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1. INTRODUCTION 

1.1 microRNAs 

microRNAs (miRNAs) are short endogenous non-coding RNA molecules of 17-24 

nucleotides in size 1. miRNAs have important regulatory roles in animals, plants, and viruses 
1. They regulate post-transcriptional expressions of genes by aligning to different regions of 

miRNA targets 1. miRNAs are involved in several biological processes 1 as summarized in 

Figure 1. miRNAs play regulatory roles during cellular processes and differentiation events 1. 

In a few years, miRNAs and gene regulation have impacted virtually every field of biology 1. 

 

 
Figure 1. Overview of miRNA gene regulation in different cellular processes. miRNA binds to the target gene, 
which leads to target degradation and translational repression, which involved in different biological processes. 
 

The RNA polymerase II (RNA pol II) plays a crucial role in the miRNA biogenesis 1, 

2. This enzyme transcribes miRNA genes as long primary transcripts, which are known as pri-

miRNAs (Figure 2). While Drosha (ribonuclease III enzyme) processes pri-miRNA into stem-

loop precursor miRNAs (pre-miRNAs) 1, 2, the exportin V (ds-RNA binding protein dependent 

on the RanGTP) transports them from nucleus into the cytoplasm 1, 2. 
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Figure 2. Overview of miRNA biogenesis. miRNA gene is processed into the nucleus by RNA pol II to generate 
pri-miRNA. Dorsha slices pri-miRNA into pre-miRNA and exports it into the cytoplasm using Exportin V. Dicer 
removes the loop-like structure from pre-miRNA and converts into a double-stranded mature sequence. In the 
end, the mature miRNA sequence along with RISC molecules undergoes gene regulation by translational 
repression or cleavage. This figure is adopted from Trionfini and Benigni 2. 
 

In the cytoplasm, the maturation phase begins with Dicer (ATP dependent RNase III 

protein) that recognizes pre-miRNA and processes it into 21 base pair long miRNA-miRNA* 

duplex structure 1, 2. The duplex structure consists of an antisense strand that contains the G:U 

wobble base pair, mismatches and unpaired at 5’ end or sense strand 1, 2. The duplex structure 

loads on argonaute-1 (Ago-1) protein along with the RNA-induced silencing complex (RISC) 

and this complex structure guides to the target mRNA that leads to gene silencing under three 

different processes - degradation, translational repression, and mRNA destabilization 1, 2.  

 

Since miRNA are major regulators of cellular physiological processes, they also play important 

roles in human diseases including cancer, cardiovascular disease, diabetes, kidney disease, and 

neurological disorders 3. oncomiRs are miRNAs with roles in cancer 3 while some miRNAs 

that suppress cancer are known as tumor suppressor miRNAs (Figure 3). 
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Figure 3. Application of miRNA in different biological processes. Each colorful petal is a different process of 
diseases or stages in cancer whereas green petal indicates upregulation processes and red petal indicates 
downregulation processes. 
 

Table 1 summarizes roles of miRNAs in other human diseases by either up- or down-

regulation. 

Table 1. miRNA regulation involved in other human diseases. 

Disease miRNA Reference 
Cardiac hypertrophy miR-23a, miR-23b, miR-24, miR-195, miR-199a, and miR-214 

(Upregulate). 
4 

Alzheimer miR-9, miR-128a, miR-125b (Upregulate). 5 
Down syndrome miR-99a, let-7c, miR-125b-2, miR-155 and miR-802 (Upregulate). 6 
Systemic lupus 
erythematosus 

miR-189, miR-61, miR-78, miR-21, miR-142-3p, miR 342, miR-299-
3p, miR-198 and miR-298 (Upregulate). 

7 

miR-196a, miR-17-5p, miR- 409-3p, miR-141, miR-383, miR- 112, 
and miR-184 (Downregulate). 

Psoriasis miR-203 (Upregulate). 8 
Rheumatic arthritis miR-155, miR-146 (Upregulate). 9 

 
1.1.1 Measurable characteristics of miRNA target 

a) Seed sequence of miRNA 

Seed sequence is a conserved heptamer region, which is located in 2-8 nucleotides 

from the starting point at the 5’ end of miRNA 1. Generally, miRNAs are supposed to 
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bind in the 3’ untranslated region (3’ UTR) region of the target gene for translational 

regulations 1. Alignment between miRNA-targets follows the process of Watson and 

Crick mechanism in different architectures 10 such as canonical (Figure 4a) and non-

canonical (Figure 4b-f) binding. 

 

 
Figure 4. Seed type in alignment between miRNA and target gene. This figure is adopted from Dweep et al. 
10. 
 
b) Target site conservation 

 Sequence conservation is interpreted by the maintenance of nucleotides primarily in the 3’ 

UTR, the 5’ UTR, and the miRNA while considering multi-species alignment like human, 
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chimpanzee, mouse, chicken, and fishes 10. During miRNA target prediction, this 

conservational analysis hints for a functional miRNA target 10. Hence, the conservation of the 

target site plays an important role in computing miRNA target interaction.  

c) Free energy of miRNA-mRNA duplex structure 

 Gibbs free energy (or thermodynamics) measures the stability of a biological system and it 

is designated as ΔG 10. The negative ΔG is indicative of less energy, hence higher stability. 

This applies to the prediction of the target site, as the hairpin loop has higher energy (positive 

ΔG) while the stem region has lower ΔG, during miRNA-target hybridization 10. Therefore, the 

overall ΔG assists in miRNA target prediction.  

d) Site accessibility 

Site accessibility is an ability of a miRNA to locate and hybridize with a target 10. It portrays 

an energy-based measure, which essentially evaluates the potential of a given target site to be 

single-stranded and thus accessible for the miRISC protein for binding 10. The mRNA 

secondary structure then unfolds as the miRNA completes binding to a target 10. Hence, the 

predicted amount of energy required to make a site accessible to a miRNA can be evaluated 

for computing actual target sites 10. 

e) Other characteristics 

There are other features to build the classifier model more effective for target gene 

prediction namely “AU content” in the binding site of the target gene 11, “G:U wobble” in seed 

match refers to the pairing of “G” with “U” instead of “C” nucleotide 11. Additionally, the 

probability of multiple miRNA binding to a specific target is called multiple target abundance 
11. The presence of asymmetric-symmetric stem and the loop structure infers the binding of 

miRNA sequence to the target gene 11. Computing free energies of duplex structures within 

each seed and out-seed regions are also essential 11. 

1.1.2 Computational target prediction resources 

Target prediction is a procedure in which miRNA complementarity aligns to mRNA 

target 11. Single miRNA can bind to several mRNAs at different positions 11. Hence, there are 

massive challenges in predicting miRNA-mRNA interactions as this process is not fully 

understood 10. There are several types of experimental approaches for target prediction 

(microarray, pSILAC, real time PCR, western blot, and luciferase reporter assay), however, 

these approaches are time-consuming and expensive 10. Hence, several bioinformatic tools have 

been developed to overcome these issues. Herein, a summary of top tools for miRNA target 

prediction is provided (Table 2). 



Introduction 

 
6 

 

Table 2. Overview of tools for miRNA target prediction. 
Tools Types of feature Algorithm Organism 
miRanda 12 Seed match, conservation, 

and free energy 
Local alignments of miRNA:UTR, 
assessing the thermodynamic folding 
energy of a miRNA:UTR duplex 

Mammals, 
flies,and 
worms. 

TargetScan 13 Seed match and 
conservation 

Predicted targets by either the 
predicted efficacy of targeting 
(context+ scores) or the probability of 
conserved targeting (PCT) based on 
conservation. 

Mammals, 
flies, and 
worms 

MiRTarget2 14 Seed types, base 
composition, and secondary 
structure 

Support vector machine Mammals 
and birds 

RNA22 15 Seed match and free energy Use pattern discovery to identify 
target islands and evaluate the free 
energy of paired target islands and 
candidate miRNAs 

Mammals, 
flies, 
and worms. 

TargetMiner 16  Seed match, conservation, 
free energy, site 
accessibility, target-site 
abundance 

SVM based classifier identifying 
potential seed sites between a user-
provided miRNA and mRNA of 
choice. 

Any 

SVMicro 17 Seed match, conservation, 
free energy, site 
accessibility and target-site 
abundance 

SVM based learning classifier. Any 

PITA 18 Seed match, conservation, 
free energy, site 
accessibility and target-site 
abundance 

Potential site extracted by seed match 
criteria, undergoes site accessibility by 
computing a free energy score. In the 
end, target-site abundance is 
considered by combining the site 
accessibility scores for the same 
miRNA to identify a total interaction 
score for the miRNA and UTR. 

Mammals, 
flies,  
and worms. 

RNAHybrid 19 Seed match, free energy, 
and target-site abundance 

Based on free energy by assigning P-
value to potential miRNA:mRNA. 

Any 

 
Although there are several computational approaches for miRNA target prediction, 

however, these methods have various limitations such as low accuracy of predictors and less 

sensitivity for the prediction 10. Hence, these prediction algorithms are not enough to predict 

the putative target interactions 10. Additionally, there are still many unknowns and uncertainties 

in interactions among these molecules.  

1.2 Machine learning technique 

Artificial Intelligence (AI) is a wide research area focusing on the development of 

computational methods to mimic human cognitive behavior and intelligence 20. Machine 

Learning (ML) is the sub-field of AI, where computational algorithms optimize performance 

using the user-provided training dataset and generates a predictive model 20. ML is widely 

applied in different areas such as probability, statistics, signal processing, computational 

mathematics, philosophy, control systems theory, cognitive psychology, biology, economics, 
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and others 21. The ML is broadly classified into two main learning algorithms such as 

supervised and unsupervised learning (Figure 5). 
 

 
Figure 5. Hierarchical tree of ML. There are two types of learning (supervised and unsupervised) and these 
learning methods have their own algorithms (clustering is the method of unsupervised whereas classification and 
regression is the method of supervised). Each method has its corresponding learning algorithms for training. 
 

Unlike traditional algorithms, ML algorithms allow the computer to train on the input data and 

these algorithms use statistical analysis for predictions 21. Therefore, ML allows computers 

building models from sample data to automate decision-making processes based on the input 

data 21.  

1.2.1 Supervised learning 

Supervised algorithms train mapping functions from the input dataset (a) to the output 

(Z) by the user-provided training dataset and their corresponding output 22. 

Z = f (a) 

The goal is to approximate the mapping function so well that when you have new test 

data (a) that you can predict the output variables (Z) for that data 22. Supervised learning further 

grouped into classification and regression methods 22. Regression is known to predict a 

continuous value that tries to predict the continuous output value 22 whereas classification 
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predicts class labels (for instance, 0 class label for non-targets and 1 class label for targets) of 

new observations 22. 

1.2.2 Unsupervised learning 

Unsupervised learning is used for the training of a model without any prior information 

about the output dataset 23. The main objective of unsupervised learning is the construction of 

a model from the underlying structure or distribution in data 23. Clustering is the main method 

of an unsupervised learning algorithm 23. 

1.2.3 Artificial neural network 

Artificial neural network (ANN) is one of the most popular ML algorithms, which is 

inspired by the neuronal activity of the human brain 24. ANN consists of highly connected 

mathematical elements to process information from dynamic state response to input 24. An 

artificial neuron is the simplest unit in the neural network, which is known as perceptron and 

typically correlated with brain neuron cell 24 (Figure 6). A typical ANN is consisting of an input 

node in the directed graph, which is associated with their corresponding weights that creates 

connections between output and input nodes 24 (Figure 6). 

 
Figure 6. Neural network. The artificial neural network is the graphical representation of a biological neural 
network and works in the same process of transmitting information from the cell body to synapses. 
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The ANN receives input in the form of a sequence pattern and an image vector with their 

corresponding weights. In the ANN, a weight contains information in solving a problem at each 

node 25. Each input node multiplied by their corresponding weights and summed up inside the 

ANN structure 25. If the sum of weighted input corresponds to zero, bias value is added to make 

the output a non-zero whereas if weighted input corresponds to a non-zero value, the threshold 

value is set up and weighted value passes through an activation function to get the desired 

output 25. 

1.2.4 Deep Learning 

Deep Learning (DL) is the subset of the ML-based approach for extracting features and 

learning patterns from a large dataset by employing multilayered network 26. As genomic 

datasets are increasing day by day, extraction of important information has become the most 

challenging task in bioinformatics. DL is being used to overcome the problem in handling big 

datasets 26 (Figure 7). In general, DL has two features: (a) multiple hidden layers (nonlinear 

processing units), and (b) supervised or unsupervised learning of feature presentations on each 

layer 27. 

 
Figure 7. Representation of deep neural network and simple neural network. A deep neural network is an 
advanced hierarchical technique of simple neural network to make more condense analyses of data. This figure is 
adopted from 26. 
  

Applications of DL have been primarily focused on image recognition, video, and sound 

analyses, as well as natural language processing; it also opens doors in life sciences 27. In the 

ANN, the network consists of neurons (layers) that are interconnected in adjacent layers to 
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each other 27. As the nonlinear processing units increase, the network architecture becomes 

deeper and complex 27. The DL approach consists of six popular network architecture such as 

convolutional neural networks, recurrent neural networks, autoencoders, deep residual 

networks, and deep feedforward networks 28. 

a) Convolutional neural network 

Convolutional neural network (CNN) is the most popular algorithm in image recognition 

and natural language processing 29. The CNN architecture consists of four stages: 

• Receiving an input layer from data 29. 

• Convolutional layer undergoes preprocessing to reduce the sensitivity of the filters by 

reducing the noise and other variations 29. 

• In the activation layer, preprocessed input signals pass from one layer to another 29.  

• In the last stage, all the layers of the network are connected with every neuron from a 

preceding layer of the neurons from the subsequent layer 29. 

 

b) Recurrent neural network 

Recurrent neural network (RNN) is an advanced form of DL technique based on both 

feedforward and feedbackward network 30. The RNN approach is mainly used in text data, 

speech recognition, prediction problems in both classification and regression 30. 

 

c) Autoencoder 

Autoencoder is based on the principle of backpropagation in an unsupervised learning 

environment 31, 32. This technique has similarities with principal component analysis (PCA) 31, 

32. Autoencoders are easy to train on specialized input data as it does not require any new 

preprocessing step for the data 31, 32. 

d) Deep residual network 

Deep residual network (DRN) is an intriguing network consisting of multiple residual 

layers 33. Each residual layer consists of sets of activation functions along with their 

corresponding weights. However, the rectified linear unit (ReLu) is an activation function, 

which is applied to each layer. This increases their accuracies with the least number of weights 
33. 
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e)   Deep feedforward network 

Deep feedforward network (DFFN) is a supervised acyclic directed graph that trains from 

the input dataset. The aim of DFFN is to minimize the error on the prediction task 26, 34. DFFN 

is comprises of three layers: an input layer, a sequence of hidden layers, and an output layer. 

Each layer consists of several nodes and their corresponding weight. At each layer, activation 

functions are applied to the “sum of weighted inputs” and pass the result to all nodes of the 

next layer 26, 34. Mathematically, DFFN information passes through the hierarchical 

composition of the functions being evaluated from input (x) layer, through the intermediate 

computations used to define function (f), and generate output (Y) 26, 34.  

Y = f (x) ≈ f∗ (x) 

DFFN defines a mapping Y= f (x; θ) and learns the value of the parameters (θ) that 

result in the best function approximation f ∗ (x) and it is evaluated at different (x) instances 

(i.e., expected outputs) 26, 34. These models are called feedforward because information flows 

through the function being evaluated from (x), through the intermediate computations used to 

define (f), and finally to the output (Y) 26, 34. Each interconnection between nodes in each layer 

is represented by different activation functions 26, 34. The overall hidden layers along with their 

corresponding weights are known as the depth of the network 26, 34. Therefore, “DL” 

terminology arose from this technique. 

 

1.3 Keras 
 
Keras is an upgraded python library for profound learning with Theano and TensorFlow at the 

backend 35. Keras can run using both the central processing unit (CPU) and graphics processing 

unit (GPU) 35. Keras has following properties:  

(a) Keras is user-friendly application, which reduces the cognitive load 35.  

(b) It offers reliable and basic API, which provides actionable hints against errors made by 

the user 35. 

(c) Keras is highly modular in nature. It uses completely configurable modules like neural 

layers, cost capacities, enhancers, introduction schemes, activations functions, and 

regularization plans 35. These modules can easily be configured and modified based on 

the requirement for construction of new models. 

(d) Keras is highly flexible package and one can easily either add new modules or remove 

existing modules, this feature makes Keras suitable for advanced searches 35. 
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1.4 Aims of the study 

 
With the discovery of miRNA, the search for the target genes and their role in different 

cell systems began 1. A purely experimental approach for scanning target genes and their 

binding sites is a time-consuming and also an expensive approach 3. Another possibility is a 

purely computer-assisted analysis method at the sequence level to find potential interaction 

partners and their binding sites. In recent years, many prediction programs for miRNA gene 

interactions have been developed, which started with low accuracy. Through further knowledge 

in miRNA biology, the accuracy of these programs could be further improved. The main goal 

of this work is to further improve the accuracy of the prediction of possible target genes using 

the latest machine learning methods. 

The main objectives of this study are: 

• to construct a novel deep learning-based approach for increasing the accuracy for 

miRNA target prediction within the whole human genome. 

• to apply an optimized approach to this novel deep learning-based approach for target 

prediction of large datasets.  

• to validate the potential predicted interactions with validated interactions. 

• to identify potential candidate miRNAs on top mutated cancer genes. 
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2. MATERIAL AND METHODS 

2.1 Material 

When creating sets for model training, it is important not to introduce any biases that 

could be considered by the model to distinguish between positive and negative instances. This 

section describes the development of positive and negative datasets for model training and 

testing. 

2.1.1 Data Collection  

Using the human reference genome assembly version GRCh38.p10 as standard, mature 

miRNA and mRNA were extracted from miRBase v21 36 and Ensembl 37, respectively. To 

validate the performance accuracy of the classifier model, a verified dataset was extracted from 

miRTarBase v7.0 38, which is a comprehensive repository of experimentally supported miRNA 

targets 38. The miRTarBase v7.0 38 incorporates published information from 8510 research 

articles resulting in 422,517 experimentally supported miRNA target gene interactions 38. For 

each interaction, miRTarBase v7.0 38 also provides direct experimentally verified evidences, 

such as reporter gene assay, and/or indirect experimental evidences such as a microarray 38.  

2.1.2 Workspace 

A CPU was used with specification as following - Intel® Core™ i7-6800K CPU @ 

3.40GHz x 12 with 62.8GB memory, disk 424.6GB and OS type 64-bit. 

2.1.3 Platform used 

Python version 3.0+ was used for DL training using the following packages: 

(a) SciPy or sklearn package 35 (version 0.19.0). 

(b) NumPy library 35 (version 1.12.1). 

(c) Pandas library 35 (version 0.21.0). 

(d) Matplotlib library 35 (version 2.0.2). 

(e) TensorFlow 35 (version 1.0.0). 

2.2 Dataset generation 

This section describes the construction of positive and negative datasets for the training 

of the model.  

2.2.1 Positive dataset 

A positive dataset was developed by scrutinizing the high-throughput miRNA-target 

using Watson and Crick method (Figure 8). Seed alignments were obtained from miRanda 12 
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and TarPmiR 39 prediction tools. Generated alignments were verified by TarBase 40 and 

miRTarBase 38 databases. This dataset was subsequently used for filtering (together with the 

negative sets) and further training of the classifier model. 

2.2.2 Negative dataset 

A negative dataset was constructed from the binding site region of the human transcript 

sequence by randomly mutate with a frequency probability of 0.95 with the help of a python 

scripting (Appendix 8.1). Therefore, these mutated regions hinder the binding of the seed 

region. Generated negative dataset was verified by TarBase 40 database as described in Figure 

8. 

 
Figure 8. Generation of the two-class label dataset for training. miRNA is downloaded from miRBase v21 36 
and mRNA downloaded from Ensembl 37 for interaction predictions. Putative features were identified of each 
interaction. In the parametrization step, a potential two-class (negative and positive) label datasets were generated 
for training of the classifier model.  
 

2.3 Feature identification for training 

In this section, features of miRNA target interactions were divided into three categories 

such as thermodynamic features, structural features, sequence features, and other features that 

comprise of energy, binding position, binding sites, accessibility, PyloP flanking and stem 
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regions, and binding probability. A total of 96 features were chosen for the miRNA target 

prediction model. This section briefly describes feature generation. 

a) Seed Scanning: miRNA target interactions are a measure of complementary alignment 

between the miRNA and the targets. Seed scanning algorithms like miRanda 12 algorithm 

search for initial hits, which can contain a canonical and non-canonical interaction verified 

by TarPmiR 39 algorithm to find perfect seed interaction.  

 

b) Conservations: Conserved sequences are indicative of functional importance upon the 

feature selection. TarPmiR 39 or ElMMo 41 have been successfully applied to reduce the 

number of false positive predictions and it is verified by both miRanda 12 and average 

PhyloP 42 from Vienna package 42 for the generation of the conservational score. 

 

c) Free energy: Thermodynamic energy of the duplex secondary structure is commonly 

utilized by programs such as RNAduplex 42 from Vienna package 42. Further, it was verified 

by using both miRanda 12 and TarPmiR 39. 

 

d) Accessibility: Accessibility of binding site in the 3’ UTR is critical because miRNAs are 

assembled in the RISC protein 10. Several miRNA target prediction tools have been using 

accessibilities like miRanda 12. Further, it was verified by RNAplfold 42 from Vienna 

package 42. 

 

e) Structural pairing pattern: RNA structure is a critical descriptor involved in target 

interactions in the seed region 43. There are 58 instances of structural patterns of interaction 

such as the number of pairing in seed region, number of loops in symmetric or asymmetric 

way, number of bulges in seed in symmetric or asymmetric patterns, number of loops in 

regions outside the seed segment in symmetric or asymmetric way, number of bulges in 

regions outside the seed segment in symmetric or asymmetric patterns, and distance between 

start sequence in the seed region to the paired sequence at 5’ start of region outside the 

binding region 43 (Appendix 8.2). 

 

f) Sequence descriptors: Sequences are divided into two regions: (a) the binding region 

between miRNA and mRNA and (b) the region outside binding region 43. In both regions, 

base pairings have been extracted between miRNA-mRNA namely AU content, wobble 
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pairing, and other pairings to check the frequency of nucleotides at each position 43. These 

descriptors were calculated by Java scripts (Appendices 8.3 and 8.4). 

 

g) Motif related features: This is a probabilistic pairing measurement at a different position of 

miRNA sequence 39. At each position, if a pairing between sequences is matching are called 

as “a” else “e”. Calculated Motif features of interaction of each sequence are different, 

which is influencing the dimension of the vector space. This probabilistic parameter is 

calculated by: 

𝑚
𝑒

=
1
𝑙

∑ log 𝑄𝑖

𝑙

𝑖=0

 

Where l is the miRNA sequence length and Qi is the probability at the position an in ith miRNA 

sequence. This mathematical representation was calculated by TarPmiR 39. 

2.4 Pre-processing of the interaction descriptors 

In the filtering phase, parameters were applied either in the form of stricter energy-

based filtering or quality-based filtering. Hence, the following criteria were used for a good 

dataset:  

a) Replacement of strings values of interactions namely 3’UTR, CDS, 5’UTR and promoter 

to integer values because the classifier is trained by using integer or floating data points. 

b) Handling of missing values is dependent on the problem of the trained classifier 44. To 

construct the proper training dataset, this study used imputation and removing unreliable 

data points from the dataset to handle missing values 44. 

c) Not all interactions are energetically in favorable conditions. Therefore, data points are 

removed based on energy score to set stringent interactions in both datasets and thus 

decreases the false positive interactions (< -10 Kcal/mol for positive and > -9 Kcal/mol the 

for the negative set) 45. 

d) Generated interactions have higher than 80% sequence identities in the positive dataset 

and less than 79% in the negative dataset 46. 

e) Conservation score was evaluated from the phylogenetic analysis of all species. High 

conservation scores (>=150) were removed to decrease negative interactions form positive 

class or vice-versa 46. 

f) In the training phase of the classifier model, the class labels are referred to as seed (i.e., 

“1” is for the positive group of the dataset and “0” is for the negative group of the dataset). 
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2.5 AHDR approach 

The AHDR approach is based on DFFN approach (section 1.2.4), which is written in 

python. The input dataset was composed of miRNA target interactions along with their 

corresponding potential characteristics, which was used to train the AHDR approach. The 

dataset was split into three sets: training (60% of the dataset), test (20%), and validation (20%). 

AHDR approach consists of multi-layered architecture with an input layer (an input dataset), a 

sequence of hidden layers (7 hidden layers are used), and an output layer. Each layer consists 

of several numbers of nodes and weight (it is connection between a node of one layer to the 

node of the other layer). Different activation function was applied to each layer of the network 

(Figure 6). It introduces non-linear properties to the network architecture that converts an input 

signal of a node to an output. The input dataset passed through each node of all hidden layers, 

which increases accuracy of each interaction. In order to compare  the performances of four 

different classifier algorithms namely decision tree (DT) 45, Bernoulli naïve bayes (BNB) 43, 

logistic regression (LR) 46, and support vector machine (SVM) 39 with optimal parameters were 

considered using scikit package in python. DT is a tree-based model where leaves are the 

potential solutions and nodes are the decision-making points. LR is the logistic model where 

the dependent variables are in a binary form. SVM is a non-probabilistic linear classifier where 

data points are linearly separated by a hyperplane. BNB is a graph-based classification 

algorithm, where probabilities are assigned to each class. DT is the tree-like graph model where 

leaves represents the possible solutions of the problem whereas nodes represents the point of 

the decision. LR is the predictive analysis when the dependent variable is binary in nature. 

SVM is a discriminative classifier formally defined by a separating hyperplane. BNB classifier 

is a probabilistic machine learning model that’s used for classification task. The crux of the 

classifier is based on the bayes theorem. 

2.6 Statistical measures 
To evaluate the performance of each classifier model, the following statistical measures 

were used such as accuracy (ACC), area under curve (AUC), sensitivity, specificity, F-score, 

and Matthews correlation coefficient (MCC), using sklearn package in python. These measures 

were calculated using true positive (TP), false positive (FP), true negative (TN), and false 

positive (FP) as defined by equations: 

𝐴𝐶𝐶 =
TP + TN

TP + TN + FP + FN
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
TP

TP + FN
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
TN

TN + FP
 

𝑀𝐶𝐶 =
TP. TN − FP. FN

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑃𝑃𝑉. 𝑇𝑃𝑅

(𝑃𝑃𝑉 + 𝑇𝑃𝑅)
 

Sensitivity and specificity are mathematical functions that measure the quality of binary 

classifier model. The ability of algorithms to identify the true targets were analysed by 

sensitivity, whereas the probability of algorithms that correctly returns a target that is not 

regulated by the miRNA were analysed by specificity. MCC is a recognized measure that 

evaluates the quality of binary classifiers between true targets and false targets. F-score is the 

weighted harmonic mean of both sensitivity and specificity of the test model. 
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3. RESULTS 

To accomplish the aims of this study, a new DL-based framework was developed for miRNA 

target prediction and it was named as advanced hierarchical deep-rooted (AHDR) framework. 

Furthermore, the performance of AHDR was compared with other existing prediction tools 

using a testing dataset. In the end, the AHDR was employed for identification of possible 

miRNAs interacting with top mutated oncogenes for further validation. 

3.1 AHDR framework 

Figure 9 illustrates the AHDR framework. In this framework, the initial data is in the 

form of miRNA and targets derived from miRBase 36 and Ensembl 37 and these were filtered 

out using miRanda 12 and TarPmiR 39. Further, the generated interactions were verified by 

TarBase 40. 

 
Figure 9. Overview of AHDR framework to elucidate the potential interactions targets of miRNA.  
 

To calculate the interaction descriptors, both flanking regions of seed and their interactions 

were considered. The generated putative features were applied to build the AHDR model after 

pre-processing. The test dataset was composed of miRNAs and transcripts, which was used for 

the detection of the potential target sites (PTS). Finally, the performance evaluation of the 

AHDR was carried out using statistical tests. 
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3.2 Feature description of miRNA target interaction 

The first step in the DL method is a feature selection. During this study, a total of 95 

features were obtained after the pre-processing of the dataset (section 2.4). These 95 features 

were divided into three different categories as structural, sequence, and thermodynamics 

features (summarized in Table 3). In the first category, the miRNA target duplex structure is 

divided into two subdivisions, the alignment (seed) region (5’ until eight nucleotides of the 

miRNA) and outside alignment (outseed) region (3’ remainder). For both subdivisions the 

following descriptors are extracted to generate 57 structural descriptors of interactions: (a) 

number of symmetric loops with lengths 1–7 and those with lengths >7 (eight descriptors), (b) 

number of asymmetric loops (loops with unequal numbers of unpaired bases on the both 

strands), (c) number of bulges of lengths 1–7 and those with lengths > 7 (eight descriptors), (d) 

distance from the start of the seed (the 3’ end) to the first paired base of the 5’ start of the 

outside alignment part, (e) number of loops (unpaired bases opposite each other between paired 

bases), (f) number of bulges (inserts on one strand between paired bases), (g) number of paired 

bases (bp), and (h) number of asymmetric loops with lengths 1–7 and those with lengths >7 

(eight descriptors) as summarized in Table 3A. 

Table 3. Summary of generated features of miRNA-target interaction. 

S.No. Features Definition Source code 
A) STRUCTURAL FEATURES 
1 bul_seed_len1 Bulges present in seed region with length 1. Perl 
2 bul_seed_len6 Bulges present in seed region with length 6. Perl 
3 sym_seed_loop_len3 Symmetric loop in seed region with length 3. Perl 
4 sym_outseed_loop_len2 Symmetric loop in seed region with length 2. Perl 
5 sym_outseed_loop_len5 Symmetric loop in seed region with length 5. Perl 
6 asym_seed_loop_len_gt7 Asymmetric loop in seed region with length 

greater than 7. 
Perl 

7 asym_seed_loop_len7 Asymmetric loop in seed region with length 7. Perl 
8 bul_seed_len_gt7 Bulges present in seed region with length greater 

than 7 
Perl 

9 bul_seed_len2 Bulges present in seed region with length 2. Perl 
10 bul_outseed_len7 Bulges present in out_seed region with length 7. Perl 
11 asym_outseed_loop_len6 Asymmetric loop in out_seed region with length 

6. 
Perl 

12 asym_outseed_loop_len4 Asymmetric loop in out_seed region with length 
4. 

Perl 

13 sym_outseed_loop_len4 Symmetric loop in out_seed region with length 4. Perl 
14 bul_seed_len7 Bulges present in seed region with length 7. Perl 
15 bul_seed_len5 Bulges present in seed region with length 5. Perl 
16 5'nloops Loops at 5’ end. Perl 
17 bul_outseed_len5 Bulges present in out_seed region with length 5. Perl 
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18 bul_outseed_len6 Bulges present in out_seed region with length 6. Perl 
19 sym_outseed_loop_len1 Symmetric loop in out_seed region with length 1. Perl 
20 asym_outseed_loop_len1 Asymmetric loop in out_seed region with length 

1. 
Perl 

21 asym_seed_loop_len5 Asymmetric loop in seed region with length 5. Perl 
22 asym_outseed_loop_len5 Asymmetric loop in out_seed region with length 

5. 
Perl 

23 sym_seed_loop_len_gt7 Symmetric loop in seed with length greater than 7 Perl 
24 asym_outseed_loop_len_gt7 Asymmetric loop in out_seed region with length 

greater than 7. 
Perl 

25 sym_outseed_loop_len3 Symmetric loop in out_seed with length 3. Perl 
26 sym_seed_loop_len7 Symmetric loop in out_seed with length 7. Perl 
27 asym_seed_loop_len2 Symmetric loop in out_seed with length 2. Perl 
28 5'nblgus Number of bulges at 5’ end. Perl 
29 sym_outseed_loop_len6 Symmetric loop in out_seed with length 6. Perl 
30 bul_outseed_len2 Bulges present in out_seed region with length 2. Perl 
31 sym_seed_loop_len6 Symmetric loop in seed with length 6. Perl 
32 sym_outseed_loop_len7 Symmetric loop in out_seed with length 7. Perl 
33 seed_nblgus Number of bulges in seed Perl 
34 d5 Distance from 5’. Perl 
35 sym_seed_loop_len2 Symmetric loop in seed with length 2. Perl 
36 bul_outseed_len3 Bulges out_seed region with length 3. Perl 
37 asym_outseed_loop_len7 Asymmetric loop in out_seed region with length 

7. 
Perl 

38 bul_outseed_len1 Bulges out_seed region with length 1. Perl 
39 asym_outseed_loop_len2 Asymmetric loop in out_seed region with length 

2. 
Perl 

40 bul_outseed_len4 Bulges out_seed region with length 4. Perl 
41 sym_outseed_loop_len_gt7 Symmetric loop in out_seed with length greater 

than 7. 
Perl 

42 sym_seed_loop_len4 Symmetric loop in out_seed with length 4. Perl 
43 sym_seed_loop_len5 Symmetric loop in out_seed with length 5. Perl 
44 asym_seed_loop_len3 Asymmetric loop in seed region with length 3. Perl 
45 seed_nloops Number of loops in seed. Perl 
46 bul_seed_len4 Bulges seed region with length 4. Perl 
47 sym_seed_loop_len1 Symmetric loop in seed with length 1. Perl 
48 asym_seed_loop_len1 Asymmetric loop in seed region with length 1. Perl 
49 5'nasymloops Asymmetric loops in 5’end. Perl 
50 bul_outseed_len_gt7 Bulges seed region with length greater than 7. Perl 
51 asym_seed_loop_len6 Asymmetric loop in seed region with length 6. Perl 
52 seed_nasymloops Total number of asymmetric loops in seed region. Perl 
53 asym_outseed_loop_len3 Asymmetric loop in out_seed region with length 

3. 
Perl 

54 bul_seed_len3 Bulges seed region with length 3. Perl 
55 asym_seed_loop_len4 Asymmetric loop in seed region with length 4. Perl 
56 Bul_outseed_len1 Bulges in outseed region with length 1 Perl 
B) SEQUENCE FEATURES 
1 POS7 Pairing at position 7 in outseed region. Java 
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2 Total_TA TA pairing in outseed region. Java 
3 Total_Mismatces Total mismatches in out_seed region. Java 
4 AlignLen Alignment length. Java 
5 Tot_mismatch Total mismatches in seed region. Java 
6 Total_AU Presence of AU_content out_seed region. Java 
7 POS9 Pairin g at position 9 in outseed region. Java 
8 AU_content Presence of AU_content seed region. Java 
9 POS5 Pairing at position 5 in outseed region. Java 
10 Tot_ug Total GU present in seed region. Java 
11 POS4 Pairing at position 4 in outseed region. Java 
12 POS8 Pairing at position 8 in outseed region. Java 
13 POS3 Pairing at position 3 in outseed region. Java 
14 POS10 Pairing at position 10 in outseed region Java 
15 Tot_Othermismat Number of other mismatches in seed region.  Java 
16 POS1 Pairing at position 1 in outseed region. Java 
17 Tot_Mat Number of matched in seed. Java 
18 POS2 Pairing at position 2 in outseed region. Java 
19 Total_GC Number of GC in out_seed region. Java 
20 Tot_gc Number of GC_content in seed. Java 
21 POS6 Pairing at position 6 in outseed region. Java 
22 Total_GU Number of GU pairing in out_seed. Java 
C) OTHER FEATURES 
1 LCP Length of the longest consecutive pairs. TarPmiR 
2 m/e Probability pairing at different position of 

miRNA. 
TarPmiR 

3 PS3’ Difference of paired positions between the seed 
region and the miRNA 3’ end region. 

TarPmiR 

4 BRL Binding region length TarPmiR 
5 align5' Alignment at 5’ end. Perl 
6 Score Conservation score. miRanda 
7 binding_probability Probability of interactions. TarPmiR/Vie

nnaRNA 
8 Binding_pos Position region of interaction. miRWalk 
9 PLC Position of the longest consecutive pairs. TarPmiR 
10 NP Number of pairings in target site. TarPmiR 
11 P3’ Pairing at 3’end. TarPmiR 
12 Seed Seed region. miRanda 
13 Numirna Number of miRNAs. Perl 
14 PyloP_Flanking Flanking conservation TarPmiR/ 

PhyloP 
15 PhyloP_Stem Stem conservation PhyloP 
16 Energy Thermodynamic energy miRanda/Tar

PmiR/RNAd
uplex 

17 Accessibility Measurement of target gene open for miRNA. miRanda 
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In the second category, pairing information of the duplex alignment for the first 10 nucleotides 

is encoded as categorical variables. These variables are namely, a) GC pair, b) AU pair, c) G:U 

wobble, d) mismatch and e) gap of duplex structure. Furthermore, the pairing information is 

summarized over the alignment region, the 3′ region of the miRNA, and the total miRNA 

region. This includes a total of GC matches (Tot_GC) in the seed region, whereas alignment 

outside the seed region named as Total_GC (Table 3B). In the third category, remaining 

descriptors are taken from other predictor algorithms (Table 3C). 

3.3 Feature selection for miRNA target prediction 

Feature selection is a process for the selection of an optimal number of variables, which 

is responsible for the model construction 47. It is a pivotal aspect that makes the model more 

efficient by eliminating redundant variables and shrinking the size 47. 

 

For the selection of optimal features, five algorithms of feature selections were applied 

to the generated 95 features (Table 3) for the training purpose. These five algorithms are the 

least absolute shrinkage and selection operator (LASSO), randomized logistics, chi-square, 

variance threshold, and decision tree-based selection. LASSO gave 19 putative descriptors 

while the variance threshold has selected 70 descriptors (Figure 10).  

 

 
Figure 10. Overview of feature selection by different feature selection algorithms. For the selection of 
relevant features, five different approaches have been applied. These are LASSO (red box), randomized logistics 
(blue), Chi square (yellow), variance threshold (green), and tree-based approach (orange box). 
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In contrast, randomized logistics yielded only seven descriptors. In this study, the LASSO 

algorithm was used for the training of the classifier. LASSO is a powerful method for selecting 

relevant features because it performs two main steps, regularization and variable selection 48. 

In the regularization step, it penalizes coefficients of regression variables shrinking them to 

zero. In the variable selection step, features with a non-zero coefficient after the regularization 

are selected to be part of the model 48. Therefore, the main goal of the LASSO is the reduction 

of the prediction error (Figure 11). 

 

LASSO has selected 19 putative features with their corresponding embedded score as 

shown in Figure 10. These features are: a) alignment length in seed (AlignLen), b) energy, c) 

conservation score, d) total matching in seed (Tot_Mat), e) GC count in seed (Tot_gc), f) total 

mismatch in outseed (Tot_mismatch), g) total AU count in outseed (Total_AU), h) total GC 

count in outseed (Total_GC), i) alignment at 5’ (align5’), j) binding region length (BRL), k) 

distance from 5’ (d5), l) the longest consecutive pairings (LCP), m) motif (m/e), n) mRNA, o) 

miRNA, p) number of pairing (NP), q) number of paired bases (numirna), r) pairings in 3’end 

(P3’), and s) position of the longest consecutive pairings (PLC). The majority of these features 

(selected by the LASSO) are sequence-based features (6 out of 19) and other types of features 

(10 out of 19). 

 

Based on the embedded score, top four features (out of 19 selected features) are energy (0.99), 

P3` (0.86), m/e (0.81), and miRNA (0.69), while the embedded score remained 0.63 from 10th-

19th selected feature (Figure 10). Since thermodynamic energy, pairing at 3’, and m/e are top 

features based on the embedded score, however, other feature selection algorithms did not pick 

these features. An example of the input dataset for the training of the AHDR classifier is shown 

in appendix 8.5. 
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Figure 11. Embedded score of selected potential feature generated by the LASSO algorithm. Top two 
selected categories are sequence and other features (Table 3). Different colors design types of features like black, 
yellow, green, and blue for miRNA/mRNA, sequence, structure, and other features, respectively. 
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3.4 Hyperparameter optimization 

The optimization of hyperparameters of the classifier is crucial for the DL approach. It 

generates the best network architecture by maximizing the accuracy of the validation dataset 

through optimal hyperparameters. AHDR is based on DFFN architecture. It comprises several 

hyperparameters, including the number of hidden (noh) layers, the number of nodes (non) in 

each layer, a pre-training rate (ptr), a pre-processing method (ppmd) and the batch size (bs) 

through dropout approach (Table 4). ReLu activation function is used for eight layers, while 

the sigmoid activation function is applied at the 9th layer (Appendix 8.6). 

 

The training epochs are set to 16 for the AHDR approach. Therefore, the AHDR 

architecture resulted in [9, 64, 128, 128, 64, 64, 64, 64, 32, 16] as given in Table 4, where 9 

represented the noh followed by nodes at each layer and 16 represented the number of units 

(node) of the output layer. AHDR was composed of nine dense hidden layers while the output 

layer comprised 16 sigmoid output nodes. The shape of the AHDR was consistent with its 

intended functionality with three types of layers as following: 

 (a) The first layer increases the dimensionality of the prediction problem allowing the 

representation of the dataset in a more complex dimension (over-completion). This layer does 

not necessarily improve the efficiency of AHDR.  

(b) Middle layers (from one to six) aim to identify the relevant features represented in the data; 

they correspond to the first half of a network. These layers were pre-trained to learn the features 

that are the most representative of miRNA target interactions.  

(c) The last three layers were responsible for classifying the features learned by AHDR, and it 

followed the typical shape of the DFFN classification network.  

 
Table 4. The optimal hyperparameters in the AHDR model architecture. 

Hyperparameters Model Structure 

Number of hidden (noh) layer 9 

Number of node (non) in each layer 64, 128, 128, 64, 64, 64, 64, 32, 16 

Computational parameters (weights) 3584, 8256, 8320, 16512, 8256, 4160, 4160, 4160, 2080 

Pre training rate (ptr) 0.001 

Batch size (bs) 128 

Preprocessing method (ppmd) Label encoder 
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The selection of optimized hyperparameters of other ML algorithms such as AHDR, DT, BNB, 

LR, and SVM are summarized (Table 5).  

 
Table 5. The optimized hyperparameters of each machine learning methods. 

Algorithm Package Optimized hyperparameters  
AHDR Keras lr = 0.01, hl = 9, loss = ‘binary_cross entropy’, hln = [128, 64, 128, 128, 

64, 64, 64, 32, 16], optimizer = ‘rmsprop’, Output layer activation 
function = ‘sigmoid’. 

DT Scikit-learn class_weight = balance, max_depth = None (default). 

BNB Scikit-learn Alpha = 1.0. 
LR Scikit-learn Penalty = L2, solver = Liblinear. 
SVM Sklearn Gamma = Auto, kernel = rbf, degree = 3. 

 

The parameter alpha of BNB is optimized in the range of 0 (worse) to 1 (best) with an interval 

of 0.1 and is set to 1.0. In the DT, the max_depth of the tree is set to default means nodes are 

expanded until all leaves (output nodes) are pure or until all leaves contain less than 

min_samples_split (default =2) samples. While the class weight of the tree is set to be balanced 

because it automatically adjusts weights inversely proportional to class frequencies in the input 

data (Table 5). The parameters of the LR such as penalty is set to regularization (L2), as it 

handles both dense and sparse input dataset, whereas the solver is set to liblinear, as it supports 

both L1 and L2 regularization. The number of optimized parameters of SVM includes gamma 

selects auto_deprecated (uses 1/n features i.e., no explicit value of gamma was passed), kernel 

selects radial basic functions (rbf), and degree is set to 3 (Table 5). 

3.4 Performance evaluation of other ML methods 

Generally, four evaluation metrics are used, namely AUC, ACC, true positive rate 

[TPR, sensitivity/recall], and false positive rate [TNR, specificity] in the statistical evaluation 
49. The AUC value ranges between 0.5 to 1 where 0.5 denotes a bad prediction algorithm and 

1 denotes a good algorithm. Calculations of ACC, TPR, and TNR were as follows: 

ACC = (TP+TN)/(TP+TN+FP+FN) 

TPR = TP/(TP+FN) 

TNR = TN/(TN+FP)  

where TP, FP, TN, and FN represent true positive, false positive, true negative, and 

false negative, respectively. In two class label prediction, the outcomes are labeled either as 

positive or negative 50. TP is the output where both its validated and predicted labels are 

positive, FP involves a predicted label being positive and the validated label being negative, 
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TN involves the predicted and validated labels both being negative, and FN involves the 

predicted label being negative and the validated label being positive 49. 

In addition, Matthews correlation coefficient (MCC) and F-score were also used to assess the 

model performance 50. The calculations of MCC and F-score were as follows: 

𝑀𝐶𝐶 =
𝑇𝑃. 𝑇𝑁 − 𝐹𝑃. 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

    PPV = TP/(TP+FP) 

   F = 2PPV.TPR/(PPV+TPR)  

where PPV is positive predictive value, also known as precision. Essentially, the MCC 

is a correlation coefficient between the validated label interactions and its predicted labels 49, 
50. The value of MCC ranges between -1 and +1, where a coefficient of +1 represents a perfect 

prediction, 0 represents random prediction and −1 indicates total disagreement between 

predicted and true labels. F-score can be interpreted as a weighted average of the PPV and 

TPR, where an F-score reaches its best value at 1 and the worst at 0 49, 50.  

 

To evaluate the performance of different ML methods with AHDR, the dataset was 

divided into three subdivisions consisting of a training set (60% of the original dataset), a 

validation set (20%) and a test set (20%). The training set was required for the training of the 

AHDR classifier, the validation set was utilized for the setting of hyperparameters and the test 

set was used for the evaluating performance of each classifier. 

 

Five commonly used ML classifiers, including LR, BNB, SVM, DT, and AHDR, were 

considered. Compared with LR and other ML classifier, which is the most frequently used 

approach in miRNA target prediction, AHDR has the best performance as evident from AUC, 

ACC, sensitivity, specificity, F-score, and MCC values of 0.98, 0.98, 0.97, 0.90, 0.98, and 0.96 

respectively (Figure 12). 
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Figure 12. AHDR performance predictions on test dataset with other ML algorithms. 

 

The performance evaluation is indicating that the DL network exhibited improved 

ability to learn in AUC, ACC, sensitivity, specificity, F-score, and MCC.  

To avoid biases, cross-validation is the cutting-edge method in DL, which estimates the skill 

of the model from new data 24. In the 10-fold cross-validation, all the known interactions were 

randomly divided into 10 subsets with equal size. In each fold, one subset was left out as testing 

samples, and the remaining four subsets were treated as training sets. The entire procedure was 

repeated until the entire subset was used for training. The average performance of the 10-fold 

cross-validation was adopted for evaluation 24. The prediction measures of the 10-fold cross-

validation are depicted in Figure 13.  

 

 
Figure 13. AHDR performance after 10-fold cross-validation. Performance evaluation after 10-fold cross-
validation, TNR (brown box plot) outperformed among other performance matrices i.e., the model measures the 
proportion of actual negatives correctly identified. 
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After the 10-fold cross-validation, performance measures of AHDR are represented in terms 

of AUC, ACC, sensitivity, and F-score as 0.98, 0.97, 0.97, and 0.98, respectively (Figure 13). 

As compared to performance measures in the training phase of AHDR, ACC results in a 

decrease from 0.98 to 0.97 and MCC value decrease from 0.96 to 0.95 whereas TNR value 

increases from 0.90 to 0.99. AHDR not only gives accurate predictions on the training data but 

also gives the best prediction measures from the new data and therefore this procedure avoids 

overfitting (statistical classifier captures the noise of the data) and underfitting (statistical 

classifier cannot capture the underlying trend of the data) in the AHDR. 

3.5 Performance comparison with other prediction methods 

The test dataset was extracted from miRTarBase 38 for the comparison of the prediction 

performance of ADHR with other miRNA target prediction tools 38, 40. This dataset was 

composed of 200 verified miRNA and 26315 verified interactions. Eight existing target 

prediction algorithms were chosen for the comparison of their prediction performance, namely  

TargetScan 13, miRmap 51, MicroT 52, comiR 53, miRSearch 54, miRSystem 55, PITA 18, and 

PicTar 56. Figure 14 illustrates the performance of different algorithms on the test dataset. 

Results of the comparison regarding AUC, ACC, sensitivity, and F-score, which is the quality 

measure of the binary classification (Figure 14).  

 
Figure 14. Performance measurement with existing prediction algorithms. AHDR is compared with the other 
tools in terms of AUC, ACC, sensitivity, and F-score performance matrices. The AUC values range between 0.5 
(bad prediction) to 1 (good prediction). F-score measure harmonic mean of sensitivity that lies between 0 (worst 
score) to 1 (best score). These scores indicating that the AHDR method is the most effective at miRNA-target 
prediction based on learning approach. 
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AHDR provides the best AUC among the four predictors (0.96), which is a ∼21% increase to 

the second-best performing predictor, miRMap 51 (0.75). The sensitivity of TargetScan 13 (0.77) 

is lower than that of the AHDR (0.95), which indicates the measure of correct miRNA target 

interactions. ACC parameter confirms the effectiveness of the AHDR (Figure 14). 

 

Instead, the AHDR provides the most balanced results in terms of performance matrices as 

compared to the other tools (Figure 14). This is evident from its high F-score value (0.97) 

compared to the other predictors (Figure 14). Overall, the AHDR has outperformed other 

predictors in terms of performance matrices (Figure 14). The MCC performance method 

measures the quality of the binary classification in ML (section 3.4). The MCC value of the 

AHDR shows 0.95 (Figure 15), which is indicative of the best prediction, whereas other 

existing algorithms have negative values of MCC, ranging from -0.46 (for TargetScan 13) to -

0.95 (for Pictar 56, Figure 15). 

 

 
Figure 15. Performance comparison with existing prediction algorithms based on the MCC value. MCC is 
a correlation coefficient used to measure the quality of the two-class label dataset. Therefore, MCC value of +1 
indicates a perfect prediction, whereas 0 no better than random prediction and −1 represents the total disagreement 
of the prediction. 
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3.6 Interaction identification with validated targets 

Furthermore, the predicting power of the AHDR was evaluated using an experimentally 

validated miRNA target interaction in comparison with other known algorithms. For this purpose, a 

total of 26315 validated miRNA target interactions were retrieved from strong experimental 

evidences such as Luciferase reporter assay, a reporter assay, and microarray 38 as summarized in 

Appendix 8.7. These data were used for evaluation of the AHDR along with eight other commonly 

used miRNA target approaches, including TargetScan 13, miRMap 51, microT 52, comiR 53, 

miRSearch 54, miRSystem 55, PITA 18, and Pictar 56 (Figure 16). 

  

 
Figure 16. Number of overlapping interactions on validated targets. To evaluate the performance of tools 
based on overlapping, 26315 verified interactions were retrieved from miRTarBase 38. AHDR shows the large 
number of overlapping interactions followed by TargetScan 13, miRMap 51 whereas Pictar 56 shows the least 
number of overlapping interactions. 
 

AHDR has identified 23785 miRNA target interactions, which comprise over 90% of all predictors. 

Other two top predictors were TargetScan 13 and miRMap 51, which have identified 19803 and 

12146 interactions, respectively (Figure 16). 

3.7 Performance of miRNA-target prediction of AHDR on top 20 cancer genes 

To evaluate the performance of the ADHR for miRNA target prediction flanking critical 

genes, a list of top 20 critical genes associated with cancer was collected from a recent study 

focusing on comprehensive characterization of cancer driver genes derived from 9,423 tumor 
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exomes 57. A comparative analysis of the ADHR and other target prediction tools using this 

dataset was performed. Out of 20 oncogenes, only 15 genes were found in the current datasets, 

which have interactions with miRNA (Figure 17).  
 

 
Figure 17. miRNA-target interactions in top cancer genes computed by several miRNA-target predictors 
reveals that AHDR is outperforming other tools. Some of miRNAs are interacting with more than one 
oncogene, are marked in different colors. CTNNB1 - Catenin beta 1; DICER1 - Dicer 1, Ribonuclease III; EGFR 
- Epidermal growth factor receptor; HRAS - HRas Proto-Oncogene; KRAS - KRAS Proto-Oncogene; NRAS - N-
ras oncogene; PIK3CA - Phosphatidylinositol 3-kinase; PIK3R1 - Phosphoinositide-3-Kinase Regulatory Subunit 
1; PTPN11 - Protein Tyrosine Phosphatase Non-Receptor Type 11; RHOA - Ras Homolog Family Member A; 
SF3B1 - Splicing Factor 3b Subunit 1; SMAD4 - SMAD Family Member 4; TP53- tumor protein p53; VHL - 
Von Hippel-Lindau Tumor Suppressor. * =miR 
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Overall, the ADHR is outperforming all other tools in miRNA-target prediction (Figure 

16). For example, the ADHR has picked up 17 miRNA interactions for tumor protein p53 

(TP53) gene whereas other existing tools have shown lower interactions like twelve by 

TargetScan 13, eight by miRmap 51 and three each by PITA 18, MicroT 52, and comiR 53 (Figure 

17). Moreover, these known tools did not pick even a single interaction as marked in the red 

shade in Figure 17. Some miRNAs are interacting with more than one oncogene (marked by 

colors in Figure 17) like let-7b-5p and miR-375. 
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4. DISCUSSION 

Since the discovery of miRNAs, their roles in several physiological conditions and 

human diseases have been attributed towards novel therapeutic targets 1. At the same time, the 

race for miRNA target prediction has begun, which is a challenging task as each miRNA has 

multiple targets and vice versa 2. Therefore, the correct identification of miRNA-target 

interactions remains a challenge. The way to address this problem is usually experimental 

validation of these miRNA target interactions, but the cost and timeline are limiting factors 2. 

Hence, computational applications are developed for miRNA target prediction. 

Generally, computational approaches for prediction of miRNA targets are grouped into two 

categories: ab initio and ML-based methods 58. The first category, ab initio methods are based 

on the base pairings within the seed region for miRNA targeting, which has been established 

from experimental methods. Tools such as TargetScan 13, PITA 18 and PicTar 58, use 

computational algorithms to scan positions with the miRNA sequence and scoring functions to 

filter target sites. These tools prioritize the removal of false positive interactions from the 

predicted target interactions; however, these algorithms have the drawback of omitting 

miRNAs from the results. Hence, this may be leading to higher numbers of false negative 

interactions 58. In this sense, TargetScan 13 is a sequence-based tool, which leads to low 

sensitivity (Figure 14). Early ab initio methods were built on features like the complementarity 

of the miRNA and/or the free energy of the miRNA/mRNA duplex and these are statistically 

derived from limited experimental evidences 58. Currently, due to the increase in data reported 

from different assays, especially those involving next-generation sequencing (NGS) and 

CLIPseq datasets, more comprehensive and valuable features have been discovered and 

implemented in several ab initio methods.  

The second category is based on ML methods that improve the accuracy of the prediction 

algorithm in the tools, such as miRMark 59, MBSTAR 60, TargetMiner 16 and TargetSpy 46. ML 

approach is different from ab initio methods by using interaction descriptors as input features 

to machine learning models. Early ML algorithms, such as LR, RF, SVM, and DT have been 

frequently used (NBmiRTar 61, miTarget 62, Genmir ++ 63, and HuMiTar 64) in miRNA target 

predictions. NBmiRTar uses the miRanda output to train naïve Bayes (BNB) classifier 61. The 

generated post-processed dataset of NBmiRTar contains artificial target sites without any 

experimental validation. miTarget uses SVM with the kernel of the rbf, and the positional, 

structural, and thermodynamic interaction characteristics for prediction 62. Likewise, 

TargetMiner also uses the SVM with the RBF kernel, and the dataset contains validated 

positive interactions and unarticulated negative interactions 16. Although diverse approaches 
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have been proposed, the problem of high false positive interactions, as well as low accuracy, 

still exists. The two main reasons for this issue are: (a) artificially generated features are used 

as the input for the learning classifier model, where a basic knowledge on miRNA target 

interaction, as well as suitable feature selection algorithm, are lacking, which directly affect 

the accuracy of the predictor, and (b) the amount of positive data is vastly greater than the 

amount of negative data because most of the published miRNA target interactions involve 

positive data, and this imbalanced dataset can lead to underfitting and overfitting problems. 

Recently, a new technique called DL as a subgroup of the ML has become a futuristic approach 

with several applications in bioinformatics and genomics 26, 65, 66, including miRNA target 

prediction 67. The current work is utilizing a DL-based state-of-the-art algorithm, which is an 

optimized DFFN named as AHDR. The AHDR is capable to overcome issues of the 

imbalanced dataset, high false positive and negative interactions, and the suitable feature 

selection and representation. DFFN architecture is a powerful classifier, due to its ability to 

cope with complex data and its potential for modeling data of high non-linearity. Additionally, 

DFFN is vulnerable to adversarial perturbations in the dataset. 

AHDR identifies potential descriptors of each interaction by directly analyzing the whole 

mature miRNA transcript, rather than focusing only on the seed region, for example, 95 

potential descriptors of miRNA-target interactions have been proposed. Next phase, several 

stages of pre-processing were applied for the generation of precise two-class labels dataset. 

This dataset was used during the training of AHDR. Performance measures have shown that 

AHDR consistently outperformed existing methods (Figures 14 and 15).  

In modern days, datasets are becoming very enriched in terms of information when dealing 

with genomic applications like miRNA target interaction. These high dimensional datasets 

harbor hundreds of features. Hyper-dimensionality of datasets can cause errors in models, due 

to increased training time with several features. Hence, the model can face issues of overfitting. 

To avoid this, a careful selection of relevant features is essential for the performance of the 

classifier algorithm. In this study, the LASSO algorithm was applied to identify relevant 

descriptors from generated 95 descriptors of the miRNA-target interactions (Figure 10). 

DeepMirTar 68 has used 750 features generated from miRMark 61 which generate a complex 

dataset for miRNA target interactions, by narrowing down the features to the most relevant 

ones, as performed in the current work. DeepMirTar 68 relied on the random forest (RF) method 

for selecting features, however, LASSO has many advantages over other methods as (a) it 

provides a very good prediction accuracy, due to shrinking and removing the coefficients of 

each feature, (b) it helps to increase the model interpretability by eliminating irrelevant 
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variables (as in Figure 11) that are not associated with the putative miRNA target interactions, 

thus reducing the bias 49. 

An important phase in the application of ML methods is the evaluation of the generalization 

performance of the trained model. It must be verified that the learning capacity of the learning 

classifier can perform equally well on the novel data. Therefore, the 10-fold cross-validation is 

applied, in which all data points of each interaction is tested for at least once. This approach 

reduces overfitting and underfitting problems. Given that there is a trade-off between ACC, 

TNR, and MCC after the 10-fold cross-validation, the training approach resulted in a slight loss 

in the accuracy and MCC values, whereas TNR level slightly increased, which shows that 

AHDR has a high ability to classify interactions (Figure 13).  

According to Saito and Rehmsmeier, the AUC measures the accuracy of the predictor 69. 

Therefore, high AUC evaluates the algorithm over all possible interactions (Figure 12). 

Whereas the maximum F-scores obtained across predictors, served as a measure quantifying 

the best achievable predictive performance. In terms of this theory, AHDR delivered 

substantial performance boosts (Figure 14) over other existing predictors based on both ab 

initio and ML approaches. Interestingly, some resources such as TargetScan 13 (ab initio 

approach) and miRMap 53 (ML-based approach) ranked among the top performing tools, as 

measured by maximum AUC score and sensitivity, but ranked among the worst according to 

F-score and ACC. This is because these resources provide accurate predictions, but only for a 

small subset of genes and miRNAs. TargetScan 13 is the user-friendly sequence-based database, 

but predictions are similar for all members of a miRNA family that can lead to high false 

positive interactions. Whereas in more detail in the context of performance measures, the 

Matthews correlation coefficient (MCC) is more informative than other performance matrices 

measures (such as F1 score and accuracy) in evaluating the performance of algorithm for 

putative predictions because it takes into account the balance ratios of the four prediction 

categories such as true positives (the number of validated targets predicted), true negatives (the 

number of genes that were neither predicted nor validated), false positives (the number of 

predicted targets that were not validated), and false negatives (the number of validated targets 

not predicted). Therefore, the value of MCC ranges from -1 to 1, which represents low and 

high-quality predictions, respectively. The values of MCC were close to zero, which indicated 

predictions are like random predictions 51, 52. This study revealed that AHDR is found to 

achieve much higher MCC values of 0.95 as compared to other predictors (Figure 15). Beside 

TargetScan 13 and miRMap 53, the rest of the other target prediction methods obtain the MCC 
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ranges from −0.72 to -0.95. AHDR seems to be the best target prediction algorithm so far 

compared to the others in terms of statistical performance measurement. 

In addition to this work, there are only two studies known so far, which are using the DL 

approach for miRNA target prediction as MiRTDL 70 and deepTarget 71. MiRTDL has used 

CNN architecture to analyze miRNA target features, however, the selected descriptors of each 

interaction were generated with insufficient information for miRNA target mechanism 70. 

MiRTDL has used only 20 features for the training purpose, which is inherently subjective and 

uncertain. Thus, the algorithm faces similar problems as ab initio based and ML approaches. 

In contrast to MiRTDL 70, deepTarget 71 is based on a unidirectional two-layered RNN 

architecture 71. Although this architecture was only little bit effective, however, adopting even 

more sophisticated approaches may further boost the capability of deepTarget 71 for scanning 

of subtle interactions that often remained undetected. Therefore, these approaches lack putative 

and functional prediction interactions. 

One of the other aims of this thesis was to predict the possible miRNAs targets in an oncogene. 

Therefore, a list of top 20 oncogenes was deduced in which ADHR performed better than other 

known miRNA-target predictors (Figure 17) as exemplified using top oncogenes extracted 

from a recent study 57. Several known tools have failed to pick even a single interaction (red 

shade in Figure 17), which hints their limitations. During this analysis, some miRNAs are 

interacting with more than one oncogene (marked by color fonts in Figure 17) generated by 

AHDR.  

The extensive presence of let-7b-5p suggests that it is a well-known tumor-suppressor belongs 

to let family in breast cancer 72, and also it is known that let-7b-5p is a negative regulator of 

insulin-like growth factor receptor 1 (IGF1R) in multiple myeloma 73. Mutation in DICER1 

leads to the loss of tumor-suppressor miRNAs, including let-7b-5p 74 and additionally, let-7b-

5p is a negative regulator of other oncogenes such as HRAS and KRAS 75. The miR-146a-5p 

inhibits cell proliferation and metastasis and it induces apoptosis through the EGFR generated 

signaling pathway in the lung cancer 76. Similarly, miR-146a-5p is also a negative regulator of 

the SMAD4 gene by reducing fibrosis in the skeletal muscle after injury, hence it might act as 

a potential therapeutic 77. miR-603 downregulates the expression of HRAS protein in prostate 

tumor cells 78. Overexpression of miR-30a-5p inhibits cell proliferation in lung carcinogenesis 

via EGFR signaling pathways 79.  

The miRNA, miR-30a-5p is a negative regulator of the TP53 gene which causes resistance to 

anti-cancer drugs 80. miR-375 is a positive regulator of the PIK3CA gene during anti-

proliferative and apoptosis effects 81. Similarly, this miR-375 is regulator for other oncogenes 
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like RHOA 82 and TP53 83. miR-489-3p inhibits cell proliferation in hypopharyngeal squamous 

cell carcinoma (HSCC) by targeting PTPN11 gene 84 and also circulating miR-489-3p have 

shown significant expression variations in breast cancer by targeting TP53 72, 85. The miRNA 

miR-483-3p is the regulator of oxaliplatin resistance in human colorectal cancer cells 86. miR-

483-3p serves a crucial suppressor of TP53 signaling in liver cancer 87. Additionally, miR-4282 

targets Myc gene and it serves as inhibitor of the proliferation in breast cancer 88. Taken 

together, in this case study the findings reflect that the AHDR approach can identify the 

oncogenic interactions of miRNAs.  

In this study, AHDR algorithm was developed, which is based on the advanced deep learning 

technology for human miRNA target prediction. AHDR outperformed other predictors in the 

test dataset. Furthermore, the AHDR showed top interactions on the experimentally verified 

dataset. In addition, the AHDR also detected many putative miRNAs and their interactions 

with oncogenes. Interestingly, the AHDR predicts potential interactions instead of a high 

number of false positive interactions. This detailed explanation contributes to the importance 

of deep learning technology in genomics. 
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5. SUMMARY 

miRNAs are small, non-coding RNA evolutionary conserved molecules, which are 

largely known to regulate gene expression by annealing to target genes. Predicting possible 

binding sites associated with it allows us to understand their regulations. Over the past decades, 

significant efforts have been made to improve the knowledge of miRNAs. One primary concern 

was miRNA-target interaction, despite more than a dozen bioinformatic approaches that have 

been developed using ab initio methods as well as ML methods. However, these approaches 

face a notorious challenge in terms of tiny alignment regions (7-8 nucleotides in the seed 

region) between miRNAs and targets. This often leads to higher numbers of false positive 

interactions. In order to resolve this issue, a DFFN-based DL algorithm was developed which 

is called as advanced hierarchical deep-rooted learning (AHDR). In the data mining step, a 

balanced training dataset was constructed using high-quality positive datasets, which were 

derived from the best-curated mRNA target databases such as TarBase. Whereas, the negative 

dataset was generated using random mutations of 95% across human genome-wide transcripts. 

Several parameters were applied to both datasets to overcome the issue of overfitting and 

underfitting. In the training step, different DL algorithms were applied to the generated dataset 

to identify potential models for the target prediction. The results revealed the performance of 

each prediction algorithm. Furthermore, the performance prediction of AHDR was analyzed 

and compared with other high impact published prediction algorithms on a strong 

experimentally verified dataset.  

 

The purpose of this study was to demonstrate the flexibility and impact of the DL framework 

to miRNA-target site prediction. However, it also facilitates holistic physical and biological 

models integrating heterogeneous data from different sources that foster the understanding of 

disease development, progression, and treatment possibilities. 
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8. APPENDIX 

 
Appendix 8.1. Negative dataset generation. This python code randomly mutates the binding 
region of the human mRNA, which hinders the binding of miRNA. This generates negative 
human mRNA dataset. The input file is in the fasta format. 
 

from random import random, choice 
import sys 
from itertools import groupby 

def fasta_iter(fasta_name): 
"""given a fasta file. yield tuples of header, sequence"" 

    fh = open(fasta_name) 
 
    # ditch the boolean (x[0]) and just keep the header or sequence since 
    faiter = (x[1] for x in groupby(fh, lambda line: line[0] == ">")) 
    for header in faiter: 

  header = header.next()[1:].strip() 
 

# join all sequence lines to one. 
        seq = "".join(s.strip() for s in faiter.next()) 
        yield header, seq 
def main(fasta_name, mutation_freq): 
    for header, seq in fasta_iter(fasta_name): 
       seq = list(seq) 
        for i, s in enumerate(seq): 
            val = random() 
            if val < mutation_freq: 
 # choose a random nucleotide that's different. 
seq[i] = choice([x for x in "ACTG" if x != s.upper()]) 
        print ">%s\n%s" % (header, "".join(seq)) 
if __name__ == "__main__": 
    main(sys.argv[1], float(sys.argv[2])) 
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Appendix 8.2. Perl script for the generation of structural features: In this Perl code, 
structural features generated include symmetric and asymmetric loops, symmetric and 
asymmetric bulges in both in seed and outseed region in the miRNA. The input file is the 
duplex structure of miRNA target interaction 61. 
 
#!/usr/bin/perl 
use Term::ANSIColor; 
 
if (@ARGV==0) { 
  print STDERR "usage: features_mirna_positive.pl  <output of miranada>\n"; 
  exit; 
} 
open (ST,">$ARGV[0].statistics"); 
open (STB,">$ARGV[0].stb"); 
open (INFO, $ARGV[0]);   #The output of find_transcripts  
#open (MATURE, $ARGV[1]); #The mature microRNA file 
#open (FOUT ,$ARGV[2]  ); 
print ST "FHR: d5  bpmirna seed-nblgus seed-nloops seed-nasymloops","\n" ; 
print ST "FHR: bp5' 5'-nblgus 5'-nloops 5'-nasymloops","\n"; 
print ST "FHR:seed part(8 features): #bulges with length 1,2,..,7 and >7\n" 
; 
print ST "FHR:seed part:(8 features) #symtric loops with length 1,2,..,7 
and >7\n" ; 
print ST "FHR:seed part: (8 features)#asymetric loops with length 1,2,..,7 
and >7\n" ; 
print ST "FHR:out-seed part: (8 features)#bulgesc loops with length 
1,2,..,7 and >7\n" ; 
print ST "FHR:out-seed part: (8 features)#symetric loops with length 
1,2,..,7 and >7\n" ; 
print ST "FHR:out-seed part: (8 features)#asymetric loops with length 
1,2,..,7 and >7" ; 
 
 
#@nblgsmirna      =(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) ; 
#@nblgsoutmirna   =(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0); 
 
#@nloopsmirna     =(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0); 
#@nsymloopsmirna  =(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0); 
#@nasymloopsmirna =(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0); 
 
#@nloopsoutmirna     =(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0); 
#@nsymloopsoutmirna  =(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0); 
#@nasymloopsoutmirna =(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0); 
 
$flagformirna = 0 ; 
#Read The mature microRNA to an array 
#@mature = <MATURE>; 
@location=(); 
$counter = 0 ; 
$sum5d=0; 
$sum3d=0; 
$summirna =0 ; 
$summirnab=0; 
$line ="blablabla"; 
$indexcounter=0; 
#while ( $line !~/HDR/ )  
  #   {$line=<INFO>;} #Reach the first HDR 
      
while ( !eof(INFO)  )  
{  
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  while ( $line !~/>/ & !eof(INFO)){ 
 $line=<INFO>;} #Reach the first ">" 
 print $line;  
  if ($line =~/>/){ 
       if ( $line =~ />(.*)/ ) { $hdrname =$1;} 
  }  
      $title = $line; 
      $gene_info = <INFO>;    
      @ref=split(/ /,$gene_info);  
      #$hdrname = join "",$hdrname,"\t",$ref[10].$ref[11].$ref[12];  
      $hdrname = join "",$hdrname,"\t",$ref[10].$ref[11].$ref[12];  
      $empty=<INFO>;   
      $stem1 = <INFO>; 
      $dashes= <INFO>; 
      $stem2 = <INFO>; 
      if ( $stem1     =~/(Ref:)\s+(5'\s*[NATCGUatcgu-]*[NATCGUatcgu-
]\s*3')/ )    
                 {   $tmp_stm1 = $2; 
                     if ($tmp_stm1 =~/5'\s*([NATCGUatcgu-]*[NATCGUatcgu-
])\s*3'/ ) 
                       {$stm1    = $1; $stem_l=length($stm1) } 
                  } 
      if ( $stem2     =~/(Query:)\s+(3'\s*[NATCGUatcgu-]*[NATCGUatcgu-
]\s*5')/ )   
                 {    $tmp_stm2 = $2; 
                     if ($tmp_stm2 =~/3'\s*([NATCGUatcgu-]*[NATCGUatcgu-
])\s*5'/ ) 
                             {$stm2    = $1;} 
                   } 
       if ($stem1 =~m/(Ref:\s+)/g) 
           { $first_t=pos($stem1);} 
       $new_dashes = substr($dashes,$first_t);  
      if ( $new_dashes    =~/\s+(\|+[\|\s]*\|+)\s+/              )     
                 { $dash = $1;} 
     $new_dashes=~s/\n//g; 
    print "\n$tmp_stm1\n$new_dashes\n$tmp_stm2\n"; 
    my $count = 0 ;  
    my $i = 1 ; 
    my $loc=$stem_l; 
    while ($count < 8) 
       { $s = substr($stm1,$stem_l-$i,1); 
        if ($s =~/[ATCGUatcgu]/ )  
          { ++$count;} 
        ++$i; 
        --$loc;  
     } 
 my $seed = substr($stm1,$loc) ; 
    $seed=~s/-//g; 
    $seed=~tr/[Tt]/[Uu]/; 
    $seed=~tr/[ATCGUN]/[atcgun]/; 
      ++$indexcounter; 
     #$hdrname =~tr/\n//;  
      print ST "\n>HDR:$hdrname"; 
      print ST "\n## $seed"; 
      print ST "\n## Index:$indexcounter\n"; 
      $new_dashes=~s/\./ /g; 
      $new_dashes=~s/\:/ /g; 
      #extractFeatures($stem1,$stem2,$dash); 
      extractFeatures($tmp_stm1,$tmp_stm2,$new_dashes); 
     $hdrname = "blabla"; 
     $line = <INFO>; 



Appendix 

 
51 

 

  }#End of while ( !eof(INFO) ); 
 
close INFO; 
#     print ST "\n>HDR:"; 
 
print "Total sum of stem-loop microRNA is ",$summirna,"\n"; 
print "Total sum of microRNA's is ",$summirnab,"\n"; 
                                                                                                                              
print "Total sum of stem-loop 5' is ",$sum5d,"\n"; 
print "Total sum of stem-loop 3' is ",$sum3d,"\n"; 
 
print STB "nt \n nblgs-mirna, nblgs-outmirna, \n nloops-mirna, nloops-
outmirna,\n nsym-loops-mirna, nsym-loops-outmirna, \n nasym-loops-mirna, 
nasym-loops-outmirna\n\n"; 
 
print STB "Total sum of microRNA's is ",$summirnab,"\n"; 
print STB  "Total sum of stem-loop microRNA is ",$summirna,"\n"; 
print STB "Total sum of stem-loops 5' is ",$sum5d,"\n"; 
print STB "Total sum of stem-loops 3' is ",$sum3d,"\n"; 
print STB "Total sum of stem-loops out-mirna(5'+3') is ", 
$sum5d+$sum3d,"\n\n"; 
 
for ($k=1; $k<=15; $k++) 
  {    $result = sprintf("%4d %4d %4d %4d %4d %4d %4d %4d %4d 
\n",$k,$nblgsmirna[$k],$nblgsoutmirna[$k],$nloopsmirna[$k],$nloopsoutmirna[
$k],$nsymloopsmirna[$k],$nsymloopsoutmirna[$k],$nasymloopsmirna[$k],$nasyml
oopsoutmirna[$k] ); 
       print STB $result;     
  } 
close STB; 
print STDOUT "finishd."; 
 
###########################################################################
################################################ 
sub extractFeatures{ 
                   my ($stem1)= shift (@_);    
                   my ($stem2)= shift (@_); 
                   my ($dashes) = shift (@_); #We refer to dashes directly 
my $stem_l = 0; 
      if ( $stem1     =~/(5'\s*)([NATCGUatcgu-]*[NATCGUatcgu-])(\s*3')/ )    
                 { $stm1    = $2; $stem_l = length($stm1); } 
      if ( $stem2     =~/(3'\s*)([NATCGUatcgu-]*[NATCGUatcgu-])(\s*5')/ )   
                 { $stm2    = $2; $prime3 = $1;$prime5=$3;} 
      #if ( $dashes    =~/\s+(\|+[\|\s]*\|+)\s+/              )     
                 #{ #$dash = $1; 
                  my $t = $dashes; 
                  $dash = substr($t,3,$stem_l);    
                  #} # 
my $count = 0 ;  
my $i = 1 ; 
my $loc=$stem_l; 
while ($count < 8) 
 { $s = substr($stm1,$stem_l-$i,1); 
   if ($s =~/[ATCGUatcgu]/ )  
     { ++$count;} 
   ++$i; 
   --$loc;  
 } 
 
 $location[0] = $loc ;  
 $location[1] = $stem_l-1;      
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    #Initioliza the blugs,loops array (changed from 15 to 100) 
     for ($inb=1;$inb<=100;++$inb) 
        { $nblgsmirna[$inb]=0; 
          $nsymloopsmirna[$inb]=0; 
          $nasymloopsmirna[$inb]=0; 
          $nblgsoutmirna[$inb]=0; 
          $nsymloopsoutmirna[$inb]=0; 
          $nasymloopsoutmirna[$inb]=0; 
         } 
      #The mature microRNA found at the direction 5' to 3' 
      if ($location[0] != -1 ) 
         {  
          if ($hdrflag ==1 ){ print STDOUT  $hdrname;} 
 
           print STDOUT  $title  ; 
           $prevmirna = substr ($stem1,0,$location[0]+3); 
           $cmirna = substr ($stem1,$location[0]+3,$location[1]-
$location[0]+1); 
           $aftermirna = substr($stem1,3+$location[1]+1 ); 
           print STDOUT $prevmirna; print STDOUT 
color("blue"),$cmirna,color("reset"); print STDOUT $aftermirna; 
           print STDOUT $dashes; 
           print STDOUT $stem2; 
 
           #print distance from 5' direction  
            $st5arm = substr($stm1,0,$location[0]);  $st3arm = 
substr($stm1,$location[1]+1); 
            $d1 = ($st5arm=~tr/ACGTUNacgtun//);  $d2 = ($st3arm 
=~tr/ACGTUNacgtun//); 
            $result = sprintf ("%4d ",$d1); 
            print ST $result;  
            #Deal with seed microRNA 
            $n = $location[1] - $location[0] +1; 
            $pstem1 = substr($stm1,$location[0],$n); 
            $pdash = substr($dash,$location[0],$n); 
            $pstem2 = substr($stm2,$location[0],$n); 
            $flagformirna = 1 ; 
            findBulges($pstem1,$pdash,$pstem2); 
            $pstem1 =~ s/\-//g; $pstem2 =~s/\-//g; 
            $summirna = $summirna + length($pstem1)+ length($pstem2); 
            $summirnab = $summirnab + length($pstem1);  
            print "\n", length($pstem1)+length($pstem2)," 
",length($pstem1)," "; 
  
            #Deal with 5' to seed microRNA 
            $n = $location[1] - $location[0] +1; 
            $pstem1 = substr($stm1,0,$location[0]);  
            $pdash = substr($dash,0,$location[0]); 
            $pstem2 = substr($stm2,0,$location[0]); 
            $flagformirna=0; 
            findBulges($pstem1,$pdash,$pstem2); 
            $pstem1 =~ s/\-//g; $pstem2 =~s/\-//g; 
            $sum5d = $sum5d + length($pstem1)+ length($pstem2); 
            print length($pstem1)+length($pstem2)," "; 
         } 
      #The mature microRNA found at the direction 3' to 5' 
#print to the features file the results of bulges loops length 
 
 printOutBulgsLoopsLength(@nblgsmirna); 
 printOutBulgsLoopsLength(@nsymloopsmirna); 
 printOutBulgsLoopsLength(@nasymloopsmirna); 
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 printOutBulgsLoopsLength(@nblgsoutmirna); 
 printOutBulgsLoopsLength(@nsymloopsoutmirna); 
 printOutBulgsLoopsLength(@nasymloopsoutmirna); 
  
}#End of function 
###########################################################################
######################################################## 
sub printOutBulgsLoopsLength{ 
             (@arr) = @_;        
my $outlier = 0 ; 
my $result; 
for ($k=8;$k<=$#arr;++$k) 
   { $outlier = $outlier+ $arr[$k] ;} 
             
for ($k=1 ; $k<=7; $k++) 
  { 
    $result = sprintf("%4d ",$arr[$k]); 
    print ST $result; 
  }     
#print the outlier bigger than 7  
$result = sprintf ("%4d ",$outlier); 
print ST $result; 
 
} 
###########################################################################
########## 
# sub getMature() : 
###########################################################################
######### 
sub getMature{ 
       my ($hdrname) = @_ ; 
   my $flag = 1 ; 
   $i = 0 ; 
   $hdrname = lc ($hdrname); 
   $arrlength = @mature; 
  while ( $flag == 1 && $i < $arrlength)  
    {  $line = lc($mature[$i] ); 
      if ( $line=~/$hdrname/ ) 
        { $st = $mature[$i+1] ; 
          chomp ($st); 
         $flag = 0 ; 
        }# End of if ( )    
      ++$i ; 
    }#End of while 
return $st ; 
 
}#End of function 
###########################################################################
##################### 
 
sub positionSubstring{ 
       my ($stem) = shift(@_); 
       my ($mirna)= shift(@_); 
  @letpos=(); 
  @lc=(); 
  
 push (@lc,-1); 
  
 for ($i = 0 ; $i <length ($stem); $i++) 
    { $let = substr($stem,$i,1);  
     if (  $let ne '-'   )   
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        { push (@letpos,$i);} 
    } 
  
 $stem =~s/-//g; 
 $location = index ($stem,$mirna); 
  my $mm=$mirna;  
  my $z=0; 
 while ($location == -1 & $z <4 ) 
   {  $mm =  substr($mirna,0,length($mirna)-$z); 
     $location = index ($stem,$mm); 
     $z=$z+1; 
  } 
  $mirna = $mm;  
 if ($location != -1 ) 
  { $start = $letpos[$location]; 
    $end   = $letpos[$location + length($mirna) - 1 ];  
    shift (@lc);  
    push (@lc,$start); 
    push (@lc,$end); 
    #my $result = sprintf("s:%4d e:%4d",$start,$end); 
    #print ST $result; 
      } 
  
return @lc; 
}#End of sub routine  
###########################################################################
# 
# sub findBulges($stem1,$dashes,$stem2)  
###########################################################################
# 
sub findBulges{ 
     my ($stem1) = shift (@_); 
     my ($dash)  = shift (@_); 
     my ($stem2)= shift (@_); 
 my $nbulges = 0; 
 my $nsloops = 0; 
 my $nloopsnonsym = 0; 
 my $sumb= 0 ; 
 my $suml = 0 ; 
 my $bp; 
 #print ST "\n",$stem1,"\n",$dash,"\n",$stem2;  
 while ($dash =~ m/\s+/g) { 
    #print "\n", pos ($dash) - length($&) ," ", pos ($dash) ; 
    $f = pos ($dash) - length($&) ; 
    $l = pos ($dash) ; 
    $s1 = substr($stem1,$f,$l-$f); #copy the corsponding part from stem1 
    $s2 = substr($stem2,$f,$l-$f); #copy the corsponding part from stem2 
   # print ST "\n",$s1, " ",$s2,"\n";  
   # if (  ($s1 =~/\-+[ATCGUNatcgun]+/ ) || ($s2 =~/\-+[ATCGUNatcgun]+/) ) 
#Non symetric loops 
 if (  ($s1 =~/\-+[ATCGUNatcgun]+/ ) || ($s1=~/[ATCGUNatcgun]+\-+/ ) || 
($s2 =~/[ATCGUNatcgun]+\-+/) ||($s2=~/\-+[ATCGUNatcgun]+/)  ) #Non symetric 
loops 
            { ++$nsloops; ++$nloopsnonsym ; $suml=$suml+$l-$f;  
              $width = $l-$f; 
              if ($flagformirna == 1 ) 
                   { ++$nasymloopsmirna[$width]; 
                     ++$nloopsmirna[$width]       } #number of loops with 
length width 
             else  {++$nasymloopsoutmirna[$width]; 
                    ++$nloopsoutmirna[$width]   } 
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            }#Non symetric loops  
    else  { if ($s1 =~m/\-+/  || $s2 =~m/\-+/ ) #Pure bulges 
             { ++$nbulges ; $sumb= $sumb+$l-$f ; 
               $width = $l-$f; 
               if ($flagformirna == 1) 
                  { ++$nblgsmirna[$width];} 
               else { ++$nblgsoutmirna[$width];} 
             } #pure bulges 
            else  { ++$nsloops; $suml = $suml+$l-$f;          
                    $width = $l-$f; 
                    if ($flagformirna == 1) 
                        { ++$nsymloopsmirna[$width]; 
                          ++$nloopsmirna[$width]  } 
                    else { ++$nsymloopsoutmirna[$width]; 
                           ++$nloopsoutmirna[$width] } 
                  } #pure loops ; 
          }#End of else  
    }#End of while 
    $avgbulges = 0 ; 
    $avgloops = 0 ; 
    if ( $nbulges != 0 ) { $avgbulges = $sumb/$nbulges; 
    if ($nsloops !=0 ) {$avgloops = $suml/$nsloops;} 
    $stlen = ($stem1 =~tr/NACGTUnacgtu//) + ($stem2=~tr/NACGTUnacgtu//); 
    $bp    = ($dash=~tr/\|//); 
    $ll = $stlen; 
    if ($stlen == 0 ) {$stlen = 1;} 
    #print ST   $nbulges,  $sumb/$nbulges,  $nsloops ,  $suml/$nsloops , 
$nloopsnonsym; 
    #$result = sprintf("%4d %4d %10.4f %4d %10.4f 
%4d",$ll,$nbulges,$avgbulges,$nsloops,$avgloops,$nloopsnonsym); 
    $result = sprintf("%4d %4d  %4d 
%4d",$bp,$nbulges,$nsloops,$nloopsnonsym); 
    print ST $result; 
}#End of function 
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Appendix 8.3.A java program for feature generations from the alignment of seed 
sequences. This java code generates the miRNA pairing information is summarized over the 
seed region of the miRNA. The input dataset is the duplex structure of miRNA target 
interactions. 
 
/* 
 * To change this license header, choose License Headers in Project 
Properties. 
 * To change this template file, choose Tools | Templates 
 * and open the template in the editor. 
 */ 
package new_datasetcsv; 
 
import java.io.BufferedReader; 
import java.io.File; 
import java.io.FileNotFoundException; 
import java.io.FileOutputStream; 
import java.io.FileReader; 
import java.io.IOException; 
import java.util.ArrayList; 
import jxl.write.WriteException; 
import org.apache.poi.ss.usermodel.Cell; 
import org.apache.poi.ss.usermodel.Row; 
import org.apache.poi.xssf.usermodel.XSSFSheet; 
import org.apache.poi.xssf.usermodel.XSSFWorkbook; 
//Added 
import org.apache.poi.ss.usermodel.Sheet; 
import org.apache.poi.ss.usermodel.Workbook; 
import org.apache.poi.ss.util.CellReference; 
import org.apache.poi.xssf.streaming.SXSSFWorkbook; 
//added 
import java.io.FileWriter; 
import com.csvreader.CsvWriter;  
//import java.io.IOExceptio; 
 
 
/** 
 * 
 * @author alisha 
 */ 
public class new_datasetcsv { 
 
    public static void main(String[] args) throws IOException, 
WriteException { 
        String Path_in = "/home/alisha/Downloads/CSV Code+Libraries/IN/";// 
give the input foleder path 
        String Path_out = "/home/alisha/Downloads/CSV 
Code+Libraries/out/";// give the output folder path 
        File folder = new File(Path_in); 
        File[] listOfFiles = folder.listFiles(); 
        FileWriter writer = null; 
 
        for (int f = 0; f < listOfFiles.length; f++) { 
            System.out.println("Start " + listOfFiles[f].getName()); 
            //if (listOfFiles[f].getName().equalsIgnoreCase("positive0")) { 
           // Workbook workbook = new SXSSFWorkbook(); 
            //Sheet sheet = workbook.createSheet("Datatypes in Java"); 
            //int rowNum = 0; 
              CsvWriter csvOutput = new CsvWriter(new FileWriter(Path_out + 
listOfFiles[f].getName().replace(".fasta", ".csv"),true),','); 
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            // TODO code application logic here 
            BufferedReader br = null; 
            FileReader fr = null; 
            br = new BufferedReader(new FileReader(Path_in + 
listOfFiles[f].getName())); 
            //int i = 0; 
            String sCurrentLine = null; 
            String miRNA = null; 
            String Mrna = null; 
            String Rvalue = null; 
            String R1 = null; 
            String R2 = null; 
            String R  = null; 
             int match = 0; 
             int mismatch  =0; 
             int N_AU  =0; 
             int N_GC = 0; 
            ArrayList<String> features = new ArrayList<String>(); 
            int n_feat = 0; 
            int flag1 = 0; 
            int flag2 = 0; 
            while ((sCurrentLine = br.readLine()) != null) { 
                if (sCurrentLine.contains(">hsa-miR-")) { 
                    String[] temp = sCurrentLine.split("\\s+"); 
                    miRNA = temp[0].replaceAll(">", "").trim(); 
 
                    Mrna = temp[1].trim(); 
                    flag1 = 1; 
                    //  Rvalue.add(temp[2].replaceAll("R:", "").trim()); 
 
                }else if(sCurrentLine.contains("Forward:")){ 
                     
                 //String[] temp1 = sCurrentLine.split("\\s+"); 
                 //R1 = temp1[7].replaceAll("R:", "").trim(); 
                 //R2=  " "+temp1[8]+" "+temp1[9]; 
                 //R = R1+R2; 
                   R = sCurrentLine; 
                   R = R.replaceAll("   Forward: Score: ","" ); 
                   R = R.trim(); 
                   String temp1[] = R.split("\\s+"); 
                   temp1[7] = null; 
                   temp1[8] = null; 
                   temp1[9] = null; 
                   temp1[10] = null; 
                   temp1[11] = null; 
                   temp1[12] = null; 
                   R = temp1[4].replaceAll("R:", "")+" "+temp1[5]+" 
"+temp1[6]; 
                  
                } else if (sCurrentLine.contains("Ref:      5' ")) { 
                    String ref = sCurrentLine; 
                    sCurrentLine = br.readLine(); 
                    sCurrentLine = br.readLine(); 
                    String query = sCurrentLine; 
                    ref = ref.replaceAll("Ref:      5'", ""); 
                    ref = ref.replaceAll("3'", ""); 
                    ref = ref.trim(); 
                    ref = ref.replaceAll("[a-z]", ""); 
                    ref = ref.trim(); 
                     
                    query = query.replaceAll("Query:    3'", ""); 
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                    query = query.replaceAll("5'", ""); 
                    query = query.trim(); 
                    query = query.replaceAll("[a-z]", ""); 
                    query = query.trim(); 
                    System.out.println("Ref " + ref + "  " + query); 
                    System.out.println(R); 
                    int start = 0; 
                    
                    if (ref.length() == query.length()) { 
                        start = ref.length(); 
 
                    } 
                    //features.add(new ArrayList<String>()); 
                    /* 
                    if (ref.length() == query.length()) { 
                        start = ref.length() - 1; 
                        end = 0; 
                    } else if (ref.length() > query.length()) { 
                        int mis = ref.length() - query.length(); 
                        for (int i = 0; i < mis; i++) { 
                            query = "*" + query; 
                        } 
                        start = ref.length() - 1; 
                        end = mis; 
                    } 
                    */ 
                    for (int i = 0; i < start; i++) { 
                        if (!ref.isEmpty() && !query.isEmpty()) { 
                            //System.out.println("Length "+ref.length()); 
                            //int temp_num = 
Integer.parseInt(temp[i].trim()); 
                            String feat_temp = ""; 
                            feat_temp = "" + ref.charAt(i) + 
query.charAt(i); 
                            //feat_temp=feat_temp+; 
                            features.add(feat_temp); 
                        } 
                    } 
                    flag2 = 1; 
 
                } 
 
                if (flag1 == 1 && flag2 == 1) { 
                   // int colNum = 0; 
                   /* Row row = sheet.createRow(rowNum++); 
                    int colNum = 0; 
                    Cell cell = row.createCell(colNum++); 
                    cell.setCellValue((String) miRNA); 
                    cell = row.createCell(colNum++); 
                    cell.setCellValue((String) Mrna);*/ 
                    csvOutput.write(miRNA);  
                    csvOutput.write(Mrna);  
                     
                      
                    //setting up extra condition to check array boundary 
indices// 
                    for (int j = 0; j < features.size(); j++) { 
                        String feat_temp = features.get(j); 
                        double feat_num = -2; 
                        if (feat_temp.contentEquals("AT") || 
feat_temp.contentEquals("GC")) { 
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                            match++; 
                            if(feat_temp.contentEquals("GC")){ 
                             N_GC++;    
                            } 
                            feat_num = 1; 
                        } else if (feat_temp.contentEquals("AU") || 
feat_temp.contentEquals("UG")) { 
                            feat_num = 2; 
                            if (feat_temp.contentEquals("AU")){ 
                                N_AU++; 
                            } 
                        } else if (feat_temp.contentEquals("GT") || 
feat_temp.contentEquals("TC") || feat_temp.contentEquals("AG") || 
feat_temp.contentEquals("AC") 
                                || feat_temp.contentEquals("TU")) { 
                            feat_num = 0; 
                            mismatch++; 
                        } else if (feat_temp.contentEquals("AA") || 
feat_temp.contentEquals("TT") || feat_temp.contentEquals("GG") || 
feat_temp.contentEquals("CC")) { 
                            feat_num = 0; 
                        } else if (feat_temp.contentEquals("A-") || 
feat_temp.contentEquals("T-") || feat_temp.contentEquals("G-") || 
feat_temp.contentEquals("C-")) { 
                            feat_num = -1; 
                        } 
                        
                    } 
                       /* cell = row.createCell(colNum++); 
                        cell.setCellValue((String) R); 
                        cell = row.createCell(colNum++); 
                        cell.setCellValue((int) match); 
                        cell = row.createCell(colNum++); 
                        cell.setCellValue((int) mismatch); 
                        cell = row.createCell(colNum++); 
                        cell.setCellValue((int) N_AU); 
                        cell = row.createCell(colNum++); 
                        cell.setCellValue((int) N_GC);*/ 
                       csvOutput.write(R);  
                       csvOutput.write(String.valueOf(match)); 
                       csvOutput.write(String.valueOf(mismatch)); 
                       csvOutput.write(String.valueOf(N_AU)); 
                       csvOutput.write(String.valueOf(N_GC)); 
     //Start valaues (Again Loop) 
     for (int j = 0; j < features.size() ; j++) { 
                        String feat_temp = features.get(j); 
                        double feat_num = -2; 
                        if (feat_temp.contentEquals("AT") || 
feat_temp.contentEquals("GC")) { 
                          
                            feat_num = 1; 
                        } else if (feat_temp.contentEquals("AU") || 
feat_temp.contentEquals("UG")) { 
                            feat_num = 2; 
                             
                        } else if (feat_temp.contentEquals("GT") || 
feat_temp.contentEquals("TC") || feat_temp.contentEquals("AG") || 
feat_temp.contentEquals("AC") 
                                || feat_temp.contentEquals("TU")) { 
                            feat_num = 0; 
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                        } else if (feat_temp.contentEquals("AA") || 
feat_temp.contentEquals("TT") || feat_temp.contentEquals("GG") || 
feat_temp.contentEquals("CC")) { 
                            feat_num = 0; 
                        } else if (feat_temp.contentEquals("A-") || 
feat_temp.contentEquals("T-") || feat_temp.contentEquals("G-") || 
feat_temp.contentEquals("C-")) { 
                            feat_num = -1; 
                        } 
                        /*cell = row.createCell(colNum++); 
                        cell.setCellValue((Double) feat_num);*/ 
                       csvOutput.write(String.valueOf(feat_num)); 
                         
                    } 
     //End Values    
                    csvOutput.endRecord();  
                    features.clear(); 
                    flag1 = 0; 
                    flag2 = 0; 
                    match  =0; 
                    mismatch = 0; 
                    N_AU =0; 
                    N_GC = 0; 
                    n_feat++; 
                    R1 =null; 
                    R2= null; 
                    R = null; 
                } 
                if (n_feat == 1000000) { 
                    break; 
                } 
            } 
 
            try { 
                
                 csvOutput.close(); 
                FileOutputStream outputStream = new 
FileOutputStream("/home/alisha/Downloads/CSV 
Code+Libraries/out/empty.csv"); 
                //workbook.write(outputStream);*/ 
                // workbook.close(); 
                 
            } catch (FileNotFoundException e) { 
                e.printStackTrace(); 
            } catch (IOException e) { 
                e.printStackTrace(); 
            } 
 
            System.out.println("Done" + listOfFiles[f].getName()); 
        } 
    } 
} 
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Appendix 8.4. A java program for feature generations from the alignment of outseed 
sequences. This java code generates the miRNA pairing information is summarized over the 
3’ region and outseed region of the miRNA. The input dataset is the duplex structure of miRNA 
target interactions. 
 
package new_datasetsmall; 
import java.io.BufferedReader; 
import java.io.File; 
import java.io.FileNotFoundException; 
import java.io.FileOutputStream; 
import java.io.FileReader; 
import java.io.IOException; 
import java.util.ArrayList; 
import jxl.write.WriteException; 
import org.apache.poi.ss.usermodel.Cell; 
import org.apache.poi.ss.usermodel.Row; 
import org.apache.poi.xssf.usermodel.XSSFSheet; 
import org.apache.poi.xssf.usermodel.XSSFWorkbook; 
//Added 
import org.apache.poi.ss.usermodel.Sheet; 
import org.apache.poi.ss.usermodel.Workbook; 
import org.apache.poi.ss.util.CellReference; 
import org.apache.poi.xssf.streaming.SXSSFWorkbook; 
//added 
import java.io.FileWriter; 
import com.csvreader.CsvWriter;  
//import java.io.IOExceptio; 
/*** @author alisha 
 */ 
public class new_datasetsmall { 
 
    public static void main(String[] args) throws IOException, 
WriteException { 
        String Path_in = "/home/alisha/Downloads/Final Updated Code+ 
Libraries/in_positive/";// give the input foleder path 
        String Path_out = "/home/alisha/Downloads/Final Updated Code+ 
Libraries/pos_out_lowercase/";// give the output folder path 
        File folder = new File(Path_in); 
        File[] listOfFiles = folder.listFiles(); 
        FileWriter writer = null; 
 
        for (int f = 0; f < listOfFiles.length; f++) { 
            System.out.println("Start " + listOfFiles[f].getName()); 
            //if (listOfFiles[f].getName().equalsIgnoreCase("positive0")) { 
           // Workbook workbook = new SXSSFWorkbook(); 
            //Sheet sheet = workbook.createSheet("Datatypes in Java"); 
            //int rowNum = 0; 
              CsvWriter csvOutput = new CsvWriter(new FileWriter(Path_out + 
listOfFiles[f].getName().replace(".fasta", ".csv"),true),','); 
            // TODO code application logic here 
            BufferedReader br = null; 
            FileReader fr = null; 
            br = new BufferedReader(new FileReader(Path_in + 
listOfFiles[f].getName())); 
            //int i = 0; 
            String sCurrentLine = null; 
            String miRNA = null; 
            String Mrna = null; 
            String Rvalue = null; 
            String R = null; 
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             int match = 0; 
             int mismatch  =0; 
             int othermismatch = 0; 
             int N_AU  =0; 
             int N_GC = 0; 
             int N_UG = 0; 
 
            ArrayList<String> features = new ArrayList<String>(); 
            int n_feat = 0; 
            int flag1 = 0; 
            int flag2 = 0; 
            csvOutput.write("miRNA"); 
            csvOutput.write("Mrna"); 
            csvOutput.write("R"); 
            csvOutput.write("Total-Matches"); 
            csvOutput.write("Total-Mismatces"); 
            csvOutput.write("Total-gc"); 
            csvOutput.write("Total-au"); 
            csvOutput.write("Total-ug"); 
            csvOutput.write("Total-Othermismatces"); 
            csvOutput.endRecord(); 
          
            while ((sCurrentLine = br.readLine()) != null) { 
                if (sCurrentLine.contains(">hsa-miR-")) { 
                    String[] temp = sCurrentLine.split("\\s+"); 
                    miRNA = temp[0].replaceAll(">", "").trim(); 
 
                    Mrna = temp[1].trim(); 
                    flag1 = 1; 
                    //  Rvalue.add(temp[2].replaceAll("R:", "").trim()); 
 
                }else if(sCurrentLine.contains("Forward:")){ 
                 R = sCurrentLine; 
                 //System.out.println(R); 
                 R = R.replaceAll("   Forward: Score: ",""); 
                 R = R.replaceAll("Q:", ""); 
                 R = R.replaceAll("R:", ""); 
                 R = R.replaceAll("Align Len ", ""); 
                 //System.out.println(R); 
                 R = R.replaceAll("Energy:", ""); 
                 //System.out.println(R); 
                 R = R.substring(21); 
                 R = R.replaceAll("to", ""); 
                 String[] temp1 = R.split("\\s+"); 
                 R = temp1[0].trim()+" "+"to"+" "+temp1[1].trim(); 
                  
                } else if (sCurrentLine.contains("Ref:      5' ")) { 
                    String ref = sCurrentLine; 
                    sCurrentLine = br.readLine(); 
                    sCurrentLine = br.readLine(); 
                    String query = sCurrentLine; 
                    ref = ref.replaceAll("Ref:      5'", ""); 
                    ref = ref.replaceAll("3'", ""); 
                    ref = ref.trim(); 
                    ref = ref.replaceAll("[A-Z]", ""); 
                    ref = ref.replaceAll("[\\-]", ""); 
                    ref = ref.trim(); 
                     
                     
                    query = query.replaceAll("Query:    3'", ""); 
                    query = query.replaceAll("5'", ""); 



Appendix 

 
63 

 

                    query = query.trim(); 
                    query = query.replaceAll("[A-Z]", ""); 
                    query = query.replaceAll("-", ""); 
                    query = query.trim(); 
                    System.out.println("Ref " + ref + "  " + query); 
                   // System.out.println(R); 
                    int start = 0; 
                    
                    if (ref.length() == query.length()) { 
                        start = ref.length(); 
 
                    } 
                   /*  //features.add(new ArrayList<String>()); 
                    int start = -1; 
                    int end = -1; 
                    if (ref.length() == query.length()) { 
                        start = ref.length() - 1; 
                        end = 0; 
                    } else if (ref.length() > query.length()) { 
                        int mis = ref.length() - query.length(); 
                        for (int i = 0; i < mis; i++) { 
                            query = "*" + query; 
                        } 
                        start = ref.length() - 1; 
                        end = mis; 
                    }*/ 
                    for (int i = 0; i < start; i++) { 
                        if (!ref.isEmpty() && !query.isEmpty()) { 
                            //System.out.println("Length "+ref.length()); 
                            //int temp_num = 
Integer.parseInt(temp[i].trim()); 
                            String feat_temp = ""; 
                            feat_temp = "" + ref.charAt(i) + 
query.charAt(i); 
                            //feat_temp=feat_temp+; 
                            features.add(feat_temp); 
                            //System.out.println(feat_temp); 
                        } 
                    } 
                    flag2 = 1 
                } 
 
                if (flag1 == 1 && flag2 == 1) { 
                   // int colNum = 0; 
                   /* Row row = sheet.createRow(rowNum++); 
                    int colNum = 0; 
                    Cell cell = row.createCell(colNum++); 
                    cell.setCellValue((String) miRNA); 
                    cell = row.createCell(colNum++); 
                    cell.setCellValue((String) Mrna);*/ 
                    csvOutput.write(miRNA);  
                    csvOutput.write(Mrna);  
                     
                      
                    //setting up extra condition to check array boundary 
indices// 
                    for (int j = 0; j < features.size(); j++) { 
                        String feat_temp = features.get(j); 
                        //double feat_num = -2; 
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                        if (feat_temp.contentEquals("at") || 
feat_temp.contentEquals("gc")||feat_temp.contentEquals("ta") || 
feat_temp.contentEquals("cg")) { 
                            match++; 
                            
if(feat_temp.contentEquals("gc")||feat_temp.contentEquals("cg")){ 
                             N_GC++;    
                            } 
                           // feat_num = 1; 
                        } else if (feat_temp.contentEquals("au") || 
feat_temp.contentEquals("ug")) { 
                            //feat_num = 2; 
                            
if(feat_temp.contentEquals("ug")||feat_temp.contentEquals("gu")){ 
                            N_UG++; 
                            } 
                             
                            if 
(feat_temp.contentEquals("au")||feat_temp.contentEquals("ua")){ 
                                N_AU++; 
                            } 
                        } else if (feat_temp.contentEquals("gt") || 
feat_temp.contentEquals("tc") || feat_temp.contentEquals("ag") || 
feat_temp.contentEquals("ac") 
                                || feat_temp.contentEquals("tu") || 
feat_temp.contentEquals("cu")||feat_temp.contentEquals("tg") || 
feat_temp.contentEquals("ct") || feat_temp.contentEquals("ga") || 
feat_temp.contentEquals("ca") 
                                || feat_temp.contentEquals("ut") || 
feat_temp.contentEquals("uc")) { 
                            //feat_num = 0; 
                            mismatch++; 
                        } else if (feat_temp.contentEquals("aa") || 
feat_temp.contentEquals("tt") || feat_temp.contentEquals("gg") || 
feat_temp.contentEquals("cc")) { 
                           // feat_num = 0; 
                           othermismatch++; 
                        } else if (feat_temp.contentEquals("A-") || 
feat_temp.contentEquals("T-") || feat_temp.contentEquals("G-") || 
feat_temp.contentEquals("C-")) { 
                           // feat_num = -1; 
                        } 
                        
                    } 
                       /* cell = row.createCell(colNum++); 
                        cell.setCellValue((String) R); 
                        cell = row.createCell(colNum++); 
                        cell.setCellValue((int) match); 
                        cell = row.createCell(colNum++); 
                        cell.setCellValue((int) mismatch); 
                        cell = row.createCell(colNum++); 
                        cell.setCellValue((int) N_AU); 
                        cell = row.createCell(colNum++); 
                        cell.setCellValue((int) N_GC);*/ 
                       csvOutput.write(R);  
                       csvOutput.write(String.valueOf(match)); 
csvOutput.write(String.valueOf(mismatch));                    
csvOutput.write(String.valueOf(N_GC)); 
                       
csvOutput.write(String.valueOf(N_AU));csvOutput.write(String.valueOf(N_UG))
;       csvOutput.write(String.valueOf(othermismatch)); 
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     //Start valaues (Again Loop) 
 
     //End Values    
                    csvOutput.endRecord();  
                    features.clear(); 
                    flag1 = 0; 
                    flag2 = 0; 
                    match  =0; 
                    mismatch = 0; 
                    othermismatch = 0; 
                    N_UG = 0; 
                    N_AU =0; 
                    N_GC = 0; 
                    n_feat++; 
                } 
                if (n_feat == 22704425) { 
                    break; 
                } 
            } 
            try { 
                
                csvOutput.close(); 
                FileOutputStream outputStream = new 
FileOutputStream("/home/alisha/Downloads/Final Updated Code+ 
Libraries/pos_out_upparcase/empty.csv"); 
                //workbook.write(outputStream);*/ 
                // workbook.close(); 
                 
            } catch (FileNotFoundException e) { 
                e.printStackTrace(); 
            } catch (IOException e) { 
                e.printStackTrace(); 
            } 
            System.out.println("Done" + listOfFiles[f].getName()); 
        } 
    } 
} 
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Appendix 8.5. An example of training dataset. After feature generation from several code 
and algorithms, 95 features are generated of each miRNA target interaction. After several pre-
processing stages (section 2.4) resultant dataset used for training of AHDR algorithm. The 
input dataset was saved as the excel file. 
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Appendix 8.6. AHDR architecture. In training AHDR classifier, several deep learning 
packages such as Keras and sklearn is used to train AHDR classifier. Several machine 
learning algorithms have been applied before and after feature selection algorithms. The 
performance of classifier was presented by generating ACC, AUC, TPR, TNR, and MCC (as 
shown in Table 6) 
 
#importing Libraries used  
import pandas as pd 
import numpy as np 
##usefull preprocessing and etc classes 
from sklearn.cross_validation import train_test_split 
from sklearn import metrics 
from keras import backend as K 
from sklearn.metrics import precision_score 
from sklearn.metrics import auc 
from sklearn.metrics import recall_score, confusion_matrix 
##ml model classes 
from sklearn.linear_model import LogisticRegression 
from sklearn.neighbors import KNeighborsClassifier 
from keras.models import Sequential 
from keras.layers import Dense, Dropout, Activation 
from keras.models import Sequential 
from keras.layers import Dense, Dropout 
from sklearn.ensemble import GradientBoostingClassifier 
from sklearn.ensemble import RandomForestClassifier 
from sklearn.ensemble import GradientBoostingClassifier 
from sklearn.naive_bayes import BernoulliNB 
from sklearn import tree 
from sklearn import svm 
##importing Feature selection Classes 
from sklearn.feature_selection import VarianceThreshold 
from sklearn.feature_selection import SelectKBest 
from sklearn.feature_selection import chi2 
from sklearn.svm import SVC 
from sklearn.feature_selection import RFE 
from sklearn.linear_model import RandomizedLogisticRegression 
from sklearn.ensemble import ExtraTreesClassifier 
from sklearn.feature_selection import SelectFromModel 
from sklearn.svm import LinearSVC 
from sklearn.cross_validation import KFold 
 
# # Defining Machine learning Models 
 
# ### Logisitic Regression 
def LogisticModel(xTrain, yTrain, xTest, yTest): 
    logreg = LogisticRegression(C=1e5) 
    
    logreg.fit(xTrain,yTrain) 
    yPredict = logreg.predict(xTest) 
    precisionScore=precision_score(yTest, yPredict, average="binary") 
    tn, fp, fn, tp = confusion_matrix(yTest, yPredict).ravel() 
    recall=recall_score(yTest, yPredict) 
    score =logreg.score(xTest, yTest) 
    return  logreg,score, precisionScore,recall, tn, fp, fn, tp, yPredict 
 
 
# ### KNN model 
def KNNModel(xTrain, yTrain, xTest, yTest): 
    neighModel = KNeighborsClassifier(n_neighbors=5) 
    neighModel.fit(xTrain,yTrain) 



Appendix 

 
68 

 

     
    yPredict = neighModel.predict(xTest) 
    precisionScore=precision_score(yTest, yPredict, average="binary") 
    tn, fp, fn, tp = confusion_matrix(yTest, yPredict).ravel() 
    recall=recall_score(yTest, yPredict) 
    score =neighModel.score(xTest, yTest) 
    return  neighModel, score, precisionScore,recall, tn, fp, fn, tp, 
yPredict 
 
# ### NN 
def NNModelFunction(xTrain, yTrain, xTest, yTest, DenseNumber): 
model2 = Sequential() 
model2.add(Dense(16, activation='sigmoid', input_dim=DenseNumber)) 
model2.add(Dense(1, activation='sigmoid')) 
model2.compile(loss='binary_crossentropy',optimizer='rmsprop', 
metrics=['accuracy']) 
model2.fit(xTrain,yTrain, epochs=60, batch_size=128) 
scores= model2.evaluate(xTest, yTest) 
yPredict = model2.predict_classes(xTest, batch_size=128) 
precisionScore=precision_score(yTest, yPredict, average="binary") 
tn, fp, fn, tp = confusion_matrix(yTest, yPredict).ravel() 
recall=recall_score(yTest, yPredict) 
return model2,scores[1], precisionScore,recall, tn, fp, fn, tp, yPredict 
 
 ### GradientBoostingClassifier 
def boostingalgo(xTrain, yTrain, xTest, yTest): 
clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0, 
max_depth=1, random_state=0).fit(xTrain, yTrain) 
yPredict = clf.predict(xTest) 
precisionScore=precision_score(yTest, yPredict, average="binary") 
tn, fp, fn, tp = confusion_matrix(yTest, yPredict).ravel() 
recall=recall_score(yTest, yPredict) 
score =clf.score(xTest, yTest) 
return  clf, score, precisionScore,recall, tn, fp, fn, tp, yPredict 
 
# ### Random Forest 
def randomForestModel(xTrain, yTrain, xTest, yTest): 
clf = RandomForestClassifier(max_depth=2, random_state=0) 
clf.fit(xTrain, yTrain) 
yPredict = clf.predict(xTest) 
precisionScore=precision_score(yTest, yPredict, average="binary") 
tn, fp, fn, tp = confusion_matrix(yTest, yPredict).ravel() 
recall=recall_score(yTest, yPredict) 
score =clf.score(xTest, yTest) 
return  clf, score, precisionScore,recall, tn, fp, fn, tp, yPredict 
 
####### Gradientboosting 
def gradientboostingModel(xTrain, yTrain, xTest, yTest): 
clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0, 
max_depth=1, random_state=0).fit(xTrain, yTrain) 
yPredict = clf.predict(xTest) 
precisionScore=precision_score(yTest, yPredict, average="binary") 
tn, fp, fn, tp = confusion_matrix(yTest, yPredict).ravel() 
recall=recall_score(yTest, yPredict) 
score =clf.score(xTest, yTest) 
return  clf, score, precisionScore,recall, tn, fp, fn, tp, yPredict 
 
# ### BernoulliNB 
def bernoModel(xTrain, yTrain, xTest, yTest): 
clf = BernoulliNB() 
clf.fit(xTrain, yTrain) 
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yPredict = clf.predict(xTest) 
precisionScore=precision_score(yTest, yPredict, average="binary") 
tn, fp, fn, tp = confusion_matrix(yTest, yPredict).ravel() 
recall=recall_score(yTest, yPredict) 
score =clf.score(xTest, yTest) 
return  clf, score, precisionScore,recall, tn, fp, fn, tp, yPredict 
 
# ### Decision Tree 
def DecisionTreeModel(xTrain, yTrain, xTest, yTest): 
treeClas= tree.DecisionTreeClassifier() 
treeClas.fit(xTrain,yTrain) 
yPredict = treeClas.predict(xTest) 
precisionScore=precision_score(yTest, yPredict, average="binary") 
tn, fp, fn, tp = confusion_matrix(yTest, yPredict).ravel() 
recall=recall_score(yTest, yPredict) 
score =treeClas.score(xTest, yTest) 
return  treeClas,score, precisionScore,recall, tn, fp, fn, tp,yPredict 
 
# ### SVM 
def SVMModel(xTrain, yTrain, xTest, yTest): 
    svmTModel = svm.SVC() 
    
    svmTModel.fit(xTrain,yTrain) 
     
    yPredict = svmTModel.predict(xTest) 
    precisionScore=precision_score(yTest, yPredict, average="binary") 
    tn, fp, fn, tp = confusion_matrix(yTest, yPredict).ravel() 
    recall=recall_score(yTest, yPredict) 
    score =svmTModel.score(xTest, yTest) 
    return  svmTModel, score, precisionScore,recall, tn, fp, fn, tp, 
yPredict 
 
# # Feature Selection  
# ### VarianceThreshold 
def VarianceThresholdMethod(Input, output): 
    selectionModel =VarianceThreshold(threshold=0) 
    selectionModel.fit(Input, output) 
    indexes=selectionModel.get_support(indices=True) 
    columns=list(Input.columns) 
    selectedList =[] 
    for i in indexes: 
        selectedList.append(columns[i]) 
    return selectedList 
 
# ### Chi `Square 
def ChiSqure(Input, output): 
    model = SelectKBest(chi2, k=10) 
    temp =Input.copy() 
    temp=temp.drop(["POS1","POS7",  "m/e"  , "POS9" 
,"POS8","POS4","POS3","POS2","POS9","POS4","POS10" 
               ,"POS6","Energy", "POS5","PyloP_Flanking","PhyloP_Stem"], 
axis=1) 
    model.fit(temp, output) 
    indexes= model.get_support(indices=True) 
    columns=list(temp.columns) 
    selectedList =[] 
    for i in indexes: 
        selectedList.append(columns[i]) 
    return selectedList 
 
# ### Recursive feature elimination 
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def RecursiveFeatureEmlination(Input, output): 
    svc = SVC(kernel="linear", C=1) 
    rfe = RFE(estimator=svc, n_features_to_select=1, step=1) 
    rfe.fit(Input, output) 
    indexes= rfe.get_support(indices=True) 
    columns=list(Input.columns) 
    selectedList =[] 
    for i in indexes: 
        selectedList.append(columns[i]) 
    return selectedList 
 
# ### RandomizedLogisticRegression 
def RLRFeatureSelection(Input, output): 
    clf = RandomizedLogisticRegression() 
    clf = clf.fit(Input, output) 
    indexes=clf.get_support(indices=True) 
    columns=list(Input.columns) 
    selectedList =[] 
    for i in indexes: 
        selectedList.append(columns[i]) 
    return selectedList 
 
# ### Tree-based feature selection 
def treeBasedSelection(Input, output): 
clf = ExtraTreesClassifier() 
clf = clf.fit(Input, output) 
    model = SelectFromModel(clf, prefit=True) 
    indexes=model.get_support(indices=True) 
    columns=list(Input.columns) 
    selectedList =[] 
    for i in indexes: 
selectedList.append(columns[i]) 
    return selectedList 
 
# ### LASSO 
def lasso(Input, outout): 
    lsvc = LinearSVC(C=0.01, penalty="l1", dual=False).fit(Input, output) 
    model = SelectFromModel(lsvc, prefit=True) 
    columns=list(Input.columns) 
    indexes = list(model.get_support(indices=True)) 
    selectedList =[] 
    for i in indexes: 
        selectedList.append(columns[i]) 
    return selectedList 
 
#### Now loading Dataset 
df = pd.read_csv("prepocessed_numeric_fullDataSet.csv") 
Input=(df.loc[:, df.columns != 'seed']) 
output = (df['seed']) 
 
#### DFFN without Using Feature selection  
X_train, X_test, y_train, y_test = train_test_split(Input,output, 
test_size=0.3, random_state=5) 
 
DNN(np.array(X_train), np.array(y_train),  np.array(X_test), 
            np.array(y_test) ,X_train.shape[1]) 
 
# #### APPLYING DEEP LEARNING ON LASSO SELECTED FEATURES 
one=lesso(Input, output) 
two=lesso(Input, output) 
three=lesso(Input, output) 
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commonLassoFeatures=list(set(one)&set(two)&set(three)) 
print(len(commonLassoFeatures)) 
X_train, X_test, y_train, y_test = 
train_test_split(Input[commonLassoFeatures],output, test_size=0.3, 
random_state=5) 
x_train.shape 
DNN(np.array(X_train), np.array(y_train),  np.array(X_test), 
            np.array(y_test) ,X_train.shape[1]) 
X_train.shape[1] 
 
#### APPLYING ALL ML MODELS WITHOUT USING ANY FEATURE SELECTION METHOD 
##### Separting Data into Testing and Training  
X_train, X_test, y_train, y_test = train_test_split(Input,output, 
test_size=0.3, random_state=5) 
 
# #### After division applying ML model 
LR_Model, LR_score, LR_precisionScore,LR_recall, LR_tn, LR_fp, LR_fn, 
LR_tp, LR_yPredict=LogisticModel(X_train,y_train, X_test, y_test ) 
LR_score 
 
# In[36]: 
BA_Model, BA_score, BA_precisionScore,BA_recall, BA_tn, BA_fp, BA_fn, 
BA_tp, BA_yPredict=boostingalgo(X_train, y_train, X_test, y_test) 
 
# In[37]: 
BN_Model, BN_score, BN_precisionScore,BN_recall, BN_tn, BN_fp, BN_fn, 
BN_tp, BN_yPredict=bernoModel(X_train,y_train, X_test, y_test) 
BN_score 
 
# In[39]: 
DT_Model, DT_score, DT_precisionScore,DT_recall, DT_tn, DT_fp, DT_fn, 
DT_tp, DT_yPredict=DecisionTreeModel(X_train,y_train, X_test, y_test) 
 
# In[40]: 
SVM_Model, SVM_score, SVM_precisionScore,SVM_recall, SVM_tn, SVM_fp, 
SVM_fn, SVM_tp, SVM_yPredict=SVMModel(X_train,y_train, X_test,y_test) 
 
# In[41]: 
NN_Model, NN_score, NN_precisionScore,NN_recall, NN_tn, NN_fp, NN_fn, 
NN_tp, NN_yPredict=NNModelFunction(np.array(X_train),np.array(y_train), 
np.array(X_test), np.array(y_test) ,X_train.shape[1]) 
NN_score 
 
# In[43]: 
DNN_Model, DNN_score, DNN_precisionScore, DNN_recall, DNN_tn, DNN_fp, 
DNN_fn, DNN_tp, DNN_yPredict=DNN(np.array(X_train), np.array(y_train), 
np.array(X_test), np.array(y_test),X_train.shape[1]) 
DNN_score 
 
### After Feature selection apply ML models on it 
#### Variance threshold applying 
InputColumnsVari=VarianceThresholdMethod (Input, output) 
len(InputColumnsVari) 
VInput = Input[InputColumnsVari] 
VX_train, VX_test, Vy_train, Vy_test = train_test_split(VInput,output, 
test_size=0.3, random_state=5) 
 
# In[47]: 
KNNModel(VX_train,Vy_train, VX_test, Vy_test) 
 
# In[48]: 
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bernoModel(VX_train,Vy_train, VX_test, Vy_test) 
 
# In[49]: 
SVMModel(VX_train,Vy_train, VX_test, Vy_test) 
 
# In[50]: 
NNModelFunction(np.array(VX_train),Vy_train,  
                np.array(VX_test), Vy_test, 70) 
 
# In[51]: 
DNN(np.array(VX_train),Vy_train, np.array(VX_test), Vy_test, 
len(InputColumns)) 
 
##### Tree-based feature selection 
 
oneT=treeBasedSelection(Input, output) 
twoT=treeBasedSelection(Input, output) 
threeT=treeBasedSelection(Input, output) 
commonTreeFeatures=list(set(oneT)&set(twoT)&set(threeT)) 
treeInput = Input[commonTreeFeatures] 
len(commonTreeFeatures) 
TX_train, TX_test, Ty_train, Ty_test = train_test_split(treeInput, output, 
test_size=0.3, random_state=5) 
 
# In[54]: 
print(LogisticModel(TX_train,Ty_train, TX_test, Ty_test)) 
 
#### Recursive feature elimination 
oneR=RecursiveFeatureEmlination(Input, output) 
twoR=RecursiveFeatureEmlination(Input, output) 
threeR=RecursiveFeatureEmlination(Input, output) 
commonReFeatures=list(set(oneR)&set(twoR)&set(threeR)) 
len(commonReFeatures) 
 
# In[ ]: 
ReInput = Input[commonReFeatures] 
RX_train, RX_test, Ry_train, Ry_test = train_test_split(ReInput, 
                                                        output, 
test_size=0.3, random_state=5) 
 
# In[ ]: 
print(LogisticModel(RX_train,Ry_train, RX_test, Ry_test)) 
 
# In[ ]: 
bernoModel(RX_train,Ry_train, RX_test, Ry_test) 
 
# In[ ]: 
KNNModel(RX_train,Ry_train, RX_test, Ry_test) 
 
# In[ ]: 
SVMModel (RX_train, Ry_train, RX_test, Ry_test) 
 
# In[ ]: 
NNModelFunction (np.array (RX_train), Ry_train, np.array (RX_test), 
Ry_test, len (commonReFeatures)) 
 
# In[ ]: 
DNN (np.array (RX_train), Ry_train, np.array (RX_test), Ry_test, len 
(commonReFeatures)) 
 
# ### Apply Lasso First and then take those Features and train ML Models 
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one=lesso(Input, output) 
two=lesso(Input, output) 
three=lesso(Input, output) 
 
# In[21]: 
commonLassoFeatures=list(set(one)&set(two)&set(three)) 
print(len(commonLassoFeatures)) 
 
# In[22]: 
LassoInput = np.array(Input[commonLassoFeatures]) 
input_number=len(commonLassoFeatures) 
input_number 
 
# ## 5 Cross Validation 
kf_total = KFold(len(LassoInput), n_folds=5, shuffle=True, random_state=4) 
DNNR=[] 
precisionR=[] 
recallR=[] 
TruePositive =[] 
FalsePositive =[] 
for train, test in kf_total: 
    TrainX=pd.DataFrame(LassoInput[list(train),:]) 
    Trainy=pd.DataFrame(output[list(train)]) 
    TestX=pd.DataFrame(LassoInput[list(test),:]) 
    Testy=pd.DataFrame(output[list(test)]) 
     
    model, score, precision, recall, TN, FP, FN, TP, 
yPredict=DNN(np.array(TrainX), 
np.array(Trainy),np.array(TestX),np.array(Testy),input_number) 
    DNNR.append(score) 
    precisionR.append(precision) 
    recallR.append(recall) 
    TruePositive.append(TP) 
    FalsePositive.append(FP) 
    print("!!!!!") 
 
print ("Accuracy:") 
print(DNNR) 
print("Precision") 
print(precisionR) 
print("ReCall") 
print(recallR) 
print("TruePositive") 
print(TruePositive ) 
print("False Posisive") 
print(FalsePositive ) 
 
# ### 10 cross validation  
kf_total = KFold(len(LassoInput), n_folds=10, shuffle=True, random_state=4) 
# In[62]: 
LR10=[] 
precisionR10=[] 
recallR10=[] 
TruePositive10 =[] 
FalsePositive10 =[] 
for train, test in kf_total: 
    TrainX=pd.DataFrame(LassoInput[list(train),:]) 
    Trainy=pd.DataFrame(output[list(train)]) 
    TestX=pd.DataFrame(LassoInput[list(test),:]) 
    Testy=pd.DataFrame(output[list(test)]) 
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    model,score, precision, recall, TN, FP, FN, TP, 
yPredict=LogisticModel(TrainX, Trainy, TestX,Testy ) 
    LR10.append(score) 
    precisionR10.append(precision) 
    recallR10.append(recall) 
    TruePositive10.append(TP) 
    FalsePositive10.append(FP) 
    print("!!!!!") 
 
# In[63]: 
print ("Accuracy:") 
print(np.mean(LR10)) 
print("Precision") 
print(np.mean(precisionR10)) 
print("ReCall") 
print(np.mean(recallR10)) 
print("TruePositive") 
print(np.mean(TruePositive10) ) 
print("False Posisive") 
print(np.mean(FalsePositive10) ) 
 
# #### multivariate Bernoulli Naïve Bayes 
NB10=[] 
precisionR10=[] 
recallR10=[] 
TruePositive10 =[] 
FalsePositive10 =[] 
for train, test in kf_total: 
    TrainX=pd.DataFrame(LassoInput[list(train),:]) 
    Trainy=pd.DataFrame(output[list(train)]) 
    TestX=pd.DataFrame(LassoInput[list(test),:]) 
    Testy=pd.DataFrame(output[list(test)]) 
    model,score, precision, recall, TN, FP, FN, TP, 
yPredict=bernoModel(TrainX, Trainy, TestX,Testy ) 
    NB10.append(score) 
    precisionR10.append(precision) 
    recallR10.append(recall) 
    TruePositive10.append(TP) 
    FalsePositive10.append(FP) 
    print("!!!!!") 
 
print ("Accuracy:") 
print(np.mean(NB10)) 
print("Precision") 
print(np.mean(precisionR10)) 
print("ReCall") 
print(np.mean(recallR10)) 
print("TruePositive") 
print(np.mean(TruePositive10) ) 
print("False Posisive") 
print(np.mean(FalsePositive10) ) 
 
SVM10=[] 
precisionR10=[] 
recallR10=[] 
TruePositive10 =[] 
FalsePositive10 =[] 
for train, test in kf_total: 
    TrainX=pd.DataFrame(LassoInput[list(train),:]) 
    Trainy=pd.DataFrame(output[list(train)]) 
    TestX=pd.DataFrame(LassoInput[list(test),:]) 
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    Testy=pd.DataFrame(output[list(test)]) 
    model,score, precision, recall, TN, FP, FN, TP, 
yPredict=SVMModel(TrainX, Trainy, TestX,Testy ) 
    SVM10.append(score) 
    precisionR10.append(precision) 
    recallR10.append(recall) 
    TruePositive10.append(TP) 
    FalsePositive10.append(FP) 
    print("!!!!!") 
 
print ("Accuracy:") 
print(np.mean(SVM10)) 
print("Precision") 
print(np.mean(precisionR10)) 
print("ReCall") 
print(np.mean(recallR10)) 
print("TruePositive") 
print(np.mean(TruePositive10) ) 
print("False Posisive") 
print(np.mean(FalsePositive10) ) 
 
# #### NN 
NNR10=[] 
precisionR10=[] 
recallR10=[] 
TruePositive10 =[] 
FalsePositive10 =[] 
for train, test in kf_total: 
    TrainX=pd.DataFrame(LassoInput[list(train),:]) 
    Trainy=pd.DataFrame(output[list(train)]) 
    TestX=pd.DataFrame(LassoInput[list(test),:]) 
    Testy=pd.DataFrame(output[list(test)]) 
     
    model,score, precision, recall, TN, FP, FN, TP, 
yPredict=NNModelFunction(np.array(TrainX), np.array(Trainy) 
                    ,  
                    np.array(TestX),np.array(Testy) 
                    ,len(commonLassoFeatures)) 
    NNR10.append(score) 
    precisionR10.append(precision) 
    recallR10.append(recall) 
    TruePositive10.append(TP) 
    FalsePositive10.append(FP) 
    print("!!!!!") 
 
# In[67]: 
print ("Accuracy:") 
print(np.mean(NNR10)) 
print("Precision") 
print(np.mean(precisionR10)) 
print("ReCall") 
print(np.mean(recallR10)) 
print("TruePositive") 
print(np.mean(TruePositive10) ) 
print("False Posisive") 
print(np.mean(FalsePositive10) ) 
 
# #### DNN 
DNNR10=[] 
precisionR10=[] 
recallR10=[] 
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TruePositive10 =[] 
FalsePositive10 =[] 
for train, test in kf_total: 
    TrainX=pd.DataFrame(LassoInput[list(train),:]) 
    Trainy=pd.DataFrame(output[list(train)]) 
    TestX=pd.DataFrame(LassoInput[list(test),:]) 
    Testy=pd.DataFrame(output[list(test)]) 
     
    model,score, precision, recall, TN, FP, FN, TP, 
yPredict=DNN(np.array(TrainX), np.array(Trainy) 
                    ,  
                    np.array(TestX),np.array(Testy) 
                    ,len(commonLassoFeatures)) 
    DNNR10.append(score) 
    precisionR10.append(precision) 
    recallR10.append(recall) 
    TruePositive10.append(TP) 
    FalsePositive10.append(FP) 
    print("!!!!!") 
 
print ("Accuracy:") 
print(np.mean(DNNR10)) 
print("Precision") 
print(np.mean(precisionR10)) 
print("ReCall") 
print(np.mean(recallR10)) 
print("TruePositive") 
print(np.mean(TruePositive10) ) 
print("False Posisive") 
print(np.mean(FalsePositive10) ) 
 
#### Finding embedded score for each Feature 
#### LASSO Features Accuracy 
LassoDict= dict() 
for l in commonLassoFeatures: 
X_train, X_test, y_train, y_test = train_test_split( 
Input[l],output, test_size=0.3, 
random_state=5)score=NNModelFunction(X_train,y_train, X_test, y_test,1) 
LassoDict[l]=score 
 
# In[71]: 
LassoDict 
 
# ##### Our FInal Model is DNN on LASSO Features  
X_train, X_test, y_train, y_test = 
train_test_split(Input[commonLassoFeatures],output, test_size=0.3, 
random_state=5) 
 
# In[73]: 
model,score, precision, recall, TN, FP, FN, TP, 
yPredict=DNN(np.array(X_train), np.array(y_train),  
np.array(X_test),np.array(y_test),len(commonLassoFeatures)) 
 
# In[74]: 
df_pre=pd.DataFrame(X_test) 
 
# ###### Prediction Probablity  
 
# In[75]: 
y_predicted_prob = model.predict(np.array(X_test)) 
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# In[76]: 
np.set_printoptions(formatter={'float_kind':'{:f}'.format}) 
pd.options.display.float_format = '{:,.20f}'.format 
 
# In[77]: 
predicted_array=np.transpose(np.array(y_predicted_prob))[0] 
 
# In[78]: 
df_pre["Prediction Probablity"]=predicted_array 
 
# #### Loading Number values of miRNA and MRNA 
# In[79]: 
df_miRNA = pd.read_csv("miRNA_info.csv") 
 
# In[ ]: 
df_miRNA.head() 
 
# In[ ]: 
df_mRNA = pd.read_csv("mRNA_info.csv") 
 
# In[ ]: 
cross_Prediction 
=df_pre[["miRNA","mRNA","binding_region_length","Prediction Probablity"]] 
# In[ ]: 
cross_Prediction["miRNA"]=cross_Prediction["miRNA"].replace(list(df_miRNA["
number"]),list(df_miRNA["value"])) 
# In[ ]: 
cross_Prediction["mRNA"]=cross_Prediction["mRNA"].replace(list(df_mRNA["num
ber"]),list(df_mRNA["value"])) 
 
cross_Prediction.to_csv("Predictions) 
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Appendix 8.7. Test dataset of miRNA target. For performance evaluation of AHDR, 
experimentally verified dataset used as a test dataset, which is retrieved from strong 
experimental evidence such as Luciferase reporter assay, green fluorescent protein reporter 
assay, Reverse transcriptase-PCR, and Pulsed SILAC. 
 
miRNA Total experimentally verified targets 
hsa-miR-140-5p 85 
hsa-miR-133a-3p 110 
hsa-miR-665 540 
hsa-miR-448 48 
hsa-miR-515-5p 185 
hsa-miR-6891-5p 111 
hsa-miR-3940-5p 62 
hsa-miR-431-3p 5 
hsa-miR-6832-5p 237 
hsa-miR-103a-2-5p 57 
hsa-miR-6877-5p 35 
hsa-miR-1298-3p 45 
hsa-miR-3682-5p 50 
hsa-miR-3155a 97 
hsa-miR-5089-5p 334 
hsa-miR-648 67 
hsa-miR-367-5p 119 
hsa-miR-6740-5p 42 
hsa-miR-450a-2-3p 75 
hsa-miR-6793-3p 144 
hsa-miR-3622a-3p 100 
hsa-miR-541-5p 80 
hsa-miR-6515-3p 181 
hsa-miR-1276 141 
hsa-miR-6499-3p 519 
hsa-miR-2276-3p 145 
hsa-miR-3120-3p 114 
hsa-miR-6780b-5p 178 
hsa-miR-4769-5p 59 
hsa-miR-1306-5p 183 
hsa-miR-519b-3p 314 
hsa-miR-489-3p 60 
hsa-miR-23a-3p 63 
hsa-miR-6796-5p 51 
hsa-miR-675-3p 52 
hsa-miR-2110 96 
hsa-miR-1269a 30 
hsa-miR-483-3p 157 
hsa-miR-4659a-3p 221 
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miRNA Total experimentally verified targets 
hsa-miR-146a-5p 168 
hsa-miR-1289 76 
hsa-miR-8485 217 
hsa-miR-563 22 
hsa-miR-425-3p 43 
hsa-miR-4474-3p 48 
hsa-miR-5002-5p 65 
hsa-miR-3672 213 
hsa-let-7a-3p 111 
hsa-miR-4488 66 
hsa-miR-3691-5p 39 
hsa-miR-3688-5p 56 
hsa-miR-532-3p 208 
hsa-miR-4747-5p 215 
hsa-miR-6813-3p 65 
hsa-miR-3653-3p 113 
hsa-miR-3150b-3p 180 
hsa-miR-6858-5p 100 
hsa-miR-6768-3p 95 
hsa-miR-4797-3p 60 
hsa-miR-4684-5p 217 
hsa-miR-4638-5p 222 
hsa-miR-4300 57 
hsa-miR-6868-3p 178 
hsa-miR-101-5p 55 
hsa-miR-4650-3p 97 
hsa-miR-6771-3p 179 
hsa-miR-6748-3p 63 
hsa-miR-1248 153 
hsa-miR-4463 63 
hsa-miR-6794-5p 119 
hsa-miR-4763-5p 68 
hsa-miR-6132 79 
hsa-miR-1306-3p 11 
hsa-miR-579-5p 1 
hsa-miR-3917  1 
hsa-miR-4793-3p 293 
hsa-miR-575 110 
hsa-miR-496 110 
hsa-miR-320c  1 
hsa-miR-6818-3p 149 
hsa-miR-3162-3p 43 
hsa-miR-661 328 
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miRNA Total experimentally verified targets 
hsa-miR-6797-5p 193 
hsa-miR-5705 10 
hsa-miR-6767-3p 40 
hsa-miR-4722-5p  1 
hsa-miR-4477a 134 
hsa-miR-375 462 
hsa-miR-424-3p 29 
hsa-miR-499b-3p 55 
hsa-miR-1277-5p 618 
hsa-miR-1238-5p 51 
hsa-miR-4799-5p 89 
hsa-miR-3074-5p 94 
hsa-miR-95-5p 116 
hsa-miR-7157-5p 148 
hsa-miR-4436a  1 
hsa-miR-4634 33 
hsa-miR-664b-5p 15 
hsa-miR-4525 114 
hsa-miR-486-3p 133 
hsa-miR-302c-5p 136 
hsa-miR-449a 117 
hsa-miR-5001-5p 67 
hsa-miR-4765 43 
hsa-miR-3619-5p 117 
hsa-miR-7113-5p 103 
hsa-miR-766-3p 469 
hsa-miR-487b-3p 16 
hsa-miR-330-3p 130 
hsa-miR-4257  1 
hsa-miR-4264 78 
hsa-miR-489-5p  1 
hsa-miR-92b-5p 47 
hsa-miR-6829-3p  1 
hsa-miR-6766-3p 36 
hsa-miR-5584-5p  122 
hsa-miR-4710  1 
hsa-miR-3910 102 
hsa-miR-885-5p 60 
hsa-miR-302e 417 
hsa-miR-4715-3p 101 
hsa-miR-1282 18 
hsa-miR-3124-5p 3 
hsa-miR-4750-5p 8 
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miRNA Total experimentally verified targets 
hsa-miR-191-3p 16 
hsa-miR-6841-3p 46 
hsa-miR-1301-5p 31 
hsa-miR-3928-3p  1 
hsa-miR-6799-5p 493 
hsa-miR-20a-3p 72 
hsa-miR-6787-3p 212 
hsa-miR-1915-3p 184 
hsa-miR-603 497 
hsa-miR-32-5p 489 
hsa-miR-5706 55 
hsa-miR-6778-5p 127 
hsa-miR-1301-3p 190 
hsa-miR-1273f 207 
hsa-miR-4777-5p 45 
hsa-miR-3938 62 
hsa-miR-371b-3p 42 
hsa-miR-370-3p 98 
hsa-miR-574-3p 19 
hsa-miR-4751 40 
hsa-miR-8071 57 
hsa-miR-23a-5p 126 
hsa-miR-329-5p 87 
hsa-miR-372-3p 429 
hsa-miR-4479  1 
hsa-miR-105-3p 3 
hsa-miR-4326 68 
hsa-let-7b-5p 1148 
hsa-miR-6751-5p 76 
hsa-miR-3192-3p 56 
hsa-miR-6856-3p 59 
hsa-miR-6807-5p 439 
hsa-miR-6735-5p 84 
hsa-miR-5680 168 
hsa-miR-30a-5p 693 
hsa-miR-1207-5p 185 
hsa-miR-6844  1 
hsa-miR-4438 288 
hsa-miR-3189-3p 60 
hsa-miR-6880-5p 186 
hsa-miR-6805-3p 89 
hsa-miR-302b-5p 105 
hsa-miR-623 221 



Appendix 

 
82 

 

 miRNA Total experimentally verified targets 
hsa-miR-875-3p 86 
hsa-miR-6869-3p 11 
hsa-miR-657 83 
hsa-miR-4689 100 
hsa-miR-136-3p 43 
hsa-miR-519a-3p 316 
hsa-miR-5003-3p 128 
hsa-miR-576-5p 92 
hsa-miR-371a-3p 20 
hsa-miR-6762-3p 38 
hsa-miR-586 84 
hsa-miR-621 25 
hsa-miR-6791-3p 272 
hsa-miR-4664-5p 64 
hsa-miR-4436b-3p 86 
hsa-miR-3150a-5p 23 
hsa-miR-3692-3p 119 
hsa-miR-338-5p 94 
hsa-miR-4693-3p 84 
hsa-miR-543  97 
hsa-miR-151b  25 
hsa-miR-211-3p 83 
hsa-miR-7150 102 
hsa-miR-4445-3p 17 
hsa-miR-96-5p 184 
hsa-miR-5579-5p 37 
hsa-miR-887-3p 10 
hsa-miR-593-5p 63 
hsa-miR-3689a-5p 45 
hsa-miR-618  45 
hsa-miR-6504-3p 327 
hsa-miR-4282 279 
hsa-miR-1228-3p  221 
hsa-miR-106a-3p 152 
hsa-miR-491-5p 106 
hsa-miR-4685-3p 261 
hsa-miR-548al 14 
hsa-miR-6765-3p 109 
hsa-miR-511-3p 237 
hsa-miR-4286 103 
hsa-miR-1471 3 
hsa-miR-6767-5p 3  
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