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Zusammenfassung
Im Alter erkranken manche Menschen an Glaukom. In einigen Fällen kann Glaukom
zum Erblinden führen. Der Hauptfaktor für die Entwicklung des Sehverlustes ist der
erhöhte Augeninnendruck und die Senkung des Augeninnendrucks ist im Moment
die einzige Therapiemöglichkeit mit nachgewiesener Effektivität. Um das Verhalten
des Kammerwasserflusses und des Augeninnendrucks in der Vorderkammer des men-
schlichen Auges zu verstehen, wird ein mathematisches Modell entwickelt. Das Modell
ist durch Stokes und Darcy Gleichungen gegeben. Die Stokes-Gleichung beschreibt
den Kammerwasserfluss in der Vorderkammer und die Darcy-Gleichung im Trabekel-
werk, welches ein poröses Medium ist. Anhand der Darcy Gleichung wird der Druck
im Trabekelwerk ermittelt. Dann wird der Mittelwert des Drucks im Trabekelwerk
erfasst und als Robin Randbedingung in der Stokes Gleichung gestellt. Die charak-
teristischen Größen sind durch die Einflussrate des Kammerwassers am Ziliarkörper,
den Druck der episkleralen Venen gegeben und es wird angenommen, dass die Cornea,
die Augenlinse, die Iris und die Zonulafasern keine Flüssigkeiten durchlassen. Es wer-
den Geometrien für gesunde, pathologische und behandelte Augen betrachtet. Die
numerischen Simulationen mit der Finite Elemente Methode werden vorgestellt. In
den Simulationen werden gemischte Finite Elemente verwendet und die Lösungen
der Gleichungen mit der deal.ii Software ermittelt. Die Ergebnisse der Simulationen
liefern Vorhersagen für medizinische Anwendungen wie Trabekulektomie, Stent-Einsatz
beim Glaukom sowie Kataraktoperation. Außerdem werden spezifische Parametertests
gemacht und es werden Abhängigkeiten zwischen der Änderung des Drucks und dem
entsprechenden Parameterwert des Modells erfasst. Beispielsweise konnte mit dem
Modell gezeigt werden, dass im Falle der partiellen Verstopfung des Trabekelwerks
und eines Ausgangsaugeninnendrucks von 28.37 mmHg und einer Trabekulektomie in
dem verstopften Abschnitt der Augeninnendruck um 18.32% gesenkt werden kann.
Außerdem wird anhand des Modells ein linearer Zusammenhang zwischen dem Au-
geninnendruck und dem episkleralen Venendruck gewonnen.

3



4

Abstract
In old age some people fall ill with glaucoma. In some cases glaucoma can lead to
blindness. The primary risk factor for the development of the vision loss in glaucoma
is an increased intraocular pressure (IOP) and lowering the IOP is currently the only
therapeutic option with proven efficiency. To understand the behavior of the aqueous
humor flow and of the IOP in the anterior chamber of the human eye, a mathematical
model is developed. This model is given by Stokes and Darcy equations. The Stokes
equation describes the aqueous humor flow in the anterior chamber and the Darcy
equation describes the pressure in the trabecular meshwork which is a porous medium.
With the help of the Darcy equation the mean pressure value in the Darcy domain is
computed. This mean pressure value is incorporated into the Robin boundary condition
of the Stokes equation. The characteristic physical properties are given by the inflow
rate of the aqueous humor at the ciliary body, the pressure of the episcleral veins and it
is assumed that the cornea, the lens, the iris and the zonules are impermeable. Geome-
tries for healthy, pathological and treated eyes are considered. Numerical simulations
using the Finite Element method are performed in three dimensions. In the computa-
tion, mixed finite elements (e.g. Taylor Hood finite elements for the Stokes equation)
are used and the solutions of the equations are generated with deal.ii software. The
simulations cover the dependence of the IOP to specific changes of certain model and
geometric parameters. Moreover, medical applications concerning IOP changes due to
cataract surgery, stent insertion as well as trabeculectomy are discussed. For instance,
the model shows a postoperative decrease in IOP about 18.32% in a case of partial
occlusion of the trabecular meshwork and the initial IOP of 28.37 mmHg. In addition,
the model illustrates linear dependence between the episcleral venous pressure and the
IOP.
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Mathematical novelty
In this thesis, a mathematical model is developed. This model is given by Stokes and
Darcy equations. The Stokes equation describes the aqueous humor flow in the anterior
chamber and the Darcy equation describes the pressure in the trabecular meshwork.
With the help of the Darcy equation the mean pressure value in the trabecular mesh-
work is computed. This mean pressure value is incorporated into the Robin boundary
condition of the Stokes equation. Then, the Stokes equation is solved and the mean
intraocular pressure is determined. The characteristic physical properties are given by
the inflow rate of the aqueous humor at the ciliary body, the pressure of the episcleral
veins and it is assumed that the cornea, the lens, the iris and the zonules are imperme-
able. The existence and uniqueness of solutions of the model is shown. Theory about
finite elements and discretization concerning Stokes and Darcy equations is adapted to
the model.
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Introduction
With the help of the eyes humans perceive upwards of 70% of information (e.g., reading
and studying, enjoying the beauty of nature, communication with facial expressions).
Thus, good vision and healthy eyes are significant for the quality of living. Since the
age of Babylon people have been starting to develop methods to heal eye diseases.
One of the eye diseases is glaucoma. Quingley [QB06] and Tham [TLW+14] estimate
that worldwide there were approximately 60.5 million people with glaucoma in 2010,
increasing to 79.6 million by 2020 and to 111.8 million by 2040. Glaucoma is a disease
that damages the optic nerve and leads to blindness. The damage of the optic nerve
can be a consequence of elevated pressure within the eye, a neurodegenerative disease
or other diseases in the body. This thesis considers glaucoma connected with elevated
pressure within the eye, since it is seen as the primary risk factor for the development of
the vision loss and lowering of the pressure within the eye (which is called intraocular
pressure (IOP)) is currently the only therapeutic option with proven efficiency (see for
example [HLB+02]). To understand the reasons for the increased IOP, the flow of the
aqueous humor in the anterior chamber and the trabecular meshwork will be studied.
There are several models describing the flow through the the anterior chamber and the
trabecular meshwork.
In [FO+14] the aqueous humor flow in the anterior chamber is modeled using Navier
Stokes - Darcy coupling. In this article, the influence of the aqueous humor production
rate on the IOP as well as of the aqueous humor drainage on the IOP is considered.
Moreover, drug delivery through the cornea from a therapeutic lens to the anterior
chamber of the eye is modeled. The last model consists of three coupled systems of
partial differential equations linked by interface conditions: drug diffusion in the ther-
apeutic lens; diffusion and metabolic consumption in the cornea; diffusion, convection
and metabolic consumption in the anterior chamber of the eye. The simulations are
performed in two dimensions.
In [VR+12] a 3D computational fluid dynamic model of the eye based on the anatomy
of a real human eye is presented. This model is based on stacks of micrographs from
human eye slides from which digital processing of the images of the eye structure and
3D reconstruction of the model is performed. The following model is based on the
Navier Stokes equation and Boussinesq approximation for temperature in the anterior
chamber and on the Darcy equation in the trabecular meshwork. Glaucoma surgery
cases are also considered. Trabeculectomy is modeled as a hole of 400µm in diameter
located in the irido-corneal angle in the anterior chamber. Moreover, insertion of glau-
coma drainage implants ExPRESSTMV 50 (Ex-PRESS, Alcon Inc.) is also considered.
The simulations are performed with ANSYS CFX. The simulation results are compared
with experimental data. In this article, no mathematical proof for correctness of the
computation is shown.
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In [CE13] computational results for the pressure in the anterior chamber and the tra-
becular meshwork of a human eye are presented. The fluid flow is assumed to be
axisymmetric and modeled as a coupled system of the Stokes and Darcy fluid flow
equations, representing the flow in the anterior chamber and in the trabecular mesh-
work, respectively. In this paper, the 3D problem in cylindrical coordinates is reduced
to the problem in 2D. Furthermore, computations for varying angles between the base
of the iris and the trabecular meshwork are given. The limit of this model is the pre-
scribed outflow condition of the aqueous humor.
In [Kum03] numerical simulations of the aqueous humor dynamics in the anterior cham-
ber of the human eye are presented. The basic flow and transport mechanisms are
delineated. The geometry of the anterior chamber is given by a part of a sphere, the
natural lens by a half-ellipsoid, the cornea by a rigid shell and the iris is modeled as
a rigid elliptical disc of uniform thickness with a circular hole. The model is given by
steady three-dimensional incompressible Navier-Stokes equations with the inclusion of
buoyancy terms for natural convection and Darcy pressure drop terms in the porous
zone. The density appearing in the buoyancy term is assumed to satisfy the Boussinesq
approximation. Healthy case, angle closure glaucoma, pupillary block and iridectomy
are considered.
There are also further works dealing with fluid mechanics in the human eye. In [CG02]
and in [ADF06] the buoyancy-driven flow arising from the temperature difference be-
tween the anterior surface of the cornea and the iris is considered. The authors use
Boussinesq model to describe the aqueous humor flow. Using non-dimensionalization
technique, the model is simplified and analytic solutions for the simplified equations
are computed. In [ON07] the effect of the aqueous humor flow on the temperature
distribution inside the eye is investigated. In [MH07] the aqueous humor outflow resis-
tance in the juxtacanalicular tissue (JCT) of the human eye is studied. In that work,
JCT is treated as a heterogeneous tissue with a variable permeability. Further aspects
are studied in [HBT02], where passive mechanical interaction between the aqueous hu-
mor and the iris is modeled and in [AS06], where aqueous humor outflow through the
trabecular meshwork is described. In [AS06] a strain-dependent permeability function
is incorporated into Darcy’s law which is coupled to the force balance for the bulk
material.
In [MAGA14] , the physiology of aqueous humor dynamic in the anterior chamber due
to rapid eye movement (REM) is considered. Here, a harmonic model for the REM
was developed and a dependence between REM amplitudes and velocity is shown. In
[WO16], the fluid and structure coupling of the interaction between the aqueous humor
and iris is analyzed.
In this thesis, the aqueous humor flow in the anterior chamber is described. The flow
and pressure distribution in the anterior chamber is modeled with the help of Stokes
and Darcy equations. The Stokes equation describes the flow in the anterior chamber
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and the Darcy equation describes the flow in the trabecular meshwork. The charac-
teristic physical properties are given by the inflow rate of the aqueous humor at the
ciliary body, the pressure of the episcleral veins and it is assumed that the cornea,
the lens, the iris and the zonules are impermeable. In the current moment, it is the
first finite element simulation in 3D for the aqueous humor flow in the anterior cham-
ber based on sound mathematical approach. Moreover, it is an alternative model to
Stokes-Darcy model with a Beavers Joseph Saffman condition on the interface. In this
thesis, the Darcy equation is solved first. Then, the mean intraocular pressure in the
trabecular meshwork is computed. Afterwards, this mean value is incorporated in the
Robin boundary condition of the Stokes equation and the Stokes equation is solved
afterwards. This coupling strategy answers the question about how the resistance of
the pores in the trabecular meshwork influences the IOP in the anterior chamber. This
question is very common in literature (in particular in medicine and engineering) and
this thesis gives an answer from the mathematical point of view. Furthermore, param-
eter dependence between the IOP and different model parameters like the episcleral
venous pressure, the viscosity of the aqueous humor, the production rate of the aque-
ous humor, the permeability of the trabecular meshwork, the thickness of the lens, the
radius of the pupil opening as well as the position of the body are shown. Moreover,
the model covers the change of the IOP after scleral lens wear as well as surgical in-
terventions like trabeculectomy, insertion of stents and cataract surgery. The following
thesis has the following structure. In section two medical background is introduced.
The structure of the eye is discussed, the flow path of the aqueous humor flow is il-
lustrated. In this section, glaucoma with possible treatment options is mentioned. In
the third section, mathematical notation and function spaces are repeated. In the forth
section a mathematical model is derived and described. Fifth section deals with the
well posedness of the model and the existence and uniqueness of solutions of the model
equations. Moreover, concepts of the Finite Element method are presented and the
Finite Element method is applied to the model. Section six describes the geometry, the
implementation of the model and the medical applications (trabeculectomy, cataract
surgery and the effect of specific parameters on the IOP).

9
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1 Medical background
This chapter gives a summary of medical knowledge to understand the model of this
thesis. First, the structure of the eye is explained. This section shows how main parts
of the eye are interacting to maintain vision and how they are positioned inside of
the human eye. Next, aqueous humor flow is illustrated. In particular, the path of the
aqueous humor flow is described and characteristics and function of aqueous humor are
presented. Then, the structure of the trabecular meshwork is considered. This chapter
ends with glaucoma and therapeutic methods for healing glaucoma. Especially, changes
of the characteristics of the trabecular meshwork are considered during glaucoma.

1.1 Structure of the Eye

The detailed description of the structure and physiology of the human eye can be found
in [Lev11]. In this section, only basic terminology is introduced. The eye is an organ
which is capable of transducing photons into neural signals. The eye consists of the
anterior chamber, the posterior chamber and the vitreous chamber. 1/6th of the total
surface of the eye (which is also a surface of the anterior chamber) is covered by a clear,
transparent skin called cornea and the remaining 5/6th of the surface area are covered
by a white, opaque sclera [Lev11]. The cornea is one of the eye’s refractive structures
and it has two key optical properties - light refraction and light transmission [Lev11].
The sclera serves more of a biomechanical function and is analogous to the housing
of the camera and lens [Lev11]. The iris lies at the border between the anterior and
the posterior chamber. The iris is a thin, circular structure of the eye controlling the
size of the pupil and consequently the amount of light reaching the retina. Behind the
iris, there is the lens. The lens is a transparent ellipsoidal structure in the eye helping
to refract light to be focused on the retina. The lens functions to change the focal
distance of the eye so that it can focus on objects at various distances, thus allowing a
sharp real image of the object of interest to be formed on the retina. This adjustment
of the lens is known as accommodation [Lev11]. The space between the lens and the
retina of the eyeball is called vitreous chamber. The vitreous chamber is filled with
a transparent, colorless, gelatinous gel called the vitreous humor. The vitreous humor
is stagnant. Thus, if blood cells or other byproducts of inflammation get into it, they
will retain there. In contrast to the vitreous humor, the fluid in the anterior chamber
(which is called the aqueous humor), is continuously replenished. The aqueous humor
is described in the next section.

10
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1.2 Aqueous humor flow

The aqueous humor is a clear, colorless fluid consisting of 98 % of water, 0.5 − 1% of
proteins as well as other organic and inorganic ions, amino acids, oxygen, carbon diox-
ide, carbohydrates, urea [FJ09]. Its density is given by ρ = 1g/cm3 and its kinematic
viscosity by ν = 70 ·10−6m2/s [FJ09]. The aqueous humor flow performs different phys-
iological functions. On the one hand, the positive pressure that it generates ensures
accurate positioning of the optical elements of the eye and hence clarity of vision. On
the other hand, aqueous humor supplies nutrients and removes waste products from
the avascular lens and the central cornea. [SE11] The aqueous humor originates in the
ciliary body and flows along the iris through the pupil into the anterior chamber. The
amount of aqueous humor secretion in the ciliary body is approximately 2.5 mm3

min ac-
cording to [PW17]. The major part of the aqueous humor flow (which is about 85%
of the aqueous humor) drains from the anterior chamber via the trabecular meshwork
(which is called the conventional outflow) [JT10]. Because the flow is not able to tra-
verse the intact iris [FJ09], the other part of the flow circulates along the iris and flows
through the pupil into the posterior chamber. Some of the aqueous humor (about 10%)
leaves through ciliary body and some of the aqueous humor penetrates zonules (about
5%) and enters the vitreous chamber (unconventional outflow). The aqueous flow is
driven by a gradient of hydrostatic pressure between the eye and the episcleral veins
[FJ09]. The production of aqueous humor flow is dependent on the circadian rhythm.
In the night, the production of the aqueous humor is reduced by 40 percent. Otherwise,
the aqueous humor production maintains constant [Gre12]. In this thesis, the focus lies
on the outflow via the trabecular meshwork. Thus, the next section will introduce this
structure of the eye in more detail.

1.3 Trabecular meshwork

The trabecular meshwork consists out of three tissues: uveal meshwork, corneoscleral
meshwork and the juxtacanalicular meshwork. The uveal meshwork is formed by pro-
longation of connective tissue arising from the iris and ciliary body stromas [LGG03a].
It is consisting of a set of beams organized into an irregular netlike structure [FJ09].
The uveal meshwork is a porous structure with numerous openings varying in size
between 25 and 75 µm [JT10]. The corneoscleral meshwork extends from the uveal
meshwork ca. 100 µm in the direction of flow towards Schlemm’s canal. The corneal
meshwork consists of a number of interconnected sheets. These sheets, like the cores of
the uveal meshwork beams, have an avascular core of collagen and elastin [FJ09]. Due
to large intracellular spaces of uveal and corneoscleral meshworks the aqueous humor
resistance in these regions is low [LGG03b] and may be neglected in the model.
Juxtacanalicular meshwork is also known as endothelial meshwork or cribriform region.
It has large, apparently empty spaces and is typically 2 to 15 µm thick [JT10]. The cells
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of this region are fibroblast in appearance, but are not determined yet. Juxtacanalicu-
lar meshwork is composed of a loose connective matrix which is porous under typical
flow conditions. Its extracellular matrix consists of collagen, elastin, glycoproteins and
proteoglycans [FJ09]. Juxtacanalicular meshwork might cause significant resistance,
however it is not supported by hydrodynamic considerations, see [SE11] and the ref-
erences therein. Bulk of the aqueous humor pressure drop occurs near the inner wall
of Schlemm’s canal, but no further quantitative conclusions are possible [JT10]. If the
pores in the trabecular meshwork are obstructed, the IOP increases. The increase of
IOP might lead to glaucoma.

1.4 Glaucoma

Glaucoma is a group of eye diseases which result in damage to the optic nerve with
respective effects in the visual field [Gre12]. The increased intraocular pressure is con-
sidered as the primary risk factor for glaucoma. The intraocular pressure is created
by the aqueous humor flow and the outflow is adjusted in the trabecular meshwork.
The normal intraocular pressure is 15.5 ± 2.75 mmHg meaning that the normal values
amount to the range between 10 and 21 mmHg [Gre12]. There are primary glaucoma
and secondary glaucoma. Primary glaucoma occurs spontaneously. Secondary glau-
coma is a consequence of other eye diseases or generalized diseases. About 90 percent
of primary glaucoma are open angle glaucoma, less than 5 percent are closed-angle
glaucoma.
This chapter is structured as follows. Firstly, the consequences of increased intraocular
pressure (IOP) are described. Then, different types of glaucoma are explained. In the
end of the chapter, therapies are discussed.

Consequences of increased IOP

To understand one of the principles how glaucoma occurs, retinal ganglion cells are
introduced. Retinal ganglion cell is a type of neuron located near the inner surface of
the retina of the eye. The retinal ganglion cell receives information from photoreceptors
and transmits image-forming and non-image forming visual information from the retina
to several regions in the human brain. If these cells die, people loose eyesight. There are
multiple theories explaining how the elevated intraocular pressure causes the death of
retinal ganglion cells (see [SE11] and the references therein). The following mechanism
is shown in [AH74], [BMB+07] and [MBJ77]. Retinal ganglion cells require axonal
transport, a cellular process for movement of mitochondria, lipids, vesicles and proteins,
to remain viable. During this cellular process the vesicles are transported along the
nerve fibers, named axons, by motor proteins. These motors require energy for their
task. Their energy is coming from adenosine triphosphate (ATP) molecules, which are
released from mitochondria located along the axon. ATP is distributed along the axon
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by a combination of diffusive and, in the presence of the flow, convective effects. If the
supply of ATP is sufficiently depleted then active axonal transport will be reduced or
stopped. Without enough supply ganglion cells die.
In some cases the reason for glaucoma lies in the low blood circulation in the optic
nerve or a disparity between the blood flow in the optic nerve and the intraocular
pressure. The disproportion of the aqueous humor generation and outflow is common
for all types of glaucoma. In this thesis it is differentiated between primary open-angle
glaucoma, primary closed-angle glaucoma and secondary glaucoma.

Primary open-angle glaucoma

Primary angle glaucoma is a slowly progressive, in most cases bilateral eye disease of an
older individual. The characteristic symptoms are optic disk cupping, restrictions in the
visual field and an open iridocorneal angle. In the case of primary open-angle glaucoma,
the trabecular meshwork is clogged up with plaque material. Thus, the aqueous flow
resistance elevates and the intraocular pressure increases, see [SE11] and [Gre12]. When
the intraocular pressure is lower than 21 mmHg and there are restrictions in the visual
field, an open iridocorneal angle and optic disk cupping, the disease is called normal-
tension glaucoma.

Primary closed-angle glaucoma

During primary closed-angle glaucoma the iris moves anteriorly from its normal position
reducing or eliminating the gap between it and the cornea. This can lead to a complete
occlusion of the outflow with attendant dramatic increases of IOP [SE11]. There are
different types of closed-angle glaucoma. If there is an acute shift of the iridocorneal
angle generated by the basis of the iris, closed-angle glaucoma is called acute closed-
angle glaucoma. Characteristics are a closed iridocorneal angle and relatively large lens,
which is typical for older individuals. Predisposition for this glaucoma can be observed
by

• flattening of the anterior chamber

• narrow iridocorneal angle

• bulged iris

Pupillary block is also a common reason for closed-angle glaucoma. It occurs in the case
of flattening of the anterior chamber and if the back of the iris is lying tense to the lens.
In this case, the flow of the aqueous humor through the pupil is blocked. Thus, there
is a pressure drop between the posterior chamber and the anterior chamber. Further
types of closed angle glaucoma can be found in [PW17] and [Gre12]. The review of
scientific research in primary closed angle glaucoma can be found in [SDC+17].

13



Medical background 14

Secondary glaucoma

Secondary glaucoma is a consequence of other eye diseases or generalized diseases. Like
in primary glaucoma, the increasing intraocular pressure and obstructions of the flow
in the trabecular meshwork are the main factors for its cause. Classification of possible
secondary glaucoma can be found in [PW17] and [Gre12]. Most glaucoma types are
open angle glaucoma. Thus, therapeutic options for open angle glaucoma are considered
here.

Therapies

The only known efficient therapeutic option in open angle glaucoma is to decrease the
intraocular pressure. There are three possibilities to realize it [Gre12]:

• Treatment with medication

• Treatment with a laser (laser trabeculoplasty)

• Surgical intervention (trabeculectomy, shunt implantation, micro-invasive glau-
coma surgery)

According to European guidelines [EGS17], the first choice of an ophthalmologist is the
treatment with medication [HARCH19b]. In more severe cases, laser trabeculoplasty is
often completed alongside or after medications ([HARCH19b] and citations therein). In
later stages of the disease, surgical interventions like shunt implantation or trabeculec-
tomy are considered [SB11], [HARCH19b]. Common medication for glaucoma are eye
drops. Eye drops can reduce the generation of the aqueous humor or they can lower the
outflow resistance of the trabecular meshwork. In particular, eye drops are often used
to treat chronic primary closed-angle glaucoma. You can find a list of medicaments for
glaucoma treatment below [Gre12], [TRS13]:

1. Medicaments to force miosis of the pupil: Pilocarpin, Glaucotat etc.

2. Medicaments to reduce the aqueous humor production:

• for Beta-blockers (Timolol, Propranolol) preparations like Arutimol, Chi-
brotimoptol, Betaman are used.

• for Adrenalin derivates D-Epifrin can be used.

• for the local carbonic anhydrase inhibitors Trusopt is used.

• for combinations between Beta-blockers and carbonic anhydrase inhibitors
Cosopt is used.

3. Medicament to reduce the intraocular fluid production and to lower the outflow
resistance of the trabecular meshwork: Prostaglandin agonist Xalatan
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4. Medicament to reduce the intraocular fluid production and to better the blood
circulation in the optical nerve: α-2-agonist Alphagan.

If the intraocular pressure does not decrease or if the patient is eye drop intolerant, a
surgery or a laser treatment is necessary. In this thesis, only surgery in the trabecular
meshwork will be considered. Most popular choices for surgical interventions in the
trabecular meshwork are trabeculectomy and micro-invasive glaucoma surgery using
stent implantation.

Trabeculectomy

The goal of trabeculectomy is to relieve the intraocular pressure by removing a part of
the trabecular meshwork and adjacent structures. This is achieved by making a small
hole in the sclera, covered by a thin trap-door in it. The aqueous humor drains through
the trap-door to a small reservoir or bleb just under the eye surface, hidden by the
eyelid. The trap-door is sutured in a way that prevents aqueous humor from draining
too quickly. This surgical technique was developed by Cairns. Trabeculectomy is used
to treat adult patients suffering from open-angle glaucoma and chronic closed-angle
glaucoma [NMBW+95]. Medical studies on trabeculectomy can be found in [JMG+05],
[GSF+09] and [FPS03]. Since trabeculectomy requires a strict postoperative follow-
up and brings with it a range of intra- and postoperative complications [GHB+12],
surgeons search for alternatives. Micro-invasive glaucoma surgery is a promising alter-
native to trabeculectomy.

Micro-invasive glaucoma surgery

A large portion of the glaucoma population − particularly in eyes that need additional
intervention beyond medication and/or lasers, but that do not yet warrant the risks
of trabeculectomy, may profit from micro-invasive glaucoma surgery. Micro-invasive
glaucoma surgery (MIGS) offers such a treatment, as it has shown consistent reductions
in IOP and medication burden, while also maintaining favorable longterm safety (see
[HARCH19b], [HARCH18], [MMH+18] and citations therein). During micro-invasive
surgery a MIGS implant is inserted into the trabecular meshwork. The implant allows
fluid to pass through it. The details about implantation can be found in [LS17]. MIGS
implants are for example XEN R⃝45, (Allergan plc, Dublin, Ireland) gel stent, iStent R⃝

Trabecular Micro-Bypass (Glaukos Corp., San Clemente, CA, USA; FDA 2012, CE
2004 or iStent inject R⃝ Trabecular Micro-Bypass (Glaukos; FDA 2018, CE 2010), which
includes two trabecular stents designed to reduce IOP by bolstering aqueous outflow
through the trabecular meshwork into Schlemm’s canal. The stents look like small tubes
or cylinders. In [HARCH19b], [HARCH18], [MMH+18], [HARCH19a] clinical studies
on stents from above are illustrated.

15
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2 Mathematical preliminaries
In order to understand the derivation of the model and its mathematical analysis, the
main results and notation will be repeated in following chapter. Following [Lax02],
[Eva15], [RA03], [LM72], [Tem77] and [Bor16] the mathematical notation and function
spaces are introduced.

2.1 Basic notation

Definition 2.1. In Euclidean space Rn the canonical basis is given by e1 = (1, 0, ..., 0),
e2 = (0, 1, ..., 0), ... , en = (0, 0, ..., 1) and x = (x1, x2, ..., xn) denotes some point in the
space. The differential operator

∂

∂xi

(1 ≤ i ≤ n)

will be written Di and if α = (α1, ..., αn) is a multi-index, Dα will be the differentiation
operator

Dα = Dα1
1 ...Dαn

n = ∂[α]

∂xα1
1 ...∂xαn

n

,

where
[α] = α1 + α2 + ... + αn.

If αi = 0 for some i, Dαi
i is the identity operator.

Definition 2.2. Let Ω ⊂ Rn be an open bounded set. Let x = (x1, x2, ..., xn) denote
some point in space. Differential operators for vector fields u : Rd → Rn with u =
(u1(x), u2(x), ..., ud(x)) are defined as follows:

∇u =



∂u1
∂x1

· · · ∂u1
∂xn

∂u2
∂x1

· · · ∂u2
∂xn... · · · ...

∂ud

∂x1
· · · ∂ud

∂xn

 (gradient),

∇ · u =
n

i=1

∂ui(x)
∂xi

(divergence)

For a tensor field σ : Rn → Rn×n, the divergence is a vector defined column-wise as

∇ · σ = (
n

i=1

∂σij

∂xi

)j=1,...,n.

The Laplacian is the divergence of the gradient

∆u := ∇ · (∇u).

16
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Let Ω be a domain of Rn. The space of continuous, real-valued functions on Ω which
admit continuous partial derivatives up to order m ∈ N is denoted by Cm(Ω). The
space of smooth functions on Ω is denoted by C∞(Ω). Lebesgue-spaces of order p are
denoted as Lp(Ω) for 1 ≤ p ≤ ∞ and Hs(Ω) is the Sobolev space of order s with s ∈ R,
s ≥ 0 and H0(Ω) := L2(Ω). The case p = ∞ is not considered in this thesis, thus only
spaces Lp(Ω) for 1 ≤ p < ∞ are explained below:

• Lp(Ω) is the set of all measurable functions f : Ω → Rn such that for the norm
|| · ||Lp(Ω) there holds

||f ||pLp(Ω) :=


Ω
|f(x)|p dx < ∞.

• L2(Ω) is a Hilbert space if the scalar product is considered

(f, g)L2(Ω) :=


Ω
f(x)g(x) dx f, g ∈ L2(Ω).

• For ϕ ∈ C∞(Ω) the norms || · ||Hk(Ω) are defined by

||ϕ||2Hk(Ω) :=


α∈Nn,|α|1≤k


Ω

|Dαϕ(x)|2 dx.

The space Hk(Ω) is defined as the completion of C∞(Ω) with respect to afore-
mentioned norm:

Hk(Ω) := C∞(Ω)||·||
Hk

.

The Sobolev space with zero trace on the boundary are denoted as

Hk
0 (Ω) = {ϕ ∈ Hk(Ω) | ϕ∂Ω = 0}.

Definition 2.3. H−1(Ω) denotes the dual space to H1
0 (Ω).

In other words f belongs to H−1(Ω) provided f is a bounded linear functional on
H1

0 (Ω). The space H1
0 (Ω) is not identified with its dual. Instead, it holds [Eva15]

H1
0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω).

2.2 Trace operators

To be able to evaluate partial differential equations at boundaries or a part of a bound-
ary of a certain domain, trace theorems [LM72] are introduced.
In order to study mixed finite element methods, the space Hdiv is useful.

Hdiv(Ω) := {q | q ∈ (L2(Ω))d, ∇ · q ∈ L2(Ω)}

17
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Its norm is given by
||q||2Hdiv(Ω) = ||q||2L2(Ω) + ||∇ · q||2L2(Ω).

Then, it is possible to define the normal trace of q on Γ, q · n|Γ.

Definition 2.4. The mappings

γ : C∞(Ω) → C∞(Γ), γ(v) = v|Γ,

γn : C∞(Ω)d → C∞(Γ), γn(v) = (v · n)|Γ

may be continuously extended to H1(Ω) or Hdiv(Ω), respectively.

Theorem 2.5. The trace operators

γ : H1(Ω) → H
1
2 (Γ), γn : Hdiv → H− 1

2 (Γ)

are linear, bounded and surjective. Consequently, there exist constants cγ, cγn > 0 such
that

||v||
H

1
2 (Γ)

≤ cγ||v||H1(Ω), ∀v ∈ H1(Ω)

||v||
H− 1

2 (Γ)
≤ cγn||v||Hdiv(Ω), ∀v ∈ Hdiv(Ω)

Proof. See theorem 8.3 in [LM72]. The surjectivity of trace in Hdiv is also explained in
[BBF13].

With this definitions, the Green formula can be introduced.

Theorem 2.6. Let u ∈ Hdiv(Ω) and n : ∂Ω → Rd the normal field of the boundary.
Then it holds


Ω
(∇ · u(x))v(x) dx +


Ω

∇v(x) · u(x) =


∂Ω
(u(x) · n(x))v(x) dx, ∀v ∈ H1(Ω).

Proof. see [BBF13].

Green formulas are useful in order deal with term conversions in weak formulations
of partial differential equations.
The next section covers the theorems from functional analysis implying existence and
uniqueness of solutions of the model in this thesis.

2.3 Lax Milgram theorem

Let H be a Hilbert space. Let y be fixed, (x, y) = l(x) is a linear functional of x, that
means a linear mapping of H into R.Furthermore, according to the Schwarz inequality,
l(x) is bounded by a constant multiple of ||x||.

18
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Theorem 2.7. Riesz-Frechet representation theorem
Let l(x) be a linear functional on a Hilbert space H that is bounded:

l(x) ≤ c||x|| (1)

Then there exists y ∈ H such that

l(x) = (x, y)

The point y is uniquely determined.

Proof. See [Lax02]

In particular, the Riesz Frechet theorem implies that each Hilbert space H may be
identified with its dual space H∗. In other words: for any f ∈ H∗ there exists one and
only one u ∈ H, such that ∀v ∈ H holds

< f, v >H = (u, v)H

||f ||H∗ = ||u||H

Theorem 2.8. Lax Milgram theorem
Let H be a real-valued Hilbert space, and B(x, y) a function of two vectors with the
following properties:

• B(x, y) is for fixed y a linear function of x, for fixed x a linear function of y.

• B is bounded: there is a constant c such that for all x and y in H:

|B(x, y)| ≤ c||x||||y||

• There is a positive constant b such that

|B(y, y)| ≥ b||y||2

This property is often called coercivity.

Then, every linear functional l on H is bounded and of the form

l(x) = B(x, y), y a uniquely determined vector in H.

Proof. See [Lax02].

In order to verify that the assumptions of Lax Milgram theorem hold, Poincare
inequality may be helpful.
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Theorem 2.9. Poincaré inequality
Let v ∈ H1

0 (Ω). Then, there exists dΩ > 0 such that

||v||L2(Ω) ≤ dΩ||∇v||L2(Ω),

where dΩ is diameter of the domain Ω.

Proof. See [Ran17]. More general versions of this theorem may be found in [GRS07]
and in [GGZ74].
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3 Mathematical Model
In the following section the model of the aqueous humor flow in the anterior chamber
and in the trabecular meshwork is presented. First, the well known Stokes Darcy cou-
pling is introduced and the actual model is derived. After this, the connection between
the new model and the application is explained.

3.1 Stokes Darcy Coupling

Stokes Darcy coupling with a Beavers Joseph Saffman condition at the interface is a
well known model to describe the flow between the free fluid domain and a porous
medium (see for example [LSP03], [ESP75] and many more). The coupling of Stokes
and Darcy flow is a problem with a wide range of applications covering models of
the groundwater flow [CGW10],[DMQ02], the flow of blood through arterial vessels
[DZ11] and the flow inside of industrial filters [HWNW09]. In [CE13] the Stokes-Darcy
model is considered to simulate the flow in the anterior chamber and in the trabecular
meshwork.
Let T(u, p) = 2νD(u)−pI. Then, the strong formulation of the Stokes equation without
boundary conditions is given by:

−∇ · T(u, p) = f in Ωf

−∇ · u = 0 in Ωf,

where Ωf ⊂ Rd with d = 2, 3 is the fluid domain and where u denotes the velocity, p

the pressure, f the force, and ν the viscosity of the aqueous humor. The primal form
of the Darcy equation without boundary conditions is given by:

−∇ · (K

ν
∇p) = f in Ωp,

where Ωp ⊂ Rd with d = 2, 3 is the porous domain (trabecular meshwork), where K is
a permeability constant, ν the viscosity, p the pressure and f the force.
The Beavers Joseph Saffman conditions on the interface Γ = ∂Ωp ∩ ∂Ωf are

uf · n = −(K∇p) · n (2)

−n · T(u, p) · n = pD (3)

u · τ + α · τ · T(u, p) · n = 0. (4)

The first equation describes the continuity of normal velocities, the second equation
illustrates the balance of normal forces and the third condition is motivated by ex-
periments conducted by Beavers Joseph and Saffman [BJ67], [Saf71]. A mathematical
justification of the Beavers Joseph Saffman condition can be found in [JM96],[JM00].
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In [CGHW10] the well-posedness of a coupled Stokes-Darcy model with BJS inter-
face boundary conditions under the assumption of small coefficient in boundary con-
dition (4) is shown. Badea, Discacciati and Quarteroni [BDQ10] analyze the Navier-
Stokes/Darcy coupling using domain decomposition methods and Steklov-Poincaré in-
terface equation. In [LSY03] a weak formulation of Stokes and Darcy coupling with
Beavers Joseph Saffman condition is considered and the existence and uniqueness of
solutions is proved.
There are multiple numerical approaches to solve the Stokes Darcy problem. On the
one hand, there are direct monolithic, or single domain methods which aim at solving
the coupled system in a single step. Examples of finite element based approaches in this
class may be found in [BH07], [GOS11], [MTW02], [UNGD08], [XXX08]. Furthermore,
there are other techniques like mortar finite elements, DG schemes and mixed finite
elements to solve a Stokes-Darcy problem. Mortar finite elements for the Stokes-Darcy
coupling are described in [EJS11]. Strongly conservative method using discontinuous
Galerkin techniques in the Stokes subdomain and a mixed method in the Darcy sub-
domain is considered in [KR09]. In [RY04] a discontinuous Galerkin method for the
Stokes subdomain and a finite element method in the Darcy subdomain is used. In
[LSY03] a continuous finite element scheme coupled with mixed finite elements for the
Stokes Darcy problem with BJS conditions is analyzed. On the other hand, there are
decoupled, domain decomposition, or multidomain approaches which solve the coupled
problem with a subdomain iterative procedure based, at each iteration, on the solution
of Stokes and Darcy problem separately. These approaches can be found in [CJW14]
and [Dis05]. At a first glance, iterative methods require multiple solutions of the sub-
problems. However, the decoupled techniques allow to use specialized efficient solvers
for Stokes and Darcy problems, respectively, which results in efficient procedures. Be-
yond this techniques, there is a two-grid method which is explained in [MX07].
In the current thesis, a simplified decoupled approach is used. In contrast to [Dis05]
where you solve Stokes and Darcy equation separately and update the interface con-
dition in each iteration step, the Stokes and Darcy equations are solved only once. In
this work, the Darcy equation is solved first and the mean value of the pressure in the
porous domain is determined. Then, this mean value of the pressure is incorporated into
the specific Robin boundary condition in the Stokes equation and the Stokes equation
is solved. This ansatz saves the computation time and it may be used for applications
where the fluid domain is much larger than the porous domain.
The next section shows how the Robin boundary condition in the Stokes equation is
constructed and how the model is derived.
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3.2 Derivation of the Model

To derive a model, a weak formulation of the Stokes and the Darcy equations is com-
puted.

Weak formulations and BJS conditions

Writing Γ ∪ ΓD = ∂Ωf, Γout ∪ Γwall ∪ Γ = ∂Ωp, denoting the interface with Γ and
introducing the spaces

H1
ϕ(ΓD, Ωf) := {v ∈ H1(Ω) : v = ϕ on ΓD},

QS := L2(Ωf),

QD := {ϕ ∈ H1(Ωp) : ϕ = p0 on Γout},

the weak formulation of Stokes equation is obtained by partial integration: Find (u, p) ∈
H1

ϕ(Γ, Ωf) × QS such that it holds for all (v, q) ∈ H1
ϕ(Γ, Ωf) × QS

(2νD(u),D(v))L2(Ωf) −(p, ∇·v)L2(Ωf) −(T(u, p)·n, v)L2(∂Ωf) +(∇·u, q)L2(Ωf) = (f, v)L2(Ωf).

The weak formulation of the primal Darcy equation is: Find p ∈ QD such that it holds
for all w ∈ QD

K

ν
(∇p, ∇w)L2(Ωp) = −(K

ν
∇p · n, w)L2(∂Ωp) + (f, w)L2(Ωp).

Coupled weak formulation

Similarly to [CJW14] Stokes Darcy equation is given by:
Find (u, p, ϕp) ∈ H1

ϕ(Γ, Ωf) × QS × QD such that it holds for all (v, q, χ) ∈ H1
ϕ(Γ, Ωf) ×

QS × QD:

af(u, v) + bf(v, p) − (T(u, p) · n, v)L2(Γ) = (f, v)L2(Ωf)

bf(u, q) = 0

ap(ϕp, χ) + (K∇ϕp · n, χ)L2(Γ) = (f, χ)L2(Ωp),

where

af(u, v) = (2νD(u),D(v))L2(Ωf)

bf(v, p) = −(∇ · v, p)L2(Ωf)

ap(ϕp, χ) = (K∇ϕp, ∇χ)L2(Ωp).
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Now, rewrite

(−T(u, p) · n, v)L2(Γ) = (−n · T(u, p) · n, v · n)L2(Γ) −
d−1
i=1

(τi · T(u, p) · n, v · τi)L2(Γ)

= (pD, v · n)L2(Γ) +
d−1
i=1

( 1
α

u · τi, v · τi)L2(Γ)

with the use of (3) and (4).
With the help of (2) the Coupling of the Stokes and Darcy equation is obtained:
Find (u, p, ϕp) ∈ H1

ϕ(Γ, Ωf) × QS × QD such that it holds for all (v, q, χ) ∈ H1
ϕ(Γ, Ωf) ×

QS × QD:

af(u, v) + bf(v, p) + (pD, v · n)L2(Γ) +
d−1
i=1

( 1
α

u · τi, v · τi)L2(Γ) = (f, v)L2(Ωf) (5)

bf(u, q) = 0 (6)

ap(ϕp, χ) + (uf · n, χ)L2(Γ) = (f, χ)L2(Ωp), (7)

where pD is the pressure in the Darcy domain (at the interface) and α = α0 ·


K
µ·g .

The volume of the anterior chamber is about 160±30 mm3 according to measurements
from [RKA06], the volume of the anterior and posterior chamber is about 404 mm3

according to estimation from simulations and the volume of the trabecular meshwork
is approximated by 11.84 mm3 = 36.1283mm · 0.4mm · 0.824mm, where 36.1283 mm
is the length of the trabecular meshwork (= circumference of the iris root), 0.4 mm
the height and 0.824 mm the depth of the trabecular meshwork [MH07], [LL+16]. The
ratio between these two volumes is approximately 1:34. Moreover, the ratio between the
interface area and the surface area is 1:18 according to computations. Consequently,
the Darcy domain is much smaller than the Stokes domain in the application. Thus,
the following strategy is applied:

• Solve the Darcy equation first (with data from measurements for the inflow rate)

• Solve the Stokes equation using pD = 1
|Ωp|


Ωp p(x) dx, where p(x) is the solution

of the Darcy equation.

This ansatz reduces the Darcy equation to a Robin boundary condition in the Stokes
equation. In fact, the Darcy equation is transformed into one dimension with the help
of this technique. The weak formulation for the model is:
Find (u, p) ∈ H1

ϕ(Γ, Ωf) × QS such that it holds for all (v, q) ∈ H1
ϕ(Γ, Ωf) × QS:

af(u, v) +
d−1
i=1

( 1
α

u · τi, v · τi)L2(Γ) + bf(v, p) = (f, v)L2(Ωf) − (pD, v · n)L2(Γ)

bf(u, q) = 0
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with pD = 1
|Ωp|


Ωp p(x) dx and p(x) is computed using the solution of

Find p ∈ QD such that it holds for all q ∈ QD

ap(p, q) = (f, q)L2(Ωp) − (uTW
in · n, q)L2(Γ).

The next chapter describes the application and the model in more detail.

3.3 Description of the Model

To describe the model in more comprehensive way, the strong formulation is introduced.
The flow in the free fluid domain is given by the Stokes equation with a Robin boundary
condition:

−∇ · T(u, p) = f in Ωf

∇ · u = 0 in Ωf

u = uCB
in on Γin

u = 0 on Γns

n · T(u, p) · n = p0 on Γout

n · T(u, p) · τ = α̃u · τ on Γout, (8)

where Ωf ⊂ Rd with d = 2, 3 is the domain illustrating the anterior and posterior cham-
ber and where u denotes the velocity, p the pressure, f the gravitational force, uCB

in the
inflow velocity at the ciliary body, p0 the pressure (resistance) of the trabecular mesh-
work and ν the viscosity of the aqueous humor. Γout describes the outflow boundary
located at the iridocorneal angle, Γin the inflow boundary located at the ciliary body
and Γns the boundary with no slip condition which applies for the lens, zonules, cornea
and iris. The boundary is given by ΓStokes = Γns ∪ Γin ∪ Γout. The normal vector is
denoted by n and the tangential vectors by τ . The friction constant is given by α̃.
The inflow rate is between 1 µl

min and 3 µl
min with an average of 2.4 µl

min during the day.
With the computed area about 125 mm2 of the ciliary body in the simulation, the
inflow velocity at the ciliary body is estimated by:

uCB
in = 1mm3

min · 1
100mm2 ≈ 1.6 · 10−4 mm

s .

The (dynamic) viscosity of the aqueous humor is about 0.7g
m·s [FJ09]. That means ν =

0.0007 kg
m·s . The Stokes equation is a good approximation for the aqueous humor flow in

the anterior chamber, since the Reynolds number is

Re = ρUL

ν
= 10310−710−3

7 · 10−4 << 1.
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The resistance of the trabecular meshwork is computed as follows: p0 = 1
|Ωp|


Ωp

p(x) dx,
where p(x) is the solution of the Darcy equation.
The flow in the trabecular meshwork is described by the Darcy equation:

−∇ · (K

ν
∇p) = f2 in Ωp

K

ν
∇p · n = 0 on Γwall

K

ν
∇p · n = uTW

in · n on Γin

p = pout on Γout.

(9)

The domain Ωp ⊂ Rd with d = 2, 3 is illustrating the trabecular meshwork. In the
equations above, K is a permeability constant, ν the viscosity, p the pressure and f

the gravitational force. The boundary Γout describes the outflow boundary, Γin the
inflow boundary and Γwall the non-permeable boundary. The boundary is given by
ΓDarcy = Γwall ∪ Γin ∪ Γout. The term pout describes the pressure of the episcleral veins
at the outflow pathway and uTW

in describes the velocity at the inflow pathway of the
trabecular meshwork. As in the previous case, n denotes the normal vector.
The inflow rate is between 1 µl

min and 3 µl
min with an average of 2.4 µl

min during the day.
Assuming that the inflow area at the trabecular meshwork is about 14 mm2, the average
inflow velocity is approximated by v = Q

A
, where Q is the inflow rate, A the area and

v the velocity. This leads to

uTW
in = 0.85 · 1mm3

min · 1
14mm2 ≈ 0.001mm

s .

The factor 0.85 is used due to the fact that only 85% of the inflow at the ciliary body
leave the anterior chamber through the trabecular meshwork.
According to the overview of [SM11] and references of measurements therein as well as
[S+05], the pressure of episcleral veins is set as pout = 1200 Pa (which is equivalent to
about 9 mmHg). To compute the permeability K, following facts are observed:

• K ranges between 10−13 and 10−15 for most connective tissues [Joh06].

• Sample porosities for normal eyes are presented in table 2 in [EK+86]. (Two values
in the table are ϵ = 0.177 and ϵ = 0.246).

Due to Carman Kozerny theory and the following two equations:

• ∆p
L

= 150ν(1−ϵ)2

ϵ3D2
pϕ2

s
· vs

• vs = −K∆p
νL
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a formula
K =

ϵ3D2
p

(1 − ϵ)2

is obtained (where Dp denotes a pore size and ϵ a porosity). Using this formula, and
assuming three cases for the pore size Dp = 2 · 10−5, Dp = 5 · 10−5 and 5 · 10−6 as
well as three cases for porosities ϵ = 0.15, 0.2, 0.25, different values for K are obtained:
between 7.78 · 10−16 and 3.3 · 10−14.
Now the model is set up. Next, well posedness of the model and mathematical analysis
are presented.
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4 Mathematical Analysis
In the following section an overview of mathematical theory for Stokes and Darcy equa-
tions is given. At the very beginning a short explanation is given why finite element
method is chosen to solve the Stokes and the Darcy equation and basics about the
finite element method are explained. Then, Stokes equation is considered and main
known results about existence and Galerkin approximation are introduced. After that,
convergence result for Taylor Hood elements is presented and a test case in two di-
mensions is presented. In the second part, Darcy equation is considered and known
results about existence and Galerkin approximation are given. Then, a test case for
Darcy equation in two dimensions is shown. At the end of the section, existence and
uniqueness of solutions is shown and Galerkin approximation is explained.

Mathematical method

In fact there are many different methods to solve partial differential equations. To name
the most common methods let recall finite difference (FD), finite volume (FV), spec-
tral and finite element methods (SM and FEM) [GRS07], [Qua09]. Finite difference
and finite volume methods consider a partition of the domain into numerous small
pieces, although none of them consider a variational formulation of the problem at
hand. Moreover, finite difference schemes are suited for simple and uniform geometries.
Finite volume methods allow more freedom for meshes, offer totally flexible spatial
discretization and there is no need for dependent variables to be differentiable every-
where, but in most cases engineers need to verify their finite volume computations in
experimental ways since there is no mathematical theory for formal accuracy for this
method. Spectral methods and finite element methods are closely related and built on
the same ideas; the main difference between them is that spectral methods use basis
functions that are nonzero over the whole domain, while finite element methods use
basis functions that are nonzero only on small subdomains. In other words, spectral
methods take on a global approach while finite element methods use a local approach.
Spectral methods are computationally less expensive than finite element methods, but
become less accurate for problems with complex geometries and discontinuous coef-
ficients (which is the case in this thesis). In contrast to FD,FV, SM, finite element
methods allow to deal with complicated meshes and take into account the weak for-
mulation of the partial differential equation. Furthermore, there are strong theoretical
mathematical tools to study the efficiency and convergence of those methods. On top
of that, some finite volume and finite difference schemes can be seen as special cases
of some discretization strategies of the finite element methods. From a computational
point of view, boundary conditions are naturally taken into account in the space in the
variational formulation and the meshes can be locally refined with a help of different
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refinement strategies. Thus, finite element methods are considered in this work. Next,
the Finite Element method is introduced.

4.1 Finite element method

Since the current thesis is interdisciplinary and not every reader of this work, espe-
cially with medical background, is familiar with finite elements, basics concepts are
quickly repeated. In order to explain how the Finite Element method works, Galerkin
discretization is presented. This section gives a short summary of the fundamentals in
numerical analysis which are explained in more detail in [GT17], [Qua09] and [GRS07].

Galerkin approximation

Let V be a real Hilbert space, the bilinear form a : V × V → R be continuous and
coercive, and the linear form F : V → R be continuous. Consider the problem

Find u ∈ V, such that a(u, v) = F (v) ∀v ∈ V (A)

Let Vh be a finite dimensional subspace of V . Let h be a discretization parameter with
the notion that the discrete solution will converge to the continuous solution as h → 0.
The standard Galerkin method consists of restricting the equation (A) to the finite
dimensional space Vh. Consequently, the problem reads

Find uh ∈ Vh, such that a(uh, vh) = F (vh) ∀vh ∈ Vh (Ah)

Since conforming methods are applied in this work, it follows Vh ⊂ V . Therefore,
coercivity of a(·, ·) on V implies the coercivity of a(·, ·) on Vh. Moreover, the bilinear
form a(·, ·) and F (·) are continuous on Vh. Thus, Lax Milgram theorem can be applied
to the discretized problem and there exists a unique solution of the discrete problem.
The best approximation result follows from the Cea’s lemma:

Theorem 4.1. Let V be a Hilbert space. Suppose the bilinear form a is coercive and
continuous, and the linear form F (·) is continuous. Then, for the unique solutions u

and uh of (A) and (Ah) it holds

||u − uh||V ≤ β

α
inf

vh∈Vh

||u − vh||V

Here, β is the continuity constant and α the coercivity constant of a(·, ·).

Next, it is shown that the problem (Ah) is equivalent to a linear algebraic system of
equations.
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Let {ϕi}, i = 1, ..., N be a basis of Vh. Setting vh = ϕi in (Ah), it follows

a(uh, ϕi) = F (ϕi), i = 1, ..., N (10)

Let V = H1
0 (Ω) and Vh ⊂ V its discretization. Now, write the discrete solution uh and

its gradient in terms of the basis of Vh as

uh(x) =
N

j=1
Ujϕj(x), ∇uh(x) =

N
j=1

Uj∇ϕj(x), (11)

where Uj, j = 1, ..., N are the unknown coefficients to be determined. Substituting (11)
in (10) leads to

N
j=1

Uja(ϕj, ϕi) = F (ϕi), i = 1, ..., N

Setting aij := a(ϕj, ϕi) and fi := F (ϕi), the system of algebraic equations

AU = b

is obtained, where the stiffness matrix, the solution vector and the load vector, respec-
tively, are given by

A =


a11 · · · a1N

a21 · · · a2N

... · · · ...
aN1 · · · aNN

 , U =


U1

U2
...

UN

 , b =


f1

f2
...

fN


Let vh ∈ Vh be arbitrary. Then, there is a representation

vh =
N

i=1
Viϕi

and consequently,

a(uh, vh) = a(uh,
N

i=1
Viϕi) =

N
i=1

Via(uh, ϕi) =
N

i=1
ViF (ϕi)

= F (
N

i=1
Viϕi) = F (vh).

It follows, that the matrix A is symmetric if the bilinear form a(·, ·) is symmetric.
Moreover, the matrix A is positive definite if a(·, ·) is coercive.

In applications, the discrete spaces Vh ⊂ V have been designed by decomposing the
computational domain Ω into a finite set of subdomains K (triangles, quadrilaterals,
tetrahedrons, hexahedrons, etc.) and considering a function space Pk (often polynomi-
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als of certain degree) defined on K. This motivates the definition of finite elements.

Finite elements

Definition 4.2. A finite element is a triple (K, P , ΣK) satisfying

• K ⊂ Rn is a closed, convex, polyhedral set with a Lipschitz-continuous boundary
and |K| ≠ 0.

• The space of shape functions PK is a finite dimensional linear function space with
dimension d on K.

• The set of degrees of freedom (dofs) ΣK consists of d linear independent function-
als σi, i = 1, ..., d, on PK. Each p ∈ PK is uniquely determined by the d values
σi(p), i = 1, ..., d.

To construct finite elements, a decomposition of the domain Ω is necessary. Let Th

be a decomposition of a polyhedral domain Ω into non-overlapping open cells K ∈ Th.
In order to classify certain types of decompositions of Ω, hK , ρK and σK are defined.

Definition 4.3. hK = inf{diam(B), B ⊂ K is a ball }
ρK = 2 min1≤i≤2d sup{diam(B), Si ⊂ B is a ball } for a quadrilateral or hexahedral tri-
angulation, where Si is the d−simplex spanned by d neighboring edges of vertex ai

σk = hK/ρK ≥ 1

Definition 4.4. A decomposition Th = {Ki}i=1,...,n of the domain Ω in finitely many
elements Ki satisfying

Ω = ∪n
i=1Ki (12)

hK ≤ h ∀K ∈ Th (13)

The triangulations, which are used in this work, satisfy the following regularity as-
sumption.

Definition 4.5. A triangulation Th of Ω is admissible if the intersection between two
distinct elements is empty, a common vertex, a common side (d ≥ 2) or a common
face (d = 3).

Definition 4.6. • A family of triangulations is said to be regular if

σK ≤ C1 ∀K ∈ Th

where C1 is a constant independent of h.
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• If in addition there exists a constant C2 ≥ 0 independent of h such that

C2h ≤ hK ≤ C1ρK ∀K ∈ Th

then Th is called uniformly regular or quasi-uniform.

All triangulations in this thesis are supposed to be regular. On each finite element
certain ansatz functions are used. In this thesis, quadrilateral and hexahedral elements
are used. Therefore, product polynomial space is introduced.

Definition 4.7. (Space of tensor product polynomials)
The space of tensor product polynomials of order k ∈ N0 on the reference cell K̂ =
[0, 1]d is defined by

Qk = span{
d

i=1
xαi

i : dmax
i=1

αi ≤ k}

In order to define function spaces on arbitrary elements, a mapping from the reference
cell is needed to transform the polynomial spaces. There exists exactly one invertible
multilinear mapping FK ∈ Q1 that maps the reference cell K̂ to a generic quadrilateral
or hexahedral element K = conv{ai ∈ Rd, 1 ≤ i ≤ 2d}, where

FK(ei) = ai, 1 ≤ i ≤ 2d.

The mapped ansatz spaces (for instance, polynomial spaces) Rk(K) are given by

Rk = {r = r̂ ◦ F −1
K , r̂ ∈ Rk},

where Rk is the space of tensor product polynomials Qk and FK , respectively, mapping
from the reference cell. The mapped space Qk is invariant under affine linear transfor-
mations. In the general case of quadrilateral or hexahedral elements, the mapped space
is not a space of polynomials.

4.2 Stokes equation

In this chapter, Stokes equation is described. First, the existence and uniqueness of
solutions is stated. After that, Galerkin approximation and the application of the finite
element method to Stokes equation is explained.
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4.2.1 Existence and uniqueness of solutions

Existence and uniqueness of solutions for homogeneous Dirichlet boundary
conditions

To understand the proof of existence and uniqueness of solutions of the model, main
results of Girault Raviart [GR86] for the Stokes equation with a homogeneous boundary
conditions will be shortly repeated.

Definition 4.8. Let Ωf ⊂ Rd, d ∈ {2, 3} be a bounded domain with Lipschitz boundary
∂Ωf denoted as ∂Ωf = ΓD. Ωf is representing a free flow domain. Let f ∈ L2(Ωf), u a
vector function representing the velocity of the fluid and p a scalar function representing
the pressure, which are defined in Ωf and satisfy the following equations and boundary
conditions

−ν∆u + ∇p = f in Ωf

∇ · u = 0 in Ωf

u = 0 on ΓD

or in the Cauchy stress form

−∇ · T(u, p) = f in Ωf

∇ · u = 0 in Ωf

u = 0 on ΓD

with T(u, p) := 2νD(u)−pI being the Cauchy stress tensor, ν > 0 the kinematic viscosity
and D(u) = 1

2(∇u + ∇uT ) denoting the deformation velocity.

A strong formulation may be used to construct some simple continuous solutions and
construct examples for validation of numerical simulations. However, this formulation
is not helpful for the study of existence results and numerical theory. Thus, a weak
formulation of the Stokes equation is introduced. The weak formulation can be con-
nected to theorems of functional analysis and with their help, existence of solutions of
the Stokes equation is obtained. Let ∂Ωf = ΓD and V := {v ∈ (H1(Ωf))d : v|ΓD

= 0}.
To derive a weak formulation, multiply

−∇ · T(u, p) = f

with the test function v ∈ V and obtain

−


Ωf
(∇ · (2νD(u))) · v dx +


Ωf

(∇p) · v dx =


Ωf
f · v dx. (14)
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The second term turns to


Ωf

(∇p)v dx =


Ωf

d
i=1

∂p

∂xi

vi dx

=


Ωf

d
i=1

∂

∂xi

(pvi) − p
∂vi

∂xi

dx

=


Ωf
∇ · (pv) − p∇ · v dx

=


∂Ωf
(pv) · n ds −


Ωf

p∇ · v dx,

and setting M := 2νD(u) the first term becomes:

−(∇ · (2νD(u))) · v = −(∇ · M) · v

= −
d

i=1

d
j=1

∂Mij

∂xj

vi

=
d

i=1

d
j=1

Mij
∂vi

∂xj

− ∂(Mijvi)
∂xj

=
d

i=1

d
j=1

Mij
∂vi

∂xj

− ∂(Mjivj)
∂xj

= M : ∇v − ∇ · (Mv).

M : ∇v can be rewritten in the following way

M : ∇v =
d

i=1

d
j=1

Mij · ∂vi

∂xj

=
d

i=1

d
j=1

1
2(Mij + Mji) · ∂vi

∂xj

=
d

i=1

d
j=1

1
2Mij · (∂vj

∂xi

+ ∂vi

∂xj

)

=
d

i=1

d
j=1

2ν(D(u))ij · 1
2(∂vj

∂xi

+ ∂vi

∂xj

)

= 2νD(u) : D(v).

Putting all terms together into equation (14) leads to

2ν


Ωf
D(u) : D(v) dx −


Ωf

p∇ · v dx −


∂Ωf
(2νD(u)v − pv) · n ds =


Ωf

f · v dx.

Now multiply
∇ · u = 0
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with the test function q ∈ L2(Ωf) and obtain


Ωf
∇ · uq dx = 0.

Summarizing the test functions in a vector (v, q) ∈ V × L2(Ωf) leads to

2ν


Ωf
D(u) : D(v) dx−


Ωf

p∇·v dx−


∂Ωf
(2νD(u)v−pv)·n ds+


Ωf

∇·uq dx =


Ωf
f ·v dx.

Note, that u = 0 on the boundary ΓD, thus, the boundary term vanishes. Consequently,
the weak formulation in the definition below is obtained

Definition 4.9. Let Ωf ⊂ Rd, d ∈ {2, 3} be a bounded domain with Lipschitz boundary
∂Ωf denoted as ∂Ωf = ΓD and V := {v ∈ (H1(Ωf))d : v|ΓD = 0}.
Find (u, p) ∈ V × L2(Ωf) such that for all v ∈ V and for all q ∈ L2(Ωf) it holds

a(u, v) + b(v, p) = (f, v)L2(Ωf)

b(u, q) = (∇ · u, q)L2(Ωf),

where

b(v, q) = −(∇ · v, q)L2(Ωf),

a(u, v) = (2νD(u),D(v))Ωf .

Next, suitable norms, spaces and bilinear forms are constructed. Then, the weak
formulation is transformed in a variational formulation. The obtained variational for-
mulation is a helpful step to explain the proof for existence of solutions.
Let X and M denote two real Hilbert spaces with norms || · ||X and || · ||M respectively.
Let X ′ and M ′ be their corresponding dual spaces and || · ||X′ and || · ||M ′ denote their
dual norms.
Let

a(·, ·) : X × X → R, b(·, ·) : X × M → R,

be continuous bilinear forms with norms

||a|| = sup
u,v∈X,u ̸=0,v ̸=0

a(u, v)
||u||X ||v||X

||b|| = sup
v∈X,ν∈M,v ̸=0,ν ̸=0

b(v, ν)
||v||X ||ν||M

.

Consider the variational problem:
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For l given in X ′ and χ in M ′, find a pair (u, λ) in X × M such that:

a(u, v) + b(v, λ) =< l, v > ∀v ∈ X

b(u, λ) =< χ, λ > ∀ν ∈ M. (Q)

Associate a and b with two continuous, linear operators:
A ∈ L(X; X ′) and B ∈ L(X; M ′) defined by

< Au, v > = a(u, v) ∀u, v ∈ X

< Bv, ν > = b(v, ν) ∀v ∈ X, ∀ν ∈ M.

Let B′ ∈ L(M ; X ′) be the dual operator of B, i.e

< B′ν, v >=< Bv, ν >= b(v, ν) ∀ν ∈ M, ∀v ∈ X.

It holds:
||A||L(X;X′) = ||a||, ||B||L(X;M ′) = ||b||.

Using the operators, the variational problem is given by

Au + B′λ = l in X ′

Bu = χ in M ′.

Set V = ker B in X. For each χ ∈ X ′ define:

V (χ) = {v ∈ X : Bv = χ}.

The following problem is associated with the model problem:
Find u in V (χ) such that

a(u, v) =< l, v > ∀v ∈ V. (P)

If (u, λ) ∈ X × M is a solution of (Q), then u ∈ V (χ) and u is a solution of (P).
The goal is to show the converse of this statement. For this, define

V 0 = {g ∈ X ′ ; < g, v >= 0 ∀v ∈ V }.

Lemma 4.10. The following properties are equivalent:

• There exists a constant β > 0 such that

inf
ν∈M

sup
v∈X

b(v, ν)
||v||X ||ν||M

≥ β.
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• The operator B′ is an isomorphism from M onto V 0 and

||B′ν||X′ ≥ β||ν||M ∀ν ∈ M.

• The operator B is an isomorphism from V T onto M ′ and

||Bv||M ′ ≥ β||v||X ∀v ∈ V T .

Proof. See [GR86].

The lemma from above shows the equivalent properties to the inf sup condition.
Moreover, this lemma can be used as a definition of the inf sup condition. With this
result, a theorem with a general abstract setting for existence of solutions is obtained:

Theorem 4.11. If the following assumptions hold,

• There exists a constant α > 0 such that

a(v, v) ≥ α||v||2X ∀v ∈ V.

• The bilinear form b satisfies the inf-sup condition.

then the problem (P) has a unique solution u in V (χ) and there exists a unique λ in
M such that the pair (u, λ) is the unique solution of problem (Q).

Proof. See [GR86].

From the theory of elliptic partial differential equations it is known, that Lax Milgram
theorem (or Riesz representation theorem in simple cases) may be applied to prove the
existence and uniqueness of solutions of the problem (P). With the help of this strategy,
existence and uniqueness of solutions for saddle point problems (Q) like Stokes equation
is obtained.

Theorem 4.12. The Stokes equation with a homogeneous Dirichlet boundary condition
has one and only one solution.

Proof. The proof follows from the application of the previous theorem. Thus, it suffices
to show the coercivity and the inf-sup condition.
Coercivity: (with the use the first Korn’s inequality [Kor09], for extension of the first

37



Mathematical Analysis 38

Korn’s inequality for incompatible tensor fields see [NPW15])

a(v, v) = (2νD(v),D(v))L2(Ω)

= ν


Ω

d
i,j=1

1
2( ∂vi

∂xj

+ ∂vj

∂xi

)2

≥ ν

κ
||v||2H1(Ω)

≥ C
ν

κ
||v||2V

Inf-Sup Condition:
There exists a constant c > 0 such that:

sup
v∈H1

0 (Ω)n

(ϕ, ∇ · v)
|v|H1(Ω)

≥ c||ϕ||L2(Ω) ∀ϕ ∈ L2
0(Ω)

The proof follows from the statement, that there exists a function v ∈ V T such that
ϕ = ∇ · v and |v|H1(Ω) ≤ c||ϕ||L2(Ω) (Lemma 3.2 in [GR86]).

Existence and uniqueness of solutions for mixed boundary conditions

Recall the weak formulation of the Stokes equation in the anterior chamber: Using

Γ := ∂Ωf = ΓD ∪ ΓN

H1
ϕ(ΓD, Ωf) := {v ∈ H1(Ωf) : v = ϕ on ΓD},

QS := L2(Ωf)

H
1
2
00(ΓN) := {v ∈ L2(ΓN); ∃w ∈ H1(Ωf) : w|ΓD = 0, w|ΓN = v}

Find (u, p) ∈ H1
ϕ(ΓD, Ωf) × QS such that it holds for all (v, q) ∈ H1

ϕ(ΓD, Ωf) × QS

af(u, v) +
d−1
i=1

( 1
α

u · τi, v · τi)L2(Γ) + bf(v, p) = (f, v)L2(Ωf) − (pD, v · n)L2(Γ)

bf(u, q) = 0,

Now, apply a lifting method and convert the problem to a problem with a homoge-
neous Dirichlet boundary condition and ũ ∈ H1

0 (ΓD, Ωf). The boundaries ∂Ωf of the
domain are piecewise C2 and thus locally lipschitzian. Consequently, similar arguments
to [Gal11] (theorem 1.1, chapter IV, p.188) apply.
Let there be given f ∈ D1,2

0 (Ωf) (see the definition of the space in [Gal11], in the
application f is supposed to be constant, thus it also holds that f ∈ H−1(Ωf)) and
ϕ ∈ H

1
2 (Γ) such that

0 =


Γ
ϕ · n dΓ.
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According to [Gal11], there exists a solenoidal extension u0 ∈ H1(Ωf) of ϕ with

||u0||H1(Ωf) ≤ c||ϕ||
H

1
2 (Γ)

.

Consequently, by assumption and partial integration, it holds


Γ
ϕ · n dΓ =


Ωf

(∇ · u0) dx = 0.

Setting ũ = u − u0 the non-homogeneous Stokes problem reduces to a homogeneous
problem

af(ũ, v) +
d−1
i=1

( 1
α

ũ · τi, v · τi)L2(Γ) + bf(v, p) = (f̃ , v)H−1(Ωf) − (w̃, v · n)L2(Γ)

bf(ũ, q) = 0,

where ũ ∈ H1
0 (ΓD, Ωf), w̃ ∈ H

1
2
00(Γ) is defined by

w̃ = (w̃ · τ)τ + (w̃ · n)n

with
w̃ · n := pD − 2νnD(u0)n and w̃ · τ := u0τ − 2νnD(u0)τ

as well as
f̃ := f − ν∇ · D(u0) ∈ H−1(Ωf)d.

Now consider the Stokes problem with mixed boundary conditions. One of the bound-
aries is given by a homogeneous Dirichlet boundary condition and the other part of
the boundary by a Robin boundary condition. Both boundaries are piecewise C2. The
Robin and Dirichlet boundary are not separated. Moreover, the angle at the border
between the Dirichlet and the Robin boundary is less than 2π.

Theorem 4.13. Let f ∈ H−1(Ωf)d. Let af be coercive and bf fulfill the inf-sup condition.
Let

A(u, v) := af(ũ, v) +
d−1
i=1

( 1
α

ũ · τi, v · τi)L2(Γ)

Then, the two following problems are equivalent:

• variational mixed boundary Stokes problem : to find (ũ, p) ∈ H1
0 (ΓD, Ωf) × L2(Ωf)

such that

A(ũ, v) + bf(v, p) = (f̃ , v)H−1(Ωf) − (w̃, v)L2(Γ) (Q∗)

bf(ũ, q) = 0
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• elliptic problem : to find u ∈ H1
0 (ΓD, Ωf) such that

A(u, v) =< l1, v > + << l2, v >> (P ∗)

where
< l1, v >:= (f̃ , v)H−1(Ωf)

and
<< l2, v >>:= −(w̃, v)L2(Γ).

Proof. A(u, v) is coercive, since the bilinear form af(u, v) is coercive (due to Korn’s
inequality) and the fact that

d−1
i=1

( 1
α

v · τi, v · τi)L2(Γ) ≥ 0

Since the pressure is now uniquely determined due to the Neumann condition (and not
up to a constant like in a homogeneous case of the Stokes problem with homogeneous
Dirichlet boundary conditions), the inf-sup condition mentioned in Girault Raviart
[GR86] doesn’t apply any more. Manouzi [Man90] has shown, that inf-sup condition
holds also in the case with mixed boundary condition:

sup
v∈H1

0 (ΓD,Ωf)

|


Ωf
q∇ · v|

||v||H1(Ωf)
≥ C||q||L2(Ωf).

Thus, (Q∗) is equivalent to (P ∗) similar to arguments from Girault Raviart.

The problem (P ∗) has a unique solution due to Lax Milgram theorem. In order to
apply Lax Milgram, the assumptions are checked.

• The left side is the same as in the case of the Stokes equation with homoge-
neous Dirichlet boundary conditions, thus the Korn’s inequality applies and the
coercivity is fulfilled. Moreover, a(u, v) is bounded in H1

0 (Ωf).

• < l1, v >= (f̃ , v)H−1(Ωf) and thus, this term is bounded by Cauchy Schwarz
inequality in H1(Ωf).

• << l2, v >>= (w̃, v)L2(Γ). The discussion of boundedness of this term is similar to
[AHC10]. Since H

1
2 (ΓN) = ρH1(Ωf), there exists v0 ∈ H1(Ωf) such that ρv0 = v

[LM72]. Similarly, there exists g̃0 ∈ H1(Ωf) such that ρg̃0 = w̃. The restriction
ρ : H1(Ωf) → H

1
2 (∂Ωf) is continuous [McL00], and the embedding ι : H

1
2 (∂Ωf) ↩→

L2(∂Ωf) is compact [McL00]. Denote by lg the continuous mapping

u →


∂Ωf
u(x)g(x) dx, u ∈ L2(∂Ωf)
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Writing l2 = lg ◦ ι ◦ ρ, it is obtained that l2 is bounded in H1(Ωf).

Now, it is shown, that the Stokes problem with mixed boundary conditions has a unique
solution. Next, the Galerkin approximation and discretizations of the Stokes equation
are explained.

4.2.2 Discretization

The Stokes equation is considered as a mixed problem. The Galerkin approximation of
mixed problems is analogous to elliptic problems. First, discrete subspaces are chosen
and a best approximation property similar to Cea’s lemma in the case of Poisson
equation is constructed. Then, suitable discrete spaces and finite elements are chosen.
Finally, convergence results are obtained. Following [GR86], introduce the discrete
setting:
Let h denote a discretization parameter tending to zero and, for each h, let Xh and Mh

be two finite dimensional spaces such that

Xh ⊂ X, Mh ⊂ M

A problem (Q) is approximated by: Find a pair (uh, λh) in Xh × Mh satisfying

a(uh, vh) + b(vh, λh) =< l, vh > ∀vh ∈ Xh

b(uh, µh) =< χ, µh > ∀µh ∈ Mh (Qhh)

For each χ ∈ M ′ define the finite dimensional analogue of V (χ):

Vh(χ) = {vh ∈ Xh ; b(vh, µh) = 0 ∀µh ∈ Mh}

In general, Xh ⊂ X and Vh(χ) ⊂ V (χ) do not always hold.
Like in the continuous case, the problem (Qhh) is associated with the following problem:
Find uh ∈ Vh(χ) such that

a(uh, vh) =< l, vh > ∀vh ∈ Vh (Ph)

It follows that the first component of solution uh of any solution (uh, λh) of problem
Qh is also a solution of (Ph). The converse statement holds under assumptions in the
next theorem:

Theorem 4.14. • Assume that the following conditions hold:

(i) Vh(χ) is not empty.

(ii) There exists a constant α∗ > 0 such that:

a(vh, vh) ≥ α∗||vh||2X ∀vh ∈ Vh
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Then problem (Ph) has a unique solution u ∈ Vh(χ) and there exists a constant
C1 depending only upon α∗, ||a|| and ||b|| such that the error bound holds

||u − uh||X ≤ C1 · ( inf
vh∈Vh(χ)

||u − vh||X + inf
µh∈Mh

||λ − µh||M).

• Assume that hypothesis (ii) holds and, in addition that

sup
vh∈Xh

b(vh, µh)
||vh||X

≥ β∗||µh||M∀µh ∈ Mh

Then Vh(χ) ̸= ∅ and there exists a unique λh in Mh so that (uh, λh) is the only
solution of (Qhh). Furthermore, there exists a constant C2 depending only upon
α∗, β∗, ||a|| and ||b|| such that

||u − uh||V + ||λ − λh|| ≤ C2( inf
vh∈Xh

||u − vh||X + inf
µh∈Mh

||λ − µh||M).

Proof. See [GR86].

In the case of elementary elliptic problems, the coercivity condition and thus the Lax
Milgram lemma for discretized spaces is inherited from the continuous case. For mixed
problems it is not the case, because discrete inf-sup condition can not be inherited from
the continuous case. Thus, inf sup condition becomes an additional requirement on the
choice of Vh and Qh.

This general setting can be applied for Stokes equation. The discretized formulation
of the Stokes equation with Robin boundary is given by:

Definition 4.15. Let ∂Ωf = ΓD ∪ ΓN and Vh ⊂ V := {v ∈ (H1(Ωf))d : vh|ΓD = 0}.
Find (uh, ph) ∈ Vh × Qh such that for all v ∈ Vh and for all q ∈ Qh ⊂ L2(Ωf) it holds

a(uh, v) +
d−1
i=1

( 1
α

uh · τi, v · τi)L2(Γ) + b(v, ph) = (f, v)L2(Ωf) − (g, v)
H− 1

2 (ΓN)

b(uh, q) = 0,

where

b(v, ph) = −(∇ · v, ph)L2(Ωf)

a(uh, v) = (2νD(uh),D(v))L2(Ωf).

The situation is different to [GR86] in two aspects. First, the right hand side has a
special term. Moreover, Qh ⊂ L2(Ωf) and not Qh ⊂ L2

0(Ωf) like in [GR86].
The term on the right hand side is bounded in the continuous case and thus, in the dis-
crete case. Thus, existence and uniqueness of the problem follow from the Lax Milgram
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theorem and equivalence of problems Ph and Qh since Vh ⊂ V and Qh ⊂ Q := L2(Ωf).
The next step is to construct such discrete spaces and to find finite elements which
satisfy the assumptions of the approximation theorem. The Taylor Hood finite elements
lead to good convergence and stability results in applications.

Convergence results for Taylor Hood elements

The family of the Taylor Hood elements is defined below:

Definition 4.16. The family of Taylor-Hood elements on quadrilaterals and hexahedra
(for the choices d = 2, 3) for polynomial degrees k ≥ 1 consists of the pairs

Vh = {v ∈ H1
0 (Ωf)d | v|K ∈ Qk(K)d, K ∈ Th}

and
Ph = {p ∈ L2(Ωf) ∩ C(Ωf) | p|K ∈ Qk−1(K), K ∈ Th}.

Using macroelement technique [Ste90], it can be shown that the spaces Vh and Ph

fulfill the discrete inf-sup condition. Thus, it holds:

Theorem 4.17. For the solution (uh, ph) of the discrete Stokes equation with vh ∈ Vh

and ph ∈ Ph, it holds

||u − uh||H1(Ωf) + ||p − ph||L2(Ωf) ≤ Chk(||u||Hk+1(Ωf) + ||p||Hk(Ωf)).

For a convex domain Ωf, it holds

||u − uh||L2(Ωf) ≤ Chk+1(||u||Hk+1(Ωf) + ||p||Hk(Ωf)).

The proof for two dimensions for triangles and quadrilaterals can be found in [Ste90].
The proof for tetrahedra in three dimensions can be found in [BBF+06] (especially, it
is shown, that the chosen spaces fulfill the discrete inf-sup condition). The proof in
three dimensions for hexahedral elements follows the idea in the master thesis of Arndt
[Arn13] and it is presented here.

Definition 4.18. A macroelement M is a polytope which is the union of adjacent
elements. Two macroelements M, M̂ are said to be equivalent if there exists a mapping
FM : M̂ → M such that

(1) FM is continuous and invertible

(2) M̂ = ∪m
j=1 where K̂j are the elements defining M̂ , then Kj = FM(K̂j) are the

elements of M .

(3) FM |Kj = FKj
◦ F −1

K̂j
∀j ∈ {1, ..., m} Fk denotes the affine mapping from the

reference element to a generic element K
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Further define

V0,M := {v ∈ H1
0 (M)d : ∃w ∈ Vh v = w|M}

QM := {q|M with q ∈ Qh}

Moreover, the space of spurious pressure modes is given by

NM := {q ∈ QM |


M
q∇ · v dx = 0, ∀v ∈ V0,M} (15)

The following theorem:

Theorem 4.19. Let Mh be a macroelement partition of the elements of Th such that

(H1) For each M ∈ Mh the space NM is one-dimensional and consists of functions
which are constant on M

(H2) Each M ∈ Mh belongs to an equivalence class of macroelements

(H3) The number of equivalence classes of macroelements is finite and independent of
h

(H4) Each element K ∈ Th is contained in a finite number N of macroelements M ∈
Mh, with N independent of h

(H5) The inf-sup condition between Vh and the space of elementwise constant functions
Q0 holds true.

Then, the choice of the spaces Vh and Qh satisfies the inf-sup condition.

Proof. See [BBF+06].

Let
Vh = {v ∈ H1

0 (Ωf)d | v|K ∈ Qk(K)d, K ∈ Th}

and
Ph = {p ∈ L2(Ωf) ∩ C(Ωf) | p|K ∈ Qk−1(K), K ∈ Th}

Theorem 4.20. Define a macroelement partition Mh by grouping together, for each
internal vertex x0, those vertex elements that touch x0. then, for the three-dimensional
case the space of spurious pressure modes NM is one-dimensional, consisting of globally
constant functions in M for each M ∈ Mh.

Proof. First, consider a polynomial w̃ = 4x(1 − x)(1 − y)(1 − z) ∈ Q2 on the reference
cell. Following observations can be made immediately:

(P1) The value of w̃ on the plane {y = 0} just depends on x and y.
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(P2) On the plane {z = 0}, w̃ only varies with x and y,

(P3) The function vanishes on the four planes {x = 0}, {x = 1}, {y = 1} and {z = 1},

(P4) w̃ is linear with respect to y and z individually,

(P5) w̃(x, y, z) ≥ 0 ∀(x, y, z) ∈ [0, 1]3,

(P6) w̃(x, y, z) = w̃(x, z, y) ∀(x, z) ∈ [0, 1]2.

Consider a generic macroelement M ∈ Mh associated to the internal vertex x0. Let
K0 ∈ Th be a hexahedron of M , then x0 belongs also to their elements of M . There
are three edges ei, i = 1, 2, 3 of k0 meeting at x0. Now, a coordinate system is chosen,
such that e1 is lying on the x-axis.
The goal is to prove, that ∇p vanishes on K0. Thus, consider A = {K0, ..., Kn} of
elements in Th that share e1. Obviously, each K ∈ A has exactly two faces with other
elements in A in common. Moreover, denote by Fi an invertible bilinear mapping from
Ki to the reference cell that satisfies:

• the two faces of Ki which are in common with other elements in A are mapped
to {z = 0} and {y = 0} plane.

• Fi is the identity on e1.

• Vertices are mapped onto vertices.

Next, a polynomial for a given q ∈ QM is constructed such that the following property
holds:

w|Ki
= ((w̃ ◦ F −1

i )∂p

∂x
|Ki

, 0, 0) i = 1, ..., n,

w|K = 0 ∀K ∈ Th\A.

Due to properties (P1)-(P3) the constructed polynomial is continuous in Ki ∪ (M\A)
and the polynomial vanishes in M\A. The continuity of ∇p on the faces between
elements in A in all tangential directions then ensures together with properties (P1)
and (P2) the continuity of w on these interfaces and finally in the whole set M .
Since Fi preserves the x−direction, ∂p

∂x
◦ Fi is of the form

∂p

∂x
∈ span{xryszt, 0 ≤ r ≤ k − 1, 0 ≤ s, t ≤ k}

in Ki. The function w̃ ◦ F −1
i ◦ Fi = w̃ is quadratic in x and linear in y and z due to

property (P4). Thus,

((w̃ ◦ F −1
i )∂p

∂x
|Ki) ◦ Fi ∈ span{xryszt, 0 ≤ r, s, t ≤ k + 1} = Qk+1
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Consequently, it follows that w ∈ V0,M . Now, this function may be tested with the
macroelement condition (15) and it holds

0 =


M
q∇ · w dx =

n
i=1

(


∂Ki

qw · n dx −


Ki

∇q · w dx) (16)

=
n

i=1


Ki

((w̃ ◦ F −1
i )(∂p

∂x
|Ki)2) (17)

where


∂Ki
qw · n dx disappears due to the choice of w. The function (w̃ ◦ F −1

i ) is non-
negative in Ki for all i = 1, ..., n because of (P5). Therefore, the first component of ∇q

vanishes. The same argumentation may be applied to the edges e2 and e3. Consequently,
∇qk|Ki

disappears and q is elementwise constant.
Since q is continuous, q is constant on M . This finishes the proof of the proposition.

Theorem 4.21. The family of Taylor-Hood elements on hexahedra for polynomial
degrees k ≥ 1

Vh = {v ∈ H1
0 (Ωf)d | v|K ∈ Qk(K)d, K ∈ Th}

and
Ph = {p ∈ L2(Ωf) ∩ C(Ωf) | p|K ∈ Qk−1(K), K ∈ Th}

fulfills the discretized inf-sup condition.

Proof. Applying the previous theorem, hypotheses (H1)-(H5) need to be checked. The
previous proposition states that (H1) is fulfilled. (H2) and (H4) hold because of the
choice of macroelements, (H3) is a consequence of the regularity assumptions. Since
Q0 ⊂ Pk(K) ∀k ∈ N0, the inf-sup condition between Vh and constant pressure functions
Q0 follows from [MT02]. Since all hypotheses are fulfilled, the inf-sup condition for
Taylor-Hood elements is fulfilled.

Since Vh ⊂ V and Qh ⊂ Q, the convergence theorem may be applied and results
from Stenberg follow.
Before discussing the implementation, it is important to remark, that Taylor Hood
finite elements are only globally mass conservative, i.e the condition


Ωf

∇ · vh = 0

holds in Ωf, however, this condition is in general not true any more on the cell level,
i.e the condition 

K
∇ · vh = 0

doesn’t hold for a cell K. Since the main interest of this work is the mean intraocular
pressure inside the whole domain Ωf (anterior chamber in the application), the mass
conservation property of Taylor Hood finite elements is sufficient for the purpose of
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this thesis.

Moreover, it is important to remark, that there are reentrant corners (with an angle
of 270 degrees) in the geometry of the anterior chamber. Moreover, Dirichlet and Robin
boundary conditions are not separated. Consequently, an angle of 180 degrees between
these boundary conditions is assumed for the computation using singularity analysis.
Thus, [BR80] predicts a slower convergence rate than in theorem 4.17. For the velocity,
the energy error is about O(h0.544) for the case of homogeneous Dirichlet boundary
conditions on the geometry with the reentrant corner. Expecting, that the dual problem
has the same behavior at the singularity, the order of the L2-error is about O(h1.088)
according to Aubin Nitsche trick. The change of boundary conditions leads to the same
prediction of the convergence order which is about O(h).

4.2.3 Implementation

The test case for the Stokes equation was implemented using Finite Element library
deal.II. [BHK07],[BHH+15]. Especially, step−56 from the documentation of the library
was adapted to the following model. The code of the step−56 was changed, such that
mixed boundary conditions may be included. The discretization used in the code is
given in definition 4.17. The discretization can be written as an algebraic system with
a saddle point structure A BT

B 0

 U

P

 =
F

0

 . (18)

In order to solve this algebraic system efficiently, the strategy of Timo Heister [Hei11]
is helpful. First, a block preconditioner P needs to be found such that the matrixA BT

B 0

 P −1

is easier to invert. In this case the iterative solver will converge within few iterations.
Using the Schur complement S = BA−1BT [ESW05], write

P −1 =
A BT

0 S

 .

Consequently, P −1 would be a good choice for a preconditioner.
Let Ã−1 be an approximation of A−1 and ˜S−1 of S−1. Then,

P −1 =
A−1 0

0 I

 I BT

0 −I

 I 0
0 S−1

 ≈

Ã−1 0
0 I

 I BT

0 −I

 I 0
0 ˜S−1

 .
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Since P is a preconditioner, the approximations on the right hand side are used.
Due to the saddle point structure, the matrix is not symmetric anymore. Thus, con-
jugate gradient method [HS52] is not directly applicable in this case. Consequently, a
solver for more general matrices coming from Galerkin approximation is needed. One
of such solvers is GMRES method [SS86]. Following [Qua09], the idea of this method
is shortly described below. First, rewrite Ax = b to Cx = Cx − Ax + b, and then to
x = (I − C−1A)x + C−1b, where C is a regular matrix. Then, an iteration is given by

x(k) = (I − C−1A)x(k−1) + C−1b.

Denote the residual at step k as

r(k) = b − Ax(k).

The residual at the k-th step can be related to the initial residual for the Richardson
method as

r(k) =
k−1
j=0

(I − αjA)r(0) = pk(A)r(0), (19)

where pk(A) is a polynomial in A of degree k. Introducing the space (which is called
Krylov space of order m, associated with a matrix A and a vector v)

Km(A; v) = span{v, Av, A2v, ..., Am−1v}, (20)

it follows from 19 that r(k) ∈ Kk+1(A; r(0)). Similarly, the iterate x(k) is given by

x(k) = x(0) +
k−1
j=0

αjr
(j),

whence
x(k) ∈ Wk = {v = x(0) + y, y ∈ Kk(A; r(0))}.

The idea of GMRES method is to compute x(k) ∈ Wk minimizing the Euclidean norm
of the residual ||r(k)||2, i. e

||b − Ax(k)||2 = min
v∈Wk

||b − Av||2.

Since at each step a least-squares problem of size k needs to be solved, the GMRES
method will be more effective, the smaller is the number of iterations. Moreover, GM-
RES method has the finite termination property, that it terminates at most after n

iterations, yielding the exact solution. An algorithm of preconditioned GMRES method
is described in [Qua09] (which is used for computation in step-56).

In deal.ii, a variable preconditioner Pk (from the right side) is used at the k-th
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Initialize x(0), P r(0) = f − Ax(0), β = ||r(0)||2, x(1) = r(0)

β

Iterate:
for j = 1, ..., k do

Pw(j) = Ax(j)

for i = 1, ..., j do
gij = (x(i))T w(j)

wj = w(j) − gijxi

end
gj+1,j = ||w(j)||2
if gj+1,j = 0 then

set k = j and Goto (1)
end
xj+1 = w(j)/gj+1,j

end
Vk = [x(1), ..., x(k)], Ĥk = {gij}, 1 ≤ j ≤ k, 1 ≤ i ≤ j + 1;
(1) Compute z(k), the minimizer of ||βe1 − Ĥkz||
x(k) = x(0) + Vkz(k)

Algorithm 1: preconditioned GMRES method

iteration. This method is called flexible GMRES or FGMRES. As a preconditioner an
incomplete LU decomposition (ILU) is used. Next, the idea of ILU is shortly described.
Choose M as a preconditioning matrix to be an incomplete LU decomposition of A.
Let Psp be a set of pairs of indices (i, j), 1 ≤ i, j ≤ n representing the desired sparsity
pattern (non-zeros of M). An incomplete LU factorization may then be obtained by
performing Gaussian elimination on A, rejecting all fill-in entries (k, l) if (k, l) /∈ Psp.
A common choice is P = {(i, j) | Ai,j ̸= 0} (by Ai,j ̸= 0 the entries in A are meant
that are not trivially equal to zero on the basis of the discretization method and the
nodal numbering). This choice leads to ILU preconditioner where all fill-in entries
are rejected. Uniqueness and existence of ILU factorization is shown for M-matrices in
[MV77], stability of the ILU factorization for non-symmetric systems has been discussed
in [Etm86]. Algorithms realizing ILU may be found in [Lan89] and [MAK03].

4.2.4 Test Case

Consider Ωf = [0, 1]× [0, 1]. Let Γwall = {(x, y) ∈ [0, 1] × [0, 1] | x = 0 and x = 1}, Γin =
{(x, y) ∈ [0, 1] × [0, 1] | y = 0} and Γout = {(x, y) ∈ [0, 1] × [0, 1] | y = 1}.
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The test case is given by the Stokes equation

−∇ · T(u, p) = (0, π2 sin(πx))T in Ωf

∇ · u = 0 in Ωf

u = (0, sin(πx))T on Γin

u = 0 on Γwall

−n · T(u, p) · n = 10 on Γout

−n · T(u, p) · τ = −π cos(πx) on Γout.

The artificial function which fulfills the Stokes equation is given by

u(x, y) = (0, sin(πx))T ,

p(x, y) = 10.

This example covers all the boundary conditions and represents a simplified situation
in 2D.

Error velocity L2 pressure L2 Mean pressure
16 cells 1.6e-3 2.6e-3 1.9e-3
64 cells 2e-4 2.5e-4 1.6e-4
256 cells 2.6e-5 2.7e-5 1.3e-5
1024 cells 3.2e-6 3.1e-6 1.1e-6
4096 cells 4e-7 4e-7 8.96e-8
16384 cells 5.6e-8 3.3e-6 1.1e-7

There are small singularities at the corners in the solution of the pressure. This table
confirms the convergence order O(hk) with k = 2.96 for the velocity in the L2-norm.
Since the pressure in the example is constant, it lies in the ansatz space of Taylor
Hood finite elements. Due to discretization theory, the error of the pressure and the
error of the velocity depend on each other. Consequently, the convergence order of the
pressure is approximately the same as for the velocity, O(hk) with k = 3. Because the
mathematical model of the aqueous humor flow also describes the flow in a porous
medium, Darcy equation is considered in the next chapter.
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(a) Solution of the velocity (b) Solution of the pressure

4.3 Darcy equation

The following chapter discusses the mathematical analysis of the Darcy equation. To be
able to apply results from functional analysis, weak formulation of the Darcy equation
is described and finally, existence of solutions for Darcy equation is shown. The second
part of this chapter deals with Galerkin approximation and discretization of the Darcy
equation. Because the structure of the primal formulation of the Darcy equation differs
by a constant from the Poisson equation, the standard results for Poisson equation may
be applied here.

4.3.1 Existence and uniqueness of solutions

In the strong formulation, the Darcy model reads

−∇ · (K

ν
∇pD) = f2 in Ωp

K

ν
∇pD · n = 0 on Γwall

K

ν
∇pD · n = uTW

in · n on Γin

pD = pout on Γout

Summarizing ∂Ωp = Γout ∪ ΓN and the Neumann boundary to ΓN = Γwall ∪ Γin and
defining the function ϕ on ΓN with ϕ = 0 on Γwall and ϕ = uTW

in on Γin leads to

−∇ · (K

ν
∇pD) = f2 in Ωp

K

ν
∇pD · n = ϕ · n on ΓN

pD = pout on Γout (21)
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With the lifting method (21) and introducing phom = pD − pout with inhomogeneous
Dirichlet boundary conditions can be written as a Darcy equation with homogeneous
boundary conditions

−∇ · (K

ν
∇phom) = f2 − ∇ · K

ν
∇pout ∈ H−1

K

ν
∇phom · n = ϕ · n − K

ν
∇pout · n on ΓN

phom = 0 on Γout (22)

Green formula and integration by parts lead to the weak formulation of the Darcy
equation.

Definition 4.22. Let phom = p − p̃. The weak formulation reads:
Find phom ∈ H1

0 (Ωp) such that for all ξ ∈ H1
0 (Ωp), it holds

a(phom, ξ) = (f̃ , ξ)L2(Ωp) − ((uTW
in − K

ν
∇pout) · n, ξ)L2(∂Ωp),

where

(f̃ , ξ)L2(Ωp) = (f, ξ)L2(Ωp) − (∇ · (K

ν
∇pout), ξ)L2(Ωp)

a(phom, ξ) = (K

ν
∇phom, ∇ξ)L2(Ωp).

Defining g̃ := (uTW
in − K

ν
∇pout) · n ∈ H

1
2 (∂Ωp), the weak formulation has a similar

form like the problem (P ∗):

a(phom, ξ) = (f̃ , ξ)L2(Ωp) − (g̃, ξ)L2(∂Ωp).

Consequently, the proof for existence and uniqueness of solutions for Darcy equation
can be given by the application of Lax Milgram theorem.

Theorem 4.23. The Darcy problem with f̃ ∈ H−1(Ωp), (K∇p̃) · n ∈ H− 1
2 (Γwall) and

p̃ ∈ H
1
2 (ΓD) has one and only one solution.

Proof. It suffices to show boundedness and coercivity of a(·, ·) due to Lax Milgram
theorem.

• |a(phom, ξ)| = K|(∇phom, ∇ξ)L2(Ωp) ≤ K||phom||V ||ξ||V

• |a(ϕ, ϕ)| = |(K∇ϕ, ∇ϕ)L2(Ωp)| = K(ϕ, ϕ)V = K||ϕ||2V

The right hand side is bounded as in the argumentation for the problem (P ∗).

Now, existence and uniqueness of solutions for Darcy equation is shown and numer-
ical investigations are considered.
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4.3.2 Discretization

Since the Darcy model differs by a constant from the Poisson equation, standard results
are recalled.

Definition 4.24. The weak formulation of the Darcy equation reads: Find ph ∈ H1
0 (Ωp)

such that for all ξh ∈ Vh ⊂ H1
0 (Ωp), it holds

a(ph, ξh) = (f̃ , ξh)L2(Ωp) − ((uTW
in − K

ν
∇pout) · n, ξh)L2(∂Ωp),

where

(f̃ , ξh)L2(Ωp) = (f, ξh)L2(Ωp) − (∇ · (K

ν
∇pout), ξh)L2(Ωp),

a(ph, ξh) = (K

ν
∇ph, ∇ξh)L2(Ωp).

Due to Lax Milgram theorem, discretized Darcy equation has a unique solution. The
best approximation result follows from the Cea’s lemma (theorem 4.1). Following finite
elements are used for discretization.

Definition 4.25. Lagrange elements on quadrilaterals and hexahedra (for the choices
d = 2, 3) for polynomial degrees k ≥ 1 are given by

Vh = {v ∈ H1
0 (Ωp)d | v|K ∈ Qk(K)d, K ∈ Th}

Using this elements, it holds Vh ⊂ H1
0 (Ωp) and supposing u ∈ H1

0 (Ωp) ∩ Hk+1(Ωp),
following L2 error estimate holds (Aubin Nitsche, see for example [GT17]):

||u − u0||L2(Ωp) ≤ Chk+1||u||Hk+1(Ωp).

4.3.3 Implementation

The Darcy equation with mixed boundary conditions was implemented using Finite
Element library deal.II. [BHK07],[BHH+15]. Especially, step−4 from the documenta-
tion of the library was adapted to the following model.
Then, the code of the step−4 was changed, such that mixed boundary conditions may
be included. Moreover, mean pressure value in the whole domain is computed.
The discretization used in the code is given by:

(K

ν
∇ph, ∇ξh)L2(Ωp) = (f, ξh)L2(Ωp).

The discretization can be written as an algebraic system AU = F . This algebraic
system is solved using a conjugate gradient (CG) method ([HS52], and the algorithm
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explained in [Bra07]) in deal.ii. The idea of the CG method is to find a minimum of
the function

f(x) = 1
2x′Ax − b′x,

since the solution of this equation leads to a solution of Ax = b (where A is symmetric
positive definite). The algorithm of the CG method is given by:

Definition 4.26. Choose x0 ∈ Rn. Set d0 = −g0 = b − Ax0 and compute for k =
0, 1, 2, ...

(1) dαk = g′
kgk

d′
k

Adk

(2) xk+1 = xk + αkdk

(3) gk+1 = gk + αkAdk

(4) βk = g′
k+1gk+1

g′
k

gk
,

(5) dk+1 = −gk+1 + βkdk, as long as dk ̸= 0.

Theorem 4.27. For all x0 ∈ Rn it holds for the CG method

||xk − x∗||A ≤ 2(
√

κ − 1√
κ + 1)k||x0 − x∗||A.

Proof. see [Bra07].

This inequality describes the case, where all eigenvalues are equally distributed be-
tween the smallest eigenvalue of A λmin and the greatest eigenvalue λmax. However,
eigenvalues occur in groups. Consequently, there are gaps in the eigenvalue spectrum
and therefore, this estimate may be improved in certain situations. (see [Bra07] and
citations therein)
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4.3.4 Test Case

Consider Ωp = [0, 1]×[0, 1]. Let Γwall = {(x, y) ∈ [0, 1] × [0, 1] | x = 0 and x = 1}, Γin =
{(x, y) ∈ [0, 1] × [0, 1] | y = 0} and Γout = {(x, y) ∈ [0, 1] × [0, 1] | y = 1}.
The test case for the Darcy equation with K = 1 and ν = 1 is defined by

−∆p = 2π2 sin(πx) cos(πy) in Ωp

∇p · n = uTW
in · n on Γin

p = sin(πx) cos(πy) on Γwall and Γout.

The artificial function fulfilling the Darcy equation is given by

p(x, y) = sin(πx) cos(πy).

Set
uTW

in · n = −π sin(πx) sin(πy).

This example covers mixed boundary conditions for the Darcy equation (Laplace equa-
tion) on a square. The table demonstartes L2 convergence. Since the function in the
example has a mean value zero, the mean pressure converges right away.

Degrees of freedom pressure L2 Mean pressure
25 4e-2 4e-17
81 1e-2 7e-17
289 2e-3 6e-18
1089 6e-4 5e-17
4225 1.5e-4 3e-18
16641 3.85e-5 3.5e-16

This data confirms the convergence order O(hk) with k = 2 in the L2-norm.

(a) Solution of the pressure
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4.4 Application of theoretical results to the model

First, a weak formulation of the model is recalled:

Definition 4.28. Let ∂Ωf = ΓD ∪ ΓN, ∂Ωp = ΓND ∪ Γout and
VS := {v ∈ (H1(Ωf))d : v|ΓD = v0}.
Find (u, p) ∈ VS × L2(Ωf) such that for all v ∈ VS and for all q ∈ L2(Ωf) it holds

af(u, v) +
d−1
i=1

( 1
α

u · τi, v · τi)L2(ΓN) + bT
f (v, p) = (fS, v)L2(Ωf) − (v · n, p0)L2(ΓN)

bf(u, q) = 0,

where

bf(v, p) = −(∇ · v, p)L2(Ωf),

af(u, v) = 2ν(D(u),D(v))L2(Ωf),

p0 = 1
|Ωp|


Ωp

pD(x) dx,

where pD is the solution of the Darcy equation:
Find pD ∈ VD := {pD ∈ (H1(Ωp)) : pD|Γout = pout} such that:

ap(pD, ξ) = (fD, ξ)L2(Ωp) − (uTW
in · n, ξ)L2(ΓND) ∀ξ ∈ V,

where

a : V × V → R, a(pD, ξ) = (K∇pD, ∇ξ)L2(Ωp)

Theorem 4.29. There exists a unique solution for the model.

Proof. Darcy equation has a unique solution. Thus, the value p0 in the Robin bound-
ary condition of the Stokes equation is uniquely determined. Since Stokes equation
with mixed boundary conditions has a unique solution, the whole model has a unique
solution.
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Discretization

The discretized weak formulation of the model is given by:

Definition 4.30. Let ∂Ωf = ΓD ∪ ΓN, ∂Ωp = ΓND ∪ Γout and let VSh and QSh fulfill the
assumptions of the theorem 4.14. Find (uh, ph) ∈ VSh × QSh such that for all vh ∈ VSh

and for all qh ∈ QSh it holds

af(uh, vh) +
d−1
i=1

( 1
α

uh · τi, vh · τi)L2(ΓN) + bT
f (vh, ph) = (fS, vh)L2(Ωf) − (vh · n, p0)L2(ΓN)

bf(uh, qh) = 0,

where

bf (vh, ph) = −(∇ · vh, ph)L2(Ωf),

af (uh, vh) = 2ν(D(uh),D(vh))L2(Ωf),

p0 = 1
|Ωp|


Ωp

pDh(x) dx,

where pDh is the solution of the discretized Darcy equation:
Find pDh ∈ VDh such that:

ap(pDh, ξh) = (fD, ξh)L2(ΩD) − (uTW
in · n, ξh)L2(ΓND) ∀ξh ∈ VDh,

where

a : VDh × VDh → R, a(pDh, ξh) = (K∇pDh, ∇ξh)L2(Ωp).

Theorem 4.31. There exists a unique solution for the discretized model.

Proof. Discretized Darcy equation has a unique solution. Thus, the value p0 in the
Robin boundary condition of the Stokes equation is uniquely determined. Since dis-
cretized Stokes equation with mixed boundary conditions has a unique solution, the
whole model has a unique discrete solution.

Choosing for VSh and QSh Taylor Hood finite elements and for VDh Lagrange finite
elements, convergence results from previous sections apply on each region. Thus, the
model is well posed in numerical sense.
Following strategy is applied to solve the model for the chosen parameters:

• Solve Darcy equation and compute the mean pressure value in the Darcy domain

• Solve the Stokes equation with the Robin boundary using the mean pressure
value from above
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5 Results
In this section simulation results in 3D are presented. First, the geometry of the eye is
shown. Then, rescaling of the equations, the generation of results and the implementa-
tion are explained. Then, results are illustrated. In particular, following dependencies
are considered:

• Impact of the position of the patient (lying prone, lying supine, lying on the right
or left side, standing or sitting) on the IOP

• Impact of the inflow rate on the IOP

• Impact of the porosity on the IOP

• Impact of the episcleral venous pressure on the IOP

• Impact of the radius of the pupil on the IOP

• Impact of the thickness of the natural lens on the IOP

• Impact of the viscosity on the IOP

On the other hand, following medical applications are considered:

• IOP for patients wearing scleral lenses

• IOP after cataract surgery

• IOP after glaucoma operations like trabeculectomy or stent insertion

Moreover, there are people who already have been through a surgery. To estimate how
the IOP has changed after exchange of the lens in the case of cataract surgery and
how IOP has changed after trabeculectomy or stent insertion, some model cases are
considered.

5.1 Geometry

The geometry of the anterior chamber is a part of a patent [FDO18]. Thus, this chapter
summarizes information concerning the parameters and roughly describes the geometry.

Anterior Chamber

Based on measurements of [RKA06], [BR13], [HKM+12] and [MO17] it is assumed that
the depth of the anterior chamber is about 3 mm. Moreover, the horizontal internal
radius of the anterior chamber is approximately 6.1 mm (at the position where the
lens is and where zonules are), see [WBS+10] and [BJB05]. In the current model it is
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assumed that the ciliary body has a spread of approximately 1 mm. (Thus, internal
radius of 7 mm is chosen.) The geometrical form of the anterior chamber is assumed
to be a semi-ellipsoid.

Iris

First, a case of a healthy iris is considered. The pupil is represented as a cylinder.
According to measurements [NHF+11] and [KYK+14] distance between the lens and
the iris (which is called lens vault) is assumed to be 0.3 mm for a healthy eye. In
comparison, the model of [Kum03] supposed that the lens vault is about 0.25 mm. The
thickness of the iris is about 0.4 mm [MVMP00], [HYSL16] and [IGC+15] and varies
in different regions between 0.2 and 0.6 mm for patients with closed-angle glaucoma
[SDC+17], [LHP+13]. This value may be taken as a height of the cylinder representing
the pupil.
Furthermore, two special cases are interesting - the eye by daylight, that means that
the radius of the pupil is about 1 or 2 mm as well as the eye at night, when it is dark,
that means that pupil can reach the radius about 9 mm [MVMP00]. R (the radius of
the cylinder) can be set to any number mentioned here.
According to data from [MRK14], [MZZ+14] and [BR13], the anterior chamber depth
varies between 3 and 4 mm in the healthy case and 1.5 to 2.2 mm in the case of open
angle glaucoma. These data was used to construct a curved iris (for patients tending
to develop closed-angle glaucoma).

Natural ocular lens

The part of the ocular lens which is needed for the geometry takes a form of a semi-
ellipsoid. The diameter of the lens varies between 6.5 and 9 mm according to measure-
ments [RDF+06] and [MSG+08]. The thickness of the lens varies between 3.5 and 5
mm and changes with age [MVMP00], [MZZ+14], [MO17].

Artificial lens

Artificial lens is given by a cylinder with a height of 0.5 mm and the radius 3 mm.
These parameters are common in industry (see for instance parameters of lenses Alcon
SA60AT, SN60WF, Cova PU6A).

Trabecular meshwork

The trabecular meshwork is modeled as a thin tube around the anterior chamber. In
order to be able to solve the model for realistic parameters, rescaling is explained in
the next section.
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(a) Healthy eye with a natural ocular lens (b) Healthy eye with an artificial lens

(c) Pathological eye with a natural ocular lens (d) Pathological eye with an artificial lens

Figure 3: Anterior chamber

Figure 4: Trabecular meshwork
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5.2 Rescaling

Due to great differences in the magnitude of the parameters, the matrices built by the
finite element method might be ill posed. To improve the condition of this matrix (and
to make the problem well posed), the rescaling technique is used.
The Stokes equation is given by

−∇ · T(u, p) = ρgez

∇ · u = 0

uin = u0 on Γin

u = 0 on Γwall

−n · T(u, p) · n = p0 on Γout

−τ · T(u, p) · n = α̃u · τ on Γout.

Now, apply the rescaling argument

x̄ = x

L
, ȳ = y

L
, z̄ = z

L
, ū = u

uc

, p̄ = p

pc

,

where L is a unit length, uc a unit velocity and pc unit pressure.
Applying the chain rule, the first derivative transforms as

∂u(x)
∂x

= ∂(uc · ū(x̄))
∂x̄

· ∂x̄

∂x
= uc

L

∂ū(x̄)
∂x̄

.

Consequently, it implies
∂2u(x)

∂2x
= uc

L2
∂2ū(x̄)

∂2x̄
.

Thus, it holds

∇p(x) = pc

L
∇̄p̄(x̄),

∆u(x) = uc

L2 ∆̄ū(x̄),

∇ · D(u(x)) = uc

L2 ∇ · D(ū(x̄)),

∇ · u(x) = uc

L
∇̄ · ū(x̄),

ū0 = u0

uc

.
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The nondimensional equation reads

−2ν
uc

L2 ∇ · D(ū(x̄)) + pc

L
∇̄p̄ = ρgez

∇̄ · ū = 0

ūin = ū0 on Γin

ū = 0 on Γwall

−n · (2ν
uc

L
D(ū) − pcp̄) · n = p̄0 on Γout

−τ · (2ν
uc

L
D(ū) − pcp̄) · n = α̃ucū · τ on Γout. (23)

According to the model parameters the scaling is given by L ≈ 10−4, U ≈ 10−2 and
ν ≈ 10−4. Choosing the parameters for the model, the coefficients range is

ν
uc

L2 ≈ 102,

pc

L
= ρu2

c

L
≈ 103,

gρ · ez ≈ 9810 · ez,

where pc = ρU2 (here ρ ≈ 1000 kg
m3 ) is a common pressure scale in fluid mechanics,

arising from Bernoullis equation

p + 1
2ρu · u = const.

The equation which is implemented in deal.ii looks

−1.4∇ · D(ū(x̄)) + ∇̄p̄ = −9.81ex

∇̄ · ū = 0

ūin = 0.15 on Γin

ū = 0 on Γwall

−n · T(ū, p̄) · n = 10p0 on Γout

−τ · T(ū, p̄) · n = 0.1α̃ū · τ on Γout.

Next, compute the rescaling of the Darcy equation. Since both equations are solved
separately, each equation may be adjusted to its own scale.
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The Darcy equation is given by

−∇ · (K

ν
∇p) = −ρg

(K

ν
∇p) · n = uTW

in · n on Γin

(K

ν
∇p) · n = 0 on Γwall

pout = 1200 on Γout.

It is given
ρg = 9810 kg

m2s2 ,

ν = 0.0007 kg
ms ,

K = 10−15 m2.

Converting the scale from m to mm leads to

ρg = 0.00981 kg
mm2s2 ,

ν = 0.0000007 kg
mms ,

K = 10−9 mm2,

pin = 1.2 kg
mms .

Thus, it follows
K

ν
= 10−2 · 1

7 ≈ 0.00143.

Using the new scale, following equation is implemented:

−∇ · (K

ν
∇p) = −0.00981

(K

ν
∇p) · n = uTW

in · n on ∂Γwall

(K

ν
∇p) · n = 0 on Γwall

pout = 1.2 on Γout.

Using this rescaling technique both equations can be solved.
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5.3 Implementation

First, the Darcy equation is solved and a mean pressure is computed. After Darcy
equation is solved, mean value of the pressure in the Darcy equation is incorporated
into the Stokes equation. Then, the Stokes equation is solved and the IOP and the flow
of the aqueous humor is computed.
The Darcy equation with mixed boundary conditions was implemented using Finite
Element library deal.II. [BHK07],[BHH+15]. Especially, step−4 from the documenta-
tion of the library was adapted to the model in this thesis.
The geometry of the trabecular meshwork was constructed with a help of GMSH [GR09]
(see results section for further details). Since GMSH generates tetrahedral finite ele-
ments in three dimensions and deal.II library only works with hexahedral finite el-
ements, the GMSH grid was converted to hexahedrals using the program ./tethex
[Art15].
The details about the algebraic solvers and discretization of the Darcy equation can
be found in section 3 (Darcy equation, discretization, test case).
The inflow velocity in the trabecular meshwork was modeled using polar coordinates
and arctan-function. It is assumed that the inflow is rotational symmetric in y and z

coordinates and that the inflow function is continuous. First, the angle is computed, to
guarantee that the inflow in the trabecular meshwork is oriented contrary to the center
of natural lens in the anterior chamber.

ϕ =



arctan( z
y
) y > 0

arctan( z
y
) + π y < 0 and z ≥ 0

arctan( z
y
) − π y < 0 and z < 0

π
2 y = 0 and z > 0
−π

2 y = 0 and z < 0

Using this values, components of the inflow velocity are defined:

uin,x = 0

uin,y = 2 · 0.032 · (x − 2) · (x − 2.4) · cos(ϕ)

uin,z = 2 · 0.032 · (x − 2) · (x − 2.4) · sin(ϕ)

The boundary segment Γwall is defined by the unification of the intersections of the
planes x = 2.4 and x = 2 with the geometry of the trabecular meshwork. The boundary
segment Γin is given by the intersection of the geometry of the trabecular meshwork
and the surface of the semi-ellipsoid

{(x, y, z) ∈ R3
+ |x

2

25 + y2

49 + z2

49 = 1}.
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The segment Γout is denoted by the intersection of the geometry of the trabecular
meshwork and the surface of the semi-ellipsoid

{(x, y, z) ∈ R3
+ |x

2

25 + y2

7.52 + z2

7.52 = 1}.

The quadratic function leads to a smooth continuation between the segment Γwall, where
K
ν

∇p · n = 0 holds, and Γin, where K
ν

∇p · n = uTW
in · n. The maximum of the quadratic

function is computed such that it holds uTW
in = 0.85 ·uCB

in , where uCB
in = 4 ·10−7 m

s (inflow
rate 2 µl

min). At the segment Γout, it holds p = p0, where p0 = 1200 Pa.
The Stokes equation with Robin boundary condition was implemented using Finite
Element library deal.II. [BHK07],[BHH+15]. Especially, step−56 from the documenta-
tion of the library was adapted to the following model.
Similarly to Darcy, the geometry of the anterior chamber was constructed with a help
of GMSH [GR09] and the grid was converted to hexahedrals using the program ./tethex
[Art15]. The results are visualized using the open source software VisIt [CBW+12]. The
plots are produced using Matlab [MAT09].
The inflow velocity in the ciliary body was modeled using polar coordinates and arctan-
function. It is assumed that the inflow is rotational symmetric in x and y coordinates
and that the inflow function is continuous. In order to obtain u = 0 near the iris and
u = 0 near the zonules, the inflow velocity u is fitted, such that the boarderlines be-
tween the Γwall and Γin boundaries are continuous. Following formulas are used:
First, the angle is computed, to guarantee that the inflow is oriented towards the center
of natural lens in the anterior chamber.

ϕ =



arctan( y
x
) x > 0

arctan( y
x
) + π x < 0 and y ≥ 0

arctan( y
x
) − π x < 0 and y < 0

π
2 x = 0 and y > 0
−π

2 x = 0 and y < 0

After this, compute rad =
√

x2 + y2 and choose the scaling sc = 10. Using this values,
components of the inflow velocity are defined:

uin,x = (5.5 · sc − rad) · cos(ϕ)

uin,y = (5.5 · sc − rad) · sin(ϕ)

uin,z = 0

The boundary segment Γin is the boundary of the geometry for the points 0 < z < 1.64.
On this part, it holds u = uin. The segment Γout is the boundary for the geometry for
points 2.05 < z < 2.45. On this part, the Robin boundary condition nT(u, p)n = p0

and nT(u, p)τ = α̃uτ holds. The rest part of the boundary is Γwall on which u = 0
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holds.
Then, the code of the step−56 was changed, such that mixed boundary conditions may
be included. Moreover, mean pressure values were computed in the region between the
iris and the lens (posterior chamber) and in the region between the cornea and the iris
(anterior chamber) as well as the mean pressure in the whole front part of the eye.
The details about algebraic solvers and discretization can be found in section 4 (Stokes
equation, discretization, test case.)

5.4 Changes of specific parameters

On the one hand, one specific parameter in the model is changed and its impact on
the IOP is computed. The mean IOP is computed in three regions of the front part of
the eye: in the anterior chamber (denoted as IOP (AC)), a region between the cornea
and the iris, in the posterior chamber (denoted as IOP (PC)), a region between the
zonules and the iris, and the IOP in the whole front part of the eye (IOP). Following
parameters are fixed in the simulations (if not stated otherwise)

• Inflow velocity is about uin = 4 · 10−7 m
s (inflow rate 2 µl

min)

• The permeability is given by K = 0.35 · 10−15 m2.

• Episcleral venous pressure pout = 1200 Pa.

• The outflow boundary condition is set for the surface of the geometry with 2.05 <

x < 2.45.

• The inflow boundary condition is set for the surface of the geometry with 0 <

x < 1.64 and the radius in the y − z plane r > 5.5.

• No slip condition u = 0 is set in the remaining parts.

• The radius of the pupil is 1.5 mm.

• The width (noted as w) of the natural lens lense is supposed to be 8 mm and the
height of the half of the lens (noted as h) is 1.4 mm.

• the viscosity is chosen as ν = 0.7g
m·s .

• The force is given by f = (−g, 0, 0) (the patient is lying supine).

Inflow Rate and IOP

Inflow rate of the aqueous humor may change due to circadian rhythm, operations in
the ciliary body, secondary glaucoma and many other reasons [G+10].
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Inflow Rate Pressure TW IOP
1 2002 2001.94
2 2002.13 2002.07
3 2002.27 2002.21
4 2002.41 2002.35
5 2002.54 2002.48

Since the velocity of the aqueous humor is very small in the front part of the eye, there
is no significant change in IOP caused by inflow rate of the aqueous humor according
to the model. The table shows a tendency that the IOP increases if the aqueous humor
(AH) production increases. However, the AH inflow rate should be thousand times
greater to cause a significant effect on the IOP.

Thickness of the lens and IOP

Once individuals get older, the shape of their lenses changes [DH01].

Lens parameters IOP IOP (AC) IOP (PC)
h = 1.35 w = 3.5 2002.78 1994.09 2014.56

h = 1.4 w = 4 2002.07 1994.11 2013.78
h = 1.45 w = 4.5 2002.04 1994.15 2014.84

h = 1.5 w = 5 2001.21 1994.2 2014.16

Table shows that there is no significant change in IOP (only about 0.1%) if the lens
thickness (or general shape) changes.

Opening of the pupil and IOP

Due to light conditions or different emotional states, the size of the pupil changes
([KSS18] and citations therein). In this section, the dependence between the radius of
the pupil and the IOP is shown.

Radius (Pupil) IOP IOP (AC) IOP (PC)
1.5 2002.33 1994.2 2014.23
2 2002.4 1994.34 2014.32

2.5 2002.54 1994.4 2014.59
3 2002.69 1994.5 2014.82
5 2002.95 1995.12 2014.59

The following table shows that there is no significant dependence between the pupil
radius and the intraocular pressure. The mean IOP variation is about 0.62 Pa between
the simulations with the radius of the pupil r = 1.5 and r = 5 mm.
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Permeability and IOP

Permeability is a parameter representing the occlusion in the pores in the trabecular
meshwork. The figure 5 shows the dependence between the permeability and the IOP.

Figure 5: Relation between permeability and IOP

If the permeability of the tissue gets smaller, the IOP in the anterior chamber increases.
Once pores get very small, meaning that the permeability becomes 10−16, there is a
greater increase in IOP. Comparing this results to increase of IOP due to variations
in the inflow rate, it can be seen, that the permeability has a stronger impact on the
change of the IOP than the inflow rate according to the model.

Episcleral venous pressure (EVP) and IOP

Elevated episcleral venous pressure (EVP) is one of the risk factors for glaucoma. In
particular, due to Sturge Weber Syndrome EVP increases [SAY+12],[JG87]. This leads
to an increase in IOP. The increased IOP leads to glaucoma. The figure 6 shows the
dependence between the episcleral venous pressure (EVP) and the IOP. If the EVP
increases the IOP increases. According to the results, there is a linear dependence
between those two quantities:

IOP = EV P + 802Pa

Moreover,the table illustrates that the IOP is slightly less than the mean pressure p0 in
the trabecular meshwork. Like in the previous observations, the IOP in the posterior
chamber is slightly greater than in the area between the cornea and the iris.
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Figure 6: Relation between EVP and IOP

Viscosity and IOP

The viscosity changes once secondary glaucoma occur. Moreover, it is common, that
after operations (or treatment with medication) viscosity of the aqueous humor changes
[V+04]. Next, the dependence of viscosity on the mean IOP is illustrated.
Increase of viscosity by 0.1 leads to an increase of mean IOP about approximately 114

Figure 7: Relation between viscosity and IOP

Pa. A difference between viscosity for ν = 0.4 and ν = 0.9 is about 458 Pa (approx-
imately 3.43 mmHg). Since realistic viscosity parameters lie in the range between 0.6
and 0.9 [V+04], pressure difference about 344 Pa (approximately 2.58 mmHg) results
between two extreme points. The relative pressure difference is about 17.2% (taking
2000 Pa as 100%). According to the model, one option to heal glaucoma at an early
stage is to decrease the viscosity of the aqueous humor.
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5.5 Medical applications

5.5.1 Position of the patient and IOP

Since an individual performs different tasks during a day, he/she takes different body
postures throughout the day. If you study, you often sit on a chair or at the table. If
you rest and listen to music, you maybe lie supine. To be able to see how the posture
influences the mean IOP, following parameters are considered: EVP values are set
according to experiments [BTP01], [AMHS17]:

• Sitting: 6.4 ± 1.4 mmHg (866.6666 Pa is chosen in the simulation)

• Inclined: 7.7 ± 1.7 mmHg (1040 Pa is chosen in the simulation)

• Lying supine: 10 mmHg (1346.666 Pa is chosen in the simulation)

The direction of the gravitation force is changed due to the position of the patient.
Choose the force term f as follows:

• Standing/Sitting/inclined: f = (0, −g, 0)

• Lying Supine: f = (−g, 0, 0)

Position EVP Pressure (TW) IOP
Sitting 866.6 1668.13 1668.17
Inclined 1040 1842.13 1842.12

Lying supine 1346.6 2148.13 2148.03

According to the results of the model, IOP depends on body posture. Lying supine leads
to the greatest increase in both EVP (3.6 mmHg according to [BTP01] in comparison
with the sitting position) and IOP (3.6 mmHg according to computations). Sitting
position leads to lowest EVP and IOP values.

5.5.2 Cataract surgery

There a many cases when patients are suffering from multiple diseases. Sometimes,
glaucoma and cataract occur at once. Cataract is a clouding of the lens in the eye
which can cause blindness or visual impairment [Gre12]. One of the options to treat
cataract is the removal of the natural lens and insertion of an artificial intraocular lens
on its place [Gre12]. To understand, what impact the exchange of the lens has on the
IOP, following simulation is performed. Let the following parameters be fixed:

• K = 1.7 · 10−16 m2

• The inflow velocity is about uin = 4 · 10−7 m
s (inflow rate 2 µl

min).

• The force is given by f = (−g, 0, 0) (patient is lying supine).
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• The outflow boundary condition is set for the surface of the geometry with 2.05 <

x < 2.45.

• The inflow boundary condition is set for the surface of the geometry with 0 <

x < 1.64 and the radius in the y − z plane r > 5.5.

• No slip condition u = 0 is set in the remaining parts.

• The radius of the pupil is 1.5 mm.

The first simulation uses the natural lens of semi-ellipsoidal shape with the width w = 8
mm and the height of the half of the lens h = 1.4 mm. In this case, mean IOP in the
whole front part of the eye is about 1994.11 Pa, the mean IOP in the posterior chamber
is 2013.78 Pa and the mean IOP in the anterior segment between the cornea and the
iris is 2002.33 Pa.
The second simulation uses artificial lens of cylindrical shape with the radius r = 3
mm and the height h = 0.5 mm. In this case, mean IOP in the whole front part of the
eye is about 1995.17 Pa, the mean IOP in the posterior chamber is 2016.56 Pa and the
mean IOP in the anterior segment between the cornea and the iris is 2005.05 Pa. IOP
increases approximately about 0.15% after the operation for the case with a plane iris.
This IOP change is not significant.
The third and forth simulations use curved geometry for the iris. Other parameters are
the same as in the previous case. In this case, mean IOP in the anterior chamber and
posterior chamber has no significant difference. (2002.9 Pa in the case with a natural
lens and 2002.9 Pa in the case with artificial lens).
This results show that there is only a very tiny change in the overall IOP inside of
the eye if the lens is exchanged (not significantly dependent on the form of the iris).
Consequently, according to computations, cataract surgery does not effect the IOP such
that it has dangerous consequences. It can also be observed, that the IOP is distributed
equally in the case of the artificial lens in the front part and the posterior part while
there is a slightly higher IOP in the case of the natural lens in the posterior chamber
than in the region between the cornea and the iris. In [LY+18] the changes of the IOP
after cataract surgery are measured. The authors observe the increase of IOP during
the first day after cataract surgery. Then, after thirty days after cataract surgery, the
IOP is lower than before the operation. Finally, after ninety days after the operation,
the IOP is higher than the IOP after thirty days, however lower than the preoperative
IOP. In [ZB15] it is estimated that the mean reduction of the IOP is about 1.46 mmHg
in a long term after cataract surgery.
Comparing results of the model with measurements, it may be seen that not all factors
during the surgery are described by the model accurately. For example, the current
model does not incorporate any information about inflammation, neural regeneration
after surgery. This model describes only the change of the geometry and its influence
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(a) Healthy eye with a natural ocular lens
(b) Healthy eye with an artificial lens after

cataract surgery

(c) Healthy eye with curved iris and a natural
lens

(d) Healthy eye with deformed iris and an ar-
tificial lens after cataract surgery

on the IOP. Thus, it needs to be extended to predict the IOP change after cataract
surgery more accurately.

5.5.3 Scleral lens

Scleral lenses are large-diameter gas permeable contact lenses that are supported by a
tear reservoir, rest on the conjunctival tissue overlying the sclera, and vault the cornea
and limbus. These lenses maintain a fluid reservoir between the back surface of the
contact lens and the front surface of the eye. Scleral lenses are used to treat ocular
surface disease, corneal irregularity and uncomplicated refractive error ([HS18] and
citations therein).
At the current moment, medical doctors are dealing with the question whether the
scleral lens has an impact on the IOP or not. The idea of the following simulation
arose from the cooperation with Young Hyun Kim from the University of California,
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Berkeley. The model in this thesis may predict the IOP change which is caused by
deformation of the sclera and limbus caused by wearing the scleral lens (see forces
described in [PJGM14]). To do this, only geometry of the anterior chamber is modified
while other parameters are fixed. Since the scleral lens is covering cornea, limbus and
sclera and the deformation properties of cornea, limbus and sclera are different, these
regions are considered separately. The width of the limbus is around 1 to 2 mm. ([C+17]
and citations therein) In the geometry, 1 mm is supposed to belong to corneal region
and 1 mm to scleral region. According to [P+16], limbal distance from the iris (depth of
the limbus) is supposed to be around 1 mm. Since the geometry of the anterior chamber
doesn’t include sclera, this part is not considered here. The deformation of the cornea

(a) Pressure before deformation (b) Pressure after deformation

is supposed to be 15 µm at the top. The deformation of the limbus is supposed to be
1 µm. Using these parameters, following values are obtained:

• Mean IOP of 2002.07 Pa before deformation

• Mean IOP of 2002.06 Pa after deformation

This means, that the scleral lens has no impact on the mean IOP in the simulation
(less than 0.01 Pa).

5.5.4 Glaucoma operations

To model the situation of trabeculectomy or insertion of stents, the following strategy
is applied:

• Build a cut of the anterior chamber geometry with the y −z plane at the position
of the iridocorneal angle and obtain a circle in the y − z plane.

• The circumference of this circle is given by U = 2πr, where r is the radius.
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• The width of the stent ws is usually between 0.5 and 2 mm.

• Build the ratio of the width of the stent and the circumference. This ratio repre-
sents an angle α according to the formula

α

360 = ws

2πr

which is used in simulations.

• Choose the position where the stent is inserted (or where the cut for trabeculec-
tomy takes place). Denote the insertion point with the coordinates (x0, y0, z0).
The angle ϕ is computed between the points at the outflow boundary (only com-
ponents y, z are considered for computation, x is coordinate representing the
depth of the anterior chamber) and this starting point.

• Subdivide the outflow domain in two parts with a help of the angle ϕ.

– ϕ ≤ α: Set p0(ϕ) = f(ϕ).

– ϕ ≥ α: Set p1(x) = p0 (mean pressure which is obtained from the Darcy
equation).

The function f is given by

f(ϕ) = α1 − β1 · exp(−
(ϕ − α

2 )8

α8 ),

where β1 = p0−pEVP
1−exp(−0.58) and α1 = pEVP + β1. pEVP = 9 mmHg (= 1200 Pa).

In the following simulations, following parameters are chosen:

• The inflow velocity is about uin = 4 · 10−7 m
s (inflow rate 2 µl

min).

• K = 10−16 m2 (generating IOP of 30mmHg) and K = 5 · 10−17 m2 (generating
IOP of 50 mmHg)

• ∇p · n = K
ν

uin · n.

• The force is set f = (−g, 0, 0) (the patient is lying supine).

• The outflow boundary condition is set for the surface of the geometry with 2.05 <

x < 2.55.

• The inflow boundary condition is set for the surface of the geometry with 0 <

x < 1.64 and the radius in the y − z plane r > 5.5.

• No slip condition u = 0 is set in the remaining parts.

• The radius of the pupil is 1.5 mm.
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• The width of the natural lens lense is supposed to be 8 mm and the height of the
half of the lens is 1.4 mm.

(a) Pressure (after trabeculectomy/stent in-
sertion)

(b) Velocity (after trabeculectomy/stent in-
sertion)

The simulation lead to the result: Insertion of a stent leads to the pressure drop of
approximately 1.5 to 2 percent (for patients with high IOP between 30 and 50 mmHg).
In order to be able to differentiate between stent insertion and trabeculectomy, predic-
tion of the pressure in the treated segment (in the case of trabeculectomy) and in the
stent (in the case of stent insertion) are considered.

Trabeculectomy

To predict pressure drop due to trabeculectomy in the operated segment, following
model is applied:

−∇ · T(u, p) = f1 in ΩTRAB

∇ · u = 0 in ΩTRAB

u = u0 on Γin

n · T(u, p) · n = p0 on ΓTW

n · T(u, p) · τ = α̃u · τ on ΓTW

n · T(u, p) · n = pEPI on ΓEPI

n · T(u, p) · τ = α̃u · τ on ΓEPI, (24)

where ΩTRAB ⊂ Rd with d = 2, 3 is the domain illustrating the treated tissue segment of
the trabecular meshwork and where u denotes the velocity, p the pressure, f1 the force,
u0 the inflow velocity, p0 the pressure (resistance) of the trabecular meshwork, pEPI the
pressure in the episcleral veins and ν the viscosity of the aqueous humor. The boundary
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segment ΓTW describes the outflow boundary (into the trabecular meshwork), Γin the
inflow boundary and ΓEPI the outflow boundary (into Schlemm canal and episcleral
veins). The boundary is given by ΓStokes = Γin ∪ ΓTW ∪ ΓEPI. The vector n denotes the
normal vector, τ represents the tangential vectors and I denotes the identity matrix.

• Assume that the treated tissue ΩTRAB in the operation is a cube (with a length
of a side between 2 to 3 mm).

• Since the sides of the treated tissue (the cube) boarder to the trabecular mesh-
work, the pressure at the sides is supposed to be the same as in the trabecular
meshwork (for a pathological case about 4000 Pa).

• The pressure at the outflow boundary, at the episcleral veins is 1200 Pa.

• At the boundary contacting the anterior chamber, the mean velocity of the Stokes
equation at the boundary is taken as the inflow velocity (about 1.5 mm

s ).

The mean pressure in the removed segment drops from 4000 Pa to 2400 Pa. This
pressure may be taken in previous considerations as pEVP = 2400 Pa in the f(ϕ)
function. Next, it is interesting to compare this result to the pressure inside of the
stent.

Stent insertion

To predict pressure drop due to stent insertion, following model is applied:

−∇ · T(u, p) = f1 in ΩST

∇ · u = 0 in ΩST

u = u0 on Γin

u = 0 on Γwall

n · T(u, p) · n = pEPI on ΓEPI

n · T(u, p) · τ = α̃u · τ on ΓEPI, (25)

where ΩST ⊂ Rd with d = 2, 3 is the domain illustrating stent and where u denotes
the velocity, p the pressure, f1 the force, u0 the inflow velocity, pEPI the pressure in
the episcleral veins and ν the viscosity of the aqueous humor. The boundary segment
Γin describes the inflow boundary, ΓEPI the outflow boundary (into Schlemm canal and
episcleral veins), and Γwall the no slip boundary of the stent. The boundary is given by
ΓStokes = Γin ∪ Γwall ∪ ΓEPI. The vector n denotes the normal vector, τ represents the
tangential vectors and the matrix I denotes the identity matrix.

• Assume that the stent ΩST is a cylinder (with a radius of 0.5 mm).

• Since the sides of stent are impermeable, set u = 0 at the hull.
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• The pressure at the outflow boundary, at the episcleral veins is 1200 Pa.

• At the boundary contacting the anterior chamber, the mean velocity of the Stokes
equation at the boundary is taken as the inflow velocity (about 1.5mm

s ).

The mean pressure in the stent is 1201 Pa. This pressure may be taken in previous
considerations as pEVP = 1201 Pa in the f(ϕ) function. Consequently, the pressure
drop inside of the stent is greater than the pressure drop in the removed tissue af-
ter trabeculectomy. However, the trabeculectomy cut is often greater than the stent.
Next, it is interesting to compare the pressure drop in the anterior chamber after stent
insertion and after trabeculectomy with these predictions.

Comparison: Trabeculectomy and Stent insertion

The computed estimations for the mean pressure inside a stent and inside an operated
segment as well as the choice of a cut about 3 mm is taken for trabeculectomy and a
diameter of a stent is supposed to be 1 mm. It is assumed that the pressure before stent
insertion or trabeculectomy is about 51.1 mmHg and that the trabecular meshwork is
occluded equally at each position. Following results are obtained:

(a) IOP after stent insertion (b) IOP after trabeculectomy

• Mean IOP after stent insertion 50.15 mmHg

• Mean IOP after trabeculectomy 48.52 mmHg

Thus, the size of the cut during the operation has more impact on the decrease of the
IOP than the pressure inside the operated segment or a stent. Although the pressure
inside a stent is 1200 Pa, and in the operated segment caused by trabeculectomy 2400
Pa, the model predicts a greater decrease in IOP after trabeculectomy. However, equal
occlusion of the trabecular meshwork is not common. It is more realistic, that some
segments of the trabecular meshwork are clogged more than the other. This case is
discussed in the next section.
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Effectiveness of operations

To model the effectiveness of operations and partial obstruction of the trabecular mesh-
work, the subdivision function is changed as follows:
Subdivide the outflow domain in two parts with a help of the angle ϕ (for a nasal region
ϕ = 90 degree)

• ϕ ≤ α: Set p0(ϕ) = f1(ϕ) (pressure in the occluded segment)

• ϕ ≥ α: Set p0(ϕ) = p0 (pressure in a healthy segment)

In case of treatment inside the occluded part, include in addition a function f2(ϕ).

• ϕ ≤ α1: Set p0(ϕ) = f1(ϕ) (pressure in the occluded segment)

• ϕ ≥ α1 and ϕ ≤ α2: Set p0(ϕ) = f2(ϕ) (pressure in the operated segment)

• ϕ ≥ α2 and ϕ ≤ α: Set p0(ϕ) = pocc (pressure in the occluded segment)

• ϕ ≥ α: Set p0(ϕ) = p0 (healthy segment)

The function f1 is given by

f1(ϕ) = α1 + β1 · exp(−
(ϕ − α

2 )8

α8 ),

where β1 = pocc−p0
1−exp(−0.58) , α1 = pocc −β1, pocc = 10000 Pa and p0 = 2000 Pa. The function

f2 is given by

f2(ϕ) = α2 − β2 · exp(−
(ϕ − α

2 )8

α8 ),

where β2 = pocc−pout
1−exp(−0.58) , α2 = pout + β1 and pout = 2400 Pa.

Suppose, the doctor finds out a segment, where there is the greatest occlusion in the eye
and treats this segment. Let nasal region of an eye be clogged (about one fourth of the
circumference of the trabecular meshwork). Before the operation, the mean IOP in the
anterior chamber is about 28.37 mmHg. However, after trabeculectomy, the pressure
drops to 23.17 mmHg. Consequently, the reduction of the mean IOP is about 18.32%.
Thus, setting the stent in the occluded area of the trabecular meshwork leads to best
results according to the model.
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(a) IOP before operation or stent insertion (b) IOP after operation or stent insertion

Conclusion
There are already some models about Stokes Darcy coupling and their applications in
ophthalmology. However, most of them are based on engineering [VR+12], [Kum03] or
the models are covering the two dimensional case only [FO+14],[CE13] . In this thesis,
a new model is developed based on mathematical theory. Moreover, computations in
three dimensions are performed and well posedness of the model is shown. In order to
predict the increase of the intra-ocular pressure in the anterior chamber of the human
eye, a model based on Stokes and Darcy equations was developed. The Stokes equation
describes the aqueous humor flow in the anterior chamber and the Darcy equation de-
scribes the pressure behavior in the trabecular meshwork. The characteristic physical
properties are given by the inflow rate of the aqueous humor at the ciliary body, the
pressure of the episcleral veins and it is assumed that the cornea, the lens, the iris
and the zonules are impermeable. To understand how the resistance in the trabecu-
lar meshwork influences IOP in the anterior chamber, following ansatz is proposed.
Using permeability constant, the size of the pores in the trabecular meshwork can be
modeled. The less the permeability constant, the greater the resistance. With the help
of the Darcy equation, the pressure in the trabecular meshwork is computed. Then,
the mean value of the pressure in the trabecular meshwork is obtained. This mean
value is incorporated in the Robin boundary condition of the Stokes equation. Having
solved the Stokes equation, the IOP and the flow of the aqueous humor in the anterior
chamber are obtained. Existence and uniqueness of solutions and discretization of the
model is studied. Moreover, test cases for Darcy and Stokes equation are presented.
This proves that the model works. Using this model, following results are obtained:

• If the natural lens gets thicker, there is an increase in IOP up to 3.5%.

• The IOP decreases up to 0.3% once the pupil gets wider.
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• IOP = EVP + const, where const is determined by the permeability in the tra-
becular meshwork.

• After cataract surgery, no significant change of the mean IOP is expected accord-
ing to computations in this thesis.

• Trabeculectomy surgery or stent insertion leads to best results if doctors know
where the occlusion takes place in the trabecular meshwork. Test case in this work
show, that the IOP may be reduced about 18% in glaucoma with preoperative
IOP about 28 mmHg.

• The smaller the permeability Per, the greater the pressure pTW inside of the
trabecular meshwork. The relation between the permeability and pressure in the
trabecular meshwork is approximately pTW = const · 1

Per .

• The effect of the position of the patient (standing/lying prone/lying supine/lying
on a side) leads to a change of the IOP. The model confirms the observations from
medicine. In a lying posture, the IOP increases. In a standing/sitting posture the
IOP decreases. The difference in IOP between standing and sitting posture is
about 3.6 mmHg.

There are following advantages of the model of this thesis:

• The following method is a simplification of the well known Stokes Darcy coupling
fulfilling mass conservation, balance of normal forces and the Beavers Joseph and
Saffman condition.

• It is a decoupled method. Thus, both equations can be solved separately.

• Efficient numerical solvers are available for each equation.

• There is a solid mathematical theory about Stokes and Darcy equations.

• Instead of an interface, there is a boundary condition for the outflow (representing
the obstruction of the trabecular meshwork) creating an alternative to do-nothing
boundary conditions.

However, there are disadvantages and limitations of the model in this thesis:

• Pressure might vary on the borderline between the trabecular meshwork and the
anterior chamber and be slightly smaller than the mean value (due to the tissue
structure).

• This model is a simplification of the Stokes Darcy equation and this model is only
usable for cases where the fluid domain is much larger than the porous domain.
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The model of this thesis may be extended to Navier Stokes and Darcy equations.
However, in this case existence and uniqueness of solutions in three dimensions is
restricted to small data only. Consequently, verification with data from experiments is
necessary in this extension. Moreover, the model may be extended to nonstationary
Stokes and Darcy equations or a nonstationary Navier Stokes and Darcy coupling.
In addition, drug distribution in the anterior chamber may be considered. Modeling
and simulation of drug distribution in the vitreous body is considered in [DFS17] and
the motion of vitreous humor in a deforming eyeball is studied in [TSPF18]. In the
end, all these results may be combined and the drug distribution in the whole human
eye may be modeled.
Furthermore, there is an open question following from the perspective of application:

• How to develop a software out of this model to help doctors to predict at which
position in the trabecular meshwork they could treat glaucoma with the greatest
IOP decrease?
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