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Summary 
 

Cervical cancer is the fourth most common cancer in women worldwide. It is estimated that 

more than one million women are currently suffering from cervical cancer, and there are 

570,000 new cases in 2018. The majority of cases (>80%) occur in less developed region. 

There are three HPV prophylactic vaccines in the market currently. They are designed to 

induce L1-specific antibodies blocking the infection of epithelial cells. The therapeutic 

efficacy was neither observed for Cervarix nor for Gardasil. Therefore, preventive vaccines 

cannot benefit individuals with already existing viral infections. As a result, a high prevalence 

of cervical cancer still threatens human life worldwide.  

Until now, there are no anti-HPV drugs available, an effective strategy should be the 

therapeutic vaccination to eliminate HPV-transformed cells by the activated immune system. 

The objective of my PhD project is to combine prophylactic and therapeutic value in one 

vaccine. The combined vaccine would ideally resolve productive infections and HPV-related 

diseases benefitting both uninfected and already infected individuals. 

Thioredoxin (Trx) was applied as a scaffold to develop HPV prophylactic vaccine Trx-L2 and 

Trx-8mer-OVX313 in our lab previously. In my project, we firstly verified that Trx was also 

able to induce CD8+ cytotoxic T cell responses. Then, we designed our prophylactic and 

therapeutic combined vaccines based on Trx-L2 and Trx-8mer-OVX313. HPV16 E749-57 was 

chosen as CTL epitope since it is considered a tumor specific antigen as well as an 

oncoprotein being expressed throughout the whole HPV life cycle. We developed the 

combined vaccines PADRE-Trx-L2-flank E7 (monomeric) and Trx-8mer-flank E7-OVX313 

(heptameric). The E7-specific T cell responses were compared via IFN-gamma ELISpot 

between these two vaccines and the data indicates that heptamerization leads to a stronger 

T cell response. We therefore continued investigating the B cell responses induced by the 

heptameric antigen. From pseudovirion-based neutralization assay (PBNA), we saw that 

presence of CD8 T cell epitopes on the antigen does not interfere with the induction of 

neutralizing antibodies.  

In view of the in vitro promising results of Trx-8mer-flank E7-OVX313, we were encouraged 

to evaluate the therapeutic potential of Trx-8mer-flank E7-OVX313 in vivo. C57BL/6N mice 

were administrated with two doses vaccination after TC-1 cells challenge, and a potent 

antitumor activity was observed. These results demonstrate that antigen Trx-8mer-flank E7-

OVX313 is a promising and cost-efficient candidate with both prophylactic and therapeutic 

effectiveness. 
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Zusammenfassung 

Gebärmutterhalskrebs ist weltweit die vierthäufigste Krebsart bei Frauen. Schätzungen 

zufolge leiden derzeit mehr als eine Million Frauen an Gebärmutterhalskrebs, und 2018 

allein gibt es 570.000 neue Fälle. Die meisten Fälle (>80%) treten in weniger entwickelten 

Regionen auf. Es gibt derzeit drei prophylaktische HPV-Impfstoffe auf dem Markt. Sie sollen 

L1-spezifische Antikörper induzieren, die die Infektion von Epithelzellen blockieren. Eine 

therapeutische Wirksamkeit wurde weder für Cervarix noch für Gardasil beobachtet. 

Personen mit bereits bestehenden Virusinfektionen können daher nicht von 

prophylaktischen Impfstoffen profitieren. Infolgedessen bedroht eine hohe Prävalenz von 

Gebärmutterhalskrebs nach wie vor das menschliche Leben weltweit.  

Bis jetzt gibt es noch keine Anti-HPV-Medikamente. Eine therapeutische Impfung stellt eine 

effektive Strategie dar, um HPV-transformierte Zellen durch das aktivierte Immunsystem zu 

eliminieren. Ziel meines Promotionsvorhabens ist es, die prophylaktische und therapeutische 

Wirkung in einem Impfstoff zu kombinieren. Der kombinierte Impfstoff würde idealerweise 

produktive Infektionen verhindern und von HPV verursachte Krankheiten heilen, von denen 

sowohl nicht infizierte als auch bereits infizierte Personen profitieren. 

Thioredoxin (Trx) wurde bereits als Gerüst zur Entwicklung des prophylaktischen HPV-

Impfstoffs Trx-L2 und Trx-8mer-OVX313 in unserem Labor eingesetzt. In meinem Projekt 

haben wir zunächst verifiziert, dass Trx auch CD8+ zytotoxische T-Zellantworten induzieren 

konnte. Dann entwickelten wir unsere prophylaktischen und therapeutischen 

Kombinationsimpfstoffe auf Basis von Trx-L2 und Trx-8mer-OVX313. Als CTL-Epitop wurde 

HPV16 E749-57 gewählt, da es sowohl als tumorspezifisches Antigen als auch als Onkoprotein 

gilt, das über den gesamten HPV-Lebenszyklus exprimiert wird. Wir haben die kombinierten 

Impfstoffe PADRE-Trx-L2-flank E7 (monomer) und Trx-8mer-flank E7-OVX313 (heptamer) 

entwickelt. Die E7-spezifischen T-Zell-Antworten wurden über IFN-Gamma-ELISpot zwischen 

diesen beiden Impfstoffen verglichen und die Daten zeigen, dass die Heptamerisierung zu 

einer stärkeren T-Zell-Antwort führt. Deshalb haben wir die durch das heptamerische 

Antigen induzierten B-Zell-Antworten weiter untersucht. Aus dem Pseudovirion-basierten 

Neutralisierungstest (PBNA) haben wir gesehen, dass das Vorhandensein von CD8-T-Zell-

Epitopen auf dem Antigen die Induktion von neutralisierenden Antikörpern nicht stört.  

Angesichts der vielversprechenden in vitro Ergebnisse von Trx-8mer-flank E7-OVX313 haben 

wir entschieden, das therapeutische Potenzial von Trx-8mer-flank E7-OVX313 in vivo zu 

untersuchen. C57BL/6N-Mäusen wurden zwei Impfdosen nach TC-1-Zellen Injektion 

verabreicht, und eine starke Antitumor-Aktivität wurde beobachtet. Diese Ergebnisse zeigen, 

dass das Antigen Trx-8mer-flank E7-OVX313 ein vielversprechender und kostengünstiger 

Kandidat mit prophylaktischer und therapeutischer Wirkung ist. 
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1. Introduction 

1.1 Impact of human papillomaviruses 

Papillomaviruses are ubiquitous and can infect different species including reptiles, birds and 

mammals (Bernard et al, 2010). More than 350 papillomaviral types have been reported and 

over 100 types were identified as human papillomaviruses (HPVs) (de Villiers et al, 2004). 

HPVs are defined as cutaneous and mucosal types due to the infection sites. They cause 

benign warts or papilloma, while some types are also responsible for malignancies. The 

cutaneous types HPV5 and 8 are related to skin cancer in patients who suffer from 

Epidermodysplasia verruciformis (Pfister, 2003). Some types are also described as a co-factor 

during the pathogenesis of non-melanoma skin cancer (NMSC) (Rollison et al, 2008). The 

mucosal HPV types have been classified into ‘low-risk’ and ‘high-risk’ groups according to 

their oncogenic capacity. The most common low-risk HPV are HPV 6 and 11, which cause 

genital warts and recurrent respiratory papillomatosis (Lacey et al, 2006). The high-risk types 

are directly associated with carcinogenesis, in particular HPV16 and HPV18  are accounting 

for most of the cervical cancer cases (Bouvard et al, 2009; de Villiers et al, 2004). It has been 

also reported that tumors of vulvar, vagina, anus, penis, laryngeal and oropharyngeal are 

linked to high-risk HPV infection (Abramowitz et al, 2011; de Martel et al, 2017; De Vuyst et 

al, 2009; Herrero et al, 2003; Miralles-Guri et al, 2009; Munoz et al, 2003; St Guily et al, 2011) 

Cervical cancer is the fourth most common cancer in women worldwide. It is estimated that 

more than one million women are currently suffering from cervical cancer, and there are 

570,000 new cases in 2018. The majority of cases (>80%) occur in less developed region 

(WHO, 2018). Nearly all sexually active women will contract at least one type of high risk 

HPV in their life, while most infections remain asymptomatic and are cleared by immune 

system. However, in few cases, when the immune system fails to eliminate the viruses, the 

infection persists over several years and may result in cervical intraepithelial neoplasia (CIN) 

or even cervical cancer (Ghittoni et al, 2015; Trimble et al, 2005). In total, at least 15 mucosal 

high-risk HPVs can cause cervical cancer (Doorbar, 2006). HPV16 is responsible for more than 

50% of cases and HPV18 for around 20%. The other 13 HPV types including HPV45, 31, 33, 52, 

58, 35, 59, 56, 51, 39, 68, 73 and 82, account for 30% of cancer cases (Munoz et al, 2004).  
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1.2 Papillomaviruses and life cycle  

Papillomaviruses are non-enveloped double stranded (ds) DNA viruses. The viral genome is 

about 8 kbp and encodes eight to ten defined genes which include six “early” genes coding 

for non-structural proteins E1, E2, E4, E5, E6 and E7 engaged in virus replication, and two 

“late” genes coding for structural proteins L1 and L2 involved in formation of viral capsid 

(Figure 1). Different from HPV protein nomination, actually E1, E2, E5, E6 and E7 are 

expressed in the early stage of infection, while E4, L1 and L2 are expressed in a later phase 

(Doorbar, 2005). Normally, the major capsid protein L1 assembles into pentameres 

(capsomeres) spontaneously, and 72 capsomeres together form the HPV capsid in an 

icosahedral structure. The minor capsid protein L2 is deemed to inlay into the center of 

capsomeres (Modis et al, 2002). And the HPV viral genome is packaged in the capsid cage 

formed by L1 and L2 proteins (Figure 2). 

 

from M.A. Stanley, Clinical Microbiology Reviews 2012 

Figure 1. HPV16 genome. The ds DNA is about 8kbp and one strand of it encodes all viral genes. 
There are six “early” genes and two “late” genes. E1 and E2 proteins are responsible for viral genome 
replication. E6 and E7 are oncoproteins regulating cell cycle. E5 protein is involved in immune 
evasion while E4 assist virus shedding. L1 and L2 are expressed in the final stage and code for virus 
structural proteins. The URR (upstream regulatory region) comprises the promoter and enhancer 
elements.  
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from J.T Schiller and M. Müller, Lancet Oncol 2015 

Figure 2. Assembly of HPV virion particles. Five L1 monomers assemble into pentameric capsomeres 
and 72 capsomeres together form the HPV capsid. The L2 monomers are deemed to insert into the 
center of capsomeres. The HPV viral genome is packaged in this icosahedral capsid formed by L1 and 
L2 proteins. 

 

Papillomaviruses infect the skin and mucosa through microtraumas of the epithelium to gain 

access to the basal layer where the viruses start the life cycle. Their replication is 

coordinated with the differentiation of the epithelium (Doorbar, 2013b; Doorbar et al, 2012) 

(Figure 3). Inside the basal cells, the E1 and E2 genes are expressed. E1 is a viral enzyme and 

mediates episomal DNA replication (Wilson et al, 2002). E2 is a transcription factor 

regulating viral copy numbers via activation or repression of HPV promoters (Hegde, 2002). 

But the function of the E2 protein is compromised  when the viral genome integrates into 

the host cell genome along with the migration of infected cells into the superficial layers. 

This integration derepresses E6 and E7 genes leading to the infected cells in an abnormal 

state that benefits viral DNA amplification (Boulet et al, 2007; Yim & Park, 2005).  

E7 and E6 both interact with regulatory proteins to control the cell cycle. Usually, the tumor-

suppressor protein retinoblastoma (RB) sequesters the transcriptional factor E2F. However, 

if the cells are infected by HPV, E7  binds to RB. This process releases E2F  resulting in the 

promotion of DNA replication (Dyson et al, 1989; Kiyono et al, 1998). The high level of E2F 

activity and cell cycle progression might cause apoptosis, but the existence of E6 can 



 6 

overcome this. E6 play an anti-apoptotic role by binding to the ubiquitin ligase E6-associated 

protein (E6AP) which leads to the ubiquitination and subsequent degradation of tumor-

suppressor p53 (Huibregtse et al, 1991; Scheffner et al, 1993). With the inactivation or 

degradation of tumor suppressors, E7 and E6 are undoubted oncoproteins. The existence of 

them is critical in the maintenance of cell transformation and the progression to cervical 

intraepithelial neoplasia (CIN) or even carcinoma. The classification of high-risk and low-risk 

HPVs is determined by the relative affinity efficiency of E7 and E6 binding to pRB and p53, 

respectively (Best et al, 2012). 

HPVs are nonlytic and the virus release depends on the shedding of apical surface cells 

(koilocytes) which contain mature viruses. And around 50-100 virion per koilocytes can be 

released (Paavonen, 2007). It is suggested that E4 not only participates in virus synthesis and 

amplification, but also facilitates this viral shedding and transmission process (Doorbar, 

2013a). The function of E5 is not clearly illustrated. It might stimulate host cell proliferation 

and inhibits cell differentiation. It is also thought that E5 is involved in the downregulation of 

MHC I expression on the cell surface (DiMaio & Petti, 2013). 

In later phase of the viral life cycle, the infected keratinocytes migrate towards the 

suprabasal layer and HPV major and minor capsid proteins L1 and L2 are expressed 

respectively (Figure 2). L1 is expressed after L2, and L1 itself can spontaneously assemble 

into a 72-capsomeres icosahedral cage (virus-like particle) with L2 located in the center of 

each capsomere (Buck et al, 2008; Buck et al, 2013). Although L2 is not the major structural 

protein, it is very important during viral genome packing and viral infection process (Roden 

et al, 2001; Stauffer et al, 1998). The newly synthesized viral DNA is packaged into the viral 

capsid and this capsid is stabilized by disulfide bonds between L1 and L2. This stability can 

aid the virion to resist the cellular “unfavourable” environment after the virus is released 

from the koilocyte (Buck et al, 2005).  
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from C. Rosales, Chapter 2 from the book Vaccines, 2017 

Figure 3. HPV life cycle of infection. Expression of the viral proteins in different epithelial layers is 
shown at the right. HPVs initiate the infection though microlesions in the basal layers where E1 and 
E2 are expressed and regulate viral DNA replication and copy numbers. E5, E6 and E7 act by 
modulating cellular proliferation and hinder cell differentiation to favor viral DNA synthesis. E4 is 
involved in virion slough and transmission. In the final stage, L1 and L2 are expressed and form the 
capsid encapsuling viral DNA. At the surface of epithelium, new virions are released along with 
shedding of koilocytes. 

1.3 From persistence to cervical cancer  

Genital HPV infections are very common in general, with an 80% life time probability to 

acquire the infection, but the incidence of cervical cancer is relatively low. This is because 

the host immune system most of the time can clear HPV infections within 6-18 months 

(Parkin et al, 2005). Only when the immune system fails to abrogate this, the persistent 

infection by high-risk HPVs leads to lesions that may progress to cervical intraepithelial 

neoplasia grade 1 (CIN1), also referred to as low grade squamous intraepithelial lesions (LSIL). 

The gene expression pattern is similar to the normal viral life cycle and viruses are still in 

productive infection stage at this time. Approximately 20% of CIN1 lesions develop into to 

CIN2, and 30% of these can progress to CIN3. CIN2 and CIN3 are defined as high grade 

squamous intraepithelial lesions (HSIL). In this stage, the viral life cycle cannot be completed 

due to the low expression of capsid proteins and incomplete viral genome amplification 

(Doorbar, 2006). But the infected cells are highly proliferative with occasional integration of 

viral DNA into the host genome, which occurs in some CIN lesions and many cervical cancers 
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(Huang et al, 2008; Jeon et al, 1995). About 40% of CIN3 eventually progress into cancer 

(Peto et al, 2004). 

During persistent infection with high-risk HPVs, the oncoprotein E7 keeps the infected cells 

permanently proliferative via continuous S-phase initiation. Furthermore, owing to the 

interference of the E6 protein with p53-mediated apoptosis and DNA repair, accumulation of 

mutations can give rise to malignant lesions. In higher grade lesions and cancers, the viral 

DNA often integrates into the cell genome, which not only stabilize the viral E6 and E7 

transcripts, but also interrupt inhibitory regulation of cell proliferation by abolishing E2, E4 

and E5 (Choo et al, 1987; Jeon & Lambert, 1995; Klaes et al, 1999). All of these lead to 

uncontrolled cell proliferation. However, the development of cervical cancer is most likely 

further advanced by accumulation of additional genetic mutations from for instance, 

smoking, the long-term taking oral contraceptives and co-infection with other sexually 

transmitted viruses such as HSV-2 and HIV (Munoz et al, 2006; zur Hausen, 2000). Pre-

cancerous lesions can be detected five years after infection. But cervical cancer development 

is a very long process usually 10-20 years after the initial infection with high-risk HPVs 

(Woodman et al, 2001). Therefore, cervical carcinogenesis is a long pre-cancerous process 

and lesions can usually be removed by surgical techniques or ablation at this time. 

Development of therapeutic vaccines is also an attractive therapy which is based on the high 

expression of oncoproteins E7 and E6 in CIN lesions and cervical cancers. 

 

from J. Doorbar, Clinical Science 2006 

Figure 4. Different viral gene expression patterns in CIN and cervical cancer. In CIN1 the expression 
pattern is similar to the normal viral life cycle, productive infection. In CIN2 and CIN3, viral 
production is restricted to extreme upper surface, expression of capsid proteins is reduced strongly 
and E7 is highly overexpressed. In cervical cancer, the viral DNA is often integrated into host cell 
genome and transformed cell are proliferated uncontrollably. 
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1.4 Host immune responses to HPV infection 

HPV Infections are often underway unnoticed by the host because the viruses have their 

own immune escape mechanisms. The protein E5 of high-risk HPV types downregulates MHC 

I expression on the cell surface while the E6 protein affects Langerhans’ cell density 

(Matthews et al, 2003). More importantly, oncoprotein E7 interferes with IFN signaling 

pathway which is indispensable in inflammatory reaction and immune responses (Barnard et 

al, 2000). 

Although HPVs develop several ways to evade immune surveillance, the host immune 

systems have coping strategy to defend themselves against most viral attacks. This is the 

reason why most immune competent individuals can clean up HPV-related lesions 

spontaneously (Doorbar et al, 2012; Woodman et al, 2007). Protection is achieved by both 

innate and adaptive immune responses. HPV infection site is firstly started inflammation 

reaction attracting neutrophils, macrophages and later lymphocytes. The innate immune 

cells produce inflammatory cytokines, such as interleukin (IL)-1β, IL-6, IL-8, IL-12, and 

interferon (IFN)-α, -β- and -γ, as responses to nonspecific viral particles, such as free viral 

DNA. The stimulated cytokines can attract natural killer (NK) cells (Woodworth, 2002).  

Afterwards, when viral proteins are being synthesized, the antigen-presenting cells (APCs), 

here mostly dendritic cells (DCs) and Langerhans cells, can endocytose these proteins and 

present small pieces derived from the proteins in context with the major histocompatibility 

complex (MHC) on the cell surface. The MHC II-peptide complexes stimulate CD4+ T cells and 

MHC I-peptide structures stimulate CD8+ T cells to initiate an adaptive immune response 

(Figure 5 and Figure 6). 

The activated CD4+ T cells can differentiate into Th1, Th2, or Treg/Th3 according to the 

immune environment. Then, the CD4+ helper T cells assist B cells activation and secretion of 

anti-virus specific antibodies. Moreover, helper T cells aid CD8+ T cells to differentiate into 

functional cytotoxic T lymphocytes (CTLs) which produce granzyme, perforin and some 

proteolytic enzymes (Zhang & Bevan, 2011). CTLs perform as the most potent cell weapon to 

eliminate HPV-infected cells. 
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1.4.1 Humoral immune responses 

A humoral immune response (Figure 5) can be observed in most patients infected by HPVs. 

Anti-protein L1, E2, and E4 antibodies are usually detected in the first stage of infection 

(Dillner et al, 1989; Dillner et al, 1993; Veress et al, 1994). After viral DNA integrates into the 

host genome, some patients produce antibodies recognizing oncoprotein E6 and E7 (Baay et 

al, 1997; Fisher et al, 1996; Park et al, 1998). Nevertheless, these antibody responses are 

weak and neither adequate for shielding individuals from further re-infection, nor effective 

at clearing HPV infected cells. 

1.4.2 Cellular immune responses 

Cellular responses play an essential role for eliminating established HPV lesions (Figure 6). As 

discussed above, elimimation of lesions is highly correlated with induced CTL performances. 

For instance, viral specific memory T cell responses are observed in patients who have 

already cleared HPV16 infections successfully (Welters et al, 2003). And patients with 

spontaneous regression of vulvar intraepithelial neoplasia grade 3 present robust CD4+ and 

CD8+ T cell responses (Bourgault Villada et al, 2004). However, deficient T cell responses are 

found if patients in CIN or cervical cancer stage (de Jong et al, 2004). 

 

from C. Rosales, Chapter 2 from the book Vaccines, 2017 

Figure 5. Humoral responses to HPV infection. Dendritic cells (DCs) or Langerhans cells can take up 
antigens from HPV infected cells. These antigen-presenting cells (APCs) then travel to the lymphatic 
nodes and activate CD4+ T cells by presenting MHC II-peptide complexes. The stimulated T cells 
differentiate into Th1 or Th2 cells according to the immune environment. B cells become to plasma 
cells require native virus stimulation as well as Th2 assistance. 
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from C. Rosales, Chapter 2 from the book Vaccines, 2017 

Figure 6. Cellular responses to HPV infection. DCs or Langerhans cells take up HPV-related antigens 
and travel to the lymphatic nodes. There, APCs present MHC II-peptide complexes to activate CD4+ T 
cells and present MHC I-peptide complexes to stimulate CD8+ T cells. The activated CD4+ T cells 
differentiate into Th1, Th2 or regulatory T (Treg) cells, among which Th1 can help CD8+ T cells 
differentiate to cytotoxic T lymphocytes (CTLs) while Treg normally negatively regulate CTL activity. 
CTLs migrate back to infected tissue to perform the cytotoxic function. 

 

1.5 HPV prophylactic vaccines 

As Harald zur Hausen found in 1978 that there is a strong relation between HPV infection 

and cervical cancer development, it was thought that preventing HPV infections can dispel 

HPV-associated diseases (zur Hausen, 1991; zur Hausen, 1996; zur Hausen, 2002). Besides, 

antibodies produced from infected individuals were characterized to recognize the viral 

capsid proteins. These all inspired the researches to develop HPV prophylactic vaccines 

based on HPV L1 and L2 proteins.  

1.5.1 Current HPV prophylactic vaccines in the market 

Three HPV prophylactic vaccines are approved and currently used worldwide. They all take 

advantage of the major capsid protein L1, which can assemble into virus-like particles (VLPs) 

spontaneously. Cervarix (manufactured by GlaxoSmithKline (GSK) in Europe) is a bivalent 

vaccine composed of VLPs from HPV 16 and 18 which cause most HPV-related cancers. The 

antigen is produced in insect cells and adjuvanted with aluminum salt and monophosphoryl 

lipid A (MPLA), a TLR-4 agonist. Gardasil (manufactured by Merck in the USA) is a 
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quadrivalent vaccine containing VLPs not only from HPV 16 and 18, but also from HPV 6 and 

11 which are the causative agents for most genital warts. In addition, Merck have developed 

Gardasil 9 recently by increasing the number of VLP types from four to nine (HPV 6, 11, 16, 

18, 31, 33, 45, 52, and 58). This nonavalent vaccine can prevent about 90% occurrence of 

cervical cancers (Figure 7). Both Gardasil and Gardasil 9 are expressed in yeast and 

adjuvanted with aluminum salt. Table 1 summarizes the features of three commercial HPV 

prophylactic vaccines. 

 

from J.T Schiller and M. Müller, Lancet Oncol 2015 

Figure 7. HPV VLP types in three commercial prophylactic vaccines. The HPV types and the coverage 

of HPV-associated diseases in Cervarix, Gardasil and Gardasil 9 are shown. 

 

Table 1. Features of the current HPV prophylactic vaccines in the market 

 Cervarix  Gardasil  Gardasil 9  

Manufacturer GSK Merck Merck 
HPV types included HPV16 and 18 HPV6, 11,16, 18 HPV6, 11, 16, 18, 31, 

33, 45, 52 and 58 
Vaccination dose 20 μg HPV16 and  

20 μg HPV18 
20 μg HPV6, 40 μg 
HPV11, 40 μg HPV16 
and 20 μg HPV18 

30 μg HPV6, 40 μg 
HPV11, 60 μg HPV16, 
40 μg HPV18, 20 μg 
HPV31, 20 μg HPV33, 
20 μg HPV45, 20 μg 
HPV52 and 20 μg 
HPV58 

Producer cells Trichoplusia ni (Hi 5) 
cells infected with 
Baculovirus 

Saccharomyces 
cerevisiae (bread 
yeast) 

Saccharomyces 
cerevisiae (bread 
yeast) 
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Adjuvant 500 μg aluminium 
hydroxide and 50 μg  
3-O-deacylated-4’-
monophosphoryl lipid 
A 

225 μg amorphous 
aluminium 
hydroxyphosphate 
sulphate 

225 μg amorphous 
aluminium 
hydroxyphosphate 
sulphate 

Recommended 
vaccination schedule 

0, 1 and 6 months 0, 2 and 6 months 0, 2 and 6 months 

 

1.5.2 The limitations of current HPV prophylactic vaccines 

Despite the success of current commercial HPV vaccines, they still have inherent limitations 

that restrict the scope of application and potential effects on public health. First, three  

intramuscular injections are recommended to teenagers during at least 6 months. However, 

it is difficult for adolescents to complete the three-dose series, since most of them do not 

routinely access health care. Although a better completion of vaccination can be achieved 

under school immunization programmes, this is not common, especially in low-income 

countries where HPV prevention is most needed. Recently, a two-dose immunization 

strategy has been tried. This is relatively easier and cheaper to achieve and the protection 

seems to be comparable to three doses (Jit et al, 2015; Kreimer et al, 2015). Second, 

protection by HPV L1 vaccines is restricted by HPV genotypes, with limited cross-protection 

for a few additional types which are closely related to HPV 16 and 18 (Schiller et al, 2012). 

And cross-neutralizing titres are likely to be at two orders of magnitude lower than type-

specific neutralizing titres. Hence, cross-protection provided by HPV L1 vaccines might be 

less efficient and durable. Third, the commercial vaccines are quite expensive to produce 

and deliver. The current prophylactic vaccines are all produced in eukaryotic cells and 

require cold-chain transportation which is definitely costly if the vaccines are popularized 

globally. Fourth, the licensed vaccines offer very limited benefits to the virus infected 

population, since no cell-mediated immune responses have been observed for these 

vaccines (Wang & Roden, 2013). As mentioned above, antibodies induced by these vaccines 

recognize HPV L1 proteins. But once the infection is established, these proteins are only 

expressed on the very superficial epithelium. Oppositely, a therapeutic vaccine should 

induce immune responses against proteins that are expressed through the whole lifecycle of 

infection (Kumar et al, 2015). Lastly, the patents of HPV VLP technology are exclusively 

possessed by Merck and GSK, which restricts the development of similar vaccines by other 
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companies. So alternative approaches unrelated to the licensed vaccines are now highly 

invested. 

The discussed considerations provoke the interest for academic research and industry to 

develop alternative strategies for production of next-generation HPV vaccines. 

1.5.3 New prophylactic vaccines 

The new HPV vaccines mainly focus on improving the current vaccines from their limitations: 

type-specific, thermolabile, and costly. Here we will discuss L1-based and L2-based third 

generation vaccines. 

The improvements for L1-based vaccines are in regard to their production system, structure 

of the vaccine and vector instead of protein immunization. For example,  Escherichia coli are 

used by Xiamen Innovax Biotech (China) to achieve L1 mutants in high yield (Zhao et al, 

2014). Yeast Komagataella (Pichia) pastoris has been applied by Indian Immunologicals 

(India) (Bazan et al, 2009), Instituto Butantan (Brazil) (Hanumantha Rao et al, 2011) and 

Shanghai Zerun (China) (NCT01548118) as producer cells. While another India based 

institute produces VLPs in yeast Hansenula polymorpha. These two yeasts are supposed to 

generate higher yields of L1 VLPs at a lower cost than Saccharomyces cerevisiae. Some 

groups try to produce L1 VLPs in plants so that the vaccine can be taken orally. This kind of 

vaccine uptake pattern is especially very important for regions in low medical-resource 

settings. Unfortunately, the yield of vaccines in plants is normally low and VLP assembly is 

inefficient. Then, the expression in chloroplasts is proposed and L1 production was improved 

substantially in this expression system (Giorgi et al, 2010). Other investigators produce 

simpler L1 capsomeres instead of complex VLPs. Capsomeres are the subunits of the viral 

VLPs. They share similar immunogenicity as VLP-based vaccines, but have better thermal 

stability, lower production costs and can also use bacteria as producer systems (Panatto et al, 

2015). Vectored vaccines have been assessed as platforms for L1 HPV vaccines. For instance, 

measles virus, adeno-associated virus and a human endogenous retrovirus have been 

studied by some researchers. However, application of vectors as vaccines has potential risk 

of mutation due to genetically modified microbes involved (Schiller & Muller, 2015).The 

region in the protein L1 for antibody induction is highly specific among different HPV types. 

In contrast, there are several conserved regions in L2 among most high-risk HPV types which 

can induce broad cross-neutralizing antibodies; although, L2-induced titres against type 
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specific virus are at least ten times lower than titres induced by L1 VLPs (Pastrana et al, 

2005). The regions of L2 that can be recognized by antibodies are commonly not exposed. 

Only when the N-terminus of L2 is cleaved by furin, the main L2 neutralization epitopes are 

uncovered (Day et al, 2010). Cross-neutralizing characteristics of L2 induced antibodies 

provide feasibility that a monovalent vaccine might protect against a range of mucosal HPV 

types and even some cutaneous types (Pouyanfard et al, 2018; Schellenbacher et al, 2013). 

However, unlike L1 VLPs, the L2 protein is not very immunogenic. And several approaches 

are being tried to improve its immunogenicity. Sanofi Pasteur has developed concatemer 

vaccine using L2 amino acids 11–88 from five (HPV 6, 16, 18, 31, and 39) or eight (HPV 6, 16, 

18, 31, 39, 51, 56, and 73) HPV types of diverse clades. The type-specific and cross protection 

of these L2 immunogens have been detected in mice (Jagu et al, 2013). Another approach is 

to generate L1 VLPs with the surface loop replaced by a L2 peptide. This recombinant VLP 

should possess both advantages of L1 that can induce high type-specific neutralizing titers 

and of L2 that offer broad cross protection (Schellenbacher et al, 2013). Similarly, other 

particles can be also employed to display L2 peptides on the surface to enhance L2 

immunogenicity. For instance, an inexpensive production is to express L2 peptides on the 

surface of bacteriophage PP7 (Tumban et al, 2011). Lactobacillus casei is also used as an L2 

display platform and the recombinant bacteria are possible for oral immunization (Yoon et al, 

2012). Our group designed polytopes comprising the L2 amino acids 20-38 from several 

representative mucosal HPV types. A thioredoxin-derived from thermophile 

archeabacterium Pyrococcus furiosus (PfTrx) is used as a protein scaffold to increase the 

thermal stability of L2 polytopes. We further apply a heptameric platform OVX313 to 

repetitively display PfTrx-L2 polytopes seven times in order to achieve a better 

immunogenicity (Pouyanfard et al, 2018) (Figure 8). 

 

Figure 8. Formation of PfTrx-L2 8mer-OVX313. L2 8mer is the polytopes. The thermal stability and 
immunogenicity of the vaccine are enhanced by scaffolds PfTrx and OVX313. 
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1.6 HPV therapeutic vaccines and immunotherapies 

Prophylactic vaccines are designed to induce a potent humoral response in which formed 

antibodies can recognize the viral capsid and block the infection of epithelial cells. These 

vaccines target extracellular viruses, and are ineffective after viruses have entered the cells. 

Therefore, preventive vaccines cannot benefit individuals with already existing viral 

infections. As a result, a high prevalence of cervical cancer still threatens human life 

worldwide, especially in low-economic countries (Forman et al, 2012; Husain & 

Ramakrishnan, 2015). Also, despite of the production of effective viral neutralizing 

antibodies by the prophylactic vaccines, the final prevention of carcinogenesis by these 

vaccines is still unknown. Since it takes a long time from HPV infection until cancer 

development, the anti-cancer efficacy of the prophylactic vaccines will be seen from the 

vaccinated and later viral infected individuals in the future (Schiller et al, 2012). Moreover, 

there are no anti-HPV drugs available, so an effective strategy should be the therapeutic 

vaccination to eliminate HPV-transformed cells automatically by activated immune system. 

For design of therapeutic vaccines, the viral antigens chosen as immunogens should be 

expressed in the infected cells throughout life cycle. As mentioned above, the structural 

proteins L1 and L2 are normally expressed in terminally differentiated keratinocytes at very 

superficial layers of epithelium (Figure 3). So these proteins are not appropriate for 

therapeutic design. In contrast, the proteins E1, E2, E6, and E7 are expressed in multiple 

replication stages throughout infection (Figure 3). Accordingly, they present excellent 

therapeutic targets. 

Until now, different kinds of therapeutic vaccines or immunotherapeutic strategies have 

been investigated and some even tested in clinical trials. We will discuss some of them in the 

following sections. 

1.6.1 Protein vaccines 

The protein vaccines, like the whole protein of E6 and E7, or HPV recombinant proteins have 

been widely used in early exploitation of therapeutic vaccines (Davidson et al, 2004; de Jong 

et al, 2002a; Einstein et al, 2007; Frazer et al, 2004). An advantage of this kind of vaccines is 

that they can be manufactured in large amounts. Moreover, they theoretically cover all 

possible epitopes of the protein and thus the identification of particular epitopes is not 
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required. However, the irrelevant peptides derived from the protein may be dominant and 

drive the immune responses to the unexpected direction rather than desired 

immunogenicity. Despite this, protein vaccination is still an efficient approach by reason of 

allowing presentation of both CTL epitopes and T helper epitopes (Brinkman et al, 2007a).   

A recombinant protein L1VLPE7 composed of the carboxyl-terminally part of HPV 16 L1 and 

the amino-terminal part of the HPV 16 E7 can assemble into virus-like particles. L1VLPE7 was 

administered to patients with HPV-induced CIN 2/3 lesions, but no significant clinical effects 

were presented (Kaufmann et al, 2007). Another VLP antigen HPV 16 L1(ΔN26)-E7(ΔC38) was 

proved to induce neutralizing antibodies and some cellular responses in a murine cervical 

cancer model (Sharma et al, 2012). 

A fusion protein HPV16 E6/E7 comprised of HPV E6 and E7 was adjuvanted with ISCOMATRIX 

for immunization. The antigen was tried in CIN patients and a cellular immune response was 

detected. However, the regression of lesions was only presented in few patients (Frazer et al, 

2004).  

Another chimeric protein SGN-00101 formed by HPV 16 E7 protein and a Mycobacterium 

bovis-derived heat shock protein (Hsp) was employed to patients with CIN 3 lesions. The 

regression was observed in one-third of patients, which was correlated with immune 

response (Roman et al, 2007). 

1.6.2 Peptide vaccines 

HPV peptide vaccines are also a good immunization approach due to simple production and 

safe application (Khallouf et al, 2014). These vaccines employ a small part of E6 or E7 

comprising MHCI  restricted epitopes. This is also the limitation of short peptide utilization, 

that the patients have different human leukocyte antigen (HLA) genetic backgrounds so the 

specific epitope for each HLA has to be defined (Kim et al, 2014a). Another complication is 

that the exogenously loaded peptides may passively bind onto MHC molecules on cells 

directly without antigen-presenting process. This may induce immune tolerance instead of 

stimulation (Melief & van der Burg, 2008). 

To overcome limitations of short peptide-based vaccines, synthetic long overlapping 

peptides were used since they appear to be processed correctly by APCs and encompass all 

potential CD8+ and CD4+ epitopes (Rosalia et al, 2013). In one clinical trial, a mixture of two 
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HPV E7 peptides and one T helper peptide was applied. However, there were no induced 

anti-E7 cytotoxic T cell responses (Ressing et al, 2000). 

Another clinical trial was carried out in patients with resected HPV 16-positive cervical 

cancer. A vaccine (HPV 16-SLP) formed by long peptides from HPV16 oncoproteins E6 and E7 

can stimulate HPV16-specific T cell responses but together with regulatory T cells, which 

indicate that the induced immune responses were not promising (Welters et al, 2008). 

In another test, patients with vulvar intraepithelial neoplasia were administered with a 

mixture of long synthetic peptides derived from E6 and E7 adjuvanted with Montanide ISA-

51. The elimination of lesions was pesented in nearly half of vaccinated patients (Kenter et al, 

2009). 

1.6.3 DNA vaccines 

DNA vaccines are another powerful and economical immunization approach. DNAs are easy 

to be produced, stored and delivered. Usually, a DNA sequence coding for the target antigen 

is cloned into a bacterial vector, and then the recombinant vector is optimized for expression 

in mammalian cells.  

However, DNA vaccines contain full-length oncogenes E6 and E7 have the inherent risk of 

bringing about cellular transformation. In order to avoid this hazard, P53 binding site in E6 

and Rb binding site in E7 can be mutated. Some groups even shuffled the oncogene 

sequence to incapacitate carcinogenic function but retain putative HLA epitopes (Brinkman 

et al, 2007b; Ohlschlager et al, 2006). 

DNA vaccines can induce E6 and E7-specific CTLs, and a complete tumor regression was 

shown in mice (Gomez-Gutierrez et al, 2007; Peng et al, 2004). Unfortunately, no obvious 

elimination of CIN was observed in humans upon DNA vaccination (Garcia et al, 2004; 

Trimble et al, 2009). In another experiment of DNA vaccination in mice, a recombinant 

plasmid CRT/E7 (HPV16 E7 linked with calreticulin (CRT)) was co-injected with another DNA 

coding for bovine papillomavirus L1 or L2. Both improved CD4+ and CD8+ T cell responses 

were obtained (Yang et al, 2015). 

Recent application of a new delivery method, electroporation (EP), has shown better 

immune effects (Kim et al, 2014b). EP takes advantage of a panel of short electrical pulses at 
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the DNA vaccination site resulting in increased DNA uptake and impetus of immune 

responses. In a phase I trial, DNA vaccine VGX-3100 was injected together with EP pulses, 

and E6 and E7 specific CTLs were detected in the patients (Bagarazzi et al, 2012). In another 

phase II study, this preparation was used in patients with HPV16 or 18 associated CIN2-3. 

The histological regression was presented in 49.5% vaccinated individuals compared to 30% 

regression in the placebo group (Trimble et al, 2015). 

1.6.4 Recombinant viruses 

Another therapeutic platform for treatment of HPV-related diseases is the use of 

recombinant viruses as delivery vehicles, as to activate the immune system. 

For example, vaccinia virus, adenovirus, and a modified vaccinia Ankara (MVA) are good 

carriers for HPV vaccination. They can infect antigen presenting cells effectively, upregulate 

co-stimulatory molecules and enhance production of cytokines and chemokines, which are 

important to efficient CTL induction. An adenoviral vaccine was designed containing HPV16 

E2, and induced responses showed therapeutic potential resulting in diminished lesions in 

rabbits (Brandsma et al, 2004). A vaccinia vaccine was developed to induce anti-HPV16 and 

18 E6 and E7-specific CTLs, but no clinical responses were found in patients with late-stage 

cervical cancer (Borysiewicz et al, 1996). 

A MVA-based vaccine MVA E2 (E2 protein derived from bovine papilloma virus) has been 

evaluated in different phases of clinical trials. The vaccine was first tested in patients with 

CIN 1 to CIN 3 lesions. MVA E2 was injected to patient uterus directly once per week for 6 

weeks. The results were optimistic that 94% patients presented complete clearance of 

precancerous lesions. Moreover, half of the patients eliminated the virus entirely and the 

rest showed a 90% reduction in HPV DNA load (Corona Gutierrez et al, 2004). Then, the 

vaccine was assessed in patients with high-grade lesions. In this phase II trial, around 56% 

patients showed complete lesion regression, and 32% of patients showed lesion reduction 

by 90–60%. Notably, the induced cytotoxic T cell responses correlated with the clinical 

results (Garcia-Hernandez et al, 2006). Later in a phase III trial, MVA E2 was administered in 

female patients with anogenital intraepithelial lesions. About 89% of a total of 1176 patients 

presented complete clearance of lesions, as well as  a specific cytotoxic activity against HPV-

transformed cells (Rosales et al, 2014). From above clinical outcome, MVA E2 seems to be a 

promising vaccine to cure HPV-induced malignancies. 
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Alphaviruses were designed to express the E6 and E7 mRNAs in the cytosol, which 

circumvents the potential risk of oncogenes integration into cellular genome. Furthermore, 

Venezuelan equine encephalitis (VEE) virus has a DC tropism, and most of people do not 

have preexisting immunity to these viruses (Nishimoto et al, 2007). A study used the VEE 

platform containing mutated E6 and E7. And the results indicated that the vaccinated mice 

can be 100% protected from tumor challenge and 90% of established tumors were cleared 

after vaccination in HLA-A0201 transgenic mice (Cassetti et al, 2004). 

1.6.5 DC vaccines  

DCs are major APCs which are able to induce potent cellular immune responses with proper 

stimulation. As such, DCs are developed as a therapeutic vaccine by loading with HPV 

antigens and then returning to the same patient (Palucka & Banchereau, 2012). 

For instance, a study performed in cervical cancer patients with autologous DCs pulsed with 

HPV16 or HPV18 E7 proteins. Despite of appearance of HPV-specific CTLs in some patients, 

clinical outcome has not been promising (Ferrara et al, 2003). A similar study was carried out 

in late-stage cervical cancer patients. They first received a DC vaccine pulsed with HPV16 and 

HPV18 E7 proteins and low-doses of IL-2 daily administered for several days after DC 

vaccination. Although E7-specific CTLs were detected in all patients, there were again no 

clinical responses (Santin et al, 2006). 

In another study, a recombinant protein comprised of anti-human CD40 and HPV16 E6/7 

was used to pulse DCs. These activated DCs were proved in vitro that they could efficiently 

stimulate production of E6/7-specific CD8+ T cells which were from the blood of patients 

with HPV16+ head-and-neck cancer (Yin et al, 2016). 

1.6.6 Adoptive cell transfer  

Different from DC vaccines, adoptive cell transfer (ACT) means the expansion of antigen 

specific CTLs instead of APCs ex vivo prior to transfer back to a patient. There are some 

advantages of ACT: CTLs can be manipulated ex vivo to acquire a desired activity; CTLs that 

target specific antigens can be expanded in a large number; the tumor suppressive 

microenvironment in patients can be controlled, such as elimination of regulatory T cells 

before cell delivery back. 
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In one study, HPV16 E6 and E7 specific CTLs were transfused to metastatic cervical cancer 

patients, and 2 out of 9 patients showed complete regression (Stevanovic et al, 2015). In 

addition, CTLs can be also engineered to express TCRs against HPV E7 or E6. It was reported 

that CTLs with E7 TCR had activities toward the target antigen in vitro (Scholten et al, 2005). 

Another study used CTLs with E6 TCR, and HPV+ cells originated from cervical cancer or head 

and neck cancer cell lines can be killed by these CTLs (Draper et al, 2015). 

 

1.7 Development of HPV prophylactic and therapeutic combined vaccines 

Combined vaccines with prophylactic and therapeutic characteristics are principally 

beneficial to the areas with fewer economical resources, where HPV screening is not 

prevalent. Such vaccines could be given to both uninfected and already infected population. 

The combined vaccines would ideally resolve productive infections and HPV-related diseases 

and would shield the recovered individuals from further HPV re-infections. Moreover, these 

vaccines could lead to set up herd immunity in the population providing indirect protection 

for non-vaccinated individuals (Schiller & Muller, 2015). 

One approach is to generate fusion proteins with L1 VLPs as frames and E6 or E7 

polypeptides incorporating into VLPs (Greenstone et al, 1998; Muller et al, 1997). These 

chimeric VLPs can not only stimulate high titres of neutralizing antibodies, but also induce 

CD4+ and CD8+ T cell responses against E6 or E7 epitopes (Greenstone et al, 1998; Peng et al, 

1998). However, these VLPs seem to be poor at boosting these responses, either due to the 

production of anti-L1 antibodies or upregulation of T regulatory responses by the priming. 

Another clinical trial as mentioned in section 1.6.1, chimeric protein L1VLPE7 was carried out 

in patients with HPV16+ grade CIN 2 or 3 (Kaufmann et al, 2007).  This combined vaccine 

seems to have some therapeutic effect, but has not been promising enough for conductance 

of further trials. 

Another combined antigen is TA-CIN (tissue antigencervical intraepithelial neoplasia) 

containing HPV16 L2, E6 and E7, and expressed in E coli. A phase II trial (Daayana et al, 2010) 

was carried out in vulvar intraepithelial neoplasia patients with fusion protein TA-CIN and an 

immunomodulator, Imiquimod (TLR7 agonist). Three doses of TA-CIN were immunized after 

8 weeks administration of Imiquimod. The trial was not placebo-controlled, but lesions 
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regressed more frequently compared to the observation from previous studies and a local 

infiltration of CD4+ and CD8+ T cells was observed. The evaluation of humoral responses of 

this vaccine was hard to conclude due to preexisting neutralizing antibodies in most patients, 

and the antibody titres did not change considerably after vaccination. Nevertheless, cross-

neutralizing antibodies induced by this vaccine were proved in HPV-free mice and macaques 

(Karanam et al, 2009). 

The objective of my PhD project is also to develop HPV prophylactic and therapeutic 

combined vaccines based on L2 from HPV16, 18, 31, 33, 35, 6, 51 and 59, and E7 from HPV16. 

The details will be discussed in the results section. 
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1.8 Aims of PhD project 

The main objective of my PhD project is the development of prophylactic and therapeutic 

vaccines against HPV using a multimerized thioredoxin (PfTrx) scaffold based on L2 and E7 

proteins. The specific aims that we pursued in order to produce a combined vaccine which 

can efficiently induce anti-L2 antibodies and E7 specific T cell responses include: 

 Evaluating activity of PfTrx used in induction of CD8+ cytotoxic T cell responses. 

 Developing monomeric HPV prophylactic and therapeutic combined vaccines based on 

PfTrx scaffold and assessing induced B cell and T cell responses in vitro. 

 Developing heptameric HPV prophylactic and therapeutic combined vaccines based on 

PfTrx and OVX313 scaffolds and assessing induced B cell and T cell responses in vitro. 

 Evaluating therapeutic potential of heptameric combined vaccine PfTrx-L2
20-38

8mer-

(flank HPV16 E7
49-57

)
3X

-OVX313 in mouse tumor model. 

 

Notes:  

L2
20-38

8mer: the amino acid sequence from 20 to 38 of L2 of 8 different HPV types (16-18-31-33-35-6-

51-59).  

(flank HPV16 E7
49-57

)
3X

: 3 copies of (flank HPV16 E7
49-57

) 

flank HPV16 E7
49-57: five amino acids extension before and after HPV16 E7 H-2Db restricted CTL 

epitope (QAEPDRAHYNIVTFCCKCD) 

PfTrx: Pyrococcus furiosus thioredoxin, a highly thermostable scaffold with a large capacity to accept 
insertion into its active center. 

OVX313: Chimeric version of Avian C4b-binding protein which was shown to lack homology to human 
C4bp. It can assemble spontaneously into a heptameric structure resulting in displaying fused 
proteins seven times. 
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2. Materials 

2.1 Biological materials 

2.1.1 Bacteria 

E.coli MxDH10α genotype: F- mcrA Δ(mrr-hsdRMS-mcrBC) ψ80lacZΔM15 

ΔlacX74 recA1 endA1 araD139 Δ(ara, leu)7697 galU galK 

λ- rpsL nupG tonA (Invitrogen) 

E.coli BL21(DE3) genotype: F- ompT hsdS(rB
- mB

-) dcm+ Tetr gal λ(DE3) 

endA Hte (Stratagene) 

E. coli Rosetta  genotype: F- ompT hsdS(rB
- mB

-) dcm+ gal  pRARE (Cam R) 

(Merck4Biosciences) 

2.1.2 Mammalian cell lines 

HeLaT K4 HeLa cells, a HPV18 positive cervical cancer cell line, stably express the 

SV40 Large T-antigen. Used for L1-PBNA. 

TC-1 Derived from lung epithelium of C57BL/6 mice, stably transfected with 

HPV16 E6 and E7 and c-Ha ras. Used for mouse tumor experiment and in 

vitro stimulation of splenocytes in IFN-γ ELISpot. 

RMA Derived from C57BL/6 mice lymphoma cell line (Rauscher virus-induced). 

Used for in vitro stimulation of splenocytes in IFN-γ ELISpot. 

RMA/E7 RMA cells, additional stably transfected with HPV 16 E7. Used for in vitro 

stimulation of splenocytes in IFN-γ ELISpot. 

EL4                      Lymphoma lymphoblast derived from C57BL/6 mice. Used for in vitro 

stimulation of splenocytes in IFN-γ ELISpot. 

EG7: EL4 cells, stably expressing ovalbumin. Used for in vitro stimulation of 

splenocytes in IFN-γ ELISpot. 
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2.1.3 Pseudovirions 

HPV16 Gaussia     Co-transfected with plasmid #988 + #1998.  

HPV18 Gaussia    Co-transfected with #1998 + #1165 + #1166. 

 #988: HPV16 L1h+L2h, pCDNA 4.0 TO vector with HPV16 L1 and L2 linked via IRES. It 

contains CMV promoter, tetracycline-operator and SV40-ori.  

#1998: pGF Gaussia-GFP, Gaussia and EGFP gene controlled by EF1alpha promoter. 

#1165: HPV18 L1h, HPV18 L1 controlled by CMV promoter. 

#1166: HPV18 L2h, HPV18 L2 controlled by CMV promoter. 

2.1.4 Laboratory animals 

The mice used in IFN-γ ELISpot, intracellular cytokine staining, tetramer staining and 

streptamer staining are C57BL/6N mice, 6-8 weeks old, female, from Charles River, Sulzfeld, 

Germany. 

The mice used in mouse tumor experiment are C57BL/6N mice, 6 weeks old, female, from 

Envigo, gannet, France. 

The mice used in L1-PBNA are BALB/c mice, 6-8 weeks old, female, from Charles River, 

Sulzfeld, Germany. 

 

2.2 Materials for DNA operation 

2.2.1 Annealing oligonucleotides 

Preparation of OVA257-264 annealing oligonucleotides to clone PADRE2X-PfTrx-(OVA257-264)3X and 

PfTrx-(OVA257-264)3X-OVX313: 

Forward oligonucleotide: GTCCGAGCATTATTAACTTTGAAAAACTGGGCG 

Reverse oligonucleotide: GACCGCCCAGTTTTTCAAAGTTAATAATGCTCG 

 

Preparation of E749-57 annealing oligonucleotides to clone PADRE2X-PfTrx-(HPV16 E749-57)3X: 

Forward oligonucleotide: GTCCGCGCGCGCATTATAACATTGTGACCTTTGGCG 
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Reverse oligonucleotide: GACCGCCAAAGGTCACAATGTTATAATGCGCGCGCG 

2.2.2 Plasmids 

The following plasmids were cloned in pET-9a vector by GenScript company. 

Table 2. Synthesized plasmids from GenScript 

Plasmid Clone number 

PADRE2X-PfTrx-(flank HPV16 E749-57)3X # 3713 

PADRE2X-PfTrx-(HPV16 L2 20-38-OVA257-264)3X # 3753 

PfTrx-L220-388mer-(OVA257-264)3X-OVX313 # 3754 

PADRE2X-PfTrx-(HPV 16 L2 20-38-flank E749-57)3X # 3843 

PfTrx-L220-38 8mer-(flank E749-57)3X -OVX313 # 3844 

 

2.2.3 Enzymes 

KOD polymerase (Novagen, Darmstadt) 

Restriction enzymes (NEB, Frankfurt)  

T4 DNA ligase (Invitrogen, Darmstadt) 

Calf Intestinal Alkaline Phosphatase (CIP) (NEB, Frankfurt) 

2.2.4 Chemicals for DNA preparation 

 Chemicals for PCR 

20 mM dNTP mix  Roche (Mannheim) 

25 mM MgCl2                              Novagen (Darmstadt) 

 Buffer for oligonucleotides annealing 

annealing buffer                        10 mM Tris-HCl 

                                                      150 mM NaCl 

                                                       PH 7.6 

 Buffers and chemicals for plasmid purification 

glucose buffer  50 mM glucose 
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  25 mM Tris 

  10 mM EDTA 

  in H2O, pH 8.0 

lysis buffer                                       0.5 M NaOH 

  1 % SDS (w/v) 

  in H2O 

sodium acetate                             3 M sodium acetate 

  in H2O, pH 5.3 

phenol mix                                     1:1 phenol-CIA mix  (CIA, chloroform-isoamyl : 

alcohol = 24:1)  

  100 μg 8‐hydroxyquinoline in 350 ml solution 

100 % isopropanol 

100 % ethanol 

 Agarose gel electrophoresis 

agarose gel (1 %)                           1 % agarose (w/v) 

                                                          1 µg/ml ethidium bromide 

  (10 mg/ml ethidium bromide from Roth) 

  in 1 x TAE buffe 

1 x TAE                                            40 mM Tris 

  5.71 % acetic acid (v/v) 

  10 % 0.5 M EDTA pH 8 (v/v) 

  in H2O 

100 bp DNA ladder plus:              New England Biolabs 

GeneRuler 1 kb DNA ladder        Thermo Scientific 

6 x DNA loading buffer                  Thermo Scientific 
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 Sequencing of DNA 

DNA was sequenced by GATC-Biotech (Konstanz). 

2.3 Materials for protein expression and purification 

2.3.1 Media and solutions for protein expression 

LB medium                                    10 g tryptone 

5 g yeast extract 

5 g NaCl 

in 1 L H2O 

LB agar plates                                 15 g agar in 1 L LB-medium 

ampicillin stock concentration: 100 mg/ml (Sigma-Aldrich) 

kanamycin stock concentration: 25 mg/ml (Sigma-Aldrich) 

chloramphenicol stock concentration: 20 mg/ml (Sigma-Aldrich) 

IPTG stock concentration: 1 M (Applichem, Darmstadt) 

2.3.2 Lysis buffer for protein extraction 

  300 mM NaCl 

25 mM Tris 

  0.16 % Tween20 

  0.5 mM PMSF 

  0.1 mg/ml lysozyme 

  in H2O, pH 8 

lysozyme powder (Sigma-Aldrich, Taufkirchen) (in 1 x PBS with final concentration 20 mg/ml) 

2.3.3 Buffers for nickel affinity chromatography 

Binding and elution buffers           300 mM NaCl 

25 M Tris 

 50 M imidazole (binding buffer) 

 100 – 300 mM imidazole (elution buffer) 
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 in H2O, pH 7.5 

Stripping buffer                               300 mM NaCl 

25 mM Tris 

50 mM EDTA 

in H2O, pH 7.5 

2.3.4 Purification column for nickel affinity chromatography 

HiTrap Chelating HP column 1 ml/ 5 ml (Amersham GE Healthcare, Buckinghamshire, UK) 

2.3.5 Buffers for cation exchange chromatography 

Binding buffer                                   200 mM NaCl 

in 1×PBS, pH 8 

Elution buffer                                     200 mM, 300 mM, 400 mM until 800 mM NaCl 

                                                      in 1×PBS, pH 8 

2.3.6 Purification column for cation exchange chromatography 

HiTrap SP FF column 1 ml/ 5 ml (GE Healthcare, Uppsala, Sweden) 

2.3.7 Endotoxin removal 

Triton X-114 (Sigma-Aldrich, Taufkirchen)  

2.3.8 Polyacrylamide gels 

3 x protein loading buffer             187.5 mM Tris  

30 % glycerol (v/v) 

6 % SDS (w/v) 

15 % β-mercaptoethanol (v/v) 

0.03 % bromphenol blue (v/v) 

in H2O, pH 6.8 

Tris buffer pH 8.8                            1 M Tris (pH 8.8) 

Tris buffer pH 6.8                            1 M Tris (pH 6.8) 

0.03 % bromphenol blue (v/v) 
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1x TGS                                               2.5 mM Tris 

0.1 % SDS (w/v) 

1.45 % glycine (w/v) 

in H2O, pH 8.3 

acrylamide solution (Roth, Karlsruhe) 

TEMED (Sigma-Aldrich, Taufkirchen) 

 

2.4 Materials for immunization  

2.4.1 Peptides  

Peptides were synthesized by GenScript with purity >75% 

OVA257-264, SIINFEKL, derived from Ovabulmin, H-2Kb-restricted CTL epitope  

PADRE (pan HLA DR-binding epitope), AKFVAAWTLKAAA  

HPV16 E749-57, RAHYNIVTF, derived from HPV16 E7, H-2Db-restricted CTL epitope 

HPV16 E648-57, EVYDFAFRDL, derived from HPV16 E6, H-2Db-restricted CTL epitope 

OVX313 peptide panel 

Table 3. OVX313 overlapping peptide sequences. We designed 20mer-peptide set with 12 amino 
acids overlap covering the entire OVX313 sequence. There are 9 peptides in total named from I1 to I9. 

OVX313 peptide Sequences 

I-1 EVGRQNLIRSKEEILKKLKE 

I-2 RSKEEILKKLKELQEGSKKQ 

I-3 KLKELQEGSKKQGDADVCGE 

I-4 SKKQGDADVCGEVAYIQSVV 

I-5 VCGEVAYIQSVVSDCHVPTA 

I-6 QSVVSDCHVPTAELRTLLEI 

I-7 VPTAELRTLLEIRKLFLEIQ 

I-8 LLEIRKLFLEIQKLKVEGRR 
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I-9 RKLFLEIQKLKVEGRRRRRS 

 

2.4.2 Adjuvants 

Incomplete Freund’s adjuvant (IFA) (Sigma-Aldrich) 

AddaVax (Invivogen) 

Aluminum hydroxide (Brenntag) 

Synthetic monophosphoryl lipid-A (AvantiLipids) 

 

2.5 Materials for evaluation of humoral immune responses 

 Antibody used in L1-PBNA (pseudovirion-based neutralisation assay) 

K18L220-38: cross-neutralizing monoclonal antibody, recognizing L220-31.  

 Substrate for L1-PBNA 

Gaussia GLOW-Juice BIG KIT (PJK, Kleinblittersdorf) 

Beetle-Juice BIG KIT (PJK, Kleinblittersdorf) 

 

2.6 Materials for evaluation of cellular immune responses 

2.6.1 Materials for IFN-γ ELISpot 

 Antibody used in IFN-γ ELISpot 

Capture antibody (# 551216, BD Pharmingen) 

Biotinylated rat anti-mouse IFN-γ (# 554410, BD Pharmingen) 

Streptavidin-AKP (# 554065, BD Pharmingen) 
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 Substrate for IFN-γ ELISpot 

BCTP/NBT substrate (# B-1911, Sigma) 

2.6.2 Materials for Intracellular cytokine staining 

 Antibody used in Intracellular cytokine staining 

APC Rat Anti-Mouse IFN-γ (# 562018, BD Pharmingen) 

FITC Rat Anti-Mouse CD4 (# 553047, BD Pharmingen) 

PE Rat Anti-Mouse CD8a (# 553033, BD Pharmingen) 

LIVE/DEAD™ Fixable Yellow Dead Cell Stain Kit (# L34959, Thermo Fisher Scientific) 

 BD Cytofix/Cytoperm Plus kit (# 554715, BD Biosciences Pharmingen) 

BD Perm/Wash (# 554723) 

BD Cytofix/Cytoperm (# 554722) 

BD GolgiStop (protein transport inhibitor) (# 554724)  

2.6.3 Materials for Tetramer and Streptamer staining 

 Tetramer staining: 

iTAg Tetramer/APC-H-2 Kb OVA (SIINFEKL) (# MBL-T03002, MBL) 

 Streptamer staining: 

Strep-Tactin APC for MHC I Streptamer (# 6-5010-001, iba) 

MHC I-Strep H-2 Db HPV 16 E7 (49-57) RAHYNIVTF (# 6-7057-001, iba) 

 Anti-CD8 antibody 

CD8-α Antibody (KT15) PE (# sc-53473 PE, Santa Cruz Biotechnology) 

 

2.7 Materials for mouse tumor experiment 

Isoflurane for anesthesia (CuraMed, Karlsruhe, Germany) 
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2.8 Materials for cell culture 

2.8.1 Media for cell culture 

RPMI (Splenocytes)                       10 % FCS 

1 % Penicillin/Streptomycin 

1 % L-glutamine 

1 % HEPES buffer 

1 % sodium pyruvate 

RPMI (TC-1 cells)                            10 % FCS 

1 % Penicillin/Streptomycin 

0.2 mg/ml hygromycin B 

                                                          0.4 mg/ml G418 (Geneticin) 

                                                          1mM sodium pyruvate 

                                                           1× MEM NEAAS  

                                                           50 µM β-mercaptoethanol  

RPMI (EL4, RMA cells)                   10 % FCS 

1 % Penicillin/Streptomycin 

1 % L-glutamine 

RPMI (EG7, RMA/E7 cells)            10 % FCS 

1 % Penicillin/Streptomycin 

1 % L-glutamine 

0.4 % G418 (Geneticin) 

DMEM (HeLaT K4)                          10 % FCS 

1 % Penicillin/Streptomycin 

1 % L-glutamine 

0.25 % hygromycin B 

DMEM, RPMI-1640 (Sigma-Aldrich) 

FCS (PAN Biotec, Aidenbach) 
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Penicillin/Streptomycin (Gibco Life Technologies) 

L-glutamine (Genaxxon) 

Trypsin-EDTA 0.05% or 0.25% (Gibco Life Technologies) 

Hygromycin B 50 mg/ml (Roche) 

G418 (Geneticin) 50 mg/ml (Roche) 

Sodium Pyruvate 100mM (Gibco) 

HEPES buffer 1M (Gibco) 

MEM NEAAS 100× (Sigma) 

β-Mercaptoethanol 1M (14M stock from Merck) 

Trypan blue staining solution (Fluka) 

2.8.2 Buffers and solutions 

RBC lysis buffer                               90 ml solution A (NH4Cl 8.3 g in 1 l MQ H2O) 

                                                           plus  

                                                          10 ml solution B (Tris-Base 20.6 g pH7.6 in l MQ H2O) 

                                                           mix pH 7.2, Autoclave 

FACS buffer                                      3 % FCS 

0.02 % NaN3 in PBS 

splenocytes washing buffer         1 ml FCS 

0.5 ml Penicillin/Streptomycin 

in 50 ml PBS 

freezing medium                            60% DMEM or RPMI 

30% FCS 

10% DMSO 

1 x PBS                                             140 mM NaCl 

2.7 mM KCl 



 35 

8.1 mM Na2HPO4               

1.5 mM KH2PO4 

Commercial PBS (D8537-500ML, Sigma) 

PBST (0.05 % Tween20)                     0.5 ml Tween20 in 1 L 1 x PBS 

 

2.9 Kits 

QIAprep® Spin Miniprep Kit (Qiagen, Hilden) 

QIAGEN Plasmid Plus Maxi Kit (Qiagen, Hilden) 

QIAquick® Gel Extraction Kit (Qiagen, Hilden) 

 

2.10 Laboratory equipment 

2.10.1 General utensils 

6, 12, 24, 48, 96-well plates (cell culture) (Costar, Corning, NY, USA) 

Microplate, ps, 96 well, F-bottom (chimney well) white, lumitrac (Greiner) 

Petri dishes (Greiner, Frickenhausen, Germany) 

Tissue flasks: 25 cm2, 75 cm 2 and 150 cm2 (TPP, Trasadingen, Switzerland) 

Parafilm “M” (American National Can, Chicago, USA) 

Drying foil for SDS gels (Promega, Madison, USA) 

Nitrocellulose membrane (Schleicher & Schuell, Dassel) 

Chemiluminescence films (GE Healthcare Limited, Buckinghamshire, UK)  

X-ray cassette (Roth, Karlsruhe) 

0.2/0.4 µm filter (Renner, Dannstadt) 
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10 KD dialysis tubing (Roth, Karlsruhe) 

Plastic inoculation loops (Neolab, Heidelberg, Germany) 

Pasteur pipettes (Greiner, Frickenhausen) 

Sterile plastic pipettes (BD Falcon, Durham, USA) 

1000 µl, 200 µl, 20 µl and 10 µl PIPETMAN Neo® (Gilson, Middleton, USA) 

1000 µl, 200 µl, 20 µl, 10 µl tips (nerbe plus, Germany) 

1000 µl, 200 µl, 20 µl, 10 µl filter tips (nerbe plus, Germany) 

2 ml cryo vials (Roth, Karlsruhe) 

25 x 2 mm electroporation cuvettes (Peqlab, Erlangen) 

50 ml centrifuge tubes (SA-600 rotor) (Nalgene, Nunc, Wiesbaden) 

500 ml centrifuge tubes (F12 rotor) (Nalgene, Nunc, Wiesbaden) 

15 ml, 50 ml falcon tubes (cellstar tubes, Greiner) 

1.5 ml and 2 ml Eppendorf tubes (Eppendorf, Hamburg) 

0.5 ml and 1.5ml LoBind Protein tubes (Eppendorf, Hamburg) 

PCR reaction tubes (Roth, Karlsruhe) 

Needles and syringes (BD Falcon, Durham, USA) 

50 ml reservoir (Costar, Corning, USA) 

Gloves, (Meditrade, Kiefersfelden, Germany) 

Disposable scalpel (Feather, Osaka, Japan) 

Cell scraper (Sarstedt, Newton, USA) 

Cell strainer 70 µm Nylon (FALCON, Corning, USA) 

MultiScreen Filter plates (Merck Millipore, Ireland) 
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2.10.2 Electrical equipment 

BD FACSCantoTM II Flow Cytometer (BD Bioscience, San Jose, CA 95131 USA) 

Nanodrop spectrophotometer (Peqlab, Erlangen) 

pH meter (Sartorius, Göttingen) 

AID ELISPOT Reader System (AID, Strassberg, Germany) 

Refrigerated tabletop centrifuge 5417R (Eppendorf, Hamburg) 

Tabletop centrifuge 5417R (Eppendorf, Hamburg) 

Megafuge 1.0 (Heraeus, Hanau) 

CHRIST Minifuge GL (Heraeus, Hanau) 

Multifuge 1 S-R (Heraeus, Hanau) 

Refrigerated centrifuge RC5C (Sorvall, Newton, USA) 

Refrigerated centrifuge RC-5B (Sorvall, Newton, USA) 

Precision balance (Mettler Toledo, Gießen) 

Combimag Red/RET magnetic stirrer (IKA, Staufen) 

800 W microwave (Bosch, Gerlingen-Schillerhöhe) 

GFC water bath (Grant Instruments, Cambridge, UK) 

CO2 incubator safe cell UV (Sanyo, Osaka, Japan) 

Steril GARD® III Advance cell culture hood (The Baker Company, Sanford, USA) 

Peristaltic EconoPump (BioRad, München) 

Microscope for cell culture, Willovert (Hund, Wetzlar) 

Refrigerators and freezers (Liebherr, Ochsenhausen) 

-80°C freezer (New Brunswick Scientific, Hamburg) 

Ice maker (Hoshizaki, Willich-Münchheide) 
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Nitrogen tank Chronos (Messer, Krefeld) 

Electrophoresis power supply (Gibco BRL, Eggenstein) 

Horizontal Gel Electrophoresis Horizon®11.14 (Gibco BRL, Eggenstein) 

Electrophoresis chamber (Roth, Karlsruhe) 

Electrophoresis gel slides (Roth, Karlsruhe) 

MicroPulser™ Electroporator (BioRad, München) 

Bacteria shakers (Infors AG, Bottmingen, Switzerland) 

MilliQ ultra-pure water unit Millipore (Merck, Darmstadt) 

French press (Emulsi Flex-C5) (Avestin, Ottawa, Canada) 

Multichannel pipette (1200 µl) (Biozym Scientific, Hessisch Oldendorf) 

 

2.11 Software 

Clone Manager 9.0 for Windows (Scientific & Educational Software, Cary, USA) 

GraphPad Prism 6.0 (GraphPad Software, La Jolla, USA) 

Microsoft Windows 7 Professional (Microsoft, Redmond, USA) 

Microsoft Office 2010 (Microsoft, Redmond, USA) 

Adobe Acrobat Professional X (Adobe, San Jose, USA) 

AID ELISPOT Software (AID, Strassberg, Germany) 

EndNoteX5 (Thomson Reuters, New York, USA) 
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3. Methods 

3.1 Manipulation of DNA and cultivation of bacteria 

3.1.1 CPOI cloning 

Firstly, the annealing oligonucleotides were prepared by adding 4 µl (100 pmol) of each 

oligonucleotide in 32 µl annealing buffer and incubated in the following thermocycler: 

5 min 95°C 

20 min 72°C 

20 min 37°C 

Then, the CPOI ligation was performed according to the following components: 

1 µl of cleaved (section 3.1.5) and dephosphorylated (section 3.1.6) vector  

(7-20 ng/µl-Nanodrop quantification) 

                                  1 µl of annealed oligonucleotides 

                                  2 µl of 10T4 liagse buffer (NEB) 

                                  1 µl T4 DNA ligase 

                                  15 µl ddH2O 

The mixture was incubated at room temperature for 20-40 minutes and 1 µl was used for 

transformation of MXDH10 electrocompetent bacteria. 

3.1.2 Purification of plasmid DNA (without kit) 

A single colony was inoculated in 5 ml LB medium with 1:1000 diluted antibiotics. The 

culture was incubated at 37°C, 250 rpm overnight. The next day, 1.5 - 5 ml of bacterial 

culture was centrifuged at 12,000 rpm for 2 minutes at room temperature. The bacterial 

pellet was obtained and resuspended completely in 100 µl glucose buffer. Then, 200 µl lysis 

buffer were mixed and incubated on ice for 5 minutes. Later, 150 µl of 3 M sodium acetate 

(pH 5.3) was added with another 5 minutes of ice incubation. To remove proteins from the 

lysate, 450 µl phenol-mix was added following with a vigorous shaking for 5 minutes. The 
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aqueous supernatant was obtained by 5 minutes of centrifugation at 12,000 rpm. The 

supernatant (380 µl) was transferred into a new tube containing 450 µl isopropanol. The 

new mixture was kept at -80°C for 10 minutes before it was centrifuged for 20-30 minutes at 

0°C, 12,000 rpm. Afterwards, the DNA pellet was washed twice with 500 µl 100% ethanol.  

The DNA was dried in the hood and later was resuspended in 60 µl autoclaved MilliQ water. 

Restriction enzyme digestion was performed to analyze the purified DNA (section 3.1.5). 

If DNA fragment was correct after analysis with enzyme digestion, the DNA was to be 

purified by using QIAprep® Spin Miniprep Kit instead of above mentioned methods. The DNA 

was diluted with autoclaved MilliQ H2O in 20 - 100 ng with 20 µl for sequencing. 

3.1.3 Purification of plasmid DNA with a kit (mini prep and Maxi prep) 

Preparation of plasmid DNA in a small scale or a large scale was performed by using the 

Qiagen Plasmid Mini or Maxi Kit according to the manufacturer’s instructions. Normally, 2 - 5 

ml bacteria were cultured for mini prep while 250 - 300 ml bacteria for maxi prep. 

3.1.4 Determination of DNA concentration and purity 

The purity of DNA was analyzed by measuring the absorption at 260 nm (DNA) and 280 nm 

(protein). When the ratio (𝐴bs 260 𝑛m/ 𝐴bs 280 𝑛m) is between 1.8 and 2.0, we consider the DNA 

pure. A ratio > 2.0 indicates RNA contamination, while a ratio < 1.8 represents a 

contamination with proteins or organic compounds. For determination of DNA 

concentration, a blank measurement with 1 µl of H2O or 1 x TE was performed before 1 µl of 

the sample was measured. 

3.1.5 Restriction enzyme digestion 

We normally performed two types of enzyme digests, analytical and preparative digests. For 

an analytical analysis, 0.5-1 µg DNA was digested for 1 hour at 37°C with 0.1 µl enzyme in 20 

µl system. A preparative digest was performed when the digested fragments need to be 

collected. In this case, 20 - 30 µg DNA were digested with 3 - 5 µl enzyme in 200 µl volume at 

37°C overnight. The 200 µl digest was mixed with 40 µl 6x DNA dye, and the entire was 

loaded into a 1% preparative gel (section 3.1.7). The target fragment was subsequently 

extracted from the gel (section 3.1.8). The systems for analytical and preparative digests are 

shown below. Appropriate enzyme buffers were used according to the instructions (NEB).  
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Table 4. The systems for analytical and preparative digests. 

 Analytical digest preparative digest 

DNA 0.5-1 µg 20 - 30 µg 

10 X enzyme buffer 2 µl 20 µl 

100 µg/ml RNase 0.1 µl 3 µl 

restriction enzyme 0.1 µl 3 - 5 µl 

 20 µl system 200 µl system 

 

3.1.6 Dephosphorylation of 5’-DNA ends 

To prevent religation of linear vector without the integration of the target insert, a 

phosphatase, calf-intestinal alkaline phosphatase (CIP) was applied to remove the 5’-

phosphates from the vector. Therefore, an insert with 5’-terminal phosphates can be more 

efficiently ligated with a dephosphorylated vector. 

After preparative digestion overnight, 2 µl CIP enzyme were added directly into the digestion 

system and incubated at 37°C for 1 hour. Inactivation of the enzyme (58°C, 10 minutes) was 

performed before the vector was loaded into an agarose gel for DNA extraction (section 

3.1.8). 

3.1.7 Agarose gel electrophoresis 

DNA fragments are negatively charged because of their phosphate residues. Therefore, DNA 

moves towards positive anode in an electric field. The separation of DNA depends on their 

conformation and size. Usually, supercoiled DNA molecules move faster than linear ones, 

shorter DNA fragments travel faster than longer ones. The density of the agarose gels also 

decides the separation efficiency. More concentrated gels allow for the separation of smaller 

sized fragments. The size of specific DNA molecules can be determined by using DNA marker 

which contains a mix of fragments with known sizes. Ethidium bromide is employed to 

visualize the DNA under UV radiation. 

For preparation of 1% agarose gels, 1 g agarose were dissolved in 100 ml 1 x TAE buffer. The 

mixture was heated by microwave until a homogeneous solution formed. We applied 6 µl 

ethidium bromide (1 mg/ml) to 100 ml gel solution. 
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3.1.8 DNA extraction from agarose gels 

The plasmids were digested in a preparative scale (section 3.1.5) and separated by gel 

electrophoresis (section 3.1.7). The specific fragment was excised by using a clean scalpel. 

Subsequently, the DNA was extracted from a gel using the QIAquick Gel Extraction Kit 

following the manufacturer’s instructions. 

3.1.9 Ligation of DNA fragments 

The ligation was performed with a DNA insert and a dephosphorylated DNA vector. 

Phosphodiester bonds were formed between the insert and vector under the activation of 

DNA ligase.  

T4 DNA ligase was routinely employed and the reaction was carried for 30 to 60 minutes in 

room temperature, or 16°C overnight. The pipetting scheme is shown below. Afterwards, 1-2 

µl of ligated DNA was used for bacteria transformation via electroporation (section 3.1.10).  

Table 5. The system (20 µl) for DNA ligation with T4 DNA ligase. 

Insert DNA 9 µl  

Vector DNA 1 µl 

10 X T4 DNA ligase buffer 2 µl 

T4 DNA ligase 1 µl 

MilliQ H2O 7 µl 

 

3.1.10 Transformation of bacteria by electroporation 

E. coli MxDH10, BL21 and Rosetta were transformed via electroporation. For this, 40 - 50 μl 

electro-competent bacteria were mixed with 100 - 200 ng plasmid DNA or 1-2 µl ligation mix 

(section 3.1.9) and transferred to a pre-cooled electroporation cuvette. The electroporation 

was performed with 2.5 kV, 25 μF, 200 Ω. Then, transformed bacteria were resuspended in 

300 µl antibiotic-free LB-medium and loaded into a new 1.5 ml Eppendorf tube with shaking 

at 37 °C for 30-60 min. If plasmid DNA was transformed, 5 - 10 μl bacterial culture were 

spread onto a agar plate containing the appropriate antibiotics. If DNA was the ligation 

reaction, 150 - 300 μl of the transformation bacteria were used to a plate. The plates were 

kept overnight at 37°C. 
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3.1.11 Preparation of electro-competent bacteria 

Bacteria were spread from a glycerol stock onto a LB agar plate and kept at 37°C overnight. 

The next day, a single bacterial colony was inoculated into 20 ml LB medium. The culture 

incubated shaking overnight at 37°C. 5 ml of the overnight culture were applied to 400 ml LB 

and this big culture was allowed to grow until OD600 reached 0.5-0.6. Then, the culture was 

cooled on ice for 15-30 minutes and transferred into large centrifuge tubes. The culture was 

centrifuged at 5,000 rpm for 15 min at 4°C, and the obtained pellet was resuspended in 30 

ml ice cold MilliQ H2O. In order to remove the salt, the cell suspension was transferred into a 

dialysis tube and dialyzed against 2-4 l MilliQ H2O at 4°C overnight. After exchanges of the 

H2O, dialyzed bacteria were harvested into 50 ml Falcon tube at 5,000 rpm, 4°C for 10 min. 

The bacteria were resuspended in 600 µl 10% glycerol. We diluted 10 µl of this resuspension 

into 990 µl 10% glycerin, and measured the OD600 of it. The measured value was multiplied 

with 600 to calculate how much more volume (µl) of 10% glycerol still required to add into 

original 600 µl bacteria. Aliquots of 50 µl or 100µl were shock frozen in liquid nitrogen and 

stored at -80°C. 

3.1.12 Storage of bacteria for long term 

Usually, 300 µl autoclaved glycerol were mixed completely with 1 ml overnight culture in a 

cryo tube. The mixture was stored at -80°C. 

 

3.2 Purification and analysis of protein antigens 

3.2.1 Expression and extraction of the antigens in E. coli 

We inoculated 4 ml E. coli BL21 or Rosetta overnight culture into 400 ml LB medium. The 

bacteria grew at 37°C, 200 rpm for 3 to 4 hours until OD600 reached 0.6 - 0.8. At this time, the 

culture was induced with 1 mM IPTG (final concentration) at room temperature overnight 

with a lower shaking speed 120 - 140 rpm. Then, the bacterial pellet was harvested after 

5,000 rpm, 10 minutes centrifugation and stored at -20°C. If protein extraction was 

performed afterwards, the pellet was resuspended in 30 ml lysis buffer (300 mM NaCl, 25 

mM Tris, 0.16% Tween20, 0.5 mM PMSF, 0.1 mg/ml lysozyme, pH 8) and incubated firstly at 

room temperature for 10 minutes then 20 minutes on ice. French Press was used to lyse 
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bacteria with three to four cycles at 1000 ~ 15,000 psi. After finished the lysis, French Press 

was washed with 0.5 M NaOH, 10 mM HCl, MilliQ H2O and 20% ethanol. The crude lysate 

was centrifuged at 4°C, 12,000 rpm for 1 hour and the protein-containing supernatant was 

collected for subsequent purification (section 3.2.2 and section 3.2.3). 

3.2.2 Purification of ‘PADRE-PfTrx‘ based proteins by nickel affinity chromatography 

All the ‘PADRE-PfTrx‘ proteins (PADRE2X-PfTrx-(OVA257-264)3X, PADRE2X-PfTrx-(HPV16 E749-57)3X, 

PADRE2X-PfTrx-(flank HPV16 E749-57)3X, PADRE2X-PfTrx-(HPV16 L2 20-38-OVA257-264)3X and 

PADRE2X-PfTrx-(HPV 16 L2 20-38-flank E749-57)3X) contain dual 6xHis-tag. Therefore, we used 

nickel affinity chromatography to purify them. 

A 1 ml HiTrap Chelating HP column was firstly rinsed with 10 column volumes (CVs) MilliQ 

H2O. Next, 5 ml of 100 mM NiSO4 (in H2O) was employed to the column. After 5 - 10 minutes 

NiSO4 incubation, the column was washed with 10 CVs of MilliQ H2O and following 10 CVs of 

binding buffer (25 mM Tris, 300 mM NaCl, 50 mM imidazole, pH 7.5). The protein-containing 

supernatant was loaded to the column by peristaltic pump circulating at 0.5 ml/min 

overnight at 4°C. The next day, 10 CVs binding buffer was applied to the column to remove 

the unbinding protein and impurities. Then, the target protein was eluted by imidazole 

elution buffers (25 mM Tris, 300 mM NaCl, pH 7.5, with imidazole 100 mM, 150 mM or 300 

mM) and collected 12 fractions with 1 ml per tube. The eluted fractions were analyzed by 

SDS-PAGE (sections 3.2.6 and section 3.2.7). The fractions with similar protein concentration 

were pooled together and dialyzed against PBS dialysis buffer (1×PBS with 300 mM NaCl) or 

Tris dialysis buffer (20 mM Tris with 100 mM NaCl) at 4°C. After dialysis, the sample was 

centrifuged at 12,000 rpm, 4°C for 15 minutes and the supernatant was measured again 

before removing endotoxin (section 3.2.5). 

HiTrap columns were regenerated by washing with 10 CVs stripping buffer (binding buffer 

containing 50 mM EDTA to remove the Ni2+). Then, 10 CVs of MilliQ H2O and 10 CVs of 20% 

ethanol were used to finally clean the columns. We reserved columns in 20% ethanol at 4°C. 

3.2.3 Purification of ‘OVX313-PfTrx‘ based proteins by thermal purification  

The ‘OVX313-PfTrx‘based proteins (PfTrx-(OVA257-264)3X-OVX313, PfTrx-L220-388mer-(OVA257-

264)3X-OVX313 and PfTrx-L220-38 8mer-(flank E749-57)3X -OVX313) are without 6x-HisTag and 

PfTrx is a thermal stable scaffold, so we used thermal purification method to isolate them. 
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Afterwards, if the protein was not pure enough for immunization, a further purification was 

performed by cation exchange chromatography (section 3.2.4). 

After the bacterial cells were lysed, the supernatant was obtained by centrifugation and NaCl 

was added to it in a final concentration of 0.25 M. The standard protocol is 70°C water bath 

for 20 minutes. But the incubation temperature varies according to different proteins. 

Usually, we tried from 65°C to 80°C. After thermal incubation, the solution chilled on ice for 

15 minutes and centrifuged at 12,000 rpm, 4°C, for 10 minutes. The purity of the protein was 

detected by SDS-PAGE (section 3.2.6). 

3.2.4 Purification of proteins by cation exchange chromatography 

If a protein was not pure enough after thermal purification, we continued to perform cation 

exchange chromatography. The HiTrap SP FF column was washed with 10 CVs MilliQ H2O and 

then 10 CVs binding buffer (section 2.3.5) before the sample was applied for overnight 

binding. Next day, the column was washed with elution buffer containing different 

concentration of NaCl (section 2.3.5). The samples were collected in 1 ml/tube. After elution, 

the column was washed with 10 CVs MilliQ H2O and following by 10 CVs 20% ethanol. We 

reserved columns in 20% ethanol at 4°C. 

3.2.5 Endotoxin removal 

Our proteins were all expressed in E. coli, so we performed detoxification after protein 

purification. The purified protein was mixed completely with 1% Triton X-114 and ice 

incubation for 5 minutes followed by another 5 minutes of incubation at 37°C. To remove 

Triton X-114, samples were centrifuged at 12,000 rpm, 37°C for 1 minute, and the upper 

supernatant was transferred to a new Eppendorf tube. This Triton X-114 treatment was 

performed twice to fully remove the endotoxin. 

3.2.6 Denaturing SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE is used to separate denatured proteins by their molecular weight. The proteins 

are denatured and acquire an overall negative charge due to protein loading buffer 

containing reducing agent β-mercaptoethanol and negatively charged SDS. Thus, the 

proteins migrate to the positive anode when the gels are in buffer 1 x TGS filled 

electrophoresis chambers. The gel system is made of two layers, upper gel (stacking gel) and 
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lower gel (separating gel). The upper gel is used for making the proteins in an equal starting 

position, while the lower gel has the function of protein separation according to their sizes.  

The proteins were mixed with 3 x protein loading buffer and boiled at 95°C for 10 minutes 

for denaturation. Electrophoresis was performed at 80 - 100 V for stacking gel and 120 - 130 

V for separating gel. Subsequently, the gels were coomassie blue stained. 

3.2.7 Coomassie blue staining of polyacrylamide gels 

The protein gels were washed in water for 15 minutes before coomassie blue staining for 1 

hour or overnight. Because of the acetic acid contained in coomassie blue, proteins can be 

fixed to the gel matrix. After the protein bands were visible, coomassie blue was removed, 

and the gels were rinsed three times in water to reduce the blue background. The protein 

marker was employed to determine the protein size. 

 

3.3 Formulation of vaccines and immunization of mice 

3.3.1 Formulation of antigens with IFA and AddaVax 

Antigens were formulated with IFA or AddaVax by v/v 50%. Adjuvanted mixture was 

vortexed until a homogenous solution formed. 

3.3.2 Formulation of antigens with Alum-MPLA 

The Alum used in our work was the Alhydrogel ‘85’ (aluminum hydroxide, 10 mg/ml). The 

MPLA was synthetic, lyophilized powder (5 mg) and prepared to 1 mg/ml solution. The 

preparation of MPLA solution was introduced as follows. 

Firstly, solution of Triethanolamine (TEoA) was prepared in sterile, Endotoxin-free H2O at 0.5% 

(v/v) and sterilized by 0.22 µm filtering. Then, 1.5 ml of 0.5% TEoA were added to 5 mg 

lyophilized MPLA, and the solution were heated for 5 minutes at 65°C followed by 5 minutes 

of sonication in water bath until the solution became homogenous and slightly milky white 

(approximately 6-8 cycles of this treatment). In between each cycle the solution was 

vigorously vortexed. The dissolved MPLA was transferred to a 15 ml tube, 3.35 ml of 0.5% 

TEoA was filled in followed by one last cycle of heating and sonication. Lastly, the pH was 
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adjusted to 7.4 by drop-wise adding 1 M HCl. Normally, 1 ml MPLA-TEoA required 30 µl 1 M 

HCl. The MPLA was stored at 4°C. 

We immunized mice with 50 µg Alum and 10 µg MPLA. Alum-Antigen and Alum-MPLA were 

prepared separately. Half of the Alum was mixed with the antigen and the other half was 

mixed with the MPLA. Two tubes rolled for 1 hour at room temperature. Before 

immunization, the two reactions were mixed by brief vortexing. 

3.3.3 Immunization of mice 

The 6 to 8 week-old C57BL/6N female mice were used for assessment of cellular immune 

responses. 20 µg of protein adjuvanted with 50% (v/v) AddaVax or IFA, or 50 μg Alum and 10 

μg MPLA was immunized at base of the tail subcutaneously. For peptide administration, the 

adjuvant formulation and the immunization route were the same as protein vaccination, but 

the immunized amount was different. Normally, we injected peptide mixture containing 100 

µg MHC I restricted peptide and 140 µg MHC II restricted peptide. A maximum volume for 

subcutaneous administration was 100 µl. For IFN-γ ELISpot, once immunization was enough 

to detect the efficacy of vaccines. While for ICS, tetramer staining or streptamer staining, 

twice immunization were applied to present a more obvious result. Seven to ten days later 

after the last immunization, the splenocytes were obtained and stimulated in vitro by 

corresponding peptide. 

The 6 to 8 week-old BALB/c female mice were employed for evaluation of humoral immune 

responses. 20 µg antigen adjuvanted with 50% (v/v) AddaVax immunized into the caudal 

thigh muscle intramuscularly. The limit amount for intramuscular immunization was 50 µl. 

Mice were immunized 4 times at biweekly intervals. Final blood was collected from mice one 

month after the last immunization and analyzed against HPV 16 and HPV18 pseudovirions 

using L1-PBNA. 

3.3.4 Blood sampling in mice 

Intermediate blood samples were taken by puncture of the submandibular vein. Final blood 

was collected by cardiac puncture. Blood samples were incubated for 2-3 hours at room 

temperature or at 4°C overnight, allowing for complete clotting, and then centrifuged at 

4,000 rpm, 4°C for 30 minutes. Cleared supernatants (sera) were transferred to clean 
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eppendorf tubes. Two rounds of this centrifugation were performed and sera were stored at 

4°C or -20°C for longer storage. 

3.3.5 Preparation of splenocytes suspension 

All steps were performed in a laminar flow bench under sterile conditions. Single cells were 

generated by pressing the spleen through a 70 µm cell strainer (section 2.10.1) attached to a 

50 mL Falcon tube using the plunger end of a 1 ml-syringe. The strainer was washed by 5 ml 

PBS and the cell pellet was collected by centrifugation for 5 min at 1,500 rpm. Pellets were 

resuspended in 5 ml RBC lysis buffer (section 2.8.2) and incubated on ice with frequently 

gentle shaking for 5 min to lyse erythrocytes. The reaction was neutralized by adding 5 ml 

complete medium. Then, cells were washed twice by 5 ml splenocytes washing buffer 

(section 2.8.2) and resuspended in 2-5 ml of RPMI supplemented medium (section 2.8.1) for 

IFN-γ ELISpot (section 3.5.2), intracellular cytokine staining (section 3.5.4), tetramer staining 

(section 3.5.3) or streptamer staining (section 3.5.3) assay. 

 

3.4 Manipulation of mammalian cells 

3.4.1 Cultivation of mammalian cells 

All mammalian cell lines were cultivated in cell culture flasks in their specific media (section 

2.8.1). Adherent cells were grown in monolayer and split when confluency was over 80 %. 

Suspension cells were maintained at a density of 1x106/ml. All cells were cultivated at 37°C 

in an incubator with 95 % humidity and 5 % CO2. To sub-cultivate the adherent cells, the 

medium was aspirated and the cells were incubated with 3 - 4 ml 0.25 % (for HeLaT K4) or 

0.05% (for TC-1, RMA, RMA/E7 and EL4) trypsin-EDTA for 5 to 15 min at 37°C to detach the 

cells from the flask. The trypsinization was stopped by adding 6 - 7 ml medium. The cell 

pellet was obtained by centrifugation at 1,900 rpm for 5 minutes and resuspended by 10 ml 

fresh medium of which 1 - 2 ml were taken to a flask for a new cultivation. Suspension cells 

(EG7) were passaged by replacing part of the cell suspension with fresh medium.  
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3.4.2 Determination of cell count and vitality 

Neubauer counting chamber and trypan blue were used to decide the number and viability 

of the cells. Usually, 50 μl cells were mixed with 50 μl trypan blue and 10 µl of this mixture 

were applied to the Neubauer counting chamber. Only dead cells can be stained by trypan 

blue. So we counted the unstained cells in 2 big quadrants and calculated the mean cell 

number of the two. The cell numbers per ml can be calculated as follows: 

Cell number/ml = N 2 104 (N: mean cell number, 2: dilution factor) 

3.4.3 Cryo-conservation and thawing of mammalian cells 

The cell pellet was harvested by centrifugation and resuspended in ice-cold freezing medium 

(section 2.8.2). The cell number was adjusted to between 5x106/ml to 10x106/ml by freezing 

medium of which 1 ml cell suspension was transferred to 2 ml cryo vials. The cells were 

gradually cooled to -80°C overnight in a cell freezing box. For long-term storage, the vials 

were transferred to the liquid nitrogen tank. 

For re-thawing of cells, the cryo vials were incubated in a 37°C water bath until the content 

was partially thawed. Cells were then transferred to a Falcon tube containing 5 ml of 

appropriate medium. After centrifugation at 1,900 rpm for 5 minutes, the cell pellet was 

resuspended in the specific medium and transferred to a cell culture flask. 

 

3.5 Analysis of humoral and cellular immune responses 

3.5.1 L1-pseudovirion based neutralization assay (L1-PBNA) 

L1-PBNA is employed to detect neutralizing antibodies titers in sera against human 

papillomaviruses. We use HPV 16 and HPV18 pseudovirions to infect HeLaT K4 cells. After 

infection, the plasmid encoding Gaussia luciferase is released by PSV into the host cells. The 

extent of infection can be detected by measuring the substrate catalytic efficiency of 

secreted Gaussia luciferase in the medium. If the sera contain neutralizing antibodies, 

pseudovirion infection is prevented resulting in the less expression of the Gaussia luciferase. 



 50 

Sera were diluted in supplemented DMEM and 50 µl of this dilution were added to each well 

in duplicates of a 96-well tissue culture plate. Outer wells of the plate were filled with 150 µl 

medium or 1 x PBS to prevent evaporation. Then, 50 µl of the PSV dilution prepared in 

medium were added to the wells. The mixture of serum and PSV was incubated at room 

temperature for 20 minutes. Next, 50 μl of HeLaT K4 cells (2.5×105 cells/ml) were added to 

each well and the plates were incubated at 37°C humidified incubator for 48 h. 

3.5.2 Detection of antigen-specific cytotoxic T-lymphocytes by IFN-γ ELISpot 

IFN-γ ELISpot was performed 7 days later after the last immunization. All steps of operating 

with splenocytes were carried out in a laminar flow bench under sterile conditions. One day 

before collecting the splenocytes, the 96-well MultiScreen ELISpot plates were activated by 

adding 15 µl of 35% ethanol per well and washed 3 times by 200 µl PBS before overnight 

incubation with 100 µl/well of anti-mouse IFNγ capture antibody (5 µg/ml in PBS, # 551216) 

at 4°C. On the next day, plates were washed 3 times with PBS and blocked with 200 µl/well 

of splenocytes RPMI supplemented medium (section 2.8.1) for at least 2 h at 37°C. 

Splenocytes suspension of immunized mice (section 3.3.5) was adjusted to 1x107/ml and 

seeded 100µl/well in triplicate to capture antibody loaded plates. For experimental groups, 

the splenocytes were stimulated by 100 ng corresponding peptide (OVA257-264, E749-57, PADRE 

or OVX313 peptide panel) 100 µl/well. The negative control group was stimulated by 100 

µl/well supplemented medium. And 5 µg/ml of Concanavalin A (a lectin, universal activating 

T cells) was used as the positive control. The following scheme is an example for ELISpot 

working panel. 
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Figure 9. ELISpot working panel. Each row is the splenocytes of different mice. Every three columns 
have the same stimulation. 

After incubation in 37°C humidified incubator for 16 hours (OVX313 peptide panel 

stimulating for 40 hours), the cells were discarded and washed 3 times with PBST (1PBS 

with 0.05% Tween20). The plates were then blocked by 0.1 µg/ well of biotinylated rat-anti 

mouse IFN-γ antibody (1 µg/ml in PBS, # 554410) for at least 2 h at room temperature or 4°C 

overnight. Unbound antibody was removed by PBST washing for 3 times with 1 minute PBST 

incubation during each washing. Then, streptavidin-alkaline phosphatase (1:1000 dilution in 

PBS, # 554065) were added and incubated for 45 minutes in the dark at room temperature. 

Subsequently, plates were washed 3 times with PBST and 2 times with PBS. At last, 100 

µl/well of the substrate BCTP/NBT (# B-1911) were added for around 4 minutes staining. The 

reaction was stopped by washing the double sides of plates with water. When the plates 

were dried, spots were quantified by an ELISpot reader. 

3.5.3 Quantification of antigen-specific cytotoxic T-lymphocytes by tetramer or streptamer 

staining 

Tetramer or streptamer staining was carried out 7 days later after the last immunization. The 

harvested splenocytes were resuspended and counted in 2-5 ml splenocytes washing buffer 

(section 2.8.2). Around 2x106 cells per well were taken into a 96-well U-bottom plate and 
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then washed once with FACS buffer (section 2.8.2). The supernatant was discarded by 

decanting over sink and dry it on the tissue. Afterwards, 100 µl/well FcReceptor (FcR) mix 

was added to block the unspecific binding between FcR from immune cells and staining 

antibody. The FcR blocking was incubated at 4°C for 20 minutes. Before tetramer or 

streptamer staining, cells were washed once by FACS buffer. 

Components of FcR mix (preparation for 9 samples and calculation for 10 samples) 

5 µl RcR block (50 µl) 

1 µl Hamster serum (10 µl) 

1 µl Rat serum (10 µl) 

93 µl FACS buffer (930 µl) 

- Tetramer staining 

Each sample was incubated with 10 µl iTAg Tetramer/APC-H-2 Kb OVA (SIINFEKL) for 30 

minutes at room temperature protected from light. Then 180 µl FACS buffer were added to 

stop the staining. Cells were washed once by FACS buffer before staining with any additional 

antibodies. 

- Streptamer staining (All steps have to be performed at 4°C!) 

APC-conjugated H-2Db/ E749-57 streptamer was prepared by incubating 1 µl Strep-Tactin-APC 

and 0.8 µl MHC I-Strep in a final volume of 10 µl FACS buffer (1 sample amount) at dark for 

45 minutes. Then, the splenocytes were suspended in 10 µl of pre-mixed Streptamer for 

another 45 minutes at dark. Before staining of cell surface marker, cells were washed once 

by FACS buffer. 

CD8-PE antibody (# sc-53473 PE) and Live/dead dye (# L34959) were diluted 1:00 and 1:1000 

respectively in FACS buffer and the cells were incubated by the staining solution at 4°C for 40 

minutes to 1 hour in the dark. Subsequently, the cells were washed once by FACS buffer and 

resuspended in 200 µl Fixation buffer at 4°C for at least 1 hour and maximum 24 hours. Flow 

cytometry was applied to analyze the staining results. 
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3.5.4 Quantification of antigen-specific cytokine production by intracellular cytokine 

staining 

Intracellular cytokine staining was performed 7 days later after the last immunization. The 

harvested splenocytes were resuspended and counted in 2-5 ml splenocytes washing buffer 

(section 2.8.2). The compensation group (single staining) and experimental group (mix 

staining) were designed as follows. Around 2x106 cells per well were taken into a 96-well U-

bottom plate and then washed once with FACS buffer (section 2.8.2).  

 

Figure 10. Intracellular cytokine staining working panel. The single staining is used for compensation. 
The mix staining is for experimental groups. 

Afterwards, the splenocytes were incubated with ‘Golgistop’ medium (supplemented 

medium plus Brefeldin A, # 554724) containing medium only (negative control), 

PMA/ionomycin (positive control or IFN-γ single staining, red color) or peptide of interest. 

After 6 hours incubation, cells were washed once by FACS buffer and stained with 1:100 FITC 

Rat Anti-Mouse CD4 (# 553047), 1:100 PE Rat Anti-Mouse CD8a (# 553033) and 1:1000 

Live/dead dye (# L34959) according to the working panel. The staining was kept on ice for 45 

minutes protected from light. 150 µl FACS buffer was added to stop staining and followed by 

200 µl buffer for washing. Then cells were resuspended in 50 µl fixation buffer 

(cytofix/cytoperm, # 554722) and incubated in dark at 4°C for 20 minutes or overnight. 

Before staining with APC Rat Anti-Mouse IFN-γ (1:100 dilution in perm/wash, # 562018), cells 

were washed twice by 150 µl perm/wash. Subsequently, cells were incubated on ice for 45 

minutes to 1 hour and 150 µl perm/wash were added for FACS analysis. 
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3.5.5 Tumor regression assay 

Tumor regression assays were performed to illustrate the therapeutic potentials of 

prophylactic and therapeutic function combined vaccine PfTrx-L220-38 8mer-(flank E749-57)3X-

OVX313. 

Tumor inoculation was carried out when mice were under anesthesia by inhalating 

isoflurane. The 6-week old C57BL/6N mice were first shaved on their right flank. Appropriate 

amount of TC-1 cells in 100 µl PBS was injected slowly using 27G ½  (0.4×13mm) needle on 

the place where was shaved. The growth of the tumor was checked three or four days later 

after tumor inoculation. When tumor showed a clearly measurable size, half of the tumor 

bearing animals were immunized at the base of the tail subcutaneously with 20 µg PfTrx-

L220-38 8mer-(flank E749-57)3X-OVX313 adjuvanted with 50% (v/v) AddaVax and two doses of 

the vaccine were received with 5 days apart. The rest of tumor mice were used as negative 

control, either without any vaccination or immunized with protein PfTrx-L220-38 8mer-

OVX313. When the tumor of vaccinated mice was completely regressed, half of the tumor 

regression animals were re-challenged with more TC-1 cells to detect the memory T cell 

responses induced by the vaccine. Tumor volume was measured with a digital caliper every 3 

or 4 days. Mice were excluded from the experiment when the tumor volume was exceeded 

cm3 or the tumor diameter was over 1.5 cm. 

3.5.6 Statistical analysis 

Statistical significance was calculated with the nonparametric Mann-Whitney test. P < 0.05 

was considered statistically significant. 
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4. Results 

Persistent infection of high risk HPV types is a causal factor for developing anogenital 

cancers (Durst et al, 1983; zur Hausen, 1996; zur Hausen, 2009). Especially, almost all 

cervical cancers are related to HPV infection, mostly HPV16 and HPV18. HPV prophylactic 

vaccines are available currently, but they are essentially limited for prevention of HPV 

infection in uninfected population. After population exposure to HPV, prophylactics seem to 

be powerless (Kumar et al, 2015; Wang & Roden, 2013). Moreover, since there are no anti-

HPV drugs available, an effective strategy should be the therapeutic vaccination to eliminate 

HPV-transformed cells by the activated immune system. Also, given that the coverage of 

prophylactic HPV vaccines is incomplete worldwide, and the inadequate diagnosis of HPV 

infection exists in less developed regions, a prophylactic and therapeutic combined vaccine 

would be a vital requirement. This is also the aim of my PhD project. There are some 

benefits of a prophylactic/therapeutic combined vaccine over only therapeutic functional 

vaccine. Firstly, a combined vaccine can be used for both uninfected and infected 

populations, which means that this kind of vaccine does not require a HPV infection 

screening when vaccinated. Secondly, a combined vaccine has a unique superiority over only 

therapeutics in post exposure prophylaxis. In the beginning of the HPV infection, there are 

not only virus infected cells, but also large amounts of residual viruses. In this scenario, the 

stimulated production of HPV neutralizing antibodies would be beneficial. Last but not least, 

a combined vaccine will shield the recovered individuals of HPV-related diseases from 

further HPV re-infections. 

4.1 PfTrx is able to induce CD8+ cytotoxic T cell responses 

Pyrococcus furiosus thioredoxin (PfTrx) has been demonstrated to be an excellent carrier for 

heterologous antigens (Canali et al, 2014; Seitz et al, 2014). It presents a highly thermostable 

scaffold with a large capacity to accept insertion into its active center. Inserted sequences 

are restrained by flanking cysteine residues that are forming intramolecular disulfide bonds. 

We already proved that PfTrx-L2 as an antigen can induce B cells to secrete antibodies 

neutralizing HPV. Moreover, by PfTrx overlapping peptide-screening (Twenty-four 20mer-

peptides in total with 12 amino acid overlap), we found CD4+ T cell epitopes (H2d) within the 

Trx scaffold. So we supposed that PfTrx-L2 could promote the activation/induction of B cells 

through APC and T-helper cells (Figure 11). 
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Can PfTrx also induce CD8+ cytotoxic T cell (CTL) responses? To answer this question, we 

inserted a well-known CD8 epitope, Ovalbumin CTL epitope (SIINFEKL, H2Kb restricted) into 

our PfTrx scaffold to test if this ‘PADRE2X-PfTrx-(OVA257-264)3X’ antigen can stimulate CTL 

responses (Figure 11).  

 

Figure 11. PfTrx-L2 can induce B cell responses. Are CD8+ responses induced as well? Our previous 
data showed that PfTrx can induce B cell responses. Here we will study if PfTrx can also induce CTL 
responses. 

 

4.1.1 PfTrx induces CD8+ cytotoxic T cell responses with OVA257-264 as a CTL epitope  

 

Figure 12. The construct of ‘PADRE-Trx-OVA’ antigen. PADRE: pan HLA DR-binding epitope. It is a T-
helper epitope and recognized by both humans (HLA-DR) and mice (I-Ab) (Alexander et al, 1994; 
Jemon et al, 2013). PfTrx: the thioredoxin is from Pyrococcus furiosus and it is a highly thermostable 
scaffold with a large capacity to accept insertion into its active center. The thioredoxin we used in all 
antigens is PfTrx, so we normally write Trx instead of PfTrx as an abbreviation. OVA 257–264: it is 
ovalbumin (OVA)-derived CTL epitope (SIINFEKL, H-2Kb restricted). 
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PADRE-Trx-OVA antigen was expressed in BL21 and then purified by nickel affinity 

chromatography. The coomassie blue stained SDS-PAGE (Figure 13) shows the purity and 

concentration (1.5 mg/ml according to the BSA indication) of the protein. Before 

immunization, the protein was detoxified by triton X-114. 

 

 

Figure 13. PADRE-Trx-OVA is purified by nickel affinity chromatography. The coomassie blue stained 
SDS-PAGE shows the purity and concentration of the protein. Before immunization, the protein was 
detoxified by twice triton X-114 treatment at 37 °C for 5 minutes and following a phase separation. 
Lane 1 to 7 shows the serial dilution of BSA which is used for determination of protein concentration. 
Lane 8 is the marker and sizes are indicated on the right side. Lane 9 is protein PADRE-Trx-OVA (22.7 
KD) and Lane 10 is 1:2 dilution of it. 

 

IFN-γ ELISpot was used to evaluate CD8+ cytotoxic T cell responses stimulated by Trx. The 

mice (3 per group) were immunized with either OVA257-264 and PADRE peptide mixture, or 

protein PADRE-Trx-OVA. The splenocytes were later obtained and stimulated by OVA257-264 or 

PADRE peptide. Figure 14 shows that the antigen encompassing Trx as a scaffold induced 

more IFN-γ secreting OVA specific CD8+ T cells. For CD4+ T cell responses, peptides mixture 

or protein group stimulated comparable IFN-γ positive PADRE CD4+ T cells. These ELISpot 

results indicate that Trx can induce CD8+ cytotoxic T cell responses, which emboldened us to 

involve Trx in the design of prophylactic/therapeutic vaccines. 
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Figure 14. Antigen containing Trx as a scaffold can induce more anti-OVA T cell responses tested by 
IFN-γ ELISpot. The 6 to 8 week-old C57BL/6N female mice (3 per group) were immunized with 100 µg 
OVA257-264 and 140 µg PADRE peptide mix or 20 µg protein PADRE-Trx-OVA subcutaneously. Both 
groups were adjuvanted with 50% (v/v) IFA (Incomplete Freund’s adjuvant). Seven days later, the 
splenocytes were obtained and stimulated in vitro by OVA257-264 or PADRE peptide. Red bar indicates 
P value. 

 

4.1.2 PADRE-Trx-OVA can be formulated with human compatible adjuvant ‘AddaVax’   

We have shown that Trx can induce cytotoxic T cells responses when IFA used as adjuvant. 

Here we would like to study the induced responses when human compatible adjuvant 

‘AddaVax’ applied. Mice were immunized with protein PADRE-Trx-OVA using different 

adjuvants: IFA, AddaVax, or AlumMPLA. The splenocytes were stimulated in vitro with the 

OVA257-264 peptide. We can see from Figure 15 that PADRE-Trx-OVA formulated with 

AddaVax induces stronger OVA-specific CD8+ T cell responses compared to AlumMPLA. 

Moreover, AddaVax formulation even works better for induction of CD8+ T cell responses 

than IFA formulation. Therefore, AddaVax was chosen as adjuvant in our following protein 

vaccination experiments. 

We compared the T cell responses induced by OVA257-264 and PADRE peptide mix and antigen 

PADRE-Trx-OVA, with AddaVax adjuvant (Figure 16). Firstly, we employed IFN-γ ELISpot to 

test CD8+ cytotoxic T cell responses. Results shown in figure 16 (a) demonstrate that PADRE-

Trx-OVA vaccination induces much more OVA specific CD8+ T cells than peptide mix, when 

AddaVax is utilized as an adjuvant. To further confirm this result, intracellular cytokine 

staining was following performed. The mice (3 per group) were immunized twice with 

OVA257-264 and PADRE peptide mix, or PADRE-Trx-OVA. Afterwards, the activated splenocytes 
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were collected and stimulated by OVA257-264 peptide, PMA/ionomycin (positive control) or 

only medium (negative control). The stimulated cells were later stained by fluorescence-

conjugated monoclonal antibodies (anti-mouse-CD8+, anti-mouse-CD4+ and anti-mouse-IFN 

γ) and analyzed by flow cytometry. The percentage of IFN-γ secreting CD8+ T cells is shown 

in figure 16 (b). It is obvious that PADRE-Trx-OVA immunized mice generate more IFN-γ 

positive CD8+ T cells compared to peptide immunization. 

 

Figure 15. PADRE-Trx-OVA formulated with AddaVax induces stronger anti-OVA T cell responses 
compared to AlumMPLA adjuvanted. The 6 to 8 week-old C57BL/6N female mice (3 per group) were 
vaccinated with 20 µg PADRE-Trx-OVA formulated with 50% (v/v) IFA, AddaVax or AlumMPLA. Seven 
days later, the splenocytes were obtained, and IFN-γ ELISpot was performed with in vitro stimulation 
by OVA257-264 peptide. Red bar indicates P value. 

 

 

 

Figure 16 (a). Antigen comprising Trx and adjuvanted with AddaVax can induce a potent anti-OVA T 
cell response. The mice (5 per group) were immunized with 100 µg OVA257-264 and 140 µg PADRE 
peptide mix or 20 µg protein PADRE-Trx-OVA. Both groups were adjuvant with AddaVax 50% (v/v). 
The splenocytes were in vitro stimulated by OVA257-264 or PADRE peptide. Red bar indicates P value. 
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Figure 16 (b). Antigen comprising Trx and adjuvanted by AddaVax can induce more IFN-γ secreting 
CD8+ T cells shown by intracellular cytokine staining. The mice (3 per group) were immunized twice 
at biweekly intervals with 100 µg OVA257-264 and 140 µg PADRE peptide mix, or 20 µg PADRE-Trx-OVA 
at the base of the tail subcutaneously. Both were adjuvanted with AddaVax 50% (v/v). Seven days 
later after the second immunization, the splenocytes were incubated with ‘Golgistop’ medium 
(supplemented medium plus Brefeldin A) containing OVA257-264 peptide, PMA/ionomycin (positive 
control) or only medium (negative control). After 6 hours incubation, the cells were stained by 
fluorescence-conjugated monoclonal antibodies (anti-mouse-CD8+, anti-mouse-CD4+ and anti-
mouse-IFN γ). The percentage of IFN-γ secreting CD8+ T cells was determined by flow cytometry. 
Each dot represents one mouse with the mean percentage (%CD8+ IFNγ+ / CD8+) showing by 
horizontal bars. P value is indicated in the figure. 

 

4.1.3 PfTrx carrying the HPV E749-57  CTL epitope induces weak CD8+ cytotoxic T cell 

responses  

 

Figure 17. The ‘PADRE-Trx-E7’ antigen. HPV16 E7 49–57: it is HPV16 E7 derived CTL epitope 
(RAHYNIVTF, H2Db restricted) (Feltkamp et al, 1993). 

Figure 18 demonstrates the purity of PADRE-Trx-E7 in coomassie blue stained SDS-PAGE. The 

protein was expressed in E.coli and purified by nickel affinity chromatography. Before 

immunization, the protein was detoxified by triton X-114 treatment. 
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Figure 18. PADRE-Trx-E7 is purified by nickel affinity chromatography. Lane 1 indicates the purified 
protein (23.2 KD) shown in coomassie blue stained SDS-PAGE gel. Lane 2 is the marker and sizes are 
presented on the right.  

Our previous data showed that cytotoxic T cell responses can be induced when famous CTL 

epitope OVA257-264 was incorporated into Trx scaffold. Here we wanted to study T cell 

responses when human related CTL epitope HPV16 E749-57 was used instead of OVA257-264. 

IFN-γ ELISpot was performed to evaluate E7-specific CD8+ cytotoxic T cell responses induced 

by PADRE-Trx-E7. The mice were immunized with HPV16 E749-57 and PADRE peptide mix, or 

PADRE-Trx-E7. The antigens were either formulated with IFA (Figure 19 (a)), or AddaVax 

(Figure 19 (b)). The splenocytes were stimulated with the HPV16 E749-57 peptide. As shown in 

figure 19 (a) and (b), the PADRE-Trx-E7 antigen cannot induce a significant E7-specific CD8+ T 

cell response. For peptide immunization, a weak but specific response was observed. This 

result inspired us to explore an appropriate HPV16 E7 CTL epitope. 

(a) IFA as adjuvant 

 

 



 62 

(b) AddaVax as adjuvant 

 

Figure 19. Antigen encompassing PfTrx as a scaffold and E749-57 as a CTL epitope cannot induce a 
significant E7-specific CD8+ T cell response as tested by IFN-γ ELISpot. The mice (3 per group) were 
immunized with 100 µg HPV16 E749-57 and 140 µg PADRE peptide mix, or 20 µg PADRE-Trx-E7. The 
antigens were either formulated with 50% (v/v) IFA (a), or 50% (v/v) AddaVax (b). The splenocytes 
were later stimulated with the HPV16 E749-57 peptide.  

 

4.1.4 CD8+ cytotoxic T cell response is significantly enhanced if E749-57 is flanked by five E7-

derived amino acids (QAEPDRAHYNIVTFCCKCD) 

 

Figure 20. The construct of ‘PADRE-Trx-flank E7’ antigen. Flank E749-57: HPV16 E749-57 is flanked by 5 
amino acids on both sides. The sequence RAHYNIVTF is extended to QAEPDRAHYNIVTFCCKCD. 
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Figure 21 demonstrates the purity of PADRE-Trx-flank E7 in coomassie blue stained SDS-

PAGE. The operation of the protein (expression, purification and detoxification) is the same 

as that of PADRE-Trx-E7. 

 

Figure 21. PADRE-Trx-flank E7 is purified by nickel affinity chromatography. The purity of the 
protein is shown in coomassie blue stained SDS-PAGE. Lane 1 demonstrates the marker and sizes are 
on the right side. Lane 2 and 3 are two fractions of  protein PADRE-Trx-flank E7 (26.5 KD). 

 

Since the T cell responses induced by PADRE-Trx-E7 were not significant, we extended the 

HPV16 E7 CTL epitope E749-57 (RAHYNIVTF) to flank E749-57 (QAEPDRAHYNIVTFCCKCD) to 

enhance the intracellular processing and presentation of the E7 T-cell epitope. And the 

immunogenicity of PADRE-Trx-E7 and PADRE-Trx-flank E7 was compared by IFN-γ ELISpot. 

Mice were immunized with HPV16 E749-57 and PADRE peptides adjuvanted with IFA (control 

group), or protein PADRE-Trx-E7 adjuvanted with AddaVax, or protein PADRE-Trx-flank E7 

adjuvanted with AddaVax. The splenocytes were stimulated by HPV16 E749-57 peptide. We 

can see from figure 22 that CD8+ cytotoxic T cell response is significantly enhanced if flank 

E749-57 is used in Trx scaffold. Based on this conclusion, the epitope flank E749-57 instead of 

E749-57 is always applied in our subsequent vaccine designs. 
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Figure 22. CD8+ cytotoxic T cell response is significantly enhanced if flank E749-57 used in PfTrx 
scaffold. The mice (3 per group) were immunized with 100 µg HPV16 E749-57 and 140 µg PADRE 
peptides formulated with 50% (v/v) IFA, or 20 µg PADRE-Trx-E7 formulated with 50% (v/v) AddaVax, 
or 20 µg PADRE-Trx-flank E7 formulated with 50% (v/v) AddaVax. Seven days later, the splenocytes 
were stimulated by HPV16 E749-57 peptide. Red bar indicates P value. 

 

4.2 HPV prophylactic and therapeutic combined vaccines based on PfTrx 

scaffold 

4.2.1 A monomeric vaccine contains B-cell epitope: L2 and T-cell epitope: OVA 
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Figure 23. The design and purification of ‘PADRE-Trx-L2-OVA’ antigen. HPV16 L2 20-38: the amino acid 
sequence is from 20 to 38 of HPV 16 L2 minor capsid protein, and our previous work proved that this 
part of L2 can induce HPV neutralizing antibodies efficiently. The protein is purified by nickel affinity 
chromatography and shown in coomassie blue stained SDS-PAGE. Lane 1 displays protein PADRE-Trx-
L2-OVA (29.3 KD) and Lane 2 is one time dilution of it. The size is indicated by the marker on the right 
side. 

As shown in the last section that Trx can be used in induction of cytotoxic T cell responses, 

and our previous work proved that Trx can stimulate antibody production. Here we want to 

incorporate both CTL epitope and B cell epitope into Trx scaffold to develop a combined 

vaccine. Figure 24 shows the strategy to study the T cell and B cell responses of the 

combined vaccine PADRE-Trx-L2-OVA. We have designed comparison antigens which contain 

either only T cell epitope (PADRE-Trx-OVA) or only B cell epitope (PADRE-Trx-L2). By 

comparison, we can determine if the existence of B cell epitope HPV16 L2 20-38 influences 

anti-OVA T cell response or not, and vice versa. 

 



 66 

Figure 24. Strategy to study the T cell and B cell responses of combined vaccine PADRE-Trx-L2-OVA. 
Group A. Antigen PADRE-Trx-OVA contains only T cell epitope OVA257-264. Group B. Antigen PADRE-
Trx-L2-OVA contains both T cell epitope OVA257-264 and B cell epitope HPV16 L2 20-38. Group C. Antigen 
PADRE-Trx-L2 contains only B cell epitope HPV16 L2 20-38. By Group A and B comparison, we can see 
the efficacy of T cell responses induced by combined vaccine. By Group B and C comparison, the B 
cell responses of combined vaccine can be explored. 

 

 PADRE-Trx-L2-OVA induces comparable anti-OVA T cell responses as PADRE-Trx-OVA 

In order to test the anti-OVA T cell responses induced by the combined vaccine, we 

compared the number of IFN-γ secreting T cells of PADRE-Trx-L2-OVA and PADRE-Trx-OVA 

through IFN-γ ELISpot (Figure 25). Mice were injected with PADRE-Trx-OVA, PADRE-Trx-L2-

OVA or PADRE-Trx-L2 (negative control). The collected splenocytes were stimulated by 

OVA257-264 peptide. Figure 25 (a) shows the anti-OVA T cell responses of each mouse after 

different antigens vaccination. Figure 25 (b) represents the average T cell responses of each 

vaccination group. We can see from Figure 25 (a) and (b) that the stimulated anti-OVA T cell 

responses of PADRE-Trx-L2-OVA are comparable to the T cell responses induced by PADRE-

Trx-OVA, which means that the B cell epitope HPV16 L2 20-38 has no significant influence on 

anti-OVA T cell responses induced by the combined vaccine. 

 

 (a) 
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(b) 

 

Figure 25. T cell and B cell epitope-combined antigen PADRE-Trx-L2-OVA can induce comparable 
anti-OVA T cell responses as PADRE-Trx-OVA. IFN-γ ELISpot was performed to compare the anti-OVA 
T cell responses induced by PADRE-Trx-OVA and PADRE-Trx-L2-OVA. We use antigen PADRE-Trx-L2 as 
the negative control. The mice (6 or 3 per group) were immunized with 20µg antigen PADRE-Trx-OVA, 
PADRE-Trx-L2-OVA or PADRE-Trx-L2. The splenocytes were stimulated by OVA257-264 peptide. (a) 
shows the anti-OVA T cell responses of each mouse after immunization. (b) represents the average T 
cell responses of each vaccination group. Red bar indicates P value. 

 

 PADRE-Trx-L2-OVA induces comparable anti-HPV16 and anti-HPV18 neutralizing 

antibodies compared to the PADRE-Trx-L2 

We performed L1-PBNA (pseudovirion-based neutralization assay) against HPV 16 and HPV 

18 pseudovirions to evaluate the B cell responses aroused by the combined vaccine. The 

BALB/c mice were injected 4 times with PADRE-Trx-L2 or PADRE-Trx-L2-OVA. Sera were 

collected one month after the last immunization and analyzed with L1-PBNA. The results 

(Figure 26) show that comparable antibody titers against HPV16 (P value 0.02) and 18 (P 

value 0.023) were induced no matter T cell epitope OVA257-264 exists or not. This data 

indicates that OVA257-264 has no negative impact on B cell responses induced by HPV16 L2 20-

38. 
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 (a) 

 
 

(b) 

 
 

(C) 
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Figure 26. Antigen PADRE-Trx-L2-OVA involving both B-cell and T-cell epitopes produces 
comparable anti-HPV16 and anti-HPV18 neutralizing antibody titers compared to PADRE-Trx-L2. 
Ten BALB/c mice per group were immunized intramuscularly 4 times at biweekly intervals with 20 µg 
of PADRE-Trx-L2 or PADRE-Trx-L2-OVA formulated with 50% (v/v) AddaVax. Sera were collected from 
mice one month after the last immunization and analyzed against HPV 16 and HPV18 pseudovirions 
using the L1-PBNA. The sera were started with a 1:50 dilution and then titrated in 1:3 series as an 
example in (C). The neutralization titer is defined as the reciprocal of the maximum dilution in which 
case 50% pseudovirions can be still neutralized (IC50). The HPV16 and HPV18 neutralization titers 
from group PADRE-Trx-L2 and PADRE-Trx-L2-OVA are shown in (a) and (b), respectively. Each dot 
indicates one mouse with the mean titers showing by horizontal bars. P value is indicated in the 
figure. 

 

4.2.2 A heptameric vaccine contains B-cell epitope: 8mer and T-cell epitope: OVA 

 
 

 
 

Figure 27. The design and purification of ‘Trx-8mer-OVA-OVX313’ antigen. OVX313: Chimeric 
version of Avian C4b-binding protein which was shown to lack homology to human C4bp. It 
assembles spontaneously into a heptameric structure resulting in displaying the fused antigens seven 
times. L220-38 8mer: the amino acid sequences are from 20 to 38 of L2 of 8 different HPV types (16-18-
31-33-35-6-51-59).  

 

Figure 28 shows the purity of Trx-8mer-OVA-OVX313 in coomassie blue stained SDS-PAGE. 

The protein was isolated by thermal purification and detoxified by TritonX-114. 
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Figure 28. Trx-8mer-OVA-OVX313 is isolated by thermal purification. The protein was expressed in 
BL21 and isolated by thermal purification with 0.5M sodium chloride in 70°C for 40min. Lane 1 is Trx-
8mer-OVA-OVX313 (39 KD) shown in coomassie blue stained SDS-PAGE and Lane 2 is 1:2 dilution of it. 
The size is indicated by marker on the right. 

 

We have developed monomeric T-cell epitope and B-cell epitope combined vaccine. Here we 

used a heptameric platform OVX313 expecting an improved immunogenicity. As controls 

(Figure 29) we designed two antigens which contain either only T cell epitope Trx-OVA-

OVX313 or only B cell epitope Trx-8mer-OVX313 to indicate the effectiveness of T cell and B 

cell responses derived from combined vaccine Trx-8mer-OVA-OVX313. 

 

 

Figure 29. Antigen design to determine the T cell and B cell responses induced by combined vaccine 
Trx-8mer-OVA-OVX313. Group A. Trx-OVA-OVX313 antigen contains only the T cell epitope OVA257-

264. Group B. Trx-8mer-OVA-OVX313 antigen contains both the T cell epitope OVA257-264 and the B cell 
epitope L2 20-388mer. Group C. Trx-8mer-OVX313 antigen contains only the B cell epitope L2 20-388mer. 
By Group A and B comparison, Group B and C comparison, we can acquire the cellular and humoral 
immunogenicity of the combined heptameric vaccine. 
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 Trx-8mer-OVA-OVX313 induces stronger anti-OVA T cell responses compared to Trx-

OVA-OVX313  

The induced anti-OVA T cell responses of the combined vaccine can be illustrated by 

comparison with Trx-OVA-OVX313 in IFN-γ ELISpot (Figure 30). Trx-8mer-OVX313 was used as 

a negative control. Mice were immunized once and 7 days later the splenocytes were 

stimulated by OVA257-264 peptide. Figure 30 shows that the combined vaccine Trx-8mer-OVA-

OVX313 induces three fold OVA-specific T cell responses compared to Trx-OVA-OVX313. This 

result indicates that the B cell epitope L220-388mer has a positive influence on the OVA-

specific T cell responses induced by the combined vaccine. 

 

Figure 30. T cell and B cell epitope-combined vaccine Trx-8mer-OVA-OVX313 induces stronger anti-
OVA T cell responses compared to Trx-OVA-OVX313. IFN-γ ELISpot was performed to compare the 
anti-OVA T cell responses induced by Trx-8mer-OVA-OVX313 and Trx-OVA-OVX313. Trx-8mer-
OVX313 works as a negative control. The mice (6 or 3 per group) were immunized with 20 µg antigen 
Trx-OVA-OVX313, Trx-8mer-OVA-OVX313 or Trx-8mer-OVX313, and 7 days later the splenocytes 
were stimulated with OVA257-264 peptide. Red bar indicates P value. 

 

We not only used the OVA257-264 peptide to stimulate splenocytes in vitro, EG7 cells (OVA 

expressing derivatives of the EL4 cell line) were also applied to evaluate anti-OVA T cell 

responses activated by combined vaccine Trx-8mer-OVA-OVX313 in IFN-γ ELISpot. Three 

mice were immunized once with the combined vaccine. The splenocytes were stimulated by 

either EG7 cells or EL4 cells (as the negative control). We can see from Figure 31 that the IFN-
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γ was secreted when the splenocytes were stimulated with EG7 cells compared to the results 

after EL4 stimulation. The data further shows that the anti-OVA T cell responses are 

effectively induced when mice were vaccinated with the Trx-8mer-OVA-OVX313 antigen. 

 

 

Figure 31. Induced OVA-specific T cells can recognize EG7 cells. EG7 cells or EL4 cells (as the negative 
control) were used to stimulate the splenocytes in vitro in IFN-γ ELISpot.  

 

To further evaluate the immunogenicity of the antigen Trx-8mer-OVA-OVX313, we quantified 

OVA-specific CD8+ T cells by flow cytometry using H-2Kb/OVA257-264 (SIINFEKL) tetramers. We 

immunized three mice per group twice with Trx-8mer-OVA-OVX313, Trx-OVA-OVX313 or Trx-

8mer-OVX313 (as negative control). One week after the last immunization, the splenocytes 

were stained with anti-CD8-PE and APC-conjugated H-2Kb/OVA257-264 tetramer. We can see 

that after Trx-8mer-OVA-OVX313 immunization, 3.3%, 1.5% and 2.1% OVA-specific CD8 T 

cells were detected among the total CD8 T cell population, respectively, compared to 1%, 

0.8% and 1% of Trx-OVA-OVX313 immunized mice (Figure 32 (a)). The percentage of OVA-

specific CD8 T cells from combined vaccine stimulation is around two to three folds of only T 

cell epitope comprising vaccine (Figure 32 (b)). This result is consistent with the data from 

IFN-γ ELISpot.  
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(a) 

 

 

(b)  

 

Figure 32. Trx-8mer-OVA-OVX313 induces more OVA-specific CD8 T cells than Trx-OVA-OVX313 
does. We evaluated OVA-specific CD8+ T cells by flow cytometry using H-2Kb/OVA257-264 (SIINFEKL) 
tetramers. We immunized three mice per group twice at weekly intervals with 20µg Trx-8mer-OVA-
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OVX313, Trx-OVA-OVX313 or Trx-8mer-OVX313 (as negative control). One week after the last 
immunization, the splenocytes were stained with anti-CD8-PE and APC-conjugated H-2Kb/OVA257-264 

tetramer. The FACS data are shown in (a). The purple dots represent the OVA-specific CD8+ T cells. 
The analyzed data are represented in (b). Each dot (triangles, circles or diamonds) indicates one 
mouse, with the mean percentage (OVA (257-264)-CD8+/CD8+) showing by horizontal bars.  

 

 Trx-8mer-OVA-OVX313 induces comparable anti-HPV16 and anti-HPV18 neutralizing 

antibodies compared to the Trx-8mer-OVX313 

We performed L1-PBNA against HPV 16 and HPV 18 pseudovirions to evaluate the anti-L2 B 

cell responses stimulated by the combined vaccine (Figure 33). BALB/c mice were injected 4 

times with Trx-8mer-OVX313 and Trx-8mer-OVA-OVX313. Sera were collected one month 

later after the last immunization and analyzed for presence of HPV 16 and HPV18-specific 

neutralizing antibodies using the L1-PBNA. Figure 33 illustrates that the combined vaccine 

Trx-8mer-OVA-OVX313 performs almost as efficient as vaccine Trx-8mer-OVX313 regarding 

the produced antibodies against HPV16 (P value 0.5288) and 18 (P value 0.1431). This also 

indicates that concerning the heptameric OVX313 scaffold, T cell epitope OVA257-264 has little 

negative influence on B cell responses induced by L220-388mer. 

(a) 
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(b) 

 

Figure 33. Heptameric antigen Trx-8mer-OVA-OVX313 produces comparable anti-HPV16 and anti-
HPV18 neutralizing antibodies compared to the antigen Trx-8mer-OVX313. Ten BALB/c mice per 
group were immunized intramuscularly 4 times at biweekly intervals with 20 µg of Trx-8mer-OVX313 
and Trx-8mer-OVA-OVX313 formulated with 50% (v/v) AddaVax. Sera were collected from mice one 
month after the last immunization and analyzed against HPV 16 and HPV18 pseudovirions using the 
L1-PBNA. The sera were started with a 1:50 dilution and then titrated in 1:3 series. The neutralization 
titer is defined as the reciprocal of the maximum dilution in which case 50% pseudovirions can be still 
neutralized (IC50). The HPV16 and HPV18 neutralization titers from Trx-8mer-OVX313 and Trx-8mer-
OVA-OVX313 immune sera are shown in (a) and (b). Each dot indicates one mouse with the mean 
titers showing by horizontal bars. P value is indicated in the figure. 

 

We successfully developed B cell and T cell responses combined monomeric vaccine PADRE-

Trx-L2-OVA and heptameric vaccine Trx-8mer-OVA-OVX313. These results encouraged us to 

further develop the HPV prophylactic and therapeutic combined vaccines based on HPV L220-

38 and flank E749-57. 

 

4.2.3 Development of monomeric and heptameric vaccines comprising human related 

epitopes:  8mer and flank E7  

Based on the promising results from PADRE-Trx-L2-OVA and Trx-8mer-OVA-OVX313, we 

further designed monomeric vaccine PADRE-Trx-L2-flank E7 and heptameric vaccine Trx-

8mer-flank E7-OVX313 comprising human related epitopes L220-38 and flank E749-57. Both 

proteins were expressed in BL21. PADRE-Trx-L2-flank E7 was purified by nickel affinity 
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chromatography, and Trx-8mer-flank E7-OVX313 was isolated by thermal purification. Both 

antigens were detoxified before immunization. 

(a) 

 

 

 

 

(b) 
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Figure 34. The design and purification of vaccine PADRE-Trx-L2-flank E7 and Trx-8mer-flank E7-
OVX313. The proteins are shown in coomassie blue stained SDS-PAGE. (a) shows the structure and 
purity of PADRE-Trx-L2-flank E7. Lane 1 and 2 are two fractions of the protein (33 KD). The marker is 
in Lane 3 with the indication of sizes on the right. (b) presents the structure and purity of Trx-8mer-
flank E7-OVX313. Lane 1 is the marker and Lane 2 is the protein (42.8 KD). 

 

 Heptameric antigen Trx-8mer-flank E7-OVX313 induces stronger anti-E7 T cell 

responses compared to monomeric antigen PADRE-Trx-L2-flank E7 

We compared the anti-E7 T cell responses induced by PADRE-Trx-L2-flank E7 and Trx-

8mer-flank E7 -OVX313 by IFN-γ ELISpot (Figure 35). The mice were immunized once with 

Trx-8mer-flank E7-OVX313, PADRE-Trx-L2-flank E7 or Trx-8mer-OVX313 (as negative 

control). The splenocytes were stimulated with E749-57 peptide. Figure 35 (a) indicates the 

anti-E7 T cell responses of each mouse after different antigens vaccination. Figure 35 (b) 

represents the average T cell responses of each vaccination group. We can see that the 

heptameric antigen induces stronger T cell responses than the monomeric antigen 

(Figure 35 (a) (b)). As a next step we therefore investigated the B cell responses of the 

heptameric one. 
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(a) 

 

 

(b) 

 

Figure 35. Heptameric antigen Trx-8mer-flank E7-OVX313 induces stronger anti-E7 T cell responses 
than monomeric antigen PADRE-Trx-L2-flank E7. IFN-γ ELISpot was performed to compare the anti-
E7 T cell responses induced by Trx-8mer-flank E7 -OVX313, PADRE-Trx-L2-flank E7 or Trx-8mer-
OVX313 (negative control). The mice (5 or 3 per group, respectively) were immunized once with 20 
µg antigens. Seven days later, the splenocytes were obtained and stimulated with E749-57 peptide.  (a) 
indicates the anti-E7 T cell responses of each mouse after three antigens immunization. (b) 
represents the average T cell responses of each vaccination group. Red bar indicates P value. 
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Similarly like EG7 in vitro stimulation of splenocytes, here we employed TC-1 cells (derived 

from lung epithelium of C57BL/6 mice, with HPV E6 and E7 epitopes expression) and 

RMA/E7 cells (derived from RMA cell line, with HPV E7 epitopes expression) as target cells to 

assess anti-E7 T cell responses induced by combined vaccine by Trx-8mer-flank E7 -OVX313. 

Mice were immunized twice with the vaccine. Activated splenocytes were stimulated by 

either TC-1 cells, RMA/E7 cells or RMA cells (as the negative control of RMA/E7). Figure 36 

demonstrates that with TC-1 or RMA/E7 stimulation, the IFN-γ was obviously produced 

compared to the responses with RMA stimulation. The results additionally demonstrate that 

a potent anti-E7 T cell responses are induced when Trx-8mer-flank E7 -OVX313 vaccinated. 

 

Figure 36. Induced E7-specific T cells can recognize TC-1 and RMA/E7 cells. Analysis was performed 
using the IFN-γ ELISpot assay. Five mice were immunized twice at 5 days as intervals with the vaccine. 
Seven days after the last immunization, the splenocytes were stimulated by either TC-1 cells, RMA/E7 
cells or RMA cells (as the negative control of RMA/E7).  

 

To evaluate the frequency of E7-specific CD8+ T cells induced by Trx-8mer-flank E7-OVX313, 

we quantified E7-specific CD8+ T cells by flow cytometry using H-2Db/ E749-57 (RAHYNIVTF) 

streptamer. Mice were injected with Trx-8mer-flank E7-OVX313 or Trx-8mer-OVX313 

(negative control). Afterwards, the stimulated splenocytes were stained by anti-CD8-PE and 

APC-conjugated H-2Db/ E749-57 streptamer. The flow cytometry was used to determine the 

percentage of E7-specific CD8+ T cells. The FACS data are shown in Figure 37(a). The black 

dots represent the E7-specific CD8+ T cells. The data are analyzed and represented in Figure 

37(b). The average frequency of E7-specific T cells among the total CD8+ T cell population 

induced by Trx-8mer-flank E7-OVX313 is around 7 %. 
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(a) 

 

(b)  
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Figure 37. E7-specific T cells can be induced by Trx-8mer-flank E7-OVX313 measured via streptamer 
staining. We immunized mice (2 or 6 per group) twice at a 5 days interval with 20µg Trx-8mer-
OVX313 (negative control) or Trx-8mer-flank E7-OVX313. One week later after last immunization, the 
splenocytes were stained by anti-CD8-PE and APC-conjugated H-2Db/ E749-57 streptamer. The flow 
cytometry was used to analyze the percentage of E7-specific CD8+ T cells. The FACS data are shown 
in (a). The black dots represent the E7-specific CD8+ T cells. The analyzed data are represented in (b). 
Each dot (triangle or blank circle) represents one mouse, with the mean percentage (E7(49-57)-
specific CD8+ T cells/total CD8+ T cells) showing by horizontal bars.  

 

 Trx-8mer-flank E7-OVX313 induces comparable neutralizing antibody titers compared 

to Trx-8mer-OVX313 

 L1-PBNA against HPV 16 and HPV 18 pseudovirions was used to evaluate the anti-L2 

antibody production of the combined vaccine Trx-8mer-flank E7-OVX313 (Figure 38). BALB/c 

mice were immunized 4 times with Trx-8mer-OVX313 or Trx-8mer-flank E7-OVX313. Sera 

were collected one month later after the last immunization and analyzed by L1-PBNA. Figure 

38 demonstrates that there is no significant difference regarding to the antibody titer 

(against both HPV16 (P value 0.9765) and HPV18 (P value 0.4813)) produced by the 

combined vaccine Trx-8mer-flank E7-OVX313 and Trx-8mer-OVX313, which illustrates that T 

cell epitope flank E749-57 dose not interfere with the induction of B cell responses against the 

L2 epitopes.  

(a) 

 

 

 



 82 

(b) 

 

Figure 38. Heptameric antigen Trx-8mer-flank E7-OVX313 induces comparable anti-HPV16 and anti-
HPV18 neutralizing antibodies compared to Trx-8mer-OVX313. Ten BALB/c mice per group were 
immunized intramuscularly 4 times at biweekly intervals with 20 µg of Trx-8mer-OVX313 and Trx-
8mer-flank E7-OVX313 formulated with 50% (v/v) AddaVax. Sera were collected from mice one 
month after the last immunization and analyzed against HPV 16 and HPV18 pseudovirions using the 
L1-PBNA. The sera were started with a 1:50 dilution and then titrated in 1:3 series. The neutralization 
titer is defined as the reciprocal of the maximum dilution in which case 50% pseudovirions can be still 
neutralized (IC50). The HPV16 and HPV18 neutralizing titers induced by Trx-8mer-OVX313 and Trx-
8mer-flank E7-OVX313 are shown in (a) and (b). Each dot indicates one mouse with the mean titers 
showing by horizontal bars. P value is indicated in the figure. 

 

4.2.4 A T-helper epitope is found  in OVX313 scaffold 

From the comparison of T cell responses induced by PADRE-Trx-L2-flank E7 and Trx-8mer-

flank E7-OVX313, we can see that stronger anti-E7 T cell responses were induced by 

OVX313-PfTrx scaffold. This is consistent with the results of anti-OVA T cell responses 

induced by PADRE-Trx-L2-OVA and Trx-8mer-OVA-OVX313. Except some very potent CD8+ 

epitopes, the induction of cytotoxic T cell responses requires the activation of T-helper 

pathway. It was previously proved in our lab that there is no T-helper epitope within the 

PfTrx protein recognized in C57BL/6 mice. So here we are ignited to explore the T-helper 

epitopes from OVX313. We designed 20mer-peptide set with 12 amino acids overlap 

covering the entire OVX313 sequence (Table 3 in section 2.4.1). Three mice were immunized 

once and three mice were vaccinated twice with Trx-8mer-flank E7-OVX313. The splenocytes 

were stimulated with the peptide panel derived from OVX313 protein sequence. We can 

observe a T cell response induced by OVX313-I5 peptide in IFN-γ ELISpot, and the responses 
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are stronger with two immunizations than only one (Figure 39). But this response could not 

be identified as being CD8+ or CD4+ T cell-specific by intracellular cytokine staining. Even 

though, we assumed that this is a T helper responses due to the long size (20 amino acids) of 

the stimulating peptide. Other assays need to be further established to confirm the epitope 

OVX313-I5. As aforementioned, we supposed that the CD8+ T cell responses induced by the 

antigens comprising OVX313-PfTrx could partially benefit from T-helper activation from 

OVX313-I5 peptide. 

 

 
 

Figure 39. A T-helper response is induced by OVX313-I5 peptide. Mice were separated into two 

groups. One group (3 mice per group) was immunized once and the other group was immunized 

twice at 5 days intervals with 20 µg Trx-8mer-flank E7-OVX313. Seven days after the last 

immunization, the splenocytes were stimulated with the peptide panel derived from OVX313 protein 

sequence. The T cell responses induced by the nine peptides (I1 to I9) are shown. 
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4.3 The prophylactic and therapeutic combined vaccine Trx-8mer-flank E7-

OVX313 is effective in TC-1 tumor therapy. 

4.3.1 Two vaccinations with short intervals induce robust and stable T cell responses. 

Before we start tumor therapy with Trx-8mer-flank E7-OVX313 vaccine, we wanted to 

determine how many doses immunization and how long immunization intervals can induce 

the robust and stable T cell responses by IFN-γ ELISpot. We designed the immunization 

strategy as shown in Figure 40 (a) and (b). The mice were immunized either at long 

immunization intervals (14 days) or at short intervals (5 days). The number of doses ranged 

from one to four. It is evidently represented in the figure that a stronger anti-E7 T cell 

responses is produced with short-interval immunization than long-interval. Moreover, the 

peak of T cell responses is achieved with two immunizations at 5 days interval. So we used 

short-interval immunization and two doses in the mouse tumor assays. 

(a) 
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 (b) 
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Figure 40. The strongest anti-E7 T cell responses are induced when mice are immunized twice at 5 
days interval. IFN-γ ELISpot was performed to decipher the most applicable immunization strategy 
with Trx-8mer-flank E7-OVX313 for mouse tumor assays. Mice were immunized either at long 
immunization intervals (14 days) or at short intervals (5 days). The number of doses ranged from one 
to four. (a) indicates the long-interval immunization and the results of ELISpot. (b) gives the short-
interval immunization and the analysis of T cell responses. 

 

4.3.2 The vaccine Trx-8mer-flank E7-OVX313 can induce TC-1 tumor regression. 

 Trx-8mer-flank E7-OVX313 has therapeutic efficacy when 200,000 TC-1 cells were 

implanted and 300,000 TC-1 cells rechallenged. 

The mice were inoculated with 0.2X106 TC-1 tumor cells. Half of the animals were started 

vaccination one week after inoculation (when tumor size was between 3-5mm diameter), 

and two doses of Trx-8mer-flank E7-OVX313 were applied 5 days apart (Figure 41 (a)). The 

other 12 mice were left without any treatment. 68 days after inoculation of tumor cells, 5 

vaccinated mice (tumors were totally regressed) were rechallenged with 0.3X106 TC-1 cells. 

Besides, 5 naïve mice at the similar age were also implanted with 0.3X106 TC-1 cells as 

comparison. The tumor growth curves are shown in Figure 41 (b). The animal survival curves 

are presented in Figure 41 (c). It is apparent that the vaccination with antigen Trx-8mer-flank 

E7-OVX313 slows the growth of TC-1 tumors and improves the survival rate in mice. The 

zoomed curves after tumor rechallenging are represented in Figure 41 (d). We can see that 

the memory T cell responses induced by Trx-8mer-flank E7-OVX313 still exist after 4 months. 

In addition, until the end of the experiment, tumor growth has not been observed in the 

vaccinated mice. 

 

(a) 
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 (b) 
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(c) 

 

(d) 
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Figure 41. Trx-8mer-flank E7-OVX313 vaccination can inhibit the growth of TC-1 tumor, and the 
subsequent memory T cell responses can constrain tumor occurrence. The vaccination regime 
started one week after implantation of 0.2X106 TC-1 tumor cells (a). Half of the tumor animals (12 
out of 24 mice) received two doses of Trx-8mer-flank E7-OVX313 5 days apart. Twelve tumor mice 
were without any treatment. The illustration of the experimental design is shown in (a). The tumor 
growth curves are represented in (b). The animal survival rate is shown by Kaplan-Meier curves (c) 
and the Log-rank test indicates a significant difference in survival (p=0.0005). 68 days after 
inoculation of tumor cells, 5 vaccinated mice (with green arrows pointed) were rechallenged with 
0.3X106 TC-1 cells. Besides, 5 naïve mice at the similar age were also implanted with 0.3X106 TC-1 
cells as comparison. (d) gives the tumor growth kinetics after rechallenging. Tumor size was 
measured with a caliper every 3 or 4 days. Mice were sacrificed when the tumor volume exceeded 
1cm3 or the tumor diameter exceeded 1.5cm. The red crosses mark the sacrificed mice due to the 
tumor burden. 

 

 Potent T cell responses are induced in mice that have a regressed tumor. 

Tumor regression was observed in vaccinated mice of initial tumor challenging as well as the 

rechallenged mice (Figure 41 (b) (d)). We wanted to determine how potent the T cell 

responses were generated, and if epitope spreading occurred after the TC-1 tumor was 

destroyed and eradicated. IFN-γ ELISpot was performed to evaluate the T cell responses of 

tumor regressed mice. The splenocytes were stimulated with TC-1 cells, E749-57 peptide or E6 

48-57 peptide in vitro. The IFN-γ elicitation is observed with either TC-1 cells or E749-57 peptide 

stimulation, but not with E6 48-57.  And the T cell responses of tumor rechallenged mice are 

apparently stronger than the mice with only tumor implanted in the beginning (Figure 42 (a) 

(b)). The potent T cell responses correlated with tumor protection upon rechallenge. 

However, no epitope spreading is detected in the tumor regressed mice. 

(a)  
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(b) 

 

Figure 42. Potent T cell responses are induced in tumor regressed mice. IFN-γ ELISpot was 
performed to evaluate the T cell responses of tumor regressed mice. The splenocytes were 
stimulated by TC-1 cells, E749-57 peptide or E6 48-57 peptide in vitro. T cell responses of tumor 
rechallenged mice are indicated in (a). T cell responses of the mice with only tumor challenged in the 
beginning are illustrated in (b).  

 

 Trx-8mer-flank E7-OVX313 is effective to induce tumor regression when mice receive 

more tumor cells and later vaccination. 

The vaccine Trx-8mer-flank E7-OVX313 is effective when 0.2X106 TC-1 cells are implanted. 

Here we would like to know if the vaccine is still efficient with more TC-1 cells (0.3X106) 

inoculated, and with a later vaccination time. The mice were inoculated with 0.3X106 of TC-1 

tumor cells. Nine days after inoculation, when the tumor size was between 4-6mm 

diameters, half of the animals received Trx-8mer-flank E7-OVX313 and half of the animals 

were immunized with Trx-8mer-OVX313 (as a control). All mice received two doses vaccine 5 

days apart. The tumor growth kinetics is shown in Figure 43 (b) (c) and the survival curves of 

mice are presented in Figure 43 (d). We can see that the tumor growth is highly impeded 

and the animal survival rate is apparently improved when mice are immunized with Trx-

8mer-flank E7-OVX313 compared to mice that obtained Trx-8mer-OVX313 vaccination. This 

indicates that Trx-8mer-flank E7-OVX313 is still effective to induce tumor regression when 

the mice receive more tumor cells implantation and later vaccination. And the tumor 

regression results from the epitope flank E7 of antigen Trx-8mer-flank E7-OVX313, not 

because of Trx-8mer-OVX313 part. 
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 (a) 

 

 

(b) 

 

(c) 
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(d) 

 

Figure 43. Trx-8mer-flank E7-OVX313 is effective to induce tumor regression when the mice receive 
more tumor cells and later vaccination. The illustration of the experimental design is shown in (a). 
The mice were inoculated with 0.3X106 TC-1 tumor cells. Nine days after inoculation, half of the 
animals (15 out of 30 mice) were received Trx- 8mer-flank E7-OVX313. The tumor growth curve is 
shown in (b). The rest half were immunized with Trx-8mer-OVX313 as a control. The tumor growth 
curve of control mice is represented in (c). All mice received two doses vaccine 5 days apart. The 
animal survival rate is shown by Kaplan-Meier curves (d) and the Log-rank test indicates a significant 
difference in survival (p<0.0001). Tumor size was measured with a caliper every 3 or 4 days. Mice 
were sacrificed when the tumor volume reached more than 1cm3 or the tumor diameter exceeded 
1.5 cm. The red crosses mark the sacrificed mice due to the tumor burden. The mouse indicated by 
the green cross in (b) was sacrificed owing to skin lesions irrelevant to the tumor.    
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5. Discussion 

5.1 What challenges are faced by current HPV vaccines and what are the 

possible solutions for a better therapeutic achievement? 

5.1.1 Challenges for immunotherapies of HPV-associated diseases  

Due to the detection of anti-L1 T cell responses in animal models and various clinical trials 

(Passmore et al, 2006; Steele et al, 2005; Williams et al, 2002), it was surmised that the 

commercial prophylactic HPV L1 vaccines would also play a role in therapy of HPV-related 

lesions. However, the therapeutic efficacy was neither observed for Cervarix nor for Gardasil 

(2007; Hildesheim et al, 2007). The exact reasons are unknown but there are two 

speculations. First, the Alum adjuvants applied in the commercial vaccines drive the T cell 

responses to a Th2 direction mainly related to CD4 T cell responses, which could result in 

suppression of CD8+ T cell response (Liu et al, 2003). Second, the expression of L1 is 

normally in the superficial epithelium at the late stage, thus L1-presenting cells are hardly 

perceived by the immune system. Owing to the penurious therapeutic feasibility of current 

preventive vaccines, the development of therapeutic vaccine has provoked a strong 

enthusiasm in academic research as well as pharmaceutical industry.  

As aforementioned in the introduction, different types of therapeutic vaccines have been 

tested in clinical trials for their potential of activation cell-mediated responses and so far 

variable results were obtained. However, they are effective mostly in early stage with low 

grade CIN, or used as an adjuvant therapy after surgery. They are likely not as successful as 

the clinical trial tested prophylactic vaccines. It still remains that the treatment of high grade 

HPV positive lesions and cervical cancer through therapeutic vaccines falls short of 

expectations. This is due to HPV various immune escape mechanisms and the increased 

immunosuppressive microenvironment as HPV-disease progresses. 

HPVs take advantage of their own immune escape mechanisms to evade host immune 

surveillance (Kanodia et al, 2007). The protein E5 of high-risk HPV types downregulates MHC 

I expression on the cell surface via inhibition of their Golgi apparatus transportation (Ashrafi 

et al, 2006). The E6 protein affects Langerhans’ cell density to prevent immune responses 

(Matthews et al, 2003). More importantly, the oncoprotein E7 interferes with IFN signaling 
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pathway which is indispensable in inflammatory reaction and immune responses (Barnard et 

al, 2000). All these mechanisms may set barriers for immunotherapy. With the progression 

of lesions, the immune microenvironment is more suppressive, including the enhanced 

expression of PD-1 (on T cells) and PDL-1 (on APCs) (Yang et al, 2013); distorted equilibrium 

of Th1 cells and Th2 cells (Bais et al, 2005); reduced Th1 cytokines (IL-2, TNF-α and IL-12) and 

increased Th2 cytokines (Peghini et al, 2012; Scott et al, 2013; Yang et al, 2013); increased 

immunosuppressive cells, such as Tregs (Curiel et al, 2004; Lukesova et al, 2014) and MDSC 

(myeloid-derived suppressor cells) (Nagaraj et al, 2007; Stone et al, 2014). The adverse 

tumor microenvironment may prevent T cell-mediated antitumor reactivity in more 

aggressive lesions.  

Facing these challenges, current therapeutic vaccines applied alone in clinical are not the 

complete solution. The combination strategies may give us an opportunity to overcome the 

immune barriers.  

5.1.2 Possible solutions for the immunotherapy challenges 

From the previous studies reported by a large number of investigations we learned that 

single-pronged treatment seems to be not sufficient for eradicating lesions in patients with 

advanced-staged diseases. This is due to HPV multiple immune escape mechanisms and 

some unknown reasons. Therefore, efforts should be made on modulation of the tumor 

microenvironment and promotion of systemic as well as local immune responses. The 

combinational mode is likely to be the key to battle HPV-associated diseases successfully 

(Ma et al, 2017). 

 Prime-boost regimens 

Heterologous prime-boost strategies can be applied to promote vaccine efficacy. One option 

is to utilize different vaccine forms. For example, a protein vaccine can be administered 

firstly then followed by a DNA or virus-based vaccination. In a phase II trial, patients with 

anogenital intraepithelial neoplasia were primed with the TA-CIN protein and boosted with 

recombinant vaccinia virus TA-HPV. Five out of 29 individuals showed an enhanced T cell 

response (Fiander et al, 2006; Smyth et al, 2004). An alternative possibility is to perform 

prime-boost in different immunization sites. Prime in the deltoid muscle is able to induce 



 95 

systemic immune responses, and a boost can be in cervix prone to elicit local responses 

speculated a better lesion-elimination. 

 Vaccination-chemotherapy regimens 

Pairing-use of vaccine candidates with various therapeutic approaches such as 

chemotherapy is another attractive regimen, which has been also implemented in clinical 

trials. For instance, an ongoing phase I/II study (NCT02128126) was carried out in 2014 in 

cervical cancer patients. The vaccine ISA101/ISA101b (a HPV16 vaccine composed of 

synthetic long peptides) was synergistically employed with chemicals carboplatin and 

paclitaxel, and the HPV-specific immune responses and the safety will be evaluated. 

 Vaccination-checkpoint inhibitors regimens 

Immune checkpoint inhibitors, such as antibodies against CTLA-4, PD-1 or PD-L1, can prevent 

negative modulation of T cells resulting in improved CTL cytotoxicity (Blank & Mackensen, 

2007; La-Beck et al, 2015; Peggs et al, 2006). A study was performed to detect the 

expression level of PD-L1 in cervical intraepithelial neoplasia and cervical cancers. It was 

found that 95% CIN patients (20 out of 21) had an increased expression of PD-L1 and 80% 

patients with cervical squamous cell cancer (56 out of 70) showed obviously upgraded PD-L1 

(Mezache et al, 2015). This suggests that PD-L1 and PD-1 blockade may play a role in cervical 

cancer treatment.  

A research group used an Ad5 viral vaccine (containing HPV 16 E6 and E7) together with PD-

L1 blockade in mice loaded with HPV+ tumor. An improved antitumor activity and increased 

survival rate were observed in mice obtained combination therapy compared to the mice 

with vaccination alone. Accordingly, the number of CD8+ TILs (tumor infiltrating lymphocytes) 

were increased but with a smaller fraction showing PD-1+, and a reduced expression of PD-

L1 was observed on tumor cells after combination treatment. This indicates that synergistic 

use of a therapeutic vaccine and checkpoint inhibitors benefits tumor microenvironment and 

favors tumor eradication. A phase 2 clinical trial was carried out with ISA101/ISA101b and 

nivolumab (a PD-1 blockade) in patients with incurable HPV16+ cancer. The combination 

therapy showed a better clinical outcome compared to application of PD-1 blockade alone, 

with the overall response rate to treatment of 33% and the median overall survival of 17.5 

months (Massarelli et al, 2018). It seems that utilization of therapeutic HPV vaccines or 
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checkpoint inhibitors alone is not as effective as pairing both therapies. It would be very 

interesting to see the therapeutic potential of synergistic use of antigen PfTrx-L2 8mer-flank 

E7-OVX313 with checkpoint inhibitors. This combination should offer a targeted immune 

attack induced by the vaccine, as well as an improved overall immune level generated by 

checkpoint inhibitors, both of which are required in the invasive HPV+ tumors. 

 

5.2 The benefits and limitations of our HPV prophylactic and therapeutic 

combined vaccine 

5.2.1 The benefits of the vaccine 

Due to availability of commercial prophylactic vaccines, HPV-related morbidity and mortality 

can be reduced. However, given that the coverage of these vaccines is incomplete 

worldwide and the inadequate diagnosis of HPV infection exists in less developed regions, a 

prophylactic vaccine additionally comprising a therapeutic function would be significantly 

helpful. It means that such combined vaccines could be given to both uninfected and already 

infected populations without a requirement of HPV-infection screening. Especially, a 

combined vaccine is very beneficial in post exposure prophylaxis. In the beginning of the HPV 

infection, there are not only virus infected cells, but also large amounts of residual viruses. In 

this scenario, both B cell responses and T cell responses are required. The combined vaccines 

would ideally resolve productive infections in the early stage, as well as HPV-related diseases 

in a later HPV-infected phase because of the combined B-cell and T-cell epitopes. Moreover, 

such combined vaccines would shield the recovered individuals from further HPV re-

infections. The discussed benefits and the scope of the application embolden us to develop 

the HPV prophylactic and therapeutic combined vaccines. 

Except for the collective values of prophylaxis and therapeutics, our combined vaccine has 

unique superiorities. Cost-effectiveness always has to be considered before licensing a 

vaccine. The development of our vaccine stands on reducing the economic burden on global 

health. For starters, our vaccine PfTrx-L2 8mer-flank E7-OVX313 was produced in E. coli 

which is a cost-effective and easy-operating protein producer. Secondly, PfTrx scaffold used 

in our antigen is from the hyperthermophile Pyrococcus furiosus. It presents a highly 

thermostable protein with a large capacity to accept insertion into its active center. With the 
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help of this scaffold, our vaccine does not depend on cold-chains for transportation, which 

cut costs and makes it applicable for many regions worldwide. 

In addition, it was reported that T helper responses against E7 are considerably correlated 

with self-regression of HPV-induced lesions in healthy individuals (Kadish et al, 2002; 

Koskimaa et al, 2017). We assume that our vaccine used to the individuals with early-stage 

HPV infection can benefit from E7-specific T helper responses which ‘kick up’ the immune 

system resulting in clearing HPV-transformed cells. 

5.2.2 The limitations of the vaccine 

The antigen PfTrx-L2 8mer-flank E7-OVX313 comprising eight L2 (20-38) epitopes from HPV16-

18-31-33-35-6-51-59 can induce cross-neutralizing antibodies, even against some cutaneous 

HPV types (Pouyanfard et al, 2018). The vaccine thus provides cross-protection in 

prophylaxis. However, for the therapeutic side of the vaccine, the function could be 

constrained. On the one hand, only the E7 epitope of HPV16 was incorporated in our 

combined vaccine. On the other hand, the E7 proteins derived from different high-risk HPV 

types are not conserved as shown in the following graph (Figure 44). Therefore, we expected 

the induced T cell responses could only against rather limited HPV types. With the purpose 

of broadening the therapeutic characteristics, various HPV E7 epitopes should be included in 

the vaccine. 
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Figure 44. The alignment of E7 protein sequences from high-risk HPV types. Asterisk (*) indicates 
the position containing the fully conserved residue. Colon (:) indicates strongly similarity of the 
residue between different groups. Period (.) indicates weakly similarity of the residue between 
different groups. Therefore, the degree of conservation indicated by these symbols is Asterisk 
(*)>Colon (:)>Period (.). 

 

5.3 Exploring the efficiency of OVX313-based vaccines 

5.3.1 Efficiency derived from OVX313 multimerization 

Oligomerization is utilized in many vaccine-designs to improve immunogen stability, uptake, 

binding affinity and immunogenicity (Engel & Kammerer, 2000). Heptameric scaffold OVX313 

(old name: IMX313, 55 amino acid) is developed from the complement C4-binding protein 

(C4 bp) which is involved in complement system inhibition. It is designed from the avian C4 

bp and shows less than 20% similarity to human C4bp to minimize auto-antibody induction. 

It contains an amphipathic α-helix region, which is necessary and sufficient for 

heptamerization, as well as two cysteine residues which stabilize the structure (Kask et al, 

2002). Antigens of interest can be fused with the N-terminus of α-chains resulting in 

repetitively displayed immunogens. Several vaccines developed have been employed 

OVX313 platform to enhance immune responses (Li et al, 2016b; Spencer et al, 2012; 

Tomusange et al, 2016). 

Tomusange, K. et al. have designed an HIV DNA vaccine by fusing HIV Tat protein (involved in 

viral replication) to OVX313 and as a result, improved antigen-specific IgG and cellular-

mediated immune responses were observed in mice (Tomusange et al, 2016). Another group 

has developed DNA and MVA (modified vaccinia virus Ankara) vaccines carrying 

Mycobacterium tuberculosis antigen 85A and IMX313. Enhanced CD4+ and CD8+ T cell 

responses to the M. tuberculosis antigen 85A were shown after DNA and MVA vaccination in 

mice and rhesus macaques (Spencer et al, 2012). Moreover, MVA85A-IMX313 vaccine was 

also evaluated in healthy BCG (Bacillus Calmette-Guérin) vaccinated adults. The vaccine has 

proved safe in humans but there was no significantly improved mycobacteria-specific 

cellular immune responses compared to MVA85A vaccination (Minhinnick et al, 2016) 

(INCT01879163). OVX313 protein has been also applied in malaria vaccines. Fusing 

plasmodium falciparum Pfs25 protein (Pfs25) to OVX313 in ChAd63 (chimpanzee adenovirus 

serotype 63) and MVA vectors resulted in increased antibody responses after vaccination (Li 
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et al, 2016b). A clinical trial with candidates ChAd63 Pfs25-IMX313 and MVA Pfs25-IMX313 

was carried out in 2017 (NCT02532049), but the results have not been published until now. 

Our lab has developed HPV prophylactic monomeric vaccine PfTrx-L2 and heptameric 

vaccine PfTrx-L2 8mer-OVX313. The data indicated that antigen encompassing OVX313 

scaffold presented a better performance regarding to anti-L2 antibody titers and cross-

protection against different HPV types (Pouyanfard et al, 2018). Encouraged by this result, 

we continued to study if OVX313 can also aid CTL responses in both B-cell and T-cell epitopes 

comprised vaccines. We additionally incorporated a CTL epitope derived from ovalbumin or 

HPV16 E7 to construct monomeric antigen PADRE-PfTrx-L2-OVA and PADRE-PfTrx-L2-flank 

E7. As comparison, we also designed heptameric antigen PfTrx-L2 8mer-OVA-OVX313 and 

PfTrx-L2 8mer-flank E7-OVX313. It was apparently shown that antigens with OVX313 

platform induced stronger CTL epitope-specific T cell responses. Moreover, we verified 

heptameric structure of PfTrx-L2 8mer-flank E7-OVX313 in SDS-PAGE (following shown). 

These may explain why PfTrx-L2 8mer-flank E7-OVX313 showed an effective therapeutic 

potential in mice tumor assays.   

 

Figure 45. The monomeric or heptameric structure of PfTrx-L2 8mer-flank E7-OVX313. Lane 1: 
Sample was loaded under reducing conditions indicating a monomeric form of PfTrx-L2 8mer-flank 
E7-OVX313. Lane 2: Sample was under non-reducing conditions showing a heptameric form of the 
antigen. 

 

5.3.2 The existence of  T-helper epitopes in L2 8mer and OVX313 

From the comparison of PfTrx-OVA-OVX313 and PfTrx-L2 8mer-OVA-OVX313, we saw that 

the addition of L2 8mer polytopes enhances OVA-specific T cell responses. Accordingly, we 
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were wondering if T-helper epitope exists in 8mer sequence. We designed 20mer-peptide 

set with 12 amino acids overlap covering the entire 8mer sequence in order to find out the 

T-helper epitope. Unfortunately, none of these 20mer-peptides showed a T cell response in 

IFN-γ ELISpot or intracellular cytokine staining. We supposed some reasons may be 

responsible for this. First, the quality of synthesized 20mer-peptides might be not good 

enough which may cause splenocytes uptake issues during in vitro stimulation. Another 

reason could be that IFN-γ ELISpot or intracellular cytokine staining assay is not suitable for 

the T-helper peptide screening in this case. The length with 20 amino acids might be too long 

for effective uptake or process by splenocytes especially in a limited time during the 

experiment.  

Furthermore, a stronger T cell response was observed from the induction by the heptameric 

antigen compared to the monomeric one. This led us to explore the presence of T-helper 

epitope in OVX313. Likewise, we designed 20mer-peptide set with 12 amino acids overlap 

covering the entire OVX313 sequence. And we indeed observed a T cell response with 

peptide ‘OVX313-I5’ stimulation in IFN-γ ELISpot (section 4.2.4). However, this response 

could not be identified as being CD8+ or CD4+ T cell-specific by intracellular cytokine staining. 

Even though, we assumed that this is a T helper responses due to the long size (20 amino 

acids) of the stimulating peptide. But other assays need to be established in order to figure 

out T-helper epitopes in 8mer and to confirm the helper epitope ‘I5’ from OVX313. 

 

5.4 Influence of immunization intervals 

As we showed in section 4.3.1, T cell responses induced by a prime with PfTrx-L2 8mer-flank 

E7-OVX313 cannot be improved after a boost at a long immunization interval. This was also 

observed in the boost with a chimeric L1 VLP containing E6 or E7 polypeptides (Greenstone 

et al, 1998; Peng et al, 1998). Interestingly, we observed that T cell responses were 

significantly enhanced with the first boost at a short vaccination interval. But with the 

second boost, the responses reduced dramatically. It seems that the antibody induced by a 

previous immunization can interfere with T cell responses induced by the current 

vaccination. We speculated that the preexisting antibody can capture the new coming 

antigen then following an antibody mediated opsonization, which finally results in an invalid 
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boost. But immunization at short interval can overcome this due to insufficient time for 

antibody production, which can be definitely utilized in a T cell responses-desired assay. 

However, if we pursue both B cell and T cell responses induced by our combine vaccine, an 

appropriate time point for boost needs to be studied. 

 

5.5 Optimize the vaccine with different strategies 

5.5.1 The importance of linkers in the vaccine 

In section 4.1.4, we showed that the E7-specifc T cell responses were significantly improved 

when we extended epitope E747-57 (RAHVYNIVTF) to E744-62 (QAEPDRAHVYNIVTFCCKCD). We 

suppose that this enhanced T cell response is attributed to the flanking sequences around 

CTL epitopes which facilitates proteasomal processing thus promoting the epitope 

presentation. Actually, several investigators have claimed that the design of linkers or 

flanking sequences between each epitope in their vaccines leads to an increased T cell 

responses (Bartkowiak et al, 2015; de Oliveira et al, 2015; Levy et al, 2007; Velders et al, 

2001; Yamada et al, 2013). This is especially important if the vaccine harbors multi-epitopes. 

Remarkably, the linker “AAY (Ala-Ala-Tyr)” was widely employed in different vaccines. It was 

reported that the spacer residues AAY are preferred by proteasome for cleavage resulting in 

the correct epitope generation (Holzhutter et al, 1999; Nussbaum et al, 1998). 

For example, one group (de Oliveira et al, 2015) developed a recombinant multi-epitope 

protein containing a string of immunogenic T cell epitopes of HPV16 E6 and E7 with AAY as 

spacers. An increased E6 and E7-specific immune responses were generated, which 

protected C57BL/6 mice from TC-1 tumor challenge. The group of Martin Kast designed a 

DNA vaccine consisting of CD8+ T cell, CD4+ T cell and B cell epitopes derived from HPV16 

(Velders et al, 2001). The induced immune responses showed 100% protection for the mice 

against an otherwise lethal tumor challenge. Moreover, the separation of epitopes by AAY 

was proved very crucial for the therapeutic potential of the vaccine. A DNA multi-epitope 

vaccine containing HLA-restricted epitopes of HPV16 was evaluated in HLA-A*0201 

transgenic mice. This vaccine elicited a T-cell response against multiple HPV16 epitopes, as 

well as significantly reduced tumor burden in mice (Eiben et al, 2002). We also tried to 
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express PADRE-Trx-(E7 trimers) with AAY as a linker between each E7 epitope. However, this 

protein cannot be expressed successfully in E. coli.  

5.5.2 The design of multi-epitope vaccines 

A multi-function vaccine is normally composed of three units: Adjuvant, CD8+ and CD4+ T 

cells epitopes. Except for spacer AAY, linkers such as HEYGAEALERAG, EAAAK and GPGPG 

were also applied to join different sections together (Nezafat et al, 2014). It has been 

claimed that AAY or HEYGAEALERAG motifs is employed between CTL epitopes. Helper 

epitopes are linked together via GPGPG. Adjuvant and CTL epitopes are conjugated together 

by EAAAK linker. Consequently, a designed vaccine embraces adjuvant, CD8+ T cell epitopes 

and CD4+ T cells epitopes in a string from N-terminal to C-terminal (Li et al, 2016a; Nezafat 

et al, 2014). This multi-epitope vaccine is able to gather a large number of helper epitopes 

and immunogenic CTL epitopes resulting in an improved therapeutic potential.  

Thinking along this line, we would like to extend T cell epitopes with above mentioned 

linkers in our vaccine. For instance, we can graft the epitope PADRE in OVX313-antigens to 

enhance T-helper responses. And the usage of CTL epitope is not only restricted in HPV16 E7 

protein. E6 and E2 are also expressed in the infected cells throughout life cycle. It was 

observed in both preclinical and clinical studies that the elimination of HPV-positive lesions is 

related to a specific immune response against E6 and E2 (de Jong et al, 2002b; de Jong et al, 

2004; Farhat et al, 2009; Jacobelli et al, 2012; Selvakumar et al, 1995). Therefore, the E2 and 

E6 proteins present excellent therapeutic targets. It will be interesting to evaluate the 

therapeutic capacity of our vaccine with the expanded epitopes. 

5.5.3 The fusion with organelle targeting signals 

Another approach used to optimize the vaccine by improving antigen processing, MHC 

loading and epitope presentation is guiding proteins to a cellular compartment. For example, 

antigen of interest can be fused with ubiquitin to target it to the protein degradation 

pathway which promotes CTL precursor processing (Rodriguez et al, 1998). Other carrier 

proteins including calreticulin, FM4, heat shock proteins or herpesvirus glycoprotein D have 

shown efficacy in increasing CTL responses and antitumor immunity (de Oliveira et al, 2015). 

This gives us an inspiration to design our vaccine fused to a targeting sequence to expect a 

better antitumor activity. 
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5.6 Development of HPV prophylactic and therapeutic combined vaccine with 

a HLA-A2 restricted HPV16 E7 epitope 

HPV16 E7 (11-19) was identified as HLA-A*0201 restricted epitope (Riemer et al, 2010). HPV 

prophylactic and therapeutic combined vaccine Trx-L2 8mer-flank E7(49-57)-OVX313 showed a 

potent therapeutic potential in C57BL/6N mice. Based on this inspiring result, we have tried 

to develop a HPV vaccine that can induce humoral and cellular responses in a human genetic 

background. So we designed a vaccine Trx-L2 8mer-flank E7(11-19)-OVX313 (flank E7(11-19) 

epitope is from 11-19 of E7 sequence with additional five amino acids afore and behind it.) 

and tested T cell responses in A2.DR1 transgenic mice which  can express HLA-A2.1 and HLA-

DR1 molecules (Pajot et al, 2004). Unfortunately, no E7-specific T cell responses were 

observed in IFN-γ ELISpot. There are two factors likely to limit the detection of anti-E7 T cell 

responses in A2.DR1 mice. One is that only one third of CD8+ T cells can be found in PBMCs 

(peripheral blood mononuclear cells) of A2.DR1 mice compared to wild type C57BL/6N mice. 

Besides, HLA-A2 restricted E7(11-19) epitope is thought to be not as immunogenic as H2-Db 

restricted E7(49-57) epitope (Kruse et al, 2018). These two reasons definitely can influence the 

intensity of T cell responses. Even though there is a T cell response induced by Trx-L2 8mer-

flank E7(11-19)-OVX313, but the level might be not enough for detection in IFN-γ ELISpot. 

With the aim of enhancing the T cell responses against E7(11-19), we can add PADRE T-helper 

epitope in antigen Trx-L2 8mer-flank E7(11-19)-OVX313.  As known that the T helper pathway 

plays an indispensable role in cytotoxic T cell responses in most cases. PADRE may provide a 

positive influence on anti-E7 CD8+ T cell responses. Another strategy is to use HPV16 E7 

protein instead of E7(11-19) epitope in the vaccine. The protein usually contains miscellaneous 

T-helper and cytotoxic T epitopes which could lead to an improved E7-specific T cell 

response. One potential issue in Trx-L2 8mer-HPV16 E7-OVX313 antigen is solubility which is 

strongly dependent on the protein size and structure. The insertion of E7 protein will 

definitely increase the size of the whole antigen. Moreover, several cysteines and zinc finger 

motifs contained in E7 make the purification of Trx-L2 8mer-HPV16 E7-OVX313 hard to 

predict. Another possible solution to achieve a better T cell response is synergistic use of 

PADRE-Trx-L2 8mer-flank E7(11-19)-OVX313 and checkpoint inhibitors in A2.DR1 mice. As 

discussed above, the improved immune microenvironment by checkpoint blockades would 

promote CD8+ cytotoxic T cell responses. 
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Interestingly, ‘OVX313-I5’ which was identified in C57BL/6N mice as a T-helper epitope also 

showed a low but detectable T cell response in A2.DR1 mice. Besides, it was proved 

previously by our group that ‘OVX313-I5’ also induced T cell responses in BALB/c mice 

(Pouyanfard et al, 2018). It seems that ‘OVX313-I5’ peptide could work as a universal T-

helper epitope in both mice and human MHC genetic background. 

 

5.7 Concluding remarks 

Our concept of developing vaccines went from simple to complex antigen design. We started 

to study the cytotoxic T cell responses against the OVA CTL epitope, later being replaced by 

the HPV16 E7 CTL epitope. The utilized scaffold for immunogens was from a monomeric 

structure to a multimerized platform. The function of the antigen was developed from 

therapeutic alone to a combined prophylactic and therapeutic efficacy. Ultimately, we 

obtained a heptameric HPV vaccine Trx-L2 8mer-flank E7(49-57)-OVX313 which can induce HPV 

neutralizing antibodies, as well as perform a potent antitumor activity in C57BL /6N mice. 

But for vaccine development, a dilemma of deciding whether continue optimization or move 

forward with the current candidate always exists. Since our final aim is to translate the most 

promising antigen from animals to humans and performance of antigen Trx-L2 8mer-flank 

E7(11-19)-OVX313 fell short of our expectations, more efforts need to be made on promoting T 

cell responses in a human genetic background. 
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