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Zusammenfassung

Schon bei der Herleitung der Relativitätstheorie nutzte Einstein Erkenntnisse über die Maxwellsche Elek-
trodynamik. Dies deutet auf die tiefe Verbindung, die zwischen Materie und Gravitation besteht. Diese
führt sogar noch weiter als aus der Relativitätstheorie bekannt. In dieser Arbeit wird ein Verfahren
vorgestellt, das es erlaubt, Gravitationstheorien aus gegebenen Materiemodellen herzuleiten. Diese kon-
struktive Methode kann für jede Materietheorie auf jeder tensoriellen Hintergrundstruktur angewendet
werden, solange die Materiedynamik drei grundlegende physikalische Bedingungen erfüllt. Das zentrale
Element dieser Herleitung ist die Lösung eines abzählbaren Systems von linearen partiellen Differen-
tialgleichungen, den Abschlussgleichungen. Die Lösung dieser Abschlussgleichungen ist das Wirkungs-
funktional der Gravitationstheorie. In der Praxis ist es jedoch sehr schwer, allgemeine Lösungen dieses
Systems zu konstruieren. Man kann dies allerdings vereinfachen, indem man Raumzeit-Symmetrien
bereits bei der Lösung der Abschlussgleichungen ausnutzt. Dies führt direkt zu den symmetrie-reduzierten
Feldgleichungen. Ausgehend vom Standardmodell der Teilchenphysik erhält man so als Lösung der Ab-
schlussgleichungen unter Benutzung kosmologischer Symmetrien direkt die Friedmann-Gleichungen.
Die Einstein-Gleichungen müssen dafür nicht bekannt sein. Als zweites Fallbeispiel wird eine Verallge-
meinerung Maxwellscher Elektrodynamik betrachtet und die zugehörigen verallgemeinerten Friedmann-
Gleichungen werden hergeleitet. Diese Arbeit beschränkt sich in ihren Anwendungen auf kosmologische
Symmetrien. Die Methoden lassen sich allerdings auch auf andere Raumzeitsymmetrien übertragen.

Abstract

Already Einstein used insights from Maxwell theory in order to develop the theory of relativity. This
connection between matter and gravity theories is a lot deeper than it first seems. This thesis shows a
constructive method to derive the gravitational dynamics from prescribed matter dynamics. It can be ap-
plied to any matter theory on any tensorial background if the matter dynamics satisfy three basic physical
conditions. The heart of this mechanism are the gravitational closure equations, a countable set of partial
differential equations, whose solution determines the gravitational action functional. Practically, it can
be very difficult to find general solutions to the closure equations. A significant simplification can be
achieved by exploiting spacetime symmetries during the solution of the closure equations. This allows
a direct derivation of the symmetry-reduced field equations. This thesis demonstrates explicitly how the
standard model of particle physics and cosmological symmetries give rise to the Friedmann equations
without knowledge of the Einstein equations. Additionally, the cosmological dynamics of general lin-
ear electrodynamics are constructed. The result demonstrates how a refined theory of electromagnetism
generalises the Friedmann equations. While this thesis considers cosmological symmetries, the methods
presented here can be applied to any other spacetime symmetry.
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Chapter 1

Introduction

It was Maxwell electrodynamics and the Maxwell equations which inspired Einstein to develop the the-
ory of special and later, general relativity [1, 2]. This demonstrates the deep connection between matter
and gravity theories. This connection is even deeper than it seems in this particular example of Maxwell-
Einstein theory. Indeed, it is the central result of the constructive gravity program that gravitational dy-
namics can and hence have to be calculated from prescribed matter dynamics by requiring the common
canonical evolution of both theories. This construction of gravitational dynamics is said to gravitation-
ally close the matter theory. It can be applied to any matter theory on any geometric background if the
matter dynamics satisfy three basic physical conditions.

Technically, it is the solution of a countable set of partial differential equations, the gravitational
closure equations, which gives rise to the gravitational Lagrangian. The three coefficient functions of
this system of differential equations arise from the matter field equations by straightforward algebraic
calculations [3]. See Fig. 1.1 for an illustration.

S matter
closure

equations
S gravity

field
equations

calculate solve vary

Figure 1.1: Structure of the constructive gravity program starting from a prescribed matter action. From
there, the gravitational closure are set up and from their solution, the gravitational action is constructed.

This insight has two important consequences. First, it is clear that there can be no one-size-fits-all
gravity theory which exists independent from all phenomenological and theoretical knowledge or new
discoveries about the matter inhabiting the Universe. Secondly, it diminishes the role of gravity theories
to a mere consistency condition as the information about the gravitational dynamics is already contained
in the matter field dynamics. It just needs to be extracted from those by setting up and solving the
gravitational closure equations.

In practice, this extraction – the solution of the gravitational closure equations – can still be a difficult
task, often so difficult that one cannot find a general solution.

This thesis demonstrates that a significant simplification be achieved by exploiting spacetime symme-
tries already at the level of the gravitational closure equations. By doing so, one obtains the symmetry-
reduced gravitational Lagrangian from which the symmetric field equations follow by variation. This
symmetry reduction can be applied for any matter theory which satisfies the three basic conditions of the
constructive gravity program. Besides, any spacetime symmetry can be chosen for which an insertion
into the action is interchangeable with an insertion into the field equations. More precisely, the terms and
conditions [4] of symmetric criticality [5] have to be met. For the example cosmological symmetries, the
structure of the symmetry reduction is displayed in Fig. 1.2 where the thick arrows represent the new,
direct way to the Friedmann equations or their refinement for other matter models.

The greatest simplification can be achieved by choosing the (spatially) maximal symmetry of cos-
mology – spatial homogeneity and isotropy, also called FLRW symmetries. If one chooses to test the
closure mechanism with standard model matter, the exploitation of the FLRW symmetries directly yields
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Figure 1.2: Structure of the a cosmological symmetry reduction of the constructive gravity program. The
thin arrows represent the paths usually taken towards cosmological field equations. For all of them, a
general solution to the closure equation is required. The new, direct way is illustrated by thick arrows and
requires a solution to the simplified, symmetry-reduced closure equations. Diagram inspired by Ref. [6].

the Friedmann equations as the solution to the closure equations [7]. The Einstein equations – the full
gravitational field equations in this case – were not needed.

While there is an infinity of matter models beyond the standard model, it seems reasonable to study
models with only slight generalizations. Restricting oneself to the electromagnetic sector, such a mini-
mal generalization is general linear electrodynamics. This theory of electrodynamics is the most general
one that still features linear field equations and that possesses an action. In contrast to Maxwell theory,
the electromagnetic sector of the standard model, birefringence of light in vacuum is possible. Tech-
nically, these additional effects can be traced back to the refined spacetime geometry which is now a
fourth rank tensor field and no longer a metric. The dynamics for this fourth rank geometry determine
if, where and how strong the birefringence occurs. These gravitational dynamics need to be determined
from the closure equations. A general solution for them seems out of reach as the closure equations are
too involved. By exploiting cosmological symmetries in the closure equations, one derives the refined
Friedmann equations behind general linear electrodynamics.

The thesis is structured as follows. It has two big parts. The first one, Chapter 2, deals with the general
theory of the gravitational closure of matter field equations. The second part is constituted by the Chap-
ters 3 – 6. It demonstrates applications to the two aforementioned matter models and the development of
the symmetry reduction.

In Chapter 2, a detailed introduction to the constructive gravity program will be given. As already
mentioned, the starting point is a prescribed matter action together with a tensorial background geome-
try G. The key quantity determining the causality of the matter field equations is the principal polynomial
which is read off from the corresponding matter field equations. Section 2.1 deals with the imposition
of the three matter conditions which need to be satisfied for the matter dynamics giving rise to complete
spacetime kinematics. These cover the dispersion of both massless and massive (point) particles and
notion of observer frames.

It is the requirement of common canonical evolution of initial data which turns out to be so strong
that it determines the gravitational dynamics via the closure equations. Thus, the geometry on the data
surfaces is made dynamical. Section 2.2 reviews the foliation of spacetime into three-dimensional data
surfaces and defines the canonical geometry for any arbitrary tensorial geometry G. One then identifies
the actual dynamical geomtric degrees of freedom by introducing generalized tensor field components
which parametrize the canonical geometry. This removes practical problems of previous work [8, 9] if
the separation of the lapse function and shift vector field in the spacetime foliation imposes non-linear
constraints on the canonical geometry.

Section 2.3 demonstrates the setup of the canonical phase space by promoting the generalized tensor
field components of the canonical geometry to configuration fields. By imposing two embedding prop-
erties on the theory, one arrives at the central object of the following derivation, the constraint algebra.
From there, one generalizes the ideas of Kuchar et al. [10, 11] on how to exploit the constraint algebra in
order to derive the corresponding gravitational dynamics. This is done by casting the functional differ-
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ential equations of the constraint algebra into a set of linear partial differential equations for gravitational
Lagrangian, the gravitational closure equations, in Section 2.4. It is then Section 2.5 of Chapter 2 which
recovers the gravitational spacetime action from the solution of the gravitational closure equations. The
techniques developed in this chapter will be put to use in the following.

The indispensable test case for the constructive gravity is the standard model of particle physics (or
any subsector thereof) as the resulting gravitational action is already known to be the Einstein-Hilbert
action. As already shown in previous work [8, 9, 12], the Einstein-Hilbert action is indeed the solution of
the gravitational closure equations. These proofs were however made using mostly the ideas originally
developed by Kuchar et al. [10, 11]. This thesis demonstrates that the Einstein-Hilbert action can actually
be constructed without these techniques by just using the closure equations in their newly developed
formulation using the actual geometric degrees of freedom. This is the central result of Chapter 3.

After showing a general solution of the closure equations, the actual goal of this thesis, the symmetry
reduction, is developed in Chapter 4. Again, starting from the standard model, imposition of FLRW
symmetries onto the gravitational closure equations gives rise directly to the Friedmann equations of
cosmology.

These case studies provide valuable insights into the foundations of the constructive gravity program,
the solution of the closure equations and the simplifications achieved by the symmetry reduction. This
will be put to good use in the two following chapters. As already mentioned before, this thesis chooses
to deal with general linear electrodynamics as a matter model of interest which is beyond the standard
model. Instead of a metric, it is a fourth rank tensor field which now serves as the background geometry.
As general linear electrodynamics satisfies the three matter conditions [13], the constructive gravity
program can and hence has to be used to determine the dynamics of this refined geometry. Calculating
the three coefficient functions entering the closure equations in Chapter 5, it becomes clear that these
will be very involved. A general solution for them seems to be out of reach to the present date.

Here, the symmetry reduction developed in this thesis proves to be the only way to derive the re-
finement of Friedmann equations stemming from general linear electrodynamics. In Chapter 6, the
symmetry reduction of the metric spacetime is generalized to the refined geometry of general linear
electrodynamics. But even after applying the maximal cosmological symmetry, the resulting symmetry-
reduced closure equations are more involved and a solution is more difficult to obtain. By developing
additional solution techniques whose detailed character is deferred to Chapter 6, the refined Friedmann
equations will be obtained.

The thesis closes with a brief summary in Chapter 7 and a discussion of topics which follow from
this thesis.
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Chapter 2

Gravitational closure of matter field
equations

The first part of this thesis is dedicated to the foundations of the constructive gravity program. Its start-
ing point is a prescribed matter action containing tensorial matter fields A and in general, a collection of
tensor fields G serving as the background geometry. The matter action depends locally1 on the matter
fields and ultralocally2 on the geometry. Thus, the matter action only determines the dynamics of the
matter fields by variation. If the matter theory satisfies three basic physical conditions, the matter con-
ditions, the dynamics of the background geometry can also be extracted from the matter action using
the constructive gravity program. For theories satisfying the three matter conditions, Section 2.1 shows
how these matter theories determine the spacetime kinematics. These kinematics also contain the identi-
fication of three-dimensional initial value hypersurfaces of the four-dimensional spacetime. Section 2.2
demonstrates how the spacetime geometry induces a geometry on these hypersurfaces. The canonical
geometry is then made dynamical in order to find the gravitational dynamics in Section 2.3. Two em-
bedding properties are required for the gravitational theory which guarantee spacetime diffeomorphism
invariance. This input is everything one needs to derive the gravitational closure equations in Section 2.4.
While the entire construction is based on the canonical dynamics, there is a straightforward way to cast
the canonical description back to a spacetime formulation. The central result of Section 2.5 is to write
down a spacetime action using directly the solution of the closure equations. These results are also im-
portant for the symmetry reductions developed in later chapters. This result as well as the new techniques
to identify the actual degrees of freedom of the canonical geometry present the significant innovations
and advantages of this work compared to previous ones, such as Ref. [8, 9].

The results presented in this chapter have already been published as
M. Düll, F. P. Schuller, N. Stritzelberger and F. Wolz,

Phys. Rev. D97 (2018), 084036,
whose chapters II, III and IV are presented here.

2.1 Spacetime kinematics

This section reviews the steps from the matter field equations to the full kinematics of a tensorial space-
time. The essential object is the principal polynomial density P̃ which is constructed from the matter
field equations. Subsequently, three matter conditions are imposed which can be understood as neces-
sary conditions in order for the matter theory being canonically quantizable. This physically reasonable
assumption already allows to define massless momenta, observer wordlines and an observer-independent
split of momenta into those of positive and negative energy. The kinematical setup of spacetime is then

1that is, up to finite derivative order
2that is, up to zeroth derivative order
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completed by a choice of a suitable de-densitization in order to form the principal polynomial tensor
field P which gives rise to definitions of massive particles and observer frames.

Massless dispersion relations

In order to keep notation compact, the following construction assumes that there is only one matter field A
and one spacetime geometry tensor field G. As laid out in Ref. [3], the entire construction automatically
generalises to finite sets of matter and geometry fields.

The starting point of the constructive gravity program is a suitable scalar matter action S matter[Φ; G)
for a tensorial matter field Φ on a smooth, four-dimensional manifold M. Such a matter action also
contains a tensor field G of a priori arbitrary valence such that the Lagrangian L is a scalar density of
weight one. By variation with respect to the matter fields Φ, the matter field equations

δS matter

δΦ(x)
= 0 ,

are obtained which are tensor density equations of weight one. It proves useful to assume the matter
field equations to be linear in the matter field A in order to keep the derivation compact. This means that
any solution Φ to the field equations can be scaled to arbitrary small values εΦ by a small factor ε > 0
so that the source tensor density δS matter

δG(x) later appearing on the right hand side of the gravitational field
equations can be scaled down to correspondingly small values. In other words, the back-reaction of the
matter fields onto the spacetime geometry can be made arbitrarily small, just as expected for test matter
particles.

By varying the matter action and potentially making implicit information such as integrability con-
ditions explicit [14], the matter field equations can be written as

Qi1...iF
AB

(G(x))
(
∂i1 . . . ∂iF AB

)
(x) + terms of lower derivative order in A = 0 ,

where the indicesA,B = 1 . . .R label a basis of some R-dimensional GL(4)-representation under which
the components of the matter fields transform.

The left hand side of the equation is a tensor density of weight one by construction although only
partial derivatives appear in this equation. The highest order coefficient Qi1...iF

AB
(G(x)) is a tensor density

of weight one. Corresponding correction terms under a coordinate change appear in lower derivative
order terms which are thus not tensorial ones.

If possible gauge ambiguities are fixed by choosing a certain gauge, the principal polynomial den-
sity P̃(k) can be read off as

P̃(k) = ρ̃ det
A,B

(
Qi1...iF
AB

(G(x)) ki1(x) . . . kiF (x)
)

for some covector k. The density factor ρ can be choosen freely in order to make P̃ actually a density of
weight one which is not guaranteed by the determinant itself.

Inspect the following two simple examples for matter theories, Klein-Gordon theory and Maxwell
electrodynamics, which share the same principal polynomial density P̃. The construction differs slightly
as Maxwell theory is a gauge theory.

Klein-Gordon theory The most simplest example of a matter field theory is Klein-Gordon theory
operating with one scalar field on a metric background. From the Klein-Gordon action3

S KG[φ; g) =

∫
d4x

√
− det g

(
1
2

gab (∂aφ) (∂bφ) + m2φ2
)
,

3The notation S [φ; g) denotes that S depends locally on the field φ, that is on φ and its derivatives, while it depends on g
ultra-locally, that is only on g itself, but not on its derivatives.
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variation with respect to the scalar field φ yield the field equations

0 =
√
−g gab ∂2

abφ + ∂a(
√
−ggab) ∂bφ − m2 √−g φ .

The first term is already the one with the highest derivative order of the scalar field φ. The principal
polynomial density can be read off directly,

P̃(k) =
√
−g gabkakb

which is already by construction a density of weight one. In general, reading off the principal polynomial
density will require more effort. Already if a gauge ambiguity is present, one will have to perform extra
steps as the following example of Maxwell electrodynamics demonstrates.

Maxwell electrodynamics Another prominent example of a matter theory is free Maxwell electrody-
namics with a metric serving as the spacetime geometry. Starting point is the Maxwell action

S Maxwell[A; g) = −
1
4

∫
d4x
√
−g gacgbdFabFcd

with the field strength F = dA. Besides adding the identity dF = 0 to the field equations, variation of the
Maxwell action yields the field equations

0 = ∂a
(√
−g gacgbdFcd

)
. (2.1)

Sorting this out and using the definition of the field strength, one would read off that the principal poly-
nomial density P̃ vanishes. This is caused by ignoring the gauge ambiguity of the theory. In order to fix
this, one chooses a certain gauge. Here, the choice of Ref. [12] is adopted,

0 = ∂a
(√
−g gabAb

)
.

The field equations (2.1) are now

0 =
√
−g gabgcd ∂2

abAc + lower derivative order in A .

As sketched in Ref. [12], the principal polynomial density P̃ is constructed as

P̃(k) = (det g) det
c,d

(
√
−g gcd gab ka kb) =

(√
−g gab ka kb

)4

The prescription for constructing the principal polynomial density requires to remove repeated fac-
tors [13, 15]. Thus, one ends up at the second rank principal polynomial density

P̃(k) =
√
−g gabkakb

just as expected from the previous result of Klein-Gordon theory. This result transfers to the entire stan-
dard model of particle physics which has precisely this second degree principal polynomial density [14].
Thus, it is admissible to study any subsector of the standard model in order to determine the gravitational
dynamics behind it as all subsectors share the exact same geometric and causal structure. The result-
ing gravitational dynamics are the ones known from general relativity as recovered by Chapter 3 of this
thesis.

Reading off the principal polynomial density by choosing a gauge is a very specific method which
can hardly be generalized to refined matter theories. A more general approach of finding the principal
polynomial density respecting the gauge ambiguities involves the infinite frequency limit of modes of
the prescribed test matter dynamics which is physically indistinguishable from massless modes. Using a
WKB expansion and a generalization of an argument first given by Itin [16], one finds a general recipe
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for deriving P̃. As the topic of constructing principal polynomial densities from matter field equations is
not relevant for the practical purposes of this thesis, please refer to Ref. [3] for more details on this.

The roots of the principal polynomial density determine the dispersion of massless particles which
satisfy

P̃(k) = 0 .

As this equation is only concerned with the roots of the principal polynomial density, its density char-
acter is not relevant. This will be different in the following. Thus, the principal polynomial density P̃
is cast into the principal tensor field P by choosing an everywhere non-vanishing density factor ρ of
opposite weight. This density factor is constructed purely from the geometry G itself and not of any of
its derivatives. The choice of ρ only affects the definition of massive point particles, but has no influence
on any field-theoretic considerations or the massless point particles which are governed only by P̃.

The principal polynomial P(k) is the central quantity determining the spactime kinematics in the
following. The three matter conditions are actually conditions on the principal polynomial.

Matter conditions

The principal tensor field P constructed from the matter field equations has to satisfy three matter condi-
tions which actually are two hyperbolicity and one energy condition. It is important to note that the three
matter conditions are purely classical. They are necessary criteria for the matter theory to be canonically
quantizable.

First matter condition: Predictivity

The first technical requirement is the hyperbolicity of the principal polynomial P(x) at every point x ∈ M
which physically means that there is a well-posed initial value problem for the classical matter theory.
For the polynomial P being hyperbolic, there has to be a covector h ∈ T ∗x M such that P(h)(x) , 0 and
the equation P(q + λh)(x) = 0 has only real solutions λ ∈ R for any further covector q ∈ T ∗x M. If such
a covector h exists, there will be an open and convex cone Cx(P, h) containing all hyperbolic covectors
lying in one connected set with h.

Practically important is the case of reducible polynomials, that is, the polynomial P can be written
as a finite product

P(x) = P1(x) P2(x) . . . P f (x) ,

of lower order polynomials. The polynomial P(x) is hyperbolic if and only if each of the lower order
polynomials is hyperbolic. The corresponding hyperbolicity cone C(x) is given by the intersection of the
hyperbolicity cones of the lower order polynomials,

C(P, h) = C1(P1, h) ∩C2(P2, h) ∩ · · · ∩C f (P f , h) .

This shows that removing repeated factors in the principal polynomial does not result in a loss of infor-
mation concerning the hyperbolicity cone. As Ref. [15] points out, removing repeated factors is a crucial
and necessary technical requirements for the constructions to follow. From here on, it is thus assumed
that all repeated factors have been removed from the principal tensor P.

For an illustration of different examples of hyperbolicity cones, see Fig. 2.1.

Second matter condition: Momentum-velocity duality

The second technical requirement is the hyperbolicity of the dual polynomial P#. It is defined as

P#(x) : TxM → R

P#(x) := P#
1(x) P#

2(x) . . . P#
f (x) ,

8



(a) (b) (c)

Figure 2.1: Three examples for hyperbolicity cones of polynomials; (a) for a hyperbolic polynomial of
second degree, (b) for a hyperbolic, reducible one of fourth degree and (c) for a non-hyperbolic fourth
degree polynomial for which there is no hyperbolicity cone. Figure designed by Florian Wolz, taken
from Ref. [3].

with P#
1(x), . . . , P#

f (x) being polynomial maps TxM → R of minimal degree such that for all covectors k
in the set

Nsmooth
i :=

{
k ∈ T ∗x M|Pi(x, k) = 0 and

∂Pi

∂k
(x, k) , 0

}
,

the gradients ∂Pi
∂k ∈ TxM are the roots of the dual polynomials P#

i ; that is,

P#
i

(
x,
∂Pi

∂k
(x, k)

)
= 0 ∀k ∈ Nsmooth

i .

This definition does not fully determine the dual polynomial, but leaves a real factor function open. The
roots of the dual polynomial and with it, the hyperbolicity, are unaffected by this ambiguity. The hyper-
bolicity of the principal polynomial P guarantees the existence of its dual P# while P# is not necessarily
hyperbolic [15]. Requiring P# to be hyperbolic as well can be understood as a sufficient condition for P
to be recoverable from its dual P# as a double dual,

P(x) ∼ P##(x) .

The dual principal polynomial can be interpreted using the characteristic curves x : R→ M of the initial
matter field equation; these are stationary curves of the Hamiltonian action

S [k, x; ρ) :=
∫

dλ
[
ka(λ) ẋa(λ) − ρ(λ) P(x(λ), k(λ))

]
.

This Hamiltonian action can be rewritten in Lagrangian form as

S [x; µ) :=
∫

dλ µ(λ) P#(x(λ), ẋ(λ))

for any hyperbolic principal polynomial P [15]. Thus, hyperbolicity4 of both P and P# ensures the way
back and forth from the Hamiltonian to the Lagrangian description of characteristic curves – physically
speaking, the trajectories of massless particles. Correspondingly, there is – up to scale – a momentum
associated to velocity of a massless particle and vice versa if the principal polynomial P is bi-hyperbolic.

4If both P and P# are hyperbolic, it will be said that the prinicipal polynomial is bi-hyperbolic for the remainder of this
thesis.
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Third matter condition: Energy distinction

The first and second matter condition provided the motivation for the bi-hyperbolicity of the principal
polynomial P. A missing piece in the construction is the physical meaning of the hyperbolicity cones
of P and P#. This is subject to the third matter condition. As the starting point, recall that momenta of
massless particles satisfy P(x, k) = 0. In order to divide the set of all massless momenta in those of either
positive or negative energy in an observer-independent way, one needs to find the largest possible set of
local observers that still agree on this split. More precisely, one wants to find the open set Ox in each
tangent space TxM such that for any particular non-trivial massless momentum k, one has either k ∈ O+

x
or k ∈ −O+

x ; the dual cone
O+

x :=
{
q ∈ T ∗x M|U(q) > 0 ∀U ∈ Ox

}
implements the observer-dependent positive energy condition when intersected with the set of all non-
vanishing massless momenta. Formally, the cone Nx of massless momenta at every spacetime point is
required to decompose into disjoint sets N+

x and N−x ,

Nx\{0} = N+
x ∪̇N−x , (2.2)

where the two subsets N±x are defined as the intersections of Nx with ±O+
x ,

N±x := Nx ∩
(
±O+

x
)
.

It is thus question what the largest cone Ox is that can be chosen. If the condition (2.2) is satisfied, any
one of the hyperbolicity cones of P# will provide the largest cone Ox which reduces the choice to the
finite set of hyperbolicity cones of P# at each point x of the spacetime manifold. A smooth choice of the
cone Ox through spacetime is then provided by a smooth vector field T that is everywhere hyperbolic
with respect to the dual polynomial P# such that there is a smooth distribution of future-directed observer
cones Ox = Cx(P#,T ). For an illustration, see Fig. 2.2.

O+
x

(a)

Ox

(b)

Figure 2.2: (a) Positive energy cone O+
x as the dual of the (b) observer cone Ox. The positive energy

cone covers all momenta unanimously judged as positive by all observes. The observer cone contains all
tangent vectors to observer wordlines at one point. Figure designed by Florian Wolz, taken from Ref. [3].

These three matter conditions up to now only exploit the roots of the prinicipal polynomial P and its
dual P# at each spacetime point. Also the hyperbolicity and observer cones are defined entirely in terms
of the roots of P and P# although all tangent vectors in the observer cone Ox are not roots of P#. The
following section deals with the completion of the spacetime kinematics. First, the dispersion relation
for massive particles is implemented. Secondly, the so called Legendre map is defined in order to define
local observer frames.

10



Dispersion relation for massive particles

Recognize that for bi-hyperbolic principal polynomial, a smooth choice of hyperbolicity cones in cotan-
gent space corresponds to the smooth choice of observer cones Ox on each tangent space. This cone is
called cone Cx of positive energy massive particles satisfying Cx ⊆ O⊥x . Already in Ref. [17], it has been
shown that hyperbolicity cones are open convex cones whose boundary is null with respect to the under-
lying polynomial while the interior has constant sign. Since up to now, only the roots of the polynomial
have been used in the construction, the sign of the polynomial in the interior of the hyperbolicity can be
chosen freely and in the course of this construction, it is set to

P(x,Cx) > 0 ∀ x ∈ M .

With this choice at hand, the mass m > 0 of a momentum q ∈ Cx is defined by

P(x, q) = mdeg P .

Note that in this definition, the density ρ(x) that makes the functional density P̃ into a function plays
a role for the first time in the construction of spacetime kinematics. For examples of a quadric and a
quartic mass shell, see Fig. 2.3.

(a)

(b)

Figure 2.3: Two examples of positive energy mass shells; (a) Quadric mass shell of a prinicpal polyno-
mial of second degree and (b) quartic mass shell of a fourth degree polynomial; both satisfy the three
matter conditions. Figure designed by Florian Wolz, taken from Ref. [3].

In analogy to the dispersion relation for massless particles, the one for massive particles is written as
a constraint in a Hamiltonian formulation as

S massive[x, q; µ) =

∫
dλ

[
qa(λ) ẋa(λ) − µ(λ) ln P(x(λ),m−1 q(λ))

]
.

The momentum q can be eliminated from this by virtue of the Legendre map

`x : Cx → TxM ,

`x(q) :=
1

deg P
∂ ln P
∂q

(x, q) (2.3)

at each point x of the spacetime manifold M. The inverse Legendre map `−1
x : `x(Cx)→ Cx exists due to

the bi-hyperbolicity of P. Thus, the Lagrangian for the trajectory x of a massive particle of mass m can
be written as

S massive[x] =

∫
dλm

[
P∗(x(λ), ẋ(λ))

] 1
deg P (2.4)
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with the (non-polynomial) map P∗ defined as

P∗(x) : `x(Cx)→ R ,

P∗(x, v) := P(x, `−1
x (v))−1 .

The massive point particle action (2.4) is invariant under strictly monotonously increasing reparametriza-
tions of the trajectory. This is the final piece of information that is needed for the construction of local
observer frames; the parametrizations with

P∗(x(λ), ẋ(λ)) = 1

are distinguished as they correspond to trajectories with massive particle momenta

q(λ) = m ẋ(λ)

proportional to their velocity with the proportionality factor given by the particle’s rest mass. Defining
proper time with such parameters, the observer wordlines are defined by the two requirements

ẋ(λ) ∈ Ox(λ) and P∗(x(λ), ẋ(λ)) = 1 .

One identifies the purely spatial directions S (λ) ⊂ Tx(λ)M seen by an observer as

`x(λ) (ẋ(λ)) (S (λ)) = 0 .

To sum up, the three matter conditions presented in this section have a physical motivation. They are
necessary criteria for the matter theory to be canonically quantizable although all constructions made here
are purely classical. This physically very reasonable assumption of possessing a quantum theory already
proves to be sufficient to define local observer frames which are compatible with the original matter
dynamics. This physical motivation tops off the mathematical character of the three matter conditions.

The dispersion relations for both massless and massive particles as well as the definition of local
observer frames are the important ingredients for the full spacetime kinematics which were extracted
purely from the prescribed matter field equations. In the following construction of the gravitational
dynamics, the Legendre map `x will be the essential piece of information carried over from the matter
field dynamics.

2.2 Canonical geometry

The spacetime kinematics constructed from the prescribed matter theory are now used to foliate the
spacetime manifold into three-dimensional initial data surfaces. The spacetime geometry induces a ge-
ometry on these hypersurfaces. Normal and tangential deformation operators evolve data between the
single leaves of the foliation. Calculating the commutation relations between them provides the hyper-
surface deformation algebra for any spacetime triplet (M,G, P) satisfying the three matter conditions
imposed in the previous section.

In order to make the geometry on the leaves the dynamical object, the canonical geometry is intro-
duced which mimics the induced geometry. The canonical geometry is potentially subject to non-linear
constraints. In contrast to previous work such as Ref. [8], new techniques have been developed in order
to capture such non-linear constraints automatically. One can then proceed to set up a canonical phase
space and derive the gravitational dynamics.

Foliation of spacetime

Foliating spacetime into leaves of initial data hypersurfaces and subsequently inducing a canonical
geometry is a standard technique in general relativity. It is straightforward to extend this to space-
times (M,G, P) carrying canonically quantizable matter field dynamics. The only significant innovation
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is the projection of spacetime geometry tensor fields G of arbitrary valence to initial data surfaces. How
this is done will be shown in the following when also the usual foliation techniques will be reviewed.

Let Xt : Σ ↪→ M be a one-parameter family of maps embedding a three-dimensional manifold Σ such
that the four-dimensional manifold M is foliated into hypersurfaces Xt(Σ) with everywhere hyperbolic
co-normal ε0(t, σ) for σ ∈ Σ. Choosing coordinates yα on Σ, there is a one-parameter family of spacetime
vectors

e0(t, σ) := `Xt(σ)
(
ε0(t, σ)

)
, eα(t, σ) := Xt∗

((
∂

∂yα

)
σ

)
for t ∈ R and σ ∈ Σ. Of course, the choice of a hyperbolic co-normal ε0 is not unique but scales with an
arbitrary factor. In order to make the choice unique, the co-normal is required to satisfy the normalization
condition

P(Xt(σ), ε0(t, σ)) = 1 .

Due to the construction of e0 using the Legendre map `, there is also the annihilation condition

P(X(t), εα(t, σ), ε0(t, σ), . . . , ε0(t, σ)) = 0

which together with the normalization condition imposes possibly nonlinear constraints on the geometry
induced on the leaves of the foliation. While the induced geometry satisfies these constraints by con-
struction, the constraints will have to be imposed by hand to the to be constructed canonical geometry.

The set of vectors {e0(t, σ), . . . , e3(t, σ)} constitutes the orthogonal projection frame along each em-
bedded hypersurface Xt(Σ). Together with the unique dual frame

{
ε0(t, σ), . . . , ε3(t, σ)

}
, spacetime ten-

sors of arbitrary valence can be projected to the hypersurface Σ.
In the following, such projections will be performed for the spacetime tangent vector field Ẋt con-

structed from the family of embedding maps, the spacetime geometry G and the principal polynomial P.
The manifold Σ can be thought of as a ”cinema screen“ on which the evolution of the four-dimensional
spacetime is shown as a movie as the foliation parameter t evolves.

First, consider the spacetime tangent vector field Ẋt. It is the tangent vector field to the congruence
of spacetime curves corresponding to a point σ ∈ Σ that does not move on Σ under evolution of t. Its
projection to Σ gives rise to two one-parameter families of fields, the induced lapse and shift fields

n(t) := ε0(t)
(
Ẋt

)
and nα(t) := εα(t)

(
Ẋt

)
.

One of the most important intermediate steps towards setting up the gravitational closure equations for
any admissible spacetime (M,G, P) is the projection of the spacetime geometry G to the hypersurface Σ

and obtaining several one-parameter families of tensors on Σ. Practically, one obtains these components
by inserting either the frame field ea(t, σ) into a slot of G that requires a vector or the dual field εa(t, σ)
into those slots that require a covector. Consider the following example.

Projecting components of a metric Consider a metric tensor Gab for which one completely ignores
any symmetries and just has a (2, 0)-tensor field. One identifies the components

g00 := G(ε0, ε0) ,

g0α := G(ε0, εα) ,

gα0 := G(εα, ε0) ,

gαβ := G(εα, εβ) .

These are the 16 components of the induced geometry on Σ. Before setting up the canonical geometry,
one needs to implement the constraints arising from the normalization and annihilation condition as well
as the linear symmetry constraints as the spacetime metric Gab is a symmetric (2, 0)-tensor field. This
will be performed in the next step.
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After projecting the spacetime geometry, the last quantity to be projected to Σ is the principal ten-
sor P. This results in deg P + 1 many tensor fields

pα1...αi(t, σ) := P
(
X(t, σ), εα1(t, σ), . . . , εαi(t, σ), ε0(t, σ), . . . , ε0(t, σ)

)
for i = 0, . . . , deg P. Due to the total symmetry of P in its indices, one can use this much simpler index
notation for the components p. Normalization and annihilation condition translate to p(t, σ) = 1 and
pα(t, σ) = 0. As an important remark, note that all projected components g and p are not only tensor
fields on Σ, but also functionals of the embedding map Xt which will become technically important in
the next step.

Hypersurface deformation algebra

In order to obtain the central quantity of this section, the hypersurface deformation algebra, consider the
functional differential operators,

Ht(n) :=
∫
Σ

d3z n(z) ea
0(t, z)

δ

δXa
t (z)

,

Dt(~n) :=
∫
Σ

d3z nα(z) ea
α(t, z)

δ

δXa
t (z)

for arbitrary test functions n and ~n on Σ. The operators act on functionals of the embedding map Xt :
Σ ↪→ M. By identifying n := n and ~n := ~n, the operators get their geometric interpretation as normal and
tangential deformation operators. Note that the only piece of kinematical information is the Legendre
map `x appearing in the definition of the frame vector e0.

As the deformation operators Ht and Dt are vector fields over the infinite-dimensional manifold
of embeddings Emb(Σ,M), the Lie brackets of the operators can be calculated. These constitute the
hypersurface deformation algebra

[Ht(n),Ht(m)] = −Dt
(
(deg P − 1) pαβt (m∂βn − n∂βm)∂α

)
, (2.5)[

Dt(~n),Ht(m)
]

= −Ht (L~nm) , (2.6)[
Dt(~n),Dt(~m)

]
= −Dt

(
L~n~m

)
. (2.7)

Note that the only piece of kinematical information contained in the deformation algebra is the compo-
nent pαβt of the principal polynomial in the first algebra relation. This is already precisely the step in
which the matter field equations directly inject information into the gravitational dynamics.

From a mathematical point of view, it is important to note that the above Lie brackets fail to close
with only structure constants, but instead require structure functions. This technical detail has some com-
plicating implications, most prominently that one cannot simply represent the deformation algebra as a
Lie algebra of functionals of some geometric phase space variables without making further requirements
as shown later.

Canonical geometry

Up to now, the spacetime geometry was considered as given and the induced geometry on the leaves of
the foliation as the derived and thus secondary quantity. Switching to the canonical point of view, the
geometry on the leaves of the foliation is promoted to the primary quantity and the spacetime geometry
is reconstructed from it. This change of perspective results in the fact that four generically non-linear
constraints that the induced geometry satisfies by construction must now be reinstated for the canonical
geometry.

Let gAt be the induced geometry from the spacetime geometry G by virtue of a foliation Xt : Σ ↪→ M
and let nt and ~nt be the induced lapse and shift fields. Now, introduce gA(t), n(t) and ~n(t) as new,
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independent one-parameter families of tensor fields on Σ capturing the tensor structure of the induced
geometry tensor fields. As already mentioned, the induced geometry satisfies constraints imposed by the
normalization and annihilation condition. These constraints are in general non-linear and range beyond
the mere valence of the tensor fields gA. The valence, however, is the only information carried over to the
fields gA. Besides setting up these constraints, also all quantities built from the induced geometry have
to be introduced as quantities built from gA. Among them are the components pα1...αi of the principal
tensor P which now have the same index structure pα1...αi and are now functions of gA in the same way
as the pα1...αi were of gA.

Reinstating the normalization condition p(g)(t) = 1 and annihilation condition pα(g)(t) = 0 results in
four – generically non-linear – conditions on the canonical geometry gA which remove four degrees of
freedom from gA. These non-linear constraints can be covered by introducing a suitable parametrization
of gA in terms of configuration fields determining the actual geometric degrees of freedom in the next
subsection. Similarly, any algebraic symmetries of the spacetime geometry G is automatically passed
on to the induced geometry gA and has to be reinstated for the canonical geometry gA as well. These
constraints are however linear and homogeneous conditions for a suitable projector Π,(

δA
B
− ΠAB

)
gB = 0 .

These additional constraints can usually be implemented without extra effort alongside the generically
non-linear ones from the normalization and annihilation conditions.

Parametrization of the canonical geometry

The generically non-linear constraints on the canonical geometry stemming from the normalization and
annihilation condition yield conditions that cannot be implemented by simply cutting away tensor field
components among the gA while keeping others. The situation is similar to the one of a particle in
Euclidean space constrained to the submanifold of a circle. One cannot simply cut away a coordinate,
but one has to respect a non-linear constraint in both coordinates. The conceptually and technically most
suitable solution in classical mechanics is the introduction of generalized coordinates.

The same idea applies here. Introduce exactly as many configuration fields ϕ1, . . . , ϕF as needed in
order to bijectively parametrize the field components gA of the canonical geometry. These configura-
tion fields satisfy normalization and annihilation condition and algebraic symmetries inherited from the
spacetime geometry by construction. Technically, this requires to choose a suitable F-dimensional mani-
fold Φ and smooth maps ĝA : Φ→ R such that any canonical geometry gA generated by ĝA(ϕ1, . . . , ϕF)
satisfies

p(ĝ(ϕ(t, σ))) = 1 ,

pα(ĝ(ϕ(t, σ))) = 0 ,(
δA
B
− ΠAB

)
ĝB(ϕ(t, σ)) = 0

for any σ ∈ Σ and t in the range of the foliation parameter. If one single map ĝA does not suffice to cover
the required range, the usual chart transition constructions can be invoked. Note that the total number F
of configuration variables is the total number of all gA minus one from the normalization condition,
minus three from the annihilation condition and minus the dimension of the eigenspace Eig1(Π) of the
projector Π.

The following example demonstrates the just described procedure. Consider a metric spacetime(
M,Gmetric,G−1

metric

)
. There are 16 components of the spacetime metric. There are F = 16− 1− 3− 6 = 6

configuration field variables which can be written as a not further constrained metric tensor on the three-
dimensional manifold Σ as all constraints are linear in this example.

The bijective parametrization requires that there are not only the maps ĝ(ϕ), but also the inverse
maps ϕ̂A. They take any collection gA – even if symmetry conditions and constraints are not met – to a
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real number. The concetanation of both maps satisfies(
ϕ̂A ◦ ĝ

)
(ϕ) = ϕA for A = 1 . . . F .

The opposite composition (ĝA ◦ ϕ̂) projects any set of gA – even if the latter does not satisfy symmetry
conditions or the constraints from normalization and annihilation conditions – to a set that does.

The parametrization maps ĝ and ϕ̂ need to be determined once during the setup of the theory. Addi-
tionally, also the two derivative maps

∂ϕ̂A

∂gA
(ĝ(ϕ)) and

∂ĝA

∂ϕA (ϕ)

appear at various stages of the setup as intertwiners between the components of the canonical geometry
– labelled by hypersurface indices collected in A – and the configuration fields, labelled by indices A.
Using the just described features of the parametrization maps ĝ and ϕ̂, the following identities hold,

∂ϕ̂A

∂gA
(ĝ(ϕ))

∂ĝA

∂ϕB (ϕ) = δA
B ,

∂ĝA

∂ϕA (ϕ)
∂ϕ̂A

∂gB
(ĝ(ϕ)) = TAB .

The left hand side of the second equation defines the right hand side T and one easily checks that it is a
projector.

Introducing the canonical geometry and the configuration fields parametrizing the latter provides
the preliminary stage for determining the associated canonical gravitational dynamics. They can be
constructed by promoting the configuration fields to the configuration variables of a suitable geometric
phase space. The setup of the geometric phase space and the subsequent way to the gravitational closure
equations is presented in the following section.

2.3 Canonical gravitational dynamics

The central element of the canonical gravitational dynamics is the geometric phase space on which
the dynamics are running. In the previous section, the configuration fields ϕA were introduced as the
actual degrees of freedom of the canonical geometry. The configuration fields ϕA are now promoted to
configuration variables of a phase space. The phase space structure is completed by adjoining canonically
conjugate momentum fields πA with respect to the field-theoretical Poisson bracket which is defined as

{F,G} :=
∫
Σ

d3z
(
δF

δϕA(z)
δG

δπA(z)
−

δG
δϕA(z)

δF
δπA(z)

)

for any two functionals F[ϕ, π] and G[ϕ, π] of the canonical configuration variables ϕA and the canonical
momenta πA. Of course, there is an ambiguity in the choice of the associated momenta πA and the Poisson
bracket should be invariant under such ambiguities as well as under changes of coordinates on Σ. Check
Ref. [3] for the associated proof.

Of course, the canonical gravitational dynamics using the configuration fields ϕ have to match the
entire spacetime geometry G. In order to guarantee this, one has to define two phase space functionals
whose action on the configuration variables mimic the action of the normal and tangential deformation
operators defined in section 2.2 on the projected geometry. One then imposes two embedding properties
on these functionals in order to give them the correct spacetime interpretation.

16



First embedding property: Phase space avatars of deformation operators

Define the two functionals

H(n) :=
∫
Σ

d3z n(z)H[ϕ(z), π(z)]

D(~n) :=
∫
Σ

d3z nα(z)Dα[ϕ(z), π(z)]

in terms of local functionals H and Dα of the geometric phase space variables. These local functionals
evolve the canonical data between leaves of a given spacetime foliation in the same manner as the defor-
mation operators Ht(n) and Dt(~n) do when applied to the induced geometry on the leaves. As a technical
expression, this requirement reads

Ht(n) gAt
!
= −

{
H(n), gA

}
, (2.8)

Dt(~n) gAt
!
= −

{
D(~n), gA

}
, (2.9)

where the equal signs are to be understood as that the right hand side is the same function of the canonical
geometry gA as the left hand side is of the induced geometry gA. As a direct consequence of this
requirement, the Poisson algebra

{H(n),H(m)} = D
(
(deg P − 1) pαβ (m ∂βn − n ∂βm) ∂α

)
, (2.10){

D(~n),H(m)
}

= H (L~nm) , (2.11){
D(~n),D(~m)

}
= D

(
L~n~m

)
(2.12)

guarantees that there is no inconsistency with the hypersurface deformation algebra (2.5) – (2.7). The two
requirements (2.8) and (2.9) and the three Poisson algebra relations (2.10) – (2.12) are the central quan-
tities for the derivation of the gravitational closure equations which is shown in the following section.
Before that, a second embedding property has to be established in order to determine the Hamiltonian
describing the canonical gravitational dynamics in terms of the two functionalsH andD.

Second embedding property: Spacetime diffeomorphism invariance

The second embedding property requires the resulting gravitational theory to be invariant under space-
time diffeomorphisms, meaning that the evolution of initial data between two fixed Cauchy surfaces is
independent of the intermediate foliation. Generalising the arguments given in Ref. [10] implies that the
Hamiltonian is of totally constrained form

H[ϕ, π; n, ~n) = H(n) +D(~n)

The two functionals H and D are referred to as the superhamiltonian and supermomentum constraints.
Due to the constraint algebra (2.10) – (2.12) closing, the Hamiltonian density H does not give rise to
further constraints and does not contain any more terms thanH andD.

This means that the entire information about the canonical gravitational dynamics is already con-
tained in the supermomentumD and the superhamiltonianH . The constraint algebra and the two condi-
tions (2.8) and (2.9) provide functional differential equations for the superhamiltonian and the supermo-
mentum. The solution for H and D determines the Hamiltonian H which then generates the evolution
of phase space curves (ϕA(t), πA(t)) with respect to the foliation parameter t. Embedding this ”geometry
movie“ on the three-dimensional hypersurface Σ frame by frame by virtue of the one-parameter embed-
ding map Xt : Σ ↪→ M and identifying lapse and shift, n := n and ~n := ~n, results in the full spacetime
geometry G. The crucial point of this construction is the determination of the superhamiltonian H .
While one can solve for the supermomentum D quite simply, a solution for the superhamiltonian H
is most practically achieved by rewriting the functional differential equations for H in terms of partial
differential equations – the gravitational closure equations. Their solution then provides the last missing
piece of the canonical gravitational dynamics.
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Determination of the supermomentumD(~n)

The supermomentum D can be determined using condition (2.9) and the third constraint algebra rela-
tion (2.12). Condition (2.9) can be written as

(L~ng)A(z) =
∂ĝA

∂ϕA (z)
δD(~n)
δπA(z)

,

which is a functional differential equation for the supermomentum D. Taking the derivative map to the
left hand side by applying ∂ϕ̂B

∂gA (z) on both sides, one constructs the solution

D(~n) =

∫
Σ

d3z πA(z)
∂ϕ̂A

∂gA
(ĝ(ϕ(z))) (L~nĝ(ϕ))A (z) , (2.13)

which is also consistent with the third relation (2.12) of the constraint algebra.

Towards the superhamiltonianH(n)

Following the same approach for the superhamiltonian H as for the supermomentum in the previous
paragraph does not provide the full solution for the superhamiltonian. Expanding relation (2.8) yields
the functional differential equation

δH

δπB(z)
= n(z) kB(z) + (∂γn)(z) MBγ(z) (2.14)

with the coefficient

MAγ(ϕ) :=
∂ϕ̂A

∂gA
(ĝ(ϕ)) ea

0(t, σ)
∂gA

∂(∂γXa)
(t, σ) (2.15)

whose last factor can be calculated from the definition of the induced geometry gA using the identities

∂em
µ

∂(∂γXa)
= δm

a δ
γ
µ ,

∂em
0

∂(∂γXa)
= −(deg P − 1) em

α ε
0
a pαγ

∂ε0
m

∂(∂γXa)
= −ε0

aε
γ
m and

∂ε
µ
m

∂(∂γXa)
= −ε

µ
a ε

γ
m + (deg P − 1) ε0

mε
0
a pµγ . (2.16)

The functional differential equation (2.14) can be solved to

H(n) =

∫
Σ

d3z n(z)
(
Hlocal[ϕ; π) − ∂γ(MAγ πA)

)
(z) (2.17)

where the undetermined functionalHlocal[ϕ; π) depends on the momenta πA, but not on their derivatives.
It gives rise to the functionals

kA[ϕ; π) :=
∂Hlocal

∂πA
[ϕ; π) (2.18)

which also appears on the right hand side of Eq. (2.14). This definition already hints at the trick first
introduced by Kuchar in Ref. [11] by performing a Legendre transformation of the unknown Hamiltonian
functionalHlocal. One introduces generalized velocities kA defined by (2.18) and rewrites

Hlocal[ϕ; π) = πA kA[ϕ; π) − L[ϕ; k[ϕ; π)) . (2.19)

The introduction of the unknown Lagrangian density functional L allows to rewrite the first constraint
algebra relation (2.10) – a functional differential equation quadratic inH – into a functional differential
equation linear in the Lagrangian functional L. This linear functional differential equation together with

18



the second constraint algebra relation (2.11) which is already a linear equation can be cast into a set of
partial differential equations, the gravitational closure equations.

While this construction is conceptually the same compared to previous work [8, 9], the calculations
presented here significantly improve the understanding of the gravitational closure equations by intro-
ducing the configuration fields ϕA and the parametrization maps ĝ(ϕ) of the canonical geometry. Besides,
the number of coefficient functions is reduced and more precise construction algorithms are presented
for them. Besides, the second constraint algebra relation (2.11) is now also expanded while the analog
equations were introduced by less rigid arguments before.

2.4 Derivation of the gravitational closure equations

The results presented in this section were joint work with my colleague Florian Wolz.
They will also be presented in his PhD thesis,

Florian Wolz, in preparation, PhD thesis, Leibniz-Universität Hannover (2020).

In the previous section, it was shown that the Hamiltonian of the gravitational dynamics is of totally
constrained form. While one of the two functionals, the supermomentum, is already determined, the
second one, the superhamiltonian is only partially determined. It still contains a Lagrangian functionalL
which needs to be calculcated in order to construct the gravitational Hamiltonian H. The central result
of this section is that the two remaining relations of the constraint algebra can be cast into a set of partial
differential equations, the gravitational closure equations, whose solution determines the Lagrangian L.

Before starting with the actual derivation, first introduce shorthand notation which allows to keep the
notation more compact. First, consider a differentiable function Q of the configuration fields and their
spatial derivatives on Σ. One defines the shorthand notation

Q:A
α1...αN :=

∂Q
∂∂N

α1...αNϕ
A
.

The second definition introduces the third coefficient function FA
µ
γ of the gravitational closure equations.

It stems from the Lie derivative L~nĝ of the supermomentum (2.13). One expands it and introduces a
coefficient FA

µ
γ as

∂ϕ̂A

∂gA
(L~nĝ(ϕ))A =: nµ ϕA

,µ − (∂γnµ) FA
µ
γ . (2.20)

The three coefficient functions pµν, MAγ and FA
µ
γ calculated from the matter action enter the gravita-

tional closure equations. Therefore, they will be called input coefficients5.
These two definitions provide the last piece of preliminary work. Now, the gravitational closure equa-

tions will be derived. The two constraint algebra relations (2.10) and (2.11) will be expanded separately
one after another.

Evaluation of the first algebra relation

Starting point of the following construction is the first algebra relation (2.10)

{H(M),H(N)} = D
(
(deg P − 1) pαβ (M ∂βN − N ∂δβN) ∂α

)
.

In its original form, this relation provides a quadratic equation for the superhamiltonianH . As mentioned
before, identifying the non-local and local part of the superhamiltonian and using a Legendre transfor-
mation on the local partHlocal turns this quadratic problem into a linear one for the Lagrangian L.

5Restricting oneself to three independent input coefficients p, M and F provides the most striking difference of this thesis
compared to the work of Ref. [18] in which similar results were presented.
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First, the entire equation is localized by setting M = ∂y and N = ∂x. The right hand side then is

D
(
(deg P − 1) pαβ (δy (∂βδx − δx ∂βδy) ∂α

)
=

= (deg P − 1)
[
πA(x)ϕA

,µ(x) pβµ(x) + ∂γ(πA FA
µ
γ)(x) pβµ(x)

]
(∂βδx)(y) − x↔ y ,

where the identity
f (y) (∂βδx)(y) − x↔ y = f (x) (∂βδx)(y) − x↔ y (2.21)

was used.
The left hand side of the first algebra relation is constituted by

{H(x),H(y)} =

∫
Σ

dz
(
δH(x)
δϕA(z)

δH(y)
δπA(z)

−
δH(y)
δϕA(z)

δH(x)
δπA(z)

)

where the two functional derivatives of the superhamiltonian are given by

δH(x)
δϕA(z)

= −
δL(x)
δϕA(z)

− ∂γ
(
πB MBγ

:A
)

(x) δx(z) + πB(x) MBγ
:A(x) (∂γδx)(z) and

δH(y)
δπA(z)

= kA(y) δy(z) −
(
∂γMAγ

)
(y) δy(z) + MAγ(y) (∂γδy)(z) .

Collecting all terms of the left hand side and using identity (2.21) as well as

f (x) g(y) (∂µδx)(y) − x ↔ y = − f (y) g(y) (∂µδy)(x) − x↔ y , (2.22)

and

πB(x) MBγ
:A(x) MAµ(y) (∂2

µγδx)(y) − x↔ y =

= −πB(x) MBγ
:A(x) MAµ(x) (∂2

µγδx)(y) − 2 πB(x) MB(γ|
:A(x) (∂µMA|µ))(x) (∂γδx)(y) − x↔ y ,

−(∂γπB)(x) MB(γ|
:A(x) MA|µ)(x) (∂µδx)(y) − x↔ y =

= −πB(x) MB(γ|
:A(x) MA|µ)(x) (∂2

µγδx)(y) + ∂µ(MB(γ|
:A MA|µ))(x) (∂γδx)(y) − x↔ y

and also collecting all terms of the equation on the left hand side, one obtains the functional differential
equation for the Lagrangian L,

0 = −kB(y)
δL(x)
δϕB(y)

+ (∂γδx)(y) kB(y) MAγ
:B(x)

∂L

∂kA (x) + ∂µ

(
δL

δϕB(·)
MBµ

)
(y)

+ ∂µ

(
∂L

∂kA

)
(x)

[
(deg P − 1) pρµFA

ρ
ν − MB[µ|MA|ν]

:B
]

(x) (∂νδx)(y)

+
∂L

∂kA (x)
[
(deg P − 1) pρν(EA

ρ + FA
ρ
γ
,γ) + ∂µ(MB[µ|MA|ν]

:B)
]

(x) (∂νδx)(y) − (x↔ y) .

Here, the associated momenta πA were replaced by their definition πA = ∂L
∂kA in the Lagrangian picture.

The next step of the derivation was first introduced by Kuchar in Ref. [11]. The Lagrangian L is
expanded in powers of the generalized velocities kA,

L(x) =

∞∑
N=0

CA1...AN (x) kA1(x) . . . kAN (x) . (2.23)

The coefficients CA1...AN are accordingly called expansion coefficients. This expansion is inserted into the
functional differential equation which then is
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0 = −

∞∑
N=0

δCA1...AN (x)
δϕA(y)

kA(y) kA1(x) . . . kAN (x)

+

∞∑
N=0

N CAA2...AN (x) kA2(x) . . . kAN (x) MAγ
:B kB(y) (∂γδx)(y)

+

∞∑
N=0

∂µ

(
δCA1...AN (x)
δϕA(·)

MAγ(·)
)

(y) kA1(x) . . . kAN (x) (2.24)

+

∞∑
N=0

N ∂µ(CAA2...AN kA2 . . . kAN )(x)
[
(deg P − 1) pρµ FA

ρ
ν − MB[µ|MA|ν]

:B
]

(x) (∂νδx)(y)

−

∞∑
N=0

N CAA2...AN (x) kA2(x) . . . kAN (x)
[
(deg P − 1) pρν (ϕA

,ρ + FA
ρ
γ
,γ) + ∂µ(MB[µ| MA|ν]

:B)
]

(x) (∂νδx)(y)

− x↔ y .

This equation contains terms of different powers of the generalized velocities. The different powers can
be considered separately. To read off the zeroth order equation, set all k = 0 which leaves the equation

0 =

∞∑
I=0

(−1)I C:A
α1...αI (x)

[
(∂I+1
α1...αIµ

δx)(y) MAµ(y) + (∂I
α1...αI

δx)(y) MAµ
,µ(y)

]
+ (∂µCA)(x)

[
(deg P − 1) pρµ FA

ρ
ν − MB[µ|MA|ν]

:B
]

(x) (∂νδx)(y)

−CA(x)
[
(deg P − 1) pρν (ϕA

,ρ + FA
ρ
γ
,γ) + ∂µ(MB[µ| MA|ν]

:B)
]

(x) (∂νδx)(y)

− x↔ y ,

for which the definition of the functional derivative

δC(y)
δϕA(x)

=

∞∑
I=0

(−1)I ∂C
∂∂I

α1...αIϕ
A

(y) (∂I
α1...αI

δy)(x) , (2.25)

was used.
This differential equation now has to be integrated against a test function f (x, y). After integration

by parts and a subsequent integration of the δ-distribution, one obtains

0 =

∫
dx

{
−

∞∑
I=0

I+1∑
J=0

(
I + 1

J

)
C:A

α1...αI (x) (∂J
2 (α1...αJ |

f )(x, x)(∂I−J+1
|αJ+1...αI+1)M

AαI+1)(x)

+

∞∑
I=0

I∑
J=0

(
I
J

)
C:A

α1...αI (x) (∂J
2 (α1...αJ |

f )(x, x)(∂I−J+1
|αJ+1...αI )µMAµ)(x)[

− (∂µCA)(x)
[
(deg P − 1) pρµ FA

ρ
ν − MB[µ|MA|ν]

:B
]

(x) (2.26)

+ CA(x)
[
(deg P − 1) pρν (ϕA

,ρ + FA
ρ
γ
,γ) + ∂µ(MB[µ| MA|ν]

:B)
]

(x)
]
(∂2 ν f )(x, x) − ∂2 ↔ ∂1

}
,

where the subscripts ’1’ and ’2’ denote that the partial derivative acts only on the first or second slot of
the test function f (·, ·). Naively, one would state that for an arbitrary test function, the different derivative
orders of the test function have to vanish.

However, both partial derivatives ∂1 and ∂2 appear in one equation and the entire equation is evaluated
at the point (x, x). Thus, these two derivatives are not independent. As Ref. [9] already points out, the
derivative (∂µ f )(x, x) can be written as

(∂µ f )(x, x) = (∂1 µ f )(x, x) + (∂2 µ f )(x, x) . (2.27)
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This also generalizes to higher order derivatives as

(∂N
2α1...αN

f )(x, x) =

N∑
T=0

(
N
T

)
(−1)T (∂N−T

(α1...αN−T |
∂T

1 |αN−T+1...αN ) f )(x, x) . (2.28)

Adopting the simple example from Ref. [9], from the equation

0 =

∫
dx

[
A(x) f (x, x) + Bµ(x) (∂1 µ f )(x, x) + Cµ(x) (∂2 µ f )(x, x)

]
,

one must not naively read off that A, Bµ and Cµ vanish separately. Instead, using Eq. (2.27) and an
integration by parts in order to free the term ∂µ f of the derivative, one obtains

0 =

∫
dx

[
(A(x) − (∂µCµ)(x)) f (x, x) + (Bµ(x) −Cµ(x)) (∂1 µ f )(x, x)

]
and reads off that A(x) − (∂µCµ)(x) = 0 and Bµ − Cµ = 0 which is a significantly weaker statement
compared to the naive one.

This insight proves to be immediately important. One applies Eq. (2.28) to the partial derivatives
in Eq. (2.26) and subsequently frees the test function f of all derivatives ∂µ by integration by parts.
The equation now carries purely independent derivatives of the test function. As the entire equation
vanishes and the test function is arbitrary, the coefficients in front of each derivative order have to vanish
separately. One reads off the equations

0 =

∞∑
K=0

K+1∑
J=2

(−1)J
(

K
J − 1

) (
J
N

)
(J − 1) ∂J+1

γα1...αJ

(
C:A

β1...βK−J(α1...αJ | MA|γ)
,β1...βK−J

)
, (2.29)

0 = 2 ∂µ
(
CA MA[µ|

:B MB|γ]
)
− 2 (deg P − 1) pργ[CA ϕ

A
,ρ + ∂µ(CA FA

ρ
µ )]

+

∞∑
K=0

C:A
α1...αK MAγ

,α1...αK +

∞∑
K=0

K∑
J=0

(−1)J
(
K
J

)
(J + 1) ∂J

α1...αJ

(
C:A

β1...βK−J(α1...αJ | MA|γ)
,β1...βK−J

)
,

(2.30)

0 =

∞∑
K=N

K+1∑
J=N+1

(−1)J
(

K
J − 1

) (
J
N

)
∂J−N
α1...αJ−N

(
C:A

βJ ...βK (α1...αJ−Nµ1...µN−1 | MA|µN )
,βJ ...βK

)
for even N ≥ 2 ,

(2.31)

0 = 2
∞∑

K=N−1

(
K

N − 1

)
C:A

βN ...βK (µ1...µN−1 | MA|µN )
,βN ...βK

−

∞∑
K=N

K+1∑
J=N+1

(
K

J − 1

) (
J
N

)
∂J−N
α1...αJ−N

(
C:A

βJ ...βK (α1...αJ−Nµ1...µN−1 | MA|µN )
,βJ ...βK

)
for odd N ≥ 3 . (2.32)

After reading off the equations, one uses the divergence ∂γ(2.30) in order to eliminate terms and obtain
Eq. (2.29) in the form presented here.

After evaluating the zeroth order equation (2.24), one proceeds in similar fashion for equations with
larger powers of the generalized velocities k. To extract the Nth order contribution, apply the derivative

δN

δkB1(x1) . . . δkBN (xN)

∣∣∣∣∣∣
k=0
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to Eq. (2.24) which – after dropping a factor (N − 1)! – results in

0 = −

N∑
J=1

δCB1...B̃J ...BN
(x)

δϕBJ (y)
δy(xJ) δx(x1) . . . δ̃x(xJ) . . . δx(xN)

+ N2CA(B1...BN−1 |(x) MAγ
:|BN )(x) (∂γδx)(y) δx(x1) . . . δx(xN)

+ N ∂µ

(
δCB1...BN (x)
δϕA(·)

MAµ(·)
)

(y) δx(x1) . . . δx(xN)

+ N2 (∂µCAB1...BN )(x)
[
(deg P − 1) pρµFA

ρ
ν − MB[µ| MA|ν]

:B
]

(x) (∂νδx)(y) δx(x1) . . . δx(xN)

− N (N + 1) CAB1...BN (x)
[
(deg P − 1) pρµFA

ρ
ν − MB[µ| MA|ν]

:B
]

(x) (∂νδx)(y)×

×

N∑
J=1

δx(x1) . . . δ̃x(xJ) . . . δx(xN) (∂µδx)(xJ)

− N (N + 1) CAB1...BN (x)
[
(deg P − 1) pρν(ϕA

,ρ + FA
ρ
γ
,γ) + ∂µ(MB[µ|MA|ν]

:B)
]

(x)×

× (∂νδx)(y) δx(x1) . . . δx(xN) − x↔ y .

The notation ∼ instructs to omit this index or term. After spelling out the functional derivatives using
their definition (2.25), the resulting equation has to be integrated against a test function f (x, y, x1, . . . , xN)
with N + 2 slots. Integration by parts and subsequent integration of the δ-distributions yields

0 =

∫
dx

{
−

∞∑
I=0

N∑
J=1

I∑
T=0

(
I
T

)
CB1...B̃J ...BN :BJ

α1...αI (x) (∂T
2 (α1...αT |

∂I−T
J+2 |αT+1...αI ) f )(x, x, x, . . . , x)

− N2 CA(B1...BN−1 |(x) MAγ
:|BN )(x) (∂2 γ f )(x, x, x, . . . , x)

− N
∞∑

I=0

∞∑
T=0

(
I + 1

T

)
CB1...BN :A

α1...αI (x)(∂T
2 (α1...αT |

f )(x, x, x, . . . , x)
(
∂I−T+1
|αT+1...αI+1)M

AαI+1
)

(x)

+ N
∞∑

I=0

∞∑
T=0

(
I
T

)
CB1...BN :A

α1...αI (x)(∂T
2 (α1...αT |

f )(x, x, x, . . . , x)
(
∂I−T+1
|αT+1...αI )µMAµ

)
(x)

− N2
(
∂µ CAB1...BN

)
(x)

[
(deg P − 1) pρµFA

ρ
ν − MB[µ| MA|ν]

:B
]

(x) (∂2 ν f )(x, x, x, . . . , x)

− N (N + 1) CAB1...BN (x)
[
(deg P − 1) pρµFA

ρ
ν − MB[µ| MA|ν]

:B
]

(x)
N∑

J=1

(∂2 ν ∂J+2 µ f )(x, x, x, . . . , x)

+ N (N + 1) CAB1...BN (x)
[
(deg P − 1) pρν(ϕA

,ρ + FA
ρ
γ
,γ) + ∂µ(MB[µ|MA|ν]

:B)
]

(x) (∂2 ν f )(x, x, x, . . . , x)

− ∂2 ↔ ∂1

}
As in the analysis of the zeroth order equation, not all partial derivatives of the test function f evaluated
at the point (x, x, x, . . . , x) are independent and one has to be eliminated in favor of the other independent
ones. This is relevant for the first and sixth line of the above equation. For the latter, use the analogon of
Eq. (2.27)

(∂µ f )(x, . . . , x) = (∂1 µ f )(x, . . . , x) + (∂2 µ f )(x, . . . , x) +

N∑
J=1

(∂J+2 µ f )(x, . . . , x)

in order to get rid of the sum over J. Subsequently, perform an integration by parts in order to free the
test function of the derivative ∂µ and cancel one of the emerging terms with the seventh line. Also note
that there will appear a term with the second derivative (∂2

2 µν f )(x, x, x, . . . , x) of the test function. Due to
the symmetry of the derivative, the antisymmetric part of the summand drops out of the equation.
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As already laid out in Ref. [9], the summand J = N in the first line can be re-written as

I∑
T=0

(
I
T

)
(∂T

2 (α1...αT |
∂I−T

N+2 |αT+1...αI
f )(x, . . . , x) =

I∑
S =0

∑
t=1,3,...N+1

(
I
S

)
(−1)I−S (∂S

(α1...αS |
∂I−S

t |αS +1...αI ) f )(x, . . . , x)

in order to get rid of the derivative ∂N+2. After integration by parts in order to free the test function f of
all derivatives ∂µ, one can proceed to read off the individual terms that have to vanish for each derivative
order of the test function.

After re-ordering and re-arranging of sums, the following equations are read off,

0 = CAB1...BN

[
(deg P − 1) pρµFA

ρ
ν − MB[µ| MA|ν]

:B
]

for N ≥ 1 , (2.33)

0 = N (N + 1) CAB1...BN

(
pµν ϕA

,ν − pµν,γ FA
ν
γ
)
− N2 CA(B1...BN−1 | M

Aµ
:|BN ) −

N−1∑
J=1

CB1...B̃J ...BN :BJ

µ

− N
∞∑

K=0

CB1...BN :A
α1...αK MAµ

,α1...αK −

∞∑
K=0

(−1)K (K + 1)
(
∂K
α1...αK

CB1...BN−1:BN
α1...αKµ

)
for N ≥ 1 ,

(2.34)

0 = N (N + 1) (deg P − 1) CAB1...BN pρ(µ| FA
ρ
|ν) + N

∞∑
K=0

(K + 1) CB1...BN :A
α1...αK (µ| MA|ν)

,α1...αK

+

N−1∑
J=1

CB1...B̃J ...BN :BJ

µν −

∞∑
K=0

(
K + 2

2

)
(−1)K

(
∂K
α1...αK

CB1...BN−1:BN
α1...αKµν

)
for N ≥ 1 , (2.35)

0 = N
∞∑

K=0

(
K + S − 1

S − 1

)
CB1...BN :A

α1...αK (µ1...µS−1 | MA|µS )
,α1...αK +

N−1∑
J=1

CB1...B̃J ...BN :BJ

µ1...µS

−

∞∑
K=0

(−1)K+S
(
K + S

K

) (
∂K
α1...αK

CB1...BN−1:BN
α1...αKµ1...µS

)
for N ≥ 1, S ≥ 3 , (2.36)

CB1...B̃J ...BN :BJ

µ1...µS +T =

∞∑
K=0

(−1)K+S +T
(
K + S + T

S + T

) (
∂K
α1...αK

CB1...BN−1:BN
α1...αKµ1...µS +T

)
(2.37)

for N ≥ 2,T ≥ 1, S ≥ 1, J = 1 . . .N − 1 ,

0 =

∞∑
K=0

(−1)K+S +T
(
K + S + T

S + T

) (
∂α1...αKCB1...BN−1:BN

α1...αKµ1...µS +T
)

(2.38)

for N ≥ 3,T ≥ 2, S ≥ 1, J = 1 . . .N − 1

These equation still contain information which can be made explicit and plugged into the other equations
in order to simplify them. The first observation is that the last two equations imply

CB1...BN :A
α1...αK = 0

for N ≥ 2 and K ≥ 3. This means that expansion coefficients CB1...BN for N ≥ 2 depend at most on second
derivatives of the configuration fields ϕA. This collapse to second derivative order proves to be useful for
all closure equations containing such expansion coefficients as the infinite sums break down to a finite
amount of terms which simplifies these equations drastically. Note that there is no such a collapse to
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second derivative order for the first two expansion coefficients C and CA which still depend on arbitrary
many derivatives of the configuration fields. Only if a theory has vanishing input coefficient MAγ, the
first expansion coefficient C will also feature a collapse to second derivative order in the configuration
fields.

One proceeds with the rewriting of the equations by analyzing Eq. (2.37) for N = 2 and L ≥ 2. One
obtains

CB2:B1
µ1...µL =

∞∑
K=0

(−1)K+L
(
K + L

L

) (
∂K
α1...αK

CB1:B2
α1...αKµ1...µL

)
. (2.39)

Also, Eq. (2.37) provides the sequence of equations

0 = CB1...B̃J ...BN :BJ

µν −CB1...BN−1:BN
µν for J = 1 . . .N − 1 (2.40)

when evaluating the case N ≥ 3 and S + T = 2. This type of exchange symmetry is inserted into the
remaining equations.

Next, combining these results with Eq. (2.36), one finds for S = 3,

0 = CB1...BN :A
(µ1µ2 | MA|µ3) for N ≥ 2 . (2.41)

The case N = 2 and S ≥ 4 in Eq. (2.36) provides no new information while the case N = 1, S ≥ 3 does.
Setting L := S − 1, one reads off for L ≥ 2

0 =

∞∑
K=0

[(
K + L

L

)
CB:A

α1αK (µ1...µL | MA|µL+1)
,α1...αK + (−1)K+L

(
K + L + 1

L + 1

) (
∂K
α1...αK

C:B
α1...αKµ1...µL+1

)]
.

(2.42)
For Eq. (2.35), inserting the collapse to second derivative order and the exchange symmetry (2.40) re-
duces the equation to

0 = N (N + 1) (deg P − 1) CAB1...BN pρ(µ| FA
ρ
|ν) + N CB1...BN :A

(µ| MA|ν) + 2 N CB1...BN :A
α(µ| MA|ν)

,α

+ (N − 2) CB1...BN−1:BN
µν for N ≥ 2 . (2.43)

For N = 1, one cannot use the collapse of the expansion coefficients to second derivative order and the
equation still contains infinite sums,

0 = 2 (deg P − 1) CAB pρ(µ| FA
ρ
|ν) −

∞∑
K=0

(K + 1) CB:A
α1...αK (µ| MA|ν)

,α1...αK

+

∞∑
K=0

(−1)K
(
K + 2

K

) (
∂K
α1...αK

C:B
α1...αKµν

)
(2.44)

Last but not least, relation (2.34) can also be simplified using the collapse to second derivative order and
the exchange symmetry (2.40). One finds

0 = (N + 2) (N + 1) (deg P − 1) CAB1...BN+1

(
pµγϕA

,γ − pµν,γ FA
ν
γ
)
− (N + 1)2 CA(B1...BN | M

Aµ
:|BN+1)

− (N + 1) CB1...BN :A MAµ − (N + 1) CB1...BN :A
α MAµ

,α − (N + 1) CB1...BN :A
αβ MAµ

,αβ (2.45)

−

N+1∑
K=0

CB1...B̃K ...BN+1:BK

µ + 2
(
∂γCB1...BN :BN+1

µγ
)

for N ≥ 2

and the two additional equations

0 = 6 (deg P − 1) CAB1B2

(
pµν ϕA

,ν − pµν,γ FA
ν
γ
)
− 4 CA(B1 | M

Aµ
:|B2) − 2 CB1B2:A MAµ

− 2 CB1B2:A
α MAµ

,α − 2 CB1B2:A
αβ MAµ

,αβ −CB2:B1
µ −

∞∑
K=0

(−1)K (K + 1)
(
∂α1...αKCB1:B2

µα1...αK
)

(2.46)
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and

0 = 2 (deg P − 1) CAB
(
pµν ϕA

,ν − pµν,γ FA
ν
γ
)
−CA MAµ

:B −

∞∑
K=0

CB:A
α1...αK MAµ

,α1...αK

−

∞∑
K=0

(−1)K (K + 1)
(
∂K
α1...αK

C:A
α1...αKµ

)
. (2.47)

By writing down these equations, one has extracted all information contained in the first constraint al-
gebra relation (2.10) and cast it into a set of partial differential equations, Eqns. (2.29), (2.30), (2.31),
(2.32), (2.33), (2.39), (2.40), (2.41), (2.42), (2.43), (2.44), (2.45), (2.46) and (2.47). All equations will
be listed at the end of this chapter with the appropriate numbering that they also carry in Ref. [3]. First,
one needs to evaluate the second constraint algebra relation as well. The resulting partial differential
equations together with the ones obtained up to now form the gravitational closure equations.

Evaluation of the second algebra relation

The second algebra relation (2.11) also contains the superhamiltonianH – in contrast to the first one al-
ready linearly which makes it a lot simpler to cast this algebra relation into partial differential equations.
These partial differential equations then complete the set from the first algebra relation to form the grav-
itational closure equations. With the necessary techniques already developed in the previous analysis of
the first algebra relation (2.10), it is now a simpler task to expand the second one.

The starting point is the second algebra relation (2.11),{
D(~N),H(M)

}
= H

(
L~N M

)
= H(Nµ ∂µM) .

Note that the superhamiltonian H can be replaced by the local part Hlocal as the other part drops out of
this equation. Its localized version is{

Dµ(x),Hlocal(y)
}

= Hlocal
(
δx ∂µδy

)
.

The right hand side is straightforwardly calculated to be

Hlocal
(
δx ∂µδy

)
=

[
∂L

∂kA (x) kA(x) − L(x)
]

(∂µδy)(x) .

The Poisson bracket on the left hand side of the algebra relation requires the four functional derivatives,

δDµ(x)
δϕA(z)

= −πA(x)(∂µδx)(z) − πB(x)FB
µ
γ

:A(x) (∂γδx)(z) + ∂γ(πB FB
µ
γ

:A)(x) δx(z) ,

δDµ(x)
δπA(z)

= ϕA
,µ(x) δx(z) − FA

µ
γ (x) (∂γδx)(z) + (∂γFA

µ
γ)(x) δx(z) ,

δHlocal(y)
δϕA(z)

= −
δL(y)
δϕA(z)

,

δHlocal(y)
δπA(z)

= kA(y) δy(z) .

In order to obtain the first and second derivative in their respective form presented here, one uses the
following identity for the δ-distribution,

g(z)(∂γδx)(z) = g(x) (∂γδx)(z) − (∂γg)(x) δx(z) .

These four derivatives appearing in the Poisson bracket are now put together and the right hand side of
the equation is brought to the left. Using the identity

f (x) g(y) (∂µδx)(y) = − f (y) g(y) (∂µδy)(x) + (∂µ f )(y) g(y) δy(x) ,
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one obtains the functional differential equation

0 = L(y) (∂µδy)(x) + ∂µ

(
∂L

∂kA kA − L

)
(y) δy(x) − ∂µ

(
∂L

∂kA

)
(y) kA(y) δy(x)

+
∂L

∂kB (y) FB
µ
γ

:A(y) kA(y) (∂γδy)(x) +
[
ϕA

,µ(x) + (∂γFA
µ
γ)(x)

] δL(y)
δϕA(x)

+ ∂γ

(
δL(y)
δϕA(·)

)
(x) FA

µ
γ(x) .

Following the steps of the previous analysis, one expands the the Lagrangian in terms of the expansion
coefficients CA1...AN as

L(x) =

∞∑
N=0

CA1...AN (x) kA1(x) . . . kAN (x) .

The functional differential equation is now

0 =

∞∑
N=0

CA1...AN (y) kA1(y) . . . kAN (y) (∂µδy)(x)

+

∞∑
N=0

(N − 1) ∂µ
(
CA1...AN kA1 . . . kAN

)
(y) δy(x)

−

∞∑
N=0

N ∂µ
(
CAA2...AN kA2 . . . kAN

)
(y) kA(y) δy(x)

+

∞∑
N=0

N CBA2...AN (y) kA2(y) . . . kAN (y) kA(y) FB
µ
γ

:A(y) (∂γδy)(x) (2.48)

+

∞∑
N=0

δCA1...AN (y)
δϕA(x)

(
ϕA

,µ(x) + (∂γFA
µ
γ)(x)

)
kA1(y) . . . kAN (y)

+

∞∑
N=0

∂γ

(
δCA1...AN (y)
δϕA(·)

)
(x) kA1(y) . . . kAN (y) FA

µ
γ(x) .

One follows the same procedure as before and inspects the different powers of the velocities separately.
One extracts the zeroth equation by setting all kA to zero. Using the definition of the functional deriva-
tive (2.25), the equation becomes

0 = C(y) (∂µδy)(x) − (∂µC)(y) δx(y) +

∞∑
I=0

C:A
α1...αI (y) (∂I

α1...αI
δy)(x)

(
ϕA

,µ + FA
µ
γ
,γ

)
(x)

+

∞∑
I=0

C:A
α1...αI (y) (∂I+1

α1...αIγ
δy)(x) FA

µ
γ(x) .

Now, integrate this equation against a test function f (x, y). Of the partial derivatives ∂1 and ∂2, only
∂1 appears in the resulting equation. Thus, use the fact that the different derivative orders of the test
functions are independent and have to vanish separately to read off

0 = −∂µC +

∞∑
I=0

C:A
α1...αI ϕA

,α1...αIµ , (2.49)

0 = −C δ
γ
µ +

∞∑
I=0

(I + 1)
[
C:A

α1...αIγ
(
ϕA

,µα1...αI + FA
µ
αI+1

,α1...αI+1

)
−C:A

(α1...αI | FA
µ
|γ)

,α1...αI

]
(2.50)

0 =

∞∑
I=0

(
I + L

L

) [
C:A

β1...βLα1...αI
(
ϕA

,µα1...αI + FA
µ
αI+1

,α1...αI+1

)
−C:A

(β1...βLα1...αI−1 | FA
µ
|αI )

,α1...αI

]
(2.51)

for L ≥ 2 .
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Note that Eq. (2.49) is simply the chain rule. As it provides no new information, this equation can be
dropped from the set of partial differential equations. As the expansion coefficient C depends on arbitrary
many derivatives of the configuration fields, Eq. (2.50) and the sequence (2.51) cannot be simplified.

As for the first algebra relation, in order to obtain the Nth-order equation, apply the derivative

δN

δkB1(x1) . . . δkBN (xN)

∣∣∣∣∣∣
k=0

to the functional differential equation (2.48). Dropping a factor N! and terms that cancel each other, one
obtains

0 = CB1...BN (y) (∂µδy)(x) δy(x1) . . . δy(xN)

− (∂µCB1...BN )(y) δy(x) δy(x1) . . . δy(xN)

+ N CA(B1...BN−1(y) FA
µ
γ

:|BN )(y) (∂γδy)(x) δy(x1) . . . δy(xN)

+

∞∑
I=0

(−1)I CB1...BN :A
α1...αI (y)

(
ϕA

,µ + FA
µ
γ
,γ

)
(x) δy(x1) . . . δy(xN) (∂I

α1...αI
δy)(x)

+

∞∑
I=0

(−1)I CB1...BN :A
α1...αI (y) FA

µ
γ(x) δy(x1) . . . δy(xN) (∂I+1

α1...αIγ
δy)(x) .

This equation is now integrated against a test function f (x, y, x1, . . . , xN). Again using the fact that
different derivative orders of the test function are independent of each other, one reads off two equations
and one sequence of relations for fixed N,

0 = −∂µCB1...BN +

∞∑
I=0

CB1...BN :A
α1...αI ϕA

,α1...αIµ , (2.52)

0 = −CB1...BN δ
γ
µ − N CA(B1...BN−1 FA

µ
γ

:|BN ) (2.53)

+

∞∑
I=0

(I + 1)
[
CB1...BN :A

α1...αIγ
(
ϕA

,µα1...αI + FA
µ
αI+1

,α1...αI+1

)
−CB1...BN :A

(α1...αI | FA
µ
|γ)

,α1...αI

]
,

0 =

∞∑
I=0

(
I + L

L

) [
CB1...BN :A

β1...βLα1...αI
(
ϕA

,α1...αIµ + FA
µ
αI+1

,α1...αI+1

)
(2.54)

−CB1...BN :A
(β1...βLα1...αI−1 | FA

µ
|αI )

,α1...αI

]
for L ≥ 2 ,

where Eq. (2.52) is again the chain rule and can be neglected. For N = 1, there is no collapse to a finite
derivative order and thus, the relations cannot be simplified. Eq. (2.53) and the sequence (2.54) thus read

0 = −CB δ
γ
µ −CA FA

µ
γ

:B +

∞∑
I=0

(I + 1)
[
CB:A

γα1...αI
(
ϕA

,µα1...αI + FA
µ
αI+1

,α1...αI+1

)]
−

∞∑
I=0

(I + 1) CB:A
(α1...αI | FA

µ
|γ)

,α1...αI , (2.55)

0 =

∞∑
I=0

(
I + N

N

) [
CB:A

β1...βNα1...αI
(
ϕA

,µα1...αI + FA
µ
αI+1

,α1...αI+1

)
−CB:A

(β1...βNα1...αI−1 | FA
µ
|αI )

,α1...αI

]
.

(2.56)

Expansion coefficients CB1...BN with N ≥ 2 in contrast only depend on the configuration fields up to
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second derivatives. This simplifies the equations and they break down to the three equations,

0 = −CB1...BN δ
γ
µ − N CA(B1...BN−1 | F

A
µ
γ

:|BN ) −CB1...BN :A FA
µ
γ + CB1...BN :A

γ ϕA
,µ

−CB1...BN :A
α FA

µ
γ
,α −CB1...BN :A

α1α2 FA
µ
γ
,α1α2 + 2 CB1...BN :A

αγ ϕA
,αµ , (2.57)

0 = CB1...BN :A
β1β2 ϕA

,µ − 2 CB1...BN :A
α(β1 | FA

µ
|β2)

,α −CB1...BN :A
(β1 | FA

µ
|β2) (2.58)

0 = CB1...BN :A
(β1β2 | FA

µ
|β3) . (2.59)

The partial differential equations (2.50), (2.51), (2.55), (2.56), (2.57), (2.58) and (2.59) complete the set
of partial differential equations which are from now on called the gravitational closure equations. The
complete set of the closure equations is listed at the end of this chapter where they will also carry the
appropriate numbering which they also have in Ref. [3].

The derivation of the gravitational closure equations has cast the physically almost infinitely hard
problem of finding viable gravity theories into the mathematically challenging, but manageable task
of solving a system of partial differential equations. As a mathematical side note, the gravitational
closure equations as a set of partial differential equations might not have all information explicit that
is needed in order to find their exact solution. For example, derivatives of the closure equation with
respect to the configuration fiels ϕA could also provide equations that need to be added to the set of
differential equations in order to solve them. In mathematical language, the described property of the
closure equation is called involutivity. Roughly speaking, a system of partial differential equations is
called involutive if all information contained in the system is already made explicit. As an example,
partial differential equations can contain integrability conditions which have to be revealed by studying
further derivatives of the actual differential equations.

If the system is not involutive, it can be made into an involutive one, e. g. by the Cartan-Kuranishi
algorithm. For details about this mathematical topic, see Ref. [19]. For a more general discussion
of involutivity and the Cartan-Kuranishi algorithm for the constructive gravity program, see Ref. [20].
Without discussing these topics mathematically, the work of the following chapters shows that one indeed
has to consider derivatives of the closure equations – called prolongations – as well in order to extract
the relevant information about the solution from the closure equations.

For a given matter theory, the task is now to solve the closure equations given with the specific
input coefficients FA

µ
γ, MAγ and pµν. The solution to the closure equations are the expansion coef-

ficients CA1...AN of the gravitational Lagrangian L. The last section of this chapter demonstrates the
construction of a gravitational spacetime action from such a solution of the gravitational closure equa-
tions.

2.5 Gravitational spacetime action and field equations

Up to now, the entire gravitational dynamics were formulated in the canonical picture. The actual goal
was to determine the Hamiltonian H constituted by the constraints, supermomentum and superhamilto-
nian. It is, however, possible to rewrite the canonical description of gravity into a spacetime action. This
section shows that the main ingredient of this spacetime action is the Lagrangian L constructed from the
solution of the closure equations. This will be particularly useful for the symmetry reductions studied
later in this thesis.

The starting point of the entire construction is given by the Hamiltonian equations of motion,

ϕ̇A
t (x) =

{
ϕA(x),H(n, ~n)

}
t

π̇A(x) =
{
πA(x),H(n, ~n)

}
t

with the dot denoting a derivative with respect to the foliation parameter t and with n, ~n representing the
lapse function and shift vector field, respectively. Including a matter Hamiltonian Hmatter[A;ϕ, n, nα], the
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gravitational field equations can be represented by geometric evolution equations

δHmatter

δϕA(x)
= −

[
∂t − nµ ∂µ − ∂µnµ

] ∂L

∂kA (x) +
[
(∂γn) MBγ

:A − (∂γnµ) FB
µ
γ

:A
] ∂L

∂kB (x) +

∫
d3y n(y)

δL(y)
δϕA(x)

and four constraint equations

δHmatter

δn(x)
= −

[
kA − MAγ

,γ − MAγ ∂γ
] ∂L

∂kA (x) +L(x) ,

δHmatter

δnµ(x)
= −

[
ϕA

,µ + FA
µ
γ
,γ + FA

µ
γ ∂γ

] ∂L

∂kA (x) ,

where the velocities kA need to be replaced by

kA(x) =
1

n(x)

[
ϕ̇A − (∂γn) MAγ − nµ ϕA

,µ + (∂γnµ) FA
µ
γ
]

(x)

after evaluation of all respective derivatives. This directly shows that the constraint equations are at most
of first derivative order in the foliation parameter t while the evolution equations are of at most second
derivative order in t. In particular, this guarantees that there are no Ostrogradsky ghosts. The Helmholtz
action giving rise to these canonical field equations is given by

S [ϕ, π, n, nα] =

∫
dt

−Ht[ϕ, π, n, nα] +

∫
Σ

d3z (πA ϕ̇
A)(z)

 .
This form of the action can be made into a more practical one using directly the Lagrangian functional L
from the solution of the gravitational closure equations. Following the steps laid out in Ref. [3], one
writes the derivative of the configuration fields with respect to the foliation parameter t as

ϕ̇A = n kA[ϕ; π) + (∂γn) MAγ + nµ ϕA
,µ − (∂γnµ) FA

µ
γ

using the first Hamilton equation of motion. Inserting this, the supermomentum (2.13) and the par-
tially determined superhamiltonian (2.17) into the Helmholtz action, one observes that almost all terms
drop out. Only the ones from the local superhamiltonian remain. One introduces capitalized spacetime
quantities

φ(t, z) = ϕt(z) , N(t, z) = nt(z) and ~N(t, z) = ~nt(z)

which are numerically identical to the canonical quantities ϕ, n and ~n but now interpreted as spacetime
variables. The gravitational action can then be written as

S [φ,N, ~N] =

∫
dt

∫
Σ

d3z Lgeometry[φ,N, ~N](t, z) . (2.60)

The Lagrangian L is directly constructed from the Lagrangian functional L of the gravitational closure
equations by

Lgeometry[φ,N,Nα] = N L
[
φ;

1
N

(
∂γN) MAγ(φ)

)
+ Nµ φA

,µ − (∂γNµ) FA
µ
γ (φ)

)
.

The field equations obtained from this spacetime picture are identical to the ones previously obtained
in the canonical picture. For the purpose of this thesis – the derivation of the Friedmann equations
and their refinement for general linear electrodynamics – it will be much simpler to construct the La-
grangian Lgeometry and subsequently vary this Lagrangian with respect to the remaining symmetric de-
grees of freedom in order to obtain the Friedmann equations and their refinement. For more details see
Chapters 4 and 6.
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The construction of the gravitational spacetime action is the final piece of information about the
desired gravitational dynamics and closes the review of the constructive gravity program. The last section
of this chapter shows a complete list of all gravitational closure equations – the heart of the constructive
gravity program – in the numbering of Ref. [3] which will be used throughout this thesis and other work
such as in Ref. [7, 21].

After this theoretical work, the question arises whether the technology developed in this chapter is
actually valid and reproduces the existing results – that is, general relativity being the gravity theory of
the standard model of particle physics (or any subsector thereof). Before any kind of modified matter
theory or a symmetry reduction of the constructive gravity program is studied, this test has to be passed.
Previous works such as Ref. [9, 12] have shown that general relativity follows from Maxwell theory as a
solution to the closure equations which at that time were called differently. However, their arguments and
techniques relied heavily on arguments specific to the canonical geometry being a metric. By introducing
the configuration fields, such arguments are no longer valid. It therefore remains to be seen how the
Einstein-Hilbert action is constructed as a solution to the gravitational closure equations using purely the
configuration fields and dropping arguments specific for a metric as the canonical geometry as given in
Ref. [9, 12]. The next chapter will address precisely this topic and present the general solution of the
gravitational closure equations starting from Maxwell theory as matter input.
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2.6 The complete list of the gravitational closure equations

(C1) 0 = −C δ
γ
µ +

∞∑
I=0

(I + 1)
[
C:A

α1...αIγ
(
ϕA

,µα1...αI + FA
µ
αI+1

,α1...αI+1

)
−C:A

(α1...αI | FA
µ
|γ)

,α1...αI

]
(C2) 0 = −CB δ

γ
µ −CA FA

µ
γ

:B +

∞∑
I=0

(I + 1)
[
CB:A

γα1...αI
(
ϕA

,µα1...αI + FA
µ
αI+1

,α1...αI+1

)]
−

∞∑
I=0

(I + 1) CB:A
(α1...αI | FA

µ
|γ)

,α1...αI

(C3) 0 = 2 (deg P − 1) CAB pρ(µ| FA
ρ
|ν) −

∞∑
K=0

(K + 1) CB:A
α1...αK (µ| MA|ν)

,α1...αK

+

∞∑
K=0

(−1)K
(
K + 2

K

) (
∂K
α1...αK

C:B
α1...αKµν

)
(C4) 0 = 2 (deg P − 1) CAB

(
pµν ϕA

,ν − pµν,γ FA
ν
γ
)
−CA MAµ

:B −

∞∑
K=0

CB:A
α1...αK MAµ

,α1...αK

−

∞∑
K=0

(−1)K (K + 1)
(
∂K
α1...αK

C:A
α1...αKµ

)
(C5) 0 = 2 ∂µ

(
CA MA[µ|

:B MB|γ]
)
− 2 (deg P − 1) pργ[CA ϕ

A
,ρ + ∂µ(CA FA

ρ
µ )]

+

∞∑
K=0

C:A
α1...αK MAγ

,α1...αK +

∞∑
K=0

K∑
J=0

(−1)J
(
K
J

)
(J + 1) ∂J

α1...αJ

(
C:A

β1...βK−J(α1...αJ | MA|γ)
,β1...βK−J

)
(C6) 0 = 6 (deg P − 1) CAB1B2

(
pµν ϕA

,ν − pµν,γ FA
ν
γ
)
− 4 CA(B1 | M

Aµ
:|B2) − 2 CB1B2:A MAµ

− 2 CB1B2:A
α MAµ

,α − 2 CB1B2:A
αβ MAµ

,αβ −CB2:B1
µ −

∞∑
K=0

(−1)K (K + 1)
(
∂K
α1...αK

CB1:B2
µα1...αK

)
(C7) 0 =

∞∑
K=0

K+1∑
J=2

(−1)J
(

K
J − 1

) (
J
N

)
(J − 1) ∂J+1

γα1...αJ

(
C:A

β1...βK−J(α1...αJ | MA|γ)
,β1...βK−J

)
(C8N≥2) 0 =

∞∑
I=0

(
I + L

L

) [
C:A

β1...βLα1...αI
(
ϕA

,µα1...αI + FA
µ
αI+1

,α1...αI+1

)
−C:A

(β1...βLα1...αI−1 | FA
µ
|αI )

,α1...αI

]
(C9N≥2) 0 =

∞∑
I=0

(
I + N

N

) [
CB:A

β1...βNα1...αI
(
ϕA

,µα1...αI + FA
µ
αI+1

,α1...αI+1

)
−CB:A

(β1...βNα1...αI−1 | FA
µ
|αI )

,α1...αI

]
(C10N≥2) 0 = −CB1...BN δ

γ
µ − N CA(B1...BN−1 | F

A
µ
γ

:|BN ) −CB1...BN :A FA
µ
γ + CB1...BN :A

γ ϕA
,µ

−CB1...BN :A
α FA

µ
γ
,α −CB1...BN :A

α1α2 FA
µ
γ
,α1α2 + 2 CB1...BN :A

αγ ϕA
,αµ

(C11N≥2) 0 = CB1...BN :A
β1β2 ϕA

,µ − 2 CB1...BN :A
α(β1 | FA

µ
|β2)

,α −CB1...BN :A
(β1 | FA

µ
|β2)

(C12N≥2) 0 = CB1...BN :A
(β1β2 | FA

µ
|β3)

(C13N≥2) 0 = CB1...BN :A
(β1β2 | MA|β3)

(C14N≥2) 0 = CAB1...BN−1

[
(deg P − 1) pρµFA

ρ
ν − MB[µ| MA|ν]

:B
]

(C15N≥2) 0 = CB1...B̃J ...BN+1:BJ

µν −CB1...BN :BN+1
µν for J = 1 . . .N + 1

(C16N≥2) 0 = N (N + 1) (deg P − 1) CAB1...BN pρ(µ| FA
ρ
|ν) + N CB1...BN :A

(µ| MA|ν) + 2 N CB1...BN :A
α(µ| MA|ν)

,α

+ (N − 2) CB1...BN−1:BN
µν
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(C17N≥2) 0 = (N + 2) (N + 1) (deg P − 1) CAB1...BN+1

(
pµγϕA

,γ − pµν,γ FA
ν
γ
)

− (N + 1)2 CA(B1...BN | M
Aµ

:|BN+1) − (N + 1) CB1...BN :A MAµ

− (N + 1) CB1...BN :A
α MAµ

,α − (N + 1) CB1...BN :A
αβ MAµ

,αβ

−

N+1∑
K=0

CB1...B̃K ...BN+1:BK

µ + 2
(
∂γCB1...BN :BN+1

µγ
)

(C18N≥2) 0 = CB2:B1
µ1...µL −

∞∑
K=0

(−1)K+L
(
K + L

L

) (
∂K
α1...αK

CB1:B2
α1...αKµ1...µL

)
(C19N≥2) 0 =

∞∑
K=0

[(
K + L

L

)
CB:A

α1αK (µ1...µL | MA|µL+1)
,α1...αK + (−1)K+L

(
K + L + 1

L + 1

) (
∂K
α1...αK

C:B
α1...αKµ1...µL+1

)]

(C20even N≥2) 0 =

∞∑
K=N

K+1∑
J=N+1

(−1)J
(

K
J − 1

) (
J
N

)
∂J−N
α1...αJ−N

(
C:A

βJ ...βK (α1...αJ−Nµ1...µN−1 | MA|µN )
,βJ ...βK

)
(C21odd N≥3) 0 = 2

∞∑
K=N−1

(
K

N − 1

)
C:A

βN ...βK (µ1...µN−1 | MA|µN )
,βN ...βK

−

∞∑
K=N

K+1∑
J=N+1

(
K

J − 1

) (
J
N

)
∂J−N
α1...αJ−N

(
C:A

βJ ...βK (α1...αJ−Nµ1...µN−1 | MA|µN )
,βJ ...βK

)
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Chapter 3

From Maxwell electrodynamics to Einstein
gravity

The indispensable test run for the constructive gravity program is to recover already known results.
Starting from the standard model of particle physics (or any subsector), the Einstein-Hilbert action of
general relativity should be recovered as a solution to the gravitational closure equations.

In contrast to previous work such as Ref. [8, 9, 12] which already showed similar calculations, the
following chapter provides a conceptually new solution to the closure equations. The closure equations
are now formulated as partial differential equations in which the derivatives are taken with respect to
the newly established configuration fields and no longer with respect to the components of the canonical
geometry. This prohibits to use variables such as the Riemann curvature tensor with respect to whom
derivatives can be taken in the closure equations. Instead, one may only consider derivatives with re-
spect to the configuration fields and their spatial derivatives. This accounts for a more involved, but
conceptually more appealing solution of the closure equations.

Adopting the diagram 1.2 to the present case study, the chapter is structured as shown in Figure 3.1.

S Maxwell[A; g)
closure

equations
S Einstein−Hilbert[g]

Einstein
equationsSec. 3.1 Sec. 3.2 – 3.4

Figure 3.1: Construction of the Einstein equations as a solution to the closure equations from Maxwell
electrodynamics. With the Einstein-Hilbert action being the actual solution of the closure equations, it is
then straightforward to calculate the Einstein equations by variation.

3.1 Matter action, principal polynomial and kinematical setup

The results shown in this section have already been published in
M. Düll, F. P. Schuller, N. Stritzelberger and F. Wolz,

Phys. Rev. D97 (2018), 084036,
whose section V.A is shown here.

The starting point of the gravitational closure formalism is always the prescribed matter action. While
one could in principle gravitationally close the entire standard model of particle physics, this thesis re-
stricts the matter action to the classical electromagnetic sector – Maxwell theory. This is perfectly valid
from the conceptual point of view as all subsectors of the standard model feature the same geometric
setup and account for the same principal polynomial P and therefore also the same gravity theory. By
restricting to the electromagnetic sector, the construction of the principal polynomial becomes a rather
quick calculation compared to the one for the entire standard model [14]. The Maxwell action of elec-
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trodynamics is given by

S Maxwell = −
1
4

∫
M

d4x
√
| det g··| FabFcd gacgbd ,

where M is a four-dimensional smooth manifold equipped with a metric tensor field g and F = dA the
field strength tensor for the one-form potential A. From this action, the field equations arise by variation
with respect to the matter field A. Besides, due to the definition of the field strength F = dA, also dF = 0
is part of the field equations. As mentioned before, the matter field equations are the starting point for the
constructive gravity program. From those, the principal polynomial has to be read off and subsequently,
the kinematical setup of the spacetime geometry is constructed.

As already demonstrated in Section 2.1, it is most convenient to choose a gauge condition, insert it
into the Maxwell equations which allows to read off the principal polynomial

P(k) = gab kakb .

Thus, for Maxwell electrodynamics and actually for any other matter of the standard model of particle
physics, the principal polynomial coincides with the metric tensor field serving as the geometry of space-
time. In different matter models such as general linear electrodynamics, the relation between principal
polynomial and geometry is more involved in general.

Up to now, the metric still has arbitrary signature. Imposing the first of the three matter conditions –
predictivity – which technically means requiring that the principal polynomial P is hyperbolic, fixes the
signature to be Lorentzian and thus, the spacetime geometry has to be a Lorentzian metric. Then, also the
other two matter conditions – the existence of a momentum-velocity duality and energy distinguishability
– are already satisfied [13].

Once these three matter conditions are satisfied, one can identify the canonical geometry, i. e. the
geometry of spatial hypersurfaces. It is

g00 := g(ε0, ε0) , g0α := g(ε0, εα)

gα0 := g(εα, ε0) , gαβ := g(εα, εβ) .

The normalisation and annihilation conditions

p = g00 = 1 , pα = gα0 = 0

together with the symmetry gab = gba of the metric remove ten of the originally 16 entries of the space-
time metric. The remaining six degrees of freedom are encoded in a symmetric tensor field gαβ, the
spatial metric which also appears in the ADM split of the metric. One suitable parametrization of this
spatial metric in terms of the six geometric degrees of freedom ϕA is given by

ĝαβ(ϕA) := IαβA ϕ
A .

Vice versa, the geometric degrees of freedom ϕA can be extracted from the spatial metric by the inverse
parametrization map

ϕ̂A(g) := IA
αβ gαβ .

The intertwining matrices I have to satisfy the two conditions

IA
αβIαβB

!
= δA

B and IαβAIA
µν

!
= δα(µδ

β
ν)
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in order to yield an admissible parametrization. These conditions are satisfied by the matrices

IA
αβ =

1
√

2



√
2 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0

√
2 0 0 0 0

0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0

√
2



A

αβ

and

IαβA =
1
√

2



√
2 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0

√
2 0 0

0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0

√
2



αβ

A

. (3.1)

One is now fully equipped to calculate the three input coefficients entering the gravitational closure
equations.

3.2 Solution to the gravitational closure equations

In order to set up the gravitational closure equations, the three input coefficients entering the closure
equations have to be calculated. With the parametrization chosen above, those three are quickly calcu-
lated. While the coefficient MAγ vanishes, the remaining two are

pαβ = ĝαβ ,

FA
µ
γ = 2 IA

µσ ĝγσ . (3.2)

Already the triviality of MAγ simplifies the closure equations a lot as many terms throughout all equations
drop out and equations (C7), (C13N), (C20N) and (C21N) are completely trivial. Besides, one can address
the collapse of the coefficient C from arbitrary derivative order to second derivative order.

Dependence of the coefficient C on derivatives of the geometric d. o. f.

Due to the trivial input coefficient MAγ, closure equation (C19N≥2) simplifies to

0 =

∞∑
K=0

(−1)K+N
(
K + N + 1

K + 1

)
∂K
α1...αK

C:B
α1...αKµ1...µN+1 . (3.3)

As mentioned before, the expansion coefficient C of the gravitational Lagrangian depends on arbitrary
many derivatives of the geometric degrees of freedom ϕA. Assuming that there is some integer F for
which

C:A
µ1...µN = 0 ∀N > F ,

closure equation (C19F−1) provides
C:A

µ1...µF = 0 .

This argument can be extended to all further N down to N = 2 for which one finally reads off that

C:A
µ1µ2µ3 = 0 .
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This means that the expansion coefficient C depends at most on the zeroth, first and second derivatives of
the configuration fields ϕA. For the expansion coefficient CA, a similar argument has not been found yet
from the closure equations and this coefficient depends on arbitrary many derivatives of ϕA. For details,
see Section 3.3.

The dependence of the expansion coefficient C on first and second derivatives of the geometric de-
grees of freedom ϕA are governed by the equations (C1), (C82), (C83) and a prolongation of (C4). In
order to see the relevance of this prolongation, first consider closure equation (C4),

0 = 2 CAB
(
ϕA

,νpµν − pµν,γFA
ν
γ
)
−C:B

µ + 2 ∂α
(
C:B

αµ )
for which the divergence term can be expanded and the resulting equation reads

0 = 2 CAB
(
ϕA

,νpµν − pµν,γFA
ν
γ
)
−C:B

µ + 2 C:B
αµ

:D ϕA
,α + 2 C:B

αµ
:D
λ ϕD

,αλ + 2 C:B
αµ

:D
λ1λ2 ϕD

,αλ1λ2

(3.4)

The last term in this equation contains a third derivative of the configuration fields. No other term in
the equation carries such a derivative as the expansion coefficients C and CAB do not depend on them
and also none of the appearing input coefficients has a third derivative in it. Thus, from the prolongation
(3.4):E

ω1ω2ω3 , one concludes that
0 = C:B

µ(ω1
:E
ω2ω3) . (3.5)

If not for the symmetrization brackets, one would read off that the coefficient C depends at most linearly
on second derivatives of ϕA. For the equation as stated here, this conclusion must not be made as only the
symmetrized version of the second derivative of C vanishes and not the full derivative. It turns out that
due to closure equation (C83) and an argument first carried out by Lovelock, the full derivative already
vanishes.

Before coming to this conclusion, it is helpful to introduce the metric gαβ as the inverse to gαβ. This
tensor field can also be parametrized by a set of six ”inverse“ configuration fields ψA as

ĝαβ = IA
αβ ψA

with the same intertwining matrices I as before. As g·· is the inverse to g··, it is clear that the inverse d. o. f.
depend on the original d. o. f. in a complicated way which is not explicitly needed for the calculations.
Only the derivative

∂ψA

∂ϕB = −IαµAIβνB gαβ gµν

is needed. This allows to rewrite closure equation (C83) and relation (3.5) in terms of the inverse d. o. f.
and conduct the desired argument. First, closure equation (C83),

0 = C:A
(β1β2 | FA

µ
|β3) , (3.6)

is transformed to
0 =

∂C
∂ψB,(β1β2 |

I |β3)ω
B .

Expanding the symmetrization and applying the relation three times to the resulting terms, one concludes
that (3.6) admits the exchange symmetry

∂C
∂ψB,β1β2

Iα1α2
B =

∂C
∂ψB,α1α2

Iβ1β2
B . (3.7)

Also, relation (3.5) obtained as a prolongation from (3.4) has to be rewritten in terms of the inverse d. o. f.
ψB and reads

0 = Iν1ν2
AIλ1λ2

B
∂2C

∂ψA,µ(ω1 |∂ψB,|ω2ω3)
. (3.8)
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The last two relations (3.7) and (3.8) now allow to conduct the argument why the expansion coefficient
C depends at most linearly on second derivatives of ϕA. The core of this argument stems from arguments
given by Lovelock [22] while the argument itself is almost identical to the one given in previous work on
the topic, most prominently in Ref. [9] and also mentioned in Ref. [8, 12].

The derivative

0 = Iν1ν2
A Iλ1λ2

B
∂2C

∂ψA,µ(ω1 |∂ψB,|ω2ω3)

contains eight free Greek indices. In three dimensions, at least three of these eight indices have to be
equal. Due to the Schwarz’s theorem and the exchange symmetry (3.7), it is possible for any choice
of the eight indices to arrange them in such a way that three equal indices fall into the position of the
symmetrized ω1, ω2 and ω3 in Eq. (3.8). It is directly clear that this derivative always vanishes as a
symmetrization of three equal indices in Eq. (3.8) always vanishes Thus, any second derivative

∂2C
∂ψA,α1α2∂ψB,β1β2

= 0

vanishes and as a direct consequence, also second derivatives of C with respect to ∂2ϕA vanish. In other
words, the expansion coefficient C depends at most linearly on second derivatives of the configuration
fields.

Next, one investigates how the coefficient C depends on first and second derivatives of ϕA. Therefore,
investigate closure equation (C82),

0 = C:A
β1β2 ϕA

,µ − 2 C:A
γ(β1 | FA

µ
|β2)

,γ −C:A
(β1 | FA

µ
|β2) . (3.9)

There are 18 different derivatives C:A
µ . Closure equation (3.9) features precisely 18 different relations for

these derivatives. It turns out that one can indeed express every derivative C:A
µ in terms of a combination

of derivatives of the form C:A
µν . Considering the prolongation (3.9):D

λ1λ2 , the only terms that remain in
this equation are

0 = C:A
µ

:B
νσ

as C depends at most linearly on second derivatives ∂2ϕA. Thus, one concludes that the expansion
coefficient C also contains no terms with both first and second derivatives of the configuration fields.
These two insights will now be used in order to construct a solution for the expansion coefficient CAB.
This coefficient is coupled to C by closure equation (C3).

Solution of the coefficient CAB

The expansion coefficient CAB will be the first one which is actually solved for. First important informa-
tion about it can be extracted from closure equation (C3) which relates it with derivatives of C by

0 = 2 CAB FA
ρ

(µ pν)ρ −C:B
µν . (3.10)

Before actually analyzing this equations, consider the prolongation (3.10):D
λ1λ2 to conclude that CAB

does not depend on second derivatives of the configuration fields. This is because C depends at most
linearly on them and the combination FA

ρ
(µ pν)ρ can be inverted from the equation. Additionally, the

prolongation (3.10):D
λ shows that the coefficient CAB also does not depend on first derivatives of the con-

figuration fields. Thus, as CAB is a function of only the configuration fields themselves which simplifies
closure equation (C102) to

0 = CB1B2δ
γ
µ + 4 CA(B1 | I

A
µσIγσ |B2) + CB1B2:A FA

µ
γ . (3.11)

In order to solve this differential equation, it is useful to split the tensor density CAB into a scalar density
of weight one χ(ϕ) and a tensor C̃AB. A convenient choice for the scalar density is

χ(ϕ) =
1√
− det ĝ··

.
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Plugging this ansatz into Eq. (3.11), one obtains a differential equation for the tensor components C̃AB,

0 = 2 C̃A(B1 | I
A
µσIγσ |B2) + C̃B1B2:A IA

µσgγσ .

One can try and solve this differential equation. Practically, it is, however, simpler to first perform a
change of variables and use the inverse configuration fields ψB in this equation. It is then

0 = 2 C̃A(B1 | I
A
µσIγσ |B2) −

∂C̃B1B2

∂ψA
IωγA gωµ ,

for which one quickly checks that the expression

C̃B1B2 = Iλ1λ2
(B1 Iω1ω2

B2)
(
a0 gλ1ω1gλ2ω2 − a1 gλ1λ2gω1ω2

)
is a solution. There are two independent constants a0 and a1 appearing in this expression. The full
expansion coefficient CAB can be plugged together as

CAB =
1√
− det ĝ··

Iλ1λ2
(AIω1ω2

B)
(
a0 ĝλ1ω1 ĝλ2ω2 − a1 ĝλ1λ2 ĝω1ω2

)
. (3.12)

This solution will now be used in closure equation (C3) which will then provide a differential equation
for the dependence of C on second derivatives of the configuration fields.

Solution of the coefficient C

Recall that closure equation (C3) contained two essential terms, the coefficient CAB and the deriva-
tive C:A

µν . As a solution for CAB has been obtained, one can rearrange Eq. (3.10) as

C:B
µν =

4√
− det ĝ··

(
a0IµνB − a1Iλ1λ2

B ĝλ1λ2 gµν
)
.

It is already a differential equation for the dependence of C on second derivatives of the configuration
fields. Integration yields the partial solution of C as

C =
4√
− det ĝ··

(
a0ĝµν,µν − a1ĝλ1λ2 ĝλ1λ2

,µν ĝµν
)

+ f (∂ϕ, ϕ) , (3.13)

where f is a scalar density of weight one depending on zeroth and first derivatives of the geometric de-
grees of freedom. This function will be determined by analysing the dependence of C on first derivatives
of ϕA using closure equation (3.4). After rearranging, it is a differential equation for the dependence of
the coefficient C on first derivatives ∂ϕA of the configuration fields,

C:B
µ = f:Bµ = 2 CAB

(
ĝµνϕA

,ν − 2 IA
νσIµνEϕ

E
,γĝγσ

)
+ 2 C:B

αµ
:D ϕD

,α .

Inserting the solution (3.12) of the coefficient CAB and the partial solution (3.13) of the coefficient C, this
equation can only be integrated if the two constants a0 and a1 appearing in (3.12) are equal, a := a0

!
= a1.

One finds

C =
a√
− det ĝ··

(
4 ĝµν,µν − 4 ĝλ1λ2 ĝλ1λ2

,µν ĝµν + 5 ĝλ1ω1 ĝλ2ω2 ĝλ1λ2
,µĝω1ω2

,ν ĝµν

+ ĝλ1λ2 ĝω1ω2 ĝλ1λ2
,µĝω1ω2

,ν ĝµν − 2 ĝλν ĝλγ,µ ĝµν,γ − 4 ĝω1ω2 ĝω1ω2
,µ ĝµγ,γ

)
(3.14)

+
1√
− det ĝ··

f̄ (ϕ)

with an undetermined function f̄ depending only on the degrees of freedom ϕ. The function f̄ has to
be determined from the remaining closure equation (C1). After some calculation and use of the partial
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solution (3.14), one finds that the function f̄ is actually a constant, f̄ := a · b. The solution of expansion
coefficients C is thus

C =
a√
− det ĝ··

(
4 ĝµν,µν − 4 ĝλ1λ2 ĝλ1λ2

,µν ĝµν + 5 ĝλ1ω1 ĝλ2ω2 ĝλ1λ2
,µĝω1ω2

,ν ĝµν

+ ĝλ1λ2 ĝω1ω2 ĝλ1λ2
,µĝω1ω2

,ν ĝµν − 2 ĝλν ĝλγ,µ ĝµν,γ − 4 ĝω1ω2 ĝω1ω2
,µ ĝµγ,γ + b

)
(3.15)

It is important to stress that the two constants a and b are integration constants and thus, a priori undeter-
mined. One would have to perform two independent experiments in order to determine their value and
make the theory predictive.

As one expects to know the result of this calculation, one compares the obtained expression to
the standard theory of general relativity. One discovers that the expression (3.15) is indeed the three-
dimensional Ricci scalar. Additionally, one can identify the two integration constants a and b as the
gravitational and the cosmological constant. Thus, one can write Eq. (3.15) more compactly as

C = −
1
2κ

1√
− det ĝ··

(R − 2Λ) ,

where R is the three-dimensional Ricci scalar, Λ the cosmological constant and κ the gravitational con-
stant.

After solving for two expansion coefficients, one needs to solve the others as well. It will be demon-
strated in the following that the other expansion coefficients will not contribute any further information
to the theory as they either vanish or drop from the equations of motion as boundary terms in the La-
grangian.

Triviality of higher numbered expansion coefficients

The starting point for the solution of expansion coefficients CA1...AN for N ≥ 3 is the sequence of closure
equation (C16N),

0 = N · (N + 1) CAB1...BN FA
ρ

(µ pν)ρ + (N − 2) CB1...BN−1:BN
µν .

For N = 2, this equation simplifies to

0 = 6 CAB1B2 FA
ρ

(µ pν)ρ .

Inserting the expressions (3.2) of the input coefficient FA
µ
γ and inverting it from the equation, one con-

cludes that the expansion coefficient CB1B2B3 vanishes. Since this coefficient vanishes, the expansion
coefficient CB1...B5 vanishes as well. This is a direct consequence from closure equation (C164). Extend-
ing this argument to all even-numbered instances (C162N) for N ≥ 2, it is apparent that all odd-numbered
expansion coefficients CB1...B2N+1 for N ≥ 1 vanish.

The analogous argument holds for their even-numbered counterparts. As CAB does not depend on
second derivatives of the geometric degrees of freedom, evaluating (C163) yields that CB1B2B3B4 vanishes.
Evaluating all odd-numbered instances (C162N+1) demonstrates the triviality of all even-numbered ex-
pansion coefficients CB1...B2N for N ≥ 2.

From the infinity of expansion coefficients that were there in the beginning of the evaluation, only
three can actually contribute to the Lagrangian, namely C, CA and CAB. As the next section shows, only
C and CAB will actually be used for the construction of the field equations as the coefficient CA turns out
to be dynamically irrelevant.

3.3 Remarks about the second expansion coefficient

The last unknown expansion coefficient of the metric gravitational Lagrangian is CA. The closure equa-
tions that determine it form an autonomous set of equations (C2), (C5), (C6), (C9N) and (C18N) with
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N ≥ 2. Thus, the solution of the two other expansion coefficients cannot be used here and additionally,
one cannot find a certain highest derivative order of ϕA up to which CA depends on. Nevertheless, one
can find solutions for the coefficient CA. In order to do so, inspect closure equation (C5),

0 = −2 pργ
(
CA ϕ

A
,ρ + ∂µ

(
CA FA

ρ
µ
))
. (3.16)

First, one applies the previously introduced split of the tensor density CA into a tensor C̃A and a scalar
density χ(ϕ) = (− det ĝ··)−

1
2 . One then introduces the Levi-Civita connection and the covariant derivative.

Using shorthand notation Cαβ := CAIA
αβ, closure equation (C5) is written as

0 = gµσ ∇µ(C̃νσ) .

In order to find solutions for the coefficient CA, the question arises, which symmetric, second-rank,
divergence-free tensor can be built from the metric (and thus, the configuration fields) and arbitrary high
spatial derivatives of it? An answer to this question is involved and pointing to a more fundamental
question whether it is actually admissible that CA depends on arbitrarily high derivatives of ϕA [20].
Here, the arguments from Ref. [9] will be applied. Restricting to zeroth, first and second derivatives
of the metric, Lovelock shows that the only symmetric, divergence-free, second-rank tensor in three
and four dimensions are the metric and the Einstein tensor [22]. Thus, a solution for CA from closure
equation (3.16) is

CA =
1√
− det ĝ··

IαβA
(
c1 ĝαβ + c2 Ĝαβ

)
. (3.17)

Calculating the Einstein tensor in terms of derivatives ∂ϕ and ∂2ϕ and substituting the result into the
remaining closure equations for CA yields that the obtained solution (3.17) is indeed a solution to the
gravitational closure equations. It can be written as the functional derivative of the potential

Φ =
1√
− det ĝ··

(−2c1 + c2 R) ,

where R is the three-dimensional Ricci scalar. Following the arguments of Ref. [9], such a term drops
out of the gravitational field equations and thus, one can set the two constants to c1 = c2 = 0 in the first
place.

3.4 Recovering the Einstein-Hilbert action

The last sections have shown how the gravitational closure equations are solved for the case of a metric
spacetime with Maxwell electrodynamics as the initial matter theory on it. The two expansion coef-
ficients of the gravitational Lagrangian that contribute are C and CAB and collecting the results from
Eq. (3.12) and Eq. (3.15), the gravitational Lagrangian can be written as

L = −
1
2κ

1√
− det ĝ··

(
R − 2 Λ −

1
8

Iα1α2
AIβ1β2

B
(
ĝα1β1 ĝα2β2 − ĝα1α2 ĝβ1β2

)
kAkB

)
,

where already, the long expression for C is replaced by the three-dimensional Ricci scalar. Following the
standard rules [9, 12], one can reconstruct the full spacetime gravitational action,

S grav,met =
1
2κ

∫
d4x

1√
− det ĝ··

(R − 2Λ)

which is just the Einstein-Hilbert action with a gravitational and a cosmological constant.
It is this derivation of the Einstein-Hilbert action starting from (free) Maxwell theory1 which replaces

the old thinking that the Einstein equations need to be postulated or be the result of postulated Lovelock
1One is not restricted to Maxwell theory. Indeed, it suffices to choose e. g. Klein-Gordon theory for a scalar field in order to

derive the Einstein-Hilbert action. One can also choose the entire standard model of particle physics and derive the Einstein-
Hilbert action as the solution to the gravitational closure equations as the standard model is built in such a way that it operates
with a Lorentzian metric and prinicpal polynomial P = g [14].
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criteria. Instead, one only needs to postulate the matter action – which one would have postulated anyway
as the matter sourcing the gravitational dynamics. From this matter theory, here Maxwell theory, the
Einstein-Hilbert action is derived as the solution of the gravitational closure equations.

This result has two direct implications on this thesis. First, it provides the indispensable test run for
the constructive gravity program as it is already known that general relativity is the gravity theory behind
Maxwell theory. Second, it provides the starting point for the symmetry reduction of the constructive
gravity program which is the goal of this work. While the goal of this symmetry reduction is to actually
circumvent the need of the full Einstein equations, the general setup of the closure equations including
the input coefficients is still required as the starting point for the symmetry reduction. The next chapter
will demonstrate how to properly impose spatial homogeneity and isotropy as symmetries on the closure
equations. The result will be the derivation of the Friedmann equations directly from Maxwell theory –
circumventing the full Einstein equations.

42



Chapter 4

Friedmann equations without Einstein
equations

The last chapter demonstrated the first exact solution to the gravitational closure equations. Starting from
Maxwell electrodynamics, the closure equations were solved and rendered the Einstein-Hilbert action.
By variation, the Einstein equations can be obtained.

It is standard wisdom to then insert a symmetry ansatz, e. g. spatial homogeneity and isotropy consti-
tuting the FLRW spacetime, into the Einstein equations in order to obtain the Friedmann equations. The
solutions to the Friedmann equations subsequently determine the dynamics of cosmology.

In this chapter, the Friedmann equations are derived directly from Maxwell theory by imposing the
symmetry condition already on the gravitational closure equations. This circumvents the need for the
Einstein equations as the full gravitational field equations in order to derive the Friedmann equations of
cosmology. While this might seem redundant for Maxwell-Einstein theory, a proper symmetry reduction
of the constructive gravity program is needed for theories such as the aforementioned general linear
electrodynamics for which the full gravitational field equations are not yet known.

The structure of this chapter is also sketched in Fig. 4.1. The general setup of the gravitational
closure equations is inherited from the previous chapter. The FLRW symmetries are then imposed onto
the closure equations and their solution will be constructed.

S Maxwell[A; g)
closure

equations
S Einstein−Hilbert[g]

Einstein
equationsSec. 3.1 Sec. 3.2 – 3.4

symm.-red.
closure eqns

Sec. 4.1

Sec. 4.2
S cosmo[a(t)]

Sec. 4.3

Friedmann
equations

Figure 4.1: The path from the Maxwell action to the Friedmann equations which arise from a solution of
the symmetry-reduced gravitational closure equations. This path (right – down – right – right) provides
the first demonstration of a symmetry reduction of the constructive gravity program.

The results of this chapter are to be published as
M. Düll, N. L. Fischer, B. M. Schäfer, F. P. Schuller,

Symmetric gravitational closure, arXiv:2003.07109, 2020
whose results are elaborated here.

4.1 From the FLRW metric to the symmetric input coefficients

It was already mentioned in the last chapter that Maxwell electrodynamics satisfies the three matter con-
ditions of Chapter 2. Thus, the constructive gravity program can and has to be used in order to determine
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the underlying gravitational dynamics. The setup of the gravitational closure equations remains the same
as in the previous chapter and the six configuration fields ϕA are distributed over the spatial part

ĝαβ(ϕ) =


ϕ1 ϕ2

√
2

ϕ3
√

2
ϕ2
√

2
ϕ4 ϕ5

√
2

ϕ3
√

2
ϕ5
√

2
ϕ6


αβ

of the full spacetime metric; the full metric is completed by a lapse function N and shift vector field
~N. All quantities also depend on the foliation time t which will be suppressed in the following to keep
notation more compact.

A symmetry condition is imposed on a tensorial quantity T by requiring the Killing condition

LKiT
!
= 0

for all generators Ki of the symmetry also called the Killing vector fields. For FLRW symmetries, there
are six Killing vector fields. As shown in Ref. [23, 24], these are in spherical coordinates r, θ, φ,

K1 = sin φ ∂θ + cot θ cos φ ∂φ ,

K2 = cos φ ∂θ + cot θ sin φ ∂φ ,

K3 = −∂φ ,

K4 =
√

1 − kr2

(
sin θ cos φ ∂r +

cos θ cos φ
r

∂θ −
sin φ

r sin θ
∂φ

)
,

K5 =
√

1 − kr2

(
sin θ sin φ ∂r +

cos θ sin φ
r

∂θ +
cos φ
r sin θ

∂φ

)
,

K6 =
√

1 − kr2

(
sin θ

r
∂θ − cos θ ∂r

)
.

The range of these coordinates depends on the exact symmetry condition, namely whether the universe
is spatially spherical (k = 1), flat (k = 0) or hyperbolic (k = −1). Evaluating the Killing condition

(LKig)ab !
= 0

provides simple differential equations for the components of the metric. Solving them and performing an
usual 3 + 1-decomposition reveals that the shift vector ~n vanishes, the lapse is a function of the foliation
time only and the configuration fields ϕA simplify and constitute the spatial part of the Friedmann-
Robertson-Walker metric. Thus, only three fields

ϕ1 = −
1 − kr2

a2 , ϕ4 = −
1

a2 r2 , ϕ6 = −
1

a2 r2 sin2 θ

are non-trivial and now given as functions of the scale factor a(t) depending only on the foliation time
and two of three spherical coordinates r, θ, φ.

The key question is now: How do the gravitational closure equations have to be evaluated for the
configuration fields confined to the symmetry? The closure equations are formulated for the full set of
local functions CA1...AN [ϕA]. The goal is to rewrite them in terms of new ultra-local functions

Ccosmo
A1...AN

(a, r, θ) = CA1...AN [ϕA(a, r, θ)]

with configuration fields ϕA(a, r, θ) :=
(
(1 − kr2) a−2, 0, 0, a−2 r−2, 0, a−2 r−2 sin−2 θ

)A
. The expansion

coefficients Ccosmo
A1...AN

are ultralocal functions as the scale factor a only depends on the foliation time and
is thus spatially constant. Here, it is important to stress that the expansion coefficients in the full grav-
itational closure equations must not be simply replaced by their just defined symmetric counterparts
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Ccosmo
A1...AN

since the derivatives in the gravitational closure equations are always taken with respect to the
independent configuration fields ϕA and not with respect to the variables a, r, θ of Ccosmo

A1...AN
. The way to

relate these different derivatives is to use the chain rule which then provides differential equations for the
symmetry-reduced expansion coefficients Ccosmo

A1...AN
,

∂Ccosmo
A1...AN

∂a
= CA1...AN :B

µ1...µR
∣∣∣
ϕA(a,r,θ)

∂ϕB
,µ1...µR

∂a
, (4.1)

∂Ccosmo
A1...AN

∂r
= CA1...AN :B

µ1...µR
∣∣∣
ϕA(a,r,θ)

∂ϕB
,µ1...µR

∂r
, (4.2)

∂Ccosmo
A1...AN

∂θ
= CA1...AN :6

µ1...µR
∣∣∣
ϕA(a,r,θ)

∂ϕ6
,µ1...µR

∂θ
, (4.3)

where |ϕA(a,r,θ denotes the evaluation on the symmetric configuration. The strategy is now clear: first,
evaluate the gravitational closure equations on symmetry and from these equations, determine all re-
quired derivatives CA1...AN :B

µ1...µR
∣∣∣
ϕA(a,r,θ); plug them into the three chain rule equations (4.1) – (4.3) and

solve for the symmetric expansion coefficients Ccosmo
A1...AN

.
Before doing so, first impose the symmetry condition on the three input coefficients and write down

their symmetric form. From the general setup, one inherits that the input coefficient MAγ vanishes.
Also, the components pµν|ϕA(a,c) are simply the diagonal components of the spatial FLRW metric. The
general expression of the last input coefficient FA

µ
γ was written down in Eq. (3.2). Imposition of FLRW

symmetries yields

FA
µ
γ |ϕA(a,r,θ) = −

(
2 δA

1 δ
r
µδ
γ
r +
√

2
(
δA

2 δ
θ
µδ
γ
r + δA

3 δ
ϕ
µδ

γ
r

))
a−2 (1 − kr2)

−
(
2 δA

4 δ
θ
µδ
γ
θ +
√

2
(
δA

2 δ
r
µδ
γ
θ + δA

5 δ
ϕ
µδ

γ
θ

))
a−2 r−2

−
(
2 δA

6 δ
ϕ
µδ

γ
ϕ +
√

2
(
δA

3 δ
r
µδ
γ
ϕ + δA

5 δ
θ
µδ
γ
ϕ

))
a−2 r−2 sin−2 θ .

Due to the vanishing shift vector field and the trivial coefficient MAγ, the symmetric gravitational space-
time action (2.60) can be more compactly written as

S cosmo(a, ȧ,N) =

∫
dt

∫
Σ

d3z
∞∑

M=0

Ccosmo
A1...AM

(a, r, θ) ϕ̇A1(a, r, θ) . . . ϕ̇AM (a, r, θ) N1−M . (4.4)

As there are only three non-trivial configuration fields, there are also only three non-trivial derivatives

ϕ̇1 =
2 (1 − kr2) ȧ

a3 , ϕ̇4 =
2 ȧ

a3 r2 and ϕ̇6 =
2 ȧ

a3 r2 sin2 θ
.

This has an important consequence for the solution of the closure equations. As there are only three
non-trivial derivatives ϕ̇A, one only needs to determine those components of the expansion coefficients
which couple exclusively to the non-trivial derivatives ϕ̇1, ϕ̇4 and ϕ̇6.

4.2 Evaluation of the gravitational closure equations

The analysis of the gravitational closure equations on symmetric configurations ϕA(a, r, θ) differs tech-
nically from the general metric solution presented in the last chapter. The general solution presented in
the previous chapter featured general arguments and solution techniques. In contrast to that, the analysis
of the closure equations in the symmetric case is based on considering any combination of the respective
free indices of the equations. This gives rise to a componentwise solution. This is only manageable since
the symmetry simplifies the configuration fields and components of the input coefficients.

While there are a lot of different ways to evaluate the gravitational closure equations, it has proved to
be most practical to start with equations containing the first expansion coefficient C. Only after extracting
as much information about this coefficient as possible, one should proceed with other equations and
expansion coefficients.
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Derivatives of the first expansion coefficient C

The first closure equation to be evaluated is the same as in the general case – it is the sequence (C19N)
which provides a collapse of C to second derivative order as

C:B
µ1...µR

∣∣∣
ϕA(a,r,θ) = 0 for R ≥ 3 .

This is directly put to use when considering the instance (C83)|ϕA(a,r,θ) of the sequence (C8N). Due to the
collapse of C to second derivative order in the configuration fields, it simplifies to

0 = C:A
(β1β2 |

∣∣∣
ϕA(a,r,θ) FA

µ
|β3)

∣∣∣
ϕA(a,r,θ) .

The 30 individual relations relate the 36 independent derivatives of the type C:A
µν |ϕA(a,r,θ) with each

other. The result is that 15 derivatives vanish and the others are expressed in terms of six independent
ones. The 15 vanishing derivatives are

0 = C:1
rr

∣∣∣
ϕA(a,r,θ) = C:1

rθ
∣∣∣
ϕA(a,r,θ) = C:1

rϕ
∣∣∣
ϕA(a,r,θ) = C:2

rr
∣∣∣
ϕA(a,r,θ) = C:2

θθ
∣∣∣
ϕA(a,r,θ)

= C:3
rr

∣∣∣
ϕA(a,r,θ) = C:3

ϕϕ
∣∣∣
ϕA(a,r,θ) = C:4

rθ
∣∣∣
ϕA(a,r,θ) = C:4

θθ
∣∣∣
ϕA(a,r,θ) = C:4

θϕ
∣∣∣
ϕA(a,r,θ)

= C:5
θθ

∣∣∣
ϕA(a,r,θ) = C:5

θϕ
∣∣∣
ϕA(a,r,θ) = C:6

rϕ
∣∣∣
ϕA(a,r,θ) = C:6

θϕ
∣∣∣
ϕA(a,r,θ) = C:6

ϕϕ
∣∣∣
ϕA(a,r,θ) .

W. l. o. g. the six independent derivatives are chosen to be

C:3
θθ

∣∣∣
ϕA(a,r,θ) , C:4

rr
∣∣∣
ϕA(a,r,θ) , C:5

rr
∣∣∣
ϕA(a,r,θ) , C:6

rr
∣∣∣
ϕA(a,r,θ) , C:6

rθ
∣∣∣
ϕA(a,r,θ) , C:6

θθ
∣∣∣
ϕA(a,r,θ) . (4.5)

Thus, the remaining relations can be written compactly as

C:3
θθ

∣∣∣
ϕA(a,r,θ) = −2 sin2 θ C:2

θϕ
∣∣∣
ϕA(a,r,θ) =

√
2 sin2 θ

r2 (1 − kr2)
C:4

rϕ
∣∣∣
ϕA(a,r,θ)

=
−2

r2 (1 − kr2)
C:5

rθ
∣∣∣
ϕA(a,r,θ) ,

C:4
rr

∣∣∣
ϕA(a,r,θ) =

(
(1 − kr2) r2

)2
C:1

θθ
∣∣∣
ϕA(a,r,θ) = −

√
2 (1 − kr2) r2 C:2

rθ
∣∣∣
ϕA(a,r,θ) ,

C:5
rr

∣∣∣
ϕA(a,r,θ) =

√
2 (1 − kr2)2 r4 sin2 θ C:1

θϕ
∣∣∣
ϕA(a,r,θ) = −2 (1 − kr2) r2 sin2 θ C:2

rϕ
∣∣∣
ϕA(a,r,θ)

= −2 (1 − kr2) r2 C:3
rθ

∣∣∣
ϕA(a,r,θ) ,

C:6
rr

∣∣∣
ϕA(a,r,θ) =

(
(1 − kr2) r2 sin2 θ

)2
C:1

ϕϕ
∣∣∣
ϕA(a,r,θ) = −

√
2 (1 − kr2) r2 sin2 θ C:3

rϕ
∣∣∣
ϕA(a,r,θ) ,

C:6
rθ

∣∣∣
ϕA(a,r,θ) =

(1 − kr2) r2 sin4 θ
√

2
C:2

ϕϕ
∣∣∣
ϕA(a,r,θ) = −

√
2 (1 − kr2) r2 sin2 θ C:3

θϕ
∣∣∣
ϕA(a,r,θ)

= −
√

2 sin2 θ C:5
rϕ

∣∣∣
ϕA(a,r,θ) ,

C:6
θθ

∣∣∣
ϕA(a,r,θ) = sin4 θ C:4

ϕϕ
∣∣∣
ϕA(a,r,θ) = −

√
2 sin2 θ C:5

θϕ
∣∣∣
ϕA(a,r,θ) .

These relations will be used at several points throughout the analysis of the closure equations. They
are already of central importance in the next instance (C82)|ϕA(a,r,θ) of the sequence (C8N) which breaks
down to

0 = C:A
β1β2

∣∣∣
ϕA(a,r,θ) ϕ

A
,µ − 2 C:A

γ(β1 |
∣∣∣
ϕA(a,r,θ) FA

µ
|β2)

,γ

∣∣∣
ϕA(a,r,θ)

− C:A
(β1 |

∣∣∣
ϕA(a,r,θ) FA

µ
|β2)

∣∣∣
ϕA(a,r,θ) .

The 18 individual relations allow to express all derivatives of the type C:A
µ |ϕA(a,r,θ) in terms of the six

independent derivatives from Eq. (4.5). The detailed relations are quite involved and will simplify later
on anyway. Therefore, they are omitted here.
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In similar fashion, closure equation (C1)|ϕA(a,r,θ) which reads

0 = −Ccosmo δ
γ
µ − C:A |ϕA(a,r,θ) FA

µ
γ
∣∣∣
ϕA(a,r,θ) + C:A

γ
∣∣∣
ϕA(a,r,θ) ϕ

A
,µ

− C:A
α
∣∣∣
ϕA(a,r,θ) FA

µ
γ
,α

∣∣∣
ϕA(a,r,θ) + 2 C:A

αγ
∣∣∣
ϕA(a,r,θ) ϕ

A
,µα

− C:A
β1β2

∣∣∣
ϕA(a,r,θ) FA

µ
γ
,β1β2

∣∣∣
ϕA(a,r,θ)

provides six relations which express the derivatives C:A |ϕA(a,r,θ) in terms of Ccosmo and the six inde-
pendent derivatives from Eq. (4.5). As soon as the six derivatives have been determined, the relations
obtained from closure equation (C1)|ϕA(a,r,θ) can be used to solve the differential equations (4.1) – (4.3).

As a side effect, the analysis of (C1)|ϕA(a,c) reveals that the derivative C:3 |ϕA(a,r,θ) vanishes. This
provides a relation between the two derivatives C:3

θθ
∣∣∣
ϕA(a,r,θ) and C:5

rr |ϕA(a,r,θ). Thus, there are now only
five independent derivatives of the expansion coefficient C, w. l. o. g.

C:3
θθ

∣∣∣
ϕA(a,r,θ) , C:4

rr
∣∣∣
ϕA(a,r,θ) , C:6

rr
∣∣∣
ϕA(a,r,θ) , C:6

rθ
∣∣∣
ϕA(a,r,θ) , C:6

θθ
∣∣∣
ϕA(a,r,θ) . (4.6)

The relations obtained from the analysis of closure equation (C1)|ϕA(a,r,θ) are even more involved than the
ones from (C82)|ϕA(a,r,θ). They will also simplify during the following analysis of other closure equations.
Therefore, they are also omitted here. In the end, their simpler form will be presented which will also be
the form in which they contribute to the solution of the expansion coefficient C.

There are still more equations containing derivatives of the expansion coefficient C – not only first,
but also second derivatives. Closure equation (C4) contains a divergence term ∂αC:B

µα which generates,
besides others, a term

C:B
µα

:A
λω ϕA

,αλω .

No other term appearing in this equation depends on second derivatives and thus, the derivative

(C4):D
λ1λ2λ3 |ϕA(a,r,θ)

of closure equation (C4) provides the relation

C:A
µ(λ1

:B
λ2λ3)

∣∣∣
ϕA(a,r,θ) = 0 . (4.7)

This equation alone does not allow to read off that the expansion coefficient C does not depend on two
or more second derivatives of the configuration fields as the symmetrization bracket is still there. If one
then also takes derivative

(C83):D
λ1λ2

∣∣∣
ϕA(a,r,θ)

into consideration, the evaluation of the 630 independent relations of Eq. (4.7) reveals that the equation
is indeed valid without symmetrization,

C:A
µ1µ2

:B
λ1λ2

∣∣∣
ϕA(a,r,θ) = 0 ,

or in other words, the expansion coefficient C depends at most linearly on second derivatives of the
configuration fields – after evaluation on symmetric configurations1.

As a direct consequence of this, the derivative

(C82):D
λ1λ2

∣∣∣
ϕA(a,r,θ)

of closure equation (C82) reveals that with the symmetry condition imposed, the expansion coefficient C
also contains no terms with both a first and second derivative of the configuration fields in it as

C:A
µ

:B
λ1λ2

∣∣∣
ϕA(a,r,θ) = 0 .

1In the case presented here, this information is also valid in the full case as the last chapter showed. Still, it is necessary to
stress this here as for the perspective of the symmetry reduction, the information is only valid on the symmetric configuration.
In Chapter 6, there will be instances where similar statements are actually only valid with the symmetry imposed.
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This is an implication from the previous evaluation of (C82)|ϕA(a,r,θ) which allowed to express all deriva-
tives of the form C:A

µ |ϕA(a,r,θ) in terms of the five independent ones from Eq. (4.6).
Now, one has extracted all relevant information on derivatives of the first expansion coefficient C.

The only equation containing meaningful new information is closure equation (C3) which connects the
expansion coefficient CAB with C. Before one can construct a solution for the latter, one first uses
equation (C3) in order to determine the components of CAB.

Solution for expansion coefficient Ccosmo
AB

Just as in the general solution of the closure equations in the previous chapter, closure equation (C3)
provides important information by considering derivatives of it. Thus, first consider the full closure
equation (C3),

0 = 2 CAB FA
ρ

(µ pν)ρ −C:B
µν ,

and its derivatives,
(C3):D

λ
∣∣∣
ϕA(a,r,θ) and (C3):D

λω
∣∣∣
ϕA(a,r,θ) .

As the second derivatives of the first expansion coefficient C drop out of the respective equation due to
the results of the previous subsection, one can read off that the expansion coefficient CAB depends only
on the configuration fields ϕ, but not on any derivatives when symmetry is imposed. This will simplify
the closure equations containing the coefficient CAB as well as the three chain rule equations (4.1) – (4.3).

First, analyse closure equation (C3)|ϕA(a,r,θ),

0 = 2 Ccosmo
AB FA

ρ
(µ|

∣∣∣
ϕA(a,r,θ) p|ν)ρ

∣∣∣
ϕA(a,r,θ) − C:B

µν
∣∣∣
ϕA(a,r,θ) .

The 36 individual relations together with those from closure equation (C83)|ϕA(a,r,θ) reveal that only the
components

Ccosmo
14 , Ccosmo

16 , Ccosmo
26 , Ccosmo

34 and Ccosmo
46

are independent. All other components either vanish or can be expressed in terms of these five. These
five components can be determined further by closure equation (C102)|ϕA(a,r,θ),

0 = Ccosmo
B1B2

δ
γ
µ + 4 Ccosmo

A(B1 |
IA
µσ Iγσ |B2) + CB1B2:A

∣∣∣
ϕA(a,r,θ) FA

µ
γ
∣∣∣
ϕA(a,r,θ) .

The only independent component left is Ccosmo
14 while all other non-trivial components can be expressed

by it,

Ccosmo
14 =

1
sin2 θ

Ccosmo
16 =

1
(1 − kr2) r2 sin2 θ

Ccosmo
46 .

While the components Ccosmo
22 , Ccosmo

33 and Ccosmo
55 are also non-trivial and can be expressed by Ccosmo

14 ,
they do not contribute to the spacetime action (4.4) as the associated ϕ̇A are trivial. Therefore, they will
not be written down here.

Also from closure equation (C102)|ϕA(a,r,θ), one reads off the three relations entering the chain rule
equations (4.1) – (4.3) as

C14:1 |ϕA(a,r,θ) =
3 a2

2 (1 − kr2)
Ccosmo

14 ,

C14:4 |ϕA(a,r,θ) =
3 a2 r2

2
Ccosmo

14 and

C14:6 |ϕA(a,r,θ) =
a2 r2 sin2θ

2
Ccosmo

14 .

48



The chain rule equations (4.1) – (4.3) for the component Ccosmo
14 thus read

∂Ccosmo
14

∂a
= C14:1 |ϕA(a,r,θ)

2 (1 − kr2)
a3 + C14:4 |ϕA(a,r,θ)

2
a3 r2 + C14:6 |ϕA(a,r,θ)

2
a3 r2 sin2 θ

,

∂Ccosmo
14

∂r
= C14:1 |ϕA(a,r,θ)

2kr
a2 + C14:4 |ϕA(a,r,θ)

2
a2 r3 + C14:6 |ϕA(a,r,θ)

2
a2 r3 sin2 θ

,

∂Ccosmo
14

∂θ
= C14:6 |ϕA(a,r,θ)

2 cos θ
a2 r3 sin3 θ

.

Solving them step by step, one constructs the solution

Ccosmo
14 = K0

r4 sin θ a7

(1 − kr2)
3
2

with a constant of integration K0 which remains undetermined here. From this result, the two components

Ccosmo
16 = K0

r4 sin3 θ a7

(1 − kr2)
3
2

and Ccosmo
46 = K0

r6 sin3 θ a7

(1 − kr2)
1
2

complete the set of components of the expansion coefficient Ccosmo
AB . This solution now enables to invert

the analysis of closure equation (C3)|ϕA(a,r,θ). By doing so, the derivatives C:A
µν |ϕA(a,r,θ) of the expansion

coefficient C are determined in terms of the solution for Ccosmo
AB .

Solution of the expansion coefficient Ccosmo

The solution of the symmetric expansion coefficient Ccosmo
AB allows to construct the solution of the first

expansion coefficient Ccosmo. In order to do so, first write down all derivatives from the chain rule
equations (4.1) – (4.3) that need to be determined,

C:1 |ϕA(a,r,θ) , C:4 |ϕA(a,r,θ) , C:6 |ϕA(a,r,θ) ,

C:1
r
∣∣∣
ϕA(a,r,θ) , C:4

r
∣∣∣
ϕA(a,r,θ) , C:6

r
∣∣∣
ϕA(a,r,θ) , C:6

θ
∣∣∣
ϕA(a,r,θ) ,

C:4
rr

∣∣∣
ϕA(a,r,θ) , C:6

rr
∣∣∣
ϕA(a,r,θ) , C:6

rθ
∣∣∣
ϕA(a,r,θ) , C:6

θθ
∣∣∣
ϕA(a,r,θ) ,

where the derivative C:1
rr |ϕA(a,r,θ) is already dropped as the analysis of (C83)|ϕA(a,r,θ) before revealed that

this derivative vanishes.
Closure equation (C3)|ϕA(a,r,θ) does not only provide information about the components of the ex-

pansion coefficient Ccosmo
AB , it also provides information about the derivatives C:A

µν . As the compo-
nents Ccosmo

26 and Ccosmo
34 vanish, the (up to now independent) derivatives

C:6
rθ

∣∣∣
ϕA(a,r,θ) and C:3

θθ
∣∣∣
ϕA(a,r,θ)

vanish as well. The other three derivatives are no longer independent and now expressed in terms of the
component Ccosmo

14 as

C:4
rr

∣∣∣
ϕA(a,r,θ) = 4

(
1 − kr2

a2

)2

Ccosmo
14 = K0 r4 sin θ (1 − kr2)

1
2 a3 ,

C:6
rr

∣∣∣
ϕA(a,r,θ) = 4

(1 − kr2)2 sin2 θ

a4 Ccosmo
14 = K0 r4 sin3 θ (1 − kr2)

1
2 a3 ,

C:6
θθ

∣∣∣
ϕA(a,r,θ) = 4

(1 − kr2) sin2 θ

a4 r2 Ccosmo
14 = K0

r2 sin3 θ a3

(1 − kr2)
1
2

.
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Subsequently, use the relations from closure equation (C82)|ϕA(a,r,θ) in order to determine the deriva-
tives C:A

µ |ϕA(a,r,θ),

C:1
r
∣∣∣
ϕA(a,r,θ) = −

8 (1 − kr2)
a4 r3 Ccosmo

14 ,

C:4
r
∣∣∣
ϕA(a,r,θ) =

(
−

4 kr (1 − kr2)
a4 + 28

(1 − kr2)2

a4 r

)
Ccosmo

14 ,

C:6
r
∣∣∣
ϕA(a,r,θ) =

(
−

4 kr (1 − kr2) sin2 θ

a4 + 28
(1 − kr2)2 sin2 θ

a4 r

)
Ccosmo

14 ,

C:6
θ
∣∣∣
ϕA(a,r,θ) =

12 (1 − kr2) sin θ cos θ
a4 r2 Ccosmo

14 .

Last but not least, the relations from closure equation (C1)|ϕA(a,r,θ) express the derivatives

C:1 |ϕA(a,r,θ) , C:4 |ϕA(a,r,θ) and C:6 |ϕA(a,r,θ)

in terms of the expansion coefficient Ccosmo itself and the component Ccosmo
14 which is already known.

One finds

C:1 |ϕA(a,r,θ) =
a2

2 (1 − kr2)
Ccosmo −

8 (1 − kr2)
a4 r4 Ccosmo

14 ,

C:4 |ϕA(a,r,θ) =
a2 r2

2
Ccosmo +

40 (1 − kr2)2

a4 r2 Ccosmo
14 ,

C:6 |ϕA(a,r,θ) =
a2 r2 sin2 θ

2
Ccosmo +

40 (1 − kr2)2 sin2 θ

a4 r2 Ccosmo
14 .

Putting all of this together into the chain rule equations (4.1) – (4.3), one obtains three differential equa-
tions for the coefficient Ccosmo whose solution is

Ccosmo =
r2 sin θ

(1 − kr2)
1
2

(
K1 a3 − 24 K0 k a

)
with a second constant of integration K1 which is also undetermined here.

As the two expansion coefficients Ccosmo and Ccosmo
AB have been determined, attention will be turned

to the remaining expansion coefficients which will not contribute to the Friedmann equations.

Comments on Ccosmo
A

As already laid out in Chapter 2, the expansion coefficient CA features no collapse to a certain derivative
order in general. This is also true after a symmetry condition has been imposed. Indeed, it turns out
that in the case of a symmetry reduction, the closure equations containing the coefficients Ccosmo

A and
the derivatives C:A

µ1...µR |ϕA(a,r,θ) form an autonomous set of equations – separated from all other equa-
tions and expansion coefficients. Dealing with this autonomous set and the arbitrary amount of spatial
derivatives amounts for an infinity of index combinations one would have to evaluate. Thus, one inherits
arguments from the general solution of the closure equations presented in the previous chapter. These
said that the terms containing the expansion coefficients Ccosmo

A are boundary terms in the action and can
therefore be neglected in the first place.

A special case is given for the case of flat (k = 0) cosmology. In this case, one can change coordi-
nates from spherical coordinates (r, θ, φ) to Cartesian ones (x, y, z) in the beginning. Due to the spatial
flatness, all spatial derivatives drop from the input coefficients and the gravitational closure equations
after symmetry reduction. This vastly reduces the complexity of the closure equations and also of the
chain rule equations as there is only one involving the scale factor a,

∂Ccosmo
A

∂a
=

(
CA:1 |ϕA(a) + CA:4 |ϕA(a) + CA:6 |ϕA(a)

) 2
a3 .
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The only relevant closure equation is (C2)|ϕA(a) and its result that the three non-trivial components can be
expressed by the component Ccosmo

1 . Due to the spatial derivatives dropping out of the closure equation,
the solution for the component Ccosmo

1 is quickly found to be

Ccosmo
1 = Ccosmo

4 = Ccosmo
6 = K2 a5 ,

which will also drop out of the (flat) Friedmann equations as a boundary term in the action.
Either way, the coefficient CA will not contribute to the action. The same is true for the remaining

higher order expansion coefficients and those can be shown to vanish directly from the symmetry-reduced
closure equations.

Higher order expansion coefficients

The three lowest order expansion coefficients have been determined now. The task of determining the
remaining higher order expansion coefficients is simpler compared to the analysis up to now. The re-
maining expansion coefficients

Ccosmo
A1...AN

for N ≥ 3

all vanish and do not contribute to the symmetry-reduced spacetime action.
In order to see this, start by inspecting the instance (C162)|ϕA(a,r,θ) of the sequence of equations. It is

directly read off that
Ccosmo

A1A2A3
= 0 .

Additionally, the derivatives

(C162):D1
λ1λ2 . . . :DR

λ2R−1λ2R
∣∣∣
ϕA(a,r,θ) for R ≥ 1

allow to read off that all derivatives

CA1A2A3:D1
λ1λ2 . . . :DR

λ2R−1λ2R
∣∣∣
ϕA(a,r,θ) for R ≥ 1

vanish as well. For R = 1, one finds from closure equation (C164)|ϕA(a,r,θ) that

Ccosmo
A1...A5

= 0 .

Subsequently using this argument for all even numbered instances (C162N)|ϕA(a,r,θ), one finds that all odd
numbered expansion coefficients

Ccosmo
A1...A2N+1

= 0 for N ≥ 1

vanish.
The same argument holds for the odd numbered equations (C162N+1)|ϕA(a,r,θ). Beginning with N = 3,

one finds that
Ccosmo

A1A2A3A4
= 0

as the expansion coefficient Ccosmo
AB does not depend on second derivatives of the configuration fields.

Iterating this argument in the same way as before provides that all even numbered expansion coefficients

Ccosmo
A1...A2N

= 0 for N ≥ 2

vanish. Thus, none of these expansion coefficients contributes to the symmetric spacetime action (4.4).
Only the two expansion coefficients Ccosmo and Ccosmo

AB contribute and form the cosmological spacetime
action.
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Cosmological spacetime action

The gravitational closure equations simplified after the imposition of FLRW symmetries such that a com-
ponentwise solution was obtained. No general arguments were required unless for the second expansion
coefficient Ccosmo

A which will not contribute to the Friedmann equation anyway. Instead, only the two
expansion coefficients

Ccosmo =
r2 sin θ

(1 − kr2)
1
2

(
K1 a3 − 24 K0 k a

)
Ccosmo

14 = K0
r4 sin θ a7

(1 − kr2)
3
2

, Ccosmo
16 = K0

r4 sin3 θ a7

(1 − kr2)
3
2

, Ccosmo
46 = K0

r6 sin3 θ a7

(1 − kr2)
1
2

constitute the cosmological spacetime action whose general form is given by Eq. (4.4). Recall the three
non-trivial derivatives of the configuration fields also entering the cosmological spacetime action,

ϕ̇1 =
2 (1 − kr2) ȧ

a3 , ϕ̇4 =
2 ȧ

a3 r2 and ϕ̇6 =
2 ȧ

a3 r2 sin2 θ
.

Plugging these derivatives and the solution of the expansion coefficients into Eq. (4.4), one obtains the
cosmological action as

S cosmo =

∫
dt

∫
d3z

r2 sin θ

(1 − kr2)
1
2

[
N

(
K1 a3 − 24 K0 k a

)
+ 24 K0

aȧ2

N

]
, (4.8)

where N is the lapse function depending only the foliation time t. Variation of this action with respect
to the lapse function and the scale factor provides the gravitational part of the Friedmann equations. In
order to obtain the correct Friedmann equations, it is also necessary to impose the symmetry condition
of spatial homogeneity and isotropy on the matter sourcing the cosmological dynamics.

4.3 Matter sources and Friedmann equations

The usual way to obtain the Einstein equations including the matter sources is to vary the sum

S grav + S matter

of the gravitational and the matter action with respect to the spacetime metric g which provides the field
equations

δS grav

δgab = −
δS matter

δgab .

The quantity on the right hand side sources the gravitational dynamics. This quantity is however the half
of the source tensor density

S̃ ab := −2
δS matter

δgab .

As Gotay and Marsden already pointed out in Ref. [25], one must not mistake the tensor density S̃ ab

for the stress-energy-momentum tensor density T̃ which is a (1, 1)-tensor density – independent of the
specific spacetime geometry. In the present case of a metric spacetime, the relation is however trivial as
the intertwining role between the two tensors is played by the metric,

S̃ ab = T̃ m
a gmb .

Up to now, the definitions of this section were only general. When applying cosmological symmetries,
it is well known that these have to hold at large scales only since their imposition at all scales might
not even produce non-trivial gravitational sources δS matter

δgab . Usually, appropriate averaging over matter
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field configurations is used in order to obtain an effective perfect fluid energy-momentum density. This
argument is difficult to translate to other matter models on other background geometries. Instead, it is
the Killing condition

(LKiS )ab
!
= 0 and (LKiT )a

b
!
= 0

for the six cosmological Killing vector fields on the tensorial versions S ab := S̃ ab (− det g)−
1
2 and T a

b :=
T̃ a

b (− det g)−
1
2 which provides the way to construct gravitational sources which are compatible with the

imposition of cosmological symmetries.
Throughout this thesis, the FLRW symmetries – spatial homogeneity and isotropy – are always first

imposed on the stress-energy-momentum tensor T which leaves it in diagonal form with two undeter-
mined functions of the foliation time t which in accordance to the usual perfect fluid interpretation are
labeled as ρ(t) and p(t),

T a
b := diag (ρ,−p,−p,−p)a

b .

Subsequently, one finds for the source tensor S

S ab = diag
(
ρN2,

p a2

1 − kr2 , p a2 r2, p a2 r2 sin2 θ

)
ab
. (4.9)

The determination of the gravitational sources was the last step towards the derivation of the Friedmann
equations.

Derivation of the Friedmann equations

The cosmological action (4.8) and the gravitational sources (4.9) are now determined. Variation with
respect to the lapse function N provides the constraint equation. Dividing out the volume element

a3 r2 sin θ
(1 − kr2)2

as well as choosing a parametrization such that N = 1 everywhere, straightforward calculation gives( ȧ
a

)2
=

ρ

24 K0
−

k
a2 +

K1

24 K0
.

In order to determine the two unknown constants K0 and K1, one has to perform two independent exper-
iments. As one already knows the result – the two Friedmann equations from standard cosmology – one
can simply identify the two constants with the cosmological and Newton’s constant as

K0 =
1

64 πG
and K1 =

Λ

8 πG
.

The second Friedmann equation arises by variation with respect to the scale factor a. Again choosing a
parametrization with N = 1 everywhere, dividing out the volume element and a factor a2 provides the
acceleration equation. Inserting the constraint equation recovers the acceleration equation in its well-
known form as

ä
a

= −
4 πG

3
(ρ + 3 p) +

Λ

3
.

While the plain result may sound boring at the beginning – it is already well-known that the Friedmann
equations are the gravitational field equations for a spatially homogeneous and isotropic metric spacetime
– it is the way towards the resulting Friedmann equations which provides an innovation. The Einstein
equations never appeared at any stage and provocatively speaking, one could even abandon them for the
mere purpose of cosmology. Rather, it is possible to start directly at the specific matter model – Maxwell
electrodynamics in this example – and use the constructive gravity program together with the FLRW
symmetries. Then, the Friedmann equations are directly obtained as a solution to the closure equations.
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As a helpful side effect, the task of solving the gravitational closure equations in order to come up
with gravitational field equations is also simplified by imposing a symmetry ansatz on them. Last but not
least, this successful example of deriving the Friedmann equations without using Einstein equations pro-
vides confidence to the constructive gravity program and its symmetry reduction. The methods developed
in this chapter will be of central importance in Chapter 6. There, from general linear electrodynamics, a
refinement of Maxwell theory, the refined Friedmann equations will be constructed as a solution to the
symmetry-reduced closure equations.

Before going into these quite involved calculations in Chapter 6, the next chapter reviews the basics
of general linear electrodynamics and shows the general setup of the gravitational closure equations
stemming from general linear electrodynamics.
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Chapter 5

From general linear electrodynamics to
the closure equations

The previous two chapters developed solutions of the closure equations starting from Maxwell electrody-
namics. First, the general solution was presented which provided the Einstein-Hilbert action of general
relativity. The previous chapter demonstrated that the Friedmann equations can be obtained directly as
a solution to the closure equations on which FLRW symmetries imposed. This symmetry reduction pro-
vides a conceptually and technical new way for obtaining solutions to the gravitational closure equations.

In particular, one can apply the symmetry reduction of the closure equations and find the symmetry-
reduced solutions in case the general closure equations are too difficult to solve. This chapter will demon-
strate that already for general linear electrodynamics, a slight generalization of Maxwell theory, a general
solution to the resulting closure equations seems out of reach as they are too involved. Thus, the sym-
metry reduction developed in the previous chapter will be applied in order to construct the refinement of
the Friedmann equations for the cosmology of general linear electrodynamics.

The most significant difference between Maxwell theory and general linear electrodynamics is the
birefringence of light in vacuum. This effect is admissible due to a richer spacetime structure. The space-
time geometry is no longer a metric, but a fourth rank tensor field. The dynamics of this geometry have
to be determined by the gravitational closure equations. The calculation of the three input coefficients in
this chapter will reveal that the resulting closure equations are very involved and that a general solution
for them seems out of reach. See also Fig. 5.1 for a diagrammatic scheme. The appropriate symmetry
reduction presented in Chapter 6 will provide significant simplifications.

S GLED[A; G)
closure

equations
S gravity[G] grav. field

equationsCha. 5

Figure 5.1: Setup of the gravitational closure formalism starting with general linear electrodynamics – a
slight generalization of Maxwell theory. A general solution of the closure equations is out of reach due
to the involved input coefficients.

The results of this chapter have already been published as
M. Düll, F. P. Schuller, N. Stritzelberger and F. Wolz,

Phys. Rev. D97 (2018), 084036,
whose section V.C is elaborated here.

Using an axiomatic approach to the phenomenology of electrodynamics [26, 27, 28], the requirement
of e. g. charge conservation and magnetic flux conservation does not require to choose a certain spacetime
geometry. Only if one wishes to have a linear constitutive law relating the field strength and the excitation
of the electromagnetic field, one is required to introduce a tensorial spacetime geometry. For a detailed
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introduction to this axiomatic approach of electrodynamics also known as pre-metric electrodynamics,
see Ref. [29].

Additionally requiring that the resulting theory of electrodynamics has to be formulated by an action,
the action of this theory of electrodynamics is written as

S GLED[A; G) = −
1
8

∫
M

d4xωG FabFcd Gabcd , (5.1)

which is the action of general linear electrodynamics1 – the most general theory of linear electrodynamics
with linear field equations on a four-dimensional manifold M. The field strength Fab := 2 ∂[aAb] is
defined as usual in terms of the electromagnetic one-form potential A. The scalar densityωG is a nowhere
vanishing function of the spacetime geometry G. While there are several choices for such a scalar density,
this thesis sticks to the choice

ωG =

(
1
24

εabcd Gabcd
)−1

which requires that the fourth rank tensor field G satisfies εabcd Gabcd , 0 everywhere. Due to the
antisymmetry of the field strength tensor, the fourth rank tensor field G inherits the antisymmetry in the
respective indices and satisfies

Gabcd = −Gbacd = Gcdab .

This reduces the amount of degrees of freedom of G to 21 compared to 256 of a general fourth rank
tensor field. Still, 21 degrees of freedom are more than double as many as a spacetime metric features.
These additional degrees of freedom account for effects like vacuum birefringence which are ruled out
in Maxwell-Einstein theory.

Recall from Chapter 2 that it is the principal polynomial P which together with the manifold M and
the geometry G forms the spacetime triple (M,G, P). For general linear electrodynamics, the principal
polynomial was first calculated by Rubilar et al. [33, 34] as

Pabcd = −
24(

εi jklGi jkl
)2 εmnpq εrstu Gmnr(a Gb|ps|c Gd)qtu . (5.2)

Note that the principal polynomial P depends on the spacetime geometry non-polynomially. This pro-
vides technically particularly involved spacetime kinematics; at the same time, this is a first example of
a matter theory for which principal polynomial and spacetime geometry differ significantly from each
other.

In order to apply the constructive gravity program, general linear electrodynamics has to satisfy the
three matter conditions of Section 2.1. Previous work has shown that this is the case if the fourth rank
tensor G lies in one of seven admissible algebraic classes of which there are a total of 23. See Ref. [30]
for details.

Following the steps from Chapter 2, the identification of the canonical geometry is the next step
towards the gravitational closure equations. It was mentioned before that the geometry G inherits anti-
symmetric index pairs from the field strength tensor in the action (5.1). This antisymmetry is inherited
to the induced geometry on the hypersurface Σ. With the appropriate volume form on Σ, these anti-
symmetric index pairs can be dualized. This leads to the identification of three different hypersurface

1For a detailied study of general linear electrodynamics, see e. g. Ref. [30] next to the already referenced works of Friedrich
Hehl [29] and others. General linear electrodynamics can also be quantized [31]. Possible deviations from a metric spacetime
within quantum (field) theory have been studied in Ref. [32].
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fields,

gαβ := −G
(
ε0, εα, ε0, εβ

)
,

gαβ :=
1
4

1
det g··

εαµν εβρσ G
(
εµ, εν, ερ, εσ

)
,

gαβ :=
(
g−1

)
αµ

1
2

1√
det g··

εβρσ G
(
ε0, εµ, ερ, εσ

)
− δ

µ
β

 .
The two frame conditions p = 1 and pα = 0 transform to

gαβ gαβ = 0 and g[αβ] = 0 .

This means that the induced geometry field g is symmetric – which it is not by construction – and trace-

free with respect to the field g. When constructing the canonical geometry g, g and g, these conditions
have to be imposed by hand as well as the two linear symmetry conditions

g[αβ] = 0 and g[αβ] = 0 .

These conditions reduce the 27 components of the three canonical tensor fields to 17 independent ones.
Thus, there are 17 unconstrained configuration fields ϕA which are most practically denoted by

ϕA :=
(
ϕ1, . . . , ϕ6, ϕ1, . . . , ϕ6, ϕ1, . . . , ϕ5

)
. (5.3)

Next in the construction are the parametrization maps. One chooses

ĝαβ = IαβA ϕ
A , ĝαβ = IA

αβ ∆AB ϕ
B and

ˆ
gαβ = IA

αβ

(
δB

A −
nA ϕ

B

nC ϕ
C

)
ε(m)Bϕ

m . (5.4)

Here and for the rest of this thesis, capital latin indices A, B,C, . . . range from 1 to 6 while the small latin
indices m, n range from 1 to 5. The matrices IA

αβ and IαβA are the same as in the metric case presented
in Eq. (3.1). The symbol ∆AB denotes the components of the standard inner product on R6,

∆AB = diag(1, 1, 1, 1, 1, 1)AB .

Additionally, there are constant orthonormal basis vectors t, e(1), . . . , e(5) chosen in such a way that the
3 × 3 matrix

IA
αβ ∆AB tB

is positive definite. It is then the set of covectors

nA := ∆AB tB and ε(m)A := ∆AB e(m)B

which provides the dual basis appearing in the parametrization map
ˆ
g(ϕ). Next to the maps ĝ(ϕ), there

are also inverse parametrization maps ϕ̂A(g) which allow to extract the 17 configuration fields from the
canonical geometry by

ϕ̂A = IA
αβ gαβ , ϕ̂A = ∆AB IαβB gαβ and

ˆ
ϕm = IαβA e(m)A gαβ .

It is quickly checked that the parametrization maps give rise to symmetric tensor fields and also satisfy
the frame condition

ĝαβ(ϕ)
ˆ
gαβ(ϕ) = 0 .

As mentioned above, the parametrization maps require the introduction of an orthonormal R6-frame.
While there are several choices for such a frame (and its dual), a particular one will be constructed
in the following paragraph. After that, the three input coefficients will be calculated which enter the
gravitational closure equations.
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Construction of the orthonormal frame

Recall that the parametrization map of the field
ˆ
gαβ requires the introduction of constant orthonormal

basis vectors t, e(1), . . . , e(5) with the requirement that the 3 × 3-matrix

IA
αβ ∆AB tB

is positive definite. The symbol ∆AB denotes the constant components

∆AB = diag(1, 1, 1, 1, 1, 1)AB

of the standard inner product of R6. A straightforward choice of such a vector t is

tA =

(
1
√

3
, 0, 0,

1
√

3
, 0,

1
√

3

)A

.

It is normalized with respect to the inner product ∆ and the matrix

IA
αβ ∆AB tB =


1√
3

0 0
0 1√

3
0

0 0 1√
3


αβ

is clearly positive definite. In order to complete the set of basis vectors, consider the collection

f (1)A = (1, 0, 0, 0, 0, 0)A ,

f (2)A = (1, 1, 0, 0, 0, 0)A ,

f (3)A = (1, 1, 1, 1, 0, 0)A ,

f (4)A = (1, 1, 1, 1, 1, 0)A and

f (5)A = (1, 1, 1, 1, 1, 1)A

of vectors which are not yet normalized. The determinant of the 6 × 6 matrix whose columns are con-
stituted by the set

{
t, f (1), . . . , f (5)

}
is non-zero which guarantees that those six vectors are linearly in-

dependent. The application of the Gram-Schmidt orthonormalization algorithm provides the desired
orthonormal basis vectors

tA =

(
1
√

3
, 0, 0,

1
√

3
, 0,

1
√

3

)A

,

e(1)A =

√2
3
, 0, 0,−

1
√

6
, 0,−

1
√

6

A

,

e(2)A = (0, 1, 0, 0, 0, 0)A ,

e(3)A =

0, 0, √2
3
,

1
√

6
, 0,

1
√

6

A

,

e(4)A = (0, 0, 0, 0, 1, 0)A and

e(5)A =

(
0, 0,

1
√

3
,−

1
√

3
, 0,

1
√

3

)A

.

The dual basis {n, ε(m)} is numerically equal to the components of the basis vectors as the dual basis is
extracted from the basis by using the inner product ∆AB,

nA = ∆AB tB and ε(m)B = ∆AB e(m)B .

This basis and its dual will be used in the remainder of this thesis. The general setup as well as the
resulting gravitational action is independent of the choice of the frame. The calculations carried out for
the symmetry reduction in the next chapter rely heavily on a componentwise evaluation of the closure
equations which means that the particular choice of a frame has to be used.
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Calculation of input coefficients

The construction of the parametrization maps and the orthonormal R6-basis appearing in it pave the
way for the calculation of the three input coefficients. The first step is calculate the intertwining matrices
∂ĝ
∂ϕ (ϕ) and ∂ϕ̂

∂g (ĝ(ϕ)) which appear in the definition of the input coefficients FA
µ
γ and MAγ. These matrices

are

∂ĝαβ

∂ϕA = IαβA ,
∂ĝαβ

∂ϕA
= ∆AB IB

αβ ,
∂

ˆ
gαβ

∂ϕm
= IA

αβ

(
δB

A −
nA ϕ

B

nC ϕC

)
ε(m)B ,

∂
ˆ
gαβ
∂ϕA = IB

αβ nB

nA ϕ
C ε(m) C ϕ

m(
nF ϕF)2 −

ε(m)A ϕ
m

nF ϕF

 ,
∂ϕ̂A

∂gαβ
= IA

αβ ,
∂ϕA

∂gαβ
= ∆AB IαβB and

∂ϕm

∂gαβ
= IαβA e(m)A .

It is now straightforward to calculate the three input coefficients. First, the components pαβ of the prin-
cipal polynomial (5.2) are

pαβ =
1
6

(
ĝαγ ĝβδ ĝγδ − ĝαβ ĝγδ ĝγδ − 2 ĝαβ ĝγν ĝδµ

ˆ
gγµ

ˆ
gδν + 3 ĝγδ ĝαµ ĝβν

ˆ
gγµ

ˆ
gδν

)
. (5.5)

Second, as laid out in Chapter 2, the coefficient FA
µ
γ follows from the Lie derivative

∂ϕ̂A

∂gA
(L~ng)A =: nµ ϕA

,µ − (∂γnµ) FA
µ
γ .

One finds

FA
µ
γ = 2 IA

µσ IγσB ϕ
B , FA

µ
γ = −2 ∆AB ∆CD IγσB IC

µσ ϕ
D , (5.6)

Fm
µ
γ = −2 IγαA e(m)A IB

µα

(
δC

B −
nB ϕ

C

nF ϕF

)
ε(n)C ϕ

n.

Last, the coefficient MAγ is determined by applying the rules (2.16) to the definition (2.15) of the input
coefficient. In contrast to the metric spacetime of the previous chapter, the coefficient MAγ is non-trivial
for the fourth rank tensor field G serving as the spacetime geometry. Just as for FA

µ
γ, the coefficient MAγ

is split into three different sets of components, differing on the index range of the capital index A. The
components are

MAγ = 2
√

det g·· IA
αβ Iν(α|B ϕB ε |β)µγ IC

µν

(
δD

C −
nC ϕ

D

nF ϕF

)
ε(m)D ϕ

m ,

MAγ =
6√

det g··
εαµν ∆AB IαβB IλνC ϕ

C pµγ(g(ϕ)) IE
βλ

(
δD

E −
nE ϕ

D

nF ϕF

)
ε(m)D ϕ

m ,

Mmγ = −
√

det g·· εµνγ
(
g−1

)
µα

IαβA e(m)A

IκλB ϕ
B ∂

ˆ
gβλ

∂ϕn

∂
ˆ
gκν

∂ϕl
ϕn ϕl + IB

βν ∆BC ϕ
C

 .
The two derivatives of the parametrization maps in the last components have not been written out in order
to keep the notation compact.

The input coefficients for general linear electrodynamics are more involved when compared to those
of the metric spacetime investigated in Chapter 3. In particular, there are 11 more configuration fields and
the third input coefficient MAγ is non-trivial. As a direct consequence, the gravitational closure equations
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will be more involved. One should note that the closure equations for general linear electrodynamics as
constructed here differ significantly from those in previous work [9]. The non-linear frame conditions are
now treated automatically by introducing the configuration fields and the parametrization maps whereas
the frame conditions had to be imposed by hand afterwards in previous work.

Due to the involved structure of the closure equations for general linear electrodynamics, a general
solution has not yet been obtained. As the Chapter 4 demonstrated, such a general solution providing
the full gravitational field equations is not necessary if one is interested in e. g. the cosmological dynam-
ics. Instead of constructing the full gravitational field equations and imposing spatial homogeneity and
isotropy on them, one rather imposes the symmetry condition on the gravitational closure equations and
constructs the refined Friedmann equations as a solution to those. This circumvents the need for the full
gravitational field equations.

This is precisely the goal of the last technical chapter of this thesis. As general linear electrodynamics
provides a refined geometric structure, also the Friedmann equations of cosmology will be refined. In
order to calculate them, the general setup of the closure equations developed in this chapter will be
used. Imposing the FLRW symmetries on the closure equations simplifies them such that a solution can
be constructed. Complementing this solution by suitably symmetry-reduced gravitational sources then
yields the refined Friedmann equations.
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Chapter 6

Refined Friedmann equations from
general linear electrodynamics

The last chapter provided the setup of the gravitational closure equations starting from general linear
electrodynamics. While general linear electrodynamics provides the possibly slightest generalization of
Maxwell theory, the spacetime kinematics are far more diverse. This translates into more involved input
coefficients p, F and M entering the gravitational closure equations. The solution techniques used for
the closure equations from Maxwell theory in Chapter 3 do not suffice anymore for the more involved
closure equations in this case. Thus, a general solution to the closure equations from general linear
electrodynamics seems to be out of reach. Therefore, the symmetry reduction of the closure equations
is the only convenient and promising way to obtain solutions to the closure equations. See Fig. 6.1 for
illustration.

S GLED[A; G)
closure

equations
S gravity[G] grav. field

equationsCha. 5

symm.-red.
closure eqns

Sec. 6.1

Sections

6.2 – 6.6
S cosmo[a(t), c(t)]

Sections

6.7, 6.8

refined
Friedmann eqns

Figure 6.1: The construction of refined Friedmann equations behind general linear electrodynamics. As
a general solution to the closure equations is out of reach, one applies the FLRW symmetries directly to
the closure equations and thus obtains a cosmological spacetime action now featuring two scale factors
instead of one. The refined Friedmann equations are derived by variation of this action.

It was one of the main goals of this thesis to develop a suitable symmetry reduction of the constructive
gravity program. The direct derivation of the Friedmann equations from Maxwell theory in Chapter 4
demonstrated that and how the symmetry reduction works. The methods laid out in Maxwell-Friedmann
theory will now be adopted – and extended – for the closure equations constructed from general linear
electrodynamics. For the first time, the solution of the symmetry reduced closure equations will require
to systematically study prolongations, that is, derivatives of the closure equations with respect to the
configuration fields. The first step of the analysis is however the symmetry reduction of the spacetime
geometry G and the three input coefficients. After that, the closure equations can be symmetry-reduced
and evaluated.
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6.1 The cosmological area metric & setup of the closure equations

The first step of the symmetry reduction is the imposition of spatial homogeneity and isotropy onto the
spacetime geometry G. Technically, this is achieved by requiring the Killing condition

LKiG
!
= 0

to hold for the six Killing vector fields K1, . . . ,K6. They were already presented Chapter 4 in spherical
coordinates. They contained a constant k which could take values of +1, 0 or −1 depending on the
character of the spatial hypersurfaces (spherical, flat or hyperbolic ones). In order to achieve the largest
simplification, the calculations in this chapter are restricted to flat spatial hypersurfaces (k = 0). This
enables one to choose cartesian coordinates and write the Killing vector fields as

K1 = ∂x , K2 = ∂y , K3 = ∂z

K4 = z ∂y − y ∂z , K5 = x ∂z − z ∂x , K6 = y ∂x − x ∂y . (6.1)

The Killing condition provides differential equations for the components Gabcd of the spacetime geome-
try. They can be solved straighforwardly and the spacetime geometry is written as

Gabcd = 2 c2(t) ga[cgd]b − c3(t)
√
− det g·· εabcd (6.2)

with a Friedmann-Robertson-Walker metric

gab = diag
(

1
N2 ,−

1
a2(t)

,−
1

a2(t)
,−

1
a2(t)

)ab

.

Note that the cosmological spacetime geometry Gabcd has three time-dependent degrees of freedom –
the lapse function N(t) and two scale factors a(t) and c(t). As for the metric FLRW spacetime, the shift
vector field ~N vanishes. The principal polynomial P whose general form is given by Eq. (5.2) breaks
down to

Pabcd(a, c,N) = g(abgcd)

The roots of the principal polynomial describe the dispersion of light rays. As a direct consequence of
the above result, light rays and redshift see only a Friedmann-Robertson-Walker metric with one scale
factor a(t) in this refined cosmology. Thus, there is no birefringence of light on cosmological scales.
How the light dispersion precisely looks like, that is, how a solution for the scale factor a(t) looks like,
can only be determined by solutions to the refined Friedmann equations. These have to be constructed
as a solution to the gravitational closure equations first.

The symmetric spacetime geometry (6.2) is now projected back to the spatial hypersurfaces. Follow-
ing the definitions from the previous chapter and Ref. [3], the hypersurface fields are

gαβ =
c2

a2 diag (1, 1, 1)αβ , gαβ =
a2

c4 diag (1, 1, 1)αβ and gαβ = 0 . (6.3)

These hypersurface fields are mimiced by the canonical geometry and by the parametrization maps (5.4),
the configuration fields. Using the labeling (5.3) from Chapter 5, there are six non-trivial configuration
fields

ϕ1 = ϕ4 = ϕ6 =
c2

a2 and ϕ1 = ϕ4 = ϕ6 =
a2

c4 .

These non-trivial configuration fields are now inserted into the general expressions for the three input co-
efficients FA

µ
γ, MAγ and pµν. The input coefficient FA

µ
γ whose general expression is given by Eq. (5.6)
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reduces to

FA
µ
γ
∣∣∣∣
ϕA(a,c)

=
2 c2

a2

(
δA

1 δ
x
µδ
γ
x + δA

4 δ
y
µδ
γ
y + δA

6 δ
z
µδ
γ
z

)
√

2 c2

a2

(
δA

2 (δx
µδ
γ
y + δ

y
µδ
γ
x) + δA

3 (δx
µδ
γ
z + δz

µδ
γ
x) + δA

5 (δy
µδ
γ
z + δz

µδ
γ
y )

)
FA

µ
γ

∣∣∣∣∣
ϕA(a,c)

= −
2 a2

c4

(
δA

1 δ
x
µδ
γ
x + δA

4 δ
y
µδ
γ
y + δA

6 δ
z
µδ
γ
z

)
−

√
2 a2

c4

(
δA

2 (δx
µδ
γ
y + δ

y
µδ
γ
x) + δA

3 (δx
µδ
γ
z + δz

µδ
γ
x) + δA

5 (δy
µδ
γ
z + δz

µδ
γ
y )

)
Fm

µ
γ

∣∣∣∣∣
ϕA(a,c)

= 0 .

Secondly, the component pαβ of the principal polynomial P has three non-vanishing components

pxx
∣∣∣
ϕA(a,c) = pyy

∣∣∣
ϕA(a,c) = pzz

∣∣∣
ϕA(a,c) = −

1
3 a2(t)

.

The third input coefficient MAγ also vanishes when symmetry is applied. It is conceptually and techni-
cally important that derivatives of the coefficient MAγ with respect to the configuration fields might be
non-trivial although the coefficient itself vanishes after symmetry imposition. This is because one first
has to take the derivative of the coefficient and may evaluate only afterwards. For the analysis of the
closure equations, the derivatives which are required the most are

MAγ
:m

∣∣∣∣
ϕA(a,c)

=

= δ1

m

√
3
[

c5

a5

(
−δA

2 δ
γ
z + δA

3 δ
γ
y

)
+

1
ac

(
−δA

2 δ
γ
z + δA

3 δ
γ
y

)]
+ δ2

m

[
c5

a5

(√
3 δA

3 δ
γ
x + δA

5 δ
γ
y +
√

2 δγz
(
δA

1 − δ
A
4

))
+

1
ac

(√
3 δA

3 δ
γ
x + δA

5 δ
γ
y +
√

2 δγz
(
δA

1 − δ
A
4

))]
+ δ3

m

[
c5

a5

√2
3
δ
γ
x

(
δA

2 −
√

2 δA
5

)
−

2
√

3
δ
γ
y

(
δA

1 −
1
2
δA

3 − δ
A
6

)
+

1
√

3
δ
γ
z

(
δA

2 −
√

2 δA
5

)
+

1
ac

√2
3
δ
γ
x

(
δA

2 −
√

2 δA
5

)
−

2
√

3
δ
γ
y

(
δA

1 −
1
2
δA

3 − δ
A
6

)
+

1
√

3
δ
γ
z

(
δA

2 −
√

2 δA
5

) ]
+ δ4

m

[
c5

a5

(√
2 δγx

(
δA

4 − δ
A
6

)
− δA

2 δ
γ
y + δA

3 δ
γ
z

)
+

1
ac

(√
2 δγx

(
δA

4 − δ
A
6

)
− δA

2 δ
γ
y + δA

3 δ
γ
z
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+ δ5

m

[
c5

a5

 1
√

3
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γ
x

(
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2 + 2
√

2 δA
5
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√
2
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1 + δA
3 − δ

A
6

)
−

1
√

3
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(√
2 δA
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5

)
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√

3
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(
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2 + 2
√

2 δA
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−

√
2
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1
√

3
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γ
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(√
2 δA

2 + δA
5

) ] .
Further non-trivial derivatives are Mmγ

:A

∣∣∣∣∣
ϕA(a,c)

and Mmγ
:A

∣∣∣∣∣
ϕA(a,c)

which however play only a minor role

in the analysis of the symmetry-reduced closure equations. There is also a variety of second derivatives
of MAγ with respect to the configuration fields ϕA. These are calculated using appropriate computer
algebra system such as Mathematica if the need for these components arises.

After the symmetry reduction of the three input coeffients, the next step is to define the functions

Ccosmo
A1...AN

(a, c) := CA1...AN [ϕA(a, c)]

which serve as the symmetry-reduced expansion coefficients. The derivatives of these ultralocal func-
tions Ccosmo

A1...AN
have to be related with derivatives of the full expansion coefficients Ccosmo

A1...AN
[ϕA] which are
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functionals of the configuration fields. As in the metric FLRW case presented in Chapter 4, this is done
by employing the chain rule for every expansion coefficient (N > 0),

∂Ccosmo
A1...AN

∂a
=

(
CA1...AN :1

∣∣∣∣
ϕA(a,c)

+ CA1...AN :4

∣∣∣∣
ϕA(a,c)

+ CA1...AN :6

∣∣∣∣
ϕA(a,c)

)
−2 c2

a3

+

(
C

A1...AN :1

∣∣∣∣
ϕA(a,c)

+ C
A1...AN :4

∣∣∣∣
ϕA(a,c)

+ C
A1...AN :6

∣∣∣∣∣
ϕA(a,c)

)
2 a
c4 , (6.4)

∂Ccosmo
A1...AN

∂c
=

(
CA1...AN :1

∣∣∣∣
ϕA(a,c)

+ CA1...AN :4

∣∣∣∣
ϕA(a,c)

+ CA1...AN :6

∣∣∣∣
ϕA(a,c)

) 2 c
a2

+

(
C

A1...AN :1

∣∣∣∣
ϕA(a,c)

+ C
A1...AN :4

∣∣∣∣
ϕA(a,c)

+ C
A1...AN :6

∣∣∣∣∣
ϕA(a,c)

)
−4 a2

c5 . (6.5)

The derivatives appearing on the right hand side of these equations need to be determined from the
gravitational closure equations evaluated on the symmetric configuration fields ϕA(a, c). It will turn out
that this determination is not as straightforward as the Maxwell-Friedmann calculation in Chapter 4 was.
Instead, already the solution for the first expansion coefficient Ccosmo in the next section demonstrates
that prolongations of the closure equations – that is, derivatives of the closure equations with respect
to the configuration fields – can reveal more information. The additional information proves out to be
useful in the solution of the chain rule equations (6.4) and (6.5).

The solution of the above differential equations provides the set of expansion coefficients Ccosmo
A1...AN

constituting the cosmological spacetime action. The full gravitational spacetime action (2.60) is simpli-
fied to

S cosmo =

∫
dt
∞∑

M=0

Ccosmo
A1...AM

(a, c) ϕ̇A1(a, c) . . . ϕ̇AN (a, c) N1−M(t) (6.6)

with the lapse N(t) being a function of the foliation time. The derivatives ϕ̇A of the configuration fields
with respect to the foliation time are given by

ϕ̇1 = ϕ̇4 = ϕ̇6 =
2 ċ c
a2 −

2 ȧ c2

a3

ϕ̇1 = ϕ̇4 = ϕ̇6 =
2 ȧ a
c4 −

4 ċ a2

c5 . (6.7)

As all other configuration fields vanish after imposing the symmetry condition, also their derivatives
vanish. This also simplifies the analysis of the gravitational closure equations as only components of the
expansion coefficients need to be computed which couple exclusively to the non-vanishing derivatives ϕ̇A.
This becomes extremely important for the higher order expansion coefficients. First, however, the closure
equations for the first expansion coefficient C will be studied.

6.2 Solution for the first expansion coefficient

The symmetric configuration fields depend only on the two scale factors, but not on any other coordinate
or function thereof. In particular, all spatial derivatives of the symmetric configuration fields vanish
and with them also spatial derivatives of the three input coefficients. This simplifies the gravitational
closure equations when they are evaluated on symmetric configurations ϕA(a, c). For the first expansion
coefficient Ccosmo, this has two important consequences.

First, when inspecting the sequence of closure equations (C19N≥2)|ϕA(a,c). It breaks down to

0 = C:B
µ1...µN+1

∣∣∣
ϕA(a,c) for N ≥ 2 , (6.8)

which provides a collapse of the coefficient C to second derivative order when FLRW symmetries are
imposed.

Secondly, with the chain rule equations (6.4) and (6.5) containing only derivatives with respect to the
configuration fields themselves, it is at first only closure equation (C1)|ϕA(a,c) which provides relations
for these derivatives.
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Analysis of closure equation (C1)

Closure equation (C1)|ϕA(a,c) provides an equation which contains only the symmetric expansion coeffi-
cient Ccosmo and derivatives of C with respect to the configuration fields. Relations obtained from this
equation can be used directly in order to solve the two differential equations (6.4) and (6.5) for N = 0.
As all spatial derivatives drop out of the equation, it is simply

0 = Ccosmoδ
γ
µ + C:A |ϕA(a,c) FA

µ
γ
∣∣∣
ϕA(a,c) .

Analyzing this for all combinations of the spatial indices γ and µ, one obtains the three relations

C
:1

∣∣∣∣
ϕA(a,c)

=
c6

a4 C:1

∣∣∣
ϕA(a,c) +

c4

2 a2 Ccosmo ,

C
:4

∣∣∣∣
ϕA(a,c)

=
c6

a4 C:4

∣∣∣
ϕA(a,c) +

c4

2 a2 Ccosmo and

C
:6

∣∣∣∣
ϕA(a,c)

=
c6

a4 C:6

∣∣∣
ϕA(a,c) +

c4

2 a2 Ccosmo

which can be plugged into Eq. (6.4) and Eq. (6.5). One finds the two differential equations

∂Ccosmo

∂a
=

3
a

Ccosmo (6.9)

∂Ccosmo

∂c
= −

2 c
a2

(
C:1

∣∣∣
ϕA(a,c) + C:4

∣∣∣
ϕA(a,c) + C:6

∣∣∣
ϕA(a,c)

)
−

6
c

Ccosmo (6.10)

of which the first one can be solved as
Ccosmo = f0(c) a3 (6.11)

with one undetermined function f0 of the second scale factor c. The second differential equation con-
cerning the dependence of Ccosmo on this second scale factor cannot be solved yet. Instead, one needs
to extract further relations for the three derivatives C:1

∣∣∣
ϕA(a,c), C:4

∣∣∣
ϕA(a,c) and C:6

∣∣∣
ϕA(a,c) from the gravi-

tational closure equations. As there is no further equation which contains the desired derivatives when
evaluated on cosmological configurations ϕA(a, c), one has to consider prolongations of the closure equa-
tions – that is, derivatives of the closure equations with respect to the configuration fields on which the
symmetry is imposed afterwards. Investigating all closure equations, one sees that closure equation (C5)
is a candidate for providing relevant prolongations.

First prolongation of (C5)

One observes that although closure equation (C5)|ϕA(a,c) is identically satisfied, the derivative of the

full closure equation (C5) with respect to the five configuration fields ϕm and subsequent imposition of
symmetry results in the equation

0 = C:A

∣∣∣
ϕA(a,c) MAγ

:m

∣∣∣∣
ϕA(a,c)

+ C
:A

∣∣∣∣
ϕA(a,c)

MAγ
:m

∣∣∣∣∣
ϕA(a,c)

.

Evaluating this equation reveals that the three derivatives of C appearing in Eq. (6.10) are actually equal,

C:1

∣∣∣
ϕA(a,c) = C:4

∣∣∣
ϕA(a,c) = C:6

∣∣∣
ϕA(a,c) .

This allows to rewrite Eq. (6.10) as

∂Ccosmo

∂c
= −

6 c
a2 C:1

∣∣∣
ϕA(a,c) −

6
c

Ccosmo (6.12)

which still features the undetermined derivative C:1

∣∣∣
ϕA(a,c). This means that the solution for the coeffi-

cient Ccosmo is still given by Eq. (6.11). The prolongation of closure equation (C5) shows that derivatives
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of the closure equations indeed contain additional information about the expansion coefficients and their
derivatives.

After evaluation of the first prolongation of (C5), one checks whether there are any other closure
equations whose prolongations might provide additional relations. This is not the case. It remains to
be seen whether further prolongations of the two closure equations (C1) and (C5) provide additional
information. This will be addressed next.

First prolongation of (C1)

The first prolongation of (C1) is taken with respect to the configuration fields ϕB and ϕB. There are only
three terms when the resulting equation is evaluated on symmetric configurations fields ϕA(a, c). The
respective equations are

0 = C:B

∣∣∣
ϕA(a,c) δ

γ
µ + 2 C:A

∣∣∣
ϕA(a,c) IA

µσIγσB + C:B :A
∣∣∣
ϕA(a,c) FA

µ
γ
∣∣∣
ϕA(a,c) and (6.13)

0 = C
:B

∣∣∣∣
ϕA(a,c)

δ
γ
µ − 2 C

:A

∣∣∣∣
ϕA(a,c)

IA γσI
µσ B

+ C
:B :A

∣∣∣∣
ϕA(a,c)

FA
µ
γ
∣∣∣
ϕA(a,c) . (6.14)

Both equations have to be evaluated for all combinations of the free spatial indices µ and γ as well as of
the capital index which results in 54 relations for each equation. The relations from Eq. (6.13) express
all second derivatives of the form C:A :B

∣∣∣∣
ϕA(a,c)

in terms of the second derivatives C:A :B

∣∣∣
ϕA(a,c) and the

first derivative C:1

∣∣∣
ϕA(a,c). Using the thus obtained relations in the analysis of Eq. (6.14), the second

derivatives C
:A :B

∣∣∣∣
ϕA(a,c)

are expressed in terms of their purely single-overlined counterparts C:A :B

∣∣∣
ϕA(a,c),

the first derivative C:1

∣∣∣
ϕA(a,c) and the coefficient Ccosmo itself.

Precisely, from Eq. (6.13), one finds the relations

C:1 :1

∣∣∣∣
ϕA(a,c)

=
c6

a4 C:1 :1

∣∣∣
ϕA(a,c) +

3 c4

2 a2 C:1

∣∣∣
ϕA(a,c) , C:4 :1

∣∣∣∣
ϕA(a,c)

=
c6

a4 C:1 :4

∣∣∣
ϕA(a,c) +

c4

2 a2 C:1

∣∣∣
ϕA(a,c) ,

C:6 :1

∣∣∣∣
ϕA(a,c)

=
c6

a4 C:1 :6

∣∣∣
ϕA(a,c) +

c4

2 a2 C:1

∣∣∣
ϕA(a,c) , C:1 :4

∣∣∣∣
ϕA(a,c)

=
c6

a4 C:1 :4

∣∣∣
ϕA(a,c) +

c4

2 a2 C:1

∣∣∣
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C:4 :4
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ϕA(a,c)

=
c6

a4 C:4 :4

∣∣∣
ϕA(a,c) +

3 c4

2 a2 C:1
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ϕA(a,c) , C:6 :4

∣∣∣∣
ϕA(a,c)

=
c6

a4 C:4 :6

∣∣∣
ϕA(a,c) +

c4

2 a2 C:1

∣∣∣
ϕA(a,c) ,

C:1 :6

∣∣∣∣
ϕA(a,c)

=
c6

a4 C:1 :6

∣∣∣
ϕA(a,c) +

c4

2 a2 C:1

∣∣∣
ϕA(a,c) , C:4 :6
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=
c6

a4 C:4 :6
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2 a2 C:1

∣∣∣
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ϕA(a,c)

=
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a4 C:6 :6

∣∣∣
ϕA(a,c) +

3 c4

2 a2 C:1

∣∣∣
ϕA(a,c) .

In analogy, Eq. (6.14) provides

C
:1 :1

∣∣∣∣
ϕA(a,c)

=
c12

a8 C:1 :1

∣∣∣
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c10
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4 a4 Ccosmo ,
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∣∣∣∣
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c12
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a6 C:1

∣∣∣
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4 a4 Ccosmo ,

C
:1 :6

∣∣∣∣
ϕA(a,c)
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c12
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c10

a6 C:1

∣∣∣
ϕA(a,c) +
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4 a4 Ccosmo ,
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:4 :4
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c12
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ϕA(a,c) −

c8

4 a4 Ccosmo ,

C
:4 :6

∣∣∣∣
ϕA(a,c)

=
c12

a8 C:4 :6

∣∣∣
ϕA(a,c) +

c10

a6 C:1

∣∣∣
ϕA(a,c) +

c8

4 a4 Ccosmo ,

C
:6 :6

∣∣∣∣
ϕA(a,c)

=
c12

a8 C:6 :6

∣∣∣
ϕA(a,c) +

c10

a6 C:1

∣∣∣
ϕA(a,c) −

c8

4 a4 Ccosmo .
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These relations alone provide information only about the second derivatives of the expansion coeffi-
cient C with respect to the configuration fields. Only together with the second prolongation of closure
equation (C5), one might be able to read off relations which determine the unknown derivative C:1

∣∣∣
ϕA(a,c).

Second prolongation of (C5)

Starting from the first prolongation, (C5)
:m

, the second prolongations (C5)
:m:B

and (C5)
:m:B

have to be
constructed. Only afterwards, symmetry is imposed. One obtains two relations

0 = C:A :B

∣∣∣
ϕA(a,c) MAγ

:m

∣∣∣∣
ϕA(a,c)

+ C
:A :B

∣∣∣∣
ϕA(a,c)

MAγ
:m

∣∣∣∣∣
ϕA(a,c)

+ C:A

∣∣∣
ϕA(a,c) MAγ

:m:B

∣∣∣∣
ϕA(a,c)

+ C
:A

∣∣∣∣
ϕA(a,c)

MAγ
:m:B

∣∣∣∣∣
ϕA(a,c)

and (6.15)

0 = C:A :B

∣∣∣∣
ϕA(a,c)

MAγ
:m

∣∣∣∣
ϕA(a,c)

+ C
:A :B

∣∣∣∣
ϕA(a,c)

MAγ
:m

∣∣∣∣∣
ϕA(a,c)

+ C
:A

∣∣∣∣
ϕA(a,c)

MAγ
:m:B

∣∣∣∣∣
ϕA(a,c)

. (6.16)

These two equations provide 90 relations each of which some are trivially satisfied. From a practical
point of view, it is most helpful to first evaluate Eq. (6.16) as it contains only three instead of four terms.
One finds

C:1 :1

∣∣∣
ϕA(a,c) − C:1 :4

∣∣∣
ϕA(a,c) = −

a2

2 c2 C:1

∣∣∣
ϕA(a,c) +

a4

4 c4 Ccosmo . (6.17)

The other non-trivial second derivatives C:A :B

∣∣∣
ϕA(a,c) can be expressed in terms of the two second deriva-

tives C:11

∣∣∣
ϕA(a,c) and C:14

∣∣∣
ϕA(a,c) as

C:1 :1

∣∣∣
ϕA(a,c) = C:4 :4

∣∣∣
ϕA(a,c) = C:6 :6

∣∣∣
ϕA(a,c) , C:1 :4

∣∣∣
ϕA(a,c) = C:1 :6

∣∣∣
ϕA(a,c) = C:4 :6

∣∣∣
ϕA(a,c) and

C:2 :2

∣∣∣
ϕA(a,c) = C:3 :3

∣∣∣
ϕA(a,c) = C:5 :5

∣∣∣
ϕA(a,c) = C:1 :1

∣∣∣
ϕA(a,c) − C:1 :4

∣∣∣
ϕA(a,c) .

From the analysis of Eq. (6.16), one obtains the same relations and using the relations from the first
prolongation of (C1), one can express all second derivatives of the form C

:A :B

∣∣∣∣
ϕA(a,c)

and C
:A :B

∣∣∣∣
ϕA(a,c)

by

the two independent second derivatives C:1 :1

∣∣∣
ϕA(a,c) and C:1 :4

∣∣∣
ϕA(a,c) as well as the undetermined lower

order derivative C:1

∣∣∣
ϕA(a,c) and the coefficient Ccosmo. Clearly, the first prolongation of (C1) and the

second one of (C5) provided only information about the second derivatives of C, but not about the first
derivative C:1

∣∣∣
ϕA(a,c). This first derivatives needs to be determined in order to restrict the solution (6.11)

for the expansion coefficient Ccosmo.

Summary

The only closure equations dealing with the expansion coefficient Ccosmo and its derivatives C:A

∣∣∣
ϕA(a,c)

are (C1) and the first prolongation of (C5). These equations determine the dependence of Ccosmo on the
first scale factor a(t), but not the dependence of Ccosmo on the second scale factor c(t).

The first prolongation of (C1) and a second prolongation of (C5) provide relations for the second
derivatives C:A :B |ϕA(a,c). All second derivatives of Ccosmo are expressed in terms of two independent,
but unknown derivatives C:1 :1

∣∣∣
ϕA(a,c) and C:1 :4

∣∣∣
ϕA(a,c). Besides leaving these two second derivatives

undetermined, they also provide no new information on either C:1

∣∣∣
ϕA(a,c) or Ccosmo itself.

Further prolongations of the two closure equations are not expected to reveal new information on the
desired first derivative C:1 . The N-th prolongation of (C1) with symmetry afterwards imposed is

0 = C:B1···:BN |ϕA(a,c) δ
γ
µ + N C:A:(B1···:BN−1 ||ϕA(a,c) FA

µ
γ

:|BN )
∣∣∣
ϕA(a,c) + C:A:B1···:BN |ϕA(a,c) FA

µ
γ
∣∣∣
ϕA(a,c) .
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It expresses (N + 1)-th order derivatives in terms of the purely single-overlined ones C:B1···:BN+1
and N-th

order derivatives C:B1···:BN
. The N + 1-th prolongation (C5)

:m:B1···:BN
can be written as

0 =

N∑
K=0

(
N
K

)
C:A:(B1···:BK |

∣∣∣
ϕA(a,c) MAγ

:m|:BK+1···:BN )

∣∣∣∣∣
ϕA(a,c)

,

where the capital indices range only over B and B. Due to the structure of the M-coefficient, these
relations provide information only about the difference between two Nth-order derivatives, but not about
the actual derivatives, as it was already seen in equation (6.17) for the case of N = 2. Thus, for every
derivative order picked up by a prolongation of the closure equations (C1) and (C5)

:m
, there are new

undetermined derivatives. This hampers the goal of determining the first derivative C:1

∣∣∣
ϕA(a,c) required

for the solution of the differential equation (6.12). Instead, there remains an undetermined function f0(c)
in the solution of the first expansion coefficient Ccosmo,

Ccosmo = f0(c) a3 .

6.3 Solution for the second expansion coefficient

The solution of the first expansion coefficient Ccosmo was the most simplest as there were only two closure
equations involved after symmetry was imposed. Additionally, as the coefficient Ccosmo has no capital
index, the amount of single relations is manageable. For the other expansion coefficients, each additional
capital index accounts for more and more single relations which need to be evaluated. While this is
not yet hindering for the solution of the second expansion coefficient Ccosmo

A , one will already have to
evaluate significantly more relations than in the previous section.

For the second expansion coefficient Ccosmo
A , one will have to investigate three closure equations

and their respective prolongations. Following the solution for the first expansion coefficient Ccosmo, one
identifies closure equation (C2) as the analog of (C1). Closure equation (C2) provides relations between
the expansion coefficient Ccosmo

A and the derivatives CA:B |ϕA(a,c).

Analysis of closure equation (C2)

The closure equations simplify as the spatial derivatives vanish after imposition of symmetry. This
provides the symmetry-reduced equation (C2)|ϕA(a,c) as

0 = Ccosmo
B δ

γ
µ + Ccosmo

A FA
µ
γ

:B
∣∣∣
ϕA(a,c) + CB:A FA

µ
γ
∣∣∣
ϕA(a,c) (6.18)

Restricting the free capital index B to the range B results in 54 relations. One reads off that three com-
ponents vanish,

Ccosmo
2

= Ccosmo
3

= Ccosmo
5

= 0 ,

while the other three components are equal,

Ccosmo
1

= Ccosmo
4

= Ccosmo
6

.

Thus, one only needs to determine the component Ccosmo
1

and the other two non-trivial components are
identical to it. For this component, closure equation (C2)|ϕA(a,c) implies the following relations,

C
1:1

∣∣∣∣
ϕA(a,c)

=
c6

a4 C1:1

∣∣∣
ϕA(a,c) +

3 c4

2 a2 Ccosmo
1

,

C
1:4

∣∣∣∣
ϕA(a,c)

=
c6

a4 C1:4

∣∣∣
ϕA(a,c) +

c4

2 a2 Ccosmo
1

and

C
1:6

∣∣∣∣
ϕA(a,c)

=
c6

a4 C1:6

∣∣∣
ϕA(a,c) +

c4

2 a2 Ccosmo
1

.
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These are the relevant derivatives appearing in the chain rule equations (6.4) and (6.5) for the compo-
nent Ccosmo

1
. Subsequent insertion into the chain rule equations provides the two differential equations

∂Ccosmo
1

∂a
=

5
a

Ccosmo
1

and
∂Ccosmo

1

∂c
= −

10
c

Ccosmo
1

−
2 c
a2

(
C1:1

∣∣∣
ϕA(a,c) + C1:4

∣∣∣
ϕA(a,c) + C1:6

∣∣∣
ϕA(a,c)

)
.

One can only solve the first equation and obtains a second undetermined function of the second scale
factor c in the solution,

Ccosmo
1

= f1(c) a5 .

In analogy, restricting the capital index B to the range B in Eq. (6.18) again results in 54 relations now
containing the components Ccosmo

B
. In the same way as before, three components

Ccosmo

2
= Ccosmo

3
= Ccosmo

5
= 0

vanish and the other three components are equal,

Ccosmo

1
= Ccosmo

4
= Ccosmo

6
,

which means that only Ccosmo

1
needs to be determined. One extracts the three relations

C
1:1

∣∣∣∣
ϕA(a,c)

=
c6

a4 C
1:1

∣∣∣∣
ϕA(a,c)

−
c4

2 a2 Ccosmo

1

C
1:4

∣∣∣∣
ϕA(a,c)

=
c6

a4 C
1:4

∣∣∣∣
ϕA(a,c)

+
c4

2 a2 Ccosmo

1
and

C
1:6

∣∣∣∣
ϕA(a,c)

=
c6

a4 C
1:6

∣∣∣∣
ϕA(a,c)

+
c4

2 a2 Ccosmo

1
.

Inserting these relations into the chain rule equations (6.4) and (6.5) provides the solution

Ccosmo

1
= f̂1(c) a

with a third undetermined function f̂1(c). While it at first seems that the coefficient Ccosmo
A features two

independent components Ccosmo
1

and Ccosmo

1
, it is a prolongation of other closure equations which will

show that one component can actually be expressed by the other. The closure equations which have to
inspected for that are (C4) and again a prolongation of (C5). For this case here, a different prolongation
than in the previous section needs to be studied.

Analysis of closure equation (C4)

Closure equation (C4) contains the expansion coefficient CA together with a derivative of the input co-
efficient MAγ. Of the remaining terms, all but one drop out of the equation since all spatial derivatives
vanish after symmetry has been imposed. One is thus left with

0 = Ccosmo
A MAµ

:B
∣∣∣
ϕA(a,c) + C:B

µ
∣∣∣
ϕA(a,c) . (6.19)

While this equation contains the desired expansion coefficient Ccosmo
A , it also features a derivative of the

first expansion coefficient C. The equation is most reasonably analyzed by splitting the index range of
the free capital index B.
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Case 1: B = m

If the range of the capital index B is restricted to the values of m, the components of Ccosmo
A which will

contribute to the cosmological spacetime action (6.6) appear in the equation,

0 = Ccosmo
A

MAµ
:m

∣∣∣∣
ϕA(a,c)

+ Ccosmo

A
MAµ

:m

∣∣∣∣∣
ϕA(a,c)

+ C
:m
µ
∣∣∣∣
ϕA(a,c)

.

One uses the expression of the derivative of MAγ from Section 6.1 as well as the results from closure
equation (C2)|ϕA(a,c) which revealed that there are only two non-trivial, independent components, Ccosmo

1
and Ccosmo

1
in order to see that all terms containing the coefficient Ccosmo

A drop out of this equation. Thus,

one reads off

C
:m
µ
∣∣∣∣
ϕA(a,c)

= 0 ,

which provides no new information on neither the desired components of Ccosmo
A nor about the first

expansion coefficient Ccosmo as this derivative was not needed for its solution.

Case 2: B = B and B = B

In case the capital index B of Eq. (6.19) ranges over B or B, the equation is

0 = Ccosmo

m
Mmµ

:B

∣∣∣∣∣
ϕA(a,c)

+ C:B
µ
∣∣∣
ϕA(a,c) and

0 = Ccosmo

m
Mmµ

:B

∣∣∣∣∣
ϕA(a,c)

+ C
:B
µ
∣∣∣∣
ϕA(a,c)

,

respectively. Studying closure equation (C2)|ϕA(a,c) for the free index B ranging in m reveals that the
components Ccosmo

m
actually vanish. These do not contribute to the cosmological spacetime action (6.6)

anyway. The above two equations stemming from closure equation (C4)|ϕA(a,c) still simplify and reveal
that

C:B
µ
∣∣∣
ϕA(a,c) = 0 and C

:B
µ
∣∣∣∣
ϕA(a,c)

= 0 .

This means that closure equation (C4) provides no relations for the expansion coefficient Ccosmo
A , but

rather determines the derivative
C:B

µ
∣∣∣
ϕA(a,c) = 0

of the first expansion coefficient C. This result will become important in the analysis of a prolongation of
closure equation (C5) which will then provide new information about the expansion coefficient Ccosmo

A .

First prolongation of (C5)

It is again closure equation (C5) which plays a crucial role in extracting further information about the
expansion coefficient Ccosmo

A . In contrast to the analysis of coefficient Ccosmo, it is this time the prolon-
gation (C5):D

κ|ϕA(a,c) which will provide a relation between the two components Ccosmo
1

and Ccosmo

1
. The

prolongation with imposed symmetry is

0 = 2 Ccosmo
A MA[κ|

:B
∣∣∣
ϕA(a,c) MB|γ]

:D
∣∣∣
ϕA(a,c) + 6 Ccosmo

D pκγ
∣∣∣
ϕA(a,c) − 6 Ccosmo

A FA
ρ
κ

:D
∣∣∣
ϕA(a,c) pργ

∣∣∣
ϕA(a,c)

− 6 CA:D |ϕA(a,c) FA
ρ
κ
∣∣∣
ϕA(a,c) pργ

∣∣∣
ϕA(a,c) + 2 C:A

[κ|
∣∣∣
ϕA(a,c) MA|γ]

:D
∣∣∣
ϕA(a,c) ,

from which the first and the last term drop out using the previously studied closure equation (C4)|ϕA(a,c).

Restricting the range of the free capital index D to D and D, the equation simplifies to the two respective
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equations,

0 = Ccosmo
D

pκγ
∣∣∣
ϕA(a,c) −Ccosmo

A
FA

ρ
κ

:D

∣∣∣∣
ϕA(a,c)

pργ
∣∣∣
ϕA(a,c) − CA:D

∣∣∣
ϕA(a,c) FA

ρ
κ
∣∣∣
ϕA(a,c) pργ

∣∣∣
ϕA(a,c) and

0 = Ccosmo

D
pκγ

∣∣∣
ϕA(a,c) −Ccosmo

A
FA

ρ
κ

:D

∣∣∣∣∣
ϕA(a,c)

pργ
∣∣∣
ϕA(a,c) − C

A:D

∣∣∣∣
ϕA(a,c)

FA
ρ
κ
∣∣∣
ϕA(a,c) pργ

∣∣∣
ϕA(a,c) .

These equations each account for 54 relations. From the first equation, one obtains the three relations

C
1:1

∣∣∣∣
ϕA(a,c)

=
c6

a4 C1:1

∣∣∣
ϕA(a,c) +

c4

2 a2 Ccosmo
1

,

C
1:4

∣∣∣∣
ϕA(a,c)

=
c6

a4 C1:4

∣∣∣
ϕA(a,c) −

c4

2 a2 Ccosmo
1

and

C
1:6

∣∣∣∣
ϕA(a,c)

=
c6

a4 C1:6

∣∣∣
ϕA(a,c) −

c4

2 a2 Ccosmo
1 ,

while the second equation provides

C
1:1

∣∣∣∣
ϕA(a,c)

=
c6

a4 C
1:1

∣∣∣∣
ϕA(a,c)

−
3 c4

2 a2 Ccosmo

1
,

C
1:4

∣∣∣∣
ϕA(a,c)

=
c6

a4 C
1:4

∣∣∣∣
ϕA(a,c)

−
c4

2 a2 Ccosmo

1
and

C
1:6

∣∣∣∣
ϕA(a,c)

=
c6

a4 C
1:6

∣∣∣∣
ϕA(a,c)

−
c4

2 a2 Ccosmo

1
.

Recall that closure equation (C2)|ϕA(a,c) provided the following relations,

C
1:1

∣∣∣∣
ϕA(a,c)

=
c6

a4 C
1:1

∣∣∣∣
ϕA(a,c)

−
c4

2 a2 Ccosmo

1
and C

1:1

∣∣∣∣
ϕA(a,c)

=
c6

a4 C1:1

∣∣∣
ϕA(a,c) +

3 c4

2 a2 Ccosmo
1

.

Combining the relations of (C5):D
κ|ϕA(a,c) and (C2)|ϕA(a,c), one concludes

Ccosmo

1
=

c6

a4 Ccosmo
1

.

Thus, only component Ccosmo
1 is independent and needs to be determined. All other components can

either be expressed by it or vanish anyway. In particular, this also means the undetermined function f̂1(c)
which appeared in the solution of Ccosmo

1
can actually be expressed as f̂1(c) = f1(c) c6. The undetermined

function f1(c) of the component Ccosmo
1

remains in the solution. One can investigate whether additional
prolongations will provide any relations which determine it.

First prolongation of (C2)

Symmetry-reduced closure equation (C2)|ϕA(a,c) provided the relations for the solution of the compo-
nent Ccosmo

1
, the only independent component of expansion coefficient Ccosmo

A . Just as in the previous
analysis, it might be worth to study the prolongations (C2):D|ϕA(a,c) and (C2)

:D
|ϕA(a,c). These might

provide additional information about the first derivatives C1:A

∣∣∣
ϕA(a,c). If all of the derivatives can be

expressed, the free function f1 can be determined.
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For the respective index ranges of the free capital index B of (C2), these equations are

0 = CB:D :A
∣∣∣
ϕA(a,c) FA

µ
γ
∣∣∣
ϕA(a,c) + CA:D

∣∣∣
ϕA(a,c) FA

µ
γ

:B

∣∣∣∣
ϕA(a,c)

+ CB:A

∣∣∣
ϕA(a,c) FA

µ
γ

:D

∣∣∣∣
ϕA(a,c)

+ CB:D

∣∣∣
ϕA(a,c) δ

γ
µ ,

0 = C
B:D :A

∣∣∣∣
ϕA(a,c)

FA
µ
γ
∣∣∣
ϕA(a,c) + C

A:D

∣∣∣∣
ϕA(a,c)

FA
µ
γ

:B

∣∣∣∣
ϕA(a,c)

+ C
B:A

∣∣∣∣
ϕA(a,c)

FA
µ
γ

:D

∣∣∣∣∣
ϕA(a,c)

+ C
B:D

∣∣∣∣
ϕA(a,c)

δ
γ
µ ,

0 = C
B:D :A

∣∣∣∣
ϕA(a,c)

FA
µ
γ
∣∣∣
ϕA(a,c) + C

A:D

∣∣∣∣
ϕA(a,c)

FA
µ
γ

:B

∣∣∣∣∣
ϕA(a,c)

+ C
B:A

∣∣∣∣
ϕA(a,c)

FA
µ
γ

:D

∣∣∣∣
ϕA(a,c)

+ C
B:D

∣∣∣∣
ϕA(a,c)

δ
γ
µ and

0 = C
B:D :A

∣∣∣∣
ϕA(a,c)

FA
µ
γ
∣∣∣
ϕA(a,c) + C

A:D

∣∣∣∣
ϕA(a,c)

FA
µ
γ

:B

∣∣∣∣∣
ϕA(a,c)

+ C
B:A

∣∣∣∣
ϕA(a,c)

FA
µ
γ

:D

∣∣∣∣∣
ϕA(a,c)

+ C
B:D

∣∣∣∣
ϕA(a,c)

δ
γ
µ .

Each equation provides 324 single relations. Evaluating these relations for the first equation, one con-
cludes that there are only two independent derivatives of the form C1:A

∣∣∣
ϕA(a,c), namely

C1:1

∣∣∣
ϕA(a,c) and C1:4

∣∣∣
ϕA(a,c) .

All other non-trivial derivatives can be expressed in terms of those two,

C1:4

∣∣∣
ϕA(a,c) = C1:6

∣∣∣
ϕA(a,c) = C4:1

∣∣∣
ϕA(a,c) = C4:6

∣∣∣
ϕA(a,c) = C6:1

∣∣∣
ϕA(a,c) = C6:4

∣∣∣
ϕA(a,c) ,

C1:1

∣∣∣
ϕA(a,c) = C4:4

∣∣∣
ϕA(a,c) = C6:6

∣∣∣
ϕA(a,c) and

C2:2

∣∣∣
ϕA(a,c) = C3:3

∣∣∣
ϕA(a,c) = C5:5

∣∣∣
ϕA(a,c) = C1:1

∣∣∣
ϕA(a,c) − C1:4

∣∣∣
ϕA(a,c) .

The remaining three equations merely provide relations which are consistent with the ones from the
first equation. In particular, they provide no further information about the two independent deriva-
tives C1:1

∣∣∣
ϕA(a,c) and C1:4

∣∣∣
ϕA(a,c). These however need to be determined in order to solve the second

chain rule equation for Ccosmo
1

. Thus, also after evaluating the first prolongation of (C2), one remains
with the solution

Ccosmo
1

= f1(c) a5 .

As already shown in this section, there are further closure equations containing the expansion coeffi-
cient CA. One therefore studies whether prolongations of these equations might reveal relations for the
two undetermined derivatives C1:1

∣∣∣
ϕA(a,c) and C1:4

∣∣∣
ϕA(a,c).

Further closure equations for CA

The important criterion for a closure equation to be taken into account here is that it needs to contain
either the expansion coefficient Ccosmo

A itself or the derivative of CA with respect to the configuration
fields ϕB. Clearly, this is the case for (C2), (C4) and the aforementioned prolongation of (C5). While
an extra piece of information could be extracted from the first prolongation of (C2), it is not expected to
gain more information from the second prolongation as it will only provide more relations for the second
derivatives CA:B1 :B2

∣∣∣
ϕA(a,c).

One might as well argue that further prolongations of closure equation (C4) might reveal new infor-
mation about the desired derivatives of CA. The first prolongation (C4):D|ϕA(a,c) provides

0 = − CA:D |ϕA(a,c) MAµ
:B
∣∣∣
ϕA(a,c) −Ccosmo

A MAµ
:B:D

∣∣∣
ϕA(a,c)

− CB:A |ϕA(a,c) MAµ
:D

∣∣∣
ϕA(a,c) − C:B

µ
:D

∣∣∣
ϕA(a,c) .
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This equation only determines the second derivative of the expansion coefficient C which appears as the
last summand. Further prolongations – also the first ones with respect to ϕD

,ν or ϕD
,ν1ν2 – either con-

tain the not yet determined expansion coefficient Ccosmo
AB or derivatives of CA which are not relevant for

the actual goal of determining the component Ccosmo
1

. An expression for the two undetermined deriva-

tives C1:1

∣∣∣
ϕA(a,c) and C1:4

∣∣∣
ϕA(a,c) is not obtained.

The actually most promising prolongation of a closure equation is the second prolongation of closure
equation (C5) in the form

(C5):D
λ

:E |ϕA(a,c)|(λγ)

where only the symmetric part of the equation – with respect to the spatial indices – is taken into ac-
count; the antisymmetric part contains quite involved derivatives of the input coefficient MAγ and an
undetermined derivative of the first expansion coefficient C. One obtains 824 single relations even if one

restricts the index range of the two free capital indices to D, D, E and E. Evaluating the 824 relations by
hand is almost impossible and as one cannot expect success, this task should be delegated to a suitable
and reliable computer algebra program. Implementing such a program exceeded the scope of this thesis
and remains a task for future work and research on this topic.

Further closure equations deal only with derivatives of the expansion coefficient CA that are not
relevant for the solution of Ccosmo

1
. Therefore, one is left with the solution

Ccosmo
1

= Ccosmo
4

= Ccosmo
6

= f1(c) a5 and

Ccosmo

1
= Ccosmo

4
= Ccosmo

6
= f1(c) c6 a ,

which leaves a second undetermined function f1 in the cosmological spacetime action (6.6) after previ-
ously obtaining the first function f0 in the solution of the first expansion coefficient Ccosmo.

Inspecting the contribution of the expansion coefficient Ccosmo
A to the cosmological spacetime ac-

tion (6.6), one finds the expression

Ccosmo
A ϕ̇A = −6 f1(c) c ċ a3 ,

which allows to define a new function F1(c) as

F1(c) := −6 f1(c) c .

Thus, the contribution to the cosmological spacetime action can be written more compactly as

Ccosmo
A ϕ̇A = F1(c) ċ a3 .

This result improves previous results, e. g. from Ref. [24] as it shows that the coefficient Ccosmo
A con-

tributes only one undetermined function to the cosmological spacetime action. This result could only be
achieved by taking prolongations of the closure equations into account.

6.4 Solution for the third expansion coefficient

The next coefficient to be determined is the third expansion coefficient Ccosmo
AB . There are even more

closure equations involved in its determination. Next to closure equation (C10)2 which is an equation
only for Ccosmo

AB and its derivatives, it is particularly closure equation (C3)|ϕA(a,c),

0 = 2 Ccosmo
AB FA

ρ
(µ
∣∣∣
ϕA(a,c) pν)ρ

∣∣∣
ϕA(a,c) − C:B

µν
∣∣∣
ϕA(a,c)

which relates the expansion coefficient Ccosmo
AB with a not yet determined derivative of the first expansion

coefficient C. This derivative is part of other closure equations, most prominently in (C83)|ϕA(a,c). Addi-
tionally, a prolongation of closure equation (C213) will have to be used in order to gain more information
about this derivative.

73



Closure equation (C8)3

Due to the collapse (6.8) of C to second derivative order, closure equation (C83)|ϕA(a,c) simplifies to

0 = C:A
(β1β2 |

∣∣∣
ϕA(a,c) FA

µ
|β3)

∣∣∣
ϕA(a,c) ,

which provides relations for the derivatives C:A
µν|ϕA(a,c) of the first expansion coefficient C. This equation

amounts for 30 independent relations which leaves the system of 72 independent derivatives C:B
µν

∣∣∣
ϕA(a,c)

and C
:B
µν

∣∣∣∣
ϕA(a,c)

underdetermined. Yet, one finds 15 relations relating the exact single- and double-

overlined counterparts of derivatives with each other,

C
:1

xx
∣∣∣∣
ϕA(a,c)

=
c6

a4 C:1
xx
∣∣∣
ϕA(a,c) , C

:1
xy
∣∣∣∣
ϕA(a,c)

=
c6

a4 C:1
xy
∣∣∣
ϕA(a,c) , C

:1
xz
∣∣∣∣
ϕA(a,c)

=
c6

a4 C:1
xz
∣∣∣
ϕA(a,c)

C
:2

xx
∣∣∣∣
ϕA(a,c)

=
c6

a4 C:2
xx
∣∣∣
ϕA(a,c) , C

:2
yy
∣∣∣∣
ϕA(a,c)

=
c6

a4 C:2
yy
∣∣∣
ϕA(a,c)

C
:3

xx
∣∣∣∣
ϕA(a,c)

=
c6

a4 C:3
xx
∣∣∣
ϕA(a,c) , C

:3
zz
∣∣∣∣
ϕA(a,c)

=
c6

a4 C:3
zz
∣∣∣
ϕA(a,c)

C
:4

xy
∣∣∣∣
ϕA(a,c)

=
c6

a4 C:4
xy
∣∣∣
ϕA(a,c) , C

:4
yy
∣∣∣∣
ϕA(a,c)

=
c6

a4 C:4
yy
∣∣∣
ϕA(a,c) , C

:4
yz
∣∣∣∣
ϕA(a,c)

=
c6

a4 C:4
yz
∣∣∣
ϕA(a,c)

C
:5

yy
∣∣∣∣
ϕA(a,c)

=
c6

a4 C:5
yy
∣∣∣
ϕA(a,c) , C

:5
zz
∣∣∣∣
ϕA(a,c)

=
c6

a4 C:5
zz
∣∣∣
ϕA(a,c)

C
:6

xz
∣∣∣∣
ϕA(a,c)

=
c6

a4 C:6
xz
∣∣∣
ϕA(a,c) , C

:6
yz
∣∣∣∣
ϕA(a,c)

=
c6

a4 C:6
yz
∣∣∣
ϕA(a,c) , C

:6
zz
∣∣∣∣
ϕA(a,c)

=
c6

a4 C:6
zz
∣∣∣
ϕA(a,c) .

Besides, there are 12 relations with four terms; these relate two pairs of single- and double-overlined
derivatives with each other,

0 =
c6

a4 C:4
xx
∣∣∣
ϕA(a,c) − C

:4
xx
∣∣∣∣
ϕA(a,c)

+

√
2 c6

a4 C:2
xy
∣∣∣
ϕA(a,c) −

√
2 C

:2
xy
∣∣∣∣
ϕA(a,c)

,

0 =
c6

a4 C:1
yy
∣∣∣
ϕA(a,c) − C

:1
yy
∣∣∣∣
ϕA(a,c)

+

√
2 c6

a4 C:2
xy
∣∣∣
ϕA(a,c) −

√
2 C

:2
xy
∣∣∣∣
ϕA(a,c)

,

0 =
c6

a4 C:6
xx
∣∣∣
ϕA(a,c) − C

:6
xx
∣∣∣∣
ϕA(a,c)

+

√
2 c6

a4 C:3
xz
∣∣∣
ϕA(a,c) −

√
2 C

:3
xz
∣∣∣∣
ϕA(a,c)

,

0 =
c6

a4 C:1
zz
∣∣∣
ϕA(a,c) − C

:1
zz
∣∣∣∣
ϕA(a,c)

+

√
2 c6

a4 C:3
xz
∣∣∣
ϕA(a,c) −

√
2 C

:3
xz
∣∣∣∣
ϕA(a,c)

,

0 =
c6

a4 C:5
xx
∣∣∣
ϕA(a,c) − C

:5
xx
∣∣∣∣
ϕA(a,c)

+
2 c6

a4 C:3
xy
∣∣∣
ϕA(a,c) − 2 C

:3
xy
∣∣∣∣
ϕA(a,c)

,

0 =
c6

a4 C:5
xx
∣∣∣
ϕA(a,c) − C

:5
xx
∣∣∣∣
ϕA(a,c)

+
2 c6

a4 C:2
xz
∣∣∣
ϕA(a,c) − 2 C

:2
xz
∣∣∣∣
ϕA(a,c)

,

0 =
c6

a4 C:3
yy
∣∣∣
ϕA(a,c) − C

:3
yy
∣∣∣∣
ϕA(a,c)

+
2 c6

a4 C:5
xy
∣∣∣
ϕA(a,c) − 2 C

:5
xy
∣∣∣∣
ϕA(a,c)

,

0 =
c6

a4 C:3
yy
∣∣∣
ϕA(a,c) − C

:3
yy
∣∣∣∣
ϕA(a,c)

+
2 c6

a4 C:2
yz
∣∣∣
ϕA(a,c) − 2 C

:2
yz
∣∣∣∣
ϕA(a,c)

,

0 =
c6

a4 C:2
zz
∣∣∣
ϕA(a,c) − C

:2
zz
∣∣∣∣
ϕA(a,c)

+
2 c6

a4 C:5
xz
∣∣∣
ϕA(a,c) − 2 C

:5
xz
∣∣∣∣
ϕA(a,c)

,

0 =
c6

a4 C:2
zz
∣∣∣
ϕA(a,c) − C

:2
zz
∣∣∣∣
ϕA(a,c)

+
2 c6

a4 C:3
yz
∣∣∣
ϕA(a,c) − 2 C

:3
yz
∣∣∣∣
ϕA(a,c)

,

0 =
c6

a4 C:6
yy
∣∣∣
ϕA(a,c) − C

:6
yy
∣∣∣∣
ϕA(a,c)

+

√
2 c6

a4 C:5
yz
∣∣∣
ϕA(a,c) −

√
2 C

:5
yz
∣∣∣∣
ϕA(a,c)

,

0 =
c6

a4 C:4
zz
∣∣∣
ϕA(a,c) − C

:4
zz
∣∣∣∣
ϕA(a,c)

+

√
2 c6

a4 C:5
yz
∣∣∣
ϕA(a,c) −

√
2 C

:5
yz
∣∣∣∣
ϕA(a,c)

.
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Last, there are also three relations that each contain six different derivatives – three pairs of single- and
double-overlined counterparts – as

0 =
c6

a4

(
C:3

xy
∣∣∣
ϕA(a,c) + C:2

xz
∣∣∣
ϕA(a,c) +

√
2 C:1

yz
∣∣∣
ϕA(a,c)

)
−

(
C

:3
xy
∣∣∣∣
ϕA(a,c)

+ C
:2

xz
∣∣∣∣
ϕA(a,c)

+
√

2 C
:1

yz
∣∣∣∣
ϕA(a,c)

)
,

0 =
c6

a4

(
C:2

yz
∣∣∣
ϕA(a,c) + C:5

xy
∣∣∣
ϕA(a,c) +

√
2 C:4

xz
∣∣∣
ϕA(a,c)

)
−

(
C

:2
yz
∣∣∣∣
ϕA(a,c)

+ C
:5

xy
∣∣∣∣
ϕA(a,c)

+
√

2 C
:4

xz
∣∣∣∣
ϕA(a,c)

)
,

0 =
c6

a4

(
C:3

yz
∣∣∣
ϕA(a,c) + C:5

xz
∣∣∣
ϕA(a,c) +

√
2 C:6

xy
∣∣∣
ϕA(a,c)

)
−

(
C

:3

yz
∣∣∣∣∣
ϕA(a,c)

+ C
:5

xz
∣∣∣∣∣
ϕA(a,c)

+
√

2 C
:6

xy
∣∣∣∣∣
ϕA(a,c)

)
.

It was clear from the beginning that the 30 relations of (C83)|ϕA(a,c) cannot provide the same strong results
as its equivalent in the metric case in Chapter 4 could. This is simply because now there are 72 single
derivatives in the equations compared to 36 in the metric FLRW case. This lack of information about the
single derivatives is compensated by other closure equations which were trivially satisfied in the metric
FLRW case. Here, it turns out that the prolongation (C213)

:m
|ϕA(a,c) which contains the precise same

derivatives as (C83)|ϕA(a,c) will provide the additional information which is needed for a solution of the
symmetry-reduced closure equations.

First prolongation of (C213)

The instance (C213) of the sequence (C21N≥3,odd) of closure equations,

0 = 2
∞∑

K=2

(
K
2

)
C:A

β3...βK (µ1µ2 | MA|µ3)
,β3...βK

−

∞∑
K=3

K+1∑
J=4

(−1)J
(

K
J − 1

) (
J
3

)
∂J−3
α1...αJ−3

(
C:A

βJ ...βK (α1...αJ−3µ1µ2 | MA|µ3)
,βJ ...βK

)
,

is satisfied when FLRW symmetries are imposed. The first term features a sum over the index K starting
from the value 2. For this starting value, the summand reads

C:A
(µ1µ2 | MA|µ3)

which vanishes when evaluated on ϕA(a, c) due to the vanishing M coefficient. All further summands
contain at least one spatial derivative which makes these terms drop from the equation when symmetry
is imposed. In analogy, the second term always contains at least one spatial derivative and therefore
also vanishes on symmetry. If one now considers the prolongation (C213)

:m
|ϕA(a,c) with respect to the

configuration fields ϕm, the second summand still vanishes completely due to the spatial derivatives. The
first summand, however, will contribute one non-trivial term,

0 = C:A
(µ1µ2 |

∣∣∣
ϕA(a,c) MA|µ3)

:m

∣∣∣∣
ϕA(a,c)

.

It provides 50 additional relations complementary to the ones obtained from (C83)|ϕA(a,c). One finds 20
derivatives to vanish,

0 = C:1
xy
∣∣∣
ϕA(a,c) = C

:1
xy
∣∣∣∣
ϕA(a,c)

= C:1
xz
∣∣∣
ϕA(a,c) = C

:1
xz
∣∣∣∣
ϕA(a,c)

= C:2
xx
∣∣∣
ϕA(a,c) = C

:2
xx
∣∣∣∣
ϕA(a,c)

= C:2
yy
∣∣∣
ϕA(a,c) = C

:2
yy
∣∣∣∣
ϕA(a,c)

= C:3
xx
∣∣∣
ϕA(a,c) = C

:3
xx
∣∣∣∣
ϕA(a,c)

= C:3
zz
∣∣∣
ϕA(a,c) = C

:3
zz
∣∣∣∣
ϕA(a,c)

= C:4
xy
∣∣∣
ϕA(a,c) = C

:4
xy
∣∣∣∣
ϕA(a,c)

= C:5
yy
∣∣∣
ϕA(a,c) = C

:5
yy
∣∣∣∣
ϕA(a,c)

= C:5
zz
∣∣∣
ϕA(a,c) = C

:5
zz
∣∣∣∣
ϕA(a,c)

= C:6
xz
∣∣∣
ϕA(a,c) = C

:6
xz
∣∣∣∣
ϕA(a,c)

.
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Additionally, 13 double-overlined derivatives C
:B
µν

∣∣∣∣
ϕA(a,c)

can be expressed by their single-overlined
counterparts,

C
:2

xy
∣∣∣∣
ϕA(a,c)

= −
c6

a4 C:2
xy
∣∣∣
ϕA(a,c) , C

:2
xz
∣∣∣∣
ϕA(a,c)

= −
c6

a4 C:2
xz
∣∣∣
ϕA(a,c) , C

:2
yz
∣∣∣∣
ϕA(a,c)

= −
c6

a4 C:2
yz
∣∣∣
ϕA(a,c) ,

C
:2

zz
∣∣∣∣
ϕA(a,c)

= −
c6

a4 C:2
zz
∣∣∣
ϕA(a,c) , C

:3
xy
∣∣∣∣
ϕA(a,c)

= −
c6

a4 C:3
xy
∣∣∣
ϕA(a,c) , C

:3
xz
∣∣∣∣
ϕA(a,c)

= −
c6

a4 C:3
xz
∣∣∣
ϕA(a,c) ,

C
:3

yy
∣∣∣∣
ϕA(a,c)

= −
c6

a4 C:3
yy
∣∣∣
ϕA(a,c) , C

:3
yz
∣∣∣∣
ϕA(a,c)

= −
c6

a4 C:3
yz
∣∣∣
ϕA(a,c) , C

:4
xz
∣∣∣∣
ϕA(a,c)

= −
c6

a4 C:4
xz
∣∣∣
ϕA(a,c) ,

C:5
xx
∣∣∣
ϕA(a,c) = −

c6

a4 C:5
xx
∣∣∣
ϕA(a,c) , C

:5
xy
∣∣∣∣
ϕA(a,c)

= −
c6

a4 C:5
xy
∣∣∣
ϕA(a,c) , C

:5
xz
∣∣∣∣
ϕA(a,c)

= −
c6

a4 C:5
xz
∣∣∣
ϕA(a,c) ,

C
:5

yz
∣∣∣∣
ϕA(a,c)

= −
c6

a4 C:5
yz
∣∣∣
ϕA(a,c) , C

:6
xy
∣∣∣∣
ϕA(a,c)

= −
c6

a4 C:6
xy
∣∣∣
ϕA(a,c)

Seven more double-overlined derivatives of the form C
:B
µν

∣∣∣∣
ϕA(a,c)

can be written as a combination of

single-overlined derivatives,

C
:1

yy
∣∣∣∣
ϕA(a,c)

= −
c6

a4

(
C:1

yy
∣∣∣
ϕA(a,c) − 2 C:4

yy
∣∣∣
ϕA(a,c)

)
, C

:1
yz
∣∣∣∣
ϕA(a,c)

= −
c6

a4

(
C:1

yz
∣∣∣
ϕA(a,c) − 2 C:6

yz
∣∣∣
ϕA(a,c)

)
,

C
:1

zz
∣∣∣∣
ϕA(a,c)

= −
c6

a4

(
C:1

zz
∣∣∣
ϕA(a,c) − 2 C:6

zz
∣∣∣
ϕA(a,c)

)
, C

:4
xx
∣∣∣∣
ϕA(a,c)

= −
c6

a4

(
C:4

xx
∣∣∣
ϕA(a,c) − 2 C:1

xx
∣∣∣
ϕA(a,c)

)
,

C
:4

zz
∣∣∣∣
ϕA(a,c)

= −
c6

a4

(
C:4

zz
∣∣∣
ϕA(a,c) − 2 C:6

zz
∣∣∣
ϕA(a,c)

)
, C

:6
xx
∣∣∣∣
ϕA(a,c)

= −
c6

a4

(
C:6

xx
∣∣∣
ϕA(a,c) − 2 C:1

xx
∣∣∣
ϕA(a,c)

)
,

C
:6

yy
∣∣∣∣
ϕA(a,c)

= −
c6

a4

(
C:6

yy
∣∣∣
ϕA(a,c) − 2 C:4

yy
∣∣∣
ϕA(a,c)

)
.

Thus, the combination of the two equations (C83)|ϕA(a,c) and (C213)
:m
|ϕA(a,c) allows to express all double-

overlined derivatives C
:B
µν

∣∣∣∣
ϕA(a,c)

in terms of derivatives with respect to single-overlined derivatives.

Additionally, nine single-overlined derivatives C:A
µν

∣∣∣
ϕA(a,c) can be expressed in terms of four others,

C:3
xy
∣∣∣
ϕA(a,c) = −

1
2

C:5
xx
∣∣∣
ϕA(a,c) , C:2

xz
∣∣∣
ϕA(a,c) = −

1
2

C:5
xx
∣∣∣
ϕA(a,c) ,

C:5
xy
∣∣∣
ϕA(a,c) = −

1
2

C:3
yy
∣∣∣
ϕA(a,c) , C:2

yz
∣∣∣
ϕA(a,c) = −

1
2

C:3
yy
∣∣∣
ϕA(a,c) , C:4

xz
∣∣∣
ϕA(a,c) =

1
√

2
C:3

yy
∣∣∣
ϕA(a,c) ,

C:2
zz
∣∣∣
ϕA(a,c) =

√
2 C:6

xy
∣∣∣
ϕA(a,c) , C:3

yz
∣∣∣
ϕA(a,c) = −

1
√

2
C:6

xy
∣∣∣
ϕA(a,c) , C:5

xz
∣∣∣
ϕA(a,c) = −

1
√

2
C:6

xy
∣∣∣
ϕA(a,c) ,

C:4
yz
∣∣∣
ϕA(a,c) = C:6

yz
∣∣∣
ϕA(a,c) .

There are seven more relations which express additional seven single-overlined derivatives as a combi-
nation of other single-overlined derivatives,

C:1
yy
∣∣∣
ϕA(a,c) = C:4

xx
∣∣∣
ϕA(a,c) − C:1

xx
∣∣∣
ϕA(a,c) + C:4

yy
∣∣∣
ϕA(a,c) , C:1

yz
∣∣∣
ϕA(a,c) =

1
√

2
C:5

xx
∣∣∣
ϕA(a,c) + C:6

yz
∣∣∣
ϕA(a,c) ,

C:1
zz
∣∣∣
ϕA(a,c) = C:6

xx
∣∣∣
ϕA(a,c) − C:1

xx
∣∣∣
ϕA(a,c) + C:6

zz
∣∣∣
ϕA(a,c) , C:2

xy
∣∣∣
ϕA(a,c) =

1
√

2

(
− C:4

xx
∣∣∣
ϕA(a,c) + C:1

xx
∣∣∣
ϕA(a,c)

)
,

C:3
xz
∣∣∣
ϕA(a,c) =

1
√

2

(
− C:6

xx
∣∣∣
ϕA(a,c) + C:1

xx
∣∣∣
ϕA(a,c)

)
, C:4

zz
∣∣∣
ϕA(a,c) = C:6

yy
∣∣∣
ϕA(a,c) − C:4

yy
∣∣∣
ϕA(a,c) + C:6

zz
∣∣∣
ϕA(a,c) ,

C:5
yz
∣∣∣
ϕA(a,c) =

1
√

2

(
− C:6

yy
∣∣∣
ϕA(a,c) + C:4

yy
∣∣∣
ϕA(a,c)

)
.
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As a summary of the previous analysis, closure equation (C83)|ϕA(a,c) and the first prolongation (C213)
:m
|ϕA(a,c)

express all 72 derivatives of the form

C:A
µν

∣∣∣
ϕA(a,c) and C

:A
µν

∣∣∣∣
ϕA(a,c)

in terms of only ten independent ones. Additionally, 20 of the 72 derivatives vanish completely. This
knowledge and the obtained relations have now to be transferred to closure equation (C3)|ϕA(a,c) which
connects the previous analysis to the actually desired third expansion coefficient Ccosmo

AB .

Analysis of closure equation (C3)|ϕA(a,c)

Closure equation (C3)|ϕA(a,c) provides a connection between the third expansion coefficient Ccosmo
AB and

the derivative C:A
µν|ϕA(a,c). As the previous study revealed, only ten of these derivatives are independent.

This will also reduce the amount of independent components of Ccosmo
AB .

Closure equation (C3)|ϕA(a,c) is

0 = 6 Ccosmo
AB FA

ρ
(µ|

∣∣∣
ϕA(a,c) p|ν)ρ

∣∣∣
ϕA(a,c) − C:B

µν
∣∣∣
ϕA(a,c)

and will feature 72 single relations if one restricts the index range of B to B and B. As there are already
153 components of the expansion coefficient Ccosmo

AB , one should investigate how many of them actually
contribute to the spacetime action. These components couple exclusively to the non-trivial derivatives ϕ̇A

of the configuration fields and thus have to be calculated. The other components are not needed for the
construction of the spacetime action, but still might provide useful information, especially if prolonga-
tions of the closure equations are studied. The desired 21 components are

Ccosmo

11
, Ccosmo

14
, Ccosmo

16
, Ccosmo

41
, Ccosmo

44
, Ccosmo

46
, Ccosmo

61
, Ccosmo

64
, Ccosmo

66
,

Ccosmo
11

, Ccosmo
14

, Ccosmo
16

, Ccosmo
44

, Ccosmo
46

, Ccosmo
66

, Ccosmo

11
, Ccosmo

14
, Ccosmo

16
, Ccosmo

44
, Ccosmo

46
and Ccosmo

66
.

Other components might still be necessary and might contribute at later stages in the solution of ei-
ther Ccosmo

AB or other expansion coefficients. The inevitable task is however to determine at least all
components entering the cosmological spacetime action.

Careful evaluation of all 72 relations of (C3)|ϕA(a,c) shows that all components Ccosmo

AB
and Ccosmo

AB
can be expressed in terms of the single-overlined components Ccosmo

AB
and the ten independent deriva-

tives C:A
µν

∣∣∣
ϕA(a,c). Precisely, for the components entering the cosmological action, one finds

Ccosmo

11
=

c6

a4 Ccosmo
11

+
c4

4
C:1

xx
∣∣∣
ϕA(a,c) , Ccosmo

44
=

c6

a4 Ccosmo
44

+
c4

4
C:4

yy
∣∣∣
ϕA(a,c) ,

Ccosmo

14
=

c6

a4 Ccosmo
14

+
c4

4

(
C:4

xx
∣∣∣
ϕA(a,c) − C:1

xx
∣∣∣
ϕA(a,c) + C:4

yy
∣∣∣
ϕA(a,c)

)
,

Ccosmo

16
=

c6

a4 Ccosmo
16

+
c4

4

(
C:6

xx
∣∣∣
ϕA(a,c) − C:1

xx
∣∣∣
ϕA(a,c) + C:6

zz
∣∣∣
ϕA(a,c)

)
,

Ccosmo

41
=

c6

a4 Ccosmo
14

+
c4

4
C:4

xx
∣∣∣
ϕA(a,c) , Ccosmo

61
=

c6

a4 Ccosmo
16

+
c4

4
C:6

xx
∣∣∣
ϕA(a,c) ,

Ccosmo

46
=

c6

a4 Ccosmo
46

+
c4

4

(
C:6

yy
∣∣∣
ϕA(a,c) − C:4

yy
∣∣∣
ϕA(a,c) + C:6

zz
∣∣∣
ϕA(a,c)

)
,

Ccosmo

64
=

c6

a4 Ccosmo
46

+
c4

4
C:6

yy
∣∣∣
ϕA(a,c) , Ccosmo

66
=

c6

a4 Ccosmo
66

+
c4

4
C:6

zz
∣∣∣
ϕA(a,c) .
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The purely double-overlined components Ccosmo

AB
can be expressed as

Ccosmo

14
=

c12

a8 Ccosmo
14

+
c10

4 a4

(
C:1

xx
∣∣∣
ϕA(a,c) + C:4

yy
∣∣∣
ϕA(a,c)

)
, Ccosmo

11
=

c12

a8 Ccosmo
11

+
c10

2 a4 C:1
xx
∣∣∣
ϕA(a,c) ,

Ccosmo

16
=

c12

a8 Ccosmo
16

+
c10

4 a4

(
C:1

xx
∣∣∣
ϕA(a,c) + C:6

zz
∣∣∣
ϕA(a,c)

)
, Ccosmo

44
=

c12

a8 Ccosmo
44

+
c10

2 a4 C:4
yy
∣∣∣
ϕA(a,c) ,

Ccosmo

46
=

c12

a8 Ccosmo
46

+
c10

4 a4

(
C:4

yy
∣∣∣
ϕA(a,c) + C:6

zz
∣∣∣
ϕA(a,c)

)
, Ccosmo

66
=

c12

a8 Ccosmo
66

+
c10

2 a4 C:6
zz
∣∣∣
ϕA(a,c) .

The only independent components of Ccosmo
AB are the purely single-overlined ones. All other components

can be expressed by those and the appropriate derivatives of the first expansion coefficient C.
This result becomes important when closure equation (C102)|ϕA(a,c) is studied. This closure equation

is an equation purely for the expansion coefficient CAB and its derivatives. It will provide the relations
needed in order to solve the differential equations (6.4) and (6.5) for the desired components of Ccosmo

AB .
Usage of the results from closure equation (C3)|ϕA(a,c) already reduces the amount of independent com-
ponents of Ccosmo

AB which will be even further restricted by (C102)|ϕA(a,c).

Evaluation of closure equation (C102)|ϕA(a,c)

Closure equation (C102)|ϕA(a,c) is the N = 2-analog of closure equations (C1)|ϕA(a,c) and (C2)|ϕA(a,c) for
the first two expansion coefficients. All spatial derivatives drop out of the equation which remains as

0 = Ccosmo
B1B2

δ
γ
µ + 2 Ccosmo

A(B1 |
FA

µ
γ

:|B2)
∣∣∣
ϕA(a,c) + CB1B2:A

∣∣∣
ϕA(a,c) FA

µ
γ
∣∣∣
ϕA(a,c) .

As the analysis of (C3)|ϕA(a,c) revealed, only the components Ccosmo
AB

are independent and need to be
determined. All other components with double-overlined capital indices follow from the single-overlined
ones and a derivative of the first expansion coefficient C. Thus, it suffices for now to restrict the index
range of the free capital indices B1 and B2 to the single-overlined ones, B1 and B2. This results in 189
single relations. Their evaluation reveals that there are only two independent, non-vanishing components,
Ccosmo

11
and Ccosmo

14
. The other contributing components can be expressed by them as

Ccosmo
11

= Ccosmo
44

= Ccosmo
66

and Ccosmo
14

= Ccosmo
16

= Ccosmo
46

.

Additionally, there are three other non-trivial components which do not contribute to the cosmological
spacetime action. They can be expressed by the two independent components Ccosmo

11
and Ccosmo

14
as

Ccosmo
22

= Ccosmo
33

= Ccosmo
55

= Ccosmo
11

−Ccosmo
14

.

All other components of Ccosmo
AB

vanish. Using the results from closure equation (C3)|ϕA(a,c), one con-

cludes that several derivatives C:A
µν

∣∣∣
ϕA(a,c) vanish,

0 = C:1
yz
∣∣∣
ϕA(a,c) = C:2

xz
∣∣∣
ϕA(a,c) = C:2

yz
∣∣∣
ϕA(a,c) = C:2

zz
∣∣∣
ϕA(a,c) = C:3

xy
∣∣∣
ϕA(a,c) = C:3

yy
∣∣∣
ϕA(a,c) = C:3

yz
∣∣∣
ϕA(a,c)

= C:4
xz
∣∣∣
ϕA(a,c) = C:4

yz
∣∣∣
ϕA(a,c) = C:5

xx
∣∣∣
ϕA(a,c) = C:5

xy
∣∣∣
ϕA(a,c) = C:5

xz
∣∣∣
ϕA(a,c) = C:6

xy
∣∣∣
ϕA(a,c) = C:6

yz
∣∣∣
ϕA(a,c)

as well as their respective double-overlined counterparts.
The 189 relations evaluated so far already provided all information needed in order to solve the

differential equations (6.4) and (6.5) for N = 2. Evaluating the 513 remaining relations for the index

ranges B1, B2 and B1 and B2 provides further information about the derivatives C:A
µν

∣∣∣
ϕA(a,c). They leave

only two of them independent which allows to express all other non-trivial ones by them as

C:1
xx
∣∣∣
ϕA(a,c) = C:4

yy
∣∣∣
ϕA(a,c) = C:6

zz
∣∣∣
ϕA(a,c)

C:1
yy
∣∣∣
ϕA(a,c) = C:1

zz
∣∣∣
ϕA(a,c) = C:4

xx
∣∣∣
ϕA(a,c) = C:4

zz
∣∣∣
ϕA(a,c) = C:6

xx
∣∣∣
ϕA(a,c) = C:6

yy
∣∣∣
ϕA(a,c) .
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There are three additional non-trivial derivatives which can be expressed by the difference of the two
independent derivatives as

C:2
xy
∣∣∣
ϕA(a,c) = C:3

xz
∣∣∣
ϕA(a,c) = C:5

yz
∣∣∣
ϕA(a,c) =

1
√

2

(
C:1

xx
∣∣∣
ϕA(a,c) − C:1

yy
∣∣∣
ϕA(a,c)

)
.

These relations provide the last piece of information one can extract about either the derivative C:A
µν|ϕA(a,c)

or the expansion coefficient Ccosmo
AB to this level. This means one has to extract the relations required for

the solution of the chain rule equations (6.4) and (6.5) for the two independent components Ccosmo
11

and
Ccosmo

14
.

For the component Ccosmo
11

, the relations obtained from the analysis of (C102)|ϕA(a,c) simplify the two
chain rule equations to

∂Ccosmo
11

∂a
=

7
a

Ccosmo
11

∂Ccosmo
11

∂c
= −

2 c
a2

(
C11:1

∣∣∣
ϕA(a,c) + C11:4

∣∣∣
ϕA(a,c) + C11:6

∣∣∣
ϕA(a,c)

)
−

14
c

Ccosmo
11

which can be solved to
Ccosmo

11
= f2(c) a7

with a third undetermined function f2 of the second scale factor c(t). In the same way, the compo-
nent Ccosmo

14
picks up a fourth undetermined function f3(c),

Ccosmo
14

= f3(c) a7 .

So far, the two components Ccosmo
11

and Ccosmo
14

introduced two undetermined functions of the second scale
factor c(t) to the expansion coefficient Ccosmo

AB . As the analysis of closure equation (C3)|ϕA(a,c) showed,
the other components of Ccosmo

AB contributing to the cosmological spacetime action are given by the two
independent components and the two independent derivatives C:1

xx
∣∣∣
ϕA(a,c) and C:1

yy
∣∣∣
ϕA(a,c). However,

these are also undetermined by the closure equations and thus introduce two new undetermined functions
to the components Ccosmo

AB
and Ccosmo

AB
. Collecting all terms

Ccosmo
AB ϕ̇A ϕ̇B

contributing to the cosmological spacetime action, one finds

Ccosmo
AB ϕ̇A ϕ̇B =

(
12 ( f2 + 2 f3)(c) a3 − 66 C:1

xx
∣∣∣
ϕA(a,c)

)
ċ2 + 12

ȧ2 c2

a2

(
C:1

xx
∣∣∣
ϕA(a,c) − C:1

yy
∣∣∣
ϕA(a,c)

)
+

ȧ ċ c
a

(
60 C:1

xx
∣∣∣
ϕA(a,c) + 36 C:1

yy
∣∣∣
ϕA(a,c)

)
. (6.20)

Dimensional analysis reveals that the two derivatives contain the first scale factor a(t) cubicly together
with two undetermined functions f̃ (c) and ˜̃f (c) of the second scale factor,

C:1
xx
∣∣∣
ϕA(a,c) = f̃ (c) a3 , C:1

yy
∣∣∣
ϕA(a,c) = ˜̃f (c) a3 .

This implies to define three functions

F2(c) := 12 ( f2 + 2 f3) (c) − 66 f̃ (c) ,

F3(c) := 12 c2
(

f̃ − ˜̃f
)

(c) ,

F4(c) := 60 f̃ (c) + 36 ˜̃f (c)

in order to write Eq. (6.20) more compactly as

Ccosmo
AB ϕ̇A ϕ̇B = F2(c) ċ2 a3 + F3(c) ȧ2 a + F4(c) ċ ȧ a2 .
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This result confirms the one obtained from previous studies such as of Ref. [24]. While they might seem
unsatisfying, the results presented here are the limit of what can be achieved by pen-and-paper calcula-
tions. While taking into account the first prolongation of closure equation (C213) reduced the amount
of undetermined derivatives C:A

µν|ϕA(a,c) to ultimately two, it was not strong enough to determine the
components of Ccosmo

AB free of any undetermined functions of the second scale factor. To this level, it
cannot be ruled out that further prolongations of closure equations (C102) would provide further infor-
mation about the components Ccosmo

AB . These prolongations require the extensive use of suitable computer
algebra systems as the amount of equations increases by a factor of 12 considering only the prolonga-
tion (C102):D|ϕA(a,c). This results in the task to evaluate more than 2000 single relations. Besides, it is not
guaranteed that this prolongation does actually provide new information on the components Ccosmo

AB and
reduce the amount of undetermined functions.

Attention is thus turned towards the next expansion coefficient Ccosmo
A1A2A3

which is determined by a very
compact calculation compared to the one carried out for Ccosmo

AB .

6.5 Solution for the fourth expansion coefficient

For the solution of higher order expansion coefficients Ccosmo
A1...AN

, the sequences of closure equations be-
come more and more important. The previous analysis of Ccosmo

AB already used the instance (C102)|ϕA(a,c)
of the sequence (C10N≥2) of closure equations. The solution for higher order expansion coefficients will
also make use of sequence (C16N≥2) generalizing equation (C3)|ϕA(a,c) used in the solution of Ccosmo

AB .
The role of coefficient Ccosmo

A1A2A3
is however different than the one of the other higher order coeffi-

cients. This is due to the special structure of closure equation (C162)|ϕA(a,c). For N = 2, the last term
of (C162)|ϕA(a,c) drops out of the equation which is left as

0 = 18 Ccosmo
AB1B2

pρ(µ|
∣∣∣
ϕA(a,c) FA

ρ
|ν)

∣∣∣
ϕA(a,c) ,

as the input coefficient MAγ vanishes when symmetry is imposed. Evaluating these relations allows to
express the components

Ccosmo

A1A2A3
, Ccosmo

A1A2A3
and Ccosmo

A1A2A3

in terms of the purely single-overlined components Ccosmo
A1A2A3

. Of these, only 10 components actually enter
the cosmological action, namely

Ccosmo
111

, Ccosmo
114

, Ccosmo
116

, Ccosmo
144

, Ccosmo
146

, Ccosmo
166

, Ccosmo
444

, Ccosmo
446

, Ccosmo
466

and Ccosmo
666

. (6.21)

These 10 components are the ones that will ultimately have to be determined by the closure equations
and the differential equations (6.4) and (6.5). The cosmological spacetime action is of course constituted
by other components of Ccosmo

A1A2A3
which are expressed by the 10 independent ones from Eq. (6.21). The

10 desired components Ccosmo

A1A2A3

are given by

Ccosmo

111
=

c18

a12 Ccosmo
111

, Ccosmo

114
=

c18

a12 Ccosmo
114

, Ccosmo

116
=

c18

a12 Ccosmo
116

, Ccosmo

144
=

c18

a12 Ccosmo
144

,

Ccosmo

146
=

c18

a12 Ccosmo
146

, Ccosmo

166
=

c18

a12 Ccosmo
166

, Ccosmo

444
=

c18

a12 Ccosmo
444

, Ccosmo

446
=

c18

a12 Ccosmo
446

,

Ccosmo

466
=

c18

a12 Ccosmo
466

, Ccosmo

666
=

c18

a12 Ccosmo
666

.
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Additionally, the 18 relevant components of Ccosmo

A1A2A3

are expressed as follows,

Ccosmo

111
=

c12

a8 Ccosmo
111

, Ccosmo

444
=

c12

a8 Ccosmo
444

, Ccosmo

666
=

c12

a8 Ccosmo
666

, Ccosmo

146
= Ccosmo

164
= Ccosmo

461
=

c12

a8 Ccosmo
146

,

Ccosmo

114
= Ccosmo

141
=

c12

a8 Ccosmo
114

, Ccosmo

116
= Ccosmo

161
=

c12

a8 Ccosmo
116

, Ccosmo

144
= Ccosmo

441
=

c12

a8 Ccosmo
144

,

Ccosmo

166
= Ccosmo

661
=

c12

a8 Ccosmo
166

, Ccosmo

446
= Ccosmo

464
=

c12

a8 Ccosmo
446

,Ccosmo

466
= Ccosmo

664
=

c12

a8 Ccosmo
466

.

Finally, the 18 components of the form Ccosmo

A1A2A3

are given by

Ccosmo

111
=

c6

a4 Ccosmo
111

, Ccosmo

444
=

c6

a4 Ccosmo
444

, Ccosmo

666
=

c6

a4 Ccosmo
666

, Ccosmo

146
= Ccosmo

416
= Ccosmo

614
=

c6

a4 Ccosmo
146

,

Ccosmo

114
= Ccosmo

411
=

c6

a4 Ccosmo
114

, Ccosmo

116
= Ccosmo

611
=

c6

a4 Ccosmo
116

, Ccosmo

144
= Ccosmo

414
=

c6

a4 Ccosmo
144

,

Ccosmo

166
= Ccosmo

616
=

c6

a4 Ccosmo
166

, Ccosmo

446
= Ccosmo

644
=

c6

a4 Ccosmo
446

, Ccosmo

466
= Ccosmo

646
=

c6

a4 Ccosmo
466

.

After this reduction from 56 possible to ten independent components, it is now the task of closure equa-
tion (C103)|ϕA(a,c) to first reduce the number of independent components further to three and then provide
the relations entering the differential equations (6.4) and (6.5) for these components. Already restricting
the index range of the three free capital indices to the single-overlined range, (C163)|ϕA(a,c) is

0 = Ccosmo
B1B2B3

δ
γ
µ + 3 Ccosmo

A(B1B2 |
FA

µ
γ

:|B3)

∣∣∣∣
ϕA(a,c)

+ CB1B2B3:A

∣∣∣∣
ϕA(a,c)

FA
µ
γ
∣∣∣
ϕA(a,c) .

From the 504 relations, one finds by straightforward evaluation that the previously ten independent com-
ponents can be reduced further. Now, there are only three independent components, w. l. o. g.

Ccosmo
111

, Ccosmo
114

, Ccosmo
146

.

The other seven components can be written in terms of these three as

Ccosmo
111

= Ccosmo
444

= Ccosmo
666

, Ccosmo
114

= Ccosmo
116

= Ccosmo
144

= Ccosmo
166

= Ccosmo
446

= Ccosmo
466

.

There are also further non-trivial components which do not enter the cosmological spacetime action
as they feature at least one index for which the associated ϕ̇A vanishes. Yet, one should keep these
components in the calculation as they might be needed in other closure equations or prolongations of
e. g. (C103). These components are expressed in terms of the three independent components by

Ccosmo
122

= Ccosmo
133

= Ccosmo
224

= Ccosmo
336

= Ccosmo
455

= Ccosmo
556

=
1
2

(
Ccosmo

111
−Ccosmo

114

)
,

Ccosmo
155

= Ccosmo
226

= Ccosmo
334

= Ccosmo
114

−Ccosmo
146

and Ccosmo
235

=
1
√

2

(
1
2

Ccosmo
111

−
3
2

Ccosmo
114

+ Ccosmo
146

)
.

Having arrived at this stage, the first chain rule (6.4) for the component Ccosmo
111

breaks down to

∂Ccosmo
111

∂a
=

9
a

Ccosmo
111

which is solved as
Ccosmo

111
= f4(c) a9 .

With the second chain rule (6.5)

∂Ccosmo
111

∂c
= −

2 c
a

(
C111:1

∣∣∣
ϕA(a,c) + C111:4

∣∣∣
ϕA(a,c) + C111:6

∣∣∣
ϕA(a,c)

)
−

18
c

Ccosmo
111
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still containing undetermined derivatives of the expansion coefficient, the solution keeps a fifth undeter-
mined function f4(c) of the second scale factor. In the same way, the two other independent components
are

Ccosmo
114

= f5(c) a9 and Ccosmo
146

= f6(c) a9

with a sixth and seventh undetermined functions f5 and f6. The remaining components of the form

Ccosmo

A1A2A3
, Ccosmo

A1A2A3
and Ccosmo

A1A2A3

can be determined from the relations laid out above. Therefore, they also pick up no further undetermined
functions.

While the expansion coefficient Ccosmo
A1A2A3

is subject to more closure equations and prolongations, these
turn out to be practically useless. Most prominently, closure equation (C172)|ϕA(a,c) contains the coeffi-
cient Ccosmo

A1A2A3
directly as

0 = 9 Ccosmo
A(B1B2 |

MAµ
:|B3)

∣∣∣
ϕA(a,c) + CB1B2:B3

µ
∣∣∣
ϕA(a,c) + CB1B3:B2

µ + CB2B3:B1
µ
∣∣∣
ϕA(a,c) ,

but also derivatives of the expansion coefficient CAB. Additionally, for one of the desired compo-

nents (6.21) to appear in this equation, one of the three free capital indices has to be in the index range m.
This results in the appearance of the up to now undetermined components of the form Ccosmo

A1A2m
and the

unknown derivatives of the form C
A1A2:m

µ

∣∣∣∣∣
ϕA(a,c)

. These derivatives are again only contained in com-

plicated prolongations of other closure equations and most likely not determined at all. This means
that (C172)|ϕA(a,c) will not provide any new information on the three independent components of Ccosmo

A1A2A3
.

A similar result is obtained for the prolongation (C6):D
λ|ϕA(a,c) which also contains the expansion

coefficient Ccosmo
A1A2A3

free of any derivatives,

0 = 18
(
Ccosmo

B1B2D pµλ
∣∣∣
ϕA(a,c) −Ccosmo

AB1B2
pµν:D

∣∣∣
ϕA(a,c) FA

ν
λ
∣∣∣
ϕA(a,c)

)
− 4 CA(B1 |:D

λ
∣∣∣
ϕA(a,c) MAµ

:|B2)
∣∣∣
ϕA(a,c) − 2 CB1B2:A

λ
∣∣∣
ϕA(a,c) MAµ

:D
∣∣∣
ϕA(a,c)

− CB2:B1
µ

:D
λ
∣∣∣
ϕA(a,c) − CB1:B2

µ
:D
λ
∣∣∣
ϕA(a,c) + 2 CB1:D :B2

µλ
∣∣∣
ϕA(a,c) .

Besides the three components of expansion coefficients Ccosmo
A1A2A3

, this equation contains five terms with
involved derivatives of other expansion coefficients. In particular, if one restricts the attention to the

actually desired components Ccosmo
A1A2A3

, there are derivatives of the form C
B1B2:m

λ

∣∣∣∣∣
ϕA(a,c)

which is not de-

termined yet and which is also likely not to be determined by a suitable prolongation of other closure
equations. Thus, this equation will not provide new information about the components Ccosmo

A1A2A3
either.

The most promising approach to finding additional information about the fourth expansion coefficient
is the first prolongation (C103):D|ϕA(a,c) of the previously studied closure equation (C103). However, even
if one restricts the index range of the four capital indices to the single-overlined values,

0 = CB1B2B3:D

∣∣∣∣
ϕA(a,c)

δ
γ
µ + 3 CA(B1B2 |:D

∣∣∣∣
ϕA(a,c)

FA
µ
γ

:|B3)

∣∣∣∣
ϕA(a,c)

+ CB1B2B3:A

∣∣∣∣
ϕA(a,c)

FA
µ
γ

:D

∣∣∣∣
ϕA(a,c)

+ CB1B2B3:D :A

∣∣∣∣
ϕA(a,c)

FA
µ
γ
∣∣∣
ϕA(a,c)

one has to analyze 3024 single relations and their combinations in order to identify possible further
restrictions to the three independent components Ccosmo

111
and Ccosmo

114
and Ccosmo

146
. This amount of relations

is too large to be trustfully handled by a pen-and-paper calculation. It shows the complexity of the closure
equations as well as the need for their treatment by suitable computer algebra programs.

These loose ends show that the undetermined functions f4, f5 and f6 cannot be determined in a
straightforward way – just as it was the case for the previous expansion coefficients as well. One should
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however note that the three functions f4, f5 and f6 can be merged into one function F5 by considering
the contribution to the cosmological spacetime action,

Ccosmo
A1A2A3

ϕ̇A1 ϕ̇A2 ϕ̇A3 .

Collecting all terms, one finds that the sum breaks down to one term,

Ccosmo
A1A2A3

ϕ̇A1 ϕ̇A2 ϕ̇A3 = −24 ( f4 + 6 f5 + 2 f6)(c) ċ3 c3 a3 .

This implies to define a new function

F5(c) := −24 c3 ( f4 + 6 f5 + 2 f6) (c)

and write the contribution of the expansion coefficient Ccosmo
A1A2A3

to the cosmological spacetime action (6.6)
as

Ccosmo
A1A2A3

ϕ̇A1 ϕ̇A2 ϕ̇A3 = F5(c) ċ3 a3 .

Note that while this coefficient had three different undetermined functions at the level of the closure
equations, the cosmological spacetime action sees only one undetermined function. This is special for
the expansion coefficient Ccosmo

A1A2A3
. At the same time, expansion coefficient Ccosmo

A1A2A3
provided the last in-

stance whose solution could be constructed by simply evaluating all index combinations of the respective
closure equations – evaluated on ϕA(a, c). For all higher order expansion coefficients, the analysis of the
equations becomes more involved due to the increasing amount of free capital indices.

This requires to investigate arguments leading to a recursive expression for the higher order expan-
sion coefficients. It will turn out that the closure equations are so involved that meaningful statements
about the solutions can hardly be made. Nevertheless, the closure equations contain information about
the higher expansion coefficients which is revealed by performing a field redefinition and a change of
variables concerning the configuration fields.

6.6 Higher order expansion coefficients & change of variables

One can summarize the closure equations involved in the solution of all expansion coefficients Ccosmo
A1...AN

with N ≥ 4. For a fixed order M ≥ 4, the expansion coefficient Ccosmo
A1...AM

is determined by the following
closure equations:

1. Closure equation (C10M)|ϕA(a,c) provides the relations required for the solution of the two chain
rule equations (6.4) and (6.5) for each desired component.

2. Closure equation (C16M−1)|ϕA(a,c) relates different components Ccosmo
A1...AM

with each other, but also
contains derivatives CA1...AM−2:AM−1

µν
∣∣∣
ϕA(a,c) of lower order expansion coefficients.

3. These derivatives are (partially) determined by closure equation (C12M−2)|ϕA(a,c) and the prolon-
gation (C13M−2)

:m
|ϕA(a,c). The analysis of these equations generalize the evaluation of closure

equation (C83)|ϕA(a,c) and (C213)
:m
|ϕA(a,c) for the derivative C:A

µν|ϕA(a,c). For every fixed compo-

nent CA1...AM−2 , its 72 derivatives CA1...AM−2:AM−1
µν

∣∣∣
ϕA(a,c) are expressed in terms of 10 independent

ones.

4. In contrast to the analysis of the derivative C:A
µν|ϕA(a,c), closure equation (C15M−2) provides ad-

ditional information on the derivatives CA1...AM−2:AM−1
µν

∣∣∣
ϕA(a,c) by establishing an exchange sym-

metry. This implies that for different A1 . . . AM−2, not all derivatives CA1...AM−2:AM−1
µν

∣∣∣
ϕA(a,c) are

actually independent. Inspect the following example for M = 4. Due to the exchange sym-
metry of (C152)|ϕA(a,c), the previously non-trivial derivative C12:5

xx
∣∣∣
ϕA(a,c) is equal to the trivial

one C15:2
xx
∣∣∣
ϕA(a,c) and vanishes as well. This provides additional information about the compo-

nents of Ccosmo
A1...AM

via closure equation (C16M−1)|ϕA(a,c).

83



In particular, the exchange symmetry (C15N)|ϕA(a,c) in the capital indices makes it very difficult to trans-
late the relation-by-relation calculations of the previous sections to recursive arguments. These are how-
ever needed in order to construct a general expression for the higher order expansion coefficients.

Nevertheless, one finds general arguments. From the analysis of (C16M−1)|ϕA(a,c), it becomes clear
that by using the three aforementioned closure equations for the derivatives CB1...BM−2:BM−1

µν
∣∣∣
ϕA(a,c), only

the components Ccosmo
B1...BN

are the independent ones. The components with at least one double-overlined
capital index are expressed by the purely single-overlined components and the independent derivatives
CB1...BM−2:BM−1

µν
∣∣∣
ϕA(a,c). Closure equation (C10M)|ϕA(a,c) will provide additional relations between differ-

ent components of Ccosmo
A1...AM

, but only between those with the same amount of single and double-overlined
indices. As already seen in the analysis of (C102)|ϕA(a,c) for the coefficient Ccosmo

AB , one will obtain addi-
tional information about the derivatives CB1...BM−2:BM−1

µν
∣∣∣
ϕA(a,c) from the analysis of (C10M)|ϕA(a,c). Due

to the complexity and especially the exchange symmetry of the latter derivatives, it is hardly possible to
quantify the number of independent derivatives left to each order M.

The dependence of the respective components on the first scale factor a will be determined by closure
equation (C10M)|ϕA(a,c) as the calculations from their first two instances M = 2 and M = 3 in the previous
two sections directly generalize. However, due to the above arguments, the number of functions of the
second scale factor c cannot be determined precisely. It is clear that the upper bound is M + 1. While the
closure equations might in principle leave a larger number of coefficients and derivatives undetermined,
it is the contribution of the expansion coefficient Ccosmo

A1...AM
to the spacetime action (6.6) given by

Ccosmo
A1...AN

ϕ̇A1 . . . ϕ̇AM

which can be written as

Ccosmo
A1...AM

ϕ̇A1 . . . ϕ̇AM =

M∑
I=0

BI(c) ċI ȧM−I a3−M+I

with M + 1 undetermined functions BI(c) of the second scale factor c. This ansatz contains almost no
information from the closure equations, but is rather the most general form of writing down the terms
possibly contributing to the cosmological spacetime action. It turns out that this ansatz is too general
and indeed, several of the functions BI(c) drop out. In order to see this, it is best to perform a field
redefinition.

Field redefinition

The goal of the following field redefinition is to reduce the number of non-trivial configuration fields
after imposing FLRW symmetries. Yet, the field redefinition has to be implemented before any kind of
symmetry reduction and it is simply a different way of distributing the 17 canonical geometric degrees
of freedom of general linear electrodynamics. To this end, define four fields

h :=
1
3

gαβ gαβ ,

hαβ := gαβ ,

hαβ :=
1
2

(
1
3

gλω gλω gαβ − gαβ

)
, (6.22)

hαβ := gαβ .

This redefinition removes the trace with respect to g from the field g and promotes it to an independent

field. The field h remains as a traceless symmetric tensor field with respect to h which makes it similar

to the third field h which inherits these properties from g.
The redefinition of the hypersurface fields is bijective as the original fields are recovered by

gαβ = hαβ , gαβ = h hαβ − 2 hαβ , gαβ = hαβ .
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The fields h, h, h and h are also parametrized by configuration fields. Denote the new configuration fields
by

ψA =

(
ψ, ψ1, . . . , ψ6, ψ1, . . . , ψ5, ψ1, . . . , ψ5

)
and define the parametrization maps

ĥ(ψ) := ψ , ĥαβ(ψ) := IαβA ψ
A ,

ˆ
hαβ(ψ) := IA

αβ

(
δB

A −
nA ψ

B

nC ψC

)
ε(m) B ψ

m ,

ˆ
hαβ(ψ) := IA

αβ

(
δB

A −
nA ψ

B

nC ψC

)
ε(m) B ψ

m ,

where capital indices A, B, . . . again range from 1 to 6 and small latin indices m, n, . . . from 1 to 5. Also,
the components of the R6-frame {t, e1, . . . , e5} and co-frame {n, ε1, . . . , ε5} remain the same as developed
in Chapter 5. The inverse parametrization maps ψ̂A are given by

ψ̂ = h , ψ̂A = IA
αβ hαβ ,

ˆ
ψm = IαβA e(m) A hαβ ,

ˆ
ψm = IαβA e(m) A hαβ .

Using this parametrization, one can calculate the three input coefficients entering the gravitational closure
equations. The components with respect to the single configuration field ψ will be noted by ·. The first
input coefficient FA

µ
γ is

F ·µγ = 0 , FA
µ
γ = 2 IA

µσ hγσ ,

Fm
µ
γ = −2 IγαA e(m)A IB

µα

(
δC

B −
nB ϕ

C

nF ϕF

)
ε(n)C ϕ

n ,

Fm
µ
γ = −2 IγαA e(m)A IB

µα

(
δC

B −
nB ϕ

C

nF ϕF

)
ε(n)C ϕ

n .

The component pαβ of the principal polynomial given by Eq. (5.5) becomes

pαβ =
1
6

(
−2 h hαβ − 2 hαγ hβδ hγδ − 2 hαβ hδµ hγν hµγ hνδ + 3 hγδ hαµ hβν hµγ hνδ

)
.

The last input coefficient is MAγ which is constructed by using its definition (2.15) as

MAγ(ψ) =
∂ψ̂A

∂gA
ea

0
∂hA

∂(∂γXa)
.

One can now apply the definition (6.22) of the new hypersurface fields to this expression. This will pro-
vide the possibility of constructing the input coefficient MAγ(ĥ(ψ)) in terms of the components MAγ(ĝ(ϕ))
derived in Chapter 5. Finally, one obtains

M·γ = −
4
3

(
det h

) 1
2 hν(λ εω)µγ hλω hµν ,

MAγ(ψ) = MAγ(g(h(ψ))) ,

Mmγ(ψ) = −
2
3

(
det h

) 1
2 IαβA e(m) A hαβhν(λ εω)µγ hµν hλω +

1
2

(
det h

) 1
2 IαλA ε

νκγ e(m) A hνα hλκ

− 3
(
det h

)− 1
2 IαβA e(m) A εαµν hβλ hλν pµγ(h(ψ)) , (6.23)

Mmγ(ψ) = Mmγ(g(h(ψ))) .
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The general setup and the calculation of the three input coefficients for the gravitational closure equa-
tions allow to solve the latter using the configuration fields ψA. It will turn out that – after imposing
the symmetry condition – these configuration fields give rise to closure equations for which a general
recursive argument for all higher order expansion coefficients can be made.

Imposing FLRW symmetries on the redefined fields

The imposition of cosmological symmetries with flat spatial hypersurfaces restricts the redefined fields h
to

h =
1

c2(t)
, hαβ =

c2(t)
a2(t)

diag (1, 1, 1)αβ and hαβ = hαβ = 0

with the two scale factors a(t) and c(t) as before. In contrast to the hypersurface fields gA, there are only
four non-trivial configuration fields

ψ =
1

c2(t)
, ψ1 = ψ4 = ψ6 =

c2

a2

compared to the six non-trivial ones from before. As a direct consequence, the input coefficient FA
µ
γ

simplifies to the non-trivial components

FA
µ
γ
∣∣∣
ψA(a,c) =

2 c2

a2

(
δA

1 δ
x
µ δ

γ
x + δA

4 δ
y
µ δ

γ
y + δA

6 δ
z
µ δ

γ
z

)
+

√
2 c2

a2

(
δA

2

(
δx
µ δ

γ
y + δ

y
µ δ

γ
x

)
+ δA

3

(
δx
µ δ

γ
z + δz

µ δ
γ
x

)
+ δA

5

(
δ

y
µ δ

γ
z + δz

µ δ
γ
y

))
while all others vanish. The components pαβ of the principal polynomial are the same as before,

pxx|ψA(a,c) = pyy|ψA(a,c) = pzz|ψA(a,c) = −
h
3

hαβ = −
1

3 a2 .

Also as before, the components of the third input coefficient MAγ vanish after symmetry is imposed.
Note that also for the redefined configuration fields ψA, there are derivatives of MAγ with respect to the
configuration fields, such as MAγ

:m
|ψA(a,c), which are non-trivial. These derivatives can play an important

role in the evaluation of the symmetry-reduced closure equations and their prolongations as this chapter
has already demonstrated. For the higher order expansion coefficients, however, they will play only a
minor role.

The last piece of information needed in order to construct the solution for the higher order expansion
coefficients is the analog of the chain rule equations (6.4) and (6.5). These are now

∂Ccosmo
A1...AN

∂a
=

(
CA1...AN :1

∣∣∣∣
ψA(a,c)

+ CA1...AN :4

∣∣∣∣
ψA(a,c)

+ CA1...AN :6

∣∣∣∣
ψA(a,c)

)
−2 c2

a3 , (6.24)

∂Ccosmo
A1...AN

∂c
=

(
CA1...AN :1

∣∣∣∣
ψA(a,c)

+ CA1...AN :4

∣∣∣∣
ψA(a,c)

+ CA1...AN :6

∣∣∣∣
ψA(a,c)

) 2 c
a2 + CA1...AN :·

∣∣∣
ψA(a,c)

−2
c3 . (6.25)

Note that especially the first equation looks similar to the chain rule equation known from the solution of
the symmetry-reduced metric closure equations in Chapter 4. Consequently, it is again the second chain
rule equation which will give rise to undetermined functions of the second scale factor. However, their
number is no longer given by the upper bound of M + 1 as before. The closure equations can now be
evaluated in a more systematic and compact way. This will reveal that for each expansion coefficient,
there are at most four undetermined functions entering the cosmological spacetime action and the refined
Friedmann equations.
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Solution of the fifth expansion coefficient

In order to demonstrate how the redefined configuration fields allow to conduct more general arguments
for the solution of the higher order expansion coefficients Ccosmo

A1...AN
, the solution of the fifth one will be

carried out explicitly here. After that, the arguments are straightforwardly generalized for all higher
order expansion coefficients. These will then complete the cosmological spacetime action leading up to
the refined Friedmann equations following from general linear electrodynamics.

The closure equations which are involved in the solution are mostly the same as before, (C10M)|ψA(a,c)
and (C16M−1)|ψA(a,c). For M = 4, closure equation (C163)|ψA(a,c) is

0 = −12 h Ccosmo
AB1B2B3

FA
ρ

(µ|
∣∣∣
ψA(a,c) h|ν)ρ|ψA(a,c) + CB1B2:B3

µν
∣∣∣
ψA(a,c) ,

= −24 h Ccosmo
AB1B2B3

IA
ρσ hσ(µ hν)ρ + CB1B2:B3

µν
∣∣∣
ψA(a,c) ,

which contains a derivative of the third expansion coefficient CAB. This derivative still needs to be
determined. Before doing so, first rewrite (C163)|ϕA(a,c) as

IA
ρσ Ccosmo

AB1B2B3
=

1
24 h

hρµ hσν CB1B2:B3
µν

∣∣∣
ψA(a,c) , (6.26)

Recall that the restricting part of the previous analysis of (C163)|ψA(a,c) was the determination of inde-
pendent derivatives CB1...B2:B3

µν
∣∣∣
ϕA(a,c). The field redefinition circumvents this difficulty.

The derivatives CB1B2:B3
µν

∣∣∣
ψA(a,c) are determined by closure equation (C122)|ψA(a,c). As the input co-

efficient FA
µ
γ|ψA(a,c) has only non-trivial components in the single-overlined index range, closure equa-

tion (C122)|ψA(a,c), one directly reads off that 15 derivatives vanish

0 = CB1B2:1
xx
∣∣∣∣
ψA(a,c)

= CB1B2:1
xy
∣∣∣∣
ψA(a,c)

= CB1B2:1
xz
∣∣∣∣
ψA(a,c)

= CB1B2:2
xx
∣∣∣∣
ψA(a,c)

= CB1B2:2
yy
∣∣∣∣
ψA(a,c)

= CB1B2:3
xx
∣∣∣∣
ψA(a,c)

= CB1B2:3
zz
∣∣∣∣
ψA(a,c)

= CB1B2:4
xy
∣∣∣∣
ψA(a,c)

= CB1B2:4
yy
∣∣∣∣
ψA(a,c)

= CB1B2:4
yz
∣∣∣∣
ψA(a,c)

= CB1B2:5
yz
∣∣∣∣
ψA(a,c)

= CB1B2:5
zz
∣∣∣∣
ψA(a,c)

= CB1B2:6
xz
∣∣∣∣
ψA(a,c)

= CB1B2:6
yz
∣∣∣∣
ψA(a,c)

= CB1B2:6
zz
∣∣∣∣
ψA(a,c)

while the other derivatives can be expressed in terms of five independent derivatives,

CB1B2:1
yy
∣∣∣∣
ψA(a,c)

= −
√

2 CB1B2:2
xy
∣∣∣∣
ψA(a,c)

= CB1B2:4
xx
∣∣∣∣
ψA(a,c)

,

CB1B2:1
zz
∣∣∣∣
ψA(a,c)

= −
√

2 CB1B2:3
xz
∣∣∣∣
ψA(a,c)

= CB1B2:6
xx
∣∣∣∣
ψA(a,c)

,

CB1B2:6
xy
∣∣∣∣
ψA(a,c)

=
1
√

2
CB1B2:2

zz
∣∣∣∣
ψA(a,c)

= −
√

2 CB1B2:3
yz
∣∣∣∣
ψA(a,c)

= −
√

2 CB1B2:5
xz
∣∣∣∣
ψA(a,c)

,

CB1B2:3
yy
∣∣∣∣
ψA(a,c)

=
√

2 CB1B2:4
xz
∣∣∣∣
ψA(a,c)

= −2 CB1B2:2
yz
∣∣∣∣
ψA(a,c)

= −2 CB1B2:5
xy
∣∣∣∣
ψA(a,c)

,

CB1B2:5
xx
∣∣∣∣
ψA(a,c)

=
√

2 CB1B2:1
yz
∣∣∣∣
ψA(a,c)

= −2 CB1B2:2
xz
∣∣∣∣
ψA(a,c)

= −2 CB1B2:3
xy
∣∣∣∣
ψA(a,c)

.

These relations and especially the vanishing derivatives can now be used in the analysis of closure equa-
tion (C163)|ϕA(a,c) in the form given by Eq. (6.26). The strategy is to consider only the components
possibly contributing to the cosmological spacetime action, that is, the components coupling exclusively
to the non-vanishing derivatives ψ̇, ψ̇1, ψ̇4 and ψ̇6. In order to do so, it is best to consider a distinction of
cases regarding the amount of free indices representing the degree of freedom ψ in Eq. (6.26).

Case 1: B1 → B1, B2 → B2, B3 → B3 In this case, Eq. (6.26) is

IA
ρσ Ccosmo

AB1B2B3
=

1
24 h

hρµ hσν CB1B2:B3

µν
∣∣∣∣
ψA(a,c)

.
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As the only relevant index values for A are 1, 4 and 6, one writes down the relations for the free indices
ρ = σ = x, ρ = σ = y and ρ = σ = z as

Ccosmo
1B1B2B3

=
a4

24 c2 CB1B2:B3

xx
∣∣∣∣
ψA(a,c)

,

Ccosmo
4B1B2B3

=
a4

24 c2 CB1B2:B3

yy
∣∣∣∣
ψA(a,c)

and

Ccosmo
6B1B2B3

=
a4

24 c2 CB1B2:B3

zz
∣∣∣∣
ψA(a,c)

.

Using these three relations together with the exchange symmetry

CB2B3:B1
µν

∣∣∣
ψA(a,c) = CB1B3:B2

µν
∣∣∣
ψA(a,c) = CB1B2:B3

µν
∣∣∣
ψA(a,c)

of closure equation (C152)|ψA(a,c), one can show that all 15 components possibly contributing to the
gravitational spacetime action vanish,

0 = Ccosmo
1111

= Ccosmo
1114

= Ccosmo
1116

= Ccosmo
1144

= Ccosmo
1146

= Ccosmo
1166

= Ccosmo
1444

= Ccosmo
1446

= Ccosmo
1466

= Ccosmo
1666

= Ccosmo
4444

= Ccosmo
4446

= Ccosmo
4466

= Ccosmo
4666

= Ccosmo
6666

.

Case 2: B1 → ·, B2 → B2, B3 → B3 In analogy to the first case, Eq. (6.26) breaks down to the three
relations

Ccosmo
·1B2B3

=
a4

24 c2 C
·B2:B3

xx
∣∣∣∣
ψA(a,c)

,

Ccosmo
·4B2B3

=
a4

24 c2 C
·B2:B3

yy
∣∣∣∣
ψA(a,c)

and

Ccosmo
·6B2B3

=
a4

24 c2 C
·B2:B3

zz
∣∣∣∣
ψA(a,c)

.

Evaluating these relations for the indices B2 and B3 taking values either 1, 4 or 6, one obtains that the
only non-vanishing component is Ccosmo

·146
. It needs to be determined by closure equation (C104)|ψA(a,c)

given by
0 = C

·146 + 3 Ccosmo
·A(14|

FA
µ
γ

:|6)

∣∣∣∣
ψA(a,c)

+ C
·146:A

∣∣∣
ψA(a,c) FA

µ
γ
∣∣∣
ψA(a,c) .

From this equation, one determines the three terms

C
·146:1

∣∣∣
ψA(a,c) = C

·146:4

∣∣∣
ψA(a,c) = C

·146:6

∣∣∣
ψA(a,c) = −

3 a2

2 c2 Ccosmo
·146

which one needs in order to solve the chain rule equation (6.24). One obtains

Ccosmo
·146

= f7(c) a9 .

With the derivative C
·146:·

∣∣∣
ψA(a,c) undetermined from closure equation (C104)|ψA(a,c), the second chain

rule equation (6.25) cannot be solved to remove the undetermined function f7(c) from the compo-
nent. Also, considering the simplest prolongation (C162):·|ψA(a,c) provides no information on the deriva-
tive C

·146:·

∣∣∣
ψA(a,c). Also, prolongations of other closure equations are not expected to reveal new informa-

tion about this component as the discussion at the end of this section will demonstrate.
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Case 3: B1 → ·, B2 → ·, B3 → B3 The procedure to solve this case is analogous to the previous one.
Eq. (6.26) separates into three relevant relations,

Ccosmo
··1B3

=
a4

24 c2 C
··:B3

xx
∣∣∣∣
ψA(a,c)

,

Ccosmo
··4B3

=
a4

24 c2 C
··:B3

y
∣∣∣∣
ψA(a,c)

and

Ccosmo
··6B3

=
a4

24 c2 C
··:B3

zz
∣∣∣∣
ψA(a,c)

which leave the components Ccosmo
··14

, Ccosmo
··16

and Ccosmo
··46

undetermined. The following analysis of closure
equation (C104)|ψA(a,c) reveals that the three components are actually identical and one only needs to
determine the component Ccosmo

··14
which is found to be

Ccosmo
··14

= f8(c) a7

with a new undetermined function f8(c) of the second scale factor c(t).

Case 4: B1 → ·, B2 → ·, B3 → · As Eq. (6.26) contains the undetermined derivative C··:·µν|ϕA(a,c) which
is also not contained in any other closure equation, one has to determine the three components Ccosmo

···1
,

Ccosmo
···4

and Ccosmo
···6

directly from closure equation (C104)|ψA(a,c). One concludes from there that the three
desired components are equal and one determines

Ccosmo
···1

= Ccosmo
···4

= Ccosmo
···6

= f9(c) a5

with a new undetermined function f9.

The last missing component of expansion coefficient Ccosmo
A1A2A3A4

is Ccosmo
···· which does not appear in

closure equation (C163)|ψA(a,c). Thus, the only way to determine this component is via closure equa-
tion (C104)|ψA(a,c) with B1 = B2 = B3 = B4 = ·. One finds a new undetermined function f10(c) as part of
the solution

Ccosmo
···· = f10(c) a3 .

This component completes the contribution of the expansion coefficient Ccosmo
A1A2A3A4

to the cosmological
spacetime action. Collecting all terms, one finds

Ccosmo
A1A2A3A4

ψ̇A1ψ̇A2ψ̇A3ψ̇A4 = F6(c) ċ4 a3 + F7(c) ċ3 ȧ a2 + F8(c) ċ2 ȧ2 a + F9(c) ċ ȧ3

with the four undetermined functions F6, . . . , F9 defined as

F6(c) := 16 f10(c) c−12 − 48 f9(c) c−8 + 96 f8(c) c−4 + 192 f7(c) ,

F7(c) := 48 f9(c) c−7 − 192 f8(c) c−3 − 576 f7(c) c ,

F8(c) := 96 f8(c) c−2 + 576 f7(c) c2 and

F9(c) := −192 f7(c) c3 .

Note that the expansion coefficient Ccosmo
B1...B4

contributes only terms containing derivative orders of at
most ȧ3. A term containing the derivative ȧ4 does not appear although it would be admissible in gen-
eral. This result will be recovered for the further higher order expansion coefficients. In this fashion, the
closure equations restrict the form of the cosmological spacetime action by dismissing terms with larger
powers than ȧ3 of the first scale factor a(t).
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Results for all higher order expansion coefficients

The arguments developed for the solution of the fifth expansion coefficient Ccosmo
B1B2B3B4

translate directly to
all higher order expansion coefficients. One always needs to evaluate closure equation (C16M−1)|ψA(a,c)
in the form

IA
ρσ Ccosmo

AB1...BM
=

3 (M − 3)
4 M(M − 1))ψ

ĥρµ(ψ) ĥσν(ψ) CB1...BM−1:BM−2
µν

∣∣∣
ψA(a,c)

using a distinction of cases for the number of capital indices B = ·. The derivative CB1...BM−1:BM−2
µν

∣∣∣
ψA(a,c)

is determined by (C12M−2)|ψA(a,c) in the precise same way as above for M = 4 only with a larger number
of indices. That means, for fixed indices B1 . . . BM−2, there are 15 trivial derivatives and the remaining
ones are expressed in terms of five independent ones. The evaluation of (C16M−1)|ψA(a,c) is then per-
formed only for the possibly contributing components of Ccosmo

B1...BM
by setting by evaluating the equation

for the free spatial indices ρ = σ = x, ρ = σ = y and ρ = σ = z as well as the capital indices taking
values 1, 4, 6 and ·.

The first non-trivial component of expansion coefficient Ccosmo
B1...BM

is always the one with M − 3 many
indices attributed to the configuration field ψ,

Ccosmo
· . . . ·︸︷︷︸
M−3 many

146
.

The remaining non-trivial components are just as before

Ccosmo
· . . . ·︸︷︷︸
M−2 many

14
, Ccosmo

· . . . ·︸︷︷︸
M−1 many

1
and Ccosmo

· . . . ·︸︷︷︸
M many

.

The contribution to the spacetime action subsequently contains four undetermined functions for each
order M of the expansion coefficients,

Ccosmo
A1...AM

ψ̇A1 . . . ψ̇AM = FM0(c) ċM a3 + FM1(c) ċM−1 ȧ a2 + FM2(c) ċM−2 ȧ2 a + FM3(c) ċM−3 ȧ3 .

This result achieves the goal of expressing all higher order derivative in a recursive formula which en-
ables one to write the cosmological spacetime action in a compact way. Nevertheless, picking up four
undetermined functions for each additional order of the expansion coefficients is unsatisfying.

One might wonder whether prolongations of the closure equations further restrict these undetermined
functions and either reduce their number or determine them completely. While this conjecture cannot
be completely dismissed, considering possible prolongations certainly requires to introduce a large com-
puter algebra system – possibly so large that it is almost prohibitive to present day programs. In order to
obtain derivatives with respect to the configuration field ψ, one e. g. has to use second prolongations of
the input coefficient MAγ. This however will result in very involved (and possibly not even determined)
terms in the thus obtained equations.

Such calculations – especially if an index-by-index evaluation is required – will feature a huge num-
ber of single relations. As already mentioned, one possible way to address these issues is by a compatible
computer algebra system which can perform the index-by-index evaluations. It is doubtful that the data
storage and runtime of present-day computer algebra systems suffice here. The other – mathematical –
way to gain information about the undetermined functions in the solution is to consider the gravitational
closure equations as a system of partial differential equations and extract information about the dimen-
sionality of their solution space. This is closely related to the question whether the closure equations
are involutive, that is, whether all information required for their solution is already explicitly present.
As this thesis already demonstrated, prolongations indeed provide additional information and therefore,
the closure equations will most likely not be involutive in their form presented here. Thus, they would
have to be made involutive by the Cartan-Kuranishi algorithm. This however points to a mathematically
very involved topic which vastly exceeds the scope of this thesis. More remarks on involutivity of partial
differential equations and first applications to the closure equations can be found in Ref. [20].
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This discussion demonstrates that pen-and-paper calculations have limits when the system of partial
differential equations becomes too large or too involved. Nevertheless, it was possible to construct a
solution from the symmetry-reduced closure equations of general linear electrodynamics. The remaining
task of this section is to collect all terms and write down the cosmological spacetime action by plugging
the results into Eq. (6.6).

Cosmological spacetime action

After imposing the symmetry condition, the cosmological spacetime action could already be written in
a compact form given by Eq. (6.6). To each power in the derivatives of the configuration fields ϕ̇A, the
essential terms were the sums

Ccosmo
A1...AN

ϕ̇A1 . . . ϕ̇AN

which constitute the cosmological spacetime action. Therefore, after obtaining the solution for every
expansion coefficient, already those terms were calculcated in order to see how many undetermined
functions F actually enter the cosmological spacetime action. Collecting all terms from the previous
sections, the cosmological action following from general linear electrodynamics is

S cosmo =

∫
dt

(
N F0(c) a3 + F1(c) ċ a3 + (F2(c) ċ2 a3 + F3(c) ȧ2 a + F4(c) ċ ȧ a2) N−1 + F5(c) ċ3 a3 N−2

+

∞∑
M=4

N1−M
(
FM0(c) ċM a3 + FM1(c) ċM−1 ȧ a2 + FM2(c) ċM−2 ȧ2 a + FM3(c) ċM−3 ȧ3

) )
.

This formula can be written even more compactly as

S cosmo =

∫
dt

∞∑
K=0

3∑
L=0

fKL(c) ċK ȧL a3−L N1−K−L , (6.27)

where the four functions f01(c), f03(c), f12(c), f21(c) vanish. Note that the two scale factors a(t) and
c(t) as well as the lapse function N(t) depend only on the foliation parameter t. The two scale factors
and the lapse are also the only symmetric d. o. f. s left in the action. Variation with respect to these
three functions provides the geometric part of the refined Friedmann equations which will consist of
one constraint (variation w. r. t. the lapse function N) and two evolution equations (variation w. r. t. the
scale factors). In order to complete the refined Friedmann equations, one needs to impose the symmetry
condition of spatial homogeneity and isotropy also on the matter sourcing the gravitational dynamics.
This is covered by the next section.

6.7 Refined matter sources

In order to find the gravitational sources for the refined Friedmann equations of general linear electrody-
namics, one can straightforwardly generalize the arguments used in Section 4.3. Again, the gravitational
sources are in general given by the expression

δS matter

δG

appearing on the right hand side of the gravitational field equations. For the geometry Gabcd of general
linear electrodynamics, one reads off the source tensor density from this as

S̃ abcd := −4
δS matter

δGabcd .

The stress-energy-momentum tensor density a la Gotay and Marsden is still a (1, 1) tensor density T̃
which using Ref. [25] can be related to the source tensor density as

T̃ a
b = Gampq S̃ bmpq . (6.28)
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As already laid out in the case of standard cosmology in Section 4.3, cosmological symmetries have
to hold on large scales only. Imposing them locally at all scales might not even be compatible with
non-trivial solutions of the matter field equations. Thus, the gravitational sources for cosmological have
to be modelled differently. As the symmetry condition has to hold at the respectively large scales, it
is again the Killing condition which has to be satisfied by the two tensorial quantities T = T̃ ω−1

G and
S = S̃ ω−1

G . Since the Killing condition for the stress-energy-momentum tensor T is independent of the
chosen spacetime geometry, it is written again as

T m
n = diag (ρ,−p,−p,−p)m

n ,

just as in Section 4.3. The source tensor S also satisfies the Killing condition which results in S contain-
ing three undetermined functions of the foliation time t. For the components of S , one can write

S 0α0β = −C1(t) N2 a2 c−2 γαβ ,

S 0αβγ = C2(t) N a3 c−3 εαβγ
√

det γ , (6.29)

S αβγδ = −2 C3(t) a4 c−2 γα[γγδ]β ,

with γαβ = diag (1, 1, 1)αβ. Note that the determinant of γ is 1, but it is still denoted in the second equation
in order to demonstrate that this component is indeed tensorial. By evaluating the connection (6.28) of
stress-energy-momentum and gravitational sources, one finds

ρ(t) = 6 (C1(t) + C2(t)) and p(t) = 2 (2 C3(t) −C1(t) − 3 C2(t)) .

This means that there has to be a third quantity which is acting only as a gravitational source, but is not
related to stress-energy-momentum. It can be identified by the covariant conservation of the source and
stress-energy-momentum tensor densities on-shell,

0 = ∂m(ωG T m
n) +

ωG

4
S abcd ∂nGabcd .

For n = 0, this conservation equation provides

0 = ρ̇(t) + 3
ȧ
a

(ρ + p) + 3
ċ
c

q(t)

with the function q(t) defined as
q(t) := −12 C1(t) − 6 C3(t) .

The interpretation of this new type of gravitational source is not yet clear as this would require a proper
study of perfect fluids on spacetimes with general linear electrodynamics. Also note that in the met-
ric limit when c = 1 and ċ = 0, one recovers the well-known conservation equation from textbook
cosmology.

While the three quantities ρ, p and q are determined by the three undetermined functions from the
source tensor (6.29), these relations can also be inverted as

C1 = −
q
6
−
ρ + p

4
, C2 = −

ρ

12
−

p
4
−

q
6

, C3 =
ρ + p

2
+

q
6
.

By identifying the gravitational sources of the cosmological dynamics of general linear electrodynamics,
everything has been prepared for the actual goal of this chapter – the derivation of the refined Friedmann
equations. The cosmological spacetime action will be combined with the components of the gravitational
source tensor developed in this section. Variation with respect to the symmetric geometric degrees of
freedom will then give rise to the refined Friedmann equations.
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6.8 The refined Friedmann equations

The calculations from the seven sections of this chapter were carried out in order to derive the refined
Friedmann equations following from general linear electrodynamics. The first step was to set up the
symmetry-reduced gravitational closure equations by imposing the FLRW symmetry on the three input
coefficients from Chapter 5. After a quite involved calculation, the cosmological spacetime action S cosmo
was obtained as a solution of the closure equations. The gravitational sources described by three vari-
ables ρ(t), p(t) and q(t) on a spacetime with general linear electrodynamics complete the ingredients of
the refined Friedmann equations.

As there are two scale factors and the lapse function as the symmetric geometric degrees of freedom,
it is clear that there will be one constraint equation and two evolution equations. The simplest of the
three equations is the constraint equation. The procedure is the same as in Section 4.3 in which the
Friedmann equations of standard model cosmology were derived. First, perform the variation of S cosmo
from Eq. (6.27) with respect to the lapse and then choose a parametrization where the lapse is constant
everywhere. This yields

δS cosmo

δN(t)

∣∣∣∣∣
N=1

=

∞∑
K=0

3∑
L=0

fKL(c) ċK ȧL a3−L (1 − K − L) .

By introducing the source tensor S abcd in the variation

δS matter

δN(t)

∣∣∣∣∣
N=1

= −

(
ωG

4
S abcd

∂Gabcd

∂N

)∣∣∣∣∣∣
N=1

=
a3

c3 ρ

one obtains – after dividing out the factor a3 – the constraint equation

0 = ρ + c3
∞∑

K=0

3∑
L=0

(1 − K − L) fKL(c) ċK
( ȧ
a

)L
. (6.30)

For the first evolution equation, one proceeds in the same way as in Section 4.3 and performs the variation

δS cosmo

δa(t)

∣∣∣∣∣
N=1

=

∞∑
K=0

2∑
L=0

(3 − L) (1 − L) fKL(c) ċK ȧLa2−L

−

∞∑
K=0

3∑
L=1

L a3−L
[
f ′KL(c) ċK+1 ȧL−1 + K fKL(c) c̈ ċK−1 ȧL−1 + (L − 1) fKL(c) ċK ȧL−2 ä

]
.

Complementing this by the gravitational sources

δS matter

δa(t)

∣∣∣∣∣
N=1

= −3
a2

c3 p(t) ,

one obtains the first evolution equation to be

0 = −3 p(t) + c3
∞∑

K=0

2∑
L=0

(3 − L) (1 − L) fKL(c) ċK
( ȧ
a

)L

−

∞∑
K=0

3∑
L=1

L
[

f ′KL(c) ċK+1
( ȧ
a

)L−1
+ K fKL(c) c̈ ċK−1

( ȧ
a

)L−1
+ (L − 1) fKL(c) ċK

( ȧ
a

)L−2 ä
a

]
. (6.31)

The second evolution equation is then derived by first varying the cosmological action (6.27) with respect
to the second scale factor c(t) which results in

δS cosmo

δc(t)

∣∣∣∣∣
N=1

=

∞∑
K=0

3∑
L=0

(1 − K) f ′KL(c) ċK ȧL a3−L

−

∞∑
K=0

3∑
L=0

K fKL(c)
[
(K − 1) c̈ ċK−2 ȧL a3−L + L ċK−1 ȧL−1 ä a3−L + (3 − L) ċK−1 ȧL+1 a2−L

]
.
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The gravitational sources introduce the new third variable q(t) to the refined Friedmann equations by

δS matter

δc(t)

∣∣∣∣∣
N=1

= −
a3

c4 (3 ρ + q) .

Combining these two expressions and multiplying with the factor c4 a−3, the third refined Friedmann
equation is

0 = −(q + 3 ρ) + c4
∞∑

K=0

3∑
L=0

(1 − K) f ′KL(c) ċK
( ȧ
a

)L

− c4
∞∑

K=0

3∑
L=0

K fKL(c)
[
(K − 1) c̈ ċK−2

( ȧ
a

)L
+ L ċK−1

( ȧ
a

)L−1 ä
a

+ (3 − L) ċK−1
( ȧ
a

)L+1]
. (6.32)

The three equations (6.30) – (6.32) present the refined Friedmann equations for a spacetime with gen-
eral linear electrodynamics. Although the four functions f01, f03, f12 and f21 vanish, the three refined
Friedmann equation still contain countably many undetermined functions fKL of the second scale fac-
tor c. This prohibits the theory from being predictive as one would first have to conduct infinitely many
experiments in order to determine all functions – supposing they are analytical. While this might be
unsatisfying at first, the three refined Friedmann equations still provide a basis for valuable discussions
about possible fingerprints of general linear electrodynamics in cosmology. Possible topics include the
case of weak deviations from the metric limit which is given by c(t) = 1. This will be discussed in the
next chapter which will also summarise the results obtained in this work and present future perspectives.
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Chapter 7

Summary, results and future topics

It is the central result of the constructive gravity program that prescribed matter dynamics already contain
all information about the gravitational dynamics if three physically weak conditions – called the matter
conditions – are satisfied [3]. Conceptually, this is achieved by requiring causal compatibility between
matter and gravitational dynamics. This means, both theories share initial data surfaces and evolution
of those surfaces. This physically rather weak requirement turns out to be technically so strong that the
gravitational action can, and hence has to be derived from given matter dynamics. Technically, the key
is to solve a countable system of partial differential equations, the gravitational closure equations.

The procedure to gravitationally close matter dynamics satisfying the three matter conditions from
Section 2.1 can be summarized in three steps.

1. Calculate the three input coefficients FA
µ
γ, pµν and MAγ from the matter dynamics; these are the

coefficient functions entering the gravitational closure equations.

2. Solve the gravitational closure equations for the expansion coefficients which constitute the gravi-
tational Lagrangian.

3. Construct the gravitational spacetime action S gravity and derive the gravitational field equations by
variation with respect to the geometric degrees of freedom.

The probably simplest, but at the same time indispensable test of the constructive gravity program is the
gravitational closure of the standard model of particle physics (or any subsector thereof). The resulting
gravity theory is general relativity as known from the textbook. The calculations carried out in Chapter 3
of this thesis showed how to solve the gravitational closure equations which resulted in the two-parameter
family of Einstein-Hilbert actions. These calculations improve and exceed the calculations laid out in
past work such as Ref. [8, 12]. Most prominently, due to the introduction of the configuration fields,
the previous arguments which mostly dated back to the ones developed by Kuchar et al. [10, 11] are no
longer valid and had to be replaced by suitable solution methods. These were successfully developed in
this thesis.

For matter models beyond the standard model operating on tensorial geometries different from a
metric, the second step – solving the gravitational closure equations – is the most difficult and sometimes
even a prohibitively hard task. For general linear electrodynamics – a slight generalization of Maxwell
theory allowing for birefringence of light in vacuo – the gravitational closure equations are already so
involved that a general solution seems to be out of reach. This was demonstrated explicitly in Chapter 5
of this thesis. This is also true for other matter models one could come up with, e. g. for two scalar fields
coupling to two metric tensor fields [3].

A significant simplification can be achieved by imposing spacetime symmetries already at the level
of the closure equations. This of course comes at the price of obtaining only the symmetry-reduced
gravitational dynamics which is usually acceptable. The full gravitational field equations often have
to be symmetry-reduced anyway to find according solutions. In this thesis, the symmetry reduction of
the gravitational closure equations was implemented and demonstrated for spatially maximal symmetry
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– spatial homogeneity and isotropy. Starting from standard model matter, inserting these symmetries
into the closure equations simplified them in such a way that one could directly derive the Friedmann
equations of standard cosmology without ever having to know the Einstein equations in Chapter 4.

This method was then applied to general linear electrodynamics with the fourth rank tensor field G
acting as the spacetime geometry. For FLRW symmetries, one obtains two scale factors a(t) and c(t). The
refined Friedmann equations for them arise from a solution of the respective symmetry-reduced closure
equations.

The calculations carried out in Chapter 6 show on the one hand that the symmetry assumption indeed
simplifies the closure equations to the point where a solution by hand becomes manageable. On the other
hand, the refined Friedmann equations (6.30) – (6.32) contained a countably infinite set of undetermined
functions fKL of the new, second scale factor. Thus, this theory is not predictive as one first needs to
determine the countable set of functions (or their coefficients in a series expansion) by experiments.

A potential future topic is to consider small deviation from the metric limit which is given by the
second scale factor being identically one.

Weak deviations from the metric limit

For constant second scale factor c(t) = 1, the cosmologically symmetric Gabcd given by Eq. (6.2) is
induced by the usual FLRW metric g,

Gabcd(a, c = 1) = 2 ga[c(a)gd]b(a) −
√
− det g(a) εabcd .

One can investigate configurations for which the second scale factor c deviates only weakly from the
metric limit and the rate of change – the derivatives of c – is also slow. Thus, the refined Friedmann
equations can be expanded to linear order in the deviation γ from the metric limit of the second scale
factor c = 1 + γ. This will also provide a finite set of parameters in the γ-linearized refined Friedmann
equations.

Assuming the functions fKL(c) appearing in the cosmological spacetime action are analytic, they can
be expanded as

fKL(1 + γ) =

∞∑
M=0

1
M!

fKLM γM

with constants fKLM. Applying this to the three refined Friedmann equations (6.30) – (6.32), one finds
the linearized constraint equation to be

0 = ρ + f000 − f020

( ȧ
a

)2
+ γ

[
f001 + 3 f000 − ( f021 + 3 f020)

( ȧ
a

)2]
−
γ̇ ȧ
a

[
f110 + f130

( ȧ
a

)2]
.

The first three terms provide the precise metric limit with the two integration constants later identified as
gravitational and cosmological constant. All additional terms are non-metric terms arising from the richer
spacetime structure behind general linear electrodynamics. This can also be seen in the first evolution
equation (6.31) which in γ-linearized form is

0 = −3 p + 3 f000 − f020

( ȧ
a

)2
− 2 f020

ä
a

+ γ

[
3 f001 + 9 f000 − f021

( ȧ
a

)2
− 2 f021

ä
a
− 3 f020

( ȧ
a

)2
− 6 f020

ä
a

]
+ γ̇

[
3 f100 − f011 − 2 f021

ȧ
a
− 6 f130

ȧ ä
a2

]
− γ̈

[
f110 + 3 f130

( ȧ
a

)2]
.

If one wishes to follow the way of standard FLRW cosmology, one replaces the term f020
(

ȧ
a

)2
by its ex-

pression from the constraint equation. This introduces the parameter ρ to the γ-linearized first evolution
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equation which then is

0 = −(ρ + 3 p) + 2 f000 − 2 f020
ä
a

+ γ
[
2 f001 + 6 f000 − (2 f021 + 6 f020)

ä
a

]
+ γ̇

[
3 f100 − f011 − 2 f021

ȧ
a

+ f110
ȧ
a

+ f130

( ȧ
a

)3
− 6 f130

äȧ
a2

]
− γ̈

[
f110 + 3 f130

( ȧ
a

)2]
.

One again obtains the three terms of the pure metric limit in which γ and all of its derivatives vanish.
The additional terms in this equation are again specific to the generalized spacetime structure with two
scale factors.

This second scale factor also provides the second evolution equation which is completely new com-
pared to FLRW cosmology. Again, expanding the undetermined functions fKL and keeping terms up to
linear order in the deviation γ from the metric limit in the second evolution equation (6.32) provides

0 = q + 3 ρ + f001 + 3 f100
ȧ
a

+ ( f021 + 3 f130 + 2 f110)
( ȧ
a

)2
+ f110

ä
a

− γ

[
f002 + 4 f001 + (3 f101 + 12 f100)

ȧ
a

+ ( f022 + 2 f111 + 4 f021 + 8 f110)
( ȧ
a

)2

+ ( f111 + 4 f110)
ä
a

+ (3 f131 + 12 f130)
( ȧ
a

)2 ä
a

]
− γ̇

[
6 f200

ȧ
a

+ 2 f220

( ȧ
a

)3
+ 4 f220

ȧ ä
a2 + 6 f230

( ȧ
a

)2 ä
a

]
− γ̈

[
2 f200 + 2 f220

( ȧ
a

)2
+ 2 f230

( ȧ
a

)3]
.

This equation, for which there is also no metric equivalent, is the probably most involved of three γ-
linearized refined Friedmann equations.

Nevertheless, by restricting oneself to the case of small and slowly changing deviations from the
metric limit, the number of undetermined constants in the refined Friedmann equations was reduced to a
finite one. Still, the γ-linearized refined Friedmann equations feature 15 constants of integration which
first need to be determined by experiment before the theory can become predictive. Besides, it is to
expect that a solution of the three coupled differential equations is still difficult to find. If it is found,
one would be able to conclude how deviations of a spacetime with general linear electrodynamics from
a metric one would look like in cosmology.

It is, however, clear that the cosmological symmetries are not the only symmetry assumption one can
come up with. While it is the maximal symmetry and thus simplifies the closure equations maximally,
there are also other symmetries one could pick, for example spherical symmetry alone.

Spherically symmetric spacetimes

Spherically symmetric spacetimes are of course spacetimes with weaker symmetry assumptions than the
cosmological ones. Physically speaking, the gravitational dynamics of such spacetimes correspond to the
gravitational field around a point mass – if the remaining spacetime is vacuum. For a metric spacetime,
this is the Schwarzschild solution.

The starting point is given by the three Killing vector fields in spherical coordinates r, θ and φ,

K1 = sin φ ∂θ + cot θ cos φ ∂φ ,

K2 = cos φ ∂θ + cot θ sin φ ∂φ ,

K3 = −∂φ ,

which provided the first half of the six cosmological Killing vector fields in Chapter 4. Due to Birkhoff’s
theorem, the Schwarzschild solution also features a timelike Killing vector field K4 = ∂t which one may
impose as well. While these four Killing vectors constitute a non-compact symmetry group, it is still
admissible to insert this symmetry into the action and the closure equations without any problems as Fels
and Torre point out in Ref. [4]. At this stage, the situation is different for Maxwell theory and general
linear electrodynamics as the underlying matter theory.
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Maxwell electrodynamics

Starting with Maxwell electrodynamics on a spactime with a Lorentzian metric, the general setup of the
gravitational closure equation was laid out in Chapter 3 and Ref. [3]. Applying the four Killing vector
fields K1, . . . ,K4 to the spacetime metric by requiring the Killing condition1

(
LKig

)ab !
= 0

provides four independent components of the spacetime metric which all depend at most on the radial
coordinate r. Two of these components are the lapse function N = N(r) and one component of the shift
vector field Nr = Nr(r). The spatial metric gαβ has diagonal form with two further functions A(r) and
B(r) as

gαβ = diag
(
A(r), B(r), B(r) sin−2 θ

)αβ
.

Thus, one also has three non-vanishing configuration fields ϕ1(A, B, θ), ϕ4(A, B, θ) and ϕ6(A, B, θ). The
evaluation of the closure equations thus runs along the same lines as for the FLRW symmetries in Chap-
ter 4. The only large difference is the number of chain rule equations that need to be solved. While there
were three equations for FLRW symmetries, the spherical symmetries feature seven such equations –
one with respect to θ and three for both A and B as one also needs to solve for the dependence of the
expansion coefficients on the first and second derivatives of A and B.

The solution of the symmetry-reduced closure equations and the construction of both spacetime
action and the four symmetric gravitational field equations is straightforward. These field equations are
however quite involved and there is no straightforward way to construct the solution to them. While
one can show that the Schwarzschild solution actually is a solution to the four field equations, one needs
to investigate ways how to solve the four symmetric field equations without using knowledge about the
solution in the first place. This will become important for the refinements obtained for the geometry of
general linear elctrodynamics.

General linear electrodynamics

The general setup of the gravitational closure equations for general linear electrodynamics was laid out
in Chapter 5 which extends the results presented in Ref. [3]. For any symmetry reduction of this setup,
the spacetime geometry G needs to satisfy the Killing condition(

LKiG
)abcd !

= 0

for the four Killing vector fields K1 . . .K4. It is clear that all components of the spacetime geometry as
well as of the canonical geometry do not depend on the foliation parameter t anymore. By evaluating
all index combinations for the four spacetime indices a, b, c, d, one obtains eight functions of the radial
coordinate A1(r), . . . , A8(r). The solution of the symmetry-reduced closure equation will provide an
action containing these functions and their derivatives. By variation, one will obtain differential equations
for the eight functions A1 . . . A8 as the symmetric field equations. Of these eight functions, one will be the
lapse functions and at least one component of the shift vector field will also remain non-trivial. How these
eight functions are distributed concretely is subject to possible future work on this topic. The strategy
is of course clear; one needs to decompose the spacetime tensor field G into the canonical geometry
using the frame fields {N e0 + Nα eα, e1, e2, e3} and the respective co-frame. One can then read off the

non-trivial components of the shift vector field and the three fields g, g and g of the canonical geometry
– which is however quite involved.

While this certainly can be solved, it is the lacking solution of the closure equations for the maxi-
mal cosmological symmetries which up to now discouraged the consideration of spherically symmetric

1Recall that the Killing condition is formulated with the Lie derivative which is defined independently of any tensorial
geometry. In particular, there is no need for a covariant derivative. Thus, the Killing condition can be applied to any tensorial
quantity (or a tensor density) on any spacetime geometry.
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spacetimes. While the case of flat k = 0 cosmology provided an infinity of undetermined functions, one
is not even able to construct such a solution for the case of arbitrary k as of now. As long as this case of a
spatially maximal symmetry reduction is not resolved, one is not advised to consider weaker spacetime
symmetries. The solution of the symmetry-reduced closure equations will only be harder then, if not
even prohibitively hard. Nevertheless, spherically symmetric spacetimes are to be kept in mind if one
wishes to consider symmetries not as strong as the FLRW ones.

Of course, instead of different spacetime symmetries, one might equally well study other matter
models on different geometric backgrounds.

Refined Friedmann equations for other matter models

As Ref. [3] shows, one might very well come up e. g. with theories featuring two (massless) scalar fields φ
and ψ coupling to two spacetime metrics g and h. The according matter action is given by a composition
of two Klein-Gordon terms,

S matter[φ, ψ; g, h) =

∫
M

d4x
[ √
− det g gab ∂aφ ∂bφ +

√
− det h hab ∂aψ∂bψ

]
.

The general setup of the closure equations from this matter theory is again quite involved and a general
solution of the closure equations seems out of reach [3]. As perturbative solutions are available [14, 35],
one might wonder whether imposing FLRW symmetries simplify the closure equations so much that a
solution with only a finite set of undetermined integration constants remain. This provides another topic
and another matter model beyond the standard model which could be cosmologically closed. At first
glance, evaluating the Killing condition(

LKig
)ab !

= 0 and
(
LKih

)ab !
= 0

for the six Killing vector fields (6.1) leaves one with three scale factors next to a lapse function depending
on the foliation time t. One will have to investigate whether this additional scale factor complicates
the analysis of the symmetry-reduced gravitational closure equations even more or whether actually a
solution with a finite set of constants can be constructed.
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