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I 

 

Zusammenfassung 

Der White Collar Complex (WCC) ist ein Transkriptionsfaktor und Lichtrezeptor, 

bestehend aus zwei Untereinheiten. Nur White Collar-1 (WC-1) hat eine 

Lichtrezeptordomäne, aber sowohl WC-1 als auch White Collar-2 (WC-2) haben 

Zinkfinger-DNA-Bindungsdomänen. In der negativen Rückkopplungsschleife der 

circadianen Uhr von Neurospora crassa ist WCC das positive Element, welches die Uhr 

aktiviert und sie mit dem externen Tag-Nacht-Rhythmus synchronisiert. Entsprechend 

dieser beiden Funktionen gibt es zwei Gruppen von Zielgenen, die clock-controlled genes 

(ccgs) und die light-inducible genes. Die zweite Gruppe wird durch Bindung des Licht-

aktivierten WCC (L-WCC) aktiviert. FREQUENCY (FRQ) ist ein Zielgen von WCC und 

ist das negative Element in der Rückkopplungsschleife der circadianen Uhr von N. crassa. 

FRQ rekrutiert Casein Kinase 1a (CK1a), um WCC durch Phosphorylierung zu 

inaktivieren. Diese circadiane Phosphorylierung stabilisiert WCC aber auch, so dass FRQ 

den WCC negativ und positiv beeinflusst. Die Licht-induzierte Aktivität von L-WCC 

wird auch durch Phosphorylierung reguliert, der Mechanismus dieser Licht-induzierten 

Phosphorylierung ist Gegenstand dieser Arbeit. 

 

Es wurde gezeigt, dass L-WCC aus zwei Molekülen WC-1 und zwei Molekülen WC-2 

besteht. In dieser Arbeit wurden 34 Phosphorylierungsstellen von WC-1 (27 neu) und 23 

Stellen von WC-2 (22 neu) bestimmt. Weder in einer Proteindomäne, noch Licht- oder 

Dunkel-spezifisch wurde Phosphorylierung gefunden. Wahrscheinlich gibt es im 

Dunkeln eine Menge gering und verschieden phosphorylierter WCC Moleküle und Licht 

verstärkt die Phosphorylierung jedes Moleküls. Die Suche nach Kinasen ergab, dass FRQ 

die Licht-induzierte Phosphorylierung von WCC durch CK1a vermittelt, die Aktivität 

weiterer Kinasen wird vermutet. Die Mutation von Phosphorylierungsstellen von WC-2 

zeigte eine graduelle Reduktion der transkriptionellen Aktivität von WCC, die 

regulatorische Kompensation von WC-1 und WC-2 und deutet die Gleichheit der 

circadianen und der Licht-aktivierten Phosphorylierung an. Von Prolin gefolgte 

Phosphorylierungsstellen sind auf WCC überrepräsentiert und wurden als ein Auslöser 

für FRQ-vermittelte Phosphorylierung identifiziert. Weitere Auslöser von 

Phosphorylierung sind DNA-Bindung und wahrscheinlich Licht-induzierte 

Dimerisierung von WCC. Die Bindung an die DNA bringt WCC in die Nähe der Prolin-

gerichteten Kinasen der Transkriptionsmaschinerie (TM). Es wurde die Hypothese 

aufgestellt, dass die TM an aktivem WCC ein Signal für weitere, Aktivitäts-mindernde, 

FRQ-vermittelte Phosphorylierung setzt. 

Eine kürzliche publizierte Studie der circadianen Phosphorylierung von WCC bestätigt 

größtenteils die hier gezeigten Ergebnisse und findet auch, aber thematisiert nicht, die 

Prolin-gerichtete Phosphorylierung. Diese ist auch auf CLOCK, dem WCC Ortholog in 

Drosophila melanogaster, überrepräsentiert, was die Hypothese eines Feedbacks der TM 

auf WCC weiter unterstützt.  
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Summary 

The White Collar Complex (WCC) is a transcription factor and light receptor formed by 

two subunits. Only White Collar-1 (WC-1) has a light receptor domain but both WC-1 

and White Collar-2 (WC-2) have zinc finger DNA binding domains. In the negative 

feedback loop of the circadian clock in Neurospora crassa, WCC is the positive element 

that drives the clock and synchronizes it with the external cycle of day and night. 

According to these two functions, there are two groups of target genes, the clock-

controlled genes (ccgs) and the light-inducible genes.  The latter subset is activated by 

binding of the light-activated WCC (L-WCC). FREQUENCY (FRQ) is a target of WCC 

and is the negative element in the feedback loop of the circadian clock in N. crassa. FRQ 

recruits Casein Kinase 1a (CK1a) to inactivate WCC by phosphorylation. This circadian 

phosphorylation also stabilizes WCC, so the feedback of FRQ on WCC is both negative 

and positive. The light-induced activity of L-WCC is regulated by phosphorylation as 

well, the mechanism of this light-induced phosphorylation is the subject of this study.   

 

L-WCC was proven to consist of two molecules WC-1 and two molecules WC-2. In this 

work, 34 phosphorylation sites of WC-1 (27 new) and 23 sites of WC-2 (22 new) have 

been determined. Neither phosphorylation of a protein domain, nor light- or dark-specific 

phosphorylation were found. There seems to be a pool of poorly and differently 

phosphorylated WCC molecules in the dark, and light increases the phosphorylation of 

each molecule. The search for kinase(s) revealed that FRQ also mediates the light-induced 

phosphorylation of WCC by CK1a and the activity of other kinases is presumed. 

Phosphorylation site mutants of WC-2 revealed a gradual reduction of the transcriptional 

activity of WCC, a regulatory compensation of WC-1 and WC-2 and suggested identity 

of circadian and light-induced phosphorylation. Phosphorylation sites followed by proline 

are overrepresented on WCC and were shown to be a trigger for FRQ-mediated 

phosphorylation. Other triggers of phosphorylation of WCC are DNA-binding and most 

likely light-induced dimerization. DNA-binding brings WCC close to the proline-directed 

kinases of the transcriptional machinery (TM). It was hypothesized that the TM feeds 

back on the active WCC to mark it for subsequent, activity-attenuating, FRQ-mediated 

phosphorylation. 

A recently published study of the circadian phosphorylation of WCC largely confirms 

these results but does not touch the topic of proline-directed phosphorylation although 

these sites are overrepresented in that study as well. Proline-directed phosphorylation is 

also overrepresented on CLOCK, the WCC ortholog in Drosophila melanogaster, further 

supporting the hypothesis of a feedback of the TM on WCC. 
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1. Introduction 

In this PhD project, the filamentous fungus Neurospora crassa is used to study the 

regulation of the synchronization of the intracellular circadian rhythm with the 

environmental rhythm of day and night. The following chapters highlight the importance 

of clock research, introduce to the circadian clock of Neurospora crassa and introduce 

the details required to describe the results of this research project. 

1.1.  Biological rhythms and the circadian clock 

In 2017, the Nobel Prize in Physiology or Medicine was awarded to Jeffrey C. Hall, 

Michael Rosbash and Michael W. Young "for their discoveries of molecular mechanisms 

controlling the circadian rhythm" (The 2017 Nobel Prize in Physiology or Medicine Press 

Release). This highlights the importance of research on biological rhythms. “Circadian” 

is derived from “circa” and “dies”, the Latin words for “about a day”. The “circadian 

rhythm” or the “circadian clock” describes the rhythmic behavior and physiology of 

organisms that is observed over the course of a day (24 h). The research of the past 

decades has shown that organisms do not simply react to the environmental changes 

caused by the earth rotation. An internal rhythm with a period of approximately 24 h 

enables organisms to anticipate environmental changes. The advantage of a circadian 

clock is obvious because it has evolved across almost all kingdoms: in prokaryotic 

cyanobacteria, in plants, in fungi an in animals (Kondo et al., 1993 (cyanobacteria), 

Buenning, 1935 (plants), Pittendrigh et al., 1959 (fungi),  Konopka and Benzer, 1971 

(insects), Vitaterna et al., 1994 (mouse), Aschoff, 1965 (human)). 

Understanding the circadian clock is crucial since it is an important factor of human 

health. Defects of the human circadian clock as well as desynchrony of the internal 

rhythms of the human body caused by, for example, shift work, lead to severe injury to 

health (Dagan, 2002, Parry, 2002, Roenneberg and Merrow, 2016). Emerging from 

circadian clock research, the field of chronopharmaceutics makes drugs more effective 

and reduces side effects by taking the rhythm of physiological and pathophysiological 

processes into account (Ohdo et al., 2011). 

Understanding the circadian clock is also crucial since it helps to understand biological 

rhythms in general. Numerous natural processes are rhythmic in various shapes and sizes. 

Organisms have evolved strategies to anticipate various geophysical cycles like day and 

night, the seasons, the tides. Biological rhythms longer than one day (24 h) are called 

infradian rhythms. One example is the menstrual cycle in higher primates of about 25 to 

35 days. Even longer are circannual cycles like hibernation and leaf fall in autumn. 

Biological rhythms shorter than one day are called ultradian rhythms. The sleep phases 

of humans are a prominent example for such short rhythms (Kishi et al., 2018). 

Among the various biological rhythms, the circadian clock ranges somewhere in between 

on the timescale and is characterized by three key features (Pittendrigh, 1960):  
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Maintenance of the internal oscillation in the absence of external cues. If an organism 

is kept under constant conditions without temporal information for several days, the 

internal rhythm keeps oscillating with an amplitude close to 24 h. Interestingly, the 

endogenous, self-sustaining rhythm generator oscillates with an amplitude larger or 

shorter, but not exactly 24h. 

Synchronization with the environmental rhythms. The internal clock is synchronized 

with the environment by receiving external temporal information. Over the course of the 

day, light and temperature are changing. Thus, these two factors are called zeitgebers 

(German for “time giver”) and can reset the circadian clock. Because the length of day 

and night are changing over the course of year, it is important for an organism to adjust 

the internal clock every day (Aschoff, 1954).  

Temperature compensation. While (bio-)chemical processes are temperature-

dependent, the circadian clock runs robustly and accurately over a wide range of 

physiological temperatures, in cold winter as well as very hot summer. Temperature 

changes over the course of a year as well as over the course of a day are compensated by 

the circadian clock.  

1.2.  Neurospora crassa, a model organism for the circadian clock 

The filamentous fungus Neurospora crassa is a model organism used in various fields of 

biology, including circadian biology, because it is a simple eukaryote having a close 

evolutionary relatedness to animals (Stechmann and Cavalier-Smith, 2003). In contrast 

to model organisms like Escherichia coli and Saccharomyces cerevisiae, N. crassa allows 

the investigation of complex biological processes and the transfer of these findings on 

higher eukaryotic organisms (Roche et al., 2014). The physiology and taxonomic 

description of Neurospora species is investigated since the 19th century (Perkins, 1992), 

and Beadle and Tatum demonstrated the one gene - one enzyme - hypothesis in N. crassa 

(Beadle and Tatum, 1941). In the 1950s, Pittendrigh and colleagues established N. crassa 

as model organism for clock research. It was shown that the developmental patterning of 

asexual conidiation seen when N. crassa grew over an agar surface (an  observable change 

in morphology, see Figure 1.1) followed a rhythm that meets the criteria of a circadian 

clock (Pittendrigh et al., 1959).  

N. crassa is a haploid fungus that can grow and propagate asexually or via a sexual cycle. 

The heterothallic, haploid culture of N. crassa is not able to enter the sexual cycle. But 

N. crassa occurs as two mating types and crosses of the two opposing mating types can 

reproduce sexually. The asexual developmental cycle results in the production of 

macroconidiophores (conidia); the sexual cycle yields ascospores. Both processes are 

regulated by the circadian clock (Bobrowicz et al., 2002). When N. crassa is grown in 

constant darkness, the rhythm of conidiation keeps running with an internal period of 

~22,5 h that differs slightly from 24 h (Pittendrigh et al., 1959; Ryan et al., 1943). This 

finding met the first key feature of a circadian clock, the internal oscillator.  
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Figure 1.1: Growth pattern of Neurospora crassa.  

1.1a: N. crassa wild type (wt) strain grown on a petri dish. The typical orange color origins from the 

synthesis of carotenoids (Roche et al., 2014). 1.1b: Patterning of the asexual conidiation when Neurospora 

crassa bd strains grow through a glass tube from left to right. The bd (band) genetic background of N. 

crassa refers to rasbd mutation that allows growth of N. crassa strains under the conditions in small glass 

tubes (Belden, Larrondo et al., 2007). The upper two lanes show the typical banding pattern of the wt, bd 

strain that is caused by the rhythmic change in morphology. In contrast to that, the clock mutant strain 

∆wc-2, bd does not show a rhythmic banding pattern. (Experiment performed and picture taken by Linda 

Ebelt in 2016). 

The first clock-mutant strains of N. crassa identified in the early 1970s the gene frequency 

(frq) as one of the main clock components in N. crassa (Feldman and Hoyle, 1973). 

Molecular analysis of the Neurospora clock was initiated shortly after that of Drosophila 

in the mid-1980s, and numerous clock-controlled genes (ccgs) were identified by global 

screening (Loros et al., 1989). Later, a protein complex named White Collar Complex 

was discovered to be the blue light receptor that synchronizes the N. crassa circadian 

clock with the environment, meeting the second key feature of a circadian clock, the 

synchronization with the environmental rhythms (Ballario et al., 1996; Ballario et al., 

1998; Linden and Macino, 1997).  Besides being a blue light receptor, WCC is also 

required for the expression of frq in dark. The discovery of FRQ and of WCC with its 

light and its dark function revealed the basis of the molecular clock in N. crassa (Aronson 

et al., 1994, Crosthwaite et al., 1997).  

The robustness of the N. crassa circadian clock over a wide range of physiological 

temperatures represents the third key feature of a circadian clock, the temperature 

compensation (Aronson et al., 1994). 

1.3.  The circadian clock in Neurospora crassa 

The basic structure of any molecular circadian clock comprises the input, the central 

oscillator and the output of the clock (see Figure 1.2). The input of the clock transfers 

information like light, temperature and also information about the metabolic status of the 

organism to the central oscillator to align (synchronize) the endogenous clock with the 

environment or other intracellular processes (reviewed in Baker et al., 2012; Sancar and 

Brunner, 2014). The main input to the central oscillator of N. crassa is blue light sensed 

by WCC. A unique feature of the N. crassa circadian clock is that WCC represents both 

the blue light receptor and an element of the central oscillator (see Figure 1.2). In contrast 

to higher eukaryotes, there is no light input pathway feeding the light signal to the central 
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oscillator. In N. crassa, genes encoding for red light photoreceptors were found but these 

genes are not involved in any of the known photo responses of N. crassa (Borkovich et 

al., 2004; Froehlich et al., 2005; Galagan et al., 2003). The function of these red light 

receptors remains unknown and WCC is so far the only known photoreceptor in N. crassa 

that has impact on the circadian clock.  

Genes controlled by the circadian clock are referred to as clock-controlled genes (ccgs) 

and can be roughly clustered in primary ccgs that are direct targets of WCC and secondary 

ccgs that are indirectly regulated by WCC (see Figure 1.2; Loros et al., 1989). Up to 40% 

of the N. crassa transcriptome were found to be under control of the circadian clock. The 

functional classification of primary and secondary ccgs revealed a clock-controlled 

temporal separation of physiological processes. The morning and the daytime are 

dominated by catabolic processes, the evening is dominated by anabolic processes 

(Hurley et al., 2014; Sancar et al., 2015). WCC was found to control ~20% of all 

annotated N. crassa transcription factors in response to light, revealing a flat hierarchical 

network (Smith et al., 2010). 

 

 

Figure 1.2: The circadian clock of N. crassa.  

1.2A: The basic structure a molecular circadian clock comprises the input, the central oscillator and the 

output of the clock. The central oscillator (clock) is made up of a transcriptional / translational negative 

feedback loop. Together, the positive and the negative arm of the feedback loop create a time-delay that 

defines the circadian oscillation. 1.2B: In N. crassa, the main input to the central oscillator is blue light. 

The positive element in the central clock of N. crassa is WCC, a transcription factor and blue light sensor. 

WCC also drives the output of the central oscillator, the expression of clock-controlled genes (ccgs). The 

negative element in the central clock of N. crassa is FRQ, whose expression is activated by WCC. FRQ 

forms a complex with FRH and Kinases and exerts both a negative and a positive feedback on WCC. The 

gradual phosphorylation of FRQ is the main pacemaker of the circadian clock of N. crassa (Figure modified 

acc. to Baker et al., 2012). 
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As conserved principle of endogenous circadian clocks, the central oscillator in N. crassa 

is a transcriptional / translational negative feedback loop. In this feedback loop, a positive 

element drives the activation of the negative element that feeds back on the positive 

element to stop its own activation. The exciting question of clock research was (and still 

is) how interaction of molecules and biochemical reaction can create a defined time delay 

and a robust oscillation with a period of approximately 24 hrs. The positive element in 

N. crassa is WCC, the transcription factor that drives the expression of clock-controlled 

genes and especially the expression of frq. FRQ protein represents the negative element 

in the N. crassa central oscillator.  

 

Figure 1.3: Molecular mechanism of the circadian clock in N. crassa.  

When N. crassa is grown in constant darkness and in constant temperature, the intracellular clock keeps 

oscillating at an internal rhythm of about a day. The subjective daytime is illustrated by yellow and blue, 

representing the day and the night. WCC binds to the frq promoter and initiates the expression of FRQ. 

FRQ mediates the phosphorylation of both WCC and FRQ over the course of a circadian day. 

Phosphorylation inactivates but also stabilizes WCC. Phosphorylation of FRQ releases the negative 

feedback of FRQ on WCC and allows the start of the next cycle of transcription and translation (Figure 

from Baker et al., 2012). 

FRQ dimerizes and the FRQ-dimer forms a complex with the stabilizing FRQ-interacting 

RNA Helicase (FRH) and the kinase CK1a (see Figure 1.2). This FRQ/FRH complex 

(FFC) with CK1a interacts with WCC and inactivates it by phosphorylation to stop the 

expression of frq and subsequently the synthesis of FRQ. In the FFC complex, FRQ itself 

is phosphorylated successively and increasing phosphorylation of FRQ releases the 

negative feedback on WCC. Phosphorylation of FRQ leads to ubiquitination and 

degradation of FRQ (see Figure 1.3; reviewed in Baker et al., 2012). However, the 

phosphorylation of FRQ is not just a simple tag for degradation, it is a complex 

mechanism that creates an hourglass-like, successive modulation of protein-protein 

interaction and protein conformation. There is evidence that degradation of 
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hyperphosphorylated FRQ is not required to maintain the circadian oscillation (Larrondo 

et al., 2015). Furthermore, the cycles of WCC activation and inactivation, frq expression 

and FRQ synthesis alone do not set the period of approximately 24 hrs. The pacemaker 

of the N. crassa circadian clock, that determines the time constant of the feedback loop, 

is the time-of-day-specific phosphorylation of FRQ in the FRQ/FRH/CK1 complex on up 

to >85 phosphorylation sites ( Baker et al., 2009; Tang et al., 2009; reviewed in Baker et 

al., 2012).  

Besides the negative feedback of FRQ on WCC, FRQ also exerts a positive feedback on 

WCC that is important for the restart of the transcription / translation cycle. Active, 

hypophosphorylated WCC is instable but the inactive, hyperphosphorylated WCC is not 

degraded and accumulates instead. Thus, FRQ-mediated, inactivating phosphorylation of 

WCC creates a pool of inactive WCC that can be dephosphorylated by phosphatases to 

become available for the next cycle of gene expression (reviewed in Baker et al., 2012). 

1.4.  FRQ, the pacemaker of the circadian clock 

The negative element and pacemaker of the circadian clock in N. crassa, FRQ, is an 

intrinsically disordered 108 kDa protein that requires the interaction with FRH to stabilize 

its conformation (FRQ/FRH complex, FFC). FRQ is highly regulated at the 

transcriptional, posttranscriptional, translational and posttranslational level, a glimpse on 

the complex regulation was outlined in the previous chapter (reviewed in Baker et al., 

2012). The most important and intensively investigated regulatory modification of FRQ 

is the phosphorylation. FRQ, embedded in FFC, is phosphorylated in clusters, there is no 

specific phosphorylation event acting as the switch that starts or stops any specific action 

(Baker et al., 2009). Numerous kinases and phosphatases were found to have a direct 

effect on the phosphorylation status of FRQ: CK1a, CK2, PRD-4, CAMK-1, PKA, PP1, 

PP2a, PP4 (reviewed in Baker et al., 2012; Diernfellner and Schafmeier, 2011). The most 

important kinase is CK1a that interacts tightly with FFC (Baker et al., 2009; Gorl et al., 

2001; He et al., 2006; Querfurth et al., 2007). FRQ interacts with CK1a through the FRQ-

CK1a-interacting domains (FCD1 and FCD2, see Figure 1.4). This interaction is required 

for the phosphorylation of FRQ by CK1a but it also brings CK1a close to WCC to mediate 

the phosphorylation of WCC by CK1a (He et al., 2006; described in the following 

chapters).  

The transcription of frq is activated by WCC and is a complex issue since frq represents 

one of the most complex loci known in microbes (see Figure 1.4; reviewed in Dunlap and 

Loros, 2006). There are binding sites for WCC both upstream and downstream of the frq 

ORF. To initiate transcription of frq sense mRNA, WCC binds in the frq promoter region 

to two distinct cis-acting sequences termed the clock box (c-box) and the proximal light-

regulated element (PLRE) (Froehlich et al., 2002; Froehlich et al., 2003). The c-box is 

required for the rhythmic expression of FRQ over the course of a day. The PLRE is 

required for the light-induced expression of FRQ to synchronize the endogenous 
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oscillator with the environment. The molecular mechanisms of the circadian- and the 

light-activity of WCC are outlined in the following chapters. 

 

 

Figure 1.4: Protein structure of FRQ and gene locus of frq. 

1.4a: Domain structure of the 989 aa protein FRQ (Figure acc. to Baker et al., 2009; Querfurth et al., 2011). 

1.4b: The frq locus and its regulatory elements. The clock box (c-box) and the proximal light-regulated 

element (PLRE) are binding sites of WCC to initiate frq sense (frq) transcription. The antisense light-

regulated element (qLRE) is the binding site for WCC to initiate the transcription of frq antisense (qrf) 

(Figure acc. to Xue et al., 2014; Cesbron et al., 2015). 

The frq expression is also regulated by the transcription of the long non-coding frq 

antisense RNA termed qrf (see Figure 1.4). The transcription of qrf is initiated by WCC 

in a light-dependent manner from an LRE (another than PLRE) in the qrf antisense 

promoter and comprises the full frq ORF in reverse direction. The levels of frq and qrf 

oscillate in antiphase and the expression of frq inhibits the expression of qrf and vice 

versa. This mutual inhibition is most likely mediated by chromatin modifications and 

premature termination of transcription and it forms a double-negative feedback loop that 

is interlocked with the core feedback loop. The expression of qrf is required for robust 

and sustained circadian rhythmicity (Xue et al., 2014). 

1.5.  WCC, the activator of the circadian clock 

The White Collar Complex (WCC) is a heterodimer of the two proteins White Collar 1 

(127 kDa) and White Collar 2 (57 kDa).  Both proteins were identified as key elements 

of the Neurospora clock in the early 1980s (Degli-Innocenti and Russo, 1984; Harding 

and Turner, 1981). WC-1, the larger subunit of WCC, is characterized by two glutamine-

riche regions, the blue-light sensing LOV (light-oxygen-voltage) domain, two PAS (Per-

Arnt-Sim) domains, a DBD (defective in DNA binding) domain and a GATA-type zinc 

finger DNA binding domain (ZnF) (see Figure 1.5; see detailed description of the LOV 

domain in chapter 1.7; (Ballario et al., 1996; Ballario et al., 1998; Linden and Macino, 

1997). WC-2, the smaller subunit of WCC, is characterized by a single PAS domain and 

a GATA-type zinc finger DNA binding domain (ZnF) but lacks a LOV domain for light-

sensing (see Figure 1.5; Linden and Macino, 1997).  
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Figure 1.5: Domain structure of WC-1 and WC-2.  

PolyQ = glutamine rich region. LOV (PASA) = light, oxygen, voltage domain. PASB, C = Per-Arnt-Sim 

domain. DBD = defective in binding DNA. ZnF = GATA-type zinc finger DNA binding domain. (acc. to 

Castro et al., 2006; Liu et al., 2003; Wang et al., 2015) 

WC-1 and WC-2 are transcriptional activators and localize to the nucleus. But to date, a 

transactivation domain and a nuclear localization signal (NLS) are not known. Such 

domains were suggested but are still under debate (Wang et al., 2015). The DBD of WC-

1, a region that was suggested as NLS previously, was found to assist in DNA binding of 

WC-1 and to mediate interactions with FFC. 

PAS proteins domains mediate protein-protein interaction and are conserved among core 

clock elements of other species (King et al., 1997; Linden and Macino, 1997; Reddy et 

al., 1984). The PAS domains of WC-1 and WC-2 interact to form the WCC and are likely 

involved in the interaction with FRQ. The interaction of WC-1 with WC-2 is essential for 

the stability of WC-1 and thus for the steady-state level of WC-1 and the proper function 

of WCC (Ballario et al., 1998; Cheng et al., 2002). The tight relationship of WC-1 and 

WC-2 is illustrated by the fact that knocking out either WC-1 or WC-2 fully abolishes the 

circadian clock of N. crassa. 

In response to light, the LOV domain of WC-1 can dimerize with another LOV domain 

and form the light-induced WCC (L-WCC) (Froehlich et al., 2002; He et al., 2002). The 

light-dependent function of WCC will be outlined more detailed in the following chapter 

1.7.  

The ZnF of both WC-1 and WC-2 allows binding of WCC to target genes. The unique 

feature of the N. crassa WCC is to bear two different activities that are reflected in two 

different subsets of target genes (Cheng et al., 2003; Collett et al., 2002; He et al., 2002): 

The circadian activity of WCC. WCC protomers control the expression of clock-

controlled genes by binding to a conserved DNA-binding motif, the clock box (c-box). 

For example, the clock-controlled gene frq is activated by binding of a WCC protomer to 

the frq clock box (see chapter 1.4; Froehlich et al., 2003). The circadian activity, 

especially the expression of frq, of WCC drives the circadian clock of N. crassa and is 

independent of the WC-1 LOV domain (see Figure 1.6). 

The light-dependent activity of WCC. The homodimer L-WCC consists of two WC-1 

molecules but the number of WC-2 molecules in L-WCC is still under debate (Malzahn 
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et al., 2010; Wang et al., 2015). The L-WCC controls the expression of light-inducible 

genes, e.g. frq. Light-dependent transcription of frq is activated by binding of a WCC 

protomer to the frq PLRE and represents the synchronization of the N. crassa circadian 

clock with the environment. The name White Collar is derived from the white color of 

WC-1 or WC-2 mutants. Some of the light-inducible target genes of WCC are the albino 

(al) genes that code for enzymes of the carotenoid pigment synthesis pathway. If the blue 

light reception of WC-1 is impaired either by knock out, mutation or instability in the 

absence of WC-2 or if DNA binding of L-WCC is impaired, the expression of albino 

genes and the production of orange carotenoids are abolished (see Figure 1.6; (Chen et 

al., 2009; Harding and Turner, 1981). 

 

Figure 1.6: The circadian vs. the light-induced activity of WCC.  

1.6a: A WCC protomer consisting of one molecule WC-1 and one molecule WC-2 binds to the c-box in 

the promoter region of clock-controlled genes (ccgs) and actives transcription (ZnF DNA binding domains 

shown in orange). 1.6b: When the LOV domain (yellow hexagon) of WC-1 receives blue light, molecular 

rearrangements allow the dimerization of two LOV domains and thus the formation of light-induced WCC 

(L-WCC). Here, L-WCC is shown as dimer of two WCC protomers (see text for number of molecules in 

L-WCC). Only L-WCC, not two single WCC protomers can activate the transcription of light-inducible 

genes. Most likely, the sum of all interactions including the LOV-LOV interaction is required to stabilize 

binding to DNA and to allow recruitment of the transcriptional machinery. (Figure 1.6 was designed based 

on the references mentioned in chapter 1.5) 

The molecular base of these two different activities of WCC are different functions of the 

ZnF domains of WC-1 and WC-2. DNA-binding of the light-induced WCC requires 

mainly the ZnF of WC-2, whereas DNA-binding for circadian functions (= “driving the 

inner rhythm”) requires both the ZnF of WC-2 and WC-1 (Cheng et al., 2003; Wang et 

al., 2015). 
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1.6.  The circadian phosphorylation of WCC 

Both WC-1 and WC-2 are phosphorylated in response to light (Schwerdtfeger and 

Linden, 2000; Talora et al., 1999) as well as over the course of a circadian day (circadian 

phosphorylation) (Schafmeier et al., 2005). In an initial study, the first 5 phosphorylation 

sites of WC-1 were mapped but no phosphorylation sites of WC-2 were identified (He et 

al., 2005). These 5 phosphorylation sites were found to be involved in the circadian 

phosphorylation only. As an important key to the mechanism of the circadian clock, FRQ 

was found to mediate the circadian phosphorylation of WCC by CK1 and CK2 to 

inactivate the transcription factor (He et al., 2006; Schafmeier et al., 2005). As outlined 

in chapter 1.3, the inactivation of WCC by phosphorylation is both a negative  and a 

positive feedback of FRQ on WCC (Schafmeier et al., 2008). The kinases PKC, PKA, 

GSK3, CK1 and CK2 were shown to phosphorylate and inactivate WCC, the 

phosphatases PP4 and PP2A were found to antagonize the phosphorylation WCC (Cha et 

al., 2008; Franchi et al., 2005; He et al., 2006; Huang et al., 2007; Schafmeier et al., 

2008; Tataroglu et al., 2012). At the beginning of the experimental work for this thesis, 

in total nine phosphorylation sites of WC-1 and one phosphorylation site of WC-2 were 

known (He et al., 2005; Sancar et al., 2009). After finishing experimental work for this 

thesis, 80 phosphorylation sites of WC-1 and 15 phosphorylation site of WC-2 were 

published by Wang et al., 2019. Refer to chapter 4.1 for a detailed comparison and 

discussion of this study in the context of the results by Wang et al., 2019. Taken together, 

the circadian phosphorylation of WCC is well understood. But only little is known about 

the light-induced phosphorylation that is described in the following chapter. 

1.7.  The light-induced phosphorylation of WCC 

In contrast to the circadian phosphorylation, the light-induced phosphorylation of WCC 

occurs on a much shorter time scale. In response to light, WCC binds to target genes and 

increasing phosphorylation of both WC-1 and WC-2 is observed within a few minutes 

reaching a maximum hyperphosphorylation after approximately 30 min. Interestingly, the 

light-induced phosphorylation of WC-1 is transient whereas the light-induced 

phosphorylation of WC-2 is persistent. After about 120 min, WC-1 is hypo-

phosphorylated again but does not reach the low level of phosphorylation as in the dark 

before the light induction (see Figure 1.7; Schwerdtfeger and Linden, 2000; Talora et al., 

1999). The time range of the light-induced phosphorylation roughly correlates with the 

light-induced activity of WCC and phosphorylation was shown to inhibit binding of WCC 

to target genes (He and Liu, 2005). In accordance with the inhibitory function, the light-

induced phosphorylation occurs when WCC is localized in the nucleus and only 

functional WC-1 and WC-2 is phosphorylated (Schwerdtfeger and Linden, 2000). 

Furthermore, light-induced, hyperphosphorylated WC-1 is degraded within 120 min after 

light-induction (Talora et al., 1999). But since the wc-1 gene itself is a light-inducible 

gene under control of L-WCC, the degradation of hyperphosphorylated WCC is balanced 

with newly synthesized, hypophosphorylated WC-1 (Ballario et al., 1996; Kaldi et al., 

2006). 
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The study of the circadian phosphorylation of WCC revealed hints that FRQ-dependent 

CK-1a and CK2 activity is also involved in the light-induced phosphorylation of WCC  

(He et al., 2006). 

The structural basis for light reception in N. crassa is the LOV (light-oxygen-voltage) 

domain of WC-1 (Ballario et al., 1998; He et al., 2002). LOV domains are a subgroup of 

PAS domains combining the receptor function for environmental cues like light, oxygen 

and voltage with a protein-protein interaction domain (Froehlich et al., 2002). In WC-1, 

blue light is sensed by the formation of a covalent photoadduct between a cysteinyl 

residue and stoichiometrically bound FAD (flavin cofactor) (Froehlich et al., 2002; 

Salomon et al., 2000; Swartz et al., 2001; Zoltowski et al., 2007; Zoltowski et al., 2009). 

The formation of the photoadduct causes a conformational movement of a helix that opens 

up an interface for the dimerization of two light-activated LOV domains (Corchnoy et al., 

2003; Harper et al., 2003). L-WCC is formed by the dimerization of two WC-1 LOV 

domains and only homodimer L-WCC, not monomeric WCC can bind stably enough to 

the promoter sequences of light-inducible genes to initiate transcription (Malzahn et al., 

2010; Wang et al., 2015). The structural and mechanistic details of L-WCC are the key 

to the complex regulation of the light-induced activity of WCC.  

 

 

Figure 1.7: Western Blot of a light-induction experiment in a N. crassa wild type strain.  

The first sample is taken in darkness after growing the culture for 24 h in dark (DD24). The culture is 

shifted to light and samples are taken at the time points indicated (minutes in light). Both WC-1 and WC-2 

are hypophosphorylated after growth for 24 h in darkness. In response to light, WC-1 is phosphorylated 

transiently and the hyperphosphorylation appears as a broad smear in the Western Blot. The 

phosphorylation of WC-1 reaches a maximum after approx. 30 min of light induction and decreases to a 

minimum after 120 min of light-induction. However, the hypophosphorylation of WC-1 after 120 min of 

light induction is higher than at DD24. In contrast to WC-1, the light induced phosphorylation of WC-2 is 

persistent and appears as distinct band. But the timeframe of the phosphorylation of WC-2 equals WC-1, 

the maximum hyperphosphorylation of WC-2 is reached as well after 30 min of light induction. (Western 

Blot by Linda Ebelt, showing N. crassa wt strain. Experiment performed according to Schwerdtfeger and 

Linden, 2000; Talora et al., 1999) 

1.8.  Regulation of the light-induced activity of WCC 

Regulation of the light-induced transcription is ensured by several mechanisms. As 

outlined above, light-induced phosphorylation is most likely a negative regulator of L-

WCC (He and Liu, 2005). Another possible mechanism, the decay of the FAD-Cysteine 

photoadduct, can be excluded since the photoadduct of WC-1 is extremely stable (t½ ≈ 4 

hr) (Malzahn et al., 2010).  

An important regulator of the light-induced transcription by WCC is the small protein 

VVD. L-WCC drives the expression of vvd by binding to the LRE in the vvd promoter. 
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In response to light, the expression of vvd increases dramatically. VVD is very short (21 

kDa) and consists of a LOV domain very similar to the WC-1 LOV domain and an N-

terminal cap (Heintzen et al., 2001; Zoltowski et al., 2007). Expressed and translated 

quickly upon illumination, blue light causes the same conformational change in the VVD 

LOV domain as in the WC-1 LOV domain yielding light-activated L-VVD  

(Schwerdtfeger and Linden, 2003; Zoltowski et al., 2007). Located in the nucleus, L-

VVD dimerizes with the light-activated WC-1 LOV domain and disrupts L-WCC 

homodimers (see Figure 1.8).  

 

Figure 1.8: Mechanism of photoadaptation in N. crassa.  

Blue light induces the dimerization of two LOV domains, in both WC-1 and in VVD. The dimerization of 

two WC-1 LOV domains forms the L-WCC that activates the rapid expression of VVD. Via its LOV 

domain, VVD forms homodimers with itself or heterodimers with light-induced WC-1. The formation of 

heterodimers disrupts L-WCC and thereby inactivates it. The amount of VVD expression depends on the 

amount of light-activated WCC which in turn depends on the light intensity. Thus, the light-induced VVD 

level is adapted for the light intensity and balances the amount of active L-WCC. (Figure modified acc. to 

Schafmeier and Diernfellner, 2011) 

The competition of L-VVD/WCC dimerization with L-WCC homodimerization regulates 

the light-induced activity of WCC. The vvd promoter can respond to a huge range of light 

intensities since it is saturated at very high light intensities. Due to that feature of the vvd 

promoter, the amount of L-VVD correlates with the light intensity and subsequently the 

amount of L-WCC. Low levels of light activate low levels of WCC and only low levels 

of VVD are expressed (Chen et al., 2010; Malzahn et al., 2010). The correlation of L-

VVD and L-WCC protein level is possible since the photoadduct of VVD is similar stable 

as the photoadduct of WCC (VVD: t½ ≈ 5 hr) and re-activation of either VVD or WCC 

due to spontaneous photoadduct decay is excluded over several hours (Zoltowski et al., 

2009). For both VVD and WCC, the stability of the photoadduct and the stability of the 

WCC/WCC or WCC/VVD dimers should not be mistaken. The photoadducts of both 

WCC and VVD are very stable and allow dimerization of the respective LOV domains 

as long as the photoadduct lasts. The WCC/WCC or WCC/VVD dimers are not stable 
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and allow rapid exchange of the interaction partner, the basis for the competition of L-

VVD with the L-WCC homodimerization (Dasgupta et al., 2015; Zoltowski et al., 2009). 

The negative feedback loop formed by L-WCC and VVD is named photoadaptation. On 

prolonged light exposure, the light response is attenuated depending on the previous 

intensity of light response.  Following a light response, the system remains sensitive to 

escalating changes in light intensity. After dusk, an appropriate small pool of VVD 

remains that inactivates L-WCC caused by bright moon light or unusual light sources in 

the night to maintain the phase of the endogenous circadian clock. Taken together, the 

small protein VVD is essential for the photoadaptation in N. crassa, a process required 

for the correct assessment and deciphering of changes in light intensities (Chen et al., 

2010; Malzahn et al., 2010). 

Beside phosphorylation and VVD, the activity of the transcription factor WCC is 

regulated as well by the more general regulation of the chromatin structure on WCC target 

genes. Due to the high density of the eukaryotic nucleus, accessibility of genes interferes 

with dense packing of the DNA. Thus, chromatin structure and nucleosomes are a critical 

target of transcriptional regulation. The accessibility of genomic DNA for the RNA 

polymerase II is regulated by two major subclasses of chromatin-modifying enzymes, the 

ATP remodeling complexes and the HAT or HDAC complexes (reviewed in Narlikar et 

al., 2002; reviewed in Flaus and Owen-Hughes, 2011). Studies in the past years have 

suggest circadian clock-specific roles for the ATP-dependent chromatin-remodeling 

enzymes CLOCKSWITCH (CSW-1) and SWI/SNF (Belden, Loros et al., 2007; Wang et 

al., 2014). Another study employed the light-induced activity of WCC as tool to study 

the refractoriness of promoters and suggested that refractory promoters carry a physical 

memory of their recent transcription history (Cesbron et al., 2015).  

1.9.  Phosphorylation as general regulator of gene transcription 

To unravel the mechanism of the phosphorylation of the transcription factor WCC, it is 

crucial to understand the details of the transcription factor activity and transcription 

initiation since phosphorylation is an important regulator of these processes. WCC 

belongs to the large group of gene-specific transcription factors that activate or repress 

transcription by affecting RNA Polymerase II (RNAP II) indirectly. Gene-specific 

transcription factors bind to factors that regulate RNAP II directly or indirectly like the 

Mediator complex or chromatin remodeling complexes (reviewed in Poss et al., 2013).  

The Mediator complex is a transcriptional coactivator that is globally required for 

initiation of gene expression. It is a large multi-unit protein complex that stabilizes the 

pre-initiation complex (PIC), facilitates transcription initiation and is involved in the 

regulation of elongation. The mediator complex is characterized by transience, by 

variability of the subunit composition and by a high degree of structural flexibility 

depending on the interaction partner. It is the main binding interface for gene-specific 

transcription factors that change the structure of the Mediator complex upon binding (see 

Figure 1.9). The “active” structural state of the Mediator complex facilitates transcription 
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initiation by stabilizing RNAP II orientation on the DNA within the PIC (reviewed in 

Poss et al., 2013; El Khattabi et al., 2019).  

The PIC consists of RNAP II and the general transcription factors TFIIA, TFIIB, TFIID, 

TFIIE, TFIIF, and TFIIH. The assembly of the PIC at transcription start site (TSS) of the 

promoter is a well-orchestrated process and only a correctly assembled PIC can release 

RNAP II to elongation (see Figure 1.9; Schilbach et al., 2017; reviewed in Harper and 

Taatjes, 2018). 

Phosphorylation is an important regulatory tool to control different stages of gene 

transcription. The C-terminal domain (CTD) of RNAP II contains tandem hepta-peptide 

repeats of Y1-S2-P3-T4-S5-P6-S7 that represent a platform for the integration of regulatory 

signals. Numerous factors from all stages of transcription and co-transcriptional processes 

apply post-translational modifications to RNAP II-CTD (reviewed in Shandilya and 

Roberts, 2012).  

The Serine 5 (S5) residue of the RNAPII-CTD repeats is phosphorylated during PIC 

assembly by CDK7, a subunit of the general transcription factor TFIIH. The S5 

phosphorylation is recognized by the capping enzyme and is the signal for the attachment 

of the methylguanosine cap to the 5′ end of the early, ~25 nucleotide, nascent mRNA. 

Since 5′ capping is the signal for productive transcription initiation, RNAPII-CTD S5 

phosphorylation is a crucial signal for transcription initiation. Beside RNAPII-CTD S5, 

CDK7 subunit of TFIIH phosphorylates other targets as well. CDK7 also phosphorylates 

the S7 residue of the RNAPII-CTD repeats that plays a role in termination, 3′ processing 

and RNAPII-pausing. Furthermore, CDK7 is involved in the phosphorylation of TFIIB 

that is a trigger for productive initiation of transcription of several genes. Interestingly, 

some studies found CDK7 to be involved in the phosphorylation of gene-specific 

transcription factors (reviewed in Inamoto et al., 1997; Ko et al., 1997; Shandilya and 

Roberts, 2012). An important function of CDK7 is the phosphorylation and activation of 

CDK9, another major RNAPII-CTD kinase (reviewed in Rimel and Taatjes, 2018). 

CDK9 is a subunit of the positive transcription elongation factor b (P-TEFb) and 

phosphorylates the Serine 2 (S2) residue of the RNAPII-CTD repeats. P-TEFb is a crucial 

factor for the initiation of productive elongation. S2 phosphorylation increases during 

RNAPII progression towards the 3´end of the gene and is accompanied by gradual 

dephosphorylation of S5 residues. This phospho-code in the RNAPII-CTD provides a 

platform for the docking of transcription-associated proteins and orchestrates the timing 

of their activity during the different stages of transcription. Additional to S2 

phosphorylation, P-TEFb has a positive effect on elongation by mediating the inhibition 

of the negative elongation factors DSIF (DRB sensitivity-inducing factor) and NELF 

(negative elongation factor). These two proteins are also targets of CDK9 

phosphorylation (reviewed in Bowman and Kelly, 2014; Shandilya and Roberts, 2012). 
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Figure 1.9: A model of transcription initiation by binding of a specific transcription factor (TF) to 

the Mediator complex.  

1.9a: The first panel shows the model of a fully assembled but paused PIC and Mediator complex, a specific 

TF is absent (RNAPII = pol II in grey; general TFs TFIIA, B, D, E, F and H are indicated as letters and in 

various colors; Mediator complex in grey). 1.9b: Binding of a specific TF initiates the active conformation 

of the Mediator complex (specific TF indicated by a star; RNAPII = pol II color turns from grey to yellow; 

Mediator complex color turns from grey to green). 1.9c: The active conformation of the Mediator complex 

allows the escape of RNAPII (pol II) from the promoter region and to start productive elongation. (Note: 

DNA is not shown in this figure to facilitate the presentation; Figure modified acc. to Poss et al., 2013) 

The third regulatory kinase of the transcriptional machinery is CDK8 (and its paralog 

CDK19 in vertebrates), a subunit of the kinase module of the Mediator complex. The 

function and roles of CDK8 are not fully understood to date but intense research has 

shown that CDK8 is not required generally for expression, at least in some organisms. 

Numerous functions and roles of CDK8 in transcription and far beyond in other cellular 

processes were identified. The effects of CDK8 are often pleiotropic, cell type-, context- 

and organism-specific. Regarding transcription, CDK8 (and CDK19) was found to 

control Mediator structure and function by phosphorylation, to phosphorylate some 

general transcription factors, elongation factors, chromatin remodelers and modifiers and, 

interestingly, to phosphorylate gene-specific transcription factors (reviewed in Dannappel 

et al., 2019; Fant and Taatjes, 2019; Poss et al., 2013). Based on a study in Saccharomyces 

cerevisiae, the black widow model of transcription activation was postulated. Srb10, the 

homolog of CDK8 in Saccharomyces cerevisiae, was found to phosphorylate the gene-

specific transcription factor GCN4. This phosphorylation, together with the 

phosphorylation by kinase Pho85, targets the transcription factor for ubiquitin-mediated 

proteolysis. This study showed for the first time that the transcriptional machinery 

controls the abundance of an active gene-specific transcription factor and added this new 

mechanism, the black widow model, to the known mechanisms of controlled termination 

of transcriptional activity (Chi et al., 2001; reviewed in Tansey, 2001). The name “black 

widow model” was derived from spiders that kill the male mating partner after productive 

activity. 
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1.10. Aim of this thesis 

Phosphorylation is the main post-translational modification involved in the regulation of 

the N. crassa circadian clock (reviewed in Mehra et al., 2009). The phosphorylation of 

FRQ and the circadian phosphorylation of WCC are well understood but the mechanism 

of the light-induced phosphorylation of WCC is still unresolved. 

The aim of this PhD project is to unravel the mechanism of the light-induced 

phosphorylation of WCC. Basically, phosphorylation of a protein is the addition of 

negative charges to the protein to induce either electrostatic repulsion from other negative 

charges or electrostatic attraction to positive charges. Phosphorylation of a transcription 

factor can modify its conformation, can modify its interaction with other proteins or can 

induce electrostatic repulsion from the negatively charged DNA. Modification of the 

interaction with other proteins can result in degradation or stabilization of the 

transcription factor and in its intracellular translocation (reviewed in Filtz et al., 2014).  

Applying these general thoughts to WCC, the main research questions are: 

What triggers the light-induced phosphorylation of WCC: the light-induced 

conformational change in the WC-1 LOV domain; the light-induced dimerization of two 

WCC-protomers; the binding to light-inducible genes? 

What are the phosphorylation sites and what do they tell about the mechanism? 

Which kinases are involved? 

What are the consequences and the function of the light induced phosphorylation of 

WCC?  

Why is WC-1 transiently and WC-2 persistently phosphorylated in response to light? 

How does the light-induced phosphorylation of WCC differ from the circadian 

phosphorylation? 
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2. Material and Methods 

2.1.  Material 

2.1.1. Bacterial strains 

Table 2.1: Chemically competent Escherichia coli strain used for cloning and amplification of 

plasmids. 

Strain Genotype Company 

Escherichia coli DH5α F- ϕ80lacZ∆M15 ∆(lacZYA-argF) U169 

deoR recA1 endA1 hsdR17(rk
-, mk

+) phoA 

supE44 thi-1 gyrA967 relA1 λ- 

Stratagene (California, 

USA; part of Agilent, 

California, USA) 

 

2.1.2. N. crassa strains 

Table 2.2: List of N. crassa strains used in this study. 

Strain Genotype Relevant Phenotype Reference 

wt, bd ras-1bd Wild type, can be grown in race 

tubes 

FGSC #1858 

wt ras-1wt Wild type, cannot be grown in race 

tubes 

FGSC #2489 

Δmdk-1 (het) ras-1wt, mdk-1::HygBr 

heterokaryon 

Knockout of mitotic division 

kinase-1, NCU07580.2 

FGSC 

#14539  

Δstpk47 ras-1wt, stpk47::HygBr Knockout of serine / threonine 

protein kinase-47, NCU06685.2 

FGSC 

#17961 

Δmapk-1 ras-1wt, mapk-1::HygBr Knockout of mitogen-activated 

protein kinase-1, NCU09842.2 

FGSC 

#11320 

Δmapk-2 (het) ras-1wt, mapk-2::HygBr 

heterokaryon 

Knockout of mitogen-activated 

protein kinase-2, NCU02393.2 

FGSC 

#11482 

Δmapk-2 (ssi) ras-1wt, mapk-2::HygBr 

single spore isolate 

Knockout of mitogen-activated 

protein kinase-2, NCU02393.2 

FGSC 

#21728 

∆wc-2, bd,  

qa-2 tap- wc-2 

ras-1bd, wc2::HygBr, 

his3::pqa2-tap-wc2-twc2 

wc-2 knockout with exogenous 

expression of TAP-tagged wc-2 

(tagged at the N-terminus) under 

control of qa-inducible promoter 

(Sancar et 

al., 2009) 

∆frq (frq10), bd  ras-1bd, frq10 frq knockout “frq10” from FGSC FGSC #7490 

∆frq, bd, his- ras-1bd, frq:: HygBr, ∆his3 frq knockout generated in the 

Brunner laboratory, histidine-

auxotroph 

Ibrahim 

Cemel 

∆FCD1+2, bd ras-1bd, frq10, his3::pfrq-frq 

FCD1+2-tfrq 

frq knockout with exogenous 

expression of frq lacking the FCD1 

and the FCD2 domains 

(Querfurth et 

al., 2011) 

∆wc-2, bd, his- ras-1bd, wc2::HygBr, ∆his3 wc-2 knockout, histidine-auxotroph Andrea Molt 

∆wc-2, ∆frq, bd, 

his- 

ras-1bd, wc2::HygBr, frq:: 

HygBr, ∆his3 

wc-2 knockout, frq knockout, 

histidine-auxotroph, used for 

crossing of wc-2 mutant strains 

listed below 

This study 

wc-2 rtr. wild 

type, bd 

ras-1bd, wc2::HygBr, 

his3::pwc2-wt wc2-twc2 

wc-2 knockout with exogenous 

expression of wt wc-2 

This study 

wc-2 allA, bd ras-1bd, wc2::HygBr, 

his3::pwc2-allA wc2-twc2 

wc-2 knockout with exogenous 

expression of wc-2 S80A, S82A, 

T86A, S118A, S128A, S129A, 

T136A, T138A, T139A, T140A, 

This study 
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T141A, S142A, T287A, S331A, 

S336A, T339A, S341A, T344A, 

S390A, S394A, S433A, T435A, 

T523A 

wc-2 allD, bd ras-1bd, wc2::HygBr, 

his3::pwc2-allD wc2-twc2 

wc-2 knockout with exogenous 

expression of wc-2 S80D, S82D, 

T86D, S118D, S128D, S129D, 

T136D, T138D, T139D, T140D, 

T141D, S142D, T287D, S331D, 

S336D, T339D, S341D, T344D, 

S390D, S394D, S433D, T435D, 

T523D 

This study 

wc-2 6AP, bd ras-1bd, wc2::HygBr, 

his3::pwc2-6AP wc2-twc2 

wc-2 knockout with exogenous 

expression of wc-2 T86A, S118A, 

T136A, T339A, S433A, T523A 

This study 

wc-2 6DP, bd ras-1bd, wc2::HygBr, 

his3::pwc2-6DP wc2-twc2 

wc-2 knockout with exogenous 

expression of wc-2 T86D, S118D, 

T136D, T339D, S433D, T523D 

This study 

wc-2 3DP N-

terminal, bd 

ras-1bd, wc2::HygBr, 

his3::pwc2-3DP N-

terminal wc2-twc2 

wc-2 knockout with exogenous 

expression of wc-2 T86D, S118D, 

T136D 

This study 

wc-2 3DP C-

terminal, bd 

ras-1bd, wc2::HygBr, 

his3::pwc2-3DP C-

terminal wc2-twc2 

wc-2 knockout with exogenous 

expression of wc-2 T339D, S433D, 

T523D 

This study 

wc-2 rtr. wild type 

Ptcu-1 frq, bd 

ras-1bd, wc2::HygBr, 

his3::pwc2-wt wc2-twc2, 

frq::ptcu1-wt frq-tfrq 

wc-2 knockout with exogenous 

expression of wt wc-2 and 

expression of frq under control of a 

copper-tuneable promoter 

This study 

wc-2 RK/DD, bd ras-1bd, wc2::HygBr, 

his3::pwc2-wc2 RK/DD-

twc2 

wc-2 knockout with exogenous 

expression of wc-2 R480D, K481D 

This study 

wc-2 RK/DD   

Ptcu-1 frq, bd 

ras-1bd, wc2::HygBr, 

his3::pwc2-wc2 RK/DD -

twc2, frq::ptcu1-wt frq-tfrq 

wc-2 knockout with exogenous 

expression of wc-2 R480D, K481D 

and expression of frq under control 

of a copper-tuneable promoter 

This study 

wc-2 RK/DD 6DP 

Ptcu-1 frq, bd 

ras-1bd, wc2::HygBr, 

his3::pwc2-6DP wc2 

RK/DD-twc2, frq::ptcu1-

wt frq-tfrq 

wc-2 knockout with exogenous 

expression of wc-2 T86D, S118D, 

T136D, T339D, S433D, R480D, 

K481D, T523D and expression of 

frq under control of a copper-

tuneable promoter 

This study 

 

2.1.3. Plasmids and Ptcu-1 construct 

In this study, various mutants of wc-2 were generated based on the plasmid pFH62 

(generated by Felix Heise, Laboratory of Prof. Dr. Michael Brunner). The plasmid carries 

parts of the his3 gene sequence to restore the his3 gene function when integrated into the 

non-functional his3 gene locus. A 3372 bp fragment of the wc-2 gene (999 bp wc-2 

5´UTR, 1836 bp wc-2 ORF, 537 bp 3´UTR) was inserted into pFH62 by HindIII and SpeI 

generating pFH62-wc-2 rtr. wild type.  

To generate phosphorylation site mutants of wc-2, appropriate fragments of wc-2 carrying 

the respective mutations were synthesized by GENEWIZ Germany GmbH, Leipzig, 

Germany and inserted into pFH62-wc-2 rtr. wild type. The DNA fragments wc-2 6AP, 
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wc-2 6DP, wc-2 3DP N-terminal, wc-2 3DP C-terminal were inserted into pFH62-wc-2 

rtr. wild type by AflII and NotI. The DNA fragments wc-2 allA, wc-2 allD replaced the 

respective wild-type sequence in pFH62-wc-2 rtr. wild type by PCR-based cloning. For a 

fast clone check prior sequencing, the restriction site for MluI was introduced as silent 

mutation in the ORF of wc-2 allA and the restriction site for KasI was introduced as silent 

mutation in the ORF of wc-2 allD. 

The plasmids pFH62- wc-2 RK/DD and pFH62- wc-2 RK/DD 6DP were generated by 

site-directed mutagenesis of the plasmids pFH62-wc-2 rtr. wild type and pFH62-wc-2 

6DP, respectively. 

Prior transformation, the pFH62-based plasmids were linearized with the restriction 

enzyme SspI. 

Table 2.3: List of plasmids used in this study. 

Plasmid Source 

pFH62 Felix Heise 

pFH62-wc-2 rtr. wild type This study 

pFH62-wc-2 6AP This study 

pFH62-wc-2 6DP This study 

pFH62-wc-2 3DP N-terminal This study 

pFH62-wc-2 3DP C-terminal This study 

pFH62-wc-2 allA This study 

pFH62-wc-2 allD This study 

pFH62- wc-2 RK/DD This study 

pFH62- wc-2 RK/DD 6DP This study 

 

The disruption of the frq promoter by insertion of Ptcu-1 promoter was performed by 

transformation of N. crassa with overlapping PCR fragments acc. to the method described 

by Lamb et al., 2013. With the primers used, 456 bp upstream from the frq start codon 

ATG were deleted to disrupt the frq promoter. 

 

2.1.4. Primer  

Table 2.4: List of primers used in this study.  

The primers for PCR, for the assembly of Ptcu-1 frq, for site-directed mutagenesis and for sequencing are 

assigned to a LE-number (LE = Linda Ebelt). Primers and probes for qPCR are not numbered. The qPCR 

probes are tagged with 6-FAM (5`) and TAMRA (3`). F = forward, R = reverse. 

Primer for PCR 
No. F/R Primer Sequence (5’→ 3’) 

LE 75 F wc-2 F-500 AscI TATA GGCGCGCC ACTTCACCTTTACTCTCTGC 

LE 76 R wc-2 R+500 NotI AATAATAA GCGGCCGC GTAACAAACTCCTCTCCATACC 

LE 99 F wc-2 5UTR HindIII GGG AAGCTT CAATACGTATCCATGAACCTCG 

LE 100 R wc-2 ORF SpeI R TTTTTT ACTAGT CTATCCCATATGATCGCCCATG 

LE 101 F wc-2 C-PCR F GAATACGTGTGCACCGACTGC 

LE 102 R TrpC R TGCGAACCCAGGGCTGGTG 

LE 123 F pUC57wc2 N F AACGACGGCCAGTGAATTCGAGC 

LE 124 R pUC57wc2 N R TGACCATGATTACGCCAAGCTTCC 

LE 184 F P1 wc2-PCRclon GACCCACAGGACATGATGTCG 

LE 185 R P2 wc2-PCRclon CCCAGGAAACACTGAAGTATCC 
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LE 186 R P3 wc2-PCRclon TTGTGACCGCCTATACCTCC 

LE 187 F P4 wc2-PCRclon GAACGCCAACAACAACAATAACG 

     

Primer for PCR (Ptcu-1 frq) 

No. F/R Primer Sequence (5’→ 3’) 

LE 179 F P1B frq F CAAGTCCTCAAGTCAAGCACC 

LE 180 R P2B frq R tttaggtcga ATCAAGCAGCGACAATCTTGG 

LE 181 F P3B frq F GCTGCTTGAT tcgacctaaatctcggtgacg 

LE 48 R bar P4 R atcgtcaaccactacatcgaga 

LE 49 F bar P5 F ggagacgtacacggtcgact 

LE 166 R P6 frq R TATCCGCCAT GGTTGGGGATGTGTGTGC 

LE 167 F P7 frq F ATCCCCAACC ATGGCGGATAGTGGGGA 

LE 168 R P8 frq R CTTCAGTTCCTCCTTAAGCCG 

     

Primer for site-directed mutagenesis 

No. F/R Primer Sequence (5’→ 3’) 

LE 190 F w-2 RK-DD ApaI F 

CTCGATTCCCCCGAATGGgacgAtGGgCCcAGTGGACCCAAG

ACAC 

LE 191 R w-2 RK-DD ApaI R 

GTGTCTTGGGTCCACTgGGcCCaTcgtcCCATTCGGGGGAAT

CGAG 

LE 192 F 2RK/DD ApaI F GGACGATGGGCCCAGTGGACCCAAGACACTATGCAATGCCTG 

LE 193 R 2RK/DD ApaI R CTGGGCCCATCGTCCCATTCGGGGGAATCGAGCGTACC 

LE 194 F w-2 RK-DDs F CGATTCCCCCGAATGGgacgAtGGCCCTAGTGGACCCAAG 

LE 195 R w-2 RK-DDs R CTTGGGTCCACTAGGGCCaTcgtcCCATTCGGGGGAATCG 

LE 196 F w-2 RK-DDl F 

GCTCGATTCCCCCGAATGGgacgAtGGCCCTAGTGGACCCAA

GAC 

LE 197 R w-2 RK-DDl R 

GTCTTGGGTCCACTAGGGCCaTcgtcCCATTCGGGGGAATCG

AGC 

     
Primer for sequencing 

(When the requirements for sequencing were met, PCR primers were used for sequencing as well) 
No. F/R Primer Sequence (5’→ 3’) 

LE 36 R TAP WC2 PCR R CAACATCGAGACTCATCGACATTCC 

LE 37 R TAP WC2 SEQ R TCGGAAGTCATCTGCAGC 

LE 38 R TAP WC2 SEQ2 R GAGACTCATCGACATTCC 

LE 95 F wc-2 NseqF GTTAATACTTCAGTTCCCACC 

LE 96 R wc-2 NseqR GGTAGAACAGTCGCAATTGG 

LE 97 F wc-2 CseqF CCTGACCGAATTCACCAAGC 

LE 98 R wc-2 CseqR AAGCTGCACATGTCAAGACC 

LE 103 R wc-2 UTR Seq R CGTAGAGGTGGTAGACAGG 

LE 134 F pFH64upHis F GCAGATTGTACTGAGAGTGC 

LE 135 R pFH64downHis R GGAAGTATGAGTCACAGCACC 

LE 138 F LE75Seq F ACTTCACCTTTACTCTCTGC 

LE 139 R LE76Seq R GTAACAAACTCCTCTCCATACC 

LE 140 F LE99Seq F CAATACGTATCCATGAACCTCG 

LE 141 F pFH64inHis1 F AGGACTGGAGATGCTAAGG 

LE 142 F pFH64inHis2 F AGAGCATCACCAAGGTCG 

LE 143 R wc2-3UTR700 R GCATTGCCATTAAGAGTCC 

LE 156 F wc2 ORF start F ATGTCTCACGGACAGCCTCC 

LE 157 R wc2 ORF end R CTATCCCATATGATCGCCCATG 

LE 158 F wc2 Seq 1 F CTGGATCCAGCATGTATGG 

LE 159 F wc2 Seq 2 F TGACGTTATGATGCCACCACC 
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Primer and probes for qPCR 

  Primer/Probe Sequence (5’→ 3’) 

- - F vvd F  ACGTCATGCGCTCTGATTCTG 

- - R vvd R AAAAGCTTCCGAGGCGTACA 

- - - vvd probe 6-FAM-CGACCTGAAGCAAAAAGACACGCCA-TAMRA 

- - F al-2 F ACCTGGCCAATTCGCTCTTT 

- - R al-2 R GACAGAAGGAGTACAGCAGGATCA 

- - - al-2 probe 6-FAM-CTGGTCGACTCCGCATT-TAMRA 

- - F frq total F TTGTAATGAAAGGTGTCCGAAGGT 

- - R frq total R GGAGGAAGAAGCGGAAAACG 

- - - frq total probe 6-FAM-ACCTCCCAATCTCCGAACTCGCCTG-TAMRA 

- - F actin F GATGACACAGATCGTTTTCGAGACT 

- - R actin R CGGAGGCGTAGAGAGAAAGGA 

- - - actin probe 6-FAM-CCGCCTTCTACGTCTCCATCCA-TAMRA 

- - F vvd LRE F GTCCCTCGATGGTTTAGCAG 

- - R vvd LRE R TGGATGGCAGTGTAGAATGG 

- - - vvd LRE probe 6-FAM-CTGCGATCGGTCAGCATCGC-TAMRA 

- - F frq LRE F GCAGAGGACCCTGAACTTTTC 

- - R frq LRE R TCTCTTGCTCACTTTCCCACAG 

- - - frq LRE probe 6-FAM-CCGCTCGATCCCCTGGAACCTG-TAMRA 

- - - sense frq cDNA 

synthesis primer 

TCACGAGGATGAGACGTCC 

 

2.1.5. Antibodies 

Table 2.5: Primary and secondary antibodies used in this study. 

 

Primary antibody 

Antibody Epitope / Features Origin Reference Dilution 

α-WC1 Anti-WC1 c-term, T2, 

d100, glycine, 28.04.2014 

rabbit, 

polyclonal 

Pineda Antikörper-Service, 

Berlin, Germany 

1:1000 

α-WC1 Anti-WC1 c-term, T3, 

d100, glycine., 29.04.2014 
rabbit, 

polyclonal 

Pineda Antikörper-Service, 

Berlin, Germany 

1:1000 

α-WC2 Anti-WC2-GST, Citrate 

29.06.12  

rabbit, 

polyclonal 

Pineda Antikörper-Service, 

Berlin, Germany 

1:500 

α-WC2 Anti-WC2-GST, T1, 

glycine, 230 d, 30.03.2015 

rabbit, 

polyclonal 

Pineda Antikörper-Service, 

Berlin, Germany 

Used for 

WC-2 IP 

α-WC2 Anti-WC2-GST, glycine, 

03.11.2016 

rabbit, 

polyclonal 

Pineda Antikörper-Service, 

Berlin, Germany 

1:200 

α-WC2 Anti-WC2-GST, T2, d123, 

glycine, 08.03.2017 

rabbit, 

polyclonal 

Pineda Antikörper-Service, 

Berlin, Germany 

1:500 

α-FRQ Anti-FRQ, aa 65-100, 

N-terminal domain of 

FRQ 

mouse, 

monoclonal 

Generated by cell culture in 

the Brunner laboratory 

1:20 

     

Secondary antibody 

Antibody Epitope / Features Origin Reference Dilution 

α-rabbit Anti-rabbit IgG, HRP-

coupled 

goat, polyclonal Cat.-No. 1721019, Bio-Rad 

Laboratories, Inc., Hercules, 

USA  

1:10000 

α-mouse Anti-mouse IgG, HRP-

coupled 

goat, polyclonal Cat.-No. 1706516, Bio-Rad 

Laboratories, Inc., Hercules, 

USA 

1:10000 
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2.1.6. Solutions, buffer, culture media 

2.1.6.1. Solutions 

Table 2.6: Solutions used in this study. 

 

50x Vogel´s salt solution 

(Vogel, 1956) 

 

123,5 g Na3Citrat x 2 H2O; 250 g KH2PO4; 100 g NH4NO3; 10 g 

MgSO4 x 7 H2O; 5 g CaCl2 x 2 H2O; 5 mL Micronutrients; Biotin 

0,5 mg/mL 500 µL; complete with H2O (desalted) to 1000 mL, add 

2 mL Chloroform 

50x Vogel´s salt solution w/o 

nitrogen (NH4NO3) 

123,5 g Na3Citrat x 2 H2O; 250 g KH2PO4; 10 g MgSO4 x 7 H2O; 5 

g CaCl2 x 2 H2O; 5 mL Micronutrients; Biotin 0,5 mg/mL 500 µL; 

complete with H2O (desalted) to 1000 mL, add 2 mL Chloroform 

Micronutrients 5 g Citric acid; 5 g ZnSO4 x 7 H2O; 1 g (NH4)2Fe(SO4)2 x 6 H2O; 

0,25 g CuSO4 x 5 H2O; 0,05 g MnSO4 x H2O; 0,05 g H3BO3 (water-

free); 0,05 g Na2MoO4 x 2 H2O; complete with H2O (desalted) to 

100 mL, add 1 mL Chloroform  

2x Westergaard´s solution 

(Westergaard and Mitchell, 

1947) 

0,2 % (w/v) KNO3; 0,2 % (w/v) KH2PO4; 0,1 % (w/v) MgSO4 x 7 

H2O; 0,02 % (w/v) NaCl; 0,02 % (w/v) CaCl2; 0,02 % (v/v) 

micronutrients, pH 6,5 (KOH), autoclave 

10x FIGS (Brockman and 

Serres, 1963) 

2,5 g D(-)Fructose,;2,5 g D(+)Glucose; 100 g L(-)Sorbose, add 500 

mL H2O (desalted), autoclave 

Quinic acid 30% (w/v) in H2O, pH 5,5-6 

Glycine 1.25 M in H2O 

Biotin 0,5 mg/mL in 50% (v/v) EtOH 

Hygromycin 100 mg/mL in H2O 

Thiolutin  2,5 mg/mL in DMSO 

PMSF 

(Phenylmethylsulfonylfluorid) 

34 mg/mL in Isopropanol 

Leupeptin 1 mg/mL in H2O 

Pepstatin A 1 mg/mL in MeOH 

SDS 10% (w/v) in H2O 

p-Coumaric acid 0,015 g/mL in DMSO 

Luminol 0,044 g/mL in DMSO 

APS (Ammoniumpersulfat) 10% (w/v) in H2O 

Developer solution  0,1 M Tris/HCl pH 8,8, 220 µg/ml luminol, 37,5 µg/ml p-coumaric 

acid, 0,09‰ H2O2 

Ponceau-S staining solution 0,2 % Ponceau-S in 3 % TCA. 

Coomassie fixing solution 2 % acetic acid, 40 % methanol, ultrapure water 

Coomassie staining solution 20 % methanol, 1 x Roti®-Blue (5 x Roti®-Blue, Art.-No. A152.1, 

Carl Roth GmbH + Co. KG, Karlsruhe, Germany), ultrapure water 

Ampicillin 100 mg/mL, use 1:1000 

 

2.1.6.2. Buffers 

Table 2.7: Buffers used in this study. 

 

TAP buffer 

 

50 mM Tris; 150 mM NaCl; 1.5 mM MgCl2 * 6 H2O; 0,1 % (v/v) NP-40 99 % 

(Nonidet P 40); pH 7,5; filter sterile 

completed right before usage with:  

1:2000 DTT; 1:200 PMSF, 1:1000 Leupeptin, 1:1000 Pepstatin A,  

PhosSTOPTM (Roche, Merck KGaA, Darmstadt, Germany 1x/15 mL) 

B-PEX buffer 50 mM HEPES (pH 7,4); 137 mM NaCl; 5 mM EDTA; 10 % (v/v) glycerol; 

filter sterile 

completed right before usage with:  
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1:200 PMSF, 1:200 Leupeptin, 1:200 Pepstatin A,  PhosSTOPTM (Roche, Merck 

KGaA, Darmstadt, Germany 1x/10 mL) 

Denat. PEX buffer 50 mM HEPES pH 7,5; 500 mM NaCl; 5 mM Glycine; 8 M Urea 

4x LDS buffer NuPAGE™ LDS Sample Buffer, Novex™ by life technologies 

completed right before usage with: 1:20 DTT 

4x Laemmli buffer 277,8 mM Tris-HCl pH 6,8; 44,4 % (v/v) glycerol; 4,4% SDS; 0,02 % 

bromophenol blue 

completed right before usage with: 1:10 β-Mercaptoethanol  

PBS buffer 137 mM NaCl; 2,7 mM KCl; 4,3 mM Na2HPO4 x 7 H2O; 1,4 mM KH2PO4 

completed right before usage with:  

1:200 PMSF, 1:200 Leupeptin, 1:200 Pepstatin A,  PhosSTOPTM (Roche, Merck 

KGaA, Darmstadt, Germany 1x/10 mL) 

SDS-PAGE buffer 50 mM Tris-HCl pH 8,3; 384 mM glycin; 0,1 % SDS 

Western Blot 

transfer buffer 

 20 mM Tris; 150 mM glycine; 20 % (v/v) Methanol; 0,08 % (w/v) SDS 

Tris-Buffered 

Saline (TBS) 

10 mM Tris-HCl pH 7,4; 150 mM NaCl 

2xCTAB buffer 100 mM Tris-HCl; pH 7,5-8; 2% (w/v) CTAB 

(Hexadecyltrimethylammonium); 1,4 M NaCl; 20 mM EDTA; pH 7,5-8; 1% 

sodium bisulfite, heat up to 60°C 

TAE buffer  40 mM Tris; 0,11 % (w/v) acetic acid; 2,2 mM EDTA 

 

2.1.6.3. Culture media 

Table 2.8: Media used in this study for the cultivation of N. crassa and E. coli. 

 

Culture media for N. crassa 

Liquid N-medium 

standard growth medium  

2 % (w/v) glucose; 0,5 % (w/v) arginine; 1x Vogel´s salt solution 

Solid N-medium 

standard growth medium  

2 % (w/v) glucose; 0,5 % (w/v) arginine; 1x Vogel´s salt solution; 

0,5 mg/mL biotin; 2 % (w/v) agar 

If required: 0,5 mg/mL histidine:  

autoclave 

If required: 200 µg/mL Hygromycin   

Solid medium with Glufosinate 

(Proline is the only source of 

nitrogen to increase the uptake of 

Glufosinate) 

 

1,5 % (w/v) sucrose; 0,5 % (w/v) L-Proline; 1x Vogel´s salt 

solution w/o NH4NO3; 1 % (w/v) agar 

If required: 0,5 mg/mL histidine 

autoclave 

250 µg/mL Glufosinate  

Racetube medium (based on 

Sargent and Kaltenborn, 1972) 

0,2 % (w/v) glucose; 0,17 % (w/v) arginine; 1x Vogel´s salt 

solution; 0,5 mg/mL biotin; 2,2 % (w/v) agar 

Bottom agar 

w/ and w/o Histidine 

with Hygromycine 

with Glufosinate 

0,36 % (w/v) arginine; 1x Vogel´s salt solution; 1,5 % (w/v) agar 

If required: 0,5 mg/mL histidine 

autoclave 

1x FIGS solution 

If required: 200 µg/mL Hygromycin 

If required: 250 µg/mL Glufosinate   

Top agar 18,2 % (w/v) sorbitol; 1x Vogel´s salt solution; 2,8 % (w/v) agar 

autoclave 

1x FIGS solution 

2x Westergaard´s solution 

(Westergaard and Mitchell, 1947) 

0,2 % (w/v) KNO3; 0,2 % (w/v) KH2PO4; 0,1 % (w/v) MgSO4 x 7 

H2O; 0,02 % (w/v) NaCl; 0,02 % (w/v) CaCl2; 0,02 % (v/v) 

micronutrients, pH 6,5 (KOH), autoclave 
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Westergaard´s agar 

(Westergaard and Mitchell, 1947) 

1x Westergaard’s solution; 0,2 % (w/v) sucrose; 0,5 mg/mL 

biotin; 2 % (w/v) agar 

If required: 0,3 mg/mL histidine 

Autoclave 

 

 

Culture media for E. coli 

LB liquid medium 2,5 % (w/v) LB powder 

Autoclave 

100 µg/mL Ampicillin 

LB agar 2,5 % LB powder; 1,5 % (w/v) agar 

Autoclave 

100 µg/mL Ampicillin 

SOC medium 2 % (w/v) tryptone; 0,5 % (w/v) yeast extract; 10 mM NaCl; 2,5 

mM KCl; 10 mM MgCl2; 10 mM MgSO4; 20 mM glucose 

 

2.2.  Methods 

2.2.1. Neurospora methods 

2.2.1.1. Cultivation of N. crassa to isolate conidia 

Solid N-medium in either a 500 mL Erlenmeyer flask or in a glass tube was inoculated 

with N. crassa conidia suspension and incubated in constant darkness at 30°C for 1-2 

days (incubator, BINDER GmbH, Tuttlingen, Germany). After that, the culture was 

incubated for 4-6 days at room temperature exposed to daylight. The conidia were washed 

off the mycelia with 4°C cold 1 M sterile sorbitol solution. For a 500 mL Erlenmeyer 

flask, 50 mL 1 M sterile sorbitol solution were used, for a glass tube, 2 mL 1 M sterile 

sorbitol solution were used. For the use of the conidia as stock for further inoculation, the 

conidia suspension from the glass tube was stored at -20°C for up to one year.  

For use of the conidia for transformation, the conidia suspension from the 500 mL 

Erlenmeyer flask was filtered through sterile gauze. The conidia were pelleted at 2000 

rpm, 4°C for 5 min (Multifuge 1 L-R, Heraeus™, Thermo Fisher Scientific Inc., 

Waltham, USA). The supernatant was discarded and the conidia pellet was resuspended 

in 50 mL 4°C cold 1 M sorbitol solution. The conidia were pelleted a second time at 1600 

rpm, 4°C for 5 min. The supernatant was discarded and the conidia pellet was resuspended 

in 50 mL 4°C cold 1 M sorbitol solution. The conidia were pelleted a third time at 1200 

rpm, 4°C for 5 min. The supernatant was removed and discarded without disturbing the 

fragile conidia pellet. The conidia pellet was resuspended in the remaining supernatant to 

yield a viscous conidia suspension. If too dense, 50-100 µL 4°C cold 1 M sorbitol solution 

were added. The conidia suspension was kept on ice until rapid progression of the 

transformation procedure. 

2.2.1.2. Cultivation of N. crassa in liquid culture  

To acquire cell material for Protein-, DNA- and RNA-analysis, N. crassa was cultured in 

liquid N-medium.  



25 

 

To harvest the whole culture at once, N-medium in an Erlenmeyer flask (e.g. 150 mL N-

medium in a 500 mL Erlenmeyer flask) was inoculated with conidia suspension described 

under 2.2.1.1. The culture was incubated at 25°C and 100 rpm for 2,5 days in a Multitron 

incubator (Infors AG, Bottmingen, Switzerland) under light conditions as indicated in the 

respective experiment. Harvest of the mycelia was performed by filtration of the mycelia 

through filter paper in a Buechner funnel and subsequent drying on paper towel. The 

harvest was performed quickly to avoid degradation of cellular components and the dried 

mycelia were frozen immediately in liquid nitrogen and stored at -80°C. 

To harvest samples from the same culture at different time points of light induction, 20 

mL N-medium in a petri dish (diameter: 8,5 cm) were inoculated with conidia suspension 

described under 2.2.1.1. This preculture was sealed with parafilm, incubated at 30°C 

without shaking (incubator, BINDER GmbH, Tuttlingen, Germany) for 2 days to grow a 

mat of mycelia. From the mat of mycelia, mycelia discs cut out with a sterile pipette tip 

were transferred to fresh N-medium in an Erlenmeyer flask (e.g. 150 mL N-medium in a 

500 mL Erlenmeyer flask). This culture was incubated at 25°C and 100 rpm for 8 hrs in 

a Multitron incubator (Infors AG, Bottmingen, Switzerland) in constant light. The 

incubation was continued for 24 h in constant darkness (DD) and at time point DD24, 

light was switched on for 2 h (light induction). Samples were harvested at different time 

points by drying the mycelia patches manually on paper towel. As described above, 

harvest was performed quickly and the dried mycelia were frozen immediately in liquid 

nitrogen and stored at -80°C. 

2.2.1.3. Cultivation of N. crassa in liquid culture for TAP 

To perform a light induction of 15 min and to harvest a reference sample (0 min light 

induction), 1,2 L liquid N-medium in a 3L flasks (4 flasks per sample) was inoculated 

with an appropriate amount of conidia. The culture was grown at 25 °C and 100 rpm in 

constant light for 2 days and transferred in constant darkness for 24 h (Multitron 

incubator, Infors AG, Bottmingen, Switzerland). After 12 h in dark, 0.3 % quinic acid 

(30% stock) was added to induce the expression of TAP-WC-2 for 12 h. Prior to harvest, 

0.3 % formaldehyde were added to the culture and incubated for 10 min. The cross-

linking was stopped by addition of 125 mM Glycine and incubation for 5 min. For the 

light induction sample, the cross-linking and Glycine-incubation were performed after 15 

min light induction. Each 1,2 L culture was harvested by filtration using a filter paper of 

240 mm diameter. The mycelia patch was dried quickly on paper towel, frozen 

immediately in liquid nitrogen and stored at -80°C. 

2.2.1.4. Thiolutin assay 

The N. crassa culture was performed with mycelia discs as describe in 2.2.1.2. After 22 h 

in DD, 30 mL fresh N-medium with 12 µg/mL thiolutin were prepared in 100 mL 

Erlenmeyer flasks. After 22,5 h in DD, the mycelia patches from the initial culture were 

transferred under red light (no impact on the N. crassa circadian clock) to the fresh N-

medium containing thiolutin. The N. crassa culture was incubated with 12 µg/mL 
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thiolutin in DD for 90 min. At DD24, the light induction was started. For each time point 

to sample, a separate 100 mL Erlenmeyer flasks with 30 mL fresh N-medium and 12 

µg/mL thiolutin was prepared to ensure comparable light induction conditions for each 

time point to harvest. 

2.2.1.5. Race tube assay  

The racetube assay (Baker et al., 2012; Ryan et al., 1943; Sargent and Kaltenborn, 1972) 

was performed to measure the rhythm of conidiation as output of the circadian clock. 

Liquid racetube medium was injected into a racetube (hollow glass tube, both ends bent 

upwards). When the racetube medium was solidified, one end of the layer of medium was 

inoculated with 10-20 µL conidia suspension of N. crassa bd strains. Both ends of the 

racetube were closed with cotton plugs. The racetubes were incubated at 25°C in constant 

light (LL) for approx. 1 day. When growth was visible, the racetubes were transferred to 

constant darkness (DD), 25°C (Multitron incubator, Infors AG, Bottmingen, Switzerland) 

and the growth front was marked on each racetube once per day for 7-9 days under red 

light (no impact on the N. crassa circadian clock). When the growth front reached the end 

of the racetubes, the racetubes were scanned and the banding of conidiation was analyzed 

with Chrono II software (Roenneberg, LMU Munich). This software recognizes the 

pattern of conidiation and the marks. The marks are assigned manually with the respective 

time of marking and with this time frame, the software calculates the rhythm of the 

respective N. crassa bd strain in the racetube. 

2.2.1.6. Transformation of N. crassa 

DNA was transformed into N. crassa by electroporation of conidia. First, bottom agar 

with the respective selective agent was prepared. 10 mL aliquots of liquid top agar were 

prepared and kept at 60°C to reach this temperature. The volume of 250 ng – 1000 ng of 

a linearized plasmid or a fragment of DNA was reduced to 10 µL or below, if required, 

by evaporation in a SpeedVac (Sc 110, Savant) and kept on ice. For transformation of the 

Ptcu-1-frq DNA fragment acc. to Lamb et al., 2013, 150 ng and 300 ng were used. The 

conidia suspension was prepared as described (see 2.2.1.1). The DNA solution was added 

to 55 µL of conidia suspension and gently mixed. The DNA/conidia mix was incubated 

for 5 min on ice. After that, the suspension was transferred to a 0,2 cm electroporation 

cuvette. An electric pulse of 600 Ω, 1,5 kV/cm, 25µF was applied to the DNA/conidia 

mix and immediately after pulsing, the conidia were resuspended in 1 mL ice-cooled 1 M 

sorbitol. The 10 mL aliquots of 60°C warm top agar was allowed cool down at room 

temperature for approx. 3-5 min, the conidia were diluted in the liquid 10 mL top agar 

and spread on bottom agar. When the top agar was solidified, the plates were incubated 

at 30°C for 3 days (incubator, BINDER GmbH, Tuttlingen, Germany). Colonies of 

N. crassa transformants were excised and grown on solid N-medium for further testing. 

2.2.1.7. Crossing N. crassa strains 

Transformants of N. crassa were generated in this study by electroporation of conidia that 

contain more than one nucleus. Thus, very likely not all nuclei of one conidium receive 
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the transformed DNA. As a consequence, the expression level of a manipulated gene 

might differ among N. crassa strains. To eliminate that difference, N. crassa were crossed 

to obtain homokaryon strains. However, especially the wc-2 transformants into the his-

locus yielded heterokaryon strains of WC-2 expression at same level as the wild type, so 

that initial experiments could be performed with these strains already. In parallel, crossing 

was performed. 

To cross two N. crassa strains, solid Westergaard´s medium (Westergaard and Mitchell, 

1947) in a petri dish was inoculated with conidia suspension (see 2.2.1.1) in three different 

approaches to obtain sufficient ascospore formation. First, strain one was allowed to cover 

the surface of the solid medium with mycelia and then, the second strain was applied on 

top by tiny drops of conidia suspension. Second, the same approach was performed by 

inoculating the second strain first. Third, both strains were inoculated at the same time on 

two opposite sides of the petri dish and ascospore formation was expected in the area, 

where the growth fronts met. The petri dishes were sealed with parafilm to prevent conidia 

formation at incubated with the solid medium down at rt in light-dark-cycles for several 

weeks until ascospore formation. The black ascospores accumulated in the lid of the petri 

dish, were washed off with 1-2 mL sterile, purified water and stored in sterile, purified 

water at 4°C.  

The ascospore concentration was determined by counting the ascospores in a 10 µL water 

drop under the binocular microscope. 1000 ascospores in an appropriate volume of sterile, 

purified water were activated at 60°C for 30 min. To obtain optimal growth density, 100, 

250 and 500 ascospores were plated on bottom agar (in petri dish) that contained selective 

markers of histidine, if required. The petri dishes were incubated at 30°C (incubator, 

BINDER GmbH, Tuttlingen, Germany) in a closed, but aerated plastic box together with 

an open petri dish filled with sterile, purified water to create a humid atmosphere for 

optimal germination of the ascospores. After one or two days, clones were excised with 

a sterile scalpel in an early state of germination under the binocular microscope. The 

germinating ascospore was still visible among the growing mycelia to ensure that only 

clones from a single ascospore were selected and to prevent fusion of different clones. 

The clones were transferred to solid N-medium to generate conidia for further testing (see 

2.2.1.1). 

2.2.2. Protein Methods 

2.2.2.1. Denaturing total protein extracts from N. crassa 

For the analysis of protein phosphorylation by SDS-PAGE and Western Blot, denaturing 

total protein extracts from N. crassa were made. The denat. PEX buffer was prepared 

right before usage and used at 65°C (heated on a magnetic stirrer, Heidolph Instruments 

GmbH & CO. KG Schwabach, Germany). 800 µL of the hot denat. PEX buffer was added 

to 500 µL frozen N. crassa mycelia powder, mixed immediately with a spatula and 

transferred to a 65°C hot ThermoMixer (Eppendorf AG, Hamburg, Germany). The well-

dissolved suspension was incubated at 65°C and 950 rpm for 5 min. The suspension was 
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centrifuged at rt and rmp max (Centrifuge 5415 D, Eppendorf AG, Hamburg, Germany) 

for 15 min and the supernatant was transferred to a fresh tube at rt. The concentration of 

the protein extract was measured with the NanoDrop ND-1000 UV-Vis 

Spectrophotometer (NanoDrop Technologies LLC by Thermo Fisher Scientific Inc., 

Waltham, USA). A sample from the total protein extract was taken, 4x Laemmli buffer 

was added and the sample was incubated at 95°C for 5 min (ThermoMixer, Eppendorf 

AG, Hamburg, Germany).  The sample in Laemmli buffer was diluted 1:3 with 1x 

Laemmli buffer to reduce the Urea concentration for better running conditions in the SDS-

PAGE. 300 µg total protein were loaded in SDS-PAGE. The remaining total protein 

extract was stored at -80°C. 

2.2.2.2. Native total protein extracts from N. crassa 

For native total protein extracts from N. crassa, 700 µl complete, 4°C cold B-PEX buffer 

were added to 500 µL frozen N. crassa mycelia powder and mixed immediately by 

vortexing. The suspension was incubated on ice for 20 min, vortexed every 5 min and 

then centrifuged at 20000g and 4°C for 20 min (Centrifuge 5417 R, Eppendorf AG, 

Hamburg, Germany). The supernatant was transferred to a fresh tube and kept on ice. The 

concentration of the protein extract was measured with the NanoDrop ND-1000 UV-Vis 

Spectrophotometer (NanoDrop Technologies LLC by Thermo Fisher Scientific Inc., 

Waltham, USA).  A sample from the total protein extract was taken, 4x Laemmli buffer 

was added and the sample was incubated at 95°C for 5 min (ThermoMixer, Eppendorf 

AG, Hamburg, Germany). 400 µg total protein were loaded in SDS-PAGE. The 

remaining total protein extract was stored at -80°C. 

2.2.2.3. Tandem affinity purification 

With tandem affinity purification, tagged WC-2 was purified from N. crassa total protein 

extracts in a two-step (tandem) purification acc. to Sancar et al., 2009. 

Total protein extraction 

The frozen cell material was grinded to powder with a mixer mill in 30 s intervals at a 

frequency of 30 s-1 (RETSCH GmbH, Haan, Deutschland. For protein extraction, the 

sterile filtered, 4°C cool TAP buffer was completed with DTT, PMSF, Leupeptin, 

Pepstatin A and PhosSTOPTM (Roche, Merck KGaA, Darmstadt, Germany 1x/10 mL)) 

right before usage and kept on ice. Per sample, 150 mL cell powder were quickly 

resuspended (magnetic stirrer, Heidolph Instruments GmbH & CO. KG Schwabach, 

Germany) on ice in maximum 250 mL complete TAP buffer until a smooth, liquid 

suspension was obtained. For pre-clearing, the cell suspension was centrifuged in 500 mL 

centrifuge tubes for 30 min at 10 000g and 4°C (JA 10 rotor, Avanti J-25 centrifuge, 

Beckman Coulter Inc., Brea, USA). The supernatant was transferred on ice to 60 mL 

ultracentrifuge tubes. Ultracentrifugation was performed at 38 krpm, 1 h (T647.5 rotor, 

Sorvall™ WX Ultracentrifuge, Thermo Scientific™ by Thermo Fisher Scientific Inc., 

Waltham, USA). The clear supernatant was transferred on ice by a syringes and needles. 

The supernatants from several ultracentrifuge tubes belonging to the same sample were 
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pooled. In case that the supernatant was too cloudy due to insufficient lipid separation, 

the supernatant was transferred to a new ultracentrifuge tube on ice and 

ultracentrifugation was performed again. The concentration of the protein extract was 

measured with the NanoDrop ND-1000 UV-Vis Spectrophotometer (NanoDrop 

Technologies LLC by Thermo Fisher Scientific Inc., Waltham, USA). A sample from the 

protein extract was taken, 4x Laemmli buffer was added and the sample was incubated at 

95°C for 10 min (ThermoMixer, Eppendorf AG, Hamburg, Germany). 

First purification: Protein A/IgG 

In the first purification step, the Protein A tag was precipitated with IgG beads. All steps 

were performed at 4°C. Per sample, 600 µL IgG beads in a 2 mL tube were washed with 

5 x 2 mL complete TAP buffer (w/o Phos-Stop), (sedimentation at 1000 rpm, 4°C, 1 min, 

Centrifuge 5417 R, Eppendorf AG, Hamburg, Germany). The washed 600 µL IgG beads 

were resuspended in complete TAP buffer (w/o Phos-Stop) and split equally on several 

50 mL tubes depending on the volume of the protein extract of each sample. The protein 

extract was added to the IgG beads and was incubated overnight at 4°C on a roller mixer. 

The IgG beads were sedimented at 2000 rpm and 4°C for 4 min (Multifuge 1 L-R, 

Heraeus™, Thermo Fisher Scientific Inc., Waltham, USA) and from the supernatant, the 

sample IgG flow through was taken, 4x Laemmli buffer was added and the sample was 

incubated at 95°C for 10 min (ThermoMixer, Eppendorf AG, Hamburg, Germany). The 

IgG beads were washed three times in 25 mL complete TAP buffer (w/o Phos-Stop) by 

incubation on the roller mixer at 4°C for 5 min and subsequent centrifugation at 2000 rpm 

and 4°C for 4 min. 

TEV cleavage 

TEV cleavage was performed to remove the precipitated protein from the IgG beads. The 

IgG beads pellet in the 50 mL tube was resuspended in 1 mL TEV buffer (complete TAP 

buffer w/o Phos-Stop and 1 mM DTT), transferred to a 2 mL tube and pelleted at 1000 

rpm, 4°C for 1 min (Centrifuge 5417 R, Eppendorf AG, Hamburg, Germany). 

Resuspension and pelleting were repeated until all beads were captured. As first TEV 

elution step, 600 µl IgG beads were incubated with 600 µl TEV buffer and 120 u TEV-

protease at 16°C for 2 h on a turning wheel. The IgG beads were pelleted (1000 rpm, 4°C 

for 1 min) and the supernatant was stored at 4°C. The IgG beads were resuspended in 600 

µl TEV buffer and incubated with 120 u TEV-protease at 16°C o/n on a turning wheel. 

After this second TEV elution step, the IgG beads were pelleted (1000 rpm, 4°C for 1 

min). The supernatants of the first and the second elution were pooled and stored at 4°C. 

For the final capture, the IgG beads were resuspended in 600 µl TEV buffer w/o TEV-

protease and incubated at 4°C for 1 h on a turning wheel. The IgG beads were pelleted 

(1000 rpm, 4°C for 1 min) and the supernatant was pooled with the supernatants from the 

first and second elution. A sample from the TEV elution was taken, 4x LDS buffer 

completed with DTT was added and the sample was incubated at 72°C for 10 min 

(ThermoMixer, Eppendorf AG, Hamburg, Germany). The IgG beads were resuspended 



30 

 

in an equal volume of 2x Laemmli buffer and incubated at 95°C for 10 min 

(ThermoMixer, Eppendorf AG, Hamburg, Germany). 

Second purification: CaM/CaM beads 

For the CaM purification step, CaCl2 (4°C) was added to the TEV elution to set a final 

concentration of 2 mM CaCl2. Per sample, 360 µL CaM beads in a 2 mL tube were washed 

with 3 x 2 mL complete, 4°C cold CaM binding buffer (sedimentation at 1000 rpm, 4°C, 

1 min, Centrifuge 5417 R, Eppendorf AG, Hamburg, Germany). The washed CaM beads 

were resuspended in the TEV elution and incubated at 4°C for 2,5 h on a turning wheel. 

The CaM beads were pelleted (1000 rpm, 4°C for 1 min). A sample of the supernatant 

(CaM flow through) was taken, 4x Laemmli buffer was added and the sample was 

incubated at 95°C for 10 min (ThermoMixer, Eppendorf AG, Hamburg, Germany). The 

CaM bead pellet was washed with 6 x 2 mL complete CaM binding buffer (sedimentation 

at 1000 rpm, 4°C, 1 min). 

 Elution from CaM beads 

The washed CaM bead pellet was incubated 3x with 400 µl CaM elution buffer at room 

temperature for 10 min on a turning wheel, sedimentation was performed at 1000 rpm, 

4°C for 1 min (Centrifuge 5417 R, Eppendorf AG, Hamburg, Germany). The three 

supernatants collected during elution were kept at 4°C and pooled. A sample from the 

CaM elution was taken, 4x LDS buffer completed with DTT was added and the sample 

was incubated at 72°C for 10 min (ThermoMixer, Eppendorf AG, Hamburg, Germany). 

The CaM beads were resuspended in an equal volume of 2x Laemmli buffer and 

incubated at 95°C for 10 min (ThermoMixer, Eppendorf AG, Hamburg, Germany). 

TCA-DOC precipitation 

TCA-DOC precipitation was performed to concentrated the proteins in the CaM elution 

for further analysis by SDS-PAGE and mass spectrometry. CaM elution was stirred 

vigorously after addition of 0.015 % DOC and incubated at room temperature for 10 min. 

5 % TCA were added and the solution was incubated for 30 min on ice. The precipitated 

proteins were pelleted at 4°C and rmp max. for 30 min (Centrifuge 5417 R, Eppendorf 

AG, Hamburg, Germany). 200 µL -20°C cold acetone were added to the pellet and the 

solution was incubated o/n at 4°C. Next, the solution was pelleted at 4°C and rmp max. 

for 90 min. The supernatant was removed thoroughly and the pellet was air-dried at room 

temperature for 30 min. The pellet was dissolved in 20 µL 2x LDS sample buffer and 

incubated at 72°C for 10 min (ThermoMixer, Eppendorf AG, Hamburg, Germany). 

2.2.2.4. WC-2 Immunoprecipitation 

For a αWC-2 immunoprecipitation (IP) with 100 mg total protein, 8x 500 µL grinded 

N. crassa mycelia powder was aliquoted in 2 mL tubes and kept frozen at -80°C.  

For total protein extraction, 4°C cold B-PEX buffer was completed with PMSF, 

Leupeptin, Pepstatin A and PhosSTOPTM (Roche, Merck KGaA, Darmstadt, Germany 

1x/10 mL). 600 µL ice-cold complete B-PEX buffer were added to 500 µL frozen 

N. crassa mycelia powder. The sample was vortexed immediately, incubated for 20 min 

on ice and vortexed every 5 min. The suspension was centrifuged at 20 000g and 4°C for 
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20 min (Centrifuge 5417 R, Eppendorf AG, Hamburg, Germany). The supernatants of 

eight 2 mL tubes belonging one sample were pooled and kept on ice. The concentration 

of the protein extract was measured with the NanoDrop ND-1000 UV-Vis 

Spectrophotometer (NanoDrop Technologies LLC by Thermo Fisher Scientific Inc., 

Waltham, USA).  A sample from the total protein extract was taken, 4x Laemmli buffer 

was added and the sample was incubated at 95°C for 5 min (ThermoMixer, Eppendorf 

AG, Hamburg, Germany). 

For immunoprecipitation, 100 mg total protein were gently mixed with 5 µg of the 

polyclonal αWC-2 antibody “T1, glycine, 230 d, 30.03.2015” (30 µg/mL, generated for 

the Brunner lab) and incubated o/n at 4°C unmoved to allow binding of αWC-2 antibody 

to WC-2. Various samples were adjusted to the same volume and subsequently the same 

concentration of total protein and antibody by adding complete B-PEX buffer.  

50 µL Protein A Sepharose beads were washed 2x with 1,5 mL complete, 4°C cold PBS 

buffer (completed with PMSF, Leupeptin, Pepstatin A and PhosSTOPTM (Roche, Merck 

KGaA, Darmstadt, Germany 1x/10 mL)) and sedimented at 100 g and room temperature 

for 2 min (Centrifuge 5415 D, Eppendorf AG, Hamburg, Germany). The washed beads 

were added to the protein-antibody mix and the solution was incubated at 4°C on a 

rotation wheel for 1,5 h to allow binding of the antibody-protein complexes to the beads. 

Ice-cold, fresh, complete PBS buffer was prepared right before bead wash. The beads 

were sedimented at 100 g and 4°C for 2 min (Centrifuge 5417 R, Eppendorf AG, 

Hamburg, Germany). A sample of the supernatant was taken, 4x Laemmli buffer was 

added and the sample was incubated at 95°C for 5 min (ThermoMixer, Eppendorf AG, 

Hamburg, Germany). The beads were washed three times with 1 mL ice-cold, complete 

PBS buffer. After that, the beads were washed two more times and incubated in 1 mL ice-

cold, complete PBS buffer at 4°C on a rotation wheel for 5 min before sedimentation. 

For elution of the precipitated protein, the beads were resuspended in 100 µL 2x LDS 

sample buffer and incubated at 72°C and shaking at 900 rpm for 10 min (ThermoMixer, 

Eppendorf AG, Hamburg, Germany). After sedimentation at 100 g and rt for 2 min, the 

supernatant was transferred to a fresh tube and kept at rt. The beads were resuspended 

again in 50 µL 2x LDS sample buffer and incubated at 72°C and shaking at 900 rpm for 

5 min (ThermoMixer, Eppendorf AG, Hamburg, Germany). After sedimentation, the 

supernatant was combined with the previous one. The sample in LDS buffer was either 

stored at - 20°C or loaded on an SDS gel.  

As control for the specificity of the precipitation, a no antibody control was included. For 

identification of the antibody bands in the SDS-gel, the total protein extract from a wc-2 

knock out strain was included as control. 

2.2.2.5. Dephosphorylation of proteins 

Dephosphorylation of proteins was performed with λ-phosphatase (New England Biolabs 

Inc., Ipswich, USA). 200 µg total protein (see 2.2.2.2) were incubated with 1x NEBuffer 

Pack for Protein Metallo-Phosphatases (PMP, 10x stock, New England Biolabs Inc., 

Ipswich, USA) and 1 mM MnCl2 (10 mM stock, New England Biolabs Inc., Ipswich, 
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USA) in a final volume of 30 µL at 30°C for 1 h (ThermoMixer, Eppendorf AG, 

Hamburg, Germany). 10 µL 4x Laemmli buffer were added and the sample was incubated 

at 95°C for 5 min (ThermoMixer, Eppendorf AG, Hamburg, Germany) to stop the 

reaction and denaturate the proteins for further analysis by SDS-PAGE. 

2.2.2.6. SDS-PAGE, hand-made gels 

SDS-PAGE was performed based on Laemmli, 1970. The gel equipment was built by the 

Heidelberg university workshop. The stacking gel (2 cm x 15 cm x 0.8 mm, 5 % 

acrylamide, 0.5 % bisacrylamide, 60 mM TRIS/HCl pH 6.8, 0.1 % SDS, 0.05 % APS, 

0.1 % TEMED) was prepared on top of the separating gel (8 cm x 15 cm x 0.8 mm, 12 % 

acrylamide, 0.2 % bisacrylamide, 375 mM TRIS/HCl pH 8.8, 0.1 % SDS, 0.05 % APS, 

0.05 % TEMED). Gels were run in SDS-PAGE buffer at 5-8 mA, 200 V, 100 W for 

approx. 15 h. High current and long running time was used for high resolution of the 

phosphorylation of WC-1 and WC-2. 

2.2.2.7. SDS-PAGE, pre-cast gels 

For further analysis of proteins by mass spectrometry, the precast NuPAGE™ 4-12% Bis-

Tris gels (8 cm x 8 cm x 0,1 cm, 10 wells, Novex™ by life technologies) were used in 

the Mini Gel Tank XCell SureLock™ Mini (Novex™ by life technologies). The gels were 

run in 1x NuPAGE™ MOPS SDS Running Buffer (20X stock, Novex™ by life 

technologies) at 100 V, 200 mA for 6-7 min and then at 160 V, 200 mA for 1 h. 

2.2.2.8. Western Blot 

Following SDS-PAGE, proteins were transferred onto nitrocellulose membranes 

(Amersham Protran 0.45 µm, GE Healthcare, Cat.-No. 10600016) by semi-dry electro 

blotting at 250 mA (one hand-made gel per blotting chamber) or 400 mA (two hand-made 

gels per blotting chamber)  for 2 h 22 min in transfer buffer. After blotting, the membranes 

were stained with Ponceau-S staining solution and rinsed with purified water to remove 

unbound stain. The blotting efficiency and equal loading were checked and the 

membranes were destained in TBS buffer for 15 min (gently shaking on a rocking shaker). 

The membranes were blocked 5 % (w/v) milk powder in TBS (5 % milk/TBS) buffer for 

30-45 min at rt (gently shaking on a rocking shaker). Depending on the requirements of 

the primary antibody, the membranes were either probed with the primary antibody in o/n 

at 4°C and with the secondary antibody for 2 h at rt or with the primary antibody for 2 h 

at rt and with the secondary antibody o/n at 4°C (always gently shaking on a rocking 

shaker). All antibodies were diluted in 5 % milk/TBS. Between primary and secondary 

antibody, the membranes were washed 3x 10 min with TBS buffer at rt (gently shaking 

on a rocking shaker). After probing with the secondary antibody, the membranes were 

washed 3x 10 min with TBS buffer at rt (gently shaking on a rocking shaker) and 

developer solution was added. After very short incubation at rt, chemiluminescent signal 

were recorded on x-ray films (Fujifilm SuperRX-N, Cat.-No. 47410 19284). 
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2.2.2.9. Coomassie staining of protein gels 

Proteins separated in a precast NuPAGE™ 4-12% Bis-Tris gels (Novex™ by life 

technologies) were stained with Colloidal Coomassie Brilliant Blue dye. The gel was 

quickly rinsed in ultrapure water and then incubated in the Coomassie fixing solution for 

1 h at rt (gently shaking). After fixing, the gel was incubated in Coomassie staining 

solution for 2 h at rt (gently shaking). The Coomassie staining solution was exchanged 

by fresh one and the gel was incubated o/n at 4°C (gently shaking). The next day, the gel 

was destained in 25 % methanol (ultrapure water) for approx. 30 min at rt until the 

background was sufficiently removed but the protein bands were clearly visible. The 

Coomassie-stained gel was stored in ultrapure water at 4°C. 

2.2.2.10. Silver staining of protein gels 

Silver staining of proteins separated in a precast NuPAGE™ 4-12% Bis-Tris gels 

(Novex™ by life technologies) was performed with the SilverQuest™ silver stain Kit 

(SilverQuest™ by life technologies) according to the manufacturer´s protocol. The silver-

stained gel was stored in ultrapure water at 4°C. 

2.2.2.11. Mass spectrometry 

The identification of purified proteins and the analysis of phosphorylation sites of WC-1 

and WC-2 by mass spectrometry were performed by the mass spectrometry facility of the 

Biochemistry Center Heidelberg (BZH, Johannes Lechner) and by the ZMBH Core 

facility for mass spectrometry and proteomics (ZMBH, Thomas Ruppert). All methods 

and protocol presented in this section were provided by these two facilities (as indicated). 

In-gel digestion of proteins 

Coomassie-stained proteins were cut out from gels, the gel slices were washed with 

150 μL of water (10 min at rt) and shrunk by incubation with 175 μL acetonitrile (15 min 

at rt). Acetonitrile was removed, and gel slices were dried in the vacuum. Thiol groups 

were reduced by incubation with 10 mM DTT in 100 mM ammonium bicarbonate 

(30 min at 56°C). Gel slices were shrunk, and thiol groups were alkylated by incubation 

in 55 mM iodoacetamide in the dark (20 min at rt). Gel slices were washed with 100 mM 

ammonium bicarbonate (15 min at rt), shrunk as above, and rehydrated with 20-24 μL of 

20 ng/μL trypsin (Trypsin Gold, Promega, Madison, USA) in 40 mM ammonium 

bicarbonate (40 min at 0°C). With the exception of 12 μL, the liquid was removed, and 

samples were incubated at 37°C overnight (Funk et al., 2014). Alternative to trypsin, 

elastase or thermolysin were used with the same protocol and incubated at 25°C (elastase) 

or 37°C (thermolysin) (Communication by mass spectrometry facility of the BZH). 

LC-MS and sample analysis 

The digested peptides present in the supernatant were analyzed online using a LC-MS 

setup at a nanoAcquity UPLC system (Waters, Milford, USA; 90 min gradient run) 

coupled with an LTQ Orbitrap XL™ ETD Hybrid Ion Trap-Orbitrap Mass Spectrometer 

(Thermo Scientific™ by Thermo Fisher Scientific Inc., Waltham, USA) (Communication 
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by mass spectrometry facility of the BZH and by the ZMBH Core facility for mass 

spectrometry and proteomics). 

All MS/MS samples were analyzed using Mascot (Matrix Science, London, UK; version 

2.1.0.81). Mascot was set up assuming the digestion enzyme non-specific (elastase, 

trypsin) or assuming the digestion enzyme trypsin. Mascot was searched with a fragment 

ion mass tolerance of 0,50 Da and a parent ion tolerance of 10,0 PPM. Carbamidomethyl 

of cysteine was specified in Mascot as a fixed modification. Deamidated of asparagine, 

oxidation of methionine and phosphorylation of serine, threonine and tyrosine were 

specified in Mascot as variable modifications.  

Scaffold (version Scaffold_4.5.3, Proteome Software Inc., Portland, OR) was used to 

validate MS/MS based peptide and protein identifications. Peptide identifications were 

accepted if they could be established at greater than 95,0% probability by the Peptide 

Prophet algorithm (Keller et al., 2002) with Scaffold delta-mass correction. Protein 

identifications were accepted if they could be established at greater than 95,0% 

probability and contained at least 2 identified peptides. Protein probabilities were 

assigned by the Protein Prophet algorithm (Nesvizhskii et al., 2003). Proteins that 

contained similar peptides and could not be differentiated based on MS/MS analysis alone 

were grouped to satisfy the principles of parsimony. (Information provided via Scaffold 

software; Communication by mass spectrometry facility of the BZH and by the ZMBH 

Core facility for mass spectrometry and proteomics).  

2.2.3. DNA, RNA and cloning methods 

2.2.3.1. Extraction of genomic DNA from N. crassa 

500 µL pre-warmed 60°C 2xCTAB buffer were added to 300 µL frozen N. crassa mycelia 

powder and mixed immediately with a spatula. The suspension was incubated at 60°C 

and 400rpm for 30 min (ThermoMixer, Eppendorf AG, Hamburg, Germany). An equal 

volume (800 µL) of chloroform/isoamylacohol (24:1) was added at rt and the mix was 

incubated with frequent inverting (on a turning wheel) for 10 min. The mix was 

centrifuged at 2000 g and rt for 10 min (Centrifuge 5415 D, Eppendorf AG, Hamburg, 

Germany). The upper, aqueous phase of the supernatant was transferred to a fresh tube, 1 

µL RNase A (10 mg/mL stock) was added and the solution was incubated at 37°C for 30 

min (ThermoMixer, Eppendorf AG, Hamburg, Germany). 0,7 volumes of isopropanol 

were added (350 µL isopropanol for 500 µL supernatant) to precipitate the genomic DNA 

(gDNA), the solution was inverted 4-6 times and centrifuged at 14000 g and rt for 30 min. 

The supernatant was discarded, the pellet was washed with 1 mL -20°C cold 70% EtOH 

and centrifuged again at 14000 g and rt for 5 min. The pellet was dried at 37°C for 10 min 

(ThermoMixer, Eppendorf AG, Hamburg, Germany) and resuspended in 250 µL 

ultrapure water. The pellet was resolved o/n at 4°C. The gDNA concentration was 

measured with the NanoDrop ND-1000 UV-Vis Spectrophotometer (NanoDrop 

Technologies LLC by Thermo Fisher Scientific Inc., Waltham, USA) and set to 150 

ng/µL. For PCR, 1 µL gDNA 150 ng/µL were used per 25 µL PCR reaction mix. 
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2.2.3.2. Extraction of Plasmids from E. coli 

For the extraction of Plasmids from E .coli, 3 mL fresh culture in LB medium (see 

2.2.3.10) were used and processed with the GeneJET Plasmid Miniprep Kit  (Thermo 

Scientific™ by Thermo Fisher Scientific Inc., Waltham, USA) according to the 

manufacturer´s instructions. The concentration of the plasmid DNA solution was 

measured with the NanoDrop ND-1000 UV-Vis Spectrophotometer (NanoDrop 

Technologies LLC by Thermo Fisher Scientific Inc., Waltham, USA). 

2.2.3.3. PCR 

PCR was performed with Q5 Polymerase (New England Biolabs Inc., Ipswich, USA) 

according to the manufacturer´s instructions.  Primers were designed using the 

SerialCloner 2.6.1 software (http://serialbasics.free.fr/Home/Home.html), the 

Oligonucleotide Properties Calculator (http://biotools.nubic.northwestern.edu/OligoCalc 

.html) and the NEB Tm calculator (http://tmcalculator.neb.com/#!/main). Thermocycling 

was performed in Labcyclers with and without gradient (SensoQuest GmbH, Göttingen, 

Germany). 

When PCR from a plasmid was performed, the template plasmid was digested after PCR 

reaction by addition of 1 µL DpnI (New England Biolabs Inc., Ipswich, USA) per 50 µL 

PCR reaction mix and incubation at 37°C for 1 h.  

The PCR product was purified with the Wizard®SV Gel and PCR Clean-Up System 

(Promega GmbH, Walldorf, Germany) according to the manufacturer´s instructions. 

2.2.3.4. Sequencing of DNA 

Sequencing primer were designed using the SerialCloner 2.6.1 software 

(http://serialbasics.free.fr/Home/Home.html), the Oligonucleotide Properties Calculator 

(http://biotools.nubic.northwestern.edu/OligoCalc.html) and the NEB Tm calculator 

(http://tmcalculator.neb.com/#!/main). 

Sequencing results were analyzed using the SerialCloner 2.6.1 software and the MultAlin 

online tool (Corpet, 1988). 

2.2.3.5. Restriction digestion of DNA 

Plasmids and PCR products were digested with restriction enzymes for the purpose of 

linearization and transformation in N. crassa or for the purpose of cloning in E. coli. At 

maximum 6000 ng DNA per 100 µL total reaction volume were incubated with the 

required restriction enzymes and the corresponding buffer (both purchased from New 

England Biolabs Inc., Ipswich, USA) at 37°C for 2 h (incubator, BINDER 

GmbH, Tuttlingen, Germany). In the rare case, that a restriction enzyme required a 

temperature different from 37°C, the incubation was performed in a ThermoMixer 

(Eppendorf AG, Hamburg, Germany). Appropriate restriction enzymes were identified 

and selected based on the respective DNA sequence with the SerialCloner 2.6.1 software 

(http://serialbasics.free.fr/Home/Home.html). The reaction mix was purified via an 

agarose gel or directly with the Wizard®SV Gel and PCR Clean-Up System (Promega 

GmbH, Walldorf, Germany) according to the manufacturer´s instructions. 



36 

 

2.2.3.6. Agarose gels 

Agarose gel electrophoresis was performed to either analyse or purify DNA. The gels 

were casted with either 1 % or 0.7 % agarose in TAE buffer, supplemented with ethidium 

bromide (Cat.-No. A2273, Applichem GmbH, Darmstadt, Germany). Prior to loading, 

gel loading dye (Cat.-No. B7024S, New England Biolabs Inc., Ipswich, USA) was added 

to the DNA samples. The electrophoresis was performed in TAE buffer at 110 V for 30 

– 45 min. The separation of DNA molecules in the gel was visualized using UV light 

(wavelength 312 nm, Intas transillumninator, Intas Science Imaging Instruments GmbH, 

Göttingen, Germany) and pictures were taken with a camera. DNA bands were excised 

in UV light with a scalpel and the DNA was extracted using the Wizard®SV Gel and 

PCR Clean-Up System (Promega GmbH, Walldorf, Germany) according to the 

manufacturer´s instructions. 

2.2.3.7. Ligation of DNA 

DNA fragments were ligated using T4 DNA ligase (Cat.-No. M0202, New England 

Biolabs Inc., Ipswich, USA). The reaction was set up according to the manufacturer´s 

protocol. 70 ng vector backbone were used, the corresponding volume (µL) of insert was 

calculated according to the following formula. 
𝑖𝑛𝑠𝑒𝑟𝑡 𝑙𝑒𝑛𝑔𝑡ℎ (𝑏𝑝)

𝑣𝑒𝑐𝑡𝑜𝑟 𝑙𝑒𝑛𝑔𝑡ℎ (𝑏𝑝)
× 70 𝑛𝑔 ÷ 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑠𝑒𝑟𝑡 (

𝑛𝑔

µ𝐿
) × 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟  

The multiplication factor was derived from the vector-to-insert ratio. Usually, the ration 

1:2 was tried first and depending on the success of the ligation, different ratios (1:1, 1:4, 

etc.) were tried. The ligation reaction mix was incubated at rt for 30 min and either 

transformed in E. coli or stored at -20°C. 

2.2.3.8. PCR-based cloning 

For PCR-based cloning, overlapping DNA-fragments were generated by PCR. Residual 

PCR template in 2000-2500 ng of purified PCR product (Wizard®SV Gel and PCR 

Clean-Up System, Promega GmbH, Walldorf, Germany) was removed by digestion with 

DpnI in NEBuffer™ 2.1 (both New England Biolabs Inc., Ipswich, USA) acc. to 

manufacturer´s instruction. T4 DNA Polymerase (New England Biolabs Inc., Ipswich, 

USA) was added and reaction was performed acc. to manufacturer´s instruction to fill the 

ends of the PCR products. The ligation of the overlapping DNA-fragments was performed 

in vivo in E. coli. The amount of vector and insert was calculated as described in 2.2.3.7 

but 2100-2500 ng instead of 70 ng vector in 51 µL final volume were used. The 

transformation of E. coli described in 2.2.3.10 was slightly modified: 25 min incubation 

of DNA and cells on ice, 60 min incubation in SOC.  

2.2.3.9. Site-directed mutagenesis 

This protocol for site-directed mutagenesis was kindly provided by Dr. Linda Lauinger. 

The primers were designed acc. to the following criteria: 25-45 bp in length, melting 

temperature of ≥78°C, minimum GC content of 40 %, mutations in the middle of the 

primer, full overlap of the forward and reverse primer. The melting temperature was 
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calculated acc. to the formula Tm = 81,5 + (0.41* x % GC content) – (675 / N - x % 

mismatch) with N= primer length in bases and values for % = whole numbers. The 

reaction was set up as in Table 2.9 and PCR was run acc. to Table 2.9 overnight. 1 µL of 

the PCR mix was kept for transformation control. 1 µL DpnI (New England Biolabs Inc., 

Ipswich, USA) was added to the remaining 50 µL PCR mix, mixed well and incubated at 

37°C for 1 h. Transformation of E. coli was performed with 1 µL transformation control, 

1 µL and 2 µL of DpnI-treated PCR mix. The remaining solution was stored at -20°C. In 

case the transformation of E. coli was not successful, 5 µL of DpnI-treated PCR mix were 

transformed. 

Table 2.9: Reaction set up, template preparation and thermocycling protocol for site-directed 

mutagenesis. 

 

Mutagenesis Reaction set up stock final conc. final vol. 

Pfu Buffer 10 x  1 x 5,00 µl 

dNTPs 10 mM 0,1 mM 1,50 µl  

Forward primer 125 ng/µl 2,5 ng/µl 1,00 µl 

Reverse primer 125 ng/µl 2,5 ng/µl 1,00 µl 

DMSO 100% 2% 3,00 µl 

DNA see template below 1,00 µl 

Pfu Ultra polymerase 5 U/µl 0,1 U/µl 0,15 µl 

H2O - add to 51 µl 38,00 µl 

Polymerase purchased from Bioron International (Ludwigshafen, Germany) 

 

Mutagenesis template stock final conc. elongation 

Vector DNA 10 ng/µl 0,2 ng/µl 70 sec/1 kb 

    

Mutagenesis Cycle step temperature time Cycle 

Initial denaturation 94°C 2 min 1 

 Denaturation 94°C 50 sec  

18 

  

 Annealing 60°C 50 sec 

 Extension 68°C see template 

Final extension 68°C 15 min 1 

Storage 12°C ∞ 1 

    

2.2.3.10. Transformation and cultivation of E. coli 

50 µL chemically competent E. coli DH5α cells were thawed on ice and at maximum 

5 µL DNA were added and gently mixed with the cells. The cells were incubated 15-

20 min on ice, heat-shocked at 37°C for 30 sec (ThermoMixer, Eppendorf AG, Hamburg, 

Germany) and cold-shocked on ice for 2 min. If a transformation failed once, the heat 

shock and the cold shock were repeated once. For the retransformation of plasmids, the 

cells were directly added to 50 mL LB medium supplemented with antibiotics (usually 

ampicillin) and incubated gently shaking at 37°C o/n. For colony selection, 200 µL SOC 

medium were added and the cells were incubated gently shaking at 37°C for 45 min. The 

cell suspension was plated on a pre-warmed solid LB medium plate supplemented with 

the respective antibiotics and incubated at 37°C o/n (incubator, BINDER 
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GmbH, Tuttlingen, Germany). The next day, clones were picked, transferred to 3 mL LB 

medium supplemented with antibiotics (usually ampicillin), and grown gently shaking at 

37°C o/n. The cells were harvested and the plasmids were extracted for further analysis 

(sequencing, restriction digestion, PCR) as described above (see 2.2.3.2). 

2.2.3.11. Extraction of RNA from N. crassa 

500 µL peqGOLD Trifast (Cat.-No. 30-2010, peqlab, VWR International GmbH, 

Darmstadt, Germany) were added to 50 µL frozen N. crassa mycelia powder and mixed 

immediately by vortexing. The samples were incubated at 37°C and 800 rpm for 5 min 

(ThermoMixer, Eppendorf AG, Hamburg, Germany). The samples were transferred on 

ice, 100 µL chloroform were added and mixed vigorously by vortexing for 15 s per 

sample. The samples were incubated again at 37°C and 800 rpm for 5 min and then 

centrifuged at 12000g, 4°C for 10 min (Centrifuge 5417 R, Eppendorf AG, Hamburg, 

Germany). The upper phase was transferred to a fresh tube, 250 µL isopropanol (4°C / 

ice-cold) were added mixed by inverting. The precipitation was performed on ice for 

10 min and the precipitate was pelleted at 12000g, 4°C for 10 min. The samples were 

transferred on ice and the supernatant was removed thoroughly. The pellet was washed 

twice with 500 µL 75 % ethanol (vortexing, then pelleting at 12000g, 4°C for 10 min). 

The supernatant was removed thoroughly and the pellet was dried for 3-10 min at rt. The 

RNA pellet was resolved in 150 µL RNAse-free water at 60°C, 800 rpm for 10 min 

(ThermoMixer, Eppendorf AG, Hamburg, Germany). The concentration of the RNA 

solution was measured with the NanoDrop ND-1000 UV-Vis Spectrophotometer 

(NanoDrop Technologies) and the solution was stored at -80°C. 

2.2.3.12. cDNA synthesis and qPCR 

Total cDNA from N. crassa was synthesized using the Maxima First Strand cDNA 

Synthesis Kit (Cat.-No. K1642, Thermo Scientific™ by Thermo Fisher Scientific Inc., 

Waltham, USA) according to the manufacturer's instructions. The minimum reaction 

volume amounted to10 µL and contained 0,5 µg total RNA. The cDNA was diluted 1:3 

in ultrapure water.  

Strand specific cDNA of frq sense was synthesized using the QuantiTect Reverse 

Transcription Kit (Cat.-No. 205314, Qiagen N.V., Venlo, Netherlands) with specific 

primers (final concentration 0.5 µM) according to the manufacturer’s instructions. cDNA 

was diluted 1:4 in ultrapure water. 

Primer and TaqMan probes were for quantitative real-time PCR (qPCR) designed using 

the SerialCloner 2.6.1 software (http://serialbasics.free.fr/Home/Home.html), the 

Oligonucleotide Properties Calculator (http://biotools.nubic.northwestern.edu/ 

OligoCalc.html) and the NEB Tm calculator (http://tmcalculator.neb.com/#!/main). qPCR 

was performed using the qPCRBIO Probe Mix Hi-ROX (Cat.-No. PB20.22-51, PCR 

Biosystems Ltd., London, UK) in 96-well plates. The reaction mix qPCR was set up as 

shown in Table 2.10.  
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Table 2.10: Reaction set up for qPCR 

 

Component  
 

Volume  

cDNA 4 µL 

2x qPCRBIO Probe Mix Hi-ROX 10 µL 

Forward primer 10 µM 0,8 µL 

Reverse primer 10 µM 0,8 µL 

Probe (TaqMan) 5 µM 0,8 µL 

Water 3,6 µL 

 Σ 20 µL 

 

Thermocycling was performed in the StepOnePlus real-time PCR system (Applied 

Biosystems® by by Thermo Fisher Scientific Inc., Waltham, US) under conditions shown 

in Table 2.11. The mean cycle threshold values (Ct values) were calculated from 

triplicates.  

Table 2.11: qPCR thermocycling protocol. 

 

Step 
 

Temperature 
 

Time 
 

Cycles 

Initial denaturation 95 °C 2 min - 

Denaturation 95 °C 5 s 
40  

Annealing and extension 60 °C 20 s 

 

2.2.4. Chromatin Immunoprecipitation (ChIP)  

The data generated with Chromatin Immunoprecipitation and subsequent analysis of the 

samples were kindly provided by Michael Oehler. See the method section of the PhD 

thesis of Michael Oehler, title “Light-induced White Collar Complex has a dual function 

as combined transcriptional activator and repressor”, Heidelberg University, Heidelberg, 

Germany for further details (Oehler, 28.02.2020). 
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3. Results 

3.1.  Mapping of phosphorylation sites of WC-1 and WC-2 

So far, only 10 phosphorylation sites of WC-1 and only one phosphorylation site of WC-2 

was known. In previous studies (He et al., 2005; Sancar et al., 2009), the purified proteins 

were digested with trypsin for the analysis by mass spectrometry. However, trypsin 

cleavage sites are rare in the amino acid sequence of both WC-1 and WC-2, so the 

sequence coverage is low.  

The aim of this experiment was to identify dark- and light specific phosphorylation sites 

by using the unspecific cleaving enzymes elastase and thermolysin. To evaluate the raw 

data, it was necessary to take details of the respective methods into account (see Table 

3.1). Initially, a tandem (two-step) affinity purification of dark-grown and light-induced 

samples was performed in January 2014 (Figure 3.1) as well as in March 2014 (5.1Figure 

5.1). By using the same biological material twice, numerous phosphorylation sites were 

mapped but also limitations of the sample preparation and the mass spectrometry were 

uncovered.  

Table 3.1: Overview over the four experiments used to map the phosphorylation sites of WC-1 and 

WC-2.  

See also Figure 3.1, Figure 5.1, Figure 5.2 and Figure 5.3. 

PURIFICATION JANUARY 2014 MARCH 2014 JANUARY 2016 JULY 2016 

BIOLOGICAL 

MATERIAL 

∆wc-2, bd, qa-2 tap- wc-2 (same 

experiment used for both purifications) 

wt, bd wt, bd 

DARK / LIGHT DD24, LI 15 min DD24, LI 30 min LL 

CROSSLINKING 10 min formaldehyde - - 

PURIFICATION 

METHOD 

Tandem affinity 

purification 

(TAP) of tagged 

WC-2 

Tandem affinity 

purification 

(TAP) of tagged 

WC-2 

IP with anti-

WC-2 antibody 

IP with anti-

WC-2 antibody 

PURPOSE Phosphorylation 

sites of WC-1 and 

WC-2, 

Interaction 

partners 

Phosphorylation 

sites of WC-1 and 

WC-2, 

Interaction 

partners 

Phosphorylation 

sites of WC-2 

(Search for T473, 

S476, S484) 

Search for 

phosphorylation 

on WC-2 T473, 

S476, S484 

MS METHOD ESI, Orbitrap ESI, Orbitrap ESI, Orbitrap ESI, Orbitrap 

ENZYME 1 Elastase Elastase Elastase - 

ENZYME 2 Thermolysin Thermolysin Thermolysin - 

ENZYME 3   Trypsin Trypsin 

SEQUENCE 

COVERAGE   

WC-1 

95,5 % 

SEQUENCE 

COVERAGE  

WC-2 

100 % 
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For further identification of phosphorylation sites of WC-2, the protein was enriched by 

immunoprecipitation with an anti-WC-2 antibody (see Figure 5.2 and Figure 5.3 in the 

appendix) and trypsin was used in addition to the unspecific proteases to increase the 

specificity of the mass spectrometry by searching for predictable peptides. However, the 

sequence coverage of trypsin amounts to only approx. 50% in case of WC-2 whereas 

elastase and thermolysin cleavage products cover approx. 80-90% of WC-1 and 80-99% 

of WC-2. Taken all samples together, 95,5 % of the sequence of WC-1 were covered and 

100% of the sequence of WC-2 were covered (Table 3.1). 

In the first experiment, yielding the material for the purifications in January and March 

2014, samples were harvested after 24 h in dark (0 min sample) and after 24 h in dark 

followed by 15 min light-induction (15 min sample). After 15 min in light, the 

phosphorylation of WC-1 and WC-2 is on an intermediate level (see Figure 1.7). This 

phosphorylation status was chosen to allow both the mapping of phosphorylation sites 

and the pull-down of a kinase. After 15 min in light, the phosphorylation of WCC is high 

in comparison to hypophosphorylated WCC in darkness but after 15 min in light WCC is 

still further phosphorylated meaning that kinases should interact with WCC and could be 

trapped by crosslinking. In the third experiment, samples were harvested after 24 h in 

dark and after 24 h in dark followed by 30 min light-induction to analyze WC-2 at the 

time point of maximum phosphorylation. For a very specific analysis of WC-2 in the 

fourth experiment, samples were grown in constant light, when the phosphorylation of 

WC-2 is also at the maximum. 

3.1.1. Limitations of the methods used to map phosphorylation sites 

When using the unspecific cleaving enzymes elastase and thermolysin, the comparability 

of samples is limited and the quantification of results is not possible. This became obvious 

by comparing a dark- and a light sample as well as by comparing the two purifications of 

the same biological material in January and March 2014. When two peptides from two 

samples differ by only one amino acid in length, the elution properties from the 

chromatography column, the electron spray ionization properties, the flight properties and 

the fragmentation pattern change. Also, the automatic selection of peptides in the first MS 

for the fragmentation in the second MS is changed. Thus, conclusions from the 

comparison of samples have to take these limitations into account. 

Furthermore, the absolute number of phosphorylation sites is questionable because of 

numerous putative phosphorylation sites. These are sites that were found together with 

other possible phosphorylation sites in a peptide but couldn´t be located exactly due to an 

incomplete fragmentation spectrum of the peptide. 
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Figure 3.1: Result of the tandem affinity purification (TAP) of tagged WC-2 

in January 2014 (see Figure 5.1 in the appendix for March 2014). 3.1a: Schematic presentation of the cross-

linked (red bars) complex that is pulled down in light. Protein A = first part of the TAP tag; TEV = cleavage 

site for TEV protease; CBP = calmodulin binding protein, second part of the TAP tag. 3.1b: Western blot 

showing the different stages of TAP: the input, the IgG flow through (IgG FT), the TEV elution (TEV El), 

the Calmodulin flow through (CaM FT), the Calmodulin elution (CaM El) and the precipitation of the total 

protein from Calmodulin elution (CaM Pr). 3.1c: Silver staining and Coomassie staining of the SDS gels. 

The Calmodulin precipitation (CaM Pr) samples were loaded. Molecular weight marker in kDa. 

 

 WC-1 

 TEV  CBP  Protein A 

 WC-2  WC-1 short 
WC-2 

a 

Protein A-TEV-CBP-WC-2 

TEV-CBP-WC-2 
1 min exposure 

WC-1 
6 min exposure 

short WC-2 
1 min exposure 

     1x             1x             15x           15x            45x          180x  

   Input        IgG FT      TEV El.    CaM FT    CaM El.    CaM Pr. 

 0      15      0     15      0      15      0    15      0     15      0      15 Light induction (min) 

b 

Marker       0       15  

WC-1 

TEV-CBP-WC-2 

Silver staining Coomassie staining 

170 
130 

95 

72 

55 

43 

34 

26 

17 

10 

Marker         0       15  Light induction (min) 

c 
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3.1.2. Phosphorylation sites of WC-1 

In this study, 34 phosphorylation sites were mapped (see Table 3.2, Figure 3.2, Figure 

3.3, see Table 5.1 and Table 5.2 in the appendix). Among these 34 sites, 27 are new 

phosphorylation sites of WC-1. In total, 10 phosphorylation sites of WC-1 are known 

from previous studies (He et al., 2005; Sancar et al., 2009), but only 7 of these sites were 

confirmed in this study. Out of 34 phosphorylation sites, 19 sites were found unique on a 

peptide and 15 sites remain putative phosphorylation sites. 

Table 3.2: Detailed list of phosphorylation sites of WC-1 found in this and in previous studies.  

Remarks indicated by asterisks are explained in chapter 3.1.2. 

SITES FOUND IN THIS STUDY 

no. aa S, T aa+1 putative? LI DD Remark found previously 

1 111 S V single LI DD     

2 200 S P single LI - *1   

3 315 S P single LI DD   Sancar et al., 2009 (LL) 

4 317 S L putative LI - *2 Sancar et al., 2009 (LL) 

5 334 S V single LI DD     

6 336 T N single LI DD     

7 340 T P single LI DD     

8 346 S T putative - DD *3   

9 347 T P single LI DD     

10 536 T P single LI - *4   

11 824 S P putative LI DD *5   

12 831 S P single LI DD   Sancar et al., 2009 (LL) 

13 863 S A putative - DD *6   

14 866 S S putative - DD *7   

15 867 S A single LI DD     

16 967 T G single LI - *8   

17 971 S P single LI DD     

18 988 S N putative LI - *9 He et al., 2005 (in DD), 

Sancar et al., 2009 (LL) 

19 990 S P single LI - *10 He et al., 2005 (in DD), 

Sancar et al., 2009 (LL) 

20 1005 S P single LI DD   Sancar et al., 2009 (LL) 

21 1007 S T putative - DD *11   

22 1008 T T putative - DD *12   

23 1009 T T putative LI DD *13   

24 1010 T A putative LI DD *14   

25 1012 T K putative LI DD *15   

26 1015 S P single LI DD   Sancar et al., 2009 (LL) 

27 1017 S L single LI DD     

28 1021 S S single LI - *16   

29 1022 S T putative LI - *17   

30 1023 T T putative LI - *18   
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31 1024 T A putative LI - *19   

32 1071 S G putative LI - *20   

33 1074 S P single LI DD     

34 1166 S V single LI DD     

 

SITES FOUND PREVIOUSLY BUT NOT IN THIS STUDY 

no. aa S, T aa+1 putative? LI DD Remark found previously 

(35) 992 S H - - - - He et al., 2005 (in DD) 

(36) 994 S S - - - - He et al., 2005 (in DD) 

(37) 995 S P - - - - He et al., 2005 (in DD), 

Sancar et al., 2009 (LL) 

  
       

  

SUMMARY 
      

  

single, not followed by proline: 8 sites   

single, followed by proline: 11 sites   

putative sites: 15 sites   

confirmed previous studies: 7 sites   

found new in this study: 27 sites   

found in previous studies, but not here: 3 sites   

 

No light- or dark-specific sites on WC-1 

Giving the high number of phosphorylation sites of WC-1 and the huge shift of the WC-1 

signal in the SDS-gel due to increasing phosphorylation, it was expected to identify light- 

and may be also dark-specific phosphorylation sites. Surprisingly, the majority of 

phosphorylation sites were detected in the dark as well as in the light (see Table 3.2). 

Several sites appear to be either light- or dark-specific, but detailed analysis of the 

peptides rejects this conclusion.  

Phosphorylation sites like S315, S831 and S1015 were found unique on up to six peptides 

and additionally on more peptides where the phosphorylation couldn´t be located exactly. 

They were found in both purifications of the same biological material in January 2014 

and in March 2014. Interestingly, such phosphorylation sites were found in the dark- as 

well as in the light-sample (see Table 5.1 and Table 5.2 in the appendix).  

In contrast to that, the phosphorylation sites S200, T536 and T967 (*1, *4 and *8 in Table 

3.2), were found unique on only one peptide in the light-sample of only one out of two 

purifications of the same biological material. Hence, these are most likely peptides that 

hardly elute from the column or hardly ionize. The phosphorylated peptides in the 

respective dark-samples have rather not be found for technical reasons then are not 

existent. The loss of phosphorylation due to storage of the biological material at -80°C 

can be excluded as root cause since S200 and T536 were found in March 2014, approx. 

two months after the first purification in January 2014. Whereas S200, T536 and T967 

were found unique on only one peptide in light in one purification, other unique 

phosphorylation sites like S971 were found on one peptide in light and on one peptide in 

dark in only one out of two purifications of the same biological material. This indicates 
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that some peptides are either rare or, most likely, difficult to detect by mass spectrometry 

due to their molecular properties. The analysis of the sequence coverage of WC-1 in the 

8 individually digested samples (January / March, 0 min / 15 min, elastase / thermolysin 

= 8 samples) showed that all phosphorylation sites were found in regions of high sequence 

coverage (Figure 3.2). Thus, numerous peptides were found that cover the respective site 

but it might be a rarely phosphorylated site or the phosphorylated peptide may have 

unfavorable chemical properties that interfere with fragmentation and detection during 

mass spectrometry. 

Other examples are the potential light-specific phosphorylation sites S1021, S1022, 

T1023, T1024 (*16-*19 in Table 3.2). Three peptides were found: S1021 was found 

unique on the first peptide, one out of the four potential phosphorylation sites must be 

phosphorylated on the second peptide and on the third peptide, either S1022 or T1023 are 

phosphorylated. All the three peptides were found in light in the purification in March 

2014, but not in the purification in January 2014. Thus, S1021 is definitely 

phosphorylated and either S1022 or T1023 is phosphorylated as well. Whether three or 

four sites are phosphorylated in vivo cannot be concluded from this data. Since no 

phosphorylated sites S1021, S1022, T1023, T1024 were found in the dark sample in 

March 2014, these sites might be light-specific sites. But since not even S1021 was found 

phosphorylated in the purification of the light-sample in January 2014, it is highly 

doubtful, whether this is a true light-specific phosphorylation site. 

In many cases, putative phosphorylation sites occur in close vicinity on the same peptide 

as phosphorylation sites that were also found unique on a peptide. These putative sites 

appear in a light- or a dark-sample only because the fragmentation pattern of a peptide is 

incomplete and the phosphorylation cannot be located exactly. But in the same sample, 

several peptides are detected with higher fragment coverage that prove the existence of 

the unique phosphorylation site both in light and in dark. Thus, the existence of these 

putative phosphorylation sites is doubtful and the light- or dark-specificity is even more 

doubtful. Examples are the putatively phosphorylated S317 in vicinity to S315 (*2 in 

Table 3.2), the putatively phosphorylated S346 before T347 (*3 in Table 3.2), the 

putatively phosphorylated sites S863 and S866 appearing on peptides together with S867 

(*6 and *7 in Table 3.2), and the putatively phosphorylated S1071 in vicinity to S1074 

(*20 in Table 3.2). This evaluation is supported by the fact that the putative 

phosphorylation site S824 (*5 in Table 3.2) was found once in light and once in dark on 

the same peptide as the unique site S831. 

Another special case is the S,T-rich stretch comprising the unique phosphorylation sites 

S1005, S1015, S1017 and the putative phosphorylation sites S1007, T1008, T1009, 

T1010 and T1012 (*11-*15 in Table 3.2). Most of these sites were found in light as well 

as in dark. Some of the peptides contained putative phosphorylation sites together with 

unique sites, indicating that the unique site is the actual phosphorylation site. But some 

of the peptides contained the putative sites S1007 - T1012 only. Thus, some of these 

putative sites are actually phosphorylated in vivo. 
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Remarkably, the previously found phosphorylation sites S988 and S990 (*9, *10 in Table 

3.2) were hardly confirmed in this study. Only two peptides were found in light in only 

one out of two purifications of the same biological material. On the first peptide, S990 

was located exactly and on the second peptide, either S988 or S990 are phosphorylated. 

Since S988 is only a putative phosphorylation site and since in total only two peptides 

were found in one sample in light, it is very doubtful that these are true light-specific 

phosphorylation sites. 

The observation that there are neither dark- nor light-specific phosphorylation sites leads 

to the conclusion that there is a pool of poorly and differently phosphorylated WC-1 

molecules in the cell in darkness so that every phosphorylation site can be detected in the 

dark-sample. The kinases are active in darkness but the efficiency of the phosphorylation 

is low. Light strongly enhances the efficiency of the kinase activity and creates a pool of 

highly phosphorylated WC-1 molecules. 

 

No phosphorylation of known protein domains of WC-1 

Interestingly, no phosphorylation sites were found in one of the known protein domains 

of WC-1 like the LOV-, the PAS B, the PAS C and the ZnF- domain (Figure 3.2). The 

two PolyQ domains of WC-1 were not covered by peptides but there are no serine, 

threonine or trypsin residues in these domains anyway. As a consequence, 

phosphorylation of WC-1 does obviously not alter the function of one of the known 

protein domains. There are accumulations of phosphorylation sites upstream of the LOV-

domain and especially downstream of the zinc finger DNA-binding domain indicating a 

regulatory impact on the activity of WCC. However, the phosphorylation sites of WC-1 

were not further investigated in this study.  

 

SP/TP sites are overrepresented on WC-1 

The arrangement of phosphorylation sites of WC-1 in Figure 3.2 clearly shows that SP 

and TP sites are overrepresented. Among 34 phosphorylation sites of WC-1, 15 sites are 

putative phosphorylation sites, 8 unique sites are followed by other amino acids than 

proline and 11 unique sites are followed by proline. S824P is the only putative site 

followed by proline, so, there might be in total 12 phosphorylation sites followed by 

proline. The result that 11 out of 12 SP, TP sites are unique sites covered by multiple 

peptides indicates that proline-directed kinases are key-components of the mechanism of 

the phosphorylation of WC-1. Interestingly, the distribution of SP, TP sites over the 

protein sequence of WC-1 follows the overall pattern of an N-terminal and C-terminal 

cluster.  

Proline-directed phosphorylation by proline-directed kinases of the group MAPKs and 

CDKs often serve as priming phosphorylation for phospho-directed kinases as CK1 and 

GSK3 (Pinna and Ruzzene, 1996). Since the SP, TP phosphorylation sites on WC-1 occur 

along with SX, TX sites, the SP, TP might serve as priming phosphorylation for FRQ-

mediated phosphorylation by CK1a. 
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As shown in the amino acid sequence in Figure 3.3, numerous SP, TP sites of WC-1, 

especially in the N-terminal region, were not found phosphorylated. Also, numerous 

serine and threonine over the whole amino acid sequence of WC-1 residues were not 

found phosphorylated indicating that the 34 phosphorylation sites mapped in this study 

may not represent the all possible phosphorylation sites of WC-1. 

Despite the large number of phosphorylation sites and the obvious activity of proline-

directed kinases, no conserved phosphorylation motifs were identified that would give 

information about the kinases acting on WC-1. 

 

 

Figure 3.2: Phosphorylation sites of WC-1 in context of the known protein domains and the sequence 

coverage.  

3.2a: Phosphorylation sites of WC-1 in context of the known protein domains. 3.2b: The sequence coverage 

of WC-1 amounts to 95,5 %. Mainly the PolyQ domains were not covered. 3.3c: The sequence coverage 

of 8 individual digested samples were summed up to identify regions of high- and of low coverage. 
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          10          20          30          40       50    

MNNNY YGSPL SPEEL QHQMH QHQQQ QQQQQ QQQQQ QQQQQ QQQQQ QQQQQ  

          60          70          80          90          100  

HQHQQ QQKTN QHRNA GMMNT PPTTN QGNST IHASD VTMSG GSDSL DEIIQ  

          110         120         130         140         150 

QNLDE MHRRR SVPQP YGGQT RRLSM FDYAN PNDGF SDYQL DNMSG NYGDM  

          160         170         180         190         200 

TGGMG MSGHS SPYAG QNIMA MSDHS GGYSH MSPNV MGNMM TYPNL NMYHS  

          210         220         230         240         250 

PPIEN PYSSA GLDTI RTDFS MDMNM DSGSV SAASV HPTPG LNKQD DEMMT  

          260         270         280         290         300 

MEQGF GGGDD ANASH QAQQN MGGLT PAMTP AMTPA MTPGV SNFAQ GMATP  

          310         320         330         340         350 

VSQDA ASTPA TTFQS PSLSA TTQTI RIGPP PPPSV TNAPT PAPFT STPSG  

          360         370         380         390         400 

GGASQ TKSIY SKSGF DMLRA LWYVA SRKDP KLKLG AVDMS CAFVV CDVTL  

          410         420         430         440         450 

NDCPI IYVSD NFQNL TGYSR HEIVG RNCRF LQAPD GNVEA GTKRE FVENN  

          460         470         480         490         500 

AVYTL KKTIA EGQEI QQSLI NYRKG GKPFL NLLTM IPIPW DTEEI RYFIG  

          510         520         530         540         550 

FQIDL VECPD AIIGQ EGNGP MQVNY THSDI GQYIW TPPTQ KQLEP ADGQT  

          560         570         580         590         600 

LGVDD VSTLL QQCNS KGVAS DWHKQ SWDKM LLENA DDVVH VLSLK GLFLY  

          610         620         630         640         650 

LSPAC KKVLE YDASD LVGTS LSSIC HPSDI VPVTR ELKEA QQHTP VNIVF  

          660         670         680         690         700 

RIRRK NSGYT WFESH GTLFN EQGKG RKCII LVGRK RPVFA LHRKD LELNG  

          710         720         730         740         750 

GIGDS EIWTK VSTSG MFLFV SSNVR SLLDL LPENL QGTSM QDLMR KESRA  

          760         770         780         790         800 

EFGRT IEKAR KGKIA SCKHE VQNKR GQVLQ AYTTF YPGDG GEGQR PTFLL  

          810         820         830         840         850 

AQTKL LKASS RTLAP ATVTV KNMSP GGVPL SPMKG IQTDS DSNTL MGGMS  

          860         870         880         890         900 

KSGSS DSTGA MVSAR SSAGP GQDAA LDADN IFDEL KTTRC TSWQY ELRQM  

          910         920         930         940         950 

EKVNR MLAEE LAQLL SNKKK RKRRK GGGNM VRDCA NCHTR NTPEW RRGPS  

          960         970         980         990         1000 

GNRDL CNSCG LRWAK QTGRV SPRTS SRGGN GDSMS KKSNS PSHSS PLHRE  

          1010        1020        1030        1040        1050 

VGNDS PSTTT ATKNS PSLRG SSTTA PGTIT TDSGP AVASS ASGTG STTIA  

          1060        1070        1080        1090        1100 

TSANS AASTV NALGP PATGP SGGSP AQHLP PHLQG THLNA QAMQR VHQHK  

          1110        1120        1130        1140        1150 

QHQQH QQQHQ QQHQQ QHQQQ HQQLQ QHQFN PPQSQ PLLEG GSGFR GSGME  

          1160   

MTSIR EEMGE HQQGL SV* 

Grey = protein domains (PolyQ, LOV, PASB, PASC, DBD, ZnF, PolyQ) 

Yellow = proline directed 

Blue = not proline directed  

Green = putative sites 

SP/TP sites not found in this study 

Figure 3.3: The distribution of phosphorylation sites of WC-1 over the amino acid sequence.  
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3.1.3. Phosphorylation sites of WC-2 

Table 3.3: Detailed list of phosphorylation sites of WC-2 found in this and in a previous study.  

Results from this study are obtained from two tandem-affinity-purifications of the same biological material 

and two immunoprecipitations of different biological material. 

no. aa S, T aa+1 putative? LI DD Remark found previously 

1 80 S M putative LI DD     

2 82 S N single LI DD     

3 86 T P single LI DD     

4 118 S P single LI DD     

5 128 S S putative - DD *1   

6 129 S A putative - DD *2   

7 136 T P single LI DD     

8 138 T T single LI DD     

9 139 T T putative LI DD     

10 140 T T putative LI DD     

11 141 T S putative LI DD     

12 142 S G putative LI - *3   

13 287 T K single - DD *4   

14 331 S Q single LI DD     

15 336 S D putative LI DD 
 

  

16 339 T P single LI DD     

17 341 S D single LI DD     

18 344 T A putative - DD *5   

19 390 S R putative - DD *7   

20 394 S I single LI DD     

21 433 S P single LI DD   Sancar et al., 2009 (LL) 

22 435 T L single LI DD     

- 473 T L putative LI DD artefacts from first experiment 

(purifications in January and March 

2014) 

- 476 S P putative LI DD 

- 484 S G putative - DD 

23 523 T P single LI DD     

  
       

  

SUMMARY  

single, not followed by proline: 7 sites 

single, followed by proline: 6 sites 

putative sites: 10 sites 

found in previous studies: 1 site 

found new in this study: 22 sites 

found in previous studies, but not here: 0 sites  

 

In total, 23 phosphorylation sites were mapped on WC-2 (see Table 3.3, Figure 3.4, Figure 

3.5, see Table 5.3, Table 5.4, Table 5.5 in the appendix). In Table 3.3, three additional 

phosphorylation sites (T473, S476, S484) are listed but these sites were an artefact of the 
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first experiment, as outlined later. So far, only one phosphorylation site of WC-2 was 

known (Sancar et al., 2009), this site was confirmed in this study and 22 new sites were 

identified. Out of 23 phosphorylation sites, 13 sites were found unique on a peptide and 

10 sites remain putative phosphorylation sites. 

  

No light- or dark-specific sites on WC-2 

As in case of WC-1, the majority of phosphorylation sites of WC-2 was found both in 

dark and in light. Some sites that appear to be either dark- or light-specific will be 

reviewed in detail. 

S128 and S129 (*1, *2 in Table 3.3) are putative phosphorylation sites found on only one 

peptide in the dark-sample in January 2016 (see Table 3.1). In this experiment, 

immunoprecipitation was used to purify WC-2, and the phosphorylation sites found by 

tandem-affinity-purification of tagged WC-2 in January and March 2014 were confirmed 

but S128 and S129 were found for the first time. Thus, this peptide seems to be rare and 

phosphorylated S128 or S129 was not found in the light-sample for technical reasons 

rather than biological reasons. This evaluation is supported by the example of T523 

clearly showing the limitations of the phosphorylation site mapping methods used in this 

study. T523 was found phosphorylated on numerous peptides in light and in dark in the 

experiments in January and March 2014. However, in January 2016, a phosphorylated 

T523 was found on only one peptide in the light-sample highlighting the necessity of 

cautious interpretation of the results. 

Phosphorylation site T287 (*4 in Table 3.3) is a similar example. T287 was found as 

single site on two peptides in the dark-sample in January 2014, but not again in the 

purification of the same biological material in March 2014 and not by the different 

experimental approach in January 2016. 

Most likely, either the phosphorylation or the peptide is rare and the corresponding 

phosphorylated peptide was not detected in the light-induced sample. Thus, it is unlikely 

that this site represents a dark-specific phosphorylation. 

S142 (*3 in Table 3.3) is a putative phosphorylation site occurring on a long S, T stretch 

in peptides in light along with the putative sites T141, T140, T139 and the unique sites 

T138 and T136. Since all the neighboring sites to S142 were found in dark as well as in 

light, the light-specificity of S142 is most probably just implied by the incomplete 

fragmentation of the respective peptides from the light-sample. The same conclusion 

applies to T344 (*5 in Table 3.3) and S390 (*6 in Table 3.3) that were found as putative 

sites on peptides in dark-samples together with the unique sites S341 and S394, 

respectively.  

Overall, 14 individually digested samples of WC-2 were analyzed by mass spectrometry. 

The analysis of the sequence coverage in each sample revealed that all phosphorylation 

sites were found in regions that were highly represented in each sample (Figure 3.4). 

Thus, numerous peptides were found that cover the respective phosphorylation site but it 

might be a rarely phosphorylated site or the phosphorylated peptide may have unfavorable 
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chemical properties that interfere with fragmentation and detection during mass 

spectrometry. 

Taken together, the phosphorylation sites of WC-2 are neither light-, nor dark-specific 

like the phosphorylation sites of WC-1. The model created for WC-1 can be extended to 

the whole WCC: in dark, there is a pool of poorly and differently WCC molecules in the 

cell, the activity of kinases is massively increased in light yielding a pool of highly 

phosphorylated WCC molecules. 

 

  No phosphorylation of protein domains of WC-2 

As shown in Figure 3.4 and like in WC-1, no phosphorylation sites were found in the 

known domains of WC-2, namely the PAS domain and the zinc finger DNA-binding 

domain. Thus, neither the interaction of WC-2 with WC-1, nor the binding to DNA are 

directly impaired. The phosphorylation sites of WC-2 are roughly distributed in two 

clusters: a N-terminal cluster before the PAS domain and a C-terminal cluster beyond the 

PAS-domain. 

In Table 3.3, three putative phosphorylation sites in the zinc finger DNA-binding domain 

of WC-2 are listed as artefacts. In the purification in January 2014, one peptide with a 

phosphorylation either on S476 or on S484 in zinc finger DNA-binding domain was 

found. In the purification in March 2014, two peptides with a phosphorylation either on 

T473 or on S476 were found. S476 and S484 were mutated to aspartate to mimic 

constitutive phosphorylation and the function of WC-2 S476D was severely impaired 

(data not shown). Since this would have been an on/off-switch-like mechanism, it was 

crucial to confirm the putative phosphorylation site S476 in vivo. However, the general 

mapping of phosphorylation sites in January 2016 did not confirm the previous result. 

The digestion of WC-2 with trypsin yields a peptide from the WC-2 zinc finger DNA-

binding domain that comprises T473, S476 and S484. The specific search for this peptide 

in July 2016 (see Table 3.1), gave no evidence for a phosphorylation on this peptide. 

Thus, the previous result is an artefact and phosphorylation of the WC-2 zinc finger DNA-

binding domain is not part of the mechanism of the light-induced phosphorylation of 

WCC. 
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Figure 3.4: Phosphorylation sites of WC-2 in context of the known protein domains and sequence 

coverage.  

3.4a: Phosphorylation sites of WC-2 in context of the known protein domains. 3.4b: The sequence coverage 

of WC-2 amounts to 100 %. 3.4c: The sequence coverage of 14 individual digested samples were summed 

up to identify regions of high- and of low coverage. 

 

SP/TP sites are overrepresented on WC-2 

Like in WC-1, SP and TP sites are also overrepresented in WC-2 (see Figure 3.4). Out of 

23 phosphorylation sites of WC-2, 10 sites are putative phosphorylation sites, 7 sites are 

unique phosphorylation sites followed by other amino acids than proline and 6 sites are 

unique sites followed by proline. Like all phosphorylation sites of WC-2, the SP and TP 

sites cluster roughly into an N-terminal cluster and into a C-terminal cluster with three 

SP, TP sites each. Thus, the conclusions drawn from WC-1 can be extended to the whole 

WCC: the abundance of SP, TP sites indicates the activity of proline-directed kinases and 

the clustering of phosphorylation sites implies the hypothesis of priming phosphorylation 

at SP, TP sites and subsequent phosphorylation of other SX, TX sites.  

In contrast to WC-1 (see Figure 3.3), almost all SP, TP sites of WC-2 were found 

phosphorylated in this study (see Figure 3.5). Yet, numerous SX, TX sites were not found 

phosphorylated in this study so that the 23 phosphorylation sites of WC-2 may not 

represent the all possible phosphorylation sites. 

Remarkably and exactly like WC-1, no conserved phosphorylation motifs were identified 

that would give information about the kinases acting on WC-2. 
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3.1.4. Summary of the phosphorylation sites of WC-1 and WC-2 

The analysis of the phosphorylation sites of WC-1 and WC-2 revealed that both proteins 

share all characteristics. This finding isn´t surprising since both proteins act together as 

WCC. No light- or dark-specific phosphorylation sites were found on both WC-1 and 

WC-2. SP, TP sites are overrepresented and occur in clusters with other phosphorylation 

sites on both proteins indicating the activity of proline-directed kinases that might set 

priming phosphorylation. However, no conserved phosphorylation motifs were found that 

would give a hint for the kinases involved in the mechanism. The large number of 

phosphorylation sites of both WC-1 and WC-2 points to an hour-glass-like mechanism 

meaning that rather the increasing number of phosphorylation than the exact position of 

the phosphorylation site modifies the function of the protein. 

 

3.2.  The composition of L-WCC 

The light-triggered formation of L-WCC connects two WC-1 molecules directly via their 

LOV domains but the number of WC-2 molecules involved in L-WCC is still under 

debate (Malzahn et al., 2010; Wang et al., 2015).  

To clarify this, an N-terminally TAP-tagged wc-2 under control of an qa-inducible 

promoter was used to compare the pull-down of a non-tagged, short isoform of WC-2 in 

      10          20          30          40          50 

MSHGQ PPPGS SMYGF GAMGM GSGMG SGMGS GMGTG MGTGM GTGMS ASQMT  

          60          70          80          90          100 

SDPQD MMSLL DTSVF PGFDG MSMSL DVGDS MSNPF TPVSV PPPLP AGNAG  

          110         120         130         140         150 

PSHVG VCGGH GAPDQ LFSPD DLIAT SMSSA GPMIA TPTTT TSGPS GGPSS  

          160         170         180         190         200 

GGGST LTEFT KRRNW PAKVV EELQD WEHIL DANGR IKHVS PSVEP LTGYK  

          210         220         230         240         250 

PPEII DLFLR DLIHP DDVGV FTAEL NEAIA TGSQL RLFYR FRKKD GNWTI  

          260         270         280         290         300 

FETVG HAHIA AAKFA PNPQN QSPFC QAVFM MARPY PTKNA GLLDS FLEHK  

          310         320         330         340         350 

IENER LKRRI AELRR EEQEE QEESH RTWRM SQEGR SDVTP SDDTA TQMGM  

          360         370         380         390         400 

TPFYI PMNAQ ADVMM PPPSQ PASSL NIALT RENLE GIAGS RPDSI REKML  

          410         420         430         440         450 

RYEGN HADTI EMLTG LKYQE GERSH GITTG NASPT LIKGD AGIAI PLDRD  

          460         470         480         490         500 

PRTGE KKKKI KVAEE YVCTD CGTLD SPEWR KGPSG PKTLC NACGL RWAKK  

          510         520         530 

EKKKN ANNNN NGGGI GGHND IHTPM GDHMG 

Grey = protein domains (PAS, ZnF) 

Yellow = proline directed 

Blue = not proline directed  

Green = putative sites 

SP/TP sites not found in this study (S476P in ZnF: was tested, no site) 

Figure 3.5: The distribution of phosphorylation sites of WC-2 over the amino acid sequence. 
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light and in dark. Due to an internal start codon in the ORF of wc-2 (Neiss et al., 2008), 

an N-terminally truncated, non-tagged, short isoform of WC-2 (sWC2) is expressed 

independently from qa-induction of the tagged full-length WC-2 at sufficient levels. It 

has been shown previously that sWC-2 forms the WCC with WC-1, that sWC-2 can fully 

rescue the ability of Neurospora WCC to be entrained by light and that sWC-2 can rescue 

the circadian rhythm in constant darkness to some extent (Neiss et al., 2008).  

 

Figure 3.6: In vivo proof of the composition of the light-induced WCC. 

Non-tagged short WC-2 appears in the input in the dark- as well as in the light-sample. After the first 

purification and elution step of the tandem affinity purification, short WC-2 is pulled-down only in the 

light-sample indicating that L-WCC consists of two WC-1 and two WC-2 molecules. 

To show the composition of L-WCC, the expression of the tagged full-length WC-2 was 

induced in the mutant strain. To stabilize protein-protein interactions by crosslinking, the 

samples were treated with formaldehyde before harvest in dark or after 15 min light-

induction. 

By pulling on the N-terminal tag of full-length WC-2, WC-1 was pulled-down both in 

dark and after light-induction. Interestingly, the non-tagged sWC-2 was pulled-down only 

after light-induction, but not in dark (see Figure 3.6). Thus, non-tagged sWC-2 can only 

be precipitated if it is associated with WC-1 and if WC-1 forms a light dimer with a WCC 

consisting of WC-1 and tagged full-length WC-2. Thus, L-WCC must be a tetramer 

consisting of two molecules WC-1 and two molecules WC-2. 

3.3.  CK-1a is the only known L-WCC-phosphorylating kinase  

3.3.1. Pull-down of kinases together with WCC not above background 

level  

A tandem affinity purification (TAP) of tagged WC-2 (∆wc-2, bd, qa-2 tap- wc-2) was 

performed aiming at the enrichment of kinases that phosphorylate WCC. To stabilize 

protein-protein-interaction, the material was cross-linked with formaldehyde. It was 

expected to pull-down kinases at a time point of intermediate light-induced 

phosphorylation of WCC after 15 min of light-induction (after growth in dark for 24 h). 

As control, material grown in constant darkness for 24 h was used. See chapter 3.1, Table 

3.1 for further details of the experiments. The light- and the dark-sample of the 

purification were separated by size in an SDS gel. This was necessary since WC-1 and 

  1x Input     15x TEV elution 

  0      15         0     15 

WC-1 

TEV-CBP-WC-2 

Non-tagged short WC-2 

Protein A-TEV-CBP-WC-2 

Light induction (min) 

90 sec exposure 6 min exposure  
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WC-2 required further purification for the detection of phosphorylation sites by mass 

spectrometry. As expected, WC-1 and WC-2 appeared as prominent bands of expected 

size in the SDS gel (Figure 3.1). In the rest of the gel, numerous bands of different 

intensities were visible. After excision of WC-1 and WC-2 for phosphorylation site 

analysis, the whole gel was cut into slices and analyzed for protein identification. Light- 

and dark samples were analyzed separately. Each analyzed gel band yielded a long list of 

protein hits at different scores. Since there was no sample with a dominant protein beside 

WC-1 or WC-2, further analysis of the data was performed based on the protein score of 

each hit in each sample. 

The protein score is as measure for the probability of the identity of a protein or a peptide 

detected by mass spectrometry. The higher the score of a protein, the higher the 

probability that the mass computationally assigned to the protein was assigned correctly 

and the protein truly occurs in the sample. The protein score does not provide reliable 

quantitative information but can be used for limited interpretations regarding the 

abundance of a protein in the sample. The protein score contains some quantitative 

information because the more peptides are assigned with a certain protein, the higher is 

the probability that this protein really has been in a sample. If a protein is highly abundant 

in a sample analyzed by mass spectrometry, many peptides of this protein will be 

measured, will be assigned to that protein and will give a high score for that protein. But 

on the other hand, there are several reasons why a highly abundant protein in a sample is 

represented by only a few peptides and a low score. First, a highly abundant protein might 

have only very few cleavage sites of the proteases used for digestion. Second, the 

resulting peptides might have unfavorable molecular properties (length, sequence) for the 

chromatography, the electron spray ionization and the further fragmentation following 

the detection in the first MS. The selection criteria during first MS (Top-10-method) and 

the sequence coverage of a peptide after second MS further bias the overall protein score. 

To search for potential interaction partners of WCC, several proteins of interest and 

control proteins were selected for the data analysis, the results are shown in Figure 3.7. 

As control and example for high scores, WC-1 and WC-2 are shown since these were the 

most prominent proteins in each sample. But since the actual WC-1 and WC-2 were 

excised from the gel and used for the mapping of phosphorylation sites, the protein score 

shown here represent only the smear of WC-1 and WC-2 over the gel. The protein scores 

of WC-2 range roughly between 100 and 2000. The longer protein WC-1 is known as 

stable interaction partner of WC-2 and was pulled down at score up to 6000. Thus, a stable 

interaction partner of WCC is expected to appear in the protein identification at high score 

above 1000. However, the known interaction partner FRQ was found at score only up to 

600; FRH at up to 800 and CK1a at up to 600. Since there were numerous unspecific 

proteins found at the same or much higher scores, it is doubtful whether the experimental 

conditions allowed the pull-down of other WC-2 interaction partners than WC-1. As 

unspecific controls of high score, actin, translation elongation factor 3 (EF3) and the 

metabolic enzymes 6-PFK, Lysine-5 and ADH are shown. All control samples (including 
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WC-1 and WC-2) show that these proteins were found in the dark- and the light sample 

at roughly the same score (Figure 3.7). But there are also exceptions: 6-PFK and Lysine-

5 appear to be enriched in the dark-sample. Of course, these data have no biological 

significance since it is very unlikely that these metabolic enzymes are degraded in 

response to light within only 15 min. The highest score of each control protein (except 

from WC-1 and WC-2) were found in the gel band that corresponds to the molecular mass 

of the protein. This observation was expected and reflects the limited quantitative 

information contained in the protein score. 

The highest score of the proteins of interest also correlates with the molecular mass of the 

respective protein. Except, the highest score does not correspond to the molecular mass 

for FRQ, FRH, PKC and RCM1 since these proteins are of similar sizes as WCC and the 

major population of these proteins was likely excised from the gel together with WC-1. 

So, the highest score of these large proteins is found in the smear of large, crosslinked 

protein complexes above 170 kDa. The proteins FRQ, FRH, RCM1 and RCO1 appear to 

be more abundant in the light-sample than in the dark-sample (Figure 3.7). This is 

expected since the FRQ-FRH-CK1a complex was shown to phosphorylate WCC in 

response to light (He et al., 2006). However, CK1a does not show an enrichment in the 

light-sample (Figure 3.7). RCM1 and RCO1 are known to be regulators of light-induced 

gene expression (Liu et al., 2015; Olmedo et al., 2010; Ruger-Herreros et al., 2014), the 

enrichment in the light-sample is an interesting observation (Figure 3.7). Similar 

observations for FRQ, FRH, CK1a and RCM1 were made in the purification of January 

2014 (see Figure 5.4 in the appendix). The comparability of the two purifications is 

limited since in January 2014, some gel bands of the light- and the dark-sample had to be 

pooled. Thus, for RCO1, the light- and dark-abundance cannot be assessed. In contrast to 

the March 2014 experiment, three gel bands of very high molecular weight were analyzed 

the January 2014 experiment. The molecular weight of this gel section is above the 

molecular weight marker was assigned arbitrarily with 300, 400 and 500 kDa. These high 

molecular weight data of FRQ, FRH and RCM1 suggest high abundance in the light 

sample (see Figure 5.4 in the appendix). However, large protein aggregates, very likely 

artifacts of the crosslinking, migrate slowly in the gel and the digestion and further sample 

processing for mass spectrometry might be highly biased.  

Taken together, the two data sets based on the same biological material show a tendency 

of enrichment of known WCC interaction partners in the light-sample despite the intense 

and different processing of the samples. But the data also show the limitations of the 

interpretation of protein scores and no conclusion about other interaction partners except 

from the know proteins can be drawn. The pull-down assay did not reveal a new WCC 

phosphorylating kinase but suggests that new WCC interaction partners could be 

identified in a quantitative experimental approach. 
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Figure 3.7: Selected proteins identified by mass spectrometry in the tandem affinity purification of 

tagged WC-2 in March 2014 

The light- and the dark-sample were separated by size in an SDS-gel. Tagged WC-2 and its very stable 

interaction partner WC-1 were pulled down at high concentrations and appeared as prominent bands in the 

gel (refer to Figure 3.1 and Figure 5.1). These bands were excised and analyzed for protein phosphorylation. 

The rest of the gel was cut into several bands that comprise a certain mass range. The intermediate mass of 

each band is indicated on the x-axis. The mass of 300 kDa is only a very rough estimation since this band 

was excised from the gel over the upper band of the molecular weight marker (170 kDa). Light- and dark-

bands (LI and DD, respectively) were analyzed independently. The MS method used was not quantitative 

mass spectrometry, so the protein score distribution over the whole mass range was analyzed instead for 

selected target proteins and for selected control proteins. Since the protein score contains some information 

about the abundance of the protein in the sample, the aim was to search for a light-induced enrichment of 

interaction partners of WCC. As control, WC-1 and WC-2 are shown. As outlined above, the actual WC-1 

and WC-2 band are not part of the identification analysis shown here. The proteins scores of WC-1 and 

WC-2 shown here represent the smear of these proteins over the whole gel. As further controls, two very 

abundant proteins, ADH and actin, are shown. The metabolic enzymes 6-PFK and lysine-5 and the 

translation elongation factor 3 (EF3) represent unspecific protein hits of various size. As proteins of interest 

and known interactors of WCC, FRQ, FRH, CK1a and CK2 are shown. GSK3 and PKC were suggested to 

phosphorylate WCC previously. RCM1 and RCO1 were shown to also bind to LRE, the target sequence of 

WCC in light-inducible genes (Liu et al., 2015; Olmedo et al., 2010; Ruger-Herreros et al., 2014). 

The absence of dominant kinase in the pull-down assay supports the mechanistic model 

created based on the mapping of phosphorylation sites. Kinases phosphorylated both WC 

proteins selectively and differently rather than sequentially. Kinases attach to and detach 

from the WC proteins leaving mostly only one phosphorylation. This generates a pool of 

differentially, poorly phosphorylated WC proteins in dark and a pool of higher but also 

differential WC-proteins in light. 

 

3.3.2. Testing of kinase knock out mutants did not reveal a candidate for 

the light-induced phosphorylation 

The accumulation of phosphorylation at SP/TP sites on both WC proteins pointed to the 

activity of proline-directed kinases. Among the proteins pulled-down together with WCC, 

several proline-directed kinases were found even though not at an enrichment above 

background level. The candidates are glycogen-synthase kinase 3 (GSK3), Mitotic 

division kinase-1 (MDK-1), Serine/threonine protein kinase-47 (STPK47), Mitogen-

activated protein kinase-1 (MAPK-1), Mitogen-activated protein kinase-2 (MAPK-2).  

 

Figure 3.8: Light induction of selected kinases knock out mutants.  

Knock out strains of Mitotic division kinase-1 (mdk-1, heterokaryon), Serine/threonine protein kinase-47 

(stpk47), Mitogen-activated protein kinase-1 (mapk-1), Mitogen-activated protein kinase-2 (mapk -2) do 

not show an altered pattern of light-induced WCC phosphorylation. het = heterokaryon, ssi = single spore 

isolate. Samples were taken after growth for 24 h in dark (0 min) and after light induction (30 min). 

Light induction (min) 

                   (het)                                    (het)         (ssi) 

   WT        mdk-1     stpk47   mapk-1   mapk-2   mapk-2          

 0     30     0     30    0     30    0    30     0    30     0     30 

30 sec exposure 5 min exposure 

WC-1 

WC-2 
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GSK3 is probably not the kinase catalyzing the light-induced phosphorylation of WCC 

because this was excluded already in a previous study (Tataroglu et al., 2012). Knock out 

strains of the other proline-directed kinases were screened for a changed phosphorylation 

pattern of WC-1 and WC-2 in a light induction experiment but no phenotype deviating 

from the wild type was found (see Figure 3.8). One possible reason is that the right kinase 

was not tested. Another possible reason is that several kinases phosphorylated WCC and 

that there is a functional compensation of the knock out of a single kinase. And when a 

kinase is essential, the screening of knock out mutants is not the suitable method to 

identify the kinase. The tested kinases Mitotic division kinase-1 (MDK-1) and Mitogen-

activated protein kinase-2 (MAPK-2) are most likely essential kinases since the 

respective knock out strains are available only as heterokaryon or single spore isolate 

strains. The kinases activity in such strains might be less than in wild type but is not fully 

abolished. 

 

3.3.3. FRQ-dependent CK1a is known to phosphorylated L-WCC 

A previous study found that FRQ-recruited CK-1a partially contributes to the light-

induced phosphorylation of WCC (He et al., 2006). However, this study showed the light-

induced phosphorylation of WC proteins on Western blots only in constant light (LL).  

 

Here, the previous findings were confirmed for WC-2, but not for WC-1 by light 

induction experiments with a frq knock out strain and with a CK-1a binding-deficient 

FRQ mutant (see Figure 3.9). WC-1 was found to be phosphorylated transiently with the 

same pattern in response to light both in the wild type and in a frq knock out strain (see 

Figure 3.9a).  

This contradicts the previous study (He et al., 2006). In a frq knock out strain, no light-

induced phosphorylation of WC-2 was detectable. Since FRQ is not a kinase itself, it must 

be a mediator of the light-induced phosphorylation. Previous studies (He et al., 2006) 

have shown that FRQ recruits CK-1a and CK-II to phosphorylate WCC. The frq mutant 

∆FCD1-2 lacking the two FRQ - CK-1a interaction domains was compared to the wild 

type in a light induction experiment (see Figure 3.9b). As expected from the frq knock 

out strain, the light-induced phosphorylation of WC-1 was not impaired in the mutant but 

the light-induced phosphorylation of WC-2 was abolished in ∆FCD1-2. This result 

proved that CK-1a is at least one kinase that phosphorylates WC-2 in an FRQ- and light-

dependent manner. 
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Figure 3.9: The FRQ- and CK1a-dependent light-induced phosphorylation of WC-2. 

3.9a LI = Light induction (DD24, DD24 + min in light as indicated) experiment in wild type (WT) and frq 

knock out (frq10) mutant. 3.9b Light induction (DD24, DD24 + min in light as indicated) experiment in 

wild type (WT) and in an FRQ mutant that lacks the two FRQ-CK1a-interacting domains (∆FCD1+2). 

 

3.4.  Phosphorylation attenuates the activity of WCC  

To investigate the function of the phosphorylation sites of WCC, this study focused on 

the smaller subunit WC-2 for two reasons: First, WC-2 seems to be the subunit of WCC 

that is more relevant for the light-induced activity of WCC. Wang et al. have shown that 

only WC-2 is required for DNA-binding of WCC for light-induction but DNA-binding 

for circadian functions requires both the DNA binding domains of WC-1 and WC-2 

(Wang et al., 2015). Second, the genetic manipulation of WC-2 was easier than the 

genetic manipulation of WC-1 at that time, when the experiments of this study were 

performed.  

All the 23 phosphorylation sites of WC-2 presented in Table 3.3 (except from T473, S476, 

S484 that turned out to be artefacts) were mutated either to alanine to prevent 

                      WT                                       ∆FCD1+2 

   0        30      60     120    180      0       30      60     120    180 LI (min) 

WC-1 

WC-2 

FRQ 

15 sec exposure 

                           WT                                                       frq10 

 0         5        30      60     120    180       0        5        30     60       120    180  LI (min) 

FRQ 

WC-1 

WC-2 

90 sec exposure 

a 

b 
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phosphorylation on these sites (A, the respective wc-2 mutant of is referred to as wc-2 

allA) or to aspartate to mimic constitutive phosphorylation (D, the respective wc-2 mutant 

of is referred to as wc-2 allD). 

3.4.1. WC-2 allA is hypophosphorylated but possibly post-translationally 

modified, WC-2 allD mimics artificial hyperphosphorylation 

In wc-2 allA, any light-induced phosphorylation was abolished (see Figure 3.10). 

However, WC-2 allA appeared as two distinct bands on the SDS gel at every time point 

of a light induction. The upper band of WC-2 allA migrated on the same level as the 

lowest band of the wild type WC-2. The lower band of WC-2 allA migrated even faster 

than the lowest band of the wild type WC-2 in the SDS-gel (see Figure 3.10b, especially 

time point 180 min). The observation of these two bands suggested that WC-2 allA 

occurred as a non-modified and as a post-translational modified species, the wild type 

WC-2 occurred only as the unknown post-translational modified species. 

 

Figure 3.10: Light induction of wc-2 allA in comparison to the retransformed wc-2 wild type (WT).  

3.10a Light induction experiment (DD24h, DD24h + min in light as indicated) of a wc-2 allA homokaryon 

mutant, WC-1 and WC-2 are shown. The upper part of the gel showing WC-1 is slightly bended. 3.10b 

Light induction experiment (DD24h, DD24h + min in light as indicated, WT and wc-2 allA were loaded in 

opposed order) of a wc-2 allA heterokaryon mutant, better resolution of WC-2 and FRQ expression are 

shown. 

 A dephosphorylation assay was performed to test whether this unknown post-

translational modification was phosphorylation. The Western Blot of the 

dephosphorylation assay did not show the resolution of the two bands of WC-2 allA very 

well (see Figure 3.12). Despite the low resolution, it was visible that the migration of two 

distinct bands of WC-2 allA was not altered by the treatment with phosphatase. The direct 

15 sec exposure 

WC-2 

                         WT                                    wc-2 allA (heterokaryon) 

   0      15      30      60    120    180    180    120    60     30      15       0  

30 sec exposure 

FRQ 

20 min exposure 
SDS-gel bended 

30 sec exposure 

WC-1 

WC-2 

              WT                           wc-2 allA 

 0      15      30    120      0       15      30     120 Light induction (min) 

a 

b 
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comparison of the dephosphorylated wild type WC-2 and WC-2 allA showed, that 

dephosphorylated WC-2 allA was still migrating faster. Thus, the appearance of WC-2 

allA as two distinct bands in the SDS-gel is most likely due another post-translational 

modification than phosphorylation. The mutation of numerous serine and threonine 

residues of WC-2 to alanine might interfere with this post-translational modification so 

that the fast migrating, unmodified WC-2 becomes detectable. The investigation of this 

hypothesis remains to be done.  

The dark-level and the light-induced expression of FRQ were not impaired in wc-2 allA. 

Thus, there was no light-induced phosphorylation of WC-2 allA detectable although 

sufficient levels of FRQ were available to recruit CK-1a to WC-2. CK-1a could obviously 

not find a target phosphorylation site on WC-2 allA. 

The light-induced phosphorylation of WC-1 in wc-2 allA was not affected. Since also the 

expression of FRQ was not affected in wc-2 allA, WC-1 seemed to compensate for the 

lacking regulation of WC-2. 

In wc-2 all D, any light-induced phosphorylation was abolished and the migration of 

WC-2 allD in the SDS-gel was dramatically slowed down compared to wild type WC-2 

(Figure 3.11).  

 

Figure 3.11: Light induction of wc-2 allD in comparison to the retransformed wc-2 wild type (WT).  

3.11a Light induction experiment (DD24h, DD24h + min in light as indicated) of a wc-2 allD homokaryon 

mutant, WC-1 and WC-2 are shown. 3.11b Light induction experiment (DD24h, DD24h + min in light as 

5 sec exposure 

WC-2 

                         WT                                    wc-2 allD (heterokaryon) 

   0      15       30     60     120   180    180   120     60      30     15       0  
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              WT                           wc-2 allD 
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indicated, WT and wc-2 allD were loaded in opposed order) of a wc-2 allD heterokaryon mutant, WC-2 

and FRQ expression are shown. 

The mutation of all phosphorylation sites to aspartate obviously represents an artificial 

hyperphosphorylation of WC-2 that is never reached in vivo. In conclusion, full 

phosphorylation on the same WC-2 molecule never occurs in vivo or might occur rarely 

but the small number of fully phosphorylated WC-2 molecules cannot be detected by 

Western Blot. This finding strongly supports the model of a pool of differentially 

phosphorylated WCC species outlined in chapter 3.1. In the phosphatase assay, no 

dephosphorylation of WC-2 allD was observable confirming that most likely all 

phosphorylation sites of WC-2 were mapped in this study (see Figure 3.12).  

Compared to the wild type, the dark-level of FRQ was lower in WC-2 allD but the light-

induced expression of FRQ was not affected. Hence, the activity of WC-2 allD seems to 

be affected to some extent. 

The light-induced phosphorylation of WC-1 was affected in wc-2 allD (see Figure 3.11a). 

In the dark, WC-1 in wc-2 allD was hypophosphorylated and did not differ from the wild 

type. But in response to light, the hyperphosphorylation of WC-1 was less pronounced in 

wc-2 allD than in the retransformed wc-2 wild type and was persistent rather than 

transient. This phenotype is known from a DNA-binding deficient mutant of wc-2 lacking 

any expression of WCC target genes like vvd. To explain the phenotype of WC-1 in wc-

2 allD, the activity of WCC in this mutant needs to be investigated (see following chapter 

3.4.2). 

 

Figure 3.12: Dephosphorylation of WC-2 in WT (retransformed wc-2 wild type), in wc-2 allA and 

wc-2 allD.  

TX = total protein extract; -λ = control sample in Lambda phosphatase buffer without enzyme; +λ = sample 

treated with Lambda phosphatase. 

 

3.4.2. Phosphorylation gradually reduces the activity of WCC 

During handling of wc-2 allA and wc-2 allD cultures in light induction experiments, it 

was observed that wc-2 allA strains change their color from white to orange in response 

to light like the wild type but wc-2 allD strains remain white (no photos shown). The 

characteristic orange color of Neurospora crassa is due to the synthesis of carotenoids in 

response to light. Genes involved in the biosynthesis of carotenoids are targets of the 

light-activated WCC (Harding and Turner, 1981). The measurement of the expression of 

the carotenoid synthesis gene al-2 confirmed the observation described above (see Figure 

3.13). Both the retransformed wild type and wc-2 allA showed light-induced expression 

WC-2 

         WT                 wc-2 allA            wc-2 allD 

TX      -λ     +λ     TX     -λ      +λ    TX      -λ     +λ  
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of al-2, whereas the expression of al-2 in wc-2 allD was strongly reduced. Notably, a 

slight increase in al-2 mRNA levels in wc-2 allD was still observable. 

 

 

Figure 3.13: mRNA expression of al-2 in response to light.  

N=1 3.13a, 3.13b For wc-2 allA, two heterokaryon clones are shown in comparison to the retransformed 

wc-2 wild type. 3.13c, 3.13d For wc-2 allD, two heterokaryon clones are shown in comparison to the 

retransformed wc-2 wild type. All measurements were performed once but in different clones. 

Like al-2, the light-inducible gene vvd was expressed in response to light in the 

retransformed wild type and wc-2 allA, but the expression of vvd was strongly reduced in 

wc-2 allD (see Figure 3.14). Also like al-2, zooming in the curve of the vvd expression 

in wc-2 allD revealed that there was still light-induced expression at a very low level (see 

Figure 3.14 d and e). 

The strong reduction of the vvd expression explains the persistence of the light-induced 

phosphorylation of WC-1 in wc-2 allD (Figure 3.11). Light-activated VVD molecules are 

known to dimerize with light-activated WCC, to disrupt the WCC light dimers and 

thereby inactivate WCC. Thus, the VVD-WCC dimers should not be a target of 

phosphorylation and this mechanism is thought to explain the transience of the light-

induced phosphorylation of WC-1. Since there is no or not sufficient expression of vvd in 

a DNA-binding deficient mutant of wc-2 (wc-2 RD/DD, data not shown) as well as in wc-

2 allD, the light-induced phosphorylation of WC-1 is persistent in both strains (data for 

wc-2 RD/DD not shown). Nevertheless, the lack of VVD cannot explain why the 
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hyperphosphorylation of WC-1 is less pronounced in a DNA-binding deficient mutant of 

wc-2 as well as in wc-2 allD. This will be investigated and discussed later in chapter 3.6. 

 

 

Figure 3.14: mRNA expression of vvd in response to light.  

N=1; 3.14a For wc-2 allA, one heterokaryon clone is shown in comparison to the retransformed wc-2 wild 

type. 3.14b, 3.14c For wc-2 allD, two heterokaryon clones are shown in comparison to the retransformed 

wc-2 wild type. 3.14d Zoom of 3.14b to show the curve shape of the vvd expression in wc-2 allD clone #5. 

3.14e Zoom of 3.14c to show the curve shape of the vvd expression in wc-2 allD clone #8. All measurements 

were performed once but in different clones (except from wc-2 allA). 

Like al-2 and vvd, the light-induced expression of frq total mRNA was not affected in 

wc-2 allA. However, the light-induced expression of frq in wc-2 allD revealed a special 

feature of the frq locus. The standard frq qPCR primer and probes detect frq total mRNA, 
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comprising frq sense and frq antisense mRNA. The frq total mRNA expression was 

reduced in wc-2 allD but was less strong reduced than the expression of al-2 and vvd. The 

strand-specific measurement of frq sense mRNA explained that result. The light-induced 

expression of frq sense mRNA is even higher in wc-2 allD than in the wild type, more 

detailed explanation is given below. The frq antisense mRNA was not measured here but 

it is most likely strongly reduced like vvd and al-2 leading to an overall intermediate 

expression of frq total mRNA as seen in Figure 3.15b. The measurement of the light-

induced expression of frq (sense) in both wc-2 allA and wc-2 allD correlates with the 

detection of light-induced expression of FRQ in both wc-2 allA and wc-2 allD (see Figure 

3.10 and Figure 3.11). 

 

 

Figure 3.15: mRNA expression of frq total mRNA and of frq sense mRNA in response to light.  

N=1; 3.15a For wc-2 allA, frq total mRNA of one heterokaryon clone is shown in comparison to the 

retransformed wc-2 wild type. 3.15b For wc-2 allD, frq total mRNA of one heterokaryon clone is in 

comparison to the retransformed wc-2 wild type. 3.15c For wc-2 allD, frq sense mRNA of one homokaryon 

clone is shown in comparison to the retransformed wc-2 wild type. All measurements were performed once. 

ChIP experiments performed by Michael Oehler confirmed the results of the qPCR data 

presented above. In these experiments, a short light pulse was performed instead of light 

induction. The light intensity used in this experiment was sufficient to induce WCC 
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activity and phosphorylation. WC-2 allA was found to bind to the LREs of the light-

inducible genes vvd and frq like WC-2 WT.  The DNA binding of WC-2 allD could still 

be measured but was strongly reduced compared to WC-2 WT (Figure 3.16). 

 

Figure 3.16: α-WC2 ChIP-qPCR of wc-2 allA and wc-2 allD on frq LRE and vvd LRE. 

The experiment was performed by Michael Oehler using strains from Linda Ebelt. wc2 wild type and wc-2 

allA (3.16a) or wc-2 allD (3.16b) cultures were grown in liquid medium. After 24 h in darkness, a sample 

was taken (0 min), the culture was subjected to a light pulse (1 min, 85 µM m-2 s-1) and after 10 min, another 

sample was taken. WC2 was immunoprecipitated and bound DNA was extracted. Purified DNA was 

measured by qPCR and normalised to DNA levels in the input sample. (mean values ±SEM, n = 3) 

Taken together, these results showed that the activity of WCC is unaffected in wc-2 allA 

but the activity of WCC is strongly reduced in wc-2 allD. WC-2 allD can still bind to 

target gene promoters and induce residual expression of al-2 and vvd. Since frq sense is 

expressed under control of a very sensitive promoter frq sense LRE, the binding of less 

active WC-2 allD delays the inactivation of the promoter and allows the synthesis of more 

transcripts. These results show that phosphorylation attenuates the activity of WCC. 

Phosphorylation of WCC is not an on/off switch, it´s rather a gradual reduction of the 

transcriptional activity. 

Since wc-2 allD is less active, shouldn´t wc-2 allA be more active and deregulated?  

Phosphorylation and thus inactivation are not possible in wc-2 allA, but the results show 
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that there must be a regulatory compensation by WC-1. WC-1 is not mutated in wc-2 allA 

and is still a target for phosphorylation.  

 

3.4.3. Phosphorylation also attenuates the circadian activity of WCC 

 

 

Figure 3.17: Race tube assay of wc-2 allA and wc-2 allD. 

Growth in constant darkness to visualize the circadian clock in wild type bd, retransformed wc-2 wild type 

bd (retr. WT, clone #33), wc-2 allA bd, wc-2 allD bd and ∆wc-2 bd. Three race tubes of the same sample 

were grown in parallel. 

Previous studies have shown that the circadian phosphorylation of WCC attenuates its 

activity (He et al., 2005). Since phosphorylation on the WC-2 sites mapped in this study 

strongly attenuates the activity of WCC, it was checked whether the same 

phosphorylation sites also affect the circadian activity of WCC. A racetube assay in 

constant darkness revealed that wc-2 allA shows rhythmic conidiation like the wild type 

and the retransformed wild type (see Figure 3.17 and Figure 3.18). As observed for the 

light-induced activity, WC-1 obviously compensates for the lacking regulation of 

WC-2 allA during the circadian activity. But the conidiation of wc-2 allD was arrhythmic 

like in ∆wc-2 (see Figure 3.17 and Figure 3.18). Hence, the circadian activity of WCC is 

strongly attenuated in wc-2 allD. This result is in accordance with the observation that 

the dark-level of FRQ is reduced in wc-2 allD (see Figure 3.11b). When the FRQ level is 

too low, the feedback loop of the clock is not maintained and there is no circadian rhythm.  

wc-2 allD #5, 

bd 

Retr. WT #33, 

bd 

∆wc-2, bd 

WT, bd 

wc-2 allA #3, 

bd 



69 

 

 

Figure 3.18: Analysis of the race tube assay of wc-2 allA and wc-2 allD. 

Strains: wild type bd, retransformed wc-2 wild type bd, wc-2 allA bd (3.18a), wc-2 allD bd (3.18b) and 

∆wc-2 bd. Three race tubes of the same sample were grown in constant darkness in parallel (n=3). For 

analysis, the conidiation density of each circadian cycle was aligned to visualize graphically the period 

length. 
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3.4.4. Conclusion: circadian and light-induced phosphorylation do very 

likely not differ in phosphorylation sites 

The circadian and the light-induced expression of frq are controlled by two distinct 

promoter elements, the clock-box (c-box) and the light-responsive element (LRE). The 

investigation of both the light-induced and the circadian activity of wc-2 allD suggested 

that phosphorylation attenuates both activities of WCC. Mimicking phosphorylation on 

WC-2 allD led to an arrhythmic phenotype most likely caused by very low FRQ levels 

due to a reduced expression of frq sense from the clock-box.  Mimicking phosphorylation 

on WC-2 allD also led to reduced expression of frq antisense from the antisense LRE but 

to an enhanced expression of frq sense from the sense LRE. Taken together, these results 

imply that the same phosphorylation sites regulate both the dark and the light-activity of 

WCC. This conclusion correlates with the finding, that all the phosphorylation sites of 

WC-1 and WC-2 were found in light as well as in dark.  

 

3.5.  SP, TP pre-phosphorylation enhances phosphorylation of WC-2  

The prevalence of SP, TP phosphorylation sites on both WC-1 and WC-2 points to the 

activity of proline-directed kinases and to an important function of these phosphorylation 

sites. To investigate the function of the in total six SP, TP phosphorylation sites of WC-2, 

the serine or threonine residues were mutated to either alanine or aspartate to either 

prevent or mimic constitutive phosphorylation. Based on the distribution of the SP, TP 

phosphorylation sites on WC-2 (see Figure 3.4), an N-terminal and a C-terminal cluster 

comprising three SP, TP phosphorylation sites each were identified (see Table 3.4). 

Table 3.4: Overview of the SP, TP phosphorylation site mutants of WC-2. 

 

WC-2 phosphorylation sites SP, TP 

 

Alanine mutant 

 

Aspartate mutant 

T86, S118, T136, T339, S433, T523 wc-2 6AP wc-2 6DP 

T86, S118, T136 - wc-2 3DP N-terminal 

T339, S433, T523 - wc-2 3DP C-terminal 

 

3.5.1. The phenotype of WC-2 6DP and WC-2 3DP C-terminal 

The mutation of all six SP, TP sites to DP (wc-2 6DP) and the mutation of the three 

C-terminal SP, TP sites to DP (wc-2 3DP C-terminal) resulted in a gradually accelerated 

phosphorylation of WC-2 (Figure 3.19a). WC-2 in wc-2 6DP was almost fully 

hyperphosphorylated in dark (0 min light induction) already, WC-2 in wc-2 3DP 

C-terminal showed an equal distribution of hypo- and hyperphosphorylated species in 

dark whereas the wild type was mostly hypophosphorylated. In response to light, WC-2 

in wc-2 6DP reached full phosphorylation, WC-2 in wc-2 3DP C-terminal was almost 

hyperphosphorylated similar to the wild type but the hyperphosphorylation was more 

pronounced in wc-2 3DP C-terminal (Figure 3.19a). The light-induced phosphorylation 

of WC-1 was not affected. 
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Figure 3.19: Light induction experiments of retr. wc-2 wild type, wc-2 3DP C-terminal and wc-2 6DP.  

3.19a High resolution of the phosphorylation of WC-1 and WC-2 in denaturing protein extracts of the 

respective homokaryon strains. 3.19b Light-induced expression of al-2, data are available for wc-2 6DP 

only. The retransformed wc-2 wild type is shown as N=2, wc-2 6DP is shown as N=3 based on 3 different 

clones that behaved very similar. 3.19c FRQ expression in response to light in native protein extracts of the 
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respective heterokaryon strains. The resolution of the phosphorylation of WC-2 is lower, since these were 

native protein extracts. 

Interestingly, accelerated phosphorylation of WC-2 in the DP mutants was observed 

already in the dark and also in response to light. As outlined in chapter 3.1, the 

phosphorylation of WCC occurs already in dark and the efficiency of the phosphorylation 

reaction is enhanced in response to light. It seems that SP, TP phosphorylation also 

enhances the efficiency of the phosphorylation reaction similar to light. 

The light-induced expression of al-2 mRNA in wc-2 6DP and the light-induced 

expression of FRQ protein in both wc-2 6DP and wc-2 3DP C-terminal were similar to 

the retransformed wc-2 wild type (see Figure 3.19b and c). Remarkably, the FRQ level in 

dark was lower in the hyperphosphorylated mutant wc-2 6DP but the light-induced 

expression of FRQ was not affected. This is as similar phenotype as observed in wc-2 

allD (see Figure 3.11b) but in contrast to wc-2 allD, the expression of al-2 is not reduced 

in wc-2 6DP. Very likely, the modification of WC-2 in wc-2 6DP is compensated by 

WC-1 and the overall regulation of WCC by phosphorylation is not affected. However, 

the experiments shown in Figure 3.19 have to be repeated in homokaryon strains (light-

induced expression of FRQ) or more often, in the same clone and for other targets of 

WCC (qPCR data). ChIP analysis of wc-2 6DP and wc-2 3DP C-terminal would also be 

required to detect small changes in WCC activity. 

In wc-2 6DP, the replacement of six serine, threonine residues by six negatively charged 

aspartate residues resulted in a slower migration of WC-2 in the SDS gel. In contrast to 

that, the replacement of the three C-terminal serine, threonine residues by three negatively 

charged aspartate residues in wc-2 3DP C-terminal caused a similar migration pattern of 

WC-2 as in the wild type. This observation is further discussed in the following chapter. 

3.5.2. The phenotype of WC-2 3DP N-terminal and WC-2 6AP 

The mutation of the three N-terminal SP, TP sites to DP (wc-2 3DP N-terminal, see Table 

3.4) resulted in a light-induced phosphorylation of WC-1 and of WC-2 and in a light-

induced expression of FRQ that did not differ from the retransformed wc-2 wild type (see 

Figure 3.20a). However, these findings need to be confirmed by SDS-gels at higher 

resolution and by the measurement of the light-induced expression of target genes of 

WCC by qPCR. 

Interestingly, the three aspartate residues introduced to wc-2 3DP N-terminal caused 

already the slower migration of WC-2 in the SDS gel as seen in wc-2 6DP. Thus, at least 

one of the N-terminal DP sites causes the strong shift of the WC-2 signal. Since these 

phosphorylation sites are found in vivo but the strong shift is not observed in vivo, it 

remains questionable, whether the strong shift is an artefact caused by the artificially 

introduced aspartate residue.  

As 6DP residues accelerate the phosphorylation of WC-2, the mutation of these residues 

to alanine was assumed to slow down the phosphorylation of WC-2 since a 

posttranslational signal might be missing. However, the light-induced phosphorylation of 

WC-1 and of WC-2 and the light-induced expression of FRQ in wc-2 6AP did not differ 
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from the retransformed wc-2 wild type (see Figure 3.20b). The lack of regulatory sites on 

WC-2 in wc-2 6AP is very likely compensated by the regulation of WC-1. 

 

Taken together, the phosphorylation of SP, TP sites of WC-2 are an important regulatory 

signal for further phosphorylation of WC-2. Since SP, TP phosphorylation sites are 

overrepresented on WC-1 as well, the regulation of both WC-1 and WC-2 is very likely 

redundant to some extent. 

 

Figure 3.20: Light induction experiment of wc-2 3DP N-terminal and wc-2 6AP.  

3.20a Light induction experiment of the retransformed wc-2 wild type and wc-2 3 DP N-terminal. Native 

protein extracts of the heterokaryon strains are shown. 3.20b Light induction experiment of retransformed 

wc-2 wild type and wc-2 6AP.  Native protein extracts of the heterokaryon strains are shown. The cloning 

of wc-2 6AP and the design of the experiment was done by Linda Ebelt, the experiment was performed by 

Justus Hardegen under supervision of Linda Ebelt. 
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3.6.  DNA binding and dimerization of WCC are two triggers of the 

light-induced phosphorylation of WCC 

So far, it was found that increasing phosphorylation reduces the activity of WCC, that 

FRQ mediates the light-induced phosphorylation of WC-2 by CK-1a and that SP, TP sites 

trigger further phosphorylation of WC-2. But what is actually the trigger of the light-

induced phosphorylation of WCC? Are there differences between WC-1 and WC-2? 

Three molecular events occur during light induction: the conformational change in the 

WC-1 LOV domain, WCC dimerization at the WC-1 LOV domain, and binding of WCC 

to DNA creating contact to numerous potential interaction partners of the transcriptional 

machinery. 

3.6.1. The triggers of the phosphorylation of the small subunit WC-2 

A light-induction experiment in a DNA-binding-deficient mutant of WCC (wc-2 RK/DD) 

revealed that WC-2 was not phosphorylated in response to light (see Figure 3.21). The 

reason was that there was no FRQ expression in wc-2 RK/DD since the transcriptional 

activity is impaired. To compensate for this, FRQ was overexpressed artificially in wc-2 

RK/DD and in the wild type. In the wild type, the overexpression of FRQ strongly 

increased the phosphorylation of WC-2 already in dark and of course also in light. In wc-2 

RK/DD, the overexpression of FRQ resulted in some hyperphosphorylation of WC-2 in 

dark and further increased hyperphosphorylation in response to light. However, the 

hyperphosphorylation of WC-2 was not as pronounced in wc-2 RK/DD as in the wild type 

(see Figure 3.21). In conclusion, there is light-induced phosphorylation of WC-2 possible 

in the DNA-binding deficient mutant, the trigger is most likely the light-induced 

dimerization of WCC. But since the hyperphosphorylation of WC-2 cannot be restored 

in wc-2 RK/DD to the same extent as in the wild type, DNA-binding is also a trigger of 

the light-induced phosphorylation. 

In a wc-2 mutant that is DNA-binding deficient but constitutive phosphorylation on the 

six SP, TP sites is mimicked (wc-2 6DP RK/DD), a slight hyperphosphorylation in 

response to light was detectable. Thus, the mimicked pre-phosphorylation on the SP, TP 

sites was sufficient to cause further phosphorylation of WC-2 even in the absence of FRQ. 

The overexpression of FRQ in wc-2 6DP RK/DD strongly increased the phosphorylation 

of WC-2. The hyperphosphorylation of WC-2 in wc-2 6DP RK/DD was as pronounced 

as in the wild type when FRQ was artificially overexpressed in both strains. Since 

hyperphosphorylation of WC-2 is more pronounced in wc-2 6DP RK/DD strains than in 

wc-2 RK/DD strains, it seems that the mimicked SP, TP phosphorylation can compensate 

the missing contact to DNA. 

Regarding the DNA-binding capacity of WC-2 in wc-2 RK/DD and wc-2 6DP RK/DD, 

Figure 3.21 shows that there is some light-induced expression of FRQ. Obviously, the 

DNA-binding capacity of WCC is strongly reduced due to the RK/DD mutation and the 

resulting low activity WCC induces expression of the very sensitive frq sense LRE as 

described for wc-2 allD in chapter 3.4.2. Previous studies (Schafmeier et al., 2008) and 
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numerous experiments in this study have shown that the DNA-binding capacity of wc-2 

RK/DD and wc-2 6DP RK/DD is sufficiently low to refer to as DNA-binding deficient 

strain.  

 

Figure 3.21: Overexpression of FRQ increases phosphorylation of WC-1 and WC-2.  

Light induction (LI) experiment of retransformed wc-2 wild type, retransformed wc-2 wild type Ptcu-1 frq, 

wc-2 RK/DD, wc-2 RK/DD Ptcu-1 frq, wc-2 RK/DD 6DP and wc-2 RK/DD 6DP Ptcu-1 frq. FRQ is 

overexpressed under control of the Ptcu-1 promoter (see lower panel). In this experiment, the WC-2 and the 

FRQ signal was unusually low in retransformed wc-2 wild type. Interestingly, there is still light-induced 

expression of FRQ in wc-2 RK/DD and wc-2 RK/DD 6DP although these mutants are DNA-binding 

deficient. DNA-binding is heavily impaired and not sufficient to initiate transcription beside the very 

sensitive promoter of frq. The very low dark- level of FRQ in wc-2 RK/DD is not sufficient to mediate 

light-induced phosphorylation of WC-2. 

 

3.6.2. The triggers of the phosphorylation of the large subunit WC-1 

 

 

Figure 3.22: Triggers of the light-induced phosphorylation of WC-1. 

Different loading scheme of the light induction experiment shown in Figure 3.21 to highlight the light-

induced phosphorylation of WC-1 in retransformed wc-2 wild type, retransformed wc-2 wild type Ptcu-1 frq, 

wc-2 RK/DD, wc-2 RK/DD Ptcu-1 frq, wc-2 RK/DD 6DP and wc-2 RK/DD 6DP Ptcu-1 frq (FRQ ox = FRQ 

overexpression). 

In contrast to the hypophosphorylated WC-2, WC-1 was phosphorylated in response to 

light in the DNA-binding-deficient mutant wc-2 RK/DD (see Figure 3.21). Since there is 
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still light-induced phosphorylation of WC-1 although DNA-binding is impaired, the 

trigger of the phosphorylation is very likely the light-induced dimerization of WC-1 at 

the LOV domain. However, the maximum hyperphosphorylation of WC-1 after 30 min 

in light was not as high in wc-2 RK/DD as in the retransformed wc-2 wild type (see Figure 

3.22). The same effect was observed in the DNA-binding-deficient mutant wc-2 6DP 

RK/DD. Interestingly, the artificial expression of FRQ in both wc-2 RK/DD and in wc-2 

6DP RK/DD increased the maximum hyperphosphorylation of WC-1 to the level of the 

retransformed wc-2 wild type (see Figure 3.22). Thus, dimerization triggers the light-

induced phosphorylation of WC-1 but FRQ-mediated phosphorylation is also required to 

reach the full hyperphosphorylation of WC-1. The maximum hyperphosphorylation of 

WC-1 in wc-2 6DP RK/DD Ptcu-1 frq was even more pronounced than in the retransformed 

wc-2 wild type Ptcu-1 frq confirming the facilitating function of the SP, TP 

phosphorylation. In sum, these results indicated that dimerization is a trigger of the WC-1 

phosphorylation, that there is a contribution of FRQ to the light-induced phosphorylation 

of WC-1 and that SP, TP phosphorylation on WC-2 enhance the light-induced 

phosphorylation of WC-1. 

WC-1 hyperphosphorylation below the maximum was also observed in wc-2 allD (Figure 

3.11). In wc-2 allD, DNA-binding of WCC is strongly reduced and there is hardly any 

FRQ detectable in the dark but there are sufficient FRQ levels reached after more than 60 

min in light. So, the absence of sufficient FRQ levels during the first 30 min of light 

induction explain the reduced hyperphosphorylation phenotype of WC-1 in accordance 

with the conclusions drawn from wc-2 RK/DD and in wc-2 6DP RK/DD. 

In wc-2 allD (see Figure 3.11), the light-induced phosphorylation remains below the 

maximum and is persistent, whereas the light-induced phosphorylation of WC-1 in the 

wild type is transient. The persistence of the WC-1 phosphorylation over a time range of 

at least 2 h was also observed in a vvd non-function mutant (vvdSS692, Heintzen et al., 

2001) and in wc-2 RK/DD (data not shown). These mutants, wc-2 allD, vvd non-function 

and wc-2 RK/DD, have in common that VVD is not expressed or not functional and 

cannot interfere with the light-induced dimerization of WCC. It seems that WCC-VVD 

dimer is not a target of kinases and that WCC-VVD dimerization thus impedes WCC 

phosphorylation. These observations are another strong argument that WCC dimerization 

is a trigger of the light-induced phosphorylation. 

In contradiction to these conclusions, WC-1 was as high phosphorylated in a frq knock 

out mutant as in the wild type (see Figure 3.9) although FRQ is missing as mediator of 

the WC-1 phosphorylation. The mutants showing intermediate hyperphosphorylation of 

WC-1 in the absence of FRQ, wc-2 RK/DD, wc-2 6DP RK/DD and wc-2 allD, have in 

common that both FRQ and DNA-binding are missing. In the frq knock out mutant, WCC 

does still bind to DNA and initiates transcription, just the frq gene is knocked out. Thus, 

DNA-binding and light-induced dimerization of WC-1 at the LOV domain must be the 

triggers that induce maximum hyperphosphorylation of WC-1 in the frq knock out mutant. 

Since FRQ overexpression and light-induced dimerization of WC-1 at the LOV domain 
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can induce maximum hyperphosphorylation of WC-1 in wc-2 RK/DD Ptcu-1 frq, the two 

triggers, DNA-binding and FRQ, can compensate for each other to some extent. But there 

is also the possibility that the differences in the phosphorylation of WC-1 cannot be 

resolved by SDS-gel as it was used in this study. On the other hand, compensation seems 

to be a general fail-safe mechanism in the regulation of the activity of WCC as it was also 

observed that the two subunits WC-1 and WC-2 can compensate for each other.  

 

Taken together, the two subunits of WCC, WC-1 and WC-2, have different features and 

are phosphorylated differentially. But the separate investigation of WC-1 and WC-2 with 

the mutants shown in this chapter and in this study lead independently to the same 

conclusions: 

• FRQ mediates the phosphorylation of both WC-1 and WC-2. 

• DNA-binding is a trigger of the phosphorylation of both WC-1 and WC-2. 

• SP, TP phosphorylation enhances further phosphorylation of both WC-1 and 

WC-2. 

• The light-induced dimerization of WCC is a trigger of the phosphorylation of both 

WC-1 and WC-2. However, direct proof is pending.  

• Whether the conformational change in the WC-1 LOV domain is a trigger of light-

induced phosphorylation could not be dissected with the experimental approaches 

used here. 

 

3.7.  Hypothesis: feedback of the transcriptional machinery on WCC 

As described above, DNA-binding is a trigger of the phosphorylation of WCC and 

phosphorylation on SP, TP of WC-2 enhances further phosphorylation of WCC. The 

occurrence of DNA-binding and proline-directed phosphorylation is hardly a coincidence 

because several proline-directed kinases are components of the transcriptional machinery: 

CDK7, CDK8, CDK9.  

These proline-directed kinases are brought in close vicinity to the specific transcription 

factor WCC by the transcriptional machinery and might phosphorylate WCC. The 

phosphorylation of the SP, TP sites of WCC could be checkpoint of transcription. It could 

be a feedback of the correctly assembled (pre)initiation complex on WCC marking WCC 

with the message „Transcription factor was active!“ (Figure 3.23). The phosphorylation 

on SP, TP sites would enhance further phosphorylation mediated by FRQ that deactivates 

WCC.  

With this mechanism, the cell could discriminate between light-activated WCC and light-

activated WCC that has actually initiated light-induced transcription. This mechanism 

would ensure that not all light-dimers of WCC are deactivated immediately by 

phosphorylation but only transcriptional active WCC molecules are deactivated. 

 



78 

 

 

Figure 3.23: Hypothesis of the feedback of the transcriptional machinery on the specific transcription 

factor White Collar Complex (WCC).  

WCC is binding to its target sequence, the light responsive element (LRE), in the promoter region of a 

light-inducible gene. Nucleosomes are removed from the relevant sequences to initiate transcription. The 

proline-directed kinases of the transcriptional machinery (highlighted in red) might feedback on WCC and 

phosphorylate the SP, TP sites. 

 

3.8.  Artificial SP, TP phosphorylation rescues WC-2 

phosphorylation in the presence of a transcriptional inhibitor.  

To investigate the hypothesis of the feedback of the transcriptional machinery, a light-

induction experiment was performed in the retransformed wc-2 wild type and in wc-2 

6DP in the presence and absence of the transcription inhibitor thiolutin. In dark, after 

0 min light induction, thiolutin suppressed the slight hyperphosphorylation of WC-2 in 

both the retransformed wc-2 wild type and in wc-2 6DP (see Figure 3.24). In light (30 min 

light induction), thiolutin suppressed any light-induced phosphorylation of WC-2 in the 

retransformed wc-2 wild type. After 120 min in light, the suppression was still maintained 

(data not shown). Unlike the wild type, WC-2 was light-induced phosphorylated in wc-2 

6DP in the presence of thiolutin. However, thiolutin shifted the fraction of hyper- and 

hypophosphorylated WC-2 in wc-2 6DP towards the hypophosphorylated species (see 

Figure 3.24).  In conclusion, the transcriptional inhibitor thiolutin suppressed the 

phosphorylation of WC-2 in the wild type but the six phospho-mimicking DP residues in 

in wc-2 6DP restored the phosphorylation of WC-2 to some extent. Thus, phosphorylation 

at the SP, TP sites seems to mimic active transcription.  
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Figure 3.24: Light-induced phosphorylation of WC-2 6DP in the presence of the transcriptional 

inhibitor Thiolutin. 

Light induction experiment in retransformed wc-2 wild type and wc-2 6DP in the presence and absence of 

12 µg/mL thiolutin, a transcriptional inhibitor. The cultures were incubated with thiolutin for 90 min in 

dark before harvesting the 0 min sample or starting the 30 min light induction.  

However, this finding supports but does not prove the hypothesis of the feedback of the 

transcriptional machinery, since thiolutin was found to have pleiotropic effects in the cell 

and the mechanism of the transcriptional inhibition by thiolutin is not fully understood so 

far (Lauinger et al., 2017). It was shown that thiolutin prevents binding of WCC to target 

genes (Brunner Lab, unpublished data) and that RNAP II transcript levels as well as 

RNAP II S5-P occupancy at promoters are reduced in the presence of thiolutin (Lauinger 

et al., 2017). Nevertheless, it cannot be excluded the phosphorylation of WCC is modified 

in the presence of thiolutin due to pleiotropic effects. Several other transcriptional 

inhibitors and inhibitors of CDK7 and CDK9 were tested in Neurospora crassa but no 

effect on transcription was measured (data not shown). Thus, the use of conventional, 

small inhibitory compounds is no suitable approach to prove the hypothesis of the 

feedback of the transcriptional machinery. 

 

3.9.  Outlook: Proof of the hypothesis with a sensitive CDK7 mutant 

If CDK7, CDK8 and CDK9 could be inhibited or knocked out, it is expected to find a 

reduced phosphoryation of WCC according to the hypothesis of a feedback of the 

transcriptional machinery. Inhibition with conventional inhibitors is not an option, as 

outlined above.  

CDK8 (stk-8 in N. crassa) is available as homokaryon knock out strain indicating that 

this kinase is not essential N. crassa. The stk-8 knock out strain was tested in a light 

induction experiment but no impact on the phosphorylation of WC-1 and WC-2 was 

found (unpublished data, not shown). 

For CDK7 and CDK9 (prk-3 and stk-1, stk-47 in N. crassa), knock out strains are not 

available since these kinases are essential. To overcome this, a sensitized mutant of CDK7 

(Prk3) was cloned. The mutation makes the active site accessible for a small inhibitory 

compound but still allows the turn-over of ATP (Figure 3.25). Thus, the mutant is viable 

but the activity of CDK7 can be inhibited. Additionally, the inhibition CDK7 would also 

inhibit CDK9 since transcript elongation cannot start as long as transcription is not 

initiated. After cloning of the sensitive CDK7 (Prk3) mutant, this project was handed over 

and is still ongoing.  

  0 min light induction         30 min light induction 

   retr. WT     wc-2 6 DP      retr. WT   wc-2 6DP      

   -         +        +         -        -        +        +        -   

WC-2 

Thiolutin 
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Figure 3.25: Visualization of the principle of a sensitized essential kinase.  

One or more amino acids are mutated to enlarge the active site and make it accessible for an inhibitor. ATP 

can still be processed so that the mutant is viable.  Modified acc. to Rodriguez-Molina et al., 2016. 

 

3.10. Conclusion: The mechanism of the light-induced 

phosphorylation of White Collar Complex 

The aim of this project was to unravel the mechanism of the light-induced 

phosphorylation of WCC. The results of this project imply the following mechanism that 

is illustrated in Figure 3.26. 

In the dark, there is a pool of differently and poorly phosphorylated molecules of WCC. 

Blue light is received by the LOV domain in WC-1, the large subunit of WCC. Light 

reception causes a molecular rearrangement in the LOV domain that allows the 

dimerization of two LOV domains and thus the formation WCC light-dimers. This 

dimerization is the first trigger of the light-induced phosphorylation of WCC.  

The WCC light-dimer binds to the LRE in the promoter of light-inducible genes. The 

forming transcriptional machinery (pre-initiation complex) brings CDK7 and also CDK9 

in close vicinity to WCC. At some point of successful initiation of transcription or 

successful formation of the pre-initiation complex, CDK7 (may be also CDK8, maybe 

later also CDK9) phosphorylated WCC most likely at the SP, TP residues. This is a 

feedback of the transcriptional machinery that leaves a mark on WCC telling 

“transcription factor was active”. Thus, DNA-binding is the second trigger of the light-

induced phosphorylation of WCC.  

In the following, the protein complex based on FRQ brings CK1-a to WCC and the 

accumulating phosphorylation on single WCC molecules gradually reduces the activity.  

FRQ-mediation is the third trigger of the light-induced phosphorylation of WCC. In the 

following, light-activated WCC molecules are caught by VVD and this inhibits the 

phosphorylation of WC-1 causing the transience of the WC-1 phosphorylation while 

WC-2 remains hyperphosphorylated. 
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Overall, the identification of phosphorylation sites, their function and the identification 

of triggers and enhancers of the light-induced phosphorylation have shown that this 

mechanism is rather a balance of kinetics and efficiency than a stringent sequence of 

switch-like molecular events. This balance as well as several options for compensation 

ensure the flexibility, the fine-tuning and protection of the system. 

 

 

Figure 3.26: Graphical summary of the results of this study.  
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4. Discussion  

4.1.  Comparison of this study with a similar study  

In May 2019, Wang et al. from the research group of Jay C. Dunlap at the Geisel School 

of Medicine at Darthmouth, Hanover, USA, have published a study very similar to this 

study (Wang et al., 2019). The experiments and analysis of results for this study were 

completed in July 2018. Afterwards, only writing and compilation of the thesis was 

performed. The study of Wang et al. is focused on the circadian phosphorylation of WCC 

while this study is focused on the light-induced phosphorylation. The study of Wang et 

al. brought similar results about, confirming these results to some extent. In the following, 

the results of this study are discussed in the context of the study by Wang et al., 2019. 

 

Sequence coverage and total number of phosphorylation sites 

To map the phosphorylation sites of WCC, a high sequence coverage (100 % or close to 

100 %) was achieved in both studies by usage of a combination of proteases. Wang et al. 

used Trypsin and Protease K while this study used Trypsin, Thermolysin and Elastase. 

Overall, the similar phosphorylation sites were found, but some differences are obvious. 

For WC-1, Wang et. al. found more phosphorylation sites in total and found 3 tyrosine 

(Y) residues phosphorylated whereas this study found only S, T phosphorylation (see 

Table 4.1). For WC-2, Wang et. al. found less phosphorylation sites in total, tyrosine 

phosphorylation wasn´t found in both studies (see Table 4.1). 

Table 4.1: Comparison of the number of phosphorylation sites of WC-1 and WC-2 found in this study 

and in the study of Wang et al. 2019. 

   

Phosphorylation sites 

WC-1 
This study 34 S, T 

Wang et al. 2019 80 S, T, Y 

WC-2 
This study 23 S, T 

Wang et al. 2019 15 S, T 

 

Wang et. al. concluded from experiments with their WC-1 109A mutant (109 S, T sites 

mutated collectively to alanine to prevent phosphorylation; 77 phosphorylation sites that 

were found by mass spectrometry and 32 additional S or T to alanine were mutated), and 

with their WC-2 15pA mutant (all 15 phosphorylation sites mutated collectively to 

alanine) that all relevant phosphorylation sites were covered by the mass spectrometry. 

For WC-2, this study draws the same conclusion from the WC-2 allA mutant (all 23 

phosphorylation sites mutated collectively to Alanine). However, Wang et. al. state that 

WC-2 phosphorylation is fully covered by 15 phosphorylation sites whereas this study 

relies on 23 phosphorylation sites. This discrepancy might be explained by the fact, that 

10 out of the 23 phosphorylation sites of this study are putative phosphorylation sites. 

Thus, the true number of WC-2 phosphorylation sites ranges between 15 and 23 sites.  
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Since the difference in the number of phosphorylation sites of WC-1 and WC-2 was less 

pronounced in this study (WC-1: 34 sites; WC-2: 23 sites), the decision to focus the 

investigation on WC-2 seems reasonable. Whereas the high number of phosphorylation 

sites of WC-1 in the study of Wang et. al. obviously drew the attention to the larger 

subunit of WCC.  

 

The regulation of WCC requires phosphorylation of both WC-1 and WC-2 

When analyzing the phenotype of the WC-1 109A mutant and the WC-2 15pA, Wang et. 

al. found a wild type-like phenotype for both mutants. The WC-2 15pD mutant 

(mimicking constitutive phosphorylation) was arrhythmic. This study found the same 

circadian phenotype for wc-2 allA and wc-2 allD, proving that the results are right. 

However, this study did not generate phosphorylation site mutants of WC-1. In this study, 

only phosphorylation sites of WC-2 were mutated and based on several results the 

hypothesis of the regulatory compensation by WC-1 was developed. The results of this 

study indicate that both subunits of WCC, WC-1 and WC-2, can compensated for each 

other although these two molecules have a different structure and different functions to 

some extent. By creating double mutants of WC-1 and WC-2, Wang et al. showed that 

the regulation of WCC requires phosphorylation of both WC-1 and WC-2. Wang et al. 

analyzed specific phosphorylation site mutants of WC-1 (S, T, Y to A) in the background 

of wc-2 mutants (S, T to A) and vice versa to detect the true phenotype. Thus, the study 

of Wang et al. confirms the hypothesis of compensation from this study.  

 

SP, TP phosphorylation sites of WC-1 and WC-2 

This study found SP, TP phosphorylation sites to be overrepresented and focused on the 

investigation of this finding whereas Wang et. al. didn´t touch this topic at all. Table 4.2 

shows that the overrepresentation of SP, TP sites is more obvious in this study than in the 

study of Wang et al., at least for WC-1. 

Table 4.2: The overrepresentation of SP, TP sites in this study in comparison to the study of Wang et 

al. 

  SP, TP sites S, T sites Percentage SP, TP 

WC-1 
This study 12 34 35 % 

Wang et al. 2019 21 77 27 % 

WC-2 
This study 6 23 26 % 

Wang et al. 2019 4 15 27 % 

 

The data shown by Wang et. al. include the number of peptides on which the 

phosphorylation site was found. Interestingly, SP, TP sites are overrepresented in the 

group of WC-1 phosphorylation sites that were found on numerous peptides: 15 sites out 

of 80 sites were mapped on a high number of peptides (S8, S11, S92, S111, S200, S234, 

S315, S824, S831, S971, S988, S990, S1005, S1015, S1074) and 11 out of these 15 sites 

are SP sites (highlighted in bold letters). In this way, the WC-1 data of Wang et. al. 
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support the importance of SP, TP sites identified in this study as a mechanistical aspect 

of the WCC phosphorylation. 

 

No light- and dark-specific phosphorylation sites on WC-1 and WC-2 

Wang et. al. analyzed the phosphorylation of WC-1 and WC-2 also under different growth 

conditions in dark and in light (Wang et. al.: LL, LP15, DD15, DD24, this study: LI15, 

LI30, DD24; see explanation below in Table 4.3). Wang et. al. describe LP15 as time 

point when WCC undergoes maximal light-dependent phosphorylation. But acc. to the 

results of this study, LP15 as well as LI15 are the time points of intermediate 

phosphorylation of WCC. Beside this discrepancy, LP15, LP15 and LP30 are supposed 

to be sufficient to identify light-specific phosphorylation sites.  

Table 4.3: Short explanation of the growth conditions in dark and in light. 

 

Growth condition 

 

Physiology 

LL constant light WCC constantly induces FRQ expression 

LP15 light pulse for 15 min WCC undergoes maximal light-dependent 

phosphorylation, independent from the circadian 

clock (acc. to Wang et al., 2019) 

LI15 light induction for 15 min WCC undergoes intermediate light-dependent 

phosphorylation, independent from the circadian 

clock (acc. to this study) 

LI30 light induction for 30 min WCC undergoes maximal light-dependent 

phosphorylation, independent from the circadian 

clock (acc. to this study) 

DD15 constant dark for 15 hours WCC is active, circadian subjective morning 

DD24 constant dark for 24 hours WCC is inactive, circadian subjective evening 

 

This study aimed at the identification of light-specific phosphorylation sites but came to 

the conclusion that there is hardly a difference in light- and dark-phosphorylation of WCC 

although the molecular mechanism of the WCC activity in light and in dark are different. 

Wang et. al. performed the mapping of phosphorylation sites in light and in dark but did 

not analyze or discuss the specificity of the phosphorylation. Their data (presented in 

Figure S1 in Wang et al., 2019) show light- and dark-specific phosphorylation sites of 

both WC-1 and WC-2. But many of these sites were found in this study under both 

conditions and several sites, that seemed to be light- or dark-specific phosphorylation 

sites in this study were found under both conditions in the study of Wang et al., 2019.  

Furthermore, for both WC-1 and WC-2 it is obvious that light- or dark-specific 

phosphorylation sites are found on only very few peptides (1-3 peptides). In contrast to 

that, all phosphorylation site, that were found on numerous peptides, were found in light 

as well as in dark. The only exception is S971 of WC-1 that was found on 10 peptides at 

DD24 in the study of Wang et. al.. However, S971 was found in this study at LI15 and at 
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DD24, so is not a dark-specific phosphorylation site. Like the data of Wang et. al., the 

raw data of this study also show some light- or dark-specific phosphorylation sites. The 

analysis of the data revealed, that these sites were found on peptides or fragmentation 

products of peptides and that were rare and most likely hardly detectable by mass 

spectrometry. The observation that the light- or dark-specific phosphorylation sites of the 

study by Wang et. al. were also found on rare peptides supports the interpretation of the 

data from this study. The light- or dark specificity of most of the phosphorylation sites is 

chemical-technical artefact of the mass spectrometry. 

 

T339 and S433 of WC-2 are the key target sites 

Regarding WC-2, only T339 and S433 were found on numerous peptides (5 peptides and 

more) in the study of Wang et. al, all the other phosphorylation sites were found on less 

than 5 peptides. And like the observations made for WC-1, T339 and S433 of WC-2 were 

found in light and in dark and are SP, TP sites. These two sites are part of the cluster that 

was identified as minimum of mutated phosphorylation sites causing arrhythmia (wc-2 

S331A, T339A, S341A, S433A, T435A). It would be interesting so see the phenotype of 

a T339, S433 double mutant, but Wang et al. did not present such a mutant. In the study 

of Wang et al., the phosphorylation sites were mutated to alanine to prevent 

phosphorylation. Also, the phenotypes of WC-2 alanine mutants were analyzed in the 

context of WC-1 alanine mutants and vice versa to eliminate the masking of phenotypes 

by compensation of the other subunit of WCC. In this study, a phenotype related to T339 

and S433 of WC-2 was found by using the opposite approach. In the wc-2 3DP C-terminal 

mutant, T339, S433 and T523 (SP, TP sites) are mutated to aspartate to mimic 

phosphorylation in a wc-1 wild type background. Mimicking phosphorylation of only one 

subunit obviously has a stronger effect. The mutation of T339, S433, T523 to aspartate 

resulted in an accelerated phosphorylation of WC-2. This acceleration was even more 

pronounced in wc-2 T86D, S118D, T136D, T339D, S433D, T523D (wc-2 6DP) but not 

visible at all in wc-2 T86D, S118D, T136D, pointing to the importance of T339 and to 

S433. In this study, the alanine mutant wc-2 T86A, S118A, T136A, T339A, S433A, 

T523A (wc-2 6AP) was found to have a wild type-like phenotype and it was concluded 

that this is due to the compensation by WC-1. The study of Wang et al. confirms this 

conclusion. Taken together, the results of both studies indicate that T339 and S433 of 

WC-2 are the key target sites of the transcriptional machinery to regulate WC-2 activity 

in light as well as in dark although the molecular mechanisms of WCC activity in light 

and in dark are different. 

 

Phosphorylation modulates the strength of WCC DNA binding 

Wang et al. showed that WC-1 and WC-2 alanine mutants bind stronger to the frq c-box 

than the wild type since the alanine mutation represents an active, hypophosphorylated 

state of WCC. The WC-2 aspartate mutant was found to bind less strong to the frq c-box 

than the wild type since the aspartate mutation represents a constitutive 
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hyperphosphorylation. In this study, the same outcome was found for a WC-2 alanine and 

a WC-2 aspartate mutant, but for the frq LRE instead of the frq c-box. Thus, both studies 

came to the conclusion that phosphorylation gradually modulates the DNA binding and 

thus the activity of WCC. This further proves that the circadian activity and the light-

induced activity of WCC are most likely regulated by the same mechanism of 

phosphorylation. Although the circadian activity and the light-induced activity of WCC 

are different molecular mechanism, the difference in the mechanism of phosphorylation 

remains elusive. 

 

The WC-1 S990 cluster 

Wang et al. identified the cluster of WC-1 phosphorylation sites around S990 (S971, 

S988, S990, S992, S994, S995) to be crucial for the inactivation of WCC. The respective 

experiments were conducted in a WC-2 15A or WC-2 10A background to eliminate the 

compensation by WC-2. Except from S971, this cluster represents the first 

phosphorylation sites detected on WCC in a study by He et al., 2005 (S988, S990, S992, 

S994, S995). In contrast to these studies, this study mapped only S971, S988 and S990 

and S988 is doubtful since it is a putative phosphorylation site. This contradicts the 

importance that was assigned to the full cluster around S990 in the other studies. But 

interestingly, S971 and S990 are both followed by proline. Taken the results of all studies 

together, the SP sites S971 and S990 might be the only functional relevant 

phosphorylation sites. If so, this further supports the crucial function of proline-directed 

phosphorylation the regulation of WCC. 

 

FRQ-mediated phosphorylation of WC-1 

Wang et al. detected FRQ-promoted phosphorylation events on WC-1 and WC-2. The 

experimental approach was to mutate all S, T, Y residue on WC-1 or WC-2 to alanine 

and then to reverse selected sites of interest to the wild type amino acid. Since the FRQ 

level was very low in these strains, FRQ was overexpressed artificially under control of 

an inducible promoter. The results showed that FRQ overexpression promotes 

phosphorylation of WC-1 S971; S990; S1015; S988 + S992 + S994 + S995 and WC-2 

S433. The WC-1 site S971 showed phosphorylation even in the absence of FRQ and the 

overexpression of FRQ strongly increased the phosphorylation. In this study, similar 

conclusions were drawn from very different experimental approaches. This study has 

shown that FRQ and CK-1a are not required for but enhance the light-induced 

hyperphosphorylation of WC-1. Unlike WC-1, FRQ and CK-1a are required for and also 

enhance the light-induced hyperphosphorylation of WC-2.  

Interestingly, the current standard kinase prediction tools predict that most the above-

mentioned phosphorylation sites of WC-1 and WC-2 are hardly a target of CK1a or CK2 

(see also Table S3 in Wang et al. 2019). But if FRQ mediates the phosphorylation of these 

residues, FRQ may interact with other kinases than CK1a and CK2. Furthermore, the 

majority of the above-mentioned phosphorylation sites of WC-1 and WC-2 are SP, TP 
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sites (WC-1 S971; S990; S1015; S995 and WC-2 S433). Again, this implies a strong 

functional relevance of proline-directed phosphorylation in the regulation of WCC. 

 

The kinases that phosphorylate WCC 

Like this study, Wang et al. also asked which kinases are involved in the light-induced 

phosphorylation of WCC. They disconfirmed the previously suggested kinase PKA 

(Huang et al., 2007) leaving CK1a to be the only kinase known to be essential for the 

circadian phosphorylation of WCC. CK2 is suggested to compensate for CK1a. In the 

discussion of the paper, Wang et al. mention that no single knock out strains of non-

essential kinases show an arrhythmic phenotype. Some kinase knock out strains were 

screened in this study for altered light-induced phosphorylation of WCC, but no 

phenotype was detected. Like this study, Wang et al. also suggest the redundancy of 

kinases that regulate the circadian clock. But for the first time, this study suggested the 

kinases of the transcriptional machinery, CDK7, CDK8, CDK9, to phosphorylate WCC. 

 

The black widow model and WCC phosphorylation 

The discussion of the data on Wang et al. revealed, that the overrepresentation of SP, TP 

sites was not recognized. This is surprising since Wang et al. use the black widow model 

to interpret the data and this model obviously suggests proline-directed phosphorylation. 

The black widow model describes that the appropriate termination of transcription 

initiation is as important as well-regulated transcription initiation to organize gene 

transcription activity (Chi et al., 2001; reviewed in Tansey, 2001). The termination of 

transcription initiation is achieved by controlled activity-associated turnover of 

transcriptional activators. After initiation of gene transcription, transcription factors are 

marked and degraded.  

Regarding WCC, the negative feedback loop describes that active WCC is 

hyperphosphorylated in an FRQ-dependent manner to inactivate, but not to degrade 

WCC. The observation, that hyperphosphorylation stabilizes WCC, is called the positive 

feedback loop since it maintains the WCC level. In other words, hypophosphorylated, 

active WCC is instable. Wang et al. report that WC-1 and WC-2 mutants that accumulate 

a critical number or position of alanine mutations, are very active since there is no 

inactivation by phosphorylation and thus, the WCC levels are low. Wang et al. correctly 

state that this observation is in accordance with the black widow model. They also state 

correctly, that acc. to the black widow model, the active transcription factor is marked for 

turnover. However, Wang et al. do not mention how WCC gets the mark for turnover. In 

the black widow model, the transcriptional activator is phosphorylated by CDK 8, the 

kinase of the mediator complex (homolog Saccharomyces cerevisiae: Srb10) to be 

marked for ubiquitin-mediated proteolysis. CDKs are known to phosphorylate SP, TP 

motifs.  

In contrast to Wang et. al., this study suggests that the phosphorylation of WCC is a 

multistep phosphorylation. Acc. to the black widow model, SP, TP phosphorylation by 
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the kinases of the transcriptional machinery targets WCC for degradation but also for 

facilitation of further, inactivating phosphorylation. This hypothesis explains the 

degradation of active WCC as well as the positive feedback by FRQ. This hypothesis also 

explains, why the WCC levels are still high in the wc-2 6DP mutant. In this mutant, 

mimicked SP, TP phosphorylation targets for degradation but also strongly facilitates the 

stabilizing, FRQ-mediated phosphorylation.  

The observation that active, hypophosphorylated WCC is instable might be due to the fact 

that the in vivo, only a few phosphorylated SP, TP sites could be sufficient to initiate 

ubiquitin-mediated proteolysis. The experiments with the wc-2 6DP mutant showed that 

the artificial addition of 6 negative leads to a slowdown in the migration in the SDS-

PAGE that is never observed in vivo. Furthermore, WC-1 and WC-2 could act together 

so that a very few phosphorylated SP, TP sites on each protein are hardly detectable by 

SDS-PAGE or mass spectrometry but are sufficient to initiate degradation. The 

experimental proof that a kinase of the transcription machinery phosphorylates WCC and 

the technical realization of a time-resolved detection of WCC phosphorylation would be 

required to test the hypothesis created in this study. Nevertheless, the time-resolved 

detection of WCC phosphorylation might be impossible since the SP, TP phosphorylation 

and the FRQ-mediated phosphorylation are very likely parallel processes similar to the 

light-induced dimerization of WCC (activating) and of WCC and VVD (inactivating). 

Also, as outlined in the discussion of the data of Wang et al., FRQ might also play a role 

in the recruitment of other kinases, may be also of the CDKs of the transcriptional 

machinery. The parallelism of positive and negative regulation of WCC and of different 

regulatory mechanism is very likely since this allows fine-tuning of the gene expression, 

compensation in case of malfunction of a certain system and thus creates robustness. 

 

4.2.  Serine 433 of WC-2, an important regulatory 

phosphorylation site  

Serine 433 was the first phosphorylation site of WC-2 published (Sancar et al., 2009). 

This previous study found that the WC-2 S433A mutant is rhythmic like the wild type 

but the S433D mutant has a period slightly longer than wild type. The study also found 

that WCC is more active in S433A and less active in S433D. This phosphorylation site 

was confirmed in this study as well as in the study of Wang et al., 2019 and it was the 

most abundant phosphorylation site of WC-2 in both studies. This study identified S433 

as SP site as part of the C-terminal cluster of 3 SP, TP sites that shows a strong phenotype. 

Wang et al., identified S433 as part of the cluster of WC-2 phosphorylation sites that are 

required to maintain the circadian rhythm. Although this study focused on the light-

induced phosphorylation and the study of Wang et al. focused in the circadian 

phosphorylation of WCC, the results of both studies are in accordance with the previous 

study of Sancar et al., 2009. Alanine (A) mutants of WCC phosphorylation sites show 

increased activity of WCC and Aspartate (D) mutants show decreased activity. The longer 



89 

 

period of the S433D mutant points to an effect on the circadian rhythm. Taken together, 

these results imply an important regulatory role of serine 433 of WC-2, very likely more 

important than other phosphorylation sites of WC-2.  

 

4.3.  Phosphorylation of WCC equivalents in mammals and 

D. melanogaster 

The molecular clocks of Drosophila melanogaster and mammals (Mus, Homo) share 

many molecular similarities with Neurospora crassa.  

In Drosophila melanogaster, the positive element in the feedback loop is the 

heterodimeric transcription factor CLK/CYC (CLOCK and CYCLE). Like WC-1 and 

WC-2, CLK and CYC also have PAS domains but have bHLH DNA binding domains 

instead of a ZnF. The negative element in D. melanogaster is the PER/TIM complex 

(PERIOD / TIMELESS) that interacts with kinases and gets intensively phosphorylated, 

similar to FRQ in N. crassa. The Casein Kinase DBT (DOUBLE-TIME, homolog to 

mammalian CK1ε) is an important pace maker of the D. melanogaster circadian clock 

that phosphorylates PER but also CLK. In N. crassa, CK1a was found to phosphorylate 

FRQ but also WCC. But in D. melanogaster, the kinases CK2, SGG (shaggy, ortholog of 

GSK3), NMO (NEMO, MAPK) and AMPK were also found to phosphorylate one or 

more proteins of the circadian feedback loop (Cho et al., 2019; Yu et al., 2011; reviewed 

in Mehra et al., 2009) 

In mammals, the positive element is the heterodimeric transcription factor 

BMAL1/CLOCK. Both proteins have PAS domains and bHLH DNA binding domains. 

The negative element of the circadian feedback loop is PER/CRY which is in a complex 

with and phosphorylated by CK1δ. In mammals, numerous kinases were shown to 

phosphorylate PER/CRY and especially the positive element BMAL1/CLOCK: AKT, 

ATM, CK1δ/ε, CK2, Chk1, Chk2, GSK3, PKA, PKC, PKG-II, RACK1 (Aryal et al., 

2017; Luciano et al., 2018; Robles et al., 2010; Shim et al., 2007; Spengler et al., 2009; 

Tischkau et al., 2004; reviewed in Mehra et al., 2009).  

Taken together, both positive and the negative elements of the central feedback loop in 

eukaryotes are regulated and controlled by phosphorylation. In contrast to D. 

melanogaster and mammals, only very few kinases are known to phosphorylate the 

N. crassa clock proteins. CK1 plays a major role in the circadian system of N. crassa, D. 

melanogaster and mammals. Due to the difficult identification of kinases with circadian 

function in N. crassa, several studies including this one presumed the activity and the 

redundancy of many kinases. Given the large number of kinases with circadian function 

in D. melanogaster and mammals, this assumption seems reasonable. Most likely, 

different experimental approaches are required to identify other kinases in N. crassa.  

So far, only a few phosphorylation sites of BMAL1/CLOCK are known (1 site BMAL1, 

9 sites of CLOCK, mammalian) (Luciano et al., 2018; Spengler et al., 2009; Tamaru et 

al., 2009; Yoshitane et al., 2009). The phosphorylation sites were found to have various 
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effects. S90 of BMAL1 was found to regulate the accumulation of BMAL1/CLOCK in 

the nucleus and mutation of this single site to alanine was found to disrupt the clock 

function (Tamaru et al., 2009). S38 and S42 of CLOCK were found to additively weaken 

the activity of BMAL1/CLOCK, an effect of phosphorylation similar to WCC in 

N. crassa (Yoshitane et al., 2009). The phosphorylation cluster S427-S441 of CLOCK 

was identified as GSK3-mediated phosphor-degron (Spengler et al., 2009). S845 of 

CLOCK was found to negatively regulate BMAL1/CLOCK in peripheral tissues 

(Luciano et al., 2018). Among the phosphorylation sites of mammalian BMAL1/CLOCK, 

S427 of CLOCK is the only site followed by a proline and was identified as target of the 

proline-directed kinase GSK3.  

Interestingly, numerous phosphorylation sites were found on CLK of the CLK/CYC 

complex (19 sites, D. melanogaster; Lee et al., 2014; Mahesh et al., 2014). Like WC-1 

and WC-2 (WCC, N. crassa), single phosphorylation site mutation showed only mild 

effects, so combined mutants were generated. Also similar to WCC, the CLK-16A mutant 

(16 phosphorylation sites mutated to alanine) is a functional protein and phosphorylation 

of CLK does not interfere with the interactions of core clock partners. And also like WCC, 

phosphorylation of CLK was shown to negatively regulate the activity of CLK/CYC (Lee 

et al., 2014; Mahesh et al., 2014). Remarkably, among the 19 phosphorylation sites of D. 

melanogaster CLK, 8 sites are followed by a proline which is a clear overrepresentation 

of SP, TP sites as observed for WCC (N. crassa). Since the MAPK NMO was shown to 

play a role in the circadian clock of D. melanogaster, and since MAPKs together with 

CDKs are typical proline-directed kinases, it was tested whether NMO phosphorylates 

the SP phosphorylation site S859 of CLK. The tests showed that NMO does not 

phosphorylate S859 (Mahesh et al., 2014). So far, the proline-directed kinases 

phosphorylating CLK in D. melanogaster are not known. 

To sum up, the mechanism and the function of the phosphorylation of BMAL1/CLOCK 

(mammalian) differs from the phosphorylation of WCC (N. crassa). Only a few 

phosphorylation sites of BMAL1/CLOCK were found to negatively regulate the 

transcriptional activity like it was found for WCC. However, only a few phosphorylation 

sites of BMAL1/CLOCK are known to date. Since CLK (D. melanogaster) and WCC (N. 

crassa) were found to be highly phosphorylated, the identification of more 

phosphorylation sites of BMAL1/CLOCK (mammalian) can be expected and might 

reveal new mechanistic details. As outlined above, the similarities of the phosphorylation 

of CLK (D. melanogaster) and WC-1 and WC-2 (WCC, N. crassa) are striking. The 

overrepresentation of SP, TP phosphorylation sites in CLK (D. melanogaster) allows to 

speculate whether the hypothesis of SP, TP phosphorylation as a feedback of the 

transcriptional machinery on the transcriptional activator can be extended to the circadian 

clocks of higher eukaryotes. 
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4.4.  Summary of all mechanisms that regulate the light-induced 

activity of WCC and the contribution of this study 

Light activates the blue light receptor and transcription factor WCC and thereby induces 

gene transcription to synchronize the internal circadian clock of N. crassa with the 

environment. Furthermore, light-induced gene transcription by WCC initiates 

physiological processes that enable N. crassa to cope with issues associated with daylight 

like, for example, DNA damage by UV-light. Given the importance of light-induction 

and given the large variation of environmental light conditions, this process requires tight 

regulation.  

On a molecular level, light-induction begins with the dimerization of two light-activated 

WCC protomers to form L-WCC. At this point, the first regulatory mechanism is the 

small light receptor VVD that inhibits L-WCC activity by competing with WCC 

dimerization. This regulatory mechanism is accurately tuneable since vvd itself is a light-

inducible target of WCC that reacts very fast to light and is expressed relative to the light 

intensity.  

As a next step in light-induction, L-WCC binds to its target sequence on the DNA. At this 

point, several regulatory mechanisms associated with chromatin remodeling and general 

transcription can modulate the L-WCC activity. This study contributed to that stage of 

regulation by suggesting a direct feedback of the transcriptional machinery on L-WCC 

via phosphorylation at SP, TP sites. By binding to the promoter of a gene, the gene-

specific properties interfere with L-WCC activity. Although different target genes of 

L-WCC share the same binding sequence for L-WCC, the gene expression profiles vary 

in time and intensity. Phenomena like promoter refractoriness are very likely gene-

specific processes.  

Whether phosphorylation of L-WCC is the next, last step of the regulation of L-WCC 

activity is hard to tell since this study found hints that phosphorylation interferes with the 

previous stages of regulation. This study revealed that phosphorylation gradually reduces 

the activity of L-WCC, that DNA-binding is a trigger of the phosphorylation and that SP, 

TP phosphorylation enhances further phosphorylation of both WC-1 and WC-2. If these 

observations are really due to the feedback of the transcriptional machinery, 

phosphorylation would be indeed the last step of regulation. However, the results of this 

study imply that the light-induced dimerization of WCC alone is also trigger of the 

phosphorylation of both WC-1 and WC-2. A direct proof is pending but if this is true, 

phosphorylation would occur in parallel to the previous stages of regulation.  

This study did not touch the topic of phosphatases. The investigation of the circadian 

phosphorylation has shown that phosphorylation of WCC is antagonized by 

phosphatases. On the Western Blot, the light-induced phosphorylation of WC-1 appears 

transient but was associated with degradation and new synthesis of WC-1 in previous 

studies. Nevertheless, the parallel, antagonizing activity of phosphatases in light-induced 

phosphorylation of WCC cannot be excluded. 
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The molecular effect of the light-induced phosphorylation of WCC is not fully understood 

yet. Phosphorylation adds a negative charge to a protein that causes electrostatic repulsion 

from negatively charged DNA, modifies protein-protein interaction and can change the 

conformation of a protein. Since no phosphorylation sites were found in the DNA-binding 

domains of WCC, since the structure of WCC is not known and since transcription is a 

process that requires interaction of numerous proteins, all the effects of phosphorylation 

are possible. 

This study investigated the light-induced phosphorylation and found hints that light-

induced phosphorylation does not differ much from the circadian phosphorylation. The 

study by Wang et al., 2019 analyzed the circadian phosphorylation of WCC and the 

results share several similarities with this study. Thus, this study significantly contributed 

to the understanding of the regulation of the positive element in the central oscillator of a 

circadian clock. 
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5. Appendix 

5.1.  SDS-Gel of the tandem affinity purification of tagged WC-2 in 

March 2014 

 

Figure 5.1: Result of the tandem affinity purification (TAP) of tagged WC-2 in March 2014.  

Silver staining and Coomassie staining of the SDS gels. The CaM precipitation (CaM Pr) samples were 

loaded. TEV = cleavage site for TEV protease; CBP = calmodulin binding protein. Molecular weight 

marker in kDa. 

 

5.2.  SDS Gel of the WC-2 IP in January 2016 

 

Figure 5.2: Result of the WC-2 Immunoprecipitation in January 2016. 

The wc-2 wild type strain was grown in constant dark for 24 h (0 min) and exposed to light for 30 min 

(light induction). M = molecular weight marker in kDa. 
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34 
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5.3.  SDS Gel of the WC-2 IP in July 2016 

 

Figure 5.3: Result of the WC-2 Immunoprecipitation in July 2016.  

The wc-2 wild type strain (WT) and the wc-2 knock out mutant (∆2, as control to detect the antibody) were 

grown in constant light (LL). M = molecular weight marker in kDa. 

 

5.4.  List of phosphorylated peptides of WC-1 

Table 5.1: Phosphorylated peptides of WC-1 that was pulled-down with tagged WC-2 in the tandem 

affinity purification in January 2014.  

0´= samples that were grown in dark for 24 h (DD24); 15´= samples that were exposed to light for 15 min 

after growth in dark for 24 h. 

Position 

(aa) 

aa 

+1 

Peptide Score 0´ 

(DD24) 

15´ 

(LI15) 

S 111 V RRSVPQPYGGQT 

RRSVPQPY 

SVPQPYGGQT 

25 

27 

33 

0´ 

15´ 

15´ 

S 315 P TTFQSPSLSATTQTI 

FAQGMATPVSQDAASTPATTFQSPSLSATTQT 

SQDAASTPATTFQSPSLSATTQTI 

TTFQSPSLSATTQTI 

65 

48 

26 

49 

0´ 

15´ 

15´ 

15´ 

S 315 and/ 

or 

S 317 

P 

L 

SQDAASTPATTFQSPSLSATTQTI 48 15´ 

S 334 V RIGPPPPPSVT 

IGPPPPPSVT 

37 

40 

0´ 

15´ 

S 334 or 

T 336 

V 

N 

IRIGPPPPPSVTNAPTPAPFTSTPSGGGASQTKS 45 0´ 

T 340 P IRIGPPPPPSVTNAPTPAPFTSTPSGGGASQTKS 

NAPTPAPF 

70 

23 

15´ 

15´ 

S 824 and / 

or S 831 

P 

P 

TVKNMSPGGVPLSPMKGIQTDSDSNTLMGGMSK 35 0´ 

S 831 P VTVKNMSPGGVPLSPMKG 

MSPGGVPLSPMKG 

VTVKNMSPGGVPLSPMKG 

KNMSPGGVPLSPMKGIQTDSDSNTLMGGMS 

21 

39 

32 

55 

0´ 

15´ 

15´ 

15´ 

WC-2 

170 
130 

95 

72 

55 

43 

34 

 ∆2  M       WT      ∆2 
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TVTVKNMSPGGVPLSPMKGIQTDSDSNTLMGGMS 66 15´ 

S 863 or 

S 866 or 

S 867 

A 

S 

A 

SARSSAGPGQDAALDADNIFDELKTT 

SARSSAGPGQDAALDADNIFDELKTT 

9 

46 

0´ 

0´ 

S 866 or 

S 867 

S 

A 

VSARSSAGPGQDAALDADNIFDELKTTRCTSWQYE 25 0´ 

T 967  RWAKQTGRVSPRTS 14 15´ 

S 988 or  

S 990 

N 

P 

SNSPSHSSPLHREVGNDSPSTT 13 15´ 

S 990 P NSPSHSSPLHREVGNDSPSTT 7 15´ 

S 1005 P VGNDSPSTTTATKNSPS 20 15´ 

S 1007 or 

T 1008 or 

T 1009 or 

T 1010 or 

T 1012 

T 

T 

T 

A 

K 

EVGNDSPSTTTATKNSPSLRGSSTTAPGTITTDSGPAVA 12 0´ 

T 1009 or 

T 1010 

T 

A 

VGNDSPSTTTATKNSPS 19 0´ 

T 1009 or 

T 1010 or 

T 1012 

T 

A 

K 

LHREVGNDSPSTTTATKNSPS 14 15´ 

T 1010 or 

T 1012 or 

S 1015 or 

S 1017 

A 

K 

P 

L 

TATKNSPSLRGSSTTAPGTITTDSGPAVA 

TATKNSPSLRGSSTTAPGTITTDSGPAV 

37 

62 

0´ 

15´ 

 

T 1012 or 

S 1015 

K 

P 

ATKNSPSLRGSSTTAPGTITTDSGPA 

ATKNSPSLRGSSTTAPGTITTDSGPAVA 

TATKNSPSLRGSSTTAPGTITTDSGPAVA 

60 

30 

27 

15´ 

15´ 

15´ 

S 1015 P LHREVGNDSPSTTTATKNSPS 

VGNDSPSTTTATKNSPSLRGSSTTAPGTITTDSGPA 

TATKNSPSLRGSSTTAPGTITTDSGPAVAS 

TATKNSPSLRGSSTTAPGTITTDSGPAVAS 

54 

43 

41 

41 

0´ 

0´ 

0´ 

15´ 

S 1015 or 

S 1017 

P 

L 

LHREVGNDSPSTTTATKNSPS 23 15´ 

S 1017 L TATKNSPSLRGSSTTAPGTITTDSGPAVA 

TATKNSPSLRGSSTTAPGTITTDSGPAVA 

63 

52 

0´ 

15´ 

S 1071 or 

S 1074 

G 

P 

LGPPATGPSGGSPAQHLPPHLQGTHLNAQAMQR 10 15´ 

S 1074 P NALGPPATGPSGGSPAQHLPPHLQGTHLNAQAMQ 22 15´ 

 

Table 5.2: Phosphorylated peptides of WC-1 that was pulled-down with tagged WC-2 in the tandem 

affinity purification in March 2014.  

0´= samples that were grown in dark for 24 h (DD24); 15´= samples that were exposed to light for 15 min 

after growth in dark for 24 h. 

Position 

(aa) 

aa 

+1 

Peptide Score 0´ (DD24) 

15´ (LI15) 

S 111 V RRSVPQPYGGQT 

RRSVPQPYGGQT 

33 

35 

0´ 

15´ 
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S 200 P LNMYHSPPIENPYSSAG 29 15´ 

S 315 P FAQGMATPVSQDAASTPATTFQSPSLSATTQT 

TTFQSPSLSATTQTI 

FAQGMATPVSQDAASTPATTFQSPSLSATTQT 

TTFQSPSLSATTQTI 

35 

49 

71 

62 

0´ 

0´ 

15´ 

15´ 

S 334 V RIGPPPPPSVT 

IRIGPPPPPSVTNAPTPAP 

IGPPPPPSVT 

RIGPPPPPSVT 

64 

87 

38 

42 

0´ 

15´ 

15´ 

15´ 

S 334 or 

T 336 

V 

N 

IRIGPPPPPSVTNAPTPAPFTSTPSGGGASQTKS 69 0´ 

T 336 N IRIGPPPPPSVTNAPTPAPFTSTPSGGGASQTKS 89 15´ 

T 340 P IRIGPPPPPSVTNAPTPAPFTSTPSGGGASQTKS 

IRIGPPPPPSVTNAPTPAPFTSTPSGGGASQTKS 

VTNAPTPAPFTSTPSGGGASQTKS 

NAPTPAPF 

40 

55 

50 

21 

0´ 

15´ 

15´ 

15´ 

S 346 or 

T 347 

T 

P 

FTSTPSGGGASQTKS 21 0´ 

T 347 P FTSTPSGGGASQTKS 27 15´ 

T536 T IWTPPTQKQLEPADGQT 34 15´ 

S 824 and S 

831 

P 

P 

VTVKNMSPGGVPLSPMKG 24 15´ 

S 831 P VKNMSPGGVPLSPMKG 

KNMSPGGVPLSPMKGIQTDSDSNTLMGGMS 

LAPATVTVKNMSPGGVPLSPMKG 

VTVKNMSPGGVPLSPMKG 

KNMSPGGVPLSPMKGIQTDSDSNTLMGGMS 

TVTVKNMSPGGVPLSPMKGIQTDSDSNTLMGGMS 

59 

34 

53 

40 

52 

38 

0´ 

0´ 

15´ 

15´ 

15´ 

15´ 

S 866 or 

S 867 

S 

A 

VSARSSAGPGQDAA 50 0´ 

S 867 A VSARSSAGPGQDAA 31 15´ 

S 971 P WAKQTGRVSPRTS 

WAKQTGRVSPRTS 

24 

20 

0´ 

15´ 

S 1005 

and/or 

S 1007 

P 

 

T 

VGNDSPSTTTATKNSPS 

VGNDSPSTTTATKNSPS 

40 

37 

0´ 

15´ 

T 1010 or 

T 1012 or 

S 1015 or 

S 1017 or 

 

A 

K 

P 

L 

TATKNSPSLRGSSTTAPGTITTDSGPAV 

TATKNSPSLRGSSTTAPGTITTDSGPAVA (here: 

two phosphorylated residues, 

combination not known) 

60 

28 

15´ 

T 1012 or 

S 1015 or 

S 1017 

K 

P 

L 

TATKNSPSLRGSSTTAPGTITTDSGPAV 

ATKNSPSLRGSSTTAPGTITTDSGPAVA 

41 

24 

0´ 

15´ 

T 1012 or 

S 1015 

K 

P 

 

TATKNSPSLRGSSTTAPGTITTDSGPAVA 45 15´ 

S 1015 P VGNDSPSTTTATKNSPS 

TATKNSPSLRGSSTTAPGTITTDSGPAVA 

40 0´ 
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VGNDSPSTTTATKNSPS  

ATKNSPSLRGSSTTAPGT 

ATKNSPSLRGSSTTAPGTITTDSGPAVA 

TATKNSPSLRGSSTTAPGTITTDSGPAVAS 

32 

68 

29 

44 

48 

0´ 

15´ 

15´ 

15´ 

15´ 

S 1015 or S 

1017 

P 

L 

LHREVGNDSPSTTTATKNSPS 

VGNDSPSTTTATKNSPS 

66 

74 

0´ 

0´ 

S 1021  KNSPSLRGSSTTAPGTITTDSGPAVA 42 15´ 

S 1021 or 

S 1022 or 

T 1023 or 

T 1024 

S 

T 

T 

A 

VGNDSPSTTTATKNSPSLRGSSTTAPGTITTDSGPA 51 15´ 

S 1022 or 

T 1023 

T 

T 

LRGSSTTAPGTITTDSGPA 41 15´ 

S 1074 P LGPPATGPSGGSPAQHLPPH 

LGPPATGPSGGSPAQHLPPH 

NALGPPATGPSGGSPA 

36 

50 

23 

0´ 

15´ 

15´ 

S 1166 V IREEMGEHQQGLSV 

IREEMGEHQQGLSV 

21 

23 

0´ 

15´ 

 

 

5.5.  List of phosphorylated peptides of WC-2 

Table 5.3: Phosphorylated peptides of WC-2 purified in the tandem affinity purification in January 

2014. 

0´= samples that were grown in dark for 24 h (DD24); 15´= samples that were exposed to light for 15 min 

after growth in dark for 24 h. 

Position 

(aa) 

aa 

+1 

Peptide Score 0´ (DD24) 

15´ (LI15) 

S 80 or 

S 82 or 

T 86 

M 

N 

P 

LDVGDSMSNPFTPVSVPPPLPAGNAGPSH 15 15´ 

S 118 P VCGGHGAPDQLFSPDDLIATSMSSAGPM 12 15´ 

T 136 P IATPTTTTSGPSGGPSSGGGST 

MSSAGPMIATPTTT 

63 

26 

15´ 

15´ 

T 287 K FAPNPQNQSPFCQAVFMMARPYPTKNA 

FAPNPQNQSPFCQAVFMMARPYPTKNA 

18 

10 

0´ 

0´ 

S 331 Q RMSQEGRSDVTPSDDTATQMGMTPFYIPMNA 20 15´ 

T  339 or 

S 341 

P 

D 

MSQEGRSDVTPSDDTATQMGMTPFYIPMNA 

RMSQEGRSDVTPSDDTATQMGMTPFYIPMNA 

20 

30 

15´ 

S 394 I LTRENLEGIAGSRPDSIREKM 

IAGSRPDSIREKM 

19 

13 

0´ 

15´ 

S 433 P ITTGNASPTLIKGDAG  

LKYQEGERSHGITTGNASPTLIKGDAG 

HGITTGNASPT 

SHGITTGNASPTLI 

62 

26 

14 

56 

0´ 

0´ 

0´ 

15´ 

S 476 or P IKVAEEYVCTDCGTLDSPEWRKGPSGPKT 30 0´ 



98 

 

S 484 G 

T 523 P AKKEKKKNANNNNNGGGIGGHNDIHTPMGDHMG 

NDIHTPMGDHMG 

AKKEKKKNANNNNNGGGIGGHNDIHTPMGDHMG 

AKKEKKKNANNNNNGGGIGGHNDIHTPMGDHMG 

NDIHTPMGDHMG 

31 

3 

20 

11 

41 

0´ 

0´ 

15´ 

15´ 

15´ 

 

Table 5.4: Phosphorylated peptides of WC-2 purified in the tandem affinity purification in March 

2014. 

0´= samples that were grown in dark for 24 h (DD24); 15´= samples that were exposed to light for 15 min 

after growth in dark for 24 h. 

Position 

(aa) 

aa 

+1 

Peptide Score 0´ (DD24) 

15´ (LI15) 

T 138 or T 

139 

T 

T 

IATPTTTTSGPSGGPSSGGGST 52 15´ 

S 331 or 

S 336 or 

T 339 or 

S 341 

Q 

D 

P 

D 

RMSQEGRSDVTPSDDTATQMGMTPFYIPMNA 14 15´ 

T 339 or  

S 341 

P 

D 

RMSQEGRSDVTPSDDTATQMGMTPFYIPMNA 32 0´ 

S 341 D MSQEGRSDVTPSDDTATQMGMTPFYIPMNA 33 0´ 

S 390 and 

S 394 

R 

I 

IAGSRPDSIREKM 19 0´ 

S 394 I IAGSRPDSIREKM 

LTRENLEGIAGSRPDSIREKM 

21 

20 

0´ 

15´ 

S 433 P ITTGNASPTL 

ITTGNASPTLIKGDAG 

SHGITTGNASPTLI 

ITTGNASPTL 

ITTGNASPTLIKGDAG 

HGITTGNASPTLI 

58 

70 

62 

47 

64 

33 

0´ 

0´ 

0´ 

15´ 

15´ 

15´ 

S 433 or  

T 435 

P 

L 

ITTGNASPTLIKGDAGIAIP 

HGITTGNASPTLIKGDAGIAIPL 

51 

37 

0´ 

0´ 

T 473 or 

S 476 

L 

P 

IKVAEEYVCTDCGTLDSPEWRKGPSGPKT 

IKVAEEYVCTDCGTLDSPEWRKGPSGPKT 

19 

14 

0´ 

15´ 

T 523 P AKKEKKKNANNNNNGGGIGGHNDIHTPMGDHMG 

NANNNNNGGGIGGHNDIHTPMGDHMG 

NDIHTPMGDHMG 

AKKEKKKNANNNNNGGGIGGHNDIHTPMGDHMG 

NDIHTPMGDHMG 

20 

26 

20 

21 

17 

0´ 

0´ 

0´ 

15´ 

15´ 

 

Table 5.5: Phosphorylated peptides of WC-2 purified by WC-2 Immunoprecipitation in January 

2016.  

0´= samples that were grown in dark for 24 h (DD24); 30´= samples that were exposed to light for 15 min 

after growth in dark for 24 h. 
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Position 

(aa) 

aa 

+1 

Peptide Score 

 

0´ (DD24) 

30´ (LI30) 

S80 or  

S82 

M 

N 

LDVGDSMSNPFTPVSVPPPLPAGNAGPSH 11 0´ 

S80 or  

S82 

M 

N 

LDVGDSpMSNPFTPVSVPPPLPAGNAGPSH 23 30´ 

S82  LDVGDSMSpNPFTPVSVPPPLPAGNAGPSH 28 30´ 

T86 P LDVGDSMSNPFTpPVSVPPPLPAGNAGPSH 

 

30 0´ 

LDVGDSMSNPFTpPVSVPPPLPAGNAGPSH 38 30´ 

S118 P VGVCGGHGAPDQLFSpPDDLIATSMSSAGPM 19 0´ 

VGVCGGHGAPDQLFSpPDDLIATSMSSAGPM 35 30´ 

S128 or 

S129 

S 

A 

FSPDDLIATSMSpSAGPM 25 0´ 

T136  P MSSAGPMIATpPTTTTSGPSGGPSSGGGSTLTEFT 30 0´ 

FSPDDLIATSMSSAGPMIATpPTTTTSGPSGGPSSGGGST 50 30´ 

IATpPTTTTSGPSGGPSSGGGST 81 30´ 

T138 T IATPTpTTTSGPSGGPSSGGGST 23 30´ 

T136 or 

T138 

P 

T 

SMSSAGPMIATpPTTT 29 30´ 

T136 or 

T138 

P 

T 

SMSSAGPMIATpPTTT 

(second peptide) 

29 30´ 

T136 or 

T138 or 

T139 or 

T140 

P 

T 

T 

T 

MSSAGPMIATpPTTTTSGPSGGPSSGGGSTLTEFT 30 0´ 

T136 or 

T138 or 

T139 

P 

T 

T 

IATpPTpTTTSGPSGGPSSGGGST 54 0´ 

T136 or 

T138 or 

T139 

P 

T 

T 

FSPDDLIATSMSSAGPMIATpPTTTTSGPSGGPSSGGGST 

 

50 30´ 

T136 or 

T138 or 

T139 or 

T140 or 

T141 

P 

T 

T 

T 

S 

FSPDDLIATSMSSAGPMIATpPTTTTSGPSGGPSSGGGST 31 0´ 

T136 or 

T138 or 

T139 or 

T140 or 

T141 

P 

T 

T 

T 

S 

FSPDDLIATSMSSAGPMIATpPTTTTSGPSGGPSSGGGST 23 30´ 

T139 or 

T140 or 

T141 or 

S142 

T 

T 

S 

G 

TTTSpGPSGGPSSGGGSTLTEFT 

 

25 30´ 

T141 or 

S 142 

S 

G 

TPTTTTSpGPSGGPSSGGGSTLTEFT 

 

22 30´ 
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S331 or 

S336 or 

T339 

Q 

D 

P 

MSQEGRSDVTpPSDDTATQMGMTPFYIPMNA 30 0´ 

T339 P MSQEGRSDVTpPSDDTATQMGMTPFYIPMNA 30 0´ 

MSQEGRSDVTpPSDDTATQMGMTPFYIPMNA 26 30´ 

MSQEGRSDVTpPSDDTATQMGMTPFYIPMNAQADVMMPP 

PSQPASS 

34 30´ 

T339 or 

S341 

P 

D 

MSQEGRSDVTPSpDDTATQMGMTPFYIPMNA 30 0´ 

T339 or 

S341 

P 

D 

MSQEGRSDVTpPSDDTATQMGMTPFYIPMN 11 0´ 

T339 or 

S341 

P 

D 

MSQEGRSDVTPSpDDTATQMGMTPFYIPMNAQADVMMPP 

PSQPASS 

11 0´ 

S341 D MSQEGRSDVTPSpDDTATQMGMTPFYIPMNA 30 0´ 

S341 or 

T344 

D 

A 

MSQEGRSDVTPSpDDTATQMGMTPFYIPMNA 30 0´ 

S390 or 

S394 

R 

I 

IAGSpRPDSIREKM 12 0´ 

S394 I ENLEGIAGSRPDSpIREK 39 0´ 

ENLEGIAGSRPDSpIREK  60 30´ 

S 433 P SHGITTGNASpPTLIK 73 0´ 

ITTGNASpPTL 58 0´ 

SHGITTGNASpPTLIK 76 30´ 

HGITTGNASpPTLI 47 30´ 

ITTGNASpPT 53 30´ 

ITTGNASpPTLIKGDAG 65 30´ 

T435 L ITTGNASPTpLIKGDAG 36 30´ 

T523 P NANNNNNGGGIGGHNDIHTpPMGDHMG 26 30´ 

 

 

 

    

5.6.  Results of the pull-down experiment in January 2014 

See figure 5.4 on the following pages. 
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Figure 5.4: Selected proteins identified by mass spectrometry in the tandem affinity purification of 

tagged WC-2 in January 2014.  

The light- and the dark-sample were separated by size in an SDS-gel. Tagged WC-2 and its very stable 

interaction partner WC-1 were pulled down at high concentrations and appeared as prominent bands in the 

gel. These bands were excised and analyzed for protein phosphorylation. The rest of the gel was cut into 

several bands that comprise a certain mass range. The intermediate mass of each band is indicated on the 

x-axis. The masses of 300, 400 and 500 kDa are only a very rough estimation since these bands were excised 

from the gel over the upper band of the molecular weight marker (170 kDa). For experimental reasons, 

some gel bands had to be pooled (mix, grey), others were analyzed independently (LI = light-sample; DD 

= dark-sample). Since the method used was not quantitative mass spectrometry, the protein score 

distribution over the whole mass range was analyzed for selected target proteins and for selected control 

proteins. Since the protein score contains some information about the abundance of the protein in the 

sample, the aim was to search for a light-induced enrichment of interaction partners of WCC. As control, 

WC-1 and WC-2 are shown. As outlined above, the actual WC-1 and WC-2 band are not part of the 

identification analysis shown here. The proteins scores of WC-1 and WC-2 shown here represent the smear 

of these proteins over the whole gel. As further controls, two very abundant proteins, ADH and actin, are 

shown. The metabolic enzymes 6-PFK and lysine-5 and the translation elongation factor 3 (EF3) represent 

unspecific protein hits of various size. As proteins of interest, FRQ, FRH, CK1a and CK2 are shown as 

known interactors of WCC. GSK3 and PKC were suggested to phosphorylate WCC previously. RCM1 and 

RCO1 were shown to also bind to LRE, the target sequence of WCC in light-inducible genes (Liu et al., 

2015; Olmedo et al., 2010; Ruger-Herreros et al., 2014). 
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