 in the DKFZ RCC1-IRF4 lymphoma project, orig-

inating from South-East Nigeria (personal communication, Cristina López Gonzalez,

Uni. Ulm)

• The case pseudonymized as XI102 AML-3 in the XI102 DKFZ Acute Myeloid leukemia

project, with an unknown ethnic origin

For the last two cases paired normal specimens were not available, which made it impos-

sible to filter out rare ethnicity related transposons from somatic structural variants. For such

cases, there is no currently available solution as our trials with the larger background break-

point database obtained with Lumpy [442] also failed to filter out most of the misclassified

variants on the Nigerian case.
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Samples with the described characteristics should be carefully manually inspected, and be

excluded from germline analysis if paired normal data is available, or be excluded from the

study if only no-control analysis can be run.

A representative example of such a transposable element is a t(2,7)(p22.3;q36.3) from the

Kuwaiti case PCSI 0101, (Figures 2.9 and 2.10).

Figure 2.9: The jumping transposable element originating from chr7q36.3. Exact base-pair

positions are masked. The light-red reads are reads whose mates map to chromosome 2, specif-

ically chr2p22.3. The coverage increase indicates an extra copy of the sequence being created

before the sequence jumping event. The upper subfigure indicates the tumour sample, whereas

the lower subfigure indicates the matched normal sample indicating the presence of the jumping

sequence in the germline with equal clonality.

70



Figure 2.10: Insertion target of the transposed sequence on chr2p22.3. Exact base-pair posi-

tions are masked. The blue reads are reads whose mates map to chromosome 7, specifically

chr7q36.3. The sharp and narrow coverage fall indicates the insertion site for the sequence

jumping event. The upper subfigure indicates the tumour sample, whereas the lower subfigure

indicates the matched normal sample indicating the presence of the jumping sequence in the

germline with equal clonality.

These observations are difficult or impossible to be distinguished from a normal balanced

translocation such as those observed on immunoglobulin loci and their targeted oncogene

translocation partners. Thus, we currently do not have automated methods to specifically

exclude this class of structural variants from further analysis be it in the germline or in the

no-control setting.

2.2.10 Annotations for Structural Variants called by SOPHIA

Structural variants can have significant effects on chromatin conformation and lead to gene

dysregulation even if they are not directly on gene bodies. Thus, the interpretation of struc-

tural variant calls requires an approach to map breakpoint locations to genes. The concept

of Topologically Associating Domains (TADs) [33] introduces a systematic model for the co-

regulation of genes in close proximity. TADs offer a data-driven model of cis-regulation of

genes, and a more advanced approach than fixed windows for the interpretation of breakpoint

effects on genomic regions.

2.2.10.1 Remapping the Human Decoy Chromosome hs37d5

We started the SV effect annotation procedure by remapping breakpoints that initially map to

the human decoy chromosome hs37d5, when appropriate, to other chromosomes or smaller

contigs. We used the definitions of the hs37d5 decoy chromosome provided by Dr. Heng Li’s

repository https://github.com/lh3/misc/tree/master/seq/novoseq. We used

the mapping files hs37d5cs.bed and hs37d5ss.info to localize the hs37d5 contig segments to
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other genomic regions. We skipped all segments mapping to chrY. We also skipped all seg-

ments with unlocalized anchored 5’, 3’ ends as well as and unlocalized top hit to the GRCh37

primary assembly. As a result we remapped 4673/4715 of the decoy segments to other chro-

mosomes or unlocalized (GL***) sequences.

While this procedure is error-prone, we were motivated by the existence of 9 decoy contigs

mapping to the IGH locus on chr14q32.33. As IGH translocations are important for haemato-

logical malignancies, it is important to characterize them sensitively. Taking this as the starting

motivation, we expanded the correction to other loci, recognizing the possible inaccuracies in-

troduced by this remapping. Hence, the original locations of the structural variant candidates

on the hs37d5 chromosome are kept in SOPHIA outputs.

2.2.10.2 Definition of Consensus TADs from Public Datasets

We first used the list of TADs published in [294] (13 cell lines), [443] (6 cell lines), [444] (5

cell lines), [445] (4 tissues), and [446] (9 tissues) obtained from the chromatin-capture database

processed and provided by the Feng Yue Lab (http://promoter.bx.psu.edu/hi-c/

downloads/hg19.TADs.zip, obtained 07.01.2018) to build a consensus list of TADs. As

discussed in [446], TADs show a remarkable similarity between different cell types, confirming

previous assumptions of stability across tissues [294], with their level of activation differing

between each tissue depending on its epigenetic development. We took this assumption to be

true and consequently took differences between the TAD boundary measurements coming from

these studies to be due to experimental and technical factors, justifying a consensus approach.

For creating a consensus between 37 datasets with TAD range data, we first converted

TADs to TAD boundaries, which are due to the nature of the Hi-C assay and its data processing

digitized in 40kb windows. Next, we assembled TAD boundaries in clusters where the data

from the 37 datasets is sorted by genomic coordinates, and each TAD boundary is added to

growing clusters if its starting position is at most 120kb away from the current cluster. Clus-

ters of TAD boundaries are then ”compressed” into consensus TAD boundaries. These TAD

boundaries are then converted to overlapping TADs. (3246 TADs from chromosomes 1-X)

Due to lack of available data chromosome Y and other contigs were not assembled into

TADs derived from experimental data:

1. There is no chromatin capture-based data for the TADs of chromosome Y in the used data

sources, so we used the existing cytoband definitions for ChrY as a rough replacement

for TADs. (12 TADs from chromosome Y with a cytoband approximation)

2. The mitochondrial chromosome (MT) was not segmented into TADs or cytobands due

to lack of available data. (1 TAD representing the mitochondrial genome)

3. The Epstein-Barr Virus contig (NC 007605) was not segmented into TADs or cytobands

due to lack of available data. (1 TAD representing the EBV contig)

4. The human unlocalized sequences (GL****) were not segmented into TADs or cyto-

bands due to lack of available data. (59 TADs each representing one unlocalized se-

quence)
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5. The human decoy chromosome hs37d5 is a collection of independent and unrelated con-

tigs that are not mappable to the normal chromosomes, so each of these contigs were

considered independent TADs and not processed using the approach above. (4715 TADs

representing contigs of the hs37d5 chromosome)

Overall, we generated using this procedure 8201 consensus TADs, of which 3246 stem

from 37 experimentally acquired, Hi-C based chromatin capture datasets.

2.2.10.3 Assignment of Structural Variants to Consensus TADs

For chromosomes with TADs obtained from available chromatin capture data, structural vari-

ants were classified into three groups for the purpose of assigning to ”seed” TADs:

i) Interchromosomal translocations: Interchromosomal translocations are considered as a

union of two breakpoints. Breakpoints that are on a TAD boundary are considered to

affect both TADs separated by the boundary. Otherwise, the ”seed” TAD is the TAD

which is directly hit for a given breakpoint.

ii) Intrachromosomal structural variants within discordant read supported range: Intrachro-

mosomal SVs are considered in the same manner as interchromosomal translocations.

In addition to the described procedure, the TADs between the two breakpoints are also

considered as affected if the following conditions are met:

• Both breakpoints are on the same chromosome arm

• The spanned genomic range is shorter than 10MB

• There are less than 4 TADs between the smallest and largest ”seed” TAD

This procedure is important for some focal deletions such as deletions of the CDKN2A/B

locus.

iii) Mid-sized structural variants with no discordant read support:

• Mid-sized SVs that are intergenic, and not spanning a TAD boundary are discarded

from further analysis.

• Mid-sized SVs that are on a TAD boundary are considered to affect both TADs

separated by the boundary, regardless of gene hitting status.

• Mid-sized SVs that are on gene bodies, but intronic and not directly hitting ROADMAP

enhancers are discarded from further analysis.

• Mid-sized SVs that overlap transcribed regions are considered to affect the TAD

which is directly hit.

For all SVs apart from Mid-sized SVs, a TAD offset extension procedure is applied for

investigating possibly affected genes across longer ranges. Following the definition of the

initial ”seed” TADs, extensions at 1, 2, and 3 TAD offsets are calculated in both directions. For

right-sided extensions, the starting position of the extended TAD and for left-sided extension,

the ending position of the extended TAD is tested for closeness to the position of the breakpoint.
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If the distance exceeds 5MB, the extension is cancelled. This procedure allows the estimate for

the influence of an SV on TADs that it is not directly hitting, within a sensitivity limit set by

the user.

The results are reported as part of the annotated SOPHIA output both as the indices of

annotated TADs and as lists of the affected genes for each TAD offset level.

For the benchmark presented in Figure 2.3.3, the highest permissible TAD-offset is 1, i.e.

a hallmark gene is considered affected if a filtered SV is estimated to affect the gene’s TAD (or

one of its TADs if the gene spans multiple TADs) or one of its neighbouring TADs in either

direction.

2.2.10.4 Gene Definitions

We used the ENCODE consortium’s gene reference annotation GENCODE [447], version 27

(released 08.2017), lifted over to the GRCh37 genome assembly.

The following gene types were included in the reference used by SOPHIA: IG C gene,

IG C pseudogene, IG D gene, IG J gene, IG J pseudogene, IG pseudogene, IG V gene, IG V pseudogene,

lincRNA, macro lncRNA, miRNA, polymorphic pseudogene, processed pseudogene, unpro-

cessed pseudogene, protein coding, transcribed processed pseudogene, transcribed unitary pseudogene,

transcribed unprocessed pseudogene, translated processed pseudogene, TR C gene, TR D gene,

TR J gene, TR J pseudogene, TR V gene, TR V pseudogene while the following were dis-

carded from the reference: 3prime overlapping ncRNA, bidirectional promoter lncRNA, misc RNA,

Mt rRNA, Mt tRNA, non coding, retained intron, processed transcript, rRNA, scRNA, sense intronic,

sense overlapping, snoRNA, snRNA, TEC, unitary pseudogene, unprocessed pseudogene, vaultRNA

As genes can have multiple alternative transcripts, we attempted to reduce the gene set

as far as possible to the most canonical transcripts in order to facilitate further analysis. To

this end, we ranked isoforms based on their APPRIS [448] scores, in order of precedence:

appris principal, appris principal 1, appris principal 2, appris principal 3, appris principal 4,

appris principal 5, appris candidate longest, appris candidate, appris alternative 1, appris alternative 2,

(not available).

Where multiple transcripts exist for a gene and APPRIS scores are not sufficient for tie-

breaking, we used the ”transcript support level” entry in GENCODE in order of precedence: 1

(all splice junctions of the transcript are supported by at least one non-suspect mRNA), 2 (the

best supporting mRNA is flagged as suspect or the support is from multiple ESTs), 3 (the only

support is from a single EST), 4 (the best supporting EST is flagged as suspect), 5 (no single

transcript supports the model structure), NA (the transcript was not analyzed).

Where multiple transcripts exist for a gene and APPRIS scores and GENCODE ”tran-

script support level” scores are not sufficient for tie-breaking, we used the ”level” entry in

GENCODE in order or precedence: 1 (verified loci), 2 (manually annotated loci), 3 (automati-

cally annotated loci).

Where multiple transcripts exist for a gene and APPRIS scores and GENCODE ”tran-

script support level” and GENCODE ”level” scores are not sufficient for tie-breaking, we used

the exon counts of the alternative transcripts as a tie-breaker, taking the transcript with the

highest number of exons as the canonical transcript for the gene model.
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The SOPHIA workflow uses BEDTOOLS [449] for annotating direct gene hits as well as

the nearest genes upstream and downstream of the breakpoint for each of the two breakpoints

that make up an SV.

2.2.11 Gene Expression Data Processing

There are two major technologies for quantitative analysis for gene expression data: array

based technologies, and sequencing based technologies. RNASeq has a number of advantages

over RNA microarrays such as the ability do detect novel transcripts and gene fusion events, do

genotyping, avoiding transcript probe based artefacts. Despite these advantages, RNASeq has

its own challenges such as biases within samples due to transcript length and biases between

samples or batches. Hence, normalization of read counts from RNASeq data is an important

step in ensuring comparability between different genes or samples in a study and is an active

research question with different benchmarking studies and tools on this subject [450] [315]

[451] [452].

Choosing a RNASeq count normalization method depends on the desired application. Com-

parison of a gene across multiple cohorts requires different approaches from the comparison of

a gene across donors in a single cohort. In the cited benchmarks, TMM normalization [315]

offered by the edgeR Bioconductor package [453] was consistently ranked as a top-class nor-

malization algorithm along with the DESeq2 [454] approach. For the purpose of benchmarking

SOPHIA (Section 2.3.3), we used the TMM normalization in the edgeR package within each

TCGA cohort: Raw read counts were obtained from the Genomics Data Commons (GDC)

mirror of UCSC Xena [455] and pre-normalized by the Counts Per Million (CPM) calcula-

tion. Genes with less than 1 CPM for all samples across a given cohort were discarded from

further analysis. Then edgeR normalization was applied with default parameters on the initial

gene counts of the filtered gene set, followed by another application of CPM and log2(n + 1)

normalization.

For the GPOH-NB project, gene expression read count values were obtained using the

DKFZ RNA-Seq pipeline [456] and normalized as described.

For Medulloblastoma cohort under ICGC-PedBrain, we used the RNA microarray data

instead of RNA-Seq data because of the better coverage of the cohort [211]. Results were

downloaded from the R2: Genomics Analysis and Visualization Platform [337], obtained using

the Affymetrix u133p2 array and normalized with the MAS5.0 algorithm [457].

Finally, normalized gene expression values were visualized and inspected for ”breaks” in-

dicating bimodality at known hallmark genes with oncogenic activation via structural variants,

where the existence of an affecting SV is estimated using the approach described in Section

2.2.10.3.

2.3 Results

2.3.1 Analysis of the SOPHIA Background Breakpoint Database

We analysed the SOPHIA background breakpoint database for behaviour around repeat classes,

both with respect to breakpoint counts and breakpoint quality. For filtering of structural vari-
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Figure 2.15: A discrepant call (detected by SOPHIA and FISH, missed by delly) for an IGL-

MYC rearrangement, on the MYC-side breakpoint. The dark green reads have mates mapping

to chr22, specifically to the IGL locus.

Figure 2.16: A discrepant call (detected by SOPHIA and FISH, missed by delly) for an IGL-

MYC rearrangement, on the IGL-side breakpoint showing lack of mappability with predomi-

nantly hollow reads with 0 MAPQ.

Two further cases were only positive by SOPHIA. One of these cases is particularly inter-

esting as it involves two sources of errors: First, we observed that there is a two-sided balanced

somatic translocation on the MYC locus as expected (Figure 2.17), what was peculiar was

the concomitant involvement of the chr15q11.2 locus, which harbours a number of inactive

pseudogenes of the immunoglobulin heavy chain genes. Due to the homology between the

canonical IGHV genes and their inactive pseudogene counterparts (IGH orphons), mapping

can be unspecific and interfere with SV detection. Second, we observed that the IGH-side
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of this rearrangement has the effects of a concomitant somatic hypermutation (Figure 2.18),

which reduces the quality of mapping to this region. Though both can in different ways allow

us to speculate for the issues Delly had in detecting this SV, we do not know why FISH failed

to detect this rearrangement.

Figure 2.17: A discrepant call (detected by SOPHIA, missed by FISH and delly) for an

IGH-MYC rearrangement, on the MYC-side breakpoint, showing concomitant mapping to the

chr14q33.32 (IGH locus, orange reads) and chr15q11.2 loci harbouring IGH orphon genes

(purple reads). The upper subfigure indicates the tumour sample, whereas the lower subfig-

ure indicates the matched normal sample with no evidence for the rearrangement, indicating a

somatic rearrangement.
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For one of the 3 cases detected by sequencing and confidently not detected by FISH, we

observed a complex pattern (Figure 2.20): The left-side of the balanced translocation has no

specific partner on chr14 (lack of orange discordant reads on the left side of the breakpoint).

While the event is well-supported on the right-side of the breakpoint showing a clear mapping

to the IGH locus, the left-side is unspecific, with only a short unspecific consensus split read

overhang and no discordant mate information, hinting at the low complexity of the partner

region. We cannot speculate if this played a part in the lack of detection by FISH.

Figure 2.20: A discrepant call (detected by SOPHIA and delly, missed by FISH) for an IGH-

BCL2 rearrangement. The rearrangement is balanced and has both left and right-sided split

reads, but the right-sided split reads are few, short, and do not have discordant mate support

mapping to the IGH locus (orange reads). The upper subfigure indicates the tumour sample,

whereas the lower subfigure indicates the matched normal sample with no evidence for the

rearrangement, indicating a somatic rearrangement.

Next, we investigated BCL6 breaks for discrepancies between the three approaches. We

observed a diverse spectrum of discrepancies. 2/2 FISH-only calls had low tumour content

(as estimated by ACEseq [309] using WGS data), again suggesting that FISH can be a more

sensitive method because of its access to single-cell level information.
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Figure 2.23: A discrepant call (detected by SOPHIA and FISH, missed by delly) for an IGL-

BCL6 rearrangement, on the IGL-side breakpoint showing lack of mappability (reads depicted

as empty bars), still with discordant mate support mapping to the IGL locus (reads depicted

as faded light green coloured empty bars). The upper subfigure indicates the tumour sample,

whereas the lower subfigure indicates the matched normal sample with no evidence for the

rearrangement, indicating a somatic rearrangement.

A second discrepant case only detected by SOPHIA was a rare instance of a T-cell Receptorα

- locus to BCL6 translocation that was missed both by FISH and Delly. As we are dealing with

B-cell lymphoma, this finding was a surprise, but it was not entirely novel [458], [459]. Inter-

estingly, TCRa locus which is intrinsically complex in a similar manner to the IG loci (with

internal rearrangements as part of its normal function), did not pose the issue on this case, it

was rather a GAn simple repeat that made the breakpoint on the BCL6 locus poorly mappable.

This result again reinforces the importance of considering SVs even when only one of the

breakpoints is strongly supported.
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Figure 2.24: A discrepant call (detected by SOPHIA, missed by FISH and delly) for an TCR-

BCL6 rearrangement, on the BCL6-side breakpoint showing a (GA)n repeat interfering with

proper mapping.

Figure 2.25: A discrepant call (detected by SOPHIA, missed by FISH and delly) for an TCR-

BCL6 rearrangement, on the TCR-side breakpoint showing a clean break

The fourth FISH assay, namely IGH breaks, were not used in SOPHIA parameter optimiza-

tion. We observed a number of discrepant cases between the three assays, (Figure 2.26).
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Figure 2.27: A discrepant call (detected by SOPHIA and FISH, missed by delly) for an IGH-

IRF4 rearrangement, with strong discordant mate support mapping to the IGH locus (orange

reads) for a two-sided balanced rearrangement. The upper subfigure indicates the tumour sam-

ple, whereas the lower subfigure indicates the matched normal sample with no evidence for the

rearrangement, indicating a somatic rearrangement.

2.3.3 SOPHIA Detects Hallmark Structural Variants with High Sensitivity Across Cancer

Types Expression Data

Next, we benchmarked SOPHIA across a diverse set of human cancers with publicly available

data from the The Cancer Genome Atlas (TCGA) Consortium with available whole genome

sequencing and matched RNA Sequencing data and published DKFZ projects. We looked for

”expected” structural variants based on differentially expressed cancer hallmark genes with

known dysregulation mechanisms.

While these hallmarks are by nature not necessarily difficult to detect unlike the immunoglob-

ulin translocations that were used in the parameter training stage, they nevertheless provide an

important benchmarking opportunity on clinically relevant events from real datasets and an SV

detection algorithm is expected to show high sensitivity in this analysis.
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Notes: (1) 1/2 ”negative” cases also shows no copy number differences, (2) The ”negative”

case also shows no copy number differences, (3) The ”negative” cases also show no copy

number differences, (4) It is known that a hitherto unknown mechanism of TERT activation

and promoter mutations exists apart from rearrangements [212], (5) The ”negative” cases also

show no copy number differences, (6) 2 positive cases were used in parameter optimization,

(7) One positive case was used in parameter optimization

Overall SOPHIA shows an excellent sensitivity for detection of oncogenic hallmark struc-

tural variants. The only recurrent source of false negatives were putative CDKN2A/B deletions.

Following these benchmarks which were base on parameters trained on FISH and M-FISH

data, we only did further revisions based on two oncogenes, namely undetected IGF2 rear-

rangements in 2 colorectal cancer cases, and one undetected novel interchromosomal FOXR1

rearrangement in neuroblastoma. These secondary optimizations did not further affect results

on hallmark structural variants, but likely improved the overall sensitivity of SOPHIA.

2.3.3.1 Important Structural Variants such as Tandem Duplications upstream of IGF2 can

Have a Breakpoint on Repetitive Regions

Tandem duplications near the IGF2 locus have been reported [100] to cause an increased acti-

vation of the IGF2 oncogene, suggesting it to be a hallmark structural variant in a pan-cancer

setting.

We observed in the TCGA colorectal cancer cohort three cases with increased IGF2 expres-

sion and no nearby rearrangements. In the absence of a known secondary activation mecha-

nism, we assumed these observations to be putative false negatives. We observed that a hotspot

site for the first of the breakpoints of the duplication involving IGF2 is on a (TGGA) n simple

repeat and that this leads to two types of issues: i) the site on the repeat sequence is frequently

encountered as a common artefact breakpoint in the background breakpoint database (Figure

2.29), ii) the partner site downstream of IGF2 suffers from a mate read dispersion where mul-

tiple distant locations on the (TGGA) n simple repeat are proposed as the partner breakpoint

and do not form a coherent structural variant with consistent support (Figure 2.30).
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Figure 2.29: The left-hand side of the IGF2 locus duplication on the (TGGA) n simple repeat,

donor TCGA-AG-3593 of the TCGA-READ project: the upper subfigure indicates the tumour

sample with green reads indicating discordant reads supporting the duplication, whereas the

middle subfigure indicates the matched normal sample with no evidence for the rearrangement,

indicating a somatic rearrangement. The lowermost subfigure shows multiple (TGGA) n re-

peats covering the region. A precise breakpoint yielding split reads is not mapped by the

aligner.

Figure 2.30: The right-hand side of the duplication on the partner site downstream of IGF2,

donor TCGA-AG-3593 of the TCGA-READ project: the lowermost subfigure shows a lack of

repeats and the partner breakpoint to be located on the ASCL2 gene with a precise breakpoint

yielding split reads.

We could address the first issue by relaxing the background breakpoint database hits thresh-

olds when the partner site is clearly somatic and shows strong evidence. However, we could
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not fully address the second issue, for rare cases where the multiple solutions are all weakly

supported and distant from each other.

The representative figure is from the case TCGA-AG-3593 in the TCGA Rectal Cancer

Project (READ-US). The given structural variant has been misclassified as low-quality with

score 2 by SOPHIA even after further tuning, and constitutes the only one of the 15 high

IGF2 expressor cases in the entire TCGA (breast cancer, colorectal cancer, stomach cancer)

pan-cancer WGS cohort where an IGF2 duplication has been missed by SOPHIA, following a

parameter reoptimization taking into account the observations made on IGF2 described here.

2.3.3.2 A novel interchromosomal FOXR1 activating translocation in Neuroblastoma maps

nonspecifically to multiple partner sites

Intrachromosomal rearrangements have previously been shown to activate the FOXR1 onco-

gene [461] as sole known driver in a small subset of neuroblastoma cases, and FOXR1 can

thus be considered as a hallmark rearrangement of neuroblastoma. In our larger German Pae-

diatric Oncology and Hematology (GPOH) Neuroblastoma cohort, we observed that one (out

of 4) FOXR1 high expressor cases had a somatic interchromosomal rearrangement of FOXR1

t(11,17)(q23.3;p11.2) with unspecific mapping on chr17p11.2: We identified two identical re-

gions flanking the gene GRAPL where precise mapping with the current short read sequencing

technology is not possible. The two possible breakpoints that could be considered to activate

FOXR1 were 17:19015973 at 17:19093582. Interestingly, these two regions of full homology

were not annotated as repeats in RepeatMasker. As the two candidate regions are identical,

mapping quality of every (high base-quality) read mapping to these regions is 0. Due to this

important and representative example, we decided to support such regions in SOPHIA, with

counterbalancing caveats. Briefly, we impose the conditions that at least one of the two paired

breakpoints must not be in a MAPQ0 region, and if one of the two breakpoints is in a MAPQ0

region, the supporting read count must be higher than the normally used thresholds.

This representative case GPOH-NB-13264 that led to the described observations (Figures

2.31, 2.32 and 2.33) and allowed us to improve SOPHIA’s detection sensitivity on MAPQ0

regions.
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Figure 2.31: The FOXR1(chr11)-side of the FOXR1 rearrangement. The purple reads indicate

reads whose mates map to chr17. With large numbers of supporting discordant reads, avail-

ability of split reads and a high overall sequencing quality in this locus, this breakpoint has the

signatures of a true somatic SV candidate.

Figure 2.32: The first of the two possible solutions for the chr17-side of the FOXR1 rear-

rangement. This region is entirely a MAPQ0 region where mapping is not unique (likely same

sequence as the second alternative breakpoint site). Discordant read pairs whose mates map

to chr11 on the FOXR1 locus are visible along with a precise breakpoint generating clean split

reads.
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Figure 2.33: The second of the two possible solutions for the chr17-side of the FOXR1 rear-

rangement. This region is also entirely a MAPQ0 region where mapping is not unique (likely

same sequence as the first alternative breakpoint site). Discordant read pairs whose mates map

to chr11 on the FOXR1 locus are visible along with a precise breakpoint generating clean split

reads, albeit with less support than the first of the alternative solutions.

MAPQ0 regions are often discarded by structural variant detection algorithms as a source

of systematic artefacts, as is also suggested by the results presented in Section 2.3.2. We tested

the same case with SvABA and confirmed that neither of the two solutions were proposed by

their local assembly based approach. This reinforced our opinion that it is justified to study

MAPQ-0 regions for the purpose of detecting structural variants, though additional care is

warranted.

2.3.4 SOPHIA Structural Variant Detection Speed

Due to the single-pass and minimally buffered evidence collection approach of SOPHIA, it

has a number of significant performance advantages. First, the linear single-pass approach is

I/O friendly and allows a fast and efficient parsing of the decompressed alignment in a data

stream. Also, flushing of collected evidence on a per-breakpoint basis rather than a per-SV

basis minimizes RAM usage for the first, and longest stage of the SOPHIA operation.

We ran a benchmark for a large number of SOPHIA runs across diverse projects, the two

different sequencing technologies, tumours and controls, going beyond the usual standards

provided in SV detection algorithm publications. Our aim was to show that SOPHIA runtimes

vary in a robust manner in a narrow range, not influenced by sample type, quality or technology.

As the SOPHIA workflow has two major parts (with separate executables), namely breakpoint

evidence collection (Section 2.2.3) and breakpoint pairing and filtering (Sections 2.2.5 and

2.2.6), we ran benchmarks for these two parts separately. For both parts, we measured CPU

time rather than absolute runtimes (wall time), because it is not sensitive to fluctuations in

computing cluster data I/O performance. SOPHIA uses two cores, expected real runtimes

are roughly a half of the benchmarked CPU time durations in the absence of technical I/O
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Figure 2.34: Benchmark of SOPHIA breakpoint evidence collection speed across sample types

and sequencing technologies. This analysis corresponds to the ”SOPHIA breakpoint extrac-

tion” step presented in Figure 2.1, which is run once per the tumour and control bam file each.

Control and tumour alignments as well as those from different read length sequencing tech-

nologies / alignment workflows are analysed in separate categories.

bottlenecks.

For the breakpoint evidence selection stage, the results showed a strikingly narrow variance

for all analysed groups (Figure 2.34). The bimodalities observed in the Hiseq X-Ten system

were due to the 1-lane vs 2-lane choice made by different DKFZ projects depending on their

needs and budgets.The lowest mode represents the 35x coverage level attained by single lane

operation while the second represents the 70x coverage level attained by double lane operation.

The highest runtimes were recorded for tumour samples from the BMBF eMED SYS-GLIO

project, which used higher sequencing depths for tumour evolution modelling purposes as de-

scribed in [462]. The much larger 101bp datasets were harder to interpret due to the diversity

of countries and sequencing centres that provided cases. Overall, the benchmarked runtimes

suggest that breakpoint evidence collection performance in SOPHIA is largely dependent on

sequencing depth and not on other factors such as sample type, read length (within the con-

straint of 101bps vs 151bps) or sample quality. For the breakpoint evidence collection stage,

the RAM usage is held at a 2GB via the tool called mbuffer. However, in exceptional cases

involving large viral loads such as in gastric cancer and the Epstein-Barr Virus, RAM consump-

tion can temporarily spike during processing of viral integration sites or the EBV chromosome

itself. Such cases are exceptional, and it can safely be assumed that a normal SOPHIA break-

point evidence collection run consistently consumes 2GB RAM per sample.

For the breakpoint pairing and filtering stage, we measured both runtime and memory usage

characteristics for both paired and no-control operation, with a single core operation where the

real runtime is approximately equal to the CPU time. The pairing and filtering stage is a

very fast process, with few exceptions (Figures 2.35 and 2.36): In our measurement of 5779

SOPHIA SV pairing and filtering and analyses (of which 5415 corresponded to paired analysis

of tumours and matched normals), we found that only 52 exceeded 10 minutes of operation,

of which only 16 exceeded 20 minutes, with the highest recorded runtime at 133 minutes. The

median runtime for no-control operation was 1.03 minutes, whereas the median runtime for

paired analysis was 2 minutes.

We measured peak memory usage in a similar manner to speed (Figures 2.37, 2.38). In
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Figure 2.35: Benchmark of SOPHIA breakpoint pairing and filtering speed across analysis

types and sequencing technologies. This analysis corresponds to the ”SOPHIA breakpoint

matching” step in Figure 2.1, which is run once per paired or no-control analysis on the results

on the ”SOPHIA breakpoint extraction speed”. Paired and no-control workflows as well as

runs from different read length sequencing technologies / alignment workflows are analysed in

separate categories.

Figure 2.36: Benchmark of SOPHIA breakpoint pairing and filtering speed across analysis

types and sequencing technologies, limited to 15 minutes for better visibility
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Figure 2.37: Benchmark of SOPHIA breakpoint pairing and filtering peak RAM usage across

analysis types and sequencing technologies

our measurement of 5779 SOPHIA analyses (5415 paired), we found that only 68 exceeded 8

Gigabytes of peak memory usage, of which only 19 exceeded 16 Gigabytes, with the highest

recorded memory usage at 41.1 Gigabytes. The median peak memory usage for no-control

operation was 1.9 Gigabytes, whereas the median peak memory usage for paired analysis was

5 Gigabytes.

Finally we investigated the relationship between RAM usage and speed (Figure 2.39). We

observed that high RAM usage does not generally follow extremely high runtimes.

Poor performance characteristics are often caused by samples that are later excluded from

studies due to poor material quality. SOPHIA deals with such outlier cases without crashing

or needing extremely long runtimes that can take up to days or weeks with other algorithms.

Nevertheless, further reduction of peak RAM usage would be helpful in a cluster environment

and should be a future development goal.

2.4 Discussion

2.4.1 Advantages and Novelties of SOPHIA

SOPHIA, to the best of our knowledge, is the first structural variant detection algorithm that

is based on an expert model combining a rich and diverse set of training data sources such

as FISH, RNA-Seq and known hallmark structural variants. Thanks to its powerful filtering

features, we managed to explore complex regions and complex rearrangements without sacri-

fice of overall specificity. Also thanks to our single-sided evidence collection, we managed to

keep RAM requirements to a minimum while maintaining a linear, single-pass operation for

the majority of the workflow, yielding a fast, lightweight and effective tool for structural variant

detection.

In early stages of SOPHIA’s development we started from a split-read only approach in the
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Figure 2.38: Benchmark of SOPHIA breakpoint pairing and filtering peak RAM usage across

analysis types and sequencing technologies, clamped to 15 Gigabytes for better visibility

Figure 2.39: Benchmark of SOPHIA breakpoint pairing and filtering peak RAM usage vs speed
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first proof of concept prototypes of the linear, single-pass operation. The discordant mate infor-

mation was added in later versions, supporting SVs first called by split read information. The

first version of SOPHIA used in a publication with my joint-first author contribution used this

split read as primary, discordant mate information as secondary level evidence approach [463].

Our later experiences with a more extensive evaluation of ICGC-MMML FISH and NB69 cell

line M-FISH results prompted us to improve our strategy where breakpoint detection can start

from either split read evidence or discordant mate based evidence, improving the sensitivity of

SOPHIA. This improvement was used in [464] (the follow-up article to [463]) along with other

recent publications [435] and the case study [465], where SOPHIA was used to detect a cryp-

tic IGH-MYC translocation where MYC is inserted into the IGH locus in a Burkitt leukaemia

case which was not detectable by FISH. Our experiences in the evolution of the SOPHIA

algorithm mimic the evolution in the field of SV detection where the first tools were either

discordant-mate-based like BreakDancer [466] or split-read-based like CREST [366]. Delly

became a standard tool in SV calling by combining these two approaches [308] and similar

to the SOPHIA’s population database-based filtering delly uses data from the 1000 genomes

project in its filtering [132], though these specific filters were not openly published. During

the development of SOPHIA, we generated a breakpoint repository including real and arte-

factual breakpoints along with their commonly detected partners obtained from normal tissue

of donors in cancer genomics studies. This database, which will be released with SOPHIA,

could potentially support researchers using other tools for SV detection because the sites of

common artefacts and germline variation is a generally useful resource. As part of the effort

of the development of this database, we compared sequencing data from two generations of

sequencers using the same underlying technology. Our results show slight differences between

the behaviour of these two generations of sequencers with respect to alignment performance

around repeat regions: while the X-Ten system can resolve more breakpoints on/around the re-

peat families simple repeats, satellite repeats and low complexity repeats, this is at the expense

of lower quality breakpoints with regards to base and mapping quality of reads. This suggests

that more breakpoints can be reached with the slightly longer reads produced by the X-Ten

sequencer, while even longer reads are likely to be necessary to get clean signals from these

regions.

The current trend in SV calling approaches seems to be pointing at local assembly where

novoBreak [425] and SvABA [426] both successfully reported results with this approach. We

have not been able to test both approaches simultaneously, but SOPHIA’s breakpoint evidence

collection strategy could be described as a half-local-assembly with each breakpoint being pro-

cessed separately, and later unified as an SV candidate finally being evaluated with SOPHIA’s

expert model-based filters. Evaluating these algorithms in a comprehensive benchmark would

allow us to evaluate if the added computational and memory costs of the full local assembly

process is an acceptable compromise with regards to possible improvements in sensitivity or

specificity.

We showed SOPHIA’s runtime and memory usage performance across a large cohort, with

different sample and sequencing quality characteristics and sequencing depths, where our re-

sults indicated SOPHIA to be robust against sample quality control issues. We have discussed
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here typical quality control issues such as contamination of normal material and low proper

pairing statistics, suggesting strategies to deal with these common issues, an important practi-

cal concern which is not discussed in the discussed SV algorithms’ articles. Overall, SOPHIA

is a successful solution for structural variant detection as of 2019, quickly, robustly and re-

producibly running across tens of cancer genome sequencing projects at the DKFZ with the

DKFZ SV workflow https://github.com/DKFZ-ODCF/SophiaWorkflow. It has

successfully ended the DKFZ’s reliance on external tools and collaborations for the analysis

of structural variants and already allowed us to present some novel findings across different

cancer types in Chapter 4.

In concluding our work on SOPHIA, we will discuss potential avenues for improvement.

2.4.2 Shortcomings of SOPHIA and Suggestions for Potential Improvements

2.4.2.1 Lack of a formal specificity analysis

Our current knowledge and assessment of the specificity performance of SOPHIA are based

on our and our collaborators’ anecdotal institutional experiences with other algorithms such

as delly and CREST. This is a shortcoming of this presented work we would like to improve.

Based on a number of discussions, the following options emerged for a specificity analysis as

preparation for the publication of the SOPHIA algorithm:

1. Using simulated tumour-normal pairs starting from available cell line sequencing data: A

recent work (Nov. 2018) [467] presented a comprehensive simulation based benchmark

of a broad selection of SV calling algorithms. Using the same strategy could be a feasible

goal to assess both the specificity and the sensitivity of SOPHIA.

2. Using the Pan-Cancer Analysis of Whole Genomes Project’s consensus SV dataset: The

PCAWG consortium generated a consensus dataset of somatic SVs from 2693 adult can-

cer cases using four different SV callers BRASS, delly, dRanger and SvABA [284]. This

dataset, when released, could be a very valuable tool to again assess both the specificity

and the sensitivity of SOPHIA. This approach could also be an opportunity to assess the

feasibility of running a consensus-based SV calling approach in the DKFZ’s sequenc-

ing data analysis workflow, similar to the PCAWG consortium’s strategy. To this end, it

would be important to identify which tool would best complement SOPHIA by offering

an expansion of true results with the least amount of redundant overlap possible.

2.4.2.2 Classes of structural variants missed by SOPHIA

In its current design, SOPHIA cannot detect structural variants involving unmapped reads.

This might reduce sensitivity in identifying exact breakpoints of viral integration sites where

one breakpoint correctly maps to the human genome, whereas the second breakpoint doesn’t.

We did not specifically address this question because we did not have a specific project where

these issues posed a detectable problem motivating an immediate improvement of this aspect

in SOPHIA. We would nevertheless like to address this during the transition of SOPHIA to the

GRCh38 reference human genome.
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SOPHIA can also not detect structural variants where both breakpoints of the variant fall on

repetitive regions and consequently common breakpoints in the breakpoint database used for

filtering. As described in Section 2.3.3 on the example of IGF2, strong and reliable evidence

from one of the two breakpoints can be used to overrule the negative effect of strong database

support for the other but it is possible that structural variants can be located in repetitive and

unmappable regions on both ends. SOPHIA currently does not have a solution for such rare

cases. The statement that such cases are rare are based on our extensive studies of disease

hallmark variants across close to a hundred projects where we were unable to determine a

systematically missed class/family of structural variants of this type.

SOPHIA also cannot detect structural variants where BWA-mem cannot propose either a

split read or discordant mate based supplementary alignment as a candidate variant. This is

sometimes the case with medium-sized SVs where the rearranged sequence also contains other

small mutations leading to too many differences in the short split read sequence for BWA-mem

to align it accurately. In such situations, SOPHIA would have no information to start from.

Finally, due to the usage of a population-based filtering approach, SOPHIA is not an appro-

priate tool for studying common germline structural variation. Therefore, its scope is focused

on cancer genomics data analysis of (ideally) whole genome sequencing data where the fo-

cus is to find rare germline structural variation of somatic structural variants from mid-sized

(roughly 20bps-1000bps) to interchromosomal. As this is the defined design scope of SOPHIA,

and this covers our main use cases in cancer genomics projects, this is strictly speaking not a

shortcoming.

2.4.2.3 Shortcomings of the current breakpoint database

As described in Section 2.2.5, we observed cases where the patient’s ethnicity posed issues

in the performance of the breakpoint database-based filtering. While such cases are relatively

easy to detect by a prevalence of large numbers of germline structural variants, especially in-

terchromosomal variants as manifestations of transposons, they are still useful to underline a

weakness of this breakpoint database based filtering approach. However, as SOPHIA’s per-

formance is excellent in many other regards such as speed, sensitivity and specificity, efforts

should probably focus on ensuring a better diversity in the background database rather than

fundamentally changing its concept.

During my thesis project, a similar and very strong effort has been launched [442] to study

the diversity of structural variants in the human genome where 17795 individuals were com-

prehensively characterized to this end. Though this large-scale effort has a distinct similarity

to the SOPHIA background model approach, it diverges on two important aspects:

i) SOPHIA aims to characterize both the artefactual and real breakpoints in control samples

for the purpose of filtering structural variants in cancer genomes whereas the approach

in [442] characterizes only the real germline variants and their effects,

ii) The [442] study presents results of structural variant analysis based on an existing analy-

sis tool, Lumpy, whereas SOPHIA is strongly based on a background breakpoint database

for its function.
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The latter point reveals an interesting conundrum: SOPHIA’s performance strongly relies

on its background database of breakpoints, whereas the quality of the breakpoints presented in

[442] relies on the performance of the Lumpy algorithm that they employed. We believe that

the current performance of SOPHIA is encouraging and the best solution may be to generate a

larger background database of breakpoints covering more ethnicities.

2.4.2.4 Reliance on a very specifically defined set of input prerequisites

SOPHIA relies on alignments from the standard BWA-mem based PCAWG workflow [361] on

the GRCh37 human genome. This alignment methodology has been used in many thousands

of human samples including the PCAWG project encompassing the TCGA, most of the ICGC

project and many published and unpublished DKFZ projects. Thus, it was not illogical to

develop a variant detection approach strongly relying on the conventions and the data from this

workflow. Nevertheless, the workflow is not robust to a change in any parameter: the input

alignments have to be coming from this specific workflow and no changes from this standard

are supported. Any change in alignment parameters would possibly lead to changes in where

artefactual breakpoints would occur, how supplementary alignments are assigned and scored,

among many other changes that cannot be fully described a priori.

Moreover, the background database of breakpoints are obtained from 3417 control samples

coming from this exact same workflow, and have been chosen with meticulous quality checks

discarding cases with excessive numbers of artefactual breakpoints in the germline, mainly due

to DNA degradation in stored blood. Different users outside of large cancer genome research

centres would likely find it difficult to obtain a sufficient number of control samples to build a

satisfactory database of breakpoints.

Thus, SOPHIA is not a universal or easily adaptable solution for the detection of structural

variants. While it is fully conceivable that the fundamental concepts behind SOPHIA would be

applicable in different analysis settings, such as even non-human research, the current SOPHIA

workflow is only available for alignments generated with a specific alignment workflow on a

specific version of the human genome.

Nevertheless, SOPHIA offers a complete and strong solution for detection of structural

variants in the cancer genome with the BWA-mem based PCAWG workflow on the GRCh37

human genome, a standard used in hundreds of projects, and many thousands of samples. We

are already working on offering a similarly complete and strong solution based on the GRCh38

build of the human genome, an investment which will be valid for many years to come. We

thus hope to compensate for the rigidity of SOPHIA’s input expectations by covering a larger

spectrum of use cases.

2.4.3 Outlook for SOPHIA’s Future Development

At the end of this chapter describing SOPHIA, I would hereby like to suggest the following

goals for its development as the developer and heaviest user of SOPHIA:

i) Transition of the SOPHIA workflow to the GRCh38 human genome along with the re-

lease of an updated breakpoint database,
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ii) Developing a method to distinguish mobile sequences such as retrotransposons from

balanced structural variants,

iii) Improvements to systematic weaknesses discovered by the detailed analysis comparing

it to SvABA and other local assembly based algorithms,

iv) More advanced analysis of SV clonality by including more information regarding the

coverage states,

v) Development of a complementary SV-signature [404] pipeline allowing automated de-

tection of SV-signatures,

vi) Development of advanced annotations including predicted effects of intra-exonic vari-

ants such as internal tandem duplications and annotation of ENSEMBL regulatory re-

gions.

An interesting direction to explore would be parameter learning via an automated process,

i.e. machine learning rather than the expert-controlled parameter optimization for SV filter-

ing presented in Section 2.2.6. Methods based on deep learning have been developed for the

detection of point mutations [468] and deletions as an SV class [469]. These methods had

the common concepts of working on images of visualized alignment data, and needing large

training datasets due to the nature of deep learning. Our approach on identification of key

parameters followed by their optimization was also partially built on visual analysis based on

the experiences made in Chapter 1 and close inspection of IGV plots such as those showed

in Section 2.3.2 was instrumental in our workflow. However, following the identification of

parameters, we switched to a quantitative workflow based on read evidence from different SV

evidence categories rather than relying on images. Furthermore, we used only a small train-

ing dataset but were still able to develop well-performing filtering criteria from FISH results.

Following these points, a more appropriate tool could be random forests which automates the

decision tree approach we used [470].

Any change in the SOPHIA algorithm should strive to maintain the standards of excellent

performance and sensitivity set here. Even though this aim is not simply solvable by unit-tests,

future developers of SOPHIA will have access to diverse and large international and DKFZ

datasets for testing its performance following iterative improvements. Speed and memory us-

age are easily measurable and strict standards should be adhered to, rejecting any improvement

that inflates runtimes or memory usage considerably over the current standard. Sensitivity

should be checked by gold standard cohorts, such as the ICGC-MMML for known, hard-to-

detect IG translocations, or ICGC-EOPC [420] for ERG fusions and GPOH-NB for TERT

fusions [212] or the currently unreleased consensus SV dataset from the PCAWG consortium

[284]. Specificity is harder to test in a systematic manner, but developers should pay extra

attention to subclonal structural variants and ensure that these are not spurious, low quality

observations that make it past filters such as those listed in Section 2.2.6.
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CHAPTER 3

EPISTEME: AN INTERACTIVE AND INTEGRATIVE PLATFORM FOR

ANALYSING, INTERPRETING AND SHARING MULTI-OMICS DATA

3.1 Introduction

Cancer omics is a highly collaborative field where medical doctors, biologists, bioinformati-

cians and computational biologists work together to study causes, classifications, mechanisms

and possible treatment avenues for different types of cancer [276], [471]. The role of the bioin-

formatician in this context is broad: they develop statistical methods and fast and efficient

software implementations for analysis of data, run analyses and visualize results sharing them

preferably in an accessible and intuitive manner with the doctor and biologist partners of the

research project, ending with a joint interpretation of the obtained and shared results.

Frequently, individual tasks of the computational biologist on the last two steps, namely

analysis and data visualization are amenable to automation allowing the computational biolo-

gist to focus on more advanced tasks of method development and implementation [456]. This

is accomplished by using modern techniques of interactive data visualization allowing dynamic

execution and representations of complex data analysis tasks without the necessity to express

these tasks in a programmatic manner. This field of interactive data visualization is currently

gaining significant interest [472] with modern web technologies allowing rich interactions with

complex datasets. As of mid-2019, there are both available specialized solutions catering to a

broad set of bioinformatics needs as well as specialized tools that focus on single data types

such as mutations or transcriptome analysis, with both types of tools being a research subject

of great interest [473] [474] and a significant research effort in international cancer genome

analysis consortia [475].

i) R2 (2008) [337] is among the most mature and feature-rich interactive data portals in the

field of omics data visualization. While R2 started mostly as a tool for microarray data

analysis and visualization, today it offers features on diverse fields such as SV visualiza-

tion, ChIP-Seq data visualization and survival analysis. Recently, it served as the official

data portal for the Pediatric PanCancer project [476], where it was used to visualize both

genomics and transcriptomics data. To date, it has not been published in a peer-reviewed

journal.

ii) cBioPortal (2012) [477] is a well-established data portal with an excellent oncoplot (On-

coPrint) feature as well as analysis features on copy numbers, gene expressions, mutation

mutual exclusivity and co-occurence, pathway enrichment etc. As such, it is a mainstay

in data analysis in the field of cancer omics data analysis.

iii) iCanPlot (2012) [478] is an interactive HTML5 Canvas plotting library which offers fast

and interactive plots of high-dimensional datasets on scatter plots. At the time, it was a

modern implementation of a new web technology and deserves mention as a technical

accomplishment.
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iv) canEvolve (2012) [479] was another early effort in integrative omics data analysis and

visualization in the web. The analysis features were limited, and relied on storage of

pre-computed values. The visualization features also encompassed a limited number

of basic plots, but integrative data analysis between omics data layers was available.

Unfortunately, its user interface was not intuitive and with its analysis features limited,

it did not get adopted by a large audience.

v) MAGI (2015) [480] was a tool dedicated to visualization of genomic aberrations us-

ing oncoprints for mutation incidences across a cohort, ”lollipop plots” for mutations

on transcripts, heatmaps for gene expressions, and an UCSC Genome Browser-like ge-

nomic region viewer for copy number variations. MAGI was a tool strictly dedicated to

visualization and offered no user-controlled data analysis features. As it shared a large

domain with cBioPortal, it was not adopted by a large audience.

vi) TumorMap (2017) [481] was the tool to showcase the large-scale sample classification

efforts in the TCGA Pan-Cancer analysis consortia, both in its second generation publi-

cations [275]. It is a dedicated tool for interactive visualization dimensionality reduction

analyses, most often used in pan-cancer analysis. It offers features on user-controlled

custom selections, filtering, pathway enrichment analysis. In its very specific usage do-

main, it is a very good tool albeit with limited performance likely due to the complexity

of the datasets involved.

vii) OncoScape (2018) [482] is a comprehensive integrative omics data analysis and visu-

alization portal. It offers both a broad range of data analysis and visualization features

including PCA, Survival analysis, visualization of mutations among others. It is a rela-

tively new tool, and its adoption in our community is yet difficult to assess.

viii) Vizome (2018) [483] The Beat AML study’s data portal with extensive visualization

features for genomic variants, gene expression, tumour evolution, protein alterating mu-

tation summarization, drug response, clinical metadata and gene set enrichment. It has

excellent features for subcohort definitions but lacks features for user-controlled data

analysis and integrative omics data analysis. Interestingly, it seems to be a prototype

with no information regarding its developer team or its own publication.

The state of the literature for omics data analysis and visualization platforms clearly showed

a lack of development in the visualization of structural variants. This is partially due to the ex-

cellent availability of Whole-Exome Sequencing (WES) data with Whole-Genome Sequencing

(WGS) data lagging behind [275]. Of the tools presented thus far, only R2 and OncoScape have

an interactive Circos plot feature, even though this might change in the future with better avail-

ability of WGS data and libraries to plot Circos plots in the browser such as BioCircos.js [484].

In addition to the (omics) domain-specific visualization libraries and data portals discussed

here, Jeffrey Heer’s (University of Washington) work deserves a mention as his group has been

pioneering in the field of modern interactive data visualization: The Protovis toolkit [485], was

the predecessor of the seminal D3.js data visualization library [329], which has since estab-

lished itself as a standard tool for data visualization in the web. One of the recent innovations
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from this group includes the Vega-Lite algorithm which facilitates automatic interactive plot

generation from simple, declarative, non-programmatical expressions [486], underlining the

powerful capabilities of web-based visualizations. D3.js formed the technical backbone of this

dissertation chapter’s work.

Having developed a well-performing structural variant(SV) detection algorithm in SOPHIA,

and further tools for follow-up analysis studying the impact of SVs on potential target genes,

I turned my attention to the open question of data integration, visualization, and sharing for

multi-omics datasets. One of the primary motivations of investigating SVs is studying their ef-

fects on phenotypes like survival or gene expression, such as gene activations via enhancer hi-

jacking and amplifications or loss of expression via homozygous deletions or loss of proximity

to regulatory activators such as enhancers. Other such interesting processes include ”double-

hits” involving the loss of one allele by a copy number loss or a SV and the other via a deac-

tivating small variant, or ”multi-mechanism” activations of a gene involving amplifications or

small variants in different patients which are often mutually exclusive. Of course, the eventual

aim of such investigations is to reach biological insights, which is only possible in the context

of established biological knowledge in databases of measurements or publications.

The result of my work was a comprehensive omics data analysis and visualization por-

tal named EPISTEME. EPISTEME addresses the variant-to-variant, variant-to-phenotype, and

observation-to-database integrations in an accessible manner empowering generators of omics

data to rapidly reach and share biological insights without extensive consultation to bioinfor-

matics experts for most steps. Indeed, EPISTEME was to a great extent motivated by my

own experiences in collaborative projects: Following the development of SOPHIA, I had the

opportunity as an ”SV-Expert” to extensively interact with scientists who are not from a com-

putational background, therefore depending on computational biologists to access their data.

This access is enabled by the computational biologist providing them with visualizations on

comprehensively pre-processed, quality-controlled, processed and analysed data. While the

pre-processing, quality-control, processing and some advanced types of data analysis are most

logically executed by a computational expert, most types of data analysis and data visualization

can in principle be executed by any scientist with sufficient domain knowledge. This is partly

due to the great exposure of biologists and medical doctors to the explosive growth in omics

data-driven knowledge, which introduced a broad audience to omics data types and common

visualization approaches [276], [471]. However, in daily practice, execution of simple analy-

ses such as differential gene expression analysis, preparation of simple visualization such as

Circos plots, scatter plots or volcano plots most frequently is the responsibility of the com-

putational biologists. Simple questions like ”Which patients have a structural variant on or

near the MYC gene in my cohort?”, ”Which patients overexpress the CCND1 gene, and how

many of those cases are TP53 mutant?”, ”What are the genome-wide SVs observed in these 3

cases, displayed on a Circos plot?” can rapidly accumulate over the course of a collaborative

consortium project, taking valuable time away from computational biologists which could bet-

ter be spent on advanced method development and programming of cutting-edge data analysis

algorithms with the capacity of a bioinformatician. On the other hand, the dependence of the

biologists and medical doctors on other team members for very simple tasks can lead to delays
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in a project’s progression. Based on these observations and my personal experiences in terms

of which analysis tasks are the most common and how amenable they are to computational

biologist-independent execution, I developed EPISTEME.

3.2 Methods

3.2.1 Study Design

EPISTEME is designed to integrate genomic variant data with omics phenotype data and clin-

ical metadata. In its current form, it uses as variant data: SNVs, small indels (defined as

short enough insertions and deletions to map correctly as single gapped reads and not create

split reads in alignment), copy number variants, SVs, and cohort-wide recurrence profiles of

these variant classes. As for phenotype data, it currently uses overall survival data and gene

expression profiles from RNA-sequencing or RNA microarrays as well as beta values from

methylation array assays. Figure 3.1 summarizes the process that EPISTEME uses to generate

integrative cohort-wide and per-patient analyses from genomic variant and multi-omics phe-

notype and clinical (meta-)data, producing interactive, customizable and, publication-quality

visualizations.
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3.2.2 Data Sources

EPISTEME processes and visualizes somatic small variants including single nucleotide vari-

ations (SNVs) and small insertions and deletions, Copy Number Variants(CNVs) and Loss of

Heterozygosity (LOH), and Structural Variants (SVs).

For the detection of somatic small variants, the methods follow those as presented in [211],

using mpileup [362] for SNVs and Platypus for [306] small indels. Mutational signatures are

analysed by DeconstructSigs [305] with standard parameters using ”genome” for WGS and

”exome2genome” for WES data.

Small variant annotations are done by ANNOVAR [487] as outlined in the studies cited

for describing the method of detection. The following classes of SNVs were considered func-

tional: nonsynonymous SNVs, stoploss and stopgain variants, frameshift and non-frameshift

indels and splice site variants. In addition, ”upstream”, ”downstream” and UTR3/5 variants as

annotated by ANNOVAR were included in the variants database for further analysis.

Copy number variants and LOH are called using the ACEseq algorithm [309] developed by

Kortine Kleinheinz in DKFZ Heidelberg using the default DKFZ workflow [309]. The ACESeq

workflow yields segments along with their estimated copy number values and LOH status. As

pre-processing for EPISTEME, homozygously deleted segments smaller than 1000 base-pairs

and Segments on chrY are excluded from the results. The estimated tumour copy number for

each segment is rounded and compared to the rounded estimated base copy number of the tu-

mour. If TCNsegment > TCNbase, the segment is considered gained whereas TCNsegment >

3 ∗ TCNbase, the segment is considered amplified. Similarly, if TCNsegment < TCNbase, the

segment is considered lost, whereas if TCNsegment = 0, the segment is considered homozy-

gously deleted.

Structural variants are called using the SOPHIA algorithm described in the Chapter 2.

Recurrence of SVs based on TAD hits is analysed as described in Section 2.2.10.

RNA-Seq and RNA Microarray data is processed as described in Section 2.2.11. For di-

mensionality reduction, top N most variable genes were determined while excluding gonoso-

mal genes.

Methylome data from methylation arrays and Reverse Phase Protein Lysate Microarray

(RPPA) data for TCGA projects are obtained from the Genomics Data Commons (GDC) mir-

ror of UCSC Xena [455] as normalized values without further transformations. Probes were

filtered following the suggestions in [488], filtering out common SNPs, gonosome probes and

underperforming probes as well as non CpG probes.

Genes and TADs are defined as described in Section 2.2.10.3.

3.2.3 Data Storage Backend

EPISTEME efficiently uses a SQL database (MariaDB) for minimizing the persistent data stor-

age inside a given browser session. High-dimensional omics data is fetched dynamically, on

an as-needed basis (Figure 3.2).
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visualizing correspondences between chromosomes such as chromatin interactions or translo-

cations. Thus, EPISTEME maintains this standard in visualizing the mutational landscape of a

cancer cohort.

EPISTEME organizes the genome in a hierarchy:

• Chromosomes, used only for visualization and zooming

• Chromosome arms, used only for visualization and zooming

• Cytobands, used for visualization, zooming and annotations

• TADs, used for visualization, annotations, variant recurrence visualization

EPISTEME maps genomic coordinates to Θ angles in a way allowing a dynamic and rapid

switching between individually controllable magnification levels for each cytoband. Empha-

sizing particular chromosomes, chromosome arms or cytobands and showing regions rich in

important SVs in higher detail is a trivial action in EPISTEME. Because TAD boundaries de-

fine overlapping TADs, the smallest non-overlapping segments of the genome are cytobands.

Each cytoband has a coefficient, which is increased to emphasize, or decreased to de-emphasize

the contributions of the given cytoband to the overall calculation of Θ.

Each genomic location is defined as a pairing of chromosome and position on the chromo-

some. This pairing can be converted to an ”absolute position” using the following formulas.

Given the genomic location defined on chromosome with the index K, and on position pos,

this position is on the Qth cytoband of chromosome K, separated from the next chromosome

K + 1 by a padded gap Gapi.

Θ(chrK , pos) =
Lelapsed(chrK , pos)

TotalGenomeLengthWithGaps
π +Θoffset

Lelapsed(chrk, pos) =

K−1
∑

i=1

(Li +Gapi)+

PosOnChrKBeforeCytobandQ+

CoeffCytobandQ ∗ LenCytobandQ

Li =

NumCytobandsi
∑

p=1

(CoeffCytobandp ∗ LenCytobandp)

PosOnChrKBeforeCytobandQ =

Q
∑

p=1

(CoeffCytobandp ∗ LenCytobandp)

To make this calculation much quicker, EPISTEME stores the Lelapsed for all cytobands for

a given set of zooming coefficient values. Anytime the user changes a coefficients, this lookup

table is updated. The lookup table simplifies the equation dramatically:

Θ(chrK , pos) =
Lelapsed(chrK , pos)

TotalGenomeLengthWithGaps
π +Θoffset
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Lelapsed(chrk, pos) = LElapsedBeforeChromosomeKCytobandQ+

CoeffCytobandQ ∗ LenCytobandQ

This very fast memoization of LElapsedBeforeChromosomeKCytobandQ for rapidly calculat-

ing genomic theta values makes the plotting zooming and rotation, of the Circos plots much

faster. The user can interact with the Θoffset parameter or any of the zooming coefficients

CoeffCytoband to modify the rotation and zooming characteristics of the plot. Zooming

in or out on a chromosome, or chromosome arm sets the coefficients for each cytoband on

the chromosome (arm) to the set value. Finer grained control over zooming is established by

modifying the coefficient for individual cytobands.

As in the Circos package, EPISTEME uses quadratic Bézier curves to represent individual

SVs or small variants. As standard tools in computer graphics, quadratic Bézier curves have an

implementation in the SVG standard and are straightforward to use.

A Bézier curve in 2D space consists of 6 polar coordinates:

• Rstart,Θstart

• Rcontrol,Θcontrol

• Rend,Θend

,with R = Rstart = Rend.

Θstart and Θend are determined by genomic positions as described. The control points are

determined by the type and size of the displayed genomic variant: Rcontrol = (1−hvariant)∗R

Θcontrol = 0.5 ∗ (Θstart +Θend)

hvariant =



















0.15, SmallV ariant

0.35, MediumV ariant

1, LargeV ariant

With small variants are intrachromosomal variants spanning less than 9 MB, medium vari-

ants are intrachromosomal variants spanning less than 18 MB and large variants are any other

variants.

These definitions allow users to visually distinguish between genomic variants of different

sizes.

Genomic variant recurrence is plotted as polar arc spanning a TAD or gene borders. A

polar arc is defined with four coordinates in 2D space:

• Rstart,Θstart

• Rend,Θend

Θstart and Θend are defined using the genomic coordinate to Θ mapping approach as described.

For TADs, the results are used as calculated, while for genes, if the Θend−Θstart < 0.01(rad),

it is expanded to as ΘstartNew = 0.5∗ (Θstart+Θend)−0.005 and ΘendNew = 0.5∗ (Θstart+

Θend) + 0.005.
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Rstart is determined by the starting point of the arc wheel on the Circos plot, which will be

explained in Section 3.3.1. Rend is determined by the formula Rend = min(Rwheel, Rstart +

(
recurrenceTAD/Gene

recurrencemaxCohort
)(Rwheel −Rstart)). recurrencemaxCohort is a user-controllable parame-

ter allowing the modulation of the heights of the recurrence of interest, used in the interactions

of Section 3.3.1.

3.2.6 Data Analysis Features

EPISTEME provides a number of data analysis tools, of which most originate from open source

JavaScript repositories. Some useful tools were hand-converted to the web-compatible lan-

guage JavaScript if they were not otherwise available as JavaScript code.

Analysis Type Repository Version Comments

tSNE github.com /karpa-

thy/tsnejs

- Hand-optimized and

added support for

late-exaggeration

UMAP github.com /lm-

cinnes/umap

0.3.8 Hand-converted to

JavaScript

Eigenvalue Decompo-

sition (for UMAP)

github.com

/mljs/matrix

5.2.1

PCA github.com /mljs/pca 2.1.0

Hierarchical Cluster-

ing

github.com /tay-

den/clusterfck

0.7.0

K-means Clustering github.com

/Philmod/node-

kmeans

1.1.8

K-medoids Clustering github.com /stewart-

r/k-medoids

1.0.4

Fuzzy DBSCAN

Clustering

github.com

/schulzch/fuzzy-

dbscan-js

1.0.1

OPTICS Clustering github.com

/uhho/density-

clustering

1.3.0

Concave Hull fitting github.com /map-

box/concaveman

1.1.1

Kernel Density Esti-

mation

github.com

/Planeshifter/kernel-

smooth

0.2.3

Sheather-Jones Band-

width (KDE)

github.com /Neo-

jume/pythonABC

Hand-converted to

JavaScript

Kolmogorov-Smirnov

Test

github.com /pieter-

provoost/jerzy

0.2.1
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T-Test github.com /pieter-

provoost/jerzy

0.2.1

Kruskal-Wallis Test lib.stat.cmu.edu

/apstat/245

- Hand-converted to

JavaScript

Fisher’s Exact Test bioinfo.iric.ca

/a-javascript-

implementation-

of-the-non-central-

version-of-fishers-

exact-test/

-

All of these features/analyses run on the client-side with no processing load on the EPIS-

TEME server.

3.2.7 Database Integrations

EPISTEME offers extensive integrations to genomic databases for interactive analysis, which

are tailored to the needs of each visualization type.

Gene names are linked to Genecards [489] [490] regardless of visualization type. Gene

names are additionally linked to PubMed [491] in ”Variant-Expression Dysregulation Volcano

Plot” and ”Gene / Protein Expression Plot with Variant Annotations” visualizations to check

the novelty of dysregulated genes.

Genomic variant data annotations are linked to UCSC Genome Browser [492]. SV data an-

notations are additionally linked to dbSUPER [493] for superenhancer annotations, and NCBI

BLAST [494] for split read overhang annotations.

Visualizations including gene lists such as Volcano or 1-vs-All Correlation plots are linked

to a number of options for pathway enrichment / gene set analysis: DAVID [495], Reactome

[496], GSEA [497], ConsensusPathDB CPDB [498].

3.2.8 Differential Expression Analysis

Differential expression analysis combines the measures ”statistical significance” showing the

consistency of a difference across two groups and ”fold change” showing the magnitude of

a difference between two groups. Fold change and statistical significance information can be

depicted in a ”volcano plot”, a standard visualization technique for differential gene expression

analysis across the whole measured transcriptome: [499]. Each underlying data point in a

volcano plot represents a gene (or some other single omics phenotype measurement such as

protein expression or metabolite concentration).

EPISTEME approximates statistical significance by four methods:

i) modified Kruskal-Wallis test,

ii) Kolmogorov-Smirnov test,

iii) Student’s T-Test,
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iv) Fisher’s Exact Test on Jenks-Optimized Breaks (only in variant-integrated mode)

For the modified Kruskal-Wallis test, no tie-correction is applied, but rather the input expres-

sions for both groups are shuffled 2 ∗T iesGroup1, or 2 ∗T iesGroup2 whichever is larger up to a

maximum number of 100 iterations. This procedure is inspired from permutation testing and is

adopted because of some practical issues regarding the tie-correction on some heavily repeated

samples. In its current implementation in EPISTEME, the Kolmogorov-Smirnov test is robust

against this issue and produces similar results, but is slower for in-browser calculations.

EPISTEME measures fold change by trimean, a robust estimator (= Q25+2∗Q50+Q75

4
); or

mean, a quantity sensitive to outliers. Robustness is usually a desirable property in statistical

comparisons, but in the context of genomic variant effects on gene expression, rare variants

with strong effects on gene expression leading to outlier observations in a cohort can be bio-

logically very interesting: rare enhancer hijacking events can be important oncogenic events

defining rare cancer subtypes [132]. In calculating fold change, because the underlying phe-

notype quantities are normalized as log2(x+ 1), mapping them back to the initial domain and

keeping the +1 increment ensures that each group has nonzero mean or trimean values for a

fold change comparison: FC = log2(
2V al1

2V al2
+ 1). This quantity ensures that events like the

activation of a gene from 0 expression can be properly quantified.

EPISTEME offers two types of differential expression analysis for distinctly different pur-

poses:

1. A differential expression analysis comparing two static groups chosen with arbitrary

criteria (expression of an anchor gene, existence of a particular variant, tumour grade,

gender etc.) In this analysis, the group sizes remain constant and results can be filtered

for significance or fold change. In this mode, EPISTEME uses the trimean as the default

fold change measure. This is a common type of bioinformatics data analysis.

2. A differential expression analysis for each gene with dynamic sample sizes based on

variant status, with the aim of studying gene dysregulation. For each gene, the EPIS-

TEME divides a cohort into a Variant+ and a Variant- subcohort, which changes for

any gene based on the existence status of the investigated variant types. Consequently,

the sample sizes for each result data point will differ and the results cannot be filtered

by significance or fold change and serve a purely exploratory purpose for discovering

dyresulated genes due to genomic variants. In this mode, EPISTEME uses the mean as

the default fold change measure. This is a non-canonical analysis and a novel approach

offered by EPISTEME.

3.2.8.1 Special Properties of Variant-Integrated Phenotype Dysregulation Analysis

EPISTEME’s variant-integrated phenotype (gene/protein) dysregulation analysis, is exploratory:

EPISTEME makes no attempts to reduce the whole transcriptome to a list of candidate genes of

assumed significance. This has a few underlying reasons, discussed on the particular example

of SVs as variants: i) as discussed in the unpaired test consideration for the choice of the statis-

tical test, the sample sizes for each group are different for each gene. This excludes the setting

of a single p-value cutoff point, ii) the methods used for estimating the potential effect of an SV
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on gene expression are not an exact indicator for SV-gene associations due to inaccuracies of

TAD boundaries, nested TAD structures, potential impact of long-range interactions that affect

genes on distant TADs and finally SVs that fall on a TAD but have no regulatory effect on a gene

of interest residing on the TAD or one of its neighbours. Hence, there can be false positives

and negatives due to inaccuracies in SV-gene associations, iii) finally, the SV detection algo-

rithm used for this analysis can have false positive and false negative results leading to noise

in the estimated SV-gene-expression associations. If the aim of this analysis is to identify gene

activation or inactivation due to different genomic variants, considering the points discussed

above, the problem statement for variant-gene expression association analysis can be changed

from a simple rank-based comparison of Variant+ vs. Variant- groups to the question ”are pa-

tients carrying variants of a given class of genomic variants more likely to have higher or lower

gene expression values based on rank?”. In order to address this specific question of enrich-

ment of gene over/underexpression for a variant class, EPISTEME uses a sweeping application

of the statistical testing which attempts to maximize approximated statistical significance by

selectively eliminating Variant+ data points, which are estimated to be potentially due to noise.

The following steps are applied: i) the robust estimator, trimean is used to determine the side

of sample eliminations, ii) there are at least two patients with Variant+ status, iii) at most 1/4

of samples with Variant+ status from the initial state are eliminated, iv) eliminations stop if the

estimated significance is not increased. Within the constraints of exploratory analysis, this pro-

cedure de-emphasizes erroneous, passenger or otherwise noise-related variants from Variant+

cases leading to the opposite effect on gene expression for a gene of interest. This approach,

while making it visually much easier to identify outlier gene candidates in the volcano plot,

would not be mathematically valid in hypothesis testing but is useful especially in the identifi-

cation of rare events of enhancer hijacking. Due to the complexity of this described procedure

and the large number of combinatorial possibilities for allowed variant type combinations, this

analysis is currently implemented as an upstream and precomputed type of analysis, where

EPISTEME fetches results for each affected gene/protein if a variant-expression association

volcano is requested by the user. Hence, it is limited to a visualization on a whole-cohort and

not flexible applications to subsets of patients. Currently, this is the only analysis type with this

weakness, and should be addressed, making this analysis dynamically runnable in the browser.

In addition to this important non-standard approach, Variant-Integrated Phenotype Dys-

regulation Analysis has a statistical test option named Fisher’s Exact Test on Jenks-Optimized

Breaks which divides a cohort into two not based on variant status but rather ”breaks” in phe-

notype quantities. Jenks’ natural break optimization algorithm was initially described for op-

timized categorizations in cartography data [500]. While the algorithm is designed to accept

an arbitrary number of expected breaks, for this analysis it is applied with 1 expected break-

point, signifying a bimodal distribution. Using this breakpoint, the cohort is separated into two

subcohorts, Phenohigh & Phenolow and compared these two groups using fold change measures

as described. For statistical significance, the groups Phenohigh & Phenolow are analysed to-

gether with the groups Variant+ & Variant+ as a contingency table followed by the application

of Fisher’s Exact Test. This test allows the detection of dysregulated genes with explained

(variant-caused) and unexplained variance/bimodality.
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3.3 Results

In the following sections, all major and most minor data visualization modules of EPISTEME

will be presented, describing their design principles, visualization strategies, data analysis fea-

tures, integrations to other visualizations, user interaction features and database integrations.

The sections are organized in roughly chronological order of feature development, wherever

this does not disturb a logical flow in the presentation. This design should therefore reflect the

evolution of EPISTEME’s features and concepts. The overarching concept in the introduction

to EPISTEME is the usage of ”pilot cohorts”: while introducing each data analysis feature or

data visualization approach ”pilot cohorts” of well-studied diseases and established biological

knowledge will be used.

3.3.1 A Cohort-Wide Circos Plot for Visualization of Mutational Landscapes

The cohort-wide Circos plot is the starting figure for any cohort in EPISTEME and serves the

important purpose of summarizing the genomic variant landscape of a cohort. It displays recur-

rence frequencies of flexibly selectable genomic variant types as well as the variants themselves

in an interactive visualization with extensive integrations to databases.

To showcase the features of the cohort-wide Circos plots, the TCGA Glioblastoma Multi-

forme study [501] will serve as the demonstration cohort, focusing on the subset of cases which

were sequenced using Whole Genome Sequencing and analysed in the Pan-Cancer Analysis of

Whole Genomes Project. The motivation in selecting this disease and project were as follows:

i) The TCGA-GBM cohort is a medium-sized (41) cohort with a sufficient size to showcase

its genomic variant landscape features,

ii) The TCGA-GBM cohort is a heterogenous cohort with subpopulations such as EGFRamp,

TP53mut, CDK4amp,PDGFRAamp,

iii) The TCGA-GBM cohort has both chromosome, chromosome arm and focal CNV and

LOH events,

iv) The TCGA-GBM cohort does not have a generally high load of SVs (unlike BRCA) or

SNVs (unlike SKCM or COAD), leading to results being easier to emphasize

Figure 3.4 displays the result of this section’s concepts on visualizing mutational land-

scapes with Circos plots.
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cytoband annotations).

3.3.1.3 Interactive Visualization and Annotation of Copy Number Variant and LOH Recur-

rence

CNVs are represented in a very similar way to SVs using a TAD-centric approach. The main

difference here is that CNVs can both be in a ”gain” or ”loss” direction. Hence, deviations from

a baseline in each direction are visualized. A given locus (TAD) can be lost in some patients

and gained in others and vice versa.

Figure 3.12 represents the Copy-Neutral-LOH (cnLOH), CNV and combined CNV-LOH

recurrence landscape of TCGA-GBM. The cnLOH contributions to the combined CNV-LOH

recurrence calculation is made on the Copy-Loss side. The results indicate the prevalence

of cnLOH events affecting chr17p containing the master tumour suppressor gene TP53. The

canonical mechanism of the two-hit loss on TP53 is via a copy number loss affecting a single

copy and a point mutation affecting the other. TCGA-GBM shows here a different mechanism,

useful for showcasing this visualization in EPISTEME.
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3.3.2 ”Single-Phenotype Analysis Plots”

EPISTEME has a number of features for analysing and visualizing phenotype data, such as

quantitative omics data. Gene expression is a crucial source of biological information combin-

ing influences from the cell type and the oncogenic dysregulation that comes on top of the cell

of origin such as homozygous deletions, amplifications or enhancer hijacking events. Thus,

studying the transcriptome motivated a number of both dedicated and generalizable visualiza-

tions of EPISTEME. This section will show a dedicated representation of the transcriptome

and proteome (RPPA) data on the basis of single phenotypic quantities (single genes or RPPA

antibodies), integrated with genomic variant information.

The gene expression for ALK gene in the GPOH-NB study will serve as a pilot for the

demonstration of single-phenotype analysis because it shows both a diversity of genomic vari-

ant types and expression levels. ALK is an oncogene in multiple cancer types including lym-

phoma and non-small cell lung cancer, with the remarkable property that its product protein

is targetable by small inhibitor molecules [139]. In particular, its role in neuroblastoma is of

great interest due to the general lack of targetable alterations in that entity [502].
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• Small central circles encoding different types of small variants (yellow: nonsynonymous

SNV, orange: nontruncating/nonframeshift indel, purple: truncating/stopgain/stoploss

SNV, pink: splice-site small variant, pink: synonymous SNV),

• Small left-sided circles encoding upstream (red) and 5’UTR (black) variants,

• Small left-sided circles encoding downstream (yellow) and 3’UTR (black) variants,

• Small upper circles encoding CN gain status (pink: low-order gain, red: amplification),

• Small lower circles encoding CN loss status (green: low-order loss, blue: homozygous

loss, black: LOH),

. This described colouring scheme allows the packing of a large number of variant classes in an

intuitively understandable visualization, where users get a quick overview of the diverse types

of variants that affect a particular gene for each patient in a cohort and associate it visually with

expression changes. Figure 3.14 shows 5 ALK-amplified cases and 19 cases with nonsynony-

mous SNVs with no overlap. Remarkably, both of these variant types are also associated with

higher expression of the gene, which is a nontrivial observation for nonsynonymous SNVs in

contrast to amplifications, where such an upregulation is expected and stronger.

As with other EPISTEME visualizations, single-phenotype plots are also interactive. Users

can enlarge the default sizes of the circles (risking the emergence of hard to read overlaps

between patients), hover on variant circles to find out which patient is showing which type

of genomic variant or click on the different variant circles to get detailed annotations on the

underlying variant call data that led to the variant existence calls (Figure 3.15).
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telomere activation mechanism in high-risk neuroblastoma [506].

We analysed the expressions of the MYCN and TERT genes in the GPOH Neuroblastoma

study (Figure 3.17). This study encompasses low-risk, intermediate-risk and high-risk neu-

roblastoma, presenting a broad range of disease progression characteristics and disease pheno-

types. ”Two-Phenotype Analysis Plots” in EPISTEME use one gene as an ”anchor” and ranks

patients in ascending order with respect to the anchor gene’s expression. Here we took MYCN

as the anchor gene, showing a clearly bimodal characteristic with the MYCN amplified subtype

with significantly higher expression values. The MYCN amplifications and their corresponding

SVs are observable, strongly suggesting them to be the underlying cause of the gene’s signifi-

cant overexpression. Overlaying TERT expressions using the anchor gene MYCN’s expressions

defining the order of the donors, shows four modes of TERT expression:

• Low TERT, exclusively seen in cases with low MYCN expression

• TERT activation via structural rearrangements (red or black main variant circles), almost

exclusively seen in cases with low MYCN expression,

• MYCN-mediated TERT activation,

• non-MYCN-mediated, low-level TERT activation with an unknown mechanism (gray

main variant circles) (as discussed in [212]).
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though a ”neuronal subtype” in the sense of the bladder cancer subtype with the same name

[516] does not exist in gastric adenocarcinoma, the concept of neuroendocrine differentiation

does exist [517] [518]. Furthermore, it was recently shown that cancer cell-nerve interactions

in the gastric tumour microenvironment promote tumourigenesis by upregulation of WNT sig-

nalling [519]. Interestingly, the latter study followed earlier work demonstrating the tumour

suppressing effects of denervation in gastric cancer [520]. While we cannot yet propose a

model connecting these concepts to the upregulation of TTYH1 or NRCAM, potentially due

to non-amplified rearrangements, EPISTEME provides valuable starting points for hypothesis

building in an easily accessible manner.

3.3.3.3 Interactive features of Volcano Plots in EPISTEME

As with other visualizations, ”variant-expression dysregulation volcano plots” are highly inter-

active, offering modifications of the visualization, and integrations to databases to facilitate the

exploration of the results.

1. The users have the free choice of which variant types to include in the analysis, which

gene types to show, which statistical significance and fold change measures to use (Fig-

ure 3.18)

2. Individual genes or groups of genes on user-selected cytobands can be hidden from view

to facilitate discovery of novel candidate genes by suppressing contributions from known

loci

3. EPISTEME allows users to label genes with draggable labels to improve readability

(Figures 3.19, 3.20, 3.22 and 3.23). Gene labels can be clicked on to go to GeneCards.

4. The list of genes labelled at any time, can be quickly sent to external resources for path-

way enrichment / gene set analysis (DAVID, Reactome, GSEA, CPDB).

5. Genes can be labelled by clicking on the data points on the volcano plot or explicitly

naming the gene to label in a gene selector. The explicit naming of a gene is useful for

finding a gene of interest, particularly if it is not a strong outlier data point.

6. Multiple genes on a cytoband can be labelled by choosing any gene on the cytoband

of interest or explicitly naming the cytoband carrying the genes to label in a cytoband

selector.

7. Multiple genes can also be labelled by dragging a selection box on the volcano plot

8. Clicking on a single data point, in addition to labelling the selected gene (or protein etc.),

launches an auxiliary instance of the Single-Phenotype analysis plot described in Section

3.3.2, (Figure 3.25). This allows the users to get a quick overview on the underlying data

for a given data point in the volcano plot. One can thus investigate why a particular point

is an outlier or not, and which variant types are responsible for a possible dysregulation.
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3.3.4 Managing and Classifying Quantitative and Categorical Data in a Cohort Study in

EPISTEME

EPISTEME parses, processes, automatically categorizes, and flexibly visualizes quantitative

and categorical data in a cohort study. The input data is a spreadsheet where each row corre-

sponds to a patient/donor and each column corresponds to a variable. During cohort initializa-

tion, each donor-variable data point is tested for being a number or not, also taking into account

typical missing value strings ”NAN”,”NaN”,”NA”,”N.A” and ””(blank). Variables with only

numeric or missing values are considered to constitute quantitative data, whereas variables that

do not fulfil this condition constitute categorical data. There is a third, internal, variable type

in EPISTEME, called ”multi-categorical”. The semicolon character ”;” is considered a spe-

cial character in EPISTEME separating different values for a given donor and variable. For

instance, the value ”MYC;CCND1” in a ”multi-categorical” ”V(D)J target” column for a given

patient would indicate that both MYC and CCND1 genes are targeted by detected V(D)J / CSR

rearrangements for that patient. This allows the consideration of a case to belong to multiple

categories.

The quantitative or categorical nature of the underlying data determines the subcohort se-

lection and data visualization features offered in EPISTEME. The appropriate routine is se-

lected by EPISTEME in the background with no user involvement, and will be described in

Section 3.3.5 for visualizations and Section 3.3.8 for selections.

EPISTEME gives users an overview of the quantitative and categorical metadata with a

sortable and searchable spreadsheet with a ”frozen” first column and row, to facilitate the

preliminary exploration of the data. The spreadsheet (Figure 3.26) can be extended by user-

selected data such as chromosome arm variants, cytoband variants, gene expressions, gene

variants and RPPA expressions, which leads to the automatic classification of the added data as

quantitative or categorical and an update of the spreadsheet (Figure 3.27). These user-selected

data can then be used for all subcohort selection and data visualization features of EPISTEME

in the same manner as the original metadata of the cohort.
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3.3.5 Flexible 2D Plots in EPISTEME

EPISTEME offers a 2D plot grid where 2D subplots of different sizes can be created with

individual parameters. The individual subplots encode different data types in the X-axis, Y-

axis, colour, symbol and radius, flexibly chosen by the user:

1. X and Y axis data are mandatory and can either be quantitative or categorical. A donor

with missing data on either, will not appear on the plot as a data point.

2. Colour-assigned data can either be quantitative or categorical. If quantitative, a donor

with missing data on the column used for the colour encoding, will not appear on the

plot as a data point. If categorical, missing values will be assigned their own colour.

3. Symbol data must be categorical. Missing values will be assigned their own symbol.

There are up to 7 available symbols, so categorical variables with more than 7 different

values are not encodable by symbols.

4. Radius data must be quantitative. A donor with missing data on the column used for the

radius encoding, will not appear on the plot as a data point.

For figures with encoded colour, symbol or radius data, EPISTEME generates a legend

that describes the data assigned to each encoding. Figure 3.28 is a demonstration of a multiplot

including the following features on the TCGA-BRCA (WGS) cohort:

• Multiplots with different sizes

• X,Y,colour,symbol,radius encoding

• Legend for colour, symbol , radius encodings

• Box-KDE-Jitter plots categorical-quantitative data in two orientations

• Stacked bar chart for categorical-quantitative data for the special case where the ”donor”

entry corresponds to the categorical data selection

• Scatter plot for quantitative-quantitative data
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The ERBB2 gene shows a bimodal characteristic in the Luminal B but interestingly also in

the Her2 subtype. The low-expressor Her2 cases suggest a similar cell of origin that led to the

Her2 PAM50 classification but low ERBB2 expression due to low purity or another influence.

As with the ESR1 gene, it is invariably expressed with low levels in the Basal-like subtype.

For both genes, the cases with available RNA data but no available PAM50 classification

(due to lack of metadata) seem to cluster with the Basal-like subtype.

Flexible 2D Plots in EPISTEME are highly interactive like with its other features. Each

data point corresponds to a donor, and donors can be marked using draggable labels either by

clicking or explicit donor selection (Figure 3.29). Multiple donors can be marked to define,

multi-mark or shade a subgroup, which will be discussed in Section 3.3.8.

3.3.5.2 Stacked Bar Charts Visualizing Categorical-Quantitative Data in EPISTEME

A special case in the analysis of categorical-vs-quantitative data arises when the categorical

data column corresponds to the ”donor” data, meaning that for each donor, there can be only

one data point and each donor thus corresponds to a category/group in the categorical variable.

This special configuration can be used to visualize more than one quantitative variable using

”stacked bar charts”. Upon the selection of either the X or Y axis field as ”donor”, EPISTEME

switches to the stacked bar chart setup mode and offers the users to select one or more quanti-

tative data fields for visualization on the stacked bar chart (Figure 3.30). The stacked bar chart

mode recognizes all quantitative data fields as possible inputs and offers special checkboxes

for mass-selection of mutational signatures for either relative contributions or absolute contri-

butions, so that the users do not have to click on each signature contribution up to 31 times (30

COSMIC signatures + unknown/other contributions).
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clusively cluster with the Her2 PAM50 subtype (Her2 is an alternative name for the ERBB2

gene) 2. Low ERBB2 and low ESR1 expressing cases exclusively cluster in the Basal and ”un-

known” PAM50 subtypes 3. ESR1 expression does not clearly separate the Luminal A and

Luminal B subtypes.. While these observations do not constitute novel findings, they serve

as a good demonstration of the interpretation of data in a scatter plot in EPISTEME with the

support of its legend feature. The following sections will discuss the dimensionality reduction

and clustering features building on the scatter plot feature of EPISTEME.

3.3.6 Dimensionality Reduction of High-Dimensional Omics Data in EPISTEME

Dimensionality reduction is a central concept in the analysis of high-dimensional omics datasets.

An omics assay such as RNASeq can quantify all genes in a cohort (order of 10000 data points)

or a methylation probe array assay can quantify the methylation states of even more (order of

100000 or 1000000 data points). Such high dimensional data poses challenges such as prob-

lems in the usage of distance functions, overfitting of classifiers, computational difficulties due

to combinatorial explosion of variables. In addition, the human visual perception is limited to

three dimensions and is most efficient in two dimension when interpreting data visualizations

on a computer screen or a paper medium. Thus, dimensionality reduction is useful also for

visualization purposes.

The variance in a dataset is usually captured by the identification of hidden variables that

combine information from multiple dimensions (such as multiple genes, probes etc.) and rep-

resenting them as a single pseudo-dimension. For example, in the usage of the Principle Com-

ponent Analysis (PCA) technique, these pseudo-dimensions are called principle components.

By summarizing the high-dimensional data of omics experiments in low-dimensional spaces,

users get benefits both in analysis and visualization, making such techniques a key component

of successful large cancer omics projects [218] [353], which serves as an important motivator

in making these features available in EPISTEME.

EPISTEME currently offers dimensionality reduction on gene expressions, methylation

probes, TAD-based SV recurrence, TAD-based CNV recurrence and user-selected sets of quan-

titative metadata columns (such as mutational signatures presented in Section 3.3.5.2).

The following sections will describe the different approaches of dimensionality reduction

offered in EPISTEME and how they are visualized using the scatter plots previously described.

For these discussions, the entire cohort of the TCGA-BRCA project will be used as opposed to

the WGS subset. With 1233 donors, of which 1101 correspond to tumours and 132 correspond

to normal tissue that was surgically resected from the same patient along with the tumour,

this cohort is the largest in the whole TCGA study and has multiple subgroups to study, also

according to available classifiers. Thus, the TCGA-BRCA study is an ideal cohort to study

different approaches of dimensionality reduction and EPISTEME’s features in this field of data

analysis.

3.3.6.1 PCA in EPISTEME

EPISTEME currently offers and runs a dense, non-incremental PCA algorithm and automati-

cally assigns the top 10 principle components with respect to explained variance in the cohort
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with the tSNE algorithm.

3.3.6.4 Comparison of Dimensionality Reduction Techniques using a Multi-plot in EPIS-

TEME

Following testing and optimization of parameters for transcriptome analysis by tSNE and

UMAP, it is of interest to compare these two algorithms including their applications to methy-

lome data. In a 2-by-2 multiplot grid, the following configurations are compared using the

optimal parameters obtained from transcriptome analysis:

i) Upper-Left: tSNE-transcriptome (top 500 genes, perplexity 30 and late exaggeration

1.2),

ii) Upper-Right: tSNE-methylome (top 5000 probes, perplexity 30 and late exaggeration

1.2),

iii) Lower-Left: UMAP-transcriptome (top 500 genes, nNeighbors 15 and minDist 0.05),

iv) Lower-Right: UMAP-methylome (top 5000 probes, nNeighbors 15 and minDist 0.05),

.

Figure 3.41 summarizes the results from this comparison. The general structures are re-

markably similar between the two dimensionality reduction approaches, whereas the transcrip-

tome and methylome analyses yield slightly different results. The Basal-like and Normal-like

groups show excellent separation from the Luminal group in all configurations. The Lumi-

nal B group’s subtle co-clustering in transcriptome analysis is not maintained in methylome

analysis, suggesting a shared cell of origin with slightly different transcriptomic programmes

between the Luminal A and Luminal B groups. Without the colour-coding guiding this pro-

cess, clearly Luminal A and B groups would not emerge as distinct subtypes from any of the

chosen dimensionality techniques.
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investigations of the existence of cell of origin or transcriptomic regulation based subtypes in

a cohort.

3.3.7 Clustering in EPISTEME

Clustering is a central task in data analysis, giving users the power to detect patterns in un-

labelled data in an unsupervised manner. Clustering algorithms are based on different cluster

models in terms of criteria that determine co-clustering such as distance connectivity, local

density, centroids of a group of data points etc. EPISTEME implements clustering algorithms

from three strategies:

1. Connectivity-based, hierarchical clustering: agglomerative hierarchical clustering is im-

plicitly used in ordering rows and columns in the heatmap feature of EPISTEME (in

prototpye stage) and will not be discussed here

2. Centroid-based clustering: the K-means and K-medoids algorithms

3. Density-based clustering: the fuzzy DBSCAN and OPTICS algorithms

While the K-means and K-medoids algorithms are straightforward in terms of usage, apart

from the choice of an appropriate distance function and a K parameter indicating the expected

number of centroids, the fuzzy DBSCAN and OPTICS algorithms offer more parameters (Fig-

ure 3.43).
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3.3.8 Subcohort Selections in EPISTEME

In any data analysis setting, discovery and analysis of unknown and known subgroups of the

data is a crucial concept. This is also true for cohort analysis in omics data analysis projects,

where identification and designation of subcohorts opens up avenues for advanced comparative

data analysis approaches and leads to biological insights. EPISTEME offers powerful features

for designation of subcohorts from a number of its standard visualizations.

Subcohort selections are offered both for categorical and quantitative data and are tightly

integrated to previously introduced data visualization modules such as Circos plots and flexible

2D plots. The following comprehensively describe the subcohort designation features of EPIS-

TEME, in the order of previous introduction of the aforementioned data visualization features.

3.3.8.1 Subcohort Selection from Variant Recurrence Selections in Circos Plots

Any recurrence item in a Circos plot discussed in Sections 3.3.1.2, 3.3.1.3, 3.3.1.4 effectively

shows a selection of cases that fulfil a condition while excluding others. This information can

be used to define subcohorts (Figure 3.45), where the gene mutation recurrence layer (Figure

3.4, outermost arc) is used to extract the TP53 mutant cases in this cohort. EPISTEME thus

gives its users the ability to rapidly isolate the cases that contribute to any type of genomic

variant recurrence.
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• ESR1 expression follows a likely cell type dependent profile very similar to the previ-

ously discussed FOXA1 gene with near perfect separation of the two compared subco-

horts.

• PGR expression follows a likely cell type dependent profile, but not a cell-identity defin-

ing profile for these two subcohorts. Its suppression only in a subset of cases in the

Basal-rich subcohort is in support of the established knowledge that triple (ERBB2,

ESR1, PGR) negative breast cancer is distinct from the Basal-like subtype of breast can-

cer [535].

• ERBB2 expression follows a bimodal profile with high expressors exclusively observed

in ERBB2-amplified cases in the non-Basal-rich subcohort, suggesting a variant depen-

dent profile.

• FOXC1 expression follows a near-perfect separation similar to that observed in the FOXA1

gene, in the opposite direction. Its expression is exclusively, strongly and significantly

high in the Basal-rich subcohort. Due to its function as a developmental transcription

factor, it can be hypothesized to be a master regulator in the Basal-rich subcohort’s cell

of origin, which is in line with established knowledge regarding this gene and cell type

[536].
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differentially expressed if and how they are co-regulated. For instance, considering genes A

and B and subcohorts I and II, A and B can both be strongly differentially expressed between

the two subcohorts with both being exclusively highly expressed in I and vice versa in II. This

does not necessarily mean that all cases within subcohort I that express A medium-high, high,

or very high levels also express B with a similar pattern and vice versa. The existence of such an

agreement / correlation between two genes, regardless of a subcohort relationship, suggests co-

regulation where one of the genes might be activating the other or that they are co-activated by a

common upstream gene. The existence of an opposite relationship might suggest a suppression

of one by the other.

Such relationships can be studied by correlation analysis. EPISTEME analyses two mea-

sures for correlation analysis, visualizing them in a volcano-like plot: Linear correlation (Pear-

son Correlation), which estimates the accuracy of a linear model fit for the expression profiles

of two genes and rank-based correlation (Spearman Correlation), which estimates the consis-

tency of magnitude ranks for the same cases’ gene expressions for two genes of interest. Linear

correlation quantifies the strength of the co-regulation, and can be considered to be similar to

fold change. Rank-based correlation quantifies a rank-based consistency, and can be considered

to be similar to rank-based statistical significance. By default, EPISTEME visualizes correla-

tions as x = |ρPearson| and y = ρSpearman, which creates a volcano-like plot analogous to

differential gene expression analysis volcano plots.

EPISTEME analyses correlations of quantitative variables versus gene expressions in a

cohort or confined to a selected subcohort of interest. The quantitative variables which are to

be used as correlation anchors can themselves be gene expressions or any other quantitative

metadata variables such as patient age or survival. Rank-based correlation analysis starts to

become unreliable when there are a large number of ties leading to tied ranks. EPISTEME

uses a shuffling based calculation of Spearman Correlations to alleviate this problem, where

the input expressions for the anchor gene are shuffled 2 ∗T ies times up to a maximum number

of 100 iterations.

3.3.10.1 1-vs-all Correlation Analysis based on Gene Expression

The pilot analysis to showcase the correlation analysis features of EPISTEME is the correla-

tion of the gene FOXA1 versus all other genes in the TCGA-BRCA study, confined to tumour

samples excluding normal tissue specimens. FOXA1 constitutes an ideal showcase gene be-

cause its expression is nonzero for all samples and as a transcription factor, its expression is

expected to be highly correlated with its targets and regulators. Previously shown results in

the context of differential gene expression analysis in Section 3.3.9.4 suggest that the FOXC1

and FOXA1 genes might be potent master transcriptional regulators of the Basal-like and Lu-

minal cell types of breast cancer, respectively. In order to investigate if these two genes are

indeed mutually exclusive in terms of transcript factor usage and what genes are co-regulated

by FOXA1, a correlation analysis is the appropriate tool.

Figure 3.65 shows very strong linear and ranked-based correlation and anti-correlation

scores in the global correlation profile analysis of the FOXA1 gene, suggesting a role in direct

transcriptional regulatory activity. ESR1, GATA3, TTC6, TTC8, AR are among the co-regulated
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and hypotheses has not only been shown in the novel enhancer hijacking candidates in gastric

adenocarcinoma in this chapter, but also in a number of DKFZ projects which will be presented

in the next and final Chapter 4 of this dissertation.

3.4.1 Development Roadmap for EPISTEME

EPISTEME is a work under constant development. Thanks to the excellent availability of

genomics data from international consortia and the DKFZ Heidelberg’s wide spectrum of

projects, the flexibility of the D3.js framework under JavaScript, and the growing power of

SVG rendering and interactivity, it is a technically challenging but feasible and rewarding en-

deavour to implement new data types, visualizations and interactions into EPISTEME. The

following is a summary of planned near-term features and possible strategies for EPISTEME

in ascending order of estimated technical challenge of implementation. In general, for each

planned feature, the design effort starts with the classification of the data type as genomic vari-

ant, metadata information, or phenotype and deciding on an appropriate mode of visualization.

• Gene fusion data: Including gene fusion data in EPISTEME is an almost trivial task: fu-

sion genes are clearly genomic variants and each chimeric fusion transcript called from

RNASeq data can be represented as an SV and the gene labelling features shown in Sec-

tion 4.3.3.1 for V(D)J rearrangements can be used to clearly mark the candidate fusion

partners. Similarly, the fusion partner of a gene can be added in the single-gene visual-

ization presented in Section 3.3.2. This is considered a very near-term goal to add as a

data-layer to EPISTEME.

• Dynamic variant-expression dysregulation volcano plots: In their current implementa-

tion, the calculations in Sections 3.2.8.1 and 3.3.3 have a significant technical shortcom-

ing: due to the intensive computation required to run the statistical tests especially con-

sidering the presented sweep-based approach, EPISTEME displays pre-computed values

for the statistical significance and fold change values. Unfortunately, this design decision

takes away the potential ability of dynamically generating different volcano plots based

on subcohorts, a central concept in EPISTEME. This feature will need to be extended in

the short term to address this shortcoming.

• Proteomics data: Though its pre-processing steps such as normalization is not compa-

rable to RNAseq with regards to the requirements and algorithms [543], protein abun-

dance data in its post-processed state, is in principle not different from gene expression

data from a technical perspective. The same SQL-based data storage and single-gene

or cohort-wide-volcano plot visualizations can be directly adopted to be used for pro-

teomics data as phenotype data. The main issue here is the availability of data: none

of the ICGC or DKFZ cohorts used in the development of EPISTEME had a satisfac-

tory proteomics component apart from some TCGA cohorts with a very limited number

of proteins measured by reverse phase protein lysate microarrays, a targeted technique

which is not suitable for discovery analysis. Once a cohort is available with a sufficiently

rich proteomics component in addition to genomics and transcriptomics data tracks, it

will be straightforward to integrate proteomics data into EPISTEME with a simple set of
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features focusing on protein abundance. Such plans are already under way in the DKFZ

Neuroblastoma Genomics research programme.

• Germline variants: The challenge of including germline data in EPISTEME is not a

technical challenge within EPISTEME itself but rather upstream, in the definition of

such variants. In general, germline analysis is technically more challenging because it

is more difficult to filter variant calling artefacts due to the absence of a paired ”nor-

mal/control” data, and the difficulty of deciding what is a rare germline variant of likely

significant biological impact. Given the availability of ”clean” germline variant data,

the existing variant visualization and analysis of infrastructure can be adapted to cover

germline variants. Currently, there are efforts under way to improve the variant calling

algorithms used in [211] and in this version of EPISTEME to call rare germline small

variants of likely functional impact, after which their results will be ported into EPIS-

TEME giving users to run somatic-only, germline-only and somatic-germline-merged

integrative variant analysis.

• Methylation data: Inclusion of methylation data in EPISTEME is an interesting chal-

lenge due to the definition of the data class and the diversity of data sources: First,

methylation data can be treated both as genomic variants as in Variably Methylated Re-

gions(VMRs) and as phenotypes such as the methylation value of a single probe of a

methylation array. Second, methylation data can originate either from targeted methy-

lation arrays highly enriched for regulatory regions and gene promoters, or the genome-

wide assay Whole-Genome Bisulfite Sequencing (WGBS).

For cohorts where only methylation array data is available, EPISTEME could adopt

a phenotype-centric approach, and treat each probe as a gene in a genomic variant-

phenotype integrated analysis, where the probe methylation for a given patient would

be the phenotype akin to gene expression for a given patient. However, as there are

many more probes (450.000 to 1.000.000 depending on the technology) than genes, it

will be a challenge to maintain the performance of the SQL backend of EPISTEME.

For cohorts where only WGBS data is available, VMR calls can be sourced externally as

with any other class of genomic variants, and its recurrence can be analysed on a TAD-

basis. For WGBS, in the absence of specific probes, deciding on what values to use as a

phenotypic readout for each gene is an open question.

With adding methylation data into EPISTEME, the challenges are mostly conceptual

and technical as data availability is already good and is getting better with the increas-

ing availability of WGBS assays. For data visualization, the previously published tool

MethCNA could offer design ideas [544].

• Improved analysis of survival data: In its current state, EPISTEME’s survival analysis

features are fairly rudimentary, and better statistical tests and visualizations are needed.

Correlation of patient survival with genomic variants is prone to the influence of con-

founders: i) age of diagnosis, ii) disease stage at diagnosis, iii) disease subtype, iv) eth-

nic background, v) treating centre and treatment strategy.. The implemented survival

analysis features should use appropriate methods to account for such confounders. R2’s

advanced survival features could offer design ideas.
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• Analysis of user-provided cohorts: Ultimately EPISTEME could serve the cancer ge-

nomics community not only by hosting public datasets but also by providing a service

for processing and visualizing user-provided private datasets. Due to time and manpower

constraints, this interesting but difficult challenge has not been explored and is not a short

or mid-term priority as accepting user input requires i) the implementation of strong se-

curity measures to protect the data on the EPISTEME server and the user’s private data

from leaking, ii) sanitizing the user input based on a threshold of maximum acceptable

cohort size or variant data size, iii) providing parsers for any realistic combination of

variant callers rather than only mpileup, platypus, ACESeq and SOPHIA, iv) either hav-

ing substantial server-side processing capacity dedicated to processing user inputs or a

huge effort to implement the whole stack of cohort processing in JavaScript.
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CHAPTER 4

SOPHIA-EPISTEME INTEGRATION IN DKFZ CANCER GENOMICS PROJECTS

REVEALS NOVEL DISEASE SUBTYPES AND INSIGHTS ACROSS CANCER

TYPES

4.1 Introduction

We introduced and reported results from a fast, efficient and sensitive Structural Variant(SV)

detection algorithm SOPHIA (Chapter 2), and a comprehensive integrative and interactive

omics data analysis and visualization tool EPISTEME (Chapter 3). The focus in describing

each tool was their design motivations, design principles, major features, unique advantages

and potential avenues for improvement. In both chapters, each SV detection, omics data anal-

ysis or omics data visualization concept was described on established cohorts, or individual

observations where the concept was already established. We thus aimed to reduce the com-

plexity of concepts’ presentation by not introducing new concepts and new biological findings

simultaneously. Furthermore, the biologically established (”pilot”) observations also served as

a confirmation of the validity of the used analysis and visualization approaches.

This chapter presents novel findings using the SOPHIA algorithm and the EPISTEME

platform from unpublished projects of the DKFZ cancer omics research programme with an

integrative omics data analysis strategy. Making use of the well-described concepts of SVs,

enhancer hijacking, EPISTEME’s volcano plots, differential gene expression analysis, gene

correlation analysis, variant mutex analysis, dimensionality reduction (e.g. tSNE) features,

a step-by-step dissection of three different diseases is shown, yielding novel subtypes with

potential implications on disease biology and treatment. The projects are organized in three

case studies:

1. Late-stage, multi-refractory multiple myeloma, a haematological adult malignancy

2. Acute Myeloid Leukaemia (AML) with Chromosome 7q-monosomy (7q-AML), a haema-

tological adult malignancy

3. Neuroblastoma (NB), a solid paediatric peripheral nervous system malignancy.

In each of these projects, I served as a leading bioinformatician contributor, having responsi-

bilities in data pre-processing, quality control, processing, interpretation and presentation. In

this dissertation, the sole focus is on the key findings made with the SOPHIA-EPISTEME in-

tegration, which allowed us to introduce new disease subtypes and put forward hypothesis on

their development.

4.2 Common Methods

All projects described in this section used Whole Genome Sequencing (WGS) and RNA Se-

quencing (RNA-Seq) protocols based on the Illumina HiSeq X-Ten System. The sequencing
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protocols, variant detection pipelines, gene expression counting methods have recently been

described in [464]. All protocols are run on the DKFZ’s One Touch Pipeline (OTP) data pro-

cessing platform [464]. Normalization of RNA-Seq data was executed as described in Section

2.2.11.

4.3 Case Study 1: Late-Refractory Multiple Myeloma has a Diverse Immunoglobulin

and Oncogene Rearrangement Landscape

4.3.1 Introduction

Multiple Myeloma (MM) is a haematological malignancy of older adults defined by the clonal

proliferation of plasma cells of the bone marrow [545]. Plasma cells are a type of immune

(white blood) cells originating from the bone marrow which specializes in producing large

amounts of antibodies. They are differentiated from Memory B Cells, a type of immune

cell which recognize, internalize and store foreign antigens to define an immune response

[546]. In their de-differentiated, ”plasmablastic” state, plasma cells divide rapidly, but later

mature into differentiated plasma cells. Dysregulation of this process can lead to a spectrum

of malignancies: MM starts with the asymptomatic phases Monoclonal Gammopathy of Un-

determined Significance (MGUS) [547] and Smouldering (asymptomatic) Multiple Myeloma

(SMM) [548] [549] before progressing into a full-blown MM and possibly extramedullary,

soft tissue plasmacytoma [550] and Plasma Cell Leukaemia (PCL) [551] observed in late-stage

patients.

In its progressed, MM form, this family of plasma cell malignancies are lethal [552], and

pose a clinical challenge despite their rarity. This has fuelled a great interest in investigating the

molecular mutations and mechanisms in MM development, revealing a complex and diverse

set of driver mechanisms and mutations [553], [554], [555], [556]. These omics-based studies,

along with preceding work, contributed significantly to the understanding of MM, where we

now know the main molecular hallmarks of this disease:

• Immunoglobulin rearrangements activating the CCND1, MAF, NSD2(MMSET), MYC

oncogenes [557]

• ”Hyperdiploidy” (recurrent trisomies of chromosomes 3, 5, 7, 9, 11, 15 and 19) [558]

• Somatic rearrangements activating the MYC oncogene [559]

• Activating point mutations on the RAS oncogene family [560]

• Activating point mutations on the BRAF oncogene [561]

• Deactivating mutations of TP53 [562]

• Loss of FAM46C as a tumour-suppressor, often concomitant with MYC activation as part

of a rearrangement [563]

• Homozygous Losses of RB1, FAF1 and TRAF3 tumour suppressors [217] [564]
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Along with a better understanding of MM, more advanced treatment strategies (including

targeted treatments) evolved such as proteasome inhibition (Bortezomib [565], Carfilzomib

[566]), immunomodulation (Thalidomide [567], Lenalidomide [568], Pomalidomide [569]),

CD38 Antibodies [570], and autologous stem cell transplantation [571]. These improved

therapies statistically significantly improved survival [572] [573]. Despite these improve-

ments, the current clinical management and prognosis of MM remains as an incurable disease

[574]. The current treatment options inevitably all lead to relapses and the condition called

Relapsed/Refractory Multiple Myeloma [575]. Understanding the mechanisms of relapse in

RMM will be key to further improving survival in MM and potentially making it a curable or

chronic but non-lethal disease. With this motivation, we investigated a cohort of patients which

were refractory to multiple treatment approaches using genomics and transcriptomics assays.

4.3.2 Study Design and Methods

The RMM sequencing project funded as the Heidelberg Institute for Personalized Oncology

(HIPO) HIPO-067 Project, is coordinated by Prof. Marc-Steffen Raab, Dr. Nicola Giesen (née

Lehners) and Dr. Matthias Schlesner. In this project, we collected a cohort of MM patients

that were refractory to at least two regimens of immunomodulatory agents and proteasome

inhibitors or CD38 antibody based immunotherapy. The cohort was selected with or without

prior autologous stem cell transplantation.

A cohort of 44 patients fulfilling these conditions were selected, and sequenced for WGS.

39 Patients with sufficient DNA quality and high quality sequencing data were included in

the study, of which 37 had sufficient RNA quality for RNA-Seq. Just for this dissertation,

this cohort was later expanded by one MYCN expressing patient which did not fulfil the study

conditions (died shortly after initial diagnosis during initial therapy before relapses rather than

being multi-refractory).

The aims of the study were to determine recurrent (novel) drivers and mutational processes

of (R/)RMM. To this end, we also obtained and processed the SMM cohort presented in [549]

for comparisons underlining the differences of early and late stage MM. These comparative

analyses are outside the scope of this dissertation.

4.3.3 Results

4.3.3.1 Immunoglobulin and Oncogene Rearrangement Landscape of Multiple Myeloma

We first investigated the mutational landscape of RMM using a EPISTEME Circos plot with

default settings (SV recurrence, CNV recurrence with no cnLOH, Functional Small variant

Recurrence). As shown in Figure 4.1, the complex mutational landscape of RMM encompasses

the diverse spectrum of variants described in Section 4.3.1.
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4.3.4 Discussion

We investigated using EPISTEME, genomic and transcriptomic sequencing data from a medium-

sized cohort of highly-selected and highly-refractory MM patients, who underwent disease

relapse under at least 2 treatment strategies. We showed a diverse immunoglobulin translo-

cation landscape with translocation partners of relevant function for MM. We showed a lack

of rare, but recurrent enhancer hijacking events, instead emphasizing the established hallmark

oncogenes and tumour suppressors as the only recurrently dysregulated genes with somatic

genomic variants as the dysregulation mechanism.

We presented MYCN as a rare target of IG rearrangements and consequent enhancer hijack-

ing. MYCN has only on one instance been discussed in the literature as a potential oncogene

in MM: In [586], the authors discovered rare rearrangements of IG loci targeting the MYCN

locus, mentioning a cell line named PE-2 as a prototypical example of such rearrangements.

As of 07.2019, PE-2 is not commercially available and no other studies have been published

using this cell line. The authors also used the dataset described in [585] to underline the rarity

of MYCN expression in MM, but did not proceed to do further analyses on its putative targets.

More samples are needed to dissect the true influence of MYCN and to what extent the tran-

scriptomic dysregulation is due to MYC downregulation and to MYCN activation. The analysis

presented here suffered from low sample sizes (2 in the publication cohort, 3 in this disserta-

tion), and a comparison with a larger MAX-mutant control cohort with low MYC expression

and low MYCN expression would have been very valuable. Another issue in our setting is the

existence of IGH-NSD2/MMSET rearrangements in 2/3 of the MYCN expressors, which adds

another confounder to any analyses investigating MYCN’s true effects in MM. Our study co-

ordinator colleagues created a cell line from one of the MYCN expressor patients, generation

of other such cell lines would undoubtedly be an excellent first step in developing a mecha-

nistic understanding of MYCN function in MM, in the long-run allowing the rational design of

treatment strategies [587].

4.4 Case Study 2: The MNX1 Oncogene is Activated by Recurrent CDK6-NOM1 Rear-

rangements in chr7q-Monosomy Acute Myeloid Leukemia

Acute Myeloid Leukaemia (AML) is a haematological malignancy of myeloid cells. Mature

myeloid cells encompass granulocytes and monocytes, which are differentiated from a common

myeloid precursor cell type [588]. AML arises from these myeloid precursor (or stem) cells,

where they are blocked from maturation and clonally expand and proliferate due to diverse

somatic mutations.

The established World Health Organization (WHO) classification of Adult AML [589]

1. AML with certain genetic abnormalities,

2. AML with myelodysplasia-related changes,

3. AML related to previous chemotherapy or radiation and

4. AML not otherwise specified (NOS).
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Of these, only the NOS ”subtype” is defined by histopathological/morphological features.

AML currently has the following recognized somatic alterations in the classification of AML:

1. AML with a translocation between chromosomes 8 and 21 t(8;21) involving RUNX1-

RUNX1T1 fusions [590],

2. AML with t(16;16) or inv(16) involving CBFB-MYH11 fusions [196],

3. Acute Promyelocytic Leukaemia (APL) involving PML-RARA fusions [195],

4. AML with t(9;11) involving KMT2A-MLLT3 fusions [591],

5. AML with t(6:9) involving DEK-NUP214 (formerly DEK-CAN) fusions [592],

6. AML with a t(3;3) or inv(3) involving RPN1-MECOM (formerly RPN1-EVI1) fusions

[593],

7. Megakaryoblastic AML (AMKL) t(1:22) involving RBM15-MKL1 fusions ,

8. (Provisional) AML with BCR-ABL1 (formerly BCR-ABL) fusions [594],

9. (Provisional) AML with NPM1 mutations [595],

10. (Provisional) AML with biallelic CEBPA mutations [596],

11. (Provisional) AML with mutated RUNX1 gene [597].

Apart from these recognized, molecular subtype defining somatic genomic alterations,

AML has a diverse landscape of genomic variants as investigated using genome sequencing

in [598] and [483]. Cytogenetic and mutational classification as well as mutational status of

significant genes are now accepted to be a rational predictor of treatment responses [599],

where it was suggested to incorporate the mutational status of NPM1, FLT3, CEBPA, TP53,

SRSF2, ASXL1, DNMT3A and IDH2 into prognostic guidelines.

Another aspect of AML biology is chromosomal imbalances, and karyotype complex-

ity. Chromosome arm level or focal losses involving known tumour suppressors is a central

theme in tumour biology, where haematological malignancies are no exception [600]. Com-

mon chromosome arm losses such as 5q, 7q have been associated with secondary Myelodys-

plastic Syndrome or AML caused by prior treatment of other conditions such as lymphoma

[601], [602], [603]. Among these, chromosome 7q losses are observed both in de novo and

treatment induced AML [604] and have been of particular interest due to their commonness

[605],[604],[606] and a lack of a strong and validated tumour suppressor candidate, with mul-

tiple having been proposed such as CUX1 and EZH2 [607], [608], [609]. Recently, successful

responses to demetyhlating agents were reported in AML with chr7q loss or chr7 total loss

[610], prompting interest in the roles of key epigenetic genes such as EZH2 and METTL2B on

commonly deleted segments in AML with chr7q-monosomies.

According to the WHO classification of AML, most subtypes of AML are defined by bal-

anced structural rearrangements leading to fusion genes. The WHO classification recognizes

only the most commonly encountered fusion genes, while there are many more rarer balanced

213



translocations and gene fusions observed in larger cohorts [611]. A notable subset of such

rare translocations are those encountered in paediatric AML, which are rare in childhood AML

and very rare to non-existent in adult AML and are not recognized as bona fide subtypes of

AML. One of these rare translocations enriched in paediatric AML is the t(7;12)(q36.3;p13.2)

ETV6-MNX1 fusion gene. This translocation is observed in a rare subtype of infant AML, with

implications of poor prognosis [612]. Motor Neuron Homeobox 1(MNX1) is a homeobox gene

of the Antennapedia (ANTP) class and Hox-Like (HOXL) family, while originally renamed

HLXB9/HB9, it was later renamed to MNX1 after being classified as the sole member of a gene

family [613]. Its primary function is as a key player in motor neuron differentiation [614],

[615] [616]. In the haematological setting, the roles of MNX1 overexpression in t(7;22) in-

fant AML have been investigated in multiple studies, putting forward mechanisms on altered

cell-cell interactions [617] and blockade of haematopoietic differentiation [618].

In this study, we addressed the open question of how interstitial chromosome 7q losses

contribute to the development of AML. Starting with the hypothesis of an elusive tumour sup-

pressor gene residing on chr7q, we designed a project to use the power of WGS on a larger

cohort of chr7q-monosomy patients to study SVs in addition to the coding regions analysed

by the more commonly established WES. Our investigation of this question did not reveal a

recurrently mutated tumour suppressor in a double-hit process, but rather yielded the MNX1

oncogene known from paediatric AML as the putative driver of a subset of AML cases with

chromosome 7q losses via an enhancer hijacking process. With a novel mechanism of enhancer

hijacking via CDK6-NOM1 rearrangements, the neighbour gene to MNX1, without the direct

involvement of the MNX1 gene body, MNX1 is activated by the enhancer of the constitutively

active CDK6 gene. We show that MNX1 expression is tightly regulated and repressed in AML

and only activated by recurrent structural variants targeting chr7q36.3, yielding to significant

and global changes in gene expression patterns, in line with a differentiation block hypothesis,

but with a novel list of key components of haematopoietic regulation being dysregulated.

4.4.1 Study Design and Methods

The chr7q-monosomy AML sequencing project funded as the HIPO-030 Project, is coordi-

nated by Prof. Christoph Plass, Dr. Daniel Lipka and Prof. Konstanze Döhner (University of

Ulm). 19 adult AML cases were collected with matching normal blood samples and sequenced

with WGS and RNA-Seq with the following characteristics: 5 normal karyotype controls, 2

isodicentric 7p cases, 2 case with a balanced translocation on chr7q leading to an aberrant kary-

otype and 10 cases with partial chr7q losses. Cases with centromere-to-telomere full losses of

the chromosome 7q arm were not collected in this project. RNA Sequencing was run on 25

cases, including 6 cases without sufficient DNA quality for WGS.

Following the identification of the MNX1 oncogene as a putative key driver in a subset of

partial 7q-monosomy cases additional AML cases expressing MNX1 were collected: 2 pae-

diatric t(7;12)(q36.3;p13.2) ETV6-MNX1 cases, the GDM1 adult AML cell line with a MYB-

MNX1 rearrangement, 1 MNX1 expressing AML case with claimed normal karyotype, 2 cases

with MNX1 expression and cytogenetically detected chr7q losses. Unfortunately none of the

cases in the extension cohort have matching normal blood available. Of these cases GDM1 was
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myeloid differentiation and proliferation have been discussed in the context of MNX1 despite

availability of data [635]. In particular, our results are novel in suggesting new mechanisms

in AML dedifferentiation, introducing a direct, TF-promoter-interaction-based suppression of

TLE4 without copy number losses and EVI2B without CEBPA mutations respectively. ChIP-

Seq on MNX1 will help determine direct targets beyond motif-based approaches in databases,

which proved unsatisfactory. In parallel, we are going to add 4 more cases of MNX1-activated

adult AML to our study, which would drastically improve the quality of our transcriptomic

analysis.

As MNX1 as a homeobox transcription factor, is not a targetable gene, our transcriptome

data could be useful in designing treatment concepts: We observed a strong suppression of

INPPL1 (SHIP2) and PIK3CG, which could lead to a treatment strategy targeting the PI3K

pathway. Unfortunately the strongly activated genes FAM155B and KRT2,KRT72, KRT73 are

not appropriate as cancer antigen based immunotherapeutic targeting due to their high expres-

sion in the heart and skin, respectively.

Recently another study postulated that CDK6-MNX1 rearrangements could be activating

MNX1 due to nuclear reorganization of MNX1 location, without discussing the role of CDK6

or other partner enhancers or investigating the mechanistic downstream effects or co-occurring

mutations with MNX1 activation [649]. We believe we have a more correct and complete model

of MNX1-mediated AML oncogenesis with our current data.

Finally, neither of the two major recent publications on AML recognize MNX1-activated

cases as an entity [483] [599], and the WHO classification does not recognize the paediatric

MNX1-activated AML as a bona fide subtype of AML due to its rarity. It remains to be seen if

our case collection will promote MNX1-translocated AML as an officially recognized subtype.

4.5 Case Study 3: ATOH1 is a Novel Target of Enhancer Hijacking in MYCN-Negative

High-Risk Neuroblastoma

Neuroblastoma (NB) is a malignancy of neural crest stem cells. Neural crest cells are transient

and multipotent precursors of a wide variety of neural and non-neuroanal cell types including

sympathoadrenal cells during development. Sympathoadrenal cells encompass sympathetic

neurons and chromaffin cells and constitute the lineage of cells from which NB develops [650].

NB is a childhood disease because neural crest cells are fully differentiated, and do not exist and

consequently cannot generate malignant tumours during adulthood (adult NB is an exceedingly

rare condition with an unclear cell of origin [651] and is outside the scope of this study).

With methods of epigenetic profiling [652] and single cell transcriptomics [653], we are in the

process of delineating the specific cellular origins in NB, which remains an open field similar

to most solid tumour types.

Since early whole exome sequencing based results indicating the low mutational load of NB

[654], it has consistently appeared among the cancer types with the lowest number of somatic

point mutations [655] [476]. The driver mutational processes in NB are known to prefer alter-

ations based on copy number changes, gene amplifications, in a group of alterations which can

be summarized using the structural variation umbrella term. Following the landmark discovery

of the amplification-based activation of the MYCN (formerly and also known as N-MYC) onco-
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gene [656] [200], great progress has been made on the further dissection of this disease with a

risk classification from clinical parameters stage, age, chr1p deletion and MYCN amplification

status [657] effectively guiding clinical decision making. This risk classification was further

improved with a support vector machine based classifier using gene expression profiles [658],

accurately predicting clinical outcome. Interestingly, despite the availability of large-scale and

genome-wide transcriptome datasets [654], [659] [660], there have so far been no efforts to use

modern methods of transcriptomic classification of NB into molecular subtypes. Our knowl-

edge on the NB mutational landscape and biology greatly improved with advances in genome

sequencing technologies and RNA sequencing together revealing mutational drivers of NB. NB

arises due to dysregulation of differentiation of proliferating neural crest stem cells during in-

fant/childhood development and consequently does not have a direct influence of mutagens and

does not carry a high load of somatic mutations including protein coding mutations. Genomic

variant driver hallmarks of NB are in rough order of frequency:

1. Chromosome 17q gains [661]

2. MYCN amplifications [656] [200],

3. Chromosome 1p arm losses or loss of heterozygosity [662],

4. Chromosome 11q losses [663]

5. TERT structural variants leading to activation via enhancer hijacking [212]

6. ATRX truncating deletions and deactivating small mutations [664], [654]

7. ALK co-amplifications [665] [666]

8. CDK4 and MDM2 amplifications [667]

9. FOXR1 structural variants leading to activation via enhancer hijacking [461]

10. LIN28B amplifications [668].

A common theme in the mutational drivers of NB is the concept of telomere maintenance

mechanisms: to maintain proliferative potential, high-risk NB cells need to maintain their

telomeres. The first telomere maintenance mechanism in NB is via TERT expression either

activated by MYCN amplification or by SVs. The second is alternative lengthening of telom-

eres (ALT) [669], which happens in around half of the cases via ATRX deactivating mutations

and in the other half via an unknown mechanism and is detected by an assay named ”C-circle”.

The recently established and current consensus on NB clinical risk characteristics is based on a

combination of telomere maintenance status and RAS mutation status: cases with no telomere

maintenance mechanism are considered low-risk, cases with a telomere maintenance mecha-

nism are high-risk, and cases with both a telomere maintenance mechanism and RAS pathway

mutations are considered very-high-risk [506]. The role of RAS-MAPK pathway genes and

their mutations were previously discussed in a study where they were found to be enriched in

relapsed NB [670], with the current results validating this assessment.
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Neuroblastoma remains to date a clinical challenge: NB is the most common paediatric

cancer type after leukaemia and central nervous system malignancies (such as medulloblas-

toma and PNETs as discussed in Chapter 1). Overall, NB accounts for 8% of all paediatric

cancer cases, shows a heterogeneous clinical course [671] and with cases classified as ”high-

risk” remaining largely incurable [672] [506]. Historically, survival rates improved thanks

to aggressive treatment protocols [673] [674]. However, the lack of effective targeted treat-

ments for MYCN amplification, TERT activation or the ALT mechanism and a lack of a mu-

tation/neoantigen load preventing checkpoint blockade based immunotherapeutic strategies,

together lead to a poor prognosis for all cases that fall under the high-risk classification. A

better understanding of the NB biology is therefore urgently required. To address this need, we

designed a project to characterize the molecular subtypes of NB with advanced transcriptome

and methylome based clustering using modern statistical approaches in a larger cohort com-

pared to previous studies such as [675] [676]. We also aimed to use EPISTEME’s genomic

variant-based transcriptomic dysregulation methods to look for novel targets of enhancer hi-

jacking events beyond the established prototypical examples of this mechanism, TERT and

FOXR1.

In this study, we describe the mutational landscape of paediatric NB and discuss a poten-

tial role for a focal-SV-based truncation of tumour suppressor genes ANKS1B, ZFHX3, DLG2,

CNTNAP2, TENM3, AGBL3 and PTPRD, in line with recent findings from other groups. We

identify for the first time the Basic-Helix-Loop-Helix (BHLH) transcription factor ATOH1 as

an oncogene in NB showing that it is recurrently activated by an enhancer hijacking process,

predominantly with the HAND2 enhancer. We propose first steps towards a novel transcriptome-

based subgroups of NB and show their agreement with methylome-based subgroups. We in-

troduce a novel transcriptome and methylome subtype of ALT NB encompassing two sub-

subtypes with defined driver genes ATOH1 among younger patients and ALK among older

patients. Finally, we show results postulating that ATOH1 could act as a less potent MYCN

replacement in its function as a BHLH gene, with common targets NHLH2 and DLL3 between

MYCN and ATOH1.

4.5.1 Study Design and Methods

In the DKFZ Division of Neuroblastoma Genomics (Dr. Frank Westermann), we ran Whole

Genome Sequencing (WGS) on 246 NB cases from the German GPOH NB Study’s central

sample collection, of which 191 cases had sufficient quality RNA extracted for RNA-Seq and

121 cases were profiled with methylome arrays using the standard DKFZ protocols [353]. 3

specimens (2 patients with rare brain metastasis of NB of which 2 relapses were sampled from

a single case) had RNA-Seq data and no WGS or methylome array data.

Case collection was not made in a prospective or unbiased manner, i.e. patient selection

was enriched for characteristics of interest such as high-risk cases, expressors of rare onco-

genes, ALT cases and ALT cases without ATRX mutations. Therefore, the results presented

here are interpreted and discussed without assumptions on mutation/phenotype frequencies

and epidemiological characteristics.
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family of BHLH genes as MYCN, it could be of great biological and mechanistic importance in

NB. In the rest of this study, we focused on ATOH1 as a novel oncogene in NB development,

characterizing its role across NB subtypes.

4.5.2.3 Transcriptome and Methylome Based Subtyping of Neuroblastoma

To characterize the transcriptomic (cell identity / metabolic state) and methylome (cell identity)

profiles of NB, we ran tSNE dimensionality reduction analyses on the top 500 genes and top

5000 CpG probes in terms of intra-cohort variance. The results in Figure 4.37 revealed hetero-

geneity in the cohort both across the transcriptome and methylome. Older patients (shown in

lower panels with larger symbols) co-occurred with the ALT (black symbols) phenotype and

were clustered in distinct methylome clusters.
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4 represent larger clusters:

1. highMYCN-lowNTRK1: These cases constitute the most aggressive MYCN-amplified

subtype of NB and suppress NTRK1 and activate BAMBI as the strongest hallmarks

2. hetMYCN: This is a heterogeneous cluster with an enrichment for MYCN cases, but also

including ALT and intermediate-risk cases

3. hetLowRisk-rich: This is a cluster enriched for LR-NB, but includes some TERT and

ALT cases. Further dissection of this cluster could yield finer groups, and this cluster

would most likely not be stable under a tSNE parameter sweep.

4. TERT-ALT-rich: This heterogeneous cluster contains TERT (rearranged) and ALT (both

ATRX mutant and wild-type) cases in roughly equal ratios. Interestingly, the ALT and

TERT groups could not be separated neither in the transcriptome nor in the methylome.

4 of these are smaller clusters:

1. outlierRNA (8 cases): This is a novel cluster of ALT+, ATRXwt cases and consists of

two distinct subgroups with defined mutational profiles: half of them are older ATOH1-

rearranged patients and the other half are 3/4 ALK mutant, even older patients.

2. lowABR-migratory (6 samples, 5 unique cases): The two rare brain metastasis cases (3

samples) co-clustered with 3 primary tumours of NB. They suppress PLD2 [681] and

ABR [682], suggesting some role for dysregulated cytoskeletal organization in migra-

tory/metastatic processes.

3. impureRich (5 cases): We identified a small cluster of cases suppressing TTBK1, MYEF2,

CACNA1B, strongly overexpressing SOX17 and RSPO3. These cases have low compu-

tationally estimated tumour purities. As they are not the only impure tumours in our NB

cohort, more work needs to be done to identify the reason for them to co-cluster and to

identify possible lineages of infiltrating cells.

4. ALT-slow (4 cases): This is a novel cluster of ALT+ ATRXwt cases with suppressed

EZH2, very low mitotic gene expression such as MKI67, TOP2A, MYBL2, POLE imply-

ing very slow growth, in line with some previous observations [683].
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4.5.3 Discussion

We investigated the genomic variant landscape of NB and established that it has a rich SV re-

currence profile, directly hitting and truncating neuronal differentiation genes. This aspect of

SVs driving NB development was first explored in [678], followed by a report pre-published

in March 2019 with similar findings to our broader work, [679]. A differentiation block is a cru-

cial component of tumourigenesis of malignancies with dedifferentiated/undifferentiated/primitive

cells of origin. Interestingly, all three case studies (MM, AML, NB) in this dissertation chap-

ter shared this concept with recurrent aberrant activations of transcription factors conferring

cell identity. In the context of NB, the differentiation block is not permanent, and this is used

as part of the standard treatment strategy with retinoic acid [696]. In particular, in MYCN-

nonamplified NB, the TERT and ALT mechanisms ensure telomere maintenance and the pro-

liferative nature of the NB cells come from the stem cell identity of the neural crest cells.

This leaves open questions regarding the origin of the differentiation block in NB, and we here

postulate based on our and others’ results that recurrent SVs truncating neurite differentiation

genes could be contributing to the maintenance of the undifferentiated state of NB cells. Com-

prehensive experimental work will be needed to characterize candidate genes such as ANKS1B,

ZFHX3, DLG2, CNTNAP2, TENM3, AGBL3, PTPRD, SHANK2, DMD, EYS.

We then investigated the landscape of enhancer hijacking in NB. Our comprehensive analy-

sis with high-coverage WGS and high-quality RNA-Seq in a large cohort confirmed established

genes such as MYCN, TERT, FOXR1 and LIN28B and revealed only one novel candidate: the

BHLH transcription ATOH1, with a strong activation profile. Subtle upregulation of genes

such as FGF19 and C1Q1L on commonly rearranged loci requires a more stringent analysis

supported by lab assays such as 4-C to validate, therefore we did not focus on them in this

case study. We also did not focus on sporadic cases of enhancer hijacking. In a personal-

ized medicine setting, these might be relevant, and EPISTEME offers an easy tool for clinical

bioinformaticians to recover such events.

We characterized the transcriptome and methylome subtypes of NB with a modern tSNE

based manifold learning strategy, repeatedly used with great success in the paediatric brain

tumour research community [218] [353]. Previous transcriptomic characterization efforts on

NB were based on hierarchical clustering, revealing only the major subtypes of this heteroge-

nous disease [675] [676]. With our large cohort, we identified finely grained subtypes of NB

with distinct biological and phenotypic characteristics such as very slow growth and increased

migratory potential for crossing the blood-brain barrier. Our work revealed a proposed novel

subtype of ATRX wild-type ALT NB with the well-defined drivers ATOH1 and ALK, showing

a distinct age profile. This novel subtype of NB could be stemming from a more mature step in

the neural crest cell lineage, and uses the NEUROD6 BHLH TF in contrast to most other cases

of NB using the MYCN-MAX axis. As there are currently no cell lines of this lineage, further

work to characterize this new entity will be challenging. A clinical screening programme for

NEUROD6 expression in NB histopathological examination or transcriptome analysis could

help prospectively identify new cases, from which new in vitro models can be developed.

Our analysis of ATOH1 in the context of NB revealed a role for ATOH1 beyond its normal

roles in sensory hair cell and cerebellar development [697] [698]. In the context of NB, ATOH1
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partners with NEUROD6 (ATOH2) and upregulates the transcription factor oncogene NHLH2

(HEN2) [691], and the DLL3 Notch ligand in a shared oncogenic mechanism with MYCN

amplification [689], [692]. To the best of our knowledge, our discovery of the ATOH1 oncogene

in NB is its first example for somatic activation via genomic alterations, with previous reports

discussing its overexpression without a direct genomic activation [699]. Also to the best of

our knowledge, our discovery also represents the first instance of a somatic genomic activation

of a Class A BHLH TF in NB. ATOH1-activated NB cases in the novel NB subtype were

previously characterized as intermediate-risk (NB2004). With their ALT status, they would,

with our current understanding, be characterized as high-risk NB and considered a clinical

challenge [506]. It is our hope that with powerful in vitro models, the unique clinical challenge

posed by the ATOH1 gene would be better addressed.
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CONCLUSION AND OUTLOOK

My doctoral research on multi-omics data integration with an especially strong focus on SV

analysis from WGS data was on a subject of contemporary interest. With multi-omics data

analysis strategies and method development efforts in the SOPHIA and EPISTEME projects

presented here, I have had the privilege of making major or leading(*) contributions to research

projects on paediatric brain tumours [218]*, meningioma [463]*, paediatric Burkitt lymphoma

[435] [465], multiple myeloma (ongoing)*,acute myeloid leukaemia (ongoing)*, and paediatric

neuroblastoma (ongoing)*. In these concluding remarks, I will go through the major findings

presented in this dissertation and outline my expectations on how these can be further devel-

oped.

First, I discovered in a large international collaboration recurrent mutational drivers in four

novel molecularly defined paediatric brain tumour entities formerly belonging to a histopatho-

logically poorly defined group of diseased named CNS-PNETs [218]. Our strategy of first

grouping the entities by cell type using the methylome, followed by candidate gene identifi-

cation using the transcriptome, finally discovering the mutational drivers using the genome in

a three-pronged multi-omics approach proved fruitful and impacted established clinical diag-

nostic practices with longer term prospects in changes of treatment strategies. Nevertheless, it

must be recognized that CNS-PNETs were overall a rare entity and similar new findings will

become more and more difficult with each new publication on other rare diseases such as the

recent finding on infant soft tissue tumours showing EGFR and BRAF ITD events [700]. Nev-

ertheless, the impact of such studies goes beyond epidemiological considerations and clinical

interest: we and the scientific community have not yet characterized the molecular and biolog-

ical function of MN1 fusions, CIC fusions, BCOR ITDs as well as the more recently published

EGFR and BRAF ITDs. Molecular functions of FOXR2 also remain unclear apart from pre-

liminary findings on MYC stabilization functions. As these molecularly defined entities enter

clinical practice as recognized tumour entities, their biological basis will drive clinical trials

based on rational targeted approaches. Further work on rare and uncharacterised tumour types

may reveal novel mutational mechanisms and shed light on functions of understudied genes

such as FOXR2 or NUTM1.

In my second project, I developed an SV detection algorithm named SOPHIA. My pri-

orities were fast and efficient execution and achieving high sensitivity, suitable for clinical

projects. I reached these design goals and SOPHIA established itself as a part of DKFZ’s

standard bioinformatics workflow including its biggest personalized medicine projects in the

HIPO framework [281]. In addition to its main task of SV detection, it is indirectly being

used in CNV analysis and RNA fusion analysis workflows as a supporting tool. Nevertheless,

more work is needed to address the need for a systematic specificity benchmark for SOPHIA

and in its transition to the hg38 human reference genome. More broadly, research on SVs has

significant room for improvement: there are still classes of SVs that are not accessible to short-

read sequencing based technologies requiring combinations of different technologies to resolve

[701]. One particularly attractive goal would be to reconstruct cancer karyotypes using a com-

258



bination of long-read sequencing, optical mapping and short-read sequencing, addressing the

full spectrum of genomic alterations. Such a strategy is routinely used in genome assembly of

different species [702], but applications in cancer remain uncommon [703], especially on pri-

mary tumour material [704]. Reconstructing a correct karyotype would allow a more precise

understanding of chromatin interactions rather than relying on TADs obtained from cell lines

or tissues without rearrangements. In this context, [705] is a landmark study combining optical

mapping and Hi-C offering simultaneous chromatin interaction, SV calling and karyotyping,

even though it might be difficult for this strategy to find wide-spread adoption in clinical di-

agnostics or even cancer omics research projects due to the material requirements dictating a

need for in vitro material generation such as xenografts, organoids or cell lines. Therefore,

improving SV detection from short-read sequencing data will remain as an important bioin-

formatics task. In this context, balancing sensitivity and specificity is the biggest challenge.

To this end, a consensus approach taking advantage of different algorithms could be a ratio-

nal strategy as adopted by the PCAWG consortium [284]. However, a key concern here is the

general trend of local assembly based algorithms becoming more prevalent would make gains

from a consensus building approach more limited. As SOPHIA is not based on local assembly,

this could be turned into an advantage by pairing it with SvABA [426] or NovoBreak [425].

We are currently in the process of obtaining optical mapping (Bionano) based SV data as part

of the GPOH NB genomics project and over the next years will have the opportunity to assess

and improve SOPHIA both based on data from orthogonal technologies, similar to what we did

with FISH, and as part of a consensus strategy with other tools.

My third project was the development of the EPISTEME integrative omics data analysis

and interactive visualization tool, aiming to make high-throughput and complex cancer multi-

omics datasets accessible to a broader community of users. With high-throughput sequencing

methods becoming cost-effective and published datasets made freely available, we are now in

a period where we have a molecular classification and analysis-based understanding of cancer

and advanced, data-driven concepts of targeted treatments that are part of clinical practices.

Therefore, there is a growing demand in the scientific and medical community to access can-

cer multi-omics datasets without the need for programming skills. Though there are a number

of cancer data portals addressing this demand, EPISTEME has particularly strong features

in multi-omics data integration and user interactions interconnecting the different data lay-

ers, which enables discovery and further characterization of enhancer hijacking candidates or

disease molecular subtypes, as shown on pilot examples from the TCGA Chapter 3 and unpub-

lished DKFZ datasets in Chapter 4. The next challenges for EPISTEME will be in three main

directions:

• Adding support for further layers of omics data: with the cancer proteome [706] [707]

and metabolome [708] [709] attracting interest, they would be powerful additions to the

established features on genomics transcriptomics and methylome data analysis offered

in EPISTEME.

• Increasing the technical scalability of EPISTEME: EPISTEME currently supports hun-

dreds of cases from WGS studies. This should be further scaled up to thousands due

to the requirements of pan-cancer analysis projects such as PCAWG including close to
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2700 WGS samples.

• Developing features for single-cell omics data analysis: In line with anticipated improve-

ments in input data scaling, single cell omics data will need accommodation of tens of

thousands of cells with sparse data structures, and require implementation of sparse data

analysis algorithms.

The first of these goals depends on the availability of data, but will also require new ways

managing omics data due to the dynamic nature of metabolomics data in assays such as flux.

The latter two will need technical improvements in the data management and processing im-

plementation of EPISTEME. These include switching from SVG vector graphics to the faster

WebGL technology, switching from JavaScript to Web Assembly using ”web workers” for

computationally heavy algorithms. Along with ongoing work on developing epigenetics fea-

tures such as visualization fof chromatin state and interaction data, these technical tasks will

keep us active on further development of EPISTEME for the next years.

In the final chapter of this dissertation, I presented ongoing progress in DKFZ projects

that was made possible by using SOPHIA and EPISTEME together as part of an integrative

omics data analysis strategy. By only using the currently available feature set of EPISTEME

and structural variant calls from SOPHIA, we managed to identify ATOH1 as a novel candi-

date proto-oncogene in paediatric neuroblastoma and revealed the hitherto unstudied functions

of aberrantly activated MNX1 in acute myeloid leukaemia and MYCN in multiple myeloma;

characterizing their putative functions in their aberrantly activated state:

• In multiple myeloma, our work could lead to dedicated studies on MYCN-activated mul-

tiple myeloma, studying how the MYC-to-MYCN switch alters the cellular metabolism

of these tumours and if this confers a survival or proliferation advantage, given the poor

survival of MYCN-activated multiple myeloma cases. More participants will need to be

recruited in a targeted manner for further work on this subject.

• In acute myeloid leukaemia, the dual role of the MNX1 homeobox as a transcriptomic

reprogrammer activating motor neuron development genes and suppressing myeloid dif-

ferentiation genes is a novel finding. Though the MNX1 gene is of broad interest due

to its known roles in multiple cancer types including infant AML, its likely molecular

function in leukaemogenesis had not been recognized before our findings.

• In neuroblastoma, our work revealed a likely partial MYCN-replacement role for ATOH1

as an oncogene, which could impact our understanding of BHLH transcription factors.

Furthermore, we identified three novel transcriptomic clusters of NB with distinct bio-

logical characteristics. Both ATOH1 functions as a proto-oncogene and transcriptomic

classification of NB will require and attract further work.
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APPENDIX A

DONORS IN THE SOPHIA POPULATION BACKGROUND DATABASE

Hiseq family sequencers (101bp) Database

BLCA-US (TCGA) 20 Donors

TCGA-BL-A13J TCGA-BT-A20P TCGA-BT-A20Q TCGA-BT-A20T TCGA-BT-A20V TCGA-BT-A2LA TCGA-

BT-A3PH TCGA-BT-A3PJ TCGA-C4-A0F7 TCGA-CF-A27C TCGA-CF-A3MF TCGA-DK-A1A5 TCGA-DK-

A1A6 TCGA-DK-A1A7 TCGA-DK-A3IL TCGA-FD-A3N5 TCGA-FD-A3N6 TCGA-FT-A3EE TCGA-GD-A2C5

TCGA-H4-A2HQ

BOCA-UK (IGCC) 61 Donors

CGP donor 1397077 CGP donor 1397083 CGP donor 1397084 CGP donor 1437403 CGP donor 1437405 CGP donor 1437406

CGP donor 1437407 CGP donor 1437408 CGP donor 1437409 CGP donor 1437411 CGP donor 1437412 CGP donor 1437413

CGP donor 1437414 CGP donor 1437415 CGP donor 1437416 CGP donor 1437417 CGP donor 1437418 CGP donor 1437419

CGP donor 1437420 CGP donor 1437423 CGP donor 1437424 CGP donor 1437425 CGP donor 1475256 CGP donor 1490914

CGP donor 1528364 CGP donor 1528371 CGP donor 1528374 CGP donor 1528381 CGP donor 1602516 CGP donor 1602529

CGP donor 1691121 CGP donor 1691124 CGP donor 1691131 CGP donor 1691132 CGP donor 1691133 CGP donor 1691135

CGP donor 1691139 CGP donor 1691143 CGP donor 1691145 CGP donor 1691147 CGP donor 1691148 CGP donor 1691149

CGP donor 1691150 CGP donor 1691151 CGP donor 1691152 CGP donor 1691153 CGP donor 1691154 CGP donor 1691205

CGP donor 1691206 CGP donor 1691207 CGP donor 1691208 CGP donor 1691209 CGP donor 1691210 CGP donor 1691211

CGP donor 1691212 CGP donor 1691213 CGP donor 1691214 CGP donor 1691215 CGP donor 1691216 CGP donor 1691217

CGP donor 1841267

BRCA-EU (IGCC) 75 Donors

CGP donor 1163904 CGP donor 1186987 CGP donor 1186990 CGP donor 1187025 CGP donor 1230754 CGP donor 1230755

CGP donor 1230796 CGP donor 1230797 CGP donor 1232859 CGP donor 1234120 CGP donor 1234121 CGP donor 1234122

CGP donor 1234123 CGP donor 1234124 CGP donor 1234129 CGP donor 1333047 CGP donor 1333048 CGP donor 1337214

CGP donor 1337217 CGP donor 1337218 CGP donor 1337220 CGP donor 1337222 CGP donor 1337223 CGP donor 1337225

CGP donor 1337226 CGP donor 1337231 CGP donor 1337236 CGP donor 1337237 CGP donor 1337238 CGP donor 1337240

CGP donor 1337241 CGP donor 1347723 CGP donor 1347731 CGP donor 1347742 CGP donor 1347751 CGP donor 1347756

CGP donor 1353426 CGP donor 1353427 CGP donor 1353428 CGP donor 1353429 CGP donor 1353434 CGP donor 1364028

CGP donor 1364029 CGP donor 1364033 CGP donor 1374617 CGP donor 1374618 CGP donor 1397086 CGP donor 1397088

CGP donor 1397260 CGP donor 1397261 CGP donor 1397262 CGP donor 1397263 CGP donor 1397264 CGP donor 1397266

CGP donor 1397277 CGP donor 1397278 CGP donor 1397279 CGP donor 1397281 CGP donor 1397282 CGP donor 1397284

CGP donor 1451422 CGP donor 1451426 CGP donor 1451427 CGP donor 1475201 CGP donor 1475202 CGP donor 1503014

CGP donor 1503016 CGP donor 1503017 CGP donor 1503019 CGP donor 1503020 CGP donor 1503021 CGP donor 1503128

CGP donor 1503140 CGP donor 1503150 CGP donor 1503156

BRCA-UK (IGCC) 39 Donors

CGP donor 1069291 CGP donor 1114881 CGP donor 1114929 CGP donor 1167078 CGP donor 1167080 CGP donor 1187030

CGP donor 1187031 CGP donor 1187033 CGP donor 1199129 CGP donor 1199137 CGP donor 1199138 CGP donor 1212361

CGP donor 1230722 CGP donor 1230724 CGP donor 1230728 CGP donor 1230729 CGP donor 1230785 CGP donor 1309223

CGP donor 1310131 CGP donor 1337235 CGP donor 1347720 CGP donor 1347737 CGP donor 1347739 CGP donor 1347745

CGP donor 1347813 CGP donor 1353431 CGP donor 1353432 CGP donor 1363963 CGP donor 1363965 CGP donor 1363969

CGP donor 1410205 CGP donor 1410210 CGP donor 1456607 CGP donor 1472394 CGP donor 1472395 CGP donor 1503143

CGP donor 1606179 CGP donor 1654385 CGP donor 1701345

BRCA-US (TCGA) 88 Donors

TCGA-A1-A0SM TCGA-A2-A04P TCGA-A2-A04T TCGA-A2-A04X TCGA-A2-A0D0 TCGA-A2-A0D1 TCGA-

A2-A0D4 TCGA-A2-A0EY TCGA-A2-A0YG TCGA-A2-A259 TCGA-A2-A25B TCGA-A2-A3KC TCGA-A2-

A3XX TCGA-A2-A3Y0 TCGA-A7-A0CE TCGA-A7-A13D TCGA-A7-A26G TCGA-A8-A075 TCGA-A8-A07B

TCGA-A8-A07I TCGA-A8-A08B TCGA-A8-A08L TCGA-A8-A08S TCGA-A8-A092 TCGA-A8-A094 TCGA-

A8-A09X TCGA-AC-A2BK TCGA-AN-A04D TCGA-AN-A0AT TCGA-AN-A0G0 TCGA-AN-A0XR TCGA-

AO-A03L TCGA-AO-A03N TCGA-AO-A0J2 TCGA-AO-A0J4 TCGA-AO-A0J6 TCGA-AO-A0JM TCGA-AO-

A124 TCGA-AO-A12H TCGA-AQ-A04J TCGA-AR-A0TX TCGA-AR-A1AY TCGA-AR-A24Z TCGA-AR-A256

TCGA-AR-A2LK TCGA-B6-A0I1 TCGA-B6-A0I6 TCGA-B6-A0RT TCGA-B6-A0RU TCGA-B6-A0WX TCGA-

B6-A0X5 TCGA-BH-A0AV TCGA-BH-A0BW TCGA-BH-A0DG TCGA-BH-A0DT TCGA-BH-A0E0 TCGA-

BH-A0H0 TCGA-BH-A0H6 TCGA-BH-A0WA TCGA-BH-A18R TCGA-BH-A18U TCGA-BH-A1FC TCGA-

C8-A12L TCGA-C8-A12Q TCGA-C8-A130 TCGA-D8-A27F TCGA-D8-A27H TCGA-E2-A109 TCGA-E2-A14P

TCGA-E2-A14X TCGA-E2-A152 TCGA-E2-A156 TCGA-E2-A15E TCGA-E2-A15H TCGA-E2-A15K TCGA-

E2-A1LG TCGA-E2-A1LK TCGA-E2-A1LL TCGA-E9-A1NH TCGA-EW-A1J5 TCGA-EW-A1P8 TCGA-EW-

A1PB TCGA-EW-A1PC TCGA-EW-A1PH TCGA-EW-A3U0 TCGA-GI-A2C9 TCGA-GM-A2DF TCGA-GM-

A3XL

BTCA-SG (ICGC) 12 Donors

BTCA donor 27 BTCA donor A035 BTCA donor A096 BTCA donor A153 BTCA donor B070 BTCA donor B083
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BTCA donor C080 BTCA donor R149 BTCA donor Y008 BTCA donor Y065 BTCA donor Y140 BTCA donor Z2403

CESC-US (TCGA) 16 Donors

TCGA-C5-A0TN TCGA-C5-A1BF TCGA-C5-A1BN TCGA-C5-A1M9 TCGA-C5-A1MI TCGA-C5-A1ML TCGA-

C5-A1MQ TCGA-C5-A2LT TCGA-C5-A2LV TCGA-C5-A2LY TCGA-DG-A2KJ TCGA-DS-A0VL TCGA-EK-

A2PK TCGA-EK-A2R9 TCGA-EK-A2RM TCGA-EX-A1H5

CLLE-ES (ICGC) 95 Donors

10 115 122 125 128 12 134 137 138 139 141 145 148 151 157 15 166 16 176 177 179 181 188 192 199 1 20 23

244 25 26 277 278 27 282 283 290 296 2 306 308 30 318 32 33 342 343 356 358 367 371 372 386 393 39 3 435

442 44 467 473 477 48 4 519 523 56 577 58 594 5 628 63 64 654 661 677 684 6 723 749 761 776 783 785 795 802

803 824 82 832 83 84 90 9

CMDI-UK (IGCC) 15 Donors

CGP donor 1605283 1 CGP donor 1338575 1 CGP donor 1364401 1 CGP donor 1364416 1 CGP donor 1364444 1

CGP donor 1364465 1 CGP donor 1364470 1 CGP donor 1405305 1 CGP donor 1405314 1 CGP donor 1463315 1

CGP donor 1500976 1 CGP donor 1500978 1 CGP donor 1600817 1 CGP donor 1600818 1 CGP donor 1733896 1

COAD-US (TCGA) 40 Donors

TCGA-A6-2680 TCGA-A6-2681 TCGA-A6-3807 TCGA-A6-6141 TCGA-A6-6781 TCGA-A6-A565 TCGA-A6-

A566 TCGA-A6-A567 TCGA-A6-A56B TCGA-AA-3514 TCGA-AA-3518 TCGA-AA-3529 TCGA-AA-3534

TCGA-AA-3555 TCGA-AA-3664 TCGA-AA-3666 TCGA-AA-3685 TCGA-AA-3956 TCGA-AA-3977 TCGA-

AA-3994 TCGA-AA-A01S TCGA-AA-A01T TCGA-AA-A01V TCGA-AA-A01X TCGA-AA-A02O TCGA-AA-

A02Y TCGA-AD-6964 TCGA-AD-A5EJ TCGA-AD-A5EK TCGA-AY-A54L TCGA-CA-6717 TCGA-CA-6718

TCGA-D5-6540 TCGA-NH-A50T TCGA-NH-A50V TCGA-QG-A5YV TCGA-QG-A5YW TCGA-QG-A5YX

TCGA-QG-A5Z1 TCGA-QG-A5Z2

DLBC-US (TCGA) 7 Donors

TCGA-FF-8041 TCGA-FF-8042 TCGA-FF-8043 TCGA-FF-8046 TCGA-FF-8047 TCGA-FF-8061 TCGA-FF-

8062

EOPC-DE (ICGC) 40 Donors

EOPC-010 EOPC-011 EOPC-017 EOPC-018 EOPC-019 EOPC-01 EOPC-021 EOPC-022 EOPC-023 EOPC-024

EOPC-025 EOPC-026 EOPC-029 EOPC-02 EOPC-030 EOPC-031 EOPC-032 EOPC-033 EOPC-034 1 EOPC-

035 1 EOPC-036 1 EOPC-037 1 EOPC-03 EOPC-040 1 EOPC-041 EOPC-048 EOPC-049 EOPC-04 EOPC-

051 EOPC-052 EOPC-053 EOPC-054 EOPC-056 EOPC-057 EOPC-058 EOPC-05 EOPC-06 EOPC-07 EOPC-08

EOPC-09

ESAD-UK (IGCC) 98 Donors

OCCAMS-AH-011 OCCAMS-AH-014 OCCAMS-AH-021 OCCAMS-AH-036 OCCAMS-AH-039 OCCAMS-

AH-042 OCCAMS-AH-046 OCCAMS-AH-047 OCCAMS-AH-048 OCCAMS-AH-061 OCCAMS-AH-062 OCCAMS-

AH-063 OCCAMS-AH-064 OCCAMS-AH-071 OCCAMS-AH-077 OCCAMS-AH-082 OCCAMS-AH-085 OCCAMS-

AH-086 OCCAMS-AH-088 OCCAMS-AH-091 OCCAMS-AH-096 OCCAMS-AH-108 OCCAMS-AH-112 OCCAMS-

AH-120 OCCAMS-AH-127 OCCAMS-AH-131 OCCAMS-AH-133 OCCAMS-AH-135 OCCAMS-AH-136 OCCAMS-

AH-139 OCCAMS-AH-140 OCCAMS-AH-143 OCCAMS-AH-146 OCCAMS-AH-155 OCCAMS-AH-160 OCCAMS-

AH-167 OCCAMS-AH-173 OCCAMS-AH-174 OCCAMS-AH-182 OCCAMS-AH-183 OCCAMS-AH-196 OCCAMS-

AH-197 OCCAMS-AH-213 OCCAMS-ED-003 OCCAMS-ED-007 OCCAMS-ED-036 OCCAMS-ED-041 OCCAMS-

GS-002 OCCAMS-PS-001 OCCAMS-PS-002 OCCAMS-PS-008 OCCAMS-PS-012 OCCAMS-PS-013 OCCAMS-

PS-014 OCCAMS-QE-095 OCCAMS-RS-006 OCCAMS-RS-007 OCCAMS-RS-008 OCCAMS-RS-010 OCCAMS-

RS-014 OCCAMS-RS-022 OCCAMS-RS-024 OCCAMS-RS-027 OCCAMS-RS-028 OCCAMS-RS-029 OCCAMS-

RS-031 OCCAMS-RS-032 OCCAMS-RS-035 OCCAMS-RS-036 OCCAMS-RS-047 OCCAMS-SH-003 OCCAMS-

SH-020 OCCAMS-SH-024 OCCAMS-SH-038 OCCAMS-SH-051 OCCAMS-SH-071 OCCAMS-ST-020 OCCAMS-

ST-023 OCCAMS-ST-029 OCCAMS-ST-030 OCCAMS-ST-033 OCCAMS-ST-035 OCCAMS-ST-036 OCCAMS-

ST-037 OCCAMS-ST-041 OCCAMS-ST-043 OCCAMS-WG-001 OCCAMS-WG-002 OCCAMS-WG-005 OCCAMS-

WG-006 OCCAMS-WG-008 OCCAMS-WG-009 OCCAMS-WG-019 OCCAMS-ZZ-004 OCCAMS-ZZ-009 OCCAMS-

ZZ-011 OCCAMS-ZZ-016 OCCAMS-ZZ-019

GACA-CN 39 Donors

CGP donor GC00001 CGP donor GC00002 CGP donor GC00003 CGP donor GC00004 CGP donor GC00005

CGP donor GC00007 CGP donor GC00008 CGP donor GC00013 CGP donor GC00014 CGP donor GC00015

CGP donor GC00016 CGP donor GC00017 CGP donor GC00018 CGP donor GC00019 CGP donor GC00020

CGP donor GC00021 CGP donor GC00022 CGP donor GC00026 CGP donor GC00027 CGP donor GC00028

CGP donor GC00029 CGP donor GC00030 CGP donor GC00031 CGP donor GC00032 CGP donor GC00034

CGP donor GC00035 CGP donor GC00037 CGP donor GC00038 CGP donor GC00039 CGP donor GC00040

CGP donor GC00046 CGP donor GC00047 CGP donor GC00048 CGP donor GC00049 CGP donor GC00050

CGP donor GC00051 CGP donor GC00052 CGP donor GC00053 CGP donor GC00054

GBM-US (TCGA) 32 Donors

TCGA-02-2483 TCGA-02-2485 TCGA-06-0155 TCGA-06-0157 TCGA-06-0190 TCGA-06-0211 TCGA-06-0214

TCGA-06-0221 TCGA-06-0686 TCGA-06-0744 TCGA-06-0745 TCGA-06-1086 TCGA-06-2557 TCGA-06-2570

TCGA-06-5411 TCGA-06-5415 TCGA-14-0786 TCGA-14-1402 TCGA-14-1823 TCGA-14-2554 TCGA-16-1063

TCGA-19-1389 TCGA-19-2620 TCGA-19-2624 TCGA-19-2629 TCGA-19-5960 TCGA-26-5132 TCGA-26-5135
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TCGA-27-1831 TCGA-27-2523 TCGA-27-2528 TCGA-32-1970

HNSC-US (TCGA) 42 Donors

TCGA-BA-4076 TCGA-BA-5149 TCGA-BA-5556 TCGA-BA-6869 TCGA-BA-6872 TCGA-BA-6873 TCGA-

BA-A4IH TCGA-CN-4737 TCGA-CN-5365 TCGA-CN-5374 TCGA-CN-6011 TCGA-CN-6989 TCGA-CN-6994

TCGA-CQ-6228 TCGA-CR-5249 TCGA-CR-5250 TCGA-CR-6467 TCGA-CR-6470 TCGA-CR-6472 TCGA-

CR-6480 TCGA-CR-6482 TCGA-CR-6487 TCGA-CR-6491 TCGA-CR-7382 TCGA-CR-7385 TCGA-CR-7391

TCGA-CR-7404 TCGA-CV-5431 TCGA-CV-5432 TCGA-CV-5442 TCGA-CV-5443 TCGA-CV-5973 TCGA-CV-

6433 TCGA-CV-6956 TCGA-CV-7090 TCGA-CV-7100 TCGA-CV-7180 TCGA-CV-7255 TCGA-CV-7432 TCGA-

CX-7086 TCGA-DQ-5625 TCGA-HD-7753

KICH-US (TCGA) 43 Donors

TCGA-KL-8323 TCGA-KL-8325 TCGA-KL-8326 TCGA-KL-8328 TCGA-KL-8330 TCGA-KL-8331 TCGA-

KL-8332 TCGA-KL-8333 TCGA-KL-8334 TCGA-KL-8340 TCGA-KL-8341 TCGA-KL-8342 TCGA-KL-8343

TCGA-KL-8344 TCGA-KL-8346 TCGA-KM-8438 TCGA-KM-8439 TCGA-KM-8440 TCGA-KM-8441 TCGA-

KM-8442 TCGA-KM-8443 TCGA-KM-8476 TCGA-KM-8477 TCGA-KM-8639 TCGA-KN-8418 TCGA-KN-

8419 TCGA-KN-8421 TCGA-KN-8422 TCGA-KN-8424 TCGA-KN-8425 TCGA-KN-8426 TCGA-KN-8427 TCGA-

KN-8428 TCGA-KN-8429 TCGA-KN-8431 TCGA-KN-8432 TCGA-KN-8434 TCGA-KN-8435 TCGA-KN-8437

TCGA-KO-8405 TCGA-KO-8406 TCGA-KO-8407 TCGA-KO-8411

KIRC-US (TCGA) 32 Donors

TCGA-A3-3308 TCGA-A3-3363 TCGA-A3-3372 TCGA-A3-3387 TCGA-AK-3454 TCGA-AK-3455 TCGA-B0-

5094 TCGA-B0-5693 TCGA-B0-5695 TCGA-B2-4099 TCGA-B2-4101 TCGA-B2-4102 TCGA-BP-4326 TCGA-

BP-4756 TCGA-BP-4807 TCGA-BP-4968 TCGA-BP-5010 TCGA-BP-5168 TCGA-CJ-4639 TCGA-CJ-4870 TCGA-

CJ-4878 TCGA-CJ-4899 TCGA-CJ-5681 TCGA-CJ-5682 TCGA-CJ-6033 TCGA-CW-5585 TCGA-CW-6087 TCGA-

CW-6093 TCGA-CZ-5453 TCGA-CZ-5454 TCGA-CZ-5987 TCGA-DV-5566

KIRP-US (TCGA) 33 Donors

TCGA-A4-A48D TCGA-A4-A4ZT TCGA-A4-A57E TCGA-AL-3466 TCGA-AL-3468 TCGA-AL-3472 TCGA-

AL-3473 TCGA-AL-A5DJ TCGA-B1-A47M TCGA-B1-A47N TCGA-B1-A47O TCGA-B3-3925 TCGA-B3-3926

TCGA-B9-4113 TCGA-B9-4114 TCGA-B9-4115 TCGA-B9-4116 TCGA-B9-4117 TCGA-B9-4617 TCGA-B9-

A44B TCGA-GL-A4EM TCGA-GL-A59R TCGA-HE-A5NF TCGA-HE-A5NH TCGA-HE-A5NJ TCGA-HE-

A5NL TCGA-IA-A40X TCGA-IA-A40Y TCGA-MH-A55W TCGA-MH-A55Z TCGA-MH-A560 TCGA-MH-

A561 TCGA-MH-A562

LAML-KR 5 Donors

SNU WGS 01 SNU WGS 05 SNU WGS 09 SNU WGS 10 SNU WGS 12

LAML-US (TCGA) 9 Donors

TCGA-AB-2906 TCGA-AB-2976 TCGA-AB-2980 TCGA-AB-2983 TCGA-AB-2987 TCGA-AB-2989 TCGA-

AB-2991 TCGA-AB-2993 TCGA-AB-2998

LGG-US (TCGA) 17 Donors

TCGA-CS-5395 TCGA-CS-6668 TCGA-DB-5278 TCGA-DU-5874 TCGA-DU-6401 TCGA-DU-6407 TCGA-

DU-7009 TCGA-DU-7301 TCGA-E1-5318 TCGA-E1-5319 TCGA-EZ-7264 TCGA-FG-5964 TCGA-FG-8182

TCGA-HT-7602 TCGA-HT-7695 TCGA-HW-7487 TCGA-IK-7675

LICA-FR 4 Donors

CHC205 CHC320 CHC322 CHC433

LIHC-US (TCGA) 53 Donors

TCGA-BC-A10Q TCGA-BC-A216 TCGA-BC-A217 TCGA-BW-A5NO TCGA-BW-A5NP TCGA-BW-A5NQ

TCGA-CC-5260 TCGA-CC-5261 TCGA-CC-5262 TCGA-CC-A1HT TCGA-DD-A1E9 TCGA-DD-A1EB TCGA-

DD-A1ED TCGA-DD-A1EG TCGA-DD-A1EH TCGA-DD-A1EI TCGA-DD-A1EJ TCGA-DD-A1EL TCGA-

DD-A3A6 TCGA-DD-A3A7 TCGA-DD-A3A8 TCGA-DD-A3A9 TCGA-DD-A4NA TCGA-DD-A4NB TCGA-

DD-A4ND TCGA-DD-A4NE TCGA-DD-A4NG TCGA-ED-A459 TCGA-ED-A4XI TCGA-EP-A26S TCGA-EP-

A2KA TCGA-EP-A2KB TCGA-EP-A3RK TCGA-ES-A2HS TCGA-ES-A2HT TCGA-FV-A23B TCGA-FV-A2QQ

TCGA-FV-A3I0 TCGA-FV-A3I1 TCGA-FV-A3R2 TCGA-FV-A3R3 TCGA-FV-A495 TCGA-FV-A496 TCGA-

FV-A4ZQ TCGA-G3-A25S TCGA-G3-A25T TCGA-G3-A25V TCGA-G3-A25W TCGA-G3-A25Y TCGA-G3-

A3CK TCGA-HP-A5MZ TCGA-MR-A520 TCGA-PD-A5DF

LINC-JP 21 Donors

HX18 HX20 HX21 HX22 HX23 HX24 HX25 HX26 HX27 HX28 HX29 HX30 HX31 HX32 HX33 HX34 HX35

HX36 HX37 HX5 HX9

LIRI-JP 218 Donors

RK001 RK002 RK003 RK004 RK005 RK007 RK010 RK012 RK014 RK015 RK016 RK018 RK019 RK020

RK021 RK022 RK023 RK024 RK026 RK027 RK028 RK029 RK030 RK032 RK033 RK034 RK035 RK037

RK038 RK041 RK042 RK043 RK044 RK048 RK049 RK051 RK052 RK053 RK054 RK055 RK056 RK057

RK058 RK059 RK060 RK061 RK062 RK063 RK064 RK065 RK066 RK067 RK068 RK070 RK071 RK072

RK073 RK074 RK075 RK076 RK077 RK079 RK080 RK081 RK082 RK083 RK084 RK085 RK086 RK088

RK089 RK090 RK092 RK093 RK095 RK096 RK098 RK100 RK102 RK104 RK105 RK106 RK107 RK111

RK113 RK120 RK121 RK122 RK124 RK125 RK126 RK128 RK130 RK133 RK135 RK136 RK137 RK139

RK140 RK142 RK143 RK144 RK146 RK148 RK150 RK151 RK152 RK153 RK154 RK155 RK156 RK163
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RK164 RK166 RK167 RK169 RK170 RK172 RK175 RK176 RK177 RK178 RK181 RK183 RK184 RK185

RK186 RK188 RK190 RK191 RK193 RK194 RK195 RK196 RK197 RK198 RK199 RK200 RK201 RK202

RK205 RK206 RK207 RK208 RK210 RK211 RK213 RK215 RK216 RK217 RK220 RK221 RK222 RK223

RK224 RK225 RK226 RK227 RK228 RK229 RK230 RK232 RK234 RK235 RK236 RK237 RK241 RK243

RK244 RK245 RK254 RK256 RK257 RK258 RK259 RK260 RK262 RK263 RK264 RK265 RK266 RK267

RK268 RK269 RK270 RK272 RK275 RK277 RK278 RK279 RK280 RK282 RK284 RK285 RK297 RK298

RK303 RK304 RK305 RK306 RK307 RK308 RK309 RK310 RK312 RK316 RK317 RK326 RK337 RK338

RK006 1 RK036 1 RK046 1 RK145 1 RK180 1 RK261 1 RK287 1 RK289 1

LUAD-US (TCGA) 34 Donors

TCGA-05-4389 TCGA-05-4395 TCGA-05-4396 TCGA-05-4397 TCGA-05-4398 TCGA-05-4420 TCGA-05-5429

TCGA-38-4628 TCGA-44-2659 TCGA-44-6148 TCGA-49-4486 TCGA-49-4512 TCGA-49-6742 TCGA-50-5066

TCGA-50-5930 TCGA-50-5932 TCGA-50-6591 TCGA-50-6597 TCGA-55-6972 TCGA-55-6982 TCGA-55-6984

TCGA-55-6986 TCGA-55-7281 TCGA-55-8299 TCGA-64-1678 TCGA-64-1680 TCGA-73-4659 TCGA-75-5147

TCGA-75-6203 TCGA-75-7030 TCGA-78-7158 TCGA-91-6840 TCGA-91-6847 TCGA-97-8171

LUSC-US (TCGA) 35 Donors

TCGA-18-3408 TCGA-18-3415 TCGA-18-4721 TCGA-21-5782 TCGA-22-5477 TCGA-22-5485 TCGA-22-5492

TCGA-33-4586 TCGA-34-2596 TCGA-34-2600 TCGA-34-5240 TCGA-37-4135 TCGA-43-3394 TCGA-43-3920

TCGA-43-5670 TCGA-52-7812 TCGA-56-1622 TCGA-56-7582 TCGA-60-2698 TCGA-60-2711 TCGA-60-2719

TCGA-66-2756 TCGA-66-2789 TCGA-66-2793 TCGA-66-2795 TCGA-68-7755 TCGA-68-8250 TCGA-77-6843

TCGA-77-7139 TCGA-85-8052 TCGA-85-8277 TCGA-92-8064 TCGA-94-7943 TCGA-96-7545 TCGA-98-8022

MB-DKFZ (ICGC) 201 Donors

ICGC LFS MB1 ICGC MB101 ICGC MB102 ICGC MB104 ICGC MB106 ICGC MB108 ICGC MB110 ICGC MB111

ICGC MB112 ICGC MB113 ICGC MB114 ICGC MB115 ICGC MB117 ICGC MB118 ICGC MB119 ICGC MB121

ICGC MB122 ICGC MB124 ICGC MB125 ICGC MB126 ICGC MB128 ICGC MB129 ICGC MB12 ICGC MB130

ICGC MB131 ICGC MB132 ICGC MB134 ICGC MB136 ICGC MB139 ICGC MB140 ICGC MB141 ICGC MB144

ICGC MB145 ICGC MB146 ICGC MB151 ICGC MB152 ICGC MB154 ICGC MB157 ICGC MB159 ICGC MB15

ICGC MB160 ICGC MB161 ICGC MB163 ICGC MB164 ICGC MB165 ICGC MB166 ICGC MB168 ICGC MB16

ICGC MB170 ICGC MB171 ICGC MB174 ICGC MB175 ICGC MB176 ICGC MB177 ICGC MB178 ICGC MB179

ICGC MB180 ICGC MB181 ICGC MB183 ICGC MB184 ICGC MB185 ICGC MB188 ICGC MB189 ICGC MB18

ICGC MB193 ICGC MB194 ICGC MB198 ICGC MB199 ICGC MB19 ICGC MB1 ICGC MB204 ICGC MB205

ICGC MB206 ICGC MB20 ICGC MB213 ICGC MB214 ICGC MB216 ICGC MB217 ICGC MB21 ICGC MB224

ICGC MB225 ICGC MB226 ICGC MB227 ICGC MB228 ICGC MB229 ICGC MB230 ICGC MB232 ICGC MB233

ICGC MB234 ICGC MB235 ICGC MB236 ICGC MB237 ICGC MB239 ICGC MB23 ICGC MB240 ICGC MB241

ICGC MB242 ICGC MB243 ICGC MB244 ICGC MB246 ICGC MB247 ICGC MB248 ICGC MB249 ICGC MB24

ICGC MB250 ICGC MB256 ICGC MB260 ICGC MB261 ICGC MB262 ICGC MB264 ICGC MB265 ICGC MB266

ICGC MB268 ICGC MB269 ICGC MB26 ICGC MB270 ICGC MB272 ICGC MB274 ICGC MB275 ICGC MB276

ICGC MB277 ICGC MB278 ICGC MB279 ICGC MB280 ICGC MB281 ICGC MB282 ICGC MB284 ICGC MB285

ICGC MB286 ICGC MB287 ICGC MB288 ICGC MB289 ICGC MB28 ICGC MB290 ICGC MB291 ICGC MB292

ICGC MB295 ICGC MB297 ICGC MB299 ICGC MB2 ICGC MB302 ICGC MB307 ICGC MB31 ICGC MB32

ICGC MB35 ICGC MB36 ICGC MB37 ICGC MB39 ICGC MB3 ICGC MB40 ICGC MB45 ICGC MB46 ICGC MB49

ICGC MB50 ICGC MB518 ICGC MB51 ICGC MB53 ICGC MB54 ICGC MB56 ICGC MB57 ICGC MB58

ICGC MB59 ICGC MB5 ICGC MB60 ICGC MB612 ICGC MB61 ICGC MB62 ICGC MB63 ICGC MB64 ICGC MB66

ICGC MB6 ICGC MB75 ICGC MB76 ICGC MB78 ICGC MB7 ICGC MB800 ICGC MB81 ICGC MB82 ICGC MB83

ICGC MB84 ICGC MB85 ICGC MB86 ICGC MB88 ICGC MB89 ICGC MB8 ICGC MB90 ICGC MB91 ICGC MB92

ICGC MB94 ICGC MB95 ICGC MB96 ICGC MB98 ICGC MB99 ICGC MB9 MBRep T27 MBRep T36 MBRep T40

MBRep T41 MBRep T54 MBRep T70 MBRep T79

MELA-AU (IGCC) 66 Donors

MELA-0001 MELA-0002 MELA-0003 MELA-0005 MELA-0007 MELA-0008 MELA-0009 MELA-0011 MELA-

0012 MELA-0015 MELA-0022 MELA-0034 MELA-0037 MELA-0043 MELA-0046 MELA-0048 MELA-0050

MELA-0051 MELA-0053 MELA-0055 MELA-0056 MELA-0060 MELA-0061 MELA-0064 MELA-0066 MELA-

0067 MELA-0069 MELA-0070 MELA-0075 MELA-0076 MELA-0160 MELA-0161 MELA-0167 MELA-0168

MELA-0169 MELA-0170 MELA-0173 MELA-0174 MELA-0179 MELA-0180 MELA-0183 MELA-0184 MELA-

0185 MELA-0187 MELA-0190 MELA-0192 MELA-0193 MELA-0196 MELA-0197 MELA-0200 MELA-0202

MELA-0203 MELA-0205 MELA-0213 MELA-0228 MELA-0229 MELA-0230 MELA-0231 MELA-0234 MELA-

0236 MELA-0237 MELA-0238 MELA-0239 MELA-0256 MELA-0257 MELA-0259

MMML-DKFZ (ICGC) 196 Donors

4100314 4100636 4101316 4101626 4101815 4102009 4103141 4103434 4103570 4104105 4104893 4105105

4105746 4107137 4107559 4107990 4108101 4108588 4108988 4108992 4109142 4109808 4109956 4110120

4110378 4110498 4110996 4111326 4111337 4112447 4112512 4113140 4113191 4113211 4113825 4113971

4115001 4116268 4116738 4117030 4119027 4119279 4119463 4120157 4120193 4120468 4121263 4121361

4122063 4123945 4124188 4124542 4124795 4125240 4126473 4127766 4128477 4128852 4128970 4130003

4130051 4130194 4131095 4131257 4131738 4131744 4132318 4132950 4133263 4133511 4133863 4134005

4134434 4135099 4135278 4135350 4136702 4138527 4138652 4138885 4139696 4140531 4141476 4142267
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4142605 4142761 4144131 4144366 4144633 4144951 4145056 4145177 4145391 4145528 4146136 4146289

4147081 4147968 4148261 4148771 4149246 4150895 4151028 4152036 4156551 4157186 4158268 4158483

4158726 4158769 4158933 4159170 4160069 4160100 4160468 4160810 4161696 4161781 4162154 4162611

4163297 4163639 4163741 4164943 4165379 4166151 4166503 4166706 4166940 4167381 4168738 4169012

4170577 4170686 4170844 4171706 4171810 4172511 4173863 4174742 4174905 4175837 4176133 4176325

4177175 4177376 4177406 4177434 4177601 4177639 4177810 4177856 4177987 4178310 4178345 4178518

4178655 4179894 4180106 4181037 4181460 4182393 4183136 4183924 4184011 4184094 4187640 4188398

4188800 4188879 4188900 4189035 4189200 4189998 4190231 4190316 4190495 4190784 4191799 4192483

4193278 4193435 4193638 4193646 4194218 4194891 4196654 4196670 4197155 4197438 4198478 4198519

4198542 4199714 4199848 4199996

NB-DKFZ (GPOH) 33 Donors

B087koeln 13264 B087koeln 15239 B087koeln 15303 B087koeln 15403 B087koeln 16885 B087koeln 1695 B087koeln 17240

B087koeln 17344 B087koeln 17612 B087koeln 17683 B087koeln 17861 B087koeln 18478 B087koeln 18699 B087koeln 18728

B087koeln 18972 B087koeln 19537 B087koeln 19751 B087koeln 19885 B087koeln 20471 B087koeln 20507 B087koeln 20807

B087koeln 20865 B087koeln 20920 B087koeln 21368 B087koeln 21442 B087koeln 21641 B087koeln 21776 B087koeln 21924

B087koeln 23067 B087koeln 23122 B087koeln 23229 B087wgs 13169 B087wgs 18253

ORCA-IN (ICGC) 13 Donors

OSCC-GB 011301 OSCC-GB 011601 OSCC-GB 011701 OSCC-GB 011801 OSCC-GB 011901 OSCC-GB 012001

OSCC-GB 012101 OSCC-GB 012201 OSCC-GB 012301 OSCC-GB 012401 OSCC-GB 012501 OSCC-GB 012601

OSCC-GB 012701

OV-AU (IGCC) 70 Donors

AOCS-001 AOCS-004 AOCS-005 AOCS-034 AOCS-055 AOCS-056 AOCS-058 AOCS-059 AOCS-060 AOCS-

061 AOCS-063 AOCS-064 AOCS-065 AOCS-075 AOCS-077 AOCS-078 AOCS-079 AOCS-080 AOCS-081 AOCS-

083 AOCS-084 AOCS-085 AOCS-086 AOCS-088 AOCS-090 AOCS-091 AOCS-092 AOCS-093 AOCS-094 AOCS-

095 AOCS-096 AOCS-097 AOCS-104 AOCS-106 AOCS-107 AOCS-108 AOCS-109 AOCS-111 AOCS-112 AOCS-

113 AOCS-114 AOCS-115 AOCS-116 AOCS-117 AOCS-119 AOCS-120 AOCS-128 AOCS-134 AOCS-138 AOCS-

139 AOCS-141 AOCS-142 AOCS-150 AOCS-153 AOCS-155 AOCS-157 AOCS-158 AOCS-159 AOCS-160 AOCS-

161 AOCS-162 AOCS-163 AOCS-164 AOCS-165 AOCS-166 AOCS-167 AOCS-168 AOCS-169 AOCS-170 AOCS-

171

OV-US (TCGA) 38 Donors

TCGA-04-1331 TCGA-04-1347 TCGA-04-1349 TCGA-04-1367 TCGA-04-1514 TCGA-04-1542 TCGA-09-1666

TCGA-09-2045 TCGA-09-2050 TCGA-10-0934 TCGA-10-0937 TCGA-10-0938 TCGA-13-0727 TCGA-13-0906

TCGA-13-0912 TCGA-13-1477 TCGA-13-1487 TCGA-13-1491 TCGA-23-1110 TCGA-23-1118 TCGA-23-1124

TCGA-24-1419 TCGA-24-1466 TCGA-24-1544 TCGA-24-1548 TCGA-24-1552 TCGA-24-1557 TCGA-24-1558

TCGA-24-1562 TCGA-24-1614 TCGA-24-2024 TCGA-24-2290 TCGA-25-1632 TCGA-25-1634 TCGA-25-2391

TCGA-25-2400 TCGA-36-1574 TCGA-61-2000

PACA-AU (IGCC) 94 Donors

ICGC 0006 ICGC 0007 ICGC 0009 ICGC 0020 ICGC 0021 ICGC 0025 ICGC 0026 ICGC 0031 ICGC 0033

ICGC 0037 ICGC 0048 ICGC 0051 ICGC 0052 ICGC 0053 ICGC 0054 ICGC 0059 ICGC 0061 ICGC 0063

ICGC 0066 ICGC 0067 ICGC 0069 ICGC 0075 ICGC 0087 ICGC 0088 ICGC 0099 ICGC 0103 ICGC 0105

ICGC 0108 ICGC 0109 ICGC 0114 ICGC 0115 ICGC 0124 ICGC 0134 ICGC 0135 ICGC 0139 ICGC 0140

ICGC 0141 ICGC 0143 ICGC 0144 ICGC 0146 ICGC 0149 ICGC 0150 ICGC 0153 ICGC 0169 ICGC 0185

ICGC 0192 ICGC 0199 ICGC 0201 ICGC 0205 ICGC 0206 ICGC 0207 ICGC 0212 ICGC 0214 ICGC 0215

ICGC 0217 ICGC 0223 ICGC 0224 ICGC 0227 ICGC 0230 ICGC 0295 ICGC 0296 ICGC 0300 ICGC 0301

ICGC 0303 ICGC 0304 ICGC 0309 ICGC 0312 ICGC 0313 ICGC 0315 ICGC 0321 ICGC 0326 ICGC 0338

ICGC 0354 ICGC 0365 ICGC 0391 ICGC 0392 ICGC 0393 ICGC 0395 ICGC 0406 ICGC 0412 ICGC 0417

ICGC 0419 ICGC 0420 ICGC 0486 ICGC 0502 ICGC 0507 ICGC 0518 ICGC 0521 ICGC 0522 ICGC 0526

ICGC 0533 ICGC 0535 ICGC 0536 ICGC 0543

PACA-CA (ICGC) 107 Donors

PCSI 0001 PCSI 0002 PCSI 0004 PCSI 0015 1 PCSI 0024 PCSI 0074 PCSI 0077 PCSI 0078 PCSI 0080 PCSI 0081

PCSI 0082 PCSI 0083 1 PCSI 0084 PCSI 0096 PCSI 0101 PCSI 0103 PCSI 0105 PCSI 0108 PCSI 0111 PCSI 0132

PCSI 0142 PCSI 0145 PCSI 0146 PCSI 0161 PCSI 0162 PCSI 0164 PCSI 0170 PCSI 0171 PCSI 0173 PCSI 0174

PCSI 0175 PCSI 0208 PCSI 0210 PCSI 0217 PCSI 0226 PCSI 0227 PCSI 0228 PCSI 0230 PCSI 0233 PCSI 0235

PCSI 0239 PCSI 0240 PCSI 0248 PCSI 0250 PCSI 0253 PCSI 0256 PCSI 0264 PCSI 0268 PCSI 0269 PCSI 0274

PCSI 0279 PCSI 0280 PCSI 0281 PCSI 0283 PCSI 0284 PCSI 0285 PCSI 0286 PCSI 0287 PCSI 0290 PCSI 0292

PCSI 0294 PCSI 0297 PCSI 0300 PCSI 0302 PCSI 0324 PCSI 0325 PCSI 0326 PCSI 0328 PCSI 0334 PCSI 0337

PCSI 0338 PCSI 0340 PCSI 0341 PCSI 0345 PCSI 0351 PCSI 0353 PCSI 0375 PCSI 0392 PCSI 0404 PCSI 0406

PCSI 0413 PCSI 0450 PCSI 0451 PCSI 0456 PCSI 0457 PCSI 0463 PCSI 0465 PCSI 0466 PCSI 0467 PCSI 0468

PCSI 0469 PCSI 0472 PCSI 0473 PCSI 0476 PCSI 0477 PCSI 0492 PCSI 0504 PCSI 0506 PCSI 0508 PCSI 0509

PCSI 0527 PCSI 0528 PCSI 0531 PCSI 0537 PCSI 0547 PCSI 0572 PCSI 0352 1

PA-DKFZ (ICGC) 81 Donors

ICGC PA100 ICGC PA102 ICGC PA103 ICGC PA107 ICGC PA108 ICGC PA109 ICGC PA10 ICGC PA110

ICGC PA112 ICGC PA116 ICGC PA117 ICGC PA11 ICGC PA126 ICGC PA12 ICGC PA131 ICGC PA134 ICGC PA135

266



ICGC PA136 ICGC PA138 ICGC PA140 ICGC PA143 ICGC PA144 ICGC PA145 ICGC PA147 ICGC PA148

ICGC PA14 ICGC PA150 ICGC PA158 ICGC PA159 ICGC PA162 ICGC PA163 ICGC PA165 ICGC PA17 ICGC PA20

ICGC PA21 ICGC PA22 ICGC PA24 ICGC PA25 ICGC PA29 ICGC PA30 ICGC PA33 ICGC PA34 ICGC PA36

ICGC PA37 ICGC PA3 ICGC PA41 ICGC PA42 ICGC PA43 ICGC PA46 ICGC PA48 ICGC PA4 ICGC PA50

ICGC PA53 ICGC PA55 ICGC PA56 ICGC PA58 ICGC PA59 ICGC PA5 ICGC PA64 ICGC PA65 ICGC PA69

ICGC PA70 ICGC PA71 ICGC PA73 ICGC PA75 ICGC PA79 ICGC PA81 ICGC PA82 ICGC PA83 ICGC PA86

ICGC PA88 ICGC PA89 ICGC PA8 ICGC PA91 ICGC PA92 ICGC PA93 ICGC PA94 ICGC PA95 ICGC PA96

ICGC PA99 ICGC PA9

PAEN-AU (IGCC) 102 Donors

ICGC 0425 ICGC 0427 ICGC 0428 ICGC 0431 ICGC 0432 ICGC 0433 ICGC 0434 ICGC 0435 ICGC 0436

ICGC 0437 ICGC 0438 ICGC 0439 ICGC 0440 ICGC 0441 ICGC 0443 ICGC 0446 ICGC 0447 ICGC 0449

ICGC 0452 ICGC 0453 ICGC 0455 ICGC 0456 ICGC 0457 ICGC 0459 ICGC 0489 ICGC 0491 ICGC 0492

ICGC 0497 ICGC 0498 ICGC 0500 ICGC 0501 ITNET-0026 ITNET-0028 ITNET-0052 ITNET-0087 ITNET-

0100 ITNET-0107 ITNET-0118 ITNET-0128 ITNET-0134 ITNET-0144 ITNET-0148 ITNET-0151 ITNET-0152

ITNET-0673 ITNET-0681 ITNET-0695 ITNET-0700 ITNET-0783 ITNET-0797 ITNET-0809 ITNET-0813 ITNET-

0833 ITNET-0850 ITNET-0900 ITNET-0911 ITNET-0935 ITNET-0938 ITNET-0941 ITNET-0962 ITNET-0968

ITNET-0993 ITNET-1000 ITNET-1001 ITNET-1027 ITNET-1044 ITNET-1047 ITNET-1050 ITNET-1053 ITNET-

1081 ITNET-1257 ITNET-1265 ITNET-1266 ITNET-1270 ITNET-1273 ITNET-1286 ITNET-1288 ITNET-1293

ITNET-1301 ITNET-1304 ITNET-1308 ITNET-1309 ITNET-1312 ITNET-1314 ITNET-1317 ITNET-1320 NE-

0009 NE-0010 NE-0012 NE-0017 NE-0018 NE-0020 NE-0021 NE-0023 NE-0025 NE-0026 NE-0027 NE-0028

NE-0029 NE-0032 NE-0033 NE-0038

PCNSL-DKFZ (H050 A050 & XD013) 11 Donors

H050-0GUK H050-46JU H050-6K3Z H050-D7C3 H050-D8YC H050-JVA9 H050-K5AJ H050-SECM H050-

T0SR H050-TY1U H050-W01L

PGBM-DKFZ 41 Donors

ICGC GBM11 ICGC GBM16 ICGC GBM17 ICGC GBM18 ICGC GBM19 ICGC GBM1 ICGC GBM22 ICGC GBM23

ICGC GBM24 ICGC GBM25 ICGC GBM2 ICGC GBM42 ICGC GBM43 ICGC GBM44 ICGC GBM45 ICGC GBM48

ICGC GBM52 ICGC GBM53 ICGC GBM54 ICGC GBM55 ICGC GBM56 ICGC GBM57 ICGC GBM58 ICGC GBM59

ICGC GBM5 ICGC GBM60 ICGC GBM62 ICGC GBM63 ICGC GBM65 ICGC GBM67 ICGC GBM6 ICGC GBM79

ICGC GBM7 ICGC GBM82 ICGC GBM83 ICGC GBM85 ICGC GBM86 ICGC GBM96 ICGC GBM97 ICGC GBM98

ICGC GBM9

PNET-DKFZ 7 Donors

ICGC MB172 ICGC MB182 ICGC PNET01 ICGC PNET02 ICGC PNET03 ICGC PNET04 ICGC PNET05

PRAD-CA (ICGC) 108 Donors

CPCG0001 CPCG0003 CPCG0020 CPCG0040 CPCG0046 CPCG0047 CPCG0048 CPCG0057 CPCG0063 CPCG0073

CPCG0078 CPCG0081 CPCG0083 CPCG0087 CPCG0094 CPCG0095 CPCG0098 CPCG0099 CPCG0102 CPCG0121

CPCG0123 CPCG0127 CPCG0128 CPCG0154 CPCG0158 CPCG0166 CPCG0182 CPCG0184 CPCG0185 CPCG0189

CPCG0190 CPCG0191 CPCG0196 CPCG0199 CPCG0201 CPCG0206 CPCG0208 CPCG0210 CPCG0211 CPCG0213

CPCG0217 CPCG0232 CPCG0233 CPCG0234 CPCG0236 CPCG0238 CPCG0241 CPCG0242 CPCG0246 CPCG0248

CPCG0249 CPCG0250 CPCG0251 CPCG0255 CPCG0256 CPCG0258 CPCG0259 CPCG0262 CPCG0263 CPCG0265

CPCG0266 CPCG0267 CPCG0268 CPCG0269 CPCG0324 CPCG0331 CPCG0334 CPCG0336 CPCG0339 CPCG0340

CPCG0341 CPCG0342 CPCG0344 CPCG0345 CPCG0346 CPCG0348 CPCG0350 CPCG0352 CPCG0357 CPCG0360

CPCG0361 CPCG0362 CPCG0364 CPCG0365 CPCG0366 CPCG0368 CPCG0369 CPCG0371 CPCG0372 CPCG0373

CPCG0374 CPCG0375 CPCG0378 CPCG0379 CPCG0380 CPCG0387 CPCG0388 CPCG0391 CPCG0392 CPCG0401

CPCG0404 CPCG0407 CPCG0409 CPCG0410 CPCG0411 CPCG0412 CPCG0413 CPCG0414

PRAD-UK (IGCC) 33 Donors

0056 CRUK PC 0056 0064 CRUK PC 0064 0065 CRUK PC 0065 0067 CRUK PC 0067 0069 CRUK PC 0069

0070 CRUK PC 0070 0071 CRUK PC 0071 0072 CRUK PC 0072 0075 CRUK PC 0075 0077 CRUK PC 0077

0078 CRUK PC 0078 0080 CRUK PC 0080 0082 CRUK PC 0082 0084 CRUK PC 0084 0086 CRUK PC 0086

0089 CRUK PC 0089 0090 CRUK PC 0090 0091 CRUK PC 0091 0093 CRUK PC 0093 0094 CRUK PC 0094

A10-0015 CRUK PC 0015 3 A12-0020 CRUK PC 0020 1 A17-0095 CRUK PC 0095 1 A21-0096 CRUK PC 0096 1

A22-0016 CRUK PC 0016 1 A24-0021 CRUK PC 0021 1 A29-0017 CRUK PC 0017 1 A31-0018 CRUK PC 0018 1

A32-0019 CRUK PC 0019 1 A34-0022 CRUK PC 0022 1 0006 CRUK PC 0006 1 0007 CRUK PC 0007 1 0008 CRUK PC 0008

PRAD-US (TCGA) 17 Donors

TCGA-CH-5750 TCGA-CH-5763 TCGA-CH-5771 TCGA-CH-5788 TCGA-CH-5789 TCGA-EJ-5503 TCGA-EJ-

5506 TCGA-EJ-7791 TCGA-G9-6336 TCGA-G9-6365 TCGA-G9-6370 TCGA-G9-7522 TCGA-HC-7075 TCGA-

HC-7233 TCGA-HC-7737 TCGA-HC-8258 TCGA-HI-7169

READ-US (TCGA) 14 Donors

TCGA-AF-2689 TCGA-AF-2691 TCGA-AG-3593 TCGA-AG-3727 TCGA-AG-3885 TCGA-AG-3890 TCGA-

AG-3896 TCGA-AG-3901 TCGA-AG-4007 TCGA-AG-4008 TCGA-AG-4015 TCGA-AG-A032 TCGA-EI-6917

TCGA-F5-6814

RECA-EU (IGCC) 71 Donors

C0004 C0005 C0006 C0008 C0009 C0011 C0012 C0013 C0014 C0015 C0016 C0018 C0019 C0020 C0021 C0022
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C0023 C0024 C0025 C0026 C0027 C0028 C0031 C0033 C0034 C0035 C0037 C0038 C0039 C0040 C0041 C0042

C0043 C0045 C0046 C0047 C0048 C0049 C0050 C0051 C0052 C0054 C0055 C0056 C0057 C0060 C0062 C0063

C0064 C0065 C0066 C0068 C0070 C0071 C0073 C0074 C0075 C0077 C0079 C0080 C0081 C0082 C0084 C0086

C0088 C0091 C0092 C0094 C0098 C0099 C0100

SARC-US (TCGA) 33 Donors

TCGA-DX-A1KU TCGA-DX-A1KW TCGA-DX-A1L0 TCGA-DX-A1L2 TCGA-DX-A1L3 TCGA-DX-A23R

TCGA-DX-A240 TCGA-DX-A2IZ TCGA-DX-A2J0 TCGA-DX-A2J4 TCGA-DX-A3LS TCGA-DX-A3LT TCGA-

DX-A3LU TCGA-DX-A3LW TCGA-DX-A3LY TCGA-DX-A3M1 TCGA-DX-A3U5 TCGA-DX-A3U6 TCGA-

DX-A3U7 TCGA-DX-A3U8 TCGA-FX-A2QS TCGA-FX-A3NJ TCGA-FX-A3RE TCGA-FX-A48G TCGA-HB-

A5W3 TCGA-IE-A4EI TCGA-IE-A4EK TCGA-IF-A4AJ TCGA-IS-A3K7 TCGA-IS-A3KA TCGA-IW-A3M4

TCGA-IW-A3M5 TCGA-MO-A47R

SKCM-US (TCGA) 36 Donors

TCGA-D3-A1Q1 TCGA-D3-A1Q5 TCGA-D3-A3MO TCGA-DA-A1HV TCGA-DA-A1HW TCGA-DA-A1HY

TCGA-DA-A1I0 TCGA-DA-A1I2 TCGA-DA-A1I8 TCGA-DA-A3F3 TCGA-DA-A3F5 TCGA-DA-A3F8 TCGA-

EB-A24D TCGA-EE-A185 TCGA-EE-A29B TCGA-EE-A2A0 TCGA-EE-A2GT TCGA-EE-A2M5 TCGA-EE-

A2MI TCGA-EE-A3J5 TCGA-EE-A3JI TCGA-ER-A19D TCGA-ER-A19E TCGA-ER-A19J TCGA-ER-A19L

TCGA-ER-A19T TCGA-ER-A2NF TCGA-FS-A1ZD TCGA-FS-A1ZK TCGA-FS-A1ZP TCGA-FS-A1ZU TCGA-

GN-A262 TCGA-GN-A264 TCGA-GN-A266 TCGA-GN-A26A TCGA-GN-A26C

STAD-US (TCGA) 24 Donors

TCGA-BR-4255 TCGA-BR-4280 TCGA-BR-6452 TCGA-BR-6564 TCGA-BR-7722 TCGA-BR-8373 TCGA-

BR-8486 TCGA-BR-8682 TCGA-BR-8690 TCGA-CD-8529 TCGA-CG-4442 TCGA-CG-4443 TCGA-CG-4474

TCGA-CG-5723 TCGA-D7-6519 TCGA-D7-6527 TCGA-D7-6528 TCGA-D7-6815 TCGA-D7-6822 TCGA-F1-

6177 TCGA-F1-6875 TCGA-HF-7136 TCGA-HU-8245 TCGA-IN-7806

THCA-US (TCGA) 31 Donors

TCGA-BJ-A191 TCGA-BJ-A45K TCGA-DE-A2OL TCGA-DE-A3KN TCGA-DJ-A13R TCGA-DJ-A13W TCGA-

DJ-A1QL TCGA-DJ-A2Q1 TCGA-DJ-A2Q2 TCGA-DJ-A2Q8 TCGA-DJ-A3US TCGA-EL-A3CV TCGA-EL-

A3CX TCGA-EL-A3MY TCGA-EL-A3T0 TCGA-EL-A3T9 TCGA-EL-A3TB TCGA-EM-A2CN TCGA-EM-

A2CP TCGA-EM-A2OW TCGA-EM-A3AL TCGA-EM-A3AQ TCGA-EM-A3FL TCGA-EM-A3FQ TCGA-ET-

A3DV TCGA-FE-A22Z TCGA-FE-A233 TCGA-FE-A3PD TCGA-FK-A3SD TCGA-FK-A3SE TCGA-L6-A4ET

UCEC-US (TCGA) 44 Donors

TCGA-A5-A0G9 TCGA-A5-A0GE TCGA-A5-A0GG TCGA-A5-A0GJ TCGA-AJ-A23M TCGA-AP-A051 TCGA-

AP-A052 TCGA-AP-A053 TCGA-AP-A054 TCGA-AP-A05A TCGA-AP-A0L8 TCGA-AP-A0L9 TCGA-AP-

A0LD TCGA-AP-A0LE TCGA-AP-A0LF TCGA-AP-A0LH TCGA-AP-A0LI TCGA-AP-A0LL TCGA-AP-A0LO

TCGA-AX-A0J1 TCGA-AX-A1CI TCGA-AX-A2H5 TCGA-B5-A0JN TCGA-B5-A0K8 TCGA-B5-A11G TCGA-

B5-A11H TCGA-B5-A11I TCGA-B5-A1MY TCGA-BG-A18C TCGA-BK-A0CC TCGA-BK-A139 TCGA-BS-

A0TC TCGA-BS-A0TD TCGA-BS-A0TE TCGA-BS-A0U9 TCGA-BS-A0V8 TCGA-D1-A16G TCGA-D1-A17K

TCGA-D1-A1NU TCGA-DI-A1NN TCGA-E6-A1LZ TCGA-EO-A1Y8 TCGA-EY-A1GS TCGA-EY-A1GW

X-Ten Database

7qAML-DKFZ (H030) 18 Donors

H030-2C37UE, H030-2KFQ, H030-3N1U, H030-67DF, H030-6L9J, H030-88FP, H030-A87Q, H030-D1KL, H030-

DX59, H030-EMGX, H030-GBWS, H030-J3P5, H030-MTM9, H030-NEHVx, H030-SKLRJZ, H030-T2D7, H030-

YE4Y, H030-ZF5JFZ

AML-DKTK (XD001) 35 Donors

XD001 P001, XD001 P002, XD001 P003, XD001 P004, XD001 P005, XD001 P006, XD001 P007, XD001 P008,

XD001 P009, XD001 P010, XD001 P011, XD001 P012, XD001 P013, XD001 P014, XD001 P015, XD001 P016,

XD001 P017, XD001 P018, XD001 P019, XD001 P101, XD001 P102, XD001 P103, XD001 P104, XD001 P105,

XD001 P108, XD001 P109, XD001 P110, XD001 P111, XD001 P112, XD001 P113, XD001 P114, XD001 P115,

XD001 P116, XD001 P117, XD001 P118

ATRT-DKFZ (XI010) 3 Donors

XI010 ATRT E1075-13, XI010 NCH3602, XI010 NCH3786

COLORECTAL family-DKFZ (XI006) 63 Donors

XI006 F11 S3, XI006 F12 S1, XI006 F12 S2, XI006 F12 S3, XI006 F12 S4, XI006 F12 S5, XI006 F13 S11,

XI006 F13 S1, XI006 F13 S2, XI006 F13 S3, XI006 F13 S6, XI006 F14 S1, XI006 F14 S4, XI006 F15 S1,

XI006 F15 S2, XI006 F15 S3, XI006 F15 S4, XI006 F16 S2, XI006 F16 S3, XI006 F16 S8, XI006 F17 S1,

XI006 F17 S2, XI006 F17 S3, XI006 F17 S4, XI006 F17 S5, XI006 F18 S1, XI006 F18 S2, XI006 F18 S3,

XI006 F18 S4, XI006 F18 S5, XI006 F19 S1, XI006 F19 S2, XI006 F19 S3, XI006 F20 S1, XI006 F20 S2,

XI006 F20 S3, XI006 F20 S4, XI006 F20 S5, XI006 F20 S6, XI006 F21 S1, XI006 F22 S1, XI006 F22 S2,

XI006 F22 S3, XI006 F7 S1, XI006 F7 S3, XI006 F7 S4, XI006 F8 S1, XI006 F8 S2, XI006 F8 S3, XI006 F8 S5,

XI006 F9 S1, XI006 F9 S2, XI006 F9 S3, XI006 F9 S4, XI039 CRC L1 S1, XI039 CRC L1 S2, XI039 CRC L1 S3,

XI039 CRC L1 S4, XI039 CRC L2 S1, XI039 CRC L2 S2, XI039 CRC L2 S3, XI039 CRC L2 S4, XI039 CRC L2 S5

EPN-DKFZ (XI049 & XI061) 41 Donors

XI049 11EP25, XI049 11EP26, XI049 11EP6, XI049 4EP24, XI049 4EP29, XI049 7EP10, XI049 7EP31, XI049 7EP48,

XI049 9EP19, XI049 9EP1, XI049 9EP33, XI049 9EP7, XI049 9EP9, XI049 NCH2053, XI061 15EP1, XI061 15EP2,
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XI061 15EP7, XI061 15EP8, XI061 15EP9, XI061 16EP10, XI061 16EP5, XI061 4EP17, XI061 4EP19, XI061 4EP28,

XI061 4EP32, XI061 4EP33, XI061 4EP35, XI061 4EP5, XI061 4EP8, XI061 7EP11, XI061 7EP18, XI061 7EP23,

XI061 7EP34, XI061 7EP3, XI061 7EP4, XI061 7EP53, XI061 9EP14, XI061 9EP15, XI061 9EP29, XI061 9EP4,

XI061 9EP8

GCTB-DKFZ (XI041) 9 Donors

XI041 05, XI041 06, XI041 07, XI041 AP, XI041 AQ, XI041 AR, XI041 AW, XI041 AX, XI041 AZ

HODGKIN family-DKFZ (XI019) 16 Donors

XI019 HL1 S1, XI019 HL1 S2, XI019 HL1 S3, XI019 HL1 S4, XI019 HL2 S1, XI019 HL2 S2, XI019 HL2 S3,

XI019 HL2 S4, XI019 HL2 S5, XI019 HL2 S6, XI019 HL2 S7, XI019 HL2 S8, XI019 HL2 S9, XI040 HL3 S1,

XI040 HL3 S2, XI040 HL3 S3

MASTER-DKFZ (H021) 254 Donors

H021-149FSY, H021-3NLUM3, H021-3W9ZP5, H021-418T28, H021-6181DL, H021-69KU1M, H021-6WQ2QS,

H021-92XTB6, H021-93UM8E, H021-98T9DN, H021-A4M4YB, H021-AL8AJM, H021-ANN8D1, H021-ASP4P2,

H021-C52P, H021-F3AMK8, H021-F7VR2D, H021-FQVVMY, H021-G2U6LS, H021-G83612, H021-G9Y735,

H021-H7D3JF, H021-J3DFTN, H021-JTCU87, H021-KLFE4P, H021-KYULH4, H021-L4M2BM, H021-M4HLEN,

H021-NKKQGS, H021-PW8E2Y, H021-PWTUGA, H021-QKQDKB, H021-QLJDYA, H021-RPLGMN, H021-

TQ37KJ, H021-VD9X43, H021-VJWKMM, H021-W2LFQY, H021-W77W46, H021-WS1A21, H021-WY8KBR,

H021-X2UVYS, H021-X4TX9T, H021-X5TC7W, H021-YQY48T, H021-YWHWPQ, H021-1MTCZ9, H021-39SEUY,

H021-3AFKXB, H021-526FUD, H021-7U9BYK, H021-86G9QA, H021-C41MJC, H021-CBCJVV, H021-CW1ZAY,

H021-DES7ZD, H021-DNMH, H021-DQM8YM, H021-E56A4U, H021-F4WCGV, H021-G3SKZ9, H021-HBJXZR,

H021-J5LPWZ, H021-J8TBFU, H021-JK6EGS, H021-JY3G3X, H021-L47PRH, H021-L84HD5, H021-MBCV6L,

H021-NEGW81, H021-NLUJR7, H021-P6WZNK, H021-RCCY57, H021-RH38ZJ, H021-S1RRD7, H021-T8XN8C,

H021-TKDN9D, H021-TQDQ1W, H021-VAL68P, H021-VRTGDW, H021-VWTSTS, H021-WPZAQG, H021-

XGJCTR, H021-XXZ32Z, H021-Y24BUL, H021-Y2A8X6, H021-YUQ155, H021-36H8XH, H021-3W6BBQ,

H021-7VRVFG, H021-ATYVKC, H021-DW9VUH, H021-H1DNZG, H021-JCYXC8, H021-JSB14V, H021-ME44PK,

H021-N5Y1YY, H021-NJQ3P2, H021-NZADYV, H021-PNKYGC, H021-PU9YWU, H021-QH6MPU, H021-QMVRLC,

H021-SBTCJ6, H021-SM96YS, H021-VNE8G3, H021-YG488C, H021-0WXB, H021-11YR8P, H021-13JVXT,

H021-19D5EB, H021-1K9WSG, H021-1MA1EB, H021-1S82CX, H021-25QTMN, H021-2EHFSJ, H021-2NNFEM,

H021-2RTMCP, H021-33UKSM, H021-3AT3LR, H021-3GTR71, H021-3LSLZ1, H021-4QWVAG, H021-546PMF,

H021-56G7K1, H021-5FFPX1, H021-5MM8HX, H021-5PS3DS, H021-64DVV7, H021-6B84TJ, H021-6MDRB5,

H021-77DLK4, H021-79PAJQ, H021-7HFAWC, H021-7NPSJW, H021-7SZUP1, H021-7Z95ZH, H021-85D55Z,

H021-8AAMZH, H021-8BS2HW, H021-8EFPXA, H021-8GEBK9, H021-8KF22F, H021-8NFHC7, H021-99G9EH,

H021-9BRWLP, H021-9WNHUM, H021-A5F2C6, H021-ARFSS6, H021-B9JGVS, H021-BMXPBG, H021-BYAX6U,

H021-C8HAJF, H021-CAWW7F, H021-CD28AE, H021-CEFU8J, H021-CK4ZJD, H021-CW6Z4Z, H021-DFFFNC,

H021-E26QTY, H021-E54T3F, H021-E57XBR, H021-EGPXE1, H021-ERB96F, H021-EU5YD1, H021-F5HFJQ,

H021-FBVAAW, H021-FY5ZQW, H021-J5DYDL, H021-JJ3WAR, H021-JL8KLN, H021-K5991L, H021-KEHA71,

H021-KFPLSM, H021-KJC5NU, H021-KQPCJ2, H021-L27TZN, H021-LDUYDE, H021-LKS5UH, H021-LNGXFG,

H021-LQDPEM, H021-MALFTE, H021-MDPEHB, H021-MRF5FT, H021-MST6JK, H021-MTK64L, H021-N5YRV7,

H021-N8HWFF, H021-NDTATK, H021-NGLL19, H021-NRURPH, H021-NRXWGD, H021-NUVEYH, H021-

NVGQD4, H021-P7EW6X, H021-PF81SF, H021-PLH861, H021-PMJNX8, H021-PSBRHM, H021-Q7RL, H021-

QFC8A8, H021-QL4GEW, H021-QM4LSB, H021-QVNAQT, H021-QY2Q95, H021-R82FD7, H021-RFEX31,

H021-RFH9U7, H021-RG2E96, H021-S7ZXC4, H021-S971AK, H021-SSBE3A, H021-T2J7Z8, H021-T62214,

H021-TLYJGN, H021-TPPC3H, H021-V4X4A3, H021-V6CGPQ, H021-V7PYRH, H021-V9S4DY, H021-VMWW8J,

H021-W1TY38, H021-WDZGV8, H021-WFRX55, H021-X44M88, H021-X8KH1U, H021-XM4N, H021-XPPAA6,

H021-XXTJSH, H021-Y1KHHA, H021-Y68SSB, H021-Y799BH, H021-Y9D9WJ, H021-YCUT9Q, H021-YLAXVK,

H021-YLNJYE, H021-YW3Y2R, H021-YY7PXK, H021-Z3254X, H021-Z7JY6A, H021-ZHGGJC, H021-ZJ59W8,

H021-ZLVJZ3, H021-ZT3X9F, H021-ZY1A8Q, H021-7D43, H021-8LPS87, H021-8UULQ8, H021-9VNPZ3, H021-

AMRWA3, H021-GYRGG6, H021-MC1F4S, H021-RYHU45, H021-TPL9

MMML-DKFZ (ICGC) 52 Donors

4100049, 4101392, 4101669, 4103593, 4103627, 4104119, 4105782, 4107597, 4112817, 4114033, 4115022,

4118156, 4119702, 4120879, 4121621, 4121974, 4124432, 4126692, 4128355, 4128435, 4128849, 4130865,

4131213, 4131750, 4135813, 4136095, 4137230, 4138059, 4138629, 4139212, 4139483, 4140544, 4146301,

4152611, 4161288, 4161486, 4164330, 4167925, 4171586, 4171946, 4175941, 4176046, 4176584, 4177842,

4178243, 4178605, 4179976, 4182605, 4184437, 4186613, 4186812, 4190929

MNG-DKFZ (H033 & A033) 35 Donors

A033-1BZ58C, A033-1U9DCT, A033-2CP3XF, A033-6UE3XW, A033-823NUE, A033-B1C6W3, A033-B4JH92,

A033-FGGLS9, A033-J31ASL, A033-JSKEM7, A033-MHA1P2, A033-MY5SG9, A033-N4QFCQ, A033-P2ZRLK,

A033-PQP37P, A033-TS1K41, A033-VGSY3R, A033-XLW5FQ, DKFZ-Mrad 10, DKFZ-Mrad 11, DKFZ-Mrad 12,

DKFZ-Mrad 13, DKFZ-Mrad 14, DKFZ-Mrad 16, DKFZ-Mrad 18, DKFZ-Mrad 1, DKFZ-Mrad 20, DKFZ-Mrad 2,

DKFZ-Mrad 3, DKFZ-Mrad 4, DKFZ-Mrad 5, DKFZ-Mrad 6, DKFZ-Mrad 7, DKFZ-Mrad 8, DKFZ-Mrad 9

MPNST-DKFZ (XI086) 6 Donors

XI086 T1320, XI086 T1340, XI086 T1507, XI086 T1794, XI086 T2300B, XI086 T2302,

NB-DKFZ (GPOH) 67 Donors
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XI003 10023, XI003 14312, XI003 14359, XI003 14527, XI003 15015, XI003 15403, XI003 15836, XI003 15885,

XI003 16663, XI003 17041, XI003 17209, XI003 17752, XI003 17777, XI003 17863, XI003 17871, XI003 18533,

XI003 18800, XI003 18802, XI003 18874, XI003 19079, XI003 19461, XI003 19493, XI003 19624, XI003 19924,

XI003 19986, XI003 20005, XI003 20153, XI003 20173, XI003 20195, XI003 20273, XI003 20289, XI003 20391,

XI003 20513, XI003 20855, XI003 20992, XI003 21014, XI003 21129, XI003 21248, XI003 21260, XI003 21390,

XI003 2151, XI003 21525, XI003 21533, XI003 21776, XI003 21809, XI003 21954, XI003 21976, XI003 21984,

XI003 22650, XI003 22677, XI003 22981, XI003 22998, XI003 23011, XI003 231, XI003 23298, XI003 23484,

XI003 24642, XI003 25509, XI003 3623, XI003 4091, XI003 91257, XI003 NB-AUT-2, XI003 NB-AUT-3, XI003 STA-

NB-2, XI003 STA-NB-3, XI003 STA-NB-4, XI003 STA-NB-6

PANCREAS family-DKFZ (XI001) 25 Donors

XI001a 25-4-46-1020304, XI001a 25-4-46-10203, XI001a 25-4-46-1020403, XI001a 25-4-46-10206, XI001a 25-

4-46-102, XI001a 25-4-46-1, XI001a 25-9-44-202, XI001a 25-9-44-204, XI001a 25-9-44-20504, XI001a 25-9-

44-206, XI001a 25-9-44-208, XI001a 25-9-44-23, XI001a 25-9-44-2, XI001b 02-5-0382-1, XI001b 09-2-0552-2,

XI001b 25-1-000091-109, XI001b 25-2-000014-206, XI001b 25-2-000129-1, XI001b 25-4-000088-206, XI001b 25-

4-000106-204, XI001b 25-6-000078-1, XI001b 25-7-000100-1, XI001b 25-7-000170-1, XI001b 25-8-000168-2,

XI001b 25-9-000113-1

PCNSL-DKFZ (H050, A050 & XD013) 18 Donors

A050-4FXC, A050-96KS, A050-FXXS, A050-GXBF, A050-LHDE, A050-LHT0, A050-V7L7, XD013-9J3NEC,

XD013-A1PYDP, XD013-BDA9BY, XD013-FABSPL, XD013-JM25UE, XD013-MT9TKD, XD013-N4HJJC, XD013-

NVLQJ1, XD013-U8U5KA, XD013-VHXW1M, XD013-YFQAL6

RMM-DKFZ (H067) 14 Donors

H067-37GLKW, H067-4M6LA9, H067-BUJCEE, H067-VZTYYN, H067-XJPW7S, H067-2YCH24, H067-6D6RLV,

H067-BUGVTY, H067-EC4C3W, H067-GJVKDV, H067-PL3LWG, H067-SRERYH, H067-UEUCJL, H067-ZMWZPS

SYSGLIO-DKFZ (H043) 42 Donors

H043-28GK, H043-2JY3, H043-3P8XJY, H043-4PGF, H043-5FM91P, H043-5VWP, H043-63R6, H043-6F91,

H043-6FRXV9, H043-B7R7, H043-BU96, H043-CQM6QY, H043-CWJQEW, H043-D9MRCY, H043-DSX2, H043-

F14UH1, H043-FEJ7C8, H043-GESMJV, H043-GG5L52, H043-GK5VYT, H043-GKS176, H043-KE3H42, H043-

KZWS, H043-LNWEGT, H043-LQDGD4, H043-MXE7Y8, H043-N7LCPV, H043-NAFCCV, H043-PLM1, H043-

PWC258, H043-PYL6FY, H043-QHGXQQ, H043-U65X, H043-ULLV, H043-URZNJE, H043-W99H5K, H043-

WJ851A, H043-X33N8G, H043-XACH, H043-XG4KY2, H043-ZK2PKS, H043-ZMHY

THYROID family-DKFZ (XI002) 25 Donors

XI002 102 1, XI002 102 2, XI002 102 3, XI002 102 6, XI002 102 7, XI002 102 8, XI002 146 1, XI002 146 2,

XI002 146 3, XI002 188 2, XI002 188 3, XI002 188 4, XI002 224 1, XI002 224 2, XI002 224 3, XI002 224 4,

XI002 224 5, XI002 224 6, XI002 224 7, XI002 224 8, XI002 75 12, XI002 75 13, XI002 75 28, XI002 75 2,

XI002 75 8
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