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Abstract 

One of the most toxic types of DNA lesions are the DNA double-stranded breaks (DSBs). The 

cells can repair such lesions through several distinct strategies that can be grouped into end-

protection and end-resection based mechanisms. 

Over the past decades, a number of reporter assays have been developed to examine the 

consequences of DNA damage and repair (DDR), mostly focusing on one DSB repair pathway 

at a time. However, a simple reporter that can visualize different DNA DSB repair outcomes 

with high resolution has been missing. Therefore, we developed a fluorescent reporter Color 

Assay Tracing Repair (CAT-R) to assess different DNA DSB repair outcomes by measuring 

the rates of end-protection vs. end-resection-based repair mechanisms. 

I integrated the CAT-R reporter at a single locus in two cell lines and took advantage of the 

highly efficient CRISPR/Cas9 system to mediate a site-specific DSB. I studied the rate of small 

InDels vs. large deletions and found that large deletions occur as frequently as small InDels 

upon Cas9-mediated breaks, consistent with the recent findings. I generated several different 

knock-outs in major genes of the DNA DSB repair and showed that the rate of these repair 

outcomes can be dynamically altered. 

Since I achieved a high resolution of the DSB events that allowed me to measure even minor 

changes in the DSB repair activity, I combined CAT-R with high-throughput flow cytometry 

to screen small pharmacological compounds. I compared 24 drug compounds that are currently 

in clinical trials or used in preclinical studies, targeting key DNA DSB repair enzymes such as 

ATM, DNA-PK, ATR, and PARP as well as a class of inhibitors targeting histone deacetylases. 
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I quantify the levels of enzyme inhibition based on their effects on the associated DNA repair 

pathway and present variances across their in vitro drug potencies of the inhibitor compounds. 

Next, I combined CAT-R with a custom CRISPR/Cas9 arrayed genetic screen targeting 417 

genes involved in DNA damage response (DDR) and evaluated their contribution in DNA DSB 

repair choice. I confirmed the roles of the established players of DSB repair but also revealed 

potentially novel components of DSB repair. In addition, I uncovered how Cas9-mediated DSB 

repair could be modulated to increase the rate of error-free repair, which may have important 

implications for the generation of knock-ins by CRISPR/Cas9. 

Finally, to identify novel PARP1 interactions within the DDR, I applied CAT-R on the custom 

arrayed genetic screen and combined it with PARP inhibition. I uncovered a gene cluster that 

is significantly affected by PARP inhibition regulating a key step during end-resection, 

highlighting potentially new interactions of PARP1 with DDR. Besides, I propose PARP 

inhibition as an alternative approach to increase the chances of a successful knock-in, based 

on my experiments demonstrating that PARP inhibition increases the rates of error-free repair 

to a similar extent with other well-known strategies. 

In summary, in this Ph.D. thesis, I show how CAT-R can be used to assess the functions of 

DNA DSB repair genes and how it can be adapted to genetic and/or chemical screens in a 

variety of cell lines.   
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Zusammenfassung 

Eine der toxischsten Arten von DNA-Läsionen sind die DNA-Doppelstrangbrüche (DSBs). 

Zellen können solche Läsionen durch verschiedene unterschiedliche Strategien reparieren, die 

sich in Mechanismen auf der Basis von Endschutz und Endresektion unterteilen lassen. 

In den letzten Jahrzehnten wurde eine Reihe von Reporter-Assays entwickelt, um die 

Konsequenzen von DNA-Schäden und -Reparaturen (DDR) zu untersuchen. Im Allgemeinen 

ermöglichen diese Reporter die Untersuchung eines einzigen DSB-Reparaturweg. Es fehlte 

jedoch ein einfacher Reporter, der parallel mehrere verschiedene DNA-DSB-

Reparaturergebnisse mit hoher Auflösung visualisieren kann. Aus diesem Grund haben wir 

einen fluoreszierenden Reporter für die Reparatur von Farbassays (Color Assay Tracing 

Repair, CAT-R) entwickelt, um verschiedene DNA-DSB-Reparaturergebnisse durch Messung 

der Endschutzraten im Vergleich zu Reparaturmechanismen auf der Basis von Endresektionen 

zu bewerten. 

Ich habe den CAT-R-Reporter lokusspezifisch in zwei Zelllinien integriert und dann das 

hocheffiziente CRISPR/Cas9-System zur Vermittlung eines positionell klar definierten DSB 

verwendet. Daraufhin habe ich die Rate kleiner InDels im Vergleich zu großen Deletionen 

untersucht und festgestellt, dass, nach Cas9-vermittelten Brüchen, große Deletionen, in 

Übereinstimmung mit der aktuellen Literatur, genauso häufig auftreten wie kleine InDels. Des 

Weiteren habe ich verschiedene Knock-outs in den wichtigsten Genen der DNA-DSB-

Reparatur erzeugt und gezeigt, dass die Rate dieser Reparaturergebnisse dynamisch geändert 

werden kann. 
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Da ich eine hohe Auflösung der DSB-Ereignisse erreichte, die es mir ermöglichte, auch 

geringfügige Änderungen der DSB-Reparaturaktivität zu messen, habe ich CAT-R mit 

Hochdurchsatzdurchflusszytometrie kombiniert, um die Wirkung pharmakologischer 

Verbindungen auf die DNA-DSB-Reparatur zu untersuchen. Ich verglich 24 Wirkstoffe, die 

sich derzeit in klinischen Studien befinden oder in präklinischen Studien verwendet werden, 

um wichtige DNA-DSB-Reparaturenzyme wie ATM, DNA-PK, ATR und PARP sowie eine 

Klasse von Inhibitoren gegen Histondeacetylasen zu untersuchen. Ich habe dann das Ausmaß 

der Enzymhemmung basierend auf ihrer Auswirkung auf den jeweils assoziierten DNA-

Reparaturweg quantifiziert und Unterschiede in der in vitro Arzneimittelpotenz der 

Inhibitorverbindungen detektiert. 

Als nächstes habe ich CAT-R mit einem benutzerdefinierten CRISPR / Cas9-Array-Gen-

Screening kombiniert, das auf 417 Gene abzielte, die an der DNA-Schadensantwort (DDR) 

beteiligt sind, und ihren Beitrag zur Auswahl der DNA-DSB-Reparatur getestet. Ich konnte 

die Rollen der etablierten Akteure der DSB-Reparatur bestätigen, deckte aber auch potenziell 

neuartige Komponenten der DSB-Reparatur auf. Außerdem habe ich herausgefunden, wie die 

Cas9-vermittelte DSB-Reparatur moduliert werden kann, um die Rate fehlerfreier Reparaturen 

zu erhöhen, was wichtige Auswirkungen auf die Erzeugung von Knock-Ins durch CRISPR / 

Cas9 haben kann. 

Um neuartige PARP1-Wechselwirkungen innerhalb der DDR zu identifizieren, habe ich CAT-

R schließlich auf dem benutzerdefinierten Array-Gen-Screen angewendet und mit der PARP-

Hemmung kombiniert. Ich habe einen Gencluster entdeckt, der signifikant von der PARP-

Hemmung beeinflusst wird, die einen Schlüsselschritt während der Endresektion reguliert, und 

dabei potenziell neue Wechselwirkungen von PARP1 mit DDR hervorgehoben. Außerdem 
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schlage ich die PARP-Hemmung als alternativen Ansatz vor, um die Chancen für ein 

erfolgreiches Knock-In zu erhöhen. Dies basiert auf meinen Experimenten, die zeigen, dass 

die PARP-Hemmung die Fehlerfreiheit in ähnlichem Maße erhöht wie andere bekannte 

Strategien. 

Zusammenfassend zeige ich in meiner Dissertation wie CAT-R verwendet werden kann, um 

die Funktionen von DNA-DSB-Reparaturgenen zu bewerten und wie dieses DDR-

Reportersystem an genetische und/oder chemische Screenings in einer Vielzahl von Zelllinien 

angepasst werden kann. 
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Chapter 1 

DNA repair & Cancer 

The study of DNA repair is experiencing a remarkable time of interest with genome integrity 

to be a crucial aspect of cell survival. Some types of cells (cancer cells) can tip the balance of 

the cell cycle by creating a nonstop drive for proliferation. Throughout this process, cancer 

cells ignore or even override cell signals that instruct a naturally occurring DNA damage to 

repair successfully (Jackson and Bartek 2009; Khanna and Jackson 2001; Rich, Allen, and 

Wyllie 2000; Zhou and Elledge 2000). This behavior promotes cancer cell’s mutagenesis, 

aggressiveness, and can even lead to treatment resistance (Curtin 2012; Tubbs and 

Nussenzweig 2017). 

Fortunately, cells have developed specialized DNA repair pathways that can classify into the 

type of DNA damage they repair and collectively are known as the DNA Damage Response 

(DDR) (Lord and Ashworth 2012), and DDR plays a vital role in maintaining genome integrity. 

The investigation of DDR pathways has led to the identification of a complex system 

composing of sensors, transducers, and effectors that ensure the transduction of damage 

signaling, and activation of the appropriate responses such as DNA repair machinery, cell cycle 

arrest and apoptosis (Mondesert et al. 2015). The major DNA repair pathways are base excision 
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repair (BER), mismatch repair (MMR), nucleotide excision repair (NER), and double-strand 

break (DSB) repair (Sugawara and Nikaido 2014). 

In this Ph.D. study, I developed a novel system to assess the DNA double-strand repair pathway 

choice and evaluate the importance of several DNA repair components after a DSB. 

1.1. Hallmarks of Cancer 

Cancer is a genetic disease that can be caused by the accumulation of mutations in the genome 

that arise through exogenous or endogenous sources like ionizing radiation (IR), genotoxic 

drugs, or such as reactive oxygen species (ROS), and problems encountered during DNA 

replication that trigger replication fork to collapse (Stracker, Usui, and Petrini 2009), (Rich et 

al. 2000). Elevated levels of DNA damage contribute to genomic instability, which is referred 

to as a “Hallmark of Cancer” (Hanahan and Weinberg 2000), (Hanahan and Weinberg 2011).  

1.1.1. Genome instability and double-strand breaks 

One crucial factor contributing to genomic instability is the formation of DNA double-strand 

breaks (DSBs) (Ceccaldi, Rondinelli, and D’Andrea 2016). These lesions are the most serious, 

toxic, and difficult to repair forms of DNA damage since they disrupt the continuity of the 

chromosome (Torgovnick and Schumacher 2015). If these lesions are not repaired correctly, 

they can lead to mutations, deletions, translocations, or genome amplification that scramble 

the encoded information (Costanzo et al. 2009). Therefore the repair of DSBs is fundamental 

to cell survival and uphold of genome integrity (van Gent, Hoeijmakers, and Kanaar 2001), 

(Khanna and Jackson 2001).  
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1.2. DNA double-strand breaks 

The most common kinds of double-strand breaks are caused either due to breaks in replication 

forks when polymerase stall at the site of unrepaired base lesion or due to breaks in both DNA 

strands of the DNA double helix (Shibata et al. 2014a). Cells employ two distinct strategies 

for DNA double-strand break repair: end-resection and end-protection based mechanisms 

(Chiruvella, Liang, and Wilson 2013). The primary representative pathways of the two 

strategies are non-homologous end-joining (NHEJ), and homologous recombination (HR) 

(Bartek 2011; Huertas 2010; Knobel and Marti 2011).  

The pathway choice depends on the cell cycle phase, the complexity of repair, and whether the 

damaged DNA ends are “blunt” (easy to re-join) or “dirty” (not-ligatable). Among others, the 

two pathways differ in their requirement for a homologous template DNA and the fidelity of 

DSB repair (Sugawara and Nikaido 2014). On the one hand, NHEJ is more error-prone (Lieber 

2011), (Sugawara and Nikaido 2014) since it directly ligates the DNA broken ends after a DSB 

by forming small insertions or deletions (InDels). On the other hand, HR remains, in most 

cases, an error-free mechanism (Li and Heyer 2008) with its meticulous template-based 

activity to ensure the highest fidelity of repair. NHEJ is faster and is used more frequent on 

DSBs since it is more available than HR. Consequently, NHEJ is considered to be a source of 

genomic instability (Bunting and Nussenzweig 2013). Besides, NHEJ can operate during any 

cell cycle phase but is most active in G0 and G1 cell cycle phase, just before DNA replication, 

whereas HR activity occurs during S and G2 phases, right after replication (Lord and Ashworth 

2012; Marnef and Legube 2017; Torgovnick and Schumacher 2015; Zhou and Elledge 2000).  
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Collectively, all DNA repair pathways follow five steps of repair: (i) recognition, (ii) 

recruitment, (iii) removal, (iv) reconstruction, and (v) reinstatement with some repair pathways 

to be more active in certain parts of the cell cycle than others (Sugawara and Nikaido 2014), 

(Mondesert et al. 2015). 

1.2.1. Nonhomologous End-Joining 

Nonhomologous end-joining (NHEJ) is one of the DNA repair pathways that the cells are using 

to repair DSBs. The term “non-homologous” refers to the lack of requirement for a DNA 

template, whereas the term classical is often used to highlight the preferred choice among other 

NHEJ pathways (Haber and Moore 1996). In comparison to HR that is restricted to post-DNA 

replication phases of the cell cycle, classical-NHEJ is active throughout the cell cycle and re-

joins DSB ends with minimal processing (Lieber 2011). It does not search for or use a large 

segment of DNA, and the repair proceeds quickly with the potential for loss of nucleotides 

from either side of the DSB junctions or base-pair changes at the breakpoint sequence. 

In simple terms, c-NHEJ initially align and protects the DSB ends, minimally processes the 

damage by removing un-ligatable DNA ends, and fills the break in a fast and potentially 

erroneous way (Lieber 2011; Liu and Huang 2016; Shibata et al. 2014b). 

Data from several studies suggest that classical NHEJ often does a more accurate job than 

initially thought (Davis and Chen 2013; Lieber 2011). Repair of clean breaks usually does not 

result in any information loss of chromosomal rearrangements, but repair of “dirty” breaks can 

result in loss of genetic information (Bétermier, Bertrand, and Lopez 2014). Typically, DSB 

junctions that are repaired by c-NHEJ display evidence of small deletions of 1 - 4 bp at the 

breakpoints. 
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Figure 1: Schematic overview of the pathway choice after a double-strand break. Two distinct repair mechanisms dictate the DSB repair. End-protection 
mechanisms (NHEJ) favor a quick repair with the creation of small InDels, whereas end-resection mechanisms act in multiple ways. After the limited end-resection, 
alt-EJ can process the repair by annealing the broken DNA at microhomologies, creating small InDels. If further resection occurs, then it is possible to anneal the 
broken DNA at homologies that can extend up to 400 bp. This type of repair leads to large fragments of DNA to be lost. Strand invasion will take place if NHEJ does 
not fix the damage in G2. This type of repair requires a template from which an original copy will be used to fix the repair. 
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The eukaryotic Ku70/Ku80 heterodimer (XRCC6, XRCC5) is a damage sensor that initiates 

protection of the double-stranded break (Ferguson et al. 2000), (Difilippantonio et al. 2000), 

(Bunting and Nussenzweig 2013) by forming a ring around the DNA ends recruiting several 

proteins for end-processing (Figure 1). One of them is the DNA-dependent protein kinase 

catalytic subunit (DNA-PKcs) that plays a central role in c-NHEJ repair (Chirgadze et al. 2017). 

The actions of DNA-PKcs are setting up the stage for the assembly of the actors in c-NHEJ, 

which include Artemis, XRCC4/DNA ligase IV complex, and XLF (Lieber 2011; O’Driscoll 

and Jeggo 2006; Ochi et al. 2010). Given the importance of DNA-PKcs in c-NHEJ repair, it is 

safe to assume that it also dictates the rate of c-NHEJ acting as a rate-limiting step of the repair 

process. 

The end-processing step of the c-NHEJ repair includes nucleases such as Artemis, a 5’ to 3’ 

endonuclease, which is activated by DNA-PKcs phosphorylation (Moshous et al. 2001). The 

complex that creates a filament to bridge the broken ends is the XRCC4/DNA ligase IV, and 

XLF complex (Figure 1). After the initial end-processing step, the XRCC4/DNA ligase IV 

complex promotes efficient ligation since DNA ligase IV (LIG4) has the necessary plasticity 

to ligate across DNA gaps and re-join incompatible DNA ends  (Grawunder et al. 1997). The 

DNA repair protein NHEJ1 (also known as XLF) also interacts with XRCC4 and increases the 

efficiency of LIG4 DNA ligations (Buck et al. 2006). 

It has been noted that in mammalian cells, the active component of c-NHEJ is highly efficient 

(typical half times of 15 - 30 min) and is responsible for repairing ~ 70% of DSBs (Daley et 

al. 2014; Deriano and Roth 2013). 
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Alternative End-Joining 

Based on the current literature, there are two types of potential end-joining outcomes. One that 

is formed by a direct ligation of DNA ends (c-NHEJ), and another occurs in the absence of 

Ku70/Ku80 dimer, bears small sections of microhomology at the sites close to DSB (Roth, 

Porter, and Wilson 1985), (Roth and Wilson 1986), (Boulton and Jackson 1996a), (Boulton 

and Jackson 1996b). In the literature, the emergence of three different names assigned to 

alternative EJ repair has been used interchangeably: backup NHEJ, microhomology-mediated 

end-joining (MMEJ), and noncanonical NHEJ. Throughout this Ph.D. thesis, the name 

alternative end-joining (alt-EJ) is used, which reflects its independence for c-NHEJ (Dueva 

and Iliakis 2013; Frit et al. 2014). 

Previous studies have reported that alt-EJ may actively compete with both c-NHEJ and HR 

repair. Biochemical data (Wang et al. 2003), (Daley and Wilson 2005) show that DSBs can be 

repaired independently of the Ku-mediated c-NHEJ repair mechanism and instead require an 

alternative end-joining (alt-EJ) pathway that uses 6 to 8 bp of microhomology as an 

intermediate step (Bunting and Nussenzweig 2013), (Gomez-Cabello et al. 2013). Studies 

show that DNA resection, which is a prerequisite for the microhomology intermediate step, 

only happens in the S and G2 phase and it is inhibited by Ku70/Ku80 heterodimers (Liu and 

Huang 2016).  

The first responders to alt-EJ repair are poly [ADP-ribose] polymerase 1 (PARP1) and p53-

binding protein 1 (53BP1) (Figure 1). However, the DSB repair protein MRE11 and the DNA 

endonuclease RBBP8 (CtIP) are also implicated in the initial end-resection step (Mojumdar et 

al. 2019; Stracker and Petrini 2011). Recent studies identified DNA polymerase Q (POLQ) as 

a possible player in alt-EJ (Malaby et al. 2017) with DNA ligase I (LIG1) or DNA ligase III 
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(LIG3) to perform the final DNA ligation step (Pace et al. 2010). The LIG3 cofactor, XRCC1, 

is also implicated in alt-EJ (Bunting et al. 2012). However, the exact mechanism of repair is 

still unknown, with several players of alt-EJ to be missing (Figure 1).  

Evidence suggests that c-NHEJ causes a low rate of translocations, but when absent, alt-EJ 

becomes active and produces an increased number of chromosome rearrangements (Howard 

H.Y. Chang et al. 2017). Therefore alt-EJ is of particular interest in research since its 

microhomology signatures are reported at the breakpoints of chromosomal rearrangements in 

human cancer cells (McVey and Lee 2008), (Tsai et al. 2008), (Bunting and Nussenzweig 

2013). There are some features that characterize the alt-EJ pathway. Initially, the DNA repair 

results in higher rates of deletions, with or without signs of neighboring microhomology 

sequence. Consequently, lower rates of fidelity are anticipated.  

1.2.2. Homologous Recombination  

Upon DNA double-strand breaks, homologous recombination repair (HR) mediates accurate 

repair, protects the genome from chromosomal rearrangements or gross chromosomal loss, and 

cell death in a complicated template-directed repair (Figure 1). HR factors contribute to the 

protection and duplication of the genome fundamentally with mutations in HR gene, to have 

been linked to carcinogenesis (Bunting and Nussenzweig 2013; Li and Heyer 2008; Shibata et 

al. 2014a). 

HR matches the break ends to an intact DNA molecule of identical or near-identical DNA 

sequences. The pathway can be broken down into four stages: (1) DNA end resection, (2) 

RAD51 filament formation on the newly created single-stranded DNA overhang, (3) RAD51 
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dependent strand exchange between the broken DNA and the intact sequence donor, (4) DNA 

repair synthesis and resolution of the joint molecule repair intermediate. 

The first step of HR is the activation of checkpoint kinases by the MRE11-RAD50-NBS1 

(MRN) complex. This action arrests the cell cycle and simultaneously recruits additional DNA 

repair proteins at the DSB end. During the initial end-resection, MRN generates a single-

stranded DNA (ssDNA) that is important for initiating homologous recombination (Figure 1). 

This step commits the DNA repair to HR and simultaneously prevents NHEJ from interfering. 

Together, those steps of creating small overhangs are called “presynapsis” (Ceccaldi et al. 

2016; Gudmundsdottir and Ashworth 2006; Shibata et al. 2014a). The occurring ssDNA 

extends way past the original DSB point with replication protein A (RPA1) molecules to coat 

and protect the exposed stretch of DNA.  

The above step is a crucial feature for enabling Rad51 filament to attach to the ssDNA’s 3’ end 

and to search for an area of homology on the sister chromatid (Figure 1). Once Rad51 

identifies an area of homology, it attacks the homologous sequence and transfers part of its 

DNA strand. Rad51 pulls part of the DNA strand and creates a DNA heteroduplex (D-loop). 

During this process, Rad51 superintendents the exchange and pairing of the homologous DNA 

sequence with the sister chromatid. Several proteins are involved in protecting the broken DNA 

ends from nuclease activity, enabling the strand invasion and filament migration, and guarantee 

the synthesis of more than 50 newly synthesized nucleotides (Figure 1). 
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1.2.3. Single-Strand Annealing 

Single-strand annealing (SSA) is a DNA repair process that initiates when a double-strand 

break occurs among two repeated sequences (Bhargava, Onyango, and Stark 2016; Raphael, 

Beatrice, and D’Andrea 2016). Single-stranded regions are created adjacent to the DNA break 

(Figure 1). If they extend until the repeated sequences, then the complementary strands can 

anneal to each other. This annealed intermediate can be processed by digesting the single-

stranded tails and filling in the gaps. The smallest homology reported is at 29 bp, but it can 

reach much more than hundreds of bps (Bennardo et al. 2008; Ceccaldi et al. 2016; Howard H. 

Y. Chang et al. 2017). 

The DNA repair protein Rad52 is required for recombination processes, including SSA 

(Figure 1). It possesses the ability to bind to the 3’ ends of DNA (Sugawara et al. 2002). Rad59 

is a homolog of Rad52, and it is also required for SSA since it possesses the same DNA binding 

properties and strand annealing activity as Rad52 (Chakraborty et al. 2016; George and Alani 

2012). RPA is another DNA binding factor implicated at SSA. The RPA complex is required 

to coat the single-stranded DNA ends. Interestingly, Rad51 is not required for SSA since it is 

involved in strand invasion and hence is not expected to play a role in SSA, where two strands 

interact by intertwining around each other (Howard H. Y. Chang et al. 2017; Mansour et al. 

2008).  

The mismatch repair proteins MSH2 and MSH3 are also required for efficient SSA. They 

remove the non-homologous 3' tails from the annealed intermediate during the repair process 

(Eichmiller et al. 2018). MSH2 and MSH3 complex has a strong preference for recognizing 

"loop-out" structures such as those formed by frameshift replication errors. Possibly MSH2 
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and MSH3 bind to the branched junction between the single and double-stranded DNA 

(Sugawara et al. 2002, 2004). The complex stabilizes the annealed intermediate and signals the 

endonuclease to cleave the single-stranded tail. MSH2 and MSH3 may act to stabilize junction 

where the repeat sequences are small, e.g., 0.2 kb (Bennardo et al. 2009; George and Alani 

2012). 

1.2.4. The battle between end-protection and end-resection 

Previous studies have reported that the first responder to a DSB is the damage sensor complex 

MRN familiar to both HR and NHEJ (Shibata et al. 2014a). Its configuration appears to 

influence the pathway choice. Resection of the 5’ DNA strand is a requirement and a definitive 

commitment to DNA double-strand break repair by HR (Dimitrova and de Lange 2009; Gu, 

Lin, and Hong 2017; Liu and Huang 2016; Shibata et al. 2014b). On the other hand, NHEJ 

factor Ku70/Ku80 binds and protects DNA ends to favor for a quick DNA re-ligation (Figure 

2). The balance between p53-binding protein 1 (53BP1) and breast cancer type 1 susceptibility 

protein (BRCA1) mediates the extent of end-resection since BRCA1 antagonizes 53BP1 to 

promote resection in the S and G2 cell cycle phase (Escribano-Díaz et al. 2013; Grabarz et al. 

2013; Liu and Huang 2016; Zhang and Jasin 2011). MRE11 and retinoblastoma-binding 

protein 8 (RBBP8, also known as CtIP) mediate the initial limited end-resection step (end 

clipping) and typically results in resection of 20 bp or less. This short resection tips the balance 

of DNA double-strand break repair pathway choice from NHEJ in G1 towards HR in S and G2 

phase of the cell cycle. At a time when the newly synthesized sister chromatid can act as a 

homologous repair template. The second, more extensive phase of end-resection (Figure 2), is 

mediated by exonuclease 1 (EXO1), BLM RecQ like helicase (BLM), DNA replication 
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Helicase/Nuclease 2 (DNA2), and WRN RecQ like helicase (WRN) that definitely commits 

the choice to HR or SSA, but not to alternative end-joining repair (Liu and Huang 2016; 

Shibata et al. 2014b; Wang et al. 2015). What is not yet clear is the connection between other 

components or even pathways of the DDR that can modify the DSB repair choice. 

 

Figure 2: The battle between End-protection and End-resection. Schematic illustration of the immediate steps 
after the induction of a double-strand break (DSB). 53BP1 and RIF1 stabilize the broken ends to favor a fast ligation 
initiated by Ku70/Ku80 dimer. BRCA1 and CtIP are antagonizing 53BP1 and RIF1 to enable end-resection. 
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Chapter 2 

Clinical inhibitors: Targeting DNA repair 

2.1. Small pharmacological compounds 

The use of specific DNA repair inhibitors targeting prominent DNA repair kinases in cancer 

treatment is rapidly expanding as a therapeutic strategy. Therefore, the development of 

additional small pharmacological compounds is rapidly moving through the preclinical 

developmental pipeline. Several studies describe the selectivity, efficacy, and cytotoxicity of 

various inhibitors in vitro or in vivo. There are a handful of DDR inhibitors and they typically 

require a different type of in vitro test to evaluate their level of engagement in the choice of 

DNA repair.  

In this Ph.D. study, I performed experiments to compare several different compounds with the 

same in vitro DNA repair assay. I present interesting differences within compounds of the same 

class and address specific aspects of pharmacodynamics that can explain how the inhibitors 

can tip the balance of DNA repair choice.  
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2.1.1. Targeting end-protection with DNA-PKcs inhibitors 

DNA-dependent protein kinase, catalytic subunit (DNA-PKcs) has a pivotal role in c-NHEJ 

and the regulation of DNA damage response. In humans, it is encoded by the gene designated 

as PRKDC. It is a DNA-activated serine/threonine-protein kinase, abundantly expressed in 

almost all mammalian cells, and it functions as the catalytic subunit of the DNA-PK 

holoenzyme (Dungl, Maginn, and Stronach 2015). DNA-PKcs belongs to the 

phosphatidylinositol-3-OH kinase (PI(3)K)-related protein (PIKK) superfamily (Jiang et al. 

2015). It is a colossal single-chain protein of 4128 amino acids (Moshous et al. 2001). 

During the NHEJ process, DNA-PKcs interacts with Ku70/Ku80 heterodimers regulating a 

series of complex events: (1) the synapsis, (2) end-processing and (3) ligation (Lieber 2011). 

The Ku70/Ku80 dimer has a ring-like structure that binds first to the DNA break encircling the 

DNA end and allows the dimer to translocate along the duplex (Walker, Corpina, and Goldberg 

2001). DNA-PKcs is recruited through interaction with the Ku80 C-terminus (Alt et al. 1992; 

Gell and Jackson 1999) and two DNA-PKcs complexes are required to hold the DNA ends 

close together (Chirgadze et al. 2017). The DNA-PKcs kinase is activated once associated with 

the Ku70/Ku80 dimer and the DNA terminus. Besides, DNA-PKcs can auto-phosphorylate, 

enabling a conformational change that releases the DNA ends and makes them available to 

other factors, including NHEJ components involved in DNA end-processing and ligation steps. 

DNA-PKcs kinases allow the DNA DSB to be repaired promptly when a sister chromatid is 

unavailable, a process that is also used in V(D)J recombination (Alt et al. 1992). As such, 

DNA-PKcs act as a “doorkeeper” that protects DNA ends from initial processing and ligation, 

until the two broken ends are correctly positioned (Costantini et al. 2007; Dip and Naegeli 
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2005; Jette and Lees-Miller 2015; Um et al. 2003). End-processing of complex DSBs requires 

trans-phosphorylation of DNA-PKcs by ATM serine/threonine kinase. This activation serves 

to recruit Artemis endonuclease to the site of DNA damage. DNA-PKcs phosphorylation may 

also affect DSB repair pathway choice since it has been shown that cells deficient in DNA-

PKcs demonstrate increased levels of HR-mediated repair of DSBs (van Oorschot et al. 2016). 

The activity of DNA-PKcs kinase can also be stimulated by poly (ADP-ribose) polymerase 

(PARP), independently of the Ku70/Ku80 complex suggesting that PARP, in addition to its 

crucial role in BER, may additionally facilitate DNA DSB repair via inhibitory regulation of 

DNA-PKcs (Ruscetti et al. 1998).  

DNA-PKcs is an attractive therapeutic target for cancer. In 1994, Lilly Pharmaceuticals 

reported the compound LY294002 as an inhibitor of PI3K (Velic et al. 2015). Despite 

LY294002 side-effects (in vivo cytotoxicity), its structure paved the way for the development 

of more potent and selective DNA-PKcs ligands with improved physicochemical properties like 

the KU-0060648 and M3814 compounds (Harnor, Brennan, and Cano 2017). DNA-PKcs 

inhibitors are tested clinically in solid tumors and hematological malignancies both as a 

monotherapy and combination with chemotherapy or radiotherapy (Klein et al. 2017). For 

instance, radiation therapy becomes one of the significant ancillary methods of liver cancer 

therapy (Pascale et al. 2016). Liver cancer cells repair their damaged DNA predominantly by 

non-homologous end-joining (Yang et al. 2016). Upon DNA-PKcs inhibition, those cells with 

simultaneous administration of ionizing irradiation result in unresolved double-strand breaks 

in the genomic DNA of the target cells that lead to tumor cell death (Dolman et al. 2015). 
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2.1.2. Targeting ATM-CHK2 axis as a therapeutic target in cancer 

As discussed earlier, the protection of the genome by DNA repair factors is rooted in a broader 

cellular response known as the DNA damage response. The ataxia-telangiectasia mutated 

serine-threonine kinase (ATM) signaling pathway is well conserved and is central to the 

maintenance of genome integrity (Awasthi, Foiani, and Kumar 2016). ATM kinase belongs to 

the phosphoinositide 3-kinase (PI3K)-related kinase (PIKK) family along with DNA-PKcs and 

it phosphorylates proteins containing Ser or Thr residues that are followed by Gln (Bakkenist 

and Kastan 2004). ATM triggers a phosphorylation cascade that sets in motion a series of post-

translational protein modifications that in the majority of the cases upregulate the cell cycle 

checkpoint pathways (Bakr et al. 2015; Batenburg et al. 2017; Geuting, Reul, and Löbrich 

2013; Muraki et al. 2013). Once the DNA damage is induced, the ATM-CHK2 (checkpoint 

kinase 2) axis controls the G2/M checkpoint by delaying mitosis and allows cells to avoid the 

toxic levels of genome instability. In addition, ATM plays a part in the local response to DNA 

DSB (Figure 3 A). Even though ATM is the master kinase of the DNA damage response, it is 

not the first protein to arrive at a DNA double-strand break. As previously described, the MRN 

complex rapidly binds to the chromosomal breaks and acts as the primary sensor. Among other 

targets, ATM phosphorylates the histone variant H2AX which is also phosphorylated by DNA-

PKcs (Dimitrova and de Lange 2009; Geuting et al. 2013; Mansour et al. 2008; Rybanska-

Spaeder et al. 2013).  

ATM has long been considered as a potential drug target for cancer therapy since it is a 

facilitator of DNA damage response and is considered as a tumor suppressor (Kandoth et al. 

2013). However, the generation of specific inhibitors for ATM is a difficult mission. The initial 
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compounds that have been used to inhibit ATM were pan-PI3K inhibitors like LY294002, 

caffeine, and wortmannin (Sarkaria et al. 1998, 1999). More specific ATM inhibitors have 

been developed over the years such as KU-55933, KU-60019, and KU-559403 (Batey et al. 

2013; Fokas et al. 2012; Guo et al. 2014; Toledo et al. 2011). Recent evidence shows promising 

results that inhibition of ATM can sensitize cells to ionizing radiation (Klein et al. 2017; Ronco 

et al. 2017), therefore efforts to develop potent and selective compounds are still ongoing. 

  

Figure 3: The ATM and ATR cell signaling axis. Schematic overview of the (A) ATM-CHK2, and (B) ATR-CHK1 
axis. Illustration adapted from (Feehan and Shantz 2016), (Zhao et al. 2018). 
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2.1.3. Targeting ATR-CHK1 axis as a therapeutic target in cancer 

Further vital components of the DDR are the ATM and Rad3-related serine-threonine kinase 

(ATR) and checkpoint kinase 1 (CHK1) (Rundle et al. 2017) that link DNA lesions to cell 

cycle checkpoint and repair. These protein kinases play a critical role since knock-out of ATR 

or CHK1 is lethal in early embryonic life (Brown and Baltimore 2000; Takai et al. 2000). The 

presence of single-stranded DNA (ssDNA) activates ATR and typically, ssDNA arises from 

stalled replication forks, nucleotide excision repair (NER) intermediates or resected DSBs that 

have been subject to exonuclease digestion. Therefore, ATR is suggested to play a role in both 

DNA damage repair and cell cycle checkpoint regulation. Besides, ATR kinase is as well a 

member of the PIKK family, exhibiting a similar structure to ATM and DNA-PKcs. The 

primary phosphorylation target of ATR is CHK1 (Figure 3 B). Both ATR and CHK1 are 

responsible for transducing the signal to reduce replication stress and indicate single-strand 

DNA. Both are closely linked to DNA repair by regulating end-resection pathways. Early 

studies have shown that ATR-CHK1 signaling pathway phosphorylates and activates the 

critical homologous recombination repair (HR) regulatory protein BRCA1 (Tibbetts et al. 

2000) and protects cells from 5-fluorouracil cytotoxicity (Fujinaka et al. 2012). Furthermore, 

it is reported that the depletion of ATR reduces the efficiency of HR in a DNA DSB repair 

reporter assay (Bakr et al. 2015; Fujinaka et al. 2012).  

The functions of the S phase checkpoint proteins ATR, CHK1, and WEE1 become critically 

important in cancer with loss of G1 cell cycle checkpoint control. Those proteins ensure that 

significant time is provided to deal with replication problems and that the appropriate pathways 

of replication fork recovery are activated, avoiding premature mitosis. This results in the S and 
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G2 checkpoints dependency by the cells, a strategy that may be exploited by inhibiting the 

ATR, CHK1 and WEE1 kinases in cancer cells. Even if the early ATR and CHK1 inhibitors, 

such as UCN-01, were not specific enough (Senderowicz 2000), the most recently developed 

inhibitors exhibit greater potency and higher selectivity against its prospective targets, with 

new ATR inhibitors (AZD6738, M6620) to enhance tumor cell killing (Jin et al. 2018; Sarkaria 

et al. 1999).  

Wee1 is an essential target of CHK1 acting as an inhibitor of CDK1 and takes part in the ATR-

CHK1 pathway in multiple ways. A selective small-molecule inhibitor of WEE1 (MK-1775, 

now known as the AZD1775; IC50= 5 nM) has been identified from a high-throughput screen 

based on an in vitro kinase assay (Garcia et al. 2017; Jin et al. 2018). The AZD1775 inhibitor 

causes G2/M checkpoint release after DNA damage, and it has demonstrated increased 

cytotoxicity in combination with specific chemotherapeutic drugs such as gemcitabine, 

platinum compounds, and topotecan in p53-deficient cells. Besides, it has shown antitumor 

efficacy in xenograft models and patient-derived tumor explants ex vivo (Hirai et al. 2009), (H. 

Kim et al. 2016). It has been reported that the AZD1775 compound inhibits WEE1, proto-

oncogene tyrosine-protein kinase (YES1), protein kinase membrane-associated 

Tyrosine/Threonine 1 (PKMYT1) kinases as well as polo-like kinase1 (PLK1) with similar 

potency as the intended target WEE1 itself (Hirai et al. 2009; Wright et al. 2017). WEE1 kinase 

has been used for targeted molecular therapy of gastric cancer (H. Kim et al. 2016). The small-

molecule inhibitor of WEE1, AZD1775 synergizes with a PARP inhibitor (Olaparib) by 

impairing HR and enhancing DNA damage and apoptosis in acute myeloid leukemia (AML) 

(Garcia et al. 2017). 
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2.1.4. HDAC inhibitors in cancer development and therapy 

Epigenetic abnormalities have been linked with some classical “Hallmarks of Cancer” 

underlying a close connection between genetic and epigenetic mechanisms during the 

development of cancer (Li and Seto 2016), (Flavahan, Gaskell, and Bernstein 2017). 

Epigenetic mechanisms are implicated in critical steps of cancer such as tumor suppressor 

silencing or oncogene activation by repurposed enhancers or even cell fate transitions.  

Histone acetylation is a process that is controlled by histone acetyltransferases (HATs) and 

histone deacetylases (HDACs). HDACs remove acetyl group and can alter transcription of 

oncogenes and tumor suppressor genes. In addition, HDACs deacetylate numerous nonhistone 

cellular substrates that govern a wide array of biological processes (Li and Seto 2016). Several 

studies implicate histone deacetylases (HDAC) during modulating the acetylation status of 

histone and nonhistone proteins (Barneda-Zahonero and Parra 2012; Chun 2015; Yang and 

Seto 2007). Post-translational modification of histones and non-histone proteins modulate gene 

transcription, chromatin remodeling, and nuclear architecture which are involved in the 

regulation of cell cycle, apoptosis, DDR, metastasis, angiogenesis, autophagy, and other 

cellular processes (Li and Zhu 2014), (Li and Seto 2016). There are 18 potential human 

HDACs grouped into four classes (class I, II, III, IV), with most of them to be involved in 

several different stages of cancer. 

More specifically, HDAC1 and HDAC2 are recruited to DNA-damage sites to deacetylate 

histones H3K56 and H4K16, and to facilitate nonhomologous end-joining (c-NHEJ) (Miller et 

al. 2010). This behavior suggests a direct role for these two enzymes during DNA replication 

and double-strand break (DSB) repair. Moreover, HDAC3 is associated with DNA-damage 
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control, even if it is not localized to DSB DNA-damage sites. Besides, it is shown that class I 

HDACs can regulate other proteins that are involved in the DNA-damage response as well; 

including ATM, ATR, and BRCA1 (Thurn et al. 2013). Also, HDAC9 and HDAC10 are 

reported to be required for homologous recombination (HR) (Li and Seto 2016). 

To date, numerous synthetic or natural molecules that target classes I, II, and IV enzymes have 

been developed and characterized, although interest in the class III family is increasing. 

Currently there are numerous HDACi under clinical development, which can be divided into 

three groups based on their specificity: (1) the nonselective HDACi, such as Vorinostat and 

Panobinostat; (2) the selective HDACi such as class I HDACi (Entinostat) and (3) the multi-

pharmacological HDACi (Li and Seto 2016).  

Vorinostat (SAHA) was the first HDACi to be approved by the FDA to treat cutaneous T-cell 

lymphoma (CTCL) in 2006. Since then, three more HDACi (Romidepsin, Belinostat, 

Panobinostat) have been approved for the treatment of different cancer types such as CTCL, 

peripheral T-cell lymphoma (PTCL) and multiple myeloma (MM) respectively (Li and Seto 

2016). 

Histone deacetylase (HDAC) inhibitors have shown to sensitize breast and ovarian cancer cell 

lines to PARP inhibition and cisplatin, in part via depletion of BRCA1 (Thurn et al. 2013). As 

the induction of BRCAness through BRCA1 downregulation mediated by HDAC, pan-HDAC 

inhibitors have been shown to cause transcriptional downregulation of RAD51 (House, Koch, 

and Freudenreich 2014). Current evidence suggests that HDAC inhibitors have a rather 

pleiotropic effect on HR genes and other cellular pathways (Chen et al. 2017). HDAC 

inhibitors decrease the protein levels of several HR factors, such as BRCA1 and BRCA2, 

RAD51 (Stengel and Hiebert 2015). 
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2.1.5. PARP inhibitors: Synthetic lethality in the clinic 

The nuclear enzyme poly(ADP-ribose) polymerase (PARP-1) is an essential target in cancer 

therapy, and it is acknowledged that inhibiting PARP in patients could also have therapeutic 

potential in the treatment of many other diseases (Ray Chaudhuri and Nussenzweig 2017).  

PARP is a superfamily of proteins localized in the nuclei. So far, three members of this family 

have been recognized to have a role in DNA repair, with PARP1 leading that activity. PARP1 

is also known as a molecular nick-sensor, and it is part of the enzymatic machinery of the BER 

pathway (Wood and Doublié 2016). PARP1’s role is to sense SSBs, assess the extent of their 

damage, decide whether the damage can or should be repaired, and approve the repair or trigger 

apoptosis (Figure 4). PARP1 “flags” the damaged DNA by binding to the damaged site. Then 

it undergoes a conformational change, which recruits proteins to relax the chromatin, scaffold 

the damage, and repair the site (Bourton et al. 2017; Brown et al. 2017; Forst et al. 2013; Gu 

et al. 2017). PARP is inactive until bound to a DNA strand break. This binding activates the 

enzyme creating a negatively charged target at the SSB which recruits the enzymes required 

to form the BER multiprotein complex. This complex is made up of XRCC1, LIG3, and the 

DNA polymerase POLβ (Wood and Doublié 2016).  

Briefly, PARP inhibition stalls BER machinery, which causes unrepaired SSBs to accumulate 

(Figure 4). Typically, BER machinery repairs this type of DNA damage, but if PARP is 

inhibited the DNA repair process is channeled to the DSB repair pathways. PARP1/2 activates 

XRCC1 in the HR pathway and is involved in a regulatory feedback loop with BRCA1. 

Simultaneously, PARP1/2 seems to inhibit the NHEJ pathway by inactivating DNA-PKcs and 

the activity of ATM’s checkpoint. Although PARP’s overall contribution to the canonical 
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NHEJ pathway is still uncertain, collectively, PARP’s actions can affect which DSB repair 

pathway is selected (Brenner et al. 2011; Bryant and Helleday 2006).  

 

Figure 4: A model describing the PARP catalytic cycle. Schematic overview of PARP processing. Step (1) 
illustrates the non-DNA bound state of PARP1. It exists in a relatively disordered conformation, commonly referred 
to as “beads on a string”. PARP1 structure entails three zinc finger–related domains (ZnF 1, 2, and 3): the BRCA1 
C-terminus domain (BRCT); the tryptophan-, glycine-, arginine-rich domain (WGR); and the catalytic domain, which 
encompasses two subdomains; a helical domain (HD) and an ADP-ribosyltransferase (ART) catalytic domain. In 
this non-DNA bound state, HD acts as an autoinhibitory domain preventing binding of the PARP-superfamily 
cofactor, β-NAD+, to its ART binding site. (2) Damage of the DNA double helix often causes the formation of SSBs 
that change the normal orientation of the double helix and provides a binding site for DNA binding PARP1 ZnF 
domains (3). The interaction of ZnF 1, 2, and 3 with DNA initiates a stepwise assembly of the remaining PARP1 
protein domains onto the PARP1/DNA nucleoprotein structure (4). During this process leads to a change in HD 
conformation results in the loss of its autoinhibitory function, thus allosterically activating PARP1 catalytic activity. 
In step (6) the ART catalytic activity drives the PARylation of PARP1 substrate proteins, mediating the recruitment 
of DNA repair effectors, chromatin remodeling, and eventually DNA repair. In step (7) PARP1 auto-PARylation 
causes the release of PARP1 from DNA and the restoration of a catalytically inactive state. In step 5, PARP is 
trapped on DNA and blocks the replication fork to progress and requires HRR for repair. Several clinical PARPi, 
each of which binds the catalytic site, prevent the release of PARP1 from DNA, “trapping” PARP1 at the site of 
damage, potentially removing PARP1 from its normal catalytic cycle. Figure adapted from (Lord and Ashworth 
2017). 
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Cells that are missing both alleles of BRCA1 or BRCA2 have no HR functionality, which 

leaves repairs in the hands of NHEJ. Its limited ability to repair extensive DSB damage leads 

to cell death. Poly ADP-ribose polymerase (PARP) inhibitors are the first clinically approved 

drugs that exploit the concept of synthetic lethality (Hengel, Spies, and Spies 2017; 

Konstantinopoulos et al. 2015; Minchom, Aversa, and Lopez 2018). Almost 40 years ago, it 

was shown that small nicotinamide analogs inhibit PARylation and enhance the cytotoxicity 

of dimethyl sulfate, a DNA damaging agent (Durkacz et al. 1980; Purnell and Whish 1980; 

Terada et al. 1979). Subsequent efforts to the development of clinical PARP inhibitors led to 

the first generation of compounds, such as Rucaparib (Pfizer/Clovis), Niraparib (Merck & 

Co./Tesaro), Olaparib (KuDOS Ltd/AstraZeneca plc.), and Veliparib (Abbvie) (Lord and 

Ashworth 2017). A second more potent generation of PARP inhibitors was developed recently, 

Talazoparib (Lead/Biomarin/Medication/Pfizer) (Hopkins et al. 2015).   

 

Figure 5: Clinical PARP inhibitors. Structures of seven clinical PARP inhibitors are shown. The ability of each 
PARPi to trap PARP1 on DNA differs and broadly correlates with cytotoxic potency. The nicotinamide moiety 
common to PARPi is shown in red. The blue arrows indicated the racemic centers for Talazoparib, explaining the 
selectivity of the active enantiomer. Figure adapted from (Pommier, O’Connor, and De Bono 2016). 
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All PARP inhibitors interact with the binding site of the PARP enzyme cofactor, β 

nicotinamide adenine dinucleotide (β-NAD+), in the catalytic domain of PARP1 and PARP2 

(Figure 5). However, clinically used PARP inhibitors have different abilities to trap PARP1/2 

on DNA. It has been shown that a group of compounds that are among the first developed 

PARP inhibitors (INO-1001, Iniparib, Veliparib) do not possess any PARP trapping activity 

and therefore they are no longer considered potent PARP inhibitors (Lord and Ashworth 2017). 

Overall, PARP inhibition shows promising results in clinical studies as monotherapy for 

cancers with homologous recombination defects (Aly and Ganesan 2011; Carney et al. 2018; 

Minchom et al. 2018).  
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Chapter 3 

Genome engineering and DNA repair assays 

3.1. Genome engineering 

Since the 1970s, genome engineering is used as a method to insert (or remove) genetic elements 

into organisms. It uses engineered nucleases to target specific DNA sequences generating a 

double-strand break (DSB) or guide effector molecules to DNA locations, in a precise and site-

specific manner. For modifying the DNA sequence, a DSB needs to occur so that the cell’s 

endogenous repair mechanism can be activated and once manipulated can result in the desired 

sequence change (Doudna and Charpentier 2014). This methodology allows scientists to 

disrupt or modify genes with extraordinary precision and has been implemented for several 

years.  

In the late 1950s, Rich and colleagues described the idea of a triple helix formation (RICH 

1958; Varshavsky 2006), that inspired the early approaches of gene editing. Typically, 

oligonucleotides coupled to chemical cleavage or cross-linking reagents like bleomycin or 

psoralen were used to induce site-specific modifications (Faruqi, Egholm, and Glazer 1998; 
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Sandor and Bredberg 1995; Strobel et al. 1991; Strobel and Dervan 1990). Other methods used 

peptide nucleic acids or polyamides to enable targeted binding to chromosomal loci (Cho, 

Parks, and Dervan 1995; Faruqi et al. 1998; Gottesfeld et al. 1997). Another strategy was to 

use self-splicing introns to change sequences at the DNA or RNA level (Sullenger and Cech 

1994; Yang et al. 1996; Zimmerly et al. 1995). All these approaches demonstrated the 

effectiveness of base pairing for site-specific genome modification. However, none of them 

was able to lead to robust methods.  

Over the following years, homing endonucleases were emerged that were capable of site-

specific DNA cleavage and allow the integration of a desired exogenous sequence (Chevalier 

et al. 2002; Jacquier and Dujon 1985; Pavletich and Pabo 1991). This stimulated the creation 

of modular DNA recognition proteins that could function as site-specific nucleases when 

coupled to the sequence-independent nuclease domain of the restriction enzyme FokI 

(Bibikova, M., Beumer, K., Trautman, J.K., Carroll 2003; Boch et al. 2009; Frank, Skryabin, 

and Greber 2013; Moscou and Bogdanove 2009). Nowadays, two main groups of enzymes are 

used to introduce the DSBs, the FokI, and the Cas9 enzymes (Ran et al. 2013).  

The FokI is a DNA-cutting enzyme derived from the bacterium Flavobacterium okeanokoites, 

and it is fused with proteins to create programmable endonucleases such as zinc-finger 

nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). The first-

generation genome editing tool (ZFN) and later the next-generation genome editing tool 

(TALENs) that offered precision and control lead the way for functional studies in the era of 

genome engineering (Kim and Kim 2014; Ramirez et al. 2012; Zhang et al. 2014). However, 

these approaches required the generation of custom-tailored proteins for each targeting event, 

limiting their range of use on both practicality and cost.  
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Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 is the most recent 

addition to the arsenal of genome engineering tools that a scientist can use. It is an RNA-

mediated adaptive immune system found in several species of bacteria and archaea, and 

functions to protect host cells from invasion by foreign DNA elements (Sontheimer and 

Barrangou 2015). CRISPR technology enables scientists to target the genome accurately, for 

a variety of purposes, generally either cutting the DNA to induce changes in the DNA 

sequences or to precisely deliver molecules, for example, effector or visualization molecules, 

to the sites of DNA. 

3.2. The CRISPR toolkit 

The introduction of the CRISPR/Cas9 system offered an unprecedented opportunity to the 

researcher’s toolkit in designing experiments with the scope of determining the role of genes 

at the cellular level mechanistically (Jinek et al. 2013; Mukherjee-Clavin, Tomishima, and Lee 

2013). Although still not trivial, this technology provides an opportunity to understand the 

genetic basis of complex diseases like cancer.  

In this Ph.D. thesis, we are using CRISPR/Cas9 among other tools like TALENs, ZFN or 

meganucleases (e.g., I-SceI) because it provides efficiency, flexibility and cost-effectiveness 

to work in a high-throughput manner across different cell lines (Belhaj et al. 2013), (Sternberg 

et al. 2015).  
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3.1.1. CRISPR/Cas9 system 

Cas9 is an RNA-guided endonuclease whose mechanism was clarified in 2012 (Doudna and 

Charpentier 2014), (Ran et al. 2013). It induces a targeted double-strand DNA break with the 

help of a small ~ 20 nucleotide RNA sequence termed the ‘guide RNA’ (gRNA) that is 

complementary to the target sequence (Jinek et al. 2012) and binds to it through Watson - Crick 

base pairing (Cong et al. 2013; Sternberg and Doudna 2015) (Figure 6 A). The gRNA 

sequence can bind up to 22-23 base pairs (Hsu et al. 2013), (Ran et al. 2013). The simplicity 

of the target design, the high efficiency of this system and the ability to multiplexing have 

made CRISPR the preferable choice of cell line engineering (Perez-Pinera, Ousterout, and 

Gersbach 2012), (Cox, Platt, and Zhang 2015).  

  

Figure 6. The CRISPR/Cas9 system. (A) Schematic representation of the CRISPR/Cas9 system in complex 
with guide RNA and target DNA. crRNA is matched to the complementary target DNA sequence and is also bind 
to the tracrRNA. (B) Crystal structure of Streptococcus pyogenes Cas9 endonuclease in complex with guide 
RNA and target DNA (Nishimasu et al. 2014). 

For genome editing, the most commonly used and extensively characterized system is type II 

derived from S. pyogenes (SpCas9) (Figure 6 B). Two RNA elements (crRNA & tracrRNA) 

are combined into a single chimeric molecule termed the guide RNA (gRNA) that can be 

simultaneously expressed alongside the Cas9 nuclease (Cho and Chang 2015; Ran et al. 2013; 
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Walsh and Hochedlinger 2013). It has been shown that maintaining the RNA as two separate 

molecules (crRNA:tracrRNA) can enhance cutting efficiency, and may well be desirable for 

some study designs, for example developing a system whereby only the small crRNA is 

changed to affect different outcomes (Aida et al. 2015). The simplicity of this approach is that 

by altering the first 20 nucleotides of the gRNA, Cas9 nuclease can be directed to any DNA 

sequence, adjacent to necessary, short DNA sequences (Protospacer adjacent motif (PAM)) 

(Ran et al. 2013; Sander and Joung 2014). 

3.1.2. The features of Cas9 cleavage 

Three significant steps define the function of the CRISPR/Cas9 system: (1) initially the RNA-

guided Cas9 nuclease (RGN) scans the genome to find the complementary DNA sequence to 

the gRNA, (2) then the induction of a DNA double-strand break by Cas9 takes place, and lastly 

(3) DNA repair cellular machinery repairs the DSB (Hsu, Lander, and Zhang 2014). It is well 

established that after a Cas9-mediated DSB, DNA mutations are generated by the cellular 

machinery. Those mutations determine Cas9 phenotypic efficiency (Allen et al. 2019) with the 

repair process to be in the majority of the cases error-prone at a rate similar to the transfection 

efficiency (Brinkman et al. 2018). Still, the kinetics of a Cas9-mediated DSB and repair are 

not fully understood. However, it is believed that they differ from the kinetics of a natural DSB 

repair presumably because Cas9 remains bound to the target sequence following cleavage 

(Agrotis and Ketteler 2015). Over the past years, several studies have provided insights into 

the mechanisms affecting Cas9-mediated DSB repair and provided useful understandings of 

the process (Brinkman et al. 2018; van Overbeek et al. 2016; Tsai and Joung 2016). 
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The Cas9-mediated cut and repair process  

In a recent study, Brinkman et al. measured the kinetics of a DSB repair after a Cas9-mediated 

cleavage and concluded that during the process of a Cas9-DSB the DNA enters a reversible 

‘‘broken’’ state (Brinkman et al. 2018). They suggest that this state may be repaired correctly, 

or an error-prone repair mechanism can introduce small InDels at the cleavage site. The latter 

state fallouts in an irreversible ‘‘InDel’’ state that can no longer be adequately recognized by 

the gRNA and therefore cannot be cut again by Cas9. Moreover, several other studies 

(Sternberg et al. 2014), (Richardson, Ray, DeWitt, et al. 2016), (A. Shibata et al. 2017) indicate 

that Cas9 remains tightly bound to one or both DNA ends after cutting, and the detachment 

can only happen by protein denaturation. Additional studies have shown that also the 

catalytically inactive Cas9 (“dead” Cas9) is tightly bound to its target DNA in vivo with a dwell 

time of about 2 h (Knight et al. 2015). Overall, data suggest that the rate of DSB repair is 

variable, relatively slow and that the repair process tends to be error-prone (Brinkman et al. 

2018; Rose et al. 2017). In comparison, a natural occurring double-strand break is generally 

repaired within 10 to 60 min. 

Cas9-mediated DSB profile 

Multiple studies have analyzed short-range sequencing data by NGS from the cleavage site 

following a Cas9 mediated gene editing to characterize the repair process. The summary of 

these efforts is the evident accumulation of InDels in the cleavage site of the cells indicating 

an erroneous repair (Brinkman et al. 2018; Cullot et al. 2019). 

More specifically, in a recent study by So and Martin 2019, it was shown that DSBs with 5’ 

and 3’ overhangs lead to increased processing of DNA during end-joining compared to blunt 

DSBs (So and Martin 2019). 5’ overhangs are removed, and 3’ are filled in at recombination 
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junctions, implying that different subsets of enzymes are required for repair based on Cas9 

mediated DSB. These findings, together with other results, explain the prevalence of single-

nucleotide insertions homologous at the cleavage site.  

Furthermore, in a study by Chakrabarti et al. they show that the editing precision of Cas9 is an 

inherent feature of the target site that depends on four nucleotides located around the cleavage 

site within the PAM. Specifically, they highlight the importance of the -4 nucleotide position, 

from the PAM site, as the most influential position. In that position, possibly an overhanging 

nucleotide is created that can be used as a template of single-nucleotide insertions homologous 

since it can be used as a template before the broken DNA ends are rejoined (Anob M. 

Chakrabarti et al. 2019). 

Multiple repair pathways active at one locus 

CRISPR/Cas9 has been successfully used to Knock-Out (KO) or Knock-In (KI) genes of 

interest in cells and zygotes of different species (Rezza et al. 2019). During this process two 

repair mechanisms prevail; c-NHEJ which produces small insertions or deletions (InDels) at 

the cleavage site, or Homologous Directed Repair (HDR) that induces the specific insertion of 

an exogenous DNA fragment at the cut site. 

Apart from these two main repair pathways, recent studies show the implication of additional 

pathways to be active at one DSBs locus (van Overbeek et al. 2016), (Bothmer et al. 2017). 

However, the interplay and relative contributions have remained mostly uncharacterized (Allen 

et al. 2019). Except for HR and c-NHEJ, recent findings also implicate alt-EJ in the process of 

DNA repair after a Cas9-mediated DSB that is thought to be highly mutagenic (Brinkman et 

al. 2018), (So and Martin 2019). Alternative end-joining (alt-EJ), uses short sequence 
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homologies near the two ends, which leads to specific small deletions (McVey and Lee 2008). 

Therefore it is believed that both classical and alternative end-joining pathways contribute to 

the erroneous repair (Brinkman et al. 2018), (Allen et al. 2019). In an attempt to measure the 

kinetics of the Cas9 cut and repair process, Brinkman et al. showed that alt-EJ has slower repair 

kinetics than c-NHEJ (Brinkman et al. 2018). They observe that mainly the lower rate is 

because alt-EJ exhibits a delayed onset compared to c-NHEJ rather than a reduced activity. 

Most likely, the c-NHEJ system initially prevents the access of the alt-EJ pathway to the DSB; 

only after several hours if c-NHEJ has failed to repair the break, the alt-EJ pathway is allowed 

to engage (Brinkman et al. 2018). 

Applications of CRISPR/Cas9 

Recently, the prokaryotic immune system, CRISPR/Cas9 has been adapted for genetic editing 

in a variety of systems or organelles including bacteria (J.-S. Kim et al. 2016), (Barrangou et 

al. 2013), fungi (Liu et al. 2015), plants (Belhaj et al. 2013), insects (Alphey 2016), (Bassett 

and Liu 2014), worms (Friedland et al. 2013), zebrafish (Blackburn et al. 2013), mouse (Yin 

et al. 2016) and mammals (Bachu, Bergareche, and Chasin 2015). CRISPR has already 

transformed the field of genome engineering and will likely continue to do so, forming the 

basis of future research and clinical strategies. 

The expansion in CRISPR research is mainly due to the simplicity of targeting; instead of using 

custom in vitro generated proteins, the Cas9 nuclease can be targeted to specific genomic 

regions by a single guide RNA, which is comparably easy to produce. The CRISPR technology 

has rapidly evolved over the past few years, and it seems that several of the drawbacks have 

been mitigated with off-target effects (OTE) to represent an important issue that hinders the 
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use of CRISPR/Cas9 in in vivo applications. (Biagioni et al. 2017; Cho et al. 2014; Kleinstiver 

et al. 2016; Ricci et al. 2019; Tsai and Joung 2016; Zhang et al. 2015). Some possible solutions 

that have been described in the literature are first to evolve the gRNA design algorithms to 

minimize the OTE. Secondly, to use shorter gRNA sequences to decrease the potential 

mismatch tolerance. Thirdly, the concentration of the Cas9/gRNA complex needs to be 

maintained at minimal levels since it influences the OTE. Another possible solution is the use 

of paired Cas9 nickases that increases significantly the target specificity.  

Overall, CRISPR fulfils the criteria that an ideal genome-editing tool should possess (Cong et 

al. 2013): low or negligible off-target mutations (Tan et al. 2015),  (Veres et al. 2014),  (Yang 

et al. 2014), (Sander and Joung 2014), (Anderson et al. 2015), rapid and efficient assembly of 

the nuclease and in high occurrence (1 per 8 bp) of the desired sequence in the targeted cell 

population. In summary, it is this availability and simplicity that allowed genome editing to 

become so attractive. 

3.3. Reporter assays for DNA repair 

The cell’s DNA repair mechanisms try to restore the original DNA sequence after encountering 

DNA damage. Sometimes it repairs without a change or sometimes with mutagenic alterations 

or even recombination events (Gunn and Stark 2012). Over the past decades to detect these 

changes scientists have developed several in vitro reporter assays in various model systems 

(Figure 7) (Bennardo et al. 2008; Bervoets and Charlier 2018; Certo et al. 2011; Gomez-

Cabello et al. 2013; Iliakis et al. 2008; Johnson, Liu, and Jasin 1999; C. Ren et al. 2015; A. 

Shibata et al. 2017; Stark and Jasin 2003). There are assays for DNA damage and repair that 
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can trace and quantify the DNA repair pathway activity, examine the consequences of the 

processing of chromosome rearrangements, and evaluate the repair process of induced DNA 

damage, most frequently of a DSB (Adamson et al. 2012; Certo et al. 2012; Choe, Guo, and 

van den Engh 2005; Kuhar et al. 2016; Rakauskait et al. 2011; Ramirez et al. 2012; Q. Ren et 

al. 2015; A. Shibata et al. 2017). These assays are powerful tools, and each comes with its 

particular advantages and limitations (Klein et al. 2019). 

The first implementation of an in vitro assay was made with the SCneo reporter in 1999 

(Johnson et al. 1999). Roger et al. developed a recombination reporter that contains two non-

functional copies of the neomycin phosphotransferase (neo) gene (Figure 7 A). After the 

induction of a DSB with the I-SceI endonuclease the system allows for the detection of two 

recombination products; short tract gene conversion (STGC) or long-tract gene conversion 

(LTGC). I-SceI endonuclease generates a defined DSB within its 18 base-pair (bp) recognition 

sequence, resulting in DSB ends with 4 nucleotides (nt) 3’ cohesive overhangs. This approach 

helped to identify the involvement of XRCC2 and XRCC3 to DSB by HR (Johnson et al. 1999; 

Pierce et al. 1999) and that sister chromatid gene conversion is a prominent DSB repair 

pathway in mammalian cells (Johnson and Jasin 2000).  

In the years to follow several GFP-based reporters assays with recognition sites for the rare-

cutting endonuclease I-SceI, have been developed to examine the distinct repair outcomes of 

mammalian DNA DSB repair (Gunn and Stark 2012) (Figure 7 A-E). Depending on the 

design, reporters can be used to assess homology-directed repair, single-strand annealing, or 

alternative end-joining. Beginning with DR-GFP, DRins-GFP, SA-GFP, and EJ2-GFP, these 

reporters are designed to examine a series of repair outcomes that utilize homology. DR-GFP 

and DRins-GFP are used to quantify two distinct homology-directed repairs (HDR) events, 
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whereas SA-GFP and EJ2-GFP are used to measure single-strand annealing (SSA) and 

alternative end-joining (alt-EJ) events, respectively. These efforts revealed the importance of 

Nbs1 and CtIP in the initiation of end-resection (Sartori et al. 2007; Stracker and Petrini 2011).  

 

Figure 7: Development of DNA repair assays. (A) Structure of SCneo and predicted HR products. (B) The DR-
GFP contains the SceGFP cassette that is interrupted by a single I-SceI site, along with 5’ and 3’ truncated 
fragment of GFP. iGFP is used as a template to lead to a GFP+/BcgI+ product. (C) Similar to DR-GFP, with the 
addition of a 464 nt insertion that has to be removed during HDR. (D) SA-GFP contains a 5’ fragment of GFP and 
a 3’ fragment of GFP that contains an I-SceI site. The GFP fragments are separated by 2.7 kb and share 266 nt of 
homology. (E) EJ2-GFP contains an expression cassette for a tagged version of GFP that is interrupted by an I-
SceI site and a series of stop condos, which is flanked by 8 nt of homology. (F) Schematic of the Traffic Light 
reporter showing the different engineering outcomes after the induction of DSB by I-SceI. (G) In the See-Saw 
Reporter, a GFP gene is flanked by two truncated parts of the RFP gene (RF and FP) that share 302 bp of 
homologous sequence. Figures adapted from (Johnson and Jasin 2000), (Certo et al. 2011), (Gunn and Stark 
2012), (Gomez-Cabello et al. 2013). 

Apart from these specific reporters some researchers also established reporters to measure the 

activity of specific proteins like the kinase C, CKAR reporter that monitors the activity of 

ATM or other specific proteins in living cells (Johnson, You, and Hunter 2007).  
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So far, these methods have only been focusing on the study of specific DDR pathways and 

were driven by the target design, failing to provide an overall understanding of the complexity 

of double-strand break repair. In 2011 Certo et al. developed the Traffic Light Reporter (Certo 

et al. 2011) implementing a reporter assay for the first time to a high-throughput genetic screen 

(Figure 7 F). Several studies followed this approach in an effort to identify novel target genes 

involved in DNA-damage response with great success (Adamson et al. 2012; Bervoets and 

Charlier 2018; Goglia et al. 2015; Gong et al. 2015; Kojima and Borisy 2014; López-Saavedra 

et al. 2016; Q. Ren et al. 2015; A. Shibata et al. 2017). 

The recent expansion of genome engineering have recently brought the CRISPR/Cas9 system 

(Ran et al. 2013), (Doudna and Charpentier 2014), in the footsteps of reporter systems to induce 

highly site-specific DSBs instead of I-SceI (He et al. 2016; Q. Ren et al. 2015; Wen et al. 

2017). In this Ph.D. thesis, we describe the development of a dual-fluorescent reporter coupled 

to CRISPR/Cas9 technology, providing an opportunity to advance our knowledge of DSB 

repair and study the interplay among DNA DSB repair pathways.  

 



 

41 

 

Theoretical framework 

  



 

42 

 

 



Theoretical framework: Chapter 4   Aims  

 

43 

 

Chapter 4 

Aims 

To study the DNA double-strand break repair choices in vitro, we developed and employed 

Colour Assay Tracing Repair (CAT-R) as a dual-fluorescence reporter-based system. This 

study is conducted at the DNA Damage in Cancer group at BioMed X Innovation Centre.  

 

The main aims of this research are to:  

▪ Develop a novel method to trace the DNA repair status after a Cas9-mediated DSB. 

▪ Establish a platform to screen small pharmacological compounds related to DSB. 

▪ Evaluate the importance of individual DNA repair components on DSB repair choice.  

▪ Estimate the impact of the genetic background in DNA repair choice. 
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Chapter 5 

CAT-R fluorescent reporter 

This chapter describes the development of the tandem fluorescent reporter (CAT-R) that takes 

advantage of the highly efficient and precise CRISPR/Cas9 based double-strand break (DSB) 

induction to assess in vitro the different DNA repair outcomes.  

Custom model cell lines were engineered with the Flp recombinase to integrate the fluorescent 

reporter as a single stable copy to the cell's genome. Besides, the cells were engineered to 

express the enzymatically active Cas9 endonuclease in a doxycycline-inducible format. 

Furthermore, the transfection conditions and the timing of analysis were optimized to ensure 

high reproducibility in both model cell lines achieving an unparalleled resolution of the DSB 

events. 

CAT-R distinguishes small insertions or deletions (InDels) from large deletions allowing the 

simultaneous measurement of the rates of end-protection and end-resection DNA repair 

mechanisms in human cell lines. In this chapter, it is shown that DNA repair deficiencies can 

alter the rate between InDels and large deletions by directing the repair of the DSBs to either 

end-protection or end-resection based mechanisms.  



Results: Chapter 5   CAT-R fluorescent reporter  

48 

 

5.1. Custom cell line engineering 

Expressing vectors designed for use with the Flp-In™ System 

Transformed human embryonic kidney (Flp-In™ HEK293, Life technologies) and human 

telomerase reverse transcriptase (hTERT)-immortalized retinal pigment epithelial (hTERT T-

Rex™ RPE-1, a kind gift from Jonathon Pines) mammalian cell lines were used as model 

systems to integrate the custom-made DNA fluorescent reporter as a single stable copy to the 

cell’s genome with the use of Flp-In™ system. The Flp recombinase-mediated integration 

approach (Flp-In™, Invitrogen™) has been used widely to generate stable mammalian 

expression cell lines (Callesen et al. 2016; Ji et al. 2017; Sabath and Shim 2000; Theodosiou 

and Xu 1998). It uses the flippase (Flp) recombinase to recombine DNA sequences between 

short flippase recognition target (FRT) sites.  

According to the manufacturer’s protocol (Flp-In™ System), cells were transfected and 

expanded for one week. Since the integrated gene of interest contains fluorescent proteins, 

FACS sorting was used as an application for the selection of positive cells. 

Generating stable cell lines expressing Cas9 endonuclease 

The Edit-R inducible lentiviral Cas9 particles (Horizon™ Dharmacon) were used to generate 

Cas9 expressing cell lines that employ the Tet-On 3G induction system allowing for a robust 

Cas9 induction at doxycycline doses between 100 ng/ml and 1 μg/ml. The lentiviral Cas9 

particles confer Blasticidin resistance in transduced cells, therefore it is important to determine 

the minimum required Blasticidin concentration that kills the un-transduced cell lines. 
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Therefore, concentrations ranging from 2.5-20 μg/ml of Blasticidin were tested in both 

HEK293 and RPE-1 cell lines. Within 3-15 days after the addition of Blasticidin (0, 2.5, 5, 10, 

15, 15, 20 μg/ml) both cell lines exhibit resistance to the highest dose of Blasticidin (Figure 8 

A). 

 

Figure 8: Determining Blasticidin sensitivity and schematic representation on the workflow for knocking 
it out. (A) Raw pictures of HEK293CAT-R and RPE-1CAT-R cell lines after applying crystal violet. The cells were tested 
at increasing concentrations of Blasticidin (2, 2.5, 5, 10, 15, 20 μg/ml). Both cell lines are resistant to Blasticidin. 
(B) Workflow scheme. Cell lines were individually treated with an all-in-one vector to knockout the Blasticidin gene. 
Then cells were single-cell expanded for 2 - 3 weeks. Subsequently, approximately 10 clones were transferred to 
a larger plate and allowed to reach confluency. Colonies were split 1:2 and Blasticidin was applied to the medium. 
After one-week crystal violet was used to visualize the colonies. Images were taken for each plate. 

To disrupt the Blasticidin sequence and generate single knock-out (KO) clones sensitive to 

Blasticidin, the CRISPR/Cas9 system was used. Specific gRNAs targeting the Blasticidin 

sequence were designed and cells were transfected with an all-in-one vector (Figure 8 B). 

Overall, ten monoclonal cell lines sensitive to Blasticidin were generated that could be used 

with the Edit-R inducible lentiviral Cas9 particles. 
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After transducing the cell lines with the Edit-R inducible lentiviral Cas9 particles (hereafter 

referred to as HEK293CAT-R and RPE-1CAT-R cells), cells were cultured for seven days in 

selection medium supplemented with 1 μg/ml Blasticidin. Protein extracts from mixed cell 

populations were used to determine the expression levels of Cas9 protein in an inducible 

manner in the presence of doxycycline by western blotting using an anti-Cas9 antibody (Figure 

9). 

 

Figure 9: Western blot detecting Cas9 expression. Western blot from a mixed cell population from both cell 
lines (HEK293CAT-R, RPE-1 CAT-R) shows that under Doxycycline induction the expression of the Cas9 protein is 
induced. Blots were incubated with antibodies directed against Cas9 and GAPDH. 

5.2. Optimizing transfection and Cas9 cutting efficiency 

To establish and optimize the conditions of the double-strand break (DSB) induction are 

described to ensure high reproducibility in HEK293CAT-R and RPE-1CAT-R cells (Figure 10 A), 

several conditions have been considered such as (1) the effect of cell population density on 

transfection efficiency, (2) the type and optimal concentration of transfection reagent, and 

lastly (3) the ideal time point of analysis. 

It is widely acknowledged that some “cargo” types such as longer pieces of DNA or proteins 

are difficult to get into cells. Therefore, the transfection efficiency of both cell lines was 

evaluated by quantifying the levels of eGFP expression three days post-transfection with the 
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same pDNA vector (LentiGuide puro eGFP), lipid-mediation reagent (Lipofectamine™3000) 

and lipid to DNA ratio (1:3). The maximum transfection efficiency achieved in normal 

HEK293 was approximately 80%, whereas for normal RPE-1 the efficiency had a maximum 

of 55% (Figure 10 B). Even though 55% of transfection efficiency is can be considered high 

under certain conditions, our experimental pipeline requires higher rates since a build-in cell-

based assay is developed for large-scale screens with several gene-edited transgenic cell lines 

to be used and a robust phenotype needs to occur every time.  

 

Figure 10: Ensuring system quality performance. (A) Ideal cell confluency 24 h after seeding 20.000 cells 
HEK293 and 8.000 cells RPE-1 in a 96 well plate intended for a liquid transfection. (B) Transfected wild type RPE-
1 and HEK293 with the same eGFP expressing vectors (LentiGuide puro eGFP) with Lipofectamine™3000 in 1:1.3 
DNA to lipid ratio. The effect of Cationic lipid-DNA complex ratio on lipid-mediation transfection efficiency in RPE-
1 cell lines. (C) The pDNA vector (LentiCRISPR eGFP) is used to transfect RPE-1 cells with different lipid-mediation 
reagents (JetPrime®Polyplus, FuGene®Promega, ScreenFect®, Lipofectamine™2000, Lipofectamine™ 3000) at 
various lipid: DNA ratios. The pDNA vector expresses the eGFP protein and is used to quantify the expression 
levels of it with flow cytometry. (D) The efficiency of different gRNA format is tested in a time-dependent manner 
(24, 48, and 72 hr) in HEK293CAT-R and RPE-1CAT-R cells. The eGFP reduction is checked with flow cytometry. The 
same gRNA sequence is used in all formats. A standard student t-test is used to calculate the P-values between 
untreated and treated samples. pDNA: px330), RNA: in-vitro transcribed (IVT) or synthetic crRNA:tracrRNA gRNA. 

The efficient delivery of the CRISPR reagents into the cells ensures a higher probability of 

success for any downstream application. For this reason, we examined several transfection 
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reagents such as Lipofectamine™ 3000, JetPrime®Polyplus, FuGene®Promega, 

ScreenFect®, at different concentrations, and formats (pDNA, RNA) to further boost the 

transfection efficiency of the CRISPR reagents into the model cell lines. To optimize the 

delivery of pDNA vectors to HEK293 and RPE-1 cell lines we tested different lipid-reagent 

(μl) to DNA concentration (μg) ratios in ranges from 0.7 to 6 with several transfection reagents 

(Figure 10 C). Lipofectamine™ 3000 and JetPrime®Polyplus exhibit the highest transfection 

efficiencies (approximately 55%) in RPE-1 with lipid:DNA ratio to range from 1.3 up to 3, 

whereas FuGene®Promega and ScreenFect® displayed signs of transfection at much higher 

lipid:DNA ratios (3 to 6). Among all transfection reagents, Lipofectamine™ 3000 and 

JetPrime®Polyplus had the least cytotoxic effects after three days of transfection. Probably the 

higher amount of lipid-reagent that was needed in the case of FuGene®Promega and 

ScreenFect® reagents was the causal for the severe cytotoxicity.  

As defined above, the maximum transfection efficiency of a pDNA for normal HEK293 and 

RPE-1 was measured at 80% and 55% respectively. However, transfection efficiency may not 

necessarily translate into similar levels of a functional read-out. Therefore, to maximize the 

Cas9-mediated DSB read-out, two different gRNA formats (pDNA, RNA) of the same gRNA 

sequence were examined by comparing the levels of eGFP reduction in a time-course manner 

(Figure 10 D). 

The use of a pDNA vector reduces the expression levels of eGFP 48 h post-transfection on 

average only by 25% in both cell lines (Figure 10 D). While 72 h post-transfection the 

reduction of eGFP expression was about 60% for HEK293CAT-R and still 35% for RPE-1CAT-R. 

Subsequently, the pDNA vector format cannot carry adequate CRISPR reagents to the cells for 

the induction of an effective phenotype. 
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Instead, when transfecting the gRNA sequence in an RNA format significantly higher results 

are achieved. Even at 48 h post-transfection the reduction of eGFP expression for 

HEK293CAT-R was about 75% and 55% for RPE-1CAT-R (Figure 10 D). Those numbers were 

further increased 72 h post-transfection with both cell lines achieving a reduction to the levels 

of eGFP at about 85%, with similar efficiencies to have been reported before (Agrotis and 

Ketteler 2015). 

 

Figure 11: The cutting efficiency is examined with the SURVEYOR assay. Genomic cleavage analysis of the 
eGFP genomic loci targeted with the synthetic gRNA in (A) HEK293CAT-R and (B) RPE-1CAT-R cells. The efficiency 
of the gRNA is studied for 24 to 72 h post-transfection with the SURVEYOR assay. Products from untreated control 
cells and cells transfected with the CRISPR system were analyzed in a 1.5% agarose gel electrophoresis. 

Moreover, to further investigate the optimal conditions for a Cas9-mediated DSB read-out, we 

evaluated the genome editing efficiency based on an enzymatic mismatch cleavage assay 

(Langhans and Palladino 2009) in a time-course manner for both cell lines of interest (Figure 

11). A successful editing event can already be detected 24 h post-transfection with the RNA 

format in both cell lines. Whereas signs of an efficient double-strand break were visible with 

the pDNA only 48 h post-transfection. In addition, the intensity ratio between intact DNA and 

cleavage products between pDNA and in vitro transcribed (IVT) RNA at 48 h was much higher 

for the RNA format compared to the pDNA, indicating a better double-strand break induction. 

Overall, the cutting efficiency measured by the Surveyor nuclease showed similar results in 

terms of efficiency and timing as with our previous efforts. 
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Collectively, the data suggest that to maximize the Cas9-mediated DSB read-out the synthetic 

(crRNA:tracrRNA) gRNA format should be used, in lipid to RNA ratio 1:2, with 

Lipofectamine™RNAiMAX as a transfection reagent in the model cell lines HEK293CAT-R and 

RPE-1CAT-R. In addition, the optimal time point of analysis varies between three- to four-days 

post-transfection for a robust phenotype. 

5.3. Color assay tracing repair 

We designed an in vitro reporter assay named the Color-assay tracing repair (CAT-R). It 

consists of two coding sequences for the fluorescent proteins mCherry and eGFP linked with 

a self-cleaving P2A peptide and is integrated at a single genomic locus in human HEK293 and 

RPE-1 cells, engineered to express the doxycycline-inducible Cas9 endonuclease (Figure 12 

A). To generate a single site-specific DNA double-strand break, we used a gRNA targeting the 

eGFP coding sequence in doxycycline-induced HEK293CAT-R cells. Three days post-

transfection the repair outcome is analyzed with flow cytometry and plotted as a density plot 

of mCherry and eGFP expression (Figure 12 B). The repair of this double-strand break can 

potentially give rise to three populations with distinct fluorescent signals: (i) in the first case, 

a frameshift mutation places only the eGFP coding sequence out of frame (mCherry+/GFP-) 

due to repair by small insertions/deletions (InDels); (ii) in the second case, deletions larger 

than approximately 250 bps leads to loss of both mCherry and eGFP sequences (mCherry-

/GFP-) and (iii) in the third case if the repair is error-free, then both mCherry and eGFP 

sequences remain intact (mCherry+/GFP+). Comparing the phenotypes observed upon gRNA 

targeting eGFP with a non-targeting (scrambled) gRNA, indeed we could observe three 

different populations, two of which correspond to error-prone and one to error-free repair of 
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the double-strand break. Even though we achieve very high transfection efficiencies (greater 

than 80%) in HEK293CAT-R cells, this third population likely represents a combination of 

untransfected cells and cells underwent an error-free repair (Figure 12 B).  

 

Figure 12: The Color Assay Tracing repair (CAT-R) reporter. (A)  Schematic representation of CAT-R reporter 
illustrating the different DNA repair outcomes after a Cas9-mediated site-specific double-strand break (DSB). Arrow 
represents promoter and initial mCherry start codon. The CRISPR/Cas9 site is indicated at the eGFP loci 355 bp 
downstream of P2A. If the break is resolved through end-protection pathways, small insertions/deletions (InDels) 
will form at the break site that will translate eGFP out of frame, and only the mCherry will be expressed; if the break 
is resolved through end-resection pathways, both mCherry and eGFP sequence will be translated out of frame due 
to the formation of large InDels. (B) Flow cytometry analysis plot of HEK293CAT-R cells 72 h post-transfection with 
the synthetic crRNA:tracrRNA complex. Comparing the phenotypes between a non-targeting (scrambled) gRNA 
to a gRNA targeting the eGFP sequence, we observe three fluorescent populations to form. Numbers inside plots 
indicate percentages of live cells. Axes report relative fluorescence intensity in arbitrary units. (C) Quantification 
box and whisker plot (min to max) of flow cytometry analysis for HEK293CAT-R and RPE-1CAT-R cell line 72 h post-
transfection with the synthetic crRNA:tracrRNA complex. A standard student t-test is used to calculate the P-values 
between untreated and treated samples per population. (D) Flow cytometry analysis of HEK293CAT-R cells 72 h 
post-transfection with six different synthetic gRNA complexes targeting the eGFP sequence. All gRNAs induce a 
double-strand break with a similar effect. Numbers inside plots indicate percentages of live cells. Axes report 
relative fluorescence intensity in arbitrary units. 

The population frequency suggests that the DNA repair choice is on average 1.1 (±0.2) for 

HEK293CAT-R between InDel formation and large deletions with error-free repair to be very 
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rare (Figure 12 C). This result is not specific to HEK293CAT-R cells, as RPE-1CAT-R cells also 

showed an equal representation of these two error-prone populations. In RPE-1 cells, however, 

the formation of the small InDels was slightly higher than that of HEK293 cells in a ratio of 

small InDels to large deletions to be on average 1.4  (±0.1) (Figure 12 C). To confirm that the 

choice of gRNA did not affect the relative frequencies of these two populations, we 

additionally designed five more gRNAs targeting different regions of the eGFP sequence. In 

all cases, we observed similar results, with an average ratio of small InDels to large deletions 

to be 1.4 (±0.2). Collectively, our results suggest that upon CRISPR/Cas9 mediated DSB, both 

small InDels, and large deletions can occur at similar frequencies (Figure 12 D). 

Integrating cell cycle with the DNA damage repair  

To gain more insights into the kinetics of a Cas9-mediated DSB, we monitored for four days 

the repair process with a live cell imaging system (IncuCyte, Sartorius) (Figure 13 A). The 

results demonstrate that after a Cas9-mediated DSB the repair process commences as early as 

12 ±2 hours post-transfection, agreeing well with similar outcomes of recent studies (Brinkman 

et al. 2018; Anob M Chakrabarti et al. 2019; Kosicki, Tomberg, and Bradley 2018). 

Furthermore, to confirm that these populations are indeed products of erroneous DSB-repair 

and are stably maintained, we monitored the cell division for seven days following a DSB 

induction. We observed that the fluorescence intensity of mCherry and eGFP reduces over time 

without drastically changing the ratios among these populations (Figure 13 B).  

Moreover, the control of DNA repair by the cell cycle checkpoints has been well described 

(Ghelli Luserna di Rora’, Iacobucci, and Martinelli 2017; Hustedt and Durocher 2017; Mjelle 

et al. 2015; Stracker et al. 2009). Typically, the cell cycle is arrested at specific points to give 
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cells the necessary time to repair the DNA damage before proceeding to division. Certain cell 

cycle points involve different DDR pathways that give rise to distinct DNA repair outcomes. 

For instance, c-NHEJ, which is a major contributor to small InDels, is active throughout the 

cell cycle, whereas end-resection, that leads to large deletions or error-free repair, is generally 

restricted during late S and G2 phase.  

 

Figure 13: The control of DNA repair by the cell cycle. (A) Fluorescent images are showing the different repair 
outcomes 72 h post-transfection. Only red fluorescent cells indicate an end-protection repair, whereas no 
fluorescence cells refer to end-resection repair. Green & red fluorescence cells indicate the untransfected or cells 
that underwent error-free repair. (B) Time course tracking for HEK293CAT-R cells following a DSB induction 
throughout 2, 5, and seven days. (C) Cell cycle profile of untreated HEK293CAT-R and RPE-1CAT-R cells. A standard 
student t-test is used to calculate the P-values between cell lines in every cell cycle phase. (D) Cell cycle profile of 
sorted HEK293CAT-R cells populations. 

Therefore, we evaluated the cell cycle profile of the HEK293CAT-R and RPE-1CAT-R to better 

explain the slight differences in the ratio of small InDels to large deletions. When compared 

the cell cycle profiles of both cell lines, we observed that RPE-1 cells spend relatively less time 

in the S and G2 phase comparing to HEK293 (Figure 13 C). That could explain why RPE-1 

cells have a lower frequency of large deletions than HEK293. Moreover, we questioned 

whether the two DNA repair outcomes are a product of cell cycle stalling. Therefore we sorted 



Results: Chapter 5   CAT-R fluorescent reporter  

58 

 

cells based on their DNA repair profile outcome, small InDels or large deletions, and compared 

their cell cycle profile (Figure 13 D). No significant differences occurred, suggesting that both 

cell populations are indeed products of erroneous DSB-repair and not products of cell cycle 

stalling. Overall, these results imply that the Cas9 cut and repair process is not profoundly 

affected by the cell cycle. 

Regulation of DNA repair pathway choice by homologies 

Long-homology and micro-homology sites are used by the DNA repair sensor complexes, like 

PARP1, to influence the outcome of the DNA repair in terms of pathway choice (Ceccaldi et 

al. 2016; Ray Chaudhuri and Nussenzweig 2017). Therefore, it is crucial to understand the 

homology sites and their frequency at the loci of interest. To do so, we used the basic local 

alignment search tool (BLAST) (https://blast.ncbi.nlm.nih.gov/Blast.cgi), which allows the 

identification of regions with local similarity across the FRT integration site (a 14.673 bp DNA 

sequence). Two regions of long homologies (LHM; > 100 bp) are located at the S40 poly(A) 

signal, and at the ampicillin resistance sequence that could possibly justify for long DNA losses 

after a DNA double-strand break (Figure 14). This type of DNA repair would result in an 

increase of the mCherry-/GFP- population.  

Furthermore, focusing more on the region of the CAT-R system (a 2.586 bp DNA sequence) 

we identified three potential microhomology sites (MHM; 20 – 50 bp) between the mCherry 

and eGFP sequence. Those microhomologies theoretically could be sensed by PARP1 to 

enable alternative end-joining pathway (alt-EJ) that would lead to the loss of both fluorescence 

proteins function in this locus. 
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Figure 14: Schematic representation of the entire FRT integration site in the model cell lines. At the entire 
FRT integration site, two sites of long-homologies (> 100 bp) are identified, one at the SV40 poly(A) signal and 
another at the Ampicillin resistance sequence. In addition, at the CAT-R system, a 2.586 bp length DNA sequence, 
three potential microhomologies sites are identified across the double-strand break site (guide5). LHM: Long-
homology, SHM: Microhomology, MHM: Microhomology. 

Additionally, more than 50 small microhomologies (SHM; 1 - 10 bp) of different base-pair 

length and type are identified across the double-strand break site (guide5) with the use of an 

online available tool (www.rgenome.net). If in this case, small microhomologies are used 

during the repair process after a DSB, then only the eGFP sequence would be translated out of 

frame resulting in an increase of the mCherry+/GFP- population. 

Mutational profile of small InDels 

To further understand the repair patterns and outcomes of a Cas9-mediated DSB, we performed 

targeted next-generation sequencing (NGS) to detect the frequency of the InDels at the affected 

site. Genomic DNA was harvested from cells 72 h post-transfection and a two-step PCR 

protocol was employed to prepare the PCR products for amplicon sequencing. 

The analysis of the amplicons showed that the maximum length of deletion that we detected 

was 171 bps, and for the majority of the cases (99%) the size of InDels was less than 50 bps 
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when counting events with more than 1% frequency (Figure 15 A). The most common type of 

event was 1 bp deletions and 1 bp insertions, with 1 bp insertions to exclusively consist of an 

adenine “A” at the repair site supporting the idea of templated insertions (Shen et al. 2018) at 

the DSB site (Figure 15 B). Interestingly, microhomology-mediated end repair deletions of 11 

and 24 bps were also often (5.7% and 3.1% frequency, respectively) (Figure 15 C). An in-

depth analysis revealed seven different microhomology (MH) patterns supporting deletions of 

various bps length, with the “AC” and “GG” MH patterns to be the most common.  

 

Figure 15: Mutational profile of InDels (A) Deep targeted next-generation sequencing to detect InDels at the 
targeted site from genomic DNA harvested 72 h after transfection. The frequency of events that occur after a Cas9-
mediated DSB in almost all cases (~ 99%) are InDels smaller than 50 bps. The most common events were 1 bp 
deletions and 1 bp insertions, with 1 bp insertions to exclusively consist of an A at the repair site supporting 
templated insertions at the DSB site. (B) Profile of the inserted nucleobase type. (C) The pattern of 
microhomologies supporting deletion length. 

The findings from the CAT-R and recent studies suggest that large deletions occur frequently 

after a Cas9-mediated DSB (Cullot et al. 2019; Gasperini et al. 2017; Kosicki et al. 2018). 

However, since larger deletions are technically challenging to observe by short-read NGS, their 

contribution to the DSB repair is less studied. 

CAT-R as a Homologous Recombination reporter 

Recently it was reported (Glaser, McColl, and Vadolas 2016) that the green fluorescent protein 

(GFP) could be converted to a blue fluorescent protein (BFP) by a change of a single amino 
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acid: from Proline (CCT) to Alanine (GCC). This simple modification allowed us to accurately 

measure the single-strand template repair (SSTR) by providing a single strand 

oligodeoxynucleotide (ssODN) as a donor template together with the gRNA targeting the 

eGFP sequence. Previous studies have implemented this approach to quantify knock-in events 

with the conversion rate to be around 3% when lipid-mediation transfection is used (Janssen 

et al. 2019; Y. et al. 2017). With this adaptation, CAT-R could be used as a homologous 

directed repair (HDR) reporter, and the repair of the Cas9-mediated DSB could give rise to an 

additional population with distinct fluorescent signals: mCherry+/BFP+ which corresponds to 

an SSTR event (Figure 16 A). We optimized our reporter with the use of a sense and an anti-

sense gRNA in combination with symmetric and an asymmetric ssODN (Figure 16 B). We 

tested two asymmetric donors' designs with their length to vary from 123 to 136 bps. The 

ssODN(L) bares the extended homology arm on the 5’ end, and the ssODN(R) has the extended 

homology arm on the 3’ end. In overall, the use of the ssODN(L) overperforms the ssODN(R), 

and the symmetric ssODN in terms of SSTR frequency (Figure 16 C). This indicates that there 

is a preference in ssODN symmetry to designs baring extended 5’ homology arms. In 

HEK293CAT-R, the highest SSTR frequency that we achieved was 4.9% (±1.2) with the 

combination of the ssODN(L) asymmetric donor and a sense gRNA (Figure 16 D). 
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Figure 16: CAT-R as a Homologous Recombination reporter. (A) Representation of the CAT-R reporter with 
the supply of an external donor template as a single-stranded oligodeoxynucleotide (ssODN). The ssODN bears 
the necessary nucleotide changes to convert a Green fluorescent sequence to a Blue fluorescent sequence 
indicating a homologous recombination event. (B) The ssODN bares 2 mutations that change the amino acid from 
Proline to Alanine so that instead of the GFP the BFP is produced indicating a knock-in event via the single-strand 
template repair pathway. The asymmetric design of donor templates is also illustrated. (C) A box and whiskers plot 
(min to max) showing the frequency of conversion of GFP to BFP with the use of an asymmetric ssODN template 
in cells that are transfected with the gRNAs that are depicted. A minimum of three biological replicates is used. (D) 
Representative flow cytometry analysis plots of HEK293CAT-R cells 72 h post-transfection with the synthetic gRNA 
and the ssODN. Numbers shown inside plots indicate percentages of live cells. Axes report relative fluorescence 
intensity in arbitrary units. The conversion from GFP to BFP is quantified based on the control. 



Results: Chapter 5   CAT-R fluorescent reporter  

63 

 

5.4. DNA repair deficiencies influence the CAT-R response 

We hypothesized that DNA repair deficiencies could modulate the frequency of the two error-

prone populations. Since DSB repair choices can alternate between end-protection and end-

resection based mechanisms, we examined the response of CAT-R reporter, without the use of 

a ssODN, to specific defects in DSB response.  

Deficiency in end-protection decreases small InDels 

Using the CRISPR/Cas9 system we first generated single knock-out (KO) clones of PRKDC 

and XRCC4, which are two of the most critical components of the c-NHEJ pathway, mediating 

end-protection based DSB repair (Davis and Chen 2013). For each gene of interest one gRNA 

is used to transfect the HEK293CAT-R cells (Figure 17 A). Afterward, monoclonal cell lines are 

generated by limiting dilution and once fully-grown clones are selected for validation. The KO 

efficiency is validated by immunofluorescence for PRKDC (Figure 17 B), and by 

immunoblotting for XRCC4 (Figure 17 C).  

In these two custom-made cell lines, we evaluated the phenotype of the CAT-R reporter in 

response to defects in end-protection pathways (Figure 17 D). In agreement with our 

hypothesis, we observed the involvement of c-NHEJ in the formation of small InDels, in both 

cell lines upon DSB induction we observe a substantial reduction in the formation of small 

InDels on average by 31% (±7) together with an increase in the formation of large deletions 

(Figure 17 E). More specifically, loss of XRCC4 decreases the frequency of small InDels by 

37% (±2), whereas the loss of PRKDC results in a reduction of small InDels by 25% (±1) 

(Figure 17 F). This slight difference might be explained by the fact that PRKDC is involved 
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during the early steps of c-NHEJ, whereas XRCC4 is involved during the last steps. Therefore, 

cells might have not fully committed to this type of end-joining repair and possibly they have 

repaired alternatively, hence the higher frequency of small InDels population. 

 

Figure 17: DNA repair deficiencies in end-protection influence CAT-R response. (A) Schematic workflow of 
generating custom deficient cell lines. (B) Validation of custom made PRKDC-/- HEK293CAT-R cell line by 
immunofluorescence (IF). IF against PCNA and PRKDC in wild type and KO cells. (C) Validation of custom made 
XRCC4-/- HEK293CAT-R cell line by western blot. Western blot against XRCC4 and GAPDH. (D) Schematic workflow 
of KO cell lines evaluating the CAT-R response to DDR deficient background. Representative flow cytometry 
analysis plot of HEK293CAT-R cells 72 h post-transfection with the synthetic gRNA targeting the eGFP coding 
sequence in (E) PRKDC and XRCC4 KO cells. Numbers inside plots indicate percentages of live cells. Axes report 
relative fluorescence intensity in arbitrary units. Quantification plots of flow cytometry analysis for HEK293CAT-R 
deficient cells are shown in (F). Data presented in box and whiskers (min to max) with 7 biological replicates. 

Deficiency in end-resection decreases large deletions 

Next, we tackle end-resection based repair pathways by targeting some of the critical molecules 

of homologous recombination (HR) and Fanconi anemia (FA) such as BRCA1, BRCA2, 
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USP1, and several FANC genes. The generation of KO cell lines in critical genes in this class 

may not be possible supporting the notion of essentiality of some of these genes for cell 

survival (Pearl et al. 2015). Therefore, in this case, we transfected cells with synthetic gRNA 

complexes targeting these genes (Figure 18 A) to generate a pool of cells with a defective end-

resection background.  

  

Figure 18: DNA repair deficiencies in end-resection influence CAT-R response. (A) Schematic workflow of a 
pool of CRISPR/gRNA transfected cell lines evaluating the CAT-R response to DDR deficient background. (B) 
Representative flow cytometry analysis plot of HEK293CAT-R cells 72 h post-transfection with the synthetic gRNA 
targeting the eGFP coding sequence in a pool of CRISPR/gRNA transfected cells. Numbers inside plots indicate 
percentages of live cells. Axes report relative fluorescence intensity in arbitrary units. (C) Validation of RNA levels 
reduction by RT-qPCR expression analysis in HEK293CAT-R 72 h after crRNA:tracRNA transfection. Quantification 
plots of flow cytometry analysis mixed pool CRISPR/gRNA transfected cells are shown in (D). Data presented in 
box and whiskers (min to max) with a minimum of 12 biological replicates. 
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Consistent with the idea that end-resection can lead to large deletions, knocking out essential 

genes involved in end-resection led to an increase in the formation of small InDels on average 

by 10% (±5) and a decrease in the formation of larger deletions (Figure 18 B). The level of 

KO efficiency is controlled by measuring the RNA levels of the transfected cells three days 

post-transfection by quantitative polymerase chain reaction (RT-qPCR) (Figure 18 C). The 

strongest phenotype is observed when BRCA1 and USP1 are KO. Both proteins are 

collaborating when chromatin remodelers unwind the DNA structure allowing for end-

resection based repair. The role of BRCA1 and USP1 is to further support the end-resection by 

activating ATR, CHK1, and APC (Brown and Jackson 2015; Mjelle et al. 2015; Murai et al. 

2011). The absence of  BRCA1 and USP1 increases the frequency of small InDels by 15% 

(±3), and 13% (±3) respectively with the simultaneous reduction of large deletions as well as 

the frequency of error-free repair (Figure 18 D). 

ATM deficiency increases the frequency of large deletions 

We also wanted to analyze how ATM deficiency affects CAT-R response. On the one hand, 

ATM is stimulating DSB end-resection through phosphorylation and activation of the nuclease 

enzymes such as CtIP, MRE11, EXO1, and BLM. On the other hand, ATM also mediates end-

protection through phosphorylation of DNA-PKcs and the recruitment of Artemis (Jiang et al. 

2015). In order to delineate the potential role of ATM in resolving DSBs, we generated an 

ATM KO cell line (Figure 19 A) and validated the KO efficiency of each single-cell clone by 

western blot. More specifically, the levels of ATM protein along with the levels of phospho-

CHK2 protein, a downstream target of ATM, were detected in the presence of 1μM of 
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doxorubicin, a DNA damage reagent. In half of the tested clones, the ATM was successfully 

KO since the protein of both ATM and p-Chk2 was not present. 

Next, we analyzed the repair upon a single double-strand break with CAT-R (Figure 19 B).  

In this case, ATM deficiency caused a decrease in small InDels on average by 3% (±1) and an 

increase in larger deletions presumably affecting end-protection based repair (Figure 19 C).   

 

Figure 19: ATM deficiency influences DNA repair choice. (A) Validation of custom-made ATM-/- HEK293CAT-R 
cell line by immunoblotting. Western blot against ATM and p-CHK2 after incubation with 1 μM of Doxorubicin for 
1.5 h. (B) Representative flow cytometry analysis plots of HEK293CAT-R cells 72 h post-transfection with the 
synthetic gRNA targeting the eGFP coding sequence in ATM KO cells. Numbers inside plots indicate percentages 
of live cells. Axes report relative fluorescence intensity in arbitrary units. Box and whisker plots (min to max) of flow 
cytometry analysis for HEK293CAT-R deficient cells are shown in (C). Data presented with a minimum of 18 biological 
replicates.  

PARP1 deficiency reduces the frequency of small InDels 

Next, we analyzed how CAT-R can respond to PARP1 deficiency. PARP1 plays an integral 

part during the repair of single-strand breaks. However, how it contributes to the repair of 

DSBs is less well defined, although it was suggested to play diverse roles in the repair of DSBs 

(Wei and Yu 2016). On the one hand, it is suggested to play a role during end-resection by 

rapid recruitment of MRE11 nuclease to the sites of DNA DSBs as well as later stages of HR 

presumably by limiting the amount of end-resection (Hengel et al. 2017). By recruitment of 

MRE11, PARP1 may also be involved in alternative end-joining. 
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On the other hand, it is also reported to stimulate c-NHEJ by interacting with and activating 

DNA-PKcs. To delineate the potential role of PARP1 in resolving DSBs, a PARP1 KO cell line 

is generated (Figure 20 A) and the repair upon a single double-strand break was analyzed 

(Figure 20 B). In this case, PARP1 deficiency caused a decrease in small InDels on average 

by 6% (±1) and an increase in larger deletions, suggesting a more prominent role of PARP1 in 

either end-protection mediated repair or alt-EJ (Figure 20 C). 

 

Figure 20: PARP1 deficiency influences DNA repair choice. (A) Validation of custom made PARP1-/- 
HEK293CAT-R cell line by immunofluorescence (IF). IF against PCNA and PARP1 in wild type and KO cells. (B) 
Representative flow cytometry analysis plots of HEK293CAT-R cells 72 h post-transfection with the synthetic gRNA 
targeting the eGFP coding sequence in PARP1 KO cells. Numbers inside plots indicate percentages of live cells. 
Axes report relative fluorescence intensity in arbitrary units. Box and whisker plots (min to max) of flow cytometry 
analysis for HEK293CAT-R deficient cells are shown in (C). Data presented with a minimum of 18 biological 
replicates. 

 

Deficiency in PRKDC and PARP1 reduces the frequency of small 

InDels by alternative types of repair 

We have established so far that the loss of function of either PRKDC or PARP1 is decreasing 

the formation of small InDels (Figure 21 A). More specifically, the results from CAT-R show 

that in a PRKDC KO background small InDels are heavily reduced by 25% (±1), whereas in a 

PARP1 KO background small InDels are reduced by 4% (±4) (Figure 21 B). Even though both 

genes show a similar phenotype, the underlying mechanism of DNA repair differs. It is known 
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that microhomologies (MH) are the designated pattern of repair for alt-EJ, a pathway in which 

PARP1 is a prominent member. Therefore, to detect the different types of InDels that are 

generated when PRKDC and PARP1 are absent we performed deep targeted next-generation 

sequencing (NGS). Genomic DNA was harvested from cells 72 h post-transfection and a two-

step PCR protocol was employed to prepare the PCR products for amplicon sequencing. 

First of all, the data show that once PRKDC is lost, there is a significant reduction in the 

diversity of the various length types (Figure 21 C) such as deletions of 7-, 8-, 9-, 10-bp which 

are completely missing. Whereas at the same time, in a PARP1 deficient background a notable 

increase (13%) in the frequency of 1 bp insertions is observed with the simultaneous reduction 

of the 2-, 11-, and 24-bp deletions frequency, that as we have seen, are supported by MH 

(Figure 21 C). A closer look at the NGS data regarding the PRKDC deficient background 

shows a significant increase by 14% of the 2 bp length insertion frequency (Figure 21 D). 

Simultaneously the frequency of 11-, and 24-bp deletions is significantly increased since in 

most cases they are supported by MH of 2-8 bp length.  

Moreover, NGS data shows that in a PARP1 deficient background, the frequency of 2-, 11-, 

and 24-bp deletions that are supported by microhomologies is decreased. Our findings 

demonstrate how alt-EJ is involved during the DNA repair process (Figure 21 D) and are 

consistent with the current literature. Collectively our data suggest that in the absence of major 

components of c-NHEJ then a convergent pathway (alt-EJ) takes over the DNA repair process 

by increasing the rates of MH. 
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Figure 21: Mapping the impact of DNA repair deficiency by sequencing. (A) Representative flow cytometry 
analysis plot of HEK293CAT-R cells 72 h post-transfection with the synthetic gRNA targeting the eGFP coding 
sequence in PRKDC and PARP1 KO cells. Numbers inside plots indicate percentages of live cells. Axes report 
relative fluorescence intensity in arbitrary units. (B) Quantification of flow cytometry analysis for HEK293CAT-R 
deficient cells. Data presented in box and whiskers (min to max) with a minimum of 7 biological replicates. A 
standard student t-test is used to calculate the P-values between untreated and treated samples. (C) Deep targeted 
next-generation sequencing to detect InDels at the targeted site from genomic DNA harvested 72 h after 
transfection in PRKDC and PARP1 KO cells. (D) Profile of the various bp length types in WT, PRKDC and PARP1 
KO cells. 

The impact of genetic background in DNA repair choice 

Next, we wanted to assess how the genetic background (PRKDC-/- and PARP1-/-) influences 

the actions of 13 prominent DNA repair genes (ATM, ATR, BRCA1, BRCA2, CHK1, NHEJ1, 

PARP1, PARP2, PARP3, POLQ, PRKDC, RAD51B, XRCC4) involved in end-protection and 

end-resection pathways.  
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Figure 22: The impact of genetic background in DNA repair choice. (A) Schematic workflow of the mini siRNA 
screen. (B) Gene expression levels measured by RT-qPCR three days post-transfection with siRNA. Cook’s 
distance bar plots in a (C) PRKDC, and (D) PARP1 deficient background. Representative flow cytometry analysis 
plots of HEK293CAT-R cells 72 h post-transfection with the synthetic gRNA targeting the eGFP sequence in (E) WT, 
(G) PRKDC, and (I) PARP1 KO cells. Numbers inside plots indicate percentages of live cells. Axes report relative 
fluorescence intensity in arbitrary units. Box and whisker plots (min to max) of flow cytometry analysis for 
HEK293CAT-R KD cells are shown in (F) WT, (H) PRKDC, (G) PARP1 background. Data presented with 16 biological 
replicates.  
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Therefore, we used a small-scale arrayed RNAi screen, with every gene to be targeted by a set 

of 2 independent siRNAs. In total, we transfected 28 siRNAs, including negative controls to 

the cells by reverse liquid transfection and three days post-transfection, we delivered the gRNA 

targeting the eGFP sequence. At day 6, we assessed the eGFP and mCherry ratios by high-

throughput flow cytometry, and we calculated Z scores of all three populations per gene based 

on non-targeting (scrambled) controls (Figure 22 A). The level of KD efficiency is controlled 

by measuring the RNA levels of the transfected cells three days post-transfection by RT-qPCR 

(Figure 22 B).  In order to detect the genes with the highest impact, we used a standard outlier 

diagnostic tool (Cook’s distance) for each of the three genetic backgrounds (WT, PRKDC-/-, 

and PARP1-/-) (Figure 22 C, D).  

In a PRKDC KO background, we observe a change in the DDR response of the tested genes 

mostly in the frequency of large deletions. In this background, small InDels are a minor 

population that presumably points to repair by alt-EJ. In contrast, the PARP1 KO background 

deregulates more genes, and especially genes that are involved in end-resection pathways, such 

as BRCA1, ATR, and RAD51. The impact of PRKDC loss is so prominent that none of the 

tested genes were able to influence significantly the small InDel phenotype (Figure 22 E). The 

results show that in a PRKDC deficiency, the effect of BRCA1 is minimized, implying that 

BRCA1 is no longer in the driving force of dictating the pathway choice since the burden of 

repair relies solely on end-resection pathways.  

In the PARP1 deficient background, the most affected genes are RAD51B, BRCA1, and ATR; 

with all three to be implicated in end-resection mechanisms. In PARP1_RAD51B deficient 

cells, the error-free repair is favored substantially with the simultaneous reduction of small 

InDels and large deletions. Similar results are observed also in the PARP1_BRCA1 and 
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PARP1_ATR deficient cells (Figure 22 E,F,G). Interestingly, cell viability remains intact 

throughout the seven days of analysis, with a minor reduction in the RAD51 deficient cells. 

Recent studies have shown that in a PARP1 KO background, there is an increase in Rad51 foci 

formation (Ronson et al. 2018), suggesting that RAD51 might have a progressive role in 

dictating the fate of end-resection. Our results indicate a direct or indirect PARP1 association 

to RAD51 in restoring HR (Figure 22 I). In addition, previous studies have shown that in the 

absence of PARP1, Ku70/Ku80 dimer, 53BP1, and RIF1 are no longer localized to the DNA 

damage site effectively (Ray Chaudhuri and Nussenzweig 2017). Therefore, the presence or 

absence of BRCA1, which acts as the opposing side to maintain the balance of end-protection 

vs. end-resection, might not be so crucial in a PARP1 deficiency. A remark that can be 

highlighted from our data, since the loss of BRCA1 in a PAPR1 deficient background does not 

affect the DNA repair choice as much as it did in a wild-type background (Figure 22 I). 
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Chapter 6 

Drug compound screening 

Using genetic deficiencies in key molecules involved in DNA DSB repair, we established that 

CAT-R could dynamically respond to changing conditions in DSB repair choice. This chapter 

describes how CAT-R can be used to assess the level of engagement of a drug compound to 

DNA repair choice. Since the high efficiency of DSB induction in our system potentially 

allows us to detect even minor changes in DSB repair choice, we tested whether we can utilize 

this fluorescent reporter as a platform to assess the in vitro potencies of different DDR inhibitor 

classes. To this end, we selectively targeted the key enzymes of DNA repair that are in 

preclinical and clinical trials in a concentration-dependent manner. We first screened 13  

inhibitors that target three significant classes of PI3 Kinase related protein kinase (PI3KK) 

family members that are involved in DNA damage signaling and repair: DNA-PK, ATM, ATR 

as well as the CHK1 and Wee1 kinase and analyzed their response by high-throughput flow 

cytometry. Next, we expanded our screening approach to 11 additional compounds targeting 

histone deacetylase (HDAC) and poly (ADP-ribose) polymerase (PARP) inhibitors. In this 

chapter, we present how CAT-R can be used as a platform to screen small pharmacological 

compounds. 
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Table 1: List of small pharmacological compounds used in this study 

Compound 
name 

Target Cancer target type/ Indications 
Development 

stage 
Company 

KU-0060648 DNA-PK Ν/Α Phase I KuDOS Ltd 

M3814 DNA-PK 
Rectal cancer, advanced solid 
tumors 

Phase I/II Merck KGaA 

NU7026 DNA-PK Ν/Α N/A KuDOS Ltd 

NU7441 DNA-PK Ν/Α N/A KuDOS Ltd 

AZD0156 ATM Advanced Solid Tumors Phase I AstraZeneca plc 

KU-55933 ATM N/A N/A KuDOS Ltd 

KU-60019 ATM N/A N/A KuDOS Ltd 

M3541 ATM Solid Tumors Phase I Merck KGaA 

AZD6738 ATR Small Cell Lung Cancer  Phase II AstraZeneca 

M1774 ATR Ν/Α N/A Merck KGaA 

M4344 ATR Advanced solid tumors Phase I Merck KGaA 

M6620 ATR Advanced solid tumors Phase I Merck KGaA 

GDC-0425 CHK1 Refractory Solid Tumors Phase I Genetech Inc. 

AZD1775 Wee1 
Adenocarcinoma of the 
Pancreas 

Phase II AstraZeneca plc 

Talazoparib PARP 
Locally Advanced Breast 
Cancer, Metastatic Breast 
Cancer  

Phase III Biomarin/Pfizer Inc. 

Niraparib PARP 
Fallopian Tube Cancer, Ovarian 
Epithelial Cancer, Primary 
Peritoneal Cancer 

Phase III Tesaro/Merck & Co. 

Rucaparib PARP Advanced Ovarian Cancer Phase II Clovis/Pfizer 

Olaparib PARP 

Fallopian Tube Cancer, 
Metastatic Breast Cancer 
(MBC), Ovarian Epithelial 
Cancer, Refractory Advanced 
Ovarian Cancer 

FDA approved 
KuDOS/AstraZeneca 

plc 

Veliparib PARP Ovarian Cancer Phase II 
Abbott 

Laboratories/ 
AbbVie 

Iniparib PARP Solid Tumors Phase III Sanofi S.A. 

INO-1001 PARP Heart Diseases Phase II Inotek/Genetech 

ATM, ataxia telangiectasia mutated; ATR, AT and rad-3 related; CHK1, checkpoint kinase 1; 

DNA-PK, DNA-dependent protein kinase; PARP, poly adenosine diphosphate-ribose 

polymerase. 
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6.1. DNA repair & small pharmacological compounds 

We used a selective DNA-activated protein kinase catalytic subunit (DNA-PKcs) inhibitor  

KU-0060648 (500 nM), a potent ataxia telangiectasia mutated (ATM) inhibitor AZD0156  

(500 nM), and an ataxia telangiectasia and Rad3-related (ATR) inhibitor M4344 (100 nM) with 

our reporter to trace the impact on DNA repair choice after a Cas9-mediated DSB. From our 

data it is clear that inhibition of DNA-PKcs and ATM reduces the frequency of small InDels 

on average by 28% and 34% respectively (Figure 23 A). On the other hand, ATR inhibition 

increases the frequency of small InDels by 5%, suggesting an opposing role in DSB repair 

choice. 

 

Figure 23: A platform to screen important DDR inhibitors. (A) Representative flow cytometry analysis plots of 
HEK293CAT-R cells 72 h post-transfection with the synthetic gRNA in the presence of the inhibitors: DNA-PKi (KU-
0060648), ATMi (AZD0156), ATRi (M4344) and WEE1i (AZD1775). Numbers shown inside plots indicate 
percentages of live cells. Axes report relative fluorescence intensity in arbitrary units. (B) Workflow schematic of 
the small pharmacological compound screen. HEK293CAT-R cells induced with doxycycline (1 μg/ml) are seeded 
on a 96-well plate, and 24 h later, the cell culture medium is supplemented with the drug compounds. An hour 
afterward, the synthetic gRNA complex is transfected to the cells. Three days post-transfection, cells are analyzed 
in a high-throughput flow cytometer. 
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We coupled CAT-R with high-throughput flow cytometry to provide for the first time a head-

to-head comparison of 24 pharmacological compounds, using CAT-R as a platform to screen 

small pharmacological compounds (Figure 23 B). Cells were seeded on a 96-well plate and 

24 h later the cell culture medium was supplemented with the appropriate drug compound. An 

hour afterward, the synthetic gRNA complex targeting the eGFP sequence was transfected to 

the cells. Three days post-transfection, cells were analyzed in a high-throughput flow 

cytometer. 

DNA-PKi acts in favor of end-resection 

We compared four different DNA-PKcs compounds that inhibit the major kinase responsible 

for the cellular c-NHEJ activity and DSB repair (Adamo et al. 2010) at 8 different 

concentrations from 1–500 nM. On average, the reduction of small InDel formation was 19% 

(±4) with the simultaneous increase of large deletions by 18% (±4) at 250 nM, coming in 

agreement with the phenotype we observed with the knock-out of PRKDC (Figure 24 A). 

These results follow the fact that in the presence of DNA-PKcs, the DSBs are repaired by the 

c-NHEJ pathway, which contributes to the mCherry+/GFP- population.  

Interestingly, there were no significant differences in DNA repair choice when the small-

molecule inhibitor NU7026 was tested at concentrations lower than 500 nM. However, an 

improved analog of NU7026, the NU7441, performed slightly better by reducing the frequency 

of small InDels by 8% (±0.7) and increasing the large deletions formation by 5% (±0.5) at 

concentrations higher than 250 nM (Figure 24 A). However, when the DNA-PKcs inhibitor 

KU-0060648 and M3814 were compared, there was no significant difference. The results show 

that both compounds have a similar pharmacodynamic profile, acting at concentrations as early 
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as at 50 nM by reducing the formation of small InDels on average by 18% (±4) and increasing 

large deletions by 19% (±4) (Figure 24 A).  

 

Figure 24: Effect of DNA-PK inhibitors in DNA repair choice. (A) Scatter plots (mean and SD error) of flow 
cytometry analysis for HEK293CAT-R cells are showing the effect of DNA-PKcs inhibitors on the DNA repair choice, 
with sample size to be annotated. Additionally, a scatter plot (B) serves as a control to lipid-mediation in which a 
siRNA against eGFP is transfected in the presence of the inhibitors. The sample size is annotated, and the values 
are normalized to untreated control. (C) Cell cycle profile of DNA-PKcs inhibitors upon three days of treatment. (D) 
Cell viability assay in HEK293CAT-R in the presence of DNA-PKcs inhibitors. The analysis is performed three days 
after treatment. 

Meanwhile, we investigated whether compounds as standalone drugs, affect cell proliferation 

or have a prominent effect on cell cycle or transfection. We report that neither of the 

compounds exhibits any cell cycle or transfection de-regulation (Figure 24 B,C). However, 

we report that at concentrations between 200-500 nM, KU-0060648 slows down cell 

proliferation approximately by 50% during three days of incubation (Figure 24 D), findings 
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that are supported by other studies too (Chen et al. 2016). Overall, inhibition of DNA-PKcs acts 

in favor of end-resection by strongly decreasing the frequency of small InDels and increasing 

the formation of large deletions as well as the error-free repair. 

ATMi phenocopies DNA-PKi profile 

We wondered how ATM inhibition could affect DNA repair choice. To answer this question, 

we selected a series of ATM inhibitors to screen for their in-vitro influence in the choice of 

DNA repair at concentrations from 1–500 nM. We report several similarities with DNA-PKcs 

inhibition profile since the DNA repair choice after ATM inhibition leads to increased rates of 

large deletions by 24% (±2.6) and simultaneously to the reduction of small InDels formation 

by 26% (±2.8) at 250 nM (Figure 25 A). 

It is clear that the AZD0156 compound achieves a robust change to the phenotype at 

concentrations as low as 5 nM, consistent with it is in vivo reported potency (Tse, Carvajal, 

and Schwartz 2007). Additional selective ATM inhibitor compounds such as M3541, and  

KU-60019, exhibit a similar profile by reducing small InDels formation and increasing large 

deletions on average by 25% (±2.6) at 200 nM (Figure 25 A). The compound KU-55933 

appears to have a very week potency at concentrations lower than 500 nM. Additionally, we 

investigated the cell growth inhibition of individual compounds, and the findings indicate that 

only AZD0156 stalls cell growth almost by 50% at concentrations higher than 200 nM after 

three days of incubation (Figure 25 B,C). The most potent ATM inhibitor AZD0156 slightly 

increases the time cells spent in S phase (Figure 25 D), however, this effect is not substantial 

enough to explain the drastic decrease in the formation of small InDels observed upon ATM 

inhibition at similar concentrations.  
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Figure 25: Effect of ATM inhibitors in DNA repair choice. (A) Scatter plots (mean and SD error) of flow 
cytometry analysis for HEK293CAT-R cells are showing the effect of ATM inhibitors on the DNA repair choice, with 
sample size to be annotated. (B) Cell viability assay in HEK293CAT-R in the presence of ATM inhibitors. The analysis 
is performed three days after treatment. Additionally, a scatter plot (C) serves as a control to lipid-mediation in 
which a siRNA against eGFP is transfected in the presence of the inhibitors. The sample size is annotated, and 
the values are normalized to untreated control. (D) Cell cycle profile of ATM inhibitors upon three days of treatment. 
(E) Effect of dual ATM and DNA-PK inhibition on DNA repair choice. Representative flow cytometry analysis plot 
of HEK293CAT-R cells 72 h post-transfection with the synthetic gRNA targeting the eGFP HEK293CAT-R. Numbers 
shown inside plots indicate percentages of live cells. Axes report relative fluorescence intensity in arbitrary units. 
(F) Box and whiskers plot (min to max) of flow cytometry analysis for HEK293CAT-R cells in the presence of ATM 
and DNA-PK inhibitors. Data presented with a minimum of 6 biological replicates. 

We also tested whether inhibition of ATM has off-target effects and directly impacts on  

DNA-PKcs activity. To this end, we compared the effect of DNA-PKcs inhibition, alone to 

combined inhibition of ATM and DNA-PK (Figure 25 E). Using 50 nM concentration of 
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DNA-PKcs inhibitor M3814, we have observed a 6.6% (±1.1) reduction in the formation of 

small InDels. This effect was exacerbated by the combined inhibition of ATM and DNA-PKcs, 

leading to an 11% (±0.9) decrease in the formation of small InDels, arguing that ATM acts as 

the first responder at the ATM-DNA-PKcs signaling cascade (Figure 25 E). 

Targeting the ATR-CHK1-WEE1 axis creates a dependency on 

end-protection  

A large body of preclinical data supports the further development of ATR, CHK1, and Wee1 

inhibitors that are currently being investigated in clinical trials as monotherapy or in 

combination with standard of care agents. Given their standing to clinical research a series of 

ATR inhibitors were used to evaluate their influence on DNA repair choice at concentrations 

from 1–100 nM. 

The primary phenotype of the ATR inhibition was the reduction of large deletions and 

simultaneous increase of small InDels frequency on average by 3% (±2) at 100 nM (Figure 26 

A). A pair of highly selective and potent small-molecule inhibitors of ATR, M4344, formerly 

known as VX803 & AZD6738 were used with CAT-R reporter assay. M4344 showed the most 

robust phenotype by influencing predominantly the end-resection pathways. It reduced the 

frequency of large deletions by 10% (±4.2) at 50 nM and channeled the DNA repair choice 

towards the formation of small InDels (Figure 26 A). The most surprising finding was the 

profile of the highly selective and potent ATR kinase inhibitor, AZD6738. The profile of 

AZD6738 differed among the other ATR compounds by reducing the formation of small 

InDels and increasing the formation of large deletions by 2% (±0.7) at 50 nM. 
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Figure 26: Effect of ATR-CHK1 inhibitors in DNA repair choice. Scatter plots (mean and SD error) of flow 
cytometry analysis for HEK293CAT-R cells are showing the effect of (A) ATR, (B) CHK1-WEE1 inhibitors on the 
DNA repair choice, with sample size to be annotated. Cell viability assay in HEK293CAT-R in the presence of (C) 
ATR, (E) CHK1-WEE1 inhibitors. The analysis is performed three days after treatment. Additionally, a scatter plot 
(E, F) serves as a control to lipid-mediation in which a siRNA against eGFP is transfected in the presence of the 
inhibitors. The sample size is annotated, and the values are normalized to untreated control. (G) Cell cycle profile 
of DNA-PKcs inhibitors upon three days of treatment. 
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Additionally, we investigated the cell growth inhibition of individual compounds, with M4344 

and M6620 compounds to show signs of severe cell toxicity at concentrations higher than  

50 nM that can reach up to 75% in 100 nM concentration. On the contrary AZD6738 compound 

exhibits no signs of cell proliferation stalling or any type of cytotoxic effects (Figure 26 B). 

We also evaluated the inhibition of CHK1, which is a downstream target of ATR, with a 

selective compound (GDC-0425). The profile of GDC-0425 showed a similar phenotype with 

the ATR inhibitors since it reduces the frequency of large deletions and increases the formation 

of small InDels on average by 8% (±2) at 100 nM (Figure 26 D). In addition, we evaluated 

Wee1 inhibition, which is an inhibitor of CDK1 and plays a role in the ATR-CHK1 pathway 

in multiple ways. We used a potent and selective small-molecule inhibitor of Wee1, the 

AZD1775 compound (formerly known as MK-1775). Inhibition of Wee1 with AZD1775 

showed a similar phenotype to ATR-CHK1 inhibition. Collectively our data suggest that by 

targeting the ATR-CHK1-Wee1 axis the DNA repair is channeled to end-protection pathways. 

HDAC inhibitors in DNA repair choice 

We tested four broad-spectrum histone deacetylase (HDAC) inhibitors to understand their 

effect on DDR choice. HDAC proteins remove acetyl groups from a lysine amino acid of a 

histone allowing them to wrap the DNA more tightly. Therefore, HDAC inhibitors promote 

the acetylation of histones potentially favoring end-resection based mechanisms. In contrast 

to what was expected, all compounds show a similar profile by increasing the formation of 

small InDels on average by 7.6% (±5.7) at 1 μM concentration and a simultaneous decrease 

in large deletions (Figure 27 A). The most substantial effect on DNA repair choice belongs 

to Abexinostat, and Panobinostat, a pair of pan-spectrum HDAC inhibitors. Abexinostat 
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increases the formation of small InDels on average by 10% (±2.3) at 500 nM, whereas 

Panobinostat shows a similar effect on average by 6.8% (±2.3) at a lower concentration (20 

nM) (Figure 27 B). We also used another well-studied pan-spectrum HDAC inhibitor, 

Vorinostat (or else known as SAHA), in a concentration from 100-1000 nM but we were not 

able to detect a prominent swift in the DNA repair choice at those concentrations. From our 

data, we can suggest that Panobinostat has a higher in vitro drug potency than Abexinostat 

and other HDAC inhibitors.

 

Figure 27: Comparing the in vitro activity of HDAC inhibitors. (A) Representative flow cytometry analysis plots 
of HEK293CAT-R cells 72 h post-transfection with the synthetic gRNA in the presence of the inhibitor HDAC 
(Panobinostat). Numbers shown inside plots indicate percentages of live cells. Axes report relative fluorescence 
intensity in arbitrary units. (B) Scatter plots (mean and SD error) of flow cytometry analysis for HEK293CAT-R cells 
are showing the effect of HDAC inhibitors on the DNA repair choice, with sample size to be annotated. (C) Cell 
viability assay in HEK293CAT-R in the presence of HDAC inhibitors. The analysis is performed three days after 
treatment. Additionally, a scatter plot (D) serves as a control to lipid-mediation in which a siRNA against eGFP is 
transfected in the presence of the inhibitors. The sample size is annotated, and the values are normalized to 
untreated control. (E) Effect of HDAC inhibitors on the cell cycle profile. 
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Furthermore, we evaluated the effect of HDAC inhibitors on cell viability. In general 

HEK293CAT-R cells were affected by HDAC inhibitors especially at high concentrations where 

cell viability was reduced up to 50% (Figure 27 C). Furthermore, to better understand the 

DNA repair outcome, we examined the effect of HDAC inhibition on cell cycle profile. Both 

Abexinostat and Panobinostat compounds affect the cell cycle, by increasing the time cells 

spent in G1 phase (Figure 27 E). This difference might be enough to explain the increase in 

the formation of small InDels, attributing the phenotype of HDACi mostly to the cell cycle 

stalling and not to DDR manipulation. 

PARP inhibitors in DNA repair choice 

Inhibition of poly (ADP-ribose) polymerase (PARP) shows promising results in preclinical 

studies and clinical trials. For some cancer types, PARPi is used either as a monotherapy or in 

combination therapy. In this study, we compared 7 PARP inhibitors sharing a similar 

architecture and evaluated their effect on DNA repair choice at concentrations from 0.5 nM up 

until 3 μM. In addition to our high throughput flow cytometry-based assessment of repair 

choices, we also evaluated the toxicity of each compound based on ATP measurements. The 

general phenotype of PARP inhibitors was the reduction of small InDels formation and the 

increase of large deletions on average by 4% (±1.6) at 50 nM (Figure 28 A). These results 

agree well with the idea that in the presence of PARP, the DSBs are repaired by the alternative 

EJ pathway, which contributes to the mCherry+/GFP- population.  

Comparing the potency of all these PARP inhibitors, consistent with the literature, we found 

that Talazoparib performs much better than other inhibitors even at concentrations as low as 

10 nM. Talazoparib reduces the formation of small InDels by 5% (±2.4) and slightly increases 
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the formation of large deletions at 50 nM (Figure 28 B). Increasing concentrations of 

Talazoparib higher than 50 nM exhibit a different phenotype, possibly due to the toxic effects 

of the drug in this cell line (Figure 28 C). Unexpectedly, in addition to the reduction of cell 

proliferation, we noted that at concentrations higher than 50 nM, Talazoparib also blocks lipid-

mediated transfection; thus, they are excluded from our analyses (Figure 28 D).  

The next group of inhibitors that are slightly less efficient than Talazoparib is Niraparib, 

Rucaparib, and Olaparib. At 200 nM concentration, the average reduction of these three 

compounds in the formation of small InDels is 4% (±1.7). These effects were exacerbated 

when we increased the compound concentration to 1 μM.  

Interestingly, when we tested Veliparib, Iniparib, and INO-1001, a group of compounds that 

are among the first PARP inhibitors that were later shown not to possess any PARP-trapping 

activity, none of these three compounds exhibited any prominent effect in the repair of Cas9-

induced DSB. Moreover, this group of compounds has a positive effect on cell proliferation at 

concentrations higher than 200 nM potentially due to the off-target drug effects on metabolic 

pathways (Figure 28 E).  

Altogether these results suggest that CAT-R can measure not only differences in compound 

activities that directly affect DSB repair such as DNA-PK but also PARP trapping activity and 

can be used as a screening platform for a rapid in vitro assessment of DDR compound 

efficiencies. 
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Figure 28: Comparing the in vitro activity of clinical PARP inhibitors. (A) Representative flow cytometry 
analysis plots of HEK293CAT-R cells 72 h post-transfection with the synthetic gRNA in the presence of the inhibitor 
PARP (Niraparib). Numbers shown inside plots indicate percentages of live cells. Axes report relative fluorescence 
intensity in arbitrary units. (B) Scatter plots (mean and SD error) of flow cytometry analysis for HEK293CAT-R cells 
are showing the effect of PARP inhibitors on the DNA repair choice, with sample size to be annotated.  
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(C) Cell viability assay in HEK293CAT-R in the presence of PARP inhibitors. The analysis is performed three days 
after treatment. Additionally, a scatter plot (D) serves as a control to lipid-mediation in which a siRNA against eGFP 
is transfected in the presence of the inhibitors. The sample size is annotated, and the values are normalized to 
untreated control. (E) Effect of PARP inhibitors on cell cycle profile. 

6.2. Predicting drug-likeness response with a machine 

learning model 

Thanks to the high efficiency of the CAT-R system, even small differences in DSB repair 

choices can be evaluated, and different classes of compounds can be identified.  To adapt this 

system for potential compound screening purposes, I collaborated with Dr. Salvatore Benfatto 

to build a machine-learning-based model that can predict the type of compounds based on their 

phenotype from the CAT-R assay.  

 

Figure 29: Machine learning model to predict drug-likeness response to DSB: Four-dot plots are showing the 
accuracy of the Random-Forest generated model for the different classes of compounds. TN: True Negative, FP: 
False Positive, TP: True Positive, and FN: False Negative. 

A random forest (RF) model is generated to predict the classes of the compounds starting from 

the data in output from the CAT-R assay. A pre-filtering step is required to remove samples 

that do not show a significant change from the initial DSB phenotype. Of the 2624 initial 

samples, 434 are filtered out since they do not show significant changes from the control 

phenotype generated by the gRNA targeting the eGFP sequence without any treatment. From 

the remaining data, 80% was used to train an RF model, and the other 20% was used as a test 
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set to assess the model performance (Table 2). The final RF model showed an overall accuracy 

of 83%, and the statistical measures for almost all the compound classes were generally high 

(Figure 29). Notably, the model showed excellent ability to discriminate against the true 

negatives (high specificity) and to predict the classes of the DNA-PKi, ATMi, ATRi, and 

PARPi compounds in the test set correctly. Moreover, some ATMi and DNA-PKi compounds 

showed very similar phenotypes; however, we were able to predict accurately the right class 

the 68% and 65% of the times, respectively (Figure 29, Table 2). Overall the RF model 

exhibited great performances suggesting its potential future employment to predict the classes 

of unknown compounds, in terms of phenotype similarity with the trained classes, starting from 

the data in output from the CAT-R assay. 

Table 2: Random Forest model analysis. 

RF-based classification models 

Class 
Sample 

size (n) 
Sensitivity% 

Specificity 

(%) 
PPV (%) NPV (%) 

Accuracy 

(%) 

DNA-PKi 190 65% 95% 60% 96% 95% 

ATMi 259 68% 97% 76% 95% 96% 

ATRi 343 89% 96% 82% 98% 96% 

HDACi 132 95% 99% 96% 99% 99% 

PARPi 589 85% 94% 85% 94% 95% 

N = 2190, CI: confidence intervals, PPV: Positive predictive value, NPV: Negative predictive 

value. 

Validation data set - Confusion matrix 

Prediction Total DNA-PKi ATMi ATRi HDACi PARPi 

DNA-PKi 37 25 11 1 0 0 

ATMi 46 11 35 0 0 0 

ATRi 71 0 4 61 0 6 

HDACi 25 0 0 0 25 0 

PARPi 107 2 0 5 0 100 

Accuracy: 83%, 95% CI: (79%, 86%), Kappa: 79% 

ATM, ataxia telangiectasia mutated; ATR, AT and rad-3 related; CHK1, checkpoint kinase 1; 

DNA-PK, DNA-dependent protein kinase; HDAC. Histone deacetylase; PARP, poly adenosine 

diphosphate-ribose polymerase. 
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Chapter 7 

CRISPR/Cas9 arrayed genetic screen  

At present, little is known about the interplay of the DNA repair pathways during the decision 

of DNA repair choice. In the previous chapter, we established that CAT-R can respond to even 

minor genetic deficiencies during the DNA repair choice. In this chapter, we explore the effects 

of individual DNA repair genes on DSB repair and identify the major regulators of Cas9-

mediated double-strand break repair.  

7.1. An arrayed screen for regulators of DSB repair  

The DNA damage response is a multifactorial process; therefore, we designed an arrayed 

CRISPR/gRNA library targeting 417 genes involved in DNA repair to investigate the effects 

of individual components during the DNA DSB repair. Each gene is targeted by two individual 

gRNAs, and in total, we transfected 932 gRNAs, including four positive (POLR2A) and six 

negative (Scrambled, non-targeting gRNA) controls to the cells by solid-phase transfection. 
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Three days post-transfection, we transfected the gRNA targeting eGFP, and three days later 

assessed the eGFP and mCherry ratios by high throughput flow cytometry. We calculated Z 

scores of all three populations based on non-targeting (scrambled) controls. We removed 48 

genes whose KO resulted in a dramatic decrease in viability after five days from the subsequent 

analyses (Figure 30 A). Among 369 genes after this initial filtering step, we formed clusters 

based on the three populations applying a K-Means clustering method. Estimating the optimal 

number of clusters to be 5, we then performed pathway enrichment analysis on these 5 clusters. 

A scatter diagram depicts the landscape of the fundamental mechanisms that regulate and 

promote the DNA repair choice after a Cas9-mediated DSB (Figure 30 B). As expected, c-

NHEJ was enriched in the cluster with low Z scores of small InDels and high Z scores of large 

deletions, consistent with their phenotype of reduced formation of small InDels. In this cluster, 

loss-of-function of essential genes for end-protection, such as RNF168, TP53BP1, ATM, SETX, 

PRKDC, XRCC4 displayed the most considerable differences as compared to the scrambled 

(Figure 30 B). On the other hand, loss-of-function of essential genes for end-resection, such 

as the FA components BRCA1, USP1, COPS4, BARD1 significantly increased the formation 

of small InDels and reduced the formation of large deletions. In addition, loss of HRR 

components reduces the formation of large deletions primarily and channels the repair to small 

InDels formation. Several HRR components are positively affecting the formation of small or 

large InDels, suggesting that in the absence of these genes, a more efficient KO can take place 

(Figure 30 C). 

In order to identify the most active influencers of Cas9-mediated DSB repair, we used a 

standard outlier diagnostic tool (Cook’s distance) for each of the 369 genes (Figure 30 D). We 

found 25 genes that are identified as outliers.  
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Figure 30: The landscape of Cas9-mediated double-strand break repair. (A) Workflow schematic of the 
CRISPR/gRNA genetic screen. In total, 417 genes are targeted with two different gRNA sequences. HEK293CAT-R 
cells are induced with doxycycline (1 μg/ml) and then transfected with the solid-phase methodology in pre-coated 
96-well plates to deliver the gRNA arrayed library. At 96 h, the cells are transfected with the gRNA: eGFP and at 
7-day analyzed in a high-throughput flow cytometer. Data points are averaged, and the Z-score values are 
calculated per 96-well plate. (B) A scatter diagram showing the effect of 417 genes upon Cas9-mediated DSB. In 
the x-axis, the regulation of small InDels and in the y-axis, the regulation of the large InDels are presented. K-
Means clustering is applied with the “elbow point” to be 6 clusters. Pathway enrichment analysis of the 6 clusters 
reveals the implication of end-resection, end-protection, and nucleotide excision repair (NER) related genes. (C) 
Individual k-Means clusters profile in terms of DNA DSB repair choice with the use of the CAT-R system. Each dot 
represents a gene. (D) Cook’s distance bar plot identifies genes with the most robust phenotype upon Cas9-
mediated DSB. Box and whiskers plots (min to max) of flow cytometry analysis for the HEK293CAT-R cells are shown 
in (E), and (F). Values are normalized to control gRNA: eGFP. 

Consistent with our clustering approach, we identified several known genes of the c-NHEJ 

(such as RNF168 and TP53) to be essential for decreasing the rate of small InDels formation 
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and increasing the rate of large deletions along with potentially new regulators of this process 

such as TTI1 and DDX11 (Figure 30 E). TTI1 was identified from a genetic screen as a part 

of a triple complex and is required for DNA damage signaling to stabilize ATM and ATR 

(Hurov, Cotta-Ramusino, and Elledge 2010). It controls the G2/M and Intra S-phase DNA 

damage checkpoints by regulating PIKK proteins (Ciccia and Elledge 2010). Here we confirm 

these discoveries and suggest that TTI1 acts in favor of the end-protection mechanism to an 

equal extent as the loss of ATM function. 

Furthermore, DDX11 (also known as ChlR1) is a DEAH-box DNA helicase essential in DNA 

repair, chromosome structure, and genome integrity (Abe et al. 2016). It has been shown that 

DDX11 is vital to unwind the DNA with a 5’ to 3’ directionality, behaving similar to ERCC2 

(XPD) (Bharti et al. 2014). Its action creates a 5’ flap structure which resembles an 

intermediate step of the lagging strand synthesis and therefore DNA repair pathways such as 

base excision repair is required. Pearl et al. characterize DDX11 as a gene with probable DDR 

role (Pearl et al. 2015), and our data suggest that it is a strong influencer of small InDels 

formation (Figure 30 E). 

Overall, loss of end-protection components decreases the frequency of small InDels, whereas 

loss of end-resection components increases the rate of small InDels (Figure 30 E, F). In a 

recent study, it was shown that multiple FA components were important for a Cas9-mediated 

single-strand template repair (SSTR) but not for c-NHEJ (Richardson et al. 2018). 
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7.2. Involvement of Nucleotide Excision Repair in Double-

Strand Break  

Interestingly, these analyses also revealed that individual NER components (such as RBX1, 

RAD23A, DDB1, ERCC5, ERCC8, and ERCC3) increased the “error-free” population while 

reducing both small InDels and large deletions. These results suggested that targeting these 

genes may increase the efficiency of error-free repair in cells upon Cas9-mediated breaks. 

We tested the effect of individual NER components such as ERCC5 (XPG), ERCC8 and 

ERCC3 (XPB) in regulating SSTR (Figure 31 A). To this end, we first transiently transfected 

the HEK293CAT-R cells with gRNAs targeting the ERCC5 (XPG), ERCC8 and ERCC3 (XPB), 

along with PRKDC that was previously shown to increase the rate of knock-ins.  

 

Figure 31: Deficiency in NER components increases Knock-in efficiency. (A) Box and whiskers plots (min to 
max) of flow cytometry analysis for the HEK293CAT-R cells. Values are normalized to control gRNA: eGFP. (B) A 
box and whiskers plot (min to max) showing the conversion of GFP to BFP with the use of an asymmetric ssODN 
template. In the absence of PRKDC, the single-strand template repair (SSTR) is increased. Once essential NER 
genes are a knock-out, the SSTR is further increased. (C) The knock-out expression levels 72 h after transfection 
is validated by RT-qPCR. 

We then transfected the gRNA targeting eGFP together with a ssODN serving as a template 

for GFP to BFP conversion. The efficiency of a successful conversion in normal  
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HEK293CAT-R was, on average, 2.5% (±1.5). In the case of a genetic depletion such as PRKDC, 

the conversion efficiency was increased to 3.1% (±0.7) (Figure 31 B), consistent with 

previously reported effects of PRKDC KO in increasing the knock-in efficiency by blocking 

the c-NHEJ (Certo et al. 2011). Interestingly, when we target the NER genes that regulate the 

3’ flap removal such as ERCC3, ERCC5, ERCC8, we also observed an increase in the knock-

in efficiency of up to 4.5% (±0.1). The level of KO efficiency is controlled by measuring the 

RNA levels of the transfected cells three days post-transfection by quantitative polymerase 

chain reaction (RT-qPCR) (Figure 31 C). Overall, the results suggest that removal of 5’ to 3’ 

flaps by the NER pathway is important for mediating SSTR and thus suggest an alternative 

way for increasing the rate of knock-ins in cell lines. 

7.3. A proposed mechanism of Cas9-mediated DSB repair 

choice 

Based on our results and previous reports, we propose a sequence of events that can occur upon 

a CRISPR/Cas9 mediated DSB (Figure 32). Once the Cas9 endonuclease binds to its DNA 

target sequence, it undergoes a massive conformational change of ~140o (anti-clock-wise) that 

enables the dual cleavage of the loci (Zhu et al. 2019). An electron microscopy study has shown 

that the distal DNA end to the PAM sequence is released, whereas, in the proximal side, the 

Cas9 complex remains bound (M. Shibata et al. 2017). End-protection proteins will likely bind 

immediately to the released DNA strand stabilizing the ends and avoiding any chromosomal 

loss. Therefore, we hypothesize that it is less likely to have end-resection at the distal DNA 

side. On the other DNA side more and more studies so that a 5’ to 3’ flap will be generated 
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during the Cas9 cleavage process (Janssen et al. 2019), (Richardson, Ray, Dewitt, et al. 2016). 

Generally, 5’ to 3’ flaps can be removed by the NER mechanism. Here, we show that in the 

absence of crucial NER genes, most likely the 5’ to 3’ flap cannot be removed efficiently 

increasing the chances of a successful KI via SSTA/HDR event. 

 

Figure 32: Proposed mechanism of Cas9-mediated DSB repair choice. Once a Cas9-mediated DSB occurs, 
end-protection mechanisms or alt-EJ will act to favor a quick ligation and thus form small InDels. If the damage is 
not repaired, then end-resection mechanisms will start resecting the region leading to large InDels. Due to the 
nature of Cas9-mediated DSB, a 3’ flap is created and possibly it is removed with the help of NER components. If 
this 3’ flap is not removed, then it favors a more efficient knock-in. 
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Chapter 8 

Identifying novel PARP interactions 

The impact of the genetic background in DNA repair choice is mostly understudied. In the 

previous chapters we showed how the loss of PARP1 deregulates several components of the 

DNA repair choice, and we highlighted the association of PARP1 and RAD51 in restoring the 

phenotype by increasing the rates of error-free repair. 

In this chapter, we are using a custom arrayed genetic screen coupled to the fluorescent reporter 

to delve into the DSB repair landscape in a PARP inhibited background. We uncovered a gene 

cluster that is significantly affected by PARPi and regulates a key step during end-resection, 

suggesting potentially new interactions of PARP1 with DDR. Besides, we propose PARP 

inhibition as an alternative approach to increase the odds of a successful knock-in, since we 

show that PARP inhibition increases the rates of single-strand template repair to a similar 

extent with other well-known strategies. 
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8.1. PARP inhibition deregulates the DNA repair choice 

At present, little is known about how DDR deficiencies influence the DNA repair choice and 

what is the interplay of the repair pathways during this process. Therefore, we used an arrayed 

genetic screen to evaluate the behavior of 417 components of DDR on DNA repair choice upon 

PARP inhibition (Figure 33 A). 

We delivered the library with the solid-phase transfection approach, and three days later we 

transfected the gRNA targeting the eGFP sequence and supplemented the cell culture medium 

with 100 nM of Niraparib. Three days later, we assessed the eGFP and mCherry ratios by high-

throughput flow cytometry. As anticipated from previous experiments, PARP inhibition 

reduced the frequency of small InDels and at the same time increased the frequency of large 

deletions (Figure 33 B,C).  

Similar to the previous analysis, we calculated Z scores of all three populations, but this time 

based on the mean difference (ΔΤ) of the treated to the untreated sample and plotted their effect 

on a scatter plot (Figure 33 D). We removed 13 genes whose KO resulted in a dramatic 

decrease in viability after six days from the subsequent analyses. Among 404 genes after this 

initial filtering step, we formed clusters based on the three populations applying a Mclust 

clustering method. Finally, we estimated the optimal number of clusters to be 8, and then we 

performed pathway enrichment analysis on these 8 clusters. In order to identify the most 

influenced genes of PARP inhibition, we used a standard outlier diagnostic tool (Cook’s 
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distance) for each of the 404 genes. Overall, we identified 30 genes that were recognized as 

outliers and showed a strong influence in their phenotype by PARP inhibition (Figure 33 E). 

 

Figure 33: The impact of PARP inhibition on DNA repair choice. (A) Workflow schematic of the CRISPR/gRNA 
genetic screen. In total, 417 genes are targeted with two different gRNA sequences. HEK293CAT-R cells are induced 
with doxycycline (1 μg/ml) and then transfected with the solid-phase methodology in pre-coated 96-well plates to 
deliver the gRNA arrayed library. At 96 h, the cells are transfected with the gRNA: eGFP and at 7-day analyzed in 
a high-throughput flow cytometer. Data points are averaged, and the Z-score values are calculated per 96-well 
plate. (B) Flow cytometry analysis plot of HEK293CAT-R cells 72 h post-transfection with the synthetic 
crRNA:tracrRNA complex. Comparing the phenotypes between a non-targeting (scrambled) gRNA to a gRNA 
targeting the eGFP sequence and to a gRNA targeting the eGFP sequence in a PARPi background. Numbers 
inside plots indicate percentages of live cells. Axes report relative fluorescence intensity in arbitrary units. (C) Box 
and whiskers plots (min to max) of flow cytometry analysis for the HEK293CAT-R cells that are shown in (B). (D) A 
scatter diagram showing the effect of 404 genes upon Cas9-mediated DSB in a PARPi background. In the x-axis, 
the regulation of small InDels and in the y-axis, the regulation of the large InDels are presented. mClust clustering 
is applied with the “elbow point” to be 8 clusters. Pathway enrichment analysis of the 8 clusters reveals the 
implication of end-resection, end-protection, chromatin organization, and RAD51 related genes. Annotated genes 
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exhibit the most robust phenotype upon Cas9-mediated DSB identified by a standard diagnostic tool. (E) Cook’s 
distance bar plot identifies genes with the most robust phenotype upon PARP inhibition. 

8.2. PARP antagonizes end-resection in double-strand 

break 

Our clustering approach showed that several genes were significantly affected by PARP 

inhibition with the most important processes to be the NER pathway (RPA1, RDC2, PCNA, 

DDB2, CDK7, RBX1), the chromatin organization (TOP2A, PRPF19, DDB1) and the ATR 

signaling pathway (RUVBL1, RFC2, RPA1, XRCC5, PCNA, RPA2, COPS3). In these sets of 

genes, the DNA repair choice was channeled towards the error-free repair by reducing 

simultaneously the frequency of small InDels and large deletions (Figure 34 A). Evidence 

from recent studies describe similar associations of the multifaceted roles of PARP1 in 

chromatin remodeling and explain how PARP1 PARylates histone tails to relax the chromatin 

structure allowing for DNA repair to commence (Ray Chaudhuri and Nussenzweig 2017). In 

addition, PARP inhibition affected also RAD21 that is involved in the regulation of the sister 

chromatin separation with studies to report that PARP inhibition down-regulates the expression 

levels of end-resection components that are also implicated in similar steps such as BRCA1 

and RAD51 (Hegan et al. 2010; Schultz et al. 2003). Therefore, we conclude that the inhibition 

of PARP1 affects mostly genes that are associated with end-resection pathways. 

Furthermore, we identified a gene cluster that is significantly affected by PARPi and increased 

the frequency of small InDels by reducing the levels of end-resection. This cluster is enriched 

in genes responsible for the BARD1 signaling events like the PRBP8, BARD1, and UBE2T 

genes that are interacting with EXO1, a 5’ to 3’ exodeoxyribonuclease, to resolve D-loop 
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structures that are formed during the end-resection repair (Figure 34 A). A recent study 

described how PARP1 blocks EXO1 (Caron et al. 2019) supporting our observations that 

PARP1 probably antagonizes end-resection based mechanisms in several steps. 

 

Figure 34: Identifying novel PARP interactions. Data presented in (A) are a cluster of genes based on relevant 
pathways. Values are normalized to control gRNA: eGFP. (B) A functional network of the most significant genes 
builds in StringDB. (C) Box and whiskers plots (min to max) showing the effect of TONSL-MMS22L complex to 
DSB choice. (D) Box and whiskers plots (min to max) showing the single-strand template repair efficiency in WT 
and several genetic backgrounds. 

The most significant genes that are affected by PARPi create a functional network once 

analyzed with StringDB (Figure 34 B). The DNA repair was highlighted as the primary 
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process, and the nucleus was the cellular place where those interactions take place. The 

TONSL-MMS22L complex stands out with no immediate functional associations to the rest of 

the 28 genes. This complex reduced the frequency of both small InDels and large deletions 

with the simultaneous increase of the error-free repair (Figure 34 C). It appears that PARP 

inhibition regulates its activity since its effect is further enhanced upon inhibition. It is reported 

that this complex stimulates the recombination dependent repair of stalled or collapsed 

replication forks (Duro et al. 2010; Piwko et al. 2016) by promoting HR, and consequently it 

may act by mediating the assembly of RAD51 filaments on ssDNA. Interestingly when we 

targeted RAD51, and the TONSL-MMS22L complex we observed a moderate increase in the 

knock-in efficiency on average 2.9% (±0.4). Collectively from our observations, we suggest 

that PARP1 might antagonizes end-resection based repair mechanisms in more steps than 

already has been described and potentially it interacts with the TONSL-MMS22L complex to 

regulate RAD51 filament formation. 

Furthermore, we wondered whether PARP inhibition influences knock-in efficiency. 

Therefore, we quantified its contribution and compared it with other known strategies that 

enhance knock-in efficiencies, such as the use of a DNA-PKcs inhibitor (M3814) or the use of 

the commercially available HDR enhancer compound (Figure 34 D). Our data showed that 

PARP inhibition increased the knock-in efficiency by 3.9% (±0.7), whereas DNA-PKcs 

inhibition by 3.7% (±0.5) and HDR by 2.8% (±0.2). In summary, we propose that PARP 

inhibition can be considered as an alternative approach to increase the odds of a successful 

knock-in. 
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8.3. A proposed role of PARP in double-strand break 

The current literature suggests that PARP1/2 are one of the first responders to a double-strand 

break (Caron et al. 2019) and perhaps their influence in the choice of DSB repair is more 

significant than already presumed. PARP1/2 facilitates the recruitment of Ku70 to the DSB as 

well as the MRE11 nuclease (Caron et al. 2019). This dual character of PARP1/2 makes it a 

versatile molecule that promotes c-NHEJ but also activates limited end-resection, a step that is 

vital for alt-EJ (Chen et al. 2019; Muthurajan et al. 2014; Wray et al. 2013). In the meantime, 

it is reported that PARP1/2 blocks EXO1 (Caron et al. 2019) supporting the idea that PARP1/2 

are antagonizing extended end-resection during DSB, possibly to favor limited end-resection 

by promoting alt-EJ.  

Here we suggest that PARP1/2 interacts with another step of extended end-resection, the 

RAD51 filament formation (Figure 35). It has been shown that inhibition of PARP1 

downregulates BRCA1 and RAD51 pathway (Hegan et al. 2010), but the exact mechanism of 

downregulation is still missing. We suggest that the TONSL-MMS22L complex is interacting 

with PARP1 to regulate the RAD51 filament formation step. Functional studies have already 

shown that the TONSL-MMSS2L complex promotes RAD51 dependent HR (Duro et al. 2010; 

Piwko et al. 2016) but not in the context of PARP inhibition. We suggest that loss of RAD51 

in a PARP1 deficient background restores the error-free phenotype implying a further 

association of PARP1 to Rad51 filament formation. 
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Figure 35: A proposed role of PARP1 in DSB repair choice. PARP is a protein that interacts in multiple steps 
during the DNA repair process. Recent studies have placed PARP as one of the first responders to a DSB break 
site, dictating the length of resection by blocking EXO1 and recruiting MRE1. Our data suggest that PARP is also 
involved in another process relevant to HR, which is the RAD51 filament formation. We hypothesize that PARP is 
regulating the TONSL-MMS22L complex that also controls the Rad51 loading to the single-stranded DNA.
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Chapter 9 

Discussion  

CAT-R reporter assay 

The purpose of this Ph.D. thesis is to develop a tool to track and quantify the DNA double-

strand break (DSB) repair process. Therefore, we established CAT-R, as an in vitro dual 

fluorescent reporter assay to interrogate the functions of several DSB repair components.  

CAT-R allows for the simultaneous measurement of end-protection and end-resection based 

DSB repair upon a single DSB. We show that CAT-R reporter can be utilized as a high-

throughput tool that can be coupled to chemical and/or genetic screens in different cell lines.  

Over the past decades, several DNA reporter assays have been using I-SceI endonuclease as a 

tool to induce DSBs. The main drawback of this approach is the relatively low cutting 

efficiency of I-SceI and the small number of accessible loci for this endonuclease. In addition, 

the I-SceI endonuclease generates DSB ends with 4 nucleotides (nt) 3’ cohesive overhangs, 

therefore the DNA repair choice is biased to end-resection based mechanisms. We chose to 

combine CAT-R with CRISPR/Cas9 system and induce a high occurrence of DSB phenotype. 

CRISPR is currently the most cutting-edge tool to generate DSBs. Among its advantages is the 
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specificity, adaptability and cutting efficiency that the Cas9 endonuclease exhibits once 

compared to other genome editing tools. Cas9 endonuclease cleaves the DNA three base pairs 

upstream of the PAM site, resulting in a blunt‐end cleavage of DNA, which mimics a natural 

occurring DSB. However, due to the continuous cutting efforts of the Cas9 endonuclease, we 

assume that the repair of a Cas9-mediated DSBs may not be representative of a naturally 

occurring DSBs. In a recent study (Brinkman et al. 2018) a similar assumption is described, 

where the cut and repair process of Cas9 endonuclease is investigated. Brinkman et. al 

concluded that when a target site has acquired an InDel, only then Cas9 can no longer recognize 

the target site.  

Furthermore, due to the high efficiency of DSBs that are introduced by the CRISPR/Cas9 

system, we can simultaneously assess the frequency of small InDels and large deletions with 

an unprecedented resolution. We integrated CAT-R in two non-cancerous cell lines with intact 

DNA repair pathways and observed similar frequencies in the formation of small InDels and 

large deletions. Some of these occurrences are potentially governed by the cell cycle since end-

resection mediated repair primarily occurs in S/G2 phases of the cell cycle, whereas c-NHEJ 

is active throughout the cell cycle (Ceccaldi et al. 2016; Khanna and Jackson 2001; Mjelle et 

al. 2015). As far as the formation of larger deletions upon Cas9-mediated breaks the frequency 

of repair by end-resection may not be uncommon. Our results are consistent with a current 

study describing that more than 20% of larger deletions ranging from 250 bps to 6 kbs can 

occur in a haploid cancer cell lines (Kosicki et al. 2018). 
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DNA repair deficiencies influence CAT-R 

While in general the occurrence of the two error-prone populations (small InDels and large 

deletions) is approximately balanced, this can be altered by channeling the repair of the DSBs 

to either end-protection or end-resection based mechanisms. This occurs because these two 

major pathways are competing for the repair of the DSBs. For this reason, blocking end-

protection mediated repair by knocking out critical components such as DNA-PK and XRCC4, 

increased the frequency of large deletions that are presumably products of end-resection. In 

this case, since the ends of the DSBs cannot be processed by c-NHEJ, they are forced to be 

resected thus are more prone to give rise to larger deletions (Ceccaldi et al. 2016). On the 

contrary, when the critical components of resection mechanisms are inhibited such as BRCA1 

or FA components, the rate of small InDels increases probably due to an increased availability 

of end-protection proteins to seal the DNA ends (Barazas et al. 2018; Pilié et al. 2019). Given 

that such genetic differences can affect the reporter readout so dramatically, we investigated in 

a pilot RNAi screen how PRKDC and PARP1 KO impacts the DNA repair choice. We showed 

that in PARP1 deficient background genes that are important in resection are mostly affected 

and that additional loss of RAD51 can increase the error-free repair. Furthermore, we 

confirmed that deficiencies in PRKDC and PARP1 genes reduce the frequency of small InDels 

by alternative types of repair and showcased that PARP1 requires but is not dependent upon 

microhomologies. In the future, it would be interesting to integrate CAT-R in different cancer 

cell lines with genetic deficiencies in DDR and measure their differences in generating small 

InDels versus large deletions. 
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A platform to screen small pharmacological compounds 

We also demonstrated that due to the high efficiency of DSB induction, CAT-R could be used 

as a platform to screen small-pharmacological compounds to measure their pharmacodynamic 

properties in cell lines. Inhibiting major components of DDR emerged as a therapeutic strategy 

since it provides opportunities for exploitation of complementary DDR pathways on which the 

cancer cells rely on (Curtin 2012; Wright et al. 2017). Understanding a kinase inhibitor’s 

cellular target profile has implications for the correct evaluation of its biological effects in 

DNA repair choice, as this can assist in dissecting the wiring maps of the targeted signaling 

networks (Barakat, Gajewski, and Tuszynski 2012; Curtin 2013; Evers, Helleday, and Jonkers 

2010; Robert et al. 2015). For instance, inhibitors against classical DDR kinases such as  

DNA-PK, ATM, and ATR entered phase I/II clinical trials either as inhibitors for monotherapy 

or in combination with radio- or chemotherapy (Blackford and Jackson 2017; Glorieux, Dok, 

and Nuyts 2017; Klaeger et al. 2017) due to the increased vulnerabilities of tumors cells to 

heightened DNA damage or replication stress (Dietlein, Thelen, and Reinhardt 2014; Pearl et 

al. 2015; Velic et al. 2015).  

With CAT-R, we compared the in vitro drug efficiencies of 24 compounds and assessed the 

qualitative and quantitative impact of these compounds on DNA repair in terms of small InDels 

or large deletion formation. We observed particularly pronounced changes in the CAT-R 

phenotype upon DNA-PK and ATM inhibition and were able to classify different compounds, 

consistent with their reported in vitro potency. 

Cells lacking DNA-PK activity are hypersensitive to ionizing radiation and topoisomerase II 

inhibitors. A comparison among the DNA-PKcs inhibitors on how they tip the balance of DNA 
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repair choice reveals why some inhibitors succeed and some others fail in doing so. The 

NU7026 compound was shown to act in vitro as a radiosensitizer and was also found to 

increase cell sensitivity to topoisomerase II with no intrinsic growth inhibition properties at  

10 μM concentration (Dolman et al. 2015; Nutley et al. 2005). We demonstrate that the 

NU7026 compound has no influence in DNA repair choice at concentrations lower than  

500 nΜ comparing to other potent inhibitors that reach their maximum efficiency in these 

conditions. Another compound that we evaluated was the NU7441. In a recent publication, it 

has been reported that 1 μM of NU7441 is enough to increase cell sensitivity to topoisomerase 

II, doxorubicin as well as IR (Harnor et al. 2017). Even if NU7441 is reported to be selective 

to DNA-PKcs (Chen et al. 2005), still it is suggested that its pharmacokinetic properties can be 

improved (Tavecchio et al. 2012; Zhao et al. 2006). Our data showed that NU7441 can 

influence the DNA repair choice at concentrations around 500 nM but still its efficacy is outrun 

by other more potent inhibitors. The DNA-PKcs inhibitors that yielded the most robust 

phenotypes are M3814 and KU-60019. Both compounds show a stable phenotype at 

concentrations of around 50–500 nM with no intrinsic growth inhibition properties. Of note, 

M3814 entered phase I clinical development in December 2014 (NCT02316197) for use in 

patients with solid tumors who had DNA repair deficiencies, and in patients with chronic 

lymphocytic leukemia. Subsequently, it entered phase I trials in July 2015 (NCT02516813) in 

combination with DNA damaging modalities such as radio-chemotherapy and radiation. 

Disclosure of results by Merck in 2016, indicated that M3814 is active in a preclinical setting, 

exhibiting efficacy in all mouse models of human cancer, in combination with IR (Harnor et 

al. 2017). In addition, when we compared the enzymatic inhibition and the genetic KO of 

PRKDC we observed the same profile in influencing DDR choice by reducing small InDels. 
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We also compared a series of ATM inhibitors to screen for their in-vitro influence in DNA 

repair. On average, ATM inhibition influences the DNA repair choice at concentrations around 

100 nM, with the frequency of large deletions to be favored and the small InDels population 

to be strongly reduced. Consequently, a similar profile with the DNA-PKcs inhibition is 

observed suggesting that ATM inhibition phenocopies DNA-PKcs profile. While we cannot 

exclude off-target effects of these compounds, activation of DNA-PKcs by ATM 

phosphorylation may be a key downstream event that is affected. We were also able to 

highlight the potency of the AZD0156 compound since its influence on DNA repair stands out 

from the other ATM inhibitors at a concentration as low as 1 nM. Furthermore, by comparing 

the enzymatic inhibition and the loss of absence of ATM we observed a different profile since 

in the case of the genetic KO the error-free repair was reduced due to either reduction of HDR 

or error-free NHEJ. An observation that potentially can be explained by the requirement of the 

functional ATM protein to phosphorylate BRCA1 protein that regulates the frequency of the 

error-free repair. 

The next class of compounds we compared was the ATR inhibitors, with some of them to be 

reported to enhance the cytotoxic effects upon radiation (Dillon et al. 2017; Vendetti et al. 

2015, 2018). The analysis of ATR inhibitors revealed that DNA repair is driven to end-

protection pathways upon ATR inhibition. The M4344 compound exhibits the highest potency 

by increasing the frequency of small InDels at low concentrations (< 20 nM). It is worth 

mentioning that all ATR inhibitors showed severe cytotoxic events at concentrations higher 

than 100 nM. 

Another class of inhibitors that we tested was against HDAC. HDAC inhibitors promote the 

acetylation of histones allowing for DNA repair machinery to have better access to the relaxed 
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chromatin. However, and in contrast to what was expected, HDAC inhibition with several 

different pan-spectrum compounds, favors end-protection mechanisms with a substantial 

increase in the frequency of small InDels. To better understand the causal of this action, we 

examined the effect of two potent HDAC inhibitors on the cell cycle. Both compounds 

increased the time cells spent in G1 phase and probably this is enough to explain the increase 

in the formation of small InDels. Thus, the phenotype of HDACi is mostly attributed to the 

cell cycle stalling rather than to DDR manipulation. 

The last class of inhibitors we compared was PARP inhibitors. Targeting PARP1 has been 

extensively studied in recent years to exploit the concept of synthetic lethality (Wright et al. 

2017). For this reason, understanding the profiles of these inhibitors may have important 

implications for the correct evaluation of their biological effects in DNA repair choice, and 

their effects on the cells (Barakat et al. 2012; Curtin 2013; Evers et al. 2010; Robert et al. 

2015). We demonstrate that CAT-R can even detect differences in PARP-trapping activity and 

can be used as a screening platform for a rapid in vitro assessment of DDR compound 

efficiencies. PARP inhibition affects the formation of small InDels, agreeing well with the fact 

that in the presence of PARP, the DSBs are repaired by the alternative EJ pathway. Our system 

classifies the compounds based on their efficacy at the same order as the current literature does. 

Interestingly, when we tested veliparib, iniparib and INO-1001, a group of compounds that are 

among the first PARP inhibitors that were later shown not to possess any PARP-trapping 

activity, none of these three compounds exhibited any prominent effect in the repair of Cas9-

mediated DSBs. This indicates that our system potentially allows the detection of even minor 

changes in DSB repair choice. 
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In the case of PARP1, the genetic KO and the chemical inhibition may be expected to result in 

different phenotypes. However, the effects that we observed with CAT-R are very similar. The 

genetic KO may affect only alt-EJ, thus result in a 5–10% reduction in the small InDels, 

whereas the PARP trapping (inhibition) may affect downstream components of the DSB repair 

that are responsible for end-resection and result in the same phenotype as the genetic KO of 

PARP1. 

The discovery of additional, more potent and selective compounds is desirable. We 

demonstrate that CAT-R can be used as a platform to provide further information on DDR 

kinase or PARP inhibitor drug discovery, serving as a tool to identify more selective inhibitors. 

We also provided a machine learning-based tool to help classify the unknown compounds in  

HEK293CAT-R cells, though we note that the model should be reapplied to additional cell lines 

in order to adapt to the responses in each cell line. 

CRISPR/Cas9 arrayed genetic screen 

A large number of published studies have utilized CRISPR/Cas9 technology for screening 

purposes (Agrotis and Ketteler 2015). CRISPR libraries enable reverse genetic screens with a 

much broader utility in terms of phenotypic readout. With the use of an arrayed genetic library, 

it is possible to explore complex phenotypes that arise from distinct cell perturbations in 

parallel. While the experimental conditions vary between screens, there are at least five crucial 

steps to be considered in an arrayed screen: (1) Preparation of cells; (2) Delivery of the library; 

(3) Phenotype acquisition; (4) Analysis; (5) Hit validation.  

Using the CAT-R, we performed a genetic screen, measuring the effect of knocking out DDR 

genes on the derived populations. Overall, in our screen, loss of c-NHEJ components decreases 
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the rate of small InDels formation, whereas loss of FA pathway components increases the 

number of small InDels and reduces large deletions. Consistently, FA components have been 

recently shown to be required for Cas9-mediated single-strand template repair (SSTR) but not 

for c-NHEJ (Richardson et al. 2018). In addition to the known components of end protection 

and end resection, we revealed components of NER to be necessary for the homology-directed 

repair. We tested this hypothesis by integrating a ssODN based donor template and measuring 

the GFP to BFP conversion, thus assessing the rate of SSTR. Though technically more 

challenging and the frequency of SSTR events are rather low, this conversion allowed us to 

measure the rate of recombination events, together with error-prone repair. We show that in 

the absence of crucial NER genes, the rate of SSTR events is increased. While Cas9 cleaves 

the DNA, the gRNA sequence is bound to the antisense strand as an RNA:DNA hybrid and a 

5’ to 3’ flap is generated at the non-targeted/ sense sequence (Janssen et al. 2019), (Richardson, 

Ray, Dewitt, et al. 2016). Generally, 5’ to 3’ flaps can be removed by the NER mechanism. 

Here, we show that in the absence of these NER genes, most likely the 5’ to 3’ flap cannot be 

removed efficiently increasing the chances of a successful KI via SSTA/HDR. These results 

may have implications for SSTR mediated knock-ins since HDR based genome editing has 

several potential applications such as correction of disease-causing mutations. 

In most cases, since c-NHEJ is more available in the cells, the DSBs are much more commonly 

repaired in an error-prone fashion; thus, strategies to increase the HR mediated repair are 

becoming more attractive. So far,  inhibition of DNA-PK was shown to increase the rate of 

HDR by decreasing the accessibility of the c-NHEJ components to the site of repair (Liu et al. 

2019). Here we provide an alternative approach to increase the rate of knock-ins. It will be 

interesting to see if these effects we observe with the NER deficient cells can be uncoupled 
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from the cell cycle, thus allowing cells that are slow dividing or non-cycling to be edited as 

well.  

Based on the current literature of Cas9-mediated DSB, we propose a mechanism that is derived 

from our genetic screen data. Once Cas9 is bound to its sequence, it undergoes its 

conformational changes and cleaves the loci leaving either as blunt or a sticky end, and it seems 

that the proximal (downstream) to PAM site DNA sequence is left to the end-protection 

mechanism. The distal (upstream) to PAM site DNA sequence is still bound to Cas9 with an 

RNA: DNA hybrid link. Either end-protection machinery will act by holding the strands 

together and favor a quick ligation via c-NHEJ or alt-EJ that will most likely lead to an 

erroneous repair that signals for the formation of small InDels, or a 5’to 3’ flap will be created 

where end-resection machinery will take over. End-resection will either resect the 5’ to 3’ flap 

until a homology is found and this will be repaired with SSA and will lead to large deletions, 

or the existence of 5’ to 3’ will favor the SSTA/HDR with a ssODN donor template.  

Identifying novel PARP interactions 

The impact of the genetic background in DNA repair choice is mostly uninvestigated, with 

several literature data to suggest that PARP1 antagonizes end-resection based mechanism. 

Therefore, we used CAT-R to identify novel PARP1 interactions within DDR. We combined 

the custom arrayed genetic screen with PARP inhibition and were able to identify the 30 most 

altered genes in terms of DSB choice. This approach helped us to uncover a gene cluster that 

controls a key step during RAD51 filament formation, suggesting that PARP1 potentially 

regulates end-resection in more steps, than what was recently being reported. Besides, we show 

that loss of PARP1, as well as inhibition of PARP, deregulates the DNA repair choice in several 
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cases mostly in end-resection related genes to favor limited end-resection and channel the 

repair to alt-EJ or c-NHEJ. Further work needs to be done to understand the precise mechanism 

of how PARP1 regulates end-resection.  
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Chapter 10  

Material & Methods  

Cell line engineering 

Generating Cas9 inducible stable cell lines 

The Edit-R inducible lentiviral Cas9 particles (Horizon™ Dharmacon) confer Blasticidin 

resistance in transduced cells. Both cell lines were Blasticidin resistant, therefore, the 

CRISPR/Cas9 system was used to disrupt the Blasticidin sequence. Specific gRNAs targeting 

the Blasticidin sequence were designed and cloned separately into an all-in-one-vector 

(LentiCRISPR_v2) that expresses both Cas9 endonuclease and the gRNA sequence. After 

transfection and monoclonal cell line expansion, cells were divided into two 96-well plates and 

Blasticidin was supplemented into the culture medium of one of the two 96-well plates to 

determine the number of Blasticidin sensitive clones. Seven days after selection, 90% of the 

clones were Blasticidin sensitive at concentrations as low as 1 μg/ml.  

To generate Cas9 nuclease-expressing cells, the Edit-R™ inducible lentiviral particles 

(Horizon™ Dharmacon) were used according to the manufacturer’s protocol. Cells were 

seeded in a 24-well plate and incubated overnight. The next day the transduction medium was 

prepared to have a MOI=0.3 and the cell culture medium was replenished containing the 
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lentiviral particles. Cells were incubated for 24 h, and then the cell culture medium was 

replaced with the appropriate amount of blasticidin. The transduced cells were selected in the 

presence of 1 μg/ml blasticidin for seven days and the expression of Cas9 was controlled by a 

doxycycline-inducible promoter. 

Generating CAT-R stable cell lines 

The FLP recombinase methodology was used to integrate the reporter as a single stable copy 

into the cell lines of interest. The user’s protocol, (Flp-In™, Invitrogen™), was followed as 

described in the manual. Briefly, general molecular biology techniques such as DNA ligation, 

E. coli transformation, restriction enzyme analysis, and DNA sequencing were applied to clone 

the fluorescent reporter into the constitutively (pcDNA™ 5/FRT) and inducible (pcDNA™ 

5/FRT/TO) expression vectors. Specifically, BamH I & Xho I restriction sites were used to 

ligating the gene of interest to both vectors. The vectors contain the hygromycin resistance 

gene for selection of the transfectants with the antibiotic hygromycin B. To accommodate a 

new antibiotic selection gene for future experiments, the pcDNA™ 5/FRT/TO vector was 

modified. Therefore, the hygromycin resistance gene was replaced by the neomycin resistance 

gene and the pcDNA™ 5/FRT/TO/Neomycin was generated. 

Stable CAT-R expressing cell lines were generated with the Flp-In™ system. The 

pcDNA5™/FRT or the pcDNA™5/FRT/TO construct along with the pOG44 expression 

plasmid were co-transfected to the model cell lines. The transfected cells were selected in the 

presence of 500 μg/μl of hygromycin or neomycin for 4 days. In addition, cells with strong 

eGFP (488-530/30) and mCherry (561-610/20) signals were sorted using FACSAria I cell 

sorter (BD Biosciences) to enrich cells harboring the reporter. 
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Generating cell lines with deficient background 

For each gene of interest one gRNA was used to transfect the model cell lines with the use of 

synthetic gRNA oligonucleotides. Three days post-transfection, monoclonal cell lines were 

generated by limiting dilution and once fully-grown several clones were selected for validation 

either with Western blotting or with Immunofluorescence. 

Table 3: Summary of the engineered cell lines with their respective genetic background 

Nr. Cell line Genetic background 

1. HEK293CAT-R Wild type 

2. HEK293CAT-R PRKDC-/- 

3. HEK293CAT-R XRCC4-/- 

4. HEK293CAT-R ATM-/- 

5. HEK293CAT-R PARP1-/- 

6. HEK293CAT-R ERCC3-/- 

7. HEK293CAT-R ERCC8-/- 

8. HEK293CAT-R XPC-/- 

9. HEK293CAT-R TP53-/- 

10. RPE-1CAT-R Wild type 

11. RPE-1CAT-R TP53-/- 

12. RPE-1CAT-R ATM-/- 

 

Cell culture 

Transformed human embryonic kidney (Flp-In™ HEK293, Life technologies) and hTERT-

immortalized retinal pigment epithelial (hTERT T-Rex™ RPE-1, a kind gift from Jonathon 

Pines) mammalian cell lines were used as model systems. HEK293 cells were cultured in 

Dulbecco's Modified Eagle Medium, high glucose supplement (DMEM/GlutaMAX™, Life 

Technologies) containing 10% FBS (Thermo Scientific), 1% Gibco® Antibiotic-Antimycotic. 
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RPE-1 cells were cultured in Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 high 

glucose supplement (DMEM/F12 GlutaMAX™, Life technologies) containing 10% FBS 

(Thermo Scientific), 1% Gibco® Antibiotic-Antimycotic. All cell lines were cultured at 37oC 

and 5% CO2. For the induction of the reporter and the Cas9 endonuclease, culture media was 

supplemented with 1 μg/ml Doxycycline for 24 hours. 

Liquid phase transfection of siRNA 

Cells were seeded (20.000 HEK293, 8.000 RPE-1 cells per 96-well) on 96-well plates (Orange 

Scientific). 24 h later, cells were 60 - 80% confluent for transfection. The Silencer® GFP 

(eGFP) siRNA (Invitrogen™) was used as a positive control for lipofection. 

Lipofectamine™RNAiMAX was used as a transfection reagent, and the general instructions 

for a 96-well plate transfection were followed. The siRNA was combined with 

Lipofectamine™RNAiMA in Opti-MEM® Medium to a final concentration of 1 pmol. 

Liquid phase transfection of synthetic gRNA oligonucleotides: 

Cells were seeded (20.000 HEK293, 8.000 RPE-1 cells per 96-well) on 96-well plates (Orange 

Scientific), and culture media were supplemented with 1 μg/ml Doxycycline. After 24 hrs, 

cells were 60 – 80% confluent for transfection. The Alt-R™ CRISPR crRNA and tracrRNA 

(IDT) were used to form the guide RNA complex (gRNA). Each RNA oligo (Alt-R™ 

CRISPR-Cas9 crRNA, tracrRNA) was resuspended in nuclease-free IDTE, pH 7.5 (1X TE 

solution) to a final concentration of 100 μM. The two RNA oligos were mixed at equimolar 

concentrations to create a final complex concentration of 3 μM. The gRNA complex was 

heated at 95oC for 5 min and then allowed to cool to room temperature (15–25oC). 

Lipofectamine™ RNAiMAX transfection reagent was used according to the user manual. The 



Material and Methods: Chapter 10     

127 

 

gRNA complex was combined with Lipofectamine™RNAiMAX in a ratio of 2:1 in Opti-

MEM® Medium to a final concentration of 30 nM. 

Table 4: Selected gRNA designs targeting the eGFP sequence. 

Name Target sequence (5’ → 3’) Nucleotide position* Orientation 

gRNA1 GGGCGAGGAGCTGTTCACCG 12 - 31 Sense 

gRNA2 GAGCTGGACGGCGACGTAAA 52 - 71 Sense 

gRNA3 GGCCACAAGTTCAGCGTGTC 73 - 92 Sense 

gRNA4 GGAGCGCACCATCTTCTTCA 285 - 304 Sense 

gRNA5 GAAGTTCGAGGGCGACACCC 339 - 358 Sense 

gRNA6 GGTGAACCGCATCGAGCTGA 360 - 379 Sense 

* Nucleotide position is determined by the beginning of eGFP sequence 

Solid-phase transfection of synthetic gRNA complexes 

For experiments using a solid-phase transfection platform, we used flat bottom white 96 well 

plates (Costar®Assay plate, 3903) and prepared mixtures that are enough for 9 wells of a 96-

well plate. For each reaction to achieve 2.5 pmol RNA complexes in each coated well, 3 μl 

Opti-MEM/sucrose solution (1.37% w/v) was mixed with 1.75 μl Lipofectamine™2000 

(Invitrogen, 11668027). To this mix, 6.75 μl of 3.3 μM crRNA: tracrRNA mixture was added, 

and the final transfection mix was incubated for 20 mins at room temperature. After incubation, 

7 μl of gelatin (0.2% w/v in H20) was added and mixed. The final mixture was diluted in RNA 

and DNase free water 1:25 amounting to a total of 450 μl of diluted transfection mixes. From 

this mix, we plated 50 μl to each well of a 96 well plate. Plates were filled in triplicates and 

lyophilized using a MiVac vacuum centrifuge, accommodating multi-well plates. 
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Twenty-four hours before transfection, the culture media was supplemented with 1 μg/ml 

Doxycycline. Cells on day of seeding need to be 20 – 30% confluent and were seeded on a pre-

coated flat bottom, 96-well plate (Costar®Assay plate, Corning) (6.000 HEK293 and 3.000 

RPE-1 per 96-well. 

Cell compound treatment 

Twenty-four small pharmacological inhibitors were selected to target vital DDR proteins. The 

compounds were stored as 1 mM stocks in DMSO and bought from Selleckchem or were 

kindly provided (M3814, M3541, M4344 and M6620) by Dr. Frank Zenke at Merck KGaA, 

Darmstadt, Germany. Cells were seeded (20.000 HEK293, 8.000 RPE-1 cells per 96-well) on 

the U-bottom 96-well plate (Orange Scientific), and culture media was supplemented with 1 

μg/ml Doxycycline. The day after, cells were transfected with gRNA: eGFP and incubated 

with the inhibitor compounds for three days. Then they were analyzed in a high-throughput 

FACS LSR Fortessa™ analyzer (BD Biosciences). 

Cell viability assay 

CellTiter-Glo® (Promega) was used to determine cell viability, according to the 

manufacturer’s protocol. Cells were seeded (6.000 HEK293, 3.000 RPE-1 cells per 96-well) 

on a 96-well white plate with a clear flat bottom (Costart®Assay plate, Corning) and cultured 

for three days in the presence of specific inhibitor. The GloMax®-Multi detection system 

(Promega) was used as a luminometer to quantify the presence of ATP when metabolically 

active cells exist. 
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Cell cycle analysis 

Click-iT™ EdU Alexa Fluor™ 488 Flow Cytometry Assay Kit (ThermoFisher) was used as 

an assay for analyzing DNA replication in proliferating cells. The Click-iT® EdU protocol was 

followed. On the day of analysis, cells were labeled with 10 μM of EdU for 2 h, following 

several washing steps during fixation and permeabilization. The Click-iT® reaction mixture 

was prepared according to the manufacturer’s protocol, and the reaction mixture was left for 

incubation for 30 minutes at room temperature protected from light. Cells were stained for 

DNA content with the FxCycle™ Violet in 1:1000 dilution and left for 30 minutes of 

incubation. The samples were analyzed by flow cytometry with the use of a FACSAria I cell 

sorter (BD Biosciences). 

CRISPR/Cas9 gRNA library 

An arrayed gRNA library is synthesized on 96 well plates targeting a total of 417 genes (IDT). 

For each gene, 2 individual gRNAs were used. On each plate, we used four positives 

(POLR2A), and six negatives (Scrambled, non-targeting gRNA) controls to evaluate the solid-

phase transfection. On the first day, the culture media was supplemented with 1 μg/ml 

Doxycycline to induce the Cas9 expression. On day 2, cells were 60-80% confluent and 

actively dividing. They were seeded in pre-coated plates containing the gRNA library 

complexes. Three days post-transfection, the gRNA: eGFP was transfected, and three days 

afterward, the eGFP and mCherry ratios were assessed by high throughput flow cytometry. 

Genomic DNA extraction 

Cells were collected 24 to 72 h after transfection to a 1.5 ml tube. The genomic DNA was 

isolated according to the manufacturer’s protocol using the DNeasy Blood & Tissue Kit 
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(Qiagen). In brief, cultured cells were pelleted and resuspended in 200 μl PBS with 20 μl of 

proteinase K. Afterward, 200 μl of Buffer AL was added to the sample, mixed thoroughly, and 

left to incubate at 56oC for 10 min. Then 200 μl of ethanol (96-100%) was used and subsequent 

washing steps with Buffer AW1 and Buffer AW2 followed. The final elution step was 

performed with 50 μl of nuclease-free water. The DNA purity and concentration were 

measured using a NanoDrop™ spectrophotometer.  Typically, A260/280 values greater than 

1.8 are suitable for analysis. 

Cleavage detection assay 

The enzyme digest of mispaired dsDNA was performed using the Surveyor® Mutation 

detection kit (IDT) according to the manufacturer’s protocol. The PCR amplification of  

100 ng from reference and test samples was completed, using the Q5 Hot Start High-Fidelity 

2X Master Mix (#M0494, New England Biolabs). The thermo-cycling conditions of the 25 μl 

PCR reactions were 98°C for 30 sec, 34 cycles of 98°C for 5 s, 59°C for 10 sec, and 72°C for 

20 sec with a final extension at 72°C for 2 min.  Next, sample and reference DNA are 

hybridized to form heteroduplexes using a thermal cycler according to the manufacturer’s 

protocol. Subsequently, 10 μl from the PCR reaction for each sample was used to set up the 

surveyor nuclease reaction and the mixture was left at 42oC for 60 min of incubation. Finally, 

the analysis of DNA fragments was run in a 1.5% TBE agarose gel electrophoresis and imaged 

with a Gel Doc™ XR+ (Bio-Rad) system.  
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PCR amplification and Next-Generation Sequencing 

For the genome-sequencing assay, DNA was extracted from HEK293 cells using the DNeasy 

Blood & Tissue Kits (Qiagen, Düsseldorf, Germany) as described in the manufacturer’s 

protocol. After quantification (Qubit High sensitivity assay kit) we employed a two-step PCR 

protocol. As suggested in the Illumina protocol for 16S Metagenomic Sequencing Library 

Preparation, the first PCR step is performed to amplify the targeted DNA region. For each 

sample, 1 μg of DNA was used to prepare the initial 388 bps PCR amplicon. The 50 μl PCR 

reactions were set up with the NEBNext® Q5® Hot Start Master Mix (New England BioLabs) 

and the thermo-cycling conditions were 98°C for 3 min, 12 cycles of 98°C for 10 s, 65°C for 

30 sec, and 72°C for 20 sec with a final extension at 72°C for 3 min. To verify the success of 

the PCR, amplification products were electrophoresed on a 2% agarose gel. The second PCR 

step is performed in order to multiplex individual specimens on the same Illumina MiSeq 

flowcell and to add necessary Illumina adapters. In this second step, primer pairs used contain 

the appropriate Illumina adapter allowing amplicons to bind to the flow cell, an 8-nt index 

sequence (Kozich et al. 2013) and the Illumina sequencing primer sequence. 

Next-Generation Sequencing data analysis 

The reads quality control was performed with FastQC and MultiQC tools. BBMap (v. 38.34) 

was used for the alignment because of its accuracy to align reads with long indels. As a 

reference, the targeted eGFP sequence was used. All the downstream analysis was performed 

with custom scripts in R (v. 3.4.4). Indels were considered only if they occurred within 1 

nucleotide of the Cas9 cleavage site. To guarantee the robustness of the frequency’s estimation, 
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only events (indels with a unique position and length) supported by at least 10 reads were 

considered. 

High-throughput flow cytometry 

Cell populations were gated on a forward (FSC)/side scatter (SSC) plot. Cells are further gated 

on forward-area (FSC-A)/forward-height scatter (FSC-H) plot to determine single cells. Single 

cells are further gated on side-area scatter (SSC-A)/ (405-450/50A) to determine living cells 

based on DAPI staining. Live cells are further gated to determine eGFP (488-530/30-A)/ 

mCherry (561-610/20-A) cell populations and evaluated in a ratiometric way the fluorescent 

variations in a FACS LSRFortessa™ mounted on a High Throughput Samples (HTS) (BD 

Biosciences, USA). 

Quantify gene expression 

Western blotting 

Whole-cell lysis extracts of HEK293 and RPE-1 were generated with RIPA buffer (CST – 

9806S) or custom made HGNT lysis buffer. An equal amount of protein (25 μg/ml) was loaded 

to a 7.5% precast polyacrylamide gel (Mini-PROTEAN® TGX™, Bio-Rad). The cell extracts 

were transferred to a nitrocellulose membrane (Trans-Blot® Turbo™, Bio-Rad) or to a PVDF 

membrane using a transfer apparatus according to the manufacturer’s protocols (Bio-Rad). 

After incubation with 10% nonfat milk in TBST (10 mM Tris, pH 8.0, 150 mM NaCl, 0.5% 

Tween 20) for 30 min, the membrane was washed three times with TBST and incubated with 

antibodies against protein of interest at 4oC for 12 h. Membranes were washed three times and 

incubated with 1:10000 dilution of IRDye 680RD and IRDye 800CW secondary antibodies for 
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2 h. Blots were washed with TBST three times and developed with the Odyssey system for 2 

min (LI-COR Biosciences). 

Table 5: List of protein targets with the respective antibodies used during this study. 

Protein 

target 

Dilution Molecular 

weight (kDa) 

Antibody 

type 

Product 

number 

Company 

Cas9 1:1000 160 kDa Mouse mAb #14697s CST 

TP53 1:1000 53 kDa Mouse mAb #2524S CST 

ATM 1:1000 350 kDa Rabbit mAb #2873S CST 

p-CHK2 1:1000 56 kDa Rabbit mAb #2197s  CST 

XRCC4 1:500 55 kDa Mouse mAb sc-271087 Santa Cruz 

NHEJ1 1:100 27.8 kDa Mouse mAb sc-393844 Santa Cruz 

DNA-PKcs 1:1000 469 kDa Rabbit pAb ab70230 Abcam 

eGFP 1:1000 37.2 kDa Mouse mAb   

GAPDH 1:10000 37 kDa Rabbit mAb #5174s  CST 

α-Tubulin 1:10000 50 kDa Mouse mAb ab67291 Abcam 

Vinculin 1:10000 145 kDa Rabbit mAb #4650s CST 

CST: Cell Signaling Technology 

 

RNA Extraction, cDNA Synthesis, and RT-qPCR 

Total RNA isolation was performed from 106 cells using the RNeasy Plus Mini kit (Qiagen, 

Düsseldorf, Germany). Cells were pelleted and disrupted by adding Buffer RLT that contains 

β-mercaptoethanol (β-ME) to denature active RNases. After homogenizing the lysates by 

vortexing for 1 min, 1 volume of 70% ethanol was added to the mixture. Subsequent washing 

steps, with Buffer RPE, were followed and the elution was performed with 10 μl of nuclease-

free water. The RNA samples were diluted to 250 ng/μl final concentration aliquoted and stored 

in -80oC.  

All RNA samples within an experiment were reverse transcribed at the same time with the 

qScript™ cDNA SuperMix (Quanta Biosciences) using 500 ng of RNA as a template and stored 
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in aliquots at -80 oC. Real-time PCR with Fast SYBR® Green (ThermoFisher) detection was 

performed using a QuantStudio™ 5 Real-Time PCR system (Applied Biosystems™). The 

relative quantification of each sample was performed using the comparative Ct method. The 

acidic ribosomal phosphoprotein P0 gene (36B4) is used as a housekeeping gene. To compare 

the transcript levels between different samples the 2 -Ct method was used (Livak and 

Schmittgen, 2001). First, the difference in the cycle threshold (Ct) values between the 18S gene 

and a target gene were calculated with or without treatment, (ΔCtgene-18S)treated, (ΔCtgene-18S)non-

treated. Then, the difference between these values was calculated as follows: ΔCttreated - non-treated = 

(ΔCtgene-18S)treated - (ΔCtgene-18S)non-treated. Finally, to determine the ratio of expression levels in 

the treated sample versus non-treated sample, we used the Qr formula (𝑄𝑟 =

2−𝐶𝑡𝑡𝑟𝑒𝑎𝑡𝑒𝑑−𝑛𝑜𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑). 
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Table 6: RT-PCR primer set 

Gene Orientation Primer sequence (5’ → 3’) 

ATM Fwd ATCTGCTGCCGTCAACTAGAA 

Rev GATCTCGAATCAGGCGCTTAAA 

ATR Fwd GGCCAAAGGCAGTTGTATTGA 

Rev GTGAGTACCCCAAAAATAGCAGG 

BRCA1 Fwd GCTACAGAAACCGTGCCAAA 

Rev TATCCGCTGCTTTGTCCTCA 

BRCA2 Fwd TGGTATGCTGTTAAGGCCCA 

Rev CTGGGGCTTCAAGAGGTGTA 

ERCC5 Fwd GACTTAGCGTCCAGTGACTCC 

Rev GGCAGTTTTGATGGCTTGTCTTT 

ERCC8 Fwd ATGCTGGGGTTTTTGTCCG 

Rev TCTCCGTGTTGACTCTGCTCT 

FANCI Fwd CCACCTTTGGTCTATCAGCTTC 

Rev CAACATCCAATAGCTCGTCACC 

FANCM Fwd AATCTTGGCTCTAAGTGCCAC 

Rev TCTGCCCAATTAGCAGGTTAGTA 

NHEJ1 Fwd ATAATCTCCTTCGCCCATTGTTG 

Rev CCCGTAGAATCAGTGCATCTG 

PARP1 Fwd TGGAAAAGTCCCACACTGGTA 

Rev AAGCTCAGAGAACCCATCCAC 

PARP2 Fwd GCCTTGCTGTTAAAGGGCAAA 

Rev TCCTTCACAATACACATGAGCC 

PARP3 Fwd GCCCTGGGTACAGACTGAG 

Rev CGCTTCTCTGCGGGTATGG 

POLQ Fwd ACTTTTGCTGACCAAGATTTGCT 

Rev ACTCATGCCAACGATTTGCAC 

PRKDC Fwd CTGTGCAACTTCACTAAGTCCA 

Rev CAATCTGAGGACGAATTGCCT 

RAD51B Fwd CACCAGACCCAGCTCCTTTA 

Rev TCTGTTCTGTAAAGGGCGGT 

USP1 Fwd CGTTTCCGGGACCAGAATCC 

Rev CATCGCCGTCCGTTCTCTTC 

XRCC4 Fwd ATGACTGCTGACCGAGATCC 

Rev CTGAAGCCAACCCAGAGAGA 
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Statistical analysis 

Compound analysis and statistical testing 

Results from the reporter are presented as the mean ±standard deviation of independent 

experiments. Each independent experiment entails 3 technical replicates. A t-test was used to 

compare continuous variables between two groups. Box and whiskers plots are used from min 

to max with median value to be annotated and values to be normalized to gRNA: eGFP control. 

Scatter plots are also used with a nonlinear regression fit curve and the values to be normalized 

to gRNA: eGFP control. 

Random forest model – a bioinformatics pipeline 

Starting from the log10 transformed FACS data, for each sample, the 2D kernel density 

estimation was computed, and the resulting plot was converted into a 100 x 100 pixels image 

flatten into a 10000 elements vector. To avoid misleading the modeling process samples that 

showed a phenotype almost equal to the DSB were removed as follows: assuming that equal 

phenotypes come from the same distribution, for each sample the statistical distances from the 

DSB controls within the plate were computed  using the Kolmogorov–Smirnov test and an 

average distance from the DSB controls was calculated. Samples showing an average distance 

equal to or lower than the upper endpoint of the 95% confidence interval of the average 

distance among the DSB controls within the plate were filtered out. Specific drugs no longer 

considered to belong to a specific class were also removed. The data set was split randomly 

into train and test set using an 80/20 ratio and taking the classes proportion of the data unvaried. 

Using the train set, we trained a random forest model with a repeated 5-fold cross-validation 

for the parameter’s optimization and an up-sampling strategy for class balancing. In order to 
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assess the final model, we predicted the classes of the test set. Afterward, we were able to 

produce the confusion matrix and to calculate the performance of the model. The modeling 

was performed in R using the caret and the ranger packages. 

CRISPR/Cas9 gRNA library analysis 

The data from the two replicates were averaged by the gene name. In statistics, Z-score values 

are used to describe a value's relationship to the mean of a group of values based on the standard 

deviations from the mean. Therefore, Z-scores were calculated with the following formula 

𝑍 𝑠𝑐𝑜𝑟𝑒 =  
(𝑉𝑎𝑙𝑢𝑒−𝑚𝑒𝑎𝑛)

𝑆𝐷
, for all three populations per gene based on non-targeting (scrambled) 

controls of each 96-well plate. Genes with a low number of counts (< 1500) were removed 

from the analysis. Among the remaining genes, we formed clusters by the K-Means algorithm, 

taking into consideration all three populations. K-Means is a popular technique for data cluster 

analysis that partitions the input data set into k partitions (clusters) starting with the first group 

of randomly assigned centroids. Once the centroids are stabilized it allocates every data point 

to the nearest cluster. Next, a pathway enrichment analysis was performed to identify pathways 

enriched in the given gene list sets derived from the clustering approach. For this purpose, a 

free online database of biological pathways (Reactome) was used. The website can be used to 

browse pathways and submit data to a suite of data analysis tools. The pathway over-

representation tool was used to present a list of over-represented pathways with a significance 

level of p < 0.05. Next, to identify the most influential genes of a Cas9-mediated DSB, a 

standard outlier diagnostic tool (Cook’s distance) was used. It is commonly used to estimate 

the influence of a data point when performing a least-squares regression analysis. A model 

based on the input of the two populations is built in the concept 𝑦 = 𝑥 ∗ 𝛽 + 𝜀, with ε to be the 

error term. If ε is greater than the cut-off (3 times the mean) then it is considered as an outlier.
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