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ABBREVIATIONS 

 

A   
ABCB5 ATP-binding cassette member B5 cells 

ADA  Adipogenic differentiation  

AKI Acute kidney injury 

AMI Acute myocardial infarction 

APCs Antigen presenting cells 
ASC Adipose-derived mesenchymal stromal cells 

B   
BM-MSC Bone marrow-derived mesenchymal stromal cells 

C   
CB 
CCM 

Cord blood-derived mesenchymal stromal cells 
Cell conditioned medium 

CD Cell doubling 

CD4 Cluster of differentiation 4 

CM Conditioned medium/media 
ConA Concanavalin 
COX Cyclooxygenase 
D   
DCs Dendritic cells 
DGC Density gradient centrifugation 
DIRCs Dermal immune-regulatory cells 
DLS Dynamic light scattering 
DMEM Dulbecco´s modified eagle medium 
DMSO Dymethylsulphoxide 
DT Doubling time 
dUC Differential ultracentrifugation 
E   
ECACC European Collection of Authenticated Cell Cultures 
eNOS Endothelial NOS 
Epac Epacadostat  
EV/EVs Extracellular vesicle/s 
F   
FACS Fluorescence-activated cell sorting 
FASL FAS Ligand 
FBS Fetal bovine serum 

FCM Flow cytometry 

FGF Fibroblast growth factor 

FITC Fluoresceinisothiocyanat 

FSC Forward scatter 

G   
GMP Good manufacturing practices 
GvHD Graft versus host disease 
H   
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HGF Hepatocyte growth factor 
HLA Human leukocyte antigen 
hMSC Human mesenchymal stromal cells 
I   
IDO Indoleamine 2,3-dioxygenase 
IDO-1 Indoleamine 2,3-dioxygenase 1 
IFNγ Interferon gamma 

IL Interleukin 
iNOS Inducible nitric oxide synthases 

IQR Interquartile range 
ISCT International society for cell therapy 

ISEV International society of extracellular vesicles 

J   
K   
KMO Kynurenine 3-monooxygenase  
L   
LPS Lypopolysaccharides 
M   
MC Mononuclear cells 
MHC Major histocompatibility complex 
miRNA MicroRNA 
MISEV Minimal information for studies of extracellular vesicles 
MLR Mixed lymphocyte reaction 
MSC Mesenchymal stromal cells 
MVBs Multi-vesicular bodies 
MVs Microvesicles 
N   
NK Natural killer cells 
nNOS Neuronal NOS 
NO Nitric oxide 
NOS Nitric oxide synthases 
NTA Nanoparticle Tracking Analysis 
O   
OD Optical density 

ODA Osteogenic differentiaiton 

P   
PBMC Peripheral blood mononuclear cell 

PCR Polymerase chain reaction 

PD-1 Programmed cell death 1 
PDGF Platelet-derived growth factor 

PDL-1 Programmed death ligand-1 
PE Phycoerythrin 

PEG Polyethylene glycol 

PFA  Paraformaldehyd 

PGE2  Prostaglandin E2 
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PHA Phytohemaglutinin 

Q   
QPRT Quinolinate phosphoribosyltransferase 
R   
rMSC Rat mesenchymal stromal cells 
rPBMC Blood-derived rat PBMC 

RPMI Roswell park memorial institute medium 
S   
SD Sprague-Dawley 

SEC Size-exclusion chromatography 

SMC Spleen-derived rat mononuclear cells 

SSC Side scatter  

STAT Signal transducer and activator of transcription 

SVF Stromal vascular fraction 

T   
TEM Transmission electron microscopy 
TFF Tangential flow filtration 
TGF-β Transforming growth factor-β 

Th T helper cells 
TNF-α Tumor necrosis factor α 

Treg Regulatory T cells 
Tryp Tryptophan 
TSG101 Tumor susceptibility gene 101 
TSG-6 Tumor necrosis factor-inducible gene 6  
U   
UC Umbilical cord-derived mesenchymal stromal cells 
V   
VEGF Vascular endothelial growth factor  

W   
WB Western blot 

WJ Wharton´s jelly-derived mesenchymal stromal cells 

X   
Y   
Z   
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1 INTRODUCTION 

1.1 Mesenchymal stromal cells 

 

1.1.1 General overview  
 

Multipotent mesenchymal stromal cells (MSC) are mesoderm derived fibroblast 

colony-forming and shuttle-shaped cells under in vitro conditions [1]. Friedenstein 

and colleagues were the first to describe MSC as such. They demonstrated the 

osteogenic potential of soft connective tissue bone marrow-derived stromal cells to 

form fibroblastic colonies in vitro [2]. Moreover, their potency to differentiate into 

chondrocytes as well as myoblasts and adipocytes was promptly proven [3, 4]. The 

hematopoietic stromal activities further increased the interest in MSC research. 

Subsequently, they were isolated from a variety of adult or fetal sources such as 

adipose tissue (adipose-derived MSC – ASC), bone marrow (bone marrow-derived 

MSC – BM), umbilical cord tissue (UC) or cord blood (cord blood-derived MSC – CB), 

periosteum, synovium, dental pulp, placenta, Wharton´s jelly (WJ)-derived MSC and 

amniotic fluids, among others [5-7].  

Nonetheless, the increasing number of MSC isolation and culture protocols, resulted 

in a rising number of misconceptions within the field [8]. Some of MSC misconception 

clarifications are: (1) Although MSC from different sources might be similar in 

phenotype, they differ in terms of function, immunomodulatory activity and 

differentiation potential, (2) mismatch in MSC potency in vitro and in vivo, (3) 

heterogeneity of MSC amongst diverse species and (4) clinical data is essential to 

further assess MSC mechanisms of action [8]. Heterogeneity and discordances in 

terminology and criteria for stromal/stem cells also spread with the increase of 

research in the field. Therefore, the International Society for Cellular Therapy (ISCT) 

remarked the appropriate designation as “multipotent mesenchymal stromal cells” [9]. 

The minimal criteria to define the human derived-MSC (hMSC) are: (a) Plastic-

adherence under standard culture conditions, (b) More than 95% of the cell 

population must be positive for CD105, CD73, and CD90. Moreover, CD45 

(leucocytes), CD34 (hematopoietic progenitor), CD14 or CD11b (monocytes and 

macrophages), CD79a or CD19 (B cells) must be negative, and (c) Differentiation 

potential to adipocytes, chondrocytes, and osteoblasts [10, 11].  

Altogether, these properties have increased MSC interest for their use as a potential 

cell-based therapy and use in translational research [12]. MSC have been studied in 
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regards to tissue regeneration, immunomodulation, or graft improvement [6]. Initially, 

it was widely believed that MSC therapeutic potential were attributed to their 

differentiation ability. However, nowadays their potentials have been accounted to 

multiple “modes of action” such as: (1) Differentiation potential, (2) Secretion of 

trophic factors and (3) Immunomodulatory function, among others (Figure 1). 

(1) Differentiation potential is mainly ascribed to their multipotent nature, 

differentiating into several lineages [13]. MSC skeletal differentiation potential 

towards chondrogenic and osteogenic lineages, have made them attractive in the 

context of cartilage defect and bone repair [14]. They have also been reported to 

differentiate into adipogenic lineages to give rise to connective tissues such as 

adipose apart from reports suggesting trans-differentiation potential into other 

lineages as well [14, 15]. 

(2) The secretion of trophic mediators [16] is particularly essential. MSC ability to 

affect cells in vicinity and modulate their microenvironment by secreting a broad 

range of paracrine factors, namely, cytokines and growth factors has been long 

described [17-19]. Indeed, hepatocyte growth factor (HGF), fibroblast growth factors 

(FGF), transforming growth factor-β (TGF-β), interleukins (IL-1β, IL-6, and IL-8) are 

some of the factors involved [20, 21]. MSC secreted conditioned medium (CM) also 

possesses substantial trophic effect, influencing wound acceleration, migration and 

cell proliferation [22]. Another more recently described possible paracrine mechanism 

is MSC secreted extracellular vesicles (EV), exosomes or microvesicles (MVs) [23]. 

EV have strongly arisen as a potential alternative cell-free therapeutic prospect 

circumventing many of the safety challenges regarded in cell therapy [24].  

(3) MSC interact with a wide range of immune cells and have been reported to 

regulate immune responses in many diseases [25-29]. They present low 

immunogenicity and express intermediate levels of human leukocyte antigen (HLA) 

class I antigens and negligibly low levels of HLA class II, aside from lacking 

expression of costimulatory molecules such as CD40 or CD86 [30-33]. Adult MSC 

suppression of T-cell proliferation and regulation of Th1/Th2 balance [27, 34, 35], 

together with MSC action on regulatory T cell (Treg) functions [35] are some of MSC 

immune modulatory most reported topics.  

Indeed, evidences of MSC “modes of action” have been reported in several diseased 

contexts, as excellently reviewed by Saaedi et al. and Peired et al. [7, 36]. MSC 
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application mediates and reduces inflammation and fibrosis, decreases apoptosis, 

promotes angiogenesis and recruits resident progenitor cells.  

Altogether, these aspects render them suitable for their application in therapy. 

Nevertheless, further elucidations on MSC engraftment and specific mechanisms of 

action involved need to be further assessed. Subsequently, some specific MSC 

trophic functions and immunomodulatory mechanisms will be reported hereunder. 

 

 

Figure 1 MSC properties supporting their clinical applications. MSC are isolated from a wide range of tissue 

sources (top to bottom- bone marrow, adipose tissue, cord blood…) and can be expanded and characterised. The 

therapeutic potential of MSC relies on their unique modes of action 1. Differentiation potential, 2. Secretion of 

trophic factors and 3. Immunomodulatory functions. These characteristics render them suitable for their use in 

cell-based therapies. HGF: hepatocyte growth factor; FGF: fibroblast growth factor; TGFβ: transforming growth 

factor beta; IL-6: interleukin 6. 

 

 

1.1.2 MSC Immunomodulation properties 
 

MSC are strong immunomodulators, able to regulate inflammatory progress, skewing 

microenvironments to an anti-inflammatory state [37], and mediating in numerous 

immune responses. 

It is known that MSC interact with many types of immune cells such as B and T cells, 

natural killer (NK) cells, dendritic cells (DCs) and macrophages [38]. MSC are 

efficient at exerting inhibition of activated T cell proliferation through cellular (mixed 

lymphocyte reaction (MLR)) or mitogenic stimuli, such as anti-CD3/CD28 monoclonal 
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antibodies or non-specific phytohemaglutinin (PHA) [39-41]. MSC-T cell mechanism 

of interaction is modulated by direct cell-cell contact, such as programmed death 

ligand-1 (PDL-1) and vascular cell adhesion molecule-1 [42-44], in cooperation with 

secreted soluble factors to prompt immunosuppression [32, 45]. Some immune 

factors involved in exerting modulation are TGF-β1, HGF, prostaglandin E2 (PGE-2), 

indoleamine 2,3-dioxygenase (IDO), nitric oxide (NO) and interleukin-10 (IL-10) [46-

48]. It has been demonstrated that MSC induce immunoregulation involving Fas/Fas-

ligand pathway of T cell apoptosis [49], whereas others support arrest of cell cycle at 

phase G0, promoted by MSC-T cell contact [32]. In direct and indirect MSC and 

peripheral blood mononuclear cell (PBMC) cocultures, a strong immunosuppression 

was observed in absence of cell-cell contact [40, 50], while other researchers found a 

diminished T cell proliferation suppression [42, 51]. This suggests a potential 

paracrine mechanism [52]. In fact, MSC conditioned media (CM) inhibited CD4 T cell 

activation via suppression of signal transducer and activator of transcription 3 

(STAT3) phosphorylation [53]. Comparably to CM paracrine effect on suppressing T 

cell proliferation [50], EV isolated from CM exhibited dose-dependent T cell 

suppression [50]. 

However, it appears that MSC need to be “licensed” or “activated” to exert their 

paracrine function optimally, which can be attained by several different external 

stimuli. This process can be operated through an interferon gamma (IFNγ)-

independent or –dependent pathway [54]. MSC IFNγ-independent priming results in 

prostaglandin E2 (PGE2) production via cyclooxygenase (COX)-1 and -2, while MSC 

priming with IFNγ induces expression of IDO [19]. The combination of IFNγ with 

tumor necrosis factor α (TNFα), IL-1α or IL-1β can enhance their modulatory effects 

[55]. In fact, François and colleagues have demonstrated that IFNγ priming in 

cooperation with TNFα increases IDO production in MSC. This, promotes 

macrophage differentiation into M2 state, which secretes IL-10 and further amplifies 

MSC immune suppressive function [56].   

MSC T cell proliferation inhibition has been closely related to an increased IDO 

secretion, breaking down the essential amino acid tryptophan (Tryp). Tryptophan 

depletion, along with an accumulation of metabolites along the kynurenine pathway 

may lead to a tolerogenic milieu (Figure 2) [19, 56, 57].  
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Figure 2 Simplified diagram of the kynurenine pathway 

of tryptophan metabolism. The three main enzymes: 

indoleamine 2,3-dioxygenase (IDO-1), kynurenine 3-

monooxygenase (KMO) and quinolinate 

phosphoribosyltransferase (QPRT) are shown abbreviated 

and underlined. The main metabolites measured in this 

project are depicted in bold (blue). Figure adapted from 

Jones et al., 2015 [58]. 

 

 

As previously described, MSC from different sources portray subtle differences 

related not only to their immunomodulatory potencies [59], which might result from 

the micro environmental niche [60]. In these terms, ASC, BM and CB appear to be 

modulated by IDO to a large extent [61]. Although some studies describe comparable 

suppression of T cell proliferation amongst ASC, BM, UC and WJ-MSC [62], others 

supported ASC as higher suppressors compared to BM irrespective of T-cell 

activation stimuli [63]. ATP-binding cassette member B5 (ABCB5) cells, novel human 

dermal immune-regulatory cell (DIRCs) subset presents immune-regulatory functions 

similar to MSC [64]. They are pure populations enriched by a single molecular 

marker which have been described to skew M1 pro-inflammatory macrophages, 

dampening inflammation and ameliorating impaired wound healing in vivo [65]. 

Furthermore, they express tumor necrosis factor-inducible gene 6 protein (TSG-6), 

which has previously been described in MSC as immunosuppressors promoting 

tissue repair [66-71]. For instance, it has been confirmed that ABCB5 

immunoregulatory function is mediated, at least partially, through co-expressed 

immunologic receptor, programmed cell death 1 (PD-1) [64, 72]. Studies directly 

comparing immunomodulatory functions of MSC from different tissue origins are 

currently limited. Thus, understanding whether their mechanisms of action are 

directly dependent on their source of origin is of utmost importance. This will be 

investigated in detail in section 4.1. 

Furthermore, the aforementioned studies provide prospect for pre-clinical and clinical 

studies in diverse research settings such as graft versus host disease (GvHD), 

autoimmune diseases and transplantation. However, to obtain maximal clinical 
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benefit, further elucidations of MSC-mediated immunomodulatory functions are 

particularly required. Furthermore, standardisation of MSC production is relevant for 

translation into clinical research.  

 

1.1.3 Xenogeneic MSC: Preclinical implications 
 

As previously described, MSC have been considered for clinical interventions as cell-

based therapies. Indications of their use range from acute lung [73] and kidney injury, 

autoimmune diseases [74], transplantation [75] and diabetes, among others. To 

elucidate their mode of action, autologous [76], allogeneic [77] and xenogeneic [78] 

cells have been tested in animal models. The application of hMSC in animal models 

is not only done to understand their therapeutic effects but also required by 

regulatory authorities to perform efficacy but also safety studies. However, the use of 

hMSC in animal models raises several debates and concerns. The possibility of an 

adverse immune reaction or even the non-functionality of certain modes of actions 

represents an important aspect that cannot be underestimated. For a long time, due 

to MSC low expression of HLA class I and lack of costimulatory molecules, they have 

been considered to be immune privileged. This, along with their host immune system 

suppression, make them suitable for transplantation across species [79]. The key 

modulator effector used by MSC-mediated immunosuppression fall into two 

categories: mainly IDO-mediated (human, monkey, pig) or mainly inducible nitric 

oxide synthases (iNOS)-mediated (mouse, rat, rabbit) [80]. Nitric oxide (NO) is a 

prominent candidate involved in MSC-mediated immunosuppression in murine 

settings. NO production is catalysed by the nitric oxide synthases (NOS): iNOS, 

endothelial NOS (eNOS) and neuronal NOS (nNOS). In the presence of 

proinflammatory cytokines MSC induce iNOS expression which has an imperative 

role in immune regulation [81, 82]. Nitrite, a stable breakdown product of NO, is 

generally measured as accumulated in supernatants to quantify nitric oxide secretion 

[51].  

NO ameliorates T cell-mediated murine GvHD [83] and other autoimmune diseases 

such as experimental autoimmune encephalomyelitis [84] or uveitis [85]. However, 

the specific mechanism by which NO exerts these effects are controversial. 

Recruitment of immune cells in close proximity to MSC is thought to be crucial for NO 

to inhibit T cell proliferation, due to the exertion of local action [51]. In fact, 

chemotaxis has been described as a crucial component of NO immunosuppression 
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by murine MSC [55]. Many studies have described cross species function, as for 

instance, hASC implantation into immunocompetent rat hearts in a murine model of 

myocardial infarction. ASC were able to survive the xenogeneic mismatch for an 

extended period of time, revealing significant cardiac function amelioration [86]. 

hASC infusion in a cisplatin-induced nephrotoxicity murine model portrayed 

increased survival, improved tissue injury and renal dysfunction [87]. Moreover, 

multiple other xenogeneic experimental models have demonstrated positive 

immunomodulatory function in a cross-species framework [88-91]. Some of these 

regard acute renal failure, diabetes mellitus or autoimmune diseases. 

After xenogeneic MSC administration, conversely, some studies reported humoral 

and/or cellular responses [92, 93]. Additionally, in a recent study conducted by Lohan 

et al., immunomodulation of hMSC were ineffective in a rat model of corneal 

transplantation due to interspecies incompatibilities. Indeed, the authors claim hMSC 

are not able to be properly primed in a xenogeneic environment and therefore cannot 

exert their immune modulatory action [94]. Moreover, in vitro experiments performed 

by the aforementioned group revealed that hMSC did not respond to rat pro-

inflammatory cytokines and did not suppress proliferation of rat T-lymphocytes, 

highlighting a potential preclinical barrier to clinical translation.  

Taken together these data clearly indicate pronounced discordances regarding the 

outcome of xenogeneic MSC infusion. Overall, it is challenging to guarantee hMSC 

long-term engraftment or functionality in animals. Thus, preclinical data need to be 

carefully interpreted especially when considering a possible translation to clinical 

field. 

 

1.2 MSC-derived extracellular vesicles 

 

1.2.1 General overview 
 

MSC secrete a wide variety of soluble factors such as cytokines, chemokines, growth 

factors and immunomodulatory molecules [95], in addition to vesicles secreted to the 

extracellular space, which have been described as “MSC secretome”. Their 

secretome has been investigated in numerous clinical settings, either by utilising 

MSC conditioned media (CM) or MSC-derived extracellular vesicles (EV) [96]. They 

are known to modulate responses in a diversity of physiological processes [97, 98]. 

EV are bilayer membrane structures released by all cell types under normal- or 



Introduction 

 

11 
 

patho-physiological conditions. EV is a term that comprises a broad variety of 

released vesicles, namely, exosomes and MV. MV are commonly referred to as 

released vesicles with sizes ranging from 50 to 1000 nm by direct budding or 

shedding of the plasma membrane [99]. On the other hand, exosomes, ranging 40 to 

200 nm, are originated by invagination of the endosomal membrane of multi-vesicular 

bodies (MVB) with the subsequent release of exosomes due to fusion of MVB with 

the plasma membrane [100, 101]. Nevertheless, the term EV is used as a collective 

description for both small and larger released vesicles. MSC-EV carry a wide range 

of molecules that directly affect their mode of action. These comprise proteins 

involved in cell trafficking, membrane receptors, adhesion molecules, cytokines and 

chemokines [102]. Moreover, they also present nucleic acids such as mRNAs, 

microRNAs (miRNA) and extra-chromosomal DNA [100, 103]. 

They bear a vital role in intercellular communication and regulation of recipient cell 

action through autocrine [104], paracrine [105], endocrine [106] or exocrine cell 

signalling [100]. EV seem to depict similar biophysical characteristics of parental 

MSC, possessing anti-apoptotic, angiogenic and immunomodulatory properties [107]. 

These properties could benefit EV modulation through enhancement of the 

inflammatory niche. Additionally, MSC-CM is also able to replicate MSC-mediated 

immunosuppression effects [108, 109]. Despite numerous functions having been 

strongly attributed to EV, the specific roles and immunological effects are still poorly 

understood.  

EV represent a novel cell-free alternative which may overcome the limitations of MSC 

based therapy [110]. Thus, they have been utilized for clinical applications as 

immunosuppressants, enhancing repair and differentiation or as therapeutic drug 

carriers [111-113]. In spite of EV-mediated therapy being considered safe, a relevant 

hindrance is the commonly low EV yield [23], together with the lack of robustness in 

EV isolation methods [114]. Data comparability has become challenging due to the 

production of dissimilar EV populations, strongly dependent on the method of 

isolation.  

 

Differential ultracentrifugation (dUC) was considered the “golden standard” of EV 

isolation. EV are isolated based on their density and size by sequentially increasing 

centrifugal forces to pellet cells and cell-debris (<1500g), microvesicles (10.000-

20.000g) and exosomes (100.000-200.000g) [115, 116]. Although UC is well 



Introduction 

 

12 
 

established and cost-efficient, this method has major limitations, such as being 

inconsistent in reproducing isolation data [117]. Consequently, this method is vastly 

susceptible to multiple parameters, which might be challenging to control, such as 

rotor type, k-factor or solution viscosity [117]. However, alternative isolation methods 

such as polyethylene glycol (PEG)-based precipitation, size-exclusion 

chromatography (SEC) or precipitation [117-120], also present many drawbacks. 

Table 1 depicts an overview of the commonly used methods of EV isolation, 

describing their principles, main advantages and disadvantages [115-117, 121].  

 

Table 1 Overview of commonly used EV isolation methods. dUC indicates differential ultracentrifugation; 

DGC, density gradient centrifugation; SEC, size-exclusion chromatography and EV, extracellular vesicles. 

 

Method Principle Advantages Disadvantages 

dUC 
Sequential separation of 

EV and other biofluid 
components based on 

their density and 
sedimentation rate 

High EV yield, medium to 
large sample volumes, 

easily scalable, established 
protocols 

Potential EV damage, 
vesicle aggregation, low 
purity, time-consuming 

DGC 
Prone to combine with other 

methods, higher purity 
compared to dUC 

Low yield, low throughput, 
time-consuming 

Ultrafiltration 
EV isolation is 

exclusively based on 
the size differences 

between EV and other 
constituents 

Parallel sample processing, 
prone to combine with other 

methods, small to large 
sample volumes, portable, 

fast 

Shear stress, EV loss on 
membrane, potential particle 

aggregates 

SEC 

Moderate to high purity, 
availability of commercial 

kits, moderate to high 
purity, preservation of EV 

integrity 

Fractions might be sample-
dependent, not suitable for 

large scale studies, 
laborious 

Precipitation 

Solubility of EVs is 
altered by water-

excluding polymers or 
manipulation of EV 

surface charge 

Small to large sample 
volumes, high yield, parallel 
sample processing, prone 

to combine with other 
methods, scalable, fast 

Highly unspecific, co-
precipitation of protein 
complex, washing of 

precipitation reagent (for 
some applications) 

Affinity 

Interaction between 
capture antibodies and 

specific EV surface 
molecules 

High purity, subtyping of EV 
populations, commercial 

kits available, parallel 
sample processing 

Limited scalability, small 
sample volume, expensive, 
bias for specific populations 

Microfluidics 

Microscale isolation 
based on a variety of 

EV properties including 
immunoaffinity, size and 

density 

Minimal volume isolation, 
portable, fast, easy 

integration 

Lack of standardisation and 
validation, low to moderate 

throughput, expensive 

 

Furthermore, the Minimal information for studies of extracellular vesicles (MISEV) 

guidelines [122] specifies a list that defines EV isolation/separation, characterisation 

and principles of their functional studies. Correctly characterizing EV isolates is 



Introduction 

 

13 
 

crucial to be able to associate functions uniquely to EV rather than their co-isolated 

particles [123]. The International Society of Extracellular Vesicles (ISEV) suggests to 

(1) quantify numbers of EV secreting cells, (2) determine EV particle numbers, (3) 

define presence of EV associated constituents and (4) define existence of co-isolated 

components. The principal objective of these guidelines was to raise awareness in 

the EV field (researchers, journal editors/reviewers) and to create a solid basis for the 

translation to future therapeutic applications. Thus, NTA, TEM, western blot (WB) 

and FACS are the most typical characterisation methods used. Table 2 depicts an 

overview of these and other commonly used methods of EV characterisation, 

describing their main advantages and disadvantages [115, 116, 124-128]. 

 

Table 2 Overview of commonly used EV characterisation methods. NTA indicates Nanoparticle Tracking 

Analysis; TEM, transmission electron microscopy; FCM, flow cytometry; DLS, dynamic light scattering; WB, 

western blot; PCR, polymerase chain reaction. 

 

Measured 
analyte 

Method Advantages Disadvantages 

Particle 

NTA 
Analysis of EV size, concentration 

and charge 

Issues with fluorescence 
detection, limited specificity, 
detection of contaminants 

TEM Visualises EV morphology 
Possible loss/damage of 

samples due to preparation, 
dedicated equipment 

FCM 
Able to measure samples with low 

yield 

Limited sensitivity, prone to 
"swarm" artefacts, bead-based 

approach needed for 
detection, dedicated 

equipment 

DLS Physiological condition analysis 
Limited specificity, low sample 

resolution 

Cryo-EM 
No fixation or dehydration 

artefacts, stain-free visualisation 
Low signal-to-noise ratio, 

dedicated equipment, artefacts 

Protein 

WB 
Established protocols, simple 

readout, low cost 
Low throughput, not 
quantitative method 

ELISA 
Availability of commercial kits, 
already established protocols 

Antibody-dependent 
immunoreactivity, possible 

cross-reactivity 

Nucleic 
acids 

Northern/Southern 
blot 

High specificity 
Large amount of sample 
required, time consuming 

Microarray 
Established protocols, multiple 

gene simultaneous analysis 
Low sign-to-noise ratio, 
hybridisation-dependent 

 

Thus, even when considering MISEV guidelines, the need of combining several 

methods of characterisation to correctly define EV isolates within your sample might 
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be an important point of inflexion. Therefore, interpretation of characterisation data 

must be cautiously evaluated. In short, in order to implement MSC-EV in clinical 

studies, it has become necessary to perform EV scalable good manufacturing 

practices (GMP)-manufacturing [129] along with technical standardisation of EV 

methodology to ensure comparability amongst studies [130].  

 
 

1.2.2 MSC-EV mediated immunomodulatory effects 
 

MSC secretome has been widely used in many different systems, stimulating 

vascularisation [131], modulating the immune system [131], operating as response 

modulators [97, 98], recruiting other cells. Growth factors and cytokines (vascular 

endothelial growth factor (VEGF), TGFβ, interleukins) secreted in MSC-CM or 

enclosed in EV, serve as paracrine MSC effector molecules. 

EV inhibitory functions on activation of immune cells has been demonstrated in 

several studies. For instance, EV have been described to inhibit activity of B cell 

proliferation [132], as well as increase IL-10 immunosuppressive cytokine secretion 

and regulatory / effector T cell ratio [133]. Moreover, human ASC-derived EV 

managed to suppress T cell proliferation and IFNγ release [134]. In another study, 

testing MSC-EV effect on type 1 diabetic patient PBMC´s, they suggested a switch of 

T cells from a pro- to an anti-inflammatory state [135].  

Although these studies have reported EV modulatory functions on immune cell 

proliferation, there are opposing evidences. For instance, Gouveia de Andrade et al. 

and Conforti et al. have described an absence or reduction in immunomodulatory 

effects of EV on lymphocyte suppression [132, 136]. These outcome discrepancies 

might be dependent on changes in the microenvironment, which could potentially 

influence the release and biological state of EV [99]. In addition, EV potential 

effectors of immunomodulation might vary with respect to MSC modulatory 

mechanisms.  

In fact, immunomodulation exerted by EV seems not to be mediated by IDO pathway, 

unlike MSC, but by PD-L1 [137]. Furthermore, galectin-1, endogenous leptin also 

present on EV surface, has been found to be involved in immunomodulatory action 

[133]. Priming in an inflammatory environment increased miRNA (miR-155 and -146) 

EV levels, that intervene in inflammatory reaction regulation [137]. Moreover, CD73 

present on MSC-EV actively induces adenosine formation, which thereby suppresses 

immune responses [138]. Due to the various EV-derived effectors involved in 
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immunomodulation and the controversial in vitro outcomes reported, further studies 

are suggested to elucidate their emerging role in the immune system. 

 
EV application in in vivo studies have portrayed similar results as those seen with 

MSC. For instance, MSC-EV application in acute kidney injury (AKI) murine models 

have specifically seen a decrease in apoptosis, fibrosis and oxidative stress [139-

142], together with a promotion of angiogenesis [143-145]. A concomitant increase of 

anti-inflammatory cytokines and decrease of pro-inflammatory ones was also 

observed [139, 146, 147]. Given the fact that MSC-EV exert similar effects as their 

parental cells, some researchers consider them as an alternative to cell therapy. EV 

could probably overcome some of the regulatory challenges that cells face in clinical 

translation.  

 

Although research on MSC-EV still presents numerous challenges, their in vivo 

stability, low immunogenicity and long half-life provide them with potential 

advantages in the growing development of cell-free therapy. Further understanding of 

their specific mechanisms, underlying the identification of the “active 

substance/component” responsible for the biological activity of novel EV 

therapeutics, is required. 
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2 AIMS OF THE STUDY  
 

The use of MSC as instruments for cell-based therapy has been the focus of intense 

research opening new perspectives for treatment of numerous diseases. The diverse 

sources from which MSC can be isolated might affect their immune modulatory 

properties. However, even if MSC are known to modulate immune responses and 

regeneration, the lack of consensus in their specific mechanisms of action and their 

thorough safety and efficacy evaluation, restrict the translation into clinical research. 

Some studies have reported that MSC-secretome, including CM and EV may pose 

further benefit with respect to increased homogeneity and purity. In fact, EV are 

considered biologicals, with a much less regulatory burden than their cellular 

counterpart. However, EV are quite a recent field of investigation and not much is 

currently known regarding their optimal isolation, characterisation and use. Thus far, 

conflicting evidences have proposed them as alternative tools to ameliorate 

pathological symptoms of GvHD or autoimmune diseases, for instance. We therefore 

proposed whether EV could take over MSC immunomodulatory potential as cell-free 

therapeutic tools. In that instance, we first aimed to define different MSC modulatory 

properties/mechanisms. Second, we evaluated the impact of MSC-secretome on 

immunomodulation. Finally, we sought to test reproducibility of standardised and 

well-defined UC-EV isolation protocol. Thus, hereunder we describe the three main 

aims around which this dissertation was developed (Figure 3). 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Aims of the study. 

Aim 1: Evaluation of the 
immunomodulatory 

potential of different MSC 
sources 

Aim 2: Evaluation of MSC-
derived products 

modulatory functions 

Aim 3: Evaluation of 
standardised 

ultracentrifuge-based EV 
isolation protocol 
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Aim 1: Evaluation of the immunomodulatory potential of different human MSC 

sources 

 

We hypothesised that MSC isolated from different human tissue sources would differ 

in terms of their immunomodulatory functions. Thus, BM-MSC, CB-MSC and ASC 

modulatory strength was assessed in cocultures with PHA stimulated PBMC or 

purified CD4 T cells. Similarly, this was tested with ABCB5 cells. Moreover, MSC-IDO 

expression was evaluated as potential immunosuppressive mechanism. Addition to 

the cultures of tryptophan, IFNγ and IDO inhibitor, Epacadostat (Epac) was further 

assessed, along with analysis of modulatory factors within the supernatants. 

 

Furthermore, to verify whether MSC modulatory strength is affected by potential 

interspecies incompatibilities, rat-human allogeneic and xenogeneic cocultures were 

set. Supernatant analysis was used to investigate factors involved and their specific 

mechanisms of action.  

 

Aim 2: Evaluation of MSC-derived products modulatory functions 

 

Hypothesising that the immunomodulatory potential of MSC-derived products would 

be similar to their cellular counterpart. First, interactions between MSC and PBMC 

were assessed through MSC:PBMC direct and indirect (transwell) cocultures.  

Second, we established cocultures with human PBMC and CM or isolated MSC-EV 

derived from +/- IFNγ preconditioned MSC. PBMC proliferation and analysis of 

coculture supernatants were performed. This required the establishment and 

characterisation of EV. Especially, we established a method for flow cytometric 

assessment of EV marker expression. 

 

Aim 3: Evaluation of standardised UC-based EV isolation protocol 

 

To verify whether a well-defined UC-based EV isolation protocol is reproducible 

amongst various different laboratory settings we performed a comparative study. This 

study involving several expert EV groups enriched EV from equal starting material. 

EV basic characterisation methods (NTA, WB, TEM, FACS) were performed and 

technical variations induced by equipment and/or operators were assessed.  
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3 MATERIAL AND METHODS 
 

3.1 Material 

 

3.1.1 Cells 
 

Cell type Source / Manufacturer 

Adipose derived human 
mesenchymal stromal cells 

(ASC) 

Mannheim Ethics Commission II (vote number 2006-
192 N-MA); 

Self isolated in laboratory. 

Bone marrow derived human 
mesenchymal stromal cells (BM) 

Mannheim Ethics Commission II (vote number 2015-
520N-MA); 

Cryopreserved in our laboratory from prior isolations. 

Cord blood derived human 
mesenchymal stromal cells (CB) 

Mannheim Ethics Commission II (vote number 
49/05); 

Self isolated in laboratory. 

Bone marrow derived rat 
mesenchymal stromal cells 

(rMSC) 

Material kindly provided by Dr. Yuxi Feng from 
control experiments of licensed animal 

experimentations; 

Isolated in our laboratory by BTA Susanne Elvers-
Hornung. 

ABCB5+ cells 
Kindly provided by Ticeba-RHEACELL GmbH & Co. 

(Heidelberg, Germany) as a collaboration. 

HCT116 cells 
European Collection of Authenticated Cell Cultures 

(ECACC) (Cat no. 91091005; Salisbury, UK).  

Human Peripheral blood 
mononuclear cells (PBMC) 

Provided by the German Red Cross Blood Donor 
Service in Mannheim, Germany. Leukapheresis 
samples: Mannheim Ethics Commission II (vote 

number 2018-594N-MA). 

Self isolated in laboratory from buffy coats or 
leukapheresis samples. 

Rat blood Peripheral blood 
mononuclear cells (rPBMC) 

Kindly provided by Prof. Norbert Gretz from control 
experiments of licensed animal experimentations; 

Self isolated in laboratory. 

Rat spleen mononuclear cells 
(SMC) 

Kindly provided by Prof. Norbert Gretz from control 
experiments of licensed animal experimentations; 

Self isolated in laboratory. 
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3.1.2 Cell culture products  
 

Product Company Catalog No. 

DMEM  PAN Biotech P04-01500 

RPMI 1640 Lonza 12-918F 

DMEM/F12 (1:1) 1x Gibco  11320-074  

Mesenchymal Stem Cell 
Adipogenic Differentiation 

Medium 
Promocell C-28016 

Mesenchymal Stem Cell 
Osteogenic Differentiation 

Medium 
Promocell C-28013 

Supplement mix Adipogenic 
Differentiation Medium 

Promocell C-39816 

Supplement mix Osteogenic 
Differentiation Medium 

Promocell C-39813 

Hoechst 33342 Invitrogen 917368 

Adipored assay reagent Lonza PT-7009 

Collagenase NB 6 GMP Grade Serva 17458 

Human allogeneic serum pooled 
from healthy AB donors (AB 

serum) 

German Red Cross Blood Donor Service, Institute 
Mannheim 

Fetal Bovine Serum (FBS 
serum) 

Merck Millipore 50115 

Penicillin/Streptomycin 

PAN Biotech 

P06-07100 

L-glutamine P04-80100 

Trypsin/EDTA P10-024100 

EDTA Applichem A3145,0500 

DPBS (1X) Gibco 14190-094 

Dymethylsulphoxide (DMSO) Wak-chemie Medical GmbH 
WAK-DMSO-

10 

Ficoll-Paque™ Premium GE Healthcare Bio-science AB 17-5442-03 

Albumin fraction V (bovine 
serum albumin) 

Carl Roth 8076.2 

IL-2 human recombinant PromoCell C-61240 

Phytoemagglutinin-L (PHA) Merck Millipore M5030 

Concanavalin A (ConA) Sigma Aldrich C0412-5MG 

Epacadostat (Epac) Selleckchem 57910 
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IFNγ R&D 285-IF 

L -Tryptophan Santa Cruz  sc-280888  

Casy-Ton OMNI Life Science 5651808 

 

 

 

3.1.3 Cell culture media 
 

Media Composition 

Full DMEM AB  

500 ml DMEM  

10% AB serum 

1% Penicillin/Streptomycin 

2% L-glutamine 

Depleted DMEM AB  

500 ml DMEM  

10% EV-depleted AB serum 

1% Penicillin/Streptomycin 

2% L-glutamine 

DMEM FBS  

500 ml DMEM  

10% FBS serum 

1% Penicillin/Streptomycin 

2% L-glutamine 

Depleted DMEM FBS  

500 ml DMEM  

10% EV-depleted FBS serum 

1% Penicillin/Streptomycin 

2% L-glutamine 

DMEM/F12 

500 ml DMEM  

10% FBS serum 

1% Penicillin/Streptomycin 

Depleted DMEM/F12 

500 ml DMEM  

1% EV-depleted FBS serum 

1% Penicillin/Streptomycin 

Full RPMI 1640 

500 ml RPMI 1640 

10% FBS 

1% Penicillin/Streptomycin 

Inactivated RPMI 1640 

500 ml RPMI 1640 

10% heat inactivated FBS 

1% Penicillin/Streptomycin 

MSCGM (MSC Growth Media) 

500 ml MSCGM 

10% FBS serum 

1% Penicillin/Streptomycin 



Material and methods 

 

21 
 

2% L-glutamine 

Ham´s F-10 

500 ml Ham´s F-10 

15% Stem cell media 

1% Penicillin/Streptomycin 

2% L-glutamine 

 

3.1.4 Flow cytometry 
 

 

3.1.4.1 Flow cytometry solutions 

 

Name Composition 

FACS Buffer 

1L DPBS 

0.4% BSA 

0.02% NaN3 

Adjust to pH 7,4 

 

 

3.1.4.2 Flow cytometry Antibodies 

Antibody Fluorochrome Clone Manufacturer Catalog No. 

Anti-IDO PE eyedio 12-9477-42 eBioscience 

Human MSC characterisation 

Anti-CD29 
Alexa Fluor 

488 
TS2/16 BioLegend 303016 

Anti-CD73 PE AD2 BD Biosciences 550257 

Anti-CD90 APC 5E10 BD Biosciences 559869 

Anti-CD44 APC IM7 BioLegend 103012 

Anti-CD31 APC WM59 eBioscience 17-0319-73 

Anti-CD34 PE 8G12 BD Biosciences 345802 

Anti-CD146 PE TEA1/34 Beckman Coulter A07483 

Anti-CD45 FITC HI30 BD Biosciences 555482 

NG-2 
Alexa Fluor 

488 
9.2.27 eBioscience 53-6504 

Anti-CD140a PE 16A1 BioLegend 323506 

Anti-CD140b APC 18A2 BioLegend 323608 
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Anti-CD105 APC SN6 eBioscience 17-1057-42 

Anti-CD106 FITC 51-10C9 BD Biosciences 551146 

Anti-HLA-ABC PE REA230 Miltenyi 130-101-460 

Anti-HLA-DR FITC L243 BioLegend 307618 

Rat MSC characterisation 

Anti rat-CD45 FITC OX-1 Bio-Rad MCA43GA 

Anti rat-CD90 PE OX-7 BD Biosciences 551401 

Anti rat-CD44 APC 12K35 
Lifespan 

Biosciences 
LS-C182786 

EV characterisation 

Panel 1 

Anti-CD9 PerCP Cy 5.5 M-L13 BD Biosciences 561329 

Anti-CD44 APC/Cy7 IM7 BioLegend 103028 

Anti-CD73 PE AD2 BioLegend 344004 

Anti-CD81 APC REA513 Miltenyi 130-107-921 

Panel 2 

Anti-CD9 PerCP Cy 5.5 M-L13 BD Biosciences 561329 

Anti-CD63 BV421 H5C6 BioLegend 353029 

Anti-CD81 PE/Cy7 5A6 BioLegend 349511 

Anti-Alix PE 1A12 Santa Cruz sc-53540 

Anti-TSG101 
Alexa Fluor 

647 
C-2 Santa Cruz sc-7964 

Anti-Calnexin 
Alexa Fluor 

647 
E10 Santa Cruz sc-46669 

 

 

3.1.4.3 Other buffers and reagents 
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3.1.5 Extracellular vesicles 
 

 

3.1.5.1 Extracellular vesicle solutions/buffers  

 

Name Composition 

Bovine serum albumin 0.1% buffer 
50ml DPBS 

0.1% BSA 

Bovine serum albumin 1% buffer 
50ml DPBS 

1% BSA 

Bovine serum albumin 2% buffer 
50ml DPBS 

2% BSA 

Bovine serum albumin 10% buffer 
50ml DPBS 

10% BSA 

Glycine 1M 
50ml distilled water 

3.75g Glycine 

 

 

3.1.5.2 Extracellular vesicle reagents 

 

Product Company Catalog No. 

CD9 Exosome-human beads Invitrogen 10620D 

Aldehyde/Sulfate latex beads, 4%, 
4µm 

Invitrogen A37304 

Product Company Catalog No. 

Cell wash BD Biosciences 349524 

IC Fixation Buffer eBioscience 00-8222-49 

Permeabilisation Buffer 10x Invitrogen 00-8333-56 

Cytotell Green ATT Bioquest 22253 

Sytox Blue Invitrogen S34857 

Sytox Red Invitrogen S34859 

FcR blocking reagent (human) Miltenyi 130-059-901 

Fixable Viability dye eFluor450 
(eF450) 

Invitrogen 65-0863-14 

Precision Count beads BioLegend 424902 
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NaCl 0,9% Braun 19154450 

Glycine Serva 23390 

Albumin Fraction V (bovine serum 
albumin) 

 Carl Roth  8076.2  

 

 

3.1.6 Western blot 
 

3.1.6.1 Western blot solutions 

 

Name Composition 

Tris buffer saline (TBS) 10x 

1L DPBS 

6.05g Tris 

8.76g NaCl 

Adjust to pH 7,6 

Tris buffer saline 1x + Tween (TBS-T) TBS + 0.1% Tween 20 

Towbin buffer 

70% deionized water 

20% methanol 

10% 10X TGS 

Blocking buffer 5% BSA in TBS-T 

 
 

3.1.6.2 Primary Antibodies 

 

Antibody Dilution Clone Species Manufacturer Catalog No. 

Anti human-CD9 1:300  C-4 Mouse Santa Cruz sc-13118 

Anti human-CD63 1:300 
MX-

49.129.5 
Mouse Santa Cruz sc-5274 

Anti human-CD81 1:300 5A6 Mouse BioLegend 349501_02 

Anti human-Alix 1:500 3A9 Mouse BioLegend 634501_02 

Anti human-TSG101 1:500 4A10 Mouse Thermo Fisher  MA1-23296 

Anti human-
Calnexin 

1:500 AF18 Mouse Santa Cruz sc-23954 
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3.1.6.3 Secondary Antibodies 

 

Antibody Dilution Clone Species Manufacturer Catalog No. 

Anti-mouse IgG 
HRP Linked 

whole Ab 
1:2000 Polyclonal Sheep 

GE 
Healthcare 
Bio-science 

AB 

NA931 

 

3.1.6.4 Western blot solutions and material 

 

 

 

 

 

Product Company Catalog No. 

Run buffer, Tris/Glycine/SDS 
(TGS) 

Bio-Rad 1610772 

4x Laemmli sample buffer Bio-Rad 161-0747 

β-mercaptoethanol Sigma Aldrich M7522-100ml 

Page Ruler Plus Thermo Fisher 26619 

Precision plus protein, Dual 
color standards 

Bio-Rad 1610374 

Pierce RIPA Buffer Thermo Fisher 89900 

Halt protease inhibitor single-
use cocktail (100x) 

Thermo Fisher 78430 

Tween 20  Serva 37470.01 

10X TGS Bio-Rad 161-0772 

Methanol Carl Roth 8388.5  

10X TGS Bio-Rad 1610732  

Nitrocellulose blotting 
membrane 

GE Healthcare Bio-science 
AB 

1060000 

Filter paper (Whatman) Sigma Aldrich WHA10537138 

Mini Trans-blot filter paper Bio-Rad 1703932 

Page blue Thermo Fisher 24620 

Mini-PROTEAN TGX Precast 
gels, 4-15% 

Bio-Rad 456-1083DC 

Criterion XT Precast gels; 4-
12% 

Bio-Rad 345-0124 



Material and methods 

 

26 
 

3.1.7 Protein detection 
 

 

3.1.7.1 Reagents 

 

 

 

3.1.7.2 Kits 

 

Product Company Catalog No. 

Pierce BCA Protein Kit Thermo Fisher 23227 

 

 

3.1.8 Solutions 
 

Name Composition 

PBS/EDTA 
500 ml DPBS 

2mM EDTA 

Stopping Medium 
50 ml DPBS 

10% FBS 

Freezing Medium 
FBS 

10% DMSO 

10x Erythrocyte lysis Buffer (ammoniumchlorid) 

Distilled water 

1.55 mM NH4Cl 

0.1 M NH4HCO3 

1 mM EDTA 

 

 

 

Product Company Catalog No. 

L-Kynurenine Santa Cruz sc-202688 

Trichloroacetic acid Fluka Riedel-de Haen  33209 

4-(Dimethylamino)benzaldehyde Santa Cruz sc-202888 

Sodium nitrite AppliChem A7014,0500 

Sulfanilamide AppliChem A3971,0100 

N-(1-Napthyl)-ethylendiamine 
dihydrochloride (Naphtylamine) 

Carl Roth 4342.1 

Double distilled water Carl Roth 3478.1 
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3.1.9  Consumable laboratory material 
 

Product Company Catalog No. 

25 cm2 cell culture flasks Thermo Fisher 156367 

75 cm2 cell culture flasks Thermo Fisher 156499 

175 cm2 cell culture flasks Thermo Fisher 159910 

6-well cell culture plate Thermo Fisher 140675 

12-well cell culture plate Thermo Fisher 150628 

24-well cell culture plate Thermo Fisher 142475 

96-well cell culture plate Eppendorf 0030 790.119 

Round bottom 96-well cell culture plate Greiner Bio-one 650180 

Cell culture inserts (pore size 0.4 μm 
PET track-etched membrane) 

BD Biosciences 35-3095 

Petri dish BD Biosciences 351008 

15 ml Cell star tubes Greiner Bio-one 188271 

50 ml Cell star tubes Greiner Bio-one 227261 

10-20 μl sterile filter tips Star Lab S1120-3710 

200 μl sterile filter tips SurPhob VT0243X 

1000 μl sterile filter tips SurPhob VT0263X 

1.25 ml Precision Dispenser (PD) 
sterile tips 

Brand 702386 

2.5 ml PD sterile tips Brand 702388 

5 ml PD sterile tips Brand 702390 

10 ml PD sterile tips Brand 631060 

5 ml serological sterile pipettes Star Lab 180806-069 

10 ml serological sterile pipettes Star Lab 180720-070 

25 ml serological sterile pipettes Star Lab 190105-071 

Cell strainer, 70µm Sarstedt 83.3945.070 

Cell strainer, 100µm Sarstedt 83.3945.100 

50 ml syringe Dispomed 21050 

10 ml syringe Dispomed 20010 

5 ml syringe Braun 4606051 

1 ml syringe BD Biosciences  300013 

Rotilabo syringe filters 0.22 μm  Carl Roth SE2M035I07 

Syringe filters 0.45µm NeoLab 3-1904 
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ReliaPrep syringe filter 1.2µm NeoLab 8-7050 

0.2 ml thin-walled tubes with flat caps Thermo Fisher AB0622 

Cryopreservation tubes Greiner Bio-one 122278 

1.5 ml tubes  Eppendorf 0030 125.150 

1.6 ml tubes (Low binding, DNA-
DNase, RNase free) 

Biozym Scientific 710176 

5 ml Polystyrene round bottom FACS 
tubes 

Corning 352052 

Polycarbonate ultracentrifuge tubes 
(OAKRIDGE) 

Beranek Laborgeräte 314348 

Ultrasealing lid, plug and O-ring Beranek Laborgeräte 314347 

CASY cup OMNI Life Science 5651794 

Gloves Hartmann 3538071 

Pursept A Xpress Schülke SMH 230131 

Scalpels Braun 10567364 

 

3.1.10  Laboratory equipment 
 

Device  Model Manufacturer 

Centrifuge ROTINA 420 Hettich Zentrifugen 

Centrifuge ROTINA 420R Hettich Zentrifugen 

Centrifuge 5415R Eppendorf 

Small Centrifuge Minispin Eppendorf 

Cell counter CASY OMNI Life Science 

Cell counter Nucleo Counter Chemometec 

Microscope Axiovert 100 ZEISS 

Microscope Axiovert 40C ZEISS 

Microscope Camera AxioCam M Rc ZEISS 

Live imaging microscope  
IncuCyte Zoom live imaging 

device 
Essen BioScience, Ltd. 

Sterile laminar flow hood Hera safe 
Thermo Fisher Electron 

Cooperation 

Chemical flow hood Airflow-Control EN14175 Caspar and Co. Labora  

Cell culture incubator CB210 Binder 

Cell culture pump Vacusafe Comfort Integra Biosciences 

Cell culture shaker Lab Dancer IKA 

Water bath Aqualine AL 12 Lauda 

Water bath WNE 7 Memmert 
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Magnet stirrer MR Hei-Standard Heidolph Instruments 

pH-Meter pH 211 Hanna Instruments 

Microplate reader TECAN infinite M200PRO TECAN 

Thermal cycler DNA Engine Cycler BioRad 

Flow cytometer BD FACS Canto II BD Biosciences 

Flow cytometer FACS Aria IIu BD Biosciences 

Chemiluminescent detector 
FusionCapt Advanced Solo 

4 
Vilbert Lourmat  

Horizontal shaker Thermo Mixer C Eppendorf 

Rotator SB2 Stuart 

Chamber shaker UniHood 650 Edmund Bühler  

Precision scale EW 2200-2NM Kern & Sohn 

Precision scale ABJ 22-4M Kern & Sohn 

Electrophoresis power supply EV331 Peqlab 

Ultracentrifuge Sorvall WX Ultra 
series 

Sorvall WX Ultra 100 Thermo Fisher  

Ultracentrifuge Fixed angle rotor  Sorvall T-865  Thermo Fisher  

Ultracentrifuge Swing out rotor  Sorvall SureSpin 630 Thermo Fisher  

Nitrogen tanks Biosafe UN 1977 Cryotherm 

Autoclave V-150 Systec 

Zetaview 
PMX 220 ZetaView TWIN 

Laser 
Particle Metrix 

 

 

3.1.11  Software for data analysis 
 

Software Version Company 

FlowJo 
10 FlowJo, LLC, Ashland, OR, 

USA 
7.6.5 

GraphPad Prism 
7 GraphPad Software Inc. San 

Diego, USA 
6 

Word 

Microsoft 10 Redmond, WA, USA Excel 

Powerpoint 

i-Control 1.10 TECAN 
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3.2 Methods 

3.2.1 Evaluation of immunomodulatory potential of different MSC sources  

 

3.2.1.1 MSC Isolation 

3.2.1.1.1 Adipose derived mesenchymal stromal cells (ASC)  
 

After obtaining informed consent (Mannheim Ethics Commission II; vote numbers 

2010-262 N-MA, 2009-210 N-MA, 49/05 and 48/05), adipose derived mesenchymal 

stromal cells (ASC) were isolated from healthy donors. Raw lipoaspirate samples 

were extensively washed with sterile PBS to remove cellular debris and red blood 

cells in a 1:1 ratio and then centrifuged at 420g during 10 minutes (no brake). 

Samples were treated with 0.15% w/v Collagenase type I for 45-60 min at 37°C with 

gentle agitation adding the same amount of collagenase as lipoaspirate volume (1:1 

dilution). Inactivation of the collagenase was achieved by adding an equal volume of 

DMEM/10% fetal bovine serum (FBS), then centrifuging at 1200g during 10 minutes 

to obtain a high density stromal vascular fraction (SVF) pellet. Supernatants were 

aspirated and pellets incubated during 10 minutes with erythrocyte lysis buffer to 

remove red blood cells. Following a centrifugation step, SVF pellets were then 

resuspended in DMEM 10% FBS and filtered through a 100µm nylon mesh filter 

(Falcon® 100 µm cell strainer) prior to centrifuging the filtrate at 1200g during 10 

minutes to obtain the enriched SVF pellet. The pellet was resuspended in DMEM AB 

and plated in a T25 or T175 (dependent of pellet size) and was incubated overnight 

at 37°C, 5% CO2. On the following day, we performed extensive washings of the 

plates to remove non-adherent and red blood cells, prior to media change. Cell 

morphology was constantly monitored by microscope observation. The resulting 

population of adipose derived mesenchymal stromal cell colonies were splitted and 

seeded in a new flask at a density of 200 cells/cm2.  

3.2.1.1.2 Cord blood derived mesenchymal stromal cells (CB) 
 

Cord blood samples were isolated from healthy donors after having obtained the 

correct informed consent (Mannheim Ethics Commission II). Cord blood samples 

were diluted 1:2 with PBS/EDTA and blood was carefully laid on a Ficoll layer 

avoiding any phase mixing. Samples were centrifuged at 420g for 30 minutes (no 

brake) at RT. Plasma was removed prior to interphase collection with a glass pipette. 
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Interphases were pooled, and PBS/EDTA was added to allow washing steps at 420g 

for 10 minutes at RT. Supernatants were aspirated and incubated during 10 minutes 

with erythrocyte lysis buffer to eliminate the undesired red blood cells. Pellets were 

washed and at this point, 10µl of cell suspension was taken at this point to count the 

cells with the CASY, prior to centrifuging at 420g during 10 minutes at RT. All the 

pellets were combined and resuspended in MSCGM-Medium + 10% FBS and 2 

ml/well cell suspension were seeded in a 6 well plate. On the following day, fresh 

media was added to the culture. Media was changed once per week until colonies 

appeared, and then was done twice weekly. Colonies were splitted and seeded in a 

new flask at a density of 700 cells/cm2. 

  

3.2.1.2 MSC culture 

 

Following isolation, ASC were continuously cultured at a density of 200 cells/cm2 and 

CB at 700 cells/cm2 in DMEM supplemented with 10% pooled human allogeneic AB 

serum from healthy donors (German Red Cross Blood Donor Service, Mannheim) 

and FBS accordingly, 1% Penicillin/Streptomycin (100,000 U/ml Penicillin and 10 

mg/ml Streptomycin) and 2% L-glutamine (200mM). Cryopreserved BM cells were 

thawed and continuously cultured at a density of 200 cells/cm2 in 10% AB serum, 

supplemented with 1% Penicillin/Streptomycin and 2% L-glutamine (200mM). Cells 

were cultured in incubators with a controlled temperature and atmosphere (37°C, 5% 

CO2).  

Upon reaching confluency, MSC were trypsinised with 1X Trypsin/EDTA, counted 

and seeded according to the experiment. All cells were then cryopreserved in fetal 

bovine serum (FBS) with 10% Dimethylsulphoxide (DMSO) and were always thawed 

and cultured for at least one passage prior to their use in experiments. Cell growth 

and morphology was monitored by microscope observation and cell numbers at 

different passages were tracked. Growth rate values were calculated following the 

equations of Cell Duplication number (CD) and Doubling Time (DT), where Fcn 

stands for final cell number and Icn for Initial cell number.  
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3.2.1.3 MSC characterisation 

3.2.1.3.1 Adipogenic differentiation 
 

MSC were tested for their differentiation capacity, and cultured in adipogenic 

differentiation media (Mesenchymal Stem Cell Adipogenic Differentiation Medium) for 

14 to 21 days. Full DMEM AB or FBS media condition was used as control. On the 

last differentiation day, MSC were fixed with 10% Paraformaldehyde (PFA) for 30 

minutes, washed and incubated with Hoechst-33342 (1:100 final concentration, 10 

mg/ml stock) for another 30 minutes. Hoechst fluorescence (excitation: 354 nm / 

emission: 442nm) was measured on a plate reader and taken as baseline 

normalisation. To test for adipogenic differentiation, AdipoRed Assay was performed 

following the manufacturer’s instructions. After washing with DPBS, Adipored (5 

μl/well in a 96 well plate) diluted in DPBS was added and incubated in the dark for 15 

minutes. Following incubation, AdipoRed fluorescence was measured on a plate 

reader at 485/572 nm. Adipored optical density (OD) were normalised on Hoechst 

OD and presented as a Normalised Ratio. 

3.2.1.3.2 Osteogenic differentiation 
 

MSC were tested for their differentiation capacity, and cultured in osteogenic 

differentiation media (Mesenchymal Stem Cell Osteogenic Differentiation Medium) 

for 14 to 21 days. Full DMEM AB or FBS media condition was used as control. On 

the last differentiation day, MSC were fixed with 10% PFA for 30 minutes, washed 

and incubated with Hoechst-33342 (1:100 final concentration, 10 mg/ml stock) for 

another 30 minutes. Hoechst fluorescence (excitation: 354 nm / emission: 442nm) 

was measured on a plate reader and taken as baseline normalisation. To test for 

osteogenic differentiation, Osteoimage Mineralisation Assay was performed following 

the manufacturer’s instructions. After washing with Wash buffer, Osteoimage staining 

reagent (1:100 final dilution in Staining Reagent Dilution Buffer) was added to the 

cells and left in incubation for 30 minutes at RT. Following incubation, staining 

reagent was removed and three consecutive washing steps were performed with 

Wash buffer. Osteoimage fluorescence was measured on a plate reader at 492/520 
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nm. Osteoimage OD were normalised on Hoechst OD and presented as a 

Normalised Ratio. 

 

3.2.1.3.3 Immunophenotyping 
 

BM, CB and ASC were characterised by florescence-activated cell sorting to define 

their immunophenotype. When MSC (passage 2) cell confluence was reached, 1x105 

cells were collected in FACS tubes, resuspended in FACS buffer and let incubate at 

4°C for 5 minutes with 10µl of FcR blocking reagent. Then MSC from multiple donors 

were analysed with the following anti-human antibodies, at optimal concentrations 

and following proper titration: Anti-CD73-PE, Anti-CD44-APC, Anti-CD45-PE-Cy7, 

Anti-CD140a-PE, Anti-CD140b-APC, Anti-HLA-DR-APC Cy7, Anti-CD29-Alexa Fluor 

488, Anti-CD90-APC, Anti-CD31-FITC, Anti-CD34-APC, Anti-CD106-FITC, Anti-

CD146-PE, Anti-NG-2-AlexaFluor 488, Anti-CD105-PE Cy7, Anti-HLA-ABC-PE 

Vio770. Staining was performed during 20 minutes in the dark at 4°C after which 

cells were washed twice with Cell wash and resuspended in Sytox blue dead cell 

stain (final dilution in FACS buffer, 1:2000) prior to being analysed. A minimum of 

10,000 events were acquired with BD FACS Canto and .fcs files were exported and 

analysed with FlowJo v10 software. The gating strategy applied to calculate positivity 

of cell surface marker expression is reported in Figure 4. Only MSC where CD29, 

CD73, CD44, CD90, CD105 and HLA ABC markers were positive, but CD31, CD34, 

CD14, CD19, CD45 and HLA-DR were negative were used to perform experiments. 
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Figure 4 Representative gating strategy for cell surface marker expression analysis. To determine specific 

cell surface marker expression on cells, debris are first gated out by gating on side scatter (SSC) vs forward 

scatter (FSC), followed by a live/dead gating with Sytox RED/BLUE to define the Live population. Fluorescent 

unstained controls are used to determine specific position of gate in order to determine % of cell staining positivity 

for a specific marker. 

 

 

3.2.1.4 Rat mesenchymal stromal cells (rMSC)  

3.2.1.4.1 Rat MSC isolation and culture 
 

Rat bone marrow derived MSC (rMSC) were isolated from femurs from male 

Sprague-Dawley (SD) rats euthanized from control experiments in the frame of other 

licensed animal experiments. Animals were euthanized by intraperitoneal (i.p.) 

administration of ketamine and xylazine. Femurs were first washed with PBS + 2mM 

EDTA + 1% Penicillin/Streptomycin (100,000 U/ml Penicillin and 10 mg/ml 

Streptomycin). Prior to isolation, bone ends were cut off using a clamp and scissors 
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prior to flushing the bone marrow and collecting it with a cannula and syringe. Bone 

marrow suspension was centrifuged at 420g for 10 minutes and pellets were 

resuspended in media and seeded in a T25 flask. After overnight adherence, 

extensive washings of the plates were performed to remove non-adherent and red 

blood cells. New medium was replenished and cells were cultured until reaching a 

subconfluent stage, at which point they were passaged and vials were 

cryopreserved. Cell morphology and growth was constantly monitored by microscope 

observation. 

After rMSC isolation, cells were cultured in DMEM supplemented with 10% FBS, 1% 

Penicillin/Streptomycin, 2% L-glutamine (200 mM). 

Upon reaching confluency, rMSC were trypsinised with 1X Trypsin/EDTA, counted 

and seeded according to the experiment. Cells were then cryopreserved in fetal 

bovine serum (FBS) with 10% DMSO and were always thawed and cultured for at 

least one passage prior to their use in experiments. Cell growth and morphology was 

monitored by microscope observation (AxioVert100 Zeiss). 

3.2.1.4.2 Rat MSC characterisation 
 

rMSC were characterised by fluorescence-activated cell sorting (FACS) to define 

their immunophenotype as described above using the following anti-rat antibodies: 

Anti-CD45-FITC (Clone OX-1) to exclude hematopoietic cells, Anti-CD90-PE (Clone 

OX-7) and Anti-CD44-APC (Clone 12K35) as typical MSC markers.  

 

3.2.1.5 ABCB5+ cells  

 

Within the TASCDT graduate school, Prof. Gretz´s group were working with the 

ABCB5 cells and based on our in vitro results we were also interested in investigating 

their immune potential. Thus, as this group was also interested in potentially testing 

ASC in their cisplatin-induced nephrotoxicity murine model we initiated a 

collaboration. My task contributing to that was to compare the immunosuppressive 

strengths of both cell types in an in vitro xeno-model prior to moving to in vivo 

experiments with the best performers. 

 

Human ABCB5+ cells were provided to us by Ticeba-RHEACELL GmbH & Co. and 

were cultured in Ham´s F-10 media supplemented with 15% stem cell media, 1% 
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Penicillin/Streptomycin (100,000 U/ml Penicillin and 10 mg/ml Streptomycin) and 2% 

L-glutamine (200mM). In order to maintain the ABCB5+ MSC phenotype, cells were 

put in culture only overnight to allow their acclimatisation, and were immediately 

seeded the next day according to the experiments. Cell growth and morphology was 

monitored by microscope observation (AxioVert100 Zeiss). 

 

3.2.1.6 Peripheral blood mononuclear cell (PBMC) isolation 

3.2.1.6.1 Human peripheral blood mononuclear cell (PBMC) isolation 
 

Human peripheral blood mononuclear cells (PBMC) were isolated from either buffy 

coats or leukapheresis samples from healthy donors, provided by the German Red 

Cross Blood Donor Service in Mannheim (DRK-Blutspendedienst). Buffy coats were 

diluted 1:1 with PBS/EDTA. 25ml of diluted blood were gently settled on top of 10 ml 

of Ficoll-Paque™ in a 50ml tube and centrifuged at 420g for 30 minutes with the 

lowest deceleration. After centrifugation, plasma (supernatant) were mostly aspirated 

and the interphases were collected with a glass Pasteur pipette. Interphases from 

same samples or donors were pooled together and washed with PBS/EDTA (2mM). 

Tubes were centrifuged at 420g for 10 minutes. After aspirating the supernatants, 

pellets were resuspended in 1x erythrocyte lysis buffer left incubate 10 minutes at 

RT. After centrifuging, pellets were resuspended in PBS/EDTA and cell numbers 

were determined. 

According to the experiment, CD4+ T cells were enriched from the PBMC population 

by using CD4+ T cell isolation kit (human) using CD4+ Biotin antibody cocktail (bead 

to cell ratio 1:40) following the manufacturer´s instructions. Then, a minimum of 4x107 

PBMC or CD4+ T cells were resuspended in PBS and stained with proliferation dye 

Cytotell Green (final concentration 1:500 dilution from stock). After 15-minute 

incubation at 37°C, cells were washed, centrifuged and resuspended in full RPMI 

1640 and seeded appropriately. 

 

3.2.1.6.2 Rat mononuclear cell isolation 
 

Rat mononuclear cells (PBMC) were isolated from either blood (rPBMC) or spleen-

derived rat MC (SMC) from male SD rats immediately upon arrival. 
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Blood 

Rat blood-derived PBMC were isolated from freshly collected blood of SD rats as 

described for human PBMC. 

  

Spleen 

SMC were isolated from spleen from SD rats immediately after dissection. Spleens 

were minced finely into small sections and put onto a 100µm and 70µm cell strainer 

in a PBS-antibiotic/antimycotic solution and then centrifuged and processed as 

described above.  

 

3.2.1.7 Immunosuppression assays 

3.2.1.7.1 Human Immunosuppression assays  
 

2x104, 1x104 or 5x103 MSC (1:5, 1:10 and 1:20 ratio, respectively) were seeded in full 

RPMI 1640 supplemented with IL-2 (500 μg/ml stock) on the bottom of a 24 or 96-

well plate. Directly after thawing, fresh cryopreserved PBMC were then stained with 

the proliferation dye Cytotell Green (ATT Bioquest) at a final concentration of 1:500 

dilution from stock. 1x105 PBMC were added either a) directly on top of the MSC 

(direct coculture system) or b) in a transwell insert pore size 0.4µm. PBMC stimulated 

and not stimulated with PHA were seeded as controls. Both direct and indirect 

cocultures were set in parallel for comparison purposes. According to the 

experiments, MSC were treated with IFNγ (final concentration 10ng/ml), tryptophan 

(Tryp) (final concentration 100µg/ml) or IDO inhibitor Epacadostat (Epac; final 

concentration 1µM). After 5 days, cocultures were harvested and conditioned media 

(CM) collected and stored at -80°C for further analysis.  

 

3.2.1.7.2 Rat Immunosuppression assays 
 

Rat MSC:PBMC cocultures consisted of a series of xeno- and allo-cocultures where 

their immunomodulatory potencies were investigated. These were: a) human MSC + 

rat (blood or spleen) PBMC, b) rat MSC + human PBMC (xeno-cocultures); and c) 

human MSC + human PBMC and d) rat MSC + rat (blood or spleen) PBMC (allo-

cocultures). These combinations of MSC:PBMC (1:5, 1:10 and 1:20 ratio) were 

seeded as described above. Directly after isolation, either rat blood or spleen derived 
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MC, were stained with the proliferation dye Cytotell Green at a final concentration of 

1:500 dilution from stock. 1x105 PBMC were added directly on top of the MSC (direct 

coculture system). Rat MC (blood or spleen) stimulated and not stimulated with 

Concanavalin A (ConA; 4µg/ml final concentration) were seeded as controls in 10% 

heat inactivated FBS in RPMI 1640 (inactivated RPMI 1640), supplemented with 1% 

Penicillin/Streptomycin, IL-2 (1:500 final dilution) and β-mercaptoethanol for rat 

conditions (50µM final concentration).  When possible, both rat blood or spleen 

derived MC were set in parallel for comparison purposes. After 3 days, cocultures 

were harvested and CM was collected and stored at -80°C for further analysis. 

 

3.2.1.8 Flow cytometry based assays 

3.2.1.8.1 CD4+ T cell and PBMC staining and detection 
 

After day 5, Cytotell green stained stimulated/not stimulated PBMC or CD4+ T cells 

were harvested from coculture and control conditions. After harvesting and pooling 

technical replicates, PBMC were collected in FACS tubes, washed and resuspended 

in FACS Buffer. According to the experiment, to stain for CD4+ T cells, cells were 

first incubated during 5 minutes with 10µl of FcR blocking reagent, and stained with 

extracellular marker Anti-CD4-PE during 20 minutes protected from light at 4°C.  

After washing step, cells were resuspended in FACS buffer with Sytox Red (1:4000 

final concentration) or Sytox Blue (1:2000 final concentration). Cells were analysed 

immediately after addition of 25 μl of Precision count beads™ at BD FACS Canto II. 

The .fcs files were exported and analysed with FlowJo v10 software. The gating 

strategy applied to calculate percentages of CD4+ T cells and PBMC in Live 

population is reported in Figure 5. 
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Figure 5 Representative gating strategy on Live population for either human or rat whole PBMC or human 

CD4+ T cell proliferation analysis. Lymphocytes are gated on SSC vs FSC, followed by a live/dead gating with 

the specific viability dye (Sytox Red or Blue), to define the Live population. Accordingly, either the whole PBMC 

population (left side graphs), or the specifically selected CD4+ T cells (right side graphs) were assessed for their 

proliferation capacities. Cytotell green viability dye dilution was investigated for this purpose, where all the dye is 

present in the unstimulated control but subsequent dye dilution is observed in the stimulated control condition in 

either PBMC or CD4+ cells. 

 

PBMC proliferation was also analysed with the Proliferation Tool of FlowJo 7 

software. It applies mathematical models to the proliferation data and develops 

statistics to describe it. We focused particularly on the “division index” which is the 

average number of divisions for all of the cells in the original starting population 

(FlowJo 7 manual tutorial). A representative picture of how the Proliferation tool 

works is reported in Figure 6. 
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Figure 6 Representative gating strategy on proliferation tool in FlowJo v.7.6.5 software. To determine 

PBMC or CD4+ T cell proliferation potential, lymphocytes are gated on SSC vs FSC, followed by a live/dead 

gating to define the live population. Afterwards, cells are evaluated on the Cytotell green proliferation dye staining. 

FlowJo proliferation tool allows to custom the fluorescence units of Peak zero in the undivided sample. In this 

manner, Peak 0 (light pink peak, dotted line) depicts where the original population is found and the value is 

consequently applied to the rest of the samples. The proliferation tool then applies specific mathematical models 

on the population and issues the proliferation peaks (depicted in dark pink), calculating the division index amongst 

other proliferation data. 

 

3.2.1.8.2 Indoleamine 2,3-dioxygenase (IDO) detection 
 

Indoleamine 2,3-dioxygenase (IDO) detection was measured as follows. MSC were 

seeded in a 6-well plate at a density of 5000 cells/cm2 in full RPMI 1640. Once 

seeded, cells were allowed to attach and then were treated either with IFNγ (final 
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concentration 10ng/ml), Tryp (final concentration 100µg/ml) or Epac (final 

concentration 1µM), to assess specific IDO secretion. After trypsinisation, MSC were 

collected in FACS tubes and washed with PBS. After washing, MSC were 

resuspended in PBS, stained with Fixable Viability dye eF450 (1:4000 final dilution) 

and incubated for 30 minutes at 4°C. Cell suspension was then incubated with IC 

Fixation Buffer during 30 minutes at room temperature (RT). After 

washing/centrifuging samples twice with 1X Permeabilisation Buffer, cells were 

stained with IDO-PE in 1X Permeabilisation Buffer during 30 minutes. Following this 

step, cells were washed and analysed immediately at BD FACS Canto II. MSC 

without IFNγ stimulation were also seeded in parallel as controls. Data are 

represented as Median Fluorescence Intensity (MFI) after subtraction of MFI’s 

respective control.  

 

3.2.1.9 Protein detection 

3.2.1.9.1 Kynurenine assay 
 

Kynurenine was detected in CM from IDO assay or 5 day coculture CM (human and 

rat) and control of stimulated and not stimulated conditions. 100µl of standard (serial 

dilutions of L-Kynurenine 50mM) or probe was added to 50µl of 30% Trichloroacetic 

acid (TCA) in a 96 well PCR plate (non-skirted, low-profile). The plate was incubated 

during 30 minutes at 50°C in a thermal cycler (DNAEngine). After incubation, the 

plate was centrifuged at 4004g for 10 minutes and 75µl of supernatants from each 

condition were carefully transferred into a 96-well clear plate. 75µl of 22% 4-

(Dimethylamino)benzaldehyde (sc-202888) were added and left incubating for 15 

minutes in the dark at RT. Then the OD of each well was determined using a 

microplate reader TECAN infinite M200PRO set to 492nm emission wavelength. 

Standard curves were elaborated with GraphPad Prism software v6 or 7. 

 

3.2.1.9.2 Nitrite assay 
 

Nitrite (NO2
-) was detected in CM from IDO assay or 5 day coculture CM (human and 

rat) and control of stimulated and not stimulated conditions. 150µl of probes and 

standards (Sodium nitrite dissolved in full RPMI 1640 media) were mixed with 50ml of 

Sulfanilamide (10mg/ml) in a 96-well clear plate. The plate was incubated during two 
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minutes before the addition of 50µl of N-(1-Napthyl)-ethylendiamine dihydrochloride 

(Naphtylamine) (2mg/ml), then was left incubating for a minimum of 30 minutes in the 

dark at RT. The OD of each well was determined using a microplate reader TECAN 

infinite M200PRO using 542 nm as measured emission wavelength and 620 nm as 

reference wavelength. Standard curves were elaborated with GraphPad Prism 

software v6 or 7 and limit of detection was calculated and applied to measured 

values. 

 

3.2.1.10 Statistical analysis 

 

Data were shown represented as box-and-whisker plots. The box corresponds to the 

interquartile range (IQR) and the whiskers depict the minimum a maximum values. In 

addition, the median is represented as a line within the boxes. Dotted lines at 1 

represent the normalisation referred to the respective assay positive control. Two-

way ANOVA and Tukey´s or Sidak´s post-hoc multiple comparisons test were 

performed. For all statistical tests, p value differences <0.05 were considered as 

statistically significant. The number of replicates performed for every experiment is 

indicated in the corresponding Figure legend as n=# (# replicates). Statistical 

analysis and visualisation of results were performed using GraphPad Prism software 

v6 or 7. 

 

3.2.2 Evaluation of MSC-derived products modulatory functions  

 

3.2.2.1 Conditioned media (CM) 

 

MSC derived conditioned media was prepared by seeding 1,5x106 cells in a T175 

flask, in full DMEM AB media supplemented with IL-2 (1:500 final dilution, 500 μg/ml 

stock), cells were allowed to attach overnight (ON). The next day, media was 

changed to full RPMI 1640 and according to the experiments, MSC were treated with 

IFNγ (final concentration 10ng/ml, which corresponds to 200U/ml), tryptophan (final 

concentration 100µg/ml) or IDO inhibitor Epacadostat (Epac; final concentration 

1µM). This media was left conditioning for 72 hours, after which conditioned media is 

collected in 50 ml tubes and is either stored at -30°C for its use in near future 

experiments or continued directly with the extracellular vesicle (EV) isolation 

procedure. The cells in the flask were washed thoroughly with PBS and trypsinised 
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with 1X Trypsin/EDTA and cell number was determined to allow us to know the 

producer cells present at the moment of harvesting.  

As a CM control for isolation, characterisation and proliferation assays we defined an 

EV media control. It was constituted in the same manner as ASC-derived CM aside 

from being generated in absence of MSC. 

 

3.2.2.2 Extracellular vesicles (EV)  

3.2.2.2.1 Preparation of EV-depleted FBS or AB serum 
 

EV-depleted serum was obtained by ultracentrifuging regular FBS or AB serum at 

4°C, at 100,000g for 18 hours in the WX Ultra Series 100 ultracentrifuge using a fixed 

angle rotor Sorvall T-865 (k-factor 100,000g: 150.6). Prior to ultracentrifugation, all 

polycarbonate ultracentrifuge tubes were accurately weighed with a precision scale. 

Consequently, ultracentrifuge extracellular vesicle depleted serum (UC-dserum) was 

aliquoted and cryopreserved at -30°C for use in future experiments.  

3.2.2.2.2 EV isolation 
 

1,5x106 ASC were seeded in a T175 flask, in full DMEM FBS or AB medium, and 

cells were allowed to attach overnight (ON). The next day, media was changed to 

DMEM supplemented with 10% EV depleted FBS or AB serum supplemented with 

1% Penicillin/Streptomycin and 2% L-glutamine (200 mM) and according to the 

experiments, IFNγ was also added to the culture (final concentration 10ng/ml). 72 

hours later, media was collected in 50 ml tubes and proceeded with the EV isolation 

procedure. The flask was thoroughly washed with PBS, trypsinised and cell number 

was determined to monitor the exact producer cell number present.  

EV isolation and purification was performed by consecutive steps of differential 

ultracentrifugation (dUC). Cell culture media was centrifuged at RT during 5 minutes 

at 525g. Supernatants were retrieved and filtered through a 0.22µm syringe filter in 

order to eliminate larger cell rests, apoptotic bodies and debris. After filtration, 

ultracentrifuge tubes were filled with conditioned media and weighed accordingly with 

a precision scale. Tubes were loaded in WX Ultra Series 100 ultracentrifuge using a 

fixed angle rotor Sorvall T-865 with a first UC of 10,000g (k-factor 10,000g: 1569.6; 

11,800 rpm) at 10°C during 45 minutes. Following the first ultracentrifugation step, 

supernatants were collected from the original tube and transferred to new sterilised 
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UC tubes for the next UC step. The microvesicle pellets obtained were resuspended 

at a ratio of 2x107 producer cells/200µl sterile filtered PBS and stored in 1,5ml tubes 

at -30°C for no longer than 6 months. UC tubes were weighed and placed in the 

ultracentrifuge accordingly, to perform the second UC step of 105,000g (k-factor 

105,000g: 150.6; 38,100 rpm) at 10°C during 45 minutes. The EV pellets were 

resuspended at the same ratio of 2x107 producer cells/200µl sterile filtered PBS and 

stored in 1,5ml tubes at -30°C for a maximum of 6 months. A small aliquot of 

supernatant from the second ultracentrifugation step was stored to use as a control in 

WB analysis or transmission electron microscopy (TEM), the rest was discarded. 

 

3.2.2.2.3 EV characterisation 
 

3.2.2.2.3.1  Nanoparticle tracking analysis (NTA) 
 

Particle number and size distribution were measured with light scattering technology, 

NTA. One microliter of concentrated EV were diluted in 0.22µm sterile-filtered PBS in 

a 1:1000 dilution, EVs were visualized using the ZetaView (Particle Metrix). The 

device specific configuration was as follows: 80% sensitivity, shutter 100, 11 

positions were measured and 2 measurement cycles were performed. Amongst all 

measurements, 1 to 3 positions from a total of 11, were removed for analysis due to 

some values being out of range. Data were exported as a PDF report and txt files 

and further analysed with GraphPad Prism software v6 or 7. 

3.2.2.2.3.2  Transmission electron microscopy (TEM) 
 

Five μl of EV suspensions were left to settle on 100 mesh formvar-coated nickel grids 

(Plano), contrasted with 4 % uranyl acetate (Serva) as a negative staining, air-dried 

and visualized using a EM10A transmission microscope (Zeiss) equipped with a CCD 

Olympus mega view G2 digital camera (Olympus Soft Imaging Solutions GmbH) at 

60 KV. TEM image acquisition was performed with the kind help of Hiltraud Hosser. 

 

3.2.2.2.3.3  Western blot 
 

Whole cell lysate preparation 

In parallel to the EV isolation, the whole cell lysate of the original EV producer cells 

was prepared. After retrieving the conditioned media for EV purification, cells were 
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washed three times with PBS, trypsinised and counted. Cells were centrifuged at 4°C 

for 5 minutes at 300g, supernatant was discarded and pellets were resuspended in 1 

ml of PBS. Two consecutive washing steps were performed before addition of 200µl 

per 1x107 cells of radioimmunoprecipitation assay (RIPA) buffer supplemented with 

protease inhibitor and incubating during 20 minutes on ice. Cells were vortexed 

thoroughly before and after lysing. A last centrifugation step at 4°C for 20 minutes at 

20,000g was performed. Supernatants were aliquoted and stored at -30°C for further 

use in experiments, as Western blot control.  

 

Protein extraction and Western blot 

Protein concentration was determined using the BCA assay process with Pierce BCA 

Protein Assay Kit, following manufacturer’s instructions. EV pellets were 

resuspended in radioimmunoprecipitation assay (RIPA) buffer (50 mM Tris-HCl, 

pH7.4, 150 mM NaCl, 1 % Triton X-100, 1 % Na-deoxycholate, 0.1 % SDS, 0.1 mM 

CaCl2, 0.01 mM MgCl2) supplemented with protease inhibitor cocktail. Proteins 

extracted from HeLa and HCT116 cells were used as cellular controls. Equal 

amounts of protein (20 µg) were loaded and separated on 4-15 % Mini-PROTEAN 

TGX Precast Gels. Protein and cell lysates were treated with protein loading dye 

(Laemmli sample buffer) with freshly added β-mercaptoethanol (10 %; v/v; final 

concentration 0.05mM) and boiled for 5 min at 95°C (except for one antibody, see 

below) before SDS-PAGE. Proteins were subsequently transferred to nitrocellulose 

blotting membrane (0.2m µm; #1060000). Membranes were blocked in 5 % BSA 

(Carl Roth) in 0.1% Tween in TBS (TBS-T). After blocking, blots were probed with the 

following primary antibodies: Anti-TSG-101 (1:500 dilution) (Clone 4A10; MA1-

23296), Anti-Alix (1:500 dilution) (Clone 3A9; 634501_02), Anti-CD81 (1:300 dilution) 

(Clone 5A6; 349501_02), and Anti-CD63 (without boiling treatment) (1:300 dilution), 

Anti-CD9 (1:300 dilution), Calnexin (1:500 dilution) (Clone MX-49.129.5 (sc-5274); 

Clone C-4 (sc-13118) and Clone AF18 (sc-23954) respectively) overnight at 4°C. 

After incubation, membranes were washed three times with TBS-T and subsequently 

incubated with the secondary antibody dilution: ECL Anti-mouse IgG HRP Linked 

whole Ab (1:2000 dilution; NA931V) for 1 hour at room temperature followed by 

washing. Blots were then developed using WesternBright ECL (#541004) and protein 

bands were detected using the FusionCapt Advanced Solo 4. 
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3.2.2.2.3.4   Flow cytometry (FACS) 
 

As a method to assess presence of proteins in EV preparations and quantify them in 

or on their surface, bead-based flow cytometry was performed. To establish a robust 

FACS-EV characterisation protocol, several bead-EV combinations were tested. We 

used two different bead types: Aldehyde/sulfate latex beads and CD9 magnetic 

human beads. Aldehyde/sulfate latex beads have been reported by several groups 

as successfully coupling allowing detection of EV isolates in conventional cytometers 

[148-150]. The rationale to use CD9 magnetic human beads came from published 

studies that use CD9 antibody for counterstaining already bead-captured EV for 

detection in flow cytometry [151].  

 

Aldehyde/sulfate latex bead coupling 

Following isolation and purification, EVs were coupled to Aldehyde/sulfate latex 

beads to allow their better detection in the FACS due to their small size range. Five µl 

of beads were mixed with 100µl of PBS to pre-wash the beads, then incubated at 

room temperature for 15-30 minutes at 800rpm in a horizontal shaker. EVs were 

added at this point and 400µl of PBS were added prior to incubation at room 

temperature for 60 minutes at 800rpm in a horizontal shaker. 400µl of 1M glycine 

(previously filtered through 0.22µm sterile syringe filter) were added and incubated 

for 60 minutes at 800rpm. Samples were centrifuged for 2 minutes at 9700g and 

supernatant was discarded leaving no more than 20µl of volume in the tube. Pellets 

were resuspended in 100µl of 10% BSA solution and incubated at room temperature 

for 45 minutes at 800rpm in a horizontal rotor. Samples were centrifuged and 

resuspended in 40µl of 2% BSA solution (0,22µm filtered). To assess antigen 

expression, samples were incubated overnight at 4ºC at 800rpm in a horizontal 

shaker with the appropriate combination of monoclonal antibodies. To evaluate and 

assess the strategy for bead-based mediated EV characterisation and to evaluate the 

specific markers present on ASC and HCT116-derived EVs and cells two different 

antibody panels were used. Panel 1: CD73 PE (Biolegend), CD44 APC-Cy7 

(Biolegend), CD9 PerCP-Cy 5.5 (BD Biosciences) and CD81 APC (Miltenyi) and 

Panel 2: CD9 PerCP-Cy 5.5 (BD Biosciences), CD63 Brilliant violet 421 (Biolegend), 

CD81 PE/Cy7 (Biolegend), Tumor susceptibility gene 101 (TSG101) and Calnexin 

Alexa fluor 647 and Alix PE (Santa Cruz). Following incubation time, three 

consecutive washing steps were performed with 200µl of 2% BSA solution. Prior to 
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measurement, 300µl of PBS were added and beads measured immediately at BD 

FACSCanto II (BD Biosciences). Unstained beads were used as a negative control, 

together with beads that were stained in the same manner as the EV samples. EV 

that were not stained with any antibody were used to discriminate positive and 

negative population signals. Therefore, starting from bead-EV complex, it was 

possible to define EV singlets and subsequently identify positively stained EV for 

specific markers. A representative picture of this gating strategy is reported in Figure 

7.  

 

 
 

Figure 7 Representative gating strategy on EVs with Aldehyde/Sulfate latex beads, 4% w/v (4µm). Bead-EV 

complex is gated first on SSC vs FSC followed by doublet discrimination with FSC-A vs FSC-W followed by SSC-

A and SSC-W, to collect single bead events. Subsequently, EV specific gate was performed on EV unstained 

control to determine positive population of the specific markers.  

 

 

CD9 magnetic bead coupling 

Purified EVs were coupled to anti-human CD9 beads for flow detection (Exosome-

Human CD9 beads). 20µl of CD9 beads were washed with 1 ml assay buffer (PBS + 
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0.1% BSA sterile filtered 0,22µm) (BSA), then placed in a magnetic separator. EV 

were added 1:10 to Assay buffer and incubated overnight at 4°C, end-over-end 

mixing. On day 2, bead-bound exosomes were isolated with a magnetic separator 

and washed several times prior to the EV staining. To assess antigen expression, 

samples were incubated in the dark with the appropriate combination of monoclonal 

antibodies during 45 min at 1000rpm. To evaluate and assess the strategy for bead-

based mediated EV characterisation and to evaluate the specific markers present on 

ASC and HCT116-derived EVs and cells, the same antibody panels (Panel 1 and 

Panel 2, correspondingly) as the ones used with the aldehyde/latex beads, were 

tested. After incubation the excess antibodies were washed with assay buffer and 

retrieved through magnetic separation. Then samples were diluted in PBS and 

proceeded with downstream analysis measuring at BD FACSCanto II. EV-bead 

samples were consecutively loaded and measured. A minimum of 50,000 events 

were acquired and recorded at low speed. To test for antibody auto-fluorescence or 

any aggregate formation, we used sterile 0.22 µm filtered PBS as a negative control. 

PBS control sample was stained in the same manner as the EV samples. EV that 

were not labelled with any antibody were used to discriminate positive and negative 

population signals. 

Therefore, it was possible to define bead-EV complex and subsequent positively 

stained EV for specific markers. A representative picture of this gating strategy is 

reported in Figure 8. 
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Figure 8 Representative gating strategy on EVs with CD9 magnetic beads. Bead-EV complex is gated first 

on SSC vs FSC. Subsequently, EV specific gate was drawn on EV unstained control to determine positive 

population of the specific markers. 

 

3.2.2.2.4 Modulatory assays of MSC-derived products 
 

3.2.2.2.4.1   Conditioned media assay 
 

These assays were performed with conditioned media (CM) from ASC in culture 

during 72 hours. Following PBMC thawing and staining with the proliferation dye 

Cytotell Green (ATT Bioquest), they were resuspended in ASC CM and seeded 

directly in a 96-well plate to assess CM potential immunomodulatory properties as 

described in section 3.2.1.7. After 5 days, assays were harvested and PBMC 
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proliferation activity was assessed in the FACS. Conditioned media (CM) was 

retrieved and stored at -80°C for further analysis. 

Another set of assays were performed with CM from previous cocultures (5 days) 

that was diluted 1:2 in new full RPMI 1640- Hence, newly thawed PBMC were 

resuspended and seeded to investigate the potential inhibitory effect of this CM on 

PBMC proliferation inhibition. 

3.2.2.2.4.2   EV assay 
 

Cytotell-green-stained and PHA stimulated PBMC were seeded as described before 

directly in a 96-well plate. After thawing, extracellular vesicles (EV) originated by 

2x106 producer cells were added to the specific wells of the plate to assess their 

immune strength as for the previously described conditioned media assay. 

  

3.2.2.3 Statistical analysis 

 

Data were shown represented as box-and-whisker plots. The box corresponds to the 

IQR and the whiskers depict the minimum a maximum values. Regarding the NTA 

analysis data, results are depicted as box-whisker plots and show IQR, whiskers in 

this case correspond to 10th and 90th percentile. In addition, the median is 

represented as a line within the boxes in all representations. 

 

Dotted lines at 1 represent the normalisation referred to the respective assay positive 

control. Two-way ANOVA and Tukey´s or Sidak´s post-hoc multiple comparisons test 

were performed. For all statistical tests, p value differences <0.05 were considered 

as statistically significant. The number of replicates performed for every experiment is 

indicated in the corresponding Figure legend as n=# (# replicates). Statistical 

analysis and visualisation of results were performed using GraphPad Prism software 

v6 or 7. 
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3.2.3 Evaluation of standardised ultracentrifuge-based EV isolation protocol 

 

3.2.3.1 HCT116 cell culture and detection 

 

The colorectal cancer cell line HCT116 was obtained from European Collection of 

Authenticated Cell Cultures (ECACC) and cultured in incubators with 5 % CO2 

atmosphere at 37 °C. Cell morphology was constantly monitored by microscopic 

observation (AxioVert100 Zeiss). For marker expression characterisation, HCT116 

cells were stained with the same monoclonal antibody panel than HCT116-derived 

EV as described in section 3.2.3.3 EV characterisation – FACS. The gating strategy 

applied to calculate positivity of cell surface marker expression is reported in Figure 

9. 

 

3.2.3.2 EV isolation  

 
In the first round cells were cultured by Fabia Fricke, in the second round cells were 

cultured in our laboratory and then CM was accordingly transferred to the 

collaborative partners to perform all the ultracentrifugation runs in parallel. 

 

17x104 (first round) and 18x104 (second round) cells/cm2 were seeded in T175 flasks 

(13xT175, first round; 45x T175, second round). After overnight culture, the cells 

were washed twice with phosphate-buffered saline (PBS) and cultured for 24 h in 20 

ml/ T175 flask DMEM-F12 medium containing 1 % EV-depleted FBS (depleted from 

20 % FBS via overnight centrifugation at 100,000 x g at 4 °C). Cell conditioned 

medium (CCM) was collected, pooled, split into 50 ml Falcon tubes and distributed to 

the participating laboratories. In the first isolation round, the medium was stored at 4 

°C and processed within 12 h in each laboratory. In the second isolation, the medium 

was frozen at -80 °C, and thawed prior to EV isolation. EV isolation was performed 

by differential centrifugation steps: first, at 300g for 10 min at 4 °C, second at 2,000g 

for 10 min at 4 °C, third 10,000g for 40 min at 4 °C and fourth 100,000g for 2 h at 4 

°C to pellet the EVs. Before the fourth centrifugation step, CCM was filtered using a 

0.22 μm pore size filter. This ultracentrifugation step was performed twice in the first 

isolation and once in the second isolation run. For each centrifugation, fresh tubes 

were used. In the first isolation, EV pellets each obtained from 12 ml CCM (one tube) 

were resuspended in 30 and 50 µl PBS for TEM and NTA, respectively. EV pellets 
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obtained from 24 ml CCM (two tubes) were resuspended in a total volume of 50 µl 

radioimmunoprecipitation assay (RIPA) buffer supplemented with protease inhibitor. 

In the second isolation, EV pellets from 34 ml CCM (two tubes) were resuspended in 

100 µl PBS, where 45 µl were subjected to Nanoparticle Tracking Analysis (NTA), 25 

µl for transmission electron microscopy (TEM) and 30 µl for fluorescence-activated 

cell sorting (FACS). For Western blot analysis, EV pellets from the 170 ml CCM (ten 

tubes), were resuspended in 100 µl RIPA buffer supplemented with protease 

inhibitor.  

 

3.2.3.3 EV characterisation 

 

For EV sample characterisation, certain methods were performed in specific 

laboratories. NTA measurements were performed by Dr. Thomas Worst (first round) 

and Lena Hoffmann (second round) from the Urology department 

Universitätsklinikum Mannheim. TEM characterisation was performed by Fabia Fricke 

from the German Cancer Research Centre (DKFZ) Im Neuenheimer Feld with 

assistance for image acquisition from Ulrike Ganserer. WB and FACS 

characterisation was performed in our laboratory.  

3.2.3.3.1 Nanoparticle tracking analysis (NTA) 
 

In the first round, two microliters of concentrated EV suspensions were diluted in 

sterile-filtered PBS 1:100 and visualized using the NanoSight LM10 NTA device 

(Malvern Instruments). Each sample was measured 5 times for 45 s (Screen Gain 

1.0, camera level 12) with at least 200 valid tracks per video to obtain particle 

concentration and size distribution. In the second round, one microliter of 

concentrated EVs was diluted in sterile-filtered PBS in a dilution range between 

1:2000 and 1:4000 and visualized using the ZetaView (sensitivity 80 %, shutter 100, 

11 positions, 2 cycles).  

3.2.3.3.2 Transmission electron microscopy (TEM) 
 

Five microliters of EV suspensions were left to settle on 100 mesh formvar-coated 

copper grids (Plano), contrasted with 2 % aqueous uranyl acetate (negative stain; 

Serva), air-dried and visualized using a JEM-1400 transmission microscope (JEOL) 

equipped with a Tietz 2 K digital camera (TVIPS, Gauting) at 80 kV.  
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3.2.3.3.3 Protein extraction and western blotting 
 

Western blot characterisation was performed as described in section 3.2.2, within the 

EV characterisation chapter. Proteins extracted from HeLa and HCT116 cells were 

used as cellular controls. Blots were probed with the following primary antibodies: 

Anti-TSG-101 (1:500 dilution) (Clone 4A10; MA1-23296), Anti-Alix (1:500 dilution) 

(Clone 3A9; 634501_02), Anti-CD81 (1:300 dilution) (Clone 5A6; 349501_02), and 

Anti-CD63 (without boiling treatment) (1:300 dilution), Anti-CD9 (1:300 dilution), 

Calnexin (1:500 dilution) (Clone MX-49.129.5 (sc-5274), Clone C-4 (sc-13118) and 

Clone AF18 (sc-23954) respectively) overnight at 4°C. After incubation, membranes 

were washed three times with TBS-T and subsequently incubated with the secondary 

antibody dilution: ECL Anti-mouse IgG HRP Linked whole Ab (1:2000 dilution) for 1 

hour at room temperature followed by washing. Blots were then developed using 

WesternBright ECL and protein bands were detected using the FusionCapt 

Advanced Solo 4. 

3.2.3.3.4 Flow cytometry (FACS) 
 

FACS measurement of HCT116-derived EVs and cells was performed with BD FACS 

Canto II, using BD FACSDiva software. HCT116-EVs were captured on anti-human 

CD9 beads for flow detection as described in section 3.2.2 where FACS 

characterisation is described. Antibodies CD9 PerCP-Cy 5.5 (BD Biosciences), CD63 

Brilliant violet 421 (Biolegend), CD81 PE/Cy7 (Biolegend), TSG101 and Calnexin, 

both Alexa Fluor 647 and Alix PE (Santa Cruz) were used. After washing, beads 

were retrieved through magnetic separation.  EV-bead samples diluted in PBS were 

measured acquiring minimum of 50,000 events at low speed. Sterile 0.22 µm filtered 

PBS and EVs not labelled with any antibody served as controls. An extracellular 

staining of cells incubated for 20min with CD9, CD63 and CD81 and an intracellular 

staining (30min fixation in IC fixation buffer, wash with 1x permeabilisation buffer and 

stain for 30min in 1x permeabilisation buffer) for TSG101, Alix and Calnexin was 

performed on cells. A representative picture of this gating strategy is reported in 

Figure 9. 
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Figure 9 Representative gating strategy for comparative study EV measurement on HCT116 EV or cells. 

To assess positivity on HCT116 derived EV, first bead-EV complex is gated on SSC vs FSC. Subsequently, EV 

specific gate was drawn on EV unstained control to determine positive population of the specific markers. To 

check for positivity on HCT116 cells, cells are gated on SSC vs FSC to exclude debris, followed by a live/dead 

gating with the specific viability dye, to define the Live population. Then gate was performed on unstained control 

to determine positive population for the tested markers. 

 

 

3.2.3.4 Statistical analysis 

 

Results of the NTA analysis were analysed using one-way ANOVA and Tukey’s post-

hoc test with p<0.05 considered as statistically significant. Results depicted as box-

whisker plots show interquartile range; whiskers: 10th and 90th percentile; line: 

median. GraphPad Prism software v6 or 7 was used for statistical analysis and 

visualisation of results.  
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4 RESULTS 
 

4.1 Immunomodulatory potential of different human MSC sources 

 

4.1.1 Inhibition of PBMC proliferation is higher in ASC cocultures, 

independent of their passage  

 

In order to verify MSC immunomodulatory capacities, direct cocultures with 

stimulated PBMC were established. MSC from three different sources: bone marrow 

(BM), cord blood (CB) and adipose-derived (ASC), from passage 3 (P3) and passage 

5 (P5) at different ratios (1:5, 1:10, 1:20), were seeded and compared. Stimulated 

and not stimulated PBMC or CD4 T cells were seeded as controls in monocultures in 

96-well plate. Proliferation (or inhibition thereof) was measured by the rate of dye 

dilution (Cytotell green and calculated division index). After 5 days, PHA stimulated 

(+PHA positive control) PBMC or CD4 cells had greatly proliferated as denoted by 

the elevated division index values (dotted line at 1: normalisation of values to positive 

control).  

 

However, when comparing the three MSC sources, ASC appeared to be more 

immunosuppressive than CB (ratio 1:5 ASC vs CB, p<0.001, 1:10 ASC vs CB, 

p<0.0001 and 1:20: ASC vs CB, p<0.01, 2-way ANOVA) (Figure 10 A). The tendency 

was kept amongst all ratios, nevertheless, ASC and BM inhibitory potential was only 

significant in 1:10 ratio (p<0.01). In all conditions PBMC division index is significantly 

reduced with respect to the +PHA control (p<0.001), except CB 1:20 ratio (p<0.01) 

(Figure 10 A). MSC inhibitory strength was passage independent, as differences 

amongst P3 and P5 cocultures were not significant (n.s.) (Figure 10 B). Division 

index from all conditions was significantly reduced (p<0.0001) (ASC vs CB, p<0.001), 

although no differences were observed when comparing enriched CD4 T cells and 

whole PBMC cocultures (n.s.) (Figure 10 C). As shown, in coculture conditions, 

PBMC or CD4 cell division index was significantly reduced in all conditions when 

compared to the maximum proliferation (p<0.0001), demonstrating that MSC 

presence in the culture were strong effectors of PBMC or CD4 cell proliferation 

inhibition, independent of MSC source or passage. 
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Figure 10 ASC have a stronger inhibitory activity than BM or CB-MSC, independent of passage number 

and CD4 or PBMC population. (A) PBMC division index in cocultures with BM, CB and ASC in three different 

ratios (1:5, 1:10 and 1:20), depicts ASC as stronger immunosuppressors. (B) MSC inhibitory potential in P3 and 

P5 does not differ (n.s., 2-way ANOVA). (C) CD4 T cell and PBMC division index is not impacted (n.s., 2-way 

ANOVA). Dotted lines represent the normalisation referred to the positive control (only PBMC stimulated with 

PHA: +PHA control). Box: interquartile range; whiskers: minimum to maximum; line: median. Symbol § represents 
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the significance of the individual conditions with respect to their +PHA control (§: p<0.0001, 2-way ANOVA). n= 4 

to 8, different MSC isolates and different PBMC isolates. 

 

 

4.1.2 Tryptophan addition to cocultures abrogates MSC mediated PBMC 

inhibition, which is correlated with an increase of IDO and kynurenine 

secretion 

 

IDO has been claimed to be amongst the main mechanisms involved in MSC-

mediated immunomodulatory suppression of T cell proliferation [57, 58]. 

To assess MSC immune modulatory strength potential differences when pre-

stimulated and non pre-stimulated with IFNγ, direct immunosuppression assays with 

stimulated PBMC as control, were performed.  

PBMC division index was highly reduced in presence of non pre-stimulated IFNγ 

MSC (-IFNγ condition) establishing ASC as the most inhibitory. Interestingly, when 

comparing this condition to the pre-stimulated IFNγ MSC condition, no difference in 

inhibitory potential were observed, confirming that IFNγ priming of MSC does not 

increase their suppressive capacities to any extent (n.s., 2-way ANOVA) (Figure 11 

A). Arguing that tryptophan depletion may be involved in this mechanism, we added 

tryptophan to the culture medium. In fact, additional tryptophan led to the abrogation 

of PBMC inhibition (BM and ASC: p<0.05 and CB: p<0.001). To verify the effects of 

the kynurenine pathway, we measured IDO expression in IFNγ treated MSC 

supernatants and kynurenine secretion in coculture supernatants. We observed that 

only upon IFNγ stimulation were MSC able to produce substantial amounts of IDO. 

ASC IDO expression was the most noticeable, (p<0.0001), followed by BM and CB 

(ASC vs CB, p<0.0001 and ASC vs BM, p<0.01). (Figure 11 B). Tryptophan addition 

further enhanced the IFNγ-induced IDO levels in MSC (ASC vs CB and BM, 

p<0.0001, 2-way ANOVA). Quantifying kynurenine in the coculture supernatants 

gave similar results, where no kynurenine was detectable in coculture supernatants 

from non pre-stimulated IFNγ MSC (-IFNγ condition), regardless of the addition of 

tryptophan in the culture. In +IFNγ –Tryp condition, a slight increase in kynurenine 

production was detected (n.s.). However, upon tryptophan addition, kynurenine 

values were significantly increased (p<0.0001). BM presented higher values than 

MSC from other sources (BM vs CB, p<0.0001 and BM vs ASC, p<0.05) (Figure 11 

C). No kynurenine was detected in PBMC stimulated or not stimulated monoculture 

controls. 
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In conclusion, we found that in presence of IFNγ, MSC suppressive capacities 

remain unaltered, and although IDO secretion is highly promoted, kynurenine values 

remain barely undetectable. Tryptophan addition on the other hand, effectively 

abrogated MSC mediated PBMC inhibition. Once ASC were identified as the more 

immunosuppressant of the three MSC types, we progressed our experiments with 

only this source of MSC from this point forward. 

 

4.1.3 Epacadostat abolishes PBMC inhibition and decreases IDO expression 

and kynurenine secretion 

 

To investigate whether MSC inhibitory potential was mediated by IDO enzymatic 

activity, we added the IDO inhibitor Epacadostat (Epac). In ASC:PBMC cocultures in 

the presence of Epac, PBMC division index was greatly increased with respect to 

their control, leading to a significant PBMC overstimulation independent of IFNγ (-

IFNγ: +PHA –Epac vs +PHA +Epac, p<0.001; +IFNγ: p<0.0001) (Figure 11 D). 

However, this inhibition was only present in the conditions with stimulated PBMC, in 

fact, when PBMC were not stimulated, the addition of Epac had no effect on PBMC 

division potential (n.s.).  

The analysis of IDO expression revealed reduced levels of IDO in the presence of 

Tryp and Epac, when compared to its control without Epac addition (p<0.0001) 

(Figure 11 E). Despite this reduction, IDO levels were comparable to levels with only 

IFNγ stimulation.  

Kynurenine levels were completely abolished, indicating that despite elevated IDO 

levels, its activity in presence of Epac inhibitor is abrogated (p<0.0001) (Figure 11 F). 

This effect was present both in conditions with stimulated and non stimulated PBMC, 

although the difference between the condition in which the inhibitor was present or 

absent was slightly lower (p<0.001). No differences were observed in IFNγ stimulated 

and not stimulated conditions.  
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Figure 11 IDO expression is induced by IFNγ stimulation and further increased with the addition of 

tryptophan, which in turn largely abrogates MSC inhibitory potential. (A) MSC:PBMC cocultures were set 

with BM, CB and ASC cells. Addition of IFNγ and Tryp were tested. n= 5 to 8. (B) IDO production is significantly 

increased when MSC are stimulated with IFNγ. n=5. (C) Kynurenine concentrations after IFNγ addition are 

increased. n=5. (D) ASC:PBMC cocultures were set with the addition of IDO inhibitor, Epacadostat.. n=4. (E) IDO 

secretion is reduced when adding Epacadostat (p<0.0001, 2-way ANOVA), n=4. (F) Kynurenine concentrations 

are completely abolished in presence of Epacadostat. n=4. Box: interquartile range; whiskers: minimum to 

maximum; line: median. Dotted lines represent the normalisation referred to the positive control. Asterisks 

depicted at the top of the lines represent the significance of the individual value with respect to their own condition 
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control. Symbol § represents the significance of the individual conditions with respect to their positive control (§: 

p<0.0001, 2-way ANOVA). Lines with asterisks depict the significance between two conditions.  

 

 

4.1.4 Human PBMC proliferation is inhibited greater with human than with rat 

MSC, however, the latter inhibits blood rat PBMC to a higher extent 

 

The next aim was to compare human and rat PBMC and MSC in allogeneic and 

xenogeneic immunosuppression assays to verify whether human MSC can be 

immunomodulatory even in a xenogeneic setting.  

Human PBMC cocultures were set with both human MSC and rat MSC to test human 

PBMC specific inhibition. Verifying the previously shown data, human MSC inhibited 

human PBMC proliferation dose-dependently (1:5 and 1:10, p<0.01; 1:20, n.s.; 

Figure 12 A). Rat MSC, conversely, revealed a significantly reduced hPBMC 

inhibitory action compared to hMSC effect (1:5, 1:10, p<0.001). 

Comparing rat PBMC and SMC inhibition by both human MSC and rat MSC revealed 

the lack of hMSC inhibitory potential to reduce division index of either rat MC 

population (p<0.01 at least; Figure 12 B). Rat MSC on the other hand reduced rat 

PBMC division index much more than SMC (n.s., 2-way ANOVA). 

These data clearly show, that both human:human and rat:rat allocultures presented 

immunosuppression, while the xenocultures were not or only marginally inhibited. 

 
4.1.5 Kynurenine secretion is prominently higher in human PBMC 

immunosuppression assay 

 

So far our data has shown that allogeneic MSC were able to induce PBMC division 

inhibition, in contrast to cocultures with xenogeneic MSC. As in the human setting, 

IDO and the kynurenine pathway were largely involved, we also analysed the 

coculture supernatants of allo- and rat xeno-cocultures. 

In human immunosuppression assays, Kyn secretion was the highest (p<0.0001, 

Figure 12 C). However, in presence of rat MSC, Kyn levels were not elevated. 

Likewise, in rat cocultures with PBMC and SMC, no kynurenine values were 

detected, except for negligible levels in stimulated PBMC monoculture control 

(+ConA) (n.s.; Figure 12 D). 

These data are in line with our hypothesis, suggesting that human MSC (ASC) 

inhibitory effector IDO mediates Tryp degradation and formation of Kyn, and further 
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supporting previous notions that murine MSC use other mechanism for 

immunosuppression, most probably nitrite production.  

 

4.1.6 Cultures with rat PBMC exert nitrite production further than SMC 
 

Thus, we investigated nitrite concentration in both human and rat 

immunosuppression assays, as it is a stable breakdown of NO and indicative of NO 

activity [51]. Unexpectedly, the amounts of nitrite found in rat MSC:human PBMC 

coculture condition were extremely high, ranging from 1 to 30µmol/l (p<0.0001; 

Figure 12 E). Nonetheless, in coculture supernatants from rat PBMC and SMC, 

values for human and rat MSC were in line with those presented by the respective 

controls (Figure 12 F). Overall, rat PBMC reveal slightly higher values than SMC, but 

no major differences were found (n.s.). 

In contrast with our starting hypothesis, these data showed that xenogeneic rat 

MSC:human PBMC coculture is where the utmost nitrite concentration release were 

found, diverging from the lower levels found in rat allogeneic coculture condition.  
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Figure 12 ASC are able to inhibit human PBMC proliferation, but not rat PBMC, however, rat MSC slightly 

suppress human PBMC and inhibit blood-derived rat PBMC to a higher extent than rat SMC. (A) Cocultures 

with hPBMC and hMSC (ASC) and rMSC. ASC inhibited human PBMC in a dose dependent manner. n=5. (B) Rat 

PBMC and SMC cocultures with human MSC and rMSC. n=8 to 10. (C) Kynurenine concentrations in 

hPBMC:ASC or rMSC coculture supernatants. n= 3 to 10. (D) Kynurenine concentrations in rat PBMC or 

SMC:ASC or rMSC coculture supernatants. n=5 (E) Nitrite concentration measured in cocultures with hPBMC. 

n=3 to 10. (F) Nitrite concentrations in rat PBMC or SMC:ASC or rMSC coculture supernatants. n=4 to 6. Box: 

interquartile range; whiskers: minimum to maximum; line: median. Dotted lines represent the normalisation 
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referred to the positive control. Asterisks depicted at the top of the lines represent the significance of the individual 

value with respect to their own control. Lines with asterisks depict the significance between two conditions. 

 

 

4.1.7 ASC are more immunosuppressive than ABCB5 in human allo-coculture, 

whereas ABCB5 are stronger inhibitors in xeno-coculture settings 

 

Comparison of ABCB5 and ASC immunomodulatory strength was assessed in 

immunosuppression assays. Results showed stronger ASC inhibition of human 

PBMC proliferation compared to ABCB5 cells (n.s., Figure 13 A). These data were in 

consonance with the higher kyn values secreted in conditioned media of ASC allo- 

proliferation assays (ABCB5 vs ASC, p<0.001, Figure 13 B). Values were 

significantly higher compared to those of ABCB5 allo cultures, confirming the 

involvement of IDO mediated immunomodulation (p<0.001). Verifying the lack of NO 

immune modulation, nitrite values of both ABCB5 and ASC allo-coculture were 

negligible (Figure 13 C). 

Contrary to the previous results, showing no inhibition of rat PBMC and SMC by 

ASC, ABCB5 cells inhibited both PBMC and SMC (SMC, ABCB5 vs ASC, p<0.0001, 

Figure 13 A). Kynurenine levels were insignificant in ABCB5 and ASC xeno-

coculture, denoting significantly reduced values with respect to human allo-coculture 

(p<0.0001, Figure 13 B). Nitrite secretion was abundantly reduced in ASC xeno 

cultures, however, in ABCB5 xeno cultures levels were undetectable (p<0.0001, 

Figure 13 C). 
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Figure 13 ASC are stronger immunosuppressors in allo-cocultures and ABCB5 in xeno-cocultures. (A) 

Human PBMC/rat PBMC/rat SMC:ABCB5/ASC cocultures. ASC inhibited human PBMC to a higher extent than 

ABCB5 cells. n=5 to 10. (B) Kynurenine concentration measurements in coculture supernatants. n=5 to 10. (C) 

Nitrite secretion measured in coculture supernatants. n=5 to 10. Box: interquartile range; whiskers: minimum to 

maximum; line: median. Dotted lines represent the normalisation referred to the positive control. Asterisks 

depicted at the top of the boxes represent the significance of the individual value respect to the positive control. 

Lines with asterisks depict the significance between two conditions. 
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In short, ASC have demonstrated to be the strongest immunosuppressors followed 

by BM- and CB-MSC. They inhibit PBMC and CD4 T cell proliferation to the same 

extent in a distinct ratio dependent manner. Moreover, their inhibitory strength is 

passage independent. These data were supported by the highest IDO secretion 

levels in ASC, upon IFNγ stimulation. Furthermore, we elucidated IDO-kynurenine to 

be the principal suppressive mechanisms by which MSC inhibit PBMC proliferation. 

Epacadostat addition to the cultures confirmed the involvement of IDO mechanism, 

observing an abrogation of MSC inhibitory actions. Nitric oxide was confirmed not to 

be involved in human MSC-mediated immunosuppression by monitoring nitrite levels 

in coculture supernatants. 

Furthermore, we validated that both human and rat MSC, when in allo-cocultures, 

strongly inhibit T cell proliferation. In xeno-cocultures with human MSC, ASC were 

unable to inhibit rat PBMC and SMC proliferation. However, ABCB5 cells 

successfully suppressed both sources of rat mononuclear cells (MC). Rat MSC on 

the other hand inhibited human PBMC proliferation. We confirmed that murine and 

human MSC immunomodulation are driven by different mechanisms, murine MSC 

rely mostly on NO while human MSC rely on IDO-mediated system.  

4.2 MSC-derived products modulatory functions 

 

Having shown that human ASC inhibit human PBMC proliferation to a large extent 

involving IDO and the kynurenine pathway, we were further interested in the involved 

mechanisms. We asked ourselves to which extent conditioned media and possibly 

extracellular vesicles were involved. First, we had to establish EV isolation and 

characterisation.  

 

The typical characterisation methods, their upsides and downsides have been 

broadly described in Introduction section 1.2.1. Thus, my main task in the framework 

of the comparative study was to establish the FACS method of EV characterisation. 

More detailed characterisation results will be shown subsequently within the 

interlaboratory study chapter 4.3. For this aim several bead-EV combinations were 

assessed. 
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4.2.1 ASC-derived EV flow cytometry measurement favours the use of 

aldehyde/sulfate latex bead-EV coupling  

 

ASC-derived EVs bound to CD9 beads exhibited overall low positivity (CD9 

(0.032%), CD73 (0.067%) and CD44 (0.60%)), for the majority of markers tested, 

aside from CD81 (71.8%) that had slightly elevated expression values (Figure 14 B). 

Aldehyde bead coupling to ASC-EV expression for CD9, CD73 and CD44 was 

4.51%, 3.74% and 7.18%, respectively. CD81 expression was slightly higher (37.5%) 

(Figure 14 A).  

Contrarily, HCT116-derived EVs bound to CD9 beads presented overall higher 

marker expression in comparison to ASC-EVs, being CD9 (98.1%), CD81 (99.6%) 

and CD44 (97.9%) highly expressed, and CD73 (0.065%) almost absent (Figure 14 

D). Aldehyde bead coupling reported suggestively lower general expression 

compared to CD9 bead coupling, CD9 (3.37%), CD73 (1.15%), CD81 (4.44%) and 

CD44 (1.25%) (Figure 14 C), which strongly suggests CD9 beads to promote a 

stronger marker signal detection in flow cytometry measurements. Markers were 

tested on both cell types, illustrating an overall expression superior than 98% 

positivity (data not shown).  

These data suggest that different bead types are required for EV characterisation for 

different cell lines, based on the expression of the respective markers: ASC-derived 

EV work best with Aldehyde/sulfate latex beads and HCT116-derived EV with CD9 

magnetic human beads.  
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Figure 14 FACS-based characterisation of ASC and HCT116-derived EV. Flow cytometry histograms 

depicting the relative fluorescence/marker expression intensity of ASC-derived EV (blue line) coupled with 

Aldehyde latex beads (A) and CD9 magnetic beads (B) depicted against unstained EV particle control (red line). 

Corresponding staining for marker expression in HCT116-derived EVs coupled with Aldehyde latex beads (C) and 

CD9 magnetic beads (D) was done. Extracellular staining with CD9, CD81, CD73 and CD44 was performed for all 

samples. 

 

4.2.2 ASC-derived EV present typical EV characteristics which are unaffected 

by IFNγ priming 

 

Speculating that IFNγ MSC prestimulation may modify EV production and function, 

EV were isolated from ASC cultured in presence and absence of IFNγ directly after 

seeding, during 72 hours. Media in absence of MSC was also conditioned for 72 

hours and used as isolation control for EV. ASC-derived EV were measured in the 

NTA, counts and full size profiles were determined. NTA analysis showed EV size 

medians of 115.1 ± 1.8 nm (-IFNγ), 111.1 ± 2.2 nm (+IFNγ), in EV isolates, and 113.1 

± 4.3 nm (Ctrl -IFNγ), 115.2 ± 4.1 nm (Ctrl +IFNγ) in control EV samples. Significant 

differences were seen amongst EV isolates from different donors (100, 101, 102 or 

112) within one condition (i.e. EV +IFNγ condition), with p values ranging from 0.05 to 

0.0001 (Figure 15 A). Nonetheless, EV size profiles did not differ when comparing 

different conditions amongst each other (n.s.).  

 

There were significant differences in EV counts (=yields) amongst different donors, 

portraying donor-dependent variations, similarly to MSC donor variation described 

previously (EV +IFNγ: 101 vs 112, p<0.01; EV -IFNγ: 100 vs 112 and 101 vs 112, 

p<0.01; Ctrl EV +IFNγ: 101 and 102 vs 112, p<0.01; Ctrl EV -IFNγ: 100 vs 102, 

p<0.01, 101 vs 102 and 112, p<0.05, 2-way ANOVA) (Figure 15 B). However, results 

revealed no differences in particle yield between EV derived from IFNγ 

preconditioned and non-preconditioned MSC, when comparing isolates from different 

conditions (n.s.), thus we conclude that IFNγ pre-stimulation does not alter the EV 

yield to any extent.  
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Figure 15 NTA characterisation of EV. (A) NTA size profile (diameter) of isolated EV +IFNγ and – IFNγ. n=4. 

(B) Full size profiles (Yield/ml cell conditioned media against particle size) for EV isolated from +IFNγ pre-

stimulated and not (-IFNγ) pre-stimulated MSC. Box: interquartile range; whiskers: 10th and 90th percentile; line: 

median. Lines with asterisks depict the significance between two conditions. 

 

For single vesicle analysis, TEM visualisation was performed. Images showed 

spherical, cup-shaped EV isolates, which are typically for EV concentrates isolated 

by ultracentrifugation. We tested multiple ASC donor EV samples and could detect 

no major differences amongst preparations (Fig 16 A, representative images from 

two ASC-derived EV samples). As controls we measured sterile-filtered PBS (0.22µm 

filter), and EV media control in absence of ASC. As expected, in the former, we 

detected no particles. The latter presented background noise, hypothesised to be 

protein aggregates remaining from the serum present in the media.  

For specific EV characterisation, marker proteins are characterised by either western 

blot or flow cytometry. Once established the best bead-EV coupling (see section 

4.2.1), we used FACS analysis, given that it requires much lower amount of EV 

material. We tested a broader panel of antibodies and compared EV specific marker 

expression to their cells of origin. Several groups reported surface protein such as 

the tetraspanins CD63, CD9 or CD81 to be common EV surface markers [152-155]. 

We therefore tested these as extracellular markers and Alix, TSG101 and Calnexin 

as intracellular markers. EV bound to Aldehyde beads showed positive staining for 

A 

 

B 
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the typical EV surface markers CD63 (27.2%) and CD81 (29.1%) (Figure 16 B). Low 

amount of staining was observed for Calnexin (13.5%), however, CD9, TSG101 and 

Alix (0.47%, 1.35% and 6.55%, respectively) staining were lower than initially 

expected. All markers were validated to be expressed in ASC cells either by extra- 

(CD9 (99.4%), CD63 (90.8%), CD81 (100%)) or intracellular staining (Calnexin 

(99.3%), TSG101 (78.6%), Alix (97.5%)) (Figure 16 C).  

 

In summary, our isolates present the characteristic size, morphology and markers of 

EV derived from MSC. Their concentration and mean sizes are unaffected by the 

preconditioning of MSC with IFNγ. 
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Figure 16 Further characterisation of EV. (A) Representative TEM analysis showing spherical and cup-shaped 

EV (red arrows) isolated from different ASC donors (top and bottom left); PBS control (top right) shows absence 

of particles while Control EV media (bottom right) shows only possible traces of protein aggregate remaining, but 

absence of EV particles. Scale bar 200 nm. (B) Flow cytometry histograms depicting the relative 

fluorescence/marker intensity of ASC-derived EVs isolates (blue line) against unstained EV particle control (red 

line). (C) Corresponding marker expression in ASC cells (extracellular staining for CD9, CD63 and CD81 and 

intracellular staining for Alix, TSG101 and Calnexin). 
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4.2.3 Direct and transwell coculture inhibit the proliferation of stimulated 

PBMC via IDO-Kynurenine pathway 

 

In chapter 4.1, we have shown that ASC inhibit T cell proliferation via the IDO-

kynurenine pathway. We were interested in understanding whether a direct cell-

mediated communication is required to induce this effect or whether it functions via 

paracrine factors or EV. We performed MSC:PBMC cocultures with MSC pre-treated 

and not with IFNγ and tested the ASC inhibitory potential on stimulated PBMC both in 

a direct and transwell culture. After 5 days, coculture conditions and their respective 

controls were harvested, and supernatants were retrieved and aliquoted for further 

testing. In all conditions, PBMC stimulation was significantly inhibited (p<0.0001, 2-

way ANOVA), demonstrated by the low division index values. No major differences 

were observed amongst cocultures performed in either direct or transwell setting, 

indicating that direct cell-cell interaction is not essential for MSC to exert their 

immune modulation (n.s.) (Figure 17 A). MSC inhibitory potential was not intensified 

by the prior priming with IFNγ, not conferring MSC any further beneficial modulatory 

strength.  

We were interested in validating the immune assay proliferation data with the 

kynurenine measurements on coculture supernatants. In fact, we observed a strong 

correlation between PBMC inhibition and high kynurenine values (p<0.0001, 2-way 

ANOVA) (Figure 17 B) in the coculture conditions both in direct and transwell 

cocultures. MSC prestimulation with IFNγ showed no difference in kynurenine 

secretion (n.s).   

Next, we tested MSC conditioned media (CM) and extracellular vesicle modulatory 

capacities on stimulated PBMC. We observed that CM from non IFNγ primed MSC, 

and EVs from either IFNγ primed or non primed MSC, had no effect on PBMC 

inhibition, exerting even an overstimulation of their division (n.s.) (Figure 17 C). In 

contrast, CM from IFNγ primed MSC, showed an intense PBMC proliferation 

inhibition, marked by the low PBMC division index values (p<0.0001, 2-way ANOVA). 

Following the findings that CM +IFNγ was successful in inhibiting PBMC proliferation, 

we performed immunosuppression assays with addition of the inhibitor Epacadostat. 

Surprisingly, we observed that even in the presence of Epacadostat, PBMC 

proliferation was not restored, and division index values remained similar to those of 

CM +IFNγ (n.s.) (Figure 17 D), although only this condition was significantly different 

with respect to the control condition (p<0.05, 2-way ANOVA). 
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Figure 17 PBMC were equally inhibited in direct and transwell cocultures, although EV failed to suppress 

their proliferation regardless of IFNγ pre-stimulation. (A) PBMC division index evaluation in direct and 

transwell culture conditions. n=4 (B) Kynurenine concentrations measured in direct and transwell coculture 

supernatants. n=4 (C) Cocultures with CM and EV isolated from stimulated and not stimulated ASC. n=4 (D) 

Cultures with CM +IFNγ together with the addition of IDO inhibitor Epacadostat. n=4. Box: interquartile range; 

whiskers: minimum to maximum; line: median. Dotted lines represent the normalisation referred to the positive 

control. Asterisks depicted at the top of the lines represent the significance of the individual value with respect to 

their own control. Lines with asterisks depict the significance between two conditions. 
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4.2.4 Stimulated PBMC were not inhibited by conditioned media (CM) 

transferred from a previous coculture  

 

To investigate the potential immune suppressor action of CM from a previous 5 day 

ASC:PBMC coculture on PBMC proliferation, immune suppressive assays were 

established. Conditioned media from these cocultures were diluted 1:2 in new full 

RPMI 1640 media to ensure newly added factors to the culture. After another 5 day 

coculture, PHA-stimulated PBMC highly proliferated, as denoted by the high division 

index (line at 1) (Figure 18). In addition, no differences were found in PBMC inhibition 

in the presence of CM with or without IFNγ inclusion, nor only with stimulated PBMC 

(n.s.). This data confirmed that CM from previous cocultures are not able to actively 

interact with PBMC, possibly due to the inactivation and extinction of the necessary 

factors that assist to mediate this inhibition. 

 

 

 
Figure 18 CM transferred from a previous coculture was ineffective on exerting PBMC inhibition. 

Stimulated PBMC were not inhibited by CM transferred from a previous coculture. PBMC division index 

after transferring CM from a 5 day ASC:PBMC coculture (-/+ IFNγ), was analysed. n=4. Box: interquartile range; 

whiskers: minimum to maximum; line: median. 

 

 

 

4.2.5 Nitrite levels were mainly undetectable amongst all conditions, except 

for MSC-CM 

 

Although our previous findings did not suggest the involvement of NO in our human 

suppression assays, nitrite concentrations were measured in coculture supernatants. 

Results revealed equally negligible nitrite concentration in both stimulated (n.s.) and 

not stimulated (not shown) PBMC monocultures. Although values for coculture 



Results 

 

76 
 

conditions with stimulated PBMC were slightly positive, they were still not significant. 

Surprisingly, we observed that values for CM from MSC were significantly elevated 

(all MSC from different sources vs +PHA coculture condition, p<0.0001; Figure 19 A). 

However, MSC from different sources presented comparable nitrite concentration 

values (n.s.).  

 

As expected, we found very low nitrite concentrations in both IFNγ primed and not 

primed human coculture condition supernatants (n.s.; Figure 19 B). Accordingly, IDO 

inhibitor Epacadostat addition did not vary nitrite values to any extent. 

CM +IFNγ exerted a slight increase in nitrite values with respect to the control 

(p<0.0001, Figure 19 C), however, also in MSC monocultures a basal nitrite 

concentration is present. Nitrite concentrations measured in the rest of ASC:PBMC 

coculture conditions, were below 0.5 µmol/l (not shown), suggesting that the slight 

increase in its levels is not exclusively related to PBMC presence in the culture. The 

addition of Epac to this condition revealed no variance in nitrite secretion. Results did 

not differ significantly to conditions lacking the inhibitor (n.s.), however, values 

significantly increased compared to MSC control (p<0.0001). 

Subsequently, these data suggest that Epac does not act upon nitrite secretion, nor 

is nitrite, on the other hand, a key mediator of human PBMC inhibition.  
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Figure 19 Nitrite concentrations were detectable only in MSC-CM. (A) Nitrite concentration levels measured 

in BM, CB and ASC coculture supernatants. All MSC sources have comparable nitrite production concentration 

levels. n=3 to 5. (B) Nitrite concentration in coculture supernatants with IFNγ and Epacadostat addition. n=4. (C) 

Nitrite levels measured in CM +IFNγ after addition of IDO inhibitor Epacadostat. n=4. Box: interquartile range; 

whiskers: minimum to maximum; line: median. Lines with asterisks depict the significance between two 

conditions.  

 

 

In summary, by performing direct and transwell MSC:PBMC cocultures, we confirmed 

that MSC immunosuppressive mechanism acts independent of cell-to-cell contact, 

but is mediated by soluble factors. We revealed the immunosuppressive strength of 

IFNγ MSC-CM in inhibiting T cell proliferation. Nevertheless, isolated EV failed to 

suppress their proliferation, regardless of MSC IFNγ preconditioning. 
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4.3 Evaluation of standardised ultracentrifuge-based EV isolation protocol 

 

With the aim to address the impact of ASC-derived EV on immunomodulation, we 

were challenged with defining an optimal protocol for EV isolation and 

characterisation. Having discussed this issue with researchers from different labs 

asking for their advice, we identified a need for a comparative analysis of EVs. With 

four participating labs, we pre-defined a protocol to qualitatively and quantitatively 

evaluate EV preparations within this inter laboratory study. The human epithelial 

CRC cell line HCT116 was chosen as a model of parental EV-secreting cells. CCM 

was collected and distributed to the four participating laboratories for EV isolation 

using a pre-defined protocol and their lab-specific technical equipment.  

 

4.3.1 Comparative EV isolation - First round 

 

Subsequently, EV characterisation was collectively performed by TEM and NTA, 

each method performed in a different laboratory.  

TEM analysis showed spherical and cup-shaped EVs in all four preparations (Figure 

20 A). EV sizes ranged from around 30 to 150 nm in diameter. NTA analysis showed 

that median sizes of isolated particles differed slightly between groups, ranging from 

128.3 ± 14.5 nm (laboratory 1.2) to 154.9 ± 42.7 nm (laboratory 1.4) per group 

(Figure 20 B and C, and Table 3), with a coefficient of variation (Cv) of 8.80 % across 

the groups. Calculating the particle concentrations by NTA revealed significantly 

different particle yields per ml of medium (Table 3). Laboratory 1.1 isolated most 

particles, and significantly more than 1.2 (p<0.0001), 1.3 (p=0.0035), and 1.4 

(p<0.0001), which is reflected in an overall Cv of 70.88 %. The EV preparation with 

the lowest yield (1.4) was isolated after storing CCM at RT for six hours. Removing 

data obtained from L4 from the analysis, inter-group variation was significantly 

reduced for both particle yield per ml medium (Cv: 40.93 %) and median particle 

diameter (Cv: 1.96 %).  

Marker expression was planned to be performed by western blot and flow cytometry, 

however, the amount of material was too little to allow for its use. Protein yield was 

less than 4µg/µl in all samples. 

The results of our first isolation round showed that despite a pre-defined protocol, 

isolation yielded EVs of differing sizes and an insufficient amount of material for EV 

protein characterisation. We observed that storage time might have a detrimental 
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effect on final yield. Accordingly, a second round of isolation was planned with slight 

modifications of the settings, mainly increasing starting volume and cryopreserving 

the CCM before isolation to overcome extended storage times at ambient 

temperature. 

 

Table 3 Particle sizes and concentrations determined by NTA analysis (first round). All data are presented 

as arithmetic mean ± SD of measurements within one group. 

  1.1 1.2 1.3 1.4 Cv [%] p 

Median 
diameter [nm] 

131.8 ± 9.7 
128.3 ± 

15.5 
133.3 ± 12.8 154.9 ± 42.7 

 
8.80 0.3170 

 

Particles/ml 
CCM 

1.28x108 ± 
1.18x107 

5.39x107 ± 
2.32x107 

9.17x107 ± 1.09x107 ± 
 

70.88 <0.0001 

1.04x107 2.28x106 
 

 

 

 

 

Figure 20 Characterisation of EVs (first round) revealed differing EV yield sizes. (A) TEM pictures from all 

EV preparations are depicted. Scale bar 100 nm. (B) NTA data of isolated EV sizes. (C) Full size profiles are 

shown for each EV preparation. Box: interquartile range; whiskers: 10th and 90th percentile; line: median. Particle 

concentrations were significantly different with p<0.01 (1.2 vs. 1.3), p<0.001 (1.1 vs. 1.3, 1.2 vs. 1.4) and 

p<0.0001 (1.1 vs. 1.2, 1.1 vs. 1.4, 1.3 vs. 1.4). This figure is taken from the manuscript Inter-laboratory 

comparison of extracellular vesicle isolation based on ultracentrifugation, submitted to PLOSOne. 
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4.3.2 Comparative EV isolation - Second round  

 

In order to reduce the variables that might influence the yield, ultracentrifugation-

based washing at 100,000 x g was omitted in the second round. EVs isolated within 

the second round were subjected to a more comprehensive characterisation, made 

possible by increasing the starting volume.  

TEM revealed the EV-typical spherical and cup-shaped morphology with sizes 

ranging from 20 to 180 nm (Figure 21 A). Next, NTA confirmed sizes ranging from 

128.7 ± 17.7 nm (laboratory 2.4) to 156.9 ± 8.6 nm (laboratory 2.1) between groups 

(Figure 21 B, Table 4). Like in the first round, particle sizes across laboratories 

differed significantly (p=0.0215), and the Cv of median diameters was 9.38 %. 

Particle yield was significantly different and highest in laboratory 2.1 (compared to 

2.2 p=0.0182, 2.3 p=0.0016 and 2.4 p=0.0168) (Figure 21 C, Table 4). Inter-group 

variations in particle yield were still high, but lower than in the first round (Cv: 40.49 

%). 

For the characterisation of isolated EVs, Western blot and FACS analyses were 

performed. Due to lower yields in samples 2.2 and 2.3, Western blot analysis was 

only performed on samples from 2.1 and 2.4. Overall, common EV marker proteins 

like CD63, CD81, CD9, Alix and TSG101 were found to be expressed in EVs. The 

endoplasmic reticulum-associated protein Calnexin was only observed in cellular 

protein lysates (not shown) but not in the EV protein extracts, confirming the absence 

of cellular protein contamination in the two EV protein samples (Figure 21 D). Despite 

equal protein loading, 2.1 samples appeared to contain larger numbers of EVs as 

indicated by higher band intensities for CD63, CD81, Alix and TSG101. Interestingly, 

CD9 prevailed with a stronger band in 2.4 than in 2.1.  

 

Table 4 Particle sizes and concentrations determined by NTA analysis (second round). All data are mean ± 

SD of replicate measurement within one laboratory.  

  2.1 2.2 2.3 2.4 Cv [%] p 

Median 
diameter [nm] 

156.9 ± 
8.6 

151.5 ± 
23.7 

134.6 ± 
18.3 

128.7 ± 
17.7 

9.38 0.0215 

Particles/ml 
CCM 

7.50x108  4.15x108  3.12x108  4.12x108  

40.49 0.0023 ± 
8.05x107 

± 2.68x108  
± 

2.21x108  
± 

1.22x108 
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Figure 21 Characterisation of EVs (second round) revealed differing particle yield. (A) TEM analysis 

showed spherical and cup-shaped EVs isolated by all laboratories. Scale bar 100 nm. (B) NTA analysis size 

profiles of isolated EVs. (C) EV concentrations and size distributions are shown. Particle concentrations were 

significantly different, with p<0.05 (2.1 vs. 2.2, 2.1 vs. 2.4) and p<0.01 (2.1 vs. 2.3) or failed to reach statistical 

significance (2.2 vs. 2.4, 2.3 vs. 2.4). (D) Western blot analysis showed expression of specific EV markers. Figure 

taken from the manuscript Inter-laboratory comparison of extracellular vesicle isolation based on 

ultracentrifugation, submitted to PLOSOne. 

 

 

FACS analysis was used as a complementary approach to EV marker 

characterisation, given that a much lower amount of EV material was required. EVs 

bound to CD9 beads showed positive staining for the typical EV surface markers 

CD9 (27.3 %), CD63 (99.2 %) and CD81 (98.6 %), as well as TSG101 (25.4 %), %), 

all values for EV sample from laboratory 2.1. EV samples from laboratories 2.2 – 2.4 

were also tested for these EV surface markers: CD9 (0.77, 0.69 and 9.82%, 

respectively), CD63 (97.8, 98 and 99.1%) and CD81 (97.3, 97.2 and 98.5%) and 

TSG101 (3.69, 1.99 and 16.8%) (data not shown). 

Supporting the Western blot results, almost no staining was observed for Calnexin 

(0.94 %). Nevertheless, Alix was not detectable on EVs by flow cytometry, contrary to 

the Western blot analysis (Figure 22 A). All markers were validated to be expressed 

in cells by either extra- or intracellular staining (Figure 22 B).  
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Expression intensities varied between groups, which prompted us to assess whether 

expression intensities correlated with particle counts. To this end, mean fluorescence 

intensity (MFI) values for CD63 (Figure 22 C) and CD81 (Figure 22 D) were 

calculated and expressed in relation to the particle concentrations in preparations 

from each laboratory. Higher expression intensities were found for laboratory 2.4, 

followed by 2.1, whereas 2.2 and 2.3 depicted lower but similar intensities amongst 

them.  

The results from our second isolation round also demonstrated a strong variation in 

EV sizes and yield, discerning however, lower inter-group variation compared to the 

first round. We confirmed that higher EV yield generated stronger band intensities in 

the western blot analysis despite equal protein loading. Additionally, FACS analysis 

not only revealed the presence of typical EV surface markers, but indeed indicated 

no direct correlation between MFI values and particle concentration in our 

preparations. 
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Figure 22 FACS-based characterisation of isolated EVs (second round) demonstrated differing typical EV 

marker expression. (A) Flow cytometry histograms depicting the relative fluorescence/marker intensity of EV 

preparation 2.1 (black line) against unstained EV particle control (grey line). (B) Corresponding marker expression 

in HCT116 cells (extracellular staining for CD9, CD63 and CD81 and intracellular staining for Alix, TSG101, 

Calnexin). (C, E). Mean fluorescence intensity (MFI) raw values of CD63 (C) and CD81 (E) marker expression 

from laboratories 2.1 – 2.4. (D, F)  MFI values per particle concentration of CD63 (D) and CD81 (F) (left y-axis) 

against the respective particle concentration per ml CCM (right y-axis). Figure taken from the manuscript Inter-

laboratory comparison of extracellular vesicle isolation based on ultracentrifugation, submitted to PLOSOne. 

 

  

4.3.3 Calculation of actual centrifugation forces and k-factors 

 

Especially the lab-specific differences in EV yields prompted us to compare rotor 

details and actual centrifugation forces between the first and second round of EV 

preparations (Table 5). It became obvious that the protocol-based instruction of 

“using 100,000 g” was interpreted in different labs in two different ways: either as 

maximum or as average speed. Accordingly, the respective k-factors as indicators of 

the relative pelleting efficiency turned out to be different (Figure 23, Table 5). 

However, EV yields could not be correlated to speed. In the first and second round of 

isolation, two and three laboratories, respectively, used the same centrifuge and rotor 

(Table 5). Comparing these data still showed apparent differences in EV yield (Figure 

23), leading to a Cv of 46.51 %.  
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Table 5 Rotor type, speed (RPM), rcf (average) and k-factor specification.  

First round 

Laboratory Rotor 
Actual Speed 

(RPM) 
Rcf (Average) k-factor 

1.1 TH-64.1 24.2 73,823 327.2 

1.2 SW 28.1 28 107,215 276.0 

1.3 SureSpin 630 23 68,135 456.4 

1.4 SureSpin 630 23 68,135 456.4 

Second round 

Laboratory Rotor 
Actual Speed 

(RPM) 
Rcf (Average) k-factor 

2.1 SureSpin 630 23 68,135 456.4 

2.2 SureSpin 630 23 68,135 456.4 

2.3 SureSpin 630 23 68,135 456.4 

2.4 SW 28.1 28 107,215 276.0 

 

 

Surprisingly, we found that even when comparing laboratories with the same protocol 

interpretation and technical equipment, no direct correlation between total EV particle 

yield and centrifugation speed in either isolation round was seen.  
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Figure 23 Correlation of centrifugation speed and particle yield. (A) First round of EV isolation. (B) Second 

round of EV isolation. Particle counts (bars, left y-axis) vs. speed (avg rcf; triangles, right y-axis) obtained in 

different laboratories are depicted. Figure taken from the manuscript Inter-laboratory comparison of extracellular 

vesicle isolation based on ultracentrifugation, submitted to PLOSOne. 

 

Summarizing, our data revealed quantitative differences amongst groups when 

assessing an UC-EV isolation protocol in an inter-laboratory comparison study. We 

found that handling time and operator variations directly impact EV yield. Thus, to 

achieve reproducibility, accurate and detailed reporting of EV workflow is suggested. 

We propose performing future studies incorporating multiple institutions, where 

further isolation methods and biofluids are investigated.  
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5 DISCUSSION 
 
The overall aim of this project concerned the evaluation of the immunomodulatory 

strength of MSC. Thus, as our first approach, we sought the immune suppressive 

potency differences in human MSC from different origins: bone marrow, cord blood 

and adipose-derived mesenchymal stromal cells. As our second approach, we aimed 

to compare MSC-derived products, such as CM and extracellular vesicles, to their 

cellular counterpart, to assess their modulatory capacities on PBMC subpopulations. 

Consequently, we investigated the specific MSC-mediated mechanisms of action 

involved in their immunosuppression in the different settings. As a final point, we 

aimed for the standardisation of ultracentrifuge-based EV isolation protocol in an 

inter-laboratory comparison study. 

 

5.1 Human MSC immunomodulation 

 
MSC first evidence of actively exerting immune responses derive from the results 

from MLR assays [40, 61, 156-159], which suggested a potential inhibition of T-cell 

expansion due to MSC addition [158, 160]. There are strong evidences that MSC 

from different sources are similar in a variety of functional and phenotypical 

properties [5]. However, there are slight alterations that might affect their function, 

related to the local function, environmental niche, the ontogenic age (birth-associated 

versus adult) or the isolation or culture procedure [5, 59, 60, 161]. Thus, we aimed to 

determine the potential variances. 

 

Immunomodulation was assessed as MSC-mediated inhibition of stimulated PBMC 

or CD4 T cell proliferation. We observed a dose-dependent inhibition, with ASC being 

the strongest immunomodulators in either stimulated cell condition. Several 

investigations clearly describe ASC (compared either to BM-MSC, umbilical cord-

MSC (UC-MSCs) or placenta-MSC (PL-MSC)) as the strongest suppressive of T cell 

activation [162] and inhibition of allogeneic-induced T cell proliferation [63]. On the 

contrary, Xishan et al. [163] demonstrated BM to exert a stronger 

immunosuppression over ASC. In a separate study, Wharton´s jelly MSC (WJ-MSC) 

possessed a superior immune strength than ASC, BM and PL-MSC [164].  

Comparing cells in an earlier passage, P3 and a more mature passage, P5, we 

observed similar immunosuppression capacities amongst passages for all three MSC 
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sources in all ratios. Earlier evidences have also demonstrated how immune 

suppressive potency appeared unaffected in long-term cultures [165]. Having 

confirmed the strongest inhibitory potential of ASC on PBMC / CD4 T cell 

proliferation in a comparable manner, we focused on elucidating the mechanism of 

action and continued our experiments with the whole PBMC population. 

MSC-mediated actions on T-cell activation and proliferation have been described to 

be dependent on a wide variety of mechanisms. These involve secretion of soluble 

factors, chemokines, IDO [166], PGE2 and NO [48, 167]. MSC inhibition of T cell 

proliferation has been closely related to an increased IDO secretion. IFNγ addition 

promotes MSC IDO production and immunomodulatory potential. IDO stimulates 

tryptophan depletion along with a consequent kynurenine production (see Figure 2), 

which is regarded as the key inhibitory mechanism [56-58]. ASC expressed the 

highest IDO values (followed by BM and CB), which correlates with their stronger 

inhibitory capacity. In a similar study, François et al. [56] described a variation among 

different donors, of IDO upregulation after IFNγ exposure. Stronger IDO producers 

revealed more potent in vitro T cell proliferation inhibition. Consequently, elevated 

IDO also relates to the increase in kynurenine secretion observed. Transient 

tryptophan depletion affects T cells solely at activation stage. This promotes inhibition 

of proliferation, hence, preventing their cell death [168, 169].  

Accordingly, we investigated tryptophan addition, as we hypothesised it to be an 

important rate-limiting factor in IDO modulatory activity. Upon addition to MSC 

monocultures, IDO levels were further increased, exhibiting ASC also the highest 

IDO secretion levels. Tryptophan addition to cocultures, however, greatly abrogated 

MSC-mediated PBMC inhibition supporting our hypothesis. In line with our results, 

previous reports have described addition of tryptophan to promote restoration of T-

cell proliferation in MLR cocultures [61, 169]. This was presumed to be related to T 

cell proliferation inhibition at an arrest point mid G1 phase, which was reversible 

upon tryptophan addition to the culture, together with stimulation of T cells [169]. The 

IDO inhibitor, Epacadostat was also added to the cultures to analzyse the 

modifications of MSC immunological functions. MSC-mediated inhibition of PBMC 

proliferation was fully neutralised, indicating that IDO is largely involved. However, 

IDO levels were comparable among all conditions in presence or absence of 

tryptophan or Epacadostat. Nonetheless, kynurenine concentrations were utterly 

diminished, to levels below those in unstimulated PBMC control. Jointly, these data 
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seem to suggest that Epacadostat does not affect IDO at its secretion stage, but 

does inhibit IDO enzymatic activity and by this, neutralises the MSC inhibitory 

activity. Previous studies corroborated our results showing that addition of selective 

IDO inhibitor, Epacadostat, increased T cell proliferation, suppressed Tregs and 

increased IFNγ production [170]. Studies with other IDO inhibitors, such as 

competitive inhibitor 1‐methyl tryptophan (1‐MT), have also described an increase of 

T-cell proliferation in coculture with either naïve or activated MSC [56, 171]. Similarly, 

in presence of IL-2, 1-MT partially restored PBMC proliferation rate [57]. Altogether, 

we confirmed that tryptophan depletion and kynurenine formation are key in the 

modulatory mechanism in which IDO is involved, supporting IDO as a strong immune 

modulator involved in human T cell inhibition.  

 

Evidences of different environmental modulations influencing directly MSC function, 

final fate and therapeutic potential have been firstly reported as cell priming, licensing 

or preconditioning. Certain authors claim that MSC need to be pre-licensed to 

become immunomodulatory. This can be promoted by a number of pro-inflammatory 

mediators with different priming approaches [172-174]. IFNγ licensing alone or in 

combination with TNFα has been described to stimulate MSC secretion of anti-

inflammatory and immunomodulatory factors [56, 172-175]. We challenged IDO-

kynurenine access by testing IFNγ priming of MSC. An equal PBMC inhibition of 

proliferation than the one exerted by non-IFNγ primed MSC, was observed. Contrary 

to our initial hypothesis, suppression appeared not to be dependent on MSC (pre-) 

licensing. Thus, in our settings, MSC were not able to increase their therapeutic 

efficacy. We hypothesise that in our controlled in vitro coculture setup no exogenous 

IFNγ addition is needed, as MSC´s inhibitory potential seems to have reached levels 

close to the maximum. In our coculture settings we presume that PHA stimulation 

acts on PBMC/CD4+ T cells stimulating IFNγ secretion, occurring at an early 

timepoint. IFNγ then acts on MSC promoting the secretion of IDO into the CM. IDO 

converts tryptophan and accumulates kynurenine, which acts on T cells, inhibiting 

their proliferation (Figure 24). Nevertheless, the role of IFNγ in activating MSC and 

enhancing the secretion of modulatory factors has been previously reported in vitro 

[176-179]. 
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Two main reasons could potentially explain our different results. First, timing of IFNγ 

pre-stimulation of MSC and/or duration of culture. The lack of increase in function of 

IFNγ preconditioned MSC might be due to a short priming time (72 hours). 

Duijvestein and colleagues have verified that human MSC, after 6 days of IFNγ 

priming, denoted higher immunomodulatory capacities, inhibiting PBMC proliferation 

at lower ratios compared to untreated MSC [176]. Likewise, IFNγ licensing may also 

occur in early stages of the cultures. However, assessment of licensing on the 

highest MSC:PBMC inhibitory ratio (1:5), along with the potential inability to further 

enhance inhibition of PBMC proliferation, could possibly be another relatable cause. 

In fact, translation to in vivo settings signifies a more intricate interplay amongst cell 

types. IFNγ production is dependent on donor T cell response to antigen recognition. 

In fact, an in vivo study measured serum IFNγ levels of bone marrow transplanted 

GvHD recipients after MSC administration [178]. They observed that IFNγ circulating 

levels at time of transplant (day 0) were not enough to activate MSC, thus, failing at 

alleviating GvHD symptoms or survival. However, in their settings, IFNγ levels at day 

7 post-transplantation were the highest. These results suggest that in vivo, MSC 

timing of activation might greatly differ to the controlled in vitro settings. Second, IL-2 

addition might be another important factor to take into consideration. It was 

exogenously added to the culture to ensure survival of T cells in cultures lasting 

longer than 5 days. IL-2, produced by both lymphocytes and stromal cells is highly 

involved in regulating T cell apoptosis, maturation and function [180]. Considerable 

number of studies have demonstrated IL-2 promotion of T cell survival, proliferation 

and differentiation into effector cells [181, 182]. However, IL-2 additionally stimulates 

development of regulatory T cells [183-185]. Many studies with IFNγ addition either 

do not report the addition of IL-2 or state the lack of it in their culture settings [56, 

176, 178, 179, 186]. As aforementioned, in our in vitro controlled settings, PHA 

stimulation seems to trigger PBMC/Tcell production of IFNγ that would lead to 

increased IDO levels in CM triggering MSC inhibitory mechanism. However, in an 

MLR setting the crosstalk with different immune cell populations could vary the 

outcome to some extent.  

 

As previously described, a wide variety of other mechanisms have already been 

described to be involved in MSC-mediated immunosuppression [48, 167]. In addition 

to IDO, nitric oxide (NO) is a prominent candidate involved in MSC-mediated 
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immunosuppression in murine settings [51, 81, 82]. To exclude that next to IDO the 

immunosuppressive capacities of human MSC involve NO, we analysed nitrite 

concentration in supernatants of cultures. No differences resulted between 

supernatants from cocultured MSC:PBMC at 1:5 ratio and PHA stimulated PBMC 

control. Nitrite values in supernatants from cultures with IFNγ primed and not primed 

MSC, and in presence or absence of Epacadostat displayed extremely low values. It 

is our view that these data seem to correlate to previous findings where they tested 

NO levels of analogous coculture settings, and saw no changes in culture medium of 

mixed human PBMC-ASC cultures despite having observed upregulation at protein 

level [187]. This only verifies the discrepancy between different species MSC-

mediated suppression mechanisms, being NO dependent in murine MSC and relying 

on IDO in human context [51, 188].  

 

 
Figure 24 PBMC/CD4+ cell immunosuppression is dependent on IDO-Kyn modulatory mechanism present 

in MSC-CM. The PHA acts on either PBMC or CD4+ T cells, and stimulate their secretion of IFNγ, which occurs 

at an early time point. IFNγ secretion directly acts on the MSC, promoting IDO secretion into the CM. IDO drives 

tryptophan depletion and kynurenine formation, which in turn drops the proliferation of T cells. Despite EV being 

secreted into the extracellular space, they are not directly involved in the IDO-Kyn modulatory mechanism that 

takes place in MSC-CM and thus, may lack immunosuppressive strength.  

 

In summary, the results of human MSC immunomodulation indicate that:  

 

 ASC are the most immunomodulatory inhibiting T cell proliferation, followed by 

BM- and CB-MSC. They inhibit PBMC and CD4+ T cell proliferation equally, in 

a dose-dependent manner; 
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 IDO secretion upon IFNγ stimulation is highest in ASC, correlating with their 

inhibitory capacity. Elevated IDO values correspond to an increase in 

kynurenine levels; 

 IFNγ priming of MSC does not further increase their modulatory potency; 

 Tryptophan addition to MSC monocultures increase IDO production, however, 

when added to MSC:PBMC cocultures it abrogates MSC-mediated PBMC 

inhibition;  

 Epacadostat addition does not affect IDO secretion, but does inhibit its 

enzymatic activity. When added to cocultures it abolishes MSC suppressive 

activity, this indicates that IDO enzymatic activity is key to the MSC inhibitory 

action; 

 Nitric oxide, measured as nitrite in culture supernatants verifies human MSC-

mediated suppression mechanism to be dependent mainly on IDO production. 

 
In conclusion, ASC were the strongest immunosuppressors inhibiting PBMC and 

CD4+ T cell proliferation equally. We revealed IDO-kyn inhibitory mechanism to be 

involved in inhibition of human PBMC proliferation, which is IFNγ dependent. As 

suggested by literature, we found that tryptophan addition to cocultures abrogated 

completely MSC-mediated PBMC inhibition. IDO inhibitor Epacadostat addition 

abolished MSC suppressive capacity, confirming IDO involvement. Testing this 

mechanism in a controlled in vitro setting with PHA as a mitogen stimulus, might 

pose a limitation of this approach. For instance, in an MLR the complex interactions 

could influence the final outcome. Therefore, we propose performing in vitro 

experiments to verify this suppressive mechanism. 

5.2 MSC immunomodulation in allogeneic and xenogeneic settings 

 
Interspecies incompatibilities have already been defined in previously published 

investigations [94]. To verify whether MSC-mediated immunomodulation might be 

affected by the incompatibilities arising from cultures with cells from different species, 

we established cocultures with both, human and rat MSC and PBMC, stimulated with 

mitogens (PHA for human, Con-A for rats), in allo- and xeno- settings. 

 

Once verified ASC strong immunosuppression of T-cell proliferation, reducing their 

division index considerably in a strict dose-dependent manner, we decided to 
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similarly test ABCB5 human dermal immune-regulatory cell (DIRCs) subset in 

coculture with human PBMC. ABCB5 were much weaker, but still succeeded in 

inhibiting PBMC proliferation. We verified the involvement of IDO and the lack of NO-

mediated immunosuppression in human allocultures (ASC and ABCB5). Rat MSC 

successfully inhibited human PBMC proliferation in a dose-dependent manner, 

exerting the strongest suppression in 1:5 (MSC:PBMC) ratio. Accordingly, kynurenine 

undetectable levels and nitrite elevated ones verify NO as the main 

immunosuppression mechanism involved in the murine allocultures. Therefore, as 

previously denoted human MSC utilize IFNγ-induced IDO secretion as 

immunosuppessive mechanism whereas murine-derived MSC seem not to rely on 

IDO, but on NO for mediation of immunosuppression.  

 

In rMSC:rPBMC allo-cocultures we observed how rMSC strongly inhibited T cell 

proliferation in rat PBMC, contrariwise, the inhibition was weaker in SMC. In 

accordance, nitrite production in coculture CM was increased compared to both 

stimulated and unstimulated PBMC controls. Differences seen in inhibition of rat 

blood vs spleen-derived rat MC might be related to MSC specific modulatory 

properties and the amount of diverse lymphocyte subsets amongst the whole PBMC 

population. The works of Wong et al. together with Sathaliyawala et al. elucidated the 

distribution of major lymphocyte populations across human tissue. CD4+ and CD8+ T 

cell subsets were the most abundant lymphocytes in all measured tissue samples 

except for spleen and tonsils [189, 190]. Here, contrarily, B cells comprised the 

greater part of lymphocyte population. Thus, the differences concerning blood- and 

spleen-derived rat MC inhibition might be related to the high presence of B cells, and 

concomitant low T cell population within spleens. In fact, in line with our findings, an 

in vitro murine immunosuppressive study has demonstrated efficacious splenocyte 

immune modulation by rat MSC [55]. In another murine study, they observed that 

direct interaction between T cells and MSC promoted NO production accompanied 

by a strong suppression of T-cell proliferation, which was abolished in a transwell 

system [81].  

 

As MSC are considered immunosuppressants they were deemed to help reduce 

inflammation, and allow better survival of allografts or transplants, dampening the 

immune response. However, in xenogeneic settings there are contradictory data 
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regarding studies with hMSC administration in animal models. Some suggest hMSC 

infusion enhance survival of grafts and transplants. For instance, in murine models of 

hematopoietic stem cell (HSC) transplantation, hMSC administration enhanced 

engraftment of HSC [191-193]. Similarly, in rat-mice xenomodel of skin 

transplantation, MSC infusion prolonged skin graft survival [194]. 

It has also been claimed that hMSC infusion in autoimmune and inflammatory 

diseases are able to inhibit the progression of autoimmune disease and recover 

immune homeostasis in GvHD, colitis, myasthenia gravis and systemic lupus 

erythematosus, as thoroughly reviewed by Li et al. [195]. 

Furthermore, other studies in a cross-species framework claim a strong amelioration 

of the disease after hMSC infusion [86-91]. This indicates not only immune 

compatibility in these models but also an immunomodulatory beneficial effect of MSC 

administration. 

On the other hand, others claim that MSC infusion portrays less or no benefit 

increasing graft survival. Indeed, in a transplantation murine model it has been 

demonstrated that pre-infused hMSC incited an allograft rejection prior to day 30 post 

graft insertion [94]. Interspecies incompatibility was claimed as likely, due to hMSC 

potential inability to produce NO upon induction or to upregulate IDO in presence of 

rat pro-inflammatory cytokines. However, questions remain as to whether this effect 

is directly associated with different MSC-mediated inhibitory mechanisms, which 

seem to be species-dependent, or due to the strong effect of pro-inflammatory micro-

environments.  

The discrepancy could possibly be explained by the specific models used for each 

study. For instance, most of the successful studies regarding survival of grafts and 

transplants are carried out in NOD/SCID immunodeficient mouse model with 

impaired T and B cell development and deficient NK cell function. However, 

evidences of successful MSC xenotransplantation in different experimental models 

continue to appear.  

To assess xenogeneic immunomodulation, we tested ASC and ABCB5 inhibitory 

potential on rat PBMC proliferation suppression. The results revealed ASC inability to 

suppress rat PBMC and SMC in any ratio tested. On the other hand, ABCB5 

succeeded in suppression of xenogeneic PBMC. We hypothesise these differences 

between ASC and ABCB5 to be dependent on ABCB5 immunoregulatory functions 
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being exerted partially through programmed cell death 1 (PD-1) [64, 72]. ABCB5-

purified DIRCs expression of PD-1 functions have described them as a distinct 

immunoregulatory cell population able to inhibit T cell activation, induce Treg 

formation and prolong allograft survival. Furthermore, in vivo, PD-1 immune regulator 

checkpoint may portray a more efficient modulation of graft rejection [64]. 

Analysis of coculture CM portrayed no kynurenine and a slight nitrite secretion into 

the media. Thus, NO-mediated PBMC suppression seems to be involved. However, 

taken together, these data seem to suggest a possible incompatibility in mediating 

immunosuppression by ASC in our settings. Nevertheless, these data require further 

validation by thorough in vivo testing to evaluate their potential preclinical benefit.  

Our in vitro experiments confirmed ABCB5 stronger inhibitory potential in xeno-

coculture with rPBMC. Accordingly, ABCB5 cells were selected to move from a 

controlled in vitro, to an in vivo xenogeneic setting, where cells were administered to 

a cisplatin-induced kidney injury murine model in a parallel project within the 

TASCDT PhD graduate school (doctoral thesis Cristina Daniele). 

 

In conclusion, our findings on MSC immunomodulation in allogeneic and xenogeneic 

settings demonstrated that: 

 ASC inhibited human T cell proliferation in a more robust manner than ABCB5 

cells;  

 Rat MSC succeeded in suppressing human PBMC proliferation;  

 Rat MSC inhibited rat PBMC proliferation to a higher extent than SMC; 

 In a xenogeneic setting, ASC were unable to inhibit proliferation of rat PBMC 

and SMC. ABCB5, contrarily, inhibited proliferation of both sources of rat MC; 

 Human MSC rely on IFNγ inducible IDO expression as their main 

immunosuppression mechanism, whereas murine MSC rely on NO secretion. 

 

In summary, we showed that while ASC were not able to inhibit rat PBMC 

proliferation in a xenogeneic setting, ABCB5 successfully restricted their proliferation. 

Furthermore, the main human and rat immunosuppression mechanisms were 

elucidated, supporting the knowledge that human MSC rely on IDO expression, 

whereas murine MSC rely on NO secretion. A careful evaluation of the use of human 

MSC in transplantation to murine models is suggested. 



Discussion 

 

95 
 

5.3 MSC secretome products 

 
In the previous part of our study on the immunosuppressive capacity of MSC in 

different settings, we evaluated the inhibitory strength of MSC from different sources 

and species and elucidated their related mechanisms. We saw that the IDO-

Kynurenine axis seems to be the most predominant mechanism involved in human 

MSC immunomodulation; however, this was only tested in direct immunosuppression 

assays. Therefore, we evaluated MSC modulatory potential in direct versus transwell 

cocultures, assessing whether MSC suppressive activity was mediated by direct cell-

cell contact (local effect) or via the release of soluble factors (paracrine effect). The 

present findings revealed MSC inhibitory effects not to be affected by the physical 

separation of the two cell types. This suggests that the inhibitory effect of MSC was 

not mediated solely by cell contact but was also dependent on the release of soluble 

factors. Furthermore, IFNγ licensing of MSC portrayed no differences amongst 

conditions. These outcomes were fairly in line with previous reports that indicate 

contribution of secreted soluble factors to exert MSC immunomodulatory effects [33, 

40, 186, 196-198]. As previously described (see chapter 5.1; Figure 24), this effect 

may be related to the IFNγ secretion by PHA stimulated PBMC, which promote MSC-

IDO secretion that in turn drive tryptophan breakdown to kynurenine, reducing PBMC 

proliferation abilities in both a direct and indirect manner. 

We asked ourselves whether EV could be involved in transferring 

immunomodulation. MSC-derived CM and extracellular vesicles have been 

successfully applied to an extensive number of murine models, along with a steadily 

arising use in human clinical studies [110, 199-202]. Amongst different EV isolation 

methods, differential ultracentrifugation was the first and long considered gold 

standard approach for extracellular vesicle isolation. However, this method is subject 

to uncontrolled variables that might strongly impact functional outcomes [115, 117]. 

Despite these shortcomings, we determined this isolation method as the most 

suitable to meet our demands. Some reasons were the high ratio of EV recovery, 

short assay time and most importantly, high sample volume (ml-l) [115].  

Following EV isolation, and prior to their application in functional studies, 

comprehensive characterisation according to MISEV guidelines was performed on 

purified EV [122]. We confirmed that we had isolated membrane-encapsulated EV 

with the typical spherical morphology. We further determined the presence of high 

concentrations of EV in our isolates, reported by the NTA results. Additionally, we 
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determined ASC-derived EV to be more efficiently detected when coupled to 

Aldehyde beads than to CD9 beads. We hypothesised this being due to low 

expression of CD9 marker on ASC-EV surface. Thus, most typical described EV 

surface markers [152-155], tetraspanins CD63 and CD81 were detected on ASC- 

and HCT116-EV. Furthermore, MISEV state the need for demonstrating presence of 

cytosolic proteins in EV isolates (i.e TSG101, Alix) apart from transmembrane 

proteins associated to plasma membrane [122, 203]. We therefore tested Alix, 

TSG101 and Calnexin intracellular markers presence/absence in both EV isolates 

and producer cells. EV isolates presented high expression of typical EV markers 

CD63 and CD81 was in line with the aforementioned studies, whereas CD9 marker 

expression detection was lower. Alix and TSG101 cytosolic protein marker 

expression were detected to a low extent, possibly depicting the ineffectiveness of 

appropriately detecting intracellular markers. Barely no signal or slight calnexin signal 

was detected on EV isolates derived from ASC and HCT116 cells, which could 

possibly hint at a mere contamination with cellular fragments [204]. Conversely, all 

intracellular and extracellular markers were strongly positive on both cell types. In 

short, after validation of morphology, size and concentration profile, along with EV 

specific markers we were confident to call our isolates “extracellular vesicles”. 

 

Consequently, once isolation and thorough characterisation of our EV was 

performed, we tested them in functional studies. We aimed to evaluate their 

immunomodulatory potential, and compare them with MSC-derived CM. Speculating 

that priming might be required to release immunomodulatory EV or CM, MSC were 

preconditioned with IFNγ for 72 hours prior to media retrieval.  

EV isolated from both IFNγ primed and not primed MSC medium failed to suppress 

PBMC proliferation. We observed similar data already in previous studies. While 

additional studies also reported failed PBMC suppression [132, 133, 136], there are 

many evidences of EV successfully inhibiting PBMC proliferation [50, 205, 206]. In 

fact, Blázquez and colleagues detected in a similar setting, EV ability to suppress 

CD4 and CD8 T cell proliferation [134]. Serejo et al. even reported the successful 

PBMC proliferation suppression of both unlicensed and IFNγ-licensed MSC-derived 

EV [207]. We hypothesise EV lack of immunosuppressive strength might be related 

to the main modulatory mechanism here reported being IDO-Kyn-dependent. IDO 
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immunomodulatory mechanism takes place in MSC-CM and thus, despite EV being 

secreted into the extracellular space, their modulation may be IDO-independent. 

Consequently, we tested CM modulatory effect in different settings. CM from IFNγ 

preconditioned MSC was the only condition to effectively inhibit PBMC proliferation in 

great manner. Non-primed MSC CM had no effect, suggesting an imperative role of 

IFNγ presence in the culture. Similarly, Delarosa and colleagues demonstrated that 

supernatants from 72h IFNγ-stimulation greatly ablated PBMC proliferation [188]. 

Addition of Epacadostat to CM +IFNγ exerted no effect on abrogation of PBMC 

inhibition. We believe this to be due to the high absolute amounts of IDO present in 

72h preconditioned CM in monoculture, compared to the progressively secreted IDO 

in coculture systems. Thus, the elevated IDO levels might be too high to the inhibited 

by Epacadostat addition.  

Furthermore, another study where CM from unlicensed and licensed MSC were 

tested, claimed the latter as being the most immunosuppressive [207]. As previously 

discussed, IFNγ preconditioning not only induces MSC secretion of IDO, but also 

other enzymes and soluble factors namely, cyclooxygenase 2 (COX-2) and PGE2 

[55, 179, 188, 196]. In fact, PGE2 suppressive activity has already been 

demonstrated [157, 198]. In a study, addition of IDO and PGE2 inhibitors could not 

completely abrogate MSC-mediated suppressive effects, presuming involvement of 

both pathways [196]. These findings conflict with some studies that have claimed 

PGE2 not being significantly involved in immunosuppression [33, 198], its inhibition 

has been claimed to cause an abrogation of MSC-mediated immunosuppressive 

effects [157]. Additionally, secretion of HGF, TGF-β1 [179] or NO [55] in response to 

proinflammatory cytokines, might potentially support inhibition of T cell proliferation.  

Based on this premise, we hypothesise that CM modulatory mechanism seems to 

rely mainly on IDO. However, we believe that CM modulatory effects may be 

enhanced by the combined effects of IDO together with different MSC secreted 

factors such as PGE2. 

We also evaluated the inhibitory potential of CM from previous MSC:PBMC cultures, 

which resulted ineffective in inhibiting freshly added PBMC. These results seemed to 

reveal a possible exhaustion/consumption of modulatory factors present in the 

conditioned media after prolonged cultures, failing at inhibiting PBMC proliferation. 

Separate experiments in our laboratory revealed a downregulation of Th1/Th2 
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cytokine levels in supernatants from 7 day coculture (data not shown). These data 

could potentially support our findings.  

 

As demonstrated, CM from IFNγ primed MSC successfully inhibited PBMC 

proliferation. These results were deeply in contrast to extracellular vesicles that were 

unable to suppress their proliferation. The possible reasons for failed outcome of EV 

modulation, might be related either to assay or to technical-related factors.  

Some main potential assay-related factors might be: (1) Mechanism is IFNγ and IDO-

mediated and does not involve EVs. (2) EV load. Currently, there is a lack of 

consensus when reporting the dose of EV load added to potency assays. Misleading 

load consideration might have also possibly influenced the EV amount added to our 

assays. While we and others determined our EV amount as absolute values of 

producer cells [132, 208], many others reported either EV protein concentration [134, 

136], EV particle counts [133], or number of producer cells defined as units per ml 

[205], whereas others do not specifically define EV assay loads [50, 206]. 

Consequently, the wide variety of studies with diverging EV load considerations, 

undoubtedly lead to different outcomes. The wide variety of studies with diverging EV 

loads, undoubtedly leads to very different outcomes. Consequently, this might have 

potentially biased us when considering the EV load in our assays, thus, being 

inadequate to exert modulatory functions.  

(3) Culture conditions. Another critical issue to consider is whether our culture 

conditions might have affected EV assay final outcome. Abrupt alterations in culture 

conditions such as FBS-EV depletion or shifting to serum-free media prior to CM 

production [126], have been reported to prompt modifications in cell metabolism 

[209]. Changes to EV-depleted medium might also modify cells phenotypical profile 

or reduce cell proliferation [126]. In fact, Eitan and colleagues have described how 

addition of FBS-EV restored proliferation in an effective manner [210]. Alteration of 

culture conditions directly impacts EV yield [211]. Therefore, we hypothesise that 

depleting FBS-EV might have modified the microenvironment, along with the nature 

of isolated MSC-EV, potentially rendering them less effective. Thorough attention to 

culture conditions must be taken when employing EV in functional studies.  

Moreover, potential technical-related factors might be:  

(1) Isolation method. UC may disrupt EV. Even if ultracentrifugation (UC) is cost-

efficient [212], this method shows inconsistencies in reproducibility of isolation data 
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[117]. UC can also co-purify non EV-associated proteins (lipoproteins and protein 

aggregates) [213] together with aggregating EV of different phenotype [214]. This 

may influence immunomodulation due to the biased interpretation in downstream 

analyses as integral EV factors. Moreover, Nordin et al. [215] have reported certain 

degree of EV disruption when UC at 120,000g, thus implying a use of maximum of 

100,000g [116]. Furthermore, there are strong evidences indicating exceptionally low 

recovery of exosomal protein and RNA following UC [216-218]. Thus, isolation 

methods such as PEG-based precipitation [118, 119] size-exclusion chromatography 

(SEC) [120, 218] and methods involving membrane filtration [219] or magnetic 

separation [220], yield higher EV purity and reduce EV loss or structure damage. 

Therefore, we hypothesise UC to have failed to yield functional EV. Utilising a 

different method of isolation could potentially overcome the limitations of our study.  

(2) Characterisation method. EV characterisation requires different complementary 

methods in order to validate their size, concentration and typical markers. However, 

limitations in EV characterisation methods could potentially bias the interpretation of 

EV integrity, yield and/or purity. For instance, in low-purity samples, NTA might 

overestimate EV concentrations [221]. Furthermore, flow cytometry “swarm” artefacts 

can also overestimate EV detection, providing inaccurate marker expression data 

[128, 222]. Indeed, also WB [115, 126, 223] and TEM [116] could potentially bias the 

interpretation of our EV isolates. In brief, a potential overestimation of EV 

concentration may have led to using substantially lower EV load in our assays. 

Furthermore, size, morphology and marker expression data could have led us to 

misinterpret EV purity or even, consider our purified samples as extracellular 

vesicles. Thus, EV characterisation data must be cautiously evaluated. 

 

Therefore, the analysis of MSC secretome products immunomodulatory potency 

concluded that:  

 

 MSC-mediated suppression of T cell proliferation took place in both direct and 

transwell cocultures; 

 UC isolated MSC-EV failed to suppress PBMC proliferation regardless of IFNγ 

preconditioning; 
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 IFNγ primed MSC-CM successfully hampered T cell proliferation. Epacadostat 

addition was not able to abrogate PBMC inhibition due to the high absolute 

levels of IDO; 

 CM modulatory mechanism seems to be exerted by the combined effects of 

IDO along with MSC-secreted factors; 

 UC-EV lack of modulatory effect might be related to assay or technical-related 

factors. 

 

In summary, our data about MSC secretome-products revealed a comparable 

immunosuppressive activity of MSC in direct and transwell cocultures. 

Immunosuppression assays with EV demonstrated they failed at suppressing PBMC 

proliferation. However, CM +IFNγ was a strong suppressor of PBMC division. We 

recommend that in depth in vitro and in vivo studies are performed to further define 

and characterize EV modulatory potency and CM +IFNγ prospective application as a 

cell-free approach. 

 

5.4 Inter-laboratory comparative study 

 
The main aim of this comparative study was to examine the reproducibility of a well-

defined EV isolation protocol amongst various laboratories, aiming to assess 

technical variation induced by equipment and operator. We confirmed that all 

contributing laboratories were able to enrich EV from pooled HCT116 CM, however, 

differences in results were detected. These differences appeared to be mostly 

quantitative. In fact, different labs used different centrifugation speed (maximum 

versus average 100,000 g) and k-factor, as these settings were not exactly 

predefined in the common protocol. However, even when using identical centrifuges, 

rotors and run parameters, laboratories did not produce similar results. Certainly, 

differences in particle yield seem to be attributable to operator effects. Thus, it would 

be necessary to estimate also intra-operator variability throughout multiple isolations.  

Ultracentrifugation, among the multitude of isolation methods available, is regarded 

to be particularly susceptible to operator biases. Some biases might derive from 

handling disparities such as accurate resuspension of pellets, supernatant removal 

by pipetting vs. decanting, among others. Our data suggest that handling time 

severely impacts EV preparations, in addition to the well-defined impact of storage 
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conditions and freezing-thawing cycle implications on purified vesicle integrity and 

function [224-226]. EV yield from CM stored for a longer period of time prior to EV 

isolation was extraordinarily reduced. We have detected a decrease in overall 

variability when span between retrieval and EV isolation was standardised among 

groups. This notion is in line with previously published reports that linked shorter 

processing time to increased particle concentrations [227]. Furthermore, for plasma 

and serum, time between blood draw and initial centrifugation seem to have a direct 

impact on EV yield [228]. This demands for a normalisation of storage time, 

temperature and number of freeze-thaw cycles. Accordingly, to ensure maximal 

reproducibility, each step of the EV workflow, from sampling and pre-analytical 

features to EV enrichment, requires careful consideration and accurate reporting. We 

recognize that the conclusion that can be attained from an inter-laboratory study 

involving only four laboratories are in fact limited, despite all contributing partners 

being broadly experienced in the EV field [136, 221, 229-236]. Additionally, due to 

the lack of intra-operator assessment, we cannot precisely determine inter-laboratory 

variation, as previously mentioned. As a main conclusion we should state that 

precise and extensive reporting is crucial to accurately replicate a given protocol. For 

instance, in the literature centrifugation speed is often reported without specification 

of average (rcf avg) or maximal centrifugal force (rcf max). Accordingly, to transfer a 

given isolation protocol across rotors and laboratories, we recommend reporting not 

only g-forces, but also k-factors in addition to rotor types (fixed angle or swinging 

bucket). Moreover, to achieve maximum reproducibility, sample handling, processing 

time and storage need to be thoroughly controlled. Methods that are faster and 

easier to standardise seem to be required, especially when considering prospective 

clinical translation. It would be of utmost interest to perform future inter-laboratory 

studies involving multiple institutions, apart from analyzing additional biofluids 

besides cell culture supernatants. Furthermore, they should also include additional 

methods of isolation, particularly those relevant to therapeutic EV manufacturing, for 

which standardised working procedures with minimal batch-to-batch variation in 

purity, yield and potency are crucial [129, 237]. To summarise, our study indicates 

significant operator- and equipment-dependent technical variability in UC-based EV 

isolations. We believe that adding increasingly sensitive analytical assays and 

appropriate reference material, will enable detection and quantification of technical 

biases, which will in turn increase standardisation while reducing variability. Provided 
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that EV community development of valuable tools such as EV-TRACK and the 

MISEV guidelines [122, 123] are currently evolving, we are certain that a better 

understanding of variability amongst laboratories will give rise to improved 

standardisation and harmonisation.  

Comprehensively, the results from the inter-laboratory comparative study revealed 

that: 

 

 Quantitative differences were observed amongst enriched EV from different 

laboratories. Particle yield variances seem to be partially dependent on 

operator effects; 

 Handling time strongly impacts EV yield. Thus, particle concentration was 

increased with shorter time span between sample retrieval and processing; 

 Precise and accurate reporting of each step of EV workflow is recommended 

to achieve maximal reproducibility;  

 Ultracentrifugation speed requires defining max or avg g-forces, along with k-

factors and rotor types to transfer protocols to different laboratory settings;  

 Future inter-laboratory studies involving further isolation methods, biofluids 

and institutions are needed to give further insight in the EV field. 

 

In conclusion, UC-based EV isolation is associated with low reproducibility and 

technical variations, as demonstrated by the quantitative differences observed. 

These variations were influenced by operator biases due to handling variances, 

processing time or a lack of accurate reporting of isolation protocols, which pose 

main limitations to this study. Therefore, to overcome this, we suggest (1) to correctly 

define and report the EV workflow and (2) to perform a prospective multiple institution 

study that would assess different isolation methods and biofluids. 
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6 SUMMARY 
 
 
In recent years, mesenchymal stromal cells (MSC) have been an attractive target for 

their translation into clinical research applications. This is mainly due to their 

paracrine, regenerative, multi-lineage differentiation and immunomodulatory 

properties. However, MSC from different sources possess subtle differences that 

could affect the immunomodulatory molecular mechanisms used to exert their 

effects. MSC interact with a broad range of immune cells such as B and T cells and 

seem to exert their immunomodulation by synergic cell contact-dependent 

mechanism and soluble factors, including Interleukin-10 (IL-10), Prostaglandin E-2 

(PGE-2), Nitric oxide (NO) and Indoleamine 2,3-dioxygenase (IDO) , amongst others. 

MSC have been increasingly used in a variety of therapeutic fields such as 

transplantation, kidney injury, graft versus host disease (GvHD) or autoimmune 

diseases. Many preclinical murine studies involve administration of not only 

autologous and allogeneic, but also xenogeneic MSC. In fact, human MSC (hMSC) 

application in animal models is performed to assess their therapeutic potency and 

verify their safety and efficacy, as required by regulatory authorities. Nevertheless, 

the use of hMSC in murine models raises numerous concerns and the lack of 

homogeneous results still limit the translation to clinical research. MSC-derived 

conditioned media (CM) and extracellular vesicles (EV) have been portrayed by 

many as a strong alternative to cell-therapy, overcoming many of the regulatory 

challenges faced by MSC clinical translation. However, as EV field is quite recent, 

there is contradictory data concerning EV immune potency. Further studies are 

needed to clarify their modulatory prospect and the mechanisms involved.  

ATP-binding cassette member B5 (ABCB5) cells, novel human dermal immune-

regulatory cell (DIRCs) subset present immune-regulatory functions similar to MSC. 

Hence, our study proposes an investigation of immunomodulatory properties of MSC 

from different sources and compare them to MSC-secretome (CM and EV) 

modulatory strength. In particular, we assessed: (1) Different human MSC and (2) 

MSC-secretome immunomodulatory potential; and (3) evaluated UC-based EV 

isolation protocol. 

Indeed, ASC portrayed to be the most immunosuppressive MSC source, inhibiting 

both peripheral blood mononuclear cells (PBMC) and CD4 T cell proliferation equally. 

This was supported by elevated IDO secretion upon interferon-gamma (IFNγ) 
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stimulation. In cocultures, all MSC strongly inhibited PBMC proliferation via IDO-

kynurenine immunosuppressive mechanism. This system was verified by the addition 

of IDO inhibitor, Epacadostat, which completely abolished MSC inhibitory action. 

Furthermore, we confirmed the absence of NO mediation in hMSC 

immunosuppression. These findings indicate that elevated IDO could serve as a 

mean to assess MSC immunomodulatory potential, as a direct relation amongst both 

features is suggested.  

MSC immunomodulation in allogeneic settings demonstrated that both in human and 

rat allocultures, their respective MSC strongly inhibited T cell proliferation in a 

successful manner. In xenocultures, human ASC were incapable to inhibit rat PBMC 

and spleen mononuclear cells (SMC) proliferation, however, ABCB5 inhibited 

proliferation of both rat MC. On the other hand, rat MSC succeeded in suppressing 

human PBMC proliferation. Moreover, we were able to corroborate that murine MSC 

rely mostly on NO secretion as their main immunosuppressive mechanism. This not 

only confirmed the different species-dependent modulatory system but also indicated 

a possible use of ABCB5 cells for research in murine models. 

MSC secretome-product immunomodulatory potency was first confirmed by 

observing suppression of T cell proliferation in both direct and indirect cocultures. 

IFNγ-primed MSC-CM successfully inhibited T cell proliferation. In contrast to CM, 

MSC-EV failed to suppress PBMC proliferation indifferent of IFNγ priming. Our 

findings revealed that EV might not be able to exert their modulatory action as a 

result of a lack of IDO-Kynurenine driving mechanism.  

Finally, when assessing an UC-EV isolation protocol in an inter-laboratory study we 

found obvious quantitative differences. We observed that operator and handling time 

variations impacted EV yield. Thus, to achieve maximal reproducibility, accurate and 

precise reporting of EV workflow is needed.  

In relation to MSC immunomodulation, the use of phytohemagglutinin (PHA) in our 

system to stimulate PBMC proliferation allowed us to support previous findings 

regarding ASC strongest immunomodulatory capacities, however, in a mixed 

lymphocyte reaction (MLR) system the much more complex interaction might portray 

an entirely different outcome. Our study has demonstrated IDO as the main 

immunomodulatory mechanism involved in human T cell inhibition in vitro. Indeed, 

this system could be further improved as many findings do claim that MSC priming 

accelerates or further improves their modulatory potency. This knowledge gap 



Summary 

 

105 
 

between transferability from in vitro to in vivo settings needs to be addressed, and 

distinct deliberations need to be taken. 

Notably, our data on xenocultures suggest ABCB5 as stronger immunosuppressors 

of murine MC when compared to ASC. Differences amongst them might result from 

their environmental niche, local function, or could have been induced by their 

isolation or culture conditions. In view of these findings, we hypothesise that ASC 

ineffective data are relevant because they somehow question the current practice of 

applying human MSC in xeno-models. Our data suggest a careful evaluation of the 

use of human MSC in the context of transplantation into murine models. 

In our hands, the lack of EV immunosuppressive activity suggest that the method of 

EV isolation and/or their modulatory mechanism might have strongly influenced the 

outcome of the experiments. Despite many claiming EV possess similar suppressor 

capacities as their parental cells, data concerning EV immune potency are still quite 

heterogeneous. This highlights the importance of deeper investigations on the role of 

EV in modulating immune responses, focusing also on the optimal source and 

method of EV isolation, the dosage and potential long-term prognosis. These studies 

will be vital in determining EV potential features and modulatory mechanisms for their 

application at clinical level.  

Particularly, CM data on immunosuppression assays suggest that only CM +IFNγ 

successfully inhibit T cell proliferation to a similar extent than MSC do. Indeed, there 

is evidence of the beneficial outcome of infusion of MSC pre-treated with IFNγ in 

GvHD patients, especially in terms of treatment and prevention of the disease [238]. 

Other studies have described IFNγ to mediate protection against GvHD [239, 240]. 

Thus, in this regard and having demonstrated CM +IFNγ modulatory potential in vitro, 

we propose to adapt and further investigate their potency in vivo as a potential cell-

free approach. 

The outcome of our inter-laboratory UC-EV isolation protocol comparative study 

demonstrated great quantitative variation amongst groups. Thus, in order to 

overcome this challenge, standardised protocols with extensive reporting of the 

workflow need to be performed. To give further insight in the EV field, prospective 

multiple institution studies should take place, involving further biofluids and isolation 

methods. 
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In conclusion, having elucidated the modulatory potencies of MSC-EV and CM, 

further in vitro experimentations, followed by in vivo research may clarify their 

mechanisms involved and represent a potential novel cell-free treatment.  
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