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ABSTRACT 

In recent years, the field of gene and cell therapy has experienced major breakthroughs 

in the development of novel gene-based therapies and has been increasingly 

appreciated as versatile and innovative platform to cure hitherto untreatable diseases. 

Gene therapy resorts to biotechnological tools and approaches, such as recombinant 

(r)AAV vectors, RNAi and CRISPR/Cas9, that are employed to replace, silence or edit 

malfunctioning genes. The accomplishments of these technologies are highlighted in 

numerous clinical trials and culminated in the authorization of three rAAV-based 

therapies (Glybera, Luxturna and Zolgensma) and in one RNAi-based therapeutic 

(Onpattro). The presented doctoral thesis combines and further improves these 

technologies by drawing on several principles of synthetic biology and bioengineering 

and demonstrates their potential to tackle HBV infections and/or HBV/HDV co-infections 

as clinically relevant targets. 

The first part of this study was intended to validate an innovative generation of rAAV 

vectors previously established in our lab (by Florian Schmidt) and named TRISPR that 

enables the combination of the CRISPR/Cas9 and RNAi technologies. TRISPR 

facilitates the juxtaposition of three small RNA triggers (short-hairpin (sh)RNAs and 

single guide (sg)RNAs as required by the RNAi and CRISPR machineries, respectively) 

on a single rAAV vector and was experimentally reassessed in the presented study as 

superior strategy to knock-out HBV antigens via CRISPR. We further engineered 

TRISPR to co-express sgRNAs and shRNAs against HBV infections and HBV/HDV co-

infections and showed that the combination of RNAi and CRISPR/Cas9 yielded a 

synergistic benefit in the elimination of both pathogens in cell culture experiments. Thus, 

this thesis paves the way for subsequent in vivo studies in HBV and HBV/HDV mouse 

models to test the effect of a combinatorial knock-down and knock-out strategy on the 

host immune response, which is typically blunted during HBV infection. 

Next, we evaluated the addition of 2.5% DMSO to the media as a new method to 

enhance rAAV transduction in cell culture experiments. A comprehensive screen via an 

automated microscopy assay with a fluorescence reporter revealed that the DMSO-

mediated enhancement is dependent on selected rAAV variants and cell lines. 

Transduction rates increased up to 5-fold and 10-fold in Hepa16 and HepG2 cells, 

respectively, and culminated in N2A cells, in which transduction and expression rates of 

several rAAV variants that otherwise barely transduced these cells were boosted 

towards upper detection limits. Furthermore, the addition of DMSO also resulted in 
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strongly enhanced rAAV uptake and improved expression of CRISPR components in 

N2A cells that yielded up to 20-fold increased targeted mutagenesis rates. Although the 

mechanism remains to be elucidated, DMSO represents an alternative method to 

improve rAAV transduction with less cytotoxic side effects compared to currently applied 

enhancers.  

We further harnessed the inherent power of double-stranded (ds)AAV vectors to express 

the CRISPR components more rapidly and more efficiently than conventional single-

stranded (ss)AAV counterparts. Yet, expression from the superior dsAAV vector comes 

at the cost of a further reduction of the rAAV packaging capacity, from about 5 kb for 

ssAAVs, to only 2.4 kb for dsAAVs. Previously, others have circumvented the inherent 

size limit of ssAAV vectors by splitting the Streptococcus pyogenes (Sp)Cas9 

endonuclease into two parts, which are reconstituted in the cell to the holo-enzyme by 

intein trans-splicing. We previously worked towards an intein-mediated splitCas9 system 

(MSc thesis, C. Schmelas) to split the smaller Cas9 ortholog from Staphylococcus 

aureus (SaCas9) in two halves, each of which was sufficiently small to allow packaging 

in dsAAV vectors. Here, we experimentally confirmed that the dsAAV/splitSaCas9 

system can induce up to 5-fold higher knock-out efficiencies compared to the 

conventional ssAAV/full-lengthSaCas9, depending on cell type and incubation time. In 

addition, dsAAV/splitSaCas9 induced about 2-fold increased mutagenesis rates in a 

luciferase reporter in the liver of mice. In order to restrict the strong dsAAV/splitSaCas9 

expression after successful gene editing, we further implemented a self-inactivating 

(SIN) approach developed by Julia Fakhiri from our lab that contributed to safeguard the 

rAAV/CRISPR technology.  

Lastly, we increased the safety profile of the CRISPR/Cas9 system from Staphylococcus 

aureus by collaborating with the Niopek and Correia labs that have engineered its first 

designer anti-CRISPR protein. To this end, they made use of AcrIIC1, a broad-spectrum 

inhibitor targeting various other Cas9 orthologs and re-designed its binding surface 

towards the SaCas9 HNH domain. Together, we then demonstrated on various genomic 

loci that the novel AcrX inhibitor efficiently prevents SaCas9 cleavage activity and also 

implemented a microRNA-based switch to restrict SaCas9 activity towards hepatocytes. 

In summary, this doctoral thesis demonstrated the compatibility and great potential of 

major tools in the field of gene therapy and presented several technological 

improvements that could be harnessed in future work either alone or in combination to 

enable a more efficient and safer approach to tackle HBV infections and HBV/HDV co-

infections.   
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 ZUSAMMENFASSUNG 

Das Fachgebiet der Gen- und Zelltherapie hat in den letzten Jahren bedeutende Erfolge 

in der Entwicklung neuer, genbasierter Therapien erzielt und wird zunehmend als 

vielseitige und innovative Möglichkeit gewürdigt, um bislang unbehandelbare 

Krankheiten zu heilen. Die Gentherapie verwendet biotechnologische Werkzeuge und 

Ansätze, wie rekombinanter (r)AAV Vektoren, RNAi und CRISPR/Cas9, um fehlerhafte 

Gene zu ersetzen, auszuschalten oder zu editieren. Der Erfolg dieser Technologien wird 

durch zahlreiche klinische Studien deutlich und kulminiert in der Genehmigung dreier 

rAAV-basierter Therapien (Glybera, Luxturna and Zolgensma) und einer RNAi-basierten 

Therapie (Onpattro). Die vorliegende Doktorarbeit kombiniert und verbessert diese 

Technologien, indem sie auf mehrere Prinzipien der Synthetischen Biologie und 

Biotechnologie zurückgreift und demonstriert deren große Potentiale, um klinisch 

relevante Erkrankungen als Folge von HBV Infektionen und HBV/HDV Koinfektionen zu 

heilen. 

Der erste Teil dieser Studie zielte darauf ab eine innovative Generation von rAAV 

Vektoren zu validieren, welche zuvor in unserem Labor (Florian Schmidt, Bachelorarbeit) 

entwickelt und als TRISPR bezeichnet wurden und die Kombination von CRISPR/Cas9 

und RNAi ermöglichen. TRISPR vereinfacht die Nebeneinanderreihung von drei „kleinen 

RNA-Triggern“ (short-hairpin (sh)RNAs und single guide (sg)RNAs, die für die RNAi and 

CRISPR Maschinerien benötigt werden) auf einem einzelnen rAAV Vektor und wurde in 

der vorliegenden Arbeit erneut experimentell validiert als überlegene Strategie um mittels 

CRISPR HBV Antigene auszuschalten. Zudem verwendeten wir TRISPR, um sgRNAs 

und shRNAs gegen HBV Infektionen und HBV/HDV Koinfektionen zu ko-exprimieren und 

zeigen, dass die Kombination von RNAi und CRISPR/Cas9 einen synergistischen Vorteil 

bei der Eliminierung beider Pathogene in Zellkulturexperimenten bietet. Daher ebnet 

diese Studie den Weg für folgende in vivo Arbeiten in HBV und HBV/HDV 

Mausmodellen, um den Effekt eines kombinatorischen knock-down und knock-out 

Verfahrens am Immunsystem des Wirtes zu prüfen, welches typischerweise bei HBV 

Infektionen in der Funktion beeinträchtigt ist. 

Als nächstes evaluierten wir die Zugabe von 2.5% DMSO zum Medium als neue 

Methode die rAAV Transduktion in Zellkulturexperimenten zu steigern. Eine 

umfangreiche Untersuchung mittels eines automatisierten Mikroskopieverfahrens mit 

Fluoreszenzreporter zeigte, dass eine DMSO-vermittelte Steigerung abhängig von der 

rAAV Variante und Zelllinie ist. Transduktionsraten steigerten sich bis zu 5- und 10-fach 

in Hepa16 und HepG2 Zellen und kulminierten in N2A Zellen, in denen sich 
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Transduktions- und Expressionsraten mehrerer rAAV Varianten zum 

Detektionsmaximum verstärken ließen, die ansonsten diese Zelllinien kaum 

transduzierten. Außerdem resultierte die Zugabe von DMSO in einer stark erhöhten 

rAAV Aufnahme und verbesserter Expression von CRISPR Komponenten in N2A Zellen, 

was eine 20-fache Steigerung von zielgerichteten Mutageneseraten bewerkstelligt. 

Obwohl der Mechanismus noch aufgeklärt werden sollte, repräsentiert DMSO eine 

alternative und weniger toxische Methode um rAAV Transduktionen zu verbessern, als 

derzeit verwendete Verstärker.  

Des Weiteren nutzten wir das intrinsische Leistungsvermögen von doppelsträngigen 

(ds)AAV Vektoren, um die CRISPR Komponenten schneller und effizienter zu 

exprimieren im Vergleich zu den üblichen einzelsträngig (ss)AAV Gegenstücken. Jedoch 

kommt die Expression von den überlegenen dsAAV Vektoren teuer zu stehen, da die 

bereits begrenzte Verpackungsgröße von ssAAV Vektoren von 5 kb auf 2.4 kb für 

dsAAV Vektoren reduziert ist. Andere Arbeitsgruppen konnten zuvor die 

Größenlimitation von ssAAV Vektoren umgehen, indem sie die Streptococcus pyogenes 

(Sp)Cas9 Endonuclease in zwei Hälften teilten und in der Zelle das Holoenzym durch die 

trans-Spleißaktivität von Inteinen wieder rekonstituierten. Wir haben zuvor ebenfalls eine 

splitCas9 system entwickelt (Masterarbeit, C. Schmelas), um die kleinere Cas9 

Orthologe von Staphylococcus aureus (SaCas9) in zwei Hälften zu teilen, wobei jede 

Hälfte klein genug ist um sie als dsAAV Vektoren zu verpacken. Hier zeigen wir 

experimentell, dass das dsAAV/splitSaCas9 System abhängig von Zelltyp und 

Inkubationszeit bis zu 5-fach höhere Knock-out Effizienzen erzielt. Zusätzlich induziert 

dsAAV/splitSaCas9 eine 2-fach erhöhte Mutageneserate einer Luziferasereporters in der 

Leber von Mäusen. Um die starke Expression des dsAAV/splitSaCas9 Systems nach 

erfolgreicher Geneditierung zu begrenzen, erweiterten wir das System mit einem Selbst-

Inaktivierungsansatz (SIN), welcher zuvor von Julia Fakhiri aus unserem Labor 

entwickelt wurde und die rAAV/CRISPR Technologie absichert.  

Zuletzt konnten wir in einer Kooperation mit dem Niopek and Correia Labor zur 

Verbesserung des Sicherheitsprofil der CRISPR/Cas9 Orthologen von Staphylococcus 

aureus beitragen, die dazu den ersten Designer-Inhibitor entwickelten. Dazu nutzen sie 

den Breitband-Inhibitor AcrIIC1, der viele Cas9 Orthologe hemmt und modulierten 

dessen Bindungsoberfläche, um sie der SaCas9 HNH Domäne anzupassen. Wir 

demonstrierten in dieser Arbeit, dass der neue AcrX Inhibitor SaCas9 Aktivität an vielen 

genomischen Loci effizient hemmt und etablierten außerdem ein microRNA-basierten 

Schalter, um die SaCas9 Aktivität ausschließlich auf Hepatozyten zu begrenzen.  
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Zusammengefasst demonstriert diese Doktorarbeit die Kompatibilität und das große 

Potential bedeutender Gentherapie-Werkzeuge und präsentiert technologische 

Verbesserungen, welche in zukünftigen Arbeiten allein oder in Kombination genutzt werden 

können, um HBV Infektionen und HBV/HDV Koinfektionen effizienter und sicherer zu 

behandeln.   
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1. INTRODUCTION 

Viral hepatitis represents a leading cause of death and disability worldwide (section 1.1) 

and so far no curative treatments are available for hepatitis B (section 1.2) and, in 

particular, for hepatitis D (section 1.3). As cessation of conventional antiviral therapy is 

often associated with viral relapse and rebound of the disease, new curative therapy 

approaches are urgently needed. In this study, we combine the powerful RNAi (section 

1.4) and CRISPR/Cas9 (section 1.5) technologies to tackle HBV infection and HBV/HDV 

co-infections. Recombinant Adeno-associated viral (rAAV) vectors are lead candidates 

for the delivery of the CRISPR/Cas9 and RNAi components in cell culture and in vivo 

(section 1.6). In non-dividing cells, rAAV vectors persist as stable episomes and mediate 

persistent transgene expression. While this is beneficial for applications that require 

long-lasting expression such as RNAi, safety concerns could arise from the continuous 

expression of Cas9 endonuclease. Several strategies that control Cas9 activity have 

been reported, including splitCas9 systems (section 1.6.3) and anti-CRISPR proteins 

(section 1.5.3). In this thesis, we build upon these approaches in order to contribute to 

efficient and safe applications of the CRISPR/Cas9 technology.  

   

1.1. Viral Hepatitis represents a global health challenge  

Hepatitis, an inflammatory state of the liver, is most commonly caused by infection with 

hepatitis virus A (HAV), B (HBV), C (HCV), D (HDV) or E (HEV). Acute hepatitis can 

resolve spontaneously within 6 months or progress to chronic hepatitis, occasionally 

leading to liver cirrhosis and/or hepatocellular carcinoma (HCC). With a growing world 

population, the mortality and morbidity rates for viral hepatitis increased substantially 

between 1990 and 2013, leading to the death of an estimated 1.45 million people each 

year 1. This exceeds the numbers of deaths associated with any other infectious disease 

including tuberculosis, malaria and AIDS caused by the human immunodeficiency virus 

(HIV). In 2013, viral hepatitis was the 7th leading cause of death worldwide and therefore 

represents a major public health threat. To this end, the World Health Organization 

(WHO) urges countries to invest in eliminating hepatitis, aiming for a global reduction of 

65% in hepatitis-related mortality and a reduction of 90% in new infections by 2030 2. 

While all viral hepatitis infections affect the liver, they differ in transmission route, 

epidemiology, clinical manifestation and treatment. HAV and HEV are transmitted via the 
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fecal-oral route and are epidemic in many low-income countries due to poor hygienic 

conditions. In most cases, HAV and HEV are self-limiting and only cause acute illness. 

An effective vaccination is available for HAV 3 and also for HEV in China 4.  

By contrast, HBV, HCV and HDV are transmitted parenterally when blood or mucosa 

comes in contact with contaminated blood or body fluids. HBV and HCV infections 

account for the majority of hepatitis-related deaths with 47% and 48%, respectively, and 

vary between geographical regions (Figure 1). The highest prevalence of HCV-infected 

patients is found in developing regions of South America, Africa and Asia, where about 

10% of the population are chronic carriers. The WHO estimates that more than 71 million 

people are chronically infected with HCV, representing about 1% of the world population 
5; 6. Infection with HCV leads to chronicity in about 70% of all cases frequently leading to 

cirrhosis and HCC 7. While there is no vaccine available for HCV infection, recent 

advances in interferon-free treatment options via direct acting antiviral drugs (DAAs) are 

able to cure chronic hepatitis C with a sustained viral response of over 90% 8.  

 

 

Figure 1. Map of hepatitis-related mortality rate.  

Intensity of green color indicates the extent of mortality per 100 000 people per year. Pie charts 
indicate the contribution of each hepatitis virus to the total hepatitis-related mortality. HDV is not 
included in this representation. Figure from Stanaway et al. (2016) 1. 

 

On the other hand, chronic hepatitis B affects up to 10% of the sub-Saharan African and 

East Asian population. Worldwide, more than 257 million people, representing 3.5% of 

the world population, are chronically infected with HBV 5; 6. HBV is mostly self-limiting 
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and leads to chronic states in only 5% of infected patients. However, children commonly 

develop a more severe and chronic hepatitis B. Indeed, about half of the chronically 

infected patients were infected perinatally or during early childhood with HBV 9. 

Furthermore, HDV is a satellite virus of HBV and requires its co- or superinfection, as it is 

dependent on the HBV surface (HBs) antigen. Chronic HBV/HDV co-infection leads to 

the most severe progression of virally induced liver disease 10. Although a vaccine 

against HBV is available that is also effective against HDV, some individuals are non-

responders and unable to develop anti-HBs antibodies. Moreover, HBV could mutate in 

vaccinated patients and escape the immunization acquired by vaccination 11. In contrast 

to hepatitis C, there is no curative treatment available for hepatitis B or D. Current 

treatment options, based on interferon (IFN) and nucleos(t)ide analogues (NUCs), 

control viral replication and delay disease progression 12; 13. However, cessation of 

antiviral therapy is often associated with virological relapse and rebound of the disease 
14. Given the global burden of viral hepatitis and the lack of curative treatments, new 

curative therapy approaches are urgently needed for hepatitis B and D in particular.   

 

1.2. Hepatitis B Virus 

HBV is classified as the type species of the genus Orthohepadnavirus that in turn is part 

of the Hepadnaviridae family. Natural hosts are humans and other great apes, such as 

orangutans, gibbons, gorillas and chimpanzees. The high species-specificity of HBV 

hampers research on its life cycle, as common laboratory animals, such as mice, rats or 

macaques, are not susceptible for HBV infections. Also, for a long time, primary human 

hepatocytes have been the only suitable in vitro model, since cultured human cell lines 

are inherently not susceptible for HBV infections. In 2012, the research field flourished 

with the identification of the HBV entry receptor, the sodium taurocholate co-transporting 

peptide (NTCP) 15; 16 and experiments in otherwise unreceptive human cell lines became 

possible with the overexpression of human NTCP. Nonetheless, HBV infections require 

the addition of dimethyl sulfoxide (DMSO) and polyethylene glycol 8000 (PEG) to the 

media to enhance infectivity in cell culture systems 17-20.  

Furthermore, the use of surrogate models, such as duck hepatitis B virus (DHBV) or 

woodchuck hepatitis virus (WHV) enabled research in lower species, and the 

development of HBV-transgenic mice 21-23 or the delivery and expression of HBV via 

hydrodynamic injection of plasmid DNA 24, Adenoviral (Ad) 25 or rAAV vectors 26; 27, 

enable the reconstruction of the viral life cycle at least partly. However, animal models 
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with authentic antiviral immune reactions that mirror the disease in human patients are 

still lacking and hamper the development of novel treatments.  

 

1.2.1.  Structure and genome organization 

The infectious hepatitis B virion, also called Dane particle, is 42 nm in diameter and 

consists of a viral DNA genome, an icosahedral nucleocapsid and an outer lipid 

envelope (Figure 2A). The membrane envelope derives from the host cell´s endoplasmic 

reticulum (ER) and harbors the HBV surface antigen (HBsAg) that comprises the small 

(S-HBsAg), medium (M-HBsAg) and large (L-HBsAg) variants. The lipid envelope 

encloses the nucleocapsid that consists of the core protein, the main structural protein of 

HBV 28. The capsid encompasses the partly double-stranded DNA genome that 

maintains a relaxed circular conformation (rcDNA) within the virion (Figure 2B). The 

genome spans 3.2 kb for the full-length minus strand and about two thirds of the size for 

the short plus strand 29. 

 

Figure 2. Structure and genome organization of HBV. 

A) Schematic view of infectious HBV virion (Dane particle). The HBV rcDNA is covalently linked to 
the viral DNA polymerase via a tyrosyl-DNA phosphodiester bond 30. The nucleocapsid consists 
of HBcAg and the envelope harbors the three surface antigen variants. B) Overview of HBV 
genome. The rcDNA consists of the complete minus-strand and incomplete plus-strand (dashed 
lines) and encodes four overlapping ORFs (C, S, P and X). Further regulatory elements such as 
the four promoters (C, preS1, S and X), two enhancers (Enh1, Enh2), encapsidation signal (ε) 
and replication signals (DR1, DR2) are also encoded within the ORFs. The rcDNA gives rise to 
three subgenomic RNAs (preS, S and X mRNA) and the pregenomic RNA that serves as mRNA 
for translation of the precore, core protein and polymerase. All viral transcripts share the same 
polyadenylation site and are 5´ capped and 3´ polyadenylated. Illustration in B was adapted from 
Tong & Revill (2016) 31. 
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The HBV genome encodes four partially, sometimes even completely overlapping ORFs. 

The largest ORF encodes the 90 kDa, 838 aa viral polymerase that consists of i) a 

terminal protein (TP) that binds the 5´ end of the rcDNA, ii) the reverse-

transcriptase/polymerase domain that generates the minus strand of the DNA genome 

from an RNA intermediate and subsequently uses the minus strand as template for plus 

strand synthesis, and iii) an RNase H domain that degrades the RNA intermediate during 

synthesis of the minus DNA strand 32.  

Another ORF encodes the precore (HBeAg) and core protein (HBcAg). The core protein 

is 21 kDa in size and forms homodimers that built up the nucleocapsid 33. The precursor 

HBeAg consists of the entire core protein and a further N-terminal extension that harbors 

a signal for ER translocation. As a consequence, it is further cleaved proteolytically at the 

N- and C-termini to give rise to the 16 kDa HBeAg and secreted into the serum. Although 

its function is not clearly understood, it serves as an indicator of active viral replication 34. 

It has been suggested that HBeAg is involved in a complex modulation of the host 

immune response upon HBV infection 35; 36. HBcAg, HBeAg and polymerase are 

expressed from the core promoter. Thereby, the ribosome occasionally omits the initial 

start codon for the core protein and commences elongation on the downstream start 

codon of the polymerase. The core protein is expressed at much higher rates compared 

to the polymerase, which reflects the demand of the viral particle for 120 core-dimers 

relative to a single molecule of polymerase.  

The S-, M- and L-HBsAg variants are encoded by the preS/S ORF. The S-HBsAg is 24 

kDa in size and its C-terminal region is shared among all HBsAg variants 37. The M-

HBsAg consists of the S-HBsAg sequence and is further extended on the N-terminus, 

which is called the preS2 region. Whereas S- and M-HBsAg share the same promoter, 

translation is initiated at a downstream or upstream start codon, respectively. The L-

HBsAg is expressed via its own mRNA transcript from the preS1 promoter. It contains 

the S-HBsAg, the preS2 sequence and a further N-terminal extension, which is called the 

preS1 sequence. The shared C-terminal region of the small antigen comprises four trans 

membrane (TM) domains that anchor all HBsAg variants to the ER membrane upon 

synthesis. Once the nucleocapsid gets enveloped on the ER membrane, it incorporates 

all HBsAg variants. Only the L-HBsAg is able to translocate between the inside and 

outside of the ER membrane 38. When the N-terminal preS1 region faces the cytosol, the 

L-antigen binds to the nucleocapsid and mediates envelopment. Outward-facing preS1 

of the L-antigen is essential for viral entry of hepatocytes as it contains the receptor 

binding region of HBV entry receptor, NTCP 15.  
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Besides the infectious Dane particles, also non-infectious subviral particles (SVPs) are 

released into the serum of infected patients that miss the nucleocapsid and consist 

mainly of the S-HBsAg, as well as M- and L-HBsAg in minor amounts 39. The SVPs are 

released in great abundance and reach up to a 10.000-fold higher concentration 

compared to the Dane particle in the serum of infected patients. The biological function 

of SVPs is still a matter of debate, but they seem to impair the humoral and cellular 

immune response to HBV 40.   

The last ORF encodes the X antigen (HBxAg), which is the only regulatory protein 

encoded by HBV. The HBxAg is 17 kDa in size and transcribed from the X promoter. 

Studies in primary human hepatocytes and mice with humanized livers showed that 

HBxAg-deficient HBV mutants were not able to replicate the viral genome 41; 42. Only 

restoration of HBxAg expression reconstituted viral replication. Additionally, HBxAg is 

generally associated with the development of HCC 43. 

 

1.2.2. HBV life cycle 

The HBV life cycle (Figure 3) commences with its entry into hepatocytes via a two-step 

mechanism that involves an initial loose and reversible binding to heparin sulfate 

proteoglycans (HSPG) 44 and a subsequent highly specific attachment of the L-HBsAg 

preS1 region to the NTCP receptor 15. HBV enters the cells via clathrin-dependent 

endocytosis in primary human hepatocytes 45 or caveolin-1-dependent endocytosis in 

HepaRG cells 46, but the precise mechanism remains unclear. The nucleocapsid is 

transported to the nucleus via microtubules and translocated via a nuclear localization 

signal (NLS) that is located on the C-termini of the core protein 47. The nucleocapsid 

disintegrates at the nuclear pore complex (NPC) and releases the HBV genome as 

rcDNA into the nucleoplasm 23; 48.  

The covalently closed circular DNA (cccDNA) represents the transcriptionally active 

conformation of the viral genome, which is only established after nuclear entry by host 

cell factors 49 and further epigenetically modified by host histone methylases, acetylases 

and kinases 50-52. The cccDNA gives rise to subgenomic and pregenomic (pg)RNA 

transcripts by using the host cell RNA polymerase II and hepatocyte-specific factors, 

such as the hepatocyte nuclear factors (HNF) 1, 3 and 4 that contribute to the cell-type 

specific infection of HBV 53; 54. Subsequently, the viral transcripts are exported and 

translated in the cytoplasm in order to produce the HBV proteins.  



PhD thesis, Carolin Schmelas 

7 
 

 

Figure 3. Schematic overview of HBV life cycle. 

HBV enters the cell via the hepatocyte-specific NTCP receptor. The nucleocapsid is translocated 
to the nucleus and releases the HBV genome into the nucleoplasm in form of rcDNA. Host factors 
are involved in the formation of cccDNA that persists in the cell as minichromosome. In situ 
priming of the plus-strand can lead to the formation of double-stranded linear DNA (dslDNA) that 
can integrate into the host genome genome with low frequencies of 1 in ~105–106 infected cells 55; 

56 and may contribute to the development of HCC and the continuous production of antigens 57. 
Viral proteins are expressed in the cytoplasm and pregenomic (pg)RNA is encapsidated into the 
nucleocapsid, where reverse transcription of pgRNA to rcDNA occurs. Mature nucleocapsids can 
be reimported to replenish the pool of cccDNA or enveloped at the ER membrane and secreted. 
Illustration contains art from smart.servier.com  

 

The pgRNA also serves as template for reverse transcription of the viral DNA. As the 

transcript is longer than its genome, it contains a redundant copy of its termini and 

comprises a second encapsidation ε and replication DR1 signal. The binding of the viral 

polymerase on ε at the 5´ end of the pgRNA triggers encapsidation of the 

ribonuleoprotein (RNP) complex by the core protein. Reverse transcription occurs in the 

nucleocapsid and is initiated by the TP domain of the viral polymerase. The minus strand 

is synthesized commencing from the DR1 region, followed by plus-strand synthesis from 

the DR2 region in a complex, discontinuous manner 58; 59.  
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The mature nucleocapsid particle containing the rcDNA can be re-imported into the 

nucleus to replenish the cccDNA pool or can be enveloped on the ER membrane and 

secreted, depending on the amount of intracellular surface protein 60. In early stages of 

the infection, nucleocapsids are recycled for the intracellular amplification of cccDNA. In 

later stages of the infection, L-HBsAg in the ER membrane binds to the nucleocapsid 

and mediates envelopment 61. The enveloped nucleocapsid is secreted via the 

endosomal sorting complex required for transport (ESCRT) pathway and multivesicular 

bodies (MVBs) 62. In contrast, SVPs can be secreted by the secretory pathway via the 

ER-Golgi intermediate compartment (ERGIC) 63 and also via MVPs 64.  

 

1.3. Hepatitis Delta Virus 

Hepatitis delta virus (HDV) is the only member of the genus Deltavirus and not assigned 

to any family 65. It is a virusoid and subviral satellite of HBV, as it needs the HBV surface 

antigens to form infectious particles 66. Currently, roughly 5% of chronic HBV carriers are 

also chronically infected with HDV, representing about 15 to 20 million people worldwide 
67. Hepatitis D can manifest either via simultaneous coinfection of HBV and HDV or via 

HDV superinfection of a chronic HBV carrier. Whereas the coinfection is mostly self-

limiting and progresses to chronic hepatitis D with the same rates as HBV monoinfection, 

i.e. less than 5% in adults, the superimposed HDV infection leads to chronic hepatitis D 

in about 80% of the cases 68. Hepatitis D in combination with hepatitis B is the most 

severe form of viral hepatitis and leads to a greater probability of acute liver failure, a 

rapid progress to cirrhosis and HCC, and a high fatality rate 69. Although vaccination 

against HBV is also effective against HDV, the current 240 million people already 

suffering from hepatitis B cannot be protected from an HDV superinfection.  

 

1.3.1. HDV structural organization and life cycle 

The hepatitis delta virion measures 35 to 37 nm in diameter and harbors a closed 

circular, single-stranded, negative-sense RNA genome of about 1672 to 1697 nt 

depending on genotype (Figure 4A). The genomic sequence has a high CG content and 

is mostly self-complementary (~74%) leading to a partially double-stranded RNA 

structure 70. About 200 molecules of the small (S-) and large (L-) hepatitis delta antigen 

(HDAg), bind to the RNA genome and form the viral RNP complex. The RNP complex is 
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enveloped at the host cell membrane and subsequently harbors the small, medium and 

large HBV surface antigens in its outer coat. The HDV genome comprises a single ORF 

that leads to the synthesis of the 24 kDa S- and 27 kDa L-HDAg (Figure 4B). As the N-

terminal sequence of both antigens is identical, small and large antigens only differ in a 

19 aa C-terminal extension for the L-HDAg 71.  

 

 

Figure 4. Schematic overview of HDV structure and genomic organization.  

A) The HDV virion comprises a closed-circular, negative-sense RNA genome that binds hundreds 
of small and large HDAgs. The genome is highly self-complementary and enveloped by host-
derived membrane containing the HBV surface proteins (S-, M-, L-HBsAgs). B) The ORF of 
HDAg is located on the complementary antigenome. During replication, the host cell enzyme 
ADAR1 edits the amber stop codon (UAG) of the S-HDAg at amino acid position 196 to a 
tryptophan codon (UGG), which enables the expression of L-HDAg 72; 73.  

 

As HDV employs the same envelope proteins as HBV, both viruses share the same 

hepatotropic nature and similar entry mechanisms. An initial binding of the L-HBsAg to 

HSPGs on the hepatocyte surface mediates HDV attachment 74; 75. Subsequently, HDV 

can enter the cell via binding of the myristoylated N-terminal binding site of the L-HBsAg 

preS1 domain to the NTCP receptor 15; 16. Whether HDV enters via endocytosis or direct 

membrane fusion remains unclear. Nonetheless, the RNA complex is released into the 

cytosol and transported to the nucleus via the NLS signal in the HDAg 76; 77. HDV 

replication and mRNA synthesis take place in the nucleus via the host cell RNA 

polymerase II 78 and RNA polymerase I 79. Three forms of RNA are made comprising the 

circular genomic RNA, circular complementary antigenomic RNA and a linear 

polyadenylated, antigenomic RNA encoding the HDAg. Replication is catalyzed via a 

double rolling-circle mechanism of RNA synthesis of genomic and antigenomic RNA 80. 

The generated RNA multimers are cleaved into monomers by the ribozyme activity 
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embedded in the genomic and antigenomic RNA sequence 81. The monomers are 

subsequently ligated to form circular RNA.  

The antigenomic RNA is exclusively located in the nucleus and encodes the HDAgs. In 

order to enable translation of the HDAgs, a 5´-capped and 3´-polyadenylated mRNA of 

about 0.8 kb is produced by RNA polymerase II and subsequently exported and 

translated in the cytoplasm 82; 83. The S-HDAg is predominantly produced in early stages 

of infection and plays a supporting role in viral replication 84. In contrast, the L-HDAg is 

produced in later stages of infection and acts as a direct inhibitor of viral replication and 

is required for assembly of viral particles 85-87. In its C-terminal extension, the L-HDAg 

contains a nuclear export signal (NES) 88, a binding motif for the HBV surface antigens 89 

and a prenylation site 90. The host cell farnesyltransferase covalently links a farnesyl 

moiety to the prenylation site in the L-HDAg and thereby contributes to the inhibition of 

HDV RNA replication, the binding to the HBV surface antigens and the envelopment of 

the RNP complex 91; 92. Finally, the HDV genome, but not the complementary 

antigenome, is assembled into HDV and released either via the classical secretory 

pathway or via multivesicular bodies. 

The presence of the HBV surface antigens is required to form an infectious HDV particle, 

therefore assembly of HDV can only occur in HBV co-infected cells. However, defective 

HBV genomic integrates that still express the self-assembly-competent HBV surface 

proteins suffice to spread progeny HDV 93.  

   

1.4. Antiviral therapy based on RNA interference 

Current therapeutic options to treat chronic hepatitis B include immune modulators, such 

as conventional and PEGylated IFNα, as well as NUCs, such as tenofovir and entecavir, 

that inhibit the reverse transcriptase activity of the HBV polymerase. Although these 

medications control viremia and reduce liver inflammation in up to 75 or 80% of all 

patients 94, respectively, they barely affect cccDNA levels or viral antigen production and 

thus lead to a high relapse rate after discontinuation of even long-term treatment 95. 

Available treatment for chronic hepatitis D is even more restricted, since HDV only 

encodes the delta antigen and otherwise relies strongly on host cellular factors, which 

provide only few therapeutic targets. Clinically approved HBV RT inhibitors do not 

interfere with HBsAg secretion and thus have no effect on HDV. Accordingly, current 

treatment options are limited to IFNα. Chronic hepatitis D can be treated in only 20 % of 
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all patients and reappears in about half of the successfully treated patients in long-term 

follow-up studies 96. 

Several new medications against hepatitis B that are also effective against hepatitis D 

are under investigation in clinical trials, which directly target HBV infection at various 

steps of the life cycle including inhibition of viral entry (NTCP inhibitors like Myrcludex B), 

capsid assembly, HBsAg secretion 97; 98 and RNA interference (RNAi) mediated silencing 

of viral transcripts 99. The latter approach seems to be especially attractive, since it 

enables the targeting of the pathogen directly without interfering with other cellular host 

factors.  

 

1.4.1. The mechanism of RNA interference 

RNA interference is a biological process that harnesses small RNA triggers to regulate 

gene expression post-transcriptionally. These small, roughly 20 to 30 nt non-coding 

RNAs bind to target mRNA by complementary base-pairing and initiate translational 

repression or degradation (Figure 5). Two major types of RNA molecules can be 

distinguished: microRNAs (miRNAs) that are of endogenous origin and small interfering 

RNAs (siRNA) that typically describe exogenous synthetic or viral inducers of RNAi 100.  

MicroRNAs are genomically encoded either by non-protein coding transcripts or within 

introns of coding genes. Almost all eukaryotes possess miRNA and the associated 

processing pathways to regulate gene expression in a cell-type-specific manner. In 

humans, more than 1000 miRNAs are known that regulate at least 30 % of our genes 101. 

MicroRNAs are transcribed as a primary miRNA (pri-miRNA) that is at least 1000 nt long 

and contains single or clustered hairpins as well as single-stranded 5´ and 3´ extensions 
102. These transcripts are further processed in the nucleus by the microprocessor 

complex consisting of Drosha, an RNase III enzyme, and DiGeorge syndrome critical 

region gene 8 (DGCR8), a protein that binds dsRNA 103. The resulting pre-miRNAs are 

about 70 nt long, harbor a stem-loop structure and are exported by the RanGTP 

dependent dsRNA-binding protein Exportin-5 104. In the cytosol, Dicer processes the 

mature miRNA by trimming the RNA to a double-stranded, 21 to 25 nt long strand that 

consists of a guide strand that is complementary to the mRNA target sequence and a 

passenger strand. The mature miRNA is loaded into the RNA-induced silencing complex 

(RISC) that comprises at least Dicer, Argonaute (Ago) and TAR RNA binding protein 

(TRBP) 105. 
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Figure 5. Schematic overview of the RNAi pathway.  

MicroRNAs (miRNAs) are encoded in the genome and processed via Drosha and DGCR8, while 
short-hairpin RNAs (shRNAs) are expressed from a DNA template. Pre-miRNA and shRNAs are 
exported from the nucleus to the cytosol via Exportin-5 and further processed by TRBP and Dicer. 
Association with Ago2 forms the RNA-induced silencing complex (RISC) and induces loading of 
the antisense strand. Binding of siRNA/miRNA to the target mRNA via a perfect match leads to 
mRNA cleavage, whereas an imperfect targeting mediates mRNA destabilization. Illustration 
contains art from smart.servier.com 

 

Within RISC, the passenger strand is removed and the guide strand remains bound to 

Ago and is directed to the complementary mRNA target. The seed region of the guide 

strand that comprises nucleotides 2-6 mediates binding to the target. If the sequence is 

perfectly complementary to the target, Ago2 (one of four human Ago proteins) can 

cleave the mRNA target 106. In animals, the binding between miRNA and mRNA is mostly 

characterized by mismatches, which results in translational repression through inhibition 

of translation initiation and deadenylation and subsequent degradation of mRNA 107; 108.  

The endogenous RNAi pathway can be easily harnessed for biotechnological and 

therapeutical applications by introducing a synthetic dsRNA of roughly 21 nt into the cell 
109. These RNAs are termed siRNAs and are designed to be perfectly complementary to 

the target mRNA sequence and thus initiate Ago2-mediated target cleavage. In contrast, 

short-hairpin (sh) RNAs are encoded on a DNA template and can be expressed by RNA 

polymerase III promoters, such as the U6, 7SK, H1 and tRNA promoters 110, as well as 

polymerase II promoters that permit cell-type specificity 111. Upon transcription, the RNA 
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self-anneals via its complementary sequence and forms a hairpin structure. Akin to 

miRNAs, shRNAs are exported by Exportin 5 and processed by Dicer that eliminates the 

passenger (sense) strand. Subsequently, the guide (antisense) strand that is 

complementary to the designated mRNA target is loaded into RISC to mediate knock-

down. As siRNAs or shRNAs can be easily adapted to any mRNA target by customizing 

their 21 nt sequence, high-throughput screens to probe gene functions on a whole 

genome scale 112; 113 and applications in the combat against gain-of-function autosomal 

dominant diseases, cancer and infectious diseases became feasible 114.  

 

1.4.2. Therapeutic RNAi against HBV and HDV 

Two approaches to combat HBV infections via RNAi were previously suggested, 

including i) the direct targeting of viral transcripts or ii) the inhibition of host cell factors 

that are important for viral entry, replication and release 115 or are involved in subsequent 

liver failure 116; 117. Directly targeting HBV and/or HDV transcripts has the advantage that 

endogenous factors and pathways, besides the RNAi machinery itself, remain 

unaffected. In most studies that apply the RNAi machinery against HBV, the viral 

transcripts were directly targeted 118. This seams reasonable, since viral transcripts serve 

as template for antigen production and replication intermediates. As the HBV genome 

has highly overlapping ORF and viral transcripts share the same 3´end and 

polyadenylation site, a single RNAi effector molecule could in principle inhibit the 

synthesis of all viral antigens and inhibit viral replication, simultaneously 99; 119. 

Of particular interest is the previously suggested implication that RNAi therapeutics might 

be able to restore the anti-HBV immune response by inhibiting the excessive secretion of 

HBV antigens 120 that is known to skew an adequate immune reaction against the 

pathogen 121; 122. Accordingly, although HBV is able to infect virtually the whole liver 123, 

studies from HBV transgenic mice suggested that efficient RNAi in a limited number of 

hepatocytes already suffice to clear the infection 120, as a restored host immune system 

might synergistically contribute to viral clearance 124-126.  

In constrast to the abundance of studies that previously used RNAi to target HBV, only a 

single study employed this powerful technology to target plasmid-encoded HDV 127 and 

another bioinformatical paper suggested a potential design of siRNA to concurrently 

target various HDV genotypes 128. However, as of yet studies are missing that investigate 
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therapeutic RNAi approaches against infectious HDV and, all the more, against 

HBV/HDV co-infections. 

A drawback in targeting HBV and HDV directly via RNAi could be a high rate of viral 

escape, as viruses, in particular RNA viruses, have a high mutation rate and even 

develop quasispecies within an individual host. It is likely that an existing mutation within 

the virus rapidly becomes the dominant species within the host, when placed under 

selection pressure by the introduction of RNAi treatment. Indeed, several reports 

confirmed that many viruses could generate RNAi escape mutants, including HAV 129, 

HBV 130, HCV 131, HIV 132; 133, poliovirus 134 and possibly also HDV due to its high rate of 

mutation 135. One strategy to efficiently counteract viral escape is a concept termed 

combinatorial RNAi (coRNAi) that describes the co-expression/ multiplexing of several 

RNAi effector molecules, against multiple viral and/or cellular targets 136; 137. Targeting 

several conserved viral sequences simultaneously could minimize the chance of escape 

mutants. Indeed, it has been shown that the combination of two to six RNAi effector 

molecules provides an additive effect on single and multiple gene knockdowns in various 

hosts 138-143. 

 

1.4.3. Towards safer RNAi therapeutics 

Here, we raise a note of caution about possible cytotoxic effect and reported fatality in 

mice and many other species by high levels of shRNA expression 144-148. These reports 

suggest that overexpression of shRNAs overwhelms the RNAi machinery and results in 

dysregulation of endogenous miRNAs. The reduction of shRNA expression, e.g. by 

weaker promoters or lower dosages, can limit toxic effects but might lead to a less 

efficient RNAi based therapy 149. Further attempts to counteract cytotoxicity include the 

overexpression of rate-limiting cellular factors, such as Ago2 and Exportin 5 150-152 or the 

integration of a specific RNAi effector into an endogenous miRNA locus in order to drive 

cell-type-specific expression at appropriate levels 153. 

Further drawbacks of current RNAi technology include off-target effects that impact the 

expression of non-targeted genes. Off-targeting can occur and is difficult to prevent if the 

sequence of siRNAs/shRNAs resembles mRNA transcripts, due to the nature of the 

RNAi pathway to degrade or destabilize mRNA targets even when mismatches are 

present 154; 155. Therefore, various software tools have been developed to evaluate the 

sequence specificity of the designed siRNA 156. Unintended perturbation of gene 
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expression can also occur by the occasional loading of the sense strand, instead of the 

intended antisense strand, into RISC 157; 158. Strand selectivity seems to be dependent on 

the 5´-thermodynamic stability of the antisense strand with a preference for lower internal 

stability 159, 5´-nucleotide identity, duplex structure of the seed region and competitive 

Ago2 binding on either strand 160. Regardless of the actual mechanism of strand 

selectivity, co-delivered tough decoy (TuD) RNAs can reduce sense strand activity of 

vector-encoded shRNAs 161; 162. TuD RNAs consist of two antisense strands connected 

by a loop sequence that act as sponges for the sense/passenger strand of the dedicated 

and co-delivered shRNA (Figure 6). The use of TuD RNAs in HBV-transgenic mice 

reduced side effects of the sense strand on unintended off-target genes and also 

increased the desired antiviral activity of an shRNA that was directed against the HBx 

region 163.  

 

Figure 6. The principle of tough decoy (TuD) RNAs.  

Sense strands of a designated shRNA are occasionally loaded into RISC and mediate off-
targeting. TuD RNAs consist of two antisense strands that match the respective shRNA. 
Accordingly, TuD RNAs act as decoy to restrict the presence of free sense strands and limit their 
off-target acitivity. 

 

Despite the recent advances in RNAi technology and the various approaches to enhance 

safety, RNAi remains ineffective against HBV cccDNA reservoirs and integrated 

derivatives as it acts on the RNA level. Thus, an alternative or additional tool for gene 

therapy is urgently needed to directly tackle the HBV genome. 

 

1.5. Antiviral therapy based on CRISPR/Cas9 

A new striking toolkit for precise genome engineering emerged with the discovery of the 

microbial adaptive immune system CRISPR (clustered regularly interspaced short 

palindromic repeats), which can be repurposed to edit virtually any genomic locus in a 

variety of model systems including mammalian cells. Compared to RNAi, the CRISPR 
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system solely depends on a single effector protein, the Cas (CRISPR-associated gene) 

9, and a guide RNA sequence that can be likewise adapted to virtually any designated 

target locus. The major difference of the conventional CRISPR system and RNAi is the 

preference for DNA targets that results in the knock-out of the designated gene.  

The CRISPR system is currently tested in clinical trials to fight several cancer types by 

knocking out PD-1 in T-cells ex vivo before re-administration to the patient 164. 

Furthermore, its use in vivo is evaluated in a clinical trial that is applied by subretinal 

injection of an rAAV5 vector that expresses the CRISPR system, in order to correct a 

point mutation in the CEP290 gene that is responsible for an inheritable blindness called 

Leber congenital amaurosis (NCT03872479). 

Adding to the long list of possible CRISPR applications, its use in antiviral therapies 

became a major research field and enabled scientists to target many incurable chronic 

viral infections in model systems 165. Especially, HBV with its reservoirs of cccDNA and 

its genomic integrates that neither can be targeted with current therapeutic approaches 

nor with RNAi became susceptible with this new gene editing tool for the first time. 

Furthermore, as Cas9 and guide RNA are introduced into the cells exogenously, the 

CRISPR system remains independent of endogenous pathways that could cause 

cytotoxicity upon oversaturation. Considering these advantages, an abundance of 

studies utilized the CRISPR system to tackle HBV infection (summarized in 

Supplementary Table 1). 

 

1.5.1. The CRISPR/Cas9 mechanism  

The CRISPR system is a naturally occurring RNA-guided immune system found in 

bacteria and archaea that confers an adaptive, sequence-specific resistance to 

exogenous genetic material, such as viruses 166. The CRISPR system can be divided in 

two classes according to different Cas effector proteins. While class 1 comprises multiple 

Cas proteins that form a complex in order to target and degrade foreign DNA, class 2 

uses a single large protein for the same purpose 167. Both classes use CRISPR RNAs 

(crRNAs) to mediate target recognition by complementary base pairing. Due to its 

modest requirements, class 2 is the best-studied CRISPR/Cas system and the most 

promising tool for genome engineering so far. Class 2 can be further divided into type II, 

V and VI comprising Cas9, Cpf1 and Cas13 effector proteins, respectively, which are 

characterized by a variety of different features. For reasons of simplicity, in the following 
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section, the mechanism and possible applications of the type II CRISPR/Cas9 system 

will be further discussed.  

The Cas9 endonuclease is activated by the binding of two RNAs, the crRNA and trans-

activating crRNA (tracrRNA). The first roughly 20 nt of the crRNA define the target 

specificity and the tracrRNA serves as a scaffold for Cas9 binding (Figure 7). The 

tracrRNA is highly complementary to itself and forms two to three stem loops (depending 

on the CRISPR ortholog). Furthermore, the tracrRNA and crRNA can to form an RNA 

duplex that is referred to as guide RNA 168. The crRNA sequence is the only component 

of the system that needs to be adapted in order to direct Cas9 to a specific site of a 

double-stranded DNA substrate 169.  

 

Figure 7. Schematic overview of the CRISPR/Cas9 mechanism.  

Cas9 is directed to a designated target locus adjacent to a protospacer adjacent motif (PAM) by a 
target-complementary crRNA that is hybridized with the tracrRNA. Upon binding, Cas9 induces a 
double-strand break (DSB) at the target locus. The DSB is repaired by endogenous mechanisms, 
such as non-homologous end-joining and homology-directed repair, that in some instances 
induce mutations that lead to gene knock-out or insertions of DNA template sequences that lead 
to knock-in, respectively. Illustration contains art from smart.servier.com.  

 

Furthermore, the crRNA:tracrRNA duplex can be fused to form a chimeric single guide 

RNA (sgRNA) by an artificial loop that mimicks the secondary structure in its hybridized 

state 169. Once activated, Cas9 is directed to the designated target sequence and 

induces a DSB by two distinct active sites, the RuvC and HNH domain.  
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Mammalian cells employ genomic repair mechanisms to fix the induced DSB including 

homology-directed repair (HDR) and, in the absence of a homologous DNA template, 

non-homologous end joining (NHEJ) 170; 171. According to the double Holliday junction 

model, the MRN complex (Mre11, Rad50, Nbs1) binds to damaged DNA on either side 

of the break and recruits further proteins that create 5´ and 3´ overhangs 172. In the case 

of HDR, Rad 51 is recruited to the site of the DSB, recognizes DNA sequences that 

resemble the single-stranded 3´ overhang and invades the recipient DNA duplex 173. The 

DNA polymerase uses the homologous DNA as repair template in a cross-shaped 

structure called Holliday junction. This process can be exploited for precise genome 

editing by providing the CRISPR/Cas9 system with a DNA repair template. In contrast, in 

the process of NHEJ, microhomologies within the single-stranded overhangs lead to the 

direct ligation of the DNA strands. This process is error-prone and can lead to the 

formation of insertions and deletions (indels), subsequent frame-shifts and the knock-out 

of a target gene 174.  

Further advances in CRISPR/Cas9 technology fostered its development as the leading 

tool for genetic engineering. First of all, the co-expression of several sgRNAs in a single 

cell enables multiplexed genome editing that facilitates the deletion of large DNA 

fragments from the designated target gene or the concurrent knock-out of several genes 
175. Secondly, single point mutations in the RuvC and HNH domains inactivate their 

respective catalytic sites. Whereas a single mutation results in Cas9 nickases (nCas9) 

that induce only single-stranded DNA breaks, both mutations lead to catalytically dead 

Cas9 (dCas9) variants 175-177. In both cases, the ability of Cas9 to bind the target locus is 

preserved. Lastly, these Cas9 variants can be utilized to remodel the epigenetic state of 

a specific locus by the fusion of various effector domains, e.g. transcriptional activator or 

repressor domains 176; 178, acetyltransferases, methylases or demethylases 179, or to 

create base editors that change single nucleotides adjacent to the target sequence 180. 

Multiplexed genome editing and the use of orthologous CRISPR/Cas9 systems as well 

as their nCas9 and dCas9 variants gave rise to numerous options to rewire and control 

diverse cellular networks and to hit viral infections on multiple levels. 

 

1.5.2. CRISPR/Cas9 orthologs 

A wide variety of orthologous type II CRISPR/Cas9 systems are available that increase 

the flexibility of this powerful genome editing tool 181. Popular variants are the systems 

from Streptococcus pyogenes (Sp), the first system that was characterized and applied 
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for gene editing purposes 168; 175; 182; 183, as well as Staphylococcus aureus (Sa) and 

Neisseria meningitides (Nme1) that are characterized by smaller Cas9 effector proteins 

(Figure 8). The smaller SaCas9 and Nme1Cas9 of about 1053 aa and 1082 aa, 

respectively, enable their packaging in viral vehicles for in vivo gene delivery. Although 

the Cas9 proteins share very little sequence similarity (only 17% for Sp and SaCas9), 

their crystal structures unveil several shared structural arrangements 184-187. 

 

Figure 8. Domain organization of orthologous Cas9 endonucleases.  

SpCas9, SaCas9 and Nme1Cas9 share similar domain organization. The domains can be divided 
into a recognition and nuclease lobe. Schematic representations are adapted from 184; 186; 187.  

 

The nuclease (NUC) lobe consists of the three RuvC domains and an HNH domain that 

induce site-specific nicks on the DNA strand that is non-complementary or 

complementary to the guide RNA, respectively. Also part of the NUC lobe is the C-

terminal PAM-interacting (PI) domain that mediates PAM recognition and DNA 

unwinding, and a wedge (WED) domain that recognizes the secondary structure of the 

guide RNA. The NUC lobe is separated into a small N-terminal and large C-terminal part 

by an intermediate recognition (REC) lobe comprising a bridge helix (BH) motif and 

several REC domains. Upon target binding, the REC lobe undergoes a major 

conformational rearrangement that positions the HNH domain to the DNA cleavage site 

and locks Cas9 in a DNA bound state 188. Despite these similarities, the Cas9 orthologs 

vary in their tracrRNA sequence and the required PAM sequence. Whereas SpCas9 

requires the 5´-NGG-3´ PAM sequence, SaCas9 utilizes 5´-NNGRRT-3´ 189 and Nme1 

Cas9 uses 5´-N4GYTT-3´ 190, where “N” is any of the four nucleobases, and “R” and “Y” 

represents purine and pyrimidine bases, respectively.  

1"

42
6 

1 41
 

74
 

43
5 

48
1 

52
0 

62
9 

65
0 

77
5 

78
8 

91
0 

96
8 

10
53

 

R
uv

C
I 

B
H

 

R
ec

 

R
uv

C
II 

L1
 

H
N

H
 

L2
 

R
uv

C
III

 

W
E

D
 

TO
P

O
 

C
TD

 

1 60
 

18
0 

94
 

30
8 

71
8 

77
5 

90
9 

10
99

 

13
68

 

R
uv

C
I 

B
H

 

R
ec

1 

R
uv

C
II 

H
N

H
 

R
uv

C
III

 

P
I 

R
ec

1 

R
ec

2 

1 55
 

24
7 

91
 

45
5 

51
0 

54
1 

65
5 

66
7 

84
2 

94
6 

10
82

 

R
uv

C
I 

B
H

 

R
uv

C
II 

L1
 

H
N

H
 

L2
 

R
uv

C
III

 

W
E

D
 

P
I 

R
ec

1 

R
ec

2 

SpCas9 

SaCas9 

Nme1Cas9 



PhD thesis, Carolin Schmelas 
 

20 
 
 

1.5.3. Towards controllable gene editing by the use of anti-CRISPR proteins 

A major limitation of the CRISPR/Cas9 system is the presence of off-target effects that 

hamper its transition to a successful therapeutic. Off-targeting is mediated by sequence 

similarities of the crRNA sequence and genomic targets. It has been reported that the 

seed region, consisting of approximately the eight to twelve bases proximal of the PAM 

sequence, are especially important to determine sequence specificity, as they interact 

with the BH domain within the REC lobe of Cas9 184; 191. Potential off-target cleavage 

could occur with even five base pair mismatches between crRNA and target 192; 193; 

therefore it should be carefully evaluated in the crRNA in silico design whether the PAM-

associated target site is unique within the genome, e.g. by the widely applied CCTop 

online platform 194. Strategies to reduce off-targeting were extensively reviewed in the 

literature 195; 196. Besides crRNA specificity, a strong and prolonged expression of the 

CRISPR/Cas9 components within cells is associated with an amplified rate of off-target 

events. Therefore, it would be highly preferable to control CRISPR/Cas9 mediated gene 

editing in a spatio-temporal manner and to be able to switch its activity on and off.  

In the co-evolutionary battle between bacteria and phages, phages evolved mechanisms 

to directly bind and inactivate the bacterial CRISPR/Cas9 machinery, the so-called anti 

CRISPR (Acr) proteins. The first Acr proteins were discovered in prophages, which were 

able to infect and propagate in Pseudomonas aeruginosa, although this bacterial strain 

carries a functional multi-protein type I-F CRISPR system directed against the invader 
197. Bioinformatics approaches identified five distinct genomic regions encoding the 

AcrF1 through AcrF5 proteins that determine the anti-CRISPR phenotype. As none of 

these proteins disrupt the expression of the cas9 genes nor influence the maturation of 

the required RNAs, it was assumed that these Acr proteins inhibit the CRISPR system by 

direct protein-protein binding 198. Subsequently, the putative transcriptional regulators 

Aca (anti-CRISPR-associated) 1 and 2 were discovered that link the expression of Acr 

proteins to the infectious cycles of phages. Henceforth, the race to uncover further Acr 

proteins began and various CRISPR/Cas9 inhibitors were identified. In 2016, the first 

inhibitor against the single effector type II-C CRISPR/Cas9 system from Neisseria 

meningitidis was discovered comprising AcrIIC1, AcrIIC2 and AcrIIC3 199. A year later, 

studies confirmed the inhibition of the type II-A CRISPR/Cas9 system from Listeria 

monocytogenes by AcrIIA1 through AcrIIA4 200. Surprisingly, AcrIIA2 and AcrIIA4 

efficiently counteract also the type II-A CRISPR/Cas9 system from Streptococcus 

pyogenes.  
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So far, about 21 distinct Acr families have been described that act against type I and II 

CRISPR systems 198. Besides their small size of about 50 to 150 aa, the Acr proteins 

share no conserved sequences. Nevertheless, Acrs seem to act according to similar 

anti-CRISPR mechanisms by mostly inhibiting the DNA binding ability of CRISPR 

effector proteins. Whereas AcrF1 and AcrF2 prevent proteins from the multiple effector 

type I-F cascade complex to bind to target DNA, AcrIIA4 and AcrIIC3 directly act on the 

type II single effector Cas9 protein for the same purpose. By contrast, AcrIIC1 binds the 

catalytic HNH domain and locks NmeCas9 in a DNA-bound, but catalytically inactive 

state 201.  

Acr proteins can be applied to tightly regulate CRISPR/Cas9 mediated gene editing in a 

spatio-temporal manner by various strategies. The groups of Dominik Niopek and 

Roland Eils from the German Cancer Research Center (DKFZ) in Heidelberg have 

previously engineered an optogenetically controllable Acr variant, comprising a hybrid of 

AcrIIA4 and the LOV2 photosensor from Avena sativa, to regulate SpCas9 gene editing 

in a light-dependent manner 202. Furthermore, in a collaborative effort, the Niopek lab and 

ours have developed a cell type-specific CRISPR-ON switch based on miRNA-regulated 

expression of Acr proteins 203. To this end, binding sites for miRNA-122 or miRNA-1 that 

are expressed exclusively in hepatocytes and myocytes, respectively, were inserted in 

the 3´ UTR of the AcrIIA4, AcrIIC1 or AcrIIC3 transgenes (Figure 9).  

 

Figure 9. Principle of a miR-122-based CRISPR-ON switch.  

The Acr variant harbors a binding site for the hepatocyte-specific miR-122 in the 3´ UTR of its 
transgene and is thus inhibited specifically in liver cells. Accordingly, Acr knock-down releases 
Cas9 from inhibition and enables gene editing in hepatocytes, while Cas9 is inhibited in off-target 
cells. Illustration contains art from smart.servier.com. 

Co-expression of these Acr variants with the CRISPR components resulted in miRNA-

mediated knock-down of Acr within the designated target cells and thus led to the 

release of its inhibitory effect on SpCas9 or NmeCas9. Thus, different CRISPR/Cas9 

orthologs can be switched on in specific miRNA-expressing target cells and remain 

inhibited in off-target cells.  
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1.6. Adeno-associated viral vectors: a delivery vehicle for gene 

therapy 

A successful application of RNAi and CRISPR/Cas9 in postnatal animals and clinical 

applications strictly depends on the availability of vehicles that can deliver the required 

components to target cells. Recombinant Adeno-associated viruses (rAAVs) are 

attractive candidates for in vivo gene delivery due to many advantageous features 

including the long-term and probably even life-long expression of transgenes in a wide 

range of cell types in vivo 204. In general, AAVs are considered very safe as compared to 

other viruses. First of all, wild-type (wt) AAVs are not associated with any disease and 

induce only a mild immune response that reduces the risk of immune-associated 

pathology 205; 206. While wt AAVs can stably integrate into the host cell genome mainly at 

a specific site on chromosome 19, termed AAV safe harbor 1 (AAVS1) 207, rAAV vectors 

remain predominantly in a non-integrative, episomal state, thus reducing the risks of 

oncogenic mutations by random insertions 208. 

Recent approvals of rAAV-based medications herald the emergence of a new class of 

therapies for genetic disorders, which had hitherto been considered as untreatable. The 

first rAAV gene therapy product, Glybera, was licensed in 2012 for the treatment of 

lipoprotein lipase deficiency. Since then, various clinical trials for the treatment of 

neurological 209, ocular 210 and other monogenetic diseases, such as hemophilia B 211 

and alpha-1 antitrypsin deficiency 212, reported effective and encouraging therapeutic 

results. This led to the FDA approval of two additional rAAV-based therapeutics, namely 

Luxturna for the treatment of Leber´s congenital amaurosis, an inherited eye disease 

causing blindness, and Zolgensma for the treatment of spinal muscular atrophy that, if 

untreated, leads to the loss of motor neurons, progressing muscle atrophy and 

subsequent death in infants 213.  

 

1.6.1. AAV structure and genome organization  

AAV belongs to the family of Parvoviridae and harbors a 4.7 kb single-stranded, either 

positive- or negative-sensed, DNA genome. Its non-enveloped capsid of icosahedral 

symmetry is about 22 to 26 nm in diameter and is composed of 60 viral protein (VP) 

subunits 214-216. The VPs are divided into VP1, VP2 and VP3 that are expressed in an 

estimated ratio of 1:1:10, respectively 217. The genome of wt AAV encodes Rep proteins 

(Rep78, Rep68, Rep52 and Rep40) that are involved in virus replication and Cap or VP 
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proteins (VP1 to VP3) that compose the viral capsid. An alternative ORF for the 

assembly-activating protein (AAP) is located within the cap sequence and promotes 

assembly of viral capsids 218; 219. Recently, an additional ORF within the cap sequence 

has been discovered that encodes the membrane-associated accessory protein (MAAP), 

which plays a role in the packaging of an AAV genome into its respective capsid, while 

excluding competitive AAV genomes that encode different capsid variants 220. The 

coding sequence of the AAV genome is flanked by short, about 145 nucleotides long 

inverted terminal repeats (ITRs) that form T-shaped secondary structures and are 

required for genome packaging into the viral capsids. 

AAVs are Dependoparvoviruses, since they depend on a helper virus to complete their 

replication cycle. Accordingly, AAV was first discovered as contamination in Adenovirus 

preparations and thus acquired its name 221. Without co-infection of helper viruses, such 

as Ad, Herpes Simplex virus (HSV) or human papilloma virus (HPV) 222, AAV is 

replication-deficient.  

To date, 13 naturally occurring AAV serotypes and hundreds of natural isolates have 

been reported that originated from a variety of different species including mammals, 

birds and reptiles 206. Together, these AAV variants show a wide range of tropisms for 

different mammalian cell types in vitro and in vivo. Furthermore, individual AAV 

serotypes and variants show a varying degree of target specificity towards certain cell 

types and organs. For instance, while AAV8 especially targets the liver, AAV9 is 

considered as a ubiquitous transducer in mice 223; 224. Most studies on the AAV life cycle 

and biology focus on wt AAV2, likely due to historical reasons (wt AAV2 was the first 

cloned serotype 225; 226) and its wide tropism for laboratory cell lines that simplifies its 

research 227. Differences in cell tropism profiles for the different AAV members are 

presumably determined by the molecular interactions between capsid and target cell 

surface receptors 228 and subsequent intracellular trafficking 214. An initial attachment to 

the cell surface is achieved by the binding to mostly negative charged glycans or 

glycoconjugates, such as HSPG that has been identified as a glycan moiety for AAV2  
229. AAV2 capsid mutants that forfeit the ability to bind to HSPG show reduced mouse 

liver transduction rates, but retain their tropism towards the heart, suggesting that AAV2 

can use alternative entry modalities 230. The initial attachment to the cell surface is 

followed by a specific binding to the universal AAV receptor (AAVR) 231; 232, that mediates 

AAV entry for all serotypes except AAV4 and its descendants 233. 
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1.6.2. The recombinant Adeno-associated virus 

The rAAV vector is particularly attractive as delivery vehicle for genetic elements due to 

many favorable traits including, among others, i) the ease of virus production and 

purification, ii) the safe handling under biosafety level 1 conditions (depending on the 

nature of the cargo), and iii) the availability of various natural serotypes and numerous 

engineered variants 234. For the packaging of rAAV genomes into viral capsids, the ITRs 

are the only elements in the viral genome that are required in cis, whereas all other 

elements can be provided in trans 235; 236 (Figure 10).  

Accordingly, the entire coding sequence between the ITRs can be replaced by any 

desired transgene expression cassette that abides the packaging capacity of up to 5 kb. 

The rAAV genome is packaged into viral capsids by co-transfection of HEK293T cells 

together with plasmids that express the AAV proteins and Adenoviral components, which 

provide helper functions for rAAV vector production 237. With the discovery of new AAV 

serotypes and the engineering of novel variants, the idea has emerged rapidly to 

vectorize the whole AAV diversity. To this end, a pseudotyping strategy has been 

developed that basically utilizes the ITRs from AAV2 for all recombinant genomes 238-240. 

Dirk Grimm and co-workers in the lab of Mark Kay have previously extended this 

approach by the juxtaposition of ITRs of AAV2 and AAV4 on the same viral genome 

(patent US9150882B2), which successfully reduced the amount of recombination and 

associated loss of ITRs during cloning processes while maintaining efficient vector 

production. Moreover, they and others have previously reported that Rep proteins are 

mostly interchangeable across AAV serotypes 239; 241; 242, which is probably facilitated by 

the high sequence identity between ITRs of different serotypes (>95%), to which Rep 

proteins bind and cleave during genome replication. The only exception is AAV5, which 

harbors distinct ITRs and Rep proteins, and thus is unable to complement packaging of 

viral genomes flanked by ITRs from AAV2 and vice versa 243; 244. Consequently, most 

rAAV vectors that are currently utilized in the field are pseudotyped with ITRs from AAV2 

(or, in the case of the aforementioned hybrid genomes, a combination of ITRs from 

AAV2 and AAV4) and rely on the complementation with the AAV2 Rep proteins 

(encoded by rep2) for vector production. By contrast, the sequence of cap can be easily 

adapted according to the designated rAAV variant (capX).  

For gene therapy purposes, the rAAV vector has been engineered on the capsid as well 

as the genome level in order to limit transgene expression to specific target cells 245; 246. 

Especially when used as delivery vehicle for CRISPR/Cas9 and RNAi that currently 
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remain prone to off-targeting, specificity could be improved already on the level of cell 

selectivity 247. 

 

Figure 10. Production of rAAV vectors.  

The coding sequence between the ITRs of wt AAV can be exchanged by any foreign DNA and 
rep and cap sequences, and Adenoviral genes can be supplied in trans for viral packaging in 
HEK293T cells. Three days post-transfection, cells are harvested and subjected to five 
freeze/thaw cycles in order to release the viral particles. Subsequently, the cell lysate is loaded on 
an iodixanol gradient and purified rAAV vectors can be extracted from the 40% iodixanol phase 
after ultracentrifugation. Illustration contains art from smart.servier.com 

 

One popular strategy to increase rAAV specificity is the insertion of an oligonucleotide in 

the cap sequence encoding a short peptide that is then displayed on an exposed region 

on the viral capsid surface, hoping that this will mediate changes in receptor binding and 

virus uptake 227; 248. Another strategy is termed “DNA family shuffling”, in which the DNA 

sequences of AAV capsid orthologs are fragmented and reassembled into chimeric 
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sequences based on homologies in a PCR-based approach 249; 250. Both approaches 

typically result in capsid libraries that are screened in iterative rounds of selection under 

positive and/or negative selection pressure for higher specificity and/or efficiency 

towards designated cell types. In the past, both approaches have led to the identification 

of numerous novel capsid variants, such as AAV-DJ, a chimeric capsid composed of 

AAV2, AAV8 and AAV9 that exhibits high tropism towards mouse hepatocytes in vivo 249. 

Furthermore, capsid modifications might also help to overcome a major drawback of 

naturally occurring AAV variants, namely, the presence of neutralizing anti-AAV 

antibodies in the general human population, which is a common exclusion criterion for 

participation in clinical trials 251; 252.  

On the genome level, the rAAV vector has been engineered to overcome the barriers of 

transgene expression that are imposed by the single-stranded nature of the viral 

genome. The single-stranded rAAV (ssAAV) genome is converted to expression-

competent, double-stranded DNA in a time-consuming and inefficient process that 

involves rate-limiting host factors 253-255. Intriguingly, it has been reported that a mutation 

in the terminal resolution site in one of the ITRs prevents the cleavage of the dsDNA 

intermediate and arrests viral genome replication during vector production at a stage in 

which two inverted copies of the transgene are present 256; 257. In transduced cells, these 

self-complementary AAV (scAAV) vectors, also referred to as double-stranded AAV 

(dsAAV) vectors, already represent the expression-competent state of the genome and 

thus have the advantage of an accelerated transgene expression compared to its ssAAV 

counterpart (Figure 11).  

 

Figure 11. Single-stranded versus double-stranded AAVs. 

A mutation in one of the ITRs leads to the formation of the dsAAV genome that expresses its 
transgenes more rapidly and more efficiently than conventional ssAAV vectors. Yet, this comes at 
the cost of a further reduction of the AAV packaging capacity to only 2.4 kb for dsAAVs.  
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On top, scAAVs show increased transgene expression rates of 5- to 140-fold depending 

on cell line 257 and higher in vivo genome stability, as they are more prone to 

circularization compared to the ssAAV vector 255. However, transgenes exceeding 

packaging capacity of only 2.4 kb for dsAAV might be packaged with truncations at their 

5´ end 258. 

In general, transduction of both ssAAV and scAAV vectors in cell culture is a rather 

inefficient process, as about 103 to 105 viral particles per cell are required for an efficient 

transgene expression depending on rAAV variant and cell type. Whereas AAV 

internalization seems to be fast and efficient at least for AAV2 214, processes involved in 

internal trafficking 259, capsid uncoating 260 and DNA replication 261 have been reported to 

be rate-limiting steps. Indeed, it has been shown that only a small fraction of virions enter 

the nucleus, while the majority accumulates in a perinuclear compartment and is subject 

to capsid ubiquitination and subsequent proteasomal degradation 214; 262; 263. Thus, in 

order to improve rAAV transduction efficiencies, several chemical compounds are 

occasionally applied in cell culture experiments, including proteasome inhibitors 262; 264; 

265, such as MG132 and Doxorubicin (Dox), and boosters of mTOR-dependent 

autophagy, such as rapamycin 266. 

 

1.6.3. SplitCas9 systems circumvent packaging limitations by rAAV vectors 

One of the major drawbacks of rAAV vectors is their limited cargo capacity of up to 5 kb 

and 2.4 kb for the packaging of designated transgene expression cassettes in ssAAV 

and dsAAV, respectively. Packaging SpCas9 (4.1 kb) and sgRNA (minimal cassette of 

200 bp) into an all-in-one rAAV vector is barely feasible 267, but leaves little flexibility in 

the choice of regulatory elements, such as promoters and polyA signals. Thus, the 

smaller SaCas9 (3.16 kb) is considered as the preferred ortholog when it comes to rAAV 

vector delivery in vivo, but it still imposes major restrictions in the design of the 

expression cassette. Furthermore, any conventional CRISPR/Cas9 system exceeds the 

size restriction imposed by the dsAAV vector by far and thus forfeits its benefits in 

expression.  

Over the past five years, researchers came up with a multitude of solutions to circumvent 

the size limitations of rAAV vectors and to improve expression of the CRISPR 

components. These strategies have in common that Cas9 (of various orthologous 

systems) is split in two parts and encoded on separate vehicles, including plasmids, 
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lentiviral and rAAV vectors, and after translation reunited in the target cell by various 

means. This comprises a variety of systems that enable an inducible and controllable 

Cas9 reconstitution and its gene editing activity, and thus contribute to safeguard 

CRISPR technology. Strategies to reconstitute the Cas9 holoenzyme can be divided into 

i) the use of the sgRNA as a scaffold, ii) rapamycin-controlled FKBP/FRB dimerization, 

iii) light-regulatable dimerization systems, and iv) inteins. Since we have reviewed these 

studies previously 268, this section focuses on the concept of intein-based splitCas9 

systems 269-272. 

Inteins (internal protein) are polypeptides that self-catalytically splice themselves out of a 

precursor protein after translation and connect their flanking amino acid residues, called 

exteins, via a newly synthesized peptide bond, resulting in a shorter, functional protein 
273. Inteins can also occur as split inteins that trigger trans-splicing of two independently 

expressed protein halves to reconstitute the holo-protein 274 (Figure 12).  

 

Figure 12. Intein-based splitCas9 system.  

Split inteins can be used to segregate Cas9 in two halves and initiate reconstitution to the full-
sized holo-enzyme after translation. To this end, N- and C- inteins are fused to the corresponding 
N-and C-terminal splitCas9 half. Furthermore, inteins are flanked by exteins that comprise the 
three amino acid residues that occur in their natural splicing context to allow an efficient splicing 
reaction. Exteins remain in the reconstituted Cas9 as extein scar, while inteins autocatalytically 
splice themselves out.  

 

Examples of trans-splicing inteins that were shown to splice very efficiently are the DnaE 

intein of Nostoc punctiforme (NpuDnaE intein) 275; 276 and the gp41 DNA helicase intein 

(gp41-1 intein) 277. It was demonstrated that NpuDnaE favors cysteine (C) and 

tryptophan (W) as first and second C-extein, respectively, and glycine (G) and lysine (K) 

as first and second N-extein, respectively, proximal to the splicing junction 278. By 

contrast, gp41-1 was demonstrated to splice efficiently with an even wider range of 
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different exteins and seems to solely depend on serine (S) on the first position of the C-

terminal splicing junction 276; 277; 279. Additionally, several hundreds of different inteins 

were found in all three domains of life (bacteria, archaea and eukaryotes) occurring 

either as cis-splicing full-length intein or trans-splicing split intein and thus form a 

comprehensive toolbox for genetic engineering (http://www.inteins.com/ and 

http://2014.igem.org/Team:Heidelberg). Also, the inducible nature of the splicing reaction 

of some inteins by ligands 280; 281, temperature 282, light 283, pH 284 or reducing agents 285 

already imply an abundance of possible approaches to regulate rAAV/CRISPR vectors. 

Previously, in my M.Sc. work in the lab of Prof. Barbara Di Ventura and Prof. Roland Eils 

(also in collaboration with the Grimm lab), we have already harnessed the NpuDnaE and 

gp41-1 intein trans-splicing capability to split SaCas9 into two equal sized halves and to 

reconstitute the functional holo-enzyme 286. Importantly, the splitSaCas9 halves are, in 

principle, sufficiently small to allow packaging as dsAAV vectors.  

 

1.7. The aim of this study 

Over the last decade, the field of gene and cell therapy have emerged as a powerful 

platform for a new class of gene-based therapeutics to treat diseases, which had hitherto 

been considered as untreatable. This thesis validates the promise of combining very 

powerful tools for gene therapy—rAAV vectors, RNAi and CRISPR/Cas9—and implies 

its great potential to treat numerous diseases, such as hepatitis B and D.  

In this study, we first harnessed a class of rAAV vectors that has previously been 

established in our lab and that enables the combination of CRISPR/Cas9 and RNAi 

technologies. As both technologies make use of guide RNA triggers, we first reassessed 

and compared several approaches to co-express small RNAs from rAAV vectors in the 

same target cell, including i) the separate production and subsequent mixing of each 

vector encoding a single small RNA, ii) their pooled production in the same dish, or iii) 

the multiplexing of several expression cassettes on a single AAV vector. The latter 

approach, named TRISPR, was further engineered to co-express sgRNAs and shRNAs 

to tackle HBV infections on the DNA and RNA level in selected cell culture systems, 

respectively. While many groups have previously applied either CRISPR/Cas9 or RNAi 

technology to target HBV, few have combined both approaches to achieve a synergistic 

effect in HBV elimination. Next, we employed the TRISPR strategy to direct the RNAi 

machinery against the HDV RNA genome and CRISPR/Cas9 against HBV cccDNA. To 
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our knowledge, this study provides the first evidence that CRISPR/Cas9 and RNAi can 

be combined to target HBV and HDV co-infections. Thus, this thesis paves the way for 

subsequent in vivo studies in HBV and HBV/HDV mouse models, with the aim to test the 

effect of a combinatorial knock-down and knock-out strategy on the host immune 

response.  

We further increased the therapeutic index of the rAAV/CRISPR technology by 

contributing to solutions for major challenges in its application, namely, delivery, 

efficiency, specificity and safety. This thesis addressed these limitations by various 

means: 

1) In collaboration with Michael Nassal's lab, we evaluated dimethyl sulfoxide (DMSO) as 

agent to boost rAAV transduction and expression rates in cell culture experiments, as 

similar effects have been reported for several other viral infections including HBV 17-20, 

HCV 287, HIV 288 and influenza A 289. We further determined whether an improved DMSO-

mediated rAAV/CRISPR delivery translates to higher targeted mutagenesis rates. 

2) Next, we combined the inherent benefit of splitCas9 technologies with the assets of 

dsAAV vectors to drive accelerated and enhanced Cas9 expression. To this end, we 

followed up on our previous work from my M.Sc. thesis where we had segregated the 

smaller Cas9 ortholog from Staphylococcus aureus into two halves, each sufficiently 

small to allow packaging in dsAAV vectors, and had harnessed intein trans-splicing to 

reconstitute the Cas9 holo-enzyme. Here, we investigated whether the expression of 

splitSaCas9 by dsAAV vectors can boost targeted mutagenesis rates beyond the ability 

of the inherently full-length SaCas9 that is limited to the expression by ssAAV. In view of 

accumulating evidence that Cas9 expression levels not only correlate with on- but also 

off-target cleavage rates 192; 193; 272; 290, we implemented a self-inactivating (SIN) approach 

developed by Julia Fakhiri in the lab that directs an sgRNA against the SaCas9 

transgene and prevents its expression after cleavage of a designated on-target. To this 

end, we compared targeted mutagenesis rates and the ability to self-inactivate of the 

dsAAV/splitSaCas9 system and conventional ssAAV/full-length Cas9 in cell culture and 

mouse experiments.  

3) Lastly, we further increased the safety profile of the CRISPR/Cas9 system from 

Staphylococcus aureus by collaborating with the Niopek lab who has engineered its first 

designer anti-CRISPR protein. To this end, we contributed to their work using AcrIIC1, a 

broad-spectrum inhibitor targeting various type II-C Cas9 orthologs including those from 

Neisseria meningitidis, Campylobacter jejuni and Geobacillus stearothermophilus, whose 
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binding surfaces they have redesigned towards the HNH domain of SaCas9. We tested 

the novel AcrX inhibitor for its ability to inhibit SaCas9 on various genomic loci and also 

applied the miRNA-based CRISPR-ON switch strategy to restrict SaCas9 cleavage 

activity towards hepatocytes.    

In summary, this doctoral thesis combined and further advanced major tools in the field 

of gene therapy by drawing on several principles of synthetic biology and bioengineering. 

Importantly, all project parts of the presented thesis are highly complementary and 

combinable to concurrently increase rAAV delivery and CRISPR/Cas9 mutagenesis 

rates, while improving the safety profile of rAAV/CRISPR technology. Beyond the 

presented technological advances, we also envisioned the combination of the rAAV 

vector, CRISPR/Cas9 and RNAi technologies to tackle so far uncurable diseases and 

demonstrated this potential using HBV infections and/or HBV/HDV co-infections as 

clinically relevant examples. 
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2. MATERIALS AND METHODS 

2.1. Materials 

Table 1. List of materials 

Material Company 

Aluminium foil  Roth (Karlsruhe, Germany) 

Amicon Ultra-15 centrifugal filter units 

(100,000 NMWL) 

MERCK (Darmstadt, Germany) 

BD microlance3 BD (Franklin Lakes, US) 

BD plastipak (syringe) BD (Franklin Lakes, US) 

BZO Seal Film (qPCR) Biozym Scientific GmbH 

Cell culture flasks (75/ 175 cm2) Greiner bio-one (Frickenhausen, Germany) 

Cell culture plates (6/24/48/96 well) Greiner bio-one (Frickenhausen, Germany) 

Cell culture plates 140mm Nunc, Thermo Fisher Scientific (Waltham, USA) 

Cell lifter Corning (New York, USA) 

Centrifuge tube 500 ml Corning (New York, USA) 

Centrifuge tubes (16x76 mm and 25x89 

mm) 

Beranek Laborgeräte (Weinheim, Germany) 

Coster 50ml reagent reservoir Corning (New York, USA) 

CountessTM cell counting chamber 

slides 

Thermo Fisher Scientific (Waltham, USA) 

ddPCR plates, 96 well, semi-skirted Bio-Rad (Hercules, USA) 

DG8™ Cartridges for 

QX200™/QX100™ Droplet Generator 

Bio-Rad (Hercules, USA) 

DG8™ Gaskets for QX200™/QX100™ 

Droplet Generator 

Bio-Rad (Hercules, USA) 

DNA chip Agilent Technologies (Waldbronn, Germany) 

Erlenmeyer flasks Thermo Fisher Scientific (Waltham, USA) 

Filter tips Sarstedt (Nümbrecht, Germany), Mettler-Toledo 

(Columbus, USA) 

Flat top seal former Beranek Laborgeräte (Weinheim, Germany) 

Glass bottles DURAN group (Wertheim, Germany) 

Glass culture tubes DURAN group (Wertheim, Germany) 

Inoculation loops Greiner bio-one (Frickenhausen, Germany) 

Masterblock, 1 ml Greiner bio-one (Frickenhausen, Germany) 

Microlance canules 21G 0.8x40mm, 

19G 1.1x40 mm 

BD (Franklin Lakes, USA) 

Microplates, 96 well, white Greiner bio-one (Frickenhausen, Germany) 
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Mini-PROTEAN TGX Gels, 4-15%, 10 

wells 

Bio-Rad (Hercules, USA) 

Mini-PROTEAN TGX Gels, 7.5%, 15 

wells 

Bio-Rad (Hercules, USA) 

Nitrocellulose membrane Whatman (Maidstone, UK), Ahlstrom (Helsinki, 

Finland) 

Pasteur capillary pipettes (230 mm) neoLab (Heidelberg, Germany) 

PCR microplate, 96 well Corning (New York, USA) 

PCR plate 96-well (qPCR)  Biozym Scientific GmbH 

PCR tubes 0.2 ml 8-Strip STARLAB (Hamburg, Germany) 

Petri dishes Greiner bio-one (Frickenhausen, Germany) 

Piercable Foil Heat Seal Bio-Rad (Hercules, USA) 

Pipette tips Greiner bio-one (Frickenhausen, Germany), Kisker 

(Steinfurt, Germany) 

Pipette tips, 10 µl, 200 µl Mettler-Toledo (Columbus, USA) 

Plates, 96 well, blavk and clear bottom Corning (New York, USA) 

QIAshredder tubes QIAGEN (Hilden, Germany) 

qPCR 0.1ml strip tubes and strip caps QIAGEN (Hilden, Germany) 

Reaction tubes (0.5, 1.5, 2ml) SARSTEDT (Nümbrecht, Germany), Eppendorf 

(Hamburg, Germany) 

Reaction tubes 15 ml, 50 ml Greiner bio-one (Frickenhausen, Germany) 

Reaction tubes 50 ml Thermo Fisher Scientific (Waltham, USA) 

Röhren/Tubes 75x13 mm Sarstedt (Nümbrecht, Germany), Mettler-Toledo 

(Columbus, USA) 

Scapell-blades Heinz Herent (Hamburg, Germany) 

Sealing foil (Adhäsive Verschlussfolie) nerbe plus GmbH 

Serological pipettes (2,5, 10, 25, 50 ml) Greiner bio-one (Frickenhausen, Germany) 

Stainless steel beads QIAGEN (Hilden, Germany) 

Sterile filter (0.22 µM pore size) Greiner bio-one (Frickenhausen, Germany) 

Steritop filter (0.22 µM) MERCK (Darmstadt, Germany) 

VacConnectors QIAGEN (Hilden, Germany) 

Whatman paper 3mm Whatman (Maidstone, UK) 

 

Table 2. Chemicals and reagents 

Name Company 

Acetic acid VWR chemicals (Fenenay-sous-Bais, France) 

Agarose Biozym Scientific GmbH (Hessisch Oldendorf, 

Germany) 

Albumin fraction V (BSA) Roth (Karlsruhe, Germany) 
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cOmpleteTM, EDTA-free 

Protease Inhibitor Cocktail 

Roche (Penzberg, Germany) 

ddPCR™ Droplet Generator  Oil Bio-Rad (Hercules, USA) 

Diluent B NEB (Ipswich, USA) 

DirectPCR Lysis Reagent Viagen Biotech Inc (Los Angeles, USA) 

DMSO Merck (Darmstadt, Germany) 

Dodecylsulfate-Na-salt-pellets 

(SDS) 

SERVA Electrophoresis GmbH (Heidelberg, 

Germany) 

Doxorubicin Santa Cruz Biotechnology (Dallas, USA) 

Ethanol absolute SIGMA-ALDRICH (St. Louis, USA) 

Ethidium bromide Roth (Karlsruhe, Germany) 

Ethylendiamintetraacetate 

(EDTA) 

GRÜSSING GmbH (Filsum, Germany) 

GelredTM nucleic acid gel stain Biotium Inc (Hayward, USA) 

Glucose MERCK (Darmstadt, Germany) 

Glycerol VWR chemicals (Fenenay-sous-Bais, France) 

Hoechst 3000 Dianova (Hamburg, Germany) 

Hydrochloric acid (HCl) SIGMA-ALDRICH (St. Louis, USA) 

Iodixanol (OptiprepTM) Progen (Heidelberg, Germany) 

Isopropanol SIGMA-ALDRICH (St. Louis, USA) 

Jetprime Polyplus-transfection® SA 

Lipofectamine 2000 Life Technologies GmbH (Paisley, UK) 

Magnesium chloride (MgCl2) Applichem (Darmstadt, Germany) 

Methanol SIGMA-ALDRICH (St. Louis, USA) 

Milk powder Roth (Karlsruhe, Germany) 

MOPS SERVA Electrophoresis GmbH (Heidelberg, 

Germany) 

Myrcludex B (MyrB) Bachem (Bubendorf, Switzerland). 

Nuclease-free water Ambion, Thermo Fisher Scientific (Waltham, USA) 

Oligonucleotides (dNTPs) NEB (Ipswich, USA) 

Paraformaldehyde (PFA) MERCK (Darmstadt, Germany) 

PBS Dulbecco without Ca2+ MERCK (Darmstadt, Germany) 

PEG8000 Promega (Madison, USA) 

Phenol red MERCK (Darmstadt, Germany) 

Polyethylenimine (PEI) Polysciences Inc. (Eppelheim, Germany) 

PonceauS SIGMA-ALDRICH (St. Louis, USA) 

Potassium acetate (KAc) GRÜSSING GmbH (Filsum, Germany) 

Potassium chloride (KCl) GRÜSSING GmbH (Filsum, Germany) 

Rapamycin  MERCK (Darmstadt, Germany) 

Sodium chloride (NaCl) GRÜSSING GmbH (Filsum, Germany) 
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Sodium deoxycholate (DOC) MERCK (Darmstadt, Germany) 

Sodium hydroxide (NaOH) SIGMA-ALDRICH (St. Louis, USA) 

TE buffer Thermo Fisher Scientific (Waltham, USA) 

TGS (Tris/Glycine/SDS buffer) 

10x 

Bio-Rad (Hercules, USA) 

Tris-HCl/ Tris Roth (Karlsruhe, Germany) 

Triton X-100 MERCK (Darmstadt, Germany) 

Trypan Blue Thermo Fisher Scientific (Waltham, USA) 

Tween20 Roth (Karlsruhe, Germany) 

UltraPureTM TEMED Thermo Fisher Scientific (Waltham, USA) 

β-Mercaptoethanol Roth (Karlsruhe, Germany) 

 

Table 3. Cell culture medium and supplements 

Name Company 

DMEM GlutaMAX +4.5 g/ L D-Glucose Gibco by Thermo Fisher Scientific (Waltham, USA) 

DPBS 1x Gibco by Thermo Fisher Scientific (Waltham, USA) 

Fetal Bovine Serum Gold (FBS) Gibco by Thermo Fisher Scientific (Waltham, USA) 

Penicillin-Streptomycin Gibco by Thermo Fisher Scientific (Waltham, USA) 

0.25% Trypsin/ EDTA Gibco by Thermo Fisher Scientific (Waltham, USA) 

Blasticidin SIGMA-ALDRICH (St. Louis, USA) 

Puromycin SIGMA-ALDRICH (St. Louis, USA) 

Recombinant human fibroblast growth 

factor-basic (bFGF) 

PeproTech (Princeton Business Park, USA) 

F-10 Nutrient mixture Gibco by Thermo Fisher Scientific (Waltham, USA) 

Cell culture media 500 ml DMEM GlutaMAX +4.5 g/ L D-Glucose 

50 ml FBS 

5 ml Penicillin-Streptomycin 

Basic fibroblast growth factor (bFGF) 50 µg of /ml of bFGF (50 µg/ml) in 1 ml 5mM Tris (pH7.6) with 

0.1% BSA 

stored at -80°C 

Myoblast growth media (500ml) 291 400 ml F-10 Nutrient mixture 

100 ml filtered FBS 

5 ml Pen/Strep 

add 10 ng/ml bFGF before use 
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Table 4. Bacterial medium and additives 

Name Company 

BactoTM Agar BD (Franklin Lakes, USA) 

BactoTM Trypton BD (Franklin Lakes, USA) 

BactoTM Yeast Extract BD (Franklin Lakes, USA) 

Ampicillin (50 mg/ ml, applied in 

1:1000 dilution) 

Roth (Karlsruhe, Germany) 

Chloramphenicol (20 mg/ ml, applied 

in 1:1000 dilution) 

SIGMA-ALDRICH (St. Louis, USA) 

 

Table 5. List of kits 

Name Company 

Agilent DNA 1000 Kit  Agilent Technologies (Waldbronn, Germany) 

AllPrep DNA/RNA Mini Kit QIAGEN (Hilden, Germany) 

DNA clean & concentrator-5 zymo research (Irvine, USA) 

DNeasy Blood & Tissue Kit QIAGEN (Hilden, Germany) 

Dual-Luciferase® Reporter Assay 

System 

Promega (Madison, USA) 

iTaq Universal SYBR Green 

Supermix 

Bio-Rad (Hercules, USA) 

Luciferase Assay System Promega (Madison, USA) 

NucleoBond® Xtra Midi / Maxi Macherey-Nagel (Hœrdt, France) 

Pierce BCA Protein Assay Kit Thermo Fisher Scientific (Waltham, USA) 

PureYieldTM Plasmid Midiprep kit Promega (Madison, USA) 

Rnase-free Dnase Set QIAGEN (Hilden, Germany) 

SensiMixTMII Probe Kit Bioline (London, UK) 

SensiMixTMII SYBR Kit Bioline (London, UK) 

TetroTM Reverse Transcriptase Kit Bioline (London, UK) 

QIAprep Spin Miniprep Kit QIAGEN (Hilden, Germany) 

QIAquick Gel Extraction Kit QIAGEN (Hilden, Germany) 

QIAquick PCR Purification Kit QIAGEN (Hilden, Germany) 

Qubit dsDNA BR Assay Kit Thermo Fisher Scientific (Waltham, USA) 

Western Lightning® PLUS-ECL PerkinElmer (Waltham, USA) 
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Table 6. List of standard markers 

Name Company 

1 kb DNA ladder plus Thermo Fisher Scientific (Waltham, USA) 

Generuler ladder Thermo Fisher Scientific (Waltham, USA) 

PageRulerTM Plus Prestained Protein Ladder Fermentas (St. Leon-Rot, Germany) 

Magic Marker  Thermo Fisher Scientific (Waltham, USA) 

 

Table 7. List of enzymes 

Name Company 

Antarctic Phosphatase NEB (Ipswich, USA) 

Benzonase MERCK (Darmstadt, Germany) 

ddPCR™ Supermix for Probes (No 

dUTP) 

Bio-Rad (Hercules, USA) 

DNase I Thermo Fisher Scientific (Waltham, USA) 

OneTaq® 2X Master Mix  NEB (Ipswich, USA) 

Phusion Hot Start II DNA Polymerase Thermo Fisher Scientific (Waltham, USA) 

Proteinase K Roche (Penzberg, Germany) 

2x Q5 Polymerase Master Mix NEB (Ipswich, USA) 

RNaseA QIAGEN (Hilden, Germany) 

Restriction Enzymes NEB (Ipswich, USA)  

TypeII-S restriction enzymes (BsmBI, 

BbsI, BsaI) 

Thermo Fisher Scientific (Waltham, USA) 

T4 DNA Ligase NEB (Ipswich, USA) 

T7 endonuclease NEB (Ipswich, USA) 

 

Table 8. Compositions of buffers 

Buffers Composition 

Benzonase buffer 50 mM Tris/HCl pH 8.5 

  150 mM NaCl 

  2 mM MgCl2 

Freezing medium 10% (v/v) DMSO 

  90% (v/v) FBS 

15% Iodixanol phase 25% (v/v) Iodixanol, 75% (v/v) PBS-MK-NaCl 

25% Iodixanol phase 41.66% (v/v) Iodixanol, 58.33% (v/v) PBS-MK, phenol red until it 

appears red 

40% Iodixanol phase 66.67% (v/v) Iodixanol, 33.33% (v/v) PBS-MK 
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60% Iodixanol phase 100% Iodixanol (v/v), phenol red until it appears yellow 

LB medium 1% (w/v) Bacto Tryptone 

  0.5% (w/v) Bacto Yeast Extract 

  1% (w/v) NaCl 

LB Amp medium LB medium supplemented with 1 ml 5% Ampicillin per liter 

LB plates LB medium plus 1.5% (w/v) Bacto Agar 

LB Amp plates LB plates supplemented with 1.5 ml 5% Ampicillin per liter 

Miniprep P1 (pH 8.0) 50 mM Tris/HCl pH 8.0 

  100 µg/ml RNase A 

  10 mM EDTA 

Miniprep P2 200 mM NaOH 

  1% SDS 

Miniprep P3 (pH 5.1) 2.8 M KAc 

PBS-MK 1 mM MgCl2 

  2.5 mM KCl 

  in PBS 

PBS-MK-NaCl 1 mM MgCl2 

  2.5 mM KCl 

  1M Nacl 

  in PBS 

Phenolred solution 0.5% (w/v) phenol red in H2O 

6x Purple loading dye NEB (Ipswich, USA) 

Laemmli Sample Buffer 4x Bio-Rad (Hercules, USA) 

SOB medium (pH 7.0) 2% Bacto Tryptone 

  0.5% (w/v) Bacto Yeast Extract 

  10 mM NaCl 

  2.5 mM KCl 

  10 mM MgSO4 (addition after autoclaving) 

  10 mM MgCl2 (addition after autoclaving) 

SOC medium SOB medium plus 20mM glucose 

RIPA buffer 50 mM Tris/HCl pH 8.0 

  150 mM NaCl 

  1 mM EDTA 

  1% Triton 

  0.1% SDS 

  0.5% DOC 

  1x Protease Inhibitor 

50x TAE 1M Acetic acid 

  50mM EDTA 

  2M Tris 
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10x TBE Applichem (Darmstadt, Germany) 

10x TBS 250 mM Tris/HCl, pH 7.4 

  1.25 M NaCl 

TBS-T 1x TBS 

  0.05% Tween20  

TFBI buffer (pH 5.8) 16 mM CaCl2 

 13.2 % (v/v) glycerol 
 30.6 mM KAc 
 100 mM KCl 
 80 mM MgCl2 
TFBII buffer (pH 8.0) 76 mM CaCl2 
 13.2 % (v/v) glycerol 
 10 mM KCl 
 4.8 mM MOPS 
10x TGS (Running buffer) Bio-Rad (Hercules, USA) 

Transferbuffer 1x TGS 

  20% Methanol 

  in H2O 

 

Table 9. List of devices 

Application Device Company 

PCR C1000 Touch Thermal Cycler Bio-Rad (Hercules, USA) 

Corbett RG6000 QIAGEN (Hilden, Germany) 

QX200™ Droplet Generator Bio-Rad (Hercules, USA) 

QX200™ Droplet Reader Bio-Rad (Hercules, USA) 

StepOnePlus  Real-Time PCR 

system 

Applied Biosystems (Massachusetts, USA) 

Vapo Protect Eppendorf (Hamburg, Germany) 

Gel electro-

phoresis 

(MINI-)SUB CELL GT Bio-Rad (Hercules, USA) 

CONSORT E835 power supply Nexigen GmbH (Köln, Germany) 

Gel Doc Intas Intas Science Imaging (Göttingen , Germany) 

Gel Doc XR Bio-Rad (Hercules, USA) 

Mitsubishi P93D Printer Mitsubishi Electric (Cypress, USA) 

UV-Transilluminator Biostep GmbH (Jahnsdorf, Germany) 

Bacterial 

inbubators 

Heraus function line incubator Thermo Fisher Scientific (Waltham, USA) 

Shaking Incubator Minitron & 

Multitron 

INFORS HT (Basel, Switzerland) 

Centrifu-

gation 

Avanti J-26 XP Centrifuge Beckman Coulter (Brea, USA) 

Avanti J-25 Centrifuge Beckman Coulter (Brea, USA) 

Benchtop Centrifuge 5415R Eppendorf (Hamburg, Germany) 
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Benchtop Centrifuge 5417R Eppendorf (Hamburg, Germany) 

Beckman Tube Sealer Beckman Coulter (Brea, USA) 

Centrifuge Bottles, 500 ml Beckman Coulter (Brea, USA) 

Fixed angle type 70 Ti rotor Beckman Coulter (Brea, USA) 

Fixed angle type 70.1 Ti rotor Beckman Coulter (Brea, USA) 

Galaxy Minister VWR (Fenenay-sous-Bais, France) 

JA-10 rotor Beckman Coulter (Brea, USA) 

OptimaTM L-90K Ultracentrifuge Beckman Coulter (Brea, USA) 

OptimaTM Ultracentrifuge tubes 

(26x77 mm) 

Beckman Coulter (Brea, USA) 

Ultracentrifuge Tubes 16x76 mm Seton Scientific (Petaluma, USA) 

Cell culture Countess Thermo Fisher Scientific (Waltham, USA) 

HERA safe sterile work bench Thermo Fisher Scientific (Waltham, USA) 

HERA cell 150 incubator Thermo Fisher Scientific (Waltham, USA) 

Microscopy CKX 419F Olympus cooperation (Tokyo, Japan) 

Olympus Biosystems IX81  Olympus cooperation (Tokyo, Japan) 

U-RPL-T Olympus cooperation (Tokyo, Japan) 

Flow 

cytometry 

Cytomics FC500MPL analyzer Beckman Coulter (Brea, USA) 

Western 

Blot 

ChemoCam (ECL Imager) INTAS Science Imaging (Göttingen, Germany) 

Mini-PROTEAN Tetra cell 

chamber 

Bio-Rad (Hercules, USA) 

PowerPac basic/ HV/ HC Bio-Rad (Hercules, USA) 

Trans-Blot® SD Semi-Dry Bio-Rad (Hercules, USA) 

TECAN Infinite M200 Tecan Group (Männedorf, Switzerland) 

other 

applications 

Agilent 2100 Agilent Technologies (Santa Clara, USA) 

GloMax 96 microplate 

luminometer 

Promega (Madison, USA) 

Pipet boy accujet pro BrandTech Scientific (Essex, UK) 

Lauda Aqualine AL5 DJB Labcare (Buckinghamshire, UK) 

Magnetic stirrer Thermo Fisher Scientific (Waltham, USA) 

Microwave Sharp Electronics (Hamburg, Germany) 

Mixing block MB-102 Biozym Scientific GmbH (Hessisch Oldendorf, 

Germany) 

Nanodrop 2000 Thermo Fisher Scientific (Waltham, USA) 

pH meter PB-11 Sartorius (Göttingen, Germany) 

Pipettes Gilson (Middleton, Germany) 

Pipettes Eppendorf (Hamburg, Germany) 

Qubit fluorometer Thermo Fisher Scientific (Waltham, USA) 

Shaker DRS-12 neoLab (Heidelberg, Germany) 
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TissueLyser LT QIAGEN (Hilden, Germany) 

Tube roller TRM-V neoLab (Heidelberg, Germany) 

Vacuum pump Promega (madison, USA) 

Vortex Genie2 Scientific Industries (Bohemia, USA) 

Water bath TW12 Julabo Labortechnik (Seelbach, Germany) 

Weighing scale KERN & SOHN GmbH (Balingen, Germany) 

 

Table 10. List of softwares 

Application Program Company 

Automated Imaging ScanR acquisition software  Olympus BioSystems GmbH 

Bioanalyzer 2100 Expert Agilent Technologies (Santa Clara, 

USA) 

Crystal Structure 

visualization 

PyMol The PyMOL Molecular Graphics 

System, Version 2.0 Schrödinger, LLC. 

ddPCR QuantaSoft™ Software Bio-Rad (Hercules, USA) 

Figure design MS office Microsoft Corporation (Redmond, USA) 

Flow cytometry MXP software Beckmann Coulter (Brea, USA) 

Gel pictures Quantity One Bio-RAD (Hercules, USA) 

Graphical analysis GraphPad Prism GraphPad Software, Inc. (La Jolla, USA) 

Graphs and Statistical 

Analysis 

GraphPad Prism v6 GraphPad Software, Inc. 

Image processing Matlab MathWorks, Inc. (Massachusetts, USA) 

Intas ChemoStar v.0.2.26 INTAS Science Imaging (Göttingen, 

Germany) 

Nanodrop NanoDrop 2000 Thermo Fisher Scientific (Waltham, 

USA) 

Picture anaylsis ImageJ Open source 292 

qRT-PCR (Titration) Rotor Gene 6000 Series QIAGEN (Hilden, Germany) 

qRT-PCR StepOne Software v2.3 Applied Biosystems (Massachusetts, 

USA) 

Sequence and 

Cloning visualization 

Geneious Biomatters (Auckland, New Zealand) 

Tecan Plate reader Magellan™ Tecan Group (Männedorf, Switzerland) 
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2.2. Methods 

 

2.2.1. Molecular Biology Methods 

 

2.2.1.1.  In silico cloning 

Cloning strategies, design of plasmid maps and primers and verification of sequencing 

results were performed with Geneious version 7.1. The annealing temperature of primers 

was determined using NEB Tm calculator (https://tmcalculator.neb.com/). GuideRNAs 

were evaluated using the CCTop predictor (https://crispr.cos.uni-heidelberg.de) and Cas-

OFFinder (www.rgenome.net/cas-offinder), shRNAs were designed using Biosettia 

shRNA Designer (https://biosettia.com/support/shrna-designer) and invivoGen siRNA 

Wizard (www.invivogen.com/sirnawizard/construct.php). Primer and probe sets were 

either designed manually or via Eurofins qPCR Primer&Probe design tool 

(www.eurofinsgenomics.eu/en/ecom/tools/qpcr-assay-design).  

 

2.2.1.2.  Polymerase chain reaction 

For polymerase chain reaction (PCR) amplification of plasmid or genomic templates, the 

Phusion HS II DNA polymerase (Thermo Fisher Scientific) was used according to 

manufacturer´s protocol in total reaction volumes of 25 to 50 µl. In short, for a reaction 

volume of 50 µl, 10 µl 5x GC buffer, 1 µl dNTPs, 0.5 µl Polymerase, 20 ng (plasmid) to 

200ng (genomic DNA) template, 2.5 µl of each forward and reverse primer (10 µM stock 

concentration) were used and adjusted to 50 µl with H2O. For 25 µl reaction volumes, the 

listed reagents were adjusted correspondingly. PCR was performed in thermal cycler 

with 98°C for 2 min, followed by 35 to 38 cycles of denaturation at 98°C for 30 sec, 

annealing at 55 to 65°C for 30 sec and elongation at 72°C for 30 sec/ 1kb, a final 

elongation step of 72°C for 2 min was added.  

Note that for PCRs concerning the AcrX inhibitor project, the Q5 High-fidelity DNA 

polymerase 2x Master Mix (NEB) was used for all cloning procedures and T7 

endonuclease assays. In a reaction volume of 25 µl, 12.5 µl Master Mix, 1.25 µl of each 

forward and reverse primer (10 µM stock concentration)), 3 µl genomic template were 

used and adjusted to 25 µl with H2O. Cycling conditions were performed with initial 
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denaturation of 98°C for 30 sec, 35 cycles of denaturation at 98°C for 30 sec, annealing 

at 60 to 70 °C, elongation at 72°C for 30 sec/kb, followed by a final elongation at 72°C for 

2 min.   

To test whether a cloning procedures was successful, a colony PCR was performed on 

bacterial colonies. Therefore, the Quick-Load Taq 2x Master Mix (NEB) was used 

according to manufacturer´s protocol in total reaction volumes of 10 µl, with 5 µl of 

Master Mix, 0.5 µl of each forward and reverse primer (10 µM stock concentration) and 

adjusted to 10 µl with H2O. The bacterial colony was directly added to the reaction mix 

by means of a pipet tip and was directly streaked out on an agar plate bearing the 

appropriate antibiotic. The PCR reaction was performed by an initial denaturation step of 

94°C, 35 cycles of denaturation at 94°C, annealing at 50 to 55°C and elongation at 68°C 

for 1min/kb, finalized by an additional elongation step at 68°C for 5 min was added. 

Since the Master Mix already contained loading dye, the reaction could be loaded 

directly on a 1% Agarose gel.  

 

2.2.1.3.  Agarose gel electrophoresis 

DNA fragments were separated via agarose gel electrophoresis. The gels were prepared 

by dissolving 1-2% agarose in 1% TAE buffer or 1% TBE buffer for the AcrX project (to 

resolve smaller fragments). To visualize the DNA Ethidium bromide was added to the 

gels and DNA was mixed with 6x purple loading dye prior loading. For the AcrX project 

Gelred was directly applied to the loading dye in a final concentration of 1%. 

Electrophoresis was performed at 100 to 120V. The DNA was detected using UV light 

and the size of the DNA was determined by comparison with the 1 kb ladder plus 

(Thermo Scientific) or GeneRuler DNA ladder (Thermo Scientific).   

 

2.2.1.4.  Restriction digestion 

For analytical restriction digests, 500 ng plasmid DNA, 0.5 µl of each required enzyme 

and 1 µl of appropriate buffer were used in a total volume of 10 µl. The samples were 

incubated for 2 h or over night at 37°C and visualized on an agarose gel. To verify the 

presence of ITRs in a ssAAV context, plasmids were digested with XmaI, whereas ITRs 

in a dsAAV context were digested with XmaI and KpnI. 
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For preparative restriction digests, 1 µg of plasmid DNA was mixed with 0.5 µl of each 

enzyme in a total volume of 20 µL and incubated for at least 2 h at 37°C.  

If needed, a dephosphorylation step was performed by subsequently adding 2 µl buffer 

and 1 µl Antarctic Phosphatase (NEB) for 1 h at 37°C. The phosphatase was heat 

inactivated at 85°C for 2 min before subsequent usage of the DNA fragment.   

 

2.2.1.5.  DNA isolation 

To purify DNA fragments from agarose gels and PCRs from reaction mixes, the 

QIAquick Gel Extraction Kit and PCR Purification Kit were used, respectively, according 

to manufacturer´s instructions. In order to isolate plasmids from bacteria in a small, 

medium or large scale, the QIAprep Spin Miniprep and Midiprep Kit and the 

NucleoBond® Xtra Maxi Kit were applied, respectively, according to manufacturer´s 

instructions. In general, 5ml, 80 ml or 300 ml of LB media containing the appropriate 

antibiotics for selection were inoculated for Mini, Midi or Maxipreps, respectively. 

However, in most cases a house-made Miniprep protocol was applied to isolate plasmids 

on small-scale with self-made buffers P1, P2 and P3. The pellet of a 2 ml bacterial 

culture were resuspended in 300 µl P1 buffer and subsequently 300 µl P2 buffer were 

added, the tubes were gently inverted, followed by a 5 min incubation to lyse the cells. 

For neutralization 300 µl P3 buffer was added and after gentle inversion the samples 

were centrifuged at full speed for 10 min to dispose of cellular debris. The supernatant 

was mixed with 600 µl isopropanol to precipitate the DNA. DNA was pelleted by 

centrifugation at maximal speed for 10 min and subsequently washed with 500 µl of 70% 

ethanol by centrifugation at maximal speed for 5 min. Ethanol was carefully removed and 

DNA was solved in 50 µl H2O. 

 

2.2.1.6. Preparation of chemocompetent bacteria 

For the preparation of chemocompetent cells, bacteria strains listed in Table 11 were 

streaked on an agar plate without antibiotics from glycerol stocks and incubated at 37°C 

over night. The next day, one colony was picked and inoculated in 6 mL LB medium over 

night. Around 16 h later, 250 mL SOC medium were inoculated with 1 mL of the over 

night culture and subsequently incubated at 37°C, 180 rpm. Cultures were then 

centrifuged at 4°C, 1,800.g for 15 min, once they reached an an OD600 of 0.5. The cell 
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pellet was resuspended in 40 mL TFB I buffer and incubated for 10 min on ice. Next, 

cells were pelleted again (4°C, 1,800.g for 15 min) and resuspended in 10 mL of TFB II. 

After an incubation period of 10 min on ice, cells were distributed with a stepper pipette 

into 50 µL aliquots and snap-frozen in liquid nitrogen. The aliquots were then stored at -

80°C until thawn on ice for transformation experiments.  

Table 11. List of bacterial strains. 

Strain  Description Source 
   
E. coli MAX Efficiency DH5αTM Chemocompetent Thermo Fisher Scientific 

(Massachusetts, USA) 
E. coli ccdB SurvivalTM T1R Chemocompetent Thermo Fisher Scientific 

(Massachusetts, USA) 
E. coli Top10 Chemocompetent Thermo Fisher Scientific 

(Massachusetts, USA) 
 

2.2.1.7. Ligation and transformation 

Ligation reactions were performed using a 1 : 3 molar ratio of backbone to insert DNA. 

Besides the DNA, 0.5 µl T4 ligase (NEB or Thermo Scientific), 1 µL T4 ligase buffer and 

ddH2O were added to obtain a total volume of 10 µL. The samples were incubated for at 

least 30 min at room temperature or over night at 16 °C.  

Five µl of the ligation reaction or 1 µl of previously purified plasmid DNA 

(retransformation) were added to 50 to 100 ul of chemically competent bacteria cells. For 

the transformation, bacteria incubated on ice for 10 min, followed by a heat shock at 42 

°C for 30 sec and once again left on ice for 10 min. In case of ampicillin selection, 

bacteria were directly plated on agar plates containing ampicillin, whereas in case of 

chloramphenicol selected bacteria recovered in antibiotic-free LB medium for 1 h before 

plating 100 ul on agar plates containing chloramphenicol.  

 

2.2.1.8. Bacterial culture conditions 

Bacteria were cultured in LB medium carrying the respective antibiotic resistance. 

Ampicillin was added in a 1/1000 dilution from a 50 mg/ml stock solution (solved in H2O) 

and chloramphenicol was added in a 1/1000 dilution from a 20 mg/ml stock solution 

(solved in ethanol). For cultivation on LB plates, 1.5% (w/v) agar was added to the 

medium and the antibiotic was added also in a 1/1000 dilution shortly before pouring of 

the plates. Plates incubated at 37°C overnight in a humidified incubator. Liquid cultures 
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incubated at 37°C and shaking at 180 rpm for at least 6 h and up to 16 h. For all 

successfully cloned constructs a glycerol stock was prepared by mixing 500 µl bacteria 

culture with 500 µl 70% glycerol and stored at -80°C.  

 

2.2.1.9. Golden gate cloning 

Golden gate assembly was performed as suggested in Engler et al. 293 and applied for 

the cloning of sgRNAs and shRNAs in plasmid backbones with BsmBI or BbsI.  

Therefore, sense and anti-sense oligos were annealed by mixing 2.5 µl of each oligo 

(100 µM stock concentration), 5 µl NEB buffer 2 and 40 µl H2O. In a thermocycler the 

mixture of oligos were heated to 95 °C for 2 min and subsequently cooled by ramping (-

0.1°C/sec) to 25 °C over a period of 25 min. For further usage, the annealed oligo mix 

was diluted 1:200 with H2O. 

Subseqently, the Golden Gate reaction was performed in a total reaction volume of 10 µl, 

including 0.5 µl of respective type II-S restriction enzyme, 0.5 µl T4 ligase (NEB or 

Thermo Scientific), and 1 µl T4 ligase buffer and an equimolar mixture of roughly 100ng 

backbone and insert (annealed and diluted oligo mix). The reaction incubated in a 

thermocycler using 16 cycles with alternating temperatures of 37 °C for 2 min and 16 °C 

for 3 min. Enzymes were heat inactivated by applying 85 °C for 10 min. Subsequently, 5 

µl of the reaction mixture were transformed in chemocompetent bacteria. 

 

2.2.1.10.  Sequencing 

Sanger sequencing was performed for each construct mentioned in this thesis, by the 

lightrun sequencing service offered by Eurofins Scientific. Therefore, about 400 to 800 

ng plasmid DNA was mixed with 2.5 µl primer (10 µM) in a 10 µl reaction volume and 

send to sequencing in a 1.5 ml reaction tube.  

 

2.2.1.11.  Genomic DNA and RNA isolation 

For simultaneous DNA and RNA extraction from cell culture and mouse tissue the 

QIAGEN AllPrep DNA/RNA mini kit was used according to manufacturer´s instructions 

with a few changes.  
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In case of samples from cell culture, the QIAshredder tubes were applied prior to 

DNA/RNA extraction. Therefore, the supernatant of the cells was removed and 300 µl 

RTL buffer (from the AllPrep kit) with 1% ß-Mercaptoethanol was added to the cells and 

incubated for 5 min. This caused the cells to lyse and the lysate was loaded directly on 

the QIAshredder column and centrifuged at 13000 g for 2 min. The flow-through was 

used for further processing.  

In case of mouse tissue, a tiny piece of the frozen tissue was taken and added to 500 µl 

RTL buffer with 1% ß-Mercaptoethanol in 2 ml reaction tubes that also contained a metal 

beat. The tissue was homogenized with the Tissue Ruptor at 50 Hz for 45 sec. The 

lysate was centrifuged at 13000 g for 3 min and the supernatant was carefully removed 

and used for further processing.  

To either the flow-through of the QIAshredder for samples from cell culture or the 

supernatant after tissue disruption of in vivo samples, 10 µl Proteinase K (from the 

AllPrep kit) was added and incubated for 15 min at 55 °C. Subsequently, the samples 

were loaded on the AllPrep DNA spin column and centrifuged for 30 sec at 10000 g. The 

DNA columns containing the DNA were stored at 4 °C until they were further processed 

(on the same day), whereas the flow-through contained the RNA and was processed 

immediately. Therefore, 1 volume (300 µl for cell culture samples and 500 µl for mouse 

tissue samples) of 70% ethanol, or 50% ethanol in case of liver samples, were added to 

the flow-through containing the RNA and well mixed. 700 µl sample were transferred to 

the RNeasy spin column and centrifuged for 30 sec at 10000 g. The flow-through was 

discarded. Next, 350 µl of Buffer RW1 was added to the RNeasy spin column and 

centrifuged for 30 sec at 10000 g. An on-column DNAseI digest was performed by 

adding 80 µl of 1:8 diluted DNaseI in RDD buffer (10 µl DNaseI and 70 µl RDD buffer) 

directly on the column using the RNase-free DNase set from QIAGEN and incubated for 

20 min at room temperature. Subsequently, another 350 µl of Buffer RW1 was added to 

the RNeasy spin column and centrifuged for 30 sec at 10000 g. Finally, the column was 

washed twice with 500 µl of Buffer RPE by centrifugation for 30 sec at 10000 g and a 

final dry centrifugation with no buffer at full speed for 1 min. The RNA was eluted in 30 µl 

H2O, the concentration of the samples were determined by Nanodrop and the samples 

were stored at -80 °C.  

Next, the DNA was further processed by adding 500 µl of Buffer AW1 to the AllPrep DNA 

spin column and centrifugation at 10000 g for 30 sec. The flow-through was discarded. 

Finally, another 500 µl of Buffer AW2 was added on the column and centrifuged at 

10000r g for 30 sec, followed by a dry centrifugation with no buffer at full speed for 1 min. 
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The DNA was diluted in 30 µl H2O, the concentration of the samples were determined by 

Nanodrop and the samples were stored at -80 °C. 

 

2.2.2. Cloning procedures 

 

2.2.2.1.  Cloning of single small RNA expression vectors 

Single small RNAs, as gRNAs or shRNAs, were expressed either under the U6, H1 or 

7SK promoter. Therefore, sense and antisense oligonucleotides were annealed as 

described in section 2.2.1.9 and created a 5´CACC and 3´AAAC overhang or a 5´CACC 

and 3´AAAA overhang for gRNAs or shRNAs, respectively. Oligonucleotides for gRNAs 

and shRNAs are listed in Table 12. The acceptor plasmids harbored the corresponding 

Pol III promoter followed by a ccdB kill gene or stuffer sequence that was flanked with 

recognition sites for type IIS restriction enzymes. In case of gRNA expression vectors, 

the tracrRNA scaffold sequence compatible with SaCas9 adjoined the ccdB gene, 

whereas in case of shRNA an AAAAAA sequence terminated shRNA expression. The 

acceptor plasmids either harbored ITRs for packaging in AAVs as well as an RSV-GFP 

expression cassette and were amplified via Ampicillin selection (acceptor plasmids 

#1576, #1578, #1581, #1584),  or were used as interim stage for multiplexed small RNA 

expression cassettes and in this case were amplified via Chloramphenicol selection 

(acceptor plasmids #1588, #1590, #1591, #1593, #1594, #1596). Golden Gate cloning 

as described in section 2.2.1.9 was performed using the type IIS restriction enzymes 

BsmBI or BbsI in order to exchange a ccdB kill gene or an empty stuffer sequence with 

the appropriate gRNA/ shRNA oligonucleotides. The acceptor plasmids as well as 

resulting plasmids are listed in Table 13.  Note that in order to clone the TuD sequence 

via Golden Gate in its acceptor plasmid #1591, the complete TuD sequence was ordered 

as sense ans antisense oligonucleotides ans subsequently annealed as described for 

shRNA or sgRNA cloning. Accordingly, this cloning procedure deviated from the 

proposed TuD cloning strategy in 162. 

Table 12. Oligonucleotide sequences used for gRNA and shRNA cloning 

No Name Sequence 5´-3´ 
#1 gMecP2g8-fw CACCGAGGCCAAAAAGAAAGCCGTGA 
#2 gMecP2g8-rv AAACTCACGGCTTTCTTTTTGGCCTC 
#3 gHBs-g1-fw CACCGACCCCTTCTCGTGTTACAGG 
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#4 gHBs-g1-rv AAACCCTGTAACACGAGAAGGGGTC 
#5 gHBs-g2-fw CACCGGCGGGGTTTTTCTTGTTGAC 
#6 gHBs-g2-rv AAACGTCAACAAGAAAAACCCCGCC 
#7 gHBs-g3-fw CACCGGTGGTCGGGAAAGAATCCCA 
#8 gHBs-g3-rv AAACTGGGATTCTTTCCCGACCACC 
#9 gHBs-g4-fw CACCGGATTCTTTCCCGACCACCAG 
#10 gHBs-g4-rv AAACCTGGTGGTCGGGAAAGAATCC 
#11 gHBs-g5-fw CACCGTCTAGACTCTGCGGTATTGT 
#12 gHBs-g5-rv AAACACAATACCGCAGAGTCTAGAC 
#13 gHBs-g6-fw CACCGAAAATTGAGAGAAGTCCACC 
#14 gHBs-g6-rv AAACGGTGGACTTCTCTCAATTTTC 
#15 gHBs-g7-fw CACCGTGATGTTCTCCATGTTCAGCG 
#16 gHBs-g7-rv AAACCGCTGAACATGGAGAACATCAC 
#17 gHBs-g8-fw CACCGGACCCCTTCTCGTGTTACAGG 
#18 gHBs-g8-rv AAACCCTGTAACACGAGAAGGGGTCC 
#19 gHBs-g9-fw CACCGGGATTCTTTCCCGACCACCAG 
#20 gHBs-g9-rv AAACCTGGTGGTCGGGAAAGAATCCC 
#21 gHBs-g10-fw CACCGACAAGAATCCTCACAATACCG 
#22 gHBs-g10-rv AAACCGGTATTGTGAGGATTCTTGTC 
#23 gHBxg11-fw CACCGGCAGACGGAGAAGGGGACGA 
#24 gHBxg11-rv AAACTCGTCCCCTTCTCCGTCTGCC 
#25 gnontarget-fw CACCGATCGTTTCCGCTTAACGGCG 
#26 gnontarget-rv AAACCGCCGTTAAGCGGAAACGATC 
#27 gmCherry-fw CACCAGCCGTACATGAACTGAGGGGA 
#28 gmCherry-rv AAACTCCCCTCAGTTCATGTACGGCT 
#29 gLuc-fw CACCGCACTGGCATGAAGAACTGCA 
#30 gLuc-rv AAACTGCAGTTCTTCATGCCAGTGC 
#31 gLuc_scr-fw CACCGCAGTCAATTGCCGGGCGCTG 
#32 gLuc_scr-rv AAACCAGCGCCCGGCAATTGACTGC 
#33 gCas-fw CACCGGTGATGCCGATGTCCAGGCC 
#34 gCas-rv AAACGGCCTGGACATCGGCATCACC 
#35 gCas_scr-fw CACCGCAGTCAATTGCCGGGCGCTG 
#36 gCas_scr-rv AAACCAGCGCCCGGCAATTGACTGC 
#37 gEMX-fw CACCGGCCTCCCCAAAGCCTGGCCA 
#38 gEMX-rv AAACTGGCCAGGCTTTGGGGAGGCC 
#39 gGrin2B-fw CACCGAGAGTAGGCTGGTAGATGGAG 
#40 gGRIN2B-rv AAACCTCCATCTACCAGCCTACTCTC 
#41 gHBB-fw CACCAGGGTTGCCCATAACAGCATC 
#42 gHBB-rv AAACGATGCTGTTATGGGCAACCCT 
#43 shHBV7-fw CACCGCGCTGAATCCTGCGGACGACCTCAAGAGGGT

CGTCCGCAGGATTCAGCGC 
#44 shHBV7-rv AAAAGCGCTGAATCCTGCGGACGACCCTCTTGAGGT

CGTCCGCAGGATTCAGCGC 
#45 shctrl-fw CACCGGCCTTTCACTACTCCTACGATCAAGAGTCGTA

GGAGTAGTGAAAGGCC 
#46 sh-ctrl-rv AAAAGGCCTTTCACTACTCCTACGACTCTTGATCGTA

GGAGTAGTGAAAGGCC 
#47 shHDV3-fw CACCGGGATTTCCATAGGATATACTTCAAGAGAGTAT
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ATCCTATGGAAATCCC 
#48 shHDV3-rv AAAAGGGATTTCCATAGGATATACTCTCTTGAAGTAT

ATCCTATGGAAATCCC 
#49 shHDV4-fw CACCGGGATTTCCATAGGATATATCAAGAGTATATCC

TATGGAAATCCC 
#50 shHDV4-rv AAAAGGGATTTCCATAGGATATACTCTTGATATATCCT

ATGGAAATCCC 
#51 shHDV6-fw CACCGCATCTCCTCCTATCGCTATGGTTCAAGAGACC

ATAGCGATAGG AGGAGATGC 
#52 shHDV6-rv AAAAGCATCTCCTCCTATCGCTATGGTCTCTTGAACC

ATAGCGATAGGAGGAGATGC 
#53 shHDV7-fw CACCGATTCCTCCCTCTGAGTGCTACTTCAAGAGAGT

AGCACTCAGAG GGAGGAATC 
#54 shHDV7-rv AAAAGATTCCTCCCTCTGAGTGCTACTCTCTTGAAGT

AGCACTCAGAGGGAGGAATC 
#55 shHDV8-fw CACCGCATCTCCTCCTATCGCTATGGTCTTCAAGAGA

GACCATAGCGA TAGGAGGAGATGC 
#56 shHDV8-rv AAAAGCATCTCCTCCTATCGCTATGGTCTCTCTTGAA

GACCATAGCGATAGGAGGAGATGC 
#57 shHDV9-fw CACCGTTCCAATGCTCTTTACCGTGACATTCAAGAGA

TGTCACGGTAA AGAGCATTGGAAC 
#58 shHDV9-rv AAAAGTTCCAATGCTCTTTACCGTGACATCTCTTGAA

TGTCACGGTAAAGAGCATTGGAAC 
#59 shHDV3ed-fw CACCGGGATTTCCATGGGATATACTTCAAGAGAGTAT

ATCCCATGGAAATCCC 
#60 shHDV3ed-rv AAAAGGGATTTCCATGGGATATACTCTCTTGAAGTAT

ATCCCATGGAAATCCC 
#61 shHDV4ed-fw CACCGGGATTTCCATGGGATATATCAAGAGTATATCC

CATGGAAATCC C 
#62 shHDV4ed-rv AAAAGGGATTTCCATGGGATATACTCTTGATATATCC

CATGGAAATCCC 
#63 TuD_HBV7 CACCAGGTCGTCCGCAGGATTCAGCGCCAAGTATTC

TGGTCACAGAATACAACGGTCGTCCGCAGGATTCAG
CGCA 

#64 TuD_HBV7 AAAATGCGCTGAATCCTGCGGACGACCGTTGTATTCT
GTGACCAGAATACTTGGCGCTGAATCCTGCGGACGA
CCT 

#65 TuD_scr CACCAACCGTCGAGTGCTGCCGTAGCGCAAGTATTC
TGGTCACAGAATACAACACCGTCGAGTGCTGCCGTA
GCGA 

#66 TuD_scr AAAATCGCTACGGCAGCACTCGACGGTGTTGTATTCT
GTGACCAGAATACTTGCGCTACGGCAGCACTCGACG
GTT 

 

Table 13. Plasmids used for expression of single gRNAs and shRNAs 

Internal 
No 

Name Description Origin 

#1576 dsAAV_U6-ccdB_shRNA Acceptor plasmid for shRNA, 
ccdB is removed by GG with 
BsmBI, ITRs present 

Florian 
Schmidt 

#1578 dsAAV_U6-ccdB_Sa_Scaffold Acceptor plasmid for gRNA for 
SaCas9, ccdB is removed by GG 
with BsmBI, ITRs present 

Florian 
Schmidt 

#1581 dsAAV_ H1-ccdB_Sa_Scaffold Acceptor plasmid for gRNA for 
SaCas9, ccdB is removed by GG 
with BsmBI, ITRs present 

Florian 
Schmidt 

#1584 dsAAV_ 7SK- Acceptor plasmid for gRNA for Florian 
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ccdB_Sa_Scaffold SaCas9, ccdB is removed by GG 
with BsmBI, ITRs present 

Schmidt 

#1588 #48_GGC_1+2_pBSU6- 
ccdB_shRNA 

Acceptor plasmid for shRNA, 
interim plasmid for TRISPR, ccdB 
is removed by GG with BsmBI 

Florian 
Schmidt 

#1590 #48_GGC_1+2_pBSU6- 
ccdB_Sa_Scaffold 

Acceptor plasmid for gRNA  
compatible with SaCas9 , interim 
plasmid for TRISPR, ccdB is 
removed by GG with BsmBI 

Florian 
Schmidt 

#1591 #48_GGC_2+3_pBSH1_ccdB 
_shRNA 

Acceptor plasmid for shRNA, 
interim plasmid for TRISPR, ccdB 
is removed by GG with BsmBI 

Florian 
Schmidt 

#1593 #48_GGC_2+3_pBSH1_ccdB 
_Sa_Scaffold 

Acceptor plasmid for gRNA  
compatible with SaCas9 , interim 
plasmid for TRISPR, ccdB is 
removed by GG with BsmBI 

Florian 
Schmidt 

#1594 #48_GGC_3+4_pBS7SK 
_ccdB_shRNA 

Acceptor plasmid for shRNA, 
interim plasmid for TRISPR, ccdB 
is removed by GG with BsmBI 

Florian 
Schmidt 

#1596 #48_GGC_3+4_pBS7SK_ccd
B_Sa_Scaffold 

Acceptor plasmid for gRNA  
compatible with SaCas9 , interim 
plasmid for TRISPR, ccdB is 
removed by GG with BsmBI 

Florian 
Schmidt 

#2637 dsAAV-U6-gMecP2-g8 
_RSV-GFP 

GG of oligos in #1578, ITRs 
present, amp selection 

Master 
Thesis 

#2639 dsAAV-U6-EMXguide 
_RSV-GFP 

GG of oligos in #1578, ITRs 
present, amp selection 

Master 
Thesis 

#2640 dsAAV-U6-mCherry-
guide_RSV-GFP 

GG of oligos in #1578, ITRs 
present, amp selection 

Master 
Thesis 

#2641 dsAAV-U6-gHBs-g1_RSV-
GFP 

GG of oligos in #1578, ITRs 
present, amp selection 

This study 

#2642 dsAAV-U6-gHBs-g2_RSV-
GFP 

GG of oligos in #1578, ITRs 
present, amp selection 

This study 

#2643 dsAAV-U6-gHBs-g3_RSV-
GFP 

GG of oligos in #1578, ITRs 
present, amp selection 

This study 

#2644 dsAAV-U6-gHBs-g4_RSV-
GFP 

GG of oligos in #1578, ITRs 
present, amp selection 

This study 

#2645 dsAAV-U6-gHBs-g5_RSV-
GFP 

GG of oligos in #1578, ITRs 
present, amp selection 

This study 

#2646 dsAAV-U6-gHBs-g6_RSV-
GFP 

GG of oligos in #1578, ITRs 
present, amp selection 

This study 

#2647 dsAAV-U6-gHBs-g7_RSV-
GFP 

GG of oligos in #1578, ITRs 
present, amp selection 

This study 

#2648 dsAAV-U6-gHBs-g8_RSV-
GFP 

GG of oligos in #1578, ITRs 
present, amp selection 

This study 

#2649 dsAAV-U6-gHBs-g9_RSV-
GFP 

GG of oligos in #1578, ITRs 
present, amp selection 

This study 

#2650 dsAAV-U6-gHBs-g10_RSV-
GFP 

GG of oligos in #1578, ITRs 
present, amp selection 

This study 

#2651 #48_GGC_1+2_U6-
HBsg8_Cm 

GG of oligos in #1590, interim 
plasmid for TRISPR, cam 
selection 

This study 

#2652 #48_GGC_2+3_H1-
HBsg7_Cm 

GG of oligos in #1590, interim 
plasmid for TRISPR, cam 
selection 

This study 

#2653 #48_GGC_3+4_7sk-
HBsg6_Cm 

GG of oligos in #1590, interim 
plasmid for TRISPR, cam 
selection 

This study 

#2655 #48_GGC_1+2_U6HBxg11_C
m 

GG of oligos in #1590, interim 
plasmid for TRISPR, cam 

This study 
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selection 
#2656 #48_GGC_2+3_H1-

HBsg6_Cm 
GG of oligos in #1593, interim 
plasmid for TRISPR, cam 
selection 

This study 

#2657 #48_GGC_3+4_7sk-shHB_Cm GG of oligos in #1594, interim 
plasmid for TRISPR, cam 
selection 

This study 

#2658 #48_GGC_1+2_U6-gctrl_Cm GG of oligos in #1590, interim 
plasmid for TRISPR, cam 
selection 

This study 

#2659 #48_GGC_2+3_H1-gctrl_Cm GG of oligos in #1593, interim 
plasmid for TRISPR, cam 
selection 

This study 

#2660 #48_GGC_3+4_7sk-shctrl_Cm GG of oligos in #1594, interim 
plasmid for TRISPR, cam 
selection 

This study 

#2669 #48_GGC_1+2_U6-
HBsg6_Cm 

GG of oligos in #1590, interim 
plasmid for TRISPR, cam 
selection 

This study 

#2670 #48_GGC_2+3_H1-TuD_Cm GG of oligos in #1594, interim 
plasmid for TRISPR, cam 
selection 

This study 

#2671 #48_GGC_2+3_H1-TuDctrlCm GG of oligos in #1594, interim 
plasmid for TRISPR, cam 
selection 

This study 

#2684 #48_GGC_1+2_U6-
sh3edHDV_Cm 

GG of oligos in #1588, interim 
plasmid for TRISPR, cam 
selection 

This study 

#2685 #48_GGC_2+3_H1-
shHBV7_Cm 

GG of oligos in #1591, interim 
plasmid for TRISPR, cam 
selection 

This study 

#2686 #48_GGC_1+2_U6-shctrl_Cm GG of oligos in #1588, interim 
plasmid for TRISPR, cam 
selection 

This study 

#2687 #48_GGC_2+3_H1-shctrl_Cm GG of oligos in #1591, interim 
plasmid for TRISPR, cam 
selection 

This study 

#2688 #48_GGC_3+4_7sk-gctrlCm GG of oligos in #1596, interim 
plasmid for TRISPR, cam 
selection 

This study 

#2689 #48_GGC_2+3_H1-
HBsg3_Cm 

GG of oligos in #1593, interim 
plasmid for TRISPR, cam 
selection 

This study 

#2706 dsAAV-U6-
HDV_shRNA1_RSV-GFP 

GG of oligos in #1576, ITRs 
present, amp selection 

This study 

#2707 dsAAV-U6-
HDV_shRNA2_RSV-GFP 

GG of oligos in #1576, ITRs 
present, amp selection 

This study 

#2708 dsAAV-U6-
HDV_shRNA3_RSV-GFP 

GG of oligos in #1576, ITRs 
present, amp selection 

This study 

#2709 dsAAV-U6-
HDV_shRNA4_RSV-GFP 

GG of oligos in #1576, ITRs 
present, amp selection 

This study 

#2710 dsAAV-U6-
HDV_shRNA5_RSV-GFP 

GG of oligos in #1576, ITRs 
present, amp selection 

This study 

#2711 dsAAV-U6-
HDV_shRNA6_RSV-GFP 

GG of oligos in #1576, ITRs 
present, amp selection 

This study 

#2712 dsAAV-U6-
HDV_shRNA7_RSV-GFP 

GG of oligos in #1576, ITRs 
present, amp selection 

This study 

#2713 dsAAV-U6-
HDV_shRNA8_RSV-GFP 

GG of oligos in #1576, ITRs 
present, amp selection 

This study 

#2714 dsAAV-U6- GG of oligos in #1576, ITRs This study 
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HDV_shRNA9_RSV-GFP present, amp selection 
#2715 dsAAV-U6-

HDV_shRNA3ed_RSV-GFP 
GG of oligos in #1576, ITRs 
present, amp selection 

This study 

#2716 dsAAV-U6-
HDV_shRNA4ed_RSV-GFP 

GG of oligos in #1576, ITRs 
present, amp selection 

This study 

#2741 dsAAV-H1-HBs-g7_RSV-GFP GG of oligos in #1581, ITRs 
present, amp selection 

This study 

#2742 dsAAV-7sk-HBs-g6_RSV-GFP GG of oligos in #1584, ITRs 
present, amp selection 

This study 

#2717 dsAAV-U6-gHBs-g8-Stuffer gRNA for SaCas9 against HBsAg, 
stuffer ensures 2 kb size 

This study 

#2718 dsAAV-H1-HBs-g7-Stuffer gRNA for SaCas9 against HBsAg, 
stuffer ensures 2 kb size 

This study 

#2719 dsAAV-7sk-HBs-g6-Stuffer gRNA for SaCas9 against HBsAg, 
stuffer ensures 2 kb size 

This study 

#2743 dsAAV-H1-gCas9 gRNA for SaCas9 against itself This study 
#2744 dsAAV-H1-gscrCas9 scrambled gRNA for SaCas9 

against itself 
This study 

 

Note that for the comparison of different multiplexing approaches, the RSV-GFP cassette 

of the constructs #2648, #2741and #2742 was partly exchanged with a LacZ stuffer 

sequence of various sizes (to ensure a final vector size of about 2 kb) via AgeI/NotI 

digestion resulting in constructs #2717, #2718 and #2719, respectively. Therefore, LacZ 

was PCR amplified using the forward primer #1 and the reverse primer #2, #3 or #4 

(Table 14) for the final U6, H1 and 7SK construct, respectively. 

Table 14. Oligos used for cloning  

No Name Sequence 5´-3´ 
#1 LacZstufferNotI ATATATGCGGCCGCAGGTTTGTTTGCCGGATCAAG 
#2 LacZstuffer_630bp_AgeI ATATATACCGGTAGAATCAGGGGATAACGCAGG 
#3 LacZstuffer_950bp_AgeI ATATATACCGGTGCTTTTGTTCCCTTTAGTGAGGG 
#4 LacZstuffer_870bp_AgeI ATATATACCGGTACAACATACGAGCCGGAAGC 

 

2.2.2.2.  Cloning of multiplexed small RNA expression vectors 

Multiplexed small RNA expression vectors were cloned using the TRISPR strategy as 

illustrated in Figure 13. For this purpose, first three interim plasmids were cloned 

harboring single gRNA or shRNA expression cassettes (as described in section 2.2.2.1) 

under the U6 promoter flanked with overhang 1+2, under the H1 promoter flanked with 

overhang 2+3 and under the 7SK promoter flanked with overhang 3+4. In a second 

Golden Gate reaction using the restriction enzyme BbsI, the U6, H1 and 7SK expression 

cassettes were multiplexed on an assembly plasmid (#1600) that harbors overhang 1+4 

and thus enables assembly in a final dsAAV vector. 
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Figure 13. TRISPR cloning protocol.  

TRISPR consists of several standardized plasmid backbones and a step by step protocol to 
multiplex three sgRNAs (compatible with Sa and SpCas9) and/or shRNAs on a single dsAAV 
vector and was invented by Florian Schmidt. The first cloning step comprises the substitution of 
the ccdB gene, a toxin for non-resistant bacteria, by either an shRNAs or the portion of the 
sgRNA that mediates target recognition (crRNA portion of the sgRNA), using highly efficient 
Golden Gate cloning. This first cloning step results in three different single RNA expression 
vectors that contain the three Pol III promoters U6, H1 or 7sk, respectively. The second cloning 
step results in the final TRISPR vector and comprises the assembly of each RNA expression 
cassette and an AAV recipient plasmid. The type IIS restriction enzyme BbsI creates unique 
overhangs for each RNA expression cassette and enables the assembly in a specified sequence, 
commencing with the U6, H1 and 7sk cassettes. The triple RNA expression cassettes are flanked 
by ITRs leading to the dsAAV vector.  
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The final dsAAV vector is termed TRISPR and harbors ITRs in order to allow vector 

packaging as well as a stuffer sequence to ensure a 2 kb viral genome size. A list of all 

TRISPR vectors is provided in Table 15. 

 

Table 15. Plasmids used for multiplexed small RNA expression via TRISPR  

Internal
No 

Name Description Origin 

#1600 AAV TRISPR 2.0 ccdB GGC 1+4_ Acceptor vector with 
ITRs 

Florian 
Schmidt 

#2654 dsAAV_U6-HBsg8_H1-HBsg7_7SK-HBsg6 GG of #1600 
&#2648+#2647+#2646  

This study 

#2661 dsAAV_U6-HBxg11_H1-HBsg6_7sk-shHB7 GG of #1600 
&#2655+#2656+#2657 

This study 

#2662 dsAAV_U6-ctrlg_H1-HBsg6_7sk-ctrlsh GG of #1600 
&#2658+#2656+#2660 

This study 

#2663 dsAAV_U6-HBxg11_H1-HBsg6_7sk-shctrl GG of #1600 
&#2655+#2656+#2660 

This study 

#2664 dsAAV_U6-ctrlg_H1-HBsg6_7sk-shHB7 GG of #1600 
&#2658+#2656+#2657 

This study 

#2665 dsAAV_U6-HBxg11_H1-gctrl_7sk-shctrl GG of #1600 
&#2655+#2659+#2660 

This study 

#2666 dsAAV_U6-ctrlg_H1-ctrlg_7sk-shHB7 GG of #1600 
&#2658+#2659+#2657 

This study 

#2667 dsAAV_U6-HBxg11_H1-ctrlg_7sk-shHB7 GG of #1600 
&#2655+#2659+#2657 

This study 

#2668 dsAAV_U6-gctrl_H1-gctrl_7sk-shctrl GG of #1600 
&#2658+#2659+#2660 

This study 

#2672 dsAAV_U6-HBxg11_H1-TuDHB7_7sk-
shHB7 

GG of #1600 
&#2655+#2670+#2657 

This study 

#2673 dsAAV_U6-HBsg6_H1-TuDHB7_7sk-shHB7 GG of #1600 
&#2669+#2670+#2657 

This study 

#2674 dsAAV_U6-HBxg11_H1-TuDscr_7sk-shctrl GG of #1600 
&#2655+#2671+#2660 

This study 

#2675 dsAAV_U6-HBsg6_H1-TuDscr_7sk-shctrl GG of #1600 
&#2669+#2671+#2660 

This study 

#2676 dsAAV_U6-HBxg11_H1-TuDHB7_7sk-shctrl GG of #1600 
&#2655+#2670+#2660 

This study 

#2677 dsAAV_U6-HBsg6_H1-TuDHB7_7sk-shctrl GG of #1600 
&#2669+#2670+#2660 

This study 

#2678 dsAAV_U6-HBxg11_H1-TuDscr_7sk-shHB7 GG of #1600 
&#2655+#2671+#2657 

This study 

#2679 dsAAV_U6-HBsg6_H1-TuDscr_7sk-shHB7 GG of #1600 & 
#2669+#2671+#2657 

This study 

#2680 dsAAV_U6-gctrl_H1-TuDscr_7sk-shHB7 GG of #1600 
&#2658+#2671+#2657 

This study 

#2681 dsAAV_U6-gctrl_H1-TuDHB7_7sk-shctrl GG of #1600 
&#2658+#2670+#2660 

This study 

#2682 dsAAV_U6-gctrl_H1-TuDHB7_7sk-shHB7 GG of #1600 
&#2658+#2670+#2657 

This study 

#2683 dsAAV_U6-gctrl_H1-Tuscr_7sk-shctrl GG of #1600 
&#2658+#2671+#2660 

This study 

#2690 dsAAV_U6-HD_sh3ed_H1-HB-g3-S_7SK-g6-
S 

GG of #1600 
&#2684+#2689+#2653 

This study 

#2691 dsAAV_U6-HD_sh3ed_H1-ctrlg_7SK-ctrlg GG of #1600 This study 
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&#2684+#2659+#2688 
#2692 dsAAV_U6-HD_sh3ed_H1-HB-g3-S_7SK-

ctrlg 
GG of #1600 
&#2684+#2689+#2688 

This study 

#2693 dsAAV_U6-HD_sh3ed_H1-ctrlg_7SK-g6-S GG of #1600 
&#2684+#2659+#2653 

This study 

#2694 dsAAV_U6-ctrlsh_H1-HB-g3-S_7SK-g6-S GG of #1600 
&#2686+#2689+#2653 

This study 

#2695 dsAAV_U6-ctrlsh_H1-ctrlg_7SK-ctrlg GG of #1600 
&#2686+#2659+#2688 

This study 

#2696 dsAAV_U6-ctrlsh_H1-HB-g3-S_7SK-ctrlg GG of #1600 
&#2686+#2689+#2688 

This study 

#2697 dsAAV_U6-ctrlsh_H1-ctrlg_7SK-g6-S GG of #1600 
&#2686+#2659+#2653 

This study 

#2698 dsAAV_U6-HD_sh3ed_H1-sh7_7SK-g6-S GG of #1600 
&#2684+#2685+#2653 

This study 

#2699 dsAAV_U6-HD_sh3ed_H1-ctrlsh_7SK-ctrlg GG of #1600 
&#2684+#2687+#2688 

This study 

#2700 dsAAV_U6-HD_sh3ed_H1-sh7_7SK-ctrlg GG of #1600 
&#2684+#2685+#2688 

This study 

#2701 dsAAV_U6-HD_sh3ed_H1-ctrlsh_7SK-g6-S GG of #1600 
&#2684+#2687+#2653 

This study 

#2702 dsAAV_U6-ctrlsh_H1-sh7_7SK-g6-S GG of #1600 
&#2686+#2685+#2653 

This study 

#2703 dsAAV_U6-ctrlsh_H1-ctrlsh_7SK-ctrlg GG of #1600 
&#2686+#2687+#2688 

This study 

#2704 dsAAV_U6-ctrlsh_H1-sh7_7SK-ctrlg GG of #1600 
&#2686+#2685+#2688 

This study 

#2705 dsAAV_U6-ctrlsh_H1-ctrlsh_7SK-g6-S GG of #1600 
&#2686+#2687+#2653 

This study 

 

2.2.2.3. Cloning of promoter library to drive SaCas9 expression in vivo 

For expression of SaCas9 in vivo, the CMV promoter of #1829 was exchanged by the 

indicated promoter. Therefore, the promoters were first PCR amplified using the primers 

listed in Table 16 and subsequently digested with PacI and NheI and ligated in #1829, 

resulting in the construct listed in Table 17.  

Table 16. Primers used to clone the promoter library for SaCas9 expression in vivo 

No Name Sequence 5´-3´ Template 

1 TTR fw TCTAGATTAATTAAGGATCTGTCAATTCACGCG #1693 
2 TTR rv GTGGCGCTAGCGACCGGTGCGGCCG 

3  
TBG fw 

 
TCTAGATTAATTAAACGTAGCCATGCTCTAGTACGC #522 

4 TBG rv GTGGCGCTAGCATCTTTCCATTTTTATAGCATGTCC 

5 EFS fw 
 
TCTAGATTAATTAAGGGCAGAGCGCACATC #1543 

6 EFS rv GTGGCGCTAGCCTGTGTTCTGGCGGCAAAC 
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Table 17. Plasmids and promoter sequences used for in vivo SaCas9 expression. 

Internal 
No Name Promoter sequence Origin 

#1830 ssAAV-
LP1-
SaCas9 

CCCTAAAATGGGCAAACATTGCAAGCAGCAAACAGCAA
ACACACAGCCCTCCCTGCCTGCTGACCTTGGAGCTGG
GGCAGAGGTCAGAGACCTCTCTGGGCCCATGCCACCT
CCAACATCCACTCGACCCCTTGGAATTTCGGTGGAGAG
GAGCAGAGGTTGTCCTGGCGTGGTTTAGGTAGTGTGA
GAGGGGAATGACTCCTTTCGGTAAGTGCAGTGGAAGC
TGTACACTGCCCAGGCAAAGCGTCCGGGCAGCGTAGG
CGGGCGACTCAGATCCCAGCCAGTGGACTTAGCCCCT
GTTTGCTCCTCCGATAACTGGGGTGACCTTGGTTAATA
TTCACCAGCAGCCTCCCCCGTTGCCCCTCTGGATCCA
CTGCTTAAATACGGACGAGGACAGGGCCCTGTCTCCT
CAGCTTCAGGCACCACCACTGACCTGGGACAGTGAAT
CCGGACTCTAAGGTAAATATAAAATTTTTAAGTGTATAA
TGTGTTAAACTACTGATTCTAATTGTTTCTCTCTTTTAGA
TTCCAACCTTTGGAACTGAATTCTAG 
 

Plasmid 
Library 

#2747 ssAAV-
TTR-
SaCas9 

GGATCTGTCAATTCACGCGAGTTAATAATTACCAGCGC
GGGCCAAATAAATAATCGCGAGGGGCAGGTGACGTTT
GCCCAGCGCGCGCTGGTAATTATTAACCTCGCGAATAT
TGATTCGAGGCCGCGATTGCCGCAATCGCGAGGGGCA
GGTGACCTTTGCCCAGCGCGCGTTCGCCCCGCCCCG
GACGGTATCGATGTCGAGGGGGATCCCACTGGGAGGA
TGTTGAGTAAGATGGAAAACTACTGATGACCCTTGCAG
AGACAGAGTATTAGGACATGTTTGAACAGGGGCCGGG
CGATCAGCAGGTAGCTCTAGAGGTACCCCAGATCTAGT
GTCTGTCTGCACATTTCGTAGAGCGAGTGTTCCGATAC
TCTAATCTCCCTAGGCAAGGTTCATATTTGTGTAGGTTA
CTTATTCTCCTTTTGTTGACTAAGTCAATAATCAGAATC
AGCAGGTTTGGAGTCAGCTTGGCAGGGATCAGCAGCC
TGGGTTGGAAGGAGGGGGTATAAAAGCCCCTTCACCA
GGAGAAGCCCAGCTG 
 

This 
study 

#2748 ssAAV-
TBG-
SaCas9 
 
(2x alpha 
mic/bik in 
front and 
chimeric 
intron 
behind 
TBG) 

AGGTTAATTTTTAAAAAGCAGTCAAAAGTCCAAGTGGC
CCTTGGCAGCATTTACTCTCTCTGTTTGCTCTGGTTAAT
AATCTCAGGAGCACAAACATTCCAGATCCAGGTTAATT
TTTAAAAAGCAGTCAAAAGTCCAAGTGGCCCTTGGCAG
CATTTACTCTCTCTGTTTGCTCTGGTTAATAATCTCAGG
AGCACAAACATTCCAGATCCGGCGCGCCAGGGCTGGA
AGCTACCTTTGACATCATTTCCTCTGCGAATGCATGTAT
AATTTCTACAGAACCTATTAGAAAGGATCACCCAGCCT
CTGCTTTTGTACAACTTTCCCTTAAAAAACTGCCAATTC
CACTGCTGTTTGGCCCAATAGTGAGAACTTTTTCCTGC
TGCCTCTTGGTGCTTTTGCCTATGGCCCCTATTCTGCC
TGCTGAAGACACTCTTGCCAGCATGGACTTAAACCCCT
CCAGCTCTGACAATCCTCTTTCTCTTTTGTTTTACATGA
AGGGTCTGGCAGCCAAAGCAATCACTCAAAGTTCAAAC
CTTATCATTTTTTGCTTTGTTCCTCTTGGCCTTGGTTTT
GTACATCAGCTTTGAAAATACCATCCCAGGGTTAATGC
TGGGGTTAATTTATAACTAAGAGTGCTCTAGTTTTGCAA
TACAGGACATGCTATAAAAATGGAAAGATAGATCTGCT
TCAGCTGGAGGCACTGGGCAGGTAAGTATCAAGGTTA
CAAGACAGGTTTAAGGAGACCAATAGAAACTGGGCTTG
TCGAGACAGAGAAGACTCTTGCGTTTCTGATAGGCACC
TATTGGTCTTACTGACATCCACTTTGCCTTTCTCTCCAC
AGGTG 

This 
study 
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#2310 ssAAV-

mCMV-
SaCas9 

ACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTC
AATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTT
TCCAAAATGTCGTAATAACCCCGCCCCGTTGACGCAAA
TGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAG
CAGAGCTCGTTTAGTGAACCGTCAGAATTCTCGAGTGA
TCGAAAGAGCCTGCTAAAGCAAAAAAGAAGTCACC 

Master 
Thesis 

 
 
#2749 

 
 
ssAAV-
EFS-
SaCas9 

 

GGGCAGAGCGCACATCGCCCACAGTCCCCGAGAAGTT
GGGGGGAGGGGTCGGCAATTGATCCGGTGCCTAGAG
AAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTG
TACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAAC
CGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTT
CGCAACGGGTTTGCCGCCAGAACACAGGC 

 
 
This 
study 

 

2.2.2.4. Cloning of splitCas9 vectors 

The split Cas9 vectors originated from my Master Thesis that was conducted in the lab of 

Barbara Di Ventura and Roland Eils in collaboration with Dirk Grimm, in which three 

different split-sites of SaCas9 were selected and each joined to the split NpuDnaE or 

split gp41 inteins 286. To this end, the plasmid #1166 was used as basis for all constructs 

that harbor an ITR-4 preceding and an ITR-2 following the coding sequence leading to 

the dsAAV vector. The inteins were ordered as gBlocks from IDT as listed in Table 18 

and the SaCas9 halves were PCR amplified from plasmid #1513 that was kindly 

provided by the Weinberg lab. Using a GoldenGate based strategy SaCas9 halves and 

intein were assembled. Subsequently, the promoter was substituted via the minimalCMV 

promoter, TK and MecP2 promoter. In order to clone the full-length SaCas9 within the 

single-stranded AAV context, harboring an ITR-2 on each site of the coding sequence, 

the plasmid #1604 pSSV-TK-spCas9 was digested using NheI and NotI in order to 

exchange the SpCas9 fragment with SaCas9 harboring exactly the same genetic 

elements as the split Cas9 (Kozak sequence, NLS, Flag-tag, 48 bp-PolyA). 

Subsequently, the promoter was substituted via the minimalCMV promoter and MecP2 

promoter. For more details, see Master Thesis. In this study, the split Cas9 system was 

furthermore expanded by a kill-switch approach, previously developed by Julia Fakhiri 

from our lab 294. All plasmids used for the splitCas9 project are listed in Table 19. Note 

that AAV vectors harboring two sgRNAs were cloned by using the TRISPR protocol, but 

instead of the 7sk cassette, oligos (5´TGACGATCGATC 3´ and 5´AAGCGATCGATC 3´) 

were annealed and inserted as placeholder. 
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Table 18. Sequence of gBlocks to clone inteins. 

gBlock Sequence 5´to 3 
BbsI-Gate-gp41-

1(N)-SPA-BbsI 

 

GATCCAGAAGACGAGCCACGATGAGAGACGCGTCTCATGCTTGGAC

CTGAAAACCCAGGTGCAGACCCCCCAGGGCATGAAGGAAATCTCCA

ACATCCAGGTGGGCGACCTGGTGCTGTCCAACACCGGCTACAACGA

GGTGCTGAACGTGTTCCCCAAGTCCAAGAAGAAGTCCTACAAGATCA

CCCTGGAGGACGGCAAGGAGATCATCTGCTCCGAGGAGCACCTGTT

CCCCACCCAGACCGGCGAGATGAACATCTCCGGCGGCCTGAAGGA

GGGCATGTGCCTGTACGTGAAGGAGTAATGATCGATAATAAAATCGT

TGATTTTCATTGGAAGCGTGTGTTGGTTTTTTGTGTGCGGCCGCTCT

GTTGTCTTCAGGTAC 

BbsI-gp41-1(C)-

Gate-SPA-BbsI 

 

GATCCAGAAGACGAGCCACGATGATGCTGAAGAAGATCCTGAAGAT

CGAGGAGCTGGACGAGCGCGAGCTGATCGACATCGAGGTGTCCGG

CAACCACCTGTTCTACGCCAACGACATCCTGACCCACAACAGAGACG

CGTCTCGTAATGATCGATAATAAAATCGTTGATTTTCATTGGAAGCGT

GTGTTGGTTTTTTGTGTGCGGCCGCTCTGTTGTCTTCAGGTAC 

BbsI-Gate-

NpuDnaE(N)-SPA-

BbsI 

 

GATCCAGAAGACGAGCCACGATGAGAGACGCGTCTCATGCTTGTCC

TACGAAACCGAGATCCTGACCGTGGAGTACGGCCTGCTGCCCATCG

GCAAGATCGTGGAGAAGCGCATCGAGTGCACCGTGTACTCCGTGGA

CAACAACGGCAACATCTACACCCAGCCCGTGGCCCAGTGGCACGAC

CGCGGCGAGCAGGAGGTGTTCGAGTACTGCCTGGAGGACGGCTCC

CTGATCCGCGCCACCAAGGACCACAAGTTCATGACCGTGGACGGCC

AGATGCTGCCCATCGACGAAATCTTCGAGCGCGAGCTGGACCTGAT

GCGCGTGGACAACCTGCCCAACTAATGATCGATAATAAAATCGTTGA

TTTTCATTGGAAGCGTGTGTTGGTTTTTTGTGTGCGGCCGCTCTGTTG

TCTTCAGGTAC 

BbsI-NpuDnaE(C)-

Gate-SPA-BbsI 

 

GATCCAGAAGACGAGCCACGATGATGATCAAGATCGCCACCCGCAA

GTACCTGGGCAAGCAGAACGTGTACGACATCGGCGTGGAGCGCGAC

CACAACTTCGCCCTGAAGAACGGCTTCATCGCCTCCAACAGAGACG

CGTCTCGTAATGATCGATAATAAAATCGTTGATTTTCATTGGAAGCGT

GTGTTGGTTTTTTGTGTGCGGCCGCTCTGTTGTCTTCAGGTAC 
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Table 19. Plasmids used in splitSaCas9 experiments.  

No Name Description Origin 

#2310 ssAAV-mCMV-NLS-flag-

SaCas9-flag-NLS 

minCMV expressing SaCas9 Master Thesis 

#2330 dsAAV-mCMV-NLS-flag-(N)-

SaCas9-gp41-1(N)_split 3 

minCMV-driven N-Cas9 split3-intein Master Thesis 

#2331 dsAAV-mCMV-gp41-1(C)-C-

SaCas9-flag-NLS_split 3 

minCMV-driven C-Cas9 split3-intein Master Thesis 

#2727 ssAAV-mMecP2-NLS-flag-

SaCas9-flag-NLS 

mMecP2-expressing SaCas9 Master Thesis 

#2732 dsAAV-mMecP2-NLS-flag-(N)-

SaCas9-gp41-1(N)_split 3 

mMecP2-driven N-Cas9 split3-intein Master Thesis 

#2733 dsAAV-mMecP2-gp41-1(C)-C-

SaCas9-flag-NLS_split 3 

mMecP2-driven C-Cas9 split3-intein Master Thesis 

#2734 ssAAV-mTK-NLS-flag-SaCas9-

flag-NLS 

mTK-expressing SaCas9 Master Thesis 

#2739 dsAAV-mTK-NLS-flag-(N)-

SaCas9-gp41-1(N)_split 3 

mTK-driven N-Cas9 split3-intein Master Thesis 

#2740 dsAAV-mTK-gp41-1(C)-C-

SaCas9-flag-NLS_split 3 

mTK-driven C-Cas9 split3-intein Master Thesis 

#2333 mCMV-gp41-1-SaCas9-C-flag-

NLS_H1-gCas 

C-SaCas9 and H1-gCas9  Julia Fakhiri 

#2334 mCMV-gp41-1-SaCas9-C-flag-

NLS_H1-gscr 

C-SaCas9 and H1-gscrCas9  Julia Fakhiri 

#2339 TTR-hLuc-U6-gLuc TTR driving luciferase, U6 

expressing gRNA against Luc 

This study 

#2340 TTR-hLuc-U6-gscrLuc TTR driving luciferase, U6 

expressing scrambled gRNA 

This study 

#2743 dsAAV-H1-gCas9 gRNA for SaCas9 against itself This study 

#2744 dsAAV-H1-gscrCas9 scrambled gRNA for SaCas9 against 

itself 

This study 

#2646 dsAAV-U6-gHBs-g6_RSV-GFP GG of oligos in #1578, ITRs present, 

amp selection 

This study 

#2637 dsAAV-U6-gMecP2-g8_RSV-

GFP 

GG of oligos in #1578, ITRs present, 

amp selection 

Master Thesis 

#2745 dsAAV-U6-gMecP2g8_H1-

gCas9 

U6 driven gRNA against MecP2, H1 

driven gRNA againstCas9 

This study 

#2720 dsAAV-U6-gMecP2g8_H1-scr U6 driven gRNA against MecP2, H1 This study 
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driven scrRNA 

#2725 dsAAV-U6-gHBsg6_H1-gCas9 U6 driven gRNA against HBsAg, H1 

driven gRNA againstCas9 

This study 

#2726 dsAAV-U6-gHBsg6_H1-scr U6 driven gRNA against HBsAg, H1 

driven scrRNA 

This study 

 

2.2.2.5. Cloning of AcrIIC1 variants 

AcrIIC1 wt, single, double and triple mutants were cloned by me and Sabine 

Aschenbrenner in Niopek´s lab and are listed in Table 20. Mutations were introduced by 

around-the-horn PCR using phosphorylated primers that covered a single mutation site 

per cloning round. Subsequently, the amplicon of the complete plasmid was ligated and 

therefore created a circularized plasmid. AcrX represents the triple mutant DN (internal 

reference numer in the lab of Dominik Niopek) #1282. The plasmid DN #231 (Addgene 

#61591, kind gift from Feng Zhang) was used for SaCas9 and corresponding sgRNA 

expression. Oligonucleotides were ordered with a 5´CACC and 3´AAAC overhang (see 

Table 12,oligo #37/#38, #39/#40, #41/#42) and inserted in DN #231 via Golden Gate 

cloning using the type IIS restriction enzyme BsaI resulting in DN #1265 (CMV-

SaCas9_U6-gEMX), DN #1294 (CMV-SaCas9_U6-gGrin2B) and DN #1333 (CMV-

SaCas9_U6-gHBB). For the miR122 experiments, plasmids DN #1024 and DN #1026 

were used that harbor a CMV-driven AcrIIC1 wt inhibitor with either a microRNA scaffold 

or miR122 binding site as reported in 203. For miR122- dependent expression of AcrX, 

#1282 was digested with NheI/XhoI and AcrIIC1 in DN #1024 and DN #1026 replaced 

with AcrX.  

Table 20. Plasmids used in AcrX experiments. 

No Name Description Origin 
DN#231 ssAAV-CMV-SaCas9 _U6-

SaScaffold 
CMV-driven SaCas9 & U6-
driven gRNA scaffold 

Addgene 
61591 

DN#1265 ssAAV-CMV-SaCas9-U6-gEMX GG of oligos in DNDN#231, 
all-in-one vector 

Niopek lab 

DN#1294 ssAAV-CMV-SaCas9-U6-gGrin2B GG of oligos in DNDN#231, 
all-in-one vector 

Niopek lab 

DN#1333 ssAAV-CMV-SaCas9-U6-gHBB GG of oligos in DNDN#231, 
all-in-one vector 

Niopek lab 

DN#948 CMV-AcrIIC1 CMV driven AcrIIC1 wt 
inhibitor 

Niopek lab 

DN#1207 CMV-AcrIIC1_A47I Acr with single point mutation Niopek lab 
DN#1209 CMV-AcrIIC1_D14Q Acr with single point mutation Niopek lab 
DN#1211 CMV-AcrIIC1_D42F Acr with single point mutation Niopek lab 
DN#1213 CMV-AcrIIC1_D44F Acr with single point mutation Niopek lab 
DN#1215 CMV-AcrIIC1_D45E Acr with single point mutation Niopek lab 
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DN#1217 CMV-AcrIIC1_K46Q Acr with single point mutation Niopek lab 
DN#1220 CMV-AcrIIC1_M76S Acr with single point mutation Niopek lab 
DN#1221 CMV-AcrIIC1_N2F Acr with single point mutation Niopek lab 
DN#1223 CMV-AcrIIC1_N2Y Acr with single point mutation Niopek lab 
DN#1224 CMV-AcrIIC1_R35D Acr with single point mutation Niopek lab 
DN#1241 CMV-AcrIIC1_N2F/A47I Acr with double point mutation Niopek lab 
DN#1244 CMV-AcrIIC1_N2F/K46Q Acr with double point mutation Niopek lab 
DN#1267 CMV-AcrIIC1_D14Q/A47I Acr with double point mutation Niopek lab 
DN#1268 CMV-AcrIIC1_N2Y/A47I Acr with double point mutation Niopek lab 
DN#1269 CMV-AcrIIC1_D14Q/K46Q Acr with double point mutation Niopek lab 
DN#1270 CMV-AcrIIC1_N2F/D14Q Acr with double point mutation Niopek lab 
DN#1271 CMV-AcrIIC1_N2Y/D14Q Acr with double point mutation Niopek lab 
DN#1273 CMV-AcrIIC1_N2Y/K46Q Acr with double point mutation Niopek lab 
DN#1274 CMV-AcrIIC1_K46Q/A47I Acr with double point mutation Niopek lab 
DN#1282 CMV-AcrIIC1_N2F/D14Q/A47I Acr with triple point mutation Niopek lab 
DN#1286 CMV-AcrIIC1_N2Y/D14Q/A47I Acr with triple point mutation Niopek lab 
DN#1024 pAAV_U6-BbsI_CMV-AcrIIC1-

scaffold-BsmBI-BGH 
AcrIIC1 with scaffold instead of 
miR122 bs 

Niopek lab 

DN#1026 pAAV_U6-BbsI_CMV-AcrIIC1-
2xmir122-BsmBI-BGH 

AcrIIC1 with miR122 binding 
site 

Niopek lab 

DN#1839 pAAV_U6-BbsI_CMV-AcrX-
2xmir122-BsmBI-BGH 

AcrIIX with miR122 binding 
site 

Niopek lab 

DN#1841 pAAV_U6-BbsI_CMV-AcrX-
scaffold-BsmBI-BGH 

AcrIIX with scaffold instead of 
miR122 bs 

Niopek lab 

 

 

2.2.3. Cell Culture Methods 

 

2.2.3.1.  Cell Maintainance 

HEK293T, HepG2, Huh7, Hepa1-6 and Neuro2A cells, were maintained in phenol-red 

Dulebecco´s Modified Eagle Medium (DMEM) with GlutaMAXTM, supplemented with 10% 

fetal bovine calf serum (FBS) and 1% Penicillin-Streptomycin, in this study referred to as 

cell culture medium. Cell culture medium for HepG2-hNTCP and Huh7-hNTCP cells 

were further supplemented with Puromycin in a final concentration of 5 µg/ml, for 

HepG2-hNTCP-HB2.7 and Huh7-hNTCP-HB2.7 cells the medium was furthermore 

supplemented with Blasticidin in a final concentration of 10 µg/ml. Cells were cultured in 

T75 to T175 flasks in a humidified atmosphere at 37 °C and 5% CO2. Cells were split 1:5 

to 1:20 every 3-4 days using 2.5% Trypsin-EDTA solution for detachment. Cell lines 

used in this study are listed in Table 21. Primary myoblasts were cultured in Myoblasts 

growth medium (MGM) and supplemented with fresh media every day.   
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Table 21. List of cell lines. 

Cell Line Origin Description 
HEK293T H. sapiens Human embryonic kidney cells expressing the 

SV40 large T-antigen used for AAV production 295 
HepG2 H. sapiens Human liver carcinoma-derived cell line 

isolated from young patient with HCC 296 
Huh7 H. sapiens Human hepatoma cell line derived from patient 

suffering from HCC 297 
Hepa1-6 M. musculus Mouse hepatoma cell line derived from C57/L mice 298 
Neuro2A M. musculus Mouse neuroblastoma cell line 299 

 
HepG2-hNTCP H. sapiens HepG2 stably expressing hNTCP 

(Puromycin selection) 16 
HepG2-hNTCP-HB2.7 H. sapiens HepG2 stably expressing hNTCP and HBsAg 

(Puromycin & Blasticidin selection) 300 
 

Huh7-hNTCP H. sapiens Huh7 stably expressing hNTCP (Puromycin selection) 
16 

Huh7-hNTCP-HB2.7 H. sapiens Huh7 stably expressing hNTCP and HBsAg 
(Puromycin & Blasticidin selection) 300 

HEK293T-mCherry H. sapiens HEK293T cells stably expressing mCherry ontained 
from Stefan Kallenberger 

Primary Myoblasts M. musculus Mouse primary myoblast obtained from Oliver Müller 
 

2.2.3.2.  Transfection 

For transfection in 96-well plates, 8 x103 cells per well were seeded using 100 µl cell 

culture medium. One day after seeding, cells were transfected with 200 ng total DNA 

using the Lipofectamine 2000 reagent. Therefore, 25 µl DMEM without supplements and 

0,4 µl Lipofectamine 2000 were thoroughly mixed and incubated for 5 min. The DNA was 

diluted in 25 µl DMEM without supplements likewise. Subsequently, both mixes were 

vortexed and incubated for 30 min until added drop wise to the cells.  

For the AcrX experiments, HEK293T cells were plated with a density of 12,500 cells per 

well and transfected using the JetPrime reagent. Therefore, 0.3 µl of JetPrime reagent 

was mixed with 5 µl buffer and a total of 200 ng DNA was likewise mixed with 5 µl buffer. 

Subsequently, both mixes were combined and incubated for 15 min until added to the 

cells. According to the indicated Acr : Cas9 ratios, cells were transfected with 100 ng 

plasmid expressing the Acr variants and 100 ng plasmid comprising a dual expression 

cassette for Cas9 and gRNA  (1:1 ratio), 133 ng Acr and 67 ng Cas9/gRNA (2:1 ratio), 

150 ng Acr and 50 ng Cas9/gRNA (3:1 ratio) or 160 ng Acr and 40 ng Cas9/gRNA (4:1 

ratio). 
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2.2.4. Virological Methods 

2.2.4.1.  AAV production and purification 

For large-scale AAV production, HEK293T cells were expanded in T175 flasks in order 

to attain enough cell material. Two days later, cells were seeded in 140 mm dishes 

(Nunc) with a density of 4x106 cells/dish in 22 ml cell culture medium. Two days later, 

cells were transfected with 44.1 µg total DNA per plate with a 1:1:1 ratio of i) 

Adenohelper plasmid providing helper function for AAV packaging, ii) a plasmid providing 

AAV rep and cap of the diverse AAV variants, and iii) the plasmids with the transgene 

flanked by ITRs. Plasmid DNA was mixed with 1.23 ml H2O, 1.58 ml 300 mM NaCl and 

0.35 ml PEI for one dish, respectively. Note that for each construct at least five, but up to 

150 dishes were produced. Mixes were thoroughly vortexed and incubated for 10 min at 

room temperature and 3.2 ml were added dropwise to each dish. Three days later, cells 

were harvested by scraping the cells from the dish. The cell suspension was either 

collected in 50 ml Falcon tubes or in Corning® 500 ml centrifuge tubes and centrifuged 

at 800 g for 15 min. The supernatant was disposed and cells were resuspended in 5 ml 

or 20 ml Benzonase buffer, for small gradients of up to 20 dishes or large gradients of up 

to 75 dishes, respectively. Remaining plasmid DNA was digested by the addition of 1 µl 

or 4 µl highly concentrated Benzonase for small or large gradients, respectively and 

incubated for 1 h at 37 °C with inversions every 10 min. Subsequently, cells were lysed 

by subjecting them to five freeze (in liquid nitrogen) and thaw (in 37°C waterbath) cycles. 

Cells were pelleted by centrifugation at 4000 g at 4 °C for 15 min twice and AAVs were 

collected within the supernatant. The AAVs were purified using an iodixanol gradient as 

described in Börner et al. 152. Therefore, in case of small gradients the supernatant was 

filled in a smaller ultracentrifugation tube (Seton Scientific) and underlaid with 1.5 ml 

15%, 25%, 40% and 60% iodixanol phases or alternatively for large gradients with 7 ml 

15%, 5 ml 25%, 4 ml 40% and 4 ml 60% iodixanol phases using a Pasteur pipet. The 

gradients were centrifuged at 50000 rpm at 4°C for 2h or 2.5 h for small and large 

gradients, respectively. Subsequently 1 or 3 ml of the interface between the 40% and 

60% iodixanol phase containing the purified AAVs were collected using a syringe for 

small and large gradients, respectively. AAVs were aliquoted and stored at -80°C until 

further use. AAV vectors that were used in this study are listed in Table 22. 
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Table 22. AAV vectors that were used in this study. 

Virus  Description Source 
dsAAV1-YFP Recombinant adeno-associated virus type 1 

expressing CMY-YFP 
this study 

dsAAV2-YFP Recombinant adeno-associated virus type 2 
expressing CMY-YFP 

this study 

dsAAV3-YFP Recombinant adeno-associated virus type 3 
expressing CMY-YFP 

this study 

dsAAV4-YFP Recombinant adeno-associated virus type 4 
expressing CMY-YFP 

this study 

dsAAV5-YFP Recombinant adeno-associated virus type 5 
expressing CMY-YFP 

this study 

dsAAV6-YFP Recombinant adeno-associated virus type 6 
expressing CMY-YFP 

this study 

dsAAV7-YFP Recombinant adeno-associated virus type 7 
expressing CMY-YFP 

this study 

dsAAV8-YFP Recombinant adeno-associated virus type 8 
expressing CMY-YFP 

this study 

dsAAV9-YFP Recombinant adeno-associated virus type 9 
expressing CMY-YFP 

this study 

dsAAVrh10-YFP Recombinant adeno-associated virus type rhesus10 
expressing CMY-YFP 

this study 

dsAAVpoc1-YFP Recombinant adeno-associated virus type poc1 
expressing CMY-YFP 

this study 

dsAAV12-YFP Recombinant adeno-associated virus type 12 
expressing CMY-YFP 

this study 

dsAAVDJ-YFP Recombinant adeno-associated virus created by 
DNA familiy shuffling expressing CMY-YFP 

this study 

dsAAVLK03-YFP Recombinant adeno-associated virus created by 
DNA familiy shuffling expressing CMY-YFP 

this study 

dsAAV5p2NIS-YFP Recombinant adeno-associated virus type 5 peptide 
insertion P2 in new insertion site (NIS) expressing 
CMY-YFP 

this study 

dsAAV7p2-YFP Recombinant adeno-associated virus type 7 peptide 
insertion P2 expressing CMY-YFP 

this study 

dsAAVpoc1p2NIS-YFP Recombinant adeno-associated virus type poc1 
peptide insertion P2 in new insertion site (NIS) 
expressing CMY-YFP 

this study 

dsAAV7A6-YFP Recombinant adeno-associated virus type 7 peptide 
insertion A6 expressing CMY-YFP 

this study 

dsAAV2A1NIS-YFP Recombinant adeno-associated virus type 2 peptide 
insertion A1 in new insertion site (NIS) expressing 
CMY-YFP 

this study 

dsAAV4A1NIS-YFP Recombinant adeno-associated virus type 4 peptide 
insertion A1 in new insertion site (NIS) expressing 
CMY-YFP 

this study 

dsAAV7A2-YFP Recombinant adeno-associated virus type 7 peptide 
insertion A2 expressing CMY-YFP 

this study 

dsAAV9A2-YFP Recombinant adeno-associated virus type 9 peptide 
insertion A2 expressing CMY-YFP 

this study 

dsAAV1A1NIS-YFP Recombinant adeno-associated virus type 1 peptide 
insertion A1 in new insertion site (NIS) expressing 
CMY-YFP 

this study 

dsAAV2HSPGmut-YFP wtAAV2-Rep2-Cap2-R484/585E (HSPG-k.o.) 
expressing CMV-YFP 230 

this study 

ssAAV9A2- SaCas9 rAAV9A2 expressing SaCas9 under CMV promoter this study 
dsAAV9A2-U6-gMecP2 rAAV 9A2 expressing sgRNA against mecp2 under 

U6 promoter 
this study 
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ssAAV5- SaCas9 rAAV5 expressing SaCas9 under CMV promoter this study 
dsAAV5-U6-gMecP2 rAAV5 expressing sgRNA against mecp2 under U6 

promoter 
this study 

dsAAV9A2-U6-gHBs1 
(to 10) 

rAAV9A2 expressing one sgRNA (1 to 10) against 
HBsAg under U6 promoter 

this study 

dsAAV9A2-U6-gHBs8-
stuffer 

rAAV9A2 expressing sgRNA8  against HBsAg under 
U6 promoter, stuffer of 630 bp 

this study 

dsAAV9A2-H1-gHBs7-
stuffer 

rAAV9A2 expressing sgRNA7  against HBsAg under 
H1 promoter, stuffer of 950 bp 

this study 

dsAAV9A2-7SK-gHBs6-
stuffer 

rAAV9A2 expressing sgRNA6  against HBsAg under 
7SK promoter,stuffer of 870 bp 

this study 

dsAAV9A2- HBs-
TRISPR 

rAAV9A2 multiplexing sgRNA8, 7 and 6  against 
HBsAg 

this study 

ssAAVLK03- SaCas9 rAAVLK03 expressing SaCas9 under CMV promoter this study 
dsAAVLK03- HBV- 
TRISPR 

rAAVLK03 multiplexing sgRNAX, sgRNAS and 
shRNA against HBV 

this study 

dsAAVLK03- HBV- 
TRISPR/TuD 

rAAVLK03 multiplexing sgRNAX or S and shRNA 
and ist TuD against HBV 

this study 

dsAAVLK03- U6-
shHDV1 (to 9) 

rAAVLK03 expressing one shRNA (1 to 9) against 
HDV under U6 promoter 

this study 

dsAAVLK03- HBV/HDV- 
TRISPR 

rAAVLK03 multiplexing sgRNAs against HBV and 
shRNA against HBV and/or HDV 

this study 

ssAAV9A2-mCMV-
SaCas9 

rAAV9A2 expressing SaCas9 under a minimal CMV 
promoter 

this study 

dsAAV9A2-mCMV-
splitCas9 

rAAV9A2 expressing either N- or C-terminal of 
SaCas9 under a minimal CMV promoter 

this study 

ssAAV2-CMV-SaCas9-
U6-gEMX 

rAAV2 expressing SaCas9 under CMV promoter and 
sgRNA against the emx locus 

this study 

dsAAV2-CMV-AcrIIC1-
miR122bs/sc 

rAAV2 CMV-driven AcrIIC1 with either a 
miR122binding site or scaffold  

this study 

dsAAV2-CMV-AcrX-
miR122bs/sc 

rAAV2 CMV-driven AcrX with either a miR122binding 
site or scaffold  

this study 

 

2.2.4.2. Titration of purified AAV vectors 

Prior to AAV titration, AAVs were treated with an alkaline lysis protocol. Therefore, 10 µl 

of AAV sample was mixed with 10 µl TE buffer and subsequently lysed with 20 µl 2M 

NaOH in a 30 min 56°C incubation. The lysis was neutralized by adding 38 µl of 1M HCL 

and 922 µl H2O was added to obtain a 1:100 dilution. Samples were further diluted 1:10 

and directly used for the subsequent titration.   

In order to quantify AAV vector yields, TaqMan RT-PCR was performed using the Rotor 

Gene 6000 and the SensimixII Probe kit (Bioline, London, UK). Each sample was 

pipetted in triplicates, containing 17.5 µl SensiMixII Probe Master Mix, 1.4 µl of each 

forward and reverse primer, 0.35 µl Probe and 9.35 µl H2O and 5 µl of AAV sample was 

added, which resulted in a further 1:7 dilution. Primers and Probes are listed in Table 23. 

To estimate the viral titer in copies/µl, plasmid DNA with known amounts of template 

molecules was applied. Therefore, a plasmid stock was prepared with exactly 3.5x108 

molecules/µl and diluted 1:10 ranging from 3.5x108 to 3.5x103 molecules/µl. Of each 
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dilution 5 µl was added to the Master Mix resulting in 5x108 to 5x103 molecules in a 10 µl 

reaction volume (unicum).  

The PCR cycling conditions were performed as followed: 10 min at 95°C, followed by 40 

cycles of heating at 95°C for 10 s and elongation at 60°C for 20 s. The fluorescent signal 

was acquired after each elongation step at 510 nm. After the run, samples and standard 

curve were analyzed with the accompanying RotorGene 6000 Series Software 1.7. The 

molecules of each AAV sample was extrapolated by the standard curve and multiplied by 

the applied dilution of x100 x10 x7 and x100 to get a concentration per ml. Furthermore 

titers of ssAAVs were multiplied x2, since the probe is only able to detect either the 

positive or negative genomic strand.  

 

Table 23. Primer and probes for AAV titration. 

Name Sequence 5´-3´ 
YFP forward GAGCGCACCATCTTCTTCAAG 
YFP reverse TGTCGCCCTCGAACTTCAC 
YFP probe FAM-ACGACGGCAACTACA-BHQ1 
mCMV forward GCACCAAAATCAACGGGAC 
mCMV reverse AGCAGGCTCTTTCGATCAC 
mCMV probe FAM- TTCCAAAATGTCGTAATAACCCCGCCCCG -BHQ1 
CMVenh forward AACGCCAATAGGGACTTTCC 
CMVenh reverse GGGCGTACTTGGCATATGAT 
CMVenh probe FAM-CGGTAAACTGCCCACTTGGCAGT-BHQ1 

 

2.2.4.3.  AAV transduction 

Cells were seeded one day prior to AAV transduction. For AAV transduction in general, 

AAV vectors were first added in the indicated multiplicity of infection (MOI) to an 

appropriate amount of cell culture medium and mixed thoroughly. Subsequently, the 

medium on the cells was exchanged with the medium containing the AAV vectors. For 

transductions in 96-well format, 5x103 to 1x104 cells per well were seeded in 100 ul cell 

culture medium. If not otherwise indicated, cells were processed for further analysis 

three days after transduction.  

For the comparison of AAV transduction efficiency without and with DMSO, AAV vectors 

with an MOI of 105 were added to 100 ul of cell culture medium without DMSO or with 

2.5% DMSO. For an MOI of 103, the previous AAV transduction mix was diluted 1:100 in 

cell culture medium without or with 2.5% DMSO. Subsequently, the medium on the cells 
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was exchanged with the medium containing the AAV vectors. Cells were fixated for 

automated imaging three days after transduction. 

For the comparison of different methods to increase AAV transduction, AAV vectors with 

an MOI of 105 were added to 100 ul of only cell culture medium (no treatment) or cell 

culture medium supplemented with either 1% or 2.5% DMSO, 0.5 µM or 2 µM 

Doxorubicin (stock contained 1mM Doxorubicin and was diluted 1:2000 or 1:500, 

respectively), 250 nM or 10 µM Rapamycin (stock contained 5 mM Rapamycin and was 

diluted 1:2000 or 1:500, respectively). Cells that received Doxorubicin were washed 

twice with PBS 12 hours after transduction and received fresh cell culture medium. For 

the pre-treatment with Rapamycin, cell culture medium with 10 µM or 40 µM Rapamycin 

(stock contained 5 mM Rapamycin and was diluted 1:500 or 1:125, respectively) was 

added on the cells for 1 h prior to transduction and was removed with fresh cell culture 

medium containing the AAVs. Three days later, cells were fixated for automated imaging.  

For the screen of different sgRNAs against the HBsAg and the comparison of different 

multiplexing approaches, HepG2-hNTCP-HB2.7 cells were transduced in a 48-well 

format. Therefore, 1x105 cells per well were seeded in 250 ul cell culture medium 

(without Puromycin or Blasticidin) one day prior to transduction. For transduction, the cell 

culture medium was exchanged with medium containing the AAV vectors.  

 

2.2.4.4.  HBV and HDV infection 

For the experiments with HBV infections, HepG2-hNTCP cells were seeded in 24-well 

plates with a density of 5x105 cells per well in 500 ul cell culture medium (without 

Puromycin). On day later, cells were infected with HBV using an MOI of 200. Therefore, 

250 ul cell culture medium was supplemented with HBV, 2.5% DMSO and 10% PEG, 

thoroughly mixed and exchanged with the medium on the cells. On the following day, 

cells were washed twice with PBS and received 500 ul fresh cell culture medium 

supplemented with 2.5% DMSO. Three days after HBV infection, cells were transduced 

with AAVs with an MOI of 105 (using the amount of seeded cells for calculations) by 

exchanging the medium on the cells with 500 ul fresh cell culture medium supplemented 

with the AAV vectors and 2.5% DMSO. Subsequently, the medium was replaced with 

fresh cell culture medium, supplemented with 2.5% DMSO, on day 4, 6, 8 and 10 after 

HBV infection. The supernatant of day 8 to 10 and day 10 to 12 was collected for HBs 

and HBe measurements and cells were harvested for further analysis at day 12.  

For the experiments with HDV infections, HepG2-hNTCP-HB2.7 cells, stably expressing 

the HBsAg, were seeded in 48- well plates with a density of 2x105 cells per well in 250 ul 
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cell culture medium (without Puromycin and Blasticidin). In the immunization setting, one 

day after seeding cells were transduced with AAV vectors with an MOI of 105 by 

exchanging the medium on the cells with 250 ul medium containing the AAV vectors and 

2.5% DMSO. On the following day, cells were washed twice with PBS. Two days after 

transduction, cells were infected with HDV using an MOI of 100. Therefore, 125 ul cell 

culture medium was supplemented with HDV, 2.5% DMSO and 10% PEG, thoroughly 

mixed and exchanged with the medium on the cells. On the following day, cells were 

washed twice with PBS and received 250 ul fresh cell culture medium supplemented with 

2.5% DMSO. Cell were further processed for WB analysis and IF staining six days after 

HDV infection. In the curation setting, HepG2-hNTCP-HB2.7 cells were first infected with 

HDV using an MOI of 100 in 125 ul cell culture medium supplemented with 2.5% DMSO 

and 10% PEG. On the following day, cells were washed twice with PBS and received 

250 ul fresh cell culture medium supplemented with 2.5% DMSO. Three days after HDV 

infection, cells were transduced with AAVs by exchanging the medium on the cells with 

250 ul fresh cell culture medium supplemented with the AAV vectors and 2.5% DMSO. 

Subsequently, the medium was replaced with fresh cell culture medium, supplemented 

with 2.5% DMSO, on day 4, 6, 8 and 11 after HDV infection. The supernatant of day 11 

to 13 was collected for HBs measurements and the supernatant was used to reinfect 

Huh7-hNTCP cells with newly produced HDV particles. For reinfection, Huh7-hNTCP 

cells were seeded in 48-well plates in a density of 105 cells per well one day prior to 

reinfection. Cells were reinfected with 15 ul supernatant containing the newly produced 

HDV particles in 125 ul cell culture medium supplemented with 2.5% DMSO and 10% 

PEG. On the following day, cells were washed twice with PBS and received 250 ul fresh 

cell culture medium supplemented with 2.5% DMSO every second day, until cells were 

fixated for quantitative imaging six days after reinfection.  

Details on the viral stock of HBV and HDV are listed in Table 24. 

 

Table 24. Viral stocks of HBV and HDV. 

Virus  Description Source 
HBV genotype D, 
serotype ayw 

Cell-culture derived, produced in HepAD38 cells, 
purified via heparin affinity chromatography 

AG Urban, 
Heidelberg 

HDV genotype 1 Cell-culture derived, produced in HuH7 cells by co-
transfection and purified via heparin affinity 
chromatography 

AG Urban, 
Heidelberg 
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2.2.5. Animal experiments 

 

2.2.5.1. PBS-rebuffering of rAAV vectors   

The rAAV vectors for in vivo experiments were rebuffered in PBS using Amicon Ultra-15 

centrifugal filter units (Merck) according to manufacturer’s instructions. Briefly, the filter 

units were first calibrated two times by applying 15 ml PBS on top of the filter and 

centrifugation at 800 g for 2 min. Sunsequently, the rAAV vectors that were previously 

extracted from the 40% Iodixanol phase after ultracentrifugation (see section 2.2.4.1) 

were diluted in 15 ml PBS and applied on top of the filter unit. The centrifugation of the 

samples at 800 g for 1 min enabled the solution of PBS/ Iodixanol to pass the filter, 

whereby rAAV vectors got stuck on the apical side of the filter. After centrifugation, 

samples were inverted three times to release the rAAV particles from the filter. 

Centrifugation and inverting were repeated until the solution on apical side of the filter 

was reduced to 1 ml. The filter unit was again refilled with 15 ml PBS and centrifugation 

and inverting were repeated until the PBS solution containing the rAAV particles was 

reduced to 500 ul. These 500 ul represented the final rAAV vector stock and was used 

for titration (see section 2.2.4.2) and was stored at -80°C until further usage.    

 

2.2.5.2. Experimental setup 

Animal experiments were performed with six weeks old female NMRI mice. PBS-

rebuffered rAAV vectors of serotype 8 were directly injected into the mouse tail vein 

using a total volume of 130 ul or 200 ul per mouse for the promoter library or 

splitSaCas9, respectively. In these pilot studies, two mice per group/condition were used. 

The combinations and doses of injected rAAV vectors for each condition for the 

experiments regarding the promoter library and splitSaCas9 are listed in Table 25 and 

Table 26, respectively. Mice were sacrificed 15 days post-injection. The liver (as well as 

other organs, such as pancreas, kidney, heart and other muscles) was extracted, 

smashed, transferred to 2 ml reaction tubes and frozen in liquid nitrogen until the organs 

of all mice were harvested. Organs were stored at -80°C until they were further 

processed in order to extract DNA and RNA (see section 2.2.1.11) or to measure the 

luciferase signal (see section 2.2.6.12). 
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Table 25. Experimental groups for promoter library driving SaCas9 expression in vivo. 

Group 
1. rAAV8 

(1012 viral particles/mouse) 
2. rAAV8 

(2x1011 viral particles/mouse) 
1 ssAAV-LP1-SaCas9 U6-gLuc_TTR-Luc 
2 ssAAV-TTR-SaCas9 U6-gLuc_TTR-Luc 
3 ssAAV-TBG-SaCas9 U6-gLuc_TTR-Luc 
4 ssAAV-mCMV-SaCas9 U6-gLuc_TTR-Luc 
5 ssAAV-EFS-SaCas9 U6-gLuc_TTR-Luc 
6 ssAAV-CMV-mCherry U6-gLuc_TTR-Luc 

 

 

Table 26. Experimental groups for splitSaCas9/SIN in vivo. 

Group 1. rAAV8 

(8x1011vg/mouse) 

2. rAAV8 

(8x1011vg/mouse) 

3. rAAV8 

(8x1011vg/mouse) 

4. rAAV8 

(1.5x1011vg/mouse) 

1 ssAAV-mCMV-

flSaCas9 

 

- dsAAV-H1-gCas9 U6-gLuc_TTR-Luc 

2 ssAAV-mCMV-

flSaCas9 

 

- dsAAV-H1-scr U6-gLuc_TTR-Luc 

3 dsAAV-mCMV-

SaCas9(N) 

 

dsAAV-mCMV-

SaCas9(C)-H1-gCas9 

- U6-gLuc_TTR-Luc 

4 dsAAV-mCMV-

SaCas9(N) 

 

dsAAV-mCMV-

SaCas9(C)-H1-scr 

- U6-gLuc_TTR-Luc 

5 dsAAV-mCMV-

SaCas9(N) 

 

dsAAV-mCMV-

SaCas9(C) 

dsAAV-H1-gCas9 U6-gLuc_TTR-Luc 

6 dsAAV-mCMV-

SaCas9(N) 

 

dsAAV-mCMV-

SaCas9(C) 

dsAAV-H1-scr U6-gLuc_TTR-Luc 

7 dsAAV-CMV-

mCherry 

dsAAV-mCMV-

SaCas9(C)-H1-gCas9 

- U6-gLuc_TTR-Luc 
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2.2.6. Analyses 

2.2.6.1.  T7 endonuclease assay 

Mutations induced by the CRISPR system were measured via T7 endonuclease assay. 

Therefore, cells were harvested in 70 µl DirectPCR cell lysis reagent, 70 µl ddH2O and 

1.4 µl Proteinase K for experiments in 96-well format, or with 140 µl DirectPCR cell lysis 

reagent, 140 µl ddH2O and 2.8 µl Proteinase K for experiments in 48-well format (e.g. 

screen of sgRNA against HBsAg and comparison of different multiplexing approaches). 

Cells were incubated for at least 4 h at 55 °C and subsequently Proteinase K was 

deactivated by increasing the temperature to 85 °C for 45 min. The cell lysates were 

directly used as template for PCR as described in section 2.2.1.2 with primers flanking 

the target region and resulting in an amplicon of approximately 1kb. Primers with 

corresponding annealing temperatures are listed in Table 27. Subsequently, the entire 

PCR reaction was heated at 95 °C for 5 minutes in order to denature the DNA and 

reannealed by decreasing the temperature by -2°C per sec frpm 95 to 85°C and by -

0.1°C per second from 85 to 25 °C in a thermal cycler. Note that for the AcrX 

experiments, 5 µl PCR product was diluted 1:4 in 1x NEB2 buffer and used for 

reannealing. Subsequently, T7 endonuclease was applied that detects and cleaves DNA 

heteroduplexes that form upon annealing of mutated and wild type sequences. 

Therefore, 0.5 µl T7 endonuclease was added to the reannealed PCR sample and gently 

mixed. After 15 min of incubation at 37 °C the samples were substituted with DNA 

loading dye that contains EDTA and therefore stops the T7 endonuclease activity. PCR 

products were directly loaded on a 2% agarose gel.  In order to quantify the percentage 

of insertions and deletions caused by the CRISPR system, the band intensities of wild 

type sequence and cutting products on the agarose gel were quantified using ImageJ. 

Using the rectangle tool, the area with wild type sequence and cutting products were 

confined. With the “plot lanes” function the signal intensity within the rectangles were 

integrated and lanes plotted. Subsequently, the peaks were defined manually and 

quantified using the wand tool. The resulting values were used to calculate indel 

percentage by dividing the sum of the cutting products by the sum of all bands.  

𝐼𝑛𝑑𝑒𝑙   % = (1 − (1 −
𝑠𝑢𝑚 𝑏 + 𝑐

𝑠𝑢𝑚 𝑎 + 𝑏 + 𝑐
)) ∗   100 

Whereby “a” is the integrated intensity of uncut wild type sequence and “b” and “c” the 

integrated intensity of mutated and therefore cleaved products. The T7 cutting products 

for each locus is listed in Table 27. 
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Table 27. Primers, annealing temperatures and T7 bands in T7 assays. 

Target Orientation Sequence 5´to 3´ Tm °C T7 bands 
MecP2-g8 fw GCCGGCAGGTCCTCTGTT 70 703/ 371 rv TGCAGATGCTGCTGCTCAA 
HBsAg -g1 fw GTAGGCCCACTCACAGTTAATG 62 791/ 411 rv GGGATGGGAATACAGGTGC 
HBsAg -g2 see above 810/ 392 
HBsAg -g3 preS1 see above 288/ 914 
HBsAg -g4 preS1 see above 307/ 895 
HBsAg -g5 see above 824/ 378 
HBsAg -g6 see above 849/ 353 
HBsAg -g7 see above 738/ 464 
HBsAg -g8 see above 791/ 411 
HBsAg -g9 preS1 see above 307/ 895 
HBsAg -g10 see above 829/ 373 
EMX1 fw GGAGCAGCTGGTCAGAGGGG 70 418/ 271 rv GGGAAGGGGGACACTGGGGA 
GRIN2B fw AGAATTTTGTAATTGGTTCTACCA

AAG 61 190/ 570 rv ACAACAGTGGAAGAAAGCTAGG
GC 

HBB fw ATGGTGCATCTGACTCCTG 65 288/ 248 rv ACTGTACCCTGTTACTTATCCCC 
Note that the forward primer for the HBsAg only binds in the cell line with integrated 

HBsAg, but not in the infectious HBV. 

 

2.2.6.2.  TIDE analyses 

The PCR products that were used for T7 endonuclease assay were also send to Sanger 

sequencing in order to perform analysis based on Tracking of Indels by Decomposition 

(TIDE) using the webtool https://tide.deskgen.com 301. TIDE quantifies the mutation rates 

in edited compared to non-edited sample by decomposing the sequence trace data from 

Sanger reactions. Therefore, PCR products were purified from 1% agarose gels as 

described in section 2.2.1.5 and a total amount of 75 ng purified DNA and 2.5 µl primer 

(10 µM) was send to sequencing in a reaction volume of 10 µl as described in section 

2.2.1.10. The primer sequence (5´ GCTACCACATCTGCCCAGG ´3) was used to 

sequence the mecp2 locus binding about 200 bp upstream of the target site, whereas for 

all other loci the corresponding forward primer of the PCR reaction was used for 

sequencing.  
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2.2.6.3.  Droplet digital PCR to quantify vector copy numbers 

Droplet digital PCR was used to quantify the vector copy number of either SaCas9 or 

Luciferase per diploid genome. Therefore, DNA extracted via the DNA/RNA AllPrep kit 

as described in section 2.2.1.11 was first diluted to 1 ng/ µl for liver samples and 0.4 ng/ 

µl for cell culture samples. The diluted DNA samples were stored at 4 °C until further 

processing. Next, the ddPCR Master Mix was prepared by using the ddPCRTM Supermix 

for Probes (no UTP) from BioRad and the ddPCR 20x housekeeper RPP30 for mouse 

from BioRad (consisting of primers and probe). For the detection of SaCas9 or 

Luciferase, a 20x primer/probe mix was prepared by diluting 18 µl of each primer with 7 

µl H2O and 4.75 µl probe with 42.75 µl H2O for the corresponding target, respectively. 

For the 20x transgene primer/probe mix, 0.25 µl of each diluted forward and reverse 

primer and 0.5 µl of diluted probe were mixed for one reaction. Furthermore, a digestion 

enzyme mix was prepared by diluting HindIII 1:4 in Diluent B (final concentration of 5 u/ 

µl). The components were combined using the volumes indicated in Table 28, per 

reaction 5.5 µl previously diluted DNA template was added to 16.5 µl of the combined 

components. After combining template and Master Mix, the reaction incubated for 15 min 

at room temperature in order to allow HindIII to digest genomic DNA. Note that HindIII is 

not supposed to cut within either PCR product. A list of used primer and probe sets is 

listed in Table 29. 

 

Table 28. Master Mix for ddPCR 

Component µl for one reaction 

Transgene 20x mix 1.1 

Housekeeper 20x mix 1.1 

HindIII enzyme mix 1.1 

Supermix for probes 11 

diluted DNA sample 5.5 

H2O 2.2 
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Table 29. Primer and probes used in ddPCR to quantify vector copy numbers 

Name Sequence 5´to 3´ 

hluc fwd CGCCCGCGACCCTATTTTCG 

hluc rev CAGGTAGCCCAGGGTGGTGAAC 

hluc probe FAM-AACCAGATCATCCCCGACACCGCTATTCTGAGCGT-BHQ1 

SaCas9_fwd CCGCCCGGAAAGAGATTATT 

SaCas9_rev CGGAGTTCAGATTGGTCAGTT 

SaCas9_probe FAM-AGCTGCTGGATCAGATTGCCAAGA- BHQ1 

 

Next, the droplet generator was used to produce oil droplets that contain a DNA template 

as well as all reagents needed to perform the PCR. Previously the DNA was diluted to 

such an extent that some (about 70 %) of the droplets remain without any DNA template. 

In the cartridge 20 µl of sample and 70 µl of Droplet Generation Oil for Probes (no UTP) 

were loaded in the appropriate wells. All wells, that are eight samples at a time, needed 

to be filled completely. The cartridge was sealed with a casket and the droplet generator 

was started. Subsequently, 40 µl of generated droplets were transferred to a 96 well 

Eppendorf plate and after transferring all samples, the plate was sealed with a foil using 

a foil heater.  

Next, the PCR was run in the Biorad PCR machine with the following conditions: initial 

denaturation at 94 °C at 10 min, 39 cycles of denaturation at 94 °C for 30 sec and 

elongation at 58 °C for 1 min, followed by an inactivating and stabilizing step of 98 °C for 

10 min. 

Finally, the droplets were analyzed via the Droplet reader using the Quantasoft software. 

Therefore, the Supermix for probes (no UTP) was selected, channel 1 was selected to 

measure the fluorescence signal by FAM, representing the transgene, and channel 2 

was selected to measure the fluorescence signal by HEX, representing the RPP30 

house keeper and the droplet reader was started. To calculate the vector copy number 

per diploid genome the numbers provided in the concentration column (droplets/ µl) were 

used and the following formula was applied:  

𝑉𝑒𝑐𝑡𝑜𝑟  𝐶𝑜𝑝𝑦  𝑁𝑢𝑚𝑏𝑒𝑟 =
𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛  𝑜𝑓  𝑡𝑟𝑎𝑛𝑠𝑔𝑒𝑛𝑒
𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛  𝑜𝑓  𝑅𝑃𝑃30/2
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2.2.6.4. Droplet digital PCR to quantify mutagenesis rate in vivo 

Droplet digital PCR has been previously applied to quantify targeted mutagenesis rates 

as reported in Sedlak et al. (2016) 302. To this end, one probe is directed against the 

targeted mutagenesis site and multiplexed with another probe against a reference 

sequence within the same PCR amplicon (Figure 14). Sequences of drop-off probe, 

reference probe and primers are listed in Table 30. DdPCR was performed as previously 

described, but did not include the 20 x house keeper mix, but only one 20x transgene 

mix with two probes.   

 

Figure 14. Principle of ddPCR to quantify targeted mutagenesis rates.  

In the ddPCR one probe is directed against the site of mutation and multiplexed with a differently 
labeled reference probe that targets another unedited/reference probe within the same amplicon. 
If no mutation is present the signal of both probes match. In case of a mutation the target probe 
drops off and the signal is reduced.  

 

Table 30. Primer and probes to quantify mutagenesis rate on luciferase target. 

Name Sequence 5 to 3´ 
hLuc_dropoff_ fw CGAGATGTCTGTGCGCC 
hLuc_dropoff_ rv CGCGCTCGTTGTAAATG 
hLuc_dropoff_ probe HEX-TCTGCAGTTCTTCATGCC-BHQ_1 
hLuc_reference_probe FAM-AAGAGGTACGGCCTGAACA-BHQ_1 

 

For the quantification of the mutation rate the concentration of positive droplets in each 

channel (FAM/HEX) as well as their overlap was applied. Positive droplets in both 

channels (FAM+/HEX+) indicated the absence of mutations and positive droplets in the 

FAM channel that were negative in the HEX channel (FAM+/HEX-) indicated the 

presence of mutations. Thus the mutation rate was calculated by the following formula: 

 

1"

Mutation 

forward 
primer 

reverse 
primer 

CRISPR-induced mutation 

HEX-labeled 
target probe 

Luciferase 
target 

FAM-labeled 
ref probe 

FAM signal < HEX signal 

forward 
primer 

reverse 
primer 

No mutation 

HEX-labeled 
target probe 

Luciferase 
target 

FAM-labeled 
ref probe 

FAM signal = HEX signal 
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𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛  𝑟𝑎𝑡𝑒  (%) =
𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛  𝑜𝑓  𝑑𝑟𝑜𝑝𝑙𝑒𝑡𝑠  (FAM +/HEX−)    

𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛  𝑜𝑓  𝑑𝑟𝑜𝑝𝑙𝑒𝑡𝑠  (FAM +/HEX+)  and  (FAM +/HEX−)    
 

 

2.2.6.5. Quantitative real-time PCR 

Quantitative RT-PCR was performed using the TetroTM Reverse Transcriptase Kit from 

Bioline for reverse transcription and the iTaq Universal SYBR Green Supermix from 

BioRad for quantitative PCR. Firstly, 500 ng extracted RNA via the DNA/RNA AllPrep kit 

as described in section 2.2.1.11 was applied for reverse transcription. The master mix for 

reverse transcription was composed as listed in Table 31 for one reaction in 20 µl total 

volume. Negative controls without reverse transcriptase were prepared to test for DNA 

contaminations.  

Table 31. Composition of Tetro cDNA synthesis 

Components for 1 reaction 

total RNA 500 ng 

5x RT buffer 4 µl 

Random Hexamer 1 µl 

10 mM dNTP Mix 1 µl 

RiboSafe RNase Inhibitor 1 µl 

Tetro Reverse Transcriptase 1 µl 

H2O fill to total 20 µl 

 

Subsequently, the reverse transcription was performed in a thermal cycler with the 

following conditions: 10 min at 25 °C, 30 min at 45 °C and 5 min at 85 °C.  

The quantitative PCR was performed using 5 µl iTaq Supermix, 0.5 µl of each forward 

and reverse primer (sequences listed in Table 32), 1 µl template that was previously 

diluted 1:10 and 3 µl H2O in a total reaction volume of 20 µl in a 96-well plate from 

Biozym. For each sample, the expression of target and housekeeper (GAPDH 

expression) was measured in separate wells and samples were always pipetted in 

duplicates. The plate was sealed with BZO Seal Film (Biozym) and centrifuged at 3200 g 

for 1 min. The PCR was performed using the StepOnePlus qPCR from Applied 

Biosystems with the following conditions: Initial denaturation at 95 °C for 30 sec, 40 

cycles of denaturation at 95 °C for 10 sec and annealing/elongation at 60 °C for 30 sec, 

a melting curve was performed by applying 95 °C for 15 sec, followed by a rising 

temperature from 65 to 95 °C with an increase of 2 °C per second (slope +0.5).   
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The data was analyzed by using the CT mean of the replicates. Subsequently, the ∆CT 

between target and house keeper (∆CT=CT(Target)-CT(House Keeper)) was calculated 

and values were normalized to one positive control condition (∆∆CT=∆CT(condition1)- 

∆CT(control)). Finally, the fold change in expression of one condition to the control 

condition was calculated by 2-∆∆CT.  

Table 32. Primers used in RT-qPCR. 

Name Sequence 5´to 3´ Note 

mGAPDH fw TTGATGGCAACAATCTCCAC used for mouse samples 

used for mouse samples mGAPDH rv CGTCCCGTAGACAAAATGGT 

SaCas9-N fw CCGCCCGGAAAGAGATTATT used for DMSO and in vivo 

experiments SaCas9-N rv CGGAGTTCAGATTGGTCAGTT 

SaCas9-N_v2 fw TCGAGAACGTGTTCAAGC v2 was used to quantify mCMV, 

mMecP2, mTK promoter strength 

(comparison between N- and C- 

terminal Cas9) 

SaCas9-N_v2 rv GCTGGTCACTCTGTAGCCC 

SaCas9-C_v2 fw ACACCCTGTACTCCACCC 

SaCas9-C_v2 rv TTTTTCAGCTTGTCATTGTCC 

MecP2 gRNA8 fw GGCCAAAAAGAAAGCCG N/A 

MecP2 gRNA8 rv AAAAAAATCTCGCCAACAAG N/A 

 

2.2.6.6.  Bioanalyzer 

In order to analyze DNA fragments on the Bioanalyzer, the Agilent DNA 1000 Kit was 

used according to manufacturer´s protocol. The PCR was performed as described in 

section 2.2.1.2. The PCR was performed in a 25 µl total reaction volume using 1 µl DNA 

template from cell lysates and 1.25 µl of each forward and reverse primer 

(5´CCACAACCTTCCACCAAAC3´ and 5´CGATAACCAGGACAAGTTGG3´, Tm=61 °C), 

respectively, which resulted in a 300 bp PCR product. The PCR product was loaded on a 

1% agarose gel and purified as described in section 2.2.1.5.  

To prepare the reaction on the Bioanalyzer, first the gel-dye mix was prepared by 

allowing the DNA dye concentrate and DNA gel matrix to equilibrate to room temperature 

for 30 min. 25 µl of the DNA dye concentrate was added to the DNA gel matrix vial. The 

solution was vortexed, spinned down and transferred to the spin filter. The gel-dye mix 

was centrifuged at 2000 g for 15 min and stored at 4 °C until further usage. 

Next, the gel-dye mix was loaded on the DNA chip. Therefore, the gel-dye mix 

equilibrated at room temperature for 30 min before usage. The DNA chip was put on the 

chip priming station and 9 µl of gel-dye mix was added to the well marked with (G). The 
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chip primin station was closed and the plunger (previously set to 1 ml) pressed until it 

held by itself to distribute the gel-dye mix equally to all wells. Exactly after 60 sec the clip 

was released and after further 5 sec the plunger was pulled back at the 1 ml position. 

The clip priming station was opened and 9 µl of gel-dye mix was pipetted in the wells 

marked with G. Subsequently, 5 µl marker (reaction tube with green top) was pipetted in 

all sample and ladder wells. Finally, 1 µl of DNA ladder (reaction tube with yellow top) 

was loaded in the well marked with a small ladder and in each of the 12 sample wells 1 

µl  of sample (purified PCR product) or water (control) was added. The chip was 

vortexed at 2400 rpm and the chip run immediately on the Agilent 2100 Bioanalyzer 

using the 2100 Expert program. To analyze the data, the peaks of the PCR product were 

assigned manually and the concentration of each peak used for further analysis. The 

data was stored as a final PDF report. To quantify the fraction of excised PCR products, 

the sum of the concentrations of the smaller products were divided by the sum of the 

concentration of all PCR products.  

 

2.2.6.7.  Automated microscopy 

The automated imaging procedure is described in detail in Börner et al. (2010) 303. 

Prior to imaging the cells were fixated via PFA. Therefore, the supernatant of the cells 

was removed and 80 ul of 4% PFA (dissolved in PBS) per well was added on the cells, 

followed by 30 min to 1 h incubation at room temperature covered from light. 

Subsequently, Hoechst was used to stain the DNA, by adding 80 ul of a 1:1000 dilution 

of Hoechst in PBS per well in a final concentration of 1 ug/ml, followed by 30 min to 2 h 

incubation at room temperature covered from light. Finally, 120 ul PBS per well was 

added and the cells were imaged within one week.  

For automated image acquisition, the Olympus Biosystems IX81 inverted microscope 

using the ScanR acquisition software was used. Images were acquired in 9 positions per 

well with a 10x objective and acquired in the Hoechst and GFP channel using the 

corresponding excitation and emission filters. For the imaging analysis, first the cell 

nuclei were segmented using the Hoechst channel, followed by segmentation using the 

GFP channel. As output the number of nuclei per image, the average signal intensity in 

the GFP channel per image, and the proportion of cells that were infected, were 

computed. A fully automated pipeline for image processing was implemented in Matlab 

and C++, in which the intensity of the GFP signal could be adjusted to discriminate 

between authentic GFP signal and background. 
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2.2.6.8.  HBe/HBs measurements 

Supernatant of HBV infected cells or cells that stably express the HBsAg was collected 

at the indicated days, centrifuged at 4000 rpm for 5 min to remove cellular debris and 

diluted 1:5 or 1:10 as indicated in PBS. HBs and HBeAg measurements were performed 

by the analytical center of the University Hospital Heidelberg via enzyme-linked 

immunosorbent assay ([ELISA], AxSYM; Abbott) or ADVIA Centaur XPTM automated 

chemiluminescence system (Siemens), respectively. Values are reported in international 

units per ml [IU/ml].  

2.2.6.9.  Immunofluorescence staining of HDAg 

Immunoflourescence stainings of HDAg were performed by Florian Lempp as described 

in Lempp et al. 300. Cells were fixed with 4% PFA for 30  min, followed by permeabilization 

in PBS/0.25% Triton X-100 for 30  min. Cells incubated with a patient serum containing 

anti-HDAg antibodies (VUDA, 1:3000 dilution) diluted in 5% milk powder in PBS 

overnight. After washing, the secondary antibody goat–anti-human-555 (Invitrogen) was 

added for 1  h, and the cells were imaged on an inverted epifluorescence microscope. 

2.2.6.10.  Western blot 

The western blot for detection of HDAg was performed by Florian Lempp as described in 

Lempp et al. 300. Therefore, the cell lysate was loaded on a 15% SDS gel. Proteins were 

transferred onto nitrocellulose membranes by semidry transfer and incubated with 

primary antibodies (HDAg: serum of a chronically infected patient [VUDA, 1:3000 

dilution]; actin: mouse–anti-actin [Sigma, A1978, 1:5000 dilution]) diluted in 5% milk in 

TBS-T overnight at 4  °C. Membranes were washed with TBS-T and incubated with 

fluorescently labeled secondary antibodies (LI-COR Biosciences) for 1  h at RT, 

membranes were washed once more, and imaged on a LI-COR Odyssey imaging 

system. 

To detect SaCas9 in the split Cas9 experiments either cells were seeded in 6 or 24 well 

plates with density of 3x 105 or 105 cells per well in 2 ml or 500 µl cell culture medium or 

mouse liver was used. Cells in 6- well plates were transfected with 1.5 µg total DNA and 

Lipofectamine 2000 reagent. Therefore, 4 µl Lipofectamine 2000 were mixed with 250 µl 

Optimem and DNA was mixed with another 250 µl Optimem. Subsequently, the DNA and 

Lipofectamine mix were combined and thoroughly mixed and incubated for 15 min at 

room temperature until it was applied drop-wise to the cells. Samples from cell culture 

were harvested in 100 µl RIPA buffer supplemented with protease inhibitors. After 
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incubation for 15 min on ice, samples were centrifuged for 15 min at 13000 rpm and the 

supernatant was resuspended in 4x Lämmli sample buffer supplemented with 10 % ß-

Mercaptoethanol and cooked for 10 min at 95 °C. Samples from mouse liver were 

weighed and supplemented with 3 times the volume of RIPA buffer (100g liver = 3x 100 

µl RIPA buffer) and Protease inhibitor. Samples were ruptured by using the Tissue 

Raptor and a metal beat at 50 Hz for 45 sec. The samples incubated for 15 min on ice 

and were centrifuged for 15 min at 13000 g. The supernatant was resuspended in 4x 

Lämmli sample buffer supplemented with 10 % ß-Mercaptoethanol and cooked for 10 

min at 95 °C. Protein concentrations were measured using the BCATM Protein Assay Kit 

from PerBio according to manufacturer’s instructions. Finally, the samples from cell 

culture or mouse liver were loaded on precast mini-PROTEAN TGX gels with 7.5 % 

polyacrylamide and 15-well comb or 4-15% polyacrylamide and 10-well comb and 20 to 

50 µg protein were loaded on the gels, respectively. As protein standard, 10 µl 

MagicMark and 10 µl PageRuler Plus pre-stained protein standard were used.  

After SDS-PAGE electrophoresis, proteins were transferred onto a nitrocellulose 

membrane using semi-dry Western blot transfer. Therefore, Whatman paper and a 

nitrocellulose membrane were soaked in transfer buffer and a sandwich was assembled 

in a Trans-Blot® SD Semi-Dry Transfer Cell. Blotting was performed at 4°C, 150 mV for 

1 h. Next, the blot was blocked in 5% milk in TBS-T for 1 h at room temperature. Primary 

antibodies were diluted in 5% milk in TBS-T and incubated with the membrane at 4°C 

over night. The next day, the membrane was washed three times with TBS-T. 

Subsequtnly, the appropriate horseradish peroxidase-conjugated secondary antibody 

was added for 1 h at RT. Primary and secondary antibodies are listed in Table 33. After 

washing 3 times with TBS-T, equal volumes of the two-component chemiluminescence 

substrate were mixed and applied on the membrane. The signal was recorded on the 

Intas camera.  

Table 33. List of primary and secondary antibodies for Western Blot. 

Name Description Origin 

anti- FLAG Ab monoclonal, produced in mouse Sigma #F1804 

anti ß-Actin Ab monoclonal, produced in mouse Santa Cruz #sc-47778 

anti-SaCas9 Ab monoclonal, against N-terminal,  

produced in mouse 

Diagenode #C15200230 

Secondary goat 

anti-mouse Ab 

Peroxidase-conjugated Goat anti-Mouse 

IgG,  

Jackson ImmunoResearch 

#115-035-068 
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2.2.6.11.  Flow cytometry 

For flow cytometry the Cytometrics FC 500 MPL flow cytometry (Beckman Coulter) 

equipped with a 561 nm laser and mCherry filter set was applied.  

Cells were measured in 96 well plate format and were detached at the indicated time 

points from the plates just before flow cytometry analysis. Therefore, the cell medium 

was removed from the cells, the cells were washed with PBS and 30 µl Trypsin was 

added per well. Cells incubated for 10 min at 37 °C and Trypsin was inactivated by 

adding 170 µl PBS with 1% BSA. For flow cytometry, 10.000 cells were recorded per 

data set and analyzed in using the Flowing software 2. For the analysis, the living cells 

were gated using the forward and side scatter.  

 

2.2.6.12.  Luciferase measurement 

In order to test the TuD containing constructs, the plasmids #714, #1181 and #1182 from 

the Grimm internal plasmid library were used, that contain a Renilla and Firefly 

expression cassette and in case of plasmid #1181 and #1182 a binding site for the 

shRNA HBV7 sense and antisense strand in the 3´ UTR of Renilla luciferase, 

respectively. Besides, the multiplexing constructs, that were described in section 2.2.2.2, 

plasmids that drive shHBV7 expression from the H1 promoter (#1117), shHBV7 and TuD 

RNA expression both from an H1 promoter (#1118) or H1- driven shHBV7 expression 

and U6-driven TuD RNA expression (#1119) were used to test TuD RNA activity. 

Transfection were performed using lipofectamine as indicated in section 2.2.3.2 with 10 

ng of plasmid containing luciferase and 100 ng of plasmids containing the shRNA and/or 

TuD RNA. Two days later, cells were processed for luciferase signal measurements. 

Luciferase assays were performed using the Dual-Luciferase® Reporter Assay System 

from Promega according to manufacturer´s protocol. Therefore, the 5x passive lysis 

buffer was diluted 1:5 with H2O and 30 µl were added directly to the cells of each well of 

a 96 well plate. Cells incubated with the passive lysis buffer for 15 min at room 

temperature and 10 µl of the lysed cells were transferred to a white 96-well microplate 

(Greiner) and directly used for the Luciferase measurements. 

For in vivo luciferase measurements, 40 to 150 mg of liver tissue was used and 

supplemented with three times the volume of 5x passive lysis buffer (100 mg = 300 µl). 

The tissue was homogenized using the Tissue Ruptor at 50 Hz for 45 sec. The lysate 

incubated for 15 min at room temperature and was centrifuged at 13000 g for 3 min. 

Subsequently, 10 µl of lysate was transferred to a white 96-well microplate (Greiner) and 
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directly used for Firefly Luciferase measurements using the Luciferase Assay Kit from 

Promega (only firefly luciferase). 

The buffer for Firefly Luciferase measurements was prepared by adding 10 ml Luciferase 

Assay Reagent II to the one vial of lyophilized substrate. The buffer for Renilla Luciferase 

measurements was prepared adding 50x Stop& Glo Substrate to the required amount of 

Stop& Glo buffer. The buffers were subsequently inserted into the Glomax machine 

(Promega) with two independent injectors. The injectors were primed with 500 µl of each 

buffer. Subsequently, the firefly luciferase signal was measured in the previously 

prepared white 96-well microplate by adding 100 µl Firefly luciferase buffer with a speed 

of 200 µl/sec to the plate and the signal was integrated within 10 sec. After quantification 

of the firefly luminescence, this reaction was quenched by adding 100 µl Renilla 

luciferase buffer with a speed of 200 µl/sec to the plate.  The Renilla luciferase signal 

was integrated within 10 sec. For the analysis of the luciferase data, the Renilla 

luciferase signal was normalized to the Firefly luciferase signal and are presented as 

relative light units. 

To measure the luciferase signal from in vivo samples, the same procedure was applied, 

but only Firefly luciferase buffer was used.  

 

2.2.6.13.  Statistical analysis 

The statistical analysis was performed as indicated either with student´s t-test for the 

comparison of two groups or one-way ANOVA for the comparison between several 

groups. In general, a Gaussian distribution was assumed and the mean of each group 

was compared to the mean of (all) the other groups. To correct for multiple comparisons, 

Bonferroni´s post-hoc test was applied. Statistics were calculated using Prism 6.   
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3. RESULTS 

 

3.1. Alternative strategies for small RNA multimerization in AAV 

The RNAi and CRISPR/Cas9 machineries are guided by small RNAs to the designated 

RNA and DNA target, respectively. In order to combine both technologies, the small 

RNAs need to be co-expressed in the same target cell. To this end, our lab has 

previously envisioned three alternative strategies to multiplex small RNA triggers from 

rAAV vectors in the same target cell (Figure 15): i) Individual small RNAs can be 

packaged in separate rAAV vectors and “mixed” after production and rAAV titration, ii) 

the plasmids encoding the individual small RNAs can be “pooled” before transfection and 

the various rAAV vectors can be produced within the same dish, or. iii) in the approach 

named “TRISPR”, multiple small RNA expression cassettes can be juxtaposed on one 

vector genome. The benefit of the first approach is that the individual rAAV vectors can 

be mixed in any desired ratios after vector titration and prior to transduction, which 

enables the adjustment of the proportion of each small RNA within the target cells. While 

the second approach is simpler in terms of handling as it requires only a single 

production and titration, the fine-tuning of each rAAV vector is impossible. The last 

approach convinces with an equal abundance of each small RNA expression cassette 

within the target cell. Also, as several expression cassettes are present within a single 

rAAV, less viral particles compared to the other approaches are required to deliver the 

same number of small RNAs to target cells. Importantly, the TRISPR cloning strategy 

and biological toolbox has previously been designed by Florian Schmidt, a former 

Bachelor student in our lab, who has also provided the first evidence of its superiority 

over the two alternative multiplexing strategies (i) and (ii) above. The toolbox contains all 

necessary plasmids to juxtapose three small RNA expression cassettes, in the 

predefined order of U6, H1, and 7SK promoter-driven cassette, on a single dsAAV vector 

and is compatible with the expression of shRNAs and/or sgRNAs for the CRISPR/Cas9 

system of Streptococcus pyogenes and Staphylococcus aureus in any possible 

permutation (details on the cloning strategy are described in Florian's BSc thesis as well 

as in section 2.2.2.2 and Figure 13). 
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Figure 15. Alternative strategies to 

multimerize small RNAs.  

i) Three small RNA expression cassettes (1 
to 3) can be packaged separately in AAV 
capsids and subsequently mixed in any 
desired ratio prior to transduction (strategy 
"MIX"). ii) Alternatively, plasmids containing 
individual small RNA expression cassettes 
can be pooled before transfection and rAAV 
vectors can be produced in the same dish, 
resulting in a vector pool whose 
composition cannot be controlled 
experimentally (strategy "POOL").iii) Finally, 
the three small RNA expression cassettes 
can be multiplexed on a single vector 
genome, which ensures their equal 
abundance in the same target cells. Our lab 
has previously termed this strategy 
“TRISPR”. Figure adapted from Florian 
Schmidt's Bachelor thesis (manuscript in 
preparation). 
 

 

3.1.1. Screening of different sgRNAs against HBsAg 

We experimentally compared these different approaches in an HBV context, by applying 

three sgRNAs that induced the CRISPR/Cas9 system Staphylococcus aureus and 

served as stand-in for the multimerization of small RNAs in general. We first screened for 

sgRNAs that knock-out the surface antigen of HBV. To this end, HepG2-hNTCP-HB2.7 

cells 300 that harbor the stable integrated hNTCP receptor and HBsAg were transduced 

with ten different rAAV vectors expressing sgRNAs against different positions of the 

surface antigen. The sgRNAs were packaged in the AAV capsid variant 9A2 227, 

transduced with a multiplicity of infection (MOI) of 105 viral particles/cell and expressed 

by the strong U6 promoter. The SaCas9 was expressed by the CMV promoter and 

delivered in a separate rAAV vector of the same capsid variant and with the same MOI. 

The supernatant of the cells was collected at various time points that comprised the 

secreted HBsAg of day -3 to 0 prior to rAAV transduction, day 4 to 6 and day 6 to 8 post-

transduction (Figure 16A). The levels of secreted HBsAg were measured via ELISA (see 

section 2.2.6.8 for methodological details). Furthermore, eight days post-transduction, 

cells were harvested for the quantification of targeted mutations in the HBsAg locus via 

T7 endonuclease assay (Figure 16B), in which the ratio of intensities of T7 fragments to 

input band is used as a measure for indel frequencies (see section 2.2.6.1 for 

methodological details).  
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Figure 16. Screening of sgRNAs 

against the HBV surface antigen. 

HepG2-hNTCP-HB2.7 cells were 
transduced with SaCas9 and 10 different 
sgRNAs that target the stably integrated 
HBsAg locus. A) Secreted HBsAg in the 
supernatant of cells between day -3 to 0 
prior to AAV transduction, day 4 to 6 and 
day 6 to 8 after AAV transduction. The 
sgRNAs either reduce HBsAg levels 
(blue), maintain HBsAg levels (black) 
similar to controls (green, transduction of 
Cas9 only) or elevate HBsAg levels 
(orange). The shHBV7 was used as 
positive control (red) 163. B) T7 
endonuclease assay of transduced cells 
after eight days. Results are shown for a 
single experiment and were obtained in 
close collaboration with Florian Lempp 
from the lab of Stephan Urban 
(manuscript in preparation). 
 

 

While all sgRNAs, except for sgRNA 2 and 5, showed efficient mutagenesis rates 

between 20 to 30 % in the T7 assay, only sgRNA 1, 6, 7, 8, and 10 reduced the levels of 

secreted antigens in the supernatant. Indeed, sgRNA 3, 4 and 9 even increased the 

amount of secreted antigens. Interestingly, these sgRNAs targeted the preS1 region that 

leads to the production of the large HBsAg, while all other sgRNAs target the small 

HBsAg. Note that the applied ELISA is not able to differentiate between the surface 

antigen variants, since a portion of the S-HBsAg, which is present in all variants, is used 

for quantification.  

 

3.1.2. Quantitative comparison between multiplexing approaches 

Subsequently, we used sgRNA 6, 7 and 8 to experimentally compare the alternative 

strategies to co-express these small RNAs from rAAV vectors. To this end, we created 

different dsAAV vectors that either carried individual U6, H1 or 7SK promoter driven 

sgRNA expression cassettes or that juxtaposed all three expression cassettes on a 

single viral genome (Figure 17A).  
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Figure 17. Experimental investigation of different multiplexing strategies.  

A) To investigate multiplexing strategy i) and ii) as depicted in Figure 15, rAAV vectors were 
designed that express the sgRNA 8, 7 and 6 against HBsAg from the U6, H1 and 7SK promoter, 
respectively. Stuffer sequences were inserted to reach a vector size of 2 kb. To investigate 
strategy iii), the sgRNA expression cassettes were assembled on a single dsAAV vector by 
applying the TRISPR cloning strategy. SaCas9 was provided by an additional ssAAV. The light 
gray box represents the natural ITR that leads to packaging as a ssAAV genome, whereas the 
mutation of one ITR (dark gray box) leads to packaging as a dsAAV genome. B) Experimental 
layout. HepG2-hNTCP-HB2.7 cells were transduced with AAV9A2 vectors and the supernatant 
from day six to eigth post-transduction was collected and subsequently cells were harvested for 
genomic investogations. C) Secreted HBsAg in the supernatant was collected at six to eight days 
after transduction with an MOI of 3x104 (left) and 105 (right). D) PCR and E) T7 assay of the 
HBsAg target locus showing gRNA-mediated fragmentation in samples treated with multiplexing 
strategies. F) PCR products were run on a Bioanalyzer 2100 and the fraction of excised bands in 
the histogram was divided by the fraction of all PCR products. Error bars represent standard 
deviations of three independent experiments. Differences between the conditions were 
determined using Bonferroni´s post-hoc test after one-way ANOVA (**p <0.01, ***p < 0.001, ****p 
< 0.0001) (manuscript in preparation). 
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individual sgRNAs or by applying the MIX, POOL or TRISPR strategies (Figure 17B). 

Cells were regularly washed with PBS and supplied with fresh media. Secreted antigens 

were collected with the supernatant of day 6 to 8 and the cells were subsequently 

harvested for analysis on the DNA level. HBsAg measurements revealed a slight 

decrease in secreted antigens, when targeted by individual sgRNAs (Figure 17C). The 

multiplexing approaches conferred higher knock-out efficiencies in general, with the 

TRISPR strategy significantly outperforming all other strategies in the reduction of 

secreted HBsAg. This result was confirmed by the analysis on the DNA level, when the 

target locus was amplified via PCR (Figure 17D). TRISPR-treated samples showed a 

strong fragmentation of the target locus, as the simultaneous DSBs by CRISPR/Cas9 at 

two or more positions in close proximity leads to the complete excision of the fragments 

between the cut sites. For a more quantifiable result, the PCR products were run on a 

Bioanalyzer 2100. The chromatograms (Supplementary Figure 1) showed a single peak 

for the samples treated with individual sgRNAs and two smaller peaks for the different 

multiplexing approaches. While the largest peak corresponded to the complete size of 

the amplified target locus, which potentially harbored indels that are indistinguishable by 

this analysis, the smaller peaks represented the target locus after excision of the 

sequence between the sgRNA binding sites. The chromatograms were used to quantify 

the fraction of excised bands in the samples treated with the three multiplexing 

approaches, by dividing the areas under the curves of the smaller fragments by the area 

under the curves of all fragments (Figure 17F). The Bioanalyzer data confirmed the 

highest fragmentation of the target locus in TRISPR-treated samples, in which the 

sequences between the cut sites were excised in about 60% of all cells. Finally, the T7 

endonuclease assay verified the correct cleavage pattern in all multiplexing approaches 

confirming that the three sgRNAs were indeed co-expressed (Figure 17E).  

 

3.2. A combinatorial approach to knock-down HBV antigen expression 

and kock-out viral cccDNA 

After we successfully validated the TRISPR strategy as superior multiplexing approach, 

we applied this approach to combine shRNA and sgRNA expression to tackle HBV on 

the RNA and DNA level. To this end, we designed a TRISPR vector with sgRNAs 

against the HBx and HBs antigens and an additional shRNA against the HBx antigen, 

driven by the U6, H1 and 7SK promoters, respectively (Figure 18A). For the knock-out of 

the HBsAg, we selected the most efficient sgRNA 6 from our previous screen (Figure 
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16). The sgRNA against the HBxAg was previously tested for its functionality and 

efficiency by Thomas Tu (lab of Stephan Urban, University Hospital Heidelberg). 

Furthermore, the shRNA targeting the HBx antigen (shHBV7) was previously published 

by our lab 163 and was shown to mediate very efficient HBV knock-down. We substituted 

the positions of each small RNA with control RNAs that do not match any HBV or 

genomic target. The substitution of each position with control RNAs in any possible 

sgRNA/ shRNA combination resulted in eight different TRISPR vectors. 

 

Figure 18. A combinatorial CRISPR/RNAi approach to tackle HBV infection. 

A) TRISPR vector harboring two sgRNAs against the HBx and HBs antigens and an shRNA 
against the HBx antigen, driven by the U6, H1 and 7SK promoters, respectively. Note that each 
sgRNA and shRNA position was substituted with non-targeting sgRNA and shRNA controls, 
resulting in eight different TRISPR vectors. An additional ssAAV vector provided SaCas9. B) 
Experimental workflow: HepG2-hNTCP cells were infected with HBV using an MOI of 200 and 
three days later transduced with AAVLK03 expressing the indicating shRNAs/sgRNAs using an 
MOI of 105. Secreted HBeAg (C) and HBsAg (D) in the supernatant of day 8 to 10 (left) and day 
10 to 12 (right) post-HBV infection was measured via ELISA. Each data point represents an 
independent experiment.  
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Subsequently, HepG2 cells with stably integrated hNTCP receptor were infected with 

HBV and three days later transduced with rAAVLK03 vectors 304 encoding either SaCas9 

or the different TRISPR constrcucts (Figure 18B). The secreted antigens were collected 

with the supernatants from day 8 to 10 and day 10 to 12. Secreted HBeAg levels 

fluctuated around 400 and 250 IU/ml (1:10 dilution) for control samples (no rAAV vector, 

Cas9 only or TRISPR vector solely with control RNAs) in the supernatants of day 8 to 10 

and day 10 to 12, respectively. By contrast, TRISPR vectors that expressed at least a 

single RNA trigger efficiently reduced the amount of secreted antigen (Figure 18C). 

Similar results were observed with HBsAg measurements of the same samples. Note 

that the magnitude of secreted surface antigen in HBV infection experiments were lower 

and reached about 1 IU/ml for control samples (Figure 18D). Similar values for secreted 

HBe and HBsAg in HBV infection experiments have been reported previously 305. In 

general, the multiplexing of two sgRNAs led to an additive effect (green dots) and 

expression of the shRNA decreased antigen levels to the limit of detection thresholds 

(orange dots). Myrcludex B 306, an entry inhibitor of HBV, was able to fully block the 

infection. 

 

3.2.1. A combinatorial approach with TuD RNAs  

Next, we applied the TRISPR strategy to combine not only the CRISPR/Cas9 and RNAi 

technologies, but also TuD RNAs (see section 1.4.3 for details) in the same expression 

vector. To this end, we either expressed the sgRNA against the X or S antigen from the 

U6 promoter and shHBV7 and its corresponding TuD RNA from the 7SK and H1 

promoter, respectively (Figure 19A). The substitution of each small RNA with control 

RNAs resulted in twelve different TRISPR vectors. We further used the same 

experimental approach as previously described (Figure 18B), i.e., we infected HepG2-

hNTCP cells with HBV and subsequently transduced them with the designated TRISPR 

vectors. First, we investigated the effect of the TRISPR vectors on secreted HBeAg and 

HBsAg levels in the supernatants of day 8 to 10 and day 10 to 12 after HBV infection 

(Figure 19B and C). We observed similar results as previously described, i.e., TRISPR 

vectors with an individual sgRNA (green dots) reduced the amount of HBeAg efficiently 

and HBsAg levels to about 50%. Viral vectors with the shHBV7 (orange dots) reduce 

HBeAg and HBsAg to detection limits. The effect of shRNA on antigen levels remained 

unaffected by the presence of TuD RNAs. In contrast, previous experiments from our lab 
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reported an enhanced shRNA effect by the co-expression of corresponding TuD RNAs 
162; 163.  

 

Figure 19. A combinatorial approach with TuD RNAs to tackle HBV infection.  

A) Experiments follow the same workflow as previously, but differ in the applied TRISPR vectors. 
The U6 promoter drives either a sgRNA against HBx or HBsAg, while TuD RNA is expressed by 
the H1 promoter and shRNA against HBxAg remains under the 7SK promoter. Note that also 
constructs were designed in which each small RNA position was substituted with non-targeting 
sgRNA, TuD RNA or shRNA controls, resulting in twelve different TRISPR vectors. C) HBeAg 
measurements and D) HBsAg measurements after 8 to 10 days (left) and 10 to 12 days (right) 
post-HBV infection. Each data point represents an independent experiment.  

 

Next, we investigated whether shHBV7 exhibits unintended sense strand activity and 

whether TuD RNAs can reduce this off-target effect. Therefore, we applied a reporter 

system consisting of Renilla and Firefly luciferase on the same plasmid (Figure 20A). 

The 3´ UTR of the Renilla luciferase harbored either a binding site (bs) for the antisense 

(as)-strand of the designated shRNA to investigate the desired on-target knock-down 
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efficiency, a binding site for the sense-strand to assess unintended off-target activity, or 

no binding site. The subset of TRISPR constructs that harbor the shRNA and either the 

TuD RNA or a scrambled TuD RNA version were co-transfected with the reporter system 

in HEK293T cells. Two days later, cells were lysed and Renilla and Firefly luciferase 

signals were measured. Transfection efficiencies between samples were corrected by 

the normalization of Renilla to Firefly luciferase signals and values are presented as 

relative light units (RLU) of Renilla luciferase (Figure 20B).  

 

 

Figure 20. Evaluation of TuD 

RNAs in a luciferase reporter 

assay.  

A)The reporter system comprised 
a Renilla and Firefly luciferase, in 
which either no binding site 
(Luc_no bs), an antisense-strand 
binding site (Luc_as bs) or a 
sense-strand binding site 
(Luc_sense bs) was inserted in 
the 3´ UTR of Renilla luciferase. 
B) HEK293T cells were 
transfected with 10 ng of reporter 
and 100 ng of the indicated 
TRISPR construct. Two days later 
cells were lysed and luciferase 
signals were measured. C) The 
shRNA was expressed by the 
weaker H1 promoter and TuD 
RNAs were either not expressed 
(orange), expressed by the H1 
promoter (light violet) or by the 
strong U6 promoter (dark violet).  

According to expectations, the luciferase signal remained unaffected when the TRISPR 

vectors were co-transfected with the reporter system that harbored no binding site and 

decreased when the reporter system contained the binding site for the antisense strand 

(on-target activity). Indeed, luciferase signals also decreased when the reporter system 

contained a sense-strand binding site, which reflects the extent of off-target activity by 

loading of the unintended passenger strand in RISC. However, TRISPR constructs that 
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contained a TuD RNA (violet bars) showed similar reductions in luciferase signals as 

constructs with scrambled TuD RNA controls (orange bars). Thus, in this experimental 

setting, the TuD RNAs were insufficient to restrict the activity of free sense strands and 

to avoid passenger strand-mediated off-target activity.    

Therefore, we tested another experimental design, in which we expressed the shRNA 

from the weaker H1 promoter and the TuD RNA either from the H1 promoter or the 

strong U6 promoter (Figure 20C). In accordance with our previous experiment, the 

luciferase signal remained high for the reporter system without binding sites and 

decreased when the shRNA was able to bind its antisense counterpart (on-target 

activity). The shRNA also mediated down-regulation of the reporter with a sense-strand 

binding site (orange bar, right data set of the panel) reflecting its off-target activity, which 

was prevented and restored to control levels when TuD RNA was either expressed by 

the H1 (light violet bar) or U6 (dark violet bar) promoter.  

 

3.2.2. Expression of rAAV/CRISPR in the mouse liver 

The efficiency of CRISPR/Cas9 in vivo is strongly dependent on the delivery and 

expression of the CRISPR components in target cells. Thus, we evaluated the 

expression of SaCas9 by different promoters in the liver of mice. To this end, SaCas9 

was packaged into ssAAV8 under either liver-specific promoters, including the LP1, TTR, 

TBG promoters, or minimal versions of the CMV and EF1α promoters, mCMV and EFS, 

respectively, which are about 220 bp (Figure 21A).  

The rAAV/CRISPR vectors were co-injected with a kill-switch (KS) luciferase reporter 

that contains a Firefly luciferase expression cassette in addition to a U6-driven sgRNA 

against the luciferase transgene itself. This reporter was previously developed by Julia 

Fakhiri from our lab (patent application number WO2017182468A1) and efficiently 

measures the amount of present SaCas9 within the target cells by the degree of 

reduction in luciferase signals. Mice were co-injected with SaCas9 and luciferase vectors 

and sacrificed 15 days post-injection in order to extract the liver for further analysis. The 

strongest reduction in Luciferase signals were obtained by SaCas9 expression from the 

LP1 promoter, followed by the TTR and TBG promoters (Figure 21B). Whereas the 

mCMV promoter efficiently reduced luciferase signals about two-fold, the EFS promoter 

was unable to express sufficient amouts of SaCas9 to reduce the luciferase signal. 
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Figure 21. Evaluation of a promoter library driving SaCas9 expression in mouse liver. 

A) Experimental layout. SaCas9 expressed by a small promoter library and KS-Luciferase were 
delivered in ssAAV8. The SaCas9 vector was injected at 1012 viral particles and the Luciferase 
vector at 2x1011 viral particles into the tail vein of female NMRI mice (6 weeks old). Mice were 
sacrificed after 15 days and the liver was extracted. B) Measurements of Firefly luciferase signal 
in relative light units (RLU) from liver pieces. The reduction in Luciferase signal indicates the 
amount of SaCas9 expression. C) DNA was extracted from liver pieces. The mutagenesis rates of 
the Luciferase target were quantified via ddPCR by multiplexing a primer/probe set against the 
target site and a reference site within the luciferase transgene. D) RNA was extracted from liver 
pieces and the amounts of SaCas9 mRNA were quantified via quantitative PCR including the 
reverse transcriptase step. CT values were normalized to the GAPDH house keeper. B) to D) 
Controls include mice injected with PBS instead of viral vectors (red) and ssAAV-mCherry instead 
of the SaCas9 vector (green). Each data point represents the measurements from an individual 
mouse. Results were acquired jointly with Julia Fakhiri and Nikolay Sergeev (practical student). 
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were quantified by qRT-PCR and revealed a high correlation of SaCas9 expression and 

luciferase knock-out (Figure 21D). 

 

3.3. A combinatorial approach to knock-out/knock-down HBV/HDV co- 

or superinfections  

We further translated our TRISPR-based knock-out and knock-down approach to tackle 

HBV and HDV co- or superinfections. To this end, we first screened for appropriate 

shRNAs against the HDV RNA genome. Prior to this work, Florian Schmidt (previous 

Bachelor student) and Florian Lempp (Urban lab, University Hospital Heidelberg) 

evaluated different shRNAs for their ability to inhibit delta antigen expression and HDV 

genome replication. In their experimental approach, nine shRNAs against HDV were 

packaged in rAAV vectors using a crude cell lysate protocol, in which rAAV particles are 

produced in a small-scale format (one well of a 6-well plate) but not purified from cell 

debris or other proteins over gradients. Subsequently, Huh7-hNTCP cells were first 

transduced with the crude lysates containing the shRNA expressing viral vectors and two 

days later infected with HDV (Supplementary Figure 2A). Western blot analysis and IF 

stainings revealed a strong decrease of delta protein expression in samples treated with 

shRNA 3 and 4, and a slight reduction when treated with shRNA 6 to 9, ten days after 

transduction (Supplementary Figure 2B and C). The inhibitory effect of these shRNAs 

was also observed for HDV genome levels after RT-PCR quantification (Supplementary 

Figure 2D). Note that shRNA 3 and 4 share the same sequence and differ only in their 

length of 21 nt and 19 nt, respectively. Interestingly, only shRNA 3 and 4 targeted the 

actual ORF of the delta protein, specifically around position 196, which represents the 

stop codon for the small delta antigen. Due to the high amount of secondary structures 

that leads to the rod-shaped HDV genome, only the area around the stop codon can be 

targeted via RNAi. All other shRNAs target HDV either before or after the delta antigen 

ORF.  

 

3.3.1. Screening of different shRNAs against HDV 

In this study, we first recapitulated the initial screen with selected shRNAs and purified 

rAAV vectors. Furthermore, we added an alternative version of shRNA 3 (named 3ed) 

and 4 (named 4ed) to the screen, which target the edited tryptophan (UGG) instead of 
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the stop codon (UAG) and thus should act on the large HDAg. As the small or large 

HDAgs are preferentially produced in early or late stages of the HDV infection cycle, 

respectively, we hypothesized that we might be able to differentiate the effect of shRNA 

3/4 and 3ed/4ed in an immunization and curation setting.  

In the immunization setting, HepG2-hNTCP-HB2.7 cells were first transduced with 

purified rAAV vectors containing the individual shRNAs and two days later infected with 

HDV (Figure 22A). Western blot analysis and IF staining six days post-transduction 

revealed a strong decrease of delta antigen in samples treated with shRNAs 3 and 4 and 

a slight decrease for samples treated with shRNA 6 to 9 (Figure 22B and C). 

Accordingly, these experiments recapitulated the results of the previous screen. By 

contrast, shRNAs 3ed and 4ed showed no effect on HDAg expression. This was 

expected, as the administration of shRNAs prior to HDV infection immunized the cells 

already against early stages of infection. Accordingly, shRNAs 3ed and 4ed are unable 

to act on early stages of infection, as the stop codon had not been edited to tryptophan 

at that time and thus HDV did not yet present a target for these shRNAs. The missing 

large HDAg in the Western blot (Figure 22B) throughout all samples including controls 

confirmed that HDV had not yet produced the large delta antigen within the indicated 

time frame. 

In the curation setting, HepG2-hNTCP-HB2.7 cells were first infected with HDV and three 

days later transduced with the rAAV vectors containing the shRNAs (Figure 22D). In this 

setting, it remained difficult to observe any effect of the shRNAs on delta antigen 

expression levels in cells that were infected first, since large amounts of delta antigen 

were already expressed in the three days prior to shRNA transduction. This was 

apparent from the lack of a reduction in HDAg levels in Western blots of cells treated 

with the different shRNAs (Figure 22E). Thus, we included a reinfection step, in which 

the supernatant of day 7 to 10 was used to reinfect Huh7-hNTCP cells. The infected 

HepG2-hNTCP-HB2.7 cells harbored stably integrated hepatitis B surface antigens that 

are required by HDV to form infectious particles. If the transduced shRNAs would indeed 

reduce delta antigens or HDV genomes, fewer amounts of HDV RNP complexes could 

be formed and released in the supernatant as infectious progeny HDV. Indeed, the 

reinfection experiment was able to reveal the effect of shRNAs on the HDV RNA, when 

the quantity of HDAg positive-cells was counted after IF staining and automated 

microscopy (Figure 22F). Importantly, whereas most shRNAs reduced the amount of 

infectious HDV particles, shRNA 4 and especially shRNA 3 increased secreted HDV 

particles repeatedly in independent experiments. By contrast, shRNA 3ed and 4ed that 
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differ only in a single nucleotide to their shRNA 3 and 4 counterparts, efficiently reduce 

the amount of infectious HDV particles in the curation setting, as they act on the large 

delta antigen.     

 

Figure 22. Screening of anti-HDV shRNAs in an immunization and curation setting. 

A) Experimental workflow in the immunization setting: HepG2-hNTCP-HB2.7 cells were first 
transduced with AAVs of variant 9A2 expressing different U6 promoter-driven shRNAs against 
HDV using an MOI of 105 and two days later infected with HDV. Six days post-transduction, cells 
were analyzed via Western blotting (B) and IF staining (C) against HDAg. D) Experimental 
workflow for the curation setting: HepG2-hNTCP-HB2.7 cells were first infected with HDV and 
three days later transduced with AAV vectors expressing the different shRNAs against HDV. The 
supernatants from day 7 to 10 harboring newly produced HDV particles were used to reinfect 
Huh7-hNTCP cells. E) Western blot of primary infected HepG2-hNTCP-HB2.7 cells ten days after 
HDV infection F) Quantification of IF stainings via automated microscopy after reinfection of 
Huh7-hNTCP cells. Error bars represent standard deviation of three independent experiments. 
Results were obtained jointly with Florian Lempp (Urban lab).   
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3.3.2. The combination of RNAi and CRISPR against HBV/HDV infections 

Next, we applied the shRNA 3ed in a combinatorial CRISPR/Cas9 and RNAi approach to 

tackle HBV and HDV co- or superinfections. To this end, we applied two shRNAs, one 

directed against HDV (shRNA 3ed) and the other directed against HBV (shHBV7), and 

expressed them by the U6 and H1 promoter, respectively (Figure 23A). Furthermore, we 

targeted the hepatitis B surface antigen using the sgRNA 6 from our previous screen 

(Figure 16) and expressed it under the 7SK promoter. To test the effect of the TRISPR 

vectors on HBV and HDV, a similar curation approach was applied as before (Figure 

22D). HepG2-hNTCP-HB2.7 cells (with stably integrated HBsAg) were infected with HDV 

and three days later transduced with rAAVLK03 vectors that expressed the different 

TRISPR combinations. The supernatant of day 11 to 13 was collected to measure the 

amounts of secreted HBsAg and to reinfect Huh7-hNTCP cells. 

As expected, HepG2-hNTCP-HB2.7 cells that were transduced with the sgRNA against 

the surface antigen (orange dots) and/or with the shRNA against HBx antigen (violet and 

blue dots) showed a reduction in secreted HBsAg (Figure 23B). The strong shHBV7 

reduced secreted HBsAg levels to undetectable limits even by expression from the weak 

H1 promoter. Furthermore, all TRISPR vectors mediated a reduction in HDAg-positive 

cells compared to the control (black dots) in reinfection experiments (Figure 23C). 

Whereas the sgRNA against HBsAg and the shRNA against HDV alone or in 

combination (orange and green dots) pushed the amount of reinfected cells to 50% or 

25%, respectively, the co-expression of shRNA against HBV decreased reinfected cells 

to undetectable levels (violet and blue dots).  

Furthermore, we applied a strategy in which we multiplexed two sgRNAs against HBV 

and one shRNA against HDV (Figure 23D). In order to target the HBV surface antigen 

via CRISPR/Cas9, we selected sgRNA 6 and sgRNA 3 from our previous screen (Figure 

16). There, sgRNA 6 had efficiently reduced HBsAg levels, whereas sgRNA 3 had 

elevated the amount of secreted HBsAg. Nevertheless, we hypothesized non-functional 

HBsAg had been secreted, as sgRNA 3 targeted the large HBsAg that is required for 

viral entry. HBsAg measurements in this experiment recapitulated previous findings, 

such that sgRNA 6 reduced HBsAg levels and sgRNA 3 increased amounts of secreted 

HBsAg (Figure 23E). Vectors that expressed both sgRNAs (ctrl-gS3-gS6 and shHD-gS3-

gS6) showed a reduction in HBsAg levels, likely due to the excision of the sequence 

between both cut sites that resulted in the loss of small and large HBsAg. Reinfection 

experiments confirmed the hypothesis that sgRNA 3 led to non-functional HBV surface 
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antigens, as expression of sgRNA 3 alone (violet dots) resulted in the reduction of HDV-

reinfected cells (Figure 23F). 

 

 

Figure 23. A combinatorial CRISPR/RNAi approach to tackle HBV/HDV co-infection.  

A) Construct design of TRISPR vectors to tackle HBV/HDV infections in the curation setting. Note 
that sgRNA6 was directed against the integrated HBsAg locus in HepG2-hNTCP-HB2.7. Also 
constructs were designed that substitute each small RNA position with non-targeting sgRNA or 
shRNA controls resulting in eight different TRISPR vector. B) HBsAg levels were measured in the 
supernatants of day 11 to 13 of HDV-infected HepG2-hNTCP-HB2.7 cells. C) HDAg+ cells were 
quantified after reinfection of Huh7-hNTCP cells with supernatants of day 11 to 13 by IF staining 
and automated microscopy. D) The same experimental workflow was applied to test TRISPR 
vectors that express the sgRNA 3 against HBsAg by the H1 promoter. E) HBsAg measurements 
of supernatant from HDV-infected HepG2-hNTCP-HB2.7 cells and F) HDAg+ cells after reinfection 
of Huh7-hNTCP cells with supernatants of day 11 to 13 treated with the indicated rAAV vectors 
from D. Each data point represents an independent experiment. Results were obtained jointly with 
Florian Lempp (Urban lab).  
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Note that sgRNA 3 outperformed sgRNA 6 in reducing the amount of infectious HDV 

particles, even though sgRNA3 was expressed by the weak H1 promoter. The direct 

targeting of HDV by shRNA (green dots) and the combination of RNAi and 

CRISPR/Cas9 against HDV and HBV (blue dots), respectively, mediated the strongest 

reduction of HDV reinfected cells.  

 

3.4. DMSO enhances rAAV vector transduction and expression 

efficiencies  

During our highly collaborative work on HBV within the SFB TRR179, Professor Michael 

Nassal and his lab (University Hospital Freiburg) noticed a supportive effect of DMSO on 

rAAV transduction efficiencies. As described in detail in section 2.2.4.4, HBV and HDV 

infections are generally performed with an addition of 2.5% DMSO in the infection media 

to increase the infectivity and to restrain the cells from proliferating, in order to keep them 

in culture for the long experimental periods 17. To our surprise, rAAV transductions after 

HBV or HDV infections resulted in much higher vector expression rates compared to 

transductions prior to infections. Eventually, we were able to attribute the high rAAV 

vector transduction rates to the presence of DMSO in the cell media after HBV or HDV 

infections. Thus, in the following, we systematically investigated DMSO as a method to 

enhance rAAV transduction efficiencies and boost the expression of transgenes, such as 

the components of the CRISPR/Cas9 technology.      

 

3.4.1. DMSO enhances rAAV transduction in a high-throughput reporter assay 

First, we evaluated the rAAV transduction efficiency of a CMV promoter-driven YFP 

reporter in the presence or absence of 2.5% DMSO (Figure 24A). To this end, we 

packaged the reporter in 23 rAAV variants, including 12 wt capsids and 11 peptide 

insertion variants that we previously described in Börner et al. 227, and transduced 

various cell lines at the MOI of 105 and 103 (1:100 dilution). Three days later, cells were 

analyzed by quantitative microscopy using an automated protocol.  

In general, we observed that the promoting effect of DMSO strongly depended on the 

rAAV variant and cell line. The effect of DMSO on transduction in hepatoma cell lines 

was less pronounced compared to its influence on neuroblasts. A beneficial effect of 

DMSO ranged from a 3-fold (capsid variants LK03, DJ) to 10-fold (7A6, 7A2, 9A2) 
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increase in transduction rates in HepG2 cells (Figure 24B), and a 2-fold (2wt, 7A2, DJ) to 

5-fold (1wt, LK03, 7P2, 9A2) increase in Hepa16 cells (Figure 24D). In contrast, 

transduction in Huh7 cells was barely affected by DMSO (Figure 24C). 

 

Figure 24. DMSO enhances transduction depending on rAAV variant and cell line. 

A) Experimental approach: HepG2 (B), Huh7 (C), Hepa16 (D) and N2A (E) cells were seeded in 
96-well plates and transduced on the following day with 23 different AAV variants harboring a 
CMV-YFP reporter at an MOI of 105 (left) or 103 (right) without (black) or with (gray) 2.5% DMSO 
in the transduction media. Three days later, cells were fixed and the percentage of 
transduced/YFP-positive cells was quantified via automated microscopy. Numbers in brackets 
represent the average amount of cells per microscopy picture that were analyzed. Error bars 
represent standard deviations of three independent experiments. In the mock conditions, no AAVs 
were transduced.  
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The most dramatic effects of DMSO were seen in N2A cells, in which transduction and 

expression rates of several rAAV variants that barely transduced these cells were 

boosted towards upper detection limits by the addition of DMSO (Figure 24E). In fact, all 

rAAV variants showed an increase in transduction and expression rates in at least one 

cell line, except for rAAV4, rAAV5, rAAVpo1, rAAV12, and rAAV1A1NIS that remained 

unaffected. Except for rAAV5 in Hepa16 cells, we did not observe a detrimental effect of 

DMSO on transduction efficiencies. 

The experiments in Figure 24 were also analyzed for the extent of transgene expression, 

which was quantified by the YFP intensity of successfully transduced cells 

(Supplementary Figure 3). In most cases, higher transduction efficiencies also resulted in 

higher transgene expression levels. Figure 25 gives an impression of transduction and 

expression differences of selected rAAV variants with or without DMSO treatment in N2A 

cells.  

 

Figure 25. Images of transduced N2A cells with and without DMSO treatment.  

Representative microscopy images of N2A cells transduced with six selected rAAV variants at the 
MOI of 103 with or without (w/o) DMSO that were used for the automated imaging pipeline in 
Figure 24. Cell nuclei were previously stained with Hoechst (blue) and subsequently YFP signals 
(yellow) were acquired.     

We also observed an effect of DMSO on the rate of cell proliferation, which was halted or 

strongly reduced depending on the cell line as indicated by the cell numbers in brackets 

for each condition (Figure 24). Whereas cell numbers seemed unaffected for HepG2 

cells, Hepa16 and N2A cells were slightly inhibited and Huh7 cells were strongly 

inhibited in cell proliferation. Cytotoxicity was not observed by the addition of DMSO to 

the cell media (data from Julia Miller from Nassal lab, not shown).  
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3.4.2. DMSO-mediated rAAV transduction remains receptor-dependent 

The data above suggested that transduction efficiencies could be enhanced only if the 

rAAV variant transduced a respective cell line also in the absence of DMSO, even if only 

to minor extents. Thus, we hypothesized that the DMSO-mediated increase of rAAV 

vector uptake was receptor-mediated and, in the case of AAV2, dependent on HSPG 

receptor binding. To test this hypothesis, we studied an rAAV2 mutant (AAV2mut) variant 

carrying mutations on position R484E and R585E 230, which disturbed HSPG receptor 

binding. We packaged the CMV-YFP reporter either into AAV2mut or the conventional 

AAV2 capsid and transduced N2A and Huh7 cells in the absence or presence of 2.5% 

DMSO (Figure 26A and B).  

 

Figure 26. DMSO-mediated rAAV2 transduction is dependent on HSPG binding. 

A) N2A and B) Huh7 cells were transduced with a CMV-YFP reporter using an MOI of 103 and 
105, respectively, that was either packaged into the AAV2 capsid (circular dots) or AAV2mut 
(squared dots) without (w/o) or with 2.5% DMSO in the transduction media. Three days after 
transduction, the percentages of transduced cells were quantified via automated microscopy. 
Each data point represents an independent experiment.  

 

While transduction rates increased for the rAAV2 vector in N2A cells by the addition of 

DMSO, transduction was completely inhibited for the rAAV2mut variant with or without 

DMSO (Figure 26A). Similar results were obtained for transductions in Huh7 cells, in 

which rAAV2 vectors maintained 100% transduction rates in the absence or presence of 

DMSO, whereas transduction of AAV2mut was completely abolished and not restored by 

the addition of DMSO (Figure 26B). Accordingly, we could confirm that an increase of 

viral uptake is an HSPG-receptor-mediated process.     
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3.4.3. Comparison of alternative methods to increase rAAV transduction 

Next, we compared this new method to other chemical compounds, such as Doxorubicin 
307, a topoisomerase and proteasome inhibitor, and Rapamycin, an inducer of autophagy 
266, that have previously been used to enhance rAAV vector transduction rates (Figure 

27).  

 

Figure 27. Comparison of different methods to increase rAAV transduction. 

A) N2A and B) Huh7 cells were transduced with AAV2-CMV-YFP using an MOI of 103 and 105, 
respectively, and treated with either no additional chemical (no treatment), 2.5% or 1% DMSO, 
0.5 µM or 2 µM Doxorubicin (Dox), 250 nM or 10 µM Rapamycin (Rapa) or pretreated (pre) for 1 h 
with 10 µM or 40 µM Rapamycin. Note that cells treated with Doxorubicin needed to be washed 
twice with PBS and supplemented with fresh media not later than 12 hours after addition of the 
chemical compound, due to strong cytotoxic effects of the compound. Three days later, 
percentages of transduced cells were quantified via automated microscopy. Numbers in brackets 
represent the average amount of cells per microscopy picture. Each data point represents an 
independent experiment.  

 

Consistent with our previous results, transduction efficiencies were enhanced in N2A 

cells by 2.5% DMSO, whereas the addition of only 1% DMSO was insufficient to 

enhance transduction rates (Figure 27A). The application of either 0.5 or 2 µM 

Doxorubicin resulted in even higher transduction rates, but was associated with a high 

rate of cell death as indicated with the numbers in brackets that represent the average 

amount of cells within an image. In contrast to published results in Hosel et al. (2017) 266, 

any treatment with Rapamycin consistently failed to enhance transduction rates in our 

experiments. Similar results were obtained in Huh7 cells, although the experiments were 

oversaturated with rAAV2 vectors and therefore need to be repeated with lower MOIs 

(Figure 27B). Also consistent with our previous results, addition of DMSO did not affect 

transduction rates but strongly inhibited Huh7 cells from proliferating. By contrast, the 
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addition of Doxorubicin resulted in major cell death, to an extent that only 54 from 600 

cells survived per microscopy picture on average. Moreover, the addition of Rapamycin 

resulted in decreasing numbers of transduced cells in repeated experiments.  

 

3.4.4. DMSO enhances rAAV/CRISPR delivery and gene editing  

Finally, we applied the DMSO method to increase transduction rates of rAAV vectors that 

expressed the CRISPR/Cas9 components. We hypothesized that an increased 

expression of CRISPR/Cas9 would lead to an enhanced targeted knock-out efficiency. 

To this end, we selected rAAV9A2 and rAAV5, which showed either increased 

transduction efficiencies or remained unaffected by DMSO in our previous reporter 

screen in N2A cells, respectively (Figure 24E). SaCas9 and an sgRNA targeting the 

mecp2 locus were packaged in these rAAV vectors N2A cells were transduced in the 

presence (dark blue bars) or absence (light blue bars) of 2.5 % DMSO in the 

transduction media (Figure 28). The addition of DMSO resulted in a 4- and 20-fold 

increase in knock-out efficiencies by the CRISPR/Cas9 system packaged in rAAV9A2 in 

T7 endonuclease assay and TIDE analysis, respectively (Figure 28A and B). Note that 

TIDE analyses provide a more reliable and quantitative method for the estimation of 

mutation rates 308, while T7 endonuclease assays offer a visual guidance through 

respective bands on an agarose gel. Although transduction by rAAV5 remained 

unaffected by DMSO in N2A cells in our previous screen, we observed a slight DMSO-

mediated increase in mutations rates via T7 assay and TIDE analysis. 

Furthermore, we investigated whether the DMSO-mediated increase in knock-out 

efficiencies originated from elevated viral uptake, which would be reflected in elevated 

amounts of viral copy numbers per cells (per diploid genome), or from an increased 

expression from the viral vectors. To this end, we extracted DNA and RNA from N2A 

cells that were treated with the same experimental design as previously and quantified 

viral copy numbers per cell via ddPCR and expression rates via qRT-PCR. Whereas 

N2A cells that were transduced with rAAV9A2 vectors harbored about 100 viral genomes 

per cell in the absence of DMSO, the addition of DMSO increased the amount about 4.5-

fold (Figure 28C). By contrast, rAAV5 generally showed a higher transduction rate, which 

was not affected by the presence or absence of DMSO. Surprisingly, the addition of 

DMSO induced an about 350-fold higher expression from the rAAV9A2 vector (Figure 

28D. The strong differences in expression could not be attributed to the 4.5-fold increase 

in viral uptake alone, but needed to arise from an additional DMSO-mediated effect on 
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viral expression. Accordingly, although viral copy numbers are not elevated in case of 

rAAV5, expression levels increased 15-fold by the addition of DMSO. Note that 

expression levels of the housekeeper were not affected by DMSO. 

 

 

Figure 28. DMSO enhances rAAV/CRISPR transduction and gene editing rates. 

N2A cells were transduced with either rAAV9A2 or rAAV5 that harbor SaCas9 and a sgRNA 
against the mecP2 locus on two separate vectors using an MOI of 105. The transduction media 
contained either no (light blue, w/o) or 2.5% (dark blue) DMSO. Three days later, cells were 
harvested and indel frequencies were quantified via T7 endonuclease assay (A) or TIDE analysis 
(B). Controls in A) and B) were transduced with Cas9 but no sgRNA. C) DNA was extracted and 
vector copy numbers per diploid genome (vcn/dg) were quantified via ddPCR by applying a 
primer/probe set against the SaCas9 transgene and against the Rpp30 house keeper D) SaCas9 
and E) sgRNA expression were quantified via RT-PCR using using a primer/probe set against the 
cDNA of SaCas9 or a SYBR-based approach with a primer set against the small sgRNA cDNA, 
respectively. In both cases, GAPDH expression was measured as reference and expression 
levels were normalized to the corresponding without DMSO condition. Controls in C) to E) were 
transduced with a YFP reporter instead of Cas9 and sgRNA. Error bars represent standard 
deviations of three independent experiments, with and without DMSO. Samples were compared 
by unpaired t-tests. n.s.=not significant, *<.05, **<.01, ***<.001, ****<.0001 
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We also investigated the expression of sgRNA in presence or absence of DMSO (Figure 

28E). However, due to strong secondary structures, it remained difficult to detect 

sgRNAs in a specific manner over background levels of controls. Thus, we were only 

able to detect high quantities of sgRNAs as in the case of rAAV9A2 expression in the 

presence of DMSO.  

 

3.5. Self-complementary and self-inactivating rAAV-splitCas9 vectors 

The use of chemical compounds to boost rAAV transduction is mainly restricted to cell 

culture, as their delivery in vivo in sufficient amounts is hardly possible without 

detrimental side effects. In order to increase transduction and expression efficiencies, we 

and many others use superior dsAAV vectors, which yield accelerated and enhanced 

transgene expression through an engineered double-stranded genome and are widely 

applied in in vivo experiments. In comparison with the ssAAV vector, the major 

disadvantage of dsAAV vector is its restricted transgenes packaging capacity of up to 2.4 

kb. To this end, this work utilized a splitCas9 system, which was previously invented 

during my M.Sc. thesis in the lab of Prof. Barbara Di Ventura and Prof. Roland Eils, that 

took advantage of the reduced sizes of each splitSaCas9 half and thus enabled the 

packaging as two independent dsAAV vectors.  

Briefly, the previously M.Sc. work described the design and construction of a small 

splitSaCas9 library consisting of three split sites in combination with the two trans-

splicing inteins (NpuDnaE and gp41-1), which has been evaluated for its capability to 

induce targeted mutagenesis in plasmid transfection experiments. In the same work, it 

has been shown that each splitSaCas9 half could be packaged as separate dsAAV 

vector and it has also been suggested that the expression by the superior dsAAV could 

improve SaCas9-mediated mutagenesis rates. However, a quantitative comparison 

between the dsAAV/splitSaCas9 system to conventional ssAAV/wtSaCas9 with purified 

and titrated rAAV vectors has been missing. For the presented work in this doctoral 

thesis, we selected the gp41-1-bearing splitSaCas9 version 3 and experimentally 

evaluated whether the enhanced expression of the splitSaCas9 system by dsAAV 

vectors indeed translates into enhanced mutagenesis rates that exceed the efficiency of 

conventional ssAAV/wtSaCas9 vectors.  
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3.5.1. Expression rates determine the efficiency of the splitSaCas9 system 

During this doctoral work, we wondered why in my previous work, efficiencies of the 

splitSaCas9 system compared to full-length SaCas9 had varied depending on the target 

cell line and promoter. We hypothesized that the efficiency of the splitSaCas9 system is 

dependent on the amount of its expression, as a high abundance increases the chance 

of the split halves to meet in the cell and thus perform the splicing reaction. To test this 

hypothesis, we transfected the full-length (fl-) and split (spl-) SaCas9 system in N2A cells 

and expressed the systems from either the mCMV, mMecp2 or mTK promoter (Figure 

29A). RT-PCR analysis of either the N- or the C-terminus of the full-length or split 

SaCas9 system by the mCMV, mMecp2 and mTK promoter revealed a strong, moderate 

and weak transcription, respectively (Figure 29B). Indeed, while knock-out efficiencies of 

fl-SaCas9 decreased slightly with weaker promoters, the splitSaCas9 system was 

strongly reduced in its efficiency (Figure 29C).  

 

Figure 29. SplitSaCas9 mutagenesis rates 

are determined by expression levels. 

A) Full-length Cas9 (blue) and splitSaCas9 
(green, Gp41-1-split 3) are expressed by the 
three minimal promoters, mCMV, mMecP2 or 
mTK. B) and C) N2A cells were transfected 
with either 150 ng full-length SaCas9 or 75 ng 
of each splitSaCas9 half (encoded on separate 
plasmids) and 50 ng plasmid-encoded sgRNA 
against the mecp2 locus. Three days later cells 
were harvested to perform further analysis. B) 
Quantification of RNA expression levels of N-
terminal (upper panel) and C-terminal (lower 
panel) SaCas9 expressed by either mCMV, 
mMecP2 or mTK promoter. Expression levels 
were normalized to the expression of GAPDH 
house keeper and mCMV promoter-driven fl-
SaCas9. Three independent experiments were 
performed. C) Quantification of T7 assays from 
three independent experiments and 
representative agarose gel. ctrl = Transfection 
of mCMV-SaCas9 without sgRNA. Error bars 
represent standard deviations of the mean.  
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3.5.2. SplitSaCas9 packaged in dsAAV outperforms the conventional system 

Next, we evaluated knock-out efficiencies of the splitSaCas9 system when packaged in 

dsAAV vectors (dsAAV-splitCas9) compared to the inherent full-length SaCas9 in ssAAV 

(ssAAV-flCas9). First, we (jointly with Daniel Heid in his B.Sc. thesis) investigated the 

different expression rates by ss versus dsAAV vectors using a CMV-mCherry reporter 

that we packaged in both vector types of capsid variant 9A2 (Supplementary Figure 4). 

Different cell lines were transduced with the reporters using MOIs ranging from 103 to 106 

and transduction rates were analyzed either 1.5, 2.5 or 4 days after transduction via flow 

cytometry. While HEK293T cells showed no differences in expression by ss versus 

dsAAV, Huh7 and HepG2 showed a moderate increase of about 3-fold when the dsAAV 

vectors were applied, and N2A cells showed a strong increase in transduction of about 

10-fold. Since N2A cells showed the highest differences in transduction between ss and 

dsAAV vectors, we used this cell line in our following experiments.  

Next, we packaged full-length SaCas9 in ssAAV and splitSaCas9 into two separate 

dsAAV vectors (Figure 30A). We provided an sgRNA targeting the mecp2 locus by a 

separate dsAAV vector. N2A cells and primary myoblasts were transduced with different 

MOIs ranging from 5x104 to 106 and 5x103 to 5x104, respectively, and were harvested 

either 2 or 5 days post-transduction for quantification of mutation rates at the mecp2 

locus by T7 endonuclease assay and TIDE analysis (Figure 30B and C). Indeed, we 

observed superior knock-out efficiencies for the dsAAV-splitSaCas9 system (ds-spl, 

green bars) compared to ssAAV-full-length SaCas9 (ss-fl, blue bars) at all MOIs and time 

points in N2A cells and primary myoblasts. In N2A cells, knock-out rates above 10 % 

were only observed in the case of the dsAAV-splitSaCas9 system even after an 

incubation of 5 days (Figure 30B). Only the dsAAV-splitSaCas9 system applied at the 

highest MOI of 106 yielded a decent knock-out rate of 30%. These results matched our 

findings in the previous reporter experiment (Supplementary Figure 4), which confirmed 

that efficient transduction of N2A cells is only possible with dsAAV vectors and very high 

MOIs. Note that we also tested the splitCas9 system packaged in ssAAV (ss-spl) in N2A 

cells, which failed to induce any mutations at all MOIs and time points in the T7 assay 

(Figure 30B, left panel). Also primary myoblasts showed enhanced knock-out efficiencies 

when the dsAAV-splitSaCas9 system was applied; however, with increasing MOIs and 

prolonged time points, differences between the systems became less pronounced 

(Figure 30C).   
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Figure 30. Enhanced gene editing rates by the dsAAV/splitSaCas9 system. 

A) Whereas the fl-SaCas9 (blue) is only compatible with ssAAV vectors (up to 5 kb), the reduced 
size of each split Cas9 half (green) allows its packaging in two individual dsAAV vectors (up to 2.2 
kb). To investigate whether the accelerated and increased expression by dsAAVs can enhance 
knock-out efficiencies of the split Cas9 system even beyond the knock-out efficiencies of fl-
SaCas9, the endogenous mecp2 locus was targeted in N2A cells and in primary mice myoblasts. 
(B) N2A cells and C) myoblasts were transduced with the ssAAV-flSaCas9 or dsAAV-splitCas9 
using rAAV9A2 and a mosaic mixture of rAAV1 and rAAV2 and an MOI of 105 and 106 or 5x103, 
104, and 5x104, respectively. Two and five days later cells were harvested for T7 endonuclease 
assay (left panel) and TIDE sequencing (right panel). Error bars indicate standard deviation of the 
mean of n=4 and n=3 experiments in N2A cells and primary myoblasts, respetively. Groups were 
compared by ANOVA and Bonferroni´s post-hoc test, n.s.=not significant, **<.01, ****<.0001 
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3.5.3. Split and self-inactivating rAAV-CRISPR systems 

Furthermore, we combined the splitSaCas9 system with a self-inactivating (SIN) 

approach, which was previously invented by Julia Fakhiri from our lab. In her PhD thesis 
294, Julia screened various sgRNAs against the SaCas9 transgene itself and showed in 

various vector combinations that the CRISPR/Cas9 system is able to self-inactivate after 

knock-out of a luciferase reporter on-target. Here, we applied this approach to the 

dsAAV-splitSaCas9 system in order to restrict its elevated SaCas9 expression after 

knock-out of an endogenous on-target and to prevent possible off-target effects by the 

lingering Cas9 endonuclease. To this end, the following systems were compared with 

one another using rAAV9A2 vectors (Figure 31A): 1.) The full-length SaCas9 was 

packaged as a ssAAV vector. The sgRNA that either targeted the endogenous mecp2 

locus or the integrated HBsAg locus (depending on target cell line) and an sgRNA 

against the N-terminal SaCas9 (SIN) were packaged in as additional dsAAV vector. The 

strong U6 and the weaker H1 promoter were used for the expression of the sgRNAs 

directed against the on-target locus and the SaCas9 transgene, respectively. 

Accordingly, the higher abundance of sgRNAs against the on-target was supposed to 

result in an initial fast process of targeted knock-out, whereas the less frequent sgRNA 

against SaCas9 was supposed to mediate a slower self-inactivation process. 2.) For the 

splitSaCas9 system, each split half was produced as a separate dsAAV vector. The 

applied gp41-1-bearing split version 3 is asymmetrically divided into two parts, insofar 

that the smaller C-terminal SaCas9 construct leaves enough space for an additional H1-

driven sgRNA cassette targeting the N-terminal SaCas9. A separate dsAAV vector 

provided the sgRNA targeting either the endogenous mecp2 locus or an integrated 

HBsAg locus. 3.) Since the size of both split SaCas9 halves nearly reaches the limit of 

the dsAAV transgene capacity, the H1 promoter-driven sgRNA expression cassette 

could also be incorporated in the same dsAAV vector as the U6 promoter-driven sgRNA 

against the on-target. Note that the sgRNA against the endogeneous mecp2 locus was 

used in transduction experiments with N2A cells and the sgRNA against the HBsAg was 

applied in transductions of Huh7-hNTCP-HB2.7 cells that harbored a stably integrated 

HBsAg. Furthermore, the sgRNA against the N-terminal SaCas9 transgene (gCas9 or 

gC) was also substituted with a scrambled sgRNA version (gscr) in order to investigate 

the levels of self-inactivation. N2A cells (Figure 31B) and Huh7-hNTCP-HB2.7 cells 

(Figure 31C) were transduced with the described conditions 1.) to 3.) and analyzed for 

targeted knock-out efficiency via T7 assay and ability to self-inactivate via Western 

blotting three days after transduction.  
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Figure 31. Split and self-inactivating rAAV/CRISPR vectors.  

A) Two versions of the dsAAV/splitSaCas9 & SIN system (conditions 2 and 3, one gray and one 
white ITR indicates dsAAV vectors) were compared to a conventional ssAAV/fl-SaCas9 & SIN 
system (condition 1, two white ITRs indicate ssAAV vectors).  In order to evaluate the effect of the 
SIN approach, the sgRNA directed against the N-terminal SaCas9 (gC, violet star indicates the 
sgRNA target site) were also substituted with a scrambled version (gscr). B) N2A and C) Huh7-
hNTCP-HB2.7 cells were transduced with the conditions 1.) to 3.) using an MOI of 5x105 and 104 
of each component, respectively, and analyzed for its on-target activity via T7 assay (upper 
panels) and for its self-inactivation via Western Blot (lower panels) three days post-transduction. 
Results were obtained jointly with Nikolay Sergeev (practical student).  
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the Western blot, expression of SaCas9 was detectable for both dsAAV-splitSaCas9 

systems in N2A cells, but barely for the ssAAV-full-length SaCas9 (Figure 31B, lower 

panel). Along these lines, the expression of SaCas9 correlated with the targeted knock-

out efficiency of the mecp2 locus, as the split system in condition 3.) showed the 

strongest SaCas9 expression and mecp2 knock-out. Vectors that expressed the sgRNA 

against SaCas9 (gC) showed a reduced SaCas9 expression compared to rAAV vectors 

that expressed the scrambled variant (scr). In fact, SaCas9 expression by the dsAAV-

splitSaCas9 system in condition 2.) could be reduced to undetectable levels by the 

sgRNA against SaCas9. The use of either gC or scr variant showed no effect on the on-

target knock-out rate in the T7 assay.  

However, the results differ for experiments in Huh7-hNTCP-HB2.7 cells, where rAAV 

vectors in conditions 1.) to 3.) were applied to target the integrated HBsAg locus (Figure 

31C). First of all, we did not observe a benefit of the dsAAV-splitSaCas9 system in 

knock-out efficiencies of the HBsAg locus in Huh7-hNTCP-HB2.7 cells in repeated 

experiments (Figure 31C, upper panel). Accordingly, the dsAAV vectors did not mediate 

stronger expression of the split halves (Figure 31C, lower panel). Nevertheless, self-

inactivation by the addition of the sgRNA against SaCas9 (gC) successfully reduced 

SaCas9 expression to undetectable levels in the Western blot, without affecting targeted 

knock-out efficiencies of the HBsAg.  

 

3.5.4. Evaluation of split and self-inactivating dsAAV-CRISPR vector in vivo 

We tested the dsAAV/splitSaCas9 system in combination with the SIN approach also in 

a pilot in vivo study in order to evaluate the full potential of our system. To this end, full-

length/SIN and split/SIN SaCas9 vectors were produced as ssAAV and dsAAV vectors, 

respectively, following a similar approach as in the previous cell culture experiments. 

Yet, this experimental layout slightly deviated as we directed the CRISPR system against 

the KS-Luciferase reporter that was already applied in our former in vivo experiments 

(Figure 21). Thus, instead of including the sgRNA against an endogeneous target, the 

KS-luciferase reporter carried its own sgRNA. Again, we tested three conditions 

including 1.) the full-length SaCas9 system in ssAAV with the SIN expression cassette 

on a separate dsAAV, 2.) the splitSaCas9 system in two independent dsAAV and the 

SIN expression cassette as part of the C-terminal SaCas9 vector, and 3.) splitSaCas9 

and SIN expression cassette in a total of three independent dsAAV vectors (Figure 32A). 

All vectors were packaged in rAAV8 and each CRISPR vector and the KS-luciferase 
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vector were co-injected into mice. Mice were sacrificed 15 days post-injection and DNA, 

RNA and proteins were extracted from liver pieces for further quantifications.  

The dsAAV/splitSaCas9 systems (conditions 2. and 3.) outperformed the conventional 

ssAAV/flSaCas9 (condition 1), as evidenced by the stronger reduction of luciferase 

signal (Figure 32B) and a higher mutation rate at the luciferase on-target site (Figure 

32C). Importantly, the assays performed in Figure 32B and C only evaluated the 

performance of the CRISPR vectors on the luciferase on-target, but did not assess Cas9 

self-inactivation. Accordingly, ideally, we expected no differences between groups 

harboring a sgRNA against Cas9 (gC) or a scrambled version (scr). The enhanced gene 

editing efficiencies of the dsAAV/splitSaCas9 systems were accompanied by about 2-

fold (condition 3) and 3-fold (condition 2) higher vector copy numbers per cell (Figure 

32C), indicating improved in vivo dsAAV vector stability as reported in literature 255. In 

addition, SaCas9 mRNA levels were strongly increased for the dsAAV/splitSaCas9 

system (Figure 32D). Interestingly, groups that harbored the sgRNA against the SaCas9 

transgene (gC) showed decreased SaCas9 mRNA levels, when compared to their 

scrambled (scr) counterpart, indicating that SaCas9 was indeed self-inactivated. We 

were able to confirm an efficient reduction of SaCas9 protein via Western blot for the 

ssAAV/flSaCas9 and dsAAV/splitSaCas9 systems in conditions including the SIN 

approach (data from Julia Fakhiri, not shown).   
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Figure 32. Evaluation of dsAAV/ split and SIN SaCas9 vector in mice liver. 

A) The different SaCas9 systems were packaged into either ssAAV or dsAAV of serotype 8, as 
indicated in condition 1.) to 3.). and co-injected with 8x1011 viral particles of each CRISPR vector 
and 1.5 x1011 viral particles of rAAV8-(KS) Luciferase into the tail vein of female NMRI mice (6 
weeks old). B) Measurements of Firefly luciferase signal in relative light units (RLU) from liver 
pieces. C) DNA was extracted from the liver and mutagenesis rates of the Luciferase target site 
were quantified via ddPCR by multiplexing a primer/probe set against the target site and a 
reference site within the luciferase transgene. D) Vector copy numbers were quantified via ddPCR 
by multiplexing a primer/probe set against N-terminal SaCas9 and the Rpp30 house keeper gene. 
E) RNA was extracted from liver pieces and the amount of N-terminal SaCas9 cDNA was 
quantified via qRT-PCR and normalized to the GAPDH house keeper. B) to E) Control mice were 
injected with all vectors of condition 2.) but with dsAAV-mCherry instead of an N-terminal 
splitSaCas9 half (orange). Each data point represents the measurements from an individual 
mouse. Results were acquired jointly with Julia Fakhiri and Nikolay Sergeev.  
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3.6. An engineered AcrX variant to inhibit the CRISPR/Cas9 system 

from Staphylococcus aureus 

We wanted to go one step further towards safer applications of the CRISPR/Cas9 

system from Staphylococcus aureus by the use of anti-CRISPR proteins. However, at 

that time no inhibitors were available that efficiently inhibited the SaCas9 ortholog. Our 

collaborator Dominik Niopek (University Hospital Heidelberg) speculated that AcrIIC1, a 

natural inhibitor of the NmeCas9, might represent an ideal starting point to engineer an 

artificial SaCas9 inhibitor, as the structural arrangements of both HNH domains (the 

binding site of AcrIIC1 on NmeCas9) shared high similarities, although the sequence 

identity reached only 33.7 %. Previous in vitro data suggested that AcrIIC1 fails to inhibit 

SaCas9 function 309. Nevertheless, Dominik Niopek asked me to reproduce these 

findings in cell culture and indeed we encountered a very weak but reproducible SaCas9 

inhibition in our own experiments (data not shown).  

Thus, Dominik Niopek initiated a collaboration with the lab of Bruno Correia (Swiss 

Federal Institute of Technology Lausanne) to develop an engineered AcrIIC1 variant with 

improved interaction of the inhibitor on the SaCas9 HNH domain. Bruno Correia and his 

lab established a structural model that pointed to two regions in SaCas9 with suboptimal 

contacts to the corresponding AcrIIC1 residues. By performing in silico mutagenesis of 

these regions using Rosetta design 310, they provided the Niopek lab with different 

mutations in AcrIIC1 that could, based on their model, improve binding to SaCas9 HNH 

domain. Supported by Sabine Aschenbrenner (technician in the Niopek lab), we first 

cloned and evaluated these single point mutations for their functionality to inhibit SaCas9 

activity and then iteratively combined the most promising variants in subsequent 

screening rounds. Note that the results presented here were published in Mathony, 

Harteveld & Schmelas et al. (2020) 311. 

 

3.6.1. Iterative screening rounds towards an artificial SaCas9 inhibitor 

We first evaluated the predicted single AcrIIC1 mutants for their potency to inhibit 

SaCas9 at the emx locus by co-transfecting HEK293T cells with a plasmid that harbored 

the SaCas9 and sgRNA and a separate plasmid containing the indicated inhibitor 

mutants (Figure 33A). After my first screening round of the mutants with single point 

mutations, Dominik Niopek had the impression that the substitution of specific amino 
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acid residues indeed improved SaCas9 inhibition (AcrIIC1 residues N2, D14, K46, A47, 

Figure 33B).  

 

Figure 33. Iterative screening of computationally designed AcrIIC1 mutants. 

A) HEK 293T cells were co-transfected in a 96-well plate format with SaCas9, a sgRNA targeting 
the EMX locus and either AcrIIC1 wild-type or the indicated AcrIIC1 mutant with a total amount of 
200 ng and three days later harvested for analysis via T7 assay. B) The Acr:SaCas9 vector ratio 
varied from 4:1 to 2:1 for each round of selection and increasing inhibition potency. In the first 
panel, computationally predicted single mutations were tested and in the second panel the pair-
wise combination of single mutations that were as good as or better than the AcrIIC1 wild-type 
were validated. In the third panel, mutation A47I was added to the two best double mutants and 
compared to the lead candidates of previous selection rounds. The triple mutant N2F, D14Q, A47I 
was termed AcrX. Representative T7 gel images and corresponding quantifications of indel 
frequencies are shown. Dotted lines indicate the editing frequency in the presence of wild-type 
AcrIIC1. Neg, negative control (Cas9 only). Pos, positive control (Cas9 + sgRNA). Results were 
published in 311. 
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Thus, he asked me to further combine the best performing residue substitutions to 

double mutants and subsequent triple mutants and to perform the second and third 

screening round (clonings were performed jointly with Sabine Aschenbrenner). Indeed, 

the performance of the Acr mutants increased with the selection rounds (Figure 33B). 

We decreased the Acr:SaCas9 ratio with each screening round to better resolve the 

performance of improved candidates. The triple mutant N2F, D14Q, A47I that we 

referred to as AcrX achieved a near-complete inhibition of SaCas9. The addition of a 

fourth mutation did not further improve the mutant (data not shown).   

 

3.6.2. AcrX efficiently inhibits SaCas9-mediated gene editing 

Next, Dominik Niopek instructed me to evaluate the performance of the AcrX inhibitor on 

SaCas9 in detail at various genomic loci, including the emx, grin2B and hbb locus, via T7 

endonuclease assay (Figure 34A) and TIDE analysis (Figure 34B). The AcrIIC1 wt 

inhibitor reduced SaCas9 knock-out activities to about 50% of the positive controls over 

all tested loci. By contrast, the engineered AcrX inhibitor efficiently suppressed SaCas9 

genome editing to undetectable levels at all tested loci in T7 endonuclease assays and 

TIDE analyses, showing a highly improved inhibition as compared to its parental AcrIIC1.   

Importantly, while data obtained by T7 endonuclease assays and TIDE analyses from 

the same samples revealed the same overall tendencies that confirmed the improved 

inhibition of AcrX, TIDE analyses showed an overall higher indel frequency for positive 

controls and less pronounced differences in SaCas9 inhibition of AcrIIC1 and AcrX.   
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Figure 34. Validation of SaCas9 inhibition by AcrX. 

HEK293T cells were co-transfected with SaCas9, an sgRNA targeting either the emx, grin2B or 
hbb locus and AcrIIC1 wild-type or AcrX using the indicated ratio of inhibitor:SaCas9 and total 
DNA of 200 ng in a 96-well plate scale. Positive controls (pos) were co-transfected with stuffer 
DNA instead of inhibitor and negative controls (neg) were only transfected with SaCas9. Three 
days later, cells were lysed and analyzed via T7 endonuclease assay (A) or TIDE sequencing (B). 
Each data point represents an independent experiment. Samples were compared via ANOVA and 
Bonferroni´s multiple comparison test, *<.05, **<.01, ***<.001, ****<.0001. Results were published 
in 311. 
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3.6.3. The SaCas9-ON switch for hepatocyte-specific gene editing 

Finally, to demonstrate the potential of AcrX to restrict SaCas9 activity to selected cell 

types, we made use of a miRNA-mediated Cas-ON switch and harnessed the 

hepatocyte-specific expression of miR-122 203. To this end, the lab of Dominik Niopek 

introduced miR-122 binding sites in the 3´ UTR of the AcrX transgene. Upon co-delivery 

of the miRNA-dependent AcrX and the CRISPR/Cas9 system, the expression of AcrX 

was supposed to be knocked down by the RNAi machinery specifically in hepatocytes, 

thereby permitting SaCas9 to be active. However, in off-target cells that do not express 

miR-122, the inhibitor was supposed to remain active and SaCas9 switched off.  

 

 

Figure 35. AcrX can be applied for cell-type-specific activation of SaCas9. 

A) SaCas9 with sgRNA targeting the emx locus and AcrIIC1 or AcrX, both with miR122 binding 
site (bs) or scaffold (sc) in the 3´ UTR were packaged into AAV2. B) Huh7 cells (left, on-target) 
and HEK293T cells (right, off-target) were transduced with the indicated rAAV vectors using an 
MOI of 2.5x105 for SaCas9 and 105 for the corresponding inhibitor. Three days later, cells were 
lysed and analyzed via T7 endonuclease assay. neg.= negative control of SaCas9 without 
sgRNA, pos.=positive control of SaCas9 with CMV-YFP instead of inhibitor. Each data point 
represents an independent experiment. Samples were compared via ANOVA and Bonferroni´s 
multiple comparison test. n.s.= not significant, ****<.0001.  
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Our lab produced the different components of the Cas-ON system, such as SaCas9 and 

an sgRNA targeting the emx locus, as well as AcrIIC1 or AcrX with either a miR-122 

binding site (bs) or a miRNA-independent scaffold (sc), as rAAV2 vectors (Figure 35A). 

Subsequently, we transduced Huh7 cells that express miR-122 (on-target cell line) and 

HEK293T cells that do not express miR-122 (off-target cell line) with the rAAV vectors 

and harvested the cells for quantification of editing rates on the emx locus via T7 

endonuclease assay (Figure 35B). In Huh7 cells, both inhibitors were successfully 

knocked down in a miR-122 binding site-dependent manner, as indicated by the 

presence of gene editing events. Inhibitors with scaffold instead of mir-122 binding site 

remained present within Huh7 cells and successfully repressed SaCas9 activity. 

CRISPR/Cas9-mediated editing was observed only in the presence of AcrIIC1 and AcrX 

with miR-122 binding site, whereas Acrs with scaffolds inhibited SaCas9 activity. 

Importantly, in HEK293T cells, inhibitors were not down-regulated by miR-122 binding 

and only the AcrX inhibitor, but not AcrIIC1, efficiently inhibited editing in the off-target 

cell line. These results demonstrate that AcrX, but not AcrIIC1 can be used to implement 

the Cas-ON switch for SaCas9 and restrict its activity to target cells.   
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4. DISCUSSION 

The field of gene and cell therapy has been experiencing major breakthroughs in the 

development of novel treatments to cure hitherto untreatable diseases. On the one hand, 

over 120 clinical trials 312 illustrate the enormous safety and efficacy of rAAV vectors in 

human patients that culminated in the market authorization of Glybera, Luxturna and 

Zolgensma. On the other hand, equally encouraging developments have recently been 

made in the field of RNA interference- and CRISPR-based gene editing, two powerful 

and highly complementary technologies that can be applied to modulate gene 

expression and function in mammalian cell cultures and in vivo. RNAi-based treatments 

are under investigation in over 30 clinical trials 313, including three on chronic hepatitis B 

(NCT03672188, NCT03365947, NCT02631096). In addition, the FDA approved Onpattro 

in 2018 314, the first siRNA-based medication against hereditary transthyretin-mediated 

amyloidosis, a rare disease that leads to fatal polyneuropathies. Even more striking are 

the rapid developments in the CRISPR/Cas9 field that led to several clinical trials within 

less than a decade and aim to treat blood cancers and other blood disorders in ex vivo 

therapies 164. Furthermore, one in vivo clinical trial aims to treat LCA, an inherited 

disease causing blindness, by rAAV5-mediated delivery and expression of the 

CRISPR/Cas9 components (NCT03872479). 

The combination of these powerful technologies provides a comprehensive tool kit that 

enables therapies to replace, silence and edit malfunctioning genes and whose scope 

can readily be expanded towards many diseases for which these technologies could 

provide therapeutical benefit. This, in turn, requires further technological advances to 

obtain more potent and safer modalities, which altogether initiated the study and fueled 

the research objectives presented here.  

4.1. Current strategies to multiplex small RNAs  

In this study, we aimed to validate and apply a new generation of rAAV vectors that has 

previously been established in the lab and that enables the combined application of 

RNAi and CRISPR/Cas9. So far, numerous studies have reported different strategies to 

co-express several shRNAs in the same cell, a concept termed combinatorial RNAi or 

"coRNAi", to either regulate several genes concurrently or to combat infectious diseases 

in a multi-hit attack 136. A similar concept was applied for CRISPR/Cas9 that allows the 

co-expression, also referred to as “multiplexing”, of several sgRNAs and the concurrent 

targeting of multiple genes 175. An abundance of studies highlight the benefit of targeting 



PhD thesis, Carolin Schmelas 

123 
 

infectious diseases with several RNAi or CRISPR triggers in order to increase efficiency 

and counteract viral escape 136; 137; 142; 143; 315; 316. While Leonard and Schaffer (2005) 

predicted the need of four shRNAs or siRNAs to efficiently inhibit HIV without the 

occurance of escape mutants 317, the number of small RNAs remains undetermined that 

are needed to achieve this goal for other viral infections. For HBV, it was reported that 

the expression of a single sgRNA resulted in error-prone repair of the target site 318; 319, 

whereas a dual guided CRISPR system achieved a complete eradication of cccDNA 320.  

In principle, small RNAs could be multiplexed or co-expressed in the same target cell by 

various strategies. One strategy aims to co-express several small RNAs by a single long 

transcript, which is further processed by enzymes to segregate the individual small RNA 

triggers. This approach was realized for the multiplexed expression of sgRNAs by a 

single promoter and the use of the Csy4 RNA endonuclease 321; 322, an enzyme that 

processes crRNA arrays in its natural context 323. However, this strategy requires Csy4 

co-delivery in addition to the large Cas9 endonuclease. Also the endogenous tRNA-

processing machinery 324-326 or ribozymes 322; 326-328 were employed to trigger processing 

of the single long transcript into multiple sgRNAs, but involve further endogenous 

pathways that might overwhelm the cell machinery and could be associated with toxicity. 

An exiting recent discovery extending this strategy is Cas12a (also referred to as Cpf1), 

an orthologous CRISPR systems that harbors an inherent RNase activity and can thus 

process its own pre-crRNA array into multiple guide RNAs, which are sufficient to induce 

DSBs at designated DNA targets 329; 330.  

Similarly, several approaches were invented to co-express multiple RNAi triggers on a 

single long transcript, including extended 331 and long 332; 333 shRNAs that are processed 

to give rise to two or more small RNAs and the use of miRNA polycistrons with 

embedded siRNA sequences that are further processed and released by Drosha as 

miRNA-based shRNAs 334-337. The overall advantage of these approaches is the 

expression of several small RNAs by a single promoter that reduces the required 

sequence space and thus facilitates the packaging in rAAV vectors.  

However, most studies in the field of gene and cell therapy apply another strategy and 

co-express either sgRNAs or shRNAs from individual promoters, as it represents a 

straightforward and more flexible strategy. Other advantages include the clear definition 

of the expression products that are free from any further processing signals that might 

interfere with their targeting capability, as well as the availability of several RNA 

polymerase III promoters, such as the U6, H1 or 7SK promoters that exhibit different 

expression strengths and thus allow for the modulation of RNA expression levels. In 
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spite of numerous studies that co-expressed several RNA triggers for RNAi or CRISPR, 

our lab has previously recognized two gaps that we have aimed to bridge. Firstly, the 

research field was missing a experimental comparison between different strategies to 

multiplex small RNAs and, secondly, a flexible cloning strategy was lacking that allows 

the co-expression of shRNAs and sgRNAs on a single rAAV vector. For this reason, our 

lab (Florian Schmidt, B.Sc. thesis) has designed and validated the TRISPR system that 

resolves these concerns and that has already been applied successfully in several 

collaborations from our lab, including for combinatorial expression of shRNAs against the 

cellular adaptor protein 1 338, or of sgRNAs to induce exon skipping in a mutated 

dystrophin gene 339, or, most recently, to foster AAV vector self-linearization and 

enhanced gene repair in liver cells through co-expression of two sgRNAs 340.        

 

4.1.1. Multiplexing of small RNAs in rAAV vectors 

In this study, we harnessed the TRISPR system and thoroughly extended our previous 

comparison of this toolbox to commonly used approaches to co-express small RNAs 

from rAAV vectors to the context of HBV infections. To this end, we selected three 

sgRNAs that have previously been evaluated for their capability to knock out the HBsAg 

(Figure 16) and that served as representatives of small RNAs in general. In line with and 

expanding prior TRISPR validation work from our lab, we tested three alternative 

strategies to co-express these sgRNAs from rAAV vectors (Figure 15), including i) the 

separate production and subsequent “mixing” of each individual vector, ii) the “pooled” 

production of these vectors in the same dish, and iii) the juxtaposition of the three sgRNA 

expression cassettes on the same rAAV vector via TRISPR. Whereas approach i) and ii) 

might be associated with less preceding cloning effort (as they only require the insertion 

of appropriate oligonucleotides in separate rAAV vectors), they come with fundamental 

drawbacks. The premises for approach i) and ii) are a robust transduction of targeted 

cells and a homogenous expression of all vectors, to ensure that all target loci are hit 

within a single cell. In particular in hard-to-transfect/-transduce cells, a variable 

expression of sgRNAs may result in low reproducibility. Furthermore, as a consequence 

of co-packaging several genomes in a single pooled rAAV production (approach ii), there 

may be varying proportions of each vector in the final product. Although Doerfler et al. 

(2014) 341 reported that it was possible to retain the predicted AAV output ratios related 

to a pooled plasmid input that was used to produce these vectors by transfection, we are 

concerned that in other instances this coherency is not guaranteed. Indeed, recent data 
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suggests a detrimental influence of small RNA hairpins encoded on rAAV vectors on 

packaging efficiencies and particle integrity 342 that might perturb the proportions of 

sgRNAs and shRNAs expressing vectors in pooled productions. In our experiments, we 

observed that approach i) and ii) are clearly inferior strategies to multiplex small RNA 

expression cassettes (Figure 17), congruent with our initial notions (Florian Schmidt, BSc 

thesis) and probably because of the aforementioned reasons. Indeed, TRISPR is the 

most convenient and efficient strategy to multiplex RNA expression cassettes, as it 

requires the production of only a single rAAV vector and significantly outperforms the 

other strategies in knocking out HBsAg.  

 

4.1.2. The TRISPR toolbox 

Before the implementation of the TRISPR system by our lab, straightforward strategies 

to juxtapose either sgRNA or shRNA expression cassettes on a single construct were 

only realized through plasmid transfection 343-346 or in a lentiviral context 347. Accordingly, 

prior to TRISPR, such a tool kit was missing for multiplexing approaches in the context of 

rAAV vectors that are currently among the most important in vivo delivery vehicles in the 

field of gene and cell therapy. TRISPR filled in this gap by providing all necessary DNA 

templates and step-by-step instructions to rapidly juxtapose three small RNA expression 

cassettes on a single rAAV vector (Figure 13). Moreover, in contrast to the other 

strategies, TRISPR is the first toolbox that facilitates the assembly of sgRNAs, 

compatible with the orthologous CRISPR systems of S. pyogenes and S. aureus, and 

shRNAs on the same vector in any possible permutation. Although the current version of 

the TRISPR toolbox permits the concatamerization of solely three small RNA expression 

cassettes in a predefined configuration (U6, H1 and 7SK promoter-driven expression 

cassette), it still leaves enough room for customization. Firstly, the expression of small 

RNAs by the three different promoters allows for the modulation of their expression 

levels, with the U6 promoter mediating the strongest expression 348, followed by the 7SK 

and H1promoter. Secondly, these expression cassettes could be exchanged or extended 

with any other desired promoters by the simple creation of additional donor plasmids for 

the assembly of the final rAAV recipient plasmid via Golden Gate cloning, as long as the 

final size remains within the dsAAV vector capacity of 2.4 kb. Encouraged by our findings 

that emphasized TRISPR as a powerful and flexible approach to co-express several 

small RNAs in the same cell, we set out to apply a combined knock-down and knock-out 

strategy to tackle HBV infections on mRNA and cccDNA. 



PhD thesis, Carolin Schmelas 
 

126 
 
 

4.2. A combinatorial knock-down/ knock-out approach to tackle HBV 

infections 

Currently available medication to treat chronic hepatitis B control viremia and reduce 

liver inflammation, but barely affect cccDNA levels or antigen expression and thus fail to 

resolve viral persistence. Thus, this study has evaluated an approach that aims to 

directly combat viral antigen expression and cccDNA persistence by a combinatorial 

knock-down and knock-out strategy. Our lab has previously reported that HBV replication 

could be efficiently inhibited in vitro and in vivo by HBV-targeting shRNAs in relevant cell 

culture systems and in HBV-transgenic mice 163. The most potent shRNA (shHBV7) was 

targeting the X antigen region that is part of the 3´ UTR of every viral transcript and thus 

efficiently reduces the expression of all viral antigens. Here, we extended this approach 

by the addition of the CRISPR/Cas9 system that is able to not only inhibit antigen 

expression but can also directly attack the HBV cccDNA. An advantage of both 

technologies is their compatibility with rAAV vectors that enables an efficient and specific 

delivery of the required components in the liver of mice. Importantly, the rAAV vector 

specificity towards the liver can be further improved by molecular engineering and 

directed evolution of the rAAV capsid 249. Furthermore, it has been reported that HBV 

serves as a helpervirus and facilitates nuclear transport and gene expression of rAAV 

vectors, thus providing a selectivity advantage towards HBV-infected hepatocytes 349. 

Hence, a combination of RNAi, CRISPR/Cas9 and rAAV vectors would be highly 

favorable in the combat against HBV infection. 

 

4.2.1. Knock-out of large surface antigen increases HBsAg secretion and 

releases ER stress 

In this doctoral work, we first set out to target the HBV surface antigen via CRISPR/Cas9 

(Figure 16) and noticed a complex interplay of small and large antigens. While targeting 

of the small HBsAg resulted in the expected decrease of secreted antigens, sgRNAs 

directed against the large HBsAg elevated antigen levels in the supernatant. 

Nonetheless, the higher amounts of surface antigens translated to lower quantities of 

infectious progeny HDV (Figure 23), implying that the L-HBsAg, which is essential for 

HBV and HDV infectivity, was indeed lacking. While a number of studies reported the 

correlation between L-HBsAg overexpression and reduced antigen secretion 22; 350; 351, to 

our knowledge, we are the first to observe that CRISPR-mediated knock-out of the large 

antigen in turn elevates antigen secretion. 
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In the course of chronic hepatitis B, some patients develop HBV mutants that contain 

deletions in the surface antigens and circulate in the serum as predominant species 352-

355. One class of such mutants develops in-frame deletions in the preS1 region that is 

unique to the large surface protein and overlaps with the S promoter of the middle and 

small variants. These mutants give rise to increased amounts of preS1 transcripts and 

thus L-proteins and decreased amounts of S transcripts and consecutive M- and S- 

proteins. While the small surface antigen can self-assemble into nucleocapsid-free 

subviral particles that are secreted from the cell, the L- and M- variants are not secreted 

when expressed alone 356. As a consequence of increased L-HBsAg production, the 

surface antigen variants are trapped in insoluble particles or compartments in the cytosol 
22; 350; 352. Hepatocytes that are overexpressing the large surface antigen can turn into so-

called ground glass cells 357, which die spontaneously and react very sensitively to 

gamma interferon, thus contributing to immunologically induced liver cirrhosis and 

hepatocellular carcinogenesis 22; 358; 359. Although less SVPs are secreted in the serum, 

these mutants maintain their capability to release DNA-containing virions at a slightly 

higher rate than wt HBV 352. Furthermore, these mutants might be able to evade the host 

immune system, which explains their appearance as the major viral species.  

Accordingly, sgRNAs directed against the large surface antigen could help to reduce 

intracellular accumulation of HBsAgs and reduce the stress that is imposed on the ER 

and associated with cell death and HCC 360. Thus, in our experiments on HBV/HDV 

infections (Figure 23), which are further discussed in section 4.3, we made use of the 

anti-L-HBsAg sgRNA 3 to greatly improve our combinatorial knock-out/ knock-down 

approach. 

 

4.2.2. Targeting HBV via RNAi and CRISPR/Cas9 

Whereas HBV is a well-established target for RNAi and CRISPR/Cas9 in vitro and in vivo 

(Supplementary Table 1)361, only a single study has so far applied a combinatorial 

approach 362. Wang et al. (2017) designed a single expression cassette with an anti-HBV 

pri-miRNA between two anti-HBV sgRNAs that resulted in the expression of an sgRNA-

miRNA-sgRNA ternary transcript. This transcript was further processed by Drosha and 

DGCR8 in the RNAi pathway, which led to the separation of the three small RNAs 

resulting in a synergistic effect on HBV replication inhibition and cccDNA elimination. 

From a vector and gene therapy standpoint, this approach seems rather complex and 

difficult to adjust to further designated targets. In contrast, the conventional RNAi and 
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CRISPR approaches, which comprise the expression of each small RNA by their 

respective RNA polymerase III promoter, were tested frequently and in numerous model 

organisms.  

Importantly, we issue a note of caution about possible toxic side effects by the 

overexpression of RNAi triggers that can arise from an oversaturation of the RNAi 

machinery and an associated dysregulation of endogenous pathways 144-148. To 

counteract these effects, we deliberately scaled down our TRISPR approach to the use 

of only a single shRNA and relied on the combination with two additional sgRNAs to 

tackle HBV. In our first experiment, the two employed sgRNAs were directed against the 

X and surface antigens and juxtaposed with shHBV7, to target cccDNA and mRNA of 

infectious HBV in HepG2-hNTCP cells (Figure 18A and B). In order to investigate the 

influence of each small RNA trigger or their combinations, we also substituted each 

position with control RNAs in any possible permutation. Indeed, we measured a 

reduction of secreted HBs and HBeAg levels in all samples that were transduced with at 

least one targeting small RNA, indicating that all RNAs were independently expressed 

and functional (Figure 18C and D). As hoped for, we observed the anticipated additive 

effect on the inhibition of antigen expression by the co-expression of two sgRNAs or the 

combination with shHBV7. Vectors that expressed the shRNA overall outperformed all 

other constructs and mediated a reduction in antigen expression to detection limits. 

Thus, the synergistic effect of a combined RNAi and CRISPR approach was difficult to 

confirm in this assay. Nevertheless, we argue for a beneficial synergy of the RNAi and 

CRISPR/Cas9 approaches, as they tackle HBV on different levels and mediate either a 

transient effect on antigen expression or irreversible mutations and eradication of 

cccDNA, respectively. Long-term experiments that include the passaging of the HBV-

infected cells and further experimental readouts on the cccDNA and pgRNA levels are 

required to unveil the differential effects of the two technologies on HBV.  

 

4.2.3. TuD RNAs in multiplexing approaches enhance RNAi safety profiles 

Another hurdle of the RNAi technology are off-target effects that impact the expression of 

unintended genes. In this study, we counteracted off-targeting from loading of the shRNA 

passenger strand in RISC by the use of “tough decoy” or “TuD” RNAs. TuD RNAs 

basically consist of two shRNA antisense strands and act as sponges to restrict the 

amount of free sense/passenger strands that might otherwise be employed by Ago2 and 

mediate off-targeting. In a collaborative effort, our lab previously validated TuD RNAs in 
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the context of RNAi-mediated targeting of HCV 162 and HBV 163 infections. In HBV-

transgenic mice, the use of TuD RNAs neutralized the unintended off-target activity of 

the passenger strand and even increased the desired antiviral effect of the shHBV7. As 

the current version of the TRISPR toolbox allows for the concatamerization of exactly 

three small RNAs, we further extended the combined RNAi/CRISPR approach with TuD 

RNAs to counteract unwanted shRNA passenger strand activity and to avoid further side 

effects. 

In our next experiment, we extended this combinatorial approach by replacing the 

second small RNA cassette with a H1 promoter-driven TuD RNA that corresponds to 

shHBV7 (Figure 19B). Consistent with our previous findings, the expression of either 

sgRNA or shRNA reduced the levels of secreted antigens and the RNAi approach 

generally outperformed CRISPR/Cas9 in this assay (Figure 19C and D). In contrast to 

the abovementioned literature, we did not observe any beneficial effect of TuD RNAs on 

the shRNA on-target performance. We further evaluated the TuD RNA ability to inhibit 

passenger strand-mediated off-targeting in a luciferase reporter assay (Figure 20A). 

Indeed, we observed a substantial amount of unintended luciferase knock-down through 

the passenger/sense strand when a sense-strand binding site was included in the 3´UTR 

of the luciferase transgene (Figure 20B). In contrast to our expectations, TRISPR 

constructs that expressed TuD RNAs showed similar reductions in luciferase signals as 

constructs with scrambled TuD RNA controls. Thus, in this experimental setting, the TuD 

RNAs were insufficient to restrict the abundance of free sense strands and to avoid off-

target activity caused by the passenger strand. We therefore further evaluated whether 

functionality of TuD RNAs can be restored if they prevail in numbers compared to the 

shRNA within the cells. Thus, we expressed shHBV7 by the weak H1 promoter and the 

TuD RNA by either the H1 or U6 promoter (Figure 20C). Indeed, lowering the abundance 

of shHBV7 allowed the TuD RNAs to restrict off-targeting by the passenger strands, 

while maintaining an overall efficient on-target activity. In conclusion, we recommend a 

low and steady expression of RNAi triggers in general, which would help to decrease 

cytotoxicity, limit off-target effects and safeguard its applications in vivo.   

Taken together, our study has used a clinically highly relevant target to exemplify the 

successful combination of very powerful tools for gene therapy, namely, rAAV vectors, 

RNAi and CRISPR/Cas9, and implies its great potential for treatment of numerous 

diseases that have a DNA and/or RNA component. Our results concurrently inform and 

encourage future in vivo studies in HBV animal models, to test the effect of our AAV-

based combinatorial knock-down and knock-out strategy on the host immune response 

and the possible synergistic impact on viral clearance. Along these lines, a pioneering 
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study by the Protzer lab from Munich already indicated that mice that persistently 

replicate HBV showed reduced levels of HBV antigens, HBV replication and viremia after 

injection of anti-HBV shRNAs or siRNAs 363. Importantly, in mice with high levels of HBV 

replication only the combination of HBV antigen knock-down with a therapeutic 

vaccination strategy increased the number of HBV-specific CD8+- T-cell and yielded HBV 

elimination, indicating that the restoration of the host immune system contributed to viral 

clearance.  

 

4.3. A combinatorial knock-out/ knock-down approach against HBV/ 

HDV co- and superinfections 

The co- or superinfection of HDV with its helper virus HBV is associated with the most 

severe progression of viral hepatitis culminating in high rates of liver cirrhosis and 

hepatocellular carcinoma and a three-fold increased mortality rate compared to HBV 

monoinfections 10. For chronic hepatitis D, treatment options are even more limited 

compared to HBV, due to its life cycle that depends entirely on cellular enzymes, except 

for its delta and HBV surface antigens. Thus, the preferred treatment of chronic hepatitis 

D is a functional control of HBV including HBsAg seroconversion that also limits the 

spread of progeny HDV. However, current anti-HBV or anti-HDV therapies rarely achieve 

a sustained antiviral response, thus emphasizing the urgent need for further antiviral 

interventions. As such, the HBV/HDV entry inhibitor Myrcludex B, a synthetic lipopeptide 

that comprises a part of the large HBV surface antigen that binds to the NTCP receptor, 

in combination with PEG-IFNα yielded encouraging results in a phase I/II clinical trial 

(NCT02637999) and enabled significant decreases in HBV DNA and HDV RNA levels 
306. Nevertheless, it would be highly favorable to have an alternative interventional 

approach that persistently suppresses or eradicates HBV and HDV with a single 

application and that directly targets the two viral genomes and/or their RNA transcripts 

instead of cellular host factors. From our perspective, HBV/HDV co- or superinfections 

represent the ideal target for a combinatorial RNAi and CRISPR intervention, as RNAi 

can target the HBV and HDV RNA component and CRISPR can eradicate persistent 

HBV cccDNA.   

 

 



PhD thesis, Carolin Schmelas 

131 
 

4.3.1. Targeting HDV via RNAi 

To date, only a single study has applied RNAi to target HDV and investigated the 

susceptibility of the three HDV RNA species - the genome, antigenome and delta antigen 

mRNA - towards RNAi triggers 127. In their study, Chang and Taylor (2003) co-

transfected Huh7 cells with several HDV-targeting shRNAs and plasmid-encoded HDV 

mRNA that resulted in the expression of either the normal delta mRNA, or delta mRNAs 

with an additional sequence in their 3´ UTR that represented either portions of the 

genomic or antigenomic sequence. While shRNAs that targeted the HDV mRNA resulted 

in efficient suppression of RNA accumulation and thus delta antigen expression, 

genomic and antigenomic sequences were resistant to RNAi. The authors hence 

concluded that the HDV RNA genome and antigenome might be inaccessible for the 

RNAi machinery due to their nuclear localization.  

The work presented here clearly differes from the previous report in several aspects. 

Firstly, we applied RNAi in the context of actual HDV infections instead of plasmid-

encoded surrogates. Infection experiments in cell culture only became possible with the 

identification of NTCP as entry receptor of HBV and HDV 15; 16 and with its genomic 

integration and overexpression in hepatic cell lines that makes them receptive towards 

HBV and HDV infections 75. Furthermore, the supply of HBV surface antigens, e.g. as 

stable genomic integrate, even allows continuous secretion of infectious progeny HDV 

following primary infection and enables reinfection experiments 300. Secondly, we 

implemented two different experimental settings that enabled us to investigate the effects 

of RNAi in the context of anti-HDV immunization and curation. The specific targeting of 

small and large delta antigen in the two experimental settings further led to insights into 

their differential roles in the HDV life cycle, which are further discussed in the following 

section. Thirdly, we combined the highly complementary RNAi and CRISPR technologies 

to not only target HDV infections but also HBV surface antigens, which are required for 

viral propagation and thus enabled a multi-pronged strike against HBV/HDV infections. 

Notably, no published study hitherto attempted to combine RNAi and CRISPR 

technologies to concurrently target and inhibit HBV and HDV. Lastly, we made use of 

multiplexed, safe and hepatotropic rAAV vectors to deliver and express small RNAs in 

target cells, which facilitates an easy transfer to future in vivo studies in more relevant 

HBV/HDV animal models.       

In this study, we directed the RNAi machinery against the HDV antigenome that encodes 

the delta antigen, by harnessing and expanding a respective shRNA set from our lab. 

The high GC content and the presence of extensive secondary structures render only a 
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single position in the delta mRNA vulnerable to RNAi, which spanned the stop codon of 

the small delta antigen at position 196. Whereas shRNA 3 and 4 (which share the same 

target sequence and only vary in length) target the stop codon of the small delta antigen, 

shRNA 3ed and 4ed target the edited tryptophan at the same position and thus the large 

delta antigen. All other shRNAs target sequences upstream or downstream of the delta 

antigen mRNA. We evaluated the capability of RNAi-mediated suppression of delta 

antigen expression and RNA accumulation in an immunization and curation setting 

(Figure 22 and Supplementary Figure 2).   

The immunization setting might reflect the previous described study of Chang and Taylor 

(2003) 127 the most, since HDV was unable to complete its full life cycle before subjecting 

to RNAi. Indeed, we found similar results and observed that only shRNA 3 and 4 that 

target the delta mRNA exhibited efficient inhibitory potential, in contrast to shRNAs that 

bind outside of the mRNA sequence (Figure 22A to C and Supplementary Figure 2). 

Importantly, shRNA 3ed and 4ed did not reduce delta antigen levels in early stages of 

infection, as further discussed in the following section. Notably, shRNAs that were 

functional in previous reports (shTaylor 4 and 6) 127 failed to inhibit delta antigen 

expression in our experiments (Supplementary Figure 2), which might be explained by 

different secondary structures of plasmid- encoded and infectious HDV transcripts or the 

diverging experimental approach. At least in our preceding in silico design of functional 

anti-HDV shRNAs, the positions targeted by shTaylor 4 and 6 did not emerge as optimal 

RNAi targets. 

The effects of shRNAs on late stages of HDV infection could be investigated in the 

curation setting that permits RNAi to attack at a stage in which the L-HDAg is already 

present and facilitates viral assembly and release. We found that several shRNAs (6, 8, 

9, 4ed and 3ed) can decrease the formation and release of infectious HDV, which is only 

observable in reinfection experiments (Figure 22D to F). In contrast to the findings of 

Chang and Taylor (2003) 127, we were able to target the antigenomic HDV RNA in this 

experimental setting, since shRNA 6, 8 and 9 do not target the delta mRNA sequence, 

but nonetheless reduced the formation of progeny HDV. Yet, the most potent shRNAs 

3ed and 4ed target the mRNA of the large delta antigen directly. Surprisingly, shRNA 3 

and 4 that target the small delta antigen strongly elevated the amount of infectious HDV 

in the curation setting (Figure 22F). This unexpected outcome will be further discussed in 

the following section.  
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4.3.2. Increased secretion of progeny HDV by knock-down of small delta 

antigens in late infection stages 

HDV encodes only a single ORF for the delta antigen that is expressed as small and 

large variant, as a consequence of RNA editing at the amber stop codon 72; 73. The 

sequential appearance of the two forms of HDAg regulates the viral life cycle. Whereas 

the small delta antigen trans-activates RNA replication in early stages of infections 84, the 

large antigen is expressed later in the replication cycle and is essential for the 

envelopment of the RNP complex and the interaction with the HBV surface antigens 90; 91; 

364 that directs the viral life cycle towards assembly and secretion of progeny virus 365; 366. 

The large delta antigen also acts as dominant repressor of viral replication and a ratio of 

large to small delta antigen as low as 1:10 was shown to almost completely abolish HDV 

RNA replication 85; 367. Thus, the appearance of the large delta antigen plays a key role in 

the switching of molecular events, in order to suppress HDV replication and drive the 

system towards secretion of progeny virus. In our experiments, we were able to further 

investigate the roles of the delta antigen variants in early and late stages of the HDV life 

cycle by the application of RNAi and the specific targeting of small and large antigen. 

As previously indicated, we implemented two distinct experimental settings in which 

RNAi was either applied to immunize against HDV or to cure an existing HDV infection 

(Figure 22A and D). The immunization setting was characterized by the targeting of HDV 

in an early stage of infection, in which only the small delta antigen was expressed 

(Figure 22B). By contrast, the curation setting targeted HDV in later stages of its life 

cycle in which small and large antigen variants were present (Figure 22E). Furthermore, 

our shRNA design enabled us to differentiate between knock-down of small (shRNA 3 

and 4) and large delta antigen (shRNA 3ed and 4ed) by targeting either the amber stop 

codon or the edited tryptophan codon, respectively. The differential targeting was 

demonstrated by the ability of shRNA 3 and 4 to reduce small delta antigen expression in 

the immunization setting, whereas shRNA 3ed and 4ed failed in this matter (Figure 22B 

& C). In turn, shRNA 3ed and 4ed successfully targeted the large delta antigen in the 

curation setting, as implied by the reduction of infectious progeny HDV, whereas shRNA 

3 and 4 failed in this regard (Figure 22F). Surprisingly, the knock-down of the small delta 

antigen in later stages of the HDV life cycle even elevated the secretion of progeny HDV.  

This finding was unexpected and we were unable to find any references about an 

elevated viral assembly or secretion by the inhibition of the small delta antigen in late 

stages of HDV infection. Yet, a reason may be that until now, it has been impossible to 

differentially inhibit small and large delta antigen expression in the context of a natural 
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infection. At least two assumptions are possible that might explain the observed 

phenomenon in the context of the known HDV biology. Firstly, the inhibition of the small 

antigen might shift the system towards an increased expression of large delta antigen. 

Indeed, it has been reported that high levels of small delta antigen inhibit RNA editing of 

amber stop to a tryptophan codon 368. Thus, inhibition of small delta antigen could 

elevate RNA editing rates and result in higher large antigen expression. The elevated 

numbers of large delta antigens might direct the viral life cycle towards assembly and 

secretion of progeny virus. A second assumption could comprise a direct inhibitory 

feedback mechanism imposed by the small delta antigen to restrict progeny HDV 

secretion and to retain the viral genomes for their deposition and amplification in the 

nucleus. Although this assumption has so far not been confirmed by any experimental 

data and thus remains entirely theoretical, such inhibitory feedback mechanisms are 

regularly reported for viral infections. 

 

4.3.3. Targeting HDV RNA and HBV cccDNA via RNAi and CRISPR/Cas9 

We further applied the anti-HDV shRNA 3ed in a multiplexing approach spanning either 

the combination with anti-HBV shRNA and sgRNA (Figure 23A) or two anti-HBV sgRNAs 

(Figure 23D). Indeed, reduction of the HBV surface antigen in any form efficiently 

decreased formation and spread of HDV (Figure 23B and E), as previously described 369. 

Furthermore, whereas shRNA 3ed alone reduced the amount of reinfected cells to only 

two- to three-fold, the combination with either shRNA and/ or sgRNAs against HBV 

yielded a synergistic inhibition of HDV infection and successfully decreased the amount 

of reinfected cells to lower detection thresholds. The anti-HBV sgRNA 3 that targets the 

integrated large HBV surface antigen increased the levels of secreted HBsAg in previous 

experiments (Figure 16 and Figure 23E), but resulted in the formation of non-functional 

HDV particles that were unable to reinfect cells (Figure 23F). The negative feedback 

mechanism that might be imposed by the large HBV surface antigen towards secretion 

of the other surface antigen variants has been discussed in section 4.2.1. Importantly, 

our presented combinatorial knock-out/knock-down strategies are fully compatible with 

conventional therapies and might contribute to highly efficient multi-level attacks on HBV 

and HDV.  

Furthermore, it might represent a promising approach to gain further insights into the 

various feedback loops of both infections and their interplay. Similar to the study of 

Chang and Taylor (2003) 127, it would now be highly interesting to study the effect of 
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RNAi also on the genomic RNA sequence of infectious HDV. Such experiments could 

yield further insights into HDV biology and might unravel the mystery of HDV persistence 

in the nucleus and how it maintains resistant towards the endogenous RNAi machinery 

despite its highly self-complementary RNA structure that perfectly mimics RNAi 

substrates 370. Notable are also recent additions to the CRISPR technology, such as 

Cas13 that targets ssRNA instead of DNA substrates 371 and that could be applied to 

extend the genetic tool kit to research and combat HDV (and HBV) infections.      

 

4.4. DMSO enhances viral infectivity in cell culture 

For many years, research on HBV and HDV has been hampered by the lack of 

knowledge about the molecular properties of viral entry into human liver cells. The 

identification of NTCP as entry receptor in 2012 15; 16 provided new options and allowed 

the establishment of cell culture systems for the study of HBV and HDV infections. The 

overexpression of human NTCP confers susceptibility towards HBV and HDV infection in 

otherwise unreceptive cells 75. Nevertheless, an efficient infection of these cell lines 

requires the addition of DMSO and PEG in the media during the process of HBV and 

HDV infections 16-20. Also, DMSO is regularly used as a differentiation agent in hepatoma 

cell lines in order to restrict the cells from proliferating during the experimental period 372 

by the reversible arrest of the cell cycle in its G1 stage 373. 

However, so far no study has thoroughly dissected the mechanism by which DMSO 

exerts this effect on HBV infections. DMSO seems to have a broad impact on different 

biological processes and should thus be applied with caution 374. It is commonly used as 

solvent for water-insoluble reagents or as control for drug therapies 266; 349, without fully 

understanding the multitude of effects that DMSO may impose on biological processes. 

DMSO might act directly on the DNA level, as it has been used for many years in PCR 

reactions to resolve DNA secondary structures and supercoiling 375; 376, and it has been 

shown to alter expression levels of DNA methylation enzymes and genome-wide DNA 

methylation profiles 377; 378. Its effect on HBV infectivity has been linked to various 

processes including a reinforced viral attachment to HSPGs on the cell surface 44 and an 

enhanced expression of the NTCP receptor 379. Additionally, it has been reported that 

DMSO exposure could lead to rearrangements of the cytoskeleton and an enhanced 

translocation of NTCP from intracellular pools to the cell surface 380-382. Nevertheless, the 

enhanced susceptibility towards HBV cannot be solely attributed to the increased 

expression and presence of NTCP on the cell surface, since many viruses that make use 
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of other entry receptors also benefit from the addition of DMSO in the infection media, 

including HCV 287; 372, HIV 288 and influenza A 289.  

 

4.4.1. DMSO increases rAAV transduction and expression rates 

In this study, we followed up on the observation of our collaboration partner Michael 

Nassal that DMSO also enhances transduction rates of rAAV vectors and investigated 

this finding in more detail in a comprehensive reporter-based assay (Figure 24 and 

Supplementary Figure 3). This assay was adopted from a recent study from our lab, in 

which Börner, Kienle and colleagues screened 13 different AAV capsid variants in 

combination with 27 different peptide insertions that are displayed on their capsid surface 

for their capacity to transduce over 90 cell types 227. The packaging of a CMV promoter-

driven YFP reporter on a dsAAV vector genome into over 300 capsid variants allowed for 

an automated microscopy-based and high-throughput read-out to assess the percentage 

of transduced cells and the transgene expression rates in an experimental format of 96- 

or 384-well plates. Here, we used 12 AAV wt capsids and 11 selected peptide display 

variants that either did not efficiently transduce hepatoma cell lines of human (HepG2 

and Huh7) or mouse (Hepa16) origin and mouse neuroblasts (N2A), or that exhibited 

high or medium transduction capabilities. The underlying idea was to try and further 

boost transduction efficiencies of under-performing AAV variants by the addition of 2.5% 

DMSO in the transduction media.  

In general, we observed that the promoting effect of DMSO strongly depended on the 

rAAV variant and cell line (Figure 24 and Supplementary Figure 3). Indeed, all rAAV 

variants showed an increase in transduction and expression rates in at least one cell 

line, except for rAAV4, rAAV5, rAAVpoc1, rAAV12, and rAAV1A1NIS. These exceptions 

failed to be improved in any of the cell lines and will be further discussed in the following 

section. An extension of this reporter assay to investigate DMSO-mediated advantages 

in the transduction of primary cells and stem cells might be of interest and could be 

highly relevant for ex vivo therapies. However, we raise a note of caution about the wide 

and partly unknown impact of DMSO on different biological processes 374. Instead of a 

therapeutic application, we would rather promote this method as an easy and 

straightforward option to boost rAAV-mediated transgene expression in cell culture 

experiments. For instance, DMSO could be used to test the functionality of rAAV vectors 

in relevant but otherwise non-permissive cell lines before applying the vector in in vivo 

experiments.  
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Accordingly, in a relevant cell culture experiment, we aimed to boost rAAV-mediated 

CRISPR/Cas9 expression by the addition of DMSO in order to enhance targeted 

mutagenesis rates to experimentally significant extents. In our experiments, we noticed 

that transduction of N2A cells was particularly difficult to accomplish with ssAAV vectors 

(Supplementary Figure 4). The Cas9 transgene exceeded the packaging capacity of 

dsAAV and thus allowed packaging only in the context of ssAAV genomes, which 

resulted in hardly any CRISPR-induced mutations at the targeted mecp2 locus in N2A 

cells in all our experiments (Figure 28A, B and Figure 30B). Surprisingly, the addition of 

DMSO mediated an increase of up to 20-fold in mutagenesis rates for the rAAV9A2-

delivered CRISPR system in TIDE sequencings (Figure 28B). While it has been implied 

before that DMSO facilitates DNA accessibility for the CRISPR/Cas9 system 383, this 

dramatic increase in knock-out efficiencies likely derived from an increased viral uptake 

(Figure 28C) and an additional increase in Cas9 and sgRNA expression (Figure 28D & 

E). 

A slight improve in mutagenesis rates was also observed for the rAAV5-delivered 

CRISPR system (Figure 28A & B), which was not mediated by an increase of viral 

uptake (Figure 28C), but derived only from enhanced Cas9 expression (Figure 28D). Our 

previous reporter assay failed to reveal these subtle differences (Figure 24E). Indeed, a 

previous study pointed out that standard screening methods based on fluorescence 

reporters are not sensitive enough to track low rAAV transduction rates and that editing-

dependent reporter systems are a more sensitive measure to investigate differences in 

rAAV tropism 384. The diverging effects of DMSO on the transduction and expression 

rates of different rAAV variants are discussed in the following section.  

 

4.4.2. Differences in AAV serotypes might lead to divergent DMSO-mediated 

effects 

DMSO might differentially influence the different processes in the AAV life cycle of 

various serotypes, but more extensive experiments are required to clearly confirm this. 

Nonetheless, our experiments indicate that DMSO enhances viral uptake and transgene 

expression of rAAV9A2 and most other rAAV variants, while rAAV4 and rAAV5 remain 

almost unaffected (Figure 24 and Figure 28). 

An increasing number of reports emphasize AAV4 and AAV5 as the most divergent 

serotypes among known AAV isolates with regard to their life cycle 385; 386. Firstly, AAV4 
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and AAV5 strongly differ in their surface variable regions (I to IX) compared to other 

serotypes 387; 388 and make use of α2-3 O- and α2-3 N-linked sialic acids 389 instead of 

widely utilized HSPGs for their initial cell surface binding 229; 390. Secondly, while nearly all 

AAV serotypes are internalized via interaction with the universal AAVR, which also plays 

a role in AAV trafficking through the Golgi network, AAV4 and its descendants enter cells 

through an alternate pathway 231; 233. Lastly, many reports have suggested that the rate of 

intracellular trafficking to the nucleus, nuclear uptake and capsid uncoating are major 

barriers to efficient transduction 263; 391 and vary especially in the case of rAAV5 386; 392-394. 

In our experiments, although rAAV5 was able to enter N2A cells at remarkably high rates 

compared to rAAV9A2 (Figure 28C), it failed to induce efficient transgene expression 

(Figure 28D), probably due to inefficient internal processing. 

In line with the observed effects of DMSO on HBV infection 44, it might be possible that 

DMSO also reinforces AAV attachment to HSPG on the cell surface. Indeed, we show 

that DMSO-mediated viral uptake remained dependent on HSPG binding (Figure 26). 

Alternatively, DMSO could also induce changes in the cytoskeleton and thus affect 

intracellular trafficking 382 or enhance expression or recycling of AAVR or other co-

receptors (similar to DMSO-mediated effects on the NTCP receptor 379) that differentially 

impact the AAV serotypes.  

 

4.4.3. Alternative methods to increase rAAV tranduction 

Many chemical compounds are in use to boost the rather inefficient process of rAAV 

transduction and most of them aim to inhibit the proteasome machinery 214. It has been 

shown that the proteasome inhibitors MG132 and LLNL can enhance transduction rates 

by 10- to 100-fold for rAAV2 and rAAV5 in cell culture and also delay viral DNA decay 262; 

265. Furthermore, rAAV2 and rAAV5 capsids are ubiquitinated in vivo and in vitro 262; 264 

and transduction can be increased, albeit only by about 3-fold, by treatment with an E3 

ubiquitin ligase inhibitor 264. This led to the hypothesis that a high amount of internalized 

rAAVs undergo ubiquitin conjugation of the capsid and become subjected to proteasome 

degradation. However, the mechanism of ubiquitination on rAAV transduction and the 

effect of proteasome inhibitors seem to be more complex and remain unexplained as-of-

yet. It has also been suggested that the proteasome machinery is involved in internal 

trafficking and rAAV capsid processing 214; 395, as the dramatic increase in transduction 

rates induced by these inhibitors cannot be explained solely by the inhibition of 

proteasome-mediated virus degradation. Accordingly, proteasome inhibitors might 
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increase AAV trafficking to the nucleus by enigmatic mechanisms in a cell- and serotype-

specific manner.  

Likewise, it has been reported that Doxorubicin enhances transduction 10- to 100-fold for 

rAAV2 and rAAV5 307; 395, and it also reinforced transduction rates in our own 

experiments (Figure 27A). Doxorubicin is known as a topoisomerase inhibitor 396 and 

also acts as a proteasome-modulating agent 397. As such, it might contribute to rAAV 

accumulation in the nucleus and simultaneously increase second-strand genome 

conversion 395. However, strong cytotoxic effects have been associated with the use of 

these proteasome inhibitors and modulators 396; 398-400 and were also evidenced in our 

experiments by high rates of cell death (Figure 27A). 

Another study aimed to enhance rAAV transduction by increasing the levels of 

autophagy, which can be induced by the addition of rapamycin that acts as an inhibitor of 

the mammalian target of rapamycin (mTOR) pathway 266. In their study 266, the authors 

argued that rAAV transduction induced autophagy (similar to other viral infections 401) 

and that rAAV vectors require this cell response for efficient transduction, as inhibition of 

autophagy resulted in decreased levels of transgene expression 266. In turn, the authors 

hypothesized that an increase of rapamycin-induced autophagic activity could also lead 

to enhanced rAAV transduction and, indeed, they observed an about 2- to 3-fold 

increase in transgene expression.  

In our own experiments, we repeatedly failed to replicate this effect and even observed a 

decrease in transduction rates by the addition of rapamycin in various experimental 

approaches (Figure 27). It might be that we were not able to induce the described 

manipulation on autophagy upon rapamycin addition or that an increase in autophagic 

activity actually leads to decreased rAAV transduction. In line with the latter conclusion, 

others also reported reduced rAAV2 transduction efficiencies upon induction of 

autophagy 402. In this scenario, autophagy is considered as the cell´s primary 

degradation mechanism in response to accumulated nano-sized particles and exerts 

antiviral properties 401. Indeed, AAV might depend on autophagy to enter cells and thus 

inhibition of autophagy limits rAAV transduction, however, it was never highlighted as 

rate-limiting step in rAAV transduction.   

Taken together, we propose DMSO as an alternative method to increase rAAV 

transduction rates in cell culture that is, however, dependent on the rAAV serotype and 

the cell line. Current transduction enhancers either failed to induce the predicted effect 

on rAAV transduction in our hands or relied on the modulation of proteasome-related 

mechanisms associated with substantial cytotoxic effects. In contrast, no toxic effects 
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were observed for the treatment with DMSO, yet in line with previous reports cell 

proliferation rates decreased 372; 373 depending on the cell line (Figure 24). Also 

noteworthy is the fact that DMSO is widely used for medical purposes in patients 403. Still, 

it remains to be determined whether DMSO treatment can advance the therapeutic index 

of rAAV vectors in vivo.  

 

4.5. Split and self-inactivating Cas9 are promising designs for rAAV-

mediated delivery 

Among all viral vectors that are currently used in the field of gene therapy, rAAV vectors 

emerged as the most promising candidate for in vivo applications. This success can be 

mostly attributed to the comparatively high safety profile of rAAV vectors that is 

characterized by low genotoxicity and mild immune reactions 404; 405. Recombinant AAV 

vectors are widely applied for the delivery of the CRISPR/Cas9 components in vivo and 

permanent modifications of disease-relevant genes were realized in the liver 189; 267; 272; 

406-408, brain 409-412, muscle 339; 413-415, eye 416-418, heart 272; 419; 420 and lung 409. Nevertheless, 

some hurdles restrict the applicability of rAAV/CRISPR vectors that include i) the limited 

packaging capacity, ii) low transgene expression rates, and iii) the persistent transgene 

expression that might be beneficial in some cases, but raises major safety concerns for 

CRISPR applications. It would be highly favorable for the next generation of rAAV 

vectors to incorporate systems that help to overcome these barriers and contribute to 

safeguard the CRISPR technology. To this end, we built upon CRISPR systems that 

incorporate a splitCas9 (previously developed in my M.Sc. thesis) and self-inactivating 

approach (designed by Julia Fakhiri in the lab) that circumvents the size restriction 

imposed by the dsAAV vector and benefits from its enhanced and accelerated transgene 

expression. Next to enhanced on-target editing rates, the self-inactivating system 

contributes to an efficient reduction of lingering Cas9 protein and thereby reduces the 

risk of unintended off-target editing.  

 

4.5.1. SplitCas9 systems circumvent the rAAV vector packaging limitations 

One of the major drawbacks of rAAV/CRISPR vectors is their limited cargo capacity of 

about 5 kb for designated transgene expression cassettes. Vectors exceeding the upper 

size limit suffer from inefficient viral production and transgene truncations 421. 
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Considering the size of the most frequently used SpCas9 ortholog of 4.1 kb, or the 

smaller SaCas9 of 3.2 kb, this leaves little flexibility in the choice of regulatory elements, 

such as promoters and polyA signals, and an all-in-one vector that includes an sgRNA 

expression cassette is barely feasible 267. Fortunately, work reported over the last five 

years produced an elegant solution in the form of various splitCas9 strategies 268, 

including Cas9 reconstitution via intein trans splicing 269-272. 

Split inteins have been exploited in the past to circumvent ssAAV packaging limitations 

for various large proteins by the delivery of two independent rAAV vectors 422. In 2015, 

the team of Oskar Ortiz was the first to apply this concept to split and reconstitute 

SpCas9 by the use of NpuDnaE inteins 269. In their experiments, splitCas9 induced 

robust targeting of a fluorescence-based reporter and various endogenous genes at 

levels comparable to wt Cas9. Most notably, they also showed that the intein-splitCas9 

could be packaged and delivered in two separate ssAAV vectors and induce gene 

editing after its reconstitution in different cell lines. However, as the wt/full-length Cas9 

control was missing, it remained unclear whether there was a potential loss of CRISPR 

activity for the splitCas9 in context of rAAV vectors. On top the authors also developed a 

split system based on nCas9 mutants and demonstrated that the reduced sizes of the 

splitCas9 halves allow for the co-delivery of an HDR repair template on the same ssAAV 

vector.  

Shortly after this study, the team of Gang Bao 270 reported a similar intein trans-splicing 

approach in which they used Mxe GyrA inteins (which are involved in the regulation of 

Gyrase A from Mycobacterium xenopi in its natural context) to split and reconstitute 

SpCas9. However, when tested in transient plasmid transfection, this splitCas9 version 

yielded only a fraction of the cleavage efficiency of wt Cas9 and failed to induce 

mutations in some of the tested target cell lines. The reasons for the lower potency of 

this splitCas9 system remained open, but could relate to the different intein systems. 

Indeed, it has been reported that NpuDnaE inteins are highly efficient protein trans-

splicing agents and mediate a robust activity with an efficiency of >98%, which is 

superior to most other inteins 278; 423. My own results previously obtained in my MSc work 

confirmed that splitCas9 based on NpuDnaE inteins yielded about 50% of wtCas9 

activity in a fluorescence reporter assay. An alternative explanation for the reduced 

efficiency of their splitCas9 system is the fact that Fine et al. 270 transfected only half the 

amount of each plasmid containing the splitCas9 parts as compared to wt/full-length 

Cas9 in order to match the total amount of transfected DNA in all conditions. 

Accordingly, they might have encountered a stronger dose dependency of their splitCas9 

system, suggesting that the kinetics of Cas9 reconstitution are rate-limiting. In our own 
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transfection experiments, we adopted the same approach as Fine et al. (2015) and used 

only half the amount of each splitCas9 part as compared to full-length Cas9 (Figure 29). 

Furthermore, by exchanging promoters of varying expression strength, we indeed 

confirm that the efficiency of the intein-splitCas9 system strongly depends on the 

expression and reconstitution of the splitCas9 halves (Figure 29). 

Yet another study carried the intein-splitCas9 system to the next level by segregating 

SpCas9 in three instead of two parts 271. This enabled the development of logic AND 

circuits and the coupling of sensory switches to different interchangeable dCas9 

domains, which in turn enables differential regulation of various genes. The authors 

increased the complexity of this system by including C-terminal Cas9 domains with 

altered PAM specificity and by linking the activation of two different genes in response to 

cell-type specific microRNAs. Taken together, the remarkable flexibility of these 

splitCas9-based genetic circuits contribute to a comprehensive toolbox with minimized 

CRISPR components that are highly compatible with rAAV vectors.   

Another impressive study from the team of George Church applied inteins from 

Rhodothermus marinus to split and reconstitute SpCas9 and demonstrated the feasibility 

of this approach in a comprehensive in vivo investigation 272. In their approach, the two 

Cas9 halves were delivered by separate ssAAV vectors of various serotypes to multiple 

cell types and tissues in mice including the liver, heart, muscle, brain and gonads. 

SplitCas9 activity highly correlated with the vector copy numbers in each tissue, in so far 

that the highest rAAV vector copy number (of around 103 vector genomes per diploid 

cellular genome) resulted in the highest editing rate of 10.9% in the liver. In contrast, 

splitCas9 yielded very low editing rates in other organs (<3%). Nonetheless, these data 

provide the first evidence of the feasibility of in vivo gene editing by the rAAV/splitCas9 

technology. Further results from this study show that expression of splitCas9 in muscles, 

either delivered in rAAV vectors or via electroporation of plasmid-encoded Cas9, induces 

a cellular and humoral anti-Cas9 immune response in mice. However, unlike other 

delivery methods, rAAV/splitCas9 did not induce extensive cellular damage and thus 

encourages the translation of the rAAV/splitCas9 platform towards clinical settings. 

Finally, in my M.Sc. work in the lab of Prof. Barbara Di Ventura and Prof. Roland Eils, we 

also developed a splitCas9 system, which yet differed from other strategies by various 

properties. Firstly, in my previous work we compared NpuDnaE and gp41-1 inteins in 

their efficiency to reconstitute Cas9 to its full-sized version. We were able to confirm 

previous reports that demonstrated that the gp41-1 inteins are the most efficient inteins 
277; 279 that also exhibit less stringent extein requirements compared to other inteins, as 
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they only depend on a C-terminal serine on the split junction in order to facilitate the 

trans-splicing reaction 276. Secondly, we aimed to split the smaller Cas9 ortholog from 

Staphylococcus aureus that consequently resulted in even smaller splitSaCas9 halves, 

thus further liberating the size restriction imposed by rAAV vectors. Altogether, my M.Sc. 

work evaluated a small splitSaCas9 library consisting of three split sites in combination 

with two inteins in comprehensive plasmid transfection experiments and demonstrated 

efficient gene editing rates for all split variants (although gp41-1-bearing splitSaCas9 

variants performed better). Lastly and most importantly, my M.Sc. work already 

suggested the compatibility of the smaller splitSaCas9 system with dsAAV vectors, that 

might enable enhanced expression of the SaCas9 halves with improved kinetics and 

higher in vivo DNA stability of the vector 255; 257; 261. 

 

4.5.2. Enhanced targeted mutagenesis by the dsAAV/splitSaCas9 system    

In this doctoral thesis, we built upon the splitSaCas9 system that was previously 

developed in my M.Sc. work. While the previous work focused on the rational design and 

functional testing via plasmid transfection experiments of the splitSaCas9 library, the 

presented work evaluated one selected splitSaCas9 variant (gp41-1-split version 3) in 

the context of rAAV vectors.  

Here, we were able to confirm our hypothesis that was already formulated during my 

previous M.Sc. thesis and indeed demonstrated an accelerated and highly enhanced 

knock-out efficiency for the dsAAV/splitSaCas9 compared to ssAAV/wtSaCas9 (Figure 

30). It has been reported that the expression benefit of dsAAV over ssAAV is strongly 

dependent on the cell type 255; 261 and, indeed, the efficiency of the dsAAV/splitSaCas9 

system also varied over our experiments. Our experiments demonstrated a strong 

advantage of the dsAAV/splitSaCas9 system over ssAAV/wtSaCas9 in N2A cells and 

primary myoblasts (Figure 30 and Figure 31), while no advantages were observed in 

Huh7 cells (Figure 31).  

This study also demonstrated that Cas9 expression is a rate-limiting factor for in vivo 

gene editing in the liver of mice. Firstly, this was evidenced by the comparison of 

different promoters that expressed SaCas9 with varying strength, which led to correlating 

gene editing rates of a luciferase reporter (Figure 21). Secondly, the delivery by dsAAV 

vectors resulted in stronger expression of the splitSaCas9 system and higher vector 
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DNA stability in the liver (Figure 32D and E), and it was clearly associated with the 

degree of luciferase signal reduction and gene editing rates (Figure 32B and C). 

The versatility of dsAAV vectors in vivo has been demonstrated by their ability to 

efficiently transduce many different cell types, including murine muscle, liver, central 

nervous system and many other organs 256; 424. In addition to the enhanced vector 

expression rates, the dsAAV also seemed to mediate changes in in vivo vector 

distribution, as reported by a notable study that compared the expression of human 

factor 9 (hFIX) in mouse liver by a ssAAV vector of serotype 2 to the expression of hFIX 

by dsAAV 425. The authors reported that delivery by ssAAV vectors led to the strong 

expression of hFIX in roughly 5% of all hepatocytes, while dsAAV-mediated expression 

resulted in a homogenous distribution of moderate hFIX levels over 80% of all 

hepatocytes, thus reflecting a more natural situation of hFIX expression throughout the 

liver.  

Furthermore, in a clinical study, the application of high vector doses by administration of 

rAAV2 through hepatic artery injection and subsequent expression of hFIX in the liver of 

human patients has been associated with a transient elevation of liver transaminases 

and a decrease of hFIX levels 426. In addition, although controversially discussed in the 

field, it has been observed that intravenous administration of a high dose of rAAV9 

expressing human SMN (survival of motor neuron) protein resulted in severe 

hepatotoxicity in non-human primates and piglets 427. In these cases, the dsAAV vector 

might offer a practical solution to the dose-dependent side effects on the host immune 

system, as it inherently mediates stronger and more homogenous transgene expression 

and thus can be applied at lower doses. Along these lines, the large-scale production of 

highly purified rAAV vectors that comply with good manufacturing practice is cost-

intensive and currently a rate-limiting process. Thus, the use of lower dsAAV vector 

doses might help to overcome bottlenecks of production and facilitate a distribution of 

rAAV-based gene therapy to all patients in need 428. 

However, the question lingers whether rAAV vectors represent the best possible solution 

to deliver the CRISPR technology in vivo. While the feature of rAAV vectors to express 

transgenes for life-long periods 204; 429 is beneficial for applications that require long-

lasting expression, such as RNAi that only acts on the mRNA level and is reversible 

depending on the presence of its RNA trigger, it might be detrimental for CRISPR 

applications. Once CRISPR/Cas9 induced a mutation at a target locus, the effect is 

permanent and irreversible. Thus, although a strong CRISPR/Cas9 expression is 

desirable to achieve efficient on-target editing (as demonstrated in our experiments by 
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various means, e.g. addition of DMSO (Figure 28) and expression by dsAAV vectors 

(Figure 30)), no lasting expression is required. Indeed, the amount and duration of Cas9 

expression has been associated with an increase in off-targeting 192; 193; 272; 430 and an 

aggravated host immune response against Cas9 272. To safeguard our technology, we 

included a self-inactivating (SIN) approach to our dsAAV/splitSaCas9 system in order to 

restrict the presence of Cas9 after successful on-target cleavage, as described in the 

following section.  

 

4.5.3. The dsAAV/splitSaCas9 system efficiently self-inactivates after targeted 

knock-out 

Intriguing alternative delivery systems for CRISPR applications in vivo with improved 

safety profiles are the delivery of Cas9 as mRNA, or as RNP complex of Cas9 protein 

and sgRNA via lipid nanoparticles (LNPs) instead of viral vectors 431-433. The advantages 

of such alternative CRISPR delivery systems include the high immunotolerance and the 

transient Cas9 presence in cells, which was demonstrated to reduce off-target effects 434. 

However, it remains to be evaluated whether LNP-based approaches are as efficient as 

rAAV-mediated delivery of the CRISPR components. Furthermore, while the capsids of 

rAAVs can be designed to increase specificity towards certain cell types and tissues, the 

majority of systemically injected LNPs accumulate in the liver. As long as the hurdles of 

efficiency and specificity for LNP-based approaches persist, the consensus prevails in 

the field that rAAV vectors represent the most attractive vehicles for CRISPR/Cas9 

delivery in vivo 189; 267; 414.   

Accordingly, the SIN CRISPR approach that has been implemented by Julia Fakhiri from 

our lab illustrates a great potential for a future generation of rAAV/CRISPR vectors with 

an increased safety profile 294. The SIN approach utilizes the inherent DNA cleavage 

activity of Cas9 to destroy its own virally encoded transgene sequence by directing an 

additional sgRNA against itself. By the use of different RNA polymerase III promoters 

with varying kinetics to drive the two sgRNAs (against the on-target and the Cas9 

transgene), the on-target knock-out can be realized before Cas9 self-inactivates (Figure 

31). Here, we combined the dsAAV/splitSaCas9 system with the SIN approach to 

circumvent its major limitation that at the same time represents its greatest asset, 

namely, the strong Cas9 expression that on the one hand leads to enhanced on-target 

mutagenesis rates and on the other hand also increases off-targeting 435. Thus, the 
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presented and validated SIN rAAV vectors combine the efficient delivery of 

CRISPR/Cas9 by dsAAV vectors with restricted and thus safer Cas9 expression. 

Notably, in parallel to our work, other research groups concurrently reported similar 

strategies to restrict Cas9 expression by supplying anti-Cas9 sgRNAs. These 

approaches include plasmid- 435, lentiviral- 430; 436; 437 and rAAV-based 438; 439 CRISPR 

delivery systems that mainly aim to self-restrict expression of Cas9 from Streptococcus 

pyogenes and in one study Cas9 from Staphylococcus aureus 439. Most systems provide 

the anti-Cas9 sgRNA on an additional viral vehicle in order to prevent Cas9 cleavage 

during vector production. By contrast, in the lentiSLiCES system 430, a single lentiviral 

vector was designed to express the Cas9, the target sgRNA and the anti-Cas9 sgRNA 

simultaneously. Premature self-cleavage of Cas9 during vector preparations was 

inhibited by the regulation of Cas9 expression via tetracycline-responsive elements and 

the use of producer cell lines that stably expressed the Tet repressor. 

In principle, Cas9 activity could also be inhibited on the protein level using phage-derived 

anti-CRISPR proteins that have been recently discovered 198. Besides the tight control of 

Cas9 cleavage activity (that is further discussed in the following section), another 

interesting application of the Acr proteins might be the prevention of self-cleavage by 

SIN/CRISPR in all-in-one vectors during vector preparations.  

 

4.6. Use of Acr proteins to safeguard the CRISPR technology 

Despite its enormous potential, we raise a note of caution when using the CRISPR 

technology and recommend to carefully evaluate possible side effects. It has been 

reported that CRISPR is not only associated with possible off-target events, but could 

also lead to chromosomal translocations, inversions and large deletions by the 

concurrent presence of multiple DSBs that are either CRISPR-induced or occur naturally 

at breakpoint hotspots within the cell 290. In this respect, HBV seems like a comparatively 

safe target, as it predominantly persists in the form of extrachromosomal cccDNA. 

However, HBV integrates have been reported that occur at low frequencies 55-57, and that 

should also be considered as possible CRISPR targets. Thus, a systematic analysis of 

desired and adverse effects, e.g. by next-generation sequencing 290, should be 

mandatory for in vivo evaluations of all CRISPR approaches that are destined for clinical 

translation. 
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One approach to safeguard the CRISPR technology is the use of anti-CRISPR proteins 
198 that were previously engineered by the lab of Dominik Niopek to enhance the 

precision of gene editing in a spatio-temporal manner 202; 203. The spectrum of Acr 

proteins is steadily increasing owing to the discovery of natural Acr orthologs by 

screening of phage libraries and interrogation of sequence databases 200; 440-443. The lab 

of Dominik Niopek further extended the natural sequence space of Acr proteins by 

designing chimeric and, in a collaboration with us, engineered Acr variants.    

One interesting inhibitor is AcrIIC1 199, as it represents a broad-spectrum inhibitor that 

prevents cutting by multiple Cas9 orthologs including those from Neisseria meningitidis, 

Campylobacter jejuni and Geobacillus stearothermophilus 201. AcrIIC1 binds to the Cas9 

HNH domain and locks the endonuclease in a DNA-bound, but catalytically inactive 

state. This represents a unique mechanism, as other related inhibitors prevent Cas9 

from either binding to its target DNA or from loading crRNAs 444 and it might also explain 

the weak inhibition of AcrIIC1 compared to AcrIIC3, AcrIIC4, or AcrIIC5 445; 446.  

The lab of Dominik Niopek was able to enhance inhibition of AcrIIC1 towards NmeCas9 

by inserting an exogenous domain in the surface-exposed loop 5 of the inhibitor 311. 

Different AcrIIC1 chimeras were screened comprising an Avena sativa LOV2, mCherry 

or PDZ domain and indeed most (except for the AcrIIC1-PDZ chimera) efficiently 

inhibited NmeCas9 cleavage to such an extent that they outperformed parental AcrIIC1 

and also AcrIIC3, so far the most potent NmeCas9 inhibitor 199. Although the mechanism 

behind the effects of domain insertions remained unclear, they were able to assign the 

increased inhibition to higher AcrIIC1-chimera expression levels and more potent 

inhibition of NmeCas9 activity. Similar to the parental AcrIIC1, the chimera did not 

interfere with NmeCas9's binding ability as evidenced in electromobility shift assays. The 

chimeras demonstrate the versatility of AcrIIC1 and thus, in the second part of the same 

publication, Dominik Niopek initiated a collaboration with Bruno Correia (Institute of 

Bioengineering, Lausanne) and us to expand the AcrIIC1 specificity towards the type II-A 

CRISPR/Cas9 system from Staphylococcus aureus. 

As indicated before, the SaCas9 is the preferred ortholog when it comes to in vivo gene 

editing, as its smaller size facilitates its packaging in rAAV vectors. The HNH domains of 

NmeCas9 and SaCas9 resemble each other in terms of the overall structure (see section 

1.5.2) 201, albeit they share only 33.7% identity on the sequence level 311. Studies have 

reported either no detectable or very weak inhibition of AcrIIC1 on SaCas9 309; 447. Our 

own experiments confirmed a weak functional inhibition of AcrIIC1 on SaCas9 (Figure 

33) and the lab of Bruno Correia verified an affinity of purified AcrIIC1 towards the HNH 
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domains of SaCas9 (KD= 370 nM) in surface plasmon resonance affinity measurements, 

albeit to much weaker extent when compared to its actual NmeCas9 target (KD= 0.95 

nM) 311. Thus, Dominik Niopek figured that AcrIIC1 might be the ideal starting point to 

engineer its Cas9 binding surface and enhance affinity towards the SaCas9 HNH 

domain. A structural model that was developed by Bruno Correia and his team pointed to 

two regions in SaCas9 with suboptimal contacts to the corresponding AcrIIC1 residues. 

By performing in silico mutagenesis of these regions using Rosetta design 310, they 

provided Dominik Niopek with different mutations that could, based on their model, 

improve binding to SaCas9 HNH domain. In the presented work, Dominik Niopek 

initiated a collaboration with us to first evaluated these single point mutations and then 

iteratively combined the most promising variants in subsequent screening rounds (Figure 

33). We yielded AcrX (also referred to as AcrIIC1X in the corresponding publication) that 

efficiently inhibited SaCas9 gene editing on several loci (Figure 34) 311. Indeed, Bruno 

Correia and his team could verify that binding affinity towards SaCas9 HNH domain 

improved (KD= 53 nM), compared to wt AcrIIC1 (KD= 370 nM). Concomitantly, albeit the 

affinity of AcrX to NmeCas9 HNH domain was reduced, it remained within low nanomolar 

range (KD= 6.9 nM). While the insertion of an mCherry domain in loop 5 of AcrX did not 

improve inhibition of SaCas9, it again offered tight control over NmeCas9.  

Finally, we take note of the rapid developments in the anti-CRISPR field. In parallel to 

the work on AcrX, it has been reported that SaCas9 can be inhibited by AcrIIA5 447-449 

and AcrIIA13-15 (bioRxiv: https://doi.org/10.1101/799403). Still, the presented work is 

not to be seen as replacement to the search for natural Acrs, but instead as highly 

complementary approach to increase their inhibitory potential either by domain insertions 

or by structural guided designs.  

In view of recent developments of CRISPR gene drives that enable the forced 

propagation of genetic elements over populations via CRISPR-directed biases in 

inheritance 450-453, anti-CRISPR interventions might be necessary safety measures to 

prevent the uncontrollable spread or exploitation of this powerful technology. Indeed, the 

spread of CRISPR gene drives into nature could even arise as a result of a laboratory 

accident and thereby could have the potential to genetically alter entire species 451; 454. To 

prevent this, scientists have devised severeal strategies to safeguard this technology, 

e.g. i) synthetic target site gene drives that utilize target sites artificially introduced solely 

in a laboratory strains, thus preventing the spread to wild creatures that lack the 

synthetic target site, ii) split systems that segregate the CRISPR gene drive components 

in physically separate parts, namely an episomally encoded Cas9 gene and a gene drive 
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element encoding the sgRNA 451 and iii) anti-CRISPR proteins that enable an off-switch 

of the gene drive 455. In principle, several of the developed strategies in the presented 

dissertation could be employed in future work to further safeguard the CRISPR 

technology, especially in the context of gene drives. First of all, the splitSaCas9 system 

could enable a similar physical segregation of the CRISPR gene drive components as 

indicated in strategy ii) by encoding one split half as gene drive component, while the 

other half is provided episomally and thus enable a tighter control on the level of Cas9 

effector protein. Furthermore, a SIN approach could be introduced that limits the 

presence of Cas9 and might be able to switch off the CRISPR gene drive. And lastly, the 

presented strategies of designer-Acrs could increase the inhibitory potency against 

CRISPR gene drives and enable inhibition of gene drives based on Cas9 orthologs, for 

which so far no natural Acr has been discovered.    
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6. SUPPLEMENTARY INFORMATION 

 

Supplementary Table 1. Studies that applied CRISPR against HBV infections.  

Targets Cas9 
Ortholog 

CRISPR 
Delivery 

HBV Model System Multi-
plexing 

Ref 

X, E, 
PCE, 
preS, S 

Sp Transfection, 
HDI 

Huh7 cells transfected with HBV 
plasmid, mice transduced with 
AAV/HBV1.2 
 

single 318 

X,E Sp Lentivirus HepAD38 with integrated HBV 
genome, HepG2-NTCP cells with 
HBV infection 
 

single 319 

X, C, P Sp Transfection, 
HDI 

Huh7 cells transfected with pTHBV, 
HepG2.2.15 with integrated HBV, 
precccDNA hydrodynamically 
injected in BALB/c mice 
 

single 456 

 X, S Sp 
nickase 

Transfection, 
Lentivirus 

HeLa and HEK293 cells with 
transfected and integrated HBs and 
HBx reporter, HepG2.2.15 and 
HepG2-NTCP with HBV infection 
 

dual as 
required 
for 
nickases 

457 

P, C, E Sp Transfection, 
Lentivirus 

HEK293T with transfected Luc 
reporter, HepAD38 with integrated 
HBV, HepaRG with HBV infection 
 

single 458 

X, P, C, 
S 

Sp Transfection, 
Lentivirus, 
HDI 

HepG2 cells with HBV 
infection,pHBV 1.3 hydrodynamically 
injected in BALB/c mice 
 

single 459 

X, P, C, 
S 

Sp Transfection, 
Lentivirus, 
HDI 

HepG2 cells transfected pHBV 1.3, 
pHBV 1.3 hydrodynamically injected 
in NRG mice, HepG2.2.15 with 
integrated HBV, HepG2-NTCP with 
HBV infection 
 

single 460 

X, E, C, 
preS, S, 
En1 

Sp Transfection Huh7-cells transfected with pBB4.5-
HBV1.2,HepAD38 with integrated 
HBV genome 
 

dual 320 

X, C, S, 
P 

Sp Transfection, 
HDI 

 HepG2.2.15 with integrated HBV, 
HepG2 tramsfected with pHBV1.3, 
HDIof pHBV1.3 and HBV transgenic 
mice  
 

dual 461 

X, C, S Sp & Sp 
nickase 

Transfection HepG2 and HEK293T cells  
transfected with pHBV1.4 
 

up to 6 
gRNAs, 
or 3 dual 
gRNAs 

315 

X, P Sp Lentivirus HepG2-NTCP with HBV infection single 462 
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X, S Sp Transfection, 

HDI 
Huh7 and HepG2 transfected with 
pHBV1.3, M-TgHBV mice 
 

single 463 

X, C, S, 
P 

Sp Lipid-like 
nanoparticle 

HDI of pHBV1.3 
 

single 464 

repeated 
C 

Sp Transfection HepG2.A64 with integrated HBV 
 

single 465 

S, P Sa AAV2  HepG2.2.15 with integrated HBV, 
HepG2-NTCP with HBV infection 
 

single 466 

X, C, P, 
preS 

Sp Transfection, 
HDI 

HepAD38 with integrated HBV 
genome, HepG2-NTCP-tet cells with 
HBV infection, hydrodynamically 
injected in C57BL/6 mice 
 

dual, 
combined 
with RNAi 

362 

X/P, E, 
C/P, S 

Sa  AAV8, HDI Huh7cells transfected with pHBV1.3, 
HepG2.2.15 and HepAD38 cells with 
integrated HBV,HDI of pHBV1.2 in 
C57BL/6 mice and C3H  
 

dual 467 

X, P, P1 Sp Transfection, 
Adenovirus 

HEK293T and Huh7 cell transfected 
with pTHBV2,  HepG2.2.15 with 
integrated HBV, HepG2-NTCP with 
HBV infection 
 

triple 316 

preS1, 
preS2, S 

Sp 
nickase 

Transfection HepG2.2.15, PLC/PRF/5 and Hep3B 
with integrated HBV 
 

single 468 

X, C, 
En1 

Sp Transfection HepG2-1.1 and-1.5mer integrated 
HBV 
 

single 469 
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Supplementary Figure 1. Original Bioanalyzer chromatograms supporting Figure 17F.  

HepG2-hNTCP-HB2.7 cells were transduced with sgRNA 6, 7 and 8 targeting the HBsAg locus 
using the different multiplexing approaches (MIX, POOL or TRISPR) and an MOI of 3 x104 (upper 
chromatograms) or 105 (lower chromatograms). Approaches with only single sgRNAs (U6-S8, H1-
S7, 7sk- S6) resulted in a single 350 bp band (red star), whereas cells treated with the different 
multiplexing approaches revealed additional smaller PCR fragments (green stars).The smaller 
PCR fragments represent the excision of the sequence between the sgRNA binding sites. For 
quantifications, the area under the curves of the peaks with green stars were divided with the area 
under the curves of all peaks. Data shown for cells treated with two independent AAV productions 
using different multiplexing approaches. (Manuscript in preparation) 
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Supplementary Figure 2. Screening of shRNA 1 to 9 against HDV. 

A) Experimental layout: Huh7-NTCP cells were first transduced with AAV crude lysates 
expressing nine different shRNAs against HDV under a U6 promoter and subsequently infected 
with HDV. Ten days after AAV transduction, cells were harvested for Western Blot analysis (B), IF 
staining and automated microscopy (C) and qPCR against the HDV genome (D). shTaylor 4 and 
6 refer to the shRNAs used in 127. sh ctrl. represent a non-targeting shRNA. Experiments were 
performed by Florian Lempp (AG Urban) and Florian Schmidt (former Bachelor student in our 
lab).   
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Supplementary Figure 3. DMSO can enhance AAV expression levels depending on AAV 

variant and cell line.  

The experiments in Figure 24 were also analyzed for the intensity of the YFP signal via 
automated microscopy. HepG2 (A), Huh7 (B), Hepa16 (C) and N2A (D) cells were transduced 
with 23 different AAVs with an MOI of 105 (left) and 103 (right) without (black) or with 2.5% DMSO 
(gray) in the transduction media. Background intensity levels that were acquired in the mock 
condition (no AAV) were subtracted from all other conditions. Enhanced YFP expression rates 
correlate with DMSO-mediated enhanced transduction efficiencies. Error bars represent standard 
deviations of three independent experiments.  
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Supplementary Figure 4. Expression rates of ss versus dsAAV in different cell lines. 

A) HEK293T, B) N2A, C) HepG2 and D) Huh7 cells were transduced with AAV9A2 expressing 
CMV-mCherry in the ssAAV (red) or scAAV (orange) context using the indicated MOIs (ranging 
from 106 to 103). Cells were analyzed via flow cytometry either 1.5, 2.5 or 4 days after 
transduction. Error bars indicate standard deviation of four independent experiments. Results 
obtained jointly with Daniel Heid in his Bachelor Thesis.  
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