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Abstract

Mechanical and chemical pattern formation in the development of biological tissue is a fun-
damental and fascinating process of self-complexation and self-organization. Yet, the under-
standing of the underlying mechanisms and their mathematical description still lacks in many
interesting cases such as embryogenesis. In this thesis, we combine recent experimental and
theoretical insights and numerically investigate the capacity of mechano-chemical processes to
spontaneously generate patterns in biological tissue.

Firstly, we develop and numerically analyze a prototypical system of partial differential equa-
tions (PDEs) leading to mechanochemical pattern formation in evolving tissues. Based on re-
cent experimental data, we propose a novel coupling by tensor invariants describing stretch,
stress or strain of tissue mechanics on the production of signaling molecules (morphogens). In
turn, morphogen leads to piecewise-defined active deformations of individual biological cells.
The presented approach is flexible and applied to two prominent examples of evolving tissue:
We show how these simple interaction rules (“feedback loops”) lead to spontaneous, robust
mechanochemical patterns in the applications to embryogenesis and to symmetry breaking in
the sweet water polyp Hydra. Our results reveal that the full 3D model geometry is essential
to obtain realistic results such as gastrulation events. Also, we highlight predictive numerical
experiments that assess the sensitivity of biological tissue with regard to mechanical stimuli,
namely to micropipette aspiration. These numerical experiments allow for a cross-validation
with experimental observations. Besides, we apply our modeling approach to growing tips in
colonial hydroids and investigate the role of rotational and shearing active deformations by a
comparison to experimental data.

Secondly, we develop an efficient, numerical method to reliably solve these strongly coupled,
prototypical systems of PDEs that model mechanochemical long-term problems. We employ
state-of-the-art finite element methods, parallel geometric multigrid solvers and present a simple,
local mesh refinement strategy to obtain an efficient solution approach. Parallel solvers are
essential to deal with the huge problem size in 3D and were modified to keep track of biological
cells. Further, we propose a stabilization of the structural equation to deal with the strongly
coupled system of equations and the challenges of the different timescales of growth (days)
and nonlinear elasticity (seconds). Also, this addresses the instabilities which result form the
description of homogeneous Neumann values on the entire boundary that is necessary since the
locations of patterns is a priori unknown.

Zusammenfassung

Mechanische und chemische Musterbildung ist ein fundamentaler und faszinierender Prozess
der Selbstorganisation und Selbststrukturierung bei der Entwicklung von biologischem Gewebe.
In vielen Organismen sind die dabei zugrundeliegenden Mechanismen allerdings noch immer
unverstanden, beispielsweise in der Embryonalentwicklung. In dieser Doktorarbeit kombinieren



wir neuste experimentelle und theoretische Erkenntnisse und untersuchen numerisch wie mecha-
nisch-chemische Prozesse spontan Muster in biologischem Gewebe erzeugen.

Zunichst entwickeln und analysieren wir Systeme partieller Differentialgleichungen (PDEs),
welche mechanisch-chemische Muster in biologischem Gewebe beschreiben und erzeugen. Ba-
sierend auf neuesten Experimenten prisentieren wir dabei eine neuartige Kopplung mechanis-
cher Tensorinvarianten, welche Verformungen, mechanische Spannungen oder Kompression
beschreiben, auf die Produktion von Signalmolekiilen (Morphogene). Im Gegenzug fiihren
Konzentrationen von Morphogen zu diskreten, aktiven Deformationen einzelner biologischer
Zellen. Unser Ansatz ist flexibel und wird exemplarisch auf sich entwickelnden Gewebes ange-
wendet: Wir zeigen am Beispiel der Embryonalentwicklung im Stadium der Blastula sowie der
Symmetriebrechung in dem Siilwasserpoliipen Hydra, wie diese einfachen Interaktionen spon-
tan zur Bildung robuster mechanisch-chemische Muster fiihren. Insbesondere zeigen unsere Re-
sultate, dass die gesamte 3D-Geometrie entscheidend fiir die Simulation biologische Vorginge
wie der Gastrulation sind. Interessant sind zudem unsere numerischen Experimente, in denen
wir den Einfluss mechanischer Stimuli, beispielsweise von Mikropipetten, auf die Entwicklung
des Gewebes untersuchen. Diese numerischen Experimente unterstreichen die entscheidende
Bedeutung der Mechanik in der Entwicklung biologischen Gewebes und erméglichen den direk-
ten Vergleich mit biologischen Experimenten. Schlieflich wenden wir unsere Modellsysteme
auf Wachstum in Hydroiden an und untersuchen die Rolle rotierender und scherender aktiver
Deformationen durch einen Vergleich mit experimentellen Ergebnissen.

Zweitens entwickeln wir effiziente, verldssliche numerische Methoden zur Losung dieser
stark gekoppelten mechanisch-chemischen Systeme von Differentialgleichungen. Wir verwen-
den moderne Finite-Elemente-Methoden mit einem parallelisierten, geometrischen Mehrgit-
terloser. Zudem prisentieren wir eine einfache Strategie zur lokalen Gittersteuerung. Dabei sind
parallelisierte Mehrgittermethoden zur effizienten Losung der grof3en, gekoppelten Systeme in
3D unerlésslich. SchlieBlich schlagen wir eine Stabilisierung der Strukturgleichung vor, welche
Instabilititen durch das stark gekoppelte Gleichungssystem und der unterschiedlichen Zeitskalen
von Wachstum (in Tagen) und nichtlinearem, elastischem Materialverhalten (in Sekunden) re-
duziert. Ebenso stabilisieren wir dabei unser Gleichungssystem gegenber Instabilitdten, welche
durch das ausschlieBliche vorschreiben homogener Neumannwerte auf dem gesamten Rand
entstehen. Diese miissen wir vorschrieben, da a priori der Ort der Musterbildung nicht bekannt
ist.
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1 Introduction

This thesis is devoted to the mathematical modeling and the numerical simulation of proto-
typical and strongly coupled systems of partial differential equations (PDEs) that describe me-
chanochemical pattern formation in biological tissue. Firstly, inspired by recent experimental
findings, we propose a novel modeling approach based on simple mechanochemical interaction
rules (mechanochemical coupling) which helps to unravel the complex processes involved in
spontaneous and self organized pattern formation. Secondly, the numerical treatment of the re-
sulting strongly coupled systems of PDEs including parallelization and stabilization techniques
is a key aspect of this work.

Mechanochemical pattern formation is a fascinating feature of biological tissues. It de-
scribes the capacity of self-complexation respectively self-organization during tissue develop-
ment, which leads to mechanical and chemical patterns. A prominent example is embryogenesis,
where we will focus on the gastrulation event, during which a hollow sphere (blastula) of tissue
cells reorganizes and folds inwards (gastrula). This process breaks the symmetry of the embryo
and is observed in all multicellular organisms from fruit flies to mammals. A second, important
application is mechanochemical pattern formation in the symmetry breaking of the fresh-water
polyp Hydra. In this process, the Hydra cells aggregate to a tissue sphere, which then sponta-
neously develops a head. Despite substantial progress in recent years, the underlying chemical
and mechanical mechanisms involved in spontaneous pattern formation are still elusive in many
interesting cases.

In this thesis, we present a novel mechanochemical modeling approach based on the cou-
pling of mechanical cues expressed by tensor invariants on the dynamics of signaling molecules
(morphogens). This approach might serve as a blueprint to understand mechanochemical pattern
formation in many organisms and to develop new experimental methods in coherence with our
simulations.

Objectives

The modeling and the numerical simulation of our prototypical system of PDEs and their appli-
cation to mechanochemical pattern formation pose a number of typical challenges:

e Finding suitable couplings (feedback loops) between tissue mechanics and morphogen
dynamics that robustly lead to spontaneous (de novo) pattern formation and the need of an
efficient, monolithic numerical approach to solve the resulting strongly coupled systems
of PDEs;

e Numerically resolving the full 3D tissue geometry requires efficient, parallel solvers;



1 Introduction

o Pattern formation takes place on considerably different timescales, the timescale of growth
(days) and the timescale of the elastic material response (seconds), which requires stable
solvers and a sufficient resolution in time;

o The continuous model equations are preferably blended with an explicit, discontinuous
description of active deformations for each biological cell, which results in a semi-discrete
model;

e Our systems of PDEs might not be well-posed due to nonlinear elasticity and homoge-
neous Neumann values on the entire boundary (the latter has to be assumed since it is
a priori not known where patterns will emerge). Both require the stabilization of the
structural equation;

o And finally, our approach should be flexible since different mechanical cues such as strain,
stress or stretch have been shown to influence morphogen dynamics. Also, we want to
consider different active cell shape changes and cover a large variety of possible appli-
cations, particularly, growth pulsations in colonial hydroids, embryogenesis or symmetry
breaking in Hydra.

Unfortunately, these challenges can be incompatible. For instance, the objectives of not resolv-
ing the elastic timescale and of stabilization by the time derivative oppose one another and have
to be resolved.

Structure of the thesis

The main target of this work is the derivation and the efficient, reliable numerical simulation
of novel prototypical systems of PDEs that model mechanochemical interactions in biological
tissue. Namely, we focus on the mechanochemical self-organization during tissue development
in embryogenesis and symmetry breaking in Hydra. Yet, the underlying molecular and cellular
mechanisms are still elusive in many cases and the crucial role of mechanics is mostly neglected
in hitherto existing models. Accordingly, the need for new modeling approaches was recently
stressed [[152]].

Based on recent experimental findings, we propose a novel modeling approach and demon-
strate how simple, mechanochemical interaction rules (“feedback loops™) lead to spontaneous
and robust pattern formation. These simple, positive feedback loops are based on a novel cou-
pling of mechanics on morphogen dynamics where we use tensor invariants describing strain,
stress or stretch to trigger the production of signaling molecules (morphogens). Vice versa,
morphogens lead to piecewise-defined, active cell-shape changes of individual biological cells.

In this thesis, we develop an comprehensive framework that is designed as a blueprint to
model tissue development. We apply our approach to embryogenesis and symmetry break-
ing in Hydra to gain valuable insights into developmental self-organization. Moreover, we de-
velop an efficient, monolithic numerical solution approach to robustly solve the strongly coupled
mechanochemical long-term problems. The parallelization of our solvers is essential to tackle
the large problem size and a stabilization based on the time derivative in the structural equation
is introduced to deal with the strong coupling, the different timescales and the sole prescription
of Neumann boundary values.
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Lastly, we highlight our predictive numerical experiments where we focus on the mechani-
cal sensitivity of biological tissue with respect to micropipette aspiration. Here, we focus on
tissue strain and subsequent head formation in Hydra aggregates. Notably, these mechanical
manipulations allow for a cross-validation with experiments such as a qualitative comparison to
experimental micropipette aspiration of Hydra aggregates by Heike Sander [[133]].

Chapter [2]is dedicated to the derivation of our prototypical system of PDEs modeling tissue
development. In particular, we follow the idea of Rodriguez et al. [[128]] to multiplicatively de-
compose the deformation gradient into an active part and an elastic response, the latter ensuring
continuity of the deformation. The active part prescribes active cell shape changes such as api-
cal/basal constriction (wedging) of biological cells. In the decomposition, the key assumption
is that all stresses are produced by the elastic material response. Incorporating growth, this is
also reflected in the description of the material laws. The centerpiece of this chapter is the de-
sign of mechanochemical feedback loops where we blend morphogen-induced discrete, active
deformations with a novel description of mechanical feedback on morphogen dynamics via ten-
sor invariants describing strain, stress or stretch. Also, we will provide an overview of related
approaches regarding tissue development and active deformations, where we elaborate on the
key differences in the conception and the objectives in comparison to the goals of this thesis.

In Chapter 3] we present the temporal and spatial discretizations of our strongly coupled sys-
tem of PDEs. In time, we employ 6-time-stepping methods for the reaction-diffusion equations
modeling morphogen dynamics. In space, we examine discretizations by linear and bilinear fi-
nite elements (Q;- and Q»-FE), where we show quadratic and cubic convergence, respectively.
In three dimensions, it is essential to employ Q»-FE to profit from the cubic convergence of
this approach for the available spacial discretizations. Further, in case of stress-based mecha-
nical feedback, we propose a local, adaptive mesh refinement strategy to accurately resolve the
discontinuous invariants of the Piola-Kirchhoff stress tensor, which is based on a discontinuous
material response when piecewise-defined active deformations are considered.

Finally, we develop and analyze a stabilization of the structural equation based on the time
derivative. This stabilization tackles the challenge of keeping the system of PDEs well-posed
while solving mechanochemical long-term problems. In particular, we treat the instabilities
introduced by prescribing homogeneous Neumann values only and by just resolving the elastic
time scale to the smallest possible extent. A numerical analysis of the stabilization error reveals
that the error is sufficiently small compared to the discretization errors.

In Chapter 4], we present efficient solution techniques and their parallelization to solve our
strongly coupled system of PDEs. We consider a monolithic solution approach based on the
state-of-the-art finite element (FE) library GascoigNe3D [9]. The system matrix to solve in
each time step is strongly coupled and of considerable size, particularly in 3D. The system is
linearized by Newton’s method and solved by GMRES [132] iterations that are preconditioned
by a geometric multigrid method [57]]. To reduce the computational effort, a parallelized ILU
factorization based on domain decomposition was used as a smoother in the multigrid method
[[78, [127]]. In this chapter, we will demonstrate that this parallelization leads to a considerable

11



1 Introduction

speedup of our computations. For instance, on an Intel(R) Xeon(R) CPU E5-2690 0 @ 2.90
GHz with 16 physical cores the computational time per time-step reduces from 49 seconds in
a sequential solution approach to only 4 seconds on 15 CPU cores - an impressive speedup of
factor twelve. Finally, we quantify the efficiency of the parallelization by plotting the speedup
per number of CPU cores.

In Chapter 5] we apply our modeling framework to simulate growth pulsations in hydroid tips
as well as mechanochemical long-term problems during embryogenesis and symmetry breaking
in Hydra. In particular, we demonstrate that our system of prototypical equations is flexible and
spontaneously leads to robust mechanochemical pattern formation.

In the first application, we focus on growth processes in the development of tips in colonial
hydroids, where we reduce the model to the structural equation only. We investigate how active
deformation tensors describing rotational and shearing movements of ectodermal cells lead to
very different deformations in the growing hydroid tips. This application is particularly appeal-
ing since we compare our numerical results to experimental data on growth pulsations in the
morphogenesis of colonial hydroids, which was kindly provided by Igor Kosevich [81].

Next, we apply our system to embryogenesis in the blastula stage and demonstrate how sim-
ple interaction rules based on strain-, stress- or stretch-mediated mechanical feedback lead to
robust mechanochemical patterns. Here, the full 3D geometry of the tissue seems crucial to
obtain a realistic mechanochemical behavior such as gastrulation events. In this application, we
demonstrate the robustness of our approach with regard to the initial conditions, the model ge-
ometry, the system size as well as the parameters, most importantly the diffusion rates. Further,
we develop an inner volume constrained that accounts for the fluid inside the biological tissue,
stops invagination processes and hence ensures stationary solutions during gastrulation. Finally,
an enhanced model is presented, which is more accurate on the cellular level due to integrated
mechanical feedback and uniform morphogen production in each biological cell. This enhanced
approach further underlines the accuracy of our models on the tissue level.

Finally, we simulate symmetry breaking in the development of the fresh-water polyp Hydra.
Clearly, the highlight in this application are our predictive numerical experiments, where we ex-
plore the sensitivity of biological tissue with regard to mechanical stimuli, namely micropipette
aspiration. Indeed, these numerical results might inspire cross-validations between numerical
experiments and the field of developmental biology, particularly since recent experimental ef-
forts to visualize and study tissue mechanics are promising [55} 101} 102, [159]. In this thesis,
we qualitatively compare our numerical results to micropipette experiments as presented in Ref.
[133].

In summary, the developed modeling approach is robust, sustainable and flexible, i.e. it is
simple to prescribe different active deformations, to add further equations or to employ various
mechanical tensor invariants (describing e.g. stress, stretch or strain) to influence morphogen
dynamics. Thus, our approach might serve as a blueprint to simulate pattern formation in many
applications and might help to unravel one of the biggest mysteries in biology: Self-organized
pattern formation during tissue development.

12



State of developmental biology

Mechanochemical pattern formation is the fascinating process of self-organization and self-
complexation in biological tissue. Yet, the understanding of the underlying mechanical and
molecular mechanisms is still sparse and the need for new modeling approaches combining
morphogen dynamics and tissue mechanics has been recently stressed [[152]].

In the last decades, pure chemical theories and modeling approaches have been dominating the
scientific discussion, mostly due to the lack of mechanical tissue modification tools, molecule
markers for mechanical cues as well as the huge computational effort to consider mechanics
on the full 3D tissue geometry. Although many recent studies stress the active involvement of
mechanics in tissue morphogenesis [13}24,|35,|105} |117]], mechanochemical modeling is still in
its infancy (20, 103] .

First steps into implementing growth and remodeling in biological tissue were taken by Rod-
riguez et al. [[128]], who introduced the idea of multiplicatively decomposing the deformation
gradient into an active, prescribed part and an elastic response to examine ventricular hypertro-
phy (pathological growth of the heart muscle). This idea was successfully adapted by Lubarda
and Hoger [92] and Himpel et al. [63]], who present a constitutive theory of stress-modulated
growth. All these works have yet in common that they consider growth as a mere consequence
of mechanical or chemical pre-patterns, i.e. active deformations depending on time or local mor-
phogen gradients are prescribed in parts of the domain only to predetermine regions of pattern
formation. One exception is the recent work by Mercker et al. [[104}|105]] who describe the tissue
as an infinitely thin deforming surface and propose simple feedback loops between morphogen
dynamics and tissue curvature. In this thesis, we use the deformation gradient decomposition to
prescribe piecewise-defined apical/basal constriction (wedging) or apico-basal shortening (thin-
ning) of individual, biological cells, similar to Conte et al. [29] and Muiioz [106]. Further,
we define shearing and rotating active deformations in our application to growth processes in
tips of colonial hydroids. Also, we will rather focus on a novel mechanical feedback via ten-
sor invariants describing strain, stress or compression, which, in combination with the full 3D
tissue geometry, are crucial to obtain spontaneous pattern formation leading to gastrulation or
symmetry breaking.

Classical, purely chemical approaches dominated the scientific discussions during the last
decades. Turing patterns are particularly fascinating since they can lead to self-organized pat-
tern formation for merely two or three chemical species. Also, they easily scale with the system
size and simulating Turing patterns demands only little computational effort. Hence, it is no
wonder that Turing patterns are a favorite explanation of many morphogenic phenomena. Yet,
Turing patterns usually suffer from severe drawbacks. In particular, they are not robust, i.e. they
are only stable over narrow parameter ranges, which raises the question how these mechanisms
could ever be discovered by evolution [136]]. Further, inhibitor molecules involved often de-
mand diffusion rates beyond the limit of measured rates [68]] and the underlying complexity in
morphgenic processes complicates the identification of activator/inhibitor molecule pairs that
are still elusive in many interesting cases [|64, [80, [136]. A full historic overview of alternative
modeling approaches is given in Chapter [5}

13



1 Introduction

In Brinkmann et al. [20], we have published our coupled system of PDES applied to em-
bryogenesis. In particular, we demonstrated that simple, positive feedback loops based on
the novel coupling of mechanical stretch on the morphogen production lead to spontaneous
mechanochemical pattern formation such as gastrulation if the full 3D tissue geometry is con-
sidered. First results on 2D cross-sections were published in Mercker et al [103]]. In this thesis,
our research is extended by a comprehensive convergence and a stabilization analysis, an in-
vestigation of speedup and efficiency of the parallel solvers as well as an adaptive, local mesh
refinement strategy. Further, the applications to symmetry breaking in Hydra based on active
apico-basal shortening of biological cells and the application to growth pulsations in hydroid
tips are exclusive to this thesis. Regarding embryogenesis, we further present a stress-mediated
feedback loop and an enhanced modeling approach based on integrated mechanical feedback
which is more accurate on the cellular level. Also, we have implemented an inner volume
constraint that accounts for the fluid contained inside the tissue sphere and leads to stationary
invaginations during gastrulation events. Finally, a novel highlight of this thesis are our predic-
tive, numerical experiments on the impact of micropipette aspiration on biological tissue that we
compare to experiments by Heike Sander [[133]].

Mathematical state of science

In literature, results on a theoretical analysis of our prototypical system of PDEs are sparse.
Here, the structural equation is based on the simple Saint-Venant-Kirchhoff model for com-
pressible, hyperelastic materials. Reducing this model to linear elasticity, Riesz representation
theorem guarantees the existence and the uniqueness of a minimizer of a coercive and quadratic
functional over a suitable Hilbert space. Yet, the “question of finding reasonable conditions un-
der which the minimizers are (even weak) solutions of the associated boundary value problems
stands as a major unresolved issue.”(Ciarlet [27, p. 346]). In this thesis, matters are compli-
cated as we introduce active deformations into the structural equations via the decomposition
of the active deformation gradient. Further, in finite strain theory and on multiply-connected
domains such as our spherical tissue shell, theoretical results on the properties of active defor-
mation tensors are only known in specific cases [138]. From a mathematical point of view, it
is amazing that a dynamic process of mechanochemical pattern formation modeled by feedback
loops of strongly coupled equations robustly leads to stationary results. Then again, it is ob-
jectively difficult to perform a theoretical convergence and stability analysis and to hope for a
priori convergence estimates.

In Chapter 3] we will provide a comprehensive, numerical convergence and stability analysis
of our prototypical system, where quadratic and cubic convergence as well as a small stabi-
lization error are observed for Q; and Q; finite elements, respectively. In the course of this
dissertation, we have implemented new features in finite element (FE) library GascoigNe3D [9].
These features range from the implementation of the model and growth itself over template
classes to dynamically switch between 2D and 3D scenarios, material IDs to keep track of bi-
ological cells through discretization and parallelization, discretization over spheres, cylinders
and spheroids and, finally, over an adaptive mesh refinement strategy to the integration of the
mechanical feedback over biological cells.

14



2 Continuum mechanics, active
deformations and mechanochemical
interaction

This chapter is split into three major parts: Firstly, we introduce our prototypical, structural equa-
tion to model continuum mechanics of hyperelastic solids such as biological tissue. Secondly, in
Section[2.2] we develop how active deformations (“growth”) are incorporated in our equations.
Thereby, we follow the work of Rodriguez et al. [[128] and use a multiplicative decomposition
of the deformation gradient into a prescribed, active part that leads to active deformations of
individual biological cells and an elastic response which ensures the continuity of the overall
deformation. Lastly, in Section we present the fully coupled, prototypical system of PDEs.
In particular, we propose a novel coupling of tensor invariants describing stress, strain or stretch
on the production of signaling molecules (morphogens) that are described by reaction-diffusion
equations. In turn, morphogen concentrations lead to active deformations of the biological cells
via the decomposed deformation gradient. These couplings result in simple, mechanochemical
interaction rules (“positive feedback loops™), which lead to robust, mechanochemical pattern
formation in our simulations.

We already published our prototypical system of PDEs including the novel mechanochemi-
cal coupling and a presentation of the resulting positive feedback loops in Brinkmann et al.
[20] and, restricted to two dimensions, in Mercker et al [[103]]. In Section we replace the
short derivations of the structural equation that were given in these publications by a varia-
tional approach that requires less regularity of our solution components and is more physical
in our opinion. In Section we now give a complete derivation of incorporating growth in
our variational, structural equation. In this thesis, we enhance our framework for investigating
mechanochemical pattern formation from Brinkmann ef al. [20] by a more general description
of our equations. In particular, we consider a wider range of applications such as symmetry
breaking in Hydra aggregates, which includes new active deformations as well as stress- and
strain-based mechanochemical feedback loops. The differences to our previous publications are
highlighted in Section[2.3]

Throughout this chapter, we use the notation of the textbook on fluid structure interactions by
Thomas Richter [[126] and the textbook on nonlinear solid mechanics by Holzapfel [66] to the
greatest possible extent.

15



2 Continuum mechanics, active deformations and mechanochemical interaction

2.1 Structural mechanics

In this section, we introduce the basics of displacement, strain and stress as well as the defor-
mation gradient. In particular, we focus on the conservation principles of mass and momentum
and present the nonlinear Saint-Venant-Kirchhoff model to model biological tissue. This section
is structured as follows:

Firstly, we study kinematics, where we introduce displacement, deformation and strain. Strain
measures deformation by comparing relative length changes during tissue motion. Secondly, we
focus on the concept of stress to express internal forces within the material body. We intro-
duce the important Cauchy stress tensor as well as the the first and second Piola-Kirchhoff stress
tensors, which are common measures for stress in the Eulerian and the Lagrangian coordinate
systems. Thirdly, we briefly discuss the conservation principles of mass and momentum, which
are fundamental physical principles and assumed to be exact for all continuum bodies at all
times. Yet, these conservation principles by themselves are not sufficient to predict the mechani-
cal material response, which is finally given by constitutive laws: Hooke’s law proposes a linear
relation between stress and strain and is only a first-order, linear approximation to the response
of elastic materials. Together, we derive the nonlinear Saint-Venant-Kirchhoff model for com-
pressible, hyperelastic materials to describe biological tissue. Finally, this section is dedicated
to introducing the concept of objectivity where we focus on the invariants of strain, stress and
stretch tensor that are used in the description of the mechanical tissue response on morphogen
dynamics.

Since there is a vast amount of literature on solid mechanics, we keep this section short and
refer to textbooks such as Ciarlet [27]], Holzapfel [66], Richter [[126]] or Truesdell [[148]] for more
details.

2.1.1 Kinematics

In finite strain theory, structural dynamics are expressed in the Lagrangian or particle-centered
coordinate system X. The Lagrangian viewpoint follows material particles and their paths over
time. These particles are connected in a solid, elastic material body €(#), which will return to
the (initial) reference state Q if all external forces are removed. This framework is opposed to
the spatial-centered Eulerian framework where a fixed point x in space is observed. Hence, the
Eulerian approach is the natural one for modeling fluids where particles moving through a fixed
point are considered.

Let X be a particle in the undeformed, initial configuration Q C R? with d = 2,3. Also, let

x = x(X, ) be its current position in the deformed configuration Q(¢) C R? at time 7. Then, the

motion of this particle in a continuum body at time ¢ € [ is called deformation and is defined by
x(): Q — Q(r) with

X = x(0X) = x(X, 1). @.1)

The deformation is assumed to be continuously differentiable in space and time and to be in-
vertible for the purpose of the following definitions. Next, we define the displacement in the
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2.1 Structural mechanics

Lagrangian description as the vector field U: Q — R joining the current position x(X, 7) with
the reference (and in our case always initial) position X of a particle by

UX,n =x(X,1) - X.
In the current configuration, the displacement u: Q(r) — R is given by
ux, ) =x— X(x,1).
This directly yields the relation
ux,?) = Uy '(x,0),1) = UX, 1), 2.2)

which allows us to state all results in terms of u in the following. The same holds for the
Lagrangian velocity field V(X, ¢) and its Eulerian counterpart v(X, 7). If the deformation (X, 1)
and the vector-valued displacement field u(x, 7) are differentiable in time, it holds

VX, 1) =0 x(X,t) = du(x,t) = v(X, 1). 2.3)

Deformation gradient

The Jacobian matrix F of the deformation y is called the deformation gradient. For a differen-
tiable displacement field u: Q — R?, the deformation gradient and its determinant are defined
as

FX,1) = Vy(X, 1 = Vu(x,?) + 1,
J(X, 1) = det(F(X, 1)),

with I being the identity matrix. The deformation gradient is an important measure of defor-
mation. Its decomposition into a prescribed active part and an elastic response is key to our
implementation of growth in Section[2.2]

Coordinate transformations

When dealing with material bodies, it is usually more convenient to express structural dynam-
ics in the Lagrangian configuration. In contrast, the natural approach to state the conserva-
tion principles of mass and momentum is the Eulerian one. Thus, we need conversion rules
which transform functions from the Eulerian to the Lagrangian setting. To begin with, let us
consider a vector-valued, continuously differentiable function, for instance the velocity field
v(x,1): Q@) — RY. Using integration by substitution, integrals can be transformed from the
Lagrangian to the Eulerian configuration by

f JVX,HdX = f | det(Vx(X))| v(x (X)) dX = f v(X, 1) dx. (2.4)
Q Q Q@)

Further, the transformation of spatial derivatives is attained by employing the chain rule, which

yields
X, 1)

OxVX.1) = ) 0 V(X)) 7o
j 1
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2 Continuum mechanics, active deformations and mechanochemical interaction

Thus, the gradient transforms as
VxV(X,1) = FTV,v(xy(X, ). (2.5)
Next, the transformation of the divergence is given by
IV -v(x,1) = Vx - (JFV(X, ). (2.6)

For the (simple) proof of this transformation we refer to literature, e.g. see Richter [126]]. Also,
we require the transformation of the partial time derivative of a continuously differentiable,
scalar function c¢(x, 7). Using the transformation of gradients (2.5)), it is easy to show that the
partial time derivative of its Lagrangian counterpart C(X, ¢) is given by

9,C(X, 1) = 8;c(x(X), 1) + (VX, 1) - Vi)e(x(X), 1)

2.7)
= 0ic(X, 1) + (V(X, 1) - Vy)c(x, 1),

where we used the relation for the velocity and the definition of the deformation to simplify
the notation.

In general, we neglect the index of the gradient operator if the direction of the derivative
is obvious from the context. Further, we often omit the deformation y for the sake of a sim-
pler presentation. For instance, this simplifies the transformation of the gradient, which reads
VV(X, 1) = FTVv(x, ) in short. For details on these derivations, we refer to literature, e.g., to
the textbook on fluid structure interactions by Thomas Richter [[126].

Strain tensors

Strain is a measure of deformation which characterizes the change of relative distances between
particles under deformation. Various concepts of strain have been proposed in literature. Here,
we briefly present the right Cauchy-Green tensor and the Green-Lagrange strain tensor, which
are important in modeling the elastic tissue response.

We follow the presentation in Truesdell [148]] (Chapter II) and use the fact that the deforma-
tion y and thus the deformation gradient F are invertible. Then, Cauchy’s polar decomposition
theorem yields a unique decompositions of F, namely

F = RU = VR, (2.8)

into an orthogonal rotation tensor R and positive, symmetric left and right stretch tensors U and
V. For the rotation R it holds RR” = 1 which implies det(U) = det(V) = |det(F)| = J. Since U
and V are symmetric, they have a corresponding basis of orthogonal eigenvectors (also referred
to as “principal axes of strain”) in the reference system X and the current one X, respectively.
The rotation R carries principle axes of strain in X to principle axes of strain in X. Also, we
conclude from the obvious relation V = RURT that U and V have the same eigenvalues (or
“principle stretches”™).

So let e be a vector that points along the k* eigenvector in the reference configuration. Then,
the corresponding eigenvalue Ay is the ratio (or the stretch) of the length of the image Fe; to the
length of the original ey:

_ Fek
s

Ak
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2.1 Structural mechanics

Since it is inconvenient to calculate U, V and R from F and rotations do not induce strain, the
right Cauchy-Green tensor is merely defined (rotation-independently) by

C:=F'F =17, (2.9)

with the determinant det(C) = det(F)> = J>. Its eigenvalues are the squares /li of the principle
stretches, i.e., it measures the square of changes (stretches) due to the deformation.

Another important measure of strain is the Green-Lagrange strain tensor, which often simpli-
fies the notation and is defined as

e
E:=(C-T)=(F'F-D. (2.10)

For further details on strain tensors we refer once again to literature, e.g. see Holzapfel [|66]
(Chapter 2), Richter [[126] (Chapter 2) or Truesdell [[148] (Chapter II).

2.1.2 Stress

In continuum mechanics, stress characterizes an internal infinitesimal force across an imaginary
surface per unit area of that surface within a material body. It is a kinematic principle and does
not depend on the material model under consideration. Stress is a consequence of interactions
between particles due to deformations inside a material body. Hence, stress can be the result of
external forces, the elastic material response due to active deformations, or it can be built into
the system (the latter is not considered in this work). We want to introduce stress tensors related
to the current and to the reference configuration.

So let the material body V(#) C €)(f) be a part of the current configuration €(¢) at time ¢. Then,
the applied force acting on V() is assumed to be the sum of the volume- and surface-forces
K(V(1)) and K(0V(¢)) given by

KWV(@®) = f p(x, Hf(x, 1) dx,
Ve 2.11)
K@V(1) = f

t(x,t,n)ds=f T(X,,N)dS,
av(r) v

with the prescribed external body-force density f(x, #) acting within the volume of the biological
tissue. Moreover, t(X, t, n) is the surface stress density (or Cauchy traction field) in direction n of
the current configuration Q(¢) and T(X, ¢, N) is the surface stress density (or first Piola-Kirchhoff
traction field) in direction N of the reference configuration Q.

We employ Cauchy’s stress theorem which states that there exist unique second order tensor
fields o (x, 1) and P(X, ) such that

tx,r,n) = o(x,Hn, T(X,#,N)=PX,7)N. (2.12)

The symmetric, spatial tensor field o (x, t) is called the Cauchy stress tensor and describes the
stress in the current configuration. In particular, it is defined in a way that on is the force in
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2 Continuum mechanics, active deformations and mechanochemical interaction

the current configuration per unit area with normal direction n, the latter also with regard to
the current configuration. Next, P(X,¢) is called the first Piola-Kirchhoff stress tensor and is
defined such that PN is the force in the current framework per unit area with normal direction
N in the reference configuration. Finally, we introduce X(X) = F~!(x,)P(X, 7) which is the
transformation of P to the reference configuration. It is called second Piola-Kirchhoff stress
tensor and expresses the stress solely in the reference configuration. These stress tensors are
related by the transformations

P=JoF 7T, Fr=P, (2.13)

which emerges once we transform our conservation equations to the reference configuration, see
Eq. (2.18) and Eq. (2.19). For further details on the concept of stress and the different stress
tensors we refer to literature, namely to Holzapfel [66] (Chapter 3), Richter [[126]] (Chapter 2) or
Truesdell [[148]] (Chapter I1I).

2.1.3 Conservation of mass and momentum

The shape of structural equations is determined by the two principles of conservation of mass
and momentum. Conservation of mass states that mass is preserved that is mass is neither de-
stroyed nor created. Conservation of mass reads

d, f p(x, 1) dx = d, f Jp’(X)dX =0, (2.14)
Q1) Q

for current and initial mass distributions p(x, ¢) and pO(X) = p(x, 0). Conservation of momentum
says that the change in momentum is equivalent to the sum of body and surface forces. In the
Eulerian framework, Conservation of momentum (or Cauchy’s first equation of motion) reads

d,f px, Hv(x,1)dx = K(V(1)) + K(OV(1))
Q)

= f px, Hf(x, 1) dx + f o(x, Hndx,
Q) av(n)

with external volume force f(x, r) and surface forces o (x, #)n, which were expressed by the stress
tensor o using Cauchy’s stress theorem, see Eq. (2.11)) and Eq. (2.12). We have assumed that
all these functions are in L*(Q()) which denotes the Lebesgue space of measurable square inte-
grable functions on (7). Additionally, we have assumes that p(x, r) and v(x, r) are additionally
differentiable in time.

(2.15)

In continuum mechanics it is usually more convenient to express the structural equations
in the reference configuration Q ¢ R?. We use a variational formulation of the conservation
equations, which leads to a simpler and more elegant transformation to the Lagrangian setting.
From a physical point of view, a variational approach is more natural, since the classical elasticity
theory stems from energy minimization, which leads to variational equations. Besides, real
world problems usually posses solutions of limited regularity. In a variational approach, this is
reflected by the concept of weak solutions that require less regularity of the model geometry or
the data. Details on the variational formulation are provided in Chapter [3]
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2.1 Structural mechanics

To state the variational formulation, we have to specify suitable function spaces: We choose
the velocity v and a test function ¢ as

v.p € V4, = H(QO)Y, (2.16)

where H'(Q(1)) is the Sobolev space of functions with first, generalized derivatives in L2(Q(r)).
We consider an approach that is weak (variational) in space and strong in time, i.e. our equation
holds pointwise in time. Hence, we further assume that the velocity is differentiable in time and
that

ave H'(Qn)? Vrel0,T],

where H™'(Q(¢)) denotes the dual space of H 1(Q(t)). That way, a simple discretization by finite
differences in time, e.g. by the implicit Euler method, is possible. In the following, we skip the
Q(t)-indices if the examined computational domain is obvious from the context. Details on the
function spaces introduced above are given in Chapter [3 or in literature, e.g. see Alt [2], Braess
[[14]], Brenner & Scott [18]] or Wloka [154].

Firstly, we apply Reynolds transport theorem to the first integral in the conservation of mo-
mentum equation to derive under the integral sign, namely, for a differentiable, scalar function f
it holds d; fg(t) fdx = fg(t) 0:f +V - (fv)dx. The proof of this theorem is based on transforming
both integrals to the reference configuration (cf. Eq. (2.4)), where the integration is independent
of time, and elementary reformulations, e.g. by the product rule, are used. We refer to Holzapfel
[66] for a complete proof. Secondly, we use Gauss’s theorem to transform the boundary integral
which describes the surface forces.

Then, we obtain the equation for conservation of momentum in non-conservative, variational
formulation, which reads

f (X, NIv(X, D + p(X, H(V(X, 1) - VIV(X, t)p dx + f o(x, )V dx
Q(t) Q(t) (2. 17)

= f p(x, DE(X, D) dx,
Q1)

for all test functions @(x) € V. We point out that this is a variational approach in space that is
strong in time since we did not integrate over time using time-dependent test functions. When
discretizing in space, we therefore obtain an ODE in time which is discretized by simple finite
difference methods, such as the implicit Euler scheme or multi-step methods. We prefer this
ansatz for the sake of a simple presentation over a fully variational approach, which implies an
additional integration in time with velocity and test functions given in Bochner spaces. A fully
variational approach based on a discontinuous Galerkin method (dG(0)) is then equivalent to the
approach presented above. Details on the variational formulation are presented in Chapter 3]

Next, we transform Eq. (2.17) from the Eulerian to the Lagrangian configuration, which
is essential to include active deformations into our equation (cf. Subsection [2.2.3). We thus
carry along the arguments of all functions for a better perception of these two configurations.
Firstly, we apply the transformation of the time derivative to the first integral, secondly,
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2 Continuum mechanics, active deformations and mechanochemical interaction

the transformation of the gradient (2.5)) is applied to the test function in the second integral and
thirdly, all integrals are transformed using the relation (2.4). Then, conservation of momentum
in the reference configuration reads in variational form

f J(X, Np(y(X), N9, V(X, ® dX + f JX, No(yX), DF T (x(X), hVe dX
Q Q (2.18)

- f JX, DpOe(X), DEG(X), H®, dX,
Q

for all test functions @(X) = @(y(X)) € Vg. Finally, we insert the balance equation for mass
conservation , drop the arguments and use the relation £ = JF~!oF~T with the symmetric,
second Piola-Kirchhoff stress tensor to express the stress in the reference configuration. Then,
conservation of momentum (or Cauchy’s first equation of motion) reads in the reference domain

f pl0ud dX + f Frve dX = f PfddX Ve V. (2.19)
Q Q Q

Sufficient regularity provided, we can integrate the second integral by parts and employ the
fundamental lemma of calculus of variations (cf. Gelfand et al.[44, p. 9] (Lemma 1)): Together,
Eq. (2.19) is then almost everywhere equivalent to the conservation of momentum in strong
formulation given by

p20u -V - (FX) = p°f in Q,

(2.20)
FXN =0 on 0Q),

assuming homogeneous Neumann values on the entire boundary dQ2 for the moment and where
the divergence is meant in a row-wise sense. Homogeneous Neumann values are indeed a rea-
sonable choice and Dirichlet values cannot be prescribed, since it is a priori not known where
patterns will emerge.

We emphasize that this equation was derived from the physical principles of conservation
of mass and momentum only. Especially, they have to be valid for all materials at all times and
involve no modeling. On the other hand, they do not distinguish between different materials. We
still need a constitutive law which describes the observed physical behavior of biological tissue.
Then, we finally obtain a model which is capable of approximating the real tissue response to
active deformations or external forces.

2.1.4 Objectivity and tensor invariants

It is a fundamental physical principle that the material response should not depend on the choice
of an observer. This property is usually called material frame-indifference or objectivity of a
material, see Truesdell and Noll [[149] (Sections 19, 19A). If the constitutive equation was not
objective, the material response would change under rigid body motions such as rotations and
translations, which is physically impossible.

In the following, we briefly introduce the concept of objectivity and give a short list of objec-
tive tensors, similar to the presentation in Holzapfel [66]]. Based on these objective tensors, we
formulate our objective constitutive material law that we present in the next subsection.
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2.1 Structural mechanics

Subsequently, we define the principal invariants of a tensor. These scalar invariants of an objec-
tive tensor are objective and be essential in describing the (objective) material response on the
morphogen dynamics in our coupled system of prototypical equations.

Solet O and O* be two different observers at x and x* with assigned basis vectors (or reference
frames) {e;} and {e;} such that x = x;e; and x™ = x7e;". If the relative rotation between the two
observers is given by Q(f) with Q”Q = I and det(Q) = 1, the distance between two material
points is preserved and we find e;r = Q(?)e;. With these preparations we obtain that a vector
field u and a tensor A are objective if they transform under changes of observer according to the
relations

A*(x, 1) = QAKX HQM)T,
u"(x*, ") = QHu(x, 7).

For instance, we consider the deformation gradient at the points x and x* and recall that the
reference configuration is unaffected by a rigid body motion, i.e.

2.21)

ox(X, 1) . ox*(X,1)
FX, )= ———, FXt)=—5-—-.
( b t) aX b ( 2 t) aX
Then, differentiation yields
ox* ox
FFX,H)= —=Q— =QF
0.99)) X Q X QF,

which shows that the deformation gradient transforms like a vector (cf. Eq. [2.21). Notably,
the deformation gradient is still objective, since it is a two-point tensor with one argument in
the reference configuration, which is intrinsically objective. Clearly, the second Piola-Kirchhoff
stress tensor X is also objective, since it is parameterized by material coordinates only. Simple
argumentation shows that the Cauchy stress tensor o and the Green-Lagrange strain tensor E
are objective as well. Since our equations are given in the reference configuration, stress-based
mechanical feedback is expressed in terms of X. For more details on the objectivity of these ten-
sors, we refer to Holzapfel [66]. The objectivity requirement (Eq. (2.21)) restricts the possible
shape of the material response: In the next subsection, our constitutive equation (2.23) is based
on objective tensors only.

Tensor invariants Throughout this thesis, the mechanochemical coupling of our prototypical
equations is essential to observe pattern formation. In particular, we use tensor invariants to
express the material response (to active deformations) that triggers morphogen production. Here,
we give a short overview of tensor invariants that we use as objective scalar measures of stress,
strain and stretch.

A tensor A in d dimensions possesses d so-called principal scalar invariants [;, i = 1,--- ,d,
where we only consider d = 2, 3 for the purposes of this thesis. Per definition, the first invariant
of a tensor A is always the trace and the last invariant is always the determinant. In two and
three dimensions, this gives the common invariants

Ii(A) = tr(A) = ZAii, I;(A) = det(A) = Z € jkA1iA2, A3k,
i i,j.k
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2 Continuum mechanics, active deformations and mechanochemical interaction

where €, denotes the Levi-Civita symbol. In three dimensions, the additional dimension gives
a third invariant which takes the form:

1
L(A) = 5<zr<A>2 — tr(A?))
= AgoA11 + A11Ax + AgAxn — Ag1A1g — A1pA2 — AgpAx

For further details on tensor invariants, we refer to literature, e.g. see Ciarlet [27] (Section 3.5) or
Holzapfel [66] (Section 1.4). In summary, our mechanical feedback influencing the production
of morphogen is objective under a change of observer, e.g. under a rotation of the coordinate
system, if it merely depends on these scalar invariants. Since we dealt with the question of
objectivity, we can now formulate our constitutive equations.

2.1.5 Material laws

Cauchy’s first equation of motion is based on physical balance principles and is valid
for all materials in continuum mechanics. If we want to predict the material response of a
particular material such as biological tissue, we need to specify a material law. Mathematically
speaking, Eq. (2.20) is highly under-determined: In three dimensions, there are three unknown
components of u and six unknowns in the symmetric Cauchy stress tensor o but only the three
dimensional equation. What we need is a material law which states the stress in terms of the
deformation gradient F.

Biological tissue is often assumed to be incompressible due to its high water content, although
there is little experimental data supporting this assumption [48]]. On the contrary, water can leave
biological cells through pores and channels in the cell membranes, comparable to a sponge. Cor-
respondingly, biological tissue is assumed to be compressible and elastic in many studies [[1, {29,
48| and viscoelastic behavior of biological tissue is still a controversial topic [[1]]. In experiments,
Farge [36] observes that deformed Drosophila embryos recover their initial shape after external
forces are removed. The difficulty to model biological material further increases as material
constants of biological tissue may depend “on its stress- and strain-history [which] makes direct
measurements of compressibility technically challenging” (Labouesse [83, p. 226]). Besides,
we observe that hardly any tissue volume (less than one percent in randomly tested calculations)
is lost when the Saint-Venant-Kirchhoff model is employed.

Here, we focus our attention on compressible, elastic material models. The main assump-
tion in elasticity is that the stress does not depend on the deformation history. Regarding the
previous quotation from Labouesse, this is the first major simplification that has to be made
for the sake of a simple material model. In particular, we restrict ourselves to hyperelastic ma-
terials and assume the existence of a scalar-valued stored-energy function ¥ = W(F) analog
to the assumptions in Ciarlet [27]] or Holzapfel [66]]. There are many equivalent forms of the
stored-energy function. Here, we postulate that the stored-energy function can be expressed by
Y(F) = Y(E) = ¥(C) and that it does not depend on the current position X, which implies that
the material is homogeneous.
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2.1 Structural mechanics

We also assume that our biological tissue is isotropic and isothermal, i.e. we assume that the
material response is the same in all directions and for all temperatures. Isotropy is presumed to
keep the model simple and to prevent the introduction of pre-patterns that might predetermine the
orientation of our patterns. Since we are interested in “de novo” pattern formation in this thesis,
anisotropic models are postponed to future works. Obviously, assuming isotropy is a strong
idealization and the tissue, e.g. in the blastula stage, is not always isotropic (cf. Lynch [93]]). For
instance, we neglect the cytoskeleton of biological cells, which is a complex network of proteins
that gives the cell its shape and is responsible for its mechanical resistance to deformation. In
contrast, assuming isothermal behavior is a common assumption in developmental biology, since
temperature does not change significantly during biological processes such as pattern formation.
In summary, we obtain relations of the form

I 20 O R 10 )

P="%r *= & (222

Now, our premises of choosing the stored-energy function are the following: Firstly, we want
a simple material model with a small number of modeling parameters, which are in general
difficult to measure experimentally, see Labouesse [83]]. For our prototypical systems of PDEs
we will even argue that changes in the two Lamé constants do not significantly change the
final results (cf. Subsection [5.3.3). Also, extensive numerical simulations will show that our
mechanochemical patterns are robust with regard to the (material) parameters (cf. Subsection
[5.3.4). In particular, we will argue that the principles involved in our positive feedback loops are
valid regardless of the material model involved. Secondly, we rule out incompressible material
models such as the Neo-Hookean model or the more advanced Mooney-Rivlin model, since
the assumption of incompressibility is questionable (as discussed above). Also, these models
introduce an additional equation for the pressure inside the tissue which not only considerably
increases the numerical effort but also requires stabilization that results in another source of
numerical errors.

For these reasons, we use the simple nonlinear Saint-Venant-Kirchhoff model for compress-
ible, hyperelastic materials to model the biological tissue. The stored-energy function for the
Saint-Venant-Kirchhoff model is based on Hooke’s law, which states a linear relation between
stress and strain. The stored-energy function is given by

A
W(E) = 3 tr(E)? + p tr(E?).
Derivation with respect to E results in a material law which relates the second Piola-Kirchhoff

stress tensor X to the Green-Lagrangian strain tensor E, namely

_ OY¥(E)

Y= B Atr(E)I + 2uE. (2.23)

Here, u and A are the Lamé constants. Values of the Lamé constants are usually given in terms
of the Young’s modulus E, which is a measure of the stiffness (relation of stress to strain along
an axis) of a solid material, and Poisson’s ratio v, which is the first order approximation of
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2 Continuum mechanics, active deformations and mechanochemical interaction

the signed ratio of transverse to axial strain. Both measures can be obtained by the conversion

formulas
Ev

E
=——andd=————.
20 +v " 1+ (1 -2
Poisson’s ratio for isotropic and compressible materials typically has a value of 0.2 < v < 0.5.
The upper limit case v = 0.5 holds for isotropic, incompressible materials. For a derivation of
these conversion formulas and the physical interpretation of all constants as well as their typical
values we refer to the detailed presentation in Ciarlet [27]] (Chapter 3).

u (2.24)

Also, we are aware of the fact that the Saint-Venant-Kirchhoff material is modeled to be ac-
curate for small strains E only. Still, “any behavior [of an actual material] for large strains
(understood in its mathematical sense) is essentially a mathematical assumption”, (Ciarlet [27,
p- 159]). In our opinion, this approach is to be preferred since we are interested in the prin-
ciples involved in pattern formation as opposed to predicting the exact material response for
one specific animal. Also, measuring the necessary material parameters required (e.g., for the
Mooney-Rivlin material model) might be difficult, as previously discussed (cf. Labouesse [83]]).

2.2 Active deformations (growth)

In this section, we introduce the concept of active deformations (or “growth”) to continuum
mechanics. We follow the work of Rodriguez et al. [128]] and employ a multiplicative decom-
position of the deformation gradient into a prescribed, active part that models the active defor-
mations of the biological cells and an elastic response which ensures continuity of the overall
deformation. We see that the overall deformation is unique whereas the decomposition itself
is only unique up to a rigid body rotation. Since the active deformations of cells are generally
volume-preserving, we mostly refrain from the term “growth”, which is often associated with
approaches where volume is added or removed. The key assumption in decomposing the defor-
mation gradient is that the intermediate configuration obtained by the active deformations alone
is stress-free, and any stress is generated by the elastic response. Notably, this implies that the
material law depends on the elastic response alone.

In Subsection we introduce the implementation of growth in our structural equation,
where we focus on the implications of active deformations on the material law. Also, we high-
light Subsection where we discuss the most important works on active deformations with
respect to the approach presented in this thesis. Namely, we present the original work by Ro-
driguez et al. [128]] and related successful adaptations of the deformation gradient decomposi-
tion. Examples are the contributions of Lubarda and Hoger [92] and Himpel et al. [63]], who
model biological materials (solids) with changing mass. Further, we shortly review the works
by Taber and Perucchio [[144]] on modeling heart development and by Ambrosi and Mollica [4]
on the mechanics of a growing tumor. In this work, we mainly consider active deformations
of individual, biological cells by apical/basal constriction (wedging) or apico-basal shortening
(thinning). In this context, we present the works by Conte et al. [29] as well as Mufioz et al.
[106], where similar active deformations have been prescribed. In particular, we discuss all
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these works with respect to the approach presented in this thesis and highlight the key concep-
tual differences. Most importantly, we are interested in spontaneous (“de novo”), robust pattern
formation based on mechanical feedback on morphogen dynamics via tensor invariants rather
than using active deformations alone to reproduce experimentally observed deformations.

For an overview of modeling approaches to active growth in biological tissue we refer to the
contribution by Jones and Chapman [74].

2.2.1 Deformation gradient decomposition

Local deformation processes are incorporated using the multiplicative deformation gradient de-
composition, which was firstly introduced to this kind of applications by Rodriguez et al. [128]].
The idea is to split the deformation gradient into two parts, namely

F =F,F,, (2.25)

where F, = F,(t,C; - -- C,,) is a prescribed active deformation tensor. This tensor might simply
depend on time ¢ or on concentrations C;, i = 1,---,n of signaling molecules (morphogens).
F,: Q — Q,(t) maps the reference domain to an intermediate configuration Q,(¢), which is
in general not a (connected) domain, since F, may lead to superpositions or gaps in between
biological cells. The elastic response F.: Q,(f) — €(f) ensures the continuity of the overall
deformation such that u is always smooth. The key assumption is that the intermediate configu-
ration is stress-free, and that any stress is solely generated by the elastic response. This implies
that the material law depends on the elastic response alone. In literature, the stress generated by
the elastic response is usually referred as residual stress, which is the stress that remains if all
external forces are removed.

We have illustrated the deformation gradient decomposition for different active deformations
in Fig. and Fig. to demonstrate how piecewise active cell-shape modifications lead to
changes in the curvature of the biological tissue.

Non-uniqueness of the deformation gradient decomposition

The deformation gradient decomposition (2.25) is not uniquely defined [92}[128]). Following the
presentation in Lubarda [92]], this is easily shown by

F = F,F, = FOFY,

where
F¢ =F.Q", F?=QF,

with an arbitrary, local rotation which is given by the orthogonal tensor Q with Q7 = Q~!. On
the other hand, it is rather simple to obtain a unique decomposition by using Cauchy’s polar
decomposition theorem, which guarantees the existence of a unique left polar decomposition of
the elastic response F, by

F. =V.R,
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2 Continuum mechanics, active deformations and mechanochemical interaction

Figure 2.1: Example 1: Schematic illustration of the deformation gradient decomposition for
basal constriction in 2D. Active biological cells (red, black boundary) resolved by
numerical ones (blue grid) become thinner (red arrows) depending on morphogen
concentrations C;. Basal constriction results in superpositions or overlap (dark red)
in Q,(#), and the elastic material response F, (blue arrows) ensures continuity.

into a positive-definite symmetric tensor V, and an orthogonal tensor R,, see Eq. (2.8) or Trues-
dell [[148]] for more details. This decomposition implies

F2 = V,R.Q’.

Thus, we simply set R, = I and F, = V, and obtain a unique decomposition for theoretical
purposes, if our isotropic material remains isotropic during the growth process.

The non-uniqueness of the deformation gradient decomposition does not have to be consid-
ered in practice. More precisely, we observe that the structural equations including growth are
still stated in the reference domain Q (cf. Subsection [2.2.3). Here, the transformation to the
current domain €(¢) is unique and rigid body rotations between time steps are not observed in
our numerical simulations. The intermediate configuration however might only be unique up to
rotations, is never physically attained and is not even a (connected) domain due to rupture or
overlap.

2.2.2 Piecewise description of the active deformation gradient

In this work, the active deformation gradient F, is usually piecewise-defined and prescribes
active deformations of discrete, biological cells and the active deformation gradient F, is not
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Figure 2.2: Example 2: Schematic illustration of the deformation gradient decomposition for
apico-basal shortening in 2D. Active biological cells (red, black boundary) resolved
by numerical ones (blue grid) become thinner (red arrows) depending on morphogen
concentrations C;. Shortening results in superpositions or overlap (dark red) in Q,(?),
and the elastic material response F, (blue arrows) ensures continuity.

injective in general. Even smoothly-defined active deformation gradients can result in overlap or
rupture in the intermediate configuration. In both cases, the continuity of the overall deformation
is preserved by the elastic response F.. In the following, we thus take a closer look at the
definitions and the well-posedness of F,, and, more importantly, of its inverse F,!.

In general, we consider piecewise-defined active deformation gradients F,. Restricted to a
biological cell K;, these gradients are bijective mappings from this cell in the reference domain
K; C Q to an actively deformed one K, ; C €,(¢) in the intermediate configuration. In particular,
F.(X, 1)k, is invertible and we define for the global, active deformation gradient F, and its
inverse F,!:

F.(X,Dlg, = Fox,(X,1) for X € K;,

F;l(Xa,t)|Kai = F i (Xo0) for X, € Ky, (2.26)
where K; C Q is the i-th biological cell. Note that the definition of the global inverse F;! is not
well-posed since the biological cells K, ; in the intermediate configuration €,(¢) usually overlap
(F, is globally not injective). Formally, this definition becomes well-posed if we regard F!
to be meant biologically cell-wise in the structural equation (cf. Eq. (2.33)). In practice, our
system of PDEs is transformed to the reference configuration such that the biological cell K;
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2 Continuum mechanics, active deformations and mechanochemical interaction

with X € K; is always known for a point X € Q. Hence, the local inverse Fa_’le is uniquely
defined.

The precise, piecewise definition of F, depends on the application at hand. For instance,
the reader is referred to the cell-wise apical/basal constriction employed for mechanochemical
pattern formation in embryogenesis, see Subsection[5.3.2]

Incompatible growth

As discussed above, we usually prescribe piecewise-defined active deformation tensors to model
active deformations of individual, biological cells. In general, these tensors result in gaps and
superpositions in between these cells in the intermediate configuration, and the elastic material
response ensures the continuity of the overall deformation. It might yet be desirable to determine
by simple analysis of the active deformation gradient if it will result in a continuous intermediate
configuration or not. In the latter case, the active deformation is called incompatible. In linear
elasticity, i.e. for small deformations, necessary and sufficient compatibility conditions are well-
established in literature, both for simply- and multiply-connected regions (such as our spherical
tissue shell). For the sake of brevity, we refer to the overview in Skalak er al. [138] or the
original works by Fung [39]] and Gurtin [56]. On multiply-connected domains, even smooth
growth tensors that are locally injective (compatible) can lead to a geometric incompatibility of
the body shape if the deformation as a whole results in superpositions or gaps. These (global)
incompatibilities are called Volterra dislocations and are enumerated in Ref. [[138]]. An example
of Volterra dislocations is circumferential growth/resorption in arterial segments, which lead
to an overlap/gap in the intermediate configuration. These incompatibilities are examined in
Rodriguez et al. [128] (cf. Fig. [2.3]and Subsection [2.2.5).

In finite strain theory, i.e. for large deformations, the derivation of compatibility conditions
is considerably more complex. In Skalak et al. [138], conditions analogous to those for lin-
ear elasticity are summarized for simply-connected domains and individual cases for multiply-
connected domains are studied, since “no generalizations [to finite elasticity] in terms of Volterra
dislocations are available”. (Skalak et al. [[138, p. 889])

We omit the formal introduction of compatibility conditions since the active deformation gra-
dients F, defined in this work result in superpositions and gaps between biological cells by their
very (piecewise-continuous) definitions (cf. Eq. [2.26). Further, these incompatibilities pose no
numerical difficulties or other practical implications. Thus, we see no additional benefit in ana-
lyzing our continuously-defined active deformation tensors that we prescribe in the application
to growth processes in tips of colonial hydroids (cf. Section[5.2). Examples for the incompat-
ibility of our tensors are basal/apical constriction in embryonic development and apico-basal
shortening in symmetry breaking in Hydra. We have illustrated the incompatibilities of these
tensors in Fig. and Fig. The precise definitions of the corresponding active deformation
tensors are given in Sections[5.3]and [5.4]

2.2.3 Material laws for active deformations

At this point, we consider how the deformation gradient decomposition approach from Subsec-
tion can be incorporated in the Saint-Venant-Kirchhoff model for compressible hyperelastic
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materials, which is presented in Eq. (2.23).

The key assumption behind the deformation gradient decomposition is that the intermediate
state Q,(?) is stress-free. Hence, any stress in the material body is generated by the elastic part
F, of the deformation gradient, and the stored-energy function WY(E,) = % tr(E.)* + tr(Eg) with
E, = 0.5(F.F, — I) now depends on depend on F, only. Next, we define stress tensors in the
intermediate configuration, analog to the first and second Piola-Kirchhoff stress tensors defined
in the reference domain (cf. Eq. (2.22))) by

d¥
P, = 1 Q.0 - Q),
dF,
Y (2.27)
X, = JE, 2 Q) - Qu0).
Then, derivation of the elastic, stored energy function yields the material law
1
Y, = Atr(E )l + 2uE,, E, = E(FETFC -D, (2.28)

analog to the usual material law given in Eq. (2.23). Note that P.n,, is defined as the force in the
current configuration €(¢) per unit surface area in the intermediate one Q,(¢). Similarly, X.n, is
the force defined in Q,(¢) per unit surface area also in €,(f). These definitions come with the
caveat that the intermediate configuration is not a real domain, and the surface area in ,(¢) and
the normal direction n, might not be uniquely defined. Hence, we transform our equations to
the intermediate configuration where we insert the elastic material law (2.28). Subsequently, we
express the stress in the Lagrangian framework by transformation to the reference configuration.

2.2.4 Active deformations in the structural equation

Since X, is defined on the intermediate configuration, we cannot insert it directly into our struc-
tural equation that we expressed in the Eulerian or Lagrangian framework, compare Eq.
and Eq. (2.I8). Instead, we take the integral containing the stress tensor in the Eulerian co-
ordinate system (2.17) and proceed as follows: First of all, we transform this integral to the
intermediate configuration. Therefor, we define the elastic deformation x ,(t): ,(t) — (1) by
X.(Xg, 1) = X, analog to the definition of the deformation . Further, we use the notation

F.(x4,1) = VXg(Xa7t)’ Jo = det(F,).

With these definitions at hand, we can formulate the transformation of an integral and the gradi-
ent from the Eulerian configuration to the intermediate one, analog to the transformation of Eq.
(2-4) in Eulerian coordinates to Eq. (2.5)) in the reference framework: The integral that expresses
the surface forces from Cauchy’s equation of motion (2.17) is transformed to the intermediate
configuration by

f ogx, Ve dx = f Je(Xg, DO (X, (X4, 1), t)F;T(,\(e(xa, 1),t)Ve, dx,, (2.29)
Q(t) Qq(t)
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for all tes.t functions ¢(x) E Vg( D and gaa().(a) € nga(z)' This gives us the following relations for
the* elastic” stress tensors in the intermediate configuration:

P, = J.oF,", FX =P, (2.30)

which are analog to the usual relations between the first and second Piola-Kirchhoff stress
tensors that measure stress in the current and in the reference system, respectively. Next, we
insert Eq. (2.30) into Eq. (2.29) and transform the resulting integral from the intermediate to the
reference configuration. This yields

f To(Ras DO (% 1, DFT (1 (% 1), DV, A%
Q1)
= f Fe(Xaa I)Ze(xav Z)V‘pa an

Qu(1)

= f Jo(X, OF (x (X, 1), HE(x (X, D), HF (X, N TV dX,
Q

where we define the active deformation x ,(t): Q — Q,(?) by x,(X,?) = x, with J, = det(F,)
such that the transformation between the last two integrals is analogous to the usual transforma-
tions (2.4) and (2.3) between the reference and the current coordinate system.

Finally, we insert the deformation gradient decomposition F = F,F,, itself for F, and compare
the result to the usual structural equation (2.19) in the reference configuration. This comparison
yields the following, important relation between the second Piola-Kirchhoff stress tensor X in
the reference configuration and its elastic equivalent in the intermediate one:

X =JF'LF,T, (2.31)

analogous to the usual relation £ = JF~'oF~T (cf. Eq. that relates the second Piola-
Kirchhoff stress tensor in the reference configuration with the Cauchy stress tensor given in
Eulerian coordinates. Different derivations of this relation based on tensor algebra can be found
in literature, for instance in Lubarda and Hoger [92] or in Himpel et al. [|63[]. At this point, we
can insert the elastic material law X, = A tr(E,)I + 2uE,, that we derived earlier in Eq. (2.28).

So far, we have prescribed homogeneous Neumann boundary conditions on the entire bound-
ary 0Q for the sake of a simple derivation. To cover a wider range of applications as well as
predictive, numerical experiments, we consider Dirichlet, Neumann and Robin boundary condi-
tions on the three disjoint parts dQ = I'p U I'y U I'g. Finally, Cauchy’s first equation of motion
including active deformations in the reference configuration is given as the combination of Eq.

[2.19and Eq. [2.3T] and reads:

Find displacement u € V¢ for a given body-force density f € L*(Q)? and initial material
density p° € L*(Q), such that it holds u(X,0) = 0 and

fpoaﬂu-<15+FZVd§dX+f G-didS+f F):N-rpdszfpof-cpdx (2.32)
Q I'ny Iz Q
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for all @ € V¢, where
L =JF'LF,7, X,=At(E)I+ 2uE,,

and where G accounts for surface forces on the Neumann boundary I'y. Robin conditions are
prescribed on I'g. Sufficient regularity provided, we can integrate by parts and obtain our struc-
tural equation in the Lagrangian framework, which reads:

Find displacement u for homogeneous initial conditions u(X, 0) = 0, such that

pP0u—V-(F)=pf inQ,

u=0 onIp,
FXN =G on 'y and
r(u,Vu,N) =0 on Iy (2.33)

holds, where

e e 1
r=JF'TF7’ X, =At(E)+2uE, E, = E(FZFE -0,
F,=FF,!, F=Vu+I, J=det(F)andJ, = det(F,).

Note that the divergence above is meant in a row-wise sense. Next, G account for possible
surface forces acting on I'y and r(u, Vu, N) represents mixed Robin boundary conditions which
might be prescribed, e.g. it incorporates the glass body of a pipette in our predictive, numerical
experiments. In practice, splitting the deformation gradient hence means to replace the unknown
elastic response F, by FF,! with the prescribed, active deformation F,, and to subsequently solve
for the overall deformation u.

Finally, we point out that the elastic Green-Lagrangian strain tensor E, remains symmetric,
since

1 1
E! = 5(F;TFTFF;1 -’ = 5((F;TFTFF;‘) -D=E

holds. Consequently, the Cauchy stress tensor o and the second Piola-Kirchhoff tensor X also
remain symmetric (see Eq. (2.31)) and the definition of X, in Eq. (2.28)).

Before we introduce the reaction-diffusion equations describing morphogen dynamics and
model mechanochemical interactions, we complete the presentation by giving an overview of
the literature that influenced the implementation of active deformations presented in this work.

2.2.5 Related works on growth and active deformations

In the recent decades, the mathematical description of active deformations (and growth) in the
development of biological tissue has become an area of great interest. In the following, we give
an overview of the most important works that influenced the mathematical modeling of active
deformations in our approach. In particular, we discuss these works with respect to the key
differences in the conception and the objectives of this thesis.
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Qa(t)

Figure 2.3: Schematic illustration of the deformation gradient decomposition as adapted from
the original work by Rodriguez and coworkers [[128]]. Circumferential growth leads
to superposition in ,(¢) and the elastic response ensures continuity of the overall
deformation. Note that the radius of the cylinder does not change during growth, the
reduced radius in Q,(¢) merely illustrates the overlap of the tissue.

As shown above, the description of active deformations in this work is based on the idea of
multiplicatively decomposing the deformation gradient into an active, prescribed part and an
elastic response. Rodriguez et al. [128] were the first who applied this approach to growth
and remodeling in biological tissue. Namely, they examine ventricular hypertrophy, that is the
thickening of the heart muscle as a pathological reaction to overload, e.g., by high blood pres-
sure, and stress-dependent growth in bone. We illustrate the concept of the deformation gradient
decomposition by looking at the first of these applications: There, Rodriguez et al. consider a
hollow cylindrical tube of incompressible and isotropic elastic material. They illustrate how cir-
cumferential growth/resorption leads to superposition/gaps in the intermediate configuration as
sketched in Fig. [2.3] The elastic material response ensures the continuity of the overall deforma-
tion and results in residual stress. Thus, if the deformed cylinder Q(¢) was cut, the residual stress
would produce shape changes such as a shift or an opening of the blood vessel (the latter for
circumferential resorption that is not shown here). These changes are experimentally observed,
see e.g. Chuong and Fung [26].

Example 1 In the following, we take a closer look at this application with regard to the active
deformations, the elastic response and the compatibility of the deformation as a whole. With
cylindrical reference coordinates (R, ®, Z) in Q, coordinates (74, 8,, z,) in the intermediate con-
figuration and coordinates (7, 8, z) in the current configuration €X(¢), circumferential growth is
expressed by the displacement field

ra:R’ ga:kG, ZazZ,
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2.2 Active deformations (growth)
with a constant k that results in growth for £ > 1 and in resorption for k < 1. Next, the elastic
response is given by the displacement field

r:r(ra)v 92770617 Z:Zm

which maps the intermediate to the deformed configuration €2, where deformation in z-direction
is not considered for simplicity. The active circumferential deformation and the elastic response
result in the active and the elastic deformation gradients in Cartesian coordinates given by

dr(ra)
10 0 i) g
F,=[0 %k Of,andF,= 0 ZLn 0.
0 0 1 0 0 1

We have illustrated this active deformation and the elastic response in Fig. which we adapted
from the original work by Rodriguez and coworkers [128]]. Here, we observe how circumferen-
tial growth leads to a global incompatibility of the tissue geometry in the intermediate config-
uration Q,(¢). This incompatibility is an example of a Volterra dislocation that we discussed in
Subsection The overall deformation F,F, is continuous (i.e. compatible) for the choice
n= % From this elastic response, Rodriguez et al. then calculate the residual stress in the tissue
cylinder by using a constitutive material law (one could also use our elastic material law as in
Eq. (2.28)). Indeed, residual stress may not only be a mere consequence of growth but can also
affect the growth itself. For instance, stress changes as a response to increased blood pressure
can lead to normal or pathological cardiac growth, see Grossman [54]]. Rodriguez et al. thus
proceed to stress-dependent growth in bone due to external loading, which is not discussed in
this thesis for the sake of brevity.

Related approaches adapting the deformation gradient decomposition The deforma-
tion gradient decomposition was successfully adapted in many subsequent works. For instance,
we mention the contribution by Lubarda and Hoger [92], who present a general, constitutive
theory of stress-modulated growth and discuss the uniqueness of the deformation gradient de-
composition (cf. Subsection [2.2.T). In their work, they consider isotropic, transversely isotropic
and orthotropic biomaterials, the latter two containing fibers in one or more directions. They
prescribe simple, isotropic growth or growth along the eigendirections of these fibers. Thereby,
these active deformations depend on the isotropic stretch ratio, which results from volumetric
mass growth. To prevent unlimited growth, they propose an evolution law modeling a linear
relation between the stretch ratio and the stress. Besides, this evolution law contains a nonlinear
factor to limit a maximal stretch ratio.

This evolution law was adapted by Himpel ef al. [|63]], who present a description of growth
on the kinematic level to implement both, a change in density and a change in volume. Besides,
they derive the transformations of the Piola-Kirchhoff stresses in the material, the intermediate
and the current configuration using tensor algebra and commutative diagrams. In particular, they
present an alternative derivation of the important relation (2.31J).

Further contributions including the deformation gradient decomposition stem from Taber and
coworkers, see e.g. Taber and Eggers [[143]] on stress-modulated growth in the aorta and Taber
and Perucchio [[144] on modeling heart development. Also, Ambrosi and Mollica [4] use this
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approach for considering the mechanics of a growing tumor. Another mentionable, more general
approach to the deformation gradient decomposition stems from Chen and Hoger [25], who
take the current Eulerian configuration as the reference configuration and thereby provide the
theoretical foundation to the (so far arbitrary) decomposition of the deformation gradient and
the assertion that the material response should only depend on the elastic part of the deformation
gradient. Note that this assertion was the key assumption in the derivation of our elastic material
law (2.28). All these contributions have in common that they investigate simple isotropic growth
or diagonal stress-dependent active deformation tensors on simple model geometries such as
cylinders, where the problem can be reduced to two-dimensional spherical shells by symmetry
arguments.

In this work, we rather consider piecewise-defined apical/basal constriction (wedging) or
apico-basal shortening (thinning) of individual, biological cells, depending on the application
at hand (cf. Subsection [2.2.2)). Similar active deformations have been prescribed by Conte et al.
[29] for a 3D model geometry and by Mufioz et al. [106] in 2D, who consider ventral furrow
invagination in the Drosophila melanogaster embryo, i.e. an orthogonal inwards folding of the
cells along the ventral center line of the embryo. Before we give details on these works, we
emphasize that the intention of these two works differs significantly from the objective of this
thesis: Although we consider similar active deformations in the following, the aim of Conte [29]],
Muiioz [[106] and their respective coworkers is the exact mechanical reproduction of the invagi-
nation process in Drosophila. Thus, they seek suitable combinations of apical constriction and
apico-basal elongation of biological cells in conjunction with boundary conditions that account
for the fluid (yolk) inside the embryo and a slip condition to model the hard vitelline membrane
around the tissue ellipsoid. The location of the invagination is predetermined by introducing the
mesoderm zone, where the invagination occurs and where combinations of both active deforma-
tions are prescribed, and an endoderm zone, where only apico-basal shortening is considered.
And yet, “the causes of the active deformations are not specified [but] are considered here as
an internal (genetically or chemomechanically transduced) contribution that produces different
combinations of the two active shape changes” (|29} p. 190], similar in 106} p. 1373]).

On the other hand, the main contribution of this thesis is the development of coupled systems
of PDEs modeling simple, positive interaction rules (“feedback loops”) that lead to de novo and
robust mechanochemical patterns. In other words, we investigate how and why patterns form.
The key component of this interaction process is the coupling of tensor invariants expressing
stretch, strain and compression on the dynamics of signaling molecules which in turn lead to
active deformations. Also, we do not introduce any pre-patterns to our model, e.g. by the
prescription of zones as in [29,|106]]. Instead, our feedback loops lead to spontaneous and robust
patterns within the biological tissue.

Example 2 Here, we provide details on the description of active deformations in Conte et al.
and Muifioz et al. ([29, |106]). They look at a Drosophila embryo, which started as a single
cell and has developed into a stretched ellipsoid consisting of one layer of biological cells. It
is filled with a viscous fluid (yolk) and surrounded by a semi-hard shell (vitelline layer). They
use a hyperelastic neo-Hookean material law to model the biological tissue. Further, they pre-
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scribe combinations of apical constriction and apico-basal elongation to qualitatively reproduce
the deformations observed in the gastrulation of the Drosophila embryo to the greatest extent
possible.

In this thesis, we express piecewise-defined active deformation tensors by introducing local
coordinate systems X = (Xp, X}, X») in the origin of every biological cell. These coordinate
systems are oriented such that X, points in the radial direction, with the obvious analogon in two
dimensions. In contrast, Conte et al. define these tensors on the numerical reference elements.
Hence, biological and numerical cells either coincide, or one biological cell is resolved by in-
dividually constricting numerical cells in tangential direction, thereby changing the nature of
the biological system. Also, no mesh refinement could be “employed along the radial thickness
of the embryo” (Conte et al. [29, p. 193]). The latter either results in very coarse meshes or
highly unisotropic numerical cells, which might both lead to numerical difficulties. If no mesh
refinement is employed and biological and numerical cells coincide, Conte ef al. cannot even
expect convergence, as our analysis in Section [3.5| will reveal.

We circumvent this obstacle by introducing local coordinate systems in the centroid of each
biological cell. Here, local active deformation tensors are defined. The actual deformation
tensor is then obtained by a transformations from these parametric systems to the reference
configuration, see Subsection [5.3.2] In practice, we keep track of the biological cells by using
material IDs during the entire process of discretization and parallelization. That way, we can
always compute the transformation to the coordinate system of the current biological cell which
can then be resolved by 64 numerical cells (hexahedra in 3D). In particular, we demonstrate that
convergence of our methods is always ensured in a thorough convergence analysis (cf. Section

3.5).

We can express the active deformation gradients in our local coordinate systems X and keep
the notation of the tensors from Ref. [29,|106]]. There, these tensors are yet defined on the numer-
ical reference elements with the negative implications on numerical mesh refinement discussed
above.

Conte et. al [29] prescribe active deformations F, = F.F,. as combination of active apical
constriction F,. and active elongation F,; (the subscripts “ac” and “el” are adopted from the
notation in [29,[106] and are only used in this example). In our local coordinates, these tensors

are defined as
1+ a)acTX1 wacTX() 0

F.X, 1) = 0 1 0] and
0 0 1
1+ wet 0 0
Fo(r) = 0 (1 +wur)™t 0],
0 0 1

where 7 is a pseudo-time. These tensors are presented in both articles with the obvious reduction
to 2D. In this thesis, we prescribe related active deformations. However, we consider active
apical/basal constriction (cf. Eq.[5.5]) and apico-basal shortening (cf. Eq. [5.13)) in both tangential
directions in the 3D case.
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In Conte et. al [29] and Muiioz et. al [[106], combinations of these deformations F, = F,;¥,.
with wge, wer > 0 are only prescribed in the mesoderm zone of the embryo, which consists of a
circular sector that comprises one sixth of the tissue cross section. In the remaining tissue, the
endoderm, apico-basal shortening F,; with we; < 0 is assumed. That way, the deformation is
predetermined and the invagination process is restricted to the mesoderm. This is the essential
difference to this thesis where we are interested in spontaneous, robust pattern formation.

In their framework, Conte and Muifioz [29] show that certain combinations of active defor-
mations reproduce the basic features of ventral furrow invagination. Namely, suitable values
for a = “:)—Zj range between 3 < @ < 6in 3D and 4 < @ < 5 in the 2D case. They conclude
that the ventral furrow invagination in 3D seems to be more robust with regard to @. Since the
considered tissue is an almost cylindrical ellipsoid, the results in 3D and 2D are very similar due
to this symmetry. Global, elastic compression and expansion effects in the domain (due to the
fluid that has an additional degree of freedom in 3D) are the exception.

Finally, we remark that numerical simulations by Conte et al. and Mufioz et al. [29, |106]]
show that the slip conditions modeling the vitelline membrane seem to be essential in a precise
reproduction of ventral furrow invagination. In contrast, an internal volume constraint seems to
be negligible. In the context of this thesis, an internal pressure is introduced for the purpose of
stopping the gastrulation process instead (cf. Subsection [5.3.5)). For specific model organism
such as Drosophila, our results might indeed be improved by considering the vitelline mem-
brane. We have already implemented similar boundary conditions for modeling the glass body
of a pipette in the context of our predictive, numerical experiments (cf. Subsection [5.4.2).

Example 3 Allenaeral. [|1] were the first to propose the dependence of active deformations on
morphogen concentrations that are modeled by a reaction diffusion equation. More precisely, the
rate of the strength of the active deformations linearly depends on the morphogen concentration
via a simple evolution equation. In this method, the active deformation process is the result
of an initially prescribed, diffusing morphogen gradient. These chemical pre-patterns “in fact
correspond to the final conditions of other processes which have not been modeled” (Allena et
al. [1}, p. 28]). On the contrary, we are interested in both the process of robust de novo pattern
formation and the final, stationary results such as gastrulation. The essential difference in this
thesis compared to Ref. [1] is that we propose interaction rules (“feedback loops™) that close
the mechanochemical circle: Here, we also consider mechanical feedback expressed by tensor
invariants describing stress, strain or stretch on morphogen dynamics. In turn, the latter lead to
active deformations. To illustrate these differences further, we take a closer look at the methods
and the application to ventral furrow invagination in Drosophila presented in Ref. [[1]].

In their application, Allena et al. [1]] consider the full 3D geometry of the Drosophila embryo,
similar to the previous example by Conte ef al. [29]. Using Heaviside functions, they pre-
scribe active deformations of individual material cells. The strength of the active deformations
F, = F,(@) depends on an “intensity factor” a. The rate of this factor linearly depends on the
morphogen concentration via the simple evolution law %af = BC, where 8 = 0.1 is a constant.
Allena et al. [1]] derive the precise form of the active deformation gradient as follows: They
introduce a harmonic parameterization of the embryo geometry by local, curvilinear coordinate
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systems that are the solution of two Laplace problems. In the intermediate configuration, they
prescribe a deformation that resembles an invagination due to apical constriction. Then, differ-
entiation of these active deformations yields the desired active deformation gradient (that result
is not shown).

On the other hand, the purpose of the additional evolution equation used in Ref. [1f] is to
obtain stationary solutions once the morphogen concentration vanishes due to degradation and
diffusion. Yet the authors remark that they limit their “attention and conclusion to a subinterval
of this whole period, where [the evolution equation] seems better justified and better reproduces
the experimental observations” (Allena ef al. [1, p. 13]). Note that both having morphogen
concentrations that dissolve over time and increasing concentrations of signaling molecules that
eventually saturate are observed in practice. Whereas Allena et al. [1]] consider the former using
an additional evolution law, we prefer the latter mechanism. That way, we dispense with a third
equation in our approach, which saves huge computational costs. Besides, we use the Michaelis-
Menten kinetics (cf. Eq. (2.40)), which result in a saturation of the morphogen concentrations
and ultimately yield stationary solutions.

Analog to this thesis, Allena er al. [[1]] model elastic, biological tissue by Hooke’s material
law and express morphogen dynamics by a simple reaction-diffusion equation, which reads in
Lagrangian coordinates

d
d—t(JC) =V - (JkpF'FVC) + JkgC,

where kp is the diffusion coefficient and kg is the morphogen degradation rate. For details
on reaction-diffusion equations we refer to Subsection 2.3.1] Simple reformulation shows that
the whole reaction term in their work is given by C(Jkg — %(J), where J stems from the
transformation of the reaction-diffusion equation to the reference domain. This (implicit) cou-
pling reflects the fact that the morphogen concentration increases/decreases if the tissue is com-
pressed/stretched. Hence, this coupling is not a modeling assumption, in contrast to our mechan-
ical feedback on the morphogen dynamics based on tensor invariants that we propose in this the-
sis. In particular, this implies that Allena et al. [1]] do not expect spontaneous mechanochemical
pattern formation due to this mechanochemical coupling.

Example 4 Next, we shortly present the work by Frei et al. [38] who investigate mecha-
nochemical fluid-structure interaction (FSI), namely the interaction of a growing solid with an
incompressible fluid. The considered application is the formation and growth of plaque in blood
vessels. The focus of their work is design of a “robust numerical framework for the coupled
long-term dynamics of fluid structure interaction with active growth processes and large defor-
mation” (Frei et al. |38} p. 876]). Before we go into details, we point out that in Ref. [38] growth
of stress-dependent intensity is prescribed in a center around the middle part of the blood ves-
sel. This is the key difference to the presented thesis where we consider spontaneous pattern
formation (anywhere) in biological tissue.

Many difficulties in their application are similar to the difficulties that we face in the context
of this work: The main challenges are the large system of equations, the huge deformations due
to growth of plaque in the vessel (or of the tissue in the context of this thesis) and the different
timescales of growth 7 and the pulsating heart flow ¢ (or of growth and elasticity in case of this
thesis).
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2 Continuum mechanics, active deformations and mechanochemical interaction

On the other hand, the mechanochemical feedback loops proposed in this thesis lead to a
strongly coupled system of equations that requires a monolithic solution approach that is we
implicitly solve the system of PDEs as a whole. In contrast, Frei ef al. [38]] propose a partitioning
of the temporal scale: They consider a two-way coupled system of equations, where the initial
stationary fluid flow is computed on the long-term growth scale. From there, they compute fluid
velocity and pressure on the short scale (assuming that growth is constant here), which lead to
stress on the vessel wall. This stress is averaged over the entire interface (between fluid and
tissue) and leads to an increase of foam cell concentrations, described by a simplified ODE
model. This mechanochemical dynamic is due to monocytes inside the blood that migrate into
the tissue where the migration rate depends on the wall stress and the damage of the wall, see
[38]] and the references therein. In the vessel wall, these monocytes transform into foam cells
which lead to isotropic growth by the active deformation tensor F, = gI, where g = g(X, C(1))
prescribes growth in the center of the blood vessel and linearly depends on the concentration of
foam cells C(7). This growth of the vessel wall (on the long-time scale 7) results in an update
of the vessel width after solving for the next velocity and pressure of the long-scale problem. In
turn, this new geometry leads to large wall stress. This process is iterated until the channel is
clogged for a fully Eulerian ansatz or computations break down in a classical ALE approach.

All the works summarized above have in common that they consider growth as a mere con-
sequence of mechanical or chemical pre-patterns: Either, active deformations that depend on
time are prescribed or predefined local morphogen gradients are considered. In this thesis, we
propose simple, positive feedback loops instead that are based on a novel mechanical feedback
of tensor invariants describing stress, strain or stretch on morphogen dynamics. Indeed, many
recent studies emphasize the active involvement of mechanics in pattern formation, (cf. 1324,
35, (105, [117]). Correspondingly, our numerous numerical simulations confirm that these pos-
itive feedback loops are vital to robustly produce spontaneous (“de novo”) mechanochemical
patterns. Ultimately, the objective of this thesis hence substantially differs from the goals of the
examples above: We want to help to unravel one of the big mysteries in biology: The mech-
anisms of self-organized pattern formation during embryogenesis. Ultimately, “it is not birth,
marriage, or death, but gastrulation which is truly the most important time in your life” (Wolpert
[156l p. 12]).

Example 5 One exception are the recent works by Mercker et al. [[104,|105]], who describe the
tissue as an infinitely thin deforming surface. Similar to our work, they propose simple, positive
feedback loops where morphogen concentration leads to active tissue curvature, which in turn
induces morphogen production. These mechanochemical interactions lead to co-localized, local
morphogen levels and increased, positive tissue curvature (i.e. an increased outward bending
in parts of the domain). In Mercker et al. [[104, |105], the biological tissue is described by the
Helfich energy [61]], which is often used to describe the mechanics of membranes and addition-
ally depends on the morphogen concentrations. In contrast, the tissue mechanics in this thesis
are described by a very different mechanical model, in particular, we include the deformation
gradient decomposition ansatz and use tensor invariants to describe the mechanical tissue re-
sponse. Yet, many numerical observations within this work and Mercker et al. [[104] coincide,
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2.3 Mechanochemical interaction

namely that increased diffusion rates result in larger morphogen patches or that increasing the
mechanochemical coupling leads to more patterns (cf. Fig. (b),(c)). Yet, the discussions
in Brinkmann et al. [20] and this thesis show that it is essential to include the full 3D tissue
geometry. For instance, symmetry breaking such as gastrulation events cannot be observed with
lower-dimensional approaches [[104} 105} 103]].

Finally, we remark that we have already published parts of this thesis in Brinkmann et al.
[20] and, restricted to 2D cross-sections, in Mercker et al. [103]]. In this thesis, many novel
aspects are added such as local, adaptive mesh refinement, a convergence and stability analysis,
stress-mediated feedback loops and the application to symmetry breaking in Hydra aggregates
including predictive, numerical experiments.

2.3 Mechanochemical interaction

In this section, we finally present our coupled system of prototypical PDEs to simulate mecha-
nochemical pattern formation in biological tissue (Subsection [2.3.2). Beforehand, we introduce
reaction-diffusion equations to model the dynamics of signaling molecules. The key aspect of
our prototypical system is the coupling of these equations to our structural equation that includes
active deformations. The idea of this coupling is to create self-energizing feedback loops which
lead to spontaneous and robust mechanochemical patterns.

In Subsection[2.3.3] we present a novel coupling of mechanical cues on morphogen production
via invariants of stretch, strain and stress tensors. Vice versa, morphogens results in active cell-
shape changes via the active deformation gradient. In particular, we illustrate how these simple
interaction rules lead to mechanochemical patterns and present a selection of suitable tensor
invariants to describe the mechanical tissue response. Finding suitable combinations of active
deformation tensors and mechanical invariants is vital and usually depends on the application at
hand.

In the last Subsection [2.3.4] we discuss modified feedback loops where we integrate the me-
chanical feedback over biological cells and neglect diffusion. This approach is more accurate
on a cellular level since not only active deformations but also uniform morphogen production
is implemented for each biological cell. On the downside, integration of the feedback on every
cell and neglecting diffusion increases the numerical costs.

2.3.1 Reaction-diffusion equations modeling morphogen dynamics

Now, we derive one-dimensional PDEs to model the dynamics of signaling molecules (mor-
phogens). We describe conservation of mass for diffusing morphogens by Fick’s second law and
include a coupling (or reaction) term. This coupling incorporates the feedback of mechanical
cues on the dynamics of signaling molecules as well as a degradation of the molecule species.
More precisely, we use invariants of stress, strain or deformation tensors to trigger the production
of morphogens as discussed in Subsection[2.3.3]
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2 Continuum mechanics, active deformations and mechanochemical interaction

Initially, we have to specify the right function spaces to state the variational formulation of
our reaction-diffusion equations. So let us consider concentrations of signaling molecules c;
and a test function ¥ with ¢;, ¥ € Vo), where Vo) was the Sobolev space of functions with
first, generalized derivatives in L*(Q(7)) that we defined in Eq. . Further, let us assume
that the concentrations c¢;(x, t) are differentiable in time for ¢ € [0, T] to derive a variational
formulation that is weak in space and strong in time. We prefer this formulation since it is more
convenient when discretizing our reaction-diffusion equations with the implicit Euler method.
More details are given in Chapter [3] Then, our prototypical reaction-diffusion equations in
variational, Eulerian formulation read:

Find concentrations of signaling molecules ¢;(x,?) € Vg, with initial conditions c;(x,0) =
Y(x) such that it holds

oci(X, Y + (V(X,1) - V)e;(X, 0 + DVci(x, 1) - Vi — Ri(c;(x, )y dx = 0, (2.34)
Q(1)

for all test function ¢ € Vq(. Here, v(x,1) € VSdZ(t) with av € (H™'(Q(1)? is the velocity
of the moving domain. Next, D € R4 4 = 2.3 is the diffusion coefficient tensor, which
is specified below. The coupling term R;(c;) contains the degradation and the production of
signaling molecules, the latter depending on mechanical cues such as stress, strain or stretch,

and is introduced in Subsection

The Lagrangian coordinate system is the natural framework for structural mechanics and the
system of choice when using the deformation gradient decomposition to implement growth. This
was a key observation in including active deformations, see Section [2.2] Thus, we transform
Eq. (2.34) from the Eulerian to the reference framework using the transformation (2.4)), the
transformation for the time-derivative and the transformation of the gradient (2.5), which
yields

f Joci(x(X, 1), ¥ + JDF T Ve;(x(X, 1), 1) - F VY — JRi(ci(x(X, 1), )¥ dX = 0,
Q

for all test functions ¥ € V. Note that we skip the index of the function spaces if we state
the equations in the reference configuration Q. Then, we simplify the notation by C;(X,1) =
ci(x(X, 1), 1), drop the arguments and replace F~7 by its adjoint operator F~! such that our pro-
totypical reaction-diffusion equations in Lagrangian coordinates read: Find morphogen concen-
tration C; € V with initial conditions C;(X,0) = C?(X) such that it holds

f JO,C¥ + JET'DFTVC; - V¥ - JR¥dX =0 V¥eV. (2.35)
Q

Sufficient regularity provided, we can integrate by parts and use the fundamental lemma of
calculus of variations (cf. Gelfand [44} p. 9] (Lemma 1)), which yields that Eq. (2.35)) is almost
everywhere equivalent to the reaction-diffusion equation in the strong formulation, which reads:
Find concentrations C; of signaling molecules with initial conditions C;(X,0) = C?(X) such

that it holds
J8,C; =V - (JF'DFTVC) - JR(C)) =0 inQ. (2.36)
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Figure 2.4: Simulation snapshot of the tensor invariant det(F) in the reference configuration for
pattern formation by a feedback loop including basal constriction (wedging) of the
tissue cells and stretch (yellow to red) as the tissue response.

The diffusion coefficient tensor

In our approach, we use the diffusion coefficient tensor D € R9*¢ to prescribe a large diffusion
coeflicient in normal (or radial) direction and a small one in the direction tangential to the tissue
sphere. This choice is motivated biologically to ensure free diffusion in radial direction inside
our biological cells, whereas a small diffusion coefficient in tangential directions limits diffusion
between cells, where the cell-membrane and the intra-cellular space often act as a (selective)
diffusion barrier. Mathematically speaking, morphogen is only produced in those parts of the
biological cells where stress, strain or stretch modulate its production through the coupling term
R; = R(X,E,F,C;). Here, large radial diffusion helps to reduce local concentration gradients.
On the other hand, comparably small tangential diffusion rates ensure that patterns remain lo-
calized and are not blurred. This is essential in the three-dimensional regime, since patterns are
either strongly localized or vanish for simple, isotropic diffusion (D = kplI with kp > 0).

As an example, let us consider pattern formation based on the active constriction of the basal
(outer) side of the tissue cells and stretch modulated morphogen production: Regarding Fig.
[2.4] morphogen is produced in the apical (inner) stretched parts (orange) of the biological cells
only. Then, our diffusion coefficient tensor ensures free diffusion in radial direction N inside the
biological cells. On the one hand, this leads to a realistic diffusion behavior in radial direction,
on the other hand uniform, radial morphogen concentration results in a realistic apical/basal
constriction of the biological cell along the radial axis. We compare the stretch and the resulting
morphogen concentrations in the deformed Eulerian configuration in Fig.
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2 Continuum mechanics, active deformations and mechanochemical interaction

We are aware of the fact that this approach is inexact on the cellular scale: In tangential direc-
tion, diffusion spreads at the same speed inside a cell as across cell boundaries. Yet, this is not
a critical simplification to obtain patterns since we demonstrate that pattern formation is stable
with regard to significant changes in the diffusion rate, e.g. see Fig. Notably, our results
are confirmed by an enhanced approach where we integrate the mechanical feedback over each
biological cell where we locally prescribe uniform morphogen production, see Subsection|2.3.4
This approach is more accurate on the cellular level since we have (almost) instant diffusion
inside biological cells togehter with small diffusion rates to account for inter-cellular diffusion.
Nonetheless, the final stationary results strongly resemble those obtained in this simpler mod-
eling approach which requires less numerical effort, since we do not have to evaluate integrals
over each biological cell in every time-step, which is numerically costly in 3D. Finally, we point
out that we are primarily interested in results on the tissue scale, although we find it fruitful to
consider the cellular level in the description of active deformations.

So let us consider the reference configuration where we prescribe individual diffusion rates Dy
in normal (or radial) Lagrangian direction N = [X|~!X of the tissue sphere and Dy in tangential
Lagrangian directions T and T, see again Fig. 2.4] This yields the diffusion coefficient tensor

D = Q7 diag(Dx, D1, D1)Q, (2.37)

where diag(Dn, Dt, D) is expressed in the point-specific coordinate systems given by the unit
vectors {N(X), T{(X), T>(X)}. The tensor Q(X) is the transformation of the Cartesian coordi-
nates to these systems. In matrix notation, they read

Dy 0 0 N N> N3
diag(DN,Dt,D1)=| 0 Dy O [and QX)=|Ti;1 Tio Ti3]|.
0 0 Dr Tr1 Top Tr3

Indeed, the tensor D results in the desired diffusion if it is included in Eq. (2.33) (we neglect J
here to simplify the presentation). This can be seen as follows:

f DNaNC,-aN‘I’ + DT(')T, C,'(?TllPdX + DTaTZCiaTzlP dX

Q

= f DN(N - V)Ci(N - V)¥ + Dp(T; - V)C(T; - V)¥ + Dr(T, - V)Ci(T, - V)¥ dX
Q

= f diag(Dn, D1, D1)QVC; - QV¥ dX,
Q

where simple reformulations and the definition of Q are used. Using the adjoint matrix Q7
yields the proposed diffusion coefficient tensor.

In two dimensions, we analogously prescribe different diffusion rates Dy in normal (or radial)
Lagrangian direction N = IX|"'X and Dy in tangential Lagrangian direction T = X' (-X2, X)).
This yields the diffusion coefficient tensor

D = Q" diag(Dn, D1)Q,

where
Dn N, Nz) 1(X1 Xz)

. 0
diag(Dn, Dt) = ( 0 DT) and Q(x) = (Tl T,) ~ ﬁ -X X
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2.3 Mechanochemical interaction

2.3.2 Coupled system of prototypical equations

Eventually, we can assemble our system of prototypical equations, which we use to model
mechanochemical pattern formation in biological tissue. For this purpose, we combine our
structural equation (2.33) including active deformations (growth) with our reaction-diffusion
equations (2.36) that model the dynamics of mobile molecule species.

Quasi-stationary system

So far, we have neglected an important consequence of the deformation gradient decomposition
as introduced in Subsection [2.2.T} Implicitly, once we combine our equations, the timescale
of growth and the timescale of elasticity are also separated. In our biological setting, growth
takes place over a timescale of several days whereas the elastic material response occurs within
seconds. That is, the timescale of active deformations #, is significantly larger than the elastic
timescale 7,. Note, that the timescale of active deformation coincides with the timescale of
morphogen dynamics by construction, since the active deformation gradient F,(¢,C1,---,C;)
(linearly) depends on the concentrations C;, i = 1,--- , n. Ultimately, there are thus two different
timescales with

t, < tg.

Obviously, we are interested in long-term active deformations (growth) rather than in (compa-
rably high frequent) oscillations on the elastic timescale #,. If we were interested in the elastic
behavior of our tissue, we would have to resolve this timescale by very short time steps, which
significantly increases the computational costs. The alternative of performing large time steps,
however, would be numerically unstable. Moreover, the structural equation and the reaction-
diffusion equations are strongly coupled, which adds to the difficulty and rules out splitting
approaches, i.e. of solving the equations independently.

We propose a monolithic approach: Instead, our idea is to neglect the second time derivative
in the structural equation to the greatest possible extend by regarding it as a stabilization term
e(k)p o, with e(k) < 1 depending on the discretization parameter k in time, and to solve the
system as a whole. This modification is significant, since we change the character of our system
from purely parabolic equations to a system of differential algebraic equations (DAE) with an
elliptic structural equation. The numerical instability is thus a product of the different timescales
in conjunction with the strong coupling of the equations. In particular, this instability requires
numerical stabilization as discussed in Section[3.3]

In summary, we obtain a quasi-stationary system, where the structural, elastic equation is
stationary and immediately adjusts to growth induced by changes of concentrations C;. Thereby,
neglecting the elastic timescale ensures that we do not observe unrealistic oscillations of the
biological tissue.

System of prototypical equations

Let Q c R, d =2,3bea (bounded) domain. Further, let the boundary 0Q of our domain be
split into three non-overlapping, i.e. disjoint parts 9Q = I'p UI'y UI'g, where Dirichlet, Neumann

45



2 Continuum mechanics, active deformations and mechanochemical interaction

and Robin boundary conditions are imposed, respectively. Then, our prototypical coupled sys-
tem of the structural equation (2.33) including active deformations and of the reaction-diffusion

equations (2.36) reads:

Find displacement u and concentrations of signaling molecules C;, i = 1,--- ,n with initial
conditions u(X,0) = 0, Ci(X,0) = C?(X) such that

-V-(FX)=0 in Q,
JO,.C;i—V-(JF'DF'VC)-JR =0 inQ,i=1,---,n
u=0 onlp,
FXN=G onI'y and
r(u, Vu,N) =0 onI'g
(2.38)

holds, where
o e 1
L=JF'TF’ X, =Atr(E)+2uE, E, = E(FZFE -1,
F,=FF,!, F=Vu+Il, J=det(F), J,=det(F,)

and where u, A are the Lamé constants as introduced above. Further, R; are the coupling terms
which incorporate the feedback of mechanical tensor invariants on morphogen concentrations
CiviaR, = R,(IX),I(E),I(F),Cy,---,C,). Vice versa, X(F,(t,Cy,- - - ,Cp)) allows for a reverse
coupling of morphogen concentrations C; on the active deformation process such as local tissue
growth or active cell-shape changes. The precise form of the coupling is discussed in the next
section.

In general, homogeneous Neumann boundary values are prescribed on the entire boundary
0Q. In some applications, it is also useful to implement surface forces G as Neumann boundary
conditions on I'y or Robin (slip) conditions r(u, Vu,N) on ['z. One example for the latter is
modeling a pipette in predictive numerical experiments for the symmetry breaking in Hydra,
where the pulling force by the pipette is specified on I'y and the glass body of the pipette is
incorporated by a Robin condition (cf. Subsection [5.4.2). In the applications presented in this
thesis, external volume forces are not considered and we set f = 0 in Eq. (2.33).

Finally, D € R% is the diffusion coefficient tensor that is expressed in matrix notation by

D = Q(X)! diag(Dn, D1)Q(X) for d = 2 and
D := Q(X)! diag(Dn, D1, D1)Q(X) ford = 3,

with a diagonal matrix containing the diffusion coefficient Dy in normal (or radial) Lagrangian
direction N = |X|"'X and the diffusion coefficient Dy in the tangential directions T; and
T, (or just one direction T in 2D). The rotation matrix Q7 transforms the diagonal matrix
diag(Dn, DT, Dt), which is defined in the point-specific coordinate systems given by the orthog-
onal unit vectors N(X), T{(X) and T,(X), to Euclidean coordinates. This choice is biologically
motivated, as a large coefficient Dy in radial direction ensures free diffusion inside the biologi-
cal cells, whereas a small coefficient Dy limits diffusion between biological cells (at least on the
tissue scale), see Subsection [2.3.1] for details.
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Note that in practice, the initial conditions u(X,0) = 0, C;(X,0) = C?(X) are incompati-
ble, since the initial displacement u(X, 0) corresponding to the prescribed initial concentrations
C?(X) is usually unknown and set to zero. Hence, it takes a few time steps for the deformation
and the concentrations to adjust. The compatibility of initial conditions and the setup of the
parameters above are discussed in detail for each application, namely growth processes in tips
of colonial hydroids, embryonic development, and symmetry breaking in Hydra, see Sections

[5.21[5.3]and [5.4] respectively.

2.3.3 Coupling

We designed our prototypical, coupled system of equations to be a framework for inves-
tigating mechanochemical pattern formation in a wide range of model organisms. The center-
piece of the mechanochemical interactions in this framework is the coupling between structural
mechanics and morphogen dynamics. Based on recent experimental data, we present simple
positive feedback loops: Firstly, we show how morphogen leads to active cell shape changes via
the active deformation gradient ¥, = F,(¢,Cy,--- ,C,). Secondly, we propose a novel coupling
based on the invariants of stress, strain and stretch tensors on the morphogen production. In
this context, we give an overview of tensor invariants that are well-suited as mechanical feed-
back and we obtain coupling terms of the form R;(/;(X)), R;(I;(E)) , R;(I;(F)) for invariants
I;(:), j=1,---,d. Finally, we illustrate how these mechanochemical couplings form positive,
self-energizing feedback loops which lead to pattern formation.

In this thesis, we mainly consider morphogen-induced active apical/basal constriction (wedg-
ing) or active apico-basal shortening (thinning) of biological cells in conjunction with stretch-,
strain- and compression-based feedback on the morphogen production. Finding such combina-
tions of active deformation tensors and mechanical invariants is vital to obtain mechanochemical
patterns. Clearly, the choice of the active deformations and the mechanical feedback depends on
the application at hand: On the one hand, only certain active deformations might be observed in
(parts of) the organism under consideration. On the other hand, the elastic response due to these
active deformations dictates the shape of the tensor invariants. This shape of the mechanical
tensor invariants is crucial to find suitable feedback loops. Further implications of these choices
and how feedback loops for a model organism are found are discussed in the context of this
subsection.

Eventually, we have implicit couplings in both the structural and the reaction-diffusion equa-
tions. In the latter, they appear in the transformation from Eulerian to Lagrangian coordinates in
terms of F and its determinant (compare Eq. (2.35) and Eq. (2.34)). In the structural equation,
implicit couplings in terms of F,(¢,Cy,--- ,C,) also stem from transformations, namely from
those transformations between the Eulerian, the intermediate and the reference configuration

(cf. Eq. @31)).

The following paragraphs are strongly related to the derivation of the coupling in our publi-
cations Brinkmann et al. [[20] and Mercker et al. [[103]. Yet the models and calculations were
restricted to 2D cross sections in the latter work. Here, the discussion is extended to a more
general setting including strain- and stress-based mechanical feedback, a larger set of suitable

47
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tensor invariants and active deformations such as apico-basal shortening (thinning) of biological
cells.

Coupling of morphogen on active deformations of (discrete) biological cells

In experiments, signaling molecules have been shown to influence the mechanics of biological
cells in various ways, namely by local tissue growth, modifications of stiffness properties or
active cell-shape changes [[12}(17}32}58]]. These processes can be anisotropic or can be restricted
to just one of several cell layers. In our applications, we mainly consider morphogen-induced
basal/apical constriction (wedging) and apico-basal shortening (thinning) of biological cells,
since these are commonly observed deformations during morphogenesis, see [89} 98, |115,|118]]
and [31}, {123} [139].

Clearly, the choice of the active deformation gradient depends on the application. In short, we
prescribe basal/apical constriction for embryogenesis and apico-basal shortening for symmetry
breaking in Hydra. The former results in a change of the tissue curvature by a constriction of
the outer/inner sides of the biological cells. Apico-basal shortening results in a local thinning
of the tissue. Our approach is flexible and simple isotropic or anisotropic growth as well as
growth in just one (of several) cell layers to obtain curvature via a “bimetal effect” are also
shown to lead to pattern formation (cf. Chapter [5). To complete the presentation, we also
discuss combinations of active deformation tensors such as basal constriction with apico-basal
shortening. The latter combination of deformation processes can actually be observed in nature,
e.g. in the fish Brachydanio rerio, see Davies [31]] (Chapter 18).

In morphogenesis, it is a common assumption that morphogen concentrations lead to local
remodeling of the cytoskeleton and thus to local, active cell-shape changes [1,|104} 120]. Math-
ematically, this implies the direct coupling of morphogen concentrations with the active defor-
mation gradient, namely we prescribe morphogen-induced active deformations via

Fa = Fa(t, Cy,--- ,Cn)-

In general, we consider active cell-shape changes of individual, biological cells, which results
in a piecewise definition of the active deformation gradient (see Eq. [2.26). We believe that a
piecewise description of active deformations is more precise on the cellular scale and numeri-
cal simulations reveal that larger deformations on the tissue scale (such as gastrulation events)
are only obtained for piecewise-defined, active deformation gradients. Yet, mechanochemical
pattern formation based on continuously defined active deformation tensors is also possible in
the presented framework. Since we are interested in pattern formation on the tissue level, we
do not resolve any sub-cellular structures. Apart from piecewise-defined active deformations,
our approach remains continuous in general. One exception is an enhanced approach where we
integrate the mechanical feedback over each biological cell separately and prescribe constant
morphogen production (essentially free diffusion) inside these cells. This approach is more ac-
curate on the cellular level and presented at the end of this chapter. The precise form of the
implemented active deformation tensors depends on the application at hand and is specified in
Chapter [5]

Notably, the overall deformation is then determined by the elastic material response F,, which
ensures the continuity of the overall deformation.
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Overall, we consider the following direct coupling of morphogen concentrations C; on the
elastic material law
L = L(F,) = Z(FF, (1, C1, -+, Cy)

and thereby on tissue mechanics via
X = J,F, 'S (FF,'(1,Cy,--- ,C,)F,".

These interconnections are implemented in our prototypical system of PDEs (cf. Eq. (2.38)).

Mechanical feedback on the morphogen production

A main accomplishment of this work is the development of positive feedback loops that are
based on a novel coupling of mechanics tensor invariants on the production of morphogens via
the coupling terms R;. Mechanosensitive mechanisms controlling chemical cellular processes
have been extensively studied in biological experiments within the last decade, see e.g. [37, 95].
Indeed, many recent studies emphasize the active involvement of mechanics in pattern formation
(13} [24) |35, 105, |117]. Namely, stress [90, (116} |117]], strain [94} [153]] and stretch/compression
[20, |24, 79, |105]] have been shown to influence morphogen dynamics.

Clearly the mechanical tissue response (to active deformations) on morphogen dynamics has
to be objective (frame-indifferent). In particular, this means that the response should not depend
on the choice of an observer and should not change under rotations of the coordinate system.
In Subsection [2.1.4] we saw that the second Piola-Kirchhoff stress tensor X, the deformation
gradient F and the Green-Lagrange strain tensor E are objective. We choose the second Piola-
Kirchhoff stress tensor X from the available, objective stress measures since it is given in the
reference configuration just as our prototypical equations. Importantly, invariants of these frame-
indifferent tensors are also objective: They are scalar measures of stress, strain and stretch and
have the same value regardless of the choice of an observer. Thus, invariants of these tensors are
well-suited for a mechanochemical feedback on the production of signaling molecules. Overall,
our coupling term takes the form

Ri(I;(X), I;(E), I;(F),Cy,---,Cp), j=1,---,d. (2.39)

It is objective for invariants /; of the objective tensors X, F and E. Suitable feedback loops based
on these tensor invariants are presented in the next subsection. Details on tensor invariants and
objectivity are given in Subsection [2.1.4] or in literature, see e.g. Ciarlet [27] (Section 3.5) or
Holzapfel [66] (Section 1.4).

In practice, the tensor invariants are included in the reaction-diffusion equations using the
Michaelis-Menten kinetics (cf. Murray [[109] (Chapter 6) or Brockmann [22]), which yields

max{/;(-), 0}

Ri(I;(),C}) = k> ky, + max{/;(-), 0}

- kG, j=1--.d, (2.40)

with positive constants ki, ks, k, > 0. Here, k| represents a constant degradation rate of the
morphogens in the entire tissue and the Michaelis constant k,, describes the value of /;(-) where
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2 Continuum mechanics, active deformations and mechanochemical interaction

tissue mechanics

active deformation __—i:* I;(%),I;(E),
Fo(Cr,--,Ch) 1;(F)
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s

morphogen

morphogen dynamics

Figure 2.5: Schematic view of our positive feedback loops (similar to our publication [[103]).
Continuous arrows indicate explicit model assumptions, dotted arrows depict the
passive material response to the active deformations.

half of the maximal production rate k; is reached. The nonlinear form of the production term
results in convergence towards the maximal morphogen production rate k; for large values of the
employed tensor invariant /;(-). This saturation effect of /(-)-induced morphogen production is a
common, biochemical modeling assumption due to existence of maximal production and trans-
lation rates for gene products, see again Murray [109]] or Brockmann [22f]. Correspondingly,
numerical tests show that the Michaelis-Menten kinetics are essential to bound the concentra-
tions of signaling molecules in our positive feedback loops (cf. Fig[2.5) and thus to control the
deformations. In summary, the Michaelis-Menten kinetics balance production and degradation
rates such that stationary, mechanochemical patterns are obtained and prevent the system from
developing non-biological singularities.

Note that in a more general setting, there can be further coupling terms in R;. For instance, we
might consider reactions with other morphogen species of concentrations Cy for k € {1,--- ,n}
as well.

Positive, mechanochemical feedback loops

In our coupled system of equations, mechanochemical patterns are formed by positive feedback
loops as sketched in Fig. [2.5] We published suitable feedback loops in Brinkmann et al. [20]
and in Mercker et al. [103]], with the restrictions to stretch-based loops and to 2D cross-sections
of the tissue sphere, respectively. Here, these works are extended by feedback loops based on
strain and stress in combination with active, apical/basal constriction or apico-basal shortening
of biological cells in three dimensions.
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2.3 Mechanochemical interaction

Our feedback loops are based on two experimentally motivated assumptions:

e [ocal morphogen levels lead to active, apical/basal constriction (or elongation) of individ-
ual, biological cells [98]] (which again leads to local stretch/compression, strain and stress
due to the elastic response of the biological tissue); and

e [ocal stretch/compression [[79} /116, strain [94,|153]] or stress [90, |117] induce local mor-
phogen production.

By construction, these feedback loops are self-energizing, which we have indicated by the “+”
signs in Fig. The Michaelis-Menten kinetics (cf. Eq. (2.40)) ensure that the morphogen
production becomes constant for large deformations, which slows down pattern formation. In
conjunction with the concentration-dependent morphogen degradation (indicated by “-") we
eventually obtain global, stationary solutions. The only exception are gastrulation events which
involve significant geometry changes of the tissue sphere and, at first, do not result in stationary
solutions. In these cases, we show that an internal pressure modeling the fluid that is contained
inside the tissue sphere stops the invagination process and leads to stationary solutions once
again. Details and results on an internal pressure are presented in Subsection[5.3.5]

In the following, we give a short overview of suitable, positive feedback loops that we consider
in this work. These feedback loops lead to de novo pattern formation and were obtained by
extensive numerical simulations. As previously discussed in this section, the choice of the active
deformation tensor depends on the application at hand.

(A) In our application to embryogenesis we prescribe apical/basal constriction. This active
process leads to spontaneous and robust mechanochemical pattern formation in conjunc-
tion with mechanical feedbacks (as implemented in Eq. (2.40)), if they are based on the
following invariants:

(1) The trace of the Green-Lagrangian strain tensor /;(E) = tr(E), which represents the
hydrostatic strain;

(2) The determinant of the deformation gradient I3(F) = det(F), which has the physical
interpretation of compression or stretch. More precisely, det(F) = d“{’g) is the ratio of
the deformed volume element dv(¢) to the initial one dV;

(3) The determinant of the elastic second Piola-Kirchhoff stress tensor /3(X) = det(X),
which has no direct physical interpretation; and

(4) The second, deviatoric tensor invariant of the second Piola-Kirchhoff stress tensor
I>(X), which is often used to predict yielding of materials under loading (von Mises
yield criterion).

In the following, we term these four feedback loops based on the mechanical feedback
they involve as “stretch-/compression-mediated feedback™ (1.), “strain-mediated feed-
back” (2.) and “stress-mediated feedback” (3.), (4.), respectively. In Chapter 5| we demon-
strate that these simple, positive feedback loops indeed lead to spontaneous (de novo) and
robust mechanochemical pattern formation.
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2 Continuum mechanics, active deformations and mechanochemical interaction

Alternatively, positive feedback loops based on active deformations such as isotropic
growth in just one cell layer (“bimetal effect”) or continuously defined active deformations
also lead to pattern formation (in combination with stretch- or strain-based mechanical
feedback). For the sake of a clear and brief presentation, these active processes are not
considered in this thesis. Interestingly, large deformations such as gastrulation could not
be observed for continuously defined active deformation tensors in our numerical tests.

(B) In the application to symmetry breaking in Hydra we prescribe apico-basal shortening
of the biological cells. Due to this active deformation, the biological cell shortens in
radial direction and enlarges in the tangential ones. These relative length changes are
well-described by the concept of strain. Thus, it is not surprising that this active process
leads to spontaneous and robust mechanochemical pattern formation in conjunction with
strain-based mechanical feedback (2.40), where we use the trace of the Green-Lagrangian
strain tensor /1(E) = tr(E). Physically, this invariant measures the hydrostatic part (i.e.
the diagonal) of the strain tensor.

lllustration: How positive feedback loops lead to pattern formation

The mechanochemical feedback loops presented above have the capacity to spontaneously create
mechanochemical patterns. As an example, let us consider a stretch-mediated feedback loop
based on active basal constriction as illustrated in Fig. [2.6] Here, mechanochemical patterns
develop for the following reason:

Once morphogen concentrations or the tissue stretch is locally inhomogeneous (e.g. due to
the initial conditions) both morphogen and tissue curvature locally amplify each other. On the
one hand, local morphogen levels lead to basal constriction of the biological cells (illustrated by
red arrows in the top left Fig. 2.6). On the other hand, the elastic tissue response to these active
deformations has to ensure the continuity of the overall deformation. In particular, this intro-
duces stretch/compression in the lower/upper halves of the cells (cf. the stretched/compressed
parts (orange/blue) in the top right of Fig. [2.6). In turn, this stretch results in morphogen pro-
duction which completes the circle of our mechanochemical feedback loops. In developmental
biology, the latter process is known as “short range activation”. As a result of these interactions,
patterns of co-localized mechanical stretch and morphogen concentrations emerge. Eventually,
the morphogen concentrations saturates due to the Michaelis-Menten kinetics which leads to
stationary solutions.

The “long-range” inhibition, i.e. the inhibition of pattern formation in the proximity of active
patterns, is mainly constituted by tissue mechanics: As soon as the tissue is locally curved, in
oder to maintain continuity, the surroundings of the curved patch have to be passively bent into
the opposing direction. In the transition zone, however, this results in little curvature and pre-
vents active deformations from inducing stretch here. Hence, a significantly smaller, continuous
elastic response is necessary here in comparison to actively deformed regions. Consequently,
there is little morphogen production, which is consumed by the degradation rate, in the (light-
blue) passively bent areas. In the regions of activity, however, large and possibly discontinuous
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active deformation
(basal constriction)

/issue response det(F)
(stretch /compression)

morphogen
production
(a) Morphogen concentration C (b) Tensor invariant det(F)

Figure 2.6: Schematic view of our positive stretch-mediated feedback loop, similar to Fig. 1 in
our publication [20]]). Local accumulation of morphogen leads to active constriction
(red arrows) in biological cells (green), which leads to stretch (det(F) > 1) due to the
elastic material response, which in turn leads to morphogen production.
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2 Continuum mechanics, active deformations and mechanochemical interaction

active deformations require a strong elastic response that results in stretch and triggers our feed-
back loop (compare the light-blue areas and the red/orange ones in Fig. 2.6).

By the same mechanism of mechanical long-range inhibition, strong patterns or well-located
combinations of weak patterns can dissolve smaller ones.

Suitable combinations of feedback loops can be found by numerical tests: Initially, we pre-
scribed an active deformation that is commonly observed in the model organism under consid-
eration, e.g. apical/basal constriction observed in embryogenesis. Next, we analyze the me-
chanical feedback to these active deformations by visualizing all tensor invariants listed above.
Usually, we pick mechanical cues that are perfectly co-localized with the morphogen patches
and test the full feedback loop on 2D cross-sections. By design of our implementation, we can
simply switch with any promising model to the full 3D geometry (which is numerically costly)
to conduct further numerical studies.

Remark: As described above, we use different diffusion rates to distribute local morphogen
levels inside the biological cells. We are aware that this diffusion mechanism is inexact on the
cellular level since concentrations gradients in tangential directions can remain inside biological
cells and diffusion across cells boundaries can be as fast as inside cells (cf. Fig. [2.6). Yet,
we point out that we are rather interested in pattern formation on the tissue scale and resolve the
cellular level only when necessary (namely in modeling active deformations) to reduce computa-
tional costs. Nevertheless, we present an enhanced approach that is more accurate on the cellular
level since we integrate the mechanical feedback over the biological cells in the next subsection.
At the same time we stress that this enhanced model is not essential to obtain patterns. On the
contrary, we observe that our usual approach is robust to large changes in the diffusion rates and
that both models produce (almost) identical results.

2.3.4 Enhanced model: Integrate mechanical feedback over biological cells

Finally, we present an enhanced model where we integrate the tissue response over each bio-
logical cell. Here, we prescribe a constant morphogen production rate on each biological cell
that depends on the average mechanical feedback integrated over this cell. In practice, we inte-
grate the mechanical cues that we compute from the previous time-steps. This approach is more
accurate on the cellular level: On the one hand, we have free (almost instant) diffusion inside
the biological cells. On the other hand, diffusion is no longer required to distribute morphogen
inside the biological cells and we can freely choose inter-cellular diffusion rates to influence
the size and the number of biological patterns. The latter property reflects the influence of the
cell-membranes and the intra-cellular space which often act as a (selective) diffusion barrier.

An alternative approach that might result in similar observations are discontinuous Galerkin
methods, which allow us to model one concentration variable for each biological cell. This
interesting approach is more precise on a cellular level as well. However, it requires significant
changes in our implementation and is thus postponed to future research.

In our enhanced approach, we assume that morphogen is only expressed if the mechanical
feedback exceeds a given threshold: First numerical tests revealed that integrating the mechani-
cal feedback over biological cells alone is not practical, since tiny mechanical feedback in parts
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2.3 Mechanochemical interaction

of a cell is transported to the whole cell via integration. That way, any pattern spreads over the
whole tissue sphere. We circumvent this obstacle by introducing thresholds for the expression of
morphogen: Indeed, target genes in a biological cell are only expressed if morphogen concentra-
tions in this cell are above a certain threshold, or, vice versa, “morphogens are able to induce or
maintain the expression of different target genes at distinct concentration thresholds.” (Gregor
et al. [51]]).

Mathematically, we proceed as follows: On each biological cell K;, we integrate one of the
suitable tensor invariants /;(X), j = 1,--- , n describing stretch, strain or stress that we listed for
our usual approach, see Subsection Then, the mechanical feedback 7. integrated over
the biological cell K; is given by

Ty, = f I[(X)dX
K.

As explained above, we include our mechanical feedback using the Michaelis-Menten kinetics
(cf. Murray [109] or Brockmann [22]]). Further, we assume that morphogen is produced if a
threshold THRES of target genes is exceeded. In our implementation, we do not model gene
activity explicitly but rather imply that genes (and morphogens) are expressed due to mechanical
stretch, strain or compression. In our modeling framework, the coupling term in the reaction-
diffusion equation hence takes the form

T
ky—L — _k,C forI>THRES

RI,C)={ kn+I " (2.41)
-k C else,

with the positive constants ki, ks, k,, > 0 that were introduced above (cf. Eq. (2.40) for details).

Originally, we developed the idea of integrating the mechanical feedback for the stress-
mediated feedback loop. Here, the feedback is expressed in terms of the discontinuous first
Piola-Kirchhoff stress tensor X and is strongest in singular points in the corners of the active
biological cells. Integration smoothes this feedback and hence large diffusion rates to distribute
morphogens are obsolete in this enhanced approach.

Numerical simulations based on this enhanced model are presented in Subsection[5.3.6]
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3 Discretization

In this chapter, we present the finite element discretization of our coupled system of prototypic
equations (2.38)) that we introduced in Chapter [2] These equations are discretized by Rothe’s
method: Firstly, we discretize in time by suitable implicit time-stepping schemes which results in
a sequence of quasi-stationary PDEs. Secondly, these problems are discretized in space by finite
element methods (FE methods). The choice of Rothe’s method offers the practical advantage
that we can adopt the spatial discretization in between time-steps by local mesh refinement.
Finally, we present an extensive numerical convergence and stability analysis.

This chapter is subdivided into the following parts: In Section we present the variational
formulation (Galerkin formulation) of our prototypical system of PDEs modeling mechanoche-
mical long-term problems. Then, in Section we introduce the discretization in time by finite
difference methods: We employ the implicit Euler scheme for the discretization of the reaction-
diffusion equations modeling morphogen dynamics, whereas the second time derivative in the
structural equation is discretized by a two-step method. The latter temporal derivative in the
structural equation is considered as a stabilization term.

This stabilization is presented in Section [3.3| and tackles the instabilities, which stem from
the strong coupling of our system of equations, the different timescales of growth and elasticity
involved as well as the sole description of homogeneous Neumann values.

In Section [3.4] the discretization in space is in focus. The spatial discretization is based on
linear and quadratic finite elements (Q;- and Q»-FE) and a triangulation by quadrilaterals and
hexahedra in 2D and 3D, respectively.

Ultimately, in Section [3.5] we conduct a comprehensive convergence analysis and define a
quantity of interest to measure discretization and stabilization errors. As quantity of interest we
choose the coupling term based on mechanical tensor invariants of tissue mechanics on mor-
phogen dynamics. In 2D, we observe optimal quadratic and cubic convergence rates for linear
and quadratic (Q;- and Q»-) finite elements, respectively. In 3D, fewer mesh levels are available
due to the huge computational effort involved and Q,-FE are essential to efficiently reduce the
error in our quantity of interest.

Furthermore, we perform a stabilization analysis where we develop a guideline for choosing
the stabilization parameter. Following this guideline, we verify that the stabilization as well as
the temporal discretization error are well below the discretization error in space.

Lastly, we propose a local mesh refinement strategy to numerically resolve the discontinuous
material response in case of a stress-mediated feedback loop. Here, we demonstrate that adaptive
mesh refinement significantly improves the convergence of our solution approach.
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3.1 Galerkin Formulation

The Galerkin formulation of our system of prototypic equations is given by combining the struc-
tural equation (2.32)) and reaction-diffusion equation (2.35]), which were both derived in the weak
formulation. The mechanochemical coupling of these equations was discussed in Section
and is specified for each application at hand.

In the following, we derive the Galerkin formulation for our framework of prototypical sys-
tems of PDEs on the (bounded) domain Q c R?, d = 2,3. The boundary 0 of this domain is
split into three disjoint parts 0Q2 = I'p UI'y UT'g, where Dirichlet, Neumann and Robin boundary
conditions are imposed, respectively. Next, let V := H!(Q) be the Sobolev space of first, gen-
eralized derivatives in L?>(Q), where the latter space denotes the Lebesgue space of measurable,
square-integrable functions on Q. L*(Q) is even a Hilbert space with the scalar product and the
induced norm

1
(u, V)LZ(Q) = f uv an ||u”L2(Q) = (u’ u)ZZ(Q)‘
Q

Details on these spaces are given in literature, see e.g. Alt [2]] or Rannacher [125].

In the following, the L?-scalar product and its norm are used to simplify our notation, e.g. in
the definition of a quantity of interest to measure convergence. If the context is clear, we simply
denote the L?-scalar product by (-, )q.

With these preparations, the Galerkin formulation of our prototypical system of PDEs for test
functions @ € V¥ and P € V reads:

Find the displacement u € Vg = {v e V¢ Vlr, = 0} and the concentrations of signaling
molecules C; € V fori = 0,1,---,n with initial conditions u(X,0) = 0, C;(X,0) = C?(X) such
that

(00,u, D) + (FE,Vd)q — (G, D)r,, — (FEN, @), =0 Vb e V!

(J8,Ci, P)q + JF'DFTVC;, V¥)q — (JR;, P)q = 0 YY¥ € V and
3.1

fori =1, ---,nholds, where

1
r=JF'SF" X =AtuE)+2uE, E,= E(FZFE -,
F, =FF,(1,Ci,---,Cy)"", F=Vu+l, J=detw(F), J,=det(F,),

and where u, A are the Lamé constants. These tensors and constants were introduced above in
the derivation of the structural equation (cf. Eq. (2.32)). Next, R; are the coupling terms that
incorporate the mechanical feedback on morphogen dynamics. Vice versa, F,(t,Cy,---,Cp)
prescribes morphogen-induced, active deformations such as active cell-shape changes. The pre-
cise form of the coupling usually depends on the application at hand (e.g. see Fig. [2.6). Finally,
D € R is the diffusion coefficient tensor.

In general, homogeneous Neumann values are prescribed on the entire boundary Q. In some
applications, it is also useful to implement surface forces G as Neumann boundary conditions on
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3.1 Galerkin Formulation

I'y or Robin (slip) conditions r(u, Vu, N) on I's. For instance, we employ the latter conditions in
predictive numerical experiments modeling micropipette aspiration of biological tissue. In this
thesis, we do not consider external volume forces, so we set the right hand side in the structural
equation to f = 0.

To simplify the notation, we introduce the semi-linear elliptic differential operator a(u, C;)(®),
which is nonlinear in u and C; (due to the nonlinear dependency of X(C;) on C;) and linear in its
second argument and the semi-linear operator b(u)(C;, V) that are defined as

a(u’ Cl)(¢) = (FZ(Cl)e VQS)Q - (G’ Q)FN - (FZ N7 dj)FR

I (3.2)

b(u)(Cy,¥) = (JF ' DF ' VC;,V¥)q - (JR;,¥)q, i=1,---,n
These differential operators are particularly useful in the definition of the Newton residuals and
in the temporal discretization.

Note that this is a prototypical framework. We specify the equations, the active deformations,
the mechanical feedback and computational domain € for each application at hand. Namely,
we consider applications to growth pulsations in hydroid tips, embryogenesis and symmetry
breaking in Hydra (cf. Sections[5.2] [5.3]and[5.4] respectively).

3.1.1 (Dirichlet) boundary values

The main intention of this thesis is the modeling and derivation of efficient numerical methods
to solve prototypical systems of PDEs modeling mechanochemical long-term problems. In this
framework, we also consider the implementation of Dirichlet boundary values. In general, how-
ever, the location of mechanochemical pattern formation is a priori unknown, for instance in the
applications to embryogenesis or symmetry breaking in Hydra. Besides, numerical tests con-
firm that the prescription of Dirichlet values substantially influences pattern formation in these
applications: Either, the organism cannot produce patterns or the entire organism aligns symmet-
rically to the Dirichlet boundary if Dirichlet values are implemented. Furthermore, convergence
of our methods is only mildly improved by imposing Dirichlet values.

Nonetheless, Dirichlet values are well suited to model mechanical properties of an organism
in our application to growth pulsations in hydroids tips, where the computational domain covers
the tip of the growing hydroid stolon. Here, homogeneous Dirichlet values are prescribed on
the cutting surface towards the remaining body of the organism. More precisely, the soft tissue
layers (coenosarc) in colonial hydroids are surrounded by a rigid, organic skeleton (perisarc),
where the latter is assumed to be immobile in the cross-section to the remaining organism during
growth pulsations. The hydroid tip geometry including the boundary parts is illustrated in Fig.

(b).
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3.2 Discretization in time

We use Rothe’s method for the discretization of our coupled systems of PDEs. Rothe’s method
is based on discretizing first in time and then in space. Here, we focus on the temporal discretiza-
tion of our prototypical system of PDEs in variational formulation (3.I). The reaction-diffusion
equations modeling the dynamics of morphogen species are discretized in time via a one-step
6-scheme. Strictly speaking, we employ the backward Euler time-stepping scheme (i.e. 6 = 1),
which is an implicit and A-stable method. This discretization results in a sequence of quasi-
stationary, elliptic PDEs. In general, the implicit Euler method has convergence order one [[124].
Regarding the structural equation, we use a two-step method to discretize the second derivative
in time.

So let us assume that we solve our systems of parabolic PDEs over the time-interval [0, T'],
such that a stationary state is attained for t = T. Then, we introduce discrete points in time
to, 1,12, , Iy With

O=rn<ti<th<---<ty=T, ky=ty—tu1, k:= max k,
0<m<M
as well as the notation
u” =u(,tn), Cf'=Ci(tm),

fori=0,1,---,n.

With this notation at hand, our prototypical system of PDEs discretized in time by a two-step
method for the structural equation and by the implicit Euler scheme for the reaction-diffusion
equations reads: Find the displacement u” € Vg ={veV Vlr, = 0} and the concentrations
of signaling molecules C;* € V fori = 0, 1,--- ,n with initial conditions u’(X) = 0 and C?(X)
such that

o™ = 2u™! + w2 D) + K a@™, C)(P) =0 Ve V!

3.3
J(tn)(C = C' W) + kbW")(C, W) =0 YW eV, i=1,---,n, G

with the elliptic, differential operators introduced above. This discretization results in a semi-
discretized system that is equivalent to a dG(0) approach. A formal derivation of this equivalency
reveals, that evaluating the determinant of the deformation gradient J = det(F) at the current
time-step, i.e. at J(t,,), is a reasonable choice (cf. Richter [126]).

3.3 Stabilization by the time derivative

We face two main sources of numerical instabilities regarding our prototypical systems of PDEs
describing mechanochemical long-term problems:

Firstly, we are primarily interested in the timescale of growth (days) on the tissue level rather
than the timescale of the elastic material response (seconds), see also Subsection The idea
is to perform large time-step on the scale of growth on the one hand and to suppress non-physical
oscillations of the tissue on the elastic timescale on the other. Regarding the variational formu-
lation of our system of PDEs in Eq. (3.1), it is hence desirable to neglect the second temporal
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derivative in our structural equation, which results in a differential algebraic equation (DAE) of
an elliptic structural equation and parabolic reaction-diffusion equations (cf. Eq. (2.38). Yet,
this changes the nature of our system of PDEs which results in numerical instabilities due to the
strong coupling of our equations in conjunction with considering nonlinear elasticity. Indeed,
the strong coupling of our prototypical system of PDEs seems to be the main source of instability
in our numerical tests.

Unfortunately, the objectives of performing large time-steps while neglecting the elastic time
scale to prevent oscillations on the elastic timescale are incompatible.

Secondly, we highlighted another source of instability, namely the prescription of homoge-
neous Neumann values on the entire boundary, which introduces additional degrees of freedom:
By changing the nature of the structural equation to an elliptic one, our solution is only unique up
to rigid body translations and rotations. Assuming homogeneous Neumann values on the entire
boundary, however, is an indispensable prerequisite to obtain spontaneous pattern formation in
the applications to embryogenesis and symmetry breaking in Hydra as discussed in the previous
section.

As a compromise, we keep the second derivative as a stabilization term and pick a small stabi-
lization parameter to prevent unrealistic elastic oscillation. Hence, we regard the time derivative
in the semi-discrete system of equations (3.3) as a stabilization term only. In the following, we
hence consider a stabilized structural equation given by

ek’ (u" - 20" +u" 2, @) o aW”.Cl) @) =0 Yo eV, (3.4)

with the semi-linear differential operator a(u™, C")(®) defined above. Notice, that a stabiliza-
tion based on the time derivative implies a coupling of the time-step size and the stabilization
parameter. For instance, the size of the stabilization term is quartered if we halve the time-step
size in the two-step method discretizing the second derivative in Eq. (3.4). Accordingly, we
propose to quadratically scale the stabilization parameter with the time-step size by e(k) = k*e.

In the course of this chapter, we assess the impact of this stabilization in a comprehensive
stability analysis. In particular, we demonstrate that the stabilization error is indeed of the same
size as the discretization error in time for the choice e(k) = 0.1k2.

3.4 Discretization in space

The spatial discretization of our prototypical systems of PDEs is based on finite element meth-
ods. In the standard theory, the finite element discretization relies on discrete subspaces V, c V
of bilinear and biquadratic finite elements (Q;- and Q;-finite elements), where the solution to
our system of PDEs is approximated. For details on the finite element method and the discrete
spaces involved, we refer to literature (cf. Brenner & Scott [[18]], Ciarlet [28]] or Wloka [[154]).
In general, our tissue sphere (2 has a smooth but curved boundary, which cannot be matched
by the finite element mesh, i.e. Qj = Q. In particular, this implies V;, ¢ V and our finite element
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space is hence not conforming. Here, we do not go into details on non-conforming finite element
methods and the approximation of curved boundaries but refer to Braess [[14]] instead.

We partition our domain into a triangulation (or mesh) based on quadrilaterals in 2D and hex-
ahedra in 3D. In all our discretizations, these cells are disjoint and of similar size and shape. The
index 4 is used to identify discrete functions, function spaces and domains. Since an adaptive,
local mesh refinement strategy will be proposed, we explicitly allow hanging nodes, i.e. nodes
that are not shared by all surrounding cells. These properties are denoted as size, shape and
structural regularity of the mesh, see e.g. Ciarlet [28]] or Rannacher [[125]].

With these preparations, we formulate the finite element discretization of the prototypical
system discretized in time in Galerkin formulation (3.3). This algebraic system includes the
stabilization (cf. Eq. ( ) reads for suitable test functions @, € V}‘f and W, € Vj:

Find the dlsplacements u’” € Vd = {v, € Vl’f’m: Veryh = 0} and the concentrations of
signaling molecules C;, € V", i = O, 1, -+, n with initial conditions ug(X) =0, Ci4(X,0) = C?
such that

e’ (u) — 20 + w7 By)g, + K ap(u) Cl (D) =0 Vb, € V!

: ™ (3.5)
JR(Cly = CI W) + k() )(CY

\Ph)=0 V‘PhEVh,i=1,~~',n,

i,h°

where the the semi-linear forms ay(-, -)(-) and by (-)(:, -) are nonlinear in the arguments in the first
and linear in those in the second brackets and read

ap(wy’, C7))(@y) = (F'Z (), C7L), V@), — (G, Pp)ry, — (F'E] Ny, @)y,

(3.6)
DLW )(C ) = (P ED T DEDTVCE Vg, — (PR Ph)a,.

where

= @) En Fr )T, B, = Au(EN )L+ 2uEY, E, = ((th)Tth D),
Fr =F)@Er)™, Fy =vuy +1, J =de®})), JI, = det(F7)),

and where y, A are the Lamé constants. Here, R; ,(/(E™, F", ™), C!") are the coupling terms that
incorporate mechanical feedback on morphogen dynamics. Vice versa, K’ = Fo (1, CY),--- . Cl))
prescribes morphogen-induced active deformations such as active cell shape changes The pre-
cise form of the coupling usually depends on the application at hand (e.g. see Fig. [2.6). Finally,
D € R is the diffusion coefficient tensor.

3.5 Convergence and stability

In our applications, we mainly focus on the three-dimensional setting that is crucial to obtain
realistic mechanochemical tissue behavior such as gastrulation. Yet, considering the full 3D
geometry implies substantial numerical effort in order to guarantee a sufficient numerical reso-
lution of the biological cells in space. To assess the accuracy of our FE-approach, we hence rely
on an extensive convergence analysis in two dimensions.
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3.5 Convergence and stability

In the following, we demonstrate that convergence in space and time is assured, both in 2D
and in 3D. Further, we show that the stabilization error and the temporal discretization error
are well below the dominating discretization error in space, if the stabilization parameter scales
depending on the time-step size by e(k) = k’& (as proposed above). For our parameter setup, the
spatial discretization error dominates since employing additional mesh refinement requires huge
numerical effort and is only feasible for calculating a reference solution. Regarding stress-based
mechanical feedback loops, an efficient local mesh refinement strategy is proposed.

As a model problem, we consider the application to embryogenesis (cf. Section [5.3)), where
we reduce the Galerkin problem (3.1) to a single reaction-diffusion equation and the structural
one and prescribe homogeneous Neumann conditions on the entire boundary.

Quantity of interest

To evaluate the convergence and the stability of our approach, we first need to define a quantity
of interest to measure the discretization and the stabilization errors. In our model problem on
embryogenesis, we mainly focus on stress- and stretch-based mechanochemical feedback loops.
Hence, we pick the L*>-Norm of the mechanical coupling term R(I(X), I(F), C) in the reaction-
diffusion equation as our quantity of interest to measure convergence and stability of solving
our coupled systems. On the one hand, this term is the main driver of morphogen dynamics and
well suited to measure convergence in the reaction-diffusion equation. On the other hand, it is
composed of tensor invariants of the deformation gradient and the first Piola-Kirchhoff stress
tensor, which captures the elastic material response.

In the case of the stretch-mediated feedback loop, the mechanical response is based on the
determinant of the deformation gradient and the quantity of interest reads

max{det(F;) — 1, 0}
k,, + max{det(Fy) — 1,0}

Jr(p) = IRUFE) 20 = (3.7

L2 ’

where Fj, = Vu;, + 1 is the deformation gradient.

In case of the stress-mediated feedback loop, we evaluate the quantity of interest given by

max{det(X;), 0}
k,, + max{(X), 0}

Jep) = IRUaE)l2) = (3.8)

L2(Q) ’

where we refer to Section 2. Iffor the derivation of the second Piola-KirchhofT stress tensor X in
terms of the displacement u. To increase readability, we also express convergence by the relative

error in the quantity of interest |J () — J (Wrep)l ff(uref)_l.

Stationary solutions

To evaluate the discretization errors and the convergence rates, we compare our quantities of
interest in the stationary solutions obtained for different spatial and temporal discretizations. A
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3 Discretization

stationary solution is attained if the largest component of the Newton residual of our discretized
system of PDEs is smaller or equal to a given threshold, i.e. if

()P’ () — 2u~" + w2, By, + K ap(u), C)(Py)
JCr = Cr Wh)a, + kbyu)(C, W)

.....

) < THRES
loo

for d = 2,3, where the Newton residual is the right hand side in Newton’s method (cf. Eq. @))
and the threshold is chosen as THRES = 1078,

3D reference solution based on Richardson extrapolation

When considering the full 3D geometry, it is only practical to compute solutions on three mesh
levels due to the huge computational costs. An additional reference value in our quantity of
interest is computed by Richardson extrapolation [124]]: Assuming that we computed values in
our quantity of interest J (up,) (cf. Eq. for spatial discretizations hy > hy > -+ > hp, an
approximation of the limit J(ug.r) = lim,_0J (uy) for a finite element method of order g is
given by

Itun) - o) (1)

q
h;

- ()

For the moment, let us assume cubic convergence for Q, finite elements, which will be confirmed

by our numerical results in the two-dimensional setting. Further, we halve the mesh size A; to
obtain the finer mesh level A;.. In practice, this yields for the Richardson extrapolation

j(uo,ref) =

Jwy) - 3'(11/,21)(0-5)3

j(uo,ref) = 1 (05)3

3.9

3.5.1 Convergence in time

In our applications to pattern formation in biological tissue, we are interested in stationary solu-
tions to our strongly coupled system of prototypical equations. The temporal discretization error
is computed by comparing the stationary solutions obtained for different discretizations in time,
i.e. for different time-step sizes. Here, we focus on the stretch-mediated feedback loop, where
the discretization errors are measured in the quantity of interest based on the determinant of the
deformation gradient (cf. Eq. (3.7)).

In a stationary state, we expect only small errors in our quantity of interest for different dis-
cretizations in time. This hypothesis is confirmed by our numerical results: The discretization
error in time is well below the discretization error in space for the chosen time-step sizes as
shown in the context of our stability analysis in Table 3.3]and Fig[3.3] In this table, we observe
a convergence order in our quantity of interest for the discretization in time of only about 0.5. It
is indeed not at all obvious, which convergence order we can expect in our nonlinear quantity of
interest for a coupled system with a two-step method for the stabilization term in the structural
equation and an implicit Euler scheme discretizing the reaction-diffusion equation. Besides,
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3.5 Convergence and stability

the derivation of a priori error estimates for dynamic processes based on strongly coupled sys-
tems of PDEs including growth is immensely difficult and theoretical results are not available in
literature.

Regarding Table [3.3] time-step sizes of 2.5s in 2D (and 20s in 3D, result not shown) seem
a reasonable choice to balance the desire to perform large time-steps with the need of a small
time-step size. As discussed, small time-steps increase the stabilization and ensures a small
discretization error in time.

The huge number of time steps to obtain a stationary solution remains as a bottleneck. We per-
form adaptive time-stepping only in the first 10 to 50 Newton steps, where the initial distribution
of morphogen leads to large and quick deformations in the initially undeformed domain. Once
co-localized morphogen/curvature patterns evolve, constant and larger time steps are performed.

3.5.2 Convergence in space for O, and Q, finite elements

We analyze convergence in space for our model problem introduced above, which is based on
a stretch-mediated feedback loop including apical/basal constriction. The discretization error in
space is hence evaluated in the stretch-based quantity of interest (cf. Eq. [3.7). At this point,
we focus on uniform mesh refinement for Q; and O, finite elements. An adaptive local mesh
refinement strategy is introduced for the stress-mediated feedback loop and is presented at the
end of this chapter.

We discretize a 3D tissue sphere or a 2D cross-section of this sphere that are composed of
1536 and 128 circumferentially arranged biological cells of size H by quadrilaterals and hex-
ahedra of size 4 with 7 < H and Q; ~ Q. In each nodal point of the d-dimensional discrete
domain €, we have d degrees of freedom for the displacement u one degree of freedom for the
morphogen concentration C.

In Table we present the 2D discretization error and the convergence rates in our quantity
of interest. Further, in Fig. [3.1] we plot the convergence results in our quantity of interested over
the number of nodal points in a double-logarithmic plot. In particular, we observe quadratic
and cubic convergence rates (illustrated by the two black lines) for linear (Q;—) and quadratic
(@»—) finite elements. This results confirms the strength of our solution approach, since these
convergence orders are the best we can anticipate on domains with smooth boundaries. Besides,
theoretical convergence results for our strongly coupled system including active deformations
are extremely difficult to derive and not available in literature.

Regarding Table [3.1) we observe that quadratic finite elements are very efficient: Comparing
the third line for O,-FE with the fourth line for Q|-FE, we observe that quadratic finite elements
require one mesh level less to result in a similar discretization error in the quantity of interest.
Notably, the relative spatial discretization error for Q,-finite elements is even well below 1% on
all mesh levels.
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Figure 3.1: 2D: Plot of the error in the quantity of interest over the number of nodal points.

#cells  #points 0,-FE 0»-FE
AJup) — J (pep)l  conv. | (up) —J(apep)l  conv.
1 512 640 1.25e0 (15.11%) 8.60e-3 (0.1039%)
2 2048 2304 3.51e-1 (4.24%) 1.8  2.69e-2 (0.3251%) -1.6
3 8192 8704 5.47e-2 (0.69%) 2.6 7.35e-3(0.0888%) 1.9
4 32768 33792 8.69¢-3 (0.11%) 2.7  4.60e-4 (0.0056%) 4.0
5 131072 133120 1.98e-3 (0.02%) 2.1 5.75e-5(0.0007%) 3.0

Table 3.1: 2D: Error, relative error in % and convergence rate in the quantity of interest for uni-
form mesh refinement. The reference solution was computed using Q,-finite elements
and a mesh of 528 384 nodal points.
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Figure 3.2: 3D: Plot of the error in the quantity of interest over the number of nodal points.

#icells  #points 0,-FE 0,-FE

IAJup) = T ep)l conv. 1 |JWp) - TWep)| conv.  f

1 12288 18438 4.14e0 (23.1%) 0.7s 8.11e0 (45.2%) 1.2s
2 98304 122890 1.24e0 (6.90%) 1.7  49s 1.6le-1(0.90%) 57 14s
3 786432 884754 3.12e-1(1.74%) 2.1 721s  2.01e-2 (0.11%) 30 781s

Table 3.2: 3D: Error, relative error in % and convergence rate in the quantity of interest for uni-
form mesh refinement. Further, 7 is the average computation time per time-step. The
reference solution was obtained by extrapolation of the two finest Q,-approximations.
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3 Discretization

In Table [3.2) we show the spatial discretization error for Q- and Q»-finite elements for the
available spatial discretizations in 3D. Next, in Fig. we plot the convergence results in our
quantity of interested over the number of nodal points in form of a double-logarithmic plot.
Clearly, we observe convergence in our quantity of interest for linear and quadratic finite ele-
ments. Yet, it is difficult to make conclusions regarding the convergence rates in our full 3D
solution approach, since only three mesh levels are available. In the light of our previous results
in 2D, it is reasonable to assume that we have cubic convergence for O, finite elements since we
simply transfer our model to the full smooth 3D tissue sphere. With this convergence order at
hand, a reference solutions can be obtained by Richardson extrapolation, see Eq. (3.9).

In Table we see that a relative error in our quantity of interest is below 1% for quadratic
finite elements only. In particular, we observe that the spatial discretization error for quadratic
finite elements is one magnitude below the error for linear finite elements in the last two lines.
At the same time, the computational costs only increase by factor 1.5 if Q- instead of Q;-finite
elements are considered (cf. the second last line in Table [3.2). On the other hand, solving on
finer meshes significantly increase the numerical effort, particularly in 3D: For instance, the
computation times increase almost by factor 15, if we solve our systems of PDEs for Q;-FE on
the finest mesh level instead of the second finest one, see Table

In summary, our convergence analysis shows that quadratic finite elements are our discretiza-
tion of choice if the full 3D geometry is considered. The presented approach is efficient and we
observe fast, quadratic and cubic convergence for linear and quadratic finite elements.

3.5.3 Stabilization error

In Section [3.3] we introduced a stabilization of the structural equation to improve the condi-
tioning of our system matrix and the convergence of our solution approach. Here, we do not
only determine the size of the stabilization error but also give guidance on how to choose the
intensity of the stabilization term, i.e. how to pick the factor (k) based on time-step size k in
the structural equation. Due to the huge computational effort in three dimension, we restrict
ourselves to the discretization by Q,-finite elements for our model problem in two-dimensions.
Corresponding calculations in 3D confirm that the stabilization and the temporal discretization
error are three, respectively two scales below the dominating spatial discretization error for our
standard parameter setup.

In Table [3.3] we list the stabilization error measured in our quantity of interest for decreasing
the stabilization parameter and for a fixed discretization by (Q,-finite elements such that the
spatial discretization error does not change. As a reference, we compute a stationary solution
us, " for a very small stabilization term with € = 10~*. Regarding tissue development, we hence
focus on the timescale of growth and neglect the timescale of tissue elasticity to the greatest
possible extend. In Fig. [3.3] we see that € = = 0.1 is indeed a reasonable choice, which
ensures that the discretization error in space remains the dominating error term for all three
time-step sizes k € {2.5s, 1.25s,0.625s} and a fixed discretization in space (cf. Table[3.3).

Notice however, that a stabilization term based on the time derivative implies a coupling of
the stabilization parameter to the time-step size. For instance, the size of the stabilization term
is quadrupled if we halve the time-step size in the two-step method which discretizes the second

68



0.1 ' T T T T ' 0.1 = T T '
r Stabilization F Stabilization

- L Discretization in time - L Discretization in time
@ 0.01 |- Discretization in space — @ 0.01 - Discretization in space —
ks [ ] ksl r 7
> 0.001 3 > 0.001 -
g ‘ 1 E i 1
© (1]
p} 3 L
o (o
o 0.0001 - - o 0.0001 - i
= = [ i
£ c
g 1e05 4 £ fe05 / -
L [ A1) [ ]

16-067‘ I T Ll Ll w\\i 16-067“ I Ll Ll Ll \w\i

0.001 0.01 0.1 1 10

Stabilization parameter

(a) For time-step size k = 2.5s

3.5 Convergence and stability

0.001 0.01 0.1 1 10

Stabilization parameter

(b) For time-step size k = 0.625s

Figure 3.3: 2D: Plot of the stabilization error over the stabilization parameter € for two different
time-step sizes and a fixed discretization by Q,-finite elements in space.

e(k) = €g #nodal points Error in |J (u}) — J (ug, f)l

k=25s k=125 k=0.625s

10 8704 5.66e-3 5.82e-3 5.77e-3

1 8704 6.96e-4 1.25¢-3 1.75e-3

0.1 8704 4.11e-5 8.78e-5 2.81e-4

0.01 8704 1.18e-5 1.00e-5 7.24e-5

0.001 8704 1.15e-6 2.48e-5 4.66e-6

Disc. error in time 1.09e-4 7.09e-5 4.47e-5

Disc. error in space 7.35e-3 7.35e-3 7.35e-3

Table 3.3: Error in the quantity of interest for decreasing stabilization parameter, two different

time-step sizes k and Q,-finite elements. The reference solution was obtained for
choosing the stabilization parameter as ) = 107%.

69



3 Discretization

derivative in the structural equation (cf. Eq. (3.4)). Hence, we propose to quadratically scale
the stabilization parameter with the time-step size by e(k) = k¢ to ensure that the stabilization
error is of equal size or below the discretization error in time.

In Fig. we plot all three sources of errors, the stabilization error as well as the temporal
and spatial discretization errors in form of a double-logarithmic plot. We observe that the error
in time as well as the stabilization error are about two scales below the discretization error in
space for e(k) = 0.1 and the chosen time-step sizes. Regarding Fig. [3.3] (b), we see that the
discretization error in time decreases for a quartered time-step size. This confirms, that the
stabilization parameter should indeed be scaled by the quadratic time-step size.

In summary, we have shown that the error introduced by the stabilization term is always well
below the dominating spatial discretization error. This agrees well with the fact that the stabiliza-
tion term based on the time derivative vanishes in the stationary state. Also, various numerical
tests confirm the robustness of our stationary solutions with regard to changes in the initial con-
ditions, the tissue geometry or the parameters (cf. Section[5.3.4). It is a fascinating observation
that we eventually obtain stable stationary solutions to a dynamic (but robust) process including
large deformations, stresses and strains. From a mathematical point of view, it hence seems im-
mensely difficult to derive a comprehensive stability analysis or even a priori estimates for our
strongly coupled systems of PDEs and literature on the stability of nonlinear elasticity including
growth is still sparse.

Remark: Regarding our numerical simulations, we also followed the idea of implementing
translation- and rotation-free ansatz and test spaces to stabilize our elliptic structural equation.
The objective was to reduce the degrees of freedom in case of prescribing homogeneous Neu-
mann values on the entire boundary. Yet, this approach was not fruitful and the convergence
of our methods was not improved in our numerical tests even though translations and rotations
were clearly removed from the solution space.

3.6 Adaptivity and local refinement

In this section, we propose a simple adaptive mesh refinement strategy to accurately resolve
stress-based mechanical feedback, which is expressed by invariants of the second Piola-Kirchhoff
stress tensor X (cf. Eq.(2.31)). In our modeling approach including active deformations, the
Piola-Kirchhoff tensor depends on the piecewise-defined active deformations and is discontin-
uous in general. In particular, it depends on the elastic response to piecewise-defined active
deformations that are discontinuous in between biological cells.

Since we consider a stress-mediated feedback loop, we measure the spatial discretization error
in the stress-based quantity of interest, which was presented in Eq. (3.8)). We recapitulate that
strain- and stretch-mediated feedback loops do not require local mesh refinement, since they
employ mechanical feedback based on the continuous Green-Lagrange strain tensor and the
continuous deformation gradient, respectively.
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3.6 Adaptivity and local refinement

Algorithm 1 Local refinement strategy

Initial, uniform mesh refinement
for i < 1 to niter do > Iterations in time
if i + 1 mod f = O then > Frequency of mesh refinement, usually f = 100
for CELL in CELLS do
if C(EDGE) > THRES for all EDGES of CELL then > For concentration C
refine(CELL)
end if
end for
end if
Solve system of PDEs
end for

In algorithm [I] we present a simple local mesh refinement strategy, where a numerical cell
(“CELL”, for Q;-FE) or a patch of cells (for Q,-FE) is refined, if the morphogen concentration
C is above a given threshold (“THRES ") in all edges of this cell or patch. In the finite element
library GascoigNe3D [9]], each quadratic test and ansatz function is defined on patches of four
cells in 2D and eight cells in 3D. If all cells in a patch are marked to be refined, the entire
patch is refined at once. In alternative finite element approaches, additional degrees of freedom
are introduced inside each cell if O»-FE are used. By construction, each biological cell in the
3D tissue sphere is resolved by eight patches due to the initial refinement but a patch is never
distributed among biological cells.

In our numerical simulations, an update of the meshes in every hundredth time-step seems
sufficient. In practice, we use the stress-induced morphogen concentration rather than the stress
itself as a criterion for local mesh refinement. The main reason is the modeling of intercellular
diffusion, which smoothes the morphogen distribution as well as the adaptive mesh refinement.

This algorithm can be generalized by coarsening of the mesh, which is necessary if weak pat-
terns move or dissolve. In the following convergence analysis, we abstain from this complication
for the sake of a clearer presentation.

In this section, we focus on the stress-mediated feedback loops including basal constriction
with a single initial morphogen spot, which leads to gastrulation events (cf. simulation snapshots
in Fig. [5.16](d) and Fig. for 2D in the appendix). Further, in Fig. [3.4] we show simulation
snapshots for the stress-mediated feedback loop in two and three dimensions, where the adap-
tively refined meshes in the final, stationary states are visualized (black grids). In particular,
we highlight two morphogen/curvature patches which are resolved by our adaptive, local mesh
refinement strategy.

Finally, we discuss the spatial discretization errors for the stress-mediated feedback loop in
the stress-based quantity of interest (cf. Eq. (3.8))). All errors are evaluated in the stationary
solution obtained on a 2D tissue cross-section as shown in the left half of Fig.
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Figure 3.4: Simulation snapshots with locally refined meshes based on refinement strategy 1 for
the stress-mediated feedback loop including basal constriction.
Left: Snapshot for pattern formation on a 2D cross-section for 14 336 nodal points.
Right: Snapshot for pattern formation on the full 3D tissue sphere for 146 722 nodal
points. Highlighted: Regions of local adaptive mesh refinement.



3.6 Adaptivity and local refinement

mesh level #cells  #nodal points [T (u,) — J (u,.p)| (rel. err.)  conv.

1 512 640 18.12e0 (44.77%)

2 2048 2304 1.75¢0  (4.32%) 34
3 8192 8704 1.49¢0  (3.70%) 0.2
4 32768 33792 2.29%-1  (0.57%) 2,7
5 131072 133120 2.86e-2  (0.07%) 3.0

Table 3.4: 2D: Error, relative error in % and convergence rate in the quantity of interest for the
stress-mediated feedback loop and uniform mesh refinement.

#cells #nodal points lT (ap) — T ()| (rel. err.) conv.

872 1036 9.68¢0  (23.921%)
3440 3764 293e-1  (0.724%) 5.0
13688 14336 2.10e-2  (0.052%) 3.8
54 464 55760 1.88e-3  (0.004%) 34

Table 3.5: 2D Error, relative error in % and convergence rate in the quantity of interest for the
stress-mediated feedback loop and the local, adaptive mesh refinement strategy

In Table [3.4] we list the discretization errors in space for uniform mesh refinement. For com-
parison, the spatial error resulting from our adaptive, local mesh refinement strategy |1 is pre-
sented in Table @ A reference solution was computed for 524 288 (), finite elements on a
uniformly refined mesh. We highlight the error in the last line of Table|3.4|compared to the error
in the second line of Table which are of the same size (1072): Our adaptive mesh refinement
strategy requires an impressive factor 10 fewer mesh points (or degrees of freedom) to achieve
the same spatial accuracy.

In Fig. [3.5] we show a double-logarithmic plot of the spatial discretization error over the
number of nodal points for uniform mesh refinement (red line) as well as for local adaptive mesh
refinement based on strategy [1|(green line). Interestingly, we also observe cubic convergence for
0, finite elements in case of a stress-mediated feedback loop based on the discontinuous Piola-
Kirchhoff stress tensor. The same convergence order was observed for the stretch-mediated
feedback loop based on the continuous deformation gradient, see Fig. [3.1] Apparently, the
discontinuous form of the Piola-Kirchhoff stress does not seem to influence the convergence
order of our method. Regarding uniform mesh refinement, we discover that convergence for
the stress-mediated feedback loop can only be observed for significantly finer meshes compared
to the stretch-mediated one (cf. Fig. [3.1] (green line) and Fig. [3.5] (red line)). In fact, our
refinements strategy is efficient and considerably improves the convergence of our method as
the discontinuous mechanical feedback is resolved: Our adaptive approach gives a better con-
stant for the cubic convergence rate, which is a common observation for adaptive local mesh
refinement.
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Figure 3.5: 2D: Plot of the error in the quantity of interest for the stress-mediated feedback loop
and different refinement strategies over the number of nodal points.

At least in two dimensions, it is not efficient to employ an adaptive mesh refinement strategy
where the mesh is locally resolved by two additional refinement levels. Regarding this strategy,
numerical tests revealed similar error reduction as in the case of uniform mesh refinement. Also,
we point out that imposing an internal volume constraint stabilizes the invagination process and
is highly recommended to ensure convergence towards a stationary solution, which is crucial to
conduct an accurate convergence analysis.

In summary, our adaptive mesh refinement strategy is successful: We observe fast cubic con-
vergence rates for Q,-FE since we refine exactly where the discontinuous stress-based feedback
requires a high numerical resolution. Besides, coarser meshes levels seem sufficient to accu-
rately capture the elastic deformation of the passively bent remaining tissue. This highlights the
accuracy of our (parallelized) solution approach regarding the spatial discretization.
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4 Solver

In this chapter, we discuss the numerical methods employed in solving the nonlinear algebraic
system obtained by the finite element discretization of our prototypical system in Galerkin for-

mulation (cf. Eq. (3.3)).

In Sectiond.T] Newton’s method is introduced which linearizes the nonlinear algebraic system
obtained in each time-step. Next, in Section we present the iterative Generalized Minimal
Residual Method (GMRES) [132], which is used to solve the linear systems resulting from
Newton’s method. The GMRES method is preconditioned by a parallelized geometric Multi-
grid Method (MG) [57]], where the high frequent error contributions on each mesh level are
smoothened by a Incomplete LU Factorization (ILU). This parallel solution approach stems
from the state-of-the-art finite element library GascoignNe3D [9]]. The parallel multigrid solver is
based on the idea of applying the computationally expensive ILU decomposition in parallel on
each part of the decomposed computational domain as discussed in Section [#.4]

Lastly, in Section {.5] we asses the speedup and the efficiency of this parallel solution ap-
proach for solving our strongly coupled systems of PDEs modeling mechanochemical long-term
problems. In particular, we show that an impressive speedup of the computational time by a fac-
tor 12 is possible by solving the algebraic system in parallel on 14 CPU cores instead of solving
sequentially on just one core.

4.1 Newton’s method

As a first step in solving our algebraic system (3.5)), the system is linearized by Newton’s method.
The algebraic system was obtained based on Rothe’s method, i.e. from a discretization in time
by implicit time-stepping schemes and a subsequent finite element discretization.

Initially, we state a compact formulation of our prototypical system (3.5)) for the sake of a
readable presentation. Therefor, we define a semi-linear operator A(-)(-) in the time interval
" ="' m,m=1,---,Mby

A, ey ur? @, Oy =

(P’ (u = 2up~" + w72, By)q, + K (), Ci) (D)
JHCE = Cp Wi)ay, + kb )(Cy, ) ’

where u}f‘l , uZ"z and CZ"I are solutions from previous time-steps. Here, we further simplified

the discrete Galerkin formulation of our prototypical systems of PDEs (cf. Eq. [3.5)) by consid-
ering one species of signaling molecules only. Nonetheless, the solution methods discussed in
this chapter also apply to the more general setting considering several species.

75



4 Solver

With this definition at hand the discrete formulation of our prototypical system of PDEs in
compact form in the time interval 7" is given by:

A, O w2 @, O W) =0 Yy, e VEL VY, €V,

m—1 ym=2

To keep the notation simple, we drop the solutions w;"™", w;""~ and CZH from previous time-

steps as arguments of the semi-linear operator A(-)(+).

With this compact notation of our algebraic system, the /-th Newton iteration in form of a
defect correction step with initial guesses u;Z"’O € V;f and CZ”O € V, reads:

N N N N _ N N -1,/ -2,1 —1,1
A'(w)”, C 6w, @y, 6C, Py) = —Au,”, C ), ™, w7, @y, C) L W)
Zz,l+l — ul}’;”l,l + 5uz1,l (4])

it = ol v se,

u

where —A(-)(-) is the Newton residual for a zero right hand side. Further, we take a look at the
Newton matrix, which can be expressed on high-level by

Ay, CphGug, @y, 5C By =
S . i \3N3N , i i3V
(E(k)p0(¢l , dj]J,l)Qh + kZa:l(uZLl’ CZLI)(¢I , q;i[))l o (kzac(uzu’ CZ1J)(¢I , d);l)) -0 ((Suh)
’ - ’ ] i m s ’ j j N ’
(e — ety + kbyC, &, @) (R ATHICAT ) I AL

U j

3N.N
i,J

3
i,j=0 =

: . T _ 0 3N 50 N\T : ;
using the abbreviations (6uy, 6Cp)" = (ou,,---,ow;",0C,, -+ ,6C,’)" and expressing discrete
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Here, {@Z,i = 1,---, N} is the nodal basis of the finite element space V; and N = dim V}, is the
number of nodal points. Further, the Jacobi matrix consists of the Gateaux derivatives, which
are exemplarily given by

ay(uy’, CyH(ou)', y) = %a(uﬁ + souy’, Cy')(DPy) .

5=
The Newton matrix is presented to stress two main observations: Firstly, we observe that the
strong coupling between morphogen dynamics and structural mechanics leads to a strongly cou-
pled Newton matrix. In particular, we point out that every entry depends on the deformation u
and the morphogen concentrations C, in the first row even in nonlinear matter. Secondly, we
observe that the d diagonal components (related to the first equation for the displacement u) of
the matrix are strengthened if the time-step size k is small or if the stabilization factor (k) is
large. In the first case, this actually results in good convergence of the linear solvers, i.e. of
the GMRES and the multigrid methods at the expense of performing many time-steps. In the
second case, the stabilization error is increased and mechanical oscillations might be observed.
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Obviously, it is desirable to balance these two requirements, which was discussed in Section
For the chosen combinations of time-step size and stabilization parameter an analysis of
the stabilization error revealed that the stabilization as well as the discretization error in time are
well below the dominating spatial discretization error, see Subsection

As indicated above, it is essential that we strengthen/stabilize the diagonal of the Newton
matrix by a stabilization term to improve the convergence rate and to reduce the number of nec-
essary iterations of the linear solvers (GMRES preconditioned with parallel multigrid method).
For instance, if we had a strictly diagonal dominant matrix, this matrix would be positive semi-
definite with non-negative eigenvalues. In particular, the eigenvalues might be of similar size
such that the conditioning of the non-symmetric Newton matrix A’, i.e. the quotient of the
square roots of maximal over minimal eigenvalue of (A’)” A’ is small. Indeed, a small condition
number is a strong criterion for good convergence of the GMRES method.

In general, there are about 2-3 Newton steps necessary in each time-step. In each step of the
Newton iteration, the resulting linear system is then solved by 8-10 GMRES iterations, which
are preconditioned by a geometric multigrid method. The latter methods are discussed in the
following section.

Note that initially, stochastically distributed morphogen levels in each biological cell or a sin-
gle morphogen spot are prescribed whereas corresponding deformations are not known. Hence,
we usually observe that more Newton and GMRES steps are necessary in the first five to 20
time-steps until the calculated displacement corresponds to the current morphogen distribution.

4.2 GMRES and Multigrid method

To solve our strongly coupled prototypical systems modeling mechanochemical long-term prob-
lems we rely on the solution techniques from the state-of-the-art finite element library Gas-
coiGNE3D [9]]. Here, the solution of the linearized system (4.1]) in each Newton iteration is based
on the iterative generalized minimal residual method (GMRES method) [[132]], which is precon-
ditioned by a parallelized geometric multigrid method [|57]] with ILU factorization as a smoother.

Before we go into details, note that the geometric multigrid method alone is not capable
of solving the linearized system of equations, since suitable smoothers are not known. This
is confirmed in our numerical tests, where the multigrid method preconditioned with an ILU
or Jacobi smoother does not converge. As an alternative, the GMRES method preconditioned
with the ILU factorization converges in our numerical simulations. This approach was less
efficient since considerably more GMRES iterations on the finest mesh level are necessary in
this configuration. Hence, these results are not shown.

The geometrical multigrid method is motivated by the observation that - generally slowly
converging - Jacobi or Gauss-Seidel methods quickly smoothen high-frequent contributions of
the error. Then, the solution process is carried to a nested coarser mesh level where low-frequent
solution parts are approximated. The geometric multigrid method has an optimal complexity of
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requiring only O(N) arithmetic operations to solve our linear system of equations with a system
matrix of size 4N X 4N.

In the finite element library GascoigNe3D [9] smoothers for the algebraic multigrid method
based on the Jacobi method or the ILU factorization are available. In our numerical simulations,
the parallelized ILU factorization is the smoother of choice, since the MG method does not
converge for a simple smoother such as a Vanka-type block Jacobi method. Regarding the ILU
factorization, we employ the Cuthill-McKee algorithm [[30]] for sorting the system matrix of the
linearized algebraic system. This algorithm permutes a sparse matrix into a band matrix with
small bandwidth which is the desired structure of the system matrix for multigrid methods.

4.3 Parameter setup

Due to initial uniform mesh refinement, three different FE mesh levels are available for the
standard settings in our solution approach. A finer mesh is obtained by splitting each numerical
cell in a coarse mesh into four, respectively eight cells in two and three dimensions. This also
applies to adaptive local mesh refinement where the multigrid method is based on these three
hierarchical meshes and optional further local refinement.

The parameters for the solvers taken from the finite element (FE) library GascoigNe3D [9] are
chosen as follows: The global tolerance for the Newton residual (cf. Eq.) is set to 107 and
the tolerance for the GMRES method is set to 1076, The time step size is given by 20's in 3D and
2.5s in 2D. With these settings, a stationary solution is attained after around 50 000 time-steps
were performed.

4.4 Parallelization

The finite element library GascoigNe3D [9] features parallelized solution techniques which are
based on the parallelization of the adaptive multigrid method. In the latter method, the compu-
tationally costly smoothing steps by the ILU factorization are applied in parallel on each part of
the decomposed computational domain. Yet, the ILU method is an inherently global method and
its parallelization is not straightforward. In practice, the domain is split into parts with minimal
overlap where homogeneous Dirichlet values are prescribed such that the local subproblems on
each part can be interpreted as Dirichlet problems. The mesh decomposition is handled by the
library metis [[77]], which represents the mesh by a partitioned graph.

The idea of parallelized multigrid solvers based on domain decomposition is not new and was
proposed by Brandt [16] as early as 1981. Another, major contribution was the development
of completely parallel multilevel preconditioners that are suited for local mesh refinement by
Bramble et al. [15] and were parallelized by Bastian [7]]. This small overview of the literature
was adapted from Richter [[127, p. 54], where a broader presentation is available.

In the FE library GascoigNe3D, the focus lies on the accuracy of the numerical algorithms
rather than parallel efficiency. Regarding the efficiency, it is important to uniformly distribute the
computational load among the CPUs and to minimize the communication via the standardized
Message Passing Interface (MPI) in between the parallel processes. In multigrid methods with
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adaptive mesh refinement, the uniform distribution of load is particularly delicate. For instance,
on coarse meshes in the multigrid hierarchy, less processors are required such that CPUs are idle.
These challenges are resolved, since the largest computational effort accumulates on the finest
meshes such that the multigrid hierarchy is usually attained by from there by global coarsening,
see Ref. [78,[127].

In this thesis, we consider large prototypical systems of PDEs such that a parallelized so-
lution approach is deemed to be necessary. To assess the speedup due to parallelization and
its efficiency, we summarize the most important definitions used in our isoefficiency analysis.
Essentially, analyzing the isoefficiency addresses the question if we can increase “the number
of CPUs according [to] the problem size and preserve the efficiency of the parallel algorithm”
(Richter [127} p. 54]). The definitions given in the following were originally taken from Grama
et al. 50, p. 221] and were adopted by Richter [127]].

Firstly, let us introduce the term of the best sequential algorithm to solve an algebraic problem
that is applicable in practice. Its computation time on a single CPU depends on the problem of
size N. Secondly, we define:

The sequential time is the computation time 75(/N) of the best available sequential algo-
rithm necessary for solving a problem of size N;

The parallel time is the computation time Tp(N, P) for the parallel algorithm on P pro-
cessors for the problem of size N;

The speedup is the quotient of the sequential time and the parallel time for P processors
for the problem of size N and is given by

Ts(N)
S(N,P) = ———;
N.P) Tp(N, P)

The efficiency is the speedup per number of CPUs P for the problem of size N and is
given by

Ts(N)

SINP) = o NPy

Note that the speedup has to be smaller than the number of CPUs P that are employed in the
parallel solver, i.e. S (N, P) < P. Otherwise, we could sequentially execute the parallel algorithm
P times and obtain a new, fastest sequential algorithm in contradiction to the original sequential
algorithm being the fastest one. Hence, a speedup that is equal to the number of processors
involved is the optimum that we can hope for.

4.4.1 Mesh partitioning

The parallelization of the multigrid solver is based on the decomposition of the mesh into sub-
domains with minimal overlap, where our prototypical equations are solved in parallel. The
partitioning of the mesh is handled by the library metis [[77]], where the finite element mesh is
represented by a graph. The graph is partitioned by a minimal number of cuts into subgraphs
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(a) 2D sphere, four parts (b) 3D sphere, 14 parts (c) Hydroid, three parts (d) Hydroid, three
(metis) (metis) (metis) parts (own par-
titioning)

Figure 4.1: Partitioning of the computational domain for parallelization: (a)-(b) Uniform distri-
bution by metis; (c) uneven distribution by metis; (d) Our own partitioning into three
layers of biological cells (with evenly distributed numerical cells).

with - ideally - uniformly distributed numbers of cells in each part. A detailed description of this
process is presented in Richter [I27]. We describe the uniformity of a partitioning by evaluating
the quotient of the maximal and the minimal number of cells in a part, i.e., for sub-domains of
cells T, we define NI := maxy(T}) ming(Ty)~".

In this thesis, we mainly focus on the applications to embryogenesis and to symmetry breaking
in Hydra, where we discretize a hollow tissue sphere. In Fig. @ (a)-(b), we visualize the
partitioning of the tissue sphere in two and three dimensions. In the first, the 2D setting, 8 192
numerical cells are uniformly distributed into four parts of 2 048 cells. Similarly, metis achieves
an almost optimal distribution of cells into 14 parts in three dimensions, where the quotient of
maximal over minimal number of cells in a part is NI = 0.95.

Regarding Fig. 41| (c), we highlight an uneven distribution of numerical cells by metis in the
application to growth pulsations in tips of colonial hydroids. Here, the maximal number of cells
in a part can be almost twice the minimal number of cells, namely NI = 0.52. Hence, we modi-
fied the partitioning process, where we take the structure of the organism (and the computational
domain) into account: Hydroids consist of two soft tissue layers which are surrounded by a thin
but rigid organic skeleton (cf. Section[5.2). Here, each of these three layers is discretized by the
same number of cells. We take advantage of this structure during parallelization by splitting the
domain into three parts corresponding to these three layers, see Fig. [.1] (d). Naturally, these
three parts might be further partitioned themselves such that each layer is distributed among the
same number of CPUs. With this modification of the partitioning process, we indeed obtain a
uniform partitioning of the mesh (with NI = 1).
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Figure 4.2: Speedup due to parallel multigrid solvers for our numerical simulations in 3D on a
personal computer (red) with 4 cores and a computing server (green) with 16 cores.

4.5 Numerical results and discussion

Eventually, we assess the speedup and the efficiency of the parallel multigrid solvers for simu-
lating our systems of PDEs modeling mechanochemical long-term problems. Due to the intense
mechanochemical interactions involved, the highly coupled systems of PDEs (cf. Section {4.1
are solved by a monolithic parallelized solution approach. As a model problem, we consider our
system of PDEs applied to embryogenesis, i.e. a stretch-mediated feedback loop including basal
constriction (cf. Eq.(5.4)). Corresponding simulation snapshots are shown in Fig. [5.9

To evaluate the speedup and the efficiency of our parallel solution approach, we measure
the average computation time per time-step for performing 100 time-steps of 20 second each
for a discretization of the full 3D tissue geometry by O,-finite elements and 98 304 numerical
cells (i.e. for a system with almost 400000 unknowns). This measurement was repeated ten
times on an otherwise unoccupied machine such that the average computation time per time-step
was computed for 1000 time-steps. All our numerical simulations were performed on several
personal computers (PCs) as well as on a computing server with the following specifications:
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e Intel(R) Core(TM) i7 — 3770 CPU @ 3.40GHz, 4 physical cores (8 by Hyper-Threading)
and 16 GB DDR3 RAM;

¢ Intel(R) Xeon(R) CPU ES - 2690 0 @ 2.90, 16 physical cores (32 by Hyper-Threading)
and 256 GB RAM.

Intel’s Hyper-Threading is a realization of the simultaneous multithreading technology, which
is based on the idea of presenting two virtual or logical cores to the operating system for each
physical core. Internally, two processes are scheduled to be executed on one physical core such
that, while one process might be waiting for data from memory or other CPUs, the other process
is continued.

In a nutshell, the sequential time was calculated on both types of machines by averaging the
time per time-step over 1000 steps. To assess the speedup and the efficiency of our parallel
solution approach, these measurements were repeated for simulations on 1 — 7 and 1 — 15 CPU
cores, depending on the machine listed above. Here, a decomposition of the domain in the
multigrid method into P parts corresponds to numerical simulations on P CPU cores. Also,
we always kept at least one physically present processor core for the operating system and the
master process which handles the communication between the CPUs. Communication between
the ILU smoothing operations is indispensable for the exchange of values on interface between
parts of the decomposed mesh or for the initial distributing of the mesh, see Richter [[127].

In Fig. 4.2 we plot the speedup gained by the parallel multigrid solvers over the number of
CPU cores used in the parallelization. The optimal scenario, i.e. employing P CPUs leading to a
speedup of factor P, is depicted by the blue line. Yet, in practice, the necessary communication
between the processes of the parallelized ILU factorization significantly increases with the size
of the interface between the parts of the decomposed mesh, i.e. with the number of CPU cores
that are employed. Nonetheless, the computation time per time-step is almost halved on two
CPU cores and divided in thirds on three cores for both, the PC and the compute server.

Amazingly, the speedup due to the parallel multigrid solver on the Intel(R) Xeon(R) compute
server remains close to the optimum (cf. green and blue line in Fig. 4.2) when even more CPU
cores are used: An impressive speedup of the computational time by a factor 11 is possible by
solving the algebraic system in parallel on 15 CPU cores compared to the sequential use of the
multigrid solver.

Regarding the personal computer with an Intel(R) Core(TM) i7 — 3770, we observe a speedup
of close to factor three on P = 3 CPU cores but a subsequent drop of the speedup on four
cores. Afterwards, the speedup increases again when more CPU cores are employed, e.g. the
computation time is reduced by a factor four on seven CPU cores (cf. Fig. f.2] (red line)). The
reason for the drop in the speedup is the design of the 17 processor which has only four phys-
ical cores but appears as 8 logical cores to the operating system via Hyper-Threading (see the
explanations above). Since one core is reserved for the operating system and the master process
which handles the communication between the distributed smoothing steps, Hyper-Threading is
employed for a mesh decomposition into four parts. Clearly, Hyper-Threading is less efficient
and the speedup initially drops for solving on four CPU cores (cf. Fig. (red line)).
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Figure 4.3: Parallel efficiency over the number of CPU cores for solving the algebraic systems
in 3D on a personal computer (red) with 4 cores and a computing server (green) with
16 cores.

By definition, the sequential algorithm has an efficiency one, which is “optimal”. During
parallelization, increasing the number of CPUs also increases the size of the interfaces between
the parts of the decomposed mesh and, accordingly, the communication between the CPU cores
accumulates. Hence, we cannot expect an optimal efficiency with an increasing usage of CPU
cores.

In Fig. {1.3] we plot the efficiency of our parallel solution approach over the number of CPU
cores used in the numerical simulation. Regarding the compute server with an Intel(R) Xeon(R)
E5 —2690 0 processor, we correspondingly observe that the efficiency is decreasing. Yet overall,
we acknowledge at the same time that the efficiency of the parallel multigrid solver on this
compute server remains well above 0.7 for an increasing number of CPU cores, as shown by
the green line in Fig. Here, we believe that the zig-zag pattern in the decreasing efficiency
stems from the internal load distribution among the CPUs, e.g. via Hyper-Threading. Further,
despite averaging over a large number of time-steps that were performed over different days and
times of day, we cannot fully exclude that the compute server was always entirely empty as it
was shared among the members of our working group and also served as a file server.

In case of a personal computer with an Intel(R) Core(TM) i7—3770 processor, Fig. .3|clearly
shows the good efficency of the parallel multigrid solver for distributing the mesh among two
and three CPUs (red line). Once Hyper-Threading is necessary for simulations on more than
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three cores, a severe drop in the efficiency is observed. This behavior was anticipated, since
only four physical CPU cores are available where one is reserved for the master process and the
operating system, as discussed in the context of the speedup analysis above.

Note that all our numerical simulations to asses the speedup and the efficiency of our solu-
tion approach were carried out on an otherwise unused compute server. Hence, the standard
deviation in the measured computation time per time-step was usually small and did not exceed
five percent. If other calculations however conflicted with these runtime tests, we observe that
the speedup is influenced less if the parallelization distributes the computational load over more
CPU cores. Presumably, the computational effort can be distributed better among the CPUs in
this case due to the architecture of the Intel(R) Xeon(R) ES — 2690 0 processor.

As the bottleneck in our approach the sheer number of time-steps required to obtain a sta-
tionary solution remains: In practice, we need to partly resolve the elastic timescale of seconds
for the sake of a stable solution approach, which requires small time-steps (cf. Section[3.3)). In
general, we hence perform between 50 000 and 100 000 time-steps which results in a computing
time of two to four days on 15 CPU cores for solving systems of PDEs on the full 3D geometry.

In summary, we present a highly efficient solution approach to solve the algebraic systems
obtained in each Newton step. In particular, the parallelization of the multigrid solver is crucial
to obtain a reasonably fast solution approach for the strongly coupled huge systems of PDEs
considered in this thesis. With these techniques at hand, a decisive reduction of the computa-
tional costs is demonstrated: For instance, an impressive speedup of the computational time per
time-step by a factor 11 is possible when solving the algebraic systems in 3D on 15 CPU cores
compared to using the sequential solver.
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In this chapter, we apply our prototypical coupled system of PDEs to different model organisms
and demonstrate that our simple positive interaction rules (“feedback loops™) lead to spontaneous
and robust mechanochemical pattern formation.

Firstly, in Section[5.1] we provide the background to self-organization and pattern formation in
biological tissue and discuss preceeding works in this field of developmental biology, see Section
[5.1] Secondly, in Section[5.2] we reduce the model to the structural equation only and investigate
growth processes during the development of tips in colonial hydroids. In this application, we
explore how two active deformation tensors that prescribe rotations and shearings of biological
cells lead to distinctly different growth processes in the tip of this organism. Subsequently, we
compare these deformations to the experimental data shared by my colleague Igor Kosevich
[81]].

Thirdly, in Section [5.3] the main numerical results on mechanochemical pattern formation
during embryogenesis are presented. In particular, we examine stress- and stretch-mediated
feedback loops in conjunction with active apical/basal constriction (wedging) of individual bio-
logical cells. Further, we focus on the robustness of our approach with regard to the model size
and geometry, diffusion, active deformations, parameters and initial conditions.

Lastly, in Section[5.4] we apply our system to symmetry breaking in Hydra aggregates where
we propose a strain-mediated feedback loop including apico-basal shortening (thinning) of the
biological cells. Also here, we observe spontaneous pattern formation, namely spontaneous
head development after growth oscillations. Moreover, we highlight Subsection where we
present predictive numerical experiments of head formation triggered by a micropipette aspira-
tion of the regenerated Hydra aggregate. In particular, we directly compare our results to the
experimental observations for micropipette aspiration by Sander [[133]].

We point out that the biological motivation in Section [5.1] and our application to embryo-
genesis in Section are closely related to the introduction and the results in our publication
Brinkmann et al. [20]. In particular, Moritz Mercker has drafted substantial parts of the bio-
logical motivation as well as the discussion and the summary of the numerical results (cf. the
acknowledgments). Regarding my side, the methodology and the underlying prototypical model
equations, the investigation and numerical computations, the implementation, the programming
in the FE library GascoiGNe3D [9] and writing the texts are the main contributions to our pub-
lication Brinkmann er al. [20] as well as to this thesis (see the roles of the authors described in
Ref. [20]).

In this thesis, our research is extended by numerical simulations on the robustness of pat-
tern formation with regard to diffusion and the model geometry, particularly for active apical
constriction, as well as stress-mediated feedback loops. Further, we introduce an inner volume
constraint/internal pressure that accounts for the fluid contained inside our tissue sphere. That
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way, the invagination process during gastrulation is stabilized and we obtain stationary solutions.
Finally, we present a novel enhanced model which is more accurate on the cellular level: We
prescribe uniform morphogen production rates on each biological cell by (biological) cell-wise
integration of the mechanical feedback, which leads to a single gastrulation event, see Subsec-
tion

Finally, we emphasize that all results regarding growth processes in tips of colonial hydroids
(cf. Section[5.2) and symmetry breaking in Hydra aggregates (cf. Section[5.4)) are exclusive to
this thesis. In particular, this includes our comparison to experimental data in case of the former
and the predictive numerical experiments in case of the latter application.

5.1 Biological Motivation

During embryogenesis or tissue development, various chemical and mechanical patterns emerge
in a self-organized way based on relatively simple structures, such as a tissue sphere [47]]. During
the last decades, a main focus in developmental biology was the experimental identification of
signaling molecules (“morphogens”) being spatio-temporally associated with certain develop-
mental steps in various model organisms [21}, 47|]. However, the knowledge about how chemical
patterns are produced, controlled, and how they interact with mechanical patterns is still very
unsatisfactory.

A frequent obstacle to the research on mechanochemical pattern formation is the mechanical
aspect, since mechanical tissue modification tools, molecular markers for mechanical cues and
mechanochemical modeling are still in its infancy [[103]. Especially, it appears that often the
full 3D nature of tissue mechanics has to be considered in experiments and models for obtaining
results which can be related to in vivo processes [3| 5, 49,52, |86, |130,|147] making the situation
even more challenging. Thus, although correlations between biological forms and mechanical
phenomena were already pointed out in the seminal work of D’ Arcy Thompson [146]], mainly
pure chemical theories have been predominated hereof during the last century of research in
order to explain tissue pattern formation during development.

The first one of these theories assumes that embryogenesis is a sequence of successive chem-
ical patterns, where each chemical pattern relies (in other words, depends sensitively) on the
previous pattern [[155]. A model organism partially fitting this theory is the fruit fly Drosophila,
in which the orientation of the initial body axis sensitively depends on the maternally inherited
Bicoid RNA [34]], and later stages are defined by distinct chemical patterns ("gap genes” [69]).
However, experimental studies show that embryonic patterns are often robust to removal, ad-
dition or redistribution of embryo parts during the preceding patterning stages [11, 47, |135].
Moreover, for an increasing number of biological systems it even appears that patterning does
not rely on any pre-pattern, but it may develop in a self-organized way from dissociated and
re-aggregated cells [[19, 45, |67, |75 [150]. This capacity of self-organization during pattern for-
mation is called ”de novo” or ’spontaneous” or “self-organized” pattern formation and strongly
disagrees with the above mentioned theory.
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Due to these difficulties, a second, more robust theory of pattern formation has received in-
creasing attention, namely a theory which assumes that pattern formation occurs spontaneously
and robustly just by specific interactions among diffusing chemicals ("morphogens”) with possi-
ble involvement of the chemical environment. This theory was based on the pioneering work of
Alan Turing [[151]] and its extensions by Gierer, Meinhardt, and Murray [46,/99,|110], and others.
In contrast to previous studies on biological patterning 146, |155], these new approaches were
not restricted to the pure description of patterns, but offered the possibility to explain their gen-
esis by de novo mechanisms [|6]. Originally, such “Turing patterns” are assumed to be driven by
the mutual interaction of a slowly-diffusing activator morphogen interacting with a fast-diffusing
inhibitor morphogen in a specific nonlinear manner (”’short range activation and long range inhi-
bition”) [110]. Later works showed that the long-range inhibition does not necessarily require a
diffusing inhibitor, but can also result from the depletion of a substrate that is recruited as a result
of self-enhancement of the activator (“activator-depleted substrate mechanism” [46, |85]]). How-
ever, beside these Turing models, other chemical de novo models for pattern formation have
been proposed, such as the Swift-Hohenberg equation which requires only one diffusing and
reacting chemical in order to spontaneously produce patterns [142]. A variety of non-Turing
patterns arising in systems coupling one diffusing component with a non-diffusing subsystem
has been recently shown in Refs. [59] 60, 97].

These purely chemical theories (including the Turing models) still remain among the central
concepts of developmental biology. However, this theory is not devoid of serious difficulties,
such as the following ones:

o After more than 60 years of research, the experimental verification of classical Turing-
type morphogens (activator/inhibitor) showing properties proposed by the theory is still
very rare: E.g. an appropriate candidate for the long-range inhibitor is still missing in
many cases [|64} 80];

e Turing patterns are common but not robust and usually only stable over narrow parameter
ranges [136];

o Diffusion rates as required for Turing-type long-range inhibitors are often at or beyond the
limit of measured diffusion rates in biological tissues, especially for patterns appearing on
larger tissue scale [68];

e Experimental evidence for the Swift-Hohenberg models as well as for the activator-depleted
substrate mechanism is sparse; for the latter there exist candidates for subcellular patterns
[70L91]] but not for patterns on tissue scale;

¢ In many developmental processes, dynamic and complex tissue geometries are likely to
prevent the establishment of long range inhibitor gradients [33]; and finally,

e The Turing-theory requires highly nonlinear interactions among different types of mor-
phogens in order to produce de novo patterns, which makes the underlying assumptions
regarding molecular interactions relatively complex [[100].
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Finally, the two chemical theories we discussed usually assume that mechanical patterns are
”blind” end-results of chemical pre-patterns. In contrast, various recent studies show that me-
chanical patterns are not only passive results of chemical pre-patterns, but can play instead a
central role by being actively involved in tissue pattern formation (Ref. [13] 24, |35} (105, [117],
beyond many others). This agrees well with the observation that mechanical cues can be trans-
lated in various ways in order to influence and control chemical patterns, leading to the rapidly
evolving research area of mechanotransduction in cell biology [37, (71, 95} 121} [122].

Hence, due the experimental observations and disagreements listed above, tissue mechanics is
increasingly moving into focus to explain features of pattern formation which have been previ-
ously ascribed to diffusing molecules according to the Turing theory. Notably, forces and flows
generated by motor proteins or advection have been proposed to significantly increase diffusion
rates for long-range inhibition [68]]; and tissue mechanics/geometry (via different mechanical
cues such as stretch, stress and strain or tissue curvature) has been theoretically shown to suc-
cessfully work as long-range inhibitors in spontaneous pattern formation [20} 103} 104]. Impor-
tantly, there is also an increasing experimental support for mechanochemical interactions as an
important driving force in biological patterning. Examples describing, among other, coupling
between diffusing morphogens and tissue bending are summarized in Ref.[64] 112]. Finally,
also the Swift-Hohenberg equation has been recently linked to mechanical processes, leading to
a possible explanation of different biological patterns such as finger prints [141]]. However, a
general mechanochemical theory for robust pattern formation is still missing.

Although the need for new modeling approaches integrating chemical (morphogen) and me-
chanical processes during development has been recently stressed [152]], models investigating
mechanochemical pattern formation are still rare. One of the first seminal works considering
the richness and self-organization of biological growth and forms was the book ”On Growth and
form” by D’ Arcy Thompson in 1917 [[146]. However, even its second edition was written before
computers made it possible to develop and study more sophisticated models of biological pat-
terning [6]]. One of the first attempts to integrate tissue mechanics in pattern formation models
have been the papers by Murray and Oster [107, [111]]. In their works, the interplay between
migrating and contracting cells and a deformable elastic surrounding medium, for instance an
extracellular matrix, can lead to a variety of patterns. The model has been successfully applied
to the process of vasculogenesis [108]. A mechanistically related model in which epithelium
cells represent the elastic part and actomyosin cross-bridges depict the contractile units has been
proposed by Odell er al. [119]. Using finite element simulations, they showed that a simple
interplay between stretch-induced active contractility and passive propagation of cell stretch can
lead to spontaneous gastrulation in tissue spheres. Indeed, recent simulation studies of differ-
ent mechanochemical models compared to experimental data indicate that the interplay between
tissue stretch and morphogens may trigger spontaneous pattern formation in the Hydra polyp
[105]]. Finally, simulation studies demonstrated that mechanical cues other than stretch such as
curvature, strain, or stress [103},|104], may drive de novo mechanochemical pattern formation.
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However, one of the chief simplifications of the above-mentioned approaches is the represen-
tation of the 3D tissue body by a 1D curve or a 2D surface. This simplification may cause bias or
unrealistic behavior in both chemical and mechanical processes. On one hand, the neglect of one
or more dimensions may lead to appearance of nonexistent diffusion barriers, since additional
dimensions may allow the molecules to move around obstacles, which is not possible if these
dimensions are not present in the model. On the other hand, tissue deformations and mechan-
ical cues propagate via direct interactions of cells or molecules. These processes are altered if
dimensions are neglected. For example, describing the tissue as an infinitely thin deforming sur-
face [104}|105]] neglects apico-basal chemical and mechanical gradients (i.e. gradients in stretch,
strain or stress in normal direction of the tissue sphere) which often accompany deformations.
Representing the tissue as a 2D cross-section [[103} [119] ignores the 2D nature of circumfer-
ential chemistry and mechanics. For instance, saddle surfaces with negative Gaussian curvature
promote invaginations and cannot be described adequately if dimensions are neglected, although
they may play a critical role for tissue growth and deformations [49]|130]. Several recent exper-
imental works highlight the importance of considering full 3D tissues in order to obtain realistic
tissue behavior [5} 52} 86, [147]]. In summary, transferring of the above-cited mechanochemical
modeling results to reality is possible only to a limited extent.

In his seminal paper, Turing proposed the integration of mechanical aspects in pattern for-
mation, but restricted his own studies to purely chemical processes, since ”...the interdepen-
dence of the chemical and mechanical data adds enormously to the difficulty” [151]. During the
last decades, however, modeling and computation approaches integrating mechanical aspects of
morphogenesis have reached a sophisticated level (for reviews, cf. Ref. [[129, |[157]]).

In the present study, we thus generalize and extend the existing modeling approaches by
introducing a mechanochemical tissue model with the following features:

o Tissue is represented by a time-dependent deformable 3D body formulated in the frame-
work of continuum-mechanics;

e The continuous formulation is blended with an explicit description of cell boundaries, the
latter among other representing active forces exerting and possibly showing discontinuities
at the plasma membrane ("actomyosin cortex”);

e Model equations allow an arbitrary coupling between morphogen dynamics and different
mechanical cues, such as curvature, strain, or compression and stretch;

e Simulations are based on the state-of-the-art finite element library GascoiGNe3D [9] in
conjunction with the possibility of local mesh control, multigrid methods as well as par-
allelization to ensure optimal stability and minimal simulation times.

Since recent experimental efforts to visualize and study tissue mechanics are promising [55}|101,
102, |159]], the proposed modeling approach may offer a future basis to verify new experimental
hypotheses and to motivate experiments, respectively. Close interplay between experimental
manipulations and computer simulations will help to further unravel mechanochemical processes
leading to robust patterns during tissue development.
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To demonstrate the capacity of mechanochemical interactions in de novo pattern formation,
in the following, we use the modeling approach as presented within Section to simulate
feedback loops between morphogen dynamics and tissue mechanics. Especially, we show how
different, simple interaction rules based on mechanical feedback by tensor invariants describing
stretch, strain and stress lead to spontaneous and robust mechanochemical pattern formation.

5.2 Growth processes in the development of tips in colonial
hydroids

Morphogenesis is the fascinating process of organisms developing their structure and their shape,
which “remains one of the largest and so far unsolved problems of current biology” (Kosevich
[81} p. 90]). In particular, the mechanisms involved during morphogenesis are a topic of special
interest in developmental biology. Yet, the underlying organizational and mechanochemical pro-
cesses remain unknown in most interesting cases. In the course of this application, we asses by
numerical simulations how active shearing and rotating cell movements might drive the exten-
sions in growing tips of colonial hydroids (Hydrozoa, Cnidaria). In a second step, we compare
these deformations to the experimental data provided by Igor Kosevich.

A hydroid colony is a system of branched tubes (shoots) and the stolon that roots the colony
on a substrate. Either growing tips or feeding zooids are located at the end of these tubes. The
growing tips are solely responsible for the expansion of the hydroid colony and are the center
of morphogenesis, see Kosevich [82]. Growing tips in hydroids are ideal subjects to study, as
their shape is relatively simple and the cells are uniformly distributed in two soft tissue layers
(see e.g. Beloussov [10]]). Further, their complexity increases “only through changes in the local
curvature” (Kosevich 81, p. 90]), which perfectly fits our modeling approach.

The elongation in hydroid tips is characterized by growth pulsations, i.e. by cycles of con-
secutive extensions, resting and retraction into a single direction. In this dynamic process, six
successive phases were first identified by Wyttenbach [[158]]:

1. Phase A: Extension to the initial peak and resting;

2. Phase B: Retraction;

3. Phase C: Retraction and resting at a (local) minimal length;
4. Phase D: Re-extension to the length in phase A;

5. Phase E: Resting;

6. Phase F: Further extension to the next peak.

We have illustrated these consecutive phases in Fig. for experimental data on six succes-
sive growth pulsations that was kindly provided by Igor Kosevich [81]]. Here, growth pulsations
in a hydroid tip were registered under a microscope and are measured in three selected points:
In the tip apex (point 1), at the apical part of the basal membrane vault (point 2) and on the
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Figure 5.1: Plot of growth pulsations in hydroid tips for three selected points 1,2,3 over time.
One period of growth pulsation (PGP) is divided into six successive phases A-F
(Wyttenbach [158])). AD is the amplitude of tip deformation at point 1 in phase D.
Both plots are based on experimental data kindly provided by Igor Kosevich .
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Figure 5.2: Stolon tip in resting phase E after growth in phase D: Longitudinal section through
the middle of the stolon and parallel to the substrate . The microscopic picture was
kindly provided by Igor Kosevich.
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inner surface of the endoderm (point 3) that are located in the distal side of the hydroid tip. The
location of these points is illustrated in Fig. (b).

The soft hydroid tissue (coenosarc) consists of an inner layer (endodermal cells “END”) and
an outer one (ectodermal cells “ECT” ), which are separated by a membrane (mesoglea). Grow-
ing tips differ from the rest of the hydroid body: Here, the soft tissue layers are in close contact
with a stiff organic skeleton made of sclerotized chitin “P” (perisarc), that becomes relatively
thin, transparent and soft towards the apex of the hydroid tip, see Fig. [5.2]and our illustration of
the layers in Fig. (a). The three selected points are thus visible through the perisarc which
allows a registration of the growth itself as well as of changes in the thickness of each layer.

Based on these six phases of growth pulsations shown above, Kosevich was the first to propose
a scheme for the periodic growth processes in hydroids, where the roles of all cell layers are fully
considered. With these descriptions at hand, its is now possible to test different mathematical
models of the underlying active deformations.

In this thesis, we focus on the re-extension of the hydroid tip (phase D). This phase is charac-
terized by a re-orientation of the ectodermal cells that spreads from the bottom (proximal part)
of the hydroid tip to the top, i.e. in distal direction. From the numerical perspective, this phase
is the most interesting as it yields the largest deformation of the tip. Besides, the nature of these
active deformation is difficult to asses in biological experiments. Here, we try to answer this
question from a numerical point of view: First, we propose active deformation tensors that de-
scribe shearing and rotational cell movements. In a second step, we can verify our numerical
results obtained for these two hypothesized movements by comparing the resulting extensions to
the microscope images and findings in Kosevich [81]] as well as by comparing the deformations
in the three selected points to the experimental data.

Throughout this section, we use the denomination of terms regarding growth pulsations from
Igor Kosevich [81]]. That way, our presentation is consistent with the nomenclature in the cited
literature.

5.2.1 Model geometry

From a mathematical standpoint, we parameterize a hollow cylinder with finite thickness, where
all cell layers are in direct contact. The top of the hydroid tip is modeled by a hollow semi-
ellipsoid. This initial configuration corresponds to the resting phase C (where no cell movements
are registered) prior to the extension phase D and is depicted as the domain above the dashed
line in Fig. [5.3] (a).

We prescribe homogeneous Dirichlet values on a small circular cross-section I'p of the peris-
arc, which is a rigid organic skeleton and does not move during growth pulsations by assumption
(cf. Fig. [5.3](b)). Indeed, cutting the domain at this level is justified since we are primarily in-
terested in growth processes in the top of the hydroid tip rather than in its bottom. Further, from
a biological perspective, experimental observation indicate that the growth in the hydroid tip
functions independently from the rest of the hydroid [[10, 81} [I58]]. On the remaining boundary
I'y = 0Q\I'p, homogeneous Neumann conditions are prescribed.
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b M

D
(a) Schema of active extension in phase D (b) Disjoint boundary parts in a (c) 3D model geometry and
in a growing tip of a hydroid colony,  sliced hydroid and selected  grid of numerical cells
adapted from Kosevich [81]. points of interest. (dark blue).

Figure 5.3: Model geometry of a growing tip in a colonial hydroid stolon. (a) Ectodermal (ECT),
endodermal (END) cells and the perisarc (P). Actively deforming cells are marked
in green. To form the computational domain, we only consider the tip part of the
hydroid that is above the dashed line. (b) Dirichlet boundary I'p and Neumann
boundary 'y as well as points 1,2,3 of interest. (c) Numerical cells (blue grid)
and biological cell layers (color). Individual, biological cells are not resolved in this
application. The hydroid tip has been sliced for the sole purpose of a better visual-
ization
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The body of the hydroid tip is composed of 4 032 numerical cells (dark blue grid) that are
equally distributed among three material layers forming the endodermal (blue) and ectodermal
(grey) cell layers as well as the perisarc (red), as shown in Fig. [5.3|(c). Note that individual,
biological cells are not resolved in this application. Rather, the material layers help to distinguish
actively deforming cells from passively moving ones and from the perisarc. Further, the material
layers are used in the mesh decomposition employed during parallelization of the multigrid
solver (cf. Fig. .1] (a)). A reference solution necessary to ensure convergence of our solvers
was computed for 32 256 numerical cells.

In this thesis, the hydroid tip is initially assumed to be 320um long, which is the hight above
the dotted line in Fig. [5.3] (a). Further, the length (hight) of the endodermal layer is 280um
and the tissue cylinder has an outer diameter of 125um. The outer radius of the ectodermal
tube is assumed to be Ry = 60um and is important in the description of active deformations.
These values were picked consistent with the geometrical description of a growing hydroid tip
in Kosevich [81]].

5.2.2 Model equations

In the following, we specify our prototypic equations in variational form (3.1)) to investigate
growth processes in the development of tips in colonial hydroid. Therefor, we reduce our model
to the structural equation only and investigate how different active deformations lead to qualita-
tively different extensions of hydroid tips. In the hydroid tip, the actively deforming tissue layers
are surrounded by a rigid skeleton (perisarc) that is only soft towards the growing tip but can be
regarded as fixed on its cross-section towards the main body of the hydroid colony as discussed
above.

Hence let Q ¢ R?, d = 2,3 be a (bounded) domain. Let the boundary 9 of our domain
be split into two disjoint parts 9 = I'p U I'y where homogeneous Dirichlet and Neumann
conditions are prescribed, respectively. Further, we define the Hilbert space Vg with Vy == {v €
H'(Q) : v|p = 0} for d = 2,3. Then, our reduced model applied to growth processes in hydroids
reads in variational form:

Find displacement u € Vg for initial conditions u(X, 0) = 0, C(X, 0) = C°(X) such that
P’0u, D) + (FL, VD)o =0 Ve V¢
holds, where
r=JF'LF" X =Atr(E)+2uE, E, = %(FZFE -0,
F,=FF,!, F=Vu+I, J=det(F), J,=det(F,),

and u, A are the Lamé constants that we introduced in Subsection [2.1.

In these model equations, we replaced the second derivative in time by the first derivative:
That way, we can discretize the first derivative by the implicit Euler method, which proved to
be the straightforward way to damp oscillations of the tissue during growth in our numerical
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tests. Also, enhanced numerical damping methods still lack. Oscillations are damped since,
on the one hand, we are interested in the growth processes itself rather than the exact elastic
material behavior. On the other hand, we have so far neglected the water surrounding Hydra
colonies which takes the role of damping in the actual natural setting. Yet, numerical tests with
a fluid surrounding the hydroid do not provide further insights but proved to be computationally
expensive and required significant, additional model assumptions.

Active deformation gradients

In this application, we focus on the mechanical mechanisms involved in the morphogenesis of
hydroid tips. In particular, we are interested in the active deformations that lead to the active
extensions observed in phase D of each growth pulsation. In this phase, the ectodermal cells
(green) change their orientation towards the apex (distal direction), see Fig. [5.3] (a). The side
towards the basal membrane experiences the largest deformation whereas the side towards the
rigid perisarc remains immobile. Further, this active deformation is located in the growing tip
only and does not involve the endodermal cells (cf. Kosevich [81]). Based on these experimental
observations, we propose two different active deformation tensors to describe this motion:

On the one hand, we prescribe an active shearing where the ectodermal cells move towards the
top of the hydroid tip only. Whereas this seems to be efficient at first sight, we also observe that
this process involves a thinning of the ectodermal layer. Hence, the endodermal tube inside the
tissue widens due to the elastic response that ensures the continuity of the overall deformation,
i.e., it closes the “gap” between both layers that the active shearing causes in the intermediate
configuration, as shown in the middle of Fig. [5.4]

On the other hand, we prescribe an active rotation of the ectodermal cells as shown in the right
of Fig. This rotation of a point in the ectodermal layer is prescribed around an axis, which
is orthogonal to the cylindrical radius of this point and located in at the membrane towards the
stiff perisarc surrounding the growing tip. Further, we observe that this rotating motion does not
necessarily, by definition, result in rupture in the intermediate configuration and does not widen
the endodermal tube inside the hydroid. For the sake of a crisp presentation, we have moved the
geometrical details of this rotation to the appendix, see Section[A.T]

For the moment, we assume that both active deformations depend on time in a linear manner.
This is a reasonable assumption since we merely intend to asses the quality of the active defor-
mations, i.e., whether a shearing or a rotating active deformation describes the observed growth
process more accurately. Furthermore, this simplification reduces our system of equations to the
structural one only, see Eq. [5.2.2] Correspondingly, experimentally observed growth processes
suggest that growth rates in phase D are almost constant (cf. Kosevich [[81]]) in a single organism.
The magnitude of stolon growth however depends on various parameters that are difficult to ac-
count for such as stolon age, the nutrition state, the genetic makeup and the temperature. Hence,
anticipating the magnitude of the extension in advance is not possible (Wyttenbach [[158]]). In
summary, a linear dependency of growth on time seems reasonable whereas it is not constructive
to overfit our parameters to attain a certain magnitude of the elongation.
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Figure 5.4: Schematic illustration of the deformation gradient decomposition: Active extension
of the hydroid tip due to shearing and rotation for a selected part of the tissue (left).
Both active deformation gradients are continuous within the ectodermal layer (ECT).

For a shearing active motion of the biological cells in the ectoderm layer (ECT), the active
deformation tensor is given by
1 0 0
0 1 0f. (5.1)

~Xor 'k(t) -Xir k() 1

F,X,1) =

Further, the active deformation tensor for a rotating motion of the biological cells in the ectoder-
mal layer (ECT) is given by

XIr3A(a) + cos(a(r)) XoX1r 'A(e) 0
Fu(X,1) = XoX1r3Aa) X3r3A(a) + cos(a(n) O, (5.2)
— sin(a(t))Xor™! —sin(a(t)X ! 1

with

A(a) = Ry — Ry cos(a(t)) — K sin(a(t)),
a(t) = n(rg — r)k(z).

In both definitions, r = /X3 + X7 is the cylindrical radius of X in the hydroid body. Next, Ro
is the cylindrical radius of the border between ectodermal cells and perisarc and K the offset in
X,-direction between the rotation axis and X. Whereas the shearing tensor takes a simple form
and it is straightforward to visualize the rotation tensor (cf. Fig. [5.4), the geometrical derivation
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of the latter is rather complex. For the sake of readability, the reader will find the derivation of
these active deformation tensor in Section[A.T] of the appendix.
Both tensors depend on time in a linear manner:

t = XoThexs 1 XoTpext <t < XoTyey + T and Xin ECT
k(ty=1T ift > XoTpexr + T and X in ECT (5.3)

0 else.

Hence, both tensors prescribe an active deformation in X if this point belongs to an ectodermal
cell in the hydroid cylinder (colored green in Fig. (a)) and of the current time exceeds
X>Tyex. That way, the deformation propagates from the bottom to the top of the hydroid tip.
After time t > X,T ..y + T we prescribe a constant deformation. The latter is crucial since we
neither update the reference configuration nor consider a viscoelastic material model. Instead,
the tissue will return to its initial state if the active deformation is removed. For all other cells in
the tip, the endodermal layer (END) or the perisarc (P) we set F, = I by k(7) = 0.

Here, we introduced two constants, namely T,.,; and 7. The former describes the speed of
the propagation of the active deformation towards the hydroids tip, i.e. this is essentially the
time one biological cell needs to deform before the next one commences - although we stress
that we do not model biological cells explicitly in this setting. The latter constant is the absolute
time/angle until which the point shears/rotates. Since the active deformation depends linearly
on time, T effectively scales the maximal deformation rate. Note that, in case of a rotation, T
is essentially the maximal deformation angle. We misused the notation here for the sake of a
consistent definition of k(#) covering both active deformation tensors.

For a shearing motion, the active deformation gradient is volume-preserving: This is simple
to spot, since J, = det(F,) = 1 which gives for any deformed volume V, and its corresponding
volume V in the reference configuration

|Va|:f ngXmdXo:fldet(Fa)lddedeXo:dezdxldonlVl.
Va 14 Vv

Next, the determinant of our active deformation tensor describing a rotating motion is given
by J, = detF, = cos(a)(cos(a) + A(@)r~1), which is not equal to one in general so that we
scale the active rotations by its determinant. Alternatively, we could simply leave the volume-
preservation to the elastic material model, which is successfully tested in the next application to
embryogenesis in case of one specific active deformation gradient.

5.2.3 Parameter setup

Firstly, the time needed for the propagating deformation to effect one cell is set to Ty = 12s.
Secondly, the maximal deformation time/ deformation angle is given by 7' = 30s for a shearing
and by 7 = 0.25rad in case of rotating cell movement (the angle is given in terms of radians
rather than degrees, minutes and seconds). With these settings, we obtain a timescale of 120s
for phase D of a growth pulsation. Although this value varies in contrast to the invariance of a
whole pulsation period, this is the value generally proposed in literature [|81,|158]].
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The choice of the Lamé constants is not important (cf. Subsection[5.3.3)). In fact, it is only
essential to reflect the different stiffness properties of the tissue layers: The soft coenosarc com-
posed of the endodermal and ectodermal cell layers and the stiff outer skeleton (perisarc). The
Lamé constants are usually expressed in terms of Young’s modulus E and Poisson’s ratio v,
which can be obtained by the conversion formulas given in Eq. (2.24). For the soft tissue, we
used £ = 100Pa and v = 0.4 similar to the assumptions made in Ref. [1] in the context of
ventral furrow invagination in Drosophila. In the perisarc, we assume E = 200Pa and v = 0.4 in
its rigid cylindrical part (fat black line in Fig. [5.3) and a quadratic drop of E (over the range of
one biological cell) to 100 Pa in its soft and transparent semi-ellipsoidal top. We postpone the
implementation of viscoelastic behavior of the tip apex to future research.

Finally, we point out that the router radius of the ectodermal tube depends on the geometry of
the growing hydroid tip under consideration. In the description of the model geometry above,
we chose Ry = 60 um.

5.2.4 Numerical results and discussion

In this first application, we reduced our prototypical system of PDEs to the structural equation
only to investigate growth processes in colonial hydroids. These processes occur in cycles,
called growth pulsations, where we focus on phase D that comprises active deformations of
the ectodermal cells (cf. Fig. [5.3](a) (green)) and results in an extension of the stolon tip. In
the previous section, we proposed active deformation tensors describing shearing and rotating
movements of the ectodermal cells to model this motion.

Simulation snapshots showing the extension in the tip of a colonial hydroid for both active de-
formations are shown in Fig. [5.5] We observe how the deformation propagates from the bottom
to the top of the hydroid tip over time. For a rotating motion of the ectodermal cells in the top
row, we register a larger extension of the tip compared to a shearing one. Interestingly, the defor-
mation of the ectodermal cells in the cylindric part of the tip is larger for a shearing deformation
which results in a smaller extension of the tip nonetheless. Additionally, snapshots of a shearing
motion indicate that the endodermal tube is widened for this kind of active deformation. This
deformation would hence mean a huge effort to be summoned by the ectodermal cells that does
not translate into a large extention of the growing tip. Moreover, a widening of the endodermal
tube is not experimentally observed in phase D (see Kosevich [81]]).

In the next step, we want to compare the tip extensions that we witnessed in our numerical
simulations to experimental data collected by Igor Kosevich. These observations were made
under a Biolam microscope (Russia), where 5 — 12 successive cycles with a total duration of
1 — 1.5h were captured every twelve seconds (cf. Kosevich [81]). Regarding the dynamics
of stolon elongation in hydroid, Wyttenbach [[158]] established that the duration of each cycle
is highly reproducible if the temperature and the organic contamination of the sea water are
constant. In particular, it is invariant to the colony age (i.e. the mass due to growth over time),
the location of the stolon inside the colony and the nutrition state. The successive phases in
a cycle are even negatively correlated which ensures the constancy of the pulsation period (cf.
Kosevich [81]]).
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(a) Initial values (b) t = 40s (c)t = 80s (d)t=120s

(e) Initial values ()t =40s (g)t = 80s (h) t = 120s

6 12 18 24
T —

Growth of the tip in distal direction (X») in um

Figure 5.5: Simulation snapshots showing an extension in the tip of a colonial hydroid due to
active deformations of the ectodermal cells (phase D of growth pulsations). (a)-(d)
active rotation, (e)-(h) active shearing.
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Figure 5.6: Plots of the deformations during the extension phase D in the three selected points
(cf. Fig[5.3). (a)-(b): Deformation during our numerical simulations. (c): Deforma-
tion registered during phase D of growth pulsations, extracted from the experimental
data shown in Fig. (provided by Igor Kosevich [81]).

Yet, a quantitative comparison of our results to the experimental data is not feasible, since
the magnitude of the extension varies significantly and depends on the stolon age, the nutrition
state, the genetic makeup and the temperature: Anticipating the magnitude of the extension in
advance is thus not possible ( Wyttenbach [[158]]) and a “considerable variability in the rates of
movements of ectodermal cells has been demonstrated” Beloussov et al. [10, p. 317].

For a qualitative assessment, we pick phase D from the highlighted pulsation in Fig. [5.1]to
compare our numerical results with the experimental data. This comparison is carried out in the
previously selected points in the tip apex (point 1), at the apical part of the basal membrane vault
(point 2) and on the inner surface of the endoderm (point 3).

In Fig. [5.6] we have plotted the extension in distal direction in the three selected points based
on an active rotation (a), active shearing (b) and for the experimental data (c). One the one hand,
we observe that the plots for the active deformation describing a rotation of the ectodermal
cells strongly resembles the experimental one shown on the right. In particular, we observe an
almost constant extention of the hydroid tip. On the other hand, an active shearing results in a
comparably smaller extension of the hydroid tip. Also, we find saddle points in the growth over
time plotted for a shearing that are not registered in the actual organism under the microscope.
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In summary, a rotational active deformation of the ectodermal cell better explains the elonga-
tion process during phase D of growth pulsations for the following reasons:

o Our simulation snapshots of rotating active motions strongly resemble phase D in experi-
mentally observed growth pulsations. In contrast, we observe saddle points in the shearing
motion over time which are not registered in the experimental observations. Correspond-
ingly, Kosevich [81]] states that the “rate of tip movement at phases B,D and F is constant”;

o The shearing deformation results in a larger deformation in the cylindrical hydroid part
but yields a smaller elongation of the hydroid tip (cf. Fig. [5.5](a)-(d) to (e)-(h)). This is a
strong indication that a shearing deformation does not model a biological process which
is usually driven by minimizing the energy that is required for a motion;

o Ultimately, a shearing motion of the ectodermal cells leads to a widening of the endoder-
mal tube (cf. Fig. [5.5](e)-(h)) and yet to a smaller elongation of the tip. In phase D, such a
widening is not observed experimentally and is also absent for a rotating cell movement.

This first example allowed to verify the implementation of growth and gave a glimpse into
the importance of choosing an active deformation gradient. In the following section, we ap-
ply the whole prototypical coupled system of PDEs to the more complex situation of de novo
mechanochemical pattern formation in embryogenesis.

5.3 Mechanochemical pattern formation in embryonic
development

One of the most fascinating processes in developmental biology is the self-organization and
the self-complexation of biological tissue. One prominent example is embryogenesis where a
fertilized cell develops step by step into a complex organism. Here, we focus on the blastula
stage, where various mechanical and chemical patterns emerge on relatively simple structures,
namely a tissue sphere of biological cells [47]. As discussed in the biological motivation of this
chapter (cf. Section5.1), pattern formation in biological tissue requires a modeling approaches
that combines tissue mechanics and morphogen dynamics.

In this section, we apply our prototypical system of PDEs (3.1) including mechanochemical
feedback loops to embryogenesis leading to spontaneous (de novo) and robust pattern formation.

The results presented in this section were recently published in Brinkmann et al. [20]]. In the
course of this work, those results were supplemented by further simulations, e.g. by novel results
for the stress-mediated feedback loop including mesh adaptivity and an enhanced model, where
we integrate the mechanical feedback over biological cells. Further, the robustness with regard
to the model geometry, diffusion rates and material properties are investigated. In particular,
two invaginations are observed for quadrupled diffusion rates and stretch-mediated mechanical
feedback in conjunction with active apical constriction (wedging) of biological cells. Finally, we
implemented a novel internal pressure to account for the fluid contained inside the tissue sphere,
which leads to stationary mechanochemical patterns during gastrulation events.
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In two dimension, we published first results in Mercker et al [[103]]. In this work, the interplay
between stiffness and diffusion was further investigated and is interpreted in the light of our new
findings in three dimensions. For the sake of brevity, we postpone the presentation of these
results to the appendix.

This section is split into the following parts: Firstly, we illustrate the model geometry and
present our system of prototypic PDEs applied to mechanochemical pattern formation. There-
after, the piecewise-defined active deformation gradient modeling apical/basal constriction of
individual biological cells is derived. Also, we specify the stretch- and strain-based mechanical
feedback on the morphogen production.

Secondly, we present simulation snapshots of our numerical results where we focus on gastru-
lation events and the robustness of our modeling approach, e.g. with regard to initial conditions,
diffusion rates or model geometry.

Finally, we present the inner volume constraint (pressure) which accounts for the fluid con-
tained inside the tissue sphere and leads to stationary solutions for gastrulation as well as a novel
enhanced modeling approach where we integrate the mechanical feedback over biological cells.

5.3.1 Model geometry

We investigate a system representing developmental stages following the blastula stage of an
embryo.

In two dimensions, we parameterize over a 2D cross-section through the blastula that is a
tissue loop with a finite thickness which is confined to the 2D plane. This loop represents one
cell layer which is composed of 128 biological cells that are circumferentially arranged in two
layers. Each biological cell is resolved by 64 = 82 numerical ones such that 8 192 numerical cells
are required overall (cf. Fig. (a)-(b)). In two dimensions, results were verified by resolving
each biological cell by 4096 = 64> numerical ones, which results in 528 384 numerical cells
overall. In detail, convergence is analyzed in Section

In 3D, we parameterize a deforming tissue body over a hollow tissue sphere (cf. Fig.
(c)-(d)). The sphere is composed of 1 536 biological cells which are arranged circumferentially
in one layer. Each biological cell contains 64 = 4° numerical ones, which implies that we have
98 304 numerical cells overall. Simulation results have been exemplarily verified using 512 = 8*
numerical cells for each biological one, i.e. for a total of 786432 numerical cells. A thorough
convergence analysis in two and three dimensions including an adaptive local mesh refinement
strategy for stress-based mechanical feedback is presented in Section [3.5]

If not stated otherwise, the outer radius of this tissue sphere is 150um and the inner radius is
135um which results in a tissue thickness of 15um in the two- and three-dimensional settings.
5.3.2 Coupled system of model equations

In the following, we specify our prototypic equations in variational form (3.I) for the appli-
cation to mechanochemical pattern formation in embryonic development. Especially, we only
consider one species of signaling molecules of concentration C and consequently consider only
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(a) 2D model geometry with bio- (c) 3D model geometry with bio-
logical cells (color) logical cells (color)

(b) 2D: Biological cells (color) (d) 3D: Biological cells (color)
and numerical cells (blue grid) and numerical cells (blue grid)

Figure 5.7: Model geometries: (a)-(b) 2D tissue cross-section, (c)-(d) 3D tissue sphere, which
was sliced for the sole purpose of a better visualization.

one reaction-diffusion equation coupled to the structural one. Typically in embryonic develop-
ment, it is a priori not known where deformation will take place and Dirichlet boundary values
cannot be prescribed. In general, we thus employ homogeneous Neumann boundary values on
the entire boundary, which requires to include a stabilization term as discussed in Section [3.3]

We consider Q c R?, d = 2,3 to be a (bounded) domain in two or three dimensions. Next, let
the boundary dQ2 of our domain be split into two disjoint parts Q = I';, U I, that denote the
inside and the outside of the tissue sphere. Then, for suitable Hilbert spaces V¥ and V := H'(Q)
ford = 2, 3, our prototypic equations in variational form (3.T) applied to embryonic development
reads:
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Find displacement u € V¥ and concentration of signaling molecules C € V with initial condi-
tions u(X, 0) = 0, C(X, 0) = C%(X) such that

(€0 0yu, D)o + (FE, V) — (8, P)r,, =0 Ve V!
(Jo,C,¥)q + (JF‘IDF‘TVC, V%) — (JR,¥)qo =0 YWeV
5.4

holds, where

1
r=JF'TF" X, =Atr(E)+2uE, E, = E(FZFE -1,
F,=FF,!, F=Vu+I, J=det(F), J,=det(F,),

and where u, A are the Lamé constants. Further, the parameter € ~ 0.1 prescribes the strength of
the stabilization. Next, R is the coupling term incorporating the feedback of mechanical tensor
invariants on the morphogen concentration C via R = R(I(X), I(E), I(F), C) and will be specified
in the following. Vice versa, Z(F,(z, C)) allows for a coupling of the morphogen concentration
C on the active deformation process such as local tissue growth or cell-shape changes. The
active deformation will be specified in the next subsection. The coupling results in a positive,
self-inducing feedback loop which is presented in Subsection [2.3.3]and illustrated in Fig. [2.5]

The change in the geometry observed in a gastrulation event speeds up the deformation pro-
cess. To obtain stationary solutions in that process, an inner pressure is implemented. This
pressure accounts for the fluid contained inside the hollow sphere. We implement a surface
force g to model the inner pressure which acts on the inner boundary of the tissue sphere. This
surface force depends on the change of the inner volume of the tissue sphere and is introduced
in Subsection

Finally, D € R is the diffusion coefficient tensor, which reads in matrix notation

D = Q(X)! diag(Dn, D1)Q(X) ford =2
D = QX)! diag(Dn, D1, D1)Q(X) ford = 3,

with a diagonal matrix containing the diffusion coefficient Dy in normal (or radial) Lagrangian
direction N = |X|"!X and the diffusion coefficient Dy in the tangential directions T; and
T, (or just one direction T in 2D). The rotation matrix Q7 transforms the diagonal matrix
diag(Dn, Dt, Dt) defined in the point-specific coordinate systems given by the orthogonal unit
vectors N(X), T(X) and T,(X) to Euclidean coordinates. This choice is biologically motivated:
On the tissue scale, a large coefficient Dy in radial direction ensures free diffusion inside the
biological cells whereas a small coefficient Dt limits diffusion between biological cells. On the
cellular level, this approach is not exact as concentration gradients inside biological cells re-
main. Still, we believe that our modeling approach is sufficiently accurate: In particular, we are
interested in pattern formation on the tissue scales and biological cells are not resolved except
for the cell-wise description of active deformations. These matters are extensively discussed in
Subsection 2.3.11
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5.3 Mechanochemical pattern formation in embryonic development

Mechanical feedback

In this application, we mainly consider mechanical feedback on the morphogen production that

is based on the determinant of the deformation gradient. This tensor invariant has the physical
interpretation of compression (det(F) < 1) or stretch (det(F) > 1), i.e. det(F) = % is the ratio

of the deformed volume element dv(¢) to the initial one dV. In the stretch-mediated feedback
loop, the coupling term R(I3(F), C) (cf. Eq. (2.40)) including I3(F) = det(F) takes the form

max{(/3(F) - 1),0}

R(I3(F), €) = ks kn + max{(Iz(F) — 1), 0}

-k C.

Note that morphogen is produced if the biological cell is stretched. This choice is arbitrary as
implementing morphogen production in case of compression produces identical results. The
careful reader may have noticed that morphogen is thus only produced in parts of stretched
biological cells and distributed by large radial diffusion rates. A complete discussion on the role
of diffusion is given in Subsection[2.3.1

We point out that qualitatively identical results were obtained for the strain-mediated feedback
loop which relied on the first invariant of the Green-Lagrange strain tensor /;(E) = tr(E). These
results are not shown.

In the following, we further present results for the stress-mediated feedback loop where the
determinant of the second Piola-Kirchhoff stress tensor /3(X) = det(X) is used. For this tensor
invariant, the coupling term given in Eq. (2.40) takes the form

max{/3(X), 0}

R, O = e a5 (D), 0}

-k C.
For details on the implications of this coupling we refer to Subsection [2.3.3]

Active deformation gradient

In experiments, signaling molecules have been shown to influence the mechanics of biological
cells in various ways, such as growth, modifications of stiffness properties or active cell-shape
changes [12, |17} [32, |58]]. These processes can be anisotropic or can be restricted to just one
of several cell layers. In this application, we mainly consider morphogen-induced (basal/apical)
constriction in one layer of biological cells, since this is a commonly observed mechanism during
morphogenesis [|89], (98, [106, 115} |118| |134]. Here, apical constriction refers to the constriction
(wedging) of the biological cells at the side pointing towards the blastula lumen (i.e. towards
the inside of the tissue sphere), whereas basal constriction is the analogous constriction of the
side pointing away from the blastula lumen (i.e. towards the outside of the tissue sphere). A
schematic illustration of basal constriction is shown in Fig. [5.8]

In all our feedback loops, the influence of morphogens on local tissue mechanics is expressed
via the active part F,(X, C) of the decomposed deformation gradient F = F.F, (cf. Eq.(2.23)).
Thereby, it is a common assumption that the concentration of signaling molecules directly cou-
ples into the active deformation gradient [1, 20, |{104, [120].
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basal side

X9

Z{l

Xp

Figure 5.8: Schematic illustration of the multiplicative deformation gradient decomposition for
basal constriction.

To define the active deformation tensor F,,, we first introduce local coordinate systems X in
the origin of every biological cell. These coordinate systems are oriented such that X points
in the radial direction in the 3D setting. Further, let Q and m be the rotation matrix and the
translation vector from the reference coordinates X to these parametric ones. We have depicted
both coordinate systems and the transformation by Q in Section [A.1|of the appendix.

In these local parametric coordinate systems X, the constriction tensor is given by

1+ kC)A(z 0 kC)A(o
F,X,C) = 0 1 +kCX> kCX; (5.5)
0 0 1

where k is a constant and X = ()A(o,f(],f(z)T are the 3D coordinates in the local systems intro-
duced in each biological cell. Positive values of k result in an apical constriction and negative
values in a basal one. Observing QQ” = Q7 Q = I, F, in the reference system is now given as
the transformation of the tensor FQ(X, C) and its first argument by

F.(X,c) = Q"F,(QX - Qm, 0)Q. (5.6)

Note that Q depends on the biological cell under consideration whereas F, remains identical.
In particular, this definition implies that F, is a piecewise-defined tensor which results in a
semi-discrete model whereas our system of equations (5.4) was entirely continuous up to this
point. For the sake of a crisp presentation, we present a full derivation of this tensor and its
two-dimensional equivalent in Section [A.T|of the appendix.
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5.3 Mechanochemical pattern formation in embryonic development

Active constriction processes usually occur on one side of a biological cell by local contraction
of correspondingly located acto-myosin networks, see Martin ef al. [98|]. Nevertheless, during
these deformations, the local volume of the biological cells often appears to be conserved (cf.
Gelbart et al. [43]]). Similar as in Conte et al. [29] we thus want F, to be volume-preserving.
Indeed, this specific choice of ¥, and thus F, (since det(Q) = 1) is volume-preserving since for
the volume \A/,-,a deformed by Fa and the initial volume V; of any biological cells K; it holds

Vi,a = f
K;

= f (1 + kCX»)*dX,dX dXo = V; + kC f X2 + keX»)dXdX,dXy = Vi,
K; K;

i

dX,dX,dX, = f | det(F,)|dX>dX,dXo
K;

a

where the last integral vanishes since the centroid of K; has been transformed to the origin and
integration with respect to X| and Xo cancels out.

We point out that we are interested in simulating pattern formation on the tissue scale. In
particular, the numerical resolution of individual discrete biological cells is computationally
expensive. Nonetheless, our numerical results clearly confirm that it is essential to prescribe
piecewise-defined active deformations to observe realistic tissue development.

The robustness of pattern formation with regard to active deformations is a key aspect in
Subsection In particular, regular patterns persist if we redefine the active deformation
tensors so that active constriction is limited to one side of the biological cells without actively
expanding the other side. In this setup for basal constriction, the outer (basal) part of the cell
is actively constricted and ensuring volume-preservation is left to the (almost) incompressible
hyperelastic material model.

Continuous, active deformation tensors In principle, we can also base our mechanochem-
ical feedback loops on continuously defined active deformation tensors or on growth in just some
of several cell layers (“bimetal effect”). Two possible choices are presented in the following.
However, extensive numerical tests reveal that only significantly smaller deformations can be
obtained for these tensors. Similarly, combinations of apico-basal shortening and basal constric-
tion did not improve our standard approach from above. Interestingly, such combinations of
active deformations are observed in organisms such as the fish Brachydanio rerio (cf. Davies
[31D.

The first alternative approach is based on considering two layers of biological cells where just
the inner one is expanding. The corresponding active deformation tensor is defined by

kCI if [X] < Ry
I else,

F,X,C) = {

where Ry is the radius of the cell membrane between both tissue layers. By this definition,
morphogen concentrations lead to an expansion of the inner layer and tissue curvature towards
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the blastula lumen (the inside of the tissue sphere) via the “bimetal effect”. Similarly, we pre-
scribed isotropic growth in one layer and isotropic shrinking in the other, such that the volume
is preserved.

An alternative, approach that leads to mechanochemical pattern formation is based on a con-
tinuously defined active deformation tensor given by

F.X,C) = kC(Ry — X)L

5.3.3 Parameter setup

First, we focus on the essential parameters: Mathematically and biologically, it is vital to have
a comparably small diffusion coefficient Dy ~ 10 x 107'*m? s~! in the tangential directions in
relation to a large coefficient Dy ~ 10 x 107'?m? s™! in the outer normal direction of the tissue
sphere. This is motivated and discussed in Subsection Now, the crucial point in finding
suitable parameters is to balance the choice of the diffusion coefficients with the maximal mor-
phogen production rate k; ~ 10 X 10’mol m~3 s~! which is also related to the Michaelis constant
which was set to k,, = 2.0: Half of the production rate k; is attained, once the size of the tensor
invariant /(-) describing the mechanical tissue response has reached k,,, e.g. once det(F) = 2.0.
The two parameters k, and k,, depend on one another as they both influence the maximal mor-
phogen concentration after saturation (in conjunction with the diffusion coefficients). Further,
we set k; ~ 10 x 10~*s~! for the degradation rate of the morphogen level in the entire domain.
Detailed numerical studies on the robustness of our approach with regard to changes in these
parameters are presented in the following, e.g. see Fig. (or Fig. in the appendix).

Values of the Lamé constants are usually given in terms of Young’s modulus E and Poisson’s
ratio v. They can be obtained by the conversion formulas given in Eq. (2.24). In particular, the
Lamé constants linearly depend on E. Notably, the choice of the material constants is not essen-
tial: A dimensionless analysis shows that, in the absence of external forces, Young’s modulus
can be extracted from the structural equation and changes in E only alter the elastic timescale,
which is not resolved since we are only interested in the comparably long timescale of active
deformations (cf. Section [3.3)). We have used E = 100 Pa and v = 0.4 as in Allena et al. [1]] for
our computations. Also here, changing v does not significantly alter our results, i.e. choosing
E =1000Pa and v = 0.3 as in Conte et al. [29] leads to qualitatively similar results.

The stabilization parameter was set to € = 0.1. This choice is based on our stability analysis
and ensures that the stabilization error is always well below the dominating discretization error
in space (cf. Subsection[3.5.3).

As initial conditions, uniformly distributed random concentrations for each biological cell or
a morphogen gradient were used. In both cases, the morphogen concentration was prescribed
in the interval ¢ € [0, 10°Jmolm~3. For the visualization of our results, the initial morphogen
concentrations were transformed to the interval ¢ € [0, 1Jmolm™. In any case, the scale of the
morphogen concentration is not crucial since only the constant k, which determines how strong
the morphogen concentration couples into the active deformation gradient, simply has to scale
in the same manner. It was set to k ~ 10~®mol~! m. We point out that the initial deformation is
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set to u(X, 0) = 0, since the deformation corresponding to the initial concentration distribution
in not known. Notably, this means that these initial conditions do not match which reduces the
convergence rate of Newton’s method in the first three to five time-steps until deformation and
morphogen concentration correspond. Vice versa, we could also prescribe an initial deforma-
tion and a homogeneous initial concentration distribution to trigger mechanochemical pattern
formation.

In some simulations, we include an internal pressure that accounts for the fluid contained
inside the hollow tissue sphere. The intensity of this pressure is steered by changing the constant
k, ~ 8x 10719 Also, in our enhanced modeling approach, we employ a threshold for the
expression of morphogen which is set to THRES ~ 70 in 3D and THRES ~ 5 x 1073 in the 2D
case.

All parameters specified above can be employed regardless if the full 3D geometry or 2D
cross-sections are considered. This finding underlines the flexibility of our approach: Once a
new hypothesis is tested and confirmed on the two-dimensional level (which is computationally
simple), the newly designed model is subsequently leveraged to the full 3D sphere.

5.3.4 Numerical results and discussion

In our second application, we combine the most commonly observed interplays in embryoge-
nesis between chemistry and tissue mechanics to create a simple feedback loop. Namely, we
assume that there exists one morphogen species within the tissue, and that this morphogen lo-
cally induces active cell shape changes. In detail, these cell shape changes are assumed to be
apical or a basal constrictions (i.e., deforming cells from symmetric to wedge-shaped), since
these are frequently appearing deformations during tissue morphogenesis [|89, 98, [115, |118]].
Furthermore, we assume that tissue stretch induces production of the morphogen, which has
also been experimentally observed [24} [79]. These two mechanisms lead to a simple positive
feedback loop that we thoroughly described in Subsection[2.3.3] As an example, we have illus-
trated a stretch-mediated feedback loop based on basal constriction in Fig.

In short, mechanochemical feedback loops of this type have the capacity to spontaneously
create patterns for the following reason: As soon as the morphogen concentration or the stretch
inside the tissue is locally inhomogeneous, both morphogen and tissue curvature locally amplify
each other, since morphogen produces cell shape changes which lead to local stretch (due to
the elastic material response), which again leads to morphogen production. Thus, a short range
activation takes place. The long-range inhibition, in contrast, is mainly constituted by tissue
mechanics: Once the tissue is locally curved, in oder to maintain continuity, the surroundings of
the curved patch have to be bent into the opposing direction. This passive deformation prevent
the introduction of stretch by active deformations and a continuous, elastic response that results
in little stretch is sufficient. Morphogen produced here is consumed by the degradation rate (in
the regions of activity, however, large and possibly discontinuous active deformations require a
strong elastic response that results in stretch and triggers our feedback loop). An illustration of
these processes is shown in Fig.
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(a) Initial values (b) 2 days (c) 3.5 days (d) 27 days

Morphogen concentration C

Figure 5.9: Simulation snapshots that show spontaneous pattern formation for the stretch-
mediated feedback loop including basal constriction. The tissue sphere has been
sliced for the sole purpose of a better visualization. An experimental example show-
ing co-localization of tissue curvature and morphogen concentration during Hydra
development can be found in Hobmayer et al. .

Simulation snapshots for the stretch-mediated feedback loop including basal constriction (i.e.,
constriction at the end of the cell pointing away from the blastula lumen) are shown in Fig. [5.9
We observe that this simple mechanochemical interplay is sufficient to spontaneously produce
regular mechanochemical patterns, where the equilibrium pattern consists of regular morphogen
patches coinciding with patches of local tissue curvature. Results appeared to be numerically
stationary after ¢t ~ 20 days (referring to the model-time; corresponding to about 85000 nu-
merical time steps), which is a typical order of magnitude for developmental processes. Indeed,
co-localization of high morphogen levels and local tissue curvatures have been described in
many organisms and developmental steps, from head formation events in the freshwater polyp
Hydra through tooth outgrowth in vertebrates and shoot-meristem growth in the
plant Arabidopsis [84]. Interestingly, for all three processes mentioned above, there are exper-
imental evidences that mechanochemical interactions play an indispensable role during pattern

formation 96, 139].

Furthermore, the simulated de novo equilibrium patterns appear to be very robust against
the perturbation of preceding patterning stages, the latter represented by the choice of initial
conditions: Regardless if we start with stochastically distributed morphogen levels in biological
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cells (cf. Fig. [5.9), with only one morphogen spot (cf. Fig. [A.3]in the appendix) or any
different, non-homogeneous initial morphogen distribution, we always obtain approximately the
same number and size of mechanical and biological patterns. This robustness agrees well with
the experimental observation that embryonic patterns are robust to the perturbation of preceding
patterning stages [[11, 47, [135]].

Keeping all parameters constant but considering apical constriction instead of a basal one (i.e.,
constriction at the end of the cell pointing to the blastula lumen) finally leads to a gastrulation
event, with the highest morphogen concentration found in an annulus around the invagination
(cf., Fig. [5.10). However, due to strong deformations, the material model eventually breaks
down and Newton’s method no longer converges, so that the final pattern in Fig. does
not represent a stationary result. This does not come as a surprise since, firstly, significant
geometrical changes during gastrulation are witnessed which facilitate the invagination process.
Secondly, the fluid contained inside the tissue sphere is not considered in our model. Indeed,
we will demonstrate in Subsection [5.3.5|that imposing an inner volume constraint stabilizes the
invagination process at an earlier stage and leads to stationary solutions.

Also here, the gastrulation appears to be insensitive to the initial conditions and thus appears
to be very robust (Fig. [A.4]in the appendix). Similar mechanochemical patterns have been
observed experimentally during gastrulation, e.g. in Xenopus [113[] and the freshwater polyp
Nematostella [140]]. Interestingly, the simulations first show regular (though transient and weak)
mechanochemical patterns, comparable to those from basal constriction, before gastrulation oc-
curs (compare Fig. [5.9]and Fig. [5.10). The role of transient morphogen patterns during tissue
development has recently been further investigated e.g. by Ref. [8,114]. If mechanochemical
coupling is chosen as less intense, such as for a weaker coupling of stretch to the morphogen
production, these transient patterns become stationary after r ~ 6 days (about 2 days before the
snapshot shown in Fig. (c)) and do not result in gastrulation. The results in Fig. (c)
for apical constriction are strongly related to the patterns obtained for basal constriction: In the
former result, deformations are essentially the same but the morphogen is no longer co-located
with the inwards-directed deformation but co-located with the now active outward-directed de-
formation around the invaginations, compare again (d) with (c) where one image is
the negative of the other (morphogen-wise (color) and deformation-wise). In contrast, with a
stronger coupling between morphogens and mechanics, i.e. a stronger impact of stretch on the
morphogen production, the relative intensity of these transient patterns diminishes. Note that in
both simulations result, one can spot checked patterns in the actively deformed parts which are
the interfaces between the individually constricting biological cells (mathematically speaking
we spot the discontinuities of the active deformation gradient here).

We point out that our simulations indicate that also with basal constriction, a gastrulation (one
dominating wavelength) can be obtained when mechanochemical coupling is chosen as more
intense. Corresponding results are presented for the stress-mediated feedback loop in conjunc-
tion with basal constriction that is presented in the following. Yet, numerical calculations for
the stretch-mediated feedback loop break down at an earlier stage. More precisely, Newton’s
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(a) Initial values (b) 1 day (c) 8 days (d) 12 days
(not stationary)

M\IMH?HH\ e 10 WH"]P\HIIII\D"Z\HHH\
Morphogen concentration C Size of the coupling term R

(e) Initial coupling () 1 day (g) 8 days (h) 12 days
(not stationary)

Figure 5.10: Simulation snapshots that show spontaneous pattern formation for the stretch-
mediated feedback loop including apical constriction. The tissue sphere has been
sliced for the sole purpose of a better visualization. Microscopic pictures showing
similar morphogen and curvature patterns can be found in Scrivastava et al. .
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(a) Initial values (b)4h (c)6h (d)7.5h,
(not stationary)

Morphogen concentration C

Figure 5.11: Simulation snapshots that show spontaneous pattern formation for the stress-
mediated feedback loop including basal constriction. The tissue sphere has been
sliced for the sole purpose of a better visualization.

method no longer converges if we increase the morphogen production to obtain larger deforma-
tions. In the subsequent paragraph on the robustness of our model, we will observe that changes
in the parameters, in diffusion rates and the model geometry lead to stationary mechanochemical
patterns of similar structure as in Fig. [5.9] Further, many combinations of active deformations,
including continuously defined tensors, were tested. Ultimately, we could not fully settle the
question of why the stretch-mediated feedback loop and basal constriction did not lead to in-
vaginations. Yet, there are strong indications that the combination of active deformation and
mechanical feedback is essential, e.g. we obtain a single invagination for the stress-mediated
feedback loop.

Simulation snapshots for the stress-mediated feedback loop with basal constriction are pre-
sented in Fig. [5.11] Here, we observe large co-located patterns of morphogen patches. Notably,
the active deformations extend to large invaginations due to the changing tissue geometry within
this process. This topological change accelerates the invagination process and we do not obtain
a stationary solution, similar to the gastrulation events for the stretch-mediated feedback loop
(cf. Fig.[5.10). However, we demonstrate that imposing an internal volume constraint that mod-
els the fluid inside the tissue sphere leeds to a single, stationary invagination (cf. Fig. [5.16).
These stationary results are again robust with regard to changes in the initial conditions, namely

113



5 Applications

(a) Thinner tissue sphere, (b) Thicker tissue sphere, (c) Smaller sphere of 384 (d) Basal constriction in
16 days 23 days cells only, 6 days. basal half of the biol.
cells only, 24 days

3.5 7 10 14 18

Morphogen concentration C

Figure 5.12: Simulation snapshots showing the robustness of pattern formation with regard to
changes in the tissue thickness (a-b), the system size (c) and non-volume preserving
active deformations (d). In the lower row, the tissue sphere has been sliced for the
sole purpose of a better visualization.

stochastically distributed morphogen levels for each biological cell or a single initial morphogen
spot (result not shown).

Robustness

Additional simulations were performed to further investigate the robustness of our mechano-
chemical feedback loops: Firstly, we focused on the influence of model size and geometry on
the resulting patterns for the stretch-mediated feedback loop including basal constriction, which
we presented in Fig. [5.9] In particular, we varied the initial size of the system and the tissue
thickness (relative to the radius). We observe that a thicker tissue layer leads to an increased
distance between two neighboring tissue/curvature patches whereas a thinner tissue layer leads
to a decrease in the distance (cf. Fig. @ (a-b)). This observation was intuitively expected,
since mechanics is responsible for a long-range inhibition as explained in the beginning of this
subsection: The stiffer the material is, the larger is the range of propagation of the mechanical
signal. And the thinner the tissue is, the weaker becomes the inhibition of patterns and the closer
patterns will grow towards each other Fig. [5.12]

Also, the number of patches appears to scale with the system size: A smaller system of only
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384 biological cells of the usual size exhibits fewer patches (Fig. [5.12] (¢)). Most probably,
this is a direct result of the smaller tissue surface. Nonetheless, the mechanochemical patterns
themselves also shrink in comparison to pattern formation on the standard sphere with larger
surface (cf. Fig. [5.9). Besides, the relative tissue thickness is increased which reduces the
number of patterns by mechanical long-range inhibition, similar to the result observed in Fig.

B.12/(a).

Secondly, we show that we still obtain mechanochemical patterns if we change the nature of
the active deformations. For example, regular patterns persist if we redefine the active deforma-
tion tensor from Eq. (5.3) so that it only prescribes constriction at one side of the cell (the outer
one regarding basal constriction) without actively expanding the other side. By definition, this
active deformation tensor is no longer volume-preserving and the preservation is ensured by the
(almost) incompressible tissue material. This active deformation is interesting from a biological
perspective since it might in some sense better reflect the underlying constriction mechanism in
biological cells. Surprisingly, morphogen patches are frequently not spherical but rather develop
to “double-patches”, i.e., two superimposed patches constituting together a dumbbell-shape (Fig.

B.12/(d)).

Thirdly, we see that (tangential) diffusion rates are not a critical ingredient for obtaining
mechanochemical patterns: Quartering the lateral diffusion for the stretch-mediated feedback
loop based on basal constriction still leads to patterns (cf. Fig. [A.5]in the appendix), although
the reduced diffusion rate clearly diminishes the size of the initial morphogen/curvature patches.
Also, diffusion accelerates morphogen transportation and hence the speed of initial pattern for-
mation increases, compare Fig. [5.9)and Fig. [A.5] The same influence of diffusion on the initial
pattern formation can be observed for basal constriction (we have shown this result in Fig. 4 E in
Brinkmann et al. [20]). Overall, tangential diffusion appears to influence the process of pattern
formation by smoothing/regularizing morphogen patterns and by initially accelerating the infor-
mation transport and hence the pattern formation. Ultimately, however, diffusion rates only have
a marginal influence on the stationary solution: Quartering the diffusion leads to 13 (instead of
12), further localized and smaller morphogen/curvature patterns (diffusion smoothes patterns as
observed before). Interestingly, both stationary solutions are attained after about 25 days, refer-
ring to the “biological model time”. Most likely, this can be explained by the duration of the
consolidation process of strong patterns inhibiting weaker ones: The duration of this process is
increased if larger patterns develop earlier due to larger diffusion rates. These effects are even
strengthened when tangential diffusion is completely inhibited (result is shown in Brinkmann et
al. [20]). Also, we point out that changes in the material parameters do not significantly alter
our numerical results (not shown). Mathematically speaking, Young’s modulus merely scales
the elastic timescale (which is not resolved) when extracted from the equation as discussed in
Subsection[5.3.3

Next, we highlight that mechanochemical pattern formation seems significantly more robust
with regard to tangential diffusion rates, if the full 3D geometry of the tissue sphere is consid-
ered: Whereas we obtain almost identical stationary states in the 3D setting, the diffusion rates
can considerably influence the number of patterns in 2D, e.g. see Fig.
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(a) Initial values (b) 1 day (c) 4 days (d) 5 days

Morphogen concentration C

Figure 5.13: Simulation snapshots that show spontaneous pattern formation for the stretch-
mediated feedback loop including apical constriction with quadrupled, tangential
diffusion rate. The tissue sphere is sliced for the purpose of a better visualization.

We observe, however, that the influence of (tangential) diffusion rates is astonishing with re-
spect to the appearance of the final mechanochemical patterns for the stretch-mediated feedback
loop based on apical constriction: A quadrupled diffusion rate leads to two dominating mor-
phogen/curvature patches in annuli around the invaginations (Fig. [5.13](d)). As above, higher
diffusion rates seem to increase the “communication” between (local) patterns. This accelerates
initial pattern formation and the global consolidation process of dominant patters absorbing or
dissolving weaker ones. Regarding apical constriction, two patterns quickly dominate after just
four days for quadrupled diffusion compared to a consolidation process of eight days in case of
a single gastrulation, cf. Fig. [5.13](b)-(c) and Fig. [5.10] (b)-(c)). This corresponds well with the
previous observation regarding basal constriction, where transient patterns develop earlier if the
diffusion rate is increased.

Notably, the significant geometrical changes during the invagination facilitates the deforma-
tion Fig. [5.13](d) does not represent a stationary solution. Hence, we elaborate on this result and
impose an internal pressure that accounts for the fluid contained inside the tissue sphere. This
inner volume constraint stabilizes the invagination processes leads to stationary solutions which
are robust with regard to changes in the diffusion rates (cf. Subsection[5.3.5).
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Summary

Our numerical simulations indicate that it is important to consider a full 3D approach (rather
than 2D simplifications), since the resulting patterns presented in this work cannot be obtained
by lower-dimensional approaches (cf. Section [A.3]in the appendix for our results on pattern
formation in 2D cross-sections or Mercker et al. [[103}[104]). In the three-dimensional setting
discussed above, we show that gastrulation-like deformations can be obtained from a range of
non-uniform or non-rotationally invariant types of initial conditions, for both basal and apical
constriction, and for different feedback loops based on stretch or stress. In this application, re-
sults for the strain-mediated feedback loop are almost identical to those for the stretch-mediated
one and were omitted for the sake of a shorter presentation. In 2D or pseudo 3D approaches,
however, it was not possible to obtain gastrulation driven by de novo pattern formation [[103}
104]. Hence, the full 3D approach most likely leads to more realistic simulation results, which
is due to the fact that both chemical and mechanical behavior is strongly biased if dimensions
are neglected.

Finally, the present study offers for the first time the possibility to explain gastrulation by
robust de novo mechanochemical pattern formation, leading to simulation results similar to pat-
terns observed in model organisms such as Hydra, Nematostella and Xenopus. However, until
now, the experimental evidence for the specific feedback loops as presented in our work is still
sparse. Possible reasons are: (1) visualization of mechanical measures in living biological tis-
sues is still under development and connected with a high experimental effort [17,|117]; and (2)
the ’pure chemical approach” to explain pattern formation is still very prominent in the field of
developmental research.

Encouragingly, the number of mechanochemical feedback loops experimentally documented
to be drivers of pattern formation increases [[17, 87, |112] and new methods of the visualization
of mechanical cues are currently under development 55, 101} 102} [159].

Thus, our simulation results show that even simple interactions between chemistry (mor-
phogens) and tissue mechanics can lead to robust and spontaneous pattern formation. Especially,
it is worth pointing out that

e mechanochemical pattern formation appears to be very robust against perturbation of pre-
ceding patterning stages, model parameters and a range of specific assumptions;

e experimental verification of long-range inhibitors is neither necessary nor possible, since
long-range inhibition may be caused by mechanical cues;

e mechanical cues (such as compression) naturally propagate at an enormous speed due
to the direct mechanical interaction of molecules or cells. Hence, the mechanochemical
theory is not restricted to relatively small length scale due to maximum possible diffusion
rates of morphogens;

e dynamic and complex tissue topologies do not prevent patterning but are rather actively
involved in pattern formation. Thus, they provide a natural and robust feedback to ensure
the success of mechanical pattern formation;
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e On the contrary, the full 3D geometry appears to be essential to obtain many realistic
numerical results such as gastrulation events;

e cven simple linear relationships between chemistry and morphogens lead to spontaneous
pattern formation, highly nonlinear interactions do not have to be assumed.

Hence, the presented mechanochemical mechanism fits well the recent experimental data and
all main difficulties of purely chemical theories (listed in the introduction to this chapter) are
naturally resolved.

5.3.5 Internal pressure to ensure stationary gastrulation events

In the previous discussion of our numerical results we have seen that the geometry of our tissue
sphere changed significantly during gastrulation events. In particular, these shape changes facili-
tate the invagination process. For very large deformations, this ultimately results in a breakdown
of the material model. This observation agrees well with the physical intuition that, after a cer-
tain point, the total potential energy is minimized if the sphere invaginates further (imagine a
broken ping-pong ball that does not return to its spherical shape).

So far, we have neglected the water that is naturally contained inside the embryo and strongly
influences the gastrulation process. Yet, it is difficult do asses the quality of this pressure: For
instance, it is not experimentally settled if we can assume incompressible behavior of a fluid
inside a tissue sphere or if an initial pressure precedes gastrulation, see Conte et al. [29, p. 191].
Apparently, the fluid is under pressure during gastrulation events as it squirts if the tissue is
pierced.

On the one hand, the fluid itself is certainly (nearly) incompressible. On the other hand, in-
tegral membrane proteins, called aquaporins, form water channels trough the cell membranes.
Aquaporins are highly selective: They significantly increase the in- and outflow of water com-
pared to diffusion through the cell membranes but prevent ions from passing. Inside the Hydra
embryo, ion pumps produce ions such that osmosis leads to an inflow of water. In deformation
processes such as gastrulation, the geometry of the initial tissue sphere is significantly changed
and the volume inside the tissue sphere is reduced. Consequently, the ion concentration in-
creases which in turn results in osmotic pressure. Summarizing this discussion, assessing the
quality of the osmotic pressure is highly speculative. Until this question is experimentally set-
tled, we performed various numerical experiments with different internal volume constraints to
collect further knowledge about this process.

Implementation of an internal pressure In this work, we accounted for this pressure by
introducing a surface force g on the inner boundary of the tissue sphere, see Figure [5.14] The
further the tissue is compressed, i.e. the smaller the volume contained in the tissue sphere
becomes, the stronger has to be the surface force. This force is directed in the Eulerian, normal
direction n. Since our equations are given in the Lagrangian framework, this boundary force has
to be expressed in terms of the Lagrangian, normal direction N.
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1ﬂout
Fout (t)

Q(t)
(a) Initial domains (b) Deformed domains

Figure 5.14: (a) Computational domain Q for the tissue sphere and domain ;, with boundary
I';, surrounded by the tissue without initial internal pressure (by assumption) (b)
Outline of the deformed configurations taken from our numerical simulations with
illustration of the internal pressure (green arrows).

So far, we prescribed homogeneous Neumann conditions on the entire boundary 9Q = T'y.
Now, we split the boundary into the inner and the outer boundary of the initial reference sphere
and of the deformed configuration by

0Q =Ty =Ti Ulow, 0Q®1) =In(®) = Lin(t) U Tou(t)

as illustrated in Figure [5.14] As usual, homogeneous Neumann conditions are prescribed on
I'sys. On the inner boundary I';,, the surface force produced by the compressed fluid is given by

f g(n, 1) - pds =k, VOV f n-ods = k,eVO f JFIN-®ds, (5.7)
Lin(®) Lin(1) Lin

where k), is a constant. By assumption, the force on the inner boundary depends exponentially
on the difference of the current volume V(¢) and the initial volume Vj of the fluid domain Q;,
contained inside the tissue sphere. This definition of the internal pressure agrees well with
Boyle’s law for ideal gasses, where an exponential increase in the pressure is observed if the
volume occupied by the gas is reduced. For completion, we point out that we extensively tested
forces depending on constant, linear, quadratic and cubic factors (V(¢) — Vo), k =0,1,2,3, as
well, which were incapable of stopping the invagination process.

The transformation of the integral is obtained by using Gauss’s divergence theorem to trans-
form the boundary integrals into volume integrals. Next, the volume integral in the Eulerian
configuration is transformed by substitution (cf. Eq. [2.4) and the transformation of the gra-
dient (cf. Eq. @, which produce the determinant of the Jacobian J(X,¢) = det(F(X,¢)) and
F~T(x(X, 1), 1), respectively.
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Initially, there is no deformation i.e. V(f) — Vy = 0 and thus no pressure acts on the inside
of the tissue sphere. This is merely an assumption as an initial internal pressure might already
exist at the blastula stage. To calculate the volume contained inside the tissue sphere, let u(X, 7),
X € QU Q;, be the continuation of our displacement into €;,. Since u € H 1(Q) is smooth, the
existence of a continuation of u into Q;,(¢) is ensured by the theorem of Calderon-Zygmund (cf.
Wioka [[154, p. 100]). Thus, this continuation provides a deformation from Q;, to €;,(¢) for the
domain contained inside the tissue sphere.

With these preparations, the current volume V(¢) of the deformed domain €;,(¢) is given by:

1
V(t):f 1dx=—f V.-xdx
Q,‘n(l) 3 Qin(t)

:%f JIT'WV - (JF ' (X + u)dX (5.8)
Q.

n

1
=—f JFIN. (X +u)ds,
3 rin

where the transformation of the divergence to the reference configuration was used to obtain the
second line (see Eq. (2.6)). Further Gauss’s divergence theorem yields a surface integral over
I';, such that we can calculate the current volume V(¢) contained inside €. Notably, we evaluate
the integral over €;,, which is not part of actual computational domain €, on the inner boundary
I, € 0Q in the reference configuration.

In practice, we thus evaluate the functional for the current time-step and use this value
in the subsequent one. In our implementation, this is the only explicit calculation in an oth-
erwise implicitly coupled system. We point out, that the different timescales in our strongly
coupled system of equations require small time-steps in all our calculations. Thus, changes in
the contained volume quickly effect the inner pressure and no unwanted behavior is observed.

Notice that the pressure observed in a real life tissue sphere is determined by three mutually
interfering phenomena: Firstly, by the incompressible fluid contained in this sphere. Secondly,
by the permeability of the biological cells, i.e. by the fluid leaving the sphere, and thirdly,
by the stretching of the hyperelastic tissue sphere due to the decreasing inner volume for the
incompressible fluid. Whereas the elasticity is incorporated in the structural equation modeling
the tissue sphere, the first two items are left to be modeled. Here, we assume that the pressure is
inversely proportional to the volume occupied by the liquid. This relation is known as Boyle’s
law which holds under the assumptions of constant temperature and an unchanged amount of
gas. Correspondingly, in the case of an ideal gas, the pressure exponentially depends on the
volume dV occupied by the gas. Obviously, this is a strong simplification since it also neglects
the viscous behavior of the fluid leaving the tissue sphere. Notably, including an incompressible
fluid described by the Navier-Stokes equations was not successful as it lead to an immediate
breakdown of convergence for Newton’s method.

Finally, we point out that the pressure defined in Equation (5.7) is reasonable from a physical
point of view. Especially, a pressure p should satisfy the property fr pnds = 0, which is
obviously fulfilled, see the Eulerian description of the pressure. Most importantly, this condition
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ensures that the pressure produces the same forces in all directions. In particular, the domain
does not move out of itself due to this pressure. In the Lagrangian description, this property is
preserved by the transformation with the Jacobian J = det(F)) which is e.g. large for strong
deformations u that give a small term F~'N.

Numerical results and discussion We apply our internal volume constraint to the stretch-
mediated feedback loop including apical constriction which leads to two invaginations for quadru-
pled tangential diffusion rates (cf. Fig. [5.13).

In Fig. [5.15|(d) we plot the development of the maximal deformation measured by the max-
imum of the Euclidean norm maxxeg |[u(X)||> over time. The evolution of this deformation for
the stretch-mediated feedback loop in conjunction with an internal pressure (green line) demon-
strates that the invagination process is stopped. A stationary solution is attained after around
170h. In contrast, the invagination for the stretch mediated feedback loop alone accelerates and
our simulation breaks down after around 125h (cf. red line in Fig. [5.15](d)). Accordingly,
Fig. (a) for a stretch-mediated feedback loop including an internal pressure represents a
stationary result whereas Fig. [5.15](b) does not.

We highlight that the tissue in Fig. [5.15](a) for a feedback loop including an internal volume
constraint has a smoother spherical form compared to (b), since the pressure pushes smaller
patterns to the outside. Indeed, the peak in the green line at around 130h in Fig. [5.15](d) stems
from a third large pattern (besides the two dominating invaginations) that was pushed away from
the blastula lumen (outwards). Momentarily, this increases the volume inside the tissue sphere
which diminishes the inner pressure and in turn leads to a larger invagination, i.e. a peak in the
maximal deformation.

Analogously, a stationary solution is attained if we apply this constraint to a gastrulation event
with a single invagination: Fig. (c) represents a stationary result for the stretch-mediated
feedback loop including an internal pressure whereas Newton’s method no longer converges
shortly after the simulation snapshot presented in Fig. [5.10/(d) is taken.

Our simulations further indicate that the stationary gastrulation result is robust with regard to
changes in the intensity of the internal pressure. On the one hand, a smaller intensity simply
stops the invagination at a later stage. On the other hand, the two invaginations in Fig. [5.15] (a)
seem to be reduced to a single one, if a stronger pressure is prescribed. In short, a strong internal
pressure seems to facilitate the stronger of two competing invaginations.

We point out that internal pressure should indeed increase exponentially with decreasing vol-
ume inside the tissue sphere: Our numerical simulations show that this pressure should initially
be sufficiently small such that the gastrulation process itself is preserved. Moreover, the pressure
needs to increase fast enough to ensure a stationary solution. In addition, numerical experiments
showed that pressures depending constantly, linearly, quadratically or cubicly on V(¢) — V, did
not lead to stationary results: Either, the pressure did not increase sufficiently fast or the invagi-
nation itself was pushed back into its spherical form such that the stationary solution resembled

the state presented in Fig. (5.10) (c).
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(a) Quadrupled diffusion, internal (b) Quadrupled diffusion, no inter- (c) Normal diffusion rate, internal
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(d) Plot regarding the setup with quadrupled diffusion rates: Maximal deformation
maxxeq |[u(X)||; in pm over time during gastrulation events.

Figure 5.15: Comparison of simulation snapshots showing gastrulation events for the stretch-
mediated feedback loop including basal constriction: (a) Simulation snapshot in
the stationary state (# = 170h) for an exponentially increasing internal pressure.
(b) Snapshot for the feedback loop alone (without an internal pressure) taken at
t ~ 120h shortly before the breakdown of our numerical simulations. (c) Snapshot
in the stationary state for the stretch-mediated feedback loop for the usual diffusion
rate and in conjunction with an internal pressure. (d) Maximal deformation over
time during gastrulation.
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In summary, we conclude that our model including an internal pressure is clearly more accu-
rate from a biological perspective. We emphasize that, due to this pressure,

o the invagination process during gastrulation events is stopped and we obtain stationary
mechanochemical patterns;

e the gastrulation becomes more robust, e.g. with regard to changes in the diffusion rates.
Namely, an internal pressure seems to facilitate the formation of a single invagination that
prevents a second one from emerging via increasing the pressure.

5.3.6 Enhanced model: Integrate mechanical feedback over biological cells

Finally, in the last part of this section, we apply our enhanced model to the stress-mediated feed-
back loop including basal constriction in 3D. This enhanced model was introduced in Subsection
and is based on the idea that we integrate the mechanical feedback over the biological cell
and use this value to prescribe constant morphogen production rates in each of these cells. This
approach is more accurate on the cellular level since it models fast (basically instant) diffusion
inside biological cells and small diffusion rates between cells.

Notably, small stresses can be propagated through the entire domain due to the integration
processes. Hence, we need to introduce a threshold which regulates the expression of mor-
phogen. This is a reasonable assumption (cf. Gregor et al. [51]) which is also discussed in
Subsection In practice, the morphogen is produced via the coupling term R(Z, C) in the
reaction-diffusion equation if the mechanical feedback exceeds a threshold, i.e. if I/ > THRES .

Simulation snapshots show that we eventually obtain a single stationary gastrulation (cf. Fig.
if we combine our enhanced model based on a stress-mediated feedback loop based on
apical constriction with an inner volume constraint (cf. the preceding subsection). This single
curvature/morphogen patch does not show distinct biological cells due to inter-cellular diffusion
in contrast to the integrated feedback as shown in the second row. Here, the threshold for the
expression of morphogen plays a crucial role in stopping the morphogen patches from expanding
to adjacent biological cells: In absence of such a threshold, any stress-based feedback would be
integrated over the entire biological cell which results in its constriction that in turn introduces
stress in all adjacent cells.

Both, the internal pressure and a threshold for morphogen expression hence contribute to
the inhibition of weaker morphogen/curvature patches, such that only one morphogen/curvature
patch remains, compare to the results for the standard model shown in Fig[5.T1] Consequently,
this enhanced approach does not seem to be essential to obtain a single invagination but rather
the combination of an internal pressure and the threshold for morphogen expression seem to be
the dominating factor. As discussed previously, a larger invagination cannot be attained for a
model including basal constriction (this is also true for all other active deformation gradients
that we have tested so far).
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(a) Initial values (b)4h (c)6h (d)7.5h

Morphogen concentration C Size of the coupling term R

Figure 5.16: Simulation snapshots showing spontaneous pattern formation for a feedback loop
based on integrated stress-mediated feedback in combination with basal constric-
tion. The feedback is integrated over each biological cell, shown in the lower row.

Next, we consider the 2D setting to conduct further simulations for the enhanced approach
based on stress- and stretch-mediated mechanical feedback. Also here, we asses the robustness
with regard to diffusion. Firstly, let us consider the stretch-mediated feedback loop including
basal constriction. In Fig. (a)-(d), we show pattern formation for the stretch-mediated
integrated feedback where diffusion is not essential to obtain mechanochemical patterns in this
enhanced approach. Interestingly, these simulation snapshots strongly resemble our findings
for the stretch-mediated feedback loop for one tenth of the usual diffusion rate in the standard
approach (cf. Fig.[A-8). If diffusion is considered we obtain a foot-sole/peanut shaped result (cf.
Fig. [5.17)(e)-(h)) similar to our simulation snapshots for the standard approach in 2D presented
in the appendix (cf. Fig. [A.6]

Secondly, for the stress-mediated feedback loop, we obtain a single invagination for an initial
morphogen spot. A clear distinction between actively constricting cells (green and red) and
passive cells (blue) (cf. Fig. [5.18) compared to the usual model (cf. Fig. is possible.

In summary, a single active gastrulation was observed for the feedback loop based on inte-
grated stress-mediated feedback including basal constriction, where a threshold for the expres-
sion of morphogen is crucial to stop the expansion of mechanochemical patterns into the entire
domain. More importantly, the presented enhanced approach yields results that, at least on the
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Figure 5.17: Simulation snapshots showing spontaneous pattern formation for a feedback loop
based on integrated stretch-mediated feedback in combination with basal constric-
tion. (a)-(d): No diffusion (f)-(j): Usual diffusion rates as in Fig. E As initial
conditions, we prescribe uniformly distributed, random morphogen concentrations
for each biological cell.
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Figure 5.18: Simulation snapshots showing spontaneous pattern formation for a feedback loop
based on integrated stress-mediated feedback in conjunction with basal constric-
tion. Initially, morphogen is distributed with a spot at one side of the sphere.
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tissue scale, closely resemble those from our usual feedback loops. This indicates that our stan-
dard approach is indeed suitable to describe mechanochemical pattern formation on the tissue
level. In general, it hence seems that the additional effort of integrating the mechanical feedback
is not required to gain meaningful results on the tissue scale with our standard approach that we
presented in the beginning of this section.

5.4 Mechanochemical pattern formation for symmetry breaking
in Hydra aggregates

Finally, we apply our prototypical systems of PDEs to symmetry breaking and subsequent head
formation in aggregates of the fresh-water polyp Hydra. Clearly, the highlight of this section
are our predictive numerical experiments, where we focus on the impact of mechanical stimuli,
namely micropipette aspiration, on biological tissue. This research is based on simple mechan-
ical manipulations which is particularly attractive since mechanical tissue modification tools,
molecular markers and mechanochemical models are still in its infancy [[103]. Besides, we
have the opportunity to qualitatively compare our numerical results to the experiments by Heike
Sanders [[133]]. This application further emphasizes the flexibility of our approach as we demon-
strate how our simple mechanochemical feedback loops adapted to a new model organism ro-
bustly lead to pattern formation. These loops are based on morphogen induced apico-basal
shortening (thinning) of biological cells which results in strain that in turn triggers morphogen
production. The precise model organism under consideration is of less importance.

Here, we focus on the fresh-water polyp Hydra, which is a fascinating and frequently stud-
ied model organism where de novo mechanochemical pattern formation is witnessed. Besides,
experiments by micropipette aspiration are conducted for Hydra regenerates and allow for a
cross-reference with our numerical results, see Sander [[133]]. Gierer et al. [45]] demonstrate the
extraordinary regeneration capabilities of Hydra: Sufficiently many separated (gastric) cells of
Hydra reaggregate into a tissue sphere and develop into a normal animal. Any positional infor-
mation is lost during aggregation (cf. Ref. [45]]) such that de novo mechanochemical pattern
formation leading to symmetry breaking is vital, see Soriano et al. [|139].

Further, studying Hydra aggregates is appealing from a modelers perspective [[105[]: It has a
simple model geometry and a reduced complexity compared to the complete, original organism,
e.g. we do not need sophisticated assumptions regarding the initial conditions. Thus, it is not
surprising that Hydra aggregates are an established model organism in developmental biology
[42,[53].

Spontaneous symmetry breaking and head formation in Hydra aggregates is characterized by
the following steps: Initially, sufficiently many separated Hydra cells regenerate and form a hol-
low sphere where the cells are arranged in a bilayer. Then, the aggregate shows osmotically
driven growth oscillations that eventually lead to a symmetry breaking: During growth pulsa-
tions, Fiitterer ef al. observe sawtooth-like oscillations of inflation due to the inflow of water
followed by rapid contractions, where fluid and detached cells are released due to the rupture
of the tissue (phase I). Next, smaller oscillations are registered and the symmetry is broken by
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an elongation that subsequently leads to head formation (phase II). Interestingly, the location
of head formation does not necessarily coincide with the points of rupture during phase I, see
Sander [133]]. Finally, the organism grows into a complete animal with a head, tentacles and a
foot.

In the last decades, the Wnt pathway has become a well-established mechanism to explain
the formation of the head organizer in Hydra, see Broun et al. [23|], Hobmayer et al. [65] or
Lengfeld et al. [88]]. However, there “is no consensus about the exact mechanism how and why
the wnt head organizing center is initially established at a specific location”, Sander [[133] p. 2].

Further, activator and inhibiter molecules required for classical Turing type models have not
yet been identified [40, 139]. On the contrary, “experiments investigating de novo symmetry
breaking in hydra shperoids suggest a mechanical basis of the self-organized symmetry breaking
process , Sander [133| p. iii]. Further, experiments by Henderson et al [62] or the use of
magnetic tweezers and in vivo laser ablation by Desprat ef al [|33]] stress the indispensable role
of tissue mechanics (and the cytoskeleton [[133]]) in morphogenesis. In the introduction to this
chapter, we further illuminated the central role of mechanics in pattern formation.

These findings further stress the need for new modeling approaches. A first approach by So-
riano et al. [[139] combines reaction-diffusion equations and mechanics by coupling morphogen
transport to stress. Recently, Mercker et al. [105] proposed simple feedback loops between
morphogen dynamics and mechanical stretch to explain many experimental observations by
simulations on 2D surfaces: Osmotic pressure (phenologically modeled) leads to tissue stretch
which produces morphogen. In turn, morphogen reduces the mechanical resistance to stretch
such that mechanochemical patterns develop.

In this thesis, we apply our prototypical system of PDEs to spontaneous symmetry breaking in
Hydra aggregates. We demonstrate how simple mechanochemical feedback loops robustly lead
to pattern formation where the consideration of the full 3D geometry seems essential to obtain
realistic results. The highlights of this section are our predictive numerical experiments which
are validated against microscopic observations of micropipette aspiration.

5.4.1 Model geometry

In this application, we investigate a system representing so-called Hydra aggregates of the sweet-
water polyp Hydra. One advantage of studying Hydra aggregates is their reduced complexity
compared to the complete organism and their simple geometry [45]]. Initially, its cells are ordered
in form of a hollow tissue sphere, analogous to the model geometry in embryonic development
that we showed in Fig. Thus, we parameterize a deforming tissue body over a hollow tissue
sphere. The sphere is composed of 1536 biological cells that are arranged circumferentially in
one layer. Each biological cell contains 64 = 4 numerical ones, i.e. we have 98 304 numerical
cells overall (blue grid in Fig. (b)).

If not stated otherwise, the outer radius of this tissue sphere is 150um, and the inner radius is
135um. Hence, we have a tissue thickness of 15um.
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Biological cells (color and lines) Resolution of biological by numeri-
cal cells (blue grid)

Figure 5.19: Model geometry for simulating symmetry breaking in Hydra aggregates. The 3D
tissue sphere is sliced for the sole purpose of a better visualization.

5.4.2 Robin and Neumann boundary conditions for modeling the pipette

In general, we prescribe homogeneous Neumann conditions on the entire boundary since Hydra
aggregates are usually surrounded by water. In biological experiments, head formation in regen-
erated Hydra aggregates can be triggered by aspiration with a micropipette, see Sander [133]].
Hydra regenerates are sensitive to mechanical stimuli and even gravity: Hence, the regenerate
is solely fixed by the micropipette itself during these experiments. Here, this translates to a pre-
scription of homogeneous Neumann boundary conditions except for the part where we model
the aspiration by the micropipette. Here, a Neumann boundary condition accounts for the force
applied by the pipette, and a Robin condition models its glass body.

Hence, let Q ¢ R? be a (bounded) domain in three dimensions. In general, homogeneous
Neumann conditions FXN = 0 on 9Q are assumed, since Hydra aggregates are usually sur-
rounded by water and it is a priori not obvious where deformations will occur. Also, Dirichlet
conditions are not an option since numerical simulations confirm that they significantly alter our
numerical results.

Additionally, we want to consider predictive numerical experiments as illustrated in Fig.
In this experiment, we prescribe homogeneous initial conditions such that pattern formation is
solely triggered by a pipette that aspirates the Hydra tissue. This pipette acts as a surface force on
the boundary of the biological tissue. Hence, we derive boundary integrals that model the pull by
the pipette on the one hand and the constraints that are imposed by the glass body of the pipette
on the other. This leads to three different boundary conditions on the three non-overlapping
parts,

0Q=TyUTlg, Ty=TynoUTyp,

of our boundary €, see Fig. [5.20] Note that the white pipette in this figure is solely included
for the purpose of a better visualization and never part of the computational domain.
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Figure 5.20: Setup in our predictive numerical experiment for pattern formation induced by the
pull of a pipette. Left: Schematic illustration of the boundary parts on a 2D cross-
section, where Robin and Neumann conditions are prescribed on I'g (red) and I'yp.
Right: Simulation snapshot of our predictive, numerical experiment where mor-
phogen (color) is induced by positive strain. The 3D tissue is sliced for the sole
purpose of a better visualization

Firstly, we include a prescribed surface force modeling the pull by the pipette using a Neu-
mann boundary condition on I'yp. Secondly, the glass edge in the tip of the pipette prevents the
tissue from deformations in normal direction n. We model the glass body by free slip and no
penetration boundary conditions, i.e., the biological tissue can slide along the tip of the pipette
but it cannot penetrate its glass body. Note that we neglect friction and that considering the
glass body significantly changes the material response in comparison to simply pulling the Hy-
dra tissue (cf. Subsection [5.4.5). Slip (with friction) and no penetration boundary conditions
are also implemented in many applications of the Navier-Stokes equations. For instance, Galdi
and Layton [41]] propose to apply slip with friction and no penetration boundary conditions to
compute the large eddies (vortices) of a turbulent flow.

In this application, we mainly follow the work of John [73]], who describes the implemen-
tation of these conditions for finite element discretization. The practical realization of the no
penetration condition (u - n) = 0O that accounts for the glass body leads to a Robin boundary
condition on I'g. Finally, we assume that no forces act on the rest of the boundary I'yg, where
homogeneous Neumann conditions are prescribed.

We start from the structural equation in Eulerian coordinates (2.17)), which reads

f P(X, )0 v(X, e + p(X, )(V(X, 1) - VIV(X, ) dx + f o(x, Ve dx
Q@)

Q)
+ f ox,tngds =0
Q1)
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if a body force f is not considered and if the boundary term no longer vanishes due to the
inhomogeneous boundary conditions in this setting. Next, let the boundary in the deformed
configuration be split in the disjoint Neumann and Robin parts dQ(f) = I'y(¢) U I'r(¢), with
I'y(#) = I'yo(?) U I'yp(2). For the boundary term in the previous equation, this yields

f ox,tneds = f g(x)pds +f a_l(u -m)npds, 5.9
0Q(1) Tnp(t) Tr(®)

where @ = aph > 0 is a considerably small and positive constant. It depends on the mesh size
h and has to be picked smaller on finer grids (John [73]]). On I'yo(¢), homogeneous Neumann
values are prescribed and the boundary term vanishes. Further, we express the boundary force
modeling micropipette aspiration in direction (0, 0, x2)” by

g(X) = ¢ cos (0.5 NG+ xf)n, Vx e Typ(t),

with a constant ¢, that determines the strength of the pull in normal direction n. In practice, we

pick [yp = {x € 0Q| \/x} + x7 < 7, x2 < 0} such that g is zero on the boundary of I'yp and that
the continuation by zero of g onto the entire boundary d< is continuous. The existence of such
a continuation is shown in literature, e.g. we refer to the the continuation theorem by Calderon-
Zygmund in Wloka [154} p. 100], and will be important for the upcoming transformation to the
reference domain. Finally, regarding Eq. (5.9), we have introduced a Robin boundary condition

ao(x,H)n = (u-n)n on I'g(?),

which accounts for the glass body of the pipette and was inspired by John [73|], who applied
this no penetration condition as boundary conditions for the Navier-Stokes equation. In the limit
a — 0, we obtain (u - n) = 0 such that the no penetration condition prevents any movement of
the tissue in normal Eulerian direction towards the glass edge in the tip of the pipette.

Finally, we transform Eq. to the reference configuration, where our structural equations
are naturally given (cf. Eq. (2.33)). The idea is to use Gauss’s divergence theorem to convert the
surface into a volume integral, which we transform to the reference configuration. Then, we use
Gauss’s theorem in the opposed way to obtain the surface integral in the reference configuration.

(1) We begin by transforming the integral that describes the surface force on I'yp: To apply
Gauss’s theorem, we define the continuous continuation of g onto the entire boundary by

. g(x) if x € Typ(2),
g(x) =
0 else.

Next, we need the continuation of § into the entire domain such that § € H'(Q). The unique exis-

tence of this function is guaranteed by Riesz representation theorem, since there exists a unique
solution to Laplace’s equation with continuous boundary data g(x,#). Obviously, this solution
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5.4 Mechanochemical pattern formation for symmetry breaking in Hydra aggregates

is the desired continuation in H'(Q). With these preparations, we apply Gauss’s divergence
theorem and obtain

f g(x) - pds = f B - pds = f Yy - (1) @) dx
T'np(t) (99([) Q@)
- f V)| - ¢ + [B0IVx - @ dx.
Q1)

Now, we can employ our transformations of the integral (2.4)), the gradient (2.5)) and the diver-
gence (2.6) and obtain

f VB @ + [B0IVy - 9 dx
Q(1)

= f JFTV5IGX)|- & + |GX)|Vx - (JF @) dX (5.10)
Q

= f IGX)|JF'®d-NdS = G(X) - @dSs,
0Q Inp

where we employ our usual notation and define G(X) := g(y(X)), which has a (continuous)
continuation G(X) onto the entire boundary. The unique existence of this continuation is again
guaranteed by Riesz representation theorem using the same arguments as for the continuation
g(x) in Eulerian coordinates.

(2) We transform the Robin condition on I'g(#) analog to the derivation for the boundary force
G(X). Firstly, we need a continuation of «~!(u-n) on I'g onto the entire boundary. Here, finding
a continuation is more complex, since the simple continuation by zero is not continuous. Instead,
we take small strips I'c C I'yg of measure € between ['g and the rest of I'yg. Then, we define a
continuous function 8(x) which attains a1 on Ty, zero on I'yo and smoothly decreases between
these values on I'.. By this construction, we obtain a smooth continuation A(x)u - fi of our robin
condition onto the entire boundary. Since u, ¢ € H'(Q(¢)) and n € C*(5(r)), the existence of
continuations for each of these function into the entire domain can be shown. Note that in this
sense of a continuation, the normal directions n, N will appear in volume integrals.

Secondly, we can proceed by using Gauss’s divergence theorem followed by our transforma-
tions of the integral (2.4)), the gradient (2.5)) and the divergence (2.6). In detail, this gives:

f a‘l(u -n)n - @ds + BX)(u-n)n-@ds
Tr(0) (0
= Jou B - W)Vx - ¢ +BX)Vx(u - ) - pdx

= f B((x(X)) (u- JFTTN)Vx - (JF @) + B(x(X)) Vx(u - JETIN) - JF T dX
Q

= f ' Pu-FIN)FTIN- @) dX + f Be)J*(u-FTN)F N - &) dX,
FR FE
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where we use Gauss’s divergence theorem in the last step. The normal direction transforms as
n = JF~TN, which can be deduced from comparing the first and the last integral in the derivation
of the Neumann boundary conditions derived in Eq. (5.10).

Finally, notice that ||3(x)|| < a~! holds by the definition of 8 and that u - n and ¢ are bounded.
Hence, we can estimate

f B(x)(u-n)n - @ds gf alcds >0 fore— 0,
Te(f) Te(?)

with a constant ¢ > 0. Analogously, this estimate can be shown for the transformed integral on
I'c. Together, these transformations yield our boundary conditions in the reference configuration:

f FIN - @ dS = f JFTGX) - @dS + f ' -FINYFTIN- @)ds,
oQ

Inp I'r

where the surface force for the constant ¢, and X = (Xo, X1, X»)7 € I'yp is given by

G(X) = cpcos (0.5 /X3 + XFNX), VX e T

In strong form, the Robin boundary condition for including our predictive numerical experiment
in our prototypical system of equations (2.38) reads

r(u, Vu,N) = aFEN - 2(u-F'N)F "N =0 onTkg, (5.11)

with the considerably small constant @ = aph > 0 from above. In the limit @ — 0 we prescribe
the no penetration condition (u - F~7N) = 0, i.e., ao should be small. In this work, picking
o = 1070 is sufficient.

5.4.3 Coupled system of model equations

Now, we apply our prototypic equations in variational form (3.1) to symmetry breaking in Hydra.
As before in embryonic development, we only consider one species of signaling molecules of
concentration C. Consequently, we couple just one reaction-diffusion equation to the structural
one.

So let Q ¢ R? be a (bounded) domain in two or three dimensions. Further, let the boundary
0Q of our domain be split into two non-overlapping (i.e. disjoint) parts 0Q = 'y U I'g, where
Neumann and Robin boundary conditions are imposed, respectively. In general, homogeneous
Neumann values are prescribed. In our predictive experiments, boundary forces and Robin
conditions modeling a micropipette are also implemented. Details on these boundary conditions
are given in the preceding section. Then, for suitable Hilbert spaces V3 and V = H'(Q) our
prototypic equations in variational form (3.1)) applied to embryonic development reads:
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5.4 Mechanochemical pattern formation for symmetry breaking in Hydra aggregates

Find the displacement u € V¢ and the morphogen concentration C € V, with initial conditions
u(X,0) = 0, C(X,0) = C°(X) such that

(€091, D) + (FE, VD) — (JF TG, D), — (@' - FINF N, @), =0 Ve V!
(J3,C,¥)q + (JF'DFTVC,V¥)q — (JR,¥)g =0 Y¥eV
(5.12)

holds, where

1
r=JF'TF" X, =Atr(E)+2uE, E, = E(FeTFe -0,
F,=FF,!, F=Vu+I, J=det(F), J,=det(F,),

and u, A are the Lamé constants. Further, € ~ 0.1 stems determines the intensity of the stabiliza-
tion by the time derivative and introduced in Section[3.3] Next, R is the coupling term incorporat-
ing the feedback of mechanical cues on the morphogen concentration C via R = R(Z,E,F, C),
which will be specified in the following paragraph. Vice versa, X(F,(z, C)) allows for a cou-
pling of the morphogen concentration C on the active deformation process. More precisely, the
active deformation gradient F, prescribes an elongation or shortening for each individual bio-
logical cell and is specified in the next section. This mutual coupling of tissue mechanics and
morphogen dynamics results in a positive self-inducing feedback loop, which was presented in

Subsection and illustrated in Fig.

Further, D € R33 is the diffusion coefficient tensor which reads in matrix notation
D = Q(X)" diag(Dr, Dt, D1)Q(X)

with a diagonal matrix containing the diffusion coefficient Dy in normal (or radial) Lagrangian
direction N = |X|™!X and the diffusion coefficient Dy in the tangential directions T and T,.
The rotation matrix Q7 transforms the diagonal matrix diag(Dn, DT, DT) defined in the point-
specific coordinate systems given by the orthogonal unit vectors N(X), T;(X) and T»(X) to
Euclidean coordinates.

This choice of the diffusion coefficient tensor is biologically motivated, as a large coefficient
Dy inradial direction ensures free diffusion inside the biological cells whereas a small coefficient
Dr limits diffusion between biological cells (at least on the tissue scale), see Subsection m
for details.

In general, homogeneous Neumann values are assumed on the entire boundary J€. Predictive,
numerical experiments are an exception: There, homogeneous initial conditions u(X, 0) = 0 and
C(X,0) = 0 are assumed. Growth is solely triggered by the boundary force that is applied by
a pipette. This force results in deformation of the tissue which in turn stimulates our positive
feedback loop. The force applied by the pipette is modeled by a surface force G on the Neumann
boundary I'yp and a Robin condition aFXN = J?(u - FTN)F~T N on I'y accounts for the glass
body of the pipette itself as introduced in Subsection[5.4.2]

133



5 Applications

Mechanical feedback

In this application, we consider a strain-mediated feedback loop including apico-basal shorten-
ing. Here, apico-basal shortening refers to the thinning of biological cells in radial direction and
will be specified hereafter. We thus employ strain-mediated feedback which best captures the
relative length changes (shortening in radial, stretching in tangential directions) that are induced
by this active deformation. As a mechanical feedback on morphogen production, we use the
hydrostatic strain expressed in terms of the first invariant of the Green-Lagrange strain tensor
I (E) = tr(E).

Firstly, we employ mechanical feedback based on positive strain. Then, the general coupling
term presented in Eq. (2.40) takes the form

max{/;(E), 0}

R(I(E),C) = ky ky, + max{l,(E), 0}

-k C.

Secondly, in our predictive numerical experiments, we also focus on mechanical feedback re-
lated to negative strain such that the coupling term is given by

_ ., min{(B),0}
RUNE),C) = ~kop— oo~k C.

Finally, another experimental setup is based on using the absolute value of all hydrostatic strain,
which yields
[/ (E)|

R(1(E),C) = kzm -

kiC.

Active deformation gradient

In experiments, signaling molecules have been shown to modify the mechanics of biological
cells in various was such as growth or active cell-shape changes [|12} |17, |32, [58]]. In the ap-
plication to symmetry breaking in Hydra, we consider active cell shape changes by apico-basal
shortening. This term refers to the shorting of biological cells in radial direction of the tissue
sphere such that the tissue sphere becomes locally thinner but enlarges in the tangential direc-
tions, see Fig. This active deformation is not only observed in Hydra aggregates [123,
139] but is also very common in tissue morphogenesis, see e.g. Davies [31]. Also, similar active
deformations were prescribed in ventral furrow invagination in the Drosophila melanogaster
embryo (cf. Conte et al. [29]). We assume a linear coupling of morphogen concentrations on
active deformations, analog to our approach based on apical/basal constriction in embryogenesis
(cf. Subsection[5.3.2). Mathematically, this is realized by coupling the concentration of signal-
ing molecules C into the active part of the decomposed deformation gradient F = F.F,(C) [1}
20, (104, [120].

Similar to the active constriction in embryonic development, local coordinate systems X are
introduced in the origin of each biological cell, oriented such that X, points in radial direction.
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. . F.(C) basal side
‘Qi F T T F T
X, /;/{’11/"107......//

Figure 5.21: Deformation gradient decomposition F = F,F, with active deformation gradient
F,(c) on three arbitrary biological cells resulting in apico-basal shortening.

In these local coordinates, the active deformation gradient is defined as

N (C T :
FAC)_( 0 1+kC) in 2D,
(1 +kC)™! 0 0 (5.13)
ﬁ;«nzz[ 0 (1+kC)™! 0 ] in 3D.
0 0 (1 + kC)?

respectively, where k is a constant. Positive values of k result in an apico-basal shortening (thin-
ning) of the biological cells and negative values in elongation. The derivation of the active
deformation gradient is similar to the one for apical constriction in Eq. : ¥, is defined in
parametric coordinates which are rotated by a matrix Q to the reference configuration such that
the orientation of both coordinate systems coincide. Since the argument of this active defor-
mation gradient is independent of X, the active deformation gradients thus acts in the desired
way.
Together, the active deformation tensor F,(c) in the reference configuration can be expressed
by
Fi(X,0) = Q"F.(OQ, (5.14)

where that F, is identical for each biological cell. The rotation matrix depends on the specific
biological cell and has the property Q7Q = QQ’ = I. Further, Q is globally defined (cf. Eq.
(A.6) of the appendix) and is piecewise continuous on each biological cell K;. The transforma-
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tions involved are illustrated in Fig. [A.2]in the context of apical/basal constriction. Clearly, this
active deformation tensor is volume-preserving as J = det(F,(C)) = 1.

In this application, all deformations are driven by this active deformation gradient, which
includes growth pulsations. In particular, we did not explicitly account for the inner pressure by
a surface force on the inner boundary as discussed in Subsection [5.3.5] Although this is fairly
simple and an internal pressure is included in our modeling approach already, many additional
assumptions are required to model growth oscillations by surface forces, and, most importantly,
it is involved to model the rapid retraction due to rupture of the tissue. Whereas it is certainly
possible to prescribe an internal pressure and its quick reduction [[105]], the actual rupture of the
solid domain remains a huge numerical challenge.

Finally, we point out that the biological cells rip apart or overlap in the intermediate config-
uration, see Figure Mathematically speaking, the active deformation gradient F, is not
injective. Especially, the local inverse F;lK _is always well-defined but not injective, whereas

its global representation F;! is thus not a function and has to be interpreted as evaluating our
coupled system of Equations (5.4) on each biological cell individually.

5.4.4 Parameter setup

In this application to symmetry breaking in Hydra aggregates, we employ a similar system of
PDEs on the same model geometry as in the previous application to embryogenesis. Thus, most
parameters and their values coincide with the choices made in Subsection

Rather, we focus on two main differences: Firstly, in this applications, we are interested
in growth oscillations that occur on the timescale of elasticity. To resolve this timescale, we
consider the usual, parabolic structural equations which translates to setting our stabilization
parameter to € = 1. Until here, we were rather interested in pattern development on the timescale
of growth an regarded the second time derivative as a stabilization, see Subsection [3.5.3]

Secondly, we adjusted the interval of the initially described morphogen concentrations by
tripling the maximum which are now prescribed in the interval ¢ € [0,3 x 10°Jmol m~>. This
change was necessary since, in general, smaller initial conditions dissolved over time and no
patterns were formed if all other parameters are kept as before. Initially, uniformly distributed
random concentrations for each biological cells or a morphogen gradient were prescribed. Initial
deformations are not assumed, since a deformation that corresponds to the initial concentration
distribution is not known. In general, it hence takes a few time-steps for morphogen and tissue
curvature to align.

In this application, we introduced a new parameter in the description of our predictive, nu-
merical experiment. Here, the aspiration of a Hydra aggregate by a micropipette is modeled.
The glass body of this pipette is accounted for by a Robing condition, where a small constant
@y = 107% is necessary to prevent movement of the tissue sphere towards the glass body (cf.
Subsection[5.4.2).
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(a) Initial values ®)0.5h (c)13h (d) 3.5 d (not stationary)

Morphogen concentration C

Figure 5.22: Simulation snapshots that show spontaneous pattern formation in Hydra aggregates
for the strain-mediated feedback loop including apico-basal shortening. The tissue
sphere has been sliced for the sole purpose of a better visualization.

For the sake of a complete presentation, we shortly recapitulate the remaining parameters.
Also here, we prescribe a comparably small diffusion coefficient Dy ~ 107'*m?s~! in the tan-
gential directions in relation to a large coefficient Dy ~ 107'?m? s~! in the normal one.

The Lamé constants are usually given in terms of Young’s modulus E and Poisson’s ratio
v. They can be obtained by the conversion formulas given in Eq. (2.24). Again, we employ
E =100Paand v = 0.4 as in Allena et al. [1]]. The parameter for the mechanochemical coupling
is set to k ~ 107°mol~! m, the degradation rate is given by k; ~ 10#s~! and the production rate
is ky ~ 10’mol m™3 s~!. Finally, the Michaelis constant is set to k,, = 2.0.

5.4.5 Numerical results and discussion

In this application, we focus on a strain-mediated feedback loop including active apico-basal
shortening. Namely, apico-basal shortening refers to the thinning of biological cells in radial
direction (and elongation in the tangential ones) which is commonly observed in Hydra aggre-
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gates [123]|139]]. These deformations are best described by strain that measures relative length
changes and is our mechanical feedback of choice. Accordingly, Henderson and Carter [|62]
propose that local mechanical cues such as strain influence morphogenesis by deforming tissue
and by influencing the direction of growth and its growth rates. Note that a stress-mediated
feedback loop leads to promising results as well (not shown). Interestingly, the stretch-mediated
feedback loop does not produce results similar to those of the strain mediated one, which was a
key observation in our previous application to embryogenesis (cf. Section[5.3).

Simulation snapshots for the strain-mediated feedback loop based on apico-basal shortening
are shown in Fig. [5.22] Initially, we prescribe uniformly distributed morphogen concentrations
which lead to a thinning of the tissue layer and an expansion of the sphere. In this extention
phase, the volume contained inside the tissue sphere increases by about 50% (cf. Fig. [5.22)). The
subsequent retraction of the sphere is driven by the elastic material response to the active elon-
gation. Over time, several oscillation with decreasing amplitude can be observed. Ultimately,
mechanochemical interactions lead to one dominating pattern that leads to head formation and
prevents further growth oscillations (cf. Fig. (©)-(d)).

A co-localization of high morphogen levels and local tissue curvature (cf. Fig. [5.22)) has
been described for head formation in the freshwater polyp Hydra by Takahashi et al. [[145] and
Hobmayer et al. [65]]. In our simulations, head formation takes about three to four days, which
is a typical order of magnitude: Depending on the origin of the cells (e.g. aggregates might
contain only head cells), it usually takes two to seven days until head structures or tentacles are
visible [45]].

Although morphogen concentrations eventually saturate, Fig. (d) does not represent a
stationary results. Instead, the mechanochemical patch slowly spreads until it covers the entire
domain and a uniformly expanded sphere is attained in the stationary state. For now, we simply
assume that other processes such as the Wnt pathway (cf. [[23} |65} [88]]) to establish a head take
over at some point.

Regarding Fig. [5.23] we notice that the simulated de novo patterns seem to be insensitive with
regard to the initial conditions: If we start with only one initial morphogen spot, we again obtain
a single mechanochemical pattern representing a newly formed head. This observation corre-
sponds to the experimental observation that any positional information is lost during aggregation
of Hydra cells [45]]. For the sake of a crisp presentation, we do not repeat an evaluation regarding
the robustness of mechanochemical pattern formation to changes in the model geometry or the
diffusion rates. Instead, we refer to the robustness analysis in our application to embryogenesis,
see Subsection[5.3.4

Predictive numerical experiments

The highlight of this section are our predictive numerical experiments. Here, we want to enable
researchers in developmental biology to investigate the role of mechanics during pattern forma-
tion and to inspire new experiments based on micropipette aspiration. In general, experiments
with micropipettes are well established whereas mechanical tissue modification tools, molecular
markers and mechanochemical models are still in its infancy [[103]].
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(a) Initial values (b)5.5h (c)22h (d) 31 h (not stationary)

Morphogen concentration C

Figure 5.23: Simulation snapshots that show spontaneous pattern formation in Hydra aggregates
for the strain-mediated feedback loop including apico-basal shortening. As initial
conditions, a morphogen gradient in a single spot was prescribed. The tissue sphere
has been sliced for the sole purpose of a better visualization.

In our experiments, we focus on Hydra aggregates and a strain-mediated feedback loop. Our
numerical simulations show that considering the glass body of the pipette significantly changes
the strain inside the tissue sphere compared to implementing a surface force only. In particular,
we observe inwards deformations of the tissue sphere in a circle around the glass body due to the
elastic material response. This deformation implies negative hydrostatic strain (i.e. tr(E) < 0) in
an annulus around the tip of the pipette, see Fig. [5.24] (b). In comparison, a simple aspiration,
i.e. neglecting the glass body, leads to a dominating spot of positive strain whereas hardly any
negative strain was observed, see Fig. [5.24] (a).

Finally, we emphasize that the Robin condition modeling the glass body prevents any move-
ment of the tissue into the pipette as well as any motion of the entire domain. However, a
homogeneous displacement of the entire computational domain is observed if only the surface
force is applied (again neglecting the glass body of the pipette). This result was anticipated,
since the tissue sphere is not fixed in space if Dirichlet or Robin values are not prescribed (cf.
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X

(a) Strain distribution due to an external surface (b) Strain distribution due to a pull with a pipette
force only. (white).

-0.1 0 0.1 0.3
| —

Tensor invariant tr(E)

Figure 5.24: Simulation snapshot showing the strain caused by external surface forces. The
tissue sphere has been sliced and a pipette has been added in (b) for the sole purpose
of a better visualization.

Subsection [5.4.2). Dirichlet values are not an option since they significantly alter the numerical
results. These findings further underline the importance of accounting for the glass body of the
pipette by adequate boundary conditions.

Also, note that the pipette is solely modeled by surface integrals describing a surface force
which leads to the aspiration and a Robin slip condition that allows the tissue to slip over the
glass body of the pipette but prevents any movement into the glass itself (i.e. in normal direc-
tion). In particular, this implies that the visualized pipette is never part of the computational
domain.

Simulation snapshot of our numerical experiments are presented in Fig. [5.25] In particular
three different experimental setups regarding the mechanical feedback are proposed (cf. Sub-
section[5.4.3): Firstly, the coupling term is based on positive strain, secondly, on negative strain,
and, finally, on the absolute value of all hydrostatic strain. Corresponding simulation results are
depicted in the first, second and third row in Fig. [5.23] respectively. In all three experiments, we
do not prescribe any initial conditions. Instead, our strain-mediated feedback loop is triggered
by the micropipette aspiration itself. By assumption, the surface force modeling micropipette
aspiration is applied for five minutes. Afterwards, the external forces and the Robin condition
accounting for the glass body of the pipette are removed and free mechanochemical pattern
formation is witnessed.
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0000

(A) Feedback loop based on positive strain

alelal .

(B) Feedback loop based on negative strain

‘Il

(a) Initial values (b) 5 min (c)22h (d)31h

(C) Feedback loop based on the absolute value of all hydrostatic strain

Morphogen concentration C

Figure 5.25: Simulation snapshots showing pattern formation during numerical experiments for
the strain-mediated feedback loop with apico-basal shortening. The tissue sphere
is sliced and a pipette is added for the sole purpose of a better visualization.
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Regenerate
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Figure 5.26: Left: Hydra aggregate during micropipette aspiration immediately after healing.
The head forms at the angle 6 seen from the center of the pipette. Right: Schematic
representation of the Hydra and area of head formation (yellow). Head orientations
in the experiments are marked with asterisks. Taken with permission from [[133]].

Regarding our feedback loop based on positive strain, we observe that morphogen is mainly
produced in a single spot where the tissue is aspired into the pipette. Once the tissue is released,
we obtain a single patch of co-localized morphogen and deformation, which becomes the center
of head formation (cf. Fig. (A)). This result corresponds well to our previous observation
that positive strain is mainly produced inside the aspired tissue (cf. Fig. [5.24](b)).

Next, in our feedback loop based on negative strain, we see that morphogen is primarily pro-
duced in a circular area around the (virtual) glass body of the micropipette as shown by the
simulation snapshots in Fig. [5.25] (B) (after Smin). Based on our feedback, morphogen was
expressed where the tissue experienced negative strain due to micropipette aspiration (cf. again
Fig.[5.24](b)). Here, we see a clear agreement of our numerical results to the micropipette exper-
iments by Heike Sander [133]]. Her experiments on mechanical stimuli induced by micropipette
aspiration clearly show that head formation only occurs in a circular area around the pipette, see
Fig. In general, we might hence not only observe an increased head formation probability
around the pipette but also morphogen production in these areas. Together, these findings might
indeed inspire a close interplay of biological and numerical experiments for further investiga-
tions.

Interestingly, we see the formation of many but small co-localized morphogen and deforma-
tion patches, once the tissue is released by the micropipette (cf. Fig. [5.25]|(B)). Similar results
were observed in our application to embryogenesis, where larger morphogen production and
diffusion rates lead to larger patterns as investigated and discussed for Fig.
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As an alternative, we propose a combination of the absolute value of negative and positive
strains. Simulation snapshot regarding these results are shown in Fig. (C). Again, a large
circular pattern dominates and is preserved, once the micropipette is released. Here, a perturba-
tion by prescribing an initial morphogen distribution might lead to a dominance of a single head
in the area of increased head formation probability around the pipette, as ongoing numerical
simulations indicate. Further, experiments show that Hydra aggregates are sensitive with regard
to gravity and light, although the latter can be excluded by the experimental setup [133]]. Hence,
we might alternatively introduce an asymmetry by considering gravity which might lead to a
single evolving head.

Finally, we conclude that our approach is flexible and well suited for modeling a broad range
of predictive numerical experiments. Besides, our numerical results agree well with experimen-
tal observations and might inspire further cross-validation in the field of developmental biology.
Alternatively, locally and ectopically over-expressing morphogen results in a local morphogen
spot that in turn triggers our mechanochemical feedback loop (cf. our publication [103]]).
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6 Conclusion

In this thesis, we develop an efficient numerical method to robustly solve strongly coupled
mechanochemical long-term problems that model pattern formation in biological tissues. More
precisely, we consider embryogenesis, head formation in Hydra aggregates and growth pulsa-
tions in hydroids.

Firstly, we present a novel computational approach in 3D to model self-organized mechano-
chemical pattern formation in biological tissue. Based on recent experimental observations, we
propose a flexible simulation framework and show how novel, simple mechanochemical feed-
back loops robustly lead to spontaneous pattern formation. The core of these mechanochemical
interactions is the novel coupling of mechanical feedback via tensor invariants describing strain,
stress and stretch on the morphogen dynamics. In turn, local morphogen concentrations lead
to piecewise-defined, active deformations of individual biological cells. Hence, we blend a dis-
crete description of active deformations while we benefit from continuous processes such as the
elastic tissue description or inter-cellular diffusion. The strength of our approach lies in its flexi-
bility. Namely, we apply our approach to various model organisms for different combinations of
mechanical feedback and active deformations such as stretch and stress with apical/basal con-
striction (wedging) or strain apico-basal shortening (thinning) of biological cells. In particular,
we contribute to the scientific understanding of gastrulation during embryogenesis, head forma-
tion during growth oscillations of Hydra aggregates or growth processes in the tips of colonial
hydroids. We demonstrate that considering the full 3D representation of the tissue geometry is
crucial to observe realistic mechanochemical tissue development, such as gastrulation events.

Secondly, numerical results in this thesis underline the crucial role of mechanics during pat-
tern formation. A centerpiece of this thesis are our predictive numerical experiments where
we study the sensitivity of biological tissue with respect to mechanical stimuli induced by mi-
cropipette aspiration. In particular, we highlight the importance of modeling the glass-body
of the pipette by a Robin boundary condition: Then, negative mechanical strain results in a
characteristic annulus around the pipette, which triggers our mechanochemical feedback loops
and subsequent head formation in this area - analog to the experimental observations by Heike
Sander [133]]. Together, numerical and biological experiments advocate the strong intercon-
nection between tissue mechanics and morphogen dynamics and might inspire future research.
Besides, we demonstrate that merely studying the active deformations provides valuable insights
into the processes involved in tissue morphogenesis, e.g. we compare active rotations and shear-
ing during growth processes in tips of colonial hydroids to original experimental data shared by
our colleague Igor Kosevich [81]].
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Thirdly, we developed efficient numerical solution techniques to handle the large, coupled
systems of PDEs. Considering the full 3D geometry significantly increases the problem size
compared to a 2D simplification and the strong coupling requires a monolithic solution ap-
proach with a parallel multigrid solver. We confirm the efficiency of our approach in a thorough
numerical convergence analysis where we show quadratic and cubic convergence rates for lin-
ear (@) and quadratic (@) finite elements, respectively. Further, we present an adaptive mesh
refinement strategy which significantly improves convergence in space by locally resolving me-
chanical feedback based on the growth-dependent and discontinuous Piola-Kirchhoff stress.

Regarding the parallel solution technique we show an impressive speedup by a factor 12 when
the algebraic systems are solved in parallel on 14 CPU cores compared to the sequential multi-
grid method. It is crucial to employ a parallel multigrid solver for reducing the computation
time necessary, as the bottleneck of our approach are the many time-steps necessary to attain a
stationary solution. Here, we further propose a stabilization of the structural equation to mit-
igate numerical instabilities arising from the different timescales of tissue growth (days) and
elasticity (seconds) while performing reasonably large time-steps. Here, we demonstrate that
the introduced stabilization error is at least one scale below the dominating spatial discretization
erTor.

Lastly, we contribute in various aspects to the finite element (FE) library GascoigNeE3D [9]
by implementing new features, most importantly the model itself. The implementation is based
on template classes to dynamically switch between testing new ideas and models in 2D on the
one hand and simulating pattern formation on the whole 3D geometry on the other. Further, we
modify the parallelization process to track biological cells and propose a domain decomposi-
tion approach for distributing the finite element mesh. In the modified domain decomposition,
we exploit the structure of the computational domain in the application to growth processes in
colonial hydroids. Finally, we develop an adaptive mesh refinement strategy as well as finite el-
ement discretizations for spheres, cylinders and spheroids. Additional numerical techniques are
required in the prescription of an internal pressure, which accounts for the fluid contained inside
the blastula sphere and is crucial to ensure stationary solutions during gastrulation events. Also,
we integrate the mechanical feedback over individual biological cells in an enhanced model.
This novel approach is more accurate on a cellular level and provides valuable insights into the
formation of mechanochemical patterns during gastrulation.

Outlook

In this thesis, we stress the importance of modeling mechanochemical interactions based on me-
chanical feedback being expressed by tensor invariants to observe realistic tissue development.
A key strength of our approach are predictive numerical experiments by micropipette aspiration
to assess the sensitivity of (Hydra) tissue to mechanical strain. Also, we compare different ac-
tive deformation tensors prescribing growth in hydroid tips. With both numerical experiments,
we hope to inspire new experiments and cross-validation with our results. In particular, these
comparisons are enabled by new experimental insights elucidating the role of mechanochemistry
in tissue development [37, (71} 95]] and experimental techniques of visualization of mechanical
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loads in biological tissues [76, (116, [131]. Hence, our approach may serve as a future basis
to intensify the discussion between researchers from developmental biology and the numerics
community to unravel one of the big mysteries in development together: the self-organized gen-
eration of patterns and shapes.
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2D
3D
a

A

@0

c(x,1)

CX,1)

cf.

D(x)

diag(ao, - ,an)

ECT

Scalar product of the space L*(Q) or L*(Q)? for dimensions d = 2,3
Two dimensional

Three dimensional

A unit vector in R, d = 2,3

A general, second-order tensor

Small constant in the Robin boundary conditions of our predictive numerical
experiments

Concentration of signaling molecules (morphogens) given in Eulerian coor-
dinates x

Concentration of signaling molecules (morphogens) given in Lagrangian co-
ordinates X

Symmetric and positive definite right Cauchy-Green strain tensor C := FTF.
- from Latin: confer, ”compare”

Deformation (motion) of the particle X in the reference configuration Q to
the point x in the deformed domain Q(¢), i.e. x = y(X, ?)

Number of dimensions, exclusively d = 2,3
Diffusion coefficient matrix in R¥*?, d = 2,3

Diagonal matrix with the entries ag, - - - , a, on the diagonal and zero entries
elsewhere

Young’s modulus, a constant with E > 0 and a measure for the stiffness of a
solid material

The Green-Lagrange strain tensor E = %(C - = %(FTF -1

Elastic Green-Lagrange strain tensor based on the elastic tissue response F,
to active deformations with E, := %(FZFK -

Ectodermal cell layer in the body of a colonial hydroid

149



6 Conclusion

END

FEM

> =2 @O ®

H'(Q)

ki

ka

150

Endodermal cell layer in the body of a colonial hydroid

Scaling parameter € > O for the strength of the stabilization
Linearized Green-Lagrange strain tensor € = % (Vu + VuT)

External volume forces in R?, d = 2,3

The deformation gradient with F(X,t) = Vy(X,#) = Vu(x,?) + I and the
multiplicative decomposition F = F F,

Active part of the decomposed deformation gradient F with F,: Q — Q,(?)

Elastic part of the deformation gradient with F,: Q,(#) — €(¢) and response
to the active deformation F,

Finite element method

External surface force acting on 9Q(r) ¢ R3

External surface force in the reference configuration acting on 9Q c R?
A part of the boundary of a domain, i.e. I' € 9Q

Discretization parameter & > 0 which stems from the definition of the finite
element subspace V;, c V

Sobolev space of square integrable functions u € L?(Q) with generalized
first derivatives Vu € L2(Q)? ford = 2, 3.

Identity matrix in R™ 4=273
Determinant of the deformation gradient J(X, 1) = det(F(X, 1))

Scaling parameter which determines the strength of the coupling of signaling
molecules (morphogen) on active deformations

Scaling parameter k; > O for the degradation rate of the concentration of
signaling molecules (morphogens)

Scaling parameter k» > 0 for changing the maximal production rate of sig-
naling molecules (morphogens)

Michaelis constant with &, > 0

Scaling parameter k, > O for the intensity of an internal pressure modeling
the fluid inside the tissue sphere

Biological cell with index i

Lebesgue space of on {2 measurable square integrable functions



NI

Qu(1)

Q1)

phase D

0Q

PDE

Q1-FE

0»-FE

First Lamé parameter which is essential in Hooke’s material law
Midpoint, i.e. centroid or origin, of the biological cell K; in R?, d = 2,3

Second Lamé parameter ¢ > O called shear modulus which is essential in
Hooke’s material law

Eulerian outward unit normal in R?, d = 2,3
Lagrangian outward unit normal in R¢, d = 2,3

The Nabla operator with V = Zf: | ei%, Vf =grad(f) and V - f = div(f) for
scalar and vector-valued differentiable functions f and f

Quotient of maximal and minimal number of cells in a subdomain during
parallelization

Poisson’s ratio, a constant with v > 0 and a material property which defines
the ratio of the transverse to the axial strain of a solid

Bounded reference domain, also denoted by Lagrangian configuration

An intermediate stress-free configuration that results from an active defor-
mation. It is in general discontinuous, i.e. not a domain

Bounded Eulerian domain and the deformed configuration at time ¢

Short for Perisarc that is an organic skeleton made of chitin and the outer
layer of tips in colonial hydroid

The first Piola-Kirchhoff stress tensor, defined such that PN is the force in
the current configuration per unit area in the reference configuration, related
to the Cauchy stress tensor by P = JoF~

Phase of re-extension to the length of the previous peak during growth pul-
sations in colonial hydroids

Boundary of the reference domain Q

Test function in H'(Q(7)) defined in the Eulerian domain Q(7) c R, d = 2,3
Test function in H'(Q) defined in the Lagrangian domain Q c R?,d = 2,3
Partial differential equation

Rotation matrix in R¥¢, d = 2,3, with Q7Q = QQ” =1 and det(Q) = 1
Bilinear finite elements on quadrilaterals or hexahedra

Biquadratic finite elements on quadrilaterals or hexahedra
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Robin boundary condition on 9Q2
Outer radius of the ectodermal tube in the growing tips of colonial hydroids

Coupling term of the mechanical tensor invariants /; on the concentration of
signaling molecules (morphogens) C; in the reaction-diffusion equation

Orthogonal tensor in Cauchy’s polar decompositions F = RU = VR of the
deformation gradient F

Mass distribution in the current Eulerian configuration
Initial mass distribution in the Lagrangian configuration

Symmetric Cauchy stress tensor, defined such that on is the force in the
current configuration per unit area (also in the current configuration) with
normal n

Second Piola-Kirchhoff stress tensor to express the stress in the reference
configuration; related to the first Piola-Kirchhoft stress tensor and the Cauchy
stress tensor by X = F~!'P = JF-loFT

Elastic second Piola-Kirchhoff stress tensor to express the stress in the inter-
mediate configuration with £ = J,F;'X, F,T

Linear span or linear hull of a set S

The surface stress density or Cauchy traction field in direction n of the cur-
rent configuration €(7)

Parameter for the time measured in seconds, hours or days

time needed for the propagating deformation to affect one biological cell
during growth processes in hydroid tips.

Surface stress density or first Piola-Kirchhoff traction field in direction N of
the reference configuration Q

Lagrangian unit vector tangential to the tissue sphere in the reference con-
figuration Q ¢ R?, d = 2,3 which is orthogonal to the normal (or radial)
direction N

Eulerian unit vector tangential to the deformed tissue sphere Q(f) ¢ R¢,
d = 2,3; orthogonal to the normal (or radial) direction n

Threshold for the expression of morphogen due to mechanical feedback.

Trace of a matrix A, which is the sum over the elements g;; fori = 1,--- ,n
on the main diagonal i.e. tr(A) = 37", a;;



u(x, 1)
UX, 1
U,V

v(X, 1)

VX, 1)

Vi

Displacement field in Eulerian coordinates x defined as u(x, #) = x — X(x, t)
Displacement field in Lagrangian coordinates X with u(x, 1) = U(X, 1)

Unique, positive and symmetric tensors in Cauchy’s polar decompositions
F = RU = VR of the deformation gradient F

Velocity field in Eulerian coordinates defined as v(x, ¢) := d,x(X, 1) = d,u(x, 1)
Velocity field in Lagrangian coordinates X with V(X, 7) = v(x, 1)

Infinite-dimensional separable Hilbert space of ansatz- and test-functions
with V = H'(Q) in general

Finite dimensional subspace V;, C V obtained by a finite element discretiza-
tion with bilinear or biquadratic finite elements

Eulerian coordinates in the current deformed domain Q(f) c R, d = 2,3
Lagrangian coordinates in the reference domain Q ¢ R, d = 2,3
Eulerian coordinates in the current deformed domain Q(f) c R?, d = 2,3

Lagrangian coordinates in the reference domain Q ¢ RY, d = 2,3
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tions were drawn in xfig and plots were created in gnuplot.






Appendix

In this appendix, we present derivations and numerical results that were omitted in the main
part of this thesis for the sake of brevity and readability. Nonetheless, these results will provide
further insights into the numerical implementation and the robustness of our efficient methods
to reliably solve our coupled system of PDEs. This appendix is divided into three major parts:

Firstly, in Section |A.1} we give a detailed derivation of the active deformation tensors that
we employed in modeling growth processes in hydroids as well as embryonic development.
Secondly, in Section we present further results on the robustness of the stretch-mediated
feedback loop including active constriction in the application to embryogenesis. Ultimately, in
Section[A.3] we show numerical result for the application of our prototypical systems of PDEs
to embryogenesis in 2D. We have published similar results in Mercker et al. [[103]]. In this thesis,
we present a modified system of PDEs and new calculations on the robustness of our model that
closely correspond to our novel results in 3D.

A.1 Derivation of the active deformation tensors

The derivation of the active deformation tensors prescribed in our three applications is certainly
interesting for the practical implementation of our models. We postponed the (geometrical)
derivation of these tensors to the appendix for the sake of brevity in the main manuscript above.
These tensors were specified when we applied our prototypical system of PDEs to the chosen
model organisms.

A.1.1 Active deformations in growth processes in hydroid tips

Firstly, we focus on the active deformation gradient describing a shearing that was presented in

Eq. . So let us consider a point X in the ectodermal cell layer and its radius r = /Xg + X%
inside the hydroid cylinder. Further, Ry denotes the constant distance of the cell membrane,
located between the ectodermal layer and the perisarc, to the X;-axis (i.e. the axis of the cylin-
drical hydroid body). Then, an active deformation that describes a shearing of the ectodermal
cells (ECT) that is largest towards the endodermal layer (END) and zero towards the perisarc
(P) (compare again Fig. [5.4) can be expressed by

0
w, = 0 , (A.1)
(Ro — r) k(1)

where the deformation linearly depends on time via k(r) (cf. Eq. (5.3)). The desired active
deformation gradient describing a shearing of the ectodermal cells is given by F, = Vu, + L, see
Eq. (5.1) for the differentiated result.
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Figure A.1: Derivation of the active deformation tensor describing a rotation: Translation and
rotation of X to the XoX>-plane with rotation point Xy transformed to the origin
such that the rotation axis coincides with the X;-axis.

Secondly, we derive the active deformation tensor prescribing a rotating motion. Again, let us
consider a point X in the ectodermal cell layer and the notation introduced above. We intend to
rotate this point around an axis through Xg that is orthogonal to X as illustrated in Fig. [A.T| The
cardinal point Xy := (XORO U X Ror L, X0 + K ) lies on the membrane between the ectodermal
cell layer and the perisarc with radius Ry in cylindrical coordinates and offset K in X,-direction
with respect to X, cf. Fig. In the first step, we translate X by the rotation point Xy such
that the latter coincides with the origin (first red zigzag arrow in this figure), which yields

Xo(1 — Ror™Y)
X -Xp =|Xi(1-Ror H|.
-K

Secondly, we rotate this difference to the XoX,-plane. This gives
RO —-r
X=QX-Xgp=| 0 [, (A2)
-K
which is easy to verify geometrically and illustrated by the red, curved arrow in Fig. The
rotation matrix around the X,-axis is given by
~Xor ' =Xyt 0
Q=] X r1 —X()r'_l 0].
0 0 1
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A.1 Derivation of the active deformation tensors

Please mind the shift of the rotation angle by 7 due to the preceeding translation by X¢. At this
point, the rotation axis for X coincides with the X;-axis. In a third step, we can hence apply
our rotation by the angle a(#), where we had specified the nature of the time dependence for our
application to colonial hydroids in Eq. (5.3). This rotation reads:

cos(a(r)) 0 -—sin(a(r))
Qi = 0 1 0 ,
sin(a(t)) 0 cos(a(r))

which results in
cos(a(t))(R, — r) + K sin(a(?))
Qi X= 0 : (A3)
sin(a(t))(R, — r) — K sin(a(t))

Finally, this intermediate result has to be rotated and translated back, i.e. we use the inverse
rotation Qg around the X>-axis and a translation by Xy to obtain the active deformation u,:

(R — cos(a(n)(R, — 1) — Ksin(a(z)))XOr—l - Xo
u, = QQiX +Xp - X =|(Ro — cos(@(D)(R, = 1) = Ksin(@o)Xir' = X1|.  (Ad)
sin(a(t))(R, — r) — K sin(a()) + K

Then, the desired active deformation gradient describing a rotation of the ectodermal cells is
given by F, = Vu, + I. The resulting gradient was presented in Eq.(5.2)).

A.1.2 Active deformations for mechanochemical pattern formation in
embryogenesis

In the application to mechanochemical pattern formation in embryonic development, we mainly
consider morphogen dependent apical/basal constriction. A schematic illustration of an active
deformation tensor describing basal constriction is shown in Fig. [5.8] The basic idea of the
multiplicative deformation gradient decomposition implicates that the continuity of the overall
deformation is preserved by the elastic response (which we also depicted in Fig. [5.8] and Fig.
2.).

To define the active deformation tensor F,, we first introduce local coordinate systems X in
the origin of every biological cell. These coordinate systems are oriented such that X in 2D and
X, in 3D, respectively, point in the radial direction, see Fig. for an illustration in the two-
dimensional case. With these preparations, the parametric coordinates located in the centroid of
an arbitrary biological cell K; can be obtained from the reference coordinates X by

X =QX+m, (A.5)

with continuous rotations Q; with QiTQ,' = QiQiT = I and translation vectors m; (cf. Fig. a)).
The indices indicate that the rotation and the translation depend on the biological cell K; under
consideration. Thus, we define a cell-wise continuous global matrix Q and a cell-wise constant
global vector m with the properties:

Qlg, = Qi, mlg, =m;. (A.6)
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(@) (b)

Figure A.2: Schema of the transformation between the reference system X and the parametric
local coordinate system X located in the centroid m of an arbitrary biological cell K;
(green): (a) Transformation from X to X by a rotation Q and a translation by m. (b)
Inverse transformation from X to X by Q7 and the translation Q7 m of the argument.

Then, the active deformation gradient in the parametric coordinate systems X is defined as

Fa(X, C) = 1 +kCX; kCXy in 2D,
0 1
1 + kCX, 0 kCXo (A7)
F.X,0) = 0 1+kCX, kCX;| in3D

0 0 1

with k being a constant, X(Xo, Xl)T in 2D and X = (Xo, Xl,Xz)T in 3D. Positive values of k
result in an apical constriction and negative values in a basal one. Without loss of generality, let
us consider the biological cell K; with local coordinate system X in its centroid (midpoint) m.
This local coordinate system is transformed to the reference configuration X by

X=Q'X-Q/'m =Q/X-m,

which is the inverse transformation of the transformation given in Eq. (A.3)) and is illustrated in
Fig. [A.2](b) for the two-dimensional setting.
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A.1 Derivation of the active deformation tensors

Further, this figure shows that cos(@) = m;m|™" and sin(@) = mo/m|™" where [m| = \/m2 + m?.
Then, the rotation of the system X around the origin of the system X by the angle « is given by

r._[cos(@ sine)_ 1 (m mp) .
Q = (— sin(a) cos(oz)) "~ m] (—mo ml) in 2D.

The rotated coordinate system with regard to the reference one is then located in the position

Qim; = (0,(Om))".

In 3D, we proceed analogously to the two-dimensional derivation (cf. Fig. (b)): We rotate
the local coordinate system X, to the position Q;m; = (0,0, (Qm)>)” by a rotation Q;, which
is composed of a clockwise rotation Qy, around the X,-axis followed by a counter-clockwise
rotation Q; x, around the Xj-axis. The first rotation Q;y, takes place in the XpX;-plane and
is thus analog to the rotation matrix Ql.T in two dimensions: We simply take the length of m;

projected to this plane, i.e. [mg| := /m% + m% Then, we obtain for the rotation by the angle «

of the local coordinate system Xa around the X,-axis

T 0
L e |
|m01| 0 0 |m01|

using cos(a) = molmg;|~! and sin(@) = mmg;|~'. Similarly, the rotation around the X;-axis

can be derived as
my 0 [mg|

1
Qy=—| 0 m 0
AL m|

—mgi[ 0 mp

Overall, the rotation of the local coordinate system X,, around the origin of the reference coor-

dinates X to the position Q;m; = (0,0, (Qm),)" is given by

Q =Qix,Qix,.

This result is the analogon to the two-dimensional rotation matrix such that we can proceed to
the formulation of the general active deformation tensor prescribing apical/basal constriction.

Therefor, we use the notation for the discontinuous, globally defined rotation Q and translation
m defined in Eq. . Also, notice that an arbitrary tensor A given in X transforms as Q" AQ
into a rotated system X, see the tensorial transformation law in Section 1.5 in Holzapfel [66].
Then, the active deformation tensor F,(X, C) in the reference configuration can be expressed
by rotating ¥, such that the orientation of the local coordinate system X coincides with the
orientation of X. Finally, the active deformation gradient acts in the desired way if its rotated
argument QX is also translated by Qm. It reads

F.(X,¢) = Q"F,(QX - Qm, 0)Q. (A.8)

An illustration of these transformations is given in Fig.
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Notably, we have assumed that every biological cell constricts in the same manner, i.e. F,
remains identical for each cell K;, whereas the rotation matrix Q and the translation vector m
depend on the biological cell under consideration. In particular, F,, is a piecewise-defined tensor
that maps the biological cells K; € Q to their actively deformed counterparts K;, C €,(%).
Whereas the local inverse F;’IKM is always well-defined, its global representation F;! is not a
function, since there might be gaps or superpositions in the intermediate configuration (see again
Subsection [2.2.2). Overall, this results in a semi-discrete coupled system of model equations
(5.4), which was entirely continuous up to this point. Mathematically, this system has to be
understood as being continuously defined on each biological cell.

Indeed, this specific choice of Fa and thus F, (since det(Q) = 1) is volume-preserving. For
the volume Vi,a deformed by ﬁa and the initial volume V; of any biological cells K; it holds

Via = f dX,dX, = f | det(F,)|dX;dX,
Kiq K;

= f (1 +kCX1)XmdXv() = V,‘ +ka deﬁldﬁg = V,',
K; K;

i

where the last integral vanishes since the centroid of the biological cell under consideration
was transformed to the origin. Consequently, integration over X; cancels out. In the three-
dimensional case, we follow the same line of argument and transform the integrals by

Vi,a = f
K;

= f (1 + kCX»)?dX,dX dXy = Vi + kC f X2 + keXp)dXodXdXo = Vi,
K; K;

i

dX,dX,dX, = f | det(F,)|dX,dX;dX,
K;

\a

where the last integral vanishes since the centroid of K; has been transformed to the origin and
integration with respect to X; and X, cancels out.

A.2 Further results on the robustness of mechanochemical
pattern formation

In this section, we present additional results on the robustness of our numerical simulations.
These results are vital as they confirm the robustness of our prototypical system to produce
mechanochemical patters, e.g. if the initial conditions or diffusion rates are changed. Yet, we
postponed these results to the appendix for the sake of a readable presentation of our numerical
results in Subsection [5.3.4] In the following, we give a short overview of these findings.

Firstly, we show that we obtain approximately the same number and size of mechanochemical
patterns regardless weather a single morphogen spot or uniformly distributed random concentra-
tions for each biological cell are used as initial conditions, compare Fig. [A.3|and Fig. [5.9]( of the
main manuscript). Secondly, in the case of apical constriction, the gastrulation event also seems
to be insensitive to the initial conditions (cf. Fig. and Fig. (of the main manuscript)).
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A.2 Further results on the robustness of mechanochemical pattern formation

(a) Initial values (b) 2 days (c) 3.5 days (d) 27 days

2 4 6 8 10
| o—

Morphogen concentration C

Figure A.3: Simulation snapshot showing spontaneous pattern formation for the stretch-
mediated feedback loop including basal constriction. Morphogen is initially dis-
tributed within a spot at one side of the sphere. The tissue sphere has been sliced for
the sole purpose of a better visualization.

Finally, we observe that quartering the lateral diffusion for the stretch-mediated feedback loop
based on basal constriction still leads to patterns (cf. Fig. [A.3)) with slightly more and smaller
curvature/morphogen patches in the final, stationary result. In particular, diffusion seems to
speed up the initial development of patterns which leads to larger patterns on the one hand
but also results in a longer consolidation process (of stronger patterns dissolving weaker ones).
Overall, both developments take similar time to reach a stationary state, compare Fig. [5.9) from
the main part of the thesis with Fig. [A.5] Overall, we find that smaller lateral diffusion and
thinner domains as well as lower morphogen production result in more patterns; larger diffusion,
thicker domains and higher morphogen levels lead, in contrast, to fewer and larger patterns.

Ultimately, we want to interest the reader in the complexity of our research: One might won-
der why some tenor invariants are suitable as mechanical feedback and why some, such as tr(F)
or det(E) are not. The main reason is that feedback based on the latter invariants leads to mor-
phogen production around (and not only within) the range of the current patterns. In extensive
numerical tests (usually in 2D first) including these tensor invariants, we observed that localized
initial patterns expand and merge until an equilibrium of constant deformation and morphogen
concentrations in the entire domain is reached. On the other hand, any feedback that was suitable
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(a) Initial values (b) 1 day (c) 8 days (d) 12 days
4 o) 8 10

HMH‘IHHW

Morphogen concentration C

I

Figure A.4: Simulation snapshot that show spontaneous pattern formation for the stretch-
mediated feedback loop including apical constriction. Morphogen is initially dis-
tributed within a spot at one side of the sphere.

(a) Initial values (b) 2 days (c) 3.5 days (d) 25 days
a | \C‘)\ | 1LL . e

2
-

Morphogen concentration C

Figure A.5: Simulation snapshots that show spontaneous pattern formation for the stretch-
mediated feedback loop including basal constriction with quartered tangential diffu-
sion rate. The sphere has been sliced for the sole purpose of a better visualization.
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A.3 Numerical results and discussion in 2D

in 2D interestingly also lead to stable mechanochemical patterns in the corresponding simulation
in 3D.

A.3 Numerical results and discussion in 2D

In this thesis, we have developed a unified approach where one prototypical model of PDEs
is suitable for simulations on the full 3D geometry, 2D cross-sections or other simplifications.
The main reason is the vast numerical effort to perform simulations in the full 3D configuration.
In this approach, it is fairly simple to find and test suitable feedback loops, parameters and
geometries in a 2D setting first and to subsequently leverage these models to the full 3D scope.
Nonetheless, our numerical simulations clearly show that the full 3D geometry is vital to obtain
realistic numerical results such as gastrulation events, as discussed in Chapter [5] Further, we
will see in the following that other numerical observations in 2D do not in general translate to
the three-dimensional regime, most importantly the influence of diffusion.

We have included the following results in 2D for the sake of completion and a comparison of
our findings to an enhanced model (cf. Subsection [5.3.6), where we integrate the mechanical
feedback over the biological cells.

We point out that we have already published some of the following computational results in
2D Mercker et al. [103]. In particular, this applies to Fig. and Fig. and the corre-
sponding discussions. In contrast to the results in Mercker et al. [[103]], new calculations with
different diffusion rates in radial and tangential direction (analog to the 3D settings) were per-
formed. Also, we corrected an error in the transformations of our model equations from the
Eulerian to the reference coordinate system made in the derivation of our model equations and
in the numerical simulations in Mercker et al. [[103]. We point out this error did not impact that
the quality or correctness of the results in this publication. Finally, we extended the discussion
on the robustness of our approach (in 2D) and contrasted these results with our more recent
findings in the three-dimensional regime.

In this section, we present and discuss our numerical results for our mechanochemical feed-
back loops leading to mechanochemical pattern formation. These feedback loops are based on
a single morphogen species that locally leads to apical/basal constriction in combination with
strain-, stress- and stretch-based mechanical feedback. These are commonly observed combina-
tions which were discussed in Section 2.3l

In Fig. we present simulation snapshots for the stretch-mediated feedback loop includ-
ing basal constriction (first row) and the strain-mediated one including apical constriction (sec-
ond row). We prescribed uniformly distributed, random morphogen concentrations for each
biological cell. For both feedback loops, we obtain stationary solutions of co-localized mor-
phogen/curvature patterns after two days, see the deformed elliptic tissue in Fig. [A.6] (d) or the
peanut-shaped result in Fig. (). In both stationary results, the actively deformed parts are
towards the top left and the bottom right of the simulation snapshot but basal constriction seems
to produce softer but larger curvature patterns compared to apical constriction.

Also here, de novo pattern formation seems to be very robust with regard to the initial condi-
tions analog to our results in 3D. On 2D cross-sections, identical symmetric patterns are also ob-
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(a) Initial values (b) t =2.5h (c) t="7h (d) t = 2 days (e) R(det(F), C)
(f) Initial values (g)t=5.5h (h) t = 14h (1) t = 2 days () R(tr(E), C)
] 2‘ 3\\\\\\\\4 > 0 0.2 0.4 \II?[?IIHHI[\][B
Morphogen concentration C Size of the coupling term R

Figure A.6: Simulation snapshots showing spontaneous pattern formation. (a)-(e): Stretch-
mediated feedback loop with basal constriction. (f)-(j): Strain-mediated feedback
loop with apical constriction. As initial conditions, we prescribe uniformly dis-
tributed random morphogen concentrations for each biological cell.

OO0

(a) Initial values (b)t="7h (c)t=14h (d) t = 2 days (e) R(det(X), C)
] 2‘ 3\\\\\\\\4 > 0 0.2 0.4 \||[|J|'é|)||\m|\0|'8
Morphogen concentration C Size of the coupling term R

Figure A.7: Simulation snapshots showing pattern formation based on the stress-mediated feed-
back loop with basal constriction. Initially, morphogen is distributed with a spot at
one side of the sphere.
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served when we start with a single, initial morphogen gradient. Correspondingly, self-organized
pattern formation from dissociated and re-arranged cells (e.g. Hydra aggregates) is observed
in an increasing number of biological systems [[19, |45] 67, (75 [150] but may also align with a
predetermined gradient, e.g. in Drosophila [[72].

In Fig. simulation snapshots for the stress-mediated feedback loop including basal con-
striction are shown. Here, we observe a single invagination which resembles gastrulation events
during embryogenesis. Although the stress-mediated feedback loop seems like a suitable candi-
date leading to gastrulation events from a 2D perspective, we point out that this results is only
obtained if a single morphogen spot at one side of the tissue sphere is initially prescribed. Any
morphogen that is initially distribution on the side opposing the invagination will once again
result in a symmetric and peanut-shaped deformation as in Fig. [A.6] (i). Further, the solution
in Fig. (d) represents a stationary result for a small parameter range only. In addition to
our previous publication Mercker et al. [[103]], we hence propose an internal volume constraint
which accounts for the fluid contained inside the tissue sphere. Not only does this internal pres-
sure reliably stop the invagination process, but also we saw that it facilitates stable stationary
solutions over a wide parameter range (cf. Subsection[5.3.5|for a discussion of these results).

If, in contrast, the full 3D geometry is considered, saddle points with negative Gaussian cur-
vature promote single invaginations whereas the geometry of the remaining tissue remains more
robust with regard to a second invagination as discussed in Subsection [5.3.4] Here, gastrulation
was also observed for a stretch-mediated feedback loop. Again, this stresses the importance of
considering the full 3D representation of the biological tissue. Apparently, the tissue, which
takes the role of long range inhibition, cannot prevent the establishment of a second pattern on
the opposing side of the 2D tissue section - at least for the given tissue geometry. The robust-
ness of our approach with regard to the model geometry, initial conditions or parameters are
discussed in the following.

A.3.1 Robustness

In the following, we further investigate the robustness of our approach with regard to the diffu-
sion rates, the model geometry, the system size and the (material) parameters. In comparison to
our publication Mercker et al. [103]], we considered different diffusion rates in tangential and
radial direction and new simulations to view the results from a 2D setting in the light of our
3D experiences. In comparison to the results that were already published, the interplay between
diffusion, stiffness and the number of biological cells was further investigated.

The presented approach is robust with regard to changes in the parameters and we generally
observe stable patterns over large parameter ranges, i.e. bisecting the diffusion rate does not
change the number of patterns.

In Fig. [A.§]we present simulation snapshots for the stretch-mediated feedback loop including
basal constriction. In this numerical setup, we prescribe only one-tenth of the tangential diffusion
rate compared to the simulations for the standard setup shown Fig. [A.6] (a)-(d). In Fig. [A.8](a),
simulations were performed on the standard model geometry. Here, we observe a stationary
solution after about six days with an increased number of (seven) patterns due to the reduced
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(a) Usual sphere, 6 days (b) Thin sphere, 7 days (c) Thin sphere, 7 days (d) Thin sphere, 2 days
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Figure A.8: Simulation snapshots investigating the robustness of pattern formation for the
stretch-mediated feedback loop including basal constriction for one-tenth of the
tangential diffusion rate. (c)-(d) For larger and even further increased morphogen
production rate.

diffusion rate. In the second snapshot Fig. [A-§] (b), all parameters were kept the same but
the tissue thickness was quartered which results in only two co-localized morphogen/curvature
patterns. Presumably, a comparably smaller part of the tissue is stretched such that morphogen
production is reduced and only two patterns on opposing sides prevail due to mechanically-
transmitted long-range inhibition. Besides, we increased the morphogen production rate: We
obtain a stationary solution of eight morphogen patches which strongly resembles the final result
on the usual domain for less morphogen production, compare Fig. [A-§](c) and (a). Further, in
Fig. [A:8] (d), even larger morphogen production leads to large deformations, such that strong
morphogen/curvature patches dominate the pattern formation process. These strong patterns
suppress weaker ones via the passively bending material (long-range inhibition) and reduce the
number of patterns once again. Note that in Fig. [A.8](d), we observe a sawlike structure of the
tissue sphere due to the actively constricting individual biological cells.

Further, we summarize that large diffusion and morphogen degradation as well as stronger
patterns due to increased morphogen production reduces the overall number of mechanochem-
ical patterns. This process cannot be continued at will and large diffusion rates eventually blur
any patterns. Notably, pattern formation seems to be less sensitive to changes in the geometry or
the diffusion rates if the whole 3D tissue geometry is considered (compare with our discussion

in Subsection [5.3.4).

Finally, the number of morphogen/curvature patches does not depend on the number of bio-
logical cells, which can be cut in half, doubled or quadrupled (results not shown). Additionally,
the choice of the material parameters does not significantly alter the results as argued in Sub-
section [5.3.3] Yet, despite all discussed modifications and numerical simulations, symmetry
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breaking or gastrulation events could not be observed in a 2D setting.

In summary, the observed robustness of pattern formation with regard to changes in the model
geometry, the initial conditions or the parameters on 2D cross-sections of the tissue sphere
essentially translates to the three dimensional regime. Interestingly, we observe at least two
morphogen/curvature patterns in two dimensions (the stress-mediated feedback loop with one
initial morphogen spot being the only exception). Overall, this robustness study hence under-
lined the importance of considering the full 3D nature of the tissue sphere to observe realistic
mechanochemical patterns such as gastrulation.
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