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Abstract

In this thesis I report on the experimental study of fermionic systems in two com-

plementary experimental settings, i.e. large ensembles of dipolar erbium atoms and

few-particle systems of fermionic lithium trapped in optical tweezers.

Compared to alkali atoms, dipolar quantum gases offer new avenues to explore due

to their long-range anisotropic interactions and a rich internal structure. Such rich-

ness comes at the cost of complexity and therefore requires precise investigations of

the atomic properties as well as the development of new experimental methods. In

the first part of this thesis we present measurements of the anisotropic light shift

of erbium atoms and compare the results to semiempirical electronic-structure cal-

culations. Measurements of scalar and tensor polarizabilies of the ground and one

excited state show good agreement with calculated values. We furthermore present

the first experimental realization of a two-component strongly-interacting Fermi gas

with dipolar interactions. We identify several intra and interspin Feshbach resonances

at low magnetic field and precisely map out the scattering length across one broad

resonance.

The second part of this thesis is dedicated to the characterization of small fermionic

systems with momentum correlation measurements. Starting with systems of two or

three indistinguishable fermions, we detect and discuss second and third-order mo-

mentum correlations that arise from quantum statistics alone. We then extend the

study of correlation functions to interacting systems and develop a scheme to constrain

large parts of the density matrix. Based on these constraints we reconstruct physical

density matrices via Bayesian inference. We finally use the reconstructed states to

address the influence of exchange symmetry on particle-particle entanglement in sys-

tems of identical fermions. Using the simple notion of an Antisymmetric Negativity

we are able to separate entanglement from antisymmetrization from entanglement

induced by interaction.
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Zusammenfassung

In dieser Arbeit berichte ich von der experimentellen Untersuchung fermionischer Sys-

teme in zwei komplementären Umgebungen: große Ensembles dipolarer Erbiumatome

und Wenigteilchensysteme aus fermionischem Lithium.

Im Gegensatz zu Alkaliatomen ist die Wechselwirkung zwischen Erbiumatomen lan-

greichweitig und anisotrop, was zusammen mit ihrer reichhaltigen inneren Struktur

neue Möglichkeiten bietet, interessante Vielteilchenphänomene experimentell zu un-

tersuchen. Dazu ist jedoch eine genaue Kenntnis über die atomare Struktur von

Erbium und die Entwicklung neuer experimenteller Methoden nötig. Im ersten Teil

dieser Arbeit stellen wir Messungen der anisotropen Stark-Verschiebung von Erbiu-

matomen vor und vergleichen die Ergebnisse mit semiempirischen Atomstruktur-

Berechnungen. Messungen der Skalar- und Tensorpolarisierbarkeit des Grundzus-

tands und eines ausgewählten angeregten Zustands stimmen gut mit berechneten

Werten überein. Des Weiteren präsentieren wir die erste experimentelle Realisierung

eines stark wechselwirkenden zweikomponentigen Fermigases mit dipolarer Wechsel-

wirkung. Wir identifizieren mehrere intra- und interspin Feshbach-Resonanzen bei

niedrigem Magnetfeld und bestimmen präsize die Streulänge in der Nähe einer aus-

gewählten Resonanz.

Der zweite Teil dieser Arbeit befasst sich mit der Charakterisierung kleiner fermion-

ischer Systeme durch Impulskorrelationsmessungen. Ausgehend von Systemen aus

zwei oder drei ununterscheidbaren Fermionen messen und diskutieren wir Impul-

skorrelationen zweiter und dritter Ordnung, die sich allein aus der Quantenstatistik

ergeben. Anschließend erweitern wir die Studie der Korrelationsfunktionen auf wech-

selwirkende Systeme und entwickeln ein Schema, um den Großteil der Dichtematrix

einzuschränken. Basierend auf diesen Bedingungen rekonstruieren wir physikalische

Dichtematrizen durch Bayes’sche Inferenz. Schließlich verwenden wir die rekonstru-

ierten Zustände, um den Einfluss der Austauschsymmetrie auf Teilchen-Teilchen-

Verschränkung in Systemen identischer Fermionen zu untersuchen. Unter Benutzung

einer antisymmetrischen Negativität können wir Verschränkung von Antisymmetri-

sierung von Verschränkung trennen, die durch Wechselwirkung induziert wird.
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Preamble

The work presented in this thesis was conducted in two different ultracold-atom lab-

oratories. I spent the first year of my graduation at Innsbruck University, where I

worked in the erbium laboratory under the supervision of Prof. Dr. Francesca Fer-

laino. During this time, we pursued two major projects. The first project was the

investigation of effects of the anisotropic polarizability of erbium atoms and its po-

tential application for state-dependent manipulation or trapping of an atomic sample.

The second project focused on preparing a spin mixture of fermionic erbium in an

optical lattice and to map out the scattering length across an s-wave Feshbach reso-

nance, which might enable future studies of BEC-BCS crossover physics with ultracold

dipolar atoms. After the first year in Innsbruck, I continued to work at Heidelberg

University under the supervision of Prof. Dr. Selim Jochim. During that time we de-

veloped new methods to investigate and characterize few-fermion systems of fermionic

lithium trapped in an array of optical tweezers. By analyzing single-particle resolved

momentum-density correlation functions, we are able to reconstruct physical density

matrices of systems containing two or three mobile, interacting fermions via Bayesian

inference. We apply this scheme to a range of different experimental states and use

the reconstructed density matrices to investigate entanglement properties of fermionic

identical-particle states.

Due to the very different kind of experiments in Innsbruck and Heidelberg, they will

be presented in separate parts in this thesis. The thesis is therefore divided into three

major parts. The first part gives a general introduction to the field of ultracold atoms.

The second part presents the results obtained during my first year in Innsbruck and

finally the last part presents results from my time in Heidelberg.

Outline of this Thesis

Introductory Part: This part provides an introduction to the field of ultracold

atoms and embeds the presented experiments within the respective research field. We

briefly introduce the main aspects and tools that make ultracold atoms a versatile

platform to investigate a range of different physics. We discuss how to trap and cool

an ensemble of atoms and how laser light can be used to create optical potentials for

neutral atoms. We also comment on how interactions between neutral atoms can be

tuned in the laboratory. While most concepts presented in this part apply to both

species, erbium and lithium, this part is also used to briefly compare properties, where

they are distinctly different.

1



OUTLINE

Erbium Part: This part presents the work done in Innsbruck. We start by giving

an overview on the main atomic properties of erbium, including the discussion of the

structure of energy levels, available optical transitions and magnetic properties. This

sets the stage to present the main results from my first year. We start by discussing

the concept of anisotropic light shifts and present measurements of the anisotropic

polarizability of erbium both in the ground and in one excited state. We compare

the measurements to electronic structure calculations and find very good agreement

despite the complicated structure of electronic energy levels. The following chapter

presents our work on the realization of a strongly interacting two-component Fermi

gas of dipolar atoms. We make use of a lattice projection technique to suppress in-

elastic collisions during the initialization of the spin-mixture and map out an s-wave

Feshbach resonance at around 680 mG via modulation spectroscopy in an optical lat-

tice. This measurement presents the first realization of a dipolar Fermi gas with

tunable s-wave interactions.

Lithium Part: This part presents the work done in Heidelberg. We start with a

brief chapter on the main properties of lithium and the tools that we have avail-

able in the laboratory to initialize and characterize few-particle Fermi systems. In

the experiment we can measure single-particle and spin resolved momentum distri-

butions of systems containing few mobile, interacting particles in arrays of optical

tweezers. This technique enables the measurement of momentum-density correla-

tion functions, which we use to characterize the system. We start by investigating

momentum-density correlations in systems involving two or three non-interacting in-

distinguishable atoms, where we measure and discuss strong second and third-order

correlations induced by exchange statistics. In the following chapter we develop a

method to analyze measured momentum-density correlation functions of states con-

sisting of mobile, interacting particles and to construct physical density matrices via

Bayesian inference. We apply this scheme to a range of different states and finally

use the reconstructed density matrices to investigate particle-particle entanglement

in systems with identical particles. To this end we employ the notion of an Antisym-

metric Negativity to remedy conceptual problems that arise when individual particles

are treated as subsystems for entanglement characterization.
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Part I

Ultracold Quantum Gases

A Playground for Quantum

Physicists
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Chapter 1

Introduction

About one and a half centuries ago, a series of peculiar experimental observations

such as the spectrum of hydrogen and the discovery of the Balmer series [1], the

discovery of the photoelectric effect by Heinrich Hertz [2] or the Zeeman-splitting

effect by Pieter Zeeman [3] required physicists to question the validity of classical

physics on microscopic scales. The seminal work of many physicists, including Ein-

stein, Planck, Born or Pauli, ultimately led to the development of quantum mechanics

in the early 20th century, which revolutionized our understanding of the microscopic

world. The key ideas were to quantize the energy of states, to ascribe both a wave

and a particle character to quantum mechanical objects and to allow superposition

states. Although being heavily debated at that time, already from the very beginning,

quantum mechanics was able to explain most experimental observations such as black-

body radiation or the famous Stern-Gerlach experiment, it enabled the development

of the Bohr model for the atom, and facilitated the understanding of the periodic

table of elements. Due to the rapid understanding of quantum mechanics, it only

took a few decades until it caused the first technological breakthroughs, for example

the development of the first photomultipliers in the 1930s [4], the understanding and

development of semiconductor devices like the transistor in 1948 [5] or the realization

of the Maser and the Laser in the 1950s and 1960s [6]. Quantum mechanics there-

fore was crucial for the technological development of today’s world. Until the end

of the 20th century quantum mechanical concepts have become essential for many

core technologies in everyday life and can be found in many devices, ranging from

medical applications like MRI or cancer treatment to industrial applications such as

telecommunication, cutting metal, sensing and robotics or designing and fabricating

modern computers and smartphones.

While those technological breakthroughs rely on single-particle effects, there is a

range of intriguing quantum phenomena that involve many strongly correlated elec-

trons or atoms. In fact, in the regime where the (deBroglie) wavelengths of individual

constituents of a system becomes comparable to the spacing between them, quantum

effects become dominant. One of the most prominent examples of the peculiar behav-

ior of quantum-mechanical many-body systems was the discovery of superconductivity

in 1911, a phenomenon which was baffling theorist for a long time [7]. While being
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CHAPTER 1. INTRODUCTION

extensively studied in condensed matter systems, phenomenological theories could

capture the basic physics of superconductors and superfluids, but still today, the

quantum-mechanical description of systems containing only a few strongly correlated

atoms is a challenging task for theory. For instance the exact diagonalization of a

system of N atoms with two internal degrees of freedom requires the diagonalization

of a 2N × 2N matrix, which already exceeds available computational power for about

20-30 atoms.

Initially inspired by the idea of Richard Feynman [8], experimental physicists

pursued the road of quantum simulation: Instead of trying to simulate a quantum

mechanical system on a classical computer, it might be much more efficient to realize

a system in the laboratory that evolves under the same Hamiltonian as the system

of interest. One hence simulates a quantum system with another quantum system,

that is more accessible in the laboratory. There are many different possible platforms

for quantum simulation, such as ensembles of neutral atoms [9], photonic [10] or ionic

systems [11]. The idea of engineering a quantum system has led to the development

of a huge research field, including experiments on ultra-precise optical clocks [12],

the development of nuclear clocks [13], the realization of a quantum computer with

e.g. superconducting qubits [14], or the study of hybrid systems such as exciton-

polaritons condensates [15], levitated microspheres as ultra-precise force sensors [16]

or optomechanical systems [17]. Research interests do no longer only include quan-

tum simulation. Instead, the unprecedented control and precision that can today

be achieved in the laboratory enables fundamental tests of physics including loophole

free Bell tests [18], the search for the electron electric-dipole moment [19] or for exotic

forces beyond the standard model [20], the variation of fundamental constants, the

detection of gravitational waves [20] or the realization of measurement devices beyond

the standard quantum limit [21].

The cornerstone for quantum simulation with neutral atoms was laid by the first re-

alization of a Bose-Einstein condensate (BEC) in 1995 [22, 23] and the first degenerate

Fermi gas in 1999 [24]. Followed by many succeeding ground-breaking experiments,

neutral atoms, trapped in optical traps, have proven to be a promising candidate for

quantum simulation [9, 25] and for the search of exotic phases of matter. Over the

years, many powerful theoretical and experimental tools have been developed both

to describe and to manipulate ensembles of interacting atoms or molecules. Many

different species, including both fermionic and bosonic isotopes are routinely cooled

to quantum degeneracy and trapped in arbitrary optical potentials such as quasi-

crystalline optical lattices [26] or arbitrary three-dimensional arrays of optical tweez-

ers [27]. Using (orbital) Feshbach resonances [28, 29], interactions can be tuned over

a wide range, enabling the realization of strongly interacting and strongly correlated

systems. Recent experimental advances made it possible to engineer systems with

single-particle control and readout [30], which opened up a new era for cold quantum

gases: Large genuinely entangled systems can be readily created in the laboratory

[31], advancing concepts for quantum computing and quantum information process-

ing. Low-entropy states in optical lattices serve as toy models to simulate the doped

Hubbard model [32]. The ability to bring electronically more complex atomic species

(such as Dy, Er, Yb, Sr) or molecules to quantum degeneracy enables the study of

8



CHAPTER 1. INTRODUCTION

exotic phases with no equivalent in natural matter and recently led to the observation

of supersolidity in a gas of magnetic atoms [33–35]. Arrays of optical tweezers might

lead to a new generation of atomic clocks and new applications in metrology [36].

Despite enormous progress in the field of ultracold atoms, there are still many

challenges, of which we address two within this thesis. Experimental progress of laser

cooling and trapping made it possible to cool molecules [10] or atoms with a compli-

cated electronic structure to quantum degeneracy, which offers new avenues to explore,

due to properties including long-range anisotropic interactions, state-dependent light

shifts, ultra-narrow optical transitions or a rich internal structure. However, in such

systems much more care has to be taken to initialize interesting states. A precise

understanding of the atomic structure and magnetic properties is therefore inevitable

in such systems. In the first part of the thesis we measure the ac stark shift of erbium

atoms at different wavelengths to verify the validity of electronic-structure calcula-

tions and we develop methods to map out the interaction in a two-component Fermi

gas of magnetic erbium atoms without being affected from inelastic dipolar collisions.

In contrast, the preparation of interesting states is well under control in quantum

gas experiments with alkaline atoms. However, a major challenge in such experi-

ments is the experimental characterization of the final state due to the lack of proper

many-body observables. Currently many new ways to characterize strongly corre-

lated systems are proposed and tested both theoretically and experimentally. In the

last part of this thesis, we develop and explore a new method to fully characterize

systems consisting of few mobile and interacting fermions, trapped in an array of

optical tweezers. This method is complemetary to traditional tomography methods

and presents an alternative approach to characterizing strongly correlated, fermionic

systems in the laboratory.

The following two sections elaborate on the state of the art in the two respective

research areas and embeds the studies presented in this thesis within the two fields of

magnetic quantum gases and state characterization in Hubbard systems.

1.1 Magnetic Quantum Gases

From the first observation of Bose-Einstein condensation until 2005, all species that

had been Bose-Einstein condensed interacted predominantly via short-range isotropic

potentials. The first BEC of Chromium atoms in 2005 [37] allowed to study effects

of the long-range, anisotropic dipole-dipole interaction on the behaviour of ultracold

quantum gases. This led to the observation of many dipolar effects in BECs, including

the suppression of the inversion of ellipticity during expansion [38], the observation

of a d-wave collapse [39] or the spontaneous demagnetization of a dipolar gas at low

magnetic fields [40]. The successful realization of a Bose-Einstein condensate of the

most magnetic element Dysprosium in 2011 [41] and shortly after the first BEC of

Erbium atoms in 2012 [42] opened a new frontier to study the interplay between

short-range isotropic and long-range anisotropic interactions in systems of ultracold

bosonic atoms.

One of the most prominent examples for the impact of dipolar interactions on the
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CHAPTER 1. INTRODUCTION

behaviour of ultracold atoms was the observation of the formation of droplets [43],

stabilized by quantum fluctuations [44, 45]. This manifestation of a beyond mean-

field effect was followed by the observation of a roton mode in a dipolar BEC [46]

and ultimately led to the observation of supersolididy, a state of matter that features

both superfluid properties and a crystalline structure [33–35].

While bosonic dipolar quantum gases experienced a lot of attention, it took until

2012 until the first realization of a dipolar degenerate Fermi gas with Dysprosium

[47], followed by Erbium in 2014 [48] and Chromium in 2015 [49]. Dipolar Fermi

gases raise prospects for studying many different physical phenomena such as liquid

crystal phases [50], p-wave, topological or anisotropic superfluid phases [51–53] or un-

conventional magnetism [54]. Due to their large quantum numbers in the electronic

ground state, magnetic atoms possess a very rich internal structure and are therefore

interesting candidates to study spinor physics with long-range dipolar interaction, to

use the internal states as synthetic dimensions [55, 56] or to investigate the influence

of dipole-dipole interaction on BEC-BCS crossover physics [57] or the BKT transition

in two dimensional systems [58].

The results that we present in this thesis report on the measurement of the anisotropic

light shift of erbium atoms and the first realization of a two-component Fermi gas with

tunable interaction. The measurements on the anisotropic light shift agree very well

with electronic-structure calculations and show that despite the complex electronic

structure of erbium, it is well understood in terms of its atomic properties. Such un-

derstanding facilitates the application of state-dependent manipulation and trapping.

We furthermore realize the first two-component strongly interacting dipolar Fermi-gas

with tunable s-wave interaction, which paves the way to exploring many interesting

areas in dipolar Fermi systems.

1.2 Characterization of Fermi-Hubbard-like States

With the advent of experiments operating on the single-particle level [30, 59–63],

the field of ultracold quantum gases entered a new era of control. Experimentalists

can readily initialize strongly correlated systems in the laboratory and probe them

with spin and single-particle resolution [30, 64–67]. To fully characterize a prepared

state in the laboratory however, the reconstruction of the full many-body density

matrix is necessary. Unfortunately the number of entries of the density matrix scales

quadratically with the number of available states and therefore scales exponentially

with the system size. Traditional tomography of a many-body state thus also requires

exponentially many measurements. A straightforward application to larger systems

hence quickly becomes impractical. Despite considerable effort and progress in de-

veloping new techniques for the characterization of many-body states [68–71], the

efficient characterization of Fermi-Hubbard like states, involving mobile, interacting

particles, is still very demanding. The required protocols are technically challenging

to realize for large systems since they require a large number of unitary operations on

neighboring lattice sites. That’s why throughout the community many new, comple-

mentary approaches are proposed to characterize a many-body state, including the
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measurement of correlation functions [72, 73], the study of entanglement properties

[74, 75], the application of random unitary operations [76, 77] or the use of machine

learning [32, 78] or neural networks [79] to classify experimental data.

In this thesis we explore a new scheme for characterizing small Fermi-Hubbard like

systems via the measurement of single-particle and spin resolved momentum-density

correlation functions. We develop a scheme that allows us to reconstruct physical den-

sity matrices of small systems based on experimental results by employing a Bayesian

quantum state estimation. In particular, our measurement protocol does not depend

on the system size and only involves two complementary measurements, one in real

space and one in momentum space. This is fundamentally different to other tomog-

raphy protocols, where the number of operations scales with the system size [68]. We

successfully apply our scheme to systems consisting of two or three mobile, interacting

particles in an array of optical tweezers. As a first application, we reconstruct density

matrices of a range of different states and discuss entanglement properties of fermionic

identical-particle states. Furthermore we believe that the experimental methods de-

veloped within this thesis are not restricted to Fermi-Hubbard like states but will also

find applications for the characterization of strongly correlated mesoscopic continuous

systems.
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Chapter 2

Realizing Ultracold Quantum

Gases

Quantum mechanical effects become dominant at low temperatures, where the ther-

mal deBroglie wavelength exceeds the interparticle spacing. Studying quantum me-

chanical effects in dilute samples of neutral atoms hence requires to cool down the

system into the quantum degenerate regime, where the temperature becomes smaller

than characteristic energy scales in the system. For Fermi systems, this characteristic

energy scale is given by the Fermi temperature TF . While the Fermi temperature

for metallic superconductors is on the order of 105 K, a typical ensemble of fermionic

atoms in an optical dipole trap has a Fermi temperature of only about 1µK, due to

the very low densities on the order of 1013 cm−3 [80]. In order to realize such systems

in the laboratory, atoms have to be trapped and cooled down from room temperature

to the nK regime. As will be explained in this chapter, this is commonly achieved

with magneto-optical traps and evaporative cooling in optical dipole traps. Once the

route to quantum degeneracy is established, an important tool to tune interactions

are Feshbach resonances, which we will also briefly introduce in this chapter.

2.1 Cooling and Trapping of Neutral Atoms

In this section we briefly present the main tools that are used in our experiments to

cool a hot beam of atoms down to quantum degeneracy. Experimental details have

been discussed in detail in previous works, see e.g. [81, 82] for the erbium machine

and [83–85] for the lithium machine.

2.1.1 Vaccum Chamber

Experiments with ultracold gases absolutely require ultra-high vacuum on the order of

10−11 mbar since otherwise collisions with the background gas might limit the lifetime

of the cold sample. Figure 2.1 shows a schematic of both vacuum chambers, the erbium

machine in Innsbruck and the lithium machine in Heidelberg. Both experiments

have a very similar design. The experiment starts with a high-temperature oven,
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Figure 2.1: Vacuum chamber. (a) Vacuum chamber of the erbium machine. (b) Vacuum
chamber of the lithium machine. Both experiments have a similar design, in-
cluding oven, Zeeman slower and main chamber. Vacuum is maintained on the
10−11 mbar level by a differential pumping stage with two titanium sublimation
pumps and two ion pumps. The main conceptual difference between the two
machines is the additional transversal cooling stage in the erbium experiment.
(a) taken and adapted from [81], (b) taken and adapted from [83].

where the respective species is heated up to approximately its melting temperature.

At that temperature atoms start to evaporate from the surface, which leads to an

increase of the vapor pressure and creates a hot gas of atoms. This gas is first of

all precollimated with an initial transversal cooling stage in the erbium machine and

only a simple tube in the lithium machine. The oven connects to the Zeeman slower

and finally to the main chamber, where the experiments take place. Optical access

to the science chamber is possible via eight (erbium) or six (lithium) viewports from

the sides and two larger viewports from the top and the bottom, which are reentrant

in the lithium machine, allowing a high numerical aperture of up to NA = 0.65. In

both experiments two titanium sublimators and two ion pumps are used to reach and

maintain the ultra-high vacuum at a pressure on the order of 10−11 mbar.
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2.1.2 Dissipative Cooling

The atoms that exit the high-temperature oven are collimated to form an atomic beam

towards the main chamber. At that stage of the experiment, atoms typically have

velocities of around 500− 1000 m/s. The first two cooling steps employ near resonant

laser light to create a dissipative force on the atoms, which first slows them down in

the Zeeman slower and enables trapping them in a magneto-optical trap (MOT).

Zeeman-Slower:

The atomic beam is guided through the Zeeman-Slower, a tube surrounded by mag-

netic field coils, which create a spatially varying magnetic offset field along the path

of the atoms (spin-flip configuration in the erbium experiment, decreasing field config-

uration in the lithium experiment). A near-resonant, circularly polarized laser beam

is colinearly aligned with the counter propagating atomic beam. Fast atoms, which

are initially Doppler shifted from the bare atomic resonance, become resonant to the

laser beam via the Zeeman-shift in the spatially varying magnetic field such that they

absorb photons with a directed momentum ”-kph” along the atomic beam direction.

The excited atom spontaneously emits a photon in a random direction so that after

one cycle the atom lost on average one photon momentum. The lower Doppler shift of

the slowed atom is compensated by the varying magnetic field along the beam path.

Atoms are kept resonant throughout the whole Zeeman slower and arrive in the sci-

ence chamber with velocities of on average only a few meters per second. The lithium

Zeeman-slower uses the D2 line with a natural linewidth of Γ = 2π×5.8724 MHz [86].

The erbium Zeeman slower is operated on the broadest line at λZ = 401 nm with a

natural linewidth of Γ = 2π × 29.7 MHz [81]. After the atoms are slowed down, they

can be captured in a magneto-optical trap (MOT).

Magneto-Optical Trap:

A MOT consists of six laser beams, typically realized by three retro-reflected, red-

detuned laser beams with circular polarizaion, and a magnetic gradient field, produced

by two coils close to anti-Helmholtz configuration. In fact in the erbium experiment,

the MOT only requires five beams; due to its high mass, the top beam is not necessary

for efficient operation of the MOT [87]. The laser beams cause a velocity-dependent

radiation pressure on the atoms and the magnetic field gradients prevents the atoms

to diffuse out of the trap by inducing a position dependent restoring force on the

atoms. In the lithium experiment we have to add an additional repumper-frequency

due to the decay of atoms into the F = 3/2 manifold in the ground state. A repumper

is not necessary in the erbium experiment, where the five-beam, narrow-line MOT

automatically spin-polarizes the atoms in the lowest state.

Due to the repeated process of scattering photons from the MOT beams, the temper-

ature of the MOT is intrinsically limited by the natural linewidth of the transition, it

is operated on. This so-called Doppler temperature, i.e. the lowest temperature that
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can be achieved in the MOT, is given by [88]

TD =
ℏΓ

2kB
(2.1)

with ℏ being the reduced planck constant, Γ the scattering rate and kB the Boltzmann

constant. The lithium MOT is operated on the D2 line with a natural linewidth of

Γ = 2π × 5.8724 MHz, which yields a Doppler temperature of TD = 141µK. The

erbium MOT profits from the electronically more complex structure of erbium and

employs a relatively narrow line at λM = 583 nm with a natural linewidth of Γ ≈
2π × 190 kHz, achieving a Doppler temperature of TD ≈ 5µK [81, 89].

2.1.3 Conservative Potentials and Evaporative Cooling

In order to enter the quantum degenerate regime, the temperature has to be further

reduced. To this end, the atoms are transferred from the MOT into a crossed-beam

optical dipole trap (ODT) and then evaporatively cooled to quantum degeneracy.

Optical dipole traps rely on the polarizability of an atom and are one of the workhorses

of cold-atom experiments. Far detuned laser beams are not only used for evaporative

cooling of atoms but also for the generation of external potentials and to confine

atoms e.g. in optical lattices, optical tweezers or to reduced dimensions. A brief

summary on the optical setup for the generation of optical potentials for both erbium

and lithium will be given in Part II and Part III, respectively.

Far-Off-Resonant Traps

In order to generate a conservative potential for trapping the atomic sample, far-off-

resonant laser beams are used. Depending on the sign of the detuning with respect

to the optical resonance, such laser beams either create a repulsive or an attractive

potential for neutral atoms.

When a neutral atom is placed into an oscillating electric field E⃗(r⃗, t), the atom gets

polarized with its induced dipole moment p⃗ given by

p⃗ = αE⃗. (2.2)

α is called the ac-polarizability and generally is a 3 × 3 tensor, taking into account

the anisotropy of the induced dipole moment. However, anisotropic effects vanish for

far-detuned laser beams and we therefore neglect them in this part of the thesis. We

elaborate on anisotropic light shifts in Chapter 4 for the case of erbium atoms. In

the isotropic case, the induced dipole moment p⃗ is parallel and proportional to the

amplitude of the electric field and α is a complex number. The energy of the induced

dipole moment p⃗ in the electric field of a laser beam is then given by [90]

Udip(r⃗) = −1

2
⟨p⃗E⃗(r⃗)⟩ = − 1

2ϵ0c
ℜ(α)I(r⃗), (2.3)

with the real part of the polarizability ℜ(α) and the intensity of the laser beam

I = 1
ϵ0c

|E0|2. Note that the imaginary part of the polarizability is related to the
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off-resonant scattering of photons

Γsc = − 1

ℏϵ0c
ℑ(α)I. (2.4)

Considering the atom as a classical oscillator within Lorentz’s model [90], the polar-

izability can be calculated for a two-level atom by

α = 6πϵoc
3 Γ

ω2
0(ω2

0 − ω2) − iω3Γ
, (2.5)

with the laser frequency ω and the resonance frequency ω0. Γ is the on-resonance

scattering rate and can be calculated using the dipole transition element between the

ground state |g⟩ and the excited state |e⟩

Γ =
ω3
0

3πϵ0ℏc3
|⟨e|µ |g⟩|2 . (2.6)

Using Eq. (2.5), we can directly calculate the real and imaginary part of α and can

write down explicit equations for the dipole potential Udip and the scattering rate Γsc,

Udip(r⃗) = −3π2Γ

2ω3
0

(︃
1

ω0 − ω
+

1

ω0 + ω

)︃
I(r⃗)

Γsc(r⃗) =
3π2Γ2

2ℏω3
0

(︃
ω

ω0

)︃3(︃
1

ω0 − ω
+

1

ω0 + ω

)︃2

I(r⃗). (2.7)

The potential experienced by the atom is hence proportional to the intensity of the

laser beam, while the sign is given by the detuning δ = ω0 −ω. For red detuned laser

beams (δ > 0) the atoms experience an attractive potential and can be trapped in

regions of maximum intensity. For blue detuned traps (δ < 0), atoms experience a

repulsive potential and get expelled from high-intensity regions. Since the scattering

rate Γsc scales with 1/δ2, the detuning is typically chosen very large. This in turn

requires the application of high-power lasers to realize deep optical traps with very

low number of photon-scattering events.

The concept of optical trapping can be exploited to create complex spatial potentials

by shaping the form of the laser beam. Prominent examples are interfering laser beams

to create optical lattices (as we use in the erbium machine), or optical tweezers (as we

use in the lithium machine). However, in principle arbitrary optical potentials can be

created by using either liquid crystal spatial light modulators or digital micro mirror

devices to control either the phase or the amplitude of a light field.

Note that the given formulas are valid only for two-level systems. For real atoms,

the dipole potential is given by a sum over all optical transitions, weighted by the

coupling strength of each line (cf. Chapter 4). Typically in alkali atoms at infrared

wavelengths, the ground-state polarizability is almost entirely given by the D1 and the

D2 line [91]. As we will discuss in Chapter 4, this is different in erbium atoms, where

the accurate calculation of the polarizability is hindered by a lack of spectroscopic

data.
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Evaporative cooling

Once atoms are trapped in the optical dipole trap, they can be evaporatively cooled

to quantum degeneracy. Evaporative cooling [88, 92] relies on continuously removing

the highly energetic atoms from the trap by lowering the optical potential. At the

same time, interactions between the atoms in the trap lead to fast rethermalization.

Hence energy is constantly removed from the atomic sample at the cost of decreasing

the atom number. Evaporative cooling became a standard technique to cool atomic

samples to quantum degeneracy. Since interactions between ultracold atoms usually

are only of s-wave character, identical fermions do not interact and hence evapo-

ratively cooling an alkaline Fermi gas requires a second internal state [80]. In the

lithium machine this is achieved by cooling a balanced mixture of two of the three

lowest hyperfine states. For fermionic erbium, this is not necessary due to universal

dipolar scattering [48] as we will briefly discuss in the next section.

Typical experimental atom numbers at the end of the evaporation are about 40.000

atoms per spin state at a temperature of 0.1 TF in the lithium machine and 40.000

spin-polarized atoms in the lowest state at temperatures of about 0.2 TF in the erbium

machine.

2.2 Interaction between Neutral Atoms

Collisions between two neutral atoms are governed by two different kinds of inter-

actions. Atoms with a spherically symmetric electronic configuration, such as alkali

atoms, only interact via the short-range van-der-Waals (vdW) interaction; an at-

tractive potential, that drops with the sixth power of the distance r between the

two atoms, r−6. In addition, atoms with a permanent magnetic dipole moment also

interact via the anisotropic magnetic dipole-dipole interaction [81],

U(r⃗) = UvdW(r⃗) + Udd(r⃗) (2.8)

UvdW(r⃗) → C6

r−6
, for r → ∞ (2.9)

Udd(r⃗) =
Cdd

4π

(e⃗1 · e⃗2)r2 − 3(e⃗1 · r⃗)(e⃗2 · r⃗)
r5

. (2.10)

Here, C6 is the vdW C6 coefficient, Cdd = µ0µ1µ2 is the dipolar coupling constant

with the vacuum permeability µ0 and the magnetic moments of the two colliding

atoms µi = mJgJµB with magnetic quantum number mJ , Landé factor gJ and the

Bohr magneton µB . e⃗i is the orientation of the magnetic moment of each atom, as

illustrated in Fig. 2.2 (a).

Short-Range Interaction

The vdW interaction arises due to the interaction between the electrons of the two

atoms and is characterized by the vdW length β6 =
(︂

2µC6

ℏ2

)︂1/4
[93] with the reduced

mass µ of the two interacting atoms. This length is typically on the order of a

few hundreds of picometers and therefore much shorter than the typical interparticle

distance in the atomic sample. For describing the scattering physics of ultracold gases,
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Figure 2.2: Dipolar interaction. (a) Geometry of dipolar interaction between two ran-
domly aligned dipoles. (b) Interaction between two dipoles that are polarized
by an external magnetic field. (c) Angle dependence of dipolar interaction Udd

between two polarized dipoles. The interaction vanishes at the magic angle of
θm ≈ 54.7◦. It is attractive for a head-to-tail alignment (θ < θm) and repulsive
for a side-by-side configuration (θ > θm).

one typically expands the relative wave function of the two colliding atoms where at

ultralow temperatures only the lowest partial wave contributes. UvdW can then be

replaced by a contact-like delta-function interaction (for derivations see e.g. [93, 94])

UvdW(r) = g0δ(r)
d

dr
r, (2.11)

with the interaction strength g0 = 4πℏ2

m as. Here as is the s-wave scattering length,

which is defined via the phase shift an atom experiences in the interaction potential

upon scattering. as is strictly zero for identical fermions due to their relative wave

function being zero at r = 0 because of the Pauli-exclusion principle.

It is important to note that the vdW interaction is isotropic for atoms with a spheri-

cally symmetric electronic configuration, as it is the case for lithium. However, in the

case of atoms with large permanent dipole moments, interactions show anisotropic

effects [95, 96]. In particular, two colliding bosonic erbium atoms (with total an-

gular momenta J1 = J2 = 6) have 49 non-degenerate molecular Born-Oppenheimer

potentials and hence 49 different C6 coefficients for 12 different collisional channels

Ω = min
J1

+min
J2

= mout
J1

+mout
J2

(for more information, see [81]), giving rise to chaotic

scattering physics, which was observed both in dysprosium and erbium. [97, 98].

Long-Range Dipolar Interaction

The magnetic dipolar interaction between two atoms decays with r−3 and is fun-

damentally different from the vdW interaction, both because of its range and its

anisotropic character. In the experiment, the atoms are typically polarized by an

external magnetic field, so that Eq. (2.12) simplifies to

Udd =
µ0µ

2

4π

1 − 3 cos2 θ

r3
, (2.12)

with θ being the angle between the vector r⃗ between the two atoms and their po-

larization axis, see Fig. 2.2 (b). As illustrated in (c) in the same figure, the inter-

action between two dipoles can be either attractive (θ ∈ [0◦, 54.7◦]) or repulsive
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(θ ∈ [54.7◦, 90◦]), and vanishes at the magic angle of θm = 54.7◦. This anisotropic

interaction is the main difference between alkali or alkali-earth atoms and strongly

magnetic lanthanide atoms such as Er or Dy. It is responsible for many peculiar ef-

fects that were not observed with alkali atoms before, such as a d-wave collapse [39],

chaotic scattering [97], and beyond mean-field effects like the formation of droplets

[43, 99], the observation of a roton mode [46] and supersolidity [33–35].

Scattering Cross Sections - Alkali vs. Dipolar

As already mentioned in the discussion around Eq. (2.11), our experiments are typ-

ically conducted in regimes where only the s-wave scattering length as is relevant

for the short-range physics. This implies that identical fermions do not interact via

the short-range vdW interaction potential at ultracold temperatures. In contrast,

identical fermions can interact via the long-range dipolar interaction. In fact it turns

out that at ultralow temperatures the scattering cross section of dipolar collisions

approaches a universal value [81, 100, 101]. The scattering cross sections both for

alkali and and magnetic atoms can be summarized as

σalkali =

⎧⎨⎩0 id. fermions

4πas otherwise
(2.13)

σdipole =

⎧⎨⎩ 32π
15 a

2
D id. fermions

16π
15 a

2
D + 4πas otherwise

. (2.14)

In the case of erbium, this allows even identical fermions to scatter and to thermalize

and hence it is possible to evaporatively cool a single-component Fermi-gas of er-

bium atoms to quantum degeneracy [48] whereas for alkali atoms two spin states are

necessary for efficient evaporative cooling.

Tuning the Interaction: Feshbach Resonances

One very helpful tool, which makes ultracold quantum gas experiments a versatile

platform to study a range of different physical phenomena, is the ability to tune s-

wave interactions over a wide range via Feshbach resonances (FRs). A particularly

interesting regime is the regime of a diverging scattering length. In this so called uni-

tary regime, the scattering length dominates over all other length scales in the system

and therefore solely dictates the behavior of the atomic ensemble [103]. Extensive lit-

erature on FR in ultracold atomic gases is available [28] and will not be discussed here.

The effect relies on the coupling of colliding atoms to molecular states and therefore

strongly depends on the molecular structure of the colliding atoms. While 6Li features

a very broad s-wave FR between each two of the three different spin states (see upper

panel in Fig. 2.3), erbium shows hundreds of FRs with higher partial wave character

[98, 104] and only very sparse knowledge about the scattering lengths in erbium (and

also in dysprosium) is available. Recently, we were able to map out one specific s-

wave FR between the two lowest hyperfine states of fermionic 167Er via modulation

spectroscopy in an optical lattice [102], see lower panel in Fig. 2.3. Both resonances,
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Figure 2.3: Feshbach Resonances. The upper plot shows the scattering lengths between
each two of the three lowest spin states of 6Li. Each combination shows one
Feshbach resonance with a diverging scattering length. The lower plot shows
one example of an s-wave Feshbach resonance for 167Er [102] between its two
lowest spin states (note the different scaling of the x-axis).

in lithium and erbium, show qualitatively different behaviour. While lithium features

a single FR, that spans over hundreds of Gauss, the shown FR of 167Er has a width

of only a few mG and additionally many further close overlapping FRs (not shown in

the plot, refer to [102] or Chapter 5). However, the required relative magnetic field

stability for a precise tuning of the scattering length in both systems is similar, paving

the route to the study of BEC-BCS crossover physics also in dipolar quantum gases.

Tuning Dipolar Interaction

In the erbium machine we furthermore have the ability to also tune the magnetic

dipole-dipole interaction. To this end we employ a set of three coils around the

experimental table to freely rotate the magnetic field axis [81]. In an elongated dipole

trap, this enables to tune the mean interaction energy in the atomic cloud from

positive (dipoles mainly aligned head-to-tail) to negative (dipoles mainly aligned side-

by-side). In an optical lattice this can be used to switch off the dipolar interaction

along one particular axis by rotating the magnetic field such that the angle to the

lattice axis is θm = 54.7 ◦.
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Chapter 3

Properties of Erbium

The rare-earth atom erbium is mostly known from its application in optical amplifiers

in the telecommunication regime [105]. In an erbium-doped fiber amplifier, the triva-

lent cation Er3+ is optically pumped at around 980 nm or 1440 nm and radiates at

around 1530 nm via stimulated emission. Moreover, recent experiments have shown

that Erbium might also play an important role in the development of integrated pho-

tonic devices [106, 107].

For ultracold-atom experiments however, erbium is particularly interesting because

of its large magnetic moment of 7µBohr, which comes along with strong dipolar in-

teraction (see Sec. 2.2), but also because of its very rich and complex electronic level

structure, offering hundreds of optical transitions with linewidths ranging from tens of

Megahertz down to linewidths of only a few Hertz. Such richness of course comes with

the disadvantage of complexity, which sometimes also aggravates the development of

new methods in the laboratory. First experiments on laser cooling erbium were al-

ready done in 2006 [108] but it took until 2012 to produce the first Bose-Einstein

condensate of erbium [42] and until 2014 to cool a fermionic isotope to quantum de-

generacy [48].

In this chapter we present the main atomic properties of erbium and give a brief

overview of the optical setup that we have available in the laboratory.

3.1 Atomic Properties of Erbium

Erbium has an atomic number of Z = 68 and features six stable isotopes with natural

abundances as shown in Fig. 3.1 (a). In the experiment we can readily switch between

the four most abundant isotopes, three bosonic isotopes 166Er, 168Er, 170Er and one

fermionic isotope 167Er. Erbium is located in the lanthanide block of the periodic

table and therefore has a rather complicated electronic structure: the 6s shell gets

filled with 2 valence electrons before the 4f shell starts to get populated with the

remaining 12 electrons. There are hence two vacancies in the 4f shell, resulting in a

so called submerged shell structure. The electronic configuration of the ground state

is typically written as

[Xe]4f126s2,
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Figure 3.1: Properties of erbium. (a) Natural abundances of stable isotopes of erbium.
In the experiment, we can readily switch between four most abundant isotopes:
166Er, 168Er, 170Er (bosonic) and 167Er (fermionic). (b) Isosurface plots of the
electron wave functions (red = positive, blue = negative) of the 4f orbitals
for different ml quantum numbers (general set) and the anisotropic electron

density of erbium
1∑︁

ml=−3

|Ψml |
2.

where [Xe] represents the electronic configuration of the ground state of Xenon. The

contour plots in Fig. 3.1 (b) illustrate the electronic 4f wave functions, of which the

ml = 3 and ml = 2 states are only occupied with a single electron. These two electron

vacancies are responsible for an anisotropic electronic wave function around the core

(see bottom right panel in Fig. 3.1 (b)). In contrast to alkali and earth-alkali atoms

that are commonly used in cold-atom experiments, erbium offers very large quantum

numbers in its ground state, L = 5, S = 1 and J = 6. All bosonic isotopes have a

nuclear spin of I = 0, and therefore no hyperfine structure, while the fermionic isotope
167Er has a nuclear spin of I = 7/2, and hence a total angular momentum ranging

from F = J + I = 19/2 to F = J − I = 5/2 in the ground-state manifold, which we

illustrate in Fig. 3.2 (b). The anisotropic nature of the electronic configuration and

the large quantum numbers in the ground state are responsible for the main atomic

properties that make erbium interesting for cold-atom experiments.

3.2 Energy Spectrum and Optical Setup

Currently, the NIST database reports 674 energy levels for neutral Erbium with total

angular momenta quantum numbers ranging from J = 1 to J = 12 [109] and 232

observed spectral lines [110] between 877 nm to 336 nm. Recent theoretical work

predicts many further energy levels and dipole allowed transitions [111], that have

not yet been observed experimentally. A significant attribute of the spectrum is

the very broad transition at 401 nm with a linewidth of around 2π × 30 MHz [81]

but also a plurality of narrow lines in the kHz or even Hz-regime. Neutral erbium

has an ionization threshold of 49262 cm−1, corresponding to a wavelength of 203 nm.

Fig. 3.2 (a) shows the spectrum of energy levels of erbium as a function of the total

angular momentum and indicates all laser frequencies that are used in our experiment.

For ground-state erbium, only the transitions starting from the J = 6 ground state
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Figure 3.2: Energy spectrum of erbium. (a) Level scheme of erbium in the experi-
mentally relevant region for all angular-momentum states J ∈ [1, 12]. Blue
and red levels indicate different level parity. The arrows represent all laser
frequencies that we use in the experiment. There are two resonant lasers, one
for Zeeman-slower, transversal cooling and imaging (401 nm) and the other for
the MOT (583 nm). The three off-resonant lasers are used for optical dipole
traps (1064 nm and 1570 nm) and the optical lattice (532 nm). (b) Zoom-in on
the fermionic ground state with hyperfine splitting and 8 different sublevels
F ∈ {19/2...5/2}. Figure taken and adapted from [82].

are relevant. There is a variety of different optical transitions to choose from but

besides the linewidth also branching ratios to metastable states and the availability

of laser sources is important for the usefulness in the experiment. Suitable transitions

for an efficient cooling of erbium have been discussed in the literature [112, 113] and

a few lines have been already experimentally characterized [114, 115].

As already mentioned before, we use the broadest transition at λ = 401 nm with a

linewidth of Γ ≈ 2π × 30 MHz for the Zeeman slower, the transversal cooling and

for imaging of the atomic sample. The laser light is derived from a Toptica TA-

SHG laser module and locked on the spectroscopic signal of a hollow cathode lamp.

The MOT profits from the relatively narrow line at λ = 583 nm with a linewidth of

Γ ≈ 2π×190 kHz. The light is generated by a Radiant Dyes Dye laser, which is locked

onto a ULE cavity. We are furthermore using three off-resonant lasers for creating

optical dipole traps and for our optical lattice. We employ two crossed-beam optical

dipole traps, one at λ = 1064 nm (Mephisto MOPA, Coherent), which we primarily

use for the bosonic isotopes, and the other at λ = 1570 nm (NKT Photonics), which

is used for the fermionic isotope (cf. [81, 82, 116]). As described in [82, 117] we

realize a three-dimensional optical lattice with a cuboid unit cell with lattice constants

(ax, ay, az) = (266 nm, 266 nm, 532 nm). To this end we interfere two laser beams at a

wavelength of 532 nm with their retroreflected beams in the horizontal plane, which

yields the lattice spacing ax, ay = λ/2 = 266 nm and similar with a laser beam at a
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wavelength of 1064 nm along the z-axis.

3.3 Magnetic Properties of Erbium

As already mentioned before, due to the submerged 4f shell, most lanthanide atoms

possess very large quantum numbers in their electronic ground state. Compared to

alkali atoms this causes substantially larger dipolar effects. The magnetic moment µ

of an atomic state with magnetic quantum number mF can be calculated as

µ = mF gFµB (3.1)

with µB being the Bohr magneton and gF the Landé-factor for the given state. gF is

given by

gF = gJ
F (F + 1) − I(I + 1) + J(J + 1)

2J(J + 1)
, (3.2)

with gJ given by

gJ = 1 + (gS − 1)
J(J + 1) − L(L+ 1) + S(S + 1)

2J(J + 1)
. (3.3)

Here gS is the electronic Landé-factor gS ≈ 2.0023. Note that in the case of bosonic

erbium without hyperfine structure (I = 0) the above equations evaluate to gF = gJ .

For the ground state of erbium we find the theoretic values gJ = 1.16705 and gF =

0.63157 × gJ = 0.73503 for the fermionic isotope, respectively. The experimentally

reported value is slightly smaller, gJ = 1.163801(1) [118]. For the state with maximal

mF , this hence results in a magnetic moment of

µEr = 6.982606(6)µB . (3.4)

As a comparison, lithium in its electronic ground state (at low magnetic field) features

a magnetic moment of µLi = 2/3µB and hence the dipole-dipole interaction between

two erbium atoms is a factor of (µEr/µLi)
2 ≈ 110 stronger than the dipolar interaction

between two lithium atoms, see Eq. (2.12). Note that the magnetic moment depends

on the magnetic sublevel mF , of which there are 20 in the ground state, ranging

from −19/2 up to +19/2. Furthermore gJ depends on the quantum number of the

respective state and is different in excited states.

3.3.1 Erbium in an External Magnetic Field

When an atom in subjected to an external magnetic field B, energy levels with dif-

ferent magnetic moments split up due to the Zeeman-effect. In the case of bosonic

erbium with zero nuclear spin I, the total angular momentum reads as F = J = L+S

and hence no hyperfine splitting occurs. As a consequence, in fields relevant for the

experiments (i.e. 0-100 G, far below the Paschen-Back regime), the energy splitting

is linear since the magnetic energy shift is much weaker than the spin-orbit coupling.
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Figure 3.3: Zeeman splitting. (a) The bosonic isotopes has F = 0 and splits linearly into
13 levels mJ ∈ {−6...6}. (b) The fermionic isotope with F = 7/2 features 20
Zeeman sublevels mF ∈ {−19/2...19/2}. Although the splitting looks perfectly
linear in the graph, there is a small quadratic correction, as explained in the
main text.

The energy levels split up according to

EBo
Z = µB = mJgJµBB. (3.5)

Fig. 3.3 (a) shows a plot of the splitting of the ground state of bosonic erbium. The

13 magnetic sublevels mJ ∈ {−6, ..., 6} are degenerate at zero magnetic field and

split linearly in an external magnetic field without any quadratic contribution to the

energy shift. The energy spacing between two adjacent levels is independent of the

magnetic quantum number mJ ,

∆EBo
Z = gJµJB = 1.628879 MHz/G × hB (3.6)

with the Planck constant h. This comes with some complications when it comes to the

investigation of spin-mixtures of bosonic erbium, since the coupling of two adjacent

levels e.g. with a radio-frequency pulse always couples all 13 magnetic levels.

The scenario slightly changes for fermionic erbium where the hyperfine splitting comes

into play. Also here, all 20 magnetic sublevels are degenerate at zero magnetic field

and split linearly in small magnetic fields. However, when the magnetic energy is

on the same order as the hyperfine coupling, the total angular momentum quantum

number F ceases to be a good quantum number since the nuclear spin I and the

electronic angular momentum J start to decouple. This leads to a deviation of the

energy shift from its linear behavior. We plot the Zeeman-shift for all 20 sublevels

in Fig. 3.3 (b). The quadratic correction to the linear shift is so small, that it cannot

be seen in the figure (it will be discussed again and plotted in Chapter 5). In the

experimentally relevant regime, this correction can be sufficiently captured by adding

a quadratic term to Eq. (3.5),

EFe
Z = mF gFµBB + z(F 2 −m2

F )B2. (3.7)
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The quadratic correction vanishes for the two stretched states mF = ±19/2 and

is maximal for the mF = 0 state. The linear term can directly be calculated as

gFµB = h× 1.0287 MHz/G, whereas the coefficient z is determined with a fit to the

energy spectrum at low magnetic field [82] to be

z = −h× 12.76(1) Hz/G2. (3.8)

Although this quadratic correction is very weak, it causes the energy difference of two

adjacent magnetic sublevels to be no longer degenerate. Instead it is given by

∆EFe
Z = EFe

Z (mF ) − EFe
Z (mF + 1) = gFµBB + z(mF + 1)B2. (3.9)

Hence at sufficiently large magnetic fields, two adjacent levels can be coupled without

coupling to other mF state. This will become relevant in Chapter 5 for the initializa-

tion of spin mixtures.
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Chapter 4

Anisotropic Polarizability of

Erbium

Optical trapping of ultracold atoms relies on the ability of an atom to be polarized

by the oscillating field of a laser beam. The basics of optical trapping were already

presented in Section 2.1 and can be understood from a simple oscillator model [119]:

The closer the wavelength of the laser is to the wavelength of an optical transition,

the larger is its polarizability. The polarizability diverges on resonance and its sign

depends on the detuning of the laser with respect to the optical transition.

The common approach to calculate the polarizability of an atom at a given laser

frequency ω is hence to sum over all optical transitions, weighted by the detuning

of the laser to the optical transition and by the strength of the optical transition,

i.e. the dipole matrix element. In the case of alkali atoms, where the ground-state

polarizability is almost completely determined by the D1 and D2 transitions, the

good spectroscopic knowledge of those transitions enables an accurate calculation of

the ground-state polarizability [91]. In contrast, for electronically more complex ele-

ments, such as erbium or dysprosium, there are hundreds of optical transitions from

the ground state with linewidths ranging from many MHz down to only a few Hz.

Moreover, reliable spectroscopic data is only available for very few of those transi-

tions, aggravating a direct calculation of the polarizability.

To tackle this problem, electronic-structure calculations [120] are used to model elec-

tronic properties of the atom and to extract all parameters of optical transitions

so that the polarizability can again be calculated with a sum-over-state formula

[96, 111, 121]. Hence an experimental investigation of the atomic polarizability

presents an excellent testbed to verify the validity of such electronic-structure cal-

culations and in the best case even to feed back important information that improve

their predictive power.

Furthermore there is also an increasing experimental interest of gaining a better un-

derstanding of the atomic polarizability, in particular for atoms, where the polariz-

ability can exhibit a significant anisotropic character. This is typically the case for

atoms with an anisotropic electronic configuration around the core as it is the case for

lanthanide atoms with a submerged 4f shell. Applications where a precise knowledge
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of the polarizability is required are e.g the determination of magic wavelengths for

clock transitions [122, 123], the use of tuneout wavelengths in cold-atom experiments

[124–127] or the realization of state-dependent potentials [128–132].

This chapter presents an experimental investigation of the anisotropic polariz-

ability of erbium atoms and compares the measured values to calculations based on

semiempirical electronic-structure calculations [111]. We briefly introduce the con-

cept of anisotropic polarizability and the main formulas that are used for our calcu-

lations. We then present measurements of the scalar and the tensor contribution of

both the ground-state and the 583 nm excited-state polarizability for three different

wavelengths, that are particularly relevant for optical trapping. We also theoretically

explore the usability of near-resonant light shifts for a precise tuning of optical poten-

tials via vector and tensor polarizabilities. The content of this chapter was published

in [133].

4.1 Anisotropic Polarizability

An isotropic medium subjected to an electric field E⃗ gets polarized parallel (or an-

tiparallel) to the applied electric field. The response of the medium to the field is

described by the polarizability α and the induced dipole moment p⃗ reads as

p⃗ = αE⃗. (4.1)

For an isotropic medium such as an alkali atom in its electronic ground state, α is

a complex scalar. However, in the case of multi-electron lanthanide atoms with a

submerged-shell structure, the atomic polarizability can exhibit a tensorial structure,

due to the anisotropic electronic configuration. In that case an electric field might

also induce a dipole moment p⃗⊥ with a component perpendicular to the electric field.

To better understand those two contributions, it is instructive to consider the total

energy shift experienced by the atom in an electric field,

U =
1

2
E⃗

†
PE⃗. (4.2)

Here P is the 3 × 3 polarizability tensor, whose diagonal entries describe the scalar

response of the atom (p⃗ ) and whose off-diagonal entries can induce anisotropic effects

(p⃗⊥). We can decompose the polarizability tensor P into the scalar polarizability

tensor As, containing only the diagonal entries, the vector polarizability tensor Av,

which is the antisymmetric part of P and the tensor polarizability tensor At, the

symmetric part of the off-diagonal entries. With this decomposition, we identify the

three following contributions to the total light shift

Utot = Us + Uv + Ut

=
1

2
E⃗

†
[As + Av + At]E⃗, (4.3)
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that we call the scalar, vector, and tensor light shift, Us, Uv, and Ut, respectively.

Let us now consider the case of an atom with angular momentum J and magnetic

quantum number mJ , placed in a laser field of intensity I(r⃗) = ϵ0c
2 |E⃗(r⃗)|2, polarization

vector u and frequency ω = 2π c
λ . ϵ0 is the vacuum permitivity, λ the wavelength of

the laser and c the speed of light. Following the derivations in Refs. [111, 134] the

above expression can be developed and an explicit equation for the three terms can

be written down as

U(r⃗, ω) = Us + Uv + Ut

= − 1

2ϵ0c
I(r⃗)

[︂
αs(ω) + |u∗ × u| cos θk

mJ

2J
αv(ω)

+
3m2

J − J(J + 1)

J(2J − 1)
× 3 cos2 θp − 1

2
αt(ω)

]︂
=: − 1

2ϵ0c
I(r⃗)αtot(ω). (4.4)

We call αtot the total polarizability, i.e. the sum over the scalar, the vector (linear in

mJ) and the tensor (quadratic in mJ) contribution to the total light shift. While the

scalar term only depends on ω and the spectral properties of the atomic species, the

latter two also depend on the internal state of the atom |J,mj⟩ and also the polar-

ization and propagation axis of the laser field. As illustrated in the inset of Fig. 4.1,

θk (θp) is the angle between the propagation (polarization) axis and the quantization

axis, set by the external magnetic field. More precisely, θk is the angle between the

vector v⃗ = u∗ × u and the quantization axis. The three polarizability coefficients

{αs, αv, αt} can be expressed in terms of the so called coupled polarizability α
(K)
J as

αs(ω) = − 1√︁
3(2J + 1)

α
(0)
J (ω)

αv(ω) =

√︄
2J

(J + 1)(2J + 1)
α
(1)
J (ω)

αt(ω) =

√︄
2J(2J − 1)

3(J + 1)(2J + 1)(2J + 3)
α
(2)
J (ω), (4.5)

where α
(K)
J can be calculated with a sum-over-state formula [135] and in constant-sign

convention is given by

α
(K)
J (ω) =

√
2K + 1 ×

∑︂
(J′)

(−1)J+J′

{︄
1 K 1

J J ′ J

}︄
|⟨J ′||d||J⟩|2 ×

1

ℏ
ℜ
[︃

1

∆−
J′J − iγJ′/2

+
(−1)K

∆+
J′J − iγJ′/2

]︃
⏞ ⏟⏟ ⏞

=:A

. (4.6)
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with K ∈ {0, 1, 2}. The sum runs over all excited states, whereas the dipole selection

rules are incorporated into the Wigner 6j symbol (in curly brackets). |⟨J ′||d||J⟩|2

is the reduced dipole transition element, γJ′ the natural lifetime of the excited state

and ∆±
J′J = ωJ′J ± ω is either the difference or the sum of the transition frequency

ωJ′J to the excited state and the laser frequency ω. Under the assumption that

γJ′/2 << ∆±
J′J , i.e. that the laser in far detuned to the optical transition, we can

express the real part of the last line in Eq. (4.6) as

ℜ[A] =
2ωJ′J

ω2
J′J − ω2

. (4.7)

Once all intrinsic atomic properties are know, the calculation of the polarizability

hence boils down to the threefold evaluation of the sum in Eq. (4.6) and can be done

at any wavelength ω. The imaginary part of the above expression is directly related

to the off-resonant photon-scattering rate, it reads as

ℑ[A] = γJ′
ω2
J′J + ω2

(ω2
J′J − ω2)

2 . (4.8)

From an experimental point of view, a good understanding of the photon scatter-

ing rate is crucial to realize dipole traps with low heating rates and low atom loss.

Scattering rates can be calculated in a similar way by employing a slightly modified

sum-over-state formula (cf. [111]).

From Eq. (4.6), a few interesting cases can be discussed. First of all, the Wigner

6j symbol

{︄
j1 j2 j3

J1 J2 J3

}︄
is invariant under permutation of any two columns and

under exchanging the entries within any column [136]. Furthermore, the conservation

of angular momentum is guaranteed by the constraint that all triples {(k1, k2, k3), k ∈
{j, J}} have to fulfill triangle rules, |k2 − k3| ≤ k1 ≤ k2 + k3 and have to sum up to

an integer. Together with the explicit formulas for the total light shift we find the

following special cases:

1. Alkali Atoms: Alkali atoms have J = 1/2 in their electronic ground state.

Hence αt = 0 and the tensor light shift Ut is zero. As a consequence, alkali

atoms do not have a quadratic light shift in their electronic ground state and

a state-dependent light shift can only be induced via the vector light shift Uv

or by a detuning of the laser light that is comparable to the hyperfine splitting

[137].

Ut = 0

2. Linear Polarization: For linear polarization of the laser beam, the polariza-

tion vector u is real and therefore u∗ = u. The cross product u∗ × u evaluates

to zero and the vector light shift Uv vanishes.

Uv = 0

3. Perpendicular Propagation: For the case where the angle between the prop-
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Figure 4.1: Calculated atomic polarizability. The plot shows the total polarizability
for an erbium atom in its lowest Zeeman sublevel (mJ = −6) with θp = θk =
90◦ as a function of wavenumber and wavelength of the light field. With
the shown configuration (inset), Uv vanishes and Ut is maximally ’negative’.
Each divergence of the total polarizability indicates an optical transition (finite
amplitude of peaks are due to finite number of calculated points). There is a
mostly blue-detuned region towards shorter wavelengths and a red-detuned
region towards longer wavelengths as indicated by the back ground color.

agation axis of the laser beam and the quantization axis (magnetic field) is

θk = 90◦, we have cos(θk) = 0 and the vector light shift vanishes.

Uv = 0

4. Magic Angle: If the angle between the polarization vector and the quanti-

zation axis is such that cos(θp) = 1/
√
3, i.e. θp ≈ 54.7◦, the tensor light shift

vanishes even though αt ̸= 0.

Ut = 0

5. Dependence on mJ : For finite vector and tensor polarizability, the total light

shift is state dependent and depends quadratically on mJ . This enables almost

arbitrary tuning of the relative light shift between adjacent hyperfine states.

If not explicitly stated otherwise, all shown calculations are performed for the

mJ = −6 state.

4.2 AC-Polarizability of Erbium

As mentioned above, the calculation of the polarizability requires a good knowledge of

the electronic spectrum and lifetimes of optical transitions. While the NIST database

[138] only lists 232 observed optical transitions for neutral erbium, of which only

a few contain the relevant information for the calculation of the polarizability, we

base our calculations on a more detailed list from semiempirical electronic-structure

calculations [111, 133]. The full list of states that was used for the calculations of the

ground-state polarizability can be found as supplemental information of Ref. [133].
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Figure 4.2: Different contributions to the total light shift. The four plots show the
calculated polarizability for the same setting as in the previous figure but for
each plot only lines with the indicated strength are taken into account. The
lower plot does not show calculations of the polarizability but only indicates
the narrow transitions with vertical lines.

For the calculations shown within this thesis, we replace the 401 nm and 583 nm lines

with experimentally measured values from Ref. [81]. In the whole chapter, the results

are given in atomic units (a.u.). The conversion to SI units is given by

α[Hz/Wmm
2
] =

1.6488 × 10−35

2hϵoc
α[a.u.]. (4.9)

Figure 4.1 shows the calculation of the total polarizability αtot for an atom in the

lowest state mJ = −6 as a function of the light’s wavenumber and wavelength for

the scenario depicted in the inset of the same figure, i.e. for linearly polarized light

with θk = θp = 90◦. As argued above, in this configuration the vector light shift Uv

vanishes completely and the prefactor to the tensor light shift is maximally negative,

αtot(θp = 90◦, θk = 90◦) = αs −
1

2
αt. (4.10)

Each divergence of the polarizability indicates an optical transition. The finite height

of some peaks is caused by a limited number of calculated data points. The main

contribution to the total polarizability comes from the broadest optical transition

(2π× 29.7 MHz [81]) at around 401 nm. Together with a few further relatively strong

lines in the same region, it determines the main shape of the polarizability. In the re-

gion towards longer wavelengths the polarizability is predominantly positive, enabling

the generation of attractive optical potentials, whereas in the region towards shorter

wavelengths the polarizability is mainly negative, giving rise to repulsive optical po-

tentials. On top of the broad transitions, there are hundreds of further transitions

with linewidths ranging from the MHz down to the Hz-regime.

To better visualize this complex spectrum and in order to separate the contribution of
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Figure 4.3: State dependent light shift. (a) Total polarizability in the proximity of the
MOT transition for the four lowest hyperfine states mJ ∈ {−6,−5,−4,−3}
for two different polarization angles θp = 0◦ (top) and θp = 90◦ (bottom).
(b) Total polarizability at 586.56 nm for all hyperfine states and three different
polarization angles. (c) Total polarizability as a function of θp for the 7 lowest
hyperfine states at 586.56 nm.

broad and narrow lines, Fig. 4.2 shows 4 plots with the same calculation as for Fig. 4.1

but for each plot only transitions within a certain linewidth region were taken into

account. The upper plot shows that there are 4 optical transitions with linewidths

above 10 MHz. All those transitions are located around 400 nm. The second panel

shows that there are a few lines in the range of 1 MHz to 10 MHz, primarily located in

the ultra-violet region. As shown in the third panel, by far the most transitions have

a linewidth in the range of 1 kHz to 1 MHz. Some of them are in the visible region

but also here the biggest part is located in the ultra-violet regime. Narrow transitions

below 1 kHz are sparsely distributed over the whole plotted range as shown in the

lowest panel. Note that this panel only indicates the positions of the narrow transi-

tions and does not show the calculated polarizability.

As shown e.g. with Dy [125, 139] or Sr [140], narrow lines are particularly promis-

ing candidates for state-dependent trapping and manipulation of cold atoms due to

large tensorial and vectorial light shifts. To show how the anisotropic light shift can be

exploited for generating state-dependent potentials, we discuss possible applications

of near-resonant laser light in a region with overlapping resonances. We choose the

transition on which we operate our magneto-optical trap with λ = 582.84 nm, J ′ = 7,

and a measured linewidth of Γ = 186 kHz [81]. Figure 4.3 (a) shows the calculation of

αtot for θk = 90◦ for two polarization angles θp = 0◦ (top) and θp = 90◦ (bottom) for

4 different spin states, mJ ∈ {−6,−5,−4,−3}. The two resonances at λ1 = 578.5 nm

and λ2 = 587 nm have total angular momentum of J ′
1 = 5 and J ′

2 = 6, which explains

the asymmetric behavior around the MOT transition (e.g. the presence of the magic

wavelength below the MOT transition but not above). However, a change of the

polarization angle by 90 degrees has an enormous effect on the total light shift. This
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behavior is summarized in (b) and (c) at the example wavelength λ∗ = 586.56 nm,

which is indicated by the grey line in (a). For each angle θp the total polarizability de-

pends quadratically on the magnetic quantum number mJ . This quadratic behavior

disappears at the magic angle of θp0 ≈ 54.7◦, where the tensor light shift Ut vanishes

(see Eq. (4.9)). For the particular wavelength λ∗, the light shift for each spin state

even flips its sign at the magic angle. This becomes even clearer in the plot in (c),

where we plot the total polarizabilities for 7 different hyperfine states as a function

of the polarization angle θp. The state dependency of the polarizability vanishes at

θp0 and the different hyperfine levels even flip their energetic order. In fact the wave-

length λ∗ was chosen such that αs = 0 and hence the total light shift vanishes at the

magic angle. By using also the vector light shift or the magnetic field dependence of

the coupling to excited states with different g-factors gJ , one can almost arbitrarily

tune the relative light shift [141].

4.2.1 Measurement of Ground-State Polarizability

We experimentally access the polarizability of the ground state by measuring the

depth of the optical potential, which is induced by an off-resonant laser beam. To

this end we measure trap frequencies and relate them to the total polarizability αtot.

For a laser beam propagating along the x-axis with total power P and Gaussian

radial intensity profile I(y, z) = I0 exp(− 2y2

σ2
y
− 2z2

σ2
z

) with beam waists σy/z along the

two orthogonal directions perpendicular to the propagation axis and I0 = 2P
πσyσz

, the

depth of the induced optical potential is given by

U0 = − P

ϵ0cπσyσz
αtot. (4.11)

In harmonic approximation the depth U0 can be related to the trap frequencies ωi,

i ∈ {z, y} via

ωi =

√︄
−4U0

σ2
im

, (4.12)

with the atomic mass m. Combining the two above equations yields the expression

αtot = ω2
i ϵ0cπm

σyσzσ
2
i

4P
. (4.13)

Hence to deduce the total polarizability from trap frequency measurements, a precise

characterization of the trapping beam is necessary. In particular the beam waists σ

have to be measured as precise as possible, because of the σ4 scaling of αtot. We mea-

sure the power in the beam with a power meter and stabilize the light power with a

PID loop onto a photo diode to avoid power drifts in the course of the measurement.

The most reliable measurement of the beam waists was done using the knife edge

method [142] or using a beam profiler camera mounted on a piezo-controlled trans-

lation stage. This allows us to measure the beam waist at multiple points along the

beam propagation axis. Figure 4.4 shows a typical such measurement from which we

extract the beam waist σi, i ∈ {y, z}, by fitting the data with σ(z) = σi
√︁

1 + (z/zR)2,
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Figure 4.4: Trapping-beam characterization. (a) Typical beam waist measurement of
trapping beam. We plot the radial size of the beam along the propagation axis
and fit the data to extract the beam waists σi along both axes. (b) Typical
trap frequency measurement with damped sine fit.

with the Rayleigh range zR = πσ2
i /λ. To reduce deviations between the trapping

beam and the beam for the measurement of the waist to a minimum, we implement a

mirror directly in front of our vacuum chamber and reflect the trapping beam in order

to perform the beam-waist measurement as close to the atomic position as possible.

Despite a careful characterization of the beam waist, we assume a systematic un-

certainty of 2µm due to aberrations and a finite ellipticity of the beam. Because of

the σ4 scaling this is the major contribution to the uncertainty of the polarizability.

Trap frequencies are measured by exciting a center-of-mass oscillation of the atomic

cloud in the optical trap and monitoring the position of the atoms over time. For

the measurement of the total ground-state polarizability we choose θk = θp = 90◦,

such that the vector light shift vanishes (Uv = 0) and the tensor contribution is maxi-

mally negative. In that case, the total polarizability is given by Eq. (4.10). Figure 4.4

shows a typical trap frequency measurement in a single-beam optical dipole trap of

wavelength λ = 1064.5 nm. We extract the trap frequency by fitting a damped sine

function.

From the measurements of the beam waists and the trap frequencies we compute the

total light shift and deduce the total polarizability for three different wavelengths,

532.26 nm, 1064.5 nm, and 1570.0 nm. The following table summarizes the experi-

mental results and gives the calculations for the same wavelengths for θk = θp = 90◦.

λ (nm) αexp
tot αtheo

tot

532.26 430 ± 8st ± 80sys 317

1064.5 166 ± 3st ± 61sys 176

1570.0 163 ± 9st ± 36sys 162

As mentioned above, the large systematic uncertainty is caused by the uncertainty

of the beam waist. We find a good overall agreement between the measured and

calculated polarizabilty, in particular the measurement of the two wavelengths in the

infrared region match very nicely with the theoretical predictions. As can be seen

in Fig. 4.2 the light shift at those wavelengths is not significantly affected by many

optical transitions and mainly determined by the broad optical transitions around

400 nm so that a reliable prediction can be made. However the polarizability at
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532.26 nm significantly deviates from the theoretical value even beyond the systematic

uncertainty. We attribute this to the presence of many strong and narrow transitions

in the proximity of that wavelengths and small uncertainties of their parameters can

have a large effect on the calculated polarizability. Nevertheless, the overall agreement

is very satisfying.

4.2.2 Anisotropic Ground-State Polarizability

Although the above measurements showed a good overall agreement between mea-

surement and theory for the total light shift, they do not tell anything about different

contributions to the light shift. With the vector light shift being zero for θk = 90◦,

we perform an additional measurement to isolate the scalar and the tensorial contri-

butions to the total light shift. To this end we measure trap frequencies for different

angles θp by either rotating the magnetic field or the linear polarization of the trap-

ping beam with a waveplate, while keeping θk = 90◦. In order to eliminate systematic

uncertainties that may arise from the beam waist measurement, we investigate the

relative change of the total light shift and quantify this change via the parameter

κ(θp) with

κ(θp) =
U − Us

Us
=
Ut

Us
=
ω(θp)2 − ω(θp0)2

ω(θp0)2

=
3m2

J − J(J + 1)

J(2J − 1)
× 3 cos2 θp − 1

2

αt

αs
.

J=6,mJ=−6
=

3 cos2(θp) − 1

2

αt

αs
. (4.14)

Here θp0 is such that cos(θp0) = 1/
√
3, i.e. the angle where the tensor light shift

vanishes, Ut(θp0) = 0. Note that for the maximally polarized state, mJ = ±J , the

prefactor in the second line evaluates to 1 so that the peak-to-peak variation of κ is

given by κ0 = 1.5× αt

αs
, from which also an absolute value for the tensor polarizability

can be deduced. Figure 4.5 summarizes the measurements for the two wavelengths

532.26 nm and 1064.5 nm. For both wavelengths there is a sinusoidal dependence of

the total light shift on the polarization angle θp. We fit the data with Eq. (4.14) to

extract κ0 and use κ0 and the measured scalar polarizabilities to calculate αt. The

dotted lines in the plot are the expected curves for κ(θp) using the calculated scalar

and tensor polarizability, αs and αt respectively. From the fit we find the following

values for κ0 and for αt.

λ (nm) κexp0 (%) κth0 (%) αexp
t αth

t

532.26 −5.3 ± 1 -9.2 −15 ± 3st ± 6sys -19

1064.5 −1.8 ± 0.8 -4.7 −1.9 ± 0.8st ± 1.2sys -5.4

For both wavelengths we measure slightly smaller tensorial effects than predicted by

the calculations, but the agreement is still satisfying. The deviations might be due

to the very small changes in trap frequencies, which might be affected by additional

systematic effects in the measurements.

As a comparison, the erbium tensor polarizability for 1064.5 nm is similar but slightly
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Figure 4.5: Anisotropic ground-state polarizability. The plot shows the anisotropy
parameter of the light shift κ for 532.26 nm (blue) and 1064.5 nm (red). The
measured values show a sinusoidal dependence on the polarization angle θp.
Solid lines are fits to the data, dotted lines are theory curves. For both wave-
lengths the measured anisotropy is slightly smaller than expected from theory.

larger than the dysprosium tensor polarizability, which was recently measured to

be {αs, αt} = {184.4(2.4), 1.7(6)} [143]. Given the complexity of the erbium atomic

spectrum, the overall agreement between theoretical predictions and the experimental

values for all investigated wavelengths is remarkable.

However, we further test the electronic-structure calculations and finally investigate

the 583 nm excited-state polarizability, where anisotropic effects are expected to be

larger than in the ground state.

4.2.3 Excited-State Polarizability

Anisotropic effects are expected to be stronger in excited states due to the even more

anisotropic electronic wave function. We therefore investigate the light shift of the

583 nm excited state (MOT transition, 17157 cm−1, J ′ = 7) to further test the cal-

culated spectrum of erbium. For the chosen state we cannot perform trap frequency

measurements due to its short lifetime. We therefore extract the light shift by mea-

suring the shift of the bare atomic resonance frequency. Experimentally this is done

by applying a short laser pulse of circularly polarized 583 nm light to the atomic sam-

ple in the optical dipole trap. This polarization couples the |J = 6,mF = −6⟩ ground

state to the |J = 7,mF = −7⟩ excited state. As shown in Fig. 4.6 (a) the trap induces

a different light shift in the ground and the excited state and therefore shifts the res-

onance frequency. By scanning the laser frequency around the atomic resonance we

find a resonant atom loss whenever the laser frequency matches the sum of the atomic

transition, the ground-state light shift and the excited-state light shift. To calculate

the ground-state light shift we use the measured ground-state polarizability and ne-

glect its angle dependence since the anisotropic effects are two orders of magnitude

smaller than in the excited state. Figure 4.6 (b) shows the measured light shift of the

excited state for θk = 90◦ as a function of θp for the two wavelengths λ = 1064.5 nm

and λ = 1570 nm. The scalar polarizabilities of both wavelengths have opposite sign

and therefore cause a repulsive potential for λ = 1064.5 nm and an attractive po-
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Figure 4.6: Measurement of excited-state polarizability. (a) Instead of performing
trap frequency measurements, we measure the shift of the bare transition fre-
quency from the ground to the excited state, induced by the optical dipole
trap. The light shift of the excited state can either be repulsive (upper panel)
or attractive (lower panel) and depends on the angle θp as indicated by the
different shades of the excited state. (b) Measurement of total polarizability as
a function of θp for the two wavelengths 1064.5 nm (top) and 1570.0 nm (bot-
tom). Solid lines are a fit to the data. Color gradient of solid lines correspond
to color shades in (a).

tential for λ = 1570 nm. However, the tensor polarizability have the same sign, so

that they tune equally with θp. The total light shift shows a strong dependence on

θp, which is much stronger than the measured anisotropies in the ground state. The

tensor polarizability αt is even on the same order as αs, so that the total light shift

can be substantially changed by changing the angle θp. We fit the data with Eq. (4.4)

and extract the scalar and tensor polarizability. For the two wavelengths we find the

following results.

λ (nm) αexp
s (a.u.) αth

s (a.u.) αexp
t (a.u.) αth

t (a.u.)

1064.5 66.6 ± 0.5st ± 28sys 91 −11.3 ± 0.5st ± 2sys -18

1570.0 −203 ± 9st ± 50sys -254 −141 ± 9st ± 19sys -68.5

Again, the large systematic uncertainties are caused by the systematic errors of the

ground state polarizability, that in turn are caused by the uncertainty of the beam-

waist measurements. Nevertheless, considering the complex electronic structure of

erbium, the agreement between the measured and calculated values is surprisingly

good. In particular, as we show in Fig. 4.7, the two investigated wavelengths are

surrounded by many broad and narrow optical transitions. This is different in the

ground state, where there are only very few transitions in the infrared.

All in all we find good agreement between calculated and measured values of the

polarizability for all investigated wavelengths both for the ground and the excited

state. In particular the measurement of the ground-state scalar polarizability of the

infrared wavelengths agrees excellently with the predicted values. We measure a small

but finite anisotropic effect in the ground state and showed that the 583 nm excited
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Figure 4.7: Calculated excited-state polarizability. The plot shows the scalar (blue),
vector (grey) and tensor (red) polarizability of the 583 nm excited state. There
are many optical transitions in the proximity of the two experimentally inves-
tigated wavelengths of 1064.5 nm and 1570 nm. Given this complex structure,
the agreement between measured and calculated polarizabilities is surprisingly
good. The shown calculations for the excited state polarizability were done by
M. Lepers.

state exhibits much stronger anisotropic light shifts, which are caused by the many

optical transition in the proximity of the investigated wavelengths. Although there are

still large uncertainties on the measured values, the results prove a good understanding

of the level structure of erbium. Our results do not only test semiempirical electronic-

structure calculations [111] but might also enable the use of near resonant light in

order to exploit large vector and tensor light shifts for generating mJ -dependent

optical potentials, to control the energy landscape on the different hyperfine levels

[141] and to use the quadratic light shift to initialize and control spin dynamics [144].
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Chapter 5

A Strongly Interacting Fermi

Gas of Dipolar Atoms

Despite the significant number of machines with utracold dipolar gases [37, 41, 42,

47, 48, 145–147], only very few experiments with fermionic species were conducted

[139, 148–150]. In particular, those experiments only investigated spin-polarized

Fermi-systems and did not exploit the spin degree of freedom. In fact, dipolar atoms,

such as Er or Dy, posses large quantum numbers in their ground state and therefore

offer a huge number of spin states. For instance, fermionic 167Er has a total angular

momentum of F = 19/2 and hence 20 hyperfine states. Such a system offers the

possibility to explore spin physics with many different internal states and to study

the effect of dipolar interaction in spinor systems.

At least in the case of erbium atoms, the reason for the lack of experiments on

fermionic spinor gases is threefold. On the one hand the investigation of fermionic

systems with strong dipolar interaction is hindered by complex scattering dynamics

[98] and the presence of many higher-order Feshbach resonances even between iden-

tical spin states. For spin mixtures, the number of Feshbach resonances is expected

to be even higher [139], eventually leading to Ericson fluctuations [151] at high mag-

netic field, which makes it even harder to find a magnetic field region with a long

lifetime and high collisional stability. A further complication is the spontaneous re-

laxation of the atomic spin since the dipole-dipole interaction only conserves the total

angular momentum, but not the spin [148, 152]. Finally, in the case of fermionic

erbium, the weak hyperfine coupling further aggravates the deterministic preparation

of multi-component spin systems. In the magnetic-field region at around 1 G, where

our experiments are conducted, the quadratic Zeeman splitting is almost negligible

and hence a standard spin initialization via radio-frequency (rf) coupling cannot be

straightforwardly applied. For negligible quadratic Zeeman splitting, rf coupling of

neighboring spin states would immediately couple to all further spin states due to the

fact that all adjacent levels are equally spaced in energy (see Fig 5.1 (a)).

This chapter presents the first steps towards solving the described problems and

studying spinor physics with fermionic erbium atoms. To this end we make use of

45



CHAPTER 5. A STRONGLY INTERACTING FERMI GAS OF DIPOLAR
ATOMS

Figure 5.1: Quadratic Zeeman effect. (a) Schematic of erbium level scheme at low and
large magnetic field. (b) Zeeman shift for all 20 magnetic sublevels of fermionic
167Er. The plot in the inset shows the relative splitting between two lowest
adjacent pairs of states, δ(∆E) = (E17/2 −E15/2)− (E19/2 −E17/2). Note the
different y-axis for main plot and the inset.

a new method to initialize a long-lived two-component spin mixture and perform

Feshbach spectroscopy by employing a lattice-projection technique. We identify and

carefully map out a comparatively broad Feshbach resonance between the two lowest

hyperfine states of 167Er. The results may enable the study of strongly interact-

ing fermions with dipole-dipole interaction and the investigation of the BEC-BCS

crossover in a dipolar quantum gas. The results of this chapter are published in [102].

5.1 Preparing a Spin Mixture of 167Er

As already mentioned and presented in Sec. 3.1, fermionic 167Er has a nuclear spin of

I = 7/2 and hence a total angular momentum quantum number of F = 19/2 with

20 magnetic sublevels mF ∈ {−19/2...19/2}. In an external magnetic field, these

sublevels split up due to the Zeeman effect. In contrast to the bosonic isotopes of

erbium with I = 0, the hyperfine coupling induces a quadratic Zeeman splitting in

the fermionic isotope 167Er according to Eq. (3.7). However, in the magnetic field

region, where most experiments with erbium are conducted (i.e. around one to a few

Gauss), the quadratic splitting is typically smaller than magnetic-field noise such that

it cannot be resolved by radio-frequency coupling of adjacent states. It can therefore

not easily be exploited for a deterministic initialization of a spin mixture. Similiar

ideas such as the coupling of two next-to-nearest spin states via a Raman scheme

also suffer from the small quadratic Zeeman shift. It is hence unavoidable to perform

the spin preparation at high magnetic field, where the quadratic correction to the

Zeeman shift is large enough to be able to exclusively couple two neighboring spin

states. This requires that the relative energy splitting between the states, δ(∆E) =

(E17/2−E15/2)− (E19/2−E17/2) is much larger than the magnetic field noise and the

Fourier limit of the applied rf pulse. For instance, as shown in Fig. 5.1 (b), in order

to get a relative splitting on the order of 50 kHz, a magnetic field of around 40 G is

needed. Unfortunately an evaporation in the low-field region (around 600 mG) implies
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Figure 5.2: Spin preparation and band mapping. (a) In order to prevent heating and
atom loss during the ramp to high magnetic field before the spin preparation,
we initialize a spin-polarized band insulator. We then ramp to high magnetic
fields and apply a resonant rf-pulse to induce spin mixing. (b) Band mapping
in the horizontal plane. Red arrows indicate the calculated size of the Brillouin
zone. (c) Three examples of different spin mixtures of the lowest two hyperfine
states, without populating higher spin states. Shown examples have δs ∈
{1, 0.02,−0.94} (from left to right).

that we have to ramp the magnetic field across hundreds of Feshbach resonances1 in

order to start the spin-preparation. Furthermore, once the spin-mixture is initialized,

we need to ramp the magnetic field back to low values across even more Feshbach

resonances. This procedure will cause heating of the atomic sample and significant

atom loss and hinders the preparation of a cold spin mixture in our setup.

In order prevent heating of the atomic sample during the preparation, we employ

a lattice-projection technique that suppresses atomic collisions. As illustrated in

Fig. 5.2, we start by evaporatively cooling a spin-polarized gas in the lowest hyperfine

state in our optical dipole trap to a temperature of about 0.15TF . We then adia-

batically ramp up a deep three-dimensional optical lattice [117] with lattice spacings

(ax, ay, az) = (266, 266, 532) nm and prepare a band insulator by populating only the

lowest band. This effectively freezes out any collisions between atoms. We verify

the preparation of a band insulator by band mapping, see Fig. 5.2 (b), a standard

technique that is commonly used in cold-atom experiments [153]. By comparing

absorption images to expected profiles computed from the first Brillouin zone, we es-

timate the populations in higher bands to be < 5% along the z-axis and even smaller

in the xy plane, as it is below our detection limit. With this system we ramp the mag-

netic field to 40.51 G, where the quadratic splitting between the three lowest states is

δ(∆E) = 42.6 kHz. During this ramp we do not see significant atom loss or heating.

In principle the high quadratic splitting enables the initialization of any arbitrary spin

mixture [144], but we only consider scattering properties of mixtures of the two low-

est hyperfine states |mF = −19/2⟩ and |mF = −17/2⟩ in this work. We initialize the

spin-mixture by applying a resonant rf pulse and realize different spin compositions

by varying the duration of the pulse. As shown in Fig. 5.2 (c), this procedure solely

couples the two lowest spin states and does not populate any higher spin states. We

quantify the spin composition with the parameter δs =
N−19/2−N−17/2

Ntot
, ranging from

δs = 1 (fully polarized in the mF = −19/2 state) to δs = −1 (fully polarized in the

mF = −17/2 state). Fig. 5.2 (c) shows three examples for δs ∈ {1, 0.02,−0.94}.

While the atomic gas is stable in the lowest hyperfine state mF = −19/2, there

1See Extended Data Figure 1 in Ref [98]

47



CHAPTER 5. A STRONGLY INTERACTING FERMI GAS OF DIPOLAR
ATOMS

Figure 5.3: Collisional stability of erbium spin mixtures. (a) There are five possible
scattering processes driven by dipolar interaction that can occur between two
identical particles. They can be both spin conserving (δM = 0) or spin non-
conserving (δM = ±1,±2). Spin non-conserving processes are usually strongly
suppressed by energy conservation. (b) Lifetime measurements of three differ-
ent spin mixtures in a deep optical lattice. δs = 1 and δs = −0.92 in the
left plot, δs = 0.6 in the right plot. Blue (red) data points correspond to
mF = 19/2 (17/2). Solid lines are exponential fits to the data.

are different types of collisions for higher hyperfine states, that might influence the

lifetime of the atomic sample. In principle there are 5 different scattering pro-

cesses that can happen between two identical dipolar atoms [40, 144]. As illus-

trated in Fig. 5.3 (a), both magnetization-conserving (δM = 0) and magnetization-

non-conserving (δM ̸= 0) collisions are allowed. Since these processes are driven by

the long-range DDI, they can even occur between 2 atoms on neighboring sites. How-

ever, collisions that do not conserve magnetization are typically strongly suppressed

in a magnetic field because of the energy mismatch of the initial and final state due to

the Zeeman shift. However, energy conversation can in principle be guaranteed e.g.

by scattering with a third particle. Eventhough this process should be strongly sup-

pressed in the lattice we experimentally test the collisional stability of a spin mixture

of the two spin states, mF = −19/2 and mF = −17/2. We perform this measurement

in a region without a Feshbach resonance, at a magnetic offset field of B = 3.99 G.

Figure 5.3 (b) shows the decay of the atom number over time for three different spin

compositions with δs ∈ {1, 0.6,−0.92}. We fit an exponential decay to the data and

extract surprisingly long lifetimes of τ19/2 = −31(3) s and τ−17/2 = 12.2(7) s. In

particular we find no strong dependence of the lifetime on the initial spin mixture.

However, we always observe a shorter lifetime for the mF = −17/2 state. Since we

do not measure an increase of atom number in the mF = −15/2 state, we conclude

that no magnetization-conserving scattering processes (δM = 0) occur. We instead

attribute the reduced lifetime of the mF = −17/2 state to a small but continuous

transfer of atoms into higher bands via intensity noise on the optical lattice. Two

atoms in the mF = −17/2 state on the same lattice site can then decay via spin-

relaxation (δM = −2), where the released Zeeman energy is large enough to escape

from the lattice. This process is not possible for the mF = −19/2 state.
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Figure 5.4: Large Feshbach scan. The three plots show a Feshbach scan for three dif-
ferent spin mixtures, δs = 1 (top), δs = −0.54 (middle) and δs = 0.4 (bottom).
The dark grey shaded region illustrates the broadest loss feature that occurs
in both spin states. We therefore perform a finer Feshbach scan in the light
grey shaded region, which is presented in Fig. 5.5.

The results of this section show that we can initialize the system in arbitrary spin

compositions with lifetimes of several seconds. This systems provides a good starting

point for the investigation of scattering physics between spin states. The next section

presents our measurements on Feshbach loss spectroscopy in an ODT and modulation

spectroscopy in a deep optical lattice.

5.2 Feshbach Spectroscopy

With the ability to prepare arbitrary spin mixtures, we can investigate scattering

properties both between identical fermions in the mF = −17/2 state but also between

the two lowest hyperfine states. To this end we make use of our lattice-projection

technique to ramp the magnetic field through the dense Feshbach spectrum. As

described above, we initialize the spin mixture in the optical lattice at high magnetic

field. We then ramp the magnetic field to the value that we want to probe and

wait for the magnetic field to stabilize. We then release the atomic sample back

into the dipole trap and hold the spin mixture for th = 500 ms before measuring the

spin-resolved atom number. At a Feshbach resonance, the scattering length diverges,

three-body recombination rates increase substantially and hence the lifetime of the

sample decreases, causing a dip in the atom number during the Feshbach scan [28].

Figure 5.4 shows a Feshbach scan in the region from zero to two Gauss for three

different spin mixtures, δs ∈ {1,−0.54, 0.4}. The different spin combinations enable

the assignment of occurring loss features to the spin states. The upper pot (δs = 1)

only indicates Feshbach resonances between identical atoms with mF = −19/2. Those

are resonances of higher partial wave character, depending on temperature and optical

confinement [154]. With the two further plots (δs = −0.54 and δs = 0.4), we can

identify Feshbach resonances between two identical atoms in the |mF = −17/2⟩ state,

such as the narrow feature at around 0.8 G or the very broad feature around 0.35 G

or identify interspin resonances e.g. at 1.1 G. The light-grey shaded sector shows

a broad region without loss feature, close to a relatively broad loss feature in both
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Figure 5.5: High-resolution Feshbach scan. The three plots show a high resolution
Feshbach scan for different spin mixtures of the two lowest hyperfine states,
|mF = −19/2⟩ (blue) and |mF = −17/2⟩ (red) with δs = 1 (top), δs = −0.6
(middle), and δs = 0 (bottom). The shaded regions indicate loss features
that only appear in the respective spin (red and blue) or in both spin states
(orange).

spin components, highlighted by the dark-grey shaded region. This points towards

a promising candidate of a broad interspin Feshbach resonance, which we further

investigate by performing a second Feshbach scan with higher resolution within the

light-grey shaded region. This scan is presented in Figure 5.5, again for three different

spin combinations, δs = 1 (top), δs = −0.6 (middle), and δs = 0 (bottom). Thanks

to the employed lattice-projection technique, the loss features do not suffer from

magnetic field ramps at all and do not show any artificial broadening. We are therefore

also sensitive to very narrow resonances on the order of a milligauss. The measurement

reveals 7 further narrow intra-spin resonances (blue and red-shaded regions in top

and middle plot) and 5 inter-spin resonances (orange-shaded regions in bottom plot),

from which the one at 680 mG stands out because of its much larger width of about

50 mG. We choose that resonance for further investigation and perform modulation

spectroscopy in our optical lattice to extract the inter-spin scattering length.

We start by preparing a balanced spin mixture (δs = 0) in the optical lattice. As

illustrated in Fig. 5.6 (a) we sinusoidally modulate the depth of the optical potential

at frequency νmod. If the modulation frequency is resonant to the onsite interaction

of two atoms, i.e. hνmod = Uo, the system is resonantly excited and doubly occupied

lattice sites are created. Those doublons have a shorter lifetime and get lost faster

from the optical lattice than singly occupied sites. After modulation of the lattice

depth we therefore hold the sample in the lattice and wait for the doublons to decay.

After this hold time we detect the atom number via spin-resolved absorption imaging

after Stern-Gerlach separation of the two spin states and find a resonant loss whenever

the above resonance condition is met.

For dipolar gases there are two contributions to the onsite interaction [117], the
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Figure 5.6: Modulation spectroscopy in the optical lattice. (a) We load a band
insulator into a 3D optical lattice and prepare a balanced spin mixture with
δs = 0. Modulation of the lattice depth creates double occupancies if the
resonance condition is met. Double occupancies have a shorter lifetime and
can be detected as a loss of atoms. (b) Exemplary scan of the modulation
frequency νmod. The dip in the total atom number indicates atom losses due
to the resonant creation of doubly occupied sites. Solid line is a Gaussian fit
to the data.

contact interaction Uc, and the dipole-dipole interaction, Udd, with

Uo = Uc + Udd

Uc =
4πℏa
mEr

∫︂
dr⃗ |ϕ(r⃗)|4 ,

Udd =
µ0µ1µ2

4π

∫︂
dr⃗

∫︂
dr⃗′ |ϕ(r⃗)|2 1 − 3 cos2 (θr⃗−r⃗′)

|r⃗ − r⃗′|3
⃓⃓
ϕ(r⃗′)

⃓⃓2
. (5.1)

Here a is the inter-spin s-wave scattering length, that we want to determine from the

measurement. mEr is the mass of erbium, ϕ(r⃗) is the onsite Wannier wave function,

µ0 is the vacuum permeability, µ1 and µ2 the magnetic moment of the first and second

atom, respectively, and θr⃗−r⃗′ is the angle between the alignment axis of the dipole with

respect to their interparticle axis (see Sec. 2.2 on dipolar interaction). Both sign and

strength of Udd depend on the shape of the Wannier wave function. Following [117] we

define the aspect ratio as AR = lz/lxy, with li = di/(πs
1/4
i ), where di is the harmonic

oscillator length and si the lattice depth in units of the photon recoil energy Ei/Erec.

Due to our lattice geometry and available laser powers in the laboratory, the Wannier

function has a prolate shape (AR > 1). As illustrated in Fig. 5.7 (a), for dipoles

aligned along the z-axis, the dipoles mainly experience a head-to-tail configuration,

in which they interact attractively. This causes the dipole-dipole onsite interaction

energy to be negative, Uz
dd < 0. By rotating the magnetic field into the xy plane, the

dipoles mainly align side by side and interact repulsively, which leads to a positive

dipole-dipole onsite energy Uz
dd > 0. By performing modulation spectroscopy for those

two configurations, we get the equalities |Uxy
o | = |Uc + Uxy

dd | and |Uz
o | = |Uc + Uz

dd|,
where Uxy

dd and Uz
dd contribute to the total energy with different signs. By comparing

those two energies we can directly extract the amplitude and the sign of Udd and use

the result to determine the shape of the Wannier wave function, with which we finally

extract the scattering length as. Figure 5.7 shows the experimentally obtained values

for the scattering length in the proximity of the observed loss feature. We fit a simple
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Figure 5.7: Feshbach resonance in 167Er. (a) The dipole interaction energy Udd de-
pends on the aspect ratio (AR) and the alignment of the dipoles. For a fixed
AR ̸= 1, the magnitude and sign of Udd can be changed, which allows us to
extract the sign of the scattering length a by comparing interaction energies
for two angles. (b) Scattering length as a function of magnetic field. The solid
line is a single-channel fit to the experimental data (see main text). Dashed
grey vertical lines indicate further narrow resonances (cf. Fig. 5.5).

single-channel model to the data [28, 155], taking into account a second resonance

around 480 mG (cf. Fig. 5.4),

a(B) = abg

(︃
1 − ∆

B −B0
− ∆′

B −B′
0

)︃
, (5.2)

with the background scattering length abg, the widths ∆ and ∆′, and the resonance

positions B0 and B′
0. We find a background scattering length of abg = 93(9)a0, where

a0 is the Bohr radius. The lower resonance is located at B0 = 480(4) mG with a width

of ∆ = 33(6) mG. For the other resonance we extract a position of B′
0 = 687(1) mG,

and a slightly broader width of ∆′ = 57(6) mG, consistent with the loss feature in the

Feshbach scan in Fig. 5.4. The grey dashed vertical lines in Fig. 5.7 (b) indicate the

four further narrow resonances, which we observed in Fig. 5.5 and which we do not

take into account for the fit. Assuming a differential magnetic moment of δµ = 3µ0 (as

was measured in bosonic Er2 [156]), we can estimate the order of the effective range

to be r∗ = ℏ/mErabgδµ∆ ≈ 600 a0 for the resonance at 480 mG and r∗ ≈ 1000 a0

for the resonance at 687 mG. This value of the effective range yields an intermediate

dimensionless parameter of γ∗ = 8
π

1
kF r∗ ≳ 1 [157].

In a final measurement we investigate the lifetime of the atomic sample across

the resonance at 687 mG. Figure 5.8 (a) shows the decay of the atom number over

time for positive scattering lengths of a = 880(140) a0 at a magnetic offset field of

680 mG and for negative scattering length a = −1500(500) a0 at a magnetic offset

field of 690 mG. We fit the data with an exponential decay and extract 1/e-lifetimes

of τ+ = 150 ms and τ− = 1200 ms, respectively. The longer lifetime on the repulsive

site of the resonance (a < 0) is a direct consequence of the Pauli principle, which

suppresses three-body losses in a two-component Fermi gas [158]. On the attractive

(BEC) site, the existence of a weakly bound molecular state supports three-body
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Figure 5.8: Collisional stability across the resonance. (a) Two exemplary lifetime
measurements below (top) and above (bottom) the resonance for a 50-50 mix-
ture of the mF = −19/2 (blue) and mF = −17/2 (red) spin state. Solid lines
are exponential fits to the data. (b) Initial decay rate across the 687mG Fesh-
bach resonance as a function of the dimensionless coupling constant 1/(kF a).
Solid line only serves as guide to the eye.

recombination and leads to a faster decay of the atom number. This behavior can

also be seen in Figure 5.8 (b), where we plot the initial decay rate Ṅ/N0 as a function

of the dimensionless coupling constant 1/(kFa). We extract the initial decay rate with

a linear fit to the initial decay of the atom number. We find a large collisional stability

on the repulsive site, where the lifetime can reach a few seconds. On the attractive

site, the initial decay is more than one order of magnitude larger. This asymmetry is

an essential feature for the BEC-BCS crossover and hence the investigated resonance

might be a promising candidate to study such physics in systems with anisotropic

long-range interaction.

In this chapter we presented the first realization of a two-component Fermi gas

with dipolar and tunable s-wave interaction. Our preparation scheme does not suf-

fer from inelastic dipolar scattering and can easily be extended to prepare arbitrary

spin compositions [144]. Even though the measured resonances are only of interme-

diate strength and much more narrow than typical Feshbach resonances in systems

with alkali atoms (in terms of the magnetic field), the presented resonance can be

used to freely tune the interaction between the two lowest hyperfine states in 167Er,

|mF = −17/2⟩ and |mF = −19/2⟩. With a magnetic field stability of below 1 mG in

the experiment, we can precisely tune the scattering length to the desired value. Our

results therefore enable the investigation of BEC-BEC crossover physics in dipolar

quantum gases but also motivates the search for further broad resonances at higher

magnetic fields, or between further combinations of spin states. Furthermore such

measurements could facilitate the understanding of complex spin dynamics [144] and

enable the study of rich magnetic behaviors in systems with long-range interaction

and the search for exotic phases of matter by exploiting the many spin states as
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synthetic dimensions [159].
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Chapter 6

Conclusion and Outlook

This part of the thesis presented the results that were obtained within my first year

in Innsbruck at the erbium experiment.

The first project was the investigation of the anisotropic light shift of erbium atoms.

We presented measurements on the anisotropic ac-polarizability of the ground state

and the 583 nm excited state of erbium and compare the experimental results to

semiempirical electronic-structure calculations. Despite the complicated electronic

configuration in erbium and a huge number of optical transitions in the proximity of

the investigated wavelengths we find good agreement between theory and experiment.

There are few investigations in dysprosium experiments [125, 143], however, a similar

direct comparison of experiment and theory is still pending. Our results prove a

good understanding of the erbium level structure and a good knowledge of existing

optical transitions beyond the NIST database. Such an understanding facilitates the

design of new experimental schemes and raises prospects for realizing state-dependent

optical potentials via the application of near-resonant laser light. It also enables state-

selective manipulation by using narrow lines for spin-orbit coupling [139] or to realize

synthetic dimensions with the large number of internal spin states[55].

The second project investigated the preparation of a strongly interacting dipolar Fermi

gas. We presented a scheme for the deterministic preparation of two-component spin-

mixtures in a Fermi gas of erbium atoms. Despite spin non-conserving processes

we measure a high collisional stability and find that the lifetime is independent of

the initial spin-composition. We performed Feshbach loss spectroscopy in the region

from 0 − 2 G, where we detect a range of inter and intra-spin Feshbach resonances.

We map out and characterize one particularly broad inter-spin Feshbach resonance

around 680 mG via modulation spectroscopy in an optical lattice. Our measurement

constitutes the first realization of a two-component dipolar Fermi gas with tunable

interaction and enables the future study of strongly interacting dipolar Fermi gases.

Outlook

The results obtained within this thesis directly enable a range of interesting experi-

ments with dipolar Fermi gases. As shown in a recent experiment in our group [144],
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state-dependent light shifts can be used to quickly control dipolar exchange dynamics

by compensating the quadratic Zeeman shift with a quadratic light shift. This paves

the way to the study of rich magnetic behaviors in dipolar Fermi gases involving a

huge number of internal degrees of freedom.

A further interesting topic is the study of transport properties in optical lattices and

the influence of dipolar interaction [160]. Based on energy conservation, a system

interacting via nearest-neighbor dipolar interaction is expected to form dynamically-

bound nearest-neighbor dimers, which decrease or even completely suppress expansion

and transport in a dipolar system. Fermi gases are particularly promising candidates

to study such effects [161] since optical lattices with unity filling can be readily real-

ized.

Furthermore the ability to tune the short-range interaction and to realize a strongly in-

teracting Fermi gas allows to investigate the effect of dipolar interactions on fermionic

pairing and the BEC-BCS crossover. In particular, similar as was done in bosonic

dipolar gases, the study of systems where the interaction can be tuned from purely

dipolar to a regime where it is dominated by s-wave interaction might reveal inter-

esting new phases or dynamics caused by the interplay of short-range isotropic and

long-range anisotropic interactions.
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Chapter 7

Experimental Tools in the

Laboratory

With our setup in the Heidelberg experiment we have the ability to deterministi-

cally prepare mesoscopic Fermi-Hubbard-like systems by trapping few atoms in an

array of few optical tweezers [94, 162, 163]. By using a single-atom and spin sensi-

tive fluorescence imaging scheme, which we developed in our group over the past few

years [67, 85], we can investigate those few-fermion systems both in real space and in

momentum space. By investigating the system in two conjugate basis (i.e. position

and momentum) we have direct access to coherence properties of the prepared state

and can therefore extract information that is not accessible when only looking in real

space. As we will discuss in the following chapters, we can use this information to

characterize few-fermion systems and to constrain large parts of their density matrix.

Based on these constraints, we can reconstruct physical density matrices of systems

containing two or three mobile, interacting atoms by performing a Bayesian quantum

state estimation. In this first chapter we present the basic tools that we have avail-

able in the laboratory. We start by introducing the main properties of lithium and

briefly discuss how we deterministically prepare few-particle systems in the labora-

tory. We then briefly discuss which states we can prepare in the laboratory and how

we investigate them using our single-atom sensitive imaging scheme.

7.1 6Li - Atomic Properties

Lithium is the lightest alkali atom with atomic number Z = 3. It has a single valence

electron and compared to the previously discussed erbium a simple electronic structure

in the ground state. There are two stable isotopes which are both commonly used in

cold atom experiments: bosonic 7Li with a natural abundance of 92.4% and a nuclear

spin of I = 3/2 and fermionic 6Li with a natural abundance of 7.6% [164] and a nuclear

spin of I = 1. In our experiment we use the fermionic isotope 6Li.

Figure 7.1 (a) shows the level structure and the hyperfine splitting of 6Li in the ground

and the first excited state. The electronic ground state (22S1/2) splits into two sub-

manifolds (F = 1/2 and F = 3/2) with a splitting of ∆ = h×228.2 MHz. The 2P excited
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Figure 7.1: Lithium level structure. (a) Level structure and hyperfine splitting of 6Li
at zero magnetic field (not to scale). (b) Zeeman splitting of the different mF

states for the two experimentally relevant states, i.e. the ground state 22S1/2

and the upper excited state 22P3/2. Note the different x-axes in the top and
bottom plot. Figure taken and adapted from [86].

state splits into the two manifolds 2P1/2 and 2P3/2 with a fine structure splitting

of around ∆FS = h × 10.056 GHz, which in turn split up into five sub-manifolds

with different total angular momenta F . The D1 and D2 lines have wavelengths of

λ1 = 670.992421 nm and λ2 = 670.977338 nm, respectively, with a natural linewidth

of Γ = 5.8724 MHz [86]. In our experiments however, we only drive transitions within

the D2 line, i.e. to the 22P3/2 excited state. At zero magnetic field, the hyperfine

splitting of that state is smaller than the D2 linewidths and can hence not be resolved.

It is interesting to note that compared to other alkali atoms the fine structure splitting

of ∆FS = 10.056 GHz of the excited state is very small. Even though this can have

technical advantages, e.g. for the implementation of grey-molasses cooling [165], it

might also complicate the application of strong Raman couplings within the ground

state [166].

When lithium is subjected to an external magnetic field, the different mF sublevels of

each F -manifold split up due to the Zeeman effect. Generally this splitting is linear at

small magnetic fields, but once the magnetic interaction energy becomes comparable

to the hyperfine interaction energy, F ceases to be a good quantum number and the

states rearrange in groups according to their mJ value (see Fig.7.1 (b) or [85, 86]

for a more detailed description of the different levels). For the 22P3/2 excited state

this already happens at very low magnetic field (around 1 Gauss) due to the small

hyperfine constant of the excited state of A22P3/2
= −1.155 MHz [167]. In contrast,
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for the ground state much larger magnetic fields are necessary to decouple the nuclear

moment from the electronic angular momentum. As described in [67, 85, 168], this

has important consequences for our free-space momentum imaging scheme, due to

small but finite branching rations for the decay from the excited state into the three

highest states (labeled |4⟩, |5⟩, |6⟩ in Fig. 7.1 (b)) of the ground state.

For our experiments, we use two of the three lowest hyperfine states of the ground

state, labeled |1⟩, |2⟩ and |3⟩, according to their energy at high magnetic field. At high

magnetic field, the splitting between two adjacent states is on the order of 80 MHz

so that they can be individually addressed via the D2-line. Experiments presented

in this thesis are all done with a |1⟩-|3⟩ mixture, because (i) state |3⟩ is the only

state that features a completely closed optical transition [168], which is beneficial for

imaging, and (ii) to maximize the energy difference between the two states in order

to suppress off-resonant scattering during the imaging process.

7.2 Deterministic Preparation of Few-Fermion Sys-

tems

In order to deterministically prepare few-fermion systems it is essential to prepare

atomic samples with very low temperature and entropy. This section outlines the main

steps of the experimental procedure. A more detailed description of the experimental

setup and procedure can be found e.g. in [84, 85, 94, 169]. For the setup of the

vacuum chamber, see Chapter 2 or given references.

Optical Setup

As described in the first part of the thesis, cooling an atomic sample requires both

resonant and off-resonant laser light. For dissipative cooling in the Zeeman slower

and the MOT we derive near-resonant laser light at λres = 671 nm from a Toptica

tapered amplifier. We employ two further Toptica DL100 external cavity diode lasers

at the same wavelength for absorption and fluorescence imaging. All visible lasers are

beat-offset locked to a reference laser which in turn is locked to the D2 line (to the

F = 3/2 → 22P3/2 transition) via modulation transfer spectroscopy. Fast frequency

jumps during the imaging process (e.g. for state-resolved imaging) are achieved by

controlling the DC modulation input of the DL100 with a Red Pitaya [94].

For experiments in this thesis, we use two kinds of dipole traps. Evaporation is per-

formed in a crossed-beam optical dipole trap. Laser light for this trap is derived from a

1064 nm, 100 W Yb-doped fiber amplifier, YLR-200-LP-WC, IPG Photonics. The de-

terministic preparation (see below for details) is done with optical tweezers, for which

we use light from a 1064 nm, 1 W Innolight Mephisto laser. The tweezer array is real-

ized with an acousto optical deflector (AOD) [170], operated at low radio-frequency

(rf) powers to keep nonlinearities in the crystal as small as possible. Generation of

multiple tweezers is achieved by sending multiple rf tones to the AOD. We focus

the tweezer light through our high-resolution objective [171], sitting in the reentrant

viewport on top of our main chamber. The objective has a design numerical aperture
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Figure 7.2: Experimental sequence for deterministic preparation of few-fermion
systems. The top row shows the different blocks of the full experimental
sequence, including the initial MOT phase, followed by the evaporation and
the experimental part. Below the top row there is a zoom-in on the prepa-
ration, manipulation and imaging sections. We also schematically illustrate
the sequence for the tweezers, the magnetic offset field and the magnetic field
gradient during the experimental part.

of NA = 0.6 with an an effective focal length of 20.3 mm. We use the same objective

for fluorescence imaging as will be described in Sec. 7.4.

Experimental Sequence

The experiment is controlled by an ADwin Pro II from Jäger Messtechnik, using 2×32

DIO channels, 16 analog out and 8 analog input channels. Digital channels can be

set with 0.5µs time steps, analog channels have an update rate of 400 kHz, which

is fast enough for the implementation of real-time PIDs for active stabilization of

experimental parameters. Figure 7.2 shows a schematic of the experimental sequence.

The experiment starts with the loading of a magneto-optical trap (MOT), in which

typically 107 atoms are captured. At the end of the MOT phase, all atoms get pumped

into the F = 1/2 state. We then compress the MOT and transfer it into a crossed-beam

optical dipole trap (ODT), where the ramping on of the offset magnetic field produces

a spin-imbalanced mixture of atoms in states |1⟩ and |2⟩. Spin balance is established

by a high-power radio-frequency pulse. Atoms are eventually transferred from state |2⟩
to |3⟩ by an adiabatic Landau-Zener passage. After a short phase of plain evaporation,

the power of the ODT is lowered to force evaporation either at low (300 G) or high

(685 G for |1⟩ − |3⟩) magnetic field (refer to Sec. 2.2 for scattering lengths). At the

end of the evaporation we typically have 40.000 atoms per spin state at temperatures

of below 0.5 TF . We then ramp on one or, depending on the experiment, multiple

tweezers at the same time, that can be individually controlled by controlling the

radio-frequency tones that are sent into the AOD. As illustrated in Fig. 7.3, once the

tweezer is filled with atoms, we first switch off the crossed-beam ODT and only retain

a completely filled tweezer. At that stage there are only a few hundreds of atoms left.

We deterministically reduce the atom number to a few atoms by applying a magnetic
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Figure 7.3: Deterministic preparation of few fermions. (a) After the evaporation
in our large crossed-beam optical dipole trap, we transfer the atoms into a
dimple trap, created by a tightly focussed laser beam. (b) We switch off the
large reservoir trap and retain a few hundred atoms in the dimple trap. (c) We
lower the optical potential and apply a magnetic field gradient to determinis-
tically spill atoms above a certain trap level out of the trap. (d) We obtain a
deterministic atom number and achieve fidelities on the order of 96% per atom.

field gradient along the longitudinal axis of the tweezer and by subsequently lowering

the optical potential. As indicated in the figure this procedure spills out all atoms

above a certain trap level [162]. The preparation of single atoms works with a fidelity

of about 96 %. Depending on the experiment, we either separately prepare multiple

tweezers with single atoms or prepare a fixed number of atoms in the first tweezer and

initialize the final system with an adiabatic passage to the total ground state (see e.g.

[163]). After the final state has been prepared, we eventually induce interactions by

tuning the magnetic field across the Feshbach resonance. We finally investigate the

state by two different means: fluorescence imaging in a microMOT (only atom-number

resolved) or free-space single-atom and spin resolved imaging.

MicroMOT

A first and very robust method to investigate a few-atom state is the microMOT. In

order to count the total atom number after the experimental sequence, we recapture

the atoms from the tweezers into our MOT and collect the fluorescence signal on

a CCD camera for one second [162]. To get a good signal-to-noise ratio on the

camera, we compress the MOT as much as possible by using a much higher magnetic

field gradient and less detuning than we use in the initial MOT, hence the name

microMOT. With this method we can count the total atom number up to about

15 atoms with very high fidelity. In combination with the above described spilling

technique, the microMOT is well suited to perform spectroscopic measurements [172–

174]. While the microMOT cannot provide any information about the momenta of

the atoms it can in principle be applied to extract information beyond the total atom

number. We can e.g. measure the spin and site-resolved populations by removing

all atoms of one spin state and switching off all wells except one prior to imaging.

However, such sequences can get very tedious so that we developed a complementary

imaging scheme that gives access to both real and momentum-space spin-resolved

single-particle positions.
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Free-Space Imaging

In order to extract more information from the state than just the total atom num-

ber, we employ a single-atom and spin-resolved free-space imaging scheme [67, 85].

Briefly explained, we illuminate atoms with resonant laser light for 20µs and collect

on average around 20 fluorescence photons per atom with our high-NA objective onto

an EMCCD camera. Successively taking two images of different spin states also pro-

vides spin-resolution. In particular, this imaging scheme works without any confining

potentials so that also the momenta of single atoms can be accessed. The results pre-

sented later in the thesis were obtained with this imaging scheme. We will therefor

give a more detailed description in Sec. 7.4. However, for all technical details, please

refer to [67, 85, 168].

7.3 Fermi-Hubbard Model

A system consisting of few fermions trapped in an array of optical tweezers can be

described by the Fermi-Hubbard model [163]. This model was initially used to describe

interacting fermions in flat energy bands [175] but is readily applied to ultracold atoms

in optical lattices [176, 177]. Despite its simplicity, the Fermi-Hubbard (FH) model

still raises open questions and is seen as a promising candidate to explore physics

related to high-TC superconductivity [178]. This section discusses the basic aspects

of the FH model, that are relevant for our experiments and discusses the states that

we can realize in the laboratory.

The Hubbard model is a simple model to describe a system in a periodic potential

with nearest-neighbor hopping and onsite interaction. It only considers the lowest

energy band and furthermore assumes that different spatial modes are orthogonal to

each other. For a two-component Fermi gas in a periodic potential, we can write the

Fermi-Hubbard Hamiltonian as

ĤFH = −J
∑︂

⟨i,j⟩,σ

(︂
ĉ†iσ ĉjσ + ĉ†jσ ĉiσ

)︂
⏞ ⏟⏟ ⏞

Hkin

+U
∑︂
i

n̂i↑n̂i↓⏞ ⏟⏟ ⏞
Hint

+
∑︂
i

µi (ni↑ + ni↓)⏞ ⏟⏟ ⏞
Hext

, (7.1)

with fermionic annihilation (creation) operators c
(†)
iσ on site i with spin σ and number

operators n̂iσ = c†iσciσ. Figure 7.4 (a) schematically illustrates the different terms

of this Hamiltonian. The kinetic term Ĥkin describes hopping of fermions between

neighboring sites ⟨i, j⟩ with hopping element J . The interaction term Ĥ int describes

the interaction of two fermions with opposite spin on the same lattice site, contributing

the onsite interaction energy U . Finally the last term takes into account and external

confinement or an energy offset µi on individual sites of the lattice, as illustrated

in Fig. 7.4 (b) for the case of a double-well potential. In the illustrated case of a

detuned double well, we have µ1 = −µ2 = µ and a doubly-occupied left well, where

the repulsive interaction between the two opposite spins contributes the energy U to

the total energy of the system.

For small systems, it is instructive to explicitly write out the FH Hamiltonian. For
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Figure 7.4: Fermi-Hubbard model. (a) Illustration of the FH model for a two-
component Fermi gas on a two-dimensional optical lattice. The evolution of the
system is governed by only two parameters, the tunnelling element J and the
onsite interaction U . (b) Two interacting atoms in an imbalanced double-well
potential with µ1 = −µ2.

later purposes we discuss the cases of two atoms in a double well and three atoms in

a triple well.

2 Atoms in a Double Well

For the case of two identical atoms, i.e. if the two atoms have the same spin, there is

only one possible state within the Fermi-Hubbard model. In the notation |·, ·⟩, where

the first entry is the spin population in the left well and the second entry the spin

population in the right well, the state of two identical atoms reads as |↑, ↑⟩. In that

state there is exactly one fermion per site since the two atoms cannot occupy the same

well due to the Pauli-exclusion principle. Hence, the Hamiltonian is simply Ĥ = 1,

since tunneling is forbidden (J = 0) and there is no onsite interaction U .

The case of two interacting atoms with different spin (labeled |↑⟩ and |↓⟩) is illustrated

in Fig. 7.4 (b). With the same notation as above, we can identify four basis states as

|Ψ⟩ ∈ {|↑↓, ·⟩ ; |↑, ↓⟩ ; |↓, ↑⟩ ; |·, ↑↓⟩} . (7.2)

An alternative and useful representation of the same states (that we will use later) is

what we will call the particle representation. Instead of giving the population of the

first or second well, the first or the second entry in |·, ·⟩ indicate the well in which the

spin-up, or the spin-down particle are located, respectively. In this representation we

can rewrite the above states as

|Ψ⟩ ∈ {|LL⟩ ; |LR⟩ ; |RL⟩ ; |RR⟩} . (7.3)

The first and the last state are doubly occupied sites and therefore come along with

an energy penalty of U . The occupation of those states is hence favored (suppressed)

for attractive (repulsive) interaction. There is no energy penalty associated with the

two other states, but they are connected to the doubly occupied states via a single

tunnelling event J . We can write the Hamiltonian in its matrix representation, using
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Figure 7.5: Spectrum of balanced double well. The top panel shows the coefficients
of the four basis states in the ground state, see Eq. (7.5). The lower plot shows
the four eigenenergies of the balanced double well as function of the interaction
U/J . The attractively interacting ground state (blue solid line) approaches the
state with the superposition of two doubly occupied sites. On the repulsive
site, each atom becomes localized on an individual site.

Hij = ⟨Ψi| Ĥ |Ψj⟩, as

ĤDW =

⎛⎜⎜⎜⎝
U + 2µ1 −J −J 0

−J 0 0 −J
−J 0 0 −J
0 −J −J U + 2µ2

⎞⎟⎟⎟⎠ . (7.4)

We can analytically diagonalize this Hamiltonian to find the four eigenstates and the

associated eigenenergies, which we plot in Fig. 7.5 for the balanced double well, i.e.

for µi = 0. In our experiments we are primarily interested in the ground state |Ψgs⟩,
which is highlighted in the figure.

The ground state |Ψgs⟩ is explicitly given by

|Ψgs⟩ =
1√︁

2 + 2N 2
UJ

(|LL⟩ + |RR⟩ + NUJ(|LR⟩ + |RL⟩)) (7.5)

with NUJ =
U

4J
+

√︄
1 +

(︃
U

4J

)︃2

. (7.6)

The prefactors of both the doubly and singly occupied states are plotted in the upper

panel of Fig. 7.5. The population of doubly occupied sites is favored (suppressed) for

attractive (repulsive) interaction and the coefficients already saturate at an interaction

of U/J ≈ ±8. To gain some understanding of the states, let’s take a look at the three

limiting cases of U = 0, U/J → ∞, and U/J → −∞. In those cases, the state from
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Eq. (7.5) takes the form

|Ψ0⟩ =
1

2
(|LL⟩ + |RR⟩ + |LR⟩ + |RL⟩)

=
1√
2

(|L⟩ + |R⟩) ⊗ 1√
2

(|L⟩ + |R⟩) (7.7)

|Ψ∞⟩ → 1√
2

(|LR⟩ + |RL⟩) (7.8)

|Ψ−∞⟩ → 1√
2

(|LL⟩ + |RR⟩) . (7.9)

At U = 0 the state factorizes into a product of the two single-particle states, whereas

the strongly interacting states are maximally entangled Bell states. For later pur-

poses we explicitely write out the density matrices of the three states, which can be

calculated by ρ = |Ψ⟩ ⟨Ψ|. In the basis from Eq. (7.3) the density matrices are given

by

ρ−∞ =
1

2

⎛⎜⎜⎜⎝
1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

⎞⎟⎟⎟⎠ , ρ0 =
1

4

⎛⎜⎜⎜⎝
1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

⎞⎟⎟⎟⎠ , ρ∞ =
1

2

⎛⎜⎜⎜⎝
0 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0

⎞⎟⎟⎟⎠ .

(7.10)

3 Atoms in a Triple Well

In the trivial case of three identical atoms, there is again only a single state available,

|↑, ↑, ↑⟩. We therefore consider the configuration with two spin-up and one spin-down

atom (or vice versa). In that case, we identify the 9 following states as basis states,

|Ψ⟩ ∈ {|↑, ↑, ↓⟩ ; |↑, ↓, ↑⟩ ; |↓, ↑, ↑⟩ ;

|↑↓, ↑, ·⟩ ; |↑↓, ·, ↑⟩ ;

|↑, ↑↓, ·⟩ ; |·, ↑↓, ↑⟩ ;

|↑, ·, ↑↓⟩ ; |·, ↑, ↑↓⟩}, (7.11)

where similar to the double well, |·, ·, ·⟩ describes the occupation of the first, the second

and the third well, respectively. Alternatively, we can again write these states in the

particle representation as

|Ψ⟩ ∈ {|L,C,R⟩ ; |L,R,C⟩ ; |C,R,L⟩ ;

|L,C,L⟩ ; |L,R,C⟩ ;

|L,C,C⟩ ; |C,R,C⟩ ;

|L,R,R⟩ ; |C,R,R⟩}, (7.12)

where the first two entries describe the spatial mode (left (L), center (C) and right (R)

well) of the two spin-up particles and the third entry the spatial mode of the spin-down
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particle. Note that this representation identifies individual particles as subsystems

of the state and is therefore not unique, since e.g. the state |L,C,R⟩ describes the

same spin-configuration as the state |C,L,R⟩. Due to the indistinguishability of the

two spin-up atoms special care must be taken to ensure a proper antisymmetrization

of the state. The subtleties of treating individual particles as systems rather than

spatial modes will be discussed in Chapter 10.

In the above basis, the Hamiltonian of the balanced triple well (i.e. µi = 0) in its

matrix representation takes the form

ĤTW =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 −J23 0 −J23 0

0 0 0 −J12 −J23 −J12 −J23 0

0 0 −J12 0 −J12 0 0

U −J23 −J12 0 0 0

U 0 0 0 0

U 0 0 0

U 0 −J23
h.c. U −J12

U

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (7.13)

where J12 is the tunnel coupling between the left and the center well and J23 the

tunnel coupling between the center and the right well.

Figure 7.6 shows the nine eigenenergies of this Hamiltonian for the homogeneous triple

well (J12 = J23 = J) as a function of the interaction strength U/J . On the repulsive

site, U > 0, the three lowest states are only separated by an energy on the order

of the super-exchange energy 4J2/U , which vanishes for strong interactions. This

energy scale will become important in Chap. 9 when we discuss the experimentally

reconstructed density matrix of the ground state of the homogeneous triple well.

Also for the triple well we are primarily interested in the ground state, since we will

discuss its entanglement properties in Chap. 10. Similar to the double well, doubly

occupied sites are favored for attractive interaction, whereas they are suppressed in the

strongly repulsively interacting ground state. However, on the attractive (repulsive)

site, the spin-down particle (the doublon) delocalizes across the triple well, so that

for U/J → ±∞ the ground state takes the following form,

|Ψ∞⟩ =
1√
6
|↑, ↑, ↓⟩ +

2√
6
|↑, ↓, ↑⟩ +

1√
6
|↓, ↑, ↑⟩ (7.14)

|Ψ−∞⟩ =
1

2
|↑↓, ↑, ·⟩ +

1√
8
|↑↓, ·, ↑⟩ +

1√
8
|↑, ↑↓, ·⟩ +

1√
8
|·, ↑↓, ↑⟩ +

1√
8
|↑, ·, ↑↓⟩ +

1

2
|·, ↑, ↑↓⟩ . (7.15)

Using the experimental techniques that we discussed above, we can determinis-

tically initialize such FH-like states. To verify the successful preparation of those

states, it is necessary to fully characterize their quantum state. Since experimentally

realized states usually suffer from technical noise, it is particularly relevant to access
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Figure 7.6: Spectrum of homogeneous triple well. The plot shows the nine eigenen-
ergies of the homogeneous triple well (J12 = J23 = J) as a function of the
interaction strength U/J . The blue solid line is the energy of the ground state,
which favors doubly occupied sites on the attractive site and suppresses them
on the repulsive site.

coherence properties of the state. As mentioned before, coherences can be accessed

by investigating the system in two conjugate bases, such as in real and in momentum

space. In our experiment this is achieved with our spin-resolved free-space, single

atom imaging, which will be presented in the next section.

7.4 Spin-resolved single-atom imaging

Apart from the deterministic preparation of small systems in an array of optical

tweezers, the key feature of our experiment is the possibility to image single atoms

in a spin-resolved way. In particular, there is no need for confining potentials during

the imaging process and we can readily apply the scheme after time-of-flight to de-

tect the momenta of single particles. Our imaging technique hence provides access to

both the single-atom resolved in-situ and momentum distribution of the system. This

gives access to coherence properties by sampling the momentum wave-function of in-

dividual particles or by calculating momentum correlation functions of few-fermion

systems. In this section the working principle of our imaging scheme is described and

the measurement of single-particle coherences is presented to exemplify the usefulness

of accessing single particle momenta. A detailed characterization of the performance

of the imaging scheme can be found in [67, 85, 168].

To image a single atom, we apply two counter-propagating, horizontally polar-

ized, resonant laser beams in an alternating scheme, see Fig. 7.7 (a). The alternating

scheme is chosen to avoid interference between the two imaging beams. We pulse each

beam with a periodicity of 200 ns and a duty cycle of 40 % for a total imaging time of

20µs and focus the scattered light onto an Electron Multiplying CCD-camera (EM-

CCD, ANDOR iXon DV887, back illuminated). At an intensity of s0 = I/Isat ≈ 8.5
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Figure 7.7: Single-atom imaging. (a) Resonant pulses of laser light are successively
applied to the atom from both sides in an alternating scheme and the scattered
photons are collected with our high-NA objective. Driving σ+ transitions and
making use of the dipolar radiation pattern, we focus on average 20-30 photon
per atom on an EMCCD camera. (b) Histogram of single-atom fluorescence
signal (see text). The grey vertical line indicates the cutoff above which we
identify an event as an atom.

and a natural linewidth of γ = 2π × 5.8724 MHz, the atomic scattering rate on res-

onance is Γsc = (1 + s−1
0 )−1γ/2 = 0.45γ. Hence an atom scatters in total around

330 photons during an illumination time of 20µs. The horizontally polarized imaging

light is polarized perpendicular to the magnetic field and can therefore only drive σ+

or σ− transitions. Tuning the laser to resonance we selectively drive the σ+ transition

into the lowest branch of the excited state (mJ = −3/2) to suppress radiative decay

from the excited state into other hyperfine states of the ground state [168]. With this

scheme, state |3⟩ features a completely closed optical trantision. In order to close the

optical transitions of states |1⟩ and |2⟩ we add a second laser frequency to the imaging

light (see [67, 85] for exact transitions). Taking advantage of the anisotropic dipo-

lar radiation pattern for σ-transitions, we estimate that about 10% of the scattered

photons get detected by the camera. On average we hence only detect around 20-30

photons per atom. In this low photon regime it is essential to use an EMCCD-camera,

operated in photon-counting mode. In this mode (EM mode), a single electron on the

camera sensor gets stochastically amplified in an extra gain register before being read

out. This causes the signal from a single electron to be well above the electronic read

noise, enabling the detection of single photons. However, this stochastic amplifica-

tion process makes it impossible to clearly distinguish a single photon from multiple

photons on the same pixel [94]. This is why the magnification of the imaging system

has to be chosen such that the signal from a single atom gets distributed over several

pixels.

We process the images with three simple steps. The individual steps are exemplar-

ily illustrated in Fig. 7.8. First of all, to get rid of electronic noise, the raw image

that we get from the camera is binarized, i.e. we introduce a cutoff, above which

we identify the count on a single pixel as an electron (see [85, 94]) and convert the

raw image into an image containing only zeros (no electron) or ones (at least one

electron). These electrons can be caused both by light or electronic noise. We apply

a Gaussian low-pass filter (LP) to the binary image to filter out background noise,

which appears with lower spatial frequencies than the actual atomic signal. We then

search for local maxima in the lowpass-filtered images and plot the distribution of the
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Figure 7.8: Image processing. In EM mode the camera introduces counting noise due
to the stochastic amplification of electrons on the sensor. We therefore need to
process the images with three simple steps. The raw image from the camera
(RAW) is first binarized using a threshold value above which a pixel is identified
with at least one electron (Binary). A Gaussian lowpass filter (LP) smoothes
the background noise which appears with a different spatial frequency than the
atomic signal. Local maxima above a threshold are identified as positions of
single atoms (10 atoms in the shown example).

local maxima in a histogram. An example of such a histogram is shown in Fig. 7.7 (b).

This histogram shows a clear bimodal distribution with a peak at very low amplitude,

corresponding to the maxima in the background noise, and a distinct peak at higher

amplitude, caused by the atomic signal. Based on that histrogram we define a cutoff

above which we identify a single atom, see grey line in Fig. 7.7 (b). We choose this

cutoff such that the amount of false positive and false negative events are identical.

Obviously the identification of a single atom depends on the chosen size of the region

in which one searches for an atom, since the number of false positive events scales lin-

early with the size of the region of interest (ROI). For very small ROIs, e.g. imaging

a single atom in a well localized optical tweezer, the identification of a single atom

works with a fidelity of over 99 % [67]. For larger ROIs, e.g. after expansion of the

atoms in a wave guide potential, we hence have to increase the cutoff for identifying

an atom at the cost of detection efficiency.

The performance of our imaging scheme is mainly limited by the two following

things:

• Spurious charges (such as residual background light or clock-induced charges

(CICs)) on the sensor set a lower bound on the signal above which an atom can

be identified. Reducing the number of CICs is therefore absolutely crucial to

improve the imaging performance. We currently plan to do this by replacing

the current Andor EMCCD camera with a Nuvu camera, which has proven to

have significantly lower CICs at similar read-out settings [179].

• Diffusive motion of the atoms during the imaging process due to scattering of

photons limits the spatial resolution. This effect is particularly bad for lithium

because of its small mass and limits our resolution to about 30µm. Note that

this is substantially larger than our in-situ well spacing, which is typically on

the order of a few µm so that we have to employ a small trick to measure the

single-particle resolved insitu population, as we explain below. However, the

large resolution typically does not matter for imaging after time-of-flight, since
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we typically expand the atoms in our dipole trap by several hundreds of µm.

The diffusive motion is expected to be almost fully suppressed for heavier atoms

such as rubidium or erbium.

Spin Resolution

Spin resolution is implemented by successively taking two images of the two different

spin states. To this end we make use of the fast-kinetics mode of our camera, which

allows us to take two images within a few µs. For the experiments with the double

and triple well, where we expand the atoms in our ODT, the fast kinetics mode shifts

the first image by 40 pixels within 20µs so that the atomic signal gets shifted out

of the imaging region. At the same time, we quickly ramp the laser frequency of

the imaging laser to be resonant to the second spin component and briefly wait for

the laser frequency to settle. We subsequently image the second spin state and then

read out the whole camera chip. The time between the beginning of the first and the

beginning of the second image is hence only 50µs and therefore negligible on the time

scale of a few milliseconds, during which we expand the atoms in the ODT.

In-Situ Imaging

As already mentioned above, the diffusive motion of the atoms during the imaging

process effectively enlarges the point spread function of the imaging system to around

30µm. Since this is much larger than typical distances between adjacent tweezers, we

have to employ a small trick to resolve the site-resolved insitu density. As we illustrate

in Fig. 7.9 (a) we first project the prepared state by instantly increasing the depth of

the individual tweezers and thus abruptly switching off the tunnel coupling between

the wells. We then map each well to a distinct momentum by a sudden displacement

of each tweezer and a evolution in the respective tweezer by a quarter of the trap

period, Ttweezer/4. During the evolution in the displaced tweezer, an atom in well

i is mapped onto the momentum ki. We switch off the optical tweezers and let the

atoms evolve freely in our crossed-beam ODT, acting as a one-dimensional waveguide.

We then detect the atoms after time-of-flight. Fig. 7.9 (b) shows the sampled in-situ

distribution in the triple well with exactly this scheme: we map the two outer wells

to ±k and keep the center well switched on during imaging. The figure shows the

averaged signal after about 1000 realizations. The scheme can in principle also be

applied to larger systems by mapping different wells to different momenta

Momentum-Space Imaging

Following the ideas of [180], we access the single-particle momentum distribution by

expanding the system in our crossed-beam optical dipole trap (ODT) for a quarter

of the trap frequency TODT/4. Our tweezers are aligned along the long axis of the

ODT with a small residual angle that we estimate to be on the order of 1 ◦. After

the evolution in the ODT, the initial momentum of the atoms is mapped onto the

position and vice versa. Longitudinal trap frequencies of the ODT are typically on

the order of 40 Hz so that a typical evolution before detection is on the order of 6 ms.

Note that the expansion in the ODT only provides the 1D momentum along the long
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Figure 7.9: In-situ imaging. (a) To measure the in-situ distribution in an array of tweez-
ers we have to project each tweezer onto a distinct momentum and subsequently
apply our momentum imaging technique. We do this mapping by instantly
displacing each tweezer, followed by the in-trap evolution of the atomic wave-
function for a quarter of the trap period T/4. We then let the atoms expand
in a wave guide potential and detect them after time-of-flight. (b) The plot
shows the sampled in-situ distribution of a triple-well potential, averaged over
around 1000 repetitions.

axis of the ODT. For the measurement of a 2D momentum, an expansion in a 2D

confining potential is necessary.

To illustrate the usefulness of our imaging scheme, let’s discuss the example of a

single atom in the ground state of a double-well potential. By sampling the single-

atom momentum distribution we can measure the coherence of the single-particle

wave function.

7.4.1 Single-Particle Coherences

Examining a quantum state only in one basis does not give access to its coherence

properties. Accessing off-diagonal entries of the density matrix requires a complemen-

tary measurement in second basis. By investigating the system in real and momentum

space, we have access to off-diagonal entries of the density matrix. We illustrate this

by detecting the coherence of a single-particle superposition state.

Suppose we have created a single atom in a coherent superposition state, such as the

single-particle ground state of a balanced double-well potential, where the atom is in

the superposition of being either in the left or the right well,

|Ψ⟩ =
1√
2

(|L⟩ + |R⟩) . (7.16)

Repeatedly measuring the in-situ density results in finding the atom in |L⟩ for 50%

of the measurements and in |R⟩ for the remaining 50% of the measurements. An

incoherent mixture of an atom in |L⟩ or |R⟩ would yield exactly the same result.

Based on the in-situ measurement it is hence impossible to decide, whether the atom

is in a coherent superposition-state of the two spatial modes, ρc, or in the fully mixed

state, ρm. We can therefore not distinguish between the two states described by the
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Figure 7.10: Single-particle coherences. Measurements in a conjugate basis provide
additional information about the coherence of the quantum state. The plots
show sampled real and momentum space densities of a single atom, initially
prepared in the ground state of a balanced double-well potential. The contrast
of the interference fringes in the momentum density is directly related to the
purity of the initial state.

density matrices

ρc =

(︄
1/2 1/2
1/2 1/2

)︄
or ρm =

(︄
1/2 0

0 1/2

)︄
, (7.17)

or between any state between those, ρ = rρc + (1 − r)ρm with r ∈ [0, 1]. Having also

access to the momentum of the atom allows to investigate the system in the conjugate

basis and to directly measure the off-diagonal entries of the density matrix. As ex-

plained above, we switch off the double-well potential at t = 0 and let the atom freely

evolve in our crossed-beam ODT. After a quarter of the trap period t = TODT/4 the

initial momentum of the atom is mapped onto its position [180]. During this evo-

lution the two components of the coherent superposition state start to overlap and

interfere, showing density modulations in the far field (in analogy to Young’s double

slit experiment). The contrast of these interference fringes is directly related to the

coherence and hence the purity of the initial state. If the initial state was the in-

coherent mixture ρm, no interference fringes in the momentum density would form,

whereas the coherent superposition state ρc shows full-contrast modulations.

Figure 7.10 shows the measurement of the real space and momentum space density of

a single atom prepared in the ground state of a double-well potential, a superposition

state as given by Eq. (7.16). The state was repeatedly initialized and either probed in

real or momentum space. The in-situ measurement shows that the atom is detected

in the left and right well with equal probability. The sampled momentum distribu-

tion shows strong modulations, a signature of the coherent nature of the state. The

periodicity of the momentum-space modulation is given by the real space distance a

between the two wells, klat = π/a
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7.5 Momentum Correlation Functions

In the previous section we discussed how we can use our imaging scheme to extract

coherence properties of a single-particle state, which allows us to fully determine

the single-particle density matrix. However, the full characterization of a many-body

quantum state necessarily also involves the analysis of many-particle observables. Ob-

viously the atomic real or momentum space densities ⟨nx⟩ or ⟨nk⟩, respectively, are

single-particle observables and therefore do not contain any information beyond the

single-particle level. In order to gain information about the many-body nature of a

state, one possible approach is to look at correlation functions. A lot of pioneering

work has already been done in this direction such as the characterization of the super-

fluid to Mott-insulator transition [181] or the observation of pair-correlated fermions

[182] via noise correlations in the atomic density or the description of the system via

higher-order correlation functions [72, 73, 183, 184].

The tools that we have in our laboratory are ideal to study possible prospects for the

characterization of such systems via the measurement of correlation functions both in

real and in momentum space. Having access to the single-particle resolved real-space

and momentum-space density gives us the possibility to investigate a system in terms

of higher-order correlation functions, which is equivalent to solving the many-body

problem step by step [72]. In a strongly correlated system, each order of correlation

function might contain new information that is not accessible via the lower order cor-

relation functions and might therefore indicate interesting physics. We therefore now

briefly introduce the basic concepts of measuring and analyzing correlation functions,

in particular by distinguishing connected and disconnected correlations.

The nth order correlation function of an arbitrary operator Ô(x) is defined via

ξ(n)(x⃗) = ⟨Ô(x1)Ô(x2)...Ô(xN )⟩, (7.18)

where ⟨A⟩ denotes the mean over the operator A. Experimentally the mean is typi-

cally realized by either averaging over many experimental realizations or by averaging

over a large ensemble of atoms. Detecting a non-zero nth order correlation function

ξ(n) does not necessarily imply that the system features true nth order correlations,

since lower-order correlations can also cause structure in the nth order correlation

function. To investigate true higher-order correlations one therefore has to subtract

all lower-order contributions. This is done by decomposing the correlation function

into two parts, the connected and the disconnected correlation function,

ξ(n) = ξ(n)con + ξ
(n)
dis . (7.19)

The disconnected correlation function ξ
(n)
dis contains all lower-order correlations up

to order n − 1. It is hence the connected correlation function ξ
(n)
con, that contains

information about true nth order correlations. ξ
(n)
dis can be calculated as a sum over

all lower-order correlation functions, weighted with combinatorial factors that can be
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constructed by [72]

ξ(n)con =
∑︂
π

(−1)|π|−1 (|π| − 1)!⏞ ⏟⏟ ⏞
A(π)

∏︂
B∈π

⟨︄∏︂
i∈B

Ô(xi)

⟩︄
. (7.20)

The sum runs over all possible partitions π of {1, 2, ...n}, the first product over all

blocks B in π and the second product over all elements i in B. To better understand

the formula, we explicitly give two examples for n = 2 and n = 3.

Example for n = 2

1. n = 2 → There are two partition: π1 = {1, 2} and π2 = {1}{2}

2. |π1| = 1, |π2| = 2

3. A(π1) = 1, A(π2) = −1

4. There is one block in π1 and two blocks in π2, each with one element

5. ξ
(2)
con = ⟨Ô(x1)Ô(x2)⟩ − ⟨Ô(x1)⟩⟨Ô(x2)⟩⏞ ⏟⏟ ⏞

ξdis

Example for n = 3

1. n = 3 → There are five partitions:

{π1;π2;π3;π4;π5} = {{1, 2, 3}; {1, 2}{3}; {2, 3}{1}; {3, 1}{2}; {1}{2}{3}}

2. |π1| = 1, |π2| = 2, |π3| = 2, |π4| = 2, |π5| = 3

3. A(π1) = 1, A(π2) = A(π3) = A(π4) = −1, A(π5) = 2

4. There is one block in π1, two blocks in π2,3,4 and three blocks in π5

5. There are three elements in the block in π1, two elements in the first block and

one element in the second block in π2,3,4, and one element in each block in π5.

6. ξ
(3)
con = ⟨Ô(x1)Ô(x2)Ô(x3)⟩
−⟨Ô(x1)Ô(x2)⟩⟨Ô(x3)⟩
−⟨Ô(x2)Ô(x3)⟩⟨Ô(x1)⟩
−⟨Ô(x3)Ô(x1)⟩⟨Ô(x2)⟩

+2⟨Ô(x1)⟩⟨Ô(x2)⟩⟨Ô(x3)⟩

⎫⎪⎪⎪⎬⎪⎪⎪⎭− ξ
(3)
dis

As will become clear in Chap. 8, the choice of the operator influences whether there

are higher-order correlations or not and that even systems with pairwise exchange

statistics can exhibit higher-order momentum-density correlations.

In order to illustrate the concept of connected and disconnected correlation func-

tions, we look at the state of two non-interacting fermions in a balanced double-well

potential, that we theoretically already discussed in Sec. 7.3,

|Ψ0⟩ =
1√
2

(|L⟩ + |R⟩) ⊗ 1√
2

(|L⟩ + |R⟩). (7.21)
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Figure 7.11: Connected and disconnected correlation functions. (a) Measured
first and second-order correlation functions ξ(1)(k) and ξ(2)(k) of two non-
interacting atoms in the ground state of a double-well potential. (b) Dis-

connected correlations function ξ
(2)
dis (k), computed from measured first-order

correlation function ξ(1)(k). (c) Connected correlation function ξ
(2)
con(k), com-

puted as the difference between the measured ξ(2)(k) (a) and ξ
(2)
dis (k). The

connected correlation function vanishes since all correlations are purely caused
by single-particle coherences.

As described in detail in [62, 85], we initialize this state in the laboratory as the non-

interacting ground state of a tunnel-coupled double-well potential with well spacing

a. We measure the spin-resolved single particle momenta k↑ and k↓ by expanding the

system in our ODT for a quarter of the trap period, ttof = TODT/4 before imaging.

We postselect the data set to the correct atom number, N↑ = N↓ = 1 and calcu-

late both the average momentum distributions ξ
(1)
(↑)(k) = ⟨nk↑⟩ and ξ

(1)
(↓)(k) = ⟨nk↓⟩

and the second-order momentum correlation function ξ
(2)
(↑↓)(k) = ⟨nk↑nk↓⟩. The

plots in Fig. 7.11 (a) show the measured momentum densities ξ
(1)
(↑/↓)(k) together with

the computed momentum correlation function ξ
(2)
(↑↓)(k). As explained in Sec. 7.4.1,

ξ
(1)
(↑/↓)(k) shows interference fringes that indicate single-particle coherences. Accord-

ing to Eq. (7.20) we define the disconnected and connected correlation functions as

ξ
(2)
dis (k) = ⟨nk↑⟩⟨nk↓⟩

ξ(2)con(k) = ⟨nk↑nk↓⟩ − ⟨nk↑⟩⟨nk↓⟩, (7.22)

which we can both compute from the measured first and second-order momentum

correlation functions. We plot the disconnected correlation function in Fig. 7.11 (b)

and the connected correlation function in (c). This example nicely shows that even

though there is a clear structure in the computed second order correlation function,

these correlations are purely caused by single-particle coherences and no second-order

correlations are present in the system. The connected correlation function hence

vanishes and does not show any structure. Only if the nth order connected correlation

function does not vanish, the system exhibits true nth order correlations. As we will

discuss in the next chapter, such correlations depend on the operator that we choose

to investigate and can be purely caused by quantum statistics.
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Chapter 8

High-Contrast Interference of

Ultracold Fermions

The analysis and measurement of correlation functions finds applications in almost

all fields of physics. One of the most prominent examples thereof was the famous idea

of Hanbury-Brown and Twiss (HBT) to measure the angular diameter of a bright

star by correlating the intensity measured from two distant detectors [185, 186], see

Fig. 8.1 (a) for illustration. They were able to show that intensity correlations of a

bright star measured with two spatially separated detectors depend on their mutual

distance and that the periodicity of the correlated signal was given by the angular

spread of the star. By analyzing the correlation function as a function of the detector

spacing, the angular diameter can be resolved even beyond the optical resolution of

the two detectors. While this classical effect is caused by the wave nature of the

electromagnetic field, there exists an analogous quantum mechanical effect, in which

the same type of correlations can be observed.

Let us consider two absolutely identical fermions in a double-well potential, with one

fermion per site. Furthermore, suppose that we have two detectors at variable posi-

tions x1 and x2, as illustrated in Fig. 8.1 (b). At t = 0 we release the two fermions

from the double-well potential and monitor the coincidence events between the two

detectors, i.e. the events in which we detect one particle in each detector at the same

time. For those events, there are two possible paths the atoms can take from their

initial position to the detectors. However, due to the indistinguishable nature of the

atoms, the observer cannot tell, which of the two possible paths were taken. Hence

quantum mechanics dictates that each atom takes both paths at the same time, which

leads to correlations in the relative wave function of the two atoms. While the indi-

vidual signals of the two detectors do not contain any signature of those correlations,

they manifest themselves in the correlated signal of the two detectors. Indeed, as we

will discuss in detail later in this chapter, the two paths interfere either constructively

or destructively so that for some detector distances d = x1 − x2 no coincidences oc-

cur, while for others they are favored. One finds a sinusoidal dependence of those

coincidences on d, where the frequency is solely given by the initial separation of the

two atoms.
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Figure 8.1: Hanbury-Brown Twiss effect. (a) The HBT effect was originally proposed
in radio astronomy to resolve the angular diameter of a star beyond the optical
resolution of a telescope by analyzing intensity correlations from two distant
detectors. (b) In a quantum mechanical system, similar correlations occur
when there is no which-way information and different paths interfere.

These correlations are caused by the exchange symmetry of the two fermions and

they are a pure quantum-mechanical effect. In particular it is a prominent exam-

ple, that shows how correlation functions can be used to extract information beyond

single-particle observables, and, as in the case of radio astronomy, it does not suffer

from a limited optical resolution of the detectors. The HBT effect is therefore also

an important tool in other fields of physics, as for example in high-energy nuclear

and particle physics [187]. Together with similar effects, such as Hong-Ou-Mandel

interference [188], the HBT effect has been extensively studied in photonic systems

[189–191] and finally led to the development of quantum optics [192]. More recently

such correlations also became relevant for ultracold quantum gas experiments, oper-

ating with individual particles [60, 61, 63, 193–195] and have proven to be ideal tools

for the charaterization of states but also for studying many-body interference effects

and their influence on the dynamics and entanglement properties of many-body states.

In this chapter we present momentum-density correlation measurements on sys-

tems consisting of two or three identical, non-interacting fermions. In analogy to

the HBT effect, we observe strong sinussoidal correlations in the second-order cor-

relation function and show that three identical fermions can exhibit true third-order

correlations in the momentum density. These experiments combine the on-demand

preparation of highly indistinguishable particles with high-quality measurements of

correlation functions and might enable the future study of quantum-optics experi-

ments with massive particles such as fermionic ghost imaging or Bell tests [196–200].

Parts of this chapter have been published in [61].
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8.1 HBT Effect between Identical Fermions

Quantum-mechanical correlations of the HBT type are caused by exchange statis-

tics and therefore may arise between any two indistinguishable atoms. In order to

observe the HBT effect in a quantum-mechanical setting, we experimentally prepare

two identical fermions in a double-well potential. To this end we independently pre-

pare two atoms in two spatially separated optical tweezers with large initial separation

ai. Even though the two identical fermions are strictly non-interacting, this ensures

that the two particles are independently initialized and that observed correlations

are purely caused by quantum statistics. After this preparation we approach the two

tweezers to the final distance of af < ai from which we release the atoms into our

optical dipole trap (ODT), serving as a one-dimensional wave guide potential as ex-

plained in Sec. 7.4. After a fixed time of flight of a quarter of the ODT trap period,

ttof = TODT/4, we detect the positions of the two atoms using our single-atom sensi-

tive imaging scheme and post select the data set to the correct atom number, N↑ = 2,

with post-selection rates of about 80%. The positions x1 and x2 after time of flight

correspond to the initial momenta k1 and k2. From this data set we compute the mo-

mentum correlation function ξ(2)(k) = ⟨nk1
nk2

⟩, which we show in Fig. 8.2 (a). The

momentum correlation function shows almost full-contrast oscillations in the relative

coordinate k1 − k2.

To understand why we observe oscillations in the second-order correlation func-

tions we choose for now to describe the state within the framework of first quantiza-

tion. We therefore introduce labels {1, 2} to identify the particles via |X⟩1 and |X⟩2,

X ∈ {L,R}. We obtain the first-quantized wave function by antisymmetrizing over

the degree of freedom in which the particles are distinguishable,

|Ψ⟩ =
1√
2

(|L⟩1 |R⟩2 − |R⟩1 |L⟩2) . (8.1)

For fermions trapped in optical tweezers, we can explicitly write down the single-

particle spatial wave function as |X⟩i = ψ(xi − xX), with X ∈ {L,R}, i ∈ {1, 2}
and the onsite wave function ψ(x). Using the harmonic oscillator ground state for

ψ(x) and plugging everything into Eq. (8.1), we illustrate the time evolution of the

relative wave function |Ψ(x1, x2)|2 = ⟨Ψ|Ψ⟩ between the two atoms in Fig. 8.2 (b).

Note that x1 and x2 are not two orthogonal real-space dimensions but are the one-

dimensional coordinates of particle 1 and 2, respectively. The atoms are initially

localized within the two tweezers and start expanding at t = 0. During the expansion

the relative wave function develops fringes in the relative coordinate x1−x2. We will

now explicitly perform this transformation and calculate the second-order momentum-

density correlation function ξ(2)(k).

Using ϕ(k) =
∫︁
ψ(x)eikxdx and basic rules of the Fourier transform we write the

single-particle states in momentum space as

|L⟩i → g(ki)e
ikixL

|R⟩i → g(ki)e
ikixR , (8.2)
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Figure 8.2: Fermionic Hanbury-Brown Twiss experiment. (a) Measured
momentum-density correlation function ξ(2)(k) for a system of two identical
fermions in two optical tweezers (Number of datapoints: 16600). Size bar
indicates real-space dimension of appearing correlation features. (b) Simu-
lated time evolution of fermionic wave function |Ψ(x1, x2)|2 released from two
tightly confined optical tweezers. (c) Normalized correlator C(2)(d) for corre-
lation function shown in (a). Red solid line is a fit to the data points. Grey
points around d = 0 are excluded from analysis because they are below the
resolution of our imaging scheme.

with an envelope function g(k) = F [ψ(x)], i.e. the Fourier transform of the single-

particle real-space wave function. We will from now on drop the particle subscripts

in the state representation and write the states as |X⟩1 |Y ⟩2 → |XY ⟩, identifying the

first entry as the first particle and the second entry as the second particle, respectively.

Setting xL = −xR = a/2 and using n̂k′ =
∑︁

k δ(k
′ − k), we can explicitly calculate

the second-order momentum-density correlation function,

ξ(2)(k) = ⟨nk1
nk2

⟩

=
∑︂
p,q

⟨Ψ| δ(k1 − p)δ(k2 − q) |Ψ⟩

=
1

4

(︁
2g(k1)2g(k2)2 − ⟨LR|RL⟩→k − ⟨RL|LR⟩→k

)︁
(8.2)
=

g(k1)2g(k2)2

2
(1 − cos ((k1 − k2)/klat)) (8.3)
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with the lattice momentum klat = π/a. One typically normalizes the correlation

function by dividing out the envelope functions,

ξ(2)n (k) =
⟨nk1nk2⟩

g(k1)2g(k2)2
=

1

2
(1 − cos ((k1 − k2)/klat)) . (8.4)

Using Eq. (7.20), we can finally also write down the connected, normalized correlation

function as

ξ(2)con(k) = −1

2
cos ((k1 − k2)/klat). (8.5)

The momentum-density correlation function hence exhibits true second-order corre-

lations in the relative momentum of the particles, k1 − k2, multiplied by an envelope

function, which is given by the Fourier transform of the single-particle real-space wave

functions, exactly as we observe in Fig. 8.2 (a). This is completely analogous to the

classical HBT effect. In the spirit of their initial ideas, one could even deduce the ini-

tial spacing between the two wells a, which cannot be resolved optically, by extracting

the periodicity of the correlation function. One should note that the same resolution of

the initial spacing can be achieved with first-order interference experiments. We pre-

sented such an experiment in Sec. 7.4.1, where we discussed single-particle coherences.

However, interference experiments are typically technically much more demanding or

even impossible in the case of stellar astronomy.

To quantify the oscillation in the relative momentum and to extract its contrast

and periodicity we define the normalized correlator

C(2)(d) =

∫︂
⟨nknk+d⟩
⟨nk⟩⟨nk+d⟩

dk. (8.6)

This integration is performed along the center-of-mass momentum, i.e. along the

diagonal k1 + k2 of the correlation function. Using Eq. (8.3), we find C(2)(d) =

1 − cos(d/klat). We compute C(2)(d) from the experimentally measured correlation

functions and show the result in Fig. 8.2 (c). The correlator exhibits almost full-

contrast oscillations (limitations of contrast are discussed below). We exclude the

points around d = 0 (grey points in the plot) from the further analysis because of the

inability to detect two identical particles below the resolution of our imaging scheme

[67]. We fit the correlator with a damped cosine of the form

Cf (d) =
1

2

(︃
1 − erf

(︃
|d| − s

w

)︃)︃(︂
y0 − ce−

d2

2σ2 cos (πd/klat)
)︂
, (8.7)

with s, w, y0, σ, c and klat as free fit parameters. The error function takes the detection

hole around d = 0 into account. The Gaussian envelope with width σ accounts for

an eventual loss of contrast c for large particle separation d due to technical noise.

From the fit to the correlator (solid red line in Fig. 8.2 (c)) we obtain a contrast of

c = 79(2)%.

As argued above, the observed correlations are purely caused by fermionic ex-
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Figure 8.3: Reduction of measured contrast. We measure the contrast of the corre-
lation function ξ(2)(k) for different separations between the optical tweezers.
While the frequency of the modulation increases due to an increasing klat, the
contrast of the modulation decreases for increasing separation. As illustrated
in the insets, we attribute the reduced contrast to a reduced mode overlap
along the expansion axis.

change statistics and are present between any two indistinguishable fermions. This is

fundamentally different to the case where correlations arise due to the fact that the

system is in a superposition state, as we discussed in Sec. 7.4.1, and as we will further

discuss in Chap. 10. The observed correlations between identical fermions thus do

not suffer from decoherence and perfectly indistinguishable fermions should yield a

contrast of 100%. However, there are a few experimental reasons that can reduce the

observed contrast:

1. Detection: We post select our images to the correct atom number N = 2.

However, this also includes images where e.g. only one atom was prepared and

a second was detected as a false-positive event due to imaging noise. For such

events, the detected positions are uncorrelated and therefore reduce the contrast.

This second-order effect is very small and we estimate it to be negligible since

it involves e.g. a bad preparation, (typically on the order of 5-10%) and a

false-positive detection (typically on the order of 1%) at the same time.

2. Imaging Resolution: The finite imaging resolution blurs the correlation func-

tion. As discussed in [67, 85], the position-uncertainty is on the order of 2 pixels

and thus much smaller than the oscillatory feature of the correlation function.

We hence exclude that this effect significantly reduces the measured contrast.

3. Excitation to Higher Tweezer Levels: For the case where one of the two

atoms does not occupy the lowest level within its tweezer, no correlations arise

after time of flight, since the particles are no longer indistinguishable. With

a ground-state preparation fidelity of about 97 % we expect a reduction of the

contrast of at most 5 %. This is a significant contribution, but cannot explain

the reduction of the contrast by 20 %.

4. Bad Mode Overlap: Despite careful alignment of all optical components,

there is a finite angle between the axis connecting the two tweezers and the axis
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of the ODT, in which we perform the expansion. As illustrated in Fig. 8.3, this

effectively induces some degree of distinguishability between the two particles,

because of a reduced mode overlap along the expansion axis. The larger the

initial separation between the atoms, the larger the loss of contrast, as we verify

with a range of measurements. The contrast linearly decreases with increas-

ing spacing. We fit the measurement with a linear function and extrapolate a

contrast of c0 = 99 (2) at a = 0. This extrapolation might overestimate the

expected contrast but is in good agreement with the reduction of the contrast

that we expect from the above mentioned effects.

Since both the tweezer axis and the angle of the dipole trap cannot be changed in

the experiment, an improvement of the contrast is not straightforward. However, an

expansion in a two-dimensional trap would remove this issue so that in the future we

hope to be able to achieve even higher contrasts for arbitrary well spacings. Never-

theless, the presented system realizes a high-quality, on-demand single-fermion source

and the high contrast of c = 79(2)% is sufficient to explore a range of quantum optics

experiments with massive particles [199] or to address many-particle interference in

fermionic systems [195].

In the next step we increase the systems size and study a system with three

identical fermions in a triple-well potential. This allows us to investigate higher-order

momentum correlations and the influence of exchange statistics on the third-order

momentum correlation function.

8.2 Third-Order Momentum Correlations between

Identical Fermions

We have seen that two indistinguishable fermions exhibit strong second-order correla-

tions in the momentum density. These correlations are purely caused by the quantum

statistics and by the antisymmetrization of the wave function and they even exist for

two fermions that have been prepared in completely separate optical tweezers. Using

our single-atom sensitive imaging scheme we are able to measure the second-order cor-

relation function with very high quality. In this section we investigate correlations in

a system of three identical fermions. We detect and discuss strong connected third-

order correlations in their momentum density. This minimal example of fermionic

many-particle interference shows that a many-body system of identical particles is

more than just the sum over its constituents [195, 201].

Before starting to discuss the measurements we first evaluate the relevant corre-

lation functions, for which we switch to the second quantization formalism. For the

case of N fermions trapped in a one-dimensional array of N optical tweezers with
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Figure 8.4: Interference between many fermions. (a) Two identical fermions released
from individual traps feature a sinusoidal momentum correlation function due
to interference of possible paths they can take to the detector. (b) and (c)
For multiple sources, the measured second-order correlation function is a sum
over all mutual correlation functions, resulting in sharp dips at the lattice
momenta for large systems. (d) If a systems exhibits true third-order corre-
lations, the correlation function contains more information than second-order
correlation functions and cannot be constructed from lower-order correlation
measurements.

positions xi we define the real and momentum-space field operators as

Ψ̂
†
σ(x) =

N∑︂
i=1

Φx(x− xi)c
†
σ,i

Ψ̂
†
σ(k) =

N∑︂
i=1

Φk(k)e−ikxic†σ,i, (8.8)

with the onsite wave function Φx(x), its Fourier transform Φk = F [Φx](k) and

fermionic creation operators c†σ,i on site i with spin σ. The sum is running over

all wells i. Using the density operator n̂ = Ψ̂
†
Ψ̂ we can calculate all relevant corre-

lation functions. Since we are considering identical fermions, we drop the spin label

σ for the following calculations. The first moment of the momentum density is given

by

ξ(1)(k) = ⟨nk⟩

= ⟨Ψ†(k)Ψ(k)⟩

= |Φk(k)|2
∑︂
i,j

eik(xi−xj) ⟨c†i cj⟩⏞ ⏟⏟ ⏞
δij

= N |Φk(k)|2 . (8.9)

The normalization is such that∫︂ ∞

−∞
⟨nk⟩dk = N

∫︂ ∞

−∞
|Φk(k)|2 = N. (8.10)
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The second-order correlation function is calculated in the same way,

ξ(2)(k) = ⟨nk1
nk2

⟩

= ⟨Ψ†(k1)Ψ†(k2)Ψ(k2)Ψ(k1)⟩

= |Φk(k1)|2 |Φk(k2)|2∑︂
i,j,m,n

eik1(xi−xn)+ik2(xj−xm) ⟨c†i c
†
jcmcn⟩⏞ ⏟⏟ ⏞

δinδjm−δimδjn

= |Φk(k1)|2 |Φk(k2)|2∑︂
i,j

(︂
1 − ei(k1−k2)(xi−xj)

)︂
= |Φk(k1)|2 |Φk(k2)|2∑︂

⟨i,j⟩

(2 − 2 cos
(︂

(k1 − k2)/kijlat

)︂
, (8.11)

with the lattice momenta kijlat = π/(xi−xj). The remaining sum runs over all combi-

nations of wells ⟨i, j⟩ and is valid for any particle and well number N . Hence, as illus-

trated in Fig. 8.4 (a-c), in the case of non-interacting fermions, the full second-order

correlation function is the sum over all mutual pairs of wells. E.g. for the commen-

surately spaced triple well there are three combinations, ⟨i, j⟩ ∈ {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}
and each combination contributes with its own spatial frequency, given by the in-

verse of the respective well spacing π/(xi−xj). The correlation function is hence the

Fourier synthesis of all appearing well spacings. For a larger array of wells, the sum

gets more terms and for a homogeneously spaced array ultimately results in distinct

dips at the lattice momenta, as was observed via noise-correlation measurements in

optical lattices [194].

The measurement of the second-order correlation function is analogous to the

double-well case, that we discussed in the previous section. We start by preparing

three identical fermions in three independent tweezers with large initial spacings and

then approach the tweezers to the final configuration. We expand the atoms in our

ODT for ttof = TODT/4 and measure the single-particle momenta. We post select

the data set to the correct atom number N = 3 with post-selection rates of about

60 %. We realize two different well configurations, namely the commensurate triple-

well with equal spacing (a12 = a23 = 2µm) and an incommensurately spaced triple

well with spacing a12 = 1.6µm, a23 = 1.5a12 = 2.4µm. These two configurations

are illustrated in the upper insets in Fig. 8.5 (a) and (b). The same figure shows the

measured second-order momentum correlation function and also the theoretically ex-

pected full-contrast calculations in the lower insets. We also compute the integrated

correlator C(2)(d), which we plot below the correlation functions. Compared to the

double-well case, the momentum correlation function of both configurations show

additional structure, which is caused by the additional spatial frequencies from the

additional pairs of wells. To verify the validity of Eq. (8.11), we also measure mutual

second-order momentum correlation functions of all well combinations by preparing

atoms only in two of the three wells (see Fig. 8.5 (c)), from which we extract contrast
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Figure 8.5: Second-order correlations in the triple well. (a-b) Measured and ex-
pected (inset) second-order correlation functions for three identical atoms in a
triple well for two different spatial configurations. The plots below show the
integrated correlator C(d) together with a curve one would expect from mea-
surements of mutual second-order correlations (the solid line in not a fit to the
triple-well data). (c) Measurement of all mutual correlation functions for two
atoms in a triple well.

and periodicity using Eq. (8.7). We feed the results into Eq. (8.11) and plot the re-

sulting correlator as solid red line on top of the data points in the lower panels in

Fig. 8.5 (a-b). We find excellent agreement between the data computed from the three-

atom system and the sum over the data from the two-atom systems. This agreement

indicates that indeed the main mechanism for the loss of contrast is the bad mode

overlap for larger well spacings as we already discussed in the previous section and not

a poor fidelity of the state preparation. The results also show that we can measure

high-quality momentum-correlation functions also for larger systems and that the ob-

served contrast is currently only limited by the alignment of the tweezer-axis with

respect to our optical dipole trap. The presented methods are hence perfectly suited

to detect microscopic ordering in small systems where the optical resolution is not

sufficient to detect single atoms [181] or where ordering appears on sub-wavelength

scales [202, 203].
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The fact that the full second-order correlation function is only a sum over pairwise

correlations, naively suggests that the third-order momentum correlation function

does not contain additional information. This is however not the case, as we see will

see in the following. We start by explicitly calculating the third-order momentum

correlation function, analogously to the calculation of the second-order correlation

function above,

ξ(3)(k) = ⟨nk1
nk2

nk3
⟩

= ⟨Ψ†(k1)Ψ†(k2)Ψ†(k3)Ψ(k3)Ψ(k2)Ψ(k1)⟩

= |Φk(k1)|2 |Φk(k2)|2 |Φk(k3)|2∑︂
i,j,m,n,l,s

eik1(xi−xs)+ik2(xj−xl)+ik3(xm−xn) ⟨c†i c
†
jc

†
mcnclcs⟩⏞ ⏟⏟ ⏞
(∗)

= |Φk(k1)|2 |Φk(k2)|2 |Φk(k3)|2∑︂
i,j,m

(︂
1 + eik1(xi−xj)+ik2(xj−xm)+ik3(xm−xi)

+eik1(xi−xm)+ik2(xj−xi)+ik3(xm−xj)

−eik1(xi−xm)+ik3(xm−xi)

−eik1(xi−xj)+ik2(xj−xi)

−eik2(xj−xm)+ik3(xm−xj)
)︂

= |Φk(k1)|2 |Φk(k2)|2 |Φk(k3)|2∑︂
i,j,m

(︂
1 + ei(k1−k3)xi+i(k2−k1)xj+i(k3−k2)xm

+ei(k1−k2)xi+i(k2−k3)xj+i(k3−k1)xm

−ei(k1−k3)(xi−xm) − ei(k1−k2)(xi−xj) − ei(k2−k3)(xj−xm)
)︂
. (8.12)

The expression (∗) in the third line is only non-zero, if the three creation operators

cancel the effect of the three annihilation operators. One finds the expression

(∗) = δisδjlδmn + δinδjsδml + δilδjnδms − δinδjlδms − δilδjsδmn − δisδjnδml. (8.13)

The result of Eq. (8.12) depends on the precise shape of the triple-well potential. We

explicitly write down the third-order correlation function for the two studied cases.

For the commensurately spaced triple well we find

⟨n̂k1
n̂k2

n̂k3
⟩ =

2nk1nk2nk3

27
(3

− 2 cos(2π(k1 − k2)) − cos(4π(k1 − k2))

− 2 cos(2π(k1 − k3)) − cos(4π(k1 − k3))

− 2 cos(2π(k2 − k3)) − cos(4π(k2 − k3))

+ 2 cos(2π(2k1 − k2 − k3))

+ 2 cos(2π(2k2 − k1 − k3))

+ 2 cos(2π(2k3 − k1 − k2))). (8.14)
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Figure 8.6: Calculated third-order momentum correlation function of commen-
surately spaced triple well. The contour plots show isosurfaces of the
third-order momentum correlation function (red: positive, blue: negative). In-
tegration over any of the three momenta of the full correlation function (a)
or the disconnected correlation function (b) gives the second-order correlation
function, as indicated with the projection on the three planes. The integral
over any of the three momenta of the connected correlation function (c) van-
ishes, since nth order connected correlations cannot be accessed from n − 1
order correlations.

The correlation function of the incommensurately spaced triple well evaluates to

⟨n̂k1 n̂k2 n̂k3⟩ =
2nk1

nk2
nk3

27
(3

− cos(2π(k1 − k2)) − cos(3π(k1 − k2)) − cos(5π(k1 − k2))

− cos(2π(k1 − k3)) − cos(3π(k1 − k3)) − cos(5π(k1 − k3))

− cos(2π(k2 − k3)) − cos(3π(k2 − k3)) − cos(5π(k2 − k3))

+ cos(2π(3k1 + 2k2 − 5k3))

+ cos(2π(2k1 + 3k2 − 5k3))

+ cos(2π(−5k1 + 2k2 + 3k3))

+ cos(2π(−5k1 + 3k2 + 2k3))

+ cos(2π(3k1 − 5k2 + 2k3))

+ cos(2π(2k1 − 5k2 + 3k3)). (8.15)

To make the expression more readable and to keep the normalization from Eq. (8.10)

we substituted |Φk(ki)|2 by
nki

N and rescaled the momenta by the lattice momentum

klat = π/a12, that we define in terms of the smallest well spacing.

The third-order correlation function depends on all three momenta and can hence not

be plotted in a straightforward way. We illustrate the correlation function ⟨nk1nk2nk3⟩
for the commensurately spaced triple well in Fig. 8.6 (a) as a three dimensional contour

plot. Integrating the third-order correlation function along any of the three momenta

yields the second-order momentum correlation functions ξ(2)(k) as is indicated in the

figure by the projection onto the three planes. Similar to the second-order cases, the

contour plot indicates that there is no structure along the diagonal of the correlation
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Figure 8.7: Measured and calculated correlator of the triple well. The figure shows
the measured (left) and calculated (right) momentum correlator C(3)(d1, d2)
for two triple-well configurations as illustrated in the insets. Number of data
points for commensurately/incommensurately spaced triple well: 36100/55300

function. We hence define the normalized correlator as

C(3)(d1, d2) =

∫︂
⟨nknk+d1

nk+d2
⟩

⟨nk⟩⟨nk+d1⟩⟨nk+d2⟩
dk, (8.16)

which again corresponds to an integral along the axis of the center-of-mass momentum

k1 + k2 + k3.

To compute the third-order correlator from experimental data we use the same

data set as we used for the calculation of the plots shown in Fig. 8.5. Figure 8.7

shows both the measured and calculated C(3)(d1, d2) for both the commensurately-

spaced (a) and the incommensurately-spaced (b) triple well. The correlator shows

a very rich structure, in particular, the correlator for the incommensurately-spaced

triple well clearly shows the presence of three distinct spatial frequencies. Besides

the reduced contrast in the experimentally measured correlator, which we already

discussed in the previous section, the agreement with the calculated correlator is very

good.
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As was already discussed in Sec. 7.5, for the investigation of true nth order correlations

we have to consider the connected correlation function and subtract all lower-order

correlations from the full correlation function. Looking at Eq. (8.12) - Eq. (8.15) and

using Eq. (7.20) for n = 3 as well as the calculation of the second-order correlation

function we can rewrite the third-order correlation function as

⟨nk1nk2nk3⟩ = ⟨nk1nk2nk3⟩con + ⟨nk1nk2nk3⟩dis, (8.17)

with the disconnected correlation function defined as

⟨nk1
nk2

nk3
⟩dis = s(N)(2⟨nk1

⟩⟨nk2
⟩⟨nk3

⟩)

+ p(N) (⟨nk1
⟩⟨nk2

nk3
⟩ + ⟨nk2

⟩⟨nk3
nk1

⟩ + ⟨nk3
⟩⟨nk1

nk2
⟩) .

(8.18)

Here s(N) = N(N−1)(N−2)
N3 = 6

27 and p(N) = N(N−1)(N−2)
N2(N−1) = 1

3 are scaling co-

efficients, that account for a proper normalization of the correlation function and

ensure particle-number conservation (see below for additional information). The dis-

connected correlation function contains at most second-order correlations and can

hence be calculated from experimental second-order measurements. The connected

correlation function can then be calculated as the difference between the full and the

disconnected correlation function, which explicitly evaluates to

⟨nk1
nk2

nk3
⟩con =

1

2
(cos(2π(2k1 − k2 − k3)) + cos(2π(2k2 − k3 − k1))

+ cos(2π(2k3 − k1 − k2))) (8.19)

for the commensurate case and

⟨nk1
nk2

nk3
⟩con =

1

4
(cos(π(3k1 + 2k2 − 5k3)) + cos(π(2k1 + 3k2 − 5k3))

+ cos(π(5k1 − 2k2 − 3k3)) + cos(π(5k1 − 3k2 − 2k3))

+ cos(π(3k1 − 5k2 + 2k3)) + cos(π(2k1 − 5k2 + 3k3)))

(8.20)

for the incommensurate triple well.

The connected correlation function contains all cosine terms with three momenta in

the argument. These are exactly the terms that do not show up in the lower-order

correlation functions, as they involve the momenta of all three atoms. Similar to the

full correlation function, we illustrate the disconnected and the connected correlation

functions as a three dimensional contour plot in Fig. 8.6 (b) and (c), respectively. In-

tegration over any of the three momenta of the disconnected correlator again yields

the second-order correlation functions, whereas the integral vanishes for the connected

correlator. It is hence exactly this three-dimensional structure that shows the correla-

tions that are not accessible from second-order measurements. They should however

show up in the connected correlator, which we define similar to Eq. (8.16) for the con-

nected and the disconnected correlation functions. Figure 8.8 shows the measured and

calculated correlators C
(3)
dis and C

(3)
con for the two well configurations. Apart from the
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Figure 8.8: Disconnected and connected correlations in the triple well. The figure
shows the measured (top) and calculated (bottom) disconnected and connected

third-order correlators C
(3)
dis (d1, d2) and C

(3)
con(d1, d2) for the commensurately

(a) and incommensurately (b) spaced triple well. For better visibility we plot

2C
(3)
con(d1, d2) and adapt the colorscales of the measured correlation function as

indicated by the different colorbars on the right.

reduced contrast, the measured correlators agree very well with the calculated corre-

lators. The results show that three indistinguishable fermions exhibit true third-order

correlations in the sense that the measured combination of two momenta has a direct

impact on the momentum of the third atom. It is interesting to note, that the correla-

tors C(3)(d1, d2) behave similar to the correlation functions ξ(3)(k) upon integration,

i.e. integration over any of the two coordinates d1 or d2 results in the second-order

correlator C(2)(d) for the full and the disconnected correlators but vanishes for the

connected correlator.

Particle-Number Conservation

From the explicit calculations of the third-order momentum correlation functions

in Eq. (8.14) and Eq. (8.15), it seems intuitive to define the connected correlation

function as the sum over all cosine terms with all three momenta in the argument.

However, this definition does not agree with the definition of the connected correla-

tion function in Eq. (7.20). Indeed from that definition of the connected third-order

correlation function, we would find significant connected third-order correlations only

by the conservation of total particle number, cf. [204].

Intuitively speaking, detecting one out of N uncorrelated atoms at position x reduces

the possibility of detecting another particle at position x′ to 1 − 1
N . This effect van-

ishes for large particle number. In contrast, in systems of identical fermions, the

Pauli-exclusion principle prohibits the detection of a second particle at position x.

We hence include the two scaling coefficients s(N) and p(N) in Eq. (8.18), that ac-
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count for particle-number conservation and a proper normalization of the correlation

functions. Normalization of the correlation functions is such that∫︂
⟨n̂k1

⟩dk1 = N∫︂∫︂
⟨n̂k1 n̂k2⟩dk1dk2 = N(N − 1)∫︂∫︂∫︂

⟨n̂k1
n̂k2

n̂k3
⟩dk1dk2dk3 = N(N − 1)(N − 2). (8.21)

By choosing s(N) = N(N−1)(N−2)
N3

N=3
= 6

27 and p(N) = N(N−1)(N−2)
N2(N−1)

N=3
= 1

3 we ensure

that correlations from number conservation are removed, such that uncorrelated par-

ticles give C
(3)
con(d1, d2) = 0 for any N and our definition of the disconnected correlation

functions agrees with the standard form for N → ∞.

8.2.1 Wick’s Theorem and Field Correlation Functions

It is important to mention that what was called nth order momentum-correlation

functions are nth order correlations in the momentum-density operator n̂ = Ψ̂
†
Ψ̂

and therefore correlation functions of (2n)th order in the quantum-field operators

Ψ̂. Vacuum expectation values of field operators can always be decomposed into

second-order correlation functions and hence no correlations beyond second order are

expected to occur [205]. Using Wick’s theorem [206], we can compute the momentum-

density correlation functions in terms of the field operators as follows,

⟨n̂k1
n̂k2

⟩ = ⟨nk1
⟩⟨nk2

⟩ −Gk1,k2
Gk2,k1

, (8.22)

where we used ⟨n̂k1⟩ = ⟨Ψ̂
†
k1

Ψ̂k1⟩ and define the propagator Gk1,k2 = ⟨Ψ̂
†
k1

Ψ̂k2⟩, i.e.

the diagonal and off-diagonal entries of the one-body density matrix, respectively.

Since Gk1,k2
= G∗

k2,k1
, the connected second-order momentum-density correlation

function reads as

⟨n̂k1 n̂k2⟩con = −Gk1,k2Gk2,k1 = − |Gk1,k2 |
2
. (8.23)

Hence we only measure the absolute value of the propagator and do not access its

phase, which might be accessible by an additional first-order interference measure-

ment.

With the above definitions we can expand the third-order momentum-density corre-
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lation function as

⟨n̂k1
n̂k2

n̂k3
⟩ = ⟨n̂k1

⟩⟨n̂k2
⟩⟨n̂k3

⟩

−⟨n̂k1
⟩Gk2,k3

Gk3,k2
− ⟨n̂k2

⟩Gk1,k3
Gk3,k1

− ⟨n̂k3
⟩Gk1,k2

Gk2,k1

+Gk1,k2
Gk2,k3

Gk3,k1
+Gk1,k3

Gk3,k2
Gk2,k1

= ⟨n̂k1
⟩⟨n̂k2

⟩⟨n̂k3
⟩

−⟨n̂k1
⟩|Gk2,k3

|2 − ⟨n̂k2
⟩|Gk1,k3

|2 − ⟨n̂k3
⟩|Gk1,k2

|2

+Gk1,k2
Gk2,k3

Gk3,k1
+Gk1,k3

Gk3,k2
Gk2,k1

= −2⟨n̂k1
⟩⟨n̂k2

⟩⟨n̂k3
⟩

+⟨n̂k1
⟩⟨n̂k2

n̂k3
⟩ + ⟨n̂k2

⟩⟨n̂k1
n̂k3

⟩ + ⟨n̂k3
⟩⟨n̂k1

n̂k2
⟩

+2ℜ{Gk1,k2
Gk2,k3

Gk3,k1
}. (8.24)

We recover the same structure that we obtained in Eq. (8.18) with the following

definition of the connected correlation function

⟨n̂k1
n̂k2

n̂k3
⟩con = 2ℜ{Gk1,k2

Gk2,k3
Gk3,k1

}. (8.25)

It is exactly this product of propagators that we cannot access in the experiment,

since we are not sensitive to the phase of Gki,kj . We therefore detect true third-

order momentum-density correlations but emphasize that the third-order momentum-

density correlation function would completely factorize into second-order field corre-

lation functions, if we had access to the phase of the respective propagators.

Third-order connected correlations have recently also been studied in photonic

systems [207, 208] in the context of multi-particle quantum interference. Following

there ideas we can rewrite the propagator as Gki,kj
= rije

iϕij , where rij ∈ [0, 1] is zero

for orthogonal states and one for perfectly indistinguishable states. In the measured

second-order correlation functions, rij plays the role of the reduced contrast due to

partial distinguishability, see Sec. 8.1. The phase ϕij drops out in the above second-

order formulas and does not play a role in second-order interference experiments.

However, rewriting the connected third-order correlation function in the same way,

⟨n̂k1
n̂k2

n̂k3
⟩con = 2ℜ{ReiΦ} = R cos Φ, (8.26)

with R = r12r23r31 and the so called triad phase Φ = ϕ12 + ϕ23 + ϕ31, immediately

makes clear that the phase ϕij does play a role for the observed third-order corre-

lations. A non-zero triad phase reduces the contrast of the connected third-order

correlation function beyond the reduction that is caused by partial indistinguishabil-

ity due to bad mode overlap.

In this chapter we presented momentum-correlation measurements on systems

containing two or three identical particles trapped in an array of optical tweezers. The

observed correlations are purely caused by fermionic exchange statistics. We have

shown that the pairwise exchange symmetry induced true third-order correlations
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in the momentum-density of three identical particles. The understanding of such

correlations is crucial for the investigations of mesoscopic systems, where additional

correlations may arise due to interactions. Our measurements prove that our methods

can produce high-quality momentum-density correlation functions of small systems

and that they are therefore perfectly suited to study complex correlations in strongly

correlated systems, to detect ordering beyond the optical resolution of the imaging

scheme or to study many-particle interference and quantum optics with systems of

massive fermions.
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Chapter 9

Density-Matrix

Reconstruction

So far we investigated correlations between identical fermions in a double-well and

triple-well potential and showed that fermionic statistics and the antisymmetrization

of the wave function induce complex higher-order correlations in the momentum den-

sity. The obtained results also proved that we can apply our experimental tools to

measure high-quality momentum-density correlation functions. In this chapter, we de-

velop new methods to analyze momentum correlation functions in systems containing

two or three mobile, interacting particles. We present a scheme to relate momentum

correlation functions to off-diagonal entries of the density matrix and reconstruct

physical density matrices based on Bayesian inference. We start by discussing the

double-well case and then generalize the scheme to the triple well.

9.1 Momentum Correlations of the Interacting Dou-

ble Well

In contrast to the measurements that we discussed in the previous chapter, we now

consider the interacting double well. The basic physics and relevant states were al-

ready discussed in Sec. 7.3. As explained in [62, 85, 94, 163] and illustrated in Fig. 9.1,

we experimentally prepare the ground state of the double well by deterministically

loading a single tweezer with two atoms, followed by an adiabatic passage to the bal-

anced ground state by ramping on the second tweezer. During this passage the two

atoms are non-interacting and stay in the total ground state of the system, resulting

in the state described by Eq. (7.7). We then exploit the interspin Feshbach resonance

and ramp the magnetic offset field to tune the interaction to the desired value of U/J .

In the chosen basis, the final state can be described by a 4 × 4 density matrix. As

described in Sec. 7.4 we either probe the in-situ density or the single-particle momen-

tum distribution by releasing the two atoms into our optical dipole trap, acting as a

one-dimensional wave guide, and detect the position of the atoms after time of flight.

After post selection to the correct atom number N↑ = N↓ = 1 with a post-selection

97



CHAPTER 9. DENSITY-MATRIX RECONSTRUCTION

Figure 9.1: Ground-state preparation of the interacting double well. We start by
preparing two non-interacting atoms in the ground state of a single optical
tweezer. We adiabatically ramp on a second well to the balanced double well.
We finally tune the interaction by ramping the magnetic offset field to the
desired value of U/J . The two interacting atoms in the ground state of the
double well are described by a 4× 4 density matrix.

rate of about 80%, we compute the second-order in-situ and momentum space cor-

relation function ξ
(2)
(↑↓)(x) = ⟨nx↑nx↓⟩ and ξ

(2)
(↑↓)(k) = ⟨nk↑nk↓⟩. Figure 9.2 presents

both correlation functions for three selected interaction strengths: attractive inter-

action (U/J = −5.87), zero interaction (U/J = 0) and strong repulsive interaction

(U/J = 18.5).

The in-situ measurements are presented in a spin-resolved way, i.e. in each run we

measure one of the states Ψi ∈ {|LL⟩ , |RL⟩ , |LR⟩ , |RR⟩}, where the first (second)

entry is the location of the spin-up (spin-down) particle. Each quadrant in the upper

panel in Fig. 9.2 represents one of those states. The shown data is the sampled in-situ

distribution from around 1000 realizations. Summation of each quadrant yields the

probability of projecting the state on the respective basis state ⟨Ψi|Ψgs⟩ ⟨Ψgs|Ψi⟩ =

p2i , i ∈ {LL,LR,RL,RR}, as indicated in the figure. Those numbers directly give

the diagonal entries of the density matrix ρii. As discussed in Sec. 7.3, in particular

in Fig. 7.5, the Hamiltonian favors (suppresses) doubly occupied sites for attractive

(repulsive) interactions, which we observe in the in-situ data set by the induced asym-

metry for the two interacting cases as compared to the non-interacting case (see [62]

for more quantitative discussion of experimental results).

As argued in Sec. 7.4.1, diagonal entries of the density matrix do not contain in-

formation about coherence properties so that a pure state cannot be distinguished

from a maximally mixed state without measuring off-diagonal entries of the density

matrix. Following the proposals in [209, 210] we access information about the off-

diagonal entries of the density matrix via the analysis of the momentum correlation

functions. The key idea is to relate distinct pattern in the momentum correlation

function to entries of the density matrix, which is achieved by expanding a general

state to momentum space, as we will now work out in detail for the double-well case.

Similar to the discussion around Eq. (8.11) we again start by defining the general real

and momentum space wave functions of the two spin states as

Ψ̂
†
σ(x) =

N∑︂
i

Φx(x− xi)c
†
σ,i

Ψ̂
†
σ(k) =

N∑︂
i

Φk(k)e−ikxic†σ,i. (9.1)

Here Φ(x) is the onsite Wannier function, which is well approximated by a Gaussian

within the experimental precision. We assume that the onsite wave functions on
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Figure 9.2: In-situ and momentum correlations of the interacting double well.
The upper panel shows the measured spin-resolved insitu correlation functions
for three different interaction strength U/J = −5.87 (left), 0 (center) and 18.5
(right). The lower plots show the spin-resolved momentum correlation function
for the same U/J . For vanishing interactions the correlation functions factorize
and no second-order correlations are present. For attractive (repulsive) inter-
actions, double occupancies are favored (suppressed) and correlations in the
absolute (relative) momenta arise.

different sites are orthogonal. Φk = F [Φx](k) is the Fourier transform of Φ(x) and

c†σ,i are fermionic creation operators on site i with spin σ. The sum runs over all wells

i. Neglecting the envelope Φx from now on, we can write down the opposite-spin

second-order momentum-density correlation function as

⟨n̂k1↑n̂k2↓⟩ = ⟨Ψ̂
†
↑(k1)Ψ̂↑(k1)Ψ̂

†
↓(k2)Ψ̂↓(k2)⟩

=
∑︂

k,l,m,n

eik1(xl−xk)+ik2(xn−xm)⟨c†↑kc↑lc
†
↓mc↓n⟩ (9.2)

with k, l,m, n ∈ {L,R} for the double-well case. To relate the above expression to

the density matrix, we will rewrite the expression in its matrix representation. To

this end we evaluate the term in the brackets ⟨·⟩ with respect to all combinations of

basis states, using

⟨nk1↑nk2↓⟩ij = ⟨ii′|nk1↑nk2↓ |jj′⟩

=
∑︂

k,l,m,n

eik1(xl−xk)+ik2(xn−xm) ⟨0| c↑ic↓i′c†↑kc↑lc
†
↓mc↓nc

†
↑jc

†
↓j′ |0⟩

(9.3)
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with i, i′, j, j′ the respective entries of the four basis states i, j ∈ {LL,LR,RL,RR}.

We exemplarily evaluate this expression for {ii′, jj′} = {LR,LL},

⟨LR| n̂k1↑n̂k2↓ |LL⟩ =
∑︂

k,l,m,n

eik1(xl−xk)+ik2(xn−xm) ⟨0| c↑Lc↓Rc†↑kc↑lc
†
↓mc↓nc

†
↑Lc

†
↓L |0⟩

=
∑︂

k,l,m,n

eik1(xl−xk)+ik2(xn−xm)δLnδRmδkl

=
∑︂
k

eik1(xk−xk)+ik2(xL−xR)

= 2eik2a, (9.4)

where the factor 2 in the last line is due to the normalization of the wave function.

In the last line we furthermore used a = xL−xR with the well spacing of the double-

well potential a. We obtain the full momentum-density correlation operator in matrix

form as

ˆ︂(nk1
nk2

) =

⎛⎜⎜⎜⎝
1 e−iak2 e−iak1 e−ia(k1+k2)

1 e−ia(k1−k2) e−iak1

1 e−iak2

h.c. 1

⎞⎟⎟⎟⎠ . (9.5)

From the operator expression above, we can calculate the momentum-density corre-

lation function by taking the trace of the operator, multiplied by the density matrix,

⟨nk1
nk2

⟩ = Tr(ρ ˆ︂(nk1
nk2

)) =
∑︂
i,j

ρji ˆ︂(nk1
nk2

)ij

= pLL + pLR + pRL + pRR

+2ℜ
{︁

(ρ13 + ρ24)eiak1
}︁

+2ℜ
{︁

(ρ12 + ρ34)eiak2
}︁

+2ℜ
{︂
ρ14e

ia(k1+k2)
}︂

+2ℜ
{︂
ρ23e

ia(k1−k2)
}︂

(9.6)

For our analysis we rewrite this expression into the quadrature representation, which

will also become useful for the generalization to larger systems,

⟨nk1
nk2

⟩ = 1

+ 2ℜ(ρ13 + ρ24) cos (ak1) +2ℑ(ρ13 + ρ24) sin (ak1)

+ 2ℜ(ρ12 + ρ34) cos (ak2) +2ℑ(ρ12 + ρ34) sin (ak2)

+ 2ℜ(ρ14) cos (a(k1 + k2)) +2ℑ(ρ14) sin (a(k1 + k2))

+ 2ℜ(ρ23) cos (a(k1 − k2)) +2ℑ(ρ23) sin (a(k1 − k2)). (9.7)

The four diagonal entries of in Eq. (9.6), pLL, pLR, pRL, and pRR, are the projection

probabilities of the state onto the four basis states, that we get from the in-situ mea-

surements and sum up to 1. ρij are the off-diagonal entries according the basis states

as defined above (see also Fig. 9.1). The result shows that each oscillatory pattern in

the momentum-correlation function can be related to specific elements of the density
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Figure 9.3: Illustration of fitting functions for momentum correlation functions.
Each pattern can be related to an entry or a sum over two entries of the density
matrix. Horizontal and vertical stripes correspond to single-particle coherences
whereas diagonal stripes are caused by two-particle coherences.

matrix, e.g. the contrast of a cosinusoidal oscillation in the relative momentum k1−k2
corresponds to the real part of ρ23 whereas a phase shifted oscillation indicates a non-

zero imaginary part of ρ23. Note that not all entries of the density matrix can be

uniquely identified, because some of them only appear as a sum, such as (ρ13 + ρ24).

In total there are oscillatory patterns with four different frequencies, as we illustrate

in Fig. 9.3, together with a Gaussian envelope that we omitted in the calculations.

As mentioned before, this envelope is given as the Fourier transform of the real-space

wave function (cf. Eq. (9.1)). By decomposing the measured momentum-density cor-

relation function into the set of trigonometric functions according to Eq. (9.7), we

extract a set of 8 equations for the 6 complex off-diagonal entries of the density ma-

trix (i.e. 6 real and 6 imaginary coefficients). In particular, we can directly determine

the anti-diagonal elements ρ14 and ρ23. However, the two patterns with oscillations

in k1 or k2 only appear with the sum of two entries so that only the sum of those

entries can be constrained. Note that those patterns correspond to the single-particle

coherences, that we already discussed in Sec. 7.4.1. A determination of those entries

is possible e.g. via a rotation in the {L,R} basis [209], or by performing correlation

measurements in the near field [211]. However, we do not perform such additional

measurements, but rather employ a Bayesian quantum state estimation [212]. This

approach reconstructs a set of physical density matrices, based on the constraints that

we obtain from the momentum-density correlation function. Before discussing this

approach in Sec. 9.2, we generalize the analysis of the momentum-correlation function

to the case of three interacting, mobile particles in a triple-well potential.

9.1.1 Three Interacting Fermions in a Triple Well

Before going into the technical details of how to analyze the triple-well correlation

functions, we present a more intuitive way of how to relate the entries of the density

matrix to trigonometric functions that appear in the momentum correlation function.

As illustrated in Fig. 9.4 (a) for the double well and in (b) for the triple well, one can

analyze how many tunnel events are necessary to transform one basis state Ψi into

another basis state Ψj . For example for ρ24 of the 4×4 matrix of the double well, the

state Ψ2 = |LR⟩ connects to Ψ4 = |RR⟩ via a single tunnel event of the first atom

from left to right. This process contributes with cos(k1a) to the total momentum

correlations function, since the first atom moved the distance a in positive direction.
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Figure 9.4: Density-matrix reconstruction. Instead of doing the maths to relate pat-
terns in the momentum correlation function to entries of the density matrix,
we can also analyze, which states contribute to the entry and by how many
tunneling events they are connected. (a) Illustration of assignment scheme
for the double well with spacing a. (b) Illustration of the assignment scheme
for the triple well with spacings a12, a23, and a13 = a12 + a23. Due to the
indistinguishability of two atoms, there are always two possible tunneling con-
figurations. Labeling the particles is crucial to associate the correlations to
the correct momenta. However, also the antisymmetric correlations k1 ↔ k2
appear due to the indistinguishability of the two identical particles.

Similarly for ρ21, the second atom hops to the left well and therefore contributes

with cos(−k2a). The anti-diagonal entries of the density matrix correspond to pro-

cesses, that involve the movement of both atoms, e.g. ⟨LR| ↔ |RL⟩ contributes with

cos(k1a−k2a), since the first particle hops to the right (”+k1”) and the second to the

left (”−k2”), respectively. We can apply the same scheme to the triple-well case, but

have to take care of the spacing between the wells, which might not be commensurate.

Furthermore in the case of indistinguishable particles, one also has to take the anti-

symmetrized form into account. Based on that intuitive scheme we will define a set of

trigonometric basis functions into which we decompose the highest-order momentum

correlation function.

Suppose we have prepared three atoms in three optical tweezers in the laboratory

and we want to characterize the exact state of the system. The only interacting

configuration consists of two spin-up and one spin-down atom (or vice versa). As

discussed in Sec. 7.3, there are hence nine different basis states, which we define as

|Ψ⟩ ∈ {|↑, ↑, ↓⟩ ; |↑, ↓, ↑⟩ ; |↓, ↑, ↑⟩ ;

|↑↓, ↑, ·⟩ ; |↑↓, ·, ↑⟩ ;

|↑, ↑↓, ·⟩ ; |·, ↑↓, ↑⟩ ;

|↑, ·, ↑↓⟩ ; |·, ↑, ↑↓⟩}, (9.8)

where the first, second and third entry describe the spin occupation of the left, center

and right well, respectively. Within the lowest-band approximation of the Fermi-

Hubbard model (see Sec. 7.3) fermions with opposite spin can occupy the same well
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but two identical spins in the same well are forbidden by the Pauli-exclusion principle.

Similar to the double-well case, we investigate the system in real space by repeatedly

imaging the spin-resolved in-situ distribution. We directly extract the nine diagonal

entries of the density matrix pi, which are given by the probability of projecting the

state onto each of the nine basis states.

We then measure the spin-resolved single-particle momenta from which we construct

the third-order momentum-correlation function ξ
(3)
(↑↑↓)(k1, k2, k3) = ⟨nk1↑nk2↑nk3↓⟩.

As argued above, we know that each off-diagonal entry of the density matrix con-

tributes to the correlation function with specific trigonometric patterns. Motivated

by Eq. (9.7) and Fig. 9.4 we decompose ξ
(3)
(↑↑↓) into a general set of trigonometric basis

functions

ξ
(3)
(↑↑↓)(k⃗) =

∑︂
i

ci cos(2πq⃗ik⃗) + si sin(2πq⃗ik⃗), (9.9)

where k⃗ = (k1, k2, k3)T and the different q⃗is are vectors that contain the appearing real

space distances between spatial modes. In the general case of an incommensurately

spaced triple well, with a12 ̸= a23, each of the three components in q⃗i can take

any of the seven values {−a13,−a12,−a23, 0, a23, a12, a13}. In total this gives rise to

73 = 343 different q⃗is, including the zero-vector (0,0,0), which does not generate any

pattern. Due to the symmetry of the cosine and sine functions (cos(x) = cos(−x) and

sin(x) = − sin(−x)), half of the q⃗is are redundant, reducing the total set of possible

q⃗i to 342/2 = 171 (hence 171 ci and 171 si).

Following the discussion around Eqs.(9.5 - 9.7) we expand the third-order momentum-

density correlation operator ξ̂
(3)

(k⃗) and calculate the correlation function of a general

density matrix ρg as Tr
(︂
ρg ξ̂(k⃗)

)︂
using Mathematica [213]. The full momentum-

density correlation function can be written in a similar form as Eq. (9.9),

ξ
(3)
(↑↑↓)(k⃗) =

∑︂
i,j

Kijℜ(ρj) cos(2πq⃗ik⃗) +Nijℑ(ρj) sin(2πq⃗ik⃗). (9.10)

Here K and N are coefficient matrices and ρ⃗ is a vectorized form of the density

matrix. Equating the two equations (9.9) and (9.10), we obtain a set of coupled

linear equations for the off-diagonal entries of the density matrix

Kℜ(ρ⃗) = c⃗

Nℑ(ρ⃗) = s⃗. (9.11)

The size and the rank of the two matrices M and N depend on the shape of the

triple well. Let us consider the incommensurately spaced triple well with two spin-up

and one spin-down particles. In the case where two of the three atoms are indistin-

guishable, the number of possible trigonometric pattern can be further reduced. We

choose k1 and k2 for the atoms in |↑⟩ and k3 for the atom in |↓⟩.
Pauli Exclusion: Due to the Pauli-exclusion principle, no states which involve

two identical fermions on the same lattice site are involved. Combinations such as

q⃗i = (−a13,−a12, X) or q⃗i = (−a12, a23, X) for any X are not allowed, because they

are caused by processes where the two indistinguishable particles either hop to the
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same well or start from the same well (cf. Fig. 9.4). This reduces the number of

possible q⃗i to 171 − 3·6·7
2 = 108. The factor 1/2 is due to the q⃗is that have already

been removed as argued above.

Diagonal Entries: There are 3 q⃗is on the diagonal (such as ⟨↑↑↓ | ↑↑↓⟩ → cos((k1 −
k2)a12), which do not contribute to the sine terms, because all diagonal entries are

real. Since we constrain the diagonal entries with the in-situ measurements, we ex-

clude them from the further analysis. There are hence 105 q⃗i for the off-diagonals.

Indistinguishable Duplicates: Within the 2 · 105 = 210 trigonometric pattern

there are six of the form (0, 0, X). The remaining 204 entries contain 102 duplicates

due to the indistinguishability of the first two atoms in the sense that they can be

obtained from each other by exchanging k1 and k2.

For the incommensurately spaced triple well we are finally left with 108 trigono-

metric pattern that constrain the off-diagonal entries of the density matrix and 9 con-

straints for the diagonal entries from the in-situ measurement. Combining the matri-

ces K and N into a single block diagonal matrix B and the real and imaginary entries

of the vectorized density matrix into a single vector of the form b⃗ = (ℜ(ρ⃗),ℑ(ρ⃗))T ,

we can write Eq. (9.11) as

Bb⃗ =

(︄
c⃗

s⃗

)︄
, (9.12)

with dim(B)=117×81, dim(b⃗) = 81×1 and dim(Bb⃗) = 117×1. Obviously these 117

equations are not linearly independent. In fact we find that the matrix B has a rank

of rank(B) = 69 and hence constrains 69 of 81 entries of the density matrix.

With similar arguments we can deduce the matrix Bc also for the commensurate triple

well and find dim(Bc) = 61 × 81 and rank(Bc) = 37. The reason for the lower rank

of Bc compared to the incommensurate case is that there is one spatial frequency less

in the commensurate case (since a12 = a23) and therefore less unique constraints for

the density matrix. However, the set of equations in Eq. 9.12 is based on experimen-

tal measurements and therefore also contains experimental noise so that the set of

equations of Eq. 9.11 effectively has full rank. As we will explain later, we use the full

set of equations for the further analysis.

The set of equations that we can extract from the momentum-density correlation

function and the in-situ measurements are not sufficient to fully constrain the density

matrix. This applies both to the double-well and the triple-well case. Even if we could

constrain the full density matrix, the result would most likely not describe a physical

state due to the density matrix being not positive semidefinite because of statistical

uncertainties of all entries. Based on the reconstructed set of equations B, we choose

to reconstruct the full density matrix via a Bayesian quantum state estimation as we

describe in the following section.
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9.2 Bayesian Quantum State Estimation

Finding a density matrix that describes measurement outcomes is called a quantum

state estimation. As nicely outlined in Ref. [212] there are two typical approaches

to estimate a quantum state: Maximum Likelihood Estimation (MLE) and Bayesian

Mean Estimation (BME). In both cases one wants to find a state ρ that would have

produced the observed data M. One therefore defines the likelihood L(ρ) = p(M|ρ)

as the probability of measuring M if the prepared state was ρ.

MLE finds the most likely state ρMLE, i.e. the state that simply maximizes the like-

lihood function L(ρ). However, this approach has serious flaws, in particular since it

might predict rank-deficient states with zero eigenvalues (with no error bars), which

can never be justified with a finite number of experiments. The idea of state esti-

mation however is not only to explain the obtained measurements but to find a state

from which one can also predict future measurements.

The approach of BME is different. Here, one does not only obtain the most likely

state, but considers all states that are consistent with the observed measurements.

Since there are many such states, it also naturally comes with error bars and therefore

does not suffer from rank-deficiency. In this section we explain how we can perform

a Bayesian mean estimation based on the previously discussed correlation measure-

ments.

With the presented analysis of correlation functions there are two remaining issues:

1. We cannot constrain the full density matrix, since some patterns in the momen-

tum correlation function cannot be unambiguously related to a single entry of

the density matrix. A full state tomography would require additional measure-

ments [209, 211], however, for larger systems these measurements might become

technically impossible.

2. The decomposition of the correlation function into trigonometric basis functions,

as we discussed in the previous section, determines each entry of the density

matrix with its own statistical uncertainties. These statistical uncertainties

might lead to unphysical properties of the density matrix, such as negative

eigenvalues.

In order to obtain a physical density matrix that is most compatible with our mea-

surements, we employ a Bayesian quantum state estimation. We follow the scheme

outlined in Ref. [212] and divide the estimation into three major steps.

1. Generate a Likelihood Function from Experimental Data, L(ρ)

The likelihood function represents all the information about the system that we

can extract in the experiment. From a Bayesian point of view, the likelihood

function L(ρ) = p(M |ρ) is the probability of observing the outcome M , condi-

tioned on the real density matrix ρ. Assuming Gaussian distributed errors, the

likelihood function is given by

L(ρ) =
∏︂
i

1√︁
2πσ2

i

exp

(︄
− (Mi − Tr(M̂ iρ))2

2σ2
i

)︄
. (9.13)
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This function compares measured values Mi to the expectation values of the

observables M̂ i for a given ρ, weighted by the experimental uncertainties σi.

2. Prior and Posterior Distribution

We assume no prior knowledge about the states and therefore choose an unin-

formative prior π(ρ)dρ. For d dimensional pure states a suitable measure is the

Haar measure ddρ. Mixed states are taken care of by starting with the Haar

measure in d + n dimensions and tracing out the ancillary dimensions. dnρ

is hence the Haar measure while ddρ is the Hilbert–Schmidt measure. Multi-

plying the prior with the likelihood function yields the posterior distribution

L(ρ)π(ρ)dρ

3. Mean Posterior Distribution

The best description of the knowledge of the state is the integral over the poste-

rior distribution ρBME =
∫︁
ρL(ρ)π(ρ)dρ. In order to compute this function over

our integral measure, we apply the Metropolis-Hastings (MH) algorithm, which

calculates the average of a function ρ over the integration measure. Compared

to other Monte-Carlo techniques, that randomly sample over the integration

measure, the MH algorithm makes local, biased jumps: Before jumping from ρ

to ρ′, the likelihood ratio r = L(ρ)π(ρ)
L(ρ′)π(ρ′) is computed. If r > 1, the algorithm

jumps from ρ to ρ′, but if r < 1 the algorithm jumps with probability r to the

new state. This jumping rule ensures that the algorithm spends more time at

regions with more likely states.

To apply the above algorithm to the reconstruction of density matrices of experi-

mentally realized states, we use the constraints that we obtain from the analysis of

the momentum-density correlation function (see Eq. (9.12)) to define the likelihood

function. As described, we write the basis states in a vectorized form ρ⃗ with 10 real

and 6 imaginary entries for the double well and 45 real and 36 imaginary entries

for the triple well. We combine the two matrices K and N into a single matrix B,

and combine the constraints c⃗ and s⃗ into the vector χ⃗ =

(︄
c⃗

s⃗

)︄
together with their

uncertainties δχ⃗ =

(︄
c⃗

s⃗

)︄
. We obtain the likelihood function as

L(ρ) =
∏︂
i

1√︁
2πδχ2

i

exp

(︃
−

(χi −
∑︁

iBijρj)
2

2δχ2
i

)︃
. (9.14)

The MH algorithm step by step samples the posterior distribution L(ρ)π(ρ)dρ over

the integration measure and in each step generates a physical density matrix. While

the mean over all those states ρBME is the best description of the state based on the

experimental observations, the full posterior distribution of density matrices can be

used for further analysis and especially for the calculation of uncertainties. In the

next section we apply the Bayesian quantum state estimation to all states that we

realized in the laboratory.
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9.3 State Reconstruction

We are now ready to apply the reconstruction scheme to experimental data. In to-

tal we investigate three different classes of states to which we apply the described

schemes; a polarized, spin-rotated triplet state in the double well (i), a set of inter-

acting singlet states in the double well with different interaction strengths (ii), and

two three-particle states in the triple well (iii). In this section we separately describe

and discuss the density-matrix reconstruction of each investigated state. The explicit

form of the reconstructed density matrices of each state and the uncertainties are

given in Appendix A. In the next chapter we will use the obtained density matrices to

investigate entanglement properties in systems containing indistinguishable particles.

9.3.1 Spin-Rotated Triplet State in a Double Well

The first state that we investigate is a non-interacting state of identical, polarized

fermions. As we will see, this state features strong second order momentum corre-

lations in each spin configuration and will be relevant for the discussion of particle-

particle entanglement in the next chapter. Since the basis states are different from the

interacting double well, it has to be treated in a slightly different way. However, we

choose to start with the discussion of that state because it is nicely suited to illustrate

the working principle of the Bayesian reconstruction. To initialize the state, we start

with the spin-polarized state |↑, ↑⟩, which we discussed in Chapter 8, and which is illus-

trated again in Fig. 9.5 (a). By applying a resonant radio-frequency (rf) pulse, we ro-

tate the spin of each atom into the equatorial plane of the Bloch sphere, i.e. we rotate

each of the two atoms into the coherent superposition |↑⟩ π−→ |→⟩ = 1/
√
2 (|↑⟩ + |↓⟩).

This procedure realizes the state

Ψ =
1

2
(|↑⟩L + |↓⟩L) ⊗ (|↑⟩R + |↓⟩R) , (9.15)

where we omitted to explicitly write out the antisymmetrized form for better readabil-

ity. If we keep measuring in the σz basis, the state shows spin fluctuations and the den-

sity matrix becomes a 4×4 matrix with the four basis states {|↑, ↑⟩ , |↑, ↓⟩ , |↓, ↑⟩ , |↓, ↓⟩},

see Fig. 9.5 (a).

We investigate this state only in momentum space and do not explicitly measure

the in-situ density. Instead we constrain the diagonal entries of the density matrix

from the occurrences of spin combinations in the momentum measurements. As de-

scribed before, to compute momentum-density correlation functions, we release the

atoms into the ODT and measure the single-particle momentum distributions after

time-of-flight. Upon imaging the two atoms get equally projected onto one of the four

spin combinations. The occurence of each configuration directly gives the diagonal

entries of the density matrix. While the measurement of |↑, ↑⟩ and |↓, ↓⟩ is uniquely

related to one diagonal entry, we cannot uniquely assign the appearance of different-

spin combinations to any of the states |↑, ↓⟩ and |↓, ↑⟩, and therefore only extract the

sum of the two entries p↑↓ + p↓↑.

Figure 9.5 (b) shows all measured momentum correlation functions between all possi-
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Figure 9.5: Reconstruction of spin-rotated state. (a) Initialization of state via radio-
frequency rotation. We start with the state |↑, ↑⟩ and apply a radio frequency
π pulse. In the σz basis this enlarges the density matrix to a 4× 4 matrix. (b)
Measured momentum correlation functions with occurrences of spin combina-
tions (inset) from which we infer ρ↑↑, ρ↑↓+ρ↓↑, and ρ↓↓. ρ23 is given by by the
contrast of ⟨nk↑nk↓⟩, which we obtain by fitting the correlator with a cosine
function. Total number of datapoints for all three correlation functions: 14500
(c) Sampled posterior distribution of off-diagonal entries. The unconstrained
entries explore the full space, while the constrained entry ρ23 (red points) only
navigates within the experimental uncertainties.

ble spin combinations, ⟨nk↑nk↑⟩, ⟨nk↑nk↓⟩, and ⟨nk↓nk↓⟩. The state features identical

momentum correlations within each spin combination. As we discussed in Chapter 8

for the state |↑, ↑⟩, these correlations are only due to the exchange symmetry of two

identical fermions. To determine the contrast of the modulation of the correlation

functions we fit the correlator C(2)(d) with a damped cosine function (see Eq. (8.6)

and Eq. (8.7)). Within the statistical uncertainty all correlation functions show an

identical contrast of 62(2) %. As illustrated in Fig. 9.5 (a), the contrast of the fit to

⟨nk↑nk↓⟩ constrains the entry ρ23 of the density matrix. All remaining off-diagonal

entries cannot be constrained. Although we have very limited constraints on the den-

sity matrix in this case, we apply the Bayesian quantum state estimation as outlined

in the previous section. The likelihood function, that we define as given in Eq. (9.14),

hence only constrains the diagonal entries and ρ23, all remaining off-diagonal entries

do not appear in the likelihood function and are therefore not constrained at all.

Figure 9.5 (c) shows the sampled posterior distribution of all off-diagonal entries with

ℜ(ρij) on the x-axis and ℑ(ρij) on the y-axis, respectively (5000 steps of the Metropolis-

Hastings algorithm). While all unconstrained entries (grey points) freely navigate

around and randomly explore the full physical Hilbert space, ρ23 only explores the

Hilbert space within the experimental uncertainties. The diagonal entries are not

plotted in the same graph since they are real numbers and therefore only explore

the real axis. Instead we plot the the posterior distribution of the diagonal entries

as histograms in Fig. 9.6 (a). The plot in (b) of the same figure shows exemplary

histograms of the posterior distribution of the real part of four off-diagonal entries,

including ℜ(ρ23). The histograms nicely show that all entries that are directly con-

strained by the likelihood function are Gaussian distributed, i.e. ρ11, ρ44, ρ23, and
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Figure 9.6: Posterior distribution of Bayesian state estimation. (a) Posterior dis-
tribution of all diagonal entries and of the sum ρ22 + ρ33, which is directly
constrained by the likelihood function. (b) Posterior distribution of the real
part of four exemplary off-diagonal entries, including ρ23. All quantities that
are directly constrained by the likeklihood function are Gaussian distributed
and sharply peaked. (c) ρBME for the rotated triplet state. The height of the
bars is given by |ρBME| and the phase of each entry is encoded in the color.
(d) 68% credible interval of the posterior distribution of all entries.

ρ22 + ρ33. Entries that are not directly constrained, such as ρ22 and ρ33, have a large

spread, but explore the Hilbert space in a correlated way, as their sum is constrained.

All unconstrained off-diagonal entries spread across the whole allowed Hilbert space.

The mean over the posterior distribution ρBME represents the best knowledge of the

experimentally realized state. However, note that the full information about uncer-

tainties is encoded in the posterior distribution of states, that are sampled by the

Bayesian estimation. We show ρBME for the discussed state in Fig. 9.6 (c) and the

68% credible interval of each entry in (d). The height of the bars gives the absolute

value of each entry |ρBME| and the color encodes the phase ϕ(ρBME) as indicated by

the phase wheel in the figure. The density matrix shows that all unconstrained entries

have large uncertainties, as is expected from the posterior distribution.

9.3.2 Interacting Singlet State in a Double Well

We now turn to the discussion of states involving two interacting atoms in a the ground

state of a double-well potential. The measurements of the correlation functions were

in parts already shown in Sec. 9.1 and discussed in detail in Ref. [62]. As also discussed

in Sec. 9.1, we extract 12 values from the analysis of the experimental data: 4 real

numbers from insitu measurements that constrain the diagonal entries and 8 numbers

that constrain real and imaginary party of all off-diagonal entries, of which two are

only given as the sum of two off-diagonal entries. Note that even though this does
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Figure 9.7: Posterior distribution of interacting double well. The upper plots show
the sampled posterior distribution of all off-diagonal entries for the interacting
double well for three different interaction strengths, U/J = −5.9 (a), U/J = 0
(b), and U/J = 18.5 (c). The histograms below show the distribution of the
real part of all off-diagonal entries. Colored entries are directly constrained by
likelihood function.

not fully constrain the density matrix, all entries appear in the likelihood function

and are therefore constrained in some way. This is qualitatively different from the

state that we discussed before, since we now expect the posterior distribution of each

entry to be a peaked function. In total we apply the Bayesian state estimation to 8

different data sets with interaction strength U/J ∈ {−5.9,−2.9, 0, 2.5, 5, 8, 11.6, 18.5}.

However, we will only discuss the three cases of U/J ∈ {−5.9,−0, 18.5} in this sec-

tion. We will nevertheless use the reconstructed states of all interaction strengths in

the next chapter.

Fig. 9.7 shows the sampled posterior distribution of all off-diagonal entries together

with histograms over the real part of all off-diagonal entries for all three interaction

strengths. The colored entries are the anti-diagonal entries of the diagonal entries,

which are directly constrained by the measurements. The posterior distribution of

the diagonal entries is not plotted. We sampled the posterior distribution with 5000

steps of the Metropolis-Hastings algorithm. Both the posterior distribution and the

histograms show that all entries are peaked functions and indeed, all constrained

quantities (i.e. ρ23, ρ14, ρ12 + ρ34, and ρ13 + ρ24) are Gaussian distributed. The

spread of each entry is given by experimental uncertainties. The mean estimate ρBME

for all three interaction strengths is shown in Fig. 9.8 (a) together with the standard

deviation of all entries in (b). The shown density matrices show exactly the structure,

which we discussed in Sec. 7.3, i.e. on the attractive side, U/J < 0, doubly occupied

wells are favored, whereas on the repulsive side, U/J > 0, doubly occupied sites are

suppressed. In the non-interacting state, U/J = 0, all entries of the density matrix are

equally high. For detailed discussion of the obtained density matrices, see Ref. [62].

As mentioned above, we also reconstruct density matrices for the five remaining inter-

action strengths, that are not shown here. However, we will use the results in the next

chapter for the investigation of entanglement properties in identical-particle states.

As a consistency check of the reconstructed density matrices, we calculate the cor-
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Figure 9.8: Reconstructed density matrices of interacting double well. (a)-
(b) ρBME and standard deviation of each entry for three different interac-
tion strengths, U/J = −5.9 (left column), U/J = 0 (middle column), and
U/J = 18.5 (right column). Height indicates the absolute value |ρBME| and
color indicates the phase, according to the color wheel. Note the different z-
scales for the mean value and the standard deviations. (c) Comparison of the
measured correlation functions to the correlation function that we reconstruct
from ρBME.

relation functions that one would measure of a state described by the density matrix

ρBME. To this end we use Eq. (9.7) and plug in the entries of ρBME and the lattice

momentum klat that we obtained by fitting the correlation functions. Figure 9.8 (c)

shows the measured and the reconstructed momentum-density correlation functions

for the same states as above. We find very good agreement.

9.3.3 Interacting Triple Well

We finally realize two interacting three-particle states consisting of two spin-up and

one spin-down particle. The first state that we investigate is a state with a biseparable

structure consisting of a spin singlet in a double well and a third independent particle

in a distant tweezer. Starting from that state we tried to realize the ground state of a

commensurately spaced triple well by approaching the third well towards the double

well. We separately discuss the realization and analysis of these two states.
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A Biseparable State in the Triple Well

We so far discussed two different origins of momentum correlations: fermionic ex-

change symmetry, as extensively discussed in Chapter 8, and interaction as discussed

in the previous section. Comparing the structure of observed momentum-density cor-

relation functions, one sees that these two effects cause almost identical patterns. In

order to analyze those different types of contributions to the momentum correlation

functions and their influence on entanglement properties (as we will discuss in detail

in the next chapter), an interesting candidate involving three particles is a state con-

sisting of two interacting atoms in the ground state of a double well and an additional

third atom in an independent tweezer. If there is no tunnel coupling between this

independent third well and the double well, the third particle only contributes to the

correlation function via its exchange symmetry and indistinguishability to the other

spin-up particle.

As illustrated in Fig. 9.9 (a), we experimentally realize such a state by preparing two

atoms in one well and a single atom in a separate third well. Exactly as for the

preparation of the double-well ground state (cf Fig. 9.1), we adiabatically ramp on

the central well to obtain a balanced double well with a third distant tweezer, i.e. a

state of the form |ψ⟩ = |↑⟩ ⊗ |DW ⟩. We ensure a negligible tunnel coupling to the

third well by choosing an incommensurate well spacing a12 = 1.5a23 (see figure) and

by deliberately detuning the depth of the third well away from the tunnel resonance

to the central well. We do not observe any tunneling on experimental time scales and

estimate a residual tunnel coupling of at most 0.1 Hz. After ramping to the balanced

double well we induce interactions by tuning the magnetic offset field to 630 G. At

that magnetic field we measure the interaction to be U/J ≃ 16.

To investigate the state we proceed exactly in the same way as we did for the double-

well measurements, i.e. we measure both the single-particle and spin resolved in-situ

populations and momentum density. We post select the data to the correct atom

number of N↑ = 2, N↓ = 1 with post-selection rates on the order of 70%. For the

presented data set we retain about 19400 shots. We extract the diagonal entries from

the in-situ measurements and compute the third-order momentum-density correlation

function ξ
(3)
(↑↑↓) = ⟨nk1↑nk2↑nk3↓⟩. We plot the measured momentum-density correla-

tor C(3)(d1, d2) in Fig. 9.9 (b) (see Eq. (8.16) for definition of C). C(3) shows complex

structure with many different spatial frequencies.

As explained in Sec. 9.1.1, we decompose the correlation function ξ
(3)
(↑↑↓) into a set of

trigonometric basis functions and obtain a 117× 81 matrix B that constrains the en-

tries of the density matrix. These 117 equations are not linearly independent. In fact

B has a rank of rank(B) = 69. We nevertheless define the likelihood function using

the full matrix B and apply the Bayesian state estimate. We sample the posterior

distribution with 50000 steps. This is a factor of 10 more compared to the double-well

data due to the significantly larger density matrix.

Figure 9.9 (c) shows the posterior distribution of all off-diagonal entries. Only the

major six entries are colored, while the remaining 30 entries concentrate around zero

and are shown in grey. Note that the distributions for ρ28 and ρ16 (blue points),

as well as the distributions for ρ26 and ρ18 (red points) are almost identical and lie
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Figure 9.9: Reconstruction of incommensurately spaced triple well. (a) Illustra-
tion of preparation of biseparable three-atom state in which we entirely de-
couple the third well from the double well. (b) Measured momentum-density
correlator C(3)(d1, d2). Number of data points: 19400 (c) Sampled posterior
distribution of all 36 off-diagonal entries. Only major six entries are colored.
Distributions for remaining 30 entries scatter around zero and are shown in
grey. Note that the distributions for ρ28 and ρ16 (blue points), as well as for
ρ26 and ρ18 (red points) lie almost on top of each other. (d) Reconstructed
momentum-density correlator. (e) Bayesian mean estimate ρBME (upper row)
and standard deviations of all entries (lower row).

on top of each other. Due to the rather complicated structure of B, all entries of

the density matrix appear in the likelihood function and are therefore constrained

to some degree. All constrained quantities are Gaussian distributed and, despite the

reduced rank of B, all entries of the density matrix are sharply peaked with relatively

small standard deviations. The resulting mean estimate ρBME is shown in Fig. 9.9 (e)

together with the standard deviation of all entries. Note the different z-scales of the

mean and standard deviation. We again check the resulting density matrix by com-

puting the momentum correlator we would expect from a state described by ρBME.

We show the result in Fig. 9.9 and again find very good agreement. The reconstructed

density matrix ρBME has one major off-diagonal entry ρ12, which is given by the two-

particle coherence within the double well. The four small entries at ρ16, ρ18, ρ26 and

ρ28 are single particle coherences within the double well, which are suppressed due

to the large repulsive interaction (see previous sections and chapter for discussion of

double well coherences). We illustrate the theoretically expected density matrix in

the lower left panel of Fig. 9.10 (lowest energy state at J12 = 0). Apart from the

reduced magnitude of ρ12 the agreement between experimental and theoretical den-

sity matrices is very satisfying. We find the purity of the reconstructed state to be

pexp = Tr(ρ2BME) = 0.61(1), which we mainly attribute to a bad mode overlap along

the axis of expansion (as discussed in Sec. 8.1). Indeed if we include the measured loss

of contrast for large distances between the tweezers (see Fig. 8.3) into our analysis,

we find almost perfect agreement between the measured and the expected coefficients

in B. Hence also for the interacting states, we assume the purity to be much higher
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Figure 9.10: Lowest states of interacting triple well. The plot shows the energy of
the three lowest eigenstates as a function of the tunnel coupling J12 between
the first and the second well at U/J ≃ 16. The energy splitting between
the lowest state is on the order of the super exchange energy 4J2/U . The
five density matrices are the corresponding eigenstates as indicated by the
different markers. In the experiment we first realized the lowest state at
J12 = 0 and for the second state we ramped the tunnel coupling from zero to
J12 = J23.

and currently only limited by the expansion in the ODT.

Ground State of the Commensurately Spaced Triple Well

The plot in Fig. 9.10 shows the energies of the three lowest eigenstates of the triple

well as a function of the ratio of tunnel couplings J12/J23 at an interaction strength

of U/J ≃ 16. We exemplarily show theoretical density matrices of the three states at

different tunneling strengths. The bi-separable state that we discussed above is the

ground-state of the triple well with J12 = 0 as indicated with the blue circle. It is

hence adiabatically connected to the ground state of the homogeneous triple well with

J12/J23 = 1 (blue square). In a final measurement we made an attempt to realize such

a state by approaching the third well towards the central well. As indicated in the

figure, this effectively ramps the tunnel coupling J12 from zero to the homogeneous

triple well, J12 = J23. The excitation gap between the lowest states is only on the

order of the super exchange interaction energy 4J2/U . For U/J = 16 and typical

tunneling rates around 100 Hz in our experiment, the splitting is only a few Hz, such

that the purity of the experimental state might suffer a lot from too fast changes of

the optical potentials.

To initialize the system we start from the biseparable state that we discussed above

and approach the third well. For the analysis we proceed as before by measuring

both the in situ populations and the momentum-density correlation function ξ
(3)
(↑↑↓).

We show the measured momentum-density correlator C(3)(d1, d2) in Fig. 9.11(b). We

decompose the momentum correlation function ξ
(3)
(↑,↑,↓) and obtain a 61×81 matrix B

114



CHAPTER 9. DENSITY-MATRIX RECONSTRUCTION

Figure 9.11: Reconstruction of commensurately spaced triple well. (a) Illustration
of preparation of homogeneous triple well. (b) Measured momentum-density
correlator C(3)(d1, d2). Number of data points: 10300 (c) Sampled posterior
distribution of all 36 off-diagonal entries. Only the major three entries are
colored. Distributions for remaining 33 entries scatter around zero and are
shown in grey. (d) Reconstructed momentum-density correlator. (e) Bayesian
mean estimate ρBME (upper row) and standard deviations of all entries (lower
row).

with rank(B) = 37. As discussed in the previous chapter, the reduction of rank(B) as

compared to the incommensurately spaced triple well is due to the fact that there are

less possible lattice momenta (since a12 = a23 = a). We define the likelihood function

as above by using the full matrix B as constraints and perform the Bayesian state

estimation. We again sample the posterior distribution with 50000 steps. The sam-

pled posterior distribution of all off-diagonal entries is presented in Fig. 9.11 (c). Only

the major three entries are colored, ρ13 (red points), ρ12 (dark blue points), and ρ23

(light blue points). All remaining entries scatter around zero and are shown in grey.

The histograms below confirm that all constrained values are Gaussian distributed.

The posterior distribution shows that the three major off-diagonal entries have a sig-

nificant imaginary part, which can also be seen in the mean density matrix ρBME in (e).

In combination with the relatively high amount of doubly-occupied sites (ρ44 − ρ99),

and a computed purity of p = Tr(ρ2) = 0.29(2) this indicates that the ramp to the

final state was not performed in an adiabatic way. Indeed the chosen timing for the

ramp of 125 ms from J = 0 to the final configuration is fast compared to timescales

given by the super exchange energy. Such a quench results in a superposition state of

the lowest states, causing off-diagonal entries of the density matrix to become imagi-

nary. Dephasing and random excitations to higher states due to technical noise lead to

a substantial reduction of the purity of ρBME. The comparatively large uncertainties

on ρBME are mainly caused by the reduced rank of B but also by too little statistics

of about 10300 shots after post selection (71% post-selection rate). Nevertheless we

again verify the validity of the reconstructed density matrix by computing the mo-

mentum correlator that one would expect from the state ρBME. We show the result
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in Fig. 9.11 (d) and find very good agreement.

Despite the very low purity of the reconstructed density matrix, this example

shows that our reconstruction scheme can readily be applied both to states involving

technical noise or poor statistics and in particular to mixed states. This is particularly

relevant for the characterization of experimental states since they always suffer from

decoherence and reduced purity.

The density matrix contains the full information of a state. For instance its purity

characterizes the quality of the state in the sense of how mixed it is. Being able to

reconstruct the density matrix of experimentally realized states is not only a valuable

tool to characterize the performance of an experiment, it also enables direct calcula-

tion of any observable including entanglement. In the next chapter we will use the

experimentally obtained density matrices to investigate entanglement properties in

identical-particle states. We are particularly interested in the entanglement between

particles rather than spatial mode entanglement, as we will motivate and discuss

throughout the chapter.

116



Chapter 10

Identical-Particle

Entanglement

Entanglement is one of the most fundamental properties of quantum mechanics. In

fact E. Schrödinger already considered entanglement to be ’the characteristic trait of

quantum mechanics, the one that enforces its entire departure from classical lines of

thought’ [214]. Initially causing many conceptual problems [215] such as the violation

of locality and causality, entanglement turned out to be so fundamental that it can be

used to fundamentally test quantum mechanics by ruling out any local hidden variable

theories via the violation of Bell’s inequalities [216]. On a more practical level, en-

tanglement is seen as a major resource for quantum enhanced sensing and metrology

[21, 217, 218], for quantum computation, but also for identifying and studying phase

transitions [74, 75] or identifying topological states [219–222]. Despite its usefulness

and wide range of applications, entanglement still seems to raise many conceptual

questions. One reason for the mysterious nature of entanglement might be the fact

that entanglement is not only a property of a quantum state but entirely depends on

the choice of partitioning for which in turn there are various types one can choose

from.

A particularly useful choice of partitioning is to divide the system into spatial modes

[223, 224] and to ask for entanglement between different spatial regions of the sys-

tem. Scaling analysis of such entanglement has brought together many seemingly

unrelated physical systems such as black holes, quantum information science, and

quantum many-body physics [75]. Furthermore the study of spatial mode entangle-

ment helps to understand ground-state properties of the Hubbard model [59, 224–226]

and enables entanglement steering in spatially separated Bose-Einstein condensates

[227–229]. However, this is clearly not the only choice to partition a system and has

pathological limits in terms of extracting useful entanglement as a single particle de-

localized in free space provides entanglement beween infinitely many spatial modes.

Another intuitive choice of subsystems is to consider individual particles. This obvi-

ously can cause conceptual problems, in particular when it comes to states of indistin-

guishable particles. The fact that particles are indistinguishable raises the question

whether they are all entangled with each other, which has led to a long discussion in
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the literature on the role of fermionic exchange symmetry on measured entanglement

properties [230–240].

In this chapter we use the reconstructed density matrices that we presented in the

previous chapter to investigate entanglement properties in states with indistinguish-

able particles. We are particularly interested in entanglement between particles rather

than spatial modes. We will discuss, that special care has to be taken for fermionic

antisymmetrized wave-functions and introduce the simple notion of an antisymmetric

negativity for quantifying particle-particle entanglement of fermionic density matri-

ces. We start by reviewing the basic concept of entanglement and its quantification.

The content of this chapter has been published in [241].

10.1 A Brief Introduction to Entanglement

In this section we try to give an intuition of how an entangled state looks like and try

to highlight where conceptual problems may arise. We do not rigorously discuss all

facets of entanglement, for which we refer the reader to the literature [242, 243].

In simple words, when two atoms are entangled with each other, they can no longer

be described as individual constituents of the whole system. They rather have to be

considered together since any action on one atom immediately affects the state of the

remaining atom. More formally, for two subsystems A and B with Hilbert spaces HA

and HB , respectively, a quantum state |Ψ⟩AB is called entangled with respect to the

partitioning A|B if it is not separable with respect to the tensor factorization HA⊗HB ,

i.e. if it cannot be written as a product state of the form |Ψ⟩AB ̸= |ψ⟩A ⊗ |ψ⟩B .

It is instructive to consider the following simple example of two atoms, which we can

both initialize in an arbitrary superposition of two internal states. Labeling those two

states as |↑⟩ and |↓⟩, we can write down the normalized general single-particle wave

function as

|Ψ1⟩ = α |↑⟩ +
√︁

1 − α2⏞ ⏟⏟ ⏞
α′

|↓⟩

|Ψ2⟩ = β |↑⟩ +
√︁

1 − β2⏞ ⏟⏟ ⏞
β′

|↓⟩ . (10.1)

With the two above states we obtain a general two-atom wave function by tensor

multiplying the two states,

|Ψsep⟩ = |Ψ1⟩ ⊗ |Ψ2⟩ = (αβ |↑↑⟩ + αβ′ |↑↓⟩ + α′β |↓↑⟩ + α′β′ |↓↓⟩) . (10.2)

This state is fully described by the two parameters α and β. However, it immediately

becomes clear that this wave function cannot describe all states that are allowed by

quantum mechanics, for which one needs four parameters:

|ΨG⟩ = (a |↑↑⟩ + b |↑↓⟩ + c |↓↑⟩ + d |↓↓⟩) . (10.3)

As illustrated in Fig. 10.1 (a), all two-particle states of the form |ΨG⟩, that cannot be

written in the form of a separable state |Ψsep⟩ = |Ψ⟩A ⊗ |Ψ⟩B are called entangled

118



CHAPTER 10. IDENTICAL-PARTICLE ENTANGLEMENT

Figure 10.1: Entanglement detection. (a) A state that cannot be factorized into its
subsystems is called entangled. An entanglement witness is a sufficient but
not necessary criterion for entanglement. (b) Illustration of spatial mode en-
tanglement, which is used to characterize many-body systems by dividing a
system into spatial modes and asking for entanglement between these subsys-
tems. (c) A single particle delocalized across the boundary of the subsystems
induces mode entanglement between systems A and B.

states.

A simple example of an entangled wave function based on the above example is the

spin wave function of two atoms in a spin-singlet configuration,

|ΨS⟩ =
1√
2

(|↑↓⟩ − |↓↑⟩) . (10.4)

In order to write |ΨS⟩ as a separable state in the form of Eq. (10.2), we need αβ =

α′β′ = 0 but at the same time also αβ′ = α′β = 1√
2
, which is impossible. For the

state |ΨS⟩, a projective measurement on one atom can have both outcomes |↑⟩ or |↓⟩,
but would immediately affect the spin of the other atom, i.e. detecting the first atom

in the |↑⟩ state, immediately projects the second atom into the |↓⟩ state. The defini-

tion of entanglement via the non-separability of the wave function is very general and

does not only apply to internal modes of two atoms. There is obviously a range of

choices of how to characterize entanglement. This leads to many different notions of

entanglement such as mode entanglement or particle-particle entanglement [223], but

also entanglement between different systems such as atom-photon, photon-phonon or

magnon-photon-phonon entanglement is possible [17, 244, 245].

As already mentioned above, a very useful choice for the characterization of ultracold

atom experiments is entanglement between spatial modes [59, 224, 229, 246]. The

basic idea of mode entanglement is illustrated in Fig. 10.1 (b). An ensemble of atoms

trapped e.g. in a two-dimensional optical lattice is spatially divided into two subsys-

tems A and B. By looking for example at atom number fluctuations within the two

subsystems, entanglement can be detected by the violation of entanglement witnesses,

a sufficient but not a necessary condition for entanglement (see Fig. 10.1 (a)). How-

ever, the detected mode entanglement entirely depends on the chosen boundary and

even a single atom, delocalized across two wells might induce mode entanglement, if

it is delocalized across the boundary of the subsystems, see Fig. 10.1 (c). In that sense

a single atom in the ground state of a balanced double-well potential, as we discussed
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in Sec. 7.4.1, where the wave function in mode representation is given by

|Ψ⟩ =
1√
2

(|10⟩ + |01⟩) , (10.5)

with the atom being either in the first (|10⟩) or the second (|01⟩) well, induces spa-

tial mode entanglement between the two wells. Hence a single atom delocalized

across many wells can in principle induce entanglement between arbitrarily many

spatial modes. Mode entanglement does not only exist between spatial modes. The

momentum-space wave function of a single atom localized in space (
∑︁

i c
†
ki
|000...0⟩)

is a superposition state of infinitely many momentum modes and can hence also be

interpreted as a mode-entangled state, where all momentum modes are entangled.

An alternative possibility is to consider entanglement between particles rather than

modes. Obviously in the case of identical particles special care must be taken and

conceptual difficulties arise when particles are fully indistinguishable.

10.2 Particle-Particle Entanglement

Entanglement between particles and the role of exchange symmetry has been exten-

sively discussed in the literature [230–239, 242]. Taking individual atoms as subsys-

tems immediately causes conceptual problems when two or more particles are indistin-

guishable. In order to uniquely identify single atoms as subsystems, particles have to

be labeled {1...N} and a first-quantized formalism has to be adopted. The conceptual

problems already become apparent by considering two identical fermions localized in

two spatial modes, such as the state that we extensively discussed in Chap. 8. Due to

fermionic exchange symmetry, the first-quantized wave function of such a state has

to be antisymmetrized over the spatial degree of freedom,

|Ψ⟩ =
1√
2

(|L⟩1 |R⟩2 − |R⟩1 |L⟩2) , (10.6)

where the subscripts are particle labels and L and R the left and the right mode,

respectively. This state is not a separable state since it cannot be written as the

product of two single-particle wave functions. It even resembles the maximally entan-

gled Bell-state and is formally an entangled state. However, this type of entanglement

only arises from antisymmetrizing the wave function and hence exists between any

two identical fermions. Although it might be argued that such entanglement is a mere

artefact of the formalism of first quantization, it is still under debate whether it can

actually be used for quantum information processing [247–249]. With the advent of

experiments operating with individually controllable, indistinguishable particles [59–

63, 224–226] the debate on the role of exchange symmetry on measured entanglement

properties has gained new urgency. In fact as we have demonstrated in Chap. 8 and

Chap. 9, fermionic exchange statistics can induce strong correlations in experimental

observables that look very similar to correlations in strongly interacting systems. It

is hence desirable to analyze experimental measurements in a way that entanglement

induced by (anti)symmetrization can be separated from other forms of entanglement.

120



CHAPTER 10. IDENTICAL-PARTICLE ENTANGLEMENT

Before discussing how to quantify entanglement and how to isolate the different contri-

butions to the detected entanglement, we need to introduce a few more concepts such

as mixed-state entanglement, separability and genuine multipartite entanglement.

10.3 Generalization of Entanglement

In this section we briefly comment on how to extend the concepts that we introduced

in the previous section to mixed states and to larger systems that can be partitioned

into more than just two subsystems.

Mixed-State Entanglement

So far we only considered pure quantum states, i.e. states with a purity p = Tr(ρ2)

of one. However, experimentally characterized quantum states usually suffer from

experimental noise and hence a reduced purity p < 1. In order to characterize ex-

perimental density matrices, the definition of entanglement has to be generalized to

mixed quantum states. A mixed quantum state is called separable with respect to

the partitioning A|B if its density matrix can be written as a probabilistic mixture of

separable pure states [250],

ρmix
sep =

∑︂
i

piρ
A|B
sep,i, (10.7)

with
∑︁
pi = 1 and the density matrix of a pure separable state ρ

A|B
sep,i, which can be

written as

ρ
A|B
sep,i = |ψi⟩ ⟨ψi|A ⊗ |ϕi⟩ ⟨ϕi|B . (10.8)

If the density matrix cannot be written in the form of Eq. (10.7), the state is called

entangled. For a general mixed density matrix there are of course infinitely many

decompositions into a probabilistic mixture of pure states and ruling out that there

is any decomposition of the form of Eq. (10.7) is a non-deterministic polynomial-time

(NP)-hard problem [251].

Separability

The notion of entanglement becomes richer for systems that can be divided into

multiple subsystems. In such cases, there are different choices for the boundary

between two subsystems and both the detection but also the amount of detected

entanglement depends on the chosen boundary. Furthermore, partitioning the system

into more than two subsystems leads to the notion of multipartite entanglement (see

below). To better understand the structure of possible states, one introduces the

concept of partial separability [252]. Let us consider a state with N modes and split

the system {1, ..., N} into k ≤ N subsystems. As illustrated in Fig. 10.2, we call the

state k-separable with respect to the split αk, if it can be written as a factorized state

over the partitioning αk, i.e.

|Ψ⟩ = |ψ⟩ ⟨ψ|α1
⊗ |ϕ⟩ ⟨ϕ|α2

⊗ ... |χ⟩ ⟨χ|αk
. (10.9)
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Figure 10.2: Separability of quantum states. A state that can be factorized over the
k-fold partitioning αk is called k-separable. For each k with 1 < k < N there
are multiple possible partitionings as indicated on the right side for the case
of N = 4 and k = 2.

For a given k with 1 < k < N there are multiple possible partitionings αk. Note

that a k-separable state is always k − 1 separable while the opposite is not generally

true. For k = N we call the state fully separable. Since entanglement is defined

via the contrapositive of separability, the hierarchy of entanglement is inverted with

respect to separability. A fully separable state is not entangled at all whereas in a

non-separable state all possible bipartitions are entangled. Such a state is called a

genuinely multipartite entangled state.

Genuine Multipartite Entanglement

To better understand genuine multipartite entanglement let us consider the following

state of three spins

|Ψ⟩ =
1√
2

(|↑↑↓⟩ + |↑↓↑⟩)

=
1√
2

(|↑⟩ ⊗ (|↑↓⟩ + |↓↑⟩)) . (10.10)

This state is separable with respect to the partitioning |·| · ·⟩ but not with respect to

the partitioning |· · |·⟩. The state is hence biseparable and not genuinely multipartite

entangled. However it is also not fully separable and therefore features bipartite entan-

glement within the partitioning |· · |·⟩. A famous example of a genuinely multipartite

entangled state is the GHZ-state [253, 254],

|ΨGHZ⟩ =
1√
2

(|↑↑↑⟩ + |↓↓↓⟩) . (10.11)

or the W-state [255],

|ΨW⟩ =
1√
3

(|↑↑↓⟩ + |↑↓↑⟩ + |↓↑↑⟩) . (10.12)

These state are not separable with respect to any possible bipartition and can therefore

not be factorized. They are therefore called genuinely multipartite entangled. In a

similar way as above, we call a mixed state genuinely multipartite entangled, if it can

neither be written as a biseparable state with respect to any bipartition A|Ā [256]

122



CHAPTER 10. IDENTICAL-PARTICLE ENTANGLEMENT

nor as a probabilitics mixture thereof

ρbs =
∑︂
i

piρAi|Āi
, (10.13)

with
∑︁
pi = 1 and separable states ρAi|Āi

.

10.4 Entanglement Quantification

So far we only defined an entangled state as being a state that is not separable. How-

ever, for the general two-particle state of the form of Eq. (10.3) it seems to be intuitive

to find states that are more entangled than others. In order to understand how en-

tanglement can be quantified, we follow Ref. [257] and first introduce the concept of

Local Operations and Classical Communication (LOCC).

Suppose we have prepared a quantum system that we partition into two subsystems

A and B, which we transport into two distant laboratories. The two laboratories can

perform local operations on their part of the system and communicate via a classical

link with each other. The set of all operations on the systems that only involve local

operations on the two subsystems and classical communication between the two labo-

ratories is referred to as LOCC. If the two subsystems have not been entangled before,

LOCC cannot create any entanglement between them. Consequently, entanglement

is not allowed to increase under any LOCC operation. These two fundamental laws

of quantum information processing [258, 259] can be used to implement a hierarchy

of entanglement.

If a state ρ can be transformed into state σ only by LOCC, ρ is at least as entangled

as σ. If the transformation is not possible, ρ is less entangled as σ [257]. However,

care must be taken when comparing different classes of entangled states. E.g. in a

system of three atoms it is not possible to compare the entanglement of a GHZ state

to the entanglement of a W-state. The states cannot be converted into one another

by LOCC but are both maximally entangled states [255].

In order to generalize this idea and to make it applicable to mixed states, one might

ask the question: how many copies of a state ρ are necessary to find an equal amount

of entanglement in m copies of a different state σ, i.e. for which n can ρ⊗n be trans-

formed into σ⊗m only with LOCC. The ratio n/m is used for ordering the amount of

entanglement in the two states ρ and σ. Based on these ideas important entanglement

measures can be defined such as the Entanglement Cost [260, 261], the Distillable En-

tanglement [262, 263] or the Entropy of Entanglement [264, 265].

In contrast to this operationally motivated approach to quantifying entanglement

there is also an axiomatic approach to entanglement measures. Based on the above

considerations certain requirements for a proper entanglement measure can be formu-

lated [257, 264, 266]:

1. An entanglement measure E(ρ) is a mapping from density matrices to real

positive numbers, ρ ↦→ E(ρ)

2. E(ρ) = 0 for any separable state ρ.
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3. E does not increase on average under LOCC.

4. For a pure state ρ = |ψ⟩ ⟨ψ|, E reduces to the entropy of entanglement.

Apart from many others, a very useful axiomatically motivated entanglement measure

is the (logarithmic) Negativity [267]. Since we will be using the Negativity on the

experimentally obtained density matrices, we briefly summarize its main properties.

Negativity

For a state, described by the density matrix ρ, the Negativity is defined as

N (ρ) =
||ρΓA || − 1

2
(10.14)

where ρΓA is the partial transpose of ρ with respect to subsystem A, and || · || denotes

the trace norm. Equivalently the negativity can be calculated as the sum of the abso-

lute values of all negative eigenvalues of ρΓA ,
∑︁

i,λi<0 |λi|. The negativity is a convex

function, N (
∑︁
piρi) ≤

∑︁
piN (ρi) and does not increase under LOCC operations.

For a separable state ρs = ρA ⊗ ρB , one finds ρΓA
s = ρTA ⊗ ρB = ρA ⊗ ρB = ρs and

consequently a negativity of 0. For 2 × 2 and 2 × 3 systems (i.e. systems of two

qubits or two qutrits), N > 0 is a sufficient and necessary condition for entanglement

[268, 269]. For any larger system a finite negativity is only a sufficient but not a neces-

sary condition for entanglement. The negativity is an entanglement measure, that is

easy to compute because it reduces to calculating the eigenvalues of a density matrix.

As we will see in the next section, when applied to states where we choose particles

as subsystems, the negativity detects entanglement due to the antisymmetrization of

the fermionic wave function.

PPT-mixtures

The negativity relies on the fact that separable states have a positive partial transpose

(PPT) [268, 269]. While this condition is only sufficient and necessary for 2 × 2 or

2 × 3 systems, it is still a sufficient condition for larger systems. Separable states

have a positive partial transpose, so whenever a state does not have a positive partial

transpose, it is an entangled state. For later purposes we define a general mixed PPT

state as a state that can be obtained as a probabilistic mixture of pure PPT states

[256],

ρmix
ppt =

∑︂
i

piρppt. (10.15)

10.5 Particle-Particle Negativity

Let us again address the state of two identical fermions in a double-well potential,

Ψ = 1√
2

(|L1R2⟩ − |R1L2⟩) and apply the above definition of the negativity. We

mentioned already, that the state cannot be factorized due to antisymmetrization of

the wave function. In the first-quantized formalism, its density matrix ρ = |Ψ⟩ ⟨Ψ| is
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given by

ρ = |Ψ⟩ ⟨Ψ| =
1

2

⎛⎜⎜⎜⎝
0 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0

⎞⎟⎟⎟⎠ , (10.16)

where we used the basis (|L1L2⟩ , |L1R2⟩ , |R1L2⟩ , |R1R2⟩). We perform the partial

transpose on one of the two atoms and get

ρΓ = |Ψ⟩ ⟨Ψ| =
1

2

⎛⎜⎜⎜⎝
0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

⎞⎟⎟⎟⎠ , (10.17)

with the four eigenvalues λ1 = −1/2, and λ2,3,4 = 1/2. We calculate the Negativity to

be N (ρ) = 0.5 > 0. The negativity hence detects the state as non-separable and there-

fore as an entangled state. This result suggests that any two identical fermions are

entangled because of their exchange symmetry. How should this result be interpreted?

According to Ghirardi, Marinatto, and Weber (GMW) [242] an antisymmetrized

state should not be regarded as entangled if it can be obtained from antisymmetrizing

a separable state. In their work they define entanglement between two subsystems of

a composite system via the possession of a complete set of properties. This means that

if the two subsystems possess definite physical properties that are independent of the

existence of the other part, the two subsystems are non-entangled. While also with

this definition some conceptual problems arise for the case of identical particles, they

rigorously show that two identical fermions that are described by a pure normalized

state |Ψ⟩ are non-entangled, if and only if |Ψ⟩ can be obtained by antisymmetrizing

a factorized state.

For the wave function of two identical fermions discussed above, this immediately

implies that we should not consider the state as an entangled state, because it is

obtained by antisymmetrizing the separable state,

|Ψ⟩ = |L1R2⟩
PA−−→ 1√

2
(|L1R2⟩ − |R1L2⟩) , (10.18)

where PA denotes the antisymmetrization operator. Note that the state before anti-

symmetrization is not unique, as also the state |R1L2⟩ yields the same antisymmetric

state. While this trivial example nicely illustrates the idea of GMW, finding such a

state e.g. for a mixed state consisting of three interacting particles is not a straight-

forward task. Hence, for the calculation of particle-particle entanglement special

care has to be taken in order to separate contributions to entanglement from anti-

symmetrization from other origins of entanglement such as interaction. In the next

section we therefore introduce the notion of an Antisymmetric Negativity, which is

able to separate those two different origins of entanglement.
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Figure 10.3: Schematic illustration of Antisymmetric Negativity. From the exper-
imental results we obtain a normalized density matrix, which might not by
physical and contain negative eigenvalues due to systematical uncertainties.
The Bayesian inference method provides us with a representative set of phys-
ical density matrices that is compatible with our experimental uncertainties.
The AN searches for the optimal state σopt by minimizing the negativity of
the optimization variable σ under the constraint that the projection on the
antisymmetric subspace retrieves the initial state ρA. We call the negativity
of σopt the antisymmetric negativity of ρA.

10.6 Antisymmetric Negativity

As described in the previous section, according to the GMW criteria [242] an an-

tisymmetric state that is obtained from antisymmetrizing a factorized state should

be considered as a separable, non-entangled state. This suggests that entanglement

properties of identical-particle states should be addressed before antisymmetrization.

Based on this intuition we introduce the simple notion of an Antisymmetric Nega-

tivity, NA [241, 270], which determines the smallest entanglement that must already

exist in a state before (anti)symmetrization. For the mathematical details of the an-

tisymmetric negativity, please see Ref. [270].

For an antisymmetrized, fermionic wave function ρA we consider the functional

EA(ρA) = min
σ≥0

{E(σ) : PAσPA = cρA} , (10.19)

for any entanglement measure E. PA is the projection onto the antisymmetric sub-

space and the factor c = max{Tr(PAσ) : σ = σPPTm} is the maximal projection

probability of σ such that ρA may not be obtained by antisymmetrizing a PPT-

mixed state [270]. As derived in [270], c = 1/2 for the bipartite case with same local

dimensions such as our double-well states. Instead, c = 1/3 for the triple well, as

shown in [271]. We choose c = 1/2 for the discussion here. As illustrated in Fig. 10.3

the optimization variable σ is a normalized, positive-semidefinite quantum state that

does not obey any specific exchange symmetry and exists in a larger Hilbert space

than the antisymmetric, physical state ρA. The optimization searches for the state

σopt with the smallest entanglement E(σopt) under the constraint that its antisym-

metric projection is 1
2ρA.

Thus, for a given fermionic state ρA, if there exists a factorized state σ such that

PAσPA = 1
2ρA, then EA(ρA) = 0. If there is no such state, then EA(ρA) > 0 and the
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identical-particle state is considered to be entangled. If we apply this formalism to

the state of two identical fermions, Eq. (10.18) immediately implies that EA(ρ) = 0

and therefore identifies the state as non-entangled.

This idea can be applied to any entanglement measure E but in the case of E being

the standard negativity N it can be explicitly calculated in the form of a semidefinite

program (SDP). We define the Antisymmetric Negativity (AN ) as

NA(ρA) = min
σ≥0

{︃
N (σ) : PAσPA =

1

2
ρA

}︃
. (10.20)

Semi Definite Programming

Semi Definite Programming is a field of convex optimization and finds numerous

applications in quantum information theory [272, 273]. For Φ being a hermitian-

preserving map between two complex Euclidean spaces A and B, with A and B

hermitian operators A ∈ Herm(A) and B ∈ Herm(B), a semidefinite program (SDP)

consists of the triple (Φ, A,B) associated with the following optimization problem,

minimize ⟨A,X⟩

such that Φ(X) = B

X ≥ 0, (10.21)

where ⟨., .⟩ is a linear function that is minimized under the constraints Φ(X) = B and

X being positive semidefinite, X ≥ 0. Following [270, 272], we can rewrite the trace

norm of a matrix as a SDP, which we can immediately extend to the negativity. We

find that the negativity of a matrix ρ is given by the optimal value of the SDP

minimize (Tr(M) − 1)/2

such that −M ≤ ρΓ ≤M.

M ≥ 0, (10.22)

where ρΓ is the partial transpose of the partitioning for which the negativity is calcu-

lated. By adding further constraints to the above SDP we can ultimately formulate

the antisymmetric negativity as a SDP. For an antisymmetric fermionic state ρA we

call the bipartite antisymmetric negativity AN 2 the optimal value of the following

optimization,

minimize (Tr(M) − 1)/2

such that −M ≤ XΓ ≤M

M ≥ 0

X ≥ 0

Tr(X) = 1

PAXPA = Tr(PAX)ρA

Tr(PAX) = c. (10.23)
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This SDP minimizes the negativity of a positive-semidefinite, normalized state X,

whose projection on the antisymmetric subspace is cρA. Following [256, 274] we

generalize the AN to detect genuine multipartite entanglement. To this end we first

extend the standard negativity to the tripartite case. For a three-atom state we call

the genuine tripartite negativity N3 of a state ρ the optimal value of the following

SDP,

minimize (Tr(MA|BC +MB|AC +MC|AB) − 1)/2

such that MA|BC ,MB|AC ,MC|AB ≥ 0

ρ̃A|BC , ρ̃B|AC , ρ̃C|AB ≥ 0

−MA|BC ≤ ρ̃ΓA|BC ≤MA|BC

−MB|AC ≤ ρ̃ΓB|AC ≤MB|AC

−MC|AB ≤ ρ̃ΓC|AB ≤MC|AB

ρ = ρ̃A|BC + ρ̃B|AC + ρ̃C|AB , (10.24)

where the indices denote the partitioning of the system, i.e. A|BC means that the

partial transposition operation is carried out on subsystem A. We finally extend N3

to the genuine tripartite antisymmetric negativity AN 3 via the optimal value of the

SDP,

minimize (Tr(MA|BC +MB|AC +MC|AB) − 1)/2

such that MA|BC ,MB|AC ,MC|AB ≥ 0

ρ̃A|BC , ρ̃B|AC , ρ̃C|AB ≥ 0

−MA|BC ≤ ρ̃ΓA|BC ≤MA|BC

−MB|AC ≤ ρ̃ΓB|AC ≤MB|AC

−MC|AB ≤ ρ̃ΓC|AB ≤MC|AB

ρ̃ = ρ̃A|BC + ρ̃B|AC + ρ̃C|AB

PAρ̃PA = Tr(PAρ̃)ρA

Tr(PAρ̃) = c. (10.25)

The latter equation can be readily extended to the N -partite case.

For the calculation of the AN we perform all optimizations using Qetlab [275] and

CVX, a package for specifying and solving convex programs [276, 277].

10.7 Application of AN to Experimental States

In order to benchmark the usefulness of the AN we investigate the experimentally

realized states that we discussed in Sec. 9.3. In particular we will demonstrate that

(i) the AN can be computed from experimental data including noise; (ii) it identifies

states which exhibit correlations only due to quantum statistics as unentangled; (iii)

it identifies interaction-driven entanglement in two-particle systems, and (iv) it can

be extended to multipartite scenarios.
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As already mentioned, we adopt a first-quantized formalism that allows us to treat

particles as subsystems. To this end we label the particles {1, ..., N} and convert all

density matrices into their first-quantized representation. For the double-well data

this is achieved by mapping the 4 × 4 density matrices onto the 16-dimensional ba-

sis {|Xσ⟩ |Y τ⟩}, for X,Y ∈ {L,R} and σ, τ ∈ {↑, ↓}. The 9 × 9 density matrices

of the triple well are mapped onto the 216-dimensional basis {|Xσ⟩ |Y τ⟩ |Zκ⟩}, for

X,Y, Z ∈ {L,C,R} and σ, τ, κ ∈ {↑, ↓}. This is done using the substitution rule

according to the slater determinant, i.e. |X⟩↑ |Y ⟩↓ → 1√
2
(|X ↑⟩ |Y ↓⟩ − |Y ↓⟩ |X ↑⟩)

for the double-well case and analogously for the triple-well case.

The states that we investigate can be grouped into three different classes. We start

by discussing all spin-polarized states |↑, ↑⟩, |↑, ↑, ↑⟩ and |→,→⟩, which we discussed

in Chap. 8 and Sec. 9.3.1, respectively. We then continue with the discussion of two

interacting atoms in the ground state of a double well, see Sec. 9.3.2, and finally

investigate the two triple-well states, which we discussed in Sec. 9.3.3. For the double-

well states, we will try to give some explicit examples in order to better illustrate the

calculations. Expressions and density matrices for the triple well are typically too

large to be explicitly shown.

Separable States

The first class of states that we investigate are spin-polarized states. Since they

consist of identical fermions, these are all strictly non-interacting states and hence

correlations are purely caused by exchange symmetry. We discussed the three different

states |Ψ1⟩ = |↑, ↑⟩, |Ψ2⟩ = |↑, ↑, ↑⟩, and |Ψ3⟩ = |→,→⟩.
We explicitly performed the calculation of the negativity of the first state in Sec. 10.5

and showed that the negativity evaluates to N (ρ1) = 0.5. We also discussed that the

AN correctly identifies the state as non-entangled, AN (ρ1) = 0 (Eq. (10.18)). The

calculation of the second state is analogous. We first write down the first quantized,

antisymmetrized wavefunction,

|ΨA
2 ⟩ =

1√
6

(|L ↑, C ↑, R ↑⟩ + |R ↑, L ↑, C ↑⟩ + |C ↑, R ↑, L ↑⟩

− |R ↑, C ↑, L ↑⟩ − |L ↑, R ↑, C ↑⟩ − |C ↑, L ↑, R ↑⟩) , (10.26)

and obtain the 36 × 36 first-quantized density matrix by calculating ρA3 = |ΨA
3 ⟩ ⟨ΨA

3 |
in the basis {|X ↑⟩ |Y ↑⟩ |Z ↑⟩}, with X,Y, Z ∈ {L,C,R}. For this state we explicitly

calculate the negativity to be N=1 for all possible partitionings due to the exchange

symmetry. The AN identifies this state as separable, AN (ρ2) = 0, since it is obvi-

ously obtained by antisymmetrizing a separable state.

As we discussed in Sec. 9.3.1, the third state |ψ3⟩, which was obtained by rf-rotation

of the first state |ψ1⟩ into the equatorial plane of the Bloch sphere, shows spin fluctu-

ations upon measuring and momentum correlations in all three possible spin combi-

nations. These spin fluctuations are only induced by the rotation of the basis states

and do not change the structure of the state. However, the reconstructed density

matrix suffers from technical noise and therefore a reduced purity, so that the state
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Figure 10.4: Calculated negativities of rotated-triplet state. Histograms of cal-
culated AN (a) and N (b) over the posterior distribution of density ma-
trices (5000 states) of the rf-rotated state |Ψ3⟩. We find a median of
AN (ρ3) = 0.048+0.064

−0.048 and N (ρ3) = 0.6+0.13
−0.11, where the errors indicate the

68% credible interval. The large spread of the negativites is caused by the
large experimental uncertainties and the missing constraints for 5 of the 6
off-diagonal entries (see Fig. 9.5).

is well suited to test the AN on separable mixed states. Generally, a reduced purity

also reduces the detected entanglement due to the convexity of entanglement mea-

sures (E(
∑︁

(piρi)) ≤
∑︁
piE(ρi)). As described in the previous chapter, the Bayesian

reconstruction scheme provides us with a posterior distribution of physical density ma-

trices, consisting of 5000 states, that represent the experimental measurements. We

convert each of these density matrices into their first-quantized representation and

calculate both N and AN for each state. Figure 10.4 shows histograms of the calcu-

lated negativities. The standard negativity is centered around 0.6 with a median of

N (ρ3) = 0.6+0.13
−0.11 where the errors indicate the 68% credible interval. In contrast, the

AN is peaked at zero with a median and credible interval of AN (ρ3) = 0.048+0.064
−0.048,

compatible with zero. The large spread of the calculated negativities is caused by

the poor reconstruction of that particular state, as we discussed in Sec. 9.3.1. Nev-

ertheless, the AN removes the contribution of antisymmetrizing the wave function

and identifies the spin-rotated state as being compatible with a non-entangled state.

These three examples show that the AN identifies both pure and mixed separable

states as non-entangled.

Interaction-Induced Entanglement

To test the AN on states where entanglement is induced by interaction we investigate

the interacting singlet state in the double-well potential (see Sec. 9.3.2). We proceed

in a similar way as above: for each interaction strength we calculate both N and

AN for the whole posterior distribution that we obtain from the Bayesian quantum

state estimation, consisting of a representative set of 5000 density matrices each. In

addition we also calculate N and AN for theoretical density matrices for pure ground

states of the balanced two-well Fermi-Hubbard model, obtained by diagonalizing the

Hamiltonian in Eq. (7.4).

In Fig. 10.5 we illustrate the optimization of the SDP and the search of the AN with

a single exemplary density matrix. We randomly chose a state of the posterior distri-

bution from the Bayesian state estimation at an interaction strength of U/J = 18.5.

The state in (a) shows the 4× 4 density matrix obtained by the state reconstruction.
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Figure 10.5: Example of optimization. (a) Density matrix of a randomly chosen ma-
trix from the posterior distribution of the Bayesian state estimation of the
interacting double well with U/J = 18.5. (b) First-quantized density matrix
for state in (a). For a clearer view, the basis states are only labeled from
1...16. (c) Density matrix of the optimal state σopt, of which the negativity
N (σopt) is the antisymmetric negativity of ρA. (d) Antisymmetric projection
of the optimal state. (e) Difference between antisymmetrized state in (b) and
antisymmetrized optimal state in (d).

Using the substitution rule as explained above, we convert the 4 × 4 density matrix

into its 16 × 16 first-quantized representation ρA, which we show in (b). ρA is the

state of which we want to compute the AN . The result of the optimization, σopt, is

shown in (c). Although this state is normalized, i.e. Tr(σopt) = 1, it is not a physical

state since it does not necessarily satisfy fermionic exchange symmetry and therefore

allows the occupation of states that are forbidden by the Pauli-exclusion principle.

For instance the first entry ρ11 (which is non-zero in σopt) is a state where two spin-up

particles occupy the same spatial mode. Antisymmetrizing σopt yields a physical state

that satisfies fermionic exchange symmetry. The state ρoptA = PAσoptPA is shown in

(d). We finally compute the difference between the states in (d) and (b) and show

the result in (e). This difference is basically zero, whereas the residual noise on the

individual entries is determined by the convergence parameters during the optimiza-

tion. For the double-well case, the optimization only takes a few seconds per density

matrix.

Figure 10.6 presents the calculated negativities as a function of the interaction

strength U/J . All shown experimental values are the median with a 68% credible

interval. In addition we also show one exemplary posterior distribution of N and

AN for an interaction strength of U/J = 18.5 in (b) of the same figure. For all

interaction strengths the experimental values are reduced compared to the theoretic

curves due to a reduced purity of the experimental density matrices. The solid lines

are the calculated negativities of the pure ground states. Both negativities show the

same qualitative behaviour, i.e. the states become stronger entangled for stronger in-

teraction and are symmetric around the non-interacting state at U/J = 0. However,

the standard negativity is always larger than the antisymmetric negativity and even
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Figure 10.6: Negativities of the interacting double well. (a) Calculated N (red)
and AN (blue) for an interaction strength U/J ranging from −10 to 20.
Solid lines are the results from theoretical density matrices obtained from
diagonalization of the Hamiltonian, data points are median and 68% credible
interval of the negativities over the posterior distribution of the BME. (b)
One example of the posterior distribution of N and AN for a repulsively
interacting state with U/J = 18.5.

N = 0.5 at U/J = 0, where the the theoretical and experimental AN both identify

the state as separable. Indeed the difference between both negativities is caused by

the antisymmetrizion of the density matrix over the spin degree of freedom. The AN
successfully removes this contribution to the negativity and only detects entanglement

due to interaction. It is interesting to note that the AN takes exactly the same values

as the spin-mode negativity [62], since the two atoms could be uniquely identified by

their spin state.

Three-particle states

To generalize the concept of the antisymmetric negativity to genuine multipartite en-

tanglement we consider three particles in a triple-well configuration. As presented in

Sec. 9.3.3, we consider the two experimentally realized states at U/J = 16 that we

illustrate again in the top panel of Fig. 10.7. The first state is the incommensurately

spaced triple well where we prepared an interacting singlet in a double well and added

a third independent atom in the third tweezer. The second state is the ground state

of the homogeneous triple well with J12 = J23 = J . We also theoretically investigate

the same pure states for variable interaction strengths U/J from −20 to 20.

As we argued in Sec. 9.3.3, the first state with J12 = 0 has a clear bi-separable

structure and features complex momentum correlations that are substantially modi-

fied both by interactions and antisymmetrization over the third independent particle.

The second state is in principle expected to show genuine multipartite entanglement

but due to a very low experimental purity of the state (see Sec. 9.3.3) we might not

be able to detect it.

The evaluation of the data is similar to the double-well case. However, in addi-

tion to N and AN we also calculate the tripartite negativity N3 and the tripartite

antisymmetric negativity AN 3 as we defined in the previous sections. Due to the

significantly larger first-quantized density matrices (216 × 216), each calculation of
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AN 2 and AN 3 takes about 15-30min. Instead of calculating the antisymmetric neg-

ativity over the whole posterior distribution (containing 50.000 states), we choose a

randomly sampled, representative subset of 1000 density matrices for the calculation

of the experimental AN 2/3.

Figure 10.7 summarizes all negativities for both states. We note that the calculation

of the bipartite and tripartite negativity (solid line and light-colored dots in (a) of

the figure) yield exactly the same results due to the antisymmetrized structure of the

states. As a first characterization of the entanglement in the system, we can use the

standard negativity (plotted in (a)) as an entanglement witness, but we will see that it

requires the AN to provide a complete picture of multipartite entanglement. As indi-

cated in the graph by the colored areas, there are three different regions, in which the

negativity reveals information about the entanglement structure of the state. These

three regions are based on the following two statements (see Appendix B for proofs):

1. The maximum negativity that can be obtained by antisymmetrizing a fully sep-

arable three-particle state is one.

2. The maximum negativity that can be obtained by antisymmetrizing a biseparable

state is 1.9428

Hence any state with a negativity above one cannot be obtained from antisymmetriz-

ing a fully-separable state and therefore exhibits at most a bi-separable structure.

Any state with a negativity above 1.9428 is necessarily tripartite entangled, since it

cannot be obtained by antisymmetrizing a bi-separable state. Indeed, as shown by

the solid red line in Fig. 10.7 (a), the first state saturates these bounds for U/J = 0

and for U/J → ±∞. The two histograms in Fig. 10.7 (a) show the results of the cal-

culation of the negativity over the posterior distribution for both experimental states.

We detect a negativity of N = 1.39 ± 0.02 for the first and N = 1.14+0.05
+0.04 for the

second state, respectively. We conclude that none of the states is fully separable and

both exhibit at least bipartite entanglement.

As we plot in Fig. 10.7 (b) the AN of the first state evaluates to zero both for the theo-

retical and the experimental state despite the fact that the state is not fully separable.

This result is independent of the chosen partitioning. For each of the three possible

partitionings, i.e. 1|23, 2|31, or 3|12, the minimization finds a state where a single

atom can be factorized out. For instance for the partitioning 3|12 and U/J → ∞ the

optimization finds the state Ψopt = (|C ↑⟩1 |R ↓⟩2 + |R ↓⟩1 |C ↑⟩2) |L ↑⟩3. This state

factorizes in the chosen partitioning and therefore features a negativity of zero. How-

ever, if we choose to investigate the partitioning 1|23, the optimization finds the state

Ψopt = |L ↑⟩1 (|C ↑⟩2 |R ↓⟩3 + |R ↓⟩2 |C ↑⟩3) and returns an AN of zero. Not that

one cannot fine a state, that is separable in both partitioning at the same time, which

projects onto the antisymmetrized state. This factorization of the optimal state is

independent of the interaction strength so that we detect an AN of zero for all values

of U/J . Indeed the AN is zero whenever the dimensions of the partitioning coincides

with dimensions of the partitioning in which the state is biseparable.

The ground state of the homogeneous triple well (solid blue line in (a)) even exceeds

the bound for biseparability for strong attractive and repulsive interactions. While
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Figure 10.7: Bi- and tripartite antisymmetric negativity in the triple well. (a)
Calculated standard negativity for both illustrated states. The histograms
show the negativity of the posterior distribution of both experimentally re-
alized states. Both experimental states exceed the bound for fully-separable
states. The calculation of the bipartite and tripartite negativity yield the
same values for each state due to the antisymmetrized structure of the density
matrix. (b) Calculated antisymmetric negativity. The ground state of the ho-
mogeneous triple well shows finite values for any finite interaction strength,
certifying the presence of genuine tripartite particle-particle entanglement.
AN of experimental states is consistent with zero due to low purity of the
experimental density matrices.

this is a signature of genuine multipartite entanglement, the standard negativity does

not reveal anything about the entanglement structure for weaker interactions. How-

ever, both the bipartite and tripartite antisymmetric negativity AN 2/3 of the same

state (solid blue line and light blue dots in Fig. 10.7 (b)) show that the state exhibits

genuine tripartite entanglement for any finite interaction strengths. Only at U/J = 0

the state can be obtained by antisymmetrizing a fully-separable state, so that we

detect an AN of zero. Unfortunately the AN of the experimentally realized state

is also 0, as shown in the histograms in Fig. 10.7 (b) due to the poor purity of the

reconstructed density matrix.

To assess the relevance of the AN for experimental investigations, we analyze the

robustness of the tripartite antisymmetric negativity AN 3 against white noise. To

this end we consider the ground state of the homogeneous triple well at an interaction

of U/J = 16, |Ψ⟩, an gradually add white noise, ρnoise = (1 − r)1 + r |Ψ⟩ ⟨Ψ|, with

r ∈ [0, 1]. We find a finite tripartite antisymmetric negativity AN 3 down to r = 0.75,

which corresponds to a purity of p = 0.61. This is significantly higher than the pu-

rity that we achieved with the second experimental three-particle state, but can be

reasonably expected in experiments.
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In this chapter we introduced a new notion of entanglement to quantify particle-

particle entanglement for fermionic density matrices, called Antisymmetric Negativ-

ity. We applied the AN both to theoretical and experimental states and showed

that it identifies separable states as non-entangled and that it can be used to sepa-

rate entanglement originating from exchange symmetry from entanglement induced

by interaction. The AN can also detect genuine multipartite entanglement, in partic-

ular, it can be used to reveal the entanglement structure of a multipartite entangled

states, which is not accessible via the standard negativity alone. Our results enable

the quantitative study of entanglement and exchange antisymmetry in experimental

settings and help to provide further insight into the entanglement of indistinguishable

particles.
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Chapter 11

Summary and Outlook

In the second part of this thesis I explored the analysis of momentum correlation func-

tions for the characterization of small, strongly correlated fermionic systems. This

approach to characterizing a many-body quantum state is complementary to tradi-

tional tomography methods and does not require complex measurement protocols.

We benchmark the applicability of our approach on a range of different states that we

realize in the laboratory, including non-interacting systems, where correlations arise

purely by fermionic exchange symmetry, and systems, where additional correlations

may arise due to strong interactions.

In systems of non-interacting, indistinguishable particles we measure strong connected

second and third-order momentum-density correlations. The contrast of the measured

correlation functions indicates a high degree of indistinguishability of the individual

particles, which we think is currently only limited by the expansion in the ODT.

The measurements show both that our system realizes an on-demand source of highly

indistinguishable fermions and that momentum correlations are perfectly suited to

detect ordering in mesoscopic fermionic systems. This enables the future study of

many-body interference or quantum optics experiments with massive particles.

In systems of distinguishable particles, correlations do not only arise due to exchange

statistics but also due to interaction. These two contributions to the momentum

correlation function are fundamentally different and have to be separated from each

other. By decomposing momentum correlation functions into a set of trigonometric

basis functions, we develop a scheme to constrain large parts of the density matrix

and to fully reconstruct physical states via a Bayesian quantum state estimation. We

reconstruct density matrices of various different states and discuss the contribution

of antisymmetrization and interactions to measured correlation functions.

The reconstructed density matrices contain the full information about the states. In

the final chapter, we use these density matrices to address particle-particle entangle-

ment in identical-particle states. When treating particles as subsystems, standard

entanglement measures lead to conceptual problems and detect entanglement due

to the antisymmetrized structure of the fermionic wave function. To remedy these

problems we employ the notion of an Antisymmetric Negativity that searches for the

smallest entanglement that must already exist before antisymmetrization. We show
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Figure 11.1: Measurement of Pauli Crystal. The plots show the measurement of the
configurational probability in a non-interacting Fermi gas of N = 3 (left)
and N = 6 (right) atoms [278]. Angular correlations are induced by Pauli-
exclusion principle.

that the antisymmetric negativity reveals multipartite entanglement structure that is

not accessible via the standard negativity alone.

Outlook

Throughout the cause of this thesis, we developed new techniques and concepts to

characterize strongly correlated fermionic systems via momentum correlation mea-

surements. While we focused on the full reconstruction of density matrices, we antic-

ipate that the presented ideas also find application for the characterization of larger

systems and the detection of many-body ordering or pairing in mesoscopic, fermionic

systems.

We recently upgraded our experimental apparatus to be able to generate two dimen-

sional optical potentials [279]. This allows the expansion of states in the 2D plane and

is expected to substantially enhance the measured contrast of momentum correlation

functions. Such an improvement enables to extend the study of Fermi-Hubbard-like

states to larger one-dimensional systems with higher purity but also to address prob-

lems related to many-body interference in arrays of fermionic atoms [280].

A two-dimensional optical potential furthermore extends the range of possible states

that we can realize in the laboratory. Using similar preparation schemes as be-

fore we can deterministically initialize mesoscopic systems in closed-shell configu-

rations. While such a system already provides interesting physics to explore on its

own [281, 282], we plan to investigate mesoscopic, interacting 2D systems via single-

particle resolved momentum-density correlations [182, 283]. Figure 11.1 shows the

measurement of the configurational probability in a non-interacting Fermi gas of 3

and 6 atoms (cf. Ref. [283]), a beautiful example, where fermionic exchange statistics

induces ordering, which can only be revealed by sing-particle resolved momentum

measurements. In particular by adding interaction and investigating such systems

across the BEC-BCS crossover we hope to see signatures of many-body pairing in the

strongly correlated regime [284]. Such signatures do not require a full tomography

of the quantum state but should be apparent in higher-order correlation functions.
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While deep in the BEC or BCS regime, the system is expected to show only second-

order correlations in the in-situ or the momentum density, respectively, the signature

should change drastically in the strongly correlated regime and might also be visible

in higher-order correlation functions.

Due to the high degree of controllability in our setup, we can readily increase the

particle number of the two-dimensional system to bridge the gap from microscopic to

macroscopic Fermi systems. In future measurements we will investigate very dilute,

yet strongly correlated, low entropy states of a few 100 atoms. In this mesoscopic

regime the system is expected to show rich many-body behavior while both in-situ

and momentum correlation measurements on the single-particle level are still within

reach.

In addition we plan to further upgrade our experimental setup with a spatial light

modulator (SLM). An SLM can be used to shape complex optical potentials and

will enable the investigation of two-dimensional Fermi-Hubbard systems, including

the study of Nagaoka magnetism on a 2 × 2 plaquette [285] or to explore fractional

quantum hall physics using rotating traps [286].
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[49] B. Naylor, A. Reigue, E. Maréchal, O. Gorceix, B. Laburthe-Tolra, and

L. Vernac. Chromium dipolar Fermi sea. Phys. Rev. A, 91:011603, Jan 2015.

[50] J. Quintanilla, S. T. Carr, and J. J. Betouras. Metanematic, smectic, and

crystalline phases of dipolar fermions in an optical lattice. Phys. Rev. A, 79:

031601, 2009.

[51] M. A. Baranov, M. S. Mar’enko, V. S. Rychkov, and G. V. Shlyapnikov. Su-

perfluid pairing in a polarized dipolar Fermi gas. Phys. Rev. A, 66:013606,

2002.

[52] J. Levinsen, N. R. Cooper, and G. V. Shlyapnikov. Topological px + ipy super-

fluid phase of fermionic polar molecules. Phys. Rev. A, 84:013603, 2011.

[53] M. A. Baranov, L. Dobrek, and M. Lewenstein. Superfluidity of Trapped Dipolar

Fermi Gases. Phys. Rev. Lett., 92:250403, 2004.

144

https://doi.org/10.1103/PhysRevLett.101.080401
https://doi.org/10.1103/PhysRevLett.101.080401
https://doi.org/10.1103/PhysRevLett.106.255303
https://doi.org/10.1103/PhysRevLett.106.255303
https://doi.org/10.1103/PhysRevLett.107.190401
https://doi.org/10.1103/PhysRevLett.107.190401
https://doi.org/10.1103/PhysRevLett.108.210401
https://doi.org/10.1038/nature16485
https://doi.org/10.1103/PhysRevLett.115.155302
https://doi.org/10.1103/PhysRevLett.115.155302
https://doi.org/10.1103/PhysRevA.93.061603
https://doi.org/10.1103/PhysRevA.93.061603
https://doi.org/https://doi.org/10.1038/s41567-018-0054-7
https://doi.org/https://doi.org/10.1038/s41567-018-0054-7
https://doi.org/10.1103/PhysRevLett.108.215301
https://doi.org/10.1103/PhysRevLett.112.010404
https://doi.org/10.1103/PhysRevLett.112.010404
https://doir.org/10.1103/PhysRevA.91.011603
http://doi.org/10.1103/PhysRevA.79.031601
http://doi.org/10.1103/PhysRevA.79.031601
https://doi.org/10.1103/PhysRevA.66.013606
https://doi.org/10.1103/PhysRevA.66.013606
https://doi.org/10.1103/PhysRevA.84.013603
https://doi.org/10.1103/PhysRevA.84.013603
https://doi.org/10.1103/PhysRevLett.92.250403
https://doi.org/10.1103/PhysRevLett.92.250403


CHAPTER 12. BIBLIOGRAPHY

[54] D. Peter, S. Müller, S. Wessel, and H. P. Büchler. Anomalous Behavior of Spin
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[69] G. Tóth, W. Wieczorek, D. Gross, R. Krischek, C. Schwemmer, and H. We-

infurter. Permutationally Invariant Quantum Tomography. Phys. Rev. Lett.,

105:250403, 2010.
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Appendix A

Reconstructed Density

Matrices

In this chapter we list the reconstructed density matrices of all states that were used

in this thesis. We also mention the number of steps of the Metropolis-Hastings (MH)

algorithm, which is the number of states of the sampled posterior distribution. We

give the median of each entry together with the 68% credible interval.

Rotated Triplet State

Number of MH steps: 5000

Basis states: {|↑↑⟩ , |↑↓⟩ , |↓↑⟩ , |↓↓⟩}

ℜ(ρ) =

⎛⎜⎜⎜⎝
0.307 0.002 0.123 0.087

0.290 0.152 0.080

0.208 0.081

h.c. 0.195

⎞⎟⎟⎟⎠ ,ℑ(ρ) =

⎛⎜⎜⎜⎝
0 −0.143 −0.036 −0.094

0 −0.001 −0.047

0 0.044

h.c. 0

⎞⎟⎟⎟⎠ ,

(A.1)

with 68% credible interval

δℜ(ρ) =

⎛⎜⎜⎜⎝
0.007 0.111 0.220 0.091

0.185 0.010 0.009

0.184 0.022

h.c. 0.004

⎞⎟⎟⎟⎠ , δℑ(ρ) =

⎛⎜⎜⎜⎝
0 0.116 0.015 0.221

0 0.010 0.119

0 0.173

h.c. 0

⎞⎟⎟⎟⎠ .

(A.2)
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Interacting Double Well

Number of MH steps for each interaction strength: 5000

Basis states: {|LL⟩ , |LR⟩ , |RL⟩ , |RR⟩}

U/J = -5.9

ℜ(ρ) =

⎛⎜⎜⎜⎝
0.456 0.102 0.077 0.191

0.038 0.028 0.093

0.031 0.094

h.c. 0.0475

⎞⎟⎟⎟⎠ ,ℑ(ρ) =

⎛⎜⎜⎜⎝
0 −0.001 0.011 0.045

0 0.001 0.027

0 0.006

h.c. 0

⎞⎟⎟⎟⎠ ,

(A.3)

with 68% credible interval

δℜ(ρ) =

⎛⎜⎜⎜⎝
0.023 0.029 0.035 0.037

0.008 0.008 0.034

0.007 0.037

h.c. 0.023

⎞⎟⎟⎟⎠ , δℑ(ρ) =

⎛⎜⎜⎜⎝
0 0.039 0.005 0.050

0 0.004 0.013

0 0.004

h.c. 0

⎞⎟⎟⎟⎠ .

(A.4)

U/J = -2.9

ℜ(ρ) =

⎛⎜⎜⎜⎝
0.389 0.129 0.129 0.161

0.095 0.073 0.138

0.086 0.133

h.c. 0.4290

⎞⎟⎟⎟⎠ ,ℑ(ρ) =

⎛⎜⎜⎜⎝
0 0.048 0.027 0.025

0 −0.013 −0.056

0 0.006

h.c. 0

⎞⎟⎟⎟⎠ ,

(A.5)

with 68% credible interval

δℜ(ρ) =

⎛⎜⎜⎜⎝
0.035 0.043 0.045 0.054

0.019 0.019 0.05

0.018 0.03

h.c. 0.036

⎞⎟⎟⎟⎠ , δℑ(ρ) =

⎛⎜⎜⎜⎝
0 0.034 0.037 0.084

0 0.001 0.021

0 0.05

h.c. 0

⎞⎟⎟⎟⎠ .

(A.6)

U/J = 0

ℜ(ρ) =

⎛⎜⎜⎜⎝
0.195 0.152 0.162 0.177

0.199 0.177 0.211

0.233 0.241

h.c. 0.373

⎞⎟⎟⎟⎠ ,ℑ(ρ) =

⎛⎜⎜⎜⎝
0 0.01 −0.013 −0.031

0 −0.036 0.051

0 −0.019

h.c. 0

⎞⎟⎟⎟⎠ ,

(A.7)

with 68% credible interval

δℜ(ρ) =

⎛⎜⎜⎜⎝
0.016 0.045 0.054 0.049

0.016 0.022 0.058

0.016 0.026

h.c. 0.019

⎞⎟⎟⎟⎠ , δℑ(ρ) =

⎛⎜⎜⎜⎝
0 0.035 0.002 0.043

0 0.01 0.05

0 0.0146

h.c. 0

⎞⎟⎟⎟⎠ .

(A.8)
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U/J = 2.5

ℜ(ρ) =

⎛⎜⎜⎜⎝
0.142 0.165 0.168 0.110

0.364 0.288 0.190

0.340 0.187

h.c. 0.154

⎞⎟⎟⎟⎠ ,ℑ(ρ) =

⎛⎜⎜⎜⎝
0 −0.094 −0.048 −0.009

0 −0.007 0.003

0 0.046

h.c. 0

⎞⎟⎟⎟⎠ ,

(A.9)

with 68% credible interval

δℜ(ρ) =

⎛⎜⎜⎜⎝
0.021 0.038 0.054 0.025

0.031 0.030 0.050

0.029 0.042

h.c. 0.022

⎞⎟⎟⎟⎠ , δℑ(ρ) =

⎛⎜⎜⎜⎝
0 0.022 0.040 0.024

0 0.004 0.128

0 0.068

h.c. 0

⎞⎟⎟⎟⎠ .

(A.10)

U/J = 5.0

ℜ(ρ) =

⎛⎜⎜⎜⎝
0.068 0.136 0.129 0.053

0.433 0.299 0.149

0.416 0.140

h.c. 0.084

⎞⎟⎟⎟⎠ ,ℑ(ρ) =

⎛⎜⎜⎜⎝
0 0.004 −0.004 −0.004

0 −0.007 −0.009

0 0.054

h.c. 0

⎞⎟⎟⎟⎠ ,

(A.11)

with 68% credible interval

δℜ(ρ) =

⎛⎜⎜⎜⎝
0.015 0.045 0.047 0.019

0.034 0.034 0.045

0.033 0.035

h.c. 0.017

⎞⎟⎟⎟⎠ , δℑ(ρ) =

⎛⎜⎜⎜⎝
0 0.043 0.052 0.001

0 0.042 0.047

0 0.030

h.c. 0

⎞⎟⎟⎟⎠ .

(A.12)

U/J = 8.0

ℜ(ρ) =

⎛⎜⎜⎜⎝
0.033 0.086 0.079 0.025

0.467 0.36 0.136

0.436 0.126

h.c. 0.065

⎞⎟⎟⎟⎠ ,ℑ(ρ) =

⎛⎜⎜⎜⎝
0 −0.033 −0.040 0.020

0 −0.037 −0.004

0 0.045

h.c. 0

⎞⎟⎟⎟⎠ ,

(A.13)

with 68% credible interval

δℜ(ρ) =

⎛⎜⎜⎜⎝
0.010 0.030 0.038 0.013

0.032 0.027 0.019

0.032 0.033

h.c. 0.014

⎞⎟⎟⎟⎠ , δℑ(ρ) =

⎛⎜⎜⎜⎝
0 0.015 0.046 0.002

0 0.021 0.070

0 0.031

h.c. 0

⎞⎟⎟⎟⎠ .

(A.14)
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U/J = 11.6

ℜ(ρ) =

⎛⎜⎜⎜⎝
0.023 0.068 0.068 0.019

0.486 0.370 0.105

0.448 0.092

h.c. 0.043

⎞⎟⎟⎟⎠ ,ℑ(ρ) =

⎛⎜⎜⎜⎝
0 −0.030 0.015 −0.005

0 −0.037 −0.016

0 0.049

h.c. 0

⎞⎟⎟⎟⎠ ,

(A.15)

with 68% credible interval

δℜ(ρ) =

⎛⎜⎜⎜⎝
0.007 0.035 0.030 0.014

0.025 0.029 0.027

0.024 0.032

h.c. 0.009

⎞⎟⎟⎟⎠ , δℑ(ρ) =

⎛⎜⎜⎜⎝
0 0.028 0.024 0.008

0 0.010 0.006

0 0.053

h.c. 0

⎞⎟⎟⎟⎠ .

(A.16)

U/J = 18.5

ℜ(ρ) =

⎛⎜⎜⎜⎝
0.016 0.028 0.040 −0.004

0.482 0.362 0.084

0.459 0.066

h.c. 0.043

⎞⎟⎟⎟⎠ ,ℑ(ρ) =

⎛⎜⎜⎜⎝
0 0.041 0.020 0.011

0 −0.014 0.029

0 0.072

h.c. 0

⎞⎟⎟⎟⎠ ,

(A.17)

with 68% credible interval

δℜ(ρ) =

⎛⎜⎜⎜⎝
0.007 0.056 0.055 0.019

0.031 0.028 0.045

0.031 0.054

h.c. 0.011

⎞⎟⎟⎟⎠ , δℑ(ρ) =

⎛⎜⎜⎜⎝
0 0.049 0.027 0.001

0 0.013 0.031

0 0.034

h.c. 0

⎞⎟⎟⎟⎠ .

(A.18)
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Incommensurately Spaced Triple Well

Number of MH steps: 50000

Basis states:

{|↑, ↑, ↓⟩ , |↑, ↓, ↑⟩ , |↓, ↑, ↑⟩ , |↑↓, ↑, ·⟩ , |↑↓, ·, ↑⟩ , |↑, ↑↓, ·⟩ , |·, ↑↓, ↑⟩ , |↑, ·, ↑↓⟩ , |·, ↑, ↑↓⟩}

ℜ(ρ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.446 0.268 −0.005 0.005 0.005 0.076 −0.009 0.065 −0.005

0.465 −0.014 0.004 0.002 0.062 0.001 0.077 0.007

0.002 0.001 0 0.002 0.001 −0.002 0

0.002 0 0.001 −0.001 0.001 −0.001

0.002 0.001 −0.001 0 0.001

0.034 −0.001 0.010 0.003

0.006 −0.001 0.001

0.034 0.003

h.c. 0.009

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ℑ(ρ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0.013 0.002 0.006 0.005 −0.013 −0.005 −0.010 0.007

0 0 −0.004 −0.006 −0.021 0.008 0.001 0.001

0 0 −0.001 −0.001 0 −0.002 0.001

0 −0.001 0.002 0 0.002 0

0 −0.002 0 0.002 0

0 −0.003 −0.007 0.004

0 0.004 0.002

0 −0.002

h.c. 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with 68% credible interval

δℜ(ρ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.027 0.014 0.008 0.004 0.007 0.009 0.012 0.019 0.004

0.027 0.009 0.001 0.009 0.029 0.005 0.010 0.007

0.001 0.001 0.001 0 0.002 0.003 0.002

0.001 0 0.003 0.002 0.001 0.001

0.001 0 0 0.003 0.002

0.008 0.001 0.007 0.001

0.002 0.004 0.002

0.008 0.005

h.c. 0.003

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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δℑ(ρ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0.003 0.005 0.007 0.002 0.015 0.002 0.027 0.014

0 0.002 0.007 0.005 0.009 0.008 0.021 0.010

0 0 0.001 0.004 0 0.002 0.002

0 0.001 0.002 0.001 0.003 0.001

0 0.003 0.002 0.002 0.002

0 0.005 0.002 0.005

0 0.001 0.004

0 0.005

h.c. 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Commensurately Spaced (Homogeneous) Triple Well

Number of MH steps: 50000

Basis states:

{|↑, ↑, ↓⟩ , |↑, ↓, ↑⟩ , |↓, ↑, ↑⟩ , |↑↓, ↑, ·⟩ , |↑↓, ·, ↑⟩ , |↑, ↑↓, ·⟩ , |·, ↑↓, ↑⟩ , |↑, ·, ↑↓⟩ , |·, ↑, ↑↓⟩}

ℜ(ρ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.197 0.010 −0.139 0.010 −0.025 0.016 −0.009 0.003 0.023

0.162 0.041 −0.016 −0.017 0.023 0.031 0.020 0.021

0.288 0.005 0.035 0.002 0.033 −0.027 0.005

0.035 0.010 −0.008 0.012 0.011 −0.003

0.060 0.015 0.010 −0.001 0.012

0.050 0.013 0.012 −0.004

0.087 0.013 −0.015

0.055 −0.002

h.c. 0.063

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ℑ(ρ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0.060 0.060 −0.020 −0.012 −0.022 0.029 −0.028 0.010

0 0.066 0.012 0.015 0.006 0.001 −0.008 0.009

0 −0.023 −0.008 −0.027 −0.034 0.010 −0.031

0 0.009 −0.009 −0.003 −0.003 0.012

0 0.005 0.015 0.013 0.007

0 0.011 0.007 −0.012

0 −0.015 −0.015

0 0.017

h.c. 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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with 68% credible interval

δℜ(ρ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.053 0.080 0.010 0.030 0.034 0.050 0.034 0.048 0.030

0.051 0.075 0.023 0.014 0.030 0.038 0.003 0.006

0.064 0.019 0.040 0.024 0.044 0 0.017

0.016 0.022 0.012 0.015 0.023 0.004

0.026 0.022 0.014 0.016 0.006

0.022 0.008 0.020 0.021

0.035 0.011 0.021

0.024 0.010

h.c. 0.027

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

δℑ(ρ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0.001 0.010 0.023 0.012 0.016 0.038 0.018 0.003

0 0.001 0.034 0.022 0.034 0.007 0.024 0.049

0 0.042 0.057 0.035 0.001 0.034 0.052

0 0.003 0.010 0.022 0.003 0.009

0 0.022 0.018 0.011 0.023

0 0.017 0.022 0.001

0 0.028 0.016

0 0.028

h.c. 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Appendix B

Negativity Bounds

We briefly proof the bounds of the negativity, which we used in the discussion around

Fig. 10.7.

1. The maximum negativity that can be obtained by antisymmetrizing a fully sep-

arable three-particle state is one.

A pure separable state can be written in the form

|Ψp
sep⟩ = |ϕ1⟩ ⊗ |ϕ2⟩ ⊗ |ϕ3⟩ , (B.1)

with single-particle pure states |ϕi⟩. We obtain its normalized, antisymmetrized

density matrix as

ρAsep =
PA |ψp

sep⟩ ⟨ψp
sep|PA

Tr(PA |ψp
sep⟩ ⟨ψp

sep|PA)
, (B.2)

and verify numerically that for any random single-particle state |ϕi⟩ the neg-

ativity of the antisymmetrized wavefunction evaluates to N (ρAsep) = 1 along

any possible bipartition due to the exchange symmetry of the first-quantized

density matrix. A general mixed fully-separable state can be obtained as the

probabilistic sum of pure fully-separable states,

ρ̃Asep =
∑︂
i

piρ
A
sep,i. (B.3)

Due to the convexity of the negativity, we find the inequality

N (ρ̃Asep) ≤
∑︂
i

piN
(︁
ρAsep,i

)︁
= 1. (B.4)

We therefore find the upper bound for the bipartite negativity of an antisym-

metrized fully-separable state,

Nmax
sep = 1. (B.5)

2. The maximum negativity that can be obtained by antisymmetrizing a biseparable

state is 1.9428
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We can write down a general biseparable state as

|ψp
bs⟩ = |ϕ⟩1 ⊗ |ϕ⟩23 , (B.6)

with any pure two-particle state ϕ23 between atoms with label 2 and 3. For a

maximally entangled two-particle state of the form

|ϕ⟩23 =
1√
2

(︁
|Xσ⟩ |Y τ⟩ + eiθ |Y τ⟩ |Xσ⟩

)︁
, (B.7)

we explicitly calculate the negativity of its antisymmetrized density matrix ρbsA
to be N (ρbsA ) ∼ 1.9428. Based on the same arguments as above, we find an

upper bound of the negativity for any mixed, biseparable state of

Nmax
bs = 1.9428. (B.8)
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