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Intelligence is a captivating psychological construct posi-
tively related to a number of important life outcomes, 
such as educational attainment, job performance, devel-
opment of expertise, general health, longevity, and well-
being. Because intelligence is such a powerful predictor, 
identifying which elementary processes give rise to indi-
vidual differences in intelligence is of great relevance. 
One often-discussed candidate property of information 
processing that may underlie intelligence differences is 
mental speed ( Jensen, 2006), usually defined as the time 
taken to process and respond to information.

At the turn of the 20th century, Francis Galton con-
ducted the first study on individual differences in mental 
speed. He assumed that reaction times (RTs) to external 
stimuli predicted individual differences in mental abili-
ties. However, the low precision of his measures and 
lack of adequate statistical methods prevented him from 
finding any associations between mental speed and other 
variables. More recently, researchers have overcome 
these problems by using standardized response devices 

and computerized measurements. By now, it is well estab-
lished that more intelligent individuals show moderately 
shorter RTs than less intelligent individuals (Doebler & 
Scheffler, 2016; Jensen, 2006; Kail & Salthouse, 1994; 
Salthouse, 1996; Vernon, 1987). This indicates that the 
ability to quickly process information in a broad range 
of different tasks is related to intelligence.

Decomposing the Relationship 
Between Mental Speed and Mental 
Abilities

Individual differences in RTs do not represent a single 
cognitive process. Instead, time taken by several processes, 
such as the encoding of information, decision-making, and 
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motor execution, affects RTs. What therefore remained an 
open question was whether more intelligent individuals 
showed a greater mental speed because of advantages in 
all or some of these processes and whether these advan-
tages were related to individual differences in global or 
focal neural organization.

To address this problem, it is necessary to decom-
pose the stream of information processing to distin-
guish between the speeds of different processing stages. 
This will allow assessment of whether the general 
speed of processing across all processing stages or the 
speed of specific processes is related to intelligence. 
Such a decomposition of mental speed can be achieved 
in a neurocognitive-psychometrics approach that com-
bines (a) mathematical models of cognition, which for-
mally separate different processes contributing to RTs, 
and (b) chronometric analyses of the event-related 
potential (ERP) in the electroencephalogram (EEG). 
Therefore, a neurocognitive-psychometrics account of 
mental speed integrates mathematical models and neu-
rophysiological indicators of cognitive processes in 
psychometric models to reliably and validly identify 
specific cognitive processes giving rise to the associa-
tion between mental speed and mental abilities.

Mathematical models of cognition

Mathematical models of cognition translate verbal theories 
of cognitive processes into mathematical formalizations 
that specify the workings and interplay of mechanisms 

contributing to observed behavior. One particular math-
ematical model often used to describe binary decision-
making is the diffusion model (see Fig. 1), which posits 
that during decision-making, evidence is accumulated in 
a random-walk process until one of two decision thresh-
olds is reached, at which point the decision process is 
terminated and a motor response initiated (Ratcliff, 1978).

The model decomposes RT distributions into four 
parameters. The velocity of evidence accumulation is 
reflected in the drift-rate parameter, decision cautious-
ness is reflected in the boundary-separation parameter, 
and a bias in favor of one of the two choice alternatives 
is reflected in the starting-point parameter. Finally, the 
nondecision-time parameter is a residual parameter that 
reflects the speed of all nondecisional processes, such 
as (but not limited to) encoding and motor response. 
Hence, the diffusion model can be used to investigate 
whether more intelligent individuals show advantages 
in one or several subprocesses of decision-making.

Psychometric studies indicate that only the drift rate 
can be considered a trait, which is defined as a personal-
ity characteristic with high temporal stability and suffi-
cient consistency across different tasks. Specifically, one 
study found that a common drift-rate factor accounted, 
on average, for 44% of the variation in drift-rate param-
eters estimated in a set of different tasks, while the other 
parameters were largely task dependent (Schubert, 
Frischkorn, Hagemann, & Voss, 2016). In particular, vari-
ation in boundary-separation and nondecision-time 
parameters was, on average, less well accounted for by 
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Fig. 1. Simplified illustration of the diffusion model. The model assumes that, after encod-
ing, information is continuously accumulated toward one of the two decision thresholds. 
This accumulation process, illustrated by the jagged, light-gray line, consists of a systematic 
component—the drift rate, illustrated by the straight, diagonal arrow—and random noise. 
As soon as one of the two thresholds is reached, the decision is made and can then be 
executed (e.g., via a key press).
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their respective common traits, with several parameter 
estimates showing extremely low consistencies.

In addition, the drift rate is the most interesting 
parameter for intelligence research because it reflects 
the speed of information uptake free of confounding 
sources of variance, such as speed/accuracy trade-offs 
or encoding and motor speed. It can even be directly 
linked to psychometric theories because the drift rate 
can be decomposed into an ability and difficulty param-
eter, thus reflecting both individuals’ speed and the 
efficiency of evidence accumulation with regard to a 
specific item (van der Maas, Molenaar, Maris, Kievit, & 
Borsboom, 2011). Hence, it is not surprising that several 
studies found associations (rs) between drift rates and 
intelligence, ranging from .60 to .90, that were substan-
tially larger than typical correlations between RTs and 
intelligence (Ratcliff, Thapar, & McKoon, 2010; Schmiedek, 
Oberauer, Wilhelm, Süss, & Wittmann, 2007). Further-
more, the drift rate is the only model parameter con-
sistently associated with cognitive abilities across a 
wide range of different tasks and samples (for a sum-
mary, see Frischkorn & Schubert, 2018).

Taken together, these results indicate that more intel-
ligent individuals benefit from a greater velocity of 
evidence accumulation, from both sensory input and 
memory, but do not show a greater encoding or motor 
response speed.

Chronometric analyses of the ERP

Similar to mathematical models of cognition, the ERP 
can be used to measure individual differences in specific 
cognitive processes. It is based on electrophysiological 
brain activity recorded with an EEG, which registers 
electrical currents generated by activity in cortical nerve 
cells. The ERP reflects cortical activity related to stimulus 
processing and allows the decomposition of the electro-
physiological activity between stimulus onset and 
response into functionally distinct components associ-
ated with certain cognitive processes. Shorter latencies 
in specific ERP components reflect a higher speed in the 
associated cognitive processes.

Research on ERP correlates of intelligence has shown 
that more intelligent individuals show selective advan-
tages in some neurocognitive processes (e.g., stimulus 
evaluation, memory updating, or response selection), 
whereas others (e.g., response organization and execu-
tion) are not related to intelligence (Bazana & Stelmack, 
2002; Kapanci, Merks, Rammsayer, & Troche, 2019; Saville 
et al., 2016; Troche, Houlihan, Stelmack, & Rammsayer, 
2009; Troche, Indermühle, Leuthold, & Rammsayer, 2015).

Because latencies of ERP components are largely 
task dependent, they cannot simply be measured in any 
experimental task but need to be aggregated across 
different tasks to reflect consistent person properties 

(Schubert, Hagemann, & Frischkorn, 2017). In Schubert 
et al.’s study, across three different experimental tasks, 
individual differences in latencies of ERP components 
associated with higher-order processing (i.e., stimulus 
evaluation, memory updating, and response selection 
processes captured in the P2, N2, and P3 components) 
explained about 80% of the variance in intelligence. In 
contrast, smarter individuals did not show any advan-
tages in the speed of ERP components reflecting sen-
sory processing (i.e., in latencies of the P1 and N1 
components). These results suggest that neurocognitive 
processes reflected in ERP components associated with 
higher-order attentional processing may give rise to 
individual differences in intelligence.

Similar to the use of mathematical models, chrono-
metric analyses of the ERP thus allowed the decomposi-
tion of the stream of information processing and 
identification of specific higher-order cognitive pro-
cesses related to intelligence.

Why Do Benefits in the Speed of 
Higher-Order Processing Give Rise to 
Greater Intelligence?

Taken together, mathematical models of cognition and 
chronometric analyses of the ERP represent two com-
plimentary neurocognitive-psychometric approaches 
that aim to identify specific cognitive processes giving 
rise to individual differences in intelligence. Across 
both approaches, there is converging evidence that 
more intelligent individuals benefit from a greater 
speed of higher-order information processing. Electro-
physiological results, in particular, suggest that greater 
intelligence should be associated with higher atten-
tional control in working memory, a notion that is 
propagated by many current theories of intelligence 
(e.g., Engle, 2018; Kovacs & Conway, 2016). Further 
evidence that individual differences in the speed of 
higher-order processing contribute to intelligence dif-
ferences by affecting processing in working memory 
comes from research showing that the association 
between working memory capacity and intelligence 
becomes near-isomorphic when intelligence tests are 
administered under extreme time constraints (Chuderski, 
2013).

Although there is a substantial body of research relat-
ing measures of attentional control to mental abilities 
(Engle, 2018), recent psychometric work challenges the 
notion that individual differences in attentional control 
can be reliably and validly measured (Frischkorn, 
Schubert, & Hagemann, 2019; Hedge, Powell, & Sumner, 
2018; Rey-Mermet, Gade, & Oberauer, 2018). On the 
one hand, the ongoing psychometric debate suggests 
that experimentally validated slope measures of atten-
tional control may be task specific and elicit very little 
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variation between individuals. On the other hand, inter-
cept measures of attentional control (e.g., performance 
in a single condition or average task performance) have 
been shown to mostly reflect individual differences in 
general processing speed (Frischkorn et  al., 2019). 
Together, these problems considerably complicate the 
reliable and valid measurement of attentional control.

Here, too, neurocognitive psychometrics might rem-
edy the situation and provide alternative approaches 
to the measurement of attentional control. First, math-
ematical models of attentional-control processes might 
provide more reliable estimates of process parameters 
because these models dissociate individual differences 
in attention-related parameters from individual differ-
ences in general processing speed without resorting to 
the calculation of slopes (Frischkorn & Schubert, 2018). 
Second, neural correlates of attentional control can be 
recorded to dissociate attention-related neurocognitive 
processes from other neurocognitive processes across 
a wide set of different cognitive-control tasks. In fact, 
first results suggest that more intelligent individuals 
benefit from more efficient interregional goal-directed 
information processing, as indicated by an adaptive 
modulation of synchronized brain rhythms associated 
with attention (Schubert, Hagemann, Löffler, Rummel, 
& Arnau, 2019). This again supports the idea that indi-
vidual differences in attentional-control processes con-
tribute to individual differences in intelligence.

If we consider that both the neural speed of higher-
order processing (reflected in ERP latencies occurring 
later in the stream of information processing) and the 
speed of information uptake (reflected in the drift-rate 
parameter of the diffusion model) are substantially 
related to intelligence, it may be proposed that a greater 
neural speed gives rise to greater intelligence by enhanc-
ing the speed of information uptake. A direct test of this 
hypothesis, however, revealed that individual differ-
ences in drift rates explained only a negligible part of 
the association between neural speed and intelligence 
(Schubert, Nunez, Hagemann, & Vandekerckhove, 
2018). Moreover, experimental enhancements of mental 
speed by nicotine administration have not translated 
into intelligence gains (Schubert, Hagemann, Frisch-
korn, & Herpertz, 2018). In sum, these results do not 
support the idea of a simple causal cascade model in 
which greater neural speed facilitates evidence accu-
mulation, which in turn gives rise to greater cognitive 
abilities. Instead, they suggest that the relationship 
between the speed of higher-order processing and 
intelligence may reflect individual differences in prop-
erties of brain networks that are not easily altered by 
changes in neurotransmitter concentration (see Fig. 2 
for a conceptual illustration).

This idea is further supported by research on white-
matter-tract integrity. Measures of white-matter-tract 
integrity reflect a range of tissue characteristics (e.g., 
myelination, axon diameter, fiber density, and fiber orga-
nization) that determine the accuracy and speed of infor-
mation transmission across the nerve fiber. As with a 
cable, better insulation (i.e., a denser myelin layer) and 
a larger diameter mean that information can be transmit-
ted faster. Moreover, a higher cable and a higher axon 
density allow more information to be transmitted in a 
specific amount of time. These properties positively 
affect processing speed and functional connectivity 
within and between brain regions (Ferrer et al., 2013; 
Kievit et al., 2016; Penke et al., 2012; Wendelken et al., 
2017). Moreover, greater white-matter-tract integrity has 
been repeatedly associated with greater mental abilities 
in different age groups (Booth et al., 2013; Ferrer et al., 
2013; Fuhrmann, Simpson-Kent, Bathelt, the CALM Team, 
& Kievit, 2020; Kievit et al., 2016; Wendelken et al., 2017).

Most intriguingly, the effects of greater white-matter-
tract integrity on intelligence seem to be fully mediated 
by individual differences in processing speed and work-
ing memory capacity, suggesting that greater white-
matter-tract integrity enhances the speed and capacity 
of information processing, which in concert positively 
affect reasoning ability (Ferrer et  al., 2013; Fuhrmann 
et al., 2020; Kievit et al., 2016; Wendelken, Ferrer, Whitaker, 
& Bunge, 2016). Longitudinal research on children and 
adolescents even supports a developmental-cascade 
model in which individual differences in white-matter-
tract integrity drive changes in processing speed, which 
in turn drive changes in working memory capacity, 
which ultimately determine the development of reason-
ing ability (Fry & Hale, 1996; Wendelken et al., 2016).

The Potential of Neurocognitive 
Psychometrics: Benefits and Future 
Directions

We believe that using a neurocognitive-psychometrics 
approach that combines mathematical models of cogni-
tion and neural correlates of cognitive processes in indi-
vidual-differences research will ultimately help to identify 
elementary processes underlying intelligence differences. 
It has already shed light on the neurocognitive processes 
underlying the well-established association between 
speed and age-related cognitive decline (Salthouse, 1996; 
Schubert, Hagemann, Löffler, & Frischkorn, 2020). More-
over, it allows the design of training and intervention 
studies aimed at the enhancement of specific neurocogni-
tive processes contributing to intelligence differences.

This approach can be extended to other domains of 
information processing associated with intelligence 
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(e.g., working memory or attentional control). In fact, 
promising cognitive models for these domains have 
been put forth recently (Oberauer & Lewandowsky, 
2019; White, Servant, & Logan, 2018). In addition, 
multinomial-processing-tree models have been used to 
distinguish between processes and abilities involved in 
fast and slow responses in reasoning tests (Partchev & 
De Boeck, 2012).

Ultimately, integrating mathematical models and neu-
rophysiological indicators of cognitive processes directly 
relates constructs to their measurement and allows for 
theoretical discussions on the structure of cognitive abili-
ties beyond psychometric models of observed behavior. 
In this, a neurocognitive psychometrics of intelligence—
as described here for mental speed—will also help in 
understanding whether interrelations between different 
cognitive-ability measures arise because they are all 
influenced by a set of very broad and general cognitive 
processes ( Jensen, 1998) or because they emerge from 
a network of mutually interrelated but independent cog-
nitive processes (Kovacs & Conway, 2016; van der Maas 
et al., 2006).

Recommended Reading

Frischkorn, G. T., & Schubert, A.-L. (2018). (See References). 
A comprehensive overview of the benefits of cognitive 
modeling in intelligence research with practical recom-
mendations for empirical research.

Jensen, A. R. (2006). (See References). A clearly writ-
ten and relatively comprehensive review for readers 
who wish to expand their knowledge on mental-speed 
research.

Schubert, A.-L., Nunez, M. D., Hagemann, D., & 
Vandekerckhove, J. (2018). (See References). Integrates 
diffusion modeling and chronometric analyses of the 
event-related potential in a hierarchical Bayesian frame-
work, demonstrating the benefits and potential of the 
neurocognitive-psychometrics approach.

Turner, B. M., Forstmann, B. U., Love, B. C., Palmeri, T. J., & 
Van Maanen, L. (2017). Approaches to analysis in model-
based cognitive neuroscience. Journal of Mathematical 
Psychology, 76, 65–79. doi:10.1016/j.jmp.2016.01.001.  
An accessible overview of several approaches for link-
ing brain and behavioral data, published in a special 
issue on the integration of cognitive models and neural 
correlates.
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Fig. 2. Simplified illustration of the proposed relationships between basic brain properties, such as white-matter-tract integrity and 
brain network structure, and neurocognitive measures of mental speed and intelligence. Properties of neural fibers reflected in white-
matter-tract integrity positively affect the brain network structure. In turn, individual differences in these network structures give rise 
to individual differences in event-related-potential (ERP) latencies and the speed of evidence accumulation, which may therefore be 
correlated. Together, individual differences in these neurocognitive measures of mental speed mediate the relationship between the 
brain network structure and intelligence. Apart from white-matter-tract integrity, many other brain properties not shown here may 
also affect both mental speed and intelligence.
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White, C. N., Servant, M., & Logan, G. D. (2018). (See References). 
A technical and detailed, but still accessible, comparison of 
different cognitive models of attentional-control processes.
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