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1 INTRODUCTION 

1.1 Mesenchymal stromal cells 

 General overview 

Mesenchymal stromal cells (MSC) were described for the first time in 1970 by 

Friedenstein and colleagues [1]. These cells, addressed as fibroblast colony-forming 

cells were isolated from the bone marrow and displayed an osteogenic differentiation 

potential. At that time, they were already defined by Friedenstein as an important 

component in bone-marrow transplantation, suggesting their fundamental role in the 

support of the hematopoietic stem cells niche [1]. Indeed, these “bone-marrow 

adherent cells” were later demonstrated to support hematopoiesis in vitro for weeks 

[2]. Moreover, evidence of their differentiation potential to osteoblasts as well as 

chondrocytes was rapidly provided [3]. From these first findings, the research on MSC 

and on their potential application in medicine has widely expanded [4]. As a result of 

these broad investigations MSC were found also to be isolated from several tissue 

sources such as adipose tissue (adipose tissue-derived stromal cells – ASC) [5, 6], 

umbilical cord/cord blood (CB-MSC) [7], dental pulp [8], Wharton´s jelly (WJ-MSC) [9] 

and many others [10]. However, the use of different protocols for MSC isolation and 

culture generated a huge amount of conflicting data dealing with MSC characterization 

and especially with their therapeutic potential [11]. In their review Phinney and 

Sensebe summarized misconceptions about MSC and listed the following points as 

general reminder: (1) MSC from different tissue sources are different in terms of 

phenotype and function, (2) lack of complete correspondence of MSC function in vitro 

and in vivo, (3) heterogeneity of MSC among different species and (4) the need for 

clinical data to assess their effective mode of action [11]. 

To create uniform and at least minimal criteria for the characterization and definition of 

MSC, the International Society of Cellular Therapy (ISCT) proposed some guidelines 

[12] where MSC are defined as a fibroblast-like multipotent progenitor cells with a solid 

proliferation capacity. They should retain a trilineage mesenchymal differentiation 

capacity to adipocytes, chondroblasts and osteoblasts as well as some characteristic 

cell surface markers. For instance, MSC have to be negative for hematopoietic and 

leukocyte markers (CD34, CD45) and at least positive for CD73, CD90 and CD105 

[12, 13]. However, as studies on MSC characterization are still on going, these criteria 
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are continuously expanding, becoming more and more specific in the attempt to give 

a better understanding of MSC potential [14-16]. 

MSC multipotency, together with an increased understanding of their capacities, 

brought these cells on the spot, causing a tremendous increase of studies addressing 

their therapeutic potential on several contexts of disease. MSC have been investigated 

in tumors [17-19], wound healing [20, 21], graft vs host diseases [22-24], autoimmune 

diseases [25-27] and diabetes [28-30]. The great interest in using MSC as tool for cell-

based therapy relies on multiple findings, which characterized the potential mode of 

action of MSC when interacting with other cell types in physiological/diseased 

microenvironments. Indeed, the “modes of action” of MSC can be allocated to three 

different main mechanisms: (1) the trophic potential, (2) the immunomodulatory 

function and (3) the differentiation potential (Figure1). 

 

 

 

Figure 1 Concept of MSC application in cell-based therapy. MSC can be isolated from different sources, expanded 

and in line with the type of application, possibly modified (e.g. genetically). They can be applied in several disease 

contexts acting in accordance to their modes of action: trophic potential, immunomodulatory potential and 

differentiation potential. VEGF: vascular endothelial growth factor; HGF: hepatocyte growth factor; FGF: fibroblast 

growth factor, IL-6: interleukin 6, TGF-β: transforming growth factor beta, MCP-1: monocyte chemotactic protein-1, 

EV: extracellular vesicles.       

(1) The trophic potential of MSC resides in their ability to secrete a wide range of 

paracrine factors such as cytokines and growth factors, which have been shown to 

modulate their surrounding microenvironment and mediate the interaction with other 

cell types [31, 32]. Recently MSC have been reported to produce extracellular vesicles 
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(EV) and exosomes, denoting a new possible paracrine mechanisms. This option has 

raised the new intriguingly paradigm of MSC-cell free based therapeutic potential 

aiming to replace MSC in favor of their secretome-derived products [33].  

(2) The immunomodulatory function of MSC concerns not only their low 

immunogenicity, but it is also related to their interaction with cells of the immune 

system, generating an overall modulation of the immune response. Indeed, MSC were 

characterized for a low expression of human leucocyte antigen (HLA) class I molecules 

and the lack of costimulatory ones such as CD80 and CD86 [34]. This was interpreted 

as MSC being immune-privileged. In addition, the MSC-mediated inhibition of T cell 

proliferation, together with their ability of inducing regulatory T cells (Treg) are some of 

the most studied topics regarding MSC-mediated immunomodulation [34-36].  

(3) The differentiation potential comes from their natural multipotency. Because of their 

differentiation ability to osteogenic and chondrogenic lineages, MSC have been 

thoroughly investigated in the context of bone and cartilage repair [37, 38] and even 

potential neuron-like differentiation has been proposed [39]. They have been also 

reported to differentiate into β-pancreatic cells to restore β-cell failure in diabetes [40]. 

Despite the great interest in this last topic, the underlying mechanisms related to MSC-

migration, homing to injured site, effective differentiation and functional engraftment 

still require further elucidations. 

All these aspects contribute to make MSC still a hot topic in terms of therapeutic cell-

based approaches.  

 

 The proangiogenic potential 

As already described previously, MSC are well-known for their trophic support, which 

is dependent on their ability of secreting a large number of cytokines and growth 

factors. In particular, studies in the cardiovascular field have largely demonstrated that 

MSC retain important proangiogenic features [41]. Media obtained from cultured MSC 

have been reported to be rich in proangiogenic factors such as vascular endothelial 

growth factor (VEGF), hepatocyte growth factor (HGF), fibroblast growth factor (FGF) 

and monocyte chemotactic protein-1 (MCP-1) [42, 43]. MSC conditioned media (CM) 

supported angiogenesis of human umbilical vein endothelial cells (HUVEC) in vitro and 

this effect was abrogated after pretreatment with neutralizing antibody against VEGF, 

MCP-1 and interleukin-6 (IL-6). In the same study, identical results were obtained when 

the CM was locally injected in a mice model of hind limb ischemia and promoted 



Introduction 

7 

angiogenesis as well as reduction of inflammation [44]. In another approach, the 

analysis of the secreted proteome in CM from MSC, revealed a notable 

overrepresentation of proteins related to the development and function of the 

cardiovascular system clustering in processes like angiogenesis, neovascularization 

and development of blood vessels [45]. Notably, intravenous injection of MSC-CM 

preserved cardiac function in a pig model of myocardial infarction increasing capillary 

density and reducing the infarct size [45]. These promising evidences introduced MSC 

into the cardiovascular research and many clinical trials investigating their safety and 

efficacy were initiated [46-48]. Besides these obvious implications in the cardiovascular 

field, many studies are still going on to characterize the crosstalk between MSC and 

endothelial cells (EC) [49]. In fact, other angiogenesis-related pathways are emerging 

as being regulated by MSC. For instance, the angiopoietin-1 (Ang-1)/angiopietin-1 

receptor (Tie2) pathway and the VEGF/VEGF receptor-2 (VEGFR2) pathway resulted 

to be upregulated promoting angiogenesis and vascular stabilization in vitro and in vivo 

in a mouse model of cerebral artery occlusion [50]. In addition to that, proangiogenic 

growth factors and cytokines might act via exosomes or EV. Beneficial effects of MSC-

derived exosomes have been provided in several studies of ischemic heart disease 

[51, 52] and wound healing [53]. However, the proangiogenic ability of MSC may have 

some side effects, especially in tumor diseases. Indeed, tumor angiogenesis is a 

critical aspect in cancer diseases, mediating tumor progression and metastasis [54]. 

Some evidences suggested that MSC could promote in vitro and in vivo tumor neo-

angiogenesis via paracrine secretion of proangiogenic factors and inducing remodeling 

in endothelial cell organization [55-57]. Although mechanisms are still under 

investigation, these effects seemed to be mediated by a sort of “malignant 

transformation” of MSC or from the so called cancer-derived fibroblast (CAF), which 

might originate from recruited MSC. Once in the tumor stroma these cells might sense 

the altered microenvironment and, in the crosstalk with tumor cells, starting to co-

evolve with the disease, contributing to the progression through physical and chemical 

remodeling of the tumor microenvironment [58, 59]. 

Overall, these data indicate that MSC retain strong proangiogenic capacities. 

Moreover, as demonstrated in the case of CAF, MSC are susceptible to their 

surrounding microenvironment, which may induce changes in their phenotype as well 

as functions and drive their beneficial potential to a dangerous one. Therefore, in the 

development of MSC-mediated or MSC-free therapeutic approaches, it is important to 
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define risks and benefits of a potential induction of angiogenesis. While this may be 

the goal of ischemia and non-perfusion-related diseases, the same should be avoided 

in diseases where pathological angiogenesis is the cause of the disease such as 

angiogenic tumors, chronic inflammation or retinopathies [60]. A comprehensive 

knowledge of the disease and MSC potential in that context represents a fundamental 

step in the elaboration of cell/cell-free therapy. 

 

 The immunomodulatory potential: focus on MSC and T cell interaction 

As introduced previously, MSC can act also as potent immunomodulators regulating 

the immune response and generally skewing it towards a pro-regenerative/anti-

inflammatory milieu rather than to a pro-inflammatory one [61, 62]. 

It is long established that MSC exert a strong inhibition on activated T cells. Indeed 

when T cells are triggered by mitogenic stimuli such as phytohaemagglutinin (PHA) or 

anti-CD3/CD28 monoclonal antibodies, MSC can firmly restrict their proliferation [63-

65]. However, contrasting observations suggested that MSC could also induce the 

survival of quiescent/not-stimulated T cells [66]. Although this appeared to be related 

to culture condition i.e. MSC/mononuclear cell ratio [67], this aspect should be taken 

into account in the context of clinical application. Molecular mechanisms regulating 

MSC/T cell interplay rely on both cell-to-cell contact and secretion of soluble factors 

[34]. It has been demonstrated that CM from MSC containing IL-10 and indoleamine 

2,3-dioxygenase (IDO) induced apoptosis in splenocytes, while the direct contact with 

MSC promoted splenocytes cell arrest in the G0/G1 phase [68]. Similarly, in direct and 

indirect cocultures of MSC and peripheral blood mononuclear cells (PBMC), it was 

observed that both IL-10 and transforming growth factor beta (TGF-β) were important 

mediators in the induction of programmed cell death 1 receptor (PD-1) on T cells. The 

latter was partially involved in MSC-mediated T cell apoptosis via the PD-1/B7-H1 axis 

[65]. In addition to that, MSC priming via interferon gamma (IFN-γ), resulted in IDO up-

regulation which potentiated the suppressive potential of MSC on stimulated PBMC, 

suggesting that MSC activity can be modulated by surrounding stimuli [69, 70].    

Another important immunoregulatory function of MSC concerns their ability to affect 

the balance of the CD4 T helper (Th) subsets both in vitro and in vivo [71]. CD4 Th 

cells are normally classified into:  

(1) Th1, involved in the activation and recruitment of macrophages as well as in the 

IgG production by B cells, which secrete IFN-γ and tumor necrosis factor (TNF);  



Introduction 

9 

(2) Th2, which produce IL-4, IL-5, IL-9, IL-13 and IL-10 and mediated the switch of 

antibody secretion in B cells;  

(3) Th17, which role in inflammation concerns the recruitment of neutrophils and the 

secretion of  IL17a-f, IL-21 and IL-22 and  

(4) Treg, a subset of CD4 cells commonly described as CD4+CD25+ forkhead box P3 

positive (Foxp3+), which are essential in the regulation of the inflammatory process 

and to prevent autoimmunity [72].  

In vitro cocultures of MSC and CD4 cells showed that MSC could exert a potent 

inhibition of undifferentiated CD4 T cells, however, once the differentiation to Th1 and 

Th17 was already initiated, MSC were able to suppress only Th1 cells, while the pro-

inflammatory Th17 were promoted [73]. In another study, MSC decreased IFN-γ 

secretion from Th1 while increasing IL-4 produced by Th2, suggesting a shift from pro-

inflammatory to an anti-inflammatory background [74]. These effects were detected 

also in different disease model in vivo. For instance, an improvement of the Th1/Th2 

balance, consistent with a reduction in Th17 and increase in Treg, has been 

documented in several models of type 1 diabetes (T1D) [75-77]. In a rat model of 

inflammatory bowel disease, treatment with ASC promoted an overall amelioration of 

the disease through impairment of Th1 expansion and Th1 cytokine secretion in 

association with Treg induction, which were highly immunosuppressive in vivo and in 

vitro [62]. Many of these studies, together with the inhibition of Th1/Th17 subsets, often 

reported a concomitant induction of Treg cells. As introduced before, Treg exert a 

fundamental role in the regulation of the immune response modulating the activation 

of Th subsets. They are usually distinguished into natural or naïve Treg (nTreg) 

originating in the thymus and induced Treg (iTreg), which come from the differentiation 

of peripheral CD4 T cells [78]. Treg characterization has a long story started more than 

20 years ago when CD4+CD25+ cells were found to be fundamental in mediating self-

tolerance [79]. To date, many markers have been tested and introduced in their 

characterization. The positivity for transcription factor FoxP3 as well as the lack of 

CD127 expression are commonly accepted as Treg markers [80]. Importantly, 

CD4+CD25+CD127- were found to better reproduce the inhibitory activity of 

CD4+CD25+FoxP3+ cells suggesting that the combination of these four markers was 

highly representative of functional Treg [81]. Cocultures of MSC and CD4 cells reported 

an induction of CD4+CD25+FoxP3+ Treg cells mediated by the production of 

prostaglandin E2 (PGE2) and transforming growth factor β (TGF-β) [82]. The induction 
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of IL-10 producing Treg by ASC in coculture with PBMC corroborated these findings 

[61]. In another study Melief and colleagues demonstrated that TGF-β, produced by 

MSC, was a key factor in mediating Treg induction, which was also supported by 

monocytes. Notably, MSC and their CM supported monocyte survival while promoting 

their switch to a M2 (anti-inflammatory) phenotype enabling them to secrete chemokine 

ligand 18 (CCL-18), which was found to be essential in inducing Treg [83]. Also IL-2 

has been demonstrated to be instrumental for Treg induction [84]. Many of these 

findings were recapitulated in vivo in several settings, highlighting the protective effect 

of MSC via Treg induction [85-87]. 

 

The evaluation of MSC-mediated effects on the immune response following their 

transplantation/application in diabetic settings has a long history with promising 

outcomes [88]. For instance, MSC injections in STZ rats lowered blood glucose levels, 

ameliorated insulin secretion and promoted pancreatic islets renewal [89, 90]. 

Likewise, in pre-diabetic non obese diabetic (NOD) mice, intravenous injection of 

human MSC delayed the onset of  diabetes and reduced high levels of pro-

inflammatory cytokines [91]. These evidences, in addition to the growing interest in 

developing MSC-mediated therapies, promoted many clinical studies, which gave 

successful and promising results [92-94]. However, investigations on specific MSC 

immuno-mediated effects on diabetic complication are still under evaluation. Especially 

in diabetic retinopathy (DR), where the MSC therapeutic potential is mainly 

investigated in terms of provision of trophic factors and structural support (pericyte-like 

function), the role of MSC as immunomodulators is almost not considered. 

 

Taken together these studies constitute a solid base for further pre-clinical and clinical 

studies in many disease settings from autoimmune diseases to transplantation. A 

continued investigation on the complex interactions between MSC and cells of the 

immune system will be required to gain further insights on the MSC-mediated 

immunomodulation. 
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1.2 Mesenchymal stromal cells in diabetic retinopathy 

 Diabetic retinopathy 

Diabetes mellitus is a pathological condition, which comprehends a large group of 

metabolic disorders characterized by two distinctive traits: high levels of glucose in the 

blood stream and impaired glycemic control. Diabetic patients may often develop eye-

related complications and the most common is known as DR [95]. While its onset is 

asymptomatic, the appearance of first clinical signs described as “at least one 

microaneurysm” denotes already the stage of a mild non-proliferative DR (NPDR). The 

disease can then progress to moderate NPDR where microaneurysms appear together 

with hemorrhages. The severe NDPR is internationally classified as followed [96, 97]:  

(1) more than 20 intraretinal hemorrhages in each of four quadrants and (2) venous 

beading and prominent intraretinal microvascular abnormalities in two/one or more 

quadrants. The last stage of the disease is the proliferative DR (PDR) characterized 

by retinal neovascularization, vitreous/preretinal hemorrhages and even traction retinal 

detachments [96, 97]. Another important classification in DR is that of the diabetic 

macular edema (DME), which can occur across all stages of DR. This represents the 

main cause of vision loss through fluids accumulation in the neural retina as well as 

cystoid edema of the macula [98]. 

 

DR is a progressive neurovascular disease, which involves the microvascular and 

neuronal compartments of the eye [99]. Following the hypothesis of the neurovascular 

unit, microvascular and neuronal changes might be interconnected, contributing 

together to the progression of the disease [99]. Although the temporal connection 

between vascular and neuronal changes is unclear and physio-pathological 

mechanisms still need elucidation, many papers reported early degeneration in the 

neuronal district. For instance, apoptosis of retinal ganglion cells (RGC), reduction in 

photoreceptors and alteration in the inner neuronal retina were documented prior to 

vascular changes [100-102]. The glial fibrillary acidic protein (GFAP) has also been 

proposed as marker to target activation/alteration in Müller glial cells in early phases 

of diabetes [103]. Starting from these findings, the concept of inflammation as one of 

the leading processes in the early pathogenesis of the disease arose [104]. Indeed, 

many “classical” inflammatory markers such as tumor necrosis factor α (TNF-α), IL-1β, 

IL-6 and intercellular adhesion molecule 1 (ICAM-1) were identified at high 

concentration in eyes of diabetic patients [105-107]. In addition, “traditional 
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inflammatory processes” such as increased vascular permeability, tissue edema, 

microglia activation and macrophage infiltration have been described in many animal 

models [108-110]. 

The retinal microvascular compartment can be simultaneously considered as the 

source and the consequence of retinal inflammation. Pro-inflammatory cytokines were 

found to be produced directly by endothelial cells as well as by infiltrating leukocytes. 

Several studies demonstrated that increased leakage in retinal vessels and 

consequent infiltration of immune cells (monocytes) were related to a rising expression 

of adhesion molecules such as ICAM-1 and vascular cell adhesion molecule 1 (VCAM-

1) [111]. Similarly, in a streptozotocin (STZ) mouse model, it was observed that 

inhibition of ICAM-1 prevented the adhesion of leukocytes to the retinal capillaries, 

which started to take place immediately after induction of diabetes [112]. Damaged 

endothelial cells can also act as principal mediators of the inflammation supporting the 

angiogenic response typical of the PDR. Indeed, it has been demonstrated that the 

expression of VEGF can be sustained and promoted by pro-inflammatory cytokines 

such as TNF-α and IL-6 [113]. Similarly, VEGF could act as pro-inflammatory cytokine 

itself favoring other pro-inflammatory mediators [114, 115]. Overall this self-

propagating mechanism contributes to retinal degeneration, supporting vascular 

alterations not only at early stages of DR but also in later ones guiding and promoting 

the angiogenic response. 

 

Focusing only on the microvascular retina, is it possible to define two cell type, which 

are mainly involved in the vascular degeneration, pericytes and endothelial cells. 

Pericytes are cells of mesodermal origin with a perivascular location, wrapping around 

micro and macro-vessels, establishing a very tight contact with endothelial cells [116]. 

Studies on these cells revealed a large heterogeneity of this cell population, mainly 

related to their location and function [117]. Regarding their function, pericytes are 

generally involved in the regulation and preservation of vascular homeostasis 

participating in processes like angiogenesis and vascular permeability [118]. PDGF-

β/PDGFR-β, Ang1-2/Tie2 and Notch signaling are the signals which mediate the 

interaction with endothelial cells in the developing and resting retina, promoting 

homeostasis or angiogenesis [119]. Moreover, the 1:1 ratio between pericytes and 

endothelial cells is fundamental to maintain the tightness of the blood retinal barrier 

(BRB) [120]. In DR, because of the hyperglycemia-mediated insults, the normal 
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communication and interaction between EC and pericytes is interrupted. Indeed, 

pericyte loss is one of the earliest changes in the diabetic retina [121]. Even if the 

temporal relation between loss of pericytes and duration of diabetes in humans is still 

unclear, the loss of pericytes contributes to the vascular remodeling, which leads first 

to acellular capillaries, microaneurysms and non-perfused area, ending up with vessel 

hyper proliferation to counteract the retinal ischemia [121]. 

 

These changes in pericyte-endothelial cell interactions, together with hyperglycemia-

mediated cell damage in the retinal endothelium and the spreading inflammation, 

contribute to the pathogenesis of DR (Figure 2). 

 

 
Figure 2 Progression of DR and factors involved in the pathogenesis. ROS: reactive oxygen species, AGEs: 

advanced glycation end products, VEGF: vascular endothelial growth factor. 

 
To date, the majority of therapeutic strategies in the cure of DR, target mainly late stage 

of the disease. Together with tight glycemic control, laser photocoagulation, injection 

of anti-VEGF antibodies, corticosteroids, non-steroidal anti-inflammatories as well as 

inhibitors of the renin-angiotensin system are some of the most used therapeutic 

approaches [122]. However, it is now clear that specifically targeting the early phases 

of DR would lead to a notable improvement in preventing or delaying the progression 

of the disease. In this sense, cell-based therapy may represent a good option because 

of their potential ability to replace/promote tissue repair in the damaged retina [123]. 

 

 MSC-based therapeutic approach in DR 

The role of MSC as cell-therapy approach to DR has been intensively studied in several 

animal models, producing interesting and promising results. For instance, beneficial 

effects of ASC were demonstrated in vitro and in vivo in a study from Rajashekhar and 
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colleagues [124]. Cocultures of ASC and retinal endothelial cells (REC) revealed that 

ASC supported REC angiogenic network formation and intravitreal injection of ASC in 

a STZ mice reduced vascular leakage and inflammation in the retina. Notably, ASC 

were localized in proximity of retinal vessel, suggesting a potential pericyte-like 

function [124]. Similarly, ASC were found to induce a cytoprotective microenvironment 

in the retina of STZ mice, preventing pathological neovascularization through reduction 

of oxidative stress and prevention of retinal ganglion cell loss [75]. An important 

evaluation on timing of MSC injection has been provided by Mendel and colleagues in 

a mice model of oxygen-induced retinopathy (OIR) [125]. They found that injection of 

ASC before OIR vessel destabilization prevented capillary dropout in addition to a 

perivascular/pericyte-like localization around retinal vessels. The ASC even expressed 

pericyte markers such as neural/glia antigen 2 (NG-2) and α smooth muscle actin (α-

SMA). Similar findings were recapitulated also in a DR Akimba mouse model [125]. 

The pericyte-like behavior of ASC was also confirmed in a mouse model of retinopathy 

of prematurity (ROP) [126]. Here, changes in inflammatory and angiogenesis-related 

cytokines were found in comparing ASC-treated/non-treated mice, suggesting an 

active modulation of retinal microenvironment by ASC. Similarly, beneficial effects of 

ASC were demonstrated also in vitro, where ASC CM abrogated HG-induced oxidative 

stress and NF-κB activation in endothelial cells exposed to hyperglycemia [126]. 

Finally, the interaction between ASC and REC has been shown to be dependent on 

NOTCH signaling [127]. In summary, all these studies characterized at least two main 

roles of MSC in DR. The first one is related to the ability of MSC to tightly interact with 

endothelial cells in the retinal microvasculature, acquiring a pericytes-like phenotype 

suggesting a potential role as modulator of vascular homeostasis. Secondly, thanks to 

their trophic potential, MSC can secrete numbers of cytokines and growth factors, 

which can modulate the local microenvironment resulting in a modulation of retinal 

inflammation. 

 

As mentioned before, among MSC capacities, the immunomodulatory potential is one 

of the most studied in several disease contexts. These capacities are until now almost 

not considered in DR and beside findings confirming the reduction of pro-inflammatory 

cytokines upon MSC application, no real evidences about an interaction with microglia 

or T cells were reported. Although, these cells could play a relevant role in DR, as 

suggested by a recent paper [128]. Indeed, Deliyanti and colleagues investigated 
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whether Treg were detectable in the retina at different time points after the generation 

of OIR in mice. They found that while in controls Treg were residing within the 

vasculature, the acute phase (switch from hyperoxia to hypoxia) caused an 

extravasation of Treg cells in the retinal tissue. At the same time point, Treg were also 

expanding in spleen and lymph nodes. Besides this, they also showed that these cells 

were of therapeutic relevance: increasing the Treg numbers via IL-2/anti-IL-2 mouse 

antibody or via adoptive transfer, not only reduced retinal neovascularization but also 

favored an anti-inflammatory switch of the microglia, both in vivo and in vitro [128]. 

These data demonstrated that acute retinal ischemia represented a stimulus to induce 

transient Treg expansion, which migrated to retina. Once there, however, quantities 

were not enough to modulate the microenvironment and restrict pathological 

neovascularization. Notably, increasing the number of circulating Treg, caused a delay 

in the progression of the disease and prevented neovascularization. These promising 

evidences introduced the hypothesis of Treg manipulation as potential treatment of 

retinopathies. Because of this, the potential use of MSC in cell-based therapeutic 

approach of DR, might start to consider MSC-mediated Treg induction as a possible 

therapeutic mechanism beside pericytes-like function and trophic support. 

 

Despite the promising results obtained in animal models, further studies are still 

required to clarify safety and efficacy of MSC-mediated cell therapy. Moreover, 

important aspects such as timing and route of administration, allogenic versus 

autologous MSC and the fine characterization of the MSC potential in retinal 

microenvironment have to be taken in consideration [123].    

 
 

1.3 Molecular mechanisms of hyperglycemia-mediated cell damage 

Hyperglycemia and poor glycemic control are two main features of diabetes mellitus. 

People affected by this disease are prone in developing serious secondary 

complications, which actually affect their life resulting in impaired life quality and even 

increased mortality [129]. Some of those secondary complications are microvascular 

pathologies, which can affect the retina (DR), kidney (diabetic nephropathy) and 

peripheral nerves (diabetic neuropathy) [130]. The pathophysiological features of these 

complications are very similar in the three different districts and concern a progressive 

microvascular degeneration, which impairs the normal microvascular functions and 
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vascular permeability. With time, these alterations lead to cell loss, overproduction of 

extracellular matrix and capillary occlusion, which are the preamble for ischemia, 

hypoxia-induced neovascularization, edema and matrix deposition [131, 132]. 

 

Hyperglycemia is considered one of the leading factors driving diabetic complications, 

especially because of glucose-mediated cell damage, which is particularly evident in 

endothelial cells. Four mechanisms have been proposed to explain how 

hyperglycemia-induced damage takes place and were gathered together by Brownlee 

in the “unifying hypothesis” [133, 134]. The mechanisms are the following: (1) 

increased flux in the polyol pathway as well as (2) through the hexosamine pathway; 

(3) abnormal activation of protein kinase C (PKC) and (4) increased formation of 

advanced glycation-end products (AGE) [134]. The upstream factor initiating this 

cascade of events is indeed glucose, which uptake in endothelial cells is insulin-

independent. Therefore, too high glucose concentrations in the blood stream 

corresponds with high glucose concentrations in the cells [135]. Increased glucose 

influx in the cells may be directed to the (1) polyol pathway and metabolized by aldose 

reductase through NADPH consumption. Similarly, exceeding fructose-6-phosphate 

(F-6-P) obtained by metabolized glucose in the first step of glycolysis, may be directed 

to (2) the hexosamine pathway. Here, F-6-P may act as substrate for enzymes driving 

protein glycosylation by addiction of N-acetylglucosamine (GlcNAc), which has been 

demonstrated to modulate the activity of transcription factors. Also (3) PKC activation 

is mediated by high intracellular glucose levels, since this may cause increased 

production of diacylglycerol (DAG). DAG mediates PKC activation, which may act as 

second messenger to the modulation/activation of several enzymes/pathways such as 

endothelial nitric oxide synthase (eNOS), VEGF production, NF-κB (nuclear factor 

kappa-light-chain-enhancer of activated B cells) and NADP(H) oxidase activation. 

Lastly, glucose may contribute to (4) AGE formation through the generation of glucose-

derived precursors (like glyoxal or methylglyoxal). Increased production of AGE may: 

(1) affect normal cell function via AGE-modification of proteins, (2) impair cell adhesion, 

via generation of AGE-modified extracellular matrix and (3) activate the NF-κB pathway 

through AGE-receptor of AGE (RAGE) stimulation [134].  

The “unifying hypothesis” proposed by Bronwlee, suggested that all these pathogenic 

mechanisms, induced by hyperglycemia, may contribute to a single, unique process: 

superoxide production by the mitochondrial electron transport chain. Superoxide 
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production by mitochondria has been demonstrated to be strictly related to the cell 

metabolic status and glucose consumption. Moreover, superoxide can reduce 

glyceraldehyde-3-phospathe dehydrogenase (GAPDH) activity resulting in 

accumulation of glucose metabolites, which will be directed to the polyol and 

hexosamine pathways. Similarly, GAPDH inhibition may promote PKC activation and 

formation of AGE caused by triose phosphate accumulation [134]. 

As microvascular complications arise mainly from endothelial dysfunction, the reported 

molecular pathways were largely investigated in endothelial cells [135]. However, 

many cell type resulted impaired by hyperglycemia. For instance, retinal pericytes 

[121], neuronal cells [136] and even cells of the immune system [137].  

 

 Are MSC affected by hyperglycemia/diabetes? 

The large interest in the therapeutic use of MSC comes not only from their multipotency 

but also from their relatively easy isolation and expansion in vitro. For instance, large 

quantities of ASC can be isolated with non-invasive procedures, rendering them a very 

promising candidate for autologous treatment [138, 139]. 

However, as introduced previously, diabetes is a particular metabolic condition where 

normal cell metabolism and functions are altered. Moreover, dysfunction in the 

homeostasis of adipose tissue has been strongly related to obesity and related 

disorders [140]. Considering these aspects, we asked: whether, how and how much 

hyperglycemia/diabetes can impair MSC? 

To date, despite several studies investigated the effect of diabetes (both T1D and type 

2), conflicting results did not help in finding a clear answer. While some papers reported 

similarities in potency and functions of MSC/ASC isolated from healthy or diabetic 

patients [141, 142], others denoted important differences [143, 144]. This, of course 

may impair their therapeutic function, opening questions on whether the use of 

autologous or rather allogeneic MSC is favored in potential cell-based interventions. 

Comparing ASC isolated from fat pads of diabetic and healthy mice, Cianfarani and 

colleagues observed a differential expression of surface markers, suggesting a 

depletion of certain cell subpopulations, which might affect their therapeutic potential. 

Indeed, the efficacy of wound healing support of ASC isolated from diabetic mice was 

reduced compared to the one from healthy ones [145]. In similar studies, the 

angiogenic potential of ASC isolated from diabetic mice was impaired in vivo and in 

vitro and this was related to a depletion in certain ASC subpopulations. Rennert and 
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colleagues identified a depletion in CD45-CD31-CD34+ ASC from stromal vascular 

fractions (SVF) of diabetic patients, while Inoue et al. observed that reduced CD271+ 

subpopulation in CD34+CD31−CD271+ ASC  was critical for the impairment of diabetic 

ASC.  [146, 147]. In a model of DR, diabetic ASC did not improve retinal 

vascularization, despite no metabolic differences in terms of ATP-dependent, 

uncoupled and non-mitochondrial respiration [148].  

Taking into account these studies, autologous MSC from diabetic patients should not 

be then considered totally safe. Indeed, it has been demonstrated that genetically 

modified diabetic ASC, expressing the enzyme glyoxalase-1 (GLO-1), had improved 

viability, migration and proangiogenic capacity and were equal to healthy ASC in 

restoring blood perfusion [149]. Similarly, pretreatment of diabetic MSC with 

deferoxamine resulted to be significant in increasing VEGF, hypoxia inducible factor-1 

(HIF-1) and FGF-2 restoring their angiogenic potential [150]. 

 

Asking on whether, how and how much hyperglycemia affects MSC functions, 

Hajmousa and colleagues recently reported a specific hyperglycemia-mediated effect 

on ASC [151]. ASC cultured in media with high glucose concentration (HG; 30 mM) 

were characterized by changes in the bioenergetics of metabolism, denoting increased 

reactive oxygen species (ROS) production and mitochondrial reorganization. Despite 

this, ASC in presence of HG, reduced glucose uptake, denoting their great plasticity in 

adapting to the surrounding microenvironment [151]. Another study demonstrated the 

involvement of ROS as consequence of hyperglycemia in MSC [152]. Indeed, HG 

exposure altered mRNA expression of adipokines and transcriptional factors in 

adipocytes differentiated from BM-MSC. These changes did not interfere with the 

differentiation process, but were all associated to increased intra- and extracellular 

ROS production [152]. In contrast to previous studies, hyperglycemia was found to 

induce BM-MSC apoptosis in a time dependent manner, while increased production of 

ROS was also confirmed [153].   

 

These discrepancies highlight that more studies are still needed to fully elucidate 

whether MSC transplantation can be considered as a therapeutic alternative in diabetic 

disorders. At the same time, investigations on diabetic/hyperglycemia-mediated effects 

that may occur once healthy MSC are in a diabetic/hyperglycemic environment can 
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give important insights on how MSC-mediated cell therapy can be improved in this 

particular pathological setting.         
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2 AIM OF THE STUDY 

The study of MSC as tools for cell-based therapy in several diseased contexts 

represents one of the most investigated fields of the last twenty years. However, in 

some situations, the lack of homogenous results still limits the translation to the clinical 

research. This is the case in the field of diabetes. Indeed, while 

transplantation/application/infusion of allogenic MSC is widely investigated as 

previously reported, the research on the application of autologous MSC is still lagging 

behind. It has been proven that in diabetes and hyperglycemia-related syndromes, 

high glucose concentrations in the blood flow, together with poor glycemic control, 

represent one of the first causes of cell damage. Hyperglycemia-mediated cell damage 

has been largely documented especially in endothelial cells uncovering mechanisms 

of the pathogenesis of some diabetes-related microvascular diseases, such as DR and 

diabetic nephropathy. However, effects of hyperglycemia on MSC are poorly studied 

and to date some contrasting evidences have proposed that MSC isolated from 

diabetic patients may be impaired in their therapeutic potential. 

 

Hypothesizing that ASC may serve as future cell-based therapy to prevent or 

ameliorate pathological consequences of DR by exerting pericyte-like/proangiogenic  

functions, we asked whether ASC are affected by hyperglycemia and if so, which of 

the proposed therapeutic mechanisms is changed: the angiogenic function, the 

pericyte-like, and/or the immunomodulatory capacity. Therefore, we developed our 

research strategy around four main aims here presented (Figure 3). 

  

 
Figure 3 Aims of the study. 
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(1) Aim 1: Evaluating effects of hyperglycemia on cellular phenotypes. 

Postulating that hyperglycemia-mediated effects on ASC would have been 

detectable on their phenotype, ASC were isolated from lipoaspirate of multiple 

donors and directly after isolation, cells from the same donor were cultured in 

normal glucose (ASCNG; 1g/L) and high glucose (ASCHG; 4.5 g/L) cell culture 

medium. These two counterparts were compared in terms of phenotype, cell 

growth, differentiation potential and cell surface markers. Oxidative stress (total 

intracellular ROS content) and glucose uptake were also measured.  

Similarly, hyperglycemia-mediated effects were also assessed on 

microvascular retinal endothelial cells (HRMVEC). Growth rate of NG and HG 

cultured HRMVEC was monitored as well as oxidative stress and glucose 

uptake. Angiogenic potential of NG/HG HRMVEC was tested trough basement 

matrix angiogenesis (BMA) assays on gel membranes. 

 

(2) Aim 2: Evaluation of ASC proangiogenic potential under hyperglycemia. 

Hypothesizing that the proangiogenic potential of ASC would not be affected by 

HG, we established cocultures with EC, analyzing their supernatants for 

angiogenic growth factors. 

First, ASCNG-HG were cocultured with GFP-transfected human umbilical vein 

endothelial cells (HUVECGFP). Coculture supernatants were assessed 

comparing ASCNG cocultures in NG and HG culture media. 

Second, cocultures between ASCNG-HG and GFP-transfected HRMVEC 

(HRMVECGFP) were set and coculture supernatants were analyzed comparing 

ASCNG-HG monoculture with cocultures (in NG culture media). 

Third, supernatants of cocultures and ASC monocultures were used as 

conditioned media (CM) for culturing HG HRMVEC in BMA assays. 

 

(3) Aim 3: Evaluation of pericyte-like function of ASC. 

We hypothesized that ASC could serve as functional pericytes interacting and 

stabilizing endothelial cells independently of HG. Immunofluorescence was 

used to investigate ASC for pericyte-like markers when cocultured with dTomato 

transfected HRMVEC. Anti-α-SMA and anti-NG-2 antibodies were tested. 

Moreover, the proangiogenic capacity of retinal pericytes as well as pericyte 

markers were tested in coculture angiogenesis assays of pericytes and 
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HUVECGFP/HRMVECGFP in NG/HG culture media hypothesizing that pericyte 

functions might be impaired by HG. 

   

(4) Aim 4: Evaluation of ASC immunomodulatory potential under hyperglycemia. 

To verify whether ASC immunomodulatory potential is affected by HG, 

interactions between ASCNG-HG and CD4 T cells were characterized through 

ASCNG-HG:PBMC direct and indirect (transwell) cocultures. Two distinct 

conditions were evaluated: (a) stimulated coculture, where PBMC were 

stimulated with CD3/CD28 beads and (b) not-stimulated cocultures. For both 

(a) and (b) CD4 T cell proliferation, quantification of CD4+CD25+ and Treg 

fractions and analysis of coculture supernatants were performed.    
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3 MATERIAL AND METHODS 

3.1 Material 

 Cells 

Product Company Catalog No. 

Adipose derived 
mesenchymal stromal cells 

(ASC) 

Self-isolated; 
Mannheim Ethics Commission II (vote numbers 2006-192 

N-MA). 

Human umbilical vein 
endothelial cells (HUVEC) 

Self-isolated; 
Mannheim Ethics Commission II (vote numbers 2010-262 

N-MA) 

Human retinal microvascular 
endothelial cells (HRMVEC) 

PeloBiotech PBCH-1608511 

Human retinal microvascular 
pericytes (HRMVPC)  

PeloBiotech PBCH-0612211  

293FT cells 
Kindly provided by Prof. Patrick Maier, Department of 

Radiation Oncology, University Medical Centre Mannheim, 
Germany. 

Peripheral blood 
mononuclear cell (PBMC) 

Self-isolated from Buffy coat 
provided by the German Red Cross Blood Donor Service 

in Mannheim. 

 Cell culture/cell isolation products 

Product Company Catalog No. 

NB6 GMP grade collagenase SERVA Electrophoresis 17458 

Collagenase Gibco 17100017 

EDTA Applichem A3145,0500 

DMEM (normal glucose 1g/L) PAN Biotech P04-01500 

DMEM (no glucose) PAN Biotech P04-01549 

Pooled human allogeneic serum from 
AB donors (AB serum) 

German Red Cross Blood Donor Service, 
Institute Mannheim 

Penicillin/Streptomycin PAN Biotech P06-07100 

L-glutamine PAN Biotech P04-80100 
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D-glucose Sigma-Aldrich G7021 

Endothelial cell basal medium (EBM) PromoCell C-22011 

Supplement Mix endothelial cell growth 
medium 2 

PromoCell C-39216 

Pericytes Growth Medium  PeloBiotech PB-MH-0314000 

Speed Coating Solution PeloBiotech PB-LU-000-0002-00 

Trypsin/EDTA PAN Biotech P10-024100 

Fetal Bovine Serum Sigma F7524 

Dymethylsulphoxide (DMSO) 
Wak-chemie Medical 

GmbH 
WAK-DMSO-10 

Ficoll-Paque™ Premium 
GE Healthcare Bio-

science AB 
17-5442-03 

DPBS (1X) Gibco 14190-094 

Albumin fraction V (bovine serum 
albumin) 

Carl Roth 8076.2 

RPMI 1640 Lonza 12-918F 

RPMI 1640 (no glucose) Gibco 11879020 

IL-2 human recombinant PromoCell C-61240 

Casy-Ton OMNI Life Science 5651808 

Mesenchymal Stem Cell Adipogenic 
Differentiation Medium 

Promocell C-28016 

Supplement mix Adipogenic 
Differentiation Medium 

Promocell C-39816 

Mesenchymal Stem Cell Osteogenic 
Differentiation Medium 

Promocell C-28013 

Supplement mix Osteogenic 
Differentiation Medium 

Promocell C-39813 

Hoechst 33342 Invitrogen H3570 917368 

Geltrex™ LDEV-Free Reduced Growth 
Factor Basement Membrane Matrix  

Gibco A14132-01 

N-Acetylcysteine (NAC) Sigma A9165 

WZB-117 (3-hydroxy-benzoic acid, 3-
fluoro-1,2-phenylene)ester 

Cayman Chemicals 19900 

Speed Coating Solution PeloBiotech PB-LU-000-0002-00 
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 Cell culture media 

Name Composition 

DMEM AB or DMEM AB NG (normal glucose 1 g/L) 

500 ml DMEM normal glucose 

10% AB serum 

1% Penicillin/Streptomycin 

2% L-glutamine 

DMEM AB HG (high glucose 4.5 g/L) 

500 ml DMEM normal glucose 

10% AB serum 

1% Penicillin/Streptomycin 

2% L-glutamine 

4.5 g/L D-glucose 

Complete ECGM-2 NG (normal glucose 1 g/L) 

500 ml EBM (Endothelial basal 
medium) 

12.5 ml ECGM-2 supplement mix 
endothelial cell growth medium 2 

Complete ECGM-2 HG (high glucose 4.5 g/L) 

500 ml EBM 

12.5 ml ECGM-2 supplement mix 
endothelial cell growth medium 2 

4.5 g/L D-glucose 

¼ ECGM-2 NG (normal glucose 1 g/L) 

7.5 ml EBM 

2.5 ml ECGM-2 supplement mix 
endothelial cell growth medium 2 

¼ ECGM-2 HG (high glucose 4.5 g/L) 

7.5 ml EBM 

2.5 ml ECGM-2 supplement mix 
endothelial cell growth medium 2 

4.5 g/L D-glucose 

Reduced RPMI 1640  

500 ml RPMI 1640 

2.5% FBS 

1% Penicillin/Streptomycin 

2% L-glutamine 

Glucose starvation medium 

500 ml RPMI1640 (no glucose) 

1% Penicillin/Streptomycin 

2% L-glutamine 

Full RPMI 1640 

500 ml RPMI 1640 

10% FBS 

1% Penicillin/Streptomycin 
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 Solutions 

Name Composition 

Erythrocyte lysis buffer 

1 mM EDTA 

1.55 mM NH4Cl 

0.1 M NH4HCO3 

Stopping Medium 
50 ml DPBS 

10% FBS 

PBS/EDTA 
500 ml DPBS 

2mM EDTA 

Freezing Medium 
FBS 

10% DMSO 

 Cell transfection 

3.1.5.1 Plasmids 

 

Name Reference 

dTomato pHR′SIN-cPPT-SEW 
Kindly provided by Prof. Patrick Maier, Department of 

Radiation Oncology, University Medical Centre 

Mannheim, Germany. 

See Appendix 8.1, Figure 40 for maps. 

GFP pHR′SIN-cPPT-SEW 

pCMVDR8.91 

pMD.G 

3.1.5.2 Reagents 

 

Product Company Catalog No. 

LB Broth Sigma L3022 

LB Broth with Agar Sigma L2897 

E. Coli DH5alpha  Bioline BIO-85025 

SOC medium Sigma Aldrich S1797 

Ampicillin Calbiochem 2776677 
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EndoFree Palsmid Maxi Kit Quiagen 12362 

Metafectene Biontex T020-2.0 

Na-butyrat Sigma B5887 

PolyDLysine Hydrobromide Sigma 27964-99-4 

Polybrene Sigma 107689 

EcoRI Thermo Science ERO271 

XBal Thermo Science ERO685 

Tango Buffer Fermentas BY5 

EcoRI Buffer  Thermo Science B12 

Agarose Bioron HS-LF45140050 

Loading Dye Invitrogen R0611 

Tris Base Serva 37180 

Acetic acid J.T. Baker 6052 

EDTA Applichem A3145,0500 

TAE Buffer  40 mM Tris Base, 20 mM Acetic acid, 1mM EDTA 

Broth Culture medium 20g LB Broth in 1L of distilled water 

Culture plate Agar 35g LB Broth with Agar in 1L of distilled water 

 
 

 Flow Cytometry 
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3.1.6.1 Flow cytometry solutions 

 

Name Composition 

FACS Buffer 

1L DPBS 

0.4% BSA 

0.02% NaN3 

MACS Buffer 

1L DPBS 

2mM EDTA 

0.5% BSA 

Cell wash BD Catalog No. 349524 

 

3.1.6.2 Fixation/Permeabilization Buffers 

Product Company Catalog No. 

Transcription Factor Buffer Set BD Pharmingen 562574 

IC Fixation Buffer eBioscience 00-8222-49 

Permeabilization Buffer 10x Invitrogen 00-8333-56 

 

3.1.6.3 Conjugated Antibodies 

Antibody Fluorochrome Clone Catalog No. Brand 

Anti-IDO PE eyedio 12-9477-42 eBioscience 

Treg characterization 

Anti-CD4 FITC RPAT4 555346 BD 

AntiI-CD25 APC M-A251 555434 BD 

Anti-CD127 PE-Cy7 REA614 130-099-719 Miltenyi Biotec 

Anti-FoxP3 PE 259D/C7 560046 BD 

ASC characterization 

Anti-CD29 Alexa Fluor 488 TS2/16 303016 BioLegend 

Anti-CD73 PE AD2 550257 BD 



Material and Methods 

29 

Anti-CD90 APC 5E10 559869 BD 

Anti-CD44 APC IM7 103012 BioLegend 

Anti-CD106 FITC 51-10C9 551146 BD 

Anti-CD146 PE TEA1/34 A07483 Beckman Coulter 

Anti-CD3 FITC UCHT1 300406 BioLegend 

Anti-CD14 FITC M5E2 555397 BD 

Anti-235a FITC GA-R2 559943 BD 

Anti-CD19 FITC HIB19 555412 BD 

Anti-CD45 FITC HI30 555482 BD 

Anti-CD34 PE 8G12 345802 BD 

CD105 APC SN6 17-1057-42 eBioscioence 

Anti-CD15 FITC HI98 555401 BD 

Anti-CD31 APC WM59 17-0319-73 EBioscience 

Anti-CD133_1  APC AC133 Miltenyi BD 

Anti-CD144 PE TEA1/31 A07481 Beckman Coulter 

Anti-HLA-DR FITC L234 307618 BioLegend 

Anti-HLA-ABC APC G46-2.6 555555 BD 

HUVEC characterization 

Anti-CD34 FITC 581 555821 BD 

Anti-VEGF-R2 PE 89106 FAB357P RnD 

Anti-CD31 FITC WM59 555445 BD 

Anti-CD133/1 APC AC133 130-090-826 Miltenyi 

Anti-CD144 PE TEA1/31 A07481 Beckman Coulter 

Anti-CD105 APC SN6-4 17-1057-42 eBioscience 



Material and Methods 

30 

Anti-CD45 FITC HI30 555482 BD 

Anti-CD146 PE TEA1/34 A07483 Beckman Coulter 

Anti-CD62P APC AK-4 550888 BD 

Anti-CD14 FITC M5E2 555397 BD 

Anti-CD117 PE 104D2 332785 BD 

Anti-CD62E APC 68-5H11 551144 BD 

 

3.1.6.4 Viability dyes and other reagents 
 

Product Company Catalog No. 

FcR blocking reagent (human) Miltenyi Biotec 130-059-901 

Fixable Viability dye eFluor780 

(eF780) 
eBioscience 65-0865-14 

BD Horizon™ Violet Proliferation Dye 

450 (VPD450) 
BD  

562158 

Sytox Blue Invitrogen S34857 

Sytox Red Invitrogen S34859 

Carboxy-H2DFFDA Thermo Fisher Fisher C13293 

2-NBD Glucose (2-NBDG) Cayman Chemicals 11046 

Precision Count beads BioLegend 424902 

 

 Immunofluorescence 

3.1.7.1 Reagents 

 

Product Company Catalog No. 

DPBS (1X) Gibco 14190-094 

Paraformaldehyde (PFA) Roth 0335.3 

Triton x100 Sigma Aldrich 23,472-9 
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Albumin fraction V (bovine serum 
albumin) 

Carl Roth 8076.2 

DAPI Sigma 1.24653 

Mounting medium ibidi 50001 

3.1.7.2 Solutions 

 

Name Composition 

2% PFA 
50 ml DPBS 

1 ml PFA 

0.1% Triton 
50 ml DPBS 

50 μl Triton x100 

2% BSA 
50 ml DPBS 

1 ml Bovin serum albumin 

0.1% BSA 
50 ml DPBS 

50 μl Bovin serum albumin 

3.1.7.3 Primary Antibodies 

 

Product Clone Species Type Company 
Catalog 

No. 

Anti human-alpha 
smooth muscle 

actin 
ASM-1 Mouse 

Monoclonal 
IgG2a 

PROGEN 65001 

Anti-human NG-2 9.2.27 Mouse 
Monoclonal 

IgG2a 
Santa Cruz sc-80003 

3.1.7.4 Secondary Antibody 

 

Product Clone Species Type Company 
Catalog 

No. 

Anti mouse-alexa 
Fluor 488 F(ab´)2 

Polyclonal Goat 
IgG, IgM 

(H+L) 
Invitrogen A10684 

 

 Protein/Cytokine detection 
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3.1.8.1 Reagents 

 

Product Company Catalog No. 

L-Kynurenine Santa Cruz Sc-202688 

Trichloroacetic acid Roth 8789.2 

para-Dimethylaminobenzaldehyde Santa Cruz Sc202888 

Acetic acid J.T.Baker 6052 

DPBS Gibco 14190-094 

Tween-20 Serva 37470.01 

Albumin Fraction V (bovine serum 
albumin) 

Roth 8076.2 

Color Reagent A (H2O2) R&D Systems DY999 

Color Reagent B 
(Tetramethylbenzidine) 

R&D Systems DY999 

2N H2SO4 (ELISA Stop soultion) Sigma 1.60313 

ELISA Wash Buffer 0.05% Tween-20 in DPBS 

ELISA Dilution Reagent 1% BSA in DPBS, 0.22 μm filtered 

3.1.8.2 Kits 

 

Product Company Catalog No. 

BD Cytometric Bead Array (CBA) Human 
Th1/Th2/Th17 Cytokine kit 

BD 560484 

LEGENDplex Human Angiogenesis Panel 1 
(10-plex) 

BioLegend 740698 

LEGENDplex Human Th Cytokine Panel (13-
plex) 

BioLegend 740722 

Human TGF-β1 DuoSet ELISA R&D Systems DY240-05 

Human TNF-α DuoSet ELISA R&D Systems DY210-05 

 Human CCL-18/PARC DuoSet ELISA R&D Systems DY394-05 

Human Angiogenesis Array C1000 RayBiotech AAH-ANG-1000-4 
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 Consumables 

Product Company Catalog No. 

96-well cell culture plate Eppendorf 0030 790.119 

24-well cell culture plate Thermo Fisher 142475 

12-well cell culture plate Thermo Fisher 150628 

6-well cell culture plate Thermo Fisher 140675 

Transwell inserts (pore size 0.4 μm 
transparent ThinCerts-TC inserts) 

Greiner bio-one 657641 

175 cm2 cell culture flasks Thermo Fisher 159910 

25 cm2 cell culture flasks Thermo Fisher 156367 

96-well black cell culture plate Perkin Elmer 6005550 

8-well μ-slide ibidi 80826 

Petri dish Corning 353803 

50 ml Cell star tubes Greiner bio-one 188271 

15 ml Cell star tubes Greiner bio-one 227261 

1000 μl sterile filter tips SurPhob VT0263X 

200 μl sterile filter tips SurPhob VT0243X 

10/20 μl sterile filter tips Star Lab S1120-3710 

10 ml PD sterile tips brand 631060 

5 ml PD sterile tips brand 702390 

2.5 ml PD sterile tips brand 702388 

1.25 ml PD sterile tips brand 702386 

25 ml serological sterile pipettes Star Lab 190105-071 

10 ml serological sterile pipettes Star Lab 180720-070 

5 ml serological sterile pipettes Star Lab 180806-069 
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100 μm EASY strainer  Greiner 542000 

Rotilabo syringe filters 0.22 μm Roth SE2M035I07 

0.2 ml Thin tubes with flat caps Thermo Fisher AB0622 

5 ml Polystyrene round FACS bottom 
tubes 

Corning 352052 

CASY cup OMNI Life Science 5651794 

CASY Ton OMNI Life Science 5651808 

50 ml syringes Dispomed 21050 

Vivaspin 20, 100.000 MWCO PES Sartorius VS2041 

 

 Laboratory equipment 

Device  Name Provider 

Centrifuge ROTINA 450 Hettich Zentrifugen 

Centrifuge ROTINA 450R Hettich Zentrifugen 

Cell counter CASY OMNI Life Science 

Cell counter Nucleo Counter Chemometec 

Plate washer Well wash 4MK2 Thermo Fisher 

Small Centrifuge Minispin Eppendorf 

Microscope Axiovert 100 ZEISS 

Microscope Camera AxioCam M Rc ZEISS 

Live imaging microscope  
IncuCyte Zoom live imaging 

device 
Essen BioScience, 

Ltd. 

Laminar flow hood Hera safe Thermo Fisher  

Chemical flow hood Airflow-Control EN14175  
Caspar and Co. 

Labora 

Cell culture incubator  Binder 

Microplate reader TECAN infinite M200PRO Tecan 
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Flow cytometer BD FACS Canto II BD 

Flow cytometer FACS Aria IIu BD 

Confocal microscope SP5 MP Leica 

Thermal cycler 
DNA Engine Peltier thermal 

cycler 
BIO-RAD 

Chemiluminescent detector UVP Epi Chemi II Darkroom UVP Inc. 

 Software for data analysis 

Software Version Company 

FlowJo 10 FlowJo, LLC, Ashland, OR, USA 

FlowJo 7 FlowJo, LLC, Ashland, OR, USA 

GraphPad Prism 7 
GraphPad Software Inc. San 

Diego, USA 

ImageJ 1.51j8 NIH 

i-Control 1.10 TECAN 

LEGENDplex™ Data Analysis 
Software 

8.0 BioLegend 

FCAP Array Software 3.0 BD 

IncuCyte S3 software  S3 Essen BioScience, Ltd. 

DoubleDigest Calculator Free 
Software  

 Thermo scientific 

 

3.2 Methods 

Methods are here gathered following the four different aims presented in section 2: 

(1) Aim 1: Evaluating effects of hyperglycemia on cellular phenotype; 

(2) Aim 2: Evaluation of ASC proangiogenic potential under hyperglycemia; 

(3) Aim 3: Evaluation of pericyte-like function of ASC; 

(4) Aim 4: Evaluation of ASC immunomodulatory potential under hyperglycemia. 
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 Methods Aim 1: Evaluating effects of hyperglycemia on cellular 

phenotype 

To investigate the impact of glucose on ASC 

and HRMVEC, cultures and experiments in 

NG/HG culture media were established.  ASC 

were, immediately after their isolation, 

continuously cultured in either NG or HG 

media; they were fully characterized following 

ISCT guidelines and compared in regard of 

their cell growth, differentiation potential and cell surface marker expression.  

Hyperglycemia-mediated effects were also evaluated on HRMVEC cell growth and 

angiogenic potential. For both ASC and HRMVEC intracellular oxidative state and 

glucose uptake were assessed upon HG exposure.   

 

3.2.1.1 Adipose derived mesenchymal stromal cells 

Adipose derived mesenchymal stromal cells were isolated from multiple donors after 

having obtained informed consent (Mannheim Ethics Commission II; vote numbers 

2006-192 N-MA). 

Briefly, raw lipoaspirate was washed with DPBS to remove cellular debris and red 

blood cells and centrifuged at 420g for 10 minutes. Washed lipoaspirate was treated 

with NB6 collagenase (final concentration 0.15 PZU/ml) in 1:1 dilution with pure DMEM 

and left for 50 minutes at 37°C under gentle agitation. After incubation, collagenase 

was inactivated with an equal volume of DMEM 10% FBS and the solution was 

centrifuged at 1200g for 10 minutes, to obtain the high-density stromal vascular fraction 

(SVF). Supernatant was aspirated and incubated for 10 minutes at room temperature 

(RT) with erythrocytes lysis buffer, to eliminate the excess of red blood cells. Another 

centrifugation step followed and afterwards, the SVF-pellet was resuspended in pure 

DMEM. The SVF-pellet was filtered through a 100 μm nylon mesh filter and again 

centrifuged. The remaining SVF was resuspended in DMEM AB NG or HG and plated 

in a T25 or T175 (in accordance to pellet size), incubated at 37°C with 5% CO2. The 

day after, flasks were extensively washed with DPBS prior to media change.  

After isolation, ASC were routinely cultured in T175 flasks at 200 cells/cm2 in DMEM 

AB NG and HG and therefore named as ASCNG and ASCHG, respectively. 
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Upon 70-80% confluence, ASC were passaged with Trypsin/EDTA, counted using a 

CASY cell counter and seeded according to the experimental conditions. Cell 

morphology was constantly monitored by microscope observation. 

ASC growth rate was monitored recording cell number at every passage. Cell 

Doublings (CD) and Doubling Time (DT) were calculated as follow:  

 

 

 

Where: Fcn is final cell number and Icn initial cell number. 

All cells were cryopreserved in FBS with 10% DMSO in liquid nitrogen, thawed and 

cultivated for at least one passage before use. 

Before use, each newly generated batch of ASCNG-HG was thoroughly characterized 

based on growth potential, differentiation potential and expression/non-expression of 

MSC-specific surface markers, mycoplasma testing, microbial and viral sterility testing 

(the latter at German Red Cross Blood Donor Services Baden-Württemberg – Hessen, 

Institute Mannheim). 

 

3.2.1.1.1 ASC characterization 

3.2.1.1.1.1  Adipogenic differentiation 

To assure ASC differentiation capacity, ASC were cultured in adipogenic differentiation 

medium (Mesenchymal Stem Cell Adipogenic Differentiation Medium) and in DMEM 

AB NG or HG media as control. On day 14th, ASCNG-HG were fixed in 10% PFA for 30 

minutes, washed and incubated with Hoechst-33342 (1:100 final concentration, 10 

mg/ml stock) for other 30 minutes. Hoechst fluorescence (excitation/emission (nm): 

354/442) was measured on a plate reader and considered as baseline for 

normalization. Adipogenic differentiation was measured with AdipoRed Assay 

following the manufacturer’s instructions. Briefly, after washing with DPBS, Adipored 

(5 μl/well in a 96 well plate) diluted in 200 μl of DPBS was added and incubated in the 

dark for 15 minutes. After incubation, AdipoRed fluorescence was measured on a plate 

reader at 485/572 nm. AdipoRed OD (optical density) were normalized on Hoechst OD 

and presented as Normalized Ratio. 
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3.2.1.1.1.2  Osteogenic differentiation 

ASC were cultured in osteogenic differentiation medium (Mesenchymal Stem Cell 

Osteogenic Differentiation Medium) and in DMEM AB NG or HG media as control. On 

day 14th, ASCNG-HG were fixed in 10% PFA for 30 minutes, washed and incubated with 

Hoechst-33342 (1:100 final concentration, 10 mg/ml stock) for other 30 minutes. 

Hoechst fluorescence (excitation/emission (nm): 354/442) was measured on a plate 

reader and considered as baseline for normalization. Osteogenic differentiation was 

measured with Osteoimage Mineralization Assay following the manufacturer’s 

instructions. Briefly, after washing with Wash Buffer, Osteoimage staining reagent 

(1:100 final dilution in Staining Reagent Dilution Buffer) was added to the cells and left 

in incubation for 30 minutes at RT. After incubation, staining reagent was removed and 

Wash Buffer was used to perform three washing steps. Fluorescence was measured 

on a plate reader at 492/520 nm. Osteoimage OD were normalized on Hoechst OD 

and presented as Normalized Ratio. 

3.2.1.1.1.3  Immunophenotype 

ASC from multiple donors were analyzed at passage 2 for their immunophenotype. 

1x105 ASC were collected in FACS tubes and resuspended in FACS buffer. 10 μl of 

FcR blocking reagent were added to each tube and incubated at 4°C for 5 minutes. 

Next, staining with the following anti-human antibodies was performed: Anti-CD29 

Alexa Fluor 488, Anti-CD73-PE, Anti-CD90-APC, Anti-CD44-APC, Anti-CD106-FITC, 

Anti-CD146-PE, Anti-CD3-FITC, Anti-CD14-FITC, Anti-235a-FITC, Anti-CD19-FITC, 

Anti-CD45-FITC, Anti-CD34-PE, Anti-CD105-APC, Anti-CD15-FITC, Anti-CD31-APC, 

Anti-CD133_1-PE, Anti-CD144-PE, Anti-HLA-DR-FITC and Anti-HLA-ABC-APC. All 

antibodies were used in optimal concentrations after proper titration. After staining, 

cells were incubated 20 minutes in the dark at 4°C. Prior to be analyzed, cells were 

washed in Cell wash twice and finally resuspended in SYTOX blue dead cell stain (final 

dilution 1:2000 in FACS buffer). 10,000 viable cells were acquired with BD FACS Canto 

and .fcs files analyzed with FlowJo 10 software. 

 

3.2.1.2 Human retinal microvascular endothelial cells (HRMVEC) 

Human retinal microvascular endothelial cells (HRMVEC) were purchased from 

PeloBiotech. Cells were cultured following the provider’s instructions. Briefly, a frozen 

vial of HRMVEC was thawed in a 37°C water bath. The cell suspension was transferred 
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in a 15 ml tube containing 9 ml of complete ECGM-2 and centrifuged at 200g for 5 

minutes. Supernatant was discarded, cell were resuspended in complete ECGM-2 and 

placed into one T25 previously coated with Speed Coating Solution. Cells were 

maintained at 37°C, 5% CO2. Cell morphology was constantly monitored by 

microscope observation. Upon confluence, HRMVEC were first washed with DPBS 

and then treated with trypsin/EDTA for 5 minutes. Trypsin was stopped with stopping 

medium, cells collected and counted with the CASY cell counter. Cells were cultured 

in complete ECGM-2 at 4x104 cells/cm2 for normal maintenance or seeded according 

to the experiment. 

All cells were cryopreserved in FBS with 10% DMSO thawed and cultivated for at least 

one passage before use. 

To test hyperglycemia-mediated effects on cell growth, HRMVEC were cultured in HG 

ECGM-2 medium. Hypothesizing that the high content of growth factors in the complete 

medium might hide HG detrimental effects, cells were also cultured in growth factor-

reduced medium (¼ ECGM-2) and cell growth was assessed.  

 

3.2.1.2.1 HRMVEC angiogenic potential: basement matrix angiogenesis assay 

(BMA assay) 

17,000 HRMVEC/well were seeded in a 96 well plate on top of 50 μl/well layer of 

Geltrex™ LDEV-Free Reduced Growth Factor Basement Membrane Matrix, in ¼ 

ECGM-2 NG and HG. Phase contrast pictures were taken every 30 minutes with the 

IncuCyte Zoom live cell imaging system. Tube length and number of junctions were 

measured after 4 hours, analyzing pictures with the Angiogenesis tool plug-in on 

ImageJ software (Figure 4). 
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Figure 4 Representative picture of analysis of BMA assay. Pictures collected at 4 hours from IncuCyte are analyzed 

with the Angiogenesis tool plug-in on ImageJ software. The tool processes the image and quantifies tube formation 

giving multiple parameters. For our analysis “total length” and “number of junctions” were used. 

 

3.2.1.3 Measurement of intracellular oxidative stress (total reactive oxygen 

species measurements) 

20,000 ASCNG and ASCHG per well or 1x105 HRMVEC/well were seeded in 12-well 

plate in reduced RPMI 1640 with/without HG. After overnight incubation, cells were 

treated/untreated for 1 hour with the antioxidant N-Acetylcysteine (NAC, 1mM final 

concentration). Carboxy-H2DFFDA (10µM final concentration) was then added for 45 

minutes. Afterwards, cells were harvested with trypsin/EDTA, collected in FACS tubes 

and resuspended in FACS Buffer supplemented with SytoxRed (1:2000 final dilution). 

Cell suspensions were immediately analyzed at BD FACS Canto II. Fluorescence of 

Carboxy-H2DFFDA was measured in linear scale and .fcs files analyzed with FlowJo 

10 software. Carboxy-H2DFFDA MFI on viable cells was analyzed and reported as 

ratio normalized on ASCNG and NG HRMVEC. 

In regard of ROS measurement with carboxy-H2DFFDA or DCF, DCFDA-derived 

products it is important to give some specifications. Indeed, as carboxy-H2DFFDA 

penetrates in cells, it is subjected to oxidation by several cytoplasmic ROS species 

such as hydrogen peroxide, organic hydroperoxides, nitric oxide and peroxynitrite, 

which turn it into being fluorescent. Moreover, its oxidation has been found to be 

influenced by glutathione (GSH) [154]. Thus, carboxy-H2DFFDA oxidation results to be 

dependent on several intracellular oxidative stressors as well as anti-oxidant 

mechanisms. Therefore, as suggested by Jakubowski and Bartosz “…increased 

H2DCF oxidation should be referred to as an index of oxidative stress rather than of 
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increased ROS formation unless a more precise statement can be fully justified.” [154]. 

In line with this, in our work, decreases/increases in total ROS measurement are 

interpreted as decreases/increases in the overall intracellular oxidative stress level.     

 

3.2.1.4 Measurement of glucose uptake 

To monitor glucose uptake in NG and HG cultivated cells, 2-NBD glucose (2-NBDG) 

was applied following the manufacturer´s instructions. Briefly, 10,000 ASCNG-HG/well 

and 20,000 HRMVEC/well were seeded in a 96 black well plate and left overnight in 

NG or HG culture conditions. The next day, ASC and HRMVEC were put 2 hours in 

glucose starvation medium and incubated at 37°C. To inhibit glucose uptake, samples 

were treated during starvation with the GLUT-1 inhibitor WZB-117 at 100 μM and 10 

μM final concentration for ASC and HRMVEC, respectively. After 2 hours, 2-NBDG 

was added for 10 minutes at a final concentration of 150 μg/ml for ASC and 25 μg/ml 

for HRMVEC. 2-NBDG fluorescence was detected with a plate reader using 485 nm 

excitation and 535 nm emission wavelengths. At last, Hoechst staining (1:2000 final 

concentration in DPBS) was performed and used to normalize 2-NBDG signals. Data 

are reported as ratio calculated on ASCNG and NG HRMVEC. 

 

 Methods Aim 2: Evaluation of ASC proangiogenic potential under 

hyperglycemia 

The proangiogenic potential of ASCNG-HG was 

evaluated establishing cocultures with 

HUVEC and HRMVEC in NG/HG culture 

media. To monitor tube formation, both 

HUVEC and HRMVEC were transfected with 

lentivirus expressing either green fluorescent 

protein (GFP) or dTomato fluorescent 

protein. Supernatants collected from ASC:HUVEC and ASC:HRMVEC were screened 

for proangiogenic factors comparing them in respect of the culture medium (NG vs HG) 

and ASC (ASCNG vs ASCHG). 
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3.2.2.1 Human Umbilical Vein Endothelial Cells (HUVEC) 

Human umbilical vein endothelial cells (HUVEC) were isolated from multiple donors 

after having obtained informed consent (Mannheim Ethics Commission II; vote 

numbers 2010-262 N-MA). 

Cord blood was first washed out using DPBS and the cord placed in a glass petri dish. 

Then 1 cm from each end was cut. A buttoned cannula was inserted in the vein, fixed 

with a clip and the whole cord blood fixed to a vertical support. The cannula was used 

to flush solutions inside the vein. A 50 ml syringe filled with DPBS was used to flush 

the vein and 100 U/ml of collagenase (final concentration) diluted in EBM were 

prepared in a 10 ml syringe. As this solution was pushed through the cord vein, the 

opposite end of the cord was clipped, and the whole collagenase solution pushed 

through. The buttoned cannula was then closed and the whole cord put into a glass 

backer with warm DPBS. This was incubated at 37°C for 1 hour. After incubation, the 

cord was cut at the lower end and the fluid poured into a 50 ml tube. The vein was 

flushed with 10 ml of EBM and the solution collected. The tube was then centrifuged 

10 minutes at 420g and the supernatant aspirated. The pellet was resuspended in 

complete ECGM-2 and seeded in a T25 cell culture flask. Cells were incubated at 37°C 

with 5% CO2. 

After isolation, HUVEC were routinely cultured in T75 flaks at 8x103 cells/cm2 in 

complete ECGM-2. Cell characterization including morphological and growth 

assessment as well as immunophenotypic characterization were performed as 

previously reported [155].   

Upon confluence, HUVEC were passaged with Trypsin/EDTA, counted and seeded 

according to the experimental conditions. Cell morphology was constantly monitored 

by microscope observation. 

All cells were cryopreserved in FBS with 10% DMSO in liquid nitrogen, thawed and 

cultivated for at least one passage before use. 

HUVEC were also transfected with GFP and dTomato lentiviruses (used for 

immunofluorescence) to obtain green/red fluorescent cells (see section 3.2.2.2).  

 

3.2.2.1.1 HUVEC characterization 

HUVEC from multiple donors were analyzed for their surface cell markers. 1x105 

HUVEC were collected in FACS tubes and resuspended in FACS buffer. 10 μl of FcR 

blocking reagent were added to each tube and incubated at 4°C for 5 minutes. Next, 
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staining with the following anti-human antibodies was performed: Anti-CD34-FITC, 

Anti-VEGF-R2-PE, Anti-CD133/1-APC, Anti-CD31-FITC, Anti-CD144-PE, Anti-

CD105-APC, Anti-CD45-FITC, Anti-CD146-PE, Anti-CD62P-APC, Anti-CD14-FITC, 

Anti-CD117-PE and Anti-CD62E-APC. All antibodies were used in optimal 

concentrations after proper titration. After staining, cells were incubated 20 minutes in 

the dark at 4°C. Prior to be analyzed, cells were washed in Cell wash twice and finally 

resuspended in SYTOX blue dead cell stain (final dilution 1:2000 in FACS buffer). 

10,000 viable cells were acquired with BD FACS Canto and .fcs files analyzed with 

FlowJo 10 software. 

 

3.2.2.2 Production of fluorescent cells 

To monitor tube formation in the angiogenesis coculture assays, HUVEC and 

HRMVEC were stably transfected with a lentiviral vector expressing GFP. In addition, 

HUVEC and HRMVEC were also transfected to express dTomato fluorescent protein. 

These cells were used in angiogenesis cocultures established for Aim 3 to determine 

pericyte-like markers on ASC. 

 

3.2.2.2.1 Plasmid amplification 

To perform plasmid amplification, LB medium as broth culture medium and LB-medium 

with agar were prepared. Both solutions were autoclaved at 121°C for 15 minutes and 

after cooling, ampicillin was added (final concentration 100μg/ml). LB-medium with 

agar was poured in petri dishes to create selective bacterial growth plates. 

Competent E. coli, were gently thawed on ice and 50μl were moved into four pre-chilled 

Eppendorf tubes. 400 ng of each plasmid (dTomato or GFP, pMD.G and 

pCMVDR8.91; Appendix 8.1.1) were added to the 50μl of bacterial suspension and 

thoroughly mixed. These mixtures were incubated 15 minutes in ice. Afterwards, a heat 

shock at 42°C for 42 seconds was provided, followed by 5 minutes of incubation in ice. 

300μl of SOC medium were added to each tube, which was incubated on a 

thermomixer for 1 hour at 37°C with 300 rpm shaking. After incubation, 50μl of 

transfected bacterial suspension were plated on LB-agar plates with ampicillin and left 

overnight upside down at 37°C. 

The following day, one bacterial colony was picked up from each of four selective 

plates and transferred into Erlenmeyer flasks with 200 ml of LB-medium supplemented 
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with ampicillin (final concentration 100μg/ml) to expand the bacterial culture. Flasks 

were incubated overnight at 37°C under 200 rpm shaking. 

The day after, plasmid DNA was isolated with the EndoFree Plasmid Maxi Kit (Qiagen), 

following the manufacturer’s instructions. Briefly, 100ml of bacterial cultures from each 

plasmid were centrifuged in 50ml tubes at 6,000g for 15 minutes at 4°C. Pellets from 

the same bacterial culture were combined and thoroughly resuspended in 10 ml of P1 

buffer. Next, 10 ml of P2 buffer were added, the tube inverted for 5 times and incubated 

at room temperature (RT) for 5 minutes. To enhance genomic DNA precipitation, 10 

ml of P3 buffer were added to the lysate solution and mixed vigorously. The lysate was 

then transferred to the QIAfilter Cartridge and incubated 10 minutes at RT. After 

inserting the plunger, the lysates were filtered into a 50 ml tube. 2.5 ml of ER Buffer 

were added to the filtrate lysates, mixed and incubated on ice for 30 minutes. Filtered 

lysates were applied to the QIAGEN-tip and the flow through discarded. After washing 

step with QC Buffer, plasmid DNA was eluted with the application of 15 ml of QN Buffer 

and collected into 50 ml tubes. DNA was precipitated with 0.7 volumes of isopropanol 

and the solution mixed and centrifuged at 15,000g for 30 minutes at 30°C. 

Subsequently, pellets were washed with 70% ethanol and centrifuged at 15,000g for 

10 minutes. Pellets were air dried and dissolved in 100μl of distilled water and stored 

at -30°C. 

To determine the yield of plasmid DNA extraction, DNA concentration was determined 

by spectrophotometry with 260/280 nm readings.                                                                                    

 

3.2.2.2.2 Plasmid validation 

To validate plasmid amplification and extraction, all four plasmids (dTomato, GFP, 

pMD.G and pCMVDR8.91) were crosschecked with enzymatic restriction on agarose 

gel to check if the number of fragments after restriction was as expected, according to 

the plasmid maps. Restriction enzymes and related buffer are reported in the following 

table. 

 

 dTomato GFP pMD.G pCMVDR8.91 

   Mix 1 Mix 2 Mix 1 Mix 2 

Plasmid 
DNA 

1 μg 1 μg 1 μg 1 μg 1 μg 1 μg 
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Buffer 
Tango 

2X 
Tango 1X 

EcoRI 
buffer 

Tango 2X Tango 2X 
EcoRI 
buffer 

Enzyme 
1 

EcoRI - EcoRI EcoRI EcoRI EcoRI 

Enzyme 
2 

XBal XBal - XBal XBal - 

H2O 
Up to 

20μl total 
volume 

Up to 
20μl total 
volume 

Up to 20μl 
total volume 

Up to 20μl 
total volume 

Up to 20μl 
total volume 

Up to 20μl 
total volume 

 

These mixtures were incubated for 1 hour at 37°C. After incubation, 10μl of each 

mixture sample were mixed with 2 μl of Loading Dye. 10 μl of this mixture were loaded 

on 1% agarose gel and run for 45 minutes at 150 V. 

Once checked that the enzymatic restriction gave the number of expected fragments, 

plasmids were used to produce viral particles (Appendix 8.1.2., Figure 41).   

3.2.2.2.3 Lentivirus production 

293FT cells were kindly provided by Prof. Patrick Maier (Department of Radiation 

Oncology, University Medical Centre Mannheim, Germany) and used as packaging 

cell line to produce viral particles. Cells were maintained in DMEM 10% FBS without 

antibiotics at 37°C, 5% CO2. Upon confluence, cells were washed with DPBS and 

treated with trypsin/EDTA. Trypsin was blocked after 5 minutes with stopping media 

and detached cells collected in a 15 ml tube. Cells were counted, and seeded 2x104 

cells/cm2 for normal maintenance or according to the experimental condition. All cells 

were cryopreserved in FBS with 10% DMSO, thawed and cultivated for at least three 

passages before use. 

Prior to use, Petri dishes were coated with poly-D-Lysine (final concentration 0.1 mg/ml 

in DPBS) and washed. 5x106 293FT/petri dish were seeded in 14 ml of DMEM 10% 

FBS and left overnight at 37°C. The next day, cells were transfected with the following 

procedure. 4.4 μg of lentiviral plasmid (GFP or dTomato), 3.4 μg of pCMVDR8.91 and 

2.2 μg of pMD.G (overall 10 μg of plasmid/petri dish) were mixed in pure DMEM without 

additives. Separately, a solution of pure DMEM without additives and metafectene 

(3.2% final concentration) was prepared. The two solutions were mixed 1:1 and added 

dropwise on top of the cell monolayer. Treated cells were incubated overnight at 37°C. 

The next day, cell medium was changed twice: in the morning, with DMEM 10% FBS 

supplemented with Na-butyrate (10 mM final concentration) and in the evening with 

DMEM without additives. The day after, supernatants were collected form each petri 

dish and filtered through a 0.44 μm filter. Viral supernatants were concentrated using 
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Vivaspin-tubes under 3000 rpm centrifugation at 4°C, until a volume of 1 ml was 

obtained. Viruses were stored in 50 μl aliquots at -80°C. 

 

3.2.2.2.4 HUVEC/HRMVEC transfection and selection 

Lentiviruses containing dTomato or GFP inserts were used to transfect HUVEC and 

HRMVEC with the following procedure. 1x104 HUVEC or HRMVEC/well were seeded 

in a 24 well plate in six replicates in ECGM-2 media and left overnight at 37°C. The 

day after, transfection medium was prepared as follow. Solutions of pure GFP or 

dTomato lentivirus were diluted 1:100 in ECGM-2 media supplemented with polybrene 

(8 μg/ml final concentration). This transfection medium was added to the cells and left 

for an overnight incubation. The next day, transfection medium was replaced with fresh 

ECGM-2 in which cells were left for two days. Cells were later harvested with 

trypsin/EDTA and prepared for sorting. They were first stained with Sytox Red and 

Blue for viability discrimination and GFP/dTomato positive cells were sorted with FACS 

Aria IIu. A representative sorting scheme for GFP HUVEC is reported in Appendix 

8.1.3, Figure 42. After sorting, GFP/dTomato HUVEC or HRMVEC were cultured 

following normal culture conditions. 

 

3.2.2.3 Coculture angiogenesis assay 

30,000 ASCNG-HG/well were seeded in a 96 well plate in ECGM ¼ Medium NG or HG 

for 1 hour. Then, 5,000 HUVECGFP or HRMVECGFP were seeded on top of the ASC 

monolayer. Cocultures were incubated for 72 hours. Phase contrast and fluorescent 

pictures were taken every 4 hours with IncuCyte Zoom live imaging device. Tube 

formation was measured with the IncuCyte S3 software, through quantitative kinetic 

processing metrics derived from time-lapse image acquisition and presented as total 

tube length per square centimeter (mm/mm²) over time (Figure 5). After 72 hours of 

coculture, CM of ASCNG-HG coculture was collected and frozen at -80°C. 
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Figure 5 Representative image of IncuCyte S3 software quantification of total tube length in a coculture 

angiogenesis assay. A) Fluorescent images are taken from each well at the desired time point. B) Analysis of 

angiogenesis: the software provides a metric for network length analysis. Parameters are defined by a customable 

processing definition, which is visualized as a blue mask. C) All pictures are analyzed over time and kinetic 

representation of the assay is provided as a graph and related raw data.       

 

To specifically test CM from these cocultures under similar conditions as used for 

assessing ROS (paragraph 3.2.1.3) 4x105 ASCNG-HG /well were seeded in a 24 well 

plate in RPMI 1640 with 2.5% FBS in HG for 1 hour. Afterwards, 2.4x104 HRMVECGFP 

were added on top of the ASC monolayer. After 72 hours of coculture, supernatants 

were collected, centrifuged at 420g for 10 min and freshly used in a BMA assay 

(paragraph 3.2.2.5). Phase contrast pictures were taken every 30 minutes with the 

IncuCyte Zoom system. Tube length was measured after 4 hours, analyzing pictures 

with the Angiogenesis tool plug-in on ImageJ software. 

 

3.2.2.4 Detection of proangiogenic growth factor in angiogenesis coculture 

supernatants 

Supernatants from angiogenesis cocultures were analyzed with two flow-cytometry 

based kits for detection and quantification of proteins involved in angiogenesis: the 
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Human Angiogenesis Array C1000 and the LEGENDplex Human Angiogenesis Panel 

1.    

3.2.2.4.1 Human Angiogenesis Array C1000 

CM collected from ASC:HUVEC coculture angiogenesis assays were analyzed with 

the human angiogenesis antibody array kit (RayBiotech, AAH-ANG-1000-4), following 

the manufacturer´s instructions. Briefly, each membrane was incubated with blocking 

buffer for 30 minutes at RT. After blocking, 1 ml of undiluted conditioned media pooled 

from four different experiments was added and incubated overnight at 4°C. 

Membranes were washed 5 times with wash buffer and subsequently incubated for 2 

hours with the biotinylated antibody cocktail. As the last step before 

chemiluminescence detection, two hours incubation with HRP-Streptavidin was 

performed. Chemiluminescence was measured with a chemiluminiscent detector (UVP 

Epi Chemi II Darkroom). Signal intensities on membranes were analyzed with the 

Protein Array Analyzer plug-in on ImageJ software. A representative picture of 

membranes analysis with ImageJ is reported below (Figure 6). 

 

 
Figure 6 Analysis of membranes of the Human Angiogenesis antibody array kit (RayBiotech, AAH-ANG-1000-4). 

Images of membranes were taken with a chemiluminiscent detector and each single membrane was analyzed as 

follow. Positions of spots are first defined in the matrix as well as blank, positive and negative controls. Next with 
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the function “Masterize” matrixes are normalized and analyzed. Numerical values of spots´ intensities are given as 

results. 

 

3.2.2.4.2 LEGENDplex Human Angiogenesis Panel 1 

CM collected from angiogenesis assays were analyzed with the LEGENDplex Human 

Angiogenesis Panel 1 (10-plex; Cat. No. 740698). 

Briefly, standards were reconstituted in Assay buffer and 1:4 serial dilutions were 

prepared to obtain an 8-points standard curve. A V-bottom plate was loaded first with 

15 μl/well of samples and standards in a 1:1 dilution with Assay Buffer and then 15 μl 

of Premixed Beads were added to each well. The plate was sealed and incubated for 

2 hours at RT under 800 rpm agitation. After incubation, each well was washed with 

150 μl of Wash Buffer, followed by 5 minutes centrifugation at 250g. The plate was 

again decanted, washed and centrifuged prior to the addiction of Detection Antibody 

(15 μl/well). 1 hour of RT incubation under 800 rpm shaking followed. Afterwards, SA-

PE was added in each well and incubated 30 minutes at RT with 800 rpm agitation. 

Finally, the plate was washed twice and the content of each well resuspended in 150 

μl of Wash Buffer. Each probe was transferred in FACS tube prior to BD FACS Canto 

II analysis. Data were acquired limiting the acquisition rate on 300 beads/analyte. 

Data analysis was performed with the LEGENDplex™ Data Analysis Software 

according to the manufacturer’s instructions. 

 

3.2.2.5 Assessing the proangiogenic potential of coculture conditioned medium 

17,000 HRMVEC/well were seeded in a 96 well plate on top of 50 μl/well layer of 

Geltrex™ LDEV-Free Reduced Growth Factor Basement Membrane Matrix. To 

maintain the same culture condition of ROS measurement (paragraph 3.2.1.3), BMA 

assay was set also in reduced RPMI medium (supplemented with 2.5% FBS). The 

following conditions were tested: (1) NG, (2) HG, (3) NG+NAC (final concentration 

1mM), (4) HG+NAC (5) CM from coculture angiogenesis assay, (6) CM from ASC 

monoculture. CM were always used freshly after harvesting. Phase contrast pictures 

were taken every 30 minutes with the IncuCyte Zoom live imaging device. Tube length 

was measured after 4 hours, analyzing pictures with the Angiogenesis tool plug-in on 

ImageJ software. 
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 Methods Aim 3: Evaluation of pericyte-like function of ASC 

Immunofluorescent staining was used to 

evaluate the expression of pericyte markers 

in ASC cocultured with HUVEC and 

HRMVEC. To compare pericytes to ASC in 

regard of their proangiogenic potential, 

coculture angiogenesis assays with 

HUVEC/HRMVEC and pericytes were 

established in NG/HG culture medium. 

3.2.3.1 Coculture immunofluorence 

To perform immunofluorescence, coculture angiogenesis assays were set on 8-well μ-

slides as follow. 1x105 ASC/well were seeded in ECGM ¼ Medium NG or HG for 1 

hour. Then, 5.5x104 HRMVECGFP were added on top of the ASC monolayer in a total 

volume of 300 μl of medium/well. Tube formation was monitored over 72h. On day 3, 

μ-slides were prepared for immunofluorescence staining (see below). 

 
After culture medium aspiration, each well was washed with 300 μl of DPBS and 

subsequently fixed in 2% PFA for 30 minutes at RT. After fixation, wells were washed 

and permeabilized with 0.5% TritonX100 solution for 3 minutes at RT. Then blocking 

with 2% BSA for 15 minutes was performed after washing. Before the addition of the 

primary antibody, each well was thoroughly washed with DPBS. Then, 50μl/well of anti-

human α-SMA were added and incubated for 1 hour in the dark at RT. After washing 

with 0.1% BSA solution, the secondary antibody Anti mouse-Alexa Fluor 488 F(ab´)2 

(1:1000 final dilution) was added and incubated for 1 hour in the dark at RT. The 

washing step with 0.1% BSA was followed by DAPI staining (1:1000 final dilution of 

1mg/ml stock) for 3 minutes. Finally, wells were washed and embedded in Ibidi 

mounting medium. 

Slides were analyzed at confocal microscope (Leica SP5 MP, Lima Core Facility, 

Center for Biomedicine and Medical Technology Mannheim (CBTM)) with 40x/1.3 NA 

oil objective.               
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3.2.3.2 Pericytes: endothelial cells coculture 

Human retinal microvascular pericytes (HRMVPC) were purchased from PeloBiotech 

and cultured following the manufacturer’s instructions. A frozen vial of HRMVPC was 

thawed in a 37°C water bath for 1 minute. Cell suspension was transferred in a 15 ml 

tube containing 10 ml of Pericytes Growth Medium (PGM) and centrifuged at 200g for 

5 minutes. Supernatant was discarded, cell were resuspended in 10 ml of PGM and 

placed into one T25 previously coated with Speed Coating Solution. Cells were 

maintained at 37°C, 5% CO2. Cell morphology was constantly monitored by 

microscope observation.  

Upon confluence, HRMVPC were first washed with DPBS and then treated with 

trypsin/EDTA. Cell detachment was monitored under microscope observation for 1 

minute. Detached cells were resuspended in PGM. Cell were counted with 

NucleoCounter cell counter and seeded in two T25 cell culture flask (1:2 passaging 

ratio) for normal maintenance or seeded according to the experimental conditions. 

All cells were cryopreserved in FBS with 10% DMSO in liquid nitrogen, thawed and 

cultivated for at least one passage before use. 

 

HRMVPC were used in angiogenesis coculture assays as followed. 30,000 

pericytes/well were seeded in a 96 well plate in ECGM ¼ Medium NG or HG for 1 hour. 

Then, 5,000 HUVECGFP or HRMVECGFP were seeded on top of the HRMVPC 

monolayer. Cocultures were incubated for 72 hours. Phase contrast and fluorescent 

pictures were taken every 4 hours with IncuCyte Zoom system. Tube formation was 

measured with the IncuCyte S3 software, through quantitative kinetic processing 

metrics derived from time-lapse image acquisition and presented as total tube length 

per square centimeter (mm/mm²) over time. As performed with ASC, HRMVPC were 

also used in cocultures for immunofluorescent staining (paragraph 3.2.3.1). 
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 Methods Aim 4: Evaluation of ASC immunomodulatory potential under 

hyperglycemia 

Cocultures between ASCNG-HG and 

stimulated/resting PBMC were set to 

investigate the immunomodulatory potential 

of ASC dissecting the interaction with CD4 T 

cells. Coculture supernatants were analyzed 

with ELISA and FACS-based protein 

detection assay.  

  

3.2.4.1 Peripheral blood mononuclear cell (PBMC) isolation 

Human PBMC were isolated from buffy coat from healthy donors, provided by the 

German Red Cross Blood Donor Service Institute Mannheim. Buffy Coats were 

collected into 50 ml tubes and diluted 1:1 with DPBS/EDTA. 25 ml of diluted Buffy coat 

were gently poured on top of 10 ml of Ficoll-Paque in a 50 ml tube and centrifuged 30 

minutes at 420g (with lowest deceleration factor). After centrifugation, supernatants 

containing plasma were aspirated and the interphase collected with a glass Pasteur 

pipette. Interphases from same donors were collected together in 50 ml tubes and 

washed with DPBS/EDTA. Tubes were centrifuged for 10 minutes at 420g. To 

eliminate contaminating red blood cells, pellets were washed with erythrocyte lysis 

buffer and left 10 minutes in incubation at RT. After a centrifugation step, pellets were 

resuspended in DPBS/EDTA and counted with the CASY cell counter.  

 

3.2.4.2 ASC: PBMC coculture 

For assessment of T cell proliferation, 3x107 PBMC were resuspended in DPBS and 

stained with violet proliferation dye (VPD450 final concentration 1μM in DPBS). After 

15 minutes incubation at 37°C, cells were washed, centrifuged and resuspended in 

RPMI 1640 10% FBS. Depending on the experimental conditions, PBMC were treated 

with/without CD3+CD28+ loaded Anti-Biotin MACSiBead particles (T cell 

Activation/Expansion kit human) using one loaded Anti-Biotin MACSiBead particle per 

two PBMC (bead to cell ratio 1:2) following the manufacturer´s instructions. In short, 

Anti-Biotin MACSiBead particles were thoroughly mixed with CD3-Biotin, CD28-Biotin 

and MACS buffer. This mixture was then incubated for 2 hours at 4°C under gentle 
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rotation. Prior to addiction to PBMC, loaded Anti-Biotin MACSiBead particles were 

washed with RPMI 1640 10% FBS. The treatment defined stimulated (with beads) and 

not stimulated (without beads) PBMC, which were then directly used to set cocultures 

with ASC. 

 

2x105 ASCNG-HG were seeded in full RPMI 1640 on the bottom of a 6-well plate. Directly 

after isolation, 1x106 VPD450 stained stimulated/not stimulated PBMC were added 

either (a) directly on top of the ASC monolayer (direct coculture) or (b) in a transwell 

insert placed in suspension in the same well of ASC (transwell coculture). As control, 

VPD450 stained stimulated/not stimulated PBMC were seeded in full RPMI 1640 either 

in a 6-well plate alone (direct coculture setting) or in a transwell insert placed in 

suspension in a well containing only media (transwell coculture setting). Direct and 

transwell cocultures each with stimulated/ not stimulated PBMC and their respective 

controls (PBMC alone) were set in parallel for each experiment. Controls and 

cocultures were treated with IL-2 (1:500 final dilution, 500 μg/ml stock). After 7 days 

cocultures were harvested and CM collected and stored at -80°C for further analysis. 

Harvested PBMC and ASC were processed following procedures reported in 

paragraphs 3.2.4.2.1 and 3.2.4.3.   

To investigate the long-term effect of ASC on PBMC, not stimulated PBMC from 

transwell cocultures were further cultured without ASC for the following 7 days (total 

days of culture 14). In details, PBMC were harvested after 7 days of coculture and 

counted. The same number of PBMC was then seeded in 6-well plate in fresh full RPMI 

1640 with IL-2 (1:500 final dilution, 500 μg/ml stock). The following conditions were 

defined: (a) PBMC (control condition of PBMC pre-cultured without ASC in the previous 

7 days) and (b) ex-Coculture (PBMC cultured with ASC in the previous 7 days). After 

7 days (total 14 days), PBMC were processed following procedures reported in 

paragraphs 3.2.4.2.1.1. The CM of these cultures was harvested, collected and stored 

at -80°C for further analysis. A representative picture of the whole work flow is reported 

below (Figure 7). 
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Figure 7 General work flow for ASC:PBMC cocultures. For each experiment fresh PBMC were isolated from buffy 

coat with Ficoll gradient and stained with violet proliferation dye. Stimulated and not stimulated cocultures were 

established with CD3/CD28 treated/not treated PBMC in direct and transwell settings with their respective controls. 

After 7 days PBMC and ASC were harvested and processed as reported in paragraph 3.2.4.2.1. CM was also 

harvested and frozen for further analysis. PBMC from transwells were also re-seeded and further cultured for 14 

days.  

 

3.2.4.2.1 Treg staining and detection 

After 7 days of culture, VPD450 stained stimulated/not stimulated PBMC were 

harvested from cocultures and controls. Mouse anti-human antibodies were used to 

specifically stain activated CD4 cells and Treg. 

3.2.4.2.1.1 Treg panel 

After harvesting, PBMC were collected in FACS tubes, washed with PBS and 

resuspended in FACS Buffer. After 5 minutes incubation with 10 μl of FcR blocking 

reagent, antibodies for surface cell staining were added: Anti-CD4, Anti-CD25 and 

Anti-CD127 and incubated 20 minutes in dark at 4°C. After washing, PBMC were 

resuspended in PBS, stained with Fixable Viability dye eF780 (1:2000 final dilution) 

and incubated for 30 minutes at 4°C. To perform the intracellular staining, the BD 

Pharmingen Transcription Factor Buffer was used, following the manufacturer’s 

instructions. Briefly, cells were resuspended by vortexing in 1 ml of 1X Fix/Perm Buffer 

and incubated for 50 minutes at 4°C. After incubation, two times washing step with 1X 

Perm/Wash Buffer were performed. Cells were then resuspended in 100 μl of 1X 

Perm/Wash buffer and stained with Anti-FoxP3. After 50 minutes of incubation at 4°C 



Material and Methods 

55 

cells were washed twice with 1X Perm/Wash buffer and finally resuspended in FACS 

buffer. 100 μl of cell suspension together with 25 μl of Precision count beads were 

analyzed immediately at BD FACS Canto II. Precision count beads were used during 

data analysis to calculate percentages of cell subpopulations. The .fcs files were 

analyzed with FlowJo 10 software. The gating strategy applied to calculate 

percentages of CD4+CD25+ and Treg cells in Live population is reported in Figure 8.

 
Figure 8 Representative gating strategy on Live population for CD4+CD25+ cells and Treg. Lymphocytes are gated 

on SSC and FSC, followed by a dead/live gating with FVD780, to define the Live population. The Live population is 

then inspected for CD4 and CD25 expression. Subsequently, CD127 and FoxP3 are assessed in the CD4+CD25+ 

population. CD4+CD25+CD127-FoxP3+ cells are defined as Treg. 
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3.2.4.2.1.2  Analysis of Proliferating/non proliferating subpopulations 

To evaluate the extent of proliferation of CD4+ cells in cultures, living VPD450 stained 

stimulated/not stimulated PBMC were gated and analyzed as follow. As VPD450 dye 

is distributed uniformly between daughter cells, it is possible to monitor cell division 

over time. VPD+ cells, which retain the dye, are not proliferating cells, while VPD- are 

actively proliferating cells, progressively losing the dye. Therefore, starting from 

unstimulated and stimulated PBMC controls, it was possible to set gating for 

proliferating (VPD-) and non-proliferating (VPD+) cells. A representative picture of this 

gating strategy is reported in Figure 9. 

 

 
 

 
Figure 9 Proliferating (VPD-) and non proliferating (VPD+) gating are defined on stimulated/not-stimulated PBMC 

in direct and transwell. A representative gating strategy is reported. Lymphocytes are gated on SSC and FSC, 

followed by a dead/live gating with FVD780, to define the Live population. The Live population is inspected for the 

Violet Proliferation Dye (VPD). Stimulated PBMC (dark gray) and not stimulated PBMC (light gray) are compared 

and the gating for Proliferating cells (VPD-) and non proliferating cells (VPD+) set. The slight auto-stimulation in 

not-stimulated PBMC is useful in defining the gate. 

Moreover, VPD-/+ fractions were further discriminated/gated for CD4+CD25+ cells and 

Treg. A representative picture of this gating strategy for CD4+CD25+ and Treg is 

reported in Figure 10. 
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Figure 10 Representative gating strategy on VPD-/+ population to define VPD+ and VPD– fractions of CD4+CD25+ 

cells and Treg. Lymphocytes are gated on SSC and FSC, followed by a dead/live gating with FVD780, to define the 
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Live population. The Live population is inspected for the Violet Proliferation Dye (VPD). The gating defined in Figure 

9, identify the VPD- and VPD+ fractions. The VPD- and VDP+ populations are then analyzed as reported in Figure 

8. 

CD4 cells proliferation was also analyzed with the Proliferation Tool of FlowJo 7 

software. The Proliferation Tool in fact, applies mathematical models to the 

proliferation data and develops statistics to describe it. Particularly, we focused on the 

“division index”, which is described as followed: “The Division Index is the average 

number of divisions for all of the cells in the original starting population” (FlowJo 7 

manual tutorial). A representative picture of how the Proliferation tool works is reported 

in Figure 11. 
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Figure 11 Representative picture of proliferation tool in FlowJo v.7 software. Lymphocytes are gated on SSC and 

FSC, followed by a dead/live gating with FVD780 to define the Live population. The Live population is then 

characterized for CD4 expression. CD4+ cells are subsequently evaluated for Violet Proliferation Dye (VPD) 

staining. The proliferation tool allows the custom to set a Peak zero, to define the original population. Peak zero 

(dashed line, orange peak) is here defined taking into account the VPD distribution in PBMC stimulated and not 

stimulated. After peak zero definition, the proliferation tool adjusts its algorithm on the curve and calculates the 

following proliferating generation (pink peaks) as well as the division index. 

 

3.2.4.3 Cytokines and protein detection  

To investigate the cytokine profile of CM collected from ASC:PBMC cocultures, two 

types of flow-cytometer based kits were used: the BD Cytometric Bead Array 
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(3.2.4.3.1) and the  LegendPlex Human Th Cytokine Panel (3.2.4.3.2). In addition: (1) 

kynurenine in coculture supernatants was measured; (2) TGF-beta, TNF-alpha and 

CCL-18 were assessed with ELISA and (3) intracellular IDO was detected in ASC from 

cocultures.  

3.2.4.3.1 BD Cytometric Bead Array (CBA) 

The BD Cytometric Bead Array (CBA) Human Th1/Th2/Th17 Cytokine Kit (Cat. 

Number 560484) was used to analyze CM from 7 day stimulated/not stimulated 

transwell cocultures and PBMC as well as CM from PBMC after 14 total days of culture, 

following the manufacturer’s instructions. Briefly, standards and samples were placed 

into FACS tubes followed by addiction of mixture of Capture beads. After the addiction 

of the Human Th1/Th2/Th17 PE Detection Reagent, CM was left 3 hours in incubation 

at RT. Then, a washing step with wash Buffer was performed and after aspiration of 

supernatants, tubes were ready for acquisition at the BD FACS Canto II. Data analysis 

on .fcs files was performed with the FCAP Array Software. 

3.2.4.3.2 LegendPlex Human Th Cytokine Panel 

CM collected from ASC:PBMC cocultures were analyzed with the LEGENDplex 

Human Th Cytokine Panel (13-plex; Cat No. 740722). 

Briefly, standards were reconstituted in Assay Buffer and 1:4 serial dilutions were 

prepared to obtain an 8-points standard curve. A V-bottom plate was loaded first with 

15 μl/well of samples and standards in a 1:1 dilution with Assay Buffer and then 15 μl 

of Premixed Beads were added to each well. The plate was sealed and incubated for 

2 hours at RT under 800 rpm agitation. After incubation, each well was washed with 

150 μl of Wash Buffer, followed by 5 minutes centrifugation at 250g. The plate was 

again decanted, washed and centrifuged prior to the addiction of Detection Antibody 

(15 μl/well). 1 hour at RT incubation under 800 rpm shaking followed. Afterwards, SA-

PE was added in each well and incubated 30 minutes at RT with 800 rpm agitation. 

Finally, the plate was washed twice and the content of each well resuspended in 150 

μl of Wash Buffer. Each probe was transferred in FACS tube prior to BD FACS Canto 

II analysis. Data were acquired limiting the acquisition rate on 300 beads/analyte. 

Data analysis was performed with the LEGENDplex™ Data Analysis Software 

according to the manufacturer’s instructions. 
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3.2.4.3.3 Kynurenine assay 

Kynurenine was measured in CM of 7 days stimulated and not stimulated ASC:PBMC 

cocultures and controls as follow. 100 μl of probes and standards were distributed on 

a 96-well plate (LightCycler® 480 Multiwell Plates 96) and mixed with 50μl of 30% 

Trichloroacetic acid (TCA). The plate was incubated 30 minutes at 50°C. After the 

incubation, the plate was centrifuged at 4004g for 10 minutes at RT. Without touching 

the pellets, 75 μl of supernatants were collected from each condition and transferred 

in a 96-well plate. 75 μl of 2% para-Dimethylaminobenzaldehyde were added to each 

well and incubated for 15 minutes at RT. The OD of each well was determined using a 

microplate reader set to 492 nm. Standard, best fitting (0.90≤R≤1) curves were 

elaborated with GraphPad Prism 7 software. No kynurenine was found in ASC cultured 

alone used as control. 

3.2.4.3.4 ELISAs 

TGF-beta, TNF-alpha and CCL-18 (Duo Set, R&D systems) were analyzed in CM of 7 

days and 14 days stimulated and not stimulated ASC:PBMC cocultures and controls 

following the manufacturer’s instructions. Capture antibody diluted in DPBS was used 

to coat a 96-well plate, which was incubated overnight at RT. The following day, after 

three aspiration/wash steps with Wash Buffer, the plate was blocked with Reagent 

Diluent and incubated for 1 hour at RT. At the end of incubation, three aspiration/wash 

steps were performed and standards and samples added. The plate was left 2 hours 

in incubation at RT. Three aspiration/wash steps were repeated and afterwards the 

detection antibody was added, followed by 2 hours incubation at RT. As last steps after 

washing, Streptavidin-HRP was added for 20 minutes, followed by other 20 minutes of 

incubation with substrate solution (1:1 solution of Color reagent A and B). The plate 

was finally treated with stop solution (2N H2SO4). The OD of each well was determined 

using a microplate reader set to 450 nm with wavelength correction at 570 nm. Best 

fitting standard curves (0.90≤R≤1) were elaborated with GraphPad Prism 7. 

3.2.4.3.5 Detection of  indoleamine 2,3-dioxygenase (IDO) 

Indoleamine 2,3-dioxygenase (IDO) detection in ASCNG-HG cocultured with 

stimulated/non stimulated PBMC, was measured as follow. After harvesting ASC from 

coculture, cells were collected in FACS tubes and washed with DPBS. IC Fixation 

Buffer was added to the cell suspension and left in incubation for 30 minutes at RT. 

After two washing/centrifuge steps with 1X Permeabilization Buffer, cells were stained 
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in 1X Permeabilization Buffer with IDO-PE and incubated for 30 minutes. After 

incubations, cells were washed and analyzed immediately at BD FACS Canto II. ASC 

in monoculture were used as control. The .fcs files were analyzed with FlowJo 10 

software. Data are presented as Median Fluorescence Intensity (MFI) of IDO-PE in 

living cells corrected for the MFI´s of the control tube (ASC in monoculture). 
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4 RESULTS 

The main focus of our study was to evaluate whether hyperglycemia might affect ASC 

in their phenotype and functions. Therefore, four aims were defined: (1) to evaluate 

glucose-mediated effects on ASC basic characteristic; (2) to assess whether 

hyperglycemia might affect the proangiogenic potential of ASC; (3) to investigate 

whether ASC might retain a pericytes-like phenotype and (4) to verify if HG might affect 

the immunomodulatory potential of ASC. Results of our research are presented below, 

following the distinctions between the four aims.  

 

4.1 Effects of hyperglycemia on cellular phenotypes 

The first aim of our study was to address 

glucose-mediated effects on basic 

characteristics of ASC such as cell growth, 

differentiation and cell surface phenotype. 

Intracellular redox balance and glucose 

uptake were also monitored. Similarly, 

HRMVEC were also characterized in regard 

of their glucose sensitivity. 

 ASC basic characteristics are unaffected by HG 

To test effects of HG, ASC were cultured in NG (ASCNG) and HG (ASCHG) medium 

directly after isolation from lipoaspirates. At passage 1 to passage 2 after isolation, HG 

caused a weak but significant reduction in cell doublings (ASCNG vs ASCHG , p<0.01; 

Figure 12 A, upper left panel) and correspondingly, an increased doubling time (ASCNG 

vs ASCHG, p<0.05; Figure 12 A, lower left panel). However, these differences were not 

detectable at following passages (Figure 12 A, right). 

Adipogenic and osteogenic differentiation profile of ASCHG was not different from 

ASCNG (Figure 12 B). 

Likewise, ASCNG and ASCHG had a similar immunophenotype (Figure 12 C).  

Despite some early transient reduction in proliferation rate, HG exerted no long-term 

effects on ASC. 
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Figure 12 ASC characteristics are largely unaltered by HG. (A) HG reduces ASC growth rate only at early passage 

(cell number calculated at split p1 to p2). Cell doublings (upper left panel) are significantly reduced in ASCHG (ASCNG 

6.67 ± 0.6 vs ASCHG 6.39 ± 0.65, p<0.01, n=10, paired T-test). Doubling time (lower left panel) is significantly 

increased (ASCNG 31.24 ± 5.9 hours vs ASCHG 32 ± 7.4 hours, p<0.05, n= 10, paired T-test). From passage 2 to 3 

on, cell doublings and doubling time (right panels) do not differ (n=10). (B) ASCNG and ASCHG do not differ in 

adipogenic and osteogenic differentiation potential (ADA and ODA respectively, AdipoRed and OsteoImage signal 

normalized to Hoechst signal, n=7; not significant, Paired t-test). (C) The immunophenotype of ASCNG and ASCHG 

addressed by flow cytometry is similar (n=8, not significant, 2-way ANOVA). 
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 Oxidative stress in ASC is increased upon HG exposure and it is not 

concomitant to glucose uptake 

Oxidative stress levels (total ROS measurement) were similar in ASCNG and ASCHG 

(Figure 13 A). The ROS inhibitor NAC had only a negligible effect on both, indicating a 

low basal oxidative stress level in ASC. However, a temporary switch of ASC to HG 

(ASCNG in HG) increased oxidative stress up to 1.5-fold (ASCNG in HG vs ASCNG and 

ASCNG: p<0.01 and p<0.05, respectively). This was significantly lowered by NAC 

treatment (ASCNG in HG: +NAC vs –NAC: p<0.01). This suggested that ASC might 

adapt to prolonged HG conditions to maintain a low oxidative stress.  

We next investigated the glucose uptake (Figure 13 B). In ASCNG, glucose uptake was 

significantly inhibited by the GLUT-1 inhibitor WZB (ASCNG –WZB vs +WZB: 

p<0.0001). Interestingly, glucose uptake of ASCNG in HG and ASCHG compared to 

ASCNG was very low at levels comparable to ASCNG cells treated with WZB (ASCNG vs 

ASCHG and ASCNG in HG: p<0.0001). Even, the switch to HG revealed low glucose 

uptake with values comparable to levels obtained using the GLUT1 inhibitor WZB-117. 

This suggested that ASC might adapt rapidly to HG in the medium by reducing glucose 

influx. 

 

 
Figure 13 HG-dependent oxidative stress induction is not related to increased glucose uptake. ROS were measured 

in ASC via Carboxy-H2DFFDA staining. The antioxidant NAC was tested as inhibitor of ROS. In addition, glucose 

uptake was monitored trough 2-NBDG detection after a period of glucose starvation. WZB-117 a GLUT-1 inhibitor, 

was added to block glucose uptake.  (A) Oxidative stress levels are comparable in ASCNG- HG and only inhibited to 

a low extent by the antioxidant NAC (mean fluorescence intensity (MFI) values of ASCNG set to 1). Switch of ASCNG 

to HG (ASCNG in HG) significantly increased ROS levels compared to ASCNG and ASCHG (p<0.01 and p<0.05). The 

same are inhibited by NAC treatment (p<0.01); n=3, 2-way ANOVA multiple comparison. (B) After glucose 

starvation, ASCNG take up glucose (levels set to 1). This is significantly inhibited by the GLUT-1 inhibitor WZB-117 

(ASCNG –WZB vs +WZB: p<0.0001; n=3, 2-way ANOVA multiple comparison). Glucose uptake is significantly 
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reduced in ASCHG and ASCNG in HG to levels obtained with the WZB-117 inhibitor (ASCNG vs ASCHG and ASCNG in 

HG: p<0.0001; 2-way ANOVA multiple comparison). 

 HG affects HRMVEC cell growth and angiogenic potential  

In complete medium (ECGM-2), no effect of HG on HRMVEC proliferation was 

apparent (Figure 14 grey and black ■ lines). Hypothesizing that growth factors and 

especially VEGF, as suggested by different authors [156, 157], in ECGM-2 medium 

might protect ECs from hyperglycemia, cells were grown in growth factor-reduced 

medium (¼ ECGM-2). The growth rate significantly decreased comparing ECGM-2 

with ¼ ECGM-2 (in NG media p<0.01 and HG media p<0.001, Figure 14, grey and 

black lines). Nevertheless, in both media HG did not reduce HRMVEC proliferation to 

a significant extent. 

 

 

 

Figure 14 HG slightly impairs HRMVEC cell growth. Growth curves of HRMVEC reveal diminished proliferation in 

growth factor reduced medium, ¼ ECGM-2 () compared to ECGM-2 () (NG-treated black lines: ¼ vs ECGM-2 

p<0.01; HG-treated grey line:s ¼ vs ECGM-2; p<0.001, n=3; 2-way ANOVA multiple comparisons). HG had no 

significant effect. 

The angiogenic potential of HG HRMVEC, tested in the BMA assay, however, revealed 

a significant reduction in total tube length (p<0.001, Figure 15 left panel) and in number 

of junctions (p<0.001, Figure 15 right panel). These differences were not seen in 

ECGM-2, supporting our notion that growth factors in the medium might overrule 

detrimental HG effects in endothelial cells (not shown). 
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Figure 15 HG impairs the angiogenic potential of HRMVEC. HG let to reduced tube formation in BMA assay in ¼ 

ECGM-2. Left: total tube length HRMVEC NG-treated 7.52 ± 0.97 mm/mm2 vs HG-treated 6.69 ± 1.02 mm/mm2 

p<0.0001 (n=4, Paired T-test). Right: number of junctions: NG-treated 217.3±35.57 vs HG-treated 165.8±38.7 

p<0.0001 (n=4, Paired T-test). 

 

 Oxidative stress increases in HRMVEC upon HG treatment in absence of 

simultaneous rise in glucose uptake 

As performed for ASC, we measured total ROS and glucose uptake in HRMVEC. 

HRMVEC similarly to ASC displayed a low oxidative stress basal level (NG HRMVEC: 

–NAC vs +NAC, not significant; Figure 16 A). This was significantly increased in HG 

conditions (NG HRMVEC vs HG p<0.01) and efficiently inhibited by NAC (HG 

HRMVEC –NAC vs + NAC, p<0.01).  

Glucose uptake (Figure 16 B) was reduced in HG condition compared to NG (NG 

HRMVEC vs HG: p<0.001). In contrast to ASC, where the GLUT-1 inhibitor greatly 

reduced glucose uptake almost to zero in all conditions, in HRMVEC glucose uptake 

levels were halved in NG HRMVEC (–WZB vs +WZB: p<0.001 ) and similarly reduced 

in HG conditions (HG –WZB vs +WZB: p<0.05). These findings suggested that while 

HG HRMVEC reduced glucose uptake compared to NG HRMVEC, the WZB-117 

GLUT-1 inhibitor only halved this uptake, proposing that other GLUT channels might 

be involved. The oxidative stress appeared to be not directly linked to increased 

glucose influx. 
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Figure 16 Total ROS were measured in HRMVEC via Carboxy-H2DFFDA staining. The antioxidant NAC was tested 

as inhibitor of ROS. In addition, glucose uptake was monitored trough 2-NBDG detection after a period of glucose 

starvation. WZB-117, a GLUT-1 inhibitor, was added to block glucose uptake. (A) In HRMEC, oxidative stress is 

significantly increased upon HG treatment (p<0.01; n=3, 2-way ANOVA multiple comparison) and significantly 

reduced by NAC treatment (p<0.01; n=3, 2-way ANOVA multiple comparison). (B) HG HRMVEC show reduced 

glucose uptake compared to NG (p<0.001; n=4, 2-way ANOVA multiple comparison). WZB-117 half-reduced 

glucose uptake in both conditions (NG: –WZB vs +WZB: p<0.001 and in HG: –WZB vs +WZB: p<0.02 and NG 

HRMVEC +WZB-117 vs HG HRMVEC +WZB-117 p<0.01; n=4, 2-way ANOVA multiple comparison). 

 

4.2 Evaluation of ASC proangiogenic potential under hyperglycemia 

Having established that HG did not affect ASC 

and had only negligible effects on cell growth 

of HRMVEC while reducing their 

proangiogenic potential, we investigated ASC 

interaction with endothelial cells. As our 

second aim was to prove the proangiogenic 

potential of ASC and to verify whether this was 

affected by hyperglycemia, cocultures between ASC and both HUVEC and HRMVEC 

where established. Coculture supernatant was collected and assessed for 

proangiogenic factors. 

 ASC support HUVEC angiogenic potential independently of glucose and 

secrete proangiogenic factors 

To investigate whether HG affected the proangiogenic potential of ASC, coculture 

angiogenesis assays in NG and HG culture media were run comparing ASCNG-HG and 
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NG/HG medium. ASC supported tube formation of HUVECGFP in any condition (Figure 

17 A and B). 

 

 
Figure 17 ASCNG and ASCHG similarly support HUVEC tube formation in an angiogenesis coculture assay. (A) 

Representative pictures of tube formation of HUVECGFP in the coculture angiogenesis assay (a, b) ASCNG + 

HUVECGFP and ASCHG + HUVECGFP respectively, in NG media; (c,d) ASCNG + HUVECGFP and ASCHG + HUVECGFP 

respectively, in HG media. (B) Quantitative evaluation of tube network length (mm/mm2) reveals no differences 

between ASCNG (●) and ASCHG (▲) in NG/HG medium (n=6, not significant, 2-way ANOVA). 

To screen whether HG modified growth factor secretion within the supernatants, 

pooled CM from ASCNG/HUVEC cocultures in NG and HG medium was analyzed using 

an angiogenesis protein array (Figure 18). Over all 43 cytokines analyzed, no 

significant difference was detectable. Despite the lack of significant changes (NG vs 
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HG, not significant), some factors in HG cocultures were found to be 

increased/decreased to a certain extent compared to NG cocultures. Among the 

increased factors, CCL-7 and PECAM-1 displayed a 2.8-fold and 1.9-fold respectively, 

while CCL-13 and MMP-1 had a 1.4-fold increase. On the other side, GM-CSF together 

with TNF-alpha was highly decreased in HG coculture (0.04-fold and 0.1-fold 

respectively). Similarly, CCL-1 (0.4-fold), PDGFB-BB (0.4-fold) and IL-4 (0.5-fold) were 

reduced in HG. All the other factors had a fold between 0.8 and 1.2. 

These data indicated that HG did not affect the angiogenic supportive capacity of ASC 

on HUVEC whilst exerting some minor changes on the cytokine profile of the coculture.  

 
 

Figure 18 HG affects only few angiogenic factors in CM of ASCNG + HUVECGFP coculture angiogenesis assay. CM 

was collected and pooled from four different coculture experiments and analyzed using an angiogenesis protein 

array (43 factors). Fold change of HG compared to NG (set as 1), is calculated. Over all 43 factors, no significant 

difference was found comparing NG and HG medium (not significant, paired T-test). Proteins with 0.5≤ fold ≥1.4 

are labeled. Proteins with fold change between 0.8 and 1.2 are bFGF, GRO, IFN gamma, IGF, IL-6, IL-8, MCP-1, 

PLGF, CCL5, TIMP-1, TIMP-2, VEGF-A, ANGPT1, ANGPT2, Angiostatin, Endostatin, CCL1, IL-1 alpha, IL-1 beta, 

IL-2, CXCL11, MMP-9, Tie2, uPAR, VEGFR2, VEGFR3. 

 

 HG HRMVEC angiogenic potential is rescued in coculture via secretion 

of proangiogenic factors by ASC 

It was apparent that HRMVEC showed markedly lower angiogenic potential when 

compared to HUVEC, network length in ASCNG:HRMVECGFP vs ASCNG:HUVECGFP 

p<0.0001 (not shown). Although tube formation capacity of HG HRMVEC was found 

to be significantly reduced in the BMA assay (Figure 15, paragraph 4.1.3), in the 

coculture assay no differences were seen when using ASCNG-HG under NG/HG culture 

medium (Figure 19 A, B). These findings not only confirmed the supportive role of ASC 
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to the tube forming potential of endothelial cells, but also suggested that ASC may 

protect HRMVEC from detrimental effects of HG. 

 

 
Figure 19 A) Representative pictures of coculture angiogenesis assay with HRMVECGFP; (a, b) ASCNG + 

HRMVECGFP and ASCHG + HRMVECGFP respectively, in NG media; (c,d) ASCNG + HRMVECGFP and ASCHG + 

HRMVECGFP respectively, in HG media. (B) ASCNG (●) and ASCHG (▲) equally support HRMVECGFP tube formation 

independently of culture conditions (n=8). 

 
We speculated that factors secreted from ASC might support endothelial angiogenic 

potential rescuing HRMVEC from HG detrimental effects. To test this, we analyzed the 

CM from ASCNG-HG:HRMVEC coculture angiogenesis assays using a multiplex 

cytokine assay (Figure 20 A). Again, glucose in the media caused no differences in the 

growth factor content of ASCNG-HG (not shown). In the CM of cocultures, the majority of 

analyzed factors were higher than in the monocultures of ASC. Some factors were 
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significantly changed under HG, such as FGF significantly higher in ASCNG cocultures 

than in ASCHG cocultures (p<0.05) and higher in ASCNG cocultures than in ASCNG 

monocultures (p<0.05). VEGF, highly concentrated in ASCNG-HG monocultures, was 

significantly decreased in CM of cocultures (p<0.05, VEGF panel in Figure 18 A). 

Despite the lack of significant differences, we also found that ASCNG-HG monoculture 

produced considerably high amounts of Ang-2 (mean value ASCNG monoculture 

665±405 pg/ml), which were even increased in ASCNG-HG cocultures (mean value 

ASCNG coculture 2247±1130 pg/ml). Similarly, Ang-1 levels were reduced in ASCNG-HG 

monoculture (ASCNG mean value 110±134 pg/ml) and increased in coculture (ASCNG 

mean value 319±360 pg/ml).  

Importantly, we observed a correlation between the concentration of secreted factors 

and the proangiogenic supportive capacity of ASC by comparing individual ASC 

isolates (Figure 20 B). These data indicated that ASC secreted a variety of 

proangiogenic factors, largely unaffected by HG. 
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Figure 20 A) Angiogenic growth factor content in CM of NG ASCNG-HG:HRMVEC cocultures and ASCNG-HG 

monocultures. FGF is significantly reduced in ASCHG coculture compared to ASCNG coculture (p<0.05). Moreover, 
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FGF is more concentrated in ASCNG coculture than in ASCHG monocultures (p<0.05).  VEGF is higher in ASCNG-HG 

monocultures than cocultures (both p<0.05). All n=4, One-way ANOVA. B) In angiogenic coculture assays, high 

angiogenic growth factor concentrations are linked to a better angiogenic support, dependent on ASC sample 

specificity (ASCNG, ASCHG; ♦, ●, ■, ▲ different ASC samples). Symbols to identify ASC samples are reported also 

in A. 

 

 Indirect proangiogenic supportive potential of ASC 

So far we observed that hyperglycemia impaired the angiogenic potential of HRMVEC 

and that this was rescued in direct cocultures with ASC, independently of glucose in 

the culture media. Therefore, we tested whether the proangiogenic factors produced 

by ASC and detected in their CM, were sufficient to rescue HG HRMVEC impaired 

angiogenic potential. Having previously found that hyperglycemia exposure caused an 

increase in oxidative stress level of HG HRMVEC, to verify a possible link with the 

reduced angiogenesis, we further tested the effect of the antioxidant NAC on their tube 

forming potential. Hypothesizing that ASC secreted factors and an antioxidant stimulus 

might protect HRMVEC from HG-mediated insults, we checked HRMVEC in a BMA 

assay. The following conditions were tested: (1) NG, (2) HG, (3) NG+NAC 

(antioxidant), (4) HG+NAC (5) CM from coculture angiogenesis assay, (6) CM from 

ASC monoculture. To further check HG-mediated effects, these CM media were 

obtained from angiogenesis coculture assays performed with ASCHG in HG medium. 

 

Indeed, NAC restored the angiogenic potential of HG HRMVEC to some extent 

(HRMVEC HG vs HG+NAC p<0.0001, Figure 21), but not to levels obtained in NG 

conditions (HRMVEC NG vs HG+NAC p<0.05, Figure 21).  

CM of both ASCHG mono- and coculture restored the impaired angiogenic potential of 

HG HRMVEC (HG HRMVEC vs CMHG-ASCHG coculture and ASCHG monoculture 

p<0.0001, Figure 21). CM media-treated HG HRMVEC had a network length 

comparable to NG HRMVEC (NG HRMVEC vs CMHG HRMVEC, not significant) and 

HG HRMVEC +NAC.  

These data indicated that ASC could restore the HG-impaired angiogenic function of 

HRMVEC by the production of proangiogenic factors. The fact that NAC-treated and 

CM-treated HG HRMVEC displayed a similar network length, let us speculate about a 

not yet defined ROS scavenging/antioxidant potential of CM or an overruling effect of 

angiogenic factors within the CM. 
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Figure 21 HG impairs the angiogenic potential of HRMVEC, which is restored by NAC, CM from ASC co- and 

monoculture assays. Tube forming potential of HRMVEC was tested in a BMA with NAC or pure CM, either from 

ASCHG monoculture and ASCHG:HRMVEC coculture in HG medium (CMHG). To resemble culture condition of ROS 

measurement, the assay was run in RPMI1640 (supplemented with 2.5% FBS, 1% Penicillin/streptomycin and 2% 

Glutamine). Tube formation is reduced in HG HRMVEC compared to NG HRMVEC (p<0.0001 one-way ANOVA, 

multiple comparison). NAC treatment increases network length in HG (p<0.0001), but not to levels seen in NG 

HRMVEC (p<0.05, n=5, one-way ANOVA, multiple comparison). CM from co- and monoculture restored tube 

forming capacity of HG HRMVEC (p<0.0001) to levels seen in NG (CMHG vs NG HRMVEC, not significant, one-way 

ANOVA, multiple comparison). 

 

4.3 Evaluation of pericyte-like function of ASC in coculture 

Pericytes are an important component in the 

microvasculature of the retina and many 

evidences sustain pericyte loss as one of the 

first sign of vessel degeneration. Their drop 

out would induce high microvascular instability 

[121]. As demonstrated by some studies in 

animals, MSC expressed pericyte-like 

markers once in the retinal microenvironment [125, 126]. In our third aim, we verified 

whether ASC might express pericyte-like markers when cocultured with HRMVEC. To 
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characterize the difference between ASC and HRMVPC, these were tested in 

coculture angiogenesis assays. 

 α-SMA positive ASC wrap around tube structures 

To assess whether ASC could take over pericytes supporting function of vascular 

structures, we performed immunofluorescence staining on coculture angiogenesis 

assays and investigated the expression of two pericyte markers: α-SMA and NG-2. 

In ASC:HUVEC cocultures, we observed that α-SMA positive ASCNG-HG, were more 

concentrated around tube structures and in some cases, they even surrounded tubes 

reminiscent of pericytes wrapping around vessels (Figure 22). Notably, α-SMA had 

only a bare expression in ASC monoculture (not shown), suggesting that the contact 

with endothelial cells might induce a kind of pericyte-like differentiation in ASC. 

 

 
 

Figure 22 Representative confocal fluorescent images of α-SMA staining in coculture angiogenesis assays with 

ASCNG (first line)/ASCHG (second line) and dTomato HUVEC. α-SMA positive ASC (green) wrap around the tubular 

structures (red), resembling pericytes in normal physiology. Red: dTomato HUVEC; Green: anti-mouse Alexa Fluor 

488 conjugated to anti-human α-SMA; Blue: DAPI. 50 μm scale bare; 40x oil immersion objective, images are a 

combination of 20 to 30 Z-stacks.  

 
The same approach was applied to ASC:dTomato HRMVEC coculture angiogenesis 

assays. As previously observed in coculture with HUVEC, α-SMA positive ASC 

wrapped around HRMVEC (Figure 23). In line with previous results, ASC monoculture 

had only a weak expression of α-SMA (Figure 23, last line). These observations 
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confirmed that, independently of endothelial cell types, the proximity between ASC and 

endothelial cells induced in ASC a stronger α-SMA expression.       

 
 

 
 

Figure 23 Representative confocal fluorescent images of α-SMA staining in coculture angiogenesis assays with 

ASCNG and dTomato HRMVEC. α-SMA positive ASC (green) are concentrated around tube structures (red) and 

wrap around them (line 1, 2 and 3 are individual examples) . In ASC monoculture (last line), α-SMA is barely 

expressed.  Red: dTomato HUVEC; Green: anti-mouse Alexa Fluor 488 conjugated to anti-human α-SMA; Blue: 

DAPI. 50 μm scale bare; 40x oil immersion objective; images in line 1,2 and 3 are a combination of 23 Z-stacks; 

last line, single plane image.  

 
α-SMA is a very general pericyte marker; therefore, we performed a staining for NG-2 

which is usually strongly expressed by capillary-associated pericytes [158]. In ASC: 

dTomato HRMVEC cocultures, we observed the whole ASC monolayer being positive 
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for NG-2 (Figure 24; line 1 and 2). In particular, no specific pattern of expression was 

found indicating that NG-2 expression was not aligned to tube-like structures. In ASC 

monolayer, NG-2 was similarly expressed as in coculture (Figure 24 last line). These 

observations suggested that, in contrast to α-SMA, NG-2 expression was constitutive 

in ACS and not related to endothelial cells and their tube formation.       

 

 
 

Figure 24 Representative confocal fluorescent images of NG-2 staining in coculture angiogenesis assays with ASC 

and dTomato HRMVEC. NG-2 (green) was uniformly expressed in the ASC monolayer of coculture (Line 1 and 2, 

two individual examples). A similar pattern was found in ASC monoculture (last line) Red: dTomato HUVEC; Green: 

anti-mouse Alexa Fluor 488 conjugated to anti-human NG-2; Blue: DAPI. 50 μm scale bare; 40x oil immersion 

objective; images in line 1 and 2 are a combination of 23 Z-stacks; last line, single plane image. 

 

 Pericytes have no angiogenic potential 

So far, we demonstrated that ASC not only retained a strong angiogenic supportive 

potential, but also that they expressed pericyte marker such as α-SMA and NG-2. To 

further compare ASC to pericytes, we decided to test HRMVPC in a coculture 

angiogenic assay. We observed that HRMVPC cocultures with either HUVEC or 
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HRMVEC, did not support any tube formation in NG or HG culture media (Figure 25). 

Indeed, endothelial cells clustered together. This observation suggested thatHRMVPC, 

compared to ASC, do not retain a pro-angiogenic potential. This may be in line with 

their physiological role as modulator of vessels maturation, which stabilize and protect 

the vasculature.  

 

 
 

Figure 25 Representative pictures of coculture angiogenesis assay (n=3) with HRMVPC and HUVECGFP/ 

HRMVECGFP. Overall, no tube formation is observed. (a, b) Pericytes + HUVECGFP, in NG and HG media 

respectively; (c,d) pericytes + HRMVECGFP in NG and HG media respectively. 

 
As expected, HRMVPC expressed NG-2 both in coculture and monoculture. In 

cocultures, NG-2 expression pattern did not have any relation to HRMVEC, which were 

clustering together (Figure 26). 
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Figure 26 Representative confocal fluorescent images of NG-2 staining in coculture angiogenesis assays with 

HRMVPC and dTomato HRMVEC. dTomato HRMVEC (red) clustered together in cocultures with HRMVPC (Line 

1). NG-2 (green) was expressed in the HRMVPC monolayer of coculture (Line 1). A similar NG-2 pattern was found 

in HRMVPC monoculture (Line 2). Red: dTomato HUVEC; Green: anti-mouse Alexa Fluor 488 conjugated to anti-

human NG-2; Blue: DAPI. 50 μm scale bare; 40x oil immersion objective; single plane images. 

Oppositely to NG-2, α-SMA expression in HRMVPC was very weak in coculture and 

almost absent in monoculture (Figure 27, Line 1 and 2), confirming the variability of α-

SMA expression depending on pericyte location and origin [159, 160]. 

 

 
 

Figure 27 Representative confocal fluorescent images of α-SMA staining in coculture angiogenesis assays with 

HRMVPC and dTomato HRMVEC. dTomato HRMVEC (red) clustered together in cocultures with HRMVPC (Line 

1). α-SMA (green) was weakly expressed in the HRMVPC monolayer of coculture (Line 1). In monoculture, 
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HRMVPC almost did not express α-SMA (Line 2). Red: dTomato HUVEC; Green: anti-mouse Alexa Fluor 488 

conjugated to anti-human α-SMA; Blue: DAPI. 50 μm scale bare; 40x oil immersion objective; single plane images. 

 

4.4 Evaluation of ASC immunomodulatory potential under hyperglycemia 

The fourth part of our project concerned the 

investigation of the immunomodulatory 

potential of ASC. As in the previous 

experiments, the distinction between ASCNG 

and ASCHG was kept, to evaluate potential 

hyperglycemia-mediated effects on ASC 

immunomodulation. Establishing ASC:PBMC 

direct and indirect (transwell) cocultures, we focused on the interaction between ASC 

and CD4 T cell subsets evaluating (1) the inhibitory effect of ASC on CD4 T cells, (2) 

the generation of Treg and (3) the soluble mediators involved. Two distinct conditions 

were evaluated: (a) stimulated cocultures, where PBMC were stimulated with 

CD3/CD28 beads and (b) not-stimulated cocultures, where resting PBMC were used.  

 

 ASC:PBMC stimulated coculture 

4.4.1.1 ASCNG-HG inhibit CD4 proliferation in coculture with stimulated PBMC 

To verify ASCNG-HG immunomodulatory capacity, direct and transwell cocultures with 

stimulated PBMC were established. As controls, stimulated PBMC monocultures 

placed in 6-well plate or in transwell inserts were used. After 7 days, CD4 cells highly 

proliferated in PBMC monocultures, as denoted by the high division index (Figure 28). 

In contrast, in both direct and transwell cocultures the division index significantly 

dropped (Figure 28), indicating that the presence of ASC, independently of cell-cell 

contact, was effective in inhibiting CD4 cell proliferation. Moreover, the extent of 

inhibition of CD4 proliferation was almost identical for ASCNG and ASCHG, suggesting 

that glucose did not interfere with ASC immunomodulatory potential. 
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Figure 28 Direct and transwell coculture inhibit the proliferation of CD4 cells in stimulated PBMC. The inhibitory 

potential of ASCNG-HG on stimulated PBMC was investigated in direct and transwell cocultures. After 7 days, 

cocultures and respective controls were harvested and analyzed. Division index of CD4 cells in stimulated PBMC 

monocultures and cocultures are reported. CD4 cells have similar division index in direct and transwell PBMC STIM 

monoculture (5.33±2.49 vs 4.76±2.08, respectively). ASCNG-HG, either in direct or transwell cocultures, significantly 

inhibit CD4 cells proliferation, causing a reduction of the division index (direct: ASCNG 1.45±0.4 and ASCHG 

1.45±0.5; transwell: ASCNG 1.6±0.5 and ASCHG 1.52±0.4; vs respective PBMC STIM controls: p<0.01). Data are 

normalized on division index of CD4 in not stimulated PBMC monoculture (division index =1). 2-way ANOVA 

multiple comparison, n=4. 

 

4.4.1.2 The inhibition of T cell proliferation is based on IDO-mediated tryptophan 

depletion 

Suppression of T cell proliferation is a well-established feature of the 

immunomodulatory potential of MSC and it has been related to IDO expression by 

MSC and the subsequent kynurenine production [161, 162]. 

To verify this mechanism to be relevant in our coculture, IDO levels were measured in 

cocultured ASC as well as kynurenine concentrations in coculture supernatants. 

While IDO in ASCNG-HG monocultures was not detectable, its level in ASCNG-HG isolated 

from direct and transwell cocultures were considerably high and not affected by 

glucose (Figure 29 A). Notably, IDO was higher expressed in direct than in transwell 

cocultures (p<0.05) for both ASCNG and ASCHG. Despite this difference in IDO 

expression, kynurenine concentration in coculture supernatants was similar in all 

conditions (Figure 29 B). No kynurenine was detected in monocultures of stimulated 

PBMC, confirming that its production is to be allocated uniquely to ASC. 
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Figure 29 ASC-mediated inhibition of CD4 proliferation is regulated by induction of IDO and kynurenine production. 

A) IDO is highly induced in ASCNG-HG of both cocultures when compared to ASC monoculture (not detectable, not 

shown); however, IDO induction is higher in ASCNG-HG direct cocultures than transwell cocultures (MFI: direct ASCNG 

160.3±1.4 vs transwell ASCNG 121.8±3.5, p<0.05 and transwell ASCHG 197.8±42.4 vs transwell ASCHG 141.8±50.2, 

p<0.05). No significant difference were found between ASCNG and ASCHG. 2-way ANOVA, n=3. B). Kynurenine 

production is similar in all conditions tested. No kynurenine was detected in ASCNG-HG monoculture (not shown). 2-

way ANOVA, n=3. 

 

4.4.1.3 CD4 cells become activated in ASC cocultures 

Having observed the significant suppression of CD4 cell proliferation in cocultures, we 

hypothesized that ASC might also inhibit their activation. Therefore, we dissected the 

CD4+ population looking for CD25 expression. CD25, known also as IL2RA 

(Interleukin-2 receptor alpha chain), is a type I transmembrane protein expressed on 

activated T cells and is considered one of the most prominent marker for cell activation 

[163]. 

The analysis of CD4+ viable cells revealed a similar degree of activation in PBMC 

monocultures in both direct and transwell conditions where CD4+CD25+ cells 

represented respectively 17.6±2.1% and 13.9±1.3% of the entire Live population 

(Figure 30 A). The fraction of CD4+CD25+ cells was increased in coculture with 

ASCNG-HG in direct and transwell cultures. Although the increase was significant only 

in transwell cocultures (PBMC STIM vs ASCNG and ASCHG, p<0.05), a similar trend 

appeared also in direct cocultures (Figure 30 A). To understand whether the increase 

of CD4+CD25+ fractions in cocultures was related to their effective proliferation, we 

investigated the distribution of CD4+CD25+ cells in the proliferating (VPD-) and non-

proliferating (VPD+) fractions (Figure 26 B). Despite the inhibition of CD4 proliferation 

previously documented in cocultures, we found a significant proliferation of 

CD4+CD25+ cells. Indeed, in the VPD- population, we observed a substantial increase 
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of CD4+CD25+ fractions in ASCNG-HG cocultures compared to the PBMC STIM controls 

(p<0.05 in direct and p<0.001 in transwell). As already observed, no differences 

between ASCNG and ASCHG were found, again confirming that HG exerted no effects 

on ASC. In VPD+ fractions no major changes were detected in the CD4+CD25+ 

population, despite a small but significant increase in transwell ASCHG coculture 

(p<0.05, Figure 30 B). 

In conclusion, we found that despite the inhibition of CD4 cell proliferation, ASC 

induced their activation and proliferation in transwell and direct cocultures, exceeding 

the mere activation of CD3/CD28 beads. 

 

 

 

Figure 30 ASC promoted activation (CD25+) of CD4+ cells in coculture with stimulated PBMC. CD4+CD25+ 

population was analyzed in stimulated PBMC monocultures and cocultures after 7 days. A) Distribution of the 

CD4+CD25+ population in the Live population. In coculture, the CD4+CD25+ population is expanded compared to 

the PBMC monoculture (Direct: PBMC STIM 17.67±2.1% vs coculture ASCNG: 22.3±4.7% and coculture ASCHG 

21.26±5.8, not significant; Transwell: PBMC 13.9±1.3% vs coculture ASCNG: 23.2±4.3% and coculture ASCHG 

23.1±4.3%, p<0.05). 2-way ANOVA multiple comparison, n=3. B) Despite ASC inhibition on CD4+ cells proliferation, 
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CD4+CD25+ expansion is evident in both cocultures (VPD- direct: PBMC STIM 20.38±3.1%  vs coculture ASCNG 

35.4±9.8% and coculture ASCHG 33.55±9.4%, p<0.05; VDP- transwell: PBMC STIM 15.33±1.2% vs coculture 

ASCNG 40.23±2.6% and coculture ASCHG 39.84±2.8%, p<0.001). The VPD+ fraction remains constant in direct 

culture but it is slightly increased in transwell ASCHG coculture compared to its control (PBMC STIM 14.3±2.4% vs 

coculture ASCHG 20.47±1.5%, p<0.05). 2-way ANOVA multiple comparison, n=3. 

 

4.4.1.4 The Treg fraction is unaffected by ASC coculture 

Beyond being an activation marker, the expression of CD25 together with FoxP3 in 

CD4 cells is known to be a trademark for Treg (defined as CD4+CD25+FoxP3+). To 

investigate the distribution of Treg subpopulation in our cell cultures we compared 

direct and transwell cocultures as well as ASCNG-HG to verify whether ASC could induce 

Treg. 

Surprisingly, the Treg fractions in both direct and transwell, either ASCNG or ASCHG did 

not differ from the one observed in their control PBMC monocultures (Figure 31 A). We 

further checked the distributions of Treg in the VPD- and VPD+ populations (Figure 31 

B). No difference was found between ASCNG-HG direct coculture and its PBMC STIM 

control in the VPD- fractions. However, in transwell ASCNG and ASCHG cocultures, the 

Treg fraction was reduced compared to the transwell PBMC STIM control (PBMC STIM 

vs coculture ASCNG p<0.01, PBMC STIM vs coculture ASCHG p<0.001). Importantly, 

the reduction of Treg in VDP- fractions of ASCNG-HG transwell cocultures was significant 

compared to the direct cocultures (direct coculture ASCNG vs transwell coculture 

ASCNG p<0.01 and direct coculture ASCHG vs transwell coculture ASCHG, p<0.01). The 

Treg distribution in VPD+ fractions was similar in all conditions (Figure 31 B).  

In contrast to data in the literature, which mainly reported ASC-mediated induction of 

Treg, these data showed that direct or transwell cocultures did not modify the Treg 

balance in stimulated PBMC. Indeed, ASC seemed even to reduce Treg proliferation 

especially in transwell cocultures. 
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Figure 31 Distribution of the Treg population in the Live population (A) and in the VPD-/VDP+ group (B).  A) The 

Treg fraction is equivalent in PBMC monocultures and ASCNG-HG cocultures, in direct and transwell conditions. B) 

In direct cultures VDP-, Treg population is similar in all conditions. In transwell VPD-, T reg in ASCNG-HG coculture 

are reduced compared to PBMC monoculture (transwell PBMC STIM 16.7±2.9% vs transwell coculture ASCNG 

8.5±1.2%, p<0.01 and vs transwell coculture ASCHG 6.2±0.5% p<0.001). Moreover, in transwell ASCNG-HG 

cocultures, Treg fraction was reduced compared to direct cocultures (direct coculture ASCNG 14.5±2.8% vs transwell 

ASCNG coculture 8.5±1.2%, p<0.01 and direct coculture ASCHG 13.6±1.8% vs transwell ASCHG coculture 6.2±0.5%, 

p<0.01). Overall, no differences were detected in the VPD+ fraction. 2-way ANOVA multiple comparison, n=3 

 

4.4.1.5 ASC cocultures restrict cytokines secretion  

We previously documented the inhibitory effect of ASCNG-HG in coculture with T cells, 

independently of direct or indirect contact and independently of glucose. As the 

immunosuppressive potential of MSC has been reported to occur in parallel to 

polarization of Th subsets (which secrete specific set of cytokines) [73, 74], we 
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examined the CM of stimulated PBMC monocultures and ASCNG cocultures for 

Th1/Th2 cytokines.  

Overall, we found a reduction of analyzed cytokines in coculture in comparison to 

PBMC monoculture (Figure 32). Notably, IL-13 (p<0.001), IL-5 (p<0.01), IL-10 (p<0.01) 

and TNF-alpha (p<0.01) were significantly reduced in coculture. Similarly, although not 

significantly lowered, IL-9, IL-17a and IL-17f were also reduced, while IL-22 resulted 

unchanged. 

These findings were in line with previous observations on the inhibitory effect of ASC 

on T cell proliferation. Indeed, it caused a reduction in number of cytokines producing 

cells and thus an overall reduction of cytokine levels. Moreover, we were not able to 

detect any specific Th1/Th2 polarization induced by ASC. 

 

 

 

 

Figure 32 Th1/Th2 cytokines are decreased in stimulated coculture CM. Th1/Th2 cytokines (LEGENDplex™ 

Human Th1/Th2 Panel, Cat. n. 740730) were analyzed in CM of stimulated PBMC monoculture and coculture. 

Overall, coculture restricts cytokine secretion, notably: IL-5 (p<0.01), IL-10 (p<0.01), IL-13 (p<0.001) and TNF-alpha 

(p<0.01). Ratio paired T-test, n=4. 
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 ASC:PBMC not stimulated coculture 

4.4.2.1 ASC do not affect CD4 proliferation in resting PBMC  

Having observed (1) the inhibiting effect of ASC on CD4 proliferation under CD3/CD28 

stimulation, (2) induction of T cell activation marked by CD25 expression and (3) slight 

inhibition of Treg numbers, we established similar experiments in an not stimulated 

setting. Cocultures and their controls were set up using ASCNH-HG and not stimulated 

PBMC.  

Because of their low immunogenicity, ASCNG-HG did not induce significant allogeneic 

proliferation of CD4 in both direct and transwell cultures (Figure 33). Intriguingly, CD4 

in transwell PBMC control showed a slight but significant increase in the division index 

compared to PBMC in direct culture (PBMC direct vs PBMC transwell, p<0.05), 

suggesting a sort of auto-stimulation. The presence of ASCNG-HG did not affect this low 

level of proliferation within the transwell.  

 

 

 

Figure 33 The inhibitory potential of ASCNG-HG in not-stimulated/resting PBMC coculture was investigated. ASCNG-

HG do not affect not-stimulated PBMC (PBMC NOT STIM) in cocultures. However, some auto-stimulation of PBMC 

monoculture is observed in transwell culture when compared to direct (p<0.05). 2-way ANOVA multiple comparison, 

n=4.  

 

4.4.2.2 IDO and kynurenine levels are low in coculture under not-stimulated 

conditions 

We showed previously that IDO-mediated kynurenine production was observed in 

CD3/CD28-stimulated cocultures and was related to the immune suppressive action of 

ASC. In ASCNG-HG:resting PBMC cocultures, both IDO and kynurenine were detectable 
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at low levels (Figure 34 A and B) while again no IDO was detected in ASC 

monocultures. Indeed, IDO levels in not stimulated ASCNG-HG cocultures were more 

than halved compared to the one in stimulated cocultures (direct: stimulated ASCNG-HG 

vs not stimulated ASCNG-HG, p<0.05, not shown). In ASCNG coculture with not 

stimulated PBMC, IDO was more expressed in ASC from transwell than in ASC from 

direct cocultures (p<0.05, Figure 34 A). Kynurenine concentrations were comparable 

in transwell and direct (Figure 34 B) but reduced when compared to stimulated 

cocultures (direct and transwell: stimulated coculture ASCNG-HG vs not stimulated 

coculture ASCNG-HG, p<0.05 not shown). 

All together, these findings supported our previous observations, confirming that the 

ASC mediated IDO-kynurenine axis was actively involved in the inhibition of CD4 cell 

proliferation in a stimulated setting. However, in absence of CD3/CD8-mediated 

stimulation on PBMC, the IDO-kynurenine pathway was downregulated without any 

consequence on CD4 proliferation. CD4 proliferation did not occur in absence of 

CD3/CD28-stimulation.  

  

 

 
Figure 34 IDO, in cocultured ASCNG.HG, and kynurenine, in cocultures CM, were measured. A) Low IDO levels are 

detected in both transwell and direct cocultured ASCNG-HG. IDO is significantly higher in ASCNG transwell coculture 

than direct coculture (p<0.05). Notably, IDO was not detectable in ASC monoculture. B) Kynurenine concentrations 

were low and comparable in both ASCNG-HG transwell and direct cocultures. No kynurenine was detected in ASC 

monoculture or PBMC (not shown). 2-way ANOVA, n=3.     

 

4.4.2.3 Unstimulated coculture do not activate CD4 cells 

As stimulated coculture promoted CD4 activation, we evaluated CD25 expression on 

CD4 cells also in not stimulated cultures. The absence of CD3/CD28-mediated 

stimulation on PBMC strongly reduced the overall CD4+CD25+ population in ASCNG-

HG cocultures and controls (stimulated vs not stimulated in direct and transwell cultures 
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for PBMC and ASCNG-HG coculture, from p<0.05 to p<0.001; not shown). In this case, 

no coculture-mediated activation of CD4 was detected (Figure 35 A). Zooming into the 

VPD- fractions (Figure 35 B), we found a similar trend in direct and transwell cultures, 

indicating a decrease of proliferating CD4+CD25+ cells in ASCNG-HG cocultures when 

compared to PBMC monocultures (direct: PBMC vs ASCNG-HG coculture, p<0.05; 

transwell: PBMC vs coculture, not significant, Figure 35 B). This indicated that despite 

the presence of ASC, in absence of CD3/CD28 stimulation, CD4 cells were not 

activated. No differences were detected in the distributions of CD4+CD25+ cells in 

VPD+ fraction. 

 
 
Figure 35 ASC do not induce activation (CD25+) of CD4+ cells under not-stimulated conditions. CD4+CD25+ 

population were analyzed in not-stimulated PBMC monoculture and coculture after 7 days. A) Distribution of the 

CD4+CD25+ population in the Live fraction. The CD4+CD25+ population is comparable in PBMC monoculture and 

ASCNG-HG coculture in either direct and transwell. B) Distribution of CD4+CD25+ cells in the proliferating (VPD-)/non 

proliferating (VDP+) group. VPD- CD4+CD25+ population is reduced in direct ASCNG-HG cocultures compared to 

PBMC (PBMC NOT STIM 15.37±5.7% vs coculture ASCNG 2.83±2.5% and coculture ASCHG 3.08±2.9%, p<0.05). 

A similar but not significant trend is observed in transwell (VPD- transwell: PBMC NOT STIM 21.5±8.9% vs coculture 
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ASCNG 10.4±4.7% and coculture ASCHG 11.52±5.7%, not significant). The proportion of the VPD+ CD4+CD25+ do 

not differ. 2-way ANOVA multiple comparison, n=3. 

4.4.2.4 ASCNG-HG cocultures promote Treg in not-stimulated setting 

Subsequently, we evaluated the Treg distribution in the Live and in the VPD-/VPD+ 

population. The analysis of the Live population revealed that ASCNG cocultures 

expanded the Treg fraction in both direct and transwell cocultures compared to PBMC 

monocultures (p<0.05). A similar but not significant trend was observed for ASCHG 

cocultures (Figure 36 A). Overall, Treg fractions were higher in unstimulated conditions 

than stimulated (stimulated vs not stimulated in direct and transwell cultures for PBMC 

and ASCNG-HG cocultures, from p<0.05 to p<0.001; not shown), suggesting that resting 

conditions might help in preserving Treg, which are further increased in presence of 

ASC.  

These observations were further confirmed by dissecting the VPD-/VPD+ populations. 

Indeed, the proliferating fraction of Treg was increased in coculture, especially in direct 

cocultures (Figure 36 B). The VPD+ fraction did not vary upon culture conditions.  

In summary, we observed that coculture between ASC and unstimulated PBMC did 

not promote CD4 cell activation. Instead, they promoted active proliferation of Treg. 
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Figure 36 Distribution of Treg population in the Live fraction and in the VPD-/VDP+ fraction. A) The Treg fraction is 

increased in both cocultures compared to PBMC NOT STIM controls (direct: PBMC NOT STIM 27.35±1,7% vs 

ASCNG coculture 37.9±5.6%, p<0.05; PBMC NOT STIM vs ASCHG coculture 34.9±4.7%, not significant. Transwell: 

PBMC NOT STIM 17.7±5% vs ASCNG coculture 29.3±5.2%, p<0.05; PBMC NOT STIM vs ASCHG coculture 

25.7±5.9%, not significant). 2-way ANOVA multiple comparison. B) Within the proliferated cell, the Treg fraction is 

increased in direct coculture (VPD- direct: PBMC NOT STIM 9.12±4% vs ASCNG coculture 32.7±5.6% and ASCHG 

coculture 34.7±21.5%, not significant). A similar trend is reported in transwell (VPD- transwell: PBMC NOT STIM 

12.4±5.5% vs coculture 23.6.7±2.1% and ASCHG coculture 18.9±5.6%, not significant). The distribution of Treg in 

the VPD+ population is similar in all condition. 2-way ANOVA multiple comparison, n=3. 

 

4.4.2.5 ASC coculture reduces Th1/Th2 cytokine concentrations, while CCL-18 

is highly concentrated in coculture 

So far our data showed that cocultures between ASCNG-HG and not-stimulated PBMC 

induced Treg proliferation independently of glucose, in contrast to cocultures with 

CD3/CD28-stimulated PBMC. As next step, we screened the CM of unstimulated 

cocultures for Th1/Th2 cytokines.  
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The analysis of Th1/Th2 showed a similar trend to the one observed in stimulated 

cultures. Indeed, all analyzed factors were reduced in coculture compared to PBMC 

monoculture (Figure 37). A significant reduction in coculture was found in the following 

factors: IL-5 (p<0.05), IL-9 (p<0.05), IL-10 (p<0.05) and IL-13 (p<0.01). On the 

contrary, IL-17f and IL-22 were similarly produced in PBMC monoculture and coculture 

while IL-17a and TNF-alpha were not detectable in coculture. To investigate whether 

CD3/CD28 mediated stimulation of PBMC influenced Th1/Th2 cytokine secretion, we 

compared unstimulated PBMC monoculture and coculture with their stimulated 

counterparts (not shown). We found that stimulated PBMC monocultures had generally 

higher level of cytokines compared to not stimulated PBMC. For instance, IL-10 

(p<0.001), IL-13 (p<0.01), TNF-alpha (p<0.01), IL-17a (p<0.05) and IL-17f (p<0.05) 

were lower in not stimulated PBMC monoculture, in line with a quiescent not-activated 

state. Regarding cocultures comparison, a similar trend was detected within IL-10 

(p<0.01), IL-9 (p<0.05), and IL-17f (p<0.05), which were lower in not stimulated 

coculture. These findings confirmed the immunosuppressive potential of coculture, 

which was detected in either unstimulated or stimulated coculture and proved that in 

absence of stimulation PBMC retained a different cytokine profile compared to 

stimulated PBMC. 

In addition to the Th1/Th2 cytokine panels, we evaluated also IFN-gamma, IL-4 and 

CCL-18 (Figure 37). While IFN-gamma and IL-4 were substantially identical in PBMC 

and coculture, CCL-18 was highly concentrated in coculture (p<0.05).  
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Figure 37 Th1/Th2 cytokines are inhibited in not stimulated coculture; IFN-gamma and IL-4 are unchanged. On the 

contrary, CCL-18 is highly produced in coculture. Th1/Th2 cytokines (LEGENDplex™ Human Th1/Th2 Panel, Cat. 

n. 740730) were analyzed in CM of stimulated PBMC monoculture and coculture. In addition, IFN-gamma, IL-4 and 

CCL-18 were also investigated. A) Overall, Th1/Th2 cytokines drop off in coculture, notably: IL-5, IL-9, IL-10 

(p<0.05) and IL-13 (p<0.01). IFN-gamma and IL-4 have similar level in PBMC and coculture; CCL-18 is highly 

produced in coculture compared to not-stimulated PBMC monoculture (p<0.05). Ratio paired T-test n=3 to 4. 

 
 

4.4.2.6 Coculture induces prolonged changes in the PBMC cytokine profile 

Our early findings demonstrated that ASC mediated induction of Treg was evident only 

in coculture with resting PBMC. To explore whether the presence of ASC was sufficient 
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to activate a long lasting Treg expansion in resting PBMC, we further cultured pre-

cocultured not stimulated PBMC in absence of ASC for further 7 days (a total of 14 

days in culture). Afterwards, CD4+CD25+ and Treg populations were characterized as 

well as some selected cytokines analyzed in their CM. 

The analysis of CD4+CD25+ cells in the Live population, revealed a similar distribution 

in control PBMC and PBMC from cocultures (ex-coculture; Figure 38 A). We found a 

higher percentage of Treg in control than in ex-coculture PBMC (p<0.001).  

To assess whether the cytokine profile of PBMC was long-lastingly changed upon pre-

treatment in coculture, we isolated CM from these PBMC cultures and analyzed 

selected cytokines (Figure 38 B). In contrast to previous observations, where cytokine 

concentrations were overall reduced in cocultures, ex coculture PBMC produced 

higher amounts of cytokines than their counterparts from monocultures (Figure 38 B). 

Specifically IL-10 (p<0.01), IFN-gamma (p<0.01), TNF-alpha (p<0.05) and CCL-18 

(p<0.01) were increased in ex-coculture PBMC than control, only IL-4 was unchanged. 

In conclusion, we observed that PBMC, which were cocultured with ASC, did not retain 

a long-lasting proliferation of Treg. Their cytokines profile indicated a high production 

of IL-10 and CCL-18, which was not observed during the coculture.  
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Figure 38 PBMC from coculture (ex-coculture) and control (PBMC) were cultured alone for further 7 days, 

CD4+CD25+ and Treg were measured in the Live population as well as cytokines in their CM. A) The CD4+CD25+ 

population is similarly detected in PBMC and ex-coculture PBMC (13±4.6% vs 14.3±4.9%, not significant). The Treg 

fraction in the Live population is higher in PBMC than ex-coculture PBMC (35.4±2.2% vs 18.1±3.1, p<0.01). Ratio 

paired T-test, n=4 to 5. B) IL-10, IFN-gamma and TNK-alpha are highly present in CM from ex-coculture PBMC 

than PBMC cultured alone (IL-10 and IFN-gamma p<0.01 and TNF-alpha p<0.05). IL-4 is equally present in both 

conditions. CCL-18 remains high in ex-coculture PBMC (p<0.01). Ratio paired T-test, n=4 to 5. 

 

 TGF-β is a mediator for Treg induction 

Our findings generally denoted that glucose had no effect on the immunomodulatory 

potential of ASC. Moreover, we documented that cocultures induced Treg formation 

and proliferation only in resting conditions and that the same PBMC in culture for 

further 7 days were changed in their cytokine profile. 

To confirm our observations on Treg induction in coculture, we investigated TGF-β 

production in direct and transwell cocultures as well as in stimulated and not stimulated 

settings. Indeed, TGF-β is considered a very important mediator in Treg generation 

being involved in their regulation [164]. 
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Thus, we measured TGF-β in CM of direct and transwell cocultures of unstimulated 

PBMC and ASC, using ASC monoculture as control (Figure 39). All conditions 

produced more TGF-β than ASC alone (dotted line) and TGF-β was not found in CM 

from stimulated/not stimulated PBMC. These first findings suggested that TGF-β 

production was to be allocated uniquely to ASC. In not stimulated cocultures, we found 

that TGF-β was highly produced in direct coculture compared to transwell (p<0.001). 

In addition, comparing direct cocultures, not stimulated cocultures produced more 

TGF-β than stimulated one (p<0.01). 

These data were in line with the observed increment of Treg in cocultures of 

unstimulated PBMC, especially in direct coculture, supporting the notion that TGF-β 

production was strongly related to Treg generation in our coculture and being 

dependent on both direct cell contact and resting condition of PBMC.   

 

 

 

Figure 39 TGF-β was measured in CM of direct and transwell cocultures. TGF-β is more concentrated in direct and 

transwell cocultures than in the control (ASC monoculture, dotted line). In stimulated conditions, production of TGF-

β is higher in direct than transwell cocultures (103.5±12.5 pg/ml and 66.5±10.6 pg/ml, respectively) but not 

significant. Whereas in not stimulated conditions, TGF-β is considerably more concentrated in CM of direct than 

transwell cocultures (196.2±46.7 pg/ml vs 95.2±12.8 pg/ml, p<0.0001). Moreover, comparing direct coculture, TGF-

β is higher in not stimulated settings than stimulated ones (p<0.001). TGF-β was not detected in monoculture of 

stimulated/not-stimulated PBMC. 2-way ANOVA, n=4.   
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5 DISCUSSION 

The rationale of this study was to evaluate whether ASC were affected by 

hyperglycemia in their basic characteristics and functional potentials. As mentioned in 

the introduction, hyperglycemia is considered one of the main factors driving cell 

damage in pathologies related to poor glycemic control such as diabetes and metabolic 

disorders. Glucose-mediated cell damage has been strongly related to microvascular 

complications and particularly to endothelial cell dysfunctions in secondary diabetic 

complication as DR [133]. MSC and especially ASC, have been recently proposed as 

potential cell-based treatment for DR and many studies on several animal models 

demonstrated the safety and efficacy of this approach. Indeed, ASC have been shown 

to interact within the retinal microenvironment through the following mechanisms: (1) 

secretion of proangiogenic factors and stimulation of neovascularization, (2) secretion 

of anti-inflammatory factors and reduction of inflammation/lymphocyte infiltration and 

(3) acquisition of a pericyte-like function giving support and stabilizing the retinal 

vasculature. All these studies proposed only allogenic application of MSC as many 

reports suggested that MSC isolated from diabetic donors, might be impaired in their 

potency and functions. In this context, (a) the evaluation of autologous MSC 

applications in hyperglycemia-related pathologies as well as (b) the investigation of 

diabetic/hyperglycemia-mediated effects that may occur once healthy MSC are in a 

diabetic/hyperglycemic environment, can give important insights on how MSC-

mediated cell therapy can be improved in the particular pathological setting of DR. 

In this study, we investigated hyperglycemia-mediated effects on ASC through a series 

of in vitro experiments 

 

5.1 Does hyperglycemia affect ASC basic characteristics? 

 
The first step in our study was to address “basic” effects 

of hyperglycemia on ASC, hypothesizing that potential 

HG-mediated effects would have been detected on 

cellular phenotype, differentiation and cell growth. As the 

vascular compartment represents the main target of 

MSC-based therapy in DR, we conduced similar analysis on HRMVEC.   
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 Hyperglycemia on ASC causes a transient increase of oxidative stress 

Many studies already demonstrated the impairment of ASC isolated from diabetic 

patients/animals. Reduced therapeutic capacity in wound healing [145, 165] and even 

impaired ability to protect retinal vasculature in Akimba mice [148] were documented. 

However, none of them was uniquely focused on investigating potential cell damages 

mediated by hyperglycemia. In our study, we observed that hyperglycemic culture 

conditions had no major effect on (1) ASC basic characteristics (immunophenotype 

and differentiation potential), (2) nor their angiogenic supportive capacities, (3) nor their 

immunomodulatory properties. We speculate that this might be related to the capacity 

of ASC to regulate glucose uptake and thus, to control adverse intracellular events 

such as ROS formation and oxidative stress. Supporting our findings, Hajmousa et al. 

described that HG cultured ASC were largely refractory to hyperglycemia, despite an 

increased production of ROS and mitochondrial reorganization. Moreover, in presence 

of HG, ASC changed their metabolic profile decreasing oxygen consumption and 

glycolysis [151]. Taken together these findings suggested that ASC might have intrinsic 

regulatory mechanisms, to guarantee an efficient and rapid adaptation to metabolic 

changes in the surrounding microenvironment. 

Since we cultured ASC in HG directly after isolation from lipoaspirate and kept this 

condition within experiments, we provided an even stronger evidence of ASC tolerance 

to HG, indicating that prolonged/long term HG cultures did not affect ASC. Only at the 

first passage after isolation, ASCHG displayed a slower cell growth compared to ASCNG, 

confirmed by an increase in doubling time and a reduction of cell doublings. The first 

phase of cell growth after isolation is the most delicate as cells face for the first time 

the in vitro culture. Therefore, being in contact with HG might have represented an 

additional obstacle for cells, which was then translated in a reduction of cell growth 

rate. Importantly, these effects were transient and restricted to the first passage, 

indicating and confirming that ASC could rapidly adapt to this culture condition. The 

measurement of intracellular oxidative stress (total ROS measurement) further 

supported this notion. Indeed, while ASCNG and ASCHG displayed similar and low levels 

of oxidative stress, in ASCNG switched to HG (ASCNG in HG) ROS levels increased and 

were sensitive and reduced upon antioxidant treatment. Again, in line with Hajmousa 

et al., only a transient effect of glucose was demonstrated. 

Increased glucose influx in cells is defined by the unifying hypothesis as the main 

driving force of cellular destabilization as well as the principal cause of increased ROS 
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production [133]. Therefore, in parallel to measurement of intracellular oxidative stress, 

we evaluated glucose uptake in ASCNG and ASCHG. We found that both ASCHG and 

ASCNG in HG had a reduced glucose uptake compared to the one of ASCNG. This was 

supported by similar observations provided by Hajmousa and colleagues. In ASCHG, 

glucose uptake levels were as low as those when applying a GLUT-1 inhibitor (WZB-

117) on ASCNG. These results are of crucial importance as, in contrast to the unifying 

hypothesis, they appear to disconnect ROS production from glucose uptake.  

In our experimental setting, ROS production was not relatable to increased glucose 

influx. However, we cannot exclude that, at earlier time points of HG switching, a 

transient increase of glucose influx might have occurred together with an increase in 

oxidative stress, which could have been detectable even after several hours. 

Furthermore, our measurement of ROS may have been slightly imprecise, reflecting 

several cytoplasmic oxidative stressors rather than solely ROS. Indeed, as carboxy-

H2DFFDA penetrates in cells, it is subject to oxidation by several cytoplasmic ROS 

species such as hydrogen peroxide, organic hydroperoxides, nitric oxide and 

peroxynitrite, which turn it into being fluorescent. Moreover, its oxidation has been 

found to be influenced by glutathione (GSH) [154]. In light of this, we have to argue 

that our data: (1) could not be related to specific mitochondrial ROS production, which 

are the one effectively addressed in the unifying hypothesis, and (2) should be 

interpreted as a transient increase of oxidative stress index upon glucose switch.  

In conclusion, our findings on ASCNG-HG, were in line with the previous proposed by 

Hajmousa and colleagues, indicating a solely transient effect of glucose in increasing 

the oxidative state of cells, while other characterizing parameters were not affected. 

The absence of glucose-related damages on ASC appeared to be related to the 

restricted uptake of glucose, in virtue of their rapid metabolic adaptation to the 

hyperglycemic surrounding microenvironment. 

 

 Hyperglycemia induces an angiogenic dysfunction in HRMVEC 

Considering ASC as potential therapy for DR, this study focused next to HRMVEC to 

investigate potential glucose toxicity. Hyperglycemia-mediated cell damage, especially 

for microvascular cells, is a well-established concept with multiple evidences confirmed 

in vivo and in vitro  [135]. Loss of vascular permeability and induction of pro-

inflammatory pathways are only some of the described indicators of HG toxicity [133, 

166]. The common denominator triggering hyperglycemia-mediated injuries is ROS 
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overproduction. For metabolic reasons, mitochondrial ROS overproduction is the 

principal consequence of increased glucose influx inside endothelial cells. Indeed, 

ROS overproduction gives rise to a destabilizing cascade of detrimental events 

(increased polyol and hexosamine pathway, AGE production and PKC activation), 

which destabilize and damage endothelial cells [134]. Therefore, we first examined HG 

impact on HRMVEC growth rate and then, we focused on ROS production/oxidative 

state and glucose uptake. In last instance, we assessed whether hyperglycemia might 

affect their angiogenic potential 

 

HRMVEC growth rate was not affected by HG. Thus, this first outcome was rather 

unexpected, as our rationale based on previous reports on pronounced glucose-

toxicity in endothelial cells. We argued that optimal culture conditions, provided by the 

cell culture media, might potentially overrule detrimental effect of glucose. Indeed, the 

presence of growth factors in the culture media, such as VEGF, has been 

demonstrated to be protective for HG-mediated injuries [156, 157]. Therefore, cell 

growth monitoring was repeated in ¼ ECGM-2 medium (cell medium containing only 

¼ of supplemented growth factors). Because of the lowered serum/growth factors 

provision, HRMVEC general growth rate diminished compared to ECGM-2. Only a 

slight reduction was caused by HG. Further readings revealed that, in fact, 

hyperglycemia-mediated effects on endothelial cell proliferation may vary. While some 

studies demonstrated hyperglycemia being effective in reducing endothelial cell growth 

[167, 168] and even promoting apoptosis [169], others found HG inducing their 

proliferation [170, 171]. We restricted our analysis on monitoring proliferation, thus, we 

cannot speculate on whether both findings might have occurred in parallel. Indeed, a 

feed forward mechanism in which dead cells were replaced by new proliferating ones, 

can be an explanation to an unchanged growth rate. To undercover this, a deeper 

analysis on cell cycle of HG exposed cells as well as apoptosis quantification could be 

performed.  

Another aspect to be considered is the timing of hyperglycemic injury. Duration of HG 

exposure, especially a temporary switch from NG to HG (intermitted glucose) has been 

reported to cause a more pronounced proliferation than exposing cells to prolonged 

HG [170]. 
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Similarly to ASC, where we observed that a transient switch to HG induced oxidative 

stress whilst glucose uptake became efficiently restricted, we performed similar 

experiments in HRMVEC. Here, HG caused an increase in intracellular oxidative 

stress. However, in contrast to many findings in the literature, this was not related to 

glucose uptake. Indeed HG HRMVEC showed a reduced glucose uptake compared to 

NG and the addition of the GLUT-1 inhibitor even lowered that uptake. We concluded 

that HG-mediated induction of oxidative stress (increased in detection of total ROS) 

was not related to glucose uptake. On one hand, our results are in line with findings in 

the literature (glucose-mediated oxidative stress induction), on the other, the 

fundamental milestone of intracellular hyperglycemia, as consequence of extracellular 

HG, is not corroborate. As ASC, HRMVEC restricted glucose uptake, however, in 

contrast to ASC they appeared to rely on at least some level of glucose uptake even 

in HG conditions. Thus, the fundamental link between extracellular hyperglycemia 

translating to intracellular hyperglycemia does not appear to be true in our study. 

Admittedly, similar shortcomings as discussed in the ASC section also apply to the 

HRMVEC, with respect to timing and kinetics of hyperglycemia exposure. Indeed, we 

can postulate an increased glucose uptake in the very first moments after HG 

application, which is later restricted. In support of our hypothesis, it was observed that 

chronical and acute glucose exposure resulted in different outcomes both in vitro and 

in vivo [170, 172].    

 

In last instance, we assessed the proangiogenic potential of HRMVEC in regard of HG. 

In DR the first signs of the disease appear as microaneurysms and non-perfused 

capillaries. This degeneration is related not only to pericytes loss, but also to 

dysfunctions of the endothelium, which bring to an aberrant remodeling of the 

vasculature [121].To investigate whether hyperglycemia is directly involved in affecting 

angiogenic potential of HRMVEC, we set basement membrane angiogenesis (BMA) 

assays to monitor their tube formation potential upon glucose. The total tube network 

length as well as the number of junctions of HG HRMVEC was notably reduced 

compared to the one of NG HRMVEC. We concluded that HG induced angiogenic 

dysfunction of HRMVEC. Hyperglycemia is reported in many papers to reduce 

angiogenic potential of endothelial cells and VEGF transcription/production was found 

to be often involved in the process [135]. For instance, VEGF production by endothelial 

cells was diminished upon HG treatment resulting in reduced migration and tube 
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formation [173]. RasGRP1 was found to mediate these processes, since its 

overexpression rescued HG-mediated impairments [174]. The critical role of VEGF in 

protecting from apoptosis and ROS as well as regulating the angiogenic potential was 

also demonstrated [156]. Even miRNA were documented to be involved in the post-

transcriptional regulation of VEGF. miR117 was found to be induced by hyperglycemia, 

reducing VEGF in vivo and in vitro and affecting endothelial cells’ tube formation [175]. 

However, opposite findings observed also an HG-mediated induction of angiogenesis 

[176], which was usually related to an extended period of HG exposure [177, 178].  

 

In conclusion, HG did not affect basic characteristics of ASC but it induced angiogenic 

dysfunction in HRMVEC. In both cell types, a transient increase of oxidative stress was 

reported upon HG exposure without being directly related to glucose uptake in our 

experimental settings. As suggested by literature, we found that hyperglycemia-

mediated effects on ASC and HRMVEC relied on oxidative stress induction causing in 

the latter, a possible ROS-related functional impairment in the angiogenic potential.   

 

5.2 Does glucose exposure influence ASC angiogenic supportive potential? 

To fulfill our second aim we investigated hyperglycemia-

mediated effects on ASC functions, asking whether (1) 

HG could affect ASC pro-angiogenic potential and if not, 

whether (2) ASC could rescue the HG-induced 

angiogenic dysfunction in HRMVEC. 

 

The supportive angiogenic potential of ASC was untouched by glucose. Not only 

ASCNG and ASCHG induced tube formation in coculture angiogenic assays with HUVEC 

and HRMVEC to a similar extent, but also the presence of glucose in the culture media 

did not affect the outcome. In contrast, in a similar assay, Hajmousa and colleagues 

observed reduced tube formation of HUVEC when cocultured with ASC in HG condition 

[151].  

Similarly, HG in the medium as well as ASCNG-HG, did not alter significantly cytokine 

production in ASC monoculture and ASC cocultures. HG in culture medium was barely 

relevant in influencing cytokine production, with a few exceptions. CCL-7 surprisingly 

had a 2.8-fold increase in HG medium culture compared to NG. CCL-7, known also as 
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monocyte chemotactic protein 3 (MCP-3), is a chemokine mainly involved in the 

recruitment of monocytes [179]. It can be produced by several types of cells, including 

endothelial cells and MSC, especially upon inflammatory stimuli. On one side, CCL-7 

acts as fundamental regulator in the management of the immune response, but on the 

other, its overexpression has been demonstrated being highly tumorigenic, 

contributing to the induction of a suitable tumor microenvironment as well as to tumor 

metastasis [180]. CCL-7 does not appear to be directly related to angiogenic 

processes; therefore, its high concentration in HG coculture was unexpected. In our 

assay, we cannot specify whether CCL-7 is produced by HUVEC, ASC or both. 

HUVEC-mediated CCL-7 secretion might be related to injury, maybe caused by 

hyperglycemia, possibly explaining the 2.8-fold increase in HG coculture. This would 

be in line with the 1.9-fold increase in soluble PECAM-1 (known also as CD31), a 

typical surface marker of endothelial cells, which might indicate increased endothelial 

cell damage and eventually death. Despite CCL-7 and PECAM-1 levels were 

increased in HG coculture, the outcome of vascular tube formation was not affected. 

This represented our first evidence that ASC angiogenic support could overcome any 

detrimental effect of glucose on endothelial cells. 

When we compared ASCNG-HG in coculture and monoculture, all analyzed factors, 

except for VEGF, were increased in coculture and identical in ASCNG and ASCHG, 

confirming the proangiogenic milieu of cocultures and no effects of glucose on cytokine 

secretion. 

VEGF concentrations were higher in ASC monoculture than coculture indicating that 

coculture might consume VEGF to support tube formation. In DR, especially in the 

proliferative stage, the combination of VEGF with Ang-1/Ang-2/Tie-2 signaling 

represents the driving force of hyperproliferation of retinal vessels [181]. Therefore, the 

detection of VEGF, Ang-1 and Ang-2 in coculture supernatants was carefully 

evaluated. Production of VEGF by ASC, together with other proangiogenic factors, is 

well known and largely documented [182]. However, little information is available 

regarding Ang-1/Ang-2. We found that ASCNG-HG produced considerable amounts of 

Ang-2 in monoculture, which were even increased in cocultures. Similarly, Ang-1 was 

found in monoculture and coculture but its level were generally lower in comparison to 

Ang-2. These findings let us speculate that the angiogenic process in the assay was 

sustained (1) by VEGF, produced mainly by ASC and (2) by Ang-2, which is produced 

by ASC in combination to VEGF activating the autocrine Ang-2/Tie2 signaling [183]. 
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As Ang-1 is reported to be mainly involved in maintaining vessels quiescence and 

homeostasis [184], we argue that low level of Ang-1 did not contrast tube formation, 

but were fundamental in supporting the tube structure, which could last up to two weeks 

in coculture (not shown). 

FGF is another well-known angiogenesis-related factor. It can combine with VEGF to 

promote endothelial cell proliferation and migration [185]. In our ASCNG coculture, FGF 

was more concentrated than in ASCNG monoculture as well as in ASCHG coculture, 

confirming again the establishment of a proangiogenic microenvironment. 

Interestingly, cytokine secretion was related to the extent of tube formation. Indeed, as 

the number of endothelial cells was always identical within experiments, these 

differences were attributed to ASC samples, indicating a donor-dependent angiogenic 

supportive capacity related to cytokine secretion.  

 

To explain the rescuing capacity of ASC: HRMVEC cocultures, we considered also the 

possibility that MSC could rescue injured cells via mitochondrial transfer, as shown 

previously [186]. In an in vitro ischemia-reperfusion model, Liu et al. showed that 

mitochondrial transfer via tunneling nanotube like structures (TNT-like structures) was 

able to prevent endothelial cells apoptosis and promote aerobic respiration [187]. In 

addition, foreign-derived mitochondria from injured cells have been shown to sensitize 

MSC, inducing heme oxygenase-1 (HO-1), mitochondrial biogenesis and final 

mitochondrial transfer to injured cells. Interestingly, these results were even 

recapitulated in an in vivo model of myocardial infarction [188] and of middle cerebral 

artery occlusion [189]. Here, upon MSC engraftment on ischemia-reperfusion-

damaged cerebral microvasculature, mitochondrial transfer from MSC was observed 

and promoted angiogenesis as well as amelioration of mitochondrial respiration in the 

microvasculature [189]. These studies clearly demonstrate the ROS-scavenging 

potential of MSC, especially in the interaction with endothelial cell. Therefore, we 

consider mitochondrial transfer via either TNT-like structure or microvescicles [186] as 

an option of interaction between hyperglycemia injured endothelial cells and ASC in 

our coculture system. Our data, however, showing that transfer of CM was sufficient to 

promote HG HRMVEC angiogenesis, favor secreted factors. However, future studies 

aim to investigate this putative mechanism by which ASC could rescue hyperglycemia 

injured endothelial cells, restoring their redox balance and reestablishing their 

angiogenic potential.   
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Overall, our analysis on supernatants of coculture angiogenesis assays corroborated 

our previous findings on glucose, which is not functionally affecting ASC in cytokine 

secretion. Moreover, ASC in combination with endothelial cells, created a 

proangiogenic microenvironment that sustained endothelial cell tube formation. In 

addition, the mechanism of mitochondrial transfer might be considered as an option for 

protection/restoration of endothelial cell angiogenic potential. 

 

While HG induced a reduction of HRMVEC angiogenic potential, the treatment with the 

antioxidant NAC restored it to some degree. CM from angiogenesis assay cocultures 

and ASC monoculture restored HRMVEC tube formation similarly to NAC treatment. 

These findings fully confirmed our previous data on ASC/coculture growth factor profile 

analysis. The indirect presence of ASC (i.e. CM) overcame detrimental effects of 

hyperglycemia on the angiogenic potential of HRMVEC. Moreover, as NAC and CM 

treatments similarly restored HG HRMVEC angiogenic potential, the hypothesis of an 

additional oxidative stress/ROS scavenging potential (e.g. via mitochondrial transfer) 

of ASC CM becomes more concrete. 

Although, we did not provide evidence to fulfill this last hypothesis, our preliminary 

findings raised the question about the importance of redox balance in angiogenesis. 

Indeed, the study of redox signaling in angiogenesis has been shown to be of 

importance. ROS, as a byproduct of the activity of several enzymes (such as 

mitochondrial enzymes, cyclooxygenase, myeloperoxidase), can be specifically 

produced by the family of NADPH oxidases (Nox). Nox are multiprotein complexes 

associated with membranes in cytoplasmic or intracellular locations, involved in the 

maintenance of redox balance in cells as well as in the mediation of intracellular 

signaling [190]. It has been demonstrated that ROS-derived Nox play a role in 

VEGF/VEGFR2 signaling by promoting cell mobilization (via tyrosine phosphorylation 

of VE-cadherin and beta catenin) as well as VEFGR2 activation itself (via tyrosine 

phosphorylation of the intracellular domain) [191]. Nox involvement in pathological 

angiogenesis has been demonstrated in several OIR animal models. While in the 

hyperoxia phase Nox2 was not changed, in the neovascularization phase 

(normoxia/hypoxia) of OIR increased expression of Nox2 as well as increased VEGF 

and ROS were documented. On the contrary, Nox2 knock-out animals and treatment 

wiht apocyanin (Nox inhibitor) reduced neovascularization [192, 193]. Similarly, the 
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Nox4 isoform led to pathological neovascularization in the OIR model and its knock-

out reduced VEGFR2 phosphorylation (activation) as well as STAT3 activation [194]. 

Overall, these studies demonstrated that the ROS producer Nox proteins are involved 

in the regulation of angiogenesis in the retina suggesting that redox signaling is actually 

strongly related to angiogenesis. These observations, together with our findings 

propose a deep investigation on redox balance and angiogenesis in respect to ASC 

and HRMVEC interaction. 

Our data in line with the published ones, suggest the following: 

 Increased ROS production related to hyperglycemia exposure may interfere 

with the redox balance necessary for the angiogenic processing, resulting in 

reduction of the total tube length in the BMA assays. 

 NAC as antioxidant may recover the angiogenic potential decreasing the total 

ROS content in the cell. 

 CM from either ASC monoculture or coculture may restore angiogenic 

dysfunction providing the proangiogenic factors VEGF, Ang-1/Ang-2 and/or 

FGF (especially the VEGF/VEGFR2 pathway activation may be involved).  

 CM may restore HRMVEC angiogenic dysfunction inducing a favorable redox 

balance potentially via mitochondrial transfer as the presence of mitochondrial 

containing vesicles in CM from ASC cannot be excluded.  

In summary, we showed that while ASC are not affected by hyperglycemia in 

phenotype and proangiogenic function, it induced vascular dysfunction in HRMVEC, 

accompanied by an increase in oxidative stress. The direct (angiogenesis coculture) 

and indirect (CM from monocultures or cocultures) presence of ASC as well as 

antioxidant treatment restored the HG-mediated angiogenic dysfunction. A number of 

different pathways related to both redox balance and growth factor-mediated induction 

of angiogenesis may be involved and should be investigated in following studies. 

 

All these evidences have to be carefully evaluated in the context of DR. Indeed, 

although ASC-mediated proangiogenic stimuli might be beneficial in early phases of 

DR to counteract early vasoregression, it might be highly detrimental if not accurately 

regulated/controlled. An overexpression of angiogenesis-related factors might open 

doors to diabetic vasoregression and even accelerate the progression to the 

proliferative stage. Indeed, recent data suggest that intravitreal ASC injection in a 

genetic animal model of DR worsened the pathological events [195]. These evidences 
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highlight the importance of deeper investigations on the role of ASC in the retinal 

microenvironment, with a focus on the long-term characterization of 

beneficial/dangerous trophic factors.  

  

5.3 Do ASC retain a pericyte-like phenotype in vitro under hyperglycemic 

culture? 

As an extension of the proangiogenic potential we 

investigated whether ASC could retain a pericyte-like 

phenotype in vitro under hyperglycemic culture. 

 

 

We finally investigated whether ASC could gain pericyte features in EC cocultures. 

Indeed, a variety of published studies showed that ASC acquired a pericyte-like 

location enwrapping EC and exerting vascular support, suggesting that ASC may 

undergo pericyte-like differentiation [196]. We detected α-SMA positive ASC wrapping 

around tubular structures of EC in cocultures. ASC in monolayer barely expressed a-

SMA. α-SMA positive ASC were found in coculture with HUVEC [151] and ASC 

localization on retinal vessel was demonstrated after their intravitreal injection in mice 

model of ROP [126], in STZ rats [124] and in a murine model of OIR [125]. Activin-A 

signaling has been shown to be involved in α-SMA expression in ASC:EC cocultures 

suggesting that EC may initiate a smooth muscle cell differentiation in adjacent ASC 

[197]. In HRMVPC: HRMVEC cocultures, however, HRMVPC did not express α-SMA 

as well as their monoculture. Although α-SMA is often reported as pericytes marker, 

its expression has been demonstrated being variable depending on developmental 

stage and location [159, 160]. Therefore, in contrast to ASC, the lack of α-SMA 

expression in HRMVPC could be related to the differentiation stage of pericytes and it 

is not induced by EC.      

We also evaluated NG-2 expression. As expected, NG-2 was highly expressed in 

HRMVPC mono- and cocultures. Surprisingly, ASC were constitutively positive for NG-

2 without any specific pattern related to endothelial cell vessels. NG-2 was mainly 

expressed at the cytoplasmic membrane delineating cell´s shape. We did not expected 

this pattern of expression since, during flow cytometry characterization, ASC were 

always negative for this marker (not shown). It is important to underline that NG-2 
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expression on pericytes is not always homogeneous and it seems to be related to the 

nature of microvascular vessels (arterioles and venules) [198]. 

Separate investigations in our laboratory (not shown here), further evaluated pericyte 

marker expression in cocultures, focusing on RGS-5 and PDGFRβ [120]. RGS-5 

(regulator of G-protein signaling) was defined as another pericyte marker, which 

expression varies upon pro/anti angiogenic stimuli [199]. Despite trying several 

different antibody clones, ASC resulted always negative in both monoculture and 

coculture. Similarly, PDGFRβ was also not detectable, even if ASC were found to be 

highly positive for this marker at flow cytometry (here not shown). We concluded that, 

despite the lack of complete overlap in terms of marker expression, as demonstrated 

by our and other results both in vitro and in vivo, ASC can acquire a pericyte-like 

phenotype when in contact with endothelial cells, supporting the formation and stability 

of vascular structures.  

 

The fact that ASC did express NG-2 and α-SMA pericyte markers in coculture was 

highly indicative in confirming their “pericyte potential”. However, the distinction 

between ASC and pericytes is still a matter of debate [200]. Retinal pericytes have 

been demonstrated to be fundamental in the stabilization and regulation of adult retina 

as well as responsive to angiogenic signals during developmental angiogenesis [119]. 

Their drop-out in DR is considered one of the first signs of the retinal vasoregression 

and degeneration, suggesting that their loss might represent a starting signal for the 

pathological proliferation [121]. Overall, these findings provided evidences on their 

important role as “stabilizer” of the endothelium rather than “promoter” of angiogenesis. 

We also observed this phenotype in our angiogenesis assays, where HRMVPC, being 

positive for NG-2 lacked any supportive proangiogenic activity. In contrast, ASC 

showed profound angiogenic support. In regard of this, we hypothesize that 

proangiogenic potential might represent a distinctive criterion to characterize these two 

cell type. We, at least, argue that the coculture angiogenic assay could be used as 

potency test to discriminate ASC/MSC and pericytes.  

 

With respect to the therapeutic concept, these finding are of utmost importance raising 

concerns about the potential risks of ASC therapy. Due to their angiogenic supportive 

activities, ASC application might represent a good preventive strategy in early DR to 

prevent vascular regression and obliteration. However, the proangiogenic potential 
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represents a concrete risk in later stages of DR and it might even promote and sustain 

the neovascularization.  

In summary, being in line with in vivo experiments, we demonstrated that ASC acquired 

pericyte-like phenotype in EC cocultures expressing α-SMA. Besides that, having 

demonstrated that HRMVPC did not support EC angiogenesis, we propose the 

coculture angiogenesis assay as a potency test to better discriminate ASC/MSC and 

pericytes.  

We auspicate in depth in vitro and in vivo analyses, to further characterize the 

differentiating potential of ASC towards the pericyte-like phenotype and to define 

functional efficacy of ASC-derived pericytes.   

 

5.4 Are ASC affected in their immunomodulatory potential upon HG exposure? 

As our fourth aim, we assessed hyperglycemia-

mediated effect on ASC immunomodulatory potential on 

T cell subtypes. Establishing ASCNG-HG:PBMC 

cocultures, we investigated ASC-mediated effects on (1) 

CD4 activation and proliferation, (2) Treg generation 

and (3) PBMC Th1/Th2 cytokine profile. To mimic a local (direct contact) and systemic 

(indirect contact) environment, experiments were set in direct and transwell cocultures 

respectively. In addition, resting and CD3/CD28-stimulated PBMC were used to mimic 

homeostatic and inflammatory conditions. 

 

As introduced earlier, ASC have been applied with differing success in models of DR. 

One aspect, which has not been addressed yet in these studies, is the effect on the 

immune system. In our opinion, the role of the immune response and its changes in 

presence of MSC, represents an intriguing topic even in DR. Because of retinal 

microvascular involvement as well as alteration/disruption of the BRB, we hypothesize 

that circulating immune cells might reach the vascular retina and modulate the local 

(para-) inflammation. Considering that after systemic MSC infusion, changes in the 

general skewing of immune response toward an anti-inflammatory milieu were 

observed, we can hypothesize that MSC-mediated anti-inflammatory immune cells 

might participate in the regulation of retinal vascular remodeling, even after local 

administration of MSC in the vascular retina. These aspects together, with recent 
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evidences on Treg involvement in DR [128] prompted us to investigate ASC:T cell 

interaction.  

 

 ASC and CD3/CD28-stimulated cocultures 

Suppression of T-lymphocyte proliferation induced by cellular/non-specific stimuli was 

one of the first mechanism of MSC-mediated immunomodulation to be provided [201]. 

To verify whether hyperglycemia might affect ASC in this capacity, we established 

coculture between ASCNG-HG and CD3/CD28-stimulated PBMC. We saw that ASCNG 

and ASCHG equally inhibited CD4 proliferation in either direct or transwell culture 

systems. In line with previous results on ASC refractory behavior towards 

hyperglycemia, we observed that HG did not affect ASC suppression capacity on 

stimulated T cells. To our knowledge, this is the first report having assessed glucose 

effects on ASC immunomodulatory potential.  

MSC-mediated effects on T cells have been shown to be dependent on several 

mechanisms, which involve secretion of cytokines and growth factors as well as nitric 

oxide (NO) production or increased activity of indoleamine-2,3-dioxygenase (IDO) 

[202]. IDO is a catabolic enzyme which converts tryptophan to kynurenine [161]. 

Increased IDO activity in MSC has been related to suppression of T cell proliferation 

in vitro, indicating that tryptophan deprivation is a key mechanism in inhibiting T cell 

proliferation [162]. Our findings documented this mechanism to be key for the anti-

proliferative effect as well. Kynurenine concentrations were similar in all cocultures and 

not detected in PBMC monoculture as well as in ASC monoculture. IDO levels were 

higher in direct than in transwell coculture for ASCNG-HG. As kynurenine levels were 

similar in all conditions we did not expect higher IDO levels in ASC from direct coculture 

than transwell. IDO induction was found to be dependent on IFN-γ stimulation [203], 

which is produced by stimulated PBMC. IFN-γ is a well-known and strong mediator of 

the immune response involved in both innate and adaptive immune responses [204]. 

The participation of IFN-γ in mediating the interaction between MSC and PBMC has 

been widely studied. Indeed, IFN-γ stimulated MSC displayed an enhanced 

immunosuppressive potential on T cells, often related to increased IDO expression 

[205]. To explain our observation, we speculate that the direct contact between ASC 

and PBMC might represent an additional or stronger activation stimulus, resulting in 

increased PBMC activation and IFN-γ production. IFN-γ levels have not been 

measured in this series of experiments, as previous findings documented rapid 



Discussion 

112 

induction of IFN-γ mRNA already after 3h of stimulation and IFN-γ protein expression 

to level up at 12-24 hours of stimulation (medical doctoral thesis P. Mattar). The ASC-

IDO-mediated mechanism of inhibition of PBMC proliferation was further confirmed in 

separate experiments in our laboratory through tryptophan addition and IDO inhibition 

via Epacadostat (Torres Crigna, manuscript in preparation). These experiments 

corroborated our results showing that addition of tryptophan to ASC:PBMC cocultures 

resulted in abrogation of ASC inhibitory functions. Similarly, Epacadostat, a known 

inhibitor of IDO, blocked its activity (but not its expression in ASC), promoting PBMC 

proliferation. 

 

Having confirmed the inhibitory potential of ASC on CD4 cells in stimulated PBMC, we 

zoomed into the CD4 T cell population investigating phenotypical changes related to 

activation (CD25+) and Treg induction (FoxP3+, CD127-). CD25 is defined as 

activation marker and its expression is highly induced in T cell upon CD3/CD28 

stimulation, moreover, as part of the IL-2R, it is a mediator of the IL-2/IL-2R signaling 

[163]. Surprisingly, we found that, despite T cell inhibition of proliferation, in presence 

of ASCNG-HG, CD25 expression on CD4 T cells was significantly increased in both 

transwell and direct coculture compared to PBMC monoculture. This result was 

apparently in contrast with findings in literature, where ASC were previously 

documented to reduce CD25 expression when cocultured with stimulated PBMC [206, 

207]. Moreover, addition of IL-2 to cocultures was able to abrogate MSC-mediated 

inhibitory effect on T cells [208]. Two main reasons could explain our different results. 

First, timing of the coculture; our cocultures lasted 7 days, while in all previously 

reported studies T cells analysis were performed after 48 or 72 hours. Second, IL-2 

addition; to guarantee T cell survival over 7 days we added exogenous IL-2 to 

cocultures. Indeed, previous experiments in our laboratory revealed that after 7 days 

of coculture without IL-2, PBMC survival was highly compromised and cells numbers 

were not enough to perform cell surface analysis with flow-cytometry. We are aware 

that IL-2 addition might influence our results, however we previously assured the ASC 

inhibitory effect to occur in presence and absence of IL-2 upon CD3/CD28 stimulation. 

The increasing CD25 expression might be also explained by an additional PBMC-

mediated IL-2 secretion due to CD3/CD28 stimulation.  

We observed an even stronger increase in CD4+CD25+ cells in the proliferating 

fraction of cocultures. Thus, despite the general suppression of CD4 cell proliferation, 
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a significant proliferation of CD4+CD25+ cells was taking place, in contrast to what 

was observed in the not stimulated cocultures. This may suggest that some activation 

and proliferation of CD4+CD25+ cells may occur in presence of ASC and may not be 

inhibited, but even potentially induced by ASC themselves. Possibly, it can be an 

allogeneic stimulation or potential innate responses triggered by e.g. dying cells and 

occurrence of danger-associated molecular patterns (DAMPs).  

  

MSC were reported to induce Treg generation in several studies. These Treg cells 

were functional in inhibiting T cell proliferation in a mixed lymphocyte reaction (MLR) 

[35, 83, 209]. We quantified Treg cells in mono- and coculture, defining them as 

CD4+CD25+FoxP3+CD127- cells [210]. Unexpectedly, we noticed that in the Live 

population, percentages of Treg fractions were similar in PBMC monoculture controls 

and ASCNG-HG cocultures. 

There are different possible explanations for this difference to previously published 

data:  

(1) Definition of Treg: previous reports, indicating an increase in Treg, used only 

CD4/CD25 as marker. We have previously discussed that we considered this 

as a sign of activation rather than indicative of a regulatory phenotype. 

(2)  Mode of stimulation [211-213]. 

(3) Timing of coculture. We cannot exclude Treg generation at earlier time point in 

our coculture, speculating that they might undergo apoptosis or lose FoxP3 

expression after 7 days. A reduction of FoxP3 expression was indeed 

documented after 5 days in coculture with MSC [87].  

(4) Presence of IL-2. 

  

Finally, zooming in the VPD- fraction corroborated our previous observation of not 

changed Treg numbers observed in the general Live population. While in direct 

cultures, the amount of Treg was similar in ASCNG-HG coculture and PBMC 

monoculture, in transwell we found that Treg proportions were significantly reduced in 

ASCNG-HG coculture compared to PBMC. In addition, Treg were even reduced in 

comparison to direct coculture. Because of these findings, we hypothesized that the 

lack of direct cell-to-cell contact between ASC and PBMC might reduce the survival of 

naïve (naturally occurring) Treg. No differences were detected in the Treg VPD+ 

fraction. 
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To sum up this part, we observed that ASC exerted a strong anti-proliferative effect on 

CD4 cells; a fraction of these, however, became activated being marked by CD25 

expression and proliferating. Treg numbers remained unchanged in direct coculture, 

but were reduced in transwell cultures. IDO was identified as key inhibitor of CD4 T 

cell proliferation. 

 

The screening of Th1/Th2 cytokines revealed that all analyzed cytokines were reduced 

in coculture compared to PBMC monoculture. Significant reduction was found in IL-13, 

IL-5, IL-10 and TNF-α concentrations. Thus, not only pro-inflammatory cytokines (TNF-

alpha, IL-17a, IL-17f and IL-22) but also anti-inflammatory ones (IL-13, IL-5, IL-10, IL-

9) were reduced in coculture. These data partially fit to the overall suppression of CD4 

T cell proliferation. Indeed, the ASC-mediated inhibition of CD4 T cells proliferation 

observed in cocultures might correlate with the reduction of pro-inflammatory 

cytokines. On the other hand, the reduction of anti-inflammatory factors might be 

related to the absence of Treg induction, resulting in an overall decrease of pro/anti-

inflammatory factors. Once again, it has to be taken into account that we analyzed a 

single time point after 7 days and thus, we cannot speculate about expression kinetics. 

Indeed, ASC were often reported to induce increased IL-10 expression in T cells after 

few days of coculture [71, 83].  Further, the CD3/CD28-mediated stimulation and IL-2 

have to be taken into account in the evaluation of these outcomes and comparison to 

literature.  

The screening of Th1/Th2 cytokines in cocultures was not indicative of any T cell 

polarization suggesting that these events may occur at earlier time points [35, 73]. Our 

data underline the importance of a time-monitoring study on MSC:PBMC interaction, 

which might help in a better understanding of kinetics in T cell polarization and Treg 

induction. 

 

Globally our findings on ASC and stimulated PBMC cocultures demonstrated that: 

 ASC were not affected by hyperglycemia; 

 ASC-mediated suppression of CD4 T cell proliferation occurred in both 

transwell and direct coculture denoting the central role of IDO-kynurenine axis; 

 CD4+CD25+ cells were induced in coculture and actively proliferated despite 

the overall inhibition of CD4 T cell proliferation; 

 No Treg induction as well as proliferation was detected in cocultures; 
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 Screening of Th1/Th2 cytokines did not suggest any T cell polarization, 

resulting in an overall reduction of all cytokines/growth factors tested.  

 Direct and transwell coculture behaved almost identically in all tested 

parameters. 

 

 ASC and resting PBMC coculture 

In the previous chapter, we focused on the analysis of stimulated cocultures. As 

controls, non-stimulated cultures were always run in parallel. The analysis of these 

data provided highly interesting results. As expected, CD4 cells within resting PBMC 

did not proliferate and the division index did not change in ASCNG-HG cocultures. 

Surprisingly, we denoted a slight but significant increase in CD4 proliferation in PBMC 

monoculture transwell compared to the direct control. We hypothesized that this 

difference was mainly related to the culture condition per se. Indeed, the culture 

surface of a transwell insert (4.5 cm2) is reduced compared to a well of a 6-well plate 

(9.6 cm2) and this might affect PBMC in terms of media availability and cell 

concentration/ml and cm2 (even if the final volume of media in the well was the same 

in direct and transwell cultures). Moreover, transwell inserts and well plate differed in 

terms of material as they were made of polyethylene terephthalate (PET) and 

polystyrol, respectively. For these reasons we cannot exclude that PBMC in transwell 

might have been subject to slight auto-stimulation, causing an increased division index. 

Importantly, the auto-stimulation observed in transwell controls was slightly diminished 

in ASCNG-HG cocultures denoting somehow an inhibitory effect exerted by ASC. 

Similarly, Cuerquis and colleagues demonstrated that resting PBMC were not affected 

by MSC in terms of suppression of proliferation, but that MSC induced a slight 

activation of them (increased CD69 expression) in the first days of cocultures 

concluding that “..MSCs support a modest activation of initially resting PBMCs rather 

than a primary stimulatory full immune response followed with an inhibitory response.” 

[214]. However, our and other results are openly in contrast with the study from Crop 

and colleagues [215]. They observed that ASC, despite the lack of expression of HLA-

class I and co-stimulatory molecules, did actually promote expansion and proliferation 

of T cells in resting PBMC, suggesting that ASC induced an allogeneic response, like 

in a mixed lymphocyte reaction. These same cells underwent accelerated proliferation 

when cultured without ASC, but once cultured again in presence of ASC their 
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proliferation was almost abrogated [215]. Although this study confirmed the 

immunosuppressive capacity of ASC as well as their Treg induction, it indicated that 

under certain conditions ASC might promote and activate T cells. As coculture 

conditions were extremely similar to ours, we hypothesize that these contrasting 

results might be attributed to (1) the use of IL-2, which might provide in our case a 

stabilizing factor for PBMC survival when cocultured with ASC and (2) the source of 

ASC. In fact, while our ASC were isolated from lipoaspirate, the one used by Crop and 

colleagues were obtained from perirenal adipose tissue of living kidney donors. The 

well-known functional differences between diverse sources of MSC [216] as well as 

the peculiarity of perirenal fat pads [217] might be the reason of these opposing 

outcomes. 

 

IDO expression in ASCNG-HG from cocultures was very low, more than halved compared 

to ASCNG-HG in cocultures with activated PBMC. Again, no IDO was detected in ASC 

and PBMC monocultures. This indicated that, despite the low ASC inhibitory function 

suggested by low IDO levels, the slight degree of activation of PBMC, especially in the 

transwell, was inducing a minimal increase in the expression of IDO in ASC. As, IDO 

induction has been found to be associated to secretion of IL-6 [218] and considering 

that very high level of IL-6 were found in coculture supernatants (not shown, because 

out of scale), we could also postulate that IL-6 might have mediated IDO induction. 

Yet, evidences of high IL-6 levels concomitant to IDO expression in ASC was provided 

[215]. Notably, IDO expression in ASCNG from transwell cocultures was considerably 

higher than in ASCNG from direct cocultures, most probably reflecting the low levels of 

PBMC auto-stimulation that we found in transwell cocultures. In line with that, 

kynurenine levels were significantly lower compared to stimulated cocultures and again 

no differences were found between all conditions tested. 

 

As the previous data from ASC: stimulated-PBMC cocultures suggested that coculture 

induced CD25 expression in CD4 T cells, we expected to find here similar outcomes 

with a reduced extent. However, we saw that there was no difference between 

CD4+CD25+ fractions among all conditions and the percentage of activated CD4 was 

overall the same. The amount of CD4+CD25+ cells was reduced almost of one quarter 

in contrast to CD4+CD25+ cells in stimulated cocultures. This reduction was uniformly 

observed in coculture as well as in PBMC monoculture. Of note, the portion of 
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CD4+CD25+ in transwell PBMC monoculture was slightly higher than the one in direct 

monoculture, mirroring again a possible effect of auto-stimulation. Low degree of 

activation in PBMC monoculture as well as low IDO/kynurenine levels were related to 

the lack of inhibitory effects, being in line with the hypothesis about the requirement of 

pro-inflammatory stimuli (or priming factors) to induce MSC-mediated 

immunosuppression [219, 220]. Moreover, as mentioned in the previous chapter, the 

lack of CD3/CD28 stimulation might reduce IL-2 additional secretion from PBMC, 

resulting in an overall reduction of CD25 induction. In addition, we observed that in 

absence of stimulation, CD25 expression was not induced in PBMC monoculture 

neither in coculture with ASC, being in line with some results proposed by Le Blanc 

and colleagues [221]. However, in the same study, a significant reduction on CD25 

expression is reported in stimulated cocultures [221], which is in contrast to our 

previous finings. Conflicting evidences are reported in another paper where 

CD3/CD28-activated lymphocytes did not changed CD25 expression upon cocultures 

[222]. These evidences suggest that CD25 expression on CD4 T cells might correlate 

not only with the CD3/CD28-mediated PBMC stimulation but also with the presence of 

ASC. The dual interpretation of CD25 expression on T cell as activation marker and/or 

Treg marker [223] is still generating confusing outcomes, highlighting the need of more 

detailed studies on kinetic changes in CD25 expression with/without stimulation and 

MSC.    

CD4+CD25+ cells were then assessed for their FoxP3 expression to evaluate a 

potential induction of Treg in ASC:not-stimulated PBMC cocultures. Overall, the 

proportion of Treg were significantly increased in comparison to PBMC:stimulated 

PBMC cocultures. Resting PBMC monoculture had more Treg than stimulated PBMC 

and in not-stimulated setting cocultures promoted Treg proliferation. Similar outcomes 

were reported in resting cocultures of induced pluripotent stem cells MSC (iPSC-MSC) 

and PBMC where the percentage of FoxP3+CD4+ cells significantly increased in 

cocultures. Moreover, iPSC-MSC were found to cause an higher increase in FoxP3 

mRNA levels in CD4 cells than BM-MSC did [224].  

 

Overall, these results indicated that ASC were able to induce Treg expansion and 

proliferation in coculture with resting PBMC. As our investigation focused on the 

phenotypic characterization of CD4 T cells dissecting differences between proliferated 

and non-proliferated ones, we did not have enough Treg to functionally test whether 
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they exerted immunoregulatory functions. This was further hampered by the fact that 

we used FoxP3 for Treg characterization. FoxP3 is an intracellular marker, which 

detection is necessarily related to cell death. Despite several trials in using alternative 

markers (CD127, CD69, CD73, CD39) in order to select and sort Treg from our 

cocultures, we were not able to find a suitable candidate. However, as our outcomes 

reproduced findings provided also by others [82-84] not only in terms of cells (CD4 T 

cell inhibition and Treg induction) but also in terms of cytokine secretion (see below), 

we can reasonably infer that the Treg induced in our study would be functional in 

suppressing T cell proliferation. 

 

Also for the resting condition, we analyzed the supernatant screening Th1/Th2 

cytokines. The overall levels of Th1/Th2 cytokines (IL-5, IL-9, IL-10, IL-13, IL-17a, IL-

17f, IL-22, TNF-α) were low compared to the ones in stimulated cultures in both PBMC 

monoculture and cocultures. However, also this screening confirmed that ASC 

cocultures, even in a resting condition and with no obvious CD4 inhibition, exerted a 

general suppressive effect in cytokines secretion. As discussed in previous 

paragraphs, our investigation on immunomodulatory cytokines might have a timing 

limitation suggesting that ASC-mediated effect of PBMC might be extended only few 

days after the beginning of the coculture.  

Having observed that coculture induced the expansion and proliferation of the Treg 

fraction, being indicative of an anti-inflammatory microenvironment, we further checked 

the coculture supernatant for IL-4, IFN-γ and CCL-18 concentrations. 

In our assays, we did not find differences between IL-4 in PBMC monoculture and in 

coculture, confirming the lack of any Th polarization. Indeed, IL-4 is produced by the 

subset Th2 of T cells in response to T receptor stimulation [225] and deregulation of 

its pathway has been linked to allergic diseases such as asthma [226]. MSC have been 

reported to favor the skewing of T cell response towards anti-inflammatory Th2 in an 

animal model of allergic encephalomyelitis and even in NOD mice [227, 228]. However, 

contrasting evidences from Kavanagh and colleagues, reported a suppression of 

allergen specific Th2 in a mouse model of airway inflammation denoted by inhibition of 

IL-4 production and reduction of eosinophil infiltration [229].  

INF-γ was produced in both PBMC monoculture as well as in ASC cocultures but in a 

lower extent. The presence of IFN-γ in resting PBMC monoculture might be explained 

as the results of an auto-stimulation of PBMC for the long lasting culture. Importantly, 
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IFN-γ detected in coculture correlated with the low but increased level of IDO in 

cocultured ASC. Moreover, the reduction of IFN-γ in coculture in comparison to PBMC 

monoculture, could be an indication of immunosuppressive potential of ASC even in 

coculture with resting PBMC. 

Inspired by findings provided by Melief and colleagues we also checked the presence 

of CCL-18 in coculture supernatants. Indeed, they reported CCL-18 being produced 

by monocytes as sign of MSC-mediated skewing of monocytes towards the anti-

inflammatory type 2 [83, 230]. Moreover, as reported by other studies, the presence of 

CCL-18 as well as monocytes in PBMC:MSC coculture was fundamental for the 

generation of Treg [83, 231]. In line with these results, we found remarkably high levels 

of CCL-18 in cocultures, while it was almost absent in PBMC monocultures. This was 

indicative at least of an anti-inflammatory switch of monocytes, whose survival in the 

culture was probably sustained by ASC. In addition, the high concentration of CCL-18 

correlated with the observed increased of Treg in coculture.  

Also TGF-β is reported being one of the main soluble factors involved in Treg induction 

[164] and several paper documented this central role in ASC:PBMC cocultures [36, 82, 

83]. Therefore, we compared TGF-β concentrations in stimulated and not stimulated, 

direct and transwell cocultures. Despite a low basal TGF-β level in ASC, our data 

showed a remarkable high concentration of TGF-β in direct non-stimulated coculture 

compared to transwell and its direct stimulated counterpart. These findings supported 

the Treg proliferation observed in resting direct coculture. However, we did not expect 

to find low and similar TGF-β levels in resting transwell coculture and stimulated ones. 

We hypothesized this being related to the auto-stimulation we observed in the resting 

transwell coculture. Overall, TGF-β quantification in supernatants of coculture 

demonstrated to be in line with the previous results and its high concentration in resting 

coculture denoted its involvement in Treg generation.   

 

In conclusion, our data demonstrated that ASC were able to induce Treg proliferation 

and expansion when cocultured with resting PBMC. In parallel, ASC did not support 

activation of resting PBMC as demonstrated by the general low level of Th1/Th2 

cytokines in coculture supernatant. Even if IL-10 was not increased in coculture, the 

reduction of IFN-γ together with a substantial increase of CCL-18 (and the general low 

level of Th1/Th2 cytokines) and TGF-β were indicative of an anti-inflammatory/pro-

Treg microenvironment induced by ASC. Comparing our findings to the literature, we 
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identified the timing of the coculture as an important limiting factor for the evaluation of 

MSC-mediated effects on polarization of Th subsets.  

 

In the last part of our study on the immunosuppressive capacity of ASC, we evaluated 

potential “long-term” effect of ASC on PBMC, asking whether ASC might “prime” PBMC 

in term of Treg induction and changing in their cytokine profile. No differences were 

found in the CD4+CD25+ fractions of control PBMC and ex-coculture PBMC, indicating 

that both resting and ex-coculture PBMC did not undergo activation. Surprisingly, we 

found a prominent reduction in Treg from ex-coculture PBMC in comparison with 

controls. These results displayed that, despite a previous Treg induction at day 7 and 

the provision of IL-2 in the culture medium, Treg did not survive and expand further. 

These outcomes were partially in contrast with previous reports, which accounted Treg 

proliferation as well as an increased inhibitory potential of these population [83, 215]. 

As a very prominent indicator of Treg induction and functionality, we found markedly 

high concentrations of IL-10 and CCL-18 in ex-coculture PBMC, exceeding values 

measured after 7 days. A similar concomitant production of Treg and monocyte-

derived IL-10 and CCL-18 was also reported by Melief et al. [83]. There were no 

changes in IL-4 concentrations, suggesting that no skewing towards Th2 phenotype in 

both conditions occurred. IFN-γ and TNF-α were considerably increased ex-coculture 

PBMC. The presence of these cytokines, traditionally coming from CD8 T cells and NK 

cells, was unexpected at these high levels. However, as separate experiments in our 

lab denoted an increase in NK cells after 1 week of coculture, we might postulate an 

expansion of CD8 and NK cells in the second week of cultures producing high level of 

these cytokines. 

 

In summary, the analysis on ASC:resting PBMC cocultures showed that: 

 ASC did not affect resting PBMC in terms of inhibition of proliferation and 

activation; 

 Cocultures induced Treg expansion in both transwell and direct cultures; 

 Cocultures caused a general reduction in secretion of Th1/Th2 cytokines 

without any specific polarization of Th subsets; 

 CCL-18 and TGF-β were highly concentrated in cocultures denoting (a) the 

participation of monocytes in driving Treg induction as well as (b) ASC-

dependent TGF-β secretion as reported by Melief et al [83]; 
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 Cocultures induced prolonged changes in PBMC cytokine profile towards an 

anti-inflammatory phenotypes with high secretion of IL-10 and CCL-18. 

However, concomitant high concentrations of IFN-γ and TNF-α might indicate 

an expansion of CD8 and NK cells.  

 

In conclusion, our data demonstrated the immunomodulatory potential of ASC being 

strictly dependent on the activation state of PBMC. This is in line with the hypothesis 

about the requirement of priming factors to induce MSC-mediated immunosuppression 

[219, 220]. These assumptions have to be taken into consideration in the development 

of MSC-mediated therapies together with the specific diseased context. In the case of 

DR, our data support the concept that an early MSC treatment would be preferred to 

increase circulating Treg which might act in the retina. Importantly, this has been 

documented in an animal model of OIR [128]. These promising findings still need to be 

fully elucidate especially in vivo. Further investigations on Treg involvement in MSC-

mediated therapy for DR will take place.    
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6 SUMMARY 

Hyperglycemia and poor glycemic controls are two marked features of metabolic 

disorders, such as diabetes or metabolic syndrome. Patients affect by these 

pathologies often develop secondary complications, which involve the vascular 

system. Besides macrovascular complications at the expense of the cardiovascular 

system, microvascular disorders can seriously affect quality and, in some cases, 

duration of life. This is the case of diabetic complications such as DR, diabetic 

nephropathy and diabetic neuropathy. Hyperglycemia represents a connection point 

between all these secondary complications since high glucose has been identified as 

one of the causes mediating cell damage. Through years, clear evidences on 

hyperglycemia-mediated cell damage have been produced, leading to the elaboration 

of the “unifying hypothesis”. Here, glucose-mediated cell damage is explained as the 

result of a deleterious increase of oxidative stress in cells, which induces cell 

dysfunction and death. This mechanism has been demonstrated in several cell types 

from endothelial to neuronal cells, however, some aspects of hyperglycemia-mediated 

cell damages still need to be elucidated. This is the case of the cell/stem cell-mediated 

therapeutic approach. 

The application of cell/stem cell-mediated therapies in diabetes and diabetic 

complications already gave some positive outcomes. In particular, MSC-mediated 

therapies demonstrated to be safe and efficient. Thanks to their trophic, differentiation 

and immunomodulatory potential MSC promoted reconstitution of β-cell islets in the 

pancreas, wound healing in diabetic foot and an overall reduction of inflammation. 

However, the majority of studies used an allogenic approach proposing the application 

of MSC from healthy donors. Indeed, MSC from diabetic donors often revealed to be 

impaired by the disease which caused reduction of their potency and even affecting 

their survival. In this context, specific investigations focused on possible effects of 

diabetes/hyperglycemia on MSC are lacking.  

Our study proposes an investigation of possible hyperglycemia-mediated effects on 

ASC through in vitro experiments. In particular, we assessed effects of hyperglycemia 

on (1) cellular phenotype, (2) ASC proangiogenic potential, (3) ASC pericyte-like 

function and (4) immunomodulatory potential. 
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Overall, we observed that hyperglycemia did not affect any of the evaluated aspects. 

Indeed, ASC demonstrated as strong refractory behavior towards HG exposure 

resulting only in a transient increase of intracellular oxidative stress. This was 

corroborated by observing that, when exposed to HG, ASC reduced glucose uptake. 

On the contrary, HRMVEC appeared sensitive to HG and glucose uptake resulted to 

be not only GLUT-1 dependent. In HRMVEC, hyperglycemia increased the level of 

oxidative stress and affected the angiogenic potential suggesting a possible 

connection between the two aspects.  

ASC proangiogenic potential was not affected by glucose and ASC sustained 

HRMVEC angiogenesis giving structural support and secreting proangiogenic growth 

factors. Moreover, conditioned media form ASC monoculture and ASC:HRMVEC 

cocultures reproduced the effect of antioxidant application on HG treated HRMVEC, 

rescuing their angiogenic potential. This observation not only confirmed the 

proangiogenic potential of ASC but also indicated a possible antioxidant effect exerted 

by ASC. 

ASC pericyte-like function was detected being unaffected by HG. α-SMA positive ASC 

clearly wrapped around tubular structures reminding pericytes in normal physiology. In 

contrast to ASC, pericytes did not support the angiogenesis of EC, confirming their role 

in supporting homeostasis in the vascular department. Importantly, because of the still 

ongoing discrepancies in distinguishing MSC from pericytes, this finding indicates that 

the coculture angiogenesis assay might be used as a potency assay to functionally 

discriminate the two cell types. 

Finally, we found that glucose did not affect the immunomodulatory potential of ASC, 

which was evaluated in terms of (1) inhibition of CD4 proliferation, (2) induction of 

CD25 expression and Treg and (3) production of immunomodulatory cytokines. 

Actually, the major discriminant in the outcomes of the experiments was represented 

by the presence of CD3/CD28-stimulated or not stimulated (resting) PBMC. In 

simulated cocultures, ASC strongly inhibited CD4 proliferation via IDO-kynurenine. 

Despite this, cocultures strongly enlarged the CD4+CD25+ positive fractions, 

promoting CD4 activation but not Treg expansion. Cytokines analysis showed and 

overall cytokines reduction in cocultures compared to PBMC monocultures but did not 

reveal specific polarization towards specific Th subsets.                              

In resting cocultures, IDO and kynurenine were also measured at low levels but ASC-

inhibiting effect of CD4 was not detectable. Here, CD4+CD25+ were even reduced 
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compared to the control. Although, Treg highly proliferated in cocultures. Cytokines 

analysis was similar to the stimulated coculture having overall general lower 

concentrations. Having observed Treg formation in this condition, we further analyzed 

CCL-18, IL-4, INF-γ and TGF-β to eventually confirm the anti-inflammatory skewing of 

CD4. No distinction between IL-4 and INF-γ were found and CCL-18 resulted to be 

highly produced in cocultures, suggesting the involvement of monocytes in Treg 

induction. Also TGF-β, which is produced by ASC and drive Treg induction, was 

detected in high concentration in resting direct coculture confirming Treg proliferation. 

Contrarily, low TGF-β levels were detected in stimulated cocultures. Further, 

cocultures induced a long-term priming of PBMC, which after 14 days in culture 

secreted high levels of IL-10, TNF-α, IFN-γ and CCL-18. The analysis of the 

immunomodulatory potential of ASC confirmed ASC-mediated immunosuppression on 

activated PBMC and ASC-mediated Treg induction, highlighting how much the 

activation/resting condition of PBMC might be determinant in affecting the direction of 

the ASC-mediated immune response. 

 

In relation to DR and the eventual application of MSC-based cell therapy our study 

provides the important evidence that hyperglycemia does not affect ASC in their basic 

characteristics, proangiogenic and immunomodulatory potential. However, some 

separate considerations have to be done for MSC from diabetic patients. It is worth to 

mention that several papers described impaired therapeutic capacity of diabetic-MSC, 

especially in terms of reduced angiogenic potential and secretion of angiogenic factors 

[145, 148, 232]. Dysfunction of diabetic-MSC were observed in proliferation, 

mitochondrial activity, signaling pathway and secretome profile [144, 233, 234]. We 

also had the chance to perform some experiments with diabetic ASC, but the restricted 

number of samples limited us in collecting significant amount of data. In our hand, 

these ASC were not different from healthy ASC in terms of growth rate and 

immunophenotype but their differentiation potential to adipogenic lineages was 

reduced. Notably, their proangiogenic potential in coculture angiogenesis assays 

resulted slightly reduced in comparison to healthy ASC, while the immunosuppressive 

function on CD4 proliferation as well as Treg induction was not changed. From these 

assumptions, we hypothesize that diabetic-MSC might indeed have alterations in some 

of their functions, which are not mediated exclusively by hyperglycemia, as it is 

reported by our experiments. 



Summary 

125 

Our data on the proangiogenic function of ASC suggest a careful evaluation of ASC 

application in the context of DR. Indeed, proangiogenic stimuli might be beneficial in 

the early phases of the disease to prevent vasoregression and even to replace 

pericytes. However, a prolonged proangiogenic stimuli might cause highly detrimental 

effects if not accurately regulated/controlled, promoting hyperproliferation of retinal 

vessels and accelerating the progression to the proliferative stage. This highlights the 

importance of deeper investigations on the role of ASC in the retinal microenvironment, 

with a focus on the long-term characterization of beneficial/dangerous trophic factors. 

In addition to the proangiogenic potential, we hypothesize that ASC may retain a ROS 

scavenging potential, acting as a second potential mechanisms to rescue damaged 

endothelial cells. As the redox signaling has been demonstrated to be involved in the 

regulation of angiogenic processes, we propose ASC-ROS scavenging potential as a 

new aspect to be further investigated in the modulation of retinal dysfunction. 

Lastly, having demonstrated the strong immunomodulatory effect of ASC in vitro and 

because of the recent publication on Treg involvement in the retina, we auspicate that 

in vivo experimentations may clarify and characterize this mechanism, which may 

represent a real novelty in DR treatment.         
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8 APPENDIX 

8.1 Generation of fluorescent cells 

 Plasmids  

 

 
 
 

Figure 40 Plasmid maps. A) GFP plasmid; dTomato plasmid has the same backbone with dTomato gene replacing 

GFP ; B) pCMVDR8.91; C) pMD.G plasmid. 
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 Enzymatic restriction 

 
 

Figure 41 Representative agarose gel loaded with enzymatically restricted plasmids: a) pCMVDR8.91 Mix 1; b) 

pCMVDR8.91 Mix 2; c) pMD.G Mix 1; d) pMD.G Mix 2; e) dTomato; f) GFP. 
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 Sort gating strategy 

 
Figure 42 Representative gating strategy to sort fluorescent cells. HUVEC were first morphologically selected on 

the SSC and FSC. Viable cells were then gated and further selected after duplets discrimination. Then GFP positive 

HUVEC (green population) were gated and sorted.  
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