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Summary

Multiscale Modelling of Malaria-Infected Red Blood Cells

Red blood cells (RBCs) are the type of human cells that are most accessible to
biophysical multiscale modelling because they feature a regular molecular cell enve-
lope organization and lack internal organelles. Extensive previous research on how
their physical properties are shaped by the actin-spectrin network and other molec-
ular constituents provides a good basis to understand the physical consequences of
becoming infected by malaria parasites, which use RBCs to hide from the immune
system. After invasion, the malaria parasite rebuilds the RBC-envelope, relying on
the self-assembly of parasite proteins released into the cytoplasm. Optical tweezer
experiments have shown that infected RBCs (iRBCs) become stiffer. Here, the
underlying mechanisms are investigated by quantitative analysis of the flickering
spectrum of iRBCs. Extending the membrane Hamiltonian by anchoring points,
we find that the parasite stiffens the membrane mostly by introducing more con-
nections between the lipid bilayer and the underlying cytoskeleton. To identify the
exact points of attack in the RBC-cytoskeleton, a reaction-diffusion model is devel-
oped to investigate the dynamical equilibrium of the RBC-cytoskeleton, allowing
us to simulate different scenarios of parasite protein self-assembly and to compare
these results with experimental data. The parasite induces protrusions to make
the iRBC adhesive, thus increasing residence time in the vasculature and avoiding
clearance by the spleen. The number of new transmembrane receptors incorpo-
rated into the cell membrane is estimated by quantitative analysis of fluorescence
and electron microscopy data. We develop a finite element model aiming to pre-
dict the effect of these changes on the movement of iRBCs in hydrodynamic flow.
Finally, as an instructive contrast to RBC-mechanics, we investigate the spreading
of tissue cells onto micropatterned substrates leading to a complete change in their
actin cytoskeleton. A Cellular Potts Model is used to describe this highly dynamic
situation. We find that due to its focus on geometrical aspects, it predicts reli-
ably how a family of actin stress fibres is formed, which serves as memory of the
spreading process.





Zusammenfassung

Größenordnungsabhängige Modellierung
von Malaria-infizierten roten Blutzellen

Die rote Blutzelle ist die am besten geeignete Zelle für die biophysikalische Model-
lierung, da sie eine gleichmäßige molekulare Membranstruktur besitzt und keine
internen Organellen vorhanden sind. Basierend auf vorherigen Forschungsergeb-
nissen über die Einflüsse des Aktin-Spektrin-Netzwerkes und anderer molekularer
Bestandteile auf die Eigenschaften der Membran kann das Verständnis der durch
die Malaria-Infektion herforgerufenen Veränderungen erweitert werden. Nach der
Invasion der roten Blutzelle baut der Malaria-Parasit die Membran der roten Blut-
zelle um, indem er Proteinkomplexe assemblieren lässt, die aus zuvor ins Zyto-
plasma exportierten Proteinen bestehen. Experimente mit optischen Fallen ha-
ben gezeigt, dass die rote Blutzelle durch den Malaria-Parasiten steifer wird. In
dieser Arbeit werden die zugrundeliegenden Mechanismen mithilfe der quantita-
tiven Analyse des Undulationssprektrums untersucht. Durch die Ergänzung der
Membran-Hamiltonian durch Ankerpunkte wird herausgefunden, dass der Parasit
die Membran verhärtet, indem er mehr Ankerpunkte zwischen der Doppellipid-
schicht und dem Zytoskelett erschafft. Um die genauen Punkte zu finden, die
der Parasit angreift, wird ein Reaktions-Diffusions-Modell entwickelt, durch das
der dynamische Gleichgewichtszustand des Zytoskeletts modelliert werden kann.
Hierdurch können sowohl verschiedene Varianten des Assemblierungsprozesses der
Proteinkomplexe modelliert werden, als auch die Resultate mit experimentellen
Daten verglichen werden. Der Parasit entwickelt hervorgewölbte Strukturen auf
der Oberfläche der roten Blutzelle, um diese haftfähig zu machen und dadurch die
Aufenthaltsdauer im Blutfluss zu erhöhen, da er ansonsten in der Milz aussortiert
werden würde. Durch die quantitative Analyse von Fluoreszenz- und Elektronen-
mikroskopieaufnahmen wird die Anzahl der Transmembranrezeptoren pro hervor-
gewölbter Struktur bestimmt. Um die Effekte dieses molekularen Umbaus auf die
Eigenschaften der roten Blutzelle im hydrodynamischen Fluss zu bestimmen, wird
eine Finite-Elemente-Simulation verwendet. Als hilfreicher Kontrast zur Struktur
der roten Blutzelle werden schlussendlich Zellen auf mikrostrukturierten Substra-
ten simuliert, in denen das Aktin-Zytoskelett dynamisch umgebaut wird. Dafür
wird ein zelluläres Potts-Modell verwendet. Wir folgern, dass das Modell durch
die Spezialisierung auf geometrische Aspekte die Organisation der entstehenden
Aktinfilamente vorhersagen kann. Die Struktur der Aktinfilamente agiert somit
als Gedächtnis des Ausbreitungsprozesses.
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Chapter 1

Introduction



2 Introduction

1.1 Motivation

This thesis aims to shed light on the biophysics of RBCs using multiscale mod-
elling; models of the cell’s membrane, its molecular components, its shape and
its dynamics on micropatterns are discussed. All these models are demonstrated
to be relevant facets of a comprehensive biophysical perspective on RBCs, adding
fundamentally to the foundations of malaria research.

RBCs are very attractive models for multiscale physics because their structure
is relatively stable and simplistic in the way that the membrane, a quasi two-
dimensional surface, determines their properties completely [1, 2]. Other types
of cells cannot be accessed that easily because they possess complicated internal
structures [3]. RBCs are easily accessible for biophysical modelling, so a large
background of theoretical models and experiments has been built up [4, 5, 6, 7, 8].
Even more work has been done on lipid vesicles [9, 10], which are similar to RBCs
but do not possess a thin polymeric network underneath the membrane. Building
on this knowledge, it is possible to examine how the malaria parasite changes the
RBC membrane.

During its life-cycle, discussed in Section 1.3, the malaria parasite eventually
enters RBCs. It remodels the cell completely by exporting proteins which assemble
to structures within the membrane and the cytosol. Particularly, the spectrin-actin
network undergoes drastic changes [11, 12]. The models applied in this thesis aim
to understand this remodelling process and its consequences better.

As a comparison of cytoskeletal structures in other cell types, the development
of actin stress fibres is studied in human bone osteosarcoma epithelial cells spread-
ing on micro patterns. In that case, the cell adapts its cytokeletal structure in
order to move across non-adhesive areas [13, 14].

It is very important that a biophysical model is validated by experimental
data. Each of the presented models were developed in close collaboration with
our experimental partners as it will become clear throughout the thesis. These
collaborations were very fruitful since people with different backgrounds came
together to develop new interdisciplinary ideas. Now, I will explain the biophysical
background required to understand the rest of this thesis.

1.2 A Physicist’s Perspective on RBCs

Formation and Function of RBCs

Our blood is made up of three types of cells suspended in plasma; red blood
cells (RBCs) or erythrocytes (see Figure 1.1), white blood cells or leucocytes,
and platelets or thrombocytes. RBCs contain haemoglobin molecules, which bind
with oxygen and carbon dioxide molecules and carry them around the body (see
Figure 1.1c). This process is so significant that RBCs account for 2.6·1031, or 84%,
of the human body’s cells. RBCs are formed in the bone marrow and are deformed
dramatically during their lifespan of 120 days due to being squeezed through very
narrow capillaries. After 120 days, a RBC becomes too stiff from being continually
deformed and is destroyed within the spleen.
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Figure 1.1: a) Side view of a RBC of hight 2 µm. b) Top view of a RBC of diameter
7.5 µm. c) Artistic representation of a RBC by Prof. David S. Goodsell, the
Scripps Research Institute. The red structures show the haemoglobin molecules.
The plasma membrane with attached structures is drawn in purple.

RBCs are shaped as biconcave disocytes (see Figure 1.1a) and have a diame-
ter of 7.5 to 8.7 µm (see Figure 1.1b). Lacking the usual internal cell structures
such as a nucleus, their shape is solely determined by their membrane. The RBC
membrane is a composite structure, which is made up of a phospholipid bilayer
containing various membrane proteins, also called the plasma membrane, and a
cytoskeletal network attached to it from the cytosolic side. An illustration can
be seen in Figure 1.1c with the cytoskeletal components in purple surrounded by
the cytosol and the haemoglobin in red. The straight filaments are short actin
filaments that build up the junctional points of the network. The flexible connec-
tions between these are two stranded helical spectrin filaments. The microscopic
structure of the cytoskeleton is discussed in more detail in Chapter 3.

The RBC’s composite structure allows for it to exhibit the properties necessary
for squeezing through capillaries and yet recovering its shape. Its plasma mem-
brane is comprised of two lipid sheets pointing their hydrocarbon chains towards
each other. The membrane is kept in shape by high hydrophobic energy costs;
the dense packing of the chains increases the difficulty of membrane compression.
The compressibility of approximately 103 mNm−1 is necessary to prevent ion loss
throughout passive transport [15]. When applying a shear, the plasma membrane
behaves like a fluid within the plane as the lipids can swap places within the
membrane. Here, the cytoskeleton reveals its significance, as the RBC needs to
withstand shear during the frequent deformations. The spectrin filaments are elas-
tic and are anchored to the plasma membrane mostly by band 3 and as a result
the composite system gains a shear modulus of µ ≈ 0.006 mNm−1 [15].

The RBC’s shape can be understood within the formalism of differential geom-
etry by treating it as a thin shell and formulating a Hamiltonian mostly based on
the energy cost of bending. Equivalent to the Brownian motion of small molecules,
membranes also exhibit thermal motion, making the membrane move on the small
scale (see Chapter 2).
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1.3 The Malaria Infection

Although the number of deaths due to malaria has declined in recent years, around
405, 000 cases were still recorded in 2018 according to the World Health Organisa-
tion [16]. In order to fulfil the long-term goal of completely controlling this deadly
disease, all stages in the life-cycle of the malaria parasite need to be understood
thoroughly. This will facilitate the development of new drugs, and help to avoid
problems that occur due to drug resistance.

The sickle cell disease has been found to protect carriers from severe malaria
symptoms, due to a mutation of the haemoglobin within the RBC. Normal haemoglobin
(HbAA) is a heterotetramer, consisting of two α- and two β-globin chains. Sickle
cells contain HbS, in which the β-globin is altered at position six by a glutamate to
valine substitution. This substitution causes severe anaemia and is more common
in countries with many malaria cases because it protects its carriers from severe
malaria symptoms. A different haemoglobin mutation that protects from malaria
is HbC. Heterozygotes, featuring both genes of normal haemoglobin A and mu-
tated haemoglobin S or C, are denoted as HbAS and HBAC. In Chapter 2, the
potential explanations why the sickle cell trait protects its carriers from malaria
are discussed.

The Malaria Life-Cycle

The most virulent form of human malaria is caused by the parasite Plasmodium
falciparum (Pf) which, during a blood meal, is injected into the host skin by
the female Anopheles mosquito. After the skin stage, the parasite goes through
three other stages before it continues to infect new mosquitoes: the liver stage, the
asexual intra-erythrocyte stage and the sexual intra-erythrocyte stage as illustrated
in Figure 1.2. After injection into the skin, the sporozoites travel to the liver
where they replicate asexually, producing merozoites. These are released from
the liver into the blood to infect RBCs functioning as hiding places. During the
asexual cycle, the parasite grows inside the cell, restructures it and finally causes
rupture after 48 hours, infecting more RBCs. This development can be divided
into the ring (0 − 24 h), trophozoite (24 − 36 h) and schizont stages (40 − 48 h)
and is accompanied by changes in elasticity and morphology of the infected RBC
(iRBC). In some iRBCs, the parasite does not go through this cycle but form male
or female gametocytes (sexual intra-erythrocyte cycle). When a mosquito takes
up such iRBCs, the life-cycle in the human host is closed.

A detailed quantitative understanding of the iRBC’s remodelling in the asexual
intra-erythrocyte stage is currently lacking, despite it being central to the infec-
tion and causing most of the malaria-associated pathology [17]. Therefore, this
thesis will attempt to model the iRBC during this central stage. By remodel-
ing the spectrin network and establishing nano-scale protrusions, called knobs, on
the iRBC membrane, the parasite reduces the deformability of the iRBC [18] and
makes the cell approach a more spherical shape [19] (see Figure 1.3). The knobs
mainly comprise of the knob-associated histidine-rich protein (KAHRP) and the
membrane-embedded cytoadherence protein Pf-erythrocyte membrane protein 1
(PfEMP1). The resulting alterations lead to cytoadherence and hence sequestra-



The Malaria Infection 5

Figure 1.2: Illustration of the malaria life-cycle within the human body. The stages
taking place in the blood stream are depicted with red arrows. Graphic based on
personal drawings.
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tion of iRBCs in the microvasculature. The parasite uses this as a strategy to avoid
passage through the spleen, where iRBCs would be sorted out, but this structural
alteration also leads to organ dysfunction in severe cases of malaria.

In order to remodel the iRBC, the parasite needs to export proteins to the host
cell. For example, the membrane proteins RIFIN, SEVOR and PfEMP1 are syn-
thesized within the parasite and need to be transported across the parasite plasma
membrane, the parasitophorous vacuolar membrane and the cytosol of the host
cell. One way of transport out of the parasite is the complex PTEX (Plasmodium
Translocon of Exported proteins) [20]. Once the proteins are in the erythrocyte
cytoplasm, they still need to be delivered to the membrane. Since mature human
RBCs lack a secretory machinery, which usually sorts and delivers proteins to
the membrane, the parasite establishes an exomembrane system called Maurer’s
clefts [21, 22]. It was shown that these Maurer’s clefts are anchored to components
of the erythrocyte cytoskeleton [23]. Many details concerning the Maurer’s clefts
are still unclear, but it has been found that the parasite uses them for transporting
proteins to the membrane. It was further found by Cyrklaff et al. [23] that the
parasite mines actin from the spectrin network underlying the host cell’s plasma
membrane in order to generate actin filaments that connect the Maurer’s clefts to
the developing knobs. Some proteins are thought to be transported along these
actin filaments.

At the end of the 48 hour asexual intra-erythrocyte stage, which is summarised
in Figure 1.3c, the iRBC ruptures [25]. This process is not well understood, but it
is clear that both the increase in osmotic pressure and the disruption of the spectrin
network are essential. Shi et al. performed AFM-based imaging of the cytoplasmic
surface of the iRBC [11] and found an increase in the spectrin network mesh size,
extension of the spectrin tetramers and a decrease of spectrin abundance. It is
very likely that the resulting expansion of the mesh size also facilitates rupture.

How Physics Can Contribute to Understanding the Infec-
tion

As the RBC is one of the best understood cellular model systems in biophysics [26],
this knowledge can be exploited as a background to study the details of a malaria
infection. Since the average shape and its fluctuations can be calculated for the
wild-type RBC from the mechanical properties of the plasma membrane and the
spectrin network (see Chapter 2), they can be used as a macroscopic readout of
the molecular changes.

In recent years, several studies addressed the relation between the molecular
processes affected by the parasite and the large-scale changes in host cell mechan-
ics, adhesion and shape. For example, Zhang et al. [18] developed a coarse-grained
molecular dynamics model capturing the molecular structures of Pf iRBC mem-
branes to study the origin of the changes in deformability. They found that the
remodelling of the spectrin network itself contributes little to the strain-hardening
properties of the iRBC, but that the knobs are responsible for the loss of deforma-
bility in several ways: not only do they act as structural strengtheners, but they
also introduce strain inhomogeneities.

Waldecker et al. measured the iRBC’s changes during the asexual intra-
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Figure 1.3: a) Confocal images of an uninfected RBC and the corresponding three-
dimensional reconstruction. Images taken from Ref. [19]. b) Same as in a) but for
an iRBC in ring stage. c) Illustration of the 48 hour RBC cycle of the multiplying
malaria parasite. The blue and purple structures are the parasite. Taken from
Ref. [24].
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erythrocyte cycle in both volume and surface area [19]. Based on this data they
verified that the colloid-osmotic model, which describes changes in osmotic pres-
sure due to the new permeation pathways, can predict the iRBC approaching a
spherical shape.

Furthermore, biophysical models of protein assembly are crucial to thoroughly
understand the membrane changes induced by the parasite. Similar models have
been applied to study the assembly of viruses or cytoskeletal filaments [27, 28].
Correspondingly, in Chapter 3, I apply a reaction-diffusion model to achieve a
deeper understanding of knob assembly.

Finally, the behaviour of iRBCs in flow can also be analysed with biophysi-
cal models. The strength of biophysical models such as Multi-Partlicle Collision
Dynamics, Dissapative Particle Dymanics or the Finite Element Method is their
ability to test the cell parameters’ magnitude and importance. I chose to apply
the Finite Element Method in Chapter 4 to model the hydrodynamic behaviour
of RBCs in a two-dimensional approximation.

1.4 Cell Adhesion and Migration

Forces Contributing to Cell Movement

In order for cells to move, they need to interact with the substrate through focal
adhesions. The main drive of motion is actin polymerisation at the front of the cell
and depolymerisation at the rear. A more detailed description of this process is
given in Chapter 5. In this thesis I focus on the spreading of cells on micropatterns;
this allows details of the process to be examined in a controlled manner in contrast
to cells in unstructured environments. The micropattern consists of a printed two-
dimensional surface of fibronectin to which the cell can adhere; an example of such
a pattern is given in Figure 1.4a.

When cells spread, they need to work against the cell cortex which induces
surface tension. They also need to bridge areas without adhesion possibilities
(compare Figure 1.4a and b). To do so, they build up a stress fibre, made up of
actin and other cross linking proteins, at the cell’s front. For detailed information
on the composition of different stress fibres, see Chapter 5.

Biophysical Approaches

Several biophysical models have helped to get a better understanding of cell spread-
ing, and aim to determine the properties of cellular components and their relation
to cell migration. First of all, cells can be treated in the framework of continuum
mechanics as first introduced by Nelson et al [30]. In this approach, the cellular
properties are represented by a stiffness and a stress tensor. Such a continuum
approach can determine the traction forces on the extracellular environment as in
Edwards et al [31]. In an alternative approach, the cell’s internal actin fibres have
been modelled using cable networks [32] which behave elastic upon extension, but
cannot support compression without buckling.

The model applied in Chapter 5 is a contour based model. The advantage of
such a model is the reduction of a cell to its shape which decreases the modelling
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Figure 1.4: a) Illustration showing the spreading of a cell on a micropattern. In
order to bridge the non-adhesive region between the pattern legs, the cell forms
stress fibres spanning the non-adhesive region. The blue oval indicates the position
of the cell nucleus. b) Illustration of a cell spreading on a network of collagen fibres.
On this complicated network the cell has to turn corners and spread along linear
elements similar to the situaiton on micropatterns. c) Six examples of U2OS cells
spreading on micorpatterns. The formation of stress fibres can be clearly seen. All
images are taken from Ref. [29].

cost. I apply a Cellular Potts Model (CPM) developed by Dr. Albert in the group
of Prof. Schwarz which treats the cell as a collection of quadratic lattice sites and
applies the Metropolis algorithm to sample the cell’s phase space.

1.5 Outline of Thesis

In Chapter 2 I treat the fluctuations of healthy and infected RBCs. After de-
riving the theoretical framework and extending the existing spherical harmonic
approach, I explain the experimental data collected by Dr. Fröhlich. Based on
these experimental observations, I apply a numerical approach to the RBC mem-
brane, treating the discrete connections to the cytoskeleton explicitly. I make a
connection between the membrane parameters and the microscopic changes in-
duced by the parasite. I find that the increase in confinement is mostly caused by
the incorporation of more connectors between the bilayer and the cytoskeleton.

I continue to examine the cytoskeleton, reducing scale by applying a reation-
diffusion model to the molecular constituents of the cytoskeleton in Chapter 3.
First, the properties of the relevant RBC and malaria associated proteins are dis-
cussed as their interactions are important for the molecular modelling approach.
Second, I show experimental results from Prof. Lanzer’s group which were analysed
by Dr. Patra. Patra’s analysis of protein colocalization proves to be an intriguing
point of comparison to my molecular model. After explaining the details of the
reaction-diffusion model and validating its applicability, I use the model to study
KAHRP assembly within the RBC cytoskeleton. I find that KAHRP associates to



10 Introduction

the actin junctions only for a very small parameter range and that the parasite has
to change binding affinities to move KAHRP away from the ankyrin junctions. Fi-
nally, the placement of PfEMP1 molecules is determined by a analytical approach,
finding that the adhesion molecules are clustered towards the top of the knobs.

Next, I change to a much larger scale by considering the hydrodynamic flow
behaviour of RBCs. The aim of Chapter 4 is determining the shape of a RBC
in a simplified two-dimensional environment. I explain how the mechanics of the
viscoelastic RBC envelope can be coupled to the two dimensional Stokes flow
and describe the implementation of this method in the FEniCS software. Since
the implementation of the model used in this thesis does not seem to work in a
numerically stable way, I point out potential problems in the implementation and
show examples of calculated flow fields.

Finally, I add another perspective on cytoskeletal organisation inChapter 5 by
examining the stress fibre architecture of cells spreading on micropatterns. After
introducing the relevant biological structures, the Cellular Potts Model (CPM) is
explained. Then, energy contributions during spreading are discussed in detail,
comparing two different implementations of arc tensions. Finally, experimental
data obtained by Elena Kassianidou and analysed by Dimitri Probst is compared
to my simulation results. We find that the stress fibre network encodes the memory
of the spreading process with a typical distance of 2.5 µm between subsequent stress
fibres. The model is found to describe the experimental data very well.



Chapter 2

Flickering Analysis of Red Bood
Cells
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2.1 Testing Mechanical Properties of the Infected

RBC Membrane

A common technique to shed light on membrane properties is the Flickering Anal-
ysis, in which the hight profile of a membrane is detected and analysed in Fourier
space. The typical size of these fluctuations is approximately 30 nm and they are
both of thermal and active origin.

RBCs are confined by lipid bilayers, which are two sheets of lipids being held
together by hydrophobic effects. The lipids are free to flow within the membrane
plane so they cannot withstand shear forces, but bending the membrane out of the
plane is hindered by the lipid tails. Therefore, lipid bilayers can be understood by
applying the Helfrich Hamiltonian, which takes into account curvature energy via a
bending modulus κ and area conservation via the surface tension σ. The theoretical
description needs to be extended in the case of RBCs, because contrary to lipid
vesicles a spectrin network is anchored to the inner side of the RBC membrane
and acts as an elastic layer.

One way to describe the coupled system is to introduce a harmonic confine-
ment term to the Hamiltonian on a phenomenological level. This term is quadratic
in membrane displacement and is proportional to the confinement parameter γ.
Thus, the cytoskeleton is treated as a rigid shell at a fixed distance [4]. In contrast
to the lipid bilayer, such a shell is mostly determined by its in-plane elasticity. Sub-
sequently, it was found that the confinement can also be explained by the discrete
attachment of the spectrin network to the phospholipid bilayer [33] which has sim-
ilar effects to a continuous confining potential. Building on this idea, an approach
with discrete tethers was successfully applied to describe the diffusion of proteins
on RBCs over large length scales [34]. The equivalence between the discrete tether
approach and the continuous approach holds within the experimentally relevant
parameter range corresponding to RBCs [35, 36].

Historically, the fluctuations were described by equilibrium theories, whereas an
active contribution to the flickering spectrum is commonly assumed nowadays [7].
Since the origin of the active processes is not entirely resolved, we start by looking
more closely at the equilibrium theories. I focus on how an alteration of the spectrin
network changes the membrane properties. Specifically, I compare healthy and
malaria infected ring and trophozoite RBCs. Since the parasite restructures the
spectrin network drastically and exports membrane proteins, it can be assumed
that the mechanical properties of the iRBC membrane are altered equally. To
determine the changes on the microscopic level, we employ a numerical model on
the scale of the spectrin network attachment sites.

The outline of this chapter is as follows. First, I will introduce the theoretical
background necessary to understand membrane fluctuations and derive a formula
for harmonic confinement in spherical coordinates. Then the experimental data
from Dr. Fröhlich (group of Prof. Tanaka) of malaria infected RBCs is discussed,
which forms the basis for the application of my numerical model introduced in
the section following this. Finally, implications for infected RBCs are discussed in
detail.

The experimental data and the model described in this chapter have been
published in Communications Biology under the title ”Hemoglobin S and C affect
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biomechanical membrane properties of P. falciparum-infected erythrocytes” [37].

2.2 Theoretical Analysis of Membrane Shape and

Flickering

Unlike the properties of soap bubbles, which are mainly determined from their
surface tension, the most important contribution to membrane behaviour is its
curvature energy. A membrane is made of a very thin lipid bilayer which is only
4 nm thick. The relevant lateral extensions are a few length scales larger, so the
membrane can be treated as a two-dimensional elastic sheet. The special structure
of the lipid’s hydrocarbon chains pointing towards each other makes it cost more
energy to induce a curvature for it than for a soap film. Additionally, the area of
such a bilayer stays approximately constant since the lipids remain densely packed
due to their hydrophobic interactions.

2.2.1 Description via Differential Geometry

To describe surfaces in three dimensional space mathematically, some concepts
from differential geometry need to be introduced. Let us denote a two dimensional
surface by R(x, y), and define two tangent vectors at each point on the surface by
Ri = ∂iR(x, y) with i = x, y. The unit normal to the surface at point (x, y) is
defined as

n(x, y) =
∂xR× ∂yR

|∂xR× ∂yR|
. (2.1)

Using this, we can define two second rank tensors that describe the surface geo-
metrically, the metric tensor gij and the curvature tensor hij:

gij = ∂iR · ∂jR (2.2)

hij = (∂i∂jR) · n. (2.3)

They are known as the first and second fundamental form respectively. Using
these, we can define the mean curvature H and Gaussian curvature K of a point
on the surface. To illustrate the meaning of these two curvatures more clearly,
they can also be expressed in terms of the two principal radii of curvature, R1 and
R2, which are the maximum and minimum radii of curvature respectively at the
given point:

H = −1

2
Tr(hi

j) =
1

2

(
1

R1

+
1

R2

)
(2.4)

K = det(hi
j) =

1

R1R2

, (2.5)

where hi
j = gikhkj. For example, a sphere has a mean curvature of −1/R and a

Gaussian curvature of 1/R2 at every point, where R denotes the radius. For more
complex objects these values will vary in space.

An important question is which parametrization is chosen for the surface one
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wants to examine since this either simplifies the problem significantly or makes
it intractable. In the following sections, two parametrizations will be used: the
Monge parametrization and the spherical harmonic parametrization. Therefore, a
brief introduction to each of these is provided below.

1. Monge parametrization for flat surfaces:
In this parametrization the surface is described by a height function h(x, y)
and we assume small variations |∇h(x, y)| ≪ 1:

R =

⎛⎝ x
y

h(x, y)

⎞⎠ , ∂xR =

⎛⎝ 1
0
hx

⎞⎠ , ∂yR =

⎛⎝ 0
1
hy

⎞⎠ . (2.6)

In this parametrization det(g) ≈ 1+(∇h)2, therefore the mean and Gaussian
curvatures are H ≈ ∇2h and K ≈ hxxhyy − h2

xy. Finally, the differential area

element, dA =
√

det(g) dxdy, can be approximated as

dA ≈
(
1 +

1

2
(∇h)2

)
dxdy. (2.7)

2. Spherical harmonic parametrization:
If the object that we want to describe is close to a sphere of radius r0, the
following parametrization is useful:

R(θ, ϕ) = r0(1 + u(θ, ϕ))r̂ with u(θ, ϕ) =
∑
l,m

ulmYlm(θ, ϕ), (2.8)

where 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π. r̂ is the unit vector pointing radially
outward and Ylm(θ, ϕ) are the spherical harmonics weighted by coefficients
ulm.

In this geometry, the mean curvature isH = − 2
r0

and the Gaussian curvature

is K = 1
r20
. The first and second fundamental forms are

g = r20

(
1 0
0 sin2 θ

)
, h = −r0

(
1 0
0 sin2 θ

)
, (2.9)

and the area element is given by

dA = r0 sin(θ)dθdϕ. (2.10)

2.2.2 Energy Functional for a Membrane

Using these concepts an expression for the membrane Hamiltonian can be writ-
ten down starting with only the local curvature energy, originally formulated by
Canham [38] and Helfrich [39] as a surface integral:

F =

∫
dA
(
2κH2 + κGK

)
. (2.11)
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Figure 2.1: Graphical illustrations of the energy penalties introduced by the bend-
ing modulus and the surface tension.

The right hand side of (2.11) is an expansion in small curvatures and κ and κG

are the bending rigidity and Gaussian bending rigidity respectively. The second
term is often omitted since it is a constant if the topology of the described object
does not change. By the Gauss-Bonnet theorem the integral over the Gaussian
curvature is given by 4π(1 − g), where g is the number of handles of the object
(e.g. 0 for a vesicle and 1 for a doughnut-like object). The bending modulus κ
determines how much force is required to to induce a bend membrane as depicted
in Figure 2.1.

Area and volume conservation are incorporated into this expression via La-
grange multipliers, which can be identified as surface tension σ and pressure P :

F =

∫
dA
(
2κH2 + κGK + σ

)
+ P

∫
dV. (2.12)

The surface tension is not the usual surface tension known from soap bubbles
because stretching or compressing the bilayer is not possible with the relevant force
ranges. Instead, σ is an effective surface tension which comes from the membrane
fluctuations; this will be discussed later on. The idea is that fluctuations reduce
the projected area of the membrane, so stretching it out costs energy (compare
Figure 2.1). For a detailed discussion of this topic see the work of Seifert [40].
He found that the description by an effective surface tension breaks down if the
vesicle approaches a sphere, in which case the excess area approaches zero.

It was realized early on that this Hamiltonian was not sufficient to describe
all vesicle shapes because it does not take into account that the sheet is made of
two distinct layers which have a different lipid composition in most cases. In 1992
three groups came up with the area-difference-elasticity model [41, 42, 43] which
accounts for the asymmetry of the two lipid layers by adding the following term
to the Hamiltonian:

καπ

4Ad2
(∆A−∆A0)

2. (2.13)

Here, α is a dimensionless material parameter, d is the thickness of the membrane
and ∆A = 2d

∫
dA H. Prior to this, different approaches had been taken in an

attempt to describe this effect, but these could be shown to be special cases of
the area-difference-elasticity model. One of these is the spontaneous curvature
model introduced by Helfrich [39], which can be elegantly incorporated into the
above expression by considering the deviation of the mean curvature from the
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spontaneous curvature H0:

F =

∫
dA
[
2κ(H−H0)

2 + κGK
]
+ σ

∫
dA− P

∫
dV. (2.14)

The concept of spontaneous curvature is problematic in the sense that in principle
it will dynamically vary in space because of the fluidity of the membrane.

Shape Equations and Fluctuations

From the Hamiltonian, information about equilibrium shapes and fluctuations
around these can be extracted. To do this, the first and second variations of
functional (2.14) need to be found while neglecting the Gaussian curvature term
which only contributes if the topology changes (Gauss-Bonnet-Theorem):

δF =

∫ [
2κH2 δ(dA) + 4κH δH dA− 4κH0H δ(dA)− 4κH0 δH dA

+2κH2
0 δ(dA)

]
+ σ

∫
δ(dA)− P

∫
δ(dV) (2.15)

δ2F =

∫ [
2κH2 δ2(dA) + 8κH δH δ(dA) + 4κH δ2H dA + 4κ (δH)2 dA

−8κH0 δH δ(dA)− 4κH0 δ2H dA− 4κH0H δ2(dA) + 2κH2
0 δ2(dA)

]
+ σ

∫
δ2(dA)− P

∫
δ2(dV). (2.16)

In general coordinates the above variations are relatively complicated when ex-
pressed in terms of the first and second fundamental forms (see Zhong-Can and
Helfrich [44]), but, using planar or spherical coordinate parametrization, they sim-
plify dramatically.

By setting the first variation to zero, we find the shape equations (Euler-
Lagrange equations) determining the equilibrium shape of the membrane. This
is a fourth order differential equation that can only be solved analytically in very
special cases, but more generally can be solved numerically. A common technique
is to use triangulated surfaces or the finite element method for arbitrary shapes.

To study membrane fluctuation amplitudes experimentally, we need an analyt-
ical formula to fit the measured spectrum, with κ and σ acting as fit parameters.
Deriving such a formula is only possible in planar or spherical geometry. Early
approaches all used formulas derived from planar membranes and found these to
fit reasonably well. At the length scale of the fluctuations, the vesicles can be
approximated as locally flat. However, there are several studies extending the ap-
proach to nearly spherical vesicles [45, 46] and comparing the two approaches [47].
It was found that the approaches differ only for very small wave numbers. Below,
we first discuss the planar approach because of its wide use. Then we do the same
calculation in spherical coordinates because later an extension to the spherical
harmonic approach will be made.

For the planar case, the Monge parametrization will be used. Since the mean
and Gaussian curvature are zero in this case, the expression for the second variation
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of the Hamiltonian simplifies considerably:

δ2FMonge =

∫ (κ
2
(∆h)2 +

σ

2
(∇h)2

)
dA. (2.17)

For more details see the expressions for the variations in Appendix B.1. As for
most correlations, it is useful to Fourier transform this equation and work with
the Fourier modes:

hq =

∫
drh(r)e−iq·r,

h(r) =
1

A

∑
q

hqe
iq·r,

δ2F̂Monge =

∫ (
κq4 + σq2

)
hqh

∗
qdq.

By the equipartition theorem, each mode corresponds to an energy of kBT/2 and
hence we find:

⟨hqh
∗
q⟩ =

kBT

κq4 + σq2
. (2.18)

This equation shows that bending is important on the small scales, whereas surface
tension contributes to the larger length scales.

Let us now do the same calculation for spherical vesicles. Usually the spon-
taneous curvature H0 is neglected in the spherical case but here I keep terms
proportional to H0 in order to examine their effects later on. The basis of the cal-
culation for spherical membranes is the parametrization of the equilibrium shape
r = r0(1+u)r̂ with u describing deviations from the sphere. For exact expressions
of the fundamental forms and curvatures see Appendix B.1. By setting the first
variation to zero, we find an equation for the pressure of a spherical vesicle:

P =
4H0κ+H2

0r0κ+ 2r0σ

r20
, (2.19)

which will be used to eliminate the pressure from the second variation.

Taking this into account and plugging everything into the equation for the
second variation, we find for deviations from the sphere:

δ2F =

∫
dAu

(
κ

r20
∆2 + σeff∆+ γeff

)
u, (2.20)

where

σeff = −σ +
2κ

r20
− 4H0κ

r0
−H2

0κ/2, (2.21)

γeff = −2σ − 8H0κ

r0
−H2

0κ, (2.22)

and ∆ is the Laplace-Beltrami operator on the surface, which in this geometry
reduces to the angular part of the spherical Laplacian. Since the spherical har-
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monics are eigenfunctions of this operator, it is useful to decompose u in spherical
harmonics:

u(θ, ϕ) =
∑
l,m

ul,mYl,m(θ, ϕ), (2.23)

∆Yl,m = −l(l + 1)Yl,m. (2.24)

One has to be careful to start the sum at l = 2 since l = 0 corresponds to the
volume changes and l = 1 to the movement of the centre of mass.

Using these, we write

δ2F = r20
∑
l,m

λl,m|ul,m|2, (2.25)

with λl,m = l(l + 1)
[
l(l + 1)κ/r20 − σeff

]
+ γeff . (2.26)

After taking the thermal average of (2.25), the equipartition theorem can be used
to fix the energy in each mode,

kBT

2
=

1

2
δ2Fl,m. (2.27)

Hence, the dimensionless mean square fluctuation amplitudes of a spherical vesicle
are given by:

⟨|ul,m|2⟩ =
kBT

r20λl,m

=
1

r20

kBT

l(l + 1) [l(l + 1)κ/r20 − σeff ] + γeff
. (2.28)

Notice that the right hand side does not depend on m; due to the symmetry of
the geometry in question, the m modes are equally excited.

One reason to use this more complicated approach is in spherical geometry,
bending modes require tangential and normal movement, unlike in the planar case
where bending and shear can be decoupled [48]. Using the formula for a planar
membrane would miss this effect.

Relation between Tension and Excess Area

The fluctuations calculated above lead to an additional area reservoir, since the
actual surface area is larger than the projected area A. In this context, the excess
area is defined as:

α =
∆A

A
≈ 1

2A

∫
dr|∇h(r)|2, (2.29)

where the approximation comes from using the Monge parametrization. This
quantity can be evaluated by inserting the previously derived expression for ⟨|hq|⟩2
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from Equation (2.18):

α =
1

2A

∑
q

q2⟨|hq|⟩2 =
1

4π

∫
dqq3⟨|hq|⟩2 =

1

4π

∫
dqq3

kBT

κq4 + σq2
(2.30)

=
kBT

8πκ

∫ qmax

qmin

dq
2q

q2 + σ/κ
=

kBT

8πκ

ln(q2max + σ/κ)

ln(q2min + σ/κ)
. (2.31)

We see that the excess becomes zero (indicating a completely flat membrane)
if either the surface tension is much larger than the bending rigidity or the ratio
of bending rigidity to temperature diverges.

2.2.3 Description of RBCs

RBC Shapes

The area-difference-elasticity model described above can predict all shapes of
normal vesicles. However, some shapes observed experimentally for RBCs (e.g.
echinocytes) are not predicted by this model, which implies that there is an aspect
of the RBC structure missing. In 2002, Lim, Wortis and Mukhopadhyay [2] made
a simple addition to the Hamiltonian which accounts for the missing effects. Their
idea was to incorporate the stretch and shear elasticity of the RBC cytoskeleton
in an extra contribution to the Hamiltonian. The results of their approach are
shown in Figure 2.2 where they compare experimental shapes to those predicted
by their model.

For their calculations they used the ADE Hamiltonian Fbending and the addi-
tional elastic contribution Felastic to arrive at the following surface integrals:

Fbending =
κ

2

∫
dA [2H−H0]

2

+
ακ

2

π

Ad2
(∆A−∆A0)

2

Felastic =
Kα

2

∫
dA(α2 + a3α

3 + a4α
4)

+ µ

∫
dA(β + b1αβ + b2β

2),

with the following constants:

Kα linear elastic stretching modulus,

ai, bi coefficients for nonlinear terms,

µ linear elastic shear modulus,

α, β local area and shear strain invariants.

In this approach, the membrane is treated as a hyperelastic isotropic material.
In reality the cytoskeleton is a strain hardening material, but this does not seem
to play an important role for the equilibrium shapes which do not require large
deformations.
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Figure 2.2: RBC shapes produced by Wortis et al. [2] by taking into account the
elasticity of the RBC cytoskeleton. They compare experimental images (column
one and three) to calculated shapes (column two and four). The experimental and
modelled shapes on the left are from the main stomatocyte-discocyte-echinocyte
cycle and on the right other interesting shapes (not from this main cycle) are
shown.
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RBC Membrane Fluctuations

To describe membrane fluctuations of RBCs, the above approach is not so useful
since an expression for the second deviation of the Hamiltonian needs to be found
analytically. In 1975 Brochard et al. [1] first applied the Helfrich Hamiltonian
approach to understand the membrane undulations of RBCs. The aim of this
and follow up studies was to extract membrane specific parameters from experi-
mental data. However, some discrepancies between the data and the theoretical
description were found.

Since healthy RBCs have a discocyte shape, some approaches tried looking
at more complex membrane geometries, which turns out to be rather difficult
because it is hard to find suitable parametrisations of the surface. In one approach
Döbereiner et al. [49] combined Monte Carlo Simulations with Flicker Spectroscopy
to determine the membrane’s spontaneous curvature.

In subsequent years it was realized that contributions from the underlying
elastic spectrin network were missing in the description. It was found that large
wavelength undulations were smaller than expected and the coupled nature of the
membrane was very likely to be important for fixing this problem. There are
two main approaches that have been explored. In one of them, the composite
membrane is considered to be one entity that fluctuates with contributions from
the fluid bilayer and the elastic skeleton taken together. In the other approach,
the bilayer is thought to fluctuate alone, constrained by either an elastic shell at
some distance or by discrete pinning sites. The most realistic approach is the latter
but the former has the advantage of being analytically traceable as it treats the
cytoskeleton as a continuum.

The concept of confined fluctuations has been explored in other contexts be-
sides the RBC membrane. People have looked at cases of two bilayers fluctuating
next to each other at a fixed distance or onw bilayer fluctuating next to a rigid
wall [50, 51, 52, 53]. A detailed discussion of this topic can be found in the work
by Auth et al. [54], in which they consider fluid-fluid, fluid-solid and solid-solid
membrane pairs being held at a constant average distance by an external pressure.
They show that fluid membranes can be described by a constant bending modulus,
whereas solid membranes need a wave-vector dependent modulus. When consider-
ing a fluid-solid membrane pair, they found that for small separations the system
scales like a solid membrane next to a wall and for large distances the scaling of
a fluid membrane next to a wall is recovered. By applying their theory to RBCs,
they found that above 400 nm the membrane can be described as one effective
membrane with bending and shear and below this wavelength the two layers have
to be treated separately.

Based on the idea of a confined membrane, Gov et al. [4] introduced a harmonic
confinement term to the Hamiltonian to account for the cytoskeletal network be-
neath the bilayer:

F ≈
∫ (κ

2
(∆h)2 +

σ

2
(∇h)2 +

γ

2
h2
)
dA. (2.32)

This approach is very elegant, since it simplifies the description in a way that makes
it trackable analytically and yields a simple formula for analysing experimental
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Figure 2.3: Illustration of the different mean square displacement regimes in
Fourier space. For a large wavenumber q (short wavelength) the displacements
are large and κ dominates. For a small wavenumber (long wavelength) the dis-
placements are large and the confinement dominates. In the intermediate regime
the surface tension becomes important.

data. They think of the cytoskeleton as a rigid shell at a fixed average distance.
In later work, they show that such a confining potential can arise from sparce
tethering by calculating the fluctuations of bilayers with additional sinosoidal and
delta function potentials [33].

The Hamiltonian considered in the method above leads to the following mean
squared displacement in Fourier modes:

⟨h2
q⟩ =

kBT

γ + σq2 + κq4
. (2.33)

Here, we see that the confinement is mostly important for the small modes, which
corresponds to large wavelengths as illustrated in Figure 2.3.

Although this formula can easily be applied to experimental data, it does not
give much insight into the microscopic details that lead to this confinement. There
have been several approaches that have tried to better understand these details by
treating the cytoskeleton explicitly by springs. This approach can be justified since
spectrin is a flexible polymer which behaves like a spring in some regime (for larger
extensions it has a strain hardening behaviour). One way to approach this is to
treat the cytoskeleton as a two-dimensional network of springs [55] that fluctuate
with the bilayer. This is similar to the approach of one composite membrane
discussed above. A different approach is to only consider the attachment sites
between the bilayer and the cytoskeleton, and model these by springs.

Merath et al. [35] have shown that this is a valid approach to calculate fluctua-
tion amplitudes. They add a sum over the discrete springs to the Hamiltonian and
use the approach of Lin et al. [56] to calculate the mean squared displacements. For
weak springs their effects can be described by an equivalent confinement param-
eter γ, but for very strong pinning a negative surface tension would be necessary
to describe the amplitudes.

Derivation of Confinement in Spherical Harmonics

As explained in the last section, Gov et al. introduced the confinement parameter γ
to the Hamiltonian in Monge parameterization in order to explain the contribu-
tion of the spectrin network to the fluctuations of RBC membranes. Here, I show
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how the same confinement parameter can be implemented into the spherical har-
monic approach. The motivation for this comes from considering length scales;
it has been shown that the planar and spherical approaches only differ for small
wavenumbers [47], but this is exactly the same regime where γ contributes.

I start by adding the term γr20u
2 to the second variation of the energy, such

that deviations in u are harmonically damped. The difference to the planar case is
the deviation u points in the radial direction. Using the same notation as above,
we see the new term just needs to be added to γeff (compare with Equation (2.20)):

δ2F =

∫
dAu

(
κ

r20
∆2 + σeff∆+ γeff

)
u, (2.34)

where

σeff = −σ +
2κ

r20
− 4H0κ

r0
−H2

0κ/2, (2.35)

γeff = γr20 − 2σ − 8H0κ

r0
−H2

0κ. (2.36)

The mean squared deviations of the spherical harmonic modes can be derived,
giving

⟨|ul,m|2⟩ =
kBT

r20λl,m

=
1

r20

kBT

l(l + 1) [l(l + 1)κ/r20 − σeff ] + γeff
. (2.37)

For H0 = 0, this reduces to

⟨|ul,m|2⟩ =
kBT

γr40 + (l − 1)l(l + 1)(l + 2)κ+ (−2 + l + l2)r20σ
. (2.38)

2.2.4 Spherical Harmonic Approach Containing γ and H0

Now we can examine how the spherical description differs from the planar case
in the presence of the spontaneous curvature H0 and the confinement parameter
gamma. In order to compare the two descriptions, the spherical harmonic modes
ul,m need to be written in terms of the Fourier mode q. For a detailed description
on how this is done, see Appendix B.3. The ratios of the planar mean squared
amplitudes to the spherical ones are plotted in Figure 2.4.

In the case of γ = H0 = 0, the spherical approach yields slightly larger fluctua-
tions than the planar approach for small wavenumber and slightly smaller fluctua-
tions for high wavenumber. This means when using the planar approximation we
very slightly overestimate the size of fluctuations at short wavelengths, whereas for
long wavelengths we underestimate their size. The plots in Figure 2.4 show that
γ and H0 increase the difference between the two approaches at long wavelengths
but to not affect the short wavelengths. Note that for a negative spontaneous
curvature the planar fluctuations are always higher than the spherical ones.

However, the differences discussed above are small enough in magnitude that
they should not matter for the application to experimental data, as the experi-
mental noise will be larger than these deviations. This is the reason why applying
the planar approach has been so successful.
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Figure 2.4: Comparison of the mean square displacements (MSD) calculated for
a planar and a spherical membrane. In the left graph the confinement is varied
while keeping H0 = 0 and on the right the spontaneous curvature is varied while
keeping γ = 0.
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2.2.5 Membrane Dynamics

In order to extract values for the viscosity inside the RBC, it is necessary to look
at the dynamics of the RBC membrane and derive an expression for the power
spectral density. For this it is essential to incorporate the fluid on either side
of the membrane and since inertia is negligible for such small systems (due to
having a low Reynolds number), the hydrodynamic flow is described by the Stokes
equation [57]

−∇p(r) + η∆v(r) = −f(r). (2.39)

Here, p(r) is the pressure, η is the viscosity, v(r) is the fluid velocity and f(r)
is the force on the fluid. Additionally, the continuity equation, ∇ · v(r) = 0, has
to hold. A common approach used to solve these types of equations is by using
a Green’s function. In this approach the point-like force f(r) is related to the
induced velocity field by a Green’s function Λ(r):

v(r) =

∫
d3r′Λ(r − r′)f(r′). (2.40)

In this context, the Green’s function is also known as the Oseen tensor. A
no-slip condition is required at the membrane, therefore the fluid and membrane
velocity are equivalent at the interface. As before, we consider out of plane move-
ment of a flat membrane using Monge parametrisation. For this system, embedded
in an infinite homogeneous fluid with viscosity η, the Oseen tensor in real and
Fourier space is given by

Λ(r) =
1

8πη|r|
and Λ(q) =

1

4η|q|
, (2.41)

respectively. Usually this simple function is sufficient to analyse experimental data,
but when looking at time correlation functions the importance on hydrodynamic
effects has also been described in several studies [58, 34]. Furthermore, the Green’s
function has been found for several other more involved cases. Gov et al. [59]
treated the case of a permeable and impermeable wall next to the membrane. In
the case of two different viscosities at either side of the membrane, η is replaced by
their average as discussed in Ref. [34]. It is also clear that in general the presence
of a wall slows the relaxation of the membrane because of the trapped water. It has
been found, that this hydrodynamic damping by another surface is very important
for fluctuations in time, but not so much for the spacial analysis [60].

Since we identified the fluid movement at the interface with the membrane
movement, we can now write down an overdamped Langevin dynamics equation
for the membrane

∂h(r, t)

∂t
=

∫
dr′Λ(r − r′)

[
− ∂F
∂h(r′, t)

+ ξ(r′, t)

]
, (2.42)

where ξ(r′, t) is a thermal random force. This equation is more easily treated in
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Fourier space because the convolution is removed:

∂hq(t)

∂t
= [−ωqhq(t) + λqξq(t)] , (2.43)

ωq = λq(κq
4 + σq2) =

κq3 + σq

4η
, (2.44)

where the correlations of the thermal noise are given by

⟨ξq(t)⟩ = 0 (2.45)

⟨ξq(t)ξq′(t′)⟩ = 2kBTAΛ
−1
q δq,−q′δ(t− t′). (2.46)

We can identify these equations as Ornstein-Uhlenbeck processes and therefore
can write down the solution for the time correlations functions:

⟨hq(t)hq′(0)⟩ =
kbT

κq4 + σq2
e−ωqtδq,−q′ . (2.47)

The autocorrelation function is given by the Fourier transform of the time corre-
lation function:

⟨|hq(ω)|2⟩ =
2kBTλq

ω2 + ω2
q

. (2.48)

The power spectral density is now given by the integral over all Fourier modes:

⟨|h(ω)|2⟩ =
∫

dq

(2π)2
2kBTλq

ω2 + ω2
q

=
4ηkBT

π

∫ qmax

qmin

dq

(4ηω)2 + (κq3 + σq)2
. (2.49)

If we assume qmin = 0 and qmax = ∞, the scaling of the power spectral density
with ω can be found for the limit ω → 0 and ω → ∞:

lim
ω→0

⟨|h(ω)|2⟩ = kBT

2σω
, (2.50)

lim
ω→∞

⟨|h(ω)|2⟩ = kBT

6π(2η2κ)1/3ω5/3
. (2.51)

For small frequencies the power spectral density is dominated by tension and
does not depend on viscosity directly. Indirectly it still does because for a more
viscous fluid the frequency goes down. Betz et al. [6] found that by using the
planar approach the power spectral density is altered in the low frequency regime,
leading to a systematic overestimation of tension. Calculating the power spectral
density in the spherical harmonic parametrisation yields

⟨|u(ω)|2⟩ =
lmax∑
l=2

⟨|ulm|2⟩r2
ωl

ω2
l + ω2

2l + 1

2π
, (2.52)

ωl =
κ(l + 2)(l − 1)l(l + 1) + σr(l + 2)(l − 1)

ηr3Z(l)
, (2.53)

Z(l) =
(2l + 1)(2l2 + 2l − 1)

l(l + 1)
. (2.54)
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2.2.6 Incorporation of Active Elements

All the analysis described so far is based on equilibrium physics. For living cells,
however, it is expected that active processes will play a role as well. In the case
of RBCs there have been various attempts to identify non-equilibrium processes
in the membrane and incorporate these in the theory. Although it is clear that
there are active processes taking place, it is still not understood what microscopic
processes they originate from and how exactly the RBC fluctuations are influenced.
In this section I will give an overview of the ideas that have been implemented
and what we can learn from the different approaches. The theories can roughly
be divided into two categories; activity induced by active membrane proteins, and
activity applied to the membrane by the cytoskeleton.

Evans et al. [61] used shallow shell theory to take into account the RBC’s disco-
cyte shape when calculating the membrane fluctuations. They were able to show
that active processes are not necessary to explain the experimental fluctuation
data, but singular curves on the surface and regions with alternating Gaussian
curvature lead to an altered fluctuation spectrum. Although this is an aspect that
has not been taken into account before, it does not exclude that active processes
are relevant. There have been experiments that show changes in membrane be-
haviour upon switching on activity [62]. In reality both aspects will play a role,
but an important question to consider is under specific situations, which one has
the bigger effect.

Activity Through Membrane Proteins

The first incorporation of active channels was done by Prost et al. [63] by incorpo-
rating freely diffusing ion channels into the membrane description. They did this
by introducing on/off states whose switching is exponentially correlated and which
contribute a force f if they are activated. Therefore, an active noise is added to
the Langevin equation:

ξactivek (t) = f
∑
j

Sj(t)e
iq·Rj(t), (2.55)

where Sk is either zero or one with the correlation time τa and Rj(t) is the location
of the ion channel. An estimate for the average channel force was given in Ref. [64].
The authors arrive at a force of 1-10 pN by accounting for a transit time of a single
ion of 10−7 s.

As we can see in Figure 2.5, the activity due to the ion pumps introduces a shift
and alters the scaling properties of the mean squared displacement. Subsequently,
this model was extended to take into account coupling between the pump activ-
ity and the membrane’s curvature, which can lead to instabilities and travelling
waves [65, 66].

It was proposed in several studies that the activity can be accounted for by an
increased effective temperature [67, 68]. However, the issue is more complicated
depending on the source of the activity, and can depend on modes and frequen-
cies [69].
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Figure 2.5: Mean squared displacements are plotted for different models as indi-
cated in the legend.

Activity Through Cytoskeletal Effects

Based on the idea that cytoskeleton components can push on the membrane like
polymerising actin in cell protrusion, cytoskeleton induced active fluctuations have
been investigated. The first such model was developed by Gov et al. [67] who con-
sidered spectrin actin dissociation events as force kicks on the membrane. The bio-
logical foundation for this treatment is the phosphorylation of protein 4.1 through
the consumption of ATP, which induced the dissociation of the spectrin end from
the actin junction. They managed to reproduce the ATP dependent experimen-
tal data with their model and found that these processes can be described by
an increased effective temperature. A similar approach was shown to reproduce
ATP-dependent experimental data more recently [70].

In a simulation study, Zhang et al. [71] treated the bilayer as a continuous
sheet that is tethered by entropic springs representing the connections between the
cytoskeleton and the bilayer. In their simulations they account for the diffusion
of these anchor sites and for dissociation events similar to the approach discussed
above. These simulations confirm that experimental data can be reproduced by
this approach.

A slightly different approach has been developed by Turlier et al. [7]. In their
study they show that RBC fluctuations contradict the fluctuation-dissipation the-
orem and therefore are not of pure thermal origin. The activity enters their theo-
retical and computational model through a local modulation of the shear modulus.

Overall, it is clear that activity plays an important role in the dynamical be-
haviour of the RBC membrane. In the following work, we decided to neglect this
effect because the focus is on the alterations of the RBC membrane throughout
the malaria infection. Since the exact source of the RBC membrane activity is not
clear, even less is known about how it would change during a malaria infection.
This is a topic that could be treated in the future.
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2.3 Experimental Flickering Data for Malaria In-

fected RBCs

As part of the SFB 1129 Integrative of Pathogen Replication and Spread, a col-
laboration was established between the groups of Prof. Lanzer, Prof. Tanaka and
Prof. Schwarz. The model discussed in the next section was developed to explain
the data produced by Benjamin Fröhlich from the group of Prof. Tanaka. In this
section, the experimental data is shown and its analysis explained. The aim of the
experiments was to measure the mean squared fluctuations and the power spectral
density of RBC membranes.

The experiments were conducted with uninfected (HbAA) RBCs as well as
ring and throphozoite stage (HbAA) iRBCs in order to see changes during the
infection. The analysis was repeated for HBAS and HBAC RBCs, which are
known to exhibit differences in their development and the same experiments were
also done for knobless parasite mutants.

In the experiments, the Plasmodium falciparum strain FCR3 was used and the
RBC cultures were synchronized within a time window of six hours. The cells
were kept in an RPMI-1640 medium supplemented with bovine serum albumin
at a haematocrit of 0.1% at 37◦ C. The images of the RBCs were taken with a
phase contrast microscope and the cells’ rims were detected by a Gaussian fit on
the gradient images, so that the Fourier modes of the height spectrum could be
extracted. From this the mean squared displacement for the membrane height
could be calculated.

As described in the previous section a theoretical model can be fit to the
experimental data. Here we choose the formula derived from the Hamiltonian
including a confining potential [4]:

H =

∫
dA

[
1

2
κ(∇2h)2 +

1

2
σ(∇h)2 +

1

2
γh2

]
. (2.56)

Previously, I showed how the mean squared fluctuations are derived in Fourier
space but that formula was derived for deviations of a two dimensional sheet
from the flat reference state. Here, the expression needs to be modified to fit the
experimental limitation that only fluctuations in the y = 0 plane are measured. A
derivation of the following formula is shown in Appendix C.1:

⟨h(qx, y = 0)2⟩ =kBT

L

⏐⏐⏐⏐⏐⏐
√

κ

2(σ2 − 4κγ)

⎡⎣ 1√
2κq2x + σ −

√
σ2 − 4κγ

− 1√
2κq2x + σ +

√
σ2 − 4κγ

⎤⎦⏐⏐⏐⏐⏐⏐ , (2.57)

where L is the size of the membrane patch. By applying this formula to the data,
fits for κ, σ and γ can be extracted and compared for the different infection stages
as can be seen in Figure 2.6.



30 Flickering Analysis of Red Bood Cells

Figure 2.6: a) Bending modulus κ, b) surface tension σ, and c) confinement γ
calculated for HbAA cells at uninfected (U), ring (R), and trophozoite stage (T)
using (2.57). In a) gradient images are presented of the corresponding infection
stages with the parasite marked by the dotted lines. The scale bar indicates 5 µm.
d) Corresponding cytoplasmic viscosity ηRBC calculated by a fit with Eq. (2.52)
(Welch t-test: x no significant difference, ∗p < 0.05, ∗∗p < 0.001). This Figure was
produced by Benjamin Fröhlich.
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Figure 2.7: a) Bending modulus κ, b) surface tension σ, and c) confinement γ
calculated using (2.57) for hemoglobinopathies HbAS and HbAC at the trophozoite
stage of infection. Red lines correspond to the median values of HbAA at the
identical parasite stage for the respective mechanical parameter. Welch t-test was
performed against HbAA (symbols top row) and among the hemoglobinopathies
(x no significant difference, ∗p < 0.05, ∗∗p < 0.001). This Figure was produced by
Benjamin Fröhlich.

Figure 2.8: a) SEM images of the knobless phenotype (top) and a representative
gradient image calculated from phase contrast (bottom). The Scale bar indicates
2 µm. b) Bending modulus κ, c) surface tension σ, and d) confinement γ calculated
using (2.57) for the knobless phenotype at trophozoite stage HbAA iRBCs. Red
lines correspond to the median values of HbAA for the respective mechanical
parameter. (Welch t-test: x no significant difference, ∗p < 0.05, ∗∗p < 0.001). This
Figure was produced by Benjamin Fröhlich.
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For the bending modulus, κ, we see an increase from

⟨κ⟩AA,U = (2.7± 0.6)× 10−19 J to ⟨κ⟩AA,T = (3.4± 1.4)× 10−19 J,

for the uninfected cells and the trophozoite cells respectively, where the ring stage
is not significantly modulated. The surface tension already doubles its value from

⟨σ⟩AA,U = (0.7± 0.2)× 10−6 Nm−1 to ⟨σ⟩AA,R = (1.3± 0.5)× 10−6 Nm−1,

for an uninfected cell and a cell in the ring stage respectively, and reaches five times
the uninfected value in the trophozoite stage. Finally, the confinement factor γ
changes the most. From the uninfected stage to the ring stage γ increases from

⟨γ⟩AA,U = (0.5± 0.2)× 106 Nm−4 to ⟨γ⟩AA,R = (1.9± 1.5)× 106 Nm−4

and reaches a ten-fold higher value in the trophozoite stage than in the uninfected
stage.

A value for the viscosity could be extracted from a fit to the power spectral
density using Formula (2.49) derived from the spherical harmonic treatment of the
cell as explained in Chapter 2.2.5. This analysis has been attempted for healthy
RBCs before but it is a known issue that this method overestimates the viscosity
values. Similar to these studies, a relatively high value of 11.2 × 10−3 Pa s was
found for healthy RBCs (the viscosity should be on the order of a few mPa s for
the haemoglobin solution inside the RBC [72], compare the viscosity of water at
20◦C which is 1 ·10−3 Pa s). Nevertheless, an increase in viscosity can be measured
with parasite development. The viscosity at the ring stage

⟨ηRBC⟩AA,R = (19.1± 10.8)× 10−3 Pa s

is 1.7 times larger and the viscosity at trophozoite stage is 7.5 times larger than
in the uninfected cell.

The mechanical parameters were also measured for HbAS and HbAC RBCs at
the different stages. If we focus on the trophozoite stage and compare the values
to the HbAA cells (red lines), we can see in Figure 2.7 that the bending modulus κ
is slightly higher for both HbAS and HbAC. The surface tension σ only increases
for HbAC cells by a factor of 1.27 where there is no change for HbAS cells. In the
case of the confinement parameter, the value seems to decrease for HbAS cells and
increase by a factor of 1.13 for HbAC cells.

In a final set of experiments, the parameters were also determined for a knobless
phenotype which is a result of a chromosomal truncation. For these cells no change
in the bending modulus could be detected whereas both σ and γ were found to be
smaller than for comparable infected HbAA cells (see Figure 2.8).

2.4 Numerical Treatment of Cytoskeleton

One important difference between the different infection stages in HbAA cells and
the hemoglobinopathies is the arrangement of the spectrin network that underlies
the RBC membrane. To find out more about the relation between the nature
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of the network and the flickering parameters, we treat the exact structure of the
network in a numerical manner as has been done previously for healthy RBCs [73,
56, 74, 35]. It is important to keep in mind, that the spectrin network is not
necessarily the only cause for changes in membrane parameters. Another possible
change could be an altered activity of the membrane which we do not consider
within the following calculations.

2.4.1 Previous Applications

Frank L. H. Brown developed a framework to simulate fluctuations of membranes
that interact with an underlying structure, such as the RBC cytoskeleton, which
he termed Fourier Space Brownian Dynamics (FSBD). Using these simulations he
treated pinned membranes in variable detail where the effect of different hydro-
dynamic kernels was also examined [34]. In another application intermembrane
junctions were identified as a source for surface tension [5].

For a general anchoring potential, the simulation method just mentioned needs
to be applied. However, in the case of a purely harmonic anchoring, a detailed
simulation is not necessary but a transformation to normal modes can by ap-
plied. Hence, it is possible to calculate the exact time evolution by a matrix in-
version (which is done numerically), similar to the transformations that are made
in crystals [75] and polyatomic molecules [76]. The normal mode approach yields
average membrane shapes, fluctuations about this average and time correlation
functions without conducting lengthy simulations. This is the approach that we
will use in the following calculations and has also been verified to apply to RBCs
by Merath et al. [35].

2.4.2 Modelling Approach

We describe the RBC membrane by a Hamiltonian consisting of two distinct con-
tributions; an elastic continuum part and a discrete part modelling the connections
between the lipid bilayer and the spectrin network as individual springs. The elas-
tic contribution is given by the Canham-Helfrich Hamiltonian in Monge gauge
which takes into account the bending of the bilayer (κ) and a surface tension σ
which enters the equation to ensure area conservation:

Helastic =

∫ Lx

0

dx

∫ Ly

0

dy
(κ
2
[∇2h(r)]2 +

σ

2
[∇h(r)]2

)
, (2.58)

where h(r) is the normal displacement (in the z-direction) of the membrane from
its equilibrium position in the xy-plane. The expression needs to be integrated over
the whole membrane patch with dimensions Lx and Ly. The contribution from
the springs consists of a sum over the discrete attachment sites (α = 1, ..., N):

Hspring =
N∑

α=1

kα
2
h2(rα), (2.59)

where kα is the spring constant at position rα. For simplicity the spring constants
kα are assumed to be equal (k) for a given realization. I also define two dimen-
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a b

Figure 2.9: a) Normalized mean square fluctuation amplitude as a function of

Fourier mode number nq plotted for different values of the ratio q∆2

κ
where ∆ is

the spring lattice constant. b) Average hight of an anchored membrane patch in
real space. Anchor points are indicated by the red spheres.

sionless quantities, Γ = γ(LxLy)2

kBT
and K = kLxLy

kBT
which fix the strength of the

confinement parameter and the spring constant relative to the size and thermal
energy of the system.

After Fourier transforming the above equations, an expression for the mean
square amplitudes can be derived using the equipartition theorem. Details about
the calculation can be found in Appendix C.2 or in the work by Lin and Brown [34,
5]. An analytic expression can be derived for the purely elastic part since only diag-
onal elements contribute. However, when considering discrete springs, the problem
needs to be treated numerically, since off-diagonal terms are introduced. This nu-
merical treatment limits the size of the membrane patch that can be considered.
Here I calculate the fluctuations for square patches of approximately 1 × 1 µm2

in size with a resolution of 10 nm. The calculations are done using a self-written
C++ code.

Reproduction of Results of Merath et al. [35]

As validation of the code, I started with reproducing the results of Merath et al.
who focused on a square array of springs with varying spring constant. They find
that the flickering spectrum of a discretely tethered membrane can be described by
the commonly used continuous harmonic confinement term for weak enough tethers
(see yellow, black and blue lines in Figure 2.9a). However, for very strong tethers
the system deviates from the continuum approach and would need a negative
surface tension to explain the data (red and green lines). Figure 2.9b shows the
average fluctuation spectrum of a small patch after converting back to real space.
The approach used here only calculates the average fluctuation amplitudes of the
membrane; one would have to implement a dynamic simulation to access real
instantaneous membrane shapes.
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2.4.3 Model for the Malaria Infected RBC Cytoskeleton

We need to look more closely at the RBC cytoskeleton to understand the approach
chosen here. The cytoskeleton consists of spectrin filaments that are connected
via short actin filaments. In various studies it was found that the network is in
a prestressed state. However, the spectrin filaments are also not stretched out
fully, such that the network needs to be thought of as a layer of finite thickness.
Cryo-electron tomography has shown that the real thickness inside the RBC lies
between 54 nm and 110 nm which corresponds to the stretched out and crumpled
up states, respectively [77]. Hence, it seems plausible to treat the spectrin network
as an elastic shell, and only consider the attachment points between the bilayer
and the spectrin nodes.

In Figure 2.10a, a schematic of the membrane is shown, with the spectrin
filaments in yellow and the main anchor points at the actin junctions in blue. The
large structure on the right corresponds to a knob which is a large structure of
KAHRP molecules induced by the malaria parasite. To see how we translate this
into our numerical model, a graphic containing the corresponding springs is shown
below. As mentioned before, we replace the discrete connections between bilayer
and spectrin mesh by springs with a lattice constant a as shown in the Figure.
Hence, the attachment is modelled by an array of springs that confines the bilayer
at z = 0. A natural way to model a knob would be to introduce a cluster of springs
as it is also shown in the schematic.

Since we only consider the discrete connection points, we need to know the
spring constant at the junction points in the direction perpendicular to the net-
work. A graphic representation of this problem is shown in Figure 2.10b. The
junctional complex indicated in orange attaches to a number of spectrin filaments
(an average of 4.2 for healthy RBCs [77]) which have a spring constant of ksp
along their extension axis. In order to determine the out of plane spring constant
several factors need to be accounted for. In general we are most interested in the
contribution from the spectrin filaments since these are altered dramatically dur-
ing the malaria life cycle. Nevertheless, a spring constant will be associated with
the junctional complex itself. The actual connection to the bilayer is mediated
via a transmembrane protein which can move within the lipid bilayer and hence
contributes to the spring stiffness. Additionally, the anchor complex, consisting
of several proteins, also behaves spring like and contributes to the overall spring
constant.

In Appendix C.3, a formula is derived which shows how the spring constant of
the junctional complex depends on the spring constant of the individual spectrin
filaments that for simplicity all have the same spring constant. The formula pre-
dicts a non-linear dependence on the displacement z in the direction perpendicular
to the network:

k = nksp
z2

2a2
, (2.60)

where n is the number of filaments attached to the complex and a the distance
to the next anchor point.

In principle, we now know how to calculate the spring constant, so the last piece
of information needed is the 2D distribution of the springs. The anchor points in
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Figure 2.10: a) Molecular components of the RBC membrane are shown with a
model schematic introducing springs as anchor points below; the latter have a
strength k. The distance between springs is the triangular lattice constant a of
the underlying 2D spring distribution. b) The structure of one anchoring point is
shown with the connection to the bilayer in orange and the spectrins in yellow.
The whole complex can be modelled by a vertical spring with spring constant
k. c) The springs’ positions are shown for square membrane patches of 1 µm2.
The triangular lattice constants are as indicated and the network is thinned out
systematically.
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average spectrin average mesh size
length (in nm) (in µm2)

uninfected 43 0.0035
ring 48 0.0035
trophozoite 64 0.0067
shizont 75 0.0071

Table 2.1: Data describing the spectrin network architecture for the uninfected
RBC and the three infected stages taken from Shi et al. [11].

the spectrin network are known to form a triangular (hexagonal) lattice with some
naturally occurring defects. Natural parameters are identified to be the lattice
constant a, which corresponds to the end-to-end distance of a spectrin tetramer,
the number of defects in the lattice and the spring constant for each spring. An
example for varying a can be seen in Figure 2.10c.

The motivation for varying mesh size comes from observations of the different
stages of the malaria infection. An AFM study of the cytoplasmic side of malaria
infected RBCs [11] found that the end-to-end length as well as the mesh size
increases over time which can be seen in Figure 2.11. The authors also extracted
values from the images, which are summarised in Table 2.1.

One reason for this development might be the mining of actin from the RBC
skeleton by the parasite. Cyrklaff et al. [23] found that the parasite utilizes the host
actin to build long actin fibres that start at the knobs and terminate at the Mau-
rer’s clefts. Therefore, there might be less junctional points at later stages of the
infection. Another development that takes place, is the formation of knobs, which
mediate cytoadhesion via the protein PfEMP1 and have an underlying spiral struc-
ture that incorporates the protein KAHRP. These knobs are approximately 100 nm
large and act as very strong anchor points between the bilayer and the spectrin
network. By modelling the connections between the bilayer and the cytoskele-
ton explicitly, I will show what effects these observations have on the membrane
properties.

Modelling Results

The numerical calculations described above produce two dimensional data sets for
the mean square displacements in Fourier modes. An azimuthal average is taken
to plot the data as a function of q, because the peaks in the Fourier spectrum
clearly show the geometry of very regular lattices and so are different depending
on the direction chosen. Therefore, a reasonable approach is to average all values
for a given |q|, such that the lattice geometry becomes unimportant. An example
of data sets can be seen in the points in Figure 2.12 a and b. To compare the data
more easily, we fit the three parameters of the continuum description

⟨h2
q⟩ =

kBT

LxLy

1

γ + σq2 + κq4
, (2.61)
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Mid Trophozoite Late Trophozoite Schizont

Uninfected Ring Early Trophozoite

Figure 2.11: AFM images with the corresponding skeletonisation of the RBC’s
cytoplasmic side. The white arrows point at knobs and the scale bars correspond
to 500 nm. The figure is adapted from Ref. [11].
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Figure 2.12: a) Simulated mean square displacements as a function of the
wave number q for the different lattice constants (see Figure 2.10c) (fixed k =
9.210−5 Nm−1) and b) for different spring constants k (fixed N = 423). The
discrete data points represent the results from the numerical calculations and the
continuous lines are a fit of the continuum theory. c) Here the dimensionless
confinement parameter Γ is plotted against the number of springs N and d) the
dimensionless spring constant K. The red dashed lines indicate the fit for the
exponents.

which manages to describe the data well as can be seen in the solid lines in the
plots. The formula is fitted to the data by a least square algorithm within MatLab.

In the case of evenly distributed equally strong springs, one expects the follow-
ing relation between γ, the spring constant K and the number of springs N from
dimensional analysis of the Hamiltonian:

γ ≈ kBT

(LxLy)2
NK. (2.62)

For our uneven networks, we will use the approach to keep either the number of
springs or the spring constants fixed in order to find the dependence on the relevant
parameter. Examples are shown in Figure 2.12 c and d. The linear scaling on the
log-log plot in the relevant regimes indicates the following relations

Γ ∝ Kα

Γ ∝ Nβ,

where the exponents α and β can be extracted from the slopes of the red lines.
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To examine the effects of spring density and sprint constant, I varied the lattice
spacint, a, from 30 nm to 140 nm while keeping the spring constant fixed, then
varied the spring constant, k, from 0.92 · 10−6 Nm−1 to 0.92 · 10−2 Nm−1 while
keeping the lattice spacing fixed (see Figure 2.10). The results of these calcula-
tions are shown in Figure 2.12, where the different colours in Figure 2.12a indicate
different lattice spacings and in Figure 2.12b they indicate different spring con-
stants. The solid lines show the fits of the analytical formula containing the three
parameters κ, σ and γ. In Figure 2.12c and d the dimensionless parameter Γ,
which was extracted from the fits, is plotted as a function of spring number and
dimensionless spring constant K respectively.

From the slope of the log-log plots in Figure 2.12c and d the scaling of Γ with
the two parameters can be extracted. For a very high spring constant in d) a
plateau regime can be seen which corresponds to an effectively pinned membrane.
Otherwise the scaling behaviour is given by

Γ ∝ N0.9552 (2.63)

Γ ∝ K0.96. (2.64)

The exponents are close to one but they actually depend on the underlying lattice
geometry as will be shown later on.

Parameters

To compare the simulated parameter ranges to the values that describe a mem-
brane patch of a healthy RBC, we make the following estimations. First, we neglect
the strain hardening property of the spectrin filaments and model it as a simple
spring. An individual spectrin filament has a spring constant of approximately
ksp = 2 · 10−6 Nm−1 [78] when extended along its contour length. As explained
previously, we can approximate the out of plane spring constant by the formula
derived in Appendix C.3, such that

k ≈ 4ksp
z2

2a2
≈ 8.8 · 10−9Nm−1, (2.65)

where a = 43 nm is the rest length of the spectrin filament. We approximate
z/a by 2/43 = 0.0465, since the typical out of plane motion has an order of
magnitude of a few nm. This leads to a dimensionlessKRBC = 2.3 for the simulated
membrane patch. Furthermore, we find NRBC = 378 for a square membrane
patch of A = 1 µm2 , an average mesh size of 3500 µm2 and a lattice constant
of a = 43 nm. Figure 2.12c and d show where these values are located within
the simulated parameter ranges. It can be seen that the experimentally relevant
parameter space is located far below the pinned membrane regime, so that changes
in N and K will indeed have an effect on γ.

Now we would like to predict the value of γ from these microscopic quantities
and use the previously verified formula. Our analysis suggests the formula

γ ≈ kBT

(LxLy)2
NβKα (2.66)
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Figure 2.13: a) Examples of a Delauney lattice for dmin = 1 nm and b) dmin = 30
nm.

will do this. For a RBC area of A = 2.2 · 10−10 m2 , a spring density of N/A =
408 µm−2 and a spectrin spring constant of ksp = 2 · 10−6 Nm−1 the harmonic
confinement parameter is calculated to be γ = 1.7 · 106 Jm−4. The microscopic
quantities used for this estimation could only be approximated based on previous
knowledge. Nevertheless, the final value for γ is close to the measured value of
⟨γ⟩AA,U = (0.5± 0.2) · 106 Jm−4 for an uninfected cell.

2.4.4 Examining Effects of Network Properties

We numerically analysed several different underlying network structures. Specifi-
cally, we looked at the effects of the network geometry, homogeneity, system size
and also considered a membrane covering a sphere but this approach is limited to
a small radius.

Geometry Effects

Firstly, we wanted to see how the confinement depends on the underlying network
structure. The simplest case is a square lattice for the pinning sites. Alternatively,
a triangular lattice with defects can be applied to mimic the network structure
of the RBC skeleton as described above and can be seen in Figure 2.10c. As a
third option a Delauney lattice was used, where the minimum distance between
two junctions, dmin, determines how regular the lattice is. Two examples of such
lattices can be seen in Figure 2.13a and b.

For all of these cases, we extracted the scaling exponents α and β as described
above. The results are summarized in Table 2.2. In general, the values are very
close to 1 so that the scaling is nearly linear. Nevertheless, the error of the values
is very small which shows that the different geometries induce small changes on
the scaling exponents. The strongest deviation occurs for the scaling of γ with the
spring number N of the square lattice. This is likely due to the averaging over
azimuthal angles.

Next, we examined the effects of the homogeneity of the network by gradually
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Exponent of spring number N (β) Exponent of spring constant K (α)

Square (k = 9.2 · 10−5) 0.9292 Square (N = 400) 0.9671

Hexagonal (k = 9.2 · 10−5) 0.9552 Hexagonal (N = 423) 0.9600

Hexagonal (k = 9.2 · 10−8) 0.9480 Hexagonal (N = 379) 0.9754

Delauney (k = 9.2 · 10−5) 1.0173 Delauney (N = 423) 0.9447

Table 2.2: Scaling exponents extracted from the fit to the analytical formula for
varying N on the left and K on the right. The different lattice geometries are
compared and dmin = 1 for the Delauney runs.

Figure 2.14: The blue data points show the mean spring constant k as a function
of dmin and the red data points depict the corresponding calculated confinement
γ.

changing the value of the parameter dmin of the Delauney lattice. In these calcula-
tions, the different lengths of the spectrin tetramers are also accounted for. Real
spectrin molecules change their stiffness as a function of extension in a complicated
manner where different domains can unfold. By approximating the filaments as
semi-flexible polymers, a reasonable force extension curve can be found, that pre-
dicts the spring constant to be very high for large extensions. Hence, the spring
constant for each lattice point is calculated according to the attached filaments and
their length. The results are shown in Figure 2.14, where a small dmin corresponds
to irregular lattices and a large dmin produces an evenly spaced out distribution of
springs.

Small values of dmin, implying an irregular lattice, produce a larger average
spring constant k and therefore a larger confinement γ. The data is quite noisy
because each Delauney lattice is quite different to another Delauney lattice with
the same dmin.



Numerical Treatment of Cytoskeleton 43

0 100 200 300 400 500
# of springs in knobs

1

2

3

4

5

6

7

8

9

10

11
knobs of size 13
knobs of size 25
knobs of size 49
knobs of size 85

1

1

1

a

b

c

Figure 2.15: a) Example of an array of springs that shows dense regions of springs
which resemble the parasite induced knobs. b) The confinement parameter Γ/Γ0

is plotted as a function of knob density (since two different sizes of knobs exist,
it is more convenient to use the number of springs in knobs as parameter). Γ0

corresponds to the system without knobs and only the springs corresponding to
the spectrin network. The hollow points show the data for all springs being equally
strong, where the full points correspond to the situation where the springs that lie
within knobs are double as strong as the others. Black points correspond to small
knobs (25 springs per knob) and red points to large knobs (50 springs per knob).

Effects of Clustering into Knobs

Since the parasite establishes an adhesive system which consists of knob struc-
tures that strongly connect the membrane to the spectrin network, we analyse the
effects of clusters of springs on the confinement parameter. Since a knob has a
diameter of approximately 100 nm, its size is similar to a whole unit of the spectrin
network. Hence, it can be modelled by introducing a dense region of springs of the
appropriate size as can be seen in Figure 2.15 on the left.

It was found that one of the differences between HbAA and HbAS/HbAC cells
is the knob size. Hence, we consider two cases in the calculations, many small
knobs (black data) or a smaller number of large knobs (red data), where we keep
the total number of springs constant. For example, we would compare 4 small
knobs to 2 large knobs with double the number of springs each. For all spring
arrays we calculate the corresponding confinement factor as before and plot the
result on the right of Figure 2.15. Γ is scaled by Γ0 of the system without knobs
and only with the springs corresponding to the spectrin network.

In all cases we find that the large knobs are less effective in inducing confine-
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ment than the small knobs. This makes sense since a completely homogeneous
distribution is most effective. As mentioned before, the overall number of springs
is kept constant, such that individual springs are only moved around. Therefore,
the confinement goes down (hollow points in Figure 2.15), when we start cluster-
ing springs into knobs for the same reason why large knobs are less effective than
many small knobs.

However, in the real system, the knob areas seem to be strongly connected to
the spectrin network by parasite induced proteins like KAHRP. This motivates the
choice to make springs belonging to a knob double as strong as the other springs
of the background network. The data for these calculations is shown in the full
circles in Figure 2.15. Considering the large knobs, the data ranges from a knob
density of zero to four knobs per square micrometer, which corresponds to the
appropriate range for the iRBCs. For a knob density of 4 µm−2 an increase of
confinement of 30 % can be reached.

Effects of System Size

To check if the results of our calculations are scalable with system size, we compare
a membrane patch of 1 µm2 with one of size 25 µm2. Assuming the exponents α
and β to be 1, we would expect that the confinement parameter γ only depends
on the spring density and the microscopic spring constant as seen in the relation

γ ≈ kBT

(LxLy)2
NK (2.67)

=
N

LxLy

k, (2.68)

where N
LxLy

is the spring density and K the dimensionless spring constant. As

seen in one of the previous sections, α and β can slightly deviate from 1 depending
on the underlying network structure but to test the effects of system size, it is
sufficient to make this approximation.

To test the prediction, I take the membrane patches of the different sizes and
choose the same spring density and constant in both cases. This should lead to
the same confinement parameter. The results of the calculations can be seen in
Figure 2.16; it should be noted that the mean squared displacement had to be
scaled by the system size to compare the data. This scaling introduces a prefactor
which shifts the curve as a whole but does not affect the relevant parameters.

The blue and yellow data points show the mean squared displacement for a
weak spring constant of k = 1.3 · 10−5 Nm−1. The red and green data points
are the results for the same spring density but a stronger spring constant of k =
1.3 · 10−5 Nm−1. It can be seen that in each case the two system sizes yield
similar results. In the weak confinement case the data for the small system in
yellow is not sufficient to properly fit a confinement parameter. In the stronger
confinement case both curves clearly show the effects of a confinement (plateau for
small wavenumbers) and it can be seen that the larger system produces a slightly
stronger confinement (compare the green to the red curve). From the fits the
values 1.5232 · 1011 Jm−4 and 2.6982 · 1011 Jm−4 are extracted for the small and
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Figure 2.16: MSD normalized by the system size as a function of q plotted for
different anchoring strengths and system sizes as indicated in the legend. Solid
lines are a fit of the fluctuation formula to the data.

the large system respectively. For large wave numbers all curves are equivalent.

Overall, the system size does not effect the results much. For strong confine-
ments, the larger system produces a slightly larger confinement than the small
system.

Spherical Harmonic Approach

All previous calculations were done for a planar patch of membrane. A natural
next step would be to look at a membrane of spherical topology and hence using
a spherical harmonic decomposition instead of Fourier modes. The limiting factor
of this approach is the radius of the treated vesicle since the number of modes,
and therefore the size of the matrix that needs to be inverted, becomes very large
very quickly when keeping the resolution at an appropriate level.

Here, I show an example of fluctuations on a spherical reference shape. The
first step would be to define a triangular lattice on a sphere for the cytoskeleton
representation, as can be seen in Figure 2.17a for an even mesh and in Figure 2.17b
for a thinned out one. The fluctuations on such a sphere were calculated and
converted back to real space. The result is shown in Figure 2.17c plotted on the
surface of the sphere.

This approach seems helpful at first sight but it does not lead to further in-
sights into the problem. Additionally, the system size cannot be chosen large
enough for comparison to a RBC and there is no direct comparison to experimen-
tal data because the resolution of microscopes is usually only sufficiently good in
two dimensions.
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a b

c

Figure 2.17: a) Triangulation on the surface of a sphere. b) Triangulation with
wholes in the network. c) Real space fluctuation modes on the surface of the
sphere.
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Figure 2.18: Comparison of confinement parameter for underlying network struc-
tures that correspond to the data in Table 2.1 but keeping the spring constant
equal.

2.5 Implications for Infected RBCs

2.5.1 Network Destruction Decreases Confinement

Now we would like to examine the changes that occur during a malaria infection.
In an AFM study of malaria infected RBCs [11] it was found that the spectrin
network develops a larger average mesh size and the average spectrin length in-
creases with proceeding infection stage (see Table 2.1). Additionally, they found
that the spectrin network condenses around knob areas. It is important to notice
that the spectrins exhibit a strain-hardening property [79] so that longer filaments
will have a stronger spring constant.

From the data in Table 2.1, the mesh size of the spectrin network seems to in-
crease drastically. To make the effects of the proposed change in network structure
clear, we numerically calculated the MSD for the four different cases. We assume,
that the reason for the larger mesh size is the destruction of some connections
between the bilayer and the spectrin network, so that a system with a large mesh
size, has less springs in total.

From our previous analysis we know, that thinning out the network will lead to
less confinement and this can also be confirmed in the plot in Figure 2.18. However,
experiments show, that the fluctuations decrease with time after infection, such
that a thinning out of the network cannot be the only process happening in the
iRBC. A hypothesis on what is actually happening is proposed in the next section.

2.5.2 Strong Anchoring Introduces Confinement

In the numerical study we quantified how γ scales with the number of connections
between the bilayer and spectrin network and their strength. Hence, there are
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two ways in which γ can increase. Either the existing connections get stronger
or more connections are introduced. An increase in strength of the connections
is very plausible since Shi et al. [11] found an increase in average spectrin length
which results in stronger spring constants due to the strain hardening property of
the spectrin filaments. For the number of connections the trend is not completely
clear. On the one hand, it is thought that the parasite mines actin from the
spectrin network [23] which would result in less connections to the bilayer. On
the other hand, the knobs are thought to introduce extra connections so that the
overall development could be either way. From the calculations it is clear that more
connections will result in a larger γ. However, even if the number of connections
reduces, γ can still increase if the spring constants get strong enough.

Based on the results of the calculations, we can now make an estimate of how
much the confinement will increase during a malaria infection. Three main effects
need to be taken into account:

• I found that γ scales nearly linear with the number of connectors N . Since
the parasite mines actin from the cytoskeleton, the spectrin network becomes
sparser and the density of connectors decreases. Shi et al. [11] found that
the mesh size is approximately doubled from the uninfected to the tropho-
zoite stage (compare Table 2.1). Based on the calculations presented in
Section 2.5.1, I account for this by a factor of 0.8 for the confinement γ.

• Building on the data by Shi et al. [11], the spectrin filaments get elongated
during the infection from approximately 43 nm to 64 nm (compare Table 2.1).
I explained previously that spectrin gets stiffer when it is stretched out.
Applying the formula for the strain hardening behaviour of spectrin yields a
factor of approximately 1.5 for the confinement increase due to this effect.

• The assembly of knobs leads to the introduction of strongly anchored re-
gions. Based on the above calculations explained in Section 2.4.4, this can
be accounted for by a factor of 4.5 when assuming a knob density of 4 µm−2.

Since these developments all happen simultaneously, overall the calculations pre-
dict an increase of the confinement by a factor of 5.4. It has to be taken into
account that this is a crude estimate of the order of magnitude because the un-
derlying microscopic changes of the network can only be estimated. Still, it is not
so far off the experimentally measured increase by a factor of ten.
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2.6 Discussion of Malaria Induced Changes on

Flickering

In this chapter, the theory for equilibrium membranes and membrane dynamics
was explained and the main advances in this field were summarised. Furthermore,
a numerical model was developed in order to explain experimental results for the
flickering of malaria infected RBCs.

The numerical model takes into account the microscopic structure of the cy-
toskeleton and can therefore predict changes that occur during the malaria infec-
tion. The main properties that were discussed were the mesh size of the spectrin
network, the spring constant of the effective tethering at junctional points and the
formation of knobs connecting the bilayer and the cytoskeleton strongly in large
areas. Overall, the most dominant factor for an increase in confinement seems
to be the formation of knobs. Although it could be shown that a homogeneous
tethering is more efficient, a stronger pinning in the relatively large knob areas can
make up for this effect.

There are some shortcomings to the model that could not be prevented. As seen
in the theoretical section, a spherical approach or even better a parametrisation
of the discocyte would be more fitting to describe the fluctuation data of a RBC.
However, we also saw that an approach with altered geometry gets complicated
very quickly. For the numerical model anything but a plane is not feasible for a
thorough analysis, since the matrices involved in the calculations get too large
for an efficient inversion. Furthermore, active contributions to the membrane
movement were not treated here. The reason for this is the microscopic origin
of the RBC activity is still not completely clear and the focus of this work was on
the cytoskeletal modifications by the malaria parasite.

Overall, we have learned, that the parasite stiffens the membrane by stretching
out the individual spectrin filaments and by assembling knobs in the membrane. It
is not entirely clear if the stiffening is a necessary effect or if it is a side effect of the
knob assembly, which is necessary for the RBCs can to gain adhesive properties.
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3.1 Motivation for a Molecular Model

This chapter aims at improving the understanding of the molecular details of the
RBC cytoskeleton in its native state and after the infection with malaria. During
the malaria disease the RBC cytoskeleton is remodelled drastically. By study-
ing the malaria induced alterations we can also learn something about how the
healthy RBC cytoskeleton keeps its structure in its equilibrium state. There has
been various evidence that the RBC spectrin-actin network is more dynamic than
previously thought, specifically, the actin junctions have been found to disassem-
ble and assemble constantly (see Section 3.2.4). All previous models of the RBC
cytoskeleton assume actin junctions of a constant length or model the junction
as one particle. Some models allow for a dynamically changing network topol-
ogy through breaking of bonds but filament growth was not incorporated in such
models. However, actin filament dynamics in other contexts has been modelled
frequently, e.g. actin treadmilling and lamellipodium generation.

The aim of our model is to establish a RBC cytoskeleton model that takes into
account actin dynamics and reproduces the well-known RBC membrane properties.
From there, we can test our hypotheses, how the malaria parasite attacks the
network in order to build its own filaments and stiffens the RBC membrane. The
model that is developed here, is a coarse-grained model, hence does not incorporate
all molecular details of the system but enough to capture the structural details
that are needed. As a basis the reaction diffusion software ReaDDy is used which
has been developed in the group of Frank Noé and evolves particles according to
the Brownian dynamics equations, with external potentials and also incorporated
reactions at the same time.

First, the components of the RBC cytoskeleton are discussed in Section 3.2
and details about the relevant malaria exported proteins are given in Section 3.3.
Then experimental data from our collaboration partners in Prof. Lanzer’s group is
discussed in Section 3.4. After that, the reaction-diffusion model for the RBC cy-
toskeleton is introduced and possible alterations by the malaria parasite are shown
in Section 3.5. The placement of PfEMP1 molecules is analysed in Section 3.6,
before the conclusions of this chapter are drawn.

3.2 Components of the RBC Cytoskeleton

3.2.1 Cytoskeleton Structure

RBCs have a unique cytoskeletal structure which enables the cells to squeeze
through narrow capillaries in the microvasculature having a third the diameter
of a RBC and still recover their shape throughout their lifetime [80]. The cy-
toskeleton mainly consists of spectrin, actin and associated proteins which regulate
the structural organization. Due to various studies the overall structure and the
components of the RBC cytoskeleton are well known. A comprehensive review
of the current knowledge is given by Lux et al. [81]. However, the exact nature
of some of the interactions is still unclear, e.g. the binding between spectrin and
actin. The network’s elasticity mainly comes from the flexibility of the spectrin
filaments. They are mainly thought to be in the form of tetramers which consist
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of two dimers and have a stretched-out contour length of approximately 180 nm.
Each dimer consists of an α- and a β-spectrin molecule which are wound around
each other in a helical fashion (see Figure 3.1). Actin is found in short approx.
35 nm long filaments which form junctional complexes and hence the network’s
connection points. The binding of spectrin is stabilized by protein 4.1R and would
be a lot weaker otherwise. It was found that on average six spectrins and six
proteins 4.1R attach to one junctional complex.

The network is anchored to the bilayer through transmembrane proteins (such
as Band 3) associated to ankyrin and the actin junctional complexes (compare top
graphic in Figure 3.1). Ankyrin binds to the 13th to the 15th repeats within β-
spectrin [82] which is close to the midpoint of the tetramer. The ankyrin complex
is thought to contain one akyrin, one Band 3 tetramer, two glycophorin A/B
(hetero-)dimers, two protein 4.2 molecules and one Rh complex. The binding of an
akyrin also promotes tetramer formation and Band 3 strengthens the spectrin self-
association [81]. The other complex is centered around a short actin protofilament
of approximately 35 nm length. Several spectrin N-termini can attach to this
filament mediated by a protein 4.1R each. The attachment to the membrane is
mediated via p55, glycophorin C/D and Band 3. It still remains unclear, how
many Band 3 molecules are present in one complex [81].

3.2.2 Spectrin

The structure of spectrin in the native RBC membrane has been debated fre-
quently because different microscopy techniques seem to lead to different results.
Especially the contour length has been reported to have very different values. Part
of this problem comes from the preparation techniques, the thus induced stretching
and possible rearrangements of the network.

From the amounts of spectrin tetramers (≈ 105000 per cell [83]) and actin
protofilaments (≈ 35000 per cell [81]) in a RBC, the distance between actin
protofilaments can be calculated to be on average 67 nm and the length of spec-
trin tetramers to be on average 65 nm [83], based on a hexagonal network and a
surface area of 135 µm2. In the table in Figure 3.1, we see that similar values are
obtained from computing the average distance between junctions bases on various
RBC proteins such as ankyrin, adducin and others. All these values for the dis-
tance between junctions are approximately a third of the actual spectrin contour
length of 200 nm [82].

Negative stain electron microscopy yields a stretched out network with straight
spectrin filaments which have a length close to their contour length of 200 nm.
Actin filaments and ankyrin sites can be seen clearly and 5-6 spectrins are at-
tached to each actin junction [84, 85, 77]. It has been realized that this highly
extended state is far from the structure present in native RBCs. From the amount
of cytoskeletal components discussed above it is clear, that the network must be
a lot denser and thicker as well. In order to get a better view on the native
structure quick-freeze, deep-etch rotary replication (QFDERR) [85, 86] and AFM
on unexpanded skeletons [87] have been applied. In contrast to the negatively
stained samples, the spectrin contour length was found to be 29 − 50 nm and
between 3 and 4 spectrins were attached to one junction. Electron microscopy
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Figure 3.1: Top) Schematic of the membrane anchored complexes taken from [81].
On the left an ankyrin complex and its associated proteins can be seen and on
the right the larger actin junctional complex is shown. Bottom) Table taken from
Ref. [83] summarizing the experimentally measured values for the number of pro-
teins in a RBC and the calculated length of the spectrin filaments assuming a
hexagonal structure in the last column.
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Figure 3.2: a and b) Nans et al. [77] prepared healthy erythrocyte skeletons and
reconstructed the tomograms to arrive at the networks shown in red. c and d)
Parts of the network taken from the middle and the edge are enlared, respectively.

of quickly-frozen and deeply-etched skeletons also found contour lengths between
30.6 and 82.6 nm [88]. When resolving the three dimensional structure of the RBC
cytoskeleton, Nans et al. found an average contour length of 46 nm, a network
thickness between 47 and 90 nm and on average 4.2 spectrins per junction. The
tomograms used for their study can be seen in Figure 3.2.

It has been debated over many years, how these two pictures fit together. In
principle a very flexible polymer like spectrin would be shortened dramatically due
to entropic reasons. Assuming a contour length of 200 nm and a persistence length
of 0.1− 10 nm, the theory for worm-like chains gives a value of 17.8− 61.6 nm for
the end-to-end distance of the polymer. Theories based on this principle have been
applied [91, 92, 93, 94] but the highly crumpled state of the filaments seems to
contradict experimental observations. Therefore, people proposed, that spectrins
could associate laterally [86], that the observed filaments could be spectrin dimers
instead of tetramers and that spetrin could be in higher oligomeric states [77].

A different approach considers the sub-structure of spectrin and proposes struc-
tural rearrangements that lead to considerable shortening of the tetramer. As
already discussed, a tetramer consists of an α and a β strand that wind around
each other in a helical fashion. Based on this structure a possible mechanism
for changing the contour length of the filament lies in adjusting the helical pitch
and diameter. Images of negatively stained filaments seem to support this mech-
anism [90] (see Figure 3.3c). It was also found that bending in the linker region
between spectrin repeats can lead to a shortening of 30 % while keeping the fila-
ment straight [89] (see Figure 3.3b). Brown et al. [83] developed a model exploit-
ing the above mechanisms which they term the Chinese finger-trap model which
is shown in Figure 3.3a. By varying the pitch, the contour length changes from
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Figure 3.3: a) Schematic of the Finger Trap model discussed by Brown et al. [83].
The top row shows the front and side view of the compacted spectrin whereas
the graphic in the middle gives a possible molecular organization of this structure.
At the bottom the different configurations for various contour lengths are shown.
b) Spectrin model from Ref. [89] and c) filtered microscopy images from Ref. [90]
showing a possible relation between spectrin pitch and diameter.

180 nm to 50 nm. At the same time the filament diameter changes and the short
filaments are hollow in the middle which they also seem to observe experimen-
tally. This model would explain, why microscopy images mainly show straight
filaments. However, it does not explain why the spectrin network was observed
to have a thickness of up to 90 nm [94] (a 40 nm soft and a 50 nm stiffer regime
beneath) with tangentially oriented actin filaments [93] as the base.

When pulling on single spectrin filaments, more information can be found about
its behaviour under large strains. The filament can actually be stretched out
further than it’s contour length of 200 nm because the single repeat structures can
unfold. This has been shown in an AFM study by Rief et al. [95]. Although this
unfolding is important for large forces in situations where the RBC is stretched a
lot, it does not play a role in the discussion about the equilibrium structure of the
RBC cytoskeleton.

Overall, the entropic picture of a flexible polymer that shortens due to entropy
and forms a thick layer seems most plausible. Especially since the theory of such a
polymer gel yields the right macroscopic quantities like the shear modulus which
is discussed in the next section. Additionally, in recent years this picture has been
accepted by most researchers in the field.
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3.2.3 Shear Modulus: Experimental and Theoretical Re-
sults

Until now, the microscopic structure of the RBC cytoskeleton was discussed. How-
ever, in most cases the mechanics of RBCs are probed on more macroscopic scales.
To access the stiffness of the membrane and the cell as a hole, one important
quantity is the shear modulus. In a shear experiment either a force (stress τ) or
a deformation (strain γ) is applied. These two quantities are related by the shear
modulus µ:

τxy = µ γxy. (3.1)

Note that this description assumes an isotropic response of the material. Although
the cytoskeleton will not be isotropic on the microscopic scale, it can be treated
as an isotropic continuum on the scale of a shear experiment.

Such an experiment is useful, since it indirectly gains information about the
small scale by probing the membrane on the whole cell level. The RBC shear
modulus has been measured to be 2.4−2.75 µNm−1 and a review of the outcome of
different measurment techniques can be found in [96]. Possible techniques to probe
the shear modulus are micropipette aspiration, optical tweezers or flow chamber
experiments.

Another way to probe the shear modulus is observing fluctuations of the net-
work. This can be done by attaching nano-particles to the actin nodes [97] and
observing the fluctuations for different locations. This way Lee et al. found that
fluctuations are increased along the strain axis if a large strain is applied. A pos-
sible explanation are dissociation events or unfolding. In a similar approach, the
shear modulus can be probed by analysing the fluctuations of the membrane by a
method called flickering analysis. How this works in detail is treated in Chapter 2.

A study on RBCs has shown that the network gets softer with increasing tem-
perature [98]. This result contradicts the picture of an entropic cytoskeleton elas-
ticity. However, the RBC is complex enough that there could be also other reasons
that explain this observation.

3.2.4 Dynamic Actin Junction

It is still generally excepted, that the actin junctional points consist of static
filaments of equal lengths which are kept at this length by additional proteins.
However, there has been evidence that this is not true in general. Motivated by
the malaria community, people have started looking into the possibility of dynamic
actin junctions that are partly stabilized by capping proteins. An interesting
question is, how the malaria parasite uses this dynamic equilibrium to take actin
out of this system in order to build its own trafficking system.

When labelling junctional complex components, it became clear that even the
healthy cytoskeleton seems to have 200 nm large voids [99]. Hence, the network
seems to be more disordered than previously thought. In malaria infected RBCs
it has been shown, that the parasite uses host derived actin monomers to build
filaments that connect to the membrane [23, 100]. The reduction of actin junctional
complex number also fits the observation that infected RBCs develop large voids
in the network.
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In 2015 the first RBC study showed evidence for actin exchange in healthy
RBCs. By labelling the G-actin monomers it was shown that one third of actin
filaments dynamically exchange actin monomers at a given time [101, 102]. This
observation is in agreement with the observation that the actin capping proteins
are localized to a subset of junctional complexes [99].

Actin Filaments

The actin filament itself has a persistence length around 0.1 µm and is polarized
such that it has one fast growing end (”barbed” or plus) and one slow growing
end (”pointed” or minus). The magnitude of rate constants at the barbed end is
significantly larger than at the pointed end. However, the situation is further com-
plicated by ATP hydrolysis within the actin monomer and different rate constants
associated to the different states. Although ATP hydrolysis occurs very slowly for
free actin subunits, it is faster (rate of 0.3 s−1 in the presence of Mg, assuming
random hydrolysis uninfluenced by neighbouring monomers [103]) once the sub-
unit is bound in a filament and hence, the hydrolysis plays a role for actin filament
assembly. Shortly after the hydrolysis occurred, the phosphate is released from
the filament at a rate of 0.002− 0.006 s−1 [104], leaving ADP-actin behind. This
leads to 3 different states, ATP-actin, ADP/P-actin and ADP-actin which detach
at different rates. There has been some debate whether the hydrolysis happens
randomly or vectorially, which would mean that hydrolysis occurs next to already
hydrolysed monomers. Although not completely clear, many studies suggest the
random hypothesis [105, 106].

Because of the accumulation of hydrolysed subunits at the pointed end the
filaments can be in a state termed ”treadmilling”, where the depolymerization rate
at the pointed end is equal to the polymerization rate at the barbed end, so that
the filament stays at constant length but the subunits are constantly renewed.
For this to occur the free monomer concentration must be between the critical
concentrations of the pointed and barbed end. These concentrations can only be
different because one end is hydrolysed and the other one is not.

Actin filaments have many different functions in cells depending on their length
and organization. Where the short actin filaments hold the RBC cytoskeleton
together, the dynamic actin polymerization is the foundation for cell motility.
The filaments are built from 43 kD globular G-actin (see Figure 3.4a) and form
a two-stranded right-handed helix with a diameter of 8 nm (see Figure 3.4b). To
fulfil all different functions, the filament length and dynamics can be controlled by
adjusting the actin monomer concentration or by addition of actin binding proteins,
such as capping proteins which will be described in more detail hereafter. In most
non-muscle vertebrate cells, only half of the actin is bound to filaments. This leads
to a monomer concentration of 50− 200 µM which is a lot higher than the critical
concentration.

Rate Constants

On the experimental side there have been various studies to measure how actin
growth depends on monomer concentration and to observe the phenomenon of
treadmilling [107, 108]. Early studies measured the rates by electron microscopy
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a b

Figure 3.4: Structure of actin monomers in a) and filaments in b) taken from
Alberts et al. [3]. The right image clearly shows that an actin filament has two
distinct sides.

which requires fixation (values in Table D.1). Other approaches used fluorescence
microscopy but a major problem in real-time measurements is the background flu-
orescence of the labelled monomers. To circumvent this problem Kuhn et al. [108]
used total internal reflection fluorescence microscopy to follow the filament growth.
In order to distinguish between the pointed and barbed end, the filaments were at-
tached via N-ethylmaleimide inactivated myosins or different fractions of labelled
actin were used to establish a clear border which can be tracked. In this study
treadmilling was observed and the different association and dissociation constants
for ATP-actin and ADP-actin were found as shown in Table D.1. The ADP dissoci-
ation rates were measured after the filaments were aged in treadmilling conditions
so that most actin was converted to ADP-actin. Additionally, vitamin D binding
protein was added to sequester the dissociated monomers during the dissociation
process.

The rates are extracted from a plot of the time derivative of the filament
length dl

dt
against free actin monomer concentration C since the slope corresponds

to the association constant k+ and the y-axis interception to the dissociation con-
stant k−:

dl

dt
= k+ C − k−. (3.2)

The association of monomers is concentration dependent, since more monomers
have the chance to associate to the filament if the monomer concentration is high.
For a dissociation however, it does not matter, how many monomers are available.

When considering binding interactions, an important quantity is the dissocia-
tion constant KD. It given by

KD =
k−
k+

(3.3)

and hence, a smaller KD implies more likely binding. The dissociation constant
has a unit of concentration.
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Modelling Actin Dynamics

There have also been various approaches to model actin filament growth. An-
alytical studies taking into account ATP hydrolysis based on probability distri-
butions [109] and a master equation approach [110] reproduce the actin filament
dynamics as well as predict an ADP-P and ATP cap and maximal length fluctua-
tions just above the critical concentration, although not as large as experimentally
observed.

The stochastic nature of the process is well captured in particle-based models
like a Brownian Dynamics approach. In a series of papers Guo et al. [111, 112, 113]
established such a BD scheme which models an actin monomer by three connected
BD particles and speeds up the reactions by rescaling the reaction rates. This
model also incorporated ATP-hydrolisis. The basic equation of the BD scheme is

ri(t+∆t) = ri(t) +
∆t

kBT

∑
j

Dij · Fij +Ri(∆t), (3.4)

where ri is the position of the particle, ∆t the time step, kBT the Boltzmann
constant multiplied by the temperature and Fij the force tensor due to inter-
particle potentials. The diffusion tensor Dij reduces to

Dij =
kBT

6πηrparticle
δij (3.5)

without hydrodynamic interactions. The random displacement Ri(∆t) has mean
⟨Ri(∆t)⟩ = 0 and ⟨Ri(∆t) · Rj(∆t)⟩ = 6Dij∆t. A soft-core potential is used
between free monomers. Reactions take place when monomers enter a capture
zone at the end of the tetramer which is a conical cut from a sphere with internal
angle 60◦. Reaction rates can then be tuned by varying the size of this capture
zone. Additionally, all particles get a flag for their type (T,D,P), corresponding
to ATP-actin, ADP-actin and ADP-actin plus bound phosphate. The simulation
reproduces most features of the experimental data but length fluctuations near the
critical concentration are not as large as in experiments.

Capping Proteins

The RBC uses the the capping proteins tropomodulin and adducin as well as
the actin binding protein tropomyosin in order to control filament length. These
proteins associate to the actin filaments and prevent further polymerization. The
highly conserved length of 35 nm is thought to be dictated through tropomyosin.
Tropomyosin is a rod like protein that binds 6-7 actin monomers. With its length
of 34 nm it is thought to act as a molecular ruler in the actin junctions, with one
tropomyosin binding to each actin strand.

Polymerizaiton stops at the length of tropomyosin because tropomodulin asso-
ciates to the pointed end of actin filaments better in presence of tropomyosin
(KD < 1 nM) [114]. In absence of tropomyosin the affinity is much smaller
(KD ≈ 0.3 µM) [115]. Adducin (KD ≈ 100 nM) caps the barbed end of actin fil-
aments and recruits additional spectrin filaments to the junctional complex [116],



Details on Malaria Induced Changes 61

such that more spectrins are recruited to the fast growing side of the filament [117].
When comparing these dissociation constants, we observe that adducin has a much
larger dissociation constant than tropomodulin (with tropomyosin present). This
means that adducin is less strongly bound.

3.3 Details on Malaria Induced Changes

The malaria parasite uses the RBC to hide inside the body and to replicate. In
order to do so, it consumes haemoglobin and alters the properties of the membrane
by exporting proteins [24]. The consumption of haemoglobin generates toxic re-
active oxygen species and free heme which is known to destabilize the membrane
(compareable to the situation in sickle cells) by interacting with the cytoskeleton.
The parasite needs to prevent premature rupture but also uses host actin to trans-
port proteins to the membrane such that adhesion complexes can be formed. In
HbAS and HbAC cells the remodelling process seems to be less efficient such that
these cells are less adhesive and lead to less severe symptoms. One reason might
be the increased level of hemichromes [118] which alter the cytoskeletal interac-
tions. However, it is unclear, which parts of the parasite’s remodelling process are
most affected by the haemoglobin variants. A detailed review about the malaria
induced changes inside the RBC can be found in Ref. [17].

3.3.1 Knob Associated Histidine Rich Protein

An important parasite exported protein is the knob associated histidine rich pro-
tein (KAHRP) (80-108 kDa [119]) which is essential to form knobs on the RBC
surface [120]. The N-terminal half of the protein is called K1 and is the the
histidine-rich part. Then there is a lysine rich region termed K2 and the C-
terminal repeat region is called K3 [121]. Overall, KAHRP is a highly disordered
protein, such that it can bind to many different sites of the RBC cytoskeleton.

The parasite starts synthesizing KAHRP in the mid ring stage and then ex-
ports it into the RBC cytosol. Hence, the protein reaches the membrane through
diffusion and then binds to various locations within the spectrin-actin network, as
I will exlain in the following paragraphs. This attachment of KAHRP to the cy-
toskeleton leads to a drastic stiffening of the membrane [24]. Since the RBC gains
its flexibility through the spectrin network this means that KAHRP somehow in-
teracts with the spectrin filaments. However, its main purpose seems to be the
formation of protrusions, termed knobs, on the RBC surface. It was shown that
after the disruption of the KAHRP gene, knobs do not form properly and the cy-
toadhesion of the infected cells is reduced dramatically under flow conditions [122].
With immunoelectron microscopy it was found, that KAHRP can cluster at actin
junctions and also attach along the cytoskeleton [123]. It is also believed that
KAHRP forms the electron dense layer just below the bilayer in knob areas but
the exact structure of the knobs and where exactly KAHRP binds to form knobs is
still unclear. People have tried to solve this question by determining dissociation
constants of the binding processes between different protein fragments which are
summarized hereafter.
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First of all, it has been observed that KAHRP self-associates into clusters
similar to the size of knobs (≈ 100 nm diameter). These clusters have also been
shown to bind to the spectrin-actin-protein 4.1 junction [124, 123]. Therefore, it
might be possible, that KAHRP forms larger aggregates in the cytosol and then
attaches to the membrane. The alternative would be, that KAHRP first attaches
to the cytoskeleton and then assembles to larger structures.

The interaction between KAHRP and spectrin has been narrowed down to two
distinct interaction pairs. Pei et al. [125] found that a 72-amino-acid stretch of
KAHRP associates with repeat 4 of α spectrin and the 5-repeat region of KAHRP
binds β spectrin repeats 10-14. The second of these lies directly next to the
spectrin-ankyrin interaction site [120, 126, 127] and is strengthened through com-
plementary electric charges. Cutts et al. [127] measured dissociation constants and
conducted molecular dynamics simulations to confirm the β spectrin binding site
with a dissociation constant of kD = 50±15 µM. However, for the α spectrin bind-
ing site they obtained contradicting results. They pinpointed the bining site to
repeats 12-16 instead of repeat 4 and found this binding to be three times weaker
with a dissociation constant of kD = 160± 60 µM.

Additionally, a binding site for ankyrin was found and could be narrowed down
to a 79-residue segment on KAHRP [126]. The site on ankyrin that it binds
to was identified as the band 3 binding domain. Magowan et al. [119] found
dissociation constants for the 89 kDA membrane-binding domain (MBD) and the
43 kDa subdomain with full length KAHRP to be kD = 1.8 and kD = 1.3 µM,
respectively. Weng et al. [126] only considered the K1 domain of KAHRP but the
same ankyrin domains. Here they found dissociation constants of kD = 0.046 and
kD = 0.038 µM, respectively. It makes sense that the binding is stronger (smaller
kD) for the smaller KAHRP domain, since there are no entropic repulsion effects.

3.3.2 Plasmodium Falciparum Erythrocyte Membrane Pro-
tein 1

Another very important parasite exported protein is called plasmodium falci-
parum erythrocyte membrane protein 1 (PfEMP1) which interacts with various
ligands on epithelial cells [137] and hence mediates cytoadhesion. This 200-350
kDa transmembrane protein clusters on knobs such that it interacts more easily
with endothelial receptors to induce adherence. This clustering only happens in
the presense of KAHRP and otherwise cytoadhesion is reduced [122]. PfEMP1
is transported to the membrane in vesicles with the cytoplasmic domain pointing
outwards. This cytoplasmic domain which is the acidic terminal sequence (ATS)
of PfEMP1 is called VARC and is highly disordered (similar to KAHRP) [138].
The export is a very slow process and goes through the parasite induced Maurer’s
clefts. Transcription peaks at 12 h past invasion but the protein only reaches the
membrane 16 hours past invasion [139].

First, the binding interactions of the extracellular part of PfEMP1 to endothe-
lial receptors are discussed. These turn out to be slightly different for differ-
ent PfEMP1 variants, whereas the cytoplasmic region is highly conserved. Most
PfEMP1 variants have a binding site for CD36 which lies in the cysteine-rich in-
terdomain region [140]. Binding sites to chondroitin sulphate A (CSA) are only
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Protein 1 Protein 2 KD in µM References

Spectrin F-actin 200 Ohanian et al. 1984 [128]

Spectrin protein4.1 0.1 Tyler et al. 1980 [129]

0.1 Podgorski et al. 1985 [130]

2.0 Eder et al. 1986 [131]

0.2 Li et al. 2014 [132]

(phosphorylated) 9.6 Eder et al. 1986 [131]

Spectrin Ankyrin 0.1 Tyler et al. 1980 [129]

0.05 Bennet et al. 1980 [133]

Ankyrin Band3 0.01 Bennett et al. 1980 [133]

0.01 Thevenin et al. 1990 [134]

Spectrin Spectrin 2 Liu et al. 1981

Tropomyosin F-actin 0.4 Fowler et al. 1984 [135]

KAHRP Ankyrin (MBD) 1.8 Magowan et al. 2000 [119]

KAHRP Ankyrin (D3) 1.3 Magowan et al. 2000 [119]

KAHRP K1D Ankyrin (MBD) 0.038 Weng et al. 2014 [126]

KAHRP K1D Ankyrin (D3) 0.046 Weng et al. 2014 [126]

VARCD F-actin 0.04 Oh et al. 2000 [123]

VARCD KAHRP 0.01 Oh et al. 2000 [123]

VARC KAHRP (K1A) 0.1 Waller et al. 1999 [136]

VARC KAHRP (K2A) 3.3 Waller et al. 1999 [136]

VARC KAHRP (K2A1) 32.06 Ganguly et al. 2015 [121]

VARC KAHRP (K3) 13.0 Waller et al. 1999 [136]

Table 3.1: Dissociation constants are listed, that have been found by various groups
for different protein(fragment) pairs. The three parts of the table show interactions
of host cytoskeletal proteins, interactions with KAHRP and interactions with the
cytoplasmic domain of PfEMP1 from top to bottom.
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present in some isolates [141] and other receptors that can potentially be bound
are the intercellular adhesioin molecule 1 (ICAM-1) and thrombospondin [136].

On the cytoplasmic side PfEMP1 needs to be anchored by the VARC domain
to the RBC cytoskeleton to transmit the forces due to adhesion. Oh et al. found
very low dissociation constants in the order of magnitude of 10 nM for the bind-
ing of VARC to F-actin and KAHRP such that a direct anchorage to the host
cytoskeleton and the knob was proposed. Subsequently, a more detailed picture of
the PfEMP1 binding sites was developed.

One parasite induced binding partner is KAHRP which is thought to make
up the base of the knobs and hence can anchor PfEMP1 to knob regions. The
VARC domain can bind to KAHRP via long range electrostatic interactions [119].
Actually, there are 3 distinct KAHRP fragments (the N-terminal region of K1
and K2 termed K1A and K2A and K3) that PfEMP1 can bind to. Out of these
three, K1A and K2A have strong binding affinities, namely KD = 0.1 µM and
K2A KD = 3.3 µM, whereas K3 only binds weakly with KD = 13.0 µM [136]. The
binding to K2A is mediated via the first 291 residues of VARC [121]. Overall, the
binding of PfEMP1 to KAHRP is enhanced through the phosphorylation of the
VARC domain by the RBC casein kinase II [142].

It has further been found that VARC can bind spectrin close to the spectrin
actin junction [119, 123]. Although the core of the VARC domain interacts broadly
with spectrin, the strongest interaction could be specified to the 17th repeat of
the spectrin α-chain [127] and the C-terminus of VARC. Mayer et al. [138] found
a dissociation constant of Kd = 59± 6 µM.

Since PfEMP1 arrives in vesicles at the membrane, it is most likely that it
enters knob areas by 2d diffusion in the membrane. As we will see in Section 3.6,
there is only a small number of PfEMP1 molecules present in each knob and they
have been found to cluster towards the middle.

3.3.3 Actin Mining

When examining the internal structures of RBCs with different haemoglobin vari-
ants, Cyrklaff et al. observed long actin filaments inside the RBC cytosol [23]. The
aim of the study was to show, why some haemoglobin variants protect the host
from severe malaria pathology and they answered this question by reconstructing
cryo-electron tomogram images of rapidly frozen RBC samples. An example can
be seen in Figure 3.5 where we see an uninfected RBC on the left, an infected
HbAA RBC in the middle and an HBCC RBC on the right. The most important
features that can be seen are the yellow filaments that form for the infected RBCs.
From additional experiments it is clear, that this is host derived actin which grows
in direction of the Maurer’s clefts (cyan membrane structures).

The existance of these filaments is thought to aid transport of proteins from
the parasite to the membrane. In the figure we see how vesicles are possibly
transported along the filaments. The source of the motion could either be actin
polymerization close to the Maurer’s clefts or a molecular motor could be used.
Rug et al. found that interfering with PfEMP1 trafficking prevents proper assem-
bly of the Maurer’s clefts [143].

In Figure 3.5c we see a HbCC RBC and observe that actin filaments are a
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Figure 3.5: Reconstructed tomograms of an uninfected HbAA erythrocyte in a),
a trophozoite-infected HbAA erythrocyte in b) and a trophozoite-infected HbCC
erythrocyte in c), taken from [100]. The scale bar is 100 nm and the colours high-
light the following compartments: blue, plasma membrane; yellow, actin filaments;
red, knobs and cyan, vesicles and Maurer’s clefts.

lot shorter. An explanation might be that haemoglobin oxidation products which
are present in HBCC and HBSS erythrocytes interfere with the actin polymerisa-
tion [23].

3.3.4 Phosphorylation

Phosphorylation of proteins (the attachment of a phosphoryl group) can alter
their binding affinities dramatically. For example, phosphorylation of protein 4.1
amplifies its dissociation constant with spectrin by a factor of five (compare Ta-
ble 3.1). In the healthy RBC phosphorylation is regulated by human kinases, such
as cAMP-dependent kinase or protein kinase C [17].

Where most proteins are dephosphorylated in the early parasite life-cycle [144],
phosphorylation is increased at the end of the ring stage by parasite exported
kinases. The parasite seems to export at least 20 different kinases [145]. Hence, it
is very likely that binding affinities change during the parasite life-cycle.

An increased level of phosphorylation has been measures for protein 4.1 and
band 3 in malaria infected RBCs [146, 147]. This phosphorylation is assumed to
destabilize the membrane skeleton. The phosphorylation of KAHRP has not been
studied very well, but it could potentially change its binding properties during the
infection. For further information see the analysis of the KAHRP cluster formation
in Section 3.5.4.

3.3.5 Oxidative Stress

In order to carry oxygen through the body, the Fe(II) haemoglobin in RBCs can
bind oxygen reversibly. At the same time 3 % of haemoglobin is oxidized in
24 hours, producing superoxide [148] and further oxidation products. It has been
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found that haemoglobin oxidation products have different effects on the membrane
skeleton stability. Some stabilize the skeletons via promotion of spectrin self-
association to tetramers and others decrease the spectrin-protein 4.1-actin binding.

Whereas the oxidation products are held at a low level in healthy red blood
cells, in sickle cell disease the hemin level is increased three to five-fold. This is due
to the redox imbalance that is associated with sickle cell anemia. Furthermore, it
has been found that there is 50% less spectrin-ankyrin binding in sickle cells. The
situation is even worse in malaria infected red blood cells. The parasite consumes
haemoglobin and thus, generates toxic reactive oxygen species and free heme. To
prevent complete destruction of the red blood cell, some of this is converted to
inert hemozoin by the parasite [149].

3.4 Experimental Data

In order to determine where exactly knobs form in the RBC cytoskeleton ex-
periments were set up in which two proteins are labelled by distinct colours. The
experimental work was done by Cecilia Sanchez from Prof. Michael Lanzer’s group
at the University Clinics Heidelberg and the data analysis was done by Pintu Patra
from Prof. Ulrich Schwarz’s group.

The experiments were conducted on uninfected, ring stage infected and tropho-
zoite infected RBCs in order to see temporal changes. In each RBC two proteins
were labelled by anti-bodies such that their relative position could be determined.
The RBCs were opened up, such that the cytoplasmic side could be examined
with super-resolution microscopy. Three examples of the obtained data can be
seen in Figure 3.6, where Figure 3.6a shows labelled ankyrin and protein 4.1 in an
uninfected cell, Figure 3.6b shows ankyrin and KAHRP in a ring stage infected
RBC and in Figure 3.6c ankyrin and KAHRP are labelled in a trophozoite iRBC.

These images were then analysed by Pintu Patra’s python scripts, which de-
termine the pair cross-correlation of the two distinctly labelled proteins. The pair
cross-correlation for localization points is calculated by

C(r, r +∆r) =

∑ρ=r+∆r
ρ=r

∑nR

i=1

∑nG

j=1 δ(|ri − rj| − ρ)

π∆r(2r +∆r)η
, η =

nR × nG

Aimage

, (3.6)

where r is the distance between point pairs, ∆r the bin width of the radial bins,
ri is the position vector of a point and η gives the density of pair-wise distances
(ηR/G is the number of total red/green points). A cross-correlation of 1 indicates
a random distribution, such that for long distances all cross-correlations decay to
1. A value above 1 shows that a lot of protein pairs have the specified distance
to each other, whereas a value below 1 means that there are less proteins of the
given distance than for a random distribution.

In Figure 3.7 selected cross-correlation curves are shown for healthy RBCs in
Figure 3.7a, ring stage iRBCs in Figure 3.7b and trophozoite iRBCs in Figure 3.7c.
For the healthy RBC positive correlations can be seen for protein 4.1 with actin and
tropomodulin but not for ankyrin. This validates that the method works correctly,
since protein 4.1, actin and tropomodulin are part of the actin junctional complex
but ankyrin is not.
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a

c

b

ankyrin protein 4.1

ankyrin KAHRP

ankyrin KAHRP

Figure 3.6: Experimental data from the cross-correlation study done in
Prof. Lanzer’s Lab is shown. Two colour channels, red and green, were observed
as shown in each row. a) Antibodies associated to ankyrin and protein 4.1 are
labelled in an uninfected RBC. b) Ankyrin and KAHRP are labelled in a ring
iRBC. c) Ankyrin and KAHRP are labelled in a trophozoite iRBC.
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Figure 3.7: The analyis of the experimental data from the cross-correlation study
done in Prof. Lanzer’s Lab is shown. The data analysis was done by Pintu Patra.
The calculated cross-correlations are shown for a) the uninfected RBC, b) the ring
iRBC and c) the trophozoite RBC. Each curve is the average of approximately 30
images.
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For the iRBCs, two different tags for KAHRP were used and tested by corre-
lating one of these with the other. As expected a very high correlation is found
for small distances. In ring stage positive correlations were also found for KAHRP
with adducin, which is one of the actin capping proteins, and ankyrin. Hence, we
conclude that KAHRP attaches all along the cytoskeleton during ring stage.

In trophozoite stage adducin and other actin junctional proteins also show a
positive correlation with KAHRP at small distances, but ankyrin starts with a
value below 1 which indicates that KAHRP is not near the ankyrin sites during
this infection stage.

Overall, this study seems to suggest, that KAHRP first binds to all its possible
binding sites during ring stage but later moves away from the ankyrin sites. The
binding interactions of KAHRP with the cytoskeleton were explained in the last
section and were shown to exist both close to the actin junction and the ankyrin
site. It remains unclear which mechanism is responsible for this configuration
change. I try to find an explanation by applying a reaction-diffusion model to the
RBC cytoskeleton in the next section.

3.5 Reaction-Diffusion Model for Healthy and

Infected RBCs

3.5.1 Modelling Technique and Software

Reactive Brownian Dynamics

A convenient way to model the RBC cytoskeleton seems to be a reactive Brow-
nian dynamics approach where particles are represented as solid spheres. In this
type of model, the particles diffuse through the reaction volume using a Brownian
dynamics scheme and can additionally react with each other once they are close
enough and specific conditions are fulfilled. On top of this, inter-particle poten-
tials can be introduced, such that particles can repel each other form a chain of
a given persistence length. Two reviews on such algorithms can be found in [150]
and [151].

When reactions take place in solution, the molecules have to find each other
through diffusive motion before the reaction can take place. Hence, several rates
are important, the rate for forming the reactive complex within a solvent cage, k1,
the rate for disassembly of this complex, k−1 and the rate of reaction, k2. The
reactive complex has a typical lifetime of 100 ps [152].

Because of these two different processes, two limits can be considered; the
diffusion-controlled limit and the reaction controlled limit. In the diffusion con-
trolled limit (k2 ≫ k±1) the reaction is determined by the formation of the reactive
complex with reaction rate k1. In the reaction-controlled limit an equilibrium be-

tween reactive complexes and single molecules builds up
C{AB}
CACB

= K = k1
k−1

, so that

the overall reaction rate is given by k2K (C denotes concentrations of the different
species A, B or AB).
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ReaDDy

The simulation software that we will use is called ReaDDy and was developed
by the group of Prof. Frank Noé. ReaDDy models the movement of particles
with generalized Langevin dynamics in the overdamped limit, where interaction
potentials are incorporated naturally. Before particles can react, an encounter
complex has to be formed and then the reaction happens with a specified activation
rate.

The rate at which an encounter complex is formed is given by the Smoluchowski
equation:

kenc = 4π(D1 +D2)(ri,1 + ri,2), (3.7)

where Di the diffusion constant of particle i and ri is the reaction radius of the
particle. This radius can be different from the collision radius rc of each parti-
cle, which determines the particles spacial extend via a repulsion potential. The
macroscopic and microscopic on-rates (k+ and k+

micro) are related by the following
equation:

k+ = 4π(D1 +D2)

⎡⎣R12 −

√
D1 +D2

k+
micro

tanh

⎛⎝R12

√
k+
micro

D1 +D2

⎞⎠⎤⎦ . (3.8)

All reactions are set up in a way that ensures detailed balance which is impor-
tant to reproduce the right equilibrium properties. Since 2018 it is also possible to
model membranes in ReaDDy which might be beneficial to us in the future. For
initial steps it is sufficient to constrain the cytoskeleton to a 2D plane.

Previous RBC Modelling Approaches

The RBC membrane has been modelled on several scales by various methods.
When doing so, a compromise has to be found between including molecular detail
and reaching a reasonable system size for the relevant problem. Therefore, models
either consider a small membrane patch with a few junctional complexes or the
RBC as a whole, where molecular detail is lost. These large scale models are
usually more easily comparable to experimental data.

On the small scale there is two main modelling approaches. In the so called
coarse grained molecular dynamics (CGMD) model, all agents are modelled as
spherical particles that interact via potentials. Typically, the membrane consists
of a one agent thick layer with specific potentials that insure the correct membrane
mechanics. Spectrin filaments are then modelled as chains of particles that are con-
nected with unbreakable springs and connect at actin junctions which consist of
one slightly larger particle [18]. The actin junctions are constrained to stay within
the bilayer but can freely diffuse. This kind of model has been altered to incorpo-
rate effects like dissociation between actin and spectrin [153] and strengthening of
the network by the formation of spectrin octamers instead of tetramers [154].

On an even smaller scale the dynamics of a fixed length actin filament has
been considered by modelling it as a cylindrical rod. After calculating forces and
torques on it, an average angular orientation could be determined and the question
of how the spectrin filaments are attached could be discussed [155]. This model is
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limited to a very small number of junctional complexes.

For whole RBC simulations, the membrane is usually depicted as a triangular
surface, each representing a rather large patch of membrane. The hydrodynam-
ics of the surrounding liquids is then simulated by dissipative particle dynamics
(DPD) [156] or mulit-particle collision dynamics (MPCD) [157]. In a different ap-
proach it is also possible to consider the spectrin filaments as a triangular network
and extract elastic constants via an effective medium theory [79]. Although these
models can capture the RBC properties very well, they do not tell much about the
molecular details that lead to the behaviour.

3.5.2 Model Details

The key to modelling the right cytoskeletal behaviour is choosing all rates and
parameters in an appropriate way. Here, we try to extract as many parameters
as possible from previous experiments and choose the rest according to successful
previous modelling approaches. For the simulations of the malaria infected cells,
very little is known about the exact interactions, thus a wide range of parameters
is probed in that case.

Model Elements

In the presented RBC model, the following constituents are incorporated:

• G-actin monomers:
The monomers diffuse in the cytosol and can react with actin filament ends.

• actin filaments:
Actin filaments are implemented with two distinct ends (corresponding to
barbed and pointed) and can react with G-actin according to the rates ex-
plained hereafter.

• actin capping proteins:
Two types of capping proteins are introduced corresponding to adducin and
tropomodulin. These can bind to one actin filament end each and block
polymerization.

• spectrin filaments:
These consist of 39 beads and can bind to actin filaments with their end
beads such that a cytoskeletal network can be formed.

• KAHRP monomers:
The KAHRP monomers diffuse in the cytosol and can bind to spectrin and
actin filaments as described in the next section.

The two filament types are implemented in ReaDDy as so-called topologies. These
behave as one entity with specific potentials between its constituents (see Inter-
Particle Potentials). In the case of actin the polymerization is included as topology
reaction.
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Rates

First, reaction rates need to be set correctly to model actin dynamics. The rates
that are accessible in experiments are called macroscopic and can be extracted
from the elongation rate ω of a filament under constant G-actin concentration C:

ω = k+C − k−, (3.9)

where k+ and k− are the association and dissociation rates, respectively. The
addition of monomers depends on the concentration whereas the dissociation is
independent. Therefore, we introduce a microscopic rate k+

micro which decouples the
reaction from the diffusion such that the microscopic and macroscopic association
rates are related as follows:

k+ = 4π(D1 +D2)

⎡⎣R12 −

√
D1 +D2

k+
micro

tanh

⎛⎝R12

√
k+
micro

D1 +D2

⎞⎠⎤⎦ , (3.10)

where Di are the diffusion constants of the two interacting particles and R12 is
the sum of the two reaction radii. Hence, the microscopic rate which needs to be
known as simulation input can be determined from the macroscopic rate using this
equation.

Fujiwara et al. [158] used fluorescence microscopy to determine the macroscopic
rates of actin assembly with a special focus on the presence of phosphate, which
we neglect here. Their rates are commonly used as reference when considering
actin polymerization:

k+
b = 11.6 µM−1s−1

k+
p = 1.3 µM−1s−1

k−
b = 1.4 s−1 = 1.4 · 10−9 ns−1

k−
p = 0.8 s−1 = 8 · 10−10 ns−1.

The subscripts indicate the barbed or pointed end and we see that both association
and dissociation rates are larger at the barbed end.

By comparing diffusion and reaction time scales it can be seen that there is a
mismatch in time scales. The time scale set by actin rates is given by:

tdiss =
1

k−
b

= 0.7 s. (3.11)

For the diffusion timescale tdiff , we consider the time a G-actin particle needs to
diffuse its own size r0 = 3 nm. The simulation time step ∆t needs to be chosen as
a fraction of this time, we choose ∆t = 10−3 tdiff . Hence, we find

DGactin = 71.5 µm2 s−1 → tdiff =
r20

DGactin

= 350 ns, (3.12)
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∆t = 10−3tdiff = 0.35 ns (3.13)

and see that only approximately every 109 time steps a dissociation event would
occur which is not practical in a simulation.

Hence, we introduce a factor b that speeds up the elongation rate, as introduced
in [111] and indicate the scaled rates by a hat symbol:

ω̂ = bω = b(k+C + k−) = k̂−Ĉ + k̂−. (3.14)

Therefore, we find

k̂+ = k+bk, Ĉ =
b

bk
C and k̂− = bk− (3.15)

and choose b = 1000 and bk = 25 according to [111]. This leads to the following
macroscopic and microscopic rates (Ĉ = 40C):

k̂+
b = 289.5 µM−1s−1 = 0.4825 µm3 s−1 k̂+

b,micro = 563521 s−1

k̂+
p = 32.55 µM−1s−1 = 0.05425 µm3 s−1 k̂+

p,micro = 60323 s−1

k̂−
b = 1400 s−1 = 1.4 · 10−6 ns−1 k̂−

b,micro = 1400 s−1

k̂−
p = 800 s−1 = 8 · 10−7 ns−1 k̂−

p,micro = 800 s−1.

The deterministic equation for actin filament growth is given by

dL

dt
= (k̂+

b + k̂+
p )Ĉ − (k̂−

b + k̂−
p ), (3.16)

where L is the filament length. By setting the elongation rate to zero, we can
calculate the critical concentration for treadmilling:

ĈD =
k̂−
b + k̂−

p

k̂+
b + k̂+

p

. (3.17)

Substituting in the scaled actin rates, we find

ĈD =
1400 + 800

0.05425 + 0.4825
µm−3

= 4098 µm−3 = 4.098 · 10−6 nm−3.

Keeping the Particle Concentration Fixed

When studying polymer growth or processes in cell-like environments, it is useful
to be able to keep the concentration of the diffusing monomers A at a constant
level. However, the simulation software does not allow to manually adjust the
number of monomers A after every reaction event, such that a different approach
needs to be chosen. I do this here by introducing another species of particles N
that do not interact with the system except of producing and absorbing monomers
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of the relevant particle species:

N ⇌ N + A, (3.18)

where the rate for creating an A particle is kc and the rate of absorbing an A parti-
cle is ka. By tuning the rates correctly, the average value of the concentration can
be set under some conditions. A relation between the rates and the concentration
can be found by applying the law of mass action:

K =
[N ]eq[A]eq

[A]eq
= [A]eq =

kc
ka

. (3.19)

Sine the absorption depends on the diffusive formation of an encounter complex,
the rates kc and ka are related to the microscopic rates fc and fa as follows:

kc = fc

ka = 4πDR

⎛⎝1−

√
D

fa

tanh(R
√

fa
D
)

R

⎞⎠ .

When putting these formulas together, we find the following relation, that enables
us to calculate fc from the concentration and the previously chosen microscopic
absorption rate fa:

fc = [A]eq4πDR

⎛⎝1−

√
D

fa

tanh(R
√

fa
D
)

R

⎞⎠ . (3.20)

Note that this result is only valid in the
√

fa
D
R ≪ 1 regime.

As the next step we want to keep the concentration stable while an actin
filament growth in the box. In that case, we additionally need to take into account
the attachment and detachment from the actin filament ends:

N ⇌ N + A (3.21)

F b ⇌ F b + A (3.22)

F p ⇌ F p + A, (3.23)

where F is the assembling filament with a barbed and a pointed end. These
reactions lead to the following continuum differential equation:

d[A]

dt
= [N ]kc − [N ][A]ka − [F ][A](k−

b + k−
p ) + [F ](k+

b + k+
p ). (3.24)

Setting this to zero and hence obtaining the equilibrium condition for A, we find
an expression for fc:

fc = [A]eqka +
[F ][A]eq
[N ]

(k−
p + k−

b )−
[F ]

[N ]
(k+

b + k+
p ). (3.25)
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Note that the k+ rates are macroscopic and need to be specified further by intro-
ducing the microscopic rates.

Particle Size and Diffusion

In ReaDDy each particle is defined by a reaction radius ri and a collision radius rc.
The first one defines the sphere around the particle, in which it can react with other
particles. The collision radius represents the extend of the particle itself so that it
enters the formula for the particle-particle potentials.

The diffusion constants for each particle type also need to be known. In the
framework of ReaDDy the diffusion is assumed to be isotropic. In general proteins
will have directionally dependent diffusion properties but this is not important for
the problem considered here and is hence neglected. If a value for the diffusion
constant has been measured experimentally, this value is used. Otherwise, it can
be approximated by the following formula for the diffusion of a spherical particle:

D =
kBT

6πηr
, (3.26)

where kB is the Boltzmann constant, T the temperature, eta the fluid viscosity
(assumed to be the viscosity of water here) and r is the particle radius. The values,
that are used in the simulations, are shown in Table 3.2.

Anchoring to the Bilayer

The lipid bilayer is neglected in this study because we would like to focus on the
properties of the cytoskeleton. However, the confinement to the membrane plane
is still important. In the RBC, the cytoskeleton is attached to the bilayer via
transmembrane proteins, with band-3 being the most abundant. The parts of the
cytoskeleton, that are anchored to the bilayer are the actin junctional complexes
and the ankyrin binding sites (roughly in the middle of the spectrin filaments).
It has further been found, that actin filament are oriented nearly parallelly to
the bilayer. Therefore, all beads that are part of actin filament and the ankyrin
binding sites within spectrin are confined to a 4 nm thick layer centred 10 nm
above the wall of the simulation box which indicates the position of the bilayer.

Additional to the spacial confinement the anchoring reduces the diffusion of the
attached proteins. Since band-3 is the most common anchor, its diffusion constant
is used for the anchored beads such that the structures diffuse more slowly in the
membrane plane than in free 3D space.

The diffusion constant of band-3 within the membrane has been measured to be
D = 0.53 µm2 s−1 [159] on the small scale. When looking at larger displacements,
the cytoskeleton hinders the free diffusion of band-3. Therefore, the diffusion
constant of the anchored particles is set to D = 0.53 µm2 s−1.

Inter-Particle Potentials

Furthermore, the inter-particle potentials need to be tuned. We distinguish be-
tween free particles and particles topologies. In Ref. [153] Li et al. introduce a
computational model for spectrin filaments which we implement similarly in our
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simulations. Specifically, in our simulations spectrin binds to actin via a Lennard-
Johns potential

V (r) = − ϵ(
σ

rmin

)12
−
(

σ
rmin

)6 [(σr )12 − (σr )6
]
, (3.27)

which is shifted to −ϵ at the bottom of the well (at position rmin). As in Ref. [153],
we choose ϵ = 58.576 kJmol−1 and σ = 7.36 nm. For the association of spectrin
with actin in the presence of protein 4.1 association energies up to 70 kJmol−1

have been calculated [128]. Further, excluded volume effects are included by a
repulsion potential

V (r) =
krepulsion

2
(r − r0)

2, (3.28)

with
krepulsion = 36 · 22/3ϵσ−2. (3.29)

When considering the two filament types that are present, actin and spectrin, angle
and bond potentials are used to tune the filament properties. The angle potential

V (θ) = kangle(θ − π)2 (3.30)

is proportional to kangle which is determined by the filament persistence length lp:

kangle =
lpkBT

a
, (3.31)

where a is the monomer size which roughly corresponds to the particle diameter.
The bond potential is given by

V (d) = kbond(d− d0)
2 (3.32)

and the bond force is chosen to have the same curvature at the bottom of the well
as the spectrin-spectrin repulsion curve:

kbond = 36 · 22/3ϵσ−2. (3.33)

A summary of the values can be seen in Table 3.3 and Table 3.4 and the potentials
as a function of separation can be seen in Figure 3.8.

Incorporation of KAHRP

In order to simulate effects of the malaria infection, particles are introduced that
have the properties of the malaria exported protein KAHRP. Their size and dif-
fusion constant is given by rc = ri = 2.8 nm and D = 76.6 µms−1, respectively,
as indicated in Table 3.2. In Section 3.3 we saw, that KAHRP can self-associate,
can bind spectrin at different locations and also bind to the actin junction. These
binding interactions are modelled by Lennard-Johns potentials, as described in the
subsection about inter-particle potentials.

Here, we implement the binding sites described in Ref. [125], which are the
4th repeat of the α-spectrin chain and the 10th to the 13th repeats of the β-
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Figure 3.8: Inter-particle potentials are shown which are used in the simulation.
In the left graph the interactions of cytoskeletal proteins are plotted where the
right graph concernes the interactions with the KAHRP particles.

particle type rc in nm ri in nm D in µm2

s

G-actin 3 3 71.5a

adducin 4.2b 4.2 51.07

tropomodulin 7.25 7.25 29.59

spectrin monomer 5.26 5.26 41.1

KAHRP 2.8 2.8 76.6

Table 3.2: Values used for collision radius, the reaction radius and the diffusion
constant in my simulations. a is taken from [160] and b is taken from [161].

kangle in
kJ
mol

kbond in kJ
mol nm2 persistence length in nm

actin 4280 10 10000

spectrin 4.28 38.11 10 taken from [79]

Table 3.3: Parameters for the bond and angle potentials of actin and spectrin
filaments.

krepulsion in kJ
mol nm2 actin spectrin adducin tropomodulin

actin 10 38.11 10 10

spectrin 38.11 38.11 38.11

adducin 10 10

tropomodulin 10

Table 3.4: Parameters for repulsive potentials between actin, spectrin, adducin
and tropomodulin.



78 Molecular Red Blood Cell Cytoskeleton Model

Figure 3.9: To set up the spectrin filament in the simulations, the molecular details
and known binding sites are considered (top). In analogy to the number of spectrin
repeats, a chain of 39 beads is set up in the simulations (bottom). Red particles
indicate the ankyrin binding site and are therefore confined to the membrane
plane. Their position is randomly chosen left or right of the midpoint. Blue beads
model the KAHRP binding sites building on interactions that have been proven
experimentally.

spectrin chain. These sites are labelled blue in the spectrin schematic at the top in
Figure 3.9. Here it can also be seen, that these sites lie very close to the ankyrin
binding sites labelled in red. As described above, the spectrin tetramer is modelled
as a chain of 39 beads (compare bottom in Figure 3.9). Complementary to the
schematic of the spectrin tetramer, 10 beads of the spectrin chain are chosen to
interact with KAHRP (beads 10 to 13, bead 17, bead 21 and beads 25 to 28
as shown in Figure 3.9). The two beads coloured in red (ankyrin binding sites)
are confined to the membrane plane. The two end beads of the spectrin chain
(coloured black) can bind to the actin junction as explained previously.

To implement the binding to actin, KAHRP can interact with any actin bead
in an actin filament and all KAHRP particles can interact with each other to
self-associate.

3.5.3 Model Results

Achieving a Constant Concentration in ReaDDy

To test the method that was explained in the last section, we set up a periodic
box of size 30 × 30 × 400 nm3. We further introduce G-actin particles which
have a diffusion constant of DGactin = 10 µm2 s−1 and a proposed concentration of
177777 µm−3 which corresponds to 64 particles in the box. As described above,
N-particles (with DN = DGactin) are introduced which can produce and absorb
G-actin. As can be seen in Figure 3.10a, this reaction manages to keep the con-
centration relatively stable close to the desired concentration of 64 particles per
box for f− < 0.0005 ns−1. See two examples for the time evolution of the particle
numbers in Figure 3.10b and c.

These simulations show which value should be chosen for fa. On the one hand
the value should be as large as possible such that the concentration equilibrates
more quickly (see Figure 3.10c compared to Figure 3.10b), but on the other hand
the theoretical description breaks down for fa too large (see Figure 3.10a). Hence,
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b

c

a

Figure 3.10: a) The mean G-actin number is plotted for different fa rates and
N-particle numbers as indicated in the legend. Each point corresponds to one
simulation. The black line shows the calculated concentration of 64 particles per
box (corresponding to a concentration of 177777 µm−3). b and c) The amount of
each particle species is shown as the time course of one simulation. b) shows a
simulation with 100 N-particles and an absorption rate of fa = 0.00001 ns−1. c)
The absorption rate fa is ten times larger and the rate fc is changed according to
equation (3.20).
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we see that the optimal value lies around fa = 0.0001 ns−1. We further find that
the number of N-particles is not so important in the suitable range for fa. To see
effects of the particle number it would have to be decreased even more.

Now, we add reactions that simulate growth of F-actin (λ+
b = 5.64 · 10−4 ns−1,

λ+
p = 6.03 ·10−5 ns−1, λ−

b = 1.4 ·10−6 ns−1 and λ−
p = 8 ·10−7 ns−1) to the previously

described system. This enables us to look at growth of F-actin under a constant
G-actin concentration. As the F-actin filament growth, the N-particles need to
produce enough G-actin to keep the concentration at a constant level.

We now vary the number of N-particles (from 50 to 200) and the absorption
rate fa (from 10−5 ns−1 to 10−3 ns−1) to see the effects on the G-actin concentra-
tion. The results can be seen in Figure 3.11. As observed previously, the desired
concentration is kept for fa < 0.0005 (Figure 3.11a). In Figure 3.11b and c the
constant elongation rate of the actin filament can be seen, as predicted under
constant concentration.

For fa = 0.00001, 50 N-particles do not seem to be enough but this effect
disappears for larger rates. We find an optimal value around fa = 0.0001 ns−1.
Note that the concentration adapts very quickly to the actin filament growth which
takes away monomers.

The growth rate in the simulations is 0.2879±0.0099 mms−1 (determined from
15 runs). This is a factor of 2 smaller than the analytically calculated value of

dL

dt
=

[
(0.4825

µm3

s
+ 0.05425

µm3

s
)× 177777

1

µm3 − 1400
1

s
− 800

1

s

]
× 6 nm

= 0.559
mm

s
.

One reason why the growth rate could be reduced is the reduced diffusion of the
assembled filament which is not accounted for in the calculation of the macroscopic
rates or the N-particle reactions.

Controlling Filament Length

In the RBC cytoskeleton the actin filaments are held at a relatively constant
length of 35 nm. In this section the different mechanisms for length control are
examined. Actin is found to fulfil may different functions inside cells depending
on its environment, it can form branched networks or enable the cell to move by
polymerization.

First, we would like to see how well we can control single filament length by
fixing the overall G-actin concentration. In principle there is a specific concen-
tration for which the filament elongation is zero, hence the addition of monomers
at the barbed end is balanced by the release of particles at the plus end. This
treadmilling concentration is calculated to be Ctread = 4098 µm−3. To examine the
filament behaviour, simulations were set up at seven different concentrations. As
explained above, the reactions with the additional particle species N control the
G-actin concentration. From the reaction rates used in the simulation, the analyti-
cal concentration Canalytic can be calculated. However, the measured concentration
value fluctuates around a mean value of Csimulation as shown in Table 3.5.



Reaction-Diffusion Model for Healthy and Infected RBCs 81

b

a

c

Figure 3.11: a) The mean G-actin number is plotted for different fa rates and
N-particle numbers as indicated in the legend. Each point corresponds to one
simulation. The black line shows the calculated concentration of 64 particles per
box (corresponding to a concentration of 177777 µm−3). b and c) The amount of
each particles species is shown as the time course of one simulation. b) shows a
simulation with 100 N-particles, an absorption rate of fa = 0.00001 ns−1 and the
actin on and off rates as described in Section 3.5.2. c) The absorption rate fa is
ten times larger and the rate fc is changed according to equation (3.20).

Canalytic in µm−3 Csimulation in µm−3

2778 2253± 0.24

3427 3128± 0.29

4167 3813± 0.27

4861 4618± 0.33

5556 5162± 0.34

6250 5923± 0.36

6944 6598± 0.37

Table 3.5: The analytically calculated concentrations are compared to the ones
extracted from the simulations.
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a

b

c d

Figure 3.12: a) Five filaments are set up to grow in a simulation box while keeping
the concentration of G-actin at a fixed calculated value of C = 6944 µm−3. The
graph shows the number of G-actin monomers in blue and the overall number of
monomers in filaments in orange. The predicted number of G-actin is indicated
by the black line. b) The average filament length is plotted for each simulated
concentration with the error bars showing the standard error of the mean. The
concentration in the legend is the theoretically predicted concentration. c and d)
Trajectories of individual filaments over the whole simulation time period. The
concentration was fixed at 2778 µm−3 in c) and at 6944 µm−3 in d).
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a

b c

Figure 3.13: a) Average filament length is plotted for different numbers of capping
proteins present. The G-actin concentration is kept constant at C = 6944µm−3

and the error bars show the standard error of the mean. b) and c) The lengths of
the five individual filaments are plotted against time for 100 capping proteins in
b) and 20 capping proteins in c).

An example for the G-actin number over the whole simulation period is shown
in Figure 3.12a by the blue data points. The orange line shows the overall number
of actin bound to filaments. In Figure 3.12b the average filament length is com-
pared for all seven concentrations. Where the overall filament length grows in most
simulations, it stays approximately constant for the two smallest concentrations.
Hence, the treadmilling concentration is predicted to be close to ≈ 3000 µm−3

which is a factor of 1.37 smaller than the calculated value. This plot also shows
that the average filament length has quite a large error which comes from the
deviation of single filaments within one run. To explain this further, individual
filament trajectories were plotted in Figure 3.12c for Canalytic = 2778 µm−3 in the
top graph and Canalytic = 6944 µm−3 in the bottom graph. Here it becomes clear
that single filaments can have quite a different length, whereas the overall number
of bound G-actin is more stable.

In the RBC actin dynamics is mainly controlled through the capping proteins
tropomodulin and adducin as explained in Section 3.2. Tropomodulin binds better
if tropomyosin is also attached to the actin filament and in this case the dissociation
constant has been measured to be smaller than 1 nM. Adducin, which binds the
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KD

40
KD D k− kmac.

+ kmic.
+

in nM in nM in µm2 s−1 in s−1 in µm3 s−1 in s−1

adducin 100.7 4026 51.07 8000 3.3 7.0 · 107

tropomodulin 1 40 29.59 53 2.2 1.0 · 109

Table 3.6: Rates used in the capping protein simulations.

barbed end, has a much larger dissociation constant, which has been measured to
be 100 nM.

We choose the capping protein rates as given in Table 3.6. If a capping pro-
tein is attached in the simulation, the dynamics at this end is completely blocked
until the protein dissociates again. Hence, the addition of more capping proteins
will slow down the polymerisation as compared to the case discussed above. The
largest concentration C = 6944 µm−3 from the simulations without capping pro-
teins was taken and a varying number of capping proteins was inserted into the
simulation box (20, 40, 60, 80 and 100). The results of these runs are summarized
in Figure 3.13a where the average filament length is shown as a function of time.
Without capping proteins, the average filament length grew up to 26 in 0.02 s,
whereas the capped filaments reach a length between 17 and 22, where more cap-
ping proteins lead to a slower growth. The individual trajectories are shown in
Figure 3.13b and c where one can also see plateaus in for limited temporal periods
which is an effect of the capping proteins.

Although we saw that the average filament length can be controlled reasonably
well, the individual filament lengths fluctuate quite dramatically. This was also
tested at the treadmilling concentration and while the average filament length is
fixed, the individual filaments fluctuate in length dramatically (results shown in
Appendix D.3). This is due to the effect that has been described by Mohapa-
tra et al. [162]. They found that many filament growing at the same time cannot
be controlled by concentration because one filament might take up the monomers
of the other without changing the concentration of free monomers. Previously it
had been claimed, that organelle size can be controlled by the so-called limiting
pool mechanism [163]. However, this only applies to the case of one filament. In
the RBC other proteins, like tropomyosin, are used to stabilize the size.

Network Structure and Properties

As the next step, simulations of a small patch of RBC cytoskeleton were set up
incorporating the following elements: randomly oriented short actin filaments (yel-
low beads in Figure 3.14) that are free to grow/shrink and diffuse in the membrane
plane, capping proteins that inhibit this dynamics (purple and green), freely dif-
fusing G-actin monomers (light grey) and spectrin filaments (cyan and blue beads)
that bind actin with their end beads (white). The actin filaments and the ankyrin
binding sites (red beads) of spectrin are confined to a 4 nm thick plane 10 nm
above the bottom of the simulation box. In the real RBC this distance comes
from the spacial extend of the anchoring proteins. We set up a perfect hexagonal
array (as in Figure 3.14a) with spacial extension 140 × 242.48 nm2 and run the
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a b

Figure 3.14: Snapshots from a simulation modelling KAHRP cluster formation in
the cytosol and the RBC cytoskeleton. Grey beads represent KAHRP particles,
spectrin filaments contain cyan, blue and red beads, actin filament units are shown
in yellow and the other colours represent actin capping proteins. The images show
the starting configuration looking from a) below and b) the side.

a b

Figure 3.15: a) A snapshot (in side view) from a simulation of the cytoskeletal
network. The thickness of the cytoskeletal network is defined as the maximal
extend out of the membrane plane (y-direction). Grey beads represent KAHRP
particles, spectrin filaments contain cyan, blue and red beads, actin filament units
are shown in yellow and the other colours represent actin capping proteins. b) The
membrane thickness is plotted for four independent simulations over the whole
simulation period each.
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ϵk−k ϵk−sp ϵk−a

all equal ϵ ϵ ϵ
weak self-assocition ϵ 2.0 ϵ 2.0 ϵ
strong self-association ϵ 0.5 ϵ 0.5 ϵ
strong actin-association ϵ ϵ 2.0 ϵ

Table 3.7: The interaction energies of the four different simulation types are given
in terms of the overall energy scale ϵ.

simulation for 0.26 ms using a timestep of ∆t = 0.01 ns. The timestep cannot be
chosen any larger because of the strong potentials that keep the spherical beads
in place.

First, the height of the network can be determined by finding the maximal
thickness at each timestep. The network thickness is plotted for 4 independent
runs in Figure 3.15. We see that the system needs some time to equilibrate,
such that the thickness grows for 0.06 ms and then fluctuates about a mean of
54.21nm with a standard error of the mean given by 0.03 nm as calculated from 4
independent runs.

Effects of KAHRP on Cytoskeletal Network

To examine the effects of a malaria infection on the RBC cytoskeleton a new par-
ticle was incorporated that mimics the binding interactions of the malaria parasite
exported protein KAHRP. This protein is known to bind to many cytoskeletal
components and itself as discussed in Section 3.3. The aim of these simulations
is the examination of KAHRP cluster formation as this protein is known to self-
assemble in solution and attach to the RBC cytoskeleton. To do so, the interaction
strength between KAHRP and KAHRP/spectrin/actin is varied and the effect on
the cluster size and position is studied. It is of special interest to know where these
clusters form since they develop into adhesion mediating knobs in the iRBC.

As basis a hexagonal array of spectrin and actin filaments is set up as discussed
before. The actin dynamics do not play such an important role at the timescale of
KAHRP assembly discussed here. However, for the time scale set by the parasite
life time the actin dynamics will play a role and should be examined in a further
study. Since KAHRP reaches the membrane via diffusion through the cytosol in the
iRBC, the simulations start with 200 KAHRP particles uniformly distributed in the
free space starting 30 nm above the membrane plane as can be seen in Figure 3.14b.
The binding interactions of KAHRP particles are modelled by a Lennard-Johns
potential with potential depth ϵ as discussed in Section 3.5.2. Hence, there are 3
parameters that are varied: the interaction energy of KAHRP with KAHRP ϵk−k,
the interaction energy of KAHRP with the binding sites on the spectrin filaments
ϵk−sp and the interaction energy of KAHRP with the actin particles ϵk−a. The
value of ϵ is varied from 0.1 kBT to 20 kBT and four cases are examined as shown
in Table 3.7; the case of all interactions equal, a weak self-association, a strong
self-association and a strong actin-association.

The simulation data (two independent runs) was used to determine the cluster-
ing properties depending on the four different cases. A particle belongs to a cluster
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if it is closer than 1.5 nm to a particle of that cluster. First, the average size of
clusters is calculated distinguishing between free clusters which are not attached
to the RBC cytoskeleton and clusters that are attached to the cytoskeleton.

In Figure 3.16 the average cluster size is shown for all KAHRP interaction ener-
gies equal. In Figure 3.16a we see, that the free clusters are in general larger than
the attached clusters and cluster formation starts from ϵ = 1.5 kBT. Additionally,
the clusters also grow in time (see darker colours of red and green). In Figure 3.16b
and c the same data is plotted as a heat map with more time points along the
x-axis and ϵ along the y-axis. The colour indicates the size of the free clusters
in Figure 3.16b and the size of the attached clusters in Figure 3.16c. These two
graphs show that the attached clusters grow more slowly, whereas the free clusters
grow until 70 µs are over and then fluctuate around a similar value. We can also
note that there are two distinct regimes in ϵ. Up to 1.0 kBT the clusters are very
small and above that value the behaviour is very similar for all ϵ. In Figure 3.16d
and e the temporal evolution for two specific ϵ are shown with the standard error
of the mean indicated by the error bars. Note that the standard error of the free
clusters is larger than the attached clusters.

In Figure 3.17 the same graphs are shown for strong self-association of KAHRP
because these simulations show a slightly different behaviour. When focusing on
the green data points in panel a, we see a peak in attached cluster size at ϵ = 3 kBT.
This phenomenon can also be appreciated in Figure 3.17c, where yellow squares
appear for late times around ϵ = 3 kBT. The data for the free sizes is a lot noisier
in the sense that several size peaks appear for different ϵ (compare Figure 3.17a
and b) also for large ϵ. This large noise in the data can also be seen in the standard
error in Figure 3.17e for free clusters.

As the next step of the analysis the positioning of the clusters was considered.
Here, three cases were distinguished: free clusters, clusters in the cytoskeleton
mesh (attached to spectrin binding sites) and clusters around the actin junctions
(a distance of at most 1.5 nm to the next actin junction). This concept is de-
picted in Figure 3.18. The top four images show simulations for equal KAHRP
interaction energies and increasing ϵ towards the right. The black circles indicate
KAHRP clusters that have formed within the cytoskeleton mesh pulling the spec-
trin filaments together. The bottom row of images shows simulations with strong
KAHRP-actin association. Here we see clusters at the actin junctions (red circle)
for ϵ = 2 kBT.

To quantify this cluster positioning, it was decided for each cluster, if it is free,
associated to an actin filament or otherwise attached in the mesh of the cytoskele-
ton. Hence, the fraction of clusters in these three categories was calculated for all
time points and ϵ. A graphical representation of this data is shown in Figure 3.19,
with red data points indicating the fraction of free clusters, green data points
showing the fraction of spectrin attached clusters and blue data points indicating
the fraction of actin-attached clusters. How the fractions develop for specific ϵ in
time, can be seen in Appendix D in Figure D.2.

First, we would like to see how the positioning changes with the parameter ϵ
by considering the same four interaction cases as before. We find, that for small
epsilon (ϵ < 1 kBT) most clusters are free whereas for high epsilon, the clusters are
preferentially attached in the mesh of the cytoskeleton with very little attachment
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Figure 3.16: The average KAHRP cluster size is depicted in various ways for all
interaction energies equal taking into account two independent runs. a) displays
the average cluster size at four timepoints as a function of the potential depth ϵ.
Free and attached clusters are considered separately as indicated in the legend.
b and c) are two dimensional colour plots of the free and attached average sizes
depending on time and the potential depth ϵ. The colour bar indicates the size in
number of KAHRP particles. d and e) show the temporal evolution of the average
sizes for interaction energies ϵ = 5 kBT and ϵ = 3 kBT, respectively. The error
bars indicate the standard error of the mean.
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Figure 3.17: Same as in Figure 3.16 but for a strong self-association energy of
KAHRP as defined in Table 3.7.
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clusters in mesh

clusters at actin junctionactin junction with capping
proteins adducin and tropomodulin

spectrin with KAHRP binding 
sites in blue and ankyrin binding site in red

equal binding energies

binding to actin with twice the energy

Figure 3.18: Snapshots from six simulations illustrating the positioning of KAHRP
clusters for all equal binding energies at the top and strong actin association at the
bottom. From left to right the interaction energy used in the simulations is 0.5, 2,
5 and 20 kBT, respectively. Clusters in the cytoskeleton mesh are highlighted by
black circles and clusters at actin junctions by red circles.

to actin filaments. Note that, if the KAHRP-KAHRP association is stronger than
the association to the cytoskeleton, the free clusters are even dominant up to
ϵ = 2.5 kBT (Figure 3.19c). When looking at the fraction of actin associated
clusters (in blue in Figure 3.19) more closely, we see that it behaves differently
for the four interaction cases but in general, there is hardly any actin associated
clusters for ϵ < 1 kBT. Another common feature is that the percentage of clusters
at the actin junction increases with time for all simulations which means that it
takes time to form actin associated clusters (compare Figure D.2 in Appendix D).

A very interesting feature can be observed for the strong actin-association
simulations (Figure 3.19d). In the range from ϵ = 1 kBT to ϵ = 2.5 kBT the
fraction of actin-attached clusters is above 0.4 and hence, most clusters are located
near actin junctions. This behaviour will be analysed more closely in the following
paragraphs.

Furthermore, it can be seen from the graphs in Figure 3.19 that a strong
self-association (panel c) decreases the actin-association of the clusters (blue data
points). For a weak self-association (panel b) the fraction of actin-associated clus-
ters outruns the free clusters within the simulated time interval (see ϵ = 20 kBT).

The temporal evolution for specific ϵ (Figure D.2 in Appendix D) shows that for
small ϵ the trajectories fluctuate strongly in time, whereas the curves for higher
ϵ are very smooth. For the weak self-association, the fluctuations are already
reduced for ϵ = 1.5 kBT because the cytoskeleton association energy is doubled in
that case and hence it would be comparable to ϵ = 3 kBT for the other cases.
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Figure 3.19: The positioning of KAHRP clusters is compared for the four interac-
tion cases; a) all equal, b) weak self-association, c) strong self-association and d)
strong actin association. The graphs shows the fraction of free clusters in red, the
fraction of clusters in the mesh in green and the clusters around actin junctions in
blue for three different timepoints each as indicted in the legend.
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b

a c

Figure 3.20: This data comes from simulations with strong KAHRP-actin asso-
ciation as defined in the text. a) This graph shows the fraction of free clusters
in red, the fraction of clusters in the mesh in green and the clusters around actin
junctions in blue for three different timepoints each as indicted in the legend. b)
The colour in this heat map indicates the fractional occurrence of actin-associated
clusters. A bright colour indicates a large percentage of the clusters attached to
actin filaments. c) The three plots show the temporal evolution of the fractions
for ϵ = 0.5 kBT, ϵ = 1.5 kBT and ϵ = 4 kBT.
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equal binding energies

increasing epsilon

Figure 3.21: Each image is built up out of four snapshots from the same simulation
at different timepoints. The left images were taken from an equal binding energy
run at ϵ = 0.5 kBT, whereas for the ones on the right the binding energy was
set to ϵ = 5 kBT. It can be seen, that the holes in the network get larger with
increasing ϵ. Grey beads represent KAHRP particles, spectrin filaments contail
cyan, blue and red beads, actin filament units are shown in yellow and the other
colours represent actin capping proteins.

We saw, that actin associated clusters are very prominent in a specific param-
eter regime. This behaviour is shown in more detail in Figure 3.20. As mentioned
before, the high affinity for actin-associated clusters is found for 1 kBT ≤ ϵ ≤
2.5 kBT. The blue data shown in Figure 3.20a is plotted again in panel b as a
heat map showing the dependence on ϵ along the y-axis and on time along the
x-axis. The green-yellow regime indicates the dominance of actin-associated clus-
ters. Here it can be seen, that this phenomenon starts between 28 and 56 µs and
the behaviour does not change much with time from then onwards. The temporal
behaviour is also shown in Figure 3.20c where the behaviour is exemplified for
ϵ = 0.5 kBT, ϵ = 1.5 kBT and ϵ = 4 kBT. In the middle plot it can be clearly seen,
that the fraction of free clusters drops dramatically early on with the appearance
of actin-associated clusters. The fraction of clusters in the mesh stays in the range
of 0.1. For higher ϵ the fraction in the mesh wins with time as seen in the other
simulations as well and for smaller ϵ the free clusters are dominant.

Finally, it can be asked how the KAHRP clusters change the appearance of the
simulated network. Figure 3.21 shows examples for simulations with all binding
energies equal for ϵ = 0.5 kBT and ϵ = 5 kBT. At ϵ = 0.5 kBT nearly no KAHRP
is attached to the network. Hence, the left image represents the apprerance of a
healthy RBC cytoskeleton which is relatively dense and evenly distributed. For
increased epsilon (right image) KAHRP clusters have formed in the mesh and lead
to an irregularly distributed network with the appearance of larger voids, where
one would be able to see the underlying bilayer.

3.5.4 Analysis of KAHRP Cluster Formation

The results showing the network thickness imply that this modelling approach
captures the main structural features of the RBC cytoskeleton. In the past there
have been various debates about the native structure of the spectrin filaments in
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the RBC cytoskeleton but modelling it as a flexible polymer seems to fit most
observations. Additionally, this model is the first to incorporate the actin junc-
tion dynamics on a network scale. The actin dynamics was tested in simulations
without additional cytoskeletal structures and yields the predicted behaviour.

The malaria protein KAHRP was successfully incorporated into the simula-
tions and was seen to form clusters in solution and clusters in the cytoskeleton as
expected. It makes sense that clusters only start forming for a interaction depth
larger than kBT but it is somehow surprising that the clustering behaviour does
not change much for higher ϵ except for some specific cases. This means that
already a relatively weak binding interaction is sufficient to change the clustering
behaviour.

Free clusters are in general larger for the discussed cases. The reason is, that the
cytoskeleton is confined to a plane with a smaller diffusion constant of the anchored
elements and it is basically close to a wall such that new KAHRP particles can
only arrive from one side. Hence, the particles are more quickly accumulated
into free clusters and the assembly of a cytoskeleton associated cluster takes more
time. Evidently, the cluster size is not tuned by ϵ. However, it was found that
the KAHRP concentration has a large impact on cluster sizes but not the other
qualitative behaviour (see Figure D.3 in Appendix D).

When considering the strong KAHRP self-association runs, very large cluster
sizes were observed for specific parameters. Especially, for ϵ = 3 kBT both the free
and attached clusters were a lot larger for late times than for other parameters.
This regime of large cytoskeleton attached clusters lies just above the boundary for
cluster formation. Hence, ϵ is strong enough to keep KAHRP particles together but
still small enough to have dissociation events in small clusters that help build larger
ones. Note, that there have been only 2 independent runs for each parameter set
because such molecular simulations are time consuming. Therefore, it is possible
that more runs would lead to larger cluster sizes for all ϵ > 2 kBT. It was also
observed that for small ϵ the cluster sizes deviate more from the mean. A possible
reason for this is the larger particle turnover in free clusters. There will be more
dissociation events and hence the clusters change their size quicker.

Examining the cluster positioning yielded some very interesting results, namely,
for strong KAHRP-actin association there is a small range in ϵ where most clusters
associate to actin filaments. This is the case for 1 kBT ≤ ϵ ≤ 2.5 kBT and the
association with actin even grows with time. Finding actin associated clusters is
very promising with respect to experimental data from the Lanzer group. They
saw, that depending on the parasite development, first KAHRP attaches at most
cytoskeletal components and after some time, KAHRP is mostly found around
actin junctions. Here we see, that depending on the interaction parameters such
a behaviour is possible. This means that binding affinities would have to change
in the iRBC to observe a displacement of clusters towards the actin junctions.
A possible mechanism for this could come from the phosphorylation of KAHRP
during the malaria life cycle. As explained in Section 3.3, phosphorylation is known
to effect binding affinities.

Finally, the appearance of the cytoskeletal network was seen to change with the
accumulation of KAHRP clusters. Because the spectrin filaments are very flexible,
clusters form in the mesh of the cytoskeleton and pull large portions of the spectrin
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Figure 3.22: a) The microscopy image shows malaria infected RBC with immuno-
labelled PfEMP1 molecules which are associated to knobs in the red boxes. b) The
position of the gold particles is determined with respect to the projected 1D diam-
eter of the knob. c) The knob is divided into ten segments which need correction
terms due to the surface area that lies within each segment.

filaments towards the cluster leaving the rest of the spectrin relatively straight
and stretched out. Hence, the network appears more sparse in some regions and
denser in others. This has previously been seen in experimental images of malaria
infected cytoskeletons. These show a similar behaviour but an even stronger effect.
Previously it has been explained by actin mining by the parasite, which takes away
some junctions and hence makes the network more heterogeneous. Here, we found
another reason for the altered appearance of the network. It is a combination of the
two effects which leads to the strongly altered appearance of iRBC cytoskeletons.

3.6 Examining the PfEMP1 Distribution

Now we turn to a different protein which is important for the malaria knob forma-
tion, namely PfEMP1. We also move away from the molecular model of the last
section and show how geometrical considerations can help to understand exper-
imental data on protein positioning. The experimental data obtained by Marek
Cyrklaff from Prof. Lanzer’s group was used to determine the exact positioning
of PFEMP1 molecules on the knob. The here discussed analysis method was
applied in the paper ”Single-molecule imaging and quantification of the immune-
variant adhesin VAR2CSA on knobs of Plasmodium falciparum-infected erythro-
cytes” [164].
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Figure 3.23: a) Graphical illustration of parallel cuts of thickness h through a 2D
circle and b) a 3D half sphere. We are interested in the area of the surface that lies
within each section. c) The circular divisions corresponding to the parallel cuts
are shown.

3.6.1 Analysis of Experimental Data

To access the localization of PfEMP1 molecules these were labelled by immunogold
particles (see Figure 3.22). The images show a clear localization to the parasite
induced knobs. The efficiency of labeling is 10 % and the uncertainty of the gold
label position is 25 nm where the gold particle has a diameter of 10 nm and the
linker to the membrane has a length of 10− 15 nm.

We assume that the whole knob lies within the imaging plane so that markers
at the back and front of the knob would be equally shown at the same position
along the horizontal axis of the knob. Figure 3.22a shows a few examples of
labelled molecules, where approximately one to three molecules are labelled per
knob. Using an image analysis software the position of the gold particles can
be determined with respect to the horizontal axis of the knob as can be seen
in Figure 3.22b. Hence, we know, which of the ten equally thick sectors (see
Figure 3.22c) the label belongs to.

When constructing the distribution of PfEMP1 molecules, an assumption has
to be made for the shape of the knob since the shape determines the surface area
in the different segments of the image. In general, correction factors need to be
introduced for the ten segments introduced in Figure 3.22. Figure 3.23 shows the
division of the circle and a half-sphere into four segments.

On the one hand it is clear for a circle, that a segment in the middle of the
circle has a larger surface area than a segment at the side. Hence, there is more
opportunity to observe a PfEMP1 molecule. The final distribution needs to be
corrected for this. Numerical values for a circle of radius 5d and segments of
thickness 1d are shown in Table 3.8, where d is a unit length. On the other hand,
the curved surface area of a segment of a sphere only depends on the thickness h
of the segment and not the location along the x-axis. Therefore, all segments of
the half-sphere have the same area (A = πRh) and the weighting factors are all
one as it is indicated in Table 3.8.

From the recorded data we now want to know, how the molecules are dis-
tributed along the arclength on the surface which is discretized according to the
slices of the sphere (see Figure 3.23c). To calculate the density of molecules in
each circular segment, the surface areas Ai as shown in Figure 3.24 need to be cal-
culated. These are created by vertical and horizontal cuts through the half sphere.
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Figure 3.24: Areas that are created by the vertical and horizontal cuts.

segment 1 2 3 4 5 6 7 8 9 10

circle
area 4.1 7.1 8.6 9.5 9.9 9.9 9.5 8.6 7.1 4.1
factor 1.0 0.58 0.47 0.43 0.41 0.41 0.43 0.47 0.58 1.0

half-sphere
area 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7
factor 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 3.8: Numerical values for the area (unit of d2) and associated correction
factor for segments of a circle and sphere of radius 5d.

To do this, the surface element on the sphere can be numerically calculated by
applying the following formula:

A =

∫ ∫
dxdz |Rx ×Rz| with R =

⎛⎝ x√
R2 − x2 − z2

z

⎞⎠ , (3.34)

where Ri is the derivative with respect to i of the position vector R. Plugging R
in leads to

A =

∫ ∫
dxdz

√⏐⏐⏐⏐ x√
1− x2 − z2

⏐⏐⏐⏐2 + ⏐⏐⏐⏐ z√
1− x2 − z2

⏐⏐⏐⏐2 + 1 (3.35)

and this formula can be numerically integrated between the corresponding x and
z-boundaries.

The densities in the circular segments are calculated in an iterative manner
starting from the element with area A1 (see Figure 3.24) since its density corre-
sponds to the density in the outer x segment. For example, the density in the
second ring from the bottom (ϕ4), can be calculated with the following formula,
taking into account the areas as indicated in Figure 3.24:

ρ(ϕ4) =
Asecρ(x4)− ρ(ϕ5)A2

A3

, (3.36)

where Asec is the area in each slice of thickness h, xm indicates the slice m and ϕN

stands for the ring n. Note that we start counting from the centre of the sphere.
The results are shown in Figure 3.25 for HbAA and HbAS malaria iRBCs.

We find that the PfEMP1 molecules are clustered towards the middle of the
knob. This also explains, why the knob radius determined from the fluorescence
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a b

Figure 3.25: a) Experimental data of the PfEMP1 number in the x-slices. b)
The distribution along the arc-length on the sphere. The vertical lines show the
arclength corresponding to the radius of the PALM flourescence signal.

Figure 3.26: a) The calculated distribution is examplified for an HbAA and b) an
HbAS knob. The scale bar has the size of 50 nm.

PALM signal (rPALM/AA = 27.2 nm, rPALM/AS = 32.2 nm) is smaller than the SEM
radius (RSEM/AA = 40 nm, RSEM/AS = 54.5 nm) which measures the hight profile
of the knob. In Figure 3.25b the PALM radius is indicated by vertical dashed lines
and we find, that it corresponds well with the high probability area of finding a
PfEMP1 molecule.

Finally, we visualize the reconstructed 3D distribution of PfEMP1 molecules
by distributing 25 markers according to the calculated discrete distribution in
arclength (see Figure 3.26). The clustering towards the top of the knob becomes
apparent in the graphic.

3.6.2 Geometrical Aspects

We consider a half sphere and assume a given distribution g(ϕ) = g(s/R) along the
arclength on the surface of the sphere. The arc-length s and the angular coordinate
ϕ can be treated equivalently, since they are related by a linear transformation
s = Rϕ, where the radius of the sphere R is a constant.
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Figure 3.27: Starting from a distribution along the arc-length of the sphere, the
distributions along the polar coordinate r and the projected distribution along the
x-direction are shown.

When looking at the dome shape from the top, the distribution appears two
dimensional and is characterized by the radial coordinate r (in the x-y-plane). The
distribution f(r) can be calculated by a coordinate transformation:

g(ϕ)dϕ = f(r)dr f(r) = g(ϕ(r))

⏐⏐⏐⏐∂ϕ∂r
⏐⏐⏐⏐ ϕ = arcsin

( r

R

)
(3.37)

f(r) = g(ϕ(r))
1

R
√

1− (r/R)2
. (3.38)

Experimentally, the view from the side is more important which means, that
the distribution along the x-axis is important where the y-direction is integrated
out. Again, we start with a distribution along the coordinate on the surface ϕ
which could in general also depend on the azimuthal coordinate θ, g(θ, ϕ). Then
we convert to Cartesian coordinates in x and y:

ρ(x, y) = g(θ, ϕ)

⏐⏐⏐⏐∂(θ, ϕ)∂(x, y)

⏐⏐⏐⏐ , (3.39)

θ = arctan
(y
x

)
ϕ = arccos

(√
R2 − x2 − y2

R

)
, (3.40)

ρ(x, y) = g(θ, ϕ)
1

R
√

(R2 − x2 − y2)x
2+y2

R

, (3.41)

ρ(x) = 2

∫ √
R2−x2

0

ρ(x, y)dy. (3.42)

Depending on the input function, this integration needs to be done numer-
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ically. Three examples are calculated and plotted in Figure 3.27, a normalized
constant distribution in ϕ, a normalized Gaussian distribution and a distribution
proportional to ϕ which corresponds to a uniform 2D distribution on the sphere
(to see this consider the surface element in spherical polar coordinates which is
given by dA = sinϕdθdϕ). We see, that the distribution in the polar coordinate
r is enhanced towards the edge of the sphere since the curvature is highest there
when seen from the top. The distribution along the x-axis compensates for this
by averaging over the y-direction. As expected, the distribution that is uniform
on the sphere (called ”Sin” in the plot) is also uniform in x. This is due to the
previously mentioned property that each equally thick segment (cut by 2 parallel
planes) of the sphere has the same surface area.

3.7 Discussion of Molecular Structure Formation

By employing a reaction-diffusion model, it was possible to understand the molec-
ular structure of the RBC cytoskeleton better. The simulations show clearly, how
the flexibility of spectrin leads to a thick dense network that is elastic enough
to extend under stress. We also found that the actin filament length cannot be
controlled by simple measures (concentration, capping) for all filaments simulta-
neously. An additional mechanism such as using tropomyosin as a ruler is needed
which favours capping at specific lengths.

Regarding the formation of KAHRP clusters a large parameter space was ex-
amined and only for one specific set-up with a specific interaction strength KAHRP
clusters at the actin junctions could be found. However, this is a remarkable result
since there is evidence that knobs are associated with the actin junction for late
times of the infection. The parasite might change the binding affinity of KAHRP
through phosphorylation in order to assemble knobs near the actin junctions.

Furthermore, the modelled cytoskeleton was found to reproduce the appearance
of malaria infected cytoskeletons, when it contained KAHRP clusters. The clusters
condense the network in some places and make it more sparse in other regions,
such that the plain bilayer would be exposed in some places. This effect would
be enlarged if actin disassembly would be considered. However, simulations with
actin dynamics take a long time to run and have not been considered for this work.

In the last chapter a slightly different aspect of the cytoskeletal modifications
was examined. It was found that the adhesion protein PfEMP1 clusters prefer-
entially towards the middle of the knob. This is a good strategy for the parasite
because it becomes easier to reach receptors on other cells.

It remains an open question, how the PfEMP1 and KAHRP interact to form
stable knobs of known morphology. Additionally, there are also other proteins
that are essential for the knob formation. For example a spiral like structure is
frequently observed below knobs but it is not clear, what exactly makes up this
spiral.



Chapter 4

Finite Element Model for Red
Blood Cells in Flow
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4.1 RBCs in Capillaries and Microfluidic Devices

The ability of RBCs to squeeze through narrow capillaries in our body is remark-
able. In larger vessels blood can be treated as a continuum fluid but in capillar-
ies of approcimately the size of the RBS the dynamics of single RBCs becomes
important. In this case, the shape of individual cells is influenced by the flow
rate and vessle diametre [165, 166, 167]. In larger capillaries the cells assume
a slipper-like shape, whereas they adopt a parachute-like shape in smaller capil-
laries. Pries et al. [168, 169] examined the behaviour of RBCs at microvascular
bifurcations and developed a model for large microcirculatory networks.

To mimic the environment in the microvasculature in a controlled manner,
microfluidic devices have been used to study the behaviour of RBCs. Two pos-
silbe experimental realisations are shown in Figure 4.1. In Prof. Guck’s group
Otto et al. [170] developed a high throughput device which detects the deforma-
tion of cells in a narrow tube of 20 µm. Because the set-up can process many cells
in a short time period, they are able to produce deformation graphs as shown on
the right in Figure 4.1a. A theoretical model is applied to study the cell deforma-
tions and extract parameters [171]. With this device it is possible to distinguish
cells within a population such as malaria iRBCs mixed with healthy RBCs [172].
Figure 4.1b shows the device developed by Ito et al. [173]. The distinguishing
feature of this device is a high precision robotic pump which enables the users to
hold the cell in the narrow constriction for different periods of time and study its
subsequent relaxation.

Great effort has been made to model the RBC’s behaviour in flow, whereby
the difficulties lies in coupling the RBC mechanics to the surrounding liquid. The
striking advantage of theoretical modelling is that RBC parameters can be accessed
and tested to determine their implications. Since the whole-cell properties of the
RBC play an important role, these models differ from the ones discussed in the
last chapter. In the following, the cell is modelled on a much coarser scale.

Besides the properties of a RBC, the modelling approach has to account for the
surrounding fluid as well. Two very common techniques to model three dimensional
flow behaviour are dissipative particle dynamics (DPD) and multiparticle collision
dynamics (MPCD) which have been applied to the RBC by Fedosov [156, 174]
and Gompper [175] respectively. Other techniques based on the Finite Element
Method have also been developed and will be discussed in Section 4.2.2. The
model applied in this chapter is a two-dimensional model because the reduction of
dimension reduces the computational complexity dramatically. It has been shown
by Seifert [176] in a numerical manner, that two-dimensional models can cap-
ture the shape and adhesion properties of RBCs sufficiently good. Subsequently,
Secomb et al. [177] showed that a two-dimensional model can also reproduce the
tank-treading frequency of RBCs, while keeping the computation time for a typical
simulation at the order of minutes due to the reduced dimensionality.

The outline of this chapter is as follows. First, an overview of the relevant
hydrodynamic theory and modelling approaches for RBCs in flow are given in
Section 4.2. Then the experimental approach used by Maya Harms in the group
of Prof. Tanaka is explained in Section 4.3, which is aimed to be simulated by the
model developed here. In Section 4.4 the two-dimensional finite element model
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a

b

Figure 4.1: a) Microfluidic device developed by Otto et al. [170]. Cells flow through
a narrow constriction and their deformability is analysed. b) Ito et al. [173] fabri-
cated a microfluidic channel with a robotic pump which enables them to hold the
cells inside the narrow constriction. Images taken from the respective papers.
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is explained and the results of the simulation are analysed. A discussion of this
chapter’s material is given in Section 4.5.

The work discussed in this chapter has been initiated during the Bachelor
Thesis of Hanno Iwasaki Hennighausen who I supervised. The title of his thesis
was A Two-Dimensional Finite Element Implementation of a Red Blood Cell in a
Microfluidic Channel.

4.2 Models for RBCs in Flow

4.2.1 Hydrodynamic Theory

The equations describing hydrodynamic flow in general are the Navier-Stokes equa-
tions, here given for an incompressible fluid [57]:

∂u

∂t
+ (u · ∇)u =

µ

ρ
∇2u− 1

ρ
∇p (4.1)

∇ · u = 0, (4.2)

where µ is the dynamic viscosity, ρ the fluid density, u the flow field and p the
pressure field. The qualitative behaviour of this equation is determined by the
dimensionless Reynolds number Re. When Re ≪ 1, the non-linear inertial force
(second term in Equation 4.1) can be ignored. For the relevant parameter range
of a RBC in a microfluidic system, we find:

Re =
ρud

µ
≈ 997 · 0.1 · 10 10−6

8.9 10−4
= 0.011 ≪ 1, (4.3)

where d is the channel diameter and u the magnitude of the fluid velocity. Hence,
the simpler equations of the Stokes flow apply [178]. Then the steady flow profile
(∂u
∂t

= 0) is given by:

µ∇2u−∇p = 0 (4.4)

∇ · u = 0. (4.5)

Treating this description explicitly, the velocity of particle i at position r sur-
rounded by a fluid is given by

vi(r) =
1

kBT

∑
j

Hij(r)Fj, (4.6)

with kBT the Boltzmann constant times the temperature T , Fj the external force
due to particle j and Hij the Onseen tensor [179] capturing the hydrodynamic
interactions of different particles in the fluid, given by:

Hαβ(r) =
1

8πµr

[
δαβ +

rαrβ
r2

]
. (4.7)

The hydrodynamic interactions are long-range forces that decay as r−1. It is obvi-
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ous that in a many-particle system these interaction terms become very complex.
Hence an analytical calculation of the velocity is not advisably.

Whenever hydrodynamic interactions are important for a system, the Stokes
equation is commonly solved by one of the simulation methods discussed in Sec-
tion 4.2.2. They either resolve the fluid by so-called solvent particles or solve
the above equations numerically. In either case, the exact modelling of the fluid
behaviour is quite computationally expensive such that it should be avoided when-
ever possible. In such a case, only the resistance, induced by the viscosity of the
solvent, is important and particles move according to their diffusive properties.
Solvent particles are not modelled in this case. The method used in these kinds of
systems is called Brownian Dynamics and is explained and employed in Chapter 3.

However, in the case of RBCs in capillaries the hydrodynamic effects are es-
sential. An important effect that originates from hydrodynamic interactions is
the F̊ahræus-Lindqvist effect. It describes how the apparent viscosity of blood
changes with vessel diameter. Specifically, the viscosity decreases with decreasing
diameter and reaches a minimum at 7 µm because a cell free layer develops at the
wall of the vessel and hence the RBCs can flow more easily. This effect was first
described in Ref. [180] and has been confirmed both experimentally and by simu-
lations. The cross-stream migration of RBCs necessary for the development of the
cell-free layer is caused by hydrodynamic cell-wall interactions and hydrodynamic
cell-cell interactions as described in Ref. [181].

4.2.2 Fluid-Structure Interactions

When a structure deforms in flow, the body and the fluid necessarily need to
interact. In general this is a two-way coupled system because the evolving flow
deforms the surface of the structure such that the flow domain is changed itself.
In special cases, the situation can be simplified, if one of the couplings is much
weaker than the other, such as a fixed rigid object in flow. However, the RBC
definitely belongs to the two-way coupled systems.

In order to bridge the scale between the solvent constituents and the objects
surrounded by these, a mesoscopic approach is necessary to reach the relevant
time scales. This is done by numerically treating the fluid. The concepts of the
different model approaches described here apply in two and three dimensions.
Necessarily, it will always be a lot more computationally expensive to model a
three-dimensional system. Although qualitative behaviours can also be captured
in the reduced dimension, a full three-dimensional computation is necessary to
obtain quantitative results. I now briefly explain the most common modelling
approaches focusing on the simulation strategy for the fluid.

Finite Element Method

The Finite Element Method makes it possible to solve the Stokes equations with
a continuum approach. For this purpose, a finite element lattice is introduced
on which the equations are solved numerically. In fact, not the exact equation is
solved but what is called the weak form. To obtain the weak form, the equation
is multiplied by a test function v and then integrated over the whole domain.
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Hence, the solution of the Finite Element Method fulfils the original equation in
an average sense [182].

If this procedure is applied to the Stokes equation (4.5), the following weak form
is obtained after using integration by parts to get rid of higher order derivatives:∫

Ω

(∇u · ∇v +∇ · v p+∇ · u q) dx =

∫
Ω

f · v dx, (4.8)

with f an externally applied force. Special care has to be taken with the boundary
conditions, because they enter the integral expression through the integration by
parts. For simplicity, they are neglected in this section.

In the next step the involved functions are expressed as sums of basis shape
functions ϕi(x, y), which are defined on the finite elements, i.e. a subsection of the
underlying mesh. The basis functions are typically chosen to be piecewise linear
or quadratic. Hence, the approximations of u and v read:

uh(x, y) =
N∑
i

αi ϕi(x, y) and vh(x, y) =
N∑
i

βi ϕi(x, y), (4.9)

where αi and βi contain the coefficients for the x and y components. The shape
functions are chosen such that αi and βi correspond to the values of the function
at the nodal points, i.e each shape function is equal to 1 at exactly one nodal point
and 0 at the others.

By plugging these expressions into the weak form, the equation can be written
as a matrix equation. The term, which is independent of the external force f ,
is called the stiffness matrix Kij and the part depending on f is called the load
vector Fi. Consequently, the problem is reduced to the following matrix equation:

Kij γj = Fi, (4.10)

where γj contains the coefficients αi and βi. Since many of the entries of K will
be zero it is a sparce matrix which can be solved by common approaches.

In case of the Stokes equation, two function spaces need to be defined; a vector
function space for u and a scalar function space for p. To ensure stability of the
solution the common choice is a continuous piecewise quadratic space for u and a
continuous piecewise linear space for p. This mixed finite element space is called
the Taylor-Hood elements [183].

Other Methods

The boundary integral method has emerged as an alternative to the Finite Element
Method for problems that require a better accuracy or have infinite domains.
Since the problem is formulated as a boundary integral equation, only the surface
needs to be discretised [184]. After the solution on the boundary is found, it
can be extrapolated throughout the whole domain. However, when applied to
hydrodynamic flows, the boundary-integral method is limited to viscous flows and
cannot include inertial effects [10].

The immersed boundary method was developed by Charles Peskin in 1972 [185,
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186]. The basis of the method are two separate grids, Eulerian coordinates for the
fluid and Lagrangian coordinates for the immersed structure. The latter one is
described as a collection of one-dimensional fibres and their resulting force on the
fluid is incorporated in the momentum equation. In principle, any existing fluid
solver can be coupled to the equations for the fibres. Besides treating the fluid as a
continuum, it can also be modelled by introducing solvent particles. The following
methods can be used:

The Lattice Boltzmann method was first developed in 1988 [187] based on the
previously employed lattice gas automata. A review of this method can be found
in Ref. [188]. The idea of the method relies on the statistics of the Boltzmann
equation as derived in Ref. [189]. In the simulation, the fluid is depicted by solvent
particles moving on a regular lattice. The simulation alternates between streaming
and collision events. The streaming involves a propagation between the nodes
according to a discrete velocity and the collision events are based on interactions
of the particle densities according to the Boltzmann transport equation. During
the collisions mass and momentum are interchanged. In this method special care
has to be taken to conserve the stress tensor and the incorporation of fluctuations
is not straight forward [190].

Dissipative Particle Dynamics was introduced in 1992 [191] as an attempt to
free the previous modelling approaches from the lattice. Hence, the solvent is rep-
resented by particles that are free to move and interact via dissipative, stochastic
and conservative interactions. The dissipative and stochastic nature comes from
the idea that each solvent particle represents a thermodynamic subsystem with
many microscopic constituents. During the simulation the solvent particles are
evolved in time according to Newton’s equations. The dissipative force acts as a
friction and hence cools the system, whereas the stochastic force heats the sys-
tem up. By imposing specific criteria on the forces, it is possible to conserve the
overall momentum and hence reproduce hydrodynamic behaviour [190]. Several
extensions of the model have been developed which are adjusted to specific situ-
ations. Solid objects are represented as particles that are frozen in location with
respect to each other.

The latest of these approaches is called Multiparticle Collision Dynamics and
was developed in 1999 [192, 193]. In this method the fluid is also modelled by
solvent particles which are in principle free to move. The algorithm can be divided
in two steps, the streaming and the collision steps. During streaming the particles
do not interact and move ballistically according to their individual velocities. For
the collision time step, the simulation box is divided into small collision boxes
with a few solvent particles in each of them. In each box the center of mass
velocity is calculated and the particle velocities relative to this center of mass
velocity are rotated by a random rotation matrix. This procedure assures that all
particles change their speed and direction while conserving the momentum and
kinetic energy within the box. Furthermore, the collision grid is moved before
the next time step. If objects are incorporated into the solvent, they are usually
propagated with conventional molecular dynamics and they exchange momentum
with the solvent particles during the streaming and/or the collision steps.
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a

b

c

Figure 4.2: a) Numerically calculated shapes of two dimensional free vesicles. The
different shapes correspond to different pressure differences. b and c) Various
shapes of adhering vesicles are shown. Images taken from Ref. [176].

4.2.3 Existing Three-Dimensional RBC Models

Full three-dimensional simulations of RBCs in flow are computationally expensive
and need to be run on large computation clusters. Nevertheless, various models
have been developed by different groups, of which some will be discussed hereafter.

One of the first models was developed by Gompper and Noguchi [175, 194,
195]. They used Mulitparticle Collision Dynamics to describe the fluid and a
dynamically triangulated surface model for the RBC membrane, which includes
shear and bending elasticity. This model was used to simulate flow through narrow
capillaries.

During his PhD work Dr. Fedosov developed a RBC model using the Dissipative
Particle Dynamics approach. The RBC is depicted as a triangulated surface and
exhibits the necessary mechanical properties. In their papers Fedosov et al. [156,
174] and Pivkin et al. [196] showed that this model can be successfully be applied
to experimental set-ups such as laser traps and capillary flow. The modelled RBC
also exhibit the experimentally known properties in shear flow.

Dr. Dasanna from the group of Prof. Schwarz also established a model for
RBCs in flow which is based on the triangulated surface model developed by
Dr. Fedosov and uses Multiparticle Collision Dynamics to model the fluid. He
used his model to simulate the effects of the malaria parasite on RBCs’ flow and
adhesion behaviour [157, 8].

4.2.4 Two-Dimensional Approaches

There have been various approaches considering two-dimensional vesicles, meaning
a one-dimensional loop in a plane as depicted in Figure 4.2. The advantage of
this two-dimensional approach is that the high complexity of a three-dimensional
shape does not apply here but still many properties are carried over from the
three-dimensional case.

Without hydrodynamic interactions, this problem can be treated numerically
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Figure 4.3: A RBC is passing through a microfluidic device produced in
Prof. Tanaka’s laboratory. Image is adapted from Maya Harms’ Master Thesis.

to solve for equilibrium shapes of the vesicles. This was done by Seifert [176], who
calculated the shapes of free and adhering vesicles for different pressure differences
and adhering forces (see Figure 4.2).

Based on this success to study vesicle behaviour in two dimensions, Bagchi [197]
developed a two-dimensional model including hydrodynamic interactions by using
the immersed boundary method. The strength of his model is the ability to model
large cell populations of up to 2500 cells. Hence, the behaviour in large blood
vessels can be studied. He could reproduce the F̊ahræus-Lindqvist effect explained
above.

On a similar basis Lattice-Boltzmann simulations of two-dimensional vesicles
were developed [198, 199]. With this approach the flow resistance at various haema-
tocrits and vessel diameters was estimated and white blood cells were also included
in the simulations to determine their effects on the resistance to flow. An example
of a boundary-integral calculation of two-dimensional vesicles is given in Ref. [200].

Overall, the two-dimensional approach is very promising in predicting the be-
haviour of blood flow. The gain in computational simplicity enables one to reach
much large system sizes and length scales. However, one cannot be sure that
there are no artefacts from the dimensional reduction such that a proper three-
dimensional simulation cannot be avoided eventually to confirm the properties
found in two dimensions.

4.3 Experimental Microfluidic System

The motivation for this project were microfluidic experiments using soft lithogra-
phy done in the group of Prof. Tanaka. The model described in the next section
tries to simulate the experimental set-up. The shortcomings of the model with
respect to the experiment will be discussed in Section 4.5.

The experiments done by Maya Harms aim to determine the relaxation be-
haviour of RBC after passing through a narrow constriction. Healthy RBCs as
well as malaria iRBCs were examined and different relaxation timescales were
found.
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The microchannels shown in Figure 4.3 consist of a polydimethylsiloxane (PDMS)
stamp and a glass slide beneath forming the microfluidic channels. The height of
these channels with rectangular cross sections is 4.5 µm and the constriction at
the entrance of the channels has a length of 10 µm and a width of 3 µm. A flexible
tube connects the inlet and outlet of the channels and the blood suspension is
added by a syringe. Using an inverted microscope with an ultra fast camera, the
whole channel of 243.81× 20.32 µm2 was recorded every 0.027 ms. The flow speed
is 1.7 mms−1 before the constriction and 3.4 mms−1 afterwards.

The results of Maya Harm’s analysis of the obtained images yield the residence
time tres and relaxation time τrel of each RBC. The residence time describes the
time the cell spends in the constriction and the relaxation describes the recovery
of the initial shape after leaving the constriction. She found the following values
for uninfected RBCs and iRBCs respectively:

tres,uRBC = 0.11± 0.06 ms and τrel,uRBC = 0.255± 0.086 ms, (4.11)

tres,iRBC = 0.42± 0.28 ms and τrel,iRBC = 0.603± 0.737 ms. (4.12)

A clear increase of the mean value can be seen in both times which can be explained
by the increased stiffness of the RBC membrane discussed in the previous chapters.

4.4 A Two-Dimensional Finite Element Model

In this work a two-dimensional RBC model developed by Secomb et al. [177] is
employed. The model consists of interconnected viscoelastic elements describing
the RBC membrane which is coupled to a surrounding medium fulfilling the Stokes
equation. The mechanical equations and the Stokes flow are solved simultaneously
by a finite element software. Here, a similar approach is used, in which the relevant
equations are implemented in the finite element software FEniCS [201].

This specific modelling approach was chosen because of the following reasons.
First of all, a two dimensional approach makes it possible to examine larger systems
with less computational resources. A proper three-dimensional model takes long to
develop and test out different simulation set-ups. With a model that produces sim-
ulation results within minutes instead of days, the interaction with experimental
groups becomes easier since predictions can be made and adapted more frequently.
Further, the model by Secomb treats the RBC membrane as interconnected vis-
coelastic elements which is directly comparable to one-dimensional models for the
relaxation of RBC height, but with the extra complexity of a two-dimensional
shape.

The fluid structure interaction in this model is implemented in an uncommon
way. By inserting the equations into the finite element software, the mechanical
equations are solved simultaneously to the Stokes flow on the finite element mesh.
Therefore, the mechanical equations are fulfilled exactly. How this is implemented
in this thesis is explained in Section 4.4.4.
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a b
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Figure 4.4: Simulation results from the two-dimensional model developed by
Prof. Secomb are shown. a) The simulated tank-treading frequency matches the
experimentally obtained values. Graphic is taken from Ref. [177]. b) RBC be-
haviour at bifurcations is studied. This comparison between the model at the top
and a microscopy image at the bottom is taken from Ref. [202]. c) The hydro-
dynamic interactions with the other cells result in an outwards pointing force on
the cell. Image is taken from Ref. [203]. d) Simulation results showing the off-
centreline positioning of cells in a 12 µm channel. Graphic is taken from Ref. [204].
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4.4.1 Previous Applications

The model by Secomb et al. has been used to simulate different aspects of the flow
in narrow tubes. In the original paper, they validate their model by examining the
tank treading frequency (see Figure 4.4a). In previous two-dimensional models
the frequency was overestimated compared to the three-dimensional case [177].
The reason why their model describes this behaviour better are viscous elements
that connect all membrane nodes to one RBC midpoint. In a second paper, the
RBCs’ behaviour at bifurcation points in the microvasculature was examined (see
Figure 4.4b). It could be reproduced that more RBCs migrate into the branch
with the higher flow rate [202].

Some years later the group of Prof. Secomb took up this modelling approach
again in order to look more closely at the cell positioning with respect to the wall.
First, they found that a strong force pushing the cell towards the wall (compare
Figure 4.4c) induces a tank treading motion and smaller force induces tumbling
of the cell [203]. The origin of this force in real blood flow would be the cell-cell
interactions which push the cell outwards. Following up on this study, they found
that RBCs can be positioned off-centreline for some initial conditions in a 12 µm
channel [204] (see Figure 4.4d).

4.4.2 Equations for the RBC

The RBC is depicted as a discrete envelope with n external nodes as shown in
Figure 4.5a. To capture the visco-elastic behaviour of the membrane, the external
elements are modelled as Kelvin-Voigt elements, which consist of an elastic and a
viscous element in parallel. Additionally, each is connected to one midpoint by a
viscous element which models both the viscosity of the cytosol and the viscosity
within the membrane.

Contributions from the RBC mechanics as well as the surrounding fluid have
to be accounted for when determining equations for the nodes of the system (see
Figure 4.5b). Let us focus on segment i and parametrize all forces by s, varying
between 0 and the segment length li. The relevant forces acting on the segment are
a tension force ti(s), a shear force qi(s) and a bending forcemi(s), all given as forces
per unit length. The force acting through the internal element is called Ti. For the
force balance equations, the values at the nodes are relevant. In contrast to this,
the mechanical properties of the membrane and the fluid loads are defined along
the segments. Therefore, averages of the relevant forces are evaluated. Specifically,
mean tension and shear are defined as:

t̄i =
1

li

∫ li

0

ti(s) ds and q̄i =
1

li

∫ li

0

qi(s) ds. (4.13)

Using the node, angle and segment numbering as introduced in Figure 4.5c and d,
the equilibrium conditions, which are split up in x and y components, for node i
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Figure 4.5: a) Mechanical model for the RBC consisting of Kelvin-Voigt elements
on the RBC envelope and purely viscous dashpots inside the RBC. b) Forces that
act on an external element. The tension force t acts parallel to the envelope, the
shear force q acts perpendicular to it, the bending force m acts between this and
the neighbouring segment and the normal and tangential fluid loadings f and g
act all along the segment. c) Definitnion of node and angel numbering is shown.
The angles θ and ϕ are measured with respect to the horizontal dashed line. d)
Segment numbering is done anti-clockwise with the ith segment extending from
the ith node in the anti-clockwise direction.
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are:

ti(0) cos θi − ti−1(li−1) cos θi−1 − qi(0) sin θi + qi−1(li−1) sin θi−1

+Ti cosϕi = 0, (4.14)

ti(0) sin θi − ti−1(li−1) sin θi−1 + qi(0) cos θi − qi−1(li−1) cos θi−i

+Ti sinϕi = 0. (4.15)

Additionally, the equilibrium equation for the middle node reads:

n∑
i=1

Ti cosϕi =
n∑

i=1

Ti sinϕi = 0. (4.16)

Now the tension and shear forces used in these equations need to be expressed in
terms of RBC and fluid properties. Let us first consider the Kelvin-Voigt elements
in the RBC envelope. These produce a tangential force within the segment and
hence enter the equation for the average tension:

t̄i = kt

(
li
l0

− 1

)
+ µm

1

li

dli
dt

, (4.17)

with kt is the elastic modulus, l0 the average length of the segment and µm the
viscosity coefficient of the external segment. Bending forces between neighbouring
elements introduce a shear force at each segment end and hence an average of

q̄i =
kb(αi − αi+1)

l0li
, (4.18)

with kb the bending modulus and αi = θi − θi−1 (see Figure 4.5c). The viscous
internal elements produce a force of:

Ti = µ′
m

1

Li

dLi

dt
, (4.19)

with µ′
m the internal viscosity coefficient and Li the length of the internal segment.

All together these are 2n + 2 equations that determine the system’s behaviour.
Depending on the present node positioning, the velocity of the n+1 nodes can be
calculated.

Note that the segment forces are related by the following mechanical equilib-
rium equations

dti
ds

= −gi(s), (4.20)

dqi
ds

= −fi(s), (4.21)

dmi

ds
= qi(s), (4.22)

such that the forces at the nodal points can be determined in terms of the fluid
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loadings and the mean tension and shear:

ti(0) = t̄i +
1

li

∫ li

0

gi(s)(li − s) ds, (4.23)

ti(li) = t̄i −
1

li

∫ li

0

gi(s)s ds, (4.24)

qi(0) = q̄i +
1

li

∫ li

0

fi(s)(li − s) ds, (4.25)

qi(li) = q̄i −
1

li

∫ li

0

fi(s)s ds. (4.26)

Whereas in three dimensions RBCs keep a constant volume, this conservation
cannot directly be applied to the two-dimensional area. Since the area can be
imagined as a cross-section of a three dimensional RBC, it should still be restricted
to values close to a reference area Aref . This is done by introducing an internal
pressure:

pint = kp

(
1− A

Aref

)
, (4.27)

with kp the area modulus.

4.4.3 Hydrodynamic Equations

The blood plasma surrounding RBCs in our body mostly consists of water. There-
fore, it is modelled as a viscous incompressible fluid at low Reynolds number. The
governing equations are the ones of the Stokes flow which is formulated in terms
of a pressure and a velocity field,

p(x, y) and u(x, y) =

(
u(x, y)
v(x, y)

)
. (4.28)

Depending on these quantities, the components of the stress tensor are:

σxx = 2µ
∂u(x, y)

∂x
− p(x, y), (4.29)

σxy = µ

(
∂v(x, y)

∂x
+

∂u(x, y)

∂y

)
, (4.30)

σyy = 2µ
∂v(x, y)

∂y
− p(x, y), (4.31)

where µ is the viscosity. For an incompressible flow the divergence of the velocity
field is zero:

∂u(x, y)

∂x
+

∂v(x, y)

∂y
= 0. (4.32)
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Now a no-slip condition is applied at the fluid-RBC interface and therefore, the
fluid loadings are given by:

fi = −pint − σxx sin
2 θi + 2σxy sin θi cos θi − σyy cos

2 θi, (4.33)

gi = (σxx − σyy) sin θi cos θi − σxy(cos
2 θi − sin2 θi). (4.34)

Note that the internal pressure, introduced in Equation (4.27), enters the normal
fluid loading. Further, the values along the segment are calculated by a linear
interpolation between the values at the nodes.

The surrounding flow is modelled as a Stokes flow on the finite element grid
as explained in Section 4.2.2. Boundary conditions for the flow have to be chosen
at the vessel walls and the inflow and outflow boundaries. On the walls, no-slip
Dirichlet boundary conditions are chosen. In order to minimise boundary effects,
the inflow and outflow are set to the values given for a Poiseuille flow in a two-
dimensional channel. Specifically, the equation for laminar flow in a channel of
12 µm height with pressure gradient and viscosity set to 1 reads:

ux(y) = 1− (y − 6 µm)
12 µm− (y − 6 µm)

36 µm2 . (4.35)

4.4.4 Implementation in the Finite Element Software

To couple the RBC mechanics with the hydrodynamic flow, the mechanical equa-
tions are implemented as conditions on the finite element nodes that represent the
RBC envelop (see blue points in Figure 4.6). Since the finite element software
will eventually solve for the velocities at all nodes, these represent the variables
of the system. All mechanical equations explained above, need to be written in
terms of these velocities. Afterwards they can be implemented in the finite ele-
ment matrix similar to boundary conditions. As seen in the last section, the fluid
loadings (4.33) and (4.34) actually depend on the derivatives of u(x, y). How the
derivatives can be expressed in terms of the nodal velocities is explained hereafter.
In this work, I choose to implement the RBC equations as a constraint on the flow
using the penalty method explained later in this section. Likewise, a Lagrange
multiplier method could be used but its implementation in FEniCS was not as
straight forward as expected.

Regarding the initial implementation of the RBC on the finite element mesh,
several modifications have to be made by hand. The initial RBC envelope is
implemented as a polygon in the mesh and the interior of the cell is excluded from
the mesh as can be seen in Figure 4.6a. However, this raises a problem because
the elements on the RBC envelope are not equally long and consequently, the
elasticity of the elements would lead to large initial forces. Therefore, the nodes
are moved to equal distances by hand, such that the distortion of the surrounding
mesh is minimized. An example is shown in Figure 4.6b. For the coupling to the
central node, another modification needs to be applied. The central node and the
corresponding triangular elements are added manually as seen in Figure 4.6c.
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a b

c d

e f

Figure 4.6: a) Boundary points and neighbours are marked on the lattice as created
by FEniCS. b) Boundary points were moved manually, such that all elements
connectin neighbouring points have an equal length. c) New mesh after manually
adding the midpoint of the RBC. d) Points used to calculate the derivatives at a
specific point (black) are shown. e) The red points show the new nodal points on
the new mesh after moving the RBC vertices according to the dynamical equation.
The black points show a configuration from the previous time step. f) Definition
of nodes on one quadratic finite element triangle.
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Treatment of Derivatives

In order to implement the mechanical equations (4.14) and (4.15) based on the
fluid loadings (4.33) and (4.34), the derivatives of the velocity at a point (xi, yi)
need to be rewritten in terms of the nodal velocities (ui, vi). Note that u indicates
the x-component and v the y-component of the velocity.

For the finite element calculation quadratic elements were used for the veloc-
ities. This means that on a triangular element, there are six nodes as shown in
Figure 4.6f and the speed is determined by a quadratic equation. Hence, the x-
component of the velocity on this particular element is described by the function:

u(x, y) = a0 + a1 x+ a2 y + a3 x2 + a4 xy + a5 y2, (4.36)

with six parameters ai. These can be determined by the six constraints at the
nodal points. These conditions are given by ui = u(xi, yi). Writing this as a
matrix equation yields⎛⎜⎜⎜⎜⎜⎜⎝

ui

uj
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um

un
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a1
a2
a3
a4
a5

⎞⎟⎟⎟⎟⎟⎟⎠ (4.37)

and the coefficients are given by a = M−1u. On this basis u(x, y) is determined
by the positions and speeds at the triangle nodes, such that derivatives can also
be found as follows:

∂u(x, y)

∂x
= a1 + 2a3 x+ a4 y, (4.38)

∂u(x, y)

∂y
= a2 + 2a5 y + a4 x. (4.39)

Equivalently, the derivatives of the y-component v can be found by introduc-
ing six new coefficients bi. Each coefficient ai/bi depends on all six nodal values
ui, uj, uk, ul, um and un, such that the final expressions for the mechanical equa-
tions are rather long. However, these can now be written in terms of the nodal
speeds and pressures (u, v, p) and implemented in the finite element matrix.

Figure 4.6d shows examples of the nodes that contribute to the mechanical
equations at a node i (highlighted in black). Since derivatives at the previous and
following nodes contribute, their triangular points are highlighted in green and
red, respectively. If the relevant node i lies on a triangle edge, the two triangles
are the same one, because only nodes of the same triangle can be coupled to node
i. This is necessary in order to keep the sparsity pattern of the overall matrix
which is important for the solution process.
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Penalty Method

In order to explain the used method, we need to revisit the formulation of the
finite element problem again. As described previously, the finite element software
solves the matrix problem:

Kij γj = Fi. (4.40)

In the penalty method a second matrix Pij and a corresponding load vector Qi are
introduced, which contain the constraints on the RBC boundary [205, 206, 207].
Note, that only entries corresponding to the nodes on the RBC boundary are
populated in Pij:

(Kij + Pij) γj = Fi +Qi, (4.41)

where the entries of Pij and Qi are both multiplied by a penalty parameter. To
assemble these structures, the equations for the RBC need to be formulated in
terms of the nodal values ui and pi.

Regarding the penalty parameter, its value is not predefined and depends on the
system that is modelled. If it is chosen too small, the constraint is not enforced
properly. In contrast, a large parameter increases the condition number of the
system, which might lead to a poor convergence of the solver.

4.4.5 Dynamics

The Finite Element Method described above yields the instantaneous velocities un
i

at time step n for a given positioning of the nodes xn
i . Using these velocities for

the n+ 1 nodes, the RBC can be evolved in time whereby the time step dt has to
be chosen sufficiently small to avoid numerical instabilities.

In this work, an order-two scheme is applied according to Ref. [202], where the
next positions xn+1

i are given by

xn+1
i = xn

i +
dt

2
(un

i + ũn+1
i ), (4.42)

where ũn+1
i is calculated using the predicted nodal positions

x̃n+1
i = xn

i + dt un
i . (4.43)

In contrast to a forward Euler scheme, this approach reduces the required time
step from 1 ms to 0.2 ms [202].

Once the new positions are found, the finite element mesh needs to be updated.
Firstly, the new nodal points are set as nodes of the new finite element mesh.
Secondly, the FEniCS software creates a triangular finite element mesh around the
RBC and thirdly, the midpoint of the new RBC is added manually. To illustrate
this process the moving of the nodes is depicted in Figure 4.6e with the new mesh
already plotted in the background.

4.4.6 Model Results

During the implementation of the method described in the previous section, several
difficulties occurred. Regarding the implementation in FEniCS, it turned out



120 Finite Element Model for Red Blood Cells in Flow

a

b

c

Figure 4.7: a) Flow field calculated from the round initial shape. The blue line
indicates the position of the RBC envelope. Yellow arrows indicated velocities
with large magnitudes and blue ones with small magnitudes. b) Same as in a) but
at a later time. The deviation from the spherical shape can be seen clearly. c) The
flow field at another time point gets distorted because of numerical instabilities.
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parameter value

bending modulus kb 9 · 10−7
µN µm

rest length l0 0.12 µm

initial RBC radius rRBC 1.5 µm

reference area Aref 7.07 µm2

area modulus kp 5 · 10−6
µN µm−2

fluid viscosity µ 1 µNms µm−1

elastic modulus kt 1.2 · 10−5
µN µm−1

time step dt 0.05 ms

penalty parameter P 105

Table 4.1: Overview of the parameters used in the simulations.

that accessing the internally numbered nodes is not straight forward and requires
converting back and forth between differently numbered degrees of freedom. It was
possible to find the indices of the relevant nodes by defining restrictions on specific
areas of the mesh. To achieve this, the python library multiphenics was used
which was developed at SISSA mathLab by Dr. Ballarin, under the supervision of
Prof. Rozza.

Despite all challenges, the deformation of a RBC envelope in flow was simulated
and the results are shown in Figure 4.7. When the flow fields and RBC shape in
Figure 4.7a and b are compared, it can be seen that the RBC becomes thinner
in direction of the flow. This is in line with expectations, because the flow field
pushes against the membrane in the direction of the flow. The simulation validates
that the more central side of the RBC envelope is moved forward more quickly
because of the parabolic flow field in the channel.

However, there is still a problem with the code, such that long evolutions of the
RBC shape cannot be achieved. This problem is allocated to numerical instabilities
of the used penalty scheme. Potential problems with the penalty method have been
reported and discussed in Ref. [207]. An example of such an instability is shown
in Figure 4.7c, where the flow field is clearly distorted in an unphysical way.

The detailed implementation of the derivatives explained above, already im-
proves the numerical convergence. During Hanno Henninghaus’ thesis we tried
to implement the equations with a simpler two point difference scheme, but this
implementations was even more unstable. In summary, the model implementation
was improved during this thesis but some numerical issues are still persistent.

4.5 Discussion of Flow Behaviour

In this chapter the properties of a RBC in hydrodynamic flow were examined in
more detail. A two-dimensional method was chosen because the implementation
seemed suitable for our purposes at the start. The advantage of the proposed
model is the treatment of the membrane mechanics in an exact manner; meaning
that the nodes of the membrane are coupled explicitly, in contrast to a continuum
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manner as done in other models.
The implementation of a new method to include forces, relying on derivatives

of fluid velocity, improved the convergence of the numerical results for the flow
profiles. This enables me to model the initial deformation of the two-dimensional
RBC envelope and the expected behaviour was produced. However, the solution
still seems to be unstable in some cases, such that the RBC evolution in time could
only be achieved for few time steps before numerical instabilities occurred. The
reason for these lie in the way the mechanical constraints are implemented on the
finite element mesh.

To resolve these problem its origin would have to be found by a detailed math-
ematical analysis of the problem. Other ways of implementing the constraints
could also be tested to achieve better results. A Lagrange multiplier approach
seems most promising.

Besides the problems with the implementation of this model, the two-dimensional
approach has shortcomings with respect to modelling the experiments. In exper-
imentally obtained videos it can be seen, that RBCs seem to fold when flowing
through the narrow constriction. Such a phenomenon would not occur in a two-
dimensional simulation. However, for the experimentally studied shape relaxation,
a two-dimensional approach would be sufficient because for the height recovery
process the exact shape is not the most relevant aspect. The process is rather
determined by the membrane properties.



Chapter 5

Cellular Potts Model for Cells on
Micropatterns
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5.1 Modelling Cellular Spreading and Migration

In order to simulate cell shape and dynamics there have been two major modelling
approaches which are applied at the single cell level as well as the tissue scale.
These two approaches are the Cellular Potts Model (CPM) and the Phase-Field
Model. Whereas in CPMs a cell is described as a collection of spins on a lattice, in
Phase-Field Models it is depicted by a scalar field which has a sharp but smoothly
decaying interface at the cell boundary.

Here, the focus lies on a CPM which has been developed by Philipp Albert in
the group of Prof. Ulrich Schwarz [14]. In general CPMs differ in the terms that are
included in the Hamiltonian describing the system. The first CPM was introduced
by Graner and Glazier [208] and modifies the well known idea of modelling phase
transitions with an Ising-type model. The key feature to model cells with this type
of model is to include an area constraint for each cell and in the case of Graner
and Glazier also a cell type specific cell-cell interaction. Their model enabled them
to show that cells with different interaction energies sort into islands of same cells
and phase separate for long time scales.

Following this idea of modelling cell migration there have been various at-
tempts to improve on this simple model and incorporate different aspects of cell
dynamics. Particularly the group of Prof. Roeland Merks has developed several
models including different features of real cells; they were able to describe tumor
growth [209], include mechanisms for cell polarity, couple the CPM to a finite ele-
ment method for the substrate [210] and include internal structures such as focal
adhesions [211].

There have been different approaches to model cell polarity. Biologically it
has its origin in cytoskeletal rearrangements which can lead to cell contraction at
the cell rear, pushing at the cell front and hence lead to movement. Since cells
control this process by means of internal signaling, the most accurate way is to
set up a reaction-diffusion system inside the cell. This was done by the group
of Prof. Edelstein-Keshet who included Cdc42, Rac and Rho dynamics inside a
CPM [212, 211]. Even a simple reaction-diffusion system with one slow and one
fast diffusion constituent can lead to a polarization front which has been described
as wave-pinning [213]. However, including a whole reaction-diffusion system is
computationally expensive. Therefore, other appoaches have been found which
produce the same behaviour using minimal computational effort. The model by
Albert and Schwarz [14] couples cell migration to a polarization vector which
is specific to each cell. Another way is to utilize a scalar field which captures
cytoskeletal modifications through local feedback [214, 215].

In order to understand internal cell structures better it is beneficial to examine
cells in confined areas. To achieve this, cells have been placed on micropatterns
which act as adhesive islands. To model this experimental set-up, the model
of Albert and Schwarz is suited well [14]. It has been shown that cells develop
invaginated arcs when they span non-adhesive areas. These arcs are formed by
strong peripheral bundles and have an elastic component additional to the normal
line tension. Albert et al. incorporate this feature by employing the tension
elasticity model [216].

In this thesis it is shown how internal stress fibres can be added to the CPM
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by Albert and Schwarz. In collaboration with the group of Prof. Sanjay Kumar
from the University of California Berkeley the model was used to describe a simple
mechanism of stress fibre evolution in spreading cells.

This chapter starts with discussing important biological aspects of cell spread-
ing in Section 5.2. Then the details of the here employed CPM are given in
Section 5.3, where I also explain and discuss a different implementation of the
tension elasticity model. In Section 5.5 the model is applied to understand the
stress fibre evolution during spreading and finally the employed CPM is discussed
in Section 5.6.

5.2 Biological Background

5.2.1 Cell Cytoskeleton and Migration

Cell migration is a complex process involving various biochemical and mechanical
processes. It is made possible by the polymerization of actin, which forms bundled
filaments as well as branched networks within the cell. These structures will be
explained in this section and are shown in the cartoon in Figure 5.1. Forces can
only lead to a forward movement if the cell can pull/push on the substrate. This
is accomplished through so-called focal adhesions that also act as mechanosensors,
such that cells react differently in soft and stiff extracellular matrices.

The general mechanism behind migration on a flat substrate is the polymeri-
sation of actin at the front of the cell in a region called lamellipodium and depoly-
merisation and contraction at the rear of the cell. Additionally, focal adhesions are
formed within the lamellipodium where the cell can exert forces. Aspects of the
cell membrane mechanics also play a role, since it is easier to push the membrane
forward if it is less tense [218, 219].

As mentioned above, actin forms structures with different mechanical proper-
ties and functions. There are dense networks like the cell cortex and the lamel-
lipodium and contractile as well as non-contractile fibres. Actin monomers as-
semble into polar double stranded filaments which are the building blocks of most
structures. The higher level structure is determined by the associated proteins;
i.e. the protein Arp2/3 can induce branching points. Contractility relies on non-
muscle myosin II forming mini-filaments which can pull in both directions and
walk towards the barbed ends of actin filaments. A comprehensive review can be
found in Ref. [217].

The lamellipodium spans across the whole front of the cell and consists of en-
tangled branched actin networks. The main polymerisation factor for the assembly
is the Arp2/3 complex which is activated via the WAVE complex [220, 221]. At
the rear of the lamellipodium, myosin motors are present and help disassembling
the network [222, 223]. Over all a retrograde flow develops [224] where actin poly-
merises at the front of the cell and flows towards the rear over time. This actin
turnover makes the lamellipodium viscous on longer time scales.

Without anchoring to the substrate, the cell would not be able to move. The
connection to the extra-cellular matrix is accomplished through focal adhesions
which are also mechanosensitve structures [225, 226]. A schematic of their struc-
ture and stained microscopy images can be seen in Figure 5.2. Integrins (red in
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Figure 5.1: The graphic is adapted from Ref. [217]. A cartoon of a migrating cell
(migration towards bottom-right) is shown, highlighting the different types of actin
organisations inside the cell as indicated in the magnifications. For illustration
purposes the upper part of the cell is not shown, such that the internal structure
is visible. The blue oval in the middle is the cell nucleus.
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Figure 5.2: Graphic of integrins and focal adhesions form Ref. [230]. a) Cartoon
of the structure of a focal adhesion. It is shown how integrins incorporated in the
plasma membrane are connected to the actin stress fibre by proteins. b) The left
image shows the stained actin cytoskeleton, in the middle image vinculin is stained
and the right image is a superposition of the two.

Figure 5.2a) connect the structure through the plasma membrane to the extracel-
lular matrix and several different proteins mediate the connection to stress fibres.
For example, talin binds to the cytoplasmic domain of the β integrin subunit and
unfolds upon the application of force such that binding affinities are changed. This
conformational change also enables vinculin to bind to talin [227, 228]. In this way
the cell reacts to mechanical signals since vinculin enhances the clustering of inte-
grins. The assembly of focal adhesions is also force dependent. So-called nascent
adhesions of approximately 100 nm diameter form first. Then forces produced
from the retrograde flow are necessary for these to grow further and finally myosin
IIA is needed for the transition to mature focal adhesions [229].

Another type of actin organisation within cells is the formation of bundles.
Extending from the lamellipodium towards the front there are filopodia which
are cross-linked equally oriented actin filaments. The cross-linking proteins are
α-actinin, fimbrin, and fascin. As can be seen in Figure 5.1, the filopodia extend
towards the front and enable the cell to sense its environment. By adding myosin to
actin bundles composed of differently oriented filaments they become contractile,
the so-called stress fibres [231]. In cells there are two main types, ventral stress
fibres and transverse arcs. The ventral stress fibres are approximately aligned
with the direction of motion and end at focal adhesions. These consist of equally
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Figure 5.3: Each row shows a different fibronectin pattern and the triangle edge
length is 46 µm. The second column shows the location of the focal adhesions
through the labeling of vinculin, in the third row actin marks the location of stress
fibres and in the fourth row a superposition of both can be seen. Images are taken
from Thery et al. [13].

oriented actin filaments which are cross-linked by myosin II motors. Transverse
arcs lie perpendicular to the direction of movement and are not attached to focal
adhesions. They are assembled from the destructed actin network behind the
lamellipodium [232]. Similar to the ventral stress fibres there are dorsal stress
fibres which extend between the transverse arcs and the focal adhesions in the
lamellipodium, but these do not contain myosin.

5.2.2 Micropatterns in Cell Experiments

Randomly moving cells are out-of-equilibrium systems and adopt very heteroge-
neous structures such that a detailed examination of internal architecture is diffi-
cult. In order to circumvent this problem the use of micropatterns was established.
These are (in most cases) two dimensional prints of fibronectin, a material that
cells can adhere to. Since the background is chosen such that cells cannot adhere,
they spread in a predictable manner until the pattern is covered. Compare the
images of Thery et al. [13] in Figure 5.3. In this very influential study Thery et al.
described how non-adhesive areas can be covered by spanning thick actin cables
across the region. They also observed a reproducible network of internal stress
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a b c

Figure 5.4: Chen et al. examined the internal structure of cells on micropatterns of
alternating concave and convex regions. a) Examined fibronectin pattern. b) 3D
live SIM image of a concave region. Radial fibres (RF) and transverse fibres (TF)
are indicated. The colour code shows the height within the cell and the scale
bar corresponds to 5 µm and the magenta line shows the edge of the pattern.
c) Illustration of the underlying structure. The figure is adapted from Chen et
al. [233].

fibres spanned between adhesive sites.

By employing micropatterns of alternating curvature along the edge, as can
be seen in Figure 5.4a, Chen et al. examined the exact structure of the actin
network above non-adhesive regions. Where the cells form protrusions at positive
curvatures, the cell extends further outwards in negative curvature regions such
that it spans the non-adhesive area with an actin edge-bundle. By this mechanism
the curvature in the cell circumference is reduced. Surprisingly, they found an
actin flow, which is directed towards the edge-bundle, opposite to the commonly
known retrograde flow. The architecture in this region can be seen in Figure 5.4b
and c, where the edge-bundle is located at the top.

The mechanical properties of stress fibres in these edge-bundles have also been
investigated in much detail. After finding that stress fibres behave like viscoelastic
cables tensed through actomyosin motors in cells adhered to a homogeneous sub-
strate [234], Kassianidou et al. [235] also examined the mechanics of stress fibres
in cells adhered to micropatterns. They were able to show, that the overall stress
fibre network structure plays a very important role in the retraction dynamics.
Hence, the connections to other fibres was found to dominate the viscous response
during the retraction after laser ablation. Furthermore, it was confirmed that
longer stress fibres dissipate more energy and are stiffer and more contractile.

When comparing these cells on micropatterns, one might notice that the in-
vaginated arcs spanning non-adhesive areas always appear to be circular arcs with
varying arc radii. Bischofs et al. [216] explained this by introducing the tension
elasticity model. By incorporating surface tension, a line tension in the circumfer-
ence and an elastic contribution from the edge-bundles, the model predicts circular
arcs whose arc radius depends on the spanning distance. The relation was suc-
cessfully shown to hold for many experimental data sets and is also employed in
this thesis.
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5.3 The Cellular Potts Model

A CPM is based on the Monte Carlo Method [236] and uses the Metropolis al-
gorithm to sample the cell’s phase space efficiently. The idea is that states are
chosen with a weight according to the Boltzmann distribution, hence incorporat-
ing stochastic effects during time evolution. On average, the system will move
towards the lowest energy state although it may get stuck in local minima.

Our CPM is implemented on a two-dimensional square lattice so that each
lattice site can either belong to the cell or the surroundings. Additionally, lattice
sites can be defined as adhesive, which makes it possible to implement underlying
patterns. The Metropolis algorithm is used to simulate cell spreading by randomly
trying to flip a lattice site at the cell periphery. If the flip reduces the value of the
energy functional, it is accepted, otherwise the flip is accepted according to the
Boltzmann factor e−∆E/(kBT ). The energy change is calculated from the system’s
Hamiltonian which is shown hereafter. Instead of counting single spin flips as
time units, the concept of a Monte Carlo Sweep (MCSweep) is used. For this,
the number of possible inversion sites N at the cell periphery is counted. One
MCSweep then picks N sites along the cell periphery at random.

In principle the interactions between several cells on one common lattice can
be treated but additional rules need to be implemented. Here, we only model one
cell at a time and are not interested in cell-cell interactions.

5.3.1 Energy Functional

All aspects that are thought to be important for cell spreading on patterns need to
be incorporated in the Hamiltonian. The real cell lives in a 3D environment, which
is encountered for by imagining the 3rd dimension as an area reservoir so that a
cell can spread out as long as it has not reached its maximal size. The Hamiltonian
as introduced by Albert and Schwarz [14] consists of four terms corresponding to
the main mechanisms regulating the spreading process:

H = σA+ λsimplel +
∑
arc i

EA

2L0,i

(Li − L0,i)
2 − WAref

Aref + Aad

Aad, (5.1)

where the first term accounts for surface tension σ and hence scales linearly with
the cell area A. The second term is the contribution due to simple line tension
λsimple which is proportional to the cell perimeter l. In addition to this simple line
tension, we account for an extra elastic line tension present in free arcs, seen in
the third term, and EA is the associated elastic modulus. Li is the length of the
invaginated contour and L0,i its resting length which we assume to be the spanning
distance. The last term considers the adhesion energy due to the adhesive pattern,
where Aad is the adhered area. Aref is the cell’s reference area and W the adhesive
energy density which reflects the number of available adhesion receptors.

5.3.2 Parameter Estimation

Depending on the cell type, the parameters have to be chosen slightly differently to
reproduce the right cell behaviour. In Section 5.5 the case of U2OS cells spreading
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a b
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Figure 5.5: a and b) show schematics of micropatterns in black with a simulated
cell (grey) spreading on them. The green circle indicates a fit to the free arc (blue)
of the spreading cell. The spanning distance d is also indicated. c) The forces
acting in a free arc are exemplified. The surface tension pulls the contour inward
and the simple and elastic line tension pull it outwards.

on micropatterns will be discussed. The relevant parameters for these cells are
already adopted here. In the experiments as well as the simulations two kind of
patterns were used, the Top Pattern and the Side Pattern as shown in Figure 5.5a
and b.

The surface tension should be of the order of 1 nN µm−1 and can vary be-
tween different cell types. Previous studies suggest σ ≈ 2 nN µm−1 for endothelial
cells [237] and σ ≈ 0.7 nN µm−1 for epithelial cell sheets [238]. The simple line ten-
sion arises due to the actin cytoskeleton and hence should be λsimple ≈ 10 nN [225].
The value of the elastic modulus EA can be calculated assuming the tension elas-
ticity model and measuring the radii of the cells’ invaginated arcs. Finally, the
adhesion strength depends on the number of adhesion receptors available to the
cell. Previous estimates yield a value of W = 20 nN µm [239]. For our parameter
set a value of W = 10 nN µm is sufficient for spreading.

5.3.3 Tension Elasticity

Additional to the simple line tension λsimple that acts along the contour of the
cell, we employ an elastic line tension, λelastic = EA(L − L0)/L0, acting in arcs
which span non-adhesive areas (see blue arcs in Figure 5.5). This idea has been
formulated within the tension-elasticity model (TEM) by Bischofs et al.[216] and
the main difference to a simple tension model is that the arc radius now increases
with spanning distance. The TEM leads to the following self-consistent equation
for the arc radius R:

R =
EA

σ

(
2R

L0

arcsin

(
d

2R

)
− 1

)
+

λsimple

σ
, (5.2)
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Figure 5.6: a) Measured arc radii for the two different patterns, sorted according
to binding position. Black data shows the data for untreated cells and red data
corresponds to blebbistatin treated cells. b) Fraction of cells for which an arc
radius could be measured. The rest of the cells has a straight edge bundle which
prevents invagination.

where EA is the one-dimensional elastic modulus of the edge bundle which has
a contour length L and its rest contour length L0 is assumed to be equal to the
spanning distance d. Surface tension is denoted by σ.

Since this relation uniquely determines the arc radius through the three tension
parameters EA, λsimple and σ, we can calculate one of them when knowing the
others. Since we only use one cell type here, we assume the surface and simple line
tension to be equivalent in all cells (σ = 0.7 mNm−1 and λsimple = 7 nN, unless
otherwise stated) and determine the elastic modulus depending in the final arc
radius of the cells on a given pattern.

We extracted the cells’ final arc radii from the experimental spreading data
and found these to be different for the Side and Top Patterns (see Figure 5.6a)
with little difference between the binding positions. On average, the Side Pattern
seems to result in a larger arc radius even after blebbistatin treatment (see red
data points). However, we could only fit radii to about half of the cells on the
Top Pattern because the other cells ended up with a strong edge bundle across the
gap which was approximately straight. In Figure 5.6b the fraction of cells having
a measurable invaginated arc is plotted and a clear reduction can be seen for the
cells on the Top Pattern compared to the Side Pattern.

We propose that this difference originates within the geometry of the top-
spacing pattern and the cells can be sorted into two types. The first type bridges
the gap with a mostly straight fibre because the cell has to bridge a much larger
gap which requires a stronger edge bundle. However, if this edge bundle breaks
down before the end of the spreading process by forming very strong diagonal stress
fibres, the final edge bundle will be weaker and result in stronger invaginated arcs.
For the following calculations we only deal with type two which has a measurable
arc radius.

Using formula (5.2) and the measured arc radii of 19.25± 0.76 µm and 16.45±
0.75 µm (Side and Top Pattern respectively) we calculate the elastic moduli to be
EA = 238±40 nN and EA = 118±26 nN, respectively. Here we see that the cells
on the Side Pattern have a considerably larger elastic modulus than the cells that
have an invaginated arc on the Top Pattern. A similar trend can be confirmed for
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Figure 5.7: Example of the stress fibre deposition procedure. a) The cell is in the
spreading process and does not cover the whole pattern yet. The red stress fibres
lie within the cell and are thus recorded as proper stress fibres. The blue lines
depict potential stress fibres which are not covered by the cell area yet. b) Once
the cell has spread further, the previously blue lines, are now recorded as stress
fibres.

blebbistatin treated cells.
To simulate cell spreading on the Side Pattern the choice of EA = 238 nN

is the most plausible. For the Top Pattern the choice is not so clear because
of the division in two different kinds of spreading events, the ones where the
final edge bundle has a lower elastic modulus and the ones where a much larger
modulus prevents a visible invagination of the bundle. Therefore, we choose the
same modulus for cells on the Top Pattern as on the Side Pattern to be able to
compare them more easily and avoid the unambiguity in spreading events on the
Top Pattern.

5.3.4 Circumference and Arc Detection

To calculate the energy of a given configuration the cell perimeter needs to be
known. To extract this quantity from the sites on the square lattice the marching
square algorithm is used. This algorithm uses the local neighbourhood of each spin
in order to define a smooth outline of the cell. The cell area is simply calculated
from the number of occupied spins.

As part of the simulation, free arcs are treated in a special way and hence
need to be detected during the simulation, this procedure works as follows: An
algorithm walks along the contour of the cell until a potential arc starting position
is found which is defined as a transition between an adhesive and non-adhesive
site. From here the algorithm walks along the contour which lies above the non-
adhesive area until another adhesive site is reached which then marks the end of
the arc. In a final step, a circle is fitted to the defined arc so that the arc radius
can be determined.

5.3.5 Stress Fibre Definition

The implementation of stress fibres originates in the idea that stress fibres are
formed parallel to the lamellipodium in a periodic process. Hence, we integrate a
rule that stress fibres are formed between two points that previously supported an
arc spanning a non-adhesive area. However, a minimum distance is introduced that
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corresponds to the experimentally observed mean distance between two adjacent
stress fibres. Before defining a specific stress fibre, the distance to the previously
introduced stress fibre is checked and the stress fibre is only accepted if at least
this minimum distance is fulfilled at the faster spreading side (see left and top leg
in Figure 5.7). Furthermore, stress fibres are always introduced as straight lines
but are only shown if completely covered by the cell body (red fibres in Figure 5.7,
blue fibres are not covered by the cell yet in Figure 5.7a). Although stress fibres
might be remodelled in the living cell, the model does not allow for changes after
the fibres have been put down. The non-uniform distribution results from the
stochastic nature of the CPM dynamics.

5.3.6 Fitting Parameters to Experimental Data

We use a minimization procedure based on the Nelder-Mead algorithm [240] (as
implemented in SciPy) to fit the simulation parameters to the experimentally ob-
tained data. As a quantitative comparison, we use the time evolution of the central
point on the invaginated arc. Therefore, a distance measure can be calculated by
evaluating the mean squared deviation between the two corresponding trajectories.
The parameter fit is accomplished through the following steps: First, a suitable
set of initial parameters is found by a coarse scan of the relevant parameter ranges.
Then, the optimization procedure is started, which runs the CPM with the given
initial parameters and uses the Nelder-Mead simplex algorithm to determine the
next set of parameters according to the minimization of the distance measure.
Finally, once the algorithm converges to the optimal parameter set, it stops. In
principle, an additional parameter also scales the time of the simulation. However,
this value must be fixed across all simulations to allow meaningful comparison of
the extracted parameter values.

5.4 Treatment of Invaginated Arcs in the Model

5.4.1 Previously Implemented Method

The procedure described here was used in the model published by Albert et al. [14].
For the Monte Carlo procedure it is necessary to calculate the energy change upon
inversion of an element. We already know that the energy functional depends on
the cell area and circumference, such that the change in these quantities needs to
be calculated. Since the area is calculated from the number of pixels, the change
will be ±1. For the change in circumference all neighbouring sites need to be taken
into account as well, which leads to a slightly more complicated procedure using
the Marching Square algorithm.

Whenever the chosen border element lies on one of the declared elastic arcs,
the change due to the TEM contribution also needs to be calculated. The arc
energy depends on the difference between the arc length of the concave circular
border and the spanning distance between the two anchor points. These quantities
are calculated when the circle fitting algorithm is applied to the cell. Because of
computational reasons, this is only done after every MCSweep.
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Figure 5.8: Cartoon showning the problems with the arc fitting procedure applied
by Albert et al. [14]. The blue square in the bottom graphs is the one that is
chosen to be inverted. The left column examplifies that it would be better if a new
arc is fitted to the non-adhesive region. The right column shows the errors that
occur by only fitting arcs every MCSweep.

When trying to invert an arc site, the already calculated change in circumfer-
ence can only be caused by a change in the arc length of the specified arc. This
means that we assume that the new arc length Lnew = L + δC and hence the
change in elastic energy is calculated from δC.

Although this procedure, which will be called Circle Fitting Method (CFM)
from here onwards, is computationally very efficient, there are a few drawbacks:

• During the spreading process the arc sometimes deviates from the circular
form. Strictly speaking only the final configuration on the pattern is an
equilibrium configuration and will produce a nearly perfect circular arc. Cell
spreading is an active process which is driven through the strong adhesion to
the micropattern. Therefore, the cell contour will deviate slightly from this
configuration. The use of the CPM for this process can be justified because
spreading of a biological cell is sufficiently slow.

• When a circle along the arc is inverted, the above procedure determines the
new arc length from the previously fitted arc plus the change in circumference
δC. However, this new length does not have a physical meaning. Rather,
a new circle would have to be fitted to the updated region indicated by the
blue circle in the left column in Figure 5.8.

• The problem from the last point is amplified because arcs are only fitted
every MCSweep. Hence, the reference arc shape does not correspond to the
present cell configuration, as can be seen in the right column in Figure 5.8.

A possible solution to this problem would be fitting a new circle every time
the algorithm attempts inverting a site along an arc. However, this means that
for an unsuccessful inversion, the site needs to be inverted again and the old arc
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data needs to be restored. I implemented a version of this suggested procedure
but this attempt ran into a lot of problems, i.e. arcs always split into two if
there is the chance because two short arcs are energetically preferable to one long
arc. Therefore, I decided to implement another method, which is explained in the
following section.

5.4.2 Newly Implemented Method

Instead of fitting a circular arc to invaginated regions, I test a method here which
determines the actual contour length of the arc and uses this to calculate the TEM
contribution to the energy change. This new method will be called Marching square
Arc length Method (MSAM) from now on. The method is advantageous because
it circumvents the above mentioned problems. Since now the arc length larc is the
arc part of the actual circumference of the cell, it makes a lot of sense to use δC
to calculate ∆ETEM . The problem of only fitting arcs every MCSweep does not
apply any more, since the actual arc length can be simply adjusted after a possible
inversion.

To determine the arc length, a rectangular box is set around the arc (determined
by the maximum and minimum position of the arc data in x and y-direction) and
the contribution from all of these sites to the arc length is added up. Sites on
the adhesive pattern and sites, that do not lie on the contour or a neighbouring
position, have a zero contribution. Note, that for the circumference of the cell the
whole lattice is scanned.

In most cases this method leads to larger arc length than the fitted circle
contour because the cell edge lags behind the ideal circle and is more uneven than
the analytically calculated equilibrium shape. The difference between the two arc
length during spreading on the Side Pattern (all three initial binding positions) lies
around 0.32 µm with a typical length of 16 µm. This is not a very large difference
but Figure 5.9 shows that it has an impact on the spreading process. In the figure
we see the area of the cell plotted as a function of MCSweeps for the three initial
binding positions in the different plots. In each plot, the area increase is compared
for the CFM (red), the MSAM (yellow) and simulations with just the simple line
tension (green). Initially, spreading occurs faster with the elastic line tension. For
the cells that have to turn around corners because they start on the long edge
of the Side Pattern (middle and bottom plot), initial spreading is faster with the
MSAM. The data was averaged over ten simulations.

The difference between the simple tension model and the TEM can be explained
from the following observations. The TEM prefers less invaginated arcs because
the energy depends on the difference between the arc length and the spanning
distance, which is smaller for less concave arcs (see Figure 5.10). By increasing
the spanning distance in Figure 5.10b the contribution from the TEM is made
smaller but for this pattern geometry, a larger spanning distance also means a
larger cell area (compare the difference between Figure 5.10a and b). Therefore,
the TEM reaches larger areas earlier during the spreading. The TEM curve also
fits better to experimental observations, as will be discussed in Section 5.5.2.

In Figure 5.10b another reason can be seen why the MSAM is more accurate.
The green circle, which is fitted between the two anchoring points, touches the



Treatment of Invaginated Arcs in the Model 137

Figure 5.9: Cell area simulated with different energy functionals is shown. The
top, middle and bottom correspond to different starting configurations, where the
cell starts as an ellipse on the left, bottom and top edge of the Side Pattern (see
Figure 5.5b), respectively. The red lines correspond to the previously introduced
method where a circle is fitted to each arc and the yellow lines correspond to the
newly implemented method which calculates the actual arc length. All data points
are averaged over 10 equivalent simulations.
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Figure 5.10: a) A cell spreading on the Side Pattern just employing simple line
tension without any elastic contributions. b) Here, an elastic contribution is added
for each invaginated arc, where the arc length is calculated by fitted circular arc
to the invaginated cell contour.

adhesive pattern region. In this specific geometry a circular arc is not possible
and using the actual arc contour length is a much better choice. From the data
in Figure 5.9 we saw that using the marching square contour length speeds up the
area increase even more than using a circle fitted to the invaginated arc.

5.4.3 Energy Contributions During Spreading

To examine the differences between the two TEM methods more closely, I ex-
tracted the contributions to the accepted energy changes during the Monte Carlo
simulation (a site inversion is always accepted if the energy change is negative and
with probability e−∆E/(kBT ) if the energy change is positive). For this, the energy
changes over 50 MCSweeps were added up and extracted from the simulation.
This enables us to see, which part of the Hamiltonian drives the spreading process
most in each time interval during the spreading process.

In Figure 5.11 the energy changes during simulations using the arc-fitting-
method are shown, were the data points are averaged over 10 independent simula-
tions. The three plots show the three possible initial binding positions on the Side
Pattern; note that the bottom and top binding are equivalent by symmetry.

Let us first discuss the side binding plot which describes the case of a cell
that does not have to turn corners, but spreads evenly from the left to the right.
Here we see that the total energy (black points) starts off in the negative regime
and asymptotically approaches an averaged energy change of zero. This means
that the cell initially spreads very quickly in a directed manner and then slowly
approaches its final shape. The cell only reaches its final configuration at the
vertical dashed line. As the cell approaches this point, the gain of negative energy
changes becomes less strong in magnitude and more positive energy changes are
accepted such that on average the energy change is zero. The reason for this is,
that the cell approaches its equilibrium configuration and a single site inversion
does not contribute as much energy any more. In the plot we can also see the
different energy contributions. The changes due to simple line and surface tension
are mostly positive or close to zero, whereas adhesion and elastic line tension are
mostly negative which shows that these two drive the spreading. The elastic line
tension (red), which is calculated with the circle fitting procedure, first increases
in magnitude and then approaches zero again. During the initial period the arc
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Figure 5.11: Accepted energy changes during the previously developed CPM sim-
ulation of a cell on the Side Pattern (see Figure 5.5b) are shown. Each point in
the plot corresponds to the sum over 50 accepted MCSweeps. The top, middle
and bottom correspond to different starting configurations, where the cell starts
as an ellipse on the left, bottom and top edge of the Side Pattern, respectively.
The total energy is shown in black, whereas the other colors depict the different
energy contributions as indicated in the legend. All data points are averaged over
ten equivalent simulations. The vertical lines depict specific configurations during
the spreading process; in the top plot, the line indicates that the cell has reached
its final configuration that covers the whole pattern. In the other two plots, the
lines show, when the cell has reached the opposite (second) corner of the pattern.
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first has to form properly, then the elastic energy change is largest, as the contour
approaches the optimal arc shape. Once this configuration is reached, the contour
moves forwards as a whole entity and hence its energy contribution does not change
much any more.

Now we consider the initial bottom and top binding. Here the vertical dashed
line indicates when the cell has reached the opposite corner from its starting posi-
tion; i.e. when the cell starting at the bottom has reached the top left corner of the
pattern. In contrast to the total energy of the previously discussed side binding
cell, these total energies have a peak just before reaching the corner, but overall
also approach zero. The reason for this peak can be identified as the contribution
from the adhesion energy, as that energy jumps down at the corner. The reason
for that is of geometric nature, because the outer part of the corner offers some
additional adhesive area to cover. When considering the elastic contribution, we
see that it only starts to matter much after turning the corner. From there on-
wards the curve shape is similar to the one of the initially side binding cell, but
more spread out and weaker in magnitude.

If we now jump to Figure 5.12, a similar plot can be seen which is based on
simulations using the newly implemented method of finding the actual arc length
with the Marching Square algorithm. The new elastic contribution is shown in
yellow and the red empty circles show the previously calculated energy change
from the CFM as comparison. Overall, the energy change contributions behave
very similar to the ones discussed for Figure 5.11 but the magnitude of the elastic
contribution is now larger for the main spreading phase in all three cases. This
agrees with the observation in Figure 5.9 that the area increases quicker when the
new MSAM is used.

Overall it can be said that the two implementations of the TEM produce quali-
tatively similar results but the spreading rate is affected slightly. When comparing
to experimental results, both methods would be suited well since the difference is
a lot smaller than the variations in experimental data. However, the MSAM is
physically more accurate. Nevertheless, the old circle-fitting method is used in
the remainder of this chapter, since this model has been previously published and
approved.

5.5 Results on Stress Fibre Organisation

The CPM described in the previous section is applied to U2OS (Human Bone Os-
teosarcoma Epithelial Cells) red fluorescent protein (RFP)-LifeAct cells spreading
on fibronectin micropatterns, in order to understand the mechanical properties
underlying the spreading process better. All experiments done for this work were
conducted by Elena Kassianidou in the Kumar Laboratory in the Department of
Bioengineering at the University of California. The image analysis on the experi-
mental data was done by Dimitri Probst from the Theoretical Biophysics group of
Prof. Ulrich Schwarz and the simulations and their analysis was done by myself.
The findings of this collaboration were published in Cell Reports; ”Extracellular
Matrix Geometry and Initial Adhesive Position Determine Stress Fiber Network
Organization during Cell Spreading” [29].
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Figure 5.12: Accepted energy changes during a CPM simulation with the newly
implemented arc detection are plotted for the Side Pattern. A detailed description
of the plot is given in the caption of Figure 5.11. The yellow data points show
the contribution from the new method, whereas the empty red circles show the
previous method.
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The main focus of this section lies on the stress fibre architecture inside the cells
and how it depends on the pattern geometry and spreading process. The CPM with
internal stress fibres is applied and their spatio-temporal architecture compared
to the experimental results. I also show that by fitting simulation parameters to
the experimental data, alterations in mechanical parameters of the cell can be
predicted.

5.5.1 Details on Experimental Data

For the experiments two rectangular patterns of size 48× 25 µm were designed. A
15 µm gap was left either at the top or at the side of the pattern as can be seen
in Figure 5.13. These are called the Top Pattern and Side Pattern henceforth.
The pattern area was coated with fibronectin which the cells can adhere to and
will spread on after seeding. U2OS cells were used in this study because they
are known to adhere well, spread fast and show clear stress fibres. After the
cells sedimented from solution, the spreading process was captured by time-lapse
epifluorescence imaging to visualize the actin dynamics and hence the stress fibres
(see Figure 5.13a and b). We distinguished between initial binding to the short
edge or the long edge.

There are two types of motion during the spreading process; the cells spread
along the fibronectin line or they turn around corners which requires spanning
across the non-adhesive area in the middle of the pattern. When spanning the
non-adhesive area, stress fibres are put down and build up a network throughout
the cell. At the advancing front the cell spans a peripheral stress fibre across the
non-adhesive gap. It has one lamellipodium at each end which lies on a pattern
leg. The presence of the lamellipodium was confirmed by differential interference
contrast and epifluorescence microscopy.

5.5.2 Comparing Area Increase

In the CPM simulations the initial shape of the cells is chosen as ellipses covering
one side of the pattern to mimic the experiments. The parameters of the CPM
have to be adapted to the cell type under consideration as described earlier [241].
One important parameter is the adhesion strength, which determines the speed and
ability of cells to spread on the micropatterns. Here, we choose the adhesive energy
to be just strong enough to allow spreading (W = 10 nN µm and A0 = 1200 µm2).
The cell shape during spreading is determined by a balance between this adhesive
energy and tension terms, in particular the surface tension, the simple line tension
and the elastic line tension. Some time points from the simulations can be seen in
Figure 5.13d and e.

The surface tension represents cortical contractility over the whole surface
and was previously estimated to be approximately σ = 0.7 mNm−1 for ker-
atinocytes [238]. The simple line tension represents the tension along the cell
periphery and, similar to the surface tension, is expected to be generated pri-
marily by non-muscle myosin II motors. The simple line tension is also the main
determinant of traction force at focal adhesions pinning the contour of strongly ad-
hesive cells between inward curved peripheral stress fibres, which typically is of the
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Figure 5.13: a and b) Schematic of Top Pattern and Side Pattern respectively.
Dark red represents the region with fibronectin. Representative images of U2OS
RFP-LifeAct cells spreading on each pattern initially adhering to either the short
edge (left) or long edge (right) of each pattern at different time points are shown
below. Scale bars correspond to 10 mm. c) Spreading kinetics for cells shown in a
and b, expressed as the percentage of the final area at each time point. d and e)
CPM simulation of a cell adhered to and spread on Top Pattern or Side Pattern
respectively. f) Simulations of cell area over time as cells adhere to and spread on
each pattern.
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order of a few nanonewtons [237]. For these simulations, we chose the simple line
tension as λs = 7 nN. The elastic line tension represents additional forces in the
cell periphery generated by actin cross-linkers such as α-actinin that are stretched
in peripheral stress fibres. The corresponding elastic modulus (EA = 238 nN) is
estimated by applying the tension-elasticity model described in Section 5.3.3 and
by fitting circles to the experimental cell images.

In order to validate the CPM we compared the trajectories of area increase
from the experiments and the simulations and plotted these in Figure 5.13c and f.
All simulations were averaged over 100 spreading events for each binding position
on each pattern. For the Top Pattern, we observed qualitatively similar trends
between the CPM and the experimentally obtained data (open circles); in par-
ticular, the spreading of cells that initially adhered to the long edge was much
faster than for cells that initially adhered to the short edge. For the Side Patterns,
the differences between the spreading kinetics of cells adhered to either the short
or long edge were small, both experimentally and computationally (filled circles).
The simulation captures a delay in spreading at the first corner, but not a slow-
down at the second corner. Overall, the good agreement between experiments
and model suggests that the interplay between the gain in cellular adhesion en-
ergy and tension is sufficient to explain the global dynamics of cell spreading onto
these patterns. In our experimental system cells always exhibited round arcs dur-
ing spreading, suggesting that cell shape is determined mainly by the mechanical
equilibrium between cortical and peripheral tensions at each time point. Further,
this implies that contractility is the main determinant of spreading kinetics for
cells with concave shapes bridging adhesive gaps, as assumed in the CPM. This
is in contrast to cells spreading on uniformly coated ECM substrates, where actin
polymerisation and formation of many adhesions over a broad front lead to convex
shapes [232, 242].

5.5.3 Comparing Stress Fibre Orientation

For the next step we wanted to examine the stress fibre architecture inside the
spreading cells. The experimental data is shown in Figure 5.14 where the orienta-
tions were determined using the OrientationJ Distribution plug-in in ImageJ. To
better align the experimental data of cells that spread on different timescales, we
introduced three time points for each pattern depending on its geometry, as can
be seen on the left in Figure 5.14. The experimental data shows a clear change in
orientations in the cells that have to turn corners and a stable distribution in the
other cases.

In order to understand the stress fibre formation process better, we generated
similar data with the CPM. Internal stress fibres were introduced into the CPM
as straight lines between two focal adhesions that anchor an arc above the non-
adhesive areas. They were defined to appear as soon as they laid completely within
the cell body. This encapsulates the idea that internal stress fibres are formed as
transverse arcs behind the advancing front and later straighten due to non-muscle
myosin II contractility and surface anchorage. We incorporated a minimum dis-
tance between stress fibres at the faster-spreading side of the cell, as suggested by
our quantitative image analysis (see Figure 5.15). Note that according to these sim-
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Figure 5.14: Top row of each panel: schematic showing the time points used to
normalize individual cells. a and b) illustrate adhesion onto a Side Pattern at
the long edge and short edge, respectively. c and d) illustrate adhesion onto a
Top Pattern at the long edge and short edge, respectively. Snapshots show the
typical stress fibre architecture, with highlighted stress fibres at the given time
points as given by FilamentSensor. Bottom row of each panel: mean distribution
of stress fibre orientations for naive U2OS RFP-LifeAct and blebbistatin-treated
U2OS RFP-LifeAct (+ Bleb.) (n = 33, 32, 17 and 56 cells; n = 17, 14, 11 and 23
+Bleb cells). This Figure was produced by all authors for Ref. [29].
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Figure 5.15: The spatial distances between stress fibres follow a log-normal dis-
tribution with mean 2.5 ± 1.0 mm for naive U2OS cells and 2.5 ± 1.1 mm for
blebbistatin-treated cells. This Figure was produced for Ref. [29].

ple rules, internal stress fibres have no influence on the spreading process, although
the underlying feedback processes are contained in the experimental observation
of a typical distance between subsequent stress fibres. With this simple ansatz,
we are able to predict the experimentally observed distributions (Figure 5.14).
The distributions from the simulations were constructed taking CPM data from
different regions of the pattern according to the benchmark times shown in the
left column in Figure 5.16. Early stress fibres formed during the initial spreading
phase (t1) are highlighted in light blue and later stress fibres formed during t2 and
t3 are highlighted in darker shades of blue.

We found that cells initially adhering to the long edges of the Side Pattern had
an initial stress fibre configuration that peaked at 20◦ (light blue stress fibres),
and as the spreading continued, the stress fibre configuration (darker shades of
blue) switched to 90◦, which is vertical to the long edge (Figure 5.16a). However,
cells adhering to the short edge of the Side Pattern exhibited vertical stress fibre
configurations throughout the spreading process (Figure 5.16b). For the Top Pat-
tern, cells adhering to the long edge exhibited an initial stress fibre configuration
peaking at 15◦ (light blue), and as the spreading process continued, the configu-
ration of most stress fibres converged to 0◦, which is horizontal to the long edge
(Figure 5.16c, darker shades of blue). It should be noted that in the simulation, a
second peak appears at 30◦, which is not observed experimentally. We hypothesize
that this is because most simulated cells undergo a symmetry break during spread-
ing and reach one free corner of the pattern before the other. Intermediate stress
fibres with a diagonal orientation are therefore incorporated between the newly
occupied corner and a point along the long edge. Finally, cells initially adhered
to the short edge of the Top Pattern showed a vertical initial stress fibre config-
uration, and with increasing time, the stress fibre configuration first approached
a diagonal and then a horizontal configuration (Figure 5.16d). The superposition
of stress fibre distributions onto our earlier CPM simulations of spreading cells
illustrates that stress fibres track the advancing front and store a memory of the
turning process affected by the combination of pattern geometry and initial posi-
tion. Overall, we conclude that a simple CPM for cell shape dynamics augmented
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Figure 5.16: The first and second rows illustrate adhesion onto a Side Pattern at a)
the long edge and b) the short edge. The third and fourth rows illustrate adhesion
onto a Top Pattern for c) initial binding at the long edge and d) the short edge.
Left column: schematic showing the time points used to normalize individual cells
adhered to the short or long edge of each pattern to allow for comparisons to be
made. t1 (light blue) represents the initial time point, t2 (blue) is an intermediate
time point, and t3 (dark blue) is the final time point at which the cell has spread
fully on the pattern. Center column: simulated stress fibre architecture using a
modified CPM with color-coded stress fibres, using light blue for time point t1 and
dark blue for time point t3. Right column: simulated mean distribution of stress
fibre orientations.
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Figure 5.17: a) Average intensities of naive or blebbistatin-treated U2OS cells
spreading on each pattern with different initial adhesive positions (intensities of
n = 33, 32, 17, and 56 naive cells and n = 17, 14, 11, and 23 blebbistatin-treated
cells). White arrowheads point to the arc of the peripheral stress fibre, whereas
white arrows point to the confinement of the stress fibre network relative to the
peripheral stress fibre. b) Snapshots from CPM simulations of one cell with higher
line tension (λ = 6 nN, σ = 0.2 nNmm−1, and EA = 300 nN) at the top and lower
line tension (λ = 3 nN, σ = 0.2 nNmm−1, and EA = 100 nN) at the bottom.
c) Comparison of the line tension λ, surface tension σ, and elastic rigidity EA
of control and blebbistatin-treated cells. The box represents the 25th and 75th
percentiles; whiskers extend from the first datum > Q1−1.5IQR to the last datum
< Q3+1.5IQR, with Q1 and Q3 being the first and third quartiles and IQR being
the interquartile range.
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with a simple rule for geometrically defined formation of stress fibres, based on
experimental observations, can robustly predict stress fibre orientations observed
during cell spreading.

5.5.4 Blebbistatin Effects

To qualitatively visualize the average effect of blebbistatin compared to control
cells, we overlaid the stress fibre network architecture of all of the analysed cells
at time point t2. The average stress fibre intensity of blebbistatin-treated cells
spreading on the Side Pattern (Figure 5.17a) exhibited a more invaginated arc
than control cells (Figure 5.17a, white arrowhead), which is in agreement with
earlier results [216]. Moreover, the stress fibre network was not confined to the
spreading edge as tightly as in control cells (white arrows). Similarly, the average
stress fibre intensity of blebbistatin-treated cells spreading on the Top Pattern
also exhibited increased curvature (white arrows in Figure 5.17a). Specifically, we
observed a rearrangement of stress fibres to favour shorter stress fibres for cells
bound on the long edge of the Top Pattern.

We next used the CPM to arrive at a quantitative characterization of the ef-
fects of blebbistatin treatment. To this end, we used a minimization procedure to
determine a set of parameter values for each experimentally obtained trajectory.
By calculating the deviation between the spatio-temporal evolution of the cellu-
lar envelope of experimentally recorded cells and a series of simulated cells, we
were able to determine stresses and elastic moduli for each cell and compare con-
trol versus blebbistatin-treated cells. Overall, we found that our mild blebbistatin
treatment resulted in a significantly lower line tension, but it did not influence the
surface tension or the rigidity of the free arcs (Figure 5.17b and c). To visualize
the effects of lower line tension, we ran simulations with varying line tension pa-
rameters (Figure 5.17b). By shifting to low values, we observed that the simulated
free arc showed more pronounced curvature, which was also observed in individ-
ual blebbistatin-treated U2OS cells during spreading. Furthermore, the contour
appeared more uneven, which is due to stochastic effects in the model. Overall,
our analysis confirms that the low dose of blebbistatin used in these experiments
leads to cells that exhibit a lower line tension (NMMII contractility in peripheral
stress fibres), with little to no significant effects on the surface tension (NMMII
contractility in the cortex).

5.6 Disscussion of Modelling Cell Spreading

I started by discussing the biological background of cell spreading and continued by
describing how this process can be modelled on a coarse grained scale in a CPM.
The microscopic components of the cell only appear in the various tension and
adhesion parameters. Nevertheless, it could be shown that such a model captures
the experimental behaviour of a cell on micropatterns well which means that the
most relevant physical principles are captured within the model.

We further saw that the TEM is necessary to describe cells with strong pe-
ripheral stress fibres as cells on micropatterns. The elastic contribution was shown
to be necessary for the cell to quickly cover a large area. I compared to methods
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for implementing the TEM, where the method implemented by Albert et al. [14]
computes the arc contour length by fitting a circle to the invaginated arc and my
method calculates the actual length of the contour between the two attachment
points. Both methods were shown to produce similar results, whereas the MSAM
produces longer arc contours and hence energy changes of a slightly higher mag-
nitude. This leads to a small advantage in area increase when the cell has to turn
around corners. Although the MSAM seem physically more plausible, the differ-
ence between the two methods is too small to decide, which one is more suitable
to describe experimental cell spreading data.

Finally, the stress fibre architecture was examined in the last section. I was
able to show, that the configuration could be explained by a simple model which
introduces stress fibres parallel to the advancing cell front. An average spacing
between stress fibres of 2.5 µm was found experimentally and the spreading his-
tory was shown to determine the stress fibre architecture at least for some time,
since stress fibres were shown to have a half life of 50 minutes on average by our
experimental collaborators.

By fitting the CPM to the experimental data, I also showed that blebbistatin
treatment results in a reduction in line tension while leaving the other parameters
mostly unaffected. Therefore, blebbistatin is found to reduce the NMMII contrac-
tility in peripheral arcs most. This is in agreement with earlier results that showed
that peripheral stress fibres are more susceptible to blebbistatin treatment than
the cell cortex [216].

Overall one can say that the CPM has been shown to describe the cell shape
as well as the stress fibre architecture of cells on micropatterns well. Besides
reproducing the experimental data, the CPM was able to explain the changes
induced by a mild blebbistatin treatment.
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For this thesis, I applied biophysical models in order to understand the malaria-
induced modifications of the RBC better. As these models span several scales, the
whole-cell properties can be related to changes on the molecular level. A deeper
understanding of the processes used by the parasite to modify the RBC might
eventually lead to a treatment for this devastating disease.

The modelling approaches used in this thesis were chosen to cover the main
physical aspects of cell properties. Firstly, the fluctuations of the RBC mem-
brane were examined by treating the Helfrich Hamiltonian numerically. Secondly,
the interactions between parasite and host proteins were considered in a reaction-
diffusion model and the distribution of PfEMP1 molecules on knobs was calcu-
lated. Thirdly, I aimed at employing a model for the RBC in blood flow and
finally, the cytoskeletal structures in human bone osteosarcoma epithelial cells
were modelled using a Cellular Potts Model. The first two models treat parts of
the RBC membrane in much detail, whereas the latter two models treat whole
cells on a continuous level. Both approaches are important and complement each
other. The molecular foundation of cell parameters is determined in microscopic
models, whereas the whole cell models find the influence of these parameters on
the cell behaviour.

In Chapter 2, the theoretical background of treating RBC membranes was ex-
plained in detail. The application of flickering analysis to malaria-infected RBCs
had not been done before, such that our collaborators provided us with unique
data on the RBC remodelling process. In order to understand the flickering spec-
tra on the basis of alterations in the cytoskeletal network, I implemented the an-
chor points of the spectrin network as discrete summations into the Hamiltonian
for the membrane. Using this method made it was possible to make a connec-
tion between the confinement factor, commonly used to interpret experimental
flickering data, and the parasite’s cytoskeletal modifications. Specifically, the ex-
perimentally found increase in confinement could be explained by the addition of
connections between the RBC bilayer and the underlying cytoskeleton. The para-
site does so, by assembling knobs of 100 nm diameter, which are strongly anchored
to the cytoskeleton. This is necessary because these knobs act as a platform for
the adhesion molecules PfEMP1, which transmit large forces during the adhesion
process. Another effect that increases the membrane confinement was found to
be the stretching of spectrin filaments. During the infection, the parasite disas-
sembles actin junctions in order to build its own filament network. Therefore, the
remaining network is stretched out which leads to an increased stiffness of the
individual filaments. The model also predicts an increased confinement for such a
case. Although the model helped to find the microscopic origin of the increased
confinement, there are some shortcomings that could potentially be improved in
the future. The main discrepancy between the equilibrium model and the living
RBC is the missing incorporation of active elements, which have been found to
make a significant contribution. In order to do so, dynamical simulations need to
be run incorporating the suitable active elements. However, it is not entirely clear
which membrane components cause the activity, so this issue will require a thor-
ough treatment in the future. For the purpose of this work, I focused on influences
of the cytoskeleton, which were shown to contribute to the flickering spectrum in
the described way.
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Based on these finding, the nature of the molecular changes inside the RBC
is treated in Chapter 3 by employing a reaction-diffusion model to the molecular
constituents of the system. The RBC cytoskeleton is a delicate system which re-
lies on short actin filaments as junctional points. Therefore, actin dynamics was
treated within this modelling approach and deduced that specific length depen-
dent factors are necessary to control the lengths of a filament population. A major
protein forming the parasite induced knobs is KAHRP which has a large number
of binding partners within the cytoskeleton because it is highly disordered. Based
on information in the literature on protein-protein interaction parameters, I mod-
elled the assembly of KAHRP clusters within the cytoskeletal network. The most
striking result is a very narrow parameter range that shows an association of the
assembled KAHRP clusters to the actin filaments. This result delivers a poten-
tial mechanism by which the parasite could move the initially spectrin associated
KAHRP towards the actin junction. This behaviour was found by our collabo-
rators in malaria infected RBCs through experimentally obtained colocalization
data. Consequently, this shows that the parasite changes binding affinities during
its maturation within the RBC. A potential way to do this is phosphorylation
of the relevant proteins. The appearance of the cytoskeleton was also shown to
change as KAHRP clusters form, hence the network condenses around the clus-
ters and gets stretched out in the remaining regions. This directly relates to the
results from Chapter 2, which determined the stretching of the spectrin filaments
to be one of the causes of increased confinement. Finally, the role of the adhesion
molecule PfEMP1 in the knob structure was examined. Through mathematical
analysis of microscopy images containing immunolabelled PfEMP1 molecules, it
was possible to show a clustering of these molecules at the top of the knob. Based
on the analysed aspects, there are obvious additions to the model that should be
considered in the future. Most importantly, the actin dynamics should be com-
bined with the assembly process to determine the mechanism by which the parasite
builds long host derived actin filaments inside the RBC. Further, the incorporation
of PfEMP1 molecules could be modelled by making these diffuse laterally within
the bilayer plane. Overall, first conclusions could be drawn from the modelling
approach on the very complex mechanisms behind the knob formation.

The idea of the project discussed in Chapter 4 was modelling the shape change
of RBCs in hydrodynamic flow, which treats the cell on a much larger scale. As a
matter of fact, the malaria infection is known to change hydrodynamic properties
of RBCs. Besides becoming adherent, experimental results show that iRBCs need
longer to recover their shape. A suitable approach seems to be simplifying the
problem to two dimensions and thus treating the RBC as a closed loop in the two-
dimensional plane. In this model, the nodes on the RBC membrane are coupled
through viscoelastic elements and their mechanics are directly coupled to the finite
element solver for the Stokes flow describing the surrounding fluid. During the
implementation of this method unforeseen difficulties occurred. For that reason, a
stable solution is still missing. I was only able to simulate very few time steps before
a numerical inconsistency destroyed the flow profile. In the future, a different
way of implementing the mechanical equations should be tested to prevent these
problems. In my opinion a Lagrange multiplier approach seems most promising.

Finally, I examined a different kind of actin organisation in Chapter 5, namely
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actin stress fibres forming in cells on micropatterns. The model that I employed
here models the cell on a very coarse scale and thus reduces the spreading kinetic to
the contour of the cell. This is also a two-dimensional model similar to the previous
finite element model. In this project, the tight collaboration between experiments
and the theoretical modelling were of great importance. As a result, the model
could be validated to describe the cell spreading very accurately and also predict
cell parameters from the spreading dynamics. In particular, the modelling of the
stress fibre architecture led us to the conclusion that stress fibres are formed by
a simple rule: the fibres form parallel to the advancing front and become straight
fibres as soon as the cell has spread far enough. This leads to a memory of the cell
spreading process in the stress fibre architecture. Experimentally, the half life of
this memory was determined to be 50 minutes. Although this model describes the
experimental data sufficiently well, an improvement could be made by including
a feedback between the stress fibres and the spreading. Since the biological foun-
dation for such a feedback is not entirely clear, this extension of the model would
require a large effort and was not within the scope of this thesis. Nevertheless, the
success of the current model implies that such a feedback mechanism would not
qualitatively change the outcome.

Overall, several models on different length scales were implemented successfully.
The main conclusion, which is strongly supported by several of these models, is
that the stiffening of the RBC membrane on a macroscopic level is caused by
specific parasite proteins that interact with the RBC cytoskeleton. The additional
anchoring points between the bilayer and the cytoskelton, and the stretching of
the spectrin filaments are most important in causing this effect. Additionally, the
parasite needs to finely tune the interactions between the different proteins to
achieve a knob assembly at the right moment during the infection. It is likely that
phosphorylation causes this change in binding affinities which would also explain
why the different haemoglobin variants, which show altered phosphorylation, are
partly protected from severe malaria.

In conclusion, we see that the parasite has adapted to the RBC environment
in a remarkable manner, by not only using its own but also the host cell’s proteins
to achieve its goal of staying within the human body and replicating. My findings
help to understand the molecular details of the underlying processes of the RBC
remodelling to allow for potential future interventions in the spreading of malaria.
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RBC red blood cell

iRBC malaria infected red blood cell

HbA heterotetramer consisting of two α- and two β-globin chains

HbS variant of the beta-globin gene called sickle haemoglobin

HbC another variant of the beta-globin gene

HbAS heterozygous carrier of HbA and HbS

HbAC heterozygous carrier of HbA and HbC

Pf Plasmodium falciparum

KAHRP knob-associated histidine-rich protein

PfEMP1 Plasmodium falciparum erythrocyte membrane protein 1

PTEX Plasmodium Translocon of Exported proteins

CPM Cellular Potts Model

FSBD Fourier Space Brownian Dynamics

AFM atomic force microscopy

QFDERR quick-freeze, deep-etch rotary replication

ATP adenosine triphosphate

ADP adenosine diphosphate

G-actin globular actin

ATS acidic terminal sequence

ICAM-1 intercellular adhesioin molecule 1

CGMD coarse grained molecular dynamics

MPCD mulit-particle collision dynamics

DPD dissipative particle dynamics

RE Reynolds number

FEM finite element method

TEM tension elasticity model

MCSweep Monte Carlo Sweep

CFM circle fitting method
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MSAM marching square arc length method

RFP red fluorescent protein

ECM extra cellular matrix

NMMII non-muscle myosin II



160 Abbreviations



Appendix B

Theory of Membranes



162 Theory of Membranes

B.1 Spherical Geometry

A point on the surface of the vesicle is given by r = r0(1 + u)r̂ and hence the
reference configuration is a sphere with radius r0. The sphere is parametrized in
terms of the polar angle θ and the azimuthal angle ϕ, such that r̂ reads:

r̂ =

⎛⎝ sin(θ) cos(ϕ)
sin(θ) sin(ϕ)

cos(θ)

⎞⎠ . (B.1)

In this geometry the mean curvature is H = − 2
r0

and the Gaussian curvature is

K = 1
r20
. Further, the first and second fundamental forms are given by:

g = r20

(
1 0
0 sin2 θ

)
h = −r0

(
1 0
0 sin2 θ

)
. (B.2)

Having specified this geometry, the variations are given by:

δ1(dS) = 2udS (B.3)

δ2(dS) = (2u2 − u∆u)dS (B.4)

δ1H =
2u

r0
+

∆u

r0
(B.5)

δ2H = −4u2

r0
− 4u∆u

r0
(B.6)

δ1V = ur0dS (B.7)

δ2V = 2u2r0dS. (B.8)

These can be easily deduced from the general formulas in covariant notation given
in Ref. [44].

B.2 Monge Parametrization

In Monge parametrization the surface is described by the height h(x, y) from a
planar reference configuration. Here, the mean curvature and Gaussion curvatures
are H = K = 0 in the reference configuration. In this case the first fundamental
form is the identity matrix and the second fundamental form is zero. For the first
deviation of these we find:

δg =

(
(∂xh)

2 ∂xh · ∂yh
∂xh · ∂yh (∂yh)

2

)
δh =

1√
det(g)

(
∂xxh ∂xyh
∂xyh ∂yyh

)
. (B.9)

For the variations we find:

δ1(dS) = 0 δ2(dS) =
1

2
(∇h)2dS (B.10)

δ1H =
1

2
∇2h δ2H = 0. (B.11)
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B.3 Conversion Between Fourier Modes and Spher-

ical Harmonics

This result in spherical harmonics can be converted to a function of the Fourier
mode q which is a common representation of experimental data (e.g. paper [243] or
[244]). Experimentally, only the fluctuations in the equatorial plane are measured
⟨|vq(t)|2⟩, hence θ = π/2 and r is only a function of ϕ and t. vq(t) and ulm are
related as follows:

r(ϕ, t) = r0 +

qmax∑
q=0

vq(t)e
−iqϕ = r0 + r0

∑
l,m

ul,mYl,m(π/2, ϕ). (B.12)

Now both sides are multiplied by eiq
′ϕ and ϕ is integrated form 0 to 2π.

2πvq′(t) = r0

∫ 2π

0

dϕ
∑
l,m

ul,mYl,m(π/2, ϕ)e
iq′ϕ. (B.13)

This can be further simplified by noting that Yl,m(π/2, ϕ) = Nl,me
imϕPm

l (cos(θ)),

where Nl,m = (−1)m
√

2l+1
2

(l−m)!
(l+m)!

is the normalization factor and depends on how

the exact definition of the spherical harmonics. Hence,∫
dϕNei(m+q′)ϕPm

l (0) = δ(m+ q′)N2πPm
l (0) (B.14)

and for the dimensionless ⟨|vq(t)|2⟩ we find

⟨|vq(t)|2⟩ = r20

lmax∑
l=q

N2
l,−q⟨|ul,−q|2⟩P−q

l (0)2, (B.15)

N2
l,−q =

2l + 1

2

(l + q)!

(l − q)!
. (B.16)

To understand the boundaries of the sum appearing in the expression, one needs
to notice that δ(m+ q) requires that m = −q which influences the sum over l and
m. Usually, for a given l the sum for m runs from −l to l but now m = −q and
hence only terms with l ≥ q contribute. This is why the sum starts at l = q and
there is no sum over m any more. The sum is cut off at 120 which is large enough
to ensure convergence. It is necessary that lmax > q.

In MatLab the spherical harmonics are defined slightly differently and the
polynomials for −q need to be expressed in terms of the positive ones. This leads
to the final expression:

⟨|vq(t)|2⟩ = r20

lmax∑
l=q

⟨|ul,−q|2⟩(l +
1

2
)
(l − q)!

(l + q)!
P q
l (0)

2, (B.17)

(multiply by r20 to reintroduce dimensions).
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C.1 Equatorial Projection of Fourier Modes

When using the formula derived for a planar geometry, and comparing it to ex-
perimental data, the modes in y-direction need to be projected onto y = 0. To
find ⟨h(qx, y = 0)2⟩ from ⟨h2

q⟩, one has to do an inverse Fourier transform in qy and
evaluate the resulting expression at y = 0:

⟨h(qx, y = 0)2⟩ = 1

2π

∫ ∞

−∞
⟨h2

qx,qy⟩e
iqyydqy

⏐⏐⏐⏐
y=0

, (C.1)

with

⟨h2
qx,qy⟩ =

kBT

L2

1

γ + σ(q2x + q2y) + κ(q2x + q2y)
2
. (C.2)

The integral can be done using the Residue Theorem and was first calculated
by Yoon et al.[245]. Depending on the values of κ, σ and γ, the poles of (C.2)
change sign on the imaginary axis. The proper sign is obtained by taking the
absolute value of the final expression. This is possible, because either the poles
lie in the positive imaginary plane and the contour is positively oriented giving
a positive result; or the poles lie in the negative imaginary plane which gives a
negative result, but the contour is negatively oriented so that another minus sign
needs to be introduced giving a positive final result:

⟨h(qx, y = 0)2⟩ =kBT

L

⏐⏐⏐⏐⏐⏐
√

κ

2(σ2 − 4κγ)

⎡⎣ 1√
2κq2x + σ −

√
σ2 − 4κγ

− 1√
2κq2x + σ +

√
σ2 − 4κγ

⎤⎦⏐⏐⏐⏐⏐⏐ , (C.3)

note that h has units of m2, qx = n/r0 and L = 2πr0.

C.2 Numerical Calculation of Fluctuation Am-

plitudes

Equations (2.58) and (2.59) are more easily treated in Fourier space by assuming
periodic boundary conditions, where h(r) and hk are related by

h(r) =
kmax∑
k

hke
ik·r = real (hence, h∗

k = h−k),
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Figure C.1: Sketch of horizontally attched springs that are deflected in z-direction.

with kx,y = (0,±1, ...)2π/Lx,y. Using these, the Fourier Transform of the sum of
(2.58) and (2.59) can be written as

H =
1

2L2
xL

2
y

∑
k,k′

[(
κk4 + σk2

)
|hk|2δk,k′ +

N∑
α=1

kαhkhk′e
−i(k−k′)·rα

]

=
1

2

∑
k,k′

h∗
kDkk′ , hk′ ,

where the contributions from the springs introduce non-diagonal elements to the
matrix Dkk′ . Now it is convenient to change to a set of independent coordinates c,
which treat real and complex components of the independent hq-modes separately
(hqc = aqc + i bqc). The Hamiltonian becomes

H =
∑
r,r′

crMrr′cr′ , c =

⎛⎝ 1√
2
hqreal

aqc
bqc

⎞⎠ ,

such that, by use of the equipartition theorem, the mean squared fluctuations take
the easy form

⟨crcr′⟩ =
kBT

2
M−1

rr′ .

In a final step we convert back to hk:

⟨|hk|2⟩ =
{

2kBT M−1
k,k k = real mode

kBT
2
(M−1

Re k,k +M−1
Im k,k) k = complex mode,

where explicitly real and complex modes have to be treated differently.

C.3 Derivation of Vertical Spring Constant

For the fluctuation analysis we are interested in the membrane’s motion orthogonal
to its plane. Therefore, we consider the simplified case of two attached springs that
lie on the horizontal axis and the connection point is now moved in the z-direction
as depicted in Figure C.1. For simplicity we assume both springs to be equal in
strength and length.

By Hooke’s Law the force along the extension direction of the spring is given
by Fsp = kspx, where x is the displacement from the rest length. We can write
down an equivalent formulation for the force in z-direction Fz = nkz, where the
factor n counts the number of attached springs, which is 2 in this case but can
easily be generalized. The aim is now to express k in terms of ksp , z and a. We
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can assume that x, z ≪ a since membrane fluctuations are small compared to the
length of the spectrin filaments. Further, the connection point is assumed to be in
equilibrium along the x-direction, so that horizontal forces cancel out and we can
focus on the z component of the spring force Fsp,z = Fsp sinα.

After expanding the left hand side of the relation
√

z2/a2 + 1 = 1 + x/a to

find that x ≈ z2

2a
and noticing the first order approximation of sinα to be z/a , we

obtain the final expression

Fz = nksp
z2

2a2
z. (C.4)

In this expression we can identify k = ksp
z2

2a2
and notice that the motion in z-

direction does not follow a linear spring but the spring constant increases with z2

for small displacements.
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Figure D.1: The length evolution of five different filaments is plotted with their
average length indicated by the black line.

D.1 Experimental Rate Constants

In Table D.1 rate constants from literature for the attachment and detachment at
the actin barbed and pointed ends are summarized. There are two studies on Mg-
ATP actin, three studies on Mg-ADP actin and one set of rates from an analytical
calculation.

D.2 Rates Used in Models

In Table D.2 the actin polymerization rates from different simulation studies are
compared. Firstly, probability distributions are used to describe the system, sec-
ondly, a Master equation approach is applied, thirdly, the actin monomers are
treated in a Brownian dynamics study, fourthly, the Gillespie algorithm is applied
and finally, an analytic calculation is done. References are shown in the table.

D.3 Length Fluctuations at Treadmilling Con-

centration

Five filaments were set up in a simulation box with a number of free monomers
that match the treadmilling concentration. No monomers were added or taken out
of the simulation box. In Figure D.1 we see that the average filament length, i.e.
the total number of bound actin monomers stays approximately constant (black
line). At the same time the individual filament lengths fluctuate a lot. The reason
is, that only the overall bound monomer number is controlled by the concentration.
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D.4 KAHRP Cluster Positioning

In Figure D.2 the fractional positioning of KAHRP clusters compared for the four
different interaction cases (from top to bottom). Each column shows the time
evolution for a specific interaction energy ϵ (ϵ = 0.1 kBT, ϵ = 1.5 kBT, ϵ = 5.0 kBT
and ϵ = 20.0 kBT from left to right).

D.5 Cluster Sizes Using 500 KAHRP Particles

Figure D.3 shows similar graphs to the main text but with a larger number of
KAHRP particles in the simulation box; the number was increased from 200 to
500. The plots show the average cluster size as a function of the interaction
energy ϵ. The different colors in the plot show various time points as indicated in
the legend.
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a

all equal

weak self-
association

strong self-
association

strong actin-
association

b

c

d

Figure D.3: The average cluster size in simulations with 500 KAHRP particles is
displayed as a function of the potential depth ϵ. Free and attached clusters are
considered separately as indicated in the legend. a to d) show the four interaction
cases (all equal in a, weak self-association in b, strong self-association in c and
strong actin association in d).
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Chapter 5

Anne-Lou Roguet, Ulrich Sebastian Schwarz and Sanjay Kumar

Extracellular Matrix Geometry and Initial Adhesive

Position Determine Stress Fiber Network Organization

during Cell Spreading

Cell Reports, 27 1897-1909 (May 2019)

Cecilia P. Sanchez, Christos Karathanasis, Rodrigo Sanchez,

Chapter 2

Marek Cyrklaff, Julia Jäger, Bernd Buchholz,
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