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Abstract

Despite the recent success of deep learning, the mammalian brain is still unrivaled when it comes
to interpreting complex, high-dimensional data streams like visual, auditory and somatosensory stimuli.
However, the underlying computational principles allowing the brain to deal with unreliable, high-dimensional
and often incomplete data while having a power consumption on the order of a few watt are still mostly
unknown.

In this work, we investigate how specific functionalities emerge from simple structures observed in the
mammalian cortex, and how these might be utilized in non-von Neumann devices like “neuromorphic
hardware”. Firstly, we show that an ensemble of deterministic, spiking neural networks can be shaped by
a simple, local learning rule to perform sampling-based Bayesian inference. This suggests a coding scheme
where spikes (or “action potentials”) represent samples of a posterior distribution, constrained by sensory
input, without the need for any source of stochasticity. Secondly, we introduce a top-down framework where
neuronal and synaptic dynamics are derived using a least action principle and gradient-based minimization.
Combined, neurosynaptic dynamics approximate real-time error backpropagation, mappable to mechanistic
components of cortical networks, whose dynamics can again be described within the proposed framework.

The presented models narrow the gap between well-defined, functional algorithms and their biophysical
implementation, improving our understanding of the computational principles the brain might employ.
Furthermore, such models are naturally translated to hardware mimicking the vastly parallel neural
structure of the brain, promising a strongly accelerated and energy-efficient implementation of powerful
learning and inference algorithms, which we demonstrate for the physical model system “BrainScaleS–1”.

Zusammenfassung

Trotz der jüngsten Erfolge im Bereich Deep Learning ist das Gehirn der Säugetiere immer noch ungeschla-
gen im Verarbeiten komplexer, hochdimensionaler Datenströme wie visuelle, auditive und somatosensorische
Stimuli. Die zugrundeliegenden Rechenprinzipien, die es dem Gehirn ermöglichen mit unzuverlässigen,
hochdimensionalen und oft unvollständigen Daten umzugehen, während eine Leistung in der Größenordnung
weniger Watt verbraucht wird, sind jedoch noch größtenteils unbekannt.

In dieser Arbeit untersuchen wir, wie aus im Kortex von Säugetieren vorkommenden Strukturen Funktion-
alität hervorgeht, und wie diese in Nicht-von-Neumann-Geräten wie “neuromorpher Hardware” Anwendung
finden könnte. Zuerst zeigen wir, dass Ensembles aus deterministischen, spikenden neuronalen Netzen, durch
eine lokale Lernregel trainiert, Bayessche Inferenz implementieren. Dies deutet auf ein Codierungsschema
hin, bei dem Spikes (oder “Aktionspotentiale”) Stichproben einer A-posteriori-Verteilung darstellen – ohne
dass eine Quelle für Stochastizität erforderlich ist. Darüberhinaus führen wir ein theoretisches Konzept
ein welches die Herleitung neuronaler und synaptischer Dynamik durch ein Wirkungsfunktional sowie
gradientenbasierter Minimierung ermöglicht. Vereint approximiert die neurosynaptische Dynamik Fehler-
rückpropagation in Echtzeit und lässt sich auf mechanistische Komponenten des Kortex abbilden, deren
Dynamik wieder durch dieselben Konzepte beschrieben werden kann.

Die vorgestellten Modelle reduzieren die Diskrepanz zwischen wohldefinierten, funktionalen Algorithmen
und deren biophysikalischer Implementierung, was zu einem verbesserten Verständnis der Rechenprinzipien,
die das Gehirn anwenden könnte, führt. Darüber hinaus sind diese Modelle ideale Kandidaten für Hardware
Systeme, welche die massiv parallele neuronale Struktur des Gehirns nachahmen und eine stark beschleunigte
und energieeffiziente Realisierung leistungsfähiger Lern- und Inferenzalgorithmen versprechen – was wir für
das physikalische Modellsystem “BrainScaleS–1” demonstrieren.
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This is only a foretaste of what is to come, and only the shadow of what is going
to be. We have to have some experience with the machine before we really know
its capabilities. It may take years before we settle down to the new possibilities,
but I do not see why it should not enter any one of the fields normally covered
by the human intellect, and eventually compete on equal terms.

Alan Turing, The Times, June 1949
“The Mechanical Brain”
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1 | Prolog

My feeling is, if you wanna understand a really complicated device like a brain,
you should build one. I mean you could look at cars and you can think you can
understand cars. When you try and build a car, you suddenly discover there’s
this stuff that has to go under the hood, otherwise it doesn’t work.

Geoffrey Hinton, Bloomberg documentary
“This Canadian Genius Created Modern AI”

The human brain is a complex network consisting of nodes (various neuron types and
dendritic branches) and vertices (synaptic connections and axions), structured into a vast
network of distinct brain regions that take on different tasks, like relaying information
between brain regions (“thalamus”, Moustafa, McMullan, Rostron, Hewedi, and Haladjian
2017) or higher-level cognitive functions (“cerebral cortex”, Frith and Dolan 1996). What we
consider to be intelligence is nowadays believed to be an emergent phenomenon of the complex
interactions and interplay between these components – neurons, dendritic branches, synapses
and biochemical processes – which together orchestrate a symphony of network activity that
far surpasses the functionality of its individual components. Similar to elementary particles in
physics, neurons have been identified as the protagonists of this spectacle, although different
from elementary particles, neurons come with a complex internal structure, are not identical
and do not necessarily interact symmetrically (“actio et reactio”) with each other – in fact,
what we call “memory” or “learning” is believed to be mostly consolidated in the strength
of these interactions. Therefore, interaction strengths between neurons change over time, a
process known as “synaptic plasticity”, and are molded by the complex interaction between
environment and nervous system, coupled together by our window into reality – our senses
of vision, hearing, smell, taste and touch.
Still, how the brain almost effortlessly achieves a high performance in the myriad of

complex tasks that we face every day while only consuming around 20W of power (Mink,
Blumenschine, and Adams , 1981) is still one of many open questions. For instance, how does
the brain encode information? To transmit information between neurons, the brain uses
all-or-nothing events, so-called “action potentials” or “spikes” that contain precise temporal
information – the time of spike initiation. The possibly simplest method to encode infor-
mation with spikes is to count them, i.e., to average over a certain time window or neuron
population to arrive at an analog quantity that carries information: spike “rates”. However,
by averaging, the precise temporal information of spikes is lost. Possible coding schemes
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1. Prolog

that utilize the temporal aspect of spike times are, to name a few, (i) latency coding, where
information is encoded in the delay between input arrival and output spike time of a neuron,
(ii) phase coding, where information is encoded in the phase relation between spike time and
an oscillatory signal, or (iii) rank order coding, where the order of spike times in a popula-
tion of neurons encodes information (Thorpe, Delorme, and Van Rullen, 2001; Van Rullen,
Guyonneau, and Thorpe, 2005). Although many candidates exist, which coding scheme, or
rather what combination of schemes the brain uses is still an open question. Another ex-
ample of open questions concerns learning in the brain, i.e., how does synaptic plasticity,
supported by additional neuronal structures, shape the connectivity in the brain? The basic
mechanism of synaptic plasticity between neurons is nowadays quite well understood and
believed to be largely “Hebbian” in nature (Hebb, 1949), i.e., what fires together wires to-
gether, or in simpler terms: if one neuron is involved in the spiking of another, their synaptic
connection is strengthened and weakened otherwise. A famous spike-based realization of
Hebbian plasticity, based on phenomenological observations (Bi and Poo, 2001), is spike time
dependent plasticity (STDP). However, how local synaptic changes have beneficial effects on
a global network level, e.g., by improving the behavioral response of an animal to a visual
stimulus, is still shrouded in mystery. Considering the recent success in training abstract
hierarchical neural networks to reach or even exceed human performance in perception tasks
like image recognition (“deep learning”, Ivakhnenko 1971; LeCun, Bengio, and Hinton 2015;
Schmidhuber 2015), the quest of unlocking the algorithm guiding learning in the brain has
obtained particularly much traction lately (Kuśmierz, Isomura, and Toyoizumi , 2017; Has-
sabis, Kumaran, Summerfield, and Botvinick , 2017; Pfeiffer and Pfeil , 2018; Sacramento,
Costa, Bengio, and Senn, 2018; Lillicrap and Kording , 2019; Richards et al., 2019; Krotov
and Hopfield , 2019; Illing, Gerstner, and Brea, 2019; Whittington and Bogacz , 2019).

In this work, we try to shed some light on these questions by investigating the possible
computational, and especially functional, purpose of features observed in biology – to see how
function emerges from form. Such an approach is destined to disregard many aspects of the
biological brain, in an attempt to uncover the minimally required structures and mechanisms
to perform computations in biologically plausible neural networks. Apart from improving our
knowledge of the brain, this duality of form and function – or mechanistic realization (Dayan
and Abbott , 2001) and algorithmic purpose – also enables us to research novel computing
paradigms and architectures that are much closer to the brain than computers nowadays,
called neuromorphic hardware (Schuman, Potok, Patton, Birdwell, Dean, Rose, and Plank ,
2017). These devices promise a new generation of hardware for artificial intelligence (AI)
systems, mimicking aspects of the brain to increase energy and computational efficiency.
Moreover, a subset of these systems raise the additional question of how we can perform
powerful computations using the laws of physics aside from digital logic circuits and Boolean
algebra – and a paragon for such a type of device is the human brain. This search for
alternative computing methods becomes more and more relevant the closer we get to an era
beyond Moore’s law (Waldrop, 2016).
Throughout this work, we are mostly interested in two of the probably most discussed

topics in computational neuroscience at the time of writing this thesis: spike-based coding
and the mechanisms behind learning in the brain. We will show that spikes can act both
as enablers and executors of stochastic sampling, introducing an elegant realization of
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probabilistic computing in biological neural systems. Furthermore, we will demonstrate how
biologically plausible concepts and components like advanced responses, local microcircuits
and extended neuron models can (i) be unified to realize real-time gradient-based learning for
cortical networks and (ii) be tied to top-down concepts like the principle of least action. While
investigating these topics, we stay close to our initial philosophy of coupling computation and
its mechanistic implementation. By doing so, the proposed models can be neatly summarized
in terms of Marr’s three levels of analysis (Marr , 1982), offering a structured understanding
of information processing in neural systems via decreasingly abstract descriptions: the
computational level (what is being done? ), the algorithmic level (how is it being done? )
and the implementation level (how is it physically realized? ). Further, both models can be
unified under the concept of “predictive coding” (Rao and Ballard , 1999): in the spike-based
sampling model, networks learn an internal, predictive model of their environment, enabling
them to adjust their own activity (“top-down modulation of perception”) even when exposed
to sensory stimuli (“bottom-up input”). In the presented learning framework, both network-
internal as well as temporal predictions are essential to calculate error signals that flow via
feedback connections through the network (“top-down modulation of activity”) and shape
cortical plasticity. Ultimately, the presented results further our understanding of bio-inspired
AI and pave the way to efficient neuromorphic algorithms.

In the next chapter, we first give an introduction to the basic principles required to follow
this work, covering neuron models, the structural organization of the mammalian neocortex
as well as neuromorphic hardware. Afterwards, the main results of this thesis are presented,
separated into two larger chapters, one covering spike-based coding and the other learning
in the brain. Both result chapters further include introductory sections that explore the
specific background of each chapter’s topic in more detail. The thesis ends with a brief epilog
where all major results are summarized and discussed in a broader context.
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2 | Introduction: neural networks - the
substrate of intelligence

2.1 Computational models of neurons and synapses

2.1.1 The deep learning revolution: abstract neurons

Recently, deep learning models have shown astonishing results in various tasks like image clas-
sification (Ciregan, Meier, and Schmidhuber , 2012; Krizhevsky, Sutskever, and Hinton, 2012;
He, Zhang, Ren, and Sun, 2016), playing games on (super)human niveau (Mnih, Kavukcuoglu,
Silver, Graves, Antonoglou, Wierstra, and Riedmiller , 2013; Silver et al., 2016, 2017, 2018;
Vinyals et al., 2019), language translation (Sutskever, Vinyals, and Le, 2014), content creation
(Zhu, Krähenbühl, Shechtman, and Efros , 2016; Liu, Allamanis, Brockschmidt, and Gaunt ,
2018), physics engines (Holden, Duong, Datta, and Nowrouzezahrai , 2019), speech synthesis
(Jia et al., 2018) and many more. At the heart of all these models are small elements called
neurons, which can be seen as a rather high-level abstraction of biological neurons: they
perform a weighted sum over their inputs, apply a non-linear transformation and return the
resulting scalar value as an output to be processed by other neurons (Fig. 2.2A), i.e.,

uk =
∑

syn. j

wj r̄j , r̄j = ϕ(uj) , (2.1)

where wj are real, scalar weights for the (“synaptic”) inputs r̄j, and ϕ is a monotonic,
differentiable non-linear function. The non-linearity is inspired by biology, where neurons
transform analog inputs into discrete outputs (see Section 2.1.2) and is required for neural
networks to model non-linear relationships. Although single neurons are not very powerful,
the insight that lead to the deep learning revolution lies in stacking areas1 of such neurons
together2 (Ivakhnenko, 1971), a so-called multilayer perceptron (MLP) (Rosenblatt , 1958)
which can then be trained end-to-end (i.e., by only using the input and target output) using
the error backpropagation algorithm (Linnainmaa, 1970; Werbos , 1982; Rumelhart, Hinton,
and Williams , 1986) – a gradient-based optimization method with the goal of minimizing a

1Also called “layers” in the deep learning literature.
2If ϕ was linear, stacking areas of neurons would be like concatenating linear functions, which is again
a linear function. Thus, to model non-linear relationships in data, even for hierarchical networks, we
require non-linear activation functions.
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2. Introduction: neural networks - the substrate of intelligence

input 𝒙𝒊

visible hidden hidden label

„dog”

„cat”

target 𝒚𝒊

cost 𝑪

adjust parameters to reduce cost

Figure 2.1.: Schematic illustration of an abstract neural network. An input is processed through areas of
hidden neurons, i.e., neurons that are not constrained by data. The output is generated by the
last area, also known as label area. A cost function evaluates how similar network output and
target label are. From this, parameter updates are derived to improve the network’s prediction.
Color intensity corresponds to neuronal activity. Photograph taken from favim.com, 18.02.2020.

cost function measuring the task-specific performance of the trained network. For instance,
lets assume we want to classify images of animals with a network of four areas: a “visible”
area receiving the input, a “hidden” area processing the output of the visible area, a second
hidden area processing the output of the first hidden area, and a “label” or output area where
each neuron represents a possible class, i.e., in this case animals (Fig. 2.1). Given a training
image with class label, the cost function measures how well network output and label match.
For classification and regression, prominent choices for the cost function are cross-entropy
and Euclidean norm, respectively. The goal of training now consists in adjusting the weights
between areas – visible to first hidden, first hidden to second hidden and second hidden to
label – such that the average cost over the training data set is minimized. Such a set of
weights can be found by incrementally descending along the gradient of the cost function,
which is achieved in an especially elegant way by the error backpropagation algorithm (see
Section 5.1.1 for details). After training, each area of such a network learned useful features
that can be used for classification, e.g., the first area learned edge detectors, while the second
learned more complex features like corners – forming a hierarchy of increasing complexity,
without any need for human feature engineering. In the same spirit, abstract neurons can
be connected recurrently and trained on temporal sequences like speech using the error
backpropagation through time (BPTT) algorithm (Rumelhart, Hinton, and Williams , 1986;
Werbos et al., 1990), which interprets the temporal dimension as hierarchical stacking, making
it possible to apply error backpropagation again.
Although very successful, deep learning algorithms currently only reach (super)human

performance in a narrow set of applications and are still far away from an artificial general
intelligence (AGI), i.e., an AI that, like humans, performs well over a large set of tasks.
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2.1. Computational models of neurons and synapses

A

B C

D

Figure 2.2.: Illustration of different neuron models. (A) Simple neuron model mostly used in deep learning
that sums over inputs and applies a non-linear transformation. (B) Same as (A), but inputs
are low-pass filtered, similar to how the membrane of biological neurons integrates inputs. (C)
Current-based leaky integrate-and-fire model. (D) Conductance-based leaky integrate-and-fire
model. For convenience, excitatory and inhibitory conductances are not shown separately.

Moreover, even state-of-the-art classification models suffer from defects like adversarial
attacks, where small changes in the input can lead to drastic changes in the output and thus
wrong classification3 (Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, and Fergus ,
2013). To further our understanding of AGI, brain-like or not, it is therefore inevitable to
look in both directions, abstract neural networks in deep learning as well as their biological
counterparts studied in neuroscience (Hassabis, Kumaran, Summerfield, and Botvinick , 2017;
Richards et al., 2019; Sejnowski , 2020).

2.1.2 To spike or not to spike: biological neurons

Biological neurons are dynamic systems made up of many components like a cell membrane
made of a phospholipid bilayer, proteins forming ion channels, ion pumps, etc. Thus, they are
much more complicated than simply integrating inputs and returning a non-linear version
thereof. An illustration of the general structure of biological neurons is shown in Fig. 2.3. As
the crudest model of a biological neuron, we can modify the abstract neuron model (Eq. 2.1)

3It is hard to quantify whether humans show a similar vulnerability to adversarial attacks, since white box
attacks (finding weaknesses of the network by having complete access to its inner workings) through the
cortical visual system are, for now, impossible. However, it has been found that adversarial examples for
abstract networks can also fool humans as long as images are only presented for a brief period of time
(around 60-70ms, Elsayed, Shankar, Cheung, Papernot, Kurakin, Goodfellow, and Sohl-Dickstein 2018).
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2. Introduction: neural networks - the substrate of intelligence

dendrites

axon

action potential

synapses

soma

axon hillock

neurotransmitter

receptors

postsynaptic potential
Figure 2.3.: Artistic illustration of biological neurons.

A neuron is composed of its cell body, the
soma, and tree-like structures called den-
drites that integrate input from other neu-
rons. Action potentials are triggered at the
axon hillock and leave the neuron via the
axon. Where the axon connects to other
neurons, a synapse forms. At the synapse,
presynaptic action potentials lead to a re-
lease of neurotransmitter into the synap-
tic cleft. These neurotransmitters dock to
receptors of ligand-gated ion channels of
the postsynaptic membrane, leading to an
increased membrane conductance, i.e., pas-
sive ion flow. Since the electrical action
potential is transformed into a chemical
signal, this type of synapse is called “chem-
ical synapse”. Image adapted from https:
//en.wikipedia.org, 18.02.2020.

and introduce temporal dynamics (Fig. 2.2B):

τmu̇k = −uk + El +
∑

syn. j

wj r̄j , r̄j = ϕ(uj) , (2.2)

where we can interpret uj now as a neuron’s membrane potential and r̄j as its instantaneous
firing rate. If no synaptic input is present, the membrane potential decays to its rest value
El called leak potential. This model works similar to a capacitance with time constant τm

charged by input currents
∑

syn. j wj r̄j, also called a leaky integrator. Hence, neurons are
modeled as capacitors integrating over synaptic inputs r̄j weighted by synaptic strengths wj,
i.e., biological synapses are reduced to scalar values measuring the strength of the synaptic
connection. The membrane time constant τm dictates how fast the neuron can follow changes
in the synaptic input. Therefore, its membrane acts as a low-pass filter of the synaptic input
with characteristic time constant τm.

One remarkable aspect of biological neurons is that information accumulation uses analog
values, but information transmission is done digitally, i.e., by forming all-or-nothing events
called action potentials (or spikes) transmitted via the neuron’s “output cable”, the axon, to
other neurons4. Action potentials are stereotypical strong depolarizations of the membrane
potential, which basically form due to the dynamic properties of voltage-gated ion channels
in the neuron’s membrane, see Gerstner and Kistler (2002) for more details. They are
followed by a ms-long phase of hyperpolarization during which it is harder to excite the
neuron again as the ion channels have to return to their baseline configuration first, called

4Whether this is simply a consequence of metabolism and energy-efficient information transmission in
biological tissue (Roberts and Bush, 1981) or spikes carry additional algorithmic advantages the brain
utilizes is still an open question (Pfeiffer and Pfeil , 2018). For building AI systems, spike-based coding
promises asynchronous, fast and energy-efficient computing, while most deep learning systems nowadays
use analog coding for mathematical and numerical convenience (LeCun, Bengio, and Hinton, 2015; Roy,
Jaiswal, and Panda, 2019).
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2.1. Computational models of neurons and synapses

refractory period. Thus, given its presynaptic5 input, a neuron either spikes, influencing its
postsynaptic partners, or remains silent, having no influence on other neurons.
We can further extend Eq. 2.2 to account for spikes and refractory periods, resulting in

the leaky integrate-and-fire (LIF) model (Fig. 2.2C,D, Lapique 1907):

Cm
duk
dt

= gl (El − uk) + Isyn , (2.3)

uk(ts) ≥ ϑ ⇒ uk(t ∈ (ts, ts + τref ]) = % , (2.4)

where Cm and gl are the membrane capacitance and leak conductance, respectively, yielding
τm = Cm

gl
. If the membrane potential crosses the threshold ϑ from below at time ts, the

neuron elicits a spike and the membrane potential is clamped to the reset value % during the
refractory period τref . Different from the previously introduced models (Eqs. 2.1 and 2.2),
the LIF model features no hard-coded activation function ϕ anymore, but is governed by
the spike-response behavior of the model, see for instance Section 3.2. The synaptic input
can be modeled in two ways:

• current-based (CuBa) synapses model the direct current-flow into the soma (i.e., the
main cell body) following a presynaptic spike (Fig. 2.2C):

ICuBa
syn =

∑
syn. j

∑
spikes s

wjκ(t− ts) , (2.5)

where κ is the postsynaptic response kernel, for instance given by an exponential
response κ(t− ts) = θ(t− ts) exp (− t−ts

τsyn
) with synaptic time constant τsyn and θ the

Heaviside step function. Thus, a presynaptic spike leads to a current flow characterized
by κ and the synaptic strength wk that gets integrated by the neuron’s soma.

• Conductance-based (CoBa) synapses model more closely how chemical synapses work.
Here, a presynaptic spike leads to the release of neurotransmitters6, which dock to
receptors of ligand-gated ion channels at the postsynaptic membrane. This leads to
an increased conductivity gsyn

k,x , resulting in a passive ion flow that pulls the membrane
potential towards the reversal potential Erev

x of the activated ion channel (Fig. 2.2D):

ICoBa
syn =

∑
x∈{e,i}

gsyn
k,x (Erev

x − uk) , (2.6)

gsyn
k,x (t) =

∑
synapses j

∑
spikes s

wkj κ(t− ts) . (2.7)

The reversal potential Erev
x is the membrane potential value at which the inside and

outside of the cell membrane is balanced, i.e., no ions flow through the channels.
Crossing it leads to a reversal of flow direction. Whether a response is excitatory
(increase of membrane potential) or inhibitory (decrease of it) depends on the reversal
potential of the ion channel.

5Pre- and postsynaptic means: if neuron A connects via a synapse to neuron B, A is the presynaptic neuron
(what comes before the synapse) and B the postsynaptic neuron (what comes after the synapse).

6Examples of neurotransmitters are Glutamate for excitatory synapses and γ-aminobutyric acid (GABA)
for inhibitory synapses.
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2. Introduction: neural networks - the substrate of intelligence

The LIF model with CuBa or CoBa synapses is a widely used model in neuroscience.
Even though it is rather simple and neglects many biological features like action potential
generation, it is a sophisticated abstraction that reproduces the most essential aspects of real
neurons. Furthermore, it is analytically tractable and can be efficiently simulated (Rauch,
La Camera, Lüscher, Senn, and Fusi , 2003; Gerstner and Naud , 2009; Teeter et al., 2018).
LIF models can be even further extended by introducing an adaptive threshold, whose
dynamics are also governed by a differential equation, as well as an exponential term that
approximates the shape of action potentials whenever the neuron spikes, i.e., it also models
the effect of action potentials on the membrane potential of the firing neuron. This adaptive
exponential leaky integrate-and-fire (AdEx) model has been shown to faithfully reproduce
the firing behavior of biological neurons, making it a very general but also more demanding
model than LIF (Brette and Gerstner , 2005).

To summarize, when interested in a certain aspect of brain dynamics, it is reasonable to
reduce the complexity of neurons to a minimal set of features needed for the purpose at
hand. For instance, the metabolism of neurons is of negligible importance when describing
information processing in neural networks. In case of Eq. 2.1, synaptic integration and non-
linear outputs are the only features used. But this model is extendable to include additional
biological details like spiking, refractory periods and membrane dynamics (Eq. 2.4) as well
as synaptic integration (Eqs. 2.5 and 2.7). In general, choosing which aspects of biology
are relevant for a model is a non-trivial problem and almost always involves some educated
guess.

2.1.3 The neocortex: spatial structures and circuitry

In the previous sections, neurons are modeled as so-called point models, i.e., without any
spatial structure. However, in the brain, many different neuron types exist, with different
morphologies depending on the function and brain area the neuron resides in (Fig. 2.4A).
Throughout this work, we are mostly interested in the neocortex, which is the seat of
higher-level reasoning and functionality (Frith and Dolan, 1996). The neocortex is made
of a uniform structure consisting of six stacked layers of neurons7 (Fig. 2.4B), featuring
different neuron types and connectivity patterns (Douglas, Martin, and Whitteridge, 1989).
These layers, also called gray matter, are positioned at the surface of the cortex, while the
inner parts are mostly made of white matter, i.e., axons connecting different brain areas
covered in myelin8 for insulation (Gerstner and Kistler , 2002), increasing the speed of passive
information transmission via the axon’s membrane. The most prominent neuron types in
the cortex are excitatory pyramidal cells, called so due to their pyramidal-shaped soma /
cell body, making up 70-80% of cortical neurons, followed by inhibitory interneurons making
up the remaining 20-30% (Markram, Toledo-Rodriguez, Wang, Gupta, Silberberg, and Wu,
2004). Pyramidal neurons have a stereotypical structure, consisting of three integration
zones: apical dendrites, basal dendrites and the soma (Spruston, 2008). Besides housing the
cell nucleus of the neuron, the soma (with a diameter of 20–120µm, Johns 2014) contains

7Not to be confused with the term “layer” used in the deep learning literature. Cortical areas correspond
to what is known as “layers” in deep learning.

8Myelin is white, hence white matter, while unmyelinated material like neurons is gray.
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BA

apical 
dendrites

basal
dendrites

soma

Figure 2.4.: (A) Three examples of different neuron types in the human brain. (left) Cortical pyramidal
neuron with soma and basal dendrites at the bottom and apical dendrites at the top, (top right)
granule cells found in the cerebellum, cortex and hippocampus and (bottom right) a cerebellar
Purkinje cell. Image taken from Johns (2014). (B) Pyramidal neurons have two integration
sites that stretch over several layers (L). Here, several L6, L5 and L2/3 pyramidal neurons are
shown. The black dot in the home layer is the soma, and the tree-like structures are basal and
apical dendrites. Image adapted from Ledergerber and Larkum (2010).

the spike initiation zone (“axon hillock”), whose mechanism we primarily model with point
neurons in the previous section. Both apical and basal dendrites are tree-like structures
that integrate inputs coming from other neurons. Basal dendrites are at the base of the
neuron, close to the soma, and primarily integrate bottom-up information (“feedforward”),
whereas apical dendrites are further away from the soma and integrate long-range top-down
information (“feedback”, Larkum, Zhu, and Sakmann 1999; Spruston 2008; Petreanu, Mao,
Sternson, and Svoboda 2009; Larkum 2013), see Fig. 2.5A. For instance, layer 5 pyramidal
neurons have their soma and basal tree in layer 5 and the apical tree in layer 1 (with
apical shaft length (739±186)µm and diameter (4.94±1.10)µm), whereas layer 2/3 neurons
stretch from layer 2/3 to layer 1 (with apical shaft length (323 ± 244)µm and diameter
(2.11± 1.02)µm, Ledergerber and Larkum 2010). Since all compartments are electronically
coupled, an action potential elicited at the axon hillock does not only propagate forwards
through the axon, but also backwards (hence called “backpropagating action potential”) into
the dendritic trees (Larkum, 2013) to potentially drive plasticity (Markram, Gerstner, and
Sjöström, 2012; Urbanczik and Senn, 2014) as well as dendritic non-linearities like Ca2+

plateau potentials (or “Ca2+ spikes”, Larkum, Zhu, and Sakmann 1999; Larkum 2013)9.
Interneurons can be divided into several classes through their morphology, but also differ

in their electrical properties and connectivity to other neurons, e.g., which region of a
pyramidal neuron they target (soma-targeting, dendrite-targeting, axon-targeting, dendritic-
tuft-targeting cells, etc., see Markram, Toledo-Rodriguez, Wang, Gupta, Silberberg, and Wu

9The spikes used to communicate between neurons have an all-or-nothing structure (strong rise, fast decay).
These spikes mainly originate from the dynamics of Na+ and K+ ion channels, hence they are also called
“sodium spikes”. In dendrites, a different kind of spikes can occur: Ca2+ and NMDA “spikes” with long
and strong plateau potentials (Schiller, Major, Koester, and Schiller , 2000; Larkum, 2013).
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Figure 2.5.: (A) Different integration sites are used to accumulate different input streams. Long-distance,
top-down inputs and SST interneurons project to the apical dendrites of pyramidal neurons,
while bottom-up (thalamic) input projects to the basal dendrites. Figure adapted from Larkum
(2013). (B) Schematic illustration of some common brain areas (many areas are missing in this
illustration). Figure adjusted from https://commons.wikimedia.org/wiki/File:Brain_Surface_-
Gyri.SVG (version: 11:12, 30 March 2010).

(2004) for a more detailed description). Different from pyramidal neurons, interneurons in the
human neocortex are mostly inhibitory10 and do not show a clear separation of integration
zones over several layers like pyramidal neurons. Furthermore, they only connect to nearby
neurons, i.e., they do not project via white matter to distant brain regions, but form local
circuits (Markram, Toledo-Rodriguez, Wang, Gupta, Silberberg, and Wu, 2004). In Chapter 5,
due to their specific connectivity, we will be mostly interested in somatostatin-expressing
(SST) interneurons (representing ≈ 30% of GABAergic neurons, i.e., neurons that produce
the neurotransmitter γ-aminobutyric acid (GABA), Rudy, Fishell, Lee, and Hjerling-Leffler
2011), especially layer 2/3 Martinotti cells, which are low-threshold, fast spiking neurons
with high spontaneous activity. SST interneurons are locally strongly connected, receiving
input from nearby pyramidal neurons as well as top-down input (Leinweber, Ward, Sobczak,
Attinger, and Keller , 2017), while mainly targeting the apical compartments of pyramidal
neurons in layer 1 (Markram, Toledo-Rodriguez, Wang, Gupta, Silberberg, and Wu, 2004;
Urban-Ciecko and Barth, 2016).

The specific shape of pyramidal neurons as well as the local circuits formed with interneu-
rons is believed to have vast functional implications (Spruston, 2008; Markram, Toledo-
Rodriguez, Wang, Gupta, Silberberg, and Wu, 2004), e.g., for perception and information
coding (Larkum, 2013; Takahashi, Oertner, Hegemann, and Larkum, 2016; Jordan, Sacra-
mento, Petrovici, and Senn, 2019b; Gidon, Zolnik, Fidzinski, Bolduan, Papoutsi, Poirazi,
Holtkamp, Vida, and Larkum, 2020) as well as plasticity and learning (Guerguiev, Lillicrap,
and Richards , 2017; Costa, Assael, Shillingford, de Freitas, and Vogels , 2017; Sacramento,
Costa, Bengio, and Senn, 2018; Wilmes and Clopath, 2019).

On a larger scale, the brain shows small-world structure (Muldoon, Bridgeford, and Bassett ,
10Some interneurons are in fact excitatory, e.g., the spiny stellate cell (SSC) found in layer 4 of primary

sensory areas.
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2.2. Towards silicon brains: neuromorphic hardware

2016), i.e., strong clustering and short path lengths, and forms a network of networks (or
modules) that are spatially and / or functionally separated (Chen, He, Rosa-Neto, Germann,
and Evans , 2008; Bullmore and Sporns , 2009; Meunier, Lambiotte, and Bullmore, 2010;
Bertolero, Yeo, and D’Esposito, 2015; Song, Sjöström, Reigl, Nelson, and Chklovskii , 2005).
The most general form of this separation can be seen by the functional organization into
cortical areas for sensory processing, i.e., visual cortex, auditory cortex, somatosensory cortex,
motor cortex, etc., which further separate into smaller functional units. For instance, the
visual cortex splits into two hierarchies of visual (V) areas, the dorsal (V1 – V2 – V3 – MT
(V5) – parietal cortex) and ventral (V1 – V2 – V4 – inferior temporal cortex) pathway (see
Fig. 2.5B). The organization into different cross-wired areas is believed to allow complex
processing of sensory input – e.g., each area applies a different function to its input, and areas
can be stacked or recurrently connected to form spatial and temporal hierarchies of functions
– which has been the inspiration for the recent success of deep learning (LeCun, Bengio, and
Hinton, 2015; Schmidhuber , 2015). In particular, the hierarchical feedforward structure and
the response properties of neurons in the visual system (Hubel and Wiesel , 1959, 1962) have
been the inspiration for convolutional neural networks (Fukushima, 1988; LeCun, Bottou,
Bengio, and Haffner , 1998), the current state-of-the-art architecture for image processing
(Ciregan, Meier, and Schmidhuber , 2012; Krizhevsky, Sutskever, and Hinton, 2012; He, Zhang,
Ren, and Sun, 2016).

2.2 Towards silicon brains: neuromorphic hardware

How the brain processes information is substantially different from contemporary computer
systems, for both the underlying computing architecture and the theoretical principles that
govern it. The brain forms a vast network of single units (neurons) and their connections
(synapses) that are simultaneously used for information processing and storage (Hopfield ,
1982; Indiveri and Liu, 2015). Information is transmitted via all-or-nothing events, allowing
fast, power efficient and asynchronous computations that utilize spatio-temporal coding
schemes (Thorpe, Fize, and Marlot , 1996; Gütig and Sompolinsky , 2006). Thus, the brain
efficiently intermixes analog (membrane potentials) and digital (action potentials) comput-
ing paradigms for power efficiency (Sarpeshkar , 1998), and most likely for computational
effectiveness as well (Maass , 1997; Sarpeshkar , 1998; Thorpe, Delorme, and Van Rullen,
2001; Buesing, Bill, Nessler, and Maass , 2011; Mostafa, 2017). Different from the brain,
current computer technology is based on the von Neumann architecture, which separates
processing units from memory storage (Von Neumann, 1945) – with the consequence that
processing speed is fundamentally limited by (i) the access speed of said memory storage and
(ii) the transmission speed between processing units and storage, commonly known as the
von Neumann bottleneck (Miller , 2011; McKee et al., 2004; Wulf and McKee, 1995; Riley ,
1987), see Fig. 2.6A. The von Neumann architecture is nowadays used to implement realiza-
tions of the universal Turing machine (Boole, 1847; Turing , 1937), a theoretical construct
able to implement arbitrary algorithms, i.e., sequential instruction sequences, which to our
current knowledge differs considerably from how the brain operates on a mechanistic level
(Von Neumann and Kurzweil , 1958; Zylberberg, Dehaene, Roelfsema, and Sigman, 2011).
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The consequences of these architectural differences become apparent when comparing the
average power consumption of a human brain and the hardware used to, e.g., train AlphaGo,
Deepmind’s AI system that defeated Lee Sedol in the game of Go (Deepmind , 2016; Silver
et al., 2017): while the brain consumes merely11 20W (Mink, Blumenschine, and Adams ,
1981), the final version of AlphaGo used 8 GPUs (consuming typically around 100− 300W
per GPU) and 48 CPUs (around 50− 100W per CPU) on a single machine12 (Silver et al.,
2016), while only being capable of playing Go.

This difference in performance spawned the neuromorphic doctrine: building hardware
that mimics the brain to harness its extreme parallelism and asynchronous nature for power
efficiency and computing speed (Mead , 1990; Indiveri et al., 2011; Schuman, Potok, Patton,
Birdwell, Dean, Rose, and Plank , 2017; Roy, Jaiswal, and Panda, 2019), i.e., building the
substrate to hold AI in the future. In neuromorphic hardware, the von Neumann architecture
is replaced by a more distributed design, where neurons (or processing cores simulating a
certain number of neurons) and synapses (or local memory storing neuron and synapse
parameters as well as instructions) are intertwined, forming a highly parallel and distributed
network. In consequence, individual components of the hardware are ideally constrained
to information that is only locally available, similar to the brain, avoiding costly read-and-
write operations to global memory. Neuromorphic hardware is either focused on digital
implementations (Akopyan et al., 2015; Davies et al., 2018; Mayr, Hoeppner, and Furber ,
2019; Pei et al., 2019), where neurons are still simulated with conventional processing units
(so-called “digital neuromorphic cores”) or analog ones (Mead , 1990; Liu, Kramer, Indiveri,
Delbra, Douglas et al., 2002; Schemmel, Fieres, and Meier , 2008; Schemmel, Brüderle, Grübl,
Hock, Meier, and Millner , 2010; Indiveri et al., 2011; Benjamin et al., 2014; Friedmann,
Schemmel, Grübl, Hartel, Hock, and Meier , 2016), where neurons and synapses are realized
in physical form, i.e., the physical substrate itself implements the differential equations of
models of biological neural networks. Thus, instead of using transistors as “switches” (a
gating voltage is used to control whether current flows through the transistor) to build logic
gates for Boolean algebra – as in digital computing – the physics of the substrate perform
the computations by virtue of their dynamics in analog computing.
Such analog devices are often realized using complementary metal-oxide-semiconductor

(CMOS) technology, which can be operated in two different modes: subthreshold and
suprathreshold, depending on whether the applied gating voltage is sufficient to allow cur-
rents to flow through the transistor or not (turning it either “on” or “off”). In the subthreshold
mode, the CMOS transistor is in the “off” state and only very weak currents flow, allowing
the construction of neuromorphic devices with ultra low power consumption and real-time
modelling capacity (Indiveri, Chicca, and Douglas , 2006). In the suprathreshold regime, the
transistor has a continuous response instead, that is, increasing the applied voltage leads
to an increased current flow through the transistor. Neuromorphic devices using transistors
in the suprathreshold region offer low energy consumption and large acceleration of the
emulated system due to the characteristically low time constants of the analog components,
e.g., the BrainScaleS–1 neuromorphic system used in Section 3.4.6 is accelerated by a factor

11Mostly used for synaptic transmission (Harris, Jolivet, and Attwell , 2012; Li and Van Rossum, 2019).
12Or 176 GPUs and 1202 CPUs distributed on several machines.
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Figure 2.6.: (A) The von Neumann bottleneck is a result of memory increasing slower in performance
than processors over the years, here shown as DRAM accesses and processor memory requests
per second. Thus, the total speed of a computer is limited by memory operations, since both
instructions and data have to be loaded from memory. Processor performance is given per
core, which stagnated in 2005 and multicore systems started being built. Image adapted from
Hennessy and Patterson (2012). (B) The BrainScaleS–1 wafer (left) and its center piece, the
HICANN neuromorphic chip (right). Image adapted from Kungl et al. (2019b). (C) Individual
components of the BrainScaleS–1 wafer scale system, including support infrastructure like
cooling and power boards. (D) A single BrainScaleS–1 wafer in its final assembled form.

of 103−105 compared to biology (Schemmel, Fieres, and Meier , 2008; Friedmann, Schemmel,
Grübl, Hartel, Hock, and Meier , 2016). Increasing the gating voltage further, the transistor
current saturates – in this mode, it can be used as a switch to implement digital logic circuits,
with small and large voltages leading to minimum or maximum currents. Apart from CMOS
technology, novel materials like “memristors”, a type of circuit element that has a history-
dependent resistance (Xia and Yang , 2019), are currently also heavily investigated in the
field of neuromorphic engineering. However, since we are only concerned with CMOS-based
devices in this thesis, we omit a detailed description of other approaches like memristive
devices here (see, e.g., Lee et al. 2019 for a review).
Despite the advantages, working with analog neuromorphic hardware comes with chal-

lenges of its own. For instance, due to variations in the manufacturing process (“fixed-pattern
noise”), each hardware neuron and synapse is unique, different from simulated neural net-
works where commonly all neurons share the same set of neuron parameters and behave
identically. In addition, both the resolution and control over neuron parameters, i.e., setting
exact values, is limited. Since components of neural networks occupy physical space, it is
not possible to map arbitrary networks onto the chip, and since transmission buffers are
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used for communication, spike-loss can occur due to congestion under high spike activity. To
some extent, the aforementioned challenges can be regarded as attributes of the substrate,
intended by the underlying design, and mirror the challenges the brain faces, i.e., performing
computations with unreliable connections and non-identical, low precision circuit elements.
However, there also exist disturbance effects that are not intended, like cross-talk between
neighboring circuits, i.e., neurons can behave differently depending on whether neighboring
circuits are active or not in hardware. Although some controllability can be regained by
calibrating hardware circuits and blacklisting defect components (Koke, 2017; Kleider , 2017),
all these effects and limitations remain to some extent (Schmitt et al., 2017; Kungl et al.,
2019b; Wunderlich et al., 2019).

One such analog implementation used in Section 3.4.6 is the BrainScaleS–1 physical wafer-
scale system (Schemmel, Fieres, and Meier , 2008; Schemmel, Brüderle, Grübl, Hock, Meier,
and Millner , 2010), see Fig. 2.6B-D. The BrainScaleS–1 system is a mixed-signal analog
implementation of biologically inspired neural networks using 180nm CMOS technology
(suprathreshold), realizing a modular version of the AdEx neuron model, i.e., individual terms
like adaptation can be turned off. In fact, in this thesis we only use the CoBa LIF functionality.
It features analog neurons and synapses, with flexible connectivity capability and digital spike
transmission. The key-component of the system, the HICANN chip (Fig. 2.6B), is designed
for wafer-scale integration, potentially enabling the emulation of large neural networks with
up to 1.8 · 105 neurons and 4 · 107 synaptic connections. A single wafer consists of 48
reticles13, each containing 8 HICANN chips (Fig. 2.6B). Every HICANN chip features 512
analog neurons (so-called “denmems”, dendritic membranes) with up to 220 possible synaptic
input connections (synaptic fan-in) per denmem. Furthermore, denmems can be combined to
form larger neurons with higher maximum synaptic fan-in. Flexible connectivities are offered
by a synapse array: the digital input signals enter the synapse array through a synapse
driver, which redirects them to the correct synapse line where output pulses with strengths
given by the synaptic weights (stored in local SRAM with 4bit precision) are generated.
This leads to a postsynaptic conductance at the postsynaptic neuron according to the CoBa
LIF equation of motion (Eq. 2.7). Analog parameters that store neuron parameters and
scaling factors for the weights are stored in floating-gates (Srowig, Loock, Meier, Schemmel,
Eisenreich, Ellguth, and Schüffny , 2007) and are set up through field-programmable gate
arrays (FPGA), with one FPGA per reticle (Fig. 2.6C). Additional connections added in a
postprocessing stage (Zoschke, Güttler, Böttcher, Grübl, Husmann, Schemmel, Meier, and
Ehrmann, 2017) enable communication between HICANN-chips on the whole wafer. Thus,
the BrainScaleS–1 system offers a physical implementation of the AdEx neuron model, fully
specified by a set of neuron parameters that can be set via FPGAs and a synapse array that
allows programmable neuron connectivity.
Apart from imperfections of the underlying neuronal substrate, similarly to the brain,

neuromorphic hardware has to respect physical constraints like locality and finite trans-
mission times (delays). This introduces an additional challenge faced both by digital and
analog realizations of neural networks: how to perform computations with a device that,
architecturally, resembles the brain? As of now, the two most pressing problems on the

13A reticle is the maximum area that can be simultaneously exposed during photolithography.
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algorithmic side are (i) finding local learning rules that perform as well as error backpropa-
gation used in deep learning14 (Lillicrap, Cownden, Tweed, and Akerman, 2016; Guerguiev,
Lillicrap, and Richards , 2017; Sacramento, Costa, Bengio, and Senn, 2018; Kaiser, Mostafa,
and Neftci , 2018; Whittington and Bogacz , 2019; Illing, Gerstner, and Brea, 2019; Lillicrap
and Santoro, 2019) and (ii) finding coding schemes that utilize the asynchronous and all-or-
nothing nature of action potentials efficiently (Gerstner , 1998; Buesing, Bill, Nessler, and
Maass , 2011; Maass , 2016; Mostafa, 2017; Pfeiffer and Pfeil , 2018; Davies , 2019). Hence,
finding algorithms that both implement functionality equivalent or even more powerful than
current AI standards and take the form of biological neural networks, i.e., obeying physical
constraints as well as being robust against imperfections and variability of the underlying
neuronal substrate, is at the heart of current neuromorphic computing research which mim-
ics the brain, but still lacks sufficient computational understanding to harness its form for
function.

2.3 Outline: harnessing function from form

The remaining parts of this thesis are separated into two large chapters, one focusing on
spike-based coding (Chapter 3) and the other on learning in biological neuronal systems
(Chapter 5), bridged by a brief intermediate chapter (Chapter 4).

In Chapter 3, we first discuss the preliminaries of Bayesian computing in the brain
(Section 3.1) and review a spike-based model realizing such computations (Section 3.2).
Afterwards, we demonstrate that this model can be augmented with a simple biological
mechanism to improve its generative performance in spatio-temporal prediction tasks (Sec-
tion 3.3). Finally, we show how spike-based probabilistic inference can be realized in a
self-sustained and closed system by embedding single networks into an ensemble of func-
tional networks (Section 3.4) – like a “heat bath” for neurons. This way, networks in the
ensemble can utilize the background activity of other networks to perform probabilistic
computations, while also providing its functional spikes to the ensemble as “noise” in return.

In Chapter 5, we discuss whether the famous error backpropagation algorithm (Linnain-
maa, 1970; Werbos, 1982; Rumelhart, Hinton, and Williams , 1986) can be realized in a
biologically plausible way. After reviewing error backpropagation (Section 5.1) and its chal-
lenges concerning a biological (or neuromorphic) realization (Section 5.1.2), we propose
a top-down approach that derives neuronal and synaptic dynamics from first principles
(Section 5.2.4). The derived dynamics implement an approximate version of real-time error
backpropagation, which lends itself to a biologically plausible realization using advanced
neuronal firing responses, dendritic compartments and local microcircuits.
Both models presented in this thesis tie computational theory and physical realization

closely together, making it possible to transfer the presented network structures to adequate
neuronal substrates while preserving functionality, as demonstrated in Section 3.4.6 and
further discussed in Chapter 6.

14This is obviously also of great interest for deep learning in general, see, e.g., Jaderberg, Czarnecki, Osindero,
Vinyals, Graves, Silver, and Kavukcuoglu (2017).
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3 | Spike-based coding as deterministic
Bayesian inference

Our cortex builds a predictive, internal model of the outside world to navigate ourselves
through reality. This enables us to not only passively integrate sensory information, but
to perform mental simulations as well, e.g., to play through several scenarios (to “think”)
before we act (Keller and Mrsic-Flogel , 2018). But how can neural circuits shape such a
model under the constraints imposed by biology and physics? This will be the focus of the
following sections, where we first discuss neuronal behavior that is believed to be a hallmark
of a Bayesian computing scheme suitable to model the environment in a probabilistic way
(Section 3.1). We then present a spike-based sampling framework that allows the realization
of stochastic inference under in-vivo-like conditions (Sections 3.2 to 3.4). Consequently,
this framework enables a self-sustained and self-consistent implementation of spike-based
sampling on neuromorphic hardware (Section 3.4).

3.1 The Bayesian brain hypothesis

It is critical to realize, however, that variability and uncertainty go hand in
hand: if neuronal variability did not exist, that is, if neurons were to fire in exactly
the same way every time you saw the same object, then you would always know
with certainty what object was presented.

Wei Ji Ma et al., Nature Neuroscience, 2006
“Bayesian inference with probabilistic population codes”

3.1.1 Neuronal noise

One of the most prominent features of the mammalian cortex is the strongly varying response
of neurons to repeated presentations of identical stimuli in vivo (Fig. 3.1A) that occurs both
in anesthetized and awake animals (Henry, Bishop, Tupper, and Dreher , 1973; Schiller,
Finlay, and Volman, 1976; Tolhurst, Movshon, and Dean, 1983; Vogels, Spileers, and Orban,
1989; Snowden, Treue, and Andersen, 1992; Arieli, Sterkin, Grinvald, and Aertsen, 1996;
Azouz and Gray , 1999; Yarom and Hounsgaard , 2011). The variability with respect to the
mean response strength over trials (i.e., number of spikes) is often characterized by a power
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3. Spike-based coding as deterministic Bayesian inference

function var ≈ α · respβ with α = O(1) and β ≈ 1 (Tolhurst, Movshon, and Dean, 1983;
Vogels, Spileers, and Orban, 1989; Snowden, Treue, and Andersen, 1992), see Fig. 3.1B-
C, revealing considerable differences between identical experimental trials. However, even
though individual trials vary strongly, the average response of cells over many identical trials is
very consistent and reproducible (Arieli, Sterkin, Grinvald, and Aertsen, 1996). Consequently,
the trial-to-trial variability observed in vivo has, for a long time, been interpreted as a
nuisance or, simply put, pure “noise” the cortex has to deal with in order to perform its
functions (Shadlen and Newsome, 1998; Carandini , 2004). In contrast, experiments done
in vitro show that neurons are mostly deterministic units that reliably transform neuronal
presynaptic input into temporal spike sequences – with a temporal spike precision between
trials of less than a millisecond (Mainen and Sejnowski , 1995). This naturally raises the
question about the origin of neuronal variability observed in vivo.
Since the spike-generating mechanism behaves mostly deterministic in vitro, we can

exclude sources like ion channel noise from our consideration. Thermal noise only has a
very weak effect on the membrane potential of neurons1 and can hence be neglected. What
remains is synaptic noise, both in the form of synaptic transmission noise and synaptic
background noise. The former results from the unreliable release of neurotransmitters at
individual release sites, resulting in an unreliable transmission of presynaptic spikes (Allen
and Stevens , 1994). However, this contribution largely averages out when integrating over
several release sites, contacts and connections (Zador , 1998; Markram et al., 2015). The
latter is due to the huge amount of presynaptic partners each neuron has – on the order
of 103 − 104 neurons (Peters , 1987) – resulting in a strong “background bombardment”
each neuron is exposed to under in vivo conditions (Arieli, Sterkin, Grinvald, and Aertsen,
1996; Tsodyks, Kenet, Grinvald, and Arieli , 1999). In this case, the trial-to-trial variability
observed in experiments is actually due to the changing state of the whole cortical network
between trials – i.e., the network is not only driven by the external input imposed by the
experimenter, but also strongly depends on the internally generated activity. In simpler terms:
the “background noise” changes between trials, and the initial conditions of the different
experimental trials are not identical. In fact, such irregular behavior has also been reproduced
in simulation studies of large balanced networks2 without the inclusion of any other noise
sources, see e.g. Van Vreeswijk and Sompolinsky (1996); Vreeswijk and Sompolinsky (1998);
Brunel (2000); Mehring, Hehl, Kubo, Diesmann, and Aertsen (2003); Vogels, Rajan, and
Abbott (2005).

At first glance, one might think that neuronal noise prohibits coding schemes that rely on
precise spike timings and one has to fall back to population-based codes, where noise mostly
averages out. However, recent studies suggest that the observed trial-to-trial variability
might actually be a hallmark of probabilistic neuronal computation, enabling the brain to

1If we model the membrane of a neuron as a simple RC circuit, then the root mean square (RMS) deviation

of the capacitor’s potential VC due to thermal motion is given by V RMS
C =

√
kBT
C , where kB is the

Boltzmann constant. For room temperature T = 300K and a typical membrane conductance C on the
order of µF (Golowasch and Nadim, 2013), we obtain V RMS

C = O(10−8)V, much smaller than the typical
dynamical range of biological neurons (mV).

2A balanced network consists of an excitatory and inhibitory population, where the total excitatory and
inhibitory postsynaptic currents each neuron receives cancel on average.
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Figure 3.1.: (A) Optical and electrophysiological recordings of a small area in the primary visual cortex
of a cat for two presentations (a,b) of the same stimulus. The trial-to-trial variability can be
seen in all recordings: (1) Real-time optical imaging showing the response in a 2mm by 2mm
area of cortex, where red corresponds to a response above and blue below mean activity. (2)
Exemplary optical trace of a single photodiode cell from (1). (3) Local field potential in the
same area. (4) Spike train recording from a neuron in the same area. Taken from Arieli et al.
(1996). (B) Response variance as a function of the mean response (log-log plotted) for a cell
from area V1 of an alert macaque monkey while being presented with different visual patterns.
Each point corresponds to a certain visual pattern. Mean and variance were calculated over
trials. (C) Distribution of fit parameters (top) β and (bottom) α over all 41 recorded cells.
Figures adapted from Snowden et al. (1992).

cope with incomplete, unreliable and uncertain sensory stimuli in a near Bayes-optimal way
(Körding , 2007; Fiser, Berkes, Orbán, and Lengyel , 2010) – even when spike-coding schemes
are employed. This is generally known as the “Bayesian brain hypothesis”.

3.1.2 Noise as the hallmark of probabilistic reasoning

That the observed neural response variability might be the hallmark of a Bayesian com-
putation scheme has already been discussed as early as 2003, when Hoyer and Hyvärinen
(2003) proposed that the visual cortex implements Monte Carlo sampling of a posterior
distribution in order to cope with ambiguous or incomplete visual stimuli. In such a com-
putational model, neuronal activity is assumed to represent either probabilities or samples
from a posterior distribution p(y,x) that encodes the probability of causes y and visual
observations x to occur. When constrained by visual stimuli x, this can be interpreted as a
probabilistic generative model that estimates which hidden variables y caused the stimulus
via the posterior p(y|x).

For instance, we might be faced with the problem of classifying objects in an image. In this
case, x is an array containing the image’s pixel values that can either be revealed completely,
only be partly shown or even contain corrupt pixels, and y is a vector encoding possible
class labels. Before making any observations, our knowledge about how likely it is to observe
the state (y,x) is given by the prior probability distribution p(x,y). After making a single
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3. Spike-based coding as deterministic Bayesian inference

observation x0 (e.g., revealing a single pixel value), the probability distribution is updated
to the marginal posterior distribution (with \0 meaning all but index 0)

p(y |x0) =

∫
p(y,x\0 |x0) dx\0 (3.1)

adjusting our belief and uncertainty about the prediction y conditioned on the observation x0.
In fact, if we do not marginalize, such a model is able to also predict yet unknown observations
x\0 via the posterior distribution p(y,x\0 |x0), i.e., guess how the whole image looks like. If
we obtain more observations, the shape of the posterior distribution is further constrained
until all observations are obtained and we arrive at the full posterior distribution p(y |x),
i.e., the probability distribution over class labels given the whole image. The distribution
can be even further constrained if knowledge about the class label y is available, e.g., after
obtaining the information that one of the classes is definitely not in the image.
This process of updating one’s belief when faced with accumulating observations in a

probabilistic way is generally known as Bayesian inference. The posterior distribution can be
evaluated either by calculating the distribution analytically or by sampling from it. Calculat-
ing it is, at least for reasonably interesting distributions, intractable as it requires calculating
the partition function – meaning we have to evaluate the probability function for all possible
states. The computational complexity of this task grows exponentially with the number of
random variables, hence being insurmountable. Sampling is a computational method that
allows an approximate evaluation of the probability distribution without knowledge of the
partition function. Instead of calculating probabilities directly, we generate random numbers
y that are distributed according to the distribution p(y|x) we want to evaluate, i.e., we
slowly build up a histogram resembling p(y|x) by drawing samples yi. The samples will
mostly lie in regions of high probability, and thus not every possible state has to be visited
in order to get a good approximation of the overall probability distribution. One of the most
famous sampling algorithms is the Metropolis-Hastings algorithm (Hastings , 1970), which
is a Markov chain Monte Carlo (MCMC) algorithm. In MCMC, we generate a sequence of
states (or samples) y1,y2, ...,yN (see Fig. 3.2A) that follows two properties:

1. The transition probability P (y′|y) to change the state (i.e., generate a sample that is
different from the current one) only depends on the current state y (Markov chain).

2. The transition probability is evaluated via drawing a random number (Monte Carlo).

Furthermore, two properties have to be met such that the sequence obtained from the
MCMC follows the desired distribution after collecting enough samples:

1. The chain has to be non-cyclic and capable of reaching every possible state y′ (ergod-
icity).

2. The distribution has to be invariant under the transition operator p(y′|x) =∫
dy P (y′|y)p(y|x), i.e., the distribution p(y|x) is the unique stationary distribution

under transitions P (y′|y).
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Figure 3.2.: (A) Illustration of Markov chain Monte Carlo (MCMC) sampling. In every sample step, a
realization of y is drawn, such that for a large number of samples, the collected values follow
the underlying target distribution p(y) sampled from. (B) Illustration of binocular rivalry. The
images have to be viewed by crossing the eyes to superimpose the two half-images binocularly.
The perceived stimulus switches between the two images, i.e., red and green dot or circular and
radial patterns. Image taken from Blake and Logothetis (2002). (C) Phenomena like binocular
rivalry or bistable (ambiguous) stimuli that switch between several plausible interpretations (here:
duck and rabbit, left image) can be explained by sampling-based Bayesian inference: perceptual
switches correspond to jumps in the MCMC between interpretations of high probability (right).
Image adapted from Petrovici (2016). (D) During development of ferrets, spontaneous activity
and the evoked response to natural visual stimuli increasingly match. This is shown here via
the Kullback-Leibler divergence (Kullback and Leibler , 1951), which measures how similar the
distribution of spontaneous and evoked responses are. Image taken from Berkes et al. (2011).

For instance, the Metropolis-Hastings algorithm generates a chain of samples in the following
way:

1. Assume the current sample is yi.

2. A new sample y′ is proposed from a proposal distribution g(y′|yi) that is arbitrary,
but has to guarantee that every possible state can be reached.

3. After a new sample has been proposed, the acceptance ratio is calculated as α(y′,yi) =

min
(

1 , p(y
′|x)g(yi|y′)

p(yi|x)g(y′|yi)

)
.

4. Draw a uniformly distributed random number U from the interval [0, 1]. If U ≤
α(y′,yi), the new sample is yi+1 = y′. Otherwise, it is yi+1 = yi.

The previously mentioned transition probability is, in this case, given by P (y′|yi) =
α(y′,yi)g(y′|yi), and partition functions do not have to be calculated since only quotients
of p(y|x) enter. It can be shown that this way of generating and accepting samples fulfills all
properties discussed above3. If we assume that the cortex performs sampling-based Bayesian

3The first property, ergodicity, is guaranteed by choosing the proposal distribution adequately. For
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3. Spike-based coding as deterministic Bayesian inference

inference, the observed response variability is a necessary consequence of the stochastic
sampling process – generating a MCMC that samples from the (un)constrained posterior
distribution – as each realization of the sampling chain will be different.
Apart from the response variability in the cortex, further evidence for a sampling-based

computation scheme can be found in experimental studies. For instance, it is well known that
for mammals, when the visual stimulus is insufficient for a definite interpretation, the visual
perception starts switching between rivaling interpretations (Knill and Richards , 1996; Blake
and Logothetis , 2002; Brascamp, Van Ee, Noest, Jacobs, and van den Berg , 2006). This can,
for instance, be seen in binocular rivalry, where the left and right eye receive different visual
patterns (see Fig. 3.2B). Instead of merging both stimuli, the perception switches between
the two stimuli at random intervals, even if one of the stimuli might be more important than
the other. Interestingly enough, a similar switching behavior has also been observed on the
neuronal level for such phenomena (Logothetis and Schall , 1989). Bi-stable images, like the
Necker cube or Rabbit-Duck image (Fig. 3.2C, left), lead to a similar phenomenon, where
the visual perception switches between two possible interpretations of the image. Such a
behavior can be explained as sampling from a posterior distribution that is constrained to
be bi-modal by the visual input, where each mode corresponds to one of the two possible
interpretations. Switching of the perception then occurs when the sampling chain jumps,
with the help of noise, from one mode to the other (see Fig. 3.2C, right).

In addition, studies with awake ferrets show that during development, spontaneous activity
in the visual cortex more and more resembles the averaged evoked activity in response to
natural stimuli (Berkes, Orbán, Lengyel, and Fiser , 2011). That is, in older ferrets, the
spontaneous activity can be interpreted as representing samples from a prior distribution
p(y) =

∫
dx p(y,x), which can be reconstructed by averaging over the evoked responses

p(y) ≈
∫

dx p(y|x)p(x), with p(x) being the natural stimuli distribution (see Fig. 3.2D) –
as expected from a probabilistic coding scheme where p(y) =

∫
dx p(y|x)p(x).

Even though the evidence for a Bayesian computation scheme in the cortex is becoming
stronger, it is not at all clear how such computations might be implemented on a neuronal
level. Beside sampling-based implementations, probabilistic population codes have been
proposed where the activity of a population encodes moments of a posterior probability
distribution (Ma, Beck, Latham, and Pouget , 2006). As a sampling-based approach, so-called
Gaussian Scale Mixtures (Wainwright and Simoncelli , 2000), where sampling is done on the
level of the membrane potentials or rates, have been used to model Bayesian inference in the
visual cortex and were demonstrated to reproduce several biological phenomena like trial-to-
trial variability, transient overshoots on stimuli on-set and cortical oscillations originating
from recurrently connected excitatory and inhibitory neural populations (Orbán, Berkes,
Fiser, and Lengyel , 2016; Aitchison and Lengyel , 2016; Echeveste, Aitchison, Hennequin,
and Lengyel , 2019). A proposal on how Bayesian inference might be implemented with
spike-based coding has first been done in Buesing, Bill, Nessler, and Maass (2011); Pecevski,
Buesing, and Maass (2011), where a MCMC was constructed that samples from a Boltzmann

the second property, invariance of the sampled distribution, we first calculate P (y′|yi)p(yi|x) =
min

(
p(yi|x)g(y′|yi) , p(y′|x)g(yi|y′)

)
= P (yi|y′)p(y′|x), a condition called “detailed balance”. From

this, we get
∫

dyi P (y′|yi)p(yi|x) =
∫

dyi P (yi|y′)p(y′|x) = p(y′|x)
∫

dyi P (yi|y′) = p(y′|x), as re-
quired.
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3.2. Stochastic inference in spiking neural networks

distribution with N binary units (where the binary states represent spiking ’1’ and being
silent ’0’) that have refractory periods. This model was further expanded to networks of
LIF neurons with CoBa or CuBa synapses (Petrovici, Bill, Bytschok, Schemmel, and Meier ,
2016; Probst, Petrovici, Bytschok, Bill, Pecevski, Schemmel, and Meier , 2015; Neftci, Das,
Pedroni, Kreutz-Delgado, and Cauwenberghs , 2014), building a bridge between probabilistic
inference with binary random variables and spike-based, biological models of neural networks.
Compared to probabilistic population codes or Gaussian Scale Mixtures that are based on
continuous variables (membrane potentials or rates), the attractive feature of such spiking
models is that spikes naturally take the role of representing samples from a binary posterior
distribution.

3.2 Stochastic inference in spiking neural networks

In the following, we will briefly review sampling-based inference in networks of LIF neurons,
which forms the basis for the following studies in this chapter. The discussed results are
mainly from Petrovici, Bill, Bytschok, Schemmel, and Meier (2016); Petrovici (2016).

3.2.1 The high-conductance state

CoBa LIF neurons are, by definition of the model, deterministic (see Eq. 2.3). Thus, if the
steady state of the free membrane potential (FMP) is below threshold ϑ, the neuron will
never elicit a spike, and when it is above threshold, the neuron will burst with a frequency ν
that depends both on the refractory period τref and the time needed to cross the threshold
again starting from the reset potential %, i.e.,

ν =

(
τref + τmln

%− El − Iext

gl

ϑ− El − Iext

gl

)−1

, (3.2)

which approaches the maximum firing rate of νmax = τ−1
ref if the external stimulating current

Iext → ∞ goes to infinity (Fig. 3.3A). The relation ν(Iext) is also known as activation or
response function.
In this deterministic state, we are not able to show that LIF networks sample from any

probability distribution. However, this changes when each LIF neuron is exposed to a high-
frequency bombardment of independent excitatory and inhibitory Poisson spike input η,
satisfying 〈η〉 = νp = const. and 〈η(t)η(t′)〉 = νpδ(t−t′)+ν2

p. In the diffusion limit, i.e., in the
limit of small coupling strengths of the Poisson noise, the dynamics of the free membrane
potential can be described by an Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein,
1930), basically performing a random walk around a fixed mean value with a Gaussian free
membrane potential distribution (see Fig. 3.3B). Similarly to biological neurons (Carandini ,
2004), this random movement of the membrane potential can kick the membrane potential
above threshold even when the mean value is below threshold (or kick it below threshold
when the mean value is above), leading to stochastic firing. In addition, the strong synaptic
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3. Spike-based coding as deterministic Bayesian inference

Figure 3.3.: (A) Activation function of a LIF neuron with CoBa synapses and no external noise. Below
threshold ϑ, the neuron is silent and only starts eliciting spikes after crossing the threshold. Inlet:
trace of an LIF neuron’s free membrane potential (no spiking) with a constant offset current as
input (blue). Only by shifting the membrane potential upwards by increasing the offset current
can the threshold (black, dashed) be reached. (B) The free membrane potential dynamics of
a CoBa LIF neuron can be described as an Ornstein-Uhlenbeck process. In the beginning, the
membrane potential follows a Dirac delta distribution (blue). As time evolves, the distribution
widens (diffusion) and the mean value shifts (drift) until the stationary distribution (red) is
reached – here: a normal distribution with mean 0 and standard deviation 0.5. Figure taken from
Dold (2016). (C) Activation function of a CoBa LIF neuron under high-frequency excitatory
and inhibitory Poisson noise. Even if the mean membrane potential is below threshold, the
neuron can have a non-zero firing rate. The activation function can approximately be described
by a logistic function ϕ(µ) = (1 + exp (−(µ− u0)/α))

−1. Inlet: trace of an LIF neuron’s free
membrane potential driven by Poisson noise.

background bombardment leads to a reduced effective membrane time constant, allowing
the neuron to attain a high reaction speed to synaptic inputs.

In this state, commonly known as high-conductance state (HCS) (Destexhe, Rudolph, and
Paré, 2003; Kumar, Schrader, Aertsen, and Rotter , 2008), the neuron’s activation function
becomes approximately logistic

ϕ(µ) =
(
1 + exp (−(µ− u0)/α)

)−1
, (3.3)

where α is the inverse slope and u0 the inflection point of the activation function (Fig. 3.3C).
µ is the mean free membrane potential of the neuron in the HCS (see Eq. A.2b). With this
result, we can construct a connection between sampling from Boltzmann distributions with
binary random variables and the dynamics of LIF networks.

3.2.2 Spikes as samples from a probability distribution

In deep learning, it was found that a particularly useful distribution for inference and learning
are Boltzmann distributions of the following form

p(z) ∝ exp

(
1

2
zTWz + zTb

)
, (3.4)

with binary state space z ∈ {0, 1}N over N random variables. Each random variable can
be depicted as a node in a graph, with W being a symmetric and zero-diagonal matrix
representing the interaction strengths between nodes and b a vector representing each node’s
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3.2. Stochastic inference in spiking neural networks

bias. The bias determines which state each random variable prefers given the nodes are
unconnected, i.e.,W vanishes. Models that shape such distributions by learning bothW and
b to approximate the underlying distribution of a data set are called Boltzmann machines
(Ackley, Hinton, and Sejnowski , 1985) and can be used to perform powerful Bayesian inference
tasks like pattern classification, pattern completion, dimensionality reduction and generation
of new data samples (Hinton and Salakhutdinov , 2006; Hinton, Osindero, and Teh, 2006;
Salakhutdinov and Hinton, 2009; Buesing, Bill, Nessler, and Maass , 2011; Fisher, Smith,
and Walsh, 2018). Recently, they have also been proposed as suitable models for solving the
quantum many-body problem (Carleo and Troyer , 2017).
To sample from such a Boltzmann distribution, we split the sampling process in several

steps and sample each variable sequentially while updating the state vector accordingly. For
instance, for N = 3, to draw the i+ 1’th sample we first sample zi+1

0 conditioned on (zi1, z
i
2),

then zi+1
1 conditioned on (zi+1

0 , zi2) and finally zi+1
2 conditioned on (zi+1

0 , zi+1
1 ). Since the

conditional probabilities are proportional to the joint probability distribution

p(zk|z\k) =
p(z)

p(z\k)
∝ p(z) , (3.5)

sampling from the conditional distribution in each step conserves the stationary distribution
p(z) of the whole update sequence. For the individual sampling steps, we use the Metropolis-
Hastings algorithm (Section 3.1.2) where the proposal distribution is chosen to be the
conditional distribution of the Boltzmann distribution p(zk|z\k). This way, the acceptance
ratio of the Metropolis-Hastings step becomes

α(zi+1
k , zik) = min

(
1 ,

p(zi+1
k |z

i+1
0 ...zi+1

k−1z
i
k+1...z

i
N−1)p(zik|zi+1

0 ...zi+1
k−1z

i
k+1...z

i
N−1)

p(zik|z
i+1
0 ...zi+1

k−1z
i
k+1...z

i
N−1)p(zi+1

k |z
i+1
0 ...zi+1

k−1z
i
k+1...z

i
N−1)

)
= 1 ,

(3.6)
and sampling is reduced to performing Monte Carlo steps on the conditional probabilities
alone. This procedure is also known as Gibbs sampling (Geman and Geman, 1984). In case
of a Boltzmann distribution as defined in Eq. 3.4, the conditional probability is given by a
logistic function

p(zk = 1|z\k) =
1

1 + e−
∑
iWkizi−bk

. (3.7)

The activation function of an LIF neuron in the HCS can also be interpreted as a conditional
probability when adapting the following coding scheme (Fig. 3.4A,B): a neuron is in the
binary state zk = 1 while being refractory, i.e., after eliciting a spike, when it affects its
postsynaptic partners. Otherwise, if the neuron is not refractory, it is considered to be in
the zk = 0 state where it does not interact with its partners. With this coding scheme, the
neuron’s activation function (Eq. 3.3) corresponds to the probability of finding the neuron
in the binary state zk = 1 given the states of all remaining neurons z\k

p(zk = 1|z\k)LIF =
1

1 + exp
(
−(µ(z\k)− u0)/α

) . (3.8)

If we compare the LIF neuron’s activation function with the transition operator of Gibbs
sampling (Eq. 3.7), we find that both take approximately the same form, i.e., the transition
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Figure 3.4.: (A) Schematic of a sampling spiking
network, where each neuron (circles) en-
codes a binary random variable zi ∈
{0, 1}. Neurons are rendered stochas-
tic by adding external Poisson sources
of high-frequency balanced noise (red
boxes). (B) A neuron represents the
state zk = 1 when refractory and zk = 0
otherwise. (C) The dynamics of neurons
in stochastic spiking network can be de-
scribed as sampling (red bars) from a tar-
get Boltzmann distribution (blue bars).
Figures and caption adjusted from Dold
et al. (2019a).

operator is a logistic function, while the LIF neuron’s activation function can be fitted by
one. Hence, we expect both algorithms to sample from similar distributions as long as the
conditional probabilities match. By mapping Boltzmann parameters W and b to synaptic
weights w and leak potentials El (or external currents) such that the neuron’s activation
function (Eq. 3.3) and the transition operator of Gibbs sampling (Eq. 3.7) agree (Petrovici,
Bill, Bytschok, Schemmel, and Meier , 2016)

wkj =
αWkjCm

τref

τ syn

(
1− τ syn

τeff

) (
Erev
kj − µ

)−1[
τ syn

(
e−

τref
τsyn − 1

)
− τeff

(
e
− τref
τeff − 1

)] , (3.9)

(El)k =
τm

τeff

(αbk + u0)−
∑
x∈{e,i}

〈gsyn
x 〉
gl

Erev
x , (3.10)

the spike dynamics of a network of LIF neurons therefore approximately4 represents sampling
from a binary Boltzmann distribution (Eq. 3.4), see Fig. 3.4C. Here, wkj is the synaptic
weight from neuron j to neuron k, El a vector containing the leak potentials of all neurons, b
the corresponding bias vector, Erev

kj ∈ {Erev
e , Erev

i }, depending on the nature of the respective
synapse, and τm = Cm

gl
(see Appendix A.1.7 for a derivation). If every neuron receives different

background noise, the fit parameters α and u0 as well as the effective time constant τeff and
mean synaptic conductances 〈gsyn

x 〉 are neuron specific (not shown here to ease notation). To
summarize, due to the almost logistic shape of the activation function of LIF neurons in the
HCS, spikes can be interpreted as samples from a Boltzmann-type probability distribution
with binary random variables, characterized by weight and bias parameters.

For a mathematically more rigorous derivation and analysis of sampling in spiking neural
networks, see Buesing, Bill, Nessler, and Maass (2011); Petrovici, Bill, Bytschok, Schemmel,
and Meier (2016); Gürtler (2018).

4For several reasons the sampling is only approximate. First, the activation function is only approximately
logistic. Second, the interaction between neurons happens via postsynaptic potentials (PSP), which decay
exponentially and thus last longer than a single 1-state. Third, LIF neurons tend to produce bursts, i.e.,
if the free membrane potential is above threshold after a spike, the probability to elicit a spike directly
after the refractory period is increased compared to Gibbs sampling (Gürtler , 2018).
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3.2. Stochastic inference in spiking neural networks

3.2.3 Training spike-based sampling networks

In general, Boltzmann machines can be trained via maximum likelihood learning to reproduce
a given target distribution or to learn from samples originating from an unknown data
distribution. The resulting learning algorithm increases the probability to produce desired
states and reduces the probability of producing non-desired states. Mathematically, this
takes the following form:

∆Wij ∝ 〈∇Wij
ln p(z)〉

data
, (3.11)

∆bi ∝ 〈∇bi ln p(z)〉data , (3.12)

where we average over samples from the data distribution we want to model. Since the
logarithm is monotonically increasing, maximizing the log probability is equivalent to maxi-
mizing the probability itself. For a fully visible5 Boltzmann distribution with unconstrained
connectivity matrix, this becomes

∆Wij = 〈zizj〉data − 〈zizj〉free , (3.13)
∆bi = 〈zi〉data − 〈zi〉free , (3.14)

using

∇Wij
ln p(z) = ∇Wij

(
1

2
zTWz + zTb

)
−∇Wij

ln
∑
z

exp

(
1

2
zTWz + zTb

)
, (3.15)

= zizj −
∑

z zizj exp
(

1
2
zTWz + zTb

)∑
z exp

(
1
2
zTWz + zTb

) , (3.16)

= zizj −
∑
z

zizj p(z) , (3.17)

= zizj − 〈zizj〉free , (3.18)

where the second term originates from the distribution’s partition function. The learning
rule is separated into two phases: (i) a “free” phase, where the network receives no input and
its network activity is self-generated, i.e., it freely generates samples (also called “dreaming
phase”), and (ii) a “data” phase, where data samples are imposed on the network. Such data
samples are supposed to be generated from an underlying data distribution we want to
model, e.g., a distribution that generates samples resembling images of cats and dogs. The
term obtained from the first phase reduces the probability of self-generated samples, and the
term from the second phase increases the probability of generating samples that resemble the
training data. If the network generates samples resembling the training data, learning stops
as the contributions of both phases cancel each other. In general, the learning rule models the
data distribution by matching both mean values as well as relevant pairwise correlations in
data samples. This type of learning rule is generally known as “wake-sleep learning” (Ackley,
Hinton, and Sejnowski , 1985; Hinton, 2002), alluding to the “dreaming” and “wake” (or

5I.e., no hidden neurons.
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visible

hidden

after training

input network-generated 
output

network-generated 
output

𝒗 𝒉 data − 𝒗 𝒉 free

Figure 3.5.: Schematic illustration of the two learning phases for a restricted Boltzmann machine. Input
is only presented to the network during the data phase. After training, the visible activity
generated by the network resembles the learned data. The model can be used for classification
by adding a label area on top. For the special case of only one hidden area, these label neurons are
actually part of the visible area because of the symmetric connections (not shown here). Color
intensity corresponds to neuronal activity. Photographs taken from (left to right) favim.com,
123rf.com and de.newchic.com, 18.02.2020.

data-driven) phase. For the special case that expectation values are approximated using
single samples, the learning rule is called “contrastive divergence”. If the underlying data
distribution is known, this can also be rewritten in terms of probabilities:

∆Wij = pdata(zi = 1, zj = 1)− 〈zizj〉free , (3.19)
∆bi = pdata(zi = 1)− 〈zi〉free , (3.20)

For representing high-dimensional data, it is useful to pre-impose a hierarchical structure in
the connectivity matrix by separating the neurons into visible v and hidden h units, without
connections between neurons of the same type (Hinton and Salakhutdinov , 2006). In this
case, the Boltzmann distribution looks like

p(z) ∝ exp
(
vTWh + vTb + hTa

)
, (3.21)

with biases a for hidden neurons. This is generally known as a restricted Boltzmann machine
(Hinton, 2002), where the hidden neurons take on the role of modeling the statistical
dependencies between visible neurons. Without hidden neurons, these dependencies can
only be captured using the visible-to-visible connections, restricting the shape of our model
distribution to the form of a Boltzmann distribution (Eq. 3.4). But by adding hidden
neurons, the posterior distribution of the visible states is obtained by marginalising over
the hidden neurons, which is not limited to the form of Eq. 3.4 and can be used to model
arbitrary probability distributions given a sufficient number of hidden neurons. For maximum
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3.3. Spiking networks for spatio-temporal predictions

likelihood learning, we then obtain (see Fig. 3.5 for an illustration)

∆Wij = 〈vihj〉data − 〈vihj〉free , (3.22)
∆bi = 〈vi〉data − 〈vi〉free , (3.23)
∆ai = 〈hi〉data − 〈hi〉free . (3.24)

With this, given a data set, we can learn the parameters of a Boltzmann distribution
approximating the underlying distribution the data was generated from6. This gives us two
possibilities to set up LIF networks to perform Bayesian inference on a given data set:

1. First train a Boltzmann machine on the data and use Eqs. 3.9 and 3.10 to translate
the parameters to a network of LIF neurons.

2. Train the LIF network directly by translating the wake-sleep learning rule updates
with Eqs. 3.9 and 3.10 to updates of synaptic and neuronal parameters.

3.3 Spiking networks for spatio-temporal predictions

Spike-based sampling networks, as described in the previous section, have so far been used
to demonstrate both discriminative and generative properties on static input patterns, like
image classification and pattern completion (Petrovici, Bill, Bytschok, Schemmel, and Meier ,
2016; Leng, Martel, Breitwieser, Bytschok, Senn, Schemmel, Meier, and Petrovici , 2018).
However, the introduced model can also be used on spatio-temporal inference problems, as
for instance the prediction of a particle trajectory that is slowly revealed to the network.

3.3.1 From static patterns to time-dependent input

When training sampling networks on high-dimensional data, we typically clamp the visible
area to “static” data values for each update step, i.e, the data samples have no temporal
component and remain unchanged while being presented to the network. This remains true
for testing the network’s training progress, where the network is challenged to classify or fill
in missing pixels from static data samples.

To move from static to time-continuous inputs, we can simply rephrase the task a network
has to solve: instead of seeing the whole or partial version of the input, the network is exposed
to a time-continuous input x(t) that is slowly revealed. Hence, at time t0, the sampling
network receives no input at all, and its best guess or prediction is based on the prior p(x)
encoded by spontaneous activity in the visible area. However, for t′ > t0, more and more of
the input is revealed, constraining p

(
x(t > t′) |x(t ≤ t′)

)
in the Bayesian sense as explained

in Section 3.1.2. Hence, during presentation, the internal model learned by the network p(x)
is consistently updated by new observations, leading to updated predictions. For instance,
the process of drawing a letter by hand can be rephrased in this way, and the sampling

6Even though it is not guaranteed that such a distribution exists, it is a reasonable assumption as we are
interested in capturing characteristic structures hidden in the data. If such structures do not exist, we
are not able to reasonably model the data to begin with.
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3. Spike-based coding as deterministic Bayesian inference

network has to guess (i) the complete shape of the letter, based on current observations and
(ii) the letter being drawn (Roth, 2014). Another example is the prediction of trajectories,
where a particle moves on a two-dimensional plane from left to right, and the network has
to predict the currently unobserved parts of the trajectory including its end-position.
Of course, this approach harbors a major drawback: Even though we can simply train

the network on trajectories x(t) by showing it the whole input limt→∞ x(t), all dimensions
(spatial and temporal) have to be represented by individual neurons, and hence for longer
time series, the amount of neurons required to solve the task grows linearly. This is not the
case for recurrent neural networks like Elman networks (Elman, 1990) with context areas
(Mikolov, Joulin, Chopra, Mathieu, and Ranzato, 2014) or long short-term memory networks
(LSTM, Hochreiter and Schmidhuber 1997) that explicitly use their recurrent architecture to
represent time and are commonly used for sequential tasks like language and text processing.
However, encoding both spatial and temporal dimensions with visible neurons enables a

clear generalization of spike-based Bayesian inference to time-continuous inputs. Further-
more, it allows an extension of the spike-based sampling framework to scenarios where the
network takes control of an agent that acts in an environment. In this case, the input to the
network x(t) represents the state of the environment that can either change due to external
factors or due to actions of the agent. For instance, the environment could be the game
Pong, and the agent is the network controlling a paddle at the right side of the play field.
The state of the environment is the currently uncovered ball trajectory x(t), and the agent’s
goal is to hit the ball with the paddle, which changes the ball’s trajectory (Fig. 3.6A). In
the following sections, we will study the feasibility of time-continuous Bayesian inference
with spiking neural networks.

3.3.2 Pattern completion of line segments

To investigate how well spike-based sampling networks perform when faced with time-
continuous problems, we test them on the task of (i) predicting the remaining parts of a
gradually uncovered trajectory and (ii) using this prediction to control an agent that can
move a paddle up or down to position it at the predicted end-position of the trajectory. For
instance, this might be the trajectory of a particle (or ball) moving from the left to the right
side of a two-dimensional plane, with a random initial starting angle and reflecting boundaries
on the top and bottom of the plane. Moving a paddle to the predicted end-position of the
trajectory is then akin to catching a ball in the game of Pong (Fig. 3.6A). To create a data
set for training, such trajectories are calculated using the equation of motion for a particle
ẍ = −∇V (x) in a potential V (x) that depends on the particle’s position x. To simulate a
trajectory, a particle is initialized at position x0 = (−w

2
, y0) with velocity v0 = (cosα, sinα),

where w is the width of the plane, (0, 0) the center of the plane, α ∈ (−π, π) the starting
angle and y0 ∈ [−h

2
, h

2
] the starting height (with the plane’s height being h). Furthermore,

the starting angle is restricted such that in the case of flat potentials V (x) = const., at most

32



3.3. Spiking networks for spatio-temporal predictions

one boundary reflection occurs, leading to maximum and minimum angles (Zenk , 2018)

tanαmax(y0) =
3
2
h− y0

w
, (3.25)

tanαmin(y0) = −
3
2
h+ y0

w
. (3.26)

After simulating a trajectory, it is down-sampled on a discretized grid

cij =
∆

2
+

(
∆ · (j − 1)− w

2

∆ · (i− 1)− h
2

)
, i, j ∈ N , (3.27)

with ∆ being the grid-spacing. The trajectory is widened by assigning a value to each grid
entry depending on its distance to the trajectory, i.e.,

dij = min
t
‖cij − x(t)‖ , (3.28)

Pij = max

(
0,

(
1− dij

δ

)λ)
, (3.29)

where Pij is the trajectory strength at position cij, and the values decay with increasing
distance to the trajectory according to a power law with exponent λ and cutoff δ (Fig. 3.6B).
The motivation for this step is twofold: (i) increase the input to the neural network and (ii)
smear out the ball position, i.e., add noise to it. By varying the starting position x0 and
angle α, we generated a data set for a flat potential, consisting of 4 · 104 images split into
training, validation and test set in the ratio 2:1:1, with w = 48, h = 40, δ = 5

2
and λ = 1

2

(see Fig. 3.6C for example trajectories).
To reduce simulation time, we first trained a restricted Boltzmann machine with 40 · 48

visible, 500 hidden and 10 label units on the data set before translating the learned parameters

A

x

y

(0,0)

∆

∆

c11

c12

c21

c22

c31

c32

d32

B C

Figure 3.6.: (A) Illustration of the experimental setup. The input to the network is the trajectory of a ball
that flies from left to right (blue background). Remaining parts of the trajectory that have not
been revealed yet have to be inferred by the network (black background). In addition, a paddle
at the right-most end of the play field is controlled by the network to catch the ball, i.e., predict
the end point of the trajectory. (B) Trajectories are first created by solving the equation of
motion of a particle moving through a potential (here: flat), with according boundary conditions.
The obtained trajectory is down-sampled to the resolution of the playing field and widened. (C)
Example trajectories for the case of a flat potential. Figures adjusted from Zenk (2018).
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Figure 3.7.: Exemplary receptive fields of hidden neurons after training. Individual neurons encode features
like flocks of trajectories, reflection points and crossing points. Figure adjusted from Zenk
(2018).

to neurosynaptic parameters in an LIF network, using Eqs. 3.9 and 3.10. The label units are
used to steer a 4 pixel wide paddle vertically7, as sketched in Fig. 3.6A. Instead of training
with pure contrastive divergence, we used persistent contrastive divergence (Tieleman, 2008).
In persistent contrastive divergence, the data terms in Eqs. 3.22 to 3.24 are approximated
by performing one Gibbs sampling step conditioned on the data as visible input (p(h|vdata))
and the free terms are approximated through a MCMC that is consistently run during
training, i.e., without resetting the chain after parameter updates. This has the benefit that,
as long as the network parameters change slowly, the consistent chain produces valid samples
of the Boltzmann distribution and it is not necessary to run individual MCMCs in every
update step to approximate the negative term in the learning rule. Furthermore, we used
L2 regularization8 (Ng , 2004) and momentum9 (Rumelhart, Hinton, and Williams , 1986)
to improve the training quality, such that the weight update of the k’th training step takes
the form

∆W k
ij = ε∆W k−1

ij + η(k)
(
〈∇Wij

ln p(z)〉
data
− κWij

)
, (3.30)

where ε determines how quickly previous values of the gradient decay (momentum), κ
regulates how strongly weights are pushed to small values (L2 regularization) and η(k) =
η0

1+ k
2000

is a decaying learning rate with initial value η0. Biases follow a similar update scheme,
but without regularization, as recommended in Hinton (2012). In addition, a batch size of
50 was used during training, meaning that we presented 50 patterns to the network and
averaged the weight updates. The used parameters for training are listed in Appendix A.3.1.
To get a feeling about what the hidden neurons learned, we can look at the weights projecting

7The paddle moves, with finite velocity, to a vertical target position obtained by averaging over all possible
vertical positions weighted by the network’s conditional probabilities.

8Also known as weight decay, since the regularization term pulls the weights κWij to zero.
9I.e., the weight update contains a memory of previous gradients, ε∆W k−1

ij . Momentum helps to overcome
saddle points of the optimization landscape faster, as weight updates do not vanish when crossing a
saddle point (where the gradient vanishes).
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Figure 3.8.: (A) Time-averaged prediction error of the test data set as a function of the number of sampling
steps the network is allowed to do to reach a decision. After approximately ns = 20, the
performance only slightly improves further. (B) Prediction error as a function of the uncovered
trajectory fraction, from no input (0) to a fully revealed trajectory (1). If the network is
reinitialized after each time step, the predictions improve much faster. Colors as in (C). (C)
Success rate of the experiment in (B). Again, with reinitialization the success rate increases
much faster to its maximum value. The reason for this is that, in case of Gibbs sampling without
reinitialization, the samples at different time steps are correlated and depend on previous network
states. Thus, if the network jumps into a wrong mode in the beginning (or is strongly biased
towards a certain mode), it is harder for the network to escape this mode initially. Line styles
as in (B). Figures adjusted from Zenk (2018).

from the visible neurons to individual hidden neurons – also called “receptive fields”. As
shown in Fig. 3.7, hidden neurons mostly react to bundles of similar trajectories, reflection
points and points where many trajectories cross.
We can derive four measures of performance from the task of predicting the point of

impact on the right-hand side of the plane:

• the prediction error e(t) = ‖xw − zw(t)‖, where xw is the end-point of the trajectory
and zw(t) the network estimate at time t. Alternatively, we could also use the sum of
differences over the whole trajectory.

• the time-averaged prediction error E = 1
T

∫ T
0
e(t) dt ≈ 1

w

∑w
k=0 e(k).

• the success rate S(r) that measures how often the network is able to “catch” the ball
with the paddle, depending on the ratio r of vertical paddle speed to horizontal ball
speed.

• the success rate for infinite agent speed S∞, i.e., where the paddle jumps instantaneously
to the predicted end-point of the network in each time step.

We first evaluated the trained model with Gibbs sampling by looking at these measures.
To evaluate, each image in the test set was clamped column by column in w steps, where
after each step the model prediction was altered by performing ns sampling steps. This way,
in a single trial, the trajectory is slowly uncovered column by column, and between frame
updates, the network has time to perform ns sampling steps to update its prediction based
on the new evidence, i.e., the newly uncovered column. Of course, by increasing the number
of sampling steps, the performance of the network increases as the samples better represent
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3. Spike-based coding as deterministic Bayesian inference

the posterior distribution (Fig. 3.8A,B), with the drawback that either the network has
to produce samples faster or the trajectory has to be uncovered slower, leading to slower
ball speeds. Moreover, we compared the performance of the network with a baseline, where
the prediction of the remaining trajectory is simply the current ball position, and a non-
continuous version of Gibbs sampling where after each clamping step (uncovering of new
column), the visible area is first reinitialized before performing Gibbs updates (Fig. 3.8B,C).
As expected, for all investigated values of ns, the Boltzmann machine performed better

than the baseline predictor. However, especially when only a small fraction of the trajectory
is clamped, the prediction error as well as the success rate decrease/increase much faster
when the visible area is reinitialized during clamping steps. This is probably due to the
model falling into a mode initially (i.e., one trajectory that is, for instance, heavily biased
by the prior), where the clamped input is not strong enough yet to induce a mode switch.
To circumvent this problem, tempering methods that enhance exploratory behavior can be
used. One particularly natural method to improve exploration of the underlying probability
landscape is available for spike-based sampling networks, as demonstrated in the next section.

3.3.3 Short-term plasticity improves exploration

Generative models getting stuck in attractor modes is a well-known problem called the
“mixing problem” (Bengio, Mesnil, Dauphin, and Rifai , 2013). For instance, if we want
our model to clearly separate different image classes, as in our case two strongly different
trajectories, the best way to do so is to encode both trajectories as well-separated, high
probability modes in the modeled probability distribution. This automatically leads to the
problem that, by simply using random noise to explore the probability landscape, it is hard
for a network to escape one of these strong attractor modes. In case of Gibbs sampling,
the escape of strong modes can be facilitated by using tempering (Salakhutdinov , 2010),
i.e., by globally “flattening” the probability landscape so the MCMC can escape from high
probability regions more easily. For LIF networks, recently it has been observed that a
local mechanism can achieve a similar effect (Leng, Martel, Breitwieser, Bytschok, Senn,
Schemmel, Meier, and Petrovici , 2018), simply by equipping each synapse with a limited
pool of neurotransmitters that is depleted when presynaptic spikes arrive and regenerates
otherwise. In the following, we demonstrate that spike-based sampling networks equipped
with such a short-term plasticity mechanism show improved performance in the spatio-
temporal trajectory prediction task of the previous section.
Short-term plasticity describes the temporary strengthening and weakening of synaptic

weights over short time scales. Contrary to long-term plasticity, which is used to memorize
new information or learn new skills, short-term plasticity is mostly a consequence of the
limited amount of resources available to a synapse to transmit information. An intuitive phe-
nomenological model of short-term plasticity has been introduced by Tsodyks and Markram
(1997), commonly known as the Tsodyks-Markram (TSO) model. Here, we use a slightly
simplified version of TSO proposed in Fuhrmann, Segev, Markram, and Tsodyks (2002) and
only model short-term depression, i.e., the weakening of synaptic strengths due to depletion
of neurotransmitters available to the synapse. To do so, each synapse is equipped with a
reservoir of neurotransmitter R ∈ [0, 1], from which a fraction USE is used up whenever a
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Figure 3.9.: Illustration of short-term plasticity. (A) Without short-term plasticity, also called “static
synapse”, the postsynaptic potential (PSP) envelope resulting from presynaptic spikes initially
builds-up (due to overlap with exponential tails) and then keeps a constant height. (B) With
short-term plasticity (U = 0.5), the depletion of neurotransmitters leads to a decrease in the
postsynaptic response for strong presynaptic activity (green). The neurotransmitters recover on
the time scale of the recovery time constant τrec if no presynaptic activity is present, resulting in
a recovered postsynaptic response height. For the special case of U = 1 and τrec = τ syn, called
renewing synapses, all PSPs have identical height (orange). Figures adjusted from Zenk (2018).

presynaptic spike occurs,

Ṙ(t) =
1−R
τrec

−
∑

spikes s

USERδ(t− ts) , (3.31)

modifying the synaptic weight w to w(t) = USE ·R(t) ·w. Thus, if several presynaptic spikes
occur in sequence, the effect of each spike on the PSP will be increasingly diminished. While
no presynaptic spikes occur, the reservoir recovers on the time scale τrec (see Fig. 3.9).
For spike-based sampling, we commonly choose USE = 1 and τrec = τ syn, as proposed in

Petrovici, Bill, Bytschok, Schemmel, and Meier (2016), which we call “renewing synapses” for
the remainder of the document. Choosing the parameters this way compensates for an initial
build-up of the PSP height if the neuron is exposed to tonic presynaptic spiking (Fig. 3.9A,B),
ensuring that always only spike times transmit information. The build-up happens since the
exponential tail of a PSP is not yet decayed to zero when the next PSP occurs10. In Leng,
Martel, Breitwieser, Bytschok, Senn, Schemmel, Meier, and Petrovici (2018), it was further
shown that certain choices of parameters different from the renewing case (Fig. 3.9B, green)
can be used to destabilize local attractors in the network, without changing the probability
landscape globally, and thus enforce an exploration of the probability landscape.
For these experiments, we use LIF neurons with CuBa synapses, as described in Sec-

tion 2.1.2. To improve the mixing property of our networks, we performed a parameter scan
in USE and τrec based on the time-averaged prediction errorE. We found a valley of parameter
combinations that are in a reasonable dynamical regime and lead to improved time-averaged
10If we consider two consecutive presynaptic spikes, the resulting PSP of the first spike will have decayed by

a factor of exp (−τref/τ
syn) > 0 when the second one arrives. Thus, without renewing synapses, the height

of the second PSP would be increased due to the non-zero remnant of the first one (Fig. 3.9A). But with
renewing synapses, the first spike depleted the neurotransmitter pool R and the effect of the second spike
is diminished by a factor 1 − exp (−τref/τ

syn), which is the fraction of regenerated neurotransmitters
between consecutive spikes. Thus, adding the remaining PSP of the first spike to the diminished effect of
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3. Spike-based coding as deterministic Bayesian inference

Figure 3.10.: Spatio-temporal prediction task with spike-based networks and short-term plasticity. (A) Time-
average prediction error evaluated on the test set for different short-term plasticity parameters.
We observe a valley of best parameters which clearly improve the performance compared to
renewing synapses (orange bar). (B) Prediction error for CuBa LIF neurons with renewing
synapses (orange), CuBa with the best short-term plasticity parameters of (A), U = 0.22 and
τrec = 50ms (green cross, hereafter called “mixing synapses”), Gibbs sampling (violet) and
Gibbs sampling with reinitialization (black, dotted). To increase visibility, only for the mixing
case the first and third quartile are shown as well (green shade). (C) Respective success rates
of the experiments shown in (B). CuBa LIF neurons with mixing parameters improve the
generative properties of the network, allowing it to escape local attractors much faster than
CuBa with renewing synapses or Gibbs sampling. This way, the biological inspired network
reaches the performance of the Gibbs sampler with reinitialization between uncovered ball
positions. Figures adjusted from Zenk (2018).

prediction errors compared to the obtained performance with renewing synapses (Fig. 3.10A).
As expected, in these cases, the prediction error decreases much earlier than with renewing
synapses (Fig. 3.10B), and the success rate converges faster to one (Fig. 3.10C). The best
performance was reached for U = 0.22 and τrec = 50ms, which we call “mixing synapses”.
By visually expecting single trials, one can see how, with a set of short-term depression
parameters that facilitates mixing, the network explores several possible trajectories, see
Fig. 3.11. In contrast, the network stays mostly in the same prediction when using renewing
synapses (or, equivalently, Gibbs sampling is used to evaluate the model).

Since the task to predict linear trajectories is rather simple, we repeated the experiment for
a Boltzmann machine trained on curved trajectories resulting from a Gaussian hill potential
centered in the middle of the plane

V (x, y) = A exp

[
− 1

2

(
x2

σ2
x

+
y2

σ2
y

)]
, (3.32)

with standard deviations σx = 0.32 · w, σy = 0.25 · h and amplitude A = 0.4. By using
the same short-term depression parameters as for the flat potential, we again observe a
strong performance increase compared to renewing synapses (Fig. 3.12). However, in this
case, spike-based sampling with renewing synapses seems to perform much worse than Gibbs
sampling. It is likely that this is due to the heuristic translation from Boltzmann parameters

the second spike yields exp (−τref/τ
syn) + 1− exp (−τref/τ

syn) = 1, and both the first and second PSP
have identical height (Fig. 3.9B, orange).
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Figure 3.11.: Prediction of the network at different time steps, shown for CuBa LIF neurons with renewing
(top) and mixing (bottom) synapses. With renewing synapses, the network stays stuck in
its initial prediction. However, using mixing synapses the network explores different feasible
solutions while the trajectory is uncovered. Figure adjusted from Zenk (2018).
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Figure 3.12.: Same as in Fig. 3.11, but for a ball moving through a Gaussian potential landscape. The
network has been trained on the new data set, but we used the ideal TSO parameters found
in Fig. 3.10 for flat potentials. Figure adjusted from Zenk (2018).

to neurosynaptic LIF parameters, and by training the LIF network directly, the difference
in performance might be further reduced.

Finally, we found that network performance is hardly impaired when only the current ball
position and a small part of the preceding trajectory is shown, i.e., when the network “forgets”
parts of the trajectory that lie far enough in the past (or, similarly, it only “remembers”
the recent past). In this case, the network has to both predict the future trajectory as well
as reconstruct the past trajectory. This is especially helpful when the ball is under the
influence of external forces, e.g., random kicks not present during training that alter the
trajectory (see Zenk (2018), Section 4.3.4 and 4.3.5, for details). Furthermore, this increases
the biological plausibility of the implementation, as a reset of the input after each trial is
not required anymore.

In summary, these results show that spike-based sampling networks equipped with short-
term depression are capable of reaching good performance in the time-continuous task of
predicting a ball’s trajectory. Especially the short-term depression reveals a natural way
for neural networks to promote exploration of the input-constrained solution space without
getting stuck in preliminary predictions. The proposed model might be used to implement an
agent playing Pong on neuromorphic hardware; or by using the predicted trajectory as the
state vector for an agent trained via reinforcement learning techniques (Mnih, Kavukcuoglu,
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3. Spike-based coding as deterministic Bayesian inference

Silver, Graves, Antonoglou, Wierstra, and Riedmiller , 2013) to catch the ball as fast as
possible by moving into the plane (e.g., playing tennis), making full usage of the trajectory
prediction. This would be a natural extension of recent work on reinforcement learning
(Wunderlich et al., 2019) and spike-based sampling (Kungl et al., 2019b) on neuromorphic
hardware.

3.4 Sampling in deterministic ensembles

So far, sampling with spike-based neural networks required external sources of well-behaved
noise. In the following, we will show that sampling also works under in-vivo-like conditions.
This allows a self-consistent and self-contained realization of Bayesian computing in spiking
neural networks, without any external noise sources.

3.4.1 The self-noising brain

A major ingredient of spike-based sampling is high-frequency Poisson noise that elevates
neurons in a stochastic high-conductance state. However, this is quite problematic for
physical realizations of spike-based sampling, as every neuron needs a perfect and private
source of well-behaved and high-frequent noise – something that is obviously not the case in
the brain and a strong constraint for realizations in physical devices. For instance, in case of
neuromorphic hardware, this means that noise has to either be provided externally, which
is restricted by bandwidth limitations (Bytschok , 2017), or has to be generated on-chip,
for instance, via linear-feedback shift registers (Murase, 1992; Großkinsky , 2016), which
are costly in terms of surface area and achievable noise quality. However, as discussed in
Section 3.1.1, the brain mostly attains its stochastic behavior through synaptic noise. Spike-
based sampling with synaptic transmission noise has been demonstrated in simulations
in Neftci, Pedroni, Joshi, Al-Shedivat, and Cauwenberghs (2016), although a fundamental
theoretical treatment is still lacking. Furthermore, these simulations still assume a well-
behaved implementation of stochasticity to evaluate synaptic transmission probabilities,
which they model by drawing pseudo-randomly generated numbers.

Arguably the biggest source of irregularity in the brain, as well as the actual motivation
behind Poisson noise, is synaptic background noise. Thus, inspired by the response variability
and the modular structure of the brain (Chen, He, Rosa-Neto, Germann, and Evans , 2008;
Bullmore and Sporns , 2009; Meunier, Lambiotte, and Bullmore, 2010; Bertolero, Yeo, and
D’Esposito, 2015; Song, Sjöström, Reigl, Nelson, and Chklovskii , 2005), i.e., strongly con-
nected functional clusters that are weakly interconnected (see, e.g., Fig. 3.13A), we propose
a similar architecture for spiking sampling networks: a weakly interconnected ensemble of
functional subnetworks, where the interconnections are used to provide background noise
to every subnetwork (Fig. 3.13B) – a neuronal heat bath so-to-speak. This enables the
implementation of completely deterministic ensembles of functionally independent neural
networks, where every network uses the spikes of other networks as a noise source to perform
probabilistic inference (Dold, Bytschok, Kungl, Baumbach, Breitwieser, Senn, Schemmel,
Meier, and Petrovici , 2019a). Thus, spikes take on a dual role: as samples from a posterior
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Figure 3.13.: (A) In the neocortex, strongly and often bidirectionally connected neurons are embedded
in a sea of weak, unidirectional connections. The shown network was reconstructed from 50
layer 5 pyramidal neurons. Figure taken from Song et al. (2005). (B) Instead of using explicit
Poisson noise to elevate neurons into a stochastic firing regime, inspired by the brain, we embed
networks into a network of networks. Each network performs its own distinct functional task
(black) while providing other neurons in the network with noise (gray). This is illustrated here
for a single neuron: by receiving background noise from other sampling networks (red arrows),
the red neuron becomes stochastic and expresses the logistic activation function needed for
spike-based sampling. Image adjusted from https://commons.wikimedia.org/wiki/File:Brain_-
Surface_Gyri.SVG (version: 11:12, 30 March 2010) and Dold et al. (2019a).

probability distribution, allowing each network to perform Bayesian inference tasks, but
also as the source of background noise for other networks in the ensemble. This has the
benefit that no resources are wasted on generating noise – different from previous approaches
where networks are used solely to generate noise (Jordan, Petrovici, Breitwieser, Schemmel,
Meier, Diesmann, and Tetzlaff , 2019a) or pseudo-random number generators are required
to enable stochastic computations (Petrovici, Bill, Bytschok, Schemmel, and Meier , 2016;
Neftci, Pedroni, Joshi, Al-Shedivat, and Cauwenberghs , 2016).

In the following sections, we approach the described ensemble model incrementally. First,
we investigate the effect of auto- and cross-correlated background noise on the functional
performance of spike-based sampling networks. This will enable us to set up ensembles of
networks, without any external noise sources, as described above. Finally, we demonstrate
that this approach can be scaled to networks trained on higher-dimensional visual data and
is compatible with the constraints of physical model systems like BrainScaleS–1.

3.4.2 Characterizing ensemble-generated noise

Network-generated background activity, unlike Poisson noise, is both auto- and cross-
correlated, impeding the performance of spike-based sampling networks receiving such noise.
To investigate the effect of correlated noise on the performance of a sampling network,
we replace Poisson noise with spikes coming from other (background) sampling networks –
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3. Spike-based coding as deterministic Bayesian inference

z1

z2 z3

Figure 3.14.: Replacement of Poisson noise by spiking activity from other spike-based sampling networks. In
this illustration, the principal network consists of three neurons receiving background input only
from other functional networks that sample from their own predetermined target distribution.
For clarity, only two out of a total of [260, 50, 34] (top to bottom in Fig. 3.15) background
networks per neuron are shown here. By modifying the background connectivity (gray and blue
arrows) the amount of cross-correlation in the background input can be controlled (Fig. 3.16).
At this stage, the background networks still receive Poisson input (red boxes). Figure and
caption adjusted from Dold et al. (2019a).

although at this stage, the background networks still receive Poisson input, see Fig. 3.14.
First, spike trains generated by LIF neurons feature an autocorrelation function (ACF)

that depends both on the refractory time τref and mean spike frequency r̄ = p(z = 1)τref
−1.

For low firing rates, a neuron spikes only rarely and generated spikes are far enough apart to
be completely uncorrelated, yielding a Dirac delta distribution as the ACF. If we pool the
spike trains of many low-frequency neurons together, the generated spike train approaches
a Poisson distribution: in every time step, many neurons can spike (independently), but
only with a very low probability. However, for high firing rates, regular structures, so-called
bursts, i.e., sequences of equidistant spikes with an interspike interval (ISI) of ISI ≈ τref ,
start dominating the spike trains11. Since the ACF measures the amount of self-similarity
of the spike train, i.e., how much does the spike train resemble itself when shifted by
a fixed time offset, such structures lead to regular side-peaks at multiples of τref in the
ACF, C(Sx, Sx,∆) = 〈Sx(t)Sx(t+∆)〉−〈Sx〉2

Var(Sx)
, of the network-generated (excitatory or inhibitory)

background Sx, x ∈ {e, i}. With increasing firing rates, here controlled by the leak potentials
El of the background networks (blue neurons in Fig. 3.14), these side-peaks become more
pronounced (Fig. 3.15A)

C(Sx, Sx, nτref) ≈
∞∑
k=1

ek ln p̄δ
(
[n− k]τref

)
, (3.33)

where p̄ is the probability for a burst to start (see Appendix A.1.4 for a derivation). If a
LIF neuron is exposed to such autocorrelated noise instead of Poisson noise, this results in
11By merging spike trains of several neurons, the ACF of the resulting spike train is given by the average

ACF of the individual spike trains. Hence, even when forming a population average, these fixed structures
remain.
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3.4. Sampling in deterministic ensembles

a reduced width σ′ of the FMP distribution (Fig. 3.15B)

f(ufree) ∼ N (µ′ = µ, σ′ =
√
βσ) (3.34)

with scaling factor
√
β that depends on the ACF (see Appendix A.1.2 for a derivation). This

can be explained rather intuitively, as autocorrelations in the background noise reduce the
variance of the noise frequency, and hence also of the FMP distribution of the receiving neuron.
For instance, in case of extremely autocorrelated background noise, i.e., tonic bursting, the
frequency distribution of the noise would be a Dirac delta peak. This narrowing of the FMP
distribution width translates, by virtue of the threshold spike mechanism, into a modified
inverse slope of the neuron’s activation function

p(z = 1) ≈
∫ ∞
ϑ

f(u)du ≈ ϕ(µ)

∣∣∣∣
u′0=u0,α′=

√
βα

, (3.35)

with inflection point u′0 and inverse slope α′ (see Appendix A.1.3 for details). Thus, auto-
correlations in the background input lead to a reduced width of the FMP distribution and
hence to a steeper activation function compared to the one obtained using uncorrelated
Poisson input. For a better intuition, we used an approximation of the activation function of
LIF neurons here, but the argument also holds for the exact expression derived in Petrovici,
Bill, Bytschok, Schemmel, and Meier (2016), as verified by simulations (Fig. 3.15C).

Apart from the change in FMP width and inverse slope of the activation function, the
background autocorrelations do not affect neuron properties that depend linearly on the
synaptic noise input, as for instance the mean of the FMP or the inflection point u′0 = u0

of the activation function (Fig. 3.15B,C). Thus, according to Eqs. 3.9 and 3.10, exchanging
Poisson noise with autocorrelated background noise is equivalent to a rescaling of the
Boltzmann parameters (weights Wkj and biases b) by a factor equal to the ratio between
the new and the original slope α′/α. Consequently, the network is still guaranteed to sample
from a Boltzmann distribution as long as the noise characteristics are taken into account
when setting synaptic connections wkj and leak potentials El, see Fig. 3.15D.

In addition to being autocorrelated, network-generated noise is cross-correlated, mostly
due to synaptic connections between noise-providing neurons (Fig. 3.16A) or due to neurons
of the principal network sharing some of their noise sources (Fig. 3.17A). Such correlations
in the background translate to additional correlations between neurons in the principal
network, distorting the distribution the network is sampling from.
Different from autocorrelations, background cross-correlations can be averaged out to a

significant degree. If two neurons receive cross-correlated background noise, their dynamics
are correlated as well, which can be measured by the correlation coefficient (CC) ρ between
the FMPs of the two neurons (see Appendix A.1.5):

ρ(ufree
i , ufree

j ) ∝
∑
l,m

wilwjm
(
Erev
il − µi

)(
Erev
jm − µj

)
(3.36)

·
∫

d∆ λli,mj C (Sl,i, Sm,j,∆) C̃ (κ, κ,∆) ,
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Figure 3.15.: (A) By appropriate parametrization of the background networks, we adjust the mean spike
frequency of the background neurons (blue in Fig. 3.14) to study the effect of background
autocorrelations C(Sx, Sx,∆). Higher firing probabilities increase the chance of evoking bursts,
which induce background autocorrelations for the neurons in the principal network at multiples
of τref (dark blue: simulation results; light blue: ek ln p̄ with k = ∆

τref
, see Eq. 3.33). (B)

Background autocorrelation narrows the FMP distribution of neurons in the principal network:
simulation (blue) and the theoretical prediction (Eq. 3.34, light blue) vs. background Poisson
noise of the same rate (gray). Background intensities correspond to (A). (C) Single-neuron
activation functions corresponding to (A,B) and the theoretical prediction (Eq. 3.35, light
blue line). For autocorrelated noise, the slope of the response curve changes, but the inflection
point (with p(z = 1) = 0.5) is conserved. (D) Kullback-Leibler divergence DKL (pnet ‖ ptarget)
(median and range between the first and third quartile) for the three cases shown in (A)-(C)
after sampling from 50 different target distributions with 10 different random seeds for the
3-neuron network depicted in Fig. 3.14. Appropriate reparametrization can fully cancel out the
effect of background autocorrelations (blue). The according results without reparametrization
(gray) and with Poisson input (red) are also shown. Figures and caption adjusted from Dold
et al. (2019a).

where l sums over all background spike trains Sl,i projecting to neuron i and m sums over all
background spike trains Sm,j projecting to neuron j. C̃ (κ, κ,∆) is the unnormalized ACF of
the PSP kernel κ, i.e., C̃ (κ, κ,∆) = 〈κ(t)κ(t+ ∆)〉, and C (Sl,i, Sm,j,∆) the cross-correlation
function of the background inputs. λli,mj is given by λli,mj =

√
Var (Sl,i) Var (Sm,j).

Background cross-correlations couple to the membrane potentials via the synaptic back-
ground weights wilwjm (Fig. 3.16A). Thus, since we can assume that background correlations
are identically distributed over an ensemble, even exclusively positive (or negative) cross-
correlations can average out as long as the signs and strengths of the synaptic weights are
drawn from a symmetric probability distribution12 (Fig. 3.16A,B). However, the correla-
tion coefficient also depends on the distance of the mean FMP to the reversal potentials,(
Erev
il − µi

)(
Erev
jm − µj

)
, and therefore a complete cancelation to zero correlation between

FMPs is not guaranteed. Even though this can be accounted for by changing the distribu-
tion synaptic background connections are generated from (see Appendix A.1.5), we found
that for biological plausible reversal potentials, a very simple cross-wiring rule, i.e., indepen-
dently and randomly determined connections, already suffices to accomplish low background

12This way of compensating background correlations is independent of the weight distribution of the noise-
generating networks.
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Figure 3.16.: (A) A pair of interconnected neurons in a background network generates correlated noise,
as given by Eq. 3.36. The effect of cross-correlated background on a pair of target neurons
depends on the nature of synaptic projections from the background to the principal network.
Here, we depict the case where their interaction wpre

ij is excitatory; the inhibitory case is a
mirror image thereof. Left: If forward projections are of the same type, PSPs will be positively
correlated. Middle: Different synapse types in the forward projection only change the sign of
the PSP correlations. Right: For many background inputs with mixed connectivity patterns,
correlations can average out to zero even when all input correlations have the same sign.
(B) Same experiment as in Fig. 3.15D, with background connection statistics adjusted to
compensate for input cross-correlations. The uncompensated cases from (A, left) and (A,
middle) are shown in gray. Figures and caption adjusted from Dold et al. (2019a).

cross-correlations and therefore reach a good sampling performance (Fig. 3.16B).
The effect of cross-correlations can also be treated similarly to autocorrelations by directly

looking at the influence on the sampling dynamics. For simplicity, we restrict the discussion
here to the case of shared input correlations, but the observations are true for all kinds of
background cross-correlations, independent of their origin. To illustrate the effect of cross-
correlated background noise on the sampled distribution, we look at a network consisting
of two neurons that sample from a binary Boltzmann distribution with states (1, 1), (1, 0),
(0, 1) and (1, 1):

• If we introduce shared noise, this leads to a synchronization of neuronal activity, shifting
probability mass from the asynchronous (1, 0) and (0, 1) states to the synchronous
(0, 0) and (1, 1) states (Fig. 3.17A).

• If, instead of introducing shared noise, we change the correlation between neurons by
changing the synaptic strength, this only leads to a shift of probability mass into the
(1, 1) state, because only the (1, 1) state has a non-zero contribution to the energy
that depends on the weights, see Fig. 3.17B.

Therefore, shared noise and synaptic weights – even though both increase the correlation
between neurons – have a different effect on the shape of the encoded probability distribu-
tion. This changes when we switch from the natural13 state space z ∈ {0, 1}N to the more

13The z = 0 state for a silent neuron is arguably more natural, because it has no effect on its postsynaptic
partners during this state. In contrast, z ∈ {−1, 1} would, for example, imply efferent excitation upon
spiking and constant efferent inhibition otherwise.
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Figure 3.17.: (A)–(C) Exemplary sampled distributions for a network of two neurons. The “default” case is
the one where all weights and biases are set to zero (uniform distribution, blue bars). (A) Shared
noise sources have a correlating effect, shifting probability mass into the (1,1) and (0,0) states
(red bars). (B) In the {0, 1}2 space, increased weights introduce a (positive) shift of probability
mass from all other states towards the (1,1) state (red bars), which is markedly different from
the effect of correlated noise. (C) In the {−1, 1}2 space, increased weights have the same effect
as correlated noise (red bars). (D) Correlation-canceling reparametrization in the principal
network. By transforming the state space from z ∈ {0, 1}n to z′ ∈ {−1, 1}, input correlations
attain the same functional effect as synaptic weights (Eq. 3.38); simulation results given as
red dots, linear fit as red line. Weight rescaling (green) followed by a transformation back into
the z ∈ {0, 1}n state space (which affects both weights and biases) can therefore alleviate
the effects of correlated background. (E) Similar experiment as in Fig. 3.15D for a network
with ten neurons, with parameters adjusted to compensate for input cross-correlations. As in
the case of autocorrelated background, cross-correlations can be canceled out by appropriate
reparametrization. Figures and caption adjusted from Dold et al. (2019a).

symmetric space z′ ∈ {−1, 1}N (i.e., z′ = 2z − 1). By requiring p(z′) !
= p(z), a transforma-

tion of weights and biases between the two state spaces can be found that conserves state
probabilities (i.e., conserve the energy function up to constant terms, see Appendix A.1.6):

W ′ =
1

4
W and b′ =

1

2
b +

1

4

∑
i

coliW . (3.37)

In the {−1, 1} state space, the energy of all four states depends on the weights, and increasing
weights leads to a shift in probability mass from asymmetric states (−1, 1), (1,−1) to
symmetric states (−1,−1), (1, 1) (Fig. 3.17C); as is the case for shared noise. Thus, in the
{−1, 1} space, shared noise and synaptic connections have the same effect on the shape of
the sampled probability distribution. Consequently, weights in the {−1, 1} space can be used
to mitigate the effect of shared noise correlations. Therefore, for spiking networks, we can
use the following heuristic to account for background cross-correlations: first, by changing
to the {−1, 1} state space, weights w′ij can be found that precisely conserves the desired
correlation structure between neurons (Fig. 3.17D):

w′ij = g−1[ρ(Si, Sj)] ≈
ρ(Si, Sj)− g0

g1

, (3.38)

with constants g0 and g1. Afterwards, this weight is mapped to Boltzmann parameters via
the inverse of Eq. 3.37 and subsequently synaptic weights and leak potentials of the spiking
neural network using Eqs. 3.9 and 3.10, see Fig. 3.17E.
To summarize, we found that background noise correlations (both auto and cross) are

equivalent to offsets in the parameters constituting the distribution a network is sampling
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from (e.g., synaptic weights); i.e., the distribution the network samples from remains in the
well-defined Boltzmann domain. Thus, the effect of correlated background noise is rendered
controllable through synaptic weights and biases, either (i) when using Eqs. 3.9 and 3.10 to
set up spike-based sampling networks or (ii) when training networks on, e.g., visual sensory
streams, as such shifts represent offsets in the network initialization and are automatically
compensated for during training.

3.4.3 Deterministic probabilistic inference with spikes

In the last section, we investigated the effect of correlated background noise on the dynamics
and sampling performance of spiking neural networks. We concluded that the activity of
spike-based sampling networks is a sufficient source of stochasticity for other spike-based
sampling networks, since all effects that follow from replacing Poisson noise in a network
with functional output from other networks can be compensated by appropriate parameter
adjustments. However, until now, only one (principal) network received noise from other
sampling networks, whilst the others were still fed by Poisson input. To set up an ensemble
of functional spiking networks that all perform different sampling tasks without explicit
Poisson input, the ensemble has to fulfill a self-consistency condition: the spike statistics of
the generated output has to equal the spike statistics of the expected input, i.e., the assumed
noise input – or more casually phrased: ensemble output and ensemble input have to match.
Inspired by the findings of the previous chapter, we found two ways to initialize ensembles in a
self-consistent state while controlling the distributions each network is sampling from, which
we call “calibration scheme” (Fig. 3.18) and “plasticity scheme” (Fig. 3.19) for convenience.

The idea behind the calibration scheme is based on the following observation: in the
self-consistent state, each network of the ensemble samples from its target distribution given
by synaptic weights and leak potentials (weights and biases). Consequently, the generated
output statistics are indistinguishable from an ensemble without interconnections, where
each network still receives private Poisson noise to attain stochastic firing (Fig. 3.18A).
Hence, to characterize the expected background activity under in-vivo-like conditions, we
simulate each network with Poisson noise first. The collected background spikes are then
used to determine the activation function of each neuron, enabling us to use the translation
rules Eqs. 3.9 and 3.10 to calculate the correct synaptic weights and leak potentials under
ensemble background noise. This way, the ensemble is initialized in a self-consistent state,
where it uses its own activity as noise instead of external Poisson source. The approach is
verified for a simple test setup in Fig. 3.18B and can be used to set up arbitrary ensembles
rather quickly, as will be shown in the next section.
As simple as the calibration scheme might be, it is rather inconvenient (and artificial)

to record the sampling dynamics under Poisson noise in advance, before setting up the
ensemble without Poisson input. Since background correlations are effectively just offsets
in parameters like synaptic weights, such ensembles can be trained from scratch – which
we call the “plasticity scheme”. Thus, the self-consistent state can be found automatically
via synaptic plasticity, independent of the underlying functionality each network has to
implement. In such an approach, the whole ensemble is trained in parallel using wake-sleep
learning (Eqs. 3.19 and 3.20) and each network learns to (i) perform its function and (ii)
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3. Spike-based coding as deterministic Bayesian inference

use the available background noise to achieve the desired functionality simultaneously. That
is, the ensemble is automatically shaped by synaptic plasticity to reach a functional self-
consistent state where the dynamics of individual networks in the ensemble can be described
via the theory of spike-based sampling (Petrovici, Bill, Bytschok, Schemmel, and Meier ,
2016; Dold, Bytschok, Kungl, Baumbach, Breitwieser, Senn, Schemmel, Meier, and Petrovici ,
2019a). We demonstrate this for an ensemble of 100 6-neuron sampling networks with an
inter-network connectivity of ε = 0.1 and random synaptic weights. During training, no
external input is needed to kick-start neuronal activity, as some neurons spike spontaneously
due to random parameter initialization. After an initially strongly synchronized phase,
ensemble activity becomes asynchronous and irregular due to strong inhibitory background
noise weights, starting the sampling process (Fig. 3.19A). Post-training, the ensemble reaches
a sampling performance (median DKL) of 1.06+0.27

−0.40 × 10−3, which is similar to the median
performance of an idealized setup (independent, Poisson-driven networks as in Petrovici, Bill,
Bytschok, Schemmel, and Meier 2016) of 1.05+0.15

−0.35 × 10−3 (errors are given by the first
and third quartile), see Fig. 3.19B. To put the above DKL values in perspective, we compare
the sampled and target distributions of one of the networks in the ensemble at various stages
of learning (Fig. 3.19C). Thus, despite the fully deterministic nature of the system, the
network dynamics and achieved performance after training are essentially indistinguishable
from that of networks harnessing explicit noise for the representation of probability.
In conclusion, a self-consistent ensemble configuration where output and input statistics
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Figure 3.18.: Illustration and application of the calibration scheme. (A) A straightforward way to set up the
parameters of each network (wij and El) is to use the parameter translation Eqs. 3.9 and 3.10,
i.e., use the corresponding activation function of each neuron to correctly account for the
background noise statistics. This is demonstrated here for the case of (left) 399 networks (only
two shown) receiving Poisson noise and one network only receiving ensemble input and (right)
all networks only receiving ensemble input. In both cases, the resulting activation function
is the same and we can indeed use it to translate the parameters of the target distribution
to neurosynaptic parameters. (B) Using the corresponding activation functions to set up the
ensemble (but no training), each network in the ensemble is able to accurately sample from its
target distribution without explicit noise, as expected from our considerations in (A) and the
previous section. This is shown here for an ensemble of 400 3-neuron sampling networks with
an interconnection probability of 0.05, reaching a median DKL of 12.8+6.4

−5.0 × 10−3 (blue),
which is close to the ideal result with Poisson noise of 6.2+2.0

−2.0 × 10−3 (black, errors given as
the first and third quartile). Figures and caption adjusted from Dold et al. (2019a).
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Figure 3.19.: Sampling without explicit noise from a set of predefined target distributions. (A) (top) Tempo-
ral evolution of spiking activity in an ensemble of 100 interconnected 6-neuron networks with
no source of explicit noise. An initial burst of regular activity caused by neurons with a strong
enough positive bias, i.e., leak potential above threshold, quickly transitions to asynchronous
irregular activity due to inhibitory synapses. (bottom) Distribution of mean neuronal firing
rates of the ensemble after training, covering the range of firing rates investigated in Fig. 3.15.
(B) Median sampling quality of the ensemble during learning, for a test sampling period of
106ms. At the end of the learning phase, the sampling quality of individual networks in the
ensemble (blue) is on par with the one obtained in the theoretically ideal case of independent
networks with Poisson background (black). Error bars given over 5 simulation runs with differ-
ent random seeds. (C) Illustration of a single target distribution (magenta) and corresponding
sampled distribution (blue) of a network in the ensemble at several stages of the learning
process (dashed green lines in (B)). Figures and caption adjusted from Dold et al. (2019a).

agree can be reached by virtue of biophysical features like weak inter-connectivity between
modules as well as ordinary (Hebbian-like) synaptic plasticity14. This allows a self-contained,
self-consistent and deterministic implementation of Bayesian inference in spiking neuronal
systems, strengthening the biological plausibility of the original theory (Petrovici, Bill,
Bytschok, Schemmel, and Meier , 2016) while decreasing the structural constraints for physical
realizations like neuromorphic hardware.

3.4.4 Deterministic inference in hierarchical networks

Recently, spiking neural networks have been shown to yield powerful discriminative and
generative capabilities comparable to abstract neural networks (Leng, Martel, Breitwieser,
Bytschok, Senn, Schemmel, Meier, and Petrovici , 2018; Lee, Delbruck, and Pfeiffer , 2016;
Zenke and Ganguli , 2018; Kheradpisheh, Ganjtabesh, Thorpe, and Masquelier , 2018; Bellec,
Salaj, Subramoney, Legenstein, and Maass, 2018; Bellec, Scherr, Hajek, Salaj, Legenstein,
and Maass , 2019; Pfeiffer and Pfeil , 2018). In this spirit, we extend the study of deterministic
ensembles to networks trained on higher-dimensional visual input, i.e., the EMNIST data
set (Cohen, Afshar, Tapson, and van Schaik , 2017), an extended version of the widely used
MNIST data set (LeCun, Bottou, Bengio, and Haffner , 1998) that includes black and white
images of digits as well as capital and lower-case letters with a size of 28× 28 pixels. We use
a hierarchical architecture (Fig. 3.20A), where inference is Bayesian in both top-down and
bottom-up direction. The bottom-up pathway is used to calculate the conditional probability

14In Hebbian learning, weight updates are a function of the pre- and postsynaptic activity only, see Sec-
tion 5.1.
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Figure 3.20.: Bayesian inference on visual input. (A) Illustration of the connectivity between two hierarchical
networks in the simulated ensemble. Each spiking network has a visible area v, a hidden h and
a label area l with 784, 200 and 5 neurons, respectively. Neurons in the same area of a network
are not interconnected. Each neuron in a network receives only activity from the hidden
areas of other networks as background (no sources of explicit noise). (B) An ensemble of four
such spike-based sampling networks (red) is trained to perform generative and discriminative
tasks on visual data from the EMNIST data set. We use the classification rate of restricted
Boltzmann machines trained with the same hyperparameters as a benchmark (blue). Error bars
are given (on blue) over 10 test runs and (on red) over 10 ensemble realizations with different
random seeds. (C) Illustration of a scenario where one of the four networks (red boxes) receives
visual input for classification (B). At the same time, the other networks continuously generate
images from their respective learned distributions (column). The shown examples (left to right)
were picked to cover a representative range of network activity. (D) Pattern generation and
mixing during unconstrained dreaming. Here, we show the activity of the visible area of all
four networks from (B), each spanning three rows. Time evolves from left to right. (E) Pattern
completion and rivalry for two instances of incomplete visual stimuli. The stimulus consists of
the top right and bottom right quadrant of the visible area, respectively. In the first run, we
clamp the top arc of a ’B’ compatible with either a ’B’ or an ’R’ (top three rows, red), in the
second run we choose the bottom line of an ’L’ compatible with an ’L’, an ’E’, a ’Z’ or a ’C’
(bottom three rows, red). An ensemble of networks performs Bayesian inference by implicitly
evaluating the conditional distribution of the unstimulated visible neurons, which manifests
itself here as sampling from all image classes compatible with the ambiguous stimulus. Time
evolves from left to right. Figures and captain adjusted from Dold et al. (2019a).

distribution over the labels given a certain input pattern, i.e., perform classification. The
top-down pathway is used to generate patterns or explain the observed input. If an occluded
image is presented to the network, it is thus capable of filling in the missing details in the
Bayesian sense (“pattern completion”) and explore different high-probability interpretations
(“pattern rivalry”). Further, if no input is given to the network, it freely samples from the
prior distribution and generates patterns similar to those included in the data set used
during training (“dreaming”).
To set up ensembles of data-driven networks, we first pre-train restricted Boltzmann

machines using the CAST algorithm (Salakhutdinov , 2010) and use the calibration scheme
introduced in the previous section to set up a noise-free ensemble. We create an ensemble of
four spike-based sampling networks with 784 visible, 200 hidden and 5 label neurons each,
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Figure 3.21.: Pattern completion in an ensemble trained on EMNIST. (A) Relative abundance of the label
output while clamping parts of a ’B’. Most of the time (79.85%), the image is correctly classified
as a ’B’. The closest alternative explanation, an ’R’, is generated second most (17.45%). The
remaining classes are explored significantly less often by the network (0.43%, 0.70%, 1.57%).
(B) Examples of the visible area activity while the label area classifies the partially clamped
images either as a ’B’ (top) or an ’R’ (bottom). (C) Examples of the visible area activity
while classifying the image as a ’T’, ’X’ or ’V’. In these cases, the images generated by the
visible neurons show prominent features of these letters. Figures and caption adjusted from
Dold et al. (2019a).

where each network was trained on a different subset of the EMNIST data set: ({a, 1, 5, Y,
W}, {B, R, T, X, V}, {1, 3, 5, 7, 9} and {A, C, E, L, Z}). This is done to imitate the modularity
of cortical areas, i.e., every subnetwork performs a different task. But the approach also
works if all networks are trained on the same data distribution. To validate the classification
performance, we test each network on a test set consisting of 200 images per class from
a separate data set, reaching a total median classification rate of 91.5+3.6

−3.0% compared
to 94.0+2.1

−1.5% of the initial restricted Boltzmann machines Fig. 3.20B. While one of the
networks receives visual input for classification, the others still freely sample from their prior
distribution and produce recognizable images (Fig. 3.20C). If no input is presented to the
networks, they all sample from their underlying prior distribution and generate recognizable
images (Fig. 3.20D). It is important to note that without any source of external noise, the
networks are capable to mix between the relevant modes (images belonging to all classes)
of their respective underlying distributions, which is a hallmark of a good generative model.
Moreover, when presenting a single network with ambiguous or incomplete data, for instance
a partly occluded image, it is able to infer different interpretations that are compatible with
the presented visual stimulus (Fig. 3.20E and Fig. 3.21). We further extend these results to
an ensemble trained on the full MNIST data set, reaching a similar generative performance
for all networks Fig. 3.22.
For such generative tasks like pattern completion, the key mechanism facilitating this

form of stochastic exploration is noise, which in our case is provided by the functional
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Figure 3.22.: Dreaming of MNIST in an ensemble of networks. (A) Dreaming ensemble of five hierarchical
spiking networks with 784 visible, 500 hidden and 10 label neurons (without explicit noise).
Each row represents samples from a single network of the ensembles, with samples being 375ms
apart. To set up the ensemble, a restricted Boltzmann machine was trained on the MNIST
data set and the resulting parameters translated to corresponding neurosynaptic parameters
of the ensemble using the calibration scheme. Here, to facilitate mixing, we used short-term
depression to modulate synaptic interactions and weaken attractor states that would be other-
wise difficult to escape (Leng et al., 2018). (B) t-distributed stochastic neighbor embedding
(t-SNE) representation (Maaten and Hinton, 2008) of consecutively generated images of two of
the five networks trained on MNIST digits. t-SNE is a technique for dimensionality reduction,
where high-dimensional data is mapped to lower-dimensional representations by trying to
preserve distances between data points locally. Both networks are able to generate and mix
between diverse images of different digit classes while dreaming. The red diamond marks the
first image in the sequence. Consecutive images are 400ms apart and connected by gray lines.
See Appendix A.2 for a link to an online video. Figures and caption adjusted from Dold et al.
(2019a).

activity of other neurons in the ensemble. In the presented case, the ensemble as well as
the networks are rather small. We expect that such ensembles scale well to larger networks
(or number of networks), where the influence of external sensory input on the ensemble
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3.4. Sampling in deterministic ensembles

activity becomes smaller. In the limit of large ensembles, input would only locally constrain
the posterior distribution of the receiving network, while the ensemble itself is still mainly
driven by self-generated activity – similar to how the early visual pathway is mostly driven
by recurrent circuitry and only modulated by visual input (Fiser et al., 2004; Leinweber
et al., 2017).

3.4.5 From many to one: ensembles with only one network

Until now, we regarded an ensemble as a collection of weakly connected individual networks.
However, the ensemble itself is a big, functional network, so one obvious question is whether
the introduced framework also scales to single networks. This can be shown to be true for
the special case of hierarchical networks, where lateral connections are introduced to act as
carriers of irregularity between neurons of an area – which would otherwise not be connected,
as functional connections are only between areas.
The connectivity structure of the ensembles presented in the previous sections can be

described in the following form:

• Neurons are labeled in increasing order. For instance, if the ensemble consists of N
networks with M neurons each, the activity vector has dimension N ×M , where the
first M entries belong to the first network, the next M entries to the second, etc.

• With such a sorting, the functional connectivity matrix has dimension (N ·M)×(N ·M),
with non-zero values on the block-diagonal (N blocks with size M ×M) and off-block-
diagonal values as well as the diagonal being zero.

• Connections used for background noise are then added in the off-block-diagonal (i.e.,
connections that are not used functionally).

• In case of networks with different sizes, the same applies, just with differently sized
blocks on the diagonal.

Hence, the connectivity matrix of the whole ensemble is dominated by strong symmetric
connections in the block-diagonal embedded in weak unidirectional connections in the off-
block-diagonal. If we look at the connectivity structure of a single restricted, hierarchical
network, it takes the inverse shape of such an ensemble:

• Each area represents a sub-network in the above sense, i.e., lateral connections are on
the block-diagonal again. Since in the hierarchical structure, lateral connections are
suppressed, the block-diagonal is zero.

• Functional connections between areas are on the off-block-diagonal.

Therefore, the inverse logic of the ensembles can be applied here: instead of utilizing the
off-block-diagonal connections as background noise connections, we can use the lateral (block-
diagonal) connections. This is demonstrated in Fig. 3.23 for a single hierarchical network
with 784 visible and 200 hidden units. To set up the network, we use a combination of
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Figure 3.23.: A single hierarchical network with 784 visible and 200 hidden neurons generating samples of
the MNIST handwritten digits data set without explicit noise sources, represented via t-SNE.
(A) Illustration of the used network architecture. Lateral (non-plastic) connections in each area
were utilized as a noise source (red), with an inter-connectivity of ε = 0.2. (B,C) Averaged
activity (average window ±90ms) of the visible area (B) after initializing the network and
(C) after further training the network. After initialization, the network is able to generate
recognizable images but does not mix well between different digit classes since the network
is not able to correctly utilize its own background activity as noise yet (B). Further training
the network on images of the MNIST training set improves both image quality and mixing
(C). During the second training phase, neurosynaptic parameters are adjusted such that every
neuron is able to perform its task with the available background activity it receives. See
Appendix A.2 for a link to an online video. Figures and caption adjusted from Dold et al.
(2019a).

the calibration scheme and plasticity scheme: first, to reduce simulation time, a restricted
Boltzmann machine is trained on the data and translated to neurosynaptic parameters using
the calibration scheme. However, since lateral noise connections have a strong influence on
the correlations encoded in the hidden and visible areas, an additional training phase in the
biological domain is needed (see Section 3.2.3), such that the network successfully learns to
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utilize the available background activity as noise, e.g., by accounting for background noise
correlations. After the training phase, the network is able to generate recognizable images
of all ten digit classes it was trained on, purely generated by its own dynamics without
any external or explicit source of noise. This way, a strong separation between modular
clusters, as discussed in previous sections, is not needed to apply the presented principle
of deterministic sampling in spiking neural networks. These results demonstrate that local
and sparse circuitry within an area provides a sufficient source of neuronal noise without
interfering with the functional performance of long-range connections between areas.

3.4.6 Functional ensembles on a physical neuronal substrate

The ensemble-based framework of spike-based sampling is an ideal candidate for neuromor-
phic implementations, allowing a self-sustained and closed physical realization of neural
sampling. We prototype the approach on the BrainScaleS–1 wafer scale system (Schemmel,
Fieres, and Meier , 2008; Schmitt et al., 2017; Kungl et al., 2019b), which is a mixed-signal
analog device implementing neurons and synapses in analog circuits while spike transmission
is digital (Fig. 3.24A, for details, see Section 2.2). As mentioned before, BrainScaleS–1 is a
low-energy system and, by virtue of the analog implementation, features an acceleration of
103−105 compared to real-time of the emulated biological system. However, apart from these
advantages, analog systems also introduce new challenges like fixed-pattern noise (originating
from the manufacturing process), spike loss due to congestion, finite resolution of parameters
(e.g., 4 bit weight resolution) and limited control over adjustable neuron parameters (e.g.,
time constants like the refractory period). Therefore, different from a simulation where all
neurons are completely identical, analog neurons are by nature of the substrate all unique
in their realization. The capability of our model to work on such an imperfect substrate is
important for biological plausibility, where similar mechanistic restrictions are present.

Implementing deterministic sampling ensembles on BrainScaleS–1 has three main benefits:

• it serves as an independent cross-check of the previously discussed theoretical and
numerical results,

• it tests the robustness of the ensemble-framework when facing challenges like limited
control over parameters and parameter precision and

• it represents a physical realization of neural sampling in a closed system (i.e., the
differential equations governing the electronic circuits are similar to those of the LIF
neurons), rendered controllable through synaptic plasticity.

We implemented a small ensemble of 15 4-neuron networks, with an inter-connectivity
of ε = 0.2 and a random weight and bias initialization on hardware. All networks of the
ensemble were simultaneously trained in-the-loop (Schmitt et al., 2017; Kungl et al., 2019b;
Wu, Chua, Zhang, Yang, Li, and Li , 2019a), i.e., spike statistics were collected from the
hardware emulation and used to calculate weight and bias updates on a host computer via
Eqs. 3.19 and 3.20. After training, the ensemble reaches a median sampling performance
that is comparable to the ideally attainable performance on hardware (Fig. 3.24B-D) –
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Figure 3.24.: Sampling without explicit noise from a set of predefined target distributions on a neuromorphic
substrate. (A) Photograph of a wafer from the BrainScaleS-1 neuromorphic system used in (B),
(C) and (D) before post-processing (i.e., adding additional structures like buses on top), which
would mask the underlying modular structure. Blue: exemplary membrane trace of an analog
neuron receiving Poisson noise. (B) Performance of an ensemble consisting of 15 4-neuron
spike-based sampling networks with no external noise during learning on the neuromorphic
substrate, shown in light blue for each network and with the median shown in dark blue.
The large fluctuations compared to software simulations (Fig. 3.19B) are a signature of the
natural variability of the substrate’s analog components. The dashed blue line represents the
best achieved median performance at DKL (pnet ‖ ptarget) = 3.99+1.27

−1.15 · 10−2 (errors given
by the distance to the first and third quartile). For comparison, we also plot the optimal
median performance for the case of independent, Poisson-driven networks emulated on the
same substrate, which lies at DKL (pnet ‖ ptarget) = 2.49+3.18

−0.71 · 10−2 (dashed black line). (C)
Left: Demonstration of sampling in the neuromorphic ensemble of spiking networks after 200
training steps. Individual networks in light blue, median performance in dark blue. Dashed
blue line: median performance before training (DKL of 1.18+0.47

−0.55). Dashed black line: median
performance of ideal networks, as in (B). Right: Best achieved performance, after 100s of
biological time (10ms of hardware time) for all networks in the ensemble depicted as blue dots
(sorted from lowest to highest DKL). For comparison, the same is plotted as black crosses for
their ideal counterparts. (D) Sampled (blue) and target (magenta) distributions of four of
the 15 networks. The selection is marked in (C) with green triangles (left) and vertical green
dashed lines (right). Since we made no particular selection of hardware neurons according to
their behavior, hardware defects have a significant impact on a small subset of the networks.
Despite these imperfections, a majority of networks perform close to the best value permitted
by the limited weight resolution (4 bits) of the substrate. See Appendix A.2 for a link to an
online video. Figures and caption adjusted from Dold et al. (2019a).

considering limitations like 4 bit weight resolution. As an “ideal” reference, we repeated the
experiment with external Poisson noise and no interconnections between networks. Even
though a few networks perform rather poorly in the “noiseless” ensemble, mostly due to
misbehaving neurons (e.g., permanently bursting), the majority of networks in the ensemble
is able to utilize the ensemble’s background activity to approximately sample from their
respective target distributions. We expect that such ensembles become more robust against
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individual neuron defects when scaled up to larger ensembles and networks trained on data.
These results highlight the feasibility of noiseless sampling even under extreme conditions

like small ensembles (here: in total 60 neurons) and an unreliable computing substrate.

3.5 Discussion

Starting with the trial-to-trial variability of cortical neurons as well as behavioral studies
suggesting that the brain operates in a near Bayes optimal way when faced with uncertainty
(Section 3.1), we presented a spike-based model that implements Bayesian computing in a
robust and self-contained manner (Sections 3.2 and 3.4). The presented model acts both
as a generative and discriminative model of its learned environment and can be used to
perform stochastic computations on static as well as spatio-temporal tasks. Especially
for the latter, we found that synaptic short-term plasticity yields an ideal mechanism to
facilitate exploration of the posterior probability distribution, allowing the network to arrive
at plausible solutions much faster given its current information status (Section 3.3).

The presented results propose both (i) a self-consistent and parsimonious (or in-vivo-like)
implementation of spike-based sampling in biological neural networks and (ii) a possible
functional purpose – giving neurons the flexibility to implement Bayesian computing – for
the stereotypical architectural blueprint of strongly connected clusters embedded in a sea
of weak interconnections found in the neocortex (Section 3.4).

Different to previous suggestions where the required stochasticity needed for neural sam-
pling might originate from in the brain (Neftci, Pedroni, Joshi, Al-Shedivat, and Cauwen-
berghs , 2016), the presented framework has a sound underpinning in the theory of sampling
with LIF neurons: although the presented ensembles are completely deterministic, their
dynamics can not only be described stochastically as approximate sampling from Boltzmann
distributions, but also be controlled and shaped to arbitrary functionality. We further expect
these results to translate to other spiking neuron models, as implied by our neuromorphic
implementation (Section 3.4.6), and scale to larger ensembles and networks, where the effects
of input and cross-wiring correlations become less restrictive. Moreover, the results presented
here reduce the architectural constraints imposed on physical neural substrates required to
perform spike-based probabilistic computations both in biology and neuromorphic hardware,
as illustrated in Section 3.4. It is particularly interesting that in the ensemble-based sampling
networks, the biological weights w of the subnetworks are not necessarily symmetric any-
more. This is because every neuron receives slightly different background noise, and hence,
even though the underlying Boltzmann weight W is symmetric, the translation formula
Eq. 3.9 can lead to asymmetric weights wij and wji, depending on the characteristics of the
postsynaptic neuron’s background noise.
We have made several assumptions to ease analysis of the proposed model, for instance,

we neglected both synaptic plasticity and short term plasticity for background connections.
However, if spike activity is not too high, i.e., tonic bursting only happens rarely, the effect
of short term plasticity on background noise connections are negligible. In fact, we saw
that tonic bursting has a negative effect on background noise quality due to its strong
autocorrelation, and short term plasticity can be used to decrease the overall effect of such
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3. Spike-based coding as deterministic Bayesian inference

strongly active neurons on noise quality. Furthermore, in future models, the clear separation
into plastic and non-plastic connections might be lifted to allow functional wiring between
modular areas, further narrowing the gap between noise and functionality in spiking neural
networks. Plastic background connections might also be used to further shape the noise
characteristics, as, e.g., proposed in Section 5.3.

Finally, the introduced framework allows a clear separation between the performed compu-
tation and its physical realization – both in terms of biology as well as analog neuromorphic
hardware. Thus, the main results of this chapter can be summarized with Marr’s three levels
of analysis (Marr , 1982):

1. Computational level: Processing of sensory stimuli using probabilistic inference.

2. Algorithmic level: Markov Chain Monte Carlo sampling.

3. Implementation level: Ensembles of LIF neurons – both as mathematical model or
physical realization – shapeable by sensory stimuli using a Hebbian-like plasticity rule.
Stochasticity is provided by the ensemble’s own spiking activity, while spikes represent
samples.

The presented results demonstrate that rich network dynamics arise in a weakly coupled
network of networks, describable as a stochastic system that satisfies a self-consistency
condition: noise input equaling the generated functional output – thus being completely
self-sufficient.

Details about simulations, calculations and implementations in this chapter can be found
in Appendix A.

3.6 Contributions

The results and figures of Section 3.3 are taken from Zenk (2018) and were produced by
Maximilian Zenk, whom I supervised during his Master’s thesis. The work in Section 3.4 is
a direct continuation of my Master’s thesis (Dold , 2016; Bytschok , 2017). Compared to the
preceding work, a rigorous mathematical analysis has been added as well as conceptually
important experiments showing that ensembles of deterministic networks (i) can be trained
from a random initial state to perform sampling of their respective target distributions, (ii)
are considerably robust and allow an implementation on analog neuromorphic hardware, (iii)
can be scaled up to hierarchical networks performing inference in high-dimensional spaces
and (iv) can be reduced to single, self-noising networks. Experimental results concerning the
characterization of correlated background noise that also appear in Dold (2016); Bytschok
(2017) have been reproduced and extended, representing original work. The results have
been published in Dold, Bytschok, Kungl, Baumbach, Breitwieser, Senn, Schemmel, Meier,
and Petrovici (2019a).
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4 | Intermezzo

In the previous chapter, we started by observing that neurons behave stochastically in vivo,
largely due to a strong background bombardment from 103 to 104 adjacent neurons. Func-
tionally, we showed that this background activity might be a key enabler of a probabilistic
computing scheme in the brain – or at least in brain-like devices – where spikes take on
the role of probabilistic samples from a posterior distribution as well as the role of back-
ground noise (“temperature” in physics, see Korcsak-Gorzo 2017; Baumbach, Schemmel, and
Petrovici 2019) to drive exploration of a posterior probability landscape in the first place
(Fig. 4.1, left). If trained on sensory stimuli, a spike-based sampling network approximates
the environment in terms of a generative probability distribution. This allows the network to

sensory 
input

output 
(behavioral response)

learning?

3 | Background activity for sampling 5 | Cortical structures for error-driven learning

ሶ𝒖 ← 𝜹𝑬 = 𝟎
ሶ𝑾 ← −𝛁𝑾𝑬
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sampling

short-term 
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Figure 4.1.: 3 | Schematic summary of the previous chapter. An ensemble of functional spiking neural
networks, each performing stochastic inference, provides itself with the required noise for prob-
abilistic computations – in this case sampling from a learned probability distribution. Thus,
stochasticity is attained from a modular and weakly interconnected network structure, a blueprint
also found in the neocortex. Especially for spatio-temporal prediction tasks, the performance of
such networks can be improved with a simple mechanism of real synapses: short-term plasticity.
5 | In the next chapter, we explore how learning of hierarchical cortical areas (colored areas)
can be phrased as an optimization procedure, solvable via gradient-based methods. We propose
a top-down approach, deriving neuronal and synaptic dynamics from first principles (formulas),
from which we deduce both a link to the well-known error backpropagation algorithm as well as
a biological implementation of the algorithm using local microcircuits and advanced neuronal
responses. Figures adjusted from https://commons.wikimedia.org/wiki/File:Brain_Surface_-
Gyri.SVG (version: 11:12, 30 March 2010).
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4. Intermezzo

make predictions about the environment and modulate its own perception when presented
with insufficient or unreliable inputs – which is mathematically described by sampling from
the conditional probability distribution.
Although Boltzmann machines have great representational power, they fell out of favor

in the AI field because of the hardships in training them: different from supervised models
trained end-to-end using error backpropagation (Linnainmaa, 1970; Werbos , 1982; Rumel-
hart, Hinton, and Williams , 1986), stochastic models like deep Boltzmann machines have
to be trained areawise in a greedy way1, i.e., never as a whole (Hinton and Salakhutdinov ,
2006; Salakhutdinov and Hinton, 2009). Furthermore, the wake-sleep algorithm is evaluated
using sampling, which requires that the MCMC has sufficiently converged before calculating
parameter updates, different from error backpropagation where only a single forward and
backward evaluation of the network is needed. In the next chapter, we explore a biologically
plausible learning framework that approximates the error backpropagation algorithm and
hence allows end-to-end learning of cortex-like networks (Fig. 4.1, right). To have a close
analogy to deep learning, we first investigate non-probabilistic supervised learning models;
though at the end, we also propose how the presented model could be extended to probabilis-
tic, generative models. Furthermore, for mathematical convenience we drop the assumption
of spike-based neurons and work with rate-based models (Eq. 2.2) instead – setting the focus
more on the actual implementation of error backpropagation in cortical tissue and less on
the neuronal coding scheme.
In the following chapter, we first introduce the error backpropagation algorithm and

discuss why it is, at least in its original form, not a suitable model for learning in the brain
(Section 5.1). Afterwards, we introduce a novel framework where coupled neuronal and
synaptic dynamics implement approximate real-time error backpropagation in a biologically
plausible way, i.e., the derived dynamics are directly mappable to components of cortical
networks (Section 5.2). Finally, we propose an extension of the derived model to unsupervised
learning as well as generative models (Section 5.3).

1The idea behind areawise training is to slowly build up a hierarchical network area by area. Thus, a first
area is trained unsupervised on data to learn useful representations. Then, the output of this area is
used to train another area, etc. This way, each area learns features useable by subsequent areas, which
are added one by one during the training process. In contrast, if the whole network is trained using
wake-sleep, weight updates in higher areas will not harmonize with updates in lower areas, as lower-area
updates affect higher-area activities.
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of cortical networks

(...) and this is the miraculous fact on which the rest of AI stands. It is the
fact that when you have a circuit, and you impose constraints on your circuit
using data, you can find a way to satisfy these constraints using backprop; by
iteratively making small changes to the weights of your neural network until its
predictions satisfy the data.

Ilya Sutskever, MIT Artificial General Intelligence (AGI)
“Meta-Learning and Self-Play”, 1.02.2018

5.1 Deep learning in the brain?

In the past years, deep learning methods achieved impressive results previously thought to
still remain elusive for a long time (LeCun et al., 2015; Ciregan et al., 2012; Krizhevsky
et al., 2012; Goodfellow et al., 2014; Silver et al., 2017; Vaswani et al., 2017), reforming our
understanding and the future role of AI (Brooks et al., 2012; Ng , 2016; Hassabis et al., 2017;
Sejnowski , 2018; Richards et al., 2019; Sejnowski , 2020). However, compared to abstract
neural networks used in deep learning, their biological archetypes studied in computational
neuroscience still lag behind in performance and scalability (Pfeiffer and Pfeil , 2018; Davies ,
2019).

One of the crucial ingredients of deep learning is the backpropagation-of-errors algorithm
(Linnainmaa, 1970; Werbos , 1982; Rumelhart, Hinton, and Williams , 1986; LeCun, Bengio,
and Hinton, 2015), which enables end-to-end learning of hierarchical neural networks, driven
by an output error formed through the network-generated output (given an input) and a
target output (the teaching signal). In contrast, learning in the cortex is believed to be largely
driven by correlation-based rules – devoid of any output errors; a type of learning that can be
summarized by Hebb’s rule: what fires together wires together (Hebb, 1949). One realization of
this paradigm observed in biology is spike time dependent plasticity (STDP), where synaptic
plasticity is modulated by the spike time difference of pre- and postsynaptic neurons (e.g.,
if pre- and postsynaptic spike times are causal, the synapse is strengthened, and weakened
otherwise), see Bi and Poo (2001); Sjöström and Gerstner (2010). Such Hebbian rules do not
scale well to deeper networks and are mostly confined to shallow learning (no hidden areas),
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5. Deep learning in mechanistic models of cortical networks

How adjust deep synapses
to improve final output…?

propagate and assign error

reduce cost 
(grad. desc.)

?

Figure 5.1.: How are deep synapses in the brain adjusted such that neuronal activity in lower areas is more
useful for higher cortical areas (left)? One possible solution to this problem is given by the error
backpropagation algorithm (right): if we assume that the highest area encodes the behavioral
response, we can define an output cost measuring the network’s performance in a given task.
Synaptic weights are then adjusted via gradient descent on the cost function. In case of the output
area, learning is driven by an output error derived from the cost. This error is backpropagated
through the network to adjust deep synapses, increasing the network’s overall performance on
the task to be learnt. Figure adjusted from https://commons.wikimedia.org/wiki/File:Brain_-
Surface_Gyri.SVG (version: 11:12, 30 March 2010).

being quite inferior in their learning capabilities compared to deep learning methods (Zhong,
Ling, and Wang , 2019). For linear networks and under specific conditions, one can show that
both learning paradigms – correlation-based learning as well as error-based learning – become
equivalent (Xie and Seung , 2003). Recent results for non-linear networks also show that at
least with one hidden area, Hebbian-based learning can achieve competitive results on some
machine learning benchmarks (Kheradpisheh, Ganjtabesh, Thorpe, and Masquelier , 2018;
Illing, Gerstner, and Brea, 2019; Krotov and Hopfield , 2019), although these approaches
lack the mathematical underpinning (i.e., performing gradient descent on an arbitrary cost
function) and scalability of the backpropagation algorithm (being effortlessly extendable to
deeper architectures).

The main challenge of training deep neural networks is the following: if we have a network
with, e.g., three areas, how should the synaptic weights from the first to second area be
changed such that the neurons in the last area benefit from this change – i.e., such that the
change leads to an improved network performance on a given task we want to learn? This is
generally known as the “credit assignment problem”, meaning: if the output of the network
is erroneous, how do we assign credit (or blame) to the deeper synapses, far away from
the output error, such that changing their weight improves the outcome (Fig. 5.1). Error
backpropagation solves this problem by assigning each synapse an error signal, iteratively
derived from the output error. However, in its classical form, error backpropagation requires
information that is not locally available to neurons (different from correlation-based learning
rules that only access pre-and postsynaptic quantities), and hence, for a long time, it was
believed to be biologically implausible and not relevant for understanding learning in the
brain (Crick , 1989). But to cite Geoffrey Hinton (Hinton, 2007):

Do you really believe that evolution could not find an efficient way to adapt a
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5.1. Deep learning in the brain?

feature so that it is more useful to higher-level features in the same sensory
pathway? (have faith!)

And in fact, in the light of recent evidence, the debate whether learning in the brain can be
described as gradient-based optimization has been rekindled again (Richards et al., 2019).
In particular, abstract neural networks trained with gradient-based methods – mostly error
backpropagation – on sensory inputs have been found to reproduce activity patterns found
in deeper cortical areas surprisingly well – even better than biophysical models constructed
bottom-up to model cortical structures and dynamics (Khaligh-Razavi and Kriegeskorte,
2014; Yamins, Hong, Cadieu, Solomon, Seibert, and DiCarlo, 2014; Yamins and DiCarlo,
2016; Schrimpf et al., 2018). Additionally, it has been found that cortical structures like
feedback connections can be used in combination with local Hebbian plasticity rules to
approximate error backpropagation in a biological plausible way (Whittington and Bogacz ,
2019). However, these models often still come with drawbacks of their own, like separation
of neuronal and synaptic dynamics or learning algorithms with several disjunct phases,
contradicting the dynamic and time-continuous nature of the brain.

Here, we propose a novel model that allows an implementation of error backpropagation in
time-continuous systems. Starting from an abstract energy function, we derive equations of
motion that can be mapped to features found in the neocortex, like pyramidal neurons and
local microcircuits (Section 2.1.3) as well as local plasticity rules. The top-down approach
allows us to tackle the problem of error backpropagation on all three of Marr’s levels of
analysis (Marr , 1982), with a stacked implementation level:

1. Computational level: learning of input-output relations in time-continuous neuronal
systems.

2. Algorithmic level: gradient-based optimization with error backpropagation.

3.1 1st implementation level: synaptic dynamics minimizing an energy function E and
neuronal dynamics minimizing the corresponding action A =

∫
Edt.

3.2 2nd implementation level: the derived dynamics can be mapped to cortical struc-
tures like pyramidal neurons with feedback connections and local interneuron micro-
circuits, again describable by dynamics as in 3.1.

In the following, we will first discuss the error backpropagation algorithm and its challenges
concerning biological plausibility before introducing the proposed model.

5.1.1 The error backpropagation algorithm

The backpropagation-of-errors algorithm (backprop) is an elegant and simple approach
to train a hierarchical network of neurons, extendable to recurrent networks (Rumelhart,
Hinton, and Williams , 1986; Williams and Zipser , 1989; Werbos et al., 1990). In general,
abstract neural networks equipped with non-polynomial activation functions ϕ are universal
function approximators (Leshno, Lin, Pinkus, and Schocken, 1993), i.e., the neural network
itself represents a flexible model parameterized by weights which can be learned end-to-end
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5. Deep learning in mechanistic models of cortical networks

from data1 by only providing inputs and target outputs (e.g., images and labels, or when
thinking of function fitting, xi and f(xi) for i = 1...N observations). An illustrative example
can be given for image recognition techniques: instead of engineering features that allow
classification of images into several categories (e.g., edge and corner detectors), a neural
network trained with error backpropagation learns useful features automatically (LeCun,
Bengio, and Hinton, 2015). This way, the network can adequately transform the input into
a linearly separable representation, making classification thereafter a simple task.

To derive the error backpropagation algorithm, we first define a hierarchical neural network
with N areas (called “layers” in deep learning) according to Eq. 2.1

ul = Wl r̄l−1 with r̄l−1 = ϕ(ul−1) and l = 1...N , (5.1)

with ul being the vector of membrane potentials in area l and weights Wl projecting from
neurons in area l − 1 to neurons in area l (Fig. 5.2). We dropped the bold notation for
vectors and matrices here. To optimize the network parameters, a cost function C (also
called loss or error function) is introduced that measures how well the network performs,
e.g., by taking the Euclidean norm of the difference between the prediction2 of the last area
N and the actual target output utarget

N

C =
1

2
‖utarget

N − uN‖2 . (5.2)

Training the network now consists of reducing the average cost on the given training data
set, which is achieved via gradient descent optimization

∆Wl = −η
〈
∂C

∂Wl

〉
data

, (5.3)

yielding for the last area, assuming a single data sample,

∆WN = −η ∂C

∂WN

= −η ∂C
∂uN

∂uN
∂WN

= η (utarget
N −WN r̄N−1) r̄T

N−1 = η ēN r̄
T
N−1 , (5.4)

where we used uN = WN r̄N−1 and introduced the scalar learning rate η and output error
ēN = − ∂C

∂uN
. To derive the updates of the weights for the next area, we use the chain rule

∆WN−1 ∝ −
∂C

∂WN−1

= − ∂C

∂uN−1

∂uN−1

∂WN−1

= ēN−1r̄
T
N−2 , (5.5)

with the backpropagated error

ēN−1 = − ∂C

∂uN−1

= − ∂C

∂uN

∂uN
∂uN−1

= r̄′N−1 �WT
N ēN , (5.6)

1To cite Yann Lecun: “DL [Deep Learning] is constructing networks of parameterized functional modules
& training them from examples using gradient-based optimization”, https://twitter.com/ylecun/
status/1215744205919670272, 10.01.2020.

2In deep learning, the last area is normally linear, normalized with a softmax function. To ease the
comparison with theory introduced later, we define the cost function over the membrane potentials
instead.
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Figure 5.2.: Illustration of the error backpropagation algorithm, which is separated into two distinct phases.
(left) An input is presented to the network, which leads to a forward propagation of activity,
resulting in an output. The cost function measures how well the network output matches the
target output. (right) Weight updates are defined as an optimization problem: minimizing the
cost function. The key property of error backpropagation is that weight updates (or rather errors
used for weight updates) are calculated iteratively in a mirror network, given as the transposed
of the forward network.

where � is element-wise multiplication. Notice that, due to the feedforward structure of the
network, we can pretend that the network only consists of N − 1 areas with output error
ēN−1 (since area N does not influence area N − 1). In this case, we can again apply the
chain rule as in Eqs. 5.5 and 5.6, from which we find an iterative formula for the errors:

ēl = r̄′l �WT
l+1ēl+1 , (5.7)

∆Wl = η ēl r̄
T
l−1 . (5.8)

This is commonly known as the error backpropagation algorithm: in order to reduce the
cost, first an input is given to the network and its output is calculated (“forward path”).
From this, the output error ēN is calculated, which is propagated through a mirror network
(with transposed weights) to obtain the weight updates for every area iteratively (“backward
path”), see Fig. 5.2.

Although the error backpropagation algorithm is rather simple and has become the gold
standard for training abstract neural networks (LeCun, Bengio, and Hinton, 2015), it turns
out to be hard to find ways how the brain might implement an optimization scheme like
backprop – or task-dependent gradient-based optimization in general.

5.1.2 The challenges of backprop in the brain

Several problems arise when exploring how the error backpropagation algorithm might be
physically realized, e.g., in the brain. First, the weights of the forward and backward path
are tied, i.e., the weights used for error backpropagation perfectly track the forward weights,
making the algorithm non-local. Furthermore, the algorithm is made up of distinct phases,
meaning that forward pass and backward pass happen separately, and each network area
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5. Deep learning in mechanistic models of cortical networks

has to wait until the error signal arrives and plasticity can be applied – the areas are “locked”
together. Hence, weight updates cannot be done in parallel, but are strictly limited by the
sequential roll out of the two mentioned phases. In addition, backprop does not provide
the means how the error signal is calculated, stored, propagated through the network and
accessed by synapses in a biologically feasible manner.

Recently, several solutions have been proposed for these problems. A major breakthrough
was the realization that random feedback weights are sufficient to reach competitive perfor-
mance in classification and regression tasks, with the effect that forward weights align with
the feedback weights during training to approximate error backpropagation (Lillicrap, Cown-
den, Tweed, and Akerman, 2016; Nøkland , 2016; Moskovitz, Litwin-Kumar, and Abbott , 2018;
Frenkel, Lefebvre, and Bol , 2019). In Jaderberg, Czarnecki, Osindero, Vinyals, Graves, Silver,
and Kavukcuoglu (2017), a model was proposed solving the areawise locking during learning:
instead of waiting for the backpropagated error, additional networks learn to approximate
the errors instead (so-called “synthetic gradients”), only requiring the activity of the corre-
sponding area. In an effort to push error backpropagation closer to neuroscience, Scellier
and Bengio (2017, 2019) demonstrated how neuronal dynamics and synaptic plasticity rules
can be derived from a single scalar function3, implementing an approximate version of error
backpropagation. Whittington and Bogacz (2017) connected the widely known predictive
coding framework (Rao and Ballard , 1999) to the error backpropagation algorithm, and in
Sacramento, Costa, Bengio, and Senn (2018); Guerguiev, Lillicrap, and Richards (2017), a
microcircuit of pyramidal and interneurons (see Section 2.1.3) was used to calculate and
propagate errors in simulated cortical tissue, demonstrating how such error signals might
become available to a local plasticity rule to implement approximate error backpropagation4.

However, in these models, neuronal and synaptic dynamics either require a separation of
time scales, with neuronal dynamics occurring much faster than or separately from synaptic
weight changes, or the learning rule consists of two distinct phases like in wake-sleep (see
Section 3.2.3). Therefore, the studied systems are not time-continuous during learning,
unlike real neuronal and synaptic systems. In the following, we introduce a novel model that
extends the previous ideas and derives a real-time version of error backpropagation from a
least-action principle. More specifically, we show how learning can happen without requiring
a separation of time scales or distinct learning phases. The derived model is compatible
with cortical structure and dynamics, suggesting that it might be portable to brain-inspired
neuromorphic systems, which often inherit many physical constraints from their biological
archetype.

3LeCun, Touresky, Hinton, and Sejnowski (1988) presented a similar framework to derive error backprop-
agation using Lagrange multipliers.

4For the specific case of deep reinforcement learning, an implementation of backprop using error neurons
was further proposed in Pozzi, Bohté, and Roelfsema (2018).
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5.2 Real-time error backpropagation in cortical circuits

5.2.1 A principled approach to learning in dynamical systems

To tackle the question of deep learning in dynamical systems like the brain, we choose a
top-down approach: starting with an abstract, scalar representation of cortical networks (a
so-called “energy function”), we derive equations of motion for a dynamical system capable of
learning. From the shape of the derived dynamical equations, we are then able to directly map
these dynamics to biological neural systems. Such an approach allows a smooth transition
from high-level, abstract theory, to possible biophysical implementations of the derived
dynamics as well as its algorithmic functionality5.
The dynamics and structure of the neural network (the “neural code”) is compressed in

the energy function E (Rao and Ballard , 1999; Whittington and Bogacz , 2017)

E = V + βC =
N∑
l=1

1

2
‖ul −Wlr̄l−1‖2 +

β

2
‖utarget

N − uN‖2 , (5.9)

composed of a “prediction error” (or “mismatch energy”6) V and a cost function C, weighted
by a scalar prefactor β. For simplicity7, we choose a multi-area network (or “layered” network
in deep learning) with N areas here. The prediction error is given by the difference of two
components: bottom-up input Wlr̄l−1 entering area l and the membrane potentials ul of the
neurons in area l. Wl are the weights of neurons projecting into area l and r̄l−1 = ϕ(ul−1) is
the vector of stationary rates of neurons in the previous area l − 1, given by an activation
function ϕ. We can interpret the bottom-up input from area l − 1 as a predictor of the
subsequent area’s membrane potentials. Hence, the prediction error tells us how much of the
activity in area l is due to the input coming from area l − 1, i.e., how well can the network
explain its own network state. The cost function C can be seen as a prediction error as
well, but to an imposed target utarget

N that is not generated by the network’s own activity,
but externally provided. In case of a hierarchical feedforward network, the last area could,
for instance, encode possible classification labels of visual inputs – with utarget

N being the
correct labels. The cost function then simply measures how well the network performs in
its classification task.

The goal of learning now is to adjust the model parameters – the weights – such that the
average cost over a given data set we want to model is minimized. The following weight

5This is similar to how we model neuronal systems and their algorithmic functionality in the previous
chapter: from top-down, we described neuronal dynamics as sampling from a Boltzmann distribution
characterized by an energy function E which encodes the network structure and interaction strengths
between neurons. These dynamics are implemented by a dynamical system using spikes (LIF neurons),
which are a mathematical abstraction of real biological neurons.

6Later, we propose a physical realization of this term, from which V can be interpreted as a mismatch
energy.

7The presented theory trivially generalizes to non-layered networks (e.g., recurrent networks).
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dynamics minimize the cost8 :

1

η
Ẇl = − dC

dWl

= − lim
β→0

1

β

∂E

∂Wl

= lim
β→0

1

β

(
ul −Wl r̄l−1

)
r̄T
l−1 , (5.10)

with learning rate η ≥ 0 and the condition that the neuronal dynamics satisfy ∂E
∂ul

= 0 for
all areas as well as E = 0 for β = 0, that is, when no target signal is imposed, the prediction
errors vanish and synaptic plasticity stops automatically.
The derived plasticity rule has an immediate biological interpretation: if we assume

pyramidal neurons (Section 2.1.3), then Wlr̄l−1 are the inputs to the basal compartments
and ul the somatic potentials. The plasticity rule can then be phrased as the basal prediction
of the somatic potential (Urbanczik and Senn, 2014). Thus, if no apical inputs arrive at
the pyramidal neuron, the somatic potential simply follows the basal input and Eq. 5.10
vanishes. Otherwise, plasticity will increase (or decrease) the basal input until it matches (or
predicts) the somatic potential correctly. With this interpretation, the synaptic plasticity is
completely local and has the attractive property that learning stops automatically, different
from purely Hebbian learning rules.
To make the connection to learning from the dendritic prediction of somatic spiking

(Urbanczik and Senn, 2014) more explicit, we can approximate Eq. 5.10 as

Ẇl = η
(
ul −Wl r̄l−1

)
r̄T
l−1 ≈ η

(
ϕ(ul)− ϕ(Wl r̄l−1)

) 1

ϕ′
r̄T
l−1 , (5.11)

for small prediction errors ul −Wl r̄l−1. To recover the original predictive plasticity rule pro-
posed in Urbanczik and Senn (2014), ϕ(ul) has to be sampled, representing backpropagating
action potentials that penetrate deep into the basal tree (Section 2.1.3). This way, synapses
projecting to the basal compartment can attain all the information required for plasticity
updates9.

5.2.2 Gradient-based neuron dynamics

What remains to be found are neuronal dynamics that are compatible with the derived
plasticity rule by obeying the two constraints ∂E

∂ul
= 0 and E = 0 for β = 0. Since, according

to Eq. 5.10, energy minima correspond to learned patterns, a standard method of deriving
neuronal dynamics is to assume that neural networks strive towards energy minima (Hopfield ,
1982; Rao and Ballard , 1999; Scellier and Bengio, 2017; Whittington and Bogacz , 2017),

8This can be derived following Scellier and Bengio (2017): given the condition ∂E
∂ul

= 0, the total derivatives
of the energy with respect to the weights are the same as the partial derivatives, dE

dWl
=
∑
l
∂E
∂ul

dul

dWl
+ ∂E
∂Wl

=
∂E
∂Wl

. The same is also true for β, i.e., dE/dβ = ∂E/∂β. Since the cost C can be extracted from the
energy E by taking the partial derivative with respect to β, C = ∂E/∂β, we can apply the derivative
identities (forWl and β) and interchange the total derivatives to arrive at− dC

dWl
= − d

dWl

∂E
∂β = − d

dβ
∂E
∂Wl

=

limβ→0
1
β (ul −Wl r̄l−1) r̄T

l−1. For the second last equality we exploited that for β = 0, the prediction
error vanishes and hence E = 0 and ∂E

∂Wl
= 0.

9STDP requires such backpropagating action potentials as well, as it is purely driven by pre- and post-
synaptic spike times.
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effectively performing maximum likelihood estimates (MLE) if we interpret Eq. 5.9 as
a negative log-likelihood function10. In this spirit, we can define neuronal dynamics as
performing gradient descent on the energy function (Fig. 5.3A-C and Fig. 5.4D,E):

τ u̇l = −∂E
∂ul

⇐⇒ τ u̇l = −ul +Wlr̄l−1 + ēl , for l = 1 . . . N , (5.12)

with ēl = r̄′l � [WT
l+1(ul+1 −Wl+1r̄l)] for l = 1 . . . N − 1 and ēN = β

(
utarget
N − uN

)
,

resulting in leaky membrane dynamics as discussed for Eq. 2.2. Apart from the forward input
Wlr̄l−1 discussed previously, an error term ēl enters the membrane dynamics, originating
from “nudging” at the output area ēN : to train the network, the output membrane potentials
uN are slightly pulled towards the target values utarget

N . How strongly the last area is pulled
to the target is controlled by the nudging strength β. As in other models of backpropagation
in the brain (Scellier and Bengio, 2017; Whittington and Bogacz , 2017; Guerguiev, Lillicrap,
and Richards , 2017; Sacramento, Costa, Bengio, and Senn, 2018), the constraints set by
the plasticity rule Eq. 5.10 are only satisfied if the network resides in a stationary state
∂E
∂ul
∝ u̇l = 0. If this is the case, we can identify the error entering the neuronal dynamics as

the prediction error from the energy function E

ēl = ul −Wlr̄l−1 , (5.13)

which then also enters the plasticity rule Eq. 5.10

1

η
Ẇl = lim

β→0

1

β

(
ul −Wl r̄l−1

)
r̄T
l−1 = lim

β→0

1

β
ēl r̄

T
l−1 , (5.14)

and the error representation itself

ēl = r̄′l � [WT
l+1(ul+1 −Wl+1r̄l)] = r̄′l �WT

l+1ēl+1 , (5.15)

taking the iterative form of the error backpropagation algorithm (Eq. 5.7). Thus, as long as
the neuronal dynamics are stationary, weak nudging11 of the last area introduces an error
signal which then propagates backward through the network via the membrane potentials.
Without nudging, this output error is zero, and hence all areawise prediction errors vanish,
leading to a vanishing energy function E as required by the plasticity rule. Therefore, as
long as the network is stationary, the local plasticity rule Eq. 5.14 minimizes a local error
signal, and by doing so performs gradient descent on a (global) cost function C from which
the output error is derived12.

10Different from the stochastic networks of the previous chapter that sampled the whole energy landscape.
11Weak nudging is required such that with and without nudging, the forward activity of the network is

approximately equal, i.e., learning (or nudging) does not strongly disturb the inference pathway.
12Although errors are propagated through the transpose of the forward weights, which is non-local. This

problem will be discussed in Section 5.2.5.

69



5. Deep learning in mechanistic models of cortical networks

5.2.3 From gradients to lookahead dynamics

In the gradient-based model, learning is separated into two phases with plasticity either
turned on or off. While a new and static input stimulus uinput

0 is presented to the network,
plasticity is turned off until neuronal dynamics reach a stationary state (Fig. 5.3A,B). If
the output area is not nudged towards a target utarget

N (i.e., β = 0), the network settles in
an energy minimum with zero value (Fig. 5.3A). Otherwise it settles in a non-zero energy
minimum (Fig. 5.3B), as the output error propagates areawise through the network via
feedback connections WT, leading to non-zero contributions when summing up the squared
prediction errors in the energy function Eq. 5.9. After convergence, plasticity can be turned
on to decrease the energy back towards zero (Fig. 5.3C) and hence forcing the network to
produce the output utarget

N when presenting the corresponding input uinput
0 without nudging,

whereas synaptic plasticity has to be much slower than neuronal dynamics in order to remain
approximately in the steady state.
This partition into phases is indispensable for plasticity to reduce the cost function and

has been used in previous energy-based approaches (Pineda, 1987; Almeida, 1987; LeCun,
Touresky, Hinton, and Sejnowski , 1988; Scellier and Bengio, 2017; Whittington and Bogacz ,
2017). It originates from the fact that, because of the introduced neuronal dynamics, the
feedback from higher13 areas will always be delayed due to somatic (leaky) integration.
Hence, if the activity in a lower area causes an error in a higher area, and this error is fed
back to the lower area, the correcting error signal will arrive too late (see Fig. 5.4E). In fact,
the error signal will be mixed with bottom-up activity corresponding to new input patterns,
thus being disturbed and rendered unusable for learning the presented patterns. This effect
becomes worse when increasing the number of areas, leading to larger waiting times until
the steady state is reached and plasticity can be turned on, thus making it impossible to
learn input-output relations which are not presented in a static way.
In the following, we propose an extension of the gradient-based model which allows neu-

ronal and synaptic dynamics to be on all the time, allowing plasticity to act at every moment
in time when presented with a time-continuous input-output stream (uinput

0 (t), utarget
N (t)),

without any phases or a strong separation of time scales. This is achieved by replacing
the firing rate r̄l−1(t) and error ēl(t) with a lookahead (or advanced/prospective) version
r̄l−1(t+ τ) and ēl(t+ τ) thereof:

τ u̇l(t) ≈ −ul(t) +Wlr̄l−1(t+ τ) + ēl(t+ τ) . (5.16)

In case of rates, the advanced version contains the information which rate (or membrane
potential) the neuron will have in the future (i.e., τ ms later when the stimulus actually
arrives), hence bridging the temporal delay introduced by somatic and dendritic filtering.
The upper area will integrate this rate, and its instantaneous voltage ul+1(t) can now be
seen as directly caused by ul(t) at the same time step t. Similarly, an advanced error in
the upper area will be fed back and, when being integrated with the lower-area voltage
ul(t), adequately correct the lower-area membrane potential in order to undo the upper-area
error caused by ul(t). This way, we establish in Eq. 5.16 the correct causal structure such

13Higher in the sense of closer to the output area, and lower in the sense of closer to the input.
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5.2. Real-time error backpropagation in cortical circuits

Figure 5.3.: Illustration of the network dynamics for energy-based models without (A-C) and with (D)
lookaheads. (A-C) For purely gradient-based neuronal dynamics, the network always settles in
a stationary state given by an energy minimum. Without teacher signal (β = 0), this minimum
corresponds to a global minimum with zero energy (A). With teaching (β 6= 0), the energy
minimum has a value E 6= 0 (B). After network dynamics are stationary, plasticity can be
turned on to reduce the energy back to zero, effectively learning the input-output relation (C).
(D) With lookaheads, the network moves along a zero-energy trajectory (green), here shown
for two neurons with membrane potentials u1 and u2. After initialization (t0), the two neurons
decay exponentially fast towards the inputs I1 and I2 and follow them consistently. Nudging
(β 6= 0) with an unlearned input-output stimulus pushes the network to non-zero energy regions
(black arrows), while plasticity continuously pulls the trajectory back (dashed black arrows) to
a zero-energy trajectory (blue). 2D projections of all trajectories are shown at the bottom.

that (locally) between areas, the temporal connection between inputs leading to an error
and backpropagated errors is not lost due to filtering delays (Fig. 5.4D,E). Different from
the gradient descent approach, the network now moves along a zero-energy trajectory in
the absence of nudging. Whenever the output is nudged, the trajectory is pushed towards
non-zero energy regions, but synaptic plasticity continuously pulls it back to the zero-energy
plain, simultaneously minimizing the output cost (Fig. 5.3D).

Even though the advanced rates as introduced here are strongly coupled to the low-pass
filtering mechanism, such advancements in the instantaneous response of cortical neurons
have in fact been measured in response to sinusoidally modulated input currents superim-
posed with background noise, with a temporal advancement of 20ms, i.e., on the same order
of magnitude as the membrane time constant14 (Köndgen, Geisler, Fusi, Wang, Lüscher,
and Giugliano (2008), see also Fig. 5.4A). To advance its rate, a neuron only needs access
to its own membrane potential ul and time derivative u̇l at time t. This can be seen when
considering the first two Taylor expansion terms of the advanced rate (Fig. 5.4B)

r̄l(t+ τ) = r̄l(t) + τ ˙̄rl(t) +O(τ 2) = r̄l(t) + τ r̄′l(t) u̇l(t) +O(τ 2) , (5.17)
14And in Palmer, Marre, Berry, and Bialek (2015), it is experimentally shown that groups of cells in the

retina carry information about the future state of their own activity, further highlighting the importance
of temporal predictions for neural responses.
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where r̄′l denotes the derivative of r̄l with respect to ul (of course for larger values of τ
this is only an approximation). Such an advancement might, for instance, be realized by
the mechanism to generate action potentials, allowing neurons to compensate (or even
over-compensate) for delays introduced by leaky dynamics; as can be demonstrated for
Hodgkin-Huxley-like activation mechanisms (Appendix B.1.1).

5.2.4 Deriving lookaheads via prospective least action

The idea of advanced responses as discussed in the previous section can be formalized by
combining the least action principle (see, e.g., Landau and Lifshitz 1959) with a prospec-
tive coding scheme (Brea, Gaál, Urbanczik, and Senn, 2016). To do so, we introduce the
“generalized neuronal coordinates” ũ, defined as the discounted future voltage

ũ(t) =
1

τ

∫ ∞
t

u(t′)e−
t′−t
τ dt′ . (5.18)

The ordinary membrane potentials can be recovered from these predictive voltages by
looking back in time, u = ũ − τ ˙̃u (Fig. 5.4C). By formulating the least action principle
with respect to these generalized neuronal coordinates, the ordinary membrane potentials
still have leaky dynamics, but rates and errors enter with lookaheads as described in the
previous section. The least action principle requires that the trajectory

(
ũ(t), ˙̃u(t)

)
leaves

the action A =
∫
E(ũ, ˙̃u)dt stationary, δA = 0. The solution for such an integral optimization

is generally given by the Euler-Lagrange equations

∂E

∂ũl
− d

dt

∂E

∂ ˙̃ul
= 0 , (5.19)

which – in our case – can be reformulated to(
1 + τ

d

dt

)
∂E

∂ul
= 0 , (5.20)

using15 ∂
∂ ˙̃ul

= −τ ∂
∂ul

. L = (1 + τ d
dt

) is the lookahead operator introduced in Eq. 5.17, i.e.,

L(r̄l) = r̄l(t) + τ ˙̄rl(t) ≈ r̄l(t+ τ) . (5.21)

Moreover, it is also the inverse operator of low-pass filtering

L(x̄) = x , (5.22)

for time-dependent variables x with their low-pass filtering

x̄(t) =
1

τ

∫ t

−∞
x(t′)e−

t−t′
τ dt′ . (5.23)

15This can be derived by using the identities ∂E
∂ũ = ∂E

∂(ũ−τ ˙̃u)

∂(ũ−τ ˙̃u)
∂ũ = − 1

τ
∂E

∂(ũ−τ ˙̃u)

∂(ũ−τ ˙̃u)

∂ ˙̃u
= − 1

τ
∂E
∂ ˙̃u

and
∂E
∂ũ = ∂E

∂u .
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Figure 5.4.: (A) Instantaneous response r(t) (population response averaged over trials) of pyramidal neu-
rons (L5 pyramidal cells of the rat somatosensory cortex) to a sinusoidal input current with
background noise. At low frequencies, the response is phase-advanced compared to the input.
Figure adapted from Köndgen et al. (2008). (B) In the presented model, the instantaneous
response is advanced with respect to the membrane potential of the neuron. (C) Illustration of
the prospective rate ũ. (D, E) Illustration of the lookahead dynamics for the inference path (D)
and error path (E) in a network consisting of three neurons (A1-A3) connected with weights of
strength 1. (D) Given a step current as input, the membrane potential exponentially decays
towards the input. For higher areas, the lookahead compensates for integration delays (blue,
A1-A3), while without lookahead, the input signal gets further and further delayed (orange,
A1-A3). Because of delays, the condition ∂E

∂u = ē− u+Wr̄ = 0 is not met during transients for
the model without lookaheads (bottom). (E) Same as in (D), but for the propagated errors in
response to target nudging (without input signal). Due to the lookahead (e), errors (ē) propagate
undelayed through the network (blue, A3-A1), while being delayed without lookahead (orange,
A3-A1). To summarize, by advancing their response, neurons are capable of perfectly tracking
their input, allowing almost delay-less propagation of time-dependent signals. A similar fast
tracking behavior was observed for populations of cortical neurons in response to broadband
input signals (with transients much faster than the membrane time constant), see Figure 7 in
Köndgen et al. (2008).

Inserting the predictive voltages in the energy function Eq. 5.9 and using the least action
principle, we obtain the following neuronal dynamics:

δA = 0 ⇐⇒
(

1 + τ
d

dt

)
∂E

∂ul
= 0 ⇐⇒ τ u̇l = −ul +Wlrl−1 + el , (5.24)

with rl = r̄l + τ ˙̄rl, el = ēl + τ ˙̄el and16 ēl = r̄′l � [WT
l+1(ul+1 −Wl+1r̄l)]. We assume small

learning rates η, such that terms including Ẇl can be neglected17.
Several properties of these dynamics have to be discussed here: first, the rates and errors

entering the equation of motion are advanced, i.e., r ≈ r̄(t+ τ) and e ≈ ē(t+ τ). Second, the
membrane potential of each neuron leaky integrates its input, as expected from neuronal
membrane dynamics (Fig. 5.4D). However, due to lookaheads canceling low-pass filtering,
16The error can be written explicitly as el = r̄′l�[WT

l+1(ul+1+τ u̇l+1−Wl+1rl)]+τ ˙̄r′l�[WT
l+1(ul+1−Wl+1r̄l)].

17Slow learning is required anyway to avoid catastrophic forgetting (overwriting weights such that previously
learned stimuli are unlearnt again, see, e.g., McCloskey and Cohen 1989).
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Figure 5.5.: Real-time regression learning of human intracranial electroencephalography (iEEG) data, pro-
vided by Kaspar Schindler (University Hospital Bern, Burrello, Schindler, Benini, and Rahimi
2018). Different from static data sets like MNIST, the iEEG data is time-continuous and conse-
quently used here to investigate the real-time learning capability of the presented framework.
(A) For the learning task, 54 electrode signals of cortical local field potentials are separated into
46 input and 8 target output signals. (B) Performance of different models, repeatedly trained
on an 8s excerpt of the iEEG data (testing is done on a different 8s excerpt). For baseline
performance, the mean value of each target iEEG trace is used as a predictor (gray). Learning
with the presented lookahead model (blue) performs as well as error backpropagation (red),
while learning without lookaheads (orange) is stuck at baseline performance. Utilizing error
backpropagation significantly speeds up the training, as seen when freezing the visible-to-hidden
weights, only training the output weights (magenta in A,B). (C) Generated output given the
test data before and after training.

no delays as discussed in the gradient-based model occur (Fig. 5.4D,E). Furthermore, the
equation of motion

(
1 + τ d

dt

)
∂E
∂ul

pulls ∂E
∂ul

exponentially fast to zero (Fig. 5.4D,E, bottom),

guaranteeing that, far away from initialization, ∂E
∂ul

= 0 for all areas, as required by the
plasticity rule (Eq. 5.10)18.
In this framework, error backpropagation can be reobtained by low-pass filtering the

equation of motion, yielding τ u̇l + ul = ul = Wlr̄l−1+ēl. Similar to how we did in the gradient-
based model (without lookahead), this can again be inserted into the error representation and
plasticity rule, resulting in Eqs. 5.14 and 5.15. Therefore, the lookahead dynamics introduced
by the least action principle enable a real-time implementation of error backpropagation
while being implementable by, e.g., biological or neuromorphic neurons. Both rates and
errors propagate simultaneously through the network and plasticity minimizes these local
errors to reduce the cost function continuously in time. Even though lookaheads only act
locally between areas, all areas are phase-locked and information spreads, independent of
network depth (the number of areas), from input to output area with times on the order of
the membrane time constant τ , allowing fast neuronal processing (Thorpe, Fize, and Marlot ,
18A more involved proof with a slightly different perspective on learning in the neuronal least action

framework can be found in Appendix B.1.2.
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Figure 5.6.: Learning to classify handwritten digits from a continuous stream of MNIST images. (A) The
error rate is tested during training (on 1/5 of the test data) for different models (colors) as well
as different presentation times per image (panels). Even for presentation times on the order
of the membrane time constant, the model with lookahead still performs well (top left panel).
For all experiments, a network with 784 − 500 − 10 neurons was used. (B) Prediction error
used in the plasticity rule during time-continuous presentation of several images. For the model
without lookaheads (orange), strong transients in the error signal arise when switching patterns,
disturbing learning. With lookaheads (blue), the model is able to correctly follow the error flow
of backprop (red). (C) Final classification performance on the whole MNIST test data set for
the experiments shown in (A). The presented model reaches error rates of 3.98% (τ), 2.59%
(5τ), 2.33% (10τ), 2.16% (20τ), comparable to what can be achieved when replacing synaptic
dynamics with real error backpropagation, 3.52% (τ), 2.01% (5τ), 1.74% (10τ), 2.24% (20τ).
(D) Learning of MNIST with lookahead dynamics for deeper networks with 784−300−200−10
(4 areas) and 784− 200− 200− 100− 10 (5 areas) neurons. The 3-area network performance
is taken from (A). (E) Exemplary receptive fields of the 5 and 3-area network in (D), after
training finished. As expected, the first area learned to recognize edges and strokes, characteristic
components of handwritten digits. The shown experiments are single shots. Additional results
can be found in Fig. B.2.

1996)19. We demonstrate real-time learning matching error backpropagation for a simple,
time-continuous regression task (Fig. 5.5) as well as for learning to classify MNIST digits
from a time-continuous input-output stream (Fig. 5.6). The model can also be extended to
recurrent networks, implementing truncated20 error backpropagation (see Appendix B.2.2).

19However, we are not considering axonal delays (O(1)ms or less, Wang, Shultz, Burish, Harrison, Hof,
Towns, Wagers, and Wyatt 2008), which render almost instantaneous information transmission through
an infinitely deep network impossible in practice.

20Truncated in time.
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5. Deep learning in mechanistic models of cortical networks

5.2.5 Dendritic microcircuits for local error learning

As described in Section 5.2.1, the dynamics derived from the prospective least action principle
can be realized by pyramidal neurons with basal and apical dendrites. The basal dendrites
integrate feedforward input, whereas the soma integrates input coming from both the basal
and apical compartment. What remains to be shown is how the neuron calculates, stores
and accesses the prediction error ēl.

Similar to Sacramento, Costa, Bengio, and Senn (2018), we propose that local prediction
errors are stored in the apical dendrites. This way, both forward input and errors are stored
separately and simultaneously in the neuron, allowing it to recover the prediction error for
synapses projecting to the basal compartment via a predictive learning rule (Urbanczik and
Senn, 2014). Errors are calculated by taking the difference of (i) feedback from a higher
cortical area projecting to the apical compartment and (ii) a bottom-up prediction that
tries to explain away the feedback. The bottom-up prediction is mediated via a stereotypical
interneuron microcircuit, projecting from a cortical area to a pool of interneurons that
project back to the apical dendrites of the pyramidal neurons of this area21.
We can again use the least action principle to derive dynamics and plasticity for in-

terneurons and apical dendrites from separate energy functions, ensuring time-continuous
neurosynaptic dynamics:

1. The neural code of the interneurons is given by

EI =
n∑
l=1

1−βI

2
‖uI

l −W IP
l r̄P

l ‖2 +
βI

2
‖BIP

l u
P
l+1 − uI

l‖2 , (5.25)

where uI are the interneuron membrane potentials,W IP
l the weights projecting from the

pyramidal neurons of area l to the interneurons of the same area, BIP
l fixed and random

weights for top-down nudging (from area l+ 1 to l) and βI the corresponding nudging
strength22. To better discriminate pyramidal and interneuron membrane potentials,
we further add an index for pyramidal neurons, ul = uP

l . Introducing the predictive
interneuron voltage uI = ũI − τ ˙̃uI, interneuron dynamics are obtained by requiring a
stationary action AI =

∫
EI(ũI, ˙̃uI)dt:

δAI = 0 ⇐⇒
(

1 + τ
d

dt

)∂EI

∂uI
l

= 0 ⇐⇒ τ u̇I
l = W IP

l rP
l − uI

l +
βI

1−βI
eI
l , (5.26)

with top-down error ēI
l = BIP

l u
P
l+1−uI

l and lookaheads rP
l = r̄P

l + τ ˙̄rP
l and eI

l = ēI
l + τ ˙̄eI

l .
Low-pass filtering this equation yields

uI
l = W IP

l r̄P
l − uI

l +
βI

1−βI
ēI
l , (5.27)

21In the cortex, pyramidal neurons are mostly excitatory and interneurons inhibitory (Markram, Toledo-
Rodriguez, Wang, Gupta, Silberberg, and Wu, 2004). For simplicity, and to better compare with deep
learning methods, we neglect this restriction here. However, by virtue of a more elaborate circuitry, the
theory might be reorganized to suffice this restriction (e.g., by replacing an inhibitory connection from
a pyramidal neuron by an additional inhibitory interneuron).

22Top-down nudging acts as a teacher signal for the interneurons. Hence, they learn to approximate a linear
transformation of the activity in the higher cortical area.
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and by writing out the top-down error, we further get

uI
l = (1−βI)W IP

l r̄P
l + βIBIP

l u
P
l+1 . (5.28)

Thus, the interneuron membrane potential is a convex combination of the lateral
(dendritic) input W IP

l r̄P
l and top-down (somatic) nudging BIP

l u
P
l+1. The plasticity rule

obtained by minimizing the energy function

Ẇ IP
l ∝ −

∂EI

∂W IP
l

∝ (uI
l −W IP

l r̄P
l ) (r̄P

l )T , (5.29)

changes the lateral weights W IP
l such that the lateral input predicts the upper area

activity, i.e., using Ẇ IP
l = 0 and Eq. 5.28 gives uI

l = W IP
l r̄P

l = BIP
l u

P
l+1. The learning

rule is again given by the dendritic prediction of somatic activity (Urbanczik and Senn,
2014). Top-down weights BIP

l are randomly initialized and remain constant. To allow
a loss-less representation of the upper area activity, the number of interneurons has
to be at least as numerous as pyramidal neurons in the upper cortical area, but can,
for instance, also be larger.

2. We propose that apical dendrites encode a local prediction error used for learning of
the forward weights Wl. This error is formed by subtracting top-down feedback from
the upper cortical area and input from lateral interneurons (as introduced above)23,

ēP
l = r̄′Pl � ū

d,∞
l with ūd,∞

l = BPP
l uP

l+1 −WPI
l uI

l , (5.30)

where BPP
l are the top-down weights from area l + 1 to area l and WPI

l the lateral
weights from interneurons of area l to the apical compartments of pyramidal neurons
of area l. Multiplication with the derivative of the postsynaptic rate could be seen as
an inactivation of the apical signal through backpropagating action potentials (from
soma to apical) at saturating frequencies (Larkum, Senn, and Lüscher , 2004). Similar
to feedback alignment (Lillicrap, Cownden, Tweed, and Akerman, 2016), we choose
the feedback weights BPP

l to be randomly initialized and constant.

The original error representation ēl (Eq. 5.15) can be recovered by choosing BPP
l =

WPI
l = WT

l+1, W IP
l = Wl+1 and rI

l = W IP
l r̄l (which is, e.g., learned by the interneurons

by setting BIP
l = 1). The energy function for the apical voltages ud is given by

Ed =
n∑
l=1

1−βd

2
‖ud

l − ū
d,∞
l ‖

2 +
βd

2
‖urest − ud

l ‖2 . (5.31)

23Both feedback and lateral information is given via membrane potentials instead of rates. This can be
achieved by assuming (i) that interneurons basically operate in a linear activation regime (e.g., like fast
spiking neurons, La Camera, Rauch, Thurbon, Luscher, Senn, and Fusi 2006) where rate and membrane
potential are proportional to each other and (ii) that short-term plasticity for the top-down connections
recovers an approximation of the upper-area membrane potential from the presynaptic rate, as proposed
for spiking neurons in Pfister, Dayan, and Lengyel (2010).
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Figure 5.7.: Microcircuit of interneurons and pyra-
midal neurons used to learn the local
error representation. Red arrows mark
plastic synapses, all other synapses are
static and initialized randomly. Lateral
connections from pyramidal to interneu-
ron and back (red) learn to explain
away top-down feedback (blue). In order
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weights W IP

l , the interneurons also re-
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dashed). The original error representa-
tion for pyramidal neurons is recovered
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and dynamics are derived by assuming a stationary action Ad =
∫
Ed(ũd, ˙̃ud) dt:

δAd = 0 ⇐⇒
(

1 + τ
d

dt

)∂Ed

∂ud
l

= 0 ⇐⇒ τ u̇d
l = −ud

l + (1−βd)ud,∞
l +βdurest . (5.32)

Low-pass filtering the equation of motion, we can identify ud
l = (1−βd)ud,∞

l . The looka-
head of the dendritic input ud,∞

l can be realized by voltage-dependent conductances
in the apical dendrite, similar to how sodium conductances may give rise to advanced
rates (Appendix B.1.1). By assuming energy-minimizing plasticity again,

ẆPI
l ∝ −

∂Ed

∂WPI
l

∝ −(ud
l − ū

d,∞
l ) (rI

l)
T = βd (BPP

l uP
l+1 −WPI

l uI
l) (uI

l)
T , (5.33)

the constructed interneuron microcircuit learns to predict away top-down feedback
in the absence of output nudging, i.e., the apical potential stays at baseline urest (for
simplicity, we assume urest = 0) independent of the input, representing vanishing errors
ēl = 0. The plasticity rule takes the Hebbian form “postsynaptic times presynaptic
activity”, i.e., ẆPI

l ∝ ūd,∞
l (uI

l)
T, driving the apical voltage to a homeostatic value

urest, as previously proposed for cortical inhibitory plasticity (Vogels, Sprekeler, Zenke,
Clopath, and Gerstner , 2011).

The complete microcircuit used for error coding is illustrated in Fig. 5.7. If the micro-
circuit is aligned accordingly, in the absence of output nudging (β=0), no output error is
induced and hence, all errors throughout the network should vanish. Therefore, any remain-
ing errors are due to a misalignment of the forward prediction pathway WPI

l W IP
l (mediated

via interneurons) and the feedback pathway BPP
l Wl+1 (feedforward excitation followed by a

recurrent feedback connection). In the following, we show that the plasticity rules derived
for the microcircuit reduce such errors back to zero. Such a network state is called “self-
predictive state”, as the lateral microcircuit is able to correctly predict the self-generated
network activity, resulting in vanishing errors without output nudging.
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Figure 5.8.: Learning the lateral interneuron connections. (A) Similar to Sacramento et al. (2018), the
lateral connections (WPI , W IP) can be learned. The network contains 784− 500− 10 neurons.
The feedback connections BPP are randomly initialized and stay constant. Furthermore, the
interneurons are nudged one-to-one by the pyramidal neurons of the higher cortical area. This
way, during training the interneurons learn to approximate the higher-level pyramidal activity,
while the lateral interneuron-to-pyramidal connections WPI learn to compensate the top-down
feedback mediated by BPP. Plastic connections are marked by red arrows. (B) During training,
the lateral as well as forward weights align accordingly to reach a self-predictive state (angles
are calculated via the Frobenius inner product). (C) Learning MNIST (with a presentation
time of 100ms per image) while training the interneuron circuit at the same time. (D) Similar
receptive fields as in Fig. 5.6 form during training. (E–H) Same as in (A–D), however the
neurons are not nudged one-to-one but receive mixed nudging (via random and static matrix
BIP) from the higher cortical area, in a network with 784 − 300 − 10 neurons. This way, the
number of interneurons is not tied to the number of upper-area pyramidal neurons. For instance,
here we show how both the lateral weights and the forward weights are learned simultaneously
with 20 interneurons encoding the error for the visible-to-hidden connections. The presented
results might be further improved by reducing both learning rates as well as the integration
time step of the simulations.

The plasticity rule for Ẇ IP
l converges towards the fixed point uI

l = W IP
l r̄P

l = BIP
l u

P
l+1 and

the plasticity rule for ẆPI
l has the stationary solutionWPI

l uI
l = BPP

l uP
l+1, leading to vanishing

errors ēP
l (Eq. 5.30). In this case, the neurons in the network follow their input uP

l+1 = Wl+1r̄
P
l .

Therefore, if both plasticity rules are stationary, we have BPP
l uP

l+1 = BPP
l Wl+1r̄

P
l and

BPP
l Wl+1r̄

P
l = WPI

l uI
l = WPI

l BIP
l Wl+1r̄

P
l , leading to

W IP
l = BIP

l Wl+1 and WPI
l = BPP

l

[
BIP
l

]−1
, (5.34)

such that WPI
l W IP

l = BPP
l Wl+1. Hence, the pyramidal-to-interneuron weights learn to track

the forward weights (even when these change24), such that the interneurons learn to reproduce
a linearly mixed representation of the higher area pyramidal activities. The interneuron-to-
24Depending on the interneuron nudging strength βI and the learning rates of the microcircuit, the tracking

will not necessarily be perfect. The simulation results in Figs. 5.8 and 5.9 further show that perfect
tracking is not needed for training of the forward weights (non-zero final angles).
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5. Deep learning in mechanistic models of cortical networks

pyramidal connections learn to correctly match the higher area prediction of the interneurons
with the actual feedback. In the self-predictive state, the error backpropagation formula
takes the following form

ēP
l = r̄′Pl � (BPP

l uP
l+1 −WPI

l uI
l )

= r̄′Pl � (BPP
l uP

l+1 −WPI
l W IP

l r̄P
l )

= r̄′Pl � (BPP
l uP

l+1 −BPP
l Wl+1r̄

P
l ) = r̄′Pl �BPP

l ēP
l+1 , (5.35)

where WT
l+1 in the original formula gets replaced by the feedback matrix BPP

l .
There is one reservation to be made in this analysis: the identities in Eq. 5.34 are learned

for activities r̄P
l produced in the absence of nudging, while for error backpropagation we

use it in the presence of nudging. Here, we need to postulate that the activities r̄P
l , when

generated by the input alone, cover the full space of activities arising later in the presence
of output nudging. Then, after the inhibitory circuit learned to correctly cancel the purely
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|ẆPI| > 0

C

A

Figure 5.9.: Real-time learning of forward weightsW and lateral interneuron-to-pyramidal weightsWPI from
a randomly initialized configuration (we drop the area indices here for convenience). During
training, both plasticity rules are always active and act simultaneously, without any pre-training
phases. (A) Different from the experiment in Fig. 5.8, the interneurons receive no top-down
nudging and only the lateral weights WPI and forward weights W are learned (red arrows). All
remaining weights are randomly initialized and stay constant. (B) Angle between the bottom-up
pathway WPIW IP and the top-down pathway BPPW . For large enough pools of interneurons,
the weights align accordingly to allow training of forward weights in lower areas. Note that in
this case, WPI essentially learns to undo the linear mixing of BPP while it tracks the evolution
of W . (C) Best error rates achieved for a 3 area network (784− 500− 10) trained on MNIST,
for different pool sizes nI. (D) Receptive fields of the hidden neurons for several cases shown
in (B) and (C). In future work, the interneurons might form recurrent populations, either as a
liquid (Natschläger et al., 2002) or also trained to improve learning of the local prediction error.
This might connect to synthetic gradients (Jaderberg et al., 2017), where small subnetworks of
neurons also learn to approximate the backpropagated errors.
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5.2. Real-time error backpropagation in cortical circuits

self-produced top-down input (BPP
l uP

l+1), only an additional drive of the upper-area neurons
(ēP
l+1) will cause an error ēP

l in the lower-area neurons.
In simulations, we find that both the lateral connections as well as the forward connections

can be trained simultaneously, without the need for a prelearning phase as described above
(see Fig. 5.8). In this case, Eq. 5.35 holds approximately at any moment in time after
a short initial training phase without the need to relax towards the steady state of the
dynamics. Thus, ēP

l permanently drives plasticity of the hidden weights, Ẇl = η ēP
l

[
r̄P
l−1

]T,
to minimize the output costs, while WPI

l and W IP
l continuously track the changes in the

forward weights to keep the network in a self-predictive state. This is demonstrated in
Fig. 5.8 for the special case where BIP

l is the identity matrix and the general case where
BIP
l is a random matrix. To measure similarity between matrices, we calculate the angle

between them based on the Frobenius inner product 〈A,B〉F =
∑

i

∑
j AijBij, i.e.,∠(A,B) =

arccos
(
〈A,B〉F

/√
〈A,A〉F · 〈B,B〉F

)
. For instance, two randomly generated matrices have

an angle of 90◦, while two matrices A, B that only differ by a multiplicative, scalar factor
k, i.e., A = k ·B, have an angle of 0◦.

If the number of interneurons is large enough, we find that the interneuron-to-pyramidal
weights with the plasticity rule given in Eq. 5.33 are sufficient to reach and sustain a
self-predictive state, i.e., WPI

l = BPP
l Wl+1

[
W IP
l

]−1. In this case, the interneurons receive
no top-down nudging and the pyramidal-to-interneuron weights are initialized randomly
and stay constant, see Fig. 5.9. The feedback weights BPP

l may be plastic as well, trained
to reproduce lower area activities and perform pattern completion, as demonstrated in
Sacramento, Costa, Bengio, and Senn (2018).

5.2.6 Summary: neuronal least action principle

For convenience, we summarize the results of the previous sections here. For top-down deriva-
tion of the dynamics of (i) pyramidal neurons (uP), (ii) interneurons (uI) and (iii) pyramidal
apical (dendritic) voltages (ud), we propose the following energy functions (Eqs. 5.9, 5.25
and 5.31)

EP =
N∑
l=1

1

2
‖uP

l −Wlr̄
P
l−1‖2 +

β

2
‖utarget

N − uP
N‖2 ,

EI =
n∑
l=1

1−βI

2
‖uI

l −W IP
l r̄P

l ‖2 +
βI

2
‖BIP

l u
P
l+1 − uI

l‖2 ,

Ed =
n∑
l=1

1−βd

2
‖ud

l −BPP
l uP

l+1 +WPI
l uI

l‖2 +
βd

2
‖urest − ud

l ‖2 ,

with their corresponding actions being defined as Ax =
∫
Ex(ũx, ˙̃ux)dt using generalized

neuronal coordinates (predictive voltages) ux = ũx − τ ˙̃ux. From these energy functions,
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5. Deep learning in mechanistic models of cortical networks

dynamics are derived via the least action principle (Eqs. 5.24, 5.26 and 5.32)

δAP = 0⇐⇒ τ u̇P
l = −uP

l +Wlr
P
l−1 + eP

l ,

δAI = 0 ⇐⇒ τ u̇I
l = W IP

l rP
l − uI

l +
βI

1−βI
eI
l ,

δAd = 0 ⇐⇒ τ u̇d
l = −ud

l + (1−βd)ud,∞
l + βdurest ,

with lookaheads x = x̄ + τ ˙̄x, ēP
l = r̄′Pl � [WT

l+1(uP
l+1 − Wl+1r̄

P
l )] for l = 1 . . . N − 1 and

ēN = β
(
utarget
N − uP

N

)
as well as ūd,∞

l = BPP
l uP

l+1 − WPI
l uI

l and ēI
l = BIP

l u
P
l+1 − uI

l . The
local errors in the pyramidal neuron dynamics propagate backwards through the network
following the error backpropagation algorithm (Eq. 5.15)

ēP
l = r̄′Pl �WT

l+1ē
P
l+1 ,

and synaptic plasticity minimizes the energy functions (Eqs. 5.10, 5.29 and 5.33)

1

η
Ẇl = − lim

β→0

1

β

∂E

∂Wl

= lim
β→0

1

β

(
uP
l −Wl r̄

P
l−1

) (
r̄P
l−1

)T
,

1

ηIP
Ẇ IP
l = − ∂EI

∂W IP
l

∝ (uI
l −W IP

l r̄P
l )
(
r̄P
l

)T
,

1

ηPI
ẆPI
l = − ∂Ed

∂WPI
l

∝ (BPP
l uP

l+1 −WPI
l uI

l)
(
uI
l

)T
,

ḂPP
l = ḂIP

l = 0 ,

where in simulations, we assume urest = 0 for convenience. The learning rules for forward
weights Ẇl and pyramidal-to-interneuron weights Ẇ IP

l can be interpreted as learning by the
dendritic prediction (Wl r̄l−1 andW IP

l r̄P
l ) of the somatic potential (uP

l and uI
l), (Urbanczik and

Senn, 2014), whereas the interneuron-to-pyramidal weight dynamics ẆPI
l are compatible with

the homeostatic plasticity of inhibitory synapses (inhibition −WPI
l uI

l canceling excitation
BPP
l uP

l+1)25, (Vogels, Sprekeler, Zenke, Clopath, and Gerstner , 2011). The interneuron and
apical voltage dynamics learn to approximate the local error ēP

l appearing in the pyramidal
neural dynamics, stored and calculated in the apical dendrites through a self-projecting
interneuron microcircuit and upper-area feedback (Eqs. 5.30 and 5.35)

ēP
l ≈ r̄′Pl �

(
BPP
l uP

l+1 −WPI
l uI

l

)
= r̄′Pl �BPP

l ēP
l+1 ,

while the plasticity of the forward weights minimizes these local errors, and by doing so also
minimizes a global cost function measuring network performance compared to some target
behavior (Eqs. 5.10 and 5.14)

1

η
Ẇl = lim

β→0

1

β
ēP
l

[
r̄P
l−1

]T
= − dC

dWl

with C =
1

2
‖utarget

N − uP
N‖2 .

All of these dynamics occur simultaneously, without any need for separation of time scales
or phases during learning, i.e., turning plasticity on and off during pattern presentations.
25Although for simplicity, we neglect strict inhibition/excitation in simulations.
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5.3. Folded autoencoders for unsupervised learning in cortical hierarchies

5.3 Folded autoencoders for unsupervised learning in
cortical hierarchies

In the previous section, the model was mostly restricted to supervised learning, and although
the network structure is recurrent, there is a distinct asymmetry in functionality: forward
weights are used for inference, whereas backward (or feedback) and lateral weights are only
used for error propagation.

In the following, this approach is generalized to unsupervised learning (i.e., learning with
unlabeled data) of networks with bidirectional connections, i.e., between every area, forward
and backward weights exist, similar to a restricted Boltzmann machine. In the next section,
we will show that this structure resembles a folded autoencoder. An autoencoder (Hinton
and Salakhutdinov , 2006) is a feedforward network with visible – hidden – latent – hidden
– output areas. Compared to the visible and hidden areas, the latent area has the fewest
number of neurons, being a bottleneck for information flow in the network. The training
objective is to replicate the input as output despite the bottleneck, forcing the network to
find useful latent representations of the input data. In a folded autoencoder (Wang, He, and
Prokhorov , 2012), the network structure is “folded” at the latent area, with the bottleneck
now being the highest area of the network (Fig. 5.10A). Due to the recurrent structure, there
are two distinct pathways: one from the visible to latent area, representing an encoding
(or compression, discriminative pathway) of the visible input (Fig. 5.10B), and from latent
to visible area, representing decoding (or decompression, generative pathway) of the latent
activity (Fig. 5.10C). Thus, different from an autoencoder where encoder and decoder are
separate, here both encoding and decoding happens through the same neurons. Bidirectional
connectivity with generative feedback connections – or top-down modulation of activity – has
been found to be essential for image processing in artificial and biological neural networks,
increasing their robustness towards image occlusion and noise (Wyatte, Curran, and O’Reilly ,
2012; Spoerer, McClure, and Kriegeskorte, 2017; Tang, Schrimpf, Lotter, Moerman, Paredes,

C

BA

Figure 5.10.: (A) The network structure considered here consists of bidirectionally connected areas (visible,
hidden, latent), where the highest area forms a bottleneck (less neurons than in the visible
area). (B) The forward weights encode the activity of the visible area into a compressed latent
representation. (C) The generative weights decode the compressed latent representation to
drive activity in the visual area. Both pathways shown in (B) and (C) happen simultaneously
and use the same neurons for coding. To train forward and backward weights, microcircuits
as in Section 5.2.5 can be added to calculate errors (not shown here).
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5. Deep learning in mechanistic models of cortical networks

Caro, Hardesty, Cox, and Kreiman, 2018) and might even be beneficial against adversarial
attacks (Li, Bradshaw, and Sharma, 2018; Pontes-Filho and Liwicki , 2018).
The network structure used in this section has already been proposed in Seung (1998)

(and in a strict feedforward way, but with similar error coding to the one used here, in Oh
and Seung 1998). The structure was also recently proposed to increase robustness against
adversarial attacks in discriminative models (Pontes-Filho and Liwicki , 2018). However, in
our model, encoding, decoding and error coding happens simultaneously through one set of
neurons. Furthermore, learning is driven by nudging the visible area to its input (instead
of, e.g., backpropagation through time). Thus, simply by nudging, the network learns a
model of the observed data based on a compressed representation in the latent area26. By
further restricting the latent space, this might allow the implementation of models similar
to variational autoencoders (Kingma and Welling , 2013) in future work, as will be discussed
in Section 5.3.3.

5.3.1 Energy function for cortical autoencoders

In order to combine simultaneous discriminative and generative learning in a simple network
structure with only one visible area, we use a area-wise recurrent network with convexly
gated forward and backward information flow, controlled by a parameter λ. We label the
first area as the visible area, which receives both sensory input and top-down input from
the first hidden area. The first hidden area receives both input from the visible area and
the next, deeper hidden area. The highest area is labeled as the latent area, which forms a
bottleneck, i.e., the number of neurons in the latent area is much smaller than in the visible
area, similar to the latent area used in autoencoders to enforce the learning of useful features
(Fig. 5.10A). This network structure is encoded in an energy function consisting of two error
terms and a cost function from which the neurosynaptic dynamics are derived27

1

gl

E =
λ

2

∑
l

‖ul −Wlr̄l−1‖2 +
1− λ

2

∑
l

‖ul −Glr̄l+1‖2 +
β

2
C , (5.36)

where ul and rl are the membrane potentials and rates of neurons in area l, Wl the discrimi-
native weights from area l− 1 to l, Gl the generative weights from area l+ 1 to l, gl the leak
conductance and βC the cost function with a scalar weighting β ≥ 0. Discriminative and
generative weights could also be combined in a single term ‖ul− λWlr̄l−1− (1− λ)Glr̄l+1‖2,
but then all weights projecting into an area will minimize the same error, i.e., forward and
backward weights interfere with each other, prohibiting the formation of useful features in
higher areas. To allow numerical scalability to larger networks and data sets, we neglect
lookaheads here and require that neural dynamics perform gradient descent on this energy

26This is similar to how sensory input acts on the cortex, only slightly modulating the ongoing, internally
generated network activity (Fiser, Chiu, and Weliky , 2004; Leinweber, Ward, Sobczak, Attinger, and
Keller , 2017).

27For ordinary autoencoders, a potential function can be derived that describes the autoencoder acting on
the input (i.e., the transformation from input to output) in terms of gradient descent dynamics on said
energy potential (Kamyshanska and Memisevic, 2014).
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5.3. Folded autoencoders for unsupervised learning in cortical hierarchies

function (see Section 5.2.2), i.e., cmu̇l = −∇ulE. We obtain

τ u̇l = −ul + λ(Wlr̄l−1 + ēWl ) + (1− λ)(Glr̄l+1 + ēGl ) , (5.37)
ēWl = r̄′l �WT

l+1(ul+1 −Wl+1r̄l) with ēWN = −β∇uNC , (5.38)
ēGl = r̄′l �GT

l−1(ul−1 −Gl−1r̄l) with ēG0 = −β∇u0C , (5.39)

with τ = cm
gl

and N areas. This can be interpreted as a leaky integrator accumulating
forward (Wl) and backward (Gl) input as well as the respective prediction errors ēWl and ēGl ,
originating because neurons in area l try to predict the activity of neurons in the surrounding
areas l+1 and l−1. Furthermore, forward and backward input is integrated convexly instead
of equally, i.e., the discriminative and generative paths are not necessarily weighted equally.
In a pyramidal neuron, such a separated integration might be implemented by projecting
the generative and discriminative input to proximal and errors to distal compartments of
the apical and basal tree. In fact, by rescaling the error function with a factor γ = 1 + gε

gl

with small error conductance gε � gl, the dynamics can be rewritten as a 5-compartment
neuron composed of 4 dendritic branches and a soma (Fig. 5.11A)

cmu̇l = glλ(γWlr̄l−1 − ul) + glλ̂(γGlr̄l+1 − ul) + gελ(γēWl − ul) + gελ̂(γēGl − ul) , (5.40)

ēWl =
gl

gε
r̄′l �WT

l+1(ul+1 −Wl+1r̄l) , (5.41)

ēGl =
gl

gε
r̄′l �GT

l−1(ul−1 −Gl−1r̄l) , (5.42)

with λ̂ = 1 − λ (see Appendix B.1.3 for a derivation). gl and gε represent dendritic
transfer conductances. In this form, the generative input might, for instance, project to
the apical tree, whereas the generative error projects to an oblique apical branch farther
away, hence being weaker (gε � gl). The factor γ represents a local amplification of the
total synaptic inputs in an individual branch. The prediction errors ēWl and ēGl could be
calculated via an interneuron circuit (see Section 5.2.5) or additional pyramidal neurons
(Keller and Mrsic-Flogel , 2018). For our mathematical analysis we choose, without loss of
generality, γ = 1, recovering Eq. 5.37. However, in simulations we use the 5-compartment
neuron representation with gε > 0, i.e., γ ≈ 1, instead.

A B

C

Figure 5.11.: (A) Possible implementation of bidirec-
tional learning, with errors projecting to
distal and inputs to proximal dendrites
(gray branches), justifying the weak cou-
pling gε � gl of errors. (B) Learning of
the generative weights minimizes the re-
construction error C via error backprop-
agation. (C) Forward weights learn to
match the generative top-down input
(both signal and error). In a way, the
encoder slowly learns to match the de-
coder.
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5.3.2 One learning rule, two optimizations

The plasticity rules are derived as gradient descent on the energy function, i.e., we assign
network states that create visible activity resembling the data to be learned low energy
regimes

Ẇl = −η · ∇Wl
E = η glλ · (ul −Wlr̄l−1) r̄T

l−1 , (5.43)

Ġl = −η · ∇GlE = η gl(1− λ) · (ul −Glr̄l+1) r̄T
l+1 . (5.44)

This can again be seen as learning being driven by the dendritic prediction (Wlr̄l−1 and
Glr̄l+1) of somatic activity (ul) for both discriminative and generative weights (Urbanczik
and Senn, 2014). If the network reaches a steady state, e.g., because we present a static
input pattern to the network or the membrane time constant τ is much shorter than the
pattern presentation times, the membrane potential is given by

ul = λ(Wlr̄l−1 + ēWl ) + (1− λ)(Glr̄l+1 + ēGl ) . (5.45)

This can be used to rewrite the differences found in Eqs. 5.43 and 5.44:

ul −Wlr̄l−1 = (1− λ) (Glr̄l+1 + ēGl −Wlr̄l−1) + λ ēWl , (5.46)
ul −Glr̄l+1 = λ (Wlr̄l−1 + ēWl −Glr̄l+1) + (1− λ) ēGl . (5.47)

As we are mostly interested in generative properties, that is, strong feedback and only weak
forward information flow, we take the limit28 λ→ 0

lim
λ→0

(ul −Wlr̄l−1) = (1− λ) (Glr̄l+1 −Wlr̄l−1 + ēGl ) , (5.48)

lim
λ→0

(ul −Glr̄l+1) = (1− λ) ēGl , (5.49)

with feedback errors propagating backwards through the network:

lim
λ→0

ēGl = (1− λ) r̄′l �GT
l−1 ē

G
l−1 . (5.50)

Using Eqs. 5.46 and 5.47, the plasticity rules take the form

lim
λ→0

Ġl = η (1− λ)2 · ēGl r̄T
l+1 , (5.51)

lim
λ→0

Ẇl = η (1− λ)λ · (Glr̄l+1 + ēGl −Wlr̄l−1) r̄T
l−1 . (5.52)

(5.53)

For the weights projecting into the last area we have:

lim
λ→0

ẆN = η (1− λ)λ · (ēGN −WN r̄N−1) r̄T
N−1 . (5.54)

28Taking this limit is important to guarantee that Eq. 5.10 approximately holds for the generative weights.
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top: original, bottom: visible area activity after encode decode pathways

Figure 5.12.: Training of a network with 3072− 1000− 1000− 300 neurons on 104 CIFAR10 images. After
training, the network is tested on a subset of the training data by encoding a visual stimulus
(top rows) with gating λ = 0.8 (forward path dominates), reading out the latent representation,
resetting network activity and then generating visual activity (bottom rows) with λ = 0.2
(backward path dominates). A similar experiment was done with MNIST with a correct split
between training and test data, resulting in good reconstruction quality on both data subsets
(not shown here, see, e.g., Dold et al. 2019b). During training on CIFAR10, we found that
learning both paths adequately strongly depends on the chosen hyperparameters for large
training data sets. E.g., for some parameters, the quality of reconstructed images deteriorates
drastically after improving initially (not shown here).

Thus, even though the plasticity rules for forward and backward weights have the same
shape (Eqs. 5.43 and 5.44), they perform two different optimizations29:

lim
λ→0

Ġl = −η · ∇GlE ∝ −∇GlC (5.55)

lim
λ→0

Ẇl = −η · ∇Wl
E ∝ −∇Wl

‖Glr̄l+1 + ēGl −Wlr̄l−1‖2 (5.56)

The learning rule for the generative weights reduces the cost function C := 1
2
‖utarget

0 −u0‖2

defined as a reconstruction error for the visible neurons (Fig. 5.11B), whereas the learning rule
for the forward weights adjusts the bottom-up (discriminative) input of a neuron to match
its top-down (generative) input (Fig. 5.11C). If the generative errors ēGl vanish throughout
the network, the learning rule can be rephrased as the encoder (Wlr̄l−1) learning to match
29For values of λ close to 0 or 1, the plasticity rules actually minimize the convex sum of two cost functions:

the “matching cost” as well as an externally induced cost function C

Ġl ∝ −∇Gl

[
(1− λ)C + λ ‖Glr̄l+1 −Wlr̄l−1 − ēWl ‖2

]
,

Ẇl ∝ −∇Wl

[
λC + (1− λ) ‖Glr̄l+1 + ēGl −Wlr̄l−1‖2

]
.

87
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the decoder (Glr̄l+1). To demonstrate that both pathways learn their respective optimization
simultaneously, we train a network on parts of the CIFAR10 data set (Krizhevsky, Hinton
et al., 2009). The CIFAR10 data set is composed of colored images covering ten classes, e.g.,
airplanes, cars, dogs and cats, with an image size of 32× 32 and varying backgrounds. In
general, the gating λ remains constant and close to zero throughout the experiment. Only
for testing whether forward and backward path learned to match each other, we change
the gating to allow a separate investigation of both paths. After training, the forward path
(λ→ 1, Fig. 5.10B) is able to encode presented images in the latent area, which can be fed
into the backward path (λ→ 0, Fig. 5.10C) to reconstruct the original image (Fig. 5.12).

5.3.3 Towards probabilistic generative models

In the following, we give a suggestion how the previous model can be extended from a
simple encoder-decoder architecture to a true generative model. However, these ideas are
preliminary, mostly empirical and have to be refined in future research.

One prominent extension of autoencoders with powerful generative properties are so-called
variational autoencoders (Kingma and Welling , 2013). Variational autoencoders further
constrain the latent space by (i) introducing a stochastic sampling step and (ii) an additional
term in the cost function to shape the distribution the latent space is sampling from.
This way, after learning, latent activities can simply be sampled from the assumed latent
distribution to create new images alike the data used for training. Furthermore, the learned
data distribution allows simple transformation of generated images (e.g., changing the “angle”
of a ’1’, or transforming a ’1’ smoothly into a ’2’) by manipulating activities of individual
latent neurons without leaving the submanifold the data is living on (i.e., generating images
that do not resemble data). Or in simpler terms: linear interpolations in the latent space
lead to semantically meaningful variations in the visual space.
In a similar way, we also introduce sampling in the latent area N by adding Gaussian

(white) noise ξN ∼ N
(
0, σ2

)
with variance σ2 to the membrane dynamics:

τ u̇N = −uN + λWN r̄N−1 + (1− λ)ēGN + ξN . (5.57)

However, since learning is only guaranteed to work while network dynamics are stationary,
we restrict ourselves to “frozen noise” for now, i.e., the noise vector ξN is only sampled in
fixed intervals and not in every time step. As in the LIF-based sampling framework, this
noise can be seen as network-generated noise (see Section 3.4). In absence of errors (ēGN = 0),
the latent dynamics perform an Ornstein-Uhlenbeck process with drift towards the input of
the previous area WN r̄N−1 and diffusion given by the neuronal noise ξN ,

p(uN) = N
(
WN r̄N−1, σ

2
)
, (5.58)

assuming the input pattern is static. To discourage a mean that shifts with presented
patterns, the sampled distribution is further constrained by adding an additional term in
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Figure 5.13.: Images generated by a network with 22 × 18 − 200 − 20 neurons after training, illustrated
using t-SNE (gray lines connect consecutive images), where only every 10th sample is shown
here. The red diamond marks the first image. To drive exploration, the frozen noise vector is
resampled whenever the network reaches a steady state. The network is capable of generating
recognizable images, like ’0’ (right), ’2’ (bottom, middle), ’3’ (top), ’4’ (middle), ’5’ (bottom
right, top right), ’8’ (middle) and ’9’ (left) – although the image quality is improvable and
lacks variability. In future work, the quality of the generated images might be further improved
by tuning hyperparameters or changing the cost function.

the cost function30:

CVAE = C +DKL

[
p(uN) ‖N

(
µ0, σ

2
)]

with ϕ(µ0) = 0 , (5.59)

= C +
‖µ0 −WN r̄N−1‖2

2σ2
+ const. , (5.60)

i.e., we want the latent neurons to sample from a product of independent Gaussians with

30In variational autoencoders, both mean and variance are trained, while here, we only add a cost term
for the mean. However, as shown in Section 3.4, the noise can be generated from other neurons with
individual weights (or one effective weight). These weights could also be trained to improve the generative
properties of the network.

89



5. Deep learning in mechanistic models of cortical networks

mean µ0 (independent of the presented pattern), chosen such that the mean rate response
of latent neurons 〈r̄N〉 = 0 vanishes. This leads to a modified prediction error for area N − 1

ēWN−1 = r̄′N−1 �WT
N

(
uN −WN r̄N−1 +

β

σ2
(µ0 −WN r̄N−1)

)
, (5.61)

with two targets uN and µ0. After training, to generate images, the noise vector ξN is
resampled whenever neuronal dynamics are stationary (i.e., sampling and network dynamics
happen subsequently, in separate phases). This is shown in Fig. 5.13 for an example using the
MNIST handwritten digits data set, where the network is capable of generating recognizable
images of different digit classes. Although no images that look completely different from
digits are generated, the variety and quality of the generated images is still lacking – compare
these results, e.g., to the digits generated by the spike-based sampling networks in Fig. 3.23.
In future work, the generative property of the proposed network might be further improved
by investigating the effect of the additional cost term during learning in more detail.

5.4 Discussion

At the beginning of this chapter, we raise the question whether the brain might consult
an optimization scheme like error backpropagation to learn input-output relations of sen-
sory stimuli (Section 5.1). As the brain has to obey physical limitations (Section 5.1.2),
exploring possible realizations of approximate error backpropagation is closely tied to mech-
anistic implementations of the dynamics that suffice realistic limitations like locality and
time-continuity. Here, we extend previous work on backprop in the brain and propose a
systematic top-down approach to learning in time-continuous systems (Section 5.2): from a
scalar energy function E, both synaptic plasticity as well as compatible neuronal dynamics
are derived – once via gradient descent and once via a prospective least action principle. The
top-down approach enables a clear transition between the performed computation, its algo-
rithmic solution, the derived dynamics implementing the algorithm and possible biological
realizations thereof.

One crucial observation we make is the occurrence of lookahead dynamics (Section 5.2.4):
in order to allow time-continuous dynamics, neurons respond with lookaheads of errors
e(t) ≈ ē(t + τ) and rates r(t) ≈ ϕ (u(t+ τ)), i.e., they approximate their behavior τ ms
in the future to bridge temporal delays introduced by somatic and dendritic filtering. To
first order r(u, u̇) = r̄ + τ r̄′u̇, this lookahead is equivalent to the inverse operation of low-
pass filtering. Thus, by looking ahead in time, neurons can undo the delays enforced by
filtering through membrane dynamics – which only requires knowledge about the neuron’s
current membrane potential value u and rate of change u̇. Such a temporal prediction
scheme is inspired by experimental observations (Köndgen, Geisler, Fusi, Wang, Lüscher, and
Giugliano, 2008; Palmer, Marre, Berry, and Bialek , 2015). In fact, the advanced activation
mechanism r(u, u̇) resembles the dynamics underlying spike generation, which depends
not only on u but also on u̇ (Hodgkin and Huxley , 1952). However, further experimental
studies are required to solidify this mechanism in biological neurons. Besides the lookahead
response, the derived dynamics lend themselves to a biological implementation through
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pyramidal neurons coupled with apical dynamics as well as an error-calculating microcircuit
(Section 5.2.5 and Sacramento, Costa, Bengio, and Senn 2018). Both the microcircuit and
apical dynamics can be derived again from energy functions and their corresponding actions,
leading to a stacked application of our top-down approach – first for the original model,
then for its extended version with errors being stored at the apical compartment, learned
by microcircuits using lateral interneurons and top-down feedback.

Although the proposed model demonstrates that an optimization scheme like error back-
propagation could be realized in nature, there are still many open questions. First of all,
several mechanisms proposed in this model require proper testing, like the biological mech-
anism of lookaheads31 and further details of the error calculation, like the modulation by
the derivative of the postsynaptic rate r̄′ (Eq. 5.30). Moreover, we only investigated error
backpropagation in case of hierarchical networks and static input-output mappings. To learn
sequential data, the proposed approach has to be extended to algorithms like backpropaga-
tion through time, for instance by employing biological plausible memory mechanisms to
buffer past activations needed for correct temporal credit assignment (Lillicrap and Santoro,
2019).

For mathematical convenience, we use a rate-based model in this chapter, representing
the population-averaged spike response of cortical neurons. Recently, error backpropagation
for spiking neural networks has been heavily investigated (Bohte, Kok, and La Poutré, 2000;
O’Connor and Welling , 2016; Mostafa, 2017; Huh and Sejnowski , 2018; Zenke and Ganguli ,
2018; Comsa, Potempa, Versari, Fischbacher, Gesmundo, and Alakuijala, 2019; Göltz et al.,
2019; Kheradpisheh and Masquelier , 2019; Bellec, Scherr, Hajek, Salaj, Legenstein, and
Maass , 2019), with many promising results. However, a mechanistic implementation of the
whole learning process as presented here, coupled with spike-based communication or even
spike-based error coding is still lacking. How elements of the presented model can be paired
with spike-based computing is currently being investigated (ongoing work by Laura Kriener).

Furthermore, compared to the model presented in Chapter 3, the networks here are not
stochastic and only used to perform classification and regression tasks. However, the original
error backpropagation algorithm is pretty flexible in the sense that the cost function to
be optimized can be freely chosen. Thus, as long as an appropriate and differentiable cost
function exists, unsupervised as well as stochastic models can be trained using backprop
(Kingma and Welling , 2013; Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair,
Courville, and Bengio, 2014). One prominent example are variational autoencoders, a class
of stochastic generative models combining autoencoders with sampling. Inspired by this, we
introduce a folded autoencoder structure in Section 5.3 and demonstrate how this might be
extended to networks similar to variational autoencoders – although this work is still in its
conceptual phase and needs to be further investigated in the future. In the current version,
we are able to demonstrate that the folded autoencoder can be trained unsupervised to learn
compressed representations of data as well as generate fairly recognizable images through
sampling. Unifying spike-based coding, probabilistic computing and end-to-end learning

31Which can actually become negative for fast changing inputs. Although we do not expect this to be
problematic, as this happens only rarely, the impact of cutting off negative rates should be investigated
more thoroughly in future work.
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with gradient descent optimization in cortical networks would introduce a powerful model
of brain-like computing, harnessing form (spikes, dendrites and microcircuits) to acquire
function (learning probabilistic representations with local, error-driven plasticity rules).
Finally, in ongoing work by Akos F. Kungl (Kungl, Dold, Riedler, Senn, and Petrovici ,

2019a; Kungl , 2020 - in prep.), the model is currently being extended to reinforcement
learning, a framework where learning is driven by reward (or punishment) signals (Sutton
and Barto, 2018). This is achieved by introducing a winner-nudges-all circuit in the output
area, i.e., the neurons in the output area (i) receive noise to become stochastic and (ii) form
a soft winner-take-all circuit (Oster, Douglas, and Liu, 2009). This way, the output area is
capable of stochastically exploring solutions. The network output is given by the most active
neuron in the output area, which slightly inhibits, or nudges, all other neurons of said area –
taking on the role of the external target nudging. Combined with a global scalar reward (or
punishment) signal, the network is able to generate its own output error, approximating a
reinforcement learning scheme for deep cortical networks.

Details about simulations, calculations and implementations in this chapter can be found
in Appendix B.

5.5 Contributions

The results in Section 5.2 were done in collaboration with Walter Senn and are currently
in preparation for publication. The original idea is from Walter Senn, underpinning of the
theory and proofs was done by Walter Senn and me, with help from João Sacramento, Mihai
A. Petrovici and Akos F. Kungl. Experiment design and simulations were done by me. The
presented theory in Section 5.3 was proposed and implemented by me. The formulation as
a 5-compartment neuron (Eq. 5.40) is by Walter Senn.
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As the end of Moore’s law comes closer (Waldrop, 2016), it becomes essential to look into
alternative ways of computing, distinct from our current understanding in terms of Boolean
algebra and logic gates. The two most promising approaches tackle this question on two
different levels:

• Quantum computing (Nielsen and Chuang , 2002) tries to utilize phenomenons from
quantum mechanics to perform computations, like superposition, inference and entan-
glement. Thus, computing is done using the rules governing the dynamics of atomic
and subatomic particles.

• Neuromorphic computing, or bio-inspired artificial intelligence, tries to understand the
design principles of the most powerful computing device we currently know – the
human brain – in an effort to recreate computational systems alike, but not necessarily
identical to it.

Within the scope of this thesis, we address the second approach and ask how complex and
flexible computations can naturally occur in physical systems like the brain, or similar systems
like analog neuromorphic hardware; representing a class of devices containing unreliable
and non-identical components – i.e., both temporal as well as fixed pattern noise. This is
an unpleasantry every algorithmic design intended to harness the benefits of brain-inspired
computing has to face. To tackle this question, we carefully tread between function and
form, or more specifically, computational theory and its physical realization, guaranteeing an
effortless transition from interpretive to mechanistic models (Dayan and Abbott , 2001) and
vice versa. Furthermore, we draw inspiration not only from neuroscience, but also from deep
learning to derive efficient and learning-capable mechanistic models, e.g., the neuronal least
action principle takes inspiration from error backpropagation and the spike-based sampling
networks from Boltzmann machines.
The results of this thesis are partitioned into two major chapters, one focusing on the

explicit coding used for computation – asynchronous and discrete spike-based coding – and
one on local, error-driven learning rules implementable by biological neuronal systems. We
propose a self-consistent model of sampling with spikes, based on the idea of a network of
networks using its own functional spike output as background noise input. When shaped by
training data, such networks build a generative model of the observed data, allowing them to
predict sensory stimuli, especially when occluded, noised or ambiguous inputs are presented to
the network (pattern completion). Spike-based sampling ensembles have been prototyped on
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Figure 6.1.: Schematic illustration of the spike-based sampling framework. Probabilistic inference is im-
plemented via sampling and its spike-based realization, allowing a functional and cognitive
interpretation of spike activity and stochastic behavior in neuromorphic as well as biological
substrates. A key feature of the framework is the proposed dual role of spikes, being carriers
of function and noise at the same time, enabling a self-contained implementation of neural
sampling.

the BrainScaleS–1 system (Section 3.4.6 and Dold, Bytschok, Kungl, Baumbach, Breitwieser,
Senn, Schemmel, Meier, and Petrovici 2019a) and spike-based sampling with external noise
sources on the BrainScaleS–1 and 2 architectures Kungl et al. (2019b); Billaudelle et al.
(2019); hence, they have already been successfully realized on physical computing devices.

We further propose a theoretical framework, the neuronal least action principle, for
gradient-based learning in dynamic neuronal systems, where neurons make use of both
predictions in time (what will my response be several ms in the future) and predictions of
network activity (can the network predict / explain its own activity, or are there external
factors? ) while learning is governed by predictive plasticity rules (dendritic prediction of
somatic activity and bottom-up prediction of top-down feedback) as well. We are currently
working on a spike-based implementation of the neuronal least action principle that allows a
mapping to spiking neuromorphic hardware, either in analog (BrainScaleS) or digital (Loihi)
circuits (ongoing work by Laura Kriener).
Both models can be described in a compact form linking computation, algorithm and

implementation (Marr , 1982). For the spike-based model, the performed computation is
probabilistic inference, algorithmically realized by Markov Chain Monte Carlo sampling
and realized in a recurrently connected pool of spiking neurons (Fig. 6.1). For the neuronal
least action principle, the performed computation is time-continuous learning of discrimina-
tive or generative models, algorithmically realized by error backpropagation. Through the
neuronal least action principle, we obtain both a compressed network representation (the
energy function) as well as neuronal and synaptic dynamics implementing this algorithm.
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Figure 6.2.: Schematic illustration of the neuronal least action principle. On the computational and algo-
rithmic side, we want to implement time-continuous gradient-based learning, realized by error
backpropagation. The neuronal least action principle provides a top-down approach, starting
with a compressed network code (the energy) from which neuronal and synaptic dynamics can
be derived that implement the required computation. The dynamics can be mapped to features
of biological neural networks, suggesting a cognitive and functional interpretation of them. These
biological features, e.g., local microcircuits, can again be described by a functional network code
and corresponding dynamics.

Furthermore, the dynamics can be mapped to features of biological neural networks, again
describable via the neuronal least action principle (Fig. 6.2). We hope that the proposed
models not only further our understanding of computing in the brain, but also pave the way
to more biological network models and algorithms that inherit the functionality and clarity
of their abstract counterparts in deep learning – or even surpass them. The results presented
here demonstrate that biologically inspired neural networks exhibit intriguing and powerful
functionalities useful for analog computing.

Still, there remain many open questions and challenges regarding coding and learning in the
brain, hindering the progress that can be achieved with current neuromorphic technologies.
One major challenge is to identify the scheme (or schemes) deployed by nature to encode and
transform information in the brain. In this thesis, we work under the assumption that neurons
turn analog signals (postsynaptic potentials) into digital ones (spikes), representing samples
from a probability distribution. However, several other temporal coding schemes utilizing
spike times have been proposed, e.g., latency codes (analog → delay to first spike, Thorpe
and Gautrais 1998; Mostafa 2017; Kheradpisheh and Masquelier 2019; Comsa, Potempa,
Versari, Fischbacher, Gesmundo, and Alakuijala 2019; Göltz et al. 2019) and rank ordering
codes (analog → order of spikes in a population, Thorpe and Gautrais 1998). Biological
neurons also show much more complex spiking behavior than simple LIF neurons (Izhikevich,
2004), e.g., spike bursts might play a crucial role for information processing and transmission
(Shai, Anastassiou, Larkum, and Koch, 2015; Zeldenrust, Wadman, and Englitz , 2018) as well
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as plasticity (Bittner, Milstein, Grienberger, Romani, and Magee, 2017). Alternatively, to
encode information into precise spike times, spiking neural networks can be trained to output
a target spike train given an input, similarly to how abstract neural networks are trained
end-to-end to produce a target output given an input (Zenke and Ganguli , 2018). Discarding
exact temporal information, integrated or averaged quantities like spike counts or rates can
be used to encode analog signals (Schmitt et al., 2017; Wu, Chua, Zhang, Yang, Li, and Li ,
2019b), a coding scheme that we also employ in this thesis. Most likely, the brain utilizes a
mixture of coding schemes suitable for the many tasks it has to perform, e.g., spike latency
in retinal ganglion cells of salamanders carries a wealth of information about the spatial
structure of briefly presented images, allowing quick perception of a visual scene to detect
both prey and predators (Gollisch and Meister , 2008). Similarly, a sampling-based coding
scheme allows decision making on both short and long time scales: an initial conclusion can
already be made with the first sample (spike) and be further refined by accumulating more
samples, better approximating the conditional probability distribution.
Throughout this work, we use two different plasticity rules: (i) a predictive rule (den-

dritic prediction of somatic spiking, Section 5.2) and a correlation-based rule (wake-sleep
learning, Section 3.2). Although both plasticity rules are quite different, they can be tied
to biological plasticity as observed in experiments. Plasticity in biological systems is com-
monly described via an unsupervised mechanism called Hebbian learning (Hebb, 1949),
where changes in synaptic weights are a function of the pre- and postsynaptic activity, i.e.,
Ẇ = f (r̄pre, r̄post), with additional non-Hebbian contributions like homeostatic plasticity
(Turrigiano, 2012), which stabilizes neuronal activity, or heterosynaptic plasticity (Chisti-
akova, Bannon, Bazhenov, and Volgushev , 2014), where plastic changes in a synapse also
influence neighboring synapses. If we think of spiking neural networks, pre- and postsynaptic
activity become pre- and postsynaptic spike time, and a causal spike pattern (presynaptic
neuron spikes before postsynaptic neuron) leads to a strengthening of the synapse and an
acausal spike pattern (post spikes before pre) to a weakening (Bi and Poo, 2001). The
strength of the change commonly decays exponentially as a function of the delay between
pre- and postsynaptic spike (see Fig. 6.3B), although many other dependencies have been
observed as well (Abbott and Nelson, 2000). In Clopath, Büsing, Vasilaki, and Gerstner
(2010), a voltage-based Hebbian plasticity rule, depending on presynaptic spike time and
postsynaptic membrane potential, is introduced capable of reproducing the original spike
time dependent plasticity (STDP) rule as well as additional phenomenological effects like
spike frequency dependency (Sjöström, Turrigiano, and Nelson, 2001).

The spike-based version of the predictive learning rule used in Chapter 5 has been shown to
reproduce several properties of biological plasticity when introducing backpropagating action
potentials into the neuronal membrane dynamics, see Fig. 6.3A (results by Spicher, Clopath,
and Senn 2016, 2018, 2019). For example, the rule is capable of reproducing the characteristic
shape of STDP (Fig. 6.3B) as well as additional properties of synaptic weight updates like
spike frequency dependence and synaptic distance dependence (not shown here) observed
in biology (Sjöström, Turrigiano, and Nelson, 2001; Sjöström and Häusser , 2006). The
wake-sleep algorithm used in Chapter 3 only depends on pre- and postsynaptic activity and
therefore fits into the class of Hebbian learning rules. It was further shown that wake-sleep
learning can be approximated using a symmetric STDP rule (Neftci, Das, Pedroni, Kreutz-
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Figure 6.3.: (A) The plasticity rule introduced in Urbanczik and Senn (2014), learning by the dendritic
prediction V ∗ of somatic spiking S(t), where V ∗ is the attenuated dendritic potential V , shows
several experimental properties of STDP when extended with action potentials (U) that propa-
gate back into the dendritic tree. (B) The learning rule can recover the characteristic STDP
weight update curve. Comparison is with experimental data by Bi and Poo (2001). Results
and figures are taken from Spicher et al. 2016, 2018, 2019 (publication in prep.). (C) The
wake-sleep algorithm (top) can be approximated using a symmetric STDP rule, taking on the
role of measuring correlations between visible and hidden neurons. To implement the two phases,
the STDP rule is multiplied by −1 for the free phase (colors mark the STDP rules for the two
different phases of wake-sleep). Image adjusted from Neftci et al. (2014).

Delgado, and Cauwenberghs , 2014), which simply measures correlations between pre-and
postsynaptic spiking, independent of the causality of the spikes. To implement the data and
free phase of the wake-sleep algorithm, the STDP rule is flipped for the second phase, such
that correlated activity leads to a weakening of synapses (see Fig. 6.3C). We are currently
investigating how stable spike-based sampling is when (i) the weights and (ii) STDP updates
are not perfectly symmetric and whether homeostatic mechanisms can be introduced into the
learning rule to drive the network towards a symmetric weight configuration (ongoing work
by Timo Gierlich). It should be noted here that in this work, we neglect Dale’s law which
states that biological neurons are exclusively excitatory (depolarizing effect on postsynaptic
potential) or inhibitory (polarizing effect), depending on the neurotransmitters produced in
the neuron. Similarly to neurons in deep learning, we allow neurons to be both excitatory and
inhibitory, which might be realized in nature by more intricate circuitry between excitatory
and inhibitory neurons.

Although conceptually pleasing and well rooted in experiments, simple STDP is not enough
to optimize neural networks with similar success as in deep learning. A modification of basic
Hebbian learning rules are so-called “three-factor learning rules”, which introduce a third
factor to the pre- and postsynaptic activity (Frémaux and Gerstner , 2016; Kuśmierz, Isomura,
and Toyoizumi , 2017). This third factor can take the form of a reward signal, mediated
by neuromodulators like dopamine, noradrenaline and serotonin, attentional feedback or
supervised errors, introducing a more global signal into the plasticity rule informing the
synapse about the overall performance of the network. Supervised errors might be propagated
through biological neural networks using algorithms akin to error backpropagation, although
as of now, it is not at all clear how the brain might accomplish such a feat. In Chapter 5,
we propose the neuronal least action principle as one possible solution to this problem and
briefly reviewed several others.
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Taking a more network-centric approach to learning, where additional neural networks may
take over key functionalities supporting learning in a principal network, several interesting
ideas have been proposed in the deep learning literature. For instance, a crucial component
for uniting reinforcement and deep learning is to add a playback memory (i.e., the possi-
bility to learn from replays) to assist learning (Mnih et al., 2015), inspired by the episodic
memory found in the hippocampus (Nicola and Clopath, 2018). In case of learning via error
backpropagation, generative adversarial networks (Goodfellow, Pouget-Abadie, Mirza, Xu,
Warde-Farley, Ozair, Courville, and Bengio, 2014) have been proposed to learn appropri-
ate cost functions for generative networks in a supervised architecture, and in Jaderberg,
Czarnecki, Osindero, Vinyals, Graves, Silver, and Kavukcuoglu (2017), small subnetworks
learn to represent the areawise errors required for error backpropagation in the principal
network, lifting the requirement for actual backpropagation of errors to train it. Whether
adversarial networks might be realized in a biologically plausible way is currently an open
question (ongoing work by Nicolas Deperrois). In addition, a subnetwork might be trained to
improve learning in the principal network, i.e., creating from one learning rule (subnetwork)
a new, more efficient learning rule for the principal network, known as “meta-learning” or
“learning to learn” in the literature (Thrun and Pratt , 2012; Wang, Kurth-Nelson, Kumaran,
Tirumala, Soyer, Leibo, Hassabis, and Botvinick , 2018). All these examples demonstrate
that there still remains a lot to be learned about “learning” that goes far beyond synaptic
plasticity rules.

Throughout this thesis, we mostly use simulations and mathematical modeling, but stay
close to mechanistic realizable systems. We further successfully prototype part of this work
on an analog neuromorphic device, with more results expected in the future. Apart from the
presented modeling methods used in this thesis, digital neuromorphic hardware (Akopyan
et al., 2015; Davies et al., 2018; Mayr, Hoeppner, and Furber , 2019) is also a suitable
substrate for investigating spike-based computing and local plasticity rules, without the
negative effects of analog hardware, e.g., fixed pattern noise, but also without its benefits:
power efficiency and speed. An intriguing future technology are memristors (a contraction of
memory and resistor), an electrical component with history-dependent resistance that could
potentially be used to build low-power plastic synapses as well as neurons in neuromorphic
devices (Xia and Yang , 2019; Yao, Wu, Gao, Tang, Zhang, Zhang, Yang, and Qian, 2020) –
however, this technology is still in its infancy. The previously mentioned approaches are all
based on electronic circuits, but photonic solutions for neural network accelerators are being
developed as well, e.g., Brunner, Soriano, and Van Der Sand (2019); Hamerly, Bernstein,
Sludds, Soljačić, and Englund (2019), and represent an alternative realization of physical
modeling systems. Currently, the most pressing issue of all neuromorphic platforms lies in
suitable algorithms and scalability rivaling current AI standards. Still, as cited in the prolog,
if you want to understand a complicated device like a brain, you should build one – which in
our case translates to mathematical and physical modeling of brain-inspired circuits. This
way, we hope to unravel the computational principles of the mammalian brain piece by piece,
as done in this and many other recent works, to further our understanding of the brain and
potentially overcome the initial challenges of the neuromorphic approach, initiating a new
generation of neural networks molded into energy efficient artificial substrates.
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We can only see a short distance ahead, but we can see plenty there that needs
to be done.

Alan Turing, Computing machinery and intelligence, 1950
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A | Appendix of chapter 3

A.1 Calculations

In the following, the mathematical analysis of results from Section 3.2 and Section 3.4 are
shown. Appendix A.1.1 to Appendix A.1.7 are taken from Dold, Bytschok, Kungl, Baumbach,
Breitwieser, Senn, Schemmel, Meier, and Petrovici (2019a) and were performed and written
up by me as the sole author.

A.1.1 Free membrane potential distribution with colored noise

In the high-conductance state (HCS), it can be shown that the temporal evolution of the
free membrane potential (FMP) of an leaky integrate-and-fire (LIF) neuron stimulated by
balanced Poisson inputs is equivalent to an Ornstein-Uhlenbeck (OU) process with the
following Green’s function (Petrovici , 2016):

f(u, t|u0) =

√
1

2πσ2(1− e−2θt)

· exp

(
− 1

2σ2

(u− µ+ (µ− u0)e−θt)2

1− e−2θt

)
. (A.1)

with

θ =
1

τ syn
, (A.2a)

µ =
glEl +

∑
k∈{e,i} νkwkE

rev
k τ syn

〈gtot〉
, (A.2b)

σ2 =

∑
k∈{e,i} νkw

2
k(E

rev
k − µ)2τ syn

〈gtot〉2
, (A.2c)

〈gtot〉 = gl +
∑
k∈{e,i}

wkνkτ
syn
k , (A.2d)

where νk are the noise frequencies, wk the noise weights and we dropped the index notation
ufree
k used in previous sections for convenience. The stationary FMP distribution is then

given by a Gaussian (Gerstner and Kistler , 2002; Petrovici , 2016):

f(u) =

√
1

2πσ2
exp

(
− (u− µ)2

2σ2

)
. (A.3)

105



A. Appendix of chapter 3

Replacing the white noise η(t) in the OU process, defined by 〈η〉 = const. and 〈η(t)η(t′)〉 =
νδ(t − t′) + ν2 (Gerstner and Kistler , 2002), with (Gaussian) colored noise ηc, defined by
〈ηc〉 = const. and 〈ηc(t)ηc(t′)〉 = γ(t − t′) (Häunggi and Jung , 1994) where γ(t − t′) is a
function that does not vanish for t− t′ 6= 0, the stationary solution of the FMP distribution
is still given by a Gaussian with mean µ′ and width σ′ (Häunggi and Jung , 1994; Cáceres ,
1999). Since the noise correlations only appear when calculating higher-order moments of
the FMP, the mean value of the FMP distribution remains unchanged µ′ = µ. However,
the variance σ′2 = 〈

(
u(t)− 〈u(t)〉

)2〉 of the stationary FMP distribution changes due to the
correlations, as discussed in the next section.

A.1.2 Width of free membrane potential distribution

In the HCS, the FMP can be approximated analytically as (Petrovici , 2016)

u(t) = u0 +
∑
k∈{e,i}

∑
spikes s

ΛkΘ(t− ts)

·
[

exp

(
− t− ts

τ syn
k

)
− exp

(
− t− ts
〈τeff〉

)]
, (A.4)

with

u0 =
glEl + (〈gtot〉 − gl)µ

〈gtot〉
, (A.5a)

Λk =
τ syn
k wk

(
Erev
k − µ

)
〈gtot〉

(
τ syn
k − 〈τeff〉

) , (A.5b)

〈τeff〉 =
Cm

〈gtot〉
. (A.5c)

By explicitly writing the excitatory and inhibitory noise spike trains as Se/i(t
′) =∑

spikes s δ(t
′ − ts), this can be rewritten to

u(t) = u0 +
∑
k∈{e,i}

Λk

∫
dt′Sk(t

′)Θ(t− t′)

·
[

exp

(
− t− t′

τ syn
k

)
− exp

(
− t− t′

〈τeff〉

)]
(A.6a)

= u0 + Λe

(
Se ∗ κe

)
(t) + Λi

(
Si ∗ κi

)
(t) (A.6b)

= u0 +
[
(ΛeSe + ΛiSi) ∗ κ

]
(t) , (A.6c)

where ∗ denotes the convolution operator and with

κe/i(t) = Θ(t)

[
exp

(
− t

τ syn
e/i

)
− exp

(
− t

〈τeff〉

)]
. (A.7)
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For simplicity, we assume τ syn
e = τ syn

i . The width of the FMP distribution can now be
calculated as

〈
(
u(t)− 〈u(t)〉

)2〉 = 〈u(t)2〉 − 〈u(t)〉2 (A.8a)

= 〈
[
u0 + (Stot ∗ κ)(t)

]2〉 − 〈u0 + (Stot ∗ κ)(t)〉2 (A.8b)

= 〈
[
(Stot ∗ κ)(t)

]2〉 − 〈(Stot ∗ κ)(t)〉2 (A.8c)

= 〈
[
(Stot ∗ κ)(t)− 〈(Stot ∗ κ)(t)〉

]2〉 , (A.8d)

where the average is calculated over t and Stot(t) = ΛeSe(t) + ΛiSi(t). Since the average is
an integral over t, i.e. 〈(·)〉 → lim

T→∞
1
T

∫ T/2
−T/2(·) dt, we can use the identity

∫
(f ∗ g)(t) dt =

(
∫
f(t) dt)(

∫
g(t) dt), that is 〈f ∗ g〉 = 〈f〉

∫
g(t) dt = 〈f〉 ∗ g in the limit of T → ∞, to

arrive at the following solution:

〈
(
u(t)− 〈u(t)〉

)2〉

= 〈
[
(Stot(t)− 〈Stot(t)〉) ∗ κ(t)

]2〉 . (A.9)

More generally, we obtain with a similar calculation the autocorrelation function (ACF) of
the FMP:

〈ū(t)ū(t+ ∆)〉
= 〈
(
(S̄tot ∗ κ)(t)

)(
(S̄tot ∗ κ)(t+ ∆)

)
〉 , (A.10)

with x̄(t) = x(t)−〈x(t)〉 and by using 〈ū(t)ū(t+ ∆)〉 = 〈u(t)u(t+ ∆)〉−〈u(t)〉2. This can be
further simplified by applying the Wiener–Khintchine theorem (Wiener , 1930; Khintchine,
1934), which states that lim

T→∞
〈x(t)x(t+ ∆)〉T = F−1

(
|F(x)|2)

)
(∆) with 〈(·)〉T →

∫ T/2
−T/2(·) dt

(due to
∫
x(t)x(t+ ∆) dt =

(
x(t) ∗ x(−t)

)
(∆)). Thus, for the limit T →∞, we can rewrite

this as

〈
(
(S̄tot ∗ κ)(t)

)(
(S̄tot ∗ κ)(t+ ∆)

)
〉

= lim
T→∞

1

T
F−1

(
|F(S̄tot ∗ κ)|2

)
(∆) (A.11a)

= lim
T→∞

1

T
F−1

(
|F(S̄tot)F(κ)|2

)
(∆) (A.11b)

= lim
T→∞

1

T

(
F−1

(
|F(S̄tot)|2

)
∗ F−1

(
|F(κ)|2

))
(∆) , (A.11c)

and by applying the Wiener–Khintchine theorem again in reverse

〈ū(t)ū(t+ ∆)〉 =
(

lim
T→∞

1

T
〈
[
S̄tot(t)

][
S̄tot(t+ ∆′)

]
〉
T

∗ 〈
[
κ(t)

][
κ(t+ ∆′)

]
〉∞
)
(∆) , (A.12)

107



A. Appendix of chapter 3

where the variance of the FMP distribution is given for ∆ = 0. Thus, the unnormalized
ACF of the FMP can be calculated by convolving the unnormalized ACF of the background
spike trains (Stot) and the postsynaptic potential (PSP) shape (κ). In case of independent
excitatory and inhibitory Poisson noise (i.e., 〈S̄(t)S̄(t′)〉 = νδ(t− t′)), we get

〈
[
S̄tot(t)

][
S̄tot(t+ ∆′)

]
〉 = Λ2

e 〈S̄e(t)S̄e(t+ ∆′)〉
+ Λ2

i 〈S̄i(t)S̄i(t+ ∆′)〉 (A.13a)

=
∑
k∈{e,i}

Λ2
kνkδ(∆

′) (A.13b)

and therefore

Var(u) =
( ∑
k∈{e,i}

Λ2
kνkδ(∆

′)

∗ 〈
[
κ(t)

][
κ(t+ ∆′)

]
〉∞
)
(∆ = 0) (A.14a)

=
∑
k∈{e,i}

Λ2
kνk 〈κ2(t)〉 (A.14b)

=
∑
k∈{e,i}

Λ2
kνk

∫ ∞
0

κ2(t) dt , (A.14c)

which agrees with the result given in Petrovici (2016). If the noise spike trains are generated
by processes with refractory periods, the absence of spikes between refractory periods leads
to negative contributions in the ACF of the noise spike trains. This leads to a reduced value
of the variance of the FMP and hence, also to a reduced width of the FMP distribution.
The factor

√
β by which the width of the FMP distribution changes due to the introduction

of colored background noise is given by

β =
σ2

colored

σ2
Poisson

(A.15)

=

∫
d∆ 〈S̄tot(t)S̄tot(t+ ∆)〉 ·

∫
dt κ(t)κ(t+ ∆)∑

k∈{e,i} Λ2
kνk
∫∞

0
κ2(t) dt

. (A.16)

For the simplified case of a Poisson process with refractory period, one can show that∫
d∆ 〈S̄tot(t)S̄tot(t+ ∆)〉 has a reduced value compared to a Poisson process without refrac-

tory period (Gerstner and Kistler , 2002), leading to β ≤ 1. Even though we do not show
this here for neuron-generated spike trains, the two cases are similar enough that β ≤ 1 can
be assumed to apply in this case as well.
In the next section, we will show that the factor β can be used to rescale the inverse

slope of the activation function to transform the activation function of a neuron receiving
white noise to the activation function of a neuron receiving equivalent (in frequency and
weights), but colored noise. That is, the rescaling of the FMP distribution width due to the
autocorrelated background noise translates into a rescaled inverse slope of the activation
function.
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A.1.3 Approximate inverse slope of LIF activation function

As stated earlier, the FMP of an LIF neuron in the HCS is described by an OU process with
a Gaussian stationary FMP distribution (both for white and colored background noise). As
a first approximation, we can define the activation function as the probability of the neuron
having a FMP above threshold (see Eq. A.3)

p(zi = 1) ≈
∫ ∞
ϑ

f(u)du (A.17)

=

∫ ∞
ϑ

√
1

2πσ2
exp

(
− (u− µ)2

2σ2

)
du (A.18)

=
1

2

(
1− erf

(ϑ− µ√
2σ

))
. (A.19)

Even though this is only an approximation (as we are neglecting the effect of the reset), the
error function is already similar to the logistic activation function observed in simulations
(Petrovici, Bill, Bytschok, Schemmel, and Meier , 2016).

The inverse slope of a logistic activation function is defined at the inflection point, i.e.,

α−1 =
d

dµ
ϕ

(
µ− u0

α

)∣∣∣∣
µ=u0

. (A.20)

By calculating the inverse slope via the activation function derived from the FMP distribu-
tion, we get

α−1 =
d

dµ
p(zi = 1)

∣∣∣∣
µ=ϑ

, (A.21)

=

√
1

2πσ2
, (A.22)

from which it follows that the inverse slope α is proportional to the width of the FMP
distribution σ. Thus, rescaling the variance of the FMP distribution by a factor β leads,
approximately, to a rescaling of the inverse slope of the activation function α′ =

√
βα.

A.1.4 Origin of side-peaks in the noise autocorrelation func-
tion

For high rates, the spike train generated by an LIF neuron in the HCS shows regular patterns
of interspike intervals which are roughly equal to the absolute refractory period. This occurs
(i) due to the refractory period introducing regularity for higher rates, since ISI’s < τref are
not allowed and the maximum firing rate of the LIF neuron is bounded by 1

τref
, and (ii) due

to an LIF neurons’s tendency to spike consecutively when the effective membrane potential

ueff(t) =
glEl +

∑
k∈{e,i} g

syn
k (t)Erev

k

gtot(t)
, (A.23)

τeff u̇ = ueff − u , (A.24)
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is suprathreshold after the refractory period (Petrovici , 2016). The probability of a consec-
utive spike after the neuron has spiked once at time t is given by (under the assumption of
the HCS)

p1 = p(spike at t+ τref | first spike at t) (A.25)

=

∫ ∞
ϑ

dut+τref
f(ut+τref

, τref | ut = ϑ) ,

due to the effective membrane potential following an OU process (whereas the FMP is a low-
pass filter thereof, however with a very low time constant τeff), see Eq. A.1. The probability
to spike again after the second refractory period is then given by

p2 = p(spike at t+ 2τref | spike at t+ τref , t) (A.26)

=

∫∞
ϑ

∫∞
ϑ

du2du1 f(u2, τref | u1)f(u1, τref | u0 = ϑ)∫∞
ϑ

du1 f(u1, τref | u0 = ϑ)
,

with un = ut+nτref
, or in general after n− 1 spikes

pn = p(spike at t+ nτref | spike at t+ (n− 1)τref , . . . , t)

=

∫ ∞
ϑ

dun−1 f
(n−1)(un−1) , (A.27)

fn(un) =

∫∞
ϑ

dun−1 f(un, τref | un−1)f (n−1)(un−1)∫∞
ϑ

dun−1 f (n−1)(un−1)
, (A.28)

for n > 1 and f 1(u1) = f(u1, τref | u0 = ϑ). The probability to observe n spikes in such a
sequence is then given by

Pn =
n−1∏
i=1

pi , (A.29)

and the probability to find a burst of length n (i.e., the burst ends)

p(burst of length n) = Pn · (1− pn) . (A.30)

With this, one can calculate the average length of the occurring bursts
∑∞

i=1 i ·
p(burst of length i), from which we can already see how the occurrence of bursts depends
on the mean activity of the neuron. A simple solution can be found for the special case of
τ syn � τref , since then the effective membrane potential distribution has already converged
to the stationary distribution after every refractory period, i.e., f(un, τref | un−1) = f(un)
and hence

pn = p(spike at t+ nτref | spike at t+ (n− 1)τref , . . . , t)

=

∫ ∞
ϑ

duf(u) = p̄ (A.31)
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for all n. Thus, for this special case the average burst length can be expressed as
∞∑
i=1

i · p(burst of length i) =
∞∑
i=1

i · p̄i−1(1− p̄) , (A.32)

=
1

1− p̄
. (A.33)

By changing the mean membrane potential (e.g., by adjusting the leak potential or adding
an external (bias) current), the probability of consecutive spikes p̄ can be directly adjusted
and hence, also the average length of bursts. Since these bursts are fixed structures with
interspike intervals equal to the refractory period, they translate into side-peaks at multiples
of the refractory period in the spike train ACF, as we demonstrate below.
The ACF of the spike train S is given by

C(S, S,∆) =
〈StSt+∆〉 − 〈S〉2

Var(S)
, (A.34)

where the first term of the numerator is 〈StSt+∆〉 = p(spike at t+ ∆, spike at t) (notation
as in Eqs. A.6a and A.8a). This term can be expressed as

p(spike at t+ ∆, spike at t)

= p(spike at t+ ∆ | spike at t) · p(spike at t) , (A.35)
= p(spike at t+ ∆ | spike at t) · 〈S〉 , (A.36)

where we assumed that the first spike starts the burst at a random time t. Therefore, in
order to calculate the ACF, we have to calculate the probability that a spike occurs at time
t+ ∆ given that the neuron spikes at time t. This has to include every possible combination
of spikes during this interval. In the following, we argue that at multiples of the refractory
period, the main contribution to the ACF comes from bursts.

• First, for ∆ < τref , the term p(spike at t + ∆ | spike at t) in Eq. A.35 vanishes since
the neuron is refractory and cannot spike during this interval. Thus, the ACF becomes
negative as only the term − 〈S〉2

Var(S)
in Eq. A.34 remains, where both numerator and

denominator are positive.

• For ∆ = τref , a spike can only occur when the neuron bursts with probability p1 =∫∞
ϑ

dut+τref
f(ut+τref

, τref | ut = ϑ), where we assumed for simplicity that the first spike
starts the burst spontaneously.

• Since for τref < ∆ < 2τref , the neuron did not burst with probability 1−p1, it is possible
to find a spike in this interval, leading again to negative, but diminished, values in the
ACF.

• For ∆ = 2τref , we now have two ways to observe spikes at t and t+ 2τref : (i) The spikes
are part of a burst of length 2 or (ii) there was no intermediate spike and the spikes
have an ISI of 2τref . Since for larger rates, having large ISIs that are exact multiples
of τref is unlikely, we can neglect the contribution of (ii).
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• If we go further to ∆ = nτref , we get even more additional terms including bursts of
length < n. However, these terms can again be neglected as, compared to having a
burst of length n, it is rather unlikely to get a burst pattern with missing intermediate
spikes, i.e., having partial bursts which are a multiple of τref apart.

• Finally, for ∆→∞, we have 〈StSt+∆〉−〈S〉2 = 〈St〉 〈St+∆〉−〈S〉2 = 〈S〉 〈S〉−〈S〉2 = 0
and the ACF (Eq. A.34) vanishes.

Consequently, we can approximate the ACF at multiples of the refractory period by
calculating the probability of finding a burst of n spikes (Eq. A.28):

C(S, S, nτref) ≈
∞∑
k=1

Pk+1δ
(
[n− k]τref

)
, (A.37)

and for the special case of τ syn � τref

C(S, S, nτref) ≈
∞∑
k=1

p̄kδ
(
[n− k]τref

)
(A.38)

=
∞∑
k=1

ek ln p̄δ
(
[n− k]τref

)
. (A.39)

Hence, since increasing the mean rate (or bias) of the neuron leads to an increase in p̄ and
thus to a reduced decay constant ln p̄, more significant side-peaks emerge.
For τ syn ≈ τref , the effective membrane distribution is not yet stationary and therefore,

this approximation does not hold. To arrive at the exact solution, one would have to repeat
the above calculation for all possible spike time combinations, leading to a recursive integral
(Gerstner and Kistler , 2002). Furthermore, one would also need to take into account the
situation where the first spike is itself part of a burst, i.e., is not the first spike in the burst.
To circumvent a more tedious calculation, we use an approximation which is in between
the two cases τ syn � τref and τ syn ≈ τref : we use p̄ =

∫∞
ϑ

duf(u, τref | ϑ), which provides a
reasonable approximation for short bursts.

A.1.5 Cross-correlation of free membrane potentials receiving
correlated input

Similarly to the ACF of the membrane potential, one can calculate the cross-correlation
function of the FMPs of two neurons receiving correlated noise input. First, the membrane
potentials are given by

u1 = u1
0 + Stot,1 ∗ κ , (A.40)

u2 = u2
0 + Stot,2 ∗ κ . (A.41)
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The covariance function can be written as

〈ū1(t)ū2(t+ ∆)〉
= 〈u1(t)u2(t+ ∆)〉 − 〈u1(t)〉 〈u2(t)〉 (A.42a)
= 〈
(
Stot,1 ∗ κ

)
(t)
(
Stot,2 ∗ κ

)
(t+ ∆)〉

− 〈
(
Stot,1 ∗ κ

)
(t)〉 〈

(
Stot,2 ∗ κ

)
(t)〉 (A.42b)

= ...

=
(

lim
T→∞

1

T
〈S̄tot,1(t)S̄tot,2(t+ ∆′)〉T

∗ 〈κ(t)κ(t+ ∆′)〉∞
)
(∆) , (A.42c)

with ū = u− 〈u〉, from which we obtain the cross-correlation function by normalizing with
the product of standard deviations of u1 and u2 (for notation, see Eq. A.12). The term
containing the input correlation coefficient is 〈S̄tot,1(t)S̄tot,2(t+ ∆′)〉. Plugging in the spike
trains, we get four cross-correlation terms

〈S̄tot,1(t)S̄tot,2(t+ ∆′)〉

=
∑

l,m∈{e,i}

Λl,1Λm,2 〈S̄l,1(t)S̄m,2(t+ ∆′)〉 . (A.43)

Since excitatory as well as inhibitory noise inputs are randomly drawn from the same pool of
neurons, we can assume that 〈S̄l,1(t)S̄m,2(t+ ∆′)〉 is approximately equal for all combinations
of synapse types when averaging over enough inputs, regardless of the underlying correlation
structure/distribution of the noise pool. The first term, however, depends on the synapse
types since the Λ-terms (Eq. A.5b) contain the distance between reversal potentials and
mean FMP:

〈ū1(t)ū2(t+ ∆)〉

= ζ1ζ2

∑
l,m∈{e,i}

wlwm
(
Erev
l − µ1

)(
Erev
m − µ2

)
·
[
〈S̄l,1(t)S̄m,2(t+ ∆′)〉 ∗ 〈κ(t)κ(t+ ∆′)〉

]
(∆) , (A.44)

with constants ζi = τ syn

〈gtot
i〉

(
τ syn−〈τeff

i〉
)
. The cross-correlation vanishes when, after summing

over many inputs, the following identities hold:

〈Λe,1Λe,2〉inputs = −〈Λe,1Λi,2〉inputs , (A.45a)

〈Λi,1Λi,2〉inputs = −〈Λi,1Λe,2〉inputs , (A.45b)

where 〈(·)〉 is an average over all inputs, i.e., all neurons that provide noise.
While not relevant for our simulations, it is worth noting that the excitatory and inhibitory

weights with which each neuron contributes its spike trains can be randomly drawn from
non-identical distributions. By enforcing the following correlation between the noise weights
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of both neurons, one can introduce a skew into the weight distribution which compensates
for the differing distance to the reversal potentials:

(Ee,1
rev − µ1)(Ee,2

rev − µ2) 〈w1
ew

2
e〉inputs

= −(Ee,1
rev − µ1)(Ei,2

rev − µ2) 〈w1
ew

2
i 〉inputs (A.46)

A simple procedure to accomplish this is the following: First, we draw the absolute
weights w1 and w2 from an arbitrary distribution and assign synapse types randomly with
probabilities pe/i afterwards. If w2 is excitatory, we multiply w1 by |Ei,2rev−µ2|

pe|Ei,2rev−µ2|+pi|Ee,2rev−µ2|
,

otherwise by |Ee,2rev−µ2|
pe|Ei,2rev−µ2|+pi|Ee,2rev−µ2|

. This way, 〈w1〉 remains unchanged and the resulting
weights suffice Eq. A.46.

A.1.6 State space switch from {0,1} to {-1,1}

To switch from the state space z ∈ {0, 1} to z′ ∈ {−1, 1} while conserving the state
probabilities (i.e., p(z) = p(z′)) one has to adequately transform the distribution parameters
W and b. Since the distributions are of the form p(z) = exp

(
zTWz + zTb

)
, this is

equivalent to requiring that the energy E(z) = zTWz + zTb of each state remains, up to a
constant, unchanged.

First, we can write the energy of a state z′ and use the transformation z′ = 2z− 1 to get

E(z′) =
1

2

∑
i,j

z′iW
′
ijz
′
j +
∑
i

z′ib
′
i (A.47a)

=
1

2

(
4
∑
i,j

ziW
′
ijzj − 2

∑
i,j

ziW
′
ij − 2

∑
i,j

W ′
ijzj

+
∑
i,j

W ′
ij

)
−
∑
i

b′i + 2
∑
i

zib
′
i (A.47b)

=
1

2

∑
i,j

zi4W
′
ijzj +

∑
i

zi
(
2b′i

− 2
∑
j

W ′
ij

)
+ C , (A.47c)

where C is a constant C = 1
2

∑
i,jW

′
ij −

∑
i b
′
i and we used the fact that W ′

ij is symmetric.
Since constant terms in the energy leave the probability distribution invariant, we can simply
compare E(z′) and E(z)

E(z) =
1

2

∑
i,j

zTi Wijzj +
∑
i

zTi bi , (A.48)

and extract the correct parameter transformation:

Wij = 4W ′
ij , (A.49)

bi = 2b′i − 2
∑
j

W ′
ij . (A.50)
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From this, we can also calculate the inverse transformation rule for z = 1
2
(z′ + 1):

W ′
ij =

1

4
Wij , (A.51)

b′i =
1

2
bi +

1

4

∑
j

Wij . (A.52)

A.1.7 Translation from Boltzmann to neurosynaptic parame-
ters

Following Petrovici, Bill, Bytschok, Schemmel, and Meier (2016), the activation function
of LIF neurons in the HCS is approximately logistic and can be written as

p(zk = 1 | z/k) = ϕ(µ)

= (1 + exp (−(µ− u0)/α))−1 , (A.53)

where z/k is the state vector of all other neurons except the k’th one and µ the mean
membrane potential (Eq. A.2b). u0 and α are the inflection point and the inverse slope,
respectively. Furthermore, the conditional probability p(zk = 1 | z/k) of a Boltzmann
distribution over binary random variables zk, i.e., p(z) ∝ exp

(
1
2
zTWz + zTb

)
, is given by

p(zk = 1 | z/k)

=

(
1 + exp (−

∑
j

Wkjzj − bk)

)−1

, (A.54)

with symmetric weight matrix W , Wii = 0 ∀i, and biases b. These equations allow a
translation from the parameters of a Boltzmann distribution (bi, Wij) to parameters of
LIF neurons and their synapses (El, wij), such that the state dynamic of the network
approximates sampling from the target Boltzmann distribution.

First, the biases b can be mapped to leak potentials El (or external currents) by requiring
that, for W = 0 (that is, no synaptic input from other neurons), the activity of each neuron
equals the conditional probability of the target Boltzmann distribution

(1 + exp (−(µ− u0)/α))−1 !
= (1 + exp (−bk))−1 , (A.55)

leading to the translation rule

El =
τm

τeff

(αb + u0)−
∑
x∈{e,i}

〈gsyn
x 〉
gl

Erev
x . (A.56)

To map Boltzmann weightsWij to synaptic weights wij, we first have to rescale theWij, as
done for the biases in Eq. A.56. However, leaky integrator neurons have non-rectangular PSPs,
so their interaction strength is modulated over time. This is different from the interaction
in Boltzmann machines, where the PSP shape is rectangular. Nevertheless, we can derive
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a heuristic translation rule by requiring that the mean interaction during the refractory
period of the presynaptic neuron is the same in both cases, i.e.,∫ τref

0

dt PSP (t)
!

=

∫ τref

0

dt αWij (A.57a)

= αWijτref , (A.57b)

where PSP (t) is given by Eq. A.4. From this, we get the translation rule for synaptic
weights:

wkj =
αWkjCm

τref

τ syn

(
1− τ syn

τeff

) (
Erev
kj − µ

)−1[
τ syn

(
e−

τref
τsyn − 1

)
− τeff

(
e
− τref
τeff − 1

)] . (A.58)

A.2 Additional results

Animations of the experiments using hierarchical networks (Figs. 3.22 and 3.23) or neuro-
morphic hardware (Fig. 3.24) can be found online at https://doi.org/10.1016/j.neunet.
2019.08.002 (the online version of Dold, Bytschok, Kungl, Baumbach, Breitwieser, Senn,
Schemmel, Meier, and Petrovici 2019a) in the supplementary material. The captions of the
online videos are given in the following subsections (taken from the above source).

A.2.1 Video S1: ensemble sampling on BrainScaleS-1

Video showing a single sampling run of an ensemble on BrainScaleS-1 (Fig. 3.24). Sampled
distribution over time from an autonomous ensemble (no explicit noise) of 15 4-neuron
networks on an artificial neural substrate (the BrainScaleS-1 system). (top) Median DKL

of the ensemble (red) and the individual networks (red, transparent) as a function of time
after training. The median DKL pre-training is shown in black. (Bottom) Comparison
between target distribution (blue) and sampled distribution (red) for all networks. Most
networks are able to approximate their target distribution well (e.g., the networks at position
(1,1), (4,1) and (4,2) with (row, column)) or at least approximate the general shape of the
target distribution (e.g., (0,1) and (0,2)). The networks at position (2,2) and (3,0) show
strong deviations from their respective target distributions due to single neuron deficiencies.
Because of the speed-up of the BrainScaleS-1 system, it only takes 100ms to emulate 106ms
of biological time.

A.2.2 Video S2: ensemble of networks dreaming of MNIST

Video of the data shown in Fig. 3.22. An ensemble of five hierarchical networks with 784-500-
10 (visible-hidden-label) neurons trained on the MNIST handwritten data set generating
digits without explicit noise sources is shown (in simulation). Every network in the ensemble
receives the spiking activity from hidden neurons of the other networks as stochastic input
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only. (top) Activity of the hidden area of each network. (middle) Class label currently
predicted by the label neurons. (Bottom) Activity of the visible area. To generate gray scale
images from spikes, we averaged the spiking activity of each neuron over a window of size
±90ms.

A.2.3 Video S3: single-network ensemble dreaming of MNIST

Video of the data shown in Fig. 3.23. A single hierarchical network with 784-200 (visible-
hidden) neurons generating samples of the MNIST handwritten digits data set without
explicit noise sources is shown (in simulation). To initialize the network, we trained a
Boltzmann machine and translated the weights and biases to neurosynaptic parameters
to reduce simulation time. (top) Illustration of the used network architecture. Lateral
(non-plastic) connections in each area were utilized as a noise source (red), with an inter-
connectivity of ε = 0.2. (bottom) Averaged activity (average window ±90ms) of the visible
area (left) after initializing the network, (middle) after further training the network and (right)
for the case of explicit Poisson noise instead of lateral interconnections. After initialization,
the network is able to generate recognizable images but does not mix well between different
digit classes. Further training the network on images of the MNIST training set improves
both image quality and mixing, rivaling the quality of the reference setup with explicit
Poisson noise. During the second training phase, neurosynaptic parameters are adjusted
such that every neuron is able to perform its task with the available background activity it
receives.

A.3 Simulation details

The following simulation details for Figs. 3.10 to 3.12 are adapted from Zenk (2018) and
the remaining ones are taken from the supplemental material of Dold, Bytschok, Kungl,
Baumbach, Breitwieser, Senn, Schemmel, Meier, and Petrovici (2019a), written by me. In
all simulations, the model was integrated with a time step of ∆t = 0.1ms.

A.3.1 Figs. 3.10 to 3.12: spatio-temporal predictions

For these experiments, we used CuBa LIF neurons with neuron parameters given in Table A.1.
The initial networks were trained on the trajectory data sets with the hyperparameters given
in Table A.2. All remaining experimental details are summarized in the main text.
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Cm 0.2 nF membrane capacitance
τm 0.1 ms membrane time constant
El -50.01 mV leak potential
ϑ -50.0 mV threshold potential
% -50.01 mV reset potential
τ syn

e 10.0 ms exc. synaptic time constant
τ syn

i 10.0 ms inh. synaptic time constant
τref 10.0 ms refractory time
wnoise

e 0.001 µA exc. Poisson weights
wnoise

i -0.001 µA inh. Poisson weights
νnoise

i/e 400 Hz Poisson noise frequency

Table A.1.: Neuron parameters used in simulations, along with background noise specifics.

Parameter flat Gaussian

number hidden neurons nh 500 500
batch size 50 50

number epochs 35 40
number wake-sleep steps 15 10
initial learning rate η0 0.05 0.05
momentum scaling α 0.5 0.5

regularization λ 10−4 10−3

Table A.2.: Hyperparameters used for learning the flat and Gaussian potential data sets.

A.3.2 Figs. 3.15, 3.16 and 3.18 to 3.23: general details

For these experiments, we used CoBa LIF neurons. Since spike-based stochastic networks
are time-continuous systems, we could, in principle, retrieve a sample at every integration
step. However, as individual neurons only change their state on the time scale of refractory
periods, and hence new states emerge on a similar time scale, we read out the states in
intervals of τref

2
. If not stated otherwise, we used USE = 1.0 and τrec = 10ms as short term

plasticity parameters for connections within each spiking network to ensure PSPs with
equal height, as discussed in Petrovici (2016). For background connections, i.e., Poisson
input or background input coming from other spiking networks in an ensemble, we use
static synapses (USE = 1.0 and τrec → 0) instead to facilitate the mathematical analysis.
For the interconnections of an ensemble, we expect that short-term depression will not
alter the performance of individual spiking networks in a drastic way, as the effect will be
rather small on average if most neurons are far away from tonic bursting. Thus, to allow a
clear comparability to spiking networks receiving Poisson input, we chose to neglect short-
term depression for ensemble interconnections. The neuron parameters used throughout all
simulations are listed in Table A.3.
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Cm 0.1 nF membrane capacitance
τm 1.0 ms membrane time constant
El -65.0 mV leak potential
Erev

e 0.0 mV exc. reversal potential
Erev

i -90.0 mV inh. reversal potential
ϑ -52.0 mV threshold potential
% -53.0 mV reset potential
τ syn

e 10.0 ms exc. synaptic time constant
τ syn

i 10.0 ms inh. synaptic time constant
τref 10.0 ms refractory time
wnoise

e 0.001 µS exc. Poisson weights
wnoise

i -0.00135 µS inh. Poisson weights

Table A.3.: Neuron parameters used in simulations. The membrane time constant was chosen small such that
smaller noise frequencies suffice to reach a high-conductance state, allowing us to use smaller
ensembles and hence reduce simulation time.

A.3.3 Fig. 3.15: autocorrelations of ensemble background

The parameters for the target distributions of all networks were randomly drawn from
beta distributions, i.e., W ∼ 2 · (beta(0.5, 0.5) − 0.5) and b ∼ 1.2 · (beta(0.5, 0.5) − 0.5).
The bias of each background-providing neuron was adjusted to yield the desired firing rate
p ∈ {0.1, 0.6, 0.9} in case of no synaptic input (W = 0) b = log

(
p

1−p

)
. For the different

activity cases, we used N0.1 = 260, N0.6 = 50 and N0.9 = 34 networks as background input
for each neuron to reach the desired background noise frequency. The Poisson frequency
of the noise-providing networks was set to 3000Hz. Activation functions were recorded by
providing every neuron with background noise for 5 · 105ms and varying its leak potential.
For the ACFs, we first merged all individual noise spike trains and binned the resulting
spike train with a bin size of 0.5ms before calculating the ACF.

A.3.4 Fig. 3.16: cross-correlations of ensemble background

Background input was generated from a pool of pairwise connected neurons (i.e., small
subnetworks with two neurons each) with strong positive or negative weights to yield highly
positively or negatively correlated spike trains. Each pair of neurons in the main network
(i.e, the network receiving no Poisson input) received the spikes of 80 such subnetworks
as background input. The weights of the noise-generating subnetworks were drawn from
beta distributions wpre

ij ∼ 4 · [beta(5.0, 0.5)− 0.5] (distribution strongly skewed to positive
weights) or wpre

ij ∼ 4 · [beta(0.5, 5.0)− 0.5] (skewed to negative weights). The parameters of
the main network were randomly generated as in Appendix A.3.3. The absolute values of
the weights Wnoise projecting from the noise-generating subnetworks to the main network
were randomly generated from a (Gaussian-like) beta distribution Wnoise ∼ (beta(4.0, 4.0)−
0.5) · 2 · 0.001 + 0.001µS. The synapse type of each weight Wnoise was determined randomly
with equal probability. Furthermore, inhibitory synapses were scaled by a factor of 1.35 such
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that inhibitory and excitatory weights have the same mean value as for the simulations
with Poisson noise (see Table A.3). For the three traces shown, the absolute value of each
synaptic weight was drawn independently. Synapse types were either drawn according to a
pattern (Fig. 3.16A, left and middle) or independently (Fig. 3.16A, right).

A.3.5 Figs. 3.18 and 3.19: calibration and plasticity scheme

For every network, the target distribution parameters were again drawn from a beta distribu-
tion as in Appendix A.3.3. The connectivity of the noise connections was set to ε = 0.05, i.e.,
each neuron received the spikes of 5% of the remaining subnetworks’ neurons as stochastic
background input, for the ensemble of 400 3-neuron networks (no training, Fig. 3.18) and
to ε = 0.10 for the ensemble of 100 6-neuron networks (training, Fig. 3.19).
The training was done for subnetworks with 6 neurons each, where every subnetwork

was initialized with different weights and biases than the target parameters, also generated
randomly. As an initial guess for the neurons’ activation functions, we used the activation
function of a neuron receiving 2000Hz excitatory and inhibitory Poisson input, leading to a
slope of α = 1.47mV and a mid-point at −52.97mV. These parameters were subsequently
used to translate the weight and bias updates given by the Hebbian wake-sleep algorithm
(see Eqs. 3.9 and 3.10) to updates of synaptic weights and leak potentials. The subnetworks
were all trained simultaneously with wake-sleep, where the model term was approximated
by sampling for 1 · 105ms. The training was done for 2000 steps and with a learning rate
of 400

t+2000
. As a reference, 50 subnetworks receiving only Poisson noise (2000Hz) were also

trained in the same way for 2000 steps.
Self-activation of the network can be observed when a large enough fraction of neurons

have a suprathreshold rest potential, in our case around 30%.

A.3.6 Figs. 3.20 to 3.22: ensemble-based inference on
(E)MNIST

To reduce the training time, we pre-trained classical restricted Boltzmann machines on
their respective data sets, followed by direct translation to spiking network parameters. To
obtain better generative models, we utilized the CAST algorithm (Salakhutdinov , 2010)
which combines contrastive divergence with simulated tempering. Each subnetwork was
trained for 200000 steps with a minibatch size of 100, a learning rate of 20

t+2000
, an inverse

temperature range β ∈ [1., 0.6] with 20 equidistant intervals and an adaptive factor γt = 9
1+t

.
States between the fast and slow chain were exchanged every 50 samples. To collect the
background statistics of these subnetworks, we first simulated all networks with stochastic
Poisson input. To improve the Poisson-stimulated reference networks’ mixing properties,
we utilized short-term depression to allow an easier escape from local energy minima faster
(USE = 0.01, τrec = 280ms, global weight rescale δW = 0.014−1). For classification, the gray
scale value of image pixels was translated to spiking probabilities of the visible units, which

can be adjusted by setting the biases as ln

(
grey value

1−grey value

)
. Spike probabilities of 0 and 1

were mapped to biases of −50 and 50. Furthermore, during classification, the connections
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projecting back from the hidden neurons to the visible neurons were silenced in order to
prevent the hidden area from influencing the clamped input. For pattern rivalry, the non-
occluded pixels were binarized. In total, each spiking network received background input
from 20% of the other networks’ hidden neurons. For the classification results, the experiment
was repeated 10 times for different random seeds (leading to different connectivity matrices
between the ensemble networks). For training and testing, we used 400 and 200 images per
class. In Fig. 3.20D, consecutive images are 400ms apart. In Fig. 3.20E, for the clamped ’B’,
consecutive images are 2s apart, for the ’L’ 1.5s.

The experiments with MNIST used an ensemble of five networks with 784 visible neurons
and 500 hidden neurons each (Fig. 3.22), trained on 6 · 103 images per digit class (where we
took the digits provided by the EMNIST set to have balanced classes). Since the generative
properties of larger spiking networks depend heavily on the synaptic interaction, we also
used short-term plasticity for the case without Poisson noise (USE = 0.01, τrec = 280ms,
δW = 0.01−1) to allow fluent mixing between digit classes (Leng, Martel, Breitwieser,
Bytschok, Senn, Schemmel, Meier, and Petrovici , 2018). For MNIST, each spiking network
received background input from 30% of the other networks’ hidden neurons. Furthermore,
the excitatory noise weight was set to wnoise

e = 0.0009µS.
The network-generated images were obtained by averaging the firing activity of the visible

neurons (for pattern rivalry ±90ms, for classification and dreaming of EMNIST ±80ms and
for MNIST ±140ms). The time intervals were chosen to reduce the blur caused by mixing
when plotting averaged spiking activity.

A.3.7 Fig. 3.23: single-network ensemble dreaming of MNIST

In this experiment, lateral (non-plastic) connections in each area were utilized as a noise
source, with an interconnectivity of ε = 0.2. The additional training was done using standard
wake-sleep learning with batch size 100, learning rate 40

t+2000
with t the number of updates,

for 1000 training updates and a presentation time per training sample of 200ms.

A.3.8 Fig. 3.24: neuromorphic deterministic sampling

The emulated ensemble consists of 15 4-neuron networks which were randomly initialized
on two HICANN chips (HICANN 367 and 376 on Wafer 33 of the BrainScaleS–1 system).
The analog hardware parameters which determine the physical range of weights adjustable
by the 4bit setting were set to gmax = 500 and gmax_div = 1. Given the current state
of development of the BrainScaleS–1 system and its surrounding software, we limited the
experiment to small ensembles in order to avoid potential communication bottlenecks.

Biases were implemented by assigning every neuron a bias neuron, with its rest potential set
above threshold to force continuous spiking. While a more resource-efficient implementation
of biases is possible, this implementation allowed an easier mapping of neuron - bias pairs on
the neuromorphic hardware. Bias strengths can then be adjusted by modifying the synaptic
weights between neurons and their allocated bias neurons. The networks were trained with
the wake-sleep learning rule to sample from their respective target distributions. Biases were
randomly drawn from a normal distribution with µ = 0 and σ = 0.25. The weight matrices

121



A. Appendix of chapter 3

were randomly drawn from W ∝ 2 · (beta(0.5, 0.5)− 0.5) and subsequently symmetrized by
averaging with their respective transposes 0.5 · (W +WT).

Since the refractory periods of hardware neurons vary, we further measured the refractory
period of every neuron in the ensemble, which was later used to calculate the binary neuron
states from spike raster plots. Refractory periods were measured by setting biases to large
enough values to drive neurons to their maximal firing rate. After running the experiment,
the duration of the refractory period can be approximated by dividing the experiment time
by the number of measured spikes.
During the whole experiment, the ensemble did not receive external Poisson noise. In-

stead, individual spiking networks received spikes from 20% of the remaining ensemble as
background input, with noise connections having hardware weights of ±4 with the sign
chosen randomly with equal probability. Translation between theoretical and 4bit hardware
parameters was done by clipping the values into the range [−15, 15] and rounding to integer
values. Calculation of weight and bias updates was performed on a host computer. The
learning rate was set to η = 1.0 for all networks performing better than the median and
twice this value for networks performing worse. For every training step, the ensemble was
recorded for 105ms biological time before applying a parameter update.
For the experiments with Poisson noise, every neuron received 300Hz external Poisson

noise provided by the host computer.
The neuron parameters used for all hardware experiments are listed in Table A.4.

ensemble neurons bias neurons

Cm 0.2 nF
τm 7 ms
El -20.0 mV 60.0 mV
Erev

e 60.0 mV
Erev

i -100.0 mV
ϑ -20.0 mV
% -35.0 mV -30.0 mV
τ syn

e 8.0 ms 5.0 ms
τ syn

i 8.0 ms 5.0 ms
τref 4.0 ms 1.5 ms

Table A.4.: Neuron parameters used for the implementations in an artificial neural substrate. Note that
these are intended parameters and the realized ones can vary from neuron to neuron.

A.4 Implementation details

A.4.1 Simulation software

The simulations in Figs. 3.10 to 3.12 were done using Python 2.7, PyNN 0.8beta (Davison,
Brüderle, Eppler, Kremkow, Muller, Pecevski, Perrinet, and Yger , 2009) and NEST 2.4.2
(Gewaltig and Diesmann, 2007) on CPUs of the BwForCluster NEMO, the HPC cluster
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of the state Baden Württemberg (https://wiki.bwhpc.de/e/Category:BwForCluster_
NEMO, 24.01.2020). All remaining simulations were done using PyNN 0.8 and NEST 2.4.2 as
well, but on the private HPC cluster of the Electronic Vision(s) group (with special thanks
to Eric Müller and Christian Mauch for maintaining the cluster). For all sampling-based
simulations, a software package by Oliver Breitwieser (SBS - spike-based sampling) that
builds upon NEST and PyNN – i.e., offering convenience functions to set up spike-based
sampling networks – was used.

A.4.2 Emulation software

For the BrainScaleS-1 experiments, the following software modules were used: spack_-
visionary-defaults/2017-01-26_0.2.11, nmpm_software/2017-12-11-spack-2017-01-26-1 and
reticleCtrl.
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B.1 Calculations

B.1.1 Lookaheads arising from spike-generating mechanisms

The following calculation is adapted from Walter Senn. When we introduce the voltage
dynamics by a first-order differential equation of the form τ u̇ = −u + I for some time-
dependent current I and a time constant τ , the voltage u becomes delayed with respect to
I. In the following, we demonstrate how biological neurons might be able to compensate (or
even over-compensate) for that delay by the mechanism to generate action potentials. In
the classical Hodgkin-Huxley (HH) model (Hodgkin and Huxley , 1952), an action potential
arises from a voltage-dependent sodium conductance that can roughly be described as
gNa(u, u̇) ≈ mk+1

∞ (u)h, with an instantaneous activation function m∞(u) and a delayed
inactivation, h = h∞(u)− τhḣ, that follows h∞(u) with some variable delay. As compared
to the original HH model we absorbed the roughly constant driving force into the variables
m∞ and h∞. We set h∞(u) = m−k∞ (u), and to get smaller numbers for h∞ we choose k = 1
(instead of 2). Moreover, given the abstractness of the theory, we suppress constants that
do not affect the dynamics and hence the dynamic variables (u, r, e, I, and their low-pass
filtered versions) have all units 1/time, while the synaptic strengths are unitless.
In our formalism, the instantaneous rate r of a neuron is identified with the sodium

conductance, r ≈ gNa, and we approximate ḣ ≈ d
dt
h∞ = h′∞(u) u̇ to be plugged into h =

h∞(u)− τhḣ. This motivates our definition of the instantaneous rate r = r(t) at any time t
as

r = mk+1
∞ (u)h(u, u̇) , with h(u, u̇) = h∞(u)− τhh′∞(u) u̇ . (B.1)

Note that this rate could become negative, but if u does not vary too fast as compared
to τh this does not occur. To relate this definition to the energy framework discussed
in Section 5.2.4, we identify r̄ = m∞(u) ≡ ρ̄(u) (which might be argued to be rather
dubious). With this, and with h∞ = m−k∞ and −h′∞ = km−k−1

∞ m′∞ plugged into Eq. B.1, the
instantaneous rate becomes

r = mk+1
∞ h = m∞ + τhkm

′
∞u̇ = r̄ + τ r̄′u̇ = r̄ + τ ˙̄r , (B.2)

with τ = τhk. For a slowly varying membrane potential we can approximate r(t) ≈ r̄(t+ τ),
expressing that r looks ahead of r̄ in time.
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B.1.2 Variation of weights leading to variation of potentials

The following idea is originally by Walter Senn, with additions by Walter Senn, Akos F.
Kungl and me. The proof itself is not required to understand why and how the model works,
but it gives an interesting new perspective on the problem of real-time learning in dynamical
systems.

The goal of our thought experiment is to demonstrate that synaptic plasticity and neuronal
membrane dynamics do not interfere with each other. To do so, we introduce the following
idea: changes in the weights W in time can be seen as arbitrary variations of the weight
trajectory δW (t) that minimize the energy function E. Since the weights directly impact the
membrane potential, a variation in W , δW , leads to variations in the membrane potential
δu, or more specifically, the prospective potential δũ. Such variations δũ should not influence
the energy function over a certain time interval

∫
Edt, since weight updates are derived from

the energy function. Hence, in order for synaptic and neuronal dynamics not to interfere
with each other, the prospective potential needs to follow a critical trajectory which leaves
the action A =

∫
Edt invariant, i.e., δA = 0.

More formally, we want to show that Ẇl ∝ − limβ→0
1
β
∂E
∂Wl

= − dC
dWl

at all time, i.e., weight
dynamics reduce the cost function continuously in time. The crucial property we have to
show for this is that the total derivative of the energy function dE

dW
(and dE

dβ
) becomes equal to

the partial derivatives ∂E
∂W

(and ∂E
∂β

). To prove this statement we consider a small (continuous)
variation δW in the synaptic weights that vanishes at the boundary t1 (but not necessarily
at t2, which is a big difference to how the Euler-Lagrange equations are applied in physics1)
and their induced variation in the prospective potentials, ũ + εδũ (Fig. B.1). Using the
Taylor expansion in ε, the directional derivative of E(ũW , ˙̃uW ,W ) in the direction δW at a
given point in time is dE

dW
δW = d

dε

∣∣∣
ε=0
E(ũ+εδũ, ˙̃u+εδ ˙̃u, W+εδW ) = ∂E

∂ũ
δũ+ ∂E

∂ ˙̃u
δ ˙̃u+ ∂E

∂W
δW .

With this we calculate∫ t2

t1

dE

dW
δWdt =

d

dε

∣∣∣
ε=0

∫ t2

t1

dt E(ũ+εδũ, ˙̃u+εδ ˙̃u, W+εδW ) (B.3a)

=

∫ t2

t1

dt

(
∂E

∂ũ
δũ+

∂E

∂ ˙̃u
δ ˙̃u+

∂E

∂W
δW

)
(B.3b)

=

∫ t2

t1

dt

((
∂E

∂ũ
− d

dt

∂E

∂ ˙̃u

)
δũ+

∂E

∂W
δW

)
+
∂E

∂ ˙̃u
δũ
∣∣∣t2
t1

(B.3c)

=

∫ t2

t1

∂E

∂W
δWdt . (B.3d)

The second last equality uses the partial integration trick of the calculus of variation and
the last equality uses our assumption that the variational derivative actually vanishes for
the trajectories ũ, δE

δũ
= ∂E

∂ũ
− d

dt
∂E
∂ ˙̃u

= 0. Moreover, the term ∂E
∂ ˙̃u
δũ
∣∣∣t2
t1
vanishes for two reasons.

First, at the initial time t1 the voltage variation δũ vanishes by definition, δũ(t1) = 0,

1Since changing the weights (δW (t′) 6= 0 with t1 < t′ < t2) will always affect ũ(t2), making it impossible
to impose δũ(t2) = 0 through weight variations.
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𝛿 𝑢 𝑡1 = 0

𝑡1

𝑡2

𝛿 𝑢 𝑡2 ≠ 0

since 𝛿𝑊 𝑡1 = 0

since 𝛿𝑊 𝑡′ ≥ 0
for 𝑡1 < 𝑡′ < 𝑡2

𝛿 𝑢 𝑡′ due to 𝛿𝑊

but 
𝜕𝐸 𝑡2

𝜕 ሶ𝑢
= 0

and thus 
𝜕𝐸

𝜕 ሶ𝑢
𝛿 𝑢 = 0

𝑡2 − 𝑡1 ⪎ 𝜏

𝑊 𝑡1

𝑡1 𝑡2

𝛿𝑊 𝑡′ = 𝑊 𝑡′ −𝑊(𝑡1)

𝑊 𝑡′

Figure B.1.: Illustration of the main idea behind the neuronal least action principle. Variations in the weights
δW (top left) lead to variations in the prospective potentials δũ. However, different from physics,
by introducing the variation of ũ this way, we cannot enforce it to vanish at time t2 (right).
Thus, for neuronal and synaptic dynamics to act simultaneously, it is crucial to couple the least
action principle with the prospective voltage, since this way, the boundary term at t2 vanishes
due to the vanishing partial derivative ∂E

∂ ˙̃u
. At t1, δũ(t1) vanishes since δW (t1) = 0.

since the weight variation itself vanishes, δW̃ (t1) = 0. Second, assuming that the interval is
considerably longer than the time constant, t2 � t1 + τ , we conclude that ∂E

∂ ˙̃u
(t2) = 0. This

latter equality is derived from the fact that, due to ũ−τ ˙̃u = u, the Euler-Lagrange equations
in ũ, ∂E

∂ũ
− d

dt
∂E
∂ ˙̃u

= 0, translate to ∂E
∂u

+ τ d
dt
∂E
∂u

= 0, with unique solution ∂E
∂u

(t) = ce−(t−t1)/τ

for t ≥ t1 and c = ∂E
∂u

(t1) (see also Fig. B.1). From Eq. (B.3d) we now conclude that∫ t2

t1

dt

(
dE

dW
− ∂E

∂W

)
δW = 0 , (B.4)

and because δW is an arbitrary variation in the given time interval [t1, t2], we conclude that
dE
dW

= ∂E
∂W

throughout this interval. We can formally write

d

dW
E(ũβ, ˙̃uβ,W, β) =

δE

δũβ
dũβ

dW
+
∂E

∂W
=

∂

∂W
E(ũβ, ˙̃uβ,W, β) , (B.5)

if the system is far away from initialization. Here, we added an upper index β to indicate
whether nudging is on or off (β 6= 0 or β = 0). Similarly, we get d

dβ
E(ũβ, ˙̃uβ,W, β) =

∂
∂β
E(ũβ, ˙̃uβ,W, β). For differentiable functions the total derivatives commute, d

dW
d

dβ
E =

d
dβ

d
dW
E, and based on the above statement we can replace the inner total derivatives by the

partial derivatives while evaluating the derivatives with respect to β at β = 0,
d

dW

∂

∂β
E(ũβ, ˙̃uβ,W, β)

∣∣∣
β=0

=
d

dβ

∂

∂W
E(ũβ, ˙̃uβ,W, β)

∣∣∣
β=0

. (B.6)
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Since β enters linearly into the energy function (Eq. 5.9), the inner partial derivative on the
left-hand side of Eq. B.6 is just the cost function C,

∂

∂β
E(ũβ, ˙̃uβ,W, β)

∣∣∣
β=0

=
∂

∂β

∣∣∣
β=0

(V β + βCβ) = C
(
u0
N , u

0,target
N

)
. (B.7)

We now plug Eq. B.7 into Eq. B.6 and use that the inner partial derivative on the right-hand
side of Eq. B.6 is the plasticity rule Ẇl defined in Eq. 5.10 (setting η = 1). Hence, we have
for l = 1...N ,

− d

dWl

C
(
u0
N , u

0,target
N

)
= − d

dβ

∂

∂Wl

E(ũβ, ˙̃uβ,W, β)
∣∣∣
β=0

= lim
β→0

1

β

(
uβl −Wl r̄

β
)
r̄β

T

, (B.8)

where we used that the energy is zero for β = 0, and hence prediction errors vanish throughout
the network. Note that the cost function is evaluated for trajectories without nudging (β = 0),
indicating that the derived equation is only valid if with nudging, the obtained trajectories
do not differ too much from the nudging-free case, which is approximately true for small
β > 0.

B.1.3 Formulation as 5-compartment neuron model

To arrive at the 5-compartment representation, we rescale the energy function by γ = 1 + gε
gl
,

i.e.,

cmu̇l = −γ∇ulE , (B.9)

which results in

cmu̇l = −γ gl ul (B.10)
+ γ gl λWlr̄l−1 (B.11)
+ γ gl λ r̄

′
l �WT

l+1(ul+1 −Wl+1r̄l) (B.12)
+ γ gl (1− λ)Glr̄l+1 (B.13)
+ γ gl (1− λ) r̄′l �GT

l−1(ul−1 −Gl−1r̄l) . (B.14)

The first term can be split up to

γ gl ul = gε ul + gl ul , (B.15)

while the prediction error terms are rewritten as follows

γ gl r̄
′
l �WT

l+1(ul+1 −Wl+1r̄l) = gε γ
gl

gε
r̄′l �WT

l+1(ul+1 −Wl+1r̄l) (B.16)

= gε γē
W
l , (B.17)

γ gl r̄
′
l �GT

l−1(ul−1 −Gl−1r̄l) = gε γ
gl

gε
r̄′l �GT

l−1(ul−1 −Gl−1r̄l) (B.18)

= gε γē
G
l . (B.19)
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with

ēWl =
gl

gε
r̄′l �WT

l+1(ul+1 −Wl+1r̄l) , (B.20)

ēGl =
gl

gε
r̄′l �GT

l−1(ul−1 −Gl−1r̄l) . (B.21)

Thus, the equation of motion can be written as

cmu̇l = −gε ul + gl ul (B.22)
+ gl λ γWlr̄l−1 (B.23)
+ gε λ γē

W
l (B.24)

+ gl (1− λ) γGlr̄l+1 (B.25)
+ gε (1− λ) γēGl . (B.26)

which is identical to Eq. 5.40 after distributing the leak term

cmu̇l = gl λ (γWlr̄l−1 − ul) + gε λ
(
γēWl − ul

)
(B.27)

+ gl (1− λ) (γGlr̄l+1 − ul) + gε (1− λ)
(
γēGl − ul

)
. (B.28)

B.2 Additional results

B.2.1 Learning MNIST with lookahead dynamics
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Figure B.2.: Additional results of the MNIST experiments presented in Fig. 5.6. (A) Comparison of the
“receptive fields” of the output neurons for a network trained with (top) error backpropagation
and (bottom) the model derived via neuronal least action, for one hidden area and 100ms
presentation time per image. Output receptive fields are determined by calculating the response
to unit vector inputs r̄output = ϕ (W2ϕ(W1r̄0)) (i.e., input images with one black pixel and all
others white). Apart from blurriness, the response behavior obtained with the neuronal least
action model is similar to the one obtained with backprop. (B) Training performance for different
integration time steps. We found that for brief image presentation times, the integration step
size strongly affects the final error rate achieved by the model. (C) Comparison of the training
performance with (τ u̇I

l = −uI
l + Wl+1r

P
l ) and without dynamic interneurons (uI

l = Wl+1r̄
P
l ).

Both cases perform equally well.
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B.2.2 Truncated backprop for recurrent networks

The derived model (Eq. 5.24) trivially generalizes to recurrent networks by dropping the
area indices. In this case, the weight matrix W encodes the connections between all neurons
of the network, and, e.g., u is a vector containing the membrane potential of all neurons.
The weight dynamics then effectively implement truncated error backpropagation through
time, which takes into account only the last network state u(t− dt). This is demonstrated
for an areawise recurrent model Fig. B.3A-C and a fully recurrent network Fig. B.3D-F.
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Figure B.3.: Unsupervised learning experiments for MNIST and iEEG traces. (A) For MNIST, we use
again a deep network with additional (recurrent) top-down connections Gi between areas. The
top-down input modulates the network activity in lower areas and is able to fill in missing or
incorrect activities, e.g., caused by an occluding or noised part of the input. During training,
the visible area is nudged towards reproducing the input pattern, i.e., images of the MNIST
training data set. For testing, we nudge only part of the visible neurons, such that a small pool
of visible neurons only get top-down input from the network. Furthermore, we also test whether
the network is able to denoise its input (not illustrated here). (B) Testing with occluded images.
We show the firing rate of the 28x28 visible neurons here. Note that the input is not clamped,
but the visible area is nudged towards the input signal. Thus, for weak nudging (β = 0.1),
the top-down propagated network activity also influences the visible neurons that do receive
forward input. By varying the nudging strength β to higher values, harder “clamping” can be
achieved. (C) Same as (B), but instead of occlusion, the input image is corrupted by static,
Gaussian noise and consequently cleaned up by the top-down input from the 200 hidden neurons.
(D) For the iEEG signals, we use a fully connected recurrent network where 54 of 94 neurons
are labeled as output neurons. During training, these are constantly nudged towards the input
signal (top), i.e., 8s of the iEEG signal. For testing, we chose 10 output neurons randomly
which are not nudged (input occlusion) and compare how well the network is able to reproduce
the target behavior from its network activity alone. (E) Mean correlation coefficient between
the network generated behavior and the corresponding target for the 10 neurons that are not
nudged. The mean is taken over 10 runs with different selections of neurons that are not nudged.
The shaded area gives the standard deviation. For testing, we use another 8s sequence from
the same recording. (F) Example traces for the pattern completion task described in (D) and
(E) for the training sequences (top) and the test sequences (bottom) before and after training
(only 4s are shown here).
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B.3 Simulation details

B.3.1 Fig. 5.5: supervised learning of iEEG traces

As an activation function, we used the logistic function ϕ(ul) =
(
1 + e−ul

)−1. The human
intracranial electroencephalography (iEEG) data was recorded at the Inselspital Bern. In
total, 54 electrodes were used to record the local field potentials of various brain areas before
and after the onset of a seizure (for our studies, only data before seizure onset was used). The
electrodes were separated into 46 input and 8 output membrane potentials. Further, the raw
data was divided by a factor 200 to ensure that the membrane potentials are approximately
in a range of ±1 − 2. The network was trained on a 8s excerpt of the recorded data, and
consequently tested on a different 8s excerpt. Data points of the iEEG signal were sampled
with a frequency of 512Hz. For simplicity, we therefore assumed that successive data points
are separated by 2ms. Integration step size was set to ∆t = 1ms. Since data points were 2ms
apart, we up-sampled the signal to 1ms resolution by simple interpolation. Weights were
initialized randomly from a normal distribution N (0, 0.12) with a cut-off at ±0.3. Biases
were not used (i.e., set constant to zero). Learning rate and nudging strength were again set
to η = 10−3 and β = 0.1. The membrane time constant was set to τ = 10ms.

B.3.2 Figs. 5.6 and B.2: real-time learning of MNIST

As an activation function, we used a hard sigmoid function ϕ(ul) = ulθ(ul)− [ul−1]θ(ul−1),
with θ the Heaviside step function. For the experiments with lookahead and 10ms and 50ms
presentation time per MNIST image, we used an integration step size of ∆t = 0.1ms and
∆t = 0.5ms to solve the differential equation, respectively. For all other experiments, we used
an integration step size of ∆t = 1ms. We also used bias neurons (neurons with constant rate
1) to model offsets (or thresholds) in the activation function. However, this is not crucial
for the obtained results and can also be neglected, as done in all other experiments. Biases
and weights were initialized randomly from a normal distribution N (0, 0.012) with a cut-off
at ±0.03. The learning rates were set constant with η = 10−3 and the nudging strength
was set to β = 0.1 (note that this leads to an effective learning rate of η · β = 10−4). After
22000s training time, the learning rates were both reduced to η = 10−4. The membrane
time constant was set to τ = 10ms. As a reference model for backprop, we implemented
lookahead dynamics τ u̇l = −ul +Wlrl−1, but without errors on the membrane potential and
weight updates calculated “offline” via the error backpropagation algorithm. Furthermore,
we found that the performance of the model without lookaheads can be further improved
by increasing the separation of time scales. For instance, we found that classification rates
of ≈ 93 − 94% can be reached when decreasing the membrane time constant to 1ms and
presenting each image for 100-200ms. MNIST images were converted to membrane potentials
by normalizing the pixel values into the range [0, 1].
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B.3.3 Fig. 5.8: error learning with cortical microcircuits

For both experiments, the membrane time constant was set to τ = 10ms. Only weights
were trained and biases were set to zero. As an activation function, we used a hard sigmoid
function. Forward, pyramidal-to-interneuron and interneuron-to-pyramidal weights were
initialized randomly from a normal distribution N (0, 0.012) with a cut-off at ±0.03.

For the case where nudging is one-to-one, we used a network with 784− 500− 10 neurons.
Furthermore, all learning rates were chosen equal η = 10−3 and were subsequently reduced
to η = 10−4 after 53500s training time. The nudging parameters were set to β = 0.1 and
βI = 0.01

1.01
. The feedback connectionsBPP

l were initialized randomly from a normal distribution
N (0, 0.012) with a cut-off at ±0.03. The used integration step size was ∆t = 0.5ms and the
number of interneurons was fixed to 10.
For the case with mixed nudging, we used a network with 784 − 300 − 10 neurons. All

learning rates were chosen equal η = 10−3 and were subsequently reduced to η = 10−4

after 22000s training time. The nudging parameters were set to β = 0.1 and βI = 0.1
1.1

. The
feedback connections BPP

l and the nudging matrices BIP
l were initialized randomly from a

normal distribution 5 · N (0, 0.012) with a cut-off at ±0.15. The used integration step size
was ∆t = 0.25ms and the number of interneurons was fixed to 20.

In both experiments, all connections were trained simultaneously without a pre-training
phase.

B.3.4 Fig. 5.9: microcircuit learning without top-down nudg-
ing

For this experiment (in general: only for this), weight derivative terms in the differential
equation for the membrane potentials, originating from the lookaheads, were considered and
the membrane time constant was set to τ = 10ms. As an activation function, we used a hard
sigmoid function. Different from the microcircuit experiment in Fig. 5.8, interneurons are
not nudged and only forward and interneuron-to-pyramidal weights are trained. The used
network consisted of three areas with 784− 500− 10 neurons. All weights were initialized
randomly from a normal distribution N (0, 0.012) with a cut-off at ±0.03. Nudging strength
and learning rate were set to β = 0.1 and η = 10−3. The used integration step size was
∆t = 1ms.

B.3.5 Fig. 5.12: folded autoencoder learning CIFAR10

For the CIFAR experiments, we used a network with 3072-1000-1000-300 neurons, a logistic
activation function and 104 training images. The integration step size was set to 0.1ms and
the gating to λ = 0.2 during training. Weights were initialized randomly from a normal
distribution N (0, 0.12), and sampled values were dropped and resampled if they spread
by more than two standard deviations. The leak conductance was chosen as gl = 2 and
the conductance of error compartments as gε = 0.05. The learning rate for the generative
weights was ηG = 10−5, for the forward weights ηW = 10−4 and the nudging strength β = 0.1.
During training, each image was presented for 50ms. Furthermore, for this experiment we
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used mini-batch learning with size 100. Both forward and backward weights were trained
simultaneously. CIFAR images were converted to membrane potentials by first normalizing
the pixel values into the range [0, 1], applying the inverse activation function and truncating
at −5 and 5 afterwards.

B.3.6 Fig. 5.13: dreaming of MNIST using frozen noise

For this experiment, we used a network with 22× 18− 200− 20 neurons, where we trimmed
the MNIST data set to a size of 22× 18 to remove unnecessary white spaces at the borders.
Weights were initialized randomly from a normal distribution N (0, 0.52), with resampling
of extreme values as in the CIFAR10 experiment. Conductances, integration time step and
nudging strength were chosen as in the CIFAR10 experiment. Throughout the experiment,
gating was set to λ = 0.1 and the learning rate for both forward and backward weights was
set to 10−3. During training, after presenting a new image, the noise vector for the latent
neurons was first sampled from a normal distribution N (0, 22) and the network simulated for
50ms with plasticity turned off. Only after this initial phase when the network has reached
a steady state, plasticity was turned on for an additional 10ms before switching to a new
input image.

B.3.7 Fig. B.3: truncated backprop for recurrent networks

For both experiments, the membrane time constant was set to τ = 10ms. As an activation
function, we used the logistic function. Weights were initialized randomly from a normal
distribution N (0, 0.12) with a cut-off at ±0.3 and biases from N (0, 0.012) with a cut-off at
±0.03.
For the MNIST experiment, we used a areawise recurrent network with 784− 200− 40

neurons. We used a decaying learning rate η = 10−4

1+n/10
, where n starts at 0 and is increased

by 1 every 1000 training examples. The used integration step size is ∆t = 1ms. Every
MNIST image is presented for 100ms. Image pixel values were translated to membrane
potentials via utarget = ϕ−1

(
image+a1

a2

)
, where the factors a1 = 0.1 and a2 = 1.1

0.9
were chosen

to appropriately limit the range of the membrane potentials. For the denoising task, we
added Gaussian noise N (0, 42) to the images before nudging the network. The results shown
in the figure are, however, not the membrane potentials, but the rate responses.
For the iEEG experiment, we used a fully recurrent network with 54+40 neurons. The

integration step size was set to ∆t = 2ms. Learning rates and nudging parameter were set
to η = 10−3 and β = 0.1. For training and testing, we used two 8s sequences taken from the
iEEG recording.
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B.4 Implementation details

B.4.1 Numerical methods

The gradient-based model can be implemented using simple Euler integration. Solving the
model with lookahead, however, is a bit more demanding, as will be explained in the following.
For generality and convenience, we use the notation for recurrent networks mentioned in
Appendix B.2.2. To solve Eq. 5.24, several integration methods can be used. Since both
sides of the differential equation depend on u̇, i.e.,

τ u̇(t) = f (u(t), u̇(t)) , (B.29)

a simple perturbative approximation is to use the u̇ of the previous time step on the
right-hand side

τ u̇(t) ≈ f (u(t), u̇(t−∆t)) , (B.30)

where ∆t is the integration step size. This way, Euler Integration can be used to solve the
ODE. We found that such an integration scheme works well with and without nudging
for small ∆t and small weights, but numerical instabilities can occur when plasticity is
additionally turned on. Even though the behavior might become more stable by adjusting
the integration method, decreasing the learning rate and integration time step or using a
batch-in-time approach (accumulating updates before applying them), we decided to use an
exact solver of the ODE.

Since on the right-hand side of Eq. 5.24, u̇ only appears linearly, the differential equation
can be rewritten in the following form

Fu̇ = m (B.31)

with matrix F and vector m that are independent of u̇. F and m are given by

1

τ
F = 1− ζT

(
BPP

)
− ζ (W ) + ζT

(
WPI

)
W I − diag (r̄′′ � eA) + β1y , (B.32)

m = r̄′eA + β(y − u) + (Wr̄ + x− u) +mẆ , (B.33)

where diag (·) turns vectors into a diagonal matrix, with

ζ (W )ij =Wij r̄
′
j , ζT (W )ij = Wij r̄

′
i , (B.34)

W I = β̃Iζ
(
W IP

)
+ βIBIP , (B.35)

eA = BPPu−WPIuI , (B.36)
1

τ
mẆ = Ẇ r̄ + r̄′

(
ḂPPu− ẆPIuI − β̃IWPIẆ IPr̄

)
, (B.37)

where β̃I = 1− βI, BIP are the top-down connections nudging the interneurons uI and 1y is
a unit matrix with zeros everywhere except the diagonal elements for the output neurons
(for a derivation, see end of section). We dropped the upper index ’P’ for pyramidal neurons
to increase readability. ζ (·) (ζT (·)) multiplies matrix columns (rows) with the elements of
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the vector r̄′. For this operation, we can immediately see that ζ (W )T = ζT

(
WT

)
because

ζT

(
WT

)
ij

= Wjir̄
′
i = ζ (W )ji. The time-dependence of the weights is accounted for by mẆ

and can be neglected for small learning rates η � τ−1. Input currents and output targets
are given by x = x̄+ τ ˙̄x and y = ȳ + τ ˙̄y. The interneuron potential can either be calculated
via Eq. 5.28 or Eq. 5.26. In the latter case, the term ζT

(
WPI

)
· (uI− βIBIPu− β̃IW IPr̄) has

to be added to Eq. B.33.
For the backprop-like configuration of interneuron weights (BPP = WT, WPI = WT,

W IP = W and βI = 0), F = FT is symmetric (see end of this section for a quick proof).
Furthermore, during simulations F turned out to be always positive definite, allowing us to
solve Eq. B.31 via Cholesky decomposition. In cases where this was not possible (e.g., when
using independent interneuron connections), we used LU decomposition instead. Since the
updates for the weight and bias derivatives depend only on the current weights, biases and
voltages, these can be calculated before updating u̇ with the learning rules Eqs. 5.10, 5.29
and 5.33. A single integration step (after initialization) is summarized in Algorithm 1.

Algorithm 1 Network update after initialization
1: current state: [u(t),W (t)], [uI(t),WPI(t),W IP(t), BPP(t)]
2: # drop (t)-notation for convenience
3: calculate weight derivatives
4: Ẇ ← ηW (u−W r̄) r̄T

5: if no plastic interneurons then
6: ḂPP, ẆPI ← ẆT

7: Ẇ IP ← Ẇ
8: else
9: ḂPP ← 0
10: ẆPI ← ηWPI

(
BPP u−WPIuI

)
(uI)T

11: Ẇ IP ← ηW IP(uI −W IPr̄) r̄T

12: calculate voltage derivatives
13: u̇← solve Fu̇ = m via Cholesky or LU decomposition
14: if dynamic interneurons then
15: u̇I ← 1

τ

(
−uI + (1− βI)(W IPr) + βI BIP(u+ τ u̇)

)
16: update network state
17: for X ∈ [u, W, WPI, W IP, BPP] do
18: X ← X + Ẋ∆t

19: if dynamic interneurons then
20: uI ← uI + u̇I∆t
21: else
22: uI ← (1− βI)(W IP r̄) + βIBIPu

Of course if the interneuron connections are not plastic, it is not necessary to update them
explicitly but simply let them track the forward weights W .

Note that even though solving the differential equation with an implicit solver as described
here comes with the benefit of numerical stability, the complexity of solving the linear system
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Eq. B.29 is a huge bottleneck when simulating larger neural networks. Thus, we hope that in
future work, the presented theory can be simplified or faster (approximate) solution methods
can be found to speed up simulation time, e.g., by using approximation schemes like Eq. B.30.

Symmetry of F : For BPP = WT, WPI = WT, W IP = W and βI = 0, F is a symmetric
matrix. This can be checked for each term separately: first of all, the first and the two last
terms are all diagonal matrices. The sum of the second and third term is symmetric since
ζT

(
BPP

)T
= ζT

(
WT

)T
= ζ (W ) and ζ (W )T = ζT

(
WT

)
. The last term is symmetric as

well, since
[
ζT

(
WT

)
ζ (W )

]T
= ζ (W )T ζT

(
WT

)T
= ζT

(
WT

)
ζ (W ), proving that F is a

symmetric matrix in this special case.

Derivation of alternative ODE: We start with the differential equation of neuronal
dynamics:

u̇ = −u+Wr + e+ x ,

r = r̄ + τ ˙̄r ,

e = ē+ τ ˙̄e+ β(y − u− τ u̇) ,

with ē = r̄′ �
(
BPPu−WPIuI

)
. To write this in the form of Eq. B.31, we first separate the

equation into terms that either do or do not depend on u̇. For convenience, we neglect weight
derivatives here. The input term Wr can be written as

Wr = Wr̄ + τW ˙̄r (B.38)
= Wr̄ + τW (r̄′ � u̇) (B.39)
= Wr̄ + τζ (W ) u̇ , (B.40)

where we used that W (r̄′ � u̇)i =
∑

jWij r̄
′
ju̇j =

∑
j ζ (W )ij u̇j. The input x is independent

of u̇. Thus, we get:

− u+Wr + x = −u+Wr̄ + x+ τζ (W ) u̇ . (B.41)

Looking at e, ē only depends on u, leaving us with ˙̄e:

˙̄e = ˙̄r′ �
(
BPPu−WPIuI

)
+ r̄′ �BPPu̇− r̄′ �WPIu̇I (B.42)

where the first term simplifies to diag (r̄′′ � eA) u̇ using the chain rule, i.e., ˙̄r′ = r̄′′ � u̇. The
second term can be simplified to

r̄′ �BPPu̇ = ζT

(
BPP

)
u̇ , (B.43)

using (r̄′ �BPPu̇)i =
∑

j r̄
′
iB

PP
ij u̇j =

∑
j ζT

(
BPP

)
ij
u̇j. The last term simplifies to

ζT

(
WPI

)
u̇I = ζT

(
WPI

) [
(1−βI)W IP(r̄′ � u̇) + βIBIPu̇

]
(B.44)

= ζT

(
WPI

) [
β̃Iζ
(
W IP

)
u̇+ βIBIPu̇

]
(B.45)

= ζT

(
WPI

)
W Iu̇ , (B.46)
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using uI = (1−βI)(W IPr̄)+βIBIPu. The term containing the nudging towards target y splits
up to

β(y − u− τ u̇) = β(y − u)− βτ1yu̇ (B.47)

Thus, the error can be rewritten as

e = r̄′eA + β(y − u) + τ
[
diag (r̄′′ � eA) + ζT

(
BPP

)
− ζT

(
WPI

)
W I − β1y

]
u̇ . (B.48)

Combining Eqs. B.41 and B.48 and moving all terms containing u̇ on the left hand side, we
obtain F and m as in Eqs. B.32 and B.33.

B.4.2 Simulation software

The results in Fig. 5.12 were obtained using Python 3.7.3 and Tensorflow 1.13.1, and all other
results in Chapter 5 using Python 2.7.12 and Tensorflow 1.3.0. Initial studies were done on
CPUs of the BwForCluster NEMO, the HPC cluster of the state Baden Württemberg (https:
//wiki.bwhpc.de/e/Category:BwForCluster_NEMO, 24.01.2020), and full experiments on
UBELIX, the HPC cluster at the University of Bern (http://www.id.unibe.ch/hpc,
24.01.2020), using Nvidia Geforce GTX 1080 Ti and Nvidia Tesla P100 GPUs.
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Notation

Throughout Chapter 3, bold font is used to denote vectors u and matrices w. Normal font
with indices are used for vector or matrix components, e.g., the membrane potential of
neuron j in a network is denoted by uj. In the main text, if not otherwise stated, upper
indices denote samples, i.e., yi is the i’th sample of state vector y. Boltzmann parameters are
given as W and b and the corresponding biological parameters as w and El. For correlation
functions, we use C and for correlation coefficients ρ. δ(·) is the Dirac delta distribution.

In Chapter 5, we dropped the bold notation for vectors and matrices. Lower indices denote
the area number, i.e., uj is a vector containing the membrane potentials of all neurons in
area j. Similarly, Wj is a matrix containing all weights of neurons projecting from area j− 1
into area j. In case of generative weights, Gj are all weights projecting from area j + 1
into area j. A bar generally denotes low-pass filtering with time constant τ , e.g., r̄ is the
low-pass of r. In parts of this chapter, ’P’, ’I’ and ’d’ indices are used to mark Pyramidal,
Interneuron and dendritic variables. A is used to denote actions, E for energy functions and
C for cost functions. Feedback weights are given by B, forward and lateral weights by W ,
generative weights by G – with corresponding upper indices.

In general, r̄(t) = ϕ (u(t)) is calculated using the activation function ϕ depending on the
current membrane potential values u(t).
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Acronyms

ACF autocorrelation function.

AdEx adaptive exponential leaky integrate-and-fire.

AGI artificial general intelligence.

AI artificial intelligence.

backprop backpropagation-of-errors algorithm.

BPTT backpropagation through time.

CC correlation coefficient.

CMOS complementary metal-oxide-semiconductor.

CoBa conductance-based.

CuBa current-based.

FMP free membrane potential.

FPGA field-programmable gate arrays.

GABA γ-aminobutyric acid.

HCS high-conductance state.

iEEG intracranial electroencephalography.

LIF leaky integrate-and-fire.

MCMC Markov chain Monte Carlo.

MLE maximum likelihood estimates.

MLP multilayer perceptron.
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Acronyms

OU Ornstein-Uhlenbeck.

PSP postsynaptic potential.

RMS root mean square.

SST somatostatin-expressing.

STDP spike time dependent plasticity.

t-SNE t-distributed stochastic neighbor embedding.

TSO Tsodyks-Markram.

V visual.
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Action potential, 9
AdEx model, 10
Adversarial attack, 7
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Apical error representation, 78
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Autocorrelation function, 42, 112
Autoencoder, 83
Axon, 8, 10
Axon hillock, 11

Backprop. action potential, 11, 68, 96
Balanced network, 20
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Bayesian brain hypothesis, 21
Bayesian inference, 21
Bi-stable perception, 24
Boltzmann machine, 27
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Conductance-based synapses, 9
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Cortical layers, 10
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Cost minimization, 6, 64, 68, 82
CPU and GPU power consumption, 14

Credit assignment problem, 62
Cross-correlation function, 113
Current-based synapses, 9

Decoder, 84
Discounted future voltage, 72
Dorsal pathway, 13
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Effective membrane potential, 109
Encoder, 84
Ergodicity, 22
Error backpropagation, 6, 64, 69, 74, 80
Error backpropagation through time, 6
Euler-Lagrange equation, 72, 126
Excitatory synapse, 9

Fixed-pattern noise, 15
Free membrane potential distr., 105

GABA, 9, 12
Gaussian Scale Mixtures, 24
Gibbs sampling, 27
Glutamate, 9
Gradient-ascent with momentum, 34
Greedy areawise training, 60

Hebbian learning, 49, 62, 96
HICANN chip, 16, 121
Hidden neurons, 6, 30
High-conductance state, 26
Hodgkin-Huxley model, 72, 125
Human brain power consumption, 14

Inhibitory synapse, 9
Interneurons, 12, 76
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L2 regularization, 34
Label neurons, 6, 67
Lagrange multiplier, 66
Latent neurons, 84
Latent space arithmetics, 88
Lateral microcircuit, 12, 78, 82
Leaky integrate-and-fire model, 9
Leaky integrator, 8, 73
Least action principle, 72, 76, 78, 82
Logistic activation function, 26
Loihi, 14, 94
Lookahead operator, 72

Markov Chain Monte Carlo, 22
Marr’s levels of analysis, 3, 58, 63
Martinotti cells, 12
Maximum likelihood learning, 29
Metropolis-Hastings algorithm, 23
Mismatch energy, 67
Mixing problem, 36
Mixing synapses, 38
MLE estimate, 69
Multilayer perceptron, 6
Myelination, 10

Neural code, 67, 81
Neural sampling, 24
Neuromorphic hardware, 2, 14, 55
Neuronal response variability, 19
Neurotransmitters, 9

Ornstein-Uhlenbeck process, 25, 88

Partition function, 22
Persistent contrastive divergence, 34
Plasticity scheme, 47
Plateau potentials, 11
Poisson noise, 20, 25, 106
Postsynaptic potential, 106
Pre- and postsynaptic, 9
Prediction error, 67, 69, 74, 80, 82
Predictive coding, 3, 66, 94
Predictive voltage, 72
Probabilistic population codes, 24
Proposal distribution, 23

Pyramidal neurons, 10, 68

Receptive field, 35
Reconstruction error, 88
Refractory period, 9
Reinforcement learning, 40, 92
Renewing synapses, 37
Restricted Boltzmann machine, 30
Reversal potential, 9

Self-consistent ensemble, 48
Self-predictive state, 78
Shallow learning, 62
Short-term plasticity, 36
Simulated tempering, 36
Soma, 9, 11, 68
Spike, 1, 9, 17
Spike-based sampling, 25, 28
Spontaneous activity encodes prior, 24
SST interneurons, 12
STDP, 61, 68, 96
Synaptic noise, 20
Synthetic gradients, 17, 66, 80

t-SNE, 52
Target nudging, 69, 71, 76, 77
Transition probability, 22
Truncated error backpropagation, 130
Tsodyks-Markram model, 36

Universal function approximators, 63
Unsupervised learning, 83

Variational autoencoder, 88
Ventral pathway, 13
Visible neurons, 6, 30
Von Neumann bottleneck, 13

Wafer-scale system, 16
Wake-sleep learning rule, 29, 60
Winner-nudges-all circuit, 92
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