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There are 114.101 small molecule metabolites currently annotated in the Human Metabolome
Database, which are highly connected amongst each other, with a few metabolites exhibit-
ing an estimated number of more than 103 connections. Redundancy and plasticity are

essential features of metabolic networks enabling cells to respond to fluctuating environments,
presence of toxic molecules, or genetic perturbations like mutations. These system-level proper-
ties are inevitably linked to all aspects of biological systems ensuring cell viability by enabling
processes like adaption and differentiation. To this end, the ability to interrogate molecular
changes at omics level has opened new opportunities to study the cell at its different layers from
the epigenome and transcriptome to its proteome and metabolome. In this thesis, I tackled the
question how redundancy and plasticity shape adaptation in metabolic networks in evolutionary
and disease contexts. I utilize a multi-omics approach to study comprehensively the metabolic
state of a cell and its regulation at the transcriptional and proteomic level. One of the challenges
with multi-omics approaches is the integration and interpretation of multi-layered data sets. To
approach this challenge, I use genome scale metabolic models as a knowledge-based scaffold to
overlay omics data and thereby to enable biological interpretation beyond statistical correlation.
This integrative methodology has been applied to two different projects, namely the evolutionary
adaptation towards a nutrient source in yeast and the metabolic adaptations following disease
progression. For the latter, I also curated a current human genome-scale metabolic model and
made it more suitable for flux predictions. In the yeast case study, I investigate the metabolic
network adaptations enabling yeast to grow on an alternative carbon source – glycerol. I could
show that network redundancy is one of the key features of fast adaptation of the yeast metabolic
network to the new nutrient environment. Genomics, transcriptomics, proteomics, metabolomics
and metabolic modeling together revealed a shift of the organism’s redox-balance under glycerol
consumption as a driving force of adaption, which can be linked to the causal mutation in the
enzyme Kgd1. On the other hand, the limitations of metabolic network adaptation also became
apparent since all evolved and adapted strains exhibited metabolic trade-offs in other environ-
mental conditions than the adaptation niche. Either an impaired diauxic shift (as in the case of
the glycerol mutant) or an increased sensitivity towards osmotic stress (caused by mutations in
the HOG pathway) was coupled with efficient use of glycerol. In the second project, the molecular
phenotype of regressed breast cancer cells was studied to identify what differentiates these cells
from healthy breast tissue and to characterize the potential source of tumor recurrence. Using a
breast cancer mouse model with inducible oncogenes, transcriptomics together with an extensive
set of different types of metabolomics (targeted and untargeted metabolomics, lipidomics and flux-
omics) could show that regressed cancer cells, albeit their apparently normal morphology, possess
a highly altered molecular phenotype with an oncogenic memory. While in cancer redundancy and
plasticity enable the adaptation towards a proliferative state, in regressed cells, on the contrary,
prolonged oncogenic signaling leads to a loss of metabolic network regulation and the entering of
an irreversible metabolic state. This state appears to be insensitive to adaptation mechanisms as
transcripts and metabolites reciprocally enhance each other to maintain the tumor-like metabolic
phenotype. In conclusion, this work demonstrates how genome scale metabolic models can help
identifying functional mechanisms from complex and multi-layered omics data. Appropriate
genome scale metabolic models combined with metabolite measurements have proven partic-
ularly useful in this context. The comprehensive understanding of all integrated aspects of a
cell’s physiology is a challenging endeavor and the results of this thesis might stimulate further
research towards this goal.



Mehr als 114,101 verschiedene sogenannte „small molecule“ Metabolite sind in der Metabolom
Datenbank annotiert. Diese Metabolite korrelieren stark miteinander, einige besitzen
dabei mehr als 103 Verbindungen zu anderen Metaboliten. Redundanz und Plastizität

sind entscheidende Merkmale von metabolischen Netzwerken damit sich Zellen auf eine sich
verändernde Umwelt, die Anwesenheit von toxischen Molekülen oder genetische Störungen
anpassen können. Diese komplexen Eigenschaften sind verbunden mit allen Aspekten eines
biologischen Systems um das überleben der Zellen durch Prozesse wie Adaption oder Differen-
zierung zu sichern. Die Fähigkeit Veränderungen in Zellen auf ihren verschiedenen Ebenen, von
Epigenom, Transkriptom über Proteom und Metabolom, auf molekularer Ebene durch „omics“
Daten zu erfassen hat hierbei neue Möglichkeiten eröffnet. In dieser Arbeit habe ich mich mit
der Frage auseinandergesetzt, wie Redundanz und Plastizität die Anpassung von metabolischen
Netzwerken im Kontext der Evolution oder Erkrankung beeinflussen. Mithilfe eines „multi-
omic“ Ansatzes habe ich umfassend den metabolischen Status einer Zelle und ihrer Regulation
auf Transkriptions- und Proteom-Ebene analysiert. Eine der Schwierigkeiten bei „multi-omics“
Ansätzen ist die Integration und Interpretation von vielschichtigen Datensätzen. Um dies zu
bewältigen habe ich genomweite metabolische Modelle verwendet, die ein wissensbasiertes
Gerüst für die Integration von „omics“ bieten und dadurch eine biologische Interpretation über
die statistische Korrelation hinaus zu ermöglichen. Diese Methodik wurde auf zwei unabhängige
Projekte angewendet: 1) die evolutionäre Anpassung an eine Nahrungsquelle in Hefe und 2)
die metabolische Anpassung bei fortschreitender Erkrankung. Für das letztere Project habe ich
ein genomweites metabolisches Modell der menschlichen Zelle für die verbesserte Nutzung von
metabolischen Fluxen überarbeitet. , iso dass es besser geeignet. In der Hefe-Studie wurde die
Anpassung des metabolischen Netzwerks von Hefezellen an eine alternative Kohlenstoffquelle –
Glycerol – untersucht. Ich konnte zeigen, dass Netzwerk Redundanz eines der Schlüsselmerk-
male der schnell adaptierenden Hefezellen auf die Umweltveränderung ist. Untersuchungen
auf genomischer, transkriptomischer, proteomischer und metabolomischer Ebene zusammen
mit metabolischem Modeling zeigten eine Verschiebung des Redox-Gleichgewichts in der Zelle
unter Wachstum mit Glycerol als treibende Kraft der Adaption, welche verbunden war mit der
Mutation des Enzyms Kgd1. In dieser Analyse konnten die Einschränkungen der metabolischen
Netzwerkadaption gezeigt werden, da alle evolvierten und adaptierten Hefe-Stämme metabolis-
che Ausgleiche in anderen Umweltbedingungen als in der Adaptionsnische aufzeigten. Entweder
die Unfähigkeit den „diauxic shifts“ durchzuführen (im Falle des Glycerol Mutanten) oder eine
erhöhte Sensitivität in Richtung des osmotischen Stresses (ausgelöst durch Mutationen im
HOG-Signalweg) waren gekoppelt an die effiziente Nutzung von Glycerol in der Hefe-Zelle. Im
zweiten Projekt wurde der molekulare Phänotyp von regredierenden Brustkrebszellen analysiert
um die Unterschiede dieser Zelle zum gesunden Brustgewebe und eine potentielle Quelle für
Tumorrezidive zu identifizieren. In einem Mausmodell für Brustkrebs mit induzierbaren Onkoge-
nen wurde mithilfe von Transkriptom- und Metabolom-Analysen (gerichtete und ungerichtete
Metabolomics, Lipidomics und Fluxomics) gezeigt, dass regredierte Krebszellen, obwohl ihre
Morphologie normal erschien, einen stark veränderten Phänotyp mit onkogenem Gedächtnis
aufwiesen. Während Redundanz und Plastizität in der Krebszelle die Adaption an eine erhöhte
Proliferation ermöglichen, führte in regredierten Zellen eine Fortführung der onkogenen Sig-
nalgebung zu einem Verlust der metabolischen Netzwerkregulation und dem Eintritt in einen
irreversiblen metabolischen Status. Dieser Status erschien unveränderlich durch Adaptions-
mechanismen da sich Transkripte und Metabolite gegenseitig erhöhen und so dazu beitragen
den Tumor-ähnlichen Phänotyp zu erhalten. Zusammenfassend hat diese Arbeit gezeigt wie
genomweite metabolische Modelle angewendet werden können um funktionelle Mechanismen
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in komplexen und vielschichtigen „omics“ Daten zu identifizieren. Passende Modelle zusammen
mit Metabolitmessungen haben sich als besonders geeignet in diesem Zusammenhang erwiesen.
Das umfangreiche Verständnis aller integrierten Prozesse in der Physiologie der Zelle ist ein
komplexes Unterfangen und die Ergebnisse dieser Arbeit regen hoffentlich weitere Forschung
zum Erreichen dieses Ziels an.
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CHAPTER 1. INTRODUCTION

1.1 Redundancy and plasticity in metabolic networks

Redundancy and plasticity are key features of metabolic networks, which equip an organism

with an enhanced robustness towards fluctuating environments or the loss of components of this

network (e.g. through mutations in enzyme coding genes) and thus, ensure the cells viability

[65]. The characteristics of plasticity and redundancy have often been studied in the context of

synthetic lethal pairs [60] [67] [65] and are depicted in Figure 1.1. In this context functional

plasticity is defined as the ability to reorganize metabolic fluxes after a loss of a reaction while

the environmental conditions remain stable. Functional redundancy, on the contrary, is defined

as the simultaneous flux of compensatory reactions in a stable environment [65].

FIGURE 1.1. Schematic representation of plasticity and redundancy in metabolic net-
works. Metabolites are represented by circles and reactions by squares. Colored
reactions with black arrows represent active reactions, whereas grey discontinuous
lines are used for inactive reactions and metabolites and black for knockouts of
reactions. The biomass production reaction is represented as a larger square with
an associated flux vg. When it turns to inactive, meaning that it has no associated
flux, the organism is not able to grow. (a) Illustration of metabolic network plas-
ticity (reaction 2 active and reaction 3 inactive). Reaction 2 and 4 show metabolic
plasticity when (b) Illustration of metabolic network redundancy (both reactions
2 and 3 active). (c) Final configuration after knockout of reaction 2 in (a) or (b).
(d) Final configuration after knockout of reaction 3 in (a) or (b). In both cases (c)
and (d) the organism is still able to grow due to the basic features of redundancy
and plasticity in the network. (e) The simultaneous knockout of reaction 2 and 3
in (a) or (b) leads to a loss of viability. (f) Different possible organization of genes,
enzymes and reactions enabling plasticity or redundancy. This figure and the text
in this legend have been reproduced from Güell et al. (2014) with permission [65].
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1.2. CONSTRAINT-BASED MODELING ON GENOME SCALE PROVIDES A FRAMEWORK TO
PREDICT BIOLOGICAL CAPABILITIES

The structure of metabolic networks in prokaryotes and eukaryotes has been estimated to

possess a high degree of redundancy and plasticity compared to random networks [60]. This is

further illustrated by the generally low number of essential genes [163] [62] [94] [194]. However

the extent of both, plasticity and redundancy, might depend on the environmental conditions [60]

[67]. Furthermore, it has been shown that metabolic key reactions possess a higher redundancy

than expected by random or than seen in less important reactions [60].

1.2 Constraint-based modeling on genome scale provides a
framework to predict biological capabilities

The prediction of a biological phenotype has been a long desired outstanding goal, e.g. the

inference of a morphological phenotype from its genetic make-up. In regard to the metabolic

status of a cell this goal has come closer than in other areas of biology. Metabolism is constituted

of biochemical reactions assembled in a complex network (Figure 1.2a). Genome scale metabolic

models build a knowledge-based reconstruction of the entirety of these reactions known from

an organism, which is assembled in a mathematical matrix (O’Brian 2015). The mathematical

matrix is an abstract representation of the reactions in the form of stoichiometric coefficients of its

participating metabolites and allows the calculation of flux distributions in the network (Figure

1.2b). In this matrix, negative values indicate consumed metabolites whereas positive values

indicate produced metabolites and the fluxes are calculated under the steady state assumption

that all metabolites that are produced in the network have to be consumed in a mass balanced

manner [133]. One special reaction in the model constitutes the biomass reaction that formulates

the metabolic demands of a cell under growth (e.g. ATP, amino acids, nucleotides). These cellular

requirements for growth are imposed on the model in the form of a biomass objective function

(Figure 1.2d). The representation of the mathematical matrix maintains the genetic basis of an

organism as well as the physiochemical laws of its environment by imposing constraints. The

imposition of physiochemical constraints to limit the computable phenotypes is a fundamental

concept of Constraint-based modeling and analysis (COBRA) approaches [102]. With these

constraints the principally indefinite number of solutions shrink to a so called “solution space”,

which limits the solutions to biologically feasible regions (Figure 1.2c). With linear programing a

flux distribution that maximizes or minimizes the objective function within the solution space is

identified (Figure 1.2e) [20]. Metabolic modeling approaches can be improved by improving the

imposed constraints to more physiologically relevant or by extending the mathematical structure

to regulatory elements acting on metabolism and including gene-regulatory information [190].
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FIGURE 1.2. Fundamentals of genome-scale metabolic modeling. The constraint-based
reconstruction and anaylsis (COBRA) approach is based on three primary funda-
mental concepts: network constraints (parts a–c), objective functions (part d) and
the association of reactions with the genome (a) A complex mixture of molecules
(red) can react to yield end products (blue). In the model, metabolites enter the
system through boundary pseudo reactions. (b) The stoichiometry of this reaction
network is described mathematically in a stoichiometric matrix, with each column
representing the stoichiometry of a reaction. Negative and positive values represent
reactants and products, respectively. Reaction flux is limited by thermodynamics
and catalytic capacities described by upper and lower bounds on the flux for each
reaction. Vm = velocity of the forward enzyme-catalyzed reactions, Vm,r = velocity
of the forward and reverse enzyme-catalyzed reactions. (c) Reaction constraints
result in a ‘solution space’ that contains all feasible flux distributions. Additional
constraints reduce the space of feasible flux distributions as shown in the pink
line. (d) The biomass objective function describes an evolutionary pressure for
growth, and describes the metabolic demands for the basic metabolite building
blocks for all cellular components. (e) Linear programing is used to identify a
flux distribution that maximizes or minimizes the objective function within the
space of allowable fluxes (green region) defined by the constraints imposed by the
mass balance equations and reaction bounds. The thick brown arrow indicates the
direction of increasing objective function (Z). As the optimal solution point lies as
far in this direction as possible, the thin brown arrows depict the process of linear
programming, which identifies an optimal point at an edge or corner of the solution
space. This figure and the text in this legend have been adapted from Lewis et al.
(2012) [102] and Orth et al. (2010) [133].
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1.3. OMICS DATA INTEGRATION WITH GENOME-SCALE MODELS OF METABOLISM

1.3 Omics data integration with genome-scale models of
metabolism

The development of new technologies permitting the probing of an organism at various cellular

layers (genome, transcriptome, proteome, metabolome) at high throughput have enable us to

study the physiology of cells in health and disease in greater depth [68]. The cellular layers are

highly connected and the inherent complexity of biological systems manifests itself in multiple

layers of regulation (Figure 1.3).

FIGURE 1.3. Overview of the different layers of a cells physiology and the corresponding
omics technologies for measurement. Although classically perceived as a linear
path, all different layers of a cell’s physiology are interconnected. Each layer
possesses various modifications, from which only the most commonly studied ones
are depicted. Additionally the omics technology with which the respective layer of
the cell can be measured is specified.
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CHAPTER 1. INTRODUCTION

To address the challenge of integrating these complex omics data sets two main approaches

have emerged, a statistical approach analyzing commonalities amongst the data sets and a

modeling approach, using first principle models as a scaffold for interpretation [68] [8] [77]

(Vivek-Ananth) [89] [131]. Analyzing the data by statistical means (e.g. correlations) is a sta-

tistical approach for omics convergence. However, confounders as well as a non-linearity of

the regulation make it difficult to trace back a phenotype to its genomic origin it. Contrasting

the trends of different omics layers with modeling approaches can offer a systematic way of

addressing this difficulty. Metabolic models are particularly well suited for this task due to their

comprehensiveness and the key role metabolism plays in various biological processes. Further-

more, metabolomics constitute a specific characteristic amongst the different types of omics in

terms of their interpretability. Changes in metabolite abundances do not reveal anything about

the underlying flux changes. Fluxomics would offer a better approach in this regard, but are

often not available, because they are technically challenging and also not so suitable for the

assessment of pathways outside central carbon metabolism. Instead, metabolic modeling can

help tunneling the most probable effect of metabolite concentration changes by limiting the

degrees of freedom in the metabolic network. Figure 1.4 summarizes the three main approaches

by which constraint based metabolic modeling can be utilized for omics data integration. All

three mentioned approaches have been utilized within the different projects of this thesis. These

examples illustrate how omics data integrated with genome-scale metabolic models can not

only explain complex gene expression dynamics but also help in predicting metabolic phenotype

changes for experimental validation or for intervention.
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1.3. OMICS DATA INTEGRATION WITH GENOME-SCALE MODELS OF METABOLISM
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FIGURE 1.4. The multiple uses of high-throughput data in constraint-based models.
Constraint-based modeling can be used to interpret and augment omics data sets
by using an underlying cellular network that has been biochemically validated.
Metabolites are represented by circles. (a) Similarly to pathway enrichment anal-
ysis and interaction networks, high-throughput data can be integrated with the
metabolic network topology to determine enriched regions and even significantly
perturbed metabolites (b) Omics data add an additional layer of constraints for
reaction fluxes. Expression data can be integrated to determine context-specific
flux distributions (pathway shown in red), which increases the fidelity of the data
(represented as bars) as well as the accuracy of flux predictions (upper panel).
In addition, omics data can be used to build cell- and tissue-specific models of
human metabolism by removing unexpressed reactions (shown as uncolored reac-
tions) from the global human metabolic network (lower panel). Differences in these
networks can be exploited to learn unique features of each network. (c) Constraint-
based analysis predictions can be compared and validated against fluxomics data.
This figure and the text in the legend have been reproduced from Bordbar et al.
(2014) with permission [20]
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CHAPTER 1. INTRODUCTION

1.4 Thesis outline

In this thesis two contexts of metabolic network adaptability are being analyzed. In Chapter 1, I

introduce the general characteristics of metabolic networks, genome scale metabolic modeling as

a tool to study metabolic network fluxes and different approaches to use models for the integration

of multi-omics data. The first project (Chapter 2) on glycerol adaptation in yeast was initiated in

collaboration with Dr. Tomas Strucko, currently at the Technical University of Denmark (DTU).

The question on what enables yeast to grow on glycerol as the sole carbon source, is tackled with

an evolutionary approach. The genomic basis of the adaptive solution of yeast after evolution

to utilize glycerol is revealed by a combined approach of classical yeast engineering, omics data

analysis and genome scale metabolic modeling. My contribution to this project is to find genomic

determinants of this adaptation and to assess these alterations functionally with a comprehensive

study of re-engineered cells harboring these mutations at the different levels of genes, transcripts,

proteins and metabolites. The second project (Chapter 4) is conducted together with the group

of Dr. Martin Jechlinger from the EMBL Heidelberg, who developed an inducible breast cancer

mouse model. This mouse model is used to study minimal residual disease in an aggressive form

of breast cancer with a high rate of recurrence. I specifically investigate the molecular phenotype

of regressed cells in comparison to their healthy counterparts by analyzing and integrating their

transcriptional and metabolic alterations. For the integration I make specifically use of a hybrid

approach of genome scale metabolic modeling tailored by transcriptional data to predict fluxes in

the context of the observed metabolic alterations. Therefore, I curate in Chapter 3 a currently

available genome scale metabolic model to be more suitable for flux analysis. In Chapter 5, I

conclude the implications of my findings in the context of adaptation and how general features

of metabolic networks such as redundancy and plasticity shape adaptation in the context of

evolution and disease.
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CHAPTER 2. GENETIC ADAPTATION TO CHANGES IN CARBON SOURCE

Summary

In this part I investigate the ability of an “isolated” metabolic network of a unicellu-
lar eukaryotic organism to adapt towards varying nutritional environments, specif-
ically changes in C-sources. This case study reveals genetic determinants underly-
ing glycerol catabolism and the associated fitness trade-offs. Mechanistically, the re-
dox balance is shown as a core driving force on the rewiring of metabolic network
and C-source usability. The study demonstrates the flexibility and complexity of the
metabolic phenotype towards external stimuli and addresses the still largely undis-
covered genotype-phenotype linkage in metabolic network regulation. The project
further exemplifies how metabolic modeling can provide a knowledge-based scaffold
and help interpreting multi-layered data, viz., the genome sequence, transcripts, pro-
teins and metabolites, and thereby connect the evolved genotype to the observed phe-
notype. Metabolic modeling thus contributes to the field of large-scale data integra-
tion by providing a novel and comprehensive analytical approach aiming at mecha-
nistic understanding of the genotype-phenotype relation at the level of metabolism.

I had the pleasure to collaborate with highly motivated and talented people whose contribution

fruited the project immensely, first of all Dr. Tomas Strucko from the Technical University of

Denmark (DTU) in Denmark. He conducted majority of the experimental work, namely the

laboratory evolution experiments, physiological characterization of evolved strains, strain crossing

and reengineering as well as the omics experiments. The latter was performed with the help of Dr.

Filipa Pereira from EMBL Heidelberg. The sequencing and proteomics experiments were conducted

at the EMBL Core Facilities (EMBL, Heidelberg). Eleni Kafkia, also from EMBL Heidelberg,

collected and analyzed all the metabolomics data. Dr. Paula Jouhten from the VTT Technical

Research Centre of Finland, who also developed the switchPheno algorithm, modeled the growth on

different carbon sources. I performed the complete computational analysis, including the genome

sequencing analysis, genomic variant analysis, transcriptome analysis, as well as the integration

of the sequencing data, modeling results and results from all the omic layers. The results of this

project are published in (Strucko, Zirngibl et al., Metab. Eng. 2018) [178].
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Glycerol
S. cerevisiae

Glycerol DHAP Central
 metabolismG3PGUT1

ATP ADPSTL1

H+ H+

FPS1
GUT2

FAD FADH2

FIGURE 2.1. Glycerol catabolism pathway of S. cerevisiae. STL1 – glycerol/H+ sym-
porter, FPS1 – aquaglyceroporin, GUT1 – glycerol kinase, GUT2 – FAD+-dependent
glycerol 3-phosphate dehydrogenase, DHAP – dihydroxyacetone phosphate. This
figure and the text in this legend have been reproduced from Strucko et al. (2018)
with permission [178].

2.1 Introduction

2.1.1 Most Saccharomyces cerevisiae strains lack the ability to grow on
glycerol as the sole C-source

The natural capability of yeast to utilize glycerol as the sole carbon source varies greatly between

different species as well as strains within the same species [181] [92]. Considering that glycerol

is a ubiquitous organic compound in nature, this is somewhat surprising, especially for natural

isolates, but may be related to an evolutionary trade-off between glycerol consumption and strong

Crabtree driven sugar consumption [92]. The spectrum of glycerol utilization ranges from almost

comparable growth rates to glucose to very poorly or no growth at all, as in the case of most

laboratory strains of the model yeast Saccharomyces cerevisiae [181] [120] [92]. However, even

the non-growing S. cerevisiae contain the necessary genes for glycerol catabolism, namely STL1,

FPS1, GUT1 and GUT2, and thus should in principle be able to uptake and metabolize glycerol

(Figure 2-1) [92]. In parts, the differences in growth rate levels could be attributed to varying

efficiencies in glycerol uptake owing to the expression of different transport systems [59] [92]

[98]. But even under efficient glycerol uptake the catabolism efficiency of glycerol varies greatly

between different yeasts. Even more intriguing from a regulatory network point of view is the

fact that if supplemented with amino acids, all S. cerevisiae stains are able to grow on glycerol,

even if somewhat slowly [181].
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Several mutations have been identified to either facilitate or enable growth on glycerol, such

as the combination of mutations in the genes GUT11, UBR2 and SSK1 by Swinnen [181] or only

UBR2 and GUT1 by Ho [74]. Different GUT1 alleles have shown to possess higher enzymatic

activities and thereby influencing the observed growth rate. However, except for the obvious

mutation in the gene GUT1, coding for a glycerol transporter, all of the identified mutations so

far lacked functional or mechanistic insights.

2.1.2 Adaptive laboratory evolution leads to novel traits as a result of
natural selection

The process of adaptation to a given selection pressure can be systematically studied in laboratory

settings in the form of adaptive laboratory evolution (ALE) experiments. ALE is an experimental

procedure in which an evolutionary pressure is selectively applied to a population of cells or

organisms to develop a certain trait of interest. The selective pressure is exerted via the en-

vironment to which the population is subjected to for a prolonged time. During the course of

the experiment, mutations randomly arise and are fixed in the population by natural selection

in case they are beneficial. Over time, a new population with different traits and an overall

increased fitness evolves. ALE experiments are typically performed with microorganisms since

they are easy to cultivate, have large population sizes, small genome sizes and are possessing

short generation times [96] [97] [122].

Applications of this approach are very broad and include industrial and basic science applications.

In the industrial sector, ALE helps, for example, to achieve untargeted strain design/optimization

for biotechnological goals such as heterologous protein and compound production, product for-

mation, substrate utilization, stress resistance and growth temperature or inhibitor tolerance

[157] [156] [25] [95] [75] [26] [164] [155] [10]. ALE is particularly useful in areas where genetic

manipulation is either forbidden2 or where rational design becomes difficult because of a lack of

mechanistic and functional understanding of the genetic determinents [96] [195] [148]. ALE has

also proven to be a powerful method in research contexts to increase scientific understanding of

the basic mechanisms of molecular evolution [40], the dynamics of the evolutionary processes

[122] or the adaptive changes during perturbations occurring from a reference state to another

[183] [30]. The latter helps answering questions of complex genotype-phenotype linkages, such

as antibiotic resistances, including the complexity of the regulatory circuits of a system or deci-

phering the entirety of the physiological response [82] [27].

Of paramount importance for an ALE experiment to be applied successfully is the choice of the en-

vironmental conditions imposing an evolutionary selection pressure on the organisms, such that

the desired trait gets selected for [96]. In microbial laboratory evolution, this typically requires

1encodes a glycerol kinase
2 e.g. food applications
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coupling the desired trait with growth3, which is not always trivial and might not be achievable

for all traits [195]. Several attempts have been made to define the environment exhibiting the

right evolutionary pressure in a more rational and systematic manner. For instance, the EvolveX

algorithm developed by Jouhten et al., makes use of the yeast genome scale metabolic model

to predict the right evolution media to evolve the over production of a certain metabolite [140].

To circumvent the limitation of growth coupling of a desired trait to become targetable by ALE,

Jouhten P. developed the idea of the phenoSwitch algorithm in which the original evolution niche

gets separated from the final target niche [140]. In that way an organism is first evolved in a

predicted growth-coupled evolution environment, in which the flux distributions evolve in such a

way that once the organism gets moved to the target environment, the desired trait, which doesn’t

have to be growth coupled at that point, is necessarily exploited. This approach is specifically

useful for short-term applications, in which the evolved organism’s trait doesn’t need to be stable

over evolutionary relevant time, such as e.g. food batch production.

Other important variables that influence the type, diversity, variability and possibly trade-offs of

the phenotypic adaptation of the evolution experiment include the strength and the alterations of

the selection pressure4, the population size, the passage size5, the mutation rate and finally the

time scale of the evolution experiment, which in turn also depends on the previous parameters

[195] [97] [40]. In regards to the length of the ALE experiment it is important to note that the

fitness increase as a function of the total number of generations passed is not linear and is usually

fastest at the beginning of the experiment [40]. The mutation rate can be enhanced via, e.g., chem-

ical mutagens, using mutants deficient in DNA repair or utilizing transposon-based mutagenesis.

A higher mutation rate increases the genetic diversity within the evolving population and the

adaptation can be accelerated [195] [40]. Clearly, higher mutation rates can only be beneficial to

a certain extent as it also results in a higher genetic load, which can lead to undesired side-effects

such as decreased stress resistance or a loss of viability [40]. Another strategy to shorten the

adaptation time or to push it in a predetermined direction is to start the culture from a library of

mutants [122]. Depending on the choice of all the parameters in an ALE experiment, complex

population structures may arise resulting from clonal interference where multiple lineages with

different independent beneficial mutations are coexisting in a population and are competing for

fixation [195] [122] [40]. But depending on the time point when the ALE experiment is stopped,

some of the adaptive mutations present earlier in evolution also might already been lost [195].

3 i.e., exponential growth rate, biomass yield, stationary phase fitness, or lag phase duration
4 including the growth phase of the passages
5 only in serially passaged batch cultures
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FIGURE 2.2. Methods used for studying microbial evolution in vivo. The most common
techniques used to maintain control over environmental conditions and microbial
growth rates for prolonged times are: (a) serial passages and (b) chemostat cultiva-
tions. In a chemostat it is possible to continuously monitor and control the growth
conditions at a desired level; however, this approach requires a complex experi-
mental setup. When a large number of strains need to be evolved in parallel, serial
passages are frequently used to increase the feasibility of an experiment. In the
latter case, microbial cultures are periodically diluted with fresh media to limit the
microbial concentration and supply the growing populations with new nutrients.
Inevitably, some of the environmental parameters fluctuate between the passages
(e.g. the nutrient concentration and pH) but other parameters like the temperature
and oxygen concentration can be kept constant. Figure and figure legend have been
reproduced from Mozhayskiy & Tagkopoulos (2013) with permission [122].

On the technical front, there are two basic methods of ALE experiments, serial batch cultures

and continuous chemostats cultivation. Both types of cultivation methods differ in handling and

their capabilities to constitute the environment. This imposes different characteristics on some of

the above-mentioned parameters, such as the type and alteration of the selection pressure [122]

[195]. In batch cultures, the cells are typically grown in shake flasks or multi-well plates and

propagated to a subsequent batch culture once they reach a certain OD or growth phase (Figure

2-2a) [40]. Batch cultures have the advantage of being relatively easy to set up and carry out, but

the environmental conditions, population densities, nutrient supply and growth rates or growth

phases fluctuate along the experimental course. This creates a more complex selection pressure

and thus a more complex fitness landscape, which might lead to a conflicting phenotypic outcome

[96] [40] [122]. An extreme example of this is the case when cells are only passaged after they
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have reached the stationary phase [97]. There not only the growth rate but also the ability to

maintain viability and restart growth after stationary phase contribute to the fitness.

Furthermore, batch cultures are more susceptible to genetic drift since random sampling during

the transfers imposes bottlenecks on the developed mutations to be carried over [195] [122]. The

passage size is therefore a crucial parameter in batch cultures, determining the variability and

rate of evolution [96] [122]. Recent attempts have been made to model and predict the optimal

passage size for a given experiment [96].

In contrast to the batch cultivation, chemostats are continuous culture systems that do not require

transfers and can allow for a more precise control with minimal fluctuation of the environmental

conditions, growth rate and population densities (Figure 2-2b). They can therefore selectively

apply one defined selection pressure, as for example keeping the cells always in exponential

growth phase, which would make fitness equivalent with growth rate [96] [195] [40]. Thus,

homogeneous populations are more frequently observed in chemostats than in serial passages

[32]. On the negative side, the cells evolved in chemostats may lose other traits such as tolerance

to pH or osmotic stress that are important for industrial application.

2.1.3 An integrated approach of reverse engineering, multi-omics analysis
and metabolic modeling to mechanistically understand adaptation to
glycerol

To functionally understand the basis of glycerol catabolism in yeast, we first performed parallel

ALE experiments using the S. cerevisiae CEN.PK113-7D strain to evolve the ability to use glycerol

as the sole carbon source in minimal media (Figure 2-3a). Given the genetic existence of a glycerol

catabolism pathway in yeast, ALE experiments are particularly suited for evolving yeasts to

efficiently grow on glycerol. Previous studies have already demonstrated that S. cerevisiae strains

could acquire the ability to utilize glycerol in minimal media by using ALE. Using serial batch

cultivations growth rates µmax of about 0.2 h-1 were reached [120] [74]. However, none of the

studies mechanistically linked the evolved phenotype to its genetic determinants explained the

underlying mechanisms of the evolved phenotype and its genetic determinants.
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FIGURE 2.3. Outline of the experimental approach to understand the metabolic phe-
notype under glycerol consumption in yeast. (a) Laboratory adaptive evolution of
S. cerevisiae for growth on glycerol combined with phenotypic screening and se-
quencing. (b) Workflow for genomic strain analysis and identification of the causal
mutations. Re-engineering with CRISPR/Cas9. This figure and the text in this
legend have been adapted from Strucko et al. (2018) [178].

In addition to the wild-type (WT) strain, a second strain having a NADH oxidase introduced

NOX gene from Streptococcus pneumoniae encoding for cytosolic water forming NADH oxidase

NOX was used for evolution. The NOX mutant was chosen as it was previously hypothesized

that unbalanced levels of intracellular NADH hamper glycerol catabolism in minimal media

[120]. The evolutionary selection pressure was exerted by growing the strains on 1% glycerol

and gradually decreasing the supplementation of amino acids6. The evolution experiments were

conducted in two modes, which resulted in slightly different evolutionary pressures by having

the transfer at different growth phases: mode-I, short-term7, and mode-II, long-term8. In mode-I,

two NOX based replicates were used, whereas in mode-II five parallel lineages of each WT and

NOX were evolved. Phenotypic characterization under different conditions was performed to

review the evolved glycerol growth phenotypes and identify potential trade-offs. As it is generally

observed that adaptation rates are highest in the early stages [196] [16], we also characterized

the intermediate lineages from mode-I. Subsequently whole genome sequencing of the parental

strains, all final evolved lineages as well as intermediate lineages from mode-I was performed to

identify genetic changes that were introduced in the final population during the course of the

ALE experiment (Figure 2-3a).

Determining the genetic changes that enable the fitness increase amongst the multiple mutations

that evolved strains harbor can be a time-consuming and complex process. We used two strategies

to facilitate the discovery process: i) comparing mutations of the evolved strains/lineages with

6 which help yeast assimilate glycerol but also provide carbon
7 up to 80 generations, manual transfers during late stationary growth phase
8 >300 generations, automated transfers during early exponential growth phase
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those of the parental strains, and ii) identifying gene regions or pathways in which mutations

occur more frequently across the independent replicate experiments. Furthermore, to narrow

down on a set of causal mutations underlying a glycerol growth phenotype, a strain isolate of

one of the successfully evolved endpoint lineages was crossed back with a wild type strain until

the number of mutations were substantially reduced while still retaining the parental growth

phenotype on glycerol (Figure 2-3b). The selected remaining candidate mutations9 were then

reengineered one by one into the WT strain. Finally, to understand the functional relationships

between the identified mutations and the metabolic phenotype as well as to gain mechanistic

insights into the metabolic pathway regulation under glycerol, the functional impact of the muta-

tions was analyzed with an integrated approach of transcriptomics, proteomics and metabolomics

profiling and genome-scale constrained based modeling.

2.2 Materials and Methods

Material and methods have been published in [178]. The text has been adapted from the publica-

tion.

2.2.1 Strains and cultivation media

Escherichia coli DH5α strain was used for maintenance and amplification of cloned plasmids, and

was propagated in 2xYT medium (Sigma) supplemented with 100 mg/L of Ampicillin (Sigma). S.

cerevisiae strains used in this study were prototrophic laboratory haploid strains CEN.PK113-1A

and CEN.PK113-7D, and industrially relevant diploid strains L.1528 and CLIB382 (Table A.2).

For maintenance and genetic transformation of yeast strains a yeast extract peptone dextrose

(YPD) medium containing 10 g/L of yeast extract, 20 g/L of peptone and 20 g/L of glucose was

used. Solid YPD medium was prepared by addition of 20 g/L of agar prior autoclavation. For

selection of yeast strains with dominant markers NatMX, KanMX or HphMX, YPD medium was

supplemented (after autoclavation) by 100 mg/L of nourseothricin (ClonNat, Werner BioAgents),

200 mg/L of G418 disulfate salt (Sigma) or 200 mg/L hygromycin B (Sigma), respectively. For high

osmotic stress sensitivity assays, the YPD medium was supplemented with potassium chloride to

a final concentration of 0.5 moles/L. Plates with sporulation (SPO) medium were prepared as

described elsewhere [172].

Adaptive laboratory evolution and strain characterization was done in a well-defined mineral

(M) media described by [189] containing 5 g/L (NH4)2SO4, 3 g/L KH2PO4, 0.75 g/L Mg2SO4, 1.5

mL/L trace metal solution and 1.5 mL/L vitamins solution. The composition of the trace metal

solution is 3 g/L FeSO4.7H2O, 4.5 g/L ZnSO4.7H2O, 4.5 g/L CaCl2.6H2O, 0.84 g/L MnCl2.2H2O,

0.3 g/L CoCl2.6H2O, 0.3 g/L CuSO4.5H2O, 0.4 g/L NaMoO4.2H2O, 1 g/L H3BO3, 0.1 g/L KI and

15 g/L Na2EDTA.2H2O. The vitamin solution includes 50 mg/L d-biotin, 200 mg/L para-amino

9 selection guided by the comparative genomic analysis
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benzoic acid, 1.0 g/L nicotinic acid, 1.0 g/L Ca-pantothenate, 1.0 g/L pyridoxine-HCl, 1.0 g/L

thiamine-HCl and 25 mg/L minositol. The carbon source in the M medium was either 10 mL/L of

glycerol or 30 g/L of glucose resulting in MG or MD media, respectively. The pH was adjusted with

KOH/H2SO4 to 4.2 for the MG and to 6.5 for the MD medium. For the initial stage of the adaptive

laboratory evolution MG medium was additionally supplemented with 1.92 g/L of Y1501 amino

acid mix (Sigma) and was denoted as MG+ medium. For small-scale cultivations, the media was

filter-sterilized by a bottle-top (0.45 µm pore size) filter (VWR). For the 1L batch fermentation

experiments medium was heat-sterilized, sterile vitamin solution and glycerol were added after

medium cooled down to 30◦C .

2.2.2 Molecular cloning

All DNA fragments that constituted genetic elements10 or plasmids backbone sequences were

amplified by PCR using PfuX7 [127] polymerase with specific primers (Table A.1). The TEF1

promoter sequence was amplified from the pSP-GM1 [139] plasmid, and the NOX gene from

genomic DNA (gDNA) of Streptococcus pneumoniae SV1. Integrative plasmid pTS1 targeting the

specific chromosomal site X-3 (described earlier [121]) was assembled by the uracil-specfic excision

reagent (USERTM following well established protocols [61]. Specifically, the TEF1 promoter and

the NOX was USER-cloned into AsiSI/Nb.BsmI linearized pCfB2223 ([176]) plasmid backbone

resulting in pTS1. The construction of plasmids harboring single guide RNAs (gRNAs) expression

cassette targeting specific genetic loci were constructed as follows. Unique linear fragments

were obtained by PCR amplifying the pCfB2311 ([176]) plasmid backbone with the generic 5‘-

phosphorylated primer (TS109) in combination with the specific primer for each genetic target

(Table A.1). Thereafter, each fragment was independently circularized via blunt end ligation by

T4 ligase (Thermo Fisher Scientific) according to the manufacturer’ s recommendations. The

construction of pTS83 vector encoding three gRNAs cassettes was assembled by USER-cloning as

described previously [81]. In short, three gRNA cassettes targeting GUT1, UBC13 and KGD1 loci

were independently amplified from plasmids pTS53, pTS56 and pTS70, respectively. Subsequently,

the resulting PCR fragments were USER cloned into AsiSI/Nb.BsmI linearized pTAJAK71 [81]

vector. All genetic constructs were validated using Mix2Seq sequencing (Eurofins Genomics). All

used and constructed plasmids are listed in Table A.32.

2.2.3 Yeast genetic transformation

All genetic modifications of S. cerevisiae laboratory and industrial strains were done using well

described (Lithium acetate, PEG and ssDNA) transformation protocol (Gietz and Schiestl, 2007).

Routinely, 200-500 ng of plasmid DNA and 0.5-1 µg of linear DNA was used per transformation.

For CRISPR/Cas9 genome editing purpose, 2.5 mM of 90-bp long dsOligo was used as a repair

10 i.e., promoters, open reading frames (ORFs) and terminators
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template. For industrial S. cerevisiae strains the amount of 90-bp dsOligo was doubled. All

transformants were selected on YPD medium plates supplemented accordingly with appropriate

selection drug/s. Finally, single colonies were streak-purified on a selection medium prior further

analyses and subsequent genetic manipulations.

2.2.4 Adaptive laboratory evolution

Two starting S. cerevisiae strains, the WT CEN.PK113-7D and the TS29 NOX strain expressing

water forming NADH oxidase from S. pneumoniae were used in adaptive laboratory evolution

(ALE) experiments. Moreover, ALE was done in two modes - I) manual ALE and II) using

automated robotic set-up. The mode-I ALE was performed in 500 mL shake flasks with 50 mL

of medium using only the NOX expressing strain. Prior to ALE, two cultures of NOX strain

were preconditioned by 72 hours cultivation in MG+ medium at 30◦C and constant agitation

at 250 rpm. Subsequently, cultures were re-inoculated into the 50:50 of MG+ and MG media

mix and cultivated until the stationary growth phase was reached. Thereafter, ALE was done

exclusively in the MG medium by serial transfer of yeast cultures into fresh medium at late-

exponential/stationary growth phase. The fresh cultures were inoculated to a starting OD600 0.1

to 0.3. The ALE experiment lasted for up to 80 cumulative generations in MG media. Cryostocks

of the intermediate cultures were prepared at regular intervals. For the mode-II ALE experiment,

two strains WT and NOX were pre-cultured in two separate 500 mL shake flasks with 50 mL

of MG+ medium. Five replicates with 15 mL of MG+ medium were inoculated to a starting

OD600 of 0.3 per strain. The tubes were cultured at 30◦C with constant agitation at 1000 rpm. A

total of 900 µ of culture was serially passaged to fresh medium during early-exponential phase.

The OD600 was automatically measured at regular intervals to assess cultures growth state.

The growth medium composition was gradually changed from the MG+ to the MG medium11

during the ALE experiment. The last 300+ generations were evolved purely in the MG medium.

Cryostocks of the intermediate cultures were prepared at regular intervals, however, only the

final ALE lineages were used in further analyses. All growth curves are plotted using R language

using ’loess’ method based on two biological replicates.

2.2.5 Characterization of growth in microtiter scale

All evolved and re-engineered yeast strains were characterized in microtiter scale setting using

the Growth Profiler 1152 systems (Enzyscreen). An overnight pre-culture was prepared by

inoculating each strain into a well of 24-deep well plate (Porvair Sciences) filled with 3 mL of YPD

medium and incubating at 30◦C with 300 rpm shaking. Next day, the plate with the pre-culture

was spun-down at 2200 g for 5 min and resuspended in 3 mL of MG medium. 200 µL aliquots

of resuspended pre-culture was transferred to a volume of fresh MG medium in order to reach

11 mixing from 100:0 to 0:100
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a pre-inoculum suspension of OD600 4.5. Finally, 50 µL of each pre-inoculum was inoculated

into a separate well of Krystal 24-well clear bottom white microplate (Porvair Sciences) prefilled

with 700 µL per well of MG media and incubated for minimum of 80 hours at 30◦C with 225 rpm

shaking. Cell growth12 was monitored by scanning the bottom of the plates in 30 min intervals.

G-value was converted to an OD600 equivalent by using a spline fitted calibration curve using

the data from Bergdahl et al. (unpublished data). For growth characterization in MD medium

the procedure was done exactly as described above. Growth rates were estimated by calculating

the maximum slope values of best linear fit on log-transformed OD values13. All growth curves

are plotted using R language using ’loess’ method based on two biological replicates.

2.2.6 Spot assays

To assess osmo-sensitivity, yeast cells were inoculated in 3 mL of YPD medium and grown

overnight at 30◦C with constant shaking 250 rpm. Next day, 100 µ aliquots of each culture were

resuspended in sterile MiliQ water to OD600 = 2, and 3 µL of 10-fold dilution series were plated

on YPD plates with and without KCl. Plates were incubated at 30◦C for 3 days and cell growth

was monitored once a day.

2.2.7 Classical genetics techniques

Classical genetic techniques were done according to standard protocols [172] with slight mod-

ifications. In brief, diploids were generated by combining two medium sized single colonies of

the haploid strains with opposite mating type in 200 µL of sterile water in a 1.5 mL Eppendorf

tube and vortexing them vigorously. Thereafter, 10 µL of the suspension was plated onto YPD

plate and incubated for 4 6 hours at 30◦C. The cell mix was then scraped out from the YPD plate

and resuspended in 400 µ of sterile water. 10 µL of the suspension is plated on YPD plate and

formed zygotes were isolated using spore dissection microscope. The ploidy and mating type was

confirmed by multiplex colony PCR on MAT locus [78] using the primers MAT_R, MATα_F and

MAT_F. The sporulation was induced by plating diploid cells on SPO plates and incubating at

30◦C for up to 6 days depending on sporulation efficiency. After confirming the presence of tetrads

on SPO plates a small portion of biomass with spores was resuspended in 50 µ of (2.5 mg/mL)

sterile GlucanexR (Thermo Fisher Scientific) solution and digested for up to 15 min at approx.

25◦C. The reaction was stopped by adding 450 µ of sterile MilliQ water and up to 5 µ of the

resulting suspension was carefully transferred to a dissection plate. Tetrads were dissected using

Axio Scope.A1(Carl Zeiss) microscope equipped with dissection platform. Plates with dissected

spores were incubated at 30◦C for 2 days at 30◦C.

12 green color intensity, G-value
13 minimum of 10 data points
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2.2.8 Re-engineering mutations found in evolved strains

In order to re-engineer the mutations of interest in the wild type strains the CRISPR-Cas9

techniques [81] [176] optimized for the S. cerevisiae were used. For each modification, a specific

gRNA sequence (Table A.1) targeting the Cas9 nuclease to the appropriate genetic locus was

designed. The quality and specificity of gRNA was assessed using a CRISPRdirect online tool

developed by Naito et al. [124]. In order to repair a DNA double strand break introduced by

Cas9 repair templates (90-bp dsOligo flanking 45 bp upstream and downstream of the specific

cut site) were designed for each locus of interest. Each repair template contained a specific

mutation and a silent mutation that would disturb (NGG) PAM site motive (Table A.1). First,

the two laboratory strains CEN.PK113-7D and CEN.PK113-1A were transformed (as described

above) with the Cas9 expressing plasmid pCfB2312 resulting in strains 7D_Cas9 and 1A_Cas9,

respectively. Yeast transformants were selected on YPD+G418 plates. Subsequently, the Cas9

expressing strains were individually transformed with different single gRNA expressing plasmids

(Table A.32) and resulting cells were selected on YPD+G418+CloNat. To confirm that the gene

editing was successful routinely 5 colonies per edit were tested. A 500 bp long DNA fragment

flanking the locus of an edit was amplified by colony-PCR using OneTaqR 2X Master Mix (New

England Biolabs) with specific primers (Table A.1), column purified using NucleoSpinR kit

(MACHEREY-NAGEL) and sent for sequencing (Eurofins Genomics). Each engineered strain

harboring a correct genetic edit was streaked on YPD+G418 plates and incubated for 2-3 days

at 30◦C. Subsequently, yeast strains were replica-plated on YPD+G418+CloNat and YPD+G418

media in order to select for the mutants that have lost gRNA expressing plasmid. Next, yeast

cells with a single genetic edit (without the corresponding gRNA plasmid) were transformed with

a new gRNA expressing plasmid targeting a different locus. Subsequently, gRNA plasmids were

"kicked out" from the correct strains harboring a double genetic edit. The transformation cycle

was repeated for generation of the strains containing triple gene mutations (Table A.2).

2.2.9 Controlled batch fermentation

The evolved lineage ALE2 and re-engineered strains TS154(R-GU), TS170(R-GK) and TS177(R-

GKU) from YPD plate were inoculated to 0.5 L shake flasks with 100 mL of MG (pH 4.2).

Pre-cultures were incubated in an orbital shaker set to 200 rpm at 30◦C until late-exponential

phase (OD600 5 7). Cell suspension was up-concentrated by centrifugation and resuspension in

fresh MG medium and used for inoculation. Batch cultivations were performed under aerobic

conditions in one liter Sartorius fermenters equipped with continuous data acquisition (Braun

Biotech International). Each fermenter was inoculated to an initial OD600 of 0.2. Cell culture

aeration was ensured by constant airflow of 1.5 v.v.m. (80 L/h) and stirring speed of 1000 rpm. The

temperature was maintained at 30◦C during the fermentation and pH (4.2) level was controlled by

automatic addition of 2M NaOH solution. The exhaust gas composition was constantly monitored

by off gas analyzer 1311 Fast response triple gas (Innova) combined with Mass Spectrometer
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Prima Pro Process MS (ThermoFisher Scientific). The batch cultures were sampled in regular

intervals for estimation of OD600, cell dry weight (CDW) and extracellular metabolites. Samples

for transcriptomic, proteomics and intracellular metabolomics were taken at the early-exponential

growth state (OD600 2 5). All experiments were done in triplicates except for the strain TS154

(R-GU), which was done in duplicate.

2.2.10 Cell dry weight sampling

The biomass concentration was determined by measuring CDW as previously described [106]

using polyethersulfone filters with a pore size of 0.45 µm MontamilR (Membrane Solutions, LLC).

The filters were pre-dried in a microwave oven at 150 W for 20 min and weighted on analytical

scales. 5 mL of cultivation broth was filtered and then washed with three volumes of distilled

water. Thereafter, the filters with biomass were dried in the microwave oven at 150 W for 20 min

and cooled down in a desiccator for a minimum of 2 hours. The filters with dried biomass were

weighed in order to determine the CDW.

2.2.11 Genomic DNA sample preparation

Genomic DNA of S. cerevisiae strains was isolated using a ZR Fungal/Bacterial DNA MiniPrepTM

kit (Zymoresearch). DNA was extracted following the manufacturer’s recommendations, except

that yeast cells were disrupted by five cycles of 1 min vortex and 1 min on ice. The quality and

the concentration of extracted DNA was assessed with the spectrophotometer NanoPhotometerR

P-Class (IMPLEN). 150 bp pair-end DNA libraries were prepared using TruSeq Nano DNA HT

Library Prep Kit and sequenced using MiseqTM platform (Illumina).

2.2.12 RNA-seq sample preparation

All RNA samples were prepared as follows, 10 mL of fermentation broth was sprayed into 50

mL FalconR tube filled with ice and immediately centrifuged at 10000 x g for 5 min at 4◦C.

After centrifugation supernatant was discarded and cell pellet was frozen by placing the tube

into dry-ice bath. Tubes with frozen biomass were kept at -80◦C until extraction. Total RNA

of each sample was isolated using RNAeasy kit (Qiagen) by following manufacturer’s protocol.

Briefly, 594 µL of RLT buffer plus 6 µL of β-mercaptoethanol were added to the FalconR tube

containing the frozen cell pellet and let it unfreeze on ice. Cell suspension was transferred to

an ice-cold FastPrep Cap tube containing 600 µL of glass beads (400 nm acid washed, Sigma).

Cells were disrupted using FastPrep (2 cycles with the following conditions: 10 seconds at speed

6, 15 seconds on ice). Cell lysate was transferred to a new tube and centrifuged 2 min at full

speed in microcentrifuge (Eppendorf). Supernatant was careful mixed with 1 volume of 70 %

HPLC-grade ethanol. Sample was transferred to an RNAeasy column and washed according to the

manufacturer’s instructions. RNA was then eluted with 60 µL of RNase-free water. Eluted sample
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was digested with Turbo DNAse (Invitrogen Ambion) accordingly to manufacture instructions

followed by RNA clean-up (RNAeasy kit, Qiagen). The RNA library was prepared using the

Illumina TruSeq Stranded mRNA LT sample prep kit starting with 500 ng of total RNA, following

manufactures instructions using Beckman Biomek FX Laboratory automation station. Samples

were sequenced using Hiseq2000 instruments in the 50 bp single read mode and loaded 8 pM

onto the flow cell at the Genomics Core Facility of EMBL (Heidelberg, Germany).

2.2.13 Analysis of genomic variants

The bioinformatics pipeline for sequencing read analysis to identify mutations included the

following steps. All sequencing reads were passed through quality control with FastQC [6]

(version 0.11.3), followed by adapter trimming using cutadapt [117] (version 1.9.1) with default

options. Subsequent quality trimming and filtering was performed with FaQCs (Lo and Chain,

2014) (version 1.34) using default parameters. Since the sequencing data were of good quality and

aligners are already able to do soft-clipping14 the impact of the quality control process steps on

the alignment quality and the final variant calling results was neglectable. Bowtie2 (version 2.0.2)

was used for sequence read alignment to the S. cerevisiae CEN.PK113-7D [125] or S288C (R64-2-

1_20150113) [44] reference genome using the following parameters: –very-sensitive-local -I 180 -X

1000 –score-min G,70,8. Picard Tools (version 1.129) (http://broadinstitute.github.io/picard/) were

used for file formatting and the removal of read duplicates. The genome-wide detection of single-

and multi-nucleotide variants (SNVs and MNVs) was performed with the GATK HaplotypeCaller

[119] (version 3.3.0) using default settings except for the ploidy, which was set to 5 in order to

also detect variants that might be only present in a fraction of the lineages. Post-processing

and manual filtering of the raw VCF (Variant Call Format) files was conducted according to

the GATK Best Practices [38] recommendations, which included a minimum variant calling

quality of 900 (Figure A.1 and Figure A.2). In addition, while analyzing the tetrad genomes, only

the variants with a 2:2 segregation pattern were kept. Intermediate sized structural variants

(SVs) were investigated with delly2 following the workflow for somatic SV calling [152] (version

0.7.2). Large SVs were investigated by read-depth analysis summarizing all high-quality aligned

reads in consecutive genomic windows of 1 kb across the genome and then using Circular Binary

Segmentation. All samples had an average mapped coverage of at least 40 reads. Mutations

of interest were confirmed by Sanger sequencing 500 bp long fragments of the loci of interest

obtained by PCR with specific primers.

2.2.14 Differential expression analysis

The quality of the raw RNA sequencing reads was assessed using FastQC [6] (version 0.11.3).

Prior to the alignment, adapter trimming was performed using cutadapt [117] (version 1.9.1) with

14 removing adapters
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default options providing the standard lllumina TrueSeq Index adapters. Subsequent quality

trimming and filtering was performed with FaQCs (Lo and Chain, 2014) (version 1.34) using

the following parameters: -q 20 -min_L 25 -n 5 -discard 1. The total reads per sample after

trimming and filtering ranged from 17.5 to 27 million. The sequencing reads were aligned to the

reference genome of S. cerevisiae CEN.PK113-7D [125]. using tophat2 [90] (version 2.0.10) with

the following parameter: -G -T -x 20 -M –microexon-search –no-coverage-search –no-novel-juncs

-a 6. Only reads with unique mappings were considered for differential expression analysis. Gene

level count tables were obtained using the count script of the HTSeq [4] python library (version

0.6.1p1.) with default options. All reads mapped in total to about 5400 genes. This was followed

by statistical analysis using the Bioconductor package DESeq2 ([109]) (version 1.12.4). Size-factor

based normalization to control for batch effects and inter-sample variability and dispersion

estimation were conducted using package defaults. The differential expression analysis was again

performed with the package defaults, which include multiple testing correction, independent

filtering and cooks cutoff (Anders and Huber, 2010) for outlier detection. Raw P-values ("orig_")

as returned by DESeq2 were used as input to fdrtool [177] (version 1.2.15) in order to compute

q-values15 ("re.estimated_"). Genes with FDR < 0.1 were considered as significantly differentially

expressed. Biostatistical analyses were conducted using R V.3.3.1 (R Development Core Team).

2.2.15 Proteomics sample preparation and data analysis

For proteomics analysis 10 mL of fermentation broth was transferred into ice-cold 15 mL FalconR

and immediately centrifuged at 10000 x g for 2 min at 4◦C. After centrifugation supernatant

was discarded and cell pellet was washed once with PBS buffer. Pellet was frozen by placing

the tube into dry-ice bath. Frozen samples were kept at -80◦Cuntil extraction. Cell pellets were

lysed using 0.1 % RapiGest in 100 mM ammonium bicarbonate. Three cycles of sonication (Cell

disruptor, Sonifier, Branson) were applied to the lysate (1 cycle: 15 seconds sonication, 15 seconds

on ice), followed by 15 min bead beating using Precellys Lysing Kit (KT0361-1-004.2). Cell lysate

was transferred into a new tube after centrifugation (5 min, 5000 x g) and incubated at 80◦C
for 15 min. Benzonase (25U, Merck) was added to the lysate for 30 min at 37◦C. Cysteines

were reduced using dithiothreitol (56◦C, 30 min, 10 mM). The sample was cooled to 24◦C and

alkylated with iodacetamide (room temperature, in the dark, 30 min, 10 mM). Proteins were

TCA precipitated, TCA pellet was washed by acetone and dried. The proteins were digested in

50 mM HEPES (pH 8.5) using LysC (Wako) with an enzyme to protein ration 1:50 at 37◦C for

4 hours, followed by trypsin (Promega) with an enzyme to protein ratio 1:50 at 37◦C overnight.

TMT10plexTM Isobaric Label Reagent (ThermoFisher) was added to the samples according the

manufacturer’s instructions. Labeled peptides were cleaned up using OASISR HLB µElution

Plate (Waters). Offline high pH reverse phase fractionation was performed using an Agilent

1200 Infinity high-performance liquid chromatography (HPLC) system, equipped with a Gemini

15 false discovery rates (FDRs)
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C18 column (3 µm, 110 Å, 100 x 1.0 mm, Phenomenex). The solvent system consisted of 20 mM

ammonium formate (pH 10.0) as mobile phase A and 100 % acetonitrile as mobile phase B.

2.2.16 Peptide analysis by LC-MS/MS

Peptides were separated using the UltiMate 3000 RSLC nano LC system (Dionex) fitted with

a trapping cartridge (µ-Precolumn C18 PepMap 100, 5 µm, 300 µm i.d. x 5 mm, 100 Å and an

analytical column (Acclaim PepMap 100 75 µm x 50 cm C18, 3 µm, 100 Å. The outlet of the

analytical column was coupled directly to a QExactive plus (Thermo) using the proxeon nanoflow

source in positive ion mode. Solvent A was water, 0.1 % formic acid and solvent B was acetonitrile,

0.1 % formic acid. Trapping time was 6 min with a constant flow of solvent A at 30 µ/min onto

the trapping column. Peptides were eluted via the analytical column a constant flow of 0.3 µ/min.

During the elution step, the percentage of solvent B increased in a linear fashion from 2 % to 4 %

B in 4 min, from 4 % to 8 % in 2 min, then 8 % to 28 % for a further 96 min, and finally from 28 %

to 40 % in another 10 min. Column cleaning at 80 % B followed, lasting 3 min, before returning

to initial conditions for the re-equilibration, lasting 10 min. The peptides were introduced into

the mass spectrometer (QExactive plus, ThermoFisher) via a Pico-Tip Emitter 360 µm OD x

20 µm ID; 10 µm tip (New Objective) and a spray voltage of 2.3 kV was applied. The capillary

temperature was set at 320◦C. Full scan MS spectra with mass range 350-1400 m/z were acquired

in profile mode in the FT with resolution of 70,000. The filling time was set at maximum of 100

ms with a limitation of 3x106 ions. DDA was performed with the resolution of the Orbitrap set to

35000, with a fill time of 120 ms and a limitation of 2x105 ions. Normalized collision energy of

32 was used. A loop count of 10 with count 1 was used and a minimum AGC trigger of 2e2 was

set. Dynamic exclusion time of 30 seconds was applied. The peptide match algorithm was set

to ’preferred’ and charge exclusion ’unassigned’, charge states 1, 5 - 8 were excluded. Isolation

window was set to 1.0 m/z and 100 m/z set as the fixed first mass. MS/MS data was acquired in

profile mode.

2.2.17 Metabolomics sample preparation and analysis

For intracellular metabolomics analysis, cells were harvested using a fast filtration protocol prop-

erly adapted from ([90]). Briefly, 5 mL of culture were sampled at mid-exponential growth phase

and were vacuum-filtered through nylon membrane filters (0.45 µm, WhatmanTM), followed

by three rapid washing steps with 5 mL of PBS to ensure no contamination from extracellular

metabolites. The polar metabolites were extracted by adding the cell-containing filter in 5 mL

of cold (-20 oC) HPLC-grade methanol (Biosolve Chimie, France)/MilliQ water (1:1, v/v) and

incubating for 1 h at -20 oC. The mixture of metabolites and cell debris was centrifuged at 10000

rpm and 0 oC for 10 min, and the supernatants were collected and dried with speed-vac. The

dried metabolites were derivatized to their (MeOx)TMS-derivatives through reaction with 100 µL

of 20 mg/mL methoxyamine hydrochloride (Alfa Aesar, UK) solution in pyridine (Sigma-Aldrich)
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for 90 min at 40 oC, followed by reaction with 200 µL N-methyl-trimethylsilyl-trifluoroacetamide

(MSTFA) (Alfa Aesar, UK) for 10 hours at room temperature, as justified in (Kanani and Klapa,

2007). The metabolic profile of each sample was measured thrice using a Shimadzu TQ8040

GC-(triple quadrupole) MS system (Shimadzu Corp.). The gas chromatograph was equipped with

a 30 m x 0.25 mm x 0.25 µm DB-50MS capillary column (Phenomenex, USA). The detector was

operated both in scan mode recording in the range of 50-600 m/z, as well as in MRM mode for the

mentioned metabolites. The metabolite quantification was carried out by calculating the peak

areas of the identified marker ions of each metabolite (Table A.3). For glucose, the smaller of

the two derivative peaks was used for quantification. Samples for quantification of extracellular

metabolites were prepared by filtering (0.20 µm Phenex-RC, Phenomenex) 1.5 mL of fermentation

broth into glass vials and stored at -20◦C until further analyses. Glycerol and several metabolites

of the central carbon metabolism were analyzed by high performance liquid chromatography

(HPLC system, Waters) equipped with Rezex ROA-Organic Acid column (Phenomenex). The

column temperature was set to 65◦C and elution was done by sulfuric acid 0.5 mM with constant

flow-rate 0.5 mL/min. Metabolites were detected by RI differential refractometer (Waters) and

PDA detector (Waters) at 210 nm wavelength.

2.2.18 Genome scale metabolic modeling

Metabolic reactions that likely become re-regulated during adaptive evolution of S. cerevisiae

for glycerol utilization were identified using model simulations and the in house developed

switchPheno algorithm. Specifically, the switchPheno algorithm uses a mixed-integer linear

programming routine to identify a minimum number of reactions, in the genome-scale metabolic

model of S. cerevisiae (iFF708 [54]), that have to be re-regulated to achieve optimal glycerol

utilization. As a reference metabolic state for re-regulation we used the distribution of fluxes

during respiratory growth on glucose. A set of minimum number of reactions were then identified

whose (absolute) flux have to change for optimal glycerol utilization by >25 % beyond the

(absolute) flux range extremes [113] (± 0.001 mmol/(g CDW h) when 6 C-moles of carbon source

were converted to biomass) under the reference metabolic state (Table A.4). Equal C-molar

conversion of carbon source to biomass was considered in the reference metabolic state and

glycerol utilization. All the simulations were performed with Matlab R2015a v. 8.5.0 using IBM

ILOG CPLEX v. 12.6.1 functions ’cplexlp’ and ’cplexmilp’.
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2.3 Results and Discussion

2.3.1 Phenotypic characterization of the evolved lineages of S. cerevisiae
growing on glycerol minimal media

While the growth performances in terms of growth rates and residual glycerol levels were similar

between the evolved WT and NOX lineages of mode-II16, the NOX lineages reached higher final

ODs (Figure 2-4a, b, d). Both strains resulted in lineages with maximum growth rates on minimal

glycerol medium (mean µmax ≈ 0.22) (Figure 2-4b). Interestingly, the adaptation rates of the

NOX lineage were faster and whereas all of the NOX lineages evolved to grow on glycerol only

two of the WT based lineages did (Figure 2-4a, c). While there were only minor differences in the

final growth performance between the lineages of the two starting strains, the variation of the

evolution mode resulted in different growth phenotypes. The manually evolved lineages17 possess

slightly higher final ODs and higher total glycerol consumption, thus seem to be able to use low

concentrations of glycerol more efficiently (Figure 2-4a, d). Indeed, when being transferred only

at the stationary phase better glycerol exhaustion is expected to be beneficial. On the contrary,

the mode-I lineages do not grow as fast as the ALE lineages with lower maximum growth rates

on minimal medium (mean µmax ≈ 0.16) (Figure 2-4a, b). Being constantly transferred in early

exponential phase puts evolution pressure on the growth rate, thus it is not surprising that the

final evolved ALE lineages are growing faster. Characterizing intermediate lineages of mode-I,

the lineage 2 showed faster adaption with bigger increases in growth performance at early stages

than the lineage 1 (Figure 2-4e). The growth phenotype of the final lineage was reached after

around 58 generations in mode-I lineage 1 and after around 51 generations in mode-I lineage 2.

The best performing isolate was ALE7 from mode-II with µmax = 0.229 ± 0.002 (Table A.5 Table

A.6). Notably, the evolved lineages show on average a four-fold faster growth rate in minimal

medium compared to the parental strains in a rich medium containing amino acids.

16 automated transfer at early exponential phase
17 mode-I, stationary phase transfers
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FIGURE 2.4. Growth characteristics of intermediate and final evolved lineages. (a)
Growth curves of the evolved NOX lineage I from mode-I and the NOX and WT
lineages from mode-II. (b) Boxplots of maximum growth rates of all evolved lineages.
(c) Growth profiles of WT and NOX strains in MG+ medium supplemented with
amino acids in the initial flasks and after two passages. (d) Color bars represent
residual glycerol concentration in MG after 72h of cultivation of all final evolved
lineages. Error bars represent standard deviations of two replicates. Note, that
ALE1 and ALE4 didn’t evolve to grow on MG medium. (e) Growth characteristics
of intermediate and final evolved mode-I lineages. Growth rates are estimated
based on two biological replicates. This figure and the text in this legend have been
adapted from Strucko et al. (2018) [178].
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2.3.2 Genomic characterization of the evolved lineages of S. cerevisiae

2.3.2.1 Single- and multi-nucleotide variants

The sequencing results revealed 93 unique mutations across the seventeen evolved lineages

(Table A.7). The vast majority of the mutations were single nucleotide insertions and SNVs

(>95%), whereas only a few were single or double nucleotide deletions and multi-nucleotide

variants (Figure 2-5a). The relative high percentage of small indels in comparison to SNVs of

53 percent might hint at a too relaxed post-variant-calling filtering process as other studies

analyzing the nature of spontaneously arising mutations observed ratios of only up to maximally

3 percent [207] [126]. About one third (34) of the unique mutations hit coding regions (Table

A.7), which is much less than the annotated percentage of coding regions in the genome ( 75%)

that got evenly hit in comparable mutation accumulation (MA) experiments [207] [36] [126].

Considering only SNVs, this ratio increases to expected 72%, which underlines the hypothesis

that a too relaxed filtering procedure resulted in a high number of false positive indel calls.

Since insertions constitute the vast majority of the identified small indels, they were excluded

from the following analysis. Interestingly, almost all of the mutations in coding regions cause

amino acid substitutions (Figure 2-5a), whereas in random spontaneous mutation spectra only

75% of all changes should be non-synonymous. In studies without a selective pressure this

distribution is typically achieved [126]. Thus, the observed mutations in coding regions seem

highly affected by selection/subjected to selection. Various categories of genes were affected by

the SNPs ranging from metabolic genes to regulatory and signaling genes. Interestingly, three

genes were found mutated in more than one evolved lineages (Figure 2-5a). The glycerol kinase

encoding gene GUT1 was the most frequently mutated gene with independent mutations in five

lineages, followed by HOG1 with mutations in four, and PBS2 with mutations in two lineages. The

two latter genes are both coding for key proteins of the high-osmolarity glycerol (HOG) pathway

and are exclusively found in all the lineages harboring the NOX gene. On average 6.5 ± 5.7 new

mutations evolved across all final end point lineages growing on glycerol. The huge standard

deviation is owned to two outlier lineages harboring about four and a half times more mutations

than the rest of the lineages (Figure 2-5b). Interestingly, these are the only two lineages, which

do not have any HOG pathway related mutation (Table A.7). The two final GEVO lineages have

about one mutation less on average than the ALE lineages of the same strain background, which

is most probably owned to the difference in length of evolution ( 80 vs. 300 generations) (Figure

2-5c). The mutation rate of the SNVs is estimated to be 2.26 ± 1.5 x 10−9 per base per generation,

which is higher than previously reported, but expectable since these experiments were performed

under no selection pressure (Lynch 2008; 3.3 (SE = 0.8) x 10−10). In the case of [126] (2.9 x 10−10)

and [207] (1.67 ± 0.04 x 10−10) they additionally analyzed diploid yeasts, which (especially in

their vegetative state) are thought to be genomically more stable than other ploidys. Interestingly,

the Mode-II evolved NOX lineages had a lower mutation rate (1.18 ± 0.13 x 10−9 per base and

generation) than the Mode-I evolved NOX lineages (3.62 ± 0.73 x 10−9 per base and generation),
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suggesting a possibly higher evolution pressure in the latter (Figure 2-5d).
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FIGURE 2.5. Genomic characterization of intermediate and final evolved lineages. (a)
Mutations found by sequencing of all evolved lineages summarized by mutation
types, mutation effects and mutation hotspots. HOG1: Mitogen-activated protein
kinase of the HOG pathway, PBS2: MAP kinase kinase of the HOG signaling
pathway. (b) Distribution of number of evolved mutations of all evolved final
end point lineages growing on MG. (c, d) Comparison of (c) number of mutations
and (d) evolution rates in NOX lineages between the two evolution modes. The
mode-I lineages evolved for about 80 generation, whereas the mode-II lineages
evolved for about 300 generations. (e) Sequencing reads of the NOX parental strain
and the mode-II evolved NOX lineage ALE7 aligned to the S. cerevisiae S288C
reference genome and summarized in 1 kb windows. Part (a) of this figure and the
corresponding legend text have been adapted from Strucko et al. (2018) [178].
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2.3.2.2 Structural variants

Among all evolved lineages, one copy number variation (CNV) evolved, namely a copy number gain

of chromosome 8 in ALE7 (Figure 2-5e). The lower final growth OD of ALE7 in comparison with

the other NOX based lineages could possibly be attributed to the evolved chromosome duplication

in chromosome 8 (Figure 2-4a). Interestingly, the gene GUT1 is located on chromosome 8 and

ALE7 is one of the few lineages without a detected mutation in this gene. Mutations in this gene

are also the only mutations, which were found on chromosome 8. The predicted copy number

gain is one copy and only possible under the assumption that the original copy number of the

chromosome was two. Since CEN.PK is a haploid strain, this observation makes it likely, that

already the parental NOX strain is diploid for chromosome 8. Additionally, the parental NOX

strain has a copy number gain of chromosome 9, which is predicted to be double the copy number

of the rest of the genome. Thus, the WT and NOX lineages (considering the integrated NOX

gene) did not entirely have the same genetic base to start from. Possibly, during the integration

procedure of the NOX gene a genome duplication with a copy number variation had taken place

in the NOX strain. No intermediate sized structural variants (300bp – 10kb) were found in any

of the evolved lineages. Small structural variants ( 10bp – 300bp) are difficult to detect with

short-read data. It has previously been shown that the ploidy18 of the evolving lineages as well as

the length of the laboratory evolution (max. 300 generations) make structural variants generally

unlikely to occur [169] [207] [99] [126]. As a side note, the sequencing also uncovered that a

mixing between the automatically evolved lineages has occurred at some point of the experiment

and therefore not all mode-II evolved lineages are completely independent experiments. Analyzing

the duplicated chromosome 9 in all the NOX lineages as well as reads aligning to the NOX gene,

the WT lineage 5 (ALE 5) has been overtaken by one of the NOX lineages (Figure A.3-A.5). The

same is true for a strain evolved in parallel for an independent experiment, which sequence was

then added to the results (ALE 11). Considering the distribution of the identified SNPS among

the evolved lineages it is furthermore highly likely that ALE6, ALE8 and ALE11 were intermixed

at some point of the experiment as they show many overlapping SNVs (Figure 2-6). Also, ALE5

and ALE9 got probably mixed as well as ALE2, which has a huge overlap with ALE3. Thus finally,

we have only 7 independently evolved strains growing on glycerol. Interestingly, the mode-I NOX

lineage 1 clusters relatively closely with the ALE lineages of mode-II. Since these were evolved in

physically separated experiments, either identical mutations occurred by chance or, more likely,

some background mutations of the parental NOX strain were undetected in the variant calling

process of the parental strain.

18 haploid
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FIGURE 2.6. Hierarchical clustering of all sequenced evolved lineages based on newly
evolved SNVs, MNV and deletions. Note that ALE4 didn’t evolve to grow on glycerol
and couldn’t be recovered for sequencing.

2.3.3 Mutations in the HOG pathway and GUT1 enable growth on glycerol
while introducing an osmo-sensitive trade-off phenotype

To identify functional mutations for glycerol utilization from our evolution experiment, first,

mutations in the three most frequently mutated genes were further analyzed. GUT1 has a known

function in the glycerol uptake pathway and was shown to facilitate glycerol utilization previously

(Figure 2-1). However, solely introducing this mutation wasn’t sufficient for growth on glycerol

[181] [74]. The dominance of mutations in HOG pathway genes is striking, making it also a good

candidate mutation for efficient growth on glycerol. Furthermore, the HOG pathway has been

previously implicated in glycerol utilization (Kvitek and Sherlock, 2013). Although we could

experimentally demonstrate the positive effect of these mutations by reintroducing them in

the wild-type strain, the full phenotype of the endpoint mode-I lineages could not be entirely

recapitulated (Figure 2-7a and Figure A.6). As previously observed, neither of the reintroduced

GUT1 mutations is sufficient for growth on glycerol. Nevertheless, a clear positive interaction
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between GUT1 and PBS2 or HOG1 was observed (Figure 2-7a and Figure A.6). Since the HOG

pathway mutations only evolved in the NOX lineages, two candidate mutations in combination

with a GUT1 mutation were additionally reintroduced in the NOX strain. The growth phenotype

achieved with the reintroduced double mutations was independent of the background strain

(Figure A.7). Interestingly, the HOG pathway and GUT1 mutations seem to evolve irrespective of

the evolution mode. The differences in the growth characteristics between the mode-I and mode-II

lineages could be due to additional individual sets of mutations affecting additional genes or due

to the specific mutations in the genes of the HOG pathway or GUT1. Whether the higher final

growth ODs and the faster adaptation rates of the NOX in comparison to the WT lineages are

due to HOG pathway mutations, due to additional mutations, due to the genomic background of

the NOX strain or due to the NOX gene itself remains unclear. Finally, if NOX lineages are more

likely to evolve a HOG pathway related solution or if evolving a HOG pathway solution is more

likely than other solutions in general can’t be assessed since only one independent WT lineage

evolved the ability to grow on glycerol.

34



2.3. RESULTS AND DISCUSSION

G
ro

w
th

 ra
te

, 1
/h

0

2

4

6

8

0

0.10

0.05

0.15

0.20

G
ly

ce
ro

l (
g/

L)

GUT1PBS2
 Mode-I lineage 1

ba

c

pbs2I418>

hog138*

hog1D106Y

Wild-type

YPD 0.5M KCl

OD600 OD600

100 10010-6 10-6

0.0

2.5

5.0

0 20 40 60 80 100

gut1m

gut1mhog1m

gut1mpbs2m

hog1m

pbs2m

Wild-type

Time (h)

O
D

60
0 e

qu
iv

al
en

t

Re-engineering 
Mode-I

G
ly

ce
ro

l (
g/

L)

G
ro

w
th

 ra
te

, 1
/h

 Mode-I lineage 2

0

2

4

6

8

0.05

0.10

0

HOG1
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(Kvitek and Sherlock, 2013) have reported that the major signaling pathways, including HOG,

of S. cerevisiae were affected earliest during laboratory evolution. This is in partial agreement

with the sequencing results of the intermediate samples of the mode-I lineage 1 experiment,

where the PBS2 gene mutated as early as after five passages of the adaptation process (Figure

2-7b). In the mode-I lineage 2, the HOG1 mutation was only detected in the sample taken after 15

passages. Unfortunately, we only sequenced two samples from this lineage, so the sample size is

not meaningful for any further conclusions. The GUT1 mutation arises very late during the course

of the experiment for mode-I lineage 1. Additionally, it is found in the lineage ALE6 but not in its

related lineages ALE8 and ALE11, which support the observation that it evolves later during

evolution. This is in line with the fact that contrary to the HOG pathway mutations, a GUT1
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related mutation was detected in most, but not all evolved NOX lineages (Table A.7). Through

testing the identified HOG pathway mutations for their functional impact, we individually

assessed the osmo-sensitivity of several variants of HOG1 and PBS2 that were re-engineered

into the wild-type CEN.PK. In all tested cases, a single nucleotide substitution in the genes led

to an osmo-sensitive phenotype suggesting a loss-of-function mutation (Figure 2-7c) [161] [21].

Exclusively, the HOG pathway related mutations caused an osmo-sensitive phenotype as only

those lineages displayed elevated sensitivity to osmotic stress (Figure A.8).

2.3.4 A joint approach of classical yeast genetics and inverse metabolic
engineering identifies causal mutations beyond the HOG pathway

2.3.4.1 Three SNPs, in the genes GUT1, KGD1 and UBC13, are additive causal
mutations restoring the evolved growth phenotype

To further identify causal mutations underlying the evolved growth phenotype other than the

HOG pathway, the endpoint lineage ALE2 evolved from the parental CEN.PK113-7D WT strain in

mode-II was chosen. This lineage did not exhibit increased sensitivity towards osmotic stress and

had a final growth on glycerol of µmax = 0.220 ± 0.004. Starting with 21 candidate SNPs19 the

ALE2 lineages was crossed back with a wild type strain (Figure 2-3b). Six tetrads of this backcross

were characterized in MG medium and showed a pronounced growth phenotype heterogeneity

segregating in a non-Mendelian manner20 (Figure A.9). Three tetrads of the first generation

were sequenced to follow the segregation pattern of the mutations and compare them against the

growth phenotypes. We identified three additional mutations in these tetrads, which were not

found before, probably because only a small subpopulation in the ALE2 lineage harbored them

(Table A.8). Tetrad 2A and 2D appear to be very interesting cases since they have a relatively

similar growth profile yet almost a perfect split between the mutations (Figure A.9 and Table

A.8). The growth traits in combination with the mutation segregation pattern raised a diverse

and convoluted picture, supporting the complex nature of the glycerol utilization phenotype. The

crossing procedure was thus subsequently repeated two more times with spores exhibiting the

growth phenotype of the ALE2 lineages (Figure 2-8a). The number of candidate causal SNPs

could be ultimately reduced to one intergenic mutation and four mutations in ORFs. Two of

these mutations were hitting the metabolic genes, GUT1 encoding a glycerol kinase and KGD1

encoding a subunit of the alpha-ket oglutarate dehydrogenase complex, while the other two were

affecting genes coding for globally acting signaling/regulatory proteins, viz., UBC13 encoding an

E2 ubiquitin-conjugating enzyme and INO80 encoding a nucleosome spacing factor (Figure 2-8b

and Table A.8).

19 including 12 non-synonymous mutations in coding regions
20 not a 2:2 segregation
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These SNPs were reengineered one by one in a WT CEN.PK113-7D strain. While engineering

only one mutation at a time resulted in no growth on minimal 1% glycerol media, most of

the double combinations of mutations showed a synergistic growth improvement that was yet

short of the ALE2 growth performance (Figure A.10 and Figure A.11). Interestingly, a range

of growth traits appeared in different double or triple mutants, hinting at a composite quality

of the mutations (Figure A.10) . Notably, combining the three mutations found in the two

metabolic genes GUT1 and KGD1 and the signaling gene UBC13 (R-GKU strain) restored the

full growth phenotype of ALE2 (Figure 2-8c and Figure A.11) . Thus, the three SNPs in the genes

GUT1 (E572Q), KGD1 (A990D) and UBC13 (R70fs) were identified as additive causal mutations

underlying the evolved ability to grow on minimal glycerol medium. Interestingly, tetrad 4A

had only one of the causal mutations of full growth phenotype (UBC13 and still was able to

grow slightly as opposed to the UBC13 mutation alone (Figure A.10) . Possibly, this tetrads

combination of mutations involving UBC13 and resulting in an inferior glycerol phenotype might

have evolved early in evolution.

2.3.4.2 Identified causal mutations are generally applicable in yeast

Finally, we tested if the three identified causal mutations are of more generic nature and thus

would be causative beyond the laboratory CEN.PK strain. Introducing them in two industrial

strains from different geographic locations, a wine yeast L.1528 from Chile and a beer yeast

CLIB382 from Ireland, substantially improved their growth on glycerol (Figure 2-8d). This

demonstrates the importance of the GUT1, KGD1 and UBC13 modulations for glycerol utilization

also in industrial yeasts.

2.3.5 Functional assessment of the causal mutations using multi-omics
analysis and metabolic modeling

To understand the functional relationships between the identified SNPs and their manifestation

on the level of metabolism, the functional impact of each mutation was analyzed. The SNP found

in the gene encoding the glycerol kinase Gut1 directly affects the glycerol metabolism. Gut1

phosphorylates glycerol to glycerol-3-phospate as the initial step of glycerol catabolism (Figure

2-1). This gene has previously been proven to be indispensable for the utilization of glycerol

as its deletion completely abolishes growth [181]. Furthermore, GUT1 was found mutated at

several positions leading to amino acid changes when a yeast isolate, which was naturally able

to grow on glycerol, was compared to a laboratory yeast showing no growth [181]. The GUT1

variant found in the ALE2 lineage has a single amino acid residue change (E572Q), which is

within 12 amino acids distance from the ATP binding site and exchanges a negatively charged

with a neutral amino acid. Taking its essential role in the glycerol uptake pathway and the fact

that its combination with either the KGD1 or the UBC13 mutation has a beneficial effect on the

growth phenotype, it is most likely that the SNP in GUT1 is acting as a gain-of-function mutation
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increasing the efficiency of glycerol catabolism (Figure A.10) .

While the SNP in GUT1 has an obvious connection to the glycerol metabolism the functional

relationship of the SNPs in the genes encoding the proteins Kgd1 and Ubc13 was not clear from

their known functions and have not previously been reported in the context of glycerol utilization.

To elucidate their implications, transcriptomics and proteomics profiles of the two reconstructed

double mutants R-GK (GUT1, KGD1 and R-GU (GUT1, UBC13 as well as the triple mutant

R-GKU and the ALE2 lineage grown on minimal glycerol media in well-controlled reactors were

analyzed.

2.3.5.1 Triple mutant R-GKU captures the majority of the induced transcriptional
and proteomic changes of the evolved lineage ALE2

Comparing the ALE2 lineage with the R-GKU triple mutant, 271 genes were found differentially

expressed (Figure 2-9a and Table A.9). However, this translated only into three proteins having

different levels (Figure 2-9a and Table A.12). Two out of these, Ste3 and Bar1, are proteins

involved in mating. The differences in these genes as well as most of the transcriptional changes

can be explained (using GO term enrichment) by the opposite mating types of the ALE2 and the

WT strain (Table A.13). Together with the observed similar growth physiology, the few differences

on transcriptional or proteomic level between the R-GKU strain and the ALE2 lineage further

validated that the three mutations constitute the major genetic contributors of efficient glycerol

utilization.
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respiratory metabolism. This figure and the corresponding legend text have been
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2.3.5.2 UBC13 mutation acts through mechanisms other than transcriptional or
proteomic level changes

UBC13 encodes an E2 ubiquitin-conjugating enzyme, which is involved in the error-free DNA

post-replication repair pathway [49]. The UBC13 variant likely results in loss-of-function as the

476∆G mutation caused a translation frame shift with a premature stop codon after the 71st

amino acid (Figure A.25). The variant thus lacks its well-described functional regions [5]. However,

the binding side with its interaction partner Mms2 possibly remains intact [28]. Considering

its involvement in the DNA repair pathway and its relatively broad action of synthesizing K63
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ubiquitin chains a loss-of-function mutation in this gene would be expected to affect a broad

group of proteins.

However, transcriptomics and proteomics comparison of the R-GK with the R-GKU strain revealed

no broad effect of the UBC13 mutation (Figure 2-9b, Table A.10 and Table A.12). Only Ubc13

protein levels itself was strongly decreased in the triple mutant, which supports the hypothesis

that its translation is indeed impaired. This could also explain the considerably higher number

of mutations that accumulated in the ALE2 lineage as it is known that the ∆Ubc13 mutant

has an increased mutation rate [24]. Possibly decreased rates of Ubc13 protein ubiquitylation

might be involved in glycerol utilization and a signaling function aside from protein degradation

might explain the lack of transcriptional and proteomic effects in our results. It is known for

example that several nutrient permeases are targeted for endocytosis by K63 ubiquitin chains

[49]. Furthermore, two recent studies showed that a truncated version of the E3 ubiquitin-protein

ligase Ubr2 in conjunction with other mutations increased growth on glycerol [74] [180]. But it is

important to note, that the mode of action of Ubc13 and Ubr2 are thought to be different and,

thus, different mechanisms might be at play in these two cases [49]. Nevertheless, these studies,

together with the beneficial role of the UBC13 variant in the glycerol growth phenotype in our

study, point to a yet undiscovered function of Ubc13 in glycerol catabolism, possibly carried out

via protein ubiquitylation

2.3.5.3 KGD1 mutation adjusts redox cofactor utilization by decoupling oxidative
phosphorylation from TCA cycle

The third causal mutation is an A990D substitution in the gene KGD1 coding for the α-

ketoglutarate dehydrogenase complex of the tricarboxylic acid cycle (TCA cycle). This substitution

causes a loss of the enzymatic activity as the reengineered strain with the KGD1 mutation fully

resembles the ∆Kgd1 phenotype with impaired diauxic shift21 [154] (Figure 2-9d). Comparing

the R-GKU with R-GU strains, again only two out of 96 differentially expressed genes show an

effect at the protein level (Figure 2-9c, Table A.11 and Table A.12). It appears that both affected

enzymes are connected to the activity of the TCA cycle, namely Cit322 and Dld323. To investigate

why an inactivity of Kgd1 would increase the metabolism of glycerol and to explain the observed

decreased levels of Cit3 and Dld3, we modeled growth on glycerol using a genome-scale metabolic

model of S. cerevisiae [54]. Specifically, we used an in house developed switchPheno algorithm

that identifies the minimum number of fluxes that must be re-regulated for a given change in

phenotype. In this case, the wild type phenotype is corresponding to optimal growth on glucose

and is changed to optimal growth on glycerol. This algorithm might be of particular value for

imitating solutions found in evolutionary short-term experiments since the network structure

21 no growth on ethanol
22 citrate synthase, an initial TCA cycle enzyme
23 2-hydroxyglutarate transhydrogenase, acting on the Kgd1 substrate α-ketoglutarate
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that remains constant could be assumed to evolve slowly for novel connections and the shortest

pathway solutions will be naturally selected for.
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The switchPheno algorithm expectedly predicted the required up-regulation of the glycerol

uptake pathway with a down regulation of the upper part of glycolysis at the same time (Figure

2-10). Interestingly, optimal growth on glycerol also required a re-regulation of the TCA cycle flux

after the 2-oxoglutarate branching point, namely a down-regulation of the flux going through the

reaction catalyzed by Kgd1. Simultaneously the flux through the oxidative phosphorylation was

up regulated, fed by an increased flux through the GABA shunt, bypassing TCA cycle (Figure

2-10). This implies a decoupling of the relative activities of the TCA cycle and the oxidative

phosphorylation. The ability of the KGD1 mutants to metabolize glycerol combined with their

simultaneous impairment of the diauxic shift proves that this is indeed the case. This is due to

the fact that the metabolization of glycerol needs oxidative phosphorylation, while the ethanol

utilization during the diauxic shift would require the activity of the full TCA cycle. Glycerol
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carbons are more reduced than glucose or ethanol carbons and yield more NADH per C-mole when

metabolized. Thus, lower relative TCA cycle activity might be required to produce less NADH and

oxidative phosphorylation is required to regenerate NAD+. The GABA shunt on the contrary could

enhance glycerol utilization by generating NADPH24 instead of NADH25. Concomitantly, the

model predicts a decreased flux through the NADP+ utilizing pentose phosphate pathway (PPP).

Supportively, when the GABA shunt is active26 a pathway intermediate has been suggested

to trigger the repression of DLD3 [107]. Lastly, the modeled metabolic flux alterations were

supported by changes observed in the TCA cycle metabolites (Figure 2-10 and Table A.14). The

identified KGD1 loss-of-function mutation thus reveals a novel and non-intuitive link between

the TCA cycle operation and glycerol metabolism.

2.4 Conclusions and future directions

This chapter demonstrates the versatility of yeast’s metabolic network to adapt to changes

in the nutritional environment. The ability to grow on glycerol as the sole carbon source was

acquired within 80 to 300 generations, depending of the mode of adaptive evolution. Only three

point mutations were necessary to rewire the metabolic network flux and change the phenotypic

outcome as drastically as from no growth at all to efficient growth on glycerol. Furthermore,

two different strategies 27 of the adapted yeast lineages were identified to rewire the metabolic

network. Both included a mutation in a gene with broad and systemic regulatory reach, which is

typically observed in adaptive evolution [32]. Interestingly, both strategies achieved the same

maximum growth rate exemplifying the redundancy of the cellular metabolic network regulation.

However, both adaptation strategies were accompanied by metabolic fitness trade-offs regarding

other nutrient sources or environments. The lineages displayed either sensitivity towards osmotic

stress as a cause of the impairment of the HOG signaling pathway or the lack of respiratory

metabolism because of a lack-of-function mutation in the enzyme Kgd1. These trade-offs offer an

explanation to why yeast isolates show sub-optimal or no capacity for glycerol metabolism. From

an evolutionary standpoint, these would heavily compromise S. cerevisiae survival strategies,

since growth in high glucose concentration environments as well as the subsequent utilization of

ethanol are essential in its natural habitats [85] [206]. In a broader perspective, these results

show how the metabolic capability of a species can remain latent, and how it can be uncovered

through laboratory evolution.

Studying the lineage harboring the KGD1 mutation more deeply reveals that efficient growth

on glycerol as sole carbon source is a complex trait requiring synergistic interactions between,

in this case, three genes, including genes in metabolic pathways and regulatory processes.

24 in succinate semialdehyde dehydrogenase reaction
25 in α-ketoglutarate dehydrogenase reaction
26 i.e. used for L-glutamate degradation
27possibly favored by different genetic backgrounds
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Besides verifying the known target GUT1, our study was able to identify two novel non-intuitive

mutations in the context of glycerol utilization, namely KGD1 and UBC13. This novel link

exemplifies our limited understanding of metabolic network interplay and its function, regulation

and requirements. Analyzing the functional implications of the KGD1 mutation in greater depth

revealed redirection of fluxes in the central carbon metabolism. Namely an up-regulation of the

oxidative phosphorylation combined with the concomitant down regulation of TCA cycle flux and

the likely up-regulation of the GABA shunt as predicted by modeling. As glycerol has a higher

reduction state than glucose, it probably requires a different wiring of NAD+ utilizing pathways

and a change in the network redox flux balance in order to be metabolized. Metabolic modeling

has thus proven to be a useful tool for the interpretation as well as integration of multi-omics

data as it could explain the novel and non-intuitive link between the TCA cycle operation and

glycerol metabolism.
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CHAPTER 3. HUMAN GENOME-SCALE METABOLIC MODEL FOR FLUX BALANCE
ANALYSIS

Summary

In the third part of this thesis I present the results of an improved version of a
human genome-scale metabolic model (GEMM) for constrained based modeling tech-
niques. Unlike model organisms like yeast, for which genome-scale models have been
developed and optimized for various applications including constrained based mod-
eling for more than a decade, genome-scale models for human cells are relatively
new in their application. A review of the currently available genome-scale metabolic
models for human revealed a lack of models with robust predictive capability of ba-
sic metabolic phenotypes, such as lactate secretion under hypoxic growth conditions.
To overcome this limitation, we revised the available human genome-scale metabolic
model HMR2 to make phenotype predictions matching more closely the available ex-
perimental data. The major changes encompass the introduction of a “mitochondrial
intra-membrane” space (adapted from Swainston 2016) to improve the prediction of
respiratory ATP synthesis, the revision of reactions from the beta-oxidation pathway
and auxiliary enzymes and the introduction of an ATP maintenance cost. Further-
more, atomically unbalanced reactions were removed, the directionality of reactions
was constraint where infeasible, exchange reactions were revised and new reactions
were added. Lastly, the uptake and release constraints for metabolites were adapted
to closely mimic the environment present in a human cell culture system. In addition,
we revised the gene-reaction associations to make the model also more suitable for
integrating transcriptomics and proteomics data. As a benchmark we compared the
revised model’s predictions with the available metabolic phenotypic data as well as
data from a gene essentiality study of human cell cultures. The resulting model pro-
vides a valuable resource for constraint based metabolic modeling of human cells and
tissues.

This revised human model is an essential part of this thesis, as it will be used for omics data

integration in chapter IV. In this project I worked together with Dr. Paula Jouhten (currently at VTT

Technical Research Centre of Finland Ltd), with whom I shared the revision work, the phenotypic

flux predictions and the major part of the benchmark procedure. I also collaborated with Sergej

Andrejev from EMBL Heidelberg, who assisted me with the calculation of the model’s predicted

essential genes. I am first author of the manuscript (currently in preparation) and contribute

to all aspects of the publication (Katharina Zirngibl, Paula Jouhten, Sergej Andrejev, Kiran

Raosaheb Patil, Human metabolic model for flux balance analysis, Manuscript in preparation.).
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3.1 Introduction

3.1.1 Genome-scale metabolic network reconstructions

GEMMs belong to the family of COBRA approach and allow the usage of these modeling tech-

niques at the genome scale (see General Introduction chapter for more details about COBRA)

[130]. Conceptually, a GEMM comprises the sum of all known biochemical reactions of an or-

ganism of interest (reactome) assembled in a network, which is employable for computation

[102]. Besides the individual reactions, their substrates, products, stoichiometric coefficients and

reversibility, the biochemical network reconstructions can include additional information, such

as the compartment of the reactions or the genes coding for the enzymes associated with the

reactions, so called gene-protein-reaction (GPR) associations [130] [11]. Thus, a genome-scale

reconstruction can also be viewed as the knowledge bases for the systemized genome-scale as-

sembly of cellular metabolism and other disparate information about an organism of interest.

In order to be usable by constraint-based simulation methods, such as FBA, a genome-scale

reconstruction must be converted into a computational model. This is achieved by converting the

network topology of metabolic reactions into a chemically accurate mathematical representation.

More specifically a numerical matrix is created in which each reaction is represented by the

stoichiometric coefficients of its participating metabolites (Figure 3-1) [102]. Furthermore, each

reaction can be assigned to constraints, which are mathematically represented either in the form

of reaction equations that have to be balanced, or reaction equations that are unbalanced but

have upper and lower flux bounds (e.g. metabolite uptake or secretion rates of exchange reactions)

[130].

The first GEMM reconstruction constituted the GEMM for Haemophilus influenzae [43].

Since then, a collection of GEMMs has been built, including a number of model organisms

such as GEMMs for Escherichia coli, Saccharomyces cerevisiae, Drosophila melanogaster, Mus

musculus and many more [132][54][134][48][175]. The reconstruction of organismal models at the

genome-scale level is a laborious and time-consuming task including the assembly of thousands

of reactions and the integration of varying degrees of metadata [102], which is why several

attempts have been made to automate this process [39][144][2][70][7][86]. However, all these

methods follow bottom-up approaches and most are only semi-automated, which often lead to the

reconstruction of models not yet ready for simulation, implying additional manual curation [110].

Recently a novel method has been published, suggesting a top-down approach included in a fully

automated process, which results in more robust models and thus greatly reduces the amount of

manual curation work [110]. However, this new reconstruction method as well as others with full

automation level are limited to simpler, prokaryotic organisms [110] [70]. Thus, the generation of

models for more complex multi-cellular eukaryotic organisms still shows only a limited level of

automation and needs a lot of manual revision.
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FIGURE 3.1. After the metabolic network has been assembled, it must be converted into
a mathematical representation. This conversion is performed using a stoichiometric
(S) matrix in which the stoichiometry of each metabolite involved in a reaction
is enumerated. Reactions form the columns of this matrix and metabolites the
rows. Each metabolite’s entry corresponds to its stoichiometric coefficient in the
corresponding reaction. Negative coefficient substrates are consumed (reactants)
and positive coefficients are produced (products). Figure and figure legend have
been reproduced from O’Brian (2015) with permission [130].

3.1.2 Application areas of GEMMs

GEMMs in combination with COBRA methods have now been successfully used for more than 15

years to model phenotypic states and predict a range of metabolic and associated cellular func-

tions based on environmental and genetic parameters [20][130]. The most basic use case consists

in predicting cellular growth capabilities under different media compositions. Many other types

of applications have been developed, which have been summarized by Oberhardt et al. in five

broad categories, namely “(1) contextualization of high-throughput data, (2) guidance of metabolic

engineering, (3) directing hypothesis-driven discovery, (4) interrogation of multi-species relation-

ships, and (5) network property discovery” [129]. Each category exhibits studies in diverse areas.

The connected areas of application include successes like modeling transcription, translation and

metabolism to gain an integrated picture of cell functions [173][150][47][57][108] (1), modeling

metabolic effects of genetic perturbations for rational strain design or extitin silico design of

media for industrial biochemical production [111][22][184][137] (2), the study of diseases with

associated metabolic traits, the discovery of new human metabolic capabilities and the develop-

ment of cancer drug targets or antibiotic design [188][69][20][102][52][57][91] (3), modeling of

metabolic interactions, cross-feeding and nutrient competition between different species within a

microbial community [208][202][147][55][162][93](4) and the uncovering of genetic interaction

networks, transcriptional regulatory networks and underlying principles for optimal flux states

and cellular metabolism, studying enzyme and organismal pathway evolution and assessing

the theoretical metabolic capabilities [79][71][174][193][185][13][12][53][136][200][149][166] (5).

Depending on the intended modeling approach, the GEMM might need tailoring or extensions
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towards specific aspects. However, most of the above-mentioned modeling applications require re-

liable flux predictions. Thus, GEMMs whose reaction networks accurately reflect the complexity of

real organisms’ metabolism and whose constraints are well set, e.g. do not violate thermodynamic

laws or closely mirror physiological uptake/secretion rates, are a valuable resource for metabolic

modeling approaches. Furthermore, a comprehensive set of metadata like reaction-associated

gene and protein products (formulated in GPRs) are instrumental for most of these applications.

3.1.3 Current human genome-scale metabolic models and their limitations

Currently available and important human GEMMs are listed in Table III-1.

TABLE 3.1. List of the major releases of human models. The table was compiled from
the downloaded models. As a comparison the human genome has 20376 genes
annotated in the current genome release (GRCh38.p12, updated Jan 2018) and
11896 reactions are recorded for the human metabolism. *Only literature values
available. The number of indicated genes for Recon 2 probably includes transcripts.
The number of listed reactions for Recon 2 includes exchange reactions.

Version # Genes # Metabolites # Reactions # Compartments Reference Journal Date
Recon 1 1496 2766 3337 8 Duarte et al. PNAS 31.01.2007
Recon 2 1789* 5063* 7440** 8* Thiele et al. Nat. Biotechnology 03.03.2013
Recon 2Q 1763 4962 6686 8 Quek et al. J of Biotechnology 05.06.2014
Recon 2.2 1675 5324 7092 9 Swainston et al. Metabolomics 07.06.2016
Recon 2M.1 1682 3368 5273 9 Ryu et al. PNAS 24.10.2017
Recon 2M.2 1663 3368 5290 9 Ryu et al. PNAS 24.10.2017
Recon 3D 1884 5834 9040 9 Brunk et al. Nat. Biotechnology 19.02.2018
HMR 3668 5599 7685 8 Mardinoglu et al. Mol. Systems Biology 19.03.2013
HMR2 3765 5546 7721 8 Mardinoglu et al. Nat. Communication 14.01.2014

Generally, there are two families of reconstructed human GEMMs, the Recon and the HMR

family, of which the Recon family was developed earlier. The first human GEMM released was Re-

con 1 from Duarte 2007, which represented a mile stone for human metabolic modeling and built

the foundation for the following GEMMs. The model encompassed 7.3% of the currently known

open reading frames (Ensembl GRCh38.p12, updated Jan 2018) 1 and 28.1% of reactions recorded

for the human metabolism (11896 reactions according to Reactome statistics, 2018/09/18) 2 [41]

(Table III-1). Since Recon 1, several revised and updated Recon versions have been published.

The first revision constituted Recon 2, which not only doubled the number of included reactions

and metabolites (including vitamin E metabolism and glycoshpingolipid metabolism), but also

experimentally validated model predictions for biomarkers and extracellular metabolites for the

first time [187]. It furthermore incorporated additional metadata on drug-enzyme mappings. The

next bigger update of Recon 2, in the following called Recon 2Q, was published by Quek et al. and

included minor revisions for inconsistencies and duplications in metabolite and reaction names,

formulas, balances, charges and annotations [151]. Also reactions where free metabolites were

produced were removed, the input and output reactions reduced to a minimum and the biomass

1 https://www.ensembl.org/Homo_sapiens/Info/Annotation
2 https://reactome.org/about/statistics
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equation was adjusted. More importantly, this model aimed at revising flux predictions, however

on the cost of greatly reducing the model to only 357 core reactions mostly from the central

carbon metabolism. The following major release encompasses Recon 2.2 [179] which incorporates

several smaller and partially independent updates of Recon 2, such as a finer description of lipids

and partial removal of unbalanced reactions involving generic metabolites (Recon 2.1), improved

transport reactions [159], added drug metabolic reconstruction [160] and the correction of Recon

2Q [151]. Furthermore, extensive manual curation focusing on balancing reactions, a better repre-

sentation of energy generation on different carbon sources and a revision of reaction consistency

was applied. These revisions increased the number of included reactions to 60.0% of the known

metabolic reactions taking place in human cells and added the mitochondrial intra-membrane

space as a novel compartment to the model. Since then the Recon M.1 and M.2 successions incor-

porated, based on Recon 2Q, minor revisions and included transcript annotations in the GPRs,

which are compatible with transcript level data [158]. Finally, Recon 3D, which appeared early

this year and is based on Recon 2, additionally includes three-dimensional metabolite and protein

structure data. It also further expands the model by increasing the number of included reactions

to 9040 (76.0% of the currently available reactions in the reactome database). Furthermore, it

slightly increases the number of included genes, which are now covering 9.2% of the known open

reading frames [23]. Until now the HMR series has released only two models, the original HMR

model published in 2013 simultaneously with Recon2 and a revised version HMR2 published

one year later. HMR was reconstructed based on Recon 1, several databases, e.g. HMDB, and

experimental data measuring protein availability [115]. HMR holds, in comparison to the Recon

2 version at that time, more reactions and associated genes, and since it was mainly based on

experimental data from adipocytes, a more comprehensive lipid metabolism [115]. HMR2 is an

extension of HMR and even further extends the lipid metabolism as well as hepatocyte specific

reactions by incorporating clinical, biochemical and genetic studies, large-scale proteomics data

and previously published hepatocyte models [116]. HMR2 includes, with 3765 genes, 18.5% of

known open reading frames and with 7721 reactions 64.9% of the reactions in the reactome

database. Thus, it is comparable in its extent with the newest Recon 3D model.

3.1.4 Aim and approach

At the beginning of this project, no comprehensive human model was available, which reproduced

experimentally observed basic phenotypes with FBA. However, as outlined above such a model is

indispensable for most modeling applications and the analysis of phenotypes outside of central

carbon metabolism. In order to get a human model suitable for analyses like gene-pathway

enrichments, omics integration and metabolic flux predictions, reactions, constraints and gene-

reaction associations of the human metabolic model HMR2 were revised. We decided to base our

model on HMR2 because this model is more comprehensive than the comparable version of Recon

2 (released at the same time) as it holds the bigger collection of reactions, metabolites and genes
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(e.g. more vitamin related reactions and metabolites) [187][116]. Furthermore, it exhibits an

extended and revised, fatty acid metabolism [116]. The model will be utilized in a later part of this

thesis for the integration of experimental omics data, which focuses on the study of an aggressive

form of breast cancer with altered lipid metabolism. Thus, a more detailed lipid metabolism could

be valuable for the accuracy of the predictions.

For the model revision, the exchange rates of the model were first adapted to experimentally

measured values, and transport reactions added where necessary. Second, improvements of other

released models were implemented in case they added to the overall accuracy of the model or the

flux predictions. Third, flux relevant reactions were identified and revised and flux irrelevant

reactions were excluded (e.g. blocked reactions, reactions for protein modification). An important

emphasize was put on excluding atomically unbalanced reactions, since they could greatly bias the

phenotypic flux predictions by violating the principle of mass conservation and possibly providing

“free” metabolites. Furthermore, we introduced directionality constraints for thermodynamically

unfavorable reaction fluxes where possible from the software tool “eQuilibrator” 3 and revised the

fatty acid beta-oxidation pathway and auxiliary enzyme reactions [51]. Lastly, the gene-reaction

associations were revised. After the revisions the model was improved and benchmarked with

regard to its capability to predict essential metabolic reactions and experimental data concerning

observed metabolic behaviors.

3.2 Materials and Methods

3.2.1 Original human model

The human genome-scale metabolic model HMR2 including its gene-reaction associations was

used as a base model for revision [116]. This is a generic human cell model with a revised lipid

metabolism. The downloaded HMR2 model (November 2015) contains 7721 reactions (excluding

exchange reactions), 5546 compartmentalized metabolites, 8 compartments and 3765 genes

associated with the reactions. The revised model and its metadata are available in BioOpt as

well as SBML format.

3.2.2 Revisions

3.2.2.1 Exchange and transport reactions

The original HMR2 model does not possess any constraints on exchange or transport reaction

fluxes other than those imposed by directionality. Uptake constraints for exchange reaction

fluxes were derived from an experimental study of metabolite consumption rates of human cell

lines in rich medium conducted by Jain et al. [80]. For exchange reactions whose metabolites

were measured, the uptake constraints were set according to the changes in the metabolite

3 http://equilibrator.weizmann.ac.il
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consumption rates after cultivating the cells for up to five days. Therefore, the highest measured

consumption rate (biggest depletion in the spent medium) across all 60 cell lines was determined

for each metabolite (Table A.15). The highest metabolite consumption rate (fmol / cell / h) was then

converted into metabolic uptake fluxes (mmol / (gDW h)) estimating that 1010 cells constitute

1 gDW (Table A.15). The determined flux was set as the maximum uptake constraint (upper

bounds) of the respective metabolite’s exchange reaction flux. Transport and exchange reactions

were created in case they didn’t yet exist for this metabolite. If none of the cell lines consumed

the metabolite, the maximum uptake constraints were set to zero even if the metabolite was

enriched in the media. All secretion constraints were generally left open. The implementation of

uptake constraints according to cells’ experimentally measured consumption rates was followed

by a growth feasibility testing with minimal media analysis. This was necessary since the

experimental data did not include measurements for all metabolites needed for the cell (due to

analytical limitations). In short, starting with a set of experimentally observed uptake/secretion

constraints, MILP simulations were run to calculate minimal set of additional metabolites

required for cell growth. This procedure was run iteratively to also fine tune the uptake rates for

vitamins and other components to minimal amounts needed since these components cannot be

used as a carbon/nitrogen source. Additional constraints for uptake reaction fluxes were thus

added accordingly to enable feasible growth (Table A.16). Finally, core metabolites were manually

checked for their flux values and shadow prices under FBA with growth optimality and changed

if necessary to ensure sensible flux routes for these metabolites as well as no artificial limitations

on growth (Table A.16). All remaining uptake reactions were constrained to zero.

3.2.2.2 Improvements based on previously published models

The revisions and improvements of the two previously published human GEMM from the Recon

family, Recon 2.2 and Recon 2M.1, were systematically checked and implemented in case they

were applicable to HMR2 and added to the overall accuracy of the model or the flux predictions.

Only these two models were reviewed since Recon 2.2 integrates all changes from previous

models (see Introduction chapter) and Recon 2M.1, which was published later, has independent

changes implemented. Recon 3D was only published after the revisions were already completed.

All integrated changes are listed in Table A.17.

3.2.2.3 Thermodynamically infeasible reaction directionalities

We introduced constraints for reaction directionalities that are thermodynamically unfavorable

and thus made them irreversible (Table A.18). For this revision we mainly focused on central

carbon metabolism as it carries the highest fluxes and is the pathway from which the fluxes

to other pathways are distributed. The software tool “eQuilibrator” 4 was used to calculate

the ∆G of reactions [51]. Since the metabolite concentrations are unknown, constraints were

4 http://equilibrator.weizmann.ac.il
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only implemented for reactions with an absolute ∆G bigger than 10 to exclude reactions that

reverse upon physiological changes of concentrations. Additionally, reaction directionalities were

compared with current knowledge in the literature.

3.2.2.4 Exclusion of reactions with non-metabolic function

We went manually through all groups of pathways in the model and systematically identified

reactions, which carried non-(core-)metabolic functions. Since they were neither necessary for

growth nor conceptually relevant for flux predictions, we decided to remove these reactions

instead of including their products in the biomass equation (Table A.19). The rationale being

that their inclusion would skew, e.g., the gene essentiality predictions. Reaction groups that were

identified were reactions that contained protein modifications (AA -> [protein]-AA + H20) or were

associated with the production of protein or membrane modifications (N-glycan, heparan sulfate,

O-Glycan, chondroitin sulfate or keratan sulfate) as well as reactions that were associated with

protein biosynthesis, degradation or transport. To account for the energy requirements associated

with processes like protein synthesis or modification we introduced maintenance costs in the form

of ATP. Therefore the minimal flux of the ATP depletion reaction ATP[c] + H2O[c] => ADP[c] +

Pi[c] was varied between 0 and 1 mmol / (gDW h) for simulating different growth independent

ATP maintenance requirements.

3.2.2.5 Revision of the beta-oxidation pathway

We manually curated the beta-oxidation pathway and the reactions of auxiliary enzymes as there

were inconstancies between the model’s reaction topology and the current biochemical knowledge

(Table A.20) [72] [146] [73].

3.2.2.6 Atomically unbalanced reactions

Atomically unbalanced reactions were identified with the ‘check_elemental_balance’ function

from the carve me package (version 1.2) [110]. All reactions, which were identified as unbalanced

and are not exchange reactions or biomass formation reactions, were further manually examined

to exclude the violation of the principle of mass conversation (Table A.21).

3.2.2.7 Blocked and isolated reactions

Blocked reactions were identified with the framed python package (version 0.5) for metabolic

modeling [110]. First, a complete medium was created for the model by allowing all exchange reac-

tions to carry flux. Blocked reactions were subsequently determined with the ‘blocked_reactions’

function uTtilizing FVA [113]. Isolated reactions and reaction loops were identified through miss-

ing network connectivity with Cytoscape (version 3.5.1) [171]. All blocked and isolated reactions

if not already excluded earlier (2.2.4), were removed from the model (Table A.22).
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3.2.2.8 GPR associations

The GPR associations of all reactions of the fatty acid beta-oxidation and its auxiliary enzymes

as well as of the major growth influencing reactions of the central carbon metabolism and amino

acid and vitamin synthesis were manually revised according to databases 5 and literature review

(Table A.23) [153] (The UniProt Consortium 2017) [72] [146] [73].

3.2.2.9 Gene essentiality comparison with experimental data

Gene essentiality predictions were compared to experimentally validated data on gene essentiality

of human cell lines [192]. For this comparison, a gene was considered experimentally essential

if at least three out of the four tested cell lines exhibited an essentiality for this gene in the

CRISPR-based screen. The definition of essentiality was taken from the experimental work,

namely a growth reduction of more than 10% with an FDR cutoff for the adjusted p-value of less

than 0.1 (0.05 in the study). For the simulation of gene essentiality extitin silico the impact of

single gene deletions on growth was iteratively evaluated by performing FBA on mutants, in

which the respective reactions are blocked according to the GPR associations. The simulations

were performed with FBA and maximizing for growth was set as an objective function. A modeled

phenotype was defined as non-viable if the predicted growth rate was less than 50% of the

maximum growth rate. The media composition of the experimental study was similar to the

media composition in Jain et al., which was used to constrain the uptakes of our model. Additional

uptakes were implemented in the model in case a metabolite, which affected the predicted viability,

was present in the media of the experimental screen and hasn’t been measured by Jain et al.

(Table A.24). The maximum uptake was set above the metabolite’s growth limitation in case

its synthesis was impaired. Before its inclusion it was ensured that the metabolite’s uptake

by human cells has been shown in literature. One major challenge constitutes the chemically

undefined component fetal calf serum. Metabolites for which it was unclear, whether they are

present in the experimental media or not, were included if classified as a blood component in the

human metabolome database (HMDB) [197]. The performance metrics used to evaluate the gene

essentiality predictions of the model were defined as follows:

Sensititvity = TP_c/(TP_c + FN_c)

Specificity = TN_c/(TN_c + FP_c)

Precision = TP_c/(TP_c + FP_c)

Accuracy = (TP_c + TN_c)/(TP_c + FP_c + TN_c + FN_c)

F1_score = 2*TP_c/(2*TP_c + FN_c + FP_c)

For the comparison, a subset of genes present in the model and in the experimental data was

built.

5 www.genecards.org and https://www.uniprot.org
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3.2.3 Phenotypic flux predictions

After implementing the above-mentioned model curations, phenotypic flux predictions were

obtained with flux variability analysis (FVA) of glucose and glutamine uptakes as well as lactate

secretions optimizing for growth under a range of different oxygen uptake bounds [113]. Since the

effect of oxygen uptake on metabolic fluxes and growth is the greatest in low oxygen conditions,

these were sampled more closely. All the simulations were performed with Matlab R2015a v. 8.5.0

using IBM ILOG CPLEX (v. 12.6.1) functions ‘cplexlp’.

3.2.4 Technical details

The import/export of SBML files was obtained through the libSBML API using the load_cbmodel

of the framed python package (version 0.5) for metabolic modeling [18] [110]. BioOpt files were

imported through the ‘read_cbmodel_from_file’ function of framed. SBML format was converted

into BioOpt format by our internal parser. The IBM ILOG CPLEX Optimizer (version 12.8.0) was

used for solving the MILP problems unless noted differently. All simulations were conducted with

Python 2.7.13. The biostatistical analysis was conducted using R V.3.3.1 (R Core Team 2018).

3.3 Results and Discussion

3.3.1 Model features

In summary, we added 292 reaction constraints and 70 reactions, changed 198 reactions and 420

GPRs and removed 1569 reactions. Thus the new model was reduced to 6222 active reactions

(excluding exchange reactions), 3487 unique genes and 4770 compartmentalized metabolites

(without boundary metabolites) distributed amongst 9 compartments. Although smaller than the

original HMR2 model it still retains the rich complexity of a genome-scale model.

3.3.2 Newly revised model is condensed focusing on flux relevant changes

In order to build a model consistently usable for flux predictions, HMR2 was first reduced to

contain strictly metabolic reactions. A total of 744 reactions were removed from the model since

they carried biological functions instead of metabolic functions and were neither necessary for

growth nor conceptually relevant for flux predictions (Table A.19). The majority of these reactions

were involved in the synthesis of protein or membrane modifications, namely the synthesis of

glycans and heparan, chondroitin or keratan sulfates. Alternatively, the produced metabolites

could be included in the biomass formulation to account for the impact of the cell’s requirements

of signaling molecules on metabolism. In this case it would be necessary to ensure that the

flux specification implemented for these reactions reflect a metabolic requirement common to

all cells. Possibly general maintenance costs for protein and membrane modification, carefully

estimated from experimental data, could be included. Attempts have been made to include
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regulatory interactions into GEMMs [29] and model the influence of the signaling alterations

on metabolism. However, this approach has so far been applied only to organisms with small

genomes, such as bacteria. The remaining 117 reactions, which were excluded are reactions

associated with the biosynthesis, degradation or transport of specific proteins, such as proteins

involved in various biological functions, such as lipid transport (e.g. VLDL), blood coagulation

(e.g. fibrinogen), protease inhibitors (e.g. antitrypsin) or globular proteins (e.g. albumin). To

account for the energy requirements associated with the general synthesis of proteins or protein

modifications we introduced ATP maintenance costs. The amino acid requirements for protein

synthesis are already adequately considered in the model and implemented in the biomass

equation [116]. The atom balance of all remaining reactions was evaluated next in order to

exclude a possible bias on phenotypic flux prediction introduced by free mass generation. The

majority of the reactions identified as atomically unbalanced are exchange reactions between

the extracellular compartment and the boundary or are involved in biomass formation. Only

one of the inspected unbalanced reactions concerning lipid metabolism generated free mass

and was therefore corrected (Table A.21). Furthermore, all reactions should be able to carry

fluxes when all possible exchange reactions are active. 798 blocked and 9 isolated reactions

were excluded from the model (Table A.22). Many of the blocked reactions are involved in the

transport between different compartments of the model. Instead of removing these reactions,

the availability of these metabolites in the respective compartments as well as their biological

function could be carefully evaluated in databases. Additionally, blocked reactions are associated

with the synthesis or degradation of membrane lipids, vitamins, hormones and neurotransmitters

or involved in biological processes like translation or the biosynthesis of amino acids from rare

intermediates. Manual curation and careful consideration would be needed in order to connect

these reactions to the rest of the metabolic network and include them in a flux-revised model.

Interestingly, a few of the reactions, which were changed according to revisions of reactions in

Recon 2.2 are blocked as well [179]. Additional major improvements were the implementation

of 80 reaction (i.e. flux) constraints and the restriction of 158 reactions for thermodynamically

feasible directions in a biological context (Table A.18). Furthermore, the stoichiometry of 56

reactions was updated, 55 reactions were added and 17 reactions were removed during the

revision of the beta-oxidation pathway (Table A.20). We ensured that flux could run through the

beta-oxidation pathway after its curation. One of the most flux relevant improvements included in

this model, which is taken from previous models, is the implementation of a mitochondrial intra-

membrane space [179] (Table A.17). The creation of an additional mitochondrial compartment

improves the prediction on respiratory ATP synthesis (see chapter III-3.7). Other improvements

incorporated from previous models cover the addition of cofactor reactions and the revision of

reactions from the lipid metabolism (Table A.17). TPR reaction-associations of Recon 2M.1 are

not adopted in this model since the transcript specific reaction and localization associations

are based on predictions from EFICAz2.5 and Wolf PSort only [158]. The manually curated
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improvements for reactions identified by this approach are implemented in the revised model

(Table A.17). I additionally analyzed the potential of transcript specific reaction and localization

associations based on their predictions. I identified 14 cases from the 453 reported transcripts for

which different transcripts, which are associated with the same gene are predicted to be found

in different compartments (12) or to carry out different reactions (2). Thus, as long as not more

comprehensive information is available, the impact of integrating these specific cases on the

whole model’s prediction is negligible.

3.3.3 Constraining nutrient uptake rates in complex media

Experimentally determined uptake constraints for 101 metabolites were added to the model [80]

(Table A.15). Aside from constraints for uptake reactions of glucose and amino acids a wide range

of additional metabolites is covered, including nucleotides, amino acid derivatives, glycolysis

intermediates, TCA and urea cycle intermediates and vitamins. To ensure the model’s growth fea-

sibility, uptakes for a computationally identified minimal set of 23 additional media components

were added to the model (Table A.16). The majority of these components encompassed non-

measured inorganic chemicals such as water, calcium, potassium or iron or vitamins. Additionally,

the uptake bounds of three amino acids and the vitamin derivative pantothenate were edited

after manual inspection of flux distributions. Already Recon2Q implemented experimentally

measured values for 26 metabolites (mostly amino acids) into their reduced steady-state flux

model [151]. However, this media composition presents the first attempt to define uptake flux

constraints from a complex media composition in a generic human GEMM.

3.3.4 Tailoring the GPR associations to improve the predictability of flux
distributions of GEMMs personalized with omics data

In total the GPR associations of 420 reactions were changed (Table A.23). The revisions encompass

different metabolic pathways, the most important being glycolysis, TCA cycle, amino acid synthe-

sis, oxidative phosphorylation, Acyl-CoA hydrolysis, beta-oxidation and vitamin metabolism. For

the revision, we implemented the improved gene-reaction associations from the human Recon2.2

model [179], which were in addition manually curated by us. These revisions are crucial for

various applications, such as the modeling of drug target efficacy with gene knockouts or the

prediction of gene essentiality (see 3.6). The improvement of these GPR associations is specifically

valuable for flux predictions in the context of omics data integration. A successful use case will be

presented in chapter IV.
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3.3.5 Essentiality predictions of the model match experimentally validated
human essential genes

To evaluate the predictive capability of the revised HMR2 model including its GPR associations,

the predictions of the model on gene essentiality were compared with a set of experimentally

determined essential metabolic genes [192] (Figure 3-2a). Since the experimental essentials were

determined in a complex media the results of the first comparison were used to review the uptake

constraints of our curated model. After manually revising the literature, uptakes for twelve

additional metabolites were added and the uptakes of two metabolites were changed (Table A.24).
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FIGURE 3.2. Comparative assessment of gene essentiality. (a) Intersection of the sets of
experimentally determined and model wise predicted essential genes. (b) Quantita-
tive comparison of gene essentiality predictions between the original and revised
HMR2 model. (c) Predicted proportion of the model wild type’s maximum growth
rate after single gene knockouts.
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The set of experimentally essential genes is one order of magnitude bigger than the set of

the model wise predicted essential genes (342 genes vs. 31 genes, sensitivity = 5.6%, Figure

3-2b). The low sensitivity might be partially owned to the way essentiality is defined in the

experimental assay. All genes, which induce a growth reduction of more than 10% compared to

the wild type, are considered essential. Increasing this threshold to 25% or 50% does not improve

the intersection of the predictions with the experimental gene set. Possibly, the establishment of

the assay does not allow the assessment of essentiality beyond the growth reduction threshold

of 10%. However, the experimental gene set might still include genes, which are not strictly

essential in the definition of non-viable, but might impede growth. The predictions of growth

rates as a consequence of gene loss obtained by simulations with a current metabolic model on

the contrary are of rather binary behavior and cannot capture continuous changes of viability

(Figure 3-2c). Having those two contrary assessment approaches might partially explain the low

sensitivity. One additional reason might be the inherently problematic annotation of isoenzymes

in a generic human model. Most of the reactions in the model have at least two isoenzymes

annotated according to the GPRs (78.7% in the revised model), however in reality only one of

these isoenzymes might be actively transcribed in the respective cell type or culturing conditions.

For these reasons, the more precise assessment of the predictive capability of gene essentiality of

a metabolic model is precision, where only the correctly and incorrectly called essential genes

from the model are compared. The precision increased after the model revision from 25.0% to

61.3% in comparison to the original HMR2 model (Figure 3-2b). The wrongly predicted essential

genes are mostly connected to nucleotide metabolism and cofactor metabolism and could be

further improved. The specificity and accuracy of the revised model’s predictions are 99.6% and

90.1%. However, these two measurements are typically inflated in metabolic models due to a

large number of true negatives [158].

3.3.6 Model predicts general phenotypes compatible with experimental
growth data

To benchmark the performance of the curated HMR2 model we conducted FVA [113] under a

range of upper oxygen uptake bounds and compared the results to the simulation predictions

obtained from the original HMR2. The flux predictions for reactions consuming or producing

major carbon and nitrogen sources in dependence to oxygen availability are depicted in Figure

3-3.
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3.4. CONCLUSIONS AND PERSPECTIVES

The growth limitation under low oxygen availability is more accurately predicted by the

revised HMR2 model than by the original model. Furthermore, the revised model also predicts,

in contrast to the original model, the simultaneously required lactate secretion. Interestingly,

lactate secretion is also possible under high oxygen concentrations, which has been observed

in cancer cells [84]. The improved prediction of anaerobic glycolysis is coupled with the more

flexible predictions for the uptake reactions of the major carbon and nitrogen sources glucose

and glutamine. Under low oxygen conditions, all available glucose has to be uptaken to fulfill

the energy demands of the cell. Additionally glutamine is required to be up taken for maximum

growth and used to fuel the TCA cycle and the remaining capacity of oxidative phosphorylation

[141]. Under high oxygen conditions there is more freedom to distribute the two metabolites and

alternatively use them for glycolysis, oxidative phosphorylation and amino acid precursors. The

improved prediction behavior of lactate, glucose and glutamine will be particularly important in

the context of cancer cell related flux predictions.

3.4 Conclusions and perspectives

In this chapter, the development of a revised human GEMM with improved flux prediction behav-

ior was presented. Major changes involve the implementation of experimental uptake constraints

from a complex media composition, the revision of reaction directionalities and gene-reaction

associations and the correction of the complete beta-oxidation pathway and auxiliary enzyme

reactions. These revisions improved the predictability of human gene essentiality and a more

realistic flux behavior of major metabolic pathways like glycolysis and oxidative phosphorylation.

Comparing the simulation results with experimental data, the implemented improvements have

been shown to be particularly relevant for simulations in cancer related contexts. Further areas

of improvements for even more precise flux predictions could be more peripheral pathways, like

fatty acid biosynthesis, which up to now are still poorly determined in their flux distributions.

These pathways as well as the major metabolic pathways could be improved by incorporating ad-

ditional flux constraints estimated from acquired metabolite concentrations and 13C labeling data.

Furthermore, constraints for secretion reaction fluxes could be set. Additionally, the sensitivity

of the model could be improved by systematically incorporating information about reaction and

localization depended enzyme isoforms or cell type specific uptake and secretion constraints. The

complexity of the model could be improved by systematically reviewing the blocked reactions and

if flux relevant reincorporating them into the model instead of only removing them. The GPRs for

nucleotides could be further improved, possibly also by incorporating the changes made in the

new model Recon 3D. Last, the majority of genes being associated to reactions with non-metabolic

functions still remain in the GPR associations even after excluding these reactions. This might

hint at the fact that some reactions with a biological instead of metabolic focus remain in the

model, which should also be excluded.
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CHAPTER 4. METABOLIC REWIRING UNDERLYING MINIMAL RESIDUAL DISEASE IN
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Summary

This chapter studies how mammalian cells adapt their metabolic networks in re-
sponse to oncogenic signals and focuses on the robustness of the metabolic network
regulation. Particularly, this study investigates the metabolic adaptations accompa-
nying the transition of a differentiated cell to a cancer cell in order to fulfill the de-
mands of a proliferative phenotype as well the metabolic features of the cancer cell af-
ter full regression. The reversibility of regulation between different layers of the cell’s
physiology is studied to explain how metabolic networks are stably rewired even af-
ter oncogenic signaling is stopped. For this, we take advantage of a 3D in vitro system
of mammary gland organoids to map transcriptome and metabolome of tumorigenic
as well as regressed breast cancer cells and integrate these using statistical as well as
a metabolic model based approach. The results reveal, for the first time, an oncogenic
memory on transcriptional and metabolic level in residual cancer cells. The resid-
ual cells showed a stably active glycolysis and urea cycle closer to the tumor state
than the healthy tissue as its core features. We validate these findings with in vivo
measurements and confirm the increased glycolysis in the regressed cells by in vivo
stable isotope carbon tracer measurements. Finally, we investigate the relevance of
our findings in patient data by integrating publicly available transcriptome data and
comparing them to our results.

The mouse work, in vivo and in vitro experiments, sample preparation as well as the molecular

and histological characterization were carried out by Ksenija Radic from the Jechlinger Group

at EMBL Heidelberg. Eleni Kafkia from the Patil group at EMBL Heidelberg collected and ana-

lyzed the targeted metabolomics data. Christian Lüchtenborg from the group of Britta Brügger

(University of Heidelberg) conducted and analyzed the lipidomics experiments. The untargeted

metabolomics data were collected and analyzed by the group of Daniel Sevin at Cellzome, GSK

Heidelberg. The sequencing was conducted at the Genecore Facility, EMBL Heidelberg. I performed

the bioinformatics analysis including the transcriptome data analysis and integration of the se-

quencing as well as the omics data. Furthermore, I performed the reporter metabolite analysis, the

genome scale flux modeling (with the help of Daniel Machado from the EMBL Heidelberg, who also

developed the utilized algorithm for transcriptome data integration) and the comparative analysis

of the publically available patient data. I am co-first author of the manuscript (currently in

preparation), which I am co-writing (Ksenija Radic, Eleni Kafkia, Katharina Zirngibl,Ashna

Alladin, Federico Villa, Daniel Machado, Christian Luchtenborg, Daniel Sevin, Britta Brugger,

Kiran Raosaheb Patil and Martin Jechlinger, In depth multi-omics analysis reveals an onco-

genic memory in a surviving cell population following breast cancer treatment, Manuscript in

preparation).
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4.1 Introduction

4.1.1 Breast cancer prevalence

Breast cancer is the most common cancer among females with an estimated incidence of approxi-

mately 2 million newly diagnosed cases worldwide in 2018 [83]. It is a heterogeneous disease with

the histological and molecular make-up of the tumor providing a predictive measure for patient

prognosis. Four groups of sporadic breast cancers can be defined by a immunohistochemical

(IHC) determination of hormone receptor status (estrogen and progesteron receptor), human

epidermal growth factor receptor 2 (HER2) status as well as the proliferation marker Ki-67:

Luminal A (hormone receptor positive, HER2 negative, low levels of Ki-67); Luminal B (hormone

receptor positive, HER2 negative or positive, high levels of Ki-67); Triple-negative/basal-like

(hormone (estrogen and progesterone) receptor negative, HER2 negative); HER2 overexpression

(hormone-receptor negative, HER2 positive). In addition, a fifth group is defined, normal-like

breast cancers, having a similar IHC pattern as Luminal A cancers but showing a worse prognosis

[34].

While Luminal A breast cancers are the group with best prognosis the triple-negative and

HER2-overexpressing groups present the groups with the poorest prognosis, which is associated

with a high rate of recurrence. Clinical outcome for the group of HER2-overexpressing tumors

has improved with the implementation of targeted therapies using anti-HER2 monoclonal

antibodies (trastuzumab). However, 40-60% of HER2-overexpressing tumors develop therapy

resistance resulting again in poor patient prognosis [34] [46]. Other molecular features may

contribute to the poor outcome of HER2-overexpressing breast cancers including, for example

concomitant overexpression of the transcription factor c-MYC, which is potentially associated

with trastuzumab resistance [199] [63]. The exact molecular mechanisms that determine clinical

outcome and associated recurrence rates, however, still need to be determined.

4.1.2 Minimal residual disease

Patient prognosis for breast cancer may, as described above, be related to the molecular type

of the tumor as well as associated recurrence rates. According to the statistics obtained in the

US Surveillance program Epidemiology and End Results Program (SEER) in 2012 36.8% of

women successfully treated for breast cancer experienced a recurrence within 10 years after

first diagnosis. The majority of these recurrences (81.9%) were reported within the first 5 years

after diagnosis. After controlling for tumor stage at diagnosis it was reported that the risk of

recurrence was significantly increased in hormone receptor negative tumors (other molecular

tumor characteristics were not investigated) [31]. One hypothesis for recurrence after seemingly

successful therapy refers to minimal residual disease (MRD), a set of resistant cells surviving

cancer therapy. These cells may have disseminated from the cancer tissue before therapy and

then self-seeded back into the respective tissue after they survived chemotherapy. Another
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possibility is that therapy-resistant cells residing in the primary cancer-affected tissue re-initiate

carcinogenesis up to several years after treatment. Both cell types are thought to have more

potential to form metastasis leading to a poorer prognosis with the recurrent cancer [182]. The

therapy-resistant cells remain dormant and clinically unapparent until cancer re-initiation and

exact mechanisms for tumor recurrence from these cells are currently unknown. An altered

energy metabolism in these cells as compared to healthy tissue has been proposed to play a role

in recurrence out of MRD [69].

4.1.3 Metabolic alterations in cancer

Cancer cells have higher metabolic demands compared to their healthy counterparts in order

to provide the basis for increased proliferation. More specifically, increased nutrient influx

needs to be sustained and nutrient use in metabolic pathways needs to be adjusted for in

order to meet the requirements for energy and cellular building-blocks supply for the growing

and proliferating cancer cell [141]. A well-known example of this key feature of cancer cells

is the increased uptake of glucose that was recognized already in the 1920’s by Otto Warburg

(Warburg-effect). Paradoxically, cancer cells switch their energy metabolism preferentially to

glycolysis with concomitant secretion of lactate, even under aerobic conditions, although this

process provides less ATP than compared to oxidative phosphorylation and thus less energy for

the cell. It was shown that the increased amount of glucose taken up by the cell as well as the

higher rate of glycolysis performed may provide in sum sufficient ATP for the energy needs of

the cancer cell. Additionally, through the increased glycolysis the cell sustains the production of

molecules ultimately required for cell growth and proliferation, e.g. amino acids and purines and

pyrimidines [167][105]. Glutamine is another substrate in addition to glucose that is taken up

by cancer cells in increased amounts. In contrast to glucose as a source for carbons, glutamine

also delivers nnitrogen required for nucleotide and amino acid biosynthesis. Products of the

altered metabolic pathways may also have signaling functions, which exhibit consequences for

the carcinogenic potential of the cell. For example, increased production and secretion of lactate

as a product of enhanced glycolysis stimulates angiogenesis [141].

4.1.4 Combining multi-omics with metabolic modeling to elucidate
molecular alterations in residual breast cancer cells

To investigate the molecular alterations of MRD in an aggressive form of human breast cancer,

a transgenic mouse model was used in this study. This model system is based on a chemically

inducible breast cancer mouse model harboring two common oncogenes (c-MYC and HER2) [69].

This model was previously shown to mimic human breast cancer pathology and to be suitable

to study breast cancer MRD [69]. The previous study revealed that MRD, although oncogene

inactivated, has a stably altered lipid metabolism combined with elevated ROS markers [69].
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FIGURE 4.1. Heterologous mouse model and culture system to study MRD in human
breast cancer. Mouse models of recurrent mammary tumorigenesis were used for in
vivo studies. These studies were complemented by organoid cultures derived from
primary mammary epithelial cells isolated from adult (>8 weeks of age), virgin
mice. Orange circles, mammary tumors; white circles, regressed tissue; black-filled
dots, in vitro tumor correlates; hollow dots, in vitro regressed tissue correlates. The
corresponding in vivo (left panels) and in vitro (right panesl) transgene-specific
histological c-MYC stainings of acini/mammary glands are depicted next to the
schema. Scale bar: 50 µm. This figure and the text in this legend have been adapted
from Havas et al. (2017) [69].

Primary mammary epithelial cells isolated from the mouse model were grown in a 3D cell cul-

ture system, where they spontaneously form organoids that recapitulate acini1. Tumor induction

was initiated upon the transcription of the two oncogenes c-MYC and HER2 by adding doxycycline

1basic unit of the mammary gland
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to the media. The addition of doxycycline to the culture media leads to the transcription of the two

trans-oncogenes c-MYC and HER2 and results in tumor formation. After five days in the culture

media with doxycycline the lumen of the acini are completely filled with rapidly proliferating

luminal endothelial cells. The histology of the organoids resembles an early human breast cancer

state. At this time point, doxycycline is excluded from the media, which stops the transcription of

the oncogenes and initiates apoptosis. In the following two days the lumen of the acini are cleared

and the morphological structure of the acini is fully intact after seven days. The reformed acinus

is phenotypically indistinguishable from the healthy control. This regression process mimics

an ideal setting of targeted therapy in the patient situation since the expression of the driving

oncogenes is regulated by the addition or exclusion of doxycycline in the media. Staining the in

vitro acini for mammary gland specific morphological markers as well as with transgene-specific

antibodies could recapitulate the known physiology of the published in vitro culture system

with [69]. Caspase3 stains of the in vitro culture show that massive apoptosis accompanies

the clearance of the lumen and starts after 8 hours of regression. However, not all cells are

undergoing apoptosis and about five to ten percent of the cell population survives and reforms

acini. Transcriptomics as well as intracellular and extracellular metabolites of the sample groups

(healthy control, tumor and regressed cells) were analyzed using three different metabolomics

technologies, namely gas-chromatography mass spectrometry (GCMS), untargeted metabolomics

on a high-throughput platform and shotgun lipidomics (Table 1). This was complemented with

in vivo measurement of the targeted metabolomics as well as fluxomics data for central carbon

metabolism. Altogether, this is a one of the most comprehensive metabolomics data sets on a

HER2 positive breast cancer in model systems.

TABLE 4.1. Summary of collected experimental omics-data.

System Compartment Transcriptomics GCMS Lipidomics Untargeted Metabolomics Flux Measurements
In vitro Intracellular 22287 genes 56 metabolites 1472 lipids 2832 ions -
In vitro Extracellular - 30 metabolites - 3208 ions -
In vivo Intracellular - 52 metabolites - -
In vivo Extracellular - 37 metabolites - -

To integrate and interpret the acquired data genome scale metabolic modeling was utilized.

Finally, to assess the human relevance of our findings, our results were compared to a combined

set of patient microarray data containing healthy tissue samples and biopsies from tumor and

regressed tissue.

4.2 Material and Methods

4.2.1 Animals

Breeding and maintenance of mouse colony was done in the LAR (Laboratory Animal Resources)

facility of EMBL Heidelberg, under veterinarian supervision and in accordance to the guidelines
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of the European Commission, revised Directive 2010/63/EU and AVMA Guidelines 2007. All

experiments were performed with the mouse strain TetO-cMyc/TetO-Neu/MMTV-rtTA [1]. For

the comparison of metabolic profiles in intracellular GCMS data, an additional strain was used –

TetO-cMyc/TetOKrasG12D/MMTV-rtTA [2].

For the in vitro experiments, primary mammary epithelial cells were collected from 8 weeks

old virgin females through mammary gland tissue digestion and cultured in 3D. For the in vivo

experiments, the animals have been fed with doxycycline and developed tumors in the period of

4-6 weeks. When the tumor burden was too large, the animals were put on normal food without

doxycycline and the tumor regressed to a non-palpable state. Mammary glands of these mice

were harvested when tumors fully regressed, 9 weeks after. Wild type animals (age-matched

controls) were fed in the same fashion and their mammary glands were collected at the same

time and in the same manner.

If not noted otherwise, we had two types of healthy controls for both types of experiments.

One control with the transgenes but without doxycycline in the media (never induced, NI) and

one control from wild type animals (WT, age-matched) which were supplied with doxycycline in

the media or food in the same fashion as the transgenic mice. Their mammary glands were also

collected at the same time and in the same manner.

4.2.2 3D Cell culture

Three-dimensional cell cultures were established according to the published protocol [3] with

some modifications. Primary mammary epithelial cells were obtained from 8 weeks old virgin

females of the described mouse strains through the digestion of mammary glands in 5 mL

of digestion media (Lonza/Amaxa DMEM/F12 1:1 Mixture with HEPES, L-Gln, BE12-719F)

supplemented with HEPES to the final concentration of 25 mM, 150 U/mL Collagenase type 3

(Worthington, LS004183), 20 µg/mL Liberase Blendzyme 2 (Roche, 05401020001) and 5 ml of

Penicillin/Streptomycin (Gibco Life Technologies, 15140-122). After digesting for 15-16 hours at

37 oC in 5 % (vol/vol) CO2 atmopshere in loosely capped 50 mL polypropylene conical tubes a

washing step with 45 mL of phosphate-buffered saline (PBS) was performed. Upon centrifugation

at room temperature, 1000 rpm for 5 min, the interphase between the upper fat layer and the

cell pellet was removed and 5 mL of 0.25 % trypsin-EDTA (Invitrogen, 25200-056) was added.

The suspension was incubated for 40 min at 37 oC, 5 % CO2 in loosely capped tubes. This was

followed by the wash with 25 mL of STOP media (Lonza/Amaxa DMEM/F12 1:1 Mixture with

HEPES, L-Gln, BE12-719F supplemented with HEPES to the final concentration of 25 mM

and 10 % Tet System Approved Fetal Bovine Serum, Biowest, S181T) and the treatment with

5-15 mg/mL DNase I (ThermoFisher, 18068015). After a second centrifugation step at room

temperature, 1000 rpm for 5 min, the dissociated cells were resuspended in MEBM media (Lonza,

Mammary Epithelial Cell Basal Medium CC-3151 with supplements from Mammary Epithelial

Cell Medium BulletKit CC-3150) and plated onto collagen-coated plates (BD Bioscences, 356400)
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for the selection of epithelial cells. On the next day, the cells were washed with PBS and treated

with 500 µl of 0,25 % trypsin-EDTA until detachment. Trypsin was inactivated with 9 mL of

STOP media (described above), followed by a centrifugation step at room temperature, 1000

rpm for 5 min. Cell pellets were resuspended in PBS, counted, and mixed rapidly on ice with

the prepared Matrigel-collagen mixture – Cultrex 3D Culture Matrix Basement Membrane

Extract (Biozol, TRE-3445-005-01) and 1,5 mg/mL Cultrex 3D Collagen I rat tail (TEMA Ricerca,

3447-020-01). Mixed droplets in a concentration of 12 500 primary mouse mammary epithelial

cells per 100 µl were dispensed into flat bottom wells (Corning CellBIND 12 Well Clear Multiple

Well Plates, 3336) or chambered cover glass slides (ThermoFisher Scientific, Nunc LabTek II

Chambered Cover glass, 155379). After gel solidifying for 35-40 min at 37◦C, 1.5 ml of MEBM

serum-free media (supplemented with 2 mL of bovine pituitary extract, 0.5 mL of hEGF, 0.5 mL

of hydrocortisone, 0.5 mL of GA-1000, 0.5 mL Insulin from Mammary Epithelial Cell Medium

BulletKit CC-3150) was added to each well. Doxycycline (Sigma, Doxycycline hyclate, D9891)

was titrated to lower concentration of 200 ng/ml. For the metabolic analyses the same media was

used from the start of an experiment until the collection, media was used in volume of 1 mL and

changed every day at the same times.

4.2.3 Immunofluorescence

3D culture gels were fixed with 4 % paraformaldehyde (PFA) for 7-10 min for immunofluorescence

staining and washed for three times with PBS and once in IF buffer (containing NaCl, Na2HPO4,

NaN3, BSA, TritonX-100, Tween-20; pH 7,4). Blocking was done with 10 % goat serum (Jackson

Immuno Research, 005-000-121) for 1.5 h. A standard protocol was applied for the staining

with the following antibodies: alpha-6-integrin (BD Biosciences 25-0495-82, diluted 1:80), ZO-1

(Invitrogen 61-7300, diluted 1:500), GM-130 (BD Biosciences, 610823, diluted 1:100), E-cadherin

(Invitrogen, 13-1900, diluted 1:200). The nuclei were stained with DAPI (ThermoScientific, 62248,

diluted 1:1000). The gels were mounted with Vectashield Anti-fade mounting medium (Vinci

Biochem, VC-H-1500-L010) and imaged on a Leica SP5 confocal microscope using 63x water

lens and LAS AF imaging software. Anti-rabbit, anti-mouse, and anti-rat antibodies coupled

with Alexa Fluor dyes were purchased from Invitrogen (A21247, A11034, A11036). FFPE tissue

sections were stained using the standard protocols for the following antibodies: Arg1, Ass1, iNOS,

Hk2, PDK1, Lin28A, Ak4 (all from Abcam, diluted 1:250). The tissue sections were mounted

using ProLong Gold Antifade (P36930 from ThermoFisher) and scanned using the TissueFAXS

Slides system (TissueGnostics). The quantification was done using StrataQuest Analysis Software

(TissueGnostics).

4.2.4 RNA sequencing sample preparation and sequencing

Ribonucleic acid (RNA) was harvested from a pool of two 3D gels per condition, using 900 µl of

mirVana lysis buffer, and subsequently extracted using mirVana miRNA Isolation Kit with phenol
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(Ambion, AM1560). After assessing the RNA quality and concentration with the Bioanalyzer

(Agilent 2100, G2939BA), the RNA was sequenced on the Illumina NextSeq 500 platform with a

read length of 75 bp. The RNA sequencing (RNAseq) experiment was repeated twice with each

time two biological replicates from 2 different animals, except for the healthy control where 4

biological replicates from 4 different animals were used.

4.2.5 Differential expression analysis

The quality of the raw RNA sequencing reads was assessed using FastQC [6] (version 0.11.3). Prior

to the alignment, adapter trimming was performed using cutadapt (version 1.9.1) with default

options providing the standard lllumina TrueSeq Index adapters. Subsequent quality trimming

and filtering was performed with FaQCs (version 1.34) using the following parameters: –q 20

–min_L 30 –n 5 –discard 1. The total reads per sample after trimming and filtering ranged from

34.1 to 52.0 million. The sequencing reads were aligned to the reference genome of M. musculs

(GRCm38.p6) which included the sequence for human c-MYC and rat HER2 (FOOTNOTE:

https://www.ensembl.org) using tophat2 (D. Kim et al., 2013) (version 2.0.10) with the following

parameter: -G -T -x 20 -M –microexon-search –no-coverage-search –no-novel-juncs –mate-std-dev

100 -r 50 –min-segment-intron 20 -i 30 -a 6. Only reads with unique mappings were considered

for differential expression analysis. Gene level count tables were obtained using the count script

of the HTSeq [4] python library (version 0.6.1p1.) with default options. All reads mapped in

total to 19.500 to 20.800 genes. This was followed by statistical analysis using the Bioconductor

package DESeq2 [109] (version 1.12.4). Size-factor based normalization to control for batch effects

and inter-sample variability and dispersion estimation were conducted using package defaults.

The animal was included in the model design. Additionally, genes with a less than 10 counts

in total across all data sets were filterd to increase the sensitivity of the detection differential

gene expression. The differential expression analysis was also performed with the package

defaults, which include multiple testing correction, independent filtering and cooks cutoff [3]

for outlier detection. Bonferoni adaption was applied for multiple testing correction. Genes with

padj < 0.01 were considered as significantly differentially expressed (DE). Biostatistical analyses

were conducted using R V.3.3.1 (R Development Core Team). For performing dimensionality

reduction with Principal Component analysis (PCA) and hierarchical clustering rlog DESeq2

[109] transformed transcript counts were utilized. For the calculation of the ellipses on the PCA

plots the “stat_ellipse” function from the R package ggplot2 was used [66].

4.2.6 Enrichment analysis

The enrichment analysis was performed using Fisher’s exact test with a foreground of all re-

spective differentially expressed genes and a background, which was composed of a unique set

of 5 randomly picked genes per foreground gene exhibiting a similar expression mean over all

samples. The chosen p-value cutoff was 0.01.
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4.2.7 Collection and extraction of intracellular and extracellular metabolites

In vitro experiments – Before proceeding with the intracellular metabolites collection, 150 µl of

the extracellular media was taken from the wells of each condition, snap-frozen and stored at

−80◦C until the analysis. Organoid structures were then freed from Matrigel upon digestion for

1,5 h at 37◦C with 3 µl of liberase and 3 µl of collagenase added to the media. 3 wells were pooled

per condition replicate, subsequently washed for three times with PBS, shortly centrifuged (1000

rpm, 2 min, room temperature) and quenched with 200 µl cold (−80◦C) HPLC-grade methanol

(Biosolve Chimie, 136841). The contamination of the cells with rest media was excluded by

comparing the obtained metabolic profiles with 50 µl of each well’s used MEBM growth medium

and the last washing solution of each well wise the solution (quenched with 100 µl of cold −80◦C
HPLC-grade methanol). The extraction of the metabolites was done with a 1:1 methanol-water

protocol [4–6] with ribitol (Alfa Aesar, 488-81-3) as internal standard. For the Flow Injection

Q-Exactive MS the extracellular metabolites were measured in extracellular media with a 1:10

dilution. The experiment was repeated twice with each time two biological and two technical

replicates from two different animals, except for the wild type control where 3 biological replicates

from one animal were used. In vivo experiments – For the glucose labeling experiment mice

mammary glands were dissected, minced and digested for 2 hours at 37◦C using collagenase and

liberase enzymes. The digested cells were then cultured for 8 hours at 37◦C and 5 % (vol/vol) CO2

atmopshere in DMEM glucose- and pyruvate-free media (11966025, ThermoFisher) supplemented

with 4,5 g/L labelled D-glucose (U-13C, 99 % from Cambridge Isotope Laboratories, Inc.). ) and 2

mL of bovine pituitary extract, 0.5 mL of hEGF, 0.5 mL of hydrocortisone, 0.5 mL of GA-1000

and 0.5 mL insulin from the Mammary Epithelial Cell Medium BulletKit CC-3150. For the non-

labeled GCMS metabolomics experiment the mammary glands were dissected and cultured for 8

hours at 37◦C and 5 % (vol/vol) CO2 atmosphere in DMEM 4,5 g/L glucose media (D6429 Sigma),

supplemented with 2 mL of bovine pituitary extract, 0.5 mL of hEGF, 0.5 mL of hydrocortisone,

0.5 mL of GA-1000 and 0.5 mL insulin from the Mammary Epithelial Cell Medium BulletKit

CC-3150. Extracellular metabolites were collected and snap-frozen in liquid nitrogen. For the

harvest of the intracellular metabolites the cells were quickly washed for two times in PBS and

quenched with cold methanol. Metabolites were extracted using a 1:1 methanol-water protocol

[4–6] with ribitol (Alfa Aesar, 488-81-3) as internal standard. The experiment was repeated once

with each time three biological and two technical replicates from three different animals, except

for the fluxomics experiment, in which three biological with only one technical replicates from

three different animals was used.

Flow Injection Q-Exactive MS. High-throughput discovery metabolomics was modified from

the method by Fuhrer et al. [7].
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4.2.8 Untargeted metabolomics analysis

As mentioned above, the untargeted metabolomics data collection and analysis was performed by

Cellzome, GSK Heidelberg. The pipeline, which is described in the following is an implemented

standard pipeline already used in previous publications.

Samples were analyzed on a LC/MS platform consisting of a Thermo Scientific Ultimate

3000 liquid chromatography system with autosampler temperature set to 10◦C coupled to a

Thermo Scientific Q-Exactive Plus Fourier transform mass spectrometer equipped with a heated

electrospray ion source and operated in negative ionization mode. The isocratic flow rate was

150 µL/min of mobile phase consisting of 60:40% (v/v) isopropanol:water buffered with 1 mM

ammonium fluoride at pH 9 and containing 10 nM taurocholic acid and 20 nM homotaurine as

lock masses. Mass spectra were recorded in profile mode from 50 to 1,000 m/z with the following

instrument settings: sheath gas, 35 a.u.; aux gas, 10 a.u.; aux gas heater, 200◦C; sweep gas, 1

a.u.; spray voltage, -3 kV; capillary temperature, 250◦C; S-lens RF level, 50 a.u; resolution, 70k @

200 m/z; AGC target, 3x106 ions, max. inject time, 120 ms; acquisition duration, 60 s. Spectral

data processing was performed using an automated pipeline in R. Detected ions were tentatively

annotated as metabolites using the HMDB database as reference assuming [M-H] and [M-2H]

as ionization options and the exchange of one or two 13C with the equivalent number of 13C

atoms with the method-inherent disability to distinguish between isomers. The experiment was

repeated once with each time four biological and two technical replicates from four different

animals, except for wild type control which had two biological and two technical replicates from

one different animal.

4.2.9 GCMS analysis

Upon drying, metabolite extracts were derivatized to their (MeOx) TMS-derivatives: 1) with a 50

µL of 20 mg/mL methoxyamine hydrochloride (Alfa Aesar, 593-56-6) solution in pyridine (Sig-

maAldrich, 437611) for 90 min at 40◦C, 2) with 100 µl N-methyl-trimethylsilyl-trifluoroacetamide

(MSTFA) (Alfa Aesar, 24589-78-4), for 12 hours at room temperature (6,8). The metabolic profiles

of all samples was measured 12 hours after derivatization using a Shimadzu TQ8050 GCMS

(triple quadrupole) system (Shimadzu Corp.) and a gas chromatograph with a 30 m x 0.25 mm x

0.25 um DB-50 MS capillary column (Phenomenex, USA). The detector operated both in scan

mode (recording in the range of 50-600 m/z) and MRM mode. The samples were normalized to

ribitol and total measured metabolite levels.

For the experiment with labeled glucose the metabolites were dried and derivatized to their

(MeOx) TMS-derivatives: 1) with 50 µL of 20 mg/mL methoxyamine hydrochloride (Alfa Aesar,

593-56-6) solution in pyridine (SigmaAldrich, 437611) for 90 min at 40◦C, 2) with 100 µl N-tert-

Butyldimethylsilyl-N-methyltrifluoroacetamide with 1% tert-Butyldimethylchlorosilane (Sigma-

Aldrich) for 1h at 60oC and for 12 hours at room temperature (6,8). The samples were further
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processed as previously described. P-values were calculated with limma and the adjustment

method is Benjamini-Hochberg.

4.2.10 Lipidomics analysis

A modified version of the Bligh & Dyer protocol (9) was used for lipid extraction. Samples were

analysed by direct infusion nano-ESI MS using an Qtrap 6500 + coupled with a NanoMate (Sciex).

The samples were normalized to 100 % (mol %) of total lipids.

4.2.11 NOS enzymatic assay

Mammary glands were dissected and homogenized in NOS assay buffer and further processed

following the Nitric Oxide Synthase Activity Assay kit protocol (Abcam, ab211083) for measuring

the enzymatic activity of nitric oxide synthase (NOS).

4.2.12 Reporter metabolite analysis

Metbaolic reactions that are likely to be re-regulated during regression were identified using the

reporter metabolite algorithm, a gene set enrichment statistic with genes as keys and metabolites

as values from the “piano” R package [188]. The adjusted p-value and log2 fold change (FC) of

the respective differentially expressed genes were used to calculate p-values from a theoretical

null distribution (10,000 permutations). The gene set was produced from the revised HMR2

model (see chapter 3) whose gene identifiers were translated to mouse orthologs. Multiple testing

adjustment was applied using the Benjamini-Hochberg procedure. The threshold for significance

was padj < 0.1, but maximally 5% of the total list of tested metabolites. A pathway enrichment

was calculated for gene sets of 1 gene per group or bigger.

4.2.13 Genome scale metabolic modeling

A new simulation method was developed to predict differences in the metabolic flux distributions

between two conditions based on relative gene expression levels. The method is based in the

concept of enzyme usage constraints introduced in [112]. This is an extension of classic flux

balance analysis, where the total flux carried by each enzyme is explicitly accounted for taking

into consideration the complexity of gene-protein-reaction associations (enzyme promiscuity,

isozymes, and complex formation). The method is formulated as follows:
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min
∥∥∥∥up − ep

er ur
∥∥∥∥

1
(4.1)

s.t.(4.2)

Sext ·
∣∣∣∣∣vr

ur

∣∣∣∣∣= 0(4.3)

Sext ·
∣∣∣∣∣vp

up

∣∣∣∣∣= 0(4.4)

ur ≥ 0(4.5)

up ≥ 0(4.6)

lbr < vr < ubr(4.7)

lbp < vp < ubp(4.8)

where ur and up are the enzyme usage vectors in the reference and perturbed conditions,

respectively, ep

er represents the relative gene expression levels between the two conditions, vr and

vp are the metabolic flux vectors, and Sext is the extended stoichiometric matrix as defined in

[112].

The import/export of SBML files was obtained through the libSBML API using the load_cbmodel

of the framed python package (version 0.5) for metabolic modeling [18] [110]. The IBM ILOG

CPLEX Optimizer (version 12.8.0) was used for solving the MILP problems unless noted differ-

ently. All simulations were conducted with Python 2.7.13.

4.2.14 Comparison to human breast cancer MRD datasets

Microarray data sets with expression intensities from pre- and post treatment breast cancers

biopsies [64] and healthy breast control tissue [114] were downloaded from Gene Expression

Omnibus (GEO)[15]. For the analysis first, each data set was prepared on its own including

filtering samples for outliers, sample normalization and background correction with the “rma”

function of the R package “oligo” filtering genes for minimal intensity filtering and gene annotation

of probeset IDs with the removal of multiple mappings of transcript cluster identifiers. Next,

the two data sets were combined and subdivided to the set of commonly used probe sets (both

Microarray data sets are from Affymetrix but from different gene chip versions, thus they largely

overlap in their probe sets). Then the two data sets were combined, normalized, checked for

outliers and again, genes with low intensities were filtered. To address the batch affect of the

joined data set stemming from the two experimental settings and largely influencing the gene

expression, the first principal component of PCA analysis was removed. The “normal” tumor

subtype of the data set from Gonzalez-Angulo et al. were removed because it is poorly defined

diagnostic category and therefore exhibiting high biological variability.
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4.3 Results and Discussion

4.3.1 Tumors as well as phenotypically healthy regressed breast cancer cells
possess an altered transcriptome

In order to investigate possible (long-term) changes in the molecular signature through oncogenic

signaling, transcriptomics profiles of the tumorigenic and the regressed structures were analyzed

in comparison to healthy control structures (age matched NI and WT, see Material and Methods).

First, analyzing the tumor reveals that the transcriptome of the tumor cells is heavily altered with

5356 genes being differentially expressed in comparison to the control (Figure A.12). Previous

studies analyzing gene expression in cancer2 in comparison to healthy tissue from patient

samples have observed about 2000 to 2500 genes differentially expressed [103] [135]. However,

these studies focus on samples from multiple patients and therefore have an increased genetic

and environmental heterogeneity, which are confounding the profiles. Also the control tissue,

which is often taken from tumor adjacent tissue, is heterogeneous in itself due to inevitable

inclusion of other cell types, such as fibroblasts, infiltrating immune cells or adipocytes. Lastly,

samples obtained from clinical settings typically possess a lower quality then cell culture data

and microarray technologies, which are still the most common method for the transcriptional

analysis of clinical samples, are less sensitive and specific in identifying differentially expressed

genes than RNASeq [191] [104].

The changes in the tumor transcriptome over the healthy control appear to have a highly

proliferative character with genes involved in cell cycle, cell division, DNA repair and gene

expression and translation being strongly up regulated (Figure 4-3a). In addition, processes being

well established to accompany cancer progression are reflected such as a down regulation of genes

involved in cell adhesion and cell recognition and genes synthesizing cell surface markers (Table

A.25). Furthermore, the proliferative state of the cells is also reflected by changes in metabolic

genes, which are adapted to provide the cell with building blocks for growth as the transcription of

genes for glycolytic enzymes, enzymes of the pentose phosphate pathway (PPP), Tricarboxylic acid

(TCA) cycle enzymes and enzymes involved in oxidative phosphorylation (OXPHOS) and nucleic

acids as well as amino acids biosynthesis are upregulated (Figure A.13). However, the metabolic

genes are not enriched amongst the differentially expressed genes, as 21.1% of the enzymes

coding genes are differentially expressed genes, which corresponds to the average proportion of

metabolic genes in the genome (17.1%)3.

2including breast cancer
3 The estimate for human metabolic genes is taken from the genes annotated to the revised human GMM, Chapter

III
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Surprisingly, the regressed structures have 1525 genes differentially expressed compared

to the healthy samples (Figure A.14). 60.9% of the differentially expressed genes overlap and

nearly all of them in the same direction (Figure 4-5b). However, their transcriptome profile is

less clearly deregulated compared to the healthy controls and the differentially expressed genes

spread into diverse categories. Amongst the strongest enriched GO categories of upregulated

genes are processes involved in extracellular signaling and reorganization, such as immune

response, cell-cell adhesion, cell junction organization, cell surface receptor signaling pathway

(also amongst the downregulated genes), but also stress and apoptosis related processes (Figure

4-3b). The upregulation of stress responding genes could be caused by apoptosis being activated

as a response to the turning-off of the oncogenic signaling. Even though the sequenced cells

are surviving by evading apoptosis, parts of the apoptotic signaling cascade might nevertheless

be active. The stress signaling could also be connected to the previously discovered high ROS

production in regressed breast cancer cells due to an altered lipid metabolism [69]. With regard

to the quiescent status of the regressed cells, expected downregulated processes in the regressed

cells over the healthy cells include mitotic cell cycle processes and the associated decrease of

nucleotide metabolism as well as processes involved in cell migration and vascularization (Table

A.26).

Interestingly, categories positively regulating cell proliferation and cell growth are also found

upregulated although phenotypically the cells are growth arrested. Even more intriguingly, genes

coding for glycolytic enzymes and enzymes involved in the biosynthesis of amino acids are strongly

upregulated (Figure A.15). Furthermore, the genes coding for glycolytic enzymes appear to be

concordantly upregulated with genes from the HIF-1 signaling pathway (Figure A.15). HIF-1α is

a transcription factor that gets activated by elevated ROS levels and is known to promote cell

survival during prolonged hypoxia [145]. It induces the transcription of the two downstream

genes BNIP3 and BNIP3L, which in turn induce mitophagy and allow cells to survive in hypoxic

condictions by preventing increased levels of ROS [17]. Although the transcript levels of HIF-1α

itself do not change4, the transcript levels of VHL, which binds HIF-1α and thereby targets it for

degradation, decreases, suggesting a possible stabilization and thereby activation of the HIF-1α

protein [87] [170]. Accordingly, the transcription levels of the transcriptional targets of HIF-1α,

BNIP3 and BNIP3L, are strongly differentially expressed in the regressed cells in comparison to

the healthy cells with a positive log2 fold change of 2.4 and 0.9, respectively. This could hint at

the induction of pro-survival autophagy, counteracting increased ROS levels. Furthermore, active

HIF-1α triggers the reprogramming of metabolism towards a glycolytic phenotype by increasing

the expression of genes encoding glucose transporters (viz. GLUT1, GLUT3, HK1 and HK2),

enzymes of the glycolytic pathway (viz. ALDOA, ALDOC, PGK1, ENO1 and PKM2) and enzymes

directing the flux towards lactate production (viz. LDHA, MCT4, PDH15 [170]. A feed-forward

4 which is expected since the activation of HIF-1α works through the stabilization of the protein
5 a regulatory gene, which inhibits PDH and thereby prevents pyruvate from entering the TCA cycle and oxidative

phosphorylation
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mechanism in which increased levels of lactate and pyruvate increase HIF-1α stability has been

reported ([118]). Additionally, oncogenic c-MYC has been shown to cooperate with HIF-1α to

activate the transcription of PDK1 and thereby amplify the signal [88] [35]. This regulatory

dependence between HIF-1α and glycolysis could explain the close clustering of the glycolytic

pathway with the HIF-1 signaling pathway (Figure A.15). Lastly, the increased HIF-1α signaling

could also be connected to cell’s surviving apoptosis. Depending on the tumor context, HIF-1α

has shown diverging results, both inhibiting and promoting apoptosis. Non the less, HIF-1α is

generally viewed to promote cell survival and its overexpression has been reported in a variety

of human cancers and is typically correlated with resistance to therapy [205] [203] [165] [142]

[50]. VEGFA one of the most important targets of HIF-1α was shown to counteract apoptosis in

hypoxia and exhibits a log2 fold increase of 2.1 in the regressed cells over the healthy control cells

[14] [143]. Furthermore, HIF-1α also protects cells from ROS induced apoptosis. This protective

effect was accompanied by the increase of HIF-1α target genes CDKN1A, enolases and EPO,

which are also positively differentially expressed in the regressed cells, although mildly (0.50

CDKN1A, ENO1 0.68, ENO3 0.47) [201]. Even more interestingly, the simultaneous upregulation

of glycolsis in HIF-1α dependent inhibition of hypoxia and glucose deprivation-induced apoptosis

is suspected to play a role in the modulation of apoptosis resistance [58] [76] [87] [19]. The

sustained activity of HIF-1α and a simultaneously increased flux through glycolysis could be one

of the possible routes by which the surviving regressed breast cancer cells evade apoptosis.

4.3.2 Transcriptome differences between the tumor and the regressed cells
converge at the metabolic level

Untargeted metabolomics show that the metabolic status of the tumor cells indeed strongly

changes as they cluster apart from the regressed and control cells (Figure 4-4). As suggested by

altered transcript levels of enzymes the concentrations of metabolites involved in major growth

related pathways like glycolysis, PPP, TCA cycle, Oxphos, nucleotide metabolism and amino acid

synthesis/degradation are significantly changed (p-value < 0.05). Like on the transcriptional

level, the metabolic status of regressed cells retains features of the tumor cells, as many ions

annotated to the above-mentioned pathways remain altered. Hierarchical clustering shows that

the regressed samples are overall metabolically even closer to the tumor than the healthy control

samples. This suggests that some global transcriptomic and metabolomics alterations are present

in the regressed cells, possibly with the progression of the changes in transcript levels up to the

metabolite level.
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FIGURE 4.3. Intracellular untargeted metabolomics results from regressed organoid
structures. Samples are clustered according to high confidence ions. The anno-
tated KEGG pathway is indicated if applicable. AA = amino acid biosynthesis
pathway, OXPHOS = Oxidative phosphorylation, TCA = Citrate cycle, NT = Purine
and pyrimidine metabolism, PPP = Pentose phosphate pathway, GLYC = Glycoly-
sis/Gluconeogenesis.

In order to gain deeper insights into the metabolic alterations present in regressed breast

cancer cells lipidomics as well as targeted metabolomics were measured. Comparing the re-

gressed samples to the healthy controls the different metabolomics data sets repeat the previous

observation that the regressed cells do not, in terms of their metabolite levels, return to a healthy

status but in contrast cluster closely with the tumor cells (Figure 4-5).
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yellow tumorigenic samples and green regressed samples. All replicates Centroids
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83



CHAPTER 4. METABOLIC REWIRING UNDERLYING MINIMAL RESIDUAL DISEASE IN
BREAST CANCER

However, comparing the global transcriptomics level amongst the three sample groups, the

regressed cells do retain alterations and do not cluster with the healthy controls. But in contrast

to the metabolomics levels their status is clearly different from the tumor cells. In fact, they are

even transcriptionally closer to the healthy cells. Subdividing the transcriptional data to only

metabolic genes does not change the global clustering of the groups (Figure A.16). Thus enzyme

levels globally differ between the three groups. One possible explanation could be that in the

tumor situation the transcription is highly altered because of the oncogene expression6, but the

extent to which the metabolism can change accordingly is limited/gets saturated,7. Hence, even

though the transcription in the regressed cells is altered the regressed cells would appear closer

to the healthy controls than the tumor cells. 90.5% of all genes possess a log2 fold change of less

than 2 between the tumor and the regressed cells and only 2.4% percent exceed a log2 fold change

of 3 (Figure A.18). Thus, there is no large isolated group of exceedingly altered genes. However,

there are 4655 genes, which are only differentially expressed in the tumor. These genes exhibit

on average an absolute log2 fold change of 1.2 over the regressed cells (Figure 4-6a) (Figure A.19a

). Clustering the samples with the genes only differentially expressed in the tumor recapitulates

the sample clustering with all genes (Figure 4-6a) (Figure A.20a ). This confirms that strong

drivers of the transcriptomic clustering are the genes that get exclusively altered because of the

oncogene expression and tumor formation.

When selecting only the intersection of genes significantly altered in the tumor and the

regressed samples (928 genes), the regressed samples still cluster independently but closer to the

tumor samples than to the healthy samples (Figure 4-6b) (Figure A.20b ). Even though the genes

are less strongly changed (average absolute log2 fold change of 0.85), their deregulation pattern

is similar to those of the tumor sample for the majority of genes (Figure 4-6b) (Figure A.19b ).

Thus, only a subset of transcriptional changes from the tumor is present in the regressed cells,

but those, which overlap tend to exhibit a similar pattern. Conceivably, part of the metabolic

phenotype in the regressed cells could stem from enzyme levels, whose transcription levels are

still altered similarly to the tumor cells, just not as strongly. Since many enzymes in the central

carbon pathways are known to not reach their metabolic capacity in normal cells it is possible that

the enzyme levels in the regressed cells do not need to change to exert a tumorigenic metabolism

profile [138] [42]. It is also possible that already a few stronger “driver” pathways or genes are

enough to establish a metabolic phenotype similar to the tumor samples. Similarly, metabolites

themselves might exert a regulatory feedback function, which maintains a metabolic state.

6 Oncogenic c-MYC transcript levels are 10.6 times higher than in mouse healthy controls (Figure A.17)
7 for instance the uptake and secretion of metabolites exhibits an additional regulation of metabolite homeostasis
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FIGURE 4.5. Detailed analysis of sets of differentially expressed genes Heatmap of
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Surprisingly a large proportion of the remaining differentially expressed genes is exclusively

changed in the regressed state (597 genes, 39.1% of all DE genes in the regressed state) and

separates the regressed cells from the remaining samples. This could possibly be attributed to

metabolic network redundancies diverse alterations in transcript levels of enzymes or regulatory

genes lead to a similar metabolic phenotype between tumor and regressed samples. Finally,

enzyme modifications can also greatly alter the flux of a reaction, but are not detectable on

transcript level. In conclusion, significantly different transcriptional changes between the tumor

and the regressed state converge on the metabolic level.

4.3.3 Although quiescent, the regressed breast cancer cells maintain high
glycolytic flux

Next, we analyzed the concentrations of individual metabolites from the targeted GCMS analysis

to identify stably altered metabolic features in regressed cells as compared to healthy cells. As

previously observed most of the metabolites, whose concentration levels are significantly changed

in the tumor state over the control (padj < 0.01, log2 fold change > 0.5) retain the observed

alterations in the regressed state (Figure 4-7, Figure A.21, Table A.27, Table A.28).

86



4.3. RESULTS AND DISCUSSION

Aspartate

0

3

6

9

DOX OFF NI WT

Glucose Lactate

0.25

0.50

0.75

1.00

DOX OFF NI WT

10

20

30

DOX OFF NI WT

1.0

1.5

2.0

2.5

3.0

DOX OFF NI WT

Serine

C
on

ce
nt

ra
tio

n

−7

−6

−5

−4

DOX OFF NI WT

Pyruvate

0

1

2

3

DOX OFF NI WT

Aspartate

−5

−4

−3

−2

−1

DOX OFF NI WT

Histidine

2.0

2.5

3.0

3.5

4.0

DOX OFF NI WT

Proline

−2.5

−2.0

−1.5

−1.0

−0.5

DOX OFF NI WT

Beta-alanine

0.0

0.5

1.0

1.5

DOX OFF NI WT

Isoleucine

1.5

2.0

2.5

3.0

DOX OFF NI WT

Leucine

0.5

1.0

1.5

2.0

DOX OFF NI WT

Serine

E
xt

ra
ce

llu
la

r
In

tr
ac

el
lu

la
r

C
on

ce
nt

ra
tio

n
C

on
ce

nt
ra

tio
n
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The most prominent metabolic feature in both, the tumor and the regressed cells, is the

decrease of glucose in the intracellular samples as well as the media with a concomitant increase

of lactate in the media. Taken together with the upregulation of glycolytic enzymes in both

samples, this suggests a higher glycolytic flux in regressed than in healthy cells, which is

comparable to the flux in tumor cells. in vivo measurements of labeled glucose metabolized

to lactate confirm that the glycolytic flux in regressed cells indeed significantly increases (one

tailed t-test, p-value < 0.05) in comparison to the healthy control cells (Figure 4-8). Notably, the

vast majority of glycolytic core enzymes are similarly expressed in the tumor and the regressed

samples (Figure A.22). 16 glycolytic enzymes are differentially expressed in the tumor sample in

comparison to 15 enzymes in the regressed sample, out of which 12 overlap. The exceptions are

a few cases where two different isoenzymes are expressed for the same reaction or additional

isoenzymes are upregulated in the tumor. This supports the above-mentioned hypothesis stating

that the consistent alteration of a few important core pathways (possibly in combination with

metabolites exhibiting regulatory functions) might be enough to drive the metabolic phenotype.

Also, the alternating usage of isoenzymes shows that network redundancy is partly responsible

in the convergence of the transcriptome to the metabolome.
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FIGURE 4.7. Glycolytic flux measurements of control and regressed samples. Percentage
of intracellular labeled lactate in regressed and healthy control cells.

Additionally the intracellular levels of several amino acids changed in the tumor and the

regressed samples in comparison to the healthy control samples (Figure 4-7, Table A.27, Ta-

ble A.28). These results could also agree with the transcriptional upregulation of genes in the

amino acid biosynthesis pathways. Aspartate, which is needed for the synthesis of several other

amino acids is decreased intra- and extracellularly, whereas the amino acids beta-alanine, Tyro-

sine, Phenylalanine, Histidine and Tryptophan, which are synthesized from Aspartate increase

intracellularly. Methionine and glutamine, whose increased uptake is one of the most common al-

terations in cancer metabolism, are only decreasing in the media of the tumor samples [141] [167].

Noteworthy, the urea cycle connected metabolites ornithine, putrescine and urea are increased

in both samples intra- and extracellularly over the healthy control as well as the intracellular

TCA cycle intermediates succinate, fumarate (not in tumor) and malate. Noteworthy, malate

exhibits an intracellular log fold change of 5.39 and 5.84 in the tumor and regressed samples,

respectively. Succinate and fumarate are additionally increased in the tumor in comparison to

the control. The changes in metabolite levels were confirmed by in vivo measurements (ongoing

work; personal communication, Ksenija Radic, EMBL Heidelberg). However, it is not possible to

derive the direction of the flux change from concentrations measurements of metabolomics data.

The same concentration can be reached by a higher or a lower flux in the respective pathway.

Additionally, most metabolites typically participate in more reactions than enzymes, thus to

redirect the cause for a change in direction is often difficult. In order to gain deeper insights

into the nature of the measured metabolite concentration changes such as the metabolites from

the urea cycle and the TCA cycle as well as their connection to the transcriptome/the interplay
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between the transcriptome and metabolome genome scale metabolic modeling was utilized.

4.3.4 Genome scale metabolic modeling predicts an increased flux through
the urea cycle as a second stable metabolic feature of regressed cancer
cells

First a reporter metabolite analysis8 was conducted using the piano tool box [188]. Reporter

metabolites can pinpoint to changes in the transcriptome that likely impact the metabolic

phenotype. Identifying the consistent reporter metabolites between tumor and regressed cells and

overlaying them with the metabolic changes on a network structure can help to pinpoint possible

driver pathways. This approach has the advantage that it can identify also distant or isolated

pathways of a metabolic network and pick up more subtle trends than other category based

enrichment approaches. Further, in cases where the net metabolite concentration does not posses

any changes or the metabolite cannot be measured, reporter metabolites supply an additional

layer of information. Importantly, reporter metabolites can also help identifying network regions,

in which potentially other mechanisms than the transcriptome regulate the metabolome variation,

such as e.g. protein modifications, unsaturated enzyme capacities or metabolite concentrations.

In this case, metabolites whose concentrations change greatly but without being predicted as

reporter metabolites are good candidates. The reporter metabolites predicted for the tumor

samples largely overlap with measured metabolites that change (Table A.29). As expected from

the GO-Term analysis amongst the predicted reporter metabolites are metabolites participating

in glycolysis and oxidative phosphorylation, intermediates from the TCA cycle, glutamine and

additional amino acids as well as nucleotides. The reporter metabolites predict changes for nearly

all metabolites in the central carbon metabolism, including metabolites, which could not be

measured, indicating the glycolysis as a very likely pathway to change. The biggest groups of

reporter metabolites consist of metabolites being used in cell surface marker synthesis and cell

communication, such as chondroitin, keratan and heparan sulfate derivatives or ceramides (Table

A.29). This prediction fits very well with the previous enrichment analysis of GO-categories

and metabolites of these families are known to play an important role in cancer progression

[186] [1] [168]. Genes of the keratin family and the cadherin superfamily are for instance highly

upregulated and collagen family connected genes are highly downregulated (absolute log2 fold

changes > 3) in comparison to healthy cells. Additionally, the reporter metabolites predict many

metabolites of the glutathione metabolism, including the SAM cycle, as well as a variety of

inositol phosphates being altered. In both pathways only a limited number of metabolites can be

experimentally measured, thus the reporter metabolites lay stress on these two possibly altered

pathways. Overlapping the metabolites with the increase in transcript changes of the respective

genes and the decrease in concentration of the few measured metabolites, it is likely that the

flux through both pathways increases. An increased glutathione metabolism is a well-established

8 gene set analysis of genes as keys and metabolites as values
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feature of proliferating cells to detoxify the increased amount of reactive oxygen species [9] [37].

Phosphatidylinositols are a diverse group of membrane lipids, whose signaling function, which

regulates cellular key processes like differentiation, proliferation and apoptosis in normal and

cancer cells, has been recognized over the past decade [204] [45] [33]. An interesting reporter

metabolite is the metabolite nitric oxide. The nitric oxide synthesizing genes, especially NOS2,

which is participating in the urea cycle, are highly upregulated (log2 fold change of 3.4) in

comparison to healthy control cells. Although none of the other urea cycle intermediates (except

for mitochondrial aspartate) is predicted, a higher flux in the urea cycle might be an explanation

for the increase of the urea cycle metabolites in the media. The reporter metabolite analysis

fails to predict most of the observed extracellular metabolite changes. Limited knowledge about

transporters and their specificity might be a possible explanation.
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Overlapping the reporter metabolite predictions from the tumor with the metabolite measure-

ments for the regressed structures shows, as expected, a high level of agreement for metabolites

of the glycolysis (Figure 4-9, Table A.30). Probably connected to the higher glycolytic flux also

purine and pyrimidine intermediates are still predicted to be changed. Likewise, many reporter

metabolites fall into the pathways of phosphatidylinositols and cell surface marker synthesis and

are accompanied by the same transcriptional changes. Interestingly, the urea cycle intermediate

nitric oxide is consistently predicted. Together with the high upregulation of most genes from the

urea cycle in comparison to healthy cells (NOS2 e.g. exhibits a log2 fold change of 6.7) and the

persistent increase in the media concentration of its metabolites, this could hint at the possibility

that the urea cycle is, aside from the glycolysis, a second pathway whose change/levels influences

the metabolic phenotype of the regressed cells. Interestingly, nitric oxide has been shown to be

regulated by HIF-1α and itself also to activate HIF-1α. However, for the TCA cycle interme-

diates as well as the amino acids, the metabolite changes predicted by the transcriptome only

partially overlap with measured metabolite levels (Figure 4-9). The first half of the TCA cycle is

transcriptionally downregulated in comparison to the healthy control but none of the metabolite

concentration changes whereas the concentration of TCA cycle intermediates of the second half

increase but without any transcriptional changes associated. The decreased transcription of

enzymes in the first half of the TCA cycle could also be connected to the activity of HIF-1α as

active HIF-1α leads to an inhibitory post transcriptional modification of PDH. Furthermore, the

glutathione pathway is an interesting case, since the same reporter metabolites and metabolite

concentrations as in the tumor are predicted and measured, but the connected genes, which are

upregulated over the control in the tumor, are unchanged or downregulated in the regressed

cells. This could be an example in which the measured metabolite concentrations remain the

same, although the flux through the underlying pathway decreases. Lastly, one observation from

the reporter metabolites is that in the case of cytosolic aspartate and proline the D-enantiomers

are predicted to change. Both metabolites also possess a change in the concentration of the

intracellular and extracellular fractions of the regressed samples. Since the measurement cannot

distinguish between the L- and the D- variant it is a possibility that the ratio of the enantiomers

is altered in the regressed state. Finally, in order to interpret the measured metabolite changes

and suggest whether related pathways are likely to be increased or decreased fluxes were pre-

dicted from genome scale mouse model, which was tailored by the transcriptome data. Flux

predictions have the advantage to take into account the balance of the whole metabolic network

when mapping the transcriptional changes. Since the metabolic network has many degrees of

freedom, this results at the same time in overall viewer changes then simple enrichment methods.

Furthermore, depending on the extent to which the transcriptomic changes are translated into

flux changes distant parts of the network might be less likely to exhibit any change in flux

distribution. Fluxes can be particularly suited to highlight redundancies in the metabolic network

by alternate pathway solutions. The flux predictions correctly show an increased flux through
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the glycolytic branching point (Figure 4-9, Table A.31). The uptake pathway is not predicted to

change under simulating growth optimality since glucose is the growth limiting metabolite in

both models. Notably, the model predicts a decreased flux through the TCA cycle at the entry

and exit points of succinate and malate. Furthermore, the flux of malate leaving the mitochon-

dria is predicted to stop completely. Combining this prediction with the potential increase of

the flux through the urea cycle, as suggested by the reporter metabolite analysis, could offer a

possible explanation for the measured increase of the intracellular concentrations of the TCA

cycle intermediates fumarate, malate and succinate. The urea cycle potentially feeds the TCA

cycle by producing fumarate, which accumulates because of the decreased enzyme levels and/or

fluxes in the TCA cycle. This hypothesis is supported by in vivo experiments, which could validate

increased protein levels for ARG1 as well as an increase in NOS activity for regressed cells

(ongoing work; personal communication, Ksenija Radic, EMBL Heidelberg). Intriguingly, high

levels of fumarate and succinate stabilize HIF-1α levels, which in turn inhibits the succinate

dehydrogenase oxidizing succinate to fumarate [56] [123]. It is imaginable, that through HIF-1α

a metabolite driven (NO, succinate, fumarate) feedback loop is active, which supports HIF-1α

activity in regressed cells and reinforces a glycolytic phenotype. An active glycolysis, which on

the first sight contradicts the quiescent phenotype, could be one possible mechanism by which

the regressed cells circumvent apoptosis [58] [76] [87] [19].

4.3.5 Comparing regressed cells from patient samples high glycolysis and
urea cycle can be found in regressed samples of basal like HER2
positive cancer

Next I investigated if the observed transcriptional changes in the regressed breast cancer cells of

our model system, which manifest on the metabolome level, translate to the patient situation.

Therefore, two different publicly available microarray data sets of pre-treatment breast cancer

tumors, post-treatment biopsies and healthy breast tissue were downloaded and analyzed [64]

[114]. This comparison takes a novel perspective in the field of breast cancer patient data analysis

as there is no study available yet, which collected and comprehensively analyzed all three types

of samples. Comparable to our in vitro data, the post treatment samples cluster apart from the

healthy control tissue as well as the pre-treatment tumor samples (Figure 4-10a). All of the

three sample types gather exclusively amongst them, although the tumor samples as well as the

regressed samples spread more than the healthy tissue samples. But since the pre- and the post-

treatment group are from the same data set, the bigger spread could also be due to batch effects.

When displaying the same data according to the diagnosed tumor type, the different groups

group surprisingly well amongst each other, albeit their different treatment status. Furthermore,

the first PC seems to distinguish between estrogen receptor (ER) positive and negative sample

types. The ER status is one of the major markers for classifying breast cancer types and following

therapy approaches. Thus, it can be concluded that the biological variation in the integrated
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data set is bigger than the technical variation and that despite the treatment the post treatment

group carries a substantial tumor memory.
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FIGURE 4.9. Joint analysis of publicly available microarray data of patient samples.
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healthy breast tissue. (a) Dimensionality reduction plots from the common subset
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Next, I investigated if similar transcriptional signatures with regard to metabolic changes are

present in the combined data as in our in vitro samples. Therefore, I decided to compare the data

with the subset of basal HER2 negative samples since amongst the present tumor subtypes this

sample group is the closest to the cancer type developed in our system. The basal HER2 positive

subtype would be even better suited, but unfortunately there is only one sample available of this

subtype. Reassuringly, the same glycolytic alterations on the transcript level were found in the

basal HER2 negative subgroup, even though a little less pronounced (Figure 4-10b). Increased

glycolysis does not seem like a common transcriptional alteration of all regressed cancer samples,

as for instance the samples of the (less aggressive) Luminal A+B subtypes exhibited no glycolytic

alterations. Increased glycolytic flux could be one feature of cancer cells generally more resistant

to therapy. Furthermore, one of the enzymes of the urea cycle exhibited an increased expression

in the basal HER2 negative post treatment samples (Figure A.23 a,c). Although not conclusive

because of missing replicates, but still noteworthy, the one basal HER2 positive sample also

showed a concomitant upregulation of the urea cycle in comparison to the healthy tissue samples

having exactly the same enzymes altered as in our model system (Figure A.23 b). Finally, the

nucleotide metabolism is also concordantly upregulated in the basal HER2 negative samples in

comparison to the healthy samples, which could be connected to the observed upregulation of

the glycolytic enzymes as the nucleotide metabolism is fed from glycolytic intermediates (Figure

A.24a-c).

4.3.6 Irreversible imprinting of the tumor state on methylome level?

The observation, that the transcriptome of regressed breast cancer cells, in vitro, in vivo and

in patient samples is stably deregulated with an upregulation of genes from the glycolysis and

the TCA cycle as a repetitive feature poses the question, how these transcriptional alterations

become stably imprinted. This question is even of bigger relevance since we could show that the

transcriptomic alterations manifest in a globally altered metabolic state mirroring the metabolic

state of tumor cells. A possible explanation could be a permanent change of the epigenetic

landscape towards more active transcription. This hypothesis gets supported by the fact that the

intracellular metabolic concentrations of the TCA cycle intermediates fumarate and succinate

(which are increased in the tumor and the regressed state) have recently been shown to regulate

methylation in cancer cells [198] [100] [101]. One additional hint might be the observation that

c-MYC unrelated genes with increased expression in the regressed cells in comparison to the

healthy cells cluster locally on the genome, as it is for example the case on chromosome 15 (Figure

4-11).
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4.4 Conclusions and future directions

The preceding chapter assessed the molecular adaptations of breast cancer cells during tumor

formation and after tumor regression. Surprisingly, although phenotypically undistinguishable

from healthy cells, it could be demonstrated that regressed breast cancer established an oncogenic

memory after the complete withdrawal of oncogenes. The memory appeared to be more dominant

on the metabolome level, with the majority of the measured metabolites coinciding between

the tumor and the regressed samples. Intriguingly, however, on the transcriptome level the

expression of genes largely varied between tumor and regressed cells with the majority of genes

being uniquely altered in the tumor cells. The rather few number of genes, which overlapped

between the tumor and the regressed cells on the transcriptome level, in turn, possessed the

same trend in their expression levels. The latter observation poses three questions: 1) are the few

observed transcriptional changes sufficient to drive or maintain the metabolic tumor phenotype

in regressed cells 2) are alternate metabolic paths tunneling into the same metabolic phenotype;

3) do the same metabolite concentrations actually correspond to the same fluxes and therefore

metabolic phenotypes. Analysing the transcriptome and metabolome data in greater depth

and integrating them with flux data and genome scale modeling techniques, confirmed a high

glycolytic flux amongst both, the tumor and the regressed, phenotypically quiescent cancer cells.

This increased glycolytic activity is strongly deregulated on the transcriptional and the metabolic

level in both cell types analyzed and exhibits a few alternate isoenzymes being differentially

expressed. A second potentially important deregulated pathway for maintaining the metabolic

cancer phenotype in regressed cells is a concomitant upregulation of enzymes from the urea

cycle with a coupled increase of urea cycle intermediates suggesting an increased metabolic

flux through the urea cycle. The tight connection between transcriptional and metabolomic

changes in these central pathways support the idea that few but important alterations might

be sufficient to influence the global metabolite level towards the metabolic cancer phenotype.

The TCA cycle metabolism, in contrast, could be an example of how the same metabolite levels

could result from different fluxes: In the tumor, an upregulated expression of enzymes from the

TCA cycle in comparison to the healthy control is coupled with a highly increased intracellular

and extracellular concentration of the TCA cycle intermediates, succinate, fumarate and malate.

This suggests an increased flux through the TCA cycle. However in the regressed cells, the same

high level of increased metabolite concentrations is coupled with a clear decrease in transcript

abundance and the predicted decrease of TCA cycle flux in comparison to the healthy controls.

The ROS or hypoxia induced stabilization of HIF-1α as well as the TCA cycle intermediates

succinate and fumarate could have a central role in connecting the increased flux through the

glycolysis with the increase an decrease of fluxes of the urea cycle and TCA cycle, respectively.

Except for isoenzymes in the glycolysis, I found no evidence of alternative pathway routes being

active, however it might be difficult to identify them in less central pathways. It might be

interesting to investigate probable signaling routes of the oncogenes cMYC and HER2 or the
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transcription factor HIF-1α. The presented transcriptomic analysis focused mostly on enzyme

levels rather than genes with regulatory functions. By following these signaling routes novel

causal crosslinks to other signaling proteins or to metabolic changes may appear. This might

however be impeded by posttranslational modifications, playing a major role in regulatory

signaling cascades. The interplay between the transcriptional and metabolome level in MRD

should be further investigated by integrating the lipidomics and untargeted metabolomics data in

the genome scale modeling approach. The genome scale modeling approach could additionally be

extended by integrating the measured changes of extracellular metabolite concentrations in the

model as uptake and secretion constraints. Therefore, metabolomics measurements of absolute

concentrations with calibrated standards need to be performed. Predicting metabolic fluxes with

these additional constraints could increase the extent and specificity of the predicted metabolic

fluxes that are likely to change. Alternatively, also known posttranscriptional modifications such

as the inhibition of PDH under HIF-1α activity could be implemented to increase the precision

of the predicted fluxes by minimizing the degrees of freedom. Finally, the mouse GEMM can

also be improved by tailoring it to mouse specific reactions. A comprehensive integration of the

three metabolomics datasets focusing on the common features amongst them might be gained

by integration with MOFA [8]. This might identify additional major “driver” pathways, which

could be specifically interesting for detangling potential regulatory roles of phosphatidylinositols.

On the experimental side it could be interesting to test whether Hif1α is indeed active and

causal for the glycolytic phenotype. In this case it could be further investigated if its activity

influences metabolites in the urea and TCA cycle and vice versa. Furthermore, studying whether

the glycolytic flux has a flux regulatory role or inhibitory role on apoptosis independent from

HIF-1α is another intriguing question. It would furthermore be interesting to analyze whether

the epigenetic landscape in regressed cells in comparison to healthy cells and if these changes

are influenced by TCA cycle metabolite concentrations and finally if they could be possibly linked

to the observed and predicted stable changes in flux patterns.
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CHAPTER 5. GENERAL CONCLUSION

In this dissertation, metabolic adaption was analyzed in two different contexts. First towards

a new nutritional environment and then in the context of oncogenic signaling. The second chapter

showed how metabolic networks quickly adapt to the new stimuli, leveraging two key features of

metabolic networks, redundancy and plasticity. The redundancy of metabolic network regulation

instantly becomes obvious in the context of glycerol adaptation, where independently two different

pathway solutions of adaptation evolved, one via abolishing the HOG pathway and one abolishing

the two genes KGD1 and UBC13. However, this study also showed the limitation of the metabolic

network redundancy for the alternate carbon source glycerol, as both alternative pathways were

tied to metabolic trade-offs in other environments. The results of this thesis show that the two

novel mutations KGD1 and UBC13 are causative and sufficient for the glycerol growth phenotype.

Furthermore, this new metabolic route for glycerol utilization was explained by a shift in the

organism’s redox-balance under glycerol consumption. This is the first time a mutation in the

context of glycerol utilization other than GUT1 could be mechanistically linked to metabolism.

Third, a novel regulatory cross-link between the K63-specific ubiquitinylation machinery and

carbon-source driven metabolic fluxes was discovered. In human cells, the extent of plasticity in

metabolic network regulation facilitating adaptation was recently demonstrated in the context

of hematopoietic stem cell development. The metabolic state of a developing proliferative stem

cell population was completely altered to a metabolically quiescent state [128]. These findings

illustrate that metabolic adaptations of cells to a new cellular state are an important process

occurring during stem cell development. Studying metabolic network adaptation in breast cancer

reveals metabolic adaptations accompanying the transition of a differentiated cell to a cancer cell

in order to fulfill the demands of a proliferative phenotype. However, after stopping oncogenic

signaling, the cells failed to metabolically readapt to their original non-proliferative metabolic

state. The metabolic network regulation shows an increase in robustness becoming independent

from cellular signaling. The exhibited metabolic network plasticity and redundancy now reversely

allow the stable rewiring of the regressed cancer cells prohibiting adaptation. The present findings

show for the first time an oncogenic memory on metabolic level in residual cancer cells. Cancer

cells are known to lose their metabolic plasticity through the hard wiring of artificial oncogenic

signaling. What was unknown though is that this is a stable feature pervading in the regressed

states even after the oncogenic signaling is stopped completely. An interesting hypothesis to study

in this context will be the question if the robustness is supported by changes in the epigenetic

landscape, possibly even induced by the altered metabolism or metabolite levels itself. I showed

in this thesis that metabolic adaption is a very important process in eukaryotic cell physiology,

ensuring the adequate response to environmental or intrinsic impulses. Plasticity and redundancy

of metabolic networks have been shown to be key features of eukaryotic metabolic networks.

While high levels of eukaryotic metabolic network plasticity and redundancy in the case of

glycerol adaptation and also in cellular development facilitate the adaptive process of metabolism

towards novel stimuli, in the context of cancer they enable the establishment of metabolic network
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robustness. This on the contrary prohibits adaptation and leads to a stable state insensitive to

adaptation mechanisms. During the evolutionary process of glycerol adaptation, natural selection

governed adaptation. Similarly, the regulatory systems ensured metabolic adaptation towards

the cellular state during the developmental process or at the beginning of oncogenesis. However,

prolonged oncogenic signaling deregulates the metabolic regulatory network and lets network

plasticity and redundancy enter an irreversible disease state, which is failing adaption. Thus,

plasticity and redundancy can be beneficial in the context of adaption as long as the right

regulatory mechanisms are in place ensuring an adaptive response to the extrinsic and intrinsic

signaling events. To elucidate how plasticity and redundancy can promote metabolic adaptation

or contrariwise hinder it, a better understanding of metabolic network regulation is needed.

Specifically, the deregulation of metabolic networks in disease contexts such as cancer can be

advantageous in deciphering metabolic disease mechanism. I hope this work has brought us

closer to understand how adaptive processes alter metabolic networks by taking advantage of

their structural properties. From a methodological perspective, genome-scale metabolic modeling

has been used successfully to integrate and interpret multi-layer data obtained by various omics

technologies such as genomics, transcriptomics, proteomics and metabolomics. Furthermore,

I contributed to the field of genome-scale metabolic modeling and omics data integration by

providing a revised human model optimized for flux balance analysis. As an extent to this

approach the integration of other omics types could enrich the current workflow and explore

further mechanisms of metabolic network regulation during adaptation e.g. by studying epigenetic

imprints with methylome data. Lastly, as the metabolic network regulation was shown to play

a key role in the metabolic adaptation process an integrative approach combining metabolic

modeling with the mathematical modeling of kinetic signaling networks could be a valuable

approach for future exploration. As the volume and diversity of high-throughput data will likely

expand in future, the interpretation and integration of large multi-layered data will remain

challenging. This thesis represents one attempt of tackling the question of how we can learn

mechanistic insights from large and complex data volumes. Or how a former professor of mine

paraphrased it how to “gain knowledge from this mess”.
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Abbreviations

ALE - Adaptive laboratory evolution

WT - wild-type

NOX - NADH oxidase

ORF - open reading frame

USER - uracil-specific excision reagent

gDNA - genomic DNA

gRNA - guide RNA

CDW - cell dry weight

MNV - multi-nucleotide variant

SNV - single-nucleotide variant

SNP - single-nucleotide polymorphism

SV - structural variant

MA - mutation accumulation experiments

CNV - copy number variation

HOG - high-osmolarity glycerol

PPP - pentose phosphate pathway

R-GU - Reengineered strain with GUT1 and UBC13 mutation

R-GK - Reengineered strain with GUT1 and KGD1 mutation

R-GKU - Reengineered strain with GUT1, KGD1 and UBC13 mutation

YPD medium - yeast extract peptone dextrose medium

SPO medium - sporulation medium

M medium - mineral medium

MG medium - minimal glycerol medium

MG+ medium - minimal glycerol medium supplemented with amino acids

MD medium - minimal glucose medium

GEMM - genome-scale metabolic model

COBRA - constrained-based reconstruction and analysis

FBA - flux balance analysis

HMDB - human metabolome database

FVA - flux variability analysis

FC - Fold change

NI - Never induced

WT - Wild type

DE - Differentially expression

PPP - pentose phosphate pathway
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TCA - Tricarboxylic acid

Oxphos - Oxidative phosphorylation

RNA - Ribonucleic acid

RNASeq - RNA sequencing

PCA - Principal component analysis

MRD - Minimal residual disease
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FIGURE A.1. Sorted distribution of variant calling scores from unfiltered variant calls
of all WT and NOX endpoint as well as intermediate NOX lineages evolved with
mode-I and mode-II.

108



0 500 1000 1500 2000

0
10

00
20

00
30

00
40

00

Va
ria

nt
 C

al
lin

g 
Sc

or
e

#Variants

FIGURE A.2. Sorted distribution of variant calling scores from unfiltered variant calls
of all sequenced tetrads.
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FIGURE A.3. Sequencing reads of the WT parental strain and the mode-II evolved WT
lineages ALE1 to ALE3 aligned to the S. cerevisiae S288C reference genome and
summarized in 1 kb windows. 110
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FIGURE A.4. Sequencing reads of the NOX parental strain and the mode-II evolved
NOX lineages ALE5 to ALE11 aligned to the S. cerevisiae S288C reference genome
and summarized in 1 kb windows. 112
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FIGURE A.5. Sequencing reads of the NOX parental strain and the mode-I evolved
NOX lineages GEVO5, GEVO9, GEVO17, GEVO25, GEVO29, GEVO26, GEVO30
aligned to the S. cerevisiae S288C reference genome and summarized in 1 kb
windows.
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FIGURE A.6. Re-engineered single and double mutations found in evolved NOX lineages
in wild-type background CEN.PK strains. Curves are plotted using R language
using ‘loess’ method based on at least two biological replicates per experiment.
This figure and the corresponding legend text have been adapted from Strucko et al.
(2018) [178].
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FIGURE A.10. Re-engineered single, double and triple mutations found in the ALE2 lin-
eage in wild-type background CEN.PK strains. Curves are plotted with R language
using ‘loess’ method based on at least two biological replicates per experiment
(exp). 119
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and the corresponding legend text have been adapted from Strucko et al. (2018)
[178].
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FIGURE A.12. Volcano plot highlighting the 5356 differentially expressed genes (padj <
0.01) comparing the tumor samples with healthy controls.
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FIGURE A.13. Heatmap of significantly (q-value < 0.1) upregulated (red) and downreg-
ulated (blue) KEGG pathways comparing the tumor samples with healthy controls.
The batches correspond to different experiments and the replicates to different
animals.
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FIGURE A.14. Volcano plot highlighting the 1525 differentially expressed genes (padj <
0.01) comparing the regressed samples with healthy controls.
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FIGURE A.16. PCA plot of the transcriptome data subsetted to metabolic genes. Blue
represents healthy control samples, yellow tumorigenic samples and green re-
gressed samples. Centroids are drawn to represent the center of each sample group
considering the first two PCs. The calculated distance measure is the Euclidean
distance between the centroids of the samples based on all principal components.
Ctrl – Control samples, Tumor – Tumor samples, Regressed – Regressed samples.
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FIGURE A.17. Quantification of normalized transcript counts of heterologous (human)
and endogenous (mouse) c-MYC.
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FIGURE A.19. Log2 fold changes of the regressed samples over the tumor samples. Only
genes are selected, which in comparison to the healthy control are differentially
expressed (a) only in the tumor samples (b) in the tumor and the regressed samples
(c) only in the regressed samples. The solid line depicts the mean log2 fold change
and the dotted line the absolute mean change in the respective selection of genes.
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FIGURE A.20. PCA plot of the transcriptome data subsetted to genes uniquely differ-
ently expressed (over the healthy control) in (a) the tumor samples (b) the tumor
and the regressed samples (c) the regressed samples. Centroids are drawn to repre-
sent the center of each sample group considering the first two PCs. The calculated
distance measure is the Euclidean distance between the centroids of the samples
based on all principal components. Ctrl – Control.
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FIGURE A.21. In vitro targeted GCMS metabolomics analysis of intra- and extracellular
metabolite. Only significantly altered (padj < 0.01) metabolites in either the tumor
or the regressed cells in comparison to the control samples are depicted. Sample
names.
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FIGURE A.22. Transcriptomic log2 fold changes of differentially expressed genes in the
tumor samples in comparison to the healthy samples plotted against the log2 fold
changes of differentially expressed genes in the regressed samples in comparison
to the healthy samples for intersecting glycolytic core enzymes. The solid line
represents a linear fit through the data. The dotted line depicts the diagonal.
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FIGURE A.23. KEGG pathways of arginine biosynthesis with enzymes, whose transcript
levels significantly change over the respective healthy control being marked. The
coloring represents log2 fold changes. (a) Basal HER2 negative group in comparison
to healthy tissue samples. (b) Basal HER2 positive group over healthy tissue
samples. (c) In vitro tumor cells derived from the mouse model in comparison to
healthy control cells. The depicted maps are from the KEGG database
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FIGURE A.24. KEGG pathways of purine metabolism with enzymes, whose transcript
levels significantly change over the respective healthy control being marked. The
coloring represents log2 fold changes. (a) Basal HER2 negative group in comparison
to healthy tissue samples. (b) Basal HER2 positive group over healthy tissue
samples. (c) In vitro tumor cells derived from the mouse model in comparison to
healthy control cells The depicted maps are from the KEGG database.
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FIGURE A.25. Peptide overlay onto Ubc13 amino acid sequence. Results in the figure
show truncated Ubc13 sequence as no confident alignment of MS/MS detected
peptides was possible after the 70th amino acid. This figure and the corresponding
legend text have been reproduced from Strucko et al. (2018) with permission and
have been originally done and written by myself (Strucko 2018).
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TABLE A.1. List of oligonucleotides. All sequences are displayed in 5’ to 3’ direction.
This table and the corresponding legend text have been reproduced from Strucko et
al. (2018) with permission [178].

Name Target Sequence

For USER cloning

PCFB_5 pTEF1 acctgcacuttgtaattaaaacttag
PCFB_6 pTEF1 cacgcgaugcacacaccatagcttc
PCFB_8 pPGK1 atgacagauttgttttatatttgttg
TS_16 Kp.nox ATCTGTCAUATGAGTAAAATCGTTGTAGTCGG
TS_17 Kp.nox CACGCGAUTTATTTTTCAGCCGTAAGGGCAG

For guide RNA constructs

TS_109 gRNA_R Phos-GATCATTTATCTTTCACTGCG
TS_72 PPZ2 CCAATGTTACAAGAGTCTACGTTTTAGAGCTAGAA
TS_73 GUT1_1 CATCCACTGCCAGAACCGACGTTTTAGAGCTAGAA
TS_74 GUT1_3 GGGCAACTCGCTTACAAACCGTTTTAGAGCTAGAA
TS_76 KGD1 CgGCAGCAACAgCACCACTTGTTTTAGAGCTAGAA
TS_77 PBS2_1 ATGCAATTCTCCCTATatTGGTTTTAGAGCTAGAA
TS_78 PBS2_2 AATTGAGCgCTATTGTTGATGTTTTAGAGCTAGAA
TS_79 HOG1_1 CTGAGATGTCAAAGTGTCCGGTTTTAGAGCTAGAA
TS_80 HOG1_2 AAACATAGCCTGTCATTTGAGTTTTAGAGCTAGAA
TS_81 YMR206W TGGTGACATTgGTTGAGAGTGTTTTAGAGCTAGAA
TS_110 GUT1_2 CATTGCcTTCAAGATAGCCCGTTTTAGAGCTAGAAATAGCAAG
TS_112 TEA1 TCATCAACGTACCAGACTTTGTTTTAGAGCTAGAAATAGCAAG
TS_113 UBC13 TATATCATCCCAATATTGATGTTTTAGAGCTAGAAATAGCAAG
TS_114 CYM1 TATTTGTAAGGTAGGTAAACGTTTTAGAGCTAGAAATAGCAAG
TS_115 INO80 GGAATCGATTGGATTGTAGTGTTTTAGAGCTAGAAATAGCAAG
TS_116 RET1 TGACTCCGCCTCATGAGTGTGTTTTAGAGCTAGAAATAGCAAG
TJOS-62 (P1F) CGTGCGAUagggaacaaaagctggagct
TJOS-63 (P2F) AGTGCAGGUagggaacaaaagctggagct
TJOS-64 (P3F) ATCTGTCAUagggaacaaaagctggagct
TJOS-65 (P1R) CACGCGAUtaactaattacatgactcga
TJOS-66 (P2R) ACCTGCACUtaactaattacatgactcga
TJOS-67 (P3R) ATGACAGAUtaactaattacatgactcga
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Name Target Sequence

Primers for validation

TS_95 PPZ2 GTAAGCAGTCCCTGGAGACC
TS_96 PPZ2 TCAGCGATTGGCTAATTTAC
TS_97 GUT1 TAGTCAAGAGAAACCTGCCC
TS_98 GUT1 ACCTTCTGACTTTGACACAG
TS_99 KGD1 ACCCAAGATATTTCCCATCTG
TS_100 KGD1 CATCTTTAGGATTGTTGGAAAAC
TS_101 PBS2 GGAAGTCCGTTTGGAGCTAG
TS_102 PBS2 TAGATAAACCATTCTCACCACG
TS_103 HOG1 TAGGACACAGATATTCGGTACAG
TS_104 HOG1 CTTACCTTCAATCATTTCGGC
TS_105 YMR206W AAGGACATTCAAAGGATCGC
TS_106 YMR206W TTCTTCTATGGTGATGCCTTG
TS_107 TEA1 TGAGCAAAGTACAGCCCGT
TS_108 TEA1 ATGGCTTGTTAAAGGTGAGC
TS_121 UBC13 AGTAAGTGACCCAGTACCTGGC
TS_122 UBC13 TCACTCGGGTTTCTTCTTTGC
TS_123 CYM1 TGAGAGCTTGTTGTTTGAGGA
TS_124 CYM1 GAGGCTCTGTGGTGTTAGGG
TS_125 INO80 AGAACAGGATGACAATGACGA
TS_126 INO80 CAACCCGTGTCTAGTGTTG
TS_127 RET1 CTGCTCAGGATAAGTGGCAC
TS_128 RET1 CATCTGCCTCCACAATAATACG

Primer for determination of MAT locus

MAT_R MAT AGTCACATCAAGATCGTTTATGG
MATα_F MAT ACGGAATATGGGACTACTTCG
MATa_F MAT ACTCCACTTCAAGTAAGAGTTTG
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TABLE A.2. List of the S. cerevisiae strains. This table and the corresponding legend
text have been reproduced from Strucko et al. (2018) with permission [178].

#ID Name 2 Genotype Comments (Source)

CEN.PK113-7D MATa MAL2-8c SUC2 Peter Koetter

CEN.PK113-1A MATα MAL2-8c SUC2 Peter Koetter

L.1528 MATa/ MATα WT NZ strains

CLIB382 MATa/ MATα WT NZ strains

7D_Cas9 MATa MAL2-8c SUC2 pCfB2312::KanMX This study

1A_Cas9 MATα MAL2-8c SUC2 pCfB2312::KanMX This study

TS290 TS29 (NOX) MATα MAL2-8c SUC2 X3::pTEF1::NOX::KanMX This study

Mode-I_ALE

GEVO05 MATα MAL2-8c SUC2 X3::pTEF1::NOX::KanMX evolved This study

GEVO09 MATα MAL2-8c SUC2 X3::pTEF1::NOX::KanMX evolved This study

GEVO13 MATα MAL2-8c SUC2 X3::pTEF1::NOX::KanMX evolved This study

GEVO17 MATα MAL2-8c SUC2 X3::pTEF1::NOX::KanMX evolved This study

GEVO21 MATα MAL2-8c SUC2 X3::pTEF1::NOX::KanMX evolved This study

GEVO25 MATα MAL2-8c SUC2 X3::pTEF1::NOX::KanMX evolved This study

GEVO26 MATα MAL2-8c SUC2 X3::pTEF1::NOX::KanMX evolved This study

GEVO29 MATα MAL2-8c SUC2 X3::pTEF1::NOX::KanMX evolved This study

GEVO30 MATα MAL2-8c SUC2 X3::pTEF1::NOX::KanMX evolved This study
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#ID Name 2 Genotype Comments (Source)

Mode-II ALE

ALE1 MATa MAL2-8c SUC2 evolved This study

ALE2 MATa MAL2-8c SUC2 evolved This study

ALE3 MATa MAL2-8c SUC2 evolved This study

ALE4 MATa MAL2-8c SUC2 evolved This study

ALE5 MATα MAL2-8c SUC2 X3::pTEF1::NOX::KanMX evolved This study

ALE6 MATα MAL2-8c SUC2 X3::pTEF1::NOX::KanMX evolved This study

ALE7 MATα MAL2-8c SUC2 X3::pTEF1::NOX::KanMX evolved This study

ALE8 MATα MAL2-8c SUC2 X3::pTEF1::NOX::KanMX evolved This study

ALE9 MATα MAL2-8c SUC2 X3::pTEF1::NOX::KanMX evolved This study

ALE10 MATα MAL2-8c SUC2 X3::pTEF1::NOX::KanMX evolved This study

CLASSICAL GENETICS

ALE2-2A MAT? MAL2-8c SUC2 spore isolate 1st cross segregant

ALE2-2B MAT? MAL2-8c SUC2 spore isolate 1st cross segregant

ALE2-2C MAT? MAL2-8c SUC2 spore isolate 1st cross segregant

ALE2-2D MAT? MAL2-8c SUC2 spore isolate 1st cross segregant

ALE2-3A MAT? MAL2-8c SUC2 spore isolate 1st cross segregant

ALE2-3B MAT? MAL2-8c SUC2 spore isolate 1st cross segregant

ALE2-3C MAT? MAL2-8c SUC2 spore isolate 1st cross segregant

ALE2-3D MAT? MAL2-8c SUC2 spore isolate 1st cross segregant

ALE2-4A MAT? MAL2-8c SUC2 spore isolate 1st cross segregant

ALE2-4B MAT? MAL2-8c SUC2 spore isolate 1st cross segregant

ALE2-4C MAT? MAL2-8c SUC2 spore isolate 1st cross segregant

ALE2-4D MAT? MAL2-8c SUC2 spore isolate 1st cross segregant

4C-2D MAT? MAL2-8c SUC2 spore isolate 2nd cross segregant

4C-2D-5C MAT? MAL2-8c SUC2 spore isolate 3rd cross segredant

4C-2D-10B MAT? MAL2-8c SUC2 spore isolate 3rd cross segredant
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#ID Name 2 Genotype Comments (Source)

RECONSTRUCTED

TS105 R-G1 MATα MAL2-8c SUC2 GUT1(E572Q) This study

TS107 R-G5 MATα MAL2-8c SUC2 GUT1(Y571D) This study

TS108 R-P MATa MAL2-8C SUC2 PBS2(I418fs) This study

TS110 R-H1 MATα MAL2-8c SUC2 HOG1(38*stop) This study

TS113 R-H2 MATa MAL2-8C SUC2 HOG1(D162N) This study

TS114 R-T MATa MAL2-8C SUC2 TAE1(P456A) This study

TS116 R-PPZ2 MATa MAL2-8C SUC2 PPZ2(R532L) This study

TS121 R-H2 MATa MAL2-8C SUC2 HOG1(D162N) This study

TS123 R-K MATa MAL2-8C SUC2 KGD1(A990D) This study

TS125 R-K MATα MAL2-8C SUC2 KGD1(A990D) This study

TS127 R-G1P1 MATα MAL2-8c SUC2 GUT1(E572Q) PBS2(I418fs) This study

TS129 R-G1H1 MATα MAL2-8c SUC2 GUT1(E572Q) HOG1(38*stop) This study

TS131 R-G1H2 MATα MAL2-8c SUC2 GUT1(E572Q) HOG1(D106Y) This study

TS133 R-G5H1 MATα MAL2-8c SUC2 GUT1(Y571D) HOG1(38*stop) This study

TS136 R-TG1 MATa MAL2-8C SUC2 TAE1(P456A) GUT1(E572Q) This study

TS138 R-PPZ2T MATa MAL2-8C SUC2 PPZ2(R532L) TAE1(P456A) This study

TS140 R-PPZ2G1 MATa MAL2-8C SUC2 PPZ2(R532L) GUT1(E572Q) This study

TS143 R-R MATa MAL2-8C SUC2 RET1(K109E) This study

TS144 R-U MATa MAL2-8C SUC2 UBC13(R70fs) This study

TS146 R-C MATa MAL2-8C SUC2 CYM1(S530F) This study

TS148 R-X MATa MAL2-8C SUC2 YMR206W(P227L) This study

TS150 R-I MATa MAL2-8C SUC2 INO80(C359Y) This study

TS153 R-GI MATα MAL2-8c SUC2 GUT1(E572Q) INO80(C359Y) This study

TS154 R-GU MATα MAL2-8c SUC2 GUT1(E572Q) UBC13(R70fs) This study

TS156 R-RX MATa MAL2-8C SUC2 RET1(K109E) YMR206W(P227L) This study

TS164 R-G1P1 MATα MAL2-8c SUC2 GUT1(E572Q) PBS2(I418fs) This study

TS165 R-G1H1 MATα MAL2-8c SUC2 GUT1(E572Q) HOG1(38*stop) This study

TS166 R-G1P1 (5) NOX MATα MAL2-8c SUC2 GUT1(E572Q) PBS2(I418fs) X3(pTEF1-S.p.NOX::) This study

TS168 R-G1H1 (7) NOX MATα MAL2-8c SUC2 GUT1(E572Q) HOG1(38*stop) X3(pTEF1-S.p.NOX::KanMX) This study

TS170 R-GK MATα MAL2-8c SUC2 GUT1(E572Q) KGD1(A990D) This study

TS172 R-GIK MATα MAL2-8c SUC2 GUT1(E572Q) INO80(C359Y) KGD1(A990D) This study

TS175 R-GIU MATα MAL2-8c SUC2 GUT1(E572Q) INO80(C359Y) UBC13(R70fs) This study

TS177 R-GUK MATα MAL2-8c SUC2 GUT1(E572Q) UBC13(R70fs) KGD1(A990D) This study

TS178 R-GUX MATα MAL2-8c SUC2 GUT1(E572Q) UBC13(R70fs) YMR206W(P227L) This study

TS233 R-KU MATα MAL2-8C SUC2 KGD1(A990D) UBC13(R70fs) This study

TS235 R-UI MATa MAL2-8C SUC2 UBC13(R70fs) INO80(C359Y) This study

TS237 R-KI MATα MAL2-8C SUC2 KGD1(A990D) INO80(C359Y) This study

TS256 L.1528-GUK MATα/a GUT1(E572Q) UBC13(R70fs) KGD1(A990D) This study

TS261 CLIB382-GUK MATα/a GUT1(E572Q) UBC13(R70fs) KGD1(A990D) This study
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TABLE A.3. Marker ions used for the quantification of the mentioned metabolites by
GC-MS. This table and the corresponding legend text have been reproduced from
Strucko et al. (2018) with permission [178].

m/z Marker Ion (m/z)
Glucose 319
Pyruvate 174
Lactate 191
Citrate 347
α ketoglutarate 198
Succinate 247
Fumarate 245
Malate 335
γ aminobutyric xacid 174
2-hydroxyglutarate 247
Glycerol 3-phosphate 357
Glycerate 3-phosphate 357

TABLE A.4. Minimum number of re-regulation target fluxes identified with metabolic
modeling to achieve optimal glycerol utilization in S. cerevisiae. This table and
the corresponding legend text have been reproduced from Strucko et al. (2018) with
permission [178].

UP DOWN
Triosephosphate isomerase Glucokinase GLK1
Isocitrate dehydrogenase [NADP], cytoplasmic Phosphofructokinase 2
Isocitrate dehydrogenase [NADP], cytoplasmic Fructose-biphosphate aldolase
Succinyl-CoA ligase [ADP-forming] subunit beta, mitochondrial Isocitrate dehydrogenase NAD sbunit 1, mitochondrial
Fructose-1,6-biphosphatase Alpha-ketoglutarate dehydrogenase
ATP synthase subunit alpha, mitochondrial Glucose-6-phosphate 1-dehydrogenase
Glutamate decarboxylase Probable 6-phosphogluconolactonase 1
4-aminobutyrate aminotransferase 6-phosphogluconate dehydrogenase, decarboxylating 2
Succinate-semialdehde dehydrogenase [NADP+] Ribulose-phosphate 3-epimerase
Glycerol kinase Ribose-5-phosphate isomerase
Tricarboxylate transport protein Transketolase 2
Glycerol uptale/efflux facilitator protein Transketolase 2
Uptake of glycerol Transaldolase

Tricarboxylate transport protein
Low-affinity glucose transporter HXT4
Uptake of alpha-D-glucose
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TABLE A.5. Growth rates of intermediate and final evolved lineages. Growth rates
are estimated based on two biological replicates. Results of mode-I (manual ALE)
experiment. This table and the corresponding legend text have been reproduced
from Strucko et al. (2018) with permission [178].

Growth rate, µmax (1/h)

Lineage 1 Lineage 2

T6 0,057+0,004 0,074+0,004

T9 0,095+0,004 0,111+0,004

T11 0,087+0,004 0,11+0,004

T12 0,151+0,004 0,120+0,004

T13 0,128+0,004 0,113+0,004

T14 0,182+0,004 0,130+0,004

T16 0,203+0,004 0,122+0,004

TABLE A.6. Growth rates of intermediate and final evolved lineages. Growth rates are
estimated based on two biological replicates. Results of mode-II (automatic ALE)
experiment. This table and the corresponding legend text have been reproduced
from Strucko et al. (2018) with permission [178].

Growth rate, µmax (1/h)

ALE01 ND

ALE02 0.220 ± 0.004

wild-type based ALE03 0.225 ± 0.004

ALE04 ND

ALE05 0.215 ± pm0.007

ALE06 0.206 ± 0.015

ALE07 0.229 ± pm0.002

NOX based ALE08 0.216 ± 0.000

ALE09 0.211 ± 0.004

ALE10 0.222 ± 0.007
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TABLE A.7. All mutations detected in evolved lineages. This table and the corresponding
legend text have been reproduced from Strucko et al. (2018) with permission [178].
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chr01 456894̂5690 Insertion - T INTER p_ACS1 p_FLC2 x x
chr01 56625 SNV A G SPC72 289T>C S97P x TI
chr02 817948̂1795 Insertion - T INTER p_AAR2 t_RPS8B x x
chr02 1314431̂31444 Insertion - A INTER t_ECM13 t_FUI1 x x x
chr02 4443334̂44334 Insertion - T INTER t_ATP3 p_FIG1 x x x x
chr02 3107293̂10730 Insertion - A INTER p_VID24 p_PHO88 x x x x
chr03 566505̂6651 Insertion - A INTER p_ATG22 t_SRO9 x x x
chr03 272522̂7253 Insertion - A INTER p_PEX34-EIW11793.1 p_KAR4 x
chr03 306167 SNV T A INTER p_EIW11828.1 t_BIO2 x x
chr03 1013711̂01372 Insertion - T INTER p_EIW11867.1 t_GBP2 x x x x x x x x x
chr03 568295̂6830 Insertion - A INTER p_ATG22 t_SRO9 x
chr03 566635̂6664 Insertion - A INTER p_ATG22 t_SRO9 x
chr04 21268 SNV C T INTER p_LRG1 x TI
chr04 1092716 SNV A T OMS1 316A>T T106S x
chr04 9549139̂54914 Insertion - A INTER p_EIW11867.1 t_GBP2 x x x x x x x x
chr04 1346528 SNV G A SSN2 2087C>T P696L x TI
chr04 629289 Deletion G - UBC13 476delG R70fs x x
chr04 1079202 SNV G C INTER p_GIC2 t_SUM1 x x
chr04 1250687 SNV C A INTER p_EIW11598.1 P_SAC7 x x
chr04 1325560 SNV G A CYM1 1589C>T S530F x x TI
chr04 1335093 SNV G T PPZ2 1595G>T R532L x x
chr04 7927̂93 Insertion - T INTER x x x
chr04 7937̂94 Insertion - T INTER x
chr04 115771 SNV G A INTER t_ARF1 x TI
chr04 266930 SNV C T KIN28 379C>T H128Y x TI
chr04 5475015̂47502 Insertion - G INTER p_RPC1 (RPO31) t_BAP3 x x x
chr04 195985 SNV G T COP1 838C>A L280I x
chr04 208183 SNV C T RPO21 1031G>A R344H x TI
chr05 2418572̂41858 Insertion - A INTER t_SPO73 t_SAP1 x x
chr05 333665..333667 MNV TTT AAA INTER p_DOT6 t_PTC2 x x
chr06 1009231̂00924 Insertion - A INTER p_GNA1 x x x x x x x x x x
chr06 1026031̂02604 Insertion - T INTER p_MDJ1 x x x x x x x x x
chr07 224760 SNV C T INO80 1076G>A C359Y x x TI
chr07 6529256̂52926 Insertion - T INTER p_PDC6 x x x x x x x x x x x
chr07 737084 SNV A C PPT1 837T>G F279L x
chr07 1025341̂02535 Insertion - A INTER t_SPT16 t_CHC1 x
chr07 10114741̂011475 Insertion - T INTER p_RAD2 p_TNA1 x
chr07 450284̂5029 Insertion - A INTER p_EIW10317.1 p_KAP114 x
chr07 9354119̂35412 Insertion - TT INTER t_CRM1 t_MRPL9 x
chr08 29959 SNV C G GUT1_1 1711G>C E572Q x x
chr08 5447955̂44796 Insertion - A INTER p_PHO1 x x x x
chr08 30475 SNV C T GUT1_2 1195G>A G400S x x TI
chr08 30035 SNV C A GUT1_3 1635G>T K546N x
chr08 29976 SNV A C GUT1_4 1694T>G I566S x
chr08 29962 SNV A C GUT1_5 1708T>G Y571D x x
chr09 175531̂7554 Insertion - G INTER x x x x x x x x
chr09 677316̂7732 Insertion - T INTER p_ATG32 t_PAN6 x x x
chr09 117362 SNV C A KGD1 2969C>A A990D x x
chr09 130981 SNV A C INTER p_RPI1 p_RHO3 x x
chr10 2483602̂48361 Insertion - T INTER p_DPB11 p_SIP4 x x x x
chr10 5626235̂62624 Insertion - T INTER t_BNA2 t_AIM24 x x x
chr10 161318..161319 Deletion AT - PBS2_1 1252_1253delAT I418fs x
chr10 3762673̂76268 Insertion - A INTER t_RNR2 p_RRN7 x
chr10 160839 SNV C G PBS2_2 1732G>C A578P x x x x x
chr10 959549̂5955 Insertion - T INTER p_EIW09701.1 t_JJJ2 x
chr10 437771 SNV G A INTER p_TDH2 x TI
chr11 4629604̂62961 Insertion - C INTER p_EIW09251.1 p_PRY2 x x x
chr11 274418 SNV T A MIF2 SILENT x x x x x x x x x x x x
chr11 6172176̂17218 Insertion - T INTER t_PTR2 x
chr11 5237165̂23717 Insertion - T INTER p_EIW09284.1 t_PET10 x
chr11 6608536̂60854 Insertion - T INTER x
chr11 2228212̂22822 Insertion - A INTER p_PRR1 t_APN1 x
chr12 284375 SNV A G RAX2 SILENT x TI
chr12 7511447̂51145 Insertion - A INTER p_TAD3 p_EST2 x
chr12 356955 SNV G T HOG1_1 316G>T D106Y x x
chr12 356755 SNV C A HOG1_2 116C>A 38* x x x
chr12 527513 SNV C A NMT1 439G>T A147S x x x
chr12 10379411̂037942 Insertion - T INTER t_FMP27 p_EIW09058.1 x
chr12 357378 SNV G T HOG1_3 739G>T 247* x
chr12 6298876̂29888 Insertion - A INTER p_NDL1 p_HAP1 x x
chr12 338603̂3861 Insertion - A INTER p_RPL8B p_FPS1 x x
chr12 4116964̂11697 Insertion - G INTER t_PUT1 p_EIW08757.1 x
chr12 357123 SNV G A HOG1_4 484G>A D162N x TI
chr13 296759 SNV A G ERG5 458T>C F153S x TI
chr13 670385 SNV T A INTER p_PFK2 p_EIW08473.1 x x
chr13 671263 SNV C T EIW08473.1 680C>T P227L x x TI
chr13 1591201̂59121 Insertion - T INTER p_IMD4 p_SPC2 x x x x
chr14 1487421̂48743 Insertion - A INTER t_POL2 p_ORC5 x
chr14 680966..680967 Deletion AA - INTER t_PPG1 p_ABZ1 x
chr15 4265994̂26600 Insertion - A INTER p_ETT1 t_EIW07486.1 x x x x x x x x x
chr15 732897 SNV T C RET1 325A>G K109E x x TI
chr15 878076 SNV G T INTER p_MBF1 p_BUD7 x x
chr15 955494 SNV C G TEA1 1366C>G P456A x x
chr15 2043372̂04338 Insertion - T INTER p_RIB2 t_INP54 x x
chr15 411390 SNV G A WHI2 521G>A C174Y x TI
chr15 553099 SNV G T INTER p_PFY1 t_LEO1 x x
chr15 4486544̂48655 Insertion - A INTER t_CYT1 p_MSA1 x
chr15 30573 SNV G C INTER p_ZPS1 x x
chr16 6550466̂55047 Insertion - A INTER t_RPL43A t_THP3 x x x
chr16 8406648̂40665 Insertion - T INTER p_EIW07261.1 x x x x x x x x x x
chr16 939459 SNV G C ARR2 283C>G Q95E x x
chr16 900122 SNV C T INTER p_SEC23 p_SMX3 x x TI
chr16 866279 SNV C T SGV1 155G>A G52E x TI

A 8 TI 18 43
T 4 TV 25
C 16
G 15
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TABLE A.8. All mutations detected in tetrad analysis. This table and the corresponding
legend text have been reproduced from Strucko et al. (2018) with permission [178].
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TABLE A.9. Transcriptomics results from the comparison R-GKU vs. ALE2 of genes with
multiple testing adjusted q-values of 0.1. The genes are sorted according to their
significance. This table and the corresponding legend text have been reproduced
from Strucko et al. (2018) with permission [178].

CENPK_ID GeneID log2FC CENPK_ID GeneID log2FC
CENPK1137D_2939 Aga2p 2,483 CENPK1137D_2858 hypothetical protein -0,321
CENPK1137D_2535 Mfa2p 2,231 CENPK1137D_3491 Ser3p 0,480
CENPK1137D_3357 Ste2p 1,668 CENPK1137D_4319 Glt1p -0,244
CENPK1137D_5045 Bar1p 1,534 CENPK1137D_5435 Msc7p 0,204
CENPK1137D_947 Ste6p 1,385 CENPK1137D_4938 Bdh2p 0,481
CENPK1137D_4287 Mfa1p 1,210 CENPK1137D_648 Pig1p -0,406
CENPK1137D_1464 Asg7p 1,161 CENPK1137D_3361 Snz3p 0,423
CENPK1137D_4943 Rbg1p 0,538 CENPK1137D_3615 Yef1p -0,371
CENPK1137D_2886 Mf(alpha)2p -1,156 CENPK1137D_4116 Dpl1p -0,232
CENPK1137D_1298 Sag1p -1,163 CENPK1137D_4099 Pmp3p -0,210
CENPK1137D_888 hypothetical protein -3,349 CENPK1137D_3608 hypothetical protein -0,197
CENPK1137D_1133 Ste3p -3,634 CENPK1137D_3223 Coq6p -0,209
CENPK1137D_1940 Mf(alpha)1p -5,794 CENPK1137D_511 hypothetical protein -0,267
CENPK1137D_5142 Prm5p -0,726 CENPK1137D_1293 Pre3p -0,224
CENPK1137D_1959 Aad15p 1,022 CENPK1137D_4992 Uip3p 0,362
CENPK1137D_4967 Ntg1p 0,539 CENPK1137D_2389 Ald4p -0,229
CENPK1137D_429 Aqy1p 0,910 CENPK1137D_5119 hypothetical protein 0,399
CENPK1137D_958 Cbt1p 0,508 CENPK1137D_3016 Scm4p 0,377
CENPK1137D_4213 Ato3p -0,517 CENPK1137D_2139 Gcy1p 0,372
CENPK1137D_649 Mcm5p -0,424 CENPK1137D_1130 Fre2p 0,353
CENPK1137D_5285 Rim4p -0,375 CENPK1137D_124 Coq5p -0,225
CENPK1137D_4936 Erv46p 0,419 CENPK1137D_2402 Fdh1p -0,405
CENPK1137D_1152 Sry1p 0,535 CENPK1137D_2486 Slz1p 0,394
CENPK1137D_86 Fet3p 0,735 CENPK1137D_1161 Rpt1p -0,263
CENPK1137D_1481 Ino1p -0,734 CENPK1137D_4858 Mal32p 0,462
CENPK1137D_4971 Cne1p 0,461 CENPK1137D_3640 Gtt3p 0,255
CENPK1137D_2934 hypothetical protein 0,762 CENPK1137D_3341 Fet5p -0,165
CENPK1137D_4611 Tip1p -0,342 CENPK1137D_1769 Spe3p -0,345
CENPK1137D_1062 Ysr3p 0,591 CENPK1137D_650 Mmp1p 0,285
CENPK1137D_2738 Bio3p 0,377 CENPK1137D_3187 Tos2p 0,258
CENPK1137D_823 Sst2p -0,590 CENPK1137D_3059 Dbf2p -0,223
CENPK1137D_582 Hmx1p 0,350 CENPK1137D_501 Avl9p -0,255
CENPK1137D_2735 Bio5p 0,437 CENPK1137D_4205 Lsm6p -0,270
CENPK1137D_134 Ypk2p -0,324 CENPK1137D_287 Faa4p -0,314
CENPK1137D_3398 Gsy1p -0,387 CENPK1137D_3344 Ypt1p -0,132
CENPK1137D_4229 Dit2p 0,519 CENPK1137D_3773 Mch1p -0,241
CENPK1137D_4977 Efb1p 0,474 CENPK1137D_2633 hypothetical protein 0,309
CENPK1137D_4318 Izh1p 0,495 CENPK1137D_4752 Bem1p -0,181
CENPK1137D_4961 Ccr4p 0,344 CENPK1137D_2823 Cos12p 0,447
CENPK1137D_1043 Dal80p -0,700 CENPK1137D_1445 hypothetical protein 0,330
CENPK1137D_166 hypothetical protein 0,381 CENPK1137D_4279 Tsa2p 0,438
CENPK1137D_4949 Bdh1p 0,447 CENPK1137D_738 Cox19p 0,342
CENPK1137D_4980 Nup60p 0,336 CENPK1137D_290 Gim5p 0,241
CENPK1137D_2364 Cin1p 0,433 CENPK1137D_5368 Pho12p 0,390
CENPK1137D_5373 Ecm34p 0,493 CENPK1137D_2070 Bds1p 0,415
CENPK1137D_3142 Atf2p 0,479 CENPK1137D_5439 Sbp1p -0,195
CENPK1137D_4983 Swd1p 0,358 CENPK1137D_3682 Yat2p -0,342
CENPK1137D_4974 Spo7p 0,421 CENPK1137D_5106 Cos8p 0,257
CENPK1137D_3823 Nhp10p 0,358 CENPK1137D_4534 Hmlalpha2p -0,394
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CENPK_ID GeneID log2FC CENPK_ID GeneID log2FC
CENPK1137D_4637 Nhp6bp -0,516 CENPK1137D_5105 hypothetical protein 0,292
CENPK1137D_4945 Mtw1p 0,419 CENPK1137D_1851 Gph1p -0,275
CENPK1137D_5091 Dal1p 0,577 CENPK1137D_538 hypothetical protein -0,199
CENPK1137D_1480 hypothetical protein 0,491 CENPK1137D_2145 Rga1p -0,234
CENPK1137D_955 Sfk1p 0,372 CENPK1137D_1820 Ant1p 0,182
CENPK1137D_2248 Mdh2p -0,513 CENPK1137D_380 Tcb3p -0,175
CENPK1137D_2416 Izh4p 0,611 CENPK1137D_1541 Tgs1p 0,244
CENPK1137D_4990 hypothetical protein 0,643 CENPK1137D_3623 Mcm3p -0,215
CENPK1137D_4972 Swc3p 0,410 CENPK1137D_3307 Lys5p 0,345
CENPK1137D_3276 Tpn1p 0,266 CENPK1137D_537 Pcd1p -0,270
CENPK1137D_3371 Hxt10p -0,647 CENPK1137D_3266 Adh4p 0,264
CENPK1137D_5024 Prm2p 0,499 CENPK1137D_5238 Hxt4p 0,279
CENPK1137D_898 Gfa1p -0,302 CENPK1137D_2835 Hfm1p 0,354
CENPK1137D_920 Hot13p 0,561 CENPK1137D_5411 Arg4p -0,224
CENPK1137D_4986 Bud14p 0,262 CENPK1137D_1591 Thi21p 0,332
CENPK1137D_885 Pau23p 0,497 CENPK1137D_4937 Cdc24p 0,227
CENPK1137D_4948 Prp45p 0,323 CENPK1137D_2448 Emi5p 0,221
CENPK1137D_3402 hypothetical protein 0,381 CENPK1137D_1201 Lsb6p 0,182
CENPK1137D_4940 Cyc3p 0,384 CENPK1137D_3370 hypothetical protein -0,406
CENPK1137D_4984 Rfa1p 0,307 CENPK1137D_5154 Mob1p -0,266
CENPK1137D_4942 hypothetical protein 0,545 CENPK1137D_2798 Atg2p -0,285
CENPK1137D_4956 Mak16p 0,461 CENPK1137D_2408 Shr5p 0,387
CENPK1137D_4657 Alg1p 0,295 CENPK1137D_348 Yme2p -0,159
CENPK1137D_5396 Gpa1p -0,312 CENPK1137D_4626 Spt7p -0,204
CENPK1137D_996 Cce1p 0,481 CENPK1137D_4430 Ahc2p -0,251
CENPK1137D_2090 Nrt1p 0,355 CENPK1137D_2736 Bio4p 0,306
CENPK1137D_1408 hypothetical protein 0,418 CENPK1137D_4959 Fun26p 0,246
CENPK1137D_4985 Sen34p 0,398 CENPK1137D_151 Asi1p -0,276
CENPK1137D_1641 Grx5p -0,265 CENPK1137D_3852 Pst2p -0,221
CENPK1137D_2397 Fit3p 0,596 CENPK1137D_3872 Cdc34p -0,249
CENPK1137D_986 Ram2p 0,240 CENPK1137D_1669 Svl3p 0,322
CENPK1137D_489 Erg27p 0,320 CENPK1137D_3794 Slm3p 0,241
CENPK1137D_1443 Hms2p 0,425 CENPK1137D_2819 Flp1p 0,359
CENPK1137D_4944 Fun12p 0,311 CENPK1137D_3674 Spc25p 0,254
CENPK1137D_5330 Aim17p 0,265 CENPK1137D_4535 Taf2p -0,296
CENPK1137D_2818 Raf1p 0,567 CENPK1137D_4989 Cdc15p 0,270
CENPK1137D_4932 Aim1p 0,444 CENPK1137D_5157 Dph1p 0,214
CENPK1137D_4935 Pta1p 0,369 CENPK1137D_4960 Ecm1p 0,340
CENPK1137D_3785 Prp11p -0,349 CENPK1137D_1814 Clb5p 0,224
CENPK1137D_91 Arg7p 0,288 CENPK1137D_3267 Dsd1p 0,156
CENPK1137D_1316 Tes1p 0,413 CENPK1137D_2154 Sia1p -0,227
CENPK1137D_4958 Pmt2p 0,385 CENPK1137D_1643 Sur1p -0,231
CENPK1137D_3618 Utr4p -0,393 CENPK1137D_863 Meu1p -0,202
CENPK1137D_515 Zrt2p 0,338 CENPK1137D_233 Vti1p -0,168
CENPK1137D_4939 Cln3p 0,338 CENPK1137D_4039 Adr1p -0,307
CENPK1137D_4954 Saw1p 0,394 CENPK1137D_3356 Gyp8p 0,253
CENPK1137D_4969 Dep1p 0,316 CENPK1137D_4594 Reb1p -0,211
CENPK1137D_1379 Emc2p -0,276 CENPK1137D_4199 Frq1p -0,233
CENPK1137D_85 Aac1p 0,372 CENPK1137D_4973 Mdm10p 0,327
CENPK1137D_3558 Ftr1p 0,396 CENPK1137D_488 hypothetical protein 0,275
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CENPK_ID GeneID log2FC CENPK_ID GeneID log2FC
CENPK1137D_1946 Cti6p 0,243 CENPK1137D_1267 Tad2p 0,285
CENPK1137D_4299 Trs31p 0,295 CENPK1137D_3789 Prm7p 0,392
CENPK1137D_1157 Mcr1p 0,307 CENPK1137D_2230 Sas5p 0,206
CENPK1137D_4950 Gip4p 0,336 CENPK1137D_848 Jlp1p 0,381
CENPK1137D_3350 Snz2p 0,463 CENPK1137D_3985 Sec1p 0,184
CENPK1137D_3339 Sno3p 0,310 CENPK1137D_2710 Hub1p -0,325
CENPK1137D_4947 Pop5p 0,423 CENPK1137D_4976 Erp2p 0,358
CENPK1137D_3375 Smc1p -0,224 CENPK1137D_1503 Ura2p -0,247
CENPK1137D_5137 Qdr2p 0,452 CENPK1137D_837 hypothetical protein 0,225
CENPK1137D_5444 Aap1p -0,277 CENPK1137D_3477 Arg5,6p 0,191
CENPK1137D_4422 Kar4p -0,269 CENPK1137D_4757 Cos111p -0,244
CENPK1137D_4981 Erp1p 0,354 CENPK1137D_5210 Htd2p 0,200
CENPK1137D_5441 Dog1p 0,440 CENPK1137D_3029 Cox18p 0,320
CENPK1137D_3656 Mnn1p 0,382 CENPK1137D_1476 Far1p -0,341
CENPK1137D_2449 Nba1p -0,259 CENPK1137D_5199 Cpr2p -0,202
CENPK1137D_5350 Aim18p 0,234 CENPK1137D_306 hypothetical protein 0,242
CENPK1137D_4963 Fun30p 0,345 CENPK1137D_2663 Spo1p 0,327
CENPK1137D_1676 Rmi1p 0,280 CENPK1137D_3854 Mrh1p 0,224
CENPK1137D_2805 hypothetical protein 0,468 CENPK1137D_931 Stb6p 0,298
CENPK1137D_1226 Smc3p -0,216 CENPK1137D_1754 Smk1p 0,318
CENPK1137D_4627 Ubc4p -0,229 CENPK1137D_2545 hypothetical protein 0,385
CENPK1137D_889 hypothetical protein -0,425 CENPK1137D_2032 Tir2p 0,344
CENPK1137D_4962 Ats1p 0,413 CENPK1137D_4933 hypothetical protein 0,332
CENPK1137D_4987 Ade1p 0,408 CENPK1137D_1703 Pdh1p -0,349
CENPK1137D_1371 Bna2p -0,318 CENPK1137D_3841 Gcv1p -0,296
CENPK1137D_3907 Afr1p -0,382 CENPK1137D_2349 Vma4p -0,162
CENPK1137D_3641 Npp2p 0,255 CENPK1137D_2067 Std1p 0,347
CENPK1137D_2468 Rap1p -0,221 CENPK1137D_4616 hypothetical protein -0,201
CENPK1137D_4449 hypothetical protein 0,254 CENPK1137D_4979 Tfc3p 0,283
CENPK1137D_4568 Chs3p -0,280 CENPK1137D_1022 Pry2p 0,254
CENPK1137D_4584 Fig1p -0,482 CENPK1137D_5134 Ayr1p -0,347
CENPK1137D_1673 Erg10p -0,172 CENPK1137D_5049 Tir3p 0,365
CENPK1137D_5130 Nit1p 0,332 CENPK1137D_3204 Kel2p 0,204
CENPK1137D_4712 Cdc28p 0,215 CENPK1137D_1351 Cdc6p -0,258
CENPK1137D_4614 Tat1p 0,357 CENPK1137D_683 Cdc25p -0,262
CENPK1137D_1350 Aps2p 0,344 CENPK1137D_4868 hypothetical protein 0,203
CENPK1137D_4994 hypothetical protein 0,449

TABLE A.10. Transcriptomics results from the comparison R-GK vs. R-GKU of genes
with multiple testing adjusted q-values < 0.1. The genes are sorted according to
their significance. This table and the corresponding legend text have been repro-
duced from Strucko et al. (2018) with permission [178].

CENPK_ID GeneID log2FC
CENPK1137D_2748 Cos10p -0,650
CENPK1137D_3608 hypothetical protein -0,246
CENPK1137D_2735 Bio5p 0,281
CENPK1137D_2439 Zps1p -0,347
CENPK1137D_3620 Anp1p -0,157
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TABLE A.11. Transcriptomics results from the comparison R-GU vs. R-GKU of genes
with multiple testing adjusted q-values of 0.1. The genes are sorted according to
their significance. This table and the corresponding legend text have been repro-
duced from Strucko et al. (2018) with permission [178].

CENPK_ID GeneID log2FC CENPK_ID GeneID log2FC
CENPK1137D_1498 hypothetical protein 1,959 CENPK1137D_4111 Nse3 0,343
CENPK1137D_1480 hypothetical protein 1,337 CENPK1137D_2614 Aqr1 0,470
CENPK1137D_3610 Dld3 1,244 CENPK1137D_1676 Rmi1 0,289
CENPK1137D_1444 Bat2 0,856 CENPK1137D_425 Yox1 -0,246
CENPK1137D_3315 Ddi3 0,695 CENPK1137D_4944 Fun12 -0,282
CENPK1137D_476 Alt1 0,705 CENPK1137D_4696 Ysw1 0,409
CENPK1137D_5330 Aim17 0,509 CENPK1137D_3481 Ald5 -0,274
CENPK1137D_2238 Mct1 0,488 CENPK1137D_2895 Fmp37 0,303
CENPK1137D_1702 Cit3 0,905 CENPK1137D_4611 Tip1 0,219
CENPK1137D_2748 Cos10 -0,953 CENPK1137D_2402 Fdh1 -0,417
CENPK1137D_718 Dic1 0,668 CENPK1137D_5024 Prm2 0,380
CENPK1137D_5370 Dur3 0,498 CENPK1137D_5069 Ist3 0,426
CENPK1137D_1739 hypothetical protein 0,616 CENPK1137D_1591 Thi21 0,378
CENPK1137D_4319 Glt1 0,460 CENPK1137D_609 Bna5 0,259
CENPK1137D_1525 Dip5 0,818 CENPK1137D_679 Cda1 0,441
CENPK1137D_2537 Mep2 0,792 CENPK1137D_1899 hypothetical protein 0,256
CENPK1137D_1962 Arg1 0,566 CENPK1137D_4620 Ecm8 0,447
CENPK1137D_4500 Cit2 0,713 CENPK1137D_2677 Ato2 0,446
CENPK1137D_1524 Sam3 -0,525 CENPK1137D_1667 Srl4 0,394
CENPK1137D_2886 Mf(alpha)2 0,605 CENPK1137D_2740 Fre4 0,374
CENPK1137D_3267 Dsd1 0,303 CENPK1137D_4088 Din7 0,305
CENPK1137D_5142 Prm5 0,499 CENPK1137D_4368 hypothetical protein -0,311
CENPK1137D_1707 Icl2 0,541 CENPK1137D_4708 Ics2 0,398
CENPK1137D_2735 Bio5 0,422 CENPK1137D_3601 Pug1 0,409
CENPK1137D_5373 Ecm34 0,511 CENPK1137D_2397 Fit3 0,439
CENPK1137D_3854 Mrh1 -0,419 CENPK1137D_4609 Nrg2 0,360
CENPK1137D_1049 Gap1 0,439 CENPK1137D_5106 Cos8 0,277
CENPK1137D_3682 Yat2 0,537 CENPK1137D_920 Hot13 0,403
CENPK1137D_712 Gas2 0,648 CENPK1137D_5433 Put2 0,141
CENPK1137D_1163 Jen1 0,456 CENPK1137D_1640 Mfm1 0,318
CENPK1137D_4614 Tat1 0,486 CENPK1137D_2253 Hes1 0,324
CENPK1137D_1600 Aim43 0,388 CENPK1137D_3615 Yef1 -0,343
CENPK1137D_963 Phd1 0,329 CENPK1137D_1062 Ysr3 0,334
CENPK1137D_1703 Pdh1 0,563 CENPK1137D_1438 hypothetical protein 0,344
CENPK1137D_5382 hypothetical protein -0,376 CENPK1137D_479 Sul2 -0,291
CENPK1137D_1820 Ant1 0,270 CENPK1137D_1737 Gln1 0,328
CENPK1137D_2316 Mum3 0,558 CENPK1137D_4422 Kar4 0,227
CENPK1137D_4336 Gnp1 0,495 CENPK1137D_5133 Kgd1 -0,280
CENPK1137D_28 Ypt7 0,348 CENPK1137D_4478 hypothetical protein 0,407
CENPK1137D_2531 Pga2 0,327 CENPK1137D_3256 Sip2 -0,198
CENPK1137D_183 Imp1 0,314 CENPK1137D_2943 Scw11 -0,325
CENPK1137D_4229 Dit2 0,410 CENPK1137D_2148 Pfk27 0,354
CENPK1137D_612 Thi7 0,356 CENPK1137D_5208 Gos1 -0,191
CENPK1137D_5138 Qdr1 0,420 CENPK1137D_4472 Fus1 0,360
CENPK1137D_1790 Rds3 0,406 CENPK1137D_1434 Met5 -0,301
CENPK1137D_4650 Vid24 0,511 CENPK1137D_412 Cat2 0,326
CENPK1137D_3209 Fmp43 0,339 CENPK1137D_771 Dus3 -0,289
CENPK1137D_5177 Cab2 0,250 CENPK1137D_889 hypothetical protein 0,341
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TABLE A.12. Proteomics results of ALE2, R-GKU, R-GU and R-GK of proteins with
multiple testing adjusted P-values < 0.1. The genes are sorted according to their
significance. This table and the corresponding legend text have been reproduced
from Strucko et al. (2018) with permission [178].
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Table A.13: GO term analysis of significant genes (q-value < 0.1) of the comparison ALE2 vs
R-GKU. This table and the corresponding legend text have been reproduced from Strucko et al.
(2018) with permission [178].
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TABLE A.14. Intracellular metabolites. This table and the corresponding legend text
have been reproduced from Strucko et al. (2018) with permission [178].
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TABLE A.15. Implemented uptake constraints calculated from experimentally mea-
sured consumption rates of human cell lines (Jain 2012). The MetaboliteID in-
dicates the metabolite in the model for which the uptake reaction flux was con-
strained. An uptake and transport reaction were added to the model in case they
did not already exist. Note that the convention for exchange reaction in SBML
formatted metabolic models is that uptake constraints have positive values and
output constraints have negative values. If no uptake was experimentally observed
for a metabolite (no change in medium concentration or an increase in medium
concentration) the corresponding uptake flux was constrained to zero in case a
transport reaction for that metabolite already existed in the model. *Metabolites
that cannot be uniquely identified in the model (none or more than one metabolite
matches in the model) **Metabolites for which no literature evidence exists that
they can be uptaken by human cells

Measured consumption rate [f mol/cell/hour] Fluxes [mmol/gDW/h] Upper constraint
Metabolite MetaboliteID Lowest (all cell lines) Highest (all cell lines)

glucose m01965 -38,901 -861,928 8,619280 8,619280
glutamine m01975 -13,872 -304,272 3,042720 3,042720
arginine m01365 2,893 -35,143 0,351430 0,351430
serine m02896 -2,048 -33,941 0,339410 0,339410
leucine m02360 -1,977 -26,115 0,261150 0,261150
isoleucine m02184 -1,063 -21,599 0,215990 0,215990
lysine m02426 -2,543 -19,234 0,192340 0,192340
asparagine m01369 2,839 -18,501 0,185010 0,185010
valine m03135 -1,779 -15,760 0,157600 0,157600
guanidinoacetate m02036 -1,419 -12,259 0,122590 0,122590
threonine m02993 -1,379 -12,238 0,122380 0,122380
tyrosine m03101 -1,052 -10,701 0,107010 0,107010
aspartate m01370 8,221 -8,645 0,086450 0,086450
phenylalanine m02724 -0,834 -7,305 0,073050 0,073050
methionine m02471 -0,700 -7,015 0,070150 0,070150
glyceraldehyde m01981 0,361 -6,523 0,065230 0,065230
homoserine m02136 -0,408 -5,770 0,057700 0,057700
glycine m01986 11,704 -5,650 0,056500 0,056500
cis-hydroxyproline/trans-hydroxyproline m03037 0,945 -4,368 0,043680 0,043680
glutamate m01974 96,547 -3,823 0,038230 0,038230
alpha-glycerophosphocholine* - 83,958 -3,534 0,035340 -
tryptophan m03089 -0,027 -3,491 0,034910 0,034910
ornithine m02658 9,966 -3,290 0,032900 0,032900
alanine m01307 65,407 -2,750 0,027500 0,027500
choline m01513 0,261 -2,298 0,022980 0,022980
creatine m01619 0,312 -1,594 0,015940 0,015940
proline m02770 5,782 -1,194 0,011940 0,011940
niacinamide m02583 0,028 -0,919 0,009190 0,009190
taurine m02961 0,029 -0,612 0,006120 0,006120
bilirubin m01396 0,639 -0,455 0,004550 0,004550
citrulline m01588 0,062 -0,373 0,003730 0,003730
glycerol_1 m01983 4,174 -0,356 0,003560 0,003560
thiamine m02982 0,249 -0,331 0,003310 0,003310
hypoxanthine m02159 0,040 -0,227 0,002270 0,002270
oxalate m02661 0,108 -0,175 0,001750 0,001750
urate m03120 0,106 -0,153 0,001530 0,001530
succinate m02943 0,639 -0,141 0,001410 0,001410
citrate m01587 6,372 -0,133 0,001330 0,001330
betaine m01393 0,204 -0,133 0,001330 0,001330
uracil m03118 0,482 -0,123 0,001230 0,001230
uridine m03123 0,296 -0,079 0,000790 0,000790
carnitine m02348 0,012 -0,078 0,000780 0,000780
serotonin m02897 0,140 -0,075 0,000750 0,000750
acetoacetate m01253 4,026 -0,073 0,000730 0,000730
carnosine m01423 0,038 -0,066 0,000660 0,000660
cytidine m01630 0,047 -0,042 0,000420 0,000420
dimethylglycine m01708 0,029 -0,041 0,000410 0,000410
pantothenate m02680 0,003 -0,038 0,000380 0,000380
aminoisobutyrate* - 0,005 -0,034 0,000340 -
kynurenine m02319 1,143 -0,030 0,000300 0,000300
2’-deoxycytidine m01668 1,563 -0,029 0,000290 0,000290
2’-deoxyuridine m01673 0,044 -0,024 0,000240 0,000240
folate m01830 0,099 -0,023 0,000230 0,000230
thymidine m02996 0,072 -0,020 0,000200 0,000200
spermidine m02923 0,035 -0,018 0,000180 0,000180
isocitrate m02183 0,070 -0,017 0,000170 0,000170
2-aminoadipate m02322 0,077 -0,017 0,000170 0,000170
kynurenate m00990 0,028 -0,016 0,000160 0,000160
propionate m02772 0,033 -0,016 0,000160 0,000160
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Measured consumption rate [f mol/cell/hour] Fluxes [mmol/gDW/h] Upper constraint
Metabolite MetaboliteID Lowest (all cell lines) Highest (all cell lines)

anthranilate m01342 0,198 -0,014 0,000140 0,000140
lactose m02332 0,122 -0,013 0,000130 0,000130
spermine m02926 0,028 -0,013 0,000130 0,000130
homocysteine m02133 0,219 -0,012 0,000120 0,000120
5-HIAA m01103 0,053 -0,007 0,000070 0,000070
glycodeoxycholate/glycochenodeoxycholate* m01989/m01987 0,001 -0,007 0,000070 -
3-phosphoglycerate m00913 0,050 -0,006 0,000060 0,000060
xanthosine m03149 0,012 -0,006 0,000060 0,000060
thymine m02997 0,036 -0,004 0,000040 0,000040
creatinine** m01621 1,073 -0,003 0,000030 0,000000
phosphoethanolamine m01798 0,218 -0,003 0,000030 0,000030
glucuronate m01973 0,038 -0,003 0,000030 0,000030
sucrose m02945 0,025 -0,003 0,000030 0,000030
taurodeoxycholate/taurochenodeoxycholate* - 0,003 -0,003 0,000030 -
XMP m03150 0,042 -0,003 0,000030 0,000030
2-phosphoglycerate m00674 0,057 -0,002 0,000020 0,000020
4-hydroxybenzoate m00995 0,012 -0,002 0,000020 0,000020
alpha-ketoglutarate** m01306 0,026 -0,002 0,000020 0,000000
glycocholate** m01988 0,000 -0,002 0,000020 0,000000
IMP m02167 0,004 -0,002 0,000020 0,000020
GABA m00970 0,344 -0,001 0,000010 0,000010
4-pyridoxate m01033 0,003 -0,001 0,000010 0,000010
adenine m01279 0,018 -0,001 0,000010 0,000010
AMP m01334 0,054 -0,001 0,000010 0,000010
cystathionine m02349 0,259 -0,001 0,000010 0,000010
glutathione oxidized m02027 0,911 -0,001 0,000010 0,000010
inosine m02170 0,026 -0,001 0,000010 0,000010
niacin m02586 0,001 -0,001 0,000010 0,000010
PEP m02696 0,017 -0,001 0,000010 0,000010
quinolinate** m02822 0,003 -0,001 0,000010 0,000000
taurocholate** m02963 0,000 -0,001 0,000010 0,000000
thyroxine m02998 0,000 -0,001 0,000010 0,000010
methylmalonate m02479 0,000 0,000 0,000000 -
allantoin m01313 0,000 0,000 0,000000 -
ADMA m02577 0,000 0,000 0,000000 -
maleate* - 0,000 0,000 0,000000 -
malonate m02440 0,000 0,000 0,000000 0,000000
lithocholate m02402 0,000 0,000 0,000000 -
citrate/isocitrate* - 0,000 0,000 0,000000 -
cotinine* - 0,000 0,000 0,000000 -
trimethylamine-N-oxide m03054 0,000 0,000 0,000000 -
phenylacetylglycine m02723 0,000 0,000 0,000000 0,000000
biotin m01401 0,000 0,000 0,000000 0,000000
hippurate m02123 0,000 0,000 0,000000 -
hyodeoxycholate/ursodeoxycholate* m02155/m03129 0,000 0,000 0,000000 -
salicylurate* - 0,000 0,000 0,000000 -
ascorbate m01368 0,000 0,000 0,000000 0,000000
fru-1,6-DP/fru-2,6-DP/glc-1,6-DP* - 0,000 0,000 0,000000 -
chenodeoxycholate/deoxycholate* - 0,000 0,000 0,000000 -
taurolithocholate m02965 0,000 0,000 0,000000 -
glycerol_2* - 0,000 0,000 0,000000 -
UDP-galactose/UDP-glucose* m03107/m03108 0,000 0,000 0,000000 -
homocystine* - 0,000 0,000 0,000000 -
OH-phenylpyruvate m02725 0,081 0,000 0,000000 -
3-hydroxyanthranilate m00775 0,284 0,000 0,000000 -
adenosine m01280 0,068 0,000 0,000000 0,000000
5’-adenosylhomocysteine m02871 0,023 0,000 0,000000 -
N-carbamoyl-beta-alanine m00923 0,199 0,000 0,000000 -
CMP m01590 0,037 0,000 0,000000 0,000000
2’-deoxyadenosine m01666 0,000 0,000 0,000000 0,000000
dCMP m01644 0,001 0,000 0,000000 -
DHAP m01690 0,086 0,000 0,000000 -
GMP m02016 0,038 0,000 0,000000 0,000000
3-OH-kynurenate m00788 0,010 0,000 0,000000 -
nicotinic acid mononucleotide* - 0,001 0,000 0,000000 -
orotate m02659 0,027 0,000 0,000000 0,000000
OMP m02660 0,001 0,000 0,000000 -
triiodothyronine m03052 0,000 0,000 0,000000 0,000000
UDP-glucuronate m03109 0,001 0,000 0,000000 -
UMP m03114 0,082 0,000 0,000000 0,000000
xanthine m03148 0,233 0,000 0,000000 -
aconitate m01580 0,000 0,000 0,000000 -
adipate* - 0,000 0,000 0,000000 -
pyruvate m02819 0,000 0,000 0,000000 0,000000
NMMA* - 0,000 0,000 0,000000 -
alpha-glycerophosphate m02914 0,167 0,001 -0,000010 -
sorbitol m01682 0,339 0,005 -0,000050 0,000000
fumarate m01862 0,361 0,008 -0,000080 -
phosphocholine m02738 2,631 0,013 -0,000130 -
malate m02439 1,663 0,042 -0,000420 -
lactate m02403 1345,141 32,349 -0,323490 0,000000
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TABLE A.16. Model constraints for uptake reactions fluxes, which were implemented
in addition to the constraints added from (Jain et al. 2012). The MetaboliteID
indicates the metabolite in the model for which the uptake reaction flux was
constrained. The column “Constraints” shows the lower and the upper bounds in
brackets. The reactions were either added because of the minimal media analysis
or because of manual curation.

Metabolite MetaboliteID Constraints Added by
alpha-tocopherol m01327 [0, 0.01] Minimal media analysis
[B12] aquacob(III)alamin m01361 [0, 0.01] Minimal media analysis
biotin m01401 [0, 0.01] Minimal media analysis
Ca2+ m01413 [0, 1000] Minimal media analysis
chloride m01442 [0, 1000] Minimal media analysis
CO2 m01596 [0, 0.01] Minimal media analysis
Fe2+ m01821 [0, 1000] Minimal media analysis
Fe3+ m01822 [0, 1000] Minimal media analysis
folate m01830 [0, 0.01] Minimal media analysis
gamma-tocopherol m01935 [0, 0.01] Minimal media analysis
H+ m02039 [0, 1000] Minimal media analysis
H2O m02040 [0, 1000] Minimal media analysis
HCO3- m02046 [0, 1000] Minimal media analysis
histidine m02125 [0, 1.7] Minimal media analysis
K+ m02200 [0, 1000] Minimal media analysis
lipoic acid m02394 [0, 0.01] Minimal media analysis
lithocholate m02402 [0, 0.0001] Minimal media analysis
malonate m02440 [0, 0.001] Minimal media analysis
O2 m02630 [0, 2] Minimal media analysis
Pi m02751 [0, 2] Minimal media analysis
retinol m02834 [0, 0.01] Minimal media analysis
riboflavin m02842 [0, 0.01] Minimal media analysis
sulfate m02946 [0, 1000] Minimal media analysis
arginine m01365 [0, 0.01] Manual curation
lysine m02426 [0, 0.0565] Manual curation
pantothenate m02680 [0, 0.01] Manual curation
phenylalanine m02724 [0, 0.01] Manual curation
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TABLE A.17. Implemeted improvements from the previous models Recon 2.2 and Recon
2M.1. “Stoich” includes changes in the reaction directionality as well.
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]+
undecylic

acid[m
]=>

A
M

P
[m

]+
P

P
i[m

]+
undecanoyl-C

oA
[m

]
R

econ
2.2

Stoich
H

M
R

_0188
A

T
P

[c]+
C

oA
[c]+

lauric
acid[c]=>

A
M

P
[c]+

P
P

i[c]+
lauroyl-C

oA
[c]

R
econ

2.2
Stoich

H
M

R
_0192

A
T

P
[c]+

C
oA

[c]+
tridecylic

acid[c]=>
A

M
P

[c]+
P

P
i[c]+

tridecanoyl-C
oA

[c]
R

econ
2.2

Stoich
H

M
R

_0196
A

T
P

[c]+
C

oA
[c]+

m
yristic

acid[c]=>
A

M
P

[c]+
P

P
i[c]+

m
yristoyl-C

oA
[c]

R
econ

2.2
Stoich

H
M

R
_0200

(9E
)-tetradecenoic

acid[c]+
A

T
P

[c]+
C

oA
[c]=>

(9E
)-tetradecenoyl-C

oA
[c]+

A
M

P
[c]+

P
P

i[c]
R

econ
2.2

Stoich
H

M
R

_0204
(7Z)-tetradecenoic

acid[c]+
A

T
P

[c]+
C

oA
[c]=>

(7Z)-tetradecenoyl-C
oA

[c]+
A

M
P

[c]+
P

P
i[c]

R
econ

2.2
Stoich

H
M

R
_0209

A
T

P
[c]+

C
oA

[c]+
physeteric

acid[c]=>
5-tetradecenoyl-C

oA
[c]+

A
M

P
[c]+

P
P

i[c]
R

econ
2.2

Stoich
H

M
R

_0213
A

T
P

[c]+
C

oA
[c]+

pentadecylic
acid[c]=>

A
M

P
[c]+

P
P

i[c]+
pentadecanoyl-C

oA
[c]

R
econ

2.2
Stoich

158



R
eactionID

R
eaction

F
rom

C
hange

H
M

R
_0217

A
T

P
[c]+

C
oA

[c]+
palm

itate[c]=>
A

M
P

[c]+
P

P
i[c]+

palm
itoyl-C

oA
[c]

R
econ

2.2
Stoich

H
M

R
_0226

A
T

P
[c]+

C
oA

[c]+
palm

itolate[c]=>
A

M
P

[c]+
P

P
i[c]+

palm
itoleoyl-C

oA
[c]

R
econ

2.2
Stoich

H
M

R
_0233

7-palm
itoleic

acid[c]+
A

T
P

[c]+
C

oA
[c]=>

7-hexadecenoyl-C
oA

[c]+
A

M
P

[c]+
P

P
i[c]

R
econ

2.2
Stoich

H
M

R
_0237

A
T

P
[c]+

C
oA

[c]+
m

argaric
acid[c]=>

A
M

P
[c]+

P
P

i[c]+
heptadecanoyl-C

oA
[c]

R
econ

2.2
Stoich

H
M

R
_0241

(10Z)-heptadecenoic
acid[c]+

A
T

P
[c]+

C
oA

[c]=>
(10Z)-heptadecenoyl-C

oA
[c]+

A
M

P
[c]+

P
P

i[c]
R

econ
2.2

Stoich
H

M
R

_0245
9-heptadecylenic

acid[c]+
A

T
P

[c]+
C

oA
[c]=>

9-heptadecenoyl-C
oA

[c]+
A

M
P

[c]+
P

P
i[c]

R
econ

2.2
Stoich

H
M

R
_0249

A
T

P
[c]+

C
oA

[c]+
stearate[c]=>

A
M

P
[c]+

P
P

i[c]+
stearoyl-C

oA
[c]

R
econ

2.2
Stoich

H
M

R
_0255

(13Z)-octadecenoic
acid[c]+

A
T

P
[c]+

C
oA

[c]=>
(13Z)-octadecenoyl-C

oA
[c]+

A
M

P
[c]+

P
P

i[c]
R

econ
2.2

Stoich
H

M
R

_0259
A

T
P

[c]+
C

oA
[c]+

cis-vaccenic
acid[c]=>

A
M

P
[c]+

P
P

i[c]+
cis-vaccenoyl-C

oA
[c]

R
econ

2.2
Stoich

H
M

R
_0263

A
T

P
[c]+

C
oA

[c]+
oleate[c]=>

A
M

P
[c]+

P
P

i[c]+
oleoyl-C

oA
[c]

R
econ

2.2
Stoich

H
M

R
_0267

A
T

P
[c]+

C
oA

[c]+
elaidate[c]=>

(9E
)-octadecenoyl-C

oA
[c]+

A
M

P
[c]+

P
P

i[c]
R

econ
2.2

Stoich
H

M
R

_0271
(7Z)-octadecenoic

acid[c]+
A

T
P

[c]+
C

oA
[c]=>

(13Z)-octadecenoyl-C
oA

[c]+
A

M
P

[c]+
P

P
i[c]

R
econ

2.2
Stoich

H
M

R
_0275

(6Z,9Z)-octadecadienoic
acid[c]+

A
T

P
[c]+

C
oA

[c]=>
(6Z,9Z)-octadecadienoyl-C

oA
[c]+

A
M

P
[c]+

P
P

i[c]
R

econ
2.2

Stoich
H

M
R

_0279
A

T
P

[c]+
C

oA
[c]+

nonadecylic
acid[c]=>

A
M

P
[c]+

P
P

i[c]+
nonadecanoyl-C

oA
[c]

R
econ

2.2
Stoich

H
M

R
_0283

A
T

P
[c]+

C
oA

[c]+
eicosanoate[c]=>

A
M

P
[c]+

P
P

i[c]+
eicosanoyl-C

oA
[c]

R
econ

2.2
Stoich

H
M

R
_0289

(13Z)-eicosenoic
acid[c]+

A
T

P
[c]+

C
oA

[c]=>
(13Z)-eicosenoyl-C

oA
[c]+

A
M

P
[c]+

P
P

i[c]
R

econ
2.2

Stoich
H

M
R

_0293
A

T
P

[c]+
C

oA
[c]+

cis-gondoic
acid[c]=>

(11Z)-eicosenoyl-C
oA

[c]+
A

M
P

[c]+
P

P
i[c]

R
econ

2.2
Stoich

H
M

R
_0297

9-eicosenoic
acid[c]+

A
T

P
[c]+

C
oA

[c]=>
9-eicosenoyl-C

oA
[c]+

A
M

P
[c]+

P
P

i[c]
R

econ
2.2

Stoich
H

M
R

_0301
8,11-eicosadienoic

acid[c]+
A

T
P

[c]+
C

oA
[c]=>

(8Z,11Z)-eicosadienoyl-C
oA

[c]+
A

M
P

[c]+
P

P
i[c]

R
econ

2.2
Stoich

H
M

R
_0305

A
T

P
[c]+

C
oA

[c]+
m

ead
acid[c]=>

(5Z,8Z,11Z)-eicosatrienoyl-C
oA

[c]+
A

M
P

[c]+
P

P
i[c]

R
econ

2.2
Stoich

H
M

R
_0309

A
T

P
[c]+

C
oA

[c]+
henicosanoic

acid[c]=>
A

M
P

[c]+
P

P
i[c]+

heneicosanoyl-C
oA

[c]
R

econ
2.2

Stoich
H

M
R

_0313
A

T
P

[c]+
C

oA
[c]+

behenic
acid[c]=>

A
M

P
[c]+

P
P

i[c]+
docosanoyl-C

oA
[c]

R
econ

2.2
Stoich

H
M

R
_0319

A
T

P
[c]+

C
oA

[c]+
cis-erucic

acid[c]=>
(13Z)-docosenoyl-C

oA
[c]+

A
M

P
[c]+

P
P

i[c]
R

econ
2.2

Stoich
H

M
R

_0323
A

T
P

[c]+
C

oA
[c]+

cis-cetoleic
acid[c]=>

(11Z)-docosenoyl-C
oA

[c]+
A

M
P

[c]+
P

P
i[c]

R
econ

2.2
Stoich

H
M

R
_0327

A
T

P
[c]+

C
oA

[c]+
tricosanoic

acid[c]=>
A

M
P

[c]+
P

P
i[c]+

tricosanoyl-C
oA

[c]
R

econ
2.2

Stoich
H

M
R

_0331
A

T
P

[c]+
C

oA
[c]+

lignocerate[c]=>
A

M
P

[c]+
P

P
i[c]+

tetracosanoyl-C
oA

[c]
R

econ
2.2

Stoich
H

M
R

_0337
A

T
P

[c]+
C

oA
[c]+

nervonic
acid[c]=>

(15Z)-tetracosenoyl-C
oA

[c]+
A

M
P

[c]+
P

P
i[c]

R
econ

2.2
Stoich

H
M

R
_0341

A
T

P
[c]+

C
oA

[c]+
cerotic

acid[c]=>
A

M
P

[c]+
P

P
i[c]+

hexacosanoyl-C
oA

[c]
R

econ
2.2

Stoich
H

M
R

_0345
A

T
P

[c]+
C

oA
[c]+

xim
enic

acid[c]=>
A

M
P

[c]+
P

P
i[c]+

hexacosenoyl-C
oA

[c]
R

econ
2.2

Stoich
H

M
R

_0349
A

T
P

[c]+
C

oA
[c]+

linolenate[c]=>
A

M
P

[c]+
P

P
i[c]+

linolenoyl-C
oA

[c]
R

econ
2.2

Stoich
H

M
R

_0353
A

T
P

[c]+
C

oA
[c]+

stearidonic
acid[c]=>

(6Z,9Z,12Z,15Z)-octadecatetraenoyl-C
oA

[c]+
A

M
P

[c]+
P

P
i[c]

R
econ

2.2
Stoich

H
M

R
_0357

A
T

P
[c]+

C
oA

[c]+
om

ega-3-arachidonic
acid[c]=>

(8Z,11Z,14Z,17Z)-eicosatetraenoyl-C
oA

[c]+
A

M
P

[c]+
P

P
i[c]

R
econ

2.2
Stoich

H
M

R
_0361

A
T

P
[c]+

C
oA

[c]+
E

PA
[c]=>

(5Z,8Z,11Z,14Z,17Z)-eicosapentaenoyl-C
oA

[c]+
A

M
P

[c]+
P

P
i[c]

R
econ

2.2
Stoich

H
M

R
_0365

A
T

P
[c]+

C
oA

[c]+
D

PA
[c]=>

(7Z,10Z,13Z,16Z,19Z)-docosapentaenoyl-C
oA

[c]+
A

M
P

[c]+
P

P
i[c]

R
econ

2.2
Stoich

H
M

R
_0369

(9Z,12Z,15Z,18Z,21Z)-T
PA

[c]+
A

T
P

[c]+
C

oA
[c]=>

(9Z,12Z,15Z,18Z,21Z)-tetracosapentaenoyl-C
oA

[c]+
A

M
P

[c]+
P

P
i[c]

R
econ

2.2
Stoich

H
M

R
_0373

(6Z,9Z,12Z,15Z,18Z,21Z)-T
H

A
[c]+

A
T

P
[c]+

C
oA

[c]=>
(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosahexaenoyl-C

oA
[c]+

A
M

P
[c]+

P
P

i[c]
R

econ
2.2

Stoich
H

M
R

_0377
A

T
P

[c]+
C

oA
[c]+

D
H

A
[c]=>

(4Z,7Z,10Z,13Z,16Z,19Z)-docosahexaenoyl-C
oA

[c]+
A

M
P

[c]+
P

P
i[c]

R
econ

2.2
Stoich

H
M

R
_0381

(11Z,14Z,17Z)-eicosatrienoic
acid[c]+

A
T

P
[c]+

C
oA

[c]=>
(11Z,14Z,17Z)-eicosatrienoyl-C

oA
[c]+

A
M

P
[c]+

P
P

i[c]
R

econ
2.2

Stoich
H

M
R

_0385
13,16,19-docosatrienoic

acid[c]+
A

T
P

[c]+
C

oA
[c]=>

13,16,19-docosatrienoyl-C
oA

[c]+
A

M
P

[c]+
P

P
i[c]

R
econ

2.2
Stoich

H
M

R
_0389

10,13,16,19-docosatetraenoic
acid[c]+

A
T

P
[c]+

C
oA

[c]=>
10,13,16,19-docosatetraenoyl-C

oA
[c]+

A
M

P
[c]+

P
P

i[c]
R

econ
2.2

Stoich
H

M
R

_0393
12,15,18,21-tetracosatetraenoic

acid[c]+
A

T
P

[c]+
C

oA
[c]=>

12,15,18,21-tetracosatetraenoyl-C
oA

[c]+
A

M
P

[c]+
P

P
i[c]

R
econ

2.2
Stoich

H
M

R
_0397

A
T

P
[c]+

C
oA

[c]+
linoleate[c]=>

A
M

P
[c]+

P
P

i[c]+
linoleoyl-C

oA
[c]

R
econ

2.2
Stoich

H
M

R
_0401

A
T

P
[c]+

C
oA

[c]+
gam

m
a-linolenate[c]=>

A
M

P
[c]+

P
P

i[c]+
gam

m
a-linolenoyl-C

oA
[c]

R
econ

2.2
Stoich

H
M

R
_0405

A
T

P
[c]+

C
oA

[c]+
dihom

o-gam
m

a-linolenate[c]=>
A

M
P

[c]+
P

P
i[c]+

dihom
o-gam

m
a-linolenoyl-C

oA
[c]

R
econ

2.2
Stoich

H
M

R
_0409

A
T

P
[c]+

C
oA

[c]+
arachidonate[c]=>

A
M

P
[c]+

P
P

i[c]+
arachidonyl-C

oA
[c]

R
econ

2.2
Stoich

H
M

R
_0413

A
T

P
[c]+

C
oA

[c]+
adrenic

acid[c]=>
(7Z,10Z,13Z,16Z)-docosatetraenoyl-C

oA
[c]+

A
M

P
[c]+

P
P

i[c]
R

econ
2.2

Stoich
H

M
R

_0417
(9Z,12Z,15Z,18Z)-T

T
A

[c]+
A

T
P

[c]+
C

oA
[c]=>

(9Z,12Z,15Z,18Z)-tetracosatetraenoyl-C
oA

[c]+
A

M
P

[c]+
P

P
i[c]

R
econ

2.2
Stoich

H
M

R
_0421

(6Z,9Z,12Z,15Z,18Z)-T
PA

[c]+
A

T
P

[c]+
C

oA
[c]=>

(6Z,9Z,12Z,15Z,18Z)-tetracosapentaenoyl-C
oA

[c]+
A

M
P

[c]+
P

P
i[c]

R
econ

2.2
Stoich

H
M

R
_0425

(4Z,7Z,10Z,13Z,16Z)-D
PA

[c]+
A

T
P

[c]+
C

oA
[c]=>

(4Z,7Z,10Z,13Z,16Z)-docosapentaenoyl-C
oA

[c]+
A

M
P

[c]+
P

P
i[c]

R
econ

2.2
Stoich

H
M

R
_0429

(11Z,14Z)-eicosadienoic
acid[c]+

A
T

P
[c]+

C
oA

[c]=>
(11Z,14Z)-eicosadienoyl-C

oA
[c]+

A
M

P
[c]+

P
P

i[c]
R

econ
2.2

Stoich
H

M
R

_0433
(13Z,16Z)-docosadienoic

acid[c]+
A

T
P

[c]+
C

oA
[c]=>

(13Z,16Z)-docosadienoyl-C
oA

[c]+
A

M
P

[c]+
P

P
i[c]

R
econ

2.2
Stoich

H
M

R
_0437

10,13,16-docosatriynoic
acid[c]+

A
T

P
[c]+

C
oA

[c]=>
10,13,16-docosatrienoyl-C

oA
[c]+

A
M

P
[c]+

P
P

i[c]
R

econ
2.2

Stoich
H

M
R

_2942
A

T
P

[r]+
C

oA
[r]+

lauric
acid[r]=>

A
M

P
[r]+

P
P

i[r]+
lauroyl-C

oA
[r]

R
econ

2.2
Stoich

H
M

R
_2943

A
T

P
[r]+

C
oA

[r]+
tridecylic

acid[r]=>
A

M
P

[r]+
P

P
i[r]+

tridecanoyl-C
oA

[r]
R

econ
2.2

Stoich
H

M
R

_2944
A

T
P

[r]+
C

oA
[r]+

m
yristic

acid[r]=>
A

M
P

[r]+
P

P
i[r]+

m
yristoyl-C

oA
[r]

R
econ

2.2
Stoich

H
M

R
_2945

A
T

P
[r]+

C
oA

[r]+
physeteric

acid[r]=>
5-tetradecenoyl-C

oA
[r]+

A
M

P
[r]+

P
P

i[r]
R

econ
2.2

Stoich
H

M
R

_2946
(9E

)-tetradecenoic
acid[r]+

A
T

P
[r]+

C
oA

[r]=>
(9E

)-tetradecenoyl-C
oA

[r]+
A

M
P

[r]+
P

P
i[r]

R
econ

2.2
Stoich

H
M

R
_2947

(7Z)-tetradecenoic
acid[r]+

A
T

P
[r]+

C
oA

[r]=>
(7Z)-tetradecenoyl-C

oA
[r]+

A
M

P
[r]+

P
P

i[r]
R

econ
2.2

Stoich
H

M
R

_2948
A

T
P

[r]+
C

oA
[r]+

pentadecylic
acid[r]=>

A
M

P
[r]+

P
P

i[r]+
pentadecanoyl-C

oA
[r]

R
econ

2.2
Stoich

H
M

R
_2949

A
T

P
[r]+

C
oA

[r]+
palm

itate[r]=>
A

M
P

[r]+
P

P
i[r]+

palm
itoyl-C

oA
[r]

R
econ

2.2
Stoich

H
M

R
_2951

7-palm
itoleic

acid[r]+
A

T
P

[r]+
C

oA
[r]=>

7-hexadecenoyl-C
oA

[r]+
A

M
P

[r]+
P

P
i[r]

R
econ

2.2
Stoich

H
M

R
_2952

A
T

P
[r]+

C
oA

[r]+
palm

itolate[r]=>
A

M
P

[r]+
P

P
i[r]+

palm
itoleoyl-C

oA
[r]

R
econ

2.2
Stoich

H
M

R
_2954

A
T

P
[r]+

C
oA

[r]+
m

argaric
acid[r]=>

A
M

P
[r]+

P
P

i[r]+
heptadecanoyl-C

oA
[r]

R
econ

2.2
Stoich

159
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R
eactionID

R
eaction

F
rom

C
hange

H
M

R
_2955

(10Z)-heptadecenoic
acid[r]+

A
T

P
[r]+

C
oA

[r]=>
(10Z)-heptadecenoyl-C

oA
[r]+

A
M

P
[r]+

P
P

i[r]
R

econ
2.2

Stoich
H

M
R

_2956
9-heptadecylenic

acid[r]+
A

T
P

[r]+
C

oA
[r]=>

9-heptadecenoyl-C
oA

[r]+
A

M
P

[r]+
P

P
i[r]

R
econ

2.2
Stoich

H
M

R
_2957

A
T

P
[r]+

C
oA

[r]+
stearate[r]=>

A
M

P
[r]+

P
P

i[r]+
stearoyl-C

oA
[r]

R
econ

2.2
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Table A.18: Implemented constraints for reaction fluxes with infeasible reaction directionalities.

Reaction Introduced Constraint Reaction Introduced Constraint
HMR_0156 [0, 1000] HMR_2956 [0, 1000]
HMR_0165 [0, 1000] HMR_2957 [0, 1000]
HMR_0168 [0, 1000] HMR_2959 [0, 1000]
HMR_0171 [0, 1000] HMR_2961 [0, 1000]
HMR_0174 [0, 1000] HMR_2962 [0, 1000]
HMR_0177 [0, 1000] HMR_2963 [0, 1000]
HMR_0180 [0, 1000] HMR_2964 [0, 1000]
HMR_0184 [0, 1000] HMR_2965 [0, 1000]
HMR_0188 [0, 1000] HMR_2966 [0, 1000]
HMR_0192 [0, 1000] HMR_2967 [0, 1000]
HMR_0196 [0, 1000] HMR_2968 [0, 1000]
HMR_0200 [0, 1000] HMR_2969 [0, 1000]
HMR_0204 [0, 1000] HMR_2970 [0, 1000]
HMR_0209 [0, 1000] HMR_2971 [0, 1000]
HMR_0213 [0, 1000] HMR_2972 [0, 1000]
HMR_0217 [0, 1000] HMR_2973 [0, 1000]
HMR_0226 [0, 1000] HMR_2974 [0, 1000]
HMR_0233 [0, 1000] HMR_2975 [0, 1000]
HMR_0237 [0, 1000] HMR_2976 [0, 1000]
HMR_0241 [0, 1000] HMR_2977 [0, 1000]
HMR_0245 [0, 1000] HMR_2978 [0, 1000]
HMR_0249 [0, 1000] HMR_2979 [0, 1000]
HMR_0255 [0, 1000] HMR_2980 [0, 1000]
HMR_0259 [0, 1000] HMR_2981 [0, 1000]
HMR_0263 [0, 1000] HMR_2982 [0, 1000]
HMR_0267 [0, 1000] HMR_2983 [0, 1000]
HMR_0271 [0, 1000] HMR_2984 [0, 1000]
HMR_0275 [0, 1000] HMR_2985 [0, 1000]
HMR_0279 [0, 1000] HMR_2986 [0, 1000]
HMR_0283 [0, 1000] HMR_2987 [0, 1000]
HMR_0289 [0, 1000] HMR_2988 [0, 1000]
HMR_0293 [0, 1000] HMR_2989 [0, 1000]
HMR_0297 [0, 1000] HMR_2990 [0, 1000]
HMR_0301 [0, 1000] HMR_2991 [0, 1000]
HMR_0305 [0, 1000] HMR_2992 [0, 1000]
HMR_0309 [0, 1000] HMR_2994 [0, 1000]
HMR_0313 [0, 1000] HMR_2996 [0, 1000]
HMR_0319 [0, 1000] HMR_2998 [0, 1000]
HMR_0323 [0, 1000] HMR_2999 [0, 1000]
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Reaction Introduced Constraint Reaction Introduced Constraint
HMR_0327 [0, 1000] HMR_3000 [0, 1000]
HMR_0331 [0, 1000] HMR_3001 [0, 1000]
HMR_0337 [0, 1000] HMR_3002 [0, 1000]
HMR_0341 [0, 1000] HMR_3003 [0, 1000]
HMR_0345 [0, 1000] HMR_4459 [0, 1000]
HMR_0349 [0, 1000] HMR_4460 [0, 1000]
HMR_0353 [0, 1000] HMR_4727 [0, 1000]
HMR_0357 [0, 1000] HMR_4071 [-1000, 0]
HMR_0361 [0, 1000] HMR_3769 [-1000, 0]
HMR_0365 [0, 1000] HMR_4686 [-1000, 0]
HMR_0369 [0, 1000] HMR_4687 [-1000, 0]
HMR_0373 [0, 1000] HMR_4442 [0, 1000]
HMR_0377 [0, 1000] HMR_4444 [0, 1000]
HMR_0381 [0, 1000] HMR_4654 [0, 1000]
HMR_0385 [0, 1000] HMR_4655 [0, 1000]
HMR_0389 [0, 1000] HMR_4332 [0, 1000]
HMR_0393 [0, 1000] HMR_4333 [0, 1000]
HMR_0397 [0, 1000] HMR_4335 [0, 1000]
HMR_0401 [0, 1000] HMR_4145 [0, 1000]
HMR_0405 [0, 1000] HMR_4315 [0, 1000]
HMR_0409 [0, 1000] HMR_4316 [0, 1000]
HMR_0413 [0, 1000] HMR_3995 [-1000, 0]
HMR_0417 [0, 1000] HMR_3996 [-1000, 0]
HMR_0421 [0, 1000] HMR_8682 [-1000, 0]
HMR_0425 [0, 1000] HMR_8530 [0, 1000]
HMR_0429 [0, 1000] HMR_4085 [-1000, 0]
HMR_0433 [0, 1000] HMR_4086 [-1000, 0]
HMR_0437 [0, 1000] HMR_5351 [0, 1000]
HMR_2942 [0, 1000] HMR_4586 [0, 1000]
HMR_2943 [0, 1000] HMR_0453 [0, 1000]
HMR_2944 [0, 1000] HMR_4700 [0, 1000]
HMR_2945 [0, 1000] HMR_8097 [-1000, 0]
HMR_2946 [0, 1000] HMR_7702 [0, 1000]
HMR_2947 [0, 1000] HMR_3802 [-1000, 0]
HMR_2948 [0, 1000] HMR_3804 [-1000, 0]
HMR_2949 [0, 1000] HMR_8507 [-1000, 0]
HMR_2951 [0, 1000] HMR_8508 [-1000, 0]
HMR_2952 [0, 1000] HMR_3838 [-1000, 0]
HMR_2954 [0, 1000] HMR_3819 [-1000, 0]
HMR_2955 [0, 1000] HMR_3820 [-1000, 0]
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TABLE A.19. Flux irrelevant reactions, which carry biological instead of metabolic
function and were therefore removed from the model. PM = protein modification, P
= protein assembly, degradation or transport, BGB = blood group biosynthesis.

Reaction ID Reaction Group Reaction ID Reaction Group Reaction ID Reaction Group Reaction ID Reaction Group
HMR_5415 PMM HMR_7490 PMM HMR_7411 PMM HMR_8284 PMM
HMR_5416 PMM HMR_7491 PMM HMR_7412 PMM HMR_8285 PMM
HMR_5417 PMM HMR_7492 PMM HMR_7413 PMM HMR_8286 PMM
HMR_6983 PMM HMR_7493 PMM HMR_7414 PMM HMR_8287 PMM
HMR_6984 PMM HMR_7494 PMM HMR_7415 PMM HMR_8288 PMM
HMR_6985 PMM HMR_7495 PMM HMR_7416 PMM HMR_8291 PMM
HMR_8025 PMM HMR_7496 PMM HMR_7417 PMM HMR_8292 PMM
HMR_8026 PMM HMR_7497 PMM HMR_7418 PMM HMR_8293 PMM
HMR_8027 PMM HMR_7498 PMM HMR_7419 PMM HMR_8294 PMM
HMR_8029 PMM HMR_7509 PMM HMR_7420 PMM HMR_8295 PMM
HMR_7171 PMM HMR_7510 PMM HMR_7421 PMM HMR_8298 PMM
HMR_7172 PMM HMR_7519 PMM HMR_7422 PMM HMR_8301 PMM
HMR_7174 PMM HMR_7520 PMM HMR_7423 PMM HMR_8302 PMM
HMR_7175 PMM HMR_7521 PMM HMR_7424 PMM HMR_8305 PMM
HMR_7180 PMM HMR_7522 PMM HMR_7425 PMM HMR_8306 PMM
HMR_7181 PMM HMR_7534 PMM HMR_7426 PMM HMR_8307 PMM
HMR_7183 PMM HMR_7535 PMM HMR_7427 PMM HMR_8308 PMM
HMR_7197 PMM HMR_7536 PMM HMR_7455 PMM HMR_8309 PMM
HMR_7436 PMM HMR_7537 PMM HMR_7456 PMM HMR_8316 PMM
HMR_7438 PMM HMR_7538 PMM HMR_7457 PMM HMR_8317 PMM
HMR_7440 PMM HMR_7551 PMM HMR_7458 PMM HMR_8318 PMM
HMR_8254 PMM HMR_7552 PMM HMR_7459 PMM HMR_8319 PMM
HMR_8255 PMM HMR_7553 PMM HMR_7460 PMM HMR_8322 PMM
HMR_8256 PMM HMR_7554 PMM HMR_7461 PMM HMR_8325 PMM
HMR_8257 PMM HMR_7501 PMM HMR_7462 PMM HMR_8326 PMM
HMR_8258 PMM HMR_7502 PMM HMR_7463 PMM HMR_8327 PMM
HMR_8260 PMM HMR_7503 PMM HMR_7464 PMM HMR_8330 PMM
HMR_8261 PMM HMR_7504 PMM HMR_7465 PMM HMR_8331 PMM
HMR_1532 PMM HMR_7505 PMM HMR_7466 PMM HMR_8332 PMM
HMR_7254 PMM HMR_7506 PMM HMR_7467 PMM HMR_8333 PMM
HMR_7255 PMM HMR_7507 PMM HMR_7468 PMM HMR_8334 PMM
HMR_7256 PMM HMR_7508 PMM HMR_7469 PMM HMR_8337 PMM
HMR_7258 PMM HMR_7513 PMM HMR_7484 PMM HMR_8270 PMM
HMR_7259 PMM HMR_7525 PMM HMR_7485 PMM HMR_8273 PMM
HMR_7260 PMM HMR_7526 PMM HMR_7486 PMM HMR_8283 PMM
HMR_7261 PMM HMR_7527 PMM HMR_7487 PMM HMR_8300 PMM
HMR_7263 PMM HMR_7528 PMM HMR_7488 PMM HMR_8304 PMM
HMR_7264 PMM HMR_7529 PMM HMR_7489 PMM HMR_8311 PMM
HMR_7265 PMM HMR_7530 PMM HMR_7623 PMM HMR_8313 PMM
HMR_7266 PMM HMR_7531 PMM HMR_7625 PMM HMR_8315 PMM
HMR_7267 PMM HMR_7532 PMM HMR_9490 PMM HMR_8321 PMM
HMR_7268 PMM HMR_7533 PMM HMR_9491 PMM HMR_8324 PMM
HMR_7269 PMM HMR_7541 PMM HMR_9492 PMM HMR_8265 PMM
HMR_7270 PMM HMR_7542 PMM HMR_9493 PMM HMR_8269 PMM
HMR_7271 PMM HMR_7543 PMM HMR_9494 PMM HMR_8272 PMM
HMR_7274 PMM HMR_7544 PMM HMR_9495 PMM HMR_8282 PMM
HMR_7275 PMM HMR_7545 PMM HMR_9496 PMM HMR_8289 PMM
HMR_7276 PMM HMR_7546 PMM HMR_9498 PMM HMR_8296 PMM
HMR_7277 PMM HMR_7547 PMM HMR_9499 PMM HMR_8299 PMM
HMR_7278 PMM HMR_7548 PMM HMR_9500 PMM HMR_8303 PMM
HMR_7279 PMM HMR_7549 PMM HMR_9501 PMM HMR_8310 PMM
HMR_7280 PMM HMR_7550 PMM HMR_9502 PMM HMR_8312 PMM
HMR_7281 PMM HMR_7557 PMM HMR_9503 PMM HMR_8314 PMM
HMR_7285 PMM HMR_7558 PMM HMR_9505 PMM HMR_8320 PMM
HMR_7286 PMM HMR_7559 PMM HMR_9512 PMM HMR_8323 PMM
HMR_7287 PMM HMR_7560 PMM HMR_9531 PMM HMR_8328 PMM
HMR_7288 PMM HMR_7561 PMM HMR_9532 PMM HMR_8335 PMM
HMR_7289 PMM HMR_7562 PMM HMR_9541 PMM HMR_8338 PMM
HMR_7290 PMM HMR_7563 PMM HMR_9542 PMM HMR_8874 PMM
HMR_7291 PMM HMR_7564 PMM HMR_9543 PMM HMR_9320 PMM
HMR_7292 PMM HMR_7565 PMM HMR_9545 PMM HMR_9323 PMM
HMR_7293 PMM HMR_7566 PMM HMR_9547 PMM HMR_9324 PMM
HMR_7294 PMM HMR_7567 PMM HMR_9548 PMM HMR_9325 PMM
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Reaction ID Reaction Group Reaction ID Reaction Group Reaction ID Reaction Group Reaction ID Reaction Group
HMR_7295 PMM HMR_7225 PMM HMR_9549 PMM HMR_9326 PMM
HMR_7296 PMM HMR_7226 PMM HMR_9551 PMM HMR_9327 PMM
HMR_7297 PMM HMR_7227 PMM HMR_9553 PMM HMR_9328 PMM
HMR_7298 PMM HMR_7228 PMM HMR_9577 PMM HMR_9332 PMM
HMR_7299 PMM HMR_7229 PMM HMR_9578 PMM HMR_9333 PMM
HMR_7300 PMM HMR_7230 PMM HMR_9579 PMM HMR_9334 PMM
HMR_7301 PMM HMR_7231 PMM HMR_7173 PMM HMR_5165 P
HMR_7302 PMM HMR_7232 PMM HMR_7184 PMM HMR_5166 P
HMR_7303 PMM HMR_7233 PMM HMR_7223 PMM HMR_5167 P
HMR_7304 PMM HMR_7234 PMM HMR_7372 PMM HMR_5168 P
HMR_7305 PMM HMR_7235 PMM HMR_7453 PMM HMR_5169 P
HMR_7306 PMM HMR_7236 PMM HMR_7482 PMM HMR_5170 P
HMR_7308 PMM HMR_7237 PMM HMR_7499 PMM HMR_5171 P
HMR_7309 PMM HMR_7238 PMM HMR_7511 PMM HMR_5172 P
HMR_7310 PMM HMR_7239 PMM HMR_7523 PMM HMR_5173 P
HMR_7311 PMM HMR_7240 PMM HMR_7539 PMM HMR_5174 P
HMR_7312 PMM HMR_7241 PMM HMR_7555 PMM HMR_5258 P
HMR_7313 PMM HMR_7242 PMM HMR_7579 PMM HMR_5259 P
HMR_7314 PMM HMR_7243 PMM HMR_7583 PMM HMR_5260 P
HMR_7315 PMM HMR_7244 PMM HMR_8023 PMM HMR_5261 P
HMR_7316 PMM HMR_7245 PMM HMR_9635 PMM HMR_5262 P
HMR_7317 PMM HMR_7246 PMM HMR_9636 PMM HMR_5263 P
HMR_7318 PMM HMR_7247 PMM HMR_9648 PMM HMR_5264 P
HMR_7319 PMM HMR_7248 PMM HMR_9653 PMM HMR_5265 P
HMR_7320 PMM HMR_7249 PMM HMR_9654 PMM HMR_5266 P
HMR_7321 PMM HMR_7250 PMM HMR_9655 PMM HMR_5267 P
HMR_7322 PMM HMR_7251 PMM HMR_9658 PMM HMR_5268 P
HMR_7323 PMM HMR_7335 PMM HMR_9660 PMM HMR_5269 P
HMR_7324 PMM HMR_7336 PMM HMR_9661 PMM HMR_5270 P
HMR_7325 PMM HMR_7337 PMM HMR_9662 PMM HMR_5271 P
HMR_7326 PMM HMR_7338 PMM HMR_9663 PMM HMR_5272 P
HMR_7327 PMM HMR_7339 PMM HMR_9720 PMM HMR_5273 P
HMR_7328 PMM HMR_7340 PMM HMR_9731 PMM HMR_5274 P
HMR_7329 PMM HMR_7341 PMM HMR_8024 PMM HMR_5275 P
HMR_7332 PMM HMR_7342 PMM HMR_8028 PMM HMR_5276 P
HMR_7333 PMM HMR_7343 PMM HMR_7199 PMM HMR_5277 P
HMR_7334 PMM HMR_7344 PMM HMR_7224 PMM HMR_5278 P
HMR_7428 PMM HMR_7345 PMM HMR_7283 PMM HMR_5279 P
HMR_7429 PMM HMR_7346 PMM HMR_7374 PMM HMR_5280 P
HMR_7574 PMM HMR_7347 PMM HMR_7454 PMM HMR_5281 P
HMR_7575 PMM HMR_7348 PMM HMR_7483 PMM HMR_5282 P
HMR_7576 PMM HMR_7349 PMM HMR_7500 PMM HMR_5283 P
HMR_7577 PMM HMR_7350 PMM HMR_7512 PMM HMR_5284 P
HMR_7578 PMM HMR_7351 PMM HMR_7524 PMM HMR_5285 P
HMR_7580 PMM HMR_7352 PMM HMR_7540 PMM HMR_5286 P
HMR_7582 PMM HMR_7353 PMM HMR_7556 PMM HMR_5287 P
HMR_7585 PMM HMR_7354 PMM HMR_7581 PMM HMR_5288 P
HMR_7586 PMM HMR_7355 PMM HMR_7584 PMM HMR_5289 P
HMR_7587 PMM HMR_7356 PMM HMR_7907 PMM HMR_5290 P
HMR_8691 PMM HMR_7357 PMM HMR_8908 PMM HMR_5291 P
HMR_8692 PMM HMR_7358 PMM HMR_7198 PMM HMR_9817 P
HMR_8693 PMM HMR_7359 PMM HMR_7284 PMM HMR_9818 P
HMR_8694 PMM HMR_7360 PMM HMR_4955 PMM HMR_1924 P
HMR_8695 PMM HMR_7361 PMM HMR_7201 PMM HMR_1926 P
HMR_7282 PMM HMR_7362 PMM HMR_7431 PMM HMR_0024 P
HMR_7616 PMM HMR_7363 PMM HMR_7437 PMM HMR_0025 P
HMR_7617 PMM HMR_7364 PMM HMR_8259 PMM HMR_0026 P
HMR_7618 PMM HMR_7365 PMM HMR_9667 PMM HMR_0027 P
HMR_7619 PMM HMR_7366 PMM HMR_9668 PMM HMR_0028 P
HMR_9735 PMM HMR_7367 PMM HMR_9669 PMM HMR_0029 P
HMR_7621 PMM HMR_7368 PMM HMR_9670 PMM HMR_0030 P
HMR_7622 PMM HMR_7369 PMM HMR_9671 PMM HMR_5198 P
HMR_7624 PMM HMR_7370 PMM HMR_7182 PMM HMR_5200 P
HMR_7626 PMM HMR_7371 PMM HMR_7330 PMM HMR_5202 P
HMR_6404 PMM HMR_7442 PMM HMR_7432 PMM HMR_5206 P
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Reaction ID Reaction Group Reaction ID Reaction Group Reaction ID Reaction Group Reaction ID Reaction Group
HMR_7165 PMM HMR_7443 PMM HMR_7307 PMM HMR_5213 P
HMR_7166 PMM HMR_7444 PMM HMR_7257 PMM HMR_5215 P
HMR_7167 PMM HMR_7445 PMM HMR_7262 PMM HMR_5216 P
HMR_7168 PMM HMR_7446 PMM HMR_7272 PMM HMR_5219 P
HMR_7169 PMM HMR_7447 PMM HMR_7273 PMM HMR_5221 P
HMR_7170 PMM HMR_7448 PMM HMR_8030 PMM HMR_5231 P
HMR_7188 PMM HMR_7449 PMM HMR_8382 PMM HMR_5237 P
HMR_8378 PMM HMR_7450 PMM HMR_9629 PMM HMR_5240 P
HMR_8379 PMM HMR_7451 PMM HMR_9630 PMM HMR_5241 P
HMR_7185 PMM HMR_7452 PMM HMR_9631 PMM HMR_1925 P
HMR_8380 PMM HMR_7471 PMM HMR_9632 PMM HMR_5222 P
HMR_7186 PMM HMR_7472 PMM HMR_9633 PMM HMR_5223 P
HMR_8381 PMM HMR_7473 PMM HMR_9732 PMM HMR_5225 P
HMR_7187 PMM HMR_7474 PMM HMR_9111 PMM HMR_5227 P
HMR_8383 PMM HMR_7475 PMM HMR_9113 PMM HMR_5197 P
HMR_8384 PMM HMR_7476 PMM HMR_9114 PMM HMR_5199 P
HMR_8385 PMM HMR_7477 PMM HMR_9115 PMM HMR_5201 P
HMR_8387 PMM HMR_7478 PMM HMR_9116 PMM HMR_5204 P
HMR_8388 PMM HMR_7479 PMM HMR_9117 PMM HMR_5212 P
HMR_8389 PMM HMR_7480 PMM HMR_9118 PMM HMR_5214 P
HMR_8390 PMM HMR_7481 PMM HMR_9119 PMM HMR_5217 P
HMR_8391 PMM HMR_7373 PMM HMR_9120 PMM HMR_5218 P
HMR_8392 PMM HMR_7375 PMM HMR_9121 PMM HMR_5220 P
HMR_8393 PMM HMR_7376 PMM HMR_9124 PMM HMR_5224 P
HMR_8394 PMM HMR_7377 PMM HMR_9125 PMM HMR_5226 P
HMR_8395 PMM HMR_7378 PMM HMR_9126 PMM HMR_5228 P
HMR_8396 PMM HMR_7379 PMM HMR_9127 PMM HMR_5230 P
HMR_8397 PMM HMR_7380 PMM HMR_9128 PMM HMR_5203 P
HMR_8398 PMM HMR_7381 PMM HMR_9204 PMM HMR_5205 P
HMR_8399 PMM HMR_7382 PMM HMR_9389 PMM HMR_5207 P
HMR_8401 PMM HMR_7383 PMM HMR_9681 PMM HMR_5209 P
HMR_8402 PMM HMR_7384 PMM HMR_9686 PMM HMR_5210 P
HMR_8403 PMM HMR_7385 PMM HMR_9687 PMM HMR_5211 P
HMR_8404 PMM HMR_7386 PMM HMR_9700 PMM HMR_5245 P
HMR_8405 PMM HMR_7387 PMM HMR_9703 PMM HMR_9025 P
HMR_8406 PMM HMR_7388 PMM HMR_9704 PMM HMR_9027 P
HMR_8407 PMM HMR_7389 PMM HMR_9705 PMM HMR_9029 P
HMR_7200 PMM HMR_7390 PMM HMR_9706 PMM HMR_9031 P
HMR_7202 PMM HMR_7391 PMM HMR_9709 PMM HMR_9049 P
HMR_7203 PMM HMR_7392 PMM HMR_9710 PMM HMR_9051 P
HMR_7205 PMM HMR_7393 PMM HMR_9711 PMM HMR_9053 P
HMR_7206 PMM HMR_7394 PMM HMR_9712 PMM HMR_9055 P
HMR_7207 PMM HMR_7395 PMM HMR_9714 PMM HMR_9130 P
HMR_7208 PMM HMR_7396 PMM HMR_9721 PMM HMR_9730 P
HMR_7209 PMM HMR_7397 PMM HMR_8262 PMM HMR_5151 P
HMR_7210 PMM HMR_7398 PMM HMR_8263 PMM HMR_5152 P
HMR_7211 PMM HMR_7399 PMM HMR_8264 PMM HMR_5153 P
HMR_7212 PMM HMR_7400 PMM HMR_8267 PMM HMR_5154 P
HMR_7213 PMM HMR_7401 PMM HMR_8268 PMM HMR_5155 P
HMR_7214 PMM HMR_7402 PMM HMR_8271 PMM HMR_5156 P
HMR_7215 PMM HMR_7403 PMM HMR_8274 PMM HMR_5157 P
HMR_7216 PMM HMR_7404 PMM HMR_8275 PMM HMR_5158 P
HMR_7217 PMM HMR_7405 PMM HMR_8276 PMM HMR_5159 P
HMR_7218 PMM HMR_7406 PMM HMR_8277 PMM HMR_5160 P
HMR_7219 PMM HMR_7407 PMM HMR_8278 PMM HMR_5161 P
HMR_7220 PMM HMR_7408 PMM HMR_8279 PMM HMR_5162 P
HMR_7221 PMM HMR_7409 PMM HMR_8280 PMM HMR_5163 P
HMR_7222 PMM HMR_7410 PMM HMR_8281 PMM HMR_5164 P
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TABLE A.20. Implemented revisions in connection with the beta-oxidation pathway.
“reaction stoich changed” includes changes in the reaction directionality as well.

R
ection

ID
R

eaction
Im

plem
ented

C
hange

H
M

R
_1176

8(R
)-hydroxy-hexadeca-(2E

,4E
,6E

,10Z)-tetraenoate[m
]+

H
+[m

]+
N

A
D

P
H

[m
]=>

8(R
)-hydroxy-hexadeca-(2E

,6E
,10Z)-trienoate[m

]+
N

A
D

P
+[m

]
reaction

rem
oved

H
M

R
_1180

6(R
)-hydroxy-tetradeca-(4E

,8Z)-dienoate[m
]+

O
2[m

]=>
6(R

)-hydroxy-tetradeca-(2E
,4E

,8Z)-trienoate[m
]+

H
2O

2[m
]

reaction
rem

oved
H

M
R

_1181
6(R

)-hydroxy-tetradeca-(2E
,4E

,8Z)-trienoate[m
]+

H
+[m

]+
N

A
D

P
H

[m
]<=>

6(R
)-hydroxy-tetradeca-(2E

,8Z)-dienoate[m
]+

N
A

D
P

+[m
]

reaction
rem

oved
H

M
R

_1182
6(R

)-hydroxy-tetradeca-(2E
,8Z)-dienoate[m

]+
H

2O
[m

]=>
3(S),6(R

)-dihydroxy-tetradec-(8Z)-enoate[m
]

reaction
rem

oved
H

M
R

_1183
3(S),6(R

)-dihydroxy-tetradec-(8Z)-enoate[m
]+

N
A

D
+[m

]=>
3-oxo-6(R

)-hydroxy-tetradec-8-cis-enoate[m
]+

H
+[m

]+
N

A
D

H
[m

]
reaction

rem
oved

H
M

R
_1184

3-oxo-6(R
)-hydroxy-tetradec-8-cis-enoate[m

]+
C

oA
[m

]=>
4(R

)-hydroxy-dodec-(6Z)-enoate[m
]+

acetyl-C
oA

[m
]

reaction
rem

oved
H

M
R

_1185
4(R

)-hydroxy-dodec-(6Z)-enoate[m
]+

C
oA

[m
]=>

(2E
)-dodecenoyl-C

oA
[m

]+
2

H
+[m

]+
O

2[m
]

reaction
rem

oved
H

M
R

_1227
4(S)-hydroxy-dodec-(6Z)-enoate[m

]+
C

oA
[m

]=>
(2E

)-dodecenoyl-C
oA

[m
]+

2
H

+[m
]+

O
2[m

]
reaction

rem
oved

H
M

R
_0157

butyryl-C
oA

[c]=>
butyryl-C

oA
[m

]
reaction

rem
oved

H
M

R
_0158

L
-carnitine[c]+

butyryl-C
oA

[m
]<=>

L
-carnitine[m

]+
butyryl-C

oA
[c]

reaction
rem

oved
H

M
R

_0166
pentanoyl-C

oA
[c]<=>

pentanoyl-C
oA

[m
]

reaction
rem

oved
H

M
R

_0169
hexanoyl-C

oA
[c]<=>

hexanoyl-C
oA

[m
]

reaction
rem

oved
H

M
R

_0172
heptanoyl-C

oA
[c]<=>

heptanoyl-C
oA

[m
]

reaction
rem

oved
H

M
R

_0175
octanoyl-C

oA
[c]<=>

octanoyl-C
oA

[m
]

reaction
rem

oved
H

M
R

_0178
nonanoyl-C

oA
[c]<=>

nonanoyl-C
oA

[m
]

reaction
rem

oved
H

M
R

_0182
decanoyl-C

oA
[c]<=>

decanoyl-C
oA

[m
]

reaction
rem

oved
H

M
R

_0185
undecanoyl-C

oA
[c]<=>

undecanoyl-C
oA

[m
]

reaction
rem

oved
H

M
R

_3288
cis,cis-3,6-dodecadienoyl-C

oA
[m

]=>
trans,cis-lauro-2,6-dienoyl-C

oA
[m

]
reaction

stoich
changed

H
M

R
_3322

2-trans-4-cis-decadienoyl-C
oA

[p]+
N

A
D

P
+[p]=>

trans-3-decenoyl-C
oA

[p]+
H

+[p]+
N

A
D

P
H

[p]
reaction

stoich
changed

H
M

R
_3409

(6Z,9Z)-octadecadienoyl-C
oA

[m
]+

8
C

oA
[m

]+
7

FA
D

[m
]+

8
H

2O
[m

]+
8

N
A

D
+[m

]+
N

A
D

P
H

[m
]=>

7
FA

D
H

2[m
]+

7
H

+[m
]+

8
N

A
D

H
[m

]+
N

A
D

P
+[m

]+
9

acetyl-C
oA

[m
]

reaction
stoich

changed
H

M
R

_3413
(8Z,11Z)-eicosadienoyl-C

oA
[m

]+
9

C
oA

[m
]+

8
FA

D
[m

]+
9

H
2O

[m
]+

9
N

A
D

+[m
]+

N
A

D
P

H
[m

]=>
8

FA
D

H
2[m

]+
8

H
+[m

]+
9

N
A

D
H

[m
]+

N
A

D
P

+[m
]+

10
acetyl-C

oA
[m

]
reaction

stoich
changed

H
M

R
_3414

(5Z,8Z,11Z)-eicosatrienoyl-C
oA

[m
]+

9
C

oA
[m

]+
6

FA
D

[m
]+

9
H

2O
[m

]+
9

N
A

D
+[m

]+
N

A
D

P
H

[m
]=>

6
FA

D
H

2[m
]+

8
H

+[m
]+

9
N

A
D

H
[m

]+
N

A
D

P
+[m

]+
10

acetyl-C
oA

[m
]

reaction
stoich

changed
H

M
R

_3421
(7Z,10Z,13Z,16Z)-docosatetraenoyl-C

oA
[m

]+
10

C
oA

[m
]+

8
FA

D
[m

]+
10

H
2O

[m
]+

10
N

A
D

+[m
]+

2
N

A
D

P
H

[m
]=>

8
FA

D
H

2[m
]+

8
H

+[m
]+

10
N

A
D

H
[m

]+
2

N
A

D
P

+[m
]+

11
acetyl-C

oA
[m

]
reaction

stoich
changed

H
M

R
_3422

(4Z,7Z,10Z,13Z,16Z)-docosapentaenoyl-C
oA

[m
]+

10
C

oA
[m

]+
8

FA
D

[m
]+

10
H

2O
[m

]+
10

N
A

D
+[m

]+
3

N
A

D
P

H
[m

]=>
8

FA
D

H
2[m

]+
7

H
+[m

]+
10

N
A

D
H

[m
]+

3
N

A
D

P
+[m

]+
11

acetyl-C
oA

[m
]

reaction
stoich

changed
H

M
R

_3423
(11Z,14Z)-eicosadienoyl-C

oA
[m

]+
9

C
oA

[m
]+

8
FA

D
[m

]+
9

H
2O

[m
]+

9
N

A
D

+[m
]+

N
A

D
P

H
[m

]=>
8

FA
D

H
2[m

]+
8

H
+[m

]+
9

N
A

D
H

[m
]+

N
A

D
P

+[m
]+

10
acetyl-C

oA
[m

]
reaction

stoich
changed

H
M

R
_3424

(13Z,16Z)-docosadienoyl-C
oA

[m
]+

10
C

oA
[m

]+
9

FA
D

[m
]+

10
H

2O
[m

]+
10

N
A

D
+[m

]+
N

A
D

P
H

[m
]=>

9
FA

D
H

2[m
]+

9
H

+[m
]+

10
N

A
D

H
[m

]+
N

A
D

P
+[m

]+
11

acetyl-C
oA

[m
]

reaction
stoich

changed
H

M
R

_3425
10,13,16-docosatrienoyl-C

oA
[m

]+
10

C
oA

[m
]+

7
FA

D
[m

]+
10

H
2O

[m
]+

10
N

A
D

+[m
]=>

7
FA

D
H

2[m
]+

10
H

+[m
]+

10
N

A
D

H
[m

]+
11

acetyl-C
oA

[m
]

reaction
stoich

changed
H

M
R

_3426
linolenoyl-C

oA
[m

]+
8

C
oA

[m
]+

7
FA

D
[m

]+
8

H
2O

[m
]+

8
N

A
D

+[m
]+

N
A

D
P

H
[m

]=>
7

FA
D

H
2[m

]+
7

H
+[m

]+
8

N
A

D
H

[m
]+

N
A

D
P

+[m
]+

9
acetyl-C

oA
[m

]
reaction

stoich
changed

H
M

R
_9719

(6Z,9Z,12Z,15Z)-octadecatetraenoyl-C
oA

[m
]+

8
C

oA
[m

]+
6

FA
D

[m
]+

8
H

2O
[m

]+
8

N
A

D
+[m

]+
2

N
A

D
P

H
[m

]=>
6

FA
D

H
2[m

]+
6

H
+[m

]+
8

N
A

D
H

[m
]+

2
N

A
D

P
+[m

]+
9

acetyl-C
oA

[m
]

reaction
stoich

changed
H

M
R

_3427
(8Z,11Z,14Z,17Z)-eicosatetraenoyl-C

oA
[m

]+
9

C
oA

[m
]+

8
FA

D
[m

]+
9

H
2O

[m
]+

9
N

A
D

+[m
]+

2
N

A
D

P
H

[m
]=>

8
FA

D
H

2[m
]+

7
H

+[m
]+

9
N

A
D

H
[m

]+
2

N
A

D
P

+[m
]+

10
acetyl-C

oA
[m

]
reaction

stoich
changed

H
M

R
_3428

(5Z,8Z,11Z,14Z,17Z)-eicosapentaenoyl-C
oA

[m
]+

9
C

oA
[m

]+
6

FA
D

[m
]+

9
H

2O
[m

]+
9

N
A

D
+[m

]+
2

N
A

D
P

H
[m

]=>
6

FA
D

H
2[m

]+
7

H
+[m

]+
9

N
A

D
H

[m
]+

2
N

A
D

P
+[m

]+
10

acetyl-C
oA

[m
]

reaction
stoich

changed
H

M
R

_3429
(7Z,10Z,13Z,16Z,19Z)-docosapentaenoyl-C

oA
[m

]+
10

C
oA

[m
]+

8
FA

D
[m

]+
10

H
2O

[m
]+

10
N

A
D

+[m
]+

2
N

A
D

P
H

[m
]=>

8
FA

D
H

2[m
]+

8
H

+[m
]+

10
N

A
D

H
[m

]+
2

N
A

D
P

+[m
]+

11
acetyl-C

oA
[m

]
reaction

stoich
changed

H
M

R
_3430

(4Z,7Z,10Z,13Z,16Z,19Z)-docosahexaenoyl-C
oA

[m
]+

10
C

oA
[m

]+
7

FA
D

[m
]+

10
H

2O
[m

]+
10

N
A

D
+[m

]+
3

N
A

D
P

H
[m

]=>
7

FA
D

H
2[m

]+
7

H
+[m

]+
10

N
A

D
H

[m
]+

3
N

A
D

P
+[m

]+
11

acetyl-C
oA

[m
]

reaction
stoich

changed
H

M
R

_3431
(11Z,14Z,17Z)-eicosatrienoyl-C

oA
[m

]+
9

C
oA

[m
]+

7
FA

D
[m

]+
9

H
2O

[m
]+

9
N

A
D

+[m
]+

N
A

D
P

H
[m

]=>
7

FA
D

H
2[m

]+
8

H
+[m

]+
9

N
A

D
H

[m
]+

N
A

D
P

+[m
]+

10
acetyl-C

oA
[m

]
reaction

stoich
changed

H
M

R
_3432

13,16,19-docosatrienoyl-C
oA

[m
]+

10
C

oA
[m

]+
7

FA
D

[m
]+

10
H

2O
[m

]+
10

N
A

D
+[m

]=>
7

FA
D

H
2[m

]+
10

H
+[m

]+
10

N
A

D
H

[m
]+

11
acetyl-C

oA
[m

]
reaction

stoich
changed

H
M

R
_3433

10,13,16,19-docosatetraenoyl-C
oA

[m
]+

10
C

oA
[m

]+
7

FA
D

[m
]+

10
H

2O
[m

]+
10

N
A

D
+[m

]+
N

A
D

P
H

[m
]=>

7
FA

D
H

2[m
]+

9
H

+[m
]+

10
N

A
D

H
[m

]+
N

A
D

P
+[m

]+
11

acetyl-C
oA

[m
]

reaction
stoich

changed
H

M
R

_3053
12,15,18,21-tetracosatetraenoyl-C

oA
[p]+

11
C

oA
[p]+

11
H

2O
[p]+

11
N

A
D

+[p]+
7

O
2[p]=>

10
H

+[p]+
7

H
2O

2[p]+
11

N
A

D
H

[p]+
12

acetyl-C
oA

[p]
reaction

stoich
changed

H
M

R
_3054

(9Z,12Z,15Z,18Z,21Z)-tetracosapentaenoyl-C
oA

[p]+
11

C
oA

[p]+
11

H
2O

[p]+
11

N
A

D
+[p]+

8
O

2[p]+
2

N
A

D
P

H
[p]=>

9
H

+[p]+
8

H
2O

2[p]+
11

N
A

D
H

[p]+
2

N
A

D
P

+[p]+
12

acetyl-C
oA

[p]
reaction

stoich
changed

H
M

R
_3055

(9Z,12Z,15Z,18Z)-tetracosatetraenoyl-C
oA

[p]+
11

C
oA

[p]+
11

H
2O

[p]+
11

N
A

D
+[p]+

10
O

2[p]+
2

N
A

D
P

H
[p]=>

9
H

+[p]+
10

H
2O

2[p]+
11

N
A

D
H

[p]+
2

N
A

D
P

+[p]+
12

acetyl-C
oA

[p]
reaction

stoich
changed
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R
ection

ID
R

eaction
Im

plem
ented

C
hange

H
M

R
_3396

(10Z)-heptadecenoyl-C
oA

[m
]+

7
C

oA
[m

]+
6

FA
D

[m
]+

7
H

2O
[m

]+
7

N
A

D
+[m

]+
N

A
D

P
H

[m
]=>

6
FA

D
H

2[m
]+

6
H

+[m
]+

7
N

A
D

H
[m

]+
N

A
D

P
+[m

]+
7

acetyl-C
oA

[m
]+

propanoyl-C
oA

[m
]

reaction
stoich

changed
H

M
R

_1174
3-oxo-10(R

)-hydroxy-octadeca-(6E
,8E

,12Z)-trienoyl-C
oA

[m
]+

C
oA

[m
]=>

8(R
)-hydroxy-hexadeca-(4E

,6E
,10Z)-trienoyl-C

oA
[m

]+
acetyl-C

oA
[m

]
reaction

stoich
changed

H
M

R
_1175

8(R
)-hydroxy-hexadeca-(4E

,6E
,10Z)-trienoyl-C

oA
[m

]+
FA

D
[m

]=>
8(R

)-hydroxy-hexadeca-(2E
,4E

,6E
,10Z)-tetraenoyl-C

oA
[m

]+
FA

D
H

2[m
]

reaction
stoich

changed
H

M
R

_1177
8(R

)-hydroxy-hexadeca-(2E
,4E

,6E
,10Z)-tetraenoyl-C

oA
[m

]+
H

2O
[m

]=>
3(S),8(R

)-dihydroxy-hexadeca-(4E
,6E

,10Z)-trienoyl-C
oA

[m
]

reaction
stoich

changed
H

M
R

_1178
3(S),8(R

)-dihydroxy-hexadeca-(4E
,6E

,10Z)-trienoyl-C
oA

[m
]+

N
A

D
+[m

]=>
3-oxo-8(R

)-hydroxy-hexadeca-(4E
,6E

,10Z)-trienoyl-C
oA

[m
]+

H
+[m

]+
N

A
D

H
[m

]
reaction

stoich
changed

H
M

R
_1179

3-oxo-8(R
)-hydroxy-hexadeca-(4E

,6E
,10Z)-trienoyl-C

oA
[m

]+
C

oA
[m

]=>
6(R

)-hydroxy-tetradeca-(2E
,4E

,8Z)-trienoyl-C
oA

[m
]+

acetyl-C
oA

[m
]

reaction
stoich

changed
H

M
R

_1216
3-oxo-10(S)-hydroxy-octadeca-(6E

,8E
,12Z)-trienoyl-C

oA
[m

]+
C

oA
[m

]=>
8(S)-hydroxy-hexadeca-(4E

,6E
,10Z)-trienoyl-C

oA
[m

]+
acetyl-C

oA
[m

]
reaction

stoich
changed

H
M

R
_1217

8(S)-hydroxy-hexadeca-(4E
,6E

,10Z)-trienoyl-C
oA

[m
]+

FA
D

[m
]=>

8(S)-hydroxy-hexadeca-(2E
,4E

,6E
,10Z)-tetraenoyl-C

oA
[m

]+
FA

D
H

2[m
]

reaction
stoich

changed
H

M
R

_1218
8(S)-hydroxy-hexadeca-(2E

,4E
,6E

,10Z)-tetraenoyl-C
oA

[m
]+

H
+[m

]+
N

A
D

P
H

[m
]=>

8(S)-hydroxy-hexadeca-(2E
,6E

,10Z)-trienoyl-C
oA

[m
]+

N
A

D
P

+[m
]

reaction
stoich

changed
H

M
R

_1219
8(S)-hydroxy-hexadeca-(2E

,6E
,10Z)-trienoyl-C

oA
[m

]+
H

2O
[m

]=>
3(S),8(S)-dihydroxy-hexadeca-(6E

,10Z)-dienoyl-C
oA

[m
]

reaction
stoich

changed
H

M
R

_1220
3(S),8(S)-dihydroxy-hexadeca-(6E

,10Z)-dienoyl-C
oA

[m
]+

N
A

D
+[m

]<=>
3-oxo-8(S)-hydroxy-hexadeca-(6E

,10Z)-dienoyl-C
oA

[m
]+

H
+[m

]+
N

A
D

H
[m

]
reaction

stoich
changed

H
M

R
_1221

3-oxo-8(S)-hydroxy-hexadeca-(6E
,10Z)-dienoyl-C

oA
[m

]+
C

oA
[m

]<=>
6(S)-hydroxy-tetradeca-(4E

,8Z)-dienoyl-C
oA

[m
]+

acetyl-C
oA

[m
]

reaction
stoich

changed
H

M
R

_1222
6(S)-hydroxy-tetradeca-(2E

,4E
,8Z)-trienoyl-C

oA
[m

]+
H

+[m
]+

N
A

D
P

H
[m

]<=>
6(S)-hydroxy-tetradeca-(2E

,8Z)-dienoyl-C
oA

[m
]+

N
A

D
P

+[m
]

reaction
stoich

changed
H

M
R

_1223
6(S)-hydroxy-tetradeca-(4E

,8Z)-dienoyl-C
oA

[m
]+

FA
D

[m
]=>

6(S)-hydroxy-tetradeca-(2E
,4E

,8Z)-trienoyl-C
oA

[m
]+

FA
D

H
2[m

]
reaction

stoich
changed

H
M

R
_1224

6(S)-hydroxy-tetradeca-(2E
,8Z)-dienoyl-C

oA
[m

]+
H

2O
[m

]=>
3(S),6(S)-dihydroxy-tetradec-(8Z)-enoyl-C

oA
[m

]
reaction

stoich
changed

H
M

R
_1225

3(S),6(S)-dihydroxy-tetradec-(8Z)-enoyl-C
oA

[m
]+

N
A

D
+[m

]=>
3-oxo-6(S)-hydroxy-tetradec-(8Z)-enoyl-C

oA
[m

]+
H

+[m
]+

N
A

D
H

[m
]

reaction
stoich

changed
H

M
R

_1226
3-oxo-6(S)-hydroxy-tetradec-(8Z)-enoyl-C

oA
[m

]+
C

oA
[m

]=>
4(S)-hydroxy-dodec-(6Z)-enoyl-C

oA
[m

]+
acetyl-C

oA
[m

]
reaction

stoich
changed

H
M

R
_3244

FA
D

[m
]+

cis-vaccenoyl-C
oA

[m
]=>

FA
D

H
2[m

]+
trans,cis-octadeca-2,11-dienoyl-C

oA
[m

]
reaction

stoich
changed

H
M

R
_3272

(2E
)-dodecenoyl-C

oA
[m

]<=>
(3E

)-dodecenoyl-C
oA

[m
]

reaction
stoich

changed
H

M
R

_3375
(2E

)-dodecenoyl-C
oA

[p]<=>
(3E

)-dodecenoyl-C
oA

[p]
reaction

stoich
changed

H
M

R
_3296

2-trans-4-cis-decadienoyl-C
oA

[m
]+

N
A

D
P

+[m
]=>

trans-3-decenoyl-C
oA

[m
]+

H
+[m

]+
N

A
D

P
H

[m
]

reaction
stoich

changed
H

M
R

_3316
cis,cis-3,6-dodecadienoyl-C

oA
[p]=>

trans,cis-lauro-2,6-dienoyl-C
oA

[p]
reaction

stoich
changed

H
M

R
_3321

4-cis-decenoyl-C
oA

[p]+
O

2[p]=>
2-trans-4-cis-decadienoyl-C

oA
[p]+

H
2O

2[p]+
2

H
+[p]

reaction
stoich

changed
H

M
R

_3480
A

T
P

[c]+
C

oA
[c]+

phytanic
acid[c]=>

A
M

P
[c]+

P
P

i[c]+
phytanoyl-C

oA
[c]

reaction
stoich

changed
H

M
R

_3482
A

T
P

[p]+
C

oA
[p]+

phytanic
acid[p]=>

A
M

P
[p]+

P
P

i[p]+
phytanoyl-C

oA
[p]

reaction
stoich

changed
H

M
R

_3493
A

T
P

[p]+
C

oA
[p]+

pristanic
acid[p]=>

(2R
)-pristanoyl-C

oA
[p]+

A
M

P
[p]+

P
P

i[p]
reaction

stoich
changed

H
M

R
_3797

A
T

P
[m

]+
C

oA
[m

]+
propanoate[m

]=>
A

M
P

[m
]+

P
P

i[m
]+

propanoyl-C
oA

[m
]

reaction
stoich

changed
H

M
R

_5295
A

T
P

[c]+
H

2O
[c]+

2
K

+[s]+
3

N
a+[c]=>

A
D

P
[c]+

2
K

+[c]+
3

N
a+[s]+

P
i[c]

reaction
stoich

changed
H

M
R

_0449
FA

D
[m

]+
sn-glycerol-3-phosphate[c]=>

D
H

A
P

[c]+
FA

D
H

2[m
]

reaction
stoich

changed
H

M
R

_0216
palm

itate[s]<=>
palm

itate[c]
reaction

stoich
changed

H
M

R
_0225

palm
itolate[s]<=>

palm
itolate[c]

reaction
stoich

changed
H

M
R

_4459
A

T
P

[c]+
propanoate[c]=>

P
P

i[c]+
propinoladenylate[c]

reaction
stoich

changed
H

M
R

_4460
A

T
P

[m
]+

propanoate[m
]=>

P
P

i[m
]+

propinoladenylate[m
]

reaction
stoich

changed
H

M
R

_4727
A

T
P

[c]+
phosphopantetheine[c]=>

P
P

i[c]+
dephospho-C

oA
[c]

reaction
stoich

changed
R

_a1
3(S),6(R

)-dihydroxy-tetradeca-(4E
,8Z)-dienoyl-C

oA
[m

]+
N

A
D

+[m
]=>

3-oxo-6(R
)-hydroxy-tetradeca-(4E

,8Z)-dienoyl-C
oA

[m
]+

H
+[m

]+
N

A
D

H
[m

]
reaction

added
R

_a2
3-oxo-6(R

)-hydroxy-tetradeca-(4E
,8Z)-dienoyl-C

oA
[m

]+
C

oA
[m

]=>
4(R

)-hydroxy-dodeca-(2E
,6Z)-dienoyl-C

oA
[m

]+
acetyl-C

oA
[m

]
reaction

added
R

_a3
4(R

)-hydroxy-dodeca-(2E
,6Z)-dienoyl-C

oA
[m

]+
H

2O
[m

]=>
3(S),4(R

)-dihydroxy-dodec-(6Z)-enoyl-C
oA

[m
]

reaction
added

R
_a4

3(S),4(R
)-dihydroxy-dodec-(6Z)-enoyl-C

oA
[m

]+
N

A
D

+[m
]=>

3-oxo-4(R
)-hydroxy-dodec-(6Z)-enoyl-C

oA
[m

]+
H

+[m
]+

N
A

D
H

[m
]

reaction
added

R
_a5

3-oxo-4(R
)-hydroxy-dodec-(6Z)-enoyl-C

oA
[m

]+
C

oA
[m

]=>
2(R

)-hydroxy-dec-(4Z)-enoyl-C
oA

[m
]+

acetyl-C
oA

[m
]

reaction
added
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R
ection

ID
R

eaction
Im

plem
ented

C
hange

R
_a6

2(R
)-hydroxy-dec-(4Z)-enoyl-C

oA
[m

]+
H

2O
[m

]=>
2(R

)-hydroxy-dec-(4Z)-enoate[m
]+

C
oA

[m
]

reaction
added

R
_a7

2(R
)-hydroxy-dec-(4Z)-enoate[m

]<=>
2(R

)-hydroxy-dec-(4Z)-enoate[c]
reaction

added
R

_a8
2(R

)-hydroxy-dec-(4Z)-enoate[c]<=>
2(R

)-hydroxy-dec-(4Z)-enoate[r]
reaction

added
R

_a9
A

T
P

[r]+
C

oA
[r]+

2(R
)-hydroxy-dec-(4Z)-enoate[r]=>

A
M

P
[r]+

P
P

i[r]+
2(R

)-hydroxy-dec-(4Z)-enoyl-C
oA

[r]
reaction

added
R

_a10
2(R

)-hydroxy-dec-(4Z)-enoate[c]<=>
2(R

)-hydroxy-dec-(4Z)-enoate[p]
reaction

added
R

_a11
A

T
P

[p]+
C

oA
[p]+

2(R
)-hydroxy-dec-(4Z)-enoate[p]=>

A
M

P
[p]+

P
P

i[p]+
2(R

)-hydroxy-dec-(4Z)-enoyl-C
oA

[p]
reaction

added
R

_a12
2(R

)-hydroxy-dec-(4Z)-enoyl-C
oA

[p]=>
(3Z)-nonenoic

aldehyde[p]+
form

yl-C
oA

[p]
reaction

added
R

_a13
(3Z)-nonenoic

aldehyde[p]+
H

2O
[p]+

N
A

D
+[p]=>

(3Z)-nonenoate[p]+
H

+[p]+
N

A
D

H
[p]

reaction
added

R
_a14

(3Z)-nonenoate[p]<=>
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Table A.21: Atomically unbalanced reaction, which was changed in the revised model.

Rection ID Original reaction Revised reaction
HMR_0013 HDL[s] => 160 cholesterol-ester pool[s] + 20 cholesterol[s] + HDL remnant[s] HDL[s] => HDL remnant[s]
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TABLE A.22. Blocked or isolated reactions, which remain after the removal of reactions
with biological functions. All listed reactions were excluded from the model.

ReactionID Type ReactionID Type ReactionID Type ReactionID Type
HMR_8652 Blocked HMR_3995 Blocked HMR_1835 Blocked HMR_9539 Blocked
HMR_4831 Blocked HMR_3996 Blocked HMR_1836 Blocked HMR_9540 Blocked
HMR_4832 Blocked HMR_4072 Blocked HMR_1837 Blocked HMR_9544 Blocked
HMR_8766 Blocked HMR_5388 Blocked HMR_1840 Blocked HMR_9546 Blocked
HMR_4310 Blocked HMR_5418 Blocked HMR_1841 Blocked HMR_9550 Blocked
HMR_4317 Blocked HMR_5419 Blocked HMR_1842 Blocked HMR_9552 Blocked
HMR_4318 Blocked HMR_6523 Blocked HMR_1843 Blocked HMR_9801 Blocked
HMR_4320 Blocked HMR_8641 Blocked HMR_1844 Blocked HMR_9807 Blocked
HMR_4356 Blocked HMR_8682 Blocked HMR_1845 Blocked HMR_9554 Blocked
HMR_4401 Blocked HMR_8683 Blocked HMR_1848 Blocked HMR_9555 Blocked
HMR_4402 Blocked HMR_4688 Blocked HMR_1403 Blocked HMR_9556 Blocked
HMR_4403 Blocked HMR_7132 Blocked HMR_1404 Blocked HMR_9557 Blocked
HMR_4594 Blocked HMR_7134 Blocked HMR_1405 Blocked HMR_9558 Blocked
HMR_3855 Blocked HMR_7135 Blocked HMR_1406 Blocked HMR_9559 Blocked
HMR_8500 Blocked HMR_7136 Blocked HMR_1407 Blocked HMR_9560 Blocked
HMR_8507 Blocked HMR_7137 Blocked HMR_1408 Blocked HMR_9561 Blocked
HMR_8508 Blocked HMR_7138 Blocked HMR_1409 Blocked HMR_9562 Blocked
HMR_8509 Blocked HMR_7139 Blocked HMR_1410 Blocked HMR_9563 Blocked
HMR_3212 Blocked HMR_7620 Blocked HMR_1411 Blocked HMR_9564 Blocked
HMR_0718 Blocked HMR_8640 Blocked HMR_1412 Blocked HMR_9565 Blocked
HMR_0719 Blocked HMR_8689 Blocked HMR_1413 Blocked HMR_9566 Blocked
HMR_7709 Blocked HMR_8690 Blocked HMR_1414 Blocked HMR_9567 Blocked
HMR_4476 Blocked HMR_4124 Blocked HMR_1415 Blocked HMR_9568 Blocked
HMR_9799 Blocked HMR_7696 Blocked HMR_1416 Blocked HMR_9570 Blocked
HMR_9800 Blocked HMR_7697 Blocked HMR_1417 Blocked HMR_9571 Blocked
HMR_4086 Blocked HMR_7698 Blocked HMR_1418 Blocked HMR_9572 Blocked
HMR_4135 Blocked HMR_8672 Blocked HMR_1419 Blocked HMR_9573 Blocked
HMR_4451 Blocked HMR_8674 Blocked HMR_1420 Blocked HMR_9574 Blocked
HMR_6601 Blocked HMR_8675 Blocked HMR_1421 Blocked HMR_9575 Blocked
HMR_6602 Blocked HMR_5130 Blocked HMR_1422 Blocked HMR_9580 Blocked
HMR_6603 Blocked HMR_5131 Blocked HMR_1423 Blocked HMR_9585 Blocked
HMR_6609 Blocked HMR_5132 Blocked HMR_1424 Blocked HMR_9588 Blocked
HMR_6610 Blocked HMR_5133 Blocked HMR_1425 Blocked HMR_9798 Blocked
HMR_6611 Blocked HMR_5134 Blocked HMR_1426 Blocked HMR_9806 Blocked
HMR_4211 Blocked HMR_5135 Blocked HMR_1427 Blocked HMR_5238 Blocked
HMR_6613 Blocked HMR_5136 Blocked HMR_1428 Blocked HMR_5239 Blocked
HMR_7744 Blocked HMR_5137 Blocked HMR_1429 Blocked HMR_5243 Blocked
HMR_7894 Blocked HMR_5138 Blocked HMR_1430 Blocked HMR_5244 Blocked
HMR_7895 Blocked HMR_5139 Blocked HMR_1431 Blocked HMR_5257 Blocked
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ReactionID Type ReactionID Type ReactionID Type ReactionID Type
HMR_8445 Blocked HMR_5140 Blocked HMR_1432 Blocked HMR_0006 Blocked
HMR_8484 Blocked HMR_5141 Blocked HMR_1433 Blocked HMR_0019 Blocked
HMR_8493 Blocked HMR_5142 Blocked HMR_3992 Blocked HMR_4931 Blocked
HMR_8494 Blocked HMR_5143 Blocked HMR_4267 Blocked HMR_6512 Blocked
HMR_8495 Blocked HMR_5144 Blocked HMR_4268 Blocked HMR_6991 Blocked
HMR_6968 Blocked HMR_5145 Blocked HMR_4279 Blocked HMR_7629 Blocked
HMR_6969 Blocked HMR_5146 Blocked HMR_7677 Blocked HMR_7630 Blocked
HMR_6970 Blocked HMR_5147 Blocked HMR_7678 Blocked HMR_7631 Blocked
HMR_6971 Blocked HMR_5148 Blocked HMR_4499 Blocked HMR_7632 Blocked
HMR_6972 Blocked HMR_5149 Blocked HMR_6567 Blocked HMR_7660 Blocked
HMR_3819 Blocked HMR_5150 Blocked HMR_6568 Blocked HMR_7798 Blocked
HMR_4605 Blocked HMR_4188 Blocked HMR_6573 Blocked HMR_7901 Blocked
HMR_6929 Blocked HMR_4842 Blocked HMR_6574 Blocked HMR_7903 Blocked
HMR_6930 Blocked HMR_7704 Blocked HMR_6575 Blocked HMR_8687 Blocked
HMR_6931 Blocked HMR_2437 Blocked HMR_6580 Blocked HMR_8720 Blocked
HMR_6933 Blocked HMR_2438 Blocked HMR_6584 Blocked HMR_8923 Blocked
HMR_6934 Blocked HMR_2443 Blocked HMR_6588 Blocked HMR_8929 Blocked
HMR_6936 Blocked HMR_2444 Blocked HMR_6589 Blocked HMR_9180 Blocked
HMR_6938 Blocked HMR_2445 Blocked HMR_8799 Blocked HMR_9182 Blocked
HMR_6939 Blocked HMR_2446 Blocked HMR_8800 Blocked HMR_9196 Blocked
HMR_6940 Blocked HMR_2447 Blocked HMR_8803 Blocked HMR_9639 Blocked
HMR_6941 Blocked HMR_2448 Blocked HMR_8804 Blocked HMR_9015 Blocked
HMR_6942 Blocked HMR_2449 Blocked HMR_8805 Blocked HMR_9019 Blocked
HMR_6943 Blocked HMR_2450 Blocked HMR_8818 Blocked HMR_9020 Blocked
HMR_6944 Blocked HMR_2461 Blocked HMR_8825 Blocked HMR_1173 Blocked
HMR_6945 Blocked HMR_2462 Blocked HMR_8827 Blocked HMR_2590 Blocked
HMR_6946 Blocked HMR_6397 Blocked HMR_7145 Blocked HMR_3921 Blocked
HMR_6947 Blocked HMR_2581 Blocked HMR_7146 Blocked HMR_4266 Blocked
HMR_6948 Blocked HMR_2583 Blocked HMR_7147 Blocked HMR_4684 Blocked
HMR_6949 Blocked HMR_3445 Blocked HMR_6394 Blocked HMR_5022 Blocked
HMR_6950 Blocked HMR_3460 Blocked HMR_6405 Blocked HMR_5036 Blocked
HMR_6951 Blocked HMR_0941 Blocked HMR_8349 Blocked HMR_5112 Blocked
HMR_6952 Blocked HMR_0988 Blocked HMR_8621 Blocked HMR_5117 Blocked
HMR_6953 Blocked HMR_0989 Blocked HMR_8622 Blocked HMR_6408 Blocked
HMR_6954 Blocked HMR_0990 Blocked HMR_8623 Blocked HMR_6455 Blocked
HMR_6955 Blocked HMR_1030 Blocked HMR_8624 Blocked HMR_6513 Blocked
HMR_6956 Blocked HMR_1045 Blocked HMR_8625 Blocked HMR_7723 Blocked
HMR_6957 Blocked HMR_1053 Blocked HMR_4763 Blocked HMR_7757 Blocked
HMR_6958 Blocked HMR_1079 Blocked HMR_4764 Blocked HMR_7760 Blocked
HMR_6959 Blocked HMR_1160 Blocked HMR_4768 Blocked HMR_7897 Blocked
HMR_6960 Blocked HMR_1162 Blocked HMR_4769 Blocked HMR_7899 Blocked
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ReactionID Type ReactionID Type ReactionID Type ReactionID Type
HMR_6961 Blocked HMR_1164 Blocked HMR_8634 Blocked HMR_8528 Blocked
HMR_6962 Blocked HMR_1166 Blocked HMR_9717 Blocked HMR_8562 Blocked
HMR_6963 Blocked HMR_1168 Blocked HMR_6635 Blocked HMR_8785 Blocked
HMR_6964 Blocked HMR_1170 Blocked HMR_6636 Blocked HMR_8910 Blocked
HMR_6965 Blocked HMR_1171 Blocked HMR_6637 Blocked HMR_9676 Blocked
HMR_6966 Blocked HMR_1302 Blocked HMR_6639 Blocked HMR_0707 Blocked
HMR_6967 Blocked HMR_3009 Blocked HMR_6640 Blocked HMR_1172 Blocked
HMR_6973 Blocked HMR_0159 Blocked HMR_6663 Blocked HMR_3026 Blocked
HMR_8416 Blocked HMR_3032 Blocked HMR_6666 Blocked HMR_3948 Blocked
HMR_8425 Blocked HMR_8419 Blocked HMR_6667 Blocked HMR_6928 Blocked
HMR_8603 Blocked HMR_0160 Blocked HMR_6670 Blocked HMR_6937 Blocked
HMR_8604 Blocked HMR_0161 Blocked HMR_6671 Blocked HMR_8422 Blocked
HMR_8605 Blocked HMR_2778 Blocked HMR_6681 Blocked HMR_9179 Blocked
HMR_8608 Blocked HMR_2780 Blocked HMR_6683 Blocked HMR_9181 Blocked
HMR_3750 Blocked HMR_2783 Blocked HMR_6684 Blocked HMR_9017 Blocked
HMR_3771 Blocked HMR_2785 Blocked HMR_6685 Blocked HMR_4538 Blocked
HMR_3772 Blocked HMR_0001 Blocked HMR_6686 Blocked HMR_7765 Blocked
HMR_3782 Blocked HMR_3491 Blocked HMR_6694 Blocked HMR_7767 Blocked
HMR_3794 Blocked HMR_3493 Blocked HMR_6695 Blocked HMR_7861 Blocked
HMR_4199 Blocked HMR_9722 Blocked HMR_6697 Blocked HMR_7862 Blocked
HMR_4466 Blocked HMR_1931 Blocked HMR_6699 Blocked HMR_8840 Blocked
HMR_4937 Blocked HMR_1932 Blocked HMR_6704 Blocked HMR_8638 Blocked
HMR_4426 Blocked HMR_1933 Blocked HMR_6705 Blocked HMR_8642 Blocked
HMR_5336 Blocked HMR_1934 Blocked HMR_8703 Blocked HMR_4314 Blocked
HMR_5337 Blocked HMR_1935 Blocked HMR_8704 Blocked HMR_9016 Blocked
HMR_5340 Blocked HMR_1942 Blocked HMR_8706 Blocked HMR_9018 Blocked
HMR_8783 Blocked HMR_1943 Blocked HMR_8712 Blocked HMR_0929 Blocked
HMR_8784 Blocked HMR_1950 Blocked HMR_4546 Blocked HMR_2040 Blocked
HMR_8786 Blocked HMR_1951 Blocked HMR_4547 Blocked HMR_4903 Blocked
HMR_4241 Blocked HMR_6793 Blocked HMR_4548 Blocked HMR_4907 Blocked
HMR_8563 Blocked HMR_6794 Blocked HMR_4549 Blocked HMR_5048 Blocked
HMR_8566 Blocked HMR_1978 Blocked HMR_4550 Blocked HMR_5049 Blocked
HMR_4685 Blocked HMR_2020 Blocked HMR_4551 Blocked HMR_5050 Blocked
HMR_4687 Blocked HMR_2022 Blocked HMR_4552 Blocked HMR_5051 Blocked
HMR_4702 Blocked HMR_2024 Blocked HMR_4553 Blocked HMR_5052 Blocked
HMR_4703 Blocked HMR_2050 Blocked HMR_4554 Blocked HMR_5053 Blocked
HMR_4704 Blocked HMR_2056 Blocked HMR_4555 Blocked HMR_5054 Blocked
HMR_8630 Blocked HMR_2062 Blocked HMR_4556 Blocked HMR_5055 Blocked
HMR_6924 Blocked HMR_2077 Blocked HMR_4557 Blocked HMR_5056 Blocked
HMR_6925 Blocked HMR_3702 Blocked HMR_4561 Blocked HMR_5057 Blocked
HMR_6926 Blocked HMR_3730 Blocked HMR_4563 Blocked HMR_5058 Blocked
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ReactionID Type ReactionID Type ReactionID Type ReactionID Type
HMR_6927 Blocked HMR_3731 Blocked HMR_4564 Blocked HMR_5059 Blocked
HMR_3743 Blocked HMR_3742 Blocked HMR_8746 Blocked HMR_5060 Blocked
HMR_4227 Blocked HMR_0715 Blocked HMR_8003 Blocked HMR_5061 Blocked
HMR_4232 Blocked HMR_0716 Blocked HMR_8004 Blocked HMR_5062 Blocked
HMR_4248 Blocked HMR_0733 Blocked HMR_8005 Blocked HMR_5063 Blocked
HMR_6707 Blocked HMR_8237 Blocked HMR_8012 Blocked HMR_5064 Blocked
HMR_6708 Blocked HMR_0463 Blocked HMR_8013 Blocked HMR_5065 Blocked
HMR_6709 Blocked HMR_0484 Blocked HMR_6423 Blocked HMR_5066 Blocked
HMR_6710 Blocked HMR_0613 Blocked HMR_6456 Blocked HMR_7252 Blocked
HMR_6711 Blocked HMR_8423 Blocked HMR_6457 Blocked HMR_7430 Blocked
HMR_6712 Blocked HMR_0840 Blocked HMR_6458 Blocked HMR_7710 Blocked
HMR_6713 Blocked HMR_0856 Blocked HMR_6459 Blocked HMR_8355 Blocked
HMR_6714 Blocked HMR_0857 Blocked HMR_6460 Blocked HMR_8490 Blocked
HMR_6715 Blocked HMR_0858 Blocked HMR_6461 Blocked HMR_8491 Blocked
HMR_6722 Blocked HMR_0928 Blocked HMR_6499 Blocked HMR_8492 Blocked
HMR_6723 Blocked HMR_0813 Blocked HMR_6500 Blocked HMR_8688 Blocked
HMR_6726 Blocked HMR_0861 Blocked HMR_6501 Blocked HMR_8875 Blocked
HMR_6727 Blocked HMR_0862 Blocked HMR_7051 Blocked HMR_8928 Blocked
HMR_6735 Blocked HMR_0863 Blocked HMR_7091 Blocked HMR_0612 Blocked
HMR_6737 Blocked HMR_0871 Blocked HMR_7092 Blocked HMR_0652 Blocked
HMR_6738 Blocked HMR_0879 Blocked HMR_7093 Blocked HMR_0717 Blocked
HMR_6739 Blocked HMR_0880 Blocked HMR_7094 Blocked HMR_0917 Blocked
HMR_6740 Blocked HMR_0881 Blocked HMR_7095 Blocked HMR_4125 Blocked
HMR_6744 Blocked HMR_0882 Blocked HMR_7096 Blocked HMR_4902 Blocked
HMR_6747 Blocked HMR_0888 Blocked HMR_7097 Blocked HMR_6577 Blocked
HMR_6748 Blocked HMR_0896 Blocked HMR_7098 Blocked HMR_6578 Blocked
HMR_6749 Blocked HMR_0897 Blocked HMR_6535 Blocked HMR_7204 Blocked
HMR_6750 Blocked HMR_0790 Blocked HMR_6536 Blocked HMR_7435 Blocked
HMR_6751 Blocked HMR_0792 Blocked HMR_5127 Blocked HMR_7694 Blocked
HMR_6753 Blocked HMR_0834 Blocked HMR_5128 Blocked HMR_7695 Blocked
HMR_6754 Blocked HMR_0915 Blocked HMR_7741 Blocked HMR_7759 Blocked
HMR_6755 Blocked HMR_0921 Blocked HMR_9464 Blocked HMR_7761 Blocked
HMR_6757 Blocked HMR_1996 Blocked HMR_9465 Blocked HMR_8496 Blocked
HMR_6759 Blocked HMR_1320 Blocked HMR_9466 Blocked HMR_8527 Blocked
HMR_6771 Blocked HMR_1335 Blocked HMR_9467 Blocked HMR_8673 Blocked
HMR_6788 Blocked HMR_1346 Blocked HMR_9468 Blocked HMR_8856 Blocked
HMR_6792 Blocked HMR_1352 Blocked HMR_9469 Blocked HMR_8857 Blocked
HMR_6798 Blocked HMR_1355 Blocked HMR_9470 Blocked HMR_8920 Blocked
HMR_6799 Blocked HMR_1356 Blocked HMR_9471 Blocked HMR_9199 Blocked
HMR_6800 Blocked HMR_1357 Blocked HMR_9472 Blocked HMR_4313 Blocked
HMR_6801 Blocked HMR_1358 Blocked HMR_9473 Blocked HMR_1306 Blocked
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ReactionID Type ReactionID Type ReactionID Type ReactionID Type
HMR_6927 Blocked HMR_3731 Blocked HMR_4564 Blocked HMR_5059 Blocked
HMR_6802 Blocked HMR_1359 Blocked HMR_9474 Blocked HMR_2777 Blocked
HMR_6803 Blocked HMR_1360 Blocked HMR_9475 Blocked HMR_4126 Blocked
HMR_6806 Blocked HMR_1361 Blocked HMR_9476 Blocked HMR_4860 Blocked
HMR_6807 Blocked HMR_1362 Blocked HMR_9477 Blocked HMR_7784 Blocked
HMR_6808 Blocked HMR_1363 Blocked HMR_9478 Blocked HMR_8369 Blocked
HMR_6811 Blocked HMR_1401 Blocked HMR_9479 Blocked HMR_8651 Blocked
HMR_6813 Blocked HMR_1402 Blocked HMR_9480 Blocked HMR_8681 Blocked
HMR_6814 Blocked HMR_0705 Blocked HMR_9481 Blocked HMR_8919 Blocked
HMR_6815 Blocked HMR_0706 Blocked HMR_9482 Blocked HMR_8921 Blocked
HMR_6817 Blocked HMR_0708 Blocked HMR_9483 Blocked HMR_9200 Blocked
HMR_6818 Blocked HMR_7604 Blocked HMR_9484 Blocked HMR_9625 Blocked
HMR_6819 Blocked HMR_7605 Blocked HMR_9485 Blocked HMR_9024 Blocked
HMR_6820 Blocked HMR_7606 Blocked HMR_9487 Blocked HMR_9077 Blocked
HMR_6822 Blocked HMR_7607 Blocked HMR_9497 Blocked HMR_9080 Blocked
HMR_6823 Blocked HMR_7610 Blocked HMR_9504 Blocked HMR_9081 Blocked
HMR_6824 Blocked HMR_7514 Blocked HMR_9506 Blocked HMR_9082 Blocked
HMR_6827 Blocked HMR_7515 Blocked HMR_9507 Blocked HMR_9149 Blocked
HMR_6828 Blocked HMR_7516 Blocked HMR_9508 Blocked HMR_9150 Blocked
HMR_6830 Blocked HMR_7517 Blocked HMR_9509 Blocked HMR_9157 Blocked
HMR_6835 Blocked HMR_7518 Blocked HMR_9510 Blocked HMR_9162 Blocked
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Table A.23: Revised GPRs implemented in the model.
Reaction ID Genes Reaction ID Genes
HMR_3322 ENSG00000242612 HMR_3093 ENSG00000060971
HMR_1218 ENSG00000104325 HMR_3094 ENSG00000161533
HMR_1220 ENSG00000084754 HMR_3097 ENSG00000060971
HMR_1222 ENSG00000104325 HMR_3098 ENSG00000161533
HMR_1225 ENSG00000084754 HMR_3101 ENSG00000060971
HMR_3375 ENSG00000198721 HMR_3102 ENSG00000161533
HMR_1178 ENSG00000084754 HMR_3171 ENSG00000084754
R_a1 ENSG00000084754 HMR_3175 ENSG00000084754
R_a4 ENSG00000084754 HMR_3486 ENSG00000131373
R_a12 ENSG00000131373 HMR_3505 ENSG00000060971
R_a13 ENSG00000072210 HMR_3510 ENSG00000060971
R_a18 ENSG00000105135 HMR_3515 ENSG00000060971
R_a20 ENSG00000072210 HMR_3242 ENSG00000084754
R_a26 ENSG00000084754 HMR_3246 ENSG00000084754
R_a34 ENSG00000131373 HMR_3254 ENSG00000084754
R_a35 ENSG00000105135 HMR_3262 ENSG00000084754
R_a38 ENSG00000104823 HMR_3359 ENSG00000060971
R_a39 ENSG00000104325 HMR_3363 ENSG00000060971
R_a41 ENSG00000198721 HMR_3220 ENSG00000084754
R_a42 ENSG00000104823 HMR_3224 ENSG00000084754
R_a43 ENSG00000242612 HMR_3228 ENSG00000084754
HMR_3522 ENSG00000117054 HMR_3232 ENSG00000084754
HMR_3523 ENSG00000127884 HMR_3236 ENSG00000084754
HMR_3525 ENSG00000167315 HMR_3329 ENSG00000060971
HMR_3527 ENSG00000117054 HMR_3333 ENSG00000060971
HMR_3528 ENSG00000127884 HMR_3337 ENSG00000060971
HMR_3530 ENSG00000167315 HMR_3341 ENSG00000060971
HMR_3531 ENSG00000117054 HMR_3345 ENSG00000060971
HMR_3532 ENSG00000127884 HMR_3349 ENSG00000060971
HMR_3534 ENSG00000167315 HMR_3353 ENSG00000060971
HMR_3278 ENSG00000084754 HMR_3355 ENSG00000198721
HMR_3282 ENSG00000084754 HMR_3368 ENSG00000060971
HMR_3286 ENSG00000084754 HMR_3373 ENSG00000060971
HMR_3292 ENSG00000084754 HMR_4332 ENSG00000228716
HMR_3294 ENSG00000117054 HMR_4333 ENSG00000228716
HMR_3305 ENSG00000060971 HMR_4654 ENSG00000228716
HMR_3310 ENSG00000060971 HMR_4655 ENSG00000228716
HMR_3315 ENSG00000060971 HMR_4391 ENSG00000111669
HMR_3320 ENSG00000060971 HMR_6912 ENSG00000138777
HMR_3323 ENSG00000198721 HMR_2118 ENSG00000111012
HMR_3108 ENSG00000084754 HMR_2129 ENSG00000019186
HMR_3112 ENSG00000084754 HMR_2130 ENSG00000019186
HMR_3116 ENSG00000084754 HMR_2131 ENSG00000019186
HMR_3143 ENSG00000127884 HMR_2132 ENSG00000019186
HMR_3150 ENSG00000127884 HMR_2133 ENSG00000019186
HMR_3157 ENSG00000127884 HMR_2134 ENSG00000019186
HMR_3057 ENSG00000161533 HMR_2135 ENSG00000019186
HMR_3058 ENSG00000113790 HMR_2138 ENSG00000019186
HMR_3059 ENSG00000113790 HMR_2139 ENSG00000111012
HMR_3060 ENSG00000060971 HMR_2140 ENSG00000111012
HMR_3062 ENSG00000161533 HMR_2144 ENSG00000019186
HMR_3063 ENSG00000113790 HMR_2145 ENSG00000019186
HMR_3064 ENSG00000113790 HMR_8003 ENSG00000111012
HMR_3065 ENSG00000060971 HMR_8005 ENSG00000019186
HMR_3066 ENSG00000161533 HMR_8006 ENSG00000111012
HMR_3067 ENSG00000113790 HMR_8514 ENSG00000166816
HMR_3068 ENSG00000113790 HMR_3288 ENSG00000167969 OR ENSG00000198721
HMR_3069 ENSG00000060971 HMR_1175 ENSG00000072778 OR ENSG00000115361
HMR_3070 ENSG00000161533 HMR_1216 ENSG00000138029 OR ENSG00000167315
HMR_3073 ENSG00000060971 HMR_1217 ENSG00000072778 OR ENSG00000115361
HMR_3074 ENSG00000161533 HMR_1219 ENSG00000084754 OR ENSG00000127884
HMR_3077 ENSG00000060971 HMR_1221 ENSG00000138029 OR ENSG00000167315
HMR_3078 ENSG00000161533 HMR_1223 ENSG00000072778 OR ENSG00000115361
HMR_3081 ENSG00000060971 HMR_1224 ENSG00000084754 OR ENSG00000127884
HMR_3082 ENSG00000161533 HMR_1226 ENSG00000138029 OR ENSG00000167315
HMR_3085 ENSG00000060971 HMR_3244 ENSG00000072778 OR ENSG00000115361
HMR_3086 ENSG00000161533 HMR_3272 ENSG00000167969 OR ENSG00000198721
HMR_3089 ENSG00000060971 HMR_1179 ENSG00000138029 OR ENSG00000167315
HMR_3090 ENSG00000161533 R_a2 ENSG00000138029 OR ENSG00000167315
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Reaction ID Genes Reaction ID Genes
R_a3 ENSG00000084754 OR ENSG00000127884 HMR_3229 ENSG00000138029 OR ENSG00000167315
R_a5 ENSG00000138029 OR ENSG00000167315 HMR_3230 ENSG00000072778 OR ENSG00000115361
R_a24 ENSG00000072778 OR ENSG00000115361 HMR_3233 ENSG00000138029 OR ENSG00000167315
R_a25 ENSG00000084754 OR ENSG00000127884 HMR_3234 ENSG00000072778 OR ENSG00000115361
R_a27 ENSG00000138029 OR ENSG00000167315 HMR_3237 ENSG00000138029 OR ENSG00000167315
R_a37 ENSG00000167969 OR ENSG00000198721 HMR_3239 ENSG00000167969 OR ENSG00000198721
R_a40 ENSG00000161533 OR ENSG00000087008 HMR_3327 ENSG00000113790 OR ENSG00000133835
R_a52 ENSG00000084754 OR ENSG00000127884 HMR_3328 ENSG00000113790 OR ENSG00000133835
HMR_3240 ENSG00000072778 OR ENSG00000115361 HMR_3331 ENSG00000113790 OR ENSG00000133835
HMR_3250 ENSG00000072778 OR ENSG00000115361 HMR_3332 ENSG00000113790 OR ENSG00000133835
HMR_3258 ENSG00000072778 OR ENSG00000115361 HMR_3335 ENSG00000113790 OR ENSG00000133835
HMR_3524 ENSG00000072506 OR ENSG00000138796 HMR_3336 ENSG00000113790 OR ENSG00000133835
HMR_3529 ENSG00000072506 OR ENSG00000138796 HMR_3339 ENSG00000113790 OR ENSG00000133835
HMR_3533 ENSG00000072506 OR ENSG00000138796 HMR_3340 ENSG00000113790 OR ENSG00000133835
HMR_3275 ENSG00000072778 OR ENSG00000115361 HMR_3343 ENSG00000113790 OR ENSG00000133835
HMR_3280 ENSG00000072778 OR ENSG00000115361 HMR_3344 ENSG00000113790 OR ENSG00000133835
HMR_3284 ENSG00000072778 OR ENSG00000115361 HMR_3347 ENSG00000113790 OR ENSG00000133835
HMR_3302 ENSG00000113790 OR ENSG00000133835 HMR_3348 ENSG00000113790 OR ENSG00000133835
HMR_3307 ENSG00000113790 OR ENSG00000133835 HMR_3351 ENSG00000113790 OR ENSG00000133835
HMR_3312 ENSG00000113790 OR ENSG00000133835 HMR_3352 ENSG00000113790 OR ENSG00000133835
HMR_3317 ENSG00000113790 OR ENSG00000133835 HMR_3365 ENSG00000113790 OR ENSG00000133835
HMR_3107 ENSG00000072778 OR ENSG00000115361 HMR_3367 ENSG00000113790 OR ENSG00000133835
HMR_3109 ENSG00000072506 OR ENSG00000084754 HMR_3370 ENSG00000113790 OR ENSG00000133835
HMR_3110 ENSG00000138029 OR ENSG00000167315 HMR_3372 ENSG00000113790 OR ENSG00000133835
HMR_3111 ENSG00000072778 OR ENSG00000115361 HMR_1457 ENSG00000160752 OR ENSG00000152904
HMR_3113 ENSG00000072506 OR ENSG00000084754 HMR_1460 ENSG00000160752 OR ENSG00000152904
HMR_3114 ENSG00000138029 OR ENSG00000167315 R_a36 ENSG00000072778 OR ENSG00000115361 OR ENSG00000117054
HMR_3117 ENSG00000072506 OR ENSG00000084754 HMR_3115 ENSG00000072778 OR ENSG00000115361 OR ENSG00000177646
HMR_3118 ENSG00000138029 OR ENSG00000167315 HMR_3121 ENSG00000072778 OR ENSG00000115361 OR ENSG00000177646
HMR_3123 ENSG00000072506 OR ENSG00000084754 HMR_3122 ENSG00000072506 OR ENSG00000084754 OR ENSG00000127884
HMR_3125 ENSG00000138029 OR ENSG00000167315 HMR_3129 ENSG00000072506 OR ENSG00000084754 OR ENSG00000127884
HMR_3128 ENSG00000072778 OR ENSG00000115361 HMR_3135 ENSG00000072778 OR ENSG00000115361 OR ENSG00000117054
HMR_3130 ENSG00000072506 OR ENSG00000084754 HMR_3170 ENSG00000072778 OR ENSG00000115361 OR ENSG00000177646
HMR_3132 ENSG00000138029 OR ENSG00000167315 HMR_3174 ENSG00000072778 OR ENSG00000115361 OR ENSG00000177646
HMR_3139 ENSG00000138029 OR ENSG00000167315 HMR_3202 ENSG00000196177 OR ENSG00000117054 OR ENSG00000177646
HMR_3146 ENSG00000138029 OR ENSG00000167315 HMR_0459 ENSG00000111275 OR ENSG00000137124 OR ENSG00000164904
HMR_3153 ENSG00000138029 OR ENSG00000167315 HMR_8784 ENSG00000111275 OR ENSG00000137124 OR ENSG00000164904
HMR_3156 ENSG00000117054 OR ENSG00000196177 HMR_9563 ENSG00000111275 OR ENSG00000137124 OR ENSG00000164904
HMR_3160 ENSG00000138029 OR ENSG00000167315 HMR_3975 ENSG00000107902 OR ENSG00000143363 OR ENSG00000180817
HMR_3071 ENSG00000113790 OR ENSG00000133835 HMR_3977 ENSG00000107902 OR ENSG00000143363 OR ENSG00000180817
HMR_3075 ENSG00000113790 OR ENSG00000133835 HMR_3979 ENSG00000107902 OR ENSG00000143363 OR ENSG00000180817
HMR_3079 ENSG00000113790 OR ENSG00000133835 HMR_2115 ENSG00000186104 OR ENSG00000135929 OR ENSG00000118816
HMR_3083 ENSG00000113790 OR ENSG00000133835 HMR_2117 ENSG00000186104 OR ENSG00000135929 OR ENSG00000118816
HMR_3087 ENSG00000113790 OR ENSG00000133835 HMR_7996 ENSG00000186104 OR ENSG00000135929 OR ENSG00000118816
HMR_3091 ENSG00000113790 OR ENSG00000133835 HMR_4281 ENSG00000134333 OR ENSG00000111716 OR ENSG00000171989
HMR_3095 ENSG00000113790 OR ENSG00000133835 HMR_4280 ENSG00000134333 OR ENSG00000111716 OR ENSG00000171989
HMR_3099 ENSG00000113790 OR ENSG00000133835 HMR_4239 ENSG00000091140 AND ENSG00000119689 AND ENSG00000105953
HMR_3103 ENSG00000113790 OR ENSG00000133835 HMR_5297 ENSG00000091140 AND ENSG00000119689 AND ENSG00000105953
HMR_3172 ENSG00000072506 OR ENSG00000084754 R_a11 ENSG00000068366 OR ENSG00000123983 OR ENSG00000151726 OR ENSG00000164398
HMR_3173 ENSG00000138029 OR ENSG00000167315 R_a33 ENSG00000068366 OR ENSG00000123983 OR ENSG00000151726 OR ENSG00000164398
HMR_3176 ENSG00000072506 OR ENSG00000084754 HMR_1692 ENSG00000072210 OR ENSG00000006534 OR ENSG00000108602 OR ENSG00000132746
HMR_3177 ENSG00000138029 OR ENSG00000167315 HMR_1132 ENSG00000072210 OR ENSG00000006534 OR ENSG00000108602 OR ENSG00000132746
HMR_3498 ENSG00000087008 OR ENSG00000168306 HMR_1134 ENSG00000072210 OR ENSG00000006534 OR ENSG00000108602 OR ENSG00000132746
HMR_3501 ENSG00000113790 OR ENSG00000133835 HMR_1289 ENSG00000072210 OR ENSG00000006534 OR ENSG00000108602 OR ENSG00000132746
HMR_3506 ENSG00000087008 OR ENSG00000168306 HMR_3923 ENSG00000091140 AND ENSG00000140905 AND ENSG00000145020 AND ENSG00000178445
HMR_3508 ENSG00000113790 OR ENSG00000133835 HMR_6409 ENSG00000091140 AND ENSG00000140905 AND ENSG00000145020 AND ENSG00000178445
HMR_3512 ENSG00000087008 OR ENSG00000168306 HMR_8433 ENSG00000091140 AND ENSG00000140905 AND ENSG00000145020 AND ENSG00000178445
HMR_3513 ENSG00000113790 OR ENSG00000133835 HMR_8434 ENSG00000091140 AND ENSG00000140905 AND ENSG00000145020 AND ENSG00000178445
HMR_3243 ENSG00000138029 OR ENSG00000167315 HMR_8435 ENSG00000091140 AND ENSG00000140905 AND ENSG00000145020 AND ENSG00000178445
HMR_3247 ENSG00000138029 OR ENSG00000167315 HMR_8436 ENSG00000091140 AND ENSG00000140905 AND ENSG00000145020 AND ENSG00000178445
HMR_3256 ENSG00000138029 OR ENSG00000167315 HMR_8437 ENSG00000091140 AND ENSG00000140905 AND ENSG00000145020 AND ENSG00000178445
HMR_3264 ENSG00000138029 OR ENSG00000167315
HMR_3357 ENSG00000113790 OR ENSG00000133835
HMR_3358 ENSG00000113790 OR ENSG00000133835
HMR_3361 ENSG00000113790 OR ENSG00000133835
HMR_3362 ENSG00000113790 OR ENSG00000133835
HMR_3218 ENSG00000072778 OR ENSG00000115361
HMR_3221 ENSG00000138029 OR ENSG00000167315
HMR_3222 ENSG00000072778 OR ENSG00000115361
HMR_3225 ENSG00000138029 OR ENSG00000167315
HMR_3226 ENSG00000072778 OR ENSG00000115361
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TABLE A.24. Model constraints for uptake reaction fluxes, which were implemented
after manual literature revision of metabolites pointed out by the comparative
study of gene essentiality. The MetaboliteID indicates the metabolite in the model
for which the flux of the uptake reaction was constraint. The constraints are shown
with the lower and the upper bounds in brackets. An uptake and transport re-
action was added to the model in case it did not already exist. Note that HDL
remnant is a composition of diverse lipids including cholesterols, cholesterol es-
ters, phosphatidylcholines, phosphatidylserines, phosphatidylethanolamines and
sphingomyelins.

Metabolite MetaboliteID Constraints
from
Jain et al.

Constraints Literature evidence

cysteine m01628 - [0, 0.01] Arriza et al. 1993
L-cystine m01629 - [0, 0.08645] Sato et al. 1999
i-Inositol m02171 - [0, 0.1] Schneider 2015
protoheme m02049 - [0, 0.1] Anwar and Quigley 2011
L-carnitine m02348 [0, 0.000780] [0, 0.01] Longo et al. 2006
proline m02770 [0, 0.011940] [0, 0.038] Takanaga et al. 2005
vitamin A derivatives m03139 - [0, 0.01] Kawaguchi et al. 2015
vitamin D derivatives m03140 - [0, 0.01] Rowling et al. 2006
vitamin E derivatives m03143 - [0, 0.01] Saito et al. 2004
cholesterol m01450 - [0, 0.1] Röhrl and Stangl 2013;

Murakami et al. 1990
ubiquinone m03103 - [0, 0.1] Fernández-Ayala et al. 2005
tetrahydrobiopterin m02978 - [0,0.1] Yamamoto et al. 1996
FAD+ m01802 - [0,0.1] Jin et al. 2017
HDL remnant m02047 - [0,0.1] Brown and Rader 2009



APPENDIX A. APPENDIX A

Table A.25: Enriched GO Terms sorted by category of differentially down regulated genes (padj <
0.01) comparing the tumor samples with NI and WT controls.

Term ID Description Occurrences
GO:0042254 ribosome biogenesis 43
GO:0046483 heterocycle metabolic process 25
GO:0034502 protein localization to chromosome 16
GO:0090304 nucleic acid metabolic process 16
GO:0048856 anatomical structure development 7
GO:0010467 gene expression 7
GO:0001503 ossification 7
GO:0007165 signal transduction 6
GO:1904874 positive regulation of telomerase RNA localization to Cajal body 6
GO:0034641 cellular nitrogen compound metabolic process 6
GO:0016477 cell migration 5
GO:1901135 carbohydrate derivative metabolic process 5
GO:0009081 branched-chain amino acid metabolic process 5
GO:0043062 extracellular structure organization 3
GO:0000278 mitotic cell cycle 2
GO:0007155 cell adhesion 1
GO:1904666 regulation of ubiquitin protein ligase activity 1
GO:0090287 regulation of cellular response to growth factor stimulus 1
GO:0006725 cellular aromatic compound metabolic process 1
GO:1901360 organic cyclic compound metabolic process 1
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Table A.26: Enriched GO Terms sorted by category of differentially down regulated genes (padj <
0.01) comparing the regressed samples with NI and WT controls.

Term ID Description Occurrences
GO:1903047 mitotic cell cycle process 51
GO:0009190 cyclic nucleotide biosynthetic process 17
GO:0048285 organelle fission 17
GO:0007399 nervous system development 14
GO:0007267 cell-cell signaling 12
GO:0030334 regulation of cell migration 8
GO:0048856 anatomical structure development 7
GO:0072358 cardiovascular system development 5
GO:0030154 cell differentiation 4
GO:0007155 cell adhesion 3
GO:0007165 signal transduction 3
GO:0090304 nucleic acid metabolic process 3
GO:0043062 extracellular structure organization 2
GO:0006939 smooth muscle contraction 2
GO:0071840 cellular component organization or biogenesis 1
GO:0006928 movement of cell or subcellular component 1
GO:0007017 microtubule-based process 1
GO:0071467 cellular response to pH 1
GO:0072006 nephron development 1
GO:0042474 middle ear morphogenesis 1
GO:0001503 ossification 1

185



APPENDIX A. APPENDIX A

Table A.27: Targeted GCMS metabolomics analysis of extracellular metabolites from In vitro
cultures.
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Table A.28: Targeted GCMS metabolomics analysis of intracellular metabolites from In vitro
cultures.
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TABLE A.29. Significant reporter metabolites from the comparison of tumor cells with
healthy cells. The table depicts a shortened version of the full list of reporter
metabolites. Only reporter metabolites with an adjusted p-value < 0.01 are shown.
The total number of genes annotated to a respective metabolite is displayed (#Genes
annotated) and out of this the number of genes, which are higher (#Genes up)
or lower (#Genes down) in the tumor cells than in the control cells. The differ-
ent types of p-values are extensively reviewed in the vignette of the piano tool-
box (https://bioconductor.org/packages/release/bioc/vignettes/piano/inst/doc/piano-
vignette.pdf).
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APPENDIX A. APPENDIX A
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TABLE A.30. Significant reporter metabolites from the comparison of regressed cells
with healthy cells. The table depicts a shortened version of the full list of re-
porter metabolites. Only reporter metabolites with an adjusted p-value < 0.01 are
shown. The total number of genes annotated to a respective metabolite is displayed
(#Genes annotated) and out of this the number of genes, which are higher (#Genes
up) or lower (#Genes down) in the regressed cells than in the control cells. The
different types of p-values are extensively reviewed in the vignette of the piano tool-
box (https://bioconductor.org/packages/release/bioc/vignettes/piano/inst/doc/piano-
vignette.pdf).
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17

8
9

2,81E
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-01
L

-cystathionine[c]
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2,17E
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selenocystathionine[c]
2
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9
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9
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biosynthesis,precursor
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9

6
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3,48E
-03

3,23E
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7,24E
-01

1,29E
-05

1,00E
+00
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sulfate
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22[g]
9

6
3

3,48E
-03

3,23E
-04

7,24E
-01

1,29E
-05

1,00E
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9

6
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3,48E
-03

3,23E
-04

7,24E
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-05

1,00E
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9
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3,23E
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1,00E
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9
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3,48E
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3,23E
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7,24E
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1,29E
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1,00E
+00
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9
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3,48E
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3,23E
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7,24E
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1,29E
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1,00E
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keratan
sulfate
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4-linked),biosynthesis,precursor
8[g]
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3
3,48E
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3,23E
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7,24E
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+00
keratan

sulfate
II

(core
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9

6
3

3,48E
-03

3,23E
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7,24E
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1,00E
+00
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9
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3

3,48E
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3,23E
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1,29E
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9
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3

3,48E
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3,23E
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9

6
3

3,48E
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3,23E
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7,24E
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1,29E
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1,00E
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3,49E
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[c]
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2
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fructose-6-phosphate[c]
24
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1,02E
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+00

U
D
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[c]
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3,78E
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-04
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2,33E
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9,64E
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]
1

0
1
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N
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L
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]

1
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1
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A
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-03
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10
23

4,16E
-03
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D
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1
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2
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+00
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1
0

1
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1
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9,79E
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7
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L
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4
2

2
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3,25E

-02
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1,77E
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1
0

1
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N

A
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-03
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-01
3,67E

-02
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5

1
4

5,37E
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sphingosine-1-phosphate[c]
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[c]
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1,67E
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4,51E
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2-oxobutyrate[c]

12
6

6
9,80E
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3,54E
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8,82E
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-glycerate[c]
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[c]
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5-oxo-(6E
)-12-epi-LT

B
4[r]
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[c]

20
7

13
1,01E
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-01
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[c]

20
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1,01E
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7,94E
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-01
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7
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-01
1,59E

-01
8,32E

-01
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-03
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8,32E
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E
T

E
[c]

20
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3[g]
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6

5
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-02
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-04
9,99E
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keratan
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9[g]
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6

5
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7,76E
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9,99E
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11
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5
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4,10E
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7,76E
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5
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TABLE A.31. Flux Predictions, regressed vs control.
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TABLE A.32. List of plasmids.

name description source
pSP-GM1 2µ; Ptef1-Ppgk; AmpR/KI.URA3 Partow et al., 2010
pcfb2223 Integrative X3; USER cassette; AmpR/KanMx Stovicek et al., 2015a
pCfB2195 Integrative XI3; USER cassette; AmpR/KanMx Stovicek et al., 2015a
pCfB2311 2µ; Template for gRNA plasmids; AmpR/NatMX Stovicek et al., 2015b
pCfB2312 CEN/ARS; Ptef1-Cas9; AmpR/KanMX Stovicek et al., 2015b
pTAJAK71 2µ; USER cassette; AmpR/NatMX Jakociunas et al. 2015
pTS1 X3::TEF1::nox; AmpR/KanMX This study
pTS53 2µ; gRNA-gut1_1; AmpR/KanMX This study
PTS54 2µ; gRNA-hog1_1; AmpR/KanMX This study
pTS56 2µ; gRNA-kgd1; AmpR/KanMX This study
pTS58 2µ; gRNA-gut1_3; AmpR/KanMX This study
pTS59 2µ; gRNA-hog1_2; AmpR/KanMX This study
pTS61 2µ; gRNA-pbs2; AmpR/KanMX This study
pTS63 2µ; gRNA-tea1; AmpR/KanMX This study
pTS64 2µ; gRNA-ppz2; AmpR/KanMX This study
pTS66 2µ; gRNA-gut1_2; AmpR/KanMX This study
pTS68 2µ; gRNA-ino80; AmpR/KanMX This study
pTS70 2µ; gRNA-ubc13; AmpR/KanMX This study
pTS71 2µ; gRNA-cym1; AmpR/KanMX This study
pTS72 2µ; gRNA-ret1; AmpR/KanMX This study
pTS74 2µ; gRNA-ymr206w; AmpR/KanMX This study
pTS81 2µ; gRNA-gut1-kgd1-ino80; AmpR/KanMX This study
pTS83 2µ; gRNA-gut1-kgd1-ubc13; AmpR/KanMX This study
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TABLE A.33. Permission for the reproduction of figures. The figures that are reproduced
from other sources are listed below with their corresponding permission
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