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Abstract

There is a complex mutual interplay between three-dimensional (3D) genome organization
and cellular activities in bacteria and eukaryotes. The aim of this thesis is to investigate
such structure-function relationships.

A main part of this thesis deals with the study of the three-dimensional genome orga-
nization using novel techniques for detecting genome-wide contacts using next-generation
sequencing. These so called chromatin conformation capture-based methods, such as 5C
and Hi-C, give deep insights into the architecture of the genome inside the nucleus, even
on a small scale. We shed light on the question how the vastly increasing Hi-C data can
generate new insights about the way the genome is organized in 3D.

To this end, we first present the typical Hi-C data processing workflow to obtain Hi-C
contact maps and show potential pitfalls in the interpretation of such contact maps using
our own data pipeline and publicly available Hi-C data sets. Subsequently, we focus on
approaches to modeling 3D genome organization based on contact maps. In this context,
a computational tool was developed which interactively visualizes contact maps along-
side complementary genomic data tracks. Inspired by machine learning with the help of
probabilistic graphical models, we developed a tool that detects the compartmentalization
structure within contact maps on multiple scales. In a further project, we propose and
test one possible mechanism for the observed compartmentalization within contact maps
of genomes across multiple species: Dynamic formation of loops within domains.

In the context of 3D organization of bacterial chromosomes, we present the first direct
evidence for global restructuring by long-range interactions of a DNA binding protein.
Using Hi-C and live cell imaging of DNA loci, we show that the DNA binding protein Rok
forms insulator-like complexes looping the B. subtilis genome over large distances. This
biological mechanism agrees with our model based on dynamic formation of loops affecting
domain formation in eukaryotic genomes. We further investigate the spatial segregation
of the E. coli chromosome during cell division. In particular, we are interested in the
positioning of the chromosomal replication origin region based on its interaction with the
protein complex MukBEF. We tackle the problem using a combined approach of stochastic
and polymer simulations.

Last but not least, we develop a completely new methodology to analyze single molecule
localization microscopy images based on topological data analysis. By using this new
approach in the analysis of irradiated cells, we are able to show that the topology of repair
foci can be categorized depending the distance to heterochromatin.



Zusammenfassung

Zwischen dreidimensionaler (3D) Genomorganisation und zelluldren Aktivitdten in Bak-
terien und Eukaryoten gibt es ein komplexes Wechselspiel. Das Ziel dieser Arbeit ist es,
solche Struktur-Funktions-Zusammenhénge zu untersuchen.

Ein Hauptteil dieser Arbeit befasst sich mit der Untersuchung der dreidimensionalen
Genomorganisation unter Verwendung neuartiger Techniken zum Nachweis genomweiter
Kontakte unter Verwendung von DNA-Sequenzierung der néchsten Generation. Diese
auf “Chromosome Conformation Capture” basierenden Methoden, wie 5C und Hi-C, er-
moglichen auch auf kleinen Skalen tiefe Einblicke in die Architektur des Genoms im Zel-
lkern. Wir beleuchten die Frage, wie die immer weiter zunehmenden Hi-C-Daten neue
Erkenntnisse tiber die rdumliche Organisation des Genoms liefern kénnen.

Zu diesem Zweck stellen wir zunéchst den typischen Workflow der Hi-C-Datenverarbeit-
ung vor, um Hi-C Kontaktmatrizen zu erhalten. Wir zeigen mogliche Fallstricken bei der
Interpretation solcher Kontaktmatrizen unter Verwendung unserer eigenen Daten-Pipeline
und o6ffentlich verfiigbarer Hi-C-Datensétze auf. Anschlieend konzentrieren wir uns auf
Ansétze zur Modellierung der rdumlichen Genomorganisation auf Basis von Kontaktma-
trizen. In diesem Zusammenhang wurde ein Werkzeug entwickelt, das interaktiv Kontakt-
matrizen und komplementére Datenspuren visualisiert. Inspiriert durch maschinelles Ler-
nen mit Hilfe probabilistischer graphischer Modelle haben wir ein Tool entwickelt, das die
Kompartimentierungsstruktur in Kontaktmatrizen auf unterschiedlichen Skalen erkennt.
In einem weiteren Projekt zeigen wir einen moglichen Mechanismus fiir die beobachtete
Kompartimentierung innerhalb von Kontaktmatrizen unterschiedlicher Genome und testen
ihn: Dynamische Schleifenbildung innerhalb von Doménen.

Im Kontext der rdumlichen Organisation bakterieller Chromosomen présentieren wir
den ersten direkten Nachweis fiir eine globale Restrukturierung durch langreichweitige
Wechselwirkungen eines DNA-bindenen Proteins. Unter Verwendung von Hi-C und Live-
Cell Imaging von DNA-Loci zeigen wir, dass das DNA-bindende Protein Rok isolator-
dhnliche Komplexe bildet, die das B. subtilis Genom {iber groie Entfernungen schleifen.
Dieser biologische Mechanismus bestétigt unser Modell, das auf der dynamischen Bildung
von Schleifen basiert, die die Doménenbildung in eukaryotischen Genomen beeinflussen.
Desweiteren untersuchen wir die rdumliche Trennung des E. coli Chromosoms wéhrend
der Zellteilung. Insbesondere interessieren wir uns fiir die Positionierung des E. coli Rep-
likationsursprungs durch seine Wechselwirkung mit dem Proteinkomplex MukBEF. Wir
verfolgen dabei einen kombinierten Ansatz aus stochastischen Simulationen und Polymer-
simulationen an.

Im Rahmen einer weiteren Kollaboration wurde eine vollig neue Methode zur Analyse
von Einzelmolekiil-Lokalisationsmikroskopiebildern auf Basis topologischer Datenanalyse
entwickelt. Mithilfe dieses neuen Ansatzes zur Analyse bestrahlter Zellen konnten wir
zeigen, dass die Topologie von DNA-Reparaturzentren in Abhéngigkeit ihrer Entfernung
zu Heterochromatin kategorisiert werden kann.
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Chapter 1

Scope and Intentions

A Short Overview over Topics and Aims

1.1 Introduction

The study of the concerted interplay of structure and function of DNA and chromatin goes
back several centuries. How DNA is organized in three dimensions inside the cell nucleus
and how this impacts on gene expression is indeed one of the most important questions in
cell biology. The human genome project [1] completed in 2003 deciphered the sequence of
the over 3x10'? base pairs long human DNA. Stretched out and placed end to end that
amounts to about 2 meters.

How can this amount of DNA fit inside a micron-sized cell nucleus? And how does the
solution to this organizational challenge then further impacts on gene expression or, in
other words, how can the genetic material
can be sufficiently compactified while pro-
viding dynamic access to the genetic infor-
mation relevant for nuclear processes like
transcription, replication, DNA repair and
recombination? The knowledge of the se-
quence of the genome alone cannot answer
these fundamental questions in cell biology.
However, the combination of the knowledge
of both sequence and three-dimensional
(3D) organization of the genome does pro-
Figure 1.1: [Illustration of the enormous size vide insights into these questions.
of the genome. Image adapted from the Bacterial genomes face similar ques-
National Human Genome Research Institute tions as eukaryotic genomes: The Es-
(https://www.genome.gov). cherichia coli (E. coli) chromosome is ap-
proximately 1000 times longer than the confining bacterial nucleoid [2] and replication,
segregation and transcription of the genetic material must be in harmony with the needed
level of compaction.

What is the influence of the 3D organization of bacterial and eukaryotic genomes on
essential cell functions and, vice versa, how do nuclear processes impact on genome folding?

The answers to these questions require research on genome folding and the underlying
physical principles. For this purpose, computational modeling coupled to “chromosome
conformation capture” (3C) techniques as well as to high-resolution microscopy are being
used. Genome-wide 3C methods, such as Hi-C, allow for probing the 3D structure of
the genome by determining the number of contacts between any pair of genomic loci,
thus generating a genome-wide snapshot of genomic self-interactions [3]. While 3C-based
techniques measure contact frequencies between DNA segments for a population of millions
of cells, high-resolution (live) cell imaging can provide information on the single-cell level.
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1.2 Scope of this Thesis

In this thesis, we want to address important questions for a better understanding of 3D
genome organization of both eukaryotes and bacteria by means of computational modeling
approaches coupled to experimental evidence gathered from data provided by both our
different collaborators as well as by publicly accessible databases. We first target the
aspect of analyzing, interpreting and building models based on Hi-C data. Our intention
is to work out a clear guidelines and to this end provide two in-house developed tools.
Furthermore, we present a physical model that can account for the experimentally observed
Hi-C contact maps of both eukaryotic and bacterial genomes. Next, we focus on the spatial
segregation of the E. coli chromosome during cell division and present our important new
findings. Last but not least, we present a fundamentally new approach to analyze high-
resolution microscopy images in terms of topology.

Hi-C allows for probing the 3D structure of the genome in great detail like never be-
fore. Thanks to massive improvements in throughput, ever-increasing amounts of data
are being produced and deposited in publicly accessible databases like Gene Expression
Omnibus (GEO) [4]. Although there is a variety of data analysis tools for processing raw
Hi-C data [5], the illustration of the final contact maps is not standardized. Most im-
portantly, one should differentiate contact frequency maps and contact probability maps.
While contact frequency maps are composed of the individual total number of contacts
between any pair of genetic loci, contact probability maps, on the other hand, are doubly
stochastic matrices that specify the probability of any pair of genetic loci to be in con-
tact. Consequently, the term “contact maps” is imprecise and should be initially defined.
We are abbreviating contact probability maps as contact maps throughout this thesis.
Conventionally, contact maps are illustrated as heat maps, what allows setting different
colormaps as well as different colorbar ranges. And regardless of how unimpressive this
may seem, it has a major impact on the visual inspection as will be discussed later. More
importantly, this issue highlights the necessity for a flexible and interactive visualization.
Further important points include the assessment of the quality of Hi-C experiments, the
comparison of contact maps and the pattern recognition within contact maps.

It is emerging that chromosome folding requires several levels of compaction, from
chromatin loops connecting genes and enhancers on the small scale to chromosomal do-
mains and nuclear compartments on the large scale [6]. Recently, high-resolution Hi-C
studies of several eukaryotic genomes provide evidence for the existence of intrachromo-
somal domains, so called “topological domains” [7,8]. These clusters appearing in the
contact maps of such studies are characterized by pronounced long-range interactions be-
tween loci within the same domain. In contrast, the crosslinking probability of loci located
in adjacent domains is found to be lowered. As a consequence, chromosomes are composed
of a string of domains being topologically separated from each other. These findings lead
to the question of how domains and loops are interconnected.

The faithful and timely segregation of genetic material is essential for all cellular life.
In eukaryotes the mechanism behind chromosome segregation is the well-understood mi-
totic spindle. In contrast, the mechanisms underlying bacterial chromosome segregation
are considerably less understood, but are just as critical for cellular proliferation [9]. The
starting point for chromosomal replication, the origin (ori), plays a crucial role in chromo-
some organization as well as in chromosome segregation since its dynamic spatial position
defines the position of other chromosomal regions in the nucleoid [10, 11]. The mecha-
nisms underlying ori positioning remain unclear [9], especially for the case of E. coli [12].
It is known that MukBEF, a functional homolog of ubiquitous Structural Maintenance
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of Chromosomes (SMC) complexes, plays a role in both E. coli chromosome organization
and segregation [13,14]. However, the interesting question of whether and how MukBEF
could position chromosomal origins is not yet known.

Microscopy images are conventionally analyzed as follows: First, images are segmented
to recognize multiple objects, then quantitative measurements are carried out and finally,
the morphology is characterized by using specialized algorithms [15-17]. However, this task
is difficult when the concept of an object is not well-defined, as in the case of microscopy
images of the cell nucleus. This particular case requires a new approach to extract the
relevant conformational information by topological means which are maintained under
different perspectives and different deformations. Such an approach is automatically not
restricted to a certain scale, parameter-free and can deal with high-resolution microscopy
images.

1.3 Structure of this Thesis

The motivation of the work presented in this thesis is to investigate a wide range of
complex biological systems. Even though these systems vary in their dynamics, length
scales, structural complexity and functional purpose, all of them can be described by
physical models. The aim of this thesis is to analyze complex and big data from state-
of-the-art experiments and to develop physical models in order to expand the current
knowledge on structure-function relationships in the context of eukaryotic and bacterial
cells.

B Since the work presented in this thesis is highly interdisciplinary, the next two chap-
ters introduce selected topics in biology and physics. Chapter 2 describes the basic
biology of eukaryotic and prokaryotic cells and highlights the hierarchy of 3D genome
organization. A special focus is put on the two most important experimental meth-
ods for the investigation of large-scale DNA organization: 3C-based methods and
DNA techniques.

B Chapter 3 provides an introduction to physical and mathematical methods that
are important for the modeling and analysis in the different projects. First, basic
concepts on polymer physics and the essential simulation technique, Monte Carlo
simulations, are presented. Second, measures for the description of statistical and
conformational properties of polymers are introduced. The third major part of this
chapter introduces the field of computational topology.

B In chapter 4 we present the data analysis workflow of Hi-C experiments. This
comprises the processing of the Hi-C sequencing data to generate a final contact
probability map as well as strategies to assess the quality of Hi-C data sets. We
describe the different steps using our own data pipeline and publicly available Hi-C
data sets.

B After having introduced the biological and bioinformatic background of Hi-C experi-
ments, we focus on their potential to decipher 3D genome organization in chapter 5.
To this end, we first describe computational methods for pattern recognition within
the contact map and, second, discuss approaches to modeling 3D genome organiza-
tion.
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In chapter 6 we present our developed tool to visualize Hi-C contact maps alongside
complementary genomic data tracks interactively in any web browser. Besides the
technical implementation we show some case studies and point out the advantages
of our tool over others.

We have also developed a a probabilistic graphical model for pattern recognition
within Hi-C contact maps that is presented in chapter 7. Its unique feature is
an inherent multi-scale detection of the compartmentalization structure within Hi-C
contact maps and its suitability for loop detection.

In chapter 8 we focus on the role of loops on the spatial organization of both
eukaryotic and prokaryotic genomes. We show that a model based on the dynamic
formation of loops within domains can account for the experimentally observed Hi-C
contact maps not only of certain mammalian genomes but also of bacterial genomes.

Chapter 9 employs the role of loops especially on the 3D organization of bacterial
genomes. Using Hi-C and live cell imaging of DNA loci, we show that the DNA
binding protein Rok forms insulator-like complexes looping the B. subtilis genome
over large distances. This biological mechanism agrees with our model developed in
chapter 8 and shows that the dynamic formation of loops affects domain formation
both in eukaryotic and prokaryotic genomes.

Chapter 10 deals with the spatial segregation of the E. coli chromosome during
cell division. We provide an explanation for the positioning of the chromosomal
replication origin region (ori) based on the self-organization of the protein complex
MukBEF.

In the final project presented in chapter 11, we introduce a new methodology
based on topological data analysis to analyze super-resolution localization images.
Using cells that were exposed to ionizing radiation, we first show that repair foci
can be classified into two major groups dependent on their location in the genome.
Subsequently, using our developed method, we analyze how these two groups of
repair foci differ in their morphology.

Finally, in chapter 12 we provide a concise summary of all research projects and
our results. We close with an outline of the future challenges in our field of research.



Chapter 2

Biological Background

In this chapter, the fundamental biological principles of 3D folding of eukaryotic and
prokaryotic genomes is discussed. Additionally, we present the most important experi-
mental techniques for analyzing the 3D structure of the genome and also go into detail
on the bioinformatics methods related to chromosome conformation capture methods that
play an important role throughout this thesis.

2.1 Organization of Eukaryotic Chromosomes

It was the German biologist Ernst Haeckel who first proposed the idea that the nucleus
takes care of inheritance in eukaryotic cells. However, the understanding that the nucleus
contains deoxyribonucleic acids (DNA), or “nuclein” as it was initially called, was first
proposed in 1871 by the Swiss physician and biologist Friedrich Miescher. In 1879 the
German biologist Walther Flemming discovered tiny thread-like structures within the nu-
cleus which he named “chromatin” and which were later known as chromosomes. Today,
chromatin refers to the combination of DNA and proteins that make up eukaryotic chro-
mosomes and it has been shown that chromosomes play a key role in inheritance: Before
cell division, the chromosomes are first replicated, then divided into two sets and finally
segregate to the two daughter cells.

Nowadays it is basic textbook knowledge that the entirety of the genetic material of an
organism is the genome which includes both: genes, which encode the relevant instructions
for producing proteins, as well as non-coding sequences. The process that leads from the
genetic information, the DNA| to the required protein is called gene expression and consists
basically of two steps: Initially, the DNA segment, that encodes for the needed protein,
is read and a complementary RNA copy (mRNA) is built. This initial step, the so-called
transcription, is followed by the second step, called translation, in which the mRNA is
converted into the required protein.

Furthermore, it is for sure, that the units in the cell nucleus carrying genes are long
and highly dynamic molecules that consist of DNA and are called chromosomes. The
human genome consists of several ten thousands of genes [18] that are distributed amongst
23 different chromosomes with the first 22 simply numbered from 1 to 22 and the last
chromosome called the sex chromosome as it determines the sex of a person. Most cells
are diploid, i.e. they possess two homologous copies of each chromosome. As a consequence
the human genome is composed of 46 chromosomes.

2.1.1 The Three-Dimensional Genome

Scientists attached great importance to the three-dimensional positioning of genomic ele-
ments from early on [19]. With the advent of the FISH technology (see subsection 2.3.1)
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which allowed for visualization of the positioning of specific sites within the nucleus [20]
the importance of the three-dimensional positioning of genomic elements was realized.
This process accelerated once again with the invention of the so-called chromosome con-
formation capture (3C) technology [21] that can quantify interaction frequencies between
selected regions in the genome (see subsection 2.3.3 for an in-depth discussion).

Cell Cycle Dependent Chromosome Packaging

Most eukaryotic cells have a life cycle that involves sexual reproduction that leads to
two two genetically identical daughter cells. The cell cycle consists of two main parts:
interphase and mitosis. During interphase, in which cells spend most of their life, the
chromosomes are duplicated in preparation for mitosis. In mitosis, cell division occurs
and two daughter cells are formed, each containing a complete set of chromosomes. Hence
it is the part of the cell cycle in which the asexual transfer of genetic information happens.
Interphase chromosomes are far less tightly packed compared to the extremely condensed
mitotic chromosomes.

Hierarchy of Chromosome Packaging

Each of our cells contains up to two meters of DNA. However, the chromosomes are folded
into the cell nucleus on length scales of a few microns. This high degree of compaction is
achieved by a hierarchical packaging of the chromosomes. The first level of compaction
of the double-helical DNA is the nucleosome, a complex consisting of a segment of DNA
wound around eight histone proteins. These complexes are interconnected by linker DNA
forming a rather loose structure that is called "beads-on-a-string“ chromatin fiber. The
existence of a further filament with 30 nm in diameter [22] as observed in electron mi-
croscopy experiments is still under debate for living cells [23]. Further levels of chromatin
architecture as illustrated in Fig. 2.1 are dictated by compartmentalization, such as the
formation of distinct chromosome territories [24] on the level of chromosomes and domains
within single chromosomes (see the next subsection 2.1.2).

Transcription Factories

An important aspect of genome organization is the idea that genes and regulatory elements
can cluster themselves spatially within the nucleus in order to be transcribed in a con-
certed fashion [27]. This concept of so-called transcription factories, which is illustrated
in Fig. 2.2, has been speculated to be formed as a way for genes to reposition themselves
in spatially confined regions with high concentration of polymerases [28,29]. Importantly,
transcription factories are dynamic. Albeit the existence of transcription factories today
is not disputed, the question whether transcription factories are a cause or a consequence
of gene expression is still unanswered [30]. Current experimental evidence indicates that
the number of transcription factories per nucleus varies from a few hundreds to several
thousands [31]. The factories are thought to form during cell-differentiation upon activa-
tion, and remain even after the genes in the factory are no longer active [32]. Evidence of
specialization of individual transcription factories, such as clustering of genes that belong
to the same pathway, is still lacking [30]. However, spatial clustering of active globin genes
in mouse and human cells has been reported [29].
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Figure 2.1: Large-Scale Nuclear Organization in Mammals. A. The nucleus is composed of
chromosome territories (for example, mouse chromosome 3 and 18 are depicted in red and green,
respectively). DNA is organized in more or less condensed regions, as can be shown by stain-
ing (gray intensities). B. The inset shows a more detailed architecture of the nucleus with (so
called A and B) compartments, heterochromatin (HC) and euchromatin (EC). C. Zoomed-in view
of hypothetical chromosome domains. Foci of factors interacting with looping chromatin in the
perichromatin region (PR) are depicted as pink circles, RNA as orange lines. D. All-by-all chromo-
some matrix showing the interactions within and between chromosomes. E. Red and blue “plaid”
pattern of chromosome 18 emphasized through Pearson correlation shows the separation into two
chromosomal domains (colored red and blue). F. The cis-interaction matrix for chromosome 18.
The inset indicates a ~ 3 Mb large B compartment. G. The clustering into compartments A and
B. H. Detailed version of the 3 Mb large B compartment from (F'), revealing the organization of
topological domains (1 and 2). I. Representation of looping of chromatin as can be found at the
PR (see C) or in deeper structures within topological domains (see H). Image and caption adapted
from [25].
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Figure 2.2: Two possible ways for the spatial organization of genes. A. Multiple genes spatially
cluster together into transcription factories to be coregulated. B. A gene may move out of its
ordinary domain to be activated. Image adapted from [26].

2.1.2 Domain Organization of the Genome

The idea that chromosomes are organized in a domain-like architecture goes back to the
microscopy observations of euchromatin and heterochromatin and the banding patterns
of mitotic chromosomes upon staining with particular dyes.

Compartments

In 2009, Lieberman et al. published their results on a study of the entire human genome
using a method which they called Hi-C [3] (discussed in subsection 2.3.3). By coupling
chromosome conformation capture with high-throughput sequencing, this method detects
contact frequencies between loci covering the entire genome. An important finding of
this study is the organization of the human genome into two separate compartments that
the authors called A (or open) and B (closed) compartments (see Fig. 2.1) and that
have a characteristic size of ~ 5 megabases each. Genomic interactions were found to be
formed mostly within compartments, and much less frequently between compartments.
Additionally, A compartments were associated with euchromatic, transcriptionally active
and gene-rich regions, while B compartments were associated with gene-poor, inactive
regions.

TADs

Experimental methods, such as Hi-C and 5C, which map interacting loci in a specific
genomic region or in the complete genome, can identify structural features of chromosomes.
Recently, such studies in fly [33] an mammalian [7,8] cells suggested that chromosomes are
subdivided into discrete topologically (associated) domains (TADs). These TADs have a
size of hundreds of kilobases and therefore differ from the larger A and B compartments
which typically span a few megabases. Furthermore, TADs can be both active or inactive.
Visual inspection of high-resolution 5C interaction maps, such as that of the 4.5 Mb long
region depicted in Fig. 2.3 A, of undifferentiated (as well as differentiated) mouse embryonic
stem cells reveals a series of large structural domains. Loci within these domains have a
higher chance of interacting with each other than with loci located outside. The authors
found that both the human and mouse genomes consist of more than 2000 TADs, covering
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Figure 2.3: Chromosome partitioning into topological associated domains (TADs). A. 5C data
from XY undifferentiated mouse embryonic stem cells (ESCs) as a heat map. Chromosomal con-
tacts are organized into discrete genomic blocks (TADs A-I). B, C. Hi-C interaction frequencies
both from (B) ESCs and (C) human IMR90 cells. Note the two different representations of actually
the same kind of interaction data: The left figure depicts the data by means of a two-dimensional
heat map, whereas the right ones only show the upper triangular part of the heat map rotated by
90 degrees counter-clockwise. Images adapted from [8] and [7].

over 90% of the genome, suggesting an evolutionary conserved and important function of
this organization.

It is reported that the domain borders are demarcated by CTCF and cohesion [7,8,34],
but that at the same time both proteins also frequently bind sites located within TADs.
Moreover the spatial clustering into TADs remains largely intact after the depletion of
CTCF and cohesion. As a consequence, it is still unclear which mechanisms establish
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TAD boundaries. However, gene-expression profiles were found to be highly correlated
within TADs, as opposed to between TADs, suggesting that regulation of genes via cis-
regulatory elements may happen in a concerted fashion. We will come back to this idea
in the following subsection 2.1.3.

Loop Domains

Just recently, Rao et al. published an in-situ Hi-C study of the human genome [36] that
provides a huge amount of probed genomic interactions. This study outperforms the just
presented ones with respect to the possible maximum resolution of contact maps. What we
actually mean by “resolution” will become clear in chapter 4. For the moment, it suffices
to understand that constructing a contact matrix with a “1 Mbp resolution” only means
that the linear genome is split up into 1 Mbp bins and the contact frequency between each
pair of bins is recorded. By constructing up to 5 and even 1 kbp resolution contact maps
(compare Fig. 2.4), Rao et al. show that zooming into individual topological domains
reveals that most of them are actually composed of even smaller domains. Furthermore,
they also report the identification of ~ 10000 loops that frequently link promoters and
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enhancers. Interestingly, loop anchors typically occur at domain boundaries creating so
called “loop domains” (compare the 5 and 1 kbp resolution contact maps in the second
column of Fig. 2.4).

2.1.3 Enhancer-Promoter Interactions

One of the most widely studied classes of genomic three-dimensional interactions are in-
teractions between regulatory elements, such as enhancers and promoters. This causes an
activation of transcription in tissues where interaction occurs. The exact mechanisms for
the concerted action of promoters and enhancers to activate transcription was debated at
the end of the 20th century [38]. However, with the advent of the 3C-based techniques,
the so called “looping model” [39] has become the accepted for the explanation of such
interactions. According to this model, proteins, including transcription factors with affin-
ity to motifs on the DNA, bind to the enhancer region forming a complex that has an
affinity to proteins bound at the promoter. This causes them to form a loop between
themselves via binding of the two protein complexes. This looping mechanism is also used
by repressor proteins that bind to silencer regions to silence or downregulate genes. The
action of enhancers can occur at large distances as well as either upstream or downstream
relative to the promoter, and can even be positioned within the transcription unit itself.
Enhancers are also able to activate multiple promoters, and can combine with other en-
hancers to activate a single promoter. Recently, by applying 5C experiments to 1% of the
human genome, it has been shown that only a small amount of looping interactions occur
with the nearest gene [40]. Additionally, the authors found evidence for several complex
networks of interacting promoters and enhancer elements with functional effects on gene
expression.

The existence of topological domains suggests that looping interactions between genes
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Figure 2.5: Comparing EPU blocks and physical partitioning of the mouse cortex. The upper
part of the figure illustrates the normalized Hi-C interaction frequencies in mouse cortex as two-
dimensional heat map where the special representation of the rotated upper triangular part of
the contact matrix is chosen for demonstration purposes, since this allows the visual comparison
to the identified EPUs and ChIP-seq data. The Hi-C interaction data shows that the physical
partitioning of the genome is highly correlated with the EPUs that encompass gene clusters on
chromosome 14. Image adapted from [37].
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and distal regulatory elements are spatially constrained. Indeed, just recently, a ChIP-
seq study of the mouse genome [37] showed that there are significantly more enhancer-
promoter interactions within topological domains as illustrated in Fig. 2.5. As a result,
these findings hint at the importance of genomic domain architecture in shaping the local
regulatory landscape of genomes.

2.2 Organization of the Bacterial Nucleoid

While eukaryotic cells are usually part of multicellular organisms, prokaryotic cells are
typically single-celled organisms and are lacking a defined cell nucleus. Instead, prokary-
otic cells have a nucleoid region which contains a single circular, double-stranded DNA
molecule. In general, prokaryotes can be classified into two domains, archaea and bacteria.
Within this thesis we mostly focus on bacteria.

2.2.1 Bacterial Chromosome Packaging

Bacterial genomes are circular double-stranded DNA molecules that are typically several
million base pairs in size. By adopting a highly compact but orderly structure the DNA
can adapt to the spatial conditions of a bacterial cell while at the same time enabling
replication and transcription.

The well-studied bacterial model organisms Escherichia coli (E. coli) and Caulobacter
crescentus (C. crescentus) are good examples showing that bacterial chromosomes are
organized on multiple levels as depicted in Fig. 2.6. This hierarchical fashion is a common
feature of bacterial and eukaryotic chromosomes. On the lowest level, the negatively
supercoiled E. coli chromosome forms plectonemic loops, which are actively maintained by
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Figure 2.6: Models for nucleoid organization in Escherichia coli and Caulobacter crescentus.
Chromosomal domains are colored as indicated by the legend. Image and caption adapted from [26].
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the interplay of the enzymes DNA gyrase and DNA topoisomerase I as well as the so-called
nucleoid-associated proteins (NAPs). These NAPs, such as H-NS (histone-like nucleoid
structuring protein), HU (histone-like protein), Fis (factor for inversion stimulation), and
IHF (integration host factor), have an influence on DNA structure both locally by bending
and wrapping DNA segments [42] and globally by DNA looping [43]. Additionally, NAPs
establish boundaries for “microdomains” [44] with a typical size of 10-100 kilobases that are
located stochastically on the chromosome [45]. On a higher level, the organization of the E.
coli genome is characterized by mainly four “macrodomains” with a size of approximately
1 megabase (origin, terminus, left and right) [46]. However, a recent genome-wide 3C-
based study highlights an important role for the terminus region in the organization of
the E. coli genome [47]. The features of 3D genome organization of E. coli are similar to
those of other bacterial model organisms, such as Caulobacter crescentus [48].

2.2.2 Interplay between Gene Regulation and Genome Folding

The interplay of 3D genome organization and transcriptional activity indicates that, irre-
spective of their genetic location on the chromosome, genes are spatially positioned with
respect to their transcriptional activities. In principle, there are two general ways for
organizing genes spatially as depicted in Fig. 2.2.

A recent approach investigating the spatial distribution of H-NS in E. coli suggests
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Figure 2.7: Different spatial distributions of NAPs in E. coli cells identified by using STORM.
A. Compact H-NS clusters in the nucleoid. E. coli cells imaged using bright-field microscopy
are depicted on the left and NAPs in living E. coli cells imaged using localization-based super-
resolution microscopy (STORM) on the right. B. Scattered distribution of H-NS in the nucleoid.
(Left) Bright-field image; (right) 3D STORM image. C. Schematic drawing of the H-NS clusters
colocalizing with H-NS regulated genes hdeA and hchA. D. Schematic drawing of the homogeneous
distribution of HU, Fis, IHF and StpA within the nucleoid. Image adapted from [41] and [26].
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clustering of genes [41]. Using single-molecule based super-resolution imaging, to be pre-
cise, stochastic optical reconstruction microscopy (STORM), H-NS was shown to form on
average two clusters per chromosome in living E. coli cells (see Fig. 2.7 A,C). Two-color
colocalization imaging revealed that these clusters spatially overlap with genes regulated
by H-NS.

2.3 Molecular Techniques for Unraveling the Three-Dimensional
Genome

In the last decades, several novel techniques for analyzing the chromatin structure have
been developed. Particularly, the combination of next-generation sequencing and tradi-
tional chromosome conformation capture techniques depicts a milestone in the field for
the exploration of the three-dimensional shape of the genome.

In this section, we introduce the most important methods for studying the three-
dimensional architecture of the genome. The focus is set on 3C-based technologies that
are most relevant for this thesis.

2.3.1 Fluorescence in Situ Hybridization (FISH)

FISH is a combined molecular and cytological approach where fluorescently labeled DNA
probes are hybridized to complementary sequences on chromosomal preparations fixed on
slides. The probes are then visualized using microscopy. Even though FISH was invented
30 years ago, it is still widely used both in research and diagnostics [49]. The wide usage
of FISH is attributed to the fact that it provides spatial information at intermediate
degree resolutions at single cell level. Techniques utilizing FISH are still being refined and
diversified into more specialized versions. The three most widely used FISH variants in
three-dimensional genome analysis are Cryo-FISH, 3D-FISH and Immuno-FISH.

2.3.2 Next-Generation Sequencing (NGS)

With the advent of “next-generation sequencing”, traditional Sanger-based sequencing
techniques have virtually been entirely replaced. As its synonym, “massively parallel se-
quencing”, implies, the approach allows for the simultaneous interrogation of millions of
sequences based on clonal amplification of DNA fragments. To this end, the sequences
are often spatially separated on plates or slides, and interrogated using a high-resolution
camera. There are several next-generation sequencing technologies available, such as 454
(Roche Diagnostics), SOLID (Applied Biosystems), and Solexa (Illumina). Most of them
enable paired-end sequencing, where the two ends of the same DNA molecules are se-
quenced from both sides.

2.3.3 Chromosome Conformation Capture (3C) Methods

In what follows, the technologies based on chromosome conformation capture (3C) are
discussed. The underlying concept of all these methods is the same and consists in the
quantification of ligation junctions by digestion and re-ligation of fixed chromatin in cells
and in the fact that the quantified DNA contact frequencies reflect spatial proximity within
the nucleus [50].
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Chromosome Conformation Capture (3C)

3C was invented in 2002 by Dekker et al. [21]. Originally, contact frequencies were quan-
tified using quantitative polymerase chain reaction (qQPCR), whereas today paired-end
sequencing is used to a much larger extent. 3C-based methods, contrary to microscopy-
based techniques, allow for more systematic and quantitative characterization of genome
topology and a higher resolution at the same time. On the other hand, the essential draw-
back is the fact that the conventionally ensemble 3C-based methods are mostly performed
on large populations of cells, whereby the information at the single-cell level is lost.

All 3C-based techniques start with the same steps, which aim to isolate DNA fragments
in spatial proximity. The first step is cross-linking (fixation) of chromatin by addition of
formaldehyde. This causes interacting chromatin segments, i.e. those in close spatial
proximity, to be covalently linked together. The fixed chromatin is then cut with a re-
striction enzyme, such as HindIII, Dpnll, EcoRI and many others, chosen such that the
frequency of cuts provides the desired resolution for the given analysis. The sticky ends
of the fragmented cross-linked DNA are then re-ligated under diluted conditions to fa-
vor intramolecular ligation of the cross-linked fragments. The re-ligated DNA molecules
thereby form a hybrid consisting of two DNA fragments from the two segments that were
cross-linked. After DNA purification, qPCR or sequencing is used to quantify the number
of such hybrid DNA-molecules.

In 3C, primers are designed near the ends of the restriction fragments of interest,
enabling quantification of selected ligation junctions. Ligation frequencies, as measured
by the amount of ligation product between the selected primer combinations, are then
used to infer which fragments were spatially proximal [50]. 3C therefore allows for focused
quantification of contact frequencies at selected regions in a one-versus-one fashion as
depicted in Fig. 2.8. It is important to recognize that there are two major types of ligation
junctions that are over-represented. One is the junction forming between neighboring
restriction fragments due to incomplete digestion. The other one is the junction that forms
when one end of the fragment ligates with the other end of the same fragment. Therefore,
the quantification step also involves determining whether DNA segments contact each
other more than expected simply due to the (linear) genomic proximity between them.
A further observation is that over large genomic distances ligation products become very
infrequent and quantification using qPCR therefore becomes infeasible. Furthermore,
the differences in primer efficiencies need to be controlled for, by making a PCR control
template with all ligation products in equal amounts [51].

Chromosome Conformation Capture-on-Chip (4C)

As the name already indicates, chromosome conformation capture-on-chip (4C) combines
3C technology with microarrays in order to quantify the contact frequency between one
locus (or “viewpoint”) and all other genomic loci represented on the array [53]. The
definition of this single viewpoint and the subsequent screening of the genome for sequences
that contact this selected site makes 4C a one-versus-all type of analysis, in contrast to
the one-versus-one nature of 3C.

Briefly, 4C technology, includes a second ligation step, in which self-circularized DNA
fragments are created. Subsequently, inverse PCR is used to amplify and identify DNA
sequences contacting these DNA circles. 4C-seq [54] is a variant of the 4C method that
uses NGS instead of microarray analysis for the identification step, thereby saving costs,
offering a higher resolution and quantifying DNA contact frequencies more accurately. A
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Figure 2.8: A. Initial steps in the chromosome conformation capture (3C) procedure. B.
Schematic illustration of the key concepts for the various 3C-based technologies. Image adapted
from [52].

point worth mentioning is that in the resulting data consisting of a genome-wide profile
of ligation events with peaks corresponding to significant interactions an unspecific back-
ground signal needs to be filtered out. This is usually done using time series methods,
such as moving average or median.

Chromosome Conformation Capture Carbon Copy (5C)

5C captures all interactions between a set of selected regions [55] and is hence referred
to as a many-versus-many technology. 5C requires specifically designed oligonucleotides,
i.e. small bits of nucleic acids that can be manufactured with any user-specified sequence,
also referred to as primers (~ “5C primers”), that anneal to the ends of the restriction
fragments. A ligation between two interacting fragments in the 3C library therefore results
in two 5C primers annealing adjacent to each other on each side of the ligated restriction
sites. Because all 5C primers have a universal sequence at one of their ends, it is possible to
amplify all ligation products simultaneously. Finally, ligation junctions are identified using
either microarray analysis or NGS. The resulting data is a matrix of interaction frequencies
between the two sets of restriction fragments selected prior to the analysis. Again, just
as for 3C data in general, fragments that are close in terms of genomic distance have an
increased probability of forming contacts, expressed through a pronounced main diagonal
in the resulting contact matrix.

The resolution of 5C is determined by the distance between neighboring primers on the
chromosome template. 5C has relatively low coverage since 5C primers cannot be designed
for every unique end of a restriction fragment. For this reason, and because there is also
the need to use many primers simultaneously, it is not possible to reach the resolution of
4C or Hi-C with a 5C assay. On the other hand, and contrary to 4C, 5C provides a contact
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matrix of interaction frequencies for many pairs of sites. This makes it especially suited
for focused studies, such as reconstructing the (average) three-dimensional conformation
of selected, but possibly, larger genomic regions [8,40, 56].

Hi-C

Hi-C is the first truly genome-wide 3C based technology. It was introduced by Lieberman-
Aiden et al. in 2009 [3]. Realizing a genome-wide quantification of interactions in an
all-versus-all fashion, it constitutes a major breakthrough in the study of chromatin ar-
chitecture. The Hi-C protocol (see Fig. 2.9) differs from the standard 3C protocol therein
that there is an extra step needed before ligation. It consists in filling in the sticky ends
after restriction enzyme cutting with biotin-labeled nucleotides. After purification and
shearing of the DNA, the biotin marks are pulled down in order to ensure that only
ligation junctions are selected for further analysis. By mapping the reads back to the
reference genome, a genome-wide contact matrix is constructed. Due to the quadratic na-
ture of “all-versus all” data, an extremely high throughput is needed. As an illustration,
the resolution of 950 bp, referred to as “kilobase resolution”, of a very recent in situ Hi-C
study of the human genome [36] is based on 4.9 billion valid paired-end reads.

A technique similar to Hi-C, called genome conformation capture (GCC), has recently
been applied for the mapping of yeast chromosome interactions [57] as well as for studying
the spatial organization of the Escherichia coli nucleoid [58].

Various biases affect the read counts in genome-wide contact maps like those obtained
by Hi-C. Thus, correcting and normalizing these genome-wide interaction data is not only
necessary, but essential for an adequate interpretation of such data (see chapter 4).

Lately, a single-cell version of Hi-C was published [59]. Nagano et al. modified the
conventional or “ensemble” Hi-C protocol to create a method to determine the contacts
in an individual nucleus. However, at this stage this approach allows the capture of only
2.5% of all interactions in a cell.

Figure 2.9: Schematic illustration of the (in situ) Hi-C process.
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2.3.4 ChlP-seq and ChlA-PET

Chromatin Immunoprecipitation (ChIP) is an experimental method used to analyze pro-
tein interactions with DNA in living cells. The objective is to establish whether certain
proteins are bound to specific DNA segments. Hence, for example, if transcription factors
are bound to promoters or enhancers. ChIP-sequencing (ChIP-seq) combines ChIP and
NGS, thereby enabling the genome-wide identification of binding sites of DNA-associated
proteins.

Chromatin interaction analysis with paired-end tag sequencing (ChIA-PET) combines
ChIP with 3C-type analysis and enables the identification of all chromatin interactions
between regions bound by a given protein [60]. As such, it is a many-versus-many type
of analysis (see Fig. 2.8). So far, ChIA-PET has been applied to DNA sites bound by the
estrogen receptor o (ERa) [60] and CTCF [61].

It is important to note that ChIA-PET, unlike other 3C-based methods, exclusively
identifies interactions between regions that are bound on both sides by the same protein
of interest. As a consequence, it is not compatible with protein knock-down or knock-out
and is not able to unravel a possible connection between identified loops and the selected
protein. A further disadvantage is that the datasets so far produced by ChIA-PET show
a rather low signal-to-noise ratio [50].



Chapter 3

Theoretical Background

In this chapter, we first present an overview of basic approaches to model macromolecules
using polymer models. We then provide a basic introduction into Monte Carlo simulations
and introduce the Bond Fluctuation Model that is later used to study the architecture of
different genomes.

Furthermore, we discuss the statistical and conformational properties reflecting the
characteristics of the polymer systems we are simulating. We present results for quantities,
such as the end-to-end distance distribution and the mean squared displacement. We also
introduce the concept of spatial confinement. Our focus rests on contact probability
measures. Next, we introduce the basic concepts of computational topology. This rapidly
emerging field of research at the interface between mathematics and computer science is
dedicated to the investigation of efficient algorithms for topological problems. Since this
is a vast and complex area, we provide an overview of the most important concepts of
topological data analysis rather than introducing the topic in a mathematically rigorous
manner. For a more comprehensive presentation, we refer to the work of R. Christ [62]
and the textbook by Afra J. Zomorodian [63].

3.1 Simulation Methods

3.1.1 Polymer Physics

Biological macromolecules can be considered as polymers composed of smaller subunits
called monomers. Polymer physics is a branch of statistical physics which studies poly-
mers, their mechanical properties, as well as their conformational motion. The areas of
application are diverse and range from materials science, condensed matter physics to
biophysics and molecular biology. A prominent example is DNA where the nucleotides
are the monomers that make up the DNA polymer. Using coarse-grained models, even
complex systems like lipid membranes can be considered as polymers.

In this section we present the main polymer models and properties to describe them.

Simple Polymer Models
The Freely-Jointed Chain Model

A freely-jointed chain or ideal chain is the simplest model to describe polymers, such as
DNA and proteins. The polymer is represented by a chain of N bond vectors b; of fixed
length b. It assumes a polymer as a random walk (RW) of N + 1 steps or monomers, thus
all directions of the vectors b, are independent from each other.

31
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The end-to-end distance vector is an important measure for the spatial size of a
polymer. It is simply given by the vector from the first to the last monomer:

N
R.=ry41—r1=)Y bj,
=1

where r; denotes the position vector of the i*® monomer.

In polymer physics we are mostly interested in mean values over ensembles. We denote
the ensemble average by (-) in the following. The mean-square end-to-end distance of a
freely-jointed chain is given by

(RZ)=>_> (b;-bj).

N
i=1j5=1

Since all the vectors are independent, it is (b; - b; ) = b24;; and thus get
(RZ) = Nb*,
which is often referred to via the scaling law
(RZ) o N*

with the scaling exponent v. For the ideal chain we have v = 0.5.

The probability distribution function (pdf) of the end-to-end distance p(R.) for
ideal chains is determined using the central limit theorem because of the independence of
the bond vectors b;. Hence, the end-to-end distance is Gaussian distributed in the limit
N — 00.

The radius of gyration of a polymer is defined as the average distance of monomers
from its center of mass. As such, it measures the effective size of a polymer chain. The
mean-square radius of gyration is

2 1 al 2
<Rg> = NZ(ri_rcm) )

=1

where r., denotes the center of mass of the polymer. The mean-square radius of gyration
and the mean-square end-to-end distance of ideal chains show the same scaling behavior.

“Real” biopolymers can be considered as ideal chains on large length scales in the
case of highly dense systems with an uniform spatial distribution of interacting polymers.
Otherwise, the scope of the ideal chain model is limited due to missing excluded-volume
interactions.

The Gaussian Chain Model

Contrary to the fixed length of bond vectors b; in the ideal chain model, the Gaussian chain
model models the bond length as fluctuating. This accounts for the fact that chemical
bonds possess a certain intrinsic flexibility. According to the name of the model the bond
vectors are Gaussian distributed

3 \%? 3b?
G(b;) = (27rl)2) exp <_2b2> )
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where (b?) = b2.

Since the model still assumes the bond vectors to be independent, the mean squared
end-to-end distance is given by (R2) = Nb?. The pdf of the end-to-end distance in the
case of the Gaussian chain model is also a Gaussian distribution.

The Worm-like Chain Model

A fundamental characteristic of biomacromolecules is chain flexibility or rather chain rigid-
ity. Important biopolymers such as DNA and proteins are semi-flexible and can be de-
scribed by the worm-like chain or Kratky-Porod model. Within this model, semi-flexible
polymers with contour length L are parameterized by the path r(s) along the chain of
length L. The unit tangent vector to the chain at point s € [0, L] is defined as u(s) = 85(;).
The energy associated with the bending of the polymer is given by the Hamiltonian

H= K/Lds Ox(s) 2,
2 Jo 02
with the bending rigidity x = [,kT" which is proportional to the polymer’s characteristic
persistence length [,,.

We can analyze the worm-like chain using the correlation of two unit tangent vectors
u(7) and u(yj) which are separated by a distance |i — j| € [0, L] along the polymer chain as

C(li = jl) = (u(i)u(y)) ,

where (-) denotes the ensemble average of all polymer conformations. For polymers that
are not fulfilling self-avoidance the orientational correlation function decays exponentially

(u(i)u(0)) = exp(—|i — jl|/lp) -

The orientational correlation function for chain segments that are separated far enough
vanishes, i.e. C(]i — j| = 00) — 0.

Self-avoiding Polymers

As mentioned above, the ideal chain is the simplest model for polymers. More “realistic”
polymer models consider the excluded volume of the chain segments. Since monomers
constitute physical subunits of the polymer, comparable to atoms within a molecule, they
can not occupy space that is already occupied by another part of the polymer. Excluded-
volume interactions are extremely strong, short-range repulsive interactions leading to
swelling of polymer chains as opposed to ideal chains.

The chemist Paul J. Flory was the first to introduce and theoretically describe self-
avoiding walks (SAWs). According to his theory the mean squared end-to-end distance
vector of SAW polymers shows the scaling law

(RZ) x N*,

with v ~ 3/5.
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3.1.2 Monte Carlo Simulations

Molecular dynamics (MD) and Monte Carlo (MC) simulations are the two most important
modeling techniques for the study of biological macromolecules. In MD simulations, the
time dependent behavior of atoms and molecules is determined by numerically solving
Newton’s laws of motion for a system of interacting particles. Forces between the particles
and potential energy are defined by potentials or molecular mechanics force fields. Monte
Carlo algorithms, on the other hand, are based on repeated random sampling to get
numerical results. In order to obtain the distribution of an unknown probabilistic entity
simulations are typically repeated many times.

Metropolis Monte Carlo

We use a Metropolis Monte Carlo algorithm for our simulations. This algorithm leads
to thermal equilibrium after a certain number of steps (see the next subsection 3.1.2 for
further details) and works as follows. We start from an initial configuration of the particles
in a system. The algorithm proceeds by randomly attempting to change the configuration
of the particles, i.e. a Monte Carlo move. The move is either accepted or rejected based
on the Metropolis acceptance criterion guaranteeing that the sampled configurations are
drawn from the Boltzmann distribution with the correct Boltzmann weight. After having
either accepted or rejected a move, we compute the quantity in question. The algorithm
proceeds by randomly attempting to move about the sample space and eventually, after
many moves have been made, it yields a reliable average value of the quantity in question.

Autocorrelation Time

Markov Chain Monte Carlo (MCMC) methods generate a new state based on its previous
state. Thus obtained samples by MCMC algorithms are statistically dependent on each
other or correlated. The autocorrelation time helps in obtaining statistically independent
or uncorrelated conformations in simulations. It is determined using the integrated auto-
correlation time 7y, which is computed using the autocorrelation function C(t) and the
normalized autocorrelation function p(t). This scheme allows the calculation of the corre-
lation between polymer conformations separated by ¢ Monte Carlo steps and described by
a particular measure or observable. The autocorrelation function of an observable A(t) is
defined as
O(t) = (A(s +1) - A(s) )s — (Als))3

and the normalized autocorrelation function is given by p(t) = %, where (- )g is defined
as the mean of the ensemble at time s.

We use the windowing method by Sokal [64] in order to estimate the integrated auto-
correlation time as

1M
Tint = pr(t) .
23

The integer M is chosen such that M > c¢- 7yt . The value ¢ can vary between four
for exponential decaying p(t) to ten for slower decay [64]. Two subsequently obtained
conformations are considered to be uncorrelated when they are separated by more than
5Tint steps. In each of our simulations, 107, steps are prepended in order to equilibrate
our artificially generated starting configuration.

We use this windowing scheme of Sokal in favor of simply fitting an exponential model
to the autocorrelation function because we are also simulating both large and quite stiff
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Figure 3.1: The main figure shows a rapidly sloping autocorrelation function (in gray) of the
mean squared radius of gyration of a linear polymer consisting of N = 250 monomers. The
blue curve illustrates an exponential fit and aligns perfectly with the computed values of the
autocorrelation function. However, the autocorrelation function of the mean squared radius of
gyration of a circular polymer with N = 400 monomers (see inset graph) is not well described
by an one-parameter exponential model obeying the functional form C(tmc) = exp(—Tqul? “tme) -
The resulting exponential autocorrelation time 7.y, is illustrated in the graphs and also compared
to the computed integrated autocorrelation time 7.

polymers leading to a slowly decreasing autocorrelation function of the mean squared
radius of gyration (see the inset graph in Fig. 3.1).

The Bond Fluctuation Model

The Bond Fluctuation model (BFM) is a well established lattice model for polymers.
The BFM includes excluded-volume interactions and preserves the topological state of
the polymers by preventing bond crossings. It is a Monte Carlo method characterized by
especially high acceptance rates making it a good choice for dense polymer systems. A
detailed description of the BFM can be found in [65, 66].

A long polymer on a three-dimensional cubic lattice consists of N monomers, numbered
from one to N. Each monomer occupies one box (i.e. eight lattice sites) on the lattice and
thus the polymer can be described by the set of bond vectors of its comprising monomers
{b1,ba,...,by_1}. Volume interactions are integrated into the model by forbidding one
box to be occupied by two or more monomers. As one monomer occupies eight lattice sites,
there always has to be at least one empty box between two monomers. The maximum
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Figure 3.2: The a priori probability distribution of A. the bond angles ¥ within the BFM as
well as B. those of the bond lengths b. In contrast to the bond lengths, not all possible bond
angles are allowed within the BFM fulfilling self-avoidance. The forbidden bond angles violating
excluded volume are colored in red whereas allowed ones are depicted in blue.

bond length is restricted to ten, limiting the distance between neighboring monomers and
thus preventing the chain from developing gaps. There are further constraints on the bond
vectors in order to avoid bond crossings and for ensuring the preservation of the topology
of the polymer. On a three-dimensional lattice 108 different bond vectors can be realized.
The a priori probability distributions of both the bond angles and the bond lengths are
depicted in Fig. 3.2 (forbidden bond angles are colored red). The possibility for fluctuating
bonds is a key ingredient of the BFM since this leads to an increased probability for local
moves of the monomers resulting in quicker relaxation towards equilibrium.

Dynamic Looping Mechanism

In our simulations we make use of the dynamic loop (DL) model developed by Bohn and
Heermann [67]. The DL model is based on the BEM and incorporates the ability of non-
adjacent monomers to become linked by a bond vector. Whenever two monomers come
close to each other by diffusion, there is a looping probability pioep for them to form an
additional bond. When this happens, a crosslink of the fiber is created with a lifetime,
drawn from a Poisson distribution with mean value 7. Thus, loops can form and dissolve
dynamically. The size of the loops is restricted, monomers must have at least a genomic
distance of three to be able to form loops. The maximum allowed size of the loops as well
as the number of bonds starting from one monomer can be restricted.

The dynamic and probabilistic crosslinking mimics the effect of surrounding proteins
which mediate the process of loop formation. It causes a coiling and local collapsing of the
chromatin fiber, which is anticipated to have implications on the shape and the mechanical
properties of the polymer.
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3.2 Statistical and Conformational Properties

3.2.1 End-to-End Distance and Gyration Radius

The end-to-end distance and the gyration radius (see the previous section 3.1) provide
measures of the space that a polymer coil occupies. Hence, they give information about
the size of the simulated chromosomes.

The comparison between the pdf of the end-to-end distance for polymers with varying
degree of dynamic looping as well as self-avoiding walk (SAW) and random walk (RW)
polymers as depicted in Fig. 3.3 shows that dynamic loop formation can induce compact
polymers. The mean squared end-to-end distance for a SAW polymer amounts to ( R? ) ~
70 lattice units [l.u.], for a RW polymer to (R2) ~ 40 Lu. whereas it is in the range of
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Figure 3.3: The probability density function of the squared end-to-end distance ( R?) for a linear
polymer configuration with N = 250 monomers as a function of the underlying polymer model. The
distributions for A. self-avoiding, B. random walk polymers and C,D. polymers with dynamic
looping (pioop = {0.05, 1}) are similar, they only fluctuate around different expectation values. As
the probability and therefore the number of loops increases, the randomly looped configurations
become denser and together with this, fluctuations decrease.
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10 — 15 L.u. and can be adjusted to one’s needs for polymers with dynamic looping.

Therefore, it is justified to view the dynamic loop formation as an adjustable com-
paction mechanism. The Gaussian shape of the distributions of the end-to-end distance of
polymers with dynamic looping indicates that they still have the character of self-avoiding
walks, although they can be much more compact.

3.2.2 Mean Squared Displacement
The mean squared displacement (MSD) is given by

1 Nec—1 N—n—1 9
2
(Rn>==zﬂf:;57v" Yo > iyl (3.1)
¢ =0 =0

where N is the total number monomers, N¢ is the number of polymer conformations over
which the ensemble average is computed and n is the contour length, i.e. the genomic
distance between monomers i and j.

In Fig. 3.4, a typical example for the MSD or intrachain distance statistics is given.
Loop formation has a strong influence on the mean squared displacement of the monomers,
resulting in a leveling off for distances when loops can be formed (the smallest loop size
is three monomers). The fact that the mean square displacement does not increase with
increasing contour length, means that monomers stay in closer spatial proximity to each
other.
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Figure 3.4: Results for the mean-square distance (R?2) for various simulated polymer chains (with
systems size N = 250), namely the simple random walk (RW) model, the self-avoiding walk (SAW)
model and furthermore the model incorporating dynamic looping (DL) for two different looping
probabilities. In comparison to the MSD resulting from the RW and the SAW model, that of a
loopy polymer displays a leveling-off and adopts a plateau level at contour lengths above about 30
monomeric units (see inset).
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3.2.3 Bending Rigidity and Persistence Length

The persistence length [, is a basic mechanical property of semiflexible polymers that
quantifies the bending stiffness and is defined as the contour length over which directional
correlations due to thermal fluctuations are lost within the chain backbone. The parts of
the polymer that are shorter than the persistence length can be described as rigid whereas
parts of the polymer which are larger than the persistence length can be considered as
a random walk. However, just recently a study investigating conformational properties
of bottle-brush polymers showed that standard definitions of persistence length do not
describe the local “intrinsic” stiffness of real polymer chains [68]. Rather, the decay of
the orientational correlation function can be interpreted as an effective persistence length
describing conformational properties on a global scale.

We can integrate bending rigidity Upong into the BFM by introducing a weight factor
for the bond angles given by

Ubond = ko(1 — cos(#)) .

The distribution of the a priori probability distribution of the bond angles within the
BFM, which is illustrated in Fig. 3.2, is especially important for arguing that bending
rigidity can be actually introduced within the framework of the BFM.

3.2.4 Confinement

The conformation of biological macromolecules is highly dynamic, rapidly adapting to
physiological and environmental conditions, such as confined spaces. The bacterial nu-
cleoid is a striking example of an environment that strongly influences the packaging of
the genetic material of prokaryotes.

Confining polymers affects their conformation by excluding volume interactions and
thus entropy. For the simulation of ring polymers within the scope of the study of the
bacterial nucleoid it is important to introduce the concept of spatial confinement. The
interplay of confinement, bending rigidity as well as excluded volume interactions has
been already studied in detail [69]. Nevertheless we reproduce important findings of this
theoretical study (see Fig. 3.5), namely the bond angle correlation function for circular
polymers within cubic and rectangular confining geometries.

3.2.5 Contact Probability Measures

3C-based technologies, such as Hi-C, are experimental methods that can quantify the
contact frequency between different sites of the DNA molecule as outlined in chapter 2.
Fortunately, in our simulations the contact frequency can be measured comparatively
simple since we know the exact configuration of our polymer, i.e. the position of each
single monomer in the three-dimensional space, at each point in time. In order to be able
to quantify the contact frequency, we initially have to define a criterion for two monomers
being in contact which each other. We recall that within the framework of the BFM we
restrict the bond length between a monomer k and its neighboring monomer j such that
it meets the condition

ek —xjl, < V0.

Analogously, we choose the same upper limit of v/10 l.u. for two monomers k and j
being in contact with each other. For making the step from contact frequency to contact
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Figure 3.5: Mean bond angle correlation function C(4,j) = (u(é) - u(j)) along the polymer
backbone |i—j| € [0, L] for both A. an unconfined semiflexible ring polymer and B. a semiflexible
polymer ring confined in rectangular geometry for various persistence lengths L/lp. Both simulated

polymers are composed of N = 80 monomers.
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probability we have to average over the whole ensemble of conformations and normalize
it in a subsequent step.

Contact Probability Profile

One important measure is the decay of the contact probability as a function of genomic
distance which we also refer to as contact probability profile. Treating the polymer chain
as a random walk, the probability of two beads n; and no contacting each other decreases
as a function of their genomic separation |ng —n;|. More specifically, a power-law behavior
is observed

pe(|ng —n1l) o< |ng —ng| 732 (3.2)

To draw a comparison between simulation and experimental data from 3C-based exper-
iments, we consider the contact probability p.(|n1 — na|) of two genomic loci ny and ns.
According to equation 3.2 the contact probability of a random-walk polymer obeys a power-
law behavior as a function of the length [ = |n —ns| and is given by p.(I) < 177, 3 =1.5.
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Figure 3.6: The contact probability p. for two specific sites as a function of the genomic separation
between them. Shown are the results for equilibrated polymers composed of N = 250 monomers
and various looping probabilities including the case of the self-avoiding walk (p = 0) and a simple
random walk. The contact probability decreases as a power-law {~# with genomic separation for
separations n 2 10. The exponent is thereby strictly dependent on looping probability. Compared
to the self-avoiding walk the co-localization probability is strongly increasing due to dynamic
looping.
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Self-avoiding walk polymers also show power law behavior and the exponent is given by
B =~ 2.1 (see Fig. 3.6). The contact probability p.(l) of the dynamic loop model has a
power-law behavior as well and, as expected, it is observed that the higher the looping
probability, the smaller the exponent 3 (see Fig. 3.6). For higher looping probabilities
Ploop, One has distinguish two regimes. In comparison to self-avoiding walk polymers the
contact probability of distant genomic loci is increased by several orders of magnitude.
Interestingly, the computed value of the exponent 81 ~ 1.1 for a looping probability of
Ploop = 0.5 and for small genomic separations (2 - 25 m.u.) is in line with the experimental
observation of an exponent of 51 ~ 1.08 in the range between 500 kbp and 7 Mbp [3]. In
accordance with the dynamic loop model, the experimentally observed exponent for all
genomic separations is even smaller on the genome size scale.

Contact Map

In order to visualize the contact probability of all the monomers with each other, a two-
dimensional heat map, the so-called contact matrix or contact map, is appropriate. An
exemplary contact map is depicted in Fig. 3.7. Contact maps encode contact probability
by colors allowing for fast recognition of the prominent features. Our simulated contact
maps are unbiased and do not need to be normalized since their building blocks are actually
the monomers whose interactions are known.
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Figure 3.7: Exemplary contact map of a rosette (N = 401 monomers) composed of four arms (or
loops), each cousisting of N = 100 monomers.

3.3 Computational Topology

3.3.1 Simplicial Complexes and Barcodes

The linchpin of the following considerations is persistent homology, that studies the evolu-
tion — birth, life and death — of global topological features like connected components, holes
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Figure 3.8: A sequence of simplicial complexes for a point cloud data set [62]. Left: Spheres
around the points with radius e. Right: The corresponding simplicial complex R.. Different colors
mark simplices of different dimensions. Upon increasing €, holes appear and disappear.

and cavities. In order to determine the persistent homology of a space, the space needs to
be represented as a simplicial complex at first. The simplest simplex of dimension 0 is a
point. From this one can construct higher-dimensional simplices. In order to get a simplex
of dimension n, add to the simplex of dimension (n — 1) a new point in n -dimensional
space and connect all vertices of the old simplex with the new point. Therefore a simplex
of dimension 1 is a line, a triangle a 2D one, a tetrahedron a 3D one and so on, where
each n-dimensional simplex has exactly (n 4 1) vertices. Thus, a simplicial complex is a
set consisting of points, line segments, triangles, and their n-dimensional analogues (see
Fig. 3.8).

The formation of simplicial complexes and their persistence can be graphically illus-
trated: A complex is formed by placing spheres with radius e around the points and by
connecting the centers of two intersecting spheres to a simplex of dimension 1.

The formation of a simplicial complex results from starting at a radius € = ¢y and
continuously increasing it. Based on this, the barcodes can now be determined. Their
length corresponds to the interval [estart, €end], in which “inclusions” in the structure of the
simplicial complex persist, where €gart and €qnq correspond to the radii where “inclusions”
occur and disappear. The barcodes Hy of dimension 0 represent the intervals in which the
points are not connected. In one dimension, periods (with respect to €) are encoded in
which closed polygons with more than 3 vertices exist, and barcodes of dimension 2 (Hs)
indicate three-dimensional volume inclusions.

3.3.2 Hausdorff Distance

The calculation of barcodes alone is not enough, rather the challenge is to compare bar-
codes in order to determine their similarity. Distance measures can be used to quantify
similarity or dissimilarity. Such a distance measure d(z,y) of two points x and y must
have certain properties [70]:
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o d(zr,y) >0, d(z,x)=d(y,y)=0 <= The distance between two different
points & # y is positive and zero in the
case of z = y.

o d(z,y)=d(y,x) <= Distance is symmetric.

If it also satisfies the triangle inequality

o d(x,z) <d(x,y)+d(y,z), <= The distance between two points z‘ and
z is the shortest distance along any path.

then the distance function is also referred to as a metric.

The most well-known distance between two non-empty sets is defined as the infimum
of the distances between any two of their respective points, i.e.

d(A, B) = inf (inf(d(a,b .
(A,B) = inf (jnf(d(a,h))) (33)

where the function d(a,b) is the Euclidean norm of two points a,b € R? in our case.
Here, one is interested in finding the shortest of all possible distances between the elements
of A and B.

With regard to the barcodes, however, we now use the Hausdorff metric as the distance
measure. Let A and B be two non-empty compact subsets of a metric space M, then the
Hausdorfl distance is defined as follows [71]:

di (A, B) = max { sup inf d(a,b), sup inf d(a,b) }, (3.4)
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Figure 3.9: An example for barcodes [62].
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where d(a,b) again denotes the Euclidean norm. Hence, the Hausdorff distance is the
maximum distance from one set to its nearest point in the other set (see Fig. 3.10).
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Figure 3.10: Components of the calculation of the Hausdorff distance between two 2D point
clouds.

The individual “bars” of the barcodes can be viewed as points in R?, where the z-
coordinate is €g4,+ and the y-coordinate e.,q of the corresponding bar. The values that
x and y can take are restricted to the interval [0, R], where R denotes the radius of the
perimeter of the structure in question. If we look at all barcodes of one dimension as a set
of points, the result is a persistence diagram. The Hausdorff distance can now be applied
to two of these persistence diagrams. The maximum distance that can be reached is /2 R.

It should be noted that for a given set of points, as stated above, there are barcodes
of various dimensions, therefore also more than one persistence diagram. To compare two
point sets topologically with the Hausdorff metric, it only makes sense to compare the
Hausdorff distance of persistence diagrams that represent the same dimension. In this
work, the barcodes of dimension 0 and 1 were calculated. As a result, there are two
different Hausdorff distances for two point sets under consideration. To obtain a single
value that captures the similarity of two sets of points as a whole, and to give equal
weight to each of the two dimensions, these two values are summed up. If these values are
calculated for the same structures, which differ only in the order of magnitude in which
they are realized, different values are obtained in spite of the same topology. Therefore it
makes sense to project the calculated values onto a common scale. This can be achieved
by dividing the summed values resulting from the individual persistence diagrams by the
radius of the perimeter R of the structure under investigation. The resulting normalized
value is referred to as Hausdorff distance. It should be noted that the values that this
Hausdorff distance can take are generally not restricted to the interval [0,1], but to the
interval [0, 3v/2]. In addition, for any distance measure, as opposed to a similarity measure,
a value of 0 corresponds to maximum similarity.
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Chapter Summary

The study of the three-dimensional genome organization has recently gained much focus in
the context of novel techniques for detecting genome-wide contacts using next-generation
sequencing. These genome-wide chromosome conformation capture-based methods, such
as Hi-C, give a deep topological insight into the architecture of the genome inside the
genome in vivo. This chapter reviews the steps to process next-generation Hi-C sequencing
data to generate a final contact probability map. We describe these steps using publicly
available Hi-C datasets of different bacteria. We also present strategies to assess the
quality of Hi-C datasets.

4.1 Introduction

In humans, nearly two meters of DNA must be folded to fit inside the micrometer-sized
cell nucleus. How is DNA compacted to this level and how can it remain accessible for
gene transcription, replication and repair at the same time? Novel technologies, such
as “chromosome conformation capture” (3C) — based methods that map genome-wide
spatial interactions along the genome have, during the last 15 years, allowed to shed light
on this question. Massive improvements in the throughput of such methods produce ever-
increasing amounts of data. Most of the raw data are deposited in repositories publicly
available.

Mammalian interphase chromosomes are hierarchically organized [25,72]. Fluorescence
microscopy and genome-wide 3C studies, such as Hi-C, have revealed inter-chromosomal
compartmentalization in the form of distinct chromosome territories [3,24]. Individual
chromosomes also exhibit compartmentalization to form domains [7,8,33,36]. These 3C
studies indicate that eukaryotic genomes are partitioned into discrete structural units with
highly increased frequency of internal contacts.

Besides studies of eukaryotic chromosomes of humans, mice and Drosophila melanogaster,
recently, the circular chromosomes of model bacterial species such as Caulobacter cres-
centus, Bacilus subtilis and Mycoplasma pneumoniae have been shown to analogously be
composed of domains with the help of Hi-C analyses [48,73-75]. Taken together, these
results suggest that intra-chromosomal compartmentalization is a fundamental building
block of chromosome structure of organisms.

3C was invented in 2002 by Dekker et al. [21] and allows for focused quantification
of contact frequencies at selected regions. All 3C-based techniques aim to generate a
two-dimensional library of three-dimensional chromosome contacts. The first step in the
procedure is cross-linking of chromatin by addition of formaldehyde. This causes in-
teracting chromatin segments to be covalently linked together. The fixed chromatin is
then digested with a restriction enzyme. The ends of the fragmented cross-linked DNA
are thereafter re-ligated under diluted conditions to favor intramolecular ligation of the
cross-linked fragments. The ligated DNA molecules thereby form a hybrid of two DNA
fragments from the two segments that were cross-linked. Next-generation sequencing is
used to quantify the number of such hybrid DNA-molecules.
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Hi-C is a genome-wide 3C based technology introduced by Lieberman-Aiden et al. in
2009 [3]. Realizing a genome-wide quantification of interactions, it constitutes a major
breakthrough in the study of chromatin architecture. The Hi-C protocol differs from the
standard 3C protocol in that there is an extra step needed before ligation. It consists of
filling in the restriction digest of the chromosome with biotin-labeled nucleotides. After
purification and shearing/ fragmentation of the Hi-C library, the biotin labeled material
is pulled down to ensure that only ligation junctions are selected for further analysis.

“Chromosome conformation capture carbon copy” (5C) captures interactions between
all restriction fragments within a selected region [55]. For example, it was used to study the
spatial organization of the bacterial Caulobacter crescentus genome [76], the regulatory
landscape of mouse X inactivation [8] and the long-range interaction landscape of gene
promoters in the human genome [40]. A technique similar to Hi-C, called genome confor-
mation capture (GCC), has been applied for mapping yeast chromosome interactions [57]
as well as for studying the spatial organization of the Escherichia coli nucleoid [58].

All 3C-based methods, contrary to microscopy-based techniques, allow for both a more
systematic and quantitative characterization of genome topology and a higher resolution.
The essential drawback, however, is that the conventionally ensemble 3C-based methods
are mostly performed on large populations of cells, leading to loss of information at the
single-cell level.

In this chapter, we give an overview of the data analysis involved in the framework of
a Hi-C experiment. Moreover, we present and discuss publicly available Hi-C datasets of
bacterial genomes and present possibilities to assess and compare them in terms of data
quality.

4.2 Hi-C Data Processing

This section covers the main steps involved in the data processing of a genome-wide 3C-
based study. Since the focus of this chapter is mainly on genome-wide methods, such as
Hi-C or GCC, methods relevant for theses technologies are discussed in this section. Hi-C
data processing can be subdivided into the following four main steps: (1) Mapping to
the reference genome, (2) Quality control, (3) Binning and contact matrix generation, (4)
Balancing (Fig. 4.1). Each of these steps is discussed in the following section.

4.2.1 Mapping to the Reference Genome

The first step of genome-wide 3C data analysis consists of mapping reads back to the
reference genome. The Hi-C method quantifies an interaction by a ligation product formed
between two restriction fragments. By using paired-end sequencing and mapping both
ends of each paired sequence to the reference genome, the two restriction fragments in the
ligation product can be determined. However, if the read length is bigger than the length
of one of the restriction fragments, the mapping will not work. To solve this problem, the
mapping procedure can be refined by means of an iterative mapping scheme that involves
truncating reads to a smaller length prior to mapping [77]. Reads that are not aligned
uniquely at both ends are then re-aligned by iteratively increasing their portions. This
process is repeated until either all reads uniquely map or until the read is extended to its
entirety. Only paired-end reads with both sides being uniquely mapped to the reference
genome contribute to the set of Hi-C interactions. All other paired-end reads are discarded.
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Figure 4.1: Schematic overview of the general workflow for analyzing genome-wide 3C data such
as Hi-C. The input (at the top left) is raw sequencing data and as a typical output we illustrated
a bias-corrected contact matrix (at the top right). The dataset used here for illustration purposes
is that of the study of Le et al. [48] (SRR824846).

4.2.2 Quality Control

The next step is quality control to ensure that the aligned sequence reads are likely to be
the result of proximity-based ligation of digested fragments, and that they are reflecting
long-range chromatin interaction rather than just random collision. Self-circularized or
un-ligated (dangling-end) products will result in reads that map with both ends on the
same restriction fragment. These reads should be removed. Also reads from neighboring
fragments that map to the same strand should be removed since they are likely the result
of incomplete digestion. Furthermore, reads that map multiple times at the exact same
location on the reference genome are often the result of biased PCR-amplification and
should also be removed. Hi-C sequencing reads can be compared to randomly generated
control sequencing reads, whereby the Hi-C reads should be significantly closer to the
chosen restriction sites than random reads [78]. The Hi-C reads should also be in the
correct orientation with respect to the restriction site.

4.2.3 Binning and Contact Matrix Generation

After the alignment of the sequence reads and quality control the next step is the con-
struction of contact matrices of the interaction data. To produce a contact matrix, the
genome is divided into equally sized loci, so called bins. The result of this aggregation of
read-counts across bins is a symmetric matrix composed of interaction frequencies between
bins covering the entire genome. The size of these bins used to represent the meaning-
ful contacts between pairs of genomic loci can be referred to as the resolution of a Hi-C
experiment (see Fig. 4.2 for a comparison of a contact matrix depicted at different bin
sizes).

A linear increase of resolution requires a quadratic increase in total sequencing depth;
the size of the bins and effectively the resolution is limited by sequencing depth. Moreover,
the resolution also depends on the restriction enzyme used for the Hi-C experiment (see
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Figure 4.2: Hi-C contact map depicted at two different resolutions (A. 4kbp and B. 16kbp).
The contact map of higher resolution reveals much more detailed structures, especially on the
interactions within the domains along the diagonal. Data on B. subtilis from Marbouty [73]
(SRR2772323).

section 4.3.4). To illustrate this relationship between resolution and the total number of
collected read pairs, we want to highlight that for a resolution of 100 kbp in the first Hi-C
study of the human genome 8.4 million reads were collected [3]. Increasing the resolution
to 1 kbp required 4.9 billion reads [36]. Thus, increasing the resolution by two orders of
magnitude required increasing the total number of reads by three orders of magnitudes.

4.2.4 Balancing

Besides the bias introduced by individual reads or restriction fragments, binning generates
biases, as well. Yaffe and Tanay identified the origin of some of these biases, such as the
non-uniform distribution of the length of restriction fragments with respect to ligation
efficiency, the nucleotide composition of the genome under investigation and issues with
uniquely mapping the interactions back onto the reference genome. They proposed an
integrated probabilistic model [78] for eliminating these known systematic biases from the
“raw” contact maps. This procedure is referred to as normalization.

Several other models for normalizing Hi-C contact maps have been proposed [77,79,
80]. Though, these approaches do not explicitly incorporate the aforementioned biases
on the grounds that it is not possible to know each and every bias. Since most of these
approaches are based on the Sinkhorn-Knopp (SK) balancing algorithm [81], they can be
more precisely referred to as balancing instead of normalization. Explicit bias correction
and balancing yield comparable results [36].

In this section, we focus on the SK balancing algorithm [81] that transforms a symmet-
ric non-negative matrix A = (a;;) , A € R*", into a doubly stochastic matrix S = (s;;),
that is, a matrix whose rows and columns sum up to 1, i.e.,

D sy = s =1
i J
The SK algorithm is an iterative process that consists in solving

S =D,AD,, (4.1)
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Figure 4.3: Comparison of “raw” Hi-C contact frequency matrices on the left and the respective
balanced equivalents, i.e. contact probability matrices, on the right. A,B. Data on C. crescentus
of the study of Le et al. [48] (SRR824846). C,D. Data on B. subtilis of the study of Marbouty et
al. [73] (SRR2772323). We balanced the matrices by applying the Sinkhorn-Knopp (SK) algorithm.
These two examples illustrate that the balancing procedure leads to very different results dependent
on the input “raw” Hi-C contact frequency matrix. In the case of the upper matrix on C. crescentus,
the coverage of reads is homogenous along the genome and the contact frequency matrix (A) already
indicates a domain structure along the diagonal. In contrast, the coverage of reads is considerably
more heterogeneous in the case of the lower matrix on B. subtilis (C). The region from 1.7 up to
2.3 Mbp lacks reads. Therefore the structure of the balanced contact map (D) in this region is
rather an artifact of the balancing procedure than of biological relevance.

where D1 and D4 are unique up to a scalar factor diagonal matrices with positive main
diagonal. The matrices D; and Dy are obtained by alternatingly normalizing columns and
rows of A.

Applied to our situation, A constitutes the raw matrix of contact frequencies, and
the diagonal matrices D1 and D5 contain the biases for the bins involved in the contacts
between bins 7 and j. S is then the matrix of unbiased relative contact frequencies, which
is defined such that each row and column of the upper triangular matrix sums to 1. The
biases, and therefore S, can be found by using the SK algorithm that converges to the
solution of equation 4.1.
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Regardless of the method used, it is important to compare the raw and the bias-
corrected contact map to check the effect of the procedure. Fig. 4.3 depicts two such
comparisons for two different Hi-C datasets. In both cases, balancing has the effect of
smoothing the contact map such that no obvious high or low rows and columns remain.
In extreme cases (compare the two lower maps in Fig. 4.3), large regions with a strikingly
low number of captured reads are completely reorganized by balancing. The resulting
contact map should be regarded with caution because it is likely to contain artifacts
caused by balancing, especially in and near the aforementioned regions.

4.2.5 Concluding Remarks

It is important to be aware of the limitations of the experimental elements that impact the
computational data processing. In fact, 3C experiments are never truly genome-wide since
the usage of a restriction enzyme is biased to where its sites are located in the genome.
Furthermore the restriction enzyme chosen has to balance, amongst others, the frequency
of cutting, fragment size and size uniformity across the studied genome.

Because of the necessity of balancing contact maps constructed from 3C data, it is
crucial to differentiate between raw contact maps representing all the captured contacts
and their raw frequencies and the balanced contact maps representing contact probabili-
ties. Regardless, balanced contact maps should be compared with their raw equivalent in
order to check the effects of the balancing procedure.

4.3 Hi-C Data Assessment

In this section, we focus on Hi-C and other genome-wide 3C experiments performed in
bacteria. We also present a procedure to assess data quality for comparison of data
sets. Finally, we highlight the importance of the choice of restriction enzymes for Hi-C
experiments in terms of data analysis.

4.3.1 Hi-C Data Availability

The first Hi-C study was carried out by Lieberman-Aiden et al. [3] and addressed the
folding of the human genome. In 2011 Umbarger et al. [76] described the first 3C-based
study, here 5C, of a bacterial genome. To date there have been several studies of bacterial
genomes using genome-wide 3C-based experiments. We have summarized them in table 4.1
in chronological order. There are several datasets for each study that correspond to Hi-C
libraries that differ, for example, in bacterial growth conditions, the restriction enzyme
used or the sequencing method. We listed studies with publicly available Hi-C data sets.

4.3.2 How Many Reads?

Sequencing depth is decisive for the resolution of a Hi-C experiment. More precisely, it
is the number of valid reads, i.e. those that remain after the filtering step discussed in
section 4.3.4. Therefore, given a Hi-C dataset the relevant question to ask is: How many
“valid” reads remain after the filtering process? Although in the end the absolute number
of valid reads is decisive from the data processing point of view, the relative fraction of the
number of valid and total reads is also very important from an experimental point of view
since it determines something like the efficiency of a Hi-C experiment. There are large
variations in the number of valid reads in the datasets under discussion. While it exceeds
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Bacterial Species xC Resmax RE Datasets Reference
Caulobacter crescentus ~ 5C 13 kbp  Bglll 3 Umbarger et al. [76]
FEscherichia coli GCC 20 kbp Hhal 8 Cagliero et al. [58]
Caulobacter crescentus ~ Hi-C 10 kbp  BgllI, Ncol 23 Le et al. [48]
Bacillus subtilis Hi-C 4 kbp  HindIII, Hpall 15 Marbouty et al. [73]
Bacillus subtilis Hi-C 10 kbp  HindIII 41 Wang et al. [74]
Mycoplasma pneumoniae Hi-C 3 kbp HindIII, Hpall 8 Trussart et al. [75]

Table 4.1: Overview of genome-wide 3C-based (xC) datasets of bacterial species for different
conditions. We list the restriction enzymes (RE) that have been used in the datasets as well as
the highest achieved resolution (Respmax) and the number of datasets that have been published.

50% for the Hi-C data on C. crescentus (Le et al. [48]), it amounts to less than 5% for that
on M. pneumoniae (Trussart et al. [75]). The latter means that, in the extreme case, albeit
187 million total reads have been sequenced, only 3 million valid reads contribute to the
contact map (ERR1413594). In most cases, the key limiting factor is ligation efficiency, i.e.
unligated fragments (dangling-ends), self-ligated fragments (self-circles) and poor biotin
label removal.

4.3.3 What Kind of Reads?

The result of a Hi-C experiment is a contact probability matrix of the binned genomic
interactions. It is visualized as a heat map of relative interaction frequencies (a “contact
map”) encoding the interaction data using a color map. This graphical representation
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Figure 4.4: Hi-C contact map depicted for two different color maps and different lower limits of
the color bar. Since the Hi-C data contains a high level of noise a lower limit on the color bar
needs to be set. A. A rainbow color map highlights the hardly varying contact probabilities much
better than B. a sequential colormap. Data on M. pneumoniae from Trussart [75] (ERR1413595).
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gives the observer an immediate impression of the Hi-C data since it highlights prominent
features, such as domains along the diagonal or the presence of a secondary diagonal. The
graphical representation is highly dependent on the choice of the color map and on its
scaling that can either be linear or logarithmic. An example of how different the same
contact probability matrix can be visualized, is illustrated in Fig. 4.4. The heat map
with the rainbow color map and the appropriate lower limit on the color bar on the right
highlights the hardly varying contact probabilities much better than the sequential color
map on the right.

For this reason, it is important to evaluate a Hi-C dataset objectively in addition to
heat map visualization. One possibility is to regard the number of the captured reads as
a function of the genomic distance between the interacting loci (see Fig. 4.5). In all Hi-C
experiments a lot of reads are detected between neighboring genomic sites. This is, of

10°

— C. crescentus (Le et al.) — B. subtilis (Wang et al.)
— E. coli (Cagliero et al.) M. pneumoniae (Trussart et al.)
—— B. subtilis (Marbouty et al.)

Npgreaas(4:3)

Figure 4.5: Number of valid counts between different genomic loci 7 and j as a function of
their genomic distance (which has been normalized by the length L of the respective genome),
depicted for different bacteria. Most of the counts represent interactions between neighboring
or near genomic loci and with increasing genomic length between the interacting loci the counts
decrease exponentially. This exponential decay is different for the various datasets. This is a
consequence of the distinct three-dimensional shape of the different genomes that is reflected in
distinct interaction patterns. Moreover, also experimental factors have an impact on the interaction
profile as can be seen from the interaction profiles of the two B. subtilis Hi-C datasets. The two
curves have approximately the same slope but one is shifted upwards (Wang et al.) compared to
the other one (Marbouty et al.) because of the larger number of valid counts stemming from deeper
sequencing of the corresponding Hi-C library. Furthermore, the read distribution also reveals what
kind of reads have been captured in the Hi-C experiment, such as in the case of the GCC dataset
of the study by Cagliero et al. where a sharp decline of contacts indicates that it is highly biased
towards contacts of neighboring restriction fragments (99.5% of the valid read counts occur between
neighboring bins).
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course, due to the fact that these sites are intrinsically linked to each other. Thus, these
reads do not contain relevant information. The read distribution shows how large this
fraction of trivial reads is compared to more interesting short-, intermediate- and long-
range interactions related to the distinct three-dimensional shape of the regarded genomes.
It can therefore be used as an appropriate indicator for the quality of the reads of a given
Hi-C dataset.

The read distribution also shows that the captured interactions decrease with increas-
ing genomic distance, such that short-range interactions will typically have higher coverage
and thus higher effective resolution. In the contact map this is reflected by a gradual de-
crease of the average interaction probability the further one moves away from the diagonal.
This finding follow the intuition that topologically close loci will interact frequently as-
suming random motion in 3D space. Also, polymer models predict a power-law decrease
of the contact probability as a function of the genomic distance [82].

4.3.4 Resolution of Hi-C Data and the Selection of Restriction Enzymes

Restriction enzymes are proteins that cut the DNA at specific sites. There is a wide
range of restriction enzymes and in addition to biochemical criteria the choice of a certain
restriction enzyme is also relevant for data analysis since it inevitably determines the
resolution of a Hi-C map. This is due to the fact that in a Hi-C experiment interactions
between genomic loci are measured in terms of restriction fragments. Thus, choosing an
appropriate bin size for a given Hi-C dataset very much depends on the distribution of
the lengths of the restriction fragments.

In Fig. 4.6 we have contrasted the distribution of the length of a high-frequency re-
striction enzyme (frequent cutter) with a low-frequency cutter (rare cutter) for the E. coli
genome. Clearly, we could choose the frequent cutter Hhal in order to obtain an E. coli
contact map of 1 kbp or even 500 bp resolution, whereas the rare cutter Bglll would limit
the maximum possible resolution to around 10 kbp. It is important to remark that the
choice of a frequent cutter predetermines the need of a high sequencing depth. A summary
of various restriction enzymes and the statistics of the length of the respective restriction
fragments for the E. coli genome can be found in table 4.2.

4.4 Summary

Genome-wide chromosome conformation capture-based methods are now widely used. The
resulting data, most of which is deposited in repositories publicly available, is the starting
point for the computational modeling of the three-dimensional architecture of a multi-
plicity of genomes. Besides the results of the modeling approaches, it is also interesting
to know how reliable the underlying Hi-C data is. It is not only the number of captured
reads, but also the distribution of these reads which is decisive for this question. Moreover,
contact maps before and after balancing can differ significantly. It is therefore necessary
to compare them and understand possible deviations.
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Figure 4.6: The distribution of the length of the restriction fragments for two different restriction
enzymes (A. Bglll; B. Hhal) using the example of the E. coli genome. The main graphs show the
interesting part of the distribution and the inset graphs show the overall distribution. The two
distributions show the huge difference between the restriction fragments generated by the frequent
cutter Hhal and the rare cutter Bglll as regards the total number of generated fragments as well

as their typical lengths.

Restriction enzyme Recognition site No. of RFs (L) L Liin Lmax
HindIII ATAGCTT 557 8333 4963 9 62667
Neol C"CATGG 614 7560 5163 21 47514
BgllI A"GATCT 702 6612 5048 16 42359
Miul A"CGCGT 1329 3493 2444 6 33370
BstYI R"GATCY 3191 1455 958 6 18605
Hpall C"CGG 24312 191 122 4 3376
Hhal GCG™C 32795 142 90 4 4100

Table 4.2: Overview of the statistics of the length of the restriction fragments for different
restriction enzymes using the example of the E. coli genome. Listed are all restriction enzymes
that have been used in the discussed Hi-C experiments. Besides its recognition site we listed the
number of restriction fragments (RFs) generated by the respective restriction enzyme for the E.
coli genome (MG1655, NC_000913.3) as reference. We also included the mean, median, smallest

and biggest restriction fragment length (L).
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Chapter Summary

In order to interpret data from Hi-C studies genome-wide contact probability maps need
to be translated into models of functional 3D genome organization. Here, we first present
an overview of computational methods to analyze contact probability maps in terms of fea-
tures such as the level and shape of compartmentalization. Next, we describe approaches
to modeling 3D genome organization based on Hi-C data.

5.1 Introduction

Following the generation of contact probability maps based on Hi-C sequencing data (see
chapter 4), analysis of these maps is required to extract models of 3D organization and to
establish structure-function relationships. It is important to keep in mind that Hi-C con-
tact probability maps are matrices containing the contact probabilities of all pairs of loci
at a given resolution and are conventionally visualized as heat maps. We are abbreviating
contact probability maps as contact maps throughout the review.

There are two main challenges associated with the interpretation of Hi-C contact maps.
First, the information contained in contact maps reflects an ensemble average of genome
conformation of a large heterogeneous population of cells. Second, contact maps contain
contact probabilities reflecting the probability that any pair of genomic loci co-localizes
and hence characterize the neighborhood for each genomic locus. This is a major difference
to imaging methods that can measure the spatial position of genomic loci in the context
of the folded genome inside the cell.

There are two distinct approaches in developing spatial models of genome organization
based on Hi-C contact maps. The first approach consists of hypothesis-driven modeling,
which includes genome folding principles, such as DNA looping, as physical principles in
the framework of polymer simulations. The properties of the ensemble of simulated poly-
mer conformations are next compared to Hi-C data, often by comparison of experimental
and simulated contact maps and defined structural features (such as domains) therein.
The second approach uses the contact map as input to establish 3D structural models
best fitting the experimental data.

Here, we first discuss how Hi-C contact maps can be analyzed in terms of prominent
structural features and can be correlated with other types of genome-wide data. Next,
we review approaches to the 3D modeling of chromosomes (see Fig. 5.1 for an overview of
approaches to analyzing and modeling Hi-C contact maps).

5.2 Analyzing Hi-C Contact Maps

This section describes 1) the issue of comparing Hi-C contact maps, 2) methods for detect-
ing certain features abundantly emerging in contact maps across different species, such as
compartments, domains, loops and more complex structures and 3) the analysis of other
genomic data alongside with Hi-C data.
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Figure 5.1: Schematic overview of approaches to analyzing and modeling Hi-C contact maps.
A. Feature detection methods analyze the contact map in terms of prominent features, such as
domains, loops and loop domains. B. Contact maps can be analyzed alongside with other genome-
wide data, such as the expression level of genes (RNA-seq) or data on proteins being attached to
the genome (ChIP-seq). C. Polymer simulations and 3D reconstruction methods (exemplary 3D
representation adapted from [73]) aim for developing 3D models of the spatial organization of
chromosomes based on Hi-C data.

5.2.1 Comparison of Contact Maps

How can the Hi-C contact maps of the same genome, but acquired under different con-
ditions, be compared? Although qualitative differences between two contact maps can
be readily detected by visual inspection, it is not straight-forward to quantify differences.
The underlying mathematical challenge consists in quantifying the similarity, or rather
the dissimilarity, of two matrices. However, well-known similarity measures, such as the
cosine similarity S or the Jaccard index, take vectors as input and give as output a num-
ber between 0 and 1, where 0 indicates absolute dissimilarity and 1 absolute similarity.
The same is true for statistical measures of correlation, such as the Pearson correlation
coeflicient p, that is commonly used for comparing Hi-C contact matrices and yield values
between +1 and —1, where 1 is total positive linear correlation, 0 is no linear correlation
and —1 is total negative linear correlation. The computation of these measures requires
decomposition of the two-dimensional contact matrices into one-dimensional vectors row-
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Figure 5.2: Hi-C contact probability maps of the Caulobacter crescentus genome (A. wild-type;
B. Rifampicin treated). The color code is as follows: the darker the color, the higher the contact
probability. Although there is a clear qualitative difference between the two maps, quantification
of this difference is not straight-forward.

by-row.

In order to illustrate this problem, two contact maps of the C. crescentus chromosome [48]
are shown in Fig. 5.2. In this example, the qualitative difference is the missing compart-
mentalization in the vicinity of the main diagonal of the contact map of Rifampicin-treated
C. crescentus. But how to quantify this difference between the two maps? Both the Pear-
son correlation coefficient (p = 0.97) and the cosine similarity (S¢c = 0.98) indicate high
similarity between the two maps. This is due to the inherent emphasis of these mea-
sures on comparing global features in the matrices, such as the diagonal dominance and
the presence of a secondary diagonal. By element-wise subtraction of one matrix from
the other and depicting the resulting matrix as a heat map (see Fig. 5.3), it is possible
to quantitatively display the differences between two contact matrices. The missing com-
partmentalization along the main diagonal in the Rifampicin-treated C. crescentus contact
matrix can be recognized by the blue domains along the diagonal in this heat map.

5.2.2 Feature Detection

Eukaryotic and bacterial chromosomes have been found to be organized in compartments.
In mammalian genomes domains comprise multiple length scales such as “A and B com-
partments” on the scale of Mbp [3] and “topologically associating domains” (TADs) on
length scales ranging from 10 kbp up to 1 Mbp [7,8]. “Chromosomal interaction domains”
(CIDs) in bacteria occur on the same length scale as TADs and are considered equiva-
lent [48,73-75]. More complex structures of eukaryotic genomes that have been found
using Hi-C experiments include loops and loop domains [36]. The observation of domains
at different length scales highlights the need to be able to quantitatively characterize do-
mains. On the basis of the detected domain structure, it is possible to compare different
contact maps.

There are various different methodological approaches identifying the domain structure in
Hi-C contact maps. They can be divided in two different classes depending on whether
domains or domain boundaries are detected algorithmically. A first attempt at iden-
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Figure 5.3: Subtracting the two Hi-C contact maps of the Caulobacter crescentus genome. The
Rifampicin treated C. crescentus contact matrix has been subtracted from the wild-type one and
the resulting matrix is illustrated using a heat map. A comparable contact probability in both
matrices is depicted in white, enhanced contact probability in the wild-type matrix in comparison
to the Rifampicin treated one in blue and the contrary case in red.

tification of TAD boundaries was presented by Dixon et al. [7] and is motivated by the
observation that TADs are demarcated by regions that are biased in their interaction prob-
ability; the upstream domain boundary is preferentially interacting downstream whilst the
downstream boundary is preferentially interacting upstream. This method is based on a
two-step strategy. First, the 2D contact information is translated into the directionality
index encoding the ratio of downstream and upstream interactions. Next, Dixon et al.
argued that the directionality index can be considered as an observation of a hidden direc-
tionality bias that can be determined using a a hidden Markov model and which allows the
segmentation into domains. As alternative, downstream interactions can also be directly
compared to upstream interactions in order to derive whether the strength of interactions
are significantly stronger in one direction compared to the other. Domain boundaries cor-
respond to positions where this preferred direction of interactions abruptly changes [48].
Lévy-Leduc et al. [83] developed a 2D model that fits a block diagonal matrix to observed
contacts using maximum likelihood. In this model blocks correspond to domains. Chen
et al. [84] presented a method for identifying TADs based on the interpretation of the
Hi-C matrix as a weighted graph whose vertices are genomic loci and whose edge weights
are contact probabilities of pairs of loci. As TADs are regions within the Hi-C matrix
characterized by high internal contact probability, their identification can be translated to
the problem of segmenting the graph into components with strong intra-connections and
weak inter-connections. This graph partitioning is realized using spectral decomposition.
Further methods use combinatorial optimization to find an optimal TAD hierarchy [85,86].
All these methods for domain detection assume that the domains are distinct, contiguous
blocks of increased contact probability. In order to detect both domains and more complex
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Figure 5.4: Comparison of the results of the approach using the directionality index and our
probabilistic graphical model. To this end, excerpts of the 45° anti-clockwise rotated Hi-C contact
maps of the C. crescentus chromosome shown in Fig. 5.2 are used. Contrary to the directionality
index approach our method does not yield domain boundaries or rather a domain structure (yellow),
but a contour (red) separating contact probabilities of a certain strength from the background.
The results of our method clearly show the missing compartmentalization along the diagonal in
the contact map of the Rifampicin-treated C. crescentus chromosome (B).

structures including loops or loop domains [36] without bias, we developed a probabilistic
graphical model that makes no a priori assumptions on the domain structure [87]. Within
this approach, the Hi-C contact matrix is analyzed using an Ising like probabilistic graph-
ical model whose spin coupling constant is proportional to each lattice point (entry in the
contact matrix). This approach is also relying on the graph theoretic interpretation of
Hi-C matrices and does not yield domain boundaries, but a contour separating contact
probabilities of an adjustable strength from the background. This iso-strength contour
allows identification and characterization of compartments irrespective of whether or not
there are contiguous domains in the form of squares.

In order to illustrate and visually compare the results of our approach and that based
on the directionality index, we used the Hi-C contact maps of C. crescentus shown in
Fig. 5.2. The contiguous domain structure computed on the basis of the directionality
index as well as the iso-strength contour yielded by our method permit characterization
of the compartmentalization of the wild-type C. crescentus chromosome (see Fig. 5.4).
The iso-strength contour is nearly flat for the contact map of the Rifampicin-treated C.
crescentus chromosome using the same model parameters. This indicates that following
rifampicin perturbation this chromosome is not compartmentalized; instead the captured
interactions between genomic loci decrease uniformly as their genomic distance increases.
The absence of a contiguous domain structure cannot be captured by methods like those
based on the directionality index.

5.2.3 Correlation-based Data Analysis

Hi-C contact information can be analyzed alongside with other genomic data such as
the expression level of genes or data on proteins being attached to the genome. This
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has the advantage of being able to gain insights into the correlation between the two
types of information instead of only analyzing each separately. An example of such a
combined analysis found that the mouse genome is organized into domains of coordinately
regulated enhancers and promoters that coincide with TADs [37]. First, ChIP-seq data of
RNA polymerase II indicative of active promoters and H3K4mel as a mark for enhancers
were compared across different tissues and cell types. As these signals were concordantly
enriched within clusters in the genome, much like TADs in contact maps of mammalian
genomes, the authors also compared both types of domains and determined that they
indeed overlap. Another example of such correlation-based data analysis of ChIP-seq
binding profiles and Hi-C data showed that the proteins CTCF and cohesin associate with
loops that have been detected within contact maps [36]. The previously discussed domain
boundaries in the contact map of the wild-type C. crescentus chromosome have been found
to correlate with the position of highly expressed genes identified through DNA microarray
analysis experiments.

We mentioned only a few exemplary studies that found interesting features of Hi-C contact
maps to be correlated with other genomic data. These correlations, though not implying
causality, are interesting for further specialized studies and hypothesis-driven modeling
approaches since they hint at possible mechanisms of the 3D genome organization.

5.3 3D Modeling

Hi-C experiments yield information that can be interpreted using computational models
of chromosome organization. There are two key strategies for building such models. The
first data-driven strategy, referred to as 3D reconstruction, uses the contact probabilities
as summarized in the contact map to determine an optimal structural model of the data.
The second strategy aims at establishing general principles of folding for organization of
chromosomes using physical principles in the framework of polymer simulations. Contrary
to the first strategy, Hi-C data is not used as an input for these polymer models, but rather
for validation. Here, we review several methods employing either of the two strategies. For
a more complete overview of 3D reconstruction methods we refer to the review of Serra et
al. [88].

5.3.1 3D Reconstruction

The goal of 3D reconstruction algorithms is to use the contact map as input to recapit-
ulate the underlying 3D structure of a genome. In this approach 3C-based data is used
to obtain spatial restraints for modeling the genome; 3D reconstruction is also known as
restraint-based structure modeling. The basic concept for the reconstruction is simple:
the closer two genomic loci are in 3D space, the higher the probability is that they inter-
act. In technical terms, the assumption is that the Euclidean distance between two loci
is inversely proportional to their contact probability. Following this basic notion, there
are two strategies for translating the contact probabilities within the contact map into a
set of 3D coordinates of loci representing the genome. In the first, optimization-based,
approach the total difference between pairwise distances in the hypothesized set of 3D
coordinates is minimized and the corresponding distances are inferred from the observed
contact probabilities. In the second, model-based, strategy, the observed contact proba-
bilities are assumed to follow a probability distribution from which 3D structures can be
inferred.

Irrespective of the underlying strategy, these methods output either a single consensus 3D
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structure or an ensemble of 3D structures. Both consensus and ensemble methods have
advantages and disadvantages. Ensemble methods are biologically more plausible, be-
cause they reflect the fact that Hi-C data is obtained from an ensemble of conformations.
However, the analysis of an inferred ensemble of 3D structures is not straight-forward:
one option is the characterization of the ensemble average [89]; another one is to select
a few structures that are representative of the diversity of the ensemble [90]. Consensus
methods, in contrast, generate a single structure, which can be thought of as an visualiza-
tion of the contact map and is easy to analyze. Computationally, ensemble methods are
more demanding than consensus methods, because they need to sample from a very large
dimensional space of candidate 3D structures.

Optimization-based Methods

“ShRec3D” [91] is a method that seeks for analytically reconstructing a consensus 3D
structure. It builds upon the fact that the contact matrix can be interpreted as the
adjacency matrix of a weighted graph whereby the problem is reformulated in terms of
embedding a graph into Euclidean space. This problem, in turn, is well-known in the
literature and can be solved using classical Multidimensional Scaling (MDS) [92]. Given
a set of distances between the vertexes of a graph, this method returns an Euclidean set
of coordinates. Therefore, the definition of distances between the vertexes of the graph
representing the contact matrix is crucial within this framework. The authors chose the
shortest path distance for this purpose, but did not show how other distance definitions,
such as the resistance distance or connectivity-based distances, perform compared to that
choice. “ChromSDE” [93] is a numerical method that jointly optimizes the 3D structure
and a parameter that maps contact frequencies to spatial distances. The main difference
to “ShRec3D” is the translation of contact frequencies to spatial distances by numerical
optimization. Both methods reconstruct a consensus 3D structure. In contrast, Kalhor et
al. have proposed an optimization framework that generates an ensemble of structures [89].
The idea behind this approach is to convert contact probabilities into a set of contact
restraints for the 3D structures in the ensemble. However, any given contact is enforced
with its contact probability, hence only in a fraction of the inferred structures in the
ensemble.

Probabilistic Modeling Methods

Different from the optimization-based approaches, probabilistic modeling methods assign
an uncertainty to the spatial distances between genomic loci. The observed contact fre-
quency of two loci is typically assumed to follow a Poisson distribution [94,95]. This ac-
counts for the fact that 3C-based experiments detect contact frequencies among restriction
fragments and, hence, count data. This approach is valid for non-genome wide input data.
However, these methods are not valid for Hi-C input data as these consist of contact prob-
abilities rather than contact frequencies among genomic loci. The Markov chain Monte
Carlo (MCMC) - based method “MCMC5C” [90] is an exception in this respect since it
assumes a Gaussian distribution for the input contact data; therefore it can model both
Hi-C contact probabilities and other 3C-based contact frequencies. In this approach DNA
is modeled as a chain of beads representing the 3D structure, which is iteratively changed
using random moves that can be either accepted or rejected depending on whether the
new 3D structure is more probable given the data. After a sufficient number of iterations,
this MCMC scheme samples 3D structures that fit the experimental contact data. By
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running many of those simulations in parallel, a large ensemble of structures is generated.
Hu et al. proposed a probabilistic method called “BACH” [94] that models the contact
data using a Poisson distribution. Contrary to MCMC5HC, Monte Carlo methods are used
in order to gradually refine an initial structure conformation and generate a consensus 3D
structure. “PASTIS” [95] also models the contact data using a Poisson distribution. It
uses maximum likelihood estimation of the model parameters for reconstructing the 3D
structure with the highest likelihood given the observed contact data.

5.3.2 Polymer Simulations

Polymer models incorporating known or hypothesized physical or biological principles can
also be used to model chromosomes. Contrary to 3D reconstruction methods, such models
do not infer conformations using Hi-C data, but rather use such data to test whether
generated ensembles of 3D structures agree with contact maps or key features thereof.

A polymer can be described using various properties like its average end-to-end distance
or its radius of gyration. Here, we focus on two biologically relevant quantities that can be
compared to experiments, such as Hi-C or microscopy imaging: 1) the contact probability
between two loci as a function of their genomic distance which can be deduced from the
Hi-C data; 2) the mean squared distance (MSD) of two loci as a function of their genomic
distance, a quantity that can be measured, for example, by fluorescence in situ hybridiza-
tion (FiSH) experiments. Both quantities are averaged over the conformational ensemble
in any polymer model and over a population of cells in a Hi-C experiment. Simple polymer
models include the random coil and the self-avoiding chain. The random coil is the sim-
plest model; it is characterized by non-interacting monomers. Self-avoiding chains exhibit
excluded volume interactions leading to an increased effective volume compared to the
random coil. The worm-like chain or Kratky-Porod model introduces an intrinsic stiffness
by associating a bending of the chain with an energy cost. Hence, it can describe semi-
flexible polymers, such as double-stranded DNA. The fractal globule model [96] describes
a compact polymer state that emerges during polymer condensation as a result of topo-
logical constraints. It has been reported to agree with the initial Hi-C data of the human
genome [3] since it shows the same scaling behavior of the contact probability as a function
of the genomic distance at a scale of ~ 1 — 10 Mbp [97]. However, it does not explain
findings from FiSH experiments that display a leveling-off in the MSD for genomic sepa-
rations above 10 Mbp [98]. In the dynamic loop (DL) model [82] the chromosomal fiber is
represented as a self-avoiding chain allowed to form probabilistic intra-polymer crosslinks
between non-adjacent monomers. As a consequence, loops of different size are formed.
The main model parameter is the looping probability, a measure for the probability that
a loop is formed between two non-adjacent monomers. The DL model explains both the
scaling behavior of the contact probability and the leveling-off of the MSD on the basis of
the dynamic formation and dissolution of loops. The “strings and binders switch” (SBS)
model [99], which assumes diffusible factors (binders) being responsible for loop formation
by linking two monomers of the polymer, is a special case of the DL model that implicitly
incorporates the properties of such binders in the looping probability parameter. The
polymer fiber is also modeled as a self-avoiding chain and the binding molecules are repre-
sented by Brownian particles with a certain concentration. The loop extrusion model [100]
proposes that loop-extruding factors form increasingly larger loops, which are stalled by
boundary elements, such as bound proteins at domain boundaries. Different from the DL
and the SBS model [101,102], it also explains the formation of domains [103,104].
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5.4 Summary

Hi-C contact maps either can be analyzed in terms of feature detection or can be used as
a starting point for developing 3D models of the spatial organization of chromosomes. In
the specific case of feature detection, it would be useful to have methods that allow dis-
crimination of different possible patterns instead of detecting only a specific one. Existing
methods, such as directionality index based approaches, have shown the existence of do-
mains in eukaryotic as well as bacterial chromosomes [48,73-75], but fail to identify loops
or loop domains. There are two different ways of modeling 3D organization of chromo-
somes: 3D reconstruction and polymer modeling. While the first generates the most likely
3D structure given the contact data amenable to visual inspection, polymer modeling sup-
ports clarifying hypotheses of chromosomal organization deduced from contact maps. The
Hi-C studies of the two bacterial chromosomes C. crescentus [48] and B. subtilis [73] ex-
emplify the difference between hypothesis-driven modeling and 3D reconstruction. Using
ShRec3D, a consensus 3D structure for the B. subtilis chromosome is reconstructed and
then used to illustrate the point that the chromosome folds into a helicoidal shape and
is organized into domains. In contrast, Le et al. deduced from their gathered Hi-C and
microarray data the hypothesis that the C. crescentus chromosome consists of domains
comprised of supercoiled DNA plectonemes and boundaries being transcription-induced.
Based on this hypothesis, they performed simulations of a bottle-brush polymer with linear
boundary elements and compared the simulated with the experimental contact maps.
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Chapter Summary

The browser-based visualization of Hi-C contact maps alongside complementary data
tracks is a computationally challenging task and requires an efficient software implemen-
tation to run on small clients. Few software packages have yet been shared with the
community to address this problem and modification of these is cumbersome.

We introduce Bekvaem that addresses these problems by using high-level Python in-
terfaces. Wrapping several libraries for online visualizations at the front-end and the
organization of large biological data sets at the server-side allows for setting up a high-
performance user-defined browser visualization for Hi-C data with just a few changes in
the code.

The source code, written in Python, of Bekvaem alongside its documentation and
sample data is freely available on heiDATA [105].

A demonstration server is available at [106].

6.1 Introduction

Genome-wide 3C-based experiments, such as Hi-C, enable insights into the 3D genome
organization at an unprecedented resolution. The analysis of Hi-C contact information
alongside with other genomic data, such as ChIP-seq or RNA-seq, allows for probing cor-
relations between genomic information instead of analyzing each separately. With the
help of such a combined analysis it has been suggested that proteins shape the hierar-
chical organization of eukaryotes and transcription that of prokaryotes [107]. Inversely,
topological associated domains (TADs) that act as barriers to restrain enhancer-promoter
contacts involved in transcription regulation [108] have been identified using Hi-C and
other chromatin marks are just correlated to TADs. These findings illustrate the need
of an integrated as well as interactive visualization of Hi-C contact maps alongside other
genomic data.

Several tools for the visualization of Hi-C and other genomic data were developed and
released in the last years [109-112]. Focusing mainly on mammalian genomes, the tools
often provide complete data processing libraries covering all the necessary steps from Hi-C
sequencing data to the visualization of the processed data. A resulting disadvantage is that
the import of files containing already generated Hi-C contact matrices is not supported
and hence the flexible combination with other tools or rather existing data pipelines is not
possible. The necessity of being able to program in low-level programming languages, such
as C, as well as large and complex codebases are obstacles for customizing these tools.

Our aim was twofold. First, we wanted to keep the Hi-C visualization pipeline Bekvaem
generic and as easy to modify as possible. Second, its usability and performance should
be on a par with existing tools.
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6.2 Methods

Bekvaem aims to unify all steps involved in the creation of browser-based visualization
of Hi-C contact maps in the high-level language Python. By making use of Bokeh and
HoloViews, graphs to the web interface are included using a syntax similar to that of
‘off-line’ plotting libraries such as Matplotlib or ggplot. The workflow of introducing new
types of data to the Hi-C analysis is brought down to writing a class with read-in, plotting
and processing methods.

The hierarchy of classes representing Hi-C data as well as other experimental data is
designed around generic graph types, such as a heat map for the Hi-C contact map and
a line graph for ChIP-seq and RNA-seq data. These classes handle 1/O, pre-processing
and live aggregation of the data sources, if applicable. Offering a broad range of powerful
libraries and interfaces to many programming languages (R, C), Python handles most
existing data sources and processing routines.

The bottleneck of displaying large data sets on a restricted screen resolution is ad-
dressed by just-in-time compiled regridding routines that allow live exploration of the
data sets without fixed zoom levels. Individual plot elements are initialized in HoloViews,
a down-stream library to Bokeh. By supplying data pipes and axes range streams to the
plot containers, manipulation of the plot or elements of the user interface results in a
call to the callback function of the container in which regridding and filtering operations
can be placed. Dynamic loading of the requested data using cooler [113] for the Hi-C
contact maps and pyBigWig [114] for continuous complementary tracks allows Bekvaem
to visualize large genomes.

Meta information that is integral to an understanding of certain data tracks is accessed
via Bokeh’s HoverTool, a dynamic HTML widget that pops up on hover actions. Revealing
information only in the user-requested region increases the quantity of displayable data
while maintaining the lucidity of the visualization.

The synchronization of the server and client view is handled by the internal plotting
server of Bokeh and no programming is required for its usage. Internally a document body
of the browser visualization is built in Python with the Bokeh library and synchronized in
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Figure 6.1: Visualization of the Hi-C matrices. The matrices can be displayed as a square heat
map in which z- and y-axis correspond to positions along the genome. Due to the symmetry along
the diagonal, once can also display just one of the triangular matrices of the full array. The y-axis
now corresponds to the interaction distance.
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a JavaScript Object Notation (JSON) format with the client side. Subsequently Bokeh’s
JavaScript library BokehJS renders the plots on the client side using the HTML5 Canvas
element.

Due to the symmetry along the diagonal axis, all information on the interaction proba-
bilities in a Hi-C matrix is stored in one of its triangular matrices. By applying a rotation
of 45° and cropping (Fig. 6.1), the necessary space in the layout can be reduced by a factor
of /2. The new y-axis is a measure of the interaction distance between two genome po-
sitions on the z-axis. Both quadratic and triangular shaped Hi-C matrices are supported
by Bekvaem.

6.3 Application

Bekvaem is conceived to visualize Hi-C contact maps of any genome alongside complemen-
tary tracks. Besides Hi-C contact maps in square and triangular form, several additional
data tracks of domain detection, protein binding, gene expression and gene databases were
added to the pool of implemented plots.

First macros that are helpful for the data exploration were exposed via the user in-
terface (UI). Given a data track of RNA-counts, genes can be filtered on their expression
rates. Besides, the Ul contains HTML widgets to interchange the data sources and adjust
the color scale of the color bar of the Hi-C contact map. The user has access to markers
to record positions along the genome and a pdf-export routine was written to capture
the current view. Fig. 6.2 shows the output of Bekvaem using a Hi-C contact map of M.
musculus.

The visualization can be installed and used on a local host or exposed to the general
web. For the latter a reverse-proxy such as NGINX can be used to embed the visualization
in a larger web application.

The Bokeh server can be embedded into the visualization in different ways. Despite
being a stand-alone web server, it can be useful to build more complex architectures to
enhance the configuration options or the security. In its current implementation, Bekvaem
receives the request for a plot layout via a simple plain-text file. Hence the web interface
can be modified in a rich fashion by this plain-text configuration file.

In the example implementation in Fig. 6.3, the configuration file for Bekvaem is gen-
erated in a slim Flask application. Flask [116] is a micro-framework to create web ap-
plications and enables the evaluation of the jQuery sortable table in the Ul. The Flask
servers are themselves slave application of a WSGI Gunicorn server [117] which serves as
a pre-fork worker to handle multiple user requests simultaneously. Both the Bokeh Server
and Gunicorn are placed behind a reverse-proxy NGINX server [118] which is exposed to
the outside.

Due to the simple structure of the configuration file, Bekvaem can also be run on
a local port and fed with manually generated configuration. In this constellation, the
configuration can be edited via a normal text-editor.

6.3.1 Comparison with Other Hi-C Browsers

In the following the table of Yardimci and Noble [119] is modified and expanded by our
software and additional tools known to us. We included only tools that are open source,
have a browser interface (Juicebox via Java Web Start) and possess a local installation
option.

Note that some tools offer other ways of visualizing Hi-C maps, such as local arc tracks,
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Figure 6.2: Screenshot of the web interface of Bekvaem. A 6 Mb section of a 20 kb resolution
Hi-C contact map of untreated M. musculus embryonic stem cells overlaid with a domain detection
track is shown. CTCF counts of a complementary ChIP-seq experiment are displayed alongside
the Hi-C contact map. Data from Nora et al. [115].
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Figure 6.3: Example server architecture. Using an NGINX reverse-proxy server, users can request
a specific layout of the web interface of Bekvaem by submitting a request to a flask application. A
Gunicorn pre-fork server is used to handle multiple user requests simultaneously. The configuration

files is read by Bekvaem running on a Bokeh server and the layout connection with the user is
established through NGINX.

locus-specific circular plots and virtual 4C plots. The reader is referred to the reference
or the documentations of the software for further reading. We do not deem these ways of

visualization as informative as square and rotated heat map representations of Hi-C maps
and withhold them in the following overview table.

Advantages of Bekvaem

To point out the easiness of adjustments that we see in Bekvaem over other existing tools,
a look to holoviews’ DynamicMap class is helpful.
DynamicMap objects can be understood as a container around different plot types such

as line plots, heat maps or scatter plots. They can subscribe to streams and pipes with
which many important user actions can be evaluated:

1) In Bekvaem we use RangeStreams that synchronize user-selected axes ranges of the
plots with the server.

2) Pipes are used to handle other user input such as changes of the color scheme of the

Hi-C plots. Many different objects such as strings or dictionaries can be synchronized
with holoviews’ pipes.

Supplemental plots like ChIP-seq tracks are synchronized through the same RangeStream
that the Hi-C plot is subscribing. If a user wishes to add a new type of plot, he can follow
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the procedure:
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'Box zoom describes selecting a rectangular region of interest which is loaded in the full plot extent.
Scroll zoom describes zooming in by a specified factor, centering e.g. the cursor position or the center of
the Hi-C map.

2The lines of code were counted and mapped to the programming languages using CLOC [125]. In
order to minimize influences by the documentations, test suits and CI, typical folder names [doc, docs,
test, .cache] and files such as [package.json, package-lock.json] were excluded from the analysis. CLOC
also discriminates comments and blank lines. Nevertheless, the line numbers are rather giving a hint of
the size of the project. For all the tools except Bekavem, it cannot be ruled out that necessary source code
that is stored in other locations was neglected or that small fractions of unnecessary code were included
in the count. The numbers were rounded by subtracting a modulo thousand. For all programs, we used
the current master branch accessed on 10/04/2019.

3Estimated on basis of the code line count. If a second language contributes a non-negligible part (i.e.
at least 1000 lines) to the source code, it is noted in the above table.
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1) Select one of holoviews plot types that is best suited to visualize the data.

2) Provide a callback function that takes the data of the RangeStream as input (a tuple
x_range with start and end values of the visible axis range) and returns a holoview’s
plot object of the plot type that was selected in 1). Inside this routine, the user is free
to call any external function to load or process the data before writing it to the plot
object.

3) Add the DynamicMap to the list of subscribers of the RangeStream and add it to
Bekvaem’s layout list object.

This is the most basic scheme that allow the creation of a new type of plot. Often
it is necessary that the underlying data file can be modified through the user interface.
Bokeh includes different types of widgets that allow the execution of python functions on
user actions. These can be added as well to Bekvaem’s layout list and allow the creation
of rich Ul’s.

Bekvaem’s design is object oriented and it is advisable to design a class around one
type of plot (e.g. a line plot) and inherit its methods and attributes in different child
classes that represent the corresponding biological data tracks. Examplewise one can look
at Bekvaem’s classes ChIP__seq and RNA_ seq that inherit from the class LinePlot. Even
this single class is already versatilely useable in the visualization of many different data
tracks and it requires very little work to adapt the general scheme to new data tracks by
e.g. overloading some of LinePlot’s class methods.

6.3.2 Visualization Examples

We demonstrate in Fig. 6.4 how easy the user can switch between different genomes of
interest by loading the respective data files in the selection windows of Bekvaem’s browser
interface. In Fig. 6.5 a selected region of a Hi-C contact map of the mouse genome
illustrates that Bekvaem is capable of visualizing large eukaryotic Hi-C contact matrices.
There is also the possibility of exporting the current view into a PDF file (see Fig. 6.6).
Bekvaem uses cooler [113] for the storage and querying of Hi-C maps and pyBigWig [114]
to include BigWig tracks. While not achieving the full functionality that tools such as
HiGlass have, a powerful Hi-C browser with less than 3000 lines of code is presented.

For the demonstration we used publicly available data from NCBI’'s Gene Expression
Omnibus (GEO) [4] database. The GEO data set IDs are listed alongside the information
with respect to their publication in the section “Data availability” in the documentation.

6.4 Conclusion

We present a slim and interactive browser application capable of visualizing Hi-C contact
maps alongside complementary data tracks. Besides Hi-C contact maps genome-wide data,
such as ChIP-seq and RNA-seq, can be included in the layout. Bekvaem can be utilized
for the visualization of any genomes including mammalian genomes.
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6.4: Screenshot of the web interface of Bekvaem. The user can easily switch between

different genomes of interest by loading the respective data files in the selection windows of the
browser interface. A Hi-C contact map of wild type E. coli cells is depicted. The resolution of the
balanced Hi-C contact map is 10 kbp and the linear color scale ranges from a contact probability
of 0 up to 0.035. The complementary data tracks show the ChIP-seq profile of Fis (top) as well as
the RNA-seq profile (below) in early exponential phase. The read counts of both experiments are
depicted on a linear scale. Data from Lioy et al. [47] and Kahramanoglou et al. [126].
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Figure 6.5: Screenshot of the web interface of Bekvaem. A heat map of the intra- and inter-
chromosomal Hi-C interactions among chromosomes 2 to 11 of the mouse genome is depicted. The
resolution of the balanced Hi-C contact map is 20 kbp and the linear color scale ranges from a
contact probability of 0 up to 0.02. The complementary data tracks show the ChIP-seq profile of

CTCF (top) as well as the RNA-seq profile (below).

The read counts of both experiments were

processed using a sliding window size of 1 kbp and are depicted on a linear scale. Data from Nora

et al. [115].
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Figure 6.6: PDF export of Bekvaem. The Hi-C contact map of chromosomes 8 and 9 of the mouse
genome are depicted in A. square and B. triangular shape alongside the CTCF ChIP-seq profile.
The resolution of the balanced Hi-C contact map is 20 kbp and the linear color scale ranges from
a contact probability of 0 up to 0.008. The ChIP-seq read counts were processed using a sliding
window size of 1 kbp and are depicted on a linear scale. Data from Nora et al. [115].
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Chapter 7

Domain Boundary Detection in Hi-C
Maps

A Probabilistic Graphical Model Approach
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Chapter Summary

To understand the nature of a cell, one needs to understand the structure of its genome.
For this purpose, experimental techniques such as Hi-C detecting chromosomal contacts
are used to probe the three-dimensional genomic structure. These experiments yield topo-
logical information, consistently showing a hierarchical subdivision of the genome into
self-interacting domains across many organisms. Current methods for detecting these do-
mains using the Hi-C matrix, i.e. a doubly-stochastic matrix, are mostly based on the
assumption that the domains are distinct, thus non-overlapping. For overcoming this sim-
plification and for being able to unravel a possible nested domain structure, we developed
a probabilistic graphical model that makes no a priori assumptions on the domain struc-
ture. Within this approach, the Hi-C matrix is analyzed using an Ising like probabilistic
graphical model whose coupling constant is proportional to each lattice point (entry in the
contact matrix). The results show clear boundaries between identified domains and the
background. These domain boundaries are dependent on the coupling constant, so that
one matrix yields several clusters of different sizes, which show the self-interaction of the
genome on different scales.

7.1 Introduction

Early work using optical microscopy with fluorescent markers established that chromo-
somes are not randomly organized in the nucleus [127]. Exactly how the chromosomes
are organized could not be further revealed by this method, even though multi-color ex-
periments pushed the experimental boundary [128]. At this stage several models have
been proposed how the genome is physically organized in space [82,97,129-133]. With
the 3C technology [134] new data on 3D genome organization became available. Whereas
the information coming from the microscopy experiments gives a physical relationship be-
tween between points in space, i.e., Euclidean distances on single cell data, the 3C data
(and later the Hi-C data [3]) yields topological information loosing the embedding into
Fuclidean space, i.e., only neighborhood relationships are revealed attached with a certain
probability. Furthermore, the information represents an average over many cells. In a way
this is very much information one would classify as of mean-field type. Thus, the chal-
lenge is to develop a model that is consistent with the mean-field result in the sense that
it succeeds to re-embed the topological information into Euclidean space, i.e., geometrical
information and topological information need to be reconciled.

A crucial part of this process is to identify the structures and substructures that
appear in Hi-C contact maps. Most prominently are the TADs (topologically associated
domains). Their defining characteristic is that the interaction frequency within domains
is much higher as opposed to that across domains, i.e. the contact matrix resembles a
block-diagonal matrix.

There are various different methodological approaches identifying the domain structure
in Hi-C contact maps. A first attempt was presented in Dixon et al. [7] and is based on
a two-step strategy. Firstly, the 2D contact information is condensed to the directionality
index, a 1D measure encoding both downstream and upstream chromatin interactions. In
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the second step, a hidden Markov model (HMM) is applied to this data to retrieve the
segmentation into domains. Instead of a HMM, it is also possible to translate the direc-
tionality index into a test statistics in order to identify significant domain boundaries [48].
Lévy-Leduc et al. [83] developed a 2D model that fits a block diagonal matrix to observed
contacts using maximum likelihood. Filippova et al. [85] use dynamic programing to find
domains with maximal intra-domain contact frequency. Weinreb et al. [86] developed
a method to find an optimal TAD hierarchy via dynamic programing. Chen et al. [84]
present a method for detecting domains based on the spectral decomposition of the graph
Laplacian of the Hi-C matrix.

Complementary to the above outlined heuristic and mostly image analysis motivated
approaches, one can interpret the Hi-C data as interactions and treat them on this level.
Following this idea leads naturally to probabilistic graphical models. In the following
section we develop the approach.

7.2 Approach

Our main idea is to use an energy based probabilistic graphical model. In fact, we will
construct a log-linear model over a Markov network. For the energy function a possible
choice is to use the pair interactions (pairwise node potential) that are defined by the Hi-
C contact map together with feature variables between which the interaction is defined.
The energy of the pairs is symmetric. Now rather than learning parameters we sample
the feature variables as a function of control parameters. If there is a strong interaction
between a pair of nodes than we construct the energy function to favor the feature variables
to be similar. On the other hand if there is only a weak interaction between nodes then the
feature variables will be uncorrelated. Assume that the feature variables take value +1.
Within a domain, where the interaction is strong, the feature variables will all have nearly
identical average values. Where there is a very weak or no interaction the feature variable
will average to zero. Within this scheme domains can be identified by the boundary from
values above a certain threshold and zero.

7.3 Methods

Let C be the matrix containing the raw counts from the Hi-C experiment

Cci11 Ci12 ... Cin
C21 C22 ... Con

C = (¢ij)ij1,.n = (7.1)
Cnhl Cnh2 ... Cpn

where ¢;; > 0 for 7,5 : 1,...,n. This symmetric non-negative matrix can be normal-
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ized [81] such that the row/column sums in the Euclidean norm || - ||2 equals one:
mi M2 ... Mn
M1 M2 ... M2n
C—n=miy)ij1,n = . . ‘ (7.2)
n1i M2 --- Tinn
ie. N
1:Znijforallj:1,...,n. (7.3)
i=1

For our approach, the matrix does not need to be doubly stochastic. It rather is
convenient to compare later results with respect to the parameters that control coupling
strengths. The model and the algorithm presented below just rests on the fact the matrix
describes a network where the entries in the matrix represent values for the edges of the
network.

7.3.1 The Model

We define feature variables s; that can take on values £1 that are associated with the nodes
of a network (of which we have N = n?) which in fact has a simple square lattice structure.
The network is defined by the Hi-C matrix presented above where the edges of the network
are the entries of the matrix 7;; and the nodes carry the feature variables. For convenience
we restrict ourselves here to just two features. In principle the feature set can be a set
{0,...q} with ¢ € N. Let s = (s1,...,sn) be a specific feature configuration. Based on the
pair-interaction specified by the normalized Hi-C matrix and the feature configuration we
specify a symmetric energy function. The idea being that if two nodes (here we restrict
ourselves to nearest neighbor nodes) have a high value in the normalized Hi-C matrix
then the feature variable should tend to be similar. If the next-nearest neighbor nodes
have in turn similar Hi-C entries the feature would be propagated depending on a control
parameter that governs the relative strength. The simplest ansatz in this direction is a
log-linear model. In this scheme the probability for a specific configuration s is

1 —€ (e}
plsln, o, ) = e (7.4)
with the normalization
Z =Y ecemah) (7.5)

and €(s,n, a, ) being the energy function. Assuming symmetric pairwise interaction
between the nodes with the interaction given by the values of the normalized Hi-C matrix
and a possible local bias we use the following form for the energy function

(s, 0, B) = nigsis; + B> nijsi (7.6)

(i) i
where « and [ are control parameters for the strength of the coupling between pairwise
nodes (a) and [ controlling the bias. Note that we restrict the pairwise interaction to
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nearest-neighbor nodes, as depicted in Fig. 7.1, denoted by the symbol (ij).

Figure 7.1: The Markov network carrying the feature variables and and an interaction strength
corresponding to the contact probability. A. The feature variables take values s; = +1 and the
edges of the network are the entries of the contact matrix n;;. B. Within this model, domains can
be identified by the boundary from values above a certain threshold and zero.

In the above scheme we are using free boundary conditions. For nodes that have no
nearest neighbors in one of the directions that interaction for this direction is taken to be
Z€ero.

7.3.2 Algorithm

Given the above model, we sample the feature variables using the Metropolis Monte Carlo
method [135]. The goal is to identify the domains that have on average equal feature.
Since strong interaction favor a like feature, i.e. the Hi-C showed a high probability for the
connection between the nodes, with the parameter o we can control the relative strength
of the interaction. Since this in turn influences the correlation between the nodes, large
values of a will incorporate into domains of like features also nodes that have a relative
lower probability of connectivity. We can thus control how much of a domain structure
one wants to explore.

Algorithm 1: Hi-C Domain Structure Identification
initialize feature variables with feature 41
mes < 1
while mcs < mesmazr do
generate a realization using Metropolis MC
compute individual feature average
mes < mes + 1
end while
using x project the average feature variable to 0 or 1
delete all nodes that have at least one nearest neighbor with 0

At the start of the algorithm all feature variables are set to +1. Because the Hi-C
interaction is non-negative, this ensures equilibrium in the sampling using MCMC [135].
The sampling is set to last up to a maximum number of iterations or terminates if the
moving average of the overall feature variable has changed less than a given value.
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To define the border between domains, we use a threshold ¢ above which the average
value of the feature at node 7 belongs to a domain, i.e. we define a characteristic function

X(’L) _ {0, if <Sz> <c (77)

1, otherwise

where (s;) is the average value of the feature variable s. For those nodes that are not
strongly connected the average in the MCMC process will tend to zero, whereas those that
are strongly connect tend to +1 given the initial condition of all nodes having +1.

This yields a configuration that has only 0 or 1 for each node. To detect the boundaries
we delete all nodes where at least one of the nearest neighbor nodes has feature value 0.
Connecting those nodes left hat have characteristic values of 1 along the diagonal define the
border between the domains. With this algorithm, we are able to identify non-rectangular
domains as we will shown below.

7.3.3 Validation of the Algorithm

The above outlined algorithm was tested using synthetic data. Three cases were consid-
ered. First in line is the square domain with sharp and with fuzzy boundary. The result
of the domain identification is shown in the top panel of Fig. 7.2. In both cases the same
control parameters o = 10000 and S = 0 were used. In both cases the square domain is
correctly identified. The dashed lines give the horizontal (vertical) identification line of
the domain boundary.

The middle panel of Fig. 7.2 shows the results of the domain identification against a
noisy background and have noise also inside of the domain with varying degree of intensity.
In Fig. 7.2C the interaction 5 was slightly higher than in Fig. 7.2D.

The bottom panel shows that also non-square domains can be identified which are
associated with loops in the chromosome conformations.

7.4 Results

Our method can be applied to Hi-C contact maps to detect domains, loops, loop domains
and multi-scale structures.

7.4.1 Domain Detection within Hi-C Contact Maps

As discussed in the introduction, our method does not yield domain boundaries or a con-
tiguous domain structure, but a contour that separate contact probabilities of a certain
strength from the others. By identifying minima of this iso-strength contour and inter-
preting these as domain boundaries, domains can be described by the contour between
neighboring domain boundaries as visualized in Fig. 7.3B. We used Gaussian fits in order
to model domains. In order to illustrate and visually compare the results of our approach
and that based on the directionality index, we used the Hi-C contact map of C. crescentus
which is compartmentalized into CIDs [48]. The contiguous domain structure computed
on the basis of the directionality index as well as the iso-strength contour yielded by our
method permit characterization of the compartmentalization into CIDs of the wild-type
C. crescentus chromosome (see Fig. 7.3A).
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E F

Figure 7.2: Test cases for the algorithm: A. simple square with no background noise and
« = 10000, B. simple square with diffuse boundary and no background noise o = 10000, C.
domains within domains with background noise o« = 25000, D. domains within domains with
background noise, E, F. static loop polymer with parameters: ¢ = 1000 and ¢ = 16000 respectively.
All results are averages over 10000 Monte Carlo Steps. Dashed lines represent the horizontal
(vertical lines identified by the algorithm belonging to a domain.

7.4.2 Loop Detection within Hi-C Contact Maps

Besides simple domains like TADs or CIDs, our methodology is also able to identify loops
appearing as dots of increased contact probability within Hi-C contact maps. Using Hi-
C data of budding yeast cells, we show that our probabilistic graphical model correctly
detects the pronounced trans interactions between the centromeres on chromosomes XIII



88 7. Domain Boundary Detection in Hi-C Maps

to XVI in the Hi-C contact map as depicted in Fig. 7.4.

7.4.3 Multi-Scale Structure ldentification within Hi-C Contact Maps

The iso-strength contour yielded by our method can be adjusted to a certain scale using
the strength of the coupling via the control parameters of our model. Hence, our method
can be used to describe the compartmentalization of a given Hi-C contact map across mul-
tiple scales. With increasing coupling strength, the contour moves further away from the
diagonal and detects larger structures. Using an exemplary excerpt of high-resolution Hi-C
data of human B-lymphoblastoid cells [36], we show in Fig. 7.5 how our method identifies
structures on different scales, such as loops, loop domains and complex structures.

7.5 Discussion

We have developed a probabilistic graphical model to study the domain structure visible
in Hi-C contact maps. This model is based on a symmetric energy model where the
interaction parameters come from the normalized entries of the contact matrix. Here the
contact matrix is interpreted as a graph with N = n? nodes each node having a feature
variable. Already a model where the feature variable has just two values is sufficient

>

0.035

300

N
o
o

-
o
o

diagonal distance [kbp]

0.0

(o8]

©
o

[o2]
o

N}
@

A
ST A PN h i R
TN HR) e N

VO [ AN it

i \ o SV

I \ Poh N !
i Pl [ 3
i

3000 4000

diagonal distance [kbp]
S
o
-

o

2000
genome position [kbp]

Figure 7.3: Application of our methodology to domain detection. A. Excerpt of the 45° anti-
clockwise rotated Hi-C contact maps of the C. crescentus chromosome [48] and the resulting domain
structure of both the approach of Le et al. using the directionality index and our probabilistic
graphical model. Contrary to the directionality index approach our method does not yield domain
boundaries or rather a contiguous domain structure (black), but a contour (dashed black) sepa-
rating contact probabilities of a certain strength (depending on the coupling constant) from the
background. This iso-strength contour allows to characterize the compartmentalization irrespec-
tive of whether or not there are contiguous domains in the form of squares. B. Detailed view of
the iso-strength contour yielded by our method. We define domain boundaries (red triangles) as
minima of the contour (dashed blue) and characterize domains by Gaussians fitted to the contour
between two neighboring domain boundaries. We differ between two types of minima of the con-
tour: Minima marked as red triangles correspond to domain boundaries and minima marked as
yellow triangles indicate a boundary within a domain, i.e. a nested domain structure.
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to identify synthetic domains. These domains incorporate partial noise as it would be
expected in the actual contact maps. The domains themselves are set against a background
of noise. The model is able to identify the noise through the average feature variable which
is clearly distinct to the one in the domain. Within the domain, depending on the strength
of the control parameter, the average value of the feature variable is homogeneous. This
leads to the clear identification of the domain boundary as those nodes that have at least
one of the nearest neighbors having a feature value different from the others. Using real
Hi-C contact maps, we have showed that our method is able to identify domains like TADs
or CIDs, loops and loop domains as well as multi-scale structures of complex shape.
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0.002

0.001

0.000

[ J [ ] [ ] [
ChrXIlI ChrXIV ChrXV ChrXVI

Figure 7.4: Loop detection with our approach. Using Hi-C data of budding yeast cells arrested
in G1 phase [136], we show that our method correctly identifies the pronounced trans interactions
between the centromeres on chromosomes XIIT to XVI appearing as dots of increased contact
probability in the Hi-C contact map. The positions of chromosomes XIII to X VI are illustrated as
gray bars below the heat map and the locations of centromeres on each chromosome are represented
by black dots. Our method yields both closed contours around the loop locations and the previously
discussed iso-strength contour along the diagonal; they are illustrated by red plus signs.
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Figure 7.5: Multi-scale structure identification using our method. The contour that describes
how a given Hi-C contact map is compartmentalized can be adjusted to a certain scale using
the strength of the coupling via the control parameters of our model. With increasing coupling
strength, the contour moves further away from the diagonal and detected structures become larger.
Using an exemplary excerpt (the region between 137 and 138 Mbp of chromosome 7) of Hi-C data
of human GM12878 B-lymphoblastoid cells with a resolution of 5 kbp [36], we show how our
method identifies structures on different scales. A. On the lowest level the loop domain located at
137.65 Mbp is identified. B. The loop domain at 137.65 Mbp is now detected as a normal domain.
Additionally, the loop at 137.45 Mbp is recognized. C,D. The previously detected structures
become larger and further loops with lower signal intensity are identified.
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Chapter Summary

The study of the three-dimensional organization of chromatin has recently gained much
focus in the context of novel techniques for detecting genome-wide contacts using next-
generation sequencing. These chromosome conformation capture-based methods give a
deep topological insight into the architecture of the genome inside the nucleus. Several
recent studies observe a compartmentalization of chromatin interactions into spatially
confined domains. This structural feature of interphase chromosomes is not only supported
by conventional studies assessing the interaction data of millions of cells, but also by
analysis on the level of a single cell. We first present and examine the different models that
have been proposed to elucidate these topological domains in eukaryotes. Then we show
that a model which relies on the dynamic formation of loops within domains can account for
the experimentally observed contact maps. Interestingly, the topological domain structure
is not only found in mammalian genomes, but also in bacterial chromosomes.

8.1 Introduction

Mammalian interphase chromosomes are hierarchically organized [25,72]. On the one
hand, at the level of the nucleus, fluorescence in situ hybridization (FISH) and genome-
wide chromosome conformation capture (3C) studies, such as Hi-C, have revealed an
inter-chromosomal compartmentalization in the form of the formation of distinct chro-
mosome territories [3,24]. Individual chromosomes, on the other hand, also show a
domain-like structure as observed in recent genome-wide high-resolution Hi-C and 5C
studies [7,8,33]. These 3C-like studies indicate that eukaryotic genomes are partitioned,
at the sub-megabase level, into discrete structural units with highly increased frequency
of internal contacts, referred to under different terms, such as “topological domains” [7],
“topologically associating domains” (TADs) [8] and “physical domains” [33]. We will stick
to the term “topological domains” for these intra-chromosomal domains, within which the
chromatin fiber preferentially interacts. This finding of a domain organization of individ-
ual chromosomes is not only supported by data stemming from 3C-like studies examining
genomic interactions of a large population of cells, but also by an analysis of individual
cells, the single-cell Hi-C methodology [59].

Besides the eukaryotic chromosomes of humans, mice and Drosophila melanogaster,
bacterial chromosomes are also characterized by a hierarchical organization [137]. The
Escherichia coli chromosome consists of macrodomains on the megabase scale [46, 138],
which, in turn, are composed of topological domains on the smaller scale [139]. Recently,
the circular chromosome of Caulobacter crescentus, as a further example, has been shown
to be composed of topological domains with the help of an in-depth Hi-C analysis [48].
Taken together, these analogies to the organization in eukaryotes suggest that an intra-
chromosomal domain structure is a fundamental building block of chromosome structure
of organisms.

Although their important role in shaping the three-dimensional organization of the
genome seems acknowledged, there remains the question how topological domains are
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established, hence what causes the increased contact frequency within these genomic re-
gions. One striking observation is that most identified enhancer—promoter pairs have been
shown to belong to the same topological domain [37,140]. The finding that these enhancer—
promoter units mostly coincide with topological domains [37], however, has to be treated
with caution since the increased background of the interactions within topological domains
was not taken into consideration in this analysis.

As enhancer—promoter activity is known to involve DNA loop formation [36,141,142]
this hints at an important organizational role of loops [82,98,133]. In fact, there is emerg-
ing evidence that loops contribute to compartmentalization in the eukaryotic genome [36]
and that a fraction of topological domains actually corresponds to loop domains that are
conserved across cell types as well as species and stable against cell-to-cell variation [36].
Looped structures are thereby likely to be made up of both dynamic looping interac-
tions [143] and a network of static loops [36]. The presence of these loops creates entropic
constraints that helps maintaining chromosome structure. The role of proteins that are
involved in the formation of loops, such as CTCF and cohesin, is complex, but has been
established through 3C-related and chromatin immunoprecipitation studies [144, 145] as
well as FISH experiments [146]. However, it is controversial whether the two proteins are
also involved in establishing topological domains [34,147].

In this review, we shed light on the theoretical analysis of topological domains appear-
ing as a ubiquitous feature in contact maps based on current high-resolution Hi-C data.
After the presentation of modeling approaches that appeared in the literature so far and
aim to explain the appearance of topological domains, we investigate a model that is based
on chromatin looping and incorporates the concept of topological domains. We conclude
with a summary of the effects that loops have on the nuclear organization not only in
mammalian genomes, but also in the bacterial nucleoid.

8.2 Current State of Modeling

Although topological domains have been repeatedly discovered in current high-resolution
chromosome conformation capture experiments [7,8,33] as well as earlier [148] and this
substructure seems to be an essential characteristics of interphase chromosomes, only
little is known about their internal structure and organization. Several models have been
proposed to theoretically explain the observed clusters of increased contact frequency in
contact maps, none of which accounts for the essential role of loops.

The model of Benedetti et al. [149] is designed to reflect the situation where uncon-
strained supercoiling, referring to the over- or under-winding of the DNA double strand,
acts on chromatin fibers that are sparsely attached at specific sites to nuclear granules.
This model is supported by reports indicating that boundary elements of topological do-
mains are attached to nuclear granules and, more importantly, reports indicating that chro-
matin fibers are supercoiled [150]. In this proposed model, individual topological domains
are simulated as polymer rings. The closure is thereby essentially needed for maintaining
the torsional tension introduced in order to be able to get (super-) coiled structures. With-
out an actual closure of the polymer chain possible torsional tension would be released
through free rotation of the ends, thus a modeling of supercoiling would not be possible.
However, this strategy of preventing the untangling problem comes with the price that
actually one half of those supercoiled rings has to be neglected in the statistics of con-
tacts. Additionally to the torsional potential for the purpose of introducing supercoiling
into the model, it incorporates excluded volume interactions between monomeric beads
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as well as a bond length and a harmonic bending potential. For mimicking the effect
of high concentration of chromatin in the eukaryotic nucleus, i.e. an increased contact
probability of the polymer chain, Benedetti et al. performed their simulations in cubic
confinement such that the simulated chains occupied 20% of the available volume. Simu-
lated plectonemes appear in the average contact maps of simulated chromatin fragments
as compartments of increased contact frequency, thus resembling the experimental contact
maps. The underlying principle of the separation of individual domains or plectonemes in
this modeling approach simply follows entropic repulsion, namely, the permanently con-
nected polymer rings repel each other, such that fixed boundaries between supercoiled
regions, i.e. topological domains, arise. The supercoiling of individual rings strengthens
entropic repulsion.

The idea of the “strings and binders switch” (SBS) model proposed by Barbieri et
al. [99,102] is to allow for the attachment of diffusible factors (binders) to binding sites
along the simulated polymer chain. The obtained polymer configurations are thus depen-
dent on binding site distribution, binder concentration and binding affinity. The polymer
fiber itself is modeled as self-avoiding polymer bead chain and the binding molecules are
represented by Brownian particles with a certain concentration. A fraction of polymer
sites can be bound by diffusing molecules with a certain chemical affinity. Molecules bind-
ing to more than one polymer site lead to the formation of loops. To explore the formation
of chromatin globules in the SBS model, Barbieri et al. assumed a polymer containing
different kinds of binding sites, i.e. specialized binding sites, each with specific affinity to
one kind of binder. As a consequence, each topological domain corresponds to one specific
binder. Under these conditions, the SBS model produces separate domains of increased
contact frequency, though it is important to notice that the contact frequency in the ap-
pearing domains does not monotonically decrease with increasing distance from the main
diagonal. This characteristic of the contact map averaging over the ensemble of simulated
polymer configurations indicates that the domains are rather stiff.

In the same light of the SBS model, it was recently observed that regularly-spaced
bridging in combination with a homogeneous self-adhesion interaction along a linear poly-
mer chain can lead to a stable multi-domain configuration, hence a compartmentalization
into topological domains [151].

8.3 Static Loop Domains

Inspired by the observation of thousands of loops both in a very recent high-resolution
in situ Hi-C study of the human genome [36] and in earlier studies [35,40], we analyze
the connection between loops and topological domains. These loops were found to link
promoters and enhancers, correlate with gene activation and are conserved across cell
types and species. Furthermore, it is observed that they are formed at domain boundaries
and bind CTCF.

While the resolution of the Hi-C contact maps discussed in connection with the ob-
servations of topologically associating domains [7, 8] is sufficient to show the existence
of these distinctive clusters of high contact frequency, it does not allow for the analysis
of their intrinsic structure. It was only with the high-resolution in situ Hi-C study of
Rao et al. [36] that certain ends of individual topological domains were detected to be
attached to each other forming simple loops or some kind of network of loops. Since loops
are observed to demarcate a fraction of the boundaries of topological domains [36], we
follow the terminology of Rao et al. and refer to such domains as loop domains. Being
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Figure 8.1: Simple loop models recapitulate the experimental observation of loop domains. A, B.
Sketches of the loop topologies for our polymer simulations. C. Contact map for a simulated
polymer comprised of a single static loop. The polymer (N = 300 monomers) is composed of a static
loop modeling a topological domain with a size of N = 180 monomer units (m.u.). D. Contact map
for a simulated polymer comprised of two single static loops. The polymer (N = 300 monomers)
is composed of two static loops modeling two topological domains with sizes of N = {128,80}
monomers, respectively. E,F. The contact probability profile of both polymer topologies is shown
for both the individual domains (loops) and the whole conformations, respectively. The loop
closures generate local maximums in the graph showing the genome-wide profile.

interested in the composition of contact maps of such loop domains, we modeled systems
composed of one and two static loops (see Fig. 8.1A and B) to see whether they resemble
the structures in the experimental Hi-C data. As depicted by means of the contact maps in
Fig. 8.1, the presence of simple loops results in formation of sharply defined squares in the
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contact map showing high intensity of contacts around their vertexes that are distal from
the diagonal. These prominent peaks in the contact map reflect the fact that the border
elements belonging to the same topological domains were brought together by the loop
closure. The contact map of the polymer system composed of two loops of different size
illustrates that neighboring loops do not interact due to entropic repulsion; a finding that
has been quantified for ring polymers [67]. This feature becomes even clearer if we look
at the contact probability profiles, i.e. contact probability as a function of the genomic
distance (see Fig. 8.1E and F). Initially the probability of genome-wide contacts decreases
with separating genomic distance. However, as this distance exceeds half of the total loop
size, we observe an actual increase of the contact probability reaching a maximum at a
distance that equals the loop size. The resulting “U” shape of the contact probability
profiles of both individual domains and the whole polymer is due to the fact that genomic
distant regions close to two border elements of the same domain are brought together by
the loop closure. In fact, this prominent shape is a distinctive feature between contact
probability profiles of loop domains and those of topological domains as observed in [7, 8]
since the latter monotonously decrease with increasing genomic distance.

8.4 Dynamic Loop Interaction within Domains

Regardless of the evidence for invariable DNA loop domains throughout the genome, the
question remains on which structural principle topological domains are based. Certainly,
these domains that show a strict decrease in contact probability as a function of increasing
intra-domain genomic distance rather than a peaked contact probability at the corner do
not correspond to invariable loops. It is, however, possible to think of these domains in
terms of simple loops forming only for a certain fraction of time and stay open for the
rest. Moreover, we have to bear in mind that the experimental Hi-C data are derived from
a large population of cells. Hence, we deal with contact information stemming from an
ensemble of cells with possible conflicting conformations on average.

Based on these considerations, it is obvious to think of loops in a dynamic fashion.
Topological domains may be established through a dynamic looping mechanism as sketched
in Fig. 8.2. This schematic is based on the idea that distant regulatory elements make
direct contact with either the promoter or another regulatory element of the gene they
control, i.e. form a loop. As indicated in the introduction, such enhancer—promoter in-
teractions are particularly frequent within topological domains [37]. The coincidence of
enhancer—promoter units with topological domains suggests that a dynamic loop domain
structure underlies the topological domain structure. Analogously, loops could also dy-
namically form within loop domains.

A recent simulation study [152] analyzes how the looping interaction between elements
in the vicinity of an enhancer—promoter pair influences their contact frequency. The
simulations show that a chromatin loop, formed by elements flanking either an enhancer
or a promoter, suppresses enhancer—promoter interaction, working as an insulator. In
contrast, a loop formed by elements located in the region between an enhancer and a
promoter, facilitates their interaction. Many enhancers, promoters, and loop-forming
elements are present in a given genomic region (see Fig. 8.2), leading to a complex network
of insulation and facilitation processes. Facilitation results from the effectively shortened
genomic distance between enhancer and promoter due to the loop. Insulation is due to
excluded volume interaction and steric exclusion by the loop. Taken altogether, loop
topology influences promoter-enhancer interaction and vice versa (as depicted in Fig. 8.2).
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Figure 8.2: Schematic illustration of both the dynamic loop interaction within intrachromosomal
domains and static loops. Promoters (black) and enhancers (red) are represented by diamonds
and circles. Interactions relevant to gene expression are shown as dotted lines. Dashed red lines
thereby indicate interactions enhanced by a loop as opposed to dashed blue lines that represent
interactions not enhanced by a loop. Loop closures caused by certain linking proteins as well as
enhancer—promoter interaction are shown as small filled circles and can be both temporary (gold-
colored) and static (ruby-colored). A snapshot of the three-dimensional organization of the genome
is depicted with the interactions between genomic elements. The spatial organization and the loop
topology is partly subject to fluctuations that affect gene expression. However, this dynamics does
not lead to a change in the organization of topological domains (shadowed areas).

We model these effects altogether by a dynamic and probabilistic loop formation
within topological domains. To this end, we use a simple polymer model that has al-
ready been shown to explain the formation of distinct chromosome territories. In this
dynamic loop (DL) model, the chromosomal fiber is represented as a self-avoiding (SAW)
random walk polymer allowed to form probabilistic intra-polymer crosslinks between non-
adjacent monomers [82]. As a consequence, loops of different size are formed. The main
model parameter is the looping probability (pieep), a measure for the probability that a
loop is formed between two non-adjacent monomers. The dynamic formation and dis-
solution of loops thereby mimics the highly dynamic nature of enhancer—promoter loops
as well as cell-to-cell variation that also supports variations in the loop topology. The
simple example conformation is only consisting of two domains of different size as we are
interested in the qualitative effects of dynamic looping on the contact probability mea-
sures rather than fitting our model to available experimental datasets. The results for the
contact map and the contact probability profile are shown in Fig. 8.3 and could be fitted
to those observed experimentally as it is possible to adjust the looping frequency and thus
contact probability for individual domains. Moreover, by restricting the loop interaction
to regularly spaced sites along the polymer chain as well as confining the interaction to
certain compartments, our model adapts to the specificity binder model discussed previ-
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Figure 8.3: A,B. Contact maps of simulated polymers (N = 150 monomers) composed of two
domains with varyingly strong dynamic looping (pioop, o = 0.01, pioop,B = 0.4) resemble those
of experimentally observed topological domains. C. The contact probability p. for two specific
sites as a function of the genomic separation between them. Shown are the results for equilibrated
polymers composed of N = 250 monomers and various looping probabilities including the case of
the self-avoiding walk (p = 0) and a simple random walk. The contact probability decreases as a
power-law [~# with genomic separation for separations n > 10. As already discussed by Bohn et
al. [82], the exponent is thereby strictly dependent on the looping probability. Compared to the
self-avoiding walk, the co-localization probability is strongly increasing due to dynamic looping.
D. The contact probability profiles for both polymers strictly decrease as a function of the genomic
distance. The two functions can be partitioned into two regimes (2 <1 < 10, 10 <[ < 45) where
their decrease can be approximated by power laws as depicted in the graph.

ously. In fact, the SBS model, which assumes a diffusible component being responsible
for loop formation by linking two monomers of the polymer, is a special case of the DL
model implicitly incorporating the properties of such binders in the looping probability
parameter much like the implicit water in the interaction potentials that are derived for
proteins.
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8.5 Effect of Loops on the Nuclear Organization

Specifically in human cells the zinc finger protein CTCF and the protein complex cohesin
have been linked to the formation and maintenance of loops. CTCF has even been named
the master weaver of the genome [34, 144,147,153, 154]. Surprisingly, however, little is
known about the interaction of these proteins with DNA [155,156].

In bacteria, nucleoid-associated proteins, such as H-NS, HU, Fis and IHF, can influence
DNA structure locally by bending and wrapping DNA segments [42] as well as globally
by looping [43,157] and by providing boundaries for DNA topological domains [44]. A
recent approach investigating the spatial distribution of H-NS in E. coli using both super-
resolution microscopy and 3C provides evidence for the juxtaposition of distant DNA
segments interacting with H-NS [41].

Because of their implications in the formation of loops, experiments have interfered
with cohesin and CTCF as well as the zinc-finger protein family in general [34,158,159].
Contrary to expectation, a recent FISH study [146] shows that the chromosomes do not
swell but compactify as a consequence of the depletion of these two proteins and hence
a decline of loops. This observation is quite puzzling since loops are coupled with an in-
creased level of compaction and provide a consistent framework [82,98] for the explanation
of various experiments, such as Hi-C [3,21] as well as FISH experiments [127].

Moreover, the segregation of domains, and thus also the TADs within one chromosome
can be explained within the loop framework [72,160]. Also in E. coli [69, 161, 162] the
segregation of chromosomes can be explained.

At least three factors influence this segregation. First, there is the repulsion between
the loops [82,163]. Indeed this is due to the entropic repulsion between the loops, i.e., based
on the excluded volume of the monomers. Here entropy enters as an ordering mechanism
which is a very interesting phenomenon [164—-166] since with entropy one usually associates
disorder. The solution to this puzzle is the change in topology in the chromosome as
viewed as a polymer. Since E. coli is per se a circular chromosome upon replication the
two chromosomes will separate [167].

Essentially due to repulsion between the loops there is a segregation between the more
compact loops and those which are less compact. One can think of this as corresponding
to heterochromatin and euchromatin. This segregation can be linked to the expression
level of the chromosome such that those regions with high expression correspond to the
not so compact loops and those with low expression to those regions with little expres-
sion [168]. Thus the chromosome is made up of domains of varying degree of loops in size
and compaction.

Second, in confined space this would also be true for linear chromosomes as has been
shown very convincingly by Jun and Mulder [169], at least the fact that the two linear
chromosomes separate, not necessarily the internal segregation. However, what maintains
the separation to a very high degree? Even though the chromosomes will separate, there is
nevertheless almost always an overlap between the two chromosomes. To assist in helping
and maintaining the separation the MinD proteins have been shown to play a crucial
role [170].

Even on the level of the nucleus this ordering (loops that repel each other, leading
to the formation of domains within the chromosome) holds true. The segregation of
chromosomes in the human nucleus [24] can be explained in the framework of loops [82].
Since chromosomes in this picture are made up of loop domains within loop domains which
themselves are loops clearly they repel each other. As a matter of fact the force that each
chromosome exerts onto the other can be calculated [82]. Rosa and Everaers [171] have
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argued on the basis of classical polymer theory that linear polymers do not mix due to
the long relaxation. The point of view taken here is that the polymer is much shorter due
to the loops and that the entire polymer is not linear but rather a looped ellipsoid.

Furthermore the mechanical properties [172,173] of chromosomes in metaphase depend
on the loops. Specifically the local stiffness and hence the flexibility [174] is determined
by the loops.

8.6 Conclusion

An important finding concerning the three-dimensional architecture of eukaryotic genomes
is that individual chromosomes are compartmentalized into loops [36] and topological
domains [7,8, 33, 160], both of which depicting fundamental regulatory and structural
building blocks of chromosomes that are stable between cell types. Chromatin interactions
almost exclusively take place within topological domains and not across them.

Though the existence of this intra-chromosomal compartmentalization is proposed in
all newly published results of 3C-like experiments, explanations from a theoretical point
of view are scarce. In this review, we focused on the modeling of the experimental findings
of both loop domains and topological domains, which, as opposed to the former, do not
involve a closure to a loop. Loop domains can be readily simulated by statically adjusting
the topology. Topological domains, on the other side, are characterized by a highly dy-
namic internal organization and can be modeled by assuming dynamic loop interactions
accounting for this highly flexible internal structure [160]. The idea of enhancer—promoter
units overlapping with these spatial domains [37] supports such an idea. Compared to
the model assuming the interactions within topological domains to be due to supercoiling,
our model can also explain loop domains and dynamic loop formation due to interaction
between enhancers and promoters. Nevertheless, supercoiling is likely to cause further
compaction of loops. The SBS model assumes that proteins bind to the chromatin fiber
causing loop formation. Although quite similar to our approach, this actually needs dif-
ferent binders for the explanation of topological domains. Moreover, we can adjust the
strength of the decrease of the contact probability as a function of the separating genomic
distance.

Similarly to the findings in eukaryotic genomes, a recent study mapping the structure
of the Caulobacter crescentus chromosome hints that bacterial genomes are also com-
partmentalized into topological domains of increased contact probability [48]. While it is
probable that these domains are comprised of supercoiled plectonemes into a bottlebrush-
like fiber for the case of the Caulobacter chromosome, it is possible that for other bacteria,
such as E. coli, similar domains could be established by loop-forming proteins [41].

8.7 Methods

In this study, we performed Monte-Carlo simulations using the Dynamic Loop (DL) poly-
mer model [82] to generate chromosomal conformations. The DL model incorporates
chromatin loops by using a dynamic looping mechanism of the model fiber. When two
monomers come into physical proximity to each other by diffusional motion, a cross-link
can be created between them with a certain probability piyep, Which we refer to as looping
probability. In case the cross-link is formed, a lifetime drawn from a Poisson distribution
with mean value 7 is assigned to it. The cross-link dissolves again after this lifetime, and
thus, the loop vanishes. By this dynamic mechanism, there is a constant association and
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dissociation of non-adjacent monomers, resulting in loop creation and dissolution. We
confined this dynamic loop formation to certain regions along the polymer chain in order
to model topological domains.

In contrast to this, the topology of the backbone of the polymer is fixed during
the simulation. For the polymer chains we used the well-established bond fluctuation
method [65,66]. In the simulations a monomer of the polymer chain is randomly selected
and, if possible, randomly moved to one of its nearest neighbors on the lattice. Excluded
volume interactions are taken into account by preventing a lattice site to be occupied by
more than one monomer. When simulating N monomers we define one Monte-Carlo step
(MCS) to correspond to N moves, i.e. on average each monomer is translated once during
a MCS.

3C-based technologies, such as Hi-C, are experimental methods that can quantify the
contact frequency between different sites of the DNA molecule. Fortunately, in our sim-
ulations the contact frequency can be measured comparatively simple since we know the
exact configuration of our polymer, i.e. the position of each single monomer in the three-
dimensional space at each point in time. We only have to quantify the contact frequency
of all pairs of monomers. By averaging over the whole ensemble of conformations and sub-
sequent normalization we can make the step from contact frequency to contact probability
Pe -

In order to generate thermodynamically equilibrated polymer conformations we used
the Metropolis Monte Carlo method. Since subsequently created conformations are highly
correlated, we determine, for each set of parameters, the autocorrelation function of the
squared radius of gyration. Then, the integrated autocorrelation time 7;,; is computed
by applying the windowing procedure introduced by Sokal [64]. We consider two subse-
quent conformations as uncorrelated after 57;,; MCS therewith creating 10000 — 100000
independent configurations.

Further details on the simulations can be found in previous works [82,163].
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Chapter Summary

Chromatin insulators are DNA-protein complexes known to orchestrate genome organi-
zation in eukaryotes. Insulator elements typically comprise of clustered binding sites
for a specific DNA binding protein which mediates long-range interaction with other
such insulator elements. Insulator proteins like CCCTC-binding factor (CTCF) along
with the Cohesin complex are the main factors involved in genome organization in verte-
brates [175,176]. Insulator protein homologs are believed to be absent in bacteria, however
homologs of Cohesin are present and do participate in DNA compaction [48,177,178]. Here,
we developed an unbiased genome-wide approach based on differential sedimentation to
identify large protein-DNA complexes, which may participate in bacterial genome organi-
zation. We show that a transcription factor, Rok [179], binds to certain specific regions
of the Bacillus subtilis genome to form eight large DNA-protein complexes. Using chro-
mosome confirmation capture (Hi-C) and live imaging of DNA loci, we show that these
insulator-like complexes robustly interact with each other over large distance, with some
interactions spanning the opposite ends of the B. subtilis genome. These long-range in-
teractions lead to global restructuring of the chromosome by formation of new topological
domain boundaries and altering the interaction frequency within the existing domains.
Upon Rok deletion, these insulator-like elements are free to engage in short-range chromo-
somal interactions, resulting in local restructuring. Overall, we show how a prokaryotic
protein can act as a functional analog of insulator proteins previously only identified in
eukaryotes.

9.1 Introduction

Chromosome capture techniques like Hi-C have revealed that all living organisms, in-
cluding bacteria, form structurally organized genomes which aids in DNA compaction,
replication, gene regulation and DNA segregation [2,47,48,180,181]. Chromatin insula-
tor elements are functionally conserved from Drosophila to mammals. Drosophila harbors
multiple insulator proteins, but CTCEF is the only insulator protein identified in mammals.
CTCF was initially identified as a transcriptional repressor, and over the last decades its
role in regulation of mammalian chromatin architecture has been studied in great de-
tail [175,176,182-184]. CTCF interacts with specific regions of the genome and dictates
long range chromosomal interaction resulting in loop formation [7,175]. The interaction
of CTCF bound regions together with loop extrusion by the Cohesin complex leads to
formation of topologically associated domains (TAD) boundaries [176, 182].

Hi-C has also revealed the presence of TAD-like structures in several bacterial species,
which are called chromosomal interaction domains (CID) [47,48,73,75,181]. Although,
cohesin mediated loop extrusion is involved in tethering the chromosome arms in B. subtilis
and C. cresentus, this mechanism does not seem to be involved in CID formation [48,177]
and to the best of our knowledge, an insulator-like genome structuring factor has never
been identified in any prokaryote.

We reasoned that unbiased identification of large protein DNA complexes can help
gain insight into higher order genome organization and topological domain formation in
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Figure 9.1: Identification of DNA associated with large complexes using SICO-seq. A. Large
DNA-protein complexes are removed from cell lysate using ultracentrifugation over sucrose steps.
The DNA retained in the cleared top fraction is sequenced. B. DNA coverage maps of the top
fraction (black) along with the dense fraction (blue) obtained from the WT strain. DNA coverage
map of the top fraction of the Arok strain (orange).
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bacteria. To test this, we developed a differential sedimentation based deep-sequencing
approach to specifically identify DNA associated with large complexes. Briefly, large
complexes were excluded from partially digested cell lysate of B. subtilis (at exponential
phase) by ultracentrifugation over dense sucrose cushions. The top cleared fraction was
then examined for the relative loss of DNA over the whole genome (Fig. 9.1a). Regions
with relatively lower DNA coverage in the top fraction are likely to be engaged in complex
formation with proteins and hence could migrate to dense sucrose fractions. Using this ap-
proach, we found 8 major valleys as local minima in DNA coverage over the whole genome
of B. subtilis (Fig. 9.1b). These chromosomal regions could also be isolated from the
sucrose-dense fraction after stabilization of cells or complexes by mild fixation (Fig. 9.1c,
9.2c). We named this sedimentation based approach to identify chromosomal complexes
as SICO-seq. To find potential DNA binding proteins involved in this DNA-complex for-
mation, we analyzed the existing chromatin immunoprecipitation (ChIP) datasets for B.
subtilis proteins. Interestingly, we found that all 8 sites (valleys) overlapped with the
binding sites for the transcription factor Rok [185]. However, Rok is known to bind more
than 200 sites on the B. subtilis genome [185]. To examine whether Rok is indeed respon-
sible for formation of these complexes, we performed SICO-seq with a rok deletion strain.
As shown in Fig. 9.1b, this resulted in disappearance of all 8 valleys, and hence we named
these sites - RoVa (Rok dependent Valleys).

To uncover why only a few of the Rok binding sites lead to the formation of RoVa
complexes, we quantified the abundance of Rok binding motifs over the genome. Rok
primarily binds A /T rich regions like other bacterial xenogeneic silencers, but using protein
binding microarrays it was determined that Rok has even higher affinity for certain A/T
rich motifs containing G/C residues [186]. These high affinity Rok binding motifs were
found to be significantly enriched at RoVa sites when compared to other highly enriched
non-RoVa Rok binding sites (Fig. 9.2a, b). As expected, high affinity Rok binding motifs
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Figure 9.2: RoVa sites have higher density of Rok binding motifs and can be visualized as discrete
loci. A. DNA coverage maps near RoVa sites 7 and 8. Individual high affinity Rok binding sites
are marked using vertical lines. Other Rok enriched ChIP sites near the RoVa sites are marked
with the arrow head. B. Quantification of high affinity Rok binding sites (WWACTAW) at the
RoVa sites and non-RoVa Rok binding sites along with its average genome-wide distribution. C.
Visualization of Rok-Gfp clusters during exponential (ex) and stationary (st) growth phases using
fluorescence microscopy. Membrane was stained using Nile-red.

were also overrepresented in both RoVa and ChIP sites compared to its average abundance
over the genome (Fig. 9.2b). Multiple Rok proteins can therefore associate at each RoVa
site via its C-terminus DNA binding domain [187]. The N-terminus domain of Rok is
also known to multimerize into a higher order oligomer [186], which may enable direct
observation of RoVa complexes using fluorescent Rok-fusions. Strikingly, we observed
several clusters of Rok-GFP signal spread over the bacterial cell at exponential growth
pase, further supporting binding and clustering of multiple Rok proteins at each RoVa
site (Fig. 9.2b). However, when cells at stationary growth phase were observed, the GFP
signal from only a couple of clusters could be observed in each cell. This suggested either
dissociation of Rok from some of the RoVa sites or a possibility of long-range association
of distant RoVa sites (Fig. 9.2b).

To gain insight into the possible interaction between the 8 RoVa sites, we performed
Hi-C [188] on WT and Arok strain at stationary growth phase (Fig. 9.3a). The Hi-C
datasets revealed a clear secondary diagonal, representing the known juxtaposition of the
two chromosome arms by SMC complexes [73,177]. Strikingly, we did observe very specific
interaction between several RoVa sites (Fig. 9.3a). These specific interactions are seen as
peaks of interaction in the contact matrix, and signify anchor sites for chromosome loops
as routinely observed in mammalian Hi-C maps [181]. This interaction between the RoVa
sites was completely absent in the Arok strain (Fig. 9.3a).

We also performed Hi-C at exponential and late-exponential growth phases. The con-
tact frequency between the RoVa sites increased gradually from exponential to stationary
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Figure 9.3: RoVa sites specifically and dynamically interact with each other. A. Normalized
Hi-C contact maps of WT (top) and Arok strains at stationary phase. Some of the corner peaks
formed as the result RoVa sites interaction are shown in the inset. B. Normalized Hi-C contact
maps at RoVa interaction sites in WT and Arok strains along with the difference plot at indicated
growth phases (ex-exponential, le-late exponential, st-stationary). C. Virtual 4C analysis to study
interactions of RoVa site 8 with the whole genome during stationary phase of wt cells. Maps are
compared at different growth phases at the highlighted RoVa sites obtained using the SICO-seq
coverage data. D. Schematic illustration of Rok dependent association of RoVa sites over growth.
Green dots represent individual Rok proteins multimerized at the 8 RoVa site along the genome.
Dotted light blue lines represent the SMC-mediated juxtaposition of the B. subtilis chromosome
arms. E. Fluorescence microscopy based analysis of distance between RoVa sites 2 and 3 using
FROS. At least 750 pairs of RoVa sites were used for the binned frequency analysis.
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Figure 9.4: Recruitment of non-RoVa Rok ChIP sites to the origin Rok cluster. A. Normal-
ized Hi-C contact maps of WT and Arok strains near RoVa 1 along with the difference plot at
stationary phase. The color scheme is changed in the difference plot to highlight bins of increased
interactions (red) upon rok deletion. Rok ChIP data [185] (orange) is also shown along the genome
below highlighting the non-RoVa Rok ChIP sites (red dots) below. B. Difference plot shows Rok
dependent interaction of RoVa 1 and nearby non-RoVa Rok ChIP sites (red dots) with other RoVa
sites. C. Scalogram and DI (200 kbp) analysis near the RoVA 1 shows relaxation of region be-
tween origin and RoVa 1 and changes in strength of domain boundaries upon rok deletion. D.
Whole genome difference plot shows the isolation of origin Rok cluster with the rest of the genome.
E. Illustration shows growth dependent association of RoVa sites 1,6,7 and 8 at the RoVa origin
cluster and their interaction with the nearby non-RoVa Rok binding sites.
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growth phases, confirming the clustering of RoVa sites over growth previously observed
using fluorescence microscopy (Fig. 9.2¢, 9.3b). Virtual 4C analysis with RoVa 8 site as the
bait, also clearly showed a specific increase in interaction frequency with the other RoVa
sites from exponential to stationary phase. Again, no changes in interaction frequency
were observed in the Arok strain. Virtual 4C with other RoVa sites as bait also revealed
that certain sets of RoVa sites showed higher interaction frequency with each other. RoVa
1-6-7-8 are relatively near the origin and interact primarily with each other to form the
RoVa origin cluster, whereas RoVa 2-3 are close to the terminus and extensively interact
with each other to form the RoVa terminus cluster (Fig. 9.3a, 9.3d). RoVa 4-5 on the other
hand lie between the origin and terminus and shows no or relatively low interaction with
other RoVa sites, respectively. RoVa 1 and 6 are more than 1 Mbp apart, but can still
robustly interact with each other as part of the origin cluster (Fig. 9.3b). SMC dependent
juxtaposition of the two arms in B. subtilis [177] may further facilitate strong interaction
between such mirrored RoVa sites relative to the origin (Fig. 9.3e). RoVa sites at the ori-
gin and terminus clusters can also specifically interact with each other, albeit with much
lower frequency (Fig. 9.3d). Interaction between the RoVa sites therefore depends on their
relative proximity in space and the growth phase (Fig. 9.3¢). Finally, we noticed that a
few non-RoVa Rok-binding sites were also recruited to their nearby RoVa cluster (origin
or terminus) at stationary growth phase (Fig. 9.4).

Hi-C was performed on a population of cells, and as such helps define the average
chromosome interaction. To confirm that the RoVa sites indeed interact in single cells, we
marked the DNA near RoVa sites 2 and 3 using two fluorescent repressor operator systems
(FROS) arrays, and visualized them individually using Lacl and TetR fused to YFP and
CFP, respectively. The distance between RoVa 2 and 3 was found to be significantly
larger in Arok cells compared to the WT in stationary phase, further validating the results
obtained from Hi-C (Fig. 9.3b). Of note, the variation in inter-RoVa distance among cells
also indicated that RoVa interactions are heterogeneous and possibly dynamic.

Next, we wanted to examine if long-range interaction between RoVa sites can also
affect topological domain formation. A directionality index (DI) analysis along the B.
subtilis genome revealed similar CID boundaries in exponential phase of WT and Arok
strains. However, domain boundaries were rather different between the two strains at the
stationary phase. Interestingly, a domain boundary was observed exactly at RoVa site 3
in stationary phase, which was found to be absent in the Arok strain (Fig. 9.5a). In WT
strain, RoVa 3 primarily interacted with the upstream RoVa 2 site as part of the terminus
cluster. However, upon Rok deletion RoVa 3 was free to interact with downstream chro-
mosomal region leading to changes in interaction directionality and thereby disrupting the
domain boundary at RoVa 3. A similar disruption in domain boundary was also observed
at RoVa 1 from the origin cluster (RoVa 1-6-7-8) (Fig. 9.4c).

Hi-C also revealed that RoVa interaction within or near the existing CIDs can also
lead to increase in intra-CID interaction frequency. For example, interaction and loop
formation by interaction of RoVa 6 with RoVa 7/8 can lead to further compaction of the
CIDs between them (Fig. 9.5a). Scalogram analysis [47] also revealed the Rok induced
compaction in this region (Fig. 9.4, 9.5a). This resembles the changes in intra-TAD inter-
action frequency previously observed for the mammalian insulator protein CTCF [115].

Next we wondered whether direct long-range interaction between the RoVa sites changes
the local short range contacts, which are observed as the primary (horizontal) diagonal
in the Hi-C maps. Analysis of the changes in short-range (10-50 kbp) contact frequencies
over the genome clearly revealed an increase in short-range interactions at the RoVa sites
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Figure 9.5: RoVa interactions impacts both global and local chromosomal architecture. A. Nor-
malized Hi-C contact maps of WT and Arok strains at stationary phase along with the scalogram
representation. Scalogram displays the relative tightness along genome by plotting the percentage
of the total contacts made by each bin with the neighbouring regions of increasing size. The cu-
mulative Hi-C signal increases from dark blue (0 —15%) to red (75% and above) and hence display
tighter regions with smaller blue and larger red bars and vice-versa (center). Normalized Hi-C
contact maps along with DI analysis (400 kbp) shows higher-order domain boundary formation
at RoVa site 3 (left) and increased intra-domain contact frequency between RoVa sites 6 and 7/8
(right). B. Ratio plot of WT and Arok strains at stationary phase, the color scheme is changed to
precisely highlight bins of increased interactions (red) upon rok deletion (left). The magnified view
of short-range contacts between 10 kbp and 50 kbp along with the RoVa sites (green dots) and
other interacting Rok ChIP sites (red dots) is shown below. Illustration shows how elimination
of long-range interactions between RoVa sites upon rok deletion increases the local short range
interaction at these sites. C. Changes in gene expression near RoVa sites 1 and 2/3 upon rok
deletion is visualized by plotting the changes in RNA abundance of 800 neighbouring genes during
ex (gray) and st (red) phase. Statistical analysis on changes in transcription were determined by
comparing a block of 100 genes to the adjacent blocks (*p < 0.001, ** p < 0.0001).
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upon Rok deletion (Fig. 9.5b). Interestingly, no changes were observed for short-range
interactions at RoVa site 4, which does not participate in inter-RoVa interactions. Fi-
nally, we also found increased short range interactions at 3 non-RoVa Rok binding sites
near RoVal, all of which interact with the origin Rok cluster (RoVal-6-7-8) at stationary
growth phase. This shows that long-range interaction between RoVa sites restricts their
interaction with neighbouring regions (Fig. 9.5¢).

It is known that transcription levels correlates strongly with short-range interaction
frequency in various bacterial species including B. subtilis [47]. To test whether changes
in short-range contact frequency at the RoVa sites can also affect transcription, we per-
formed RNA-seq analysis at exponential and stationary growth phases of WT and Arok
strains. Expression of a few genes under direct repression by Rok, were upregulated
upon Rok deletion in exponential phase. However, in stationary phase, hundreds of genes
(within multiple operons) in and around RoVa 1 and 3 were upregulated upon Rok deletion
(Fig. 9.5¢). Genomic rearrangement caused by disruption in CID boundaries combined
with increase in local short-range interaction at RoVa 1 and 3 upon Rok deletion are the
likely factors driving changes in transcription.

9.2 Discussion

Like CTCF, Rok was also first identified as a transcription repressor of competence in B.
subtilis [189]. Rok was later found to also regulate cell surface genes, biofilm and mobile
genetic elements [179,187,190]. Rok is also known to activate transcription of certain
genes [190], however the mechanism remains unknown. The binding specificity of Rok
differentiates it from other bacterial xenogeneic silencers like H-NS and Lsr2 [186,187]. In
this study, we draw significant parallels between the known functions of eukaryotic insu-
lator proteins and Rok. Multiple Rok protein can associate with specific regions in the
genome and facilitate their interaction over large distance. Such long-range interaction can
lead to formation of new domain boundaries and alter intra-domain [47,73]. Finally, we
also provide evidence of how genome rearrangement by Rok can alter the local chromoso-
mal interactions at the RoVA sites and potentially influence gene expression, independent
from its role as a transcription repressor. It is possible that other accessory proteins are
involved in RoVa complex formation and their interaction.

Currently, the role of specific long-range interactions on bacterial physiology is unclear.
The changing landscape of inter-RoVa interaction and loop formation over growth may
link genome organization to DNA replication and segregation. Interestingly, Rok is known
to associate with DnaA, initiator of chromosomal replication, when bound to DNA [185].
This interaction may link RoVa sites interactions to active replication in B. subtilis. Other
bacterial transcription factors which can oligomerize, like GalR in Escherichia coli, could
also participate in insulator domain formation [191]. It remains to be seen if insulator
dependent long-range promoter-enhancer interaction exist in bacteria and if this can also
regulate gene expression as observed in eukaryotes [184]. Differential RoVa interaction
between individual cells may also create CID heterogeneity leading to altered cell fate [59,
184]. Future developments to study single cell chromosome structure [59,183] along with
the transcriptome [192] in bacteria will help provide specific answers to these questions.
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9.3 Methods
9.3.1 Cell Growth

B. subtilis strains were grown LB agar plates supplemented with appropriate antibiotics:
spectinomycin (150 pg/ml), erythromycin (2 pg/ml). For liquid culture, B. subtilis was
inoculated at ODggg 0.005 from an overnight culture (in LB) and grown at 37°C in LB or
minimal media.

9.3.2 Strain Construction

All strains were constructed using transformation and homologous recombination of an
overlap PCR product. The overlap PCR product contained the antibiotic resistance gene
and the given insertion or mutation between ~1000 bp of homologous region on either side.

9.3.3 SICO-seq
Top Fraction

B. subtilis was grown to exponential phase (ODgyo of 0.5 — 0.8) in 200 ml of LB media.
All the cells were harvested by centrifugation at 10000xg for 5 minutes and the pellet
was immediately frozen in liquid nitrogen. The pellets were stored at -80°C until use.
The pellet was transferred to 20 or 50 ml stainless steel canister (Retsch) pre-cooled in
liquid nitrogen and containing 1 ml 1xPBS (with protease inhibitor). The pellet was
cryogenically broken using 5 rounds of disruption in TissueLyser II (20 Hz for 2 min. each
round). The canister was cooled in liquid nitrogen after each round. The pulverized sample
was retained from the canister and 1ml ice cold 1xPBS (with protease inhibitor) was added
to the sample. 5 ul of 10X Fragmentase Reaction Buffer v2 and dsDNA fragmentase (NEB
#MO0348S) each was added to the samples and mixed by short vortexing. The samples were
incubated at 30°C for 15 min to partially fragment the DNA. 50 pl of the digested lysate
was collected directly for DNA extraction. The rest of the sample was then added to the
top of a two-step sucrose density layers (20% and 60%) and ultra-centrifuged for 2 hrs at
30000 rpm (SW41 rotor, Beckman) and 4°C. The top fraction (100 ul) was collected for
DNA extraction.

Dense Fraction

B. subtilis was grown to exponential phase (ODgoo of 0.5 — 0.8) in 200 ml LB media
and treated with rifampicin (100 M final) for 10 minutes while shaking to abort tran-
scription. Treatment with Rifampicin removes transcription dependent protein-DNA com-
plexes. Cells were then fixed using 0.1% formaldehyde (final) for 10 min at room tem-
perature and subsequently quenched with glycine. Cell pellets were stored and processed
as before but this time the fraction (750 ul) at the interphase of 20% and 60% sucrose
density layers was collected using a syringe introduced by puncturing the side of the tube.
This fraction was diluted to 10% sucrose density using ice cold 1xPBS (with protease
inhibitor) and again loaded on top of a two-step sucrose density layers (20% and 60%)
and ultra-centrifuged for 2 hrs at 30000 rpm (SW41 rotor, Beckman) and 4°C. The dense
fraction (500 pl) at the interphase of 20% and 6% sucrose density layers was collected
using a syringe.

Nucleic acids were extracted from the fractions collected above (top and dense) using
phenol/chloroform /isoamyl alcohol (PCI-Carl Roth #A156.3) and the nucleic acid was
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concentrated using ethanol precipitation. Nucleic acid was resuspended in water and the
RNA was removed using RNaseA. The DNA was again extracted and concentrated using
PCI (Carl Roth #A156.3) and ethanol, respectively. The partially fragmented and purified
DNA was directly used for library preparation using NEBNext® Ultra™ II DNA Library
Prep Kit for Illumina (NEB #E7645S) as per manufacturer’s instruction and subsequently
subjected to sequencing using [llumina NextSeq 550.

9.3.4 RNA Isolation and RNA-seq

Total RNA was extracted from B. subtilis cells using hot-phenol method as previously
described [193], except 5 mg/ml lysozyme was used to disrupt the B. subtilis cell wall.
Residual DNA was removed from the total RNA using DNasel (NEB #M0303S) diges-
tion as per manufacturer’s instruction. Total RNA was checked on agarose gel to verify
the integrity of the RNA samples by visualizing the rRNA bands. rRNA was then re-
moved from 10 ug of total RNA using MICROBExpress™ Bacterial mRNA Enrichment
Kit (ThermoFisher #AM1905) as per manufacturer’s instruction. The RNA was extracted
using PCI for RNA (Carl Roth #X985.3) and precipitated using ethanol. 100 ng of the
mRNA enriched RNA was used for library preparation using NEBNext® Ultra™ II Direc-
tional RNA Library Prep Kit for Illumina® (NEB #E7760S) and sequenced using Illumina
NextSeq 550.

9.3.5 Mapping and Visualization of SICO-seq, RNA-seq and ChIP Data

SICO-seq and RNA-seq data used in this study were generated using the experiments
described above. Raw Rok ChIP data generated by Seid et. al. [185] was obtained from
NCBI. All the sequencing data was processed using the open source web-based platform —
Galaxy (usegalaxy.org). The quality of each dataset (FASTQ files) was firstly assessed us-
ing fastQC. All files were then trimmed using Trimmomatic (Galaxy Version 0.36.5) before
mapping them to the B. subtilis subsp. subtilis str. 168 reference genome (NC_000964.3)
using Bowtie2 (Galaxy version 2.3.4.2). The BAM files were converted to bigwig using the
tool bamCoverage (Galaxy version 3.0.2.0) and the coverage maps were visualized using
Integrated Genome Browser (IGB version 9.0.2). The RNA-seq BAM files were also used
as the input for featureCounts (Galaxy Version 1.6.3) along with the respective gff3 file
to quantify and compare gene expression. Normalized coverage files were used to generate
SICO-seq and ChIP ratio plots directly using IGB.

9.3.6 Motif Density Analysis

The 10 kbp sequence around each RoVa site (5 kbp upstream and downstream of RoVa
minima) and 8 highly enriched non-RoVa Rok ChIP sites (5 kbp from each side of ChIP
peak) were isolated and quantified for presence of high affinity Rok binding motifs —
“WWACTAW? identified previously [186]. The distribution of the motif along the genome
was directly visualized in IGB. B. subtilis subsp. subtilis str. 168 reference genome
(NC_000964.3) was used quantify the average abundance of the motif.

9.3.7 Chromosome Capture by Hi-C

Hi-C was carried out essentially as previously described [188] with minor modifications.
2 — 5 ml culture was sequentially fixed using 80% methanol and 3% formaldehyde. Cells
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were washed with ice-cold 1xPBS after each step. The cells were then harvested by cen-
trifugation and the pellets were flash frozen in liquid nitrogen. Cells were lysed using
Ready-Lyse Lysozyme (Epicentre #R1802M) in 1xTE buffer followed by 0.5% SDS treat-
ment. The chromosomal DNA in the cell lysate was then digested using HindIII for 3
hrs at 37°C. The restriction ends were filled with Biotin-14-dATP, dGTP, dCTP, dTTP
using DNA Polymerase I, Large (Klenow) fragment (NEB #M0210S). The chromatin was
fractionated by centrifugation and subsequently the pellet was ligated using T4 DNA lig-
ase (NEB #M0202M) overnight at 16°C. Samples were then treated with RNase A and
de-crosslinked at 65°C for 6 hrs in the presence of proteinase K. The DNA was then
extracted using PCI (Carl Roth #A156.3) and precipitated using ethanol. Biotin was re-
moved from the non-ligated ends using T4 polymerase (M0203S) in the presence of dATP.
The DNA was then again extracted and precipitated as before, and then fragmented us-
ing dsDNA fragmentase (NEB #M0348S) treatment for 15 min at 37°C. The fragmented
DNA was used for library preparation using NEBNext® Ultra™ II DNA Library Prep
Kit for Illumina (NEB #E7645S) as per manufacturer’s instruction until adapter ligation
and purification using AMPure XP beads (Beckman coulter #A63881). Biotinylated li-
brary fragments were extracted from the sample using 20 ul of Dynabeads® MyOne™
Streptavidin T1 beads (ThermoFisher #65601) as per manufacturer’s instruction. The
washed beads (with biotinylated DNA) were used for PCR library amplification (12 — 14
cycles) using NEBNext Ultra IT Q5® Master Mix (NEB #M0544S). The amplified library
was purified using AMPure XP beads followed by paired-end sequencing using Illumina
NextSeq 550.

9.3.8 Hi-C Data Mapping and Contact Matrix

Hi-C matrices were constructed using the Galaxy HiCExplorer webserver (hicexplorer.
usegalaxy.eu). Briefly, paired end reads were mapped separately to the B. subtilis genome
(NCBI Reference Sequence NC_000964.3) using the “very sensitive” local setting mode in
Bowtie2. The mapped files were used to build the contact matrix using the tool hicBuild-
Matrix using a bin size of 10 kbp, HindIII restriction site (AAGCTT) and (AGCT) as the
dangling sequence. The contact matrix (.cool format) was then used for further analysis
and visualization as described below.

9.3.9 Hi-C Data Visualization

Hi-C contact maps were assessed, compared and prepared for the illustration using the in-
teractive Browser-based visualization tool “Bekvaem” [194] which source code is published
and made available to the public [105].

Comparison of Contact Maps

First, Hi-C contact frequency matrices were normalized using the Sinkhorn-Knopp (SK)
balancing algorithm [81]. In a subsequent step, the normalized contact probability matrices
were compared via their difference, i.e. two contact probability matrices A = (a;j) and B =
(bij) were compared via their difference D = (d;;) by (element-wise) matrix subtraction
d;j = a;; — b;jj. In order to be able to detect also only very small local differences, the
(element-wise) logarithmic ratio was computed as R = 7;; = logy | a;; / bij | -
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Domain Detection

Domain boundaries within Hi-C contact maps were detected algorithmically using an
in-house Python implementation based on the directionality index approach presented by
Dixon et al. [7]. The method is motivated by the observation that domains are demarcated
by regions that are biased in their interaction probability; the upstream domain boundary
is preferentially interacting downstream whilst the downstream boundary is preferentially
interacting upstream. This method is based on a two-step strategy. First, the 2D contact
information is translated into the directionality index encoding the ratio of downstream
and upstream interactions. Next, downstream interactions are compared to upstream
interactions in order to derive whether the strength of interactions are significantly stronger
in one direction compared to the other. Domain boundaries correspond to positions where
this preferred direction of interactions abruptly changes [48].

Besides the directionality index, we also computed domains using TopDom [195], an
optimal polygon algorithm that detects topological domains in a linear time. TopDom
deterministically identifies domains, along with a set of statistical methods for evaluating
their quality and depends on just one intuitive parameter, a window size. We used the
provided TopDom implementation in R and visualized the results similar to TADbit [110]
using in-house Python scripts. Detected domains are represented by gray-filled arcs and
delimited by colored border symbols. The height of the depicted domains is proportional
to the relative number of interactions within this domain given its size. The color code
from blue to red, numbered 1-10, indicates the confidence with which the domain was
identified. The y-axis displays the relative Hi-C interaction frequencies and the horizontal
line at y = 1 indicates the expected frequency given the domain size. If the Hi-C relative
interaction frequency inside the domain is higher than expected according to its size then
the domain is colored in dark gray.

Scalograms

Scalograms visualizing the dispersion of the contact probability signal along the spatial
scales were implemented in Python by following the description of Lioy et al. [47] on
GitHub. Scalograms reflect the constraints exerting on a genomic region, by revealing to
which extent they “see” their flanking sequences. For each genomic position, the cumulated
amount of contacts between its position and an increasing number of flanking bins is
computed. As contact maps are normalized, the maximum cumulated contact signal is
equal to one. Subsequently the resulting heat map using a contour line function is plotted.
Within this representation, the resulting signal is divided into 5 areas, each representing
15% of the total contacts except the last one with 25% of contacts.

This visualization tool can be understood as an extension of the genomic distance law
which calculates the average intra-chromosome contact probability P(s) for pairs of loci
separated by a genomic distance s. This contact probability decreases as a power law
and can be linked to the polymeric nature of chromosomes. Scalograms allow to locally
illustrate this behavior.

Virtual 4C analysis

The bait region (10 kbp bin) was used as a input for the tool hicPlotDistVsCounts in
the Galaxy HiCExplorer web server. The total contacts of the input bait region with all
bins were quantified for a Hi-C matrix and normalized for comparison between different
conditions (genotype and growth phase).


https://github.com/koszullab/E_coli_analysis/blob/master/README.md#scalogram-vizulaisation-tool
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Chapter Summary

The chromosomal replication origin region (ori) of characterized bacteria is dynamically
positioned throughout the cell cycle. In slowly growing Escherichia coli, ori is maintained
at mid-cell from birth until its replication, after which newly replicated sister oris move to
opposite quarter positions. Here, we provide an explanation for ori positioning based on
the self-organization of the Structural Maintenance of Chromosomes complex, MukBEF,
which forms dynamically positioned clusters on the chromosome. We propose that a non-
trivial feedback between the self-organizing gradient of MukBEF complexes and the oris
leads to accurate ori positioning. We find excellent agreement with quantitative experi-
mental measurements and confirm key predictions. Specifically, we show that oris exhibit
biased motion towards MukBEF clusters, rather than mid-cell. Our findings suggest that
MukBEF and oris act together as a self-organizing system in chromosome organization-
segregation and introduces protein self-organization as an important consideration for
future studies of chromosome dynamics.

10.1 Introduction

The faithful and timely segregation of genetic material is essential for all cellular life.
In eukaryotes the responsibility for chromosome segregation lies with a well-understood
macromolecular machine, the mitotic spindle. In contrast, the mechanisms underlying
bacterial chromosome segregation are much less understood mechanistically, but are just
as critical for cellular proliferation [9]. The starting point for bidirectional chromosomal
replication, the origin (ori), has a crucial role in chromosome organization and segregation.
Not only is it duplicated and segregated first but its dynamic genomic position defines the
position of other chromosomal regions with respect to the cell [10,11].

In new-born Escherichia coli cells growing under relatively slow growing conditions in
which initiation of replication and its completion occur within a single cell generation, the
“home” position of the origin (henceforth and in the model, ori) is at mid-cell [196-198].
After replication, and consequent 10-15 min of “cohesion, arising at least in part from
interlinking of the two daughter chromosomes (precatenation) [14,199-203], duplicated
origins migrate rapidly to opposite quarter positions, which become the new home posi-
tions for the remainder of the cell cycle [128,204]. Other genomic loci migrate sequentially
with similar dynamics [128].

The mechanisms that underlie ori positioning and direct newly replicated sisters to
opposite cell halves remain unclear [9]. This is particularly the case in E. coli and its
relatives, which do not carry ParABS systems that facilitate the segregation of low copy
plasmids and some other bacterial chromosomes [12]. However, MukBEF, a functional ho-
molog of ubiquitous Structural Maintenance of Chromosomes (SMC) complexes [205,206],
plays a role in E. coli chromosome organization-segregation. One of its functions is to re-
cruit the type II topoisomerase Topo IV [13,14], which is required for the timely removal of
catenanes from newly replicated sister chromosomes [203]. Under slow growth conditions,
MukBEF forms a small number of dynamic clusters (visualized as fluorescent foci) located
at the middle or quarter positions [207,208], in close association with ori [209], and the
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splitting and movement of these foci occurs concurrently with the segregation of oris to
the quarter positions [14,209]. Foci consist of on average 16 dimeric slowly-diffusing Muk-
BEF complexes [210]. The colocalization with ori is not required for either MukBEF foci
formation or positioning: depletion of Topo IV results in cells with multiple catenated oris
forming a single focus at mid-cell but with multiple MukBEF clusters positioned through-
out the nucleoid [14]. Thus MukBEF clusters are not necessarily assembled at or bound to
ori, consistent with the lack of any sequence specificity [201]. Furthermore, restoration of
Topo IV activity leads to the decatenated oris moving to the MukBEF clusters suggesting
that MukBEF recruits or positions ori [14]. Consistent with this hypothesis, depletion
of functional MukBEF results in ori mis-positioning that is subsequently restored upon
repletion [211].

If MukBEF clusters position oris, what positions MukBEF clusters? Given that
molecules in the clusters turnover continuously with a timescale of about one minute
(Badrinarayanan et al., 2012b) and that MukBEF binds DNA non-specifically, how does
it even form clusters? We have proposed that a self-positioning stochastic Turing pat-
tern can explain the positioning of MukBEF clusters [212] (see Fig. 10.2, Fig. 10.3 and the
methods section for a review). A Turing pattern is a spatial pattern in the concentration of
a reactant in a reaction-diffusion system that arises spontaneously due to a diffusion-driven
instability [213,214]. Put simply, diffusion, rather than having a homogenizing effect can
actually, in combination with chemical reactions, create a spatially varying concentration
profile. Such patterns are examples of self-organization, a more general term that de-
scribes any dissipative non-equilibrium energy-dependent order that arises as a result of
collective non-linear interactions [215]. We used the Turing mechanism to explain the
positioning of MukBEF foci and showed that a flux-balance mechanism and stochasticity
work together to ensure that a specific Turing pattern is selected: short cells consistently
have a single center-positioned peak in the MukBEF concentration, while longer cells have
quarter positioned peaks.

With this model in hand, we now investigate how MukBEF clusters could position
chromosomal origins. In particular, we address whether the self-organizing MukBEF gra-
dient proposed in our model has the correct properties to act as an attracting gradient for
ori. Additionally, it is critical that each newly replicated sister ori is recruited to a dif-
ferent MukBEF focus, a non-trivial requirement. We find that a self-organizing MukBEF
gradient can indeed accurately reproduce the observed ori dynamics, apparent diffusion
constant and drift rate. A proposed preferential loading of MukBEF within ori introduces
a non-trivial interaction between MukBEF foci and oris that leads to accurate and stable
partitioning as an emergent property of the system. Importantly, the model does not con-
tain any actual directed force. MukBEF requires energy in the form of ATP to establish a
self-organized gradient but it is not pulled to the middle or quarter positions by any active
force. Similarly, the attraction of ori up the MukBEF gradient may be due to energetic
considerations and the elastic nature of the chromosome (a DNA-relay) resulting on the
macro scale in an effective (rectification) force and directed motion.

10.2 Results

10.2.1 ori is attracted towards MukBEF foci

As discussed above, perturbative experiments support the hypothesis that MukBEF clus-
ters position oris in E. coli [14,211]. However, it is unclear if this hypothesis is supported
by the observed colocalization of MukBEF clusters with oris in unperturbed cells. It is
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possible that MukBEF clusters and ori could be positioned independently of one another
as a result of the global organization of the chromosome with the result that they show
colocalization but without their positions being correlated. To examine this possibility, we
revisited the colocalization of MukBEF clusters and oris. We used only cells with a single
ori focus, because, unlike cells with two oris, they can be grouped together without scaling
by simply aligning them according to their mid-cell positions and are more amenable to
statistical analysis. To enrich for such cells, we treated a strain carrying fluorescently
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Figure 10.1: Fluorescence microscopy indicates that ori and MukBEF are not positioned inde-
pendently of one another. A strain with FROS (Lacl-mCherry) labeled ori and MukB-mYPet was
treated with DL serine hydroxamate to obtain cells with a single non-replicating chromosome and
imaged at 1 min intervals. A. Overlay of phase contrast and fluorescence images showing three
representative cells. Bar indicates 2 um. B. The position distribution (along the long axis of the
cell) of fluorescent foci of ori (red) and MukB-YPet (blue). N = 31820 from 952 cells tracked over
up to 56 frames. Cells have a mean length of 2.2 ym. C. The expected distribution (dashed line)
of the distance between ori and MukB-YPet foci given that the distributions in B are independent.
The measured distribution (circles and solid line) of separation distances from the same cells. D.
The step-wise velocity of ori as a function of position relative to mid-cell (blue) and to the MukB-
YPet focus (red). E. The step-wise velocity of MukB as a function of position relative to mid-cell
(blue) and the ori (red). Shaded regions indicate standard error.
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labeled MukB and ori (Fig. 10.1A) with DL serine hydroxamate (SHX). This structural
analogue of serine triggers the stringent response thereby inhibiting DNA replication ini-
tiation [216]. We then measured the position of fluorescent foci along the long axis of the
cell as has been done previously [14,201] and found very similar distributions for ori and
MukB as expected (Fig. 10.1B).

To investigate if MukBEF and ori are positioned independently of one another, we next
compared the distribution of the measured distance between them to the distribution that
would be expected if they were positioned independently (the null hypothesis). This latter
distribution is obtained by randomly selecting pairs of positions from the two measured
position distributions and calculating the distance between them. When we did this, we
found that MukBEF foci and ori are much more colocalized than would be expected if
they were positioned independently (Fig. 10.1C). This was confirmed by the relatively
strong positive correlation (r=0.8) between MukBEF and ori positions (using a robust
correlation based on the median absolute deviation [217]). Importantly, the result was not
due to treatment with SHX.

If ori is indeed positioned by MukBEF, then we should be able to detect this in wild-
type cells. In particular, we can measure the step-wise velocity of ori as a function of its
position along the long axis of the cell. This “restoring” velocity characterizes the restoring
force pulling ori back towards mid-cell. We can similarly determine the restoring velocity
of ori towards MukBEF foci by measuring the step-wise velocity of ori as a function of
position relative to the MukBEF focus. Comparing these two profiles, we found that ori
experiences a greater restoring velocity towards the MukBEF focus than towards mid-cell
(Fig. 10.1D). This indicates that ori is not attracted to mid-cell per se, rather it is more
likely attracted to the MukBEF focus, which happens to be positioned at mid-cell. Hence,
together with previous results, these data strongly indicate that MukBEF positions ori in
E. coli.

We next asked whether the relationship is bi-directional i.e. is MukBEF positioning
affected by ori positioning? When we examined the restoring velocity of MukBEF foci, we
found that they displayed similar biases towards ori and mid-cell (Fig. 10.1E), suggesting
that MukBEF foci are equally attracted to mid-cell and ori and that therefore the attrac-
tion between MukBEF and ori may be indeed be bi-directional. We will return to this
result later.

The above results also confirm that ori has a special relationship with MukBEF com-
pared to other genetic loci. This is supported by the observation that co-localization with
MukBEF is strongest for ori and becomes progressively weaker for ori-distant loci [209].
What is the nature of this relationship? This has been an open question for many years,
despite the application of tools such as chromatin immunoprecipitation [201] and single-
molecule microscopy [210,218]. In the following, we take an abductive reasoning approach
common in theoretical physics. We make a starting assumption or ansatz for the nature of
the MukBEF-ori relationship in order to build a computational model of the system and
take confirmation of model predictions as evidence in support of this ansatz. In particu-
lar, we propose that MukBEF is preferentially loaded onto the chromosome within the ori
region. This is the case for SMC, a distant relative of MukBEF (see [219] for a review).
In Bacillus subtilis and other bacteria SMC is loaded onto the chromosome at parS sites
by the protein ParB. While no analogue of ParB/parS has yet been discovered in E. coli,
in the following we will focus on exploring the effect of preferential loading and examining
whether it gives results that are consistent with experimental observations. We discuss
other plausible scenarios in the discussion.
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10.2.2 Model of ori positioning by self-organised MukBEF reproduces mid-cell
positioning

As a first step in building a model of ori positioning, we incorporated the ori into our pre-
vious stochastic model of MukBEF self-organization and positioning [212], reviewed in the
methods section and illustrated in Fig. 10.2A. Briefly, MukBEF exists in three states cor-
responding to different conformations and associations with DNA, a well-mixed cytosolic
fraction and two DNA-associated states. The differing diffusion constants and nonlinear
interaction between the two latter states leads to the spontaneous formation of dynamic
MukBEF foci (to be understood as regions of high density) via the Turing mechanism.
The positions of these foci are determined by the balancing of fluxes originating from the
well-mixed cytosolic state (Fig. 10.2B). The flux of molecules (number per second) reach-
ing the MukBEF focus is proportional to the length of the nucleoid on each side since
the flux of molecules arriving from the cytosol is proportional to these lengths. Thus, if
the MukBEF focus is off-center (in the case of a single focus), it experiences a differential
in the incoming fluxes from either side, resulting in movement toward the equilibrium
position (the center). This flux-balance mechanism was first described in the context
of plasmid positioning [220-222] but is valid quite generally. Note that in this model,
the chromosome is not modeled explicitly. While one could theoretically use a combined
particle and polymer based approach, such simulations are not yet feasible. Rather, the
action of condensins is typically implemented in polymer simulations implicitly [104,223].
However, we are explicitly interested in the fact that MukBEF forms discrete positioned
foci. We therefore take a protein-centric approach and model the chromosome implicitly
but MukBEF explicitly.

We treat the ori as a diffusing particle, the movement of which is biased in the direction
of increasing MukBEF concentration (Fig. 10.2C) (see methods for details). That is, the
probability is higher that ori will move up the MukBEF gradient than down it. For
the moment, we do not implement the effect of preferential loading at ori on MukBEF
dynamics. We perform the simulations in one dimension, representing the long axis of
the cell, the dimension along which positioning and segregation occur. This is justified as
both ori and MukB are confined within the transverse direction to the center region of the
cell: 95% of foci are within the center 40% (300 nm) of the cell width. MukBEF is also
a very large molecule complex, with the arc length from its hinge domain to either of its
two head domains being about 70 nm [224]. This suggests it can be treated as operating
on a coarser level than individual strands of DNA. However the primary reason is due to
an inherent limitation of the Reaction Diffusion Master Equation method for non-linear
reactions. Every voxel (compartment) must be well-mixed and this condition is violated
by non-linear reactions at small voxel volumes [225,226]. While this can be overcome
for bimolecular reactions [227-229], there is currently no such remedy for tri-molecular
reactions, as present in our (and most) Turing models. As a quantification of the resulting
artefacts, we measured the mean total number of species v as a function of compartment
size. While the mean number is stable in one dimension, it decreases rapidly in two and
three dimensions as the compartment size is decreased. One might hope for a range of
compartment sizes, small enough to realize the geometry but large enough to avoid small
compartment-size effects. However, no such range exists. We will therefore confine our
stochastic simulations to one dimension. However, as we shall show, this limitation does
not prevent us from explaining the observed experimental behavior and making falsifiable
predictions.

We take initially the case of short cells (2.5 pm) with a single ori. For the moment,
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Figure 10.2: ori positioning by a self-organized protein gradient reproduces experimental results.
A. Schematic showing the reactions of the previous MukBEF model ( [212] (see methods). Species
w diffuses in the cytosol (red). Species u (green) and v (blue) diffuse on the nucleoid. Binding and
species interaction are indicated by arrows. Diffusion is not shown. See the methods for a review
of the model and the model parameters. B. Schematic showing the flux-balance mechanism.
The thinner arrows represent binding/unbinding and diffusion. Species w (red) is well-mixed and
therefore converts to species u (green) uniformly across the nucleoid. If a molecule of species u
explores a sufficiently large region of the nucleoid before it detaches again, then the flux of u
molecules reaching a high density region (focus) of species v (blue) from either side is proportional
to the length of the nucleoid on either side. This difference in fluxes leads to net movement of the
self-organized focus towards the position at which the fluxes balance, the mid-cell in the case of a
single focus. C. The stochastic models is implemented using the spatial Gillespie method which
discretizes the spatial dimension into compartments in which molecules react and between which
molecules can diffuse. Colors label species as in A. The cytosolic species is taken to be well-mixed
and its concentration is therefore not simulated spatially. This is the same implementation as
was used previously [212]. In this work, we extend these simulations by incorporating the ori as a
single diffusing particle (outlined red circle). However, unlike MukBEF its diffusion is biased, being
determined by forward (F) and backward (B) jump rates that depend on the gradient of MukBEF
concentration (blue circles, v) (see methods). D. Kymograph from a single simulation showing
the number of MukBEF molecules (color scale) and the position of the ori (white line). EF. A
comparison between the experimental data of Kuwada et al. [204] and the results of simulations
in the case of a single ori and 6x preferential loading. E. Histograms of ori position (unscaled)
along the long axis of the cell. Zero is the middle position. F. Mean (top) and variance (bottom)
of the step-wise velocity as a function of position relative to mid-cell. Bars indicate standard
error. The linear velocity profile at mid-cell is indicative of diffusion in a harmonic potential
(V(x) = 3 f2?). In such a model the variance of the step-wise velocity is independent of position.
Thus we obtain the apparent diffusion constant D, and drift rate d, = kaT” by fitting to the central
region. Bounds are 95% confidence intervals. Red lines are weighted linear fits. Simulated data
are from 100 independent runs, each of 600 min duration. Experimental data are based on over
16000 data points from 377 cells. Both data sets use 1 min time-intervals. Simulations are from
2.5 pm cells, whereas experimental data is from a range of cell lengths. See methods for further
details and model parameters.
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we do not implement the effect of preferential loading at ori on MukBEF dynamics. We
found, as expected, that ori tracks the self-organized MukBEF focus, resulting in mid-cell
positioning (Fig. 10.2D and Fig. 10.3B). To more carefully examine the directed move-
ment of ori, we measured the ori velocity as a function of position as we did previously
(Fig. 10.1D). Given the self-organizing and fluctuating nature of the MukBEF gradient in
our model (which is representative of the in vivo behavior), it was not obvious that the
model would reproduce the observed relationship. However, we indeed found a similarly
linear velocity profile. Furthermore, quantitative comparison of our simulations with the
experimental data from Kuwada et al. [204] was carried out by fitting the data in the
mid-cell region to a theoretical model of diffusion in a harmonic potential, thereby obtain-
ing an apparent diffusion constant and drift rate. We found that by adjusting only two
parameters, the ori diffusion constant and drift parameter, we were able to obtain good
agreement with the values obtained from the experimental data. However, the resultant
position distribution did exhibit somewhat fatter tails.

This fitting of the experimental data also allows us to estimate the spring-like force on
the ori. At a distance x from mid-cell, the force is given by F' = — fz, where f is obtained
from the slope and variance of the velocity profile. At 0.2 um from mid-cell this gives a
restoring force of 0.02 pN, similar to the value measured in an in vitro reconstitution of a
plasmid partitioning ParABS system [230]. Note that the data in Kuwada et al. are from
growing cells and we use them rather than our data in Fig. 10.1 for consistency with later
simulations that incorporate growth.

In the previous simulations ori moves up the MukBEF gradient but has no effect on the
MukBEF gradient itself as we have not yet implemented that MukBEF is preferentially
loaded onto the DNA within the ori region. In previous work, we showed that preferential
loading at a fixed spatial location perturbs the positioning of the self-organized MukBEF
foci due to the modified flux differential across foci [212]. In the case of a single MukBEF
focus, the equilibrium position is no longer at mid-cell but somewhere between mid-cell
and the location of preferential loading, depending on the strength of the loading. Thus the
presence of a preferential loading site in the ori should lead to an effective mutual attraction
between ori and MukBEF foci i.e. ori is attracted up the MukBEF gradient, while at the
same time the ’home’ position of the MukBEF focus is shifted towards ori. We expected
this to increase the association between the two and reinforce mid-cell positioning.

We added preferential loading into the simulations by increasing the loading rate of
MukBEF in the compartment containing the ori relative to the other compartments while
keeping the overall loading rate unchanged. This was observed to have a suppressive effect
on noise. At intermediate levels of preferential loading, the positions of both MukBEF and
ori deviate less from mid-cell. Looking at individual simulations we could see that ori rarely
escapes the MukBEF focus, rather the focus tracks ori and brings it back to the middle
position. As a result ori only rarely undergoes diffusive excursions away from MukBEF
and its home position as were observed without preferential loading. The reduction in
the variance of the position distributions was reversed at higher loading ratios. We also
found that preferential loading resulted in stronger colocalization of ori with the MukBEF
focus and this led to excellent agreement with previous measurements of their separation
distance. Note that this experimental data was not used to constrain the model and this
agreement thus constitutes confirmation of a model prediction and support for preferential
loading.

We next examined if the simulations could reproduce the observed experimental veloc-
ity profiles (Fig. 10.1D,E). We found that ori shows a stronger restoring velocity towards
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Figure 10.3: Properties of MukBEF model and ori positioning. A. The differential equations of
the model in Fig. 10.2A. Given for reference and to specify the nature of the reaction terms. In
this work, we exclusively use the stochastic implementation of the model (Fig. 10.2C). B. Average
kymographs from 100 simulations showing the distributions of MukBEF and ori positions. C.
The average MukBEF profile in the simulations (blue dots) is well approximated by a Gaussian.

MukBEF than mid-cell and this was independent of the level of preferential loading. The
restoring velocity to mid-cell is non-zero due to the fact that MukBEF fluctuates around
mid-cell. These results were to be expected as the biased motion of ori up the Muk-
BEF gradient is explicitly included in the simulations. What was less clear was how the
MukBEF focus would behave. We found that without preferential loading MukBEF dis-
plays a stronger restoring velocity towards mid-cell consistent with its positioning by the
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flux-balance mechanism. At high loading however, it shows a stronger bias towards ori
consistent with the previous observation that the attraction to ori dominates, while at
intermediate levels (6x) we found a very similar restoring velocity to both ori and mid-cell
as was observed in the corresponding experimental profiles (Fig. 10.1E). This is also the
same level of preferential loading that leads to the most robust positioning. Thus, an
intermediate level of preferential loading appears to be most consistent with experimental
observations.

Given that preferential loading was found to have an effect on the apparent diffusion
constant and drift rate, we needed to refit the model to the experimental ori velocity
data. To do so we chose a particular value for preferential loading ratio, the one that
minimized the variance, 6x (this choice will be justified in the section). We were able to
find new values for the diffusion and drift parameters that lead to excellent agreement
with the experimental values (Fig. 10.2F). Furthermore, the resulting distribution of the
ori positions showed better agreement with the experimental distribution, with the fat
tails observed in the absence of preferential loading no longer present (Fig. 10.2E).

10.2.3 Preferential loading leads to stable and accurate partitioning

While promising, the above results are not sufficient to suggest that MukBEF can explain
the in vivo behavior of ori. The challenge arises after ori has been replicated. A true parti-
tioning mechanism must ensure that each replicated ori is maintained at a different quarter
position. A simple gradient based mechanism cannot, a priori, satisfy this requirement as
both oris could just as easily move towards the same quarter position. Furthermore, the
experimental data suggests that once oris separate they do not subsequently interchange
their positions (cross paths). This ordering is essential during multi-fork replication, where
the multiple oris of each segregated chromosome must be positioned to the appropriate
cell half to avoid guillotining the chromosome upon cell division. To examine if the model
is capable of accurate and ordered partitioning, we performed simulations with two oris
in longer cells of 5 pym, in which MukBEF self-organizes into, on average, two foci, one
at each quarter position. With or without preferential loading, the average profile of ori
positions displayed two peaks centered on the quarter positions (Fig. 10.4D, blue line).
However, we found that without preferential loading approximately half of the individual
simulations have both oris near the same quarter position (Fig. 10.4A), clearly indicating
that partitioning was not accurate. This was the case even though the simulations were
initialized with oris at opposite quarter positions. Evidently, a model of ori simply moving
up the MukBEF gradient is not sufficient to explain partitioning as the noise inherent to
the system means that it can switch stochastically between partitioned and un-partitioned
states.

However we found that preferential loading resulted in stable and accurate partition-
ing (Fig. 10.4B). A preferential loading ratio greater than six (i.e. six times more loading
than elsewhere) was sufficient to ensure that one and only one ori was positioned to each
quarter position and they do not interchange (Fig. 10.4C). These simulations had oris
initialized at opposite quarter positions (so as to investigate the intrinsic stability of that
configuration). However, the bias of the system towards the desirable quarter-positioned
configuration was present when both oris were initialized at mid-cell or at random posi-
tions. While configurations with both oris associated to the same MukBEF peak occurred
more frequently under these conditions, in the presence of sufficient preferential loading
the system eventually and irreversibly transitions to the quarter positioned configuration.

As previously observed in simulations of short cells, we found that preferential loading
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Figure 10.4: Preferential loading of MukBEF at ori leads to correct and stable partitioning. A.
Example simulated kymograph showing two ori (white lines) diffusing around the same MukBEF
peak (color scale). This occurs approximately 50% of the time. B. The addition of 6x preferential
loading of MukBEF at ori positions results in correct partitioning of ori. The loading rate in each of
the spatial compartments containing ori is six times that of the other 48 compartments. The total
loading rate is unchanged. C. Partitioning accuracy is measured by the fraction of simulations
with ori in different cell halves. Stability is measured by the number of times ori cross paths.
Both partitioning accuracy and stability increase with preferential loading up to approximately
6x. Preferential loading ratios are as in F. Points and bars indicate mean and standard error
over independent simulations. D. Histograms of ori positions for 1x, 6x and 16x preferential
loading. Positioning is more precise at 6x than with no or 16x preferential loading. E. The
cumulative probability distribution for the separation distance between ori and MukBEF peaks.
Experimental data (black line) is from Nolivos et al. [201]. The addition of preferential loading
leads to substantially better agreement. Preferential loading ratios are as in F. F. The variances
of individual peaks (obtained by reflecting the data around the mid-position) have a minimum at
approximately 6x preferential loading. Solid lines are from simulations with ori initially at the
quarter positions, as for A - E. Dashed lines are from simulations with random initial ori positions.
Simulations were performed for a 5 ym domain and two ori.

results in stronger colocalization of oris with MukBEF foci (Fig. 10.4E) and has a sup-
pressive effect on noise at intermediate ratios with MukBEF foci and ori deviating less
from the quarter positions (Fig. 10.4F). However, partitioning accuracy remained robust
even at high preferential loading ratios (Fig. 10.4C). Looking at individual simulations, we
observed that the nature of the variance was different. While the number of foci is main-
tained accurately at two and the foci are tightly associated to each ori (Fig. 10.4E) they
are together more mobile than at intermediate ratios. Effectively, the MukBEF clusters
begin to follow ori, rather than the other way around.

These results demonstrate that preferential loading of MukBEF changes the stability
of the different steady states of the system. In its absence, the desirable (ori associated to
opposite quarter-positioned MukBEF peaks) and undesirable (both oris associated to the
same MukBEF peak) configurations have equal likelihood, as measured by partitioning
accuracy (Fig. 10.4C), and the system can stochastically jump from one state to the other.
As preferential loading is increased, the desirable configuration becomes more stable until
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the system is found almost exclusively in that state.

10.2.4 Accurate partitioning during growth

The previous simulations were of non-growing cells and of long duration. While, they
were useful to examine the intrinsic stability of the different states in order to understand
why oris remain partitioned, they do not demonstrate that our model can explain how
oris become partitioned within the timescale and setting of a growing cell. We therefore
incorporated exponential growth and ori replication into our simulations. The former was
implemented by randomly adding a new spatial compartment after every time interval
corresponding to growth by one compartment length (0.1 pm). The ori was duplicated
at a randomly chosen time-point obtained from an experimentally derived distribution
(the mean time of duplication was 40 min into the cell cycle). After duplication, the
compartment that previously contained a single ori, then contains two oris, which are free
to move independently of each other (but dependent on the local MukBEF concentration).

We first examined growth in the absence of preferential loading. Similarly to what we
observed previously in the simulations of non-growing cells (Fig. 10.4A), we found that
duplicated oris often remained associated to the same MukBEF focus, resulting in a parti-
tioning accuracy (defined as before as the fraction of simulations with oris in opposite cell
halves) of only 25% by the end of the cell cycle (120 min). When we introduced preferential
loading at ori, we found firstly that it delayed the splitting of MukBEF foci, similar to a
spatially fixed loading site [212]. The feedback from ori to MukBEF, nonetheless resulted
in somewhat improved (39%) partitioning. The effect was similar to what we observed
in the simulations of non-growing cells. Preferential loading promotes partitioning (and
colocalization) but sufficient time is required for the system to stochastically jump out
of the undesirable configuration. But once it does the quarter positioned configuration is
stable and does not revert back. The long runtime of the previous simulations meant the
system had sufficient time to transition but this is not the case here.

Clearly, this level of partitioning accuracy is not representative of the biological situa-
tion, where 95% of cells have partitioned ori already 20 min after initial separation, with
oris being separated at that point by an average distance of 33% of the cell length. We
wondered whether the poor partitioning observed in the simulations could be overcome
by the introduction of polymeric effects. Entropic repulsion is believed to play a role in
chromosome segregation and organization [166,169,231-233]. In particular, newly repli-
cated oris would experience the entropic repulsion of two closed loops. This is consistent
with experimental observations, in which duplicated oris (and indeed all loci) experience
an initially large segregation velocity [128,234]. Numerical studies have demonstrated
that the effective potential associated with such a repulsion has the approximate form of
a (half) Gaussian in the center-of-mass separation (Bohn and Heermann, 2011, 2010a).
We therefore incorporated entropic repulsion into the simulations by adding a repulsive
force between oris specified by such a potential. Important to note is that this force is
short-range and therefore, with a small enough value for the range, it does not affect the
desirable quarter-positioned configuration but rather acts to destabilize the undesirable
configuration having both oris associated to the same MukBEF focus.

This introduced two unknown parameters, the depth of the potential and its range.
We performed a sweep over these parameters and measured the partitioning accuracy 20
min after ori duplication. We found that entropic repulsion on its own (i.e. no preferential
loading) was not able to reproduce the observed behavior. Increasing the range of the
repulsion to 400 nm, which is likely unphysical, did lead to accurate partitioning but at
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the cost of oris that were too far separated, especially immediately after duplication. Fur-
thermore, as we observed previously, without preferential loading the ori can escape from
the MukBEF peaks resulting in weaker colocalization, as well as there being significant
noise in the both the number and position of MukBEF peaks. Repulsion does not change
these effects. As already noted, preferential loading on its own was also insufficient for
accurate partitioning.

On the other hand, combining preferential loading with short-range entropic repulsion
of ori, gave the properties of both and allowed the model output to move much closer to the
measured partitioning accuracy and relative separation and resulted in kymographs with
the experimentally observed behaviors (Fig. 10.5A-D). The short-range entropic repulsion
destabilizes the undesirable configuration so that system switches, in a timely manner, to
the quarter positioned configuration. As we saw for non-growing cells, preferential load-
ing stabilizes this configuration, keeping ori in close association with their corresponding
quarter-positioned MukBEF peak, thereby preventing both diffusive excursions and any
attempts to return to the undesirable configuration.

While the output looks qualitatively promising, we wanted to make a quantitative
comparison of ori dynamics. Therefore, we compared the simulated time-courses (using
the preferential loading and the range and strength of ori repulsion suggested from the
parameter sweep) with previous experimental results. To reduce the dimension of the
data and accommodate the variation in cell length and cell cycle duration, we examined
the dynamics of ori from the time of duplication (simulated data) or the time of initial
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Figure 10.5: Repulsion between newly replicated ori results in realistic simulations of growing
cells. A,B. Two example kymographs from individual simulations during exponential growth
(doubling time of 120 min). in the presence of a repulsive force between ori. Shown is the number
of MukBEF molecules (color scale) overlayed with the ori position (while lines). C,D. Average
kymographs of MukBEF C and ori position D. E.F. Segregation velocity (the step-wise rate of
change of the absolute distance between ori) E and partitioning accuracy F plotted as function of
the time since ori duplication (simulations, blue) or separation (experiment, green). Experimental
data is from Kuwada et al. [204]. Shading indicates 95% confidence intervals. The segregation
velocity has been corrected for growth. Simulation results in (c-f) are from 450 independent
simulations and use 10x preferential loading ratio and a repulsion range of 200 nm.
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ori foci separation (experimental data [204]). We found good agreement between two
cell length independent measures: the segregation velocity (the change of the absolute
distance between oris between time points) and the partitioning accuracy (Fig. 10.5E,F).
Thus, with the addition of entropic repulsion, the model is capable of reproducing the
observed ori dynamics in growing cells.

10.2.5 Directed movement of ori can arise from spatially-dependent looping
interactions

Our experimental data indicates, and our model assumes, that the ori experiences directed
movement up the gradient constituting a MukBEF focus. How could such an attraction
arise? It has previously been argued in the DNA relay and Brownian ratchet models of
partition complex positioning by the ParABS system [235-238] that the elastic nature of
the chromosome itself [239] can be harnessed to power directed motion of partitioning
complexes. The elastic fluctuations of the chromosome allow partitioning complexes to
detect local differences in ParA-ATP, a protein that tethers them non-specifically to the
nucleoid. The result is that complexes move in the direction of greatest ParA-ATP con-
centration. However, this idea has never been tested polymerically. This is critical for
migrating ori, since, unlike plasmids, the ori would experience an entropic counter force
due to the polymeric nature of the chromosome. Nevertheless, we wondered whether a
similar mechanism might underlie the biased movement of ori towards MukBEF foci.

In particular, we wondered whether directed movement of ori can arise due to the
DNA bridging activity of MukBEF [240]. It has recently been demonstrated in vivo
that MukBEF promotes long-range DNA interactions [47]. Given the association between
MukBEF and ori, it is plausible that MukBEF preferentially forms DNA contacts involving
the ori region. As such contacts would reduce the mobility of the DNA polymer, we would
expect that ori would colocalize with MukBEF foci. To study this possibility, we turned
to polymer simulations. We modeled the chromosome as a self-avoiding ring polymer
confined in a rectangular cuboid and used the dynamic loop model (Bohn and Heermann,
2010b) to mimic the formation of DNA loops (bridges) between ori (a specific monomer
of polymer chain) and distant DNA sites (other monomers) (see methods for details). As
it is not computationally feasible to explicitly include the reaction-diffusion dynamics of
MukBEF into the polymer simulations, we instead incorporated MukBEF implicitly via
a spatially dependent looping probability along the long axis of the cuboid (nucleoid)
representing the MukBEF concentration profile (Fig. 10.6A). We found that this resulted
in the ori being positioned to the middle of the nucleoid, where the looping probability was
greatest (Fig. 10.6B, blue line). This was in contrast to the uniform position distribution
observed when a uniform looping probability was applied (red line). We also found that
the positioning of ori affected the organization of the entire polymer, which took with up
a left-ori/ter-right configuration (Fig. 10.7), consistent with previous results on the effect
of a forced localization of ori [11].

We next asked whether the distribution of the ori arises as a time-average or whether
the movement of ori is directed. When we examined the velocity of the ori as a function of
the long-axis position, we found that the ori indeed experiences a restoring velocity towards
mid-cell i.e. directed movement (Fig. 10.6C). We envisage this working as follows. On
a short timescale, the ori fluctuates about its current “home” position. This allows it to
locally sample the spatially-varying looping probability. It is then most likely to form a
loop with another monomer in the direction in which the looping probability is greatest i.e.
the direction of greatest MukBEF. The polymer subsequently relaxes, the ori is released
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Figure 10.6: Directed movement of ori can arise from spatially-dependent looping interactions.
A. A diagram illustrating how the elastic fluctuations of ori allow it sample the spatial looping
probability distribution. It is therefore more likely to form a loop with a locus that is closer
to mid-cell, where the probability of looping, p, is higher. B. Probability density of relative
ori position along the long axis of the cuboid (aspect ratio 4:1) with (blue) and without (red)
a spatially-varying looping probability (a Gaussian centered at 0 with standard deviation 0.1 in
units of long-axis length; the looping probability at 0, pmax, is 0.02). C. The mean step-wise ori
velocity along the long axis as a function of relative position. Error bars indicate standard error.
In B and C, the ori position was read out every 50000 Monte Carlo time-steps (MCS) and data is
from 50 independent simulations with approximately 10000 data points from each.

to a new “home” position and the cycle repeats. In this way, elastic fluctuations of the
polymer power the movement of ori up the gradient in the looping probability. Thus,
directed movement of ori up the MukBEF gradient can plausibly arise due to a MukBEF-
mediated, spatially-varying looping probability.

Finally, we examined how spatially-dependent looping affects chromosome segregation
and the quarter positioning of duplicated oris. We simulated two chromosomes, initially
overlapping with their oris at mid-cell, in the presence of a bi-modal looping probability
distribution (with a peak at each quarter position). In the absence of looping, entropic
repulsion ensures that the oris, along with the chromosomes themselves, are segregated
(through not positioned [166]. However, we expected that looping of oris at the quarter
positions would accelerate this separation. Indeed, we found this to be the case. Looping
had a positive effect on ori segregation (Fig. 10.8D): the greater the looping, the faster
ori were segregated. Furthermore, the ori are not just segregated but are positioned by
the spatially varying looping probability to opposite quarter positions along the long axis
of the cell in the same way as for the single chromosome case (Fig. 10.8E). Similarly, we
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Figure 10.7: Positions of other loci. Probability density of relative ori (0°), L (-90°), R (+90°),
and ter (180°) position along the long axis of the cuboid in the presence of a spatially-varying
probability for ori to forms loops as in Fig. 10.6B. L. and R are generally positioned at the ends
of the cuboid, while the ter is positioned roughly at mid-cell, though with a substantially broader
distribution than ori. Data is from 50 independent simulations. Results are consistent with the
histograms (from a single simulation) of Junier et al. [11], in which the ori is localised to mid-cell
by an imposed strong harmonic potential.

found that the oris experience an effective restoring force around their respective quarter
positions (Fig. 10.8F). The strength of this attraction (the slope of curve) increased with
the frequency of looping. Note that unlike our stochastic simulations, we do not need to
add repulsion between duplicated oris — entropic repulsion is a natural consequence of the
polymer dynamics. Overall, these results indicate that a spatially-varying probability for
ori to forms loops with other DNA (nominally due to the localized action of MukBEF)
leads, in the manner of a DNA relay, to directed movement of oris to the locations where
the probability is greatest, i.e. to the locations of MukBEF foci and, furthermore, that
this can accelerate ori segregation.

10.3 Discussion

In this work, we have presented a quantitative explanation for positioning of the chro-
mosomal origin of replication in E. coli. By analyzing the positioning and dynamics of
ori and MukBEF foci in wild-type cells (Fig. 10.1), we first showed that ori are attracted
towards MukBEF foci, as has been previously suggested [14,211]. We have recently argued
that the positioning of MukBEF foci can be explained by a stochastic Turing and flux-
balance mechanism [212]. Here, we incorporated ori and its interaction with MukBEF into
this model and showed how self-organized MukBEF can position origins to their observed
mid-cell and quarter-cell positions.

To formulate the model, we needed to specify a particular ansatz for the nature of
MukBEF-ori relationship. Motivated by SMC in other bacteria [219] and our previous
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Figure 10.8: Directed movement of ori can arise from spatially-dependent looping interactions.
A. The mean relative position of oris along the long axis of the cuboid during segregation. Simula-
tions were initialized with two overlapping polymers with the ori monomers at the middle position.
We used a looping probability distribution (black line) with the shape of the sum of two Gaussians
centered at the quarter positions with standard deviation 0.1 in units of long-axis length. Results
for different values of the looping probability at the quarter positions, pmax, are shown. Data is
from 500 independent simulations read out as in C. Shading indicates the standard error. B.
Probability density of relative ori positions in simulations of two polymers described in D after
equilibration i.e. the polymers have segregated to opposite ends of the cuboid. C. The mean
step-wise ori velocity for one of the two segregated polymers. This polymer is confined to the left
side of the cuboid. The ori experiences a restoring velocity to the approximate -1/4 position. The
right half of the curve is due to infrequent excursions of the ori into the other half of the cuboid.
The shaded region indicates standard error.
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computational results [212], we assumed that MukBEF is preferentially loaded onto the
DNA at sites within the ori. We found that the resultant feedback from ori to MukBEF led
to robust ori partitioning. Preferential loading stabilizes the desirable quarter-positioned
configuration, preventing stochastic switching to the undesirable configuration having both
oris associated to the same MukBEF focus (Fig. 10.9A). In essence, preferential loading
leads to a non-trivial mutual attraction between MukBEF and ori that results in robust as-
sociation, positioning and partitioning of oris as an emergent property. We determined the
ori drift and diffusion rates by fitting to the experimental ori velocity profiles (Fig. 10.2F).
This also lead to excellent agreement with other experimental measurements that were not
used in the fitting, namely the distributions of ori positions (Fig. 10.2E) and the MukBEF-
ori separation distance (Fig. 10.4E), thereby providing further quantitative support for the
model. Additionally, we found evidence of the mutual attraction between MukBEF foci
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Figure 10.9: Preferential loading and entropic repulsion together lead to the observed ori dy-
namics. A. Schematic illustrating the effect of preferential loading of MukBEF at ori in the
simulations of non-growing cells. In the presence of preferential loading ori (red) and MukBEF
foci (blue) are strongly associated with both each other and the quarter positions. This acts to
stabilize the desirable correctly partitioned configuration (bottom) over the un-partitioned one
(top). In the absence of preferential loading, both configurations have equal stability (are equally
likely). B. Short-range entropic repulsion promotes the timely separation of newly duplicated
ori. Their separation promotes splitting of MukBEF foci. MukBEF-ori then move together to

opposite quarter positions with preferential loading promoting their association and the stability
of the quarter-positioned configuration.
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and ori. MukBEF foci were found to be attracted to ori to a similar degree as their
attraction to mid-cell (Fig. 10.1E), consistent with what we observed in our simulations.

The model could also reproduce the correct ori dynamics of a growing cell. This
required adding entropic effects [166] to the model. Preferential loading and short-range
entropic repulsion are individually not sufficient for both timely and accurate segregation
and positioning. However, combined, they give very good agreement with the observed
dynamics (Fig. 10.5). The repulsion between newly duplicated oris is needed to push
the system out of the undesirable configuration immediately after ori duplication but is
not required for the existence, stability or high colocalization of the desirable quarter-
positioned state (as was seen in simulations of long cells without repulsion) (Fig. 10.9B).
These properties are the result of preferential loading and the mutual interaction between
oris and self-organizing MukBEF foci.

Supported by our experimental results, the model assumes that ori moves up the Muk-
BEF gradient. What is the physics underlying this biased movement? Since MukBEF can
bridge distant regions of the chromosome, it is conceivable that the MukBEF-ori relation-
ship, however it is mediated, leads to a higher probability for MukBEF to form bridges
between ori and other regions of DNA than for other genetic loci. Using polymer simu-
lations, we showed that, combined with the elastic fluctuations of DNA, this can result
in directed movement of ori up the self-organized MukBEF gradient (Fig. 10.6), similar
to the DNA relay model [237,238] proposed for ParABS-based positioning. However, the
situation here is different in that the protein gradient is not generated entirely by the ori
itself (partition complex in the case of ParABS). In this sense, it is similar to the proposed
bulk segregation of chromosomes by membrane-based protein gradients [170]. The pro-
posed mechanism leads to directed movement of oris to the positions of greatest looping
(bridging) probability - the middle or quarter-cell positions according to the distribution
of MukBEF, as well as accelerated entropic segregation of duplicated ori.

It is interesting to compare our results to a previous study of how macro-domain
formation and positioning affect chromosome organization [11]. It was found that a
macrodomain formed by spatially independent condensation of the ori region led to it
being pushed to the poles of the cell. The authors therefore needed to additionally im-
pose the mid-cell localization of the ori macrodomain. In our case, the mid-cell location is
marked by MukBEF and the increased looping that it induces suffices to keep the ori region
at that location. Since MukBEF foci are self-positioned (as explained by our stochastic
model), no external determinants of location are imposed.

10.4 Predictions

Our model assumes that MukBEF is loaded onto the chromosome at positions within the
ori region. However, there are other plausible hypotheses for the MukBEF-ori relationship.
In general, we expect that any relationship that induces a mutual attraction between
MukBEF foci and ori would result in similar dynamics. Indeed, initial simulations have
indicated one possibility is that the ori region acts as a “stop” site for translocating
MukBEF complexes. Therefore, the fundamental prediction of our model is not necessarily
that MukBEF is loaded at sites within the ori region, as for SMC, but rather that whatever
the nature of the MukBEF-ori relationship, it is such that it leads to an effective mutual
attraction between ori and MukBEF foci.

In any case, the specificity of ori must be specified, directly or indirectly, by some
sequence (or sequences) within the ori region. We know that the actual site of replication
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initiation, oriC, is not responsible because moving it to another location on the chromo-
some does not affect ori positioning [41]. If this unknown “centromeric” sequence were
inserted into a plasmid lacking a partitioning system, then we would predict that the
resulting plasmids would colocalize with MukBEF foci just like the ori, and thereby be
maintained in the absence of their own partitioning system. However, the challenge lies
in identifying the centromeric site as it may be some distance (tens of kb) from oriC as is
the case for the parS sites in B. subtilis.

The focus of this work was on ori positioning in slow-growing cells. However, an
important question and one about which has received comparably little attention, is how
ori are positioned during faster growth in which cells have multiple replication forks.
Youngren et al. have examined the positioning of several genetic loci for the case of
four replication forks, i.e. two to four ori [233]. They found that cells are born with two
quarter positioned ori, that after replication, move to the quarter positions of each cell half.
While polymeric effects and bulk chromosome segregation likely play an important role in
this behavior, we nonetheless wondered whether our simplified model could recapitulate
these results. Taking into account the higher copy number of MukBEF in faster growing
cells [241], we found very consistent ori dynamics (Fig. 10.10). At birth, the two ori are
quarter positioned, while after replication they migrate to the quarter positions of each
cell half. Similar to the slow growth case, we observed that ori and MukBEF remain in
tight association and MukBEF splitting is coincident with ori separation, so that there are
approximately as many MukBEF foci as ori. This behavior requires the aforementioned
higher copy number. Without it, the number of MukBEF is not substantially different from
the slow-growing case and hence correct positioning was not observed. These predictions
could be tested in the future by examining MukBEF in these cells as well as the effect of
modulating MukBEF expression on the number of foci and on ori positioning.

10.5 Outlook

Overall the agreement with the experimental data is very promising given the simplistic
nature of the model and that we did not perform a systemic fitting of the parameters to
the experimental data (we fit only the ori-related parameters — see methods). Neverthe-
less the depth of the comparison is beyond what has been achieved previously for origin
positioning in other bacterial systems. Hence, we suggest that this approach warrants
further consideration and that protein self-organization may have an unappreciated role
in chromosome organization.

More generally, the idea of dynamically controlling the positioning and splitting of a
Turing pattern is interesting from a mathematical point of view and may be applicable to
other unrelated systems. Indeed, a major aspect of the “robustness problem” of Turing
patterning is the sensitivity of splitting to model parameters, domain size and stochastic
effects [242]. The non-trivial coupling to ori in our model, as well as the self-positioning
nature of the pattern [212], goes some way towards mitigating this sensitivity.

As noted earlier, the cubic reaction present in our model leads to a compartment-size
effect in dimensions higher than one. One way to overcome this limitation would be to
use particle-based simulation methods, which have recently been extended to higher order
reactions [243]. However, this would likely involve a substantial increase in computation
time, which would make it more challenging to perform multiple runs and parameter
sweeps like we have done here. It may rather be possible to reformulate the model in
terms of only bimolecular reactions. This would not only be more chemically realistic only
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Figure 10.10: The model qualitatively reproduces the observed ori dynamics during multi-fork
replication. An example kymograph showing multi-fork replication. Results qualitatively agree
with Youngren et al. [233]. All parameters are as in Fig. 10.5, except for the total number of
MukBEF molecules, which was increased from 520 nM to 1000 nM, broadly in line with previous
measurements [241].

but would also allow for higher-dimension lattice based simulations.

For future work, combining particle and polymer simulations, at least to whatever
extent is feasible, may provide a deeper understanding of the system. In particular, Muk-
BEF has a major role in chromosome organization and facilitates long-range DNA interac-
tions [47]. Like other SMC complexes, MukBEF may act by extruding loops of DNA [47],
and/or be involved in stabilizing them [244]. Furthermore, MatP, which binds to matS
sites in the replication terminus region, interacts with MukBEF, displacing it from that
region of the chromosome [201] and thereby restricting long-range DNA interactions be-
tween the terminus region and other regions of the chromosome [47]. Both effects may
help position this region at mid-cell, while simultaneously encouraging the co-localization
of ori with MukBEF [201]. Thus, the role of MatP may need to be incorporated into future
models. Lastly, with sufficient computing power, a fitting over more model parameters
should be possible and may allow the quantitative evaluation of different hypotheses for the
MukBEF-ori interaction. Overall, we envisage that the study of protein self-organization
in the context of chromosome dynamics has a promising future.

10.6 Materials and Methods

10.6.1 Review of the Model

We briefly summarize the underlying model for MukBEF self-organization [212]. The
general model scheme consists of three “species” (Fig. 10.2A). Species v and v exist on the
surface (the nucleoid), while species w exists in the bulk (the cytosol). Species v diffuses
slower than u. In the context of MukBEF, v is the basic functional complex, the ATP-
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bound dimer of dimer, in a state in which it has entrapped multiple strands of DNA and
is therefore relatively immobile. Species u represents the dimer of dimers in state in which
it is non-specifically associated to DNA but without being immobilized e.g. it has not
entrapped any DNA strands. These two species interconvert with the latter becoming the
former at a basal rate a and cooperatively at a rate 3, while the former becomes the latter
at a rate . The cytosolic state w is the ATP-unbound dimer state which converts to and
from the DNA associated states with linear rates € and § respectively. The differential
equations describing the model are given in Fig. 10.3A. Parameter values are specified
below.

This system exhibits Turing pattern formation i.e. the differing diffusion rates and the
reactions of the system are such that a diffusion-driven instability can occur that leads to
the spontaneous formation of spatially varying concentration profiles. The two states u and
v generate the Turing pattern while the cytosolic state w is responsible for positioning the
pattern. The latter is required to be well-mixed and it is so because it interconverts with
the Turing species u and v on a sufficiently slow timescale. Note that more generally this
state is not required to be cytosolic, only well-mixed. The kymographs and distributions
shown in this work are of v (which we simply refer to as MukBEF). See [212] for further
details and a detailed justification of the model.

10.6.2 Stochastic Simulations

Stochastic simulations were performed in C++. We used the Gillespie method (also called
the Stochastic Simulation Algorithm) [245,246] to obtain exact realizations of the Reaction
Diffusion Master Equation (RDME) as described previously [212] but with some changes
for efficiency and the addition of simulated ori. We replaced the binary tree search of the
enhanced direct method [247] with a 2D search as proposed by Mauch and Stalzer [248]
and switched from 32-bit uniform random numbers (using the Ziggurat method) to 64-bit
numbers (using std::mt19937_64) to ensure enough significant digits to accurately sample
reactions occurring with very low relative rates (namely, ori diffusion). As before, the
spatial domain (the long axis of the cell) is divided into discrete compartments, each
having a width of ~ = 0.1 m and between which the species can diffuse (Fig. 10.2C).
The cytosolic state is well-mixed and is therefore treated implicitly. The system state was
read out every 60s for consistency with the experimental procedure. For simulations with
growth, the simulation was paused after every time-duration that corresponded to growth
by one compartment. An additional (empty) compartment was then inserted at a random
position and the volume and total number of molecules (via the cytosolic fraction) were
increased, maintaining the same overall concentration.

The simulations were extended from those of the previous work by the addition of
ori. We treated the ori as an additional diffusing species (with only one to four copies as
appropriate) and implemented its biased diffusion up the MukBEF gradient, its duplication
and its repulsion from other ori as follows.

Diffusion of ori Subject to the MukBEF Gradient

We assume that MukBEF is linearly related to the potential surface experienced by ori.
This is the simplest choice and is supported by the agreement of the resultant linear
velocity profile with the experimental one. Furthermore, since any symmetric potential
is approximately quadratic around its minimum (up to third order due to symmetry), we
would in any case expect a linear velocity profile and since we have the best statistics
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near the minimum (the MukBEF peak), we would likely not be able distinguish other
relationships between the MukBEF concentration and the potential it generates.

Given a linear relationship, the drift ori experience is based on the derivative of the
local MukBEF concentration. We use jump rates (the rate at which ori jump between
neighboring compartments, illustrated in Fig. 10.2C) derived by Wang, Peskin and El-
ston [249]. The forward and backward jump rates from compartment i to i + 1 and i — 1
respectively are

Doy iy
Fiit1= 72 1~ et (10.1)
Dori i1
e SR — (10.2)
where the dimensionless quantity a;; = “ (th_yi) is, up to a factor, the difference

in the MukBEF concentration between the compartments ( is the number of molecules
of slowly diffusing MukBEF species in compartment i), Do is the diffusion constant
and p is the drift parameter determining the strength of the attraction up the MukBEF
gradient. We use the difference in the slowly-diffusing species only as MukBEF clusters
have been shown in vivo to consist only of this state (Badrinarayanan et al., 2012b).
This form for the jump rates respects detailed balance since the exchange between two
neighboring compartments balances i.e. Fj;11 = Bj;1,;. The derivation of these rates
relies on the assumptions that, within individual compartments, the probability density
for ori is at steady state and that the MukBEF gradient is approximately linear. Both of
these requirements can be satisfied for sufficiently small compartment widths. However, it
is not feasible to decrease the compartment width much below 0.1 ym due to the increased
computationally cost. Yet, the often sharp MukBEF profile (at a fixed moment in time)
suggested that shorter compartment widths might be required. We therefore introduced
sub-compartments within every compartment but only for ori positions. This approach
has previously been applied to stochastic Turing patterns [250] but here we apply it to
a “non-Turing” species (ori). Each compartment was divided into an odd number of
sub-compartments and the MukBEF concentration was linearly interpolated across sub-
compartments. The jump rates between sub-compartments were then defined as above.
Performing simulations for different numbers of sub-compartments, we found that the
apparent diffusion constant and drift rate (see below and Fig. 10.2) stabilized with greater
than approximately 5 sub-compartments. The apparent diffusion was approximately 40%
higher without sub-compartments. Since higher numbers of sub-compartments carried
very little computational cost, we chose an arbitrary but relatively high value of 21 sub-
compartments for the simulations presented in this work in order to be confident that
there are no sub-compartment-size dependent effects.

Duplication of ori

The timing of ori replication was chosen randomly in each simulation by picking a dupli-
cation length from a normal distribution with mean 3 m and coefficient of variation 0.16
(based on the distribution of ori-foci splitting length of the data in Kuwada et al. [204]). As
we use a fixed growth range (2.5-5 ym) and doubling time (120 min), we truncate the dis-
tribution to this range. This duplication length is then converted to a duplication time via
the exponential relationship between cell length and time. The simulation is paused when
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it reaches this time, the ori is duplicated (remaining within the same sub-compartment)
and the simulation continued. Note that we do not mimic cohesion of newly replicated
stands so that what we refer to in the simulation as ori duplication actually more closely
corresponds to initial ori separation in vivo, which occurs 10-15 minutes after replication
initiation.

ori repulsion

As discussed in the text, newly duplicated ori are likely to experience, for entropic reasons,
a repulsive force between them [169]. Numerical studies have shown that the corresponding
potential has the qualitative form of a Gaussian in the center-of-mass separation (Bohn
and Heermann, 2011, 2010a). We assume that we are in the overdamped regime such that
the separation velocity vs due to this force is proportional to the force. We therefore have
the form v, = kde_%(g)Q, where d is the separation between ori, ¢ is the range and k is
the strength.

Parameters

All parameters of the core MukBEF model are given in table 10.1 and are as previously de-
scribed and justified [212], except for the total species concentration C, which is increased
by 30% to 520 nM but which is still within the experimentally justified range [210,241].
This was done for compatibility of the MukBEF splitting time with the lower range of cell
lengths used in this work (2.5 ym - 5 pm), which were chosen to more closely match the
range of the experimental data in Kuwada et al. [204]. The cell volume (V = 1.25 x1071°
L at birth (2.5 pm) ) was taken to scale linearly with length and is required to convert the
parameter (3 to the appropriate dimensions for use in the stochastic simulations. With the
above total concentration and cell volume, there are 391 simulated molecules at birth. The
remaining (ori-related) parameters were chosen by comparison with experimental data as
described below and are given in table 10.1A,B,C.

Initialization of Simulations

Initial concentrations were set to the integer homogeneous configuration closest to the
deterministic homogeneous state. Unless stated otherwise, single ori were initially placed
at mid-cell, while in simulations starting with two ori, they were placed at the quarter
positions. Simulations were first run for 30 min to equilibrate and then read out every 1
min (chosen to match the experimental data).

10.6.3 Apparent ori Diffusion Constant and Drift Rate

To be able to quantitatively compare the experimental and simulated data, we needed
quantitative descriptors of the ori dynamics. We compared both data sets to a theoretical
model of particle diffusion in a harmonic potential U = % f2? over an infinite 1D domain.
Given a particle at position xg, the probability density that it is at position = at time 0t

later is [251]
p(z,0t|z0) = |/ % exp [— fégT (:1: - :er_‘;t/T)ﬂ , (10.3)
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Parameter Value
Common parameters

o} 0.5s!

i 1.5 x 1074 nM~2 57!

ot 3.6s71

J log(2) / 50 s ¢

€ 34

D, 0.3 pm? s~ !

D, 0.012 pm? s~!

V (volume at length 2.5 pm) 1.25 x 1071 L

C 520 nM

Additional parameters

Do 5.4 x 1075 pym? s7!
A.

K 0.026 pym

Do 5.1 x 1075 pm? =1
B.

K 0.052 pm

k 1s7t
C.

o 200 nm

Table 10.1: Additional parameters: A. obtained by fitting the model without preferential loading
to the data of Kuwada et al. and used in Fig. 10.2D, Fig. 10.4, B. obtained by fitting the model
with 6x preferential loading to the data of Kuwada et al. and used in Fig. 10.2E,F, Fig. 10.5, C.
(together with those in (B)) used in Fig. 10.5 for ori repulsion with 10x preferential loading.
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where S =1 — e 2t/7 and 7 = ]j%. From this, it is straightforward to calculate the
expected value and variance of the step-wise velocity v := gﬁgfo :

e—&t/T -1 P
Ep) = —5 w0~ —70 (10.4)
Dt —98t/r 2D
Var[v] = 52 (1 20t/ ) ~ S (10.5)

where the second equality holds for 26t/7 < 1 (the full expression is used when fitting).
Note the expected value of the step-wise velocity depends linearly on position, while the
variance is independent of position. This is observed in both experiments and simulations
close within the neighborhood of the ori “home” position. We therefore use the measured
slope of the velocity relationship and its variance to determine an apparent diffusion
constant D, and drift rate d, = % = fk%l. Linear fitting (Fig. 10.2) was performed using

the fit function in Matlab with the inverse square of the standard errors as weights.

10.6.4 ori Drift and Diffusion Parameters

To search for parameter values for the ori diffusion constant (Do) and the strength of
attraction towards MukBEF (k) that gave agreement between the measured apparent
diffusion constants (D,) and drift rates (dg,), we performed simple parameters sweeps.
For the initial fitting, we chose Dy to be a percentage of the experimentally measured
diffusion constant D,, ranging from 70% to 110% in 5% intervals, while the drift parameter
p was ranged from 0.5 to 2.5 times a nominal value of 0.026 pum (in steps of 0.5). The
combination giving the best agreement was Doy = 0.9 D, = 5.4 x 107° um?s~! and p =
0.026 pm. These values were used for the simulations shown in Fig. 10.2D, Fig. 10.3
and Fig. 10.4. To produce Fig. 10.2E,F, we performed the same parameter sweep in the
presence of 6x preferential loading and found that the best agreement was obtained with
Deoi = 0.85Dg = 5.1 x 1072 um?s~! and p = 2 x 0.026 pm. It should be noted that given
the stochastic nature of the simulations, even with 100 runs of 600 min each, there was
quite some variability in the data. These parameters were used for subsequent simulations
with growth.

10.6.5 Entropic Repulsion of ori

We performed a parameter sweep of the strength and range of the ori repulsion and the
preferential loading ratio. The range o was varied over the values 50, 100, 200, 300,
400 nm, while the strength k was varied over 0.2, 1, 5, 25, 125 s~!. We performed 450
independent simulations of a growing cell as described and measured the partitioning
accuracy and relative separation of ori 20 min after ori duplication. We repeated this for
different preferential loading ratios.

10.6.6 Polymer Simulations

In order to investigate the interplay between MukBEF and ori positioning within the nu-
cleoid, we used a coarse-grained lattice polymer (Bohn and Heermann, 2010b). Within
this framework, the DNA is described as a self-avoiding ring polymer that is confined in
an elongated cuboid with an aspect ratio of 4:1 comparable to that of the E. coli nucleoid.



10.6. Materials and Methods 143

Using a ring polymer composed of 464 monomers, we chose a lattice of size 22 x 22 x 88
that leads to a system density (monomer-to-volume ratio) of around 10%. Dynamic loop-
ing interactions were enabled between one specific monomer (ori) and distant monomers.
For simplicity, we did not include loop formation between any two arbitrary sites but we
do not expect this to change the nature of our results other than giving a homogeneous
background of looping events. The looping probability is set to be dependent on the
spatial position of ori along the long axis of the nucleoid and is drawn from a Gaussian
distribution centered around mid-cell with a standard deviation of 8.8 lattice units. A
lifetime of 10000 Monte-Carlo steps (MCS) was assigned to each loop. 50 independent
Monte-Carlo trajectories were used to sample the dynamics of the system. In each sim-
ulation, 10000 polymer conformations were recorded, one every 50000 MCS. The initial
position of ori was varied in each simulation in order to uniformly cover the long axis of
the cuboid. In the simulations of the two chromosomes, each chromosome was modeled
as a ring polymer composed of 232 monomers in a cuboid of the same size. Hence, the
system density of 10% stayed the same compared to the single-chromosome simulations.
The spatially-varying probability for looping between both either of the two oris and a
distant monomers of any of the two polymers were drawn from the superposition of two
Gaussian distributions centered around the two quarter positions of the cuboid with a
standard deviation of 8.8 lattice units. 500 independent Monte-Carlo trajectories were
used to sample the dynamics of the two polymer system. The simulations were initialized
with two overlapping polymers with the two oris at the center of the cuboid.

10.6.7 Experiments

Strain SN192 (AB1157 lacO240-hyg at oril, tetO240-gen at ter3, Plac-lacl-mCherry-frt at
leuB, Plac-tetR-mCerulean-frt at galK, mukB-mYPet-frt) [201] was grown in M9 minimal
medium supplemented with 0.2% glycerol and required amino acids (threonine, leucine,
proline, histidine and arginine—0.1 mg ml-1) at 30 °C. Cells were grown O/N, diluted 1000-
fold and grown to an Aggp of 0.05-0.2. Unlike longer cells with two (quarter positioned) ori
foci, cells with a single (mid-cell localized) ori focus, can be analyzed together in absolute,
rather than scaled, coordinates by simply measuring foci positions relative to mid-cell (as
we did in Fig. 10.2 for the dataset of Kuwada et al. [204]). We therefore, unless otherwise
indicated, treated cells with DL serine hydroxamate (SHX) (Sigma-Aldrich, S4503) to a
final concentration of 1 mg/ml. During the treatment, cells do not initiate a new round of
replication, but complete any ongoing rounds [216]. To allow sufficient time for replication
to complete to termination, cultures were grown for 3 h in the presence of SHX (generation
time ~170 min). Finally, cells were spotted onto an M9-glycerol 1% agarose pad with the
growth medium on a slide for imaging.

Time-lapse movies were acquired on a Nikon Ti-E inverted fluorescence microscope
equipp-ed with a perfect focus system, a 100 x NA 1.4 oil immersion objective, an sC-
MOS camera (Hamamatsu Flash 4), a motorized stage, and a 30 °C temperature chamber
(Okolabs). Fluorescence images were automatically collected at 1-min intervals for 56
minutes using NIS-Elements software (Nikon) and an LED excitation source (Lumencor
SpectraX). Exposure times were 150 ms for mCherry, and 100 ms for mYPet using 50%
LED intensity. Phase contrast images were also collected at 1-min intervals for cell seg-
mentation.

Alignment of frames, cell segmentation and linking of cells in consecutive frames were
performed using SuperSegger [252]. To ensure that we considered only cells with a single
ori, we subsequently filtered the dataset as follows. For any cells that had two ori foci on
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any frame, we kept only the frames before two foci were first detected. This reduced
the dataset of SHX treated from 1431 to 952 cells. We then used only frames with
exactly one ori focus and one MukB focus. This resulted in 31820 data points (cell-
frame combinations). Similar results were obtained if we further restricted the data set to
cells of similar length. The same data was used to generate the step-wise velocity profiles
(Fig. 10.1D,E) but as two consecutive frames are required this reduced the data set to
26226 data points. Linear fitting (Fig. 10.2) was performed using the fit function with the
inverse square of the standard errors as weights.
Analysis, fitting and plotting were performed in MATLAB (Mathworks Inc.)
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Chapter Summary

DNA double strand breaks (DSB) are the most severe damages in chromatin induced by
ionizing radiation. In response to such environmentally determined stress situations, cells
have developed repair mechanisms. Although many investigations have contributed to a
detailed understanding of repair processes, such as homologous recombination repair or
non-homologous end-joining, the question is not sufficiently answered, how a cell decides to
apply a certain repair process at a certain damage site, since all different repair pathways
could simultaneously occur in the same cell nucleus. One of the first processes after DSB
induction is phosphorylation of the histone variant H2AX to vYH2AX in a given surround-
ings of the damaged locus. Since the spatial organization of chromatin is not random, it
may be conclusive that the spatial organization of YH2AX foci is also not random and
contributes to accessibility of special repair proteins to the damaged site and thus to the
following repair pathway at this given site. The aim of this article is to demonstrate a
new approach to analyze repair foci by their topology in order to obtain a cell indepen-
dent method of categorization. During the last decade, novel super-resolution fluorescence
light microscopic techniques have enabled new insights into genome structure and spatial
organization on the nano-scale in the order of 10 nm. One of these techniques is single
molecule localization microscopy (SMLM) with which the spatial coordinates of single
fluorescence molecules can precisely be determined and density and distance distributions
can be calculated. This method is an appropriate tool to quantify complex changes of
chromatin and to describe repair foci on the single molecule level. Based on the pointillist
information obtained by SMLM from specifically labeled heterochromatin and YH2AX foci
reflecting the chromatin morphology and repair foci topology, we have developed a new
analytical methodology of foci or foci cluster characterization, respectively, by means of
persistence homology. This method allows for the first time a cell independent comparison
of two point distributions (here the point distributions of two YH2AX clusters) with each
other of a selected ensemble and to give a mathematical measure of their similarity. In
order to demonstrate the feasibility of this approach, cells were irradiated by low LET
radiation with different doses and the heterochromatin and yYH2AX foci were fluorescently
labeled by antibodies for SMLM. By means of our new analysis method we were able to
show that the topology of clusters of YH2AX foci can be categorized depending on the
distance to heterochromatin. This method opens up new possibilities to categorize spatial
organization of point patterns by parameterization of topological similarity.

11.1 Introduction

DNA double-strand breaks (DSBs) can be induced by ionizing radiation and are known
to be the most severe damages in the genome of a cell nucleus. The amount of DSBs
simultaneously occurring is dependent on the radiation dose, the LET of radiation, the
cell type, the radio-sensitivity of the cell, etc. Recent investigations have shown that DNA
damaging is accompanied by an instant spatial reorganization of chromatin at and around
the damaged site [253-255] and an activation of the repair machinery. One of the first steps
of chromatin modification after DSB induction is phosphorylation of the histone variant
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H2AX [256] to yYH2AX within a given neighborhood of the damaged site [257-259]. Such
foci seem to “tag” the locations of damaged DNA for the recruitment of proteins that
are starting and processing the follow-up repair [260,261]. At that point a decision about
the next procedure has to be made by the cell [262]. Several factors like cell cycle state,
functional activity of genes, break position along the DNA sequence, temporal state of
DNA compaction, number of simultaneously occurring DSBs, etc., are known to influence
this decision and the consequences for a cell nucleus and the genome [262-264].

At a very first glimpse, the cell has to decide between fast or error-free repair for each DSB
within the first minutes after damaging by irradiation. One choice may be homologous re-
combination repair (HRR) [263], which is a rather slow but error-free repair process. HRR
needs an intact DNA sequence template of the homologous chromosome, along which a
complementary strand can be reconstructed. In contrast to HRR, non-homologous end
joining (NHEJ), a very frequently used repair process, may cause errors in the DNA base
sequence but works much faster than HRR. Several specific proteins process the broken
DNA ends by strand resection and re-connection of the broken ends at appropriately
complimentary bases. HRR and NHEJ are the most often chosen pathways (for review
see [264,265]). HRR may be sometimes suppressed within repetitive DNA units if the
damaged DNA side is not relocated to the heterochromatin periphery. In these cases
single-strand annealing (SSA) takes place instead [266]. It has been also shown that espe-
cially in cases of irradiation at higher doses (> 2 Gy) and consequently more DBSs, the
conventional NHEJ (c-NHEJ) may fail at some breakage sites and an alternative NHEJ
process (a-NHEJ) is applied, which is a slow and error-prone repair process [265,267].
On the one hand, HRR may be the first choice and preferentially used to keep the genome
as much preserved as possible. Only if HRR is insufficient (e.g. due to too many DSBs at
higher doses) then NHEJ saves the situation since it is much faster. Recently, it has been
shown that in G1 resection dependent NHEJ is possible which seems to be different from
resection processes in HRR [268]. On the other hand in G2, most DSBs are repaired by
NHEJ. So some people belief that NHEJ is always the first choice and only in those cases
where NHEJ fails HRR saves the repair [269].

Each of these different repair processes requires a different cascade of proteins that are
time dependent recruited and decruited during the repair process and are responsible
for DNA strand end clipping and processing, end-to-end fixation, or correct sequence re-
association [270,271]. Although many steps of DNA strand processing and its relevant
proteins are known and the interaction of proteins during the different pathways are often
well understood, the question as to what makes up the cell’s decision for a certain path-
way at a certain damage site remains insufficiently answered. Considering all the major
factors that influence the repair pathway choice and the quickness of the cell response may
suggest a still unknown or not sufficiently understood central mechanism behind the path-
way choice. This mechanism should work at each damaged side individually. This means
that physical as well as topological parameters of the DNA strand break environment may
determine the repair pathway choice together with epigenetic conditions [260,261]. This
assumption has been recently supported by investigations showing that radio-sensitivity
can be modulated by chromatin remodeling in daughter cells of irradiated samples [272].
Assuming that the genome architecture and the architecture of repair complexes on the
micro- and especially on the nano-scale become important for a repair focus region, not
only novel techniques for a detailed analysis of spatial foci organization are required but
also methods to categorize foci or sub-foci (clusters) and to compare each focus/cluster
with each other independently of the cell or cell nucleus. Nano-scaled analysis has rea-
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soned several transmission electron and super-resolution light microscopic studies in order
to elucidate the spatio-temporal internal organization of repair foci and their chromatin
surroundings with molecular resolution [255,273-281]. Recently, it has been shown by
super-resolution light microscopy that YH2AX foci are built up by clusters that form
nano-foci with different repair activities [275,280] and that inside these nano-foci repair
proteins are well organized [275,276,281] whereas the chromatin environment is interact-
ing in a characteristic arrangement [280,282,283]. In addition, it has been shown that
after radiation exposure and DNA damaging, Alu heteroduplexes may undergo Alu/Alu
recombination into a single chimeric Alu element by NHEJ [284]. This may reason a dose
dependent accessibility of ALU-sequence specific oligonucleotides (17mer uniquely binding
to the ALU consensus sequence) as detected by SMLM [285, 286].

During the last years, it has been demonstrated that single molecule localization mi-
croscopy (SMLM) [287] is an appropriate technique to elucidate conformations of molec-
ular arrangements and their functional relevance in cell nuclei, cytosol, and on cell mem-
branes [253, 280283, 285, 286, 288-290]. An embodiment of SMLM [291] as being used in
this article, applies standard fluorescent dyes for specific labeling that can be switched be-
tween spectral “on” and “off” states [292,293] to spatial separation of molecules (“reversible
photo-bleaching”). From a reversible dark state, the fluorescent molecules randomly return
to the emission state and cause blinking events that can be separated from a continuously
fluorescent background. Fach position of an emitting fluorophore is represented by an
Airy disc and can precisely be located as the center-of-mass (barycentre) of such a disc.
This also allows the precise calculation of spatial distances between fluorescent molecules
in the 10 nm regime [286,294,295]. Using the matrix of the coordinates of fluorescent
tags, all acquired positions can be visualized by an artificial “pointillist”, super-resolution
image. In the images representing the point distribution, the effective resolution is only
depending on the localization precision [295]. Moreover, the images can also encode re-
sults of distance analysis evaluations or density measurements.

However, localization data sets (e.g. labeling molecules of YH2AX or methylation sides
of heterochromatin like H3K9me3) consist of tens or even some ten thousands of individ-
ual point coordinates and their visualization and analysis is a separate challenge, since
a point pattern does not automatically reveal a characteristic conformation or shape. In
that way SMLM data fundamentally differ from conventional microscope images. While
a conventional microscope provides an image with contours resolved with a scale of the
order of 100 nm, SMLM is only producing a coordinate matrix with the positions of the
fluorophores in the nanometer range. Such a pointillist representation requires a new ap-
proach to extract the relevant conformational information in such a way that the point
distribution is unequivocally transferred into a certain shape or better topology that may
be also maintained under different perspectives and different deformations. This requires
quantitative analysis using mathematical concepts.

Approaches for a quantitative point density, distance, or cluster analysis exist for SMLM
(275,280, 280,281, 285]. The analysis is restricted in scale to a certain order of magnitude
and does not consider shape deformation. Quantifications on several orders of magni-
tude (for example in the range of a few nanometers up to several hundred nanometers)
are hardly possible and cannot be easily compared according to typical characteristics.
In order to overcome these restrictions, a novel mathematical approach is presented here,
which analyzes SMLM data with methods of persistent homology [62]. This has the advan-
tage that both, the geometric and the topological properties of given point distributions
are considered [296] and a parameter-free quantification of the structural arrangement
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of a point distribution over several orders of magnitude is possible. Thus, the accuracy
achieved by state-of-the-art SMLM can be used not only for a point pattern analysis but
also for a structural analysis of molecular arrangements. The point distributions and thus
the underlying structures (e.g. heterochromatin distributions or yYH2AX foci/clusters) can
now be directly compared independently of a cell nucleus whereby both nano-scale and
micro-scale level differences are considered. Mors theory and set theory allow a quantita-
tive comparison of two point distributions and a categorization according to a similarity
measure. This higher degree of abstraction compared to image visualization achieves a
higher degree of information and functionally relevant insights.

In order to demonstrate the power of this new mathematical approach for SMLM data,
a proof of principle has been applied to analyze and categorize clusters of YH2AX re-
pair foci according to their structure and chromatin vicinity. The packaging degree of
the DNA has consequences for the repair process. This is especially true for the densely
packed heterochromatin because the damaged DNA has to be histone free for the repair
and must also be accessible for the repair protein complexes [297-299]. It has been shown
that DSBs in the heterochromatin region are usually be repaired at the border of hete-
rochromatic chromatin regions [253,254,266,300] whereby the methylation degree typical
for heterochromatin remains unchanged. Re-organization within heterochromatic regions
is necessary to make the damage accessible for repair proteins. Therefore the proximity to
heterochromatin was the parameter that was correlated to the internal topology by means
of the topological data analysis (TDA). The topological representation of each focus was
compared to each other and the degree of similarity was determined.

11.2 Results

In the following the mathematical approach is described with the aim to show the require-
ments for the YH2AX foci/cluster analysis.

11.2.1 SMLM Data Processing

The raw data obtained by SMLM consist of a stack of about 2000 image frames acquired in
a continuous time series. The blinking events registered above the fluorescent background
are used to compute the exact positions of the individual fluorophores. Tests during former
experiments [280, 281, 286] have revealed that the intensity of the maximum of a point
signal must be at least four times higher than the background intensity to get registered
as an event. The double of the average background intensity is subtracted from each
pixel. The intensity barycenter y and the associated standard deviation o of each signal
are determined using a two-dimensional Gaussian function f. Finally, the localization
precision Ap can be calculated that depends, among others, on the specificity and accuracy
of labeling, on the number of detected photons ¢; and the background intensity Np.
A more detailed description can be found in [285, 286, 290]. The results of the data
acquisition are matrices containing the coordinates for each measured fluorescent point
and the localization precision of each point. From such a matrix, data can be evaluated
and structures can be interpreted as well as a pointillist image can be produced. As being
an artificial image, results of data processing can also be used to code the image points.
In Fig. 11.1, representative images are shown comparing localization microscopy results
with microscopic visualization. Here, an example of an irradiated cell is shown. We also
had a look at untreated cells where only background or very few YH2AX clusters of the
same size as in irradiated samples are visible. It should be mentioned that for normal
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Figure 11.1: Microscopy images of H3K9me3 (green) and yH2AX (red) immunostaining in a
SkBr3 cell nucleus 30 min after irradiation with 1 Gy, 6 MeV photons. A. conventional widefield
microscopy image. B. SMLM image represented as a density image where the brightness of a
point refers to the number of next neighbor points. In the background the conventional widefield
microscopy image of YH2AX fluorescence is shown. The SMLM image is created from the coordi-
nate matrix where the pixel geometry and intensity is stored in pixel values. After determination
of the pixel size in nm, the coordinates and distances can be evaluated. In a fixed radius R around
each coordinate, it is determined how many further coordinates are within this radius. This value
is coded in the intensity of the coordinate point. In order to emphasize contiguous structures, each
coordinate with an assigned value greater than zero is the starting point of a Gaussian distribution
with a given sigma. The sum of all Gaussian distributions then represents the intensity distribution
of the Gaussian-filtered density image (example: pixel size = 10 nm/pixel, Radius R = 1000 nm,
Gaussian filter ¢ = 50 nm). C. Magnified insert from figure A. D. Magnified insert of figure
B. E. Figure C superposed by the standard localization image. This supposing image is directly
created from the localization data. In-homogeneities and sub-structures within the YH2AX cluster
are visible. Again a pixel size has to be determined. Here, every coordinate is starting point of a
Gaussian distribution with the localization precision as sigma (pixel size = 10nm/pixel).

light microscopy, the image is reflecting the visual impression whereby for SMLM, the
image is the result of data processing. This means that in SMLM data can be analyzed
without an image and thus data analysis is independent of any image and from procedures
of computer image analysis.

11.2.2 ~H2AX Cluster Recogpnition and Cluster Classification

SKBr3 is known being a cell line of increased radio-resistance with well separated yYH2AX
foci also after radiation treatment with doses of several Gy. It has been shown that such
foci can be separated into functionally relevant sub-foci or clusters of about the same
size independent from the dose applied [275,280,281]. This has also been found for the
cell nuclei analyzed here (see Fig. 11.2). Depending on the dose applied, the clusters
are relaxing during the repair time (for details see [280]). Therefore cluster formation in
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YH2AX foci was determined at 30 min post irradiation, i.e., at an early repair time, but
for different doses (see Materials and Methods).

A cluster analysis software was applied to the localization data of YH2AX foci. The
algorithm identifies points referring to a cluster within all the localization data according
to user-defined parameters that were iteratively determined. These parameters are the
minimum number of neighboring fluorescence signals within a defined radius around each
labeling point and this given radius. A labeling point is identified as a member of a
cluster if at least a minimum number of points are located within the predefined radius.
The remaining points are identified as outside cluster points (“noise-points”). If two
cluster points have a smaller distance than the given radius, they belong to the same
cluster. All points whose distance to a cluster point is smaller than the radius also belong
to the cluster. This cluster search algorithm is called “Density-Based Spatial Clustering
of Applications with Noise” (DBSCAN) [301]. In this case, this allows the identification
of yYH2AX-dense regions. Here, a radius of 200 nm and a minimum point number of 50
was used to identify “yH2AX clusters”. These clusters are not identical with YH2AX foci
obtained by diffraction limited wide-field imaging. It has been shown that the foci are sub-
divided into several sub-units which are compatible to the clusters described here [275,280].
Furthermore, the two parameters for the cluster recognition have been varied in order
to ensure that the results of the subsequent analysis discussed in the following are not
crucially dependent on this choice of parameters. Fig. 11.2 depicts boxplots of the YH2AX
cluster sizes of the respective irradiation doses.

After cluster recognition, the centers of the YH2AX clusters were computed with the
Surveyors Area Formula [302]. These centers were used as the center points of increasing
circular shells. The heterochromatin density in these shells was computed (Fig. 11.3)
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Figure 11.2: Boxplots of the YH2AX cluster sizes of the respective irradiation doses.
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(heterochromatin density equals the number of heterochromatin points per area of the
corresponding shell).

Based on the heterochromatin density distribution tagged by antibodies against the
histone modification H3K9me3, the yYH2AX clusters obtained from several cell nuclei ex-
posed to different radiation doses were divided into heterochromatin-associated ones (HC)
and non-heterochromatin-associ-ated ones (nHC) clusters. For this purpose, the local
maxima of the density distribution were determined (see also Fig. 11.3B); thereby the ex-
pansion of the circular shells necessary for determination of the density distribution affects
this classification. A step size being too small (e.g. 1 nm) leads to a distribution with very
many local maxima and minima since the density can change significantly in such small
circular shells. Due to the small extent, it is possible that there is no point in a circular
shell and a certain number of points in the nearest one. Due to the small surface area
of the circular shells, considerable jumps are produced, which are methodically caused
and only represent the real density distribution poorly. However, a step size being too
large results in less separable characteristic peaks of the mapped distribution. After some
iteration, a step size of 25 nm was chosen for density analysis. This step site ensures that
the major local maxima are recognizable within a density distribution of heterochromatin
points without loosing the characteristics of the distribution.

For the applications shown here on SkBr3 cells, a minimum for the amplitude of a local
maximum of at least A,,;;, = 2.5 x 10* points/nm? was determined in pre-experiments of
automatic cluster search. The local maxima should have been spaced by at least 150 nm
from each other in order to avoid overlapping maxima. Clusters with a local heterochro-
matin density equal or higher than Amin within a radius R = 250 nm were assigned as
HC clusters. If the distance of the density maximum to the center of the cluster was larger

heterochromatin density [points/nm?]

00 500 1000 1500
distance to the yH2AX cluster centroid [nm]

Figure 11.3: Density distribution around yH2AX cluster. A. Schematic representation of a
~H2AX cluster (red) recognized by DBSCAN, the center of gravity (black) and the heterochromatin
(green) around it. B. Density distribution of heterochromatin around the yH2AX cluster center
of gravity (blue). This density distribution is used to classify whether a cluster is heterochromatin-
associated. For this purpose, the local maxima are approximated by Gaussian functions (green).
The amplitude of these maxima is then compared with the predetermined threshold value. The
red line represents half the mean square distance of the convex hull of the cluster (i.e. a kind of
“radius” of the cluster).
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than 250 nm, the clusters were assigned as nHC clusters. R = 250 nm is a suitable dis-
crimination threshold when analyzing heterochromatin densities at the border of YH2AX
clusters in HeLa cells (for details see [280]). It must be noted that the central range of a
vH2AX cluster, i.e. a radius from 0 to 50 nm is excluded from the determination of the
heterochromatin density distribution in order not to over-estimate no or a few labeling
points on a very small central area. Such densities can only lead to extreme values, i.e.
either zero (if a cluster does not contain any heterochromatin labeling point) or a large
number (if some points are on a very small area in the cluster). Furthermore, it is assumed
that in the center of a cluster the major repair activity takes place so that these labeling
points may be due to relaxed and highly compacted heterochromatin.

11.2.3 Topological Analysis of the Clusters

SMLM data of H2AX phosphorylation were analyzed by means of persistent homology, a
method for computing topological features at different spatial resolutions. In particular,
the structure of each YH2AX cluster was characterized by its so called a-shape. In the
following, we introduce the computational strategy.

Barcodes as a Representation for a Pointillist Structure

A major principle to characterize the meaning of “topology” or “topological analysis” is to
record properties of structures (depicted in a pointillist manner) which are invariant under
certain deformations of the object. Mathematically these deformations correspond to con-
tinuous transformations of the topological space defined by the structures. Deformations
which might fragment the structures are excluded. In the following, the attention will be
focused on two quantifiable properties: a) the number of components which are indepen-
dent from each other in such sense that connections between points only exist within the
respective components; b) the number of holes of the structures inside the components. In
algebraic topology, these properties are called the Betti numbers for zero dimensional and
one dimensional simplicial complexes, respectively. They turn out to be very important
topological invariants which help to distinguish between different topological spaces.
By comparing these quantities to two objects, it can be decided whether they have the
same topology or not. Localization microscopy images are actually point-sets defined by
the location of the fluorophores. Thus an appropriate method is required by which compo-
nents and holes can be defined. In order to accomplish this, the point-set is converted into
an object as described by the following procedure: First, the point-set is defined by the
coordinates of blinking labeling points. In the next step, a geometric relationship among
the points is defined by growing spheres of radius a around each of them. Whenever
two spheres mutually embed each-other’s center, these centers of the growing spheres are
connected by an edge. Points connected in that way are considered to belong to the same
component. Any two points which are connected by a path through the existing edges
are in the same component. Increasing the radii of the spheres, further points are reached
connecting two previously disjoint components. Thus one can follow how the number of
components is changing as a function of the increasing radius «. This means that each
point is a separate component at the beginning, whereas for an increasing radius being
large enough, each point is connected with each other. At the end of the procedure a
single component is remaining.

The definition of holes also stems from this process. In order to build a solid, beside
points and lines, face building blocks are required. For this, the simplest polygon, the
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Figure 11.4: From the SMLM data to the barcode representation. A. Full view of heterochro-
matin (green; labeled by antibodies against H3K9me3) and yH2AX labeling (red) of a SkBr3 cell
nucleus 30 min after irradiation with 2 Gy depicted as a density image. B. Zoom-in into the
marked YH2AX cluster. C. Scatter plot of the marked YH2AX cluster (every point represents
a detected fluorophore). D. Components of the a-shape filtration of the marked yYH2AX cluster
exemplarily depicted at o = 30,45,90,180 nm (left to right). As the growing spheres mutually
embed the center of each-other the corresponding centers are connected by an edge (as shown in
the upper row). Whenever a triangle is formed, it is included in the solid as a face element (illus-
trated in the lower row). E. Barcodes of dimension 0 (Betti number) corresponding to connected
components. F. Barcodes of dimension 1 (Betti number) corresponding to holes.



11.2. Results 155

triangle is appropriate. Whenever three edges form a triangle, not only the edges but the
face of the triangle is considered. The described procedure is presented in Fig. 11.4D for
a particular YH2AX cluster. Once the surfaces are defined, the holes are counted. In fact,
it is possible to register their number and the number of components for every separate
value of the radius a.

In [62] an approach is presented, how all components and holes can be summarized in a
compact way. The presented approach allows the representation as “barcodes” to track
the formation and disappearance of components and holes as the value of « increases and
thus independently of a fixed value of a. An example is shown in Fig. 11.4E and 11.4F.
The beginning of a line in the barcode representation shows at which value of the radius
a, the component or hole has arisen, and the end of the line for which value of « it has
disappeared as a result of association to a larger component. All red bars start at zero,
because at a value of « = 0, all points are unconnected and for that reason each repre-
sents its own component. Whenever two points are joint to a line (or three points to a
triangle), the two (or three) points are combined in the newly created component “line”
(or “triangle”), and hence, the associated red bar ends. By further joining points with
increasing value of «, the lines, triangles and holes shown in Fig. 11.4D are created. The
lifetime of a hole is represented in Fig. 11.4F by blue bars. A bar starts when the hole is
created and ends when it is completely filled.

The barcode thus represents an image of the examined structure on all scales. The creation
and dissolution of complexes on a small scale is recorded alongside the lifetime of com-
plexes on larger scales. As a consequence, in the case of chromatin structure or YH2AX
cluster structures, barcodes contain information about components and holes in both the
nanometer and micrometer scale ranges. This compact and illustrative representation also
allows selection of specific substructures, such as all components and holes that exist in
the range of a; to ap.

As illustrated, the characterization of point structures by barcodes opens up new possibil-
ities to analyze and categorize clustered structures in cell nuclei. Although, the barcode
representation of a point-set might appear at least at first glance as confusing as the point-
set itself, the possibility to compare different sets of barcodes and to define parameters
describing their similarity is a significant advance in the analysis of point structures.

Similarity of Barcodes

In [296] an approach is presented that can be used as a measure of the similarity S of
barcodes. The similarity of two barcodes A and B of given dimension, which are comprised
of bars a and b, respectively, is then represented by:
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J(a,b) =|aNb|/|aUb| represents the Jaccard index [303], which is a measure of the
similarity of two bars. The result is a value between 0 and 1, where a value of 0 means no
overlap of the two bars and two identical bars have a value of 1. The similarity measure
for barcodes is described by the formula S(A, B). The part marked C' in equation S(AB)
states that for every bar a the bar b is searched, for which the Jaccard index J(a,b) is
maximized. This is repeated for each ¢ and summed up. Analogously, for each bar b the
bar a is searched, for which the Jaccard index J(a,b) is maximized. Again, the results for
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Figure 11.5: Example of the result of the barcode similarity measure. A,B. For each bar of
barcode A (blue), the bar from B (red) is sought for which the Jaccard index is maximal. C.
The Jaccard index represents the extent to which two bars overlap (pink). This corresponds to C
in equation S(A, B). These values are summed for each bar of A. D. Analogously, for each bar
from B the bar from A is sought, for which the Jaccard index becomes maximal. This corresponds
to D in equation S(B, A). These values are in turn summed for the bar of B. The sum of these
two subtotals is divided by the number of bars in both barcodes. The result S(A, B) or S(B, A)
quantifies the similarity of the barcodes A and B in terms their overlap. Here, two barcodes of
dimension 1 (holes) with a high similarity are depicted, i.e. the overlap of the two sets of barcodes
is high. For comparison, we illustrate two dissimilar barcodes of dimension 1 in Fig. 11.6.

the individual bars b are summed up.

The resulting sums are then added up and divided by the total number of bars of
the two barcodes. As a result of the division, the similarity measure S(A, B) can vary
between 0 and 1. An illustrative description based on two example barcodes with a high
similarity is shown in Fig. 11.5. For comparison, we show two example barcodes with a
low similarity in Fig. 11.6.

The similarity of barcodes of different dimensions can be defined as the average of the
individual similarity values.
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Figure 11.6: Example of the result of the barcode similarity measure (analogous to Fig. 11.5).
A, B. The two barcodes A (blue) and B (red) of dimension 1 (holes) have a low similarity. C,D.
Therefore, the overlaps of the two sets of barcodes is low.

Proof-of-Concept Experiments

From the yYH2AX clusters classified, 200 HC clusters and 200 nHC clusters were selected
by determining those with the highest and lowest heterochromatic densities, respectively.
This number of clusters was chosen because this group is large enough to avoid statistical
outliers, but small enough to visually check microscopy images as obtained for each cluster
from the point matrices and, if necessary, the corresponding density distribution.

The HC- and nHC-associated YH2AX clusters were examined according to their topolog-
ical similarity as defined by the overlap measure described above. For comparison, the
similarity between the two groups of YH2AX clusters was also determined in terms of
density and size. Since the clusters are polygonal, the root mean square of the distances
of the points of the convex hull has been defined as a measure of cluster size.

To enable a comparison of all YH2AX clusters, the values of the topological similarity
measure are depicted in a heat map (Fig. 11.7). The arrangement of the heat maps is
as follows: The upper left quarter compares the HC clusters with each other, the lower
right the nHC clusters. The upper right and lower left quarters each compare nHC with
HC clusters. The arrangement of the individual HC and nHC clusters is random. The
spectrum of the color bar of all the heat maps ranges from red representing dissimilarity
between the analyzed clusters to blue depicting similarity. In this representation, it is
then easy to detect certain patterns, such as similarity of all the foci clusters, outliers or
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Figure 11.7: Heat maps depicting the similarity of HC- and nHC-associated yH2AX clusters
according to A. cluster density, B. cluster size indicating a high similarity (see also Fig. 11.2),
C. topological similarity of the connected components (“lines”), D. topological similarity of the
“holes”, E. average topological similarity. The spectrum of the color bar of all the heat maps ranges
from red representing dissimilarity between the analyzed clusters to blue depicting similarity.
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distinct areas of increased similarity or rather dissimilarity. As a measure of the similarity
or rather dissimilarity of density (or size), the difference in density (or size) of two clusters
was used. A small difference here means a great similarity.

In Fig. 11.7A the difference in point densities between the analyzed clusters is presented.
There is no clear difference between the clusters assigned to HC or nHC with most of the
clusters showing similar density. However, there is a set of nHC clusters which are highly
dissimilar to all the other clusters. This is shown by the red cross in the middle of the heat
map and can be explained by the fact that these nHC clusters are significantly smaller
than the median cluster size (see Fig. 11.7B and Fig. 11.2). Small clusters have a higher
density than the other cluster. Analogously, Fig. 11.7B does not reveal a difference be-
tween HC and nHC cluster. Hence, in terms of density and size of the foci, the proximity
to heterochromatin does not appear to affect differences for the clusters.

Fig. 11.7C-E show the similarity of the clusters using the topological similarity measure
presented above. Here, cluster structures are characterized by barcodes for connected
components and holes (Fig. 11.4 shows the actual barcodes for one YH2AX-cluster). Sur-
prisingly, the clusters show nearly identical results for the components of interconnected
points (Fig. 11.7C). Once again, the crosses are visible, which refer to extremely small
clusters as it has already been explained above in the heat maps depicting the density.
These aberrant clusters may be sorted out and further analyzed by repair protein staining.
Maybe these clusters refer to such components that do not contain any repair activity,
as it has recently been shown by Natale et al. [275]. But this should be tasks for further
investigations.

Comparing the barcodes of dimension 1 representing holes (Fig. 11.7D), the HC assigned
clusters show a higher similarity in contrast to the nHC clusters, although the topological
similarity values are very low. This, however, can be adjusted by using the average sim-
ilarity for components and holes (Fig. 11.7E). After this averaging, HC assigned clusters
show a clear similarity whereas the nHC assigned clusters do not. This means that by
topological analysis the HC clusters may be discriminated as those clusters of high topo-
logical similarity. The proximity of YH2AX clusters to heterochromatin seems to have a
significant measurable impact on its structure. Interestingly, the nHC and HC clusters
are more similar than the nHC foci themselves. It can be clearly seen that, on the one
hand, the proximity to heterochromatin influences the structure of the foci, but on the
other hand that there are other YH2AX cluster influencing factors, otherwise the similarity
between nHC and HC foci would be unexplainable.

11.3 Discussion

DNA double strand repair uses fascinating mechanisms that have been developed dur-
ing evolution towards two different directions fast and error tolerable or slow and ex-
act [264-267]. After having induced a DSB by ionizing radiation, chromatin re-arranges
and H2AX phosphorylation occurs in the damage environment [253,254,280] within a few
minutes accompanied by the recruitment of proteins specific for a certain repair mecha-
nism. During the last decades modern techniques applied in radiation biology and radi-
ation biophysics, have offered detailed insights into the protein interactions and cascades
along the different repair pathways [260,261]. These investigations have completed our
understanding about repair processes and boundary conditions that favor repair towards
either end-joining processes like NHEJ or recombination processes like HRR. The better
our understanding has become the more the question becomes urgent how a cell can decide
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which repair pathway should be the appropriate one at a certain damage side. Cells can
simultaneously use all repair pathways in a cell nucleus at different damaged sites.

The repair pathway choice could be random for instance. This, however, is not convincing
since it has been shown that whenever it is functionally relevant for cell survival a fast
repair process is addressed.

Assuming a non-random pathway choice at a given damaged side raises the question for a
fast, easy and therefore always functionally available, and everywhere implemented mech-
anism for the cell’s decision. Beyond several epigenetic approaches, people have started
to discuss whether such a mechanism may be encoded in the architecture of chromatin
around the damaged site [(key note) lectures and discussions at the joint ERRS and GBS
conference 2017 in Essen, Germany|. This would, however, require deeper insights into
the internal structural organization of a repair focus of a typical order of size of about the
resolution limit of a light microscope (about 200 nm).

Recent applications of electron-microscopy [277,278] and super-resolution light microscopy
like SMLM, STED or GSDIM [253,255,275,276,280-283,285,286] have demonstrated that
it is feasible to study single molecular arrangements within a repair focus. With improving
resolution of microscopy and data evaluation of structures on the meso- and nano-scale,
the question for best suited analysis parameters and potentially useful classification crite-
ria of repair foci and damaged chromatin sites has become important.

Here, we have introduced a rather unconventional approach for SMLM data analysis of
vH2AX foci and their chromatin environment. This approach makes use of the advantage
that SMLM data can be evaluated without image production and image processing [286].
This novel approach combines a geometrical evaluation based on Ripley’s distance and
cluster analysis with persistence homology for similarity classification of repair cluster
loci. Although the mathematical principles behind this approach are well established, it is
the first time that topology has been used as biologically relevant criteria. This may allow
to circumvent locally occurring deformations in the analysis and to extract a parameter
pattern that is scale independent and can categorize repair foci into structural classes.
Here we have demonstrated a very first proof-of-concept experiment, in which we could
show that the category of HC associated yH2AX clusters are highly similar in terms of
both topology and geometry whereas nHC associated clusters are completely dissimilar.
This topological similarity was independent of the irradiation doses. However, only one
early repair time was considered. In future experiments other later repair times may also
be considered in order to find out whether a change in topology occurs during repair.

In addition clusters that do not fit in size could be ruled out also by the topological simi-
larity measure. Here, however, the practicability of this method has been demonstrated;
therefore, the foci selected by the presented method have not been sorted out. The num-
ber of 400 clusters used for this analysis has been large enough that outliers, such as the
mentioned foci, are not significant. On the other hand 400 clusters are manageable by
interactive control of the experiment.

The aim of this article was to demonstrate the methodological approach. In future ex-
periments systematic studies for further parameters like other chromatin types (e.g. eu-
chromatin, ALU sequence regions etc.) in the environment or assignment to the follow-up
proteins in the repair pathway (e.g. MRE11, Ku70, Ku80, 53BP1, Rad51 etc.) are nec-
essary in order to understand the correlation of YH2AX clusters and clusters formed by
further recruited proteins during repair. Furthermore the application to other cell types,
different repair times and radiation types (e.g. high LET ions, a-particles, [-particles
etc.) would contribute to a conclusive knowledge of pathway choice and the correlation to
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structure and topology. This will be subject of next years’ investigations.

11.4 Materials and Methods

11.4.1 Sample Preparation

For the experiments SKBr3 cells were used, a well established and well characterized cell
line in breast cancer research [304]. It has the advantage of fast growing and usually not
reaching a complete confluency (about 80% only) so that localization microscopy in the
culture dishes can be performed with less background and more precision [305].

As described in details [285] SkBr3 cells were grown on coverslips until about 80% con-
fluency. The cells were washed in 1x phosphate-buffered saline buffer (PBS) with MgCl12
(0.901 mM)/CaCl2 (0.493 mM) for 5 min and fixed in 4% formaldehyde (in 1x PBS +
Mg/Ca, freshly prepared from paraformaldehyde) for 10 min at 37°C. After washing three
times in 1 PBS + Mg/Ca for 5 min, the cells were incubated in 0.2% Triton-X in 1x
PBS + Mg/Ca 3 min for permeabilisation followed by additional washing three times and
blocking in 2% BSA in 1 PBS + Mg/Ca for 30 min.

For labeling of heterochromatin antibodies against H3K9me3 were used. H3K9me3 is tra-
ditionally associated with non-coding parts of the genome. Recent investigations [306,307]
have shown that H3K9me3 is a key player in repressing lineage-inappropriate genes and
shielding them from transcription. In contrast to other heterochromatin markers consti-
tutive heterochromatin and tissue specific inactivated sites can be highlighted.
Incubation with the primary rabbit anti-histone H3 methylation side antibody (anti hi-
stone H3 tri methyl K9 - ChIP grade; Abcam plc, Cambridge, UK; concentration: 1.4
mg/L) in a humidified chamber at 37°C for 30 min and washing three times in 1 PBS +
Mg/Ca on a shaker for 5 min was then followed by incubation with the secondary goat
anti-rabbit IgG H&L (Alexa Fluor® 488) (Abcam ple, Cambridge, UK; concentration 4
mg/L) () in a humidified chamber at 37°C for 30 min and washing three times in 1x PBS
+ Mg/Ca on a shaker for 5 min. The specimen was again fixed in 2% formaldehyde at
37°C for 10 min and washed three times in 1 PBS + Mg/Ca on a shaker for 5 min. La-
beling quality was checked by experiments using the secondary antibody without specific
primary antibody.

Incubation with the second primary mouse anti-phospho-histone H2A.X (Ser139) anti-
body, clone JBW301 (Merck Chemicals; concentration 2 mg/L) in a humidified chamber
at 4°C for 12 h and washing three times in 1x PBS + Mg/Ca on a shaker for 5 min
was then followed by incubation with the secondary goat anti-mouse (Alexa Fluor® 568)
antibody (Thermo Fisher Scientific; concentration 4 mg/L)) in a humidified chamber at
37°C for 30 min and washing three times in 1x PBS + Mg/Ca on a shaker for 5 min.
Finally the chromatin was counterstained with 4’,6-DiAmidin-2-PhenylIndol (DAPI; Sigma
Aldrich) for 5 min and after washing twice in 1x PBS + Mg/Ca on a shaker for 5
min embedded in 15 pl. ProlongGold embedding medium (ThermoFisher Scientific, Mas-
sachusetts, USA, ProLong Gold Antifade Mountant, P36930). After sealing the specimen
can be stored at 4°C.

11.4.2 Single Molecule Localization Microscopy (SMLM)

The microscope was built at the Light Microscopy Facility of the German Cancer Research
Center in Heidelberg and is described in detail in several publications [278,279,282]. For
the experiments described here two lasers (excitation at 491 nm and 561 nm) were used
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for the excitation of fluorescently labeled antibodies (green H3K9me3 for heterochromatin;
red for yYH2AX). The laser intensity was 3 KW /cm? (491 nm) and 5 KW /cm? (561 nm);
homogeneous illumination is important for localization microscopy because blinking of dye
molecules due to reversible photo-bleaching is dependent on the laser intensity. A 100x
oil immersion lens with a numerical aperture of NA = 1.46 is used. The emission light
captured by the objective lens is imaged onto an EmCCD-camera. The exposure time was
100 ms per frame. Two thousand frames were captured in each channel.

11.4.3 Sample Irradiation

After culturing SkBr9 cells were irradiated by 6 MeV photons (dose rate of 3 Gy/min)
at a medical linear accelerator (ARTISTE LB35) with doses of 0.1, 0.5, 1, 2, 4 and 8
Gy. SMLM images were acquired 30 min after the irradiation. For the data analysis the
YH2AX foci were selected irrespective of the dose with the aim to show that the considered
foci properties are independent of the dose.

11.5 Conclusions

SMLM opens new perspectives into chromatin architecture from the micro- to the nano-
scale and detailed insights into molecular arrangements as repair foci. Recent investiga-
tions have shown the advantages of this method for radiation research and cell biophysics.
So far microscopic analyses are usually based on images and are applied after image pro-
cessing. SMLM is not necessarily dependent on image processing since the result of data
acquisition is a coordinate matrix of points precisely localized. This principle difference to
so far mostly established procedures allows the application of novel data evaluation proce-
dures and mathematical concepts. In this article, the geometrical analysis of YH2AX foci
towards sub-clusters was combined with persistent homology in order to classify clusters
according to their heterochromatin distance. Topological characteristics of YH2AX clus-
ters were compared independently from cell nuclei and doses applied just according to the
neighborhood to heterochromatin. The detected pointillist pattern has been transferred
into barcode representations of connected components and holes (Betti numbers of dimen-
sion 0 and 1) and a similarity measure has been applied leading to a similar category of
clusters associated to heterochromatin and a dissimilar category of clusters not associated
to heterochromatin. This proof-of-concept approach opens up new possibilities for SMLM
and for a rigorous comparison of point distributions obtained for compatible objects like
repair foci and a measure of their similarity.



Chapter 12

Conclusion and Outlook

12.1 Short Summary of the Results

The motivation of the work presented in this thesis is to investigate a wide range of
complex biological systems varying in their dynamics, length scales, structural complexity
and functional purpose. The aim of this thesis is to analyze complex and big data from
state-of-the-art experiments and to develop physical models in order to expand the current
knowledge on structure-function relationships in the context of eukaryotic and bacterial
cells.

Hi-C Data Analysis and Visualization Genome-wide chromosome conformation
capture-based methods like Hi-C are now widely used. The resulting data, most of which
is deposited in publicly accessible databases, is the starting point for the computational
modeling of the three-dimensional architecture of a multiplicity of genomes. We showed
how essential it is to know how reliable the underlying Hi-C data is. It is not only the
number of captured reads, but also the distribution of these reads which is decisive for
this question. Moreover, contact maps before and after balancing can differ significantly.
It is therefore necessary to compare them and understand possible deviations before in-
terpreting the results.

Data visualization is key to the interpretation of Hi-C experiments. We therefore
developed a slim and interactive browser application capable of visualizing Hi-C contact
maps alongside complementary data tracks. Besides Hi-C contact maps genome-wide
data, such as ChIP-seq and RNA-seq, can be included in the layout. The application
can be utilized for the visualization of any genomes including mammalian genomes. We
have designed the tool in such a way that it can be both installed on a local host and
exposed to general web via a reverse-proxy such as NGINX which has the advantage that
the visualization interface can be embedded in a larger web application.

Hi-C Data Modeling In order to interpret data from Hi-C studies genome-wide con-
tact probability maps need to be translated into models of functional 3D genome organi-
zation. Here, we first presented an overview of computational methods to analyze contact
probability maps in terms of features such as the level and shape of compartmentalization.
Next, we described approaches to modeling 3D genome organization based on Hi-C data.
There are two different ways of modeling 3D organization of chromosomes: 3D reconstruc-
tion and polymer modeling. While the first generates the most likely 3D structure given
the contact data amenable to visual inspection, polymer modeling supports clarifying hy-
potheses of chromosomal organization deduced from contact maps. We exemplified the
difference between both approaches by using two case studies.
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Domain Boundary Detection in Hi-C maps To interpret the results of Hi-C ex-
periments it is essential to understand the structures within contact maps. To this end,
we have developed a probabilistic graphical model to study the domain structure visible
in Hi-C contact maps. This model is based on a symmetric energy model where the in-
teraction parameters come from the normalized entries of the contact matrix. Here the
contact matrix is interpreted as a graph.

Domain Formation by Dynamic Looping Though the existence of this intra-
chromosomal compartmentalization is proposed in all newly published results of Hi-C
experiments, explanations from a theoretical point of view are scarce. We focused on
the modeling of the experimental findings of both loop domains and topological domains,
which, as opposed to the former, do not involve a closure to a loop. Loop domains
can be readily simulated by statically adjusting the topology. Topological domains, on
the other side, are characterized by a highly dynamic internal organization and can be
modeled by assuming dynamic looping interactions accounting for this highly flexible in-
ternal structure. Besides eukaryotic genomes, bacterial chromosomes are also found to be
compartmentalized into topological domains of increased contact probability that could
potentially be explained by our model as well.

3D Bacterial Chromosome Organization We employed the role of loops on the
3D organization of bacterial genomes using Hi-C and live cell imaging of DNA loci of the
B. subtilis genome. By forming insulator-like complexes, the DNA binding protein Rok
loops the B. subtilis genome over large distances altering the overall genome structure.
This biological mechanism is similar to insulator dependent long-range promoter-enhancer
interaction in eukaryotes and shows the applicability of our dynamic loop formation model
for prokaryotic genomes.

Self-organized Segregation of E. coli Replication Origins In a subsequent step,
we have presented a quantitative explanation for positioning of the chromosomal origin
of replication in E. coli. By analyzing the positioning and dynamics of ori and MukBEF
foci in wild-type cells, we first showed that ori are attracted towards MukBEF foci. We
could show how the self-organization of MukBEF complexes can position origins to their
observed mid-cell and quarter-cell positions. We found excellent agreement with quanti-
tative experimental measurements and confirm key predictions. In particular, we showed
that oris exhibit biased motion towards MukBEF clusters, rather than mid-cell. Our
findings suggest that MukBEF and oris act together as a self-organizing system in chro-
mosome organization-segregation and introduces protein self-organization as an important
consideration for future studies of chromosome dynamics.

Topological Data Analysis for Localization Microscopy In the final project,
we have introduced a fundamentally new approach for super-resolution localization mi-
croscopy data analysis. This approach makes use of the advantage that the microscopy
data can be evaluated without image production and image processing. It combines a
geometrical evaluation based on distance and cluster analysis with persistence homology
for similarity classification of repair cluster loci. Although the mathematical principles
behind this approach are well established, it is the first time that topology has been used
as biologically relevant criteria. The method is independent on a certain set of parameters
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and inherently multi-scale and can categorize repair foci into structural classes. Here we
have demonstrated a very first proof-of-concept experiment, in which we could show that
the category of heterochromatin associated repair foci are highly similar in terms of both
topology and geometry whereas clusters that are not associated with heterochromatin
are completely dissimilar. This topological similarity was independent of the irradiation
doses. Our developed method opens up new possibilities to categorize spatial organization
of point patterns by parameterization of topological similarity.

12.2 Qutlook

Hi-C and Eukaryotic Genome Organization 3D genome organization of eukary-
otic cells and functional implications thereof have emerged as subjects undergoing in-
tense study across many disciplines. State-of-the-art methods, such as Hi-C and super-
resolution microscopy, have revealed that eukaryotic genomes are hierarchically organized
into large compartments on the megabase scale consisting of topologically associated do-
mains (TADs) on the kilobase scale. In vertebrates, the transcription factor CTCF forms
loops or loop domains and those establish the 3D architecture of the genome together with
compartmental domains. The dynamic formation and dissolution of chromatin loops may
be responsible for establishing enhancer-promoter interactions and may introduce stochas-
ticity into the transcription process. These considerations highlight the importance of the
3D organization of the genome and suggest that it is both a determinant and a consequence
of its function.

Improvements to the Hi-C technology and decreasing sequencing costs led to an in-
crease in the amount of information on genomic interactions and an enhanced resolution.
Further development of the Hi-C technology towards nucleosome resolution [308,309] has
the potential to understand the structure-function relationship on the molecular level [310].
Our developed methods for the visualization and comparison of Hi-C contact maps as well
as the identification of fine structures such as loops within contact maps are important
building blocks for this endeavor.

As Hi-C data is gathered using populations of millions of cells, Hi-C contact maps
condense the average information of captured interactions among multiple genomic loci and
hence do not include any information about cell-to-cell variability or dynamics. Indeed,
the results of a recent study tracking the dynamics of CTCF loops and chromosomal
domains from thousands of single-cell Hi-C contact maps show a substantial variation
of 3D genome organization between individual nuclei [311]. Currently, single-cell Hi-C
approaches are limited by genome coverage, and thus the achievable resolution for single-
cell contact maps [311-313]. At the same time, imaging methods provide the resolution
for the visualization of single-cell domain structures [183]. Coupled to computational
modeling imaging and genomics technologies have the potential to reveal novel insights
into the spatially and dynamically organized 3D structure of the genome inside cells [314].

The loop extrusion model [103,104] is actually very similar to our dynamic loop model:
complexes of the proteins CTCF and cohesin bind to the DNA and form progressively
larger loops or, in other words, extrude loops. However, there is no experimental confirma-
tion for the loop extrusion process for cohesin in mammalian cells yet and there are many
open questions concerning, among others, its energy consumption, DNA translocation
speed and the relationship between transcription and SMC complex movement. Although
current work in vitro [315] and in bacterial systems using similar SMC complexes [316] is
promising, this model will only be accepted if direct evidence for the extrusion process is
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obtained in the context of CTCF loops in vivo.

Thanks to massive improvements in throughput, ever-increasing amounts of genomic
data are being produced and pose a serious challenge to data processing and subsequent
analysis. Besides handling large volumes of sequencing data, the combination of many dif-
ferent types of genomic data is also a challenging task. The integration of bioinformatics
tools into highly scalable and high-performance computational platforms, such as Apache
Spark [317] or Apache Hadoop [318], is a possible solution to face these challenges [319].
The interactive visualization of large Hi-C contact maps is a prime example where a dis-
tributed general-purpose cluster-computing framework like Apache Spark offers significant
advantages in the real-time handling of large data volumes.

Bacterial Genome Organization and Segregation Bacterial genomes are organized
by nucleoid-associated DNA-binding proteins (NAPs) [42,45,47], DNA supercoiling [48,
139] and transcriptional regulatory interactions [167,239,320,321]. In chapters 8 and 9,
we have examined the impact of looping interactions on 3D genome organization and have
investigated the role of the NAP Rok in driving dynamic domain formation by long-range
interactions in B. subtilis using a combined approach of Hi-C and super-resolution live cell
imaging.

Like CTCF, Rok was first identified as a transcriptional repressor protein in B. sub-
tilis [189]. Although, Rok is known to activate transcription of certain genes [190], the
mechanism remains unknown and thus represents an interesting topic for future research.
Since Rok can alter the local chromosomal interactions at the RoVA sites, it could po-
tentially influence gene expression, independent from its role as a transcription repressor.
Furthermore, it is possible that other accessory proteins are involved in RoVa complex
formation and their interaction. Our findings raise the question whether insulator depen-
dent long-range promoter-enhancer interaction exist in bacteria and whether this can also
regulate gene expression as observed in eukaryotes [184]. Answers to these open questions,
could finally elucidate the role of the transcriptional regulatory network [322,323] on the
overall folding of the B. subtilis genome.

Beyond that, it is interesting to investigate the influence of NAPs on bacterial chro-
mosome segregation during cell division. Although a wide spectrum of proteins and mech-
anisms have been suggested to facilitate chromosome segregation, there is no consensus
solution to the problem. In chapter 10, we have contributed new insights into this issue
in the case of chromosome segregation in E. coli. We showed how self-organization of the
NAP MukBEF leads to positioning of the origin of replication at mid-cell which enables the
proper initiation of replication. In our polymer simulations, we did not model MukBEF
molecules explicitly, but incorporated them implicitly via a spatially dependent looping
probability along the long axis of the nucleoid representing the MukBEF concentration
profile. For future work, combining particle and polymer simulations, at least to whatever
extent is feasible, may provide a deeper understanding of the system. For example, the
incorporation of the NAP MatP, which binds to matS sites in the replication terminus
region, could yield new knowledge. Because of its interaction with MukBEF, it displaces
the latter from the terminus region [201] and hence restricts long-range DNA interactions
between the terminus region and other regions of the chromosome [47]. Both effects may
help position this region at mid-cell, while simultaneously encouraging the co-localization
of ori with MukBEF [201].
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Topological Data Analysis As super-resolution single molecule localization microscopy
(SMLM) techniques for high throughput data acquisition [324] and sample labeling [325]
improve, both automated and robust analytical methods are needed. The mathematical
field of topological data analysis provides a powerful framework for structural analysis of
SMLM data. The purpose of persistent homology is to describe the topological structure
within pointillist datasets [62] and it can thus be applied to the analysis of SMLM data.
We have developed a novel method and demonstrated its applicability to analyze and
categorize DNA repair foci by means of topology. Our methodology can be applied to
a wide range of topologically interesting questions providing fundamentally new insights
into biological nano-structure inaccessible with existing tools. A future challenge for our
method is the application to 3D super-resolution localization images. In the context of 3D
datasets, topological features of dimension 2 are enclosed voids (as reminder: topological
features of dimension 0 correspond to the number of connected components in the com-
plex, topological features of dimension 1 are holes or loops). Furthermore, it would also
be interesting to extend our method similar to [326] in order to incorporate the possibility
of persistence-based clustering [327].
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