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Robuste Lernalgorithmen für spikende und ratenbasierte neuronale Netzwerke

Inspiriert von den herausragenden Eigenschaften des menschlichen Gehirns haben die
Bereiche maschinelles Lernen, computergestützte Neurowissenschaften und neuromor-
phes Rechnen im letzten Jahrzehnt signifikante synergistische Fortschritte erzielt. Leis-
tungsstarke neuronale Netzwerkmodelle, die auf maschinellem Lernen basieren, wurden
als Modelle für die Neurowissenschaften und für die Anwendung in der neuromorphen
Elektronik vorgeschlagen. Jedoch wird der Aspekt der Robustheit bei diesen Modellen
häufig vernachlässigt. Sowohl biologische als auch technische Substrate weisen ver-
schiedene Mängel auf, die die Leistung von Rechenmodellen beeinträchtigen oder deren
Implementierung sogar verhindern. Diese Arbeit beschreibt drei Projekte, die darauf
abzielen, robustes Lernen mit lokalen Lernregeln in neuronalen Netzen zu implemen-
tieren. Zuerst präsentieren wir eine Implementierung der spike-basiertena Bayes’schen
Inferenz auf beschleunigter neuromorpher Hardware. Durch Lernen schafft das Model
die störenden Auswirkungen der unpräzisen Hardware zu kompensieren, während es
von der Beschleunigung der Hardware profitiert. Zweitens zeigen wir die Vorteile neuro-
morpher Berechnungen in einer Pilotstudie an einem Prototyp-Chip. Dabei quantifizieren
wir die Geschwindigkeit und den Energieverbrauch des Systems im Vergleich zu einer
Softwaresimulation und zeigen, wie On-Chip-Lernen zur Robustheit des Lernens beiträgt.
Schließlich präsentieren wir ein robustes Modell für tiefes bestärkendes Lernen unter
Verwendung lokaler Lernregeln. Es zeigt, wie Backpropagationb in Kombination mit
Neuromodulation in einem biologisch plausiblen Rahmen implementiert werden kann.
Die Ergebnisse tragen zur Entwicklung robuster und leistungsfähiger Lernnetzwerke für
biologische und neuromorphe Substrate bei.

aInsbesondere in zusammengesetzten Ausdrücken werden Aktionspotentiale nach dem En-
glischen häufig Spikes genannt.

bBackpropagation wird selten als Fehlerrückführung übersetzt.





Robust learning algorithms for spiking and rate-based neural networks

Inspired by the remarkable properties of the human brain, the fields of machine learning,
computational neuroscience and neuromorphic engineering have achieved significant
synergistic progress in the last decade. Powerful neural network models rooted in machine
learning have been proposed as models for neuroscience and for applications in neuromor-
phic engineering. However, the aspect of robustness is often neglected in these models.
Both biological and engineered substrates show diverse imperfections that deteriorate the
performance of computation models or even prohibit their implementation. This thesis
describes three projects aiming at implementing robust learning with local plasticity rules
in neural networks. First, we demonstrate the advantages of neuromorphic computa-
tions in a pilot study on a prototype chip. Thereby, we quantify the speed and energy
consumption of the system compared to a software simulation and show how on-chip
learning contributes to the robustness of learning. Second, we present an implementation
of spike-based Bayesian inference on accelerated neuromorphic hardware. The model
copes, via learning, with the disruptive effects of the imperfect substrate and benefits from
the acceleration. Finally, we present a robust model of deep reinforcement learning using
local learning rules. It shows how backpropagation combined with neuromodulation
could be implemented in a biologically plausible framework. The results contribute to
the pursuit of robust and powerful learning networks for biological and neuromorphic
substrates.
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1 Introduction: at the intersection
between three worlds

The remarkable properties of the human brain — its highly parallel computation,
its low power consumption, its learning capabilities, its ability to cope with noisy
or incomplete observations, its ability to learn and generalize from a few examples
and its robustness to injuries [Kety, 1957, Levin et al., 1987] — have inspired
research in different fields. In the last few decades a tight synergy emerged
between the fields of computational neuroscience — the study of computational
principles governing the nervous system —, machine learning — the science to
give a computer the ability of solving problems without explicitly programming
them — and neuromorphic engineering — the endeavor to create novel fast
and energy efficient hardware architectures inspired by the brain (figure 1.1).
There is a continuous exchange of not only results and ideas but sometimes even
researchers, which lead to prominent advancements in technology, such as today’s
deep learning boom [LeCun et al., 2015, Vinyals et al., 2019].

Figure 1.1: The synergy between machine learning, computational neuro-
science and neuromorphic engineering. In the last decades, tight connections
have been established between these three fields continuously influencing each-
other.
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1. Introduction: at the intersection between three worlds

The balanced relationship suggested in figure 1.1 among the three fields is less
symmetric in reality. Neuromorphic engineering is dwarfed by the other two fields
in terms of invested research, meaning people and funding, as well as probably in
terms of immediate relevance for society. However neuromorphic engineering is a
much younger field, with initial ideas from the 1980s [Mead, 1989]. It uses results
and takes inspiration from the two other fields, but the backward direction is, at
least for now, rather exploratory than actually established.

The relation between computational neuroscience and machine learning is the
most apparent one. Some of the famous results in machine learning are based on
ideas from neuroscience. For example, artificial neural networks are loosely based
on the structure of the human visual cortex [McCulloch and Pitts, 1943, Rosenblatt,
1962, Rumelhart et al., 1986, LeCun et al., 2015]; and “experience replay” — a
learning strategy that contributed to the recent super-human results in playing
computer games [Vinyals et al., 2019, Rolnick et al., 2019] — was inspired by the
memory-replay in the hippo-campus [Foster, 2017]. Conversely, machine learning
provides tools for neuroscience research, such as reconstructing the connections
between neurons from microscopy data or behavior tracking and segmentation
[Hinton, 2011, Helmstaedter, 2015, Arganda-Carreras et al., 2017, Vu et al., 2018].
Furthermore, algorithms in machine learning inspire models on how the brain
might implement information processing, with one particular example being the
recent search for deep learning in the nervous system [Sacramento et al., 2018,
Whittington and Bogacz, 2019, Richards et al., 2019, Senn et al., in preparation].

Most of the used neuron models, coding schemes and plasticity rules in neu-
romorphic engineering are rooted in computational neuroscience [Indiveri et al.,
2011, Vanarse et al., 2016, Schuman et al., 2017]. The other way around, some of
the neuromorphic systems aim to provide alternative simulation platforms for
long time and large-scale neural network simulations, which would be infeasible
or not affordable on conventional supercomputers [Schemmel et al., 2010, Furber
et al., 2014]. Furthermore, neuromorphic engineering explores and tests ideas
from computational neuroscience on the functional level, that is in application.
This effort might inspire new ideas for modeling in neuroscience [Jordan et al.,
2019, Dold et al., 2019].

The interaction between machine learning and neuromorphic engineering be-
came stronger since the renaissance of artificial neural networks at around 2012
[Ciregan et al., 2012, Krizhevsky et al., 2012], but it is still asymmetric. On the
one hand, neuromorphic realizations/implementations of network models and
learning rules are are rooted in models from the field of machine learning [Esser
et al., 2016, Schmitt et al., 2017, Kungl et al., 2019], or the implementations use
machine learning as a tool to optimize the setup [Bohnstingl et al., 2019]. On the
other hand, some neuromorphic hardware is developed with the aim to create
fast and energy efficient substrates for the execution of machine learning models
[Davies et al., 2018, Chen et al., 2019]. In the context of solving real-world tasks,
two main approaches exist: neuromorphic engineering could create specialized
hardware for existing machine learning models or it could follow an explorative
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development based on neuroscience-inspired solutions. At the moment, both
approaches exist and are pursued actively [Thakur et al., 2018].

An often overlooked aspect in this synergistic advancement of science is the
robustness of the proposed models both for neuromorphic engineering and for
computational neuroscience. In the nervous system and on neuromorphic sub-
strates, network and neuron models have to cope with constraints on the network
structure and on the precision of the parameters as well as with the omnipresent
temporal variations. For example, in biology each neuron is different to a certain
extent due to variations during development and due to the stochastic nature of
the processes, for example diffusion. Furthermore, especially on analog neuromor-
phic hardware, imperfections of the manufacturing process introduce differences
between the single circuits, similar to differences between individual neurons
in biology. Hence, studying the robustness of models is a central question if we
want to verify the biological plausibility of models, or if we want to implement
them on neuromorphic hardware. On the one hand, developing models that show
robustness to the aforementioned effects would increase the biological plausibility
of the models, on the other hand, robust models could mitigate the disrupting
effects on neuromorphic hardware and increase the usability of these systems.

This thesis is centered around three projects contributing to this synergistic
development. We focus on neuromorphic engineering and computational neuro-
science, to which we aim to contribute; while machine learning serves as a tool
and as a source of inspiration.

First, we present the implementation of sampling-based Bayesian computation
with spiking neural networks (chapter 3) on the mixed-signal neuromorphic
BrainScaleS-1 system (BSS-1). The project exemplifies, how an algorithm originally
from machine learning is developed and adapted for neuromorphic hardware. We
show that the probabilistic model combined with a local learning rule compensates
for distorting effects on the neuromorphic substrate and benefits from the fast
computation.

Second, we conduct a pilot-study characterizing the advantages of neuromor-
phic computation (chapter 4) using the example of a reinforcement learning algo-
rithm — that is, learning from interaction with the environment — on a prototype
chip of the BrainScaleS-2 system (BSS-2). The project quantifies these advantages
in terms of execution speed and energy consumption in comparison to simulations
on a conventional CPU. The study demonstrates that the learning rule can adapt
to substrate imperfections and, furthermore, that the results of learning can be
transferred between chips in spite of variations between realizations of the same
chip version.

In the third project, we present a biologically plausible deep reinforcement
learning rule derived in a top-down manner using the principle of least action
(chapter 5). The implementation relies on mechanisms inspired by experimental
observations, such as predictive firing of neurons, stereotypical local circuitry
and winner-takes-all type interaction. The model turns out to be robust against
time-delayed reward and imperfect parameters, which both increase its biological
plausibility, and contributes to an envisioned neuromorphic implementation.

3



1. Introduction: at the intersection between three worlds

The structure of the thesis

The thesis is structured into these projects, in such a way that each project can be
read individually as a stand-alone project in combination with the background
chapter (chapter 2). We present the three projects such that they could be under-
stood as stand-alone works or pieces of the introduced synergistic development.
Accordingly, each of the three projects has its own introduction and each project is
discussed in great details at the end of the respective chapter. The three chapters
represent three different publications each.

In chapter 2, we introduce the necessary background for the thesis including
more detailed background information on the current state and ideas of machine
learning, computational neuroscience and neuromorphic engineering. In chap-
ters 3 to 5, we describe and discuss the three aforementioned projects. Finally, in
chapter 6, we discuss the potential significance of the three projects in relation to
each other and in perspective of machine learning, computational neuroscience
and neuromorphic engineering.

A list of publications and description of my contribution is given in appendix C.
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2 Background

In this chapter, we give a brief introduction to the closely related fields of machine
learning, computational neuroscience and neuromorphic engineering. The aim is
to present the necessary basics for the three described projects in this thesis, and
to sketch the place of this work on the broader scientific landscape. We put more
emphasis on neuromorphic engineering, because this field, unlike the other two,
lacks standard and established textbooks, and it is in general more explorative
and less familiar to the general scientific public. For all three fields, we highlight
recent review publications and textbooks when available.

2.1 Basics and terminology of machine learning

Machine learning is the field of research that attempts to give computers the
ability to learn and solve tasks without explicitly programming them [Samuel,
1959]. In machine learning, we aim to create models that can solve practical
tasks not by being told how to solve the given task, but by learning from lots of
examples.1 For instance, a machine learning model whose task is to recognize
faces in images, would learn from a large dataset containing images with and
without faces. Machine learning has a broad application field stretching — without
claim to completeness — from automatic annotation of images [Karpathy and
Fei-Fei, 2015] to providing tools for research in physics [Carleo et al., 2019a].

Each machine learning model consists of three main parts: the representation,
the evaluation and the optimization [Domingos, 2012]. The representation is a
mathematical model describing the mechanism of the machine learning algorithm.
The mathematical model has to be both powerful enough to be able to represent
the problem and at the same time accessible (mathematically tractable) for efficient
optimization. Evaluation is a performance measure of the machine learning
model. Often the learning (optimization) is not based on the same measure
as the final performance evaluation (for a detailed example see section 2.1.1).
Finally, optimization is how the algorithm extracts its optimal parameters from
the available datasets. It is often referred to as the training or learning procedure.

A key aspect of machine learning is the requirement for generalization. The
machine learning model is expected to perform well on not only the dataset used
during optimization, but also on previously unseen examples. In practice, stan-
dard benchmark datasets consist of a separate set of training data for optimization
and a test set for testing the model. In machine learning competitions — which

1There is a subfield of machine learning called one-shot learning, which studies learning from
a few examples and from a few repetitions, see for example Fei-Fei et al. [2006].
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2. Background

are important drivers of machine learning research — , the test set is often hidden
from the participants to avoid optimization for the test set.

In the following, we introduce the basic concepts and terminology of machine
learning. We describe the three main frameworks of learning, each with an exam-
ple. For a practical introduction to machine learning we refer to Mehta et al. [2019]
and for a detailed standard textbook to Bishop [2006].

2.1.1 Supervised learning and artificial neural networks

The aim of supervised learning is to learn the input-output relation in a dataset
(X, Y) consisting of pairs of input and output data (xi, yi), with xi ∈ RNx∀i and
yi ∈ RNy∀i. We let the cardinality of the dataset be defined as |X| = |Y | = Nd.
Here, xi is often referred to as the input data or feature vector and yi as the output
or label. In this regard, supervised learning is similar to function approximation,
where we believe that the dataset implicitly defines the functional dependency we
want to represent with the model. Let function F represent the machine learning
model. We say that for an input data xi it gives the predicted label ypred

i = F(xi).
A typical example of supervised learning is image classification. The algo-

rithm should be able to recognize the type of the object seen in the picture.
In multi-class classification, the label is coded in the one-hot coding scheme
yi ∈ {(1, 0, . . . , 0); (0, 1, 0, . . . , 0); (0, 0, . . . , 0, 1)}, where exactly the n-th element
equals 1 when coding the n-th class. The prediction of the model is then the class
with the highest value: argmax (F(x)). The typical (but not only) loss function in
classification is the Euclidean loss, also called the L2 loss function,

L(X, Y ; F) =
1
2

Nd

∑
i=1

∥yi − F(xi)∥2 , (2.1)

where we sum over the complete dataset and ∥·∥ means the standard Euclidean
norm. The aim of the optimization procedure is to find a set of parameters that
minimizes the loss function. The difference between the internal and the external
evaluation immediately becomes apparent. Internally, we use the L(X, Y ; F) loss
function to learn the parameters of the model, but externally, the performance of
the model is assessed as the classification ratio on the test set.

Supervised learning is also a good example to understand underfitting and
overfitting in machine learning (figure 2.1). Underfitting — also called high-bias
problem — happens when the underlying model is unable to represent the relation
between the input data and the label. Performance is equally low both on the
training set and the test set. Further refinements on the optimization procedure
do not mitigate the high-bias problem. In case of overfitting or a high-variance
model, the model is flexible enough to represent the training set but it does not
generalize well to unseen examples. The model adapts to noise in the training set;

6



2.1 Basics and terminology of machine learning

the loss function can be minimized well over the training set, but the model fails
to give good predictions on the test set.2

x

y

high-variance model
model
train
test

B

x

y
high-bias model

model
train
test

A

Figure 2.1: Example of under- and overfitting. The data suggests that the relation-
ship between the input and output is approximately a second order polynomial
up to some noise. (A) Fitting a linear function is a high-bias model (underfitting).
It is unable to represent the second order dependency. The model similarly fails
both on the training set and the test set. (B) Choosing a 6-th order polynomial is
a high-variance model (overfitting). The model can represent the second order
dependence, but it also goes beyond and adapts to the noise in the training set.
Hence, the loss function can be minimized well over the training set but the model
fails to provide good prediction for the test set.

Feed-forward abstract neural networks and the backpropagation algorithm

Artificial neural networks are highly non-linear machine learning models loosely
inspired by the structure of the visual processing pathway in the brain [McCulloch
and Pitts, 1943, Rosenblatt, 1962, Ivakhnenko, 1971, Rumelhart et al., 1986].3 Here,
we only treat the most basic type of neural networks: the feed-forward neural
network. For advanced neural networks in machine learning see LeCun et al.
[2015] and Goodfellow et al. [2016].

The basic building block of abstract neural networks are abstract neurons. Ab-
stract neurons perform a weighted sum on their inputs si and apply a non-linear
function to the results:

a = f

(
N

∑
i=1

wisi

)
. (2.2)

Here, a is the activation or output of the given neuron, we sum over the inputs
from other neurons (pre-synaptic partners, compare to section 2.2.1) and wi is the

2For the mathematical treatment of the bias-variance trade-off see bias-variance decomposition
in Bishop [2006].

3There is an on-going debate about who and when conceptualized neural networks first.
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2. Background

weight of the incoming input. The function f denotes the activation function of
the neuron, that is the input-output function of the neuron. Early models used
the logistic activation function f log(u) = 1/(1 + exp(−u)), but nowadays most
models use the rectified linear unit (ReLu) f relu(u) = max(0; u). The rectified
linear unit (ReLu) activation function became popular due to its fast and cheap
computability and due to the non-vanishing gradient for u > 0. The abstract
neuron model lacks any internal dynamics and only models the input-output
relation. In neuroscience literature, these are sometimes referred to as McCulloch-
Pitts type neurons [McCulloch and Pitts, 1943] or neuron models of the first
generation [Maass, 1997].

Neural networks consist of several layers of neurons, performing consecutive
non-linear operations. The first layer is called input layer (figure 2.2 A). This is
a virtual layer, it represents a sample xi of the input data and not neurons with
activations. The last layer is called label layer. Its value is the predicted label ypred

i

of the model. The layers in between are called hidden layers; z(l)k denotes the
activity of the k-th neuron in the l-th hidden layer. In a network with N layers, the
information processing goes through the network iteratively as

z(1) = f
(

u(1)
)

with u(1)
i = ∑

k
w(1)

ik xk ,

z(l) = f
(

u(l)
)

with u(l)
i = ∑

k
w(l)

ik z(l−1)
k for l ∈ {2, . . . , N − 1} ,

ypred = f
(

u(N)
)

with u(N)
i = ∑

k
w(l)

ik z(N−1)
k .

(2.3)

Here, we choose the symbol u(N) for the weighted sum of the inputs, to empha-
size its (loose) relation to neuronal membrane potentials (see section 2.2.2). We
defined W(l) as the weight matrix projecting from the (l − 1)-th and to the l-th
layer. The large number of consecutive non-linearities and parallel processing
through wide layers make neural networks powerful models which can represent
a wide range of tasks. Leshno et al. [1993] have even shown that feed-forward
neural networks with non-polynomial activation functions can approximate any
continuous function given a sufficient number of hidden units. This is called the
universal approximation theorem.

Neural networks are trained via some form of gradient descent. The introduced
loss function (equation (2.1)) is now parameterized by the weights of the neu-
ral network: L(X, Y ; W), where W symbolizes all weights of the network. The
parameters are iteratively updated based on gradient descent with the formula

w(l)
ik → w(l)

ik − η
∂L

∂w(l)
ik

, (2.4)

where η is the learning rate. For a sufficiently small learning rate, gradient descent
converges to a local minimum of the loss function. The derivative term contains a
sum over the complete dataset, which is expensive (memory and computation) to
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A

B

Figure 2.2: Inference and error backpropagation in a feed-forward neural net-
work. (A) In the feed-forward (inference) direction, the information is processed
over several layers of neurons. In each layer, a weighted sum and a non-linear oper-
ation is applied. The several layers of non-linearities and the flexible parametriza-
tion enables the neural network to represent a broad range of models. (B) In the
error backpropagation direction, the information flows from the label layer back-
wards towards the output layer. The easy computability of the gradient according
to the network parameters enables fast learning. For the definition of the variables
see the main text. Figure adapted from LeCun et al. [2015].
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calculate. In practice, the derivative is only calculated on a subset of the dataset or
even on a single example, and the subset is randomly chosen in each iteration. This
procedure is known as mini-batch learning or stochastic gradient descent. Machine
learning is not consistent about the terminology: Some authors define stochastic
gradient descent strictly as applying parameter updates based on a single pair
of input and output data. Others call any update scheme stochastic gradient
descent which does not use the entire dataset for a single parameter update. In the
second picture, mini-batch learning is a subset of stochastic gradient descent. If the
derivative is calculated on the complete dataset, it is called batch learning. Batch
learning has mostly no practical relevance because modern datasets have grown
too large, hence calculating the gradient on the entire dataset in each iteration
would be impractically slow.

Abstract neural networks are mainly trained via the backpropagation algorithm
that is the application gradient descent to neural networks [Rumelhart et al., 1986].
We can derive the backpropagation formula by applying the chain rule to the
derivative term in equation (2.4). For a pair of input and label data (x, y), we
obtain the recursive formula

δ(N) = f ′
(

u(N)
)
⊙
(

ypred − y
)

,

δ(l) = f ′
(

u(l)
)
⊙ W (l+1)T

δ(l+1) for l ∈ {1, . . . , N − 1} ,

∂Lsingle

∂W (l)
= δ(l) f T

(
u(l−1)

)
for l ∈ [1, . . . , N − 1] .

(2.5)

Here, ⊙ denotes the element-wise product and δ(l) is the associated error-vector
in the l-th layer. This time Lsingle = 1

2

ypred − y
2

is the loss function taken over
the single input output pair. The recursive form of the loss function implies that
the error-vector propagates back through the network from the output to the
input layer (figure 2.2 B). Although, backpropagation is merely the chain rule
applied to the neural network structure and it has been already introduced in the
1980s the latest, it took until the development of affordable and fast Graphical
Processing Units (GPUs) and the availability of large datasets that deep learning
could become the state of the art [LeCun et al., 2015].

Deep learning is the collective name for the end-to-end training of models where
the information processing goes through several non-linear processing steps, for
example several layers in a feed-forward neural network. Here, end-to-end refers
to the direct backpropagation of the gradients over the non-linearities. Each
of these steps is parametrized separately, for example via the weight matrices
between the layers. In contrast to deep learning, shallow models only learn the
linear features from the training set, for example a neural network without hidden
layers is a shallow learner.4

4Note, shallow learning models are usually extended by hand-engineered features, so-called
kernels. For more on these methods see Bishop [2006].
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2.1 Basics and terminology of machine learning

2.1.2 Unsupervised learning and probabilistic generative models

In unsupervised learning, we deal with an unlabeled dataset S containing datavec-
tors xi. Naturally, labeled datasets can be represented as unlabeled datasets by
incorporating the label, or output, into the feature vector xi. The aim of un-
supervised learning is to find structure in the dataset and to represent it in an
accessible manner. Often, but not always, unsupervised learning implicitly means
capturing the structure in the dataset with a lower dimensional representation
(dimensionality reduction), while other popular applications are clustering and
outlier detection.

We introduce unsupervised learning using the example of a general probabilistic
generative model. In these models, we assume that the data stems from an
underlying probability distribution p∗(x). The dataset S is thought of as the
sampled representation of this distribution:

p∗(x) =
1
|S| ∑

xs∈S
δ (x − xs) . (2.6)

However, we keep in mind that the dataset is a finite sampled representation,
and hence overfitting and underfitting issues can occur, just as in the case of
supervised learning. For the model, we consider a probability distribution p(x; θ)
parametrized by θ.

During the learning procedure, we look for parameters θ∗ such that the model’s
probability distribution p(x; θ∗) accurately approximates the probability distribu-
tion of the dataset p∗(x). This is usually formulated with maximum log-likelihood
learning

θ∗ = argmaxθ

(
∑

xs∈S
log (p(xs; θ))

)
. (2.7)

This formula requires that the log-likelihood of the examples from the dataset
should be maximized in the learned model. That is, the learned model should
be able to generate samples from the learned dataset. Log-likelihood learning is
equivalent to minimizing the Kullback-Leibler divergence between the distribution
of the data and the learned model.

The Kullback-Leibler Divergence (DKL) is a measure of the discrepancy between
two probability distributions q1 and q2 defined as [Kullback and Leibler, 1951]:

DKL(q1||q2) = ∑
x∈Ω

q1(x) ln
(

q1(x)
q2(x)

)
. (2.8)

The sum — and for continuous distributions the integral — runs over the entire
state-space Ω. Depending on the context, the DKL has several interpretations. In
their original publication, Kullback and Leibler [1951] defined it as the average
information over the states x to discriminate between q1 and q2 when using q1 for
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2. Background

the observation. Note, that the DKL is not a real distance measure although we use
it as a distance indicator. In particular, it not symmetric in general:

DKL(q1||q2) ̸= DKL(q2||q1) . (2.9)

The base of the logarithm is a priori arbitrary. A popular choice is log2 to comply
with the interpretation as information and to measure the discrepancy in bits.

For demonstrating the relation between the DKL and maximum log-likelihood
learning, we consider (omitting θ for simplicity)

DKL(p∗||p) = ∑
x∈S

log
(

p∗(xs)

p(xs)

)
p∗(xs) =

= ∑
x∈S

log (p∗(xs)) p∗(xs)  
−H(p∗)

− ∑
x∈S

log (p(xs)) p∗(xs)  
log-likelihood

. (2.10)

We can recognize the Shannon entropy [Shannon, 1948] of the dataset H(p∗) in
the first term, which is independent of the model p. In the second term, we can
recognize the log-likelihood. Hence, minimizing the DKL between the dataset and
the model distribution is equivalent to maximizing the log-likelihood.

It is especially interesting that unsupervised models can also solve other tasks
such as pattern completion and classification if the conditional distributions are
numerically or analytically accessible (see also chapter 3). For these cases, we split
the datavector x = (x1, x2) and regard the x2 as the label of the data. In inference,
the probability distribution of the label is given by the conditional probability
p(x2|x1; θ).

2.1.3 Task-focused definition of reinforcement learning

Reinforcement learning is goal-directed learning via interaction with the envi-
ronment [Sutton and Barto, 2018]. The definition of reinforcement learning is
hence focused on the task and not on the method. An agent seeks to maximize
the received reward while actively interacting with its environment. The reward
feedback can be sparse in time, and a chain of actions might separate the causal
action leading to the reward. A classic example is that of a chess player who
interacts with his/her opponent throughout the game and only receives a reward
feedback in the end when the game is either lost or won. Events like losing or
capturing pieces are not considered as external reward signals.

Formally, the components of reinforcement learning are an agent and the en-
vironment (figure 2.3 A). We call the state of the environment St at time-step t,
where we implicitly use discrete time. Any circumstances that are not part of the
decision-making policy of the agent, are called the environment. For example, in
case of a robot, the power level of the battery would be conceptually considered
as part of the environment, although physically it is part of the robot.

Depending on the current state, the environment provides the agent a scalar-
valued reward signal Rt = R(St). The agent takes actions At based on the current
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2.1 Basics and terminology of machine learning

state of the environment. Formally, the policy function πpolicy(At; St) describes
the probability of each action depending on the state of the environment. The
environment reacts to the actions of the agent by transitioning to a next state St+1
and providing reward Rt+1. In general, the state transition of the environment can
be deterministic or probabilistic and can be written as πenv (St+1|St, At). Here, we
implicitly assumed the Markovian property for the environment, the next state
St+1 only depends on the previous state and action. Reinforcement learning in non-
Markovian or only partially observable environments is a subfield of reinforcement
learning research, see for example Spaan [2012]. The aim of the agent is to find the
policy that maximizes the gathered reward along the interactions.

A B

s r

Figure 2.3: Problem-setup in reinforcement learning. (A) The two main compo-
nents of reinforcement learning are the agent and the environment. The agent
performs actions based on the current state of the environment. In turn, the envi-
ronment makes a transition to a new state and provides a reward to the agent if
applicable. (B) Arguably the simplest example of a reinforcement learning prob-
lem is a two-dimensional gridworld where the agent (orange dot) tries to get from
the starting cell (s) to the rewarded cell (r) by moving into one of the available
directions (four arrows). A reward is only provided if the agent reaches the target
cell. Figures are reproduced following Sutton and Barto [2018].

A simple example of reinforcement learning scenario is the gridworld (figure 2.3
B). The environment is a two-dimensional grid where the agent can choose from
four directions as actions. The state of the environment is the current position of
the agent. Upon choosing a direction, the agent moves into that direction, unless it
tries to cross the hard outer boundaries in which case nothing happens. The agent
starts at a given square and when it reaches the goal square, it receives a reward.
Gridworld exemplifies that the agent has to move over several state-action pairs
to obtain the reward, and during the learning procedure it has to determine how
its decisions at the start will later influence the reward.

Although reinforcement learning is sometimes regarded as a subtype of super-
vised learning, it is substantially different from it. In supervised learning, there is
an already existing ordered knowledge, the dataset, from which the model can
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extract knowledge. In reinforcement learning, this knowledge has to be extracted
from the interaction between the agent and the environment. Furthermore, in
supervised learning, the feedback is instructive and dense. For each input data,
the model receives feedback from the supervisor concerning what it should do, in
particular a vector-valued feedback. For example, in the case of classification, the
model receives the entire true label (output) vector from the supervisor. On the con-
trary in reinforcement learning, the reward signal is often sparse and instructive.
It might arrive only after a long chain of interactions, and it only tells the model
how good the outcome is. In particular, reward signals are scalar-valued, unlike
the feedback in supervised learning. In computational neuroscience literature,
there are models solving classification tasks with reinforcement learning models
[Frémaux et al., 2010, Friedrich et al., 2011, Pozzi et al., 2018], but in these cases
the focus of interest lies in the mechanistic models and the biological implications
and not in finding efficient solutions.

In this section, we gave a brief description of reinforcement learning. For a
thorough introduction, see Sutton and Barto [2018] and for a recent review on
reinforcement learning using deep learning, see Arulkumaran et al. [2017].

2.2 Computational neuroscience: neurons, synapses
and plasticity

The field of computational neuroscience studies the computational principles
governing aspects of the nervous system such as vision, memory, learning and
motor control. To this end, it uses mainly mathematical modeling and simulation
studies while interacting with related fields such as experimental neuroscience,
molecular chemistry and psychology. Computational neuroscience works with
three kinds of models [Dayan and Abbott, 2001]: 1) descriptive models aim at
characterizing experimental data, that is what the brain does, 2) mechanistic
models explain how the neurons fulfill their function, and 3) interpretive models
describe why the brain functions in a given way by, for example, looking at
behavioral consequences.

In this section, we focus on the mechanistic models which are central to this
work. In the following, we introduce the basics of biological neurons and synapses
as well as simple models of the dynamics of point neurons. Furthermore, we
describe the general mathematical formalism for models of learning and plasticity
in networks of neurons.

There are many standard textbooks for computational neuroscience. We rely
mainly on the works of Dayan and Abbott [2001], Gerstner and Kistler [2002b]
and Izhikevich [2007b].
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BA

Figure 2.4: Morphology of neurons and the action potential. (A) Sketch of a
neuron with annotated morphology. The tree-like dendritic structure receives
input from other neurons, which are then integrated in the soma. The action
potential is generated at the soma. It travels through the axon to the synaptic
terminals where it triggers a synaptic transmission to other receiving neurons.
Image is adapted from Jarosz [2009]. (B) Sketch of the temporal course of the
action potential. If enough input arrives, the spike-generating mechanism is
activated. The resulting action potential follows a stereotypical form beginning
with a strong depolarization followed by a hyperpolarization. During the latter,
the spike generation is prohibited hence it is called the refractory period. Image is
adapted from Chris73 [2007].
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2.2.1 Basics of information processing in the brain: neurons and
synapses

Neurons or nerve cells are hypothesized as the basic information processing units
of the nervous system. There are approximately 1011 neurons in the human brain
[von Bartheld et al., 2016]. In a simplified view, neurons are electrically excitable
cells specialized for receiving, integrating and transmitting information with
electrochemical processes [Dayan and Abbott, 2001, Trepel, 2017]. Morphologically,
neurons consist of three main parts: the dendritic tree, the soma and the axon
(figure 2.4 A). The dendritic tree serves as the input part of the neuron: It receives
the synaptic input and guides it towards the soma. It is estimated that each neuron
receives input from about 104 other neurons [Pakkenberg et al., 2003], however this
is an approximate number and it varies over different brain areas and cell-types.
The soma integrates the input and if the accumulated input is sufficiently strong,
it generates an all-or-nothing response in the membrane voltage, the so-called
action potential (figure 2.4 B). Action-potentials are stereotypical: their shape and
duration are always similar.

The electrically active properties of the neuron stem from the different ion-
channels spanning through the cell membrane. These channels are in part passive
or can be gated (opened or closed) by signaling proteins or by other stimuli, such
as the membrane potential. The main ion-types are sodium (Na+), potassium (K+),
calcium (Ca2+) and chloride (Cl– ). Furthermore, Na+/K+ pumps actively transfer
3 Na+ out of the cell and 2 K+ into the cell. Due to the interaction of the pump and
the other ion-channels, the inside of the neuron in the resting state (in humans)
has an approximate potential of −70 mV compared to the outside medium.

The action potential generation is the result of the non-linear dynamics of the
voltage gated ion-channels. It was first modeled by Hodgkin and Huxley [1952].
In the following, we give a qualitative description of the firing mechanism. If the
soma gathers enough input from external stimuli, a spike or action potential with
a stereotypical shape is initiated (figure 2.4 B). First, the membrane potential rises
quickly above 0 mV, depolarizing the neuron. This is then followed by a fast drop
below the resting potential, the so-called hyperpolarization. During this period,
the generation of a next spike is suppressed, therefore we call it the refractory
period. Finally, the membrane potential returns to the resting value. The shape
and length of the action potentials is stereotypical; all the information is carried by
the time of spiking5. Hence, we say that neurons communicate via all-or-nothing
events. Note, the notion of sufficient input for spike generation varies among the
different models. Simple models condition the spike-generation on reaching a
membrane potential value. Other models — for example the Hodgkin-Huxley
model [Hodgkin and Huxley, 1952] — generate action-potentials via the non-linear
dynamics of the ion-channels, and hence do not have a strict threshold potential.
Nevertheless, for the qualitative understanding and for many of the models, the
assumption of a hard threshold potential is adequate.

5There are also other types of action potentials, where this notion could be violated. But we do
not include them in this thesis.
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Figure 2.5: Sketch of a chemical synapse. When the action potential arrives
at the synaptic terminals of the pre-synaptic neuron, it triggers the release of
neurotransmitters into the synaptic cleft. The transmitters eventually bind to
receptor proteins on the post-synaptic side opening ion-channels. This leads to
a post-synaptic current (PSC) and in the end to a post-synaptic potential (PSP).
Figure adapted from [Splettstoesser, 2015].
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The generated action potential travels along the axon, eventually reaching the
synaptic terminals. A synapse is a contact between two neurons that enables the
passing of electric or chemical signals. Here, we only treat the chemical synapses
(figure 2.5). The neuron with the axon at the synapse is called the pre-synaptic
neuron (the sender of the signal), and the neuron with the dendrite is called the
post-synaptic neuron (the receiver of the signal). However, synapses can also target
other parts of the post-synaptic neuron. Signal-transmission in a chemical synapse
is unidirectional and it goes from the pre-synaptic neuron to the post-synaptic one.

The gap between the two neurons is called the synaptic cleft. On the pre-synaptic
side, neurotransmitters are produced and stored in vesicles. The incoming spike
triggers the release of neurotransmitters into the synaptic cleft. The neurotrans-
mitters eventually bind on receptor proteins on the post-synaptic side opening
ion-channels. Through the activated channels current (in form of ions) can flow
through the membrane, the so-called post-synaptic current (PSC). The PSC leads to
changes of the membrane potential of the post-synaptic neuron, the so-called PSP.
If the PSP pushes the neuron towards spiking, the synapse is called excitatory; and
if the PSP hinders spiking, the synapse is called inhibitory. According to Dale’s
principle, a neuron releases the same type of neurotransmitters at all its synapses
[Dale, 1953, Strata and Harvey, 1999]. Note that exceptions have been reported
from Dale’s principle [Sulzer and Rayport, 2000], and the effect of a synapse is
defined by the combination of the neurotransmitter and the receptor. Nevertheless,
it is mostly accepted that models should work with neurons that are either purely
excitatory or purely inhibitory in their effect [Dayan and Abbott, 2001].

In this section, we only described the basic morphology and function of nerve
cells. Several types of neurons, synapses and neurotransmitters have been identi-
fied and described, for more details see Kandel et al. [2000].

2.2.2 Models of neurons and synapses

There are several models describing the behavior and dynamics of neurons and
their synaptic interactions. Their level of description stretches from detailed
models capturing the spatial structure and different ion-channels of the neuron
to point-neuron models restricted to the description of input-output relation.
An important differentiation between the models is the treatment of spikes. In
spike-based models, the neurons produce outputs in form of a series of spikes
(spike-train). Hence, there is an ongoing conversion between the analog dynamics
of the membrane potential and the more binary nature of the action potentials.
In contrast to spike-based models, in rate-based models neurons produce a real-
valued (usually time-continuous) signal as their output.

In the following, we introduce the leaky integrate-and-fire (LIF) model [Brunel
and van Rossum, 2007], which is arguably the simplest spiking neuron model
with biological relevance. The LIF model and its close alternatives are widely used
in neuromorphic systems [Thakur et al., 2018] and in models of spiking neural
networks [Tavanaei et al., 2019]. They are also implemented in the BrainScaleS 1
and 2 systems (chapters 3 and 4). Spiking neuron models are sometimes called
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neuron models of the third generation [Maass, 1997]. For an extensive collection
of spiking neuron models see Gerstner and Kistler [2002b].

On the other hand, rate-based neuron models usually do not have specific
names. They are sometimes referred to as neuron models of the second generation
following Maass [1997]. In the following, we present the main characteristics of
spike- and rate-based models on simple examples.

The leaky integrate-and-fire model

Figure 2.6: The circuit represented by the leaky integrate-and-fire neuron
model with conductance-based synapses. The membrane of the neuron is mod-
eled as a capacitor Cmem with a potential Vmem. The leakage and the synaptic
inputs are connected to the membrane via conductances. If the membrane po-
tential reaches the threshold value Vthresh, then the spiking is activated and the
membrane is pulled to the reset potential Vreset. Image adapted from Stöckel
[2015].

The model is based on an equivalent circuit model of a point neuron (figure 2.6).
The cell membrane is represented by a capacitor Cmem, and the effective resting
potential of the ion-pumps and channels is modeled by a single leak potential Eleak
and a leak conductance gleak. Eleak is also often referred to as resting potential.
The firing and resetting mechanism is shown with a comparator and a voltage
controlled switch. The dynamics of the membrane potential is governed by the
first order ordinary differential equation:

Cmem
dVmem

dt
= gleak(Eleak − Vmem) + Iext + Isyn , (2.11)

where Isyn unifies the synaptic input from all other neurons both excitatory and
inhibitory. Furthermore, Iext symbolizes all the other external inputs, for example
stimulus added by the experimenter. Without external input, the membrane
potential relaxes to the leakage potential Eleak with the membrane time-constant
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τmem = Cmem
gleak

; while with external input, it performs a low-pass filtering on the
external input. Additionally, a firing condition is imposed:

Vmem(t) = Vreset for t ∈ (tspike, tspike + τref] if Vmem(tspike) ≥ Vthresh .
(2.12)

If the membrane potential reaches the firing threshold, a spike is produced and
the membrane potential is instantaneously pulled to the reset potential Vreset for
the duration of the refractory time τref.

Note that the spiking mechanism is not explicitly modeled: the dynamics of
the ion-channels — as discussed previously — is omitted due to the stereotypical
shape of the action-potentials. Spikes are registered as instantaneous events with
a time-stamp. The output of the spiking neuron S(t) is called a spike-train, and it
is written as a train of delta peaks

S(t) = ∑
tspike∈Aspikes

δ
(
t − tspike

)
, (2.13)

where the set Aspikes = {t1, t2, . . . , tN} contains the time-stamps tspike of the spikes
generated by the spiking neuron.

Spike-based input to neurons is modeled via kernels. In the current-based
(CUBA) model, the incoming spikes directly lead to a PSC via

Icuba
syn = ∑

syn k
∑

spk sk

wkκ(t − tsk)θ(t − tsk) , (2.14)

where the sum over k goes over the incoming synapses, the sum over sk goes over
the spikes through these synapses. θ(·) is the Heaviside step function to preserve
causality and κ(·) is the synaptic kernel. Popular choices for the current-based
synapse kernel are the delta peak kernel κ(t) = δ(t), exponential kernel κ(t) =
exp

(
−t/τsyn

)
and the alpha-shaped kernel κ(t) = t

τsyn
exp

(
−t/τsyn

)
, where τsyn

is the synaptic time-constant. τsyn can be different for the different synapses, and in
case of analog neuromorphic implementations it often is (section 2.3.2). Sometimes
the kernels are normed to a maximal height or to

∫ ∞
0 κ(t)dt = 1, but there is no

widely accepted consensus. In the case of current-based (CUBA) synapses, the
weight wk of a synapse has the dimension of a current. The idea behind the CUBA
is that synaptic input from the dendrites is assumed to arrive mainly as a current
at the soma.

In the case of conductance-based (COBA) synapses (shown in figure 2.6), the
effect of the incoming synapses changes the value of conductance between the
membrane potential and a synaptic reversal potential. The PSC is then given by:

Icoba
syn = ∑

syn k
∑

spk sk

(Ex
rev − Vmem)wkκ(t − tsk)θ(t − tsk) , (2.15)

where the symbols are the same as in equation (2.14) and Ex
rev ∈ {Einh

rev ; Eexc
rev}

is the synaptic reversal potential corresponding to the given synapses. In this
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case the synaptic weight wk takes on the dimension of a conductance. For the
kernel function, similar choices are popular as in the case of CUBA synapses, for
example delta peak, exponential as well as alpha-shaped kernels. The idea behind
this model is that synaptic input first modulates the conductance value of the
ion-channels and only indirectly leads to a current generation.

A simple rate-based neuron model

The main difference between rate-based and spike-based models is the way of
the output generation. For the sake of simplicity, we take the same membrane
potential dynamics as is the case of the LIF model:

−Cmem
dVmem

dt
= gleak(Vmem − Eleak) + Iext + Isyn . (2.16)

However, there is no resetting mechanism. Instead, we define the output of the
neuron as function of the membrane potential f (Vmem). f (·) is called the activation
function of the neuron (figure 2.7), similarly to the activation function of abstract
neurons (section 2.1.1). A popular choice for the activation function is the logistic
function6:

f (Vmem) =
1

1 + exp
(
−Vmem−b

α

) (2.17)

with a width α and a bias value b, but sometimes the softplus function [Dugas
et al., 2001] is also used:

f (Vmem) = λd ln
(

exp
(

Vmem − b
d

)
+ 1
)

(2.18)

with λ being the slope, d the width and b the bias value.
Rate-based input to neurons can be formulated both for the CUBA and the

COBA synapse models. In the CUBA case the PSC is given by

Icuba
syn = ∑

syn k
wk f (Vk

mem) , (2.19)

where the only a single sum goes over the incoming synapses. Note that no kernels
are involved. Similarly, in the COBA case, the PSC is given by

Icoba
syn = ∑

syn k
wk f (Vk

mem)(Ex
rev − Vmem) . (2.20)

Again, Ex
rev ∈ {Einh

rev ; Eexc
rev} is the synaptic reversal potential corresponding to the

given synapses.
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Figure 2.7: Examples of activation functions used in computational neuro-
science. (A) The logistic activation function is probably the most widely used
activation function. It saturates at a maximum activity for high membrane poten-
tials. (B) The rectified linear unit (ReLu) is widely used in machine learning due
to its easy computability. It is also used in studies in computational neuroscience.
A drawback of the ReLu is the run-away activity for high membrane potentials.
(C) The softplus function [Dugas et al., 2001] has been proposed as an everywhere
differentiable version of the ReLu. The dashed line is the ReLu function as a
comparison. The dimension of the activation depends on other modeling deci-
sions. Usually, the activation is interpreted as the instantaneous spike-rate with a
dimension of Hz.

Why spikes? The difference between spike-based and rate-based models

The difference in dynamics is exemplified in figure 2.8. The integration of input
is similar in both models; the main difference is in the output generation process.
Rate-based neurons produce a real-valued output at all times. For most models,
this output is differentiable almost everywhere. Importantly, output is transmitted
and generated even if this input is always zero. On the other hand, in spike-based
models, the output is a spike-train, that is, a series of discrete events. Compared to
rate-based models, spike-based models are silent and do not send signals if there is
nothing to transmit. There is a second difference: in spike-based models, the spike
generating mechanism has an effect on the membrane dynamics via the threshold
and reset operations. This second effect is not modeled in every spike-based
model, although it could lead to serious implications in plasticity models relying
on the membrane potential. From a practical point of view, including spikes makes
modeling more complex. The discontinuity at the point of the spike generation
complicates the analytical tractability of the network dynamics.

The functional meaning of spike-based computation in the brain is still an open
question. Opinions cover a wide range from 1) spikes hypothesized as mere
proxies for rates to 2) assuming new computational paradigms, which cannot be
realized with rates. Still, the presence of action potentials in the brain is undeniable.

6Cramer [2002] tracks back the development of the logistic function to Pierre François Verhulst
(1804 - 1849).
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Figure 2.8: Comparison between a simple rate-based model and the LIF model.
Both models have the same subthreshold dynamics and receive the same input
but differ in their output generation. The upper row is a rate-based model. (A)
The neuron receives time-varying Gaussian white noise input in form of a current
and (B) performs a low-pass filtering on the input via its membrane potential
dynamics with Eleak = −65 mV. (C) The output is generated via the softplus
activation function f (Vmem) = 0.5 ln (exp (2 (Vmem + 60)) + 1). Note that there is
no resetting mechanism on the membrane potential. (D) In the case of the LIF
model, the same input is received, which is (E) low-pass filtered by the membrane
potential, but this low-pass filtering is disrupted by the resetting mechanism with
Vreset = −65 mV. The threshold value Vthresh = −60 mV is indicated with a gray
dashed line. (F) The generated output is a spike-train, a series of discrete events.
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In the following, we give a brief list of the proposed motivations and direction of
research on the functional relevance of spikes:

Energy efficiency: Spike-based communication was suggested to maximize
the amount of transmitted information per invested metabolic energy [Levy
and Baxter, 1996, Harris et al., 2015]. It has been argued that in typical
biological environments, spike-based communication is more energy efficient
than rate-based communication.

Sparse coding: The property that no signal is transmitted if the output is
constant zero is appealing for sparse coding. Recent results in neuromor-
phic engineering show that sparse coding with spikes can be faster than
conventional sparse coding methods [Davies et al., 2018].

Signal multiplexing: Naud and Sprekeler [2017] propose a method how
spike-based communication could realize signal multiplexing through neu-
rons.

Spiking activity generated variability: The asynchronous irregular firing
regime of spiking neural networks could serve as a source of variability or
pseudo-stochasticity for other computations [Mazzucato et al., 2019, Jordan
et al., 2019, Dold et al., 2019].

Measuring the causal effect: Lansdell and Kording [2019] propose, that the
spiking dynamics could be used to estimate the causal influence of neurons.
This idea might lead to new learning rules.

Novel coding schemes: The search for the functional meaning of spikes has
lead to the construction of novel coding schemes. Some of them are unique
to spikes, such as time-to-first-spike [Mostafa, 2017, Göltz et al., 2019], phasor
networks [Frady and Sommer, 2019] or spiking sampling networks [Petrovici
et al., 2016].

The search for the functional meaning of spikes in the nervous system is closely
related to the development of neuromorphic engineering, which aims at using the
emerging ideas to develop novel computing platforms (section 2.3).

2.2.3 Models of plasticity in biological neural networks

Plasticity is the capability of neurons and synapses to change their parameters
depending on their past activity. Most frequently, we speak of synaptic plasticity,
meaning the activity-dependent change of the synaptic weights, but we can con-
sider changes in other neuron parameters as plasticity as well. Activity-dependent
plasticity is generally considered as the basic phenomenon behind the learning
of motoric skills and formation of memories [Dayan and Abbott, 2001]. A histori-
cal review on plasticity and on the perspectives of plasticity research is given in
Markram et al. [2011a].
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2.2 Computational neuroscience: neurons, synapses and plasticity

There are several models trying to explain experimental evidences regarding
synaptic plasticity. Each of them relies on or explains aspects of plasticity ex-
periments but the true plasticity rule(s) of the brain remain(s) elusive. The first
qualitative description of synaptic plasticity goes back to Hebb’s famous rule, often
summarized as: if neurons fire together, they wire together [Hebb, 1949]. How-
ever, Hebb did not gave a mathematical formula to his qualitative description.7

The most common requirement for plasticity is locality. Generally, we assume
that the equations governing the change of the neuron parameters and synaptic
weights should only depend on locally accessible variables, such as the spiking
activity of the pre- and post-synaptic neurons. This requirement is often violated
by implicitly requiring non-local computations for plasticity, for example Zenke
and Ganguli [2018].

Note, that there is a difference between local variables and locally accessible
variables. Locally accessible variables are quantities that are plausible accessible
by the neurons and synapses to influence their plasticity. Local variables are
specific for any given neuron or synapse, for example a function of the pre- and
post-synaptic activities. By a global variable we mean a quantity that is the
same over the entire (or at least large parts of) the neural network. An example
for a global variable are the neuromodulators: neurotransmitters that not only
influence the post-synaptic neuron but a larger group of neurons by, for instance,
modifying their plasticity, see for example Gerstner et al. [2018]. In this sense,
neuromodulators are global variables that are at the same time locally accessible.

In the following, we give the basic and simple structure of formulating plasticity
rules proposed by Gerstner and Kistler [2002a]. Rate-based plasticity can be
written in the general form:

dwij

dt
= Frate(νi, νj; wij) , (2.21)

where Frate is a general function of the post- and pre-synaptic firing rates (activi-
ties) νi and νj as well as the synaptic weight wij. By taking the Taylor expansion
of Frate up to a given degree, we can reconstruct many rate-based plasticity rules
found in literature, for example the plasticity models in Oja [1982] and Bienenstock
et al. [1982]. This formulation only implicitly includes plasticity rules defined
on neuron models with spatial extension and plasticity rules using membrane
potentials. Still, it captures the main belief of locality in synaptic rules.

Similarly, for spike-based models, we write:

dwij

dt
= Fspike(S

post
i (t′), Spre

j (t”); wij) , (2.22)

where Spost
i (t′) and Spre

j (t”) are the spike-trains from the post- and pre-synaptic
neurons. Fspike is now a functional of the spike-trains. The different times t′ and

7Hebb’s original formulation was: “When an axon of cell A is near enough to excite a cell B
and repeatedly or persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficiency, as one of the cells firing B, is increased.” —
from Hebb [1949].
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t” indicate that the rate of change of the synaptic weight does not only depend
on the current spiking properties but can also shows memory effects. A Volterra
expansion of Fspike yields the different spike-based plasticity models.8 For example,
the classic spike-time-dependent plasticity (STDP) learning rule — first observed
experimentally by Bi and Poo [1998] — can be written as:

dwij

dt
=
∫ t

−∞
W(t′ − t)Spost

i (t′)Spre
j (t)dt′  

post before pre

+
∫ t

−∞
W(t − t′)Spost

i (t)Spre
j (t′)dt′  

pre before post

,

(2.23)
where W(tpre − tpost) is the STDP function. The choice of the variables tpre and tpost
highlights that the STDP function always takes relative spike-timing differences
as an argument. A popular choice for the STDP function is the exponential kernel
(see also figure 2.9):

W(tpre − tpost) =

⎧⎪⎪⎨⎪⎪⎩
a+ exp

(
−

tpost − tpre

τ+

)
if tpre < tpost

a− exp
(
−

tpre − tpost

τ−

)
if tpre > tpost ,

(2.24)

where a+ and τ+ parameterizes the causal (pre-before-post) branch and a− and τ−
parameterizes the anti-causal (post-before-pre) branch of the spike-time-dependent
plasticity (STDP) function. Equation (2.23) is formulated to evoke synaptic plastic-
ity over all spike pairing, but often STDP is formulated in a way to only include
next neighbor spike-pairs. After the discovery of Bi and Poo [1998], STDP was
considered as always causally strengthening and anti-causally weakening. Nowa-
days, as it is also apparent from the general formulation of the theory, the STDP
function is not looked at as a hard-wired rule. Instead, it is thought of as a building
block for more complex learning rules based on causal and anti-causal correlation
measurements, which are carried out locally at the synapses.

2.3 A brief overview on neuromorphic engineering

In the following section, we give a brief overview on the different aspects of neuro-
morphic engineering. We discuss the origin of the term, its definition as it is most
commonly used nowadays, the different approaches of hardware implementation
and the current challenges of the field. The aim of this section is not to give an
extensive review on the entirety of the field, but to sketch the place of this thesis
and that of the BrainScaleS-1 [Schemmel et al., 2010] and BrainScaleS-2 [Friedmann
et al., 2017] systems in the field of neuromorphic engineering.

Compared to computational neuroscience and machine learning, the neuromor-
phic community is small and there are no standard textbooks summarizing the
principles and aims of the field, hence, a more extensive introduction is required.

8For more on Volterra expansion see for example Schetzen [1980].
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2.3 A brief overview on neuromorphic engineering

Figure 2.9: Sketch of the classic Bi-Poo STDP mechanism. Neuron j is connected
to neuron i via the synapse wij. In this setup, the post-synaptic neuron i fires after
the pre-synaptic neuron j. Because of the causal spike-pairing, the synapse is
strengthened. In the case of an anti-causal spike-paring, the synapse would be
weakened. The lower part of the figure is taken from Bi and Poo [2001] containing
data from Bi and Poo [1998].
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In the recent years, several reviews appeared on the different aspects of neuromor-
phic engineering [Indiveri et al., 2011, Indiveri and Horiuchi, 2011, Vanarse et al.,
2016, Furber, 2016, Nawrocki et al., 2016, Schuman et al., 2017, Thakur et al., 2018,
Li et al., 2018, Pfeiffer and Pfeil, 2018, Lee et al., 2019, Roy et al., 2019, Rajendran
et al., 2019].

From these reviews, we highlight three: Schuman et al. [2017] did the spade-
work of summarizing, ordering and synthesizing publications over a 35 years
span. Pfeiffer and Pfeil [2018] review and categorize the modeling approaches
for neuromorphic systems, however, they only focus on spiking neural networks.
Thakur et al. [2018] give a list of current neuromorphic platforms with strong focus
on the hardware implementation.

2.3.1 Imitating the brain: Definitions and motivation of
neuromorphic engineering

The term neuromorphic computing or neuromorphic engineering was coined by
Carver Mead in 1989 [Mead, 1989, 1990]. Originally, it referred only to the analog
and mixed-signal neuron emulations in Very Large Scale Integration (VLSI). VLSI
is the technique of combining millions of transistors on a single integrated circuit
[Mead and Conway, 1979, Mead, 1989]. It became available in the 1970s and
became widely adopted in the 1980s, that is almost coinciding with the first ideas
of neuromorphic engineering. Nowadays, authors often refer to any hardware
implementation or algorithm as neuromorphic if it is inspired by aspects of infor-
mation processing in the brain or if it uses any non von-Neumann architecture.
Neuromorphic hardware can be seen as an alternative to von-Neumann architec-
ture featuring low-power and highly parallel information processing. In contrast
to the strict separation of memory and processing unit in the von-Neumann de-
sign [Von Neumann, 1993], neuromorphic engineering co-locates memory and the
processing units, usually the neurons, synapses and their parameters [Schuman
et al., 2017].

In the beginning, neuromorphic engineering was more explorative and lead to
the development of new types of sensors [Vanarse et al., 2016]. As the aggressive
digital node development towards always smaller node sizes faces serious limita-
tions, the interest renewed for alternative computation paradigms, among others
for neuromorphic computing [Monroe, 2014]. The development of traditional
digital von-Neumann architectures is limited by three main factors: 1) Moore’s
law is assumed to near its end [Waldrop, 2016] and certainly its future pursuit
is increasingly capital-intensive [Khan et al., 2018], 2) the power efficiency does
not scale with the reduced transistor size resulting in increasing energy demand
and by that heat production (Dennard-scaling, Esmaeilzadeh et al. [2011]), 3) and
efficiency loss becomes more significant due to the separation of memory and
central processing unit (CPU), known as the von-Neumann bottleneck. Neuromor-
phic computing could replace or complement traditional hardware, such as CPUs
and GPUs, in certain applications. Schuman et al. [2017] identify ten different
motivations researchers gave for neuromorphic engineering.
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2.3 A brief overview on neuromorphic engineering

Parallelism: Neuromorphic hardware emphasizes a design based on many
simple processing components and dense interconnection between them,
usually called the neurons and synapses. This biologically inspired design
gives rise to massively parallel computation.

Von-Neumann bottleneck: By co-locating memory and processing units
— again usually the neurons and synapses —, neuromorphic engineering
promises to avoid the von-Neumann Bottleneck.

Scalability: Due to the uniform structure of the chips and the distributed
computation paradigm, the size of the neuromorphic chips could, in princi-
ple, be easily scaled. In practice, scalability also requires the development of
appropriate communication channels between the subunits.

Real-time performance: This was a motivator for earlier works on neu-
romorphic engineering. It mainly refers to the speed of execution for an
application independent of the algorithm. In terms of application speed,
neuromorphic sensors excel.

Low power: An increasingly popular motivation is the low power consump-
tion, which is a central aspect for robotics, wearable devices or in Internet of
Things (IoT) applications.

Footprint: A small footprint (physical chip size) can be important in robotics
and wearable devices.

Fault tolerance: Inspired by the remarkable fault tolerance of biological
brains [Levin et al., 1987, Aerts et al., 2016], silicon neural circuits promise
fault tolerance due to their redundant architecture and self-learning capabili-
ties.

Faster computation: Related to the massive parallelism, some neuromorphic
architectures promise faster neural network emulation than conventional
chips. Hence, neuromorphic hardware could be used as an accelerator for
machine learning applications or simulators. This motivation focuses on
neuromorphic hardware as an accelerator for already existing models or
close derivatives (compare to real-time performance). In practice, the speed
of computation is often reduced by the system overhead [van Albada et al.,
2018, Kungl et al., 2019].

Online learning: By mimicking the brain’s continuous learning and adap-
tation properties, neuromorphic engineering aims to build self-learning
systems with plasticity algorithms running on the neuromorphic chip. How-
ever, continuous learning in the brain is not completely understood, and
therefore designers can only get a vague inspiration. Designing networks
and learning algorithms that both respect the constraints of the platform and
fulfill the computational task is challenging, see e.g. Kungl et al. [2019] and
chapter 3.
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Neuroscience: Related to the faster computation and online learning moti-
vations, neuromorphic hardware could be a tool for computational neuro-
science. Simulation of large-scale neural networks is only feasibly for short
simulations even on supercomputers, because of the limited speed of the
calculations and the high power consumption [Jordan et al., 2018]. Neu-
romorphic hardware could serve as a platform for fast network emulation
[Rhodes et al., 2019]. This requires a highly customizable platform to be able
to serve the diverse needs of modelers on the one hand, and a user-friendly
software stack to enable the hardware usage for a broad scientific community
on the other hand.

A common challenge with these motivations is designing neural networks and
algorithms that can 1) realize these motivations 2) fulfill the given computational
task and 3) respect the constraints of the hardware. This is most apparent in the
case of fault tolerance and online learning. We discuss the approaches of modeling
for neuromorphic hardware in section 2.3.3.

2.3.2 Different approaches of neuromorphic engineering

Since the beginnings of neuromorphic computing, researchers developed several
different approaches to implement aspects of the nervous system in silico. The
proposed and built implementations vary in their level of abstraction from neuron
models including spatial structure and ion-channels to digital matrix-vector multi-
plication accelerators that are not always called neuromorphic. We give a list of the
neuromorphic approaches ordered by the choice they make between flexibility and
the (potential) advantages in terms of speed of computation and energy efficiency
(figure 2.10). For each type, we give some prominent examples, without claim to
completeness (table 2.1). Note, that this ordering is only one potential choice and
the reduction to a single dimension necessarily neglects details, which might be
crucial for some applications. We also mention CPUs and GPUs as a comparison,
although, they are never considered neuromorphic. The list is a snapshot of the
state-of-the-art of neuromorphic computing as it is perceived at the time of writing.
This snapshot nature of the list is most apparent in the case of CPUs, where a long
tradition of tool-chain development marks the place of the CPU at the far side of
the scale regarding ease of use. In the case of new materials, we can sometimes
only talk about theoretical projections and single device measurements; they still
have to prove their advantages in an integrated system.

On the extreme side at flexibility and ease-of-use, there is the traditional central
processing unit (CPU) based on the von-Neumann architecture [Von Neumann,
1993]. They implement approximately the opposite of the ideas of neuromorphic
computing. The memory and the processing unit are sharply separated [Drep-
per, 2007], the system is built on binary logic and the operations are carried out
following a central clock in a synchronized manner. Although, the appearance
of multi-core CPUs introduced parallelism. Due to the long tradition of compiler
and tool-chain development, using CPUs is easy and flexible.

30



2.3 A brief overview on neuromorphic engineering

BA

Figure 2.10: Trade-off choice of different neuromorphic approaches. (A) The
production-possibility frontier (PPF) model summarizes the production trade-off
an economy has to cope with when choosing what to produce [Samuelson, 2010,
Mankiw, 2012]. For each additional unit of gun produced the country has to
give up a part of the butter production. Technological advancement can push the
frontier farther to higher quantities of both but the necessary trade-off persists.
(B) Inspired by the PPF model, the plot shows the trade-off choice of the different
neuromorphic approaches. The figure is a snapshot of the existing neuromorphic
approaches. Due to the two dimensional projection, there are simplifications,
for example there is a trade-off between speed of computation and the energy
efficiency as well. The “/” sign denotes an “and/or” connection: for example
most research regarding new materials focuses on energy efficiency and less on
speed of computation. The dashed line marks the approximate border between
systems based on boolean logic and systems based on computations using directly
the physics of the underlying substrate.
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A General Purpose Graphical Processing Unit (GPGPU) is a digital stream processor
specialized for massive vector operations suited for parallel computations, more
precisely for single instruction multiple data computations [Owens et al., 2007,
Navarro et al., 2014]. They grew out of GPUs specialized for maximizing perfor-
mance on computer graphics applications. The return and emergence of deep
learning relied heavily on the availability of affordable GPUs [LeCun et al., 2015],
because the evaluation of neural networks contains many parallelizable opera-
tions such as the matrix-vector multiplication. At the beginning, GPGPU required
lot of expertise to program, but with the appearance of the CUDA application
programming interface [Nickolls et al., 2008] and of deep learning libraries, for
example TensorFlow [Abadi et al., 2015], PyTorch [Paszke et al., 2019] or Theano
[Theano Development Team, 2016]; the usage of GPGPUs became more accessible.
GPGPUs are a widely used resource in scientific computing including research in
computational neuroscience and machine learning.

An interesting type of neuromorphic systems are digital machine learning acceler-
ators based on application-specific integrated circuit (ASIC). These systems are custom
built chips with the aim to accelerate the evaluation and to reduce the energy
consumption of machine learning models, usually convolutional artificial neural
networks [LeCun et al., 1989]. They do not focus on emulating aspects of the
nervous system, but they are tailored to existing models. In a simplified view, they
are matrix-vector multiplication accelerators with additional special features for
parallel computation of activation functions and data-reuse during calculations.
The most prominent example is the Tensor Processing Unit (TPU) from Google
[Jouppi et al., 2017], which showed increased inference speed and reduced power
consumption compared to GPUs. Similar machine learning accelerators have been
produced, for example Intel’s machine learning accelerators [Intel, 2019] or the
Eyeriss chip [Chen et al., 2016, 2019]. The usage of these systems is similar to that
of GPGPUs, because necessary libraries are (often) integrated into popular ma-
chine learning frameworks, for example TensorFlow has corresponding software
back-end for TPUs. There seems to be an increasing trend for building custom
designed machine learning accelerators. ASIC-based machine learning accelera-
tors are first of all commercial products, but sometimes they are used due to their
speed in machine learning research as well [Vinyals et al., 2019]. The inclusion of
machine learning accelerator modules and vector extensions on CPUs blurs the
border between CPUs, GPGPUs and stand-alone machine learning accelerators
[Rodriguez et al., 2018].

A large group of neuromorphic platforms is implemented on commercially available
field-programmable gate arrays (FPGAs). They aim at exploiting the speed and power
efficiency of the FPGA boards while benefiting from the available development
tools. Note that FPGAs are usually power efficient compared to CPUs and GPUs
but not compared to the following approaches. Because no custom hardware is
produced, FPGA-based neuromorphic features a high degree of flexibility and
short development cycles. Often, FPGA-based simulations are used for prototyp-
ing and pre-production testing of digital neuromorphic systems based on ASIC
[Schuman et al., 2017]. A prominent example of an FPGA based neuromorphic
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2. Background

system is the DeepSouth cortex emulator [Wang et al., 2018]. FPGA-based systems
have applications as machine learning accelerators, fast neural network simulators
and co-processors for CPUs. These group of hardware are the first on the list that
are generally referred to as neuromorphic.

A rapidly growing family of systems is based on fully digital ASIC neuromorphic
emulator platforms. Unlike the digital ASIC-based machine learning accelerators,
they do not aim at accelerating already known and well-explored models, but
they provide a platform to emulate networks of (usually) spiking neurons with
own internal dynamics. However, the neural dynamics are not emulated on
designated analog circuits, but calculated using small neuromorphic cores, where
a single core is responsible for the dynamics of typically several hundred neurons.
Some of these systems also use asynchronous digital logic. Because the neural
dynamics are simulated, the speed of execution can be regulated or even halted.
Most systems are designed for real-time operation, meaning that the calculations
are done with the same speed as the calculated neural dynamics. Examples of
fully digital neuromorphic systems are the TrueNorth [Akopyan et al., 2015], the
Darwin [Shen et al., 2016], the Loihi [Davies et al., 2018] and the Tianjic chips [Pei
et al., 2019].

The SpiNNaker neuromorphic platform exemplifies a unique approach in this
category [Furber et al., 2012, 2014]. It uses small Advanced RISC Machine (ARM)
processors as neuromorphic cores connected with a custom spike-router. The
processor enables the flexible implementation of neuron and synapse models,
and the spike-router enables networks with arbitrary connectivity. Due to the
combination of biological neuron models and relatively flexible usage, SpiNNaker
systems find broad applications such as neuromorphic robotics, interfacing with
neuromorphic sensors and prototyping brain-inspired computations.

Until this point, all systems used digital logic based on boolean algebra to
calculate the dynamics of the neurons. These systems benefit from the established
tool-chains of digital design such as error correction protocols, verification tools
and the resulting short development cycles. They can almost immediately use
new digital technologies. Furthermore, they can reach lower power consumption
and smaller footprint by using smaller transistors. Finally, all digital systems
benefit from the deterministic calculations of boolean logic. But there is a limit in
efficiency: digital systems first use inherently analog signals (voltage, current) to
represent digital values, and use them to calculate dynamics, which are analog
in their nature such as the neural dynamics in the brain. We call this approach
boolean computation, although according to my best knowledge there is no single
collective term for it.

Physical model systems or physical computing on the other hand — sometimes
simply called analog systems — take a different approach. They assume that
most relevant problems can be solved via analog calculations, a view inspired
by the nervous system. Physical model systems use dedicated analog circuits to
emulate analog dynamics. These systems have the promise a faster and more
energy efficient computation compared to their fully digital counterparts.
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These potential advantages come with drawbacks: 1) Analog circuits show
circuit-to-circuit variability introduced by manufacturing imperfections, the so-
called fixed-pattern noise. Fixed-pattern noise is also present in digital circuits, but
its effect on calculations is usually hidden from the user due to the digitization
of the signals and due to the established error correcting protocols. Fixed-pattern
noise reduces the controllability of the circuit parameters. 2) Analog circuits also
have temporal noise on the their analog quantities. With temporal noise we mean
any kind of fluctuation that is variable on the relevant time-scale of the experiment
or application. Temporal noise can have diverse sources such as write cycle-to-
cycle variation, thermal noise or fluctuations in the supply voltage. Physical model
systems share similar challenges as biological neural networks. The brain also has
to cope with heterogeneous neurons and synapses, with uncontrolled fluctuations
and with restrictions in the potential synaptic connections and in the possible
learning rules.

Analog mixed-signal ASIC hardware based on conventional complementary metal-
oxide-semiconductor (CMOS) transistors uses a combination of analog and digital
electronics to realize brain-inspired physical computation. The emulation of the
spiking network dynamics is carried out on dedicated analog circuits, while
communication between the neurons, and between the chip and the external
components happens in a digital way. Spikes are usually interpreted as digital
events with solely temporal information. The emulated neuron, synapse and
plasticity models vary broadly, for a review see Indiveri et al. [2011]. There are
two main types of these systems.

In sub-threshold design, the transistors operate in their sub-threshold regime and
the neurons are emulated with typical time-constants close to biological neurons,
e.g. approximately 10 ms for the membrane time-constants. Such real-time systems
feature ultra-low power consumption and — due to the similar time-constants —
simple interfacing with neuromorphic sensors. Hence, they are suitable for IoT
applications, wearable devices and neuromorphic robotics. However, real-time
systems suffer from large device-to-device variations due to the exponential sub-
threshold characteristics of the CMOS transistors. Examples of such systems are
the Neurogrid project [Benjamin et al., 2014], the BrainDrop [Neckar et al., 2018],
the ROLLS [Qiao et al., 2015] and DYNAPs chips [Moradi et al., 2017].

Accelerated mixed-signal neuromorphic systems drive the transistors in the
supra-threshold regime, and emulate shorter time-constants than biological neu-
rons due to larger currents. The acceleration factor varies depending on the design
typically between 10 and 105. The supra-threshold design allows for more precision,
but also leads to higher power consumption and requires more complex circuits.
Designers of these systems argue that the computation can be still not power but
energy efficient: the devices use more power than the sub-threshold solutions but
the computation is also executed faster (see Wunderlich et al. [2019] and chapter 4).
Due to the short time-constants, interfacing with the environment — for example
with robots or sensors — is a challenging task, and the fast emulation requires
suitably fast I/O circuits. Examples of accelerated systems are the two generations
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of the BrainScaleS system [Schemmel et al., 2010, BrainScaleS, 2011, Friedmann
et al., 2017], also discussed in detail in chapter 3 and chapter 4, respectively.

Several new materials have been proposed as good candidates for neuromor-
phic computing; for a review see Lee et al. [2019]. Many of them stem from
conventional memory research, where they were suggested as fast and low-power
non-volatile memory. They also show a history dependent parameter adaptation,
that resembles short- and long-term plasticity observed in neuroscience experi-
ments; and can be used for emulation of synapses and plasticity. Neuromorphic
computing with these new materials is in its infancy; publications often focus on
the properties of single devices. Examples for these new candidate materials are
conductive-bridging random-access memory (RAM), phase change memory, spin-
tronic devices, superconducting electronics, optical implementations and organic
electronics [Nawrocki et al., 2016, Schuman et al., 2017, Cheng et al., 2019, Lee
et al., 2019].

The most mature of these new materials are memristors [Jo et al., 2010, Li et al.,
2018]. A memristor is a two-terminal non-volatile memory with history dependent
conductivity. The history dependence of the resistance resembles synaptic plas-
ticity, and hence memristors are mostly used as synapses in neuromorphic chips.
They feature low power consumption and fast read-write speed but suffer from
high fixed-pattern noise and cycle-to-cycle variability. Further technical problems
limit the maximum size of memristor arrays. Recently published memristor chips
have on the order of 103 to 104 memristive devices on a single chip, e.g. in Cai et al.
[2019].

The arguably most successful branch of neuromorphic engineering is the devel-
opment of event-based sensors for vision, auditory and olfactory signals [Vanarse
et al., 2016]. These devices convert the detected signals directly into output spike-
trains. For example, the Dynamics Vision Sensor (DVS) sensor detects changes
in luminosity and turns them into ON and OFF events (spikes). It excels at low
latency and high sample rate compared to conventional frame-based cameras.
Some of the neuromorphic sensors are commercially available [iniVation, 2020].

2.3.3 Computational models for neuromorphic hardware

Neuromorphic hardware requires appropriate computational models to realize
its potential advantages. Creating programs is fundamentally different from pro-
gramming software on conventional CPUs. It means designing neural networks
and corresponding learning schemes using the available neuron models and other
resources on the respective neuromorphic hardware. Proposed networks use a
huge variety of neuron models and coding schemes, see for example Tavanaei
et al. [2019] and references therein. It is still a challenging task to create models
that can both fulfill the computational task on a state-of-the-art level, compared to
for example machine learning solutions on GPGPU, and respect the constraints of
the neuromorphic platform (see e.g. chapter 3). This might change in the future if
the basic computational paradigms are clearly established. Then programming on
a higher abstraction level should be available.
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Inspired by the review by Pfeiffer and Pfeil [2018], we identify four main meth-
ods to set up models for neuromorphic hardware. We mainly concern spiking
neuron models, because the majority of neuromorphic hardware uses spiking
neurons, but similar considerations apply to rate-based models as well. Further,
we only concern models for neuromorphic hardware, that is from the FPGA-
based neuromorphic approach to the research of new materials. Creating models
for CPUs, GPGPUs and machine learning accelerators is the task of mainstream
machine learning research.

Hand engineered networks use predefined network architectures to fulfill a given
task. The main aspect is that the parameters of the network are not changed via
learning. Examples for these kind of algorithms are realized in hard-wired navi-
gation tasks and robotic control tasks [Blum et al., 2017, Cartiglia et al., 2018, Bil-
laudelle et al., 2019b], in solving constraint-satisfaction problems [Fonseca Guerra
and Furber, 2017, Steidel, 2018], in the Neural Engineering Framework [Eliasmith
and Anderson, 2004], in the cellular neural networks [Roska, 2007] and in purpose-
built spiking algorithms [Severa et al., 2016]. Learning as usually considered in
neural networks in machine learning (section 2.1.1) is missing from these models.
Hand engineered solutions are most suited for digital neuromorphic hardware; in
mixed-signal hardware we have to mitigate the effect of fixed-pattern noise.

Conversion methods use already trained artificial neural networks (ANNs) and
convert them into spiking neural networks using one of the several conversion
techniques, reviewed in Pfeiffer and Pfeil [2018]. This approach has the advantage
that it can immediately use the full available toolkit of deep learning. However,
most methods use rate-based coding, meaning that spikes merely represent imper-
fect proxies of real-numbered rates, and do not use information in the timing of
spikes. This deems the spiking implementation intrinsically inefficient and puts a
burden on the neuromorphic hardware when comparing to conventional machine
learning solutions. This approach does not explicitly mitigate the disruptive effect
of fixed-pattern noise.

The chip-in-the-loop paradigm suggests a training loop between the neuromor-
phic hardware and a conventional hardware, reviewed in Pfeiffer and Pfeil [2018].
Model execution, for example feed-forward inference, is done on the neuromor-
phic hardware and parameter updates are calculated on the conventional hardware
based on the output of the hardware and on a differentiable model. A positive
impact of this approach is that it implicitly mitigates the fixed-pattern noise and
other distorting effects. However, the execution can be tedious, and the time and
power consumption could be dominated by the I/O processes between the two
platforms. Sometimes, chip-in-the-loop methods are combined with conversion
methods, for example in Schmitt et al. [2017] and Kungl et al. [2019].

Learning using on-chip local learning rules is currently the targeted long-term goal
of models for neuromorphic hardware. Using on-chip or close to chip features —
such as the local plasticity — could both maximize the speed and power efficiency
by minimizing the I/O requirements and mitigate disturbing effects. Designing
local learning rules is challenging on the theoretical side, which is related to
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the challenge of learning in biological systems9 (section 2.2.3). Especially, we
lack good mechanistic models for deep learning — or equivalently powerful
learning — using local learning rules (see chapter 5). Existing implementations
of local learning rules are usually based on pure shallow learning [Pfeil et al.,
2013b, Kreiser et al., 2017, Wunderlich et al., 2019, Feldmann et al., 2019]. On the
hardware side, plasticity rules are often hard-wired and only implement a single
model, such as the classic Bi-Poo STDP [Bi and Poo, 1998] or some type of short-
term plasticity. This greatly reduces the flexibility of modeling. Recently, BSS-2
[Friedmann et al., 2017] and Loihi [Davies et al., 2018] added more flexibility to
their plasticity mechanisms to enable an easier implementation of custom on-chip
plasticity rules.

Finally, we mention the learning-to-learn approach [Hochreiter et al., 2001],
which proposes to encapsulate the learning model into an outer-loop of gradient
free optimization on a family of tasks. The approach mimics slow evolutionary and
developmental processes to endow the underlying model with transfer-learning
capabilities, as it was shown in spiking neural networks [Bellec et al., 2018]. The
learning-to-learn approach could greatly benefit from accelerated neuromorphic
hardware because the outer loop requires several iterations of the inner loop
[Bohnstingl et al., 2019]. The learning-to-learn approach does not fit into the list,
it is rather a proposed mechanism to encapsulate the models, for example the
on-chip learning or the chip-in-the-loop paradigms.

2.3.4 Current challenges of neuromorphic engineering

Neuromorphic engineering has to tackle several problems in order to reach further
progress and to live up to the promises that have been driving the field since its
birth in 1980s. Here, we propose a set of five challenges for the coming years
focusing on modeling and application, without claim to completeness. These
challenges are connected among each other and they are also connected to similar
challenges in other fields.

Finding the “killer” application: Machine learning research dismisses neu-
romorphic as the future of deep learning, based on the lack of proven ad-
vantages in any practical applications [LeCun, 2019]. Until now, computing
with neuromorphic hardware and computing with spiking neurons failed
to find an application where a clear advantage over conventional solutions
would be apparent. It is expected that the “killer” application will use the
temporal information stored in spikes and sparse computations. Davies et al.
[2018] argue to have found one in spike-based sparse coding.

Lack of good benchmarks: Connected to the previous challenge, neuromor-
phic computing lacks widely accepted benchmarks as there are in conven-
tional computing or in machine learning [Davies, 2019]. The usually reported

9Note, that the requirement of locality is only similar but not the same for biology and neuro-
morphic hardware.
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benchmarks are either too microscopic such as synaptic operations per time
or they are tailored for mainstream machine learning such as ImageNet
[Deng et al., 2009] and CIFAR [Krizhevsky et al., 2009]. The latter two consist
of static images containing no temporal information. Davies [2019] suggests
a set of benchmarks consisting of several applications where the temporal
information is of relevance. An example is the Heidelberg spoken digits
dataset, in which the sound is pre-processed with a model based on the
human cochlea [Cramer et al., 2019b].

Powerful and robust algorithms for neuromorphic hardware: Powerful
algorithms are required to solve complex tasks or the proposed broad suite
of benchmarks. This challenge is closely related to the need for powerful
mechanistic models in biology section 2.2.3. It is not clear, which path the
progress should pursue. Two main rivaling approaches seem to dominate
among the possibilities. On the one hand, we could strive for an approx-
imation of backpropagation based on local learning rules (similarly as in
chapter 5). On the other hand, we could develop brain-like structured hierar-
chical models closely trying to mimic the brain’s ability to learn from a few
examples combined with past experience.

Further network scalability: The existing implemented neural networks on
neuromorphic hardware [Esser et al., 2016, Schmitt et al., 2017, Liu et al., 2018,
Kungl et al., 2019] are mostly smaller than contemporary neural networks
in mainstream machine learning [He et al., 2016]. Further scalability of the
networks is a challenging task for hardware design, for system software
development and for model development. From the perspective of hardware
design, neuromorphic chips follow the two dimensional design of integrated
circuits, which greatly restricts the possible connections compared to the
three dimensional structure of the brain. Three dimensional integrated
circuits might be a possible way of further development [Pavlidis et al.,
2017]. From the system software perspective, efficient mapping algorithms
are required that can map the user-defined neural networks to the hardware
while respecting the constraints of the substrate [Galluppi et al., 2012, Lin
et al., 2018, Passenberg, 2019]. From the model-development perspective, we
require network models that can be easily scaled and distributed over the
available neuromorphic hardware. Popular models, such as convolutional
neural networks [LeCun et al., 1989], are ill-suited for this purpose due to
their dense connectivity between the layers.

Unified computing framework for principled development: According to
Jennifer Hasler [Hasler, 2016]: “Analog computation seems to be a bottom-
up design approach practiced by a few artistic masters.” Both hardware
development and model development are rather explorative and lack a
unified framework. Establishing such a framework could help defining
the advantages of using analog and mixed-signal devices. Further, such
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a framework could open the way to a more principled and standardized
hardware development.

Improving supporting software for accessible usage: A vital component of
neuromorphic hardware is the supporting software toolchain. It enables the
high-level programming of the hardware, the mapping of networks to the
substrate and debugging, reviewed in Schuman et al. [2017]. Currently, most
published experiments on neuromorphic hardware were conducted by either
the designers themselves or in close collaboration with them, for example in
Esser et al. [2016], Kreiser et al. [2017], van Albada et al. [2018], Kungl et al.
[2019], and see appendix A.2 as well. In order to reach out to non-expert
users outside the community, neuromorphic engineering needs supporting
software that reduces the barriers to entry for using neuromorphic hardware.
For example, the PyNN simulator-independent neural network description
language [Davison et al., 2009] aims to provide a common high-level Appli-
cation Programming Interface (API) for designing experiments on different
back-ends, including diverse neuromorphic hardware.
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3 Accelerated Bayesian inference on
the BrainScaleS-1 neuromorphic
platform

The content of this chapter was published in Kungl et al. [2019]. Here,
we follow the publication but we give a more detailed description of the
project for the sake of clarity and completeness.

The aggressive development of microchip production following Moore’s law is
becoming more and more capital intensive by the day [Khan et al., 2018]. At the
same time, in the ever finer lithographic process, physical effects will become more
and more difficult to overcome with heat production and quantum effects being
the main challenges. Further, the so-called von-Neumann bottleneck between the
memory and the processing unit limits the speed of conventional CPUs inherently
by their design. Neuromorphic engineering promises to create massively parallel
non-von-Neumann architectures that could overcome the limitations of CPUs
using inspiration from the mammalian nervous system (section 2.3).

One particular subset of the neuromorphic devices implements the idea of
“physical modeling”. Instead of calculating the dynamics of the neurons, these
systems instantiate distinct circuits and use the physics of the substrate to emulate
the dynamics of the neurons and synapses [Mead, 1990, Indiveri et al., 2006,
Schemmel et al., 2010, Jo et al., 2010, Pfeil et al., 2013a, Qiao et al., 2015, Chang
et al., 2016, Feldmann et al., 2019]. In a somewhat simplified view: Instead of
solving the differential equations governing the dynamics of the system, these
systems let the dynamics evolve, hence “physics solves itself”. These systems
promise fast computation and/or low power/energy consumption (section 2.3.2).
However these advantages come with drawbacks: variability in the manufacturing
process introduces variation between the implemented neurons (fixed-pattern
noise), and temporal noise is always present on the circuits. These two effects limit
both the range and the effective resolution of the parameters. The challenge lies
in finding/designing models that can perform powerful computations using the
available resources (neuro-synaptic models and parameter range), while staying
robust against the distorting variations (fixed-pattern and temporal noise). Just
as in the case of the devices themselves, it is worth looking for inspiration in
neuroscience because the brain has to cope with similar (although certainly not
identical) constraints and challenges.
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In the last decade, experimental evidence has been gathered [Berkes et al., 2011,
Pouget et al., 2013, Orbán et al., 2016, Haefner et al., 2016] about the probabilistic
information processing mechanisms of the brain. The Bayesian brain hypothesis
[Doya et al., 2007] suggests that the brain implements a probabilistic computation
according to a realization of Bayesian statistics.

In this picture, during learning the brain shapes the underlying probability
distribution to be a model — bias in the Bayesian terminology — of the environ-
ment. We can interpret perception (or any reasoning) according to Bayes’ theorem.
Consider the example of an animal living in the jungle. During its lifetime, it
learns to avoid the tiger (dangerous predator), and hence learns in its internal
model that seeing black and orange stripes in the bush could mean the presence
of a tiger. This serves as its bias accumulated via learning. In perception, the input
— e.g. an image or sounds — serves as posterior, which is then combined with the
previous knowledge (bias) to deduce the likelihood of an observation.

Theories of neural sampling [Buesing et al., 2011, Hennequin et al., 2014, Aitchi-
son and Lengyel, 2016, Petrovici et al., 2016, Kutschireiter et al., 2017] suggest
frameworks for particular forms of Bayesian information processing, in which
the dynamics of neural network realizes sampling from an underlying probability
distribution. The dynamics of the neurons are considered as a physical inter-
pretation of the sampling process. This interpretation suggests that the inherent
variability of biological neurons observed in-vivo [Mainen and Sejnowski, 1995,
Reinagel and Reid, 2002, Toups et al., 2012, Masquelier, 2013] is not a disturbing
nuisance that has to be corrected for — via population coding or via a different
error correction procedure — but is rather a resource and a hallmark of the on-
going probabilistic computation. Learning in such a framework corresponds to
shaping the underlying probability distribution to model the statistics of the envi-
ronment/dataset, analogously to the jungle-animal example and to unsupervised
learning in machine learning (section 2.1.2).

In this project, we present the scalable implementation of sampling with leaky
integrate-and-fire neurons [Petrovici et al., 2016] on the BrainScaleS-1 system
[Schemmel et al., 2010] an accelerated mixed-signal analog neuromorphic platform.
The variability of the analog parameters can be compensated and incorporated
into the network structure with an appropriate training procedure. The feasibility
of the implementation is verified by sampling from low-dimensional arbitrary
probability distributions (section 3.4.1). Furthermore, we demonstrate the capa-
bilities of the approach on standard datasets by solving classification and pattern
completion tasks (section 3.4.2). After setup and learning, the entire network is
fully contained on the neuromorphic hardware; communication is only used to in-
sert external stimulus (here images) to the network and to receive spike responses
from parts of the network. This work contributes to the development of beyond
von-Neumann computation using (neuro-inspired) physical model systems while
coping with their inherent limitations and benefiting from their advantages at the
same time.
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3.1 The BrainScaleS-1 large-scale neuromorphic
platform

The BrainScaleS-1 system (BSS-1) is a platform for accelerated emulation of large-
scale spiking neural networks [Schemmel et al., 2008, 2010] developed in the
BrainScaleS Project [BrainScaleS, 2011] and the Human Brain Project [Markram
et al., 2011b]. The aim of the platform is two-fold: On the one hand, it should
enable the accelerated emulation of large spiking networks. This feature aims to
accelerate simulations that take a considerable amount of time, such as simulations
of life-long learning or evolution. On the other hand, BSS-1 offers a research
platform to discover, prototype and test novel computation paradigms, which
aim to outperform conventional solutions in the long run regarding speed and/or
energy consumption.

The BSS-1 is a spiking, mixed-signal, analog, accelerated neuromorphic system.
The neuron model at the heart of the system is spiking (opposed to rate based
models, section 2.2.2). Analog circuitry realizes the dynamics of the emulated
neuron model, but once the neurons spike, the action potentials are communicated
through a digital circuitry between the neurons as logical events. In this sense, we
say that the BSS-1 is a mixed-signal system. The emulation of the neural dynamics
is accelerated compared to their biological counterparts; the realized time-scales —
such as the membrane time-constant or the synaptic time-constant — are shorter
on the neuromorphic chip than in biological neurons. The acceleration factor can
be varied between 103 and 105, but in this project and as a default setting it is used
with 104-fold acceleration. We refer to time always in the biological equivalent
time unless specified otherwise; 1 ms biological equivalent time corresponds to
0.1 µs wall-clock time emulation on BSS-1.

The BSS-1 emulates the so-called Adaptive Exponential Integrate-and-Fire
(AdEx) neuron model [Brette and Gerstner, 2005] in a highly modular design
(figure 3.1 A). The AdEx model is a two-dimensional extension of the LIF model
(section 2.2.2) with additional adaptation and exponential terms. The exponential
term emulates the sharp depolarization ramp of the stereotypical action potential
(section 2.2.1). The adaptation term models a spike triggered and continuously re-
laxing change of excitability of the neuron. Depending on the settings, consecutive
spikes can be elicited more or less easily. The AdEx can reproduce several firing
regimes of a single neuron, such as tonic spiking, spike frequency adaptation and
chaotic spiking; these have been realized on prototype chips of the BSS-1 [Tran,
2013]. Due to the modular design of the circuit, the single components can be
independently configured or turned-off, for example to emulate purely the LIF
model. In this project, we only use the LIF features of the neuron model, for further
details on the AdEx components we refer to the works of Schemmel et al. [2010],
Millner [2012], Kleider [2017]. The parameters of the neurons are stored in on-chip
analog parameters storages, so-called Floating Gates [Lande et al., 1996, Loock,
2006, Srowig et al., 2007, Kononov, 2011, FGs], with 10-bit nominal resolution.
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Figure 3.1: The BrainScaleS-1 system. (A) Schematics of the implemented AdEx
model on the BSS-1. Due to the highly modular design, single components of the
neuron can be configured and turned-off independently. In this project, we use
this feature to emulate the LIF model. Image taken from Millner [2012]. (B) The
High Input-Count Analog Neural Network (HICANN) chip is the heart of the
system with 512 neurons and 112 640 synapses. On-chip routing network occupies
the outer parts of the chip. Image taken from Millner [2012]. (C) Schematics of a
module of BSS-1. (A) The wafer module is connected via (B) the positioning mask
and (C) elastomeric connectors to the (D) the main PCB board. Further support
PCBs (E,F) provide power supply and (G) access to the membrane trace measure-
ments. On the four edges (H) inter-wafer and host connectivity is provided with
USB slots and Gigabit-Ethernet slots, respectively. An aluminum frame gives
mechanical stability (I). Image taken from Schmitt et al. [2017]. (D) Image of a
fully assembled wafer module, taken from Schmitt et al. [2017].
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Communication between the neurons takes place via action-potentials. If a
neuron generates an action-potential according to its model, then this spike is
registered by the digital part of the circuitry as a logical event. The resulting
package is transmitted digitally to the post-synaptic neuron, which receives it via
its synaptic circuit. The weight of the synapses is stored in a 4-bit static random-
access memory (SRAM) cell for each synapse individually. The synaptic circuit
emulates the COBA synapse model with an exponential synaptic (conductance)
kernel (section 2.2.2). The synaptic circuits feature both short-term plasticity (STP)
based on a reduced version of the Tsodyks-Markram short-term plasticity model
[Tsodyks and Markram, 1997] and a form of STDP based on the classic STDP
model [Bi and Poo, 1998].

The BSS-1 system has a hierarchical organization. The basic building block
is the HICANN neuromorphic chip (figure 3.1 B). We only consider the version
HICANNv4.1 chip, which was used in the experiments; for differences between
this and older HICANN generations see Koke [2017]. One HICANN chip hosts
512 dendritic membrane units (denmems), each of them containing the circuits of
the AdEx model with an excitatory and an inhibitory synaptic circuit. 220 synaptic
circuits belong to each of the denmem units, amounting to 112 640 synaptic circuits
per HICANN. Several denmem units can be combined to form larger neurons with
more potential incoming synapses (pre-synaptic partners). In the extreme case,
64 denmems can be combined to form a single neuron with 14 080 pre-synaptic
partners. Hence, there is a trade-off between the number of distinct incoming
synapses to the neurons and the number of used neurons.

The 384 HICANN chips of a single wafer module are organized into 48 reticles
with 8 HICANNs in each of these reticles. Each reticle has a corresponding
FPGA that is responsible for experiment control, and the communication between
host and neuromorphic chips on the reticle. This modular organization makes it
possible that several single reticle experiments can be run in parallel on a wafer
module. The HICANN chips are connected in a post-processing step [Zoschke
et al., 2017]. Post-processing is required to realize wafer-scale integration. Opposed
to the production of single chips, where the individual chips are cut out from
the silicon wafer, on the BSS-1 system our aim is to connect them. Because of
restrictions of the standard CMOS lithography procedure, only individual reticles
can be produced with a single lithography mask [Zoschke et al., 2017], hence a
post-processing step is required to create inter-reticle connections. Vertical and
horizontal buses, called the layer 1 (L1), enable the communication between the
HICANN chips. Similarly layer 2 (L2) is designed for direct communication
between wafer modules.

By system design intention, experiments on BSS-1 are written in the PyNN
simulator-independent neural network description language [Davison et al., 2009].
The BSS-1 implementation of PyNN is called the PyHMF package. The abbrevia-
tion HMF stands for Hybrid Multiscale Facility [Müller, 2015]. PyNN provides
a common interface for several neural network simulation back-ends including
simulators written for CPUs and/or GPUs and neuromorphic hardware platforms.
PyNN gives a high-level control over the system; low-level control is (in an ideal
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case) handled by the back-end specific implementation and the own software-
stack of the back-end. When working with the BSS-1 system the end-user should
only use the PyNN interface to design the emulations. In the background the
BSS-1 software-stack converts the defined network over several software layers
into an executable hardware experiment description, runs the emulations and
retrieves the measured data (figure 3.2). The complete operation system behind
BSS-1 system is described in Müller et al. [2020b].

Figure 3.2: The BrainScaleS-1 system software pipeline. The described experi-
ment and neural network is pipelined through several layers of the software-stack
with decreasing degree of abstraction and increasing proximity to the hardware.
By design, the user of the system should only see the PyNN [Davison et al., 2009]
description and its BSS-1 specific implementation PyHMF. The complete software
stack is discussed in detail in Jeltsch [2014] and Müller [2015]. Image taken from
Müller [2015].

3.1.1 Challenges for the user on the BrainScaleS-1 platform

The accelerated emulation on BSS-1 comes with a price tag. The user of the
system has to overcome several challenges that mostly originate in the idea of
physical emulation, but which are not necessarily unique to BSS-1. We discuss
these challenges with a focus on BSS-1 at the current status of commissioning (as
of 2019 August), but highlight that some of these limitations are inherent in other
systems as well.

If we understand BSS-1 as an accelerated neural network simulator — that is a
replacement/alternative to e.g. BRIAN [Stimberg et al., 2019] or NEST [Gewaltig
and Diesmann, 2007] — then we face the fact of limited controllability. The
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parameters on BSS-1 can be set only up to a limited precision, which is much less
than the typical limiting machine precision for CPU simulators. On BSS-1 the
analog neuron parameters can be set with a resolution of 10bit stored on Floating
Gate (FG) analog memory cells [Lande et al., 1996, Loock, 2006, Millner, 2012],
while the digital synapse weights have a resolution of 4bit stored on dedicated
static random-access memory (SRAM) cells. The limited resolution is inherent to
both analog and digital neuromorphic systems, as each parameter has to be stored
close to its application point, for example synapse weights at the synapses. There
is a trade-off between the resolution of the parameters and the density of neuronal
and synaptic circuits that can fit on a chip.

The emulation precision is further restricted by the presence of different types
of noise. Fixed-pattern noise is the deviation between realized transistors and
other circuit elements due to manufacturing limitations. Such noise is constant in
time; and effectively, it causes inhomogeneity between the neurons. Fixed-pattern
noise can be compensated by calibration [Schwartz, 2013, Koke, 2017, Kleider,
2017] but cannot be reduced completely. Naturally, fixed-pattern noise is only
relevant for analog systems, since typically in digital systems the discrete values
(1 and 0) are separated by a large margin, and unlike the analog case there are
correction methods for bit-flip errors. We collectively call any type of noise that
is time-dependent temporal noise. Categories of temporal noise are the diverse
disturbances, such as thermal noise, changes in the environmental temperature
and variations in the supply voltage. They all appear on the membrane potential
of single neurons and cause variations during an experiment and between distinct
experiments. Figure 3.3 shows an example trace on the BSS-1 showing the strong
temporal noise observed on the membrane potential. More precisely, it shows
an overlay of the temporal noise on the membrane potential and the read-out
noise. Analog and asynchronous digital systems are affected by this unintentional
temporal noise. In synchronous digital systems with a single clock (or several
aligned clocks), temporal noise is eliminated by design, by the discretization of
time via the clock. On BSS-1 a particular source of temporal noise is the trial-
to-trial variation of the FGs, called FG variations [Kononov, 2011, Kungl, 2016].
The writing precision of the FG is limited and two consecutive rewrites with the
same target values result in different stored values in the FGs. The magnitude of
these variations on the BSS-1 system led to the established method, that analog
parameters are stored only once for experiments and later on, only the digital
values are updated to realize for example learning [Schmitt et al., 2017]. This
approach is similar to the chip-in-the-loop approach in section 2.3.3.

On every neuromorphic platform the emulated network has to be mapped from
the abstract description — for example defined in PyNN — to the corresponding
hardware components. This procedure is collectively called mapping. Ideally, the
mapping procedure should create from the abstract network description a hard-
ware graph that respects all the restrictions imposed by the system while keeping
the user-defined components together with their connections. The diversity of the
hardware constraints and the great variability of the emulated networks make the
implementation of a generic mapping algorithm a difficult task; an ideal and per-
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Figure 3.3: Example trace on the BSS-1. We can observe the strong temporal noise
on the membrane potential, but it is a hard task to distinguish noise truly on the
membrane from noise originating on read-out circuits. Note the difference between
the realized resting potential and the user-set Eleak = −20 mV, which is a result
of the fixed-pattern noise. Finally, there is a periodic disturbance with a period
of approximately 100 ms of unknown origin. This experiment was conducted
without calibration of the neuron parameters.
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3.1 The BrainScaleS-1 large-scale neuromorphic platform

fect mapping is in fact an NP-complete problem [Cook, 1971, Jeltsch, 2014]. There
are no canonical solutions to address the mapping-problem. The software marocco
from the BSS-1 software-stack uses a combination of heuristics and fall-back to
standard algorithms [Jeltsch, 2014, Passenberg, 2019]. At the current state of com-
missioning, the marocco software can handle networks on the order of hundreds of
neurons without losing synapses (figure 3.4). The challenge of mapping applies
to all neuromorphic systems, even large scale software simulations suffer from
this problem, however clocked simulators can sacrifice simulation speed for more
synaptic connections.
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Figure 3.4: Synapse loss during mapping of a random network. Relative
synapse loss as a function of number of neurons in a random network with
10 % connectivity. The figure exemplifies the problem of mapping large-scale
networks onto the BSS-1 system. The figure was made from the system bench-
mark repository brainscales-benchmarks and with the nmpm_software/2019-08-21
(appendix B.3).

The communication bandwidth is limited between the hardware and its envi-
ronment, which limits the rate at which spikes can be read out or sent into the
system. The main bottleneck is between the FPGAs and the wafer. The input
and the output ratio of spikes are limited each to 1780Hz per HICANN chip and
12800Hz for a reticle [Müller, 2015], with rates given in the biological domain.
To some extent, the user can circumvent this bottleneck by placing the inputs
on other HICANNs and routing them via the on-wafer communication network.
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3. Bayesian inference on BSS-1

The bandwidth of the on-chip communication — 50MHz HICANN to HICANN
[Müller, 2015] — is not a limiting factor compared to the external bandwidth and
the limitations imposed by the mapping.

Finally, a minor but often overlooked issue: Compared to a simulation the
network does not have a well-defined initial state at the start of the emulation. As
soon as the parameters of the network are configured, the neurons and synapses
evolve according to their own dynamics. The user has to make sure to prepare
the network into the desired initial state by choosing appropriate parameters (low
leakage potential for a quiescent network) or strong external input. Alternatively,
we can say that the BSS-1 requires applications that do not need well-specified
initial conditions.1

All the constraints above impose serious challenges for proposed models and
they implicitly test the viability of the models not only for neuromorphic appli-
cation, but for biological plausibility as well, since biological substrates feature
similar (but not identical) constraints.

3.2 Theoretical background — sampling with neurons

The theory of sampling with leaky integrate-and-fire neurons (LIF-Sampling)
[Petrovici et al., 2013, 2016, Petrovici, 2016] can be introduced from several di-
rections depending on the focus of the project. Here, we concentrate on the
applicability, requirements and potentials of framework on the BSS-1 system. First,
we introduce the concept of Boltzmann machines [Hinton et al., 1984], a proba-
bilistic model and neural network from the field of machine learning. We discuss
methods of sampling from the probability distribution defined by a Boltzmann
machine. Based on the analogy between neurons of a Boltzmann machine and
biological neurons, we introduce neural sampling [Buesing et al., 2011]. Finally,
we conclude the theoretical background with the LIF-Sampling framework, which
provides us a framework through which networks of LIF neurons approximately
sample from a Boltzmann distribution.

In this project, we only give a brief introduction of LIF-Sampling that is necessary
for understanding and replicating the implementation of sampling on BSS-1. In
this logic, we follow a previous work on implementing sampling on BSS-1 system
[Kungl, 2016]. For a comprehensive discussion of the framework we recommend
the thesis Petrovici [2016] describing the framework in great detail, and the original
publications [Petrovici et al., 2013, 2016].

3.2.1 Boltzmann machines: constraint satisfaction models with
learning capabilities

A Boltzmann machine is a probabilistic generative model defined over N binary
units with symmetric connections [Hinton et al., 1984]. These elements zk are often

1Mind the similarity to experiments in quantum physics where the initial state of the system is
also not granted but has to be prepared by the experimenter.
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3.2 Theoretical background — sampling with neurons

referred to as neurons both due to their loose similarity to biological neurons and
because Boltzmann Machines are an example for neural network models in the
field of machine learning. The two states of the neurons are called on-state for
zk = 1 and off-state for zk = 0. The entire state-space of the Boltzmann machine
is then Ω = {0, 1}N. The probability distribution of the Boltzmann machine is
defined by:

p(z) =
1
Z

exp
[

1
2

zTWz + zTb
]

, (3.1)

where Z is the partition function given by

Z = ∑
z

exp
[

1
2

zTWz + zTb
]

, (3.2)

where z = (z1, z2, . . . , zN) is the state vector, b = (b1, b2, . . . , bN) is the bias
vector of the neurons and W = [wij]i,j∈{1,2,...,N} is the connection matrix. The bias
bi ∈ R gives the “preference” of the neuron to be in the on-state, or equivalently
to be active. The connections wij correspond loosely to the expected coactivation
of the neurons, that is a positive wij means that the neurons are more likely to
be active together. However, wij is only indirectly connected to the correlation
of activity between the neurons. Self-connections are excluded wii = 0, ∀i ∈
{1, . . . , N}; they would correspond to extra bias values. The connection between
each pair of neurons is strictly symmetric wij = wji, ∀i, j ∈ {1, . . . , N}.

An intuitive insight into the mechanism of a Boltzmann machine gives the
conditional probability distribution of a single neuron given the current state of
the rest of the network. After elementary calculations we find:

p(zi = 1|z\i) =
p(z1, . . . , zi = 1, . . . , zN)

p(z1, . . . , zi = 0, · · · , zN) + p(z1, . . . , zi = 1, . . . , zN)
=

=
exp(ui)

1 + exp(ui)
=

1
1 + exp (−ui)

,
(3.3)

where z\i = (z1, z2, . . . , zi−1, zi+1, . . . zN) is the vector of the neurons excluding
zi and the parameter ui is given by

ui = bi +
N

∑
j=1

wijzj . (3.4)

First, we see that the probability to be in the on-state is determined by the
linear sum of the own bias and the input received from the other active neurons.
Additionally, we identify the logistic function σ(x) = 1

1+exp(−x) as the non-linear
transfer or activation function of the neurons. This form is already suggestive for
a more biological neuron-based implementation. Second, from a computational
point of view, the accessibility of the conditional distribution is suggestive to
be used for a sampling mechanism. Third, from the point of view of physics
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3. Bayesian inference on BSS-1

Boltzmann machines are Spin-glasses [Edwards and Anderson, 1975], which can
be seen as a generalized form of the Ising-model. Analogously, we can understand
Boltzmann machines as energy based systems with the energy function:

E(z) = −1
2

zTWz − zTb , (3.5)

and the probability distribution:

p(z) =
1
Z

exp[−E(z)] , (3.6)

Z = ∑
z

exp[−E(z)] . (3.7)

These equations are formally identical to Boltzmann distributions with β =
1

kBT = 1 the inverse temperature. Hence, we can define a temperature for Boltz-
mann machines as well:

p(z) =
1
Z

exp[−βE(z)] , (3.8)

Z = ∑
z

exp[−βE(z)] . (3.9)

This analogy and the close relationship to physics, and more precisely to spin-
glasses, give rise to the name of Boltzmann machines.

Boltzmann machines and their extensions have found several applications in
solving constraint satisfaction problems [Jonke et al., 2016, Fonseca Guerra and
Furber, 2017], prediction of temporal sequences [Sutskever and Hinton, 2007],
movement planning [Taylor and Hinton, 2009, Alemi et al., 2015], simulation of
solid-state systems [Edwards and Anderson, 1975] and tackling quantum many-
body problems [Carleo and Troyer, 2017, Czischek et al., 2018].

Sampling from Boltzmann machines: Gibbs sampling

To make Boltzmann machines actually calculate practical measures, we need to
obtain the probability distribution p(z) of the states for a given set of parameters
(b, W). The number of states grows exponentially with the number of neurons,
that is |Ω| = 2N, where the |·| symbol denotes the cardinality of a set, that is the
number of elements in the set. The direct calculation of the probability distribution
becomes rapidly infeasible. For example, a naive direct calculation on an off-
the-shelf CPU is feasible up to approximately N = 15 neurons. To mitigate this
problem we use sampling methods, more exactly Gibbs sampling [Geman and
Geman, 1984].

Gibbs sampling (algorithm 3.1) is a type of Markov Chain Monte Carlo sam-
pling which explicitly uses conditional distributions. Here, we only show Gibbs
sampling, Markov Chain Monte Carlo Methods can be found in several textbooks,
for example in Bailer-Jones [2017].
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3.2 Theoretical background — sampling with neurons

Algorithm 3.1: Gibbs sampling. A simple realization of Gibbs sampling.
The selection of the next variable for updates typically varies according to
the specific implementation.
Data: Vector x of length N, probability distribution p(x)
Result: Chain of samples from x distributed according to p(x)
start from given x(0);
while required number of samples not reached do

choose a x(n)i from x(n) randomly;

calculate conditional probability p(x(n)i |x\i) ;

generate x(n+1)
i ∼ p(x(n)i |x\i);

obtain x(n+1) = (x(n)1 , . . . , x(n)i−1, x(n+1)
i , x(n)i+1, . . . , x(n)N )

end

Geman and Geman [1984] proved that this algorithm produces a Markov Chain
that converges towards the targeted distribution. Note, that the update sequence
of the terms in x varies depending on the specific application.

We characterize the distance between two probability distributions with the DKL
introduced in Kullback and Leibler [1951]; we use it to measure and quantify the
distance between the sampled and the targeted distribution in experiments (see
also section 2.1.2). Here, we use the natural logarithm ln to preserve compatibility
with previous related works [Petrovici et al., 2016, Leng et al., 2018, Jordan et al.,
2019, Dold et al., 2019].

Restricted Boltzmann machines and learning with Contrastive Divergence

A fully-connected Boltzmann machine (where W is dense) is indeed not practical
for machine learning applications because the state of the single neurons has to be
updated in series, rendering the sampling procedure slow. Restricted Boltzmann
Machine (RBM) [Smolensky, 1986] introduces constraints on the connectivity
matrix W giving a bi-partite or two-layer graph structure to the network. The
two layers are referred to as visible and hidden layer. The layers are connected to
each other but lateral intra-layer connections are excluded. The connection matrix
W has hence a block-wise structure. Alternatively, we can write the probability
distribution of the RBM with separate visible v ∈ Ωv = {0, 1}N and hidden states
h ∈ Ωh = {0, 1}M. We use the notations z = (v, h) and Ω = Ωv×Ωh:

p(z) =
1
Z

exp (−E(z)) ,

E(z) = −
(

aTv + bTh + vTŴh
)

,

Z = ∑
z∈Ω

exp (−E(z)) .

(3.10)
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The matrix Ŵ ∈ R(N,M) contains only the connections between the hidden and
visible neurons. For the sake of simplicity, we drop the hat notation of the connec-
tivity matrix. The visible layer represents the dataset, while the hidden layer can
represent higher-order relationships in the data. In classification tasks the labels
of the different classes are best imagined as part of the visible layer, although
sometimes they are visualized as an additional third label layer. Because the
labels are part of the dataset, the two visualizations are indeed mathematically
equivalent.

The two-layered structure of RBM makes it possible that we can sample from
the RBM layer-wise, in a parallel fashion. Learning in RBMs happens with the
Contrastive Divergence (CD) algorithm [Ackley et al., 1987, Hinton, 2012]. The
generative model of the RBM is given via the marginalization over the hidden
variables

p(v) = ∑
h∈Ωh

p(v, h) . (3.11)

In the language of machine learning CD is based on maximum likelihood learning
(section 2.1.2):

θ̂ = argmaxθ

(
⟨ln p(v|θ)⟩p∗(v)

)
= argmaxθ

(
∑
v∈S

ln p(v|θ)
)

, (3.12)

where S represents the dataset to be learned, and p∗ = 1
|S| ∑xs∈S δ (x − xs) repre-

sents the distribution corresponding to the dataset S. In practice, we search for
the desired θ parameters via gradient descent. To derive the update rules, we first
calculate:

∂ ∑h ln p(z)
∂wij

=
1

∑h p(z) ∑
h

∂

∂wij

[
exp(−E(z))

∑ẑ exp(−E(ẑ))

]
=

=
1

∑h p(z) ∑
h

{
vihj exp(−E(z))
∑ẑ exp(−E(ẑ))

−
exp(−E(z))∑ẑ exp(−E(ẑ))v̂iĥj

[∑ẑ exp(−E(ẑ))]2

}
=

= ∑
h

p(z)
p(v)

vihj −
∑ẑ exp(−E(ẑ))v̂iĥj

∑ẑ exp(−E(ẑ))
∑h p(z)
∑h p(z)

=

= ∑
h

p(h|v)vihj − ∑̂
z

p(ẑ)vihj = ⟨vihj⟩data − ⟨vihj⟩model ,

(3.13)
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and similarly for the bias term (here for the hidden bias)

∂ ∑h ln p(z)
∂bj

=
1

∑h p(z) ∑
h

∂

∂bj

[
exp(−E(z))

∑ẑ exp(−E(ẑ))

]
=

=
1

∑h p(z) ∑
h

{
hj exp(−E(z))
∑ẑ exp(−E(ẑ))

−
exp(−E(z))∑ẑ exp(−E(ẑ))ĥj

[∑ẑ exp(−E(ẑ))]2

}
=

= ∑
h

p(z)
p(v)

hj −
∑ẑ exp(−E(ẑ))ĥj

∑ẑ exp(−E(ẑ))
∑h p(z)
∑h p(z)

=

= ∑
h

p(h|v)hj − ∑̂
z

p(ẑ)hj = ⟨hj⟩data − ⟨hj⟩model .

(3.14)

Here ⟨·⟩model means the expectation value over the complete probability dis-
tribution p(v, h) of the RBM, and the ⟨·⟩data term refers to the expectation value
conditioned on a visible layer clamped to a sample from the dataset, that is p(h|v).
Hence the resulting update rules for the weights and the biases are:

∆wij = η ∑
v∈S

(
⟨vihj⟩data − ⟨vihj⟩model

)
,

∆ai = η ∑
v∈S

(⟨vi⟩data − ⟨vi⟩model) ,

∆bi = η ∑
v∈S

(
⟨hj⟩data − ⟨hj⟩model

)
.

(3.15)

The above expression represents batch learning of the dataset. Dropping the
summation leads to a maximum likelihood learning rule with stochastic gradient
descent:

∆Wij = η
(
⟨vihj⟩data − ⟨vihj⟩model

)
,

∆ai = η (⟨vi⟩data − ⟨vi⟩model) ,

∆bi = η
(
⟨hj⟩data − ⟨hj⟩model

)
.

(3.16)

A practical problem arising from this learning rule is that both the data-term and
the model-term can only be sampled with finite precision. Based on these equa-
tions the CDn learning rule [Ackley et al., 1987] proposes a practical simplification.
It can be summarized in the following steps:

1. Obtain sample s from the dataset and clamp it to the visible layer, that is
v := s. Sample the states of the hidden neurons with p(h|s) and obtain the
values ⟨vihj⟩data, ⟨vi⟩data and ⟨hj⟩data.

2. Let the BM freely sample for n steps alternating between v and h starting
from the last sampled h from the first step. Obtain the values ⟨vihj⟩model,
⟨vi⟩model and ⟨hj⟩model.

3. Update the values according to the learning rule in equation (3.16).

In this section, we gave an introduction of learning in RBMs that is required for
this work. For a comprehensive review on training RBMs including extensions
and modifications of the learning rule see Hinton [2012].
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3.2.2 Neural sampling — sampling with spiking neurons

The model of sampling with still abstract but spiking neurons was first described
by Buesing et al. [2011]. In their work, the authors propose a model where a
network of abstract neurons samples from the probability distribution of a Boltz-
mann machine. The novelty of their work was that they explicitly included the
spiking behavior and the refractory mechanism of the neurons. Further, with the
mathematical equivalence to Boltzmann machines, this model not only provides a
mechanistic model for sampling in the brain but it also connects machine learning
to computational neuroscience. Hence, existing methods, for example annealing,
can serve as inspiration to tackle questions in the neuroscience. We can motivate
the model with the following observations:

• In biological neurons [Gerstner and Kistler, 2002b], after the production of
an action potential the generation of another spike is prohibited for a certain
τref refractory time. Hence, it is tempting to model the neuron as a two-state
system. Immediately after spike the neuron is in the refractory state and
otherwise the membrane potential freely evolves while spike generation is
possible.

• We can see neurons in the sense of a linear non-linear response model [Si-
moncelli et al., 2004]: The neuron sums up/integrates the incoming input
linearly (for current based synapses) and produces a stochastic output via
a non-linear transfer function. The concept of linear summation is similar
to the idea of abstract membrane potential in Boltzmann machines (equa-
tion (3.4)) and the non-linear response to the sigmoid probability function to
be in state 1 (section 3.2.1).

• The interaction between neurons takes place via all-or-nothing action poten-
tials, and the generation of these action potentials is strictly coupled to the
refractoriness. This mechanism closely resembles the Glauber-dynamics of
sampling from a Bolzmann machine.

In the setup of neural sampling, we treat the time as a discrete variable increasing
in time-steps of dt, such that the time is represented by a natural number t ∈ N. In
this sense the model is close to the Glauber dynamics of Gibbs-sampling because
the model introduces time not as a naturally continuous variable but rather by
relating the time-steps to characteristic time-constants in neural dynamics. We
define the state zk(t) of neuron k at time t as 1, or on-state, if the neuron has spiked
in the last τref ∈ Z+ time-steps and 0, or off-state, otherwise. τref is the refractory
time-constant of the neuron. In equation:

zk(t) =

{
1 if t < ts + τref ,
0 otherwise .

(3.17)

Here is ts is the timestamp of a spike generated by the k-th neuron. The con-
nection matrix and the bias vector of the network are the same as in case of a
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Boltzmann Machine (section 3.2.1). For the mathematical description of the dy-
namics we introduce the auxiliary variable ζk(t) ∈ Z with 0 ≤ ζk(t) ≤ τref. ζk(t)
plays the role of a countdown variable of neuron k during its refractory time. The
relation between ζk and zk is given by

zk(t) =

{
1 if ζk ≥ 1 ,
0 if ζk = 0 .

(3.18)

With the help of the auxiliary variable ζk now we can define the dynamics of
the model as a first order Markov process (a description using directly zk would
not be Markovian):

• If a neuron is refractory, i.e. ζk(t) ≥ 1, then the auxiliary variable counts
down:

ζk(t + 1) = ζk(t)− 1 (3.19)

• If a neuron is in the off-state or at the end of the refractory time in the on
state, i.e. ζk ∈ {0, 1}, then the neuron can fire with the probability:

p(ζk(t + 1) = τref|ζk ∈ {0, 1}) = σ(uk − ln(τref)) , (3.20)

where σ(·) is the logistic function

σ(x) =
1

1 + exp(−x)
, (3.21)

and ui is the abstract membrane potential given by Equation (3.4). If the
neuron fired, then ζk is set to τref. The state transition to spike from ζk = 1
is necessary, so that continuous on-states are possible. The factor ln(τref)
corrects for over-counting the on-state, for cases when τref > 1. If no spike
occurred then we set ζk = 0 and zk = 0.

• In the original publication, the neurons are updated sequentially just as in
Gibbs sampling. If all the neurons are updated at the same time, mimicking a
continuous time, then the model still provides reasonable results in practical
tasks.

The above process is compactly depicted in figure 3.5. According to the dynam-
ics, we can interpret the interaction between the neurons. When a neuron spikes,
then it generates a rectangular PSP in its post-synaptic partners, because the effect
of the pre-synaptic neuron on the membrane potential of the post-synaptic neurons
is flat. The synaptic time-constant, that is the length of the PSP, exactly matches
the refractory time of the pre-synaptic neuron. The interaction between any two
neurons is strictly symmetric as the model is tailored for Boltzmann Machines.
Buesing et al. [2011] proved that the described dynamics of the network constitutes
an exact sampling from the probability distribution of the underlying Boltzmann
Machine, and they showed that the model features biological phenomena like
switching between modes when an ambiguous picture is presented to an observer
(binocular ambiguity).
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Figure 3.5: Dynamics of neural sampling: After the neuron spikes, the auxiliary
variable ζk counts down during the refractory time. Red circles represent on-states
and the black circle represents an off-sate. After the end of the refractory period, i.e.
ζk ∈ {0, 1} the neuron can spike with the probability of pspike = σ(uk − ln(τref))
(with σ(·) defined in Equation (3.21)). It can be shown that this Markov chain
samples exactly from the probability distribution of a BM. Image taken from
Buesing et al. [2011].

3.2.3 Sampling with leaky integrate-and-fire neurons

The theory of sampling leaky integrate-and-fire neurons with conductance based
synapses [LIF Sampling, Petrovici et al., 2016] improves upon the ideas of Buesing
et al. [2011] by introducing a neuron model with true time-continuous dynamics
and explicit spiking mechanism. Similarly to neural sampling, LIF sampling maps
Boltzmann machines to spiking neurons (figure 3.6 A-B). This step achieves a
twofold improvement: 1) it greatly increases the biological fidelity and 2) by using
the LIF neurons it connects Boltzmann machines to the neuron model of the BSS-1
system. The LIF Sampling theory was originally published in Petrovici et al. [2016]
and it is described in detail in Petrovici [2016].

In order to realize the sampling scenario the model has to solve three main
challenges:

1. Introduce stochasticity to the otherwise deterministic conductance-based
leaky integrate-and-fire (COBA-LIF) model in a biologically plausible man-
ner

2. Show that the activation or transfer function of the neurons approximates
a sigmoid function. Note that the activation function of a deterministic LIF
neuron is highly asymmetric.

3. Create a translation rule between the abstract weights and biases and their
corresponding quantities in the LIF model.
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Figure 3.6: Sampling with leaky integrate-and-fire neurons. (A) Sketch of a spik-
ing sampling network (SSN) with 5 neurons. Each line represents two reciprocal
synaptic connections with equal weights. (B) Membrane potentials of three neu-
rons in the network. Following a spike, the refractory mechanism effectively
clamps the membrane potential for the duration τref of the refractory time. During
this time, the variable corresponding to neuron k is in the state zk = 1 (marked in
green). At any point in time, the state sampled by the network can therefore be
constructed directly from its past spikes and the knowledge of the refractory time
τref of the neurons. (C) Probability distribution sampled by an SSN with three
neurons as compared to the target distribution in a software simulation. (D) Based
on this framework [Petrovici et al., 2016], hierarchical sampling networks can be
built, which can be trained on real-world data. Each line represents a reciprocal
connection (two synapses) between the connected neurons. Figure taken from
Kungl et al. [2019].
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3. Bayesian inference on BSS-1

To introduce stochasticity and a sigmoid activation function, each neuron re-
ceives high frequency Poisson noise both excitatory and inhibitory to the mem-
brane. For the sake of simplicity, we assume that the synaptic time-constants
of both noise types are equal τsyn = τexc = τinh. We can rewrite the COBA-LIF
equations section 2.2.2 in terms of effective memebrane potential ueff and effective
membrane time-contant τeff,

τeff
dVmem

dt
= ueff − Vmem , (3.22)

with umem the membrane potential and the effective membrane potential ueff is
given by:

ueff(t) =
Iext + gleakEleak + ∑syn gsyn(t)Esyn

gtot(t)
, and (3.23)

τeff =
Cmem

gtot(t)
, (3.24)

where the total conductance gtot(t) is:

gtot(t) = gleak + gsyni(t) + gsynx(t) , (3.25)

where gsyni(t) is the sum of all conductances from the inhibitory synapses and
gsynx(t) is the sum of all conductances from the excitatory synapses. For the time
being, we set the external current to zero Iext = 0 to simplify the discussion;
Iext has the same effect as changing the leakage potential. In the LIF Sampling
theory, we choose such a high Poisson frequency that the neuron is elevated
into the high-conductance state [Destexhe et al., 2003] meaning that the mean
total conductance is dominated by the contribution of the Poisson noise ⟨gtot⟩ ≫
gleak. The expectation value is taken of the stochasticity of the Poisson noise.
Further, in the high-conductance state we can assume that the membrane is very
fast, specifically the effective membrane time constant is much smaller than the
typical time constants ⟨τeff⟩ ≪ τmem; τref. We can, hence, assume that the realized
membrane potential instantaneously follows the effective membrane potential.
In this setup the dynamics of the membrane potentials can be described by an
Ornstein-Uhlenbeck process [Petrovici et al., 2016]. There the expected membrane
potential acts as the equilibrium point and the fluctuations in the Poisson noise
as the noise term. However, the description only holds for observation times
longer than the synaptic time-constant of the Poisson noise connections. The
Wiener process part of the noise is not scale-free, as typically assumed in ideal
examples. Due to the finite τsyn, there is non-zero autocorrelation in the noise on
short time-scales, unlike in an ideal Ornstein-Uhlenbeck process. The parameters
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3.2 Theoretical background — sampling with neurons

of the steady-state distribution of the membrane potential can be calculated if the
spiking mechanism is turned off:

⟨u⟩ = µ =
gleakEleak + ∑syn νsynwsynEsynτsyn

⟨gtot⟩
,

σ2 =
∑syn νsyn[wsyn(Esyn − µ)]2τsyn

⟨gtot⟩2 .

(3.26)

Petrovici et al. [2016] have shown that the high-conductance state symmetrizes
the activation function of the neurons. The activation function is defined here as
the probability of the on-state as a function of the mean free membrane potential.
We call “free membrane potential” the membrane potential that would be realized
without the spiking and resetting mechanism if the neuron experiences the same
Poisson noise. We know from the properties of the Ornstein-Uhlenbeck process
that the steady-state membrane potential follows a Gaussian distribution. If we
turn on the spiking mechanism, then as soon as the membrane potential umem
reaches the threshold potential, the neuron generates a spike and the membrane
potential is pulled back to the Vreset reset potential. After the refractory time has
ended, the membrane potential resumes following the effective membrane poten-
tial. In the high-conductance state we can think in a zero-order approximation
of the membrane potential instantly following the effective membrane potential.
The importance of the high-conductance state becomes apparent when the neuron
bursts. This means it produces several spikes with the minimal temporal separa-
tion of a refractory time τref. After reaching the firing threshold for the first spike
in the burst, the membrane potential is immediately pulled to Vreset as the LIF
model requires. At the same time, the free membrane potential evolves on and by
definition of the burst it is above the spiking threshold after τref time. The now
again released membrane potential begins to catch up with the free membrane
potential, increases, reaches Vthresh and produces the next spike in the burst. In an
imagined perfect high-conductance state, τeff

τref
→ 0, this rise time can be thought of

as negligible. But if the high-conductance state is insufficient, then the rise time
influences the activation function by causing a slower than logistic convergence
to the highest reachable spiking probability for ⟨u⟩ → ∞. First, the finite rise
time decreases the firing rate compared to the perfect high-conductance state be-
cause the separation of the spikes in the bursts is larger then τref. With increasing
mean free membrane potential, this separation slowly decreases, leading to a slow
convergence towards the pure on-state.

Having established the qualitative correspondence between a single neuron
of an RBM and a LIF neuron with high-frequency Poisson noise, we proceed by
defining the mapping between the parameter space of a Botzmann-machine and
its spiking analog. We map the biases by equating p(zi = 1), the probability of the
single neurons to be in the on-state:

σ (bi) = σ

(
⟨ui⟩ − V̄0

i
α

)
, (3.27)
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Figure 3.7: Equating LIF sampling and neural sampling (A) Activation function
of a single LIF neuron with high-frequent Poisson noise. The occurrence of the
on-state is plotted against the leakage potential Eleak which controls the bias. A
logistic function is fitted to the simulation results. The fitted activation function
is used to calibrate the bias of the sampling unit. (B) To transform the weights
from the abstract domain (orange) to the LIF domain (blue), the PSPs are equated
during the refractory time. Mainly the long tail of the PSP for COBA-LIF neurons
causes the difference between the stochastic spiking network and its inspiration
the Boltzmann machine [Baumbach, 2016, 2020 in preparation]. The measure-
ments were made with the software SBS (appendix B.3) using the Nest simulator
[Gewaltig and Diesmann, 2007].

where bi is the bias of the abstract neuron as in equation (3.2), α is the fitted slope
and V̄0

i is the fitted midpoint of the LIF activation function p(zi = 1; ⟨u⟩ = V̄0
i ).

Finally, we obtain the mapping of the weights by equating the effect the neurons
have on each other as a result of their spikes during the refractory time. In the
case of LIF neurons this effect is the PSP that is caused by the spiking activity of
a pre-synaptic neuron. In general, we lack a closed expression for the PSP of an
LIF neuron with conductance based synapses. Still, in the limit when the reversal
potentials are far away from the dynamic range of the membrane dynamics we
can approximate it. For the abstract neurons, we can associate a rectangular PSP
of height Wij to the weight between the abstract neurons. Hence, by requiring

1
α

∫ τref

0
VPSP(t)dt !

= Wijτref , (3.28)

we obtain the translation formula

Wijτref =
1
α

∫ τref

0

wij(Esynj − µ)τsyn

⟨gtot⟩

(
exp(− t−ts

τeff
)− exp(− t−ts

τsyn
)
)

τeff − τsyn
dt , (3.29)

with Esyn being the reversal potential of the respective synapse. The mapping
between the abstract and LIF weights gives rise to the requirement of equal
synaptic time-scale and refractory time, τsyn = τref, because the PSPs are the most
similar in this setup.
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3.2 Theoretical background — sampling with neurons

Note, that there are several approximations between the neural sampling the-
ory and LIF-sampling: 1) the activation functions are only similar in the limit
of a perfect high-conductance state 2) the time is inherently continuous in LIF-
sampling while discrete in neural sampling 3) the state updates are simultaneous
in LIF-sampling while sequential in neural sampling 4) the interactions are strictly
rectangular in neural sampling while they take approximately a difference-of-
exponentials shape for LIF-sampling. Due to these differences, the network of
LIF neurons samples only approximately from the probability distribution of the
corresponding Boltzmann machine (figure 3.6 C). To emphasize this difference we
refer to a sampling network according to the LIF-sampling theory as Stochastic
Sampling Network (SSN) to distinguish it from classic Boltzmann machines and
from networks according to the neural sampling theory. Still, the similarity is close
enough such that applications and modifications found in Boltzmann machines
can be used in SSNs. We can build hierarchical sampling networks (figure 3.6
D) based on RBMs [Leng et al., 2018, Dold et al., 2019], we can train SSNs via
contrastive divergence [Leng et al., 2018, Dold et al., 2019], we can facilitate mixing
between the modes by changing the corresponding temperature of the network
[Korcsak-Gorzo et al., 2020] and we can study the analogy between magnetic
materials and networks of neurons along the idea of spin glasses [Baumbach, 2016,
2020 in preparation].

Sampling without explicit noise

A particularly interesting feature of the LIF-Sampling theory is that it does not
require explicit noise to realize networks that behave for all practical purposes as
stochastic systems. Jordan et al. [2019] have shown that the private Poisson noise
of the sampling neurons can be replaced by the spiking activity of an appropriate
excitatory-inhibitory network of spiking neurons. Dold et al. [2019] extended this
idea and showed that SSNs can serve for each other as sources of stochasticity;
hence an ensemble of SSNs can mutually provide noise for each other while each
SSN still performs its own distinct task. In the following, we present the main
works and their connections, which lead to this conclusion.

The dynamic state of spiking neural networks is a thoroughly studied phe-
nomenon, but most studies mainly rely on computer simulations and analytic
calculation in rate-based approximations, e.g. Brunel [2000], Ledoux and Brunel
[2011]. Note that most simulations respect Dale’s principle and use neurons that
are either strictly excitatory or inhibitory (section 2.2.1). In his seminal paper,
Brunel [2000] mapped the state-space of random spiking neural networks as a
function of the strength of the excitatory and inhibitory weights. Brunel found that
inhibition dominated random spiking networks exhibit an Asynchronous Irregular
firing regime, in which the activity of the neurons shows apparent chaotic behavior.
Interestingly, the spiking mechanism aids the emergence of this microscopic chaos,
which lacks a similar realization in rate-based simulations. Building on these
observations, several studies claim that spiking networks show chaotic behavior
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3. Bayesian inference on BSS-1

and show the best computational capabilities at the edge of chaos [Levina et al.,
2007, Chialvo, 2010, Cramer et al., 2019a].

For LIF sampling it is suggestive that the spiking activity of these irregularly
spiking networks could replace the artificial Poisson noise. Jordan et al. [2019] stud-
ied the sampling quality of LIF Sampling as a function of the size of the random
network. They found that in the limit of large networks the quality of sampling in
terms of DKL is on par with the sampling quality of Poisson noise. The dominating
inhibition in the random network actively cancels out cross-correlations between
the neurons of the random network, such that cross-correlations in the noise activ-
ity do not limit the sampling quality. In their setup, the authors respected Dale’s
principle both in the connections of the random network and in the connections
from the random network to the sampling network.

Bytschok et al. [2017] studied the effect of cross-correlations on the noise to the
sampling neurons. The authors found that cross-correlations in the background
Poisson noise are equivalent to weights and biases in the sampling network.
This is more apparent if we transform the abstract description of the probabil-
ity distribution from the {0; 1}N state-space to the {−1; 1}N state-space, where
cross-correlations map to weights in the abstract description. Because of this
correspondence, the distorting effect of cross-correlations can be trained away
with the same CD training as we use for learning from data (section 3.2.1). More
precisely, training incorporates the noise cross-correlations into the SSN. Dold et al.
[2019] extended these concepts and showed that an ensemble of SSN can provide
each other with appropriate stochasticity without any additional noise and via
training they can all simultaneously solve functional tasks.

These results contribute to understanding the origin of noise and trial-to-trial
variability in the brain: the behavior of neurons in in-vitro experiments is surpris-
ingly deterministic compared to their inherent trial-to-trial variability in in-vivo
experiments. The results above suggest that the apparent stochasticity stems from
the (uncontrolled) activity of other brain areas. Here, we use these findings to
circumvent the limited external bandwidth between the FPGA and the wafer
module. By placing a random network, that is a source of stochasticity, directly
onto the neural substrate, we can implement larger SSNs on BSS-1.

3.3 Experimental setup

Having established the theory and introduced the main characteristics of the
hardware, we can now design an experiment which both respects the constraints
of the substrate and the requirements of the theory, while keeping the setup
scalable. We point out the central aspects and challenges of the implementation:

1. A main challenge is the required Poisson noise for the sampling neurons.
From simulations [Kungl, 2016] we know that LIF Sampling requires at least
300 Hz Poisson input excitatory and inhibitory each. Combined with the
bandwidth limitation of 1250 Hz per HICANN chip we can at most provide
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3.3 Experimental setup

enough noise for two sampling neurons per HICANN not counting the data-
input. Hence, we opt for the implementation of sampling with an on-chip
random network as a noise source and additional CD training to compensate
for the residual cross-correlations in the background input [Jordan et al.,
2019, Bytschok et al., 2017, Dold et al., 2019]. We use a small fully-connected
SSN to compare the implementation using random network to using Poisson
spikes generated on the host computer.

2. The excitatory-inhibitory random network used by Jordan et al. [2019] turned
out to be impractical for hardware implementation (data not shown). The
parameters of the network have to be tuned to find the balance between
falling into a quiescent state and a run-away activity. On hardware this is
even more challenging because the run-away activity might not be detected
due to the external band-width: the generated spikes are lost during read-
out at times of high-activity. Hence, we use the purely inhibitory network
self-sustained via a leakage potential higher than the threshold potential
used in Pfeil et al. [2016], which is easier to control.

3. From a previous work [Kungl, 2016], we know that the writing precision
of the analog parameter storage is too low for the direct implementation of
LIF Sampling on the BSS-1 system. Additionally, at the time of this project
writing the analog parameters took approximately 20 s compared to the
smaller than 1 s writing time of the digital parameters. Hence, we use the
weight from regularly spiking bias neurons to the sampling neurons to set
the desired bias values.

4. At the time of the project, calibration was available only for a subset of the
parameters. We use calibration wherever it is possible and use CD training
to reduce the effect of fixed-pattern noise.

5. Due to the fixed-pattern noise, the symmetry of the weights is not granted on
analog hardware, but LIF Sampling theory requires strictly symmetric con-
nections between the sampling neurons. Two weights of the same value in
terms of bits can have different effects on the post-synaptic neuron. Because
we lack a scalable mechanism to ensure symmetry, we set the weights of the
reciprocal connections equally in terms of set bits. Based on software simula-
tions and measurements on BSS-1 [Fehre, 2017], we expect that the violated
symmetry requirement is not a limiting factor for the implemenatation on
BSS-1.

6. The lack of weight-calibration affects the mapping of Boltzmann machines
from the abstract domain to the hardware as well. Without calibration we
cannot use the theoretical weight translation formula (equation (3.29)). In-
stead, we use an ad-hoc translation based on the observed activation functions
on the BSS-1 and use CD training to fine-tune the weights and biases.

7. The size of the network was limited by the synapse loss. We implemented
the largest where the synapse loss stayed below approximately 2 %.
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3. Bayesian inference on BSS-1

Similar considerations also apply for any neuromorphic hardware implementa-
tion of computational models in terms regarding availability of calibration and
controllability of the parameters (e.g. Wunderlich et al. [2019], chapter 4, Göltz
et al. [2019]). It would be tempting to fine-tune components of the network to the
purpose or include tedious optimizations in the setup. Notably, in Kungl [2016]
and in Petrovici et al. [2016] the authors used a cross-correlation-based procedure
to symmetrize the weights between the sampling neurons, but the time required
for it scales linearly with the number of synapses; which is not practical for desired
large-scale implementations. Here, we explicitly refrain from such non-scaling ap-
proaches and mainly rely on the inherent robustness of the computational model
and the compensating mechanism of the training.

3.3.1 Network setup

All presented experiments were carried out on a single wafer module of the BSS-1
system on the available HICANNs (section 3.1). Due to different reasons, such as
malfunctioning analog and digital parts, restrictions in the mapping algorithm
and most prominently the ongoing commissioning, only a subset of the wafer was
ready to be used. The networks were specified in PyNN [Davison et al., 2009] and
we used the standard calibration [Koke, 2017, Kleider, 2017, Schmitt et al., 2017] to
set the hardware parameters. Each experiment has two main components: 1) the
sampling network with symmetric connections between connected neurons, 2) a
source of stochasticity.

In the original formulation [Petrovici et al., 2016], the model sets the bias values
of the neurons by changing neuronal potentials (Eleak, Eexc, Einh). On BSS-1, writing
the analog parameters is much slower than changing the digital values stored
in SRAM cells. We modify the implementation of biases: We replace the single
neurons by a two-neuron module consisting of a sampling and a bias neuron
(figure 3.8 A-B). The sampling neuron still represents the binary variable and
receives the noise input. We configure the bias neuron to regular firing by setting
Eleak > Vthresh (figure 3.8 C inset). The bias neuron projects to the sampling neuron,
setting the weight of this connection hence controls the bias of the sampling neuron.
Because the excitatory and inhibitory synapses are mapped to distinct circuits on
BSS-1, we have to set two projections to enable a sign change in the bias. For larger
networks, for a more parsimonious resource usage, we can reduce the number
of bias neurons by letting the samplers share several bias neurons (connected via
distinct synapses). Similarly, we implement the connections between sampling
neurons via pairs of synapses to allow for sign change.

We provide stochasticity to the sampling neurons in two distinct ways. In the
first setup, we replicate the straightforward implementation [Petrovici et al., 2016]
by providing externally generated Poisson noise to the neurons (figure 3.8). This
setup is restricted only to small SSNs, hence we will only use it as a comparison. In
the second setup, we use the purely inhibitory random network with self-starting
neurons (Eleak > Vthresh) as used in Pfeil et al. [2016]. The sparse random mu-
tual inhibition ensures a relatively constant average firing rate and reduces the
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Figure 3.8: Experimental setup. Each sampling unit is instantiated by a pair of
neurons on the hardware. The bias neuron b is configured with a suprathreshold
leak potential and generates a regular spike train that is fed to the sampling
neuron s , thereby serving as a bias, controlled by wb. (A) As a benchmark, we
provided each sampling neuron with private, off-substrate Poisson spike sources.
(B) Alternatively, in order to reduce the I/O load, the noise was generated by
a random network (RN). The RN consisted of randomly connected inhibitory
neurons with Eleak > Vthresh. Connections were randomly assigned, such that each
sampling neuron received a fixed number of excitatory and inhibitory pre-synaptic
partners (table 3.2). (C) Exemplary activation function (mean firing frequency)
of a single sampling neuron with Poisson noise and with an RN as a function of
the bias weight. The standard deviation of the trial-to-trial variability is on the
order of 0.1 Hz for both activation functions, hence the error bars are too small to
be shown. The inset shows the membrane trace of the corresponding bias neuron.
(D-E) The figures show histograms over all neurons in a sampling network on
a calibrated BSS-1 system. The width s and the midpoint w0

b of the activation
functions with Poisson noise and with an RN are calculated by fitting the logistic
function ⟨ν⟩ = ν0/{1 + exp[−(wb − w0

b)/s]} to the data. Figure taken from Kungl
et al. [2019].
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cross-correlation between the neurons of the random network. Training with CD
compensates the residual correlations by incorporating them into the structure of
the SSN. Note, how the same plasticity plays three a priori distinct roles: 1) it guides
the classic learning procedure, that makes the network learn the dataset, 2) it miti-
gates the effect of fixed-pattern noise, 3) it compensates for the cross-correlations
in the background noise. These attributes of learning enabled us to replace the
ideal Poisson noise by a random network in the hardware implementation.

With both settings, we measured the activation functions of the sampling neu-
rons and they took an approximately sigmoid shape as required by the theory
(figure 3.8 C). Due to the variability of the hardware circuits and the precision of
the analog parameter storage, the shape of the activation function varied strongly
between neurons (figure 3.8 D-E). Effectively, this introduces an additional random
deviation on the initial weight and bias parameters and this renders the effective
learning rate different across the neurons. Still, it does not prevent the learning to
reach good solutions.

The used parameters are shown in table 3.1 and the network setup is summa-
rized in table 3.2. Our largest network spread over 28 HICANN chips distributed
over 7 reticles of a single wafer module, consisting of 609 neurons with 208 sam-
pling neurons, 400 random network neurons and 1 bias neuron. Each neuron was
realized using 4 denmem units. Nominally, 7 reticles contain 28 672 denmem units.
We required 7 reticles due to the diverse constraints discussed in section 3.1.1 and
we spread out the network for a more convenient mapping.

3.3.2 Training in-the-loop

To train the network without on-chip plasticity, we used the idea of in-the-loop
training (Schmuker et al. [2014], Esser et al. [2016], Schmitt et al. [2017]; sec-
tion 2.3.3). As discussed before, the analog parameters are only written once at
the beginning of the experiment. During the training procedure, we only change
digital parameters, namely the weights between the sampling neurons and the
bias connections from the bias neurons to the samplers. This resulted in a larger
experiment-repetition frequency and therefore faster training speed in terms of
wall-clock time spent compared to the case if we changed the analog parameters.

For the updates, we configure the network, we execute the experiment on BSS-1
and read out the spike-trains of the sampling neurons. We turn the spike-trains
into states according to LIF Sampling theory and we calculate the parameter
updates with the CD rule. During training, the parameter values are stored in
double precision float numbers; and for experiment execution we discretize them
deterministically to the nearest available 4-bit value. In machine learning, this is
called the method of “shadow weights” [Courbariaux et al., 2015]. We speed up
the training using the momentum method [Rumelhart et al., 1986], but otherwise
we refrained from more elaborate optimization procedures. In this study, we want
to verify the implementation and demonstrate the feasibility of LIF Sampling
on BSS-1. In principle, the training could be combined with any optimization
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Table 3.1: Neuron parameters. Parameters of the network setup specified in ta-
ble 3.2. The analog parameters are shown as specified in the software setup and
not as realized on the hardware. For details on the calibration procedure see, e.g.,
[Schmitt et al., 2017]. Legend: ∗ the calibration of the membrane time constant was
not available at the time of this work, and the corresponding technical param-
eter was set to the smallest available value instead (fastest possible membrane
dynamics for each neuron). Table taken from Kungl et al. [2019].

A Sampling neuron

Name Value Description
Vreset −35 mV reset potential
Eleak −20 mV resting potential
Vthresh −20 mV threshold potential
Einh −100 mV inhibitory reversal potential
Eexc 60 mV excitatory reversal potential
τref 4 ms refractory time
τmem ca. 7 ms membrane time constant∗
Cmem 0.2 nF membrane capacity
τexc

syn 8 ms excitatory synaptic time constant
τinh

syn 8 ms inhibitory synaptic time constant

B Bias neuron

Name Value Description
Vreset −30 mV reset potential
Eleak 60 mV resting potential
Vthresh −20 mV threshold potential
Einh −100 mV inhibitory reversal potential
Eexc 60 mV excitatory reversal potential
τref 1.5 ms refractory time
τmem ca. 7 ms membrane time constant∗
Cmem 0.2 nF membrane capacity
τexc

syn 5 ms excitatory synaptic time constant
τinh

syn 5 ms inhibitory synaptic time constant

C Neurons of the random network

Name Value Description (all analog)
Vreset −60 mV reset potential
Eleak −10 mV resting potential
Vthresh −20 mV threshold potential
Einh −100 mV inhibitory reversal potential
Eexc 60 mV excitatory reversal potential
τref 4 ms refractory time
τmem ca. 7 ms membrane time constant∗
Cmem 0.2 nF membrane capacity
τexc

syn 8 ms excitatory synaptic time constant
τinh

syn 8 ms inhibitory synaptic time constant

D Synapse

Name Value Description
wbias [0,15] synaptic bias weight in hardware values (digital)
wnetwork [0,15] synaptic network weight in hardware values (digital)

d on the order of 1 ms synaptic delay, estimated in [Schemmel et al., 2010](uncalibrated)
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Table 3.2: Network parameters. Parameters are shown for the three different cases
described in the manuscript: (A) Target Boltzmann distribution, Poisson noise. (B)
Target Boltzmann distribution, random network for stochasticity. (C) Learning
from data, random network for stochasticity. Note that the in-degree, sometimes
also referred to as a fan-in factor, represents a neuron’s number of pre-synaptic
partners coming from some specific population. Table taken from Kungl et al.
[2019].

A Probability distribution with Poisson Noise

Name Value Description
Ns 5 number of sampling neurons
Nb 1 number of bias neurons
Nr 0 number of random neurons
KRN - within-population in-degree of neurons in the random network
Knoise - in-degree of sampling neurons from the random network
wRN - synaptic weights in the random network

in hardware units
νe/i

Poisson 300 Hz Poisson frequency to sampling neurons per synapse type

B Probability distribution with random network

Name Value Description
Ns 5 number of sampling neurons
Nb 1 number of bias neurons
Nr 200 number of random neurons
KRN 20 within-population in-degree of neurons in the random network
Knoise 15 in-degree of sampling neurons from the random network
wRN 10 synaptic weights in the random network

in hardware units
νe/i

Poisson - Poisson frequency to sampling neurons per synapse type

C High-dimensional dataset

Name Value Description
Ns {207, 208} number of sampling neurons, { rFMNIST, rMNIST }
Nb 1 number of bias neurons
Nr 400 number of random neurons
KRN 20 within-population in-degree of neurons in the random network
Knoise 15 in-degree of sampling neurons from the random network
wRN 10 synaptic weights in the random network

in hardware units
νe/i

Poisson - Poisson frequency to sampling neurons per synapse type
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procedure since the CD update provides the required parameter gradient. In
table 3.3 we show the used learning parameters.

Table 3.3: Parameters for learning. We did not carry out any systematic hyper-
parameter optimization. Note that the used learning parameters in the experi-
ments in section 3.4 are not directly comparable because the different statistics
of the background noise (Poisson or random network) correspond to different
effective learning rates. Table taken from Kungl et al. [2019].

Experiment Learning rate Momentum factor minibatch-size Initial (W, b)

target distr., Poisson 1.0 0.6 - U (−15, 15)
target distr., RN 0.5 0.6 - U (−15, 15)
rMNIST 0.4 0.6 7/class pre-trained
rFMNIST 0.4 0.6 7/class pre-trained

After, and for hierarchical structures, also during training; clamping of the
neurons (i.e. forcing them into state 1 or 0) was required. We realized the clamping
by injecting regular spike trains with 100 Hz via multapses with a multiplicity
of 5, excitatory for zk = 1 and inhibitory for zk = 0. A multapse means several
simultaneous synaptic connections from the pre-synaptic neuron to the post-
synaptic neuron. This was needed to overcome the limited input from a single
synaptic connection and to achieve proper clamping even in the presence of input
to the neurons from other parts of the network.

3.4 Experiments and results

3.4.1 Training to represent probability distributions

First we verify in experiments that an SSN trained with the combination of the
proposed algorithm and hardware can indeed sample from the distribution of
a Boltzmann machine. To this end we train an SSN driven by an RN to sample
from a specified fully visible Boltzmann machine. As a benchmark, we compare
sampling accuracy to the target distribution of the Boltzmann machine and to a
trained SSN driven by perfectly uncorrelated Poisson spike trains generated on
the host computer. We keep the target Boltzmann machine small on purpose both
to make the Poisson noise comparison feasible despite bandwidth limitations and
to keep the evaluation simple.

We generated 5 neuron Boltzmann machines by choosing the weights and biases
from a zero-centered Beta distribution: bi, wji ∼ 2[Beta(0.5, 0.5)− 0.5]. The Beta
distribution is motivated by previous studies [Petrovici et al., 2016, Jordan et al.,
2019] to give higher probability to larger weights and biases in order to generate
more interesting (rough) energy landscapes even in small networks. The initial
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weights and biases were generated from a uniform random distribution. Due to
the small number of neurons in the target Boltzmann distribution, we calculated
the “wake” or “data” part of the learning rule (equation (3.15)) analytically as
⟨zizj⟩ = p∗(zi = 1, zj = 1) and ⟨zi⟩ = p∗(zi = 1) by taking the expectation values
explicitly based on the target distribution.

We trained the networks for 500 iterations with 1 × 105 ms sampling time per
iteration. We considered the parameter configuration with the lowest DKL(p∥p∗)
as the result of the training and tested it in a longer (5 × 105 ms) experiment. The
limited and discretized resolution of the weights and biases made this unusual
definition of the result necessary: in the late phase of learning, the resulting
DKL(p∥p∗) produces wiggles, while the network tries to find the best parameters
from the available resolution. Finally, we studied the inference properties of the
network by clamping two of the five neurons to fixed states (z1, z2) = (0, 1) and
compared the obtained sampled conditional distribution to the expected target.
Results of these experiments are shown in figure 3.9.

For both experiments, the learning was fast in the first approximately 20 to 50
iterations and for the Poisson case it reached a plateau after 200 iterations, where
the limited resolution of the weights became the limiting factor. Convergence was
slower for the RN case — as expected — because the network had to also cope
with the cross- and auto-correlations in the background noise, but still achieved
similar performance (figure 3.9 A).

In both cases, the observed DKL converged with the same power law to the
target distribution, which suggests similar mixing properties and hence sampling
speed (figure 3.9 B). After long sampling (≫ 1 × 103 ms), the approximate nature
of the sampling became apparent. The observed DKL(p∥p∗) reaches the same
plateau for both noise sources at DKL(p∥p∗) ≈ 2 × 10−2. This is half to one
order of magnitude higher than in software simulations [Petrovici et al., 2016]
using identical neurons (no fixed-pattern noise), perfect Poisson spike trains as
noise source and the direct translation of weights and biases (equations (3.27)
and (3.29)). The results on the neuromorphic hardware were consistent over
independent experiments using 20 different target distributions (figure 3.9 E).
Similar observations hold for the inference experiments. The speed of convergence
happened slightly faster because taking the conditional reduced the explored state
space (figure 3.9 G). The sampled joint and conditional distributions still capture
the main features of the target distribution qualitatively well (figure 3.9 H and I,
respectively). The lower sampling quality compared to the full distribution stems
from the asymmetry of the reciprocal connections. Because they are not considered
in the learning algorithm, the training cannot compensate for them.

The training benefited from the speed-up of the BSS-1 system. The entire training
took 5 × 102 s wall-clock time, which includes the initialization of the experiment,
the pure emulation time on the neuromorphic substrate and the calculation of the
parameter updates on the host computer. Compared to the (emulated) biological
time of 5 × 104 s, this means a 100-times speedup two orders of magnitude less
than the nominal speed-up of 104 of the hardware. The reduction is due to the
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Figure 3.9: Emulated SSNs sampling from target Boltzmann distributions. We
show the sampled distributions with Poisson noise (blue), using RNs (orange)
and the target distribution (green). Training and sampling were repeated in 150
runs with random initialization. On each plot, we show the median value and
the interquartile range. (A) The sampling quality improves with training. The
precision is mainly limited by the discretization and resolution of the weights.
We choose the parameters with the lowest DKL value as the result of the training,
and show them as dashed lines. (B) Convergence of the sampling distribution
during a run. (C-D) We show the sampled joint and marginal distributions after
training. (E) The results are consistent over several target distributions. Here,
we show 6 representative distributions with 10 independent runs each. The data
is plotted following the traditional box-and-whiskers scheme: the orange line
represents the median, the box represents the interquartile range, the whiskers
represent the full data range and the × represent the far outliers. (F) corresponding
target distributions. Sampling from the conditional distribution after training:
(G) convergence during a run, (H) conditional joint and (I) marginal distribution.
Figure taken from Kungl et al. [2019].
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overhead of network (re)configuration, I/O processes between host and chip, and
the update calculation on the host computer.

We tested the robustness of the implementation by repeating the training and
testing procedure on 20 different samples of the target distribution with 10 rep-
etitions each both with Poisson noise and the RN as a source of stochasticity
(figure 3.10). The reached sampling accuracy stayed approximately constant over
the different realizations of the target Boltzmann distribution. The imprecise
writing of the floating gates and the inherent stochasticity of the learning causes
the trial-to-trail variability in the DKL(p∥p∗) over several repetitions for the same
probability distribution.
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Figure 3.10: Emulated SSNs sampling from different target Boltzmann distri-
butions. The figure shows the results of experiments for 20 different target distri-
butions with 10 repetitions for each sample. The experiments followed the same
setup as in section 3.4.1. We show the DKL(p∥p∗) of the test-run after training
for (A) the joint distributions with Poisson noise, (B) the inference experiment
with Poisson noise, (C) the joint distributions with a random background network
and (C) the inference experiment with a random background network. The data
is plotted following the traditional box-and-whiskers scheme: the orange line
represents the median, the box represents the interquartile range, the whiskers
represent the full data range and the × represent the far outliers. In each subplot
the leftmost data (highlighted in red) corresponds to the distribution shown in
figure 3.9. Figure taken from Kungl et al. [2019].
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3.4.2 Representing high-dimensional datasets

To be able to learn models of data, we trained hierarchical SSNs inspired by
restricted Boltzmann machines. We used the reduced version of two standard
datasets to test and demonstrate the capabilities of our implementation: the
MNIST [LeCun et al., 1998] and the fashion MNIST [Xiao et al., 2017] datasets.
The datasets were first preprocessed: We reduced the size of the images using
nearest-neighbor resampling (misc.imresize function in the SciPy library [Jones
et al., 2001–]) and we binarized the originally grayscale images. Resizing the
images was necessary due to the limited maximum size of the network on the
hardware. From both datasets, we used all images (approximately 6000 images
per class, but note that MNIST is not balanced) using 4 classes (0,1,4,7) for the
reduced MNIST (rMNIST) and 3 classes (T-shirts, Trousers, Sneakers) for the
reduced fashion MNIST (rFMNIST, see figure 3.11 A-B). The hierarchical network
consisted of 3 layers: a visible (144 neurons), a hidden (60 hidden) and a label
layer (3 neurons for rFMNIST and 4 neurons for rMNIST).

First, a restricted Boltzmann machine was trained on the respective dataset using
the CAST [Salakhutdinov, 2010] algorithm; the resulting network was mapped to
the hardware using an empirical factor based on the average activation functions
(figure 3.8 C) to convert the weights and biases into hardware parameters. In
our experience, the exact numerical value of this empirical factor did not have
a perceivable effect on the quality of the results. This initial training procedure
provided a baseline for performance comparison, a staring point for the in-the-
loop algorithm and better generative properties due to the CAST algorithm. The
translation to hardware domain resulted in a significant drop in classification
performance, especially with the rMNIST dataset (figure 3.11 C-D). After mapping,
we trained the network using the wake-sleep algorithm with the in-the-loop
training procedure (section 3.2.1). An analytic calculation of the “data” phase was
not possible anymore, hence — like in CD — the visible and label layers were
clamped to the correct pixels via external spike-trains. To ensure proper clamping,
we cut the synaptic connections from the hidden to the visible and label layers
during (and only during) the “data” phase of the learning.

We tested the network in discriminative and generative tasks during and after
learning. In the classification task we presented an image to the visible layer by
clamping the neurons to the zk = 0 and zk = 1, respectively. Each image was
presented for 500 ms in biological equivalent time, which corresponds to 50 µs
wall-clock time. Clamping with external spike trains made it possible to send in
data in batches, reducing the need of time-costly hardware initializations. The
label neuron with the highest activity was considered as the winner. The in-the-
loop training restored the classification performance for both datasets (figure 3.11
C-D): The implementation on BSS-1 reached an error of 4.45+0.12

−0.36% on rMNIST
and 3.32+0.27

−0.04% on rFMNIST, which is close to the error of 3.89+0.10
−0.02% on rMNIST

and 2.645+0.002
−0.010% on rFMNIST with an RBM sampled with Gibbs sampling. The

results are shown as the median value with interquartile range.
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Figure 3.11: Behavior of hierarchical SSNs trained on data. Top row: rMNIST;
middle row: rFMNIST; bottom row: exemplary setups for the partial occlusion sce-
narios. (A-B) Exemplary images from the rMNIST (A) and rFMNIST (B) datasets
used for training and comparison to their MNIST and FMNIST originals. (C-D)
Training with the hardware in the loop after translation of pre-trained parameters.
Confusion matrices after training shown as insets. Performance of the reference
RBMs shown as dashed brown lines. Results are given as median and interquartile
values over 10 test runs. (E-F) Pattern completion and (G-H) error ratio of the
inferred label for partially occluded images (blue: patch; red: salt&pepper). Solid
lines represent median values and shaded areas show interquartile ranges over 250
test images per class. Performance of the reference RBMs shown as dashed lines.
As a reference, we also show the error ratio of the SNNs on unoccluded images
in (G) and (H). (I) Snapshots of the pattern completion experiments: O - original
image, C - clamped image (red and blue pixels are occluded), R - response of the
visible layer, L - response of the label layer. (J) Exemplary temporal evolution of
a pattern completion experiment with patch occlusion. For better visualization
of the activity in the visible layer in (J) and (I), we smoothed out its discretized
response to obtain grayscale pixel values, by convolving its state vector with a box
filter of 10 ms width. Figure taken from Kungl et al. [2019].
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The classification benefited from the speed-up of the hardware. Classifying
4125 images from the rMNIST dataset took 10 s wall-clock time or 2.4 ms per
image with a speed-up of 210 compared to biological equivalent time. While the
classification of 3000 fMNIST images took 9.4 s wall clock time, that is 3.1 ms per
image with a speed-up of 160. The measured time is the full turnover, including
translation from the PyNN-based network description to hardware parameters,
I/O processes, initialization of the hardware and gathering the experiment results.
In our experiments the turnover time is dominated by the overhead, the pure
physical emulation time of 1.5 ms for the rFMNIST and 2.0 ms for the rMNIST
only minimally contribute to the total turnover-time.

We tested the generative properties of the trained network in two distinct task.
In the first, the pattern completion task we presented the network 250 images
per class with 25 % occlusion (not presented pixels). The occlusion was once
done in a salt&pepper (upper row in figure 3.11 I), where randomly chosen pixels
are occluded; and in a patch-wise (lower row in figure 3.11 I) manner, where
a coherent domain is occluded. Each image was presented for 500 ms, during
which the neurons of the visible layer not receiving external clamping evolved
freely, according to the internal dynamics of the SSN. To remove any bias effects
stemming from the effect of the consecutive pictures on each other, we inserted
random clamping to the visible layer between two images. The reconstruction
accuracy was evaluated based on the mean squared error (MSE) between the
original picture and the network response:

MSE =
1

Npixels

Npixels

∑
k=1

(
zdata

k − zrecon
k

)2
, (3.30)

where zdata
k is the reference data value, zrecon

k is the model reconstruction and the
sum goes over the Npixels pixels to be reconstructed by the SSN. In our case with
binarized images, the MSE directly corresponds to the ratio of falsely reconstructed
pixels. Simultaneously, with the reconstruction properties, we also followed the
classification of the occluded images. Both the reconstruction and the classification
converged to their final value after approximately 50 ms corresponding to 5 spikes
per neuron when counting with the average refractory time of 10 ms (figure 3.11
E-F). The temporal evolutions of both quantities move together in all of the experi-
ments. The performance of the SSN follows closely that of a restricted Boltzmann
machine simulated on a CPU; and the classification performance only slightly de-
teriorated compared to classification with non-occluded images. Example images
of the pattern completion tasks are shown in figure 3.11 I-J for both datasets and
for both occlusion versions.

Finally, we tested the network in a guided dreaming scenario, where the network
ran to sample images from the learned distribution (“dreaming”). The visible
and the hidden layers ran freely, while the label layer was periodically clamped
into different one-hot coding conformations in order to nudge the network to
sample from the different classes. Ideally, this nudging should be enough to guide
the network through the diverse classes. In practice, we introduced a random
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clamping input of 100 ms when changing the clamped label in order to facilitate
the mixing between the learned classes. The SSN could produce recognizable
pictures from all the classes as far as the low resolution of pictures allowed it
(figure 3.12). For rMNIST, all the classes appeared among the generated images
approximately equally. But for rFMNIST the SSN failed to mix into the class
“Sneakers”, suggesting that there is a great energy barrier between this class and
the other two because the “Sneakers” class is too different form the other two.
The energy barrier then reduced mixing even with the random input between the
clamping periods in the label layer.

A B

Figure 3.12: Generated images during guided dreaming. The visible state space,
along with the position of the generated images within it, was projected to two
dimensions using t-SNE [Maaten and Hinton, 2008]. The thin lines connect consec-
utive samples. (A) rMNIST; (B) rFMNIST. Figure taken from Kungl et al. [2019].

3.5 Discussion and conclusion

In this project, we demonstrated the first scalable implementation of probabilistic
inference in an accelerated spiking neuromorphic hardware. The implementation
could both cope with the challenges inherent to (analog) hardware and benefit
form the accelerated nature of the substrate. We verified our implementation by
successfully training fully connected SSNs driven by Poisson noise and RN to a
target distribution (section 3.4.1) and we showed that the implementation can be
used in discriminative and generative tasks (section 3.4.2). These experiments
were possible in spite of the hardware imperfections and inherent constraints. The
training was faster than it would be possible with hardware systems operating
in biological real-time. By co-embedding the RN on the same substrate as the
sampling network, we circumvented the band-width limitations and achieved a
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fully autonomous probabilistic machine. It allowed a runtime scaling of O(1) with
the size of the network making use of this inherent scaling property of physical
emulations.

3.5.1 Limitations of the study

We consider the limited size of the implemented network as the main limitation of
our work. The reasons for this limitation stem from the ongoing commissioning
of the BSS-1 system: 1) the software displays limited flexibility, 2) the system
assembly is not mature and results in a reduced substrate yield, and 3) the usable
wafer area patchy and non-contiguous. The combination of these factors reduces
the size of the implementable networks. In order to restrict the resulting synapse
loss below approximately 2 %, we maximized the size of the SSN and of the RN.
With the ongoing commissioning of the system, improvements in the software and
in the assembly procedure, we expect that emulation of larger networks and hence
tackling more complex applications will be available in the future. Our setup of
implementing spike-based inference scales naturally to larger network sizes.

The sampling accuracy was also affected by the precision of the parameters.
At the start of any trial, the limited precision of the analog parameters leads
to heterogeneous neuron parameters, which is known to lead to reduction in
the sampling quality [Probst et al., 2015]. Most of this is compensated by the
wake-sleep training, but the 4-bit resolution of the synaptic weights (and in this
implementation of the biases) ultimately limits the capabilities of the network
to adapt to a target distribution, reducing the potential quality of sampling. We
can observe the effect of the limited resolution in the jumping behavior of the
DKL(p∥p∗) in the late stages of the learning (figure 3.9 A). In small networks,
the limited weight resolution impairs the performance of the network [Petrovici
et al., 2017b], but this performance penalty decreases for larger networks with
large hidden layers, both in spiking and non-spiking models [Courbariaux et al.,
2015, Petrovici et al., 2017a]. The next generation of the BrainScaleS system will
be equipped with 6-bit resolution weights [BrainScaleS-2, Aamir et al., 2016,
Friedmann et al., 2017].

In our setup we used a single bias neuron shared by all the sampling neurons
with individual synaptic connections to generate the bias value. One would ex-
pect that this introduces cross-correlations between the sampling neurons. But in
our experience this effect is neither apparent nor limiting due to several reasons.
First, the high firing rate of the biases neurons and the long (in comparison to
the inter-spike intervals) synaptic time constant of the sampling neurons leads to
an approximately constant bias current. Second, spike time jitter and the hetero-
geneous synaptic delays on the neuromorphic hardware reduce the correlations.
Third, the limitation introduced by the shared bias neuron is overshadowed by
other more important limitations such as the size of the network and limited
parameter precision. Finally, the in-the-loop training procedure explicitly compen-
sates for the remaining cross-correlations in the background noise [Bytschok et al.,
2017, Dold et al., 2019].
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We observed limited mixing abilities in our implementation: In the guided
dreaming task one of the classes was much harder to generate probably due to
its dissimilarity to other classes learned in the same dataset (figure 3.12 B). Slow
mixing in restricted Boltzmann machines — and also more general in generative
models — in probability landscapes with high peaks as a result of learning from
data is a known and studied problem in machine learning. Most models use some
form of costly annealing techniques to accelerate mixing [Salakhutdinov, 2010,
Desjardins et al., 2010, Bengio et al., 2013]. The fully commissioned BSS-1 system
will also feature short-term plasticity [Schemmel et al., 2010] which can be used to
facilitate mixing in spiking stochastic networks [Leng et al., 2018].

Currently, most of the full turnover time of the experiments is spent on I/O
processes and setting the hardware parameters. This reduces the classification
speed (section 3.4.2) from the 50 µs per image pure runtime to 2.4 ms to 3.9 ms
gross classification time. We expect that by improvements in the software layer
this discrepancy can be reduced.

The applied learning rule was local, but we still required the host computer to
turn the measured spike trains into states and to calculate the parameter updates.
This procedure slowed down the learning process due to the repeated stopping,
evaluation and re-starting of the experiment. Similarly, as in case of classification
the spent wall-clock time was dominated by the overhead and not by the pure
hardware emulation time that is accelerated by a factor of 104. By using the
on-chip plasticity in the BrainScaleS-2 successor system [Friedmann et al., 2017,
Wunderlich et al., 2019], the iterative procedure could become obsolete resulting
in significant speed-up of the learning. The event-based Contrastive Divergence
theory [Neftci et al., 2014] is a promising candidate model for the synaptic learning
rule, but its compatibility with the BrainScaleS-2 system is yet to be studied.

3.5.2 Relation to other works

Relation to previous works leading to this study

This study builds on a series of experimental and theoretical works studying
probabilistic sampling models using neurons. Buesing et al. [2011] showed ana-
lytically exact sampling from Boltzmann machines while including the refractory
mechanism. The framework was then extended and its dynamics were formally
described in Petrovici et al. [2013] and Petrovici et al. [2016] to networks of LIF
neurons with actual time-continuous dynamics. Inspired by studies on the asyn-
chronous firing state of random networks [Brunel, 2000], Tetzlaff et al. [2012]
and Pfeil et al. [2016] studied the decorrelation effect of inhibitory connections in
random spiking networks in theory and in experiments, respectively. The random
network was first used to generate stochasticity on-chip by Pfeil et al. [2016] on
hardware. Jordan et al. [2019] have shown that an inhibition-dominated random
(but dynamically deterministic) spiking neural network can provide sufficient
stochasticity to SSNs. Finally, Bytschok et al. [2017] and Dold et al. [2019] discussed
the compensation of cross-correlations in the background noise via learning.
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Sampling with neurons on hardware

Previous small-scale and partial implementations of sampling on spiking analog
hardware can be found, e.g. in Petrovici et al. [2015, 2017b,a]. Pedroni et al. [2016]
showed an implementation of neural sampling (closer to Buesing et al. [2011]) on
the TrueNorth fully digital neuromorphic system [Merolla et al., 2014]. We point
out three main differences between their implementation [Pedroni et al., 2016] and
ours. First, the nature of the neuromorphic substrate is different. The TrueNorth is
a fully digital system that calculates the dynamics of the single neurons instead
of building actual dynamic circuits to emulate it; meaning especially that the
neuron parameters and the dynamics are precise on the TrueNorth and variability
(fixed-pattern and trial-to-trial) is not an issue. However, the TrueNorth system
runs at real-time by design [Merolla et al., 2014, Akopyan et al., 2015], which
is 104 times slower than the BSS-1. Second, the neurons used in Pedroni et al.
[2016] are intrinsically stochastic because the TrueNorth hardware also features
stochastic neuron models. Hence, their implementation stays much closer to neural
sampling from Buesing et al. [2011]. In contrast, our study considers additional
aspects of both the biological inspiration and of analog systems (exponential
kernels, leaky membrane, stochasticity through background noise, deterministic
firing mechanism, shared correlations etc.). Finally, our approach features a more
efficient usage of the hardware real-estate: While in Pedroni et al. [2016] several
neuron units are required to build a single sampling unit, in our case a single
neuron was sufficient to represent a single sampling unit.

3.5.3 Conclusion

In this project we demonstrated how Bayesian inference can be implemented
with spiking neurons on an analog neuromorphic substrate. The implementation
was able to cope with the challenges inherent to analog hardware such as the
fixed-pattern noise, imprecise parameters, limited control of the parameters and
limited bandwidth between the chip and the host computer; while it still benefited
from the 104 speed-up of the hardware. The entire setup was realized on the hard-
ware including the stochasticity-providing random network, hence we realized
a self-contained sampling machine. External communication was only used for
representing input data and acquiring response spikes from parts of the network,
such as the label neurons. Note, that such a system is also a plausible model for
sampling-based inference in the cortex [Jordan et al., 2019, Dold et al., 2019] when
considering the deterministic behavior of neurons in vivo [Mainen and Sejnowski,
1995, Reinagel and Reid, 2002, Toups et al., 2012, Masquelier, 2013].

We demonstrated sampling from arbitrary Boltzmann distributions (section 3.4.1);
and we showed that the framework can be applied to form hierarchical structures
to learn from standard datasets and to solve discriminative and generative tasks
(section 3.4.2). As previously shown [Probst et al., 2015], the framework can be
extended to sample from arbitrary distributions over binary variables. We stress
that in the case of hierarchical networks, the model solves the classification and

81



3. Bayesian inference on BSS-1

the pattern completion task simultaneously by sampling from the conditional
distribution with its dynamics. Both, when learning a target distribution and in
inference tasks, the model could make use of the acceleration of the hardware
reaching a net speedup of 100 to 210 compared to biological real-time.

We view our project as a contribution to the rapidly expanding (although not
yet competitive) field of biologically inspired physical model systems. We demon-
strated the feasibility of the approach to tackle machine learning problems, and
(implicitly) to study biological phenomena. Our results implicitly show the ro-
bustness of the application and its ability to harness the advantages of the un-
derlying substrate, in this case the speed-up. The introduced architecture scales
by design to neuromorphic hardware with more available neuronal and synaptic
resources. The underlying Boltzmann Machine can be mapped to other problems
where a Bayesian approach is beneficial, such as prediction of temporal sequences
[Sutskever and Hinton, 2007], solving constraint satisfaction problems [Jonke et al.,
2016, Fonseca Guerra and Furber, 2017], movement planning [Taylor and Hinton,
2009, Alemi et al., 2015], quantum many-body problems [Carleo and Troyer, 2017,
Czischek et al., 2018, Carleo et al., 2019b, Melko et al., 2019] and simulation of solid
state systems [Edwards and Anderson, 1975]. Since the publication of this project,
sampling with LIF neurons has been successfully implemented on a prototype
chip of the BSS-2 system [Billaudelle et al., 2019b, Stradmann, 2019].
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4 Pilot study on the BrainScaleS-2
prototype chip — demonstrating
advantages of neuromorphic
computation

The content of this chapter was published in Wunderlich et al. [2019] in
close collaboration mainly, but not exclusively, with Timo Wunderlich.
Here, we follow the publication but we give a more detailed description
of the project for the sake of clarity and completeness.

Neuromorphic devices represent an attempt to create novel non-Turing comput-
ers relying strongly on inspiration from neural networks in biology [Mead, 1990].
This approach aims at capturing the advantages of the mammalian nervous system
to create fast and robust hardware with low-power and/or energy consumption
(section 2.3). This endeavor abstracts away details of the brain’s neural networks
while trying to keep only the central aspects which provide the desired advantages.
The holy grail of neuromorphic engineering, the correct level of abstraction and
the most important aspects of biological neural networks, remains elusive; but
several approaches appeared in search of it (section 2.3.2). A common central
approach is that models of neurons, which are considered the basic computational
units of the brain, are emulated using specialized digital and/or analog systems
(section 2.3.2). Although the idea of neuromorphic engineering reaches back to
the 1980s, publications quantifying the performance of neuromorphic hardware
on practical tasks are scarce [Merolla et al., 2014, Davies, 2019, Rhodes et al., 2019].

In this project, we demonstrate and quantify the advantages of neuromorphic
computation in terms of speed, energy consumption and robustness in a pilot-
study. To this end, we use the example of learning a simplified version of the
Pong video game with reward-modulated spike-time-dependent plasticity (R-
STDP)-based reinforcement learning on the BrainScaleS-2 system High Input-
Count Analog Neural Network Digital Learning System v2 (HICANN-DLSv2)
neuromorphic prototype chip.

BSS-2 is a neuromorphic hardware system consisting of CMOS-based ASIC
[Friedmann et al., 2017, Aamir et al., 2018] implementing physical models of
neurons and synapses in mixed-signal circuits. Several features make BSS-2
unique among neuromorphic approaches (section 2.3): 1) the emulation runs
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with an acceleration of 103 compared to biological real-time (compare to BSS-1
in section 3.1) due to the supra-threshold working point of the analog circuits,
2) an on-chip processor enables the flexible implementation of a broad range
of plasticity rules and in our study the environment simulation, finally 3) built-
in correlation sensors in the synapses and digital spike counters serve as easily
accessible observables for plasticity calculations.

In reinforcement learning, a behaving agent interacts with its environment and
aims at optimizing its parameters in a way to maximize the obtained reward
from the environment (Sutton and Barto [2018] and section 2.1.3). It is a relevant
learning paradigm for neuromorphic systems for applications where autonomous
systems are required, e.g. in robotics. In recent years, reinforcement learning
systems have reached remarkable, often superhuman results in playing board and
video games [Mnih et al., 2013, Silver et al., 2017, Vinyals et al., 2019]. Unfortu-
nately, mapping these state-of-the art solutions to neuromorphic hardware is a
far-from-obvious task, because they often use mechanisms that are not directly
found in neuromorphic systems, e.g. non-local learning rules or tree search. Hence,
for more compatible models of reinforcement learning we turn to computational
neuroscience. Since the discovery that the neuromodulator dopamine corresponds
to the reward-prediction error in the brain [Schultz et al., 1997, Niv, 2009], new
mechanistic models, the so-called three factor learning rules, have been developed
for neural reinforcement learning [Frémaux et al., 2013, Frémaux and Gerstner,
2015]. In these models the plasticity rule depends on a Hebbian term contain-
ing pre- and post-synaptic contributions, and on a third global neuromodulator,
which behaves similarly to dopamine in the brain. These learning rules are good
candidates for implementation on neuromorphic hardware because they roughly
respect the constraints of the substrate. The R-STDP plasticity rule is a simple
member of this family of learning rules.

Our experiments take place fully autonomously on the BSS-2 chip using the
on-chip plasticity processing unit both for plasticity calculations and for environ-
ment simulation. Measurements of time of emulation and energy consumption are
compared to a reference implementation using the Nest simulator [Peyser et al.,
2017] on an off-the-shelf CPU. The neuromorphic chip achieved an order of mag-
nitude faster emulation and three orders of magnitude lower energy consumption
than the simulator on CPU. The learning converged on the neuromorphic chip
within seconds. Further, we show that the learning is robust against imprecision of
calibration of the neuron parameters and compensates against fixed-pattern noise
on the analog parts of the chip. Finally, meta-parameters optimized for one BSS-2
chip can be transferred without significant performance loss to another BSS-2 chip.
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4.1 Materials and methods

4.1.1 The BrainScaleS-2 DLSv2 prototype chip

The HICANN Digital Learning System (DLS) v2 neuromorphic chip [Friedmann
et al., 2017, Aamir et al., 2018] is a prototype chip of the envisioned BSS-2 large-
scale accelerated network emulation platform. Similarly to its predecessor BSS-1
(Schemmel et al. [2010]; section 3.1); it features spiking analog neurons that com-
municate via all-or-nothing logical spike events transmitted digitally. Unlike BSS-1,
it is produced in a 65 nm CMOS process and features the Plasticity Processing Unit
(PPU) as on-chip processor. Future versions are envisioned as large systems using
wafer-scale technology [Schemmel et al., 2010, Zoschke et al., 2017] to enable the
emulation of large-scale networks consisting of several thousands of neurons.

Experimental Setup

BSS-2 contains the neuromorphic chip mounted on a prototyping board (figure 4.1
A). The chip can be accessed and configured either from a host computer through
a Xilinx Spartan-6 FPGA or from the embedded processor on the neuromorphic
chip. The FPGA in-turn is accessed through Universal Serial Bus (USB) 2.0 from
the host computer. The FPGA provides experiment setup, experiment control
and hard real-time playback of input and recording of output data. Neuron-to-
neuron connections are realized via routing through the FPGA as used in other
experiments [Aamir et al., 2018, Stradmann, 2019, Cramer et al., 2019a, Billaudelle
et al., 2019b].

The experiments are described in a container-based user interface that provides
access to the neuron and synapse parameters and the functional units on the chip.
The experiment is then transformed to the DRAM attached to the FPGA. Once the
experiment has started, the FPGA starts playing back the experiment data (e.g.
input spikes) through a sequencer logic to the neuromorphic chip and at the same
time the output from the chip is recorded into the DRAM. After the experiment
has been completed, the host computer downloads the recorded data from the
FPGA.

The analog neuromorphic core

The BSS-2 continues the “physical modeling” approach as its predecessor (Schem-
mel et al. [2010]; section 3.1): Instead of calculating the dynamics of the neurons
and the synapses, equivalent analog circuits are implemented on the chip mimick-
ing the dynamics of biological neurons. More precisely, BSS-2 [Aamir et al., 2016,
2018] implements LIF neurons with CUBA synapses using exponential kernels
(section 2.2.2). Additionally, each neuron is equipped with a 10-bit spike counter,
which serves as an observable for plasticity calculations and can be accessed and
reset by the embedded processor [Friedmann et al., 2017].

Similarly to BSS-1, BSS-2 emulates the network dynamics at an accelerated speed,
but slower with an acceleration factor of 103; that is 1 ms emulated biological time
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BA

Figure 4.1: The BrainScaleS-2 DLSv2 prototype chip. (A) Upper right: Photo of
the BSS-2 prototype chip with the different areas labeled. Note that unlike on
the HICANN chip (section 3.1), the most chip area is occupied by the Plasticity
Processing Unit (PPU) and other digital circuitry. Adapted from Aamir et al. [2018].
(B) Schematics of the circuits emulating neurons and synapses. The analog core
is highly similar to the one in the predecessor chip (section 3.1). The 32 analog
neurons are ordered in an array with the synapse matrix above it ordered into 32
rows. Synapse drivers inject spike events row-wise into the synapse matrix. Each
synapse locally stores a 6-bit label to identify the incoming event, a 6-bit weight
and an analog coincidence detector to measure the temporal correlation of the pre-
and post-synaptic spike events. Figure adapted from Wunderlich et al. [2019].
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corresponds to 1 µs on the neuromorphic chip. The slowdown was necessary,
such that 1) the digital communication on-chip and to the external components
does not pose a bandwidth bottleneck (compare to the bandwidth limitations in
section 3.1.1) and 2) the digital plasticity calculations on the PPU can be realistically
carried out during runtime of the emulation. The emulation speed is independent
of the network size by nature of the emulation. In this project, we refer to all time-
constants in the hardware time-scale (wall-clock) in the order of microseconds.1

The 1024 synapses are arranged in a 32-by-32 matrix such that each neuron can
receive input from 32 synapses from the corresponding column (figure 4.1 B). Each
row of synapses is served by a synapse driver that can inject either excitatory or
inhibitory (exclusive) spike events into the synapses row. At each synapse the
6-bit label of the spike-event is compared to the label stored in the synapse. If
they match then a spike pulse weighted by the 6-bit synaptic weight is generated
and sent to the post-synaptic neuron. At the post-synaptic neuron the synaptic
circuit generates a PSC injected into the membrane of the neuron. Because the
PSP-shaping conversion is completed at the neuron, the largest fixed-pattern noise
is present between the neurons and not between the synapse drivers as is for
example the case on the similar, but older, Spikey neuromorphic chip [Fehre,
2017].

Post-synaptic spikes generated at the neuron are sent back to the synapses. This
way a dedicated coincidence detector circuit can measure the correlation between
the pre- and post-synaptic spiketrains by measuring the time elapsed between
consecutive spikes. The causal (pre-before-post) and anticausal (post-before-pre)
correlations are exponentially weighted and accumulated in two distinct circuits.
The PPU can access the accumulators via an Analog-to-Digital Converter (ADC)
and it can also reset them. Hence, the correlation measurements serve as an
observable for plasticity calculations.

Control and calibration of the analog parameters

The analog neuron parameters are stored in on-chip analog capacitive memory
(capmem) cells with 10 bit resolution [Hock et al., 2013]. The capmem cells have
less trial-to-trial variability and faster writing speed than the FGs on BSS-1 (sec-
tion 3.1). All six parameters of the ideal LIF model with CUBA synapses can be
calibrated on the BSS-2: membrane time-constant τmem, synaptic time-constants
τexc

syn and τinh
syn, refractory time τref, resting or leak potential Eleak, threshold potential

Vthresh as well as the reset potential Vreset. The inhibitory time-constant τinh
syn is not

used in this study. In summary, the neuromorphic implementation has 18 tunable
analog parameters, but 12 of them are only used to set the circuits to the correct
working point [Aamir et al., 2018], hence they only have to be calibrated once for

1Note that, while publications using the BSS-1 refer to time-scales in the equivalent biological
time, publications using BSS-2 stick to the wall-clock time reflecting a change in the publication
policy of the research group. I deemed compatibility to the published literature more important
than consistency in this thesis, which is composed of three loosely connected projects.
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a given chip. The other 6 parameters directly control one of the model parameters
of the current-based leaky integrate-and-fire (CUBA-LIF) equations.

Fixed-pattern noise at manufacturing introduces inhomogeneities among the
neuron circuits, leading to differences in the realized neuron parameters. This
is most apparent in the case of the time-constants (τmem; τexc

syn; τref). Instead of
embracing the fixed-pattern noise as other systems [Neckar et al., 2018], the BSS-2
aims at reducing them via calibration (like the BSS-1, section 3.1). The neurons are
calibrated individually to help the mapping from the user-defined LIF parameters
to the parameters set on the neuromorphic chip. The parameters can be typically
calibrated up to a precision of approximately 5 % [Aamir et al., 2018]. However,
the precision of the parameters also depends on the target value of the parameters.
Long time-constants close to the available range have lower absolute precision
than short time-constants. A detailed description of the calibration procedure is
given in Stradmann [2016].

The Plasticity Processing Unit

The main innovation of the BSS-2 is the Plasticity Processing Unit (PPU), which is
a 32-bit general-purpose processor implementing the PowerPC-ISA 2.06 instruc-
tion set and additional custom vector instructions [Friedmann et al., 2017]. The
availability of vector instructions enhances the speed of plasticity calculations
with the idea that plasticity calculations include several identical and individually
simple calculations. In the DLSv2 prototype chip, the PPU has a clock frequency
of 98 MHz and 16 KiB on-chip memory. The 128-bit-wide vector registers can be
progressed in eight 16-bit or sixteen 8-bit slices. There is a loose coupling between
the vector-instruction part and the general-purpose part of the processor: Fetched
vector instructions are fed into dedicated command queue and from there they
are passed to the vector unit.

The PPU can access and modify the synapse and neuron parameters row-wise,
allowing for row-wise parallel plasticity calculations by vector registers. The
PPU can change the connectivity of the network by modifying the stored labels
in the label comparator of the synapses — e.g. also in Cramer et al. [2019a],
Billaudelle et al. [2019a,b] — during operation of the neural network. The user can
program the PPU using higher level programming languages such as C or C++,
but programming directly via Assembler is also possible. PPU-specific complier
support is provided by a customized gcc [Electronic Vision(s), 2017, Stallman and
GCC Developer Community, 2018]. The software in this work was written in C
using the vectorized plasticity processing instructions.

Coincidence measurements at the synapses

At each synapse two analog units record and measure the nearest-neighbor corre-
lation between pre- and post-sypnatic spikes. For each pair of spikes, two distinct
circuits measure causal (pre-before-post) and anti-causal (post-before-pre) correla-
tions of the spike trains. The correlations are modeled with decaying exponential
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kernels [Friedmann et al., 2017], inspired by the causal and anti-causal branches
of the STDP mechanism found in biology (Markram et al. [1997], Bi and Poo
[1998] and section 2.2.3). The measured values are accumulated on two capacitors
per synapse until a reset by the PPU. The idealized models of the accumulated
coincidence signals are, for the causal branch

a+ = ∑
pre-post

η+ exp
(
−

tpost − tpre

τ+

)
, (4.1)

and for the anti-causal part

a− = ∑
post-pre

η− exp
(
−

tpre − tpost

τ−

)
; (4.2)

with the kernel decay time-constants τ+ and τ− as well as the scaling factors
η+ and η− for the causal and anti-causal branches respectively. The summation
corresponds to a flat (non-decaying) eligibility trace. There is leakage from the
accumulators due to the imperfection of the manufacturing on a very long time-
scale, but not by design intention. The PPU can read the accumulators using a
column-wise 8-bit ADC, allowing row-wise parallel readout. As usual on analog
circuits, there is variability among the correlation units due to fixed-pattern noise
(figure 4.2 A). In this project, only the causal branch a+ of the coincidence detection
was used.

Temporal and fixed-pattern noise on the BSS-2 neuromorphic chip

Similar to all analog systems, there are severals sources of parameter variability
and noise on BSS-2. We have already introduced fixed-pattern noise and trial-to-
trial variability in previous chapters (sections 2.3.2 and 3.1), but for the sake of
completeness and because they play a prominent role in the presented experiments,
we emphasize them again.

Fixed-pattern noise refers to the systematic deviation of parameters (e.g. transistor
parameters) from the designed values due to imperfections in the manufacturing
process. It is inevitable because it stems from stochastic variations in the process
parameters, which is significant in microelectronics. Deviations caused by fixed-
pattern noise are constant in time and they manifests themselves in heterogeneous
neuron and synapse parameters The magnitude of the caused heterogeneity mag-
nitude can be reduced via calibration. The effect of fixed-pattern noise on the
membrane time-constant is shown in figure 4.2 B.

Temporal noise is the collective name of all the effects that influence the dynamics
on the chip on the relevant time-scales of the hardware usage, that is approxi-
mately from 1 ns to 1 day. The source of temporal noise is diverse: thermal noise,
fluctuations in the ambient temperature, instability of the analog storage, crosstalk
and fluctuations in the power supply are among the possible causes. Effectively,
temporal noise can change the response of a neuron trial to trial even if the input
is constant. An example of the effect of temporal noise is shown in figure 4.2 C-D.
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Figure 4.2: Types of noise on BrainScaleS-2 HICANN-DLSv2. (A) Correlation
measurement on the causal part of the coincidence detector on the sample chip
#1 as a function of time between the pre- and post-synaptic spike event. The
violin plot shows the mean, the range and the distribution of measurements. (B)
Distribution of the realized τmem membrane time constants before (left) and after
(right) calibration. The target value τ

trg
mem = 28.6 µs is indicated by a vertical line.

(C) Two traces with identical setups in two different runs. The regular spike train
of 20 spikes with 10 µs spacing causes different number of post-synaptic spikes
due to temporal noise. (D) Response function of a single example neuron excited
with the same protocol as in (C) as a function of the synaptic weight averaged over
100 trials for each weight. We identify as threshold (red line) the lowest weight
where spikes are elicited with a probability larger than 5 %. Figure adapted from
Wunderlich et al. [2019].
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Due to the temporal noise, the neuron elicits a different number of spikes as a
reaction to the same spike input in distinct experiments.

Note the difference between the BSS-1 and BSS-2. On BSS-1, the main source
of noise is the limited writing accuracy of the analog storage parameters, which
introduced a large trial-to-trial variability between experiments (section 3.1). This
implicitly also deteriorated the ability of the calibration to compensate for the
fixed-pattern noise. On BSS-2, the trial-to-trial variability on the stored analog
parameters is much lower, and it is not a limiting factor in experiments. Temporal
noise and residual (after calibration) fixed-pattern noise are the main sources of
noise, while a clear order of importance is not apparent.

4.1.2 Reinforcement learning with reward modulated STDP

In reinforcement learning, a behaving agent faces the task to maximize its ac-
cumulated reward over time by interacting with its environment (Sutton and
Barto [2018] and section 2.1.3). In the recent years reinforcement learning — sup-
ported by deep learning — has reached remarkable achievements in succeeding
in more and more complex simulated environments [Mnih et al., 2013, Silver
et al., 2017, Vinyals et al., 2019]. Unfortunately, most of the applied techniques
behind these remarkable results apply to neither spiking neural networks nor
to time-continuous systems. Mostly they use non-local and complex learning
rules — such as backpropagation and experience replay — that are not trivial
to implement on neuromorphic hardware. Spike-based reinforcement learning
clearly takes place in biology [Guttman, 1953, Fetz and Baker, 1973, Moritz and
Fetz, 2011]. It remains an open challenge to create reinforcement learning rules
that respect known biological constraints such as locality of information for the
plasticity and time-continuous dynamics. This means at the same time that models
readily available for implementation on analog spiking neuromorphic hardware
are scarce.

The R-STDP [Farries and Fairhall, 2007, Izhikevich, 2007a, Frémaux et al., 2010]
is a simple and well-studied three-factor learning rule that combines the causal
branch of the classical STDP mechanism and a reward signal as a modulator. The
mechanism behind the R-STDP is inspired by biological findings. The phasic
activity of dopaminergic neurons (at least of some of them) encodes the reward
prediction error [Schultz et al., 1997, Hollerman and Schultz, 1998, Bayer and
Glimcher, 2005, Schultz, 2016, Cai et al., 2020] and the dopamine concentration
modulates synaptic changes in STDP [Pawlak and Kerr, 2008, Edelmann and Less-
mann, 2011, Brzosko et al., 2015]. R-STDP and closely related Hebbian learning
rules with reward modulation have been applied to a variety of tasks in simulation-
based studies, such as learning periodic activities in recurrent networks [Hoerzer
et al., 2014], reproducing biofeedback experiments as in [Fetz and Baker, 1973,
Legenstein et al., 2008], simulational reproduction of classical conditioning [Izhike-
vich, 2007a] and reproducing temporal spike patterns [Farries and Fairhall, 2007,
Vasilaki et al., 2009, Frémaux et al., 2010]. A combination of classic unsupervised
STDP and R-STDP was sufficient to train deep spiking networks in a heuristic
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bottom-up approach [Mozafari et al., 2018b] and R-STDP managed to extract more
task-relevant features from the input than unsupervised STDP [Mozafari et al.,
2018a]. According to our best knowledge; R-STDP has not yet been implemented
on analog neuromorphic hardware, but the Pavlovian conditioning experiments
found in Izhikevich [2007a] were replicated on the SpiNNaker neuromorphic
simulator [Mikaitis et al., 2018].

The R-STDP rule is not derived top-down from first principles but rather moti-
vated heuristically bottom-up [Frémaux and Gerstner, 2015], with the idea that
the causal branch of the STDP gathers causality measurements which are then
modulated by an obtained reward to elicit a change in the synaptic weights. We
postulate the plasticity rule of the form

∆wij = β(R − b)eij , (4.3)

with the learning rate β, the obtained reward R, the eligibility trace of the causal
branch of the STDP curve eij and a baseline b. The choice of b is in principle
arbitrary similarly as in policy gradient methods [Sutton and Barto, 2018], but the
choice is crucial because an inappropriate b can introduce reward-independent
unsupervised contribution, which is in general detrimental for learning [Frémaux
et al., 2010]. By choosing the expected reward ⟨R⟩, where the expectation is taken
over the probability distribution of the current policy, the weight updates capture
the correlation between the obtained reward and the synaptic activity [Frémaux
and Gerstner, 2015]⟨

∆wij
⟩
=
⟨

β
(

R − ⟨R⟩)eij
)⟩

= β
(⟨

Reij
⟩
− ⟨R⟩

⟨
eij
⟩)

= β Cov(R, eij) . (4.4)

With this choice of baseline, R-STDP becomes a statistical learning rule in the sense
that it captures the relationship between the synaptic activity and the reward in
a statistical manner. In practice, the expected reward ⟨R⟩ is not calculated as an
expected value but rather estimated with a moving average of the previously
experienced rewards.

4.2 Experimental setup

4.2.1 The simplified Pong game and its simulation

We simulated the environment dynamics, the evaluation of the followed policy,
the monitoring of the learning progress and the plasticity rule on the PPU. The en-
vironment consists of the playing field, the ball and the player’s paddle (figure 4.3
A). Three of the four walls of the playing field (top, left, right) are rigid and reflect
the ball perfectly elastically. The ball moves with a constant velocity vb; it starts
from the middle of the top wall in a random direction at the start of the game or
if the player’s paddle missed the ball. The player’s paddle can either stay on its
current position or move according to the current policy in a given direction with
a constant velocity of vp.
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A B

C

Figure 4.3: Experimental setup. (A) The playing field constitutes of three reflect-
ing walls, a ball and a paddle. In the panel: the ball is currently in the 8-th column,
hence the 8-th state sends regular spikes to all action neurons. The neuron at index
3 reacts with the most spikes, hence the paddle moves towards the 3rd vertical
position. Because the index 3 lies far away from the 8-th column, the network
receives zero reward (equation (4.5)). (B) The experiment execution is entirely
contained on the neuromorphic chip. The PPU handles the environment simula-
tion, the generation of input spikes and the plasticity. The FPGA (connected to
the host via USB) is only used for the initial setup. (C) Schematics of the learning
rule. The causal (pre-before-post) spike pairs of the input Xi and output unit Yi
are exponentially weighted with the temporal difference ∝ exp (−∆t/τ+) and
summed into a flat (non-decaying) eligibility trace. This sum is then modulated by
the learning rate β and the reward-prediction error R − ⟨R⟩ to obtain the synaptic
update ∆wij. Figure adapted from Wunderlich et al. [2019].
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The paddle is controlled by a two-layer fully-connected feed-forward actor-
network with 32 × 32 neurons in the layers and with purely excitatory synapses.
The playing field is discretized into 32 equal segments along the bottom wall
giving rise to 32 horizontal positions or states ui with i ∈ [0, 31]. The input layer of
the actor-network represents the 32 possible positions of the ball, while the output
layer represents the target positions of the paddle. The input layer is virtual; that
is the input neurons are not implemented by physical neuron circuits, they merely
act as spike sources. The output neurons are implemented in the neuromorphic
core of the BSS-2. If the ball is in section ui, the input i provides a finite regular
spike train to all its post-synaptic neurons. The winner is determined as the action
neuron with the highest spike count ρi after the injections of the spike train, that
is j = argmaxi (ρi). If the target column is the same as the current position of the
paddle’s center then the paddle does not move. If there are several action neurons
with equal number of spikes, then the winner action is chosen randomly.

The player obtains reward based on the aiming accuracy with the paddle:

R =

{
1 − |j − k| · 0.3 if |j − k| ≤ 3,
0 otherwise,

(4.5)

where j is the position of the ball and k is the target position for the paddle. The
player receives more reward for accurate aiming than for slightly off aiming. The
seven positions width of the reward window matches the size of the paddle. The
graded reward scheme is a heuristic with the aim of rewarding the network for
good enough aiming but at the same time encouraging aiming to the middle of
the paddle.

4.2.2 The implemented plasticity rule

The experiment runs in an iterative way: 1) The positions of the ball and of the
paddle are updated, 2) the new position of the ball is accessed and the actor
network receives input accordingly, 3) the actor network determines the target
position of the paddle and we calculate the reward, 4) we update the synapses
according to the plasticity rule, 5) the mean expected reward is updated. If the
player loses the ongoing game (ball touches the lower wall), the position of the
ball is reset and the ball starts in a random direction. A flowchart of the game-loop
is shown in figure 4.4.

For each potential position of the ball, we calculate and save the task-specific
(position-specific) mean expected reward R̄k; k ∈ [0, 31] and estimate it effectively
using an exponentially-weighted moving average:

R̄k → R̄k + γ(R − R̄k) , (4.6)

where γ is the discount factor for the moving average. We use a task specific
reward for the 32 tasks in our setup because task specificity is required for learning
multiple tasks [Frémaux et al., 2010]. In the somewhat surprising terminology
of reinforcement learning the 32 states of the ball are considered as 32 distinct
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Figure 4.4: Flowchart of the implementation. The experiment runs in loop iterat-
ing between the PPU and the neuromorphic core. The game is started/reset by
setting the ball in the middle of the playing field and releasing it in a random di-
rection. Based on the current position, the environment sends a regular spike train
to the neuromorphic core through the corresponding state; the winning neuron is
determined as the most active neuron. The reward is determined and based on the
distance between the ball state and the target position and the plasticity is applied
(equation (4.3)). Finally, the PPU updates the environment: the ball moves on and
the paddle moves towards the target position; and the loops starts again. If the
player looses the game (the ball drops to the lower wall), the environment is reset.
Figure taken from Wunderlich et al. [2019].
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4. Demonstrating advantages

(multi-armed bandit) tasks, as e.g. in Sutton and Barto [2018]. The weights are
initialized with a Gaussian distribution and we update all the 1024 synapses based
on the R-STDP learning rule (equation (4.3)),

∆wij = η(R − R̄k)A+
mn , (4.7)

where A+
mn is a processed version of the accumulator value a+mn (equation (4.1))

on the causal branch. The accumulator value is digitized to 8-bit resolution,
calibrated against the offset value, and bit-shifted to the right, meaning that
the often noisy least-significant bit is thrown away. Note, that we update all
the synapses on the array although we would expect that only synapses in a
single row should experience any updates, the others should have exactly zero
update because the STDP trace is zero. This holds for this specific application,
but we want to use the results of the experiments as a pilot study for large-scale
experiments where the distinction between used synapses and silent synapses is
not obvious. Further, even the unused synapses could contain nonzero values
on the coincidence accumulators, for example through a malfunctioning reset.
By updating all the synapses, thus refrained from using expert knowledge, we
preserve the generality of our findings for larger networks. This will also be
important, when we compare the implementation on neuromorphic hardware to
computer simulations. By not including expert knowledge, we keep the network
setup scalable (no elaborate blacklisting of faulty synapses) and hence we preserve
the generality of the results.

Monitoring the learning progress

We monitor the learning with two observables. The accumulated mean expected
reward is defined as

⟨R⟩ = 1
32

31

∑
i=0

R̄i , (4.8)

which is the average expected reward over all the 32 positions (inputs) at a given
iteration. Because of the graded reward scheme over the length of the paddle, the
mean expected reward is only a proxy for the ability of the player to catch the ball;
even a slightly off paddle can catch the ball. To access the playing capability more
precisely, we introduce the measure of performance

P =
1
32

31

∑
i=0

⌈Ri⌉ , (4.9)

where ⌈·⌉ is the ceiling operator and Ri is the last reward received by state i. The
performance reflects the ratio of states in which the aiming is accurate enough
such that the paddle can reflect the ball. The used parameters of the environment
simulation and the plasticity are give in table 4.1.
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Symbol Description Value

neuromorphic hardware
BrainScaleS 2
(2nd prototype version)

N number of action/output neurons (LIF) 32
NS number of state/input units 32
Nsyn number of synapses 32 · 32 = 1024
Nspikes number of spikes from input unit 20
TISI ISI of spikes from input unit 10 µs
w mean of initial weights (digital value) 14
σw standard deviation of initial weights 2
L length and width of quadratic playing field 1 m
∥vp∥1 L1-norm of ball velocity 0.025 m per iteration
vp velocity of paddle controlled by BSS2 0.05 m per iteration
rb radius of ball 0.02 m
rp length of paddle 0.20 m
γ decay constant of reward 0.5
β learning rate 0.125

NEST version (software simulation) 2.14.0
NEST timestep 0.1 ms
CPU (software simulation, one core used) Intel i7-4771

Set #1 Set #2 Set #3
(standard)

τmem LIF membrane time-constant 28.5 µs 18.4 µs 24.8 µs
τref LIF refractory time-constant 4 µs 14.3 µs 13.8 µs
τexc

syn LIF excitatory synaptic time-constant 1.8 µs 2.4 µs 1.4 µs
Eleak LIF leak potential 0.62 V 0.56 V 0.87 V
Vreset LIF reset potential 0.36 V 0.36 V 0.30 V
Vthresh LIF threshold potential 1.28 V 1.31 V 1.21 V

η+
amplitude of correlation function a+

72 114 70
(digital value)

τ+ time-constant of correlation function a+ 64 µs 80 µs 60 µs

Table 4.1: Parameters used in the experiment. Abbreviations in the table: LIF:
leaky integrate-and-fire; ISI: inter-spike interval. The three parameter sets for
the three chips are the results of the meta-parameter optimization. We describe
quantities of the playing field, such as the length of the paddle, in meters to give
them a dimension and to distinguish them from dimensionless quantities. If not
mentioned otherwise, the experiments were carried out on chip #1. Table adapted
from Wunderlich et al. [2019].
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Meta-parameter optimization

We performed meta-parameter optimization of the time-constants (τmem; τexc
syn; τref),

the neuron potentials (El; Vreset; Vthresh) and the amplitude of the coincidence detec-
tors (τ+; η+). For the optimization we used the decision-tree-based optimization
algorithm FOREST_MINIMIZE from the SCIKIT-OPTIMIZE [Head et al., 2018] soft-
ware package with default settings (extra trees regressor model, 105 acquisition
function samples, maximizing expected improvement, target improvement 0.01).
The meta-parameter optimization serves several ends: 1) it helps to explore the
parameter space and sets the parameters of the model to a good working point,
2) it ensures that the results can be compared between hardware and simulation
results 3) finally, meta-parameter optimization builds the basis of our transfer
experiments, where we study if results obtained on one BSS-2 chip can be applied
on another chip of the same generation.

4.2.3 Reference software simulation using the Nest simulator

To establish a comparison for our results on the BSS-2, we implemented the
same actor network using the Nest v2.14.00 spiking neural network simulator
[Peyser et al., 2017]. We used the iaf_psc_exp model from the neuron model library
of Nest, a LIF neuron model with CUBA synapses and exponential synaptic
kernel. Fixed-pattern noise was omitted from simulation, meaning that all the
simulated neurons had identical parameters. The LIF parameters in simulation
were equal to the target values of the LIF parameters on the BSS-2. The weights
were scaled to a dimensionless quantity, discretized and matched via their effect
in terms of the response function to match the weights on the BSS-2. We chose
the STDP parameters η+ and τ+ to match the mean values on the neuromorphic
hardware. To include noise into the Nest-based simulations, we used Nest’s
noise_generator to inject Gaussian current onto the neuron’s membrane. Learning
rate and the parameters of the game dynamics were the same as in the hardware
implementation.

The plasticity updates were not calculated in Nest, because at the time of this
project there was no official (off-the-shelf available in the used version) R-STDP
model implemented in Nest. For fair speed and energy comparison we imple-
mented the calculation of the a+ values in a custom Python code based on the
spike-timings from Nest, and we excluded the time and energy spent on plasticity
calculations to achieve a conservative comparison between neuromorphic hard-
ware and off-the-shelf simulator. In contrast to the hardware implementation, in
each iteration only synapses were updated that transmitted spike events. In a
software simulation we can guarantee that the a+ values equal zero for the silent
synapses. This choice also reduced the time and energy spent on the plasticity
calculations.
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4.3 Results

4.3.1 Learning performance

We monitored the progress of learning both on BSS-2 (figure 4.5 A) and using
Nest without (figure 4.5 B) and with additional temporal noise (figure 4.5 C) for
5 × 105 iterations both. Both measures, the mean expected reward (equation (4.8))
and the playing performance (equation (4.9)), grow as the learning progresses for
both the neuromorphic implementations and the software simulation with noise.
The learning was repeated 10 times and the results are reproducible with some
expected stochastic deviations between the trials.

The perfect solution of the simplified Pong task is a one-to-one mapping from
the ball position to the same target position for the paddle. Hence, we expect
that starting from randomly initialized weights, the learning should result in a
diagonal-dominant weight matrix; and this is what we observe in the neuromor-
phic implementation (figure 4.6 A). The obtained final weight matrix is diagonal
dominant, but there are deviations from an envisioned perfect solutions. The
salt&pepper-like randomness of the weights is a combined result of the random
initialization, the stochastic nature of learning and the fact that the learning does
not aim at reaching a perfect weightmatrix, but at accumulating reward. The first,
second and third diagonals are also strengthened due to the graded reward scheme.
They correspond to the “reward classes” 0.7, 0.4 and 0.1. Finally the vertical stripes
are an implicit result of the adaptation to the fixed-pattern noise. The fixed-pattern
noise is most apparent on the BSS-2 in the neuron-to-neuron deviations because
the PSP-shaping of the spikes happens at the neurons (section 4.1.1).

Temporal noise as a resource of exploration

On the BSS-2, the exploration of actions is provided solely by the temporal noise
on the system, and this noise is sufficient to enable learning (figure 4.5 A).

In contrast, the software simulation without noise is unable to learn and both
measures get stuck at approximately chance level (figure 4.5 B). Chance level for
the mean expected reward is

⟨R⟩chance =
1

32
(1 · 1 + 2 · 0.7 + 2 · 0.4 + 2 · 0.1) ≈ 0.1 , (4.10)

and for the performance

Pchance =
1

32
(1 · 1 + 2 · 1 + 2 · 1 + 2 · 1) ≈ 0.22 , (4.11)

assuming equal chance to win for all the action neurons. There are only two
sources of stochasticity in the system. First, the random initialization of the
weights. Second, if two or more action neurons elicit the same number of spikes,
then the action is chosen randomly among them. But they are not sufficient for
learning.
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Figure 4.5: Learning on BSS-2 and with Nest on a CPU. The plots show the mean
expected reward (equation (4.8)) and the performance (equation (4.9)) for both
cases with the mean and the standard deviation over 10 experiments. (A) The
BSS-2 can learn even without explicit noise, because the internal temporal noise
sufficiently facilitates exploration. (B) The simulation is unable to learn beyond
chance level without additional noise. (C) When we add a Gaussian current
based noise with a standard deviation of σ = 100 pA, exploration sets in and
learning becomes possible. The simulation converges faster in terms of number
of iterations than on BSS-2 due to the lack of fixed-pattern noise. Figure adapted
from Wunderlich et al. [2019].
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If we inject a Gaussian noise to the network with a standard deviation of σ =
100 pA, then exploration becomes possible and the learning sets in (figure 4.5
C). With Gaussian noise, the network in software simulation learns faster and
converges to higher values than on the BSS-2. The higher performance and mean
reward stem from the lack of fixed-pattern noise in simulation: the network starts
out from a balanced weight matrix (random initialization but no fixed-pattern
noise) and does not have to spend synaptic updates and learning iterations to
compensate for the heterogeneity of the neurons. Further, the accumulator circuits
also show deviations introduced by fixed-pattern noise (figure 4.2 A). In turn,
these also lead to deviations in the weight updates. By comparing the simulations
with and without Gaussian noise, we also implicitly verify that the exploration
and hence the learning on BSS-2 is indeed a result of the temporal noise and not of
the simpleness of the task and the network.

Our experiments show that temporal noise on neuromorphic hardware, which
is usually regarded as nuisance, can be exploited as useful resource. Certainly, we
could replace the temporal-noise-driven exploration by an explicit exploration
e.g. ϵ-greedy policy, but this would require additional resources either on the
neuromorphic core or on the PPU.

4.3.2 Learning is calibration

Learning means changing the own parameters in a way to improve the capability
of solving a given task. Learning on an imperfect substrate also implicitly includes
adaptation to fixed-pattern noise-induced variations (figure 4.2 B) giving rise
to the notion that learning is calibration. But this neat and useful attribute of
learning is elusive in experiments, as it, by definition, only appears as a side-effect
modulating the central challenge, namely learning the task. In the following we
show in two observations how learning compensates for the inhomogeneities of
neural excitability on BSS-2.

The compensation for the fixed-pattern noise is apparent in the evolution of the
unrewarded synapses. Each input neuron projects with 32 synapses to 32 action
neurons. 7 of these synaptic connections are rewarded with non-zero reward such
that we expect that they will be strengthened to some extent if the corresponding
action neuron is the winner. These 7 rewarded synapses form the dominant
diagonal of the final weight matrix (figure 4.6 A). The other 25 of the synapses
are unrewarded and should be pushed below the spiking threshold to prevent
the corresponding action neuron from winning. Indeed, we find that the final
value of the non-rewarded synapses falls below the firing threshold (figure 4.6
B). The threshold weight of the neurons correlates with the final weight-value of
the unrewarded synapses. This is caused by the fixed-pattern noise: due to the
fixed-pattern noise, the firing threshold is different for each neuron, and hence the
learning stops at different weight values.

In a next experiment, we demonstrate the adaptation by shuffling the assign-
ment of logical neurons to the neuron circuits on the chip after an initial learning.
The logical weight matrix is kept intact, that is each logical neuron sees the same

101



4. Demonstrating advantages

0 5 10 15 20
threshold weight

0

5

10

15

20

25

sy
na

pt
ic

 w
ei

gh
t

linear regression
before learning
after learning

B

0 10 20 30
neurons

0

5

10

15

20

25

30

sy
na

ps
e 

dr
iv

er
s

mean weights
A

0

5

10

15

20

25

m
ea

n 
w

ei
gh

ts
 [a

rb
. u

ni
ts

]

Figure 4.6: Learning is calibration. (A) Final weight matrix after learning on
BSS-2 averaged over 10 experiments from figure 4.5 A. The noticeable vertical
stripes are the indirect result of the fixed-pattern noise. The fixed-pattern noise
causes the largest differences neuron-to-neuron, because the PSC is generated
at the neurons [Fehre, 2017]. Because the weights adapt to the excitability of
the neurons, the vertical stripes appear on the weight matrix after learning. The
plasticity calibrates for this fixed-pattern noise, which is in-turn apparent on the
final weight matrix. (B) The compensation of the fixed-pattern noise is most
apparent on the unrewarded synapses, as they are systematically pushed below
the spiking threshold. This leads to correlation between the learned weights and
the spiking threshold with a Pearson’s r = 0.76 and p < 0.001 using two-sided
Wald test with t-distribution (SCIPY.STATS.LINREGRESS function from the scipy
library [Jones et al., 2001–]). The weights are plotted with jitter for better visibility.
Figure adapted from Wunderlich et al. [2019].
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input weights in bit values, but not in their effect. After learning, the synapses
are adapted to the excitability of the post-synaptic neuron. By shuffling the as-
signment we disturbed this relationship and the synapses are maladapted to their
new target neurons. If learning is indeed calibration, then further learning should
restore the performance of the network.

To establish a baseline, we trained the network for 5 × 104 iterations and mea-
sured the final reward distribution over 100 distinct experiments (figure 4.7 A —
top panel). The “reward distribution” refers to the most recent obtained reward
by the 32 input states at the end of the learning. In the baseline measurement, the
network reached a mean expected reward ⟨R⟩ = 0.73 ± 0.09 and a performance of
P = 0.85 ± 0.06, respectively.

Afterwards we shuffled the assignment of the logical neurons to the hardware
neuron circuits. We measured the reward distribution as in the baseline case
but with learning turned off (figure 4.7 A — middle panel). The reached mean
expected reward dropped to ⟨R⟩ = 0.37 ± 0.09 and the reached performance to
P = 0.47 ± 0.11.

Finally, starting from the same weight matrix, we trained the network (with
enabled learning) for 5 × 104 iterations. The reward distribution was restored close
to the baseline value (figure 4.7 A — bottom panel), reaching a mean expected
reward of ⟨R⟩ = 0.67 ± 0.07 and a performance of P = 0.81 ± 0.09.

Our experiments demonstrate that the learning can adapt to the inhomogeneities
of the neurons and can implicitly compensate for them. This implies that learning
on the chip can reduce the requirements on the calibration and on the manufactur-
ing quality.

4.3.3 Robustness of learning

When using analog neuromorphic hardware, or in general any physical model
system, an important question is the robustness of the implemented network
and learning rule (compare to chapter 3). The potential advantages in terms of
speed and energy consumption come with a price-tag: The implementation has to
cope with the limited controllability, precision and range of the parameters on the
hardware.

As before, one concern is the fixed-pattern noise. It can be reduced by cal-
ibration [Stradmann, 2016, Aamir et al., 2018], but only at a price. A precise
calibration would require the tedious measurement, mapping and storage of a
high-dimensional parameter space from the targeted LIF values to the hardware
parameters. A simpler calibration that assumes independence between each pa-
rameters would be faster but would introduce systematic deviations due to the
neglected interactions. The calibration still has to be done for each chip. Even the
possibility of calibration requires chip area, because it needs large tunable neurons.
We study the effect of missing calibration on the results.

Furthermore, results (network architectures, good parameters etc.) found on one
chip should apply to other realizations of the same chip version as well to enable
a broad and scalable usage of neuromorphic systems. But remaining fixed-pattern
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Figure 4.7: Robustness of learning. The learning compensates for the variation
of individual neuron parameters as demonstrated in the following experiments.
(A) Top: Distribution of the received reward over 100 experiments after learning.
Middle: Same distribution after randomly shuffling the mapping of the abstract
neurons to the neuronal circuits. The mean reward dropped since the learning
adapted the individual neuron circuits, and with the shuffling this adaption is not
correct any more. Bottom: After additional 5 × 104 learning iterations following
shuffling, the network adapted to the new mapping and the rewards are largely
restored. The experiments were carried out with uncalibrated neurons. The mean
expected reward and performance values are shown with median and interquartile
range. (B) Reward distribution in 100 experiments after 5 × 104 learning iterations
with calibrated and uncalibrated neurons. The reached mean expected reward
(cross symbol with interquartile range) and performance (diamond symbol with
interquartile range) are similar showing that learning largely compensates for the
missing calibration. (C) Violin plots of the mean expected reward with mean. We
performed the meta-parameter optimization on the indicated chip and then tested
the obtained meta-parameters on the two other. The obtained mean expected
rewards largely agree, there is no systematic drop in the reward after transfer
to other chips. We considered a system as a combination of the chip and the
corresponding calibration. Figure adapted from Wunderlich et al. [2019].
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noise could affect the transferability of the results. We study the transferability of
results on the example of meta-parameter learning.

All experiments in the following were carried out with 5 × 104 learning itera-
tions each.

4.3.4 Impact of missing calibration

Until this point, we used the calibration of the LIF time-constants (τmem; τref; τexc
syn)

which reduced the deviation between realized and target LIF parameters (sec-
tion 4.1.1). On the BSS-2 the calibration can typically reduce the standard deviation
of the realized parameters by an order of magnitude [Stradmann, 2016, Aamir
et al., 2018].

Next, we studied the effect of uncalibrated LIF time-constants on the learning. To
preserve a good working point, we defined the uncalibrated hardware parameter
as the average of the calibrated ones given a specific target value. A comparison
of the realized time-constants is given in figure 4.2 B.

We measured the distribution of the rewards with and without calibration over
100 experiments each (figure 4.7 B). Learning was possible even in the absence
of calibration, however the reached mean expected reward suffered a loss of
approximately 17 %. With calibration the learning reached a mean expected reward
of ⟨R⟩ = 0.79± 0.05 and a performance of P = 0.93± 0.05, while without it reached
only ⟨R⟩ = 0.65 ± 0.08 and P = 0.80 ± 0.09.

We conclude that the implemented model is robust against fixed-pattern noise
typical to the BSS-2 in the sense that learning is still possible without calibration
and the performance suffer some loss, but without a dramatic drop to chance level.

4.3.5 Transferability of the results between chips

Until now, we conducted all the presented experiments on the chip #1 using
parameters found in meta-parameter optimization (table 4.1). Now we would like
to see if the results found in the meta-parameter optimization on one chip can be
applied on another chip. Note, that this procedure is not only about inference on
different chips. On each chip, we perform learning to enable adaptation to the chip-
specific fixed-pattern noise, which is central on analog hardware (section 4.3.2).

To study the transferability of the results, we took three different BSS-2 chips
of the same generation. For each potential transition, we first applied meta-
parameter optimization on the original chip and tested the resulting parameters in
200 experiments with learning for 5 × 104 iterations in each experiment. Then we
applied the same meta-parameters and tested them on a different chip in identical
(in terms of target parameters and setup) experiments. We consider as a chip the
combination of the neuromorphic substrate and the corresponding calibration.

We found no apparent drop in the reached mean expected reward after transition
between the chips (figure 4.7 C). There is a clear ordering between the chips as chip
#1 performs better than the two other chips irrespective where the meta-parameter
optimization was performed. We explain the observed differences by deviations
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during the manufacturing process. Still, the game could be learned successfully in
each experiment, and there is no systematic drop in performance after transfer to
another chip.

We conclude that results achieved on a realization of BSS-2 apply to other
realizations, meaning that the chips can be used as drop-in replacements for each
other and that this neuromorphic chip could be used in applications where scaling
and performance consistency over the several chips is an issue.

4.3.6 Computation speed and energy consumption

The central attribute of the BSS-2 system is its accelerated emulation of neural
activity, which is 103 times faster than the biological equivalent time. While speed
is the primary advantage, the accelerated emulation on analog substrate also leads
to low energy consumption. We stress that unlike other systems that aim at low
power consumption [Qiao et al., 2015, Moradi et al., 2017, Neckar et al., 2018],
the BSS-2 chip features low energy consumption. The BSS-2 system performs the
calculations with at a higher power-consumption but at the same time in shorter
time.

To put this into perspective, we compared the emulation on BSS-2 to computer
simulation running the Nest simulator on an Intel i7-4771 CPU using one core
(more cores would not result in any perceivable speed-up due to the small size of
the network) in terms of speed and energy consumption.

Speed measurements

A full iteration in software simulation took 50 ms, but most of it was spent on the
custom-code-based plasticity calculations, which we disregard to obtain a fair and
conservative comparison. The pure network simulation (Nest’s Simulate routine)
of 200 ms network activity took 4.3 ms with noise (Nest’s noise_generator) and
1.2 ms without it (figure 4.8). A small negligible time was spent on the calculations
for the environment, but we also disregard them for the same reason as in case of
the plasticity rule. In contrast, a full iteration on the BSS-2 took 0.4 ms measured
using the time stamp register on the PPU. This time was approximately equally
divided between the emulation of the network activity and the combination of
plasticity and environment calculations.

Even in this conservative comparison, the emulation of the model was at least
three times faster, 0.4 ms on the BSS-2 against 1.2 ms in software simulation using
Nest. The total time of a full experiment with 5 × 104 iterations took 25 s on BSS-2
(including 5 s overhead for applying the calibration and chip setup) and 40 min
in software simulation. We remark, that including the plasticity calculation into
the comparison would increase the advantage of BSS-2 further even if we had
used a Nest native plasticity model. In software simulations, the time spent on the
eligibility trace calculations roughly scales linearly with the number of synapses,
while on BSS-2 it happens parallel with the network emulation.
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Figure 4.8: Speed comparison between BSS-2 and Nest. (A) A single experiment,
that is an iteration of the loop (figure 4.4), on the BSS-2 takes 400 µs with 220 µs
spent on the network emulation and 180 µs on the plasticity rule. The network
was emulated for corresponding 200 ms biological time. In software simulation,
the state-propagation of the network activity took 4.3 ms with noise and 1.2 ms
without noise. (B) The environment and the plasticity calculation took 50 ms with
Nest and 180 µs on BSS-2. Figure adapted from Wunderlich et al. [2019].
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Energy consumption measurements

We measured the power consumption of the CPU as a difference measurement
between the power consumption during simulation and when idling using the
Entry-Level Power Supply (EPS) 12 V power supply cable. The EPS cable connects
to the CPU socket of the motherboard and powers the CPU. We found that a lower
bound for the power consumption is 24 W without simulating noise and 25 W
when using noise. Using that a single iteration took 1.2 ms without noise, we
arrive at an energy consumption of 29 mJ. With noise (4.3 ms simulation time) we
obtain an energy consumption of 106 mJ.

We accessed the energy consumption on the BSS-2 by measuring the current
drawn during the experiment. We measured a power consumption of 57 mW,
which is consistent with previous power consumption measurements of the same
chip generation [Aamir et al., 2018]. This excluded the energy consumption of
the FPGA which is only used during the initial configuration. With 0.4 ms per
iteration, this leads to an energy consumption of 23 µJ per iteration on the chip.

We conclude that the energy consumption of the emulation on the BSS-2 chip is
at least three orders of magnitude smaller than that of a software simulation on a
CPU.

4.4 Discussion

In this project we demonstrated and analyzed the advantages of neuromorphic
computation on the example of an implementation of R-STDP on the BSS-2
HICANN-DLSv2 prototype chip in terms of emulation speed, energy consumption
and robustness of the results. Further, we showed how learning can compensate
for the inevitable distorting effects of fixed-pattern noise on analog hardware,
hence reducing the precision requirement of the calibration.

We found that temporal variations on the chip can be exploited as a computa-
tional resource. This temporal noise is not present on the chip by design, and in
general designers aim at reducing its amplitude. Still, it could be of interest for the
general public, that they can be leveraged as computational resource. The succes-
sor of the HICANN-DLSv2 prototype chip will feature on-chip stochastic spike
train generators to enable the injections of Poisson-like spike trains to the neurons
in a controllable way [Billaudelle et al., 2019b, Müller et al., 2020a, Schemmel et al.,
2020]2. With these noise generators it will be possible to enable the emulation
large-scale stochastic networks similar to the Stochastic Sampling Network (SSN)
shown in chapter 3.

2The next generation chip is described in detail in [Schemmel et al., 2020] and it has been used
for experiments as described in [Billaudelle et al., 2019b]. Müller et al. [2020a] describe the software
stack of BSS-2 system.
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4.4 Discussion

4.4.1 Limitations of the study

The main limitation of the study is the size of the prototype chip which only
allowed the emulation of small simple networks and learning tasks. In the world
of large-scale simulations with at least several thousands of neurons [Merolla et al.,
2014, Jordan et al., 2018, van Albada et al., 2018], emulating 32 neurons is rather
small and hence limits the validity of our results.

In terms of speed and energy efficiency, we expect that the advantages would
become more significant with larger network sizes. One of the main features of
physical modeling is the independence of emulation time of the network size.
In our case, the relative swiftness of the software simulation stems from the
small size of the network. With the physical computing approach, the emulation
of the neuron dynamics and the accumulation of the eligibility traces happens
simultaneously at the 103 times accelerated speed independent of the size of the
emulated network. In the next generation, two PPU units will be placed per 512
neurons, making the plasticity calculations similarly fast as in this project. As long
as the calculations stay local to the PPUs the O(1) scaling property is preserved.
In contrast, state-of-the-art large-scale software simulation requires minutes to
simulate one biological second [Jordan et al., 2018]. Even on a specialized digital
neuromorphic simulator, the best results of reported simulations are at real-time
[van Albada et al., 2018, Rhodes et al., 2019]. A potential pitfall of this prediction
appears if the emulations become dominated by the overhead, such as the mapping
procedure or the setup of the system parameters (van Albada et al. [2018], Kungl
et al. [2019]; chapter 3).

The low number of chips limits the validity of the transferability results. Because
the used neuromorphic BSS-2 prototype chips are not the result of mass-production
but of ongoing research, the commissioning of each chip is a tedious process. We
consider our experiments sufficient for a pilot study.

The accelerated emulation is a merit when we want to emulate experiments as
fast as possible, but it is a drawback if we consider interfacing with robots. Naively,
robots interact and act on a time-scale similar to biological neurons, that is on
the order of milliseconds. One would expect that neuromorphic systems running
at real-time are better suited for robotics. But there are applications where the
time-scale is on the order of microseconds, for example in adaptive beam shaping
in radar systems. Also for a sampling-based neural network (e.g. in chapter 3),
the acceleration could be beneficial: the network has sufficient time to explore the
state-space and infer an optimal reaction to the current state of the environment.

The simplicity of the applied R-STDP model was not only a limitation but also a
merit for our project. This well-studied and easy-to-implement model both fitted
the resources of the prototype chip and at the same time its simplicity allowed us
to focus on the different aspects of learning and to easily interpret the results. We
expect that further larger chips of the BSS-2 generation will, in principle, enable
the emulation of more complex networks. However, further theoretical work is
required since most state-of-the art models, such as AlphaGo Zero [Silver et al.,
2017] or AlphaStar [Vinyals et al., 2019], are far away from a direct implementation
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4. Demonstrating advantages

to a spiking neuromorphic substrate. In computational neuroscience, there are
models solving reinforcement learning problems with sparse rewards, which
would be good candidates for neuromorphic implementation. For example, the
TD-STDP (temporal difference STDP) [Frémaux et al., 2013] implements actor-
critic learning in spiking neural networks, and it already matches the designed
capabilities of a larger BSS-2 chip.

The complexity of the environment simulation is strongly limited by the capa-
bilities of the PPU. Clearly, the PPU was not designed to be an elaborate processor
for complex environment simulations but rather for fast local plasticity calcula-
tions. The simplicity of the environment, like in case of the plasticity rule, was a
merit and allowed us to focus on and interpret aspects of the learning. A more
complex environment could be simulated on a separate system, for example on
an FPGA, which then only communicates with the neuromorphic chip via input
(state, reward) and output (actions) spike-trains and events.

4.4.2 Outlook

Our work not only demonstrated and quantified the advantages of the accelerated
analog neuromorphic approach, but also laid a groundwork for implementing
reinforcement learning in a spiking neuromorphic network. We firmly believe
that based on this groundwork future studies using more neuromorphic resources
will show more elaborate agents acting in complex environments guided by
reinforcement learning, such as the insect navigation task in Billaudelle et al.
[2019b] and Schreiber et al. [2020].
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5 Biologically plausible deep
reinforcement learning in a
time-continuous framework

The project in this section was done in close collaboration with Walter
Senn, Dominik Dold, Oskar Riedler and Mihai Petrovici. At the time of
writing, it is being prepared for publication.

A central question in neuroscience is how the brain is capable of learning and
building memories. This question concerns several sub-disciplines of neuroscience
and it spans over orders of magnitude both in time and space: from molecular
models of synaptic plasticity to changes in behavior over decades. Despite the
myriads of proposed models and experimental findings (compare to section 2.2.3),
it remains an open issue what the basic coding scheme(s) of the brain is and which
learning rule(s) it realizes.

The recent success of deep learning [LeCun et al., 2015] put the question whether
deep learning is realized in the mammalian brain back into the focus. Particularly
interesting is deep reinforcement learning due to its success in machine learning:
it has reached often super-human performance in playing board- and video-games
[Mnih et al., 2013, Silver et al., 2017, Vinyals et al., 2019]. This success is based on
three key components: the backpropagation algorithm [Rumelhart et al., 1986], the
availability of large labeled datasets and the availability of cheap and powerful
GPUs. Here, we focus on mechanistic modeling of the backpropagation algorithm
and disregard the two other factors.

For a long time, backpropagation in the brain had been considered impossible
[Richards et al., 2019]. It seemed implausible that an error signal is propagated
backwards over several layers of neurons, tailored individually for each synapse
and still obeying biological constraints like locality of interactions and the het-
erogeneity of the neuro-synaptic parameters. In the last couple of years, several
studies either relaxed implausible assumptions [Lillicrap et al., 2016] or even sug-
gested models for the backpropagation mechanism [O’Reilly, 1996, Xie and Seung,
2003, Roelfsema and Ooyen, 2005, Rombouts et al., 2015, Scellier and Bengio, 2017,
Whittington and Bogacz, 2017, Amit, 2019, Mesnard et al., 2019, Marblestone et al.,
2016, Pozzi et al., 2018, Whittington and Bogacz, 2019, Richards et al., 2019]. A
common feature of all these works is that they usually consider supervised and
unsupervised learning only, although reinforcement learning is clearly present
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5. Time-continuous deep reinforcement learning

in the brain [Niv, 2009]. Deep reinforcement learning is only considered in a few
of these studies [Rombouts et al., 2015, Pozzi et al., 2018], but they lack other
biological constraints such as time-continuous dynamics.

A large amount of literature has been published about models of reinforcement
learning in the brain, see for example the review from Niv [2009]. However these
publications are more focused on the biological aspects of reinforcement learning
and less on the learning capabilities of the underlying model; and often they
only consider shallow learning architectures, for example in Farries and Fairhall
[2007], Izhikevich [2007a], Frémaux et al. [2010, 2013], Deperrois et al. [2019]. This
restriction to shallow learning limits the capabilities of these models in terms of
task complexity, but animals and humans can clearly solve more complex tasks
than these shallow models allow.

In this project, we extend the model of deep supervised learning in a time-
continuous framework based on the principle of least action [Senn et al., in prepa-
ration, Dold, 2020] to include reinforcement learning. In their work, Senn et al. [in
preparation] derive neural dynamics and plasticity rules from first principles and
present a framework of time-continuous deep learning using only local interac-
tions and plasticity. The authors propose a model where stereotypical microcircuits
and a predictive firing mechanism of the neurons enable learning via backprop-
agation at any time without separate phases. We amended the model with a
lateral interaction among the neurons representing the actions and with a global
neuromodulator based on the reward-prediction error. The lateral interaction is
closely related to winner-takes-all (WTA) circuits, while the reward-prediction
error measures the deviation of the received reward from the expectation [Schultz,
2016, Sutton and Barto, 2018]. We show that the proposed model approximates
policy-gradient learning and, by that, maximizes the expected reward.

The proposed model is tested on a reduced version of the popular MNIST
dataset [LeCun et al., 1998]. Furthermore, we verify the robustness of the model
against both fixed and random temporal reward delays as well as against fixed-
pattern noise (heterogeneous parameters) in the lateral circuit. Finally, we briefly
sketch and test two alternative forms of reward maximizing interactions in the
action layer.

Our work contributes to the pursuit for mechanistic models of biologically
plausible deep reinforcement learning. This model could be the basis of more
elaborate biological reinforcement learning models, for example based on actor-
critic architectures; or it could inspire experiments to explore hallmarks of deep
reinforcement learning in the brain.

5.1 Materials and Methods

The presented work extends and builds on the framework of supervised learning
in the principle of least action model [Senn et al., in preparation, Dold, 2020]. Here,
we give a summary of the model, so that the connection between the model and
its extension becomes apparent. Moreover, we describe policy-gradient in a deep
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5.1 Materials and Methods

neural network, which we will use as a standard comparison for the presented
learning rules.

5.1.1 Deep supervised learning in the principle of least action
framework

The content of this section is in preparation for publication in Senn et al.
[in preparation] and in the PhD thesis of Dominik Dold [Dold, 2020]. In
this section, we give a summary of the theory, because the reinforcement
learning model in this chapter is a direct extension of it.

The principle of least action framework aims to provide an energy-based de-
scription of time-continuous neural dynamics and the synaptic plasticity rules
based on first principles. The neural dynamics result from the energy function
via variational calculus inspired by the Lagrange formalism found in physics (see
for example Landau and Lifshitz [2013]). The plasticity rule shapes the energy
landscape in order to minimize the deviation to a targeted neuronal behavior. The
resulting time-continuous neuro-synaptic dynamics enable learning at any time
while approximating backpropagation if used for a layered network. Additionally,
the resulting dynamics can be interpreted as cortical microcircuits, giving it a
mechanistic model interpretation.

In the following, we describe the theory for a layered network both to emphasize
the backpropagation feature and because we will extend it in a layered network
setup. The framework can be extended to arbitrary network architectures [Senn
et al., in preparation].

Energy, prediction error and cost

The total energy L of the system is composed of two terms: a prediction error E
and a cost function C:

L = E + βC =
N

∑
i=1

1
2
∥ui − Wi r̄i−1∥2 + β

1
2

uN − u(trg)
N

2
, (5.1)

where the sum goes over the N layers, ui is the vector of membrane potentials of
the neurons in the i-th layer, Wi is the synaptic matrix projecting from layer i − 1 to
layer i, r̄i−1 is the low-pass filtered activation of the neurons in layer i − 1 and u(trg)

N
is target membrane potential of the neurons in the last (output) layer (figure 5.1
A). The ∥·∥ denotes the standard Euclidean norm of a vector. The term C is the
cost: it measures the difference between the membrane potential of the output
neurons and the desired target potential u(trg)

N . The cost function C corresponds to

the loss function in supervised learning (for example section 2.1.1), u(trg)
N could

be the desired label of a classified image using one-hot coding. The term E is
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5. Time-continuous deep reinforcement learning

called the prediction error, because it represents the difference between the realized
somatic membrane potential ui and the corresponding dendritic prediction Wi r̄i−1.
In this sense the framework is based on predictive coding, meaning that each
neuron aims at reducing this dendritic prediction error. The β factor weights the
cost relative to the prediction error; and, as we will see, it weights the amplitude
of the error backpropagation direction compared to the inference direction. In the
following, we show that, under certain prerequisites, minimizing the prediction
error E corresponds to minimizing the cost C. The calculations are shown in detail
in section 5.1.2.

The neural dynamics

To derive the neural dynamics we introduce the concept of future discounted
voltage:

ũ(t) =
1
τ

∫ ∞

t
u(t̂) exp

(
− t̂ − t

τ

)
dt̂ , (5.2)

where τ is the membrane-time constant of the neuron, which will become imme-
diately clear after the derivation of the neural dynamics. The future discounted
voltage ũ will act as generalized neural coordinates: we use (ũ, ˙̃u) as the canonic
variables to execute the variational calculus, implicitly using the total energy
in terms of L = L(ũ, ˙̃u). Using equation (5.2), the membrane potential can be
reconstructed from ũ with a formula resembling a look-back (section 5.1.2)

u = ũ − τ ˙̃u . (5.3)

We require the membrane potential in terms of ũ to follow a trajectory stationary to
the action A =

∫
L(ũ, ˙̃u)dt, or δA = 0. This leads to the Euler-Lagrange equations:

∂L
∂ũ

− d
dt

∂L
∂ ˙̃u

= 0 . (5.4)

From equation (5.3) we can derive the relation between the partial differentials,

∂u
∂ũ

= 1 ,

∂u
∂ ˙̃u

= −τ ,
(5.5)

yielding the dynamic equations for the neurons:(
1 + τ

d
dt

)
∂L
∂u

= 0 , (5.6)

or explicitly:
τu̇i = Wiri−1 − ui + ei ,

ri = r̄i + τ ˙̄ri ; ei = ēi + τ ˙̄ei ,

ēi = r̄i ⊙ WT
i+1 (ui+1 − Wi+1r̄i) ,

ēN = utrg
N − uN .

(5.7)
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A B

Figure 5.1: Sketch of the setup and dynamics of the principle of least action
framework. (A) Sketch of the setup on the example of a layered feed-forward
network. The setup is similar to feed-forward networks of artificial neurons
(section 2.1.1), but the neurons have internal rate-based dynamics and a subset of
the neurons (output, red dashed line) obtains nudging from a target voltage. The
cost function C is defined over these output neurons. (B) Intuitive mechanism of
the framework. Top: Without learning or nudging the network dynamics drive
the network towards the self-predicting state where the prediction error E is
minimized. Middle: The nudging pulls the network towards the desired target
state, where the membrane potential of the output neurons uN is closer to the
desired target u(trg)

N . In this case the prediction error E is not minimal anymore,
but the total energy L is still minimized. Bottom: The learning rule adjusts the
energy landscape of E such that the output neurons get closer to their target value.
The minimum of E and the minimum of C will fall closer to each other due to the
plasticity mechanism. Figure adapted from Dold [2020].
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5. Time-continuous deep reinforcement learning

Here, ⊙ is the element-wise product of two vectors. Note, that the neurons do not
fire with r̄i but with the instantaneous firing rate ri = r̄i + τr̄′i ⊙ u̇i, which not only
depends on the membrane potential ui but also on the first time derivative u̇i. In
a simplified picture, we say that the neuron fires with a predictive rate by using
the first time derivative of the membrane potential to modulate their firing. To
distinguish the two quantities we call r̄i the steady-state firing rate, which does
not depend on u̇i. r̄i(ui) is the firing rate of the neuron if the membrane potential
ui is constant in time. Henceforth, we refer to r̄i as the activation function of the
neuron. We call ri the instantaneous firing rate, that is the firing rate of the neuron
if it is exposed to a time-varying stimulus.

Note that the operator (1 + τ d
dt ) cancels the low-pass filtering operation x̄(t) =

1
τ

∫ t
−∞ x(t̂) exp

(
− t−t̂

τ

)
dt̂, that is (1 + τ d

dt )x̄ = x (section 5.1.2). This is the ratio-
nale behind the mechanism how the neurons can at the same time integrate up the
input current I and still keep the feed-forward information and feed-back error in
phase. The leaky integrator behavior yields a low-pass filtering u ∝ Ī of the input
I, but the look-ahead firing cancels the low-pass filter. Without the look-ahead
mechanism, each layer in the network would introduce a τ time-lag due to leaky
integrator property. The backpropagated error would lag behind the feed-forward
information. To create the error signal at a given synapse, the input signal first has
to propagate to the output neurons and then back to the synapse of interest. At
each layer, the leaky integrator dynamics would add another τ delay to the signal.
Hence, the bottom-up signal and the top-down error signal would not correspond
to each other, and learning would break down.

The synaptic plasticity

We design the plasticity rule with the aim to minimize the cost C. For that we use
the fact that for small β local changes in the synaptic strength that minimize E
will in turn also minimize the cost C (details in section 5.1.2). The mechinism is
sketched in figure 5.1 B. Hence, we define the plasticity rule as

Ẇi ∝ − dL
dWi

= −
N

∑
l=0

∂L
∂ul

dul
dWi

− ∂L
∂Wi

= − ∂L
∂Wi

= (ui − Wi r̄i−1)r̄T
i−1 = ēi r̄T

i−1 .

(5.8)
In the derivation we can set ∂L

∂ul
= 0 because according to neural dynamics (equa-

tion (5.6)) it decays exponentially to zero with the time-constant τ. Several τ time
after initialization the term can be neglected. The learning rule itself is now a local
plasticity rule with the mismatch (ui − Wi r̄i−1) between the somatic voltage and
the dendritic prediction on the post-synaptic side and with the pre-synaptic firing
rate r̄i−1. Equation (5.8) implements gradient descent on the cost function and can
be interpreted as a predictive dendritic learning rule in the sense of Urbanczik and
Senn [2014].
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In the case of weak nudging, the plasticity rule implements a gradient descent
on the cost function (detailed calculation in section 5.1.2):

− d
dWi

C = − d
dWi

∂

∂β
L
⏐⏐⏐⏐
β=0

= − d
dβ

∂

∂Wi
L
⏐⏐⏐⏐
β=0

=

= lim
β→0

(ui − Wi r̄i−1)r̄T
i−1 ≈ 1

β
(ui − Wi r̄i−1)r̄T

i−1 ,
(5.9)

where the membrane potential and the low-passed firing rate are meant in the
case when nudging is turned on (β > 0). Intuitively, the plasticity forms the
energy landscape E in a way that output membrane potentials will get closer to
their target values even without additional nudging, hence the cost function C is
reduced.

The plasticity rule can be related directly to the well-known backpropagation
algorithm (section 2.1.1, Rumelhart et al. [1986]). We use the fact that far away
from the initialization, we can say that the partial derivative of L according to ui
vanishes. And hence writing out ∂L

∂ui
= 0, we obtain:

ui = Wi r̄i−1 + ēi , with

ēi = r̄′i ⊙ WT
i+1 (ui+1 − Wi+1r̄i) = r̄′i ⊙

[
WT

i+1ēi+1

]
, and

ēN = utrg
N − uN .

(5.10)

Here we made use of ∂L
∂ui

= 0 implying ēi+1 = ui+1 − Wi+1r̄i to establish the
recursive formula for the errors. In the last (output) layer of the network, the
nudging gives rise to the error ēN = utrg

N − uN, which propagates through the
network back to the first layer via the recursive formula (equation (5.10)). Because
the imposed neural dynamics (equation (5.7)) keep the network at ∂L

∂ui
= 0, learning

along the gradient of backpropagation is possible at any time. This is true as long
as the input to the network is smooth enough, such that the look-ahead firing
is informative about the future development of the system. This requirement is
violated in case of non-differentiable input. Intuitively, the look-ahead firing ri =
r̄i + τr̄′i ⊙ u̇i uses the current derivative of the membrane potential to predict its
future course. For non-differentiable input, the time-derivative is not informative
about the future and therefore the predictive firing property breaks down.

Interpretation as cortical microcircuits

The neuro-synaptic dynamic equations (equation (5.7)) give rise to a physiologi-
cal interpretation with excitatory pyramidal neurons and inter-neurons forming
stereotypical microcircuits (figure 5.2 and equation (5.8)). In a feed-forward net-
work (can also be extended to arbitrary architectures) the pyramidal neurons
form the inference pathway similar to the neurons in an abstract neural network
(section 2.1.1), but the pyramidal neurons also show temporal leaky integrator
dynamics (section 2.2.2).
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Figure 5.2: Physiological interpretation of the model equations. In the feed-
forward direction (from bottom to top), the pyramidal neurons act similarly to
abstract neurons in a conventional neural network (section 2.1.1) but the pyramidal
neurons additionally feature leaky integrator dynamics. In the error backprop-
agation direction (from top to bottom), the output neurons are nudged towards
the target value, hence they deviate from the activity predicted from below. In
each hidden layer, stereotypical microcircuits of inter-neurons and pyramidal
neurons project back the prediction error. Importantly, the network is recurrent in
its connection due to the feedback connections, but feed-forward in its function.
Figure adapted from Dold [2020].
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In the error-backpropagation path the error-vector is generated in the output
neurons via nudging towards the target value β

(
u(trg)

N − uN

)
. Note that this

nudging is both weak and conductance-based. We assumed a weak nudging by
requiring a small β in equation (5.9). This implies that the dynamics of the network
is mainly driven by the bottom-up input, the backpropagation of the error only
modulates this activity slightly. The conductive nudging means, that the nudging
current linearly depends on the distance between realized and target membrane
potential, resembling conductance based synaptic connections (section 2.2.2). The
advantage of conductive nudging is that the supervisor turns itself automatically
off if the output is correct, hence it does not disturb an already learned correct
output.

The generated error is communicated back to the deeper layers via stereotypical
microcircuits. Each microcircuit consists of a pyramidal neuron and an inter-
neuron. The naming stems from their biological resemblance (see the following
subsection). The inter-neuron shows an activity that the pyramidal neuron would
show if it did not experience any top-down error nudging. Both the inter-neuron
and the pyramidal neuron project to the apical dendrite of the pyramidal neuron
in the layer below, but the inter-neuron does so with a negative sign. Hence, they
compute the error ēi at the apical dendrite of the pyramidal neuron that nudges
the somatic voltage. In the error term we can identify the top-down pathway and
the inter-neuron circuit as

ēi = r̄′i
modulator

⊙

⎛⎜⎝WT
i+1ui+1  

top-down

− WT
i+1Wi+1r̄i  

via inter-neuron

⎞⎟⎠ . (5.11)

Senn et al. [in preparation] further show that the requirement of weight sharing
among the physically distinct synapses can be relaxed by using the arguments from
feedback alignment [Lillicrap et al., 2016] and by learning the lateral weights. In
this project, we stick to a formulation with weight sharing because the simulation
of the model is computationally demanding even with shared weights, and we
focus on the aspects of reinforcement learning.

Biological inspiration and application to the MNIST dataset

Apart from the existence of pyramidal- and inter-neurons, the presented frame-
work relies on three main biological inspirations (and postdictions).

In the principle of least action framework, the neurons fire with r = r̄ + τ ˙̄r
instead of the traditionally assumed activation function r̄ that only depends on
the instantaneous membrane potential (figure 5.3 A-B). Köndgen et al. [2008] have
shown, in in vitro experiments, that neurons can tract sinusoidal current input
up to 200 Hz surprisingly fast. The firing rate is sometimes even phase-advanced
compared to the current input in spite of the leaky integrator nature of neurons
(figure 5.3 C). Senn et al. [in preparation] argue that similar look-ahead dynamics
can be derived in the Hodgkin-Huxley model [Hodgkin and Huxley, 1952].
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Second, the dynamic equations (equation (5.7)) and their microcircuit interpre-
tation (figure 5.2) require that not the firing rate but the membrane potential is
transmitted from the pyramidal neuron in layer l + 1 to the apical dendrite of the
pyramidal neuron in layer l. Similarly, the membrane potential is transmitted from
the inter-neurons to the apical dendrite of the pyramidal neurons. This can be
achieved by assuming linear activation functions, but this is not favorable because
it poses a strong restriction on the realizations. Alternatively, we can achieve it
by using the filtering property of short-term depression. Inspired by the work of
Pfister et al. [2010], Senn et al. [in preparation] show that short-term depression can
filter the pre-synaptic membrane voltage, and hence a synapse with an appropriate
short-term depression can transmit the pre-synaptic membrane potential to the
post-synaptic neuron. Essentially, the non-linearity of the activation function and
the non-linearity introduced by the short-term plasticity cancel out each other. If
we assume that filtering via short-term depression is present on the apical dendrite
of the pyramidal neurons, we obtain the necessary membrane potential transfer
without restrictions on the activation function.

Third, the two types of neurons in the microcircuits received their names due to
their similarity to neuron types found in the mammalian brain. Pyramidal neurons
are the most abundant type of neuron in the neocortex [Spruston, 2008]. They
are usually excitatory in their effect, and they show a typical morphology with a
pyramid-shaped soma, and large tree-like apical and basal dendrite. Pyramidal
neurons receive input from large distances, also from outside of the neocortex.
Spike-generation takes place at the soma, but electric effects of action-potentials
propagate back to the dendrites as well. This so-called backpropagating action
potentials justify the idea that both somatic and dendritic quantities could be
treated as local information for plasticity [Urbanczik and Senn, 2014].

Inter-neurons constitute a more diverse family of neurons [Markram et al., 2004].
In spite of their variability, most inter-neurons are inhibitory and they preferably
form local intra-cortical synaptic connections, which makes them good candidates
for forming the stereotypical microcircuits.

Senn et al. [in preparation] apply the theory to the MNIST dataset [LeCun et al.,
1998] and show that learning is indeed possible over several hidden layers both
with the standard model (figure 5.3 D) and with the relaxed weight requirements
on the weight sharing. The learning speed is on par with standard backprop-
agation in terms of improvement per iteration. Note that equating iterations
between a time-continuous system and a discrete system necessarily introduces
simplifications, and is therefore only approximative.

Finally, note that the presented network is feed-forward from the point of view
of its function but it is recurrent in its structure. This paradox is resolved by the
following reasoning. If we consider the synaptic connections among the neurons
as a directed graph1, the network is recurrent. There are cycles between the
pyramidal neurons of the consecutive layers and between the pyramidal neurons
and the corresponding inter-neurons. This is how a researcher from neuroscience

1For a textbook on graph theory see Grimaldi [2003].
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Figure 5.3: Motivation and application of the principle of least action frame-
work. (A) Upon a sinusoidal input, the realized membrane potential u follows the
input I with a τ lag. The future discounted voltage is phase-advanced compared
to the membrane potential ũ and is in phase with the modulating input. Figure
adapted from Dold [2020]. (B) Similarly, the low-passed membrane potential r̄
lags behind the input I. By the look-ahead firing mechanism, the neuron fires
with r in phase with the input. Figure adapted from Dold [2020]. (C) Köndgen
et al. [2008] have found experimental evidence that neurons can follow closely the
input with their firing pattern over a broad range of frequencies. In some cases,
they even show phase-advanced firing compared to the input. Figure taken from
Köndgen et al. [2008]. (D) Supervised learning with the time-continuous model
is on par with learning with backpropagation (data from Dold [2020]). Here, a
membrane time-constant τ = 10 ms was used, and each image was shown for 10τ.
Figure adapted from Dold [2020].
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would think about the network. However, the information processing goes only
into the direction from input to output without cycles. The connections from
the inter-neurons to the pyramidal neurons and from the higher layers to lower
layers propagate only the errors by design. Furthermore, the magnitude of the
backpropagated signal is by design β-times smaller than the forward propagated
signal. The cyclic connections could, in principle, lead to significant changes
as in chaotic dynamical systems, but we did not observe such behavior in the
simulations. Hence, the network processes the input in a feed-forward manner
similarly to feed-forward ANNs, and they do not use long-term memory as,
for example, recurrent neural networks in machine learning [Hochreiter and
Schmidhuber, 1997]. Finally, this observation only holds for the feed-forward
example in this thesis.

5.1.2 Detailed calculations of the principle of least action
framework

Properties of the future discounted voltage

In the following, we give a definition and main properties of the future discounted
voltage from equations (5.3) and (5.5). Although, the calculations are not particu-
larly complex, the rigorous separation of the steps gives a better overview of the
model.

Definition 1 (Future discounted voltage) Given a membrane potential u : R → R

with t ↦→ u(t), the future discounted voltage ũ(t) with the time-constant τ is defined as
the look-ahead of u(t):

ũ(t) :=
1
τ

∫ ∞

t
u(t̂) exp

(
− t̂ − t

τ

)
dt̂ . (5.12)

First important property of the future discounted voltage is the look-back rela-
tion to the membrane potential.

Property 1 (Look-back property) The membrane potential u can be reconstructed via
a look-back from the future discounted voltage,

u = ũ − τ ˙̃u . (5.13)

Proof. First we observe from the definition, that

˙̃u =
d
dt

[
exp

(
t
τ

)
1
τ

∫ ∞

t
u(t̂) exp

(
− t̂

τ

)
dt̂
]
=

=
1
τ

exp
(

t
τ

)
1
τ

∫ ∞

t
u(t̂) exp

(
− t̂

τ

)
dt̂ − exp

(
t
τ

)
1
τ

u(t) exp
(
− t

τ

)
=

=
1
τ
(ũ − u) .

(5.14)
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Using the result we obtain:

ũ − τ ˙̃u = ũ − τ
1
τ
(ũ − u) = u . (5.15)

The second property summarizes the derivatives of u according to ũ and ˙̃u
(equation (5.5)), which allowed us to formulate the Euler-Lagrange equations in
terms of the variable u.

Property 2 (Partial derivative relationship) Between u and ũ we have the following
derivatives:

∂u
∂ũ

= 1 ,

∂u
∂ ˙̃u

= −τ .
(5.16)

Proof. Using u(ũ, ˙̃u) = ũ − τ ˙̃u (property 1) first we can immediately take the
partial ∂u

∂ũ :
∂u
∂ũ

= 1 . (5.17)

Similarly by taking ∂u
∂ ˙̃u :

∂u
∂ũ

= −τ . (5.18)

Inverting the low-pass filtering

For the sake of clarity we define the already introduced low-pass filtering operation
and the inverse of it.

Definition 2 (Low-pass filer) Given a function x(t) : R → R, t ↦→ x(t), the low-pass
filter x̄(t) with the time-constant τ is defined as:

x̄(t) :=
1
τ

∫ t

−∞
x(t̂) exp

(
− t − t̂

τ

)
dt̂ . (5.19)

Definition 3 (The look-ahead operator) The look-ahead operation with time-constant
τ for a function x(t) : R → R, t ↦→ x(t) is defined as:

(1 + τ
d
dt

)x(t) (5.20)

Lemma 1 (Inverting the low-pass filter) The low-pass filter operation and the look-
ahead operation are inverse of each other.

Proof.
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I. First, we show (1 + τ d
dt )x̄ = x

First we look at:

d
dt

x̄(t) =
d
dt

[
1
τ

∫ t

−∞
x(t̂) exp

(
− t − t̂

τ

)
dt̂
]
=

= −1
τ

exp
(
− t

τ

)
1
τ

∫ t

−∞
x(t̂) exp

(
t̂
τ

)
dt̂ + exp

(
− t

τ

)
1
τ

x(t) exp
(

t
τ

)
=

= −1
τ

x̄(t) +
1
τ

x(t) .
(5.21)

Using this, we calculate:

(1 + τ
d
dt

)x̄(t) = x̄(t) + τ
d
dt

x̄(t) = x̄(t)− τ

(
−1

τ
x̄(t) +

1
τ

x(t)
)
= x(t) . (5.22)

II. Second, we show (1 + τ d
dt )x = x

First, by integration by parts we calculate:

τ
d
dt

x = τ
1
τ

∫ t

−∞

(
dx
dt

⏐⏐⏐⏐
t̂

)
exp

(
− t − t̂

τ

)
dt̂ = exp

(
− t

τ

) ∫ t

−∞

(
dx
dt

⏐⏐⏐⏐
t̂

)
exp

(
t̂
τ

)
dt̂ =

= exp
(
− t

τ

)[
x(t̂) exp

(
t̂
τ

)⏐⏐⏐⏐t̂=0

t̂=−∞
−
∫ t

−∞
x(t̂) exp

(
t̂
τ

)
1
τ

]
=

= x(t)− x̄(t) .
(5.23)

Using this, we calculate:

(1 + τ
d
dt

)x = x̄ + x − x̄ = x . (5.24)

Properties of the neural and synaptic dynamics

In the following we give the calculations of the neural and synaptic dynamics.

Definition 4 (Neural dynamics) Given the total energy L = E + C, the neural dy-
namics is postulated to follow the Euler-Lagrange equation with the variables (ũ, ˙̃u):

∂L
∂ũ

− d
dt

∂L
∂ ˙̃u

= 0 . (5.25)

Lemma 2 (Neural dynamics) Given the total energy L = E + C the neural dynamics
is by governed by the equation: (

1 + τ
d
dt

)
∂L
∂u

= 0 . (5.26)
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Proof. The proof results by substituting the operator relations from property 2 in
definition 4:

0 =
∂L
∂ũ

− d
dt

∂L
∂ ˙̃u

=
∂L
∂u

∂u
∂ũ

− d
dt

∂L
∂u

∂u
∂ ˙̃u

=
∂L
∂u

− d
dt

∂L
∂u

(−τ) =

(
1 + τ

d
dt

)
∂L
∂u

.

(5.27)

First, we show that the partial derivative ∂L
∂u decays exponentially with the

ongoing dynamics.

Lemma 3 (Steady-state neural dynamics) The partial derivative ∂L
∂u decays exponen-

tially, and disappears for t → ∞ as:

∂L
∂u

=
∂L
∂u

⏐⏐⏐⏐
t0

exp
(
− t − t0

τ

)
(5.28)

with ∂L
∂u

⏐⏐⏐
t0

the initial value at t0.

Proof. Proof is given by the solution of the dynamic equation defined in lemma 2.

Remark 1. The steady-state neural dynamics are made possible by the look-ahead
firing property of the neurons. With the look-ahead, the neurons are able to
follow the input as long as the input is differentiable and does not contain any
discontinuities (jumps), hence the system stays in its steady-state while at the same
time it is controlled by the dynamic equations. If the input contains jumps, then
the network drops out of the steady-state dynamics but it relaxes back to it with
the time-constant of τ. Loosely speaking: The aim of the introduced dynamics
is to do away with the leaky integrator dynamics and make the system closely
follow the input.

Lemma 4 (Interchangeability of partial and total derivatives with respect to W)
Given the dynamics in lemma 2, far away from the initialization the total and the partial
derivatives according to W can be exchanged:

dL
dW

=
∂L
∂W

. (5.29)

Proof. For this proof we will proceed similarly as in the case of the derivation of
the Euler-Lagrange equations. We look at a time interval [t1; t2] that is sufficiently
large, that is t2 − t1 ≫ τ. We consider an arbitrary variation δW(t) such that
it disappears at the edges of the interval, δW(t1) = δW(t2) = 0. The variation
δW(t) will also lead to the variations δũ(t) and δ ˙̃u(t) of the solutions of the
Euler-Lagrange equation. Furthermore, we consider the effect of the infinitesimal
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variation on the action L with the variational parameter ϵ. At any given point in
time we can express the variation with the variational parameter:

dL
dW

δW =
d
dϵ

L(ũ + ϵδũ, ˙̃u + ϵδ ˙̃u, W + ϵδW)

⏐⏐⏐⏐
ϵ=0

=
∂L
∂ũ

δũ +
∂L
∂ ˙̃u

δ ˙̃u +
∂L
∂W

δW

(5.30)
Using this we calculate:∫ t2

t1

dL
dW

δWdt =
∫ t2

t1

∂L
∂ũ

δũ +
∂L
∂ ˙̃u

δ ˙̃u +
∂L
∂W

δWdt . (5.31)

Here, we use integration by parts:

∫ t2

t1

∂L
∂ ˙̃u

δ ˙̃udt =
∂L
∂ ˙̃u

δ ˙̃u
⏐⏐⏐⏐t2

t1

−
∫ t2

t1

d
dt

(
∂L
∂ ˙̃u

)
δũdt . (5.32)

Plugging this into equation (5.31) we obtain:

∫ t2

t1

dL
dW

δWdt =
∫ t2

t1

δũ
(

∂L
∂ũ

− d
dt

∂L
∂ ˙̃u

)
  

=0

dt − ∂L
∂ ˙̃u

δ ˙̃u
⏐⏐⏐⏐t2

t1

+
∫ t2

t1

∂L
∂W

δWdt =

= − ∂L
∂ ˙̃u

δ ˙̃u
⏐⏐⏐⏐t2

t1

+
∫ t2

t1

∂L
∂W

δWdt ,

(5.33)

where we used that the system follows the dynamics ∂L
∂ũ − d

dt
∂L
∂ ˙̃u = 0. Rearranging

the terms and using the operational relation (property 2) yields:

∫ t2

t1

(
∂L
∂W

− dL
dW

)
δWdt = − τ

∂L
∂u

δ ˙̃u
⏐⏐⏐⏐t2

t1

. (5.34)

On the right-hand side the term evaluated at t1 disappears because the variation
is zero δ ˙̃u(t1) = 0. At t2 we know that ∂L

∂u

⏐⏐⏐
t2

∝ exp
(
− t2−t1

τ

)
due to lemma 3. As-

suming a sufficiently large time interval and a sufficiently well-behaved variation
δW leading to a sufficiently well-behaved (non-exploding) δũ, we can neglect the
term at t2 as well, leading to:∫ t2

t1

(
∂L
∂W

− dL
dW

)
δWdt = 0 . (5.35)

Finally, because of the (almost) arbitrary choice of δW, we conclude that the partial
and total derivatives can be exchanged:

∂L
∂W

=
dL
dW

. (5.36)
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Remark 2. We note again, that the proof relies on the assumption of a well-behaved
variation of δW(t), which does not destroy the system by introducing exploding
behavior.

Lemma 5 (Interchangeability of partial and total derivatives with respect to β)
Given the dynamics in lemma 2, far away from the initialization the total and the partial
derivatives according to β can be exchanged:

dL
dβ

=
∂L
∂β

. (5.37)

Proof. The proof goes exactly as the proof of lemma 4 but instead we consider the
variation δβ(t).

After all this preparation we can state the complete theorem.

Theorem 1 (Learning in the principle of least action framework) Consider a total
energy function L composed of a prediction error E and a cost function term C:

L = E + βC =
N

∑
i=1

1
2
∥ui − Wi r̄i−1∥2 + β

1
2

uN − u(trg)
N

2
(5.38)

with small β ≪ 1, and formulated both with the membrane potential u and with the
future discounted voltage ũ(t) := 1

τ

∫ ∞
t u(t̂) exp

(
− t̂−t

τ

)
dt̂. Furthermore, consider the

imposed neural dynamics that keep the action A =
∫

L(ũ, ˙̃u)dt extremal,

∂L
∂ũ

− d
dt

∂L
∂ ˙̃u

= 0 . (5.39)

Third, consider the postulated plasticity rule:

Ẇi ∝ − ∂E
∂Wi

∀i ∈ {1, . . . , N} . (5.40)

Then, the plasticity rule performs gradient a descent on the cost function C.

Proof. The proof appears as a corollary of the calculations done in this section.
Starting our from the gradient descent on the cost function we calculate.

− dC
dWi

Form of L; equation (5.38)
= − d

dWi

∂

∂β
L
⏐⏐⏐⏐
β=0

lemma 5
= − d

dWi

d
dβ

L
⏐⏐⏐⏐
β=0

=

= − d
dβ

d
dWi

L
⏐⏐⏐⏐
β=0

lemma 4
= − d

dβ

∂

∂Wi
L
⏐⏐⏐⏐
β=0

= lim
β→0

(ui − Wi r̄i−1)r̄T
i−1 ≈

≈ 1
β
(ui − Wi r̄i−1)r̄T

i−1 ∝ − ∂E
∂Wi

(5.41)

where the quantities ui, r̄i and r̄i−1 are meant with β ̸= 0 and β ≪ 1 small.
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In summary, we have shown that in this framework the plasticity rule carries
out a gradient-descent learning on the cost function. In particular, in case of a
layered feed-forward network, the learning corresponds to the backpropagation
algorithm (section 5.1.1). Naturally, the learning rate still has to be properly chosen
to ensure the convergence of gradient descent.

5.1.3 Policy gradient reinforcement learning with a deep neural
network

As a baseline for comparison, we consider the standard policy gradient with a
deep neural network as a model [Sutton and Barto, 2018]. The following model
does not have any real notion of time unlike the time-continuous approach, this
model only implements a stochastic action to a given state (input). We consider a
neural network parametrized with W and with a softmax readout on the possible
actions (available classes). In general, W is a placeholder for the parameters (all
the weights) of the deep network. We will see that the formula falls into two parts:
1) a term interpreted as an error-vector on the action values, that is the last layer in
the network; and 2) a backpropagation of this action vector through the network.
This interpretation is especially important when we compare it to the mechanistic
model in the least action framework. With the softmax action selection policy, the
probability of an action ai to an environment-state (input image) x is given by:

p(ai|x) = softmax
i

(a) =
exp(qi(x))

∑j exp(qj(x))
, (5.42)

where the function qi(·) denotes the action value of action ai, which is implicitly
parameterized by W . In a physiological interpretation qi(x) is for example the
firing rate of neuron i in the action layer. Following the derivation given in Sutton
and Barto [2018], we apply policy gradient to the model, i.e. gradient ascent on the
expected reward with respect to policy with the parameterization W . The mean
expected reward is given by:

⟨R⟩ = ∑
x

∑
i

R(ai, x)p(ai|x) , (5.43)

where R(ai, x) is the observed reward if action ai is taken in response to an input
state x, and p(ai|x) is the probability to take action ai given an environment state
x. Hence:

∂W ⟨R⟩ = ∂W ∑
x

∑
i

R(ai, x)p(ai|x) = ∑
x

∑
i

R(ai, x)∂W p(ai|x) =

= ∑
x

∑
i

R(ai, x)∂W log(p(ai|x))p(ai|x) .
(5.44)

We apply the chain rule for the derivation with W :

∂W = ∑
k

∂qk
∂W

∂

∂qk
, (5.45)
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which yields:

∂W ⟨R⟩ = ∑
x

∑
i

R(ai, x)∑
k

[
∂qk
∂W

∂

∂qk
log(p(ai|x))

]
p(ai|x) (5.46)

Using equation (5.42), we calculate:

∂

∂qk
log(p(ai|x)) =

∂

∂qk

[
qi − log

(
∑

j
exp(qj)

)]
=

= δki −
exp(qk)

∑j exp(qj)
= δki − p(ak|x) .

(5.47)

Plugging this into equation (5.46), yields the formula for the gradient:

∂W ⟨R⟩ = ∑
x

∑
i

p(ai|x)R(ai, x)∑
k

∂qk
∂W

[δki − p(ak|x)] . (5.48)

In this formula we can associate to each term an interpretable meaning:

1. The sum over the states ∑x is the average over the training set, for example
in a classification it would be the average over all training images. Here for
the sake of simplicity, we assumed that the probability distribution of the
states is flat.

2. The action-probability-weighted sum ∑i p(ai|x) means a sampling from the
actions taken in response to state x.

3. R(ai, x) is the obtained reward. This can be understood as a modulator
signal on the plasticity, similar to the third factor in three factor learning
rules [Frémaux and Gerstner, 2015]. Following [Sutton and Barto, 2018],
we replace R(ai, x) by the reward prediction error δRP = R(ai, x)− ⟨R⟩. We
can do this because the addition of a constant baseline does not change the
gradient. In practice, the ⟨R⟩ has to be estimated during learning via for
example a moving average.

4. ∑k
∂qk
∂W contains implicitly the Jacobian matrix from the output layer of the

network to the single synapses. For a feed-forward neural network it could
be rolled out to the backpropagation algorithm.

5. [δki − p(ak|x)] behaves like an error-vector in the output layer.

The equation results in the following algorithm with online learning/stochastic
gradient ascent updates (algorithm 5.1). In this work, we use the standard policy
gradient algorithm as a comparison for the introduced learning rules.
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Algorithm 5.1: Standard policy gradient algorithm applied to deep rein-
forcement learning. The parameters γ, Niterations and η are metaparameters
of the learning algorithm: η is the learning rate, γ is the parameter of the
moving average and Niterations is the number of iterations to be made.
Initialize W randomly;
⟨R⟩ := 0;
for n := 1 to Niterations do

get state/image x from dataset;
obtain action values q;

select action i with softmax p(ai|x) = exp(qi)
∑j exp(qj)

;

obtain reward R := R(ai, x);
update parameters W = W + ηR(ai, x)∑k

∂qk
∂W [δki − p(ak|x)];

update the mean reward ⟨R⟩ = γR + (1 − γ)⟨R⟩;
end

5.2 Time-continuous deep reinforcement learning

We introduce the framework of reinforcement learning with the principle of least
action framework. First, we give a general description of the working mechanism
of the model and then we devote a section to the detailed calculations. Second,
because the simulations of the framework are computationally expensive, we
also describe an analogy of the model using artificial neural networks without
temporal dynamics. This analogous model is helpful for simulations where using
the full model is prohibitively expensive. Further, it gives another intuitive view
on the model.

5.2.1 Theory outline

In the following, we describe the setup of the time-continuous reinforcement
learning model. In the current project, we applied the framework to reinforcement-
learning-based image classification. The main components of the model are: 1)
the network, which is a feed-forward network in our case, 2) the differentiable
input, 3) the action selection mechanism, 4) the exploration mechanism, 5) the soft
winner-nudges-all (WNA) circuit that gives rise to the error-vector, and finally 6)
the local plasticity rule.

Network setup, cost, energy and the network dynamics

The used network is a feed-forward network with a WNA circuit in the action
layer (figure 5.4). The input is presented at the bottom of the network, in the
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lowest layer, as a current. The total energy is given as in the case of supervised
learning:

L = E + βCWNA =
N

∑
i=1

1
2
∥ui − Wi r̄i−1∥2 + βCWNA , (5.49)

where the prediction error E is the same as in the case of the supervised learning
model. We cannot give a closed form of CWNA in case of reinforcement learning
because the theory only allows curl-free connection patterns and the required
WNA structure has a curvature. Instead, we define not CWNA, but rather the
error ēN (compare to equation (5.7)) and argue that ēN can be linearized for any
membrane potential values and hence a corresponding Clin

WNA can be given. The
detailed calculations are given in section 5.2.2. Because β is required to be small,
all previous calculations apply (section 5.1.2). Hence, we postulate the neural
dynamics:

τu̇i = Wiri−1 − ui + ei ,
ri = r̄i + τ ˙̄ri ; ei = ēi + τ ˙̄ei ,

ēi = r̄i ⊙ WT
i+1 (ui+1 − Wi+1r̄i) ,

ēN = βMr̄N ,

(5.50)

where M is the WNA matrix with mii = 1 and mij = − 1
K−1 ∀i ̸= j, with K neurons

in the last layer. The matrix M represents the WNA connectivity in the output
layer. The neurons in the last layer project each to itself with excitatory connections
and to each other with inhibitory connections, similar to the architecture used in
the reinforcement learning model of Frémaux et al. [2013]. Note that the WNA
circuit is multiplied by β, hence it is much weaker than the bottom-up signal.
Crucially, the role of the WNA is not the action selection, but the generation of
an error-vector signal, which is then propagated back to the lower layers via the
microcircuits.

Input, action selection and the exploration

In the presented classification setup, each image is presented for a given Timage
time. For a smooth transition, the input current I(t) for each neuron is ramped up
in the beginning and phased out at the end of the presentation in a differentiable
way according to (figure 5.5):

I(t) =

⎧⎪⎪⎨⎪⎪⎩
I0
2

(
1 − cos

(
t

Tramp
π
))

if t ≤ Tramp ,

I0 if Tramp < t < Timage − Tramp ,
I0
2

(
1 + cos

(
t−(Timage−Tramp)

Tramp
π
))

if Timage − Tramp < t .
(5.51)

Here Tramp is the time of the ramp-up and phase-out phase, and I0 is the un-
modulated value of the current to the given neuron. The time is meant as inside
one of the image presentations. The smooth image presentation preserves the
input-following property of the network. With jumps between the single images,
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Figure 5.4: Network setup of the reinforcement learning model In the feed-
forward direction (from bottom to top), the pyramidal neurons act similarly as
abstract neurons in a conventional neural network, but the pyramidal neurons
additionally have a leaky integrator dynamics. The output or action neurons in the
last layer receive additional noise to enhance exploration. The action neuron with
the highest activity represents the decision of the network. In the error backprop-
agation direction (from top to bottom) the output neurons nudge each other via
the WNA circuit, hence their activity differs from the dendritic prediction. In each
hidden layer, stereotypical microcircuits of inter-neurons and pyramidal neurons
project back the prediction error. In contrast to the supervised case (figure 5.2),
the error-vector is not created by an external supervisor but by the network itself.
Figure adapted from Dold [2020].
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5.2 Time-continuous deep reinforcement learning

the network would still learn, but the transient phases would put a lower limit
on Timage. Furthermore, the transient phase should be smaller than the constant
phase.

For the action readout, we associate each of the neurons in the output layer with
one of the possible actions. In our classification setup there are discrete actions,
hence we can directly identify actions with neurons. We take the neuron with the
highest low-pass activity r̄ before the phase-out of each presented image starts
(figure 5.5). In the pathological case of two or more equal winner neurons, the
winner is chosen randomly.

time [ms]

0

in
pu

t c
ur
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nt

 [a
.u

.]

decision

Timage

decision

Figure 5.5: Example of the time-continuous input current. The input current to
the first layer of the neurons is modulated with time-continuous and everywhere
differentiable ramp up and ramp down. The differentiable input makes sure that
there are no transients between the inputs where assumptions of the input tracking
property are violated. There is no overlap between the inputs; the previous input
is already faded out before the presentation of the next input starts. The colors
indicate the distinct input images, the vertical dotted lines separate the inputs and
the vertical arrows the read-out time of the decisions.

To encourage exploration we add noise to the action neurons. The noise term
appears as an additional stochastic current input to the basal dendrite of the
neurons. To include a realistic dynamics to the neurons, we assume that the noise
ξ follows an Ornstein-Uhlenbeck [Honerkamp, 1993] process with:

dξ =
1

τOU
(µOU − ξ)dt +

√
2

τOU
σOUdW , (5.52)

where τOU is the autocorrelation time, µOU is the equilibrium point and σOU is
the standard deviation of the steady-state solution. dW is the Wiener-process
[Honerkamp, 1993] with zero mean and a variance of one. The mean µOU of
the Ornstein-Uhlenbeck process is set to zero; a non-zero µOU would only mean
a constant bias in the neuron activity, which would be incorporated into the
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5. Time-continuous deep reinforcement learning

learning. The resulting noise dynamics has a similar characteristic as the noise
in the LIF Sampling model (section 3.2), and hence can be thought of as a result
of background activity arriving at the basal dendrite of the neuron. Using the
equation

˙̄ξ =
ξ − ξ̄

τ
, (5.53)

we incorporate the noise into the model by modifying the error term of the action
neurons to include the noise:

EN =
1
2

ui − Wi r̄i−1 − ξ̄
2 . (5.54)

The noise is assumed to be independent and follow the same stochastic process
for each action neuron.

We argue that this kind of noise is more biological than an ϵ-greedy policy found
in classical machine learning. In the ϵ-greedy policy [Sutton and Barto, 2018], the
most active action is chosen with a probability of 1 − ϵ and a random action
with a probability of ϵ ≪ 1. This would require an additional mechanism that
stochastically turns-on equating the probability of the actions. Further, it should
be in synchrony with the presentation of the image. In contrast, our exploration
noise only requires a source of fluctuating input. This might be readily available
from the activity of other brain areas similar to the noise mechanisms in chapter 3
and Dold et al. [2019]. Furthermore, the noise input does not interfere with the
error-vector generation from the WNA network because the noise appears on the
basal dendrite of the action neurons, and hence it is part of the dendritic prediction.

Note, that the expected membrane potential of the action neurons, where the
expectation is taken over the realization of the exploration noise, plays the same
role as the q-values of the actions in the policy-gradient learning rule (section 5.1.3).
To emphasize this equivalent function and to simplify the notation, we refer to the
expected membrane potentials as q-values: q = ⟨u⟩noise. Here, ⟨·⟩noise means the
expected value over the possible realization of the noise.

The plasticity rule

We postulate the plasticity rule as a combination from the standard principle of
least action framework [Senn et al., in preparation] and from the theory of three-
factor learning rules [Frémaux and Gerstner, 2015, Gerstner et al., 2018], similar to
the learning rule in chapter 4. The dendritic prediction errors are integrated into a
decaying eligibility trace over time with a time-constant of τelig. When a reward
signal arrives, the eligibility trace is applied as weight update modulated by the
reward prediction error. Summarized, it yields:

Ẇi =
η

τelig
(R − ⟨R⟩)

∫ t

−∞
κ(t̂) exp

(
− t − t̂

τelig

)
dt̂ ,

κ(t) = (ui − Wi r̄i−1)  
∝ēi

r̄T
i−1 ,

(5.55)
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with η the learning rate, R the immediate received reward and ⟨R⟩ the expected
reward under the current policy, that is under the policy given by the current
network parameters. The term R − ⟨R⟩ acts as the reward-prediction-error in
biology [Schultz et al., 1997, Niv, 2009], in reinforcement learning models [Fré-
maux and Gerstner, 2015, Sutton and Barto, 2018], and in particular in the policy-
gradient method (section 5.1.3). ⟨R⟩ implicitly takes the role of a critic module
from actor-critic architectures [Sutton and Barto, 2018]. In our implementation,
⟨R⟩ is estimated by a moving average updated in the iterations as:

⟨R⟩n = ⟨R⟩n−1 γ + (1 − γ) Rn−1 , (5.56)

with γ the meta-parameter of the moving average. A small γ means that ⟨R⟩ tries
to follow closely the immediate rewards and a large γ means that the expected
reward is a moving average over many iterations. It can be shown (section 5.2.2),
that the postulated learning rule implements Hill-climbing on the expected re-
ward ⟨R⟩. The winner-nudges-all error eWNA = ēN = βMr̄N lies within 90
degrees of the policy-gradient error ePG = δij − p(action i) with j the taken action
(equation (5.48)). Mathematically, the scalar product of the two error-vectors is
non-negative

⟨eWNA; ePG⟩ ≥ 0 , (5.57)

where ⟨·; ·⟩ denotes the Euclidean scalar product. The similarity and the differences
are exemplified in figure 5.6.

Homeostatic plasticity, its inspiration and importance

Two types of homeostatic plasticity aid the learning. The first type, we call extreme
value homeostasis and it acts in a way that it keeps the membrane potential of the
neurons within limits. It is given by

Ẇe-hom
i =

ηe-hom

τelig
|R − ⟨R⟩|

∫ t

−∞
κehom(t̂) exp

(
− t − t̂

τelig

)
dt̂

κe-hom(t) =
[
max (0; uulow − ui)− max

(
0; u − uuhigh

)]
r̄T

i−1 .

(5.58)

If the membrane potential of the neuron, and correspondingly the activity, is above
the threshold value of uuhigh, then all incoming synapses are reduced. Conversely,
if the membrane potential is below the lower threshold uulow, then all the incoming
synapses are strengthened. ηe-hom is the learning rate of this type of homeostasis.

The form of the homeostasis is analogous to the form of the reward maximizing
plasticity (equation (5.55)), hence we can understand it similarly as a combination
of an eligibility trace of local quantities and a modulating factor. The membrane
potential is compared to an expected range of valid values instead of the dendritic
prediction. The homeostasis is modulated by a third factor, but importantly not by
the reward prediction error, but by its absolute value. In this sense the three-factor
homeostatic plasticity is similar to surprise-based or modulated learning rules,
for example reviewed in Gerstner et al. [2018]. For the function, the homeostatic
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Figure 5.6: Difference between policy-gradient and winner-nudges-all error.
The winner-nudges-all error eWNA lies within 90 degrees of the policy-gradient
error ePG (equation (5.48)), that is ⟨eWNA; ePG⟩ ≥ 0. However the differences are
apparent. (A) In the early phase of learning, when all the action neurons have
similar activity and hence all actions have similar probability, the magnitude of ePG
(B) is larger than that of eWNA (C). Hence, exploration helps the learning to break
the symmetry. (D) In the late phase of learning, when one action dominates the
policy-gradient error ePG disappears (E), consolidating the learning. In contrast,
(F) eWNA is large in this phase, and the learning tends to explode. A homeostasis
is required to keep the learning from this explosion (equation (5.58)). For the sake
of simplicity, we work with dimensionless quantities, but eWNA and ePG take the
same dimension.
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plasticity should not react to the sign of the reward prediction error, because its
effect is not correlated with the taken action.

Furthermore, at the late stage of learning when the obtained reward reaches
a plateau and the predicted reward ⟨R⟩ approximates the obtained error, the
homeostatic plasticity should also disappear to allow for the consolidation of
the learned policy. The extreme-value homeostasis prohibits the divergence of
the learning in the late phase of learning with the winner-nudges-all error (see
figure 5.6 and figure 5.7). If a class is already learned correctly, while others are
still learning, then the diverging winner-nudges-all error would drive the learning
only towards the already learned action. This divergence would interfere with the
learning of the other classes and the learning would break down. In summary,
extreme value homeostasis compensates for the run-away self-strengthening effect
of the already learned classes.
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Figure 5.7: Difference between policy-gradient and winner-nudges-all error in
the phase space. The figures show the resulting error-vectors in the phase-space
of the q-values. With this choice, we simplified the plots, because we neglected
the non-linearities of the activation functions, but the message stays the same. (A)
In case of the policy-gradient ePG, the magnitude of the error is large at the q1 = q2
separatrix and small further away from it. (B) In the case of the winner-nudges-all
error eWNA, we observe the opposite: the norm of the error-vector is small at
the separatrix and explodes further away. The difference between both errors
appears on the figures as the streamplots agree in the direction, however not in the
magnitude. The extreme-value homeostatic plasticity is required to compensate
for the explosion.

We call the second sort of homeostatic plasticity midpoint homeostasis. It pulls
the membrane potential of the neurons to a common natural point. Effectively, it
pulls the activity of the action neurons to a good starting point and further helps to
avoid that a single learned action dominates the learning. However, we implement
it for every synapse because we deemed a special plasticity acting only on the
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output neurons biologically less plausible. In formulas, the midpoint homeostasis
states

Ẇm-hom
i =

ηm-hom

τelig
|R − ⟨R⟩|

∫ t

−∞
κm-hom(t̂) exp

(
− t − t̂

τelig

)
dt̂ ,

κm-hom(t) = (umid − ui) r̄T
i−1 .

(5.59)

with umid the target midpoint membrane potential and ηm-hom the learning rate
of this type of homeostasis. The rational behind the midpoint homeostasis is
that exploration should be aided in higher dimensional action spaces. If, by
initialization or by chance during learning, the network is unable to take the
rewarded action, the midpoint homeostasis pulls the actions close to each other by
changing the synaptic weights. When the action values are closer to each other than
the typical magnitude of the exploration, then the network will eventually explore
the rewarded action. Similarly to the extreme-value homeostasis, the midpoint
homeostasis is modulated by the absolute value of the reward-prediction error and
the form of the plasticity rule is analog to the reward-maximizing plasticity. The
midpoint homeostasis is inspired by the homeostatic learning rule in [Habenschuss
et al., 2012], where a similar rule is derived for unsupervised learning.

Note, we added both homeostatic learning rules in a bottom-up fashion inspired
by other works and the described rationales. They do not have rigorous derivations
from first principles.

5.2.2 Detailed calculations of the time-continuous reinforcement
learning model

In the following, we give the detailed calculations regarding the reinforcement
learning in the principle of least action framework. First, we show that the current
form of the theory can only support curl-free synaptic connectivity from the cost
function, and argue why the theory still applies via local approximations. Then,
we establish the necessary mathematical groundwork and show the proof that
learning in the winner-nudges-all error approximates the policy-gradient error
within 90 degrees and hence it implements Hill-climbing on the expected reward.

Approximate cost function for the winner-nudges-all interaction

The WNA term in the dynamic equations (equation (5.7)) cannot be represented
with a single cost function in a closed form. The reason for this is that the WNA
term has in general a rotational component, while any term derived from a scalar
cost function via the postulated dynamics is necessarily curl-free. Still, we argue
that we can use an approximative cost function, and hence all the derived results
(phase-less learning, look-ahead dynamics) apply here as well.

First, we exemplify that the WNA term has a rotation component in the general
case. For simplicity, we consider the curl of the winner-nudges-all circuit in two
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dimensions and only on the contribution from the term ∇uC. In two dimensions,
the winner-nudges-all circuit takes the form:

Mr̄N =

(
r̄(1)N − r̄(2)N
−r̄(1)N + r̄(2)N

)
. (5.60)

with r̄(1)N , r̄(2)N the low-pass filtered activity of the two action neurons. The curl
value is then

curl (Mr̄N) =
∂

∂u1

(
−r̄(1)N + r̄(2)N

)
− ∂

∂u2

(
r̄(1)N − r̄(2)N

)
= −

∂r̄(1)N
∂u1

+
∂r̄(2)N
∂u2

̸= 0 .

(5.61)
Second, we calculate that any term Fcost derived from a scalar cost function in

the dynamic equations (equation (5.7)) takes the from:

Fcost = ∇uC + τ
d
dt

∇uC , (5.62)

where ∇u is the differential operator according to the membrane potential u of the
action neurons. We use the definition of the operators to rewrite the second term.
In the following equations e⃗j is the unit vector in the dimension of the j-th neuron.
We calculate the second term explicitly

τ
d
dt

∇uC = τ

(
∑

i

∂ui

∂t
∂

∂ui
+

∂

∂t

)(
∑

j
e⃗j

∂C
∂uj

)
=

= τ ∑
j

e⃗j

(
∑

i

∂2C
∂ui∂uj

∂ui

∂t
+

∂

∂uj

∂C
∂t

)
=

= τ ∑
j

e⃗j
∂

∂uj
∑

i

∂C
∂ui

∂ui

∂t
+ τ ∑

j
e⃗j

∂

∂uj

∂C
∂t

=

= τ∇u

(
∇uC · u̇ +

∂C
∂t

)
.

(5.63)

Hence:

Fcost = ∇uC + τ∇u

(
∇uC · u̇ +

∂C
∂t

)
(5.64)

Because all three terms C, ∇uC · u̇ and ∂C
∂t are scaler fields (potential) in terms of u,

they are also all curl-free. Hence:

curl (Fcost) = 0 . (5.65)

Finally, despite these observations on the rotation of the terms, we argue that we
can apply the principle of least action theory with a small modification, because
the effect of the cost function is modulated by β which is required to be small
by the theory (theorem 1). Therefore, the dynamics of the network is mainly
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driven by the inference direction, and the effect of the cost function is only a slight
modification of it. We approximate the term Mr̄N using the activity values r̄β=0

N
,

Mr̄N ≈ Mr̄β=0
N . (5.66)

Because Mr̄β=0
N is a constant vector in u, it has a corresponding cost function,

which we can use as an approximation in the theory.

Derivation of the Hill-climbing property

In the following, we present the calculations corresponding to deriving the Hill-
climbing property. First, we lay the groundwork by defining concepts of action
selection and action probabilities. A priori we are free to model the action selection,
and we could choose from a broad range of potential mechanisms used in different
publications, for example the classic ϵ-greedy [Pozzi et al., 2018], the softmax action
selection [Whiteson and Stone, 2006] or direct Poissonian competition [Leimer
et al., 2019]. A common property of all these mechanisms is that single neurons
encode the actions and that a property of the neurons represents (a parameter of)
some action value, similar to the q-values found in classical reinforcement learning
(section 2.1.3, Sutton and Barto [2018]). We denote this action-value vector q,
where the single qi represents the action-value of action i. Or in other words, the qi
is the action-value of neuron i. Obviously, if the action value qi increases while all
the others stay constant, it should increase the probability of action ai and decrease
the probability of all the others. Finally, we require that the competition among the
actions should solely depend on the relative values of qi and not on their absolute
value, unlike for example in the Poissonian competition model. In the following
definition, we formulate these ideas mathematically.

Definition 5 (Neurally compatible action probability) Let there be N neurons, each
holding the action values q = (q1, q2, . . . , qN); N actions a1, a2, . . . , aN; and action
probabilities Pi := P(ai; q). The action probabilities Pi are parametrized by the vector of
the action values q. We call the action probabilities neurally compatible if they fulfill:

( i) ∂Pk
∂qk

≥ 0 ∀k ∈ {1, 2, . . . , N} ,

( ii) ∂Pk
∂qi

≤ 0 ∀k, i ∈ {1, 2, . . . , N} ∧ k ̸= i ,

( iii) P(q) = P(q + λ⃗1) ∀λ ∈ R ,

with 1⃗ = (1; 1; . . . ; 1) the vector with ones as entries in each dimension.

From the definition we can immediately derive further properties of the neurally
compatible action selection.

Lemma 6 (Properties of action selection) Let there be N neurons, each with the
action values q = (q1, q2, . . . , qN); N actions a1, a2, . . . , aN ; and corresponding neurally
compatible action selection probabilities Pi := P(ai; q), then
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(i) ∂ log(Pk)
∂qk

≥ 0 ∀k ∈ {1, 2, . . . , N} ,

(ii) ∂ log(Pk)
∂qi

≤ 0 ∀k, i ∈ {1, 2, . . . , N} ∧ k ̸= i ,

(iii) ∂Pk
∂qj

= −∑i=1
i ̸=j

∂Pk
∂qi

∀k, j ∈ {1, 2, . . . , N} ,

(iv) ∂ log(Pk)
∂qj

= −∑i=1
i ̸=j

∂ log(Pk)
∂qi

∀k, j ∈ {1, 2, . . . , N} .

Proof. (i), (ii): Properties (i) and (ii) are trivial consequences of the definition 5
(i) and (ii) and the strict monotonicity of the logarithm function.

(iii): For k, j ∈ {1, 2, . . . , N} consider the Pk(y) with y = q + λ⃗1 as function of
lambda, and take its total derivative. By definition:

dPk(q + λ⃗1)
dλ

= lim
ϵ→0

Pk(q + λ⃗1)− Pk(q + (λ + ϵ)⃗1)
ϵ

=
de f inition 5(iii)

= lim
ϵ→0

Pk(q)− Pk(q)
ϵ

= 0

(5.67)

On the other hand, we have:

dPk(y)
dλ

=
N

∑
i=1

∂Pk
∂qi

dqi

dλ
=1

+
∂Pk
∂λ
=0

=
N

∑
i=1

∂Pk
∂qi

. (5.68)

Combining equation (5.67) and equation (5.68) yields:

∂Pk
∂qj

= − ∑
i=1
i ̸=j

∂Pk
∂qi

.

(iv): The last property can be shown by straightforward calculation:

∂ log(Pk)

∂qj
=

1
Pk

∂Pk
∂qj

=
property (iii)

− 1
Pk

∑
i=1
i ̸=j

∂Pk
∂qi

= − ∑
i=1
i ̸=j

1
Pk

∂Pk
∂qi

= − ∑
i=1
i ̸=j

∂ log(Pk)

∂qi
.

To get closer to the desired model (section 5.2.1), we consider the model in
terms of the probability distribution of the q-values. We do not define the action
selection values, but we work with the outcome probability of the output neurons,
for example the distribution of the firing rates. We only require that the probability
distribution of the winner neuron follows a neurally compatible action selection
mechanism defined in definition 5. We extract the key approximation from the
Hill climbing proof as a separate statement.
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Lemma 7 (The main approximation) Let there be N random variables ui ∈ R with
an arbitrary random distribution u ∼ p(u : q), parametrized by the vector q such
that Pi(q) = P(argmaxj (u) = i; q) is a neurally compatible action probability with
corresponding action values q. Further let there be a strictly monotone increasing function
r : R → R; x ↦→ r(x). Let r(u) denote the element-wise application of the activation
function to the vector of membrane potential r(u) := (r(u1), r(u2), . . . , r(uN)). In short-
hand notation r = r(u). Consider a matrix M ∈ RN×N with mij = − 1

N−1 ∀i ̸= j; i, j ∈
{1, . . . , N}, and with mii = 1 ∀i ∈ {1, . . . , N} and vectors:

v := Mr(u) ,

wk :=
∂ log(Pargmaxj(u)

(q))

∂qk
.

Then for any realization of u:
⟨w, v⟩ ≥ 0 ,

where ⟨·; ·⟩ denotes the Euclidean scalar product. Equality holds if only if u1 = u2 =
· · · = uN.

The choice of u as the symbol for the random distribution is on purpose. Later
we will associate the noisy membrane potential of the output neurons (figure 5.4)
with u here, and q will correspond to the membrane potential of the action neurons
if the noise was turned off. Further, r will become the realized activity of the
neurons.

Proof. First, notice that due to the strict monotonicity of r(·),

argmax (u) = argmax (r(u)) = argmax (r) . (5.69)

For the sake of simplicity, we denote r = r(u). We start out with direct calculations:

⟨w, v⟩ =
N

∑
k=1

∂ log(Pargmax(u)(q))
∂qk

⎛⎜⎜⎝rk −
1

N − 1

N

∑
j=1
j ̸=k

rj

⎞⎟⎟⎠ =

=
∂ log(Pargmax(u)(q))

∂qargmax(u)

⎛⎜⎜⎝rargmax(u) −
1

N − 1

N

∑
j=1

j ̸=argmax(u)

rj

⎞⎟⎟⎠+

+
N

∑
k=1

k ̸=argmax(u)

∂ log(Pargmax(u)(q))
∂qk

⎛⎜⎜⎝rk −
1

N − 1

N

∑
j=1
j ̸=k

rj

⎞⎟⎟⎠ .

Now we use property (ii) from lemma 6:

∂ log(Pargmax(u)(q))
∂qk

≤ 0 ∀k ̸= argmax (u) .
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And by direct calculation:

rargmax(u) ≥ rk ,

− 1
N − 1

N

∑
j=1

j ̸=argmax(u)

rj ≥ − 1
N − 1

N

∑
j=1
j ̸=k

rj .

Using the equations above:

⟨v, w⟩ ≥

⎛⎜⎜⎝∂ log(Pargmax(u)(q))
∂qargmax(u)

+
N

∑
k=1

j ̸=argmax(u)

∂ log(Pargmax(u)(q))
∂qk

⎞⎟⎟⎠×

×

⎛⎜⎜⎝rargmax(u) −
1

N − 1

N

∑
j=1

j ̸=argmax(u)

rj

⎞⎟⎟⎠ .

Using the property (iv) from lemma 6 we see that:

∂ log(Pargmax(u)(q))
∂qargmax(u)

+
N

∑
k=1

j ̸=argmax(u)

∂ log(Pargmax(u)(q))
∂qk

= 0 .

Hence,
⟨w, v⟩ ≥ 0 .

Equality holds if r1 = r2 = · · · = rN or equivalently u1 = u2 = · · · = uN.

Remark 3. Note that we require a neurally compatible action selection mechanism
in terms of the noiseless membrane potential, but are still able to implement the
action selection directly on the realized firing rates of the neurons.

With the help of these preparations, we can prove that using the winner-nudges-
all error in the last layer, the network in section 5.2.1 implements Hill-climbing on
the expected reward.

Lemma 8 (Hill-climbing property) Consider a setup with N action neurons correspond-
ing to actions a1, a2, . . . , aN. Furthermore, consider an action-selection mechanism as in
lemma 7: Let there be N random variables ui ∈ R with an arbitrary random distribution
u ∼ p(u; q) parametrized by the action values q, and a strictly monotone increasing
function r : R → R; x ↦→ r(x); such that Pi(q) = P(argmax (r) = i; q) is a neurally
compatible action probability. Here, q is also a function of the state of the environment x.
Finally, let M be a RN×N matrix with elements mij = − 1

N−1 ∀i ̸= j; i, j ∈ {1, . . . , N},
and with mii = 1 ∀i ∈ {1, . . . , N}.

Then for every realization of u, the directional derivative of the expected reward in the
q-space in the R(aargmax(r))Mr direction is non-negative:⟨

∂ ⟨R⟩
∂q

; R(aargmax(r))Mr
⟩

≥ 0 , (5.70)
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⟨·; ·⟩ denotes the Euclidean scalar product. Equality holds only for u1 = u2 = · · · = uN.

Proof. First we compute the direct policy-gradient, starting form the definition of
the mean expected reward:

⟨R⟩ = ∑
i

R(ai)Pi(q) . (5.71)

We calculate the derivative of the reward according to q using the familiar log-
derivative trick:

∂q⟨R⟩ = ∂q ∑
i

R(ai)Pi(q) = ∑
i

R(ai)∂qPi(q) =

= ∑
i

R(ai)
[
∂q log (Pi(q))

]
Pi(q) .

(5.72)

Notice that by construction of the action selection mechanism that:

Pi(q(x)) =
∫

χargmax(r)=i(r)p(r; q(x))dr , (5.73)

where χargmax(r)=i is the indicator function:

χargmax(r)=i(r) =

{
1 if argmax (r) = i ,
0 otherwise .

(5.74)

Hence, for an arbitrary function of f (ai) we know that:

∑
i

f (ai)Pi(q) =
∫

f (aargmax(r))p(r; q)dr . (5.75)

Applying equation (5.75) to equation (5.72), we obtain the standard policy-
gradient for our setup:

∂q⟨R⟩ =
∫

R(aargmax(r))
∂ log(Pargmax(r)(q))

∂q
p(r, q)dr . (5.76)

Now we can calculate the directional derivative:

⟨
∂ ⟨R⟩

∂q
; R(aargmax(r))Mr

⟩
=

=

⟨∫
R(aargmax(r))

∂ log(Pargmax(r)(q))
∂q

p(r, q)dr; R(aargmax(r))Mr

⟩
=

=
∫

R2(aargmax(r))

⟨
∂ log(Pargmax(r)(q))

∂q
; Mr

⟩
p(r, q)dr .

(5.77)
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From lemma 7, we know⟨
∂ log(Pargmax(r)(q))

∂q
; Mr

⟩
≥ 0 , (5.78)

and trivially
R2(aargmax(r)) ≥ 0 , (5.79)

therefore ⟨
∂ ⟨R⟩

∂q
; R(aargmax(r))Mr

⟩
≥ 0 . (5.80)

And equality is only possible if u1 = u2 = · · · = uN , which is pathological for any
probability distribution p(u; q) without special peaks.

For the application to our reinforcement learning model we have to map and
interpret the proof:

1. Everywhere we use the fact that β is small, and hence the dynamics are
dominantly determined by the bottom-up input; the effect of the winner-
nudges-all circuit is small and only contributes to the gradient building.

2. The q values of the action are the membrane potentials the action neurons
would take without the additional noise to their membrane.

3. The noise to the action neurons give rise to the probability distribution
p(u; q). Now it is also clear — especially with the Ornstein-Uhlenbeck
process based noise mechanism — why cases where u1 = u2 = · · · = uN are
pathological. The noise on the single action neurons is independent from
each other, the resulting action selection mechanism fulfills the defining
properties of a neurally compatible action selection in definition 5. The noise
could originate from the background activity of other parts of the brain. The
activity of other brain areas could serve as a source of stochasticity for the
Ornstein-Uhlenbeck process similarly as in the mechanism in Dold et al.
[2019] and in chapter 3.

4. In lemma 8 we did not mention the sum over the dataset, and hence we
proved the Hill-Climbing property for online learning. The dataset would
only modify the learning by summing over the dataset ∑x q(x) with x the
single samples from the dataset.

5. In lemma 8 we also did not mention the backpropagation term. It only
modifies the proof by introducing the Jacobian of backpropagation that
transfers the error-vector from the action neurons to the single synapses

∂ ⟨R⟩
∂q

=
∂q
∂W

backprop Jacobian

∂ ⟨R⟩
∂q

, (5.81)
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where W contains all the synaptic weights that parametrize the function
q(x). The backpropagation of errors is the result of the principle of least
action theory (section 5.1.1 and theorem 1) in the time-continuous framework.
Because the deep neural network is a non-linear function, the Hill-climbing
property cannot be guaranteed for the synaptic updates. Still simulations
show that the model learns in practical applications. This is a common
problem of deep-learning models, that rigorous proofs can only be given for
linear approximations, e.g in Lillicrap et al. [2016], Bernacchia et al. [2018].

5.2.3 Deep reinforcement learning in an artificial neural network
and winner-nudges-all error

Unfortunately, the full simulation of the time-continuous model (section 5.2.1) is
tedious and requires large computational capacity. Iterative works and parameter
studies are not feasible with the full model. Hence, we develop an ANN based
analogous model to make these kinds of studies feasible, even though without the
time-continuous dynamics.

We base our setup on the standard policy-gradient learning with an ANN
(section 5.1.3). We consider a feed-forward ANN parameterized by the synaptic
weights W with W (i) the weight matrix projecting from layer i − 1 to layer i. We
identify the neurons in the last layer of the network with the actions and hence
call them action neurons. For a given sample from the dataset x, the membrane
potential of the neurons in the last layer is denoted by uN. The action neurons
experience Gaussian noise on their membrane potential and show an activity
according to the realized noisy membrane potential:

r = ρ
(

uN +N
(

0; σ2
ANN

))
, (5.82)

where ρ is the activation function of the neurons and σANN is the standard devia-
tion of the Gaussian noise. Note, that compared to the time-continuous model, we
changed the exploration noise from an Orstein-Uhlenbeck process to a Gaussian
noise, because the ANN model does not have time a time-continuous dynamics but
only consecutive iterations. Taking Gaussian noise can be thought of as taking sam-
ples from the Ornstein-Uhlenbeck process with a large enough time-separation,
that the samples can be considered independent of each other.

The action j is chosen as the most active action-neuron in the given realiza-
tion of the Gaussian noise argmaxj (r). The plasticity is composed of a reward-
maximizing (∆WRM) and a homeostatic term (∆WHOM):

∆W = ∆WRM + ∆WHOM . (5.83)

The reward maximizing term is calculated in analogy to policy-gradient learning
but instead of the error-vector on the output we use the winner-nudges-all error-
vector,

∆WRM = ηRM (R − ⟨R⟩) ∂uN

∂W
Mr , . (5.84)
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Here, M denotes the usual WNA matrix with M ∈ RN×N with mij = − 1
N−1 ∀i ̸=

j; i, j ∈ {1, . . . , N}, and mii = 1 ∀i ∈ {1, . . . , N}; R the obtained reward, ⟨R⟩ the
expected reward under the current policy and ηRM the learning rate. (R − ⟨R⟩) is
the familiar reward-prediction-error. Finally, ∂uN

∂W is the Jacobian connecting the
error-vector on the membrane potential of the action neurons and the synaptic
weights of the model. The homeostatic terms mimic the extreme value home-
ostases and the midpoint homeostases introduced in section 5.2.1. They are
modulated by the absolute value of the reward-prediction-error:

∆W(i)
HOM = |R − ⟨R⟩| (ηe-hom

(
max (0; uulow − ui)− max

(
0; ui − uuhigh

))
rT

i−1+

+ηm-hom (umid − ui) rT
i−1) ,

(5.85)
where the learning rates (ηe-hom; ηm-hom) and the extreme and midpoint membrane
potentials (uulow; umid; uuhigh) play the same role as in the time-continuous model.
ui is the membrane potential in layer i and ri is the activity of layer i. The expected
reward ⟨R⟩ is in practice approximated with a moving average as in the time-
continuous model:

⟨R⟩n = ⟨R⟩n−1 (1 − γ) + γRn−1 , (5.86)

where the index n denotes the values in the n−th iteration. The parameter γ
regulates how sensitively the moving average reacts to new values. The algorithm
is summarized in algorithm 5.2.

Algorithm 5.2: ANN based model with winner-nudges-all error. The al-
gorithm is inspired by the standard policy-gradient learning with online
learning, that is learning on every sample. However, the error-vector is
replaced by the winner-nudges-all error and the plasticity is amended with
homeostases.
Data: Feed-forward network parametrized by W ; dataset with entries x
Initialize ⟨R⟩0 = 0 ;
Initialize W0;
for n = 1 to max number of iterations do

obtain random data sample x ;
calculate corresponding uN ;
get sample from rN = ρ(uN +N (0; σ2

ANN)) ;
take action argmax (r) → observe reward Rn ;
update weights Wn = Wn−1 + ∆W from equation (5.83) ;
update ⟨R⟩n = ⟨R⟩n−1 γ + (1 − γ) Rn ;

end

147



5. Time-continuous deep reinforcement learning

5.3 Simulations and results

We tested the model in several learning setups. The tedious numerics and hence
the slow simulation prohibit the tackling of large, more state-of-the-art datasets,
and we restrict ourselves to a reduced version of the classic MNIST dataset [LeCun
et al., 1998]. We test the framework by classifying the dataset in the reinforcement
learning framework. We focus on the technical details of learning; we verify
that backpropagation actually takes place in the model, we test the robustness to
delayed rewards and to fixed-pattern noise in the winner-nudges-all circuit.

5.3.1 Setup of the simulations

In the following simulations, we apply the full time-continuous network, and
where it is not practical its ANN-based analog, to a classification task. Classifi-
cation is neither the ultimate goal of reinforcement learning algorithms nor it is
efficiently solvable with reinforcement learning algorithms, but the simplicity of
the task makes it easier to study and experiment with.

We use a feed-forward network structure, where the first layer serves as the
input layer and in the last (action) layer we associate the neurons with the classes,
as one would do in a one-hot coding setting. The input is realized as a current to the
neurons of the first layer with the introduced ramp-up and ramp-down transitions
(figure 5.5). The action is read-out as the action-neuron with the maximal low-pass
filtered activity just before the beginning of the ramp-down phase. If the predicted
class is correct, a reward R = 1 is given and R = −1 if the predicted class is false.

We applied the model to a reduced version of the MNIST hand-written digits
dataset [LeCun et al., 1998]. A reduction was necessary due to the costly numerical
simulation of the model, and such that we are able to carry out several different
experiments in feasible time. We reduced the size of images from the original
28 × 28 size to 20 × 20 by cropping a 4 pixel wide frame (figure 5.8 A), which is an
empty padding for most of the images. Finally, we only kept the classes 0,2 and
4 from the ten possible classes but preserved all the examples in the classes both
in the training and the test data. The used dataset is available via the repository
containing the source code (appendix A.3.3).

Until now the activation function of the neurons was arbitrary. The proof of
reward maximization (lemma 8) only requires a strict monotonously increasing
function. In the simulations, we used the softplus function (figure 5.8 B), which
can be seen as a differentiable alternative of the widely-used rectified linear unit:

ρ (u) = sspd ln
(

exp
(u

d

)
+ 1
)

, (5.87)

with d the width and ssp the slope of the activation function.
The weights of the single matrices are initialized following He et al. [2015]. The

initial weights follow a random distribution with zero mean

W init
i ∝ N

(
0;

2
Ki−1

)
, (5.88)
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Figure 5.8: The used dataset and the activation function. (A) In simulations we
used the reduced version of the MNIST hand-written digits dataset [LeCun et al.,
1998]. Samples from the original data are shown in the upper panel and from
the reduced images in the lower panel. (B) The used softplus activation function
(equation (5.87)) can be seen as an everywhere-differentiable alternative of the
rectified linear unit (ReLu) activation function, ReLu(x) = max (0, x). In the plot
we show softplus functions with widths of d1 = 1 and d2 = 0.3. In the limit of
d → 0 the softplus converges to the ReLu function.
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where Ki−1 is the number of neurons in the (i − 1)-th layer or in another view
the fan-in (number of pre-synaptic partners) of the neurons in the i-th layer. The
standard deviation of

√
2

Ki−1
makes sure that the expected amplitude of the input

signal (image) is preserved throughout the network. We used this initialization to
accelerate the learning. We emphasize that apart from the initialization technique,
we explicitly refrain from further known tools from machine learning to enhance
learning, such as weight regularization, adapting learning rate or batch learning. It
is not clear how these techniques could be realized in the brain, hence they might
dominate our results while not being biologically plausible.

The learning happens in online-learning fashion, corresponding to the dynamic
equations and the plasticity rules. The input images are presented sequentially,
drawn randomly form the training set. Importantly, we do not reset the state of
the network (membrane potentials, eligibility traces) between the images, instead
we introduce the continuous ramp-up and ramp-down of the inputs. The time of
the ramps is smaller than the membrane-time constant, hence it is not the same as
waiting long enough for the system to relax to a neutral state. Plasticity is applied
upon arrival of the reward immediately. This leads to small discontinuities due
to the instantaneous weight updates, but according to our experience it does
not disrupt the dynamics. Due to the nature of the classification task, a slightly
smeared-out reward input would most likely show the same model behavior.

For testing, we turn off the winner-nudges-all network and the exploration noise
on the action neurons. The classification is implemented in the same sequential
time-continuous way as in the case of learning, but the weights are kept constant.
We measure the development of the classification rate for a reduced test set (200
images per class) and measure the classification rate on the full test set once at the
end of the learning.

The software was implemented using the TensorFlow machine learning software
tool [Abadi et al., 2015]. The source-code is available upon request from the
author, samples from the implementation are shown in (appendix A.3.3). The used
parameters are given in table 5.1 for the time-continuous model, in table 5.2 for the
ANN-based model with winner-nudges-all error and in table 5.3 for the standard
policy gradient algorithm. The membrane time-constant is set to τ = 10 ms
neurons to put the model into the time-scales of biological systems. τ = 10 ms is a
typical membrane time constant in biological neurons [Dayan and Abbott, 2001].
We used the same parameters in all the experiments unless mentioned differently
in the corresponding text. Note that the nudging parameter is only one order of
magnitude smaller then the inference direction dynamics. The reason for this is
again the tedious numerics: the error nudging has to be larger than the errors
introduced by the numerical precision. At the same time, we need a possibly
large timestep ∆t such that the simulation-time stays feasibly long. An optimum
between these two requirements was found with ∆t = 0.1 and β = 0.1. Second,
the two homeostatic processes push the network towards positive membrane
potentials. The reason lies in the error-generation mechanism: The winner-nudges-
all circuit requires non-zero and diverse activity in the action neurons to create
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a sensible error on the actions (see lemma 8). With the used softplus activation
functions we require positive membrane potentials to achieve such an activity.

Symbol Value Description
- (400, 400, 3) layers
τ 10 ms membrane time-constant
d 0.3 softplus width
ssp 1 softplus slope
β 0.1 nudging parameter
τelig 40 ms eligibility time-constant
η 10−3 learning rate
ηe-hom 3 × 10−3 e-hom learning rate
uulow -1.25 lower limit potential
uuhigh 1.25 upper limit potential
ηm-hom 5 × 10−3 m-hom learning rate
umid 1 homeostases middle potential
Tramp 5 ms input ramping time
Timage 30 ms image presentation time
γ 0.9 moving average parameter
σOU 0.2 standard deviation; exploration noise
τOU 30 ms exploration noise; autocorrelation time
∆t 1 ms timestep in the simulation

Table 5.1: Parameters in the time-continuous model. In each experiment we used
the same parameters unless stated otherwise.

5.3.2 Experiments with immediate reward

In this section, we present the result of learning with immediate reward. The
reward was given immediately after the network decided for a class during the
learning phase. Note that we kept the eligibility time-constat τelig at a finite value
such that the results are compatible with those with delayed reward. Here the
learning would work similarly without eligibility trace τelig → 0.

Learning with the full model

In the first experiment, we learned the reduced MNIST dataset with policy gradient
model, the abstract winner-nudges-all model and with the time-continuous model.
In this setup the reward arrived immediately after the decision of the model and
we applied the plasticity at the arrival of the reward. All three models were able
to learn the task and reached a similar performance (figure 5.9). On the full test set
the policy gradient model reached an error rate of 6.51+0.12

−0.24%, the abstract model
an error rate of 3.96+1.4

−0.68% and the time-continuous model an error rate of 6.0+1.7
−2.0%

with median and interquartile values. Chance level is at an error rate of 66.66%.
The results are similar, however we can only qualitatively compare the values,

because the meta-parameters were not fine-tuned — e.g. via meta-parameter learn-
ing as in chapter 4 — to the problem. For example, the abstract winner-nudges-all
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Symbol Value Description
- (400, 400, 3) layers
d 0.3 softplus width
ssp 1 softplus slope
σANN 0.2 exploration noise, standard deviation
η 10−5 learning rate
ηe-hom 10−5 e-hom learning rate
uulow -1.5 lower limit potential
uuhigh 6.5 upper limit potential
ηm-hom 10−5 m-hom learning rate
umid 4 homeostases middle potential
γ 0.9 moving average parameter

Table 5.2: Parameters in the artificial neural network based model with winner-
nudges-all error. In each experiment we used the same parameters unless stated
otherwise.

Symbol Value Description
- (400, 400, 3) layers
d 0.3 softplus width
ssp 1 softplus slope
η 10−5 learning rate
γ 0.9 moving average parameter

Table 5.3: Parameters in the policy gradient model with an artificial neural net-
work. The parameters of the model described in section 5.1.3. In each experiment
we used the same parameters unless stated otherwise. The model has less parame-
ters than the other two due to its simplicity.
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model shows sings of overfitting because the test error rate starts to increase af-
ter approximately 7 × 104 iterations while the mean reward during learning still
increases. The time-intensive simulation of the time-continuous model prohibits
meta-parameter learning. Still, the results show that the time-continuous model
can learn the task and shows similar behavior as similar reinforcement learning
models do.
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Figure 5.9: Learning results with immediate reward. The plot shows the learning
results in terms of (A) median reward and (B) error ratio on the small test set for
the policy gradient model, the winner-nudges-all abstract model and the time-
continuous model. The mean reward is plotted with a moving average of 200
iterations to reduce the variance for the sake of visualization. The results are
shown as the median over 10 repetitions for each model. All three models learn
with similar performance. Note that the abstract winner-nudges-all model shows
signs of overfitting because the test-error increases after approximately 7 × 104

iterations.

The rationale of the midpoint homeostases

We show the effect of the midpoint homeostases in two single-shot experiments
with identical parameters (including the random seed) up to the midpoint home-
ostases in the abstract winner-nudges-all model (figure 5.10).

Learning is possible in both cases, although it is somewhat faster with midpoint
homeostases. Without it, the network manages to learn early two out of the three
classes, and the observed reward on these two classes is high. In the third class, the
network only seldom chooses the correct class and hence the learning is slow. With
homeostases, exploration is encouraged, because it pulls the action probabilities
closer to each other. In the plotted example, this means that the third class lags
behind only for a shorter time, and learning can continue.

The apparent effect of the homeostases depends on the learning task, on the
initial network parameters and on pure chance during learning. We expect that
the midpoint homeostases will become more important in case of larger action
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space (e.g. more classes), where the exploration has to cover larger areas to find
the correct action.
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Figure 5.10: The effect of the midpoint homeostases. We show the effect of the
midpoint homeostases on the early phase of learning in two single-shot experi-
ments. The expected mean reward (blue) and the expected class-wise rewards
(orange) are shown as a function of the iteration number. The three orange curves
show the predicted reward from the three distinct classes. The two experiments
are identical (including the random seed) up to the homeostatic learning rate:
(A) ηm-hom = 0 without homeostases and (B) ηm-hom = 10−6 with homeostases.
Without homeostases, one of the classes is learned much slower than the other
two. Midpoint homeostases encourages the exploration in the not-yet-learned
classes. The experiments were made with the abstract winner-nudges-all model.

Verifying the backpropagation property

In order to verify the backpropagation property of the model, we set up an experi-
ment, where the plasticity is turned off from the hidden layer to the action layer.
Hence, learning only takes places in the synapses between the input layer and
the hidden layer. We used the time-continuous model for the experiments and all
other parameters were left the same as in table 5.1.

The model is still able to learn the dataset (figure 5.11), and it reaches a final
error ratio of 3.27+1.4

−0.10% on the full test set with median and interquartile values.
It is surprisingly lower than the final error ratio of 6.51+0.12

−0.24% with the full model.
Besides, the learning curve is smoother. The reason is probably the missing
meta-parameter tuning and the fact that the dataset is simple. Hence, the frozen
read-out weights impose an implicit regularization on the model, which is by
chance beneficial. In general for complex problems, we expect that the frozen
read-out weights should deteriorate the performance. The results verify that error
is meaningfully propagated back to the lower layer of the network.
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Figure 5.11: Learning with frozen read-out weights. We show (A) the median
reward during learning and (B) the error rate on the small test set with frozen
output weights. In this experiment, the plasticity is turned off for the synapses
from the hidden layer to the output layer in order to verify that backpropagation
takes place. The model is able to learn the dataset similarly as with plasticity at all
synapses. The experiment was made in the time-continuous model, and we show
the median values over 3 repetitions.

5.3.3 Robustness of the learning to disturbances

After having verified the learning capabilities of the setup, we now study its
robustness. First, we study how the learning is affected if the reward is not
immediate but it arrives either with a fixed or with a randomly distributed delay.
In biological situations, it is rather the exception than the rule that the reward is
immediate. Although the time-continuous model does not contain any elaborate
mechanism to learn the rewards over long chains of actions, it still displays a
certain amount of robustness due to the eligibility traces.

Second, inspired by the two other projects in neuromorphic computing (chap-
ters 3 and 4), we study the effect of fixed-pattern noise on the model. Fixed-pattern
noise, or in the biological terminology heterogeneous neuro-synaptic parameters,
is clearly present in the nervous system: neural circuits with different parameters
have observed to fulfill the same task [Taylor et al., 2006, Marder and Goaillard,
2006]. Therefore, it is an obvious requirement for a model of neural circuits to be
robust against this kind of disturbance. We only consider the effect of fixed-pattern
noise on the WNA circuit, because all the other synaptic parameters are learned
during training.

Robustness to delayed reward with fixed time-delay

In this experiment, the reward is delayed with a fix time delay that matches the
presentation time of a single image tdelay = Timage = 30 ms. Otherwise, the used
parameters are identical to the ones in the other simulations.
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At the time of the arrival of the reward, the eligibility trace contains a combina-
tion of the error-vector from the current action and the error-vector one iteration
before. But only the error-vector from one iteration before corresponds causally
to the obtained reward. The model learns slower and reaches higher error rates
than learning with immediate reward (figure 5.12). This is expected, because
only a fraction of the eligibility trace contains correct information about the action
causing the reward. A much larger part carries only noise caused by the following
action. Still, learning is possible, and the network performs well above chance
level with a final test error of 11.29+0.28

−0.38% on the full test set with median and
interquartile values over 3 repetitions. Furthermore, learning is slower than with
immediate reward; further learning would probably lower the achieved error
ratio.

Robustness to delayed reward with scrambled delay

In the this experiment we study the effect of “scrambled” time-delay in the reward,
following similar studies in Friedrich et al. [2011]. The reward is again delayed
compared to the time of decision, but the delay is not fixed but distributed accord-
ing to a Gamma probability distribution pd(tdelay) = Γ(2, 30 ms/2) with order
2 and an expected time delay

⟨
tdelay

⟩
= 30 ms. The expected delay is chosen to

be the same as in the fixed time-delay experiment (figure 5.13) and such that it
matches the presentation time of one image

⟨
tdelay

⟩
= Timage. Apart from the

delayed reward, other parameters are the same as in table 5.1.
The results are similar as with fixed delay (figure 5.13): the learning is possible

but slower than with immediate reward, which is expected. The model reaches an
error ratio of 10.25+0.83

−0.23% on the full test set, compatible with the results in case of
the fixed reward delay. Both the expected reward and the test error ratio are still
improving at the end of the simulation, suggesting that more iteration would be
beneficial for the model.

The robustness to delayed reward is not to be confused with learning with
sparse reward, when reward is only given after a long sequence of actions, for
example after ending a game of chess. In this model, the robustness is purely
based on direct correlation between the tail of the eligibility trace and the obtained
reward. We can only expect a robustness on the time-scale of the eligibility trace.
For learning with sparse rewards, we need more elaborate mechanisms.

Robustness to fixed-pattern noise in the winner-nudges-all circuit

Until now, we prescribed the connectivity among the action neurons to build
the WNA connectivity. In nature this has to be developed at some point during
the development of the specimen. It is highly unlikely that the connectivity will
perfectly match the desired matrix, hence the robustness to heterogeneity in the
WNA network is of importance.
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Figure 5.12: Learning with delayed reward with fixed time-delay. We show (A)
the median reward during learning and (B) the error rate on the small test set with
fixed time-delay. The reward arrives exactly one iteration after the decision of the
network tdelay = Timage = 30 ms. The model learns much slower than the one with
immediate reward, but learning is possible and the model performs above chance
level. The experiment was made in the time-continuous model, and we show the
median values over 3 repetitions. (C) If a reward signal arrives at, for example
60 ms (arrow), then a part of the eligibility trace still carries information about the
action that lead to the reward (orange section from 0 ms to 30 ms). Learning is
possible but slower than with immediate reward because only a smaller part of
the eligibility trace corresponds to the rewarded action.
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Figure 5.13: Learning with delayed reward with random time-delay. (A) The re-
ward is delayed by a random time-delay which is drawn each time from the prob-
ability distribution pd(tdelay) = Γ(2, 30 ms/2). The expected value of the reward
delay matches the presentation time of the single images

⟨
tdelay

⟩
= Timage = 30 ms.

We show (B) the median reward during learning and (C) the error rate on the small
test set with random time-delay. The results are similar as with fixed time-delay
(figure 5.12). The model learns much slower than the one with immediate reward,
but learning is possible and the model performs above chance level. Interestingly,
the learning is faster than with fixed reward delay. The experiment was made in
the time-continuous model, and we show the median values over 3 repetitions.
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To test the robustness, we modulated the synaptic connections with multiplica-
tive fixed-pattern noise:

wWNA
ij → wWNA

ij × max
(

0,N
(

1, σ2
FP

))
, (5.89)

where wWNA represents a synaptic weight in the winner nudges-all circuit, N is
the normal distribution and σFP is the standard deviation of the fixed-pattern noise.
We use multiplicative noise, because the inhibitory connections are much weaker
than the excitatory ones. We assume that fixed-pattern noise will not change this
relation. Second, we prohibit the sign change of of the weights wij due to fixed-
pattern noise. It is unlikely that synapses change their sign as their weight varies.
In biological systems, neurons are typically either excitatory or inhibitory in their
effect, according to Dale’s principle (section 2.2.1). In neuromorphic hardware, it
is possible that synapses erroneously change their sing, but this is rather due to
digital bit-flip errors and not due to high fixed-pattern noise.

The learning results with the WNA-based model show that learning is only
slightly affected up to a standard deviation of the fixed-pattern noise of σFP = 0.2
(figure 5.14 A). For higher σFP, we find that there are several outliers; for some
samples of the fixed-pattern noise learning becomes impossible, however if the
learning is possible than the model reaches similar error ratios as with ideal
WNA synapses. Simulations with the time-continuous model verify this finding
(figure 5.14 B): There is only a minor difference in the final error ratio between the
cases with and without fixed-pattern noise. We can explain the lack of the outliers
by the smaller number of experiments with the time-continuous model. Hence,
we conclude that the model is robust up to a fixed-pattern noise of approximately
20%.

To understand the mechanism of this robustness, we take a look at the phase-
space representation of the learning dynamics in figure 5.15, where we show the
phase space of learning in the q space in two dimensions. Note, the difference
to figure 5.7; here we show the direction of learning with reward modulation
assuming (without loss of generality) that action 1 is the correct action (q1 > q2
is desired). With a perfect WNA circuit, action 1 is strengthened and action 2
is weakened on the entire space (figure 5.15 A). Adding fixed-pattern noise the
WNA matrix distorts the streamlines (figure 5.15 B). The direction of the desired
learning is disrupted along the line q1 = q2, and this region stalls the learning.
The introduction of exploration noise restores the learning. Now at each point in
the q-space, we can calculate an expected update direction due to the exploration
noise. In our Gaussian exploration scheme (section 5.2.3 and equation (5.52)), this
corresponds to filtering the streamlines with fixed-pattern noise via a Gaussian
kernel (figure 5.15 C). The learning can proceed as long as the exploration noise is
large enough to help the system overcome the stalling region.
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Figure 5.14: Learning with fixed pattern noise in the winner-nudges-all circuit.
(A) The final error ratio is shown as a function of the standard deviation of the
multiplicative noise on the WNA circuit in the abstract model with WNA. (B) The
final error ratio stays robust in the time-continuous model as well. The data is
plotted both in (A) and (B) following the traditional box-and-whiskers scheme: the
orange line represents the median, the box represents the interquartile range, the
whiskers represent the full data range and the × represent the far outliers. Each
boxplot contains 10 repetitions of the same experiment.

5.4 Alternative formulations of deep reinforcement
learning

Reinforcement learning can be achieved in the framework of the principle of least
action with other mechanisms as well. Intuitively, we imagine that the learning
is made of two components: 1) the backpropagation mechanism through the
network and 2) the error-vector generation mechanism in the output layer. The
latter corresponds to the definition of a cost function, where, in principle, any cost
function can be given. Supervised learning and reinforcement learning with the
WNA network are two possible implementations of this more general framework.
Here, we briefly introduce two alternative formulations of reinforcement learn-
ing, discuss their relation to the WNA model and compare the advantages and
disadvantages of the three models.

5.4.1 Reinforcement learning with direct node perturbation

In the first — more simple – alternative, we use the idea of direct node perturbation
[Williams, 1992, Werfel et al., 2004, Fiete and Seung, 2006]. In this framework,
we refrain from elaborate synaptic connections in the action layer. Instead, noise
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Figure 5.15: Mechanism of robustness to fixed-pattern noise. (A) Phase-plot of
learning assuming that the action q1 is the correct action. In any point of the phase-
space, action 1 is strengthened. Mind the difference to the phase plots in figure 5.7,
where the error-vector is shown without the reward modulation. (B) Phase-plot
for a sample from fixed-pattern noise on the WNA matrix. Fixed-pattern noise
disrupts the logic of learning: There is now a region around the q1 = q2 line, where
learning progresses into the wrong direction. This region stalls the learning. (C)
The learning is restored by introducing exploration noise. The expected direction
of the update is given by filtering the phase-space plot with a Gaussian kernel,
assuming that we use the Gaussian exploration introduced in section 5.2.3 and
equation (5.52). Plots are shown in the q space for the sake of clarity, but they
would look qualitatively similar in the space of firing rates.
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5. Time-continuous deep reinforcement learning

on the action neurons is responsible for both the exploration and the gradient
building procedure. We use the full energy function:

L = E + βCNP =
N

∑
i=1

1
2
∥ui − Wi r̄i−1∥2 +

β

2

ξ̄
2 , (5.90)

with ξ̄ the low-pass-filtered noise on the action neurons. The noise follows the
same logic as in the WNA-based model (equation (5.52)). The principle of least
action framework leads to the dynamics:

τu̇i = Wiri−1 − ui + ei ,
ri = r̄i + τ ˙̄ri ; ei = ēi + τ ˙̄ei ,

ēi = r̄i ⊙ WT
i+1 (ui+1 − Wi+1r̄i) ,
ēN = βξ̄ ,

(5.91)

with all the quantities matching the ones introduced in section 5.2.1 apart from the
noise. In the WNA-based model, the noise arrived at the dendrite of the action
neurons, because it only played a role in the exploration but not in the error-vector
mechanism. Here, the noise arrives at the soma of the action neurons, because
now it is responsible for both the exploration and the error-vector generation.

To test the model, we implemented the corresponding analogy using artificial
neurons. The artificial model follows the same logic and algorithm as the WNA-
based artificial model, but the synaptic plasticity rule in equation (5.84) is modified
as:

∆W(DN)
RM = ηRM (R − ⟨R⟩) ∂uN

∂W
ξ(ANN) , (5.92)

where ξ(ANN) is a sample from the noise distribution N (0; σ2
ANN). The model is

summarized in algorithm 5.3, and the used parameters are shown in table 5.4. We
did not perform any meta-parameter optimization on the model.

The model with direct node perturbation is capable of learning the task (fig-
ure 5.16). It is slower than the WNA-based model in terms of learning progress per
iteration. Note that the direct node perturbation model was trained much longer
than its WNA-based counterpart. This is the expected behavior, because direct
node perturbation explores the action-space without any knowledge about the
structure of the chosen action. The WNA-based model gets additional information
based on the generated error-vector. However, it is not clear how much of the
observed difference stems from this inherent characteristics and how much from
the lack of meta-parameter learning. After learning, this model achieves an error
ratio of 3.01+0.38

−0.03% on the test set.

5.4.2 Reinforcement learning using preserved synaptic
connections and node perturbation

The second alternative is to assume the same synaptic connections throughout the
whole network, including the cost function; hence the name preserved synaptic
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5.4 Alternative formulations of deep reinforcement learning

Algorithm 5.3: ANN based model with direct node perturbation. The
algorithm is inspired by the standard policy gradient learning with online
learning, that is learning on every sample. However, the error-vector is
replaced by the direct node perturbation error and the plasticity is amended
with homeostases.

Data: Feed-forward network parametrized by W ; dataset with entries x
Initialize ⟨R⟩0 = 0 ;
Initialize W0;
for n = 1 to max number of iterations do

obtain random data sample x ;
calculate corresponding uN ;
get sample from ξ(ANN) ∼ N (0; σ2

ANN) ;
calculate rN = ρ(uN + ξ(ANN)) ;
take action argmax (r) → observe reward Rn ;
update weights Wn = Wn−1 + ∆W using equation (5.83) and
equation (5.92) ;

update ⟨R⟩n = ⟨R⟩n−1 γ + (1 − γ) Rn ;
end

Symbol Value Description
- (400, 400, 3) layers
d 0.3 softplus width
ssp 1 softplus slope
σANN 0.1 exploration noise, standard deviation
η 3 × 10−5 learning rate
ηe-hom 10−3 e-hom learning rate
uulow 0.0 lower limit potential
uuhigh 6.0 upper limit potential
ηm-hom 3 × 10−7 m-hom learning rate
umid 3 homeostases middle potential
γ 0.97 moving average parameter

Table 5.4: Parameters in the ANN-based model with direct node perturbation.
Table of parameters used in simulations shown in figure 5.16.
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Figure 5.16: Learning results with the direct node perturbation model. The plot
shows the learning results in terms of (A) median reward and (B) error ratio on
the reduced test set. The median reward is plotted with a moving average of 200
iterations to reduce the variance for the sake of visualization. Note that in these
experiments, we used 10 times longer training than in the other experiments. The
results are shown as the median over 10 repetitions.

connection model (PrSC-Model). We assume that there is the same microcircuit
structure between the action neurons as between the layers of the feed-forward
part of the network. This implies the total energy function:

L = E + βCPrSC =
N

∑
i=1

1
2
∥ui − Wi r̄i−1∥2 +

β

2

(
∥uN − Mr̄N∥2 − ∥uN∥2

)
, (5.93)

where M is the connection matrix of the WNA connections. The noise is intro-
duced as in the WNA-based model. It arrives at the basal dendrite of the action
neurons and follows the time-continuous Ornstein-Uhlenbeck process defined in
equation (5.52). The total energy function then leads to the dynamics

τu̇i = Wiri−1 − ui + ei ,
ri = r̄i + τ ˙̄ri ; ei = ēi + τ ˙̄ei ,

ēi = r̄i ⊙ WT
i+1 (ui+1 − Wi+1r̄i) ,

ēN = β
(

Mr̄N + r̄′N ⊙ M (uN − Mr̄N)
)

,

(5.94)

where we used that the WNA is symmetric, MT = M. Here, the error-vector
is more complicated, and it is not immediately clear why the learning should
maximize the expected reward, but we can again look at the stream-plots of the
generated error-vector.

In general, the cost function measures the self-prediction error of the action
layer with a modification from the 1

2 ∥uN∥2 term. The first r̄′N ⊙ M (uN − Mr̄N)
term pushes the network towards this self-predictive state (figure 5.17 A). With the
WNA matrix, a point where self-prediction of the last layer is satisfied would be a
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Figure 5.17: error-vector and components in the preserved synaptic connection
model. (A) The first contribution stems from the self-prediction requirement of
the cost function. It pushes the network slightly towards the closest state similar
to one-hot coding. (B) The second term is the same WNA-based contribution as
discussed in the WNA-based model. It helps maximizing the expected reward. (C)
The third term is similar to a homeostatic term that pulls the network back towards
the u1 = u2 = 0 state. This term is canceled by construction. (D) The combination
of the two terms results in an error-vector in the action layer that enables learning.
The plots were made with a sigmoid activation function r̄(u) = 1

1+exp(−u) .
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one-hot coding-like scenario: The strong self-connection and mutual inhibition
imply that one neuron should be active predicting its high firing rate and inhibiting
the firing of the other neurons. This direction also roughly matches the desired
direction of learning, that is the winner is strengthened and the loosing neuron
is weakened in the firing activity. The second Mr̄N term is the same as in the
WNA-based model (figure 5.17 B). It drives the network towards maximizing the
expected reward.

The term −∥uN∥2 in the cost function is required to compensate for the error-
term −uN stemming from the self-prediction criteria ∥uN − Mr̄N∥2. At first glance,
such a homeostatic term would be beneficial for the model because it would
induce a homeostases from first principles (figure 5.17 B). It turns out that it
harms the learning. First, this homeostatic term is now mixed together with the
reward-maximizing terms and it would be modulated by the reward-prediction
error. Therefore, a homeostatic mechanism would be only true for positive-valued
modulation. Second, the term −uN makes the uN = 0 point a stable fixed-point
in the total error-vector depending on the shape of the activation function. This
would introduce a region where the streamlines do not flow towards the reward
maximizing direction.

Algorithm 5.4: ANN based model with preserved synaptic connection
model. The algorithm is inspired by the standard policy gradient learn-
ing with online learning, that is learning on every sample. However, the
error-vector is replaced by the preserved synaptic connection error and the
plasticity is amended with homeostases.

Data: Feed-forward network parametrized by W ; dataset with entries x
Initialize ⟨R⟩0 = 0 ;
Initialize W0;
for n = 1 to max number of iterations do

obtain random data sample x ;
calculate corresponding uN ;
get sample from ξ(ANN) ∼ N (0; σ2

ANN) ;
calculate rN = ρ(uN + ξ(ANN)) ;
take action argmax (r) → observe reward Rn ;
update weights Wn = Wn−1 + ∆W using equation (5.83) and
equation (5.95) ;

update ⟨R⟩n = ⟨R⟩n−1 γ + (1 − γ) Rn ;
end

The full error-vector ēN (figure 5.17 D) is qualitatively suitable for reinforcement
learning: It strengthens the winner neurons and penalizes the loosing neuron.
Additionally, it features a push towards solutions similar to one-hot coding.

To prototype the learning capabilities of the model, we implemented an ANN-
based implementation, similarly as we did for the direct node perturbation model.
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5.4 Alternative formulations of deep reinforcement learning

The artificial model follows the same logic and algorithm as the WNA-based
artificial model, but the synaptic plasticity rule in equation (5.84) is modified as:

∆W(PrSC)
RM = ηRM (R − ⟨R⟩) ∂uN

∂W
(

MrN + r′N ⊙ M (uN − MrN)
)

. (5.95)

The model is summarized in algorithm 5.4 and the used parameters are shown in
table 5.5. In the simulations, we used the sigmoid activation function:

r̄ =
1

1 + exp (−u)
. (5.96)

Symbol Value Description
- (400, 400, 3) layers
σANN 0.1 exploration noise, standard deviation
η 10−1 learning rate
ηe-hom 10−3 e-hom learning rate
uulow -1.5 lower limit potential
uuhigh 1.5 upper limit potential
ηm-hom 10−5 m-hom learning rate
umid 0 homeostases middle potential
γ 0.97 moving average parameter

Table 5.5: Parameters in the ANN-based model with preserved synaptic con-
nections. Tables of the parameters of the simulations shown in figure 5.18.

Learning is possible similar as in previous models (figure 5.18). The expected
reward increases and the test error decreases with increasing number of iterations.
The model achieves an error ratio of 3.01+0.48

−0.03% on the full test set.

5.4.3 Comparison of the three models

The three presented models come with their own advantages and disadvantages
(table 5.6). All three models offer realizations of reinforcement learning that
harmonize with the mechanistic model of backpropagation: they can be used as
additional modules attached to the backpropagation model. In principle, they
would similarly harmonize with other models of biological backpropagation if
they use the notion of update generation via the nudging mechanism. However,
we explicitly used the fact that the principle of least action framework model
does not require separate phases with and without nudging: Turning off the
lateral connections in the action layer for one phase and off for another is a priori
implausible for a biological system.

In the WNA-based model, we have shown that the generated error in the ac-
tion layer indeed points in the direction of larger rewards. The proof requires a
particular lateral connectivity among the action neurons, but as we have shown
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Figure 5.18: Learning results with the preserved synaptic connections model.
The plot shows the learning results in terms of (A) median reward and (B) error
ratio on the small test set. The median reward is plotted with a moving average of
200 iterations to reduce the variance for the sake of visualization. The results are
shown as the median over 10 repetitions.

Name WNA-based preserved synaptic direct node pert.

cost function no yes, simple yes, structured

relation to proven qualitatively randompolicy gradient

connections in structured, unique structured, invariant nonethe action layer

separation of error yes yes noand exploration

Table 5.6: Comparison of the three deep-reinforcement-learning models. All
three proposed models have their own advantages and disadvantages.

168



5.4 Alternative formulations of deep reinforcement learning

this connectivity can tolerate fixed-pattern noise of up to 20%. Finally, the WNA-
based model displays a separation of error generation and exploration. While the
exploration noise arrives at the basal dendrite, the error-vector is generated via
nudging connections at the soma. In the abstract analogies, this does not mean
a difference, but in the time-continuous model it becomes essential. The back-
propagation theorem (theorem 1) assumes weak nudging. Therefore, a coupling
between exploration and error generation would restrict the magnitude of the
exploration. This would impair the ability of the network to abandon strongly
imprinted but suboptimal choices.

In the PrSC-Model model, we have an explicit cost function with the appealing
property that it has the same form as the prediction-error cost functions throughout
the rest of the network. Although, an additional term was required to make the
learning more robust or depending on the activation function even possible. We
lack a rigorous proof for the error maximization property, but the phase-space
analysis for two dimensions and the simulation results suggests that the error-
vector is suitable for reinforcement learning. The synaptic connections between
the action neurons are even more elaborate than in the WNA-based network, and
its robustness to fixed-pattern noise is to be shown. However, they follow the
same stereotypical wiring structure as other parts of the brain. The PrSC-Model
also provides the separation of exploration and error-vector generation.

Finally, the direct node perturbation model comes with the simplest cost func-
tion. The model does not require any lateral connection between the action
neurons; the learning is purely based on the correlation of the received error and
the random nudging on the action neurons. Both the advantages and disadvan-
tages of this method lie in this simplicity. Robustness to fixed-pattern noise in the
error-generation is not an issue due to lack of lateral connections. However, the
learning is slow, because the random nudging does not provide any information
about the activity structure of the action neurons.

In early learning, the random nudging could make the difference between two
actions corresponding well to the reward. When two actions have approximately
the same action value, the random perturbation could decide the winner. Hence,
the random perturbation is causally connected to the obtained reward. In late
learning, when some of the actions are already strongly imprinted, the random
nudging loses its causal connection to the obtained reward. For example, if
an action has a much larger action value then the others, that is the difference
is several times the magnitude of the random perturbations. In this case, the
perturbation cannot influence the winner-selection and hence it is uncorrelated
with the obtained reward.

Note that our proposed model is more “intelligent” than other models where
random node perturbation is imposed in the entire network [Fiete and Seung,
2006]. In our model, the random perturbation acts only in the space of the actions
which has much smaller dimension than the space of the entire network. The
random perturbation on the action neurons is backpropagated to the hidden layers
by the neuronal dynamics and the microcircuit structure. Finally, the direct node
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perturbation model couples the exploration and error-vector generation; and hence
it restricts the magnitude of exploration in the time-continuous framework.

In the main part of this study, we opted for the WNA-based model because of
its rigorous reward maximizing property and its close relation to the winner-take-
all like structures, which are well established in the computational neuroscience
literature (see section 5.5.2).

5.5 Discussion

In this chapter, we presented an extension of biologically plausible deep learning
in the principle of least action framework [Senn et al., in preparation] to reinforce-
ment learning. By that, we achieved a model that combines the reinforcement
learning paradigm, time-continuous dynamics and deep learning without phases
in a biologically plausible mechanistic model. We introduced a winner-nudges-
all (WNA) lateral synaptic connection structure among the action neurons, that
resembles a soft winner-take-all circuit (figure 5.4). These lateral connections
generate an appropriate error-vector for deep learning. We showed that the re-
sulting error-vector combined with the reward-prediction error, a single global
modulator signal (equation (5.55)), drives the learning towards maximizing the
mean expected reward.

We tested the model on a reduced version of the MNIST dataset. The time-
continuous model reached similar performance as the standard deep-policy-
gradient method (section 5.3.2). Further, we analyzed the robustness of the
model, and found that it is robust against delays in the reward feedback and
to fixed-pattern noise (inhomogeneities) on the synaptic weights of the WNA
circuit (section 5.3.3). Finally, we also briefly sketched two alternative models for
deep reinforcement learning and discussed their advantages and disadvantages
(section 5.4).

We also gave postdictions to the potential mechanistic meaning of cortical mi-
crocircuits, soft winner-take-all structures and the close input-following property
discussed by Köndgen et al. [2008]. Although these postdictions are not particu-
larly novel on their own: 1) Sacramento et al. [2018] introduced the stereotypical
microcircuits for backpropagation of errors, 2) Senn et al. [in preparation] used
the input-following property to realize learning without phases and 3) WTA-like
structures have been already used for reinforcement learning, for example in
Frémaux et al. [2013]. The novelty in our work is their combination in the context
of time-continuous deep reinforcement learning. With this work, we contribute
to the search for deep reinforcement learning in the brain by providing plausible
mechanistic models with interpretable neurodynamics, phase-less learning, self-
generated plasticity without an external supervisor as well as time-continuous
dynamics.
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5.5.1 Limitations of the study

One of the main limitations of the study is the tedious numerics required to
integrate the model, which restricted the maximum number of iterations during
learning and the size of the used dataset. Simulating the dynamics requires solving
a system of linear equations for each time-step because the time-derivative of the
membrane potential is given as a self-consistency equation (appendix A.3.1). This
requirement originates from the look-ahead firing property of the neurons, and
it is closely tied to the desired phase-less and real-time learning capability. To
circumvent the problem, we designed ANN-based corresponding models that
enabled us extensive parameter-sweeps. From a computational neuroscience
perspective, this is merely a practical problem, and it could be tackled by using
more advanced numerical methods. If the framework is regarded as a contribution
to machine learning research, then the tedious simulation is a drawback. Hence,
the proposed learning framework contributes rather to the modeling of biologically
plausible deep-learning.

Our model exhibits several aspects found in biological systems such as the time-
continuous neural and synaptic dynamics and the cortical microcircuits, but it has
gaps in the mechanistic modeling. The central gaps are related to the look-ahead
principle.

First, the look-ahead mechanism is problematic for spikes: the look-ahead
mechanism is formulated for time-continuous input for the neurons. Formulating
the same look-ahead mechanism is challenging for spiking input because of the
non-differentiable nature of the spikes. If we assume that spike-rates are proxies
of firing rates — what we indeed do by using a rate-based model — we have to
average over several spikes in a neuron’s activity. Depending on the firing-rate
of a neuron, this can mean averaging over a time on the order of time-constant
τ of the look-ahead mechanism. Alternatively, we can assume that the input to
the neurons stems from a pool of pre-synaptic neurons, and hence the rate-based
input idea holds as an average over this pre-synaptic pool.

Second, in experiments [Köndgen et al., 2008] the neurons can follow closely
the input if the input is sufficiently slow. The experiments were carried out with
sinusoidal input on the neurons; at high input-frequencies the following property
breaks down and the neuron follows the input with a phase lag. In contrast, our
proposed look-ahead mechanism can follow any differentiable input, if we neglect
the practical problems regarding numerics. Designing mechanistic models of the
look-ahead mechanism should be the topic of further research. These envisioned
models could fill in the gap between the experimentally observed look-ahead and
the look-ahead property in our model.

In our model we only implicitly included aspects of reinforcement learning such
as the computation of the reward-prediction error and the strong action-selection
mechanism. We focused on the interaction of phase-less backpropagation and the
generation of output errors. Of immediate relevance is the strong action-selection:
feedback from the strong action-selection layer could contribute to the error-vector
generation, and might thereby improve the learning.
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Our model realizes a model-free reinforcement learning scheme (neuroscience
terminology), also called end-to-end reinforcement learning (machine learning
terminology). This means that the network does not use previous knowledge
about the environment and learning is purely based on the experience it gathered
by trial and error. Model-free reinforcement learning has been criticized both from
a biological and machine learning point of view. On the one hand, animals and
humans can clearly do more than trial and error [Niv, 2009]. On the other hand,
model-free learning requires a huge number of iterations, which would be clearly
impractical and expensive if, for example, one would try to learn to drive a car
with a model-free algorithm [LeCun, 2019]. This observation applies to biological
systems as well. Still, we think that it is worth studying these types of models.
On the one hand, there are indications that model-free learning is present in the
brain, for example in situations when habitual responding is favored Niv [2009].
On the other hand, the proposed model could be combined with other learning
mechanism, for example unsupervised or self-supervised learning [LeCun, 2019],
and hence perform efficient reinforcement learning based on preprocessed input.

The used MNIST [LeCun et al., 1998] dataset is small and — from the perspec-
tive of machine learning research — too simple to show competitive results. But
MNIST only serves as an example to demonstrate the model’s learning capability.
The main limitation of MNIST lies not in its small size but in its nature: MNIST
consists of static images. For the nervous system, even looking at static images
produces a dynamic stimulus due to the small involuntary eye-movements (mi-
crosaccades) [Martinez-Conde et al., 2009, Rolfs, 2009]. Hence, including more
dynamic behavior into the datasets would be more interesting for biology-focused
research than increasing the complexity of otherwise static images. Alternatively,
creating dynamic input based on static images could be seen as part of the model,
similarly to a pre-processing step. The underlying model in Senn et al. [in prepa-
ration] is based on learning immediate input-output relations through a neural
network, therefore further work is required to include learning from temporal
sequences.

5.5.2 Relation to other works

Models of deep learning in the brain

Several publications aim to give biologically plausible models of backpropagation.
They tackle the problem from different perspectives such as synaptic tagging
[Roelfsema and Ooyen, 2005, Rombouts et al., 2015], relation to Hebbian learning
rules [O’Reilly, 1996, Xie and Seung, 2003, Amit, 2019], predictive coding [Whit-
tington and Bogacz, 2017], introduction of feedback gating ghost units [Mesnard
et al., 2019] and deriving the dynamics from an energy function [Scellier and
Bengio, 2017]. All of these models come with a different level of biological plausi-
bility. Some of them lack time-continuous dynamics, and all of them assume the
presence of separate phases for the forward propagation of information and the
backpropagation of errors, or separate the plasticity and the network dynamics
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by using sufficiently small learning rates. Marblestone et al. [2016] and Whitting-
ton and Bogacz [2019] give recent reviews on many of the candidate algorithms.
Richards et al. [2019] aim to give a “principled perspective” to define the search
for deep learning in the brain. They emphasize that more focus should be given to
objective functions, learning rules and architectures in neuroscience to achieve a
more rapid progress. In a project complementary to the pursuit of biological deep
learning, Illing et al. [2019] study the learning capabilities of biological models of
shallow-learning combined with different preprocessing steps. They propose that
their results could be a comparison baseline for models of deep learning.

In this project we built largely on three previous studies. Urbanczik and Senn
[2014] established the idea of plasticity based on dendritic predictions and the
introduced the conductance-based nudging as a supervisory signal guiding learn-
ing. Conductive nudging has the desirable property that the amount of nudging
depends on the distance of neuron’s membrane potential to the target value. A
naïve neuron before learning, with a membrane potential far away from the tar-
get, receives a large supervisor current. In contrast, a learned neuron already
with the desired target receives none. Hence, the learning is continuous and
can be left active after the learning phase because in lack of conductive nudg-
ing the learning stops. Sacramento et al. [2018] used the microcircuit structure
for error-backpropagation and they combined them with learning from dendritic
predictions. By that, they formed a bottom-up model of time-continuous backprop-
agation in layered neural networks. The authors also relaxed the requirements of
shared weights in the microcircuits by mechanism similar to feedback alignment
[Lillicrap et al., 2016] and by introducing plasticity rules for the lateral connections.
Senn et al. [in preparation] introduced the idea of using the principle of least ac-
tion to derive the neuronal and synaptic dynamics. This results in the look-ahead
firing of the neurons keeping the feed-forward information and feedback error-
propagation in phase. We discussed the content of Senn et al. [in preparation] in
detail in section 5.1.

Winner-takes-all structures in models of neural networks

Intralayer WTA structures with short-range excitation and long-range inhibition
are widely used in simulation-based models of the nervous system and in neural
implementations of learning. They appear — without claim to completeness
— in models of decision making [Wang, 2008], in models of object recognition
[Riesenhuber and Poggio, 1999], in models of self-organized maps in the visual
cortex [Miikkulainen et al., 2006], in biological implementations of sparse coding
[Rozell et al., 2008, Ecke et al., 2019], in models of reinforcement [Frémaux et al.,
2013, Leimer et al., 2019] and unsupervised learning [Habenschuss et al., 2013,
Urbanczik and Senn, 2014, Diehl and Cook, 2015, Breitwieser, 2015], and even in
experiments with learning on neuromorphic hardware [Kreiser et al., 2017, Spilger,
2018].

There are two main types of WTA circuits. In the hard WTA circuits, we assume
that the spiking activity of a single neuron completely inhibits the activity of the
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other neurons, e.g. in Diehl and Cook [2015], Breitwieser [2015], Spilger [2018],
Leimer et al. [2019]. This can be understood as a hard decision-making process. In
soft WTA circuits, the spiking activity is not reduced to solely one neuron. The
winner only increases its own activity and decreases the activity of others, but
does not inhibit them completely, e.g. in Habenschuss et al. [2013], Frémaux et al.
[2013], Urbanczik and Senn [2014].

Our approach is inspired by the soft WTA mechanism in Urbanczik and Senn
[2014]. There, the WTA circuit provides a small nudging of the somatic membrane
potential that drives learning. However, the authors do not call the resulting
nudging an error-vector. The novelty of our work lies in interpreting the lateral
nudging in the action layer as an error-vector, making it compatible with the error-
backpropagation mechanism. Furthermore, we proved the reward-maximizing
property of the plasticity rule (section 5.2.2).

Q-AGREL: a model for biological deep learning with attention network and
synaptic tagging

Recently, the Q-AGREL model has been proposed as a biologically plausible model
for deep reinforcement learning [Pozzi et al., 2018]. AGREL stands for attention-
gated reinforcement learning, and the Q refers to the q-values of the actions.
Q-AGREL assumes different mechanisms to implement a similar functionality as
our network (table 5.7).

Model Q-AGREL this model

dynamics no notion of time time-continuous

phases in yes nobackpropagation

action selection max-Boltzmann controller time-continuous noise

error accumulation synaptic tag eligibility trace

modeling approach bottom-up top-down dynamics,
bottom-up homeostasis

dataset MNIST, CIFAR10/100 reduced MNIST

Table 5.7: Comparison of the time-continuous reinforcement learning model
and Q-AGREL. Comparison of our model and the Q-AGREL model described in
Pozzi et al. [2018].

The main differences between their and our work are the presence of separate
forward and backward phases and the lack of neural dynamics in Q-AGREL.
Q-AGREL is based on neuron models that only consider input-output relations as
in artificial neural networks (section 2.1.1). In the forward pass a hard WTA-based
action selection is assumed in the action layer. The action selection is implicitly
modeled by a max-Boltzmann controller [Wiering and Schmidhuber, 1997], a
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modification of the ϵ-greedy policy [Sutton and Barto, 2018]. In the backward pass,
only the activated action backpropagates error signals via an attention network.
The error-term in the single synapses is held in a so-called synaptic tag, which
is similar to our eligibility trace assumption. Finally, a reward prediction error
modulates the plasticity of the synapses. Q-AGREL is fully constructed as a
bottom-up model.

We argue that our model includes more mechanistic details than Q-AGREL
such as time-continuous dynamics, cortical microcircuits, error-vector-generating
WNA circuits and the explicit exploration mechanism; at the expense of simulation
complexity. Pozzi et al. [2018] tested Q-AGREL not only on the MNIST [LeCun
et al., 1998] but also on CIFAR10 and CIFAR100 [Krizhevsky et al., 2009] datasets
with good results, while our model was restricted to a reduced version of MNIST
due to the numerical complexity.

5.5.3 Conclusion and outlook

We presented a theory of time-continuous deep reinforcement learning. We see
three main paths for future work.

We used a simple classification task to prototype and demonstrate the learning
capabilities of the model, but classification is an unusual task for reinforcement
learning. In order to apply the model to typical reinforcement learning tasks (cart-
pole, water maze), we have to extend the model to enable learning over different
states of the environment. Inspired by the works of Doya [2000] and Frémaux et al.
[2013], we suggest an actor-critic framework where the two networks get input
from the current state of the environment (figure 5.19). In the action layer of the
actor network, a WNA structure gives rise to an error-vector, while in the critic
network the neuron representing the state value gets constant positive nudging.
Plasticity in the whole network is modulated by the time-continuous version of the
reward-prediction error [Doya, 2000, Frémaux et al., 2013]. Frémaux et al. [2013]
used an almost identical framework, but their approach did not scale well for
high-dimensional problems since their model was restricted to shallow learning
only. Our framework could mitigate this problem because both the critic and the
actor network can learn hierarchies of non-linear features.

Another future path of research could focus more on the mechanistic modeling
of the look-ahead mechanism. The look-ahead firing of the neurons is a central
property, which gives rise to the possibility of backpropagation without phases.
Currently, it appears as a prescribed dynamic of the neurons. It would be interest-
ing to study the possible mechanisms of look-ahead firing in biological neurons
and their compatibility with deep learning in a network. This effort would greatly
increase the biological plausibility of the model. In addition, understanding the
mechanism and requirements of look-ahead firing would be the first step towards
a potential neuromorphic implementation.

Finally, in the current form, this project only gives postdictions to biological
observations and lacks any directly falsifiable predictions. The quest for biological
deep learning has only recently gained momentum and several models have been
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Figure 5.19: Sketch of the proposed actor-critic network architecture. We pro-
pose to extend our model to an actor-critic architecture. The actor network imple-
ments the current policy: at the action layer it forms a WNA circuit to give rise
to an error-vector. The critic network learns the state value of the current state of
the environment. The complete network underlies the neuro-synaptic dynamics
of the principle of least action framework. The plasticity is modulated by the
time-continuous version of the reward prediction error δ(t) [Doya, 2000, Frémaux
et al., 2013], which is calculated as a combination of the learned critic value and
the obtained reward. Due to the backpropagation property, the network could
learn non-linear features from the state of the environment. The cheese and the
mouse motives are taken from Clipart [2020].
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proposed how the brain might implement deep learning. We should focus more
on suggesting testable predictions to allow for a closer feedback-loop between
theory and experiment.
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6 Concluding remarks

In this thesis, we present three projects contributing to the pursuit of robust
and powerful learning algorithms for biological and neuromorphic substrates.
Throughout the projects, we emphasize the aspect of robustness to disrupting
effects. We find that appropriate learning rules can help mitigating distorting
effects on analog neuromorphic hardware and at the same time the implementa-
tion can benefit from the advantages of the neuromorphic substrate. This result
helps to extend the range of applications of neuromorphic hardware. Further,
we implicitly show the consecutive steps of model-development for imprecise
substrates: from the inspiration in machine learning, via the development of a
computational neuroscience model to the implementation and benchmarking on
the neuromorphic hardware. Finding powerful mechanistic computational models
is central for neuromorphic engineering to realize its advantages in applications
and for computational neuroscience to understand the information processing in
the brain. Here, we discuss the contribution of these projects to the synergistic
developments of the brain-inspired research fields (figure 6.1).

In chapter 3, we present an implementation of accelerated Bayesian inference on
the BrainScaleS-1 system (BSS-1) neuromorphic system. The project exemplifies
how a model rooted in machine learning is adapted and developed for mixed-
signal neuromorphic substrate. The introduced iterative learning scheme is able to
mitigate distorting effects resulting from fixed-pattern noise on the neuromorphic
hardware. The implementation benefits from the acceleration of the hardware
reaching two orders of magnitude speed-up compared to equivalent biological
real-time. Due to the underlying probabilistic paradigm, the model is not only
able to perform classification but pattern completion and data generation as well.
Appealing characteristics of the model are its capability to perform both inference
and generative tasks with the same network, its local learning rule and the wide
applicability of the underlying machine learning model. The model could be
extended to solve more complex tasks, or to include on-chip learning. The latter
combined with the immense acceleration of analog neuromorphic hardware would
be interesting for machine learning applications.

In chapter 4, we present a demonstration of advantages of neuromorphic com-
putation. In the project, we study and — more importantly — quantify the aspects
of robustness, speed, energy consumption and self-learning capability of neuro-
morphic hardware. The results demonstrate that a learning rule implemented
and executed completely on-chip can compensate for imperfections on the analog
hardware. The presented numbers of power-consumption and speed give impor-
tant estimates about what is to be expected from the accelerated mixed-signal
neuromorphic approach. The neuromorphic setup outperformed the equivalent
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Figure 6.1: Contribution of the presented projects to synergistic advancement
of the three fields. Summary of how the presented projects contribute to the
advancement of neuromorphic engineering, computational neuroscience and
machine learning. The unbroken lines symbolize the contribution of the projects,
and the dashed lines indicate their potential further effect or extension. The three
projects are: i) accelerated Bayesian inference (chapter 3, red), ii) demonstrating
advantages of neuromorphic computation (chapter 4, green) and iii) biologically
plausible deep reinforcement learning (chapter 5, blue). Compare to figure 1.1 that
summarizes the general interaction between the three fields.

180



software implementation running on a CPU by an order of magnitude in terms
of speed of computation and by three orders of magnitude in terms of energy
consumption. Especially, the speed-comparison with the CPU-based simulator
suggests that accelerated neuromorphic hardware has the potential as a low-
precision but high-speed simulator for computational neuroscience. The analyzes
of robustness and the transferability of the results between chips are key observa-
tions for potential applications.

In chapter 5, we show a biologically plausible model of deep reinforcement
learning. First, the project contributes to the recently reopened pursuit for deep
learning mechanisms in the brain by providing a mechanistic model with time-
continuous dynamics and self-learning capabilities. The robustness of the model
to small time-delays in the reward and its robustness to fixed-pattern noise can be
seen as first steps towards a potential neuromorphic implementation. However,
to reach this potential extension several additional steps are needed, such as the
inclusion of spikes in the model.

There are also interactions and connections among the three projects. First, we
can see accelerated Bayesian inference and biologically plausible reinforcement
learning as two similar projects at different milestones of their development. They
both fit into the logic that a model originally from machine learning (Boltzmann
machines and backpropagation) is extended into a model in computational neuro-
science and potentially further towards application on neuromorphic hardware.
In this analogy, the project of deep reinforcement learning is at the same stage as
accelerated sampling was when Buesing et al. [2011] mapped sampling to the dy-
namics of spiking neural networks. Future research might lead to a neuromorphic
implementation, similarly as in chapter 3.

Second, mainly two factors limited the demonstration of advantages of neu-
romorphic computation (chapter 4): 1) the size of the prototype chip and 2) the
availability of spike-based algorithms with local learning rule accessible for on-
chip learning. Chapter 3 and chapter 5 connect to the second limitation. Both the
spike-based inference framework and the deep reinforcement learning framework
are promising candidates as powerful spike-based algorithms with local learning
rules for implementation on a neuromorphic hardware with on-chip learning.
In case of deep reinforcement learning, several further intermediate steps are
required for a neuromorphic implementation. The spike-based Bayesian inference
framework has been successfully implemented on the BSS-2 prototype chip [Bil-
laudelle et al., 2019a]. The framework is a good starting point for developing an
on-chip version of the used (local) Hebbian learning rule.

The continuous interaction among these fields of research has led to remarkable
progress in the past and we expect that we will benefit from it in the future as
well. This thesis contributes to this synergistic advancement of science towards
understanding the human brain and towards building novel hardware inspired
by our new insights.

181





Appendix

183





A Calculations and code examples

185



A. Calculations and code examples

A.1 Source code examples for accelerated Bayesian
inference on BSS-1

The source code is available upon request from the Electronic Vision(s) Group
Heidelberg or from the author in the repository model-hw-sampling-hicann. For
the setup the source code uses the PyNN API [Davison et al., 2009].

def setUpNetwork(self):

""" Set upt the network based on the provided connection matrix

and the bias vector """

# Make an initial guess for the correct weights and biases

# The guess is based on the typical result

# for the activation function

# using bias neurons

self.N = len(self.b_target) # number of neurons

self.b_HW_init = 1. ∗ copy.deepcopy(self.b_target) # initial b guess

self.W_HW_init = 1. ∗ copy.deepcopy(self.W_target) # initial W guess

# create mask for the RBM

# not seen weights are not realized

self.mask = SF.createRbmMask(

self.N_visible + self.N_label, self.N_hidden)

# Set up the network using pynn

BmParams = {’N’: self.N,

# from central database

’samplerParams’: database.NEURON_PARAMS ,

# from central database

’biasParams’: database.BIAS_PARAMS ,

’mask’: self.mask,

’W’: self.W_HW_init}

# options to specify the number of bias neurons

# and to leave gaps between neurons while mapping

if self.N_bias:

BmParams[’N_bias’] = self.N_bias

if self.gapPlacement:

BmParams[’gap’] = self.gapPlacement

[self.bmPops, self.samplers, self.biases, self.biasConn,

self.samplingConn] = SF.createSkeletonBmMasked(BmParams)

# activate the spike readout for the samplers

for i in range(self.N):

self.samplers[i].record()
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# if specified then the list of the neurons is shuffled

if self.randomPlacement:

np.random.shuffle(self.bmPops)

# Create the decorrelation network

[self.sonNeur, self.sonSyns] = SF.createSimpleSon(self.Son_params)

# Connect noise from the sea of noise network to the samplers

self.con = pynn.FixedNumberPreConnector(self.noisePartners ,

weights=1,

allow_self_connections=False)

self.excNoise = pynn.Projection(self.sonNeur,

self.samplers,

self.con,

target=’excitatory’)

self.inhNoise = pynn.Projection(self.sonNeur,

self.samplers,

self.con,

target=’inhibitory’)
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The training loop iterates between execution on the hardware and gradient
evaluation on the host computer. The following function shows that the gradient
is obtained in two experiments on the neuromorphic hardware.

def getOneGradient(self, miniBatch , W, b):

"""

Make one CD step on a given example

specified by its number in the dataset.

−− Keywords: miniBatch

−− miniBatch: minibatch in matrix form

−− W: weight matrix

−− b: bias vector

−− Returns: [db, dW]

−− db: Calculated gradient for the biases

−− dW: Calculated gradient for the weights

"""

##########################

# Emulate the data term #

##########################

# Get and apply the spiketrains

clamping = SF.spikeTrainsFromPic(

miniBatch ,

self.durationCD ,

10.,

self.labels,

withLabels=True)

self.applyClamping(clamping, withLabels=True)

# Turn−off the connections from hidden to visible and label
W_mod = copy.deepcopy(W)

W_mod[self.N_label + self.N_visible:,

:self.N_label + self.N_visible] = 0

self.applyNetworkChanges(W_mod, b)

# Run the experiment

numExamples = len(miniBatch[:, 0])

endOfClamping = numExamples ∗ self.durationCD
duration = endOfClamping

self.runExperiment(duration)

# Gather the spikes

spTrains = {}

for inner in range(self.N):

spTrains[inner] = self.samplers[inner].getSpikes()[:, 1].tolist()

188



A.1 Appendix: accelerated Bayesian inference

# Evaluate the spike trains

# Calculate the data term based on the results

C_data = SF.calculateMiniBatchDataTerm(self.durationCD ,

spTrains ,

self.tau_mean,

numExamples)

###########################

# Emulate the model term #

###########################

# Obtain and apply clamping to gather the recontruction terms

clamping = SF.spikeTrainsFromPicModel(

miniBatch ,

self.durationCD ,

10.,

self.labels,

withLabels=True)

self.applyClamping(clamping, withLabels=True)

# Turn−on the connections from hidden to visible and label
self.applyNetworkChanges(W, b)

# Run the experiment

timer.start()

endOfClamping = numExamples ∗ self.durationCD ∗ 2.
self.runExperiment(endOfClamping)

# Gather the spikes

spTrains = {}

for inner in range(self.N):

spTrains[inner] = self.samplers[inner].getSpikes()[:, 1].tolist()

# Calculate the data term based on the results

timer.start()

C_model = SF.calculateMiniBatchModelTerm(self.durationCD ,

spTrains ,

self.tau_mean,

numExamples)

dC = C_data − C_model

return [dC.diagonal(), C_data − C_model]

189



A. Calculations and code examples

A.2 Source code examples for demonstrating
advantages of neuromorphic computation

The source code is available upon request form the author or from the Electronic
Vision(s) Group Heidelberg. The source code is found in model-hw-pong for the
experiment and in the model-sw-pong for the software simulations. The hardware
implementation was made with the frickel-dls repository, which is a gathering
of low-level (close to the hardware) convenience function for using the BSS-2
neuromorphic chip. This can be seen on the implementation as well, because it
uses more low-level functions to use the chip.

class PongDLS:

def __init__(self, runs_at_a_time=1, folder=None, cfgfile=None, \

noisy_weights=None, chip=None, board=None, delay=0.001):

logging.debug("Initializing PongDLS")

self.path = os.path.dirname(os.path.abspath(__file__))

# Loading the PPU program

self.program = os.path.join(self.path,

"ppu/firmware/pongdls.binary")

if board is None:

self.board = pydls.get_allocated_board_ids()[0]

else:

self.board = board

logging.debug("Using board %s" % self.board)

self.folder = folder

# choose chip if specified

if chip is None:

if self.board == "B201330":

self.chip = "22"

elif self.board == "07":

self.chip = "22"

elif self.board == "B201319":

self.chip = "22"

else:

logging.warning(

"Could not find chip for board.\

Using default chip 20.")

self.chip = "20" #return

else:

self.chip = chip

self.mailbox_marker = 1

self.mailbox_offset = 0x3000 / 4

self.mailbox_size = (32 + 32 ∗ 32 / 4) ∗ 2
self.message_location = 0

self.runs_at_a_time = runs_at_a_time
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self.run_delay = delay

self.normalization = float(0x7fffffff)

self.running = False

self.kys = False

self.setup_done = False

self.c = pydls.connect(self.board)

logging.debug("Connected to board %s" % self.board)

# load configuration file

self.dlscfg = PongDLSConfig(self.c, self.chip, self.board,

self.program,

cfgfile=cfgfile)

if noisy_weights:

logging.debug(

"Setting noisy Gaussian weights\

with mean %d, std %d." %

(noisy_weights[0], noisy_weights[1]))

self.dlscfg.set_noisy_weights(noisy_weights[0],

noisy_weights[1])

191



A. Calculations and code examples

At the time of the project, the PPU had to be programmed with low-level calls
and functions. Below, we show the plasticity rule as it is programmed on the PPU.

static void reward_network ()
{

uint8_t row;
switch (abs(paddle.target_cell - ball.y_cell )) {

case 0:
reward = 0x7f;
break;

case 1:
reward = F8 (0.7);
break;

case 2:
reward = F8 (0.4);
break;

case 3:
reward = F8 (0.1);
break;

case 4:
reward = F8 (0.0);
break;

default:
reward = 0;
break;

}
// if this is the first run , set mean reward to current reward
if (mean_rewards[ball.y_cell] == 128) {

mean_rewards[ball.y_cell] = reward;
}
success = reward - mean_rewards[ball.y_cell ];

VR_SUCCESS = (vector uint8_t)fxv_splatb(
(success >> learning_rate) + success_offset );

mean_rewards[ball.y_cell] = mean_rewards[ball.y_cell] +
(success >> avg_runs );
rewards[ball.y_cell] = reward;

// update all synapse rows
for (row = 0; row < 32; row++) {

get_causal_correlation (& VR_CAUSAL_0 , &VR_CAUSAL_1 , row);
get_weights (&VR_WIN_0 , &VR_WIN_1 , row);
VR_CAUSAL_OFF_0 = causal_offsets_0[row];
VR_CAUSAL_OFF_1 = causal_offsets_1[row];

asm volatile (
"fxvshb␣%[W0],␣%[W0],␣1\n"
"fxvshb␣%[W1],␣%[W1],␣1\n"
"fxvshb␣%[COFF0],␣%[COFF0],␣ -1\n"
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"fxvshb␣%[COFF1],␣%[COFF1],␣ -1\n"
"fxvshb␣%[C0],␣%[C0],␣ -1\n"
"fxvshb␣%[C1],␣%[C1],␣ -1\n"
"fxvsubbfs␣%[C0],␣%[C0],␣%[COFF0]\n"
"fxvsubbfs␣%[C1],␣%[C1],␣%[COFF1]\n"
"fxvcmpb␣%[C0]\n"
"fxvsel␣%[C0],␣%[C0],␣%[ CONST0],␣2\n"
"fxvcmpb␣%[C1]\n"
"fxvsel␣%[C1],␣%[C1],␣%[ CONST0],␣2\n"
"fxvmulbfs␣%[WADD0],␣%[C0],␣%[S]\n"
"fxvmulbfs␣%[WADD1],␣%[C1],␣%[S]\n"
"fxvaddbm␣%[TMP0],␣%[WADD0],␣%[ CONST1 ]\n"
"fxvcmpb␣%[WADD0]\n"
"fxvsel␣%[WADD0],␣%[WADD0],␣%[TMP0],␣2\n"
"fxvaddbm␣%[TMP0],␣%[WADD1],␣%[ CONST1 ]\n"
"fxvcmpb␣%[WADD1]\n"
"fxvsel␣%[WADD1],␣%[WADD1],␣%[TMP0],␣2\n"
"fxvaddbfs␣%[W0],␣%[W0],␣%[WADD0]\n"
"fxvaddbfs␣%[W1],␣%[W1],␣%[WADD1]\n"
"fxvcmpb␣%[W0]\n"
"fxvsel␣%[W0],␣%[W0],␣%[ CONST0],␣2\n"
"fxvcmpb␣%[W1]\n"
"fxvsel␣%[W1],␣%[W1],␣%[ CONST0],␣2\n"
"fxvsubbfs␣%[TMP0],␣%[W0],␣%[ CONST127 ]\n"
"fxvcmpb␣%[TMP0]\n"
"fxvsel␣%[W0],␣%[ CONST127],␣%[W0],␣2\n"
"fxvsubbfs␣%[TMP0],␣%[W1],␣%[ CONST127 ]\n"
"fxvcmpb␣%[TMP0]\n"
"fxvsel␣%[W1],␣%[ CONST127],␣%[W1],␣2\n"
"fxvshb␣%[W0],␣%[W0],␣ -1\n"
"fxvshb␣%[W1],␣%[W1],␣ -1\n"
: [W0] "+kv" (VR_WIN_0),

[W1] "+kv" (VR_WIN_1),
[C0] "+kv" (VR_CAUSAL_0),
[C1] "+kv" (VR_CAUSAL_1),
[TMP0] "+kv" (VR_TMP_0),
[WADD0] "+kv" (VR_WEIGHT_ADD_0),
[WADD1] "+kv" (VR_WEIGHT_ADD_1)

: [COFF0] "kv" (VR_CAUSAL_OFF_0),
[COFF1] "kv" (VR_CAUSAL_OFF_1),
[CONST0] "kv" (VR_CONST_0),
[CONST1] "kv" (VR_CONST_1),
[CONST127] "kv" (VR_CONST_127),
[S] "kv" (VR_SUCCESS)

: /* no clobber */
);

set_weights (&VR_WIN_0 , &VR_WIN_1 , row);
}
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}
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A.3 Source code examples and implementation
details for time-continuous deep reinforcement
learning

A.3.1 Implementation details

In the following, we describe the details of the numerics of the implementation,
and show why the simulation of the time-continuous dynamic is tedious even
with the help of GPUs. The noise is simulated according to equation (5.52):

dξ =
1

τOU
(µOU − ξ)dt +

√
2

τOU
σOUdW , (A.1)

where τOU is the autocorrelation time, µOU is the equilibrium point and σOU is the
standard deviation of the steady-state solution. In the dynamics we also need the
low-pass filtering of the noise

ξ̄(t) =
1
τ

∫ t

−∞
ξ(t̂) exp

(
− t − t̂

τ

)
dt̂ . (A.2)

In simulation we access the low-pass filtered ξ̄ by simulation the ordinary differ-
ential equation

˙̄ξ =
1
τ

(
ξ − ξ̄

)
, (A.3)

which is equivalent to the integral equation in equation (A.2).
For the explicit description of the numeric implementation, we first change to

the notation where u represents the vector of all the neurons in the network and
W represents all the synaptic connections. The synapse matrix W has a block-
wise structure then the describe the feed-forward neural network. Similarly, let
r be the instantaneous firing rate of all the neurons, ξ the noise on the action
neurons (everywhere zero except for the action neurons), I the vector of input
(everywhere zero except for the neurons receiving input) and M the matrix con-
taining the winner-nudges-all structure as a block. Further let for a vector x ∈ RN

define diag (x) ∈ RN×N the matrix that contains x on the main diagonal and zero
otherwise.

In this notation the energy term of the Lagrange function (equation (5.49))
becomes

E =
1
2

W r̄ + ξ̄ + I − u
2 . (A.4)

If we calculate dynamic equations and write it out explicitly, we obtain

τu̇ = W
(
r̄ + τr̄′ ⊙ u̇

)
+ ξ̄ + τ ˙̄ξ + I + τ İ − u+

+r̄′ ⊙ WT (u − W r̄ − I − ξ̄
)
+ τ

(
r̄′′ ⊙ u̇

)
⊙ WT (u − W r̄ − I − ξ̄

)
+

+τr̄′ ⊙ WT
(

u̇ − W
(
r̄′ ⊙ u̇

)
− İ − ˙̄ξ

)
+ βM

(
r̄ + τr̄′ ⊙ u̇

)
.

(A.5)
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equation (A.5) can be seen as a self-consistency equation for the time-derivative of
the membrane potential u̇. A direct analytic solution is not feasible, but we can
formulate it in form of a system of linear equations:

Ax = y , and

u̇ =
x
τ

, with

A = 1 − Wdiag
(
r̄′
)
− diag

(
r̄′′
)

diag
(

WT [u − W r̄ − ξ̄ − I
])

−

−diag
(
r̄′
)

WT + diag
(
r̄′
)

WTWdiag
(
r̄′
)
− βMdiag

(
r̄′
)

, and

y = W r̄ + I + ξ̄ − u + βMr̄ + r̄′ ⊙ WT [u − W r̄ − ξ̄ − I
]

+τr̄′ ⊙ WT
(

˙̄ξ + İ
)
+ τ İ .

(A.6)

Here is 1 the identity matrix. For the simulation of neural dynamics, we solve in
each time-step a system of linear equations and perform an explicit Euler step

un+1 = un + dt
A−1yn

τ
. (A.7)

Because solving a system of linear equations in each time-step is expensive, the
numerical simulations are tedious and time-consuming. In the implementation,
naturally, we do not invert the matrix A but use the built-in linear solver in the
TensorFlow API (appendix B.3).

A.3.2 Construction of the winner-nudges-all matrix

We postulated the winner-nudges-all (WNA) in equation (5.50) and we have
shown in lemma 8 that the corresponding generated nudging error leads to Hill-
climbing on the expected reward . However, we did not give the explicit train of
thought that leads to the form of the matrix, which we present here.

• We start from the fact that the theorem based on the principle of least-action
generates error by nudging the membrane potential of the soma. In contrast
to the supervised case, we would like the network to generate its own error.
The simplest ansatz is to assume a linear error-generating process from the
action neurons

eWNA = Mr . (A.8)

• We observe that there is no notion of distance between the action neurons a
priori. Because we use the network for classification, we do not know what
the distance between classes is before learning. This should be reflected
in the WNA matrix as well. Hence, we only differentiate between the self-
connections and the lateral connections:

M =

⎛⎜⎜⎜⎝
a b · · · b
b a · · · b
...

... . . . ...
b b · · · a

⎞⎟⎟⎟⎠ , (A.9)
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with M ∈ RN×N where N is the number of the action neurons.

• During learning, the norm of the vector can be absorbed into the learning
rate, and we merely consider the direction of the error-vector. Further, we
know that the true winner neuron should be strengthened while the other
neurons should be weakened. Therefore we set a := 1 and b > 0:

M =

⎛⎜⎜⎜⎝
1 −b · · · −b
−b 1 · · · −b

...
... . . . ...

−b −b · · · 1

⎞⎟⎟⎟⎠ . (A.10)

• Finally, the classification is only based on the relative activity of the neurons
but not on their absolute activity. To keep the activity of the network stable,
and to prohibit it from falling into a hyperactive or quiescent sate we require
that the sum of the generated error should be zero:

∑
i
[Mr]i

!
= 0

∑
i

ri − b(N − 1)∑
i

ri = 0

b =
1

N − 1
.

(A.11)

In summary, we constructed the WNA matrix:

M =

⎛⎜⎜⎜⎝
1 − 1

N−1 · · · − 1
N−1

− 1
N−1 1 · · · − 1

N−1
...

... . . . ...
− 1

N−1 − 1
N−1 · · · 1

⎞⎟⎟⎟⎠ . (A.12)

A.3.3 Source code examples

The source code is available upon request from the author or from the compu-
tational neuroscience group in the Department of Physiology at the University
of Bern. At the time of writing, the repository https://github.com/unibe-cns/
lagrange_reinforcement was not yet published. It was written using the Ten-
sorFlow API (appendix B.3), which is an easy way to execute the implemented
simulation on GPUs. Below, we first show the setup of the simulation. The code
is written in a modular way to enable the exchange of the aspects, such as the
activation function.

def setUpNetwork(self):

"""

Set up the network with the lagrange dynamics

"""
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# Set up the network structure

self.W = lagrangeRL.tools.networks.feedForwardWtaReadout(

self.layers,

self.wtaStrength ,

offset=self.initWeightMean ,

noiseMagnitude=self.initWeightWidth ,

noWtaMask=True,

fixedPatternNoiseSigma=self.fixedPatternNoiseSigma)

self.logger.debug(’The w matrix as it \

comes from the tool function: {}’.format(self.W.data))

# Create the underlying network

self.simClass = lagrangeRL.network.lagrangeTfDirect()

self.simClass.setPlasticSynapses(np.logical_not(self.W.mask))

self.simClass.setLearningRate(self.learningRate)

self.simClass.setTimeStep(self.timeStep)

self.simClass.setTau(self.tau)

self.simClass.addMatrix(self.W)

self.simClass.setTauEligibility(self.tauElig)

if self.saveOnlyReward:

self.simClass.saveTraces(False)

else:

self.simClass.saveTraces(True)

# Set the weights resulting from te cost term

self.simClass.setCostWeightings(self.alphaWna,

self.alphaNoise ,

self.beta)

# Define the fixed weights

# here the wna network has to stay fixed

wMaxFixed = np.zeros((self.N, self.N))

wMaxFixed[−self.layers[−1]:, −self.layers[−1]:] = 1
self.simClass.setFixedSynapseMask(wMaxFixed.astype(bool))

# set the regularization parameters

self.simClass.setRegParameters(self.uTarget,

self.learningRateH ,

self.uLow,

self.uHigh,

self.learningRateB)

# set up the noise

self.simClass.setNoiseParameter(0.,
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self.noiseStd,

self.noiseAutoCorrTime)

self.simClass.calcWnoWta(self.layers[−1])
self.simClass.calcOnlyWta(self.layers[−1])

# set the biases in the network

biasVector = np.zeros(sum(self.layers))

biasVector[−self.layers[−1]:] = 0.5
self.simClass.setBias(biasVector)
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The dynamics of the network are simulated in TensorFlow. In TensorFlow, the
user builds computational graphs. Propagating the differential equation by one
time-step is implemented as one evaluation on the computational graph.

def createComputationalGraph(self):

"""

Create the computational graph in tensorflow

"""

######################################

# Define tensorflow variables for the simualtion

self.u = tf.Variable(np.zeros(self.N), dtype=self.dtype)

self.rLowPass = tf.Variable(np.zeros(self.N), dtype=self.dtype)

uNoise = tf.Variable(np.zeros(self.N), dtype=self.dtype)

self.uNoiseLowPass = tf.Variable(np.zeros(self.N), dtype=self.dtype)

self.uDotOld = tf.Variable(np.zeros(self.N), dtype=self.dtype)

self.eligNow = tf.Variable(

np.zeros((self.N, self.N)), dtype=self.dtype)

self.eligibility = tf.Variable(

np.zeros((self.N, self.N)), dtype=self.dtype)

self.regEligibility = tf.Variable(

np.zeros((self.N, self.N)), dtype=self.dtype)

self.regEligibilityBorder = tf.Variable(

np.zeros((self.N, self.N)), dtype=self.dtype)

self.wTfNoWta = tf.Variable(self.WnoWta, dtype=self.dtype)

self.wTfOnlyWta = tf.Variable(self.onlyWta, dtype=self.dtype)

inputMask = self.input.getInput(0.)[2]

self.inputMaskTf = tf.Variable(inputMask ,

dtype=self.dtype)

outputMask = self.target.getTarget(self.T)[2]

self.outputMaskTf = tf.Variable(outputMask ,

dtype=self.dtype)

self.biasTf = tf.Variable(self.biasVector , dtype=self.dtype)

# set up a mask for the learned weights in self.wTfNoWta

# note that W.mask must omit the WTA network

self.wNoWtaMask = tf.Variable(self.Wplastic.astype(float),

dtype=self.dtype)

#####################################

# Variables for debugging

self.error = tf.Variable(np.zeros(self.N), dtype=self.dtype)

#####################################

# Placeholders

# The only datatransfer between the GPU and the CPU should be the
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# input to the input layer and the modulatory signal

self.inputTf = tf.placeholder(dtype=self.dtype,

shape=(self.N))

self.inputPrimeTf = tf.placeholder(dtype=self.dtype,

shape=(self.N))

self.modulator = tf.placeholder(dtype=self.dtype,

shape=())

####################################

# Aux variables for the calculations

nInput = len(np.where(inputMask == 1)[0])

nOutput = len(np.where(outputMask == 1)[0])

nFull = len(inputMask)

#####################################################

# Start the actual calculations for the comp graph #

#####################################################

####################################

# Calculate the activations functions using the updated values

self.rho = self.actFunc(self.u)

rhoPrime = self.actFuncPrime(self.u)

rhoPrimePrime = self.actFuncPrimePrime(self.u)

self.rhoOutput = self.actFunc(self.u)

###################################

# Update the exploration noise on the output neurons

uNoiseOut = tf.slice(uNoise, [nFull − nOutput], [−1])
duOutNoise = self.noiseTheta ∗ (self.noiseMean − uNoiseOut)\

∗ self.timeStep + self.noiseSigma ∗ \
np.sqrt(self.timeStep) ∗ \
tf.random_normal([nOutput], mean=0., stddev=1.0, dtype=self.dtype)

updateNoise = tf.scatter_update(uNoise,

np.arange(nFull − nOutput, nFull),

uNoiseOut + duOutNoise)

# Update the low−pass noise
with tf.control_dependencies([updateNoise]):

self.uNoiseLowPass = self.uNoiseLowPass + (self.timeStep/self.tau)\

∗ (uNoise − self.uNoiseLowPass)

####################################

# Calculate the updates for the membrane potential and for the

# eligibility trace

with tf.control_dependencies([self.uNoiseLowPass ,

updateNoise ,
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rhoPrime ,

rhoPrimePrime]):

# frequently used tensors are claculated early on

wNoWtaT = tf.transpose(self.wTfNoWta)

wNoWtaRho = tfTools.tf_mat_vec_dot(self.wTfNoWta, self.rho)

c = tfTools.tf_mat_vec_dot(wNoWtaT, self.u − \

wNoWtaRho − self.biasTf − self.inputTf − self.uNoiseLowPass)

# get the matrix side of the equation

A1 = tf.matmul(self.wTfNoWta, tf.diag(rhoPrime))

A2 = tf.matmul(tf.diag(c), tf.diag(rhoPrimePrime))

A3 = tf.matmul(tf.diag(rhoPrime), wNoWtaT)

A4 = tf.matmul(tf.matmul(tf.diag(rhoPrime),wNoWtaT),

tf.matmul(self.wTfNoWta, tf.diag(rhoPrime)))

A5 = self.beta ∗ self.alphaWna ∗\
tf.matmul(self.wTfOnlyWta , tf.diag(rhoPrime))

A = self.tau∗(tf.eye(self.N) − A1 − A2 − A3 + A4 − A5)

# get the vector side of the equation

y1 = wNoWtaRho + self.biasTf + self.inputTf + \

self.alphaNoise ∗ self.beta ∗ uNoise − self.u

y2 = self.tau ∗ self.inputPrimeTf
y3 = rhoPrime ∗ c
y4 = self.tau ∗ rhoPrime ∗ tfTools.tf_mat_vec_dot(

wNoWtaT,

self.inputPrimeTf)

y5 = self.beta ∗ self.alphaWna ∗ tfTools.tf_mat_vec_dot(
self.wTfOnlyWta , self.rho)

y6 = rhoPrime ∗ tfTools.tf_mat_vec_dot(
wNoWtaT,

uNoise − self.uNoiseLowPass)

y = y1 + y2 + y3 − y4 + y5 − y6

# Solve the equation for uDot

uDiff = tf.linalg.solve(A, tf.expand_dims(y, 1))[:, 0]

updateLowPassActivity = self.rLowPass.assign((self.rLowPass + \

self.timeStep / self.tauEligibility ∗ self.rho) ∗\
tf.exp(−1. ∗ self.timeStep / self.tauEligibility))

self.eligNowUpdate = self.eligNow.assign(

tfTools.tf_outer_product(

self.u − tfTools.tf_mat_vec_dot(self.wTfNoWta, self.rho)\

− self.biasTf, self.rho))

202



A.3 Appendix: Time-continuous deep reinforcement learning

errorUpdate = self.error.assign(self.u − \

tfTools.tf_mat_vec_dot(self.wTfNoWta, self.rho) \

− self.biasTf − self.inputTf)

# porpagate the eligibility traces for the main learning

# and for the regularization terms

with tf.control_dependencies([saveOldUDot ,

updateLowPassActivity ,

self.eligNowUpdate ,

errorUpdate]):

self.updateEligiblity = self.eligibility.assign(

(self.eligibility + self.timeStep ∗ tfTools.tf_outer_product(
self.u − tfTools.tf_mat_vec_dot(self.wTfNoWta, self.rho)\

− self.biasTf − self.inputTf − self.uNoiseLowPass ,

self.rho)) ∗\
tf.exp(−1. ∗ self.timeStep / self.tauEligibility)

)

self.updateRegEligibility = self.regEligibility.assign(

(self.regEligibility + self.timeStep ∗ tfTools.tf_outer_product(
tf.nn.relu(self.uTarget − self.u),

self.rho)) ∗ tf.exp(−1. ∗ self.timeStep / self.tauEligibility)
)

self.updateRegEligibilityBorder = self.regEligibilityBorder.assign(

(self.regEligibilityBorder + \

self.timeStep ∗ tfTools.tf_outer_product(
tf.nn.relu(self.uLow − self.u) −
tf.nn.relu(self.u − self.uHigh),

self.rho)) ∗ tf.exp(−1. ∗ self.timeStep / self.tauEligibility)
)

with tf.control_dependencies([saveOldUDot ,

updateLowPassActivity ,

self.eligNowUpdate ,

errorUpdate ,

self.updateEligiblity ,

self.updateRegEligibility ,

self.updateRegEligibilityBorder]):

self.applyMembranePot = self.u.assign(self.u + self.timeStep ∗ uDiff)

###############################################

## Node to update the weights of the network ##

###############################################
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self.updateW = self.wTfNoWta.assign(self.wTfNoWta + \

( 1. / self.tauEligibility) ∗ (
self.modulator ∗ self.learningRate ∗ self.eligibility ∗\
self.Wplastic + tf.math.abs(self.modulator) ∗ self.learningRateH ∗\
self.regEligibility ∗ self.noWnaMask + self.learningRateB ∗\
self.regEligibilityBorder ∗ self.wNoWtaMask))
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State-propagation in the simulation with scrambled reward. The logic of the
simulation propagates the dynamics from event to event.

def runSimulation(self, startFrom=1):

# fill up the event array with change input events

self.initEvents()

self.createInputEvent(0.0)

counter = startFrom

# we count the number of iterations

# in terms of received reward

counterReward = 0

while self.events:

self.logger.debug(’The current events are:\

{}’.format(self.events))

# pop next event

idNext = self.getNextEvent()

nextEvent = self.events.pop(idNext)

timeStampNext = nextEvent[0]

self.logger.debug(’The next event with id\

{0} is: {1}’.format(idNext,

nextEvent))

# propagate the network to the next event

tGlobal = self.simClass.T

if timeStampNext > tGlobal:

deltaTime = np.around(timeStampNext − tGlobal, decimals=1)

self.logger.debug(’The delta time to be propagated\

is {}’.format(deltaTime))

self.simClass.run(deltaTime)

self.logger.debug(’The time after propagation\

is {}’.format(self.simClass.T))

# apply event

eventType = nextEvent[1]

# The input current at the bottom of the

# network changes

if eventType == ’changeInput’:

self.eventChangeInput(self.simClass.T,

counter < self.Niter)

counter += 1

self.logger.debug(’changeInput event applied’)

if self.checkpointing and (counter % self.checkPerIter == 0):

self.saveCheckpoint(counter)
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self.logger.info(’Checkpoint created at\

{}’.format(counter))

# The decision of the network is obtained

# the obtained reward is saved and the next

# reward event is created in the background

elif eventType == ’readOut’:

self.eventReadOut(self.simClass.T,

nextEvent[2])

self.logger.debug(’readOut event applied’)

# reward arrives at the network

elif eventType == ’reward’:

self.eventReward(nextEvent[2],

nextEvent[3])

# make report if applicable

if counter % self.reportFrequency == 0:

self.plotFinalReport()

self.saveResults()

self.logger.debug(’Reward event applied’)

counterReward += 1

self.logger.info(’After {0} applied reward\

the mean reward is {1}’.format(counterReward ,

self.meanReward))

else:

self.logger.error(

’The received event type is not in\

[<changeInput >, <readOut>, <reward >].\

Received: {}’.format(eventType))

self.logger.debug(’The events after one iteration\

in the while loop are: {}’.format(self.events))

self.logger.info(’The simulation finished after\

presenting {} inputs’.format(counter))
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https://www.nest-simulator.org/

nmpm_software Collection/Module of a built software necessary for using
the BSS-1. The standard modules of the official project HEAD are considered
as the software to given to the user. Each module contains a date-stamp of
the build-date and the collection of the git-id of the underlying software
repositories.

Pillow Pillow is the PIL fork by Alex Clark and Contributors. PIL was the
Python Imaging Library by Fredrik Lundh and Contributors.
https://github.com/python-pillow/Pillow

pyhmf BSS-1 specific implementation of the PyNN neural network descrip-
tion language.
https://github.com/electronicvisions/pyhmf

scipy Python based ecosystem containing software for mathematics, engi-
neering and sciences in general [Jones et al., 2001–].
https://www.scipy.org/

sbs Python based API for simulating LIF sampling using different backend
simulators, but preferably NEST Gewaltig and Diesmann [2007]. The soft-
ware is not open-source; it can be obtained upon request from the author:
Oliver Breitwieser.

tensorflow Open source software tool for developing and deploying machine
learning models and applications [Abadi et al., 2015]. It facilitates the imple-
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