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Summary 

 
Spatio-temporal regulation of signalling pathways plays an important role in generating 

diverse responses during the development of multicellular organisms. While 

increasing number studies are uncovering the importance of signalling dynamics in 

controlling tissue patterning and morphogenesis, the precise role of signal dynamics 

in transferring information in vivo is incompletely understood owing to the lack of 

methods to manipulate protein activity at the relevant spatio-temporal scales. In this 

PhD thesis, I employ genome engineering in Drosophila melanogaster to generate a 

functional optogenetic allele of the Notch ligand Delta (opto-Delta), at its endogenous 

locus. Light mediated activation of opto-Delta disrupts Notch signalling during different 

developmental stages. Using clonal analysis, I show that optogenetic activation blocks 

Notch activation through cis-inhibition in signal-receiving cells. To investigate how a 

Notch input is dynamically translated into a differentiation output, I focused on 

mesectoderm specification during early Drosophila embryogenesis. Signal 

perturbation in combination with quantitative analysis of a live transcriptional reporter 

of Notch pathway activity reveals different modes of regulation at the tissue and 

cellular level. While at the tissue-level the duration of Notch signalling determines the 

probability with which a cellular response will occur, in individual cells Notch activation 

needs to reach a minimum threshold to generate a response. Taken together these 

results provide novel insights into the dynamic input-output regulation of Notch 

signalling, supporting a model in which the Notch receptor is an integrator of (noisy) 

analog signals that generates a digital switch-like behaviour at the level of target gene 

expression during tissue differentiation. 
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In order to further test this model, I attempted to develop an optogenetic system to 

activate Notch in vivo (opto-Notch). Despite showing light-responsive changes in 

localization, a certain level of Notch is activated even prior to photo-activation, thus 

necessitating further optimization. Finally, I describe efforts for further characterization 

of opto-Delta as a tool to spatially perturb signalling, to study Notch signalling during 

neuroblast delamination, and for adaptation to mammalian cell-culture systems.  
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Zusammenfassung 

 

Die räumlich-zeitliche Regulation von Signalwegen spielt eine wichtige Rolle bei der 

Erzeugung unterschiedlicher Zellantworten während der Entwicklung mehrzelliger 

Organismen. Die Bedeutung des dynamischen Verlaufs von Signalübertragungen für 

die Steuerung der Musterbildung in Geweben und der Morphogenese allgemein wird 

durch viele Forschungsstudien belegt; wobei die genaue Rolle der Signaldynamiken 

für die Informationsübertragung in vivo nur unvollständig verstanden ist. Grund dafür 

ist das Fehlen von Methoden zur Manipulation der Proteinaktivität auf den relevanten 

räumlich-zeitlichen Skalen. In dieser Doktorarbeit nutze ich Verfahren der Genom-

Editierung von Drosophila melanogaster, um ein funktionelles optogenetisches Allel 

des Notch-Liganden Delta (Opto-Delta) auf endogener Ebene zu erzeugen. Die Licht-

abhängige Aktivierung von Opto-Delta ermöglicht es den Notch-Signalweg in 

verschiedenen Entwicklungsstadien zu unterbrechen. Mithilfe klonarer Analysen zeige 

ich, dass die optogenetische Stimulierung von Opto-Delta die Induktion von Notch 

durch cis-Inhibition in signalempfangenden Zellen blockiert. Um zu untersuchen, wie 

Notch-Signalinput dynamisch in eine Differenzierungsausgabe übersetzt wird, habe 

ich mich auf die Spezifikation des Mesektoderms während der frühen Drosophila-

Embryogenese konzentriert. Die Licht-induzierte Inhibition des Notch-Signalwegs in 

Kombination mit einer quantitativen Analyse der Signalaktivität eines Live-

Transkriptionsreporters brachte verschiedene Regulationsmodi auf Gewebe- und 

Zellebene zum Vorschein. Während auf der Ebene des Gewebes die Dauer des 

Notch-Signalinputs die Wahrscheinlichkeit bestimmt, mit der eine zelluläre Antwort 

auftritt, muss die Notch-Aktivierung in einzelnen Zellen einen Mindestschwellenwert 

erreichen, um eine Antwort zu generieren. Zusammengenommen unterstützen diese 
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Ergebnisse zur dynamischen Input-Output-Regulation von Notch-Signalen ein Modell, 

in dem der Notch-Rezeptor ein Integrator von (verrauschten) analogen Signalen ist, 

der ein digitales, schalterartiges Verhalten auf der Ebene der Zielgenexpression 

während der Gewebedifferenzierung bewirkt. 

Um dieses Modell weiter zu untersuchen, habe ich versucht, ein optogenetisches 

System zur Aktivierung von Notch (Opto-Notch) in vivo  zu entwickeln. Obwohl Licht-

abhängige Änderungen der Proteinlokalisation beobachtet wurden, scheint bereits vor 

der Lichtaktivierung eine bestimmte Menge von Opto-Notch aktiv zu sein, was weitere 

Optimierungsschritte der Methode erforderlich macht. Abschließend beschreibe ich 

die Bemühungen zur weiteren Charakterisierung von Opto-Delta als Instrument zur 

räumlichen Inhibierung der Notch-Signalübertragung während der Delaminierung von 

Neuroblasten und zur Adaptierung des Systems in Säugetierzellkultursystemen. 
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1. Introduction 

 

Overview  
 

 

An organism’s ability to respond to stimuli is one of the key facets to its classification 

as “living”.  Physical stimuli like light or gravity, and chemical molecules in the 

environment are sensed, and this information is processed by the organism to 

maintain its dynamic equilibrium, or homeostasis. The ability to manipulate and track 

living systems at the micron scale has made us understand that in fact, every cell that 

makes up an organism acts as an information processing system, interpreting signals 

arising within themselves or from other cells in the organism.  This communication 

forms the fundamental basis of defining and altering the functional state of the cell and 

importantly, co-ordinating these decisions in both space and time at the tissue, organ 

and organism level. 

It is the same co-ordination that plays a pioneering role during the course of 

development of multicellular organisms. Embryonic development describes the 

fascinating process of how the entire complexity of an organism is carved out from a 

single cell, the fertilized egg. The sequence of events that leads to a uniform ball of 

cells resulting from zygotic cleavages diversify and pattern into the various kinds of 

tissues that comprise the adult, has intrigued developmental biologists over the past 

century. Morphogenesis is the term used to broadly describe this process during 

embryonic development by which cells, tissues and organs are shaped. This 

encompasses the interplay of various dynamic biological processes including tissue 

patterning, cell-cell interactions, cell shape changes and cell migration.      

Landmark experiments, beginning with simple tissue transplantations to large scale 

genetic screens in model organisms have been carried out to understand the 
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principles and identify the factors driving morphogenesis. This has led to the 

identification of a number of key genes that have been characterised over the years 

as signalling molecules, belonging to a specific set of signal transduction pathways 

that are largely conserved across organisms. These signalling pathways that govern 

and coordinate collective decisions during morphogenesis, require reproducible 

precise, yet robust communication between cells. In contrast to homeostasis, where 

signalling pathways play the role of adjusting the state of a cell after measuring the 

surroundings, during development “they are usually irreversible, pushing forward the 

developmental program in a ratchet-like mechanism” (Perrimon et al., 2012).  

Information processing by cells during development usually culminates in the turning 

on of a gene expression program through the activity of transcription factors that are 

downstream of signalling pathways. This determines the fate of the cell that needs to 

be manifested in the right group of cells within a specific developmental timeframe. 

Several studies have uncovered the importance of regulation of signalling pathways 

in space and time in order to accomplish this.  

What properties of a signal are cells able to sense and respond to? Do cells 

“comprehend” absolute levels of signals alone or do they respond to signals that are 

changing in time? How these dynamics are interpreted to co-ordinate cell fate changes 

at the cell and tissue level during development is incompletely understood.  

In my PhD thesis I have focused on the Notch signalling pathway as a system to 

investigate signalling dynamics in vivo. First, I will discuss recent examples of 

signalling pathways employing dynamics to pattern tissues in vivo, and bring out the 

need to understand this in the context of Notch, using Drosophila Melanogaster 

embryogenesis as a model system. Next, I will introduce new tools that have made it 

possible to precisely manipulate and record signalling activities in vivo. 
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1.1 Cell-cell communication as the driving force of development 
 

 

1.1.1 Concepts 
 

 

Early in development, cells need information about their positional context with respect 

to their neighbours in a tissue. A Morphogen is a molecule that can diffuse across a 

tissue and determine cell fate in a concentration dependent manner. Morphogens are 

normally produced as a gradient across tissues and can differentiate responding cells 

into different categories.  

Induction refers to the process by which one group of cells changes the properties of 

a neighbouring group of cells. This phenomenon was first discovered by Hans 

Spemann and Hilde Mangold in amphibian embryos. When they transplanted a piece 

of tissue from the dorsal lip region of newt gastrulas to a different region of another 

gastrula, this tissue not only autonomously maintained its fate but also sequentially 

induced the fates of the surrounding tissues based on their position. This tissue was 

named the organizer due to its ability to establish early-on the anterior-posterior (AP) 

and dorsal-ventral (DV) axes.  

This discovery of the inducer led to excitement, trying to purify potential factors 

secreted by it (from embryonic extracts) that determined the development of the 

neighbours. However, this was challenging owing to the limitations in experimental 

techniques at that time.  

“Responder” refers to the tissue that is being influenced, and in order to respond, they 

need to have receptors for the factors secreted from the neighbouring tissue and all 

the other necessary components in order to activate the pathway. This is called 

competence.  
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The type of inducing signal can determine the properties of the responder. 

Recombining a single kind of epithelial tissue from the chick embryo with different 

kinds of mesenchymal tissues, Saunders et al. (1957) discovered that the type of 

structures made by the epithelium, whether feathers or claws, is determined by the 

region from which the underlying mesenchyme was derived. On the other hand, the 

identity of the responding tissue can determine how the incoming signal is interpreted. 

Transplantation of ectoderm regions between newt and frog embryos resulted in the 

newt developing frog structures and vice versa proving that the genetic make-up of 

the transplanted ectodermal tissue determines how the inducing signal from the 

underlying tissue will be manifested. (Spemann and Schotte 1932). 

 

1.1.2 Genetic screens to identify signalling components 
 

 

In the latter half of the 20th century, the ability to investigate embryonic development 

from a molecular standpoint revolutionized the field, and gave rise to the identification 

and characterization of these morphogens. Particularly, the escalation of genetics 

gave rise to tools to access and manipulate the genome in model systems (Brenner, 

1974), Drosophila melanogaster in primis.  Drosophila made it possible to apply 

genetics to the understanding of development. Indeed, large scale mutagenesis 

screens enabled the identification of several cell signalling molecules. The most 

significant of these screens was the Heidelberg mutagenesis screen done in 1979-80 

by Eric Wieschaus and Christiane Nusslein-Volhard (Nüsslein-volhard and 

Wieschaus, 1980). 600 mutants that influenced the embryonic cuticle structure and 

pattern were identified and could be mapped back to 120 genes. Most of these genes 

were later characterized as key signalling regulators or transcription factors whose 

functions were largely conserved among different organisms, until humans. Several 
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key signalling components were identified from this screen and many subsequent 

studies have filled in the missing gaps.  

 

1.1.3 Common modes of signalling during development 
 

 

Over the course of evolution, organisms have opted for signalling pathways that 

function over a short range to drive developmental patterning and morphogenesis. 

 

Paracrine Signalling 

The paracrine class of signalling molecules refer to ligands that are secreted by a cell, 

or group of cells into the extracellular matrix and can diffuse over a diameter of several 

cells. The range of diffusion of these molecules generally determines their range of 

signalling. Binding of these factors to the receptor activates a signal transduction 

cascade resulting in the modulation of transcription factors or cytoskeletal elements. 

Common and well characterized examples of this class of signalling molecules include 

the Fibroblast growth factor (FGF), Hedgehog (Hh), Wnt, and the Transforming growth 

factor (TGF-β) superfamily. Studies on these pathways have uncovered their roles in 

various processes during development, a few of which I will very briefly mention below.   

FGF is a paracrine factor important in various contexts of morphogenesis like 

vertebrate limb development and branching of trachea in Drosophila (Crossley et al., 

1996; Sutherland et al., 1996). 

The TGF- β family of extracellular signalling molecules include TGF- β, Nodal, Bone 

Morphogenetic protein (BMP) and play an important role in regulating extracellular 

matrix (ECM) formation. TGF- β molecules in particular regulate cell proliferation, 

Nodal determines left and right body axes and BMPs induce mesenchymal cell 

transformation into bone (Hirokawa et al., 2006; Hogan, 1996; Zhang et al., 2017).  
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Hh is another important secreted molecule important in the creation of tissue 

boundaries. It has been best studied during Anterior-Posterior boundary formation in 

the Drosophila wing disc. In vertebrates, Hh patterns the developing neural tube and 

defines limb digits (Dessaud et al., 2008; Riddle et al., 1993; Strigini and Cohen, 1997). 

Wnt was originally identified in Drosophila as Wingless (Wg) and broadly functions as 

an extracellular growth factor that influences cell proliferation. In the early amphibian 

embryo, Wnt plays a major role in determining AP and DV axes polarity (Kiecker and 

Niehrs, 2001). 

 

Juxtacrine signalling 

This mode of signalling involves ligands and receptors that are both cell surface 

bound, thus further reducing the spatial range of signalling when compared to 

Paracrine factors. Juxtacrine signalling depends on direct cell-cell contact and usually 

occurs between immediate neighbouring cells, although there is increasing evidence 

for the role of cellular protrusions or filopodia to mediate longer range signalling.   

However, the most commonly occurring juxtacrine pathway across different organisms 

is the Notch-Delta signalling pathway. The principles and mechanisms that this 

pathway uses will be elaborated in section 1.3. 

Besides Notch, the Ephrin family of receptors and ligands comprise a juxtacrine 

pathway that plays a role in cell-cell adhesion and boundary formation (Arvanitis and 

Davy, 2008). Semaphorins are another class of membrane associated ligands that 

bind to the transmembrane Plexin receptors and provide cues for cell migration and 

growing axons (Jongbloets and Jeroen Pasterkamp, 2014). 
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1.2 Dynamics in signalling pathways 
 

 

Signalling pathways are relatively limited in number and yet they control many diverse 

processes. While this serves to be an energetically efficient strategy for organisms, 

how is this “multi-tasking” accomplished?  

One solution, as mentioned previously in the case of morphogens, is that cells can 

sense the concentration of molecules and provide a concentration dependent 

response. The second way is to respond in a context dependent or combinatorial 

fashion i.e. the interaction between different signalling pathways or a signalling 

pathway and a pre-existing factor produce a distinct output from the individual outputs. 

A third possibility is that rather than just sensing the presence or absence of a 

signalling input, information can be carried in the form of the dynamic properties of the 

signal - amplitude, delay, duration, rate of increase decrease or frequency (Fig. 1). 

With emerging tools and techniques to study developmental processes at a higher 

spatial and temporal resolutions, it has emerged that dynamic regulation of signalling 

pathways is a key strategy used by multicellular organisms to generate diverse 

responses during embryonic patterning, growth, and differentiation (Purvis and Lahav, 

2013; Sagner and Briscoe, 2017; Sonnen and Aulehla, 2014). 

Below, I will describe different dynamic properties of signals with examples depicting 

the underlying principles by which cells and tissues process information to give rise to 

distinct outputs.   

 

1.2.1 Signal amplitude  
 

 

I will first discuss the different ways by which cells can respond to increasing amplitude 

(quantity) of signal with time.   
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Graded response 

A Linear or graded signal response is when a cell responds proportionally to the level 

of input signal increasing in time. In such pathways, the increase in the concentration 

of receptor or ligand is translated directly into an increase in target gene activation. 

This is seen in the case of Smad response to gradual increase of activated Activin 

receptors in the Xenopus blastula (Shimizu and Gurdon, 1999), and for 

Decapentaplegic (Dpp), where its gradient is translated into a gradient of its target 

pMad in the nucleus (Bollenbach et al., 2008). In such cases, the transfer of 

information from plasma membrane to nucleus is generally linear without any 

amplification. A potential downside of linear pathways is that they are very susceptible 

to noise or random change in concentrations, especially if cells are competent at all 

times to activate the pathway and depend only on optimal ligand-receptor interactions.  

 

Threshold generation  

An alternate method used by signalling pathways is to convert a graded input to an 

all-or-none or switch like output. In such pathways, the input signal would need to 

overcome a minimum threshold to generate an output. Mechanistically, such non-

linear responses are commonly the manifestation of having either a positive feedback 

or ultra-sensitivity; where at the threshold level, very small changes in input-signal 

concentration can result in step changes in activity (Sagner and Briscoe, 2017). In the 

process of patterning the ventral ectoderm in the Drosophila embryo, a gradient of 

MAPK (Mitogen-activated-protein–kinase) activity is transformed into a sharp switch 

like response with regards to the degradation of the transcription factor Yan. The 

phosphorylation-dependent degradation of Yan is balanced by a constant rate of de-

phosphorylation, leading to an ultrasensitive system being established (Melen et al., 
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2005). In general, step wise digital outputs are more robust to random fluctuations as 

compared to graded responses.  

 

Fold change  

In addition to absolute levels, also fold change in input-signals can be read by cells. 

This has been observed in the Drosophila wing disc, where Dpp gradients are created 

and control both cell patterning and proliferation in the tissue (Wartlick et al., 2011). 

Despite this gradient, the proliferation across the disc is homogenous. This is achieved 

due to the fact that both the concentration and distance over which Dpp spreads, 

scales with the size of the tissue as it grows (Fig. 2A). Thus the entire gradient is 

increasing over time across the tissue and therefore at an individual cell level, each 

cell experiences an increase of Dpp; sensing this increase (by min of 50%) determines 

the decision to divide.  

 

1.2.2 Signal Duration  
 

 

Here I will discuss studies that bring out the importance of signal duration determining 

cell fate, especially in the case of several morphogens where concentration alone was 

originally thought to be sufficient to generate a response. 

In cell culture, a distinct set of genes activated by short duration of ERK (Extracellular 

signal-regulated kinase) signalling of around 20 min. and a longer duration of 120 min 

was identified (Toettcher et al., 2013). While the genes expressed from a 20 min. 

activation are direct ERK targets, the targets post 120 min. are downstream of the 

JAK-STAT pathway and represent secondary targets of phosphorylated ERK primary 

targets. 
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Figure 1: Encoding and decoding of signalling dynamics 

(A-C) Examples of dynamic modes of signal delivery and corresponding interpretation by 

systems responding to either absolute levels (system-1), or dynamic properties of the signal 

(system-2). When the duration of the signal is varied, keeping the amplitude constant, 

system-1 produces an identical output, while system-2, where duration determines the 

output, produces a different response (A). If the slope/ rate of change of signal is constant 

over time, but the absolute levels are different, system-1 manifests a differential output, 

while system-2 that interprets the rate of signal delivery “reacts” in the same fashion (B). If 

the frequency of an oscillating signal is unchanged, but the amplitudes are different, system-

1 again decodes the input differentially, while system-2 where frequency is important for 

output, does not distinguish between both signals (C).  Figure adapted with permissions 

from (Sonnen and Aulehla, 2014) (see Appendix) 
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While in many contexts, cells respond as long as the signal lasts, in other cases, 

negative feedback gives rise to a response that is shorter than the stimulus. This is 

called adaptation. In Xenopus animal caps it was observed that despite continuous 

activation of the TGF- β pathway, the transcription factor Smad 4 exhibited transient 

bursts of nuclear translocation (Warmflash et al., 2012) (Fig. 2B). Experiments in 

myoblasts cells showed that this kind of adaptive response depends critically on the 

rate at which ligand concentration changes. Steadily changing the concentration of 

ligand over an extended period of time results in a diminished effect of signalling, while 

a rapid increase of ligand concentration over short bursts displays an additive effect in 

signalling, serving to overcome adaptation (Sorre et al., 2014).   

In the developing vertebrate spinal cord, the neural tube DV patterning is determined 

by the Sonic-hedgehog (Shh) morphogen. Initially all cells are equally sensitive to Shh, 

but over time, due to adaptation, cells are desensitized and hence continuously 

increasing Shh levels are required to overcome this. Cells closer to the source of signal 

do receive higher level of signal, and as a result the duration of signalling is also 

increased in these cells (Balaskas et al., 2012). 

 

1.2.3 Signal frequency 
 

 

Frequency of signals can also be used to encode information, as in the case of the 

MAPK pathway, where inducing ERK activation at different frequencies (ranging from 

4 min to 2hr) strongly correlated with the proliferation rate of cells (Toettcher et al., 

2013).  

Input signals can also exhibit periodic activity, as in the case of oscillatory signals. In 

such cases, both the frequency and period of oscillations can be used to encode 

information. In cell culture, the degree of DNA damage (double-stranded breaks) is 
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encoded in the number of p53 oscillations. This information is essential for the cell to 

make a decision between cell cycle arrest and death (Batchelor et al., 2008).  

During mouse embryonic development, the patterning of somites is determined by 

oscillatory signals involving the Notch, FGF and Wnt pathways (Fig. 2C). The time 

period of the oscillatory gene expression of these signalling targets determines when 

the next somite will form, and the Notch pathway plays an important role in 

synchronising these oscillations (Sonnen et al., 2018). 

In conclusion, the examples discussed above demonstrate that signalling dynamics 

plays an important instructive role in creating complex patterns. These dynamics also 

serve to increase the precision and robustness of developmental processes in order 

to minimize abnormalities. 

 

Figure 2: Examples of signalling dynamics during development 
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1.3 Notch signalling 
 

 

In this thesis, I will further explore signalling dynamics using the Notch pathway as a 

paradigm. This section provides an overview of the Notch pathway regulation, and 

strategies to modulate its activity. 

Notch signalling plays a major role in determining cell fate decisions across many 

metazoan species and regulates fundamental processes ranging from neurogenesis 

to somite segmentation during development. Notch was first discovered in Drosophila 

following phenotypic observations in embryos that contained certain X-chromosome 

deficiencies (Poulson, 1937, 1940). Also readily apparent were the haplo-insufficient 

phenotypes in the adult flies that included the characteristic Notching at the wing 

margin, thus giving rise to the nomenclature of the protein. 

 

 

(A) Snapshots of Wing (Wi), leg (Le), and haltere (Ha) discs from Drosophila larvae during 

the time-course of their growth, expressing fluorescently tagged Dpp (Dpp-GFP). Bright 

regions represent the source of the Dpp signal that diffuses over the entire disc. The gradient 

of Dpp scales with the size of the discs, resulting in homogenous growth. 

(B) Animal cap explant from a Xenopus embryo injected with Venus-Smad4 mRNA, 

showing heterogenous nuclear localization of Smad-4 protein (downstream of TGF- β 

signalling). Following single cells over time, a pulsatile mode of Smad-4 nuclear localization 

was observed, further investigation suggesting that this could be necessary in order to 

overcome adaptation. 

(C) Mouse pre-somitic mesoderm (PSM) expressing a readout of Wnt signalling (Axin2). 

Oscillations of Notch, Wnt and FGF signalling collectively give rise to the segmentation of 

the mesoderm. 

Figure panels (D), (E) and (F) adapted with permission from (Wartlick et al., 2011) (see 

Appendix), (Warmflash et al., 2012) and (Sonnen et al., 2018) respectively. 
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1.3.1 Notch activation mechanism 
 

 

As mentioned in section 1.1.3, Notch exhibits a juxtacrine mode of signalling, 

distinctively acting via cell-cell contact and thus providing a mode to transmit short-

range signals across cells. Notch is a large transmembrane receptor activated by 

binding to its ligand Delta on the surface of neighbouring cells. Notch and its ligands 

are both transmembrane proteins that bind to each other through their extracellular 

EGF-like repeats (Fig. 3A). In Drosophila, there is one Notch receptor and two ligands 

(Delta and Serrate) that are used depending on the context. In mammals there are at 

least 4 Notch proteins (Notch 1-4) and 5 ligands - Delta-like (1,3 and 4) and Jagged 

(1 and 2). 

The Notch receptor is synthesized as a precursor which is then processed in the Golgi-

apparatus into two subunits – one polypeptide containing the extracellular domain, 

which is linked to another polypeptide containing both a transmembrane and 

intracellular domain (S1 cleavage). The general mechanism for the activation of the 

canonical Notch signalling pathway is as follows: Binding of Notch to its ligand Delta 

on the adjacent cell surface (in trans) results in a conformational change in the Notch 

structure, inducing two proteolytic events. The first one releases the extracellular 

domain of Notch and is catalysed by an ADAM metalloprotease which is associated 

with the plasma membrane (S2 cleavage). The second proteolytic-cleavage is induced 

by the γ-secretase complex and this leads to the release of the Notch intra-cellular 

domain (NICD) (Artavanis-Tsakonas et al., 1999; Bray, 2006; Kopan and Ilagan, 

2009).  

NICD then translocates to the nucleus where it interacts with the DNA binding CSL 

proteins (Suppressor of Hairless (Su(H)) in case of Drosophila /CBF1/LAG1) in 

combination with coactivators like Mastermind (Mam) to regulate gene expression in 
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a context-specific manner. The CSL genes were initially identified as repressors, but 

the binding of NICD switches the activity of the CSL proteins from repressor to 

activator. Notch targets that have been best studied are the BHLH transcription factors 

belonging to the HES/HEY family of genes. Of them, the Enhancer of split (E(Spl)) 

gene complex in Drosophila and HES1 in mouse are best known. The several Notch 

targets mediate processes like proliferation, apoptosis, cell fate, other signalling 

pathways, cell architecture etc. (Bray and Gomez-Lamarca, 2018).  

In addition to ligand-receptor binding, endocytosis of Notch ligands in the signal 

sending cell (mediated by the E3 Ubiquitin ligase Neuralized/ Mindbomb) is important 

for this activation event. This results in the trans-endocytosis of the Notch extra-cellular 

domain (NECD) along with Delta in the signal-sending cell (Chitnis, 2006; Le, 2006). 

Studies in vitro have shown that the processing of Notch after binding Delta in trans 

requires a mechanical pulling force that is presumably induced by endocytosis of the 

Notch bound ligand (Gordon et al., 2015; Luca et al., 2017). Testing the requirement 

of a mechanical force in vivo has remained challenging; however, recent studies have 

tested this using chimeric ligand receptor combinations containing a force sensor 

domain, providing strong evidence for the mechanical force model (Langridge and 

Struhl, 2017).   

From the above mentioned mechanism, potential ways to regulate/manipulate Notch 

signalling are at the level of ligand-receptor binding, ligand/ receptor trafficking and at 

the level of NICD nuclear entry regulation. 

 

1.3.2 Modes of Notch functionality 
 

 

A commonly used mode of patterning by Notch is where the signal-sending cell inhibits 

its neighbours from adopting a particular fate. This is known as Lateral inhibition (Fig. 
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3B). Lateral inhibition has been best studied in Drosophila during neurogenesis, first 

in the embryonic neurectoderm, and then in the adult Notum during peripheral 

neurogenesis (sensory bristle development) (Hartenstein and Campos-Ortega, 1984; 

Heitzler and Simpson, 1991). In both tissues, initially, there are multiple groups of cells 

that are equipotent for neural differentiation, called proneural clusters. Stochastic 

variations in Notch and Delta levels, that are further amplified by feedback, biases the 

directionality of signalling within the cluster. One cell becomes the signal sending cell, 

and the surrounding cells receive the Notch signal, thus resulting in cells with two 

distinct fates.  

 

Figure 3: Notch signalling mechanism and modes of activation 

(A) Schematic representing the molecular components of the Notch signalling pathway and 

its mechanism of activation. The signal-sending cell expressing the ligand, Delta (above) 

and signal-receiving cell expressing the Notch receptor (below) are shown. Activation of 
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In the neurectoderm, the signal-sending cell becomes the delaminating neuroblast and 

the other surrounding cells in the cluster that receive the Notch signal remain epithelial 

cells. In the adult notum, the signal-sending cell becomes the sensory organ precursor 

(SOP) while the surrounding cells that receive the Notch signal are repressed from 

SOP fate (by repressing proneural genes like Achate-scute) and become epidermal 

instead (Heitzler and Simpson, 1991). Notch signalling further plays an instructive role 

during asymmetric cell divisions (Fig. 3C), activating Notch in one daughter cell and 

not the other, thus resulting in distinct cell lineages. Both the delaminated neuroblasts 

and the SOPs undergo Notch dependent asymmetric divisions giving rise to cell 

lineages of the Drosophila CNS and the bristles (Schweisguth, 2015).  

The final mode of signalling is instructive in nature (Fig. 3D), where Notch signalling 

between two cell types that are initially equivalent in nature, gives rise to a third cell 

signalling involves (i) binding of Notch and Delta via their extracellular domains and (ii) 

pulling force induced by the activation of Delta endocytosis (by the E3 ubiquitin ligase 

Neuralized/ Mindbomb). This induces a series of proteolytic cleavages of Notch – first one 

induced by the ADAM metalloprotease in its extracellular domain and the second one 

induced by γ-secretase in the intracellular domain. The resulting cleaved NICD fragment 

translocates to the nucleus and induces transcription of target genes in cooperation with 

CSL molecules and Mam coactivators. 

(B-D) Modes of Notch functionality in different tissue contexts. Lateral inhibition (B) – 

stochastic differences in Notch and Delta expression in an initially equivalent group of cells 

results in one cell in the cluster becoming signal-sending and the surrounding receiving the 

Notch signal, and thereby adopting a differential cell fate. Notch regulating lineage decisions 

(C) – asymmetric divisions of stem cells e.g. SOP cells give rise to differential inheritance 

of Notch regulatory molecules in the daughter cells, thus influencing the directionality of 

signalling between them and further determining fate decisions. Notch signalling between 

two populations of cells (D) gives rise to boundary formation between them by inducing a 

distinct cell-fate at the interface.  

Figure panel (A) was adapted with permission from (Henrique and Schweisguth, 2019) and 

panels (B-D) were adapted with permission from (Bray, 2006) (see Appendix). 
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type at the interface. E.g. Mesectoderm specification in the early Drosophila embryo 

(elaborated in section 1.5) and D-V boundary specification in the wing disc (Becam 

and Milán, 2008). 

 

1.3.3 Cis-inhibition 
 

 

Apart from activation of Notch in trans (in the neighbouring cell) as described above, 

Delta has also been shown to inhibit Notch cell-autonomously in cis (Fig. 4). While this 

phenomenon has been demonstrated across different species from C.elegans to 

mammals (del Álamo et al., 2011; Becam et al., 2010) , it was first identified during D-

V boundary formation in the Drosophila wing disc (Micchelli et al., 1997). 

Overexpression and deletion studies have identified Delta to inhibit the processing of 

Notch in the same cell, and this is dependent on the interaction of their extracellular 

domains. Changing the relative amounts of Notch and Delta in cell-culture has shown 

that cells exhibit a sharp threshold switch between receiving/signalling/non-receiving 

states that can influence the strength and the direction of signalling (Sprinzak et al., 

2010). Overall, cis inhibition has been a difficult process to study in vivo, as traditional 

loss of function experiments affects both cis and trans interactions. 

Although mechanistically still unclear, inhibition from cis interactions could result from 

the titration of Notch by competing for the same extracellular trans-binding domain, or 

by actively downregulating Notch, inducing degradation or internalization. The 

Glycosyl-transferase, Fringe, which is present both in vertebrates and mammals can 

modulate the cis-interaction ability of Notch by post-translational modifications (LeBon 

et al., 2014). Additionally, in vertebrates, the type of ligand (DLL1/4) can influence the 

ability to cis inhibit Notch (Franklin et al.; Itoh et al., 2003).  
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Endogenous cis-inhibition has often been found to be associated with lateral inhibition, 

eg. during Drosophila neurogenesis and ommatidium formation in the eye (Miller et 

al., 2009). Mathematical modelling studies have predicted that cis-inhibition could play 

a role in minimizing errors and compensate for normal feedback dynamics that take 

longer periods of time (Corson et al., 2017). 

 

1.4 Notch dynamics for activation relatively unexplored 
 

 

While several studies have focused on the mechanisms controlling Notch activation 

by ligand endocytosis, knowledge about the activation of Notch targets by cleaved 

NICD and the dynamics involved remains limited. Lack of signal amplification between 

Notch intra-cellular domain (NICD) generation and target gene activation, in addition 

to the fact that the Notch receptor cannot be re-used subsequent to an active signalling 

event, suggest a direct transfer of information from the plasma membrane to the 

 

Figure 4: Notch-Delta interactions – trans activation and cis inhibition 

Notch and Delta can undergo productive interactions in trans (between neighbouring cells) 

giving rise to signalling activation, or bind in cis (in the same cell) to result in an inhibition of 

Notch activation in that cell.  Figure adapted with permission from (Sprinzak et al., 2010) 

(see Appendix) 
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nucleus. Moreover, once cleaved, NICD molecules move into the nucleus within few 

minutes. This has been confirmed by multiple fluorescent tagging techniques to 

visualise Notch entry in the nucleus, in mammalian cell culture (Ilagan et al., 2011; 

Kawahashi and Hayashi, 2010) . Using calcium chelation via EDTA as a technique to 

rapidly induce the proteolytic cleavage that releases NICD, a linear relationship 

between Notch activation and nuclear entry has been shown. After 20 min., 50 percent 

of the maximal Notch levels was observed in the nucleus (Kawahashi and Hayashi, 

2010). Moreover, in Drosophila cell culture, a pulse of 5 min. was sufficient to generate 

an NICD fragment that co-immunoprecipitated with Su(H) (Housden et al., 2013).  

The speed of nuclear entry implies need to study the response on a faster timescale 

in order to capture immediate transcriptional changes and the regulatory logic of how 

target genes are turned on. In cell culture, dynamics of Notch signalling was 

investigated by analyzing genome-wide transcriptional profiles of active genes 

following a pulse of Notch activation (Housden et al., 2013). The activation of these 

Notch targets was followed over the course of several minutes. Around 150 genes 

were differentially expressed upon Notch activation, some showing early upregulation, 

reaching a peak around 20 minutes, others late upregulation and few being 

downregulated. In summary, a feed-forward loop in Notch activation was proposed to 

explain this behavior and reiterates the need to investigate the dynamics of the 

pathway. 

In the Drosophila wing disc, using a temperature sensitive Notch allele, preliminary 

insights could be gained into the dose sensitivity of Notch dependent processes, 

although the perturbation was in the time-range of 24 to 48 hours, using temperature 

sensitive alleles. Low levels of Notch were found to be sufficient to maintain the DV 

boundary, however with regard to Notch target genes activated at the boundary, some 
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genes had a higher threshold than others (Cut more than Wg) (Becam and Milán, 

2008). In human hematopoetic precursor cells, the density of Notch ligands is 

important in determining fate outcome (Dallas et al., 2005).  

In light of these observations, several aspects of Notch signalling remain poorly 

understood in an endogenous context in vivo. Once Notch is cleaved and enters the 

nucleus, how does it activate gene expression? A quantitative study of the input-output 

relationship is needed to understand whether dynamically changing levels of Notch or 

the duration of the signal are important in determining target gene activation. How 

these dynamics could influence processes at the tissue level, for instance during 

boundary formation or lateral inhibition is another outstanding question. 

 

1.5 Drosophila melanogaster embryogenesis as a model system to study 
Notch 
 

 

Drosophila provides an excellent system to study mechanisms governing 

development due to its fast lifespan, small chromosome number and the wide 

repertoire of genetic manipulations that can be carried out with relative ease. 

As mentioned in the previous section, Notch and Delta were first identified in 

Drosophila from dominant mutations that gave rise to characteristic phenotypes in the 

adult wing morphology. Embryos that are homozygous deficient for Notch (and/or) 

Delta do not hatch into larvae. Notch signalling plays a key role in neurogenesis during 

embryonic development and mutants in any of the upstream activating components in 

the pathway give rise to neural tissue at expense of ventral epidermis, severely 

compromising ventral cuticle secretion (Nüsslein-volhard and Wieschaus, 1980; 

Poulson, 1937).   
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Notch signalling has been extensively studied in various processes including SOP 

specification in the pupal Notum (See section 1.3.2), bristle cell-lineage specification 

(Heitzler and Simpson, 1991), DV boundary formation in the wing disc (Becam and 

Milán, 2008) and intestinal stem cell differentiation (Ohlstein and Spradling, 2007). In 

the context of this thesis, I will focus on greater detail on Notch signalling during 

mesectoderm specification in the early embryo.   

 

1.5.1 Early embryonic development  
 

 

Upon fertilization of the Drosophila egg, the zygote nucleus undergoes several rounds 

of rapid and synchronous mitotic divisions in a common cytoplasm, resulting in a 

syncytial blastoderm (Foe and Alberts, 1983). These nuclear divisions are 

characterized by consecutive S and M phases of the cell cycle, with the absence of a 

G phase. By the 10th cycle of nuclear division, most of the nuclei migrate to the 

periphery of the egg and undergo three more division cycles as a syncytium. During 

the interphase of the following nuclear division cycle (cycle 14), cellularization occurs. 

Cellularization is the process during which the embryonic cell membrane ingresses 

between the nuclei at the periphery, resulting in a cellular blastoderm of approximately 

6000 cells surrounding a central yolk (Mazumdar and Mazumdar, 2002). 

Cellularization lasts for approximately 50 minutes at 25 C and occurs in two phases. 

There is an initial slow phase, during which the cell membrane invaginates between 

the cortical nuclei and grows inwards in a process mediated by microtubules and actin-

filaments. Once the cellularization front reaches the base of the nuclei, the fast phase 

begins, during which the rate of ingression increases and the actomyosin contractile 

network organizes into interconnected rings that eventually constrict to form the base 

of the cells. The end of cellularization coincides with the beginning of gastrulation 
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movements in the early embryo, when the different germ layers start to be segregated. 

A series of cell shape changes in the ventral cells eventually results in the invagination 

of the presumptive mesoderm, creating the ventral furrow (Sweeton et al., 1991). 

 

There are two sets of genes responsible for patterning the embryo - maternal and 

zygotic. Maternal genes are expressed in the female during oogenesis and form the 

components of embryonic patterning that are already present in the egg. Zygotic 

genes are transcribed in the early embryo from cycle 10 onwards. 

Cycle 14 is also the stage when Zygotic gene transcription is significantly increased 

and the maternal mRNAs are concomitantly degraded. This is referred to as the 

maternal to Zygotic transition (MZT) (De Renzis et al., 2007). The main factors 

regulating this precisely timed process of MZT are the DNA/Cytoplasm (n/c) ratio, and 

proteins Smaug and Zelda. While the exact mechanisms by which the embryo 

measures the n/c ratio are still under investigation, the proteins Smaug and Zelda 

which are encoded by maternal mRNA, function by degrading maternal mRNAs and 

activating the zygotic genome respectively (Benoit et al., 2009; Harrison et al., 2011). 

These zygotic genes determine the spatiotemporal patterning of the blastodermal 

embryo along both the DV and AP axes. Many of these genes that pattern the 

Drosophila body plan were identified from the Heidelberg mutagenesis screen 

(Nüsslein-volhard and Wieschaus, 1980) mentioned in section 1.1.2, based on 

observed phenotypes of cuticle patterning in the embryo and other defects during 

morphogenesis. 
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1.5.2 AP patterning 
 

 

AP polarity is predetermined and initiated by maternal gene transcripts that are 

localized to different regions of the egg/oocyte, most important of them being, bicoid 

and nanos which define anterior and posterior identity respectively. The proteins 

encoded by these transcripts later activate a series of zygotic genes that determine 

the formation of different segments along this axis – these are gap genes (eg. Giant, 

Knirps), pair rule genes (eg. Even-skipped, Hairy), segment polarity genes (eg. Hh, 

Wg) and homeotic genes (eg. Bithorax, Antennapedia) (van Eeden and St Johnston, 

1999).   

 

1.5.3 DV patterning  
 

 

Many of the genes corresponding to the patterning along the DV axis were identified 

from early gastrulation defects in embryos. The Dorsal protein which is encoded by 

maternally deposited mRNAs in the oocyte plays a pioneering role in determining and 

establishing the DV axis. Dorsal acts as both a morphogen and transcription factor; 

although deposited everywhere, its nuclear translocation is tightly regulated in a 

ventral to dorsal gradient by Toll signalling (Reeves and Stathopoulos, 2009). Thus, 

Dorsal enters the nucleus only in ventral cells to turn on ventral fate determining genes 

(Fig. 5B), with mutations giving rise to entirely dorsalized phenotype evident from the 

cuticular exoskeleton. 

The concentration of Dorsal in the nucleus determines the fate of cells in the early 

blastodermal embryo. Consequently, the embryo is divided into the following domains 

– presumptive mesoderm, mesectoderm, neurectoderm, dorsal ectoderm and 

amnioserosa. The 16 ventral most cells with the highest dorsal concentration become 
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the mesoderm that later gives rise to muscles and other internal organs. The zygotic 

genes Snail and Twist are important targets of Dorsal and specify mesodermal fate 

and are important for initiating gastrulation movements (Leptin, 1991). Snail mainly 

acts as a repressor of many ectodermal genes, while Twist activates mesoderm 

specific genes, and thus act in synchrony. Intermediate nuclear levels of Dorsal in the 

lateral ectoderm induce genes like Sim and rhomboid that along with other inputs, 

define the single-cell wide mesectoderm and the adjoining neurectoderm. These target 

genes are repressed ventrally by Snail. This tissue gives rise to the cells comprising 

the CNS/ ventral nerve cord and the epidermis that can be identified in the cuticle. 

Absence of nuclear Dorsal in the dorsal side of the embryo allows the expression of 

genes such as Dpp and Zen, which enable dorsal fates of cells that give rise to the 

amnioserosa tissue (Morisato and Anderson, 1995) (Fig. 5A).  

 

 

Figure 5: Patterning of the early Drosophila embryo along the DV axis 

(A) Cell fates along the DV axis in an embryo at nuclear cycle 14. The ventral-most cells 

receive the highest concentration of the Dorsal protein in the nucleus (antibody-staining in 

(B)) and become the mesoderm. Lateral cells that receive intermediate Dorsal become the 

neurectoderm, while further Dorsal cells that receive almost no Dorsal activation adopt 

lateral ectoderm, dorsal ectoderm and amnioserosa fates. Figure adapted from Gilbert, S.F., 

Developmental Biology. 10th edition. 
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1.5.4 Notch signalling during mesectoderm specification 
 

 

Mesectoderm specification during cellularization provides a convenient system to 

study Notch signalling owing to the precise onset of its activation and the short duration 

of signalling (1 hour). In the early embryo, prior to cellularization, Notch and Delta are 

both maternally encoded and ubiquitously distributed at the plasma membrane. The 

maternal contribution is thought to be sufficient to perform most of their roles in early 

embryogenesis (Cowden and Levine, 2002). Notch signalling is important for the 

activation of mesectodermal genes, specifically of interest in this study is the notch-

dependent zygotic transcription of Single-minded (Sim), whose expression is 

restricted to single cell wide stripes flanking either side of the mesoderm (Cowden and 

Levine, 2002; Morel and Schweisguth, 2000). Notch signalling is activated right at the 

beginning of cellularization leading to all the mesectodermal cells expressing sim prior 

to the onset of gastrulation. How is this extremely precise spatial and temporal 

activation of sim achieved?  

Zygotic activation of majority of the genes starts at the beginning of cellularization and 

this provides the opportunity for regulation of signalling and its precise activation. The 

two zygotic genes, Snail and Neuralized (Neur) play critical roles in activating 

signalling and positioning Notch activity in single rows of cells. The transcription factor 

Snail, as mentioned previously, is required for mesoderm specification and its 

expression is tightly restricted to cells that internalize during ventral-furrow formation. 

Snail specifies the boundary at which Notch signalling occurs by the following 

mechanism. First, it autonomously represses Notch targets in the mesoderm. Second, 

it non-autonomously relieves the Su(H) dependent repression of Sim in the 

mesectoderm by the activation of Notch (Ip et al., 1992; Morel et al., 2003).  
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This non-autonomous activation of Notch is achieved indirectly via the activation of 

another essential zygotic gene, Neur. Neur ecodes a RING E3 ubiquitin ligase that is 

essential for Delta trafficking. Neur marks Delta for internalization by ubiquitination and 

targets it to endocytic vesicles starting few minutes after the onset of cellularization. 

The activity of Neur is strictly restricted to the mesoderm due to the presence of 

inhibitors (belonging to the Bearded family of proteins) in the ectoderm, which are 

directly repressed by Snail specifically in the mesoderm (Bardin and Schweisguth, 

2006; De Renzis et al., 2006). This results in the mesoderm-specific endocytosis of 

Delta along with trans-endocytosis of the Notch extra cellular domain (NECD), leading 

to the activation of Notch in the immediately neighbouring cells comprising the 

mesectoderm (Fig. 6). Previous in situ hybridization data has shown that despite 

Notch activation shortly after the onset of cellularization, sim transcripts are only 

detected approximately 40 min. into cellularization (Cowden and Levine, 2002; Morel 

and Schweisguth, 2000). The reason for this delay in sim expression is unclear. 

Apart from the activation by Notch, both Dorsal and its target gene Twist act as co-

acivators of Sim in the mesectoderm – Sim contains both Dorsal and twist binding 

sites in its 5’ regulatory region (Kasai et al., 1998).  As both Dorsal and Twist domains 

extend few cells wider than the mesoderm boundary marked by Snail, in gain-of-

function mutants expressing Notch ubiquitously, sim expression is extended to a 3-4 

cell wide domain flanking the mesoderm (Cowden and Levine, 2002).   
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Post gastrulation, both rows of sim expressing cells merge together to form the ventral  

midline cells. Sim encodes a transcription factor that is a key master-regulator of other 

genes that specify central nervous system (CNS) ventral midline cell fate. These cells 

later give rise to midline neurons and glia (Kasai et al., 1998). 

 

Figure 6: Notch activation in the mesoderm and restriction of sim to single-cell wide 
mesectoderm.  

(A-B) Transverse section of an embryo at the end of cellularization and immunostained for 

Delta, showing polarized trafficking of Delta along the D-V axis (top to bottom). Magnified 

inset (B) showing Delta localized to intracellular vesicles in the mesodermal cells (between 

the arrows in (A)).  

(C) Ventral view of the embryo. Mesoderm restricted trafficking of Delta results in Notch 

activation in single rows of cells flanking the mesoderm (mesectoderm) and the expression 

of Notch target-gene sim.  

(D) Schematic representing the factors influencing the positioning of Notch signalling in the 

embryo. Neuralized (Neur) that activates Delta endocytosis, is inhibited by the Bearded 

(Brd) family of proteins in the ectoderm (red). Mesodermal transcription factor Snail relieves 

this repression, resulting in Delta endocytosis and the precise activation of Notch. sim 

expression is inhibited by Snail in the mesoderm, restricting its expression in response to 

Notch activation in the mesectoderm. 

Figure panels (A), (B) were adapted with permission from (De Renzis et al., 2006), panel 

(D) was adapted with permission from (Bardin and Schweisguth, 2006). (see Appendix) 
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Apart from Sim, the genes M5 and M8 are other direct targets of Notch in the 

mesectoderm. These targets belong to the E(Spl) family of genes and encode 

transcriptional repressors that suppress neurogenesis (Lecourtois and Schweisguth, 

1995).  

 

1.6 Tools to manipulate signalling  
 

 

Signalling pathways can operate over timescales of few seconds to several days 

depending on the tissue and the organism. Choosing the appropriate time scale for 

studying processes is essential to capture all dynamic events taking place downstream 

of signal activation. For example, processes such as ion transport and calcium 

signalling can take seconds, protein production can take several minutes to hours and 

changes in cell fate can even take place over several days (Doupé and Perrimon, 

2014; Purvis and Lahav, 2013). Recent studies in cell culture have shown that 

signalling dynamics on the timescale of a few seconds to minutes can be sufficient to 

generate distinct responses (Toettcher et al., 2013). This necessitates the use of 

appropriate tools to first manipulate signalling pathways in a dynamic fashion and 

simultaneous techniques to visualize their immediate activity. Due to limitations in tools 

to manipulate signals in vivo at the relevant spatio-temporal scale, it has been 

challenging to study the impact of signal dynamics. Much of our current understanding 

in vivo is from studies where signalling has been perturbed over relatively long 

timescales. Common current methods for signalling pathway activation or inactivation 

include mutations, knockout or knockdown approaches, and tissue-specific 

expression tools like the GAL4/UAS system based genetic approaches (Duffy, 2002).  

While classical mutations work in a black or white fashion, only providing information 

whether a gene plays a role in a particular process or not, the other mentioned 
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methods take several minutes or hours to operate making it extremely difficult to 

identify the exact time-point of activation or inhibition of the pathway.  

While temperature-sensitive alleles that exist for several genes in Drosophila provide 

a superior mode of manipulation compared to the above mentioned techniques in 

terms of specificity, it still occurs over a timescale of several minutes, and does not 

allow spatial perturbation (López-Schier and St. Johnston, 2001). 

Recent methods including microfluidics make it possible to administer chemicals or 

drugs to cells or tissues in culture in a dynamic fashion (Sonnen et al., 2018). However, 

this still remains a challenge in vivo where potentially invasive techniques like 

injections are required, in addition to the common challenges of using chemicals, like 

non-specificity and diffusibility. 

 

1.6.1 Optogenetics as a precise manipulation tool 
 

Optogenetics is a tool combining optics and genetics, that, making use of small protein 

tags that change their conformation specifically when exposed to light, allows the 

manipulation of proteins of interest that are fused to them. Optogenetics was initially 

developed as a tool to control neuronal function by activating or inhibiting 

photosensitive ion channels and thereby individual neurons (Boyden et al., 2005). 

Recent studies have successfully applied various optogenetic systems to regulate 

signal transduction and morphogenetic processes during animal development 

(Guglielmi et al., 2016; Izquierdo et al., 2018; Johnson et al., 2017; Sako et al., 2016).  

Light, representing an ideal stimulus that can be manipulated dynamically, provides 

us with an excellent tool to acutely perturb signalling with sub-cellular specificity and 

precision on the seconds to minutes scale during development. It allows a tunable 
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control over protein activity by modulating the frequency or extent of protein 

interactions/activity by controlling the duration or power of the light input. 

This can facilitate the uncovering of dynamic behaviours that were cryptic previously. 

In non-neuronal contexts, optogenetic systems are generally based on photoreceptor 

domains that upon a light stimulus undergo dimerization/oligomerization or uncaging. 

These photosensitive domains have been derived from orthogonal systems like plants 

or bacteria, enabling their use in animals without interfering with the endogenous 

protein machinery. Once the appropriate optogenetic tag is fused to the protein-of-

interest, light can be used to either change the intracellular-localization, binding 

partners or oligomerization state of the protein, thus affecting its function.  

I will provide an overview of two commonly used photoreceptor proteins/ domains that 

have been exploited create various optogenetic tools – Cryptochromes (CRY) and the 

Light-oxygen-voltage-sensing domain (LOV).  

 

Cryptochrome (CRY2) 

CRY2 is a photoreceptor derived from Arabidopsis thaliana and it responds to 

wavelengths in the blue region of the visual spectrum. It requires the molecule Flavin 

adenine dinucleotide (FAD) as a cofactor, which is naturally present in most animals, 

and upon photoactivation, undergoes photoisomerization. In this activated state, 

CRY2 can either bind to its partner, CIBN, the N-terminal fragment of the protein CIB1 

(Kennedy et al., 2010), or homo-oligomerize with itself (Bugaj et al., 2013) (Fig. 7A, 

B). The former property is useful to control the localization of a target protein fused 

with CRY2 by anchoring CIBN at an intracellular location. This has been recently used 

to synthetically control gastrulation movements in the early Drosophila embryo and 

uncover new principles that were previously unknown (Izquierdo et al., 2018). The use 
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of two-photon illumination for activating CRY2 has given rise to the possibility of 

manipulating proteins with sub-cellular precision (Guglielmi et al., 2015).   

The homo-oligomerization property of CRY2 is especially enhanced when proteins are 

already distributed at higher spatial density in the plasma-membrane or in cellular 

organelles. Positive regulation can be brought about by locally increasing protein 

concentration, while in other cases, this can result in inhibition sterically blocking 

protein-protein interactions.  

 

Light-oxygen-voltage-sensing (LOV) domain 

The LOV photoreceptor domain is found in a large number of organisms ranging from 

bacteria to plants. Upon blue light illumination, covalent bond formation between an 

amino-acid in the LOV core domain and the Flavin cofactor triggers a conformational 

change resulting in the unfolding of its C-terminal J-alpha helix (Pudasaini et al., 2015). 

This has been exploited to unmask catalytic domains or signal-peptides conditionally 

and reversibly upon photoactivation and has resulted in the development of several 

optogenetic caging/ uncaging systems that result in changing the protein’s localization 

or activity (Niopek et al., 2014a; Wu et al., 2009) (Fig. 7C).  

LOV domains have also been exploited to make hetero-dimerizing systems (iLIDs ) 

using which one can tune the binding and dissociation kinetics using different available 

mutants for the LOV domain (Guntas et al., 2015; Strickland et al., 2012). This tool 

has been employed to study signalling in vivo (Johnson et al., 2017).  

Recently, one of the first optogenetic tools for photoinduced protein dissociation was 

developed, called LOVTRAP (LOV2 trap and release of protein) (Wang et al., 2016).   

LOVTRAP has been employed successfully to induce cell edge protrusion and 

retraction by restricting the access of key signalling molecules to the cell edge. 
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Figure 7: Optogenetic systems and their application to control cellular processes 
with light 

(A) Schematic representing the CRY2-CIB1 heterodimerization system. Two protein 

interacting partners fused with CRY2 and CIB1 interact upon blue light illumination via 

CRY2-CIB1 dimerization. 

(B) Schematic representing CRY2-CRY2 homo-oligomerization. A protein-of-interest fused 

to CRY2 can form homomeric clusters as a result of CRY-CRY2 interactions upon photo-

activation, especially when expressed alone. 

(C) Schematic representing the conformational change of the AsLOV2 domain upon photo-

activation. A protein-of-interest fused to the C-terminal J-alpha helix of the LOV2 domain is 

caged in the dark owing to the closed conformation, and is released upon blue light photo-

activation. 

(D) Application of optogenetics to control cellular functions by patterned illumination of 

tissues. Optogenetic activation can be applied to drive behaviours like cell migration, 
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This tool makes use of two components - the LOV2 light sensor domain from Avena 

Sativa Phototropin 1 and a small protein called Zdark (Zdk) that is based on the Z 

domain of the immunoglobulin-binding Staphylococcal protein A. Zdk is able to 

selectively bind to the dark state of the LOV2 domain. Hence the strategy used was to 

anchor one of these components at an intracellular location where the protein of 

interest would not function, and fuse the protein of interest with the other component. 

In the dark, the protein is sequestered from its region of activity and upon 

photoactivation with blue light, it is released to its site of action. The fast activation 

kinetics (few seconds) and reversibility kinetics (< 1 min.) make it a potentially useful 

tool for in vivo applications. 

 

1.7 Methods to readout dynamic signalling activity 
 

 

Apart from perturbation tools, there is need for fast and quantitative reporters as a 

readout of signalling dynamics. Traditional techniques have been to use fluorescent-

tagged protein reporters in order to get a quantitative readout or combine them with 

techniques like FRET. The downside of this technique is the long time period taken for 

protein-folding and maturation of the fluorophore, whereby primary effects can be 

missed (Doupé and Perrimon, 2014). The use of destabilised fluorescent reporters of 

YFP or luciferace was efficient to study dynamics of signalling oscillations in the mouse 

embryo, however, this compromised the sensitivity (Masamizu et al., 2006).  

modulate signalling, induce/inhibit acto-myosin contractions, activate programmed cell 

death or differentiation, and understand them in a tissue-wide context. 

Figure panels (A-C) were adapted from https://www.optobase.org/ (Kolar et al., 2018) and 

panel (D) from (Guglielmi et al., 2016).   

https://www.optobase.org/
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Tracking transcriptional responses provides possibly the quickest way to monitor 

downstream signalling activity and delineate immediate responses. While quantitative 

RT-PCR and RNA seq. techniques have been used to track changes in few minutes 

scale, in an in vivo context, assigning cell types to these different responses is 

extremely difficult (Housden et al., 2013). A quantitative measure of immediate 

transcription within nuclear loci can be provided using Fluorescent-in-situ-hybridization 

(FISH) coupled with high-resolution imaging (Gaspar and Ephrussi). However, 

dynamic information is lost, as this technique is for fixed samples. 

 

1.7.1 Live transcription reporters 
 

 

As an immediate readout for signalling, a fluorescent-based tool for detection of 

nascent mRNA has been developed, thus serving as a real-time transcriptional 

reporter.  

This system is based on the interaction between a fluorescently MS2 coat protein 

(MCP) and the phage MS2 stem loops incorporated in the 5’ or 3’ UTR of the mRNA 

of interest (Weil et al., 2010) (Fig. 8). MCP-GFP interacts with the nascent MS2 tagged 

transcripts to produce bright spots of fluorescence in the nuclei. Overall, this enables 

an immediate recording of transcriptional events in addition to providing a quantitative 

measure of signalling activity, carrying information about whether the nucleus is 

actively transcribing and the amount of transcript being produced at that particular 

instant. 

This technique has been previously used in oocytes to study transport of maternal 

mRNA (Halstead et al., 2015) and recently in many studies to study transcriptional 

dynamics and enhancer properties especially in the context of the early Drosophila 

embryo (Bothma et al., 2014, 2015). 
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Figure 8: Real time quantitative transcriptional reporter.  

Schematic representation of the MCP-MS2 system for visualizing live transcription of 

mRNA. This system consists of two components – the mRNA to be visualized, tagged with 

MS2 stem loop repeats at its 5’or 3’end, and fluorescently labelled MCP protein (eg. MCP-

GFP) that specifically binds to the MS2 RNA stem loops. This results in the ability to 

visualize nascent transcripts as bright spots of fluorescence in the nucleus. 

Figure adapted with permission from (Dictenberg, 2012) (see Appendix).   
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2. Aim  

 

Increasing number studies are shedding light on the importance of dynamic regulation 

of signalling pathways in encoding information to control complex motifs of patterning, 

growth and morphogenesis during development. Inability to manipulate protein activity 

with high spatio-temporal precision has made it difficult to study dynamic input-output 

relationships of signalling pathways. How dynamic information is utilized to interpret 

and co-ordinate cell fate changes at the cell and tissue level during development is 

incompletely understood.  

In this thesis I describe the experiments I have conducted to study what kind of 

information is encoded into a dynamic signalling system in vivo during organismal 

development. I have developed tools to manipulate signalling components and track 

gene expression changes with sub-minute temporal precision and cellular resolution. 

In particular I focused on activation of the Notch signalling pathway, which is seemingly 

simplistic with linear transfer of information from the plasma membrane to the nucleus 

within minutes. I develop real-time, quantitative approaches to perturb endogenous 

Notch signalling and monitor transcriptional responses of target genes during 

mesectoderm specification using the early Drosophila embryo as a model system. I 

addressed the following questions: do Notch targets exhibit a linear or threshold 

response to increasing amounts of signal? Is Notch required in a continuous manner 

over time or are there specific intervals of signalling necessary to activate targets 

genes? Is the competence of cells to generate a response determined by the 

cumulative amount of processed Notch?   
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3. Results  

 

3A. Results – part 1 

 

 

3A.1 Opto-Delta - a tool to inhibit Notch signalling by light induced delta 
clustering 
 

3A.1.1 Tagging of the endogenous Delta locus 
 

 

In order to investigate the dynamic aspects of Notch signalling, I developed an 

optogenetic tool to acutely block signalling for definite periods of time during 

development. I focused on the Notch ligand Delta, which is the most upstream 

component of the pathway, with the aim to regulate its endogenous localization and 

function at the plasma membrane and thus affect Notch activation. 

For this, I collaborated with a colleague in the lab, Aleksander Necakov to generate 

an endogenously tagged, functional optogenetic allele of Delta (opto-Delta). The 

following strategy was used to generate a Delta landing line that could be used to 

insert multiple tags. A ϕC31 recombinase-landing site was introduced in the Delta 

locus, replacing a large part of the sequence coding for Delta. The resulting line, which 

was heterozygous for the Delta mutation, acted as an acceptor line to systematically 

screen for the insertion of donor constructs carrying a cognate attB recombination 

sequence (Huang et al., 2009) (Fig. 9A). Using sequence conservation and linear motif 

analysis, an intra-molecular poly-alanine rich region in the intracellular domain of Delta 

(aa 701) was located, which was neither conserved nor predicted to reside in a known 

folding domain (Dinkel et al., 2016). This was identified as a potential site for tagging, 

as the insertion of an intramolecular GFP tag in this region resulted in fully viable 
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Delta::GFP homozygous flies, with one copy of Delta::GFP capable of rescuing a Delta 

deficiency in trans. The same strategy was used to design opto-Delta constructs.   

 

3A.1.2 Optogenetic system employed 
 

 

The Chrypotochrome based CRY2/CIB1 heterodimerizing system was employed in 

order to optogentically tag Delta. This system had already been successfully exploited 

by our lab to control protein-protein interactions during Drosophila morphogenesis. 

As mentioned in section 1.6.1, upon blue light photo-activation, apart from being able 

to bind to its partner CIB1, CRY2 undergoes homo-oligomerization, particularly when 

expressed on its own (Bugaj et al., 2013). Delta::CRY2 could thus potentially serve as 

a single component based optogenetic system to induce clustering of Delta in the 

membrane and potentially interfere with the stoichiometry of endogenous Delta/Notch 

complexes or the conformation of Delta molecules at the plasma membrane. 

A series of CRY2 tagged constructs were generated, either with a CRY2 tag alone 

(CRY2-PHR, residues 1-498) (Delta::CRY2), or a CRY2 tag fused to EGFP 

(Delta::CRY2::GFP) or tag-RFP (Delta::CRY2::RFP). Additionally, a CRY2 variant with 

an enhanced capability for oligomerization, CRY2-olig (Delta::CRY2-olig) (Taslimi et 

al., 2014), and CIBN (a CIB1 construct without the C-terminal nuclear localizing signal 

(Delta::CIBN) were also used to generate constructs (Fig. 9A-C). These constructs 

were injected into the Delta landing line described in the previous section and the 

generated lines were screened for viable homozygous flies when raised without light 

exposure. Of all the constructs, only Delta::CRY2 and Delta::CIBN gave rise to fully 

viable and fertile homozygous flies, while Delta::CRY2::GFP, Delta::CRY2::RFP, and 

Delta::CRY2-olig homozygous flies were less frequent and exhibited lesser fertility. 
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This could be due to the addition of two large tags (~ 35 kDa each) that could either 

affect the protein folding or increase the dark state activity of the CRY2-olig tag. 

 

Figure 9: Endogenous optogenetic tagging of Delta  

(A-C) Schematic illustrating the strategy used to generate a functional optogenetic-tagged 

allele of the Notch ligand Delta. (A) Gene structure of the Delta locus, green and grey bars 

represent exons and 5’/3’ UTRs, respectively. Exons 1 to 6 are shown in green, 5’ and 3’ in 

grey, homology arms are highlighted in pink, and recombination sites are indicated by red 

lines. Homologous recombination was used to replace a large portion of the Delta locus 

between the intron preceding exon 6 to a region downstream of the transcriptional stop site, 

through knock-in of an attP landing site and a loxP-flanked mini-white cassette. attP knock-

in founder lines were identified as red-eyed transformants. Cre recombinase was 

subsequently used to remove the mini-white cassette, resulting in white-eyed flies. Delta-

attP white-eyed founder lines were then transformed with attB rescue construct vectors 

carrying an attB recombinase binding site upstream of the genomic Delta sequence (B), 

along with incorporated sequences coding for a variety of tags inserted into an 11 amino 

acid polyalanine sequence in the intracellular domain of Delta (amino acid 701). (C) position 

of the different tags with respect to the Delta protein sequence and its orientation in the 

plasma membrane. 
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3A.1.3 Characterization of light-induced phenotypes during development 
 

 

Rearing Delta::CRY2 homozygous (opto-Delta) flies in ambient light conditions made 

them develop severe phenotypes that were characteristic of deficient Notch signalling. 

These phenotypes were evident during larval and pupal development (Fig. 10A-N) and 

included a loss of wing vein margins, a characteristic Delta wing phenotype (Klein and 

Arias, 1998) (Fig. 10A-D), increased density of bristles in the adult notum (Mummery-

Widmer et al., 2009) (Fig. 10E-H), and modified eye morphology (Cagan and Ready, 

1989) (Fig. 2I-L). Consistently, constant illumination under a dissecting microscope 

resulted in lack of embryo hatching and a bald embryonic cuticle phenotype, which is 

a hallmark of deficient Notch signalling (Nüsslein-volhard and Wieschaus, 1980; 

Poulson, 1937)(Poulson, 1937)(Fig. 10M-N). During embryogenesis, compromised 

Notch signalling results in an increased number of cells with neuronal cell fate as 

compared to ectodermal cells. As the ectodermal cells are responsible for cuticle 

secretion, the phenotype observed is a lack of cuticle, while the other structures like 

anal plate and mouth hooks remain unaffected (Nüsslein-volhard and Wieschaus, 

1980). Furthermore, opto-Delta flies grown under light had comparatively severe wing, 

eye and cuticle phenotypes than their Delta heterozygous counterparts, suggesting 

that Delta activity was compromised to an extent of 50% or more (Fig. 10O-W).  

 

This figure (including legend) was generated by Aleksander Necakov and is part of the 

submitted manuscript “Optogenetic inhibition of Delta reveals digital Notch signalling output 

during tissue differentiation” (see Appendix) 
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Figure 10: opto-Delta activation results in inhibition of Notch signalling during 
different developmental stages. 

(A-N) Flies homozygous for Delta::CRY2 are viable and fertile, and exhibit light-gated 

control of Notch signalling during development. Homozygous Delta::CRY2 flies raised in the 
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3A.1.4 Characterizing the mechanism of Notch signalling inhibition by opto-
Delta 
 

 

In order to characterize the mechanisms behind the loss of opto-Delta activity upon 

photo-activation, I recorded the dynamics of Delta and correspondingly, Notch 

activation in the early embryo. During early embryogenesis, Delta is uniformly 

distributed at the plasma membrane and undergoes mesoderm specific endocytosis 

that is activated by Neuralized during early cycle 14 (Bardin and Schweisguth, 2006; 

De Renzis et al., 2006). As detailed in section 1.5.4, this gives rise to the activation of 

Notch in the mesectoderm and resulting in the expression of target gene single-

minded (sim) in single stripes of cells adjoining the ventral mesoderm (Cowden and 

dark exhibit only a mild Delta phenotype in the terminal tips of the wing (A, B-magnified 

view). Otherwise, these flies exhibit normal patterning and morphology in tissues including 

the notum (E, F-magnified view), the eye (I, J-magnified view), and the embryo (M). In 

contrast, Delta::CRY2 flies reared in the light exhibit Delta loss-of-function phenotypes, 

which include thickening of the wing veins (C, D -magnified view), an increase in 

microchaeta in the notum (G, H-magnified view), disorganization of the ommatidia (K, L-

magnified view), and loss of denticle belt patterning in the embryo (N). Scale bars, 250 m 

in F and 100 m in G, K, N. 

(O-W) Benchmarking of light-induced loss-of-function phenotypes in Delta::CRY2 flies. 

Delta::CRY2 flies reared in the light exhibit more severe Delta loss-of-function phenotypes 

compared to Delta heterozygotes. This is evident from the loss of denticle belt patterning in 

the embryonic cuticle (Q), disorganization of the ommatidia (T),  and thickening of the wing 

veins (W) when compared to the Delta heterozygous counterparts where the denticle belt 

patterning is unaffected (P), and the ommatidia (S) and wing venation (V) phenotypes are 

milder. Corresponding wildtype cuticle, eye and wing are depicted in panels (O), (R) and (U) 

respectively. This suggests that the activity of Delta is compromised by at least more than 

50% in Delta::CRY2 flies upon photo-activation. Scale bars, 100 µm in (Q) and (T), and 250 

µm in (W).  

This figure (including legend) was generated by me and is part of the submitted manuscript 

“Optogenetic inhibition of Delta reveals digital Notch signalling output during tissue 

differentiation” (see Appendix) 
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Levine, 2002). In order to observe the light-responsive behaviour of opto-Delta, I 

imaged embryos heterozygous for Delta::CRY2::GFP (Delta::CRY2::GFP) as a 

representative for Delta::CRY2.  

 

Figure 11: opto-Delta undergoes rapid plasma membrane light-induced 
oligmerization. 

(A) Schematic illustrating the oligomerization of opto-Delta molecules at the plasma 

membrane upon photo-activation with blue light.  

(B) Snapshots from confocal live imaging movies of Delta::GFP::CRY2 embryos (ectoderm 

stage 5) at the onset of photo-activation (T0) or after 60 s and 120 s at 2 s intervals (= 488 

nm, 0.6 mW). Scale bar, 10 µm.  

(C) The kinetics of light-induced opto-Delta clustering were quantified in the ectoderm of 

Delta::EGFP::CRY2 embryos. Data was collected using confocal live imaging at 2 s intervals 
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(= 488 nm, 0.6 mW) and the relative intensity of Delta::GFP::CRY2 clusters in three 

embryos (n=3, 100 cells) was quantified over time using a custom-built image analysis 

pipeline developed in Cell profiler. Relative intensity of Delta clusters is shown over time 

(red line), with standard deviation between replicates highlighted in pink.  

(D-G) Immunostaining of Delta::CRY2 embryos using an anti-Delta antibody (green) at the 

end of cellularization in embryos fixed in the dark (D-E) or after batch photo-activation as 

described in Material and Methods (F-G). Panels display max. intensity z-projections of 10 

slices at a z-interval of 0.7 m. Magnified insets in (D, F) show the localization of 

Delta::CRY2 in the ectoderm in the dark (D) and after photo-activation (F). Embryos were 

co-stained with an anti-Tom antibody (E, G) in order to mark the ectoderm-mesoderm 

boundary. Delta::CRY2 protein clustered in the ectoderm and was normally internalized in 

the mesoderm. 

This figure (including legend) was generated by me and is part of the submitted manuscript 

“Optogenetic inhibition of Delta reveals digital Notch signalling output during tissue 

differentiation” (see Appendix). Panel (C) was generated by me in collaboration with Rohit 

Krishnan Harish.  

   

While in the initial frame of acquisition using the 488 nm laser, a uniform localization 

in the plasma membrane was observed (<1 s), after few acquisition time-points (t ½ 

~40 s) (Fig. 11A-C) Delta::CRY2::GFP displayed rapid reorganization into plasma 

membrane clusters. These Delta clusters underwent normal internalization in the 

mesoderm, and were retained on the ectodermal plasma membrane (Fig. 11D-G), 

indicating that neuralized dependant ubiquitination and Delta endocytosis were 

unaffected.  

 

To further confirm this result, I quantified Delta plasma membrane levels in opto-

Delta embryos, and this showed a ~70% decrease in the mesoderm with respect to 

the ectoderm in both the dark and photo-activated conditions (Fig. 12A-C). 

Quantification of the plasma membrane to cytoplasmic ratio of Delta in the 

mesoderm also displayed no significant change between the dark and photo-
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Figure 12:  Light induced Delta clustering does not affect Delta trafficking in the 
mesoderm. 

(A-C) Plasma membrane segmentation of Delta::CRY2 embryos immunostained with anti-

Delta (red) and anti-Cadherin (used for plasma membrane segmentation, white) antibodies at 

the end of cellularization, in embryos fixed in the dark (A) or after batch photo-activation (B). 

Panels display single confocal zslices. Magnified insets in (A, B) show Delta cytoplasmic 

vesicles in the mesoderm that are excluded from the plasma membrane segmentation. Plot 

(C) shows the quantification of Delta plasma membrane levels in the ectoderm and mesoderm 

in both dark and photo-activated conditions. In both cases, Delta plasma membrane levels 

activated conditions (Fig. 12D). I also imaged the trafficking of opto-Delta in embryos 

expressing the early endosome marker Rab5, and this revealed a ~75% 

colocalization between Delta and Rab-5 positive vesicles in wildtype and opto-Delta 

(both dark and photo-activated) embryos (Fig. 12E-H). In summary, these results 

show evidence that Delta clustering does not affect the normal mechanisms 

underlying Delta trafficking (ubiquitination and internalization) in the mesoderm.  
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were depleted by ~70% in the mesoderm compared to the ectoderm. No significant difference 

was observed when comparing ectodermal or mesodermal Delta plasma membrane levels 

with or without photoactivation, indicating that Delta was normally depleted in both conditions. 

N= 7 embryos for both dark and photo-activation, n.s. represents no statistically significant 

difference in a 2-sample t-test. Scale bars, 20 μm (A, B)  

(D) Plot depicting the cytoplasm to membrane ratio of Delta in the mesoderm, both in the dark 

and upon photo-activation. No significant difference was observed between both conditions. 

N= 7 embryos for both dark and photoactivation, n= ~40 cells/embryo. n.s. represents no 

statistically significant difference in a 2-sample t-test. 

(E-H) The extent of colocalization of Delta-positive vesicles with the early endosomal marker 

Rab5 did not change upon light induced Delta-clustering. Single confocal z-slices of 

Rab5::GFP (E), Rab5::GFP in a Delta::CRY2 homozygous background embryos either fixed 

in the dark (F) or after batch photo-activation (G). In all panels Delta was visualized by 

immunostaining using an anti-Delta antibody (red). The endogenous GFP signal was used to 

visualize Rab5 (green). Magnified insets in all three panels show co-localization between Delta 

positive vesicles and Rab5 (E-G). Plot (H) shows the extent of colocalization of Delta and 

Rab5 positive vesicles. ~75% of Delta-positive vesicles colocalized with Rab5, and this value 

did not significantly differ from wildtype, Delta::CRY2 (photo-activated), or Delta::CRY2 (Dark) 

conditions. N=4 embryos for photo-activation and N=3 embryos for wild type and dark 

conditions. n.s. represents no statistically significant difference in a 2-sample t-test. Scale 

bars, 20 μm (E-G) 

This figure (including legend) was generated by me and is part of the submitted manuscript 

“Optogenetic inhibition of Delta reveals digital Notch signalling output during tissue 

differentiation” (see Appendix). Panels (C), (D) and (H) were generated by Daniel Krueger. 

 

Combining opto-Delta with endogenously tagged Notch::YFP demonstrated that 

Notch also segregated into clusters in the ectoderm upon photo-activation (Fig. 13A). 

The rate of clustering increased as the number of opto-Delta alleles was doubled 

(heterozygous vs homozygous, Fig. 13A, B) presumably due to the higher density of 

opto-Delta molecules in the plasma membrane. Furthermore, immunostaining showed 

that both Notch and Delta colocalized in the ectodermal clusters indicating that Notch 

and Delta were indeed engaged. (Fig 13C-F)  
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Figure 13:  Notch clusters in response to photo-activation of opto-Delta 

 (A) Sum of slice z-projection of 4 slices at 0.4 μm z-interval of cellularizing embryos 

expressing endogenously tagged Notch::YFP imaged using an argon laser (= 514 nm) in 

a Delta::CRY2 heterozygous background at the onset of photoactivation (T0), after 60 s and 

120 s. Embryos were photo-activated once for 5 s before the. 60 s and 120 s acquisition 

(stack size of z = 10 μm, = 488 nm, 0.6 mW). Scale bar, 10 μm. 

(B) Notch clustering in a Delta::CRY2 homozygous background. Single confocal z-slices of 

cellularizing embryos expressing endogenously tagged Notch::YFP imaged using an argon 

laser (= 514 nm) in a Delta::CRY2 homozygous background before and after photo-

activation with a stack of size z = 10 μm for a duration of 5 s (= 488 nm, 0.6 mW). Note 

that Notch clustering in Delta::CRY2 homozygous background is faster than in Delta::CRY2 

heterozygous. This is probably due to the higher density of the Delta::CRY2 molecules. 

Scale bar, 10 μm. 

(C-E) Delta::CRY2 clusters in the ectoderm contain Notch. Immunostaining of embryos 

expressing Notch::YFP in a Delta::CRY2 homozygous background. Delta (C), Notch (D), 

overlay (E) after batch-photo-activation (= 488 nm), as described in the methods. Panels 

display max. intensity z-projections of 3 slices at a z-interval of 0.7 µm. Magnified insets 

show ectodermal clusters of Delta::CRY2 at the plasma membrane (A) co-clustering of 

Notch (B), and the merged image in (C). Scale bar, 10 µm. 

(F) Schematic illustration of the redistribution of Notch into clusters. 

This figure (including legend) was generated by me and is part of the submitted manuscript 

“Optogenetic inhibition of Delta reveals digital Notch signalling output during tissue 

differentiation” (see Appendix).  
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The extracellular domain of Notch (NECD) is trans-endocytosed along with Delta in 

the mesoderm starting at the onset of cycle 14 (see section 1.5.4). Staining opto-Delta 

embryos with anti-Notch extra-cellular domain (NECD) showed a decreased 

production of cytoplasmic NECD vesicles (Fig. 14A-D) upon photo-activation. Staining 

and quantifying NICD levels revealed a ~30% higher retention of Notch at the plasma 

membrane when photo-activated (Fig. 14E-I). Together, these data point towards a 

defect in Delta induced Notch trans-endocytosis suggesting that the signal-sending 

ability of opto-Delta is affected upon photo-activation.  

Detection of Notch target gene, sim expression by RNA in situ hybridization in photo-

activated opto-Delta embryos confirmed that Notch signalling was strongly inhibited 

(Fig 14J-K). However, since opto-Delta co-cluster with Notch in the signal-receiving 

mesectoderm cells, and given that we still observe few cytoplasmic NECD vesicles in 

the mesoderm upon illumination, there exists the possibility that opto-Delta clusters 

inhibit signalling by repressing Notch activity in cis. Cis-interactions between Notch 

and Delta in signal receiving cells as an inhibitory mechanism for signalling has been 

studied in various tissue contexts as described in section 1.3.3. 

Due to the fact that in the embryo, cells are all tightly packed in a continuous fashion, 

it is technically extremely challenging to activate opto-Delta only on the surface of the 

signal sending cells or signal receiving cells, and hence difficult to distinguish between 

cis versus trans inhibition. 
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Figure 14:  Optogenetic activation inhibits Notch processing in the mesoderm and 
signalling activation in the mesectoderm 

 (A-I) Light-induced Delta::CRY2 clustering inhibits Notch processing in the mesoderm. 

Immunostaining for Notch Extracellular Domain (NECD) (A, C) or Notch Intracellular 

Domain (NICD) (E, G) at the end of cellularization in Delta::CRY2 embryos fixed in the dark 

or batch photo-activated as described in Material and Methods. Co-staining with an anti-

Tom antibody (B,D,F,H) was used to mark the ectoderm-mesoderm boundary. In the dark, 

normal processing of Notch in the mesoderm results in the depletion of Notch (both NECD 

and NICD) from the plasma membrane, and accumulation of cytoplasmic NECD vesicles, 

magnified insets in (A,E). Photo-activation caused reduced number of NECD vesicles, 

arrows in magnified inset (C) and increased retention of Notch in the mesoderm, magnified 

insets in (C,G) as also demonstrated by the box plot in (I) showing quantification of NICD 

plasma membrane levels. NICD Interface intensity values were normalized to the median 

NICD value present in the ectoderm for each embryo. (N = 3 embryos; n= number of 
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In order to uncover this, I decided to use the pupal notum as an experimental tissue 

since it offers the possibility to perform clonal analysis as opposed to the embryo. In 

the notum, Notch employs the mode of lateral inhibition (see section 1.3.2) for 

patterning sensory organ precursor (SOP) cells that give rise to bristles in the adult. In 

groups of cells known as proneural clusters, the cell that is signal sending adopts 

sensory organ precursor (SOP) fate, while the neighbouring cells where Notch is 

activated become epidermal and were inhibited from SOP fate (Fig. 15A). Opto-Delta 

pupae when exposed to light right after pupal formation exhibit an increased density 

of SOPs (~ 40% more), consistent with previous studies showing impaired Notch 

signalling in this tissue (Fig. 15B, C) (Couturier et al., 2012).  

To disentangle whether opto-Delta clustering was responsible for signal-sending or 

signal-receiving defects, using the the FLP/FRT technique, mitotic clones of cells 

homozygous for opto-Delta were generated in a wildtype background. The FLP 

recombinase was expressed in the notum tissue under the control of the Ubx 

promoter, and clones homozygous for opto-Delta were identified by the lack of 

nuclear-RFP expression (Fig. 16A). I focussed on cells at the boundary between the 

opto-Delta homozygous clones and the surrounding wild-type tissue, and using an 

interfaces with nDark= 89 nPA = 90.  ****p < 0.0001, two-sample t-test. n.s. indicates no 

statistical significant differences). Scale bars, 10 µm. 

(J-K) In situ hybridization against sim in Delta::CRY2 embryos fixed in the dark (J) or after 

batch photo-activated started at the onset of cycle 14 as described in Material and Methods 

showing lack of sim transcription in the mesectodermal cells (K). Embryos are aligned 

anterior to the left and ventral side facing up. Scale bar,100 m. 

This figure (including legend) was generated by me and is part of the submitted manuscript 

“Optogenetic inhibition of Delta reveals digital Notch signalling output during tissue 

differentiation” (see Appendix).  
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SOP marker (neur>iRFP-nls), scored for signal sending and signal receiving activity 

(Fig. 16B-F). 

 

Figure 15: opto-Delta activation in the pupal notum affects SOP patterning. 

(A) Selection of Sensory organ precursor cells (SOPs) in proneural clusters by the process 

of lateral inhibition, wherein signal-sending SOPs inhibit the surrounding signal receiving 

cells from SOP fate. 

(B, C) Maximum intensity z-projections of the pupal nota expressing Delta::CRY2 and 

reared in the dark (B) or light (C) until 16 hrs APF. Upon photo-activation, there was a 

disruption of SOP patterning along defined rows, and an increased density of SOPs 

specified in the tissue (by ~40%). Scale bar, 20 μm. 
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In a wild-type pupa, there is an equal probability (50%) of finding an SOP cell on either 

the opto-Delta side or wild-type side of the clone boundary (Couturier et al., 2012; 

Heitzler and Simpson, 1991). Any defects in signalling or receiving will be reflected in 

a change in this percentage across the boundary. Upon quantification of all the clone-

boundary SOPs post 18h of pupa formation (APF), I observed that in photo-activated 

opto-Delta pupae, ~ 90% (94.6 ± 2.6) of SOPs were located inside the opto-Delta 

clones (Fig. 8B, F). In pupae reared in the dark, only a slightly greater (62.5 ± 5.6) 

percentage was observed compared to the expected value of 50%, indicating a 

random pattern (Fig. 16C, F). 

This result indicates that opto-Delta cells upon photo-activation have an increased 

chance of adopting SOP fate compared to their wild-type neighbours, suggesting that 

they have a reduced capacity to process and activate Notch i.e. opto-Delta clustering 

interferes with the activation of Notch signalling by cis inhibition. Additionally, the 

neighbouring wild-type cells outside the opto-Delta clone boundary always adopted a 

non-SOP fate, indicating that they were able to receive Notch signal and that opto-

Delta cells are signalling competent. In summary, I concluded that photo-activation of 

opto-Delta, to a significantly greater extent affected signal receiving in cis, rather than 

signal activation in trans. 

 
  

This figure (including legend) was generated by me and is part of the submitted manuscript 

“Optogenetic inhibition of Delta reveals digital Notch signalling output during tissue 

differentiation” (see Appendix). Panels (B) and (C) were generated by me in collaboration 

with Mateusz Trilinski. 
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Figure 16: Clonal analysis in the pupal notum reveals that opto-Delta inhibits Notch 
in the signal-receiving cells. 

(A-C) Clonal analysis in the pupal notum to distinguish whether signal-sending or signal- 

receiving is impaired upon optogenetic activation. Schematic illustration depicting the clone 

boundary between Delta::CRY2 cells (nls-RFP negative) and WT cells (nls-RFP positive) 

(A). Control (non-photo-activated) (B) and photo-activated (C) nota at 18 h after puparium 

formation showing Delta::CRY2 clones in blue and dashed lines depicting the clone borders 

where the number of SOPs (green) are scored. In (B), yellow arrows indicate examples of 

SOPs inside the wild-type clone and green arrows show SOPs scored inside the 

Delta::CRY2 clone Scale bar, 20 µm. 

(D-F) Analysis of SOP fate decisions across Delta-CRY2/wild-type clone borders. The bar 

plot (F) shows the percentage of SOPs located inside Delta::CRY2 clones out of the total 

number of SOPs scored at the border, in either dark or photo-activated conditions. In a wild 

type case, there is a 50% chance for an SOP to be present on either side of the boundary, 

schematic in (D). In the dark, 62.5% of SOPs are present on the side of the Delta::CRY2 

clone. This proportion significantly increased to 94.6% in photo-activated pupae, schematic 
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3A.1.5 Investigating the input-output dynamics of Notch signalling during 
embryonic mesectoderm specification 
 

Having characterized how opto-Delta activation inhibits Notch signalling upon photo-

activation, I used it as a tool to characterize the input-output relationship of Notch 

signalling. I focussed on mesectoderm specification in the early embryo, when Notch 

signalling is activated during the course of cellularization resulting in the expression of 

target gene sim. In combination with opto-Delta, as a readout of signalling, I used a 

sim transgene that was generated based on the MS2-MCP system (Garcia et al., 

2013) (sim-MS2) in order to monitor its live transcription upon Notch activation (Fig. 

17A). MCP::GFP binds to nascent sim-MS2 transcripts to generate fluorescent spots 

in the nuclei that enables both a quantitative and instantaneous measure of signalling 

activity. Using a specially generated image analysis pipeline (in collaboration with 

Pierre Neveu) it was possible to successfully segment and track these sim spots over 

time and quantify the dynamics in sim expression by measuring spot intensities. 

Consistent with previous data that were generated by in situ hybridization, despite 

Delta endocytosis and NECD trans-endocytosis starting few minutes post the onset of 

cellularization, sim transcripts were detected only ~30 min after the onset of 

cellularization (Cowden and Levine, 2002; Morel and Schweisguth, 2000). Live 

(E), suggesting a strong signal receiving deficiency of Delta::CRY2 cells (N = 3 pupae; nSOP 

= 96 (dark) ; N = 5 pupae; nSOP =126 (photo-activation). nSOP signifies total number of SOPs 

at clone boundary. Error bars indicate standard deviation between different pupae. SOPs 

formed inside the Delta::CRY2 clones are able to inhibit their neighboring cells on the wild-

type side from adopting SOP fate, thus showing their signal-sending competence. 

This figure (including legend) was generated by me and is part of the submitted manuscript 

“Optogenetic inhibition of Delta reveals digital Notch signalling output during tissue 

differentiation” (see Appendix). Panels (B) and (C) were generated by me in collaboration 

with Mateusz Trilinski. 
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imaging of sim-MS2 onset also revealed a gradual increase in the number of nuclei 

expressing sim and after 10 min, almost all nuclei in the mesoectoderm 

expressed sim (Fig. 17B-F). The reason for this time delay in sim expression is 

unclear. Nuclei may not be competent to express sim during early cycle 14 because 

additional factors may be necessary and these become available only late in 

cellularization. The alternate possibility is that Notch activation needs to build up to 

reach a critical threshold level in order to activate sim. As the delay is the time when 

Notch activation occurs, this provided the opportunity to use opto-Delta to perturb 

signalling in a graded fashion during this period and track sim transcription in the tissue 

in order to distinguish between the models proposed above.  

Opto-Delta embryos expressing the MCP-MS2 sim module were photo-activated 

either from the beginning of cellularization (0 min), or after 5 min, 10 min, 15 min 20 

min, or 25 min (0/ 5/ 10/ 15/ 20/ 25 min of signalling) (Fig. 18A-F). In order to get a 

quantitative measure of transcribing nuclei over time, I measured the increase in the 

number of sim-transcribing nuclei in the tissue at high temporal resolution (30 sec) 

from the onset of transcription until onset of gastrulation (Fig. 18C).  

To precisely measure the tissue wide sim activation rates and onset times, the average 

curves for the different conditions were adjusted to the equation Nmax (1-exp(-k (t-t0)) 

where Nmax is the maximum number of mesectodermal nucelei that can be activated, 

k is the tissue level activation rate (rate of increase in the number of sim transcribing 

nuclei) and t0, the delay in onset of transcription with respect to the control (Fig. 19A). 

Nmax was taken as constant and only two parameters k and t0 were adjusted for each 

embryo.  

The results show a graded response at the level of the tissue. The longer the photo-

activation time, the lesser the tissue-level activation rate of sim expression (k), slowing 
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down from ~0.2 min-1 per µm for individual nuclei in the control to 0.05 min-1 per µm in 

the case where photoactivation was throughout the duration of cellularization (Fig. 

18D).  

 

Figure 17: Live tracking of sim transcription reveals gradual activation of nuclei after 
a delay.   

(A) Schematic illustrating the use of light induced Delta::CRY2 clustering in combination 

with the MCP-MS2 live transcriptional reporter of sim expression. 

(B-E) Snapshots from a recorded confocal movie over the course of nuclear cycle 14, 

depicting maximum intensity z-projections of a representative control embryo expressing 

MCP-GFP and sim-MS2. (B) represents the onset of sim expression and (E) represents the 

time-point just prior to the onset of ventral furrow formation. Scale bar, 10 μm. 

(F) Graph illustrating the gradual onset of sim transcription in mesectodermal nuclei during 

the time-course of nuclear cycle 14 in embryos expressing MCP-GFP and sim-MS2. 

Following a delay of approx. 30 min, sim spots began to appear stochastically in the tissue 

and increased at the rate of 0.2 spots min-1. The rate is calculated by fitting the averaged 
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20 min of signalling represented the minimum time needed for all nuclei to have an 

equal probability of turning on sim with the same rate as the control embryos. Overall, 

this experiment also indicates that Notch signalling is continuous during the course of 

cellularization.  

In addition, a significant delay (~10 min) was observed with regard to the onset of sim 

expression for all the photo-activation conditions ranging from 0 min to 20 min of 

signalling, suggesting that the timing of sim onset is Notch dependent (Fig. 18E). 

Genetically reducing Notch levels by 50% using a heterozygous Notch mutant line 

(Notch55e11) resulted in a similar significant delay of sim onset, further validating the 

results obtained using opto-Delta (Fig. 19B-C).  In summary, these results indicate that 

opto-Delta photo-activation manifests in changes in the activation kinetics of sim 

expression, that are compatible with reduced levels of Notch activity. 

As opposed to this gradual mode of sim activation at the tissue level, at the level of 

individual nuclei a contrasting behaviour was observed. sim spots were either present 

or absent and once on, their intensity remained relatively stable, fluctuating around the 

mean value right from the time point they came on till the onset of gastrulation. Over 

time, the spot intensity varied by ~20%, a number that was smaller than the variation 

of ~75% in spot intensity for a given time point (Fig. 18F). This result was further 

confirmed by fluorescent in situ hybridization of wildtype embryos fixed at different 

timepoints across cellularization (Fig. 19D-I).   

curve as shown in Figure 11. Shaded area represents standard error of mean, N = 3 

embryos. 

This figure (including legend) was generated by me and is part of the submitted manuscript 

“Optogenetic inhibition of Delta reveals digital Notch signalling output during tissue 

differentiation” (see Appendix). Panels (F) was generated by Pierre Neveu. 
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Figure 18: Optogenetic inhibition of Notch signalling reveals time-integrated digital 
regulation of target gene expression.  

(A) Schematic representing the optogenetic experiments presented in (B-F) where different 

periods of signalling were allowed from the onset of cycle 14 (0/5/10/15/20/25 min) prior to 

beginning of photo-activation in embryos expressing Delta::CRY2, MCP-GFP and sim-MS2. 

(B) Segmentation of MCP-GFP positive nuclear spots from confocal movies at the final time-

points acquired prior to ventral furrow formation in either control (non-Delta::CRY2) embryos 

which were photo-activated for 60 min or Delta::CRY2 embryos in which signalling was 

allowed for either 20 min, 5 min, 0 min. Scale bar, 20 μm. 

(C) Plot depicting the percentage of sim transcribing nuclei over time (with respect to control 

embryos) during the different time-periods of photo-activation. The onset of ventral furrow 
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This result indicates that the cumulative amount of activated Notch determines the 

competence to express sim in mesectodermal nuclei. 

When the duration of signalling was gradually increased from 5 min to 25 min by photo-

activation, despite the increase in the number of sim nuclear dots, their mean nuclear 

intensity from the time point they first became detectable until the end point of imaging 

did not change significantly (Fig. 18F). This result supports a digital mode of signalling 

activation by Notch. 

 

formation is considered as t = 0 min. N = 5 embryos for control, 0 min sig. and 15 min sig.; 

N = 6 embryos for 10 min sig. and 20 min. sig.; N = 7 embryos for 5 min. sig. and 25 min. 

sig. Shaded area represents standard error of mean. 

(D) Bar plot showing the gradual increase in the rate at which mesectodermal nuclei start to 

turn on sim (sim spot density/min) as the duration of signaling increases from 0 min to 25 

min as depicted in (A). The dataset used for quantification is the same as that used in (C). 

*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, n.s. represents no statistically significant difference in a 

2-sample t-test. Error bars denote standard error of mean. 

(E) Bar plot showing that onset sim transcription is significantly delayed compared to control 

embryos as the duration of signalling is increased from 0 min to 20 min. After 25 min of 

signalling there is no significant delay. The dataset used for quantification is the same as 

that used in (C). *p ≤ 0.05, **p ≤ 0.01, ***p≤ 0.001, n.s. represents no statistically significant 

difference in a 2-sample t-test. Error bars denote standard error of mean. 

(F) Graph showing that gradually increasing the time-period of active signaling from 0 min 

to 25 min does not change the mean spot intensity of sim transcripts compared to controls. 

There was only a 20% variation in spot intensity over time, a value that was smaller than 

the ~75% variation in spot intensity for a given time point. The dataset used for quantification 

is the same as that used in (E). Shaded areas represent the interquartile range. 

This figure (including legend) was generated by me and is part of the submitted manuscript 

“Optogenetic inhibition of Delta reveals digital Notch signalling output during tissue 

differentiation” (see Appendix). Plots in panels (C-F) were generated by Pierre Neveu. 
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Figure 19: Quantification of sim transcription during mesectoderm specification. 

(A) Fitting of sim spot-density curves for estimation of activation rates and delays. The 

average spot density curves (number of sim spots/ unit length of embryo, μm-1) for each 

condition (control/ 25 min/ 20 min/ 15 min/ 10 min/ 5 min/ 0 min signaling) corresponding to 

Fig. 4E were adjusted by Nmax (1-exp(-k (t-t0)), where Nmax is the maximum number of 

spots that can be activated (i.e. the number of nuclei in the mesectoderm), k is rate at which 

mesectodermal nuclei start to transcribe sim and t0, the delay in the onset of spot 

appearance with respect to the control. Nmax was taken as constant and only two 

parameters k and t0 were adjusted for each curve. 

(B-C) Reducing the copy-number of Notch results in a delay of sim transcription. 

Plot depicting the percentage of sim transcribing nuclei over time in embryos carrying one 

mutant allele of Notch, Notch55e11 compared to controls (B). Bar plot showing that onset 

of sim spot detection in Notch55e11 heterozygous embryos is significantly delayed 

compared to controls (C). The onset of ventral furrow formation is considered as t = 0 min. 

N = 3 embryos for both conditions. **p ≤0.01, two-sample t-test. Shaded area and error bars 

represent standard error of mean. 

(D-I) Fluorescence-in-situ-hybridization of sim transcription. Representative maximum-

intensity z-projections depicting nascent sim transcripts (green) in the mesectoderm in wild-
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The distinct relationship of Notch input on sim output at the cell and tissue level can 

be summarized as follows. At the individual cell level, the results suggest a switch like 

mechanism where the cumulative amount of Notch activation determines the 

competence of mesoectodermal nuclei to express sim, indicating the existence of a 

minimum threshold as opposed to a graded input output relationship as described for 

other signalling systems (as introduced in section 1.2.1). Above this threshold, 

changing notch activity does not affect sim expression. On the other hand, at the tissue 

level, the level of Notch input determines the frequency of turning on mesectodermal 

nuclei, thus exhibiting an analog mode of regulation. Finally, the timing of sim onset is 

also Notch dependent and this contributes to the delay between Notch activation 

during early cellularization and sim expression. Cumulatively, this suggests a model 

where the Notch signal is integrated over time in a digital fashion during tissue 

differentiation.   

 

  

 

type (w1118) embryos staged as early (D), middle (E) and late (F) during cellularization, as 

described in the methods section. Nuclei were stained with DAPI (blue). (G-I) Scatter plots 

showing the quantification of nascent sim transcripts across wild-type embryos during early 

(G), middle (H) and late cellularization (I). There was only a 25% variation in sim spot 

intensity between time points, a value that was smaller than the ~40% variation in sim spot 

intensity within single embryos. 

This figure (including legend) was generated by me and is part of the submitted manuscript 

“Optogenetic inhibition of Delta reveals digital Notch signalling output during tissue 

differentiation” (see Appendix). Plots in panels (A-C) and (G-I) were generated by Pierre 

Neveu. 
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3A.2 Generation of an optogenetic tool to activate Notch signalling - opto-
Notch 
 

Given the existence of a threshold for Notch target activation, I was interested in 

understanding the minimum amount of Notch activation required to overcome it. Is a 

continuous mode of signalling necessary for sim activation or can the entire signal be 

delivered in a single pulse/ pulses? For this, I needed a direct control over the Notch 

input and hence I decided to develop a tool to activate Notch signalling in vivo by 

directly controlling the nuclear entry of the Notch intra-cellular domain (NICD). I 

decided to employ the optogenetic dissociation system, LOVTRAP in order to control 

NICD sequestration and release (Wang et al., 2016). LOVTRAP is a two component 

system consisting of a small peptide called Zdark (Zdk) that binds to the photosensitive 

LOV2 domain in the dark and is released upon photo-activation. Given the advantages 

of its fast kinetics (in the seconds scale), reversible mode of action, and tunable 

activation, this system seemed ideal to dynamically control NICD. 

 

The strategy employed was as follows: The LOV2 domain was fused to a 

mitochondrial localization sequence (Mito-LOV2) to serve as the anchor, and NICD 

(aa 1790-2703) was tagged with the peptide Zdk1 (Zdk1-NICD). I generated fly lines 

expressing these two constructs and then genetically combined them to check for 

sequestration and release of NICD upon photo-activation (Fig. 20A, B).  

I first tested whether the Zdk1-NICD construct functionally reconstitutes a Notch gain 

of function phenotype in the embryo. Imaging the fluorescently tagged version of the 

protein, mCherry-Zdk1-NICD (opto-Notch) confirmed that the subcellular localization 

of NICD was nuclear. These embryos did not hatch into larvae, consistent with 

previous studies. 
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Figure 20: Optogenetic approach to activate Notch signalling and characterization of 
opto-Notch. 

(A, B) The LOV2 domain is tagged with eGFP and is localized to the mitochondrial 

membrane using a drosophila mitochondrial targeting sequence (Tom-20). This serves as 

the anchor for NICD that is tagged to the LOV-2 binding peptide Zdk1. In the dark, Zdk1-

NICD interacts with Mito-LOV2, to be sequestered at the mitochondria (A), and upon blue 

light photo-activation is released to activate its transcriptional targets in the nucleus.  

(C-F) Testing the functionality of mCherry::Zdk1::NICD. Both in-situ hybridization for sim (D) 

and using the live MCP-simMS2 reporter (E, Magnified region (F)) showed an expansion of 

sim expression to 3-4 rows of cells as opposed to the single row in wildtype controls (C), 

indicating a Notch gain of function. Scale bar, 10 µm.  
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Both in-situ hybridization against sim and combining opto-Notch with the MCP-sim-

MS2 system for live imaging showed a clear expansion of the domain of sim 

expression to a 3-4 rows of cells representing the characteristic Notch gain of function 

phenotype (Fig. 20C-F). I then imaged embryos expressing both the anchor, Mito-

LOV2 and opto-Notch without photo-activation in order to observe its localization. In 

the early embryo, during the mitotic phase of the nuclear division cycles 10-12, opto-

Notch co-localized with the mitochondrial anchor, suggesting interaction in the dark 

(here dark refers to non-blue light photo-activated). Upon photo-activation with the 488 

nm laser, after 30 s, opto-Notch was released from the mitochondria (Fig. 21A-F) and 

2 min. post photo-activation, appeared to localize to the mitochondria again, showing 

the reversible nature of the tool (Fig. 21G). These results indicated the functionality of 

this tool in vivo.  

However, despite being imaged without photo-activation though the nuclear division 

cycles 10 to 14, opto-Notch was distributed in two pools – mitochondrial during the 

mitotic phase and nuclear, as soon as the nuclear membrane assembled prior to the 

onset of interphase. As the embryo developed from cycle 10 to 14, the mitochondrial 

pool gradually decreased, and by cycle 14 and thereafter, the opto-Notch was almost 

entirely nuclear (Fig. 22A-E). This could be because NICD molecules enter the 

nucleus and potentially associate with other factors to get trapped incrementally over 

time. As cycle 14 is the stage during which I am interested in activating opto-Notch to 

study ectopic sim expression, the tool in its existing state was unusable.  
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Figure 21: Characterizing the tool to activate Notch. 

(A-G) Maximum intensity z-projections of embryos co-expressing Mito::EGFP::LOV2 (A, D) 

and mCherry::Zdk1::NICD (B, E, G) and imaged prior to photo-activation (A-C), immediately 

after photo-activation with three z-stacks (= 488 nm, 0.6 mW) lasting 8 s each (D-F), or 2 

min. after photo-activation (G). Magnified inset in (B) and colocalization with Mito-GFP-

LOV2 in (C) indicate mitochondrial sequestration of mCherry::Zdk1::NICD in the dark.  

Photo-activation results in subsequent release into the cytoplasm after 30 s (Magnified inset 

in (E)). Placing the embryo in the dark for 2 min. post photo-activation results in re-

localization of mCherry::Zdk1::NICD to the mitochondria, indicating reversibility of the tool 

(G). Scale bar, 10 µm.   
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To overcome this issue, I decided to add a constitutive Nuclear Export Sequence 

(Smad4 NES) to opto-Notch in an attempt to ensure that the protein that enters the 

nucleus in the dark is actively extruded back to the cytoplasm. This resulted in an 

increase in the cytoplasmic fraction of opto-Notch during the stages of cellularization 

and beyond, and there was a significant pool that was bound to the mitochondria.   

 

 

Figure 22: Pitfalls of opto-Notch and effort towards optimization. 

(A-E) Maximum intensity z-projection of an embryo co-expressing Mito::EGFP::LOV2  and 

mCherry::Zdk1::NICD, imaged without photo-activation through nuclear division cycles 10 

to 12. mCherry::Zdk1::NICD localized to the nucleus during the interphase of each nuclear 

division cycle, indicating dark state activity. 

(F-H) Addition of a nuclear export sequence (NES) to mCherry::Zdk1::NICD in order to 

counter dark state activity. Maximum intensity z-projection of an embryo co-expressing 

Mito::EGFP::LOV2 (F) and NES-mCherry::Zdk1::NICD (G) during nuclear cycle 14. While 

the addition of NES increases the cytoplasmic fraction, there still exists a significant nuclear 

fraction (H), necessitating further optimization.     
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However there still existed a fraction of opto-Notch that was visible in the nucleus in 

the dark suggesting that the endogenous NLS of Notch was overpowering the NES 

(Fig. 22F-H). Currently, experiments are underway towards further optimizing this tool, 

and these have yielded some promising results. However, since the results are 

preliminary, they are beyond the scope of this thesis and I will briefly discuss the 

approaches used in the ‘Discussion’ chapter. 
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3B. Results – part 2 

 

In this section I describe the further characterization of opto-Delta as a tool – to 

spatially perturb signalling, to study Notch driven neuroblast delamination and to 

induce cis complexes of Notch and Delta in mammalian cell culture. 

 

3.1.6 Spatially localized inhibition of Notch signalling using opto-Delta  
 

 

Optogenetics also offers the unique advantage of enabling perturbations over 

space by restricting the region of photo-activation and I therefore attempted to achieve 

spatial control over Notch signalling. By employing a two-photon based activation 

protocol in cellularizing embryos (Guglielmi et al., 2015), I managed to induce Delta-

clustering with sub-cellular precision (Fig. 23A). I could show that Delta clustered only 

in the area of illumination while neighboring non-illuminated cells displayed uniform 

Delta localization at the plasma membrane. I then tested if this results in loss of 

signalling by photoactivating embryos locally in a 6-7 wide stripe during the entire 

course of cellularization and again using the MCP-MS2 system to visualize sim 

transcription. I used MCP::mCherry instead of MCP::GFP as the 2-photon illumination 

protocol caused significant bleaching of sim spots in non-opto Delta controls. The 

experiment resulted in a spatially precise inhibition of sim transcription matching the 

localized region of activation (Fig. 23B) and proves that opto-Delta can be used as a 

tool to spatially perturb Notch signalling.  
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As another readout of Notch signalling in the early embryo, I managed to image 

over time the Notch-dependent process of neuroblast delamination. Neuroblast 

delamination is a process that begins around 30 mins post ventral furrow formation in 

the neuroectoderm tissue (that represents a row of 8-9 cells wide from the ventral 

midline). Clusters of cells in the neuroectoderm express a set of proneural genes and 

all have the potential of becoming neuroblasts. By the process of lateral inhibition 

mediated by Notch signalling, one cell in the proneural cluster (the signal sending cell) 

 

Figure 23: 2-photon mediated local activation of opto-Delta results in spatial 
inhibition of signalling. 

(A) Patterned 2-photon based activation in a defined region (white box) on cellularizing 

embryos expressing Delta::GFP::CRY2 results in delta clustering, spatially restricted to the 

region of activation. 

(B) Maximum intensity z-projection of an embryo at the onset of ventral furrow formation, 

expressing MCP::mCherry, sim-MS2 and Delta::CRY2. Periodic 2-photon based photo-

activation was performed in a defined region (white box) from the onset of cycle 14 (see 

Methods) and this resulted in the localized inhibition of sim expression in the region of 

activation. Scale bar, 10 μm. 

 

3.1.7 Using opto-Delta to study neuroblast delamination in the embryonic 
neurectoderm 
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becomes the delaminating neuroblast and the other surrounding cells in the cluster 

that receive the Notch signal remain epithelial cells (Hartenstein and Campos-Ortega, 

1984) (see section 1.3.2). Previous studies have shown that in embryos with lowered 

Notch signalling activity (DelaRNAi or NotchRNAi embryos), clusters of cells adopt 

neuroblast fate, and eventually all undergo delamination (An et al., 2017; Simões et 

al., 2017).  To test if the opto-Delta embryos also behaved in a similar fashion, I 

generated lines where I combined opto-Delta with a membrane marker GAP43-

mcherry in order to visualize and quantify cell shape changes (Fig. 24A, C). 

Photoactivation was started immediately after ventral furrow formation and the 

embryos were imaged over the course of an hour to observe the cell delamination 

behaviour. Consistent with the observation in the Delta/Notch RNAi embryos, I 

observed clusters of cells (3-6 in number) that gradually reduced their apical area and 

eventually delaminated either simultaneously or in a sequential fashion (Fig. 24B, D). 

I quantified the decrease in the apical surface area over time, and observed that the 

rate at which the group of cells delaminated was slower than the normal single cell 

delamination in the wildtype by approximately a factor of 2, which is also consistent 

with previous studies. This experiment further confirms the role of Opto-Delta as a loss 

of function allele in different tissue contexts during Drosophila development.  
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Figure 24:  opto-Delta activation affects neuroblast delamination in the neurogenic 
ectoderm   

(A) Single plane confocal snapshots of wildtype embryos expressing a membrane marker 

(gap43::mCherry), showing the time-course of neuroblast delamination in the embryonic 

neurectoderm. The apical area of the delaminating neuroblast undergoes gradual reduction 

over a period of ~20 min. as quantified in (C). Scale bar, 10 μm.  

(B) Single plane confocal snapshots of embryos expressing Delta::CRY2 and a membrane 

marker (gap43::mCherry). Photo-activation for a duration of 5 s (= 488 nm, 0.6 mW) and 

at a frequency of 1 min. over the period of an hour, resulted in the delamination of clusters 

of neuroblasts in the tissue. The apical area of the delaminating group of neuroblasts 

undergo gradual reduction over a period of ~40 min. (slower than the wildtype) as quantified 

in (C). Scale bar, 10 μm. Panels (C) and (D) were generated by Emiliano Izquierdo. 
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3.1.8 Characterization of opto-Delta as a tool in mammalian cell culture 
 

 

In order explore if opto-Delta based clustering could be used as a tool across species, 

and to further establish its mode of functionality, I decided to use mammalian cell 

culture as a system. For this, I generated a Mouse Delta-like 1 construct tagged with 

CRY2 (DLL1::mCherry::CRY2) which was then expressed in HeLa cells. Imaging the 

cells 48 hrs after transfection, I observed uniform distribution of Delta 

(DLL1::mCherry::CRY2)  on the plasma membrane, that upon photo-activation 

underwent rapid clustering (t = 40 s, Fig. 25A, B). I then generated a Mouse Notch-1 

construct (Notch-1::YFP) with the goal of co-expressing it in HeLa cells along with 

DLL1::mCherry::CRY2, in order observe the change in distribution of Notch upon light-

induced Delta clustering. Possibly due to the addition of a YFP tag (~27 kDa) to an 

already large Notch protein (>270 kDa), Notch-1::YFP underwent faulty biosynthesis 

and a major portion accumulated in intracellular structures rather than at the plasma 

membrane. As an alternative strategy, I decided to fuse Notch extracellularly with a 

Myc tag which is smaller in size (~1.2 kDa), and visualize the protein using antibody 

staining against Myc post photo-activation and fixation. I adapted a protocol (Hinners 

et al., 1999) to specifically stain Notch at the plasma membrane in order to be able to 

distinguish membrane clusters from intracellular vesicles in close proximity to the 

membrane. Imaging isolated cells fixed in the dark, both Notch and Delta exhibited a 

relatively uniform plasma membrane distribution (Fig. 25C-E).  
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Figure 25: opto-Delta undergoes light induced clustering in mammalian cells and 
engages Notch in cis  

(A,B) Confocal images of a HeLa cell expressing DLL1::mCherry::CRY2 showing uniform 

distribution of plasma membrane Delta before photo-activation (A) and distributing into 

clusters after four rounds of photo-activation (B, t = 40 s) with z-stacks (= 488 nm, 0.6 mW) 

lasting 5 s each. Scale bar, 10 µm.   

(C-K) Immunostaining for extracellular Notch in HeLa cells co-expressing 

DLL1::mCherry::CRY2 and Notch-Myc, fixed in the dark (C-E) or after photo-activation (F-
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Upon photo-activation, Notch appeared clustered on the plasma membrane and 

exhibited a co-localization with Delta clusters, suggesting that activated 

DLL1::mCherry::CRY2 is capable of binding Notch::Extra::Myc in cis (Fig. 25F-K). 

Whether Notch-Delta co-clustering results in lack of signalling in the context of 

mammalian cells remains to be tested. This can be understood by co-transfecting 

these cells with reporters of Notch activity. 

In summary I have demonstrated the use of opto-Delta as a tool to induce Delta 

clustering and interactions with Notch receptors in cis and potentially its utility as a tool 

to inhibit Notch signalling in mammalian cells/tissues.   

 

 

 

 

 

 

 

 

  

H). Magnified insets (I-K) show plasma membrane clusters of Delta (I) co-clustering with 

Notch (J) and the merged image in (K). Scale bar, 10 µm.   
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4. Discussion 

 

 

As part of this thesis, I have developed one of the first endogenously tagged 

optogenetic tools to perturb signalling in vivo, replacing the endogenous allele with a 

light responsive one. I have shown that rearing opto-Delta flies in the light results in 

Notch/Delta loss of function phenotypes during different stages of Drosophila 

development, suggesting that it can be used as a tool to acutely inhibit signalling. 

Characterization in cellularizing embryos revealed that opto-Delta undergoes rapid 

light-induced clustering at the plasma membrane, but still exhibited normal trafficking 

in the mesoderm. Notch showed decreased trans-endocytosis and increased retention 

at the plasma membrane, suggesting impaired binding of Delta clusters to Notch in 

trans. However, since Notch clusters formed in the signal receiving mesectodermal 

cells, it was equally plausible that signalling was affected due to binding of Delta 

clusters in cis. In order to distinguish these two scenarios, I turned to the pupal notum 

tissue, and clonal analysis revealed a strong bias towards the impaired signal 

receiving capacity of Notch in cells expressing opto-Delta under photo-activated 

conditions, compared to the signal sending ability of Delta, which was relatively 

unaffected. This led to the conclusion that light-induced clusters of opto-Delta bind 

Notch in cis and this results in signalling inhibition. 

 

4.1 Notch exhibits a time-integrated switch-like mode of activation during 
mesectoderm specification  
 

 

In order to study the dynamic input-output relationship of Notch and its targets, 

I focussed on the process of mesectoderm specification in the cellularizing Drosophila 

embryo. The opto-Delta tool was combined with a live transcriptional reporter for target 
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gene sim (based on the MS2-MCP system) in order to visualize nascent transcription 

upon Notch activation in real time.  

In summary, the results show two different relationships between Notch input 

and sim output. At the cellular level, as the levels of Notch increase over the course of 

cellularization, Notch acts in the manner of a switch, with sim expression turned on in 

the nucleus depending on whether a minimum threshold of Notch activity is crossed. 

Once on, sim expression remains stable over time and is unaffected by changes in 

Notch activity above the threshold. At the tissue-level, an analog mode of regulation 

is observed, with the level of Notch activity determining both the timing of onset, and 

the frequency at which individual mesectodermal nuclei express sim.  

Taken together, the data point towards a model where the Notch receptor integrates 

noisy, analog signals over time in order to generate a digital switch-like behaviour. 

Such a manner of regulation could be essential in making certain that all 

mesectodermal nuclei turn on sim before gastrulation begins. During T-cell 

specification, a similar mode of regulation by Notch has been observed. Changing 

Notch levels in cultured T-cell progenitors increases the number of cells expressing 

Notch target Bcl11b, but not the expression levels per cell (Kueh et al., 2016). 

Physiologically, such a non-linear mode of regulation where a threshold needs to be 

reached in order to produce the output, can serve the advantage of making the 

signalling robust to fluctuating inputs (Mc Mahon et al., 2014)(as described in section 

1.2.1). In the early embryo, during the Notch mediated process of mesectoderm 

specification, there are multiple dynamic morphogenetic events occurring in parallel. 

Membrane trafficking, changes in plasma membrane composition and precisely timed 

expression of zygotic factors together regulate cortical actomyosin contractility that 

drives the process of cellularization (Fabrowski et al., 2013; Krueger et al., 2019). 
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Furthermore, at the end of cellularization, cells start to undergo a series of cell shape 

changes at their apical and basal ends resulting in tissue wide coordinated movements 

that culminate in the process of mesoderm invagination giving rise to the ventral furrow 

(Sweeton et al., 1991). Both these processes involve dynamic movements of these 

interconnected cells along all three axes. In this context, one could speculate that 

adopting such a mode of operation whereby Notch requires to overcome a threshold 

can help to counter spurious target gene expression resulting from transient cell-cell 

contacts during these morphogenetic movements.  

The molecular mechanism underlying this digital switch-like behaviour is unclear. As 

introduced in section 1.2.1, such non-linear responses are commonly the 

manifestation of having either a positive feedback or ultra-sensitivity, where when the 

threshold is overcome, very small changes in input-signal concentration can result in 

step changes in activity (Sagner and Briscoe, 2017). With regard to the activation of 

sim, this regulation could potentially be encoded either at the level of architecture of 

the sim promoter/ enhancer, or by the presence of repressors that need to be 

overcome by a cumulative amount of Notch activity. 

The sim gene contains two promoters – early and late. The early promoter is active 

during stage 5 of embryonic development, when Notch signalling occurs. This 

promoter is positively regulated by activated by Dorsal, Twist and Notch signalling in 

mesectodermal cells and is inhibited by Snail. The necessity of these upstream 

regions for sim expression has been established by mutagenesis experiments. The 

sim late promoter is only active following stage 8 onwards following mesoderm 

invagination. From this stage onwards, sim expression maintained by the presence of 

a positive feedback loop, via sim autoregulation and this is thought to occur in a Notch 

independent fashion (Morel and Schweisguth, 2000). Hence as there is currently no 
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evidence for sim autoregulation during stage 5 when the early promoter is active, we 

can potentially rule out positive regulation as a source of the threshold response.   

In the absence of Notch, the DNA binding CSL molecule Suppressor of Hairless 

(Su(H)) acts as a repressor of Notch target genes by recruiting co-repressor molecules 

to their regulatory regions. Upon activation, NICD enters the nucleus and converts 

Su(H) from a repressor to an activator, thus playing the dual role of simultaneously 

alleviating repression and activating transcription (Morel and Schweisguth, 

2000)(Kopan and Ilagan, 2009). The number, affinity and orientation of the Su(H) (CSL 

in general) binding sites upstream of Notch target genes has been shown to determine 

their activation (Bailey and Posakony, 1995; Ong et al., 2006). In the sim upstream 

regulatory region, there are 10 binding sites for Su(H), which have been shown to be 

important for activation of sim in mesectodermal cells (Morel and Schweisguth, 2000). 

Also, looking at the dynamics of NICD and Su(H) in the nucleus using FRAP, a recent 

study (in Drosophila salivary glands) has shown that in the absence of Notch, Su(H) 

is only transiently bound to DNA (~0.5-2s), and in the presence of NICD, its recruitment 

and time of residence at promoters of Notch targets is significantly increased (10-15s) 

(Gomez-Lamarca et al., 2018). Together with these findings, one can hypothesise that 

in the context of Notch regulation of sim, reaching a minimum threshold of Notch 

receptor activation would be necessary to generate an optimal local concentration of 

NICD in the nucleus. This could be essential to both increase the residence time of 

Su(H)-Notch in order to form functional complexes at the regulatory regions and also 

saturate the Su(H) binding sites. Altering the levels of Su(H) by performing knock down 

experiments and/or deleting Su(H) binding sites in the sim regulatory region could 

provide insights into its role in this context. In addition Chromatin remodeling, leading 

to increased enhancer accessibility, was found to be associated with increased Su(H) 
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occupation time at promoters (Pillidge and Bray, 2019). Whether chromatin modifiers 

play a limiting role in setting Notch threshold require further experiments. Overall, a 

better understanding of the principles and mechanisms of Notch target activation in 

the nucleus will enhance our understanding of how cells interpret dynamic changes in 

Notch levels during organismal development. 

 

Another observation regarding the activation of sim was that once a sim spot came 

on, its intensity remained relatively stable until the initiation of gastrulation movements. 

This is in contrast with recent studies of transcriptional bursting in the range of 5-10 

minutes observed in several signalling genes during nuclear cycle 14 (Bothma et al., 

2014)(Fukaya et al., 2016). A comparative study of differences in the architecture of 

the sim enhancer/ promoter with respect to the genes that exhibit bursting activity 

could provide further insights into this behaviour. 

 

4.2 The role of ligand/ receptor clustering in modulating signalling during 
development 
 

 

Using opto-Delta, in this thesis I have demonstrated that light induced clustering of 

Delta results in inhibition of signalling by interacting with Notch in cis rather than in 

trans. Studying the process of cis inhibition in vivo has been challenging, and using 

opto-Delta to generate stable cis complexes of Notch and Delta can be a technique to 

further understand the mechanistic details of the process.  

This phenomenon of ligand clustering resulting in signalling inhibition is in 

contrast to few other signalling pathways involving membrane associated ligands and 

receptors, where ligand/receptor clustering has been associated with increased signal 

propagation. Ligand binding triggers Receptor-Tyrosine-Kinase (RTK) dimerization 
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that allows them to phosphorylate each other and in-turn activate the downstream 

signalling cascade (Lemmon and Schlessinger, 2010). In T-cells, clustering of the T-

cell receptors (TCRs) serves to amplify signalling from the T-cell receptor at the 

immunological synapse (Davis and Dustin, 2004). In these cases, clustering has been 

proposed to increase the local concentration of receptors and this could in-turn serve 

to increase the rate of reaction by increasing chances of interaction with ligands or 

creating more stable complexes where ligand-receptor interactions are highly 

dynamic. 

With regards to Notch, a potential role of Notch-Delta clustering to distinguish between 

dynamic modes of signalling in mammalian cells was recently shown (Nandagopal et 

al., 2018). Their findings indicated that the type of Notch ligand used (mouse 

DLL1/DLL4) determines whether the signalling elicited is transient or sustained. 

Ectopic expression of DLL1/DLL4 in chick embryos resulted in distinct cell fates being 

adopted and further characterization in signal sending cells revealed a significantly 

more punctate distribution of DLL1-NotchECD vesicles as compared to DLL4-

NotchECD which was dispersed. This led them to propose a model where clustering 

was necessary for the pulsatile activation process mediated by DLL1, although not 

conclusive. 

In the context of Drosophila, unpublished data from our lab has demonstrated that 

activation of Notch signalling in the presumptive mesoderm of the early embryo is 

associated with formation of clusters of Delta molecules in the plasma membrane. 

Additionally I have observed that in the pupal notum (16 hrs APF), Delta appears to 

be distributed in a significantly clustered manner in the plasma membrane across the 

entire tissue. Immunostaining revealed that these Delta clusters colocalize with the 

Notch extracellular domain (NECD) (data not shown). While the optogenetic clustering 
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induced by our system induces cis interactions and inhibits signalling, it may not be 

straightforward to relate this to endogenous Notch-Delta clustering. Whether these 

rapidly induced optogenetic clusters influence the binding conformation and dynamics 

of Notch-Delta complexes when compared to an endogenous cluster remains to be 

explored. Overall, it is tempting to hypothesise that clustering could serve the purpose 

of regulating signalling dynamics by creating local hubs for either activation of 

inhibition (via cis/ trans complexes), and this serves as an exciting question for further 

investigation. 

 

4.3 Opto-Delta as an endogenously tagged optogenetic tool to control 
signalling during Drosophila development 
 

 

To my knowledge, opto-Delta is the first optogenetic tool to control endogenous Notch 

signalling during organismal development. This is a significant addition to a rising 

number of optogenetic tools that are being developed to perturb/activate and 

understand principles and mechanisms of signalling pathways in a dynamic fashion in 

vivo. Johnson and colleagues generated an optogentic tool using the iLID 

heterodimerizing sytem, Opto-SOS to control ERK signalling activation during 

embryogenesis (Johnson et al., 2017). They discovered that the cumulative amount 

of signal dictates the switch between endoderm and ectoderm fates, as opposed to 

the duration or amplitude of signalling. A photoactivable Nodal receptor was created 

to temporally perturb Nodal signalling and observe the effect on cell fate during 

zebrafish gastrulation (Sako et al., 2016). Their results demonstrated that the 

extended duration of signalling in the organizer tissue results in suppression of 

endodermal cell fate and promotes precordal plate formation. While the above 

mentioned tools have given rise to novel and significant findings, the expression of the 
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optogenetically tagged proteins is under the control of inducible/ constitutive promoters 

or are introduced in the form of mRNA injections. This gives rise to the potentially 

unfavourable effects of overexpression that can skew our understanding of the 

developing system in the native context. The opto-Delta tool described in my thesis 

represents a significant advancement towards addressing this problem; using genome 

engineering (as described in the Results) both allelic copies of Delta were tagged with 

CRY2 in their endogenous locus. This ensures that our understanding of the signalling 

system is as close to the endogenous context as possible and this is especially crucial 

for a signalling pathway like Notch whose functionality is highly sensitive to the relative 

levels of ligand/ receptor. As mentioned in section 1.3.3, changing the expression level 

alone in can bias the directionality of signalling and even the modality of signalling 

between cis and trans.  Also, this simplifies the genetics by doing away with the need 

to combine a tissue specific driver in every case. Amongst the few studies that have 

used optogenetics to manipulate signalling pathways in vivo, to my knowledge the only 

other effort that managed to generate an endogenously tagged optogenetic allele was 

by Yumerefendi and colleagues where they generated an optogenetically tagged allele 

of transcription factor Lin-1 with light using CRISPR-Cas9 and controlled its nuclear 

translocation in vivo (Yumerefendi et al., 2015a). 

The clustering/oligomerization feature of CRY2 has been employed by other studies 

during Drosophila embryogenesis to inhibit signalling pathways and understand their 

temporal features. Huang and colleagues generated a CRY2 tagged allele of the A-P 

morphogen bicoid and found a positive correlation between the concentration of bicoid 

and the duration needed to induce target genes in the early embryo (Huang et al., 

2017). Kaur and colleagues developed a CRY2-tagged beta catenin to perturb Wnt 
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signalling and identified that signalling was needed during late embryogenesis to not 

only initiate and but also maintain patterning (Kaur et al., 2017).  

These CRY2-based tools however do not delve into characterizing the mechanism by 

which inducing clustering of a key pathway component results in inhibitory effects with 

respect to signalling. In this regard, I have characterized in detail the mode of function 

of opto-Delta in multiple tissues during development, leading to the conclusion that 

upon photo-activation, it inhibits Notch by binding in cis.       

While the ability to rapidly induce clustering of opto-Delta (and in response, Notch) 

within the timeframe of few seconds (~15 s in a Delta-CRY2 homozygous background) 

is highly advantageous for acute perturbation of signalling, CRY2 based homo-

oligomerization tools have the pitfall of slow reversion kinetics. Once induced by photo-

activation, protein-clusters are stable over several minutes (~20 min) before they 

revert back to their monomeric state. This can be disadvantageous if we intend to 

perform temporally patterned perturbation (sequential inactivation and activation) of 

signalling while studying processes that occur in the timeframe of several minutes to 

an hour. Optogenetic dimerization systems like the iLID system (Guntas et al., 2015) 

that have shorter reversion kinetics in the range of several seconds (t1/2 ~ 20s) can be 

employed. However, for processes that manifest over several hours, CRY2 

oligomerization provides an efficient system for such pulsatile activations.  

 

4.4 Optogenetic tool to activate Notch signalling  
 

 

I have also presented an attempt to develop a tool to activate Notch signalling by using 

optogenetics to directly control the release of the Notch intra-cellular domain (NICD). 

This would potentially serve as a means to orthogonally (independent of the 

endogenous genetic program) activate the Notch pathway ectopically in competent 
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tissues during development to gain a dynamic understanding of the necessity and 

sufficiency of Notch signalling to drive a morphogenetic process. This will also serve 

as a potential mode to control the activity of other transcription factors during 

development, and will be a significant addition to the growing number of approaches 

in the budding field of synthetic morphogenesis. 

Unfortunately when I tested the functionality of the tool, there was significant release 

of NICD into the nucleus already in the dark, necessitating further optimization. This 

observation is in contrast to the dynamic light vs dark ratio of the LOVTRAP tool 

observed in cell culture studies (Wang et al., 2016). Recent studies (LINUS/LANS 

tools) have successfully used the caging/uncaging property of the LOV2 domain to 

control nuclear localization of proteins in cell culture (Niopek et al., 2014b; 

Yumerefendi et al., 2015b).In the dark, the NLS is caged, and upon photoactivation, it 

is exposed, facilitating the nuclear entry of the protein. I decided to mutate the 

endogenous NLS sequences of NICD and employ the above single-component 

optogenetic tool to control its activity in Drosophila tissues. These experiments have 

yielded promising results, but as the data is preliminary and the tool is currently still 

being characterized in different embryonic and larval tissues, it is currently beyond the 

scope of this thesis. 

 

4.5 Implications for future studies of spatio-temporal dynamics of Notch 
signalling during development  
 

 

In this thesis, I have perturbed signalling over the course of nuclear cycle 14 order to 

explore the dynamic input output relationship of Notch and its target gene sim during 

mesectoderm specification. Notch signalling occurs at different timescales in different 
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tissue contexts. I have demonstrated that opto-Delta can be used to inhibit signalling 

in the embryonic neurectoderm where the Notch-dependent process of neuroblast 

delamination occurs over a period of several minutes post gastrulation. During the 

development of eye, wing and Notum tissues, Notch signalling occurs over several 

hours. How signalling is regulated over time in these tissues and the duration for which 

is required are still open questions to be addressed. In combination with appropriate 

real-time reporters of signalling, opto-Delta potentially serves as a useful tool to 

explore dynamic modes of signalling in various tissues during Drosophila 

development.  

 

In addition to temporal perturbation, opto-Delta can also be used to inhibit signalling 

in defined spatial regions within the tissue as described in section 3.1.6. Increasing 

number of studies are shedding light on the importance of Notch regulation in space. 

In the pupal notum, during Notch-mediated SOP lineage decisions, Trilinski and 

colleagues have demonstrated using photo-convertible fluorescent reporters that the 

pool of Notch receptors basal to the cell midbody is the one that specifically gets 

activated (Trylinski et al., 2017). During neuroblast delamination in the embryo, cells 

in the proneural cluster that donot receive the Notch signal undergo cell shape 

changes, starting with apical constriction and loss of cell-junctions eventually 

culminating in delamination. How the lack of Notch signal gets translated into these 

changes in cell morphology remains an outstanding question (Simões et al., 2017). 

Optogenetic perturbation of Notch at single cell resolution will contribute to unravelling 

these processes in greater detail. Recent studies from our lab (Izquierdo et al., 2018; 

Krueger et al., 2018) have showed that using localized 2-photon based activation and/ 

or sub-cellular anchors, it is possible to activate optogenetically tagged proteins 



89 

 

specifically at the apical or basal surfaces of epithelial cells. This provides an elegant 

strategy to target specific pools of Notch in the cell and understand both their 

intracellular regulation and contributions to signalling at the tissue-level. 
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5. Materials and Methods 

 

5.1 Methods 
 

 

5.1.1 Cloning and transgenesis 
 

 

Endogenous Targeting of the Delta Locus 

The following method was written by Aleksander Necakov and is adapted from the 

submitted manuscript “Optogenetic inhibition of Delta reveals digital Notch signalling 

output during tissue differentiation” (see Appendix).    

Homologous recombination was used to target the endogenous Delta locus following 

a procedure described(Huang et al., 2009). Briefly, a large portion of the Delta locus 

between the intron preceding exon 6 to a region downstream of the transcriptional stop 

site, was replaced with a targeting cassette through knock-in of an attP landing site 

and a loxP-flanked mini white cassette. As a first step, a transgenic donor line 

containing the attP-containing targeting cassette on chromosome 2 was established. 

This targeting cassette carried flanking homology arms including sequences extending 

~5.5 kb upstream of the intron immediately upstream of exon 6 (Left Homology arm), 

and ~3 kb downstream of the transcriptional stop site (Right Homology arm). The 

transcriptional termination site, along with sites of low sequence conservation at 

insertion sites were identified using the UCSC Genome browser in order to mitigate 

any potential detrimental mismatches arising as a consequence of errant 

recombination events. The Delta-attP targeting cassette was mobilized through a 

combination of FLP/FRT and Isc1 genomic excision/cleavage, resulting in a linear, 

double stranded, extra-chromosomal targeting construct. Heterozygous Delta-attP 

founder lines were identified as red-eyed transformants that exhibited an obvious 

Delta-wing phenotype resulting from the haploinsufficiency of the Delta-attP loss-of-



91 

 

function allele. Candidate transformants were fully characterized and validated by 

PCR and Sanger sequencing, resulting in the identification of a bona fide Dealt-attP 

founder line. The mini-white was subsequently excised from the Delta-attP locus 

through Cre/Lox mediated recombination. This white-eyed Delta-attP founder line was 

then used as a substrate to generate Delta::EGFP, Delta::CRY2, Delta::EGFP::CRY2, 

Delta::TagRFP::CRY2, Delta::TagRFP::CRY2 Olig and Delta::CIBN fly lines through 

Φ C31-mediated attp/attB recombination. CRY2, CIBN and CRY2 Olig were amplified 

from existing plasmids (CRY2 and CIBN from (Guglielmi et al., 2015) and CRY2 Olig 

from Addgene plasmid # 60032,(Taslimi et al., 2014)). An attB vector containing the 

entire Delta genomic sequence that was removed from upstream of exon 6 to 

downstream of the transcriptional stop site, was produced for each of these rescue 

constructs, which were engineered to incorporate the coding sequences of their 

respective tag as an intramolecular fusion inserted between amino acids 701 and 702 

of Delta protein. Transformants were identified by their red-eye colour, and recue of 

the Delta haploinsufficient wing phenotype, and were subsequently verified by PCR 

and Sanger sequencing.  

 

sim-MS2 reporter line  

The following method was written by me and is adapted from the submitted manuscript 

“Optogenetic inhibition of Delta reveals digital Notch signalling output during tissue 

differentiation” (see Appendix).    

To generate the sim-MS2 line, the sim enhancer and promoter region shown below 

was fused to 24 MS2 stem loop repeats. This line was generated by Emilia Esposito. 

Cloning was performed identical to the eve>MS2 construct described previously 

(Bothma et al., 2014) 
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Sim Enhancer (664 bp) 

AGCAGAGCTCTTATCGTTGTGGCCCCGGCATATGTTACGCACATTTACAGCGTA

TGGCGATTTTCCGCTTTCCACGGCCACGGCCACAGCTTCCCACCTGATAGGAC

AGCTCGGCAATGTGTGGGAATCGCAGTGAGGTGCCGGTAGGAGTGGCAGGTA

AGCCTGGCCGCCTCGCAAGTTTCTCACACTTCCAGGACATGTGCTGCTTTTTTG

GCCGTTTTTCCCCGACTGGTTATCAATTGGCCGATTGGAAATTCCCCGATGGCG

ATGCGCTAGCGTGAGAACATGAGCTGCGAGCATCGGGTTTTTAGCATATCCATA

CCTGTGGCTCGTCCTGATGGGAAGCGAGAAGCAGCAGGATCGGATGTAGGAT

GCAGGATATAGGGTATAGGCGCTGTTGCGCCTCACCCGCAACACCCACATTAG

CATCGGACCAGCGTCCAGTGTCCTGTTAATTGCTTTATGGACTCTCCACTTTCC

GCTGCGTGGGAATCTTTGCTCATCCTACCTGTTTCCATGCCACACCAACCCATT

CCCACAGCATTGTCCTCCTTATGTGAAACTCTCTAGTTCAAGTTCAGTGTGAATA

TTTGTGTTGACTTTATTTTTAAACTTTTGGCCATTTGTTTTCAGTTTGCTGTTTGC

CTGTAACCAGATTAAGGTC 

 

Sim Promoter (181 bp) 

AATCCAGTGCAGCCAATGGCAGGTTGTTTTCTCAGGATCAGGTAACAGATCCTT

TTCGGGATCAGTTGGGAAACTGTTAAAAGTGCTTGTGCCGCTGGAAAGCGGCT

CAGTTGCAAACAGGTGATTGCAGGGATATGAGCAAGTGCTGAGAAGGTGCTCG

CAACAGTCTCAAAGCAGGATC 

 

Cloning 

Plasmids for were cloned using a combination of Gibson assembly and Gateway 

cloning techniques.  For Gibson assembly, a custom made master mix (see Materials) 

was prepared (Gibson et al., 2009). 10 μl aliquot of Gibson master mix was mixed with 
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a 10 μl mix of DNA fragments (PCR amplified using primers with 5’ extensions to 

contain overlapping regions) to be joined, on ice. Linearized vector and inserts were 

combined in the ratio 3:1 (total concentration of 0.6 pmol) and incubated for 1 hr at 

50°C before transformation into TOP10 E. coli cells. PCR, DNA purification, E. coli 

transformation and gateway cloning were done using commercialized procedures (see 

Materials) 

For cloning the opto-Notch constructs mCherry::Zdk1::NICD, 

NES::mCherry::Zdk1::NICD and Mito::EGFP::LOV2 :  NICD was amplified from 

Drosophila cDNA library; AsLOV2 domain (amino acids 404-546) from PA-Rac1 

(Addgene plasmid # 22027,(Wu et al., 2009); Zdk1 peptide (GenBank: KX429612.1) 

was synthesized (Invitrogen GeneART); Mitochondrial localization sequence (Mito) 

used was amino acids 1-36 (Kanaji et al., 2000) of Drosophila Tom-20 (UniProt ID: 

Q15RF6); NES used was from Smad 4 (Sequence: GIDLSGLSLQ). The constructs 

were first cloned into a pENTR entry vector and then sub-cloned into a pPW 

destination vector (Drosophila Genomics Resource center, Bloomington) using the 

Gateway cloning system (Thermo Fischer Scientific).  

 

For generating plasmids to be expressed in HeLa cell culture, DLL1::mCherry::CRY2, 

Notch1::YFP (Extracellular) and Notch1::Myc (Extracellular): full length Mouse DLL1 

was amplified from cDNA obtained from Mouse embryo tail-buds (courtesy Alexander 

Aulehla); Notch-1 was amplified from 2 separate plasmids (Addgene #41728 and 

Addgene #20183) and the YFP/ c-Myc tag was inserted in-frame with Notch-1 at amino 

acid position number 20. The constructs were first cloned into a pENTR entry vector 

and then sub-cloned into a pcDNA-DEST40 destination vector for mammalian 

expression using the Gateway cloning system (Thermo Fischer Scientific).  
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5.1.2 Cell culture  
 

 

HeLa cells were cultured in DMEM (Gibco) supplemented with 10% heat inactivated 

FBS, 2mM L-glutamine (Gibco), 1mM Sodium Pyruvate at 37 C and 5% CO2. Cells 

were seeded at 100.000 cells in 2ml glass bottom dishes (MatTek corporation). After 

24 hrs plasmid transfection was done using FuGENE HD (Roche) according to the 

manufacturer’s instruction (FuGENE:DNA ratio is 3:1). Cells were live imaged/ fixed 

24-48 hrs after transfection. 

 

The methods in the following sections were written by me and are adapted from the 

submitted manuscript “Optogenetic inhibition of Delta reveals digital Notch signalling 

output during tissue differentiation” (see Appendix).    

 

5.1.3 Live Imaging and Optogenetic activation 
 

 

Cages with flies expressing Delta-CRY2 were maintained in the dark. Late stage 4 

(Cycle 13) embryos were selected under halocarbon oil and mounted using a standard 

stereomicroscope with a red-emitting LED as the transmission light source. Mounting 

for live imaging was carried out as follows: embryos were dechorionated with 100% 

sodium hypochlorite for 2 min, rinsed with water and mounted immersed in PBS onto 

a 35 mm glass-bottom dish (MatTek corporation). Embryos were then positioned with 

their ventro-lateral side facing the cover-slip. Photo-activation and acquisition of 

movies was done with a spinning disk Ultraview VoX system (Perkin Elmer) using a 

40x/NA 1.3 oil immersion objective (Zeiss). Live imaging was performed at 25 °C. 

Bright field illumination was filtered using a Deep Amber lighting filter (Cabledelight, 
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Ltd.) in order to locate the embryos. The Microscope was controlled using Volocity 

software (Perkin Elmer). 

For imaging the kinetics of Delta-CRY2 clustering live, embryos heterozygous for 

Delta::GFP-CRY2 embryos were imaged using fluorescence live imaging (Perkin 

Elmer Vox, Spinning Disc Confocal, 63x Oil immersion objective). A single plane, 3 

microns below the apical surface was imaged (=488 nm, laser power out of the 

objective= 0.6 mW) over six minutes at two-second intervals in three individual 

embryos (n=100 cells in total).  

To image the clustering of Notch Extracellular-YFP in a Delta-CRY2 heterozygous 

background, at t = 0s, a pre-activation stack was acquired using a 514 nm laser, 

followed by an immediate cycle of photo-activation (5 s, =488 nm, laser power out of 

the objective= 0.6 mW). Thereafter, a post-activation stack was acquired using the 

514 nm laser at t = 60s. The above cycle was repeated till t = 120s. While imaging the 

clustering of Notch Extracellular-YFP in a Delta-CRY2 homozygous background, there 

was no time delay between the pre-activation, photo-activation and post-activation 

stacks. All stacks were 10 µm starting from the most apical plane of the embryo surface 

with a z-interval of 0.4 µm.   

For clonal analysis, Delta-CRY2 pupae were collected at puparium formation and 

either photo-activated under a white lamp source (20 W) or placed in the dark at 25 

°C until 16.5 hrs after puparium formation (APF) for live imaging as described 

previously(Couturier, trylinski 2014). Imaging was done with a Zeiss LSM 780 confocal 

microscope with a 63x/NA 1.4 oil immersion objective (Carl Zeiss). 

For sim expression, virgin females of the line w; MCP (No NLS)-GFP/CyO; Delta-

CRY2/” were crossed to males expressing the sim-MS2 reporter. Resulting embryos 

were mounted for imaging and photo-activated after allowing incremental time 
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intervals (0/5/10/15/20/25 min) of signalling from the onset of cycle 14. Photo-

activation was carried out by illumination with a 488 nm laser line (200 ms/slice, laser 

power out of the objective= 0.6 mW) every minute by gradually increasing the stack 

size from 20 to 25 to 30 µm (z-interval of 0.8 µm) from the apical surface as 

cellularization proceeded. sim nuclear spots were recorded also using a 488 nm laser 

at a time resolution of 30 s and a stack size of 25 µm (z-interval of 0.4 µm) until the 

onset of ventral furrow formation. For controls, female virgins expressing MCP-GFP 

(without Delta-CRY2) were crossed to males expressing the sim-MS2 reporter and 

photo-activated using the same protocol described above from the onset of cycle 14. 

For imaging sim expression in Notch heterozygous embryos, female virgins 

expressing one copy of the mutant Notch55e11 allele and MCP-GFP, were crossed to 

males expressing sim-MS2. Image acquisition in the resulting embryos and 

corresponding controls (without Notch55e11) was started as soon as sim spots began 

to appear, without any prior photo-activation. 

Spatial activation of opto-Delta: Photo-activation in a localized region was carried out 

by illumination with a 950 nm 2-photon laser (pixel dwell time: 1.3 µs and pixel size: 

0.4 µm, laser power = 10 mW) every 45 s by gradually increasing the stack size from 

20 to 25 to 30 µm (z-interval of 1 µm) from the apical surface as cellularization 

proceeded. sim nuclear spots (visualized by MCP::mCherry) were recorded also using 

a 561 nm laser at a time resolution of 30 s and a stack size of ~25 µm (z-interval of 

0.5 µm) ~5 mins prior to the onset of ventral furrow. Images were acquired with a Zeiss 

LSM 780 NLO confocal microscope with a 40x/NA 1.2 water immersion objective (Carl 

Zeiss) 

Neuroblast imaging: Photo-activation (5 s, =488 nm, laser power out of the objective= 

0.6 mW) in the neurectoderm was started immediately post ventral furrow formation 



97 

 

and was repeated thrice at a time resolution of 20 s. Following this, the membrane 

marker gap43::mCherry was imaged using the 561 nm laser every 30 s along with a 

photo-activation stack at a time-resolution of 10 min. All stacks were 10 µm starting 

from the most apical plane of the embryo surface with a z-interval of 0.4 µm. Images 

were acquired using a Perkin Elmer Vox, Spinning Disc Confocal, 40x Oil immersion 

objective. 

 

For live imaging clustering of Delta::mCherry::CRY2 in cell culture: A pre-activation 

stack was acquired using a 561 nm laser, followed by an immediate cycle of photo-

activation (5 s, =488 nm, laser power out of the objective= 0.6 mW) which was done 

at a time-resolution of 20 s for 2 time points. Thereafter, a post-activation stack was 

acquired using the 561 nm laser at t = 30s. All stacks were 10 µm starting from the 

most apical plane of the embryo surface with a z-interval of 0.4 µm. Images were 

acquired using a Perkin Elmer Vox, Spinning Disc Confocal, 100x Oil immersion 

objective.  

  

Imaging of opto-Notch activation in the early embryo during the mitotic phase was 

done as follows: A pre-activation stack was acquired using a 561 nm laser, followed 

by an immediate cycle of photo-activation (4 s, =488 nm, laser power out of the 

objective= 0.6 mW) which was done at a time-resolution of 10 s for 3 time points. 

Thereafter, a post-activation stack was acquired using the 561 nm laser at t = 30s. All 

stacks were 15 µm starting from the most apical plane of the embryo surface with a z-

interval of 0.4 µm. Images were acquired using a Perkin Elmer Vox, Spinning Disc 

Confocal, 63x Oil immersion objective. 
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Optogenetic inhibition of Notch signaling during development and analysis of 

mutant phenotypes 

Flies homozygous for Delta::CRY2, which are viable and fertile in the dark, were 

reared on standard German food (Bloomington Drosophila stock center recipe) in 

standard acrylic fly vials, and exposed to ambient light from larval stages until eclosion. 

These adults, along with their counterparts reared in the dark, were imaged on a Zeiss 

stereo-dissection microscope in order to characterize variations in wing, notum, and 

eye morphology. For embryonic analysis, homozygous Delta::CRY2 embryos were 

collected for two hours on apple-juice agar plates in acrylic cages maintained either in 

the dark, or exposed to ambient light for 24 hours at 25 °C. Cuticle preparations of 

collected embryos were made using Hoyer’s medium, and imaged on a Zeiss stereo-

dissection microscope. For Delta-CRY2 adult nota and eyes, the following protocol 

was used: pupae were collected at the puparium formation stage and illuminated 

under a white lamp source (20 W) or placed in the dark at 25 ºC until they hatched. 

Adults were frozen at -20 ºC for 15 minutes and then immediately prepared for bright-

field imaging using a Zeiss AxioZoom V16 macroscope.  

 

5.1.4 Image analysis 
 

 

To quantify Delta::GFP::CRY2 clustering kinetics, a data pipeline was developed in 

Cell Profiler to automatically identify and segment individual Delta::GFP::CRY2 

clusters in a series of individual confocal images. Segmentation serves to first map the 

positional coordinates for each cluster, allowing for automatic quantification of the 

number of clusters in each image. Delta protein abundance in individual clusters was 

then automatically quantified by integrating fluorescence intensity across the total area 

of each cluster as identified through segmentation. Data normalization was performed 
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through the following formula: (Total Number of Clusters x Mean Intensity of 

Clusters) ÷ Total Intensity of Image. This approach to normalization provides a 

quantitative measure of the total amount of Delta protein (Delta::GFP:CRY2 locked 

into clusters), and the resulting data were plotted as the relative intensity of Delta 

clusters over time plus or minus standard deviation over time.  This image analysis 

pipeline automatically identifies and segments individual Delta-GFP-CRY2 clusters in 

a series of individual images collected using spinning-disk confocal 

microscopy. Segmentation serves to first map the positional coordinates for each 

cluster, allowing for automatic quantification of the number of clusters in each 

image. Delta protein abundance in individual clusters is then automatically quantified 

by integrating fluorescence intensity across the total area of each cluster as identified 

through segmentation.  

For the quantification of Notch protein levels at the plasma membrane, confocal 

images were processed using Fiji and analyzed using MATLAB-R2017b (MathWorks). 

A sum-of-slice projection of 10 focal planes was used to segment line profiles with a 

line width of 7 pixels which were drawn across approximately 30 interfaces in both 

ectoderm and mesoderm of each embryo, and the corresponding intensity profiles 

were extracted in Fiji. This data was then input into a customized MATLAB pipeline. 

Peak values in the intensity profile were identified using the findpeaks function in 

MATLAB and the integrated intensity across individual interfaces was calculated by 

choosing an interval of 0.78 µm centered at the peak.  

For the clonal analysis, the total number of sensory organ precursor cells (SOPs, 

marked by neur-iRFPnls) at the border of wild-type and Delta-CRY2 clones were 

counted manually and scored for their presence on the side of either the wild-type or 

Delta-CRY2 homozygous clone. The number of SOPs on the side of the Delta-CRY2 
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clone were then plotted as a percentage of total number of SOPs at the border in both 

the photo-activated and dark conditions.  

For the analysis and quantification of sim expression using the MS2-MCP system the 

numbers of spots and associated intensity was quantified under different photo-

activation regimes. In order to remove noise, individual images from stacks were 

median-filtered with a 3x3 pixel neighborhood. A mean-filter over a 100x100 pixel 

neighborhood was used to determine the background and subtracted to the median-

filtered image. We then computed the maximum projection. We subtracted to the 

maximum projection image its median-filtered image with a 30x30 pixel neighborhood. 

The resulting image was Gaussian-filtered with a standard deviation of 3 pixels 

(corresponding to the size of a diffraction-limited spot under our imaging conditions). 

The segmented image was built from the zero crossings of the Laplacian of the filtered 

maximum projection. Segmentation of background was rejected based on blob size 

and intensity. The final segmented image was manually curated. The segmented 

image was used as mask to extract the intensity of individual sim puncta. 

For the quantification of sim expression using FISH, nascent sim transcribing spots in 

the nucleus were segmented, and their intensities were quantified in fixed embryos 

using a similar methodology as described above. In nuclei containing two visible 

transcriptional foci, both of them were used for quantification. The staging of embryos 

as early, middle and late during the course of cellularization was done as follows: The 

Early group was identified as having detectable levels of Sim expression, and as 

where the cellularization furrow was measured to be at least 12 µm deep from the 

vitelline membrane but still positioned apical to the base of the cortical nuclei. The 

Middle group was identified as having detectable levels of Sim expression, and as 

where the cellularization furrow was positioned anywhere between the base of the 
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cortical nuclei and three microns basal to the nuclei. The Late group was identified as 

having detectable levels of Sim expression, and as where the cellularization furrow 

was positioned at least 5 microns below the base of the cortical nuclei and including 

cephalic furrow formation, but prior to ventral furrow formation. 

To quantify Delta protein content at the plasma membrane, cell outlines were 

segmented based on the E-cadherin signal co-stained with Delta using Embryo 

Development Geometry Explorer (EDGE) software (Gelbart et al., 2012) provided via 

GitHub (https://github.com/mgelbart/embryo-development-geometry-explorer). Image 

stacks spanning 3.5 µm were projected in 2-D using the sum-of-slices. The 

membrane-bound Delta signal was measured in a 0.3 µm thick region lining the 

segmented membrane and for each embryo the mean intensity value of the ectoderm 

and of the mesoderm was calculated. To quantify the membrane-to-cytoplasmic ratio 

of the Delta signal in the mesoderm, for individual cells the central (cytoplasmic) signal 

was derived from the inverted mask of the segmented membrane and divided by the 

Delta signal measured at the surrounding cell edges. An average membrane-to-

cytoplasmic ratio was calculated from ~40 cells per embryo. 

To analyze the co-localization of Delta and Rab5 in the mesoderm, vesicles were 

detected in a 7-µm-spanning image stack using the Fiji “Spots colocalization” plugin 

ComDet v.0.4.1 provided via GitHub (https://github.com/ekatrukha/ComDet). 

Identified Delta particles were binary classified for an overlap with Rab5 particles in at 

least 1 pixel. The percentage of Rab5-positve Delta particle was calculated per 

embryo. 

For measuring neuroblast apical cell surface area over time, a pipeline adapted from 

Izquierdo et al. 2018 was used.  

 

https://github.com/mgelbart/embryo-development-geometry-explorer
https://github.com/ekatrukha/ComDet
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Estimation of activation rates  

The temporal evolution of transcription spot numbers was adjusted by Nmax (1-exp(-k 

(t-t0)) where Nmax is the maximum number of spots that can be activated (i.e. the 

number of nuclei in the mesectoderm), k is the activation rate and t0.the delay to 

activation. Nmax was taken as constant and only two parameters k and t0 were adjusted 

for each embryo.  

 

5.1.5 Immunostaining  
 

 

Delta-CRY2 embryos enriched in stage 4 and 5 were collected, dechorionated in 

bleach for 2 min, covered in PBS and photo-activated with the following illumination 

protocol: 2 min under blue light from a fluorescence lamp source (Olympus X-Cite 120 

W, 470/40 bandpass filter. Light power out of the objective= 1.8 mW) 5 min under a 

white light source (HAL-100 Zeiss) and 3 min with no illumination. This protocol was 

repeated 6 times to ensure a total photo-activation period of 1 hour. Thereafter, 

embryos were immediately fixed in 4% Paraformaldehyde (Electron Microscopy 

Sciences) and Heptane (Sigma) for 20 min after which they were devitellinized and 

stored in methanol at -20 °C. 

For Immunostaining, fixed embryos were blocked in 10% Bovine Serum Albumin(BSA) 

in PBS 0.1% Triton-X (Sigma) for 1 hour, following which they were incubated 

overnight in the primary antibody diluted in PBS containing 5% BSA and 0.1% Triton-

X. The embryos were then washed and incubated in the secondary antibody for 45 

min at room temperature. After another round of washing, embryos were mounted on 

glass slides using aqua-poly/mount (Polysciences Inc.). For the non-photo-activated 

control, embryos were collected under Deep Amber filtered light (as mentioned 
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previously) and fixed in the dark prior to immunostaining. Images were acquired with 

a Zeiss LSM 780 NLO confocal microscope with a 63x/NA 1.2 water immersion 

objective (Carl Zeiss).   

For HeLa cell culture immunostainings, a protocol to fix and stain cells without 

permeablization was adapted from (Hinners et al., 1999) in order to visualize only the 

plasma membrane pool of Notch. PBS was replaced by Sodium Phosphate buffer 

(NaPi) in all steps. After aspiration of cell culture media, cells were rinsed twice in NaPi 

containing 0.9mM CaCl2 and 0.5mM MgCl2. Fixation was performed either In the dark 

or after blue light photo-activation with a fluorescence lamp source (as described in 

the previous section) for ~3 min., scanning the entire dish.  Cells were fixed using 3% 

PFA for 30 min. at room temperature (RT). Fixation was stopped by quenching in 

50mM NH4Cl for 10 min. Cells were blocked in 10% BSA in NaPi for 30 min following 

which the primary antibody diluted in 5% BSA was added and cells were incubated for 

1.5 hrs at RT. After washes with NaPi, the secondary antibody was added (and 

washed off post 1 hr at RT) and cells were stored in a light protected manner at 4 C. 

Cells were imaged with a Perkin Elmer Vox, Spinning Disc Confocal, 63x Oil 

immersion objective.  

 

5.1.6 In-situ hybridization (ISH)/ Fluorescent in-situ hybridization (FISH)  
 

 

Fixed embryos stored at -20º C in methanol were transferred to xylene and washed 

on the rocker for 20 min. in order to clear the yolk. Embryos were then transferred 

back to methanol, and following a quick rinse, were washed 3x with PTw0.1%. Embryos 

were incubated in PBTK for 30 min. at RT; Proteinase-K digestion was stopped by 

washing twice in PBTG. Following a rinse in PTw0.1%. embryos were post-fixed at RT 

for 20 min with PBTF. To remove all traces of fixative, 5x washes with PTw0.1%. were 
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performed.  A 1:1 mixture of hybridization buffer: PTw0.1% was prepared and embryos 

were rinsed. This was replaced with 100% hybridization buffer at 65º C. 

Prehybridization buffer was prepared by boiling hybridization buffer for 5 minutes at 

100 C and then coolng on ice for 5 minutes. Samples were then incubated in 

prehybridization solution for ~ 2 hours at 65º C. Probe solution was prepared by adding 

~50-100ng of probe (or as desired) in ~ 100 uL of hybridization buffer plus 5% dextran 

and samples were incubated in this overnight (15 h) at 65º C. Embryos were washed 

5x for 10 minutes each in 100% hybdridization buffer at 65 ºC. After this, 15 min 

washes were performed with serial dilutions of the hybridization buffer in PTw0.1% (3:1, 

1:1, and 1:3). With 5 final washes with PTw0.1% ,embryos were cooled to RT and 

blocked in 5% BSA for 1 hr. For FISH, 1% skim milk was used in the blocking solution 

instead of 5% BSA. Embryos were incubated for 2hrs at RT or overnight at 4º C in the 

primary antibody solution (Anti-Dig-AP, AP (Alkaline Phosphatase) conjugated for ISH 

and Anti-Dig without AP for FISH).     

For ISH, after several washes with PTw0.1%, embryos were rinsed 3 x 5 minutes in 

fresh AP-wash buffer. The substrate NBT/BCIP was diluted 1:50 in AP-colour buffer 

and added to the samples on a 24 well plate. The color develops between 20-40 

minutes and the reaction is stopped by washing in PTw0.1% or through an ethanol series 

to reduce background. 

For FISH, after several washes with PTw0.1%, embryos were incubated in secondary 

antibody and following another round of washing, were mounted on slides using aqua-

poly/mount (Polysciences Inc.) after 10 min. incubation in DAPI to visualize nuclei. 

Imaging conditions for visualizing nascent sim transcripts by Fluorescent in-situ 

hybridization (FISH) in wild-type (w1118) embryos was identical to that used for the 

MS2-MCP system, except that a 63x Oil immersion objective was used instead of 40x.  
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5.1.7 Drosophila strains and genetics 
 

 

In order to induce clones in the pupal notum: 

w; Ubx-FLP neur-iRFP670nls/+; FRT82B ubi-RFPnls/ FRT82B Delta::CRY2. 

Clones were detected by the loss of nuclear-RFP. 

In order to visualize sequestration and optogenetic release of NICD: 

w[*]; P[w+, UASp>mCherry::Zdk1::NICD]/ P[w+, Mat.tubulin>Gal4::VP16]; P[w+, 

UASp>Mito-EGFP::LOV2]/ P[w+, Mat.tubulin>Gal4::VP16]   

 

5.1.8 Drosophila stocks 
 

 

All stocks were maintained by standard methods at 22°C, unless otherwise specified 

and lines carrying the optogenetic CRY2 tag were stored in the dark. 

 

 

Fly Stock Description 

w[*]; ; Delta::EGFP/ ”  Endogenous Delta tagged intracellularly 

with EGFP 

w[*]; ; Delta::CRY2/ ” Endogenous Delta tagged intracellularly 

with CRY2  

w[*]; ; Delta::EGFP::CRY2/ TM6B,Tb Endogenous Delta tagged intracellularly 

with EGFP and CRY2 

w[*]; ; Delta::TAGRFP::CRY2/ TM6B,Tb  Endogenous Delta tagged intracellularly 

with TAGRFP and CRY2  
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w[*]; ; Delta::TAGRFP::CRY2-olig/ TM6B,Tb Endogenous Delta tagged intracellularly 

with TAGRFP and CRY2-olig 

(increased clustering variant of CRY2)  

w[*]; ; Delta::CIBN/ ”  Endogenous Delta tagged intracellularly 

with CRY2 dimerizing partner CIBN  

Notch-Extra::YFP/Y  Endogenous Notch tagged 

extracellularly with YFP at amino acid 

55. (DGRC-Kyoto Line 115544)  

Notch-Extra::YFP/ Y; ; Delta::CRY2/ ” 

 

Endogenous Notch tagged 

extracellularly with YFP combined with 

Delta::CRY2  

yw[*]; P[ w+, nosP> MCP-no nls::GFP]; +/ + MCP with nuclear localization 

sequence removed and tagged with 

GFP, driven by the Nanos promoter 

(from Thomas Gregor) 

 

w[*]; P[ w+, nosP> MCP-no nls::GFP]/ CyO; 

MKRS/ TM3,Ser 

“ (Single copy of MCP-no nls::GFP, 

used for control experiments) 

w; P[ w+, nosP> MCP-no nls::GFP]/ CyO; 

Delta::CRY2/ ” 

MCP with nuclear localization sequence 

removed and tagged with GFP, 

combined with Delta::CRY2  

w[*]; P[ w+, nosP> MCP-no nls::mCherry]/ 

CyO; P[ w+, nosP> MCP-no nls::mCherry]/ 

TM3,Sb. 

MCP with nuclear localization sequence 

removed and tagged with mCherry, 

driven by the Nanos promoter (Bothma 

et al., 2018) 
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w[*]; P[ w+, nosP> MCP-no nls::mCherry]/ 

CyO; Delta::CRY2/ ” 

MCP with nuclear localization sequence 

removed and tagged with mCherry, 

combined with Delta::CRY2  

yw[*]; ; Sim-MS2/ ” Sim enhancer and promoter fused to 

MS2 stem loops (from Emilia Esposito/ 

Michael Levine)  

w[*]; P[w+, sqhp>Gap43::mCherry]/CyO; 

Delta::CRY2/ ”  

Gap43 membrane marker tagged with 

mCherry and driven by the Spaghetti-

squash promoter and combined with 

Delta::CRY2 

w[*]; ; FRT82B Delta::CRY2/ ” FRT82B recombined with Delta::CRY2 

on the 3rd chromosome for clonal 

analysis  

w[*]; Ubx-FLP neur-iRFP670nls/ CyOGFP; 

FRT82B ubi-RFPnls  

Line expressing Flippase driven by the 

Ultrabithorax promoter recombined 

with a fluorescent SOP marker driven 

by the Neuralized promoter; FRT82B 

recombined with ubi-RFPnls in order to 

visualize clones in the tissue (from 

Francois Schweisguth, Corturier et al, 

2014) 

yw[*]; EGFP::Rab5/CyO  Endogenous GFP-tagged early 

endosome marker Rab5, (Fabrowski et 

al., 2013) 
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yw[*] FRT19A Notch55e11/ FM7c  Notch loss-of-function mutation (from 

Eric Wieschaus) 

w[*]; ; Df(3R)BSC850/TM6C, Sb cu  (Bloomington Stock BL-27922), 

Chromosomal defeciency in 3R lacking 

Delta  

w[*]; If/CyO; P[w+, UASp>Mito-

EGFP::LOV2]/TM6B, Tb 

UASp driven LOV2 domain fused to a 

mitochondrial localization sequence 

and tagged with EGFP 

w[*]; P[w+, 

UASp>mCherry::Zdk1::NICD]/CyO; MKRS/ 

TM6B, Tb  

UASp driven NICD fused to the Zdk1 

peptide and tagged with mCherry 

w[*]; P[w+, mat.tub > Gal4::VP16]; P[w+, 
mat.tub > Gal4::VP16] 

Maternal tubulin promoter driven Gal4 
(Bloomington 
Stock 7062-7063) 
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5.2 Materials 
 

 

5.2.1 Kits 
 

 

Phusion Flash High-Fidelity PCR Master 

Mix  

Thermo Scientific 

QIAprep Spin Miniprep Kit Qiagen 

Plasmid Midiprep Kit Qiagen 

QIAquick Gel Extraction Kit  Qiagen 

QIAquick PCR Purification Kit Qiagen 

pENTR/D-TOPO Cloning Kit Thermo Fisher 

 

5.2.2 Chemicals/ reagents 
 

 

Ampicillin Applichem 

Kanamycin Roth 

Dulbecco’s Modified Eagle Medium 

(DMEM) 

Gibco 

Fetal Bovine Serum (FBS) Gold PAA Laboratory Gmbh. 

FuGENE HD Roche 

L-Glutamine Gibco 

Sodium Pyruvate Gibco 

OptiMEM cell culture medium Gibco 

Halocarbon oil 27  Sigma Aldrich 

n-Heptane Sigma Aldrich 
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Methanol Sigma Aldrich 

Xylene Sigma Aldrich 

Paraformaldehyde (PFA) Electron Microscopy Sciences 

DAPI Thermo Scientific 

NBT/ BCIP (substrate for ISH) Roche 

Dextran sulphate Sigma Aldrich 

 

 

5.2.3 Buffers/ solutions 
 

 

 

LB (Luria Bertani broth) medium In 1 L H20 

10 g Tryptone 

5g Yeast extract 

10g NaCl 

TB (terrific broth)medium In 1 L H20 

20g Tryptone 

24g Yeast extract 

0.017 KH2PO4 

0.072 K2HPO4 

Isothermal reaction buffer 500 mM Tris-HCl (pH 7.5) 

25% PEG-8000 

50 mM MgCl2 

50 mM DTT 

5 mM NAD 
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Gibson assembly mix  1x Isothermal reaction buffer 

10 U/µl T5 exonuclease (New England 

Biolabs) 

2 U/µl Phusion DNA polymerase (New 

England Biolabs) 

40 U/µl Taq ligase (Epicentre)  

TAE buffer (50x)  2 M Tris 

1 M acetic acid 

50 mM EDTA 

PBS 2.7 mM KCl 

137 mM NaCl 

10 mM Na2HPO4 

2 mM KH2PO4  

PBSTr0.1% 0.1% Triton-X in PBS 

PBSTw0.1% 0.1% Tween 20 in PBS 

Blocking solution For IF, 10% Bovine serum albumin 

(BSA) in PBSTr0.1% 

For ISH, 5% Bovine serum albumin 

(BSA) in PBSTw0.1%  

PBTK 3 µg/ml Proteinase K (Thermo Fisher 

Scientific) in PBSTw0.1%  

PBTG 2 mg/ml Glycine (Sigma) in PBSTw0.1%  

PBTF 20% PFA in PBSTw0.1%  

In situ hybridization buffer For 100 ml, 

1g blocking reagent (Roche) 
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0.1g Chaps (Sigma) 

50 ml Formamide 

25 ml 20x SSC buffer 

2 ml 50x Denharts  

0.1% yeast tRNA 

0.01% Heparin 

0.1% Tween 20 

DNAase RNAase free H2O to 100 ml 

AP wash buffer 0.1 M Tris-HCl (pH 9.5) 

0.1 M NaCl 

50 mM MgCl2 

Tetramisol 1 mM 

0.1% Tween 20 

AP colour buffer 0.1 M Tris-HCl (pH 9.5) 

0.1 M NaCl 

0.1% Tween 20  

 

 

5.2.4 Bacteria/ Mammalian cells 
 

 

One Shot TOP10 Chemically 

Competent E. coli  

Thermo Fisher Scientific 

HeLa Kyoto human cell line From S. Narumiya, Kyoto University 
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5.2.5 Antibodies (for immunofluorescence) 
 

 

 

Antibody Species Dilution Source 

anti-extracellular 

Notch EGF 

repeats-12-20  

Mouse 1:20  C458.2H 

Developmental 

Studies Hybridoma 

bank, DSHB  

anti-Delta  Mouse  1:100 C594.9B, DSHB 

anti-intracellular 

Notch  

Mouse 1:20 C17.9C6, DSHB 

anti-Tom Rat 1:100 Home-made 

anti-E-Cadherin Rabbit 1:100 sc-33743, Santa 

Cruz Biotech. 

anti-c-Myc (9E10)  Mouse 1:400 sc-40, Santa Cruz 

Biotech.  

anti-DIG-AP Sheep 1:500 Roche 

Anti-DIG Sheep 1:500 Roche 

Anti-GFP Rabbit 1:1000 Abcam 

anti-mouse Alexa 

488  

Goat 1:500 Thermo Scientific 

anti-mouse Alexa 

647  

Goat 1:500 Thermo Scientific 

anti-rat Alexa 647  Goat 1:500 Thermo Scientific 
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anti-rabbit Alexa 

488  

Goat 1:500 Thermo Scientific 

anti-Sheep Alexa 

488  

Donkey 1:500 Thermo Scientific  
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Viswanathan, R., Necakov, A., Trylinski, M., Harish, R.K., Krueger, D., Esposito, E., 

Schweisguth, F., Neveu, P., and De Renzis, S. Optogenetic inhibition of Delta reveals 

digital Notch signalling output during tissue differentiation.   

bioRxiv: http://dx.doi.org/10.1101/738039. 
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