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2 | Introduction

The beliefs we hold not only influence how we seek out (Mynatt, Doherty, & Tweney,
1977; Nickerson, 1998) and perceive new information (Alloy & Tabachnik, 1984; Crocker,
1981) but also influence whether we take action (Tobler, Visschers, & Siegrist, 2012) and
thus have far reaching impact on decision-making (Russo, Schoemaker, & Russo, 1989).

In recent years there has been a rise of belief polarization (Iyengar, Sood, & Lelkes,
2012; Pew Research Center, 2014; Webster, 2005; Zarkov, 2017). The term “belief po-
larization” refers to the intensification of disagreement over a topic due to the way
new information is selected and processed. Some are arguing that this phenomenon is
caused or at least accelerated by the Internet and social media (Gabler, 2016; Sunstein,
2018). Terms like “echo chambers” and “filter bubbles”, the first referring to reinforce-
ment of beliefs due to repetition inside a closed communication space and the latter to
reinforcement of beliefs due to content tailored search algorithms, become increasingly
popular in discussions about belief polarization.

Even though there is still an open debate about the contribution of social media
to belief polarization, with some claiming it is overestimated (Barberá, Jost, Nagler,
Tucker, & Bonneau, 2015; Boxell, Gentzkow, & Shapiro, 2017), consequences of false
beliefs can be severe, with for example near-record measles outbreaks in the U.S. during
2018 (CBSNews, 2019; Fox, 2019) due to the growing anti-vaccination movement (Dubé,
Vivion, & MacDonald, 2015; Kata, 2012). Similarly, the causes of climate change have
been subject of ongoing discussions. Even though the vast majority of scientific evidence
clearly shows that climate change is a man-made issue (Cook et al., 2013), it still divides
the population with, e.g., 32% of US citizens believing that the causes are natural in
2016 (Marlon, Howe, Mildenberger, & Leiserowitz, 2016). This is concerning, as fast
implementations of counter-measures are becoming a more and more urgent matter
(IPCC, 2018).

The main goal of the present research is twofold: First, to contribute to the un-
derstanding of propagation and polarization of beliefs from a cognitive perspective by
integrating experimental findings regarding confidence in climate change knowledge
(Manuscript 2) and cognitive modeling approaches (Manuscript 1) into an agent-based
belief model. Second, to outline how an implementation of a function-learning model
in a cognitive architecture, based on experiments conducted in Manuscript 3, can con-
tribute to a better understanding of cognitive processes underlying the understanding
of non-linear functions.

Modeling belief polarization. To model belief polarization we use an agent-based
modeling (ABM) approach. Agent-based modeling allows for simulating individual be-
havior and study how it influences others as well as the environment. We implemented
an agent-based belief model to explore the influence of psychological parameters, par-
ticularly the influence of cognitive parameters, on polarization of beliefs in an initially
heterogeneous belief environment. The present model allows to investigate how (a)
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Chapter 2

differences in openness contribute to the occurrence of echo chambers, (b) belief po-
larization is influenced by cognitive parameters like working memory capacity and
confirmation bias, and (c) individual differences in, for example, openness, working
memory, or confidence influence belief polarization.

In sociology and social psychology, several agent-based models that examine the
development of beliefs held by agents have been developed (e.g., Baumgaertner, Tyson,
& Krone, 2016; Duggins, 2014; Mäs & Flache, 2013). One example are psychologically
motivated implementations of Marsella, Pynadath, and Read (2004), who incorporated
parameters like self-interest and consistency. Duggins (2014) investigated the influence
of tolerance, conformity, and commitment to extreme beliefs on belief polarization. In
contrast, the aim of the present research is to take a cognitive perspective by represent-
ing the memory capacity and temporal dynamics of agents’ learning behavior as well as
including parameters representing cognitive biases.

There are several models that focus on the role of confirmation bias on opinion
formation (Fryer, Harms, & Jackson, 2018; Ngampruetikorn & Stephens, 2016; Sobkow-
icz, 2017). Fryer et al. (2018), for example, showed that ambiguous information can
lead to belief polarization. As confirmation bias is an important driver regarding belief
polarization, we included this parameter into our model. However, it is not the main
focus of the presented work. Typically, agents’ information processing is modeled using
Bayesian updating, that is, agents update their beliefs based on Bayes’ theorem (Bayes,
1763). Even though this is a widely used approach (e.g. Dixit & Weibull, 2007; Sobkowicz,
2017), one could argue that assuming fully rational agents does not reflect people’s
naturally flawed reasoning processes (McKelvey & Page, 1990). Pilditch (2017), for ex-
ample, equipped agents with a different learning mechanism using a reinforcement
learning model. However, as Bayesian belief updating provides a feasible starting point
(Acemoglu & Ozdaglar, 2011; Moore & Healy, 2008), it is used in our first model set up. To
account for humans’ limited memory, we introduce a working memory capacity param-
eter. As will be outlined in Section 3.4, we will then even go one step further, discussing
how agents’ memory can be modeled in a more complex way by equipping agents with
our full parameterized declarative memory module developed in Manuscript 1.

Understanding non-linear processes. We do not only encounter non-linear behav-
ior of processes on a small scale in daily life (for example fuel consumption) but also on
a larger scale with impact on society as a whole (economical and population growth
Hajamini, 2015, climate change Schneider, 2004). Thus, a correct understanding of
this type of behavior is highly relevant in terms of decision-making (Newell, McDonald,
Brewer, & Hayes, 2014). In Manuscript 3, we conducted two experiments and showed
that while participants demonstrated accurate understanding of the function-rule, they
were not able to apply this understanding in the standard function-learning paradigm.
In Section 4.1, I will briefly present the results of our working memory assessment that
we conducted alongside the two function-learning experiments. In Section 4.2, I will
outline a first approach to model cognitive processes underlying function-learning
based on our experimental results.

This thesis is structured as follows: First, I will describe the setup of the agent-
based belief model and present selected simulation results on how (a) differences
in openness contribute to the occurrence of echo chambers, (b) belief polarization is
influenced by cognitive parameters like working memory capacity and confirmation bias,
(c) individual differences in openness and working memory influence belief polarization.
Second, I will discuss how the model can be extended by incorporating the mathematical
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formalization of the declarative memory module of the Adaptive Control of Thought-
Rational (ACT-R) architecture developed in Manuscript 1. This will allow to simulate
agents’ cognitive processes in a more complex way as well as to introduce other cognitive
parameters like memory decay.

Third, I will outline how to include another cognitive parameter (confidence) into the
model based on the experimental results of Manuscript 2 and show simulation results
regarding the influence of different values of (over-)confidence on belief polarization.
Fourth, I will discuss how the results of the function-learning experiment conducted
in Manuscript 3 can be integrated into a cognitive model that allows for (a) modeling
cognitive processes underlying rule-based prediction and application failure and (b)
investigating the influence of individual differences in working memory capacity on
prediction performance.
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3 | An Agent-Based Model of Belief Po-
larization

3.1 Introduction to Agent-Based Modeling

Agent-based modeling is a method to computationally study individual behavior and
how it affects others as well as the environment. Smith and Conrey (2007) define ABM
as “a tool to conceptually bridge between the micro level of assumptions regarding
individual agent behaviors, interagent interactions, and so forth and the macro level
of the overall patterns that result in the agent population.” An agent-based model
typically consists of three elements: 1. agents to which specific attributes and behaviors
are assigned, 2. agents’ relationships and methods of interaction, and 3. an environ-
ment in which agents live in and interact with each other. An agent is defined as an
autonomous, discrete entity equipped with specific attributes and a set of dynamic
states (e.g., position, behaviors) that vary over time (Macal & North, 2011).

3.2 Modeling Belief Polarization

To explore the influence of psychological parameters on polarization of beliefs, we
implemented an agent-based model modifying and extending Schelling’s Segregation
Model (Schelling, 1971), i.a., by equipping agents with a belief. This allows us to analyze
how (a) differences in openness contribute to the occurrence of echo chambers, (b)
belief polarization is in general influenced by cognitive parameters like confirmation
bias and working memory capacity, and (c) individual differences in, e.g., openness,
working memory capacity, and confidence influence belief polarization.

3.2.1 Attributes of Agents

The model consists of multiple agents ai with i ∈ {
1, ..., N

}
, each with dynamic states

varying over time t (e.g. round R). These states are an agent’s position (xi (t), yi (t)) ∈
[0,1]× [0,1] and belief bi (t ), see Figure 3.1. An agent’s belief can take values between 0
and 1, bi (t ) ∈ [0,1].

ai : T → [0,1]3,T = {
1, ...,nT

}
(3.1)

t 7→ (xi (t ), yi (t ),bi (t )). (3.2)

Furthermore, the agents have explicit goals (finding an x-y-position where they are
“happy” (h(ai ) = 1, with h(ai ) ∈ {

0,1
}

) and the ability to learn and adapt their behaviors
based on experience (which requires a memory γai ) (see Tab. 3.1). Interaction between

7



3.2. MODELING BELIEF POLARIZATION Chapter 3

agents is restricted to a limited number of agents at any given time. This is achieved
by defining a local neighborhood. In our case the maximum number each agent can
interact with is set to nN N = 151. The nearest agents al ( j ), ..., al (nN N ), with l ( j ) = j -next
neighbor with which an agent ai can interact with, are calculated as follows:

∥∥ai −al ( j )
∥∥
ωi

:=
√

(xi (t )−xl ( j )(t ))2 + (yi (t )− yl ( j )(t ))2 +ωi · (bi (t )−bl ( j )(t ))2, (3.3)

with ai , al ( j ) ∈A , A the set of all agent points, and ωi ∈R≥0 the confirmation bias. The
belief dimension is included into the nearest neighbors calculation to introduce the
psychological construct confirmation bias into our model. The weighting parameter
ωi reflects agents’ tendency of seeking out confirming information of their belief. If
ωi = 0.0, the calculation of the nearest neighbors is solely based on their position on the
x-y-plane2.
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Figure 3.1. Initial beliefs and positions of agents. Figure (a) shows the initial belief distribution
and figure (b) the initial position of n = 500 agents.

Table 3.1. Model properties of agent-based belief model.

R ∈N number of rounds
δmax ∈N number of loops
na ∈N number of agents
nNN ∈N number of neighbors with whom information is shared
h ∈ {

0,1
}

happiness (sufficient number of nearest neighbors hold same belief)
ω ∈ [0,1] weight for belief dimension of distance (confirmation bias)
θ ∈ [0,1] belief deviation threshold (openness)
b ∈ [0,1] belief
γ ∈N working memory capacity

Algorithm 1 displays how the simulations are generated. Each agent starts out with a
position and belief, both randomly drawn from a uniform distribution (x, y,b ∼U ([0,1])).

1Note that even though setting nN N to 15 interaction neighbors is a reasonable choice, further simula-
tion runs varying the values for nNN are required.

2Note that for ω ∈ (0,1] a norm is defined, for ωi = 0.0 a norm is not defined.
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Chapter 3 3.2. MODELING BELIEF POLARIZATION

We chose a uniform distribution as this allows us to assess the impact of the different
cognitive parameters on belief polarization. Goal of each agent is to find a position
where it is “happy” (h(ai ) = 1). The happiness h of an agent ai is defined as being close
to agents who hold similar beliefs,

h :A → {
0,1

}
, (3.4)

ai 7→ h(ai ), h(ai ) :=
{

1 if mean j=1,...,nN N

∥∥bl ( j )(t )−bi (t )
∥∥
ωi

≤ θi

0 else
(3.5)

with j = 1, ...,nN N the nearest neighbors, and θi ∈R+ the belief deviation threshold. How
much deviation from their own belief is tolerated by an agent is set by θi , the belief
deviation threshold. This can be interpreted as openness in that openness is associated
with curiosity as well as a tendency to be liberal and having a higher tolerance of diversity
(Butrus & Witenberg, 2013; Jost, 2006; McCrae, 1996; Peterson, Seligman, et al., 2004).
Put differently, agents with high openness values are more likely to be close to and
interact with agents who hold different beliefs.

Algorithm 1: Model simulation

1 Input: xi , yi ,bi ,δmax;
2 Output: h(ai );
3 for each round R = 1,...,nT do
4 for each agent i = 1,...,na do
5 for j = 1,..., δmax do
6 if h(ai ) = 1 then
7 Bayesian belief update;
8 proceed to next agent;

9 end
10 select (xi , yi ) randomly, x, y ∼U ([0,1]);

11 end
12 end
13 end

During each round, agents randomly switch their position until they find a place
where the beliefs of their nearest neighbors are equal or below an agent’s belief deviation
threshold. The parameter δmax ∈N defines how often an agent can switch its position.
If h(ai ) = 1, the agent will update its belief based on the mean value of the beliefs of its
neighbors,

bi (t +1) = mean j=1,...,nN N bl ( j )(t ) ·bi (t )

mean j=1,...,nN N bl ( j )(t ) ·bi (t )+ (1−mean j=1,...,nN N bl ( j )(t )) · (1−bi (t ))
. (3.6)

If the agent cannot find a “happy” position (h(ai ) = 0), it will not update its belief. In
this first set up, our model agents’ beliefs are updated by Bayesian belief updating. In
the following sections however, we will successively extend the model by equipping
agents with a (limited) memory. In Section 3.3.3, we will introduce a memory parameter
that allows to model individual differences in working memory capacity and show how
those influence belief updating. In Section 3.4, we will outline how agents beliefs can be
updated by integrating our mathematical formalization of the declarative memory mod-
ule of the cognitive architecture ACT-R into the agent-based belief model (Manuscript
1).
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3.3. SIMULATION RESULTS Chapter 3

3.3 Simulation Results

In this section, we will present exemplary simulation results for different parameter
settings. As the main goal is to outline the setup of the model as well as to show how the
findings from Manuscript 1 and 2 can be integrated into the model, we restrict ourselves
to the presentation of some selected simulation results. In all the simulation results
presented here agents start with a uniform belief distribution.

3.3.1 Emergence of Echo Chambers

Figure 3.2 displays the clustering of agents over time (after R = 10 rounds) depending
on their openness θ.

Simulation results show that higher values of openness lead to less clustering than
lower values. However, as Figure 3.3 shows, agents did not only display clustering but
also belief polarization. Thus, in the next section we will have a closer look at how psy-
chological parameters, particularly cognitive parameters, influence belief polarization.
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Figure 3.2. Influence of openness θ on clustering. The figure displays the position of n = 500
agents, with nNN = 15 interaction neighbors and confirmation bias ω= 0.0. (a) shows the initial
position of agents. (b) shows the position of agents after R = 10 rounds, for openness θ = 0.3. (c)
shows the position of agents after R = 10 rounds, for openness θ = 0.1.
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Figure 3.3. Belief distribution of n = 500 agents, with nN N = 15 interaction neighbors and
confirmation bias ω= 0.0. (a) shows the initial belief distribution and (b) the belief distribution
after R = 10 rounds, for openness θ = 0.1.

3.3.2 Belief Polarization

In the following, belief polarization is defined as the percentage of agents who hold
either 0 or 1 as belief after R rounds. For the parameter values investigated in this
thesis we performed simulation runs in which R was successively increased from 5
to 20. Results showed that R = 10 is a feasible cut off to display the effect of different
parameter values on belief polarization. Thus, R was set to 10 for all results presented
here. Furthermore, we will address the question of how quickly the system converges
to a state where the absolute majority of agents hold either 0 or 1 as belief. Exemplary
simulation results are presented for the confidence parameter in Section 3.5.

Influence of Confirmation Bias and Openness
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Figure 3.4. Influence of openness θ and confirmation bias ω on belief polarization. The figure
displays the percentage of 0/1 beliefs for n = 500 agents, with nNN = 15 interaction neighbors,
ω ∈ {

0.0,0.1, ...,1.0
}
, θ ∈ {

0.0,0.1, ...,1.0
}

over R = 10 rounds. To account for the randomness,
results are averaged over 50 simulation runs.

Figure 3.4 displays belief polarization depending on different values of openness θ
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3.3. SIMULATION RESULTS Chapter 3

and confirmation biasω. Results show that the percentage of agents who hold 0/1 beliefs
increases with higher values of confirmation bias and lower values of openness. Note
that in case of θ = 0 there is no belief polarization (polarization values in the last row are
about 1%). This is due to the set up of our model, as with θ = 0 the agents happiness will
always be h(ai ) = 0. Therefore, no updating takes place and thus the belief of each agent
remains the same throughout the simulation. This also impacts belief polarization in
case of θ = 0.1, in that belief polarization is slightly decreasing for increasing values of
ω. Put differently, for very low values of openness and an increasing tendency to seek
out confirming information the number of agents that are not updating their beliefs
because their nearest neighbors beliefs deviate too much from their own is increasing
as well. For θ ≥ 0.3 values simulation results show that both, confirmation bias and
openness, contribute to belief polarization, with openness having a counteracting effect
in case of low confirmation bias values ω= [0.0, ...,0.3].

3.3.3 Simulating Individual Differences

So far, openness θ and confirmation bias ω were set to the same value for all agents.
In this section, we will outline how individual differences in cognitive parameters can
influence belief polarization.

Influence of Individual Differences in Openness

There is a large body of literature on individual differences in openness and their re-
lationship to a variety of concepts, for example, tolerance (Butrus & Witenberg, 2013)
or curiosity (Kashdan, Rose, & Fincham, 2004). Curiosity can be defined as a desire for
new information. Curiosity induces exploratory behavior to acquire new knowledge
(Berlyne, 1954; Litman, Hutchins, & Russon, 2005) and is closely linked to openness
(Peterson et al., 2004).
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Figure 3.5. Influence of individual differences in openness. The figure shows the percentage
of 0/1 beliefs hold by n = 500 agents, with confirmation bias ω = 0, R = 10 rounds, nNN = 15
interaction neighbors. The x-axis displays the proportion of agents with openness θ = 0.1 (low
openness) in a population with θ = 1.0 (maximum openness). To account for the randomness,
results are averaged over 50 simulation runs.
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Figure 3.5 shows that with an increasing proportion of agents who have low openness
(θ = 0.1) the percentage of polarized beliefs increases as well. As shown in Figure 3.2,
lower values of openness lead to the emergence of echo chambers. Thus, agents place
themselves in an environment in which their own beliefs are reinforced and amplified
throughout the simulation. Consequently, belief polarization is accelerated. These
results are in concordance with the assumption that the formation of echo chambers
in social networks contributes to belief polarization in the population (Quattrociocchi,
Scala, & Sunstein, 2016; Sunstein, 2018).

As openness approximately follows a Gaussian distribution in populations (McCrae
& John, 1992), we included the percentages of polarized beliefs for approximately Gaus-
sian and uniform distributed openness values. In case of uniform distributed openness
values, results were slightly lower than those when the population of agents consisted
of one half of agents with θ = 0.1 and the other half of agents with θ = 1.0. In case of
the Gaussian distributed openness values, percentages of polarized beliefs were about
the same as a population consisting of 40% of agents with openness θ = 0.1 and 60% of
agents with openness θ = 1.0. However, setting openness for all agents to the maximum
(θ = 1.0) yielded by far the lowest percentage of polarized beliefs. These results suggest,
that high values of openness decelerate belief polarization.

Influence of Individual Differences in Working Memory Capacity (WMC)

In all simulation runs so far nNN was set to 15, i.e., agents updated their beliefs based
on the beliefs of all 15 interactions. In other words, agents “remembered” all nNN

encounters. In the following, working memory capacity is integrated into the model by
equipping each agent with a memory parameter. Now, only the last γ encounters with
γ = WMC are taken into account. Figure 3.6 displays the influence of WMC on belief
polarization.
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Figure 3.6. Influence of WMC on belief polarization. The figure displays the influence of WMC
on belief polarization. n = 500 agents, with confirmation bias ω = 0, R = 10 rounds for four
different values of openness θ = {

0.7,0.8,0.9,1.0
}
. The x-axis displays the proportion of agents

with WMC γ = 1 (low WMC) in a population with γdefault = 15. To account for the randomness,
results are averaged over 50 simulation runs.
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3.4. MERGING THE AGENT-BASED BELIEF MODEL WITH ACT-R Chapter 3

Simulation results show that increasing the proportion of agents with the lowest
possible value for WMC (γ= 1) leads to an acceleration of belief polarization. However,
in contrast to individual differences in openness, results show that polarization is lowest
for uniform and approximately Gaussian (γ ∼ N (7,3)) distributed working memory
capacities. This is rather surprising, as one would expect that the percentage of polarized
beliefs would be lowest if all agents are equipped with maximum WMC (γ= 15). Please
note that those are preliminary simulation results for only four values of openness
θ = {

0.7,0.8,0.9,1.0
}
. Nonetheless, these first results seem to indicate that Gaussian

distributed working memory capacities decelerate belief polarization.
In the next section, we will outline the integration of our fully parameterized math-

ematical model of the ACT-R declarative memory module (Manuscript 1). This will
enable us to model the cognitive process of each agent in a more realistic way.

3.4 Merging the Agent-Based Belief Model with ACT-R

So far, agents’ memories were simply modeled by varying the number of beliefs that
could be remembered. In order to (a) introduce a more realistic way to model agents’
memory and (b) include several cognitive parameters (working memory capacity W ,
memory decay d , and retrieval threshold τ), we will outline how our in Manuscript 1
developed fully parameterized mathematical model of the ACT-R declarative memory
module can be integrated into the agent-based belief model.

ACT-R is a commonly used cognitive architecture which allows to model cognitive
processes (Anderson, 2009). The ACT-R architecture consists of three main components:
modules, buffers, and a pattern matcher. A central production system coordinates
the interaction between different modules (Anderson, 2009; Borst & Anderson, 2017).
Each module is associated with distinct cortical regions, supporting the structure of the
architecture (Anderson, 2009) (see Figure 3.7, for an illustration).
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Figure 3.7. Sketch of the different modules of the ACT-R architecture. The figure displays the
connection of modules in ACT-R 7.0 (a) and their mapping to brain regions (b). For the precise
locations, i.e., Talairach coordinates, and fMRI images see Anderson (2009); Borst and Anderson
(2017).
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In the following section, we will give a short description of the setup of the ACT-
R model and how it can be used to investigate the influence of multiple cognitive
parameters (working memory capacity W , memory decay d , retrieval threshold τ) on
belief polarization.

3.4.1 Mathematical Description of the ACT-R Model

In this section, we will outline the setup of the declarative memory module that de-
scribes a more complex simulation of agents’ memory. The current implementation
simulates the cognitive process of each agent before belief updating (see Algorithm 1,
line 7).

The declarative memory module. Instances of knowledge are stored in the declara-
tive memory module of the ACT-R architecture. A single element of declarative knowl-
edge is called a chunk cι,k , with ι,k ∈N. Each chunk contains a number of slots k that
hold information. Furthermore, with each chunk a so-called activation value Ai is
associated that reflects the usefulness of the stored information for the current task
to be solved. In our case, an agent’s chunk contains its own belief bi (t) as well as the
beliefs of other agents bl ( j )(t ) it interacted with, with j = 1, ...nN N .

Production rules used in this model. Procedural knowledge is modeled in ACT-R
by so called production rules (short: productions) that allow the interaction between
different modules. In our case, the ACT-R model starts with an agent’s current belief
bi (t ) in round R and the beliefs bl ( j )(t ) of the surrounding neighbors it interacted with.
For an agent to update its belief, encounters are successively recalled:

• First step: Request retrieval of chunk necessary for updating belief.

• Second step: If there is such a chunk and the activation of this chunk is above the
threshold τ, include belief of this agent into belief updating. If there is no such
chunk or the activation of the chunk is lower than the threshold τ, interaction
with this agent is counted as “forgotten”.

• Third step: Update own belief.

Whether or not information can be retrieved from the declarative memory depends
on the cognitive parameters that are part of the ACT-R architecture. These are working
memory capacity W , memory decay d , and the retrieval threshold τ. In order to inves-
tigate the influence of working memory capacity on belief polarization, we extended
our mathematical model from Manuscript 1 by including the spreading activation com-
ponent from the ACT-R architecture (R. Anderson, 1983). Spreading activation reflects
the associative nature of the declarative memory module. The activation of chunks
holding the same information in one or more of their slots is “spread” between them.
For example, the term “birthday” might be associated with a large number of chunks
stored in memory. Thus, activation will be divided between the chunks resulting in
several possibilities of what kind of chunk could be remembered. In contrast, “birthday
of my mother” only refers to one specific chunk. Thus, this chunk would have the
highest activation and consequently the highest probability of being remembered. The
parameter W controls the amount of spreading activation and corresponds to working
memory capacity as has been repeatedly shown (Anderson, Reder, & Lebiere, 1996;
Lovett, Daily, & Reder, 2000).
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Algorithm 2: Retrieval process of interaction neighbors’ beliefs for one agent a

1 Input: bi ,bl ( j ), η j ,ι ;
2 Output: x j ;
3 for j ∈ J do
4 for ι ∈ I do
5 Lι := (

j − tι
)+T ;

6 Bι := ln
( nι

1−d

)−d · ln(Lι) ;
7 Aι := Bι+W ·∑ j Sι,1 +η j ,ι;

8 end
9 ι∗ := argmaxι Aι;

10 if Aι∗ ≥ τ then
11 x j := cι∗3;
12 else
13 break;
14 end
15 if ∃ ι ∈ I : cι =

(
j ,bi ,bl ( j )

)
then

16 nι := nι+1;
17 else
18 nι := 1;
19 cι := (

j ,bi ,bl ( j )
)

;
20 tι := j ;

21 end
22 end

Algorithm 2 describes the model dynamics of the declarative memory module for
the agent-based belief model. The model parameters are displayed in Table 3.2. For a
more detailed description, see Manuscript 1 (Appendix A). The model outlined above
could be extended even further by including partial matching (which is controlled by
an additional parameter). This would allow agents to “confuse“ similar beliefs as well as
the order of the agents they last interacted with.

To summarize, equipping each agent with a declarative memory will allow (a) for a
more complex simulation of agents’ memory, (b) for an investigation of the influence of
several other cognitive parameters like memory decay d on belief polarization, (c) for a
comparison between modeling WMC in a simple versus a more complex way.

Agents’ beliefs are influenced by their openness and cognitive parameters like work-
ing memory capacity and confirmation bias. In the next section, we will outline how the
cognitive parameter confidence can be integrated into the model and discuss simulation
results.
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Table 3.2. Model parameters ACT-R model.

Initial Values

nNN ∈N number of neighbors an agent interacted with
nc ∈N number of chunks present in the model
I := {

1, . . . ,nc
}

index set for chunks
J := {

1, . . . ,nNN
}

index set for inputs

Default values of cognitive parameters

τ :=−2.5 retrieval threshold
d := 0.5 decay parameter of base level learning
T := 0.05 time component

Inputs and outputs of ACT-R model

bal ( j ) ∈ {
0.0,0.1, ..,1.0

}
beliefs of the surrounding neighbors

η j ,ι, ι ∈ I , j ∈ J random noise, η∼U ([0,1])

x j ∈ {
0.0,0.1, ..,1.0

}Nl decisions of the model

Declarative memory module

cι,k , ι ∈ I , k ∈ {
1,2,3

}
component k of chunk ι

nι, ι ∈ I number of presentations of chunk ι
tι, ι ∈ I time (i.e. round) of generation of chunk ι

1 = chunk exists, 0 = chunk has not been generated yet
Aι, ι ∈ I activation of chunk ι
Bι, ι ∈ I base level learning of chunk ι
Lι, ι ∈ I lifetime of chunk ι
Sι,k , ι ∈ I , k ∈ {

1,2,3
}

strength of association from the components k to chunk ι
ι∗ temporary variable for maximum activation index
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3.5 Confidence in Climate Change Knowledge

In Manuscript 2, we investigated the accuracy of people’s confidence in climate change
knowledge in a nationally representative sample (N = 509) taken from the German pop-
ulation. Participants were shown nine true or false statements about climate change,
and had to state whether or not those statements were correct. Furthermore, partic-
ipants indicated their confidence in each of their answers. Accuracy of participants’
confidence in their own climate change knowledge was assessed by calculating the
relative confidence sensitivity Mratio. Mratio reflects how accurately citizens’ insight into
the limits of their knowledge is.

We compared citizens’ confidence accuracy in climate change knowledge with (a)
the accuracy of confidence in science knowledge in a second nationally representative
sample (N = 588) taken from the German population, and (b) the accuracy of confidence
in climate change knowledge in a sample of climate change scientists (N = 206). Results
showed that citizens’ Mratio for their climate change knowledge was only 0.49 (95%
CI [0.33,0.63]). Put differently, citizens’ confidence sensitivity was only around half
of what it could be based on their actual climate change knowledge. Furthermore,
relative confidence sensitivity of citizens’ climate change knowledge was especially
low compared to their science knowledge (Mratio = .99, 95% CI [0.88,1.16]). This also
hold true for the scientists sample: citizens’ relative confidence sensitivity was only
about half compared to scientists’ relative confidence sensitivity (Mratio = .95, 95% CI
[0.85,1.07]).

Accurate confidence is important for adequate predictions and decision-making in
areas of high uncertainty, e.g., in political (D. D. Johnson, 2009) or medical (Berner &
Graber, 2008) areas. Moreover, overconfidence in one’s belief (also termed overprecision,
Moore & Healy, 2008; Moore & Schatz, 2017) makes it less likely to change that belief
even when contradicting information is presented (Malmendier, Tate, & Yan, 2010;
Ortoleva & Snowberg, 2015; Savion, 2009).

3.5.1 Integrating (Over-)Confidence in the Agent-Based Belief Model

One way to integrate confidence into our agent-based belief model is to equip each
agent with a confidence parameter ξi ∈ [0,1]. In a first setup, values like belief and
position are drawn for each agent from a uniform distribution and confidence in one’s
knowledge is assumed to change with each new update. The confidence parameter ξi

determines the probability of whether or not an agent will update its belief based on
the belief of its surrounding neighbors. In case of ξi = 0 the agent will update its belief
based on the belief of its surrounding neighbors. In case of ξi = 1 the agent will not
include deviating beliefs into belief updating but rather uses its own belief for updating.

Setting our model into the context of climate change, with b = 1 being convinced
that climate change is man-made and b = 0 believing that climate change has solely
natural causes, optimal confidence sensitivity in this specific setting would be if ξi =
bi . This means agents with bi = 1 would correctly be 100% confident that their belief
is correct, while agents with ba = 0 would correctly be 0% confident that their belief is
correct and thus more susceptible of changing their beliefs.

Figure 3.8 displays an example of the belief distributions of agents after R = 10
rounds in case of (a) the previous model without the confidence parameter, (b) agents’
confidences values ξi are a v-shaped function of bi : ξi = |bi −0.5|+0.5. This implies
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Figure 3.8. Belief distribution of n = 500 agents, with nN N = 15 interaction neighbors, openness
θ = 1.0, and confirmation bias ω= 0.0 after R = 10 rounds. (a) shows the belief distribution of
agents without the confidence parameter, b) shows the belief distribution for agents with ξi

following a v-shaped function, and (c) shows the belief distribution for agents with optimal
confidence sensitivity.

that confidence increases as beliefs are shifting more towards 0 or 1, and (c) optimal
confidence sensitivity ξi = bi is assumed.

While confidence values following a v-shape function are even further accelerating
belief polarization (48% b = 1 and 49% b = 0, averaged over 50 simulation runs, total
of polarized beliefs: 98%, compared to a total of 65% of polarized beliefs in the model
without ξ), optimal confidence sensitivity leads to a convergence towards the – in this
exemplary setting ”correct“ belief – that is climate change is man-made (58% b = 1 and
13% b = 0, averaged over 50 simulation runs).

Furthermore, we investigated how quickly the system converged to a state where
more than 90% of agents hold either 0 or 1 as belief. Figure 3.9 displays the number of
rounds R the system needs to converge for the three cases: (a) without the confidence
parameter the system takes R = 16 rounds to converge, (b) for ξi following a v-shaped
function belief polarization is accelerated, R = 6, and (c) in case of optimal confidence
sensitivity the number of rounds is R = 16. To account for randomness we averaged the
number of rounds over 50 simulation runs. Results showed that if agents’ confidence
values are following a v-shaped function the system converges more than two times
faster (Rmean = 6.7) than in the other two cases (Rmean ≈ 17).
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Figure 3.9. Percentage of n = 500 agents holding either 0 or 1 as belief, with nN N = 15 interaction
neighbors, openness θ = 1.0, and confirmation bias ω= 0.0. (a) shows R for the model without
the confidence parameter, b) shows R in case of ξi following a v-shaped function, and (c) shows
R in case of optimal confidence sensitivity. The blue line displays the percentage of agents
holding 0 or 1 as belief. The orange line displays the percentage of agents holding 1 as belief and
the green line the percentage of agents holding 0 as belief.

In Manuscript 2, we showed that citizens’ confidence sensitivity regarding their
climate change knowledge is only half of what it could be based on their knowledge.
The modeling approach outlined above is one way to integrate confidence sensitivity
into our agent-based belief model and shows how failure of metacognitive awareness
could impact belief polarization.
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4 | Understanding Non-Linear Processes

In Manuscript 3, we investigated people’s ability to understand the development of
non-linear processes. Using the function-learning (FL) paradigm, it is possible to assess
people’s understanding of the function-rule underlying those processes by measuring
their prediction ability. Extrapolation studies consist of a learning and a prediction phase.
Participants are shown x-values of a function and have to predict the corresponding
y-values. Participants learn through feedback how a process develops over time and
then have to predict how this process will progress in the future. People’s prediction
ability is assessed by calculating the deviation of their predictions from the correct
function. However, we argue that while correct predictions clearly do indicate previous
rule-learning this does not necessarily hold true for incorrect predictions. We showed
in two experiments that about one third of participants who, would be classified as
”exemplar-based“ learners based on their prediction accuracy in the standard function-
learning paradigm, demonstrated correct rule-learning in alternative paradigms.

Figure 4.1. Functions used in Experiment 2 of Manuscript 3. The figure displays the two
functions participants had to predict: (1) ”Ain“: y = 1500− e0.045·(x+50)+2 and (2) ”Bin“: y =
1500−e0.040·(x+50)+2. The y-axis displays the number of bacteria for a given time point x.

In Experiment 1 we assessed the prediction accuracy of N = 511 participants in
the standard function-learning paradigm and investigated to what extend those who
were classified as ”exemplar-based“ learners showed correct rule-learning in a rule-
selection task. In the rule-selection task participants were presented with three graphs
(see Figure 4.2) and asked to choose the one which describes the development of the
processes best. Prediction accuracy was measured by calculating the relative root mean
squared error (rRMSE). Based on their prediction accuracy participants fell into different
extrapolation style categories. Participants who displayed a linear extrapolation style
were classified as ”exemplar-based“ learners (McDaniel, Cahill, Robbins, & Wiener,
2014).
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(a)

(b) (c)

Figure 4.2. Rule-selection task. The figure displays three functions with two different slopes
each: (a) Gaussian function, b) exponential, and (c) linear. Participants task was to select the
function which they thought described the development of the bacteria best.

Results showed that 61% of participants who were classified as ”exemplar-based“
learners based on their prediction accuracy chose the correct function shape and 37%
were even able to identify the correct function shape and slope. These results suggest
that a substantial proportion of participants who displayed a linear extrapolation style
were actually aware of the non-linearity of the processes.

Experiment 1 is limited in two ways: first, the a priori probabilities to guess correctly
were much higher in the rule-selection task than in the standard function-learning
task. Second, in the standard function-learning task participants were presented the
x-y-pairings consecutively while in the rule-selection task participants had access to all
function values at the same time. To address these limitations we conducted a second
experiment introducing two new conditions in which participants (a) had to draw the
function by clicking on a grid (grid condition, see Figure 4.3) and (b) had access to their
previously predicted values, that is x-y-pairings were displayed on one screen (summary
FL condition). To compare participants’ performance in those conditions with the
standard function-learning condition maximum and minimum extrapolations were
restricted to values between 0 and 1550. Furthermore, the number of clicks on the grid
were the same as the number of entries in both of the FL conditions.

In Experiment 2 out of the N = 918 participants who completed the experiment the
data of N = 660 participants were included in the final data set. In the two function-
learning conditions prediction accuracy was again measured by calculating the rRMSE.
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To asses rule-learning in the grid condition we introduced two approaches: (a) calculat-
ing the first derivatives, a method that allows to determine whether participants actually
grasped that the processes displayed were increasingly declining, and (b) a least squares
approach.

Figure 4.3. Grid paradigm. The figure displays the grid task. Participants had to indicate their
prediction for each time point by clicking on a grid.

Results showed that about half of participants were classified as rule-based learners
in the grid condition compared to less than one third who were classified as rule-based
learners in the standard as well as the summary function-learning condition. These
results suggest that the proportion of participants who acquired an understanding of
the correct function-rule is underestimated in the standard function-learning paradigm.
Furthermore, having access to previously entered prediction values did not affect rule-
application.

The results of Experiment 1 and 2 suggest that a considerable proportion of par-
ticipants acquired an understanding of the correct function-rule but failed to apply
the learned rule in the prediction phase. Put differently assessing rule-learning by
measuring people’s prediction ability underestimates the proportion of rule learners.

In both experiments outlined above, we also assessed participants working memory
capacity (WMC) and replicated the finding of McDaniel et al. (2014). The authors found
that participants’ prediction ability is positively associated with WMC. However, as our
main focus was on investigating the question whether incorrect predictions do exclude
rule-learning, we did not include those findings into Manuscript 3. Therefore, we will
shortly present the results of the working memory capacity assessment conducted
in the second experiment of our study in Section 4.1. In Section 4.2, we will outline
how the findings of Manuscript 3 could be integrated into our ACT-R exemplar-based
function-learning model.

4.1 Working Memory Capacity in Function-Learning

In the second experiment of Manuscript 3, we assessed participants understanding of
the function-rule by comparing the standard function-learning paradigm (standard FL
condition) to an alternative paradigm in which participants had to draw the function
on a grid (grid condition). We also added a further condition in which participants’
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predictions were displayed at the same time instead sequentially (summary FL con-
dition). After a learning phase, participants had to predict the development of two
exponential functions (Figure 4.1) with different slopes termed “Ain” and “Bin”. Extrap-
olation accuracy was measured by calculating the relative root mean square error for
each participant. To investigate whether participants with low(er) working memory
capacity actually grasped the development of the process but were not able to correctly
extrapolate because they did not remember the previous numbers they entered in the
prediction phase, we assessed working memory capacity using a shortened version
of the symmetry span task and compared prediction accuracy in (a) the standard FL
(n = 248) with (b) the summary FL condition (n = 247).

4.1.1 WMC Assessment

Symmetry Span Task. To assess working memory capacity, we used a shortened version
of the symmetry span task (Oswald, McAbee, Redick, & Hambrick, 2015; Unsworth,
Brewer, & Spillers, 2009). Participants had to indicate whether the design of a 8× 8
matrix filled with black squares is symmetrical about its vertical axis. After participants’
decision, a red square was shown for 0.65s within a 4x4 matrix. This procedure was
repeated with either 3, 4, or 5 red squares in total. At the end of each trial, the task was
to recall the sequences of red squares by indicating their positions on a grid. In total,
participants had to complete 24 trials, consisting of 2∗ (3+4+5) sets. Performance, i.e.,
working memory capacity, was assessed by calculating an abbreviation of the partial
storage score. A trial was considered successful if participants were able to recall the
positions of the red squares correctly. We did not take into account whether participants
also recalled the positions in the correct order.

Sample tasks. To make sure participants understood the tasks instruction correctly,
we included 4 sample tasks in which 2 red squares needed to be remembered. Partic-
ipants who were not able to correctly complete the second sample task received the
feedback “You did not answer correctly. Please try again.” and were shown the same
sample task again. If they were still not able to complete the task, they received the
correct solution and had to complete a fourth sample task.

Robustness check: Influence of scrolling. As some participants in our pretests
reported that they had to scroll, since they were not able to view the symmetry span
task fully on their screens, we included the question: “Were the boxes with the squares
visible in their entirety? Or did you need to scroll?”. In the standard FL condition,
58% of the participants reported this issue. Dividing those into two groups (scrolling:
yes/no) and conducting a Welch Two Sample t-test, there was no significant difference in
performance between participants who did not have to scroll (M = 2.09, SD = 1.84) and
participants who had to scroll (M = 2.11, SD = 1.73), t = 0.1, p = .92. In the summary
FL condition, 65% of the participants reported this issue. Dividing those into two
groups (scrolling: yes/no) and conducting a Welch Two Sample t-test, there was also no
significant difference in performance between participants who did not have to scroll
(M = 2.21, SD = 1.96) and participants who had to scroll (M = 2.28, SD = 1.64), t = 0.3,
p = .76. These results suggest that scrolling did not influence performance in either of
the two conditions.
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4.1.2 Experimental Results

To investigate whether having access to all previous predicted values impacts prediction
accuracy and if there is a relationship with working memory capacity, we compared pre-
diction accuracy in (a) the standard function- learning, with (b) the summary function-
learning condition by calculating a multivariable linear regression. Results indicated
that for both processes Ain and Bin there was a significant effect between prediction
accuracy and WMC (tAin =−6.02, pAin < .001; tBin =−6.37, pBin < .001). However, there
was no significant relationship between prediction accuracy and condition (tAin = 0.17,
pAin = .87; tBin = 0.01, pBin = .10). Results suggest that while working memory capacity
may be a restricting factor for prediction accuracy (McDaniel et al., 2014), it seems to be
less relevant for successful rule-application during prediction.

4.2 First Steps Towards Modeling Function-Learning in
ACT-R

To investigate the influence of individual differences in cognitive parameters like work-
ing memory capacity on prediction performance, we have implemented an exemplar-
based function-learning model in ACT-R (adapted version of EXAM, DeLosh, Busemeyer,
& McDaniel, 1997). In the current implementation (Model Setup A), the model starts
by learning (x,y)-pairs (x: time, y: feedback) in the learning phase and guesses possible
outcomes randomly. The (x,y)-pairs together with the model predictions are stored in
the declarative memory. The model’s chunks cι,k have three slots k, with cι,1 : x-value,
cι,2: prediction, and cι,3: feedback (y-value). During the prediction phase, the model
starts to actively retrieve the former learned (x,y)-pairs (y-values are either the feedback
values or, as in the prediction phase no feedback is given, the extrapolated values) and
to extrapolate linearly. Thus, productions implemented in this model are as follows:

• First step: Request retrieval of first chunk necessary for prediction.

• Second step: If there is such a chunk and the activation of this chunk is above the
threshold τ, request retrieval of second chunk necessary for prediction. If there is
no such chunk or the activation of the chunk is lower than the threshold τ, chose
random value (y ∼U ([0,np ]),np ∈N) to extrapolate.

• Third step: If the second chunk is also retrieved successfully, extrapolate linearly
through the retrieved (x,y)-pairs.

Whether or not (x,y)-pairs necessary for prediction are retrieved successfully, de-
pends on the cognitive parameters, working memory capacity W , memory decay d and
the retrieval threshold τ. However, while Model Setup A (see Figure 4.4) allows for an
exploration of the influence of individual differences regarding cognitive parameters on
linear prediction performance, we propose an extension of the model (Model Setup B)
based on the results of Manuscript 3.

Rule-based prediction. One way to allow for rule-based prediction in our model
is to use the utility mechanism implemented in the ACT-R architecture: if several
productions in ACT-R match the same goal, the one with the highest utility is selected.
A utility value can be set for each production in advance. However, ACT-R also includes
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Figure 4.4. Description of Model Setup A. The figure displays how the model retrieves the
learned (x,y)-pairs from the declarative memory and extrapolates linearly.

a mechanism that allows utility learning, that is the utility of productions increases with
each production application 1:

Θυ(n) =Θυ(n −1)+α[Λυ(n)−Θυ(n −1)], (4.1)

with Θυ(n) being the utility of a production υ after its (n −1)th application. Λυ(n) is
the reward the production receives for its nth application and α (with α ∈ [0,1]) is
the learning rate. Thus, pre-stored function-rules are associated with an utility that
increases with each successful (that is positively rewarded) application. The setup of
the model for the learning phase is as follows:

1. The model starts with a number of productions υ ∈ N containing pre-stored
function-rules that have an equal probability to be chosen.

2. During the learning phase, the model (at first randomly υ∼U ([0,np ])) selects one
production υ for prediction. With each production, a reward Λυ is associated,
based on how close the extrapolated y-values is to the feedback. That is, selecting
the production containing the correct function-rule is associated with the highest
reward and thus the probability for choosing this production again is increased.

3. After choosing and applying the function-rule, a chunk cι,k with the following slot
is generated: cι,1: υi (encoding of function-rule applied).

In Model Setup B (see Figure 4.5), not only the utility of productions are reinforced but
also the activation values of chunks containing the encoding of the type of function-
rule applied are increasing with the frequency of function-rule application. Thus, it is
more likely to retrieve those chunks during the prediction phase. During the learning
phase, the model applies different function-rules and learns the correct or at least a
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Figure 4.5. Description of Model Setup B. The figure displays examples of pre-stored function-
rules (linear, quadratic, and exponential) as well as how a rewardΛ is assigned to productions
based on feedback during the learning phase. The chunks cι and their activation values Aι are
stored in the declarative memory module.

function-rule similar to the correct function through feedback. How quickly the model
learns a rule depends on the parameter α (learning rate).

Application-failure. What kind of production is chosen during the prediction phase
depends on the υ-values stored in the chunks. The Model Setup C for the prediction
phase (see Fig 4.6) is as follows:

1. Request retrieval of υ-value that is associated with the correct function-rule. If the
model successfully learned the correct function-rule during the learning phase,
this chunk should have the highest activation value Ai and thus would be retrieved
(if Ai ≥ τ).

2. Otherwise, a chunk encoding a different function-rule would be retrieved (if
Aι ≥ τ).

3. In case of Aι < τ, the model would choose a random number for prediction.

As there is no feedback in the prediction phase, the model has no access to the correct
y-values and thus might apply a function that returns slightly or even vastly deviating
y-values for prediction. In case of the model having learned the correct function-rule,
application failure could be modeled by introducing the partial matching parameter P .
P allows for chunks holding similar υ-values to be “confused”. That is, depending on the
values set for P , the model either accurately retrieves the chunk with the correct υ-value
and thus the activation of the chunk containing the encoding for the correct function-
rule is increased or a chunk with a similar υ-value is retrieved which, increases the
probability to apply a production containing a different function during the prediction
phase.

1ACT-R 7.0 Tutorial. Unit 6: Selecting Productions on the Basis of Their Utilities and Learning these
Utilities
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Even if the model has learned the correct or at least a function-rule that is similar to
the correct rule, it might be not able to apply this rule during the prediction phase due
to the values of P .
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Figure 4.6. Description of Model Setup C. The figure displays how the model retrieves the
information about the applied function-rules during the prediction phase. Retrieval success
depends on the cognitive parameters working memory capacity W and partial matching P.

Influence of working memory capacity. In Model Setup C, the working memory ca-
pacity parameter W influences prediction accuracy such that high values of W increase
activation of the chunk holding the information that encodes the correct rule. Working
memory capacity thus impacts the model’s function-rule choice. Whether the model
has access to previous predicted values, does not play any role regarding prediction
accuracy.

The model setup outlined above is a first step towards integrating our findings of
Manuscript 3 into an ACT-R function-learning model. In concordance with our ex-
perimental results presented in Section 4.1 working memory capacity does influence
prediction accuracy while correct rule-application does not rely on the ability to remem-
ber previous prediction values.

Future steps: Parameter estimation and sensitivity analysis. In order to estimate
working memory capacity W , partial matching P and learning rate α we want to use
the interface implemented by Kurt (2017). This will allow us to connect the ACT-R
architecture to NLopt, an open-source library (S. G. Johnson, 2010) that provides the
necessary derivative-free optimization algorithms. Furthermore, we want to conduct a
sensitivity analysis to determine the impact the parameters have on model performance.
As the aim of this thesis is to present the experimental results of Manuscript 3 and outline
how those can be integrated into an ACT-R model, the rather extensive implementation
necessary for both analyses would go beyond the scope of the present work.
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5 | General Discussion

The main goals of this thesis were to present modeling approaches in order to inves-
tigate the influence of cognitive parameters on belief polarization in an agent-based
belief model (Manuscript 1 and 2) and to outline how the findings from the function-
learning experiments presented in Manuscript 3 can be incorporated into an ACT-R
function-learning model. Both models allow for the investigation of different cognitive
parameters (e.g., working memory capacity) as well as for simulating the impact of
individual differences on model performance.

5.1 Summary of Core Findings: Belief Polarization

Influence of Confirmation Bias. Confirmation bias is an important driver of belief
polarization (Lord, Ross, & Lepper, 1979) and is closely related to the formation of echo
chambers (Quattrociocchi et al., 2016). Thus, the influence of confirmation bias on
belief polarization has been the focus of several agent-based models in recent years
(Fryer et al., 2018; Ngampruetikorn & Stephens, 2016; Sobkowicz, 2017). In our model,
confirmation bias is integrated by a weighting parameter on the belief dimension.
Simulation results showed that high values of confirmation bias accelerated belief
polarization given medium to high openness values.

Even though there is substantial literature on confirmation bias and its impact on,
i.a., belief polarization and decision-making, research focusing on individual differences
seems to be rather sparse. Rassin (2008), for example, developed a 10-item self-report to
assess individual differences in the tendency to seek out confirming information. Doll,
Hutchison, and Frank (2011) examined this tendency from a neuroscientific perspective
showing that how susceptible one is to confirmation bias is predicted by dopaminergic
genes. As our model allows to simulate individual differences, we want to investigate
the influence of individual differences in confirmation bias on belief polarization in the
future.

Influence of Openness. Being open to new experiences is associated with a range
of characteristics, among others, curiosity and tolerance. High levels of openness, for
example, lead to more inter-group contact initiation (Jackson & Poulsen, 2005). While
tolerance can be defined as acceptance of diversity (Oberdiek, 2001), this does not
necessarily include the willingness to try out new practices or integrate deviating beliefs
into one’s own concepts. In our model, the openness parameter not only controls how
much deviation from its own belief an agent “tolerates” in that agents do not “move
away” when being set into a heterogeneous environment but goes beyond that as the
parameter influences whether agents update their beliefs based on their surrounding
neighbors. Simulation results showed that low values of openness led to the emergence
of echo chambers while high values of openness decelerated belief polarization. When
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introducing approximately Gaussian distributed individual differences of openness,
percentages of polarized beliefs were about the same as a population consisting of
40% of agents with openness θ = 0.1 and 60% of agents with openness θ = 1.0. Setting
openness for all agents to the maximum value resulted in the lowest percentage of
polarized beliefs. Thus, being more tolerant and taking deviating views into account
slowed down the process of (perhaps prematurely) shifting one’s belief towards 0 or 1.

Limitations and Next Steps. Brandt, Chambers, Crawford, Wetherell, and Reyna
(2015) however, showed that even though openness was associated with tolerance, this
effect was moderated by the conventionality (e.g., majority/minority) of the target group.
Experimental results suggested that scoring high on openness did not mean that one
is generally open towards others that are different. Rather openness was constrained
by the type of target group and the perceived differences associated with that group.
Therefore, introducing bounded-openness into our model would be a feasible next
step. This would be particularly interesting when comparing the percentages of belief
polarization of the Gaussian distributed openness values with those for constrained
maximum openness.

Information Processing and Working Memory Capacity. Being able to adequately
process information is a necessary prerequisite for informed decision-making. However,
there is an abundance of constraints and biases regarding how information is processed
(Gigerenzer & Goldstein, 1996; Kahneman, Slovic, Slovic, & Tversky, 1982; McClelland
& Rumelhart, 1985; Shah & Oppenheimer, 2008; H. A. Simon, 1955, 1990). The con-
strained capacity of working memory, for example, limits performance in cognitive
tasks. Working memory capacity (WMC) correlates with a range of cognitive abilities
like attention and intelligence (Conway, Kane, & Engle, 2003; Engle, Kane, & Tuholski,
1999; Kane, Bleckley, Conway, & Engle, 2001) and plays an important role in decision-
making (Bechara & Martin, 2004; Fletcher, Marks, & Hine, 2011; Furley & Memmert,
2012; Hinson, Jameson, & Whitney, 2003).

In many agent-based models, information is updated using a Bayesian approach.
That is, fully rational agents are assumed (Baker, Saxe, & Tenenbaum, 2011; Zeng &
Sycara, 1998). Even though there is evidence that people do follow Bayesian principles
in their information processing (Griffiths & Tenenbaum, 2006; Kersten, Mamassian,
& Yuille, 2004), there is also substantial literature showing that assuming Bayesian
rationality falls short of explaining why human reasoning is often non-rational, based
on heuristics, or biased (Albert, 2009; Eberhardt & Danks, 2011; Grether, 1992; Merkle &
Weber, 2011). Nonetheless, in line with Acemoglu and Ozdaglar (2011) and Moore and
Healy (2008), we consider the Bayesian approach a feasible starting point for our model.

Wilson (2014) showed with an agent-based model in which agents chose between
two actions based on informative signals, how introducing a finite memory can account
for systematic biases (e.g., confirmation bias). Wilson (2014) concluded that even
though people’s reasoning is biased, many of those biases are not necessarily in conflict
with the assumption of Bayesian rationality given a limited memory.

Horváth, Kovářík, and Mengel (2012) showed in a cooperative agent-based model
that limited working memory can be beneficial for the evolution of cooperation. Similar
to Horváth et al. (2012), we included a working memory capacity parameter restricting
the number of nearest neighbors beliefs an agent “remembers“. Simulation results
showed that increasing the percentage of agents with the lowest working memory
capacity in a population consisting of otherwise agents with maximum WMC acceler-
ated belief polarization. Surprisingly, introducing approximately Gaussian distributed
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working memory capacities resulted in the lowest polarization values. Put differently,
individual limitations in working memory capacity seem to be profitable for the overall
population if a slow convergence towards extreme beliefs is the desired outcome.

Limitations and Next Steps. These results are preliminary for two reasons: First,
even though the choice of maximum WMC is not unreasonable, it is still arbitrary.
Second, simulations were only run for high values of openness, as low openness values
accelerate belief polarization and thus, an effect of WMC might not be observable. In
order to make a more general statement about the impact of WMC limitations on belief
polarization, further simulations for different maximum working memory capacities
and a wider range of openness values are required.

Like working memory capacity, openness is associated with intelligence and could
even be interpreted as cognitive ability (McCrae & Costa Jr, 1997; Moutafi, Furnham,
& Crump, 2006). Therefore, running simulations where openness values align with
working memory capacity might be another feasible next step.

The ACT-R Declarative Memory Module. In Section 3.4, we outlined how the
mathematical reformulation of the ACT-R declarative memory module developed in
Manuscript 1 can be extended by integrating the spreading activation component of
the ACT-R architecture. As has been shown by Anderson et al. (1996) and Lovett et al.
(2000), the parameter controlling the amount of activation that is spread throughout the
chunks corresponds to working memory capacity. Conceptualizing working memory as
a finite resource that is spread among the instances of knowledge to be maintained in
memory is supported, for example, by Ma, Husain, and Bays (2014).

Equipping each agent with a cognitive architecture could, on one hand, replace
the Bayesian belief updating process. On the other hand, it could allow simulating
the influence of not only working memory capacity but also a range of other cognitive
parameters, like memory decay, on belief polarization. This would allow us (a) to
compare different approaches of modeling information processing and (b) to model
agents’ memories in a more realistic way.

Influence of (Over-)Confidence. Accurate confidence in one’s knowledge is impor-
tant for adequate predictions and decision-making, for example, in political (D. D. John-
son, 2009) or managerial (M. Simon & Houghton, 2003) areas. In Manuscript 2, we
showed that citizens had no adequate insight into the accuracy of their climate change
knowledge. That is, their relative confidence sensitivity was only half of what it could be
given their climate change knowledge.

In Section 3.4, we integrated our findings of Manuscript 2 into our agent-based belief
model by introducing a confidence parameter. The confidence parameter determines
the probability of whether an agent will update its belief based on the beliefs of its sur-
rounding neighbors. Simulation results showed that optimal confidence sensitivity led
to a convergence of beliefs toward the correct belief (in our example, climate change is
man-made). Introducing a v-shaped confidence function in which confidence increases
with the beliefs lead to an acceleration of belief polarization. Put differently, optimal
metacognitive awareness resulted in a convergence towards the correct belief in the
agent population while high confidence in false beliefs resulted in an acceleration of
belief polarization.

Limitations and Next Steps. One assumption made in our model set up is that
agents’ confidences change with each new update. That confidence in one’s knowledge
changes with new information is supported, for example, by Tsai, Klayman, and Hastie
(2008). However, this does not necessarily imply that a change occurs with each new
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update. Confidence could also change after the second or third update. Thus, one
approach would be to vary the number of updates after which confidence is adapted to
investigate whether this influences belief polarization.

5.2 Summary of Core Findings: Function-Learning

Accurately understanding non-linear behavior of processes is an important skill, not
only for tasks in daily life but also when it comes to larger scale processes like climate
change (Swim et al., 2011). In our two function-learning experiments (Manuscript 3),
participants demonstrated accurate understanding of the function-rule of exponen-
tial processes in alternative function-learning paradigms despite being classified as
”exemplar-based“ learners based on their prediction accuracy in the standard function-
learning paradigm. One possible explanation for this could be that incorrect predictions
in the standard function-learning paradigm reflect alternative processes, such as a
failure to correctly apply the learned rule.

In Section 4.1, we presented further experimental results showing that even though
working memory capacity is associated with prediction accuracy, not being able to
remember previous predictions seems to have no influence on correct rule-application.
In Section 3.4, we showed how those results as well as the findings from the experiments
presented in Manuscript 3 could be integrated into an ACT-R function-learning model.

An ACT-R Function-Learning Model. Our model outlined in Section 3.4, makes use
of the ACT-R utility learning mechanism. During the learning phase, application of the
correct function is rewarded and thus, the probability to apply this function increases.
Application failure during the prediction phase is modeled as failure to retrieve the
correct rule.

Three cognitive parameters are essential to whether our proposed ACT-R function-
learning model successfully learns and applies a function-rule: the learning rate α, the
partial matching parameter P , and the working memory capacity W . The learning rate
determines how quickly the model learns the correct rule, or a rule producing similar
results, during the learning phase. The partial matching parameter P and the working
memory capacity W influence whether the learned rule can be correctly applied in
the prediction phase. Both parameters impact the probability to retrieve the correct
function-rule from memory. As high values of W and P are having a counteracting
effect on the retrieval probability, one could argue that integrating both, P and W ,
into the model might be somewhat redundant. Rutledge-Taylor, Lebiere, Thomson,
Stazewski, and Anderson (2012), however, showed that an exemplar-based catego-
rization ACT-R model with only the partial matching component can not account for
participants’ performance in a categorization task. Combining both partial matching
(P ) and spreading-activation (W ) seems to describe actual participants’ performance
more appropriately.

Limitations and Next Steps. This model is limited regarding the learning phase, as
function-rules are not induced from the learned values but learned values are rather
used to reinforce pre-stored rules. Thus, a further extension of the model is necessary to
capture this process. Nonetheless, the model captures our main findings of Manuscript
3 as well as the findings presented in Section 4.1, as it allows to simulate (a) applica-
tion failure and (b) rule-application being independent from the ability to remember
previous prediction values.
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5.3 Future Research

Different Initial Belief Distributions. Initial beliefs were uniformly distributed in all
simulation runs presented in this thesis. Thus, a next step would be to simulate a variety
of different initial belief distributions in the population by using the probability density
function (pdf) of the beta distribution. The beta distribution is defined as

B(α,β) =
∫ 1

0
zα−1(1− z)β−1d z, (5.1)

with α,β> 0. The pdf of the beta distribution is defined as,

f (x;α,β) = 1

B(α,β)
xα−1(1−x)β−1, 0 ≤ x ≤ 1, (5.2)

with α,β> 0 (Gupta & Nadarajah, 2004). The parameters α and β determine the shape
of the distribution (Figure 5.1).
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Figure 5.1. Examples of the pdf of the beta distribution. The figure displays the pdf for different
values of α and β. For example, α = 0.7, β = 0.7 returns a u-shaped and α = 2.0, β = 2.0 a
bell-shaped distribution.

Aside from simulating how beliefs are distributed in a population in a more realistic
way, this approach also allows to explore if there is an interaction between belief distri-
butions and cognitive parameters. Thus, we could investigate what kind of parameter
combinations are optimal for a convergence of agents’ beliefs given a certain initial
belief distribution.

Simulating “Real” Agents: Experimental Approach. In order to obtain real param-
eter values for our model, we extended the experiment of Fryer et al. (2018) by including
measurements of working memory capacity (Oswald et al., 2015; Unsworth et al., 2009),
personality (Rammstedt & John, 2007), and confidence. Fryer et al. (2018) presented
participants with research summaries that were either providing evidence for, against,
or were neutral regarding a certain topic and assessed their beliefs. Results showed that
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participants interpreted the summaries based on their prior beliefs. Using the same
experimental setup and including the above mentioned measurements, allows us to
(a) obtain real values regarding working memory capacity, openness, and confidence
as well as real initial belief distribution, and (b) assess whether there is a relationship
between the cognitive parameters and belief updating. Currently, the experiment is
prepared to be run for N = 400 participants on the MTurk online platform.

Application of Mathematical Optimization Methods. In order to assess the influ-
ence of the introduced cognitive parameters in both models on model performance,
the application of mathematical optimization methods is mandatory.

In agent-based modeling, heuristic optimization approaches (Gilli & Winker, 2003;
Oremland & Laubenbacher, 2014; Thiele, Kurth, & Grimm, 2014) are the standard. These
heuristic approaches, however, are limited regarding processing time and lack of infor-
mation about whether an optimum was actually found (for a more detailed discussion
see Manuscript 1). Even though there are some approaches to reduce computational
complexity (Hinkelmann, Murrugarra, Jarrah, & Laubenbacher, 2011; Kim, Lee, & Levy,
2008), developing more efficient methods is still an important task that needs to be ad-
dressed in the future. Regarding our ACT-R function-learning model, we want to use the
interface implemented by Kurt (2017) that allows for the application of derivative-free
optimization methods.

Applying mathematical optimization methods allows us to (a) make quantitative
statements about optimal cognitive parameter values for different scenarios (for exam-
ple, for different initial belief distributions), (b) explore the influence of the different
parameters on model performance, and (c) compare optimal model performance with
actual human behavior.

5.4 Conclusion

Understanding the cognitive processes underlying belief polarization and function-
learning can deliver insight into a range of real-world problems such as climate change.
This is because accurate understanding of non-linear processes and being able to adapt
one’s own belief are necessary prerequisites to make informed decisions, which in turn
might influence our future. In this thesis, I provided a framework that allows for model-
ing belief-polarization and outlined how our experimental results could be integrated
into an ACT-R function-learning model. Both models allow for the investigation of dif-
ferent cognitive parameters as well as for simulating the impact of individual differences
on model performance. They thus might contribute to a better understanding of both
phenomena.
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Abstract

Computational models of cognition provide an interface to connect to empirically sup-
ported theories and models of behavior available in psychology, cognitive science, and
neuroscience. In this article, we consider computational models of instance-based
learning for dynamic decision making tasks, implemented in the ACT-R cognitive archi-
tecture. We propose a framework for obtaining mathematical reformulations of such
cognitive models that improves their computational tractability. For the well-known
Sugar Factory dynamic decision making task, we conduct a simulation study including
statistical analysis for central model parameters. We show how mathematical optimiza-
tion techniques can be applied to efficiently identify optimal parameter values with
respect different goals. Beyond these methodological contributions, our analysis reveals
the sensitivity of this particular task with respect to initial settings, and yield new insights
into how average human performance deviates from potential optimal performance.
We conclude by discussing future steps towards applying powerful derivative-based op-
timization methods to cognitive models represented in ACT-R, an avenue that promises
to be an important step towards much improved computational efficiency.

Introduction

Modern cognitive architectures, such as ACT-R Anderson et al. (2004), allow to construct
computational models of behavior that adequately reflect the complexity of human
cognition, while still being fully formalized. Cognitive architectures are typically based
on empirical behavioral studies and neurophysiological research. Using a model of
a cognitive decision process, it becomes possible to answer questions such as “what
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can be expected, in the best or worst case, from a decision maker” and “what are the
characteristic traits of a typical decision maker”.
While cognitive models usually focus on particular cognitive phenomena or processes,
cognitive architectures are concerned with the general structure of the cognitive system
across different tasks. Different types of cognitive architectures exist and include sym-
bolic, connectionist, and hybrid architectures, such as Soar (Laird, 2008; Laird, Newell, &
Rosenbloom, 1987), Leabra (O’Reilly, Hazy, & Herd, 2012), Nengo (Eliasmith, 2013), and
ACT-R (Anderson et al., 2004). The increasing availability and use of formal models of
cognition in the behavioral sciences provides an important and growing foundation that
calls for application of mathematical tools and methods (Dawson, 2008; Lewandowsky
& Farrell, 2010).

Parameter Identification The behavior exhibited by a cognitive model typically de-
pends on multiple model parameters given the underlying architecture, e.g., the rate
of memory decay, or the amount of cognitive noise. Understanding the parameter
space of a given cognitive model and efficiently estimating parameter values that best
match an expected or measured behavior is a central task in cognitive modeling. This
task is made difficult by the large number of function evaluations required, and by
the necessary computational complexity of relevant models. Exploring the effects of
different parameter values in a cognitive model is important to fully understand its
behavior, to identify parameter combinations providing the best fit to human data,
and to analyze sensitivity towards parameter variations (Roberts & Pashler, 2000). In
practice, for cognitive models this exploration is still often conducted manually, guided
by a researcher’s intuition, or sometimes just by trial-and-error.

Developing techniques for efficient parameter space exploration and parameter
estimation is still a relatively new research area in cognitive modeling, and only few
systematic approaches have been described in the literature to date, e.g. (Best et al.,
2009; Gluck, Scheutz, Gunzelmann, Harris, & Kershner, 2007; Kase, Ritter, & Schoelles,
2008; Lane & Gobet, 2013; Moore, 2011). Systematic exploration of a given parameter
space is often desirable, but quickly runs into difficulties, as processing time increases
exponentially with the number of parameters and the resolution of analysis (curse of
dimensionality). While parallel high-performance computing can improve the speed of
parameter space searches to some extent, the combinatorial explosion inherent in this
task easily exceeds the capacity even of large computing resources (Gluck et al., 2007).

Another possibility is to try and improve the efficiency of search algorithms. One
approach is, for example, to sample the search space selectively by Adaptive Mesh
Refinement or Regression Trees (Best et al., 2009; Moore, 2011). Regions of the search
space with high-information content, e.g., areas containing discontinuities or non-
linear gradients, are sampled more densely. This strategy allows to preserve most of the
information relevant for modeling purposes, while reducing the number of samples
required.

Instead of attempting to approximate the full parameter space, it is sometimes suffi-
cient to identify particular points or areas with certain characteristics, e.g., parameter
combinations that provide the best model fit to empirical data. To reach this goal,
heuristic optimization methods such as genetic algorithms have been employed, which
use an evolutionary generate-and-select-strategy to find optimal parameter combi-
nations (Kase et al., 2008; Lane & Gobet, 2013). These existing heuristic approaches,
however, not only require drastically higher computational resources with increasing
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number of dimensions, but also usually do not come with a proof of optimality of the
obtained terminal parameter estimate. Using mathematical optimization methods,
these issues may be avoided by taking information found in (approximations of) first
order derivatives of model and objective function into account.

Contribution This article proposes an optimization-based approach for evaluating
the behavior of a cognitive model represented in the ACT-R modeling language. We
propose to rewrite the model in terms of mathematically tractable expressions, and to
apply methods from mathematical programming in order to identify parameter values
that are optimal with respect to a prescribed criterion. Our approach is generic in the
sense that it may be applied to any ACT-R model based on declarative working memory,
and may in principle be automated. Extensions to a much wider class of ACT-R models
are possible.

To illustrate our approach, we work with a model of the Sugar Factory dynamic
decision making task, implemented in the ACT-R architecture (Taatgen & Wallach, 2002).
We first conduct a simulation study including a statistical analysis for central model
parameters. We then show how to address two common optimization problems: Firstly,
the identification of parameter values that result in a best model fit to human reference
values, and, secondly, the determination of parameter values that maximize the score
of a scenario. We propose to apply optimization-based methods that, given an initial
guess, construct descent paths to a minimizer instead of searching the entire parameter
space, and thereby improve the computational efficiency considerably.

Beyond these methodological contributions, our analysis allows to quantify the
sensitivity of the task with respect to initial conditions, and yields new insights into how
average human performance deviates from potential optimal performance.

Mathematical Optimization

Our aim is the application of mathematical optimization methods to models of cognitive
processes. We strive to validate models by calibrating them to observed data in order
to obtain reliable simulations with predictive capabilites, and to optimize the process
behavior. To this end, we formulate mathematical optimization problems and choose
appropriate mathematical optimization methods to solve them efficiently.

Optimization Targets Our dynamic decision making task setting is round-based,
where we denote rounds by j = 1, . . . , Nr . For a given parameter vector θ, the model
behavior may also depend on a pseudo-random sequence of inputs. Then, evaluations
take place over repetitions i = 1, . . . ,n with differing realizations of the pseudo-random
input sequence. We consider two optimization tasks with respect to the model of the
cognitive process:

1. Parameter estimation. We determine a parameter vector θ ∈Rnθ that gives rise to
best model fit to human reference values. For optimizing the model fit, the objec-
tive function is the root mean square deviation (RMSD) of the model performance
and a human reference value Rref,

min
θ

√
1

n

n∑
i=1

(
R i (θ)−Rref

)2, (A.1)
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where R i (θ) =∑Nr
j=1 R i

j+1(θ). Herein, R i
j+1(θ) denotes a zero-one indicator that the

process was on target, i.e. a certain prescribed goal was reached, in repetition i
after round j and for model parameters θ.

2. Process optimization. We determine a parameter vector θ ∈Rnθ with best score.
The objective function for the best score is a weighted sum consisting of the
performance criterion, here the mean of the rounds on target, and its standard
deviation,

max
θ

a · 1

n

n∑
i=1

R i (θ)+b ·
√√√√ 1

n −1

n∑
i=1

(
R i (θ)− 1

n

n∑
i=1

R i (θ)

)2

.

Constants a,b ∈R are weighting factors.

Mathematical Reformulation of ACT-R

The cognitive architecture this article builds on is ACT-R, a computational framework
for modeling higher level cognition. ACT-R consists of three main components: mod-
ules, buffers, and a pattern matcher (Anderson et al., 2004), which are associated with
distinct cortical regions. A central production system coordinates the behavior of these
modules, see Fig. A.1. In several functional magnetic resonance imaging (fMRI) studies,
Anderson (2007) identified a number of brain regions corresponding to modules in
ACT-R, supporting the structure of the architecture.

Figure A.1. Connection of modules in ACT-R 5.0 (Anderson, 2005).

One important feature of ACT-R is that it combines the symbolic structure of cogni-
tion, i.e., how knowledge is encoded as high-level structures, with a subsymbolic level
“[...] abstract characterization of the role of neural computation in making that knowl-
edge available,” (Anderson, 2007). As an example, instances of symbolic declarative
knowledge (e.g., “The number 2 is followed by the number 3.”), called chunks, are stored
in the declarative memory. On the subsymbolic level, an activation value is associated
with each chunk and determines whether the information is accessible in a certain
situation (e.g., when counting). In contrast to purely connectionist models, in which a
specific cognitive phenomenon emerges from interconnected networks of simple units
(Marcus, 2003), ACT-R operates on different levels of abstraction in order to achieve a
representation of how the components of the mind interact.
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Mathematical Description of the Declarative Memory Module

The proposed reformulation of the Sugar Factory includes a generic representation of a
central part of the ACT-R cognitive architecture, the declarative memory module. Our
approach can therefore be applied in a straightforward manner to other cognitive tasks
that rely on this cognitive module.

A single element of declarative knowledge is called a chunk, stored in the declarative
memory module of the ACT-R architecture. A chunk, see Fig. A.2, is defined by its chunk
type and contains a number of slots ci k that hold information. Each chunk also has an
activation value Ai that reflects the usefulness of the stored information for the specific
situation at hand (Anderson, 2007).

Definition 1 (Chunk and Declarative Memory) A chunk is a tuple (ci 1, . . . ,ci k , Ai ) ∈ I1×
. . .× Iz ×R. The declarative memory is an ordered list M of chunk tuples indexed by con-
secutive ascending natural numbers.

The current context and all past experience influence the activation value Ai of a
chunk i , which is computed from three components: the base-level activation Bi , a
context component Ci , and a noise component un

i j ,

Ai := Bi +Ci +un
i j . (A.2)

The base-level activation Bi is calculated from the number ni of presentations, the
lifetime Li , and the decay parameter d ,

Bi := ln(ni /(1−d))−d ln(Li ) . (A.3)

A chunk is said to have been presented if a) it first enters the declarative memory, ni = 1,
and b) if upon entering declarative memory it is merged with another chunk that
already exists. With each presentation of a chunk, the base-level activation Bi increases
(Anderson, 2007). The lifetime Li (i.e., the time since its creation) of a chunk depends
on the modeled task. In case of our Sugar Factory implementation Li consists of the
round ti of a chunks creation, the current round j , and a time constant T = 0.05s,

Li := (
j − ti

)+T. (A.4)

When faced with the current situation in turn j , a retrieval request is be made to
retrieve a chunk from declarative memory that best matches the current situation. Then,
from the subset of chunks that are a satisfactory match of request (p j , p∗), comprised of
a situation p j and a desired target p∗, the one with the highest activation value is placed
into the retrieval buffer.

Definition 2 (Retrieval of a Chunk) Given a request (p j , p∗), the index of the chunk
retrieved from declarative memory is

i∗ = argmax
i

{
Ai (p j , p∗) ≥ τ} . (A.5)

The retrieval threshold τ defines the minimum activation threshold for a chunk to be
retrievable at all. The retrieved chunk is

(c∗1 , . . . ,c∗k , A∗) =
(
ci 1∗ , . . . ,ci k∗ , Ai∗(p j , p∗)

)
. (A.6)
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To this end, the context component Ci (p j , p∗) contributes a similarity part that
reflects the similarity between the slot values (p j , p∗) of a retrieval request and the slot
values (ci 1, . . . ,ci k ) of any chunks in declarative memory. It is not required that the slots
of the chunk have exactly the same values as specified in the retrieval request, but Ci

increases if their similarity is high. This mechanism is called partial matching,

Ci (p j , p∗) := P ·∑
l

Mi ,l , (A.7)

wherein the parameter P reflects the amount of weighting given to the similarities, and
the similarity measures Mi ,l are calculated as

Mi ,l (a,b) :=−|a −b|/max(a,b). (A.8)

Maximum similarity between two values is represented by Mi ,l := 0 and maximum
dissimilarity by Mi ,l :=−1.

Finally, the noise value un
i j added to the activation consists of two subcomponents: a

transient component un
i j , which is computed each time a retrieval request is made, and

a permanent component, which is only generated once for each chunk. The transient
component is usually sufficient for modeling. To generate the value of the transient
noise component a logistic distribution with µ = 0 and noise parameter s ≈ 0.2 is used
(Chung & Byrne, 2008).

Figure A.2. Examples of an ACT-R production rule (left) and of ACT-R chunks stored in declara-
tive memory (right).

(p start
=goal>

isa game-state
state start
sugar production =p

==>
=goal>

state retrieving
+retrieval>
isa learned-info
sugar production =p
newproduction 9

)

goal
isa game-state
state start
workers 3
sugar production 7

learned-info12
isa learned-info
workers 8
production 7
newproduction 9

Mathematical Description of the Production Rules

The single modules of ACT-R interact with each other through a production system. The
steps our model runs through are described below. In every round, we

1. compute the activations of the chunks;

2. select the chunk with the highest activation regarding a specific request;

3. if there is such a chunk and the activation of this chunk is above the threshold τ:
exhibit specific behavior b1;

4. if there is no such chunk or the activation of the chunk is lower than the threshold
τ: exhibit specific behavior b2;
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5. update the system state;

6. create a new chunk or merge with an existing chunk that holds relevant informa-
tion.

Both a particular cognitive process as well as the general production rules for sim-
ulating a cognitive process are described in ACT-R by a system of logical relations. In
contrast, we aim to formulate a mathematical model of the cognitive process that is a
suitable input to mathematical optimization methods.

In our approach, the logical phrases from the ACT-R formalism are modeled by
argmax, | · |, max, and conditional if-then statements. We propose formulations for all
three components based on the Heaviside and Delta functions H(x) and δ(x):

H(x) =
{

1 if x ≥ 0,
0 if x < 0,

, δ(x) =
{

1 if x = 0,
0 if x 6= 0.

(A.9)

Formulation of if-then statements. We write if-then statements

x(s) =
{

a, if s ≥ 0,
b, if s < 0,

y(t ) =
{

c if t = 0,
d if t 6= 0.

as x(s) = H(s) ·a + (1−H(s)) ·b and y(t ) = δ(t ) · c + (1−δ(t )) ·d .

Formulation of max and | · |. We substitute max and | · | by

max(x, y) = H(x − y) · x + (1−H(x − y)) · y,

|x − y |
max(x, y)

= H(x − y)
x − y

x
+ (1−H(x − y))

y −x

y
.

Formulation of argmax. To evaluate the statement

i∗ = argmax
1≤i≤n

{Ai }, x j (i∗) =
{

b1 if Ai∗ ≥ τ,
b2 if Ai∗ < τ,

we first compute A∗ = max
i

{Ai }, and then let

x j (i∗) =
n∑

i=1
H(Ai − A∗) · (H(A∗−τ) ·b1 + (1− (A∗−τ)) ·b2).

In order to obtain a continuously differentiable formulation, we then replace Heaviside
and Delta functions by continuous approximations,

H(x) := 1
π

arctan
(
hx

)+ 1
2 ,

δ(x) := exp(−x2/a2),

with, e.g., h = 10.0, a = 0.01.
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The Sugar Factory Problem

In this article, we investigate an ACT-R model of the Sugar Factory decision task (Taatgen
& Wallach, 2002). The Sugar Factory is a turn-based task realized as a computer-based
simulation, developed by Berry and Broadbent (1984) in order to answer the question
of how participants learn to operate complex systems. Instead of learning and apply-
ing explicit generalized rules to a problem, specific situation-responses are stored in
memory and retrieved when a similar situation appears, see (Dienes & Fahey, 1995;
Taatgen & Wallach, 2002). This cognitive mechanism is known as instance-based learn-
ing (IBL), cf. (Logan, 1988), and has been shown to play an important role in dynamic
decision making situations in Gonzalez and Lebiere (2005). IBL has been implemented
successfully in several cognitive models based on the ACT-R architecture as reported in
(Gonzalez & Lebiere, 2005; Taatgen & Wallach, 2002).

In the Sugar Factory task, participants observe a sugar production rate p j over turns
j = 1, . . . , Nr , and are asked to reach and maintain a specific sugar production p∗ by
repeatedly changing the number of workers x j employed at the factory. The initial value
is p1 = 6. In every round j , the goal is to reach p j = p∗ = 9, i.e., to produce 9,000 metric
tons of sugar. The following equation describes the behavior of the Sugar Factory task.

Definition 3 (Sugar Factory Simulation Problem) The sugar production rate before turn
j = 1 is p1 and the rate p j+1 after turn j = 1, . . . , Nr is given by

p j+1(x) =
(
2 · x j −p j (x)+ur

j

)
[1,12]

, (A.10)

where x j ∈ {1, . . . ,12} is a sequence of inputs, ur, j is uniformly distributed random variable
from {−1,0,1}, and (y)[a,b] = max(a,min(b, y)) denotes the clipping of the argument value
y to the range [a,b].

Participants are initially unaware of the relationship (A.10) between workers and sugar
production, and are not informed about their results being evaluated in this way.

To measure the performance of a participant on the Sugar Factory, we define the
following score.

Definition 4 (Sugar Factory Score Function) The sugar factory score function is

R =
Nr∑
j=1

R j+1 =
Nr∑
j=1

χ
{|p j+1(x)−p∗| ≤ 1

}
with p∗ = 9, i.e., the score counts the number of rounds where the sugar production rate
is on target.

To account for the randomness in ur
j and to make it possible for participants to be on

target 100% of the time, a sugar production of p j ∈ [8,10] is scored as being on target.

Human Performance in the Sugar Factory

It has repeatedly been found that human participants are able to control the simulated
system above chance level but perform far from the rational optimum in this task (Berry
& Broadbent, 1984; Dienes & Fahey, 1995). Moreover, even successful participants are
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often unable to verbally describe the structure of the system. This is in line with the
assumptions of instance-based learning as a cognitive mechanism which do not require
the abstraction of formal rules. Surprisingly, even when the structure of the underlying
system is made explicit to participants, they are generally not able to improve their
performance (Berry & Broadbent, 1984).

Analyzing individual decision behavior, Dienes and Fahey (1995) found that up to
86% of the initial ten choices x1, . . . , x10 made by participants can be explained by the
following rules, which also form the basis for the cognitive model further below:

• Initially, a workforce of x1 = 7, 8, or 9 is chosen;

• If the sugar production is below or above target, p j < 8 or p j > 10, then x j =
x j−1 +uoff

j , where uoff
j ∈ {−2, . . . ,2

}
is added to the current workforce;

• If the sugar production on target, 8 ≤ p j ≤ 10, then uon
j ∈ {−1, . . . ,1

}
is added to

the current workforce.
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Algorithm 3: Mathematical formulation of the ACT-R model of the Sugar Fac-
tory.

1 for j = 1, . . . , Nr do
(1) for i = 1, . . . , Nc do

Li := (
j − ti

)+T ;

Bi := ln(ni /(1−d))−d · ln(Li ) ;

Mi 1 :=−∣∣p j − ci 2
∣∣/max

(
p j ,ci 2

)
;

Mi 2 :=−|9− ci 3|/max(9,ci 3);

Ai := Bi +P · (Mi 1 +Mi 2)+ un
i j ;

end

(2) i∗ := argmaxi {Ai };

(3) Ai∗ ≥ τ?

(i) if Ai∗ ≥ τ then x j := ci∗1;
(ii) else x j := uw, j ;

(4) p j+1 := 2 · x j −p j +ur
j ;

(i) if p j+1 > 12 then p j+1 = 12;
(ii) if p j+1 < 1 then p j+1 = 1;

(iii) p j+1 = 9?
(a) if p j+1 = 9 then uw, j+1 := uw, j +uon

j ;

(b) else uw, j+1 := uw, j +uoff
j ;

(5) if uw, j+1 > 12 then uw, j+1 = 12;

(6) if uw, j+1 < 1 then uw, j+1 = 1;

(7) p j+1 ∈
{
8, ...,10

}
?

(i) if p j+1 ∈
{
8, ...,10

}
then R j+1 := 1;

(ii) else R j+1 := 0;

(8) ∃ i = 1, . . . , Nc : ci =
(
x j , p j , p j+1

)
?

(i) if ∃ i then ni := ni +1
(ii) else

Nc := Nc +1;

cNc := (
x j , p j , p j+1

)
;

nNc := 1;

tNc := j ;

2 end

As an example and to demonstrate the mathematical description of the production
rules, the limits on the sugar production rates in the Sugar Factory are implemented by
if-then statements. These rules appear as follows in our mathematical description:

if p j+1 > 12 then p j+1 = 12, if p j+1 < 1 then p j+1 = 1.

In our reformulation, these if-then statements are smoothened using the Heaviside

52



Chapter A

function H :

p̃ j+1 = 2 ·x j+1 −p j +ur j ,
p j+1 = H(p̃ j+1 −12) ·12+ (

1−H(p̃ j+1 −12)
)

·
(
H(1− p̃ j+1) ·1+ (

1−H(1− p̃ j+1)
) · p̃ j+1

)
.

Nonlinear Recurrence Model

For the Sugar Factory problem, let Nr be the number of rounds. Each chunk i has
three slots (ci 1, ci 2, ci 3), where ci 1 holds the information about the new workforce, the
value ci 2 represents the current production and ci 3 is the new production calculated
from ci 1 and ci 2. The maximum number Nc of chunks can be calculated from the
number of values ci k possible for slot k ∈ {1,2,3} of chunk i . Feasible values for new
workforce ci 1, current production ci 2, and for new production ci 3 are {1, . . . ,12} each.
Thus, Nc = 12 ·12 ·12 = 1,728. We allocate every possible chunk and set its initial activity
to a sufficiently small negative value −M to make sure that it is possible to activate it
only after information has been stored in the slots of the chunk.

The mathematical model contains different types of variables:

• states including the activation Ai of the chunks, the current number of workers
x j , and the current sugar production rate p j in the Sugar Factory,

• parameters θ = (τ,d ,P ) and s describing the cognitive properties of the individual
participant, and

• pseudo-random vectors, containing the cognitive noise un, random decisions by
the participants uw +uon

j resp. uw +uoff
j and system inputs ur. They describe

the particular settings under which the cognitive task is run. The sequences of
random values are generated a priori as reproducible pseudo-random numbers.

All inputs are vectors of length Nr , except un
i j , which is of length Nr ·Nc . The value

R j+1 is used as an indicator whether the participant has reached the target in round j ,
i.e., whether the new sugar production p j+1 equals 8, 9, or 10. The overall score R i is
computed by summation over all R j+1,

R i =
Nr∑
j=1

R i
j+1.

with R i
j+1 as the indicator on target in round j = 1, . . . , Nr for input i = 1, . . . ,n. This

modeling approach leads to a systems of nonlinear recurrence relations as shown in
Algorithm 2.

Properties of the Model and Choice of Optimization Meth-
ods

We have implemented the mathematical reformulation of the Sugar Factory model
in Python. Our implementation is modular and object-oriented, with model specific
components encapsulated in a problem class that is easy to substitute in order to
transfer it to similar tasks. In this section, we report simulation results obtained using
this implementation.
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Simulation and Sensitivity Analysis

Computations of the simulations were run on a non-dedicated 48-core machine (4×12-
core AMD Opteron 6176) with 256 GB RAM. Depending on the grid resolution (i.e., step
sizes of the parameters variations) the maximum runtime did not exceed one day. We
focused on an analysis of the parameters P and τ, which have considerable effect on the
achieved score while no strong empirically based recommendation for default values
exists. The decay rate was set to its default value d = 0.5. The activation noise un

i j was
set to zero as it does not lead to a noticeable change of the mean score. We describe the
random components uon, uoff and ur by pseudo-random input sequences. Different
simulation runs are characterized by different pseudo-random input sequences.

Fig. A.3 shows simulation results for one fixed input (i.e., for every parameter com-
bination (τ,P ) the same sequences uon, uoff, and ur were used). Parameter ranges are
τ ∈ [−8.50,1.00] with step size ∆τ = 0.05, and P ∈ [0.5,35.0] with step size ∆P = 0.1,
which results in a total of 66,086 sampling points. There are certain parameter com-
binations for which the model is on target about 87.5 % of the time (τ ∈ [−3.3,−0.85]
and P ∈ [8.4,23.7]) and others where the score drops to less than 25 %. The structure
of the plots, especially in the area of the best learners, strongly depends on the inputs,
compare Fig. A.3 and Fig. A.4. In the latter, the best learners are on target no more than
50% of the time, the score drops to 10% near the edge.

Figure A.3. Rounds on target for input0 (= uon
0 , uoff

0 , ur
0) over 40 rounds on fine parameter grid

with 66,086 grid points.

Hence, we conducted a second simulation in which the input sequences were var-
ied pseudo-randomly. Fig. A.5 (left) shows the mean of 100 different samples for the
pseudo-random sequences. Not only does the total number of rounds on target differ
compared to the single inputs, but also the area of parameter combinations that yield
good results is much broader. To check whether or not the declarative memory has truly
“learned” an implicit strategy, only instances in which a chunk was actually retrieved
were counted as being on target in Fig. A.5 (center) — again for the same 100 samples
for the pseudo-random sequences — and compared to our previous results. Compared
to Fig. A.5 (left), there is a drop of the score in the upper right quarter of Fig. A.5 (center).
The standard deviation of the mean value for the activated chunks version is shown in
Fig. A.5 (right).
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Figure A.4. Rounds on target for input1 (= uon
1 , uoff

1 , ur
1) over 40 rounds on fine parameter grid

with 66,086 grid points.

Figure A.5. Mean value and standard deviation of rounds on target for 100 inputs over 40 rounds.
Initial sugar production rate p1 = 6, medium parameter grid with 8,256 grid points. Left: Mean
value of rounds on target. Center: Mean value, activated chunks only. Right: Standard dev.,
activated chunks only.

In a further simulation, we investigated the sensitivity of the scores with respect to
different initial sugar production values. The default value used in experiments is p1 = 6.
Results for an initial value of p1 = 9 show, compared to the default value p1 = 6, not only
a much broader region of best solvers but also a higher overall score. On the other hand,
an initial value of p1 = 1 yields a lower overall score as well as a smaller region of best
solvers.

In general, all simulation results show a similar pattern in response to parameter
variations. Fig. A.5 (left) shows a characteristic interaction of parameters τ and P ,
with the highest scoring parameter combinations located in a wedge-shaped area at
the center of the plot and lower scores in both lower left and upper right corners.
Considering whether model responses were based on memory retrieval as opposed to
random behavior, Fig. A.5 (center) reveals that learning occurs in the lower left corner.
In contrast, in the upper right corner behavior is almost exclusively driven by random
behavior.
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Choice of Optimization Methods

In this section we discuss the results of our simulation study regarding the numerical
differentiability of our reformulated model as well as the appropriate optimization
methods. In order to apply derivative-based optimization methods, a tractable formula-
tion is necessary. However, the ACT-R architecture contains many logical statements
(if-then-else) and absolute value expressions that challenge a derivative-based approach.
As shown before, such non-differentiabilities can be smoothed using continuous ap-
proximations of the Heaviside and Delta functions (A.9). This is similar to the approach
of Gurney, Prescott, and Redgrave (2001), in which the authors also used a smooth
approximation of the Heaviside function in order to model action selection.

A different approach is described by Chapelle and Wu (2010), who used a softmax
activation function and showed that it is possible to perform gradient-based optimiza-
tion on their smooth approximation. This approach however requires, inter alia, that
the index selected by argmax is unique. How to deal with chunks having (almost) the
same activation remains an open question.

Choice of the Smoothing Parameter h We concentrated on the influence of the pa-
rameter h of the Heaviside function, as the parameter a of the Delta function turned
out to be uncritical. Larger values of h correspond to a sharper transitions at x = 0. To
identify the value of h for which our model becomes numerically differentiable, we ran
simulations for h ∈ {

0.1,1.0,10,102, . . . ,107
}

with P = 20, and focused on the particular
parameter interval τ ∈ [−3.16,−3.12] sampled at step size ∆τ= 10−5. We also separately
varied h for smoothing of the similarity calculation, denoted by hsim, smoothing of
argmax, denoted by hargmax, and for computation of sugar production and workers,
denoted by henv.

Results in Fig. A.6 show that, the argmax term proves to be critical for matching the
behavior of the Sugar Factory model for the ACT-R and the Python implementation.
Larger values of h (Fig. A.6, left) are required but yield a numerically non-differentiable
function. Decreasing the values of hargmax leads i.a. to a random choice of chunks that
undermines the learning process. Fig. A.6 shows that the score drops from about 19.5
(left) to approximately 5.2 (center). For the similarity calculation and the calculation of
sugar production and workers, the choice of h is less critical, but hargmax = 100 is still
too large to yield a numerically differentiable model (right).

Figure A.6. Mean value of rounds on target for 100 inputs over 40 rounds with P = const. Left:
hargmax = 107, hsim = henv = 10. Center: hargmax = 103, hsim = henv = 10. Right: henv = 10,
hargmax = hsim = 100. Note the different vertical axis ranges.

We may conclude that, even though smoothing the argmax can be a feasible ap-
proach, cf. (Gurney et al., 2001), (Chapelle & Wu, 2010), precise modeling of the argmax
is crucial at least for the particular case of the Sugar Factory model.
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Heuristic and Mathematical Optimization Approaches Optimization methods such
as genetic algorithms (Mitchell, 1998) or particle swarm (Trelea, 2003) search the global
parameter space based on heuristics. Such algorithms however rely on the computa-
tional time, for example, as termination criterion, as they have little information on
whether or not they have actually found an optimum. Two examples for such heuristic
optimization methods are ESCH (Beyer & Schwefel, 2002), a modified evolutionary
algorithm, and Controlled Random Search (CRS) with local mutation (Kaelo & Ali, 2006).
CRS starts with a population of random points, and evolves them heuristically, a method
comparable to genetic algorithms.

On the other hand mathematical optimization solvers are characterized by the use
of derivatives as a source of additional information to make sure that an optimum is
reached. Those mathematical optimization solvers are e.g. Newton-type algorithms,
e.g. (Gill & Murray, 1974), or steepest descent methods, e.g. (Sun & Yuan, 2006), but
also include derivative-free methods such as Nelder-Mead (Lagarias, Reeds, Wright, &
Wright, n.d.) or BOBYQA (Powell, 2009), which approximate the behavior of gradient
based solvers. Nelder-Mead is a downhill simplex method while BOBYQA uses an
iteratively constructed quadratic approximation for the objective function. Whereas
heuristic optimization methods are quickly stretched to their limits with an increasing
dimensionality of the parameter space, the number of iterations for mathematical
optimization methods, in particular for derivative based ones, ideally is independent of
the problem dimensions.

Numerical Results for the Sugar Factory

We applied a selection of heuristic and mathematical optimization algorithms that
promise to cope with the non-differentiability of the nonlinear recurrence model. Our
selection comprises Nelder-Mead Simplex (Nelder & Mead, 1965) with explicit support
for bound constraints (Box, 1965), BOBYQA, ESCH, and CRS. All optimization algorithms
were applied using the Python interface NLopt (Johnson, 2010).

The stopping criterion for BOBYQA and Nelder-Mead was a relative tolerance on
the optimization parameters of 0.1. For the heuristic global solvers ESCH and CRS we
successively increased the time limit up to about 1000 s. The stopping criterion was
then set to the minimum run time for which there was no improvement of the found
maxima observed.

Table A.1. Maxima found by different solvers for n = 100 inputs. Objective was to find the pa-
rameter combination best fitting a human reference value using RMSD (parameter estimation).

Solver τ P Max. #Eval.
Nelder-Mead 0.5 28.13 4.05 67
BOBYQA 0.5 27.80 4.05 54
ESCH 0.45 27.88 4.05 6,374
CRS 0.48 32.94 4.05 4,500

Parameter estimation Table A.1 shows the results for the best fit to human reference
performance, with Rref = 7.9 taken from the literature (Dienes & Fahey, 1995). Using
multiple start values, all solvers found the same point as a maximum. For ESCH and
CRS the results displayed are for a time limit of 5.0 seconds.
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Table A.2. Maxima found by different solvers for n = 100 inputs. Objective was to find the
parameter combination with the best score (process optimization).

Solver τ P Max. #Eval.
Nelder-Mead -4.00 27.00 20.15 36
BOBYQA -4.00 27.00 20.15 43
ESCH -3.13 22.36 20.13 863
CRS -4.21 28.52 20.2 860

Process optimization For the single input displayed in Fig. A.3, all solvers found the
global maximal score of 31, however depending on suitable and differing choices of
the initial values for parameters τ and P . Table A.2 shows the results for a = 1 and
b = 0 and 100 inputs using multiple start values (see Fig. A.5, left). The local solvers
Nelder-Mead and BOBYQA both found the same local maximum (τ=−4.00, P = 27.00
with objective = 20.15). Table A.2 shows the maxima found by the heuristic global solvers
after 960 seconds (see Fig. A.7). For a = 1 and b =−1, all solvers found the same point as
a maximum (τ≈−6.5, P ≈ 30 with objective ≈ 13.87), except CRS which found a slightly
better point (τ≈−8.15, P ≈ 34.9 with objective ≈ 14.04).

Figure A.7. Mean of 100 inputs over 40 rounds, p0 = 6, medium grid (8,256 grid points). Points
1–4 show 1: best score found by ESCH, 2: best score found by local solvers, 3: best score found
by CRS, 4: best fit to reference human.

Fig. A.8 shows the optimization trajectories for Nelder-Mead and BOBYQA.

Cognitive Interpretation

Our results show how high-performance simulation and optimization can provide
relevant insights beyond just quickly optimizing the fit to aggregate human data. In-
terestingly, optimizing for ideal performance shows that this combination is far away
from the possible optimal performance, located at τ=−4.21 and P = 28.52 (see Figure
A.7). This raises two questions, namely why the τ value of the model with the best fit to
human performance diverges from the optimal model, and how a lower τ value leads to
better performance.

A simple answer to the first question is that people do not behave formally optimal in
many decision situations (Klein, 2001) in general, and in the Sugar Factory in particular
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Figure A.8. Optimization trajectories for Nelder-Mead (left) and BOBYQA (right) with four
different start values.

(Berry & Broadbent, 1984; Dienes & Fahey, 1995). The structure of the human cognitive
system seems to be geared towards robust information processing in typical human
environments with incomplete or uncertain information (Gigerenzer & Gaissmaier,
2011), rather than formal optimization given strict assumptions. Another possibility
is that the model of human performance used in this study is not valid to start with.
However, given that existing studies of the Sugar Factory task and its derivatives show
that implicit learning is a strong explanatory mechanism (Berry & Broadbent, 1984;
Dienes & Fahey, 1995), that the implementation of implicit learning based on the ACT-R
architecture generally matches human data in other studies (Gonzalez, Lerch, & Lebiere,
2003), and that the specific model used here has been empirically supported (Taatgen &
Wallach, 2002), we think there are good grounds to assume that the basic structure of
the model is appropriate.

The second question is how a lower τ value leads to better performance. Apparently,
being more open to considering vague memories (i.e., a low retrieval threshold τ)
is mostly a good strategy in this task. We think that this is a task-specific effect, as
participants are provided only with noise-free and correct information. This means that
any memory, however vague, that is is sufficiently similar to the target situation is on
average a valuable source of information and likely to increase performance. Similarity
is important though, as the estimate for parameter P (mismatch penalty) shows, which
lies close to the theoretical optimum. The more conservative memory threshold (low τ

value), shown by most human participants may represent a suitable trade-off across a
range of different situations, given that information often is noisy or unreliable and a
higher selectivity therefore advisable. This is supported by the fact that the τ value of
0.5 we found is close to the value of 0 recommended by the architecture as a suitable
default for many situations (ACT-R 6.0 Tutorial, 2012).

We also investigated how choosing different initial values for the sugar production
has an influence on performance. That an initial value of p = 9 yields the best overall
performance is not surprising, as this part of the optimal value range of the workforce
(7, 8 or 9) and therefore produces many memory instances of trials on target early in
the learning phase, which are important for guiding control behavior. This insight is
practically relevant for behavioral studies, as the sensitivity to starting conditions has so
far not been considered in studies using the Sugar Factory.
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Discussion

Cognitive architectures are powerful tools for modeling higher-level cognition. However,
methods for efficient exploration of parameter spaces and quick parameter estimation
in this type of models are currently still in the process of development. In this article, we
have demonstrated first steps towards a differentiable formulation of an instance-based
learning model implemented in the ACT-R cognitive architecture. We conducted a
simulation study including statistical analysis for central model parameters and showed
how mathematical optimization techniques can be applied for efficient parameter iden-
tification.

We implemented a mathematical reformulation of the Sugar Factory, a simple
instance-based learning task, in Python and showed that it is possible to derive a
tractable formulation. The generic part of this formulation, related to the ACT-R declara-
tive memory module, can in principle be transferred to ACT-R models of other tasks like
Backgammon (Sanner, Anderson, Lebiere, & Lovett, 2000), Air-Traffic Control (Lebiere,
Anderson, & Bothell, 2001), the beer game (Martin, Gonzalez, & Lebiere, 2004), or even
more complex tasks like the Water Purification Plant (Gonzalez et al., 2003).
We conducted simulation studies to determine model properties by varying the param-
eter h of an approximation of the Heaviside function, which we used for smoothing the
non-differentiable parts of our model.

Simulations showed that in order to obtain exactly the same results like the ACT-R
model a large h for the smoothened argmax is necessary, contrary to other parts of
our model like the similarity calculation and the environmental setting (i.e. calcula-
tion of sugar production and workers). This however, leads to a piecewise constant
behavior of our Python implementation. For smaller h our model becomes numercially
differentiable, however at the same time the learning process is replaced by random
behavior. Therefore, at this stage, even though the derivatives can be calculated, using
gradient-based optimization methods is not feasible.
We then showed how to address two common optimization problems: Firstly, the iden-
tification of parameter values that result in a best model fit to human reference values,
and, secondly, the determination of parameter values that maximize the score of a
scenario. We applied both heuristic and mathematical optimization algorithms that
promise to cope with the non-differentiability of our nonlinear recurrence model and
showed that mathematical optimization solvers like Nelder-Mead Simplex or BOBYQA
turned out to be the best choice for the model at hand. Not only do they have the advan-
tage of using approximations of the derivatives to determine if an extremum is found,
thus needing a lower number of iterations than the heuristic optimization solvers, but
they are also, in principle, able to deal with higher dimensional problems. Therefore it
should be also possible to apply those to parameter spaces with n > 2. Furthermore, we
conducted a simulation study for the central model parameters: the retrieval threshold
τ and the partial matching parameter P using high-performance computing. Results
revealed a sensitivity of the task to initial settings, which has not been considered in the
empirical literature so far. These results also indicate that human performance in this
specific tasks seems to be hampered in part by a tendency to be overly conservative in
considering memory instances.
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Outlook

As the argmax turned out to be the crucial part of the transscribed ACT-R model, we
pursued a non-differentiable approach in this article and developed a nonlinear recur-
rence relation that could be optimized with a selection of heuristic or derivative-free
solvers. This approach has the advantage of allowing for the computation of a single
round of the cognitive process by a mere function evaluation.

We envision in a next step to derive exact reformulations of IBL problems and ACT-
R cognitive processes that are amenable to derivative-based optimization methods,
as follows: Returning once more to the statement i∗ = argmax{Ai } for data A1, . . . , Ak ,
consider the following constrained optimization problem:

min
A∗,w

A∗

s.t. A∗ ≥ Ai , 1 ≤ i ≤ k,
wi · (Ai − A∗) ≥ 0, 1 ≤ i ≤ k,

wi ∈ [0,1],
∑k

i=1 wi = 1.

Herein, A∗ is a free variable set to the maximum activation value by virtue of minimiza-
tion and the first inequality. We seek the argmax, i.e. the index i∗ with Ai∗ = A∗. All
differences in the second inequality are non-positive, and all with Ai < A∗ are negative.
This forces the corresponding indicators wi to zero. Then, the indicator wi∗ is forced to
one by the equality in the third line. A function f (i∗) depending on i∗, the argmax, may
then be expressed as

f (i∗) =
k∑

i=1
wi f (i ),

which is now bi-linear, differentiable, and independent of the argmax, but yields the
same value because wi = 0 for i 6= i∗, and wi∗ = 1.

This formulation represents the computation of one sample of the dynamic decision
making process by the solution of a bi-linear optimization problem. The approach is
hence significantly more demanding in terms of computational effort. Moreover, opti-
mizing over process samples computed in this way constitutes a bi-level optimization
problem. Treatment of such problems is significantly more demanding also in terms of
mathematical optimization algorithms, but has the advantage of precisely reproducing
the sequence of chunk activations as determined by ACT-R.

Another possibility that might increase the tractability of our model is a different
representation of the production rules, as in (Stewart & Eliasmith, 2008). Instead of
using a two-step approach like in ACT-R, production rules only have one feature, their
utilities.
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Abstract

Just like knowledge can be more or less accurate as a function of its correspondence with
reality, so can confidence be more or less accurate as a function of its correspondence
with the accuracy of knowledge. Accurate confidence has proven important for making
appropriate predictions and decisions in areas of high uncertainty such as managerial,
medical, or political decision-making. Research in the area of climate change (CC),
however, has mostly dealt with the accuracy of citizens’ CC knowledge itself, while the
accuracy of their confidence is unknown. Here we provide a comprehensive assessment
of the accuracy of confidence in CC knowledge in a nationally representative German
sample (N = 509). Participants verified a total of nine true and false statements about
CC, and indicated their confidence in each verification. Two benchmark comparisons
are provided: The accuracy of confidence in science knowledge in a second nationally
representative German sample (N = 588), and the accuracy of confidence in CC knowl-
edge in a sample of CC scientists (N = 206). The main indicator of confidence accuracy
was relative confidence sensitivity (Mratio) that allows us to quantify the lack of knowing
what one knows that cannot be explained by a lack of knowledge. Results showed that
citizens’ Mratio for their CC knowledge was only 0.49 (95% CI [0.33, 0.63]). Thus, citizens’
confidence sensitivity was only around half of what it could be based on their knowledge,
which indicates a failure of metacognitive awareness of their true level of CC knowledge.
Moreover, relative confidence sensitivity of citizens’ CC knowledge was particularly
low compared to their science knowledge (Mratio = .99, 95% CI [0.88, 1.16]), as well as
scientists’ CC knowledge (Mratio = .95, 95% CI [0.85,1.07]). We conclude that citizens’
confidence in their CC knowledge represents a particularly fuzzy line between correct
versus incorrect verifications relative to science knowledge, and relative to scientists’
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CC knowledge; moreover, it represents an unnecessarily fuzzy line relative to citizens’
own CC knowledge.

Introduction

Accurate confidence in knowledge is fundamental to competent decision-making (Bru-
ine de Bruin, Parker, & Fischhoff, 2007; Parker & Fischhoff, 2005). Just like knowledge
can be more or less accurate as a function of its correspondence with reality, so can con-
fidence be more or less accurate as a function of its correspondence with the accuracy
of knowledge. For example, rejecting the statement that natural variation in sunbeam
is the main driver of climate change (CC) shows accurate knowledge, but being uncer-
tain about this rejection shows inaccurate confidence. Accepting the statement that
greenhouse gas emissions are a main driver of CC shows accurate knowledge, and being
certain about this acceptance also shows accurate confidence. While high confidence in
accurate knowledge enables decision-makers to leverage their knowledge, unwarranted
confidence in false knowledge can lead people astray. Specifically, accurate confidence
has proven important for making appropriate predictions and decisions in areas of
high uncertainty such as managerial (Simon & Houghton, 2003), medical (Berner &
Graber, 2008), or political decision-making (Johnson, 2009). Research in the area of
climate change, however, has almost exclusively dealt with the accuracy of citizens’ CC
knowledge itself (e.g., Shi, Visschers, Siegrist, & Arvai, 2016), while the accuracy of their
confidence is largely unknown. Here we deliver a comprehensive estimate of the accu-
racy of citizens’ confidence in their verifications of a series of true and false statements
about CC. We put the results into context with the help of two benchmark comparisons:
The first, citizens’ accuracy of confidence in science knowledge, enables us to compare
across domains, and the second, CC scientists‘ accuracy of confidence in CC knowledge,
enables us to compare across levels of expertise and exposure to scientifically accurate
information. Jointly, the present approach delivers relative answers to questions such
as: How well calibrated is citizens’ confidence in their CC knowledge? To what extent
are citizens aware of the limits of their CC knowledge? How does citizens’ accuracy of
CC knowledge relate to their accuracy of confidence?

To assess the accuracy of citizens’ confidence, we employ methods that have a long
tradition in assessing the accuracy of subjective probabilities in areas as diverse as
sensory judgments (Baranski & Petrusic, 1994), eyewitness identification (Brewer &
Wells, 2006), or forecasts in strategic intelligence (Mandel & Barnes, 2014). Accuracy
of confidence is determined in terms of calibration, bias, and sensitivity. Calibration
measures how well (or poorly) confidence in knowledge aligns with the accuracy of
knowledge: A person shows optimal calibration when for statements verified with 100%
accuracy, confidence is 100%, for statements verified with 90% accuracy, confidence is
90%, and so on. Confidence is biased to the extent that it over- or underestimates knowl-
edge. Sensitivity, also termed resolution of confidence, captures how well confidence
judgments discriminate between what one knows and does not know. A person shows
optimal sensitivity when confidence is highest for all statements verified correctly, and
lowest for all statements verified incorrectly. Hence, if citizens possess any insight into
their CC knowledge, their confidence judgments should discriminate between correct
and incorrect verifications.

Citizens’ accuracy of confidence is relevant for three reasons. First, confidence in
knowledge can affect decision-making above and beyond knowledge (Hadar, Sood, &
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Fox, 2013). For example, both biased and less sensitive confidence have been identified
as causes of diagnostic error. Physicians who are overconfident about the accuracy
of their diagnosis tend to prematurely narrow down the choice of diagnostic hypothe-
ses(Berner & Graber, 2008), and are less likely to seek out additional information that
would increase their chance to correct their diagnosis (Meyer, Payne, Meeks, Rao, &
Singh, 2013), and less sensitive diagnostic confidence predicts less optimal medical
decisions (Jackson & Kleitman, 2014). We deliver an estimate of the accuracy of citi-
zens’ confidence in their CC knowledge. If citizens’ confidence in their CC knowledge
is inaccurate, they cannot leverage accurate CC knowledge, and can be lead astray
by false knowledge. Second, citizens are often faced with the challenge to verify the
claims of CC statements of unknown veracity. This is because scientifically valid CC
information(Hiles & Hinnant, 2014) exists alongside considerable misinformation in
the media discourse, including outright disinformation campaigns (Elsasser & Dunlap,
2013), while the amount of “nonsense” to be found on the internet on topics such as
CC appears to be on the rise (Williamson, 2016). To what degree of confidence, and to
what degree of accuracy of confidence do citizens reject or accept valid information
and “nonsense” about CC? On the one hand, confidence in the veracity of one’s be-
liefs may become better-calibrated with feedback (Miller & Geraci, 2011). Therefore,
we could expect to find confidence in CC knowledge to be well-calibrated since cit-
izens receive sufficient feedback via media to adjust their confidence. On the other
hand, polarized media coverage of CC may encourage selective processing of novel
information to confirm prior beliefs. Polarized or complex media coverage may facili-
tate natural tendencies to selectively reject (unpleasant) information (Sanbonmatsu,
Posavac, Kardes, & Mantel, 1998), or to underweigh conflicting information (Ortoleva
& Snowberg, 2015; Park, Konana, Gu, Kumar, & Raghunathan, 2010), both of which
have been shown to foster miscalibration. Here citizens’ accuracy of confidence in their
CC knowledge is contrasted with two benchmarks: (i) The accuracy of confidence in
science knowledge compared to CC knowledge in a second citizens sample, and (ii)
the accuracy of confidence in CC knowledge in a sample of climate scientists. Science
knowledge, first, represents a revealing comparison because it demonstrates the level
of accuracy of confidence that can be achieved by citizens in a similar domain (factual
scientific knowledge) that is unrelated to CC. In areas of expertise that produce valid and
timely feedback, experts tend to be comparatively well-calibrated (e.g., meteorologists;
Murphy & Winkler, 1984). CC scientists, second, therefore represent an informative
comparison group because they demonstrate the level of accuracy of confidence in
CC knowledge that can be reached through regular exposure to scientifically valid CC
information, and who should therefore show comparatively low signs of metacognitive
confusion about true and false statements. Third, to what extent can citizens determine
what they don’t know about CC, to what degree are citizens aware of the limits of their
knowledge? Typical CC knowledge tests cannot answer this questions, even though they
do offer an “I don’t know” option (Shi et al., 2016; Tobler, Visschers, & Siegrist, 2012).
Since the “I don’t know”-option excludes any further knowledge assessment, we cannot
determine what citizens would have known. Also, the binary classification of an “I don’t
know”-option does not allow for a rich metacognitive assessment. Here we employ a
graded assessment of confidence which is logically independent from the knowledge
assessment and enables us to estimate the extent to which citizens are aware of the
demarcation line between knowledge and guessing. Previous research has shown that
knowledge and confidence tend to be positively correlated (Sundblad, Biel, & Gärling,
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2009). One might thus be inclined to infer that citizens are able to estimate what and
how much they know about CC. However, correlation is only an insufficient measure of
confidence accuracy for three reasons: (a) Correlation is independent of the mean and
therefore a given correlation is compatible with both over- and underconfidence; (b)
perfect calibration is compatible with both high and low correlation (Juslin, Olsson, &
Winman, 1996); and, most importantly, (c) a single correlation coefficient cannot deliver
a comprehensive picture of the three facets of confidence accuracy: calibration, bias,
and sensitivity.

To measure calibration, we use the C-Index which captures how well confidence
aligns with accuracy, at the item-level, by determining the squared difference between
confidence and proportion correct for each confidence level (e.g., 60% confidence),
weighted by the number of judgments at each level: 1

N

∑
n(r − c)2 , where n is the

number of judgments for each level, r is the numerical value of confidence, and c is
the proportion of correct answers on that level (Bornstein & Zickafoose, 1999). Optimal
calibration is 0.

To measure bias, we use the O-/UIndex which assesses, for each confidence level,
the difference between accuracy and confidence identical to the C-Index, except that
differences are not squared so that positive values denote overconfidence, and negative
values denote underconfidence: 1

N

∑
n(r − c).

To measure sensitivity, we use Mratio which defines sensitivity in a Signal Detection
Theory (SDT) approach, and which is considered the gold standard of all measures
of metacognition (Overgaard & Sandberg, 2012) because it allows to factor out the
influence of the primary task performance (CC knowledge). In yes/no tasks such as
typical CC knowledge tests, knowledge sensitivity is confounded with participants’ yes-
saying bias, their propensity to say “yes” irrespective of content. SDT can be applied
to remove bias by measuring knowledge sensitivity as d ′, the difference between the
hit rate (“yes” responses to statements that were in fact true) and the false alarm rate
(“yes” responses to statements that were false). A straightforward approach to transfer
this to confidence sensitivity would be to compute the difference between the high
confidence-correct rate and the high confidence-incorrect rate. However, it was shown
that such confidence sensitivity is confounded with both confidence and knowledge
response bias, and is furthermore confounded with primary task performance, that is,
the CC knowledge test (Galvin, Podd, Drga, & Whitmore, 2003; Maniscalco & Lau, 2012).
Maniscalco and Lau (2012) therefore propose to compute confidence sensitivity at the
level of knowledge distributions by defining d ′ as that level of confidence sensitivity
that one would expect to occur given a persons’ knowledge sensitivity. The observed
confidence sensitivity is then computed finding the d ′ that maximizes the likelihood of
the observed confidence data. Because d’ and confidence sensitivity have the unique
advantage of being expressed in the same signal-to-noise ratio units, the two can be
directly compared, and relative confidence sensitivity (Mratio) can be determined as the
level of confidence sensitivity given a certain level of knowledge sensitivity. Mratio can
thus be used to assess people’s ability to discriminate between correct and incorrect
verifications in their confidence, while controlling for their ability to discriminate true
and false statements in their knowledge (Appendix B).

To estimateMratio we applied the hierarchical Bayesian estimation approach of
Fleming (Fleming, 2017). In comparison to other estimation routines (e.g. maximum
likelihood estimation) the hierarchical Bayesian estimation approach has the advan-
tage of (i) providing probability density functions instead of inevitably noisy point
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estimates of Mratio; (ii) allowing to accurately estimate Mratioo when confidence rating
data/participant is limited; and (iii) providing group-level fits that are less influenced
by highly uncertain individual-level fits. The accuracy of citizens’ confidence in CC
knowledge was estimated in a national sample of N = 509 German citizens. The sample
was nationally representative in terms of gender, age, and geographical distribution.
Participants verified of a total of nine statements about CC (five true, four false), and
indicated their confidence in each verification. Statements were taken from previous
research (Sundblad et al., 2009), and consisted of three questions from each of the knowl-
edge domains causes, state, and consequences of CC (Table B.1). Each statement was
introduced with “Science says that...”. Participants answered, “Yes, science says that”, or
“No, science does not say that”, and indicated their confidence in their answer: “How
certain are you that your answer is correct?”. Confidence was indicated on a 6-point
scale ranging from 50%: “not at all certain, I was guessing” to 100%: “certain, I know the
answer”. To test for potential difficulties with this probabilistic answer format, we also
included a frequentist confidence judgment by asking, upon completion of all knowl-
edge questions: “Out of the 9 questions: How many did you answer correctly?” (B). In
the science knowledge benchmark study, a national sample of N = 588 German citizens,
again nationally representative in terms of gender, age, and geographical distribution,
verified nine statements (five true, four false) about physical and biological science.
The statements were taken from the National Science Board’s Science and Engineering
Indicators (National Science Board, 2016). In the CC scientists benchmark study, a total
of N = 207 CC scientists working in research organizations under the German Climate
Consortium answered the same CC knowledge questions as citizens (B).

Results

Knowledge accuracy. Out of nine questions each, citizens verified an average of 4.3
CC statements correctly, compared to 5.4 science statements, and compared to 7.2
CC statements verified correctly by CC scientists 1 We assessed the extent to which
CC knowledge scores were affected by guessing by comparing two different kinds of
scoring: (i) The typically used 1-0-0 scoring that treats guessed responses as incorrect
(irrespective of their actual accuracy; Shi et al. (2016); Tobler et al. (2012)), and (ii)
number-right scoring that adds up all correct responses (irrespective of whether they
were guessed). Guessed responses were those where participants chose the lowest
confidence category: 50%, I was guessing“. Knowledge accuracy was more strongly
affected by guessing for citizens (1-0-0 scoring to number-right scoring: M = .61, 95% CI
[.60, .63] to M = .47, 95% CI [.45, .48]) compared to scientists (M = .84, 95% CI [.82, .86] to
M = .80, 95% CI [.78, .83]), F (1,714) = 77.2, p < .001. (See also Supplementary Material
Figure B for reliability of the true and false statements as indicators of CC knowledge).

Concerning the accuracy of verifications of true compared to false CC statements,
the following pattern of results emerged: The accuracy of CC knowledge was lower for
citizens (M = .47, 95% CI [.45, .48]) compared to scientists (M = .80, 95% CI [.78, .83]),
F (1,714) = 410.2, p < .001, and generally lower for FALSE statements (M = .56, 95% CI
[.53, .57]) compared to TRUE statements (M = .72, 95% CI [.70, .74]), F (1,714) = 95.4,

1Descriptive results on the accuracy of CC knowledge refer to typical 1-0-0 scoring that treats guessed
responses as incorrect, as this provides the most reliable assessment of CC knowledge (Appendix B), but
the results hold for number-right scoring as well (Appendix B).
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p < .001. However, for citizens the difference in accuracy between TRUE (M = .62, 95%
CI [.60, .64]) and FALSE statements (M = .31, 95% CI [.30, .34]) was considerably larger
than for scientists (M = .82, 95% CI [.78, .86] and M = .79, 95% CI [.75, .82], for true and
false statements, respectively), F (1,714) = 86.7, p < .001. For scientists, accuracy did
not even differ between true and false statements, t(1,206) = 1.4, p = .16. That is, not
only were citizens less accurate in general, but citizens had substantial difficulty in
identifying false statements as false, a phenomenon that was practically non-existent in
scientists.

Accuracy of confidence: Calibration. In line with previous results, citizens ap-
peared well- calibrated overall in that average confidence correlated positively with
total accuracy of CC knowledge, both for the probabilistic confidence assessment,
r (508) = .21, p < .001 (scientists: r (206) = .19, p = .005), and the frequentist confidence
assessment, r (508) = .18, p < .001 (scientists: r (206) = .29, p < .001). However, the asso-
ciation between total confidence and total accuracy was lower for citizens’ CC compared
to science knowledge, both for the probabilistic, r (588) = .46, p < .001, z = 4.7, p < .001,
and the frequentist confidence assessment r (588) = .48, p < .001, z = 5.6, p < .001.

Citizens were less confident (M = .73, 95% CI [.71,74]) of their verifications of CC
statements compared to their verifications of science statements (M = .82, 95% CI
[.81,83]), F (1,1095) = 170, p < .001, and also compared to scientists (M = .87, 95% CI
[86,88]), F (1,714) = 267, p < .001. Concerning the calibration of confidence, Figure B.1
shows that for TRUE CC statements, citizens’ confidence was rather well-calibrated in
that mean confidence judgments were roughly in line with accuracy, and the calibration
curve followed a linearly increasing trend. For FALSE CC statements, however, a different
pattern emerged in that confidence and accuracy were detached. This contrasts citizens’
calibration curves of science knowledge, as well as scientists’ calibration curves of CC
knowledge in that in both cases, the FALSE statements followed optimal calibration
more closely.

When comparing C-Indices for CC statements in citizens and scientists in an ANOVA,
results showed that while calibrations were generally better for TRUE (M = .06, 95%
CI [.052, .061]) compared to FALSE statements (M = .08, 95% CI [.078, .09]), F (1,714) =
48.9, p < .001, and scientists (M = .05, 95% CI [.041,0.53]) were better-calibrated com-
pared to citizens (M = .09, 95% CI [.90, .98]) across true and false statements, F (1,714) =
167.06, p < .001, the calibration disadvantage for FALSE statements was particularly
large for citizens, F (1,714) = 41.04, p < .001.

Accuracy of confidence: Bias. For the true CC statements, citizens’ bias was rather
low in absolute terms (M = .02,SD = .15), and in fact not statistically different from
scientists’ (M = .01,SD = .10), 95% CI of the difference [−.02, .02], t(714) = .55, p = .58.
For the false CC statements, in contrast, citizens were mostly overconfident in absolute
terms (M = .11,SD = .14), and also more biased than scientists (M = .03,SD = .09),
95% CI of the difference [.06, .09], t(714) = 7.4, p < .001. Interestingly, as Figure B.1
shows, citizens were under-confident for three CC judgments, namely true statements
evaluated with 60% and 70% confidence (95% CI of accuracy [61,74] and [73,82]), and
false statements verified with 50% confidence, which were in fact verified with above-
chance accuracy (95% CI of accuracy [57,67]). For the science knowledge statements, a
rather typical calibration pattern appeared in that citizens were overconfident across
nearly the entire confidence spectrum, except for statements verified with very low
confidence.
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Table B.1. Proportion correct and confidence judgments for the true/false statements.

Knowledge
domain

Statement
(True/False)

Percentage correct
verifications,

citizens (scientists)

Confidence
judgment, citizens

(scientists)

State

The global average temperature
in the air has increased approx.

3.1 ◦C in the past
100 years. (False)

32.6% (82%)
M=.71, SD=.16

(M=.88, SD=.15)

The 1990s was the warmest
decade during the past

100 years. (False)
54.4% (65%)

M=.67, SD=.17
(M=.85 SD=.14)

The global change in temperature
in the past 100 years
is the largest during

the past 1000 years. (True)

62.1% (88%)
M=.71, SD=.17
(M=.89 SD=.12)

Causes

Climate change is mainly
caused by a natural variation

in sunbeam and
volcanic eruption. (False)

80% (97%)
M=.74, SD=.18
(M=.96 SD=.14)

Carbon dioxide concentration
in the atmosphere has

increased more than 30%
during the past 250 years. (True)

70.5% (94%)
M=.69, SD=.17
(M=.92 SD=.12)

The increase of greenhouse
gases is mainly caused by
human activities. (True)

84.1 %(99%)
M=.78, SD=.16
(M=.98 SD=.05)

Consequences

The blanket of snow
in the Northern hemisphere has

decreased approximately 10%
since the 1960. (True)

77% (83%)
M=.72, SD=.17
(M=.72 SD=.16)

An increasing amount of greenhouse
gases increases the risk of

more UV-radiation and therefore
a larger risk of skin cancer. (False)

24.2% (81%)
M=.75, SD=.18
(M=.83 SD=.16)

In 100 years from now,
sea level will rise

approximately one meter. (True)
80.5% (69%)

M=.75, SD=.17
(M=.82 SD=.14)
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Figure B.1. Calibration curves for confidence judgments, separately for separately for climate
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figure displays mean proportion of correct verifications on the y-axis against mean confidence
for each confidence level on the x-axis, separately for TRUE and FALSE statements. Solid blue
line denotes optimal calibration. Shaded grey area: 95% confidence band.
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Accuracy of confidence: Sensitivity. Figure B.2 Panel A displays the distributions
for citizens’ CC knowledge are relatively flat compared to citizens’ science knowledge,
and scientists’ CC knowledge. The SDT approach produced converging results: Citizens’
relative confidence sensitivity of CC knowledge was Mratio = .49, 95% CI [0.33,0.63].
Thus, citizens’ relative confidence sensitivity was only around 50% of what it could
be based on their knowledge sensitivity. For science knowledge, citizens achieved
a close-to-optimal Mratio of M = .99, 95% CI [0.88,1.16], and scientists achieved an
Mratio of M = .95, 95% CI [0.85,1.07] for CC knowledge. Taken together, (i) citizens’
confidence judgments discriminated considerably less between correct and incorrect
verifications than what could be expected based on their CC knowledge. Specifically,
their confidence sensitivity was only around half of their knowledge sensitivity; and
(ii) estimates of relative confidence sensitivity for citizens’ science knowledge, and
scientists’ CC knowledge were overlapping with optimal sensitivity of 1 (Fig. B.2, Panel
B).

Discussion

The present study provides a comprehensive assessment of the accuracy of citizens’
confidence in their CC knowledge. Accuracy of confidence is of particular importance
in the area of CC where scientifically correct information exists alongside substantial
misinformation in the public discourse and media (Boussalis & Coan, 2016; Hiles & Hin-
nant, 2014; Lewandowsky, Oberauer, & Gignac, 2013). We employed two different types
of indicators of accuracy of confidence: absolute (C-/OU-Index) and relative (Mratio).
Absolute indicators determine how much we can trust citizens’ confidence judgments
as indicators of CC knowledge, which also depends on the accuracy of their CC knowl-
edge itself; relative indicators factor out the influence of knowledge by determining
the accuracy of confidence relative to a given level of knowledge. Relative confidence
sensitivity can hence be optimal even if knowledge sensitivity is non-optimal, namely
when individuals know the limits of their knowledge. As two benchmark comparisons,
accuracy of confidence in CC knowledge was estimated for citizens’ science knowledge,
and for CC scientists.

Concerning absolute confidence accuracy, citizens were remarkably well-calibrated
when verifying true statements as indicated by a calibration curve that roughly followed
a linearly increasing trend close to optimal calibration. This result suggests that for true
statements, citizens could reliably indicate their varying degree of knowledge, and that
citizens ’ confidence tended to be justified by their accuracy. Such high absolute confi-
dence accuracy shows that German citizens’ confidence judgments are informative for
accuracy, and can in general be trusted. But for the false statements, citizens appeared
to have no insight into their not knowing as indicated by a calibration curve that was
practically detached from their accuracy. Even for statements that citizens evaluated
with 100% confidence, accuracy was only at guessing rate, compared to approx. 70% for
science knowledge, and over 90% for scientists.

Relative confidence accuracy factors out the influence of knowledge accuracy, and
thus allows us to quantify the lack of accuracy in confidence in citizens that cannot be
explained by a lack of climate change knowledge. With a relative confidence sensitivity
of Mratio = .49, citizens’ confidence sensitivity was only around 50% of their knowledge
sensitivity. Put differently, citizens’ confidence sensitivity was around half of what it
could be based on the accuracy of their CC knowledge. Citizens’ confidence judgments
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thus not only reflected a blurry line, but an unnecessarily blurry line between correct
and incorrect verifications.

Moreover, citizens’ relative confidence of their CC knowledge was lower compared to
scientists’ (Mratio = .95), and lower compared to their science knowledge (Mratio = .99),
both of which were close to being cognitively ideal. Cognitively ideal values of Mratio

suggest that participants could use all the information available for the knowledge task
when estimating their confidence (Fleming, 2017).

Concerning the question of whether citizens could reliably indicate when they are
guessing about the veracity of CC statements, citizens responded with an average accu-
racy clearly above guessing rate (95% CI [57,67]) for what they perceived as ”guessed“
responses to false statements. It is considered a strong indication of unconscious knowl-
edge when people perform above chance levels, but claim to be guessing (Dienes &
Fahey, 1995). This result indicates that citizens possess partial knowledge allowing them
to recognize false claims as false that they are either not consciously aware of, or of
which they consciously underestimate the accuracy. For the true statements, in contrast,
citizens were well-calibrated in the lowest confidence category. That is, when citizens
answered they were ”just guessing“, in these cases, typically they really were.

Even though at least for true statements, guessed responses in fact did score at
chance levels, the reverse is not true: Just because solution rates were at chance level for
some statements does not mean that responses were blindly guessed. Rather, our results
show that false statements can be accepted as true with high confidence by citizens.
This may reflect what has been termed the ”truthiness“ of a statement, the feeling or
intuition that a statement is true, irrespective of evidence. False ”nonsense“ statements
accepted with high confidence included the ones that confuse CC and UV radiation,
or assume an average warming of 3.1◦C over the past 100 years, even though there is
wide-spread discussion on limiting global warming to 2.0, or even 1.5 degrees.

It is furthermore interesting to see for which statements citizens tended to un-
derestimate their accuracy. Statements with a positive item-based bias (accuracy-
confidence) that was significantly different from zero were ”The blanket of snow in the
Northern hemisphere has decreased approximately 10% since the 1960s (true)”; “In 100
years from now sea level will rise approximately one meter (true)”; “The increase of
greenhouse gases is mainly caused by human activities (true)”; and “Climate change
is mainly caused by a natural variation in sunbeam and volcanic eruption (false)”. For
these statements, citizens on average had a higher level of accurate knowledge than
reflected in their confidence. Thus, citizens appeared more doubtful of their CC knowl-
edge than warranted, indicating distrusted knowledge. Distrusted knowledge can have
detrimental consequences, since only if one has sufficient confidence in knowledge to
actually use it, one truly possesses that knowledge (Burton & Miller, 1999).

Important implications follow from the present results in the light of research demon-
strating that accuracy of confidence affects decision-making, above and beyond the
accuracy of knowledge (Jackson & Kleitman, 2014). This implies that citizens’ blurry
confidence judgments do not allow them to fully leverage their accurate knowledge, nor
that they can protect them from relying on false knowledge.

To conclude, citizens’ confidence accuracy for CC knowledge was lower in relation to
scientists’ and lower than for science knowledge; but most importantly, it was lower than
necessary in relation to the accuracy of their own CC knowledge. Any CC information
campaign which only aims at increasing knowledge but does not address confidence in
knowledge will fail to acknowledge that citizens not only need accuracy of knowledge,
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but also accuracy of confidence. Only if citizens possess high confidence in true state-
ments, and low confidence in false statements, the line between accurate knowledge
and false knowledge can, in the future, be less fuzzy.
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Supplementary Material

Supplementary Information (SI) 1: Participants

Climate Change knowledge: National German sample. Citizens were recruited via the
online polling company YouGov. Data were collected January 2017. The sample (N= 509)
was representative for the German population in terms of gender, age, and geographical
distribution. Specifically, 262 citizens (53%) were female, mean age was M= 48.5 years
(median = 51, range = 18−88 years), and the distribution of number of participants from
German federal states was proportional to state size. 72 (14%) held the lowest German
school leaving exam (Hauptschule), 198 (39%) held middle German school leaving exam
(Realschule), 103 (20%) the highest German school leaving exam (Abitur), 35 (7%) held a
Bachelor degree, 67 (13%) a Master’s degree, and 5 (1%) a PhD, 20 (4%) other, 9 (1.8%)
did not indicate their education. Participants had a range of professions, the largest
groups being 48 (9%) commercial clerks, 16 (3%) craftsmen, 12 (2%) engineers, 13 (3%)
IT specialists (other than system administrators). The sample‘s distributions of age,
political views, and prior CC beliefs are displayed in Figure B.3.

Climate Change knowledge: Scientists sample. Scientists were recruited through
the German Climate Consortium which distributed the survey invitation among their
member organizations. Between June and July 2018, a total of N=449 scientists entered
the survey, of which N=207 completed the survey, yielding a completion rate of 46%.
Only complete surveys were included in the study. Of the scientists, 138 were male (67%),
69 female (33%), mean age was M= 38.7 years (median = 35, range = 21−78 years), and
181 (87%) were German. Scientists came from a range of different backgrounds such as
aerosol physics, atmospheric physics, biology, chemistry, climate research, geoscience,
linguistics, mathematics, meteorology, oceanography, paleoceanography, physics, polar
science, and sociology; and worked for several organizations, the largest groups being:
one of three Max Planck Institutes of Biogeochemistry, Chemistry or Meteorology (79);
the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (27),
and the Institute of Meteorology and Climate Research at the Karlsruhe Institute of
Technology (23). Science knowledge: National German sample. German citizens were
recruited through the online polling company YouGov. Data were collected December
2018. For comparability with the CC study, the sample (N = 588) was again nationally
representative for the German population in terms of gender, age, and geographical
distribution. Specifically, 303 citizens (51%) were female, mean age was M = 48.3 years
(median = 50, range = 18−88 years), and the distribution of number of participants from
German federal states was proportional to state size. 88 (15%) held the lowest German
school leaving exam (Hauptschule), 213 (36%) held middle German school leaving exam
(Realschule), 138 (23%) the highest German school leaving exam (Abitur), 45 (8%) held a
Bachelor degree, 62 (11%) a Master’s degree, and 8 (1%) a PhD, 21 (4%) other, 14 (2%)
did not indicate their education.

SI 2: Method

Material

Climate Change knowledge. Participants judged the veracity of a total of nine true/false
statements about CC. Statements were taken from previous research (Sundblad et
al., 2009) , with three questions from each of the knowledge domains causes, state,
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Figure B.3. National German sample distributions for age, political view, belief that CC is
anthropogenic, and belief that CC is risky.

and consequences of CC. Statements were chosen to reflect a balance of true/false
statements across the three knowledge domains. Each statement was introduced with
“Science says that...” (“yes, science says that”, or “no, science does not say that” [Scientists
sample: “yes” or “no”]). Items were carefully selected to ensure item wording does not
indicate the veracity of the statement, and such that there was no pattern in the order of
true and false statements. A screenshot sample item is given in Figure B.4.

In contrast to some previous CC knowledge scales (Shi et al., 2016; Tobler et al., 2012),
an I don’t know-option was not included. This was done in order to assess metacognitive
confidence in knowledge using a full-range scale (as opposed to a binary classification)
that is furthermore logically independent from assessment of knowledge, and therefore
does not exclude assessment of (partial) knowledge. Also people have been shown to
be differentially adverse to answering “I don’t know” versus guessing an answer due to
differences in risk aversion, which has been shown to introduce systematic bias in that
individuals or groups who tend to skip more questions achieve lower scores, controlling
for knowledge (Baldiga, 2013).

Science Knowledge. Participants judged the veracity of a total of nine true/false
statements about biological and physical science. Statements were taken from the NSF
factual knowledge questions published in the National Science Board’s Science and
Engineering Indicators (National Science Board, 2016). In order to present participants
with the same number of true (five) and false (four) statements, and to achieve full
structural comparability (statements that can be answered with yes/no) with the CC
knowledge items, the question “Does the Earth go around the Sun, or does the Sun go
around the Earth” was changed to “The Sun goes around the Earth” (false).

Items were: The center of the earth is very hot (TRUE); the continents on which
we live have been moving for millions of years and will continue to move in the future
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(TRUE); The Sun goes around the Earth (FALSE); all radioactivity is man-made (FALSE);
electrons are smaller than atoms (TRUE); lasers work by focusing sound waves (FALSE);
it is the father’s gene that decides whether the baby is a boy or a girl (TRUE); antibiotics
kill viruses as well as bacteria (FALSE); the universe began with a huge explosion (TRUE).

Confidence. After answering each knowledge question, participants were asked:
“How certain are you that your answer is correct?” (50%=not at all certain, I was guessing;
100%= certain, I know the answer). Half-range confidence scale (50%−100%) as opposed
to full-range (0%−100%) was used because this was shown to yield better-calibrated
confidence judgments (Weber & Brewer, 2003).

Frequentist assessment of confidence. We additionally used a frequentist confi-
dence format since this may be easier for participants than the probabilistic scale: “Out
of the nine questions please guess: How many did you answer correctly?”.

Prior beliefs. We assessed prior beliefs about CC by asking “How much do you agree
with the following statements?” 1. “CC is mostly caused by humans.” 2. “Climate change
is risky.” (1: not agree at all, 5: totally agree).

Political view. Participants were asked to indicate their general political orientation
on a nine-point scale (1:left, 9: right).

Procedure

The studies were conducted online. The procedure was identical for all three studies,
except that for the German samples, the survey was conducted in German, whereas
for the scientists sample, the survey was conducted in English, and for small other
changes given in []. Questions were asked in the following order: Political view, prior
beliefs, knowledge and confidence, frequentist assessment of confidence, numerical
estimates and demographics (education, profession, [for scientists sample also: Orga-
nization], federal state [only citizens sample], gender, age [citizens sample: additional
demographics are routinely assessed]).

Figure B.4. Screenshot of a sample statement together with confidence assessment.
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SI 3: Analyses

Mokken scale analysis of the CC knowledge scale.

To test the reliability of the true and false statements as indicators of CC knowledge,
we conducted a Mokken scale analysis. Responses were reverse coded for the false
statements. Typical 1-0-0 scoring was used such that correct responses were scored
with 1, and both incorrect and guessed responses (“50% confidence, I was guessing”)
were scored with 0 (Shi et al., 2016; Tobler et al., 2012). Counting guessed responses as
incorrect was done on line with previous research, and for the theoretical reason that
guessed responses should not count as indicators of knowledge 2.

Mokken analysis can be used to construct unidemensional scales that rank par-
ticipants with respect to the latent trait (in this case, CC knowledge), as well as items
with respect to their difficulty. Since Mokken scales thus order not only items, but also
respondents, it is subject to stricter assumptions than Cronbach’s alpha. Specifically,
when relationships between items and a latent trait is given in item characteristic curves
(ICCs), the Mokken model puts ICCs to the strict assumptions of double monotonicity,
which entails that (1) the ICCs should be monotonically non-decreasing, that is, for
any item, the probability of a positive response should never decrease as the latent
trait increases; and (2) invariant item ordering, that is, the ordering of the items with
respect to their difficulty should be identical for each participant, or: the ICCs should
not intersect. The scalability of each item and each scale is measured using Loevinger’s
coefficient Hi and H, respectively. Cutoff values of H > 0.3 are usually assumed for an
acceptable scale, and also all items within a scale should be Hi > 0.3.

The Mokken scale analysis was conducted using the package mokken in R (e.g.,
Stochl, Jones, & Croudace, 2012). The dimensionality of the scale was assessed. Results
showed that the true and false statements constitute two separate subscales, with
Loevinger scalability coefficients of H = .35 for the scale comprising the four false
statements, and H = .33 for the scale comprising the five true statements, suggesting
that both subscales form unidimensional measures. As Table B.2 shows, the scalability
coefficients Hi of all items lie above the threshold of 0.3, suggesting that all respective
items form unidimensional subscales. We additionally checked for the assumptions
of monotonicity of each item, as well as the assumption of invariant item ordering.
There were no significant violations for any item. In sum, the Mokken scale analysis
demonstrates that both subscales possess sufficient scalability.

Since 1-0-0 scoring where guessed responses are coded as incorrect proved most
appropriate to measure CC knowledge, we use it in all analyses where the accuracy of
knowledge is the dependent variable. Results where the accuracy of confidence is the
dependent variable are given using number-right scoring where responses are coded
solely based on their accuracy. This approach allows us to give both the most reliable
estimate of CC knowledge, as well as a full estimate of how well confidence aligns with
the actual accuracy of responses.

Relative confidence sensitivity: Computation of Mratio. We computed the relative
confidence sensitivity Mratio to measure people’s ability to discriminate between correct
and incorrect verifications in their confidence, while controlling for their ability to dis-

2We also conducted two alternative Mokken analyses: One based on number-right scoring, and one
based on three coding categories (2=correct, 1=guessed, 0=incorrect). Both alternative coding schemes
resulted in insufficient scales, suggesting that the traditionally used dichotomous coding that treats
guessed responses as incorrect is most appropriate to measure CC knowledge.
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criminate true and false statements in their knowledge, using the hierarchical Bayes pro-
cedure and R code provided under https://github.com/smfleming/HMeta-d (Flem-
ing, 2017). The hierarchical Bayes approach was taken because simulations have shown
that hierarchical Bayesian estimation outperforms classical parameter estimation proce-
dures (MLE or SSE point-estimate procedures) when the number of trails/participants
is low. One exception is that hierarchical Bayesian Mratio tends to overestimate Mratios

when d’ is high. Thus, true values of Mratios for scientists and for science knowledge
are probably lower by tendency. However, this approach still gives us the most suitable
estimate for the most important variable of interest, Mratio for citizens in CC knowledge.

Equal variance assumption of SDT model. A prerequisite to estimate Mratio is
equal-variance Gaussian “target” and “lure” distributions. Testing this assumption
can be done with help of a z-standardized receiver operating characteristics (zROC)
curve, a two- dimensional graph in which the True Positive rate is plotted against the
False Positive rate for varying confidence criteria. Equal-variance Gaussian distributions
imply a zROC that is linear with a slope of 1. Figure B.5 displays ROC and zROC curves
for the three studies, CC knowledge in citizens, science knowledge in citizens, and CC
knowledge in scientists. ZROCs are consistent with linearity and approximately unite
slope, only scientists’ CC knowledge also shows a mild divergence from linearity.

SI 4: Additional Results

Accuracy of knowledge for true compared to false statements: number-right scoring
of responses.

Concerning the accuracy of verifying true compared to false statements, the follow-
ing pattern of results emerged: The accuracy of CC knowledge was lower for citizens
(M=.61, 95% CI [.60, .63]) compared to scientists (M = .84, 95% CI [.82, .86]), F (1,714) =
387.3, p < .001, and generally lower for FALSE statements (M = .65, 95% CI [.62, .67])
compared to TRUE statements (M = .81, 95% CI [.79, .82]), F (1,714) = 95.4, p < .001.
However, for citizens the difference in accuracy between TRUE (M = .75, 95% CI
[.73, .79]) and FALSE statements (M=.48, 95% CI [.45, .50]) was considerably larger than
for scientists (M = .86, 95% CI [.84, .88] and M = .81, 95% CI [.78, .85], for true and false
statements, respectively), F (1,714) = 45.0, p < .001.
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Figure B.5. ROC (panel A) and zROC (panel B) curves for the three studies, CC knowledge in
citizens, science knowledge in citizens, and CC knowledge in scientists. ROC curves plot the
True Positive rate against the False Positive rate for varying confidence criteria; zROCs plot True
Positive and False Positive rates in z-space. Equal-variance Gaussian distributions imply zROCS
that are linear with slopes of 1.
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Table B.2. Mokken scale scalability coefficients Hi, within each of the two subscales (true
statements, false statements).

Veracity of
statement Statement

Loevinger
scalability coefficients

Hi (Standard error)

FALSE
1 The global average temperature in the air

has increased approx. 3.1 ◦C the past 100 years.
0.301 (0.043)

FALSE

6 An increasing amount of greenhouse gases
increases the risk

of more UV-radiation and therefore a larger
risk of skin cancer.

0.406 (0.046)

FALSE
7 The 1990s was the warmest

during the past 100 years
0.334 (0.044)

FALSE
8 Climate change is mainly

caused by a natural variation
in sunbeam and volcanic eruption.

0.400 (0.070)

TRUE
2 The global change in temperature

the past 100 years is the largest
during the past 1000 years.

0.314 (0.036)

TRUE
3 Carbon dioxide concentration has

increased more than
30% in the atmosphere during the past 250 years.

0.342 (0.034)

TRUE
4 The increase of greenhouse gases is
mainly caused by human activities.

0.338 (0.045)

TRUE
5 In 100 years from now, sea level

rise will be approximately one meter.
0.319 (0.037)

TRUE
9 The blanket of snow in the Northern

hemisphere has decreased
approximately 10% since the 1960.

0.327 (0.034)
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Abstract

Understanding the development of non-linear processes such as economic or popu-
lation growth is an important prerequisite for informed decisions in those areas. In
the function-learning paradigm, people’s understanding of the function rule that un-
derlies the to-be predicted process is typically measured by means of extrapolation
accuracy. Here we argue, however, that even though accurate extrapolation necessitates
rule-learning, the reverse does not necessarily hold: Inaccurate extrapolation does not
exclude rule-learning. Experiment 1 shows that more than one third of participants
who would be classified as “exemplar-based learners” based on their extrapolation
accuracy were able to identify the correct function shape and slope in a rule-selection
paradigm, demonstrating accurate understanding of the function rule. Experiment 2
shows that higher proportions of rule learning than rule-application in the function
learning paradigm is not due to (i) higher a priori probabilities to guess the correct rule
in the rule-selection paradigm; nor is it due to (ii) a lack of simultaneous access to all
function values in the function-learning paradigm. We conclude that rule application
is not tantamount to rule-learning, and that assessing rule-learning via extrapolation
accuracy underestimates the proportion of rule learners in function-learning experi-
ments.

Keywords function-learning, rule-based vs exemplar-based learners, non-linear pro-
cesses, understanding
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Introduction

Non-linear processes abound in human life, ranging from small-scale examples such
as fuel consumption to large-scale, global processes such as the developments of
economies, populations, or greenhouse gas emissions. A long-standing question in
the cognitive literature is whether humans acquire an understanding of the underly-
ing function rule when making predictions about the development of such processes.
This question is often investigated in the function-learning paradigm, where partici-
pants learn about the beginning of a process with input-output pairs sampled from
the underlying function, and predict the future development of that process. Typically,
extrapolation accuracy, the distance between participants’ predictions and the actual
function values, is used to infer whether participants acquired an understanding of the
function rule: It is argued that when predictions are sufficiently close to the correct
function, participants must have learned the correct function rule; when predictions
deviate sufficiently from the correct function, for example by showing flat extrapolations
of highly non-linear processes, participants did not learn the correct function rule.

Here we argue, however, that even though sufficiently correct extrapolations ne-
cessitate previous rule learning, the reverse does not necessarily hold: Incorrect ex-
trapolations do not exclude rule-learning. Rather, incorrect extrapolations can mirror
alternative processes, such as implementation failure. Based on this theoretical argu-
ment, we investigate in how far accuracy of extrapolations coincides with rule-learning
of three different exponential declining 1 processes in two function-learning experi-
ments.

In function-learning experiments, participants learn to predict continuous output (y-
values) from continuous input (x-values) variables. To do so, participants are presented
with an input value (for example, a time point; Fischer & Holt, 2016), and then predict
the corresponding outcome value. During training, participants receive feedback on
their predictions; during test (interpolation or extrapolation), no feedback is given.

Research has shown that there are two fundamentally different types of learning
style that participants may employ in function-learning experiments: Rule-based and
exemplar-based learning (McDaniel, Cahill, Robbins, & Wiener, 2014). In exemplar-
based models, participants try to memorize the given exemplars, whereas in rule-based
models, participants learn the function rule underlying the to-be predicted process.
Among the class of exemplar-based models, at least three different accounts exist on
what participants do with the stored exemplars during extrapolation. Simple exemplar-
based models, first, hold hat participants extrapolate using exemplars that are identical
(or at least highly similar) to learned exemplars, thereby for example producing flat ex-
trapolations that correspond to the stored exemplars (DeLosh, Busemeyer, & McDaniel,
1997). The Extrapolation-Association Model (EXAM; DeLosh et al., 1997), second, holds
that participants retrieve the two best-matching exemplars, and extrapolate linearly
through these exemplars. And the Population of Linear Experts model (POLE; Kalish,
Lewandowsky, & Kruschke, 2004), third, holds that participants store mappings between
x-values and matching linear functions that they retrieve for extrapolation. Rule-based
models, in contrast, hold that participants use the training information provided to
abstract a rule describing the ensemble of x-y pairings (Mcdaniel & Busemeyer, 2005).

While function-learning studies differ in many aspects, such as the functions used

1Please note that the term “exponential declining” conventionally refers to e−x . However, we will use
this term throughout the paper to refer to −ex which is the negative of the exponential function.
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(for example V-shaped, McDaniel et al., 2014 , or periodic, Bott & Heit, 2004), the
input format (entering a number, MacKinnon & Wearing, 1991, or clicking on a bar,
McDaniel et al., 2014), the number of learning trials (for example 200, McDaniel et al.,
2014, or 10 Fischer & Holt, 2016 ), and the experimental design (such as one learning,
followed by one extrapolation phase, Lewandowsky, Kalish, & Ngang, 2002, as opposed
to several interspersed extrapolation phases, Bott & Heit, 2004), most function-learning
studies have in common that extrapolation accuracy is used as a proxy for learning
style. Specifically, not only is high extrapolation accuracy interpreted as signaling rule-
learning, but also low extrapolation accuracy is interpreted as signaling exemplar-based
or simple exemplar-based learning.

In one of the classic function-learning studies (DeLosh et al., 1997), absolute devia-
tions of participants’ extrapolations from the correct quadratic function were used to
infer learning-type, and the authors concluded that flat extrapolations to a quadratic
function were reflective of simple exemplar-based learning. In another experiment
using quadratic functions (Lewandowsky et al., 2002), about 20% of participants were
classified as being unable to learn the underlying rule based on the low fit of their
extrapolations with the correct function. In a study with periodic functions participants
were able to extrapolate (surprisingly) accurately compared to the results in other stud-
ies. The authors suggested that this difference in results may be due to participants
in other experiments being unable to learn the function rule (Bott & Heit, 2004). And
in a more recent study explaining individual differences in learning style, participants
who showed relatively flat extrapolations to a V-shaped function were categorized as
exemplar-, as opposed to rule-based learners.

The reasoning behind these studies is summarized in a theoretical argument of
Kwantes and Neal (2006) who argue: “To show that you have really learned the concept,
you need to demonstrate two things: You need to perform reasonably well on new items
that fall within the bounds set by the training examples (so-called interpolation items),
and you need to perform reasonably well on new items that fall outside the bounds set
by the training examples (so-called extrapolation items)”. The authors thus argue that
extrapolation accuracy separates participants who learned a function rule (or “concept”)
from those who did not learn a function rule.

In sum, function-learning studies reviewed here share the (often implicit) assump-
tion that provided that, participants did acquire an understanding of the correct rule,
they also apply it when extrapolating. If this assumption holds, inaccurate extrapo-
lations can indeed be interpreted as signaling the absence of rule-learning. If this
assumption does not hold, however, inaccurate extrapolations are also compatible with
accurate rule-learning. In other words: while accurate extrapolations are an impli-
cation of rule-learning, inaccurate extrapolations indicate learning styles other than
rule-learning if, and only if, the assumption of rule application holds.

Here we put the assumption of rule-application given rule-learning to an experi-
mental test. The reasoning behind is that participants neither need to apply a learned
rule per se, nor do they need to apply it correctly. For example, participants may fail to
accurately implement a learned rule, potentially because deriving extrapolation points
from the abstracted rule requires substantial cognitive resources such as working mem-
ory capacity (Fischer & Holt, 2016). Also adjusting each consecutive extrapolation to
previous extrapolations may be error-prone. Participants may even deliberately use
comparatively simple linear extrapolations despite better knowledge.

We will use the term (a) function rule to refer to the general trend (declining), shape
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(exponential), and slope of a presented process. Depending on whether participants
acquire an understanding of only one, two, or all three of these aspects, increasingly
stricter conditions of rule-learning are met. We use the term (b) extrapolation style to
refer to participants’ extrapolations as either (1) simple exemplar-based, that is, linear
extrapolation parallel to the x-axis (DeLosh et al., 1997), (2) exemplar-based, that is,
linear extrapolation through the two best-matching learning points (DeLosh et al., 1997)
or 3. rule-based, that is, extrapolation according to a function rule.

We report the results of two large function-learning experiments demonstrating that
a substantial proportion of participants who would be classified as “exemplar-based
learners” based on their extrapolation accuracy actually acquired an understanding the
correct function rule. These results shed doubt on the assumption of rule-application
given rule-learning. Furthermore, these results also deliver a comprehensive estimate of
the extent to which rule-learning is underestimated by means of extrapolation accuracy.

Experiment 1

Experiment 1 investigated the extent to which participants who would be classified as
“exemplar-based” based on their extrapolation accuracy in a classical function-learning
paradigm had acquired an understanding of the function rule. To do so, participants
completed two tasks: A standard function-learning task to assess extrapolation accu-
racy, and a rule-selection task to assess whether participants could identify the correct
function shape and slope. In the function-learning task, participants extrapolated the
development of three exponential declining processes. The task consisted of one learn-
ing phase, and one extrapolation phase per process (Fischer & Holt, 2016). Participants
received the instructions to extrapolate the development of different types of bacteria
cultures, “Ain”, “Bin”, and “Cin”. After the learning phase, participants completed the
rule-selection task. Participants identified the function rule of the process they had just
learned by selecting one of a total of six pictures displaying different function shapes
and slopes.

Method

Participants. A total of 520 participants completed the experiment. Participants were
recruited over MTurk, and received 1.05$. Data from 9 participants were removed
because they already participated in the pretest, thus the data from n=511 participants
were included in the final data set. Participants were instructed not to use pen, paper or
any other help during the study. The sample size was determined by a power analysis
based on a small effect size of r = .18 (Fischer & Holt, 2016), p = .05 andβ= 0.8, resulting
in a sample size of n = 240 per condition.

Materials. (a) Processes. We used three variations of exponential functions based
on the equation:

y = 1500−ea·(x+50)+2 (C.1)

with a = [0.045,0.040,0.046]. In the following we refer to the function with a1 = 0.045 as
process Ain, with a2 = 0.040 as Bin, and with a3 = 0.046 as Cin.

Exponential declining functions were chosen because they represent the most diffi-
cult function to extrapolate (Busemeyer, Byun, Delosh, & McDaniel, 1997), and hence
because of their strong deviation from the “cognitive default” of positive linearity, a
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particularly strong case for rule-learning can be made (DeLosh et al., 1997; Kalish et al.,
2004; Kwantes & Neal, 2006).

(b) Rule-selection task. Participants were presented with three graphs, displaying
three different function shapes of two different slopes each: two linearly decreasing
functions, two exponential declining functions, and two Gaussian functions. Partici-
pants were asked to indicate, “Which graph describes the shape of the development of
the bacteria best?”. Participants entered the number of the graph into a text box (Figure
C.1).

Figure C.1. Example of rule-selection task for process Bin. The figure displays the functions
given to participants with the instructions to choose the process they have just learned (Correct:
Function no. 3.)

Linear functions were chosen as they represent the most basic and frequently found
extrapolation style (Busemeyer et al., 1997; Carroll, 1963) that is furthermore employed
in exemplar-based, as well as simple exemplar-based extrapolations; Gaussian functions
were chosen to assess whether participants believed the process to be non-monotonical;
and the exponential declining functions were chosen to assess whether participants
could correctly identify the correct function shape, and potentially also slope. The
slopes displayed were 0.045correct and 0.040 for Ain, 0.040correct and 0.046 for Bin, and
0.046correct and 0.043 for Cin. Slopes for all functions were chosen in a way such that
y-values of functions remained between 0 and 1500.

Procedure. Each participant extrapolated 3 processes. Each process consisted of 13
trials, 8 learning and 5 extrapolation trials. At the beginning of each process, participants
were given the starting point of that process, that is, the number of bacteria at time
point 0 (1430 for Ain, 1445 for Bin, and 1426 for Cin). During each trial, participants
were shown the current time point and predicted the number of bacteria for that time
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point by entering their extrapolation as a number into a text box (“I guess the number
of bacteria is ...”). During the learning phase, participants received feedback in terms
of the correct number of bacteria for each time point, immediately after entering their
extrapolation (“You guessed: ... . Actual number: ...”).

To control for the effect of seeing different function shapes in the rule-selection
task on extrapolation accuracy, participants were randomly allocated to complete the
rule-selection task immediately before, or immediately after the extrapolation phase.

Results

Dependent variables. To measure extrapolation accuracy in the function-learning task,
the relative root mean square error (rRMSE) was used :

rRMSEi =
√√√√ 1

n
·

n∑
i=1

(
(yi − zi )

zi

)2

, (C.2)

with yi : extrapolation and zi : correct function value.
To measure understanding of the function rule, the rule selection task distinguished

between identifying the correct function shape, that is, choosing either of the two
exponential functions; and additionally identifying the correct function slope, that is,
choosing the exponential function AND the correct slope.

Outliers. We excluded individual extrapolations more than five standard deviations
above or below the mean of each time point (0.51% of the total number of extrapola-
tions). If more than two out of the five extrapolation trials were excluded, the process
was treated as missing for this participant (Fischer & Holt, 2016). In total, for 4 partici-
pants processes were excluded, resulting in 509 participants for process Ain, and 510
participants for processes Bin and Cin.

Order of rule-selection and extrapolation. In order to assess whether showing par-
ticipants pictures of the correct function impacted extrapolation accuracy, we compared
extrapolation accuracy in the group completing the rule-selection task before (M = 3.52,
SD = 2.07) versus after (M = 3.55, SD = 2.02) the extrapolation phase. Accuracy was
marginally but not significantly higher in the group performing the rule-selection task
before the extrapolation phase, F (3,503) = 2.36, p = .07, Pillais’ Trace = 0.014. Thus, in
the following, results for both groups are presented together.

Extrapolation accuracy by function slope. We assessed whether extrapolation ac-
curacy varied by function slope. As the assumptions of homogeneity of variances
(F (2,1526) = 324.12, p < .001) as well as of normality (W = 0.69, p < .001) were not met,
Kruskal-Wallis rank sum tests were conducted. Results showed that extrapolation accu-
racy differed between the three processes as a function of slope χ2(2) = 1204.3, p < .001
in that prediction accuracy was higher for Bin (MBi n = 0.30, SDBi n = 1.00) compared
to Ain (MAi n = 1.50, SD Ai n = 1.12) z = 17.82, each p < .001. Interestingly, the drop in
accuracy was particularly steep from Bin to the steepest function Cin (MCi n = 8.86,
SDCi n = 5.4) z =−34.70, p < .001. These results are in line with previous findings that
participants have a tendency towards linear extrapolation, and hence extrapolation
accuracy decreases as function slope increases.

Proportion of participants per extrapolation style. Participants’ extrapolation
styles were categorized based on their extrapolation accuracy (McDaniel et al., 2014).
Specifically, we determined the deviation (rRMSE) of each participant’s extrapolation
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accuracy including a 95% confidence interval from these three cases: (1) rRMSEExp:
The deviation from the correct function, (2) rRMSELinSlope0: the deviation from a linear
extrapolation with slope 0 through the last learning point, (3) rRMSELin: the deviation
from a linear extrapolation through the last two learning points. Confidence intervals
were calculated as follows:

CI± = ȳi ±2.776 · σp
n

(C.3)

with ȳi : rRMSE for each time point i.
Extrapolations were categorized into the different groups based on whether their entire
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Figure C.2. Example of extrapolations for process Bin. The figure displays the number of bacteria
predicted by participants who were classified as (a) simple-exemplar based , (b) exemplar-
based and (c) rule-based learners based on their extrapolation accuracy. Dark-grey area: 95%
confidence band.

CI± was (a) above rRMSELinSlope0, indicating extrapolation parallel to the x-axis (simple
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exemplar-based extrapolation), (b) below rRMSELinSlope0 but above rRMSELin, indi-
cating linear extrapolation through the last two learning time points (exemplar-based
extrapolation); or (c) below rRMSELin, indicating the most accurate extrapolation (rule-
based extrapolation). Figure C.2 displays an exemplatory categorization for process
Bin.

Relationship between rule-learning and rule-based extrapolation. In order to in-
vestigate the relationship between rule-learning and extrapolation style, we determined
the association between rule selection and extrapolation style in logistic regressions,
separately for each of the three processes, Ain, Bin, and Cin. We distinguished between
(i) choosing the correct function shape, and (ii) choosing the correct function shape
AND slope. Choosing the correct function shape, (i), was significantly related to ex-
trapolation style for each process, χ2

Ain(1) = 11.13, χ2
Bin(1) = 14.86, and χ2

Cin(1) = 13.73,
each p < .001, suggesting that, unsurprisingly, learning of the correct function shape
was related to rule-based extrapolations. Choosing the correct function shape AND
slope was associated with extrapolation style for processes Ain and Cin, χ2

Ain(1) = 36.93,
χ2

Cin(1) = 16.83, p < .001, but not for process Bin, χ2
Bin(1) = 1.11, p = .29, suggesting that

learning of the correct function slope was related to rule-based extrapolations, except
for extrapolation of the process with the lowest slope.

To test the extent to which exemplar-based, or simple exemplar-based extrapolation
styles exclude rule-learning, Table C.1 displays the proportion of participants who could
correctly identify the correct function shape, separately for each extrapolation style. In
the group displaying simple exemplar-based extrapolation, 46% of participants were
able to identify the correct function shape, while only 31% of participants estimated the
function was actually linear. A similar pattern held for the group displaying exemplar-
based extrapolation, where 61% of participants chose the correct function shape, and
only 24% estimated the function to be linear. For the group displaying rule-based
extrapolation, 65% chose the correct function shape. In sum, the relative majority of
participants displaying simple exemplar-based extrapolations, and even the absolute
majority of participants displaying exemplar-based extrapolations could identify the
correct function shape as exponential declining.

In total, the proportion of participants who had acquired an understanding of the
correct function rule in the learning phase (as indicated by the rule-selection task) but
did not apply this in the extrapolation phase (as indicated by classifications of their
extrapolation style based on extrapolation accuracy) was 47% for process Ain, 45% for
Bin, and 36% for Cin (Table C.2).

As the stricter criterion of rule-learning, (ii) we determined the number of par-
ticipants choosing not only the correct function shape but also function slope, per
extrapolation style. As Table C.3 shows, the proportion of participants choosing the cor-
rect function slope increased with extrapolation style, from simple exemplar-based, to
exemplar-based, to rule-based. Across all three processes, 24% of participants displaying
simple-exemplar-based extrapolations, and 37% of participants displaying exemplar-
based extrapolations, were able to identify the correct function slope. These results
suggest that even among those participants who had acquired a deep understanding of
the function rule in that they could identify the correct shape AND slope, a considerable
proportion of participants did not apply this understanding when extrapolating, but
rather used exemplar-based, or even simple exemplar-based extrapolation styles.

The last column of Table C.3 displays the proportion of participants who could
identify the correct slope, out of those who could identify the correct shape. Results
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Table C.1. Proportion of participants selecting one of the three function shapes in the rule-
selection task, per extrapolation style.

Style Process Gaussian Linear Exponential χ2-test

Simple
exemplar-
based

Ain 59 (21%) 73 (27%) 144 (52%) χ2(2, N = 276) = 45.15∗∗∗

Bin 59 (28%) 45 (22%) 104 (50%) χ2(2, N = 208) = 27.41∗∗∗

Cin 49 (18%) 127 (47%) 97 (35%) χ2(2, N = 273) = 34.02∗∗∗

Total 22% 32% 46%

Exemplar-
based

Ain 19 (14%) 26 (19%) 93 (67%) χ2(2, N = 138) = 72.57∗∗∗

Bin 36 (18%) 41 (20%) 125 (62%) χ2(2, N = 202) = 74.27∗∗∗

Cin 23 (14%) 56 (33%) 88 (53%) χ2(2, N = 167) = 37.95∗∗∗

Total 15% 24% 61%

Rule-
based

Ain 16 (17%) 14 (15%) 65 (68%) χ2(2, N = 95) = 52.70∗∗∗

Bin 16 (16%) 12 (12%) 72 (72%) χ2(2, N = 100) = 67.52∗∗∗

Cin 15 (22%) 17 (24%) 38 (54%) χ2(2, N = 70) = 13.91∗∗∗

Total 18% 17% 65% ∗∗∗ p ≤ .001

Table C.2. Proportion of participants identifying the correct exponential function shape, and
applying exemplar-based and simple exemplar-based extrapolations, per process (Ain, Bin, and
Cin).

Style Process Exponential

Simple-&
Exemplar-
based

Ain 237 (47%)
Bin 229 (45%)
Cin 185 (36%)
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show that while for processes Bin and Cin, around half of participants who could identify
the correct shape also identified the correct slope, results were different for the steepest
process Cin in that the vast majority of participants who identified the correct shape
also identified the correct slope.

Table C.3. Proportion of participants selecting the correct function shape AND slope, per
extrapolation style.

Style Process Correct shape AND slope Total Correct shape AND slope
Correct shape ·100

Simple
exemplar-
based

Ain 44 (16%)
65 (31%)
70 (26%)


31%

Bin 24% 63%
Cin 72%

Exemplar-
based

Ain 51 (37%)
76 (38%)
62 (37%)


55%

Bin 37% 61%
Cin 70%

Rule-
based

Ain 36 (45%)
50 (36%)
35 (50%)


55%

Bin 44% 69%
Cin 92%

Interestingly, for all three extrapolation styles, the proportion of participants who
could correctly identify the correct function shape dropped 15% for the steepest function
Cin compared to the proportion of participants who could correctly identify the correct
function shape for processes Ain and Bin. This result contrasts results on extrapolation
accuracy for Cin (MCi n = 8.86) which dropped by 83% compared to Ain (MAi n = 1.50),
and even 97% compared to Bin (MBi n = 0.30).

Prevalence of rule-learning based on rule-selection task vs. extrapolation accu-
racy. Table C.4 compares the proportion of participants who would be classified as
rule-learners, based on accuracy in the rule-selection task as opposed to extrapolation
accuracy. Results show that while the minority (< 20%,χ2(2, N = 1529) = 238, p < .001) of
participants would be classified as rule-learners based on extrapolation accuracy, the rel-
ative majority of participants could identify the correct function shape (> 50%,χ2(2, N =
1529) = 308, p < .001), and even slope (> 25%, χ2(3, N = 1529) = 53.33, p < .001).

Table C.4. Proportion of participants classified as rule-based, exemplar-based or simple
exemplar-based learners in the function-learning and rule-selection paradigm, per process
(Ain, Bin and Cin).

Traditional FL paradigm Rule-selection paradigm

Simple
exemplar-
based

Exemplar-
based

Rule-based Gaussian Linear Exponential
(shape)

Exponential
(slope)

Ain 276 (54%) 138 (27%) 95 (19%) 94 (19%) 113 (22%) 302 (59%) 138 (27%)
Bin 208 (41%) 202 (40%) 100 (19%) 111 (22%) 98 (19%) 301 (59%) 177 (35%)
Cin 273 (53%) 167 (33%) 70 (14%) 87 (17%) 200 (39%) 223 (44%) 167 (33%)

Total 50% 33% 17% 19% 27% 54% 32%
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Summary 1

Experiment 1 showed that a substantial proportion of participants who had acquired an
understanding of the correct function rule in the learning phase of a function-learning
experiment (as indicated by the rule-selection task) did not apply their understanding
in the extrapolation phase (as indicated by classifications of their extrapolation style
based on extrapolation accuracy). Specifically, out of those participants who would be
classified as exemplar-based learners based on their extrapolation accuracy, 61% were
able to accurately identify the correct function shape, and 37% were able to identify the
correct function shape AND slope. Moreover, only 32% of participants showing simple
exemplar-based, and 24% of participants showing exemplar-based extrapolations be-
lieved the functions to be actually linear. These results suggest that (i) extrapolation
accuracy underestimates rule-learning in the classical function-learning paradigm, and
that (ii) up to certain extent, participants are aware of the non-linearity of the process,
even if their extrapolations suggest otherwise.

However, there are two limitations to Experiment 1. First, even though selection of
the exponential shape was clearly above guessing rate in all three extrapolation styles,
a priori probabilities to guess correctly were considerably higher in the rule-selection
task compared to extrapolation in the standard function-learning task. To address this
limitation, Experiment 2 required participants to indicate their understanding of the
function shape not by selecting a picture, but by drawing their understanding of the
function shape into a grid. And second, it remains unclear why participants fail to apply
their rule understanding in the classical function-learning paradigm. One plausible
explanation could be that participants make implementation errors in the classical
function-learning paradigm where x-y pairings are given only consecutively, whereas
in the rule-selection task participants have simultaneous access to all function values.
To address this second limitation, Experiment 2 introduced another control condition,
where all extrapolations were displayed on the same page for a given process, so that
current as well as all previous extrapolations were visible to participants.

Experiment 2

Experiment 1 showed that a substantial proportion of exemplar-based or even simple
exemplar-based extrapolators had acquired an accurate understanding of the func-
tion rule, indicating that the number of rule-learning was underestimated previously
by using extrapolation accuracy as a proxy for rule-learning. Experiment 2 provided
equal a priori probabilities between a standard function-learning condition and an
alternative paradigm in which participants indicated their understanding of the process
by drawing the function into a grid (grid condition). Furthermore, we added a third
condition in which participants’ extrapolations were displayed on one screen instead of
in consecutive order (summary function-learning condition).

Method

Participants. A total of 918 MTurk participants completed the experiment. Sample size
was determined by computing a power analysis based on f = .1, p = .05 and β = .8,
resulting in a sample size of n = 323 per condition. Data from 176 participants were
removed because inspection of MTurk IDs revealed participants had taken part in either
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Experiment 1, or a pretest. Participants were instructed not to use pen, paper or a
calculator during the study. We included a statement at the end of the study in which
participants had to confirm that they did not do so (“I confirm that I did NOT use
a calculator, pen or paper”). A total of 15 participants were excluded because they
reported having used aids. Additionally, in order for the grid condition to be fully
comparable with the function-learning conditions, we checked for the position (one
click per time point) and order (clicks starting from time point T1 followed by T2 and so
on) of extrapolations. Out of the 232 participants in the grid condition, 67 were excluded
because they violated this requirement. A total of N=660 participants were included in
the final data set.

Materials. Two of the processes from Experiment 1 were used, the development of
the bacteria cultures Ain and Bin.

Procedure. Participants were randomly assigned to three groups: (a) A standard
function-learning condition identical to Experiment 1 that served as a baseline. Par-
ticipants entered their extrapolations as numbers, and extrapolations were displayed
sequentially; (b) A grid condition where participants drew the function shape by click-
ing the respective positions on a grid; and (c) A summary function-learning condition
where participants entered their extrapolations in numbers and all time points were
displayed as value-pairs on one screen, so that participants were able to see all previous
function values (Figure C.3). To ensure comparability between the three conditions, the
maximum and minimum extrapolations were restricted to values 0−1550, in steps of
1; and the clicks on the grid were restricted to the same number as the entries in both
function-learning conditions.

Results

Dependent variables. Calculation of extrapolation accuracy (rRMSE) in the two function-
learning conditions was identical to Experiment 1. We applied the same procedure
regarding outliers as in Experiment 1 (0.11% of the total number of extrapolations).

To assess rule-learning in the grid condition, we used two types of approaches:
(1) Calculating the first derivatives. Calculating the first derivatives allows us to

determine whether participants extrapolated (a) linearly through the last two learning
points (exemplar-based extrapolation), or (b) according to the function rule (rule-based
extrapolation)(McDaniel et al., 2014). This is because in case of (a), derivatives must
be constant, whereas in case of (b), derivatives must be strictly monotonic decreasing
as d

d x (−ex) =−ex with the negative sign reflecting the trend of the process. This allows
us to evaluate whether participants abstracted a rule about the exponentiality of the
process in that it is increasingly declining. To do so, we used three different approaches
varying in strictness of what counts as strictly decreasing derivatives: (1) slopes of the
lines through the first and the second, as well as the first and the last extrapolation point
were strictly decreasing; (2) slopes through the first and two other extrapolation points
have to be strictly decreasing; and (3) slopes though the first and all other extrapolation
points have to be strictly decreasing. Please note that other non-linear functions could
also meet the condition of strictly decreasing derivatives.

(2) Least squares approach. Using a least squares approach, we classified the func-
tions drawn in the grid condition as rule-based, exemplar-based, or non-distinguishable
based on the deviation (RMSE) of clicks on the grid from three models: If

RMSElinear > RMSEexponential +RMSElinear ∗25%, (C.4)

97



Chapter C

(a)
(b)

(c)

Figure C.3. Screenshots of the three conditions. The figure displays the three conditions:
(a) standard function learning, (b) grid, and (c) summary function-learning. Valid numbers
participants could enter: 0−1550.
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participants were classified as rule-based learners; if

RMSElinear < RMSEexponential −RMSElinear ∗25%, (C.5)

participants were classified as exemplar-based learners; for all other cases, participants
were classified as non-distinguishable. To ensure comparability between the models,
only the slope parameter a was allowed to vary, and all other parameters were fixed.

Extrapolation accuracy in standard versus summary function-learning. To assess
whether comparatively low proportions of (accurate) rule-application in the classical
function-learning paradigm were due to a lack of simultaneous access to all previous
function values, we compared extrapolation accuracy in (a) the standard function-
learning, with (b) the summary function-learning condition. Results showed that
extrapolation accuracy was not higher in the summary (MAin1 = 1.54, SDAin1 = 0.80,
MBin1 = 0.27, SDBin1 = 0.19), compared to the standard function-learning condition
(MAin2 = 1.53, SDAin2 = 0.84, MBin2 = 0.26, SDBin2 = 0.19), F (2,492) = 0.027, p = .97, Pil-
lais’ Trace = 0.0001. This result suggests that having access to all function values did not
increase rule application per se, nor did it increase the accuracy of rule-application.

Proportion of rule-based extrapolation in the two function-learning conditions.
For conditions (a) standard function-learning and (b) summary function-learning, par-
ticipants’ extrapolation styles were classified based on extrapolation accuracy. Table C.5
shows that for both function-learning conditions, between 19% (Ain) and 32% (Bin)
were classified as rule-based extrapolators.

Table C.5. Proportion of participants classified as showing each of the three extrapolation styles
based on extrapolation accuracy, per processes (Ain and Bin).

Simple exemplar-based Exemplar-based Rule-based

Standard FL Summary FL Standard FL Summary FL Standard FL Summary FL

Ain 148 (60%) 139 (56%) 58 (23%) 58 (24%) 42 (17%) 50 (20%)
Total Ain 58% 23% 19%

Bin 79 (32%) 72 (29%) 87 (35%) 99 (40%) 82 (33%) 76 (31%)
Total Bin 30% 38% 32%

Proportion of rule-learning in the grid condition. (1) Calculating the first deriva-
tives. We calculated the first derivatives (d1,2, d1,3, d1,4, d1,5) by calculating the slopes
between the first extrapolation point and the following 4 points. Participants were
classified as having understood the function rule as exponential declining if (a) they
captured the trend of the process (d1, j < 0,∀ j ∈ {2,3,4,5}) and (b) if slopes of the lines
through the first and the second, as well as the first and the last extrapolation point
were strictly monotonic decreasing (d1,5 < d1,2). Following that classification, 48% of
participants had abstracted the function rule for process Ain, and 56% for process Bin
(Figure C.4). We employed the same method for the next stricter criterion (three out of
the four slopes), resulting in 28% of participants having abstracted the function rule for
process Ain, and 39% of participants having abstracted the function rule for process Bin.
Only when using the strictest possible criterion where the values for all four slopes have
to decrease strictly monotonically, results were comparable to those based on extrapola-
tion accuracy in that 20% of the participants were classified as having abstracted the
function rule for process Ain, and 29% for process Bin (Table C.6).
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Table C.6. Proportion of participants classified as “rule-based learners” in the derivatives ap-
proach.

d1,5 < d1,2 d1,5 < d1,3 < d1,2 or d1,5 < d1,4 < d1,2 d1,5 < d1,4 < d1,3 < d1,2

Ain 80 (48%) 92 (28%) 33 (20%)
Bin 93 (56%) 128 (39%) 48 (29%)

and d1, j < 0,∀ j ∈ {2,3,4,5} for all four classification criterions.

χ2
Ain χ2(1) = 55.87∗∗∗ χ2(1) = 9.33∗∗ χ2(1) = 0.08, p = .77
χ2

Bin χ2(1) = 30.35∗∗∗ χ2(1) = 3.83, p = .05 χ2(1) = 0.34, p = .56

Comparison of proportions FL (standard & summary) and derivatives approach, ∗∗ p ≤ .01, ∗∗∗ p ≤ .001.
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Figure C.4. Mean number of bacteria for Ain and Bin for first derivatives approach. The figure
displays the mean number of bacteria estimated by participants in the grid condition who were
classified as having abstracted a rule about the underlying process for (a) Ain and (b) Bin by
calculating the first derivatives.
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(2) Least squares approach. Using the least squares approach outlined above, 52% of
participants were classified as having understood the correct function shape for process
Ain, and 59% for process Bin (Figure C.5). These results are broadly in line with results
using the derivatives approach.
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(c) Process Ain
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Figure C.5. Mean number of bacteria for Ain and Bin for least squares approach. The figure
displays the mean number of bacteria estimated by participants in the grid condition who
were classified as having abstracted a rule about the underlying process for (a) Ain and (b) Bin
applying a least squares approach. Pictures (c) and (d) display participants who were classified
as extrapolating linearly.

Proportion of rule-based learners in all three conditions. Table C.7 shows the pro-
portion of participants classified as having acquired an understanding of the function
rule for both processes, per condition. Across the two function-learning conditions,
standard and summary, 19% of participants were classified as rule-based learners for
process Ain and 32% for process Bin. In contrast, in the grid condition 50% of partici-
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pants were classified as rule-based learners for Ain and 57% for Bin.

Table C.7. Proportion of participants classified as “rule-based learners” in all three conditions.

Standard FL Summary FL
(a) Total: Stan-
dard & Sum-
mary

Derivatives
Least-
Squares

(b) Mean:
Derivatives &
Least-
Squares

Comparison
of propor-
tions of (a) &
(b)

Ain 42 (17%) 50 (20%) 92 (19%) 80 (48%) 86 (52%) 166 (50%) χ2(1) = 91.20∗∗∗

Bin 82 (33%) 76 (31%) 158 (32%) 93 (56%) 97 (59%) 190 (57%) χ2(1) = 74.28∗∗∗

Comparison of proportions (a) FL and (b) grid condition, ∗∗∗ p ≤ .001.

Summary 2

Experiment 2 investigated whether unequal a priori probabilities to guess correctly
could explain increased rule-learning compared to rule application in the standard
function-learning paradigm. To do so, we introduced a condition where participants
drew their understanding of the progress of the function into a grid where the numbers
of clicks as well as the range of possible values were restricted to the same values
as extrapolations in the standard function-learning task. The function shapes were
evaluated using two different types of approaches, calculating the first derivatives, and
a least squares approach of varying strictness. Both methods produced broadly similar
results in that 50% of participants were classified as rule-based learners for process
Ain and 57% for processes Bin, compared to 19% of participants showing rule-based
extrapolation in both function-learning conditions for process Ain, and 32% for process
Bin.

To furthermore investigate whether (accurate) rule-application is reduced in the
standard function-learning paradigm because participants lack access to all previous
function values, we compared extrapolation accuracy in the standard function-learning,
with a summary function-learning condition. Results showed that there was no differ-
ence in extrapolation accuracy between the two conditions, suggesting that lacking
access to all function values did not affect rule-application.

General Discussion

In the function-learning paradigm, people’s understanding of the function rule that
underlies the to-be extrapolated process is typically measured by means of extrapolation
accuracy (Bott & Heit, 2004; DeLosh et al., 1997; Kwantes & Neal, 2006; Lewandowsky
et al., 2002; McDaniel et al., 2014). Here we argue, however, that even though accurate
extrapolations necessitate rule-learning, the reverse does not necessarily hold: Inac-
curate extrapolations do not exclude rule-learning. Using inaccurate extrapolations to
infer learning styles therefore hinges upon the assumption of rule-application given
rule-learning. In two function-learning experiments with exponential declining func-
tions, we put this assumption to an experiment test. Results showed that the proportion
of participants who demonstrated an understanding of the correct function rule was
almost twice as high as the proportion of participants who would be classified as rule-
learners based on extrapolation accuracy in the standard function-learning experiment.
We therefore conclude that (i) using extrapolation accuracy as a proxy for rule-learning
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severely underestimates people’s actual ability to abstract the correct function rule; and
that (ii) for a substantial proportion of participants, the assumption of rule-application
given rule-learning does not hold.

A majority of participants who would be classified as “exemplar-based learners”
(61%) or “simple exemplar-based learners” (46%) based on their extrapolation accuracy,
were able to identify the correct function shape in the rule-selection paradigm, and 37%
of the “exemplar-based learners” were able to identify the correct function shape AND
slope. The grid paradigm that ensured equal a priori probabilities between drawing one’s
understanding of the rule and extrapolations in the classical function-learning paradigm
produced broadly similar results: Around half of participants showed an accurate
understanding of the function rule, both when analyzing their understanding of the
exponentiality of the process via the first derivatives, and via a least squares approach.
These results therefore suggest that a substantial proportion of participants did not
apply their rule-understanding when extrapolating. In other words, extrapolation
accuracy was considerably lower than what would be expected based on participants’
understanding of the function rule.

In the grid paradigm, we employed different criteria varying in strictness of what
counts as understanding of the function rule as exponential declining. Specifically, in
the derivatives approach we varied the number of slopes that had to decrease strictly
monotonically. It is important to note that even though strictly decreasing slopes are
a characteristic feature of exponential declining functions, other non-linear functions
could also meet this condition.

When the first and last slopes, as well as three out of four slopes were strictly mono-
tonically decreasing, the proportion of rule-learners was higher than the proportion of
rule-based extrapolators. Only when using the strictest criterion for rule-understanding,
that all four slopes be strictly monotonically decreasing, the proportion of partici-
pants who were classified as having understood the rule was broadly in line with the
proportion of participants who were classified as rule-based learners based on their ex-
trapolation accuracy. This suggests that a considerable proportion of participants who
had acquired an understanding of a characteristic feature of the function rule, namely
that later extrapolation points should be steeper than earlier extrapolation points, could
not implement this understanding when extrapolating.

Contrary to our expectation, extrapolation accuracy was not affected by implemen-
tation errors caused by a critical feature of classical function-learning experiments: the
successive (as opposed to instantaneous) presentation of function values. Extrapola-
tion accuracy was not higher in an alternative presentation format (summary function
learning condition) that provided participants instantaneous access to current, as well
as previous function values. This result suggests that while cognitive resources (working
memory capacity) may be a limiting factor for rule-induction (McDaniel et al., 2014),
they seem to be less relevant for rule-application during extrapolation.

Interestingly, while performance generally dropped as a function of slope, extrapola-
tion accuracy was more strongly affected by function slope (>80% drop for Cin compared
to Ain and Bin) compared to learning of the correct function shape (approx. 15% drop
for Cin compared to Ain and Bin). Furthermore, learning of the correct function shape
AND slope was not influenced by function slope, suggesting that function slope impairs
rule learning to a lesser extent than extrapolation accuracy. This result suggests that the
well-established tendency toward linear extrapolations (Busemeyer et al., 1997) more
strongly reflects a difficulty to extrapolate non-linearly than a more basic difficulty to
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recognize non-linear processes as non-linear.
The absolute minority of participants were classified as rule-based learners based

on extrapolation accuracy. This pattern holds for both experiments, and for all func-
tions slopes, except for one notable exception: In Experiment 2, about one-third of
participants were classified as using rule-based extrapolation. That is, for the function
with the less steepest slope, the highest proportion of rule-based extrapolators was
reached. In line with this finding, previous research has repeatedly found that people
expect linearly increasing function types (Brehmer, 1974; Busemeyer et al., 1997). The
generally high proportions of participants who could identify the correct shape and
slope of exponentially decreasing functions is therefore particularly telling in the present
experiment using exponentially declining functions since these are among the function
types with the strongest deviation from participants’ expectation of positive linearity.

For participants displaying exemplar-based or simple exemplar-based extrapola-
tions, the relative majorities (61% and 46%, respectively) could identify the correct
function shape in the rule-selection task, while considerably smaller proportions of
participants (24% and 32%, respectively) believed the trained functions to be actually
linear. That is, approximately half of participants extrapolating linearly were well-aware
that extrapolations should not in fact be linear. For participants displaying rule-based
extrapolations, the pattern was reversed in that the majority believed their extrapolation
style to be accurate. These result suggest that participants, up to a certain extent, are
aware of what accurate extrapolations should look like, and that around half of exemplar-
based and simple exemplar-based extrapolators employed linear extrapolations despite
their understanding of non-linearity.

It is a common assumption of many function-learning studies that given that partic-
ipants acquired an understanding of the function rule, they also apply that rule during
extrapolation. The present results suggest, however, that a considerable proportion of
participants who had acquired an understanding of the accurate function shape, and
even slope displayed exemplar-based or even simple exemplar-based extrapolation in
the classical function-learning paradigm. We conclude that rule-learning is not tanta-
mount to rule application and that the proportion of rule-based learners in the current
function-learning literature likely represents an underestimation.
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