

Dekan: Prof. Dr. med. Sergij Geordt
Referent: Prof. Dr. med. Norbert Gretz

 TABLE OF CONTENTS

 Page

ABBREVIATIONS .. i

1. INTRODUCTION .. 1
1.1 microRNAs .. 1
1.2 Machine learning technique ... 6
1.3 Keras .. 11
1.4 Aims of the study ... 12

2. MATERIAL AND METHODS .. 13
2.1 Material .. 13
2.2 Dataset generation .. 13
2.3 Feature identification for training .. 14
2.4 Pre-processing of the interaction descriptors ... 16
2.5 AHDR approach ... 17
2.6 Statistical measures .. 17

3. RESULTS ... 19
3.1 AHDR framework .. 19
3.2 Feature description of miRNA target interaction ... 20
3.3 Feature selection for miRNA target prediction .. 23
3.4 Hyperparameter optimization .. 26
3.4 Performance evaluation of other ML methods ... 27
3.5 Performance comparison with other prediction methods 30
3.6 Interaction identification with validated targets ... 32
3.7 Performance of miRNA-target prediction of AHDR on top 20 cancer genes 32

4. DISCUSSION ... 35

5. SUMMARY .. 40

6. REFERENCES ... 41

7. CURRICULUM VITAE AND PUBLICATIONS ... 46

8. APPENDIX ... 48

9. ACKNOWLEDGEMENTS .. 83

Abbreviations

i

ABBREVIATIONS

ACC Accuracy

AGO-1 Argonaute-1

AHDR Advanced hierarchical deep-rooted network

AI Artificial intelligence

ANN Artificial neural network

AUC Area under curve

BNB Bernoulli naïve bayes

CNN Convolutional neural network

CPU Central processing unit

DFFN Deep feedforward network

DL Deep learning

DRN Deep residual network

DT Decision tree

GAN Generative adversarial network

GPU Graphics processing unit

LASSO Least absolute shrinkage and selection operator

LR Logistic regression

MCC Matthews correlation coefficient

miRNAs microRNAs

ML Machine learning

OS Operating system

PPV Positive predictive value

ReLu Rectified linear unit

RNN Recurrent neural network

RNA pol II RNA polymerase II

RISC RNA induced silencing complex

SVM Support vector machine

TPR True positive rate

TNR True negative rate

Introduction

1

1. INTRODUCTION

1.1 microRNAs

microRNAs (miRNAs) are short endogenous non-coding RNA molecules of 17-24

nucleotides in size 1. miRNAs have important regulatory roles in animals, plants, and viruses
1. They regulate post-transcriptional expressions of genes by aligning to different regions of

miRNA targets 1. miRNAs are involved in several biological processes 1 as summarized in

Figure 1. miRNAs play regulatory roles during cellular processes and differentiation events 1.

In a few years, miRNAs and gene regulation have impacted virtually every field of biology 1.

Figure 1. Overview of miRNA gene regulation in different cellular processes. miRNA binds to the target gene,
which leads to target degradation and translational repression, which involved in different biological processes.

The RNA polymerase II (RNA pol II) plays a crucial role in the miRNA biogenesis 1,

2. This enzyme transcribes miRNA genes as long primary transcripts, which are known as pri-

miRNAs (Figure 2). While Drosha (ribonuclease III enzyme) processes pri-miRNA into stem-

loop precursor miRNAs (pre-miRNAs) 1, 2, the exportin V (ds-RNA binding protein dependent

on the RanGTP) transports them from nucleus into the cytoplasm 1, 2.

Introduction

2

Figure 2. Overview of miRNA biogenesis. miRNA gene is processed into the nucleus by RNA pol II to generate
pri-miRNA. Dorsha slices pri-miRNA into pre-miRNA and exports it into the cytoplasm using Exportin V. Dicer
removes the loop-like structure from pre-miRNA and converts into a double-stranded mature sequence. In the
end, the mature miRNA sequence along with RISC molecules undergoes gene regulation by translational
repression or cleavage. This figure is adopted from Trionfini and Benigni 2.

In the cytoplasm, the maturation phase begins with Dicer (ATP dependent RNase III

protein) that recognizes pre-miRNA and processes it into 21 base pair long miRNA-miRNA*

duplex structure 1, 2. The duplex structure consists of an antisense strand that contains the G:U

wobble base pair, mismatches and unpaired at 5’ end or sense strand 1, 2. The duplex structure

loads on argonaute-1 (Ago-1) protein along with the RNA-induced silencing complex (RISC)

and this complex structure guides to the target mRNA that leads to gene silencing under three

different processes - degradation, translational repression, and mRNA destabilization 1, 2.

Since miRNA are major regulators of cellular physiological processes, they also play important

roles in human diseases including cancer, cardiovascular disease, diabetes, kidney disease, and

neurological disorders 3. oncomiRs are miRNAs with roles in cancer 3 while some miRNAs

that suppress cancer are known as tumor suppressor miRNAs (Figure 3).

Introduction

3

Figure 3. Application of miRNA in different biological processes. Each colorful petal is a different process of
diseases or stages in cancer whereas green petal indicates upregulation processes and red petal indicates
downregulation processes.

Table 1 summarizes roles of miRNAs in other human diseases by either up- or down-

regulation.

Table 1. miRNA regulation involved in other human diseases.

Disease miRNA Reference
Cardiac hypertrophy miR-23a, miR-23b, miR-24, miR-195, miR-199a, and miR-214

(Upregulate).
4

Alzheimer miR-9, miR-128a, miR-125b (Upregulate). 5
Down syndrome miR-99a, let-7c, miR-125b-2, miR-155 and miR-802 (Upregulate). 6
Systemic lupus
erythematosus

miR-189, miR-61, miR-78, miR-21, miR-142-3p, miR 342, miR-299-
3p, miR-198 and miR-298 (Upregulate).

7

miR-196a, miR-17-5p, miR- 409-3p, miR-141, miR-383, miR- 112,
and miR-184 (Downregulate).

Psoriasis miR-203 (Upregulate). 8
Rheumatic arthritis miR-155, miR-146 (Upregulate). 9

1.1.1 Measurable characteristics of miRNA target

a) Seed sequence of miRNA

Seed sequence is a conserved heptamer region, which is located in 2-8 nucleotides

from the starting point at the 5’ end of miRNA 1. Generally, miRNAs are supposed to

Introduction

4

bind in the 3’ untranslated region (3’ UTR) region of the target gene for translational

regulations 1. Alignment between miRNA-targets follows the process of Watson and

Crick mechanism in different architectures 10 such as canonical (Figure 4a) and non-

canonical (Figure 4b-f) binding.

Figure 4. Seed type in alignment between miRNA and target gene. This figure is adopted from Dweep et al.
10.

b) Target site conservation

 Sequence conservation is interpreted by the maintenance of nucleotides primarily in the 3’

UTR, the 5’ UTR, and the miRNA while considering multi-species alignment like human,

Introduction

5

chimpanzee, mouse, chicken, and fishes 10. During miRNA target prediction, this

conservational analysis hints for a functional miRNA target 10. Hence, the conservation of the

target site plays an important role in computing miRNA target interaction.

c) Free energy of miRNA-mRNA duplex structure

 Gibbs free energy (or thermodynamics) measures the stability of a biological system and it

is designated as ΔG 10. The negative ΔG is indicative of less energy, hence higher stability.

This applies to the prediction of the target site, as the hairpin loop has higher energy (positive

ΔG) while the stem region has lower ΔG, during miRNA-target hybridization 10. Therefore, the

overall ΔG assists in miRNA target prediction.

d) Site accessibility

Site accessibility is an ability of a miRNA to locate and hybridize with a target 10. It portrays

an energy-based measure, which essentially evaluates the potential of a given target site to be

single-stranded and thus accessible for the miRISC protein for binding 10. The mRNA

secondary structure then unfolds as the miRNA completes binding to a target 10. Hence, the

predicted amount of energy required to make a site accessible to a miRNA can be evaluated

for computing actual target sites 10.

e) Other characteristics

There are other features to build the classifier model more effective for target gene

prediction namely “AU content” in the binding site of the target gene 11, “G:U wobble” in seed

match refers to the pairing of “G” with “U” instead of “C” nucleotide 11. Additionally, the

probability of multiple miRNA binding to a specific target is called multiple target abundance
11. The presence of asymmetric-symmetric stem and the loop structure infers the binding of

miRNA sequence to the target gene 11. Computing free energies of duplex structures within

each seed and out-seed regions are also essential 11.

1.1.2 Computational target prediction resources

Target prediction is a procedure in which miRNA complementarity aligns to mRNA

target 11. Single miRNA can bind to several mRNAs at different positions 11. Hence, there are

massive challenges in predicting miRNA-mRNA interactions as this process is not fully

understood 10. There are several types of experimental approaches for target prediction

(microarray, pSILAC, real time PCR, western blot, and luciferase reporter assay), however,

these approaches are time-consuming and expensive 10. Hence, several bioinformatic tools have

been developed to overcome these issues. Herein, a summary of top tools for miRNA target

prediction is provided (Table 2).

Introduction

6

Table 2. Overview of tools for miRNA target prediction.
Tools Types of feature Algorithm Organism
miRanda 12 Seed match, conservation,

and free energy
Local alignments of miRNA:UTR,
assessing the thermodynamic folding
energy of a miRNA:UTR duplex

Mammals,
flies,and
worms.

TargetScan 13 Seed match and
conservation

Predicted targets by either the
predicted efficacy of targeting
(context+ scores) or the probability of
conserved targeting (PCT) based on
conservation.

Mammals,
flies, and
worms

MiRTarget2 14 Seed types, base
composition, and secondary
structure

Support vector machine Mammals
and birds

RNA22 15 Seed match and free energy Use pattern discovery to identify
target islands and evaluate the free
energy of paired target islands and
candidate miRNAs

Mammals,
flies,
and worms.

TargetMiner 16 Seed match, conservation,
free energy, site
accessibility, target-site
abundance

SVM based classifier identifying
potential seed sites between a user-
provided miRNA and mRNA of
choice.

Any

SVMicro 17 Seed match, conservation,
free energy, site
accessibility and target-site
abundance

SVM based learning classifier. Any

PITA 18 Seed match, conservation,
free energy, site
accessibility and target-site
abundance

Potential site extracted by seed match
criteria, undergoes site accessibility by
computing a free energy score. In the
end, target-site abundance is
considered by combining the site
accessibility scores for the same
miRNA to identify a total interaction
score for the miRNA and UTR.

Mammals,
flies,
and worms.

RNAHybrid 19 Seed match, free energy,
and target-site abundance

Based on free energy by assigning P-
value to potential miRNA:mRNA.

Any

Although there are several computational approaches for miRNA target prediction,

however, these methods have various limitations such as low accuracy of predictors and less

sensitivity for the prediction 10. Hence, these prediction algorithms are not enough to predict

the putative target interactions 10. Additionally, there are still many unknowns and uncertainties

in interactions among these molecules.

1.2 Machine learning technique

Artificial Intelligence (AI) is a wide research area focusing on the development of

computational methods to mimic human cognitive behavior and intelligence 20. Machine

Learning (ML) is the sub-field of AI, where computational algorithms optimize performance

using the user-provided training dataset and generates a predictive model 20. ML is widely

applied in different areas such as probability, statistics, signal processing, computational

mathematics, philosophy, control systems theory, cognitive psychology, biology, economics,

Introduction

7

and others 21. The ML is broadly classified into two main learning algorithms such as

supervised and unsupervised learning (Figure 5).

Figure 5. Hierarchical tree of ML. There are two types of learning (supervised and unsupervised) and these
learning methods have their own algorithms (clustering is the method of unsupervised whereas classification and
regression is the method of supervised). Each method has its corresponding learning algorithms for training.

Unlike traditional algorithms, ML algorithms allow the computer to train on the input data and

these algorithms use statistical analysis for predictions 21. Therefore, ML allows computers

building models from sample data to automate decision-making processes based on the input

data 21.

1.2.1 Supervised learning

Supervised algorithms train mapping functions from the input dataset (a) to the output

(Z) by the user-provided training dataset and their corresponding output 22.

Z = f (a)

The goal is to approximate the mapping function so well that when you have new test

data (a) that you can predict the output variables (Z) for that data 22. Supervised learning further

grouped into classification and regression methods 22. Regression is known to predict a

continuous value that tries to predict the continuous output value 22 whereas classification

Introduction

8

predicts class labels (for instance, 0 class label for non-targets and 1 class label for targets) of

new observations 22.

1.2.2 Unsupervised learning

Unsupervised learning is used for the training of a model without any prior information

about the output dataset 23. The main objective of unsupervised learning is the construction of

a model from the underlying structure or distribution in data 23. Clustering is the main method

of an unsupervised learning algorithm 23.

1.2.3 Artificial neural network

Artificial neural network (ANN) is one of the most popular ML algorithms, which is

inspired by the neuronal activity of the human brain 24. ANN consists of highly connected

mathematical elements to process information from dynamic state response to input 24. An

artificial neuron is the simplest unit in the neural network, which is known as perceptron and

typically correlated with brain neuron cell 24 (Figure 6). A typical ANN is consisting of an input

node in the directed graph, which is associated with their corresponding weights that creates

connections between output and input nodes 24 (Figure 6).

Figure 6. Neural network. The artificial neural network is the graphical representation of a biological neural
network and works in the same process of transmitting information from the cell body to synapses.

Introduction

9

The ANN receives input in the form of a sequence pattern and an image vector with their

corresponding weights. In the ANN, a weight contains information in solving a problem at each

node 25. Each input node multiplied by their corresponding weights and summed up inside the

ANN structure 25. If the sum of weighted input corresponds to zero, bias value is added to make

the output a non-zero whereas if weighted input corresponds to a non-zero value, the threshold

value is set up and weighted value passes through an activation function to get the desired

output 25.

1.2.4 Deep Learning

Deep Learning (DL) is the subset of the ML-based approach for extracting features and

learning patterns from a large dataset by employing multilayered network 26. As genomic

datasets are increasing day by day, extraction of important information has become the most

challenging task in bioinformatics. DL is being used to overcome the problem in handling big

datasets 26 (Figure 7). In general, DL has two features: (a) multiple hidden layers (nonlinear

processing units), and (b) supervised or unsupervised learning of feature presentations on each

layer 27.

Figure 7. Representation of deep neural network and simple neural network. A deep neural network is an
advanced hierarchical technique of simple neural network to make more condense analyses of data. This figure is
adopted from 26.

Applications of DL have been primarily focused on image recognition, video, and sound

analyses, as well as natural language processing; it also opens doors in life sciences 27. In the

ANN, the network consists of neurons (layers) that are interconnected in adjacent layers to

Introduction

10

each other 27. As the nonlinear processing units increase, the network architecture becomes

deeper and complex 27. The DL approach consists of six popular network architecture such as

convolutional neural networks, recurrent neural networks, autoencoders, deep residual

networks, and deep feedforward networks 28.

a) Convolutional neural network

Convolutional neural network (CNN) is the most popular algorithm in image recognition

and natural language processing 29. The CNN architecture consists of four stages:

• Receiving an input layer from data 29.

• Convolutional layer undergoes preprocessing to reduce the sensitivity of the filters by

reducing the noise and other variations 29.

• In the activation layer, preprocessed input signals pass from one layer to another 29.

• In the last stage, all the layers of the network are connected with every neuron from a

preceding layer of the neurons from the subsequent layer 29.

b) Recurrent neural network

Recurrent neural network (RNN) is an advanced form of DL technique based on both

feedforward and feedbackward network 30. The RNN approach is mainly used in text data,

speech recognition, prediction problems in both classification and regression 30.

c) Autoencoder

Autoencoder is based on the principle of backpropagation in an unsupervised learning

environment 31, 32. This technique has similarities with principal component analysis (PCA) 31,

32. Autoencoders are easy to train on specialized input data as it does not require any new

preprocessing step for the data 31, 32.

d) Deep residual network

Deep residual network (DRN) is an intriguing network consisting of multiple residual

layers 33. Each residual layer consists of sets of activation functions along with their

corresponding weights. However, the rectified linear unit (ReLu) is an activation function,

which is applied to each layer. This increases their accuracies with the least number of weights
33.

Introduction

11

e) Deep feedforward network

Deep feedforward network (DFFN) is a supervised acyclic directed graph that trains from

the input dataset. The aim of DFFN is to minimize the error on the prediction task 26, 34. DFFN

is comprises of three layers: an input layer, a sequence of hidden layers, and an output layer.

Each layer consists of several nodes and their corresponding weight. At each layer, activation

functions are applied to the “sum of weighted inputs” and pass the result to all nodes of the

next layer 26, 34. Mathematically, DFFN information passes through the hierarchical

composition of the functions being evaluated from input (x) layer, through the intermediate

computations used to define function (f), and generate output (Y) 26, 34.

Y = f (x) ≈ f∗ (x)

DFFN defines a mapping Y= f (x; θ) and learns the value of the parameters (θ) that

result in the best function approximation f ∗ (x) and it is evaluated at different (x) instances

(i.e., expected outputs) 26, 34. These models are called feedforward because information flows

through the function being evaluated from (x), through the intermediate computations used to

define (f), and finally to the output (Y) 26, 34. Each interconnection between nodes in each layer

is represented by different activation functions 26, 34. The overall hidden layers along with their

corresponding weights are known as the depth of the network 26, 34. Therefore, “DL”

terminology arose from this technique.

1.3 Keras

Keras is an upgraded python library for profound learning with Theano and TensorFlow at the

backend 35. Keras can run using both the central processing unit (CPU) and graphics processing

unit (GPU) 35. Keras has following properties:

(a) Keras is user-friendly application, which reduces the cognitive load 35.

(b) It offers reliable and basic API, which provides actionable hints against errors made by

the user 35.

(c) Keras is highly modular in nature. It uses completely configurable modules like neural

layers, cost capacities, enhancers, introduction schemes, activations functions, and

regularization plans 35. These modules can easily be configured and modified based on

the requirement for construction of new models.

(d) Keras is highly flexible package and one can easily either add new modules or remove

existing modules, this feature makes Keras suitable for advanced searches 35.

Aim of the study

12

1.4 Aims of the study

With the discovery of miRNA, the search for the target genes and their role in different

cell systems began 1. A purely experimental approach for scanning target genes and their

binding sites is a time-consuming and also an expensive approach 3. Another possibility is a

purely computer-assisted analysis method at the sequence level to find potential interaction

partners and their binding sites. In recent years, many prediction programs for miRNA gene

interactions have been developed, which started with low accuracy. Through further knowledge

in miRNA biology, the accuracy of these programs could be further improved. The main goal

of this work is to further improve the accuracy of the prediction of possible target genes using

the latest machine learning methods.

The main objectives of this study are:

• to construct a novel deep learning-based approach for increasing the accuracy for

miRNA target prediction within the whole human genome.

• to apply an optimized approach to this novel deep learning-based approach for target

prediction of large datasets.

• to validate the potential predicted interactions with validated interactions.

• to identify potential candidate miRNAs on top mutated cancer genes.

Material and methods

13

2. MATERIAL AND METHODS

2.1 Material

When creating sets for model training, it is important not to introduce any biases that

could be considered by the model to distinguish between positive and negative instances. This

section describes the development of positive and negative datasets for model training and

testing.

2.1.1 Data Collection

Using the human reference genome assembly version GRCh38.p10 as standard, mature

miRNA and mRNA were extracted from miRBase v21 36 and Ensembl 37, respectively. To

validate the performance accuracy of the classifier model, a verified dataset was extracted from

miRTarBase v7.0 38, which is a comprehensive repository of experimentally supported miRNA

targets 38. The miRTarBase v7.0 38 incorporates published information from 8510 research

articles resulting in 422,517 experimentally supported miRNA target gene interactions 38. For

each interaction, miRTarBase v7.0 38 also provides direct experimentally verified evidences,

such as reporter gene assay, and/or indirect experimental evidences such as a microarray 38.

2.1.2 Workspace

A CPU was used with specification as following - Intel® Core™ i7-6800K CPU @

3.40GHz x 12 with 62.8GB memory, disk 424.6GB and OS type 64-bit.

2.1.3 Platform used

Python version 3.0+ was used for DL training using the following packages:

(a) SciPy or sklearn package 35 (version 0.19.0).

(b) NumPy library 35 (version 1.12.1).

(c) Pandas library 35 (version 0.21.0).

(d) Matplotlib library 35 (version 2.0.2).

(e) TensorFlow 35 (version 1.0.0).

2.2 Dataset generation

This section describes the construction of positive and negative datasets for the training

of the model.

2.2.1 Positive dataset

A positive dataset was developed by scrutinizing the high-throughput miRNA-target

using Watson and Crick method (Figure 8). Seed alignments were obtained from miRanda 12

Material and methods

14

and TarPmiR 39 prediction tools. Generated alignments were verified by TarBase 40 and

miRTarBase 38 databases. This dataset was subsequently used for filtering (together with the

negative sets) and further training of the classifier model.

2.2.2 Negative dataset

A negative dataset was constructed from the binding site region of the human transcript

sequence by randomly mutate with a frequency probability of 0.95 with the help of a python

scripting (Appendix 8.1). Therefore, these mutated regions hinder the binding of the seed

region. Generated negative dataset was verified by TarBase 40 database as described in Figure

8.

Figure 8. Generation of the two-class label dataset for training. miRNA is downloaded from miRBase v21 36
and mRNA downloaded from Ensembl 37 for interaction predictions. Putative features were identified of each
interaction. In the parametrization step, a potential two-class (negative and positive) label datasets were generated
for training of the classifier model.

2.3 Feature identification for training

In this section, features of miRNA target interactions were divided into three categories

such as thermodynamic features, structural features, sequence features, and other features that

comprise of energy, binding position, binding sites, accessibility, PyloP flanking and stem

Material and methods

15

regions, and binding probability. A total of 96 features were chosen for the miRNA target

prediction model. This section briefly describes feature generation.

a) Seed Scanning: miRNA target interactions are a measure of complementary alignment

between the miRNA and the targets. Seed scanning algorithms like miRanda 12 algorithm

search for initial hits, which can contain a canonical and non-canonical interaction verified

by TarPmiR 39 algorithm to find perfect seed interaction.

b) Conservations: Conserved sequences are indicative of functional importance upon the

feature selection. TarPmiR 39 or ElMMo 41 have been successfully applied to reduce the

number of false positive predictions and it is verified by both miRanda 12 and average

PhyloP 42 from Vienna package 42 for the generation of the conservational score.

c) Free energy: Thermodynamic energy of the duplex secondary structure is commonly

utilized by programs such as RNAduplex 42 from Vienna package 42. Further, it was verified

by using both miRanda 12 and TarPmiR 39.

d) Accessibility: Accessibility of binding site in the 3’ UTR is critical because miRNAs are

assembled in the RISC protein 10. Several miRNA target prediction tools have been using

accessibilities like miRanda 12. Further, it was verified by RNAplfold 42 from Vienna

package 42.

e) Structural pairing pattern: RNA structure is a critical descriptor involved in target

interactions in the seed region 43. There are 58 instances of structural patterns of interaction

such as the number of pairing in seed region, number of loops in symmetric or asymmetric

way, number of bulges in seed in symmetric or asymmetric patterns, number of loops in

regions outside the seed segment in symmetric or asymmetric way, number of bulges in

regions outside the seed segment in symmetric or asymmetric patterns, and distance between

start sequence in the seed region to the paired sequence at 5’ start of region outside the

binding region 43 (Appendix 8.2).

f) Sequence descriptors: Sequences are divided into two regions: (a) the binding region

between miRNA and mRNA and (b) the region outside binding region 43. In both regions,

base pairings have been extracted between miRNA-mRNA namely AU content, wobble

Material and methods

16

pairing, and other pairings to check the frequency of nucleotides at each position 43. These

descriptors were calculated by Java scripts (Appendices 8.3 and 8.4).

g) Motif related features: This is a probabilistic pairing measurement at a different position of

miRNA sequence 39. At each position, if a pairing between sequences is matching are called

as “a” else “e”. Calculated Motif features of interaction of each sequence are different,

which is influencing the dimension of the vector space. This probabilistic parameter is

calculated by:

𝑚
𝑒

=
1
𝑙

∑ log 𝑄𝑖

𝑙

𝑖=0

Where l is the miRNA sequence length and Qi is the probability at the position an in ith miRNA

sequence. This mathematical representation was calculated by TarPmiR 39.

2.4 Pre-processing of the interaction descriptors

In the filtering phase, parameters were applied either in the form of stricter energy-

based filtering or quality-based filtering. Hence, the following criteria were used for a good

dataset:

a) Replacement of strings values of interactions namely 3’UTR, CDS, 5’UTR and promoter

to integer values because the classifier is trained by using integer or floating data points.

b) Handling of missing values is dependent on the problem of the trained classifier 44. To

construct the proper training dataset, this study used imputation and removing unreliable

data points from the dataset to handle missing values 44.

c) Not all interactions are energetically in favorable conditions. Therefore, data points are

removed based on energy score to set stringent interactions in both datasets and thus

decreases the false positive interactions (< -10 Kcal/mol for positive and > -9 Kcal/mol the

for the negative set) 45.

d) Generated interactions have higher than 80% sequence identities in the positive dataset

and less than 79% in the negative dataset 46.

e) Conservation score was evaluated from the phylogenetic analysis of all species. High

conservation scores (>=150) were removed to decrease negative interactions form positive

class or vice-versa 46.

f) In the training phase of the classifier model, the class labels are referred to as seed (i.e.,

“1” is for the positive group of the dataset and “0” is for the negative group of the dataset).

Material and methods

17

2.5 AHDR approach

The AHDR approach is based on DFFN approach (section 1.2.4), which is written in

python. The input dataset was composed of miRNA target interactions along with their

corresponding potential characteristics, which was used to train the AHDR approach. The

dataset was split into three sets: training (60% of the dataset), test (20%), and validation (20%).

AHDR approach consists of multi-layered architecture with an input layer (an input dataset), a

sequence of hidden layers (7 hidden layers are used), and an output layer. Each layer consists

of several numbers of nodes and weight (it is connection between a node of one layer to the

node of the other layer). Different activation function was applied to each layer of the network

(Figure 6). It introduces non-linear properties to the network architecture that converts an input

signal of a node to an output. The input dataset passed through each node of all hidden layers,

which increases accuracy of each interaction. In order to compare the performances of four

different classifier algorithms namely decision tree (DT) 45, Bernoulli naïve bayes (BNB) 43,

logistic regression (LR) 46, and support vector machine (SVM) 39 with optimal parameters were

considered using scikit package in python. DT is a tree-based model where leaves are the

potential solutions and nodes are the decision-making points. LR is the logistic model where

the dependent variables are in a binary form. SVM is a non-probabilistic linear classifier where

data points are linearly separated by a hyperplane. BNB is a graph-based classification

algorithm, where probabilities are assigned to each class. DT is the tree-like graph model where

leaves represents the possible solutions of the problem whereas nodes represents the point of

the decision. LR is the predictive analysis when the dependent variable is binary in nature.

SVM is a discriminative classifier formally defined by a separating hyperplane. BNB classifier

is a probabilistic machine learning model that’s used for classification task. The crux of the

classifier is based on the bayes theorem.

2.6 Statistical measures
To evaluate the performance of each classifier model, the following statistical measures

were used such as accuracy (ACC), area under curve (AUC), sensitivity, specificity, F-score,

and Matthews correlation coefficient (MCC), using sklearn package in python. These measures

were calculated using true positive (TP), false positive (FP), true negative (TN), and false

positive (FP) as defined by equations:

𝐴𝐶𝐶 =
TP + TN

TP + TN + FP + FN

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
TP

TP + FN

Material and methods

18

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
TN

TN + FP

𝑀𝐶𝐶 =
TP. TN − FP. FN

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑃𝑃𝑉. 𝑇𝑃𝑅

(𝑃𝑃𝑉 + 𝑇𝑃𝑅)

Sensitivity and specificity are mathematical functions that measure the quality of binary

classifier model. The ability of algorithms to identify the true targets were analysed by

sensitivity, whereas the probability of algorithms that correctly returns a target that is not

regulated by the miRNA were analysed by specificity. MCC is a recognized measure that

evaluates the quality of binary classifiers between true targets and false targets. F-score is the

weighted harmonic mean of both sensitivity and specificity of the test model.

Results

19

3. RESULTS

To accomplish the aims of this study, a new DL-based framework was developed for miRNA

target prediction and it was named as advanced hierarchical deep-rooted (AHDR) framework.

Furthermore, the performance of AHDR was compared with other existing prediction tools

using a testing dataset. In the end, the AHDR was employed for identification of possible

miRNAs interacting with top mutated oncogenes for further validation.

3.1 AHDR framework

Figure 9 illustrates the AHDR framework. In this framework, the initial data is in the

form of miRNA and targets derived from miRBase 36 and Ensembl 37 and these were filtered

out using miRanda 12 and TarPmiR 39. Further, the generated interactions were verified by

TarBase 40.

Figure 9. Overview of AHDR framework to elucidate the potential interactions targets of miRNA.

To calculate the interaction descriptors, both flanking regions of seed and their interactions

were considered. The generated putative features were applied to build the AHDR model after

pre-processing. The test dataset was composed of miRNAs and transcripts, which was used for

the detection of the potential target sites (PTS). Finally, the performance evaluation of the

AHDR was carried out using statistical tests.

Results

20

3.2 Feature description of miRNA target interaction

The first step in the DL method is a feature selection. During this study, a total of 95

features were obtained after the pre-processing of the dataset (section 2.4). These 95 features

were divided into three different categories as structural, sequence, and thermodynamics

features (summarized in Table 3). In the first category, the miRNA target duplex structure is

divided into two subdivisions, the alignment (seed) region (5’ until eight nucleotides of the

miRNA) and outside alignment (outseed) region (3’ remainder). For both subdivisions the

following descriptors are extracted to generate 57 structural descriptors of interactions: (a)

number of symmetric loops with lengths 1–7 and those with lengths >7 (eight descriptors), (b)

number of asymmetric loops (loops with unequal numbers of unpaired bases on the both

strands), (c) number of bulges of lengths 1–7 and those with lengths > 7 (eight descriptors), (d)

distance from the start of the seed (the 3’ end) to the first paired base of the 5’ start of the

outside alignment part, (e) number of loops (unpaired bases opposite each other between paired

bases), (f) number of bulges (inserts on one strand between paired bases), (g) number of paired

bases (bp), and (h) number of asymmetric loops with lengths 1–7 and those with lengths >7

(eight descriptors) as summarized in Table 3A.

Table 3. Summary of generated features of miRNA-target interaction.

S.No. Features Definition Source code
A) STRUCTURAL FEATURES
1 bul_seed_len1 Bulges present in seed region with length 1. Perl
2 bul_seed_len6 Bulges present in seed region with length 6. Perl
3 sym_seed_loop_len3 Symmetric loop in seed region with length 3. Perl
4 sym_outseed_loop_len2 Symmetric loop in seed region with length 2. Perl
5 sym_outseed_loop_len5 Symmetric loop in seed region with length 5. Perl
6 asym_seed_loop_len_gt7 Asymmetric loop in seed region with length

greater than 7.
Perl

7 asym_seed_loop_len7 Asymmetric loop in seed region with length 7. Perl
8 bul_seed_len_gt7 Bulges present in seed region with length greater

than 7
Perl

9 bul_seed_len2 Bulges present in seed region with length 2. Perl
10 bul_outseed_len7 Bulges present in out_seed region with length 7. Perl
11 asym_outseed_loop_len6 Asymmetric loop in out_seed region with length

6.
Perl

12 asym_outseed_loop_len4 Asymmetric loop in out_seed region with length
4.

Perl

13 sym_outseed_loop_len4 Symmetric loop in out_seed region with length 4. Perl
14 bul_seed_len7 Bulges present in seed region with length 7. Perl
15 bul_seed_len5 Bulges present in seed region with length 5. Perl
16 5'nloops Loops at 5’ end. Perl
17 bul_outseed_len5 Bulges present in out_seed region with length 5. Perl

Results

21

18 bul_outseed_len6 Bulges present in out_seed region with length 6. Perl
19 sym_outseed_loop_len1 Symmetric loop in out_seed region with length 1. Perl
20 asym_outseed_loop_len1 Asymmetric loop in out_seed region with length

1.
Perl

21 asym_seed_loop_len5 Asymmetric loop in seed region with length 5. Perl
22 asym_outseed_loop_len5 Asymmetric loop in out_seed region with length

5.
Perl

23 sym_seed_loop_len_gt7 Symmetric loop in seed with length greater than 7 Perl
24 asym_outseed_loop_len_gt7 Asymmetric loop in out_seed region with length

greater than 7.
Perl

25 sym_outseed_loop_len3 Symmetric loop in out_seed with length 3. Perl
26 sym_seed_loop_len7 Symmetric loop in out_seed with length 7. Perl
27 asym_seed_loop_len2 Symmetric loop in out_seed with length 2. Perl
28 5'nblgus Number of bulges at 5’ end. Perl
29 sym_outseed_loop_len6 Symmetric loop in out_seed with length 6. Perl
30 bul_outseed_len2 Bulges present in out_seed region with length 2. Perl
31 sym_seed_loop_len6 Symmetric loop in seed with length 6. Perl
32 sym_outseed_loop_len7 Symmetric loop in out_seed with length 7. Perl
33 seed_nblgus Number of bulges in seed Perl
34 d5 Distance from 5’. Perl
35 sym_seed_loop_len2 Symmetric loop in seed with length 2. Perl
36 bul_outseed_len3 Bulges out_seed region with length 3. Perl
37 asym_outseed_loop_len7 Asymmetric loop in out_seed region with length

7.
Perl

38 bul_outseed_len1 Bulges out_seed region with length 1. Perl
39 asym_outseed_loop_len2 Asymmetric loop in out_seed region with length

2.
Perl

40 bul_outseed_len4 Bulges out_seed region with length 4. Perl
41 sym_outseed_loop_len_gt7 Symmetric loop in out_seed with length greater

than 7.
Perl

42 sym_seed_loop_len4 Symmetric loop in out_seed with length 4. Perl
43 sym_seed_loop_len5 Symmetric loop in out_seed with length 5. Perl
44 asym_seed_loop_len3 Asymmetric loop in seed region with length 3. Perl
45 seed_nloops Number of loops in seed. Perl
46 bul_seed_len4 Bulges seed region with length 4. Perl
47 sym_seed_loop_len1 Symmetric loop in seed with length 1. Perl
48 asym_seed_loop_len1 Asymmetric loop in seed region with length 1. Perl
49 5'nasymloops Asymmetric loops in 5’end. Perl
50 bul_outseed_len_gt7 Bulges seed region with length greater than 7. Perl
51 asym_seed_loop_len6 Asymmetric loop in seed region with length 6. Perl
52 seed_nasymloops Total number of asymmetric loops in seed region. Perl
53 asym_outseed_loop_len3 Asymmetric loop in out_seed region with length

3.
Perl

54 bul_seed_len3 Bulges seed region with length 3. Perl
55 asym_seed_loop_len4 Asymmetric loop in seed region with length 4. Perl
56 Bul_outseed_len1 Bulges in outseed region with length 1 Perl
B) SEQUENCE FEATURES
1 POS7 Pairing at position 7 in outseed region. Java

Results

22

2 Total_TA TA pairing in outseed region. Java
3 Total_Mismatces Total mismatches in out_seed region. Java
4 AlignLen Alignment length. Java
5 Tot_mismatch Total mismatches in seed region. Java
6 Total_AU Presence of AU_content out_seed region. Java
7 POS9 Pairin g at position 9 in outseed region. Java
8 AU_content Presence of AU_content seed region. Java
9 POS5 Pairing at position 5 in outseed region. Java
10 Tot_ug Total GU present in seed region. Java
11 POS4 Pairing at position 4 in outseed region. Java
12 POS8 Pairing at position 8 in outseed region. Java
13 POS3 Pairing at position 3 in outseed region. Java
14 POS10 Pairing at position 10 in outseed region Java
15 Tot_Othermismat Number of other mismatches in seed region. Java
16 POS1 Pairing at position 1 in outseed region. Java
17 Tot_Mat Number of matched in seed. Java
18 POS2 Pairing at position 2 in outseed region. Java
19 Total_GC Number of GC in out_seed region. Java
20 Tot_gc Number of GC_content in seed. Java
21 POS6 Pairing at position 6 in outseed region. Java
22 Total_GU Number of GU pairing in out_seed. Java
C) OTHER FEATURES
1 LCP Length of the longest consecutive pairs. TarPmiR
2 m/e Probability pairing at different position of

miRNA.
TarPmiR

3 PS3’ Difference of paired positions between the seed
region and the miRNA 3’ end region.

TarPmiR

4 BRL Binding region length TarPmiR
5 align5' Alignment at 5’ end. Perl
6 Score Conservation score. miRanda
7 binding_probability Probability of interactions. TarPmiR/Vie

nnaRNA
8 Binding_pos Position region of interaction. miRWalk
9 PLC Position of the longest consecutive pairs. TarPmiR
10 NP Number of pairings in target site. TarPmiR
11 P3’ Pairing at 3’end. TarPmiR
12 Seed Seed region. miRanda
13 Numirna Number of miRNAs. Perl
14 PyloP_Flanking Flanking conservation TarPmiR/

PhyloP
15 PhyloP_Stem Stem conservation PhyloP
16 Energy Thermodynamic energy miRanda/Tar

PmiR/RNAd
uplex

17 Accessibility Measurement of target gene open for miRNA. miRanda

Results

23

In the second category, pairing information of the duplex alignment for the first 10 nucleotides

is encoded as categorical variables. These variables are namely, a) GC pair, b) AU pair, c) G:U

wobble, d) mismatch and e) gap of duplex structure. Furthermore, the pairing information is

summarized over the alignment region, the 3′ region of the miRNA, and the total miRNA

region. This includes a total of GC matches (Tot_GC) in the seed region, whereas alignment

outside the seed region named as Total_GC (Table 3B). In the third category, remaining

descriptors are taken from other predictor algorithms (Table 3C).

3.3 Feature selection for miRNA target prediction

Feature selection is a process for the selection of an optimal number of variables, which

is responsible for the model construction 47. It is a pivotal aspect that makes the model more

efficient by eliminating redundant variables and shrinking the size 47.

For the selection of optimal features, five algorithms of feature selections were applied

to the generated 95 features (Table 3) for the training purpose. These five algorithms are the

least absolute shrinkage and selection operator (LASSO), randomized logistics, chi-square,

variance threshold, and decision tree-based selection. LASSO gave 19 putative descriptors

while the variance threshold has selected 70 descriptors (Figure 10).

Figure 10. Overview of feature selection by different feature selection algorithms. For the selection of
relevant features, five different approaches have been applied. These are LASSO (red box), randomized logistics
(blue), Chi square (yellow), variance threshold (green), and tree-based approach (orange box).

Results

24

In contrast, randomized logistics yielded only seven descriptors. In this study, the LASSO

algorithm was used for the training of the classifier. LASSO is a powerful method for selecting

relevant features because it performs two main steps, regularization and variable selection 48.

In the regularization step, it penalizes coefficients of regression variables shrinking them to

zero. In the variable selection step, features with a non-zero coefficient after the regularization

are selected to be part of the model 48. Therefore, the main goal of the LASSO is the reduction

of the prediction error (Figure 11).

LASSO has selected 19 putative features with their corresponding embedded score as

shown in Figure 10. These features are: a) alignment length in seed (AlignLen), b) energy, c)

conservation score, d) total matching in seed (Tot_Mat), e) GC count in seed (Tot_gc), f) total

mismatch in outseed (Tot_mismatch), g) total AU count in outseed (Total_AU), h) total GC

count in outseed (Total_GC), i) alignment at 5’ (align5’), j) binding region length (BRL), k)

distance from 5’ (d5), l) the longest consecutive pairings (LCP), m) motif (m/e), n) mRNA, o)

miRNA, p) number of pairing (NP), q) number of paired bases (numirna), r) pairings in 3’end

(P3’), and s) position of the longest consecutive pairings (PLC). The majority of these features

(selected by the LASSO) are sequence-based features (6 out of 19) and other types of features

(10 out of 19).

Based on the embedded score, top four features (out of 19 selected features) are energy (0.99),

P3` (0.86), m/e (0.81), and miRNA (0.69), while the embedded score remained 0.63 from 10th-

19th selected feature (Figure 10). Since thermodynamic energy, pairing at 3’, and m/e are top

features based on the embedded score, however, other feature selection algorithms did not pick

these features. An example of the input dataset for the training of the AHDR classifier is shown

in appendix 8.5.

Results

25

Figure 11. Embedded score of selected potential feature generated by the LASSO algorithm. Top two
selected categories are sequence and other features (Table 3). Different colors design types of features like black,
yellow, green, and blue for miRNA/mRNA, sequence, structure, and other features, respectively.

Results

26

3.4 Hyperparameter optimization

The optimization of hyperparameters of the classifier is crucial for the DL approach. It

generates the best network architecture by maximizing the accuracy of the validation dataset

through optimal hyperparameters. AHDR is based on DFFN architecture. It comprises several

hyperparameters, including the number of hidden (noh) layers, the number of nodes (non) in

each layer, a pre-training rate (ptr), a pre-processing method (ppmd) and the batch size (bs)

through dropout approach (Table 4). ReLu activation function is used for eight layers, while

the sigmoid activation function is applied at the 9th layer (Appendix 8.6).

The training epochs are set to 16 for the AHDR approach. Therefore, the AHDR

architecture resulted in [9, 64, 128, 128, 64, 64, 64, 64, 32, 16] as given in Table 4, where 9

represented the noh followed by nodes at each layer and 16 represented the number of units

(node) of the output layer. AHDR was composed of nine dense hidden layers while the output

layer comprised 16 sigmoid output nodes. The shape of the AHDR was consistent with its

intended functionality with three types of layers as following:

 (a) The first layer increases the dimensionality of the prediction problem allowing the

representation of the dataset in a more complex dimension (over-completion). This layer does

not necessarily improve the efficiency of AHDR.

(b) Middle layers (from one to six) aim to identify the relevant features represented in the data;

they correspond to the first half of a network. These layers were pre-trained to learn the features

that are the most representative of miRNA target interactions.

(c) The last three layers were responsible for classifying the features learned by AHDR, and it

followed the typical shape of the DFFN classification network.

Table 4. The optimal hyperparameters in the AHDR model architecture.

Hyperparameters Model Structure

Number of hidden (noh) layer 9

Number of node (non) in each layer 64, 128, 128, 64, 64, 64, 64, 32, 16

Computational parameters (weights) 3584, 8256, 8320, 16512, 8256, 4160, 4160, 4160, 2080

Pre training rate (ptr) 0.001

Batch size (bs) 128

Preprocessing method (ppmd) Label encoder

Results

27

The selection of optimized hyperparameters of other ML algorithms such as AHDR, DT, BNB,

LR, and SVM are summarized (Table 5).

Table 5. The optimized hyperparameters of each machine learning methods.

Algorithm Package Optimized hyperparameters
AHDR Keras lr = 0.01, hl = 9, loss = ‘binary_cross entropy’, hln = [128, 64, 128, 128,

64, 64, 64, 32, 16], optimizer = ‘rmsprop’, Output layer activation
function = ‘sigmoid’.

DT Scikit-learn class_weight = balance, max_depth = None (default).

BNB Scikit-learn Alpha = 1.0.
LR Scikit-learn Penalty = L2, solver = Liblinear.
SVM Sklearn Gamma = Auto, kernel = rbf, degree = 3.

The parameter alpha of BNB is optimized in the range of 0 (worse) to 1 (best) with an interval

of 0.1 and is set to 1.0. In the DT, the max_depth of the tree is set to default means nodes are

expanded until all leaves (output nodes) are pure or until all leaves contain less than

min_samples_split (default =2) samples. While the class weight of the tree is set to be balanced

because it automatically adjusts weights inversely proportional to class frequencies in the input

data (Table 5). The parameters of the LR such as penalty is set to regularization (L2), as it

handles both dense and sparse input dataset, whereas the solver is set to liblinear, as it supports

both L1 and L2 regularization. The number of optimized parameters of SVM includes gamma

selects auto_deprecated (uses 1/n features i.e., no explicit value of gamma was passed), kernel

selects radial basic functions (rbf), and degree is set to 3 (Table 5).

3.4 Performance evaluation of other ML methods

Generally, four evaluation metrics are used, namely AUC, ACC, true positive rate

[TPR, sensitivity/recall], and false positive rate [TNR, specificity] in the statistical evaluation
49. The AUC value ranges between 0.5 to 1 where 0.5 denotes a bad prediction algorithm and

1 denotes a good algorithm. Calculations of ACC, TPR, and TNR were as follows:

ACC = (TP+TN)/(TP+TN+FP+FN)

TPR = TP/(TP+FN)

TNR = TN/(TN+FP)

where TP, FP, TN, and FN represent true positive, false positive, true negative, and

false negative, respectively. In two class label prediction, the outcomes are labeled either as

positive or negative 50. TP is the output where both its validated and predicted labels are

positive, FP involves a predicted label being positive and the validated label being negative,

Results

28

TN involves the predicted and validated labels both being negative, and FN involves the

predicted label being negative and the validated label being positive 49.

In addition, Matthews correlation coefficient (MCC) and F-score were also used to assess the

model performance 50. The calculations of MCC and F-score were as follows:

𝑀𝐶𝐶 =
𝑇𝑃. 𝑇𝑁 − 𝐹𝑃. 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

 PPV = TP/(TP+FP)

 F = 2PPV.TPR/(PPV+TPR)

where PPV is positive predictive value, also known as precision. Essentially, the MCC

is a correlation coefficient between the validated label interactions and its predicted labels 49,
50. The value of MCC ranges between -1 and +1, where a coefficient of +1 represents a perfect

prediction, 0 represents random prediction and −1 indicates total disagreement between

predicted and true labels. F-score can be interpreted as a weighted average of the PPV and

TPR, where an F-score reaches its best value at 1 and the worst at 0 49, 50.

To evaluate the performance of different ML methods with AHDR, the dataset was

divided into three subdivisions consisting of a training set (60% of the original dataset), a

validation set (20%) and a test set (20%). The training set was required for the training of the

AHDR classifier, the validation set was utilized for the setting of hyperparameters and the test

set was used for the evaluating performance of each classifier.

Five commonly used ML classifiers, including LR, BNB, SVM, DT, and AHDR, were

considered. Compared with LR and other ML classifier, which is the most frequently used

approach in miRNA target prediction, AHDR has the best performance as evident from AUC,

ACC, sensitivity, specificity, F-score, and MCC values of 0.98, 0.98, 0.97, 0.90, 0.98, and 0.96

respectively (Figure 12).

Results

29

Figure 12. AHDR performance predictions on test dataset with other ML algorithms.

The performance evaluation is indicating that the DL network exhibited improved

ability to learn in AUC, ACC, sensitivity, specificity, F-score, and MCC.

To avoid biases, cross-validation is the cutting-edge method in DL, which estimates the skill

of the model from new data 24. In the 10-fold cross-validation, all the known interactions were

randomly divided into 10 subsets with equal size. In each fold, one subset was left out as testing

samples, and the remaining four subsets were treated as training sets. The entire procedure was

repeated until the entire subset was used for training. The average performance of the 10-fold

cross-validation was adopted for evaluation 24. The prediction measures of the 10-fold cross-

validation are depicted in Figure 13.

Figure 13. AHDR performance after 10-fold cross-validation. Performance evaluation after 10-fold cross-
validation, TNR (brown box plot) outperformed among other performance matrices i.e., the model measures the
proportion of actual negatives correctly identified.

Results

30

After the 10-fold cross-validation, performance measures of AHDR are represented in terms

of AUC, ACC, sensitivity, and F-score as 0.98, 0.97, 0.97, and 0.98, respectively (Figure 13).

As compared to performance measures in the training phase of AHDR, ACC results in a

decrease from 0.98 to 0.97 and MCC value decrease from 0.96 to 0.95 whereas TNR value

increases from 0.90 to 0.99. AHDR not only gives accurate predictions on the training data but

also gives the best prediction measures from the new data and therefore this procedure avoids

overfitting (statistical classifier captures the noise of the data) and underfitting (statistical

classifier cannot capture the underlying trend of the data) in the AHDR.

3.5 Performance comparison with other prediction methods

The test dataset was extracted from miRTarBase 38 for the comparison of the prediction

performance of ADHR with other miRNA target prediction tools 38, 40. This dataset was

composed of 200 verified miRNA and 26315 verified interactions. Eight existing target

prediction algorithms were chosen for the comparison of their prediction performance, namely

TargetScan 13, miRmap 51, MicroT 52, comiR 53, miRSearch 54, miRSystem 55, PITA 18, and

PicTar 56. Figure 14 illustrates the performance of different algorithms on the test dataset.

Results of the comparison regarding AUC, ACC, sensitivity, and F-score, which is the quality

measure of the binary classification (Figure 14).

Figure 14. Performance measurement with existing prediction algorithms. AHDR is compared with the other
tools in terms of AUC, ACC, sensitivity, and F-score performance matrices. The AUC values range between 0.5
(bad prediction) to 1 (good prediction). F-score measure harmonic mean of sensitivity that lies between 0 (worst
score) to 1 (best score). These scores indicating that the AHDR method is the most effective at miRNA-target
prediction based on learning approach.

Results

31

AHDR provides the best AUC among the four predictors (0.96), which is a ∼21% increase to

the second-best performing predictor, miRMap 51 (0.75). The sensitivity of TargetScan 13 (0.77)

is lower than that of the AHDR (0.95), which indicates the measure of correct miRNA target

interactions. ACC parameter confirms the effectiveness of the AHDR (Figure 14).

Instead, the AHDR provides the most balanced results in terms of performance matrices as

compared to the other tools (Figure 14). This is evident from its high F-score value (0.97)

compared to the other predictors (Figure 14). Overall, the AHDR has outperformed other

predictors in terms of performance matrices (Figure 14). The MCC performance method

measures the quality of the binary classification in ML (section 3.4). The MCC value of the

AHDR shows 0.95 (Figure 15), which is indicative of the best prediction, whereas other

existing algorithms have negative values of MCC, ranging from -0.46 (for TargetScan 13) to -

0.95 (for Pictar 56, Figure 15).

Figure 15. Performance comparison with existing prediction algorithms based on the MCC value. MCC is
a correlation coefficient used to measure the quality of the two-class label dataset. Therefore, MCC value of +1
indicates a perfect prediction, whereas 0 no better than random prediction and −1 represents the total disagreement
of the prediction.

Results

32

3.6 Interaction identification with validated targets

Furthermore, the predicting power of the AHDR was evaluated using an experimentally

validated miRNA target interaction in comparison with other known algorithms. For this purpose, a

total of 26315 validated miRNA target interactions were retrieved from strong experimental

evidences such as Luciferase reporter assay, a reporter assay, and microarray 38 as summarized in

Appendix 8.7. These data were used for evaluation of the AHDR along with eight other commonly

used miRNA target approaches, including TargetScan 13, miRMap 51, microT 52, comiR 53,

miRSearch 54, miRSystem 55, PITA 18, and Pictar 56 (Figure 16).

Figure 16. Number of overlapping interactions on validated targets. To evaluate the performance of tools
based on overlapping, 26315 verified interactions were retrieved from miRTarBase 38. AHDR shows the large
number of overlapping interactions followed by TargetScan 13, miRMap 51 whereas Pictar 56 shows the least
number of overlapping interactions.

AHDR has identified 23785 miRNA target interactions, which comprise over 90% of all predictors.

Other two top predictors were TargetScan 13 and miRMap 51, which have identified 19803 and

12146 interactions, respectively (Figure 16).

3.7 Performance of miRNA-target prediction of AHDR on top 20 cancer genes

To evaluate the performance of the ADHR for miRNA target prediction flanking critical

genes, a list of top 20 critical genes associated with cancer was collected from a recent study

focusing on comprehensive characterization of cancer driver genes derived from 9,423 tumor

Results

33

exomes 57. A comparative analysis of the ADHR and other target prediction tools using this

dataset was performed. Out of 20 oncogenes, only 15 genes were found in the current datasets,

which have interactions with miRNA (Figure 17).

Figure 17. miRNA-target interactions in top cancer genes computed by several miRNA-target predictors
reveals that AHDR is outperforming other tools. Some of miRNAs are interacting with more than one
oncogene, are marked in different colors. CTNNB1 - Catenin beta 1; DICER1 - Dicer 1, Ribonuclease III; EGFR
- Epidermal growth factor receptor; HRAS - HRas Proto-Oncogene; KRAS - KRAS Proto-Oncogene; NRAS - N-
ras oncogene; PIK3CA - Phosphatidylinositol 3-kinase; PIK3R1 - Phosphoinositide-3-Kinase Regulatory Subunit
1; PTPN11 - Protein Tyrosine Phosphatase Non-Receptor Type 11; RHOA - Ras Homolog Family Member A;
SF3B1 - Splicing Factor 3b Subunit 1; SMAD4 - SMAD Family Member 4; TP53- tumor protein p53; VHL -
Von Hippel-Lindau Tumor Suppressor. * =miR

Results

34

Overall, the ADHR is outperforming all other tools in miRNA-target prediction (Figure

16). For example, the ADHR has picked up 17 miRNA interactions for tumor protein p53

(TP53) gene whereas other existing tools have shown lower interactions like twelve by

TargetScan 13, eight by miRmap 51 and three each by PITA 18, MicroT 52, and comiR 53 (Figure

17). Moreover, these known tools did not pick even a single interaction as marked in the red

shade in Figure 17. Some miRNAs are interacting with more than one oncogene (marked by

colors in Figure 17) like let-7b-5p and miR-375.

Discussion

35

4. DISCUSSION

Since the discovery of miRNAs, their roles in several physiological conditions and

human diseases have been attributed towards novel therapeutic targets 1. At the same time, the

race for miRNA target prediction has begun, which is a challenging task as each miRNA has

multiple targets and vice versa 2. Therefore, the correct identification of miRNA-target

interactions remains a challenge. The way to address this problem is usually experimental

validation of these miRNA target interactions, but the cost and timeline are limiting factors 2.

Hence, computational applications are developed for miRNA target prediction.

Generally, computational approaches for prediction of miRNA targets are grouped into two

categories: ab initio and ML-based methods 58. The first category, ab initio methods are based

on the base pairings within the seed region for miRNA targeting, which has been established

from experimental methods. Tools such as TargetScan 13, PITA 18 and PicTar 58, use

computational algorithms to scan positions with the miRNA sequence and scoring functions to

filter target sites. These tools prioritize the removal of false positive interactions from the

predicted target interactions; however, these algorithms have the drawback of omitting

miRNAs from the results. Hence, this may be leading to higher numbers of false negative

interactions 58. In this sense, TargetScan 13 is a sequence-based tool, which leads to low

sensitivity (Figure 14). Early ab initio methods were built on features like the complementarity

of the miRNA and/or the free energy of the miRNA/mRNA duplex and these are statistically

derived from limited experimental evidences 58. Currently, due to the increase in data reported

from different assays, especially those involving next-generation sequencing (NGS) and

CLIPseq datasets, more comprehensive and valuable features have been discovered and

implemented in several ab initio methods.

The second category is based on ML methods that improve the accuracy of the prediction

algorithm in the tools, such as miRMark 59, MBSTAR 60, TargetMiner 16 and TargetSpy 46. ML

approach is different from ab initio methods by using interaction descriptors as input features

to machine learning models. Early ML algorithms, such as LR, RF, SVM, and DT have been

frequently used (NBmiRTar 61, miTarget 62, Genmir ++ 63, and HuMiTar 64) in miRNA target

predictions. NBmiRTar uses the miRanda output to train naïve Bayes (BNB) classifier 61. The

generated post-processed dataset of NBmiRTar contains artificial target sites without any

experimental validation. miTarget uses SVM with the kernel of the rbf, and the positional,

structural, and thermodynamic interaction characteristics for prediction 62. Likewise,

TargetMiner also uses the SVM with the RBF kernel, and the dataset contains validated

positive interactions and unarticulated negative interactions 16. Although diverse approaches

Discussion

36

have been proposed, the problem of high false positive interactions, as well as low accuracy,

still exists. The two main reasons for this issue are: (a) artificially generated features are used

as the input for the learning classifier model, where a basic knowledge on miRNA target

interaction, as well as suitable feature selection algorithm, are lacking, which directly affect

the accuracy of the predictor, and (b) the amount of positive data is vastly greater than the

amount of negative data because most of the published miRNA target interactions involve

positive data, and this imbalanced dataset can lead to underfitting and overfitting problems.

Recently, a new technique called DL as a subgroup of the ML has become a futuristic approach

with several applications in bioinformatics and genomics 26, 65, 66, including miRNA target

prediction 67. The current work is utilizing a DL-based state-of-the-art algorithm, which is an

optimized DFFN named as AHDR. The AHDR is capable to overcome issues of the

imbalanced dataset, high false positive and negative interactions, and the suitable feature

selection and representation. DFFN architecture is a powerful classifier, due to its ability to

cope with complex data and its potential for modeling data of high non-linearity. Additionally,

DFFN is vulnerable to adversarial perturbations in the dataset.

AHDR identifies potential descriptors of each interaction by directly analyzing the whole

mature miRNA transcript, rather than focusing only on the seed region, for example, 95

potential descriptors of miRNA-target interactions have been proposed. Next phase, several

stages of pre-processing were applied for the generation of precise two-class labels dataset.

This dataset was used during the training of AHDR. Performance measures have shown that

AHDR consistently outperformed existing methods (Figures 14 and 15).

In modern days, datasets are becoming very enriched in terms of information when dealing

with genomic applications like miRNA target interaction. These high dimensional datasets

harbor hundreds of features. Hyper-dimensionality of datasets can cause errors in models, due

to increased training time with several features. Hence, the model can face issues of overfitting.

To avoid this, a careful selection of relevant features is essential for the performance of the

classifier algorithm. In this study, the LASSO algorithm was applied to identify relevant

descriptors from generated 95 descriptors of the miRNA-target interactions (Figure 10).

DeepMirTar 68 has used 750 features generated from miRMark 61 which generate a complex

dataset for miRNA target interactions, by narrowing down the features to the most relevant

ones, as performed in the current work. DeepMirTar 68 relied on the random forest (RF) method

for selecting features, however, LASSO has many advantages over other methods as (a) it

provides a very good prediction accuracy, due to shrinking and removing the coefficients of

each feature, (b) it helps to increase the model interpretability by eliminating irrelevant

Discussion

37

variables (as in Figure 11) that are not associated with the putative miRNA target interactions,

thus reducing the bias 49.

An important phase in the application of ML methods is the evaluation of the generalization

performance of the trained model. It must be verified that the learning capacity of the learning

classifier can perform equally well on the novel data. Therefore, the 10-fold cross-validation is

applied, in which all data points of each interaction is tested for at least once. This approach

reduces overfitting and underfitting problems. Given that there is a trade-off between ACC,

TNR, and MCC after the 10-fold cross-validation, the training approach resulted in a slight loss

in the accuracy and MCC values, whereas TNR level slightly increased, which shows that

AHDR has a high ability to classify interactions (Figure 13).

According to Saito and Rehmsmeier, the AUC measures the accuracy of the predictor 69.

Therefore, high AUC evaluates the algorithm over all possible interactions (Figure 12).

Whereas the maximum F-scores obtained across predictors, served as a measure quantifying

the best achievable predictive performance. In terms of this theory, AHDR delivered

substantial performance boosts (Figure 14) over other existing predictors based on both ab

initio and ML approaches. Interestingly, some resources such as TargetScan 13 (ab initio

approach) and miRMap 53 (ML-based approach) ranked among the top performing tools, as

measured by maximum AUC score and sensitivity, but ranked among the worst according to

F-score and ACC. This is because these resources provide accurate predictions, but only for a

small subset of genes and miRNAs. TargetScan 13 is the user-friendly sequence-based database,

but predictions are similar for all members of a miRNA family that can lead to high false

positive interactions. Whereas in more detail in the context of performance measures, the

Matthews correlation coefficient (MCC) is more informative than other performance matrices

measures (such as F1 score and accuracy) in evaluating the performance of algorithm for

putative predictions because it takes into account the balance ratios of the four prediction

categories such as true positives (the number of validated targets predicted), true negatives (the

number of genes that were neither predicted nor validated), false positives (the number of

predicted targets that were not validated), and false negatives (the number of validated targets

not predicted). Therefore, the value of MCC ranges from -1 to 1, which represents low and

high-quality predictions, respectively. The values of MCC were close to zero, which indicated

predictions are like random predictions 51, 52. This study revealed that AHDR is found to

achieve much higher MCC values of 0.95 as compared to other predictors (Figure 15). Beside

TargetScan 13 and miRMap 53, the rest of the other target prediction methods obtain the MCC

Discussion

38

ranges from −0.72 to -0.95. AHDR seems to be the best target prediction algorithm so far

compared to the others in terms of statistical performance measurement.

In addition to this work, there are only two studies known so far, which are using the DL

approach for miRNA target prediction as MiRTDL 70 and deepTarget 71. MiRTDL has used

CNN architecture to analyze miRNA target features, however, the selected descriptors of each

interaction were generated with insufficient information for miRNA target mechanism 70.

MiRTDL has used only 20 features for the training purpose, which is inherently subjective and

uncertain. Thus, the algorithm faces similar problems as ab initio based and ML approaches.

In contrast to MiRTDL 70, deepTarget 71 is based on a unidirectional two-layered RNN

architecture 71. Although this architecture was only little bit effective, however, adopting even

more sophisticated approaches may further boost the capability of deepTarget 71 for scanning

of subtle interactions that often remained undetected. Therefore, these approaches lack putative

and functional prediction interactions.

One of the other aims of this thesis was to predict the possible miRNAs targets in an oncogene.

Therefore, a list of top 20 oncogenes was deduced in which ADHR performed better than other

known miRNA-target predictors (Figure 17) as exemplified using top oncogenes extracted

from a recent study 57. Several known tools have failed to pick even a single interaction (red

shade in Figure 17), which hints their limitations. During this analysis, some miRNAs are

interacting with more than one oncogene (marked by color fonts in Figure 17) generated by

AHDR.

The extensive presence of let-7b-5p suggests that it is a well-known tumor-suppressor belongs

to let family in breast cancer 72, and also it is known that let-7b-5p is a negative regulator of

insulin-like growth factor receptor 1 (IGF1R) in multiple myeloma 73. Mutation in DICER1

leads to the loss of tumor-suppressor miRNAs, including let-7b-5p 74 and additionally, let-7b-

5p is a negative regulator of other oncogenes such as HRAS and KRAS 75. The miR-146a-5p

inhibits cell proliferation and metastasis and it induces apoptosis through the EGFR generated

signaling pathway in the lung cancer 76. Similarly, miR-146a-5p is also a negative regulator of

the SMAD4 gene by reducing fibrosis in the skeletal muscle after injury, hence it might act as

a potential therapeutic 77. miR-603 downregulates the expression of HRAS protein in prostate

tumor cells 78. Overexpression of miR-30a-5p inhibits cell proliferation in lung carcinogenesis

via EGFR signaling pathways 79.

The miRNA, miR-30a-5p is a negative regulator of the TP53 gene which causes resistance to

anti-cancer drugs 80. miR-375 is a positive regulator of the PIK3CA gene during anti-

proliferative and apoptosis effects 81. Similarly, this miR-375 is regulator for other oncogenes

Discussion

39

like RHOA 82 and TP53 83. miR-489-3p inhibits cell proliferation in hypopharyngeal squamous

cell carcinoma (HSCC) by targeting PTPN11 gene 84 and also circulating miR-489-3p have

shown significant expression variations in breast cancer by targeting TP53 72, 85. The miRNA

miR-483-3p is the regulator of oxaliplatin resistance in human colorectal cancer cells 86. miR-

483-3p serves a crucial suppressor of TP53 signaling in liver cancer 87. Additionally, miR-4282

targets Myc gene and it serves as inhibitor of the proliferation in breast cancer 88. Taken

together, in this case study the findings reflect that the AHDR approach can identify the

oncogenic interactions of miRNAs.

In this study, AHDR algorithm was developed, which is based on the advanced deep learning

technology for human miRNA target prediction. AHDR outperformed other predictors in the

test dataset. Furthermore, the AHDR showed top interactions on the experimentally verified

dataset. In addition, the AHDR also detected many putative miRNAs and their interactions

with oncogenes. Interestingly, the AHDR predicts potential interactions instead of a high

number of false positive interactions. This detailed explanation contributes to the importance

of deep learning technology in genomics.

Summary

40

5. SUMMARY

miRNAs are small, non-coding RNA evolutionary conserved molecules, which are

largely known to regulate gene expression by annealing to target genes. Predicting possible

binding sites associated with it allows us to understand their regulations. Over the past decades,

significant efforts have been made to improve the knowledge of miRNAs. One primary concern

was miRNA-target interaction, despite more than a dozen bioinformatic approaches that have

been developed using ab initio methods as well as ML methods. However, these approaches

face a notorious challenge in terms of tiny alignment regions (7-8 nucleotides in the seed

region) between miRNAs and targets. This often leads to higher numbers of false positive

interactions. In order to resolve this issue, a DFFN-based DL algorithm was developed which

is called as advanced hierarchical deep-rooted learning (AHDR). In the data mining step, a

balanced training dataset was constructed using high-quality positive datasets, which were

derived from the best-curated mRNA target databases such as TarBase. Whereas, the negative

dataset was generated using random mutations of 95% across human genome-wide transcripts.

Several parameters were applied to both datasets to overcome the issue of overfitting and

underfitting. In the training step, different DL algorithms were applied to the generated dataset

to identify potential models for the target prediction. The results revealed the performance of

each prediction algorithm. Furthermore, the performance prediction of AHDR was analyzed

and compared with other high impact published prediction algorithms on a strong

experimentally verified dataset.

The purpose of this study was to demonstrate the flexibility and impact of the DL framework

to miRNA-target site prediction. However, it also facilitates holistic physical and biological

models integrating heterogeneous data from different sources that foster the understanding of

disease development, progression, and treatment possibilities.

References

41

6. REFERENCES

1. Bartel, DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116: 281-
297, 2004.
2. Trionfini, P & Benigni, A: MicroRNAs as master regulators of glomerular function in health
and disease. J Am Soc Nephrol, 28: 1686-1696, 2017.
3. Paul, P, Chakraborty, A, Sarkar, D, Langthasa, M, Rahman, M, Bari, M, Singha, RS,
Malakar, AK & Chakraborty, S: Interplay between miRNAs and human diseases. J Cell
Physiol, 233: 2007-2018, 2018.
4. Chen, C, Ponnusamy, M, Liu, C, Gao, J, Wang, K & Li, P: MicroRNA as a therapeutic target
in cardiac remodeling. Biomed Res Int, 2017: 1-25, 2017.
5. Putteeraj, M, Fairuz, YM & Teoh, SL: MicroRNA dysregulation in Alzheimer's disease.
CNS Neurol Disord Drug Targets, 16: 1000-1009, 2017.
6. Karaca, E, Aykut, A, Erturk, B, Durmaz, B, Guler, A, Buke, B, Yeniel, AO, Ergenoglu, AM,
Ozkinay, F, Ozeren, M, Kazandi, M, Akercan, F, Sagol, S, Gunduz, C & Cogulu, O:
MicroRNA expression profile in the prenatal amniotic fluid samples of pregnant women with
Down syndrome. Balkan Med J, 35: 163-166, 2018.
7. Lai, NS, Koo, M, Yu, CL & Lu, MC: Immunopathogenesis of systemic lupus erythematosus
and rheumatoid arthritis: the role of aberrant expression of non-coding RNAs in T cells. Clin
Exp Immunol, 187: 327-336, 2017.
8. Liu, Q, Wu, DH, Han, L, Deng, JW, Zhou, L, He, R, Lu, CJ & Mi, QS: Roles of microRNAs
in psoriasis: immunological functions and potential biomarkers. Exp Dermatol, 26: 359-367,
2017.
9. Lu, Q, Sun, Y, Duan, Y, Li, B, Xia, J, Yu, S & Zhang, G: Comprehensive microRNA
profiling reveals potential augmentation of the IL1 pathway in rheumatic heart valve disease.
BMC Cardiovasc Disord, 18: 53, 2018.
10. Dweep, H, Sticht, C & Gretz, N: In-silico algorithms for the screening of possible
microRNA binding sites and their interactions. Curr Genomics, 14: 127-136, 2013.
11. Peterson, SM, Thompson, JA, Ufkin, ML, Sathyanarayana, P, Liaw, L & Congdon, CB:
Common features of microRNA target prediction tools. Front Genet, 5: 23, 2014.
12. Betel, D, Wilson, M, Gabow, A, Marks, DS & Sander, C: The microRNA.org resource:
targets and expression. Nucleic Acids Res, 36: D149-D153, 2008.
13. Agarwal, V, Bell, GW, Nam, JW & Bartel, DP: Predicting effective microRNA target sites
in mammalian mRNAs. Elife, 4: e05005: 1-38, 2015.
14. Liu, W & Wang, X: Prediction of functional microRNA targets by integrative modeling of
microRNA binding and target expression data. Genome Biol, 20: 18, 2019.
15. Miranda, KC, Huynh, T, Tay, Y, Ang, YS, Tam, WL, Thomson, AM, Lim, B & Rigoutsos,
I: A pattern-based method for the identification of microRNA binding sites and their
corresponding heteroduplexes. Cell, 126: 1203-1217, 2006.
16. Bandyopadhyay, S & Mitra, R: TargetMiner: microRNA target prediction with systematic
identification of tissue-specific negative examples. Bioinformatics, 25: 2625-2631, 2009.
17. Liu, H, Yue, D, Chen, Y, Gao, SJ & Huang, Y: Improving performance of mammalian
microRNA target prediction. BMC Bioinformatics, 11: 476, 2010.
18. Kertesz, M, Iovino, N, Unnerstall, U, Gaul, U & Segal, E: The role of site accessibility in
microRNA target recognition. Nat Genet, 39: 1278-1284, 2007.
19. Kruger, J & Rehmsmeier, M: RNAhybrid: microRNA target prediction easy, fast and
flexible. Nucleic Acids Res, 34: W451-W454, 2006.
20. Hamet, P & Tremblay, J: Artificial intelligence in medicine. Metabolism, 69: S36-S40,
2017.

References

42

21. Libbrecht, MW & Noble, WS: Machine learning applications in genetics and genomics.
Nat Rev Genet, 16: 321-332, 2015.
22. Xie, P, Gao, M, Wang, C, Zhang, J, Noel, P, Yang, C, Von Hoff, D, Han, H, Zhang, MQ,
& Lin, W: SuperCT: a supervised-learning framework for enhanced characterization of single-
cell transcriptomic profiles. Nucleic Acids Res, 47: e48, 2019.
23. Chang, H, Han, J, Zhong, C, Snijders, AM & Mao, JH: Unsupervised transfer learning via
multi-scale convolutional sparse coding for biomedical applications. IEEE Trans Pattern Anal
Mach Intell, 40: 1182-1194, 2018.
24. Krittanawong, C, Zhang, H, Wang, Z, Aydar, M & Kitai, T: Artificial intelligence in
precision cardiovascular medicine. J Am Coll Cardiol, 69: 2657-2664, 2017.
25. Demirci, F, Akan, P, Kume, T, Sisman, AR, Erbayraktar, Z & Sevinc, S: Artificial neural
network approach in laboratory test reporting: learning algorithms. Am J Clin Pathol, 146: 227-
237, 2016.
26. Eraslan, G, Avsec, Z, Gagneur, J & Theis, FJ: Deep learning: new computational modelling
techniques for genomics. Nat Rev Genet, 20(7): 389-403, 2019.
27. Cao, C, Liu, F, Tan, H, Song, D, Shu, W, Li, W, Zhou, Y, Bo, X & Xie, Z: Deep learning
and its applications in biomedicine. Genomics Proteomics Bioinformatics, 16: 17-32, 2018.
28. Zeng, M, Li, M, Fei, Z, Wu, F, Li, Y, Pan, Y & Wang, J: A deep learning framework for
identifying essential proteins by integrating multiple types of biological information.
IEEE/ACM Trans Comput Biol Bioinform, 1:1, 2019.
29. Zeng, H, Edwards, MD, Liu, G & Gifford, DK: Convolutional neural network architectures
for predicting DNA-protein binding. Bioinformatics, 32: i121-i127, 2016.
30. Pan, X, Rijnbeek, P, Yan, J & Shen, HB: Prediction of RNA-protein sequence and structure
binding preferences using deep convolutional and recurrent neural networks. BMC Genomics,
19: 511:1-11, 2018.
31. Chen, HH, Chiu, YC, Zhang, T, Zhang, S, Huang, Y & Chen, Y: GSAE: an autoencoder
with embedded gene-set nodes for genomics functional characterization. BMC Syst Biol,
12(S8):1-13, 2018.
32. Wolterink, JM, Leiner, T, Viergever, MA & Isgum, I: Generative adversarial networks for
noise reduction in low-dose CT. IEEE Trans Med Imaging, 36: 2536-2545, 2017.
33. Nibali, A, He, Z & Wollersheim, D: Pulmonary nodule classification with deep residual
networks. Int J Comput Assist Radiol Surg, 12: 1799-1808, 2017.
34. Li, Y, Huang, C, Ding, L, Li, Z, Pan, Y & Gao, X: Deep learning in bioinformatics:
introduction, application, and perspective in the big data era. Methods, pii: S1046-S2023, 2019.
35. Rampasek, L & Goldenberg, A: TensorFlow: biology's gateway to deep learning? Cell Syst,
2: 12-14, 2016.
36. Kozomara, A & Griffiths-Jones, S: miRBase: annotating high confidence microRNAs
using deep sequencing data. Nucleic Acids Res, 42: D68-D73, 2014.
37. Aken, BL, Achuthan, P, Akanni, W, Amode, MR, Bernsdorff, F, Bhai, J, Billis, K,
Carvalho-Silva, D, Cummins, C, Clapham, P, Gil, L, Giron, CG, Gordon, L, Hourlier, T, Hunt,
SE, Janacek, SH, Juettemann, T, Keenan, S, Laird, MR, Lavidas, I, Maurel, T, McLaren, W,
Moore, B, Murphy, DN, Nag, R, Newman, V, Nuhn, M, Ong, CK, Parker, A, Patricio, M, Riat,
HS, Sheppard, D, Sparrow, H, Taylor, K, Thormann, A, Vullo, A, Walts, B, Wilder, SP,
Zadissa, A, Kostadima, M, Martin, FJ, Muffato, M, Perry, E, Ruffier, M, Staines, DM,
Trevanion, SJ, Cunningham, F, Yates, A, Zerbino, DR & Flicek, P: Ensembl 2017. Nucleic
Acids Res, 45: D635-D642, 2017.
38. Chou, CH, Chang, NW, Shrestha, S, Hsu, SD, Lin, YL, Lee, WH, Yang, CD, Hong, HC,
Wei, TY, Tu, SJ, Tsai, TR, Ho, SY, Jian, TY, Wu, HY, Chen, PR, Lin, NC, Huang, HT, Yang,
TL, Pai, CY, Tai, CS, Chen, WL, Huang, CY, Liu, CC, Weng, SL, Liao, KW, Hsu, WL &

References

43

Huang, HD: miRTarBase 2016: updates to the experimentally validated miRNA-target
interactions database. Nucleic Acids Res, 44: D239-D247, 2016.
39. Ding, J, Li, X & Hu, H: TarPmiR: a new approach for microRNA target site prediction.
Bioinformatics, 32: 2768-2775, 2016.
40. Karagkouni, D, Paraskevopoulou, MD, Chatzopoulos, S, Vlachos, IS, Tastsoglou, S,
Kanellos, I, Papadimitriou, D, Kavakiotis, I, Maniou, S, Skoufos, G, Vergoulis, T, Dalamagas,
T & Hatzigeorgiou, AG: DIANA-TarBase v8: a decade-long collection of experimentally
supported miRNA-gene interactions. Nucleic Acids Res, 46(D1): D239-D245, 2018.
41. Tabas-Madrid, D, Muniategui, A, Sanchez-Caballero, I, Martinez-Herrera, DJ, Sorzano,
CO, Rubio, A & Pascual-Montano, A: Improving miRNA-mRNA interaction predictions.
BMC Genomics, 15(S10):1-12, 2014.
42. Gruber, AR, Lorenz, R, Bernhart, SH, Neubock, R & Hofacker, IL: The Vienna RNA
websuite. Nucleic Acids Res, 36: W70-W74, 2008.
43. Sturm, M, Hackenberg, M, Langenberger, D & Frishman, D: TargetSpy: a supervised
machine learning approach for microRNA target prediction. BMC Bioinformatics, 11: 292,1-
17, 2010.
44. Cahsai, A, Anagnostopoulos, C & Triantafillou, P: Scalable data quality for big data: The
Pythia framework for handling missing values. Big Data, 3: 159-172, 2015.
45. Ghoshal, A, Shankar, R, Bagchi, S, Grama, A & Chaterji, S: MicroRNA target prediction
using thermodynamic and sequence curves. BMC Genomics, 16: 999: 1-22, 2015.
46. Artzi, S, Kiezun, A & Shomron, N: miRNAminer: a tool for homologous microRNA gene
search. BMC Bioinformatics, 9: 39: 1-7, 2008.
47. Kamkar, I, Gupta, SK, Phung, D & Venkatesh, S: Stable feature selection for clinical
prediction: exploiting ICD tree structure using Tree-Lasso. J Biomed Inform, 53: 277-290,
2015.
48. Shortreed, SM & Ertefaie, A: Outcome-adaptive lasso: variable selection for causal
inference. Biometrics, 73: 1111-1122, 2017.
49. Ruuska, S, Hamalainen, W, Kajava, S, Mughal, M, Matilainen, P & Mononen, J: Evaluation
of the confusion matrix method in the validation of an automated system for measuring feeding
behaviour of cattle. Behav Processes, 148: 56-62, 2018.
50. Bastanlar, Y & Ozuysal, M: Introduction to machine learning. Methods Mol Biol, 1107:
105-128, 2014.
51. Vejnar, CE, Blum, M & Zdobnov, EM: miRmap web: comprehensive microRNA target
prediction online. Nucleic Acids Res, 41: W165-W168, 2013.
52. Paraskevopoulou, MD, Georgakilas, G, Kostoulas, N, Vlachos, IS, Vergoulis, T, Reczko,
M, Filippidis, C, Dalamagas, T & Hatzigeorgiou, AG: DIANA-microT web server v5.0:
service integration into miRNA functional analysis workflows. Nucleic Acids Res, 41: W169-
W173, 2013.
53. Coronnello, C & Benos, PV: ComiR: combinatorial microRNA target prediction tool.
Nucleic Acids Res, 41: W159-W164, 2013.
54. Lewis, BP, Burge, CB & Bartel, DP: Conserved seed pairing, often flanked by adenosines,
indicates that thousands of human genes are microRNA targets. Cell, 120: 15-20, 2005.
55. Lu, TP, Lee, CY, Tsai, MH, Chiu, YC, Hsiao, CK, Lai, LC & Chuang, EY: miRSystem:
an integrated system for characterizing enriched functions and pathways of microRNA targets.
PLoS One, 7: e42390, 2012.
56. Blin, K, Dieterich, C, Wurmus, R, Rajewsky, N, Landthaler, M & Akalin, A: DoRiNA 2.0-
-upgrading the doRiNA database of RNA interactions in post-transcriptional regulation.
Nucleic Acids Res, 43: D160-D167, 2015.
57. Bailey, MH, Tokheim, C, Porta-Pardo, E, Sengupta, S, Bertrand, D, Weerasinghe, A,
Colaprico, A, Wendl, MC, Kim, J, Reardon, B, Kwok-Shing Ng, P, Jeong, KJ, Cao, S, Wang,

References

44

Z, Gao, J, Gao, Q, Wang, F, Liu, EM, Mularoni, L, Rubio-Perez, C, Nagarajan, N, Cortes-
Ciriano, I, Zhou, DC, Liang, WW, Hess, JM, Yellapantula, VD, Tamborero, D, Gonzalez-
Perez, A, Suphavilai, C, Ko, JY, Khurana, E, Park, PJ, Van Allen, EM, Liang, H, Group, MCW,
Cancer Genome Atlas Research, N, Lawrence, MS, Godzik, A, Lopez-Bigas, N, Stuart, J,
Wheeler, D, Getz, G, Chen, K, Lazar, AJ, Mills, GB, Karchin, R & Ding, L: Comprehensive
characterization of cancer driver genes and mutations. Cell, 174: 1034-1035, 2018.
58. Reczko, M, Maragkakis, M, Alexiou, P, Papadopoulos, GL & Hatzigeorgiou, AG: Accurate
microRNA target prediction using detailed binding site accessibility and machine learning on
proteomics data. Front Genet, 2: 103: 1-13, 2011.
59. Menor, M, Ching, T, Zhu, X, Garmire, D & Garmire, LX: mirMark: a site-level and UTR-
level classifier for miRNA target prediction. Genome Biol, 15: 500: 1-15, 2014.
60. Bandyopadhyay, S, Ghosh, D, Mitra, R & Zhao, Z: MBSTAR: multiple instance learning
for predicting specific functional binding sites in microRNA targets. Sci Rep, 5: 8004: 1-12,
2015.
61. Yousef, M, Jung, S, Kossenkov, AV, Showe, LC & Showe, MK: Naïve bayes for
microRNA target predictions--machine learning for microRNA targets. Bioinformatics, 23:
2987-2992, 2007.
62. Kim, SK, Nam, JW, Rhee, JK, Lee, WJ & Zhang, BT: miTarget: microRNA target gene
prediction using a support vector machine. BMC Bioinformatics, 7: 411: 1-12, 2006.
63. Huang, JC, Morris, QD & Frey, BJ: Bayesian inference of MicroRNA targets from
sequence and expression data. J Comput Biol, 14: 550-563, 2007.
64. Ruan, J, Chen, H, Kurgan, L, Chen, K, Kang, C & Pu, P: HuMiTar: a sequence-based
method for prediction of human microRNA targets. Algorithms Mol Biol, 3: 16: 1-12, 2008.
65. Liu, Q & Hu, P: Association analysis of deep genomic features extracted by denoising
autoencoders in breast cancer. Cancers, 11: 494: 1-13, 2019.
66. Chen, KM, Cofer, EM, Zhou, J & Troyanskaya, OG: Selene: a PyTorch-based deep
learning library for sequence data. Nat Methods, 16: 315-318, 2019.
67. Pla, A, Zhong, X & Rayner, S: miRAW: A deep learning-based approach to predict
microRNA targets by analyzing whole microRNA transcripts. PLoS Comput Biol, 14:
e1006185, 2018.
68. Wen, M, Cong, P, Zhang, Z, Lu, H & Li, T: DeepMirTar: a deep-learning approach for
predicting human miRNA targets. Bioinformatics, 34: 3781-3787, 2018.
69. Saito, T & Rehmsmeier, M: The precision-recall plot is more informative than the ROC
plot when evaluating binary classifiers on imbalanced datasets. PLoS One, 10: e0118432, 2015.
70. Shuang, C, Maozu, G, Chunyu, W, Xiaoyan, L, Yang, L & Xuejian, W: MiRTDL: A deep
learning approach for miRNA target prediction. IEEE/ACM Trans Comput Biol Bioinform, 13:
1161-1169, 2016.
71. Paraskevopoulou, MD, Karagkouni, D, Vlachos, IS, Tastsoglou, S & Hatzigeorgiou, AG:
microCLIP super learning framework uncovers functional transcriptome-wide miRNA
interactions. Nat Commun, 9: 3601: 1-16, 2018.
72. Qattan, A, Intabli, H, Alkhayal, W, Eltabache, C, Tweigieri, T & Amer, SB: Robust
expression of tumor suppressor miRNA's let-7 and miR-195 detected in plasma of Saudi female
breast cancer patients. BMC Cancer, 17: 799: 1-10, 2017.
73. Xu, H, Liu, C, Zhang, Y, Guo, X, Liu, Z, Luo, Z, Chang, Y, Liu, S, Sun, Z & Wang, X:
Let-7b-5p regulates proliferation and apoptosis in multiple myeloma by targeting IGF1R. Acta
Biochim Biophys Sin (Shanghai), 46: 965-972, 2014.
74. Rakheja, D, Chen, KS, Liu, Y, Shukla, AA, Schmid, V, Chang, TC, Khokhar, S, Wickiser,
JE, Karandikar, NJ, Malter, JS, Mendell, JT & Amatruda, JF: Somatic mutations in DROSHA
and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumours.
Nat Commun, 2: 4802: 1-10, 2014.

References

45

75. Wagner, S, Ngezahayo, A, Murua Escobar, H & Nolte, I: Role of miRNA let-7 and its
major targets in prostate cancer. Biomed Res Int, 2014: 1-14, 2014.
76. Huang, WT, Cen, WL, He, RQ, Xie, Y, Zhang, Y, Li, P, Gan, TQ, Chen, G & Hu, XH:
Effect of miR146a5p on tumor growth in NSCLC using chick chorioallantoic membrane assay
and bioinformatics investigation. Mol Med Rep, 16: 8781-8792, 2017.
77. Sun, Y, Li, Y, Wang, H, Li, H, Liu, S, Chen, J & Ying, H: miR-146a-5p acts as a negative
regulator of TGF-beta signaling in skeletal muscle after acute contusion Acta Biochimica et
Biophysica Sinica, 49: 628-634, 2017.
78. Moustafa, AA, Ziada, M, Elshaikh, A, Datta, A, Kim, H, Moroz, K, Srivastav, S, Thomas,
R, Silberstein, JL, Moparty, K, Salem, FE, El-Habit, OH & Abdel-Mageed, AB: Identification
of microRNA signature and potential pathway targets in prostate cancer. Exp Biol Med
(Maywood), 242: 536-546, 2017.
79. Zhu, J, Zeng, Y, Li, W, Qin, H, Lei, Z, Shen, D, Gu, D, Huang, JA & Liu, Z: CD73/NT5E
is a target of miR-30a-5p and plays an important role in the pathogenesis of non-small cell lung
cancer. Mol Cancer, 16: 34: 1-15, 2017.
80. Park, D, Kim, H, Kim, Y & Jeoung, D: miR-30a regulates the expression of CAGE and
p53 and regulates the response to anti-cancer drugs. Mol Cells, 39: 299-309, 2016.
81. Zhou, N, Qu, Y, Xu, C & Tang, Y: Upregulation of microRNA-375 increases the cisplatin-
sensitivity of human gastric cancer cells by regulating ERBB2. Exp Ther Med, 11: 625-630,
2016.
82. Abdelmohsen, K, Hutchison, ER, Lee, EK, Kuwano, Y, Kim, MM, Masuda, K, Srikantan,
S, Subaran, SS, Marasa, BS, Mattson, MP & Gorospe, M: miR-375 inhibits differentiation of
neurites by lowering HuD levels. Mol Cell Biol, 30: 4197-4210, 2010.
83. Liu, Y, Xing, R, Zhang, X, Dong, W, Zhang, J, Yan, Z, Li, W, Cui, J & Lu, Y: miR-375
targets the p53 gene to regulate cellular response to ionizing radiation and etoposide in gastric
cancer cells. DNA Repair (Amst), 12: 741-750, 2013.
84. Kikkawa, N, Hanazawa, T, Fujimura, L, Nohata, N, Suzuki, H, Chazono, H, Sakurai, D,
Horiguchi, S, Okamoto, Y & Seki, N: miR-489 is a tumour-suppressive miRNA target PTPN11
in hypopharyngeal squamous cell carcinoma (HSCC). Br J Cancer, 103: 877-884, 2010.
85. Kuppa, SS, Jia, W, Liu, S, Nguyen, H, Smyth, SS, Mills, GB, Dobbin, KK, Hardman, WJ
& Murph, MM: Autotaxin exacerbates tumor progression by enhancing MEK1 and overriding
the function of miR-489-3p. Cancer Lett, 432: 84-92, 2018.
86. Liang, H, Xu, Y, Zhang, Q, Yang, Y, Mou, Y, Gao, Y, Chen, R, Chen, C & Dai, P: MiR-
483-3p regulates oxaliplatin resistance by targeting FAM171B in human colorectal cancer
cells. Artif Cells Nanomed Biotechnol, 47: 725-736, 2019.
87. Pepe, F, Pagotto, S, Soliman, S, Rossi, C, Lanuti, P, Braconi, C, Mariani-Costantini, R,
Visone, R & Veronese, A: Regulation of miR-483-3p by the O-linked N-acetylglucosamine
transferase links chemosensitivity to glucose metabolism in liver cancer cells. Oncogenesis, 6:
e328, 2017.
88. Zhao, J & Jiang, GQ: MiR-4282 inhibits proliferation, invasion and metastasis of human
breast cancer by targeting Myc. Eur Rev Med Pharmacol Sci, 22: 8763-8771, 2018.

Curriculum vitae and Publications

46

7. CURRICULUM VITAE AND PUBLICATIONS

PERSONAL INFORMATION

Name: Alisha Parveen
Nationality: Indian
Date of Birth: 24.11.1989
Place of Birth: Allahabad, India
Civil Status: Unmarried

UNIVERSITIES

1st September 2015 -
31st August 2018

Ph.D. student (Bioinformatics), Medical
Research Center, University of Heidelberg,
Germany.
Title: Advanced hierarchical learning approach
for microRNA and target prediction

1st May 2015 –
30th September 2015

Research assistant (Bioinformatics), Technical
University of Dresden.
Title: Computational analysis using RNAither of
siRNA.

1st July 2011 –
30th July 2013

Master of Science (Bioinformatics), Jamia Millia
Islamia, New Delhi, India.
Title: Meta-analysis of genome wide associated
genes (GWAS) related to cardiovascular
diseases.

31st August 2008 – 29th April 2011 Bachelor of science (biological science),
University of Delhi, New Delhi, India.

SCHOOLING

2008 10+2 (12th), Central Board of Secondary

 Education, New Delhi, India.
2006 High school (10th), Central Board of Secondary

 Education, New Delhi, India.

RESEARCH EXPERIENCE

1ST November 2011 –
30th August 2012

Research trainee (bioinformatics), Defence
research and development organization
(DRDO), New Delhi, India.
Title: Computational network model predicts
the drug effects on SHP-1 mediated intracellular
signaling through c-kit molecule

Curriculum vitae and Publications

47

PUBLICATIONS

1: Parveen A, Gretz N, and Dweep H: Obtaining miRNA-target interaction information

from miRWalk2.0. Curr. Protoc. Bioinform., 55:12.15.1‐12.15.27, 2016.

2: Sticht C, Torre C, Parveen A, and Gretz N: miRWalk: An online resource for

prediction of microRNA binding sites. PLoS ONE., 13 (10): e0206239, 2018.

PRESENTATIONS AND TALKS

1: Parveen A and Gangenahalli G U: Computational network model predicts the drug

effects on SHP-1 mediated intracellular signaling through c-Kit, International

interdisciplinary science conference (I-ISC) on Protein Folding and Diseases, Vol 3,

Issue 2, pp. 26, 2012.

2: Parveen A and Hassan I: Meta-analysis of genome-wide association studies on gene

related to the cardiovascular disorders, National Conference on Recent Trends in

Protein Structural Biology (NCRTPSB) 2013 on Structural Biology, Vol. 4, No. 2, pp.

27, 2013. ISSN- 0975-8151.

Appendix

48

8. APPENDIX

Appendix 8.1. Negative dataset generation. This python code randomly mutates the binding
region of the human mRNA, which hinders the binding of miRNA. This generates negative
human mRNA dataset. The input file is in the fasta format.

from random import random, choice
import sys
from itertools import groupby

def fasta_iter(fasta_name):
"""given a fasta file. yield tuples of header, sequence""

 fh = open(fasta_name)

 # ditch the boolean (x[0]) and just keep the header or sequence since
 faiter = (x[1] for x in groupby(fh, lambda line: line[0] == ">"))
 for header in faiter:

 header = header.next()[1:].strip()

join all sequence lines to one.
 seq = "".join(s.strip() for s in faiter.next())
 yield header, seq
def main(fasta_name, mutation_freq):
 for header, seq in fasta_iter(fasta_name):
 seq = list(seq)
 for i, s in enumerate(seq):
 val = random()
 if val < mutation_freq:
 # choose a random nucleotide that's different.
seq[i] = choice([x for x in "ACTG" if x != s.upper()])
 print ">%s\n%s" % (header, "".join(seq))
if __name__ == "__main__":
 main(sys.argv[1], float(sys.argv[2]))

Appendix

49

Appendix 8.2. Perl script for the generation of structural features: In this Perl code,
structural features generated include symmetric and asymmetric loops, symmetric and
asymmetric bulges in both in seed and outseed region in the miRNA. The input file is the
duplex structure of miRNA target interaction 61.

#!/usr/bin/perl
use Term::ANSIColor;

if (@ARGV==0) {
 print STDERR "usage: features_mirna_positive.pl <output of miranada>\n";
 exit;
}
open (ST,">$ARGV[0].statistics");
open (STB,">$ARGV[0].stb");
open (INFO, $ARGV[0]); #The output of find_transcripts
#open (MATURE, $ARGV[1]); #The mature microRNA file
#open (FOUT ,$ARGV[2]);
print ST "FHR: d5 bpmirna seed-nblgus seed-nloops seed-nasymloops","\n" ;
print ST "FHR: bp5' 5'-nblgus 5'-nloops 5'-nasymloops","\n";
print ST "FHR:seed part(8 features): #bulges with length 1,2,..,7 and >7\n"
;
print ST "FHR:seed part:(8 features) #symtric loops with length 1,2,..,7
and >7\n" ;
print ST "FHR:seed part: (8 features)#asymetric loops with length 1,2,..,7
and >7\n" ;
print ST "FHR:out-seed part: (8 features)#bulgesc loops with length
1,2,..,7 and >7\n" ;
print ST "FHR:out-seed part: (8 features)#symetric loops with length
1,2,..,7 and >7\n" ;
print ST "FHR:out-seed part: (8 features)#asymetric loops with length
1,2,..,7 and >7" ;

#@nblgsmirna =(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) ;
#@nblgsoutmirna =(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);

#@nloopsmirna =(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);
#@nsymloopsmirna =(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);
#@nasymloopsmirna =(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);

#@nloopsoutmirna =(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);
#@nsymloopsoutmirna =(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);
#@nasymloopsoutmirna =(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);

$flagformirna = 0 ;
#Read The mature microRNA to an array
#@mature = <MATURE>;
@location=();
$counter = 0 ;
$sum5d=0;
$sum3d=0;
$summirna =0 ;
$summirnab=0;
$line ="blablabla";
$indexcounter=0;
#while ($line !~/HDR/)
 # {$line=<INFO>;} #Reach the first HDR

while (!eof(INFO))
{

Appendix

50

 while ($line !~/>/ & !eof(INFO)){
 $line=<INFO>;} #Reach the first ">"
 print $line;
 if ($line =~/>/){
 if ($line =~ />(.*)/) { $hdrname =$1;}
 }
 $title = $line;
 $gene_info = <INFO>;
 @ref=split(/ /,$gene_info);
 #$hdrname = join "",$hdrname,"\t",$ref[10].$ref[11].$ref[12];
 $hdrname = join "",$hdrname,"\t",$ref[10].$ref[11].$ref[12];
 $empty=<INFO>;
 $stem1 = <INFO>;
 $dashes= <INFO>;
 $stem2 = <INFO>;
 if ($stem1 =~/(Ref:)\s+(5'\s*[NATCGUatcgu-]*[NATCGUatcgu-
]\s*3')/)
 { $tmp_stm1 = $2;
 if ($tmp_stm1 =~/5'\s*([NATCGUatcgu-]*[NATCGUatcgu-
])\s*3'/)
 {$stm1 = $1; $stem_l=length($stm1) }
 }
 if ($stem2 =~/(Query:)\s+(3'\s*[NATCGUatcgu-]*[NATCGUatcgu-
]\s*5')/)
 { $tmp_stm2 = $2;
 if ($tmp_stm2 =~/3'\s*([NATCGUatcgu-]*[NATCGUatcgu-
])\s*5'/)
 {$stm2 = $1;}
 }
 if ($stem1 =~m/(Ref:\s+)/g)
 { $first_t=pos($stem1);}
 $new_dashes = substr($dashes,$first_t);
 if ($new_dashes =~/\s+(\|+[\|\s]*\|+)\s+/)
 { $dash = $1;}
 $new_dashes=~s/\n//g;
 print "\n$tmp_stm1\n$new_dashes\n$tmp_stm2\n";
 my $count = 0 ;
 my $i = 1 ;
 my $loc=$stem_l;
 while ($count < 8)
 { $s = substr($stm1,$stem_l-$i,1);
 if ($s =~/[ATCGUatcgu]/)
 { ++$count;}
 ++$i;
 --$loc;
 }
 my $seed = substr($stm1,$loc) ;
 $seed=~s/-//g;
 $seed=~tr/[Tt]/[Uu]/;
 $seed=~tr/[ATCGUN]/[atcgun]/;
 ++$indexcounter;
 #$hdrname =~tr/\n//;
 print ST "\n>HDR:$hdrname";
 print ST "\n## $seed";
 print ST "\n## Index:$indexcounter\n";
 $new_dashes=~s/\./ /g;
 $new_dashes=~s/\:/ /g;
 #extractFeatures($stem1,$stem2,$dash);
 extractFeatures($tmp_stm1,$tmp_stm2,$new_dashes);
 $hdrname = "blabla";
 $line = <INFO>;

Appendix

51

 }#End of while (!eof(INFO));

close INFO;
print ST "\n>HDR:";

print "Total sum of stem-loop microRNA is ",$summirna,"\n";
print "Total sum of microRNA's is ",$summirnab,"\n";

print "Total sum of stem-loop 5' is ",$sum5d,"\n";
print "Total sum of stem-loop 3' is ",$sum3d,"\n";

print STB "nt \n nblgs-mirna, nblgs-outmirna, \n nloops-mirna, nloops-
outmirna,\n nsym-loops-mirna, nsym-loops-outmirna, \n nasym-loops-mirna,
nasym-loops-outmirna\n\n";

print STB "Total sum of microRNA's is ",$summirnab,"\n";
print STB "Total sum of stem-loop microRNA is ",$summirna,"\n";
print STB "Total sum of stem-loops 5' is ",$sum5d,"\n";
print STB "Total sum of stem-loops 3' is ",$sum3d,"\n";
print STB "Total sum of stem-loops out-mirna(5'+3') is ",
$sum5d+$sum3d,"\n\n";

for ($k=1; $k<=15; $k++)
 { $result = sprintf("%4d %4d %4d %4d %4d %4d %4d %4d %4d
\n",$k,$nblgsmirna[$k],$nblgsoutmirna[$k],$nloopsmirna[$k],$nloopsoutmirna[
$k],$nsymloopsmirna[$k],$nsymloopsoutmirna[$k],$nasymloopsmirna[$k],$nasyml
oopsoutmirna[$k]);
 print STB $result;
 }
close STB;
print STDOUT "finishd.";

###

sub extractFeatures{
 my ($stem1)= shift (@_);
 my ($stem2)= shift (@_);
 my ($dashes) = shift (@_); #We refer to dashes directly
my $stem_l = 0;
 if ($stem1 =~/(5'\s*)([NATCGUatcgu-]*[NATCGUatcgu-])(\s*3')/)
 { $stm1 = $2; $stem_l = length($stm1); }
 if ($stem2 =~/(3'\s*)([NATCGUatcgu-]*[NATCGUatcgu-])(\s*5')/)
 { $stm2 = $2; $prime3 = $1;$prime5=$3;}
 #if ($dashes =~/\s+(\|+[\|\s]*\|+)\s+/)
 #{ #$dash = $1;
 my $t = $dashes;
 $dash = substr($t,3,$stem_l);
 #} #
my $count = 0 ;
my $i = 1 ;
my $loc=$stem_l;
while ($count < 8)
 { $s = substr($stm1,$stem_l-$i,1);
 if ($s =~/[ATCGUatcgu]/)
 { ++$count;}
 ++$i;
 --$loc;
 }

 $location[0] = $loc ;
 $location[1] = $stem_l-1;

Appendix

52

 #Initioliza the blugs,loops array (changed from 15 to 100)
 for ($inb=1;$inb<=100;++$inb)
 { $nblgsmirna[$inb]=0;
 $nsymloopsmirna[$inb]=0;
 $nasymloopsmirna[$inb]=0;
 $nblgsoutmirna[$inb]=0;
 $nsymloopsoutmirna[$inb]=0;
 $nasymloopsoutmirna[$inb]=0;
 }
 #The mature microRNA found at the direction 5' to 3'
 if ($location[0] != -1)
 {
 if ($hdrflag ==1){ print STDOUT $hdrname;}

 print STDOUT $title ;
 $prevmirna = substr ($stem1,0,$location[0]+3);
 $cmirna = substr ($stem1,$location[0]+3,$location[1]-
$location[0]+1);
 $aftermirna = substr($stem1,3+$location[1]+1);
 print STDOUT $prevmirna; print STDOUT
color("blue"),$cmirna,color("reset"); print STDOUT $aftermirna;
 print STDOUT $dashes;
 print STDOUT $stem2;

 #print distance from 5' direction
 $st5arm = substr($stm1,0,$location[0]); $st3arm =
substr($stm1,$location[1]+1);
 $d1 = ($st5arm=~tr/ACGTUNacgtun//); $d2 = ($st3arm
=~tr/ACGTUNacgtun//);
 $result = sprintf ("%4d ",$d1);
 print ST $result;
 #Deal with seed microRNA
 $n = $location[1] - $location[0] +1;
 $pstem1 = substr($stm1,$location[0],$n);
 $pdash = substr($dash,$location[0],$n);
 $pstem2 = substr($stm2,$location[0],$n);
 $flagformirna = 1 ;
 findBulges($pstem1,$pdash,$pstem2);
 $pstem1 =~ s/\-//g; $pstem2 =~s/\-//g;
 $summirna = $summirna + length($pstem1)+ length($pstem2);
 $summirnab = $summirnab + length($pstem1);
 print "\n", length($pstem1)+length($pstem2),"
",length($pstem1)," ";

 #Deal with 5' to seed microRNA
 $n = $location[1] - $location[0] +1;
 $pstem1 = substr($stm1,0,$location[0]);
 $pdash = substr($dash,0,$location[0]);
 $pstem2 = substr($stm2,0,$location[0]);
 $flagformirna=0;
 findBulges($pstem1,$pdash,$pstem2);
 $pstem1 =~ s/\-//g; $pstem2 =~s/\-//g;
 $sum5d = $sum5d + length($pstem1)+ length($pstem2);
 print length($pstem1)+length($pstem2)," ";
 }
 #The mature microRNA found at the direction 3' to 5'
#print to the features file the results of bulges loops length

 printOutBulgsLoopsLength(@nblgsmirna);
 printOutBulgsLoopsLength(@nsymloopsmirna);
 printOutBulgsLoopsLength(@nasymloopsmirna);

Appendix

53

 printOutBulgsLoopsLength(@nblgsoutmirna);
 printOutBulgsLoopsLength(@nsymloopsoutmirna);
 printOutBulgsLoopsLength(@nasymloopsoutmirna);

}#End of function
###

sub printOutBulgsLoopsLength{
 (@arr) = @_;
my $outlier = 0 ;
my $result;
for ($k=8;$k<=$#arr;++$k)
 { $outlier = $outlier+ $arr[$k] ;}

for ($k=1 ; $k<=7; $k++)
 {
 $result = sprintf("%4d ",$arr[$k]);
 print ST $result;
 }
#print the outlier bigger than 7
$result = sprintf ("%4d ",$outlier);
print ST $result;

}
###
##########
sub getMature() :
###
#########
sub getMature{
 my ($hdrname) = @_ ;
 my $flag = 1 ;
 $i = 0 ;
 $hdrname = lc ($hdrname);
 $arrlength = @mature;
 while ($flag == 1 && $i < $arrlength)
 { $line = lc($mature[$i]);
 if ($line=~/$hdrname/)
 { $st = $mature[$i+1] ;
 chomp ($st);
 $flag = 0 ;
 }# End of if ()
 ++$i ;
 }#End of while
return $st ;

}#End of function
###
#####################

sub positionSubstring{
 my ($stem) = shift(@_);
 my ($mirna)= shift(@_);
 @letpos=();
 @lc=();

 push (@lc,-1);

 for ($i = 0 ; $i <length ($stem); $i++)
 { $let = substr($stem,$i,1);
 if ($let ne '-')

Appendix

54

 { push (@letpos,$i);}
 }

 $stem =~s/-//g;
 $location = index ($stem,$mirna);
 my $mm=$mirna;
 my $z=0;
 while ($location == -1 & $z <4)
 { $mm = substr($mirna,0,length($mirna)-$z);
 $location = index ($stem,$mm);
 $z=$z+1;
 }
 $mirna = $mm;
 if ($location != -1)
 { $start = $letpos[$location];
 $end = $letpos[$location + length($mirna) - 1];
 shift (@lc);
 push (@lc,$start);
 push (@lc,$end);
 #my $result = sprintf("s:%4d e:%4d",$start,$end);
 #print ST $result;
 }

return @lc;
}#End of sub routine
###

sub findBulges($stem1,$dashes,$stem2)
###

sub findBulges{
 my ($stem1) = shift (@_);
 my ($dash) = shift (@_);
 my ($stem2)= shift (@_);
 my $nbulges = 0;
 my $nsloops = 0;
 my $nloopsnonsym = 0;
 my $sumb= 0 ;
 my $suml = 0 ;
 my $bp;
 #print ST "\n",$stem1,"\n",$dash,"\n",$stem2;
 while ($dash =~ m/\s+/g) {
 #print "\n", pos ($dash) - length($&) ," ", pos ($dash) ;
 $f = pos ($dash) - length($&) ;
 $l = pos ($dash) ;
 $s1 = substr($stem1,$f,$l-$f); #copy the corsponding part from stem1
 $s2 = substr($stem2,$f,$l-$f); #copy the corsponding part from stem2
 # print ST "\n",$s1, " ",$s2,"\n";
 # if (($s1 =~/\-+[ATCGUNatcgun]+/) || ($s2 =~/\-+[ATCGUNatcgun]+/))
#Non symetric loops
 if (($s1 =~/\-+[ATCGUNatcgun]+/) || ($s1=~/[ATCGUNatcgun]+\-+/) ||
($s2 =~/[ATCGUNatcgun]+\-+/) ||($s2=~/\-+[ATCGUNatcgun]+/)) #Non symetric
loops
 { ++$nsloops; ++$nloopsnonsym ; $suml=$suml+$l-$f;
 $width = $l-$f;
 if ($flagformirna == 1)
 { ++$nasymloopsmirna[$width];
 ++$nloopsmirna[$width] } #number of loops with
length width
 else {++$nasymloopsoutmirna[$width];
 ++$nloopsoutmirna[$width] }

Appendix

55

 }#Non symetric loops
 else { if ($s1 =~m/\-+/ || $s2 =~m/\-+/) #Pure bulges
 { ++$nbulges ; $sumb= $sumb+$l-$f ;
 $width = $l-$f;
 if ($flagformirna == 1)
 { ++$nblgsmirna[$width];}
 else { ++$nblgsoutmirna[$width];}
 } #pure bulges
 else { ++$nsloops; $suml = $suml+$l-$f;
 $width = $l-$f;
 if ($flagformirna == 1)
 { ++$nsymloopsmirna[$width];
 ++$nloopsmirna[$width] }
 else { ++$nsymloopsoutmirna[$width];
 ++$nloopsoutmirna[$width] }
 } #pure loops ;
 }#End of else
 }#End of while
 $avgbulges = 0 ;
 $avgloops = 0 ;
 if ($nbulges != 0) { $avgbulges = $sumb/$nbulges;
 if ($nsloops !=0) {$avgloops = $suml/$nsloops;}
 $stlen = ($stem1 =~tr/NACGTUnacgtu//) + ($stem2=~tr/NACGTUnacgtu//);
 $bp = ($dash=~tr/\|//);
 $ll = $stlen;
 if ($stlen == 0) {$stlen = 1;}
 #print ST $nbulges, $sumb/$nbulges, $nsloops , $suml/$nsloops ,
$nloopsnonsym;
 #$result = sprintf("%4d %4d %10.4f %4d %10.4f
%4d",$ll,$nbulges,$avgbulges,$nsloops,$avgloops,$nloopsnonsym);
 $result = sprintf("%4d %4d %4d
%4d",$bp,$nbulges,$nsloops,$nloopsnonsym);
 print ST $result;
}#End of function

Appendix

56

Appendix 8.3.A java program for feature generations from the alignment of seed
sequences. This java code generates the miRNA pairing information is summarized over the
seed region of the miRNA. The input dataset is the duplex structure of miRNA target
interactions.

/*
 * To change this license header, choose License Headers in Project
Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package new_datasetcsv;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;
import jxl.write.WriteException;
import org.apache.poi.ss.usermodel.Cell;
import org.apache.poi.ss.usermodel.Row;
import org.apache.poi.xssf.usermodel.XSSFSheet;
import org.apache.poi.xssf.usermodel.XSSFWorkbook;
//Added
import org.apache.poi.ss.usermodel.Sheet;
import org.apache.poi.ss.usermodel.Workbook;
import org.apache.poi.ss.util.CellReference;
import org.apache.poi.xssf.streaming.SXSSFWorkbook;
//added
import java.io.FileWriter;
import com.csvreader.CsvWriter;
//import java.io.IOExceptio;

/**
 *
 * @author alisha
 */
public class new_datasetcsv {

 public static void main(String[] args) throws IOException,
WriteException {
 String Path_in = "/home/alisha/Downloads/CSV Code+Libraries/IN/";//
give the input foleder path
 String Path_out = "/home/alisha/Downloads/CSV
Code+Libraries/out/";// give the output folder path
 File folder = new File(Path_in);
 File[] listOfFiles = folder.listFiles();
 FileWriter writer = null;

 for (int f = 0; f < listOfFiles.length; f++) {
 System.out.println("Start " + listOfFiles[f].getName());
 //if (listOfFiles[f].getName().equalsIgnoreCase("positive0")) {
 // Workbook workbook = new SXSSFWorkbook();
 //Sheet sheet = workbook.createSheet("Datatypes in Java");
 //int rowNum = 0;
 CsvWriter csvOutput = new CsvWriter(new FileWriter(Path_out +
listOfFiles[f].getName().replace(".fasta", ".csv"),true),',');

Appendix

57

 // TODO code application logic here
 BufferedReader br = null;
 FileReader fr = null;
 br = new BufferedReader(new FileReader(Path_in +
listOfFiles[f].getName()));
 //int i = 0;
 String sCurrentLine = null;
 String miRNA = null;
 String Mrna = null;
 String Rvalue = null;
 String R1 = null;
 String R2 = null;
 String R = null;
 int match = 0;
 int mismatch =0;
 int N_AU =0;
 int N_GC = 0;
 ArrayList<String> features = new ArrayList<String>();
 int n_feat = 0;
 int flag1 = 0;
 int flag2 = 0;
 while ((sCurrentLine = br.readLine()) != null) {
 if (sCurrentLine.contains(">hsa-miR-")) {
 String[] temp = sCurrentLine.split("\\s+");
 miRNA = temp[0].replaceAll(">", "").trim();

 Mrna = temp[1].trim();
 flag1 = 1;
 // Rvalue.add(temp[2].replaceAll("R:", "").trim());

 }else if(sCurrentLine.contains("Forward:")){

 //String[] temp1 = sCurrentLine.split("\\s+");
 //R1 = temp1[7].replaceAll("R:", "").trim();
 //R2= " "+temp1[8]+" "+temp1[9];
 //R = R1+R2;
 R = sCurrentLine;
 R = R.replaceAll(" Forward: Score: ","");
 R = R.trim();
 String temp1[] = R.split("\\s+");
 temp1[7] = null;
 temp1[8] = null;
 temp1[9] = null;
 temp1[10] = null;
 temp1[11] = null;
 temp1[12] = null;
 R = temp1[4].replaceAll("R:", "")+" "+temp1[5]+"
"+temp1[6];

 } else if (sCurrentLine.contains("Ref: 5' ")) {
 String ref = sCurrentLine;
 sCurrentLine = br.readLine();
 sCurrentLine = br.readLine();
 String query = sCurrentLine;
 ref = ref.replaceAll("Ref: 5'", "");
 ref = ref.replaceAll("3'", "");
 ref = ref.trim();
 ref = ref.replaceAll("[a-z]", "");
 ref = ref.trim();

 query = query.replaceAll("Query: 3'", "");

Appendix

58

 query = query.replaceAll("5'", "");
 query = query.trim();
 query = query.replaceAll("[a-z]", "");
 query = query.trim();
 System.out.println("Ref " + ref + " " + query);
 System.out.println(R);
 int start = 0;

 if (ref.length() == query.length()) {
 start = ref.length();

 }
 //features.add(new ArrayList<String>());
 /*
 if (ref.length() == query.length()) {
 start = ref.length() - 1;
 end = 0;
 } else if (ref.length() > query.length()) {
 int mis = ref.length() - query.length();
 for (int i = 0; i < mis; i++) {
 query = "*" + query;
 }
 start = ref.length() - 1;
 end = mis;
 }
 */
 for (int i = 0; i < start; i++) {
 if (!ref.isEmpty() && !query.isEmpty()) {
 //System.out.println("Length "+ref.length());
 //int temp_num =
Integer.parseInt(temp[i].trim());
 String feat_temp = "";
 feat_temp = "" + ref.charAt(i) +
query.charAt(i);
 //feat_temp=feat_temp+;
 features.add(feat_temp);
 }
 }
 flag2 = 1;

 }

 if (flag1 == 1 && flag2 == 1) {
 // int colNum = 0;
 /* Row row = sheet.createRow(rowNum++);
 int colNum = 0;
 Cell cell = row.createCell(colNum++);
 cell.setCellValue((String) miRNA);
 cell = row.createCell(colNum++);
 cell.setCellValue((String) Mrna);*/
 csvOutput.write(miRNA);
 csvOutput.write(Mrna);

 //setting up extra condition to check array boundary
indices//
 for (int j = 0; j < features.size(); j++) {
 String feat_temp = features.get(j);
 double feat_num = -2;
 if (feat_temp.contentEquals("AT") ||
feat_temp.contentEquals("GC")) {

Appendix

59

 match++;
 if(feat_temp.contentEquals("GC")){
 N_GC++;
 }
 feat_num = 1;
 } else if (feat_temp.contentEquals("AU") ||
feat_temp.contentEquals("UG")) {
 feat_num = 2;
 if (feat_temp.contentEquals("AU")){
 N_AU++;
 }
 } else if (feat_temp.contentEquals("GT") ||
feat_temp.contentEquals("TC") || feat_temp.contentEquals("AG") ||
feat_temp.contentEquals("AC")
 || feat_temp.contentEquals("TU")) {
 feat_num = 0;
 mismatch++;
 } else if (feat_temp.contentEquals("AA") ||
feat_temp.contentEquals("TT") || feat_temp.contentEquals("GG") ||
feat_temp.contentEquals("CC")) {
 feat_num = 0;
 } else if (feat_temp.contentEquals("A-") ||
feat_temp.contentEquals("T-") || feat_temp.contentEquals("G-") ||
feat_temp.contentEquals("C-")) {
 feat_num = -1;
 }

 }
 /* cell = row.createCell(colNum++);
 cell.setCellValue((String) R);
 cell = row.createCell(colNum++);
 cell.setCellValue((int) match);
 cell = row.createCell(colNum++);
 cell.setCellValue((int) mismatch);
 cell = row.createCell(colNum++);
 cell.setCellValue((int) N_AU);
 cell = row.createCell(colNum++);
 cell.setCellValue((int) N_GC);*/
 csvOutput.write(R);
 csvOutput.write(String.valueOf(match));
 csvOutput.write(String.valueOf(mismatch));
 csvOutput.write(String.valueOf(N_AU));
 csvOutput.write(String.valueOf(N_GC));
 //Start valaues (Again Loop)
 for (int j = 0; j < features.size() ; j++) {
 String feat_temp = features.get(j);
 double feat_num = -2;
 if (feat_temp.contentEquals("AT") ||
feat_temp.contentEquals("GC")) {

 feat_num = 1;
 } else if (feat_temp.contentEquals("AU") ||
feat_temp.contentEquals("UG")) {
 feat_num = 2;

 } else if (feat_temp.contentEquals("GT") ||
feat_temp.contentEquals("TC") || feat_temp.contentEquals("AG") ||
feat_temp.contentEquals("AC")
 || feat_temp.contentEquals("TU")) {
 feat_num = 0;

Appendix

60

 } else if (feat_temp.contentEquals("AA") ||
feat_temp.contentEquals("TT") || feat_temp.contentEquals("GG") ||
feat_temp.contentEquals("CC")) {
 feat_num = 0;
 } else if (feat_temp.contentEquals("A-") ||
feat_temp.contentEquals("T-") || feat_temp.contentEquals("G-") ||
feat_temp.contentEquals("C-")) {
 feat_num = -1;
 }
 /*cell = row.createCell(colNum++);
 cell.setCellValue((Double) feat_num);*/
 csvOutput.write(String.valueOf(feat_num));

 }
 //End Values
 csvOutput.endRecord();
 features.clear();
 flag1 = 0;
 flag2 = 0;
 match =0;
 mismatch = 0;
 N_AU =0;
 N_GC = 0;
 n_feat++;
 R1 =null;
 R2= null;
 R = null;
 }
 if (n_feat == 1000000) {
 break;
 }
 }

 try {

 csvOutput.close();
 FileOutputStream outputStream = new
FileOutputStream("/home/alisha/Downloads/CSV
Code+Libraries/out/empty.csv");
 //workbook.write(outputStream);*/
 // workbook.close();

 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }

 System.out.println("Done" + listOfFiles[f].getName());
 }
 }
}

Appendix

61

Appendix 8.4. A java program for feature generations from the alignment of outseed
sequences. This java code generates the miRNA pairing information is summarized over the
3’ region and outseed region of the miRNA. The input dataset is the duplex structure of miRNA
target interactions.

package new_datasetsmall;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;
import jxl.write.WriteException;
import org.apache.poi.ss.usermodel.Cell;
import org.apache.poi.ss.usermodel.Row;
import org.apache.poi.xssf.usermodel.XSSFSheet;
import org.apache.poi.xssf.usermodel.XSSFWorkbook;
//Added
import org.apache.poi.ss.usermodel.Sheet;
import org.apache.poi.ss.usermodel.Workbook;
import org.apache.poi.ss.util.CellReference;
import org.apache.poi.xssf.streaming.SXSSFWorkbook;
//added
import java.io.FileWriter;
import com.csvreader.CsvWriter;
//import java.io.IOExceptio;
/*** @author alisha
 */
public class new_datasetsmall {

 public static void main(String[] args) throws IOException,
WriteException {
 String Path_in = "/home/alisha/Downloads/Final Updated Code+
Libraries/in_positive/";// give the input foleder path
 String Path_out = "/home/alisha/Downloads/Final Updated Code+
Libraries/pos_out_lowercase/";// give the output folder path
 File folder = new File(Path_in);
 File[] listOfFiles = folder.listFiles();
 FileWriter writer = null;

 for (int f = 0; f < listOfFiles.length; f++) {
 System.out.println("Start " + listOfFiles[f].getName());
 //if (listOfFiles[f].getName().equalsIgnoreCase("positive0")) {
 // Workbook workbook = new SXSSFWorkbook();
 //Sheet sheet = workbook.createSheet("Datatypes in Java");
 //int rowNum = 0;
 CsvWriter csvOutput = new CsvWriter(new FileWriter(Path_out +
listOfFiles[f].getName().replace(".fasta", ".csv"),true),',');
 // TODO code application logic here
 BufferedReader br = null;
 FileReader fr = null;
 br = new BufferedReader(new FileReader(Path_in +
listOfFiles[f].getName()));
 //int i = 0;
 String sCurrentLine = null;
 String miRNA = null;
 String Mrna = null;
 String Rvalue = null;
 String R = null;

Appendix

62

 int match = 0;
 int mismatch =0;
 int othermismatch = 0;
 int N_AU =0;
 int N_GC = 0;
 int N_UG = 0;

 ArrayList<String> features = new ArrayList<String>();
 int n_feat = 0;
 int flag1 = 0;
 int flag2 = 0;
 csvOutput.write("miRNA");
 csvOutput.write("Mrna");
 csvOutput.write("R");
 csvOutput.write("Total-Matches");
 csvOutput.write("Total-Mismatces");
 csvOutput.write("Total-gc");
 csvOutput.write("Total-au");
 csvOutput.write("Total-ug");
 csvOutput.write("Total-Othermismatces");
 csvOutput.endRecord();

 while ((sCurrentLine = br.readLine()) != null) {
 if (sCurrentLine.contains(">hsa-miR-")) {
 String[] temp = sCurrentLine.split("\\s+");
 miRNA = temp[0].replaceAll(">", "").trim();

 Mrna = temp[1].trim();
 flag1 = 1;
 // Rvalue.add(temp[2].replaceAll("R:", "").trim());

 }else if(sCurrentLine.contains("Forward:")){
 R = sCurrentLine;
 //System.out.println(R);
 R = R.replaceAll(" Forward: Score: ","");
 R = R.replaceAll("Q:", "");
 R = R.replaceAll("R:", "");
 R = R.replaceAll("Align Len ", "");
 //System.out.println(R);
 R = R.replaceAll("Energy:", "");
 //System.out.println(R);
 R = R.substring(21);
 R = R.replaceAll("to", "");
 String[] temp1 = R.split("\\s+");
 R = temp1[0].trim()+" "+"to"+" "+temp1[1].trim();

 } else if (sCurrentLine.contains("Ref: 5' ")) {
 String ref = sCurrentLine;
 sCurrentLine = br.readLine();
 sCurrentLine = br.readLine();
 String query = sCurrentLine;
 ref = ref.replaceAll("Ref: 5'", "");
 ref = ref.replaceAll("3'", "");
 ref = ref.trim();
 ref = ref.replaceAll("[A-Z]", "");
 ref = ref.replaceAll("[\\-]", "");
 ref = ref.trim();

 query = query.replaceAll("Query: 3'", "");
 query = query.replaceAll("5'", "");

Appendix

63

 query = query.trim();
 query = query.replaceAll("[A-Z]", "");
 query = query.replaceAll("-", "");
 query = query.trim();
 System.out.println("Ref " + ref + " " + query);
 // System.out.println(R);
 int start = 0;

 if (ref.length() == query.length()) {
 start = ref.length();

 }
 /* //features.add(new ArrayList<String>());
 int start = -1;
 int end = -1;
 if (ref.length() == query.length()) {
 start = ref.length() - 1;
 end = 0;
 } else if (ref.length() > query.length()) {
 int mis = ref.length() - query.length();
 for (int i = 0; i < mis; i++) {
 query = "*" + query;
 }
 start = ref.length() - 1;
 end = mis;
 }*/
 for (int i = 0; i < start; i++) {
 if (!ref.isEmpty() && !query.isEmpty()) {
 //System.out.println("Length "+ref.length());
 //int temp_num =
Integer.parseInt(temp[i].trim());
 String feat_temp = "";
 feat_temp = "" + ref.charAt(i) +
query.charAt(i);
 //feat_temp=feat_temp+;
 features.add(feat_temp);
 //System.out.println(feat_temp);
 }
 }
 flag2 = 1
 }

 if (flag1 == 1 && flag2 == 1) {
 // int colNum = 0;
 /* Row row = sheet.createRow(rowNum++);
 int colNum = 0;
 Cell cell = row.createCell(colNum++);
 cell.setCellValue((String) miRNA);
 cell = row.createCell(colNum++);
 cell.setCellValue((String) Mrna);*/
 csvOutput.write(miRNA);
 csvOutput.write(Mrna);

 //setting up extra condition to check array boundary
indices//
 for (int j = 0; j < features.size(); j++) {
 String feat_temp = features.get(j);
 //double feat_num = -2;

Appendix

64

 if (feat_temp.contentEquals("at") ||
feat_temp.contentEquals("gc")||feat_temp.contentEquals("ta") ||
feat_temp.contentEquals("cg")) {
 match++;

if(feat_temp.contentEquals("gc")||feat_temp.contentEquals("cg")){
 N_GC++;
 }
 // feat_num = 1;
 } else if (feat_temp.contentEquals("au") ||
feat_temp.contentEquals("ug")) {
 //feat_num = 2;

if(feat_temp.contentEquals("ug")||feat_temp.contentEquals("gu")){
 N_UG++;
 }

 if
(feat_temp.contentEquals("au")||feat_temp.contentEquals("ua")){
 N_AU++;
 }
 } else if (feat_temp.contentEquals("gt") ||
feat_temp.contentEquals("tc") || feat_temp.contentEquals("ag") ||
feat_temp.contentEquals("ac")
 || feat_temp.contentEquals("tu") ||
feat_temp.contentEquals("cu")||feat_temp.contentEquals("tg") ||
feat_temp.contentEquals("ct") || feat_temp.contentEquals("ga") ||
feat_temp.contentEquals("ca")
 || feat_temp.contentEquals("ut") ||
feat_temp.contentEquals("uc")) {
 //feat_num = 0;
 mismatch++;
 } else if (feat_temp.contentEquals("aa") ||
feat_temp.contentEquals("tt") || feat_temp.contentEquals("gg") ||
feat_temp.contentEquals("cc")) {
 // feat_num = 0;
 othermismatch++;
 } else if (feat_temp.contentEquals("A-") ||
feat_temp.contentEquals("T-") || feat_temp.contentEquals("G-") ||
feat_temp.contentEquals("C-")) {
 // feat_num = -1;
 }

 }
 /* cell = row.createCell(colNum++);
 cell.setCellValue((String) R);
 cell = row.createCell(colNum++);
 cell.setCellValue((int) match);
 cell = row.createCell(colNum++);
 cell.setCellValue((int) mismatch);
 cell = row.createCell(colNum++);
 cell.setCellValue((int) N_AU);
 cell = row.createCell(colNum++);
 cell.setCellValue((int) N_GC);*/
 csvOutput.write(R);
 csvOutput.write(String.valueOf(match));
csvOutput.write(String.valueOf(mismatch));
csvOutput.write(String.valueOf(N_GC));

csvOutput.write(String.valueOf(N_AU));csvOutput.write(String.valueOf(N_UG))
; csvOutput.write(String.valueOf(othermismatch));

Appendix

65

 //Start valaues (Again Loop)

 //End Values
 csvOutput.endRecord();
 features.clear();
 flag1 = 0;
 flag2 = 0;
 match =0;
 mismatch = 0;
 othermismatch = 0;
 N_UG = 0;
 N_AU =0;
 N_GC = 0;
 n_feat++;
 }
 if (n_feat == 22704425) {
 break;
 }
 }
 try {

 csvOutput.close();
 FileOutputStream outputStream = new
FileOutputStream("/home/alisha/Downloads/Final Updated Code+
Libraries/pos_out_upparcase/empty.csv");
 //workbook.write(outputStream);*/
 // workbook.close();

 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 System.out.println("Done" + listOfFiles[f].getName());
 }
 }
}

Appendix

66

Appendix 8.5. An example of training dataset. After feature generation from several code
and algorithms, 95 features are generated of each miRNA target interaction. After several pre-
processing stages (section 2.4) resultant dataset used for training of AHDR algorithm. The
input dataset was saved as the excel file.

Appendix

67

Appendix 8.6. AHDR architecture. In training AHDR classifier, several deep learning
packages such as Keras and sklearn is used to train AHDR classifier. Several machine
learning algorithms have been applied before and after feature selection algorithms. The
performance of classifier was presented by generating ACC, AUC, TPR, TNR, and MCC (as
shown in Table 6)

#importing Libraries used
import pandas as pd
import numpy as np
##usefull preprocessing and etc classes
from sklearn.cross_validation import train_test_split
from sklearn import metrics
from keras import backend as K
from sklearn.metrics import precision_score
from sklearn.metrics import auc
from sklearn.metrics import recall_score, confusion_matrix
##ml model classes
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.models import Sequential
from keras.layers import Dense, Dropout
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.naive_bayes import BernoulliNB
from sklearn import tree
from sklearn import svm
##importing Feature selection Classes
from sklearn.feature_selection import VarianceThreshold
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
from sklearn.svm import SVC
from sklearn.feature_selection import RFE
from sklearn.linear_model import RandomizedLogisticRegression
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.feature_selection import SelectFromModel
from sklearn.svm import LinearSVC
from sklearn.cross_validation import KFold

Defining Machine learning Models

Logisitic Regression
def LogisticModel(xTrain, yTrain, xTest, yTest):
 logreg = LogisticRegression(C=1e5)

 logreg.fit(xTrain,yTrain)
 yPredict = logreg.predict(xTest)
 precisionScore=precision_score(yTest, yPredict, average="binary")
 tn, fp, fn, tp = confusion_matrix(yTest, yPredict).ravel()
 recall=recall_score(yTest, yPredict)
 score =logreg.score(xTest, yTest)
 return logreg,score, precisionScore,recall, tn, fp, fn, tp, yPredict

KNN model
def KNNModel(xTrain, yTrain, xTest, yTest):
 neighModel = KNeighborsClassifier(n_neighbors=5)
 neighModel.fit(xTrain,yTrain)

Appendix

68

 yPredict = neighModel.predict(xTest)
 precisionScore=precision_score(yTest, yPredict, average="binary")
 tn, fp, fn, tp = confusion_matrix(yTest, yPredict).ravel()
 recall=recall_score(yTest, yPredict)
 score =neighModel.score(xTest, yTest)
 return neighModel, score, precisionScore,recall, tn, fp, fn, tp,
yPredict

NN
def NNModelFunction(xTrain, yTrain, xTest, yTest, DenseNumber):
model2 = Sequential()
model2.add(Dense(16, activation='sigmoid', input_dim=DenseNumber))
model2.add(Dense(1, activation='sigmoid'))
model2.compile(loss='binary_crossentropy',optimizer='rmsprop',
metrics=['accuracy'])
model2.fit(xTrain,yTrain, epochs=60, batch_size=128)
scores= model2.evaluate(xTest, yTest)
yPredict = model2.predict_classes(xTest, batch_size=128)
precisionScore=precision_score(yTest, yPredict, average="binary")
tn, fp, fn, tp = confusion_matrix(yTest, yPredict).ravel()
recall=recall_score(yTest, yPredict)
return model2,scores[1], precisionScore,recall, tn, fp, fn, tp, yPredict

 ### GradientBoostingClassifier
def boostingalgo(xTrain, yTrain, xTest, yTest):
clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0,
max_depth=1, random_state=0).fit(xTrain, yTrain)
yPredict = clf.predict(xTest)
precisionScore=precision_score(yTest, yPredict, average="binary")
tn, fp, fn, tp = confusion_matrix(yTest, yPredict).ravel()
recall=recall_score(yTest, yPredict)
score =clf.score(xTest, yTest)
return clf, score, precisionScore,recall, tn, fp, fn, tp, yPredict

Random Forest
def randomForestModel(xTrain, yTrain, xTest, yTest):
clf = RandomForestClassifier(max_depth=2, random_state=0)
clf.fit(xTrain, yTrain)
yPredict = clf.predict(xTest)
precisionScore=precision_score(yTest, yPredict, average="binary")
tn, fp, fn, tp = confusion_matrix(yTest, yPredict).ravel()
recall=recall_score(yTest, yPredict)
score =clf.score(xTest, yTest)
return clf, score, precisionScore,recall, tn, fp, fn, tp, yPredict

####### Gradientboosting
def gradientboostingModel(xTrain, yTrain, xTest, yTest):
clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0,
max_depth=1, random_state=0).fit(xTrain, yTrain)
yPredict = clf.predict(xTest)
precisionScore=precision_score(yTest, yPredict, average="binary")
tn, fp, fn, tp = confusion_matrix(yTest, yPredict).ravel()
recall=recall_score(yTest, yPredict)
score =clf.score(xTest, yTest)
return clf, score, precisionScore,recall, tn, fp, fn, tp, yPredict

BernoulliNB
def bernoModel(xTrain, yTrain, xTest, yTest):
clf = BernoulliNB()
clf.fit(xTrain, yTrain)

Appendix

69

yPredict = clf.predict(xTest)
precisionScore=precision_score(yTest, yPredict, average="binary")
tn, fp, fn, tp = confusion_matrix(yTest, yPredict).ravel()
recall=recall_score(yTest, yPredict)
score =clf.score(xTest, yTest)
return clf, score, precisionScore,recall, tn, fp, fn, tp, yPredict

Decision Tree
def DecisionTreeModel(xTrain, yTrain, xTest, yTest):
treeClas= tree.DecisionTreeClassifier()
treeClas.fit(xTrain,yTrain)
yPredict = treeClas.predict(xTest)
precisionScore=precision_score(yTest, yPredict, average="binary")
tn, fp, fn, tp = confusion_matrix(yTest, yPredict).ravel()
recall=recall_score(yTest, yPredict)
score =treeClas.score(xTest, yTest)
return treeClas,score, precisionScore,recall, tn, fp, fn, tp,yPredict

SVM
def SVMModel(xTrain, yTrain, xTest, yTest):
 svmTModel = svm.SVC()

 svmTModel.fit(xTrain,yTrain)

 yPredict = svmTModel.predict(xTest)
 precisionScore=precision_score(yTest, yPredict, average="binary")
 tn, fp, fn, tp = confusion_matrix(yTest, yPredict).ravel()
 recall=recall_score(yTest, yPredict)
 score =svmTModel.score(xTest, yTest)
 return svmTModel, score, precisionScore,recall, tn, fp, fn, tp,
yPredict

Feature Selection
VarianceThreshold
def VarianceThresholdMethod(Input, output):
 selectionModel =VarianceThreshold(threshold=0)
 selectionModel.fit(Input, output)
 indexes=selectionModel.get_support(indices=True)
 columns=list(Input.columns)
 selectedList =[]
 for i in indexes:
 selectedList.append(columns[i])
 return selectedList

Chi `Square
def ChiSqure(Input, output):
 model = SelectKBest(chi2, k=10)
 temp =Input.copy()
 temp=temp.drop(["POS1","POS7", "m/e" , "POS9"
,"POS8","POS4","POS3","POS2","POS9","POS4","POS10"
 ,"POS6","Energy", "POS5","PyloP_Flanking","PhyloP_Stem"],
axis=1)
 model.fit(temp, output)
 indexes= model.get_support(indices=True)
 columns=list(temp.columns)
 selectedList =[]
 for i in indexes:
 selectedList.append(columns[i])
 return selectedList

Recursive feature elimination

Appendix

70

def RecursiveFeatureEmlination(Input, output):
 svc = SVC(kernel="linear", C=1)
 rfe = RFE(estimator=svc, n_features_to_select=1, step=1)
 rfe.fit(Input, output)
 indexes= rfe.get_support(indices=True)
 columns=list(Input.columns)
 selectedList =[]
 for i in indexes:
 selectedList.append(columns[i])
 return selectedList

RandomizedLogisticRegression
def RLRFeatureSelection(Input, output):
 clf = RandomizedLogisticRegression()
 clf = clf.fit(Input, output)
 indexes=clf.get_support(indices=True)
 columns=list(Input.columns)
 selectedList =[]
 for i in indexes:
 selectedList.append(columns[i])
 return selectedList

Tree-based feature selection
def treeBasedSelection(Input, output):
clf = ExtraTreesClassifier()
clf = clf.fit(Input, output)
 model = SelectFromModel(clf, prefit=True)
 indexes=model.get_support(indices=True)
 columns=list(Input.columns)
 selectedList =[]
 for i in indexes:
selectedList.append(columns[i])
 return selectedList

LASSO
def lasso(Input, outout):
 lsvc = LinearSVC(C=0.01, penalty="l1", dual=False).fit(Input, output)
 model = SelectFromModel(lsvc, prefit=True)
 columns=list(Input.columns)
 indexes = list(model.get_support(indices=True))
 selectedList =[]
 for i in indexes:
 selectedList.append(columns[i])
 return selectedList

Now loading Dataset
df = pd.read_csv("prepocessed_numeric_fullDataSet.csv")
Input=(df.loc[:, df.columns != 'seed'])
output = (df['seed'])

DFFN without Using Feature selection
X_train, X_test, y_train, y_test = train_test_split(Input,output,
test_size=0.3, random_state=5)

DNN(np.array(X_train), np.array(y_train), np.array(X_test),
 np.array(y_test) ,X_train.shape[1])

APPLYING DEEP LEARNING ON LASSO SELECTED FEATURES
one=lesso(Input, output)
two=lesso(Input, output)
three=lesso(Input, output)

Appendix

71

commonLassoFeatures=list(set(one)&set(two)&set(three))
print(len(commonLassoFeatures))
X_train, X_test, y_train, y_test =
train_test_split(Input[commonLassoFeatures],output, test_size=0.3,
random_state=5)
x_train.shape
DNN(np.array(X_train), np.array(y_train), np.array(X_test),
 np.array(y_test) ,X_train.shape[1])
X_train.shape[1]

APPLYING ALL ML MODELS WITHOUT USING ANY FEATURE SELECTION METHOD
Separting Data into Testing and Training
X_train, X_test, y_train, y_test = train_test_split(Input,output,
test_size=0.3, random_state=5)

After division applying ML model
LR_Model, LR_score, LR_precisionScore,LR_recall, LR_tn, LR_fp, LR_fn,
LR_tp, LR_yPredict=LogisticModel(X_train,y_train, X_test, y_test)
LR_score

In[36]:
BA_Model, BA_score, BA_precisionScore,BA_recall, BA_tn, BA_fp, BA_fn,
BA_tp, BA_yPredict=boostingalgo(X_train, y_train, X_test, y_test)

In[37]:
BN_Model, BN_score, BN_precisionScore,BN_recall, BN_tn, BN_fp, BN_fn,
BN_tp, BN_yPredict=bernoModel(X_train,y_train, X_test, y_test)
BN_score

In[39]:
DT_Model, DT_score, DT_precisionScore,DT_recall, DT_tn, DT_fp, DT_fn,
DT_tp, DT_yPredict=DecisionTreeModel(X_train,y_train, X_test, y_test)

In[40]:
SVM_Model, SVM_score, SVM_precisionScore,SVM_recall, SVM_tn, SVM_fp,
SVM_fn, SVM_tp, SVM_yPredict=SVMModel(X_train,y_train, X_test,y_test)

In[41]:
NN_Model, NN_score, NN_precisionScore,NN_recall, NN_tn, NN_fp, NN_fn,
NN_tp, NN_yPredict=NNModelFunction(np.array(X_train),np.array(y_train),
np.array(X_test), np.array(y_test) ,X_train.shape[1])
NN_score

In[43]:
DNN_Model, DNN_score, DNN_precisionScore, DNN_recall, DNN_tn, DNN_fp,
DNN_fn, DNN_tp, DNN_yPredict=DNN(np.array(X_train), np.array(y_train),
np.array(X_test), np.array(y_test),X_train.shape[1])
DNN_score

After Feature selection apply ML models on it
Variance threshold applying
InputColumnsVari=VarianceThresholdMethod (Input, output)
len(InputColumnsVari)
VInput = Input[InputColumnsVari]
VX_train, VX_test, Vy_train, Vy_test = train_test_split(VInput,output,
test_size=0.3, random_state=5)

In[47]:
KNNModel(VX_train,Vy_train, VX_test, Vy_test)

In[48]:

Appendix

72

bernoModel(VX_train,Vy_train, VX_test, Vy_test)

In[49]:
SVMModel(VX_train,Vy_train, VX_test, Vy_test)

In[50]:
NNModelFunction(np.array(VX_train),Vy_train,
 np.array(VX_test), Vy_test, 70)

In[51]:
DNN(np.array(VX_train),Vy_train, np.array(VX_test), Vy_test,
len(InputColumns))

Tree-based feature selection

oneT=treeBasedSelection(Input, output)
twoT=treeBasedSelection(Input, output)
threeT=treeBasedSelection(Input, output)
commonTreeFeatures=list(set(oneT)&set(twoT)&set(threeT))
treeInput = Input[commonTreeFeatures]
len(commonTreeFeatures)
TX_train, TX_test, Ty_train, Ty_test = train_test_split(treeInput, output,
test_size=0.3, random_state=5)

In[54]:
print(LogisticModel(TX_train,Ty_train, TX_test, Ty_test))

Recursive feature elimination
oneR=RecursiveFeatureEmlination(Input, output)
twoR=RecursiveFeatureEmlination(Input, output)
threeR=RecursiveFeatureEmlination(Input, output)
commonReFeatures=list(set(oneR)&set(twoR)&set(threeR))
len(commonReFeatures)

In[]:
ReInput = Input[commonReFeatures]
RX_train, RX_test, Ry_train, Ry_test = train_test_split(ReInput,
 output,
test_size=0.3, random_state=5)

In[]:
print(LogisticModel(RX_train,Ry_train, RX_test, Ry_test))

In[]:
bernoModel(RX_train,Ry_train, RX_test, Ry_test)

In[]:
KNNModel(RX_train,Ry_train, RX_test, Ry_test)

In[]:
SVMModel (RX_train, Ry_train, RX_test, Ry_test)

In[]:
NNModelFunction (np.array (RX_train), Ry_train, np.array (RX_test),
Ry_test, len (commonReFeatures))

In[]:
DNN (np.array (RX_train), Ry_train, np.array (RX_test), Ry_test, len
(commonReFeatures))

Apply Lasso First and then take those Features and train ML Models

Appendix

73

one=lesso(Input, output)
two=lesso(Input, output)
three=lesso(Input, output)

In[21]:
commonLassoFeatures=list(set(one)&set(two)&set(three))
print(len(commonLassoFeatures))

In[22]:
LassoInput = np.array(Input[commonLassoFeatures])
input_number=len(commonLassoFeatures)
input_number

5 Cross Validation
kf_total = KFold(len(LassoInput), n_folds=5, shuffle=True, random_state=4)
DNNR=[]
precisionR=[]
recallR=[]
TruePositive =[]
FalsePositive =[]
for train, test in kf_total:
 TrainX=pd.DataFrame(LassoInput[list(train),:])
 Trainy=pd.DataFrame(output[list(train)])
 TestX=pd.DataFrame(LassoInput[list(test),:])
 Testy=pd.DataFrame(output[list(test)])

 model, score, precision, recall, TN, FP, FN, TP,
yPredict=DNN(np.array(TrainX),
np.array(Trainy),np.array(TestX),np.array(Testy),input_number)
 DNNR.append(score)
 precisionR.append(precision)
 recallR.append(recall)
 TruePositive.append(TP)
 FalsePositive.append(FP)
 print("!!!!!")

print ("Accuracy:")
print(DNNR)
print("Precision")
print(precisionR)
print("ReCall")
print(recallR)
print("TruePositive")
print(TruePositive)
print("False Posisive")
print(FalsePositive)

10 cross validation
kf_total = KFold(len(LassoInput), n_folds=10, shuffle=True, random_state=4)
In[62]:
LR10=[]
precisionR10=[]
recallR10=[]
TruePositive10 =[]
FalsePositive10 =[]
for train, test in kf_total:
 TrainX=pd.DataFrame(LassoInput[list(train),:])
 Trainy=pd.DataFrame(output[list(train)])
 TestX=pd.DataFrame(LassoInput[list(test),:])
 Testy=pd.DataFrame(output[list(test)])

Appendix

74

 model,score, precision, recall, TN, FP, FN, TP,
yPredict=LogisticModel(TrainX, Trainy, TestX,Testy)
 LR10.append(score)
 precisionR10.append(precision)
 recallR10.append(recall)
 TruePositive10.append(TP)
 FalsePositive10.append(FP)
 print("!!!!!")

In[63]:
print ("Accuracy:")
print(np.mean(LR10))
print("Precision")
print(np.mean(precisionR10))
print("ReCall")
print(np.mean(recallR10))
print("TruePositive")
print(np.mean(TruePositive10))
print("False Posisive")
print(np.mean(FalsePositive10))

multivariate Bernoulli Naïve Bayes
NB10=[]
precisionR10=[]
recallR10=[]
TruePositive10 =[]
FalsePositive10 =[]
for train, test in kf_total:
 TrainX=pd.DataFrame(LassoInput[list(train),:])
 Trainy=pd.DataFrame(output[list(train)])
 TestX=pd.DataFrame(LassoInput[list(test),:])
 Testy=pd.DataFrame(output[list(test)])
 model,score, precision, recall, TN, FP, FN, TP,
yPredict=bernoModel(TrainX, Trainy, TestX,Testy)
 NB10.append(score)
 precisionR10.append(precision)
 recallR10.append(recall)
 TruePositive10.append(TP)
 FalsePositive10.append(FP)
 print("!!!!!")

print ("Accuracy:")
print(np.mean(NB10))
print("Precision")
print(np.mean(precisionR10))
print("ReCall")
print(np.mean(recallR10))
print("TruePositive")
print(np.mean(TruePositive10))
print("False Posisive")
print(np.mean(FalsePositive10))

SVM10=[]
precisionR10=[]
recallR10=[]
TruePositive10 =[]
FalsePositive10 =[]
for train, test in kf_total:
 TrainX=pd.DataFrame(LassoInput[list(train),:])
 Trainy=pd.DataFrame(output[list(train)])
 TestX=pd.DataFrame(LassoInput[list(test),:])

Appendix

75

 Testy=pd.DataFrame(output[list(test)])
 model,score, precision, recall, TN, FP, FN, TP,
yPredict=SVMModel(TrainX, Trainy, TestX,Testy)
 SVM10.append(score)
 precisionR10.append(precision)
 recallR10.append(recall)
 TruePositive10.append(TP)
 FalsePositive10.append(FP)
 print("!!!!!")

print ("Accuracy:")
print(np.mean(SVM10))
print("Precision")
print(np.mean(precisionR10))
print("ReCall")
print(np.mean(recallR10))
print("TruePositive")
print(np.mean(TruePositive10))
print("False Posisive")
print(np.mean(FalsePositive10))

NN
NNR10=[]
precisionR10=[]
recallR10=[]
TruePositive10 =[]
FalsePositive10 =[]
for train, test in kf_total:
 TrainX=pd.DataFrame(LassoInput[list(train),:])
 Trainy=pd.DataFrame(output[list(train)])
 TestX=pd.DataFrame(LassoInput[list(test),:])
 Testy=pd.DataFrame(output[list(test)])

 model,score, precision, recall, TN, FP, FN, TP,
yPredict=NNModelFunction(np.array(TrainX), np.array(Trainy)
 ,
 np.array(TestX),np.array(Testy)
 ,len(commonLassoFeatures))
 NNR10.append(score)
 precisionR10.append(precision)
 recallR10.append(recall)
 TruePositive10.append(TP)
 FalsePositive10.append(FP)
 print("!!!!!")

In[67]:
print ("Accuracy:")
print(np.mean(NNR10))
print("Precision")
print(np.mean(precisionR10))
print("ReCall")
print(np.mean(recallR10))
print("TruePositive")
print(np.mean(TruePositive10))
print("False Posisive")
print(np.mean(FalsePositive10))

DNN
DNNR10=[]
precisionR10=[]
recallR10=[]

Appendix

76

TruePositive10 =[]
FalsePositive10 =[]
for train, test in kf_total:
 TrainX=pd.DataFrame(LassoInput[list(train),:])
 Trainy=pd.DataFrame(output[list(train)])
 TestX=pd.DataFrame(LassoInput[list(test),:])
 Testy=pd.DataFrame(output[list(test)])

 model,score, precision, recall, TN, FP, FN, TP,
yPredict=DNN(np.array(TrainX), np.array(Trainy)
 ,
 np.array(TestX),np.array(Testy)
 ,len(commonLassoFeatures))
 DNNR10.append(score)
 precisionR10.append(precision)
 recallR10.append(recall)
 TruePositive10.append(TP)
 FalsePositive10.append(FP)
 print("!!!!!")

print ("Accuracy:")
print(np.mean(DNNR10))
print("Precision")
print(np.mean(precisionR10))
print("ReCall")
print(np.mean(recallR10))
print("TruePositive")
print(np.mean(TruePositive10))
print("False Posisive")
print(np.mean(FalsePositive10))

Finding embedded score for each Feature
LASSO Features Accuracy
LassoDict= dict()
for l in commonLassoFeatures:
X_train, X_test, y_train, y_test = train_test_split(
Input[l],output, test_size=0.3,
random_state=5)score=NNModelFunction(X_train,y_train, X_test, y_test,1)
LassoDict[l]=score

In[71]:
LassoDict

Our FInal Model is DNN on LASSO Features
X_train, X_test, y_train, y_test =
train_test_split(Input[commonLassoFeatures],output, test_size=0.3,
random_state=5)

In[73]:
model,score, precision, recall, TN, FP, FN, TP,
yPredict=DNN(np.array(X_train), np.array(y_train),
np.array(X_test),np.array(y_test),len(commonLassoFeatures))

In[74]:
df_pre=pd.DataFrame(X_test)

Prediction Probablity

In[75]:
y_predicted_prob = model.predict(np.array(X_test))

Appendix

77

In[76]:
np.set_printoptions(formatter={'float_kind':'{:f}'.format})
pd.options.display.float_format = '{:,.20f}'.format

In[77]:
predicted_array=np.transpose(np.array(y_predicted_prob))[0]

In[78]:
df_pre["Prediction Probablity"]=predicted_array

Loading Number values of miRNA and MRNA
In[79]:
df_miRNA = pd.read_csv("miRNA_info.csv")

In[]:
df_miRNA.head()

In[]:
df_mRNA = pd.read_csv("mRNA_info.csv")

In[]:
cross_Prediction
=df_pre[["miRNA","mRNA","binding_region_length","Prediction Probablity"]]
In[]:
cross_Prediction["miRNA"]=cross_Prediction["miRNA"].replace(list(df_miRNA["
number"]),list(df_miRNA["value"]))
In[]:
cross_Prediction["mRNA"]=cross_Prediction["mRNA"].replace(list(df_mRNA["num
ber"]),list(df_mRNA["value"]))

cross_Prediction.to_csv("Predictions)

Appendix

78

Appendix 8.7. Test dataset of miRNA target. For performance evaluation of AHDR,
experimentally verified dataset used as a test dataset, which is retrieved from strong
experimental evidence such as Luciferase reporter assay, green fluorescent protein reporter
assay, Reverse transcriptase-PCR, and Pulsed SILAC.

miRNA Total experimentally verified targets
hsa-miR-140-5p 85
hsa-miR-133a-3p 110
hsa-miR-665 540
hsa-miR-448 48
hsa-miR-515-5p 185
hsa-miR-6891-5p 111
hsa-miR-3940-5p 62
hsa-miR-431-3p 5
hsa-miR-6832-5p 237
hsa-miR-103a-2-5p 57
hsa-miR-6877-5p 35
hsa-miR-1298-3p 45
hsa-miR-3682-5p 50
hsa-miR-3155a 97
hsa-miR-5089-5p 334
hsa-miR-648 67
hsa-miR-367-5p 119
hsa-miR-6740-5p 42
hsa-miR-450a-2-3p 75
hsa-miR-6793-3p 144
hsa-miR-3622a-3p 100
hsa-miR-541-5p 80
hsa-miR-6515-3p 181
hsa-miR-1276 141
hsa-miR-6499-3p 519
hsa-miR-2276-3p 145
hsa-miR-3120-3p 114
hsa-miR-6780b-5p 178
hsa-miR-4769-5p 59
hsa-miR-1306-5p 183
hsa-miR-519b-3p 314
hsa-miR-489-3p 60
hsa-miR-23a-3p 63
hsa-miR-6796-5p 51
hsa-miR-675-3p 52
hsa-miR-2110 96
hsa-miR-1269a 30
hsa-miR-483-3p 157
hsa-miR-4659a-3p 221

Appendix

79

miRNA Total experimentally verified targets
hsa-miR-146a-5p 168
hsa-miR-1289 76
hsa-miR-8485 217
hsa-miR-563 22
hsa-miR-425-3p 43
hsa-miR-4474-3p 48
hsa-miR-5002-5p 65
hsa-miR-3672 213
hsa-let-7a-3p 111
hsa-miR-4488 66
hsa-miR-3691-5p 39
hsa-miR-3688-5p 56
hsa-miR-532-3p 208
hsa-miR-4747-5p 215
hsa-miR-6813-3p 65
hsa-miR-3653-3p 113
hsa-miR-3150b-3p 180
hsa-miR-6858-5p 100
hsa-miR-6768-3p 95
hsa-miR-4797-3p 60
hsa-miR-4684-5p 217
hsa-miR-4638-5p 222
hsa-miR-4300 57
hsa-miR-6868-3p 178
hsa-miR-101-5p 55
hsa-miR-4650-3p 97
hsa-miR-6771-3p 179
hsa-miR-6748-3p 63
hsa-miR-1248 153
hsa-miR-4463 63
hsa-miR-6794-5p 119
hsa-miR-4763-5p 68
hsa-miR-6132 79
hsa-miR-1306-3p 11
hsa-miR-579-5p 1
hsa-miR-3917 1
hsa-miR-4793-3p 293
hsa-miR-575 110
hsa-miR-496 110
hsa-miR-320c 1
hsa-miR-6818-3p 149
hsa-miR-3162-3p 43
hsa-miR-661 328

Appendix

80

miRNA Total experimentally verified targets
hsa-miR-6797-5p 193
hsa-miR-5705 10
hsa-miR-6767-3p 40
hsa-miR-4722-5p 1
hsa-miR-4477a 134
hsa-miR-375 462
hsa-miR-424-3p 29
hsa-miR-499b-3p 55
hsa-miR-1277-5p 618
hsa-miR-1238-5p 51
hsa-miR-4799-5p 89
hsa-miR-3074-5p 94
hsa-miR-95-5p 116
hsa-miR-7157-5p 148
hsa-miR-4436a 1
hsa-miR-4634 33
hsa-miR-664b-5p 15
hsa-miR-4525 114
hsa-miR-486-3p 133
hsa-miR-302c-5p 136
hsa-miR-449a 117
hsa-miR-5001-5p 67
hsa-miR-4765 43
hsa-miR-3619-5p 117
hsa-miR-7113-5p 103
hsa-miR-766-3p 469
hsa-miR-487b-3p 16
hsa-miR-330-3p 130
hsa-miR-4257 1
hsa-miR-4264 78
hsa-miR-489-5p 1
hsa-miR-92b-5p 47
hsa-miR-6829-3p 1
hsa-miR-6766-3p 36
hsa-miR-5584-5p 122
hsa-miR-4710 1
hsa-miR-3910 102
hsa-miR-885-5p 60
hsa-miR-302e 417
hsa-miR-4715-3p 101
hsa-miR-1282 18
hsa-miR-3124-5p 3
hsa-miR-4750-5p 8

Appendix

81

miRNA Total experimentally verified targets
hsa-miR-191-3p 16
hsa-miR-6841-3p 46
hsa-miR-1301-5p 31
hsa-miR-3928-3p 1
hsa-miR-6799-5p 493
hsa-miR-20a-3p 72
hsa-miR-6787-3p 212
hsa-miR-1915-3p 184
hsa-miR-603 497
hsa-miR-32-5p 489
hsa-miR-5706 55
hsa-miR-6778-5p 127
hsa-miR-1301-3p 190
hsa-miR-1273f 207
hsa-miR-4777-5p 45
hsa-miR-3938 62
hsa-miR-371b-3p 42
hsa-miR-370-3p 98
hsa-miR-574-3p 19
hsa-miR-4751 40
hsa-miR-8071 57
hsa-miR-23a-5p 126
hsa-miR-329-5p 87
hsa-miR-372-3p 429
hsa-miR-4479 1
hsa-miR-105-3p 3
hsa-miR-4326 68
hsa-let-7b-5p 1148
hsa-miR-6751-5p 76
hsa-miR-3192-3p 56
hsa-miR-6856-3p 59
hsa-miR-6807-5p 439
hsa-miR-6735-5p 84
hsa-miR-5680 168
hsa-miR-30a-5p 693
hsa-miR-1207-5p 185
hsa-miR-6844 1
hsa-miR-4438 288
hsa-miR-3189-3p 60
hsa-miR-6880-5p 186
hsa-miR-6805-3p 89
hsa-miR-302b-5p 105
hsa-miR-623 221

Appendix

82

 miRNA Total experimentally verified targets
hsa-miR-875-3p 86
hsa-miR-6869-3p 11
hsa-miR-657 83
hsa-miR-4689 100
hsa-miR-136-3p 43
hsa-miR-519a-3p 316
hsa-miR-5003-3p 128
hsa-miR-576-5p 92
hsa-miR-371a-3p 20
hsa-miR-6762-3p 38
hsa-miR-586 84
hsa-miR-621 25
hsa-miR-6791-3p 272
hsa-miR-4664-5p 64
hsa-miR-4436b-3p 86
hsa-miR-3150a-5p 23
hsa-miR-3692-3p 119
hsa-miR-338-5p 94
hsa-miR-4693-3p 84
hsa-miR-543 97
hsa-miR-151b 25
hsa-miR-211-3p 83
hsa-miR-7150 102
hsa-miR-4445-3p 17
hsa-miR-96-5p 184
hsa-miR-5579-5p 37
hsa-miR-887-3p 10
hsa-miR-593-5p 63
hsa-miR-3689a-5p 45
hsa-miR-618 45
hsa-miR-6504-3p 327
hsa-miR-4282 279
hsa-miR-1228-3p 221
hsa-miR-106a-3p 152
hsa-miR-491-5p 106
hsa-miR-4685-3p 261
hsa-miR-548al 14
hsa-miR-6765-3p 109
hsa-miR-511-3p 237
hsa-miR-4286 103
hsa-miR-1471 3
hsa-miR-6767-5p 3

26315

Acknowledgements

83

9. ACKNOWLEDGEMENTS

First, I would like to thank my advisor Prof. Dr. med. Norbert Gretz, head of Zentrum für
Medizinische Forschung (ZMF), University of Heidelberg. His persistent support made my
Ph.D. possible. I really appreciate his patience, listening to my ideas; and correcting the draft
version of my papers and thesis.

I sincerely thank Ms. Edda Eustachi and Ms. Sina Schwalm for their support throughout my
stay at the ZMF. I would also like to thank Dr. Carsten Sticht for support during the work and
also for his corrections while while writing my thesis. I thank Dr. Harsh Dweep for his support
at the beginning of my work in the lab.

I would like to thank Dr. Abhishek Kumar (DKFZ, Heidelberg) for his support during my thesis
and critical corrections. Additionally, I thank Prof. Prashanth Suravajhala (Birla Institute of
Scientific Research), Dr. Daraksha Parveen (Microsoft Research, Microsoft Inc.) and Mr.
Sandeep Sarde (Wageningen University & Research, Wageningen) for their proof readings.

In the end, I would like to thank my family and friends for always being supportive, primarily
my parents, my brother, and my sisters.

