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Introduction

Economic forecasting

Forecasts are ubiquitous in economics and finance as agents make decisions based on uncer-

tainty of future outcomes (Elliott and Timmermann, 2008). For example, the expectations of

a household’s earnings guide long-term investments such as buying residential property. Simi-

larly, a company’s investment decision depends on expected future sales and interest rates. But

also public decisions like building new schools or nursing homes are aligned with anticipated

demographic changes.

As forecasts are so prevalent for economic decision making, many ways have been thought

of to create these forecasts. One approach is to use time series models that are estimated

on past data; for example, gross domestic product (GDP) and inflation forecasts by vector

autoregression models introduced by Sims (1980) or volatility forecasts for risk management

and portfolio allocation by generalized autoregressive conditional heteroskedasticity (GARCH)

models (Bollerslev, 1986). These models are typically used to generate point forecasts. Most of

these forecast procedures target the conditional mean, but there are also notable exceptions such

as value-at-risk—a quantile point forecast in the left tail of asset or portfolio return distributions.

A second approach is to conduct surveys among experts or consumers. One example is the

Survey of Professional Forecasters conducted by the Federal Reserve Bank of Philadelphia in

which respondents forecast a rich set of variables.

A considerable drawback of point forecasts is that they do not convey any sense of the ex-

pected uncertainty attached to the prediction. However, decisions of consumers, businesses, and

investors are not only tied to point predictions of future expected outcomes but to multiple func-

tionals of the subjective uncertainty; for example, downside risk in financial assets. After the

financial crisis in 2008, we saw an ominous interest in research on the effect of macroeconomic

uncertainty on economic decisions (e.g., Jurado, Ludvigson, and Ng, 2015; Baker, Bloom, and

Davis, 2016).
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One of the first institutions that communicated its uncertainty about future (and even past)

macroeconomic developments to the public is the Bank of England’s Monetary Policy Committee

who reports distribution forecasts of inflation rates since February 1996.1 Distribution forecasts

(sometimes also referred to as probabilistic forecasts) are forecasts that attach probabilities to

all possible outcomes. Therefore, they are the most conclusive measure of uncertainty compared

to other single-valued risk measures like value-at-risk.

One of the most important questions is: What defines a forecast to be “good”—and what

is an evaluation criterion that aligns with the definition of choice. The literature comparing

rivaling forecasts is based on loss functions—equivalently called scoring rules—that assign a real

value to any pair of forecast and observation. Based on decision theory, these loss functions are

typically assumed to be consistent in the case of point forecasts or assumed to be proper in the

case of distribution forecasts (Gneiting, 2011; Gneiting and Raftery, 2007) as an incentive for

stating honest beliefs about future outcomes. Popular loss functions are the squared error for

point predictions targeting the conditional mean or the negative log-likelihood (Good, 1952) for

distribution forecasts.

However, in economic forecasting a prevalent problem is that true predictands are not necessar-

ily observable but are often measured with error. Two prominent examples are macroeconomic

data being revised through time or stock market volatility. Fortunately, for mean point predic-

tions it can be shown that some loss functions imply the same expected forecast ranking even if

unbiased proxy observations are used for evaluating the forecasts (Patton, 2011). For distribu-

tion forecasts, however, there is no such result and we address this shortcoming by examining

the sensitivity of loss functions for distribution forecasts in the presence of observational error.

Outline of the thesis

The three main chapters of this dissertation are self-contained research articles that can be read

independently from each other. They all focus on forecasting with financial and macroeconomic

data. The analyses in Chapter 1 and 2 are joint works with Christian Conrad. Both focus on

forecasting volatility for financial markets. In Chapter 1, we address aggregate stock market

volatility and in Chapter 2 stock-specific volatility for investment decisions. The first of the

two has been published under the title “Two are better than one: Volatility forecasting using

multiplicative component GARCH-MIDAS models” in the Journal of Applied Econometrics

1https://www.bankofengland.co.uk/inflation-report/inflation-reports

https://www.bankofengland.co.uk/inflation-report/inflation-reports
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(Conrad and Kleen, 2020). Chapter 3 is single-authored and, in contrast to the other two

chapters, focuses on the evaluation of distribution forecasts. The outline for the separate chapters

is as follows.

Chapter 1: Two are better than one: Volatility forecasting using multiplicative

component GARCH-MIDAS models

In Chapter 1, we examine the properties and forecast performance of multiplicative volatility

specifications that belong to the class of generalized autoregressive conditional heteroskedasticity

mixed-data sampling (GARCH-MIDAS) models suggested in Engle, Ghysels, and Sohn (2013).

The main idea of these models is to decompose volatility into a short-term GARCH component

and a long-term component that is driven by an explanatory variable. The contribution of this

chapter to the recent strand of literature is twofold.

In the first part of Chapter 1, we analyze several statistical properties of the GARCH-MIDAS

model, namely the kurtosis of returns, the autocorrelation function of squared returns, and the

R2 of a Mincer-Zarnowitz regression. We then evaluate the quasi-maximum likelihood estimate

(QMLE) and forecast performance of these models in a Monte-Carlo simulation.

Our main theoretical findings are described as follows. In the GARCH-MIDAS model, the

kurtosis of the returns is always larger than the kurtosis of the returns in the nested GJR-

GARCH (Glosten, Jagannathan, and Runkle, 1993) component. If the long-term component

is sufficiently persistent, the autocorrelation function (ACF) of both the squared returns and

the latent conditional variance process is more persistent than the corresponding ACFs in the

nested GJR-GARCH. Both findings indicate that a multiplicative component structure in the

volatility of stock returns can explain the common failure of simple one-component GARCH

models to adequately capture the stylized facts of returns and realized variances. Further, we

derive an upper bound for the population R2 in the k-step-ahead Mincer and Zarnowitz (1969,

henceforth MZ) regression of the squared return on the volatility forecast. We show that the

population R2 decreases monotonically in the forecast horizon but increases monotonically in

the variability of the long-term component. The latter feature leads to the unpleasant property

that the goodness-of-fit is particularly high in situations in which the squared error loss is also

high. Clearly, this finding questions the usefulness of the MZ R2 for comparing forecast accuracy

across volatility regimes.

In a Monto-Carlo simulation, we evaluate the QMLE of GARCH-MIDAS models. The QMLE
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is shown to be unbiased and the asymptotic standard errors based on Wang and Ghysels (2015)

are shown to be valid even in the presence of exogenous explanatory variables. Another question

that had not been addressed so far is the effect of measurement error in the explanatory variable

or a misspecification of the lag structure. Based on our simulation study, we conclude that these

have only minor effects. The last result based on our simulations is that even though eliciting

the long-term component is a relatively difficult estimation problem, the GARCH-MIDAS model

beats two competitor models, the Markov-Switching GARCH (MS-GARCH) by Haas, Mittnik,

and Paolella (2004) and the nested GARCH if correctly specified and—at least in most setting—

even if its misspecified. The argument is based on an out-of-sample (OOS) forecast evaluation

employing the QLIKE loss which is minimized by the true conditional mean forecast, robust

to the measurement error in realized volatility, and less sensitive to outliers compared to the

squared error (Patton, 2011).

In the second part of Chapter 1, we conduct an OOS forecast performance study targeted at

the volatility of the S&P 500 index, in which we compare the GARCH-MIDAS with a wide range

of competitor models: the heterogeneous autoregression (HAR) of Corsi (2009), the realized

GARCH of Hansen, Huang, and Shek (2012), the high-frequency-based volatility (HEAVY) of

Shephard and Sheppard (2010), and the MS-GARCH. For a realistic evaluation of the GARCH-

MIDAS models’ ability to describe the behavior of long-term financial volatility we make use of

real-time data of United States (US) macroeconomic and financial conditions to avoid a look-

ahead bias due to publication lag of macroeconomic data. The model evaluation is carried out

by constructing model confidence sets (MCS) (Hansen, Lunde, and Nason, 2011) that allow a

joint forecast evaluation of more than two models. Our results are that at forecast horizons of

two weeks and one month, the MCS consists of the Realized GARCH, the HAR, and GARCH-

MIDAS models based on the Chicago Board of Exchange Volatility Index (VIX). At longer

forecast horizons of two and three months ahead, only GARCH-MIDAS models are included

in the MCS. As in previous studies, the GARCH-MIDAS based on housing starts performs

particularly well.

Last, in the course of writing this chapter we developed R packages published on the Com-

prehensive R Archive Network for downloading real-time data from the ALFRED database of

the Federal Reserve Bank of St. Louis (Kleen, 2017) and for forecasting using GARCH-MIDAS

models (Kleen, 2018).
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Chapter 2: Volatility forecasting for low-volatility investing

In Chapter 2, we examine whether recent advances in volatility forecasting are beneficial for

implementing low-volatility portfolios. Low-risk strategies such as betting-against-beta (Frazz-

ini and Pedersen, 2014), low-volatility portfolios (Blitz and van Vliet, 2007), and volatility-

managed portfolios (Moreira and Muir, 2017) have become increasingly popular. In practice,

these strategies are often based on a rather simple volatility proxy; for example, the sample

standard deviation of daily returns over the previous year which is our leading benchmark strat-

egy. Based on the ranking of these volatility proxies, the investor picks, for example, the bottom

quintile of stocks to invest in. However, this simple approach is at odds with advances in fi-

nancial econometrics if the low-volatility classification problem is looked at from a forecasting

perspective.

We follow the literature on estimating volatility from intraday return data and measure

monthly volatility by realized variances (Andersen et al., 2003). Our first observation is that

the infeasible ex-post optimal sorting based on realized variances—which we will refer to as the

oracle portfolio—earns higher returns than the one based on daily data. The question is now

whether the superior forecast performance of state-of-the-art volatility models in terms of fore-

cast errors translates into superior rankings in real time. We examine this by employing a wide

range of Riskmetrics, GARCH-, HAR-, and MIDAS-type models for all real-time constituents of

the S&P 500 in each month and use these models to forecast next-month’s volatility in between

2002–2018. The simple proxies used in the industry can also be thought of being a (naive)

benchmark model or forecast.

In the evaluation of our forecasts, we take two different points of view. First, we aggregate

forecast losses per stock over time and compare how often the aggregated losses of our time

series models are lower than the one of the benchmark. In line with the literature, we find

the HAR-type models to be dominant. Unfortunately, this approach for ranking models on

a stock-by-stock basis is practically infeasible in our application due to data restrictions and

the time-varying stock universe. Second, we evaluate our models based on their cross-sectional

forecast performance which—due to the large cross-section—can be used for model selection in

real time. Overall, the HAR models remain dominant but less so; for example, the Realized

GARCH becomes the best-performing model in 21% (70%) of months when measured by the

squared error (QLIKE) loss function. Combining the models based on cross-sectional losses
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leads to further improvements in forecast performance for all four evaluation criteria employed.

In a next step, we derive the forecast-implied volatility ranking for all models and loss-based

combination forecasts. We compare the resulting low-volatility portfolios with the infeasible

oracle portfolio and find that the benchmark portfolio based on the empirical standard deviation

of last year’s daily returns performs worse in mimicking the oracle portfolio than our approach.

The similarity of one of our portfolios to the oracle portfolio is measured through the average

number of stocks that are included in both. Likewise, the cross-sectional average volatility inside

our portfolios is typically lower.

Even though we improve upon the benchmark strategy in terms of similarity to the oracle

portfolio, we do not find significant differences in terms of returns between our strategies and

the benchmark portfolio. Some of the best models in terms of forecast performance have higher

returns but only before transaction costs are taken into account. We explain this finding by

observing that the turnover of our benchmark model is by far the smallest among all strategies

considered.

Chapter 3: Measurement error sensitivity of loss functions for distribution

forecasts

In Chapter 3, we analyze the sensitivity of distribution forecast evaluation in settings in which

the predictand is observed with measurement error or simply measured on different scales. Our

result is that the continuous ranked probability score (CRPS) (Matheson and Winkler, 1976)

is less sensitive to observational error than the log(-likelihood) score while also being robust to

rescaling the data.

In the first part of the theoretical section, we focus on forecast comparison with linearly

rescaled data. Here, we see that all commonly used scoring rules imply a robust forecast ranking;

that is, even after rescaling the ranking is preserved in expectation. Even though this seems to

be a condition every evaluation criteria in economics should satisfy, we show that simple linear

combinations of proper scoring rules do not fulfill this criterion. Our results are obtained by

introducing the notion of scaling-invariance for loss functions, which is a slightly more general

definition of homogeneity than the one used in Patton (2011) for point forecasts.

The second part of the theoretical section is concerned with measurement error in the ob-

servations. The expected loss with respect to proper scoring rules as in Gneiting and Raftery

(2007) is minimized when forecasters state the true conditional distribution of the observation
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as a forecast. As a consequence, if we can not observe the predictand directly but only the pre-

dictand subject to an error component, proper scoring rules favor forecasts of the observations

and not necessarily of the true predictand. For example, in the case of additive measurement

error one would prefer distribution forecasts that have a larger variance than the conditional

distribution of the true predictand alone.

One approach for addressing this misalignment is to calculate error-corrected scoring rules

(Ferro, 2017; Naveau and Bessac, 2018). The idea is to examine the difference in expected

loss employing the noisy proxy and the expected loss given the true predictand. However, this

approach is tied to knowing the true predictand’s distribution, the underlying error distribution,

and the specific forecast distribution at hand.

We thus take an alternative approach and examine whether some proper scoring rules are less

sensitive to classes of error distributions than others even though both imply biased forecast

rankings in expectation. Following the theory of robust estimators by Hampel (1968, 1971), we

define a loss function to be gross-error insensitive if the expected absolute deviation in losses with

respect to a class of error distributions from the true outcome is bounded across the outcome

space. In contrast to specific error-corrected scoring rules, gross-error sensitivity is defined with

respect to classes of forecast and error distributions. The quadratic score, which is closely

related to the log score, and the CRPS turn out to be gross-error insensitive but the log score

is not. Our results are in line with the literature discussing the robustness of different scoring

rules for M-estimation (Basu et al., 1998; Kanamori and Fujisawa, 2015; Dawid, Musio, and

Ventura, 2016; Ovcharov, 2017).

Our theoretical results are illustrated by a simulation study and an empirical application.

The main focus is here to review whether the insensitivity of expected losses transfers to less

sensitive test statistics of equal predictive ability. In the simulation, the data-generating process

is aligned with US GDP growth data and the corresponding revision errors. In the empirical

application we forecast daily volatilities of 28 Dow Jones Industrial Average constituents. The

comparison between log score and CRPS shows that the latter always leads to a smaller bias in

the test statistics; in this case, gross-error insensitivity translates into more stable test outcomes

across different measurement errors. However, the favorable result for the CRPS does not hold

for every gross-error insensitive loss function. The simulation and empirical illustration show

that the quadratic score is only insensitive to infrequent but possible large measurement error.





1 Two are better than one: Volatility

forecasting using multiplicative

component GARCH-MIDAS models

Abstract

We examine the properties and forecast performance of multiplicative volatility
specifications that belong to the class of generalized autoregressive conditional het-
eroskedasticity mixed-frequency data sampling (GARCH-MIDAS) models suggested
in Engle, Ghysels, and Sohn (2013). In those models volatility is decomposed into
a short-term GARCH component and a long-term component that is driven by an
explanatory variable. We derive the kurtosis of returns, the autocorrelation func-
tion of squared returns, and the R2 of a Mincer-Zarnowitz regression and evaluate
the QMLE and forecast performance of these models in a Monte-Carlo simulation.
For S&P 500 data, we compare the forecast performance of GARCH-MIDAS models
with a wide range of competitor models such as HAR (heterogeneous autoregression),
realized GARCH, HEAVY (high-frequency-based volatility) and Markov-switching
GARCH. Our results show that the GARCH-MIDAS based on housing starts as
an explanatory variable significantly outperforms all competitor models at forecast
horizons of 2 and 3 months ahead.

1.1 Introduction

The idea of modeling volatility as consisting of multiple components has a long tradition in

financial econometrics (e.g., Ding and Granger, 1996; Engle and Lee, 1999). Early models

typically featured additive volatility components and did not allow for explanatory variables

in the conditional variance. More recently, the focus has shifted to multiplicative component

models (e.g., Engle and Rangel, 2008; Engle, Ghysels, and Sohn, 2013; Amado and Teräsvirta,

2013, 2017; Han and Kristensen, 2015). In particular, the class of generalized autoregressive

conditional heteroskedasticity mixed-frequency data sampling (GARCH-MIDAS) models pro-

posed in Engle, Ghysels, and Sohn (2013) has been proven to be useful for analyzing the link
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between financial volatility and the macroeconomic environment (Asgharian, Hou, and Javed,

2013; Conrad and Loch, 2015; Dorion, 2016). In the GARCH-MIDAS model, a unit-variance

GARCH component fluctuates around a time-varying long-term component that is a function of

(macroeconomic or financial) explanatory variables. By allowing for a mixed-frequency setting,

this approach bridges the gap between daily stock returns and low-frequency (e.g., monthly,

quarterly) explanatory variables. For further applications of GARCH-MIDAS-type models see,

for example, Conrad, Loch, and Rittler (2014), Opschoor, van Dijk, and van der Wel (2014), Do-

minicy and Vander Elst (2015), Lindblad (2017), Amendola, Candila, and Scognamillo (2017),

Pan et al. (2017), Conrad, Custovic, and Ghysels (2018), and Borup and Jakobsen (2019). For

a recent survey on multiplicative component models see Amado, Silvennoinen, and Teräsvirta

(2019). Throughout this paper, the GARCH-MIDAS model will be our leading example for a

multiplicative component GARCH (M-GARCH) model. However, we will also discuss how the

class of M-GARCH models nests other specifications such as the Markov-Switching GARCH

(MS-GARCH) of Haas, Mittnik, and Paolella (2004), the Spline-GARCH of Engle and Rangel

(2008), and the Multiplicative Time-Varying GARCH (MTV-GARCH) of Amado and Teräsvirta

(2008).

Our contribution to this recent strand of literature is twofold. In the first part of this chapter,

we analyze several statistical properties of the GARCH-MIDAS model that have not received

much attention so far. In the second part of the chapter, we compare the out-of-sample (OOS)

forecast performance of the GARCH-MIDAS with the performance of various competitor mod-

els such as the heterogeneous autoregression (HAR) of Corsi (2009), the realized GARCH of

Hansen, Huang, and Shek (2012), the high-frequency-based volatility (HEAVY) of Shephard

and Sheppard (2010), and the MS-GARCH.

Our main theoretical findings can be summarized as follows. In the GARCH-MIDAS model,

the kurtosis of the returns is always bigger than the kurtosis of the returns in the nested GJR-

GARCH (Glosten, Jagannathan, and Runkle, 1993) component. If the long-term component is

sufficiently persistent, the autocorrelation function (ACF) of the squared returns as well as the

ACF of the conditional variances is more persistent than the corresponding ACFs in the nested

GJR-GARCH. Both findings suggest a multiplicative component structure in the volatility of

stock returns as a potential explanation for the common failure of simple one-component GARCH

models to adequately capture the stylized facts of returns and realized variances. It should also

be noted that our results are remarkably similar to recent findings in Han (2015) on GARCH-X
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models, even though Han (2015) considers models with an additive explanatory variable in the

conditional variance and focuses on the asymptotic limit of the sample kurtosis and the sample

ACF. Further, we derive an upper bound for the population R2 in the k-step-ahead Mincer and

Zarnowitz (1969) regression (henceforth MZ regression) of the squared return on the volatility

forecast. We show that the population R2 decreases monotonically in the forecast horizon but

increases monotonically in the variability of the long-term component. The latter feature leads

to the unpleasant property that the goodness-of-fit is particularly high in situations in which

the squared error loss is also high. Clearly, this finding questions the usefulness of the MZ R2

for comparing forecast accuracy across volatility regimes. In this context, we derive an explicit

expression for the one-step-ahead R2 of the GARCH-MIDAS specification and obtain the results

from Andersen and Bollerslev (1998) for the simple GARCH(1,1) as a special case.

Empirically, we first evaluate the quasi-maximum likelihood estimator (QMLE) of GARCH-

MIDAS models by means of a Monte-Carlo simulation. We show that the QMLE is unbiased

and that the asymptotic standard errors based on Wang and Ghysels (2015) are valid in the

presence of exogenous explanatory variables. Further, we show that measurement error in the

explanatory variable or a misspecification of the lag structure has only minor effects. We also

confirm our theoretical result that the R2 of a MZ regression is highest in regimes with high

volatility although in those regimes forecast performance is the worst. Following the arguments

put forth in Patton and Sheppard (2009) and Patton (2011), we use the QLIKE to evaluate

the OOS forecast performance of the GARCH-MIDAS model against the MS-GARCH and the

nested GARCH. We find that the correctly specified and, in most settings, even the misspecified

GARCH-MIDAS models beat the competitor models.

Finally, we apply the GARCH-MIDAS model to a long time series of S&P 500 returns com-

bined with data on US macroeconomic and financial conditions. We consider GARCH-MIDAS

models with one or two explanatory variables and, for the OOS forecast evaluation, estimate

all models on a rolling window using the appropriate real-time vintage data. Because macroe-

conomic time series are revised substantially after the first release, we avoid a look-ahead bias

by using real-time data. In the OOS forecast evaluation, we compare the GARCH-MIDAS

with eight competitor models: Among those competitor models are the Realized GARCH, the

HEAVY, the MS-GARCH, and HAR models with and without leverage. We evaluate all mod-

els jointly by constructing model confidence sets (MCS) as introduced in Hansen, Lunde, and

Nason (2011). For forecast horizons of two weeks and one month, the MCS consists of the Re-
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alized GARCH, the HAR, and GARCH-MIDAS models with the Cboe Volatility Index (VIX)

(or the VIX combined with another explanatory variable). That is, at these forecast horizons

the GARCH-MIDAS is on par with those models but beats the HEAVY as well as MS-GARCH

models. At longer forecast horizons of two and three months ahead, only GARCH-MIDAS mod-

els are included in the MCS. At both horizons the GARCH-MIDAS based on housing starts

achieves the lowest QLIKE. This finding is remarkable because our OOS period begins in 2010

and hence does not include the financial crisis and the collapse of the housing bubble.

To facilitate the replication of our results, we provide R packages for downloading real-time

data from the ALFRED database of the Federal Reserve Bank of St. Louis (Kleen, 2017), as

well as for estimating GARCH-MIDAS models (Kleen, 2018).1

This chapter is organized as follows: In Section 1.2, the M-GARCH model and our theoret-

ical results are presented. In Section 1.3, we perform a simulation study and, in Section 1.4,

we apply the GARCH-MIDAS model to S&P 500 return data. The conclusion follows in Sec-

tion 1.5. All appendices of this chapter can be found in Section 1.6. The proofs are contained

in Appendix 1.6.1. Additional material can be found in Appendices 1.6.2–1.6.8.

1.2 The multiplicative component GARCH model

In this section, the M-GARCH model is introduced and its theoretical properties are derived. In

particular, we show that the M-GARCH model inherits certain time series properties that are

in line with stylized facts typically observed for financial return data but cannot be captured by

simple GARCH models.

1.2.1 Model specification

We denote daily log-returns by ri,t, whereby the index t = 1, . . . , T refers to a certain period

(e.g. a week or a month) and the index i = 1, . . . , It to days within that period. For simplicity, we

model the returns as ri,t = µ+εi,t.
2 The M-GARCH model assumes that the scaled (demeaned)

returns can be written as

εi,t√
τt

=
√
gi,tZi,t, (1.1)

1The packages are available at: https://cran.r-project.org/package=alfred and https://cran.r-
project.org/package=mfGARCH .

2It would be straightforward to allow for richer dynamics in the conditional mean. However, for daily return
data a constant conditional mean is usually sufficient. For simplicity, in the following we refer to εi,t as the
(demeaned) return.

https://cran.r-project.org/package=alfred
https://cran.r-project.org/package=mfGARCH
https://cran.r-project.org/package=mfGARCH
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where τt is specified as a function of a (low-frequency) explanatory variable Xt, gi,t follows a

GARCH equation, and Zi,t is an i.i.d. innovation process with mean zero and variance one. Let

Fi,t denote the information set up to day i in period t and define Ft := FIt,t. If τt depends on

lagged values of Xt only, then

σ2
i,t := gi,tτt

is the conditional variance of the daily returns; that is, σ2
i,t = Var(εi,t|Fi−1,t). We refer to gi,t

as the short-term component of volatility and to τt as the long-term component of volatility.

While gi,t varies daily, τt is constant across all days within period t and thus changes at the

lower frequency only. The short-term component is intended to describe the well-known day-

to-day clustering of volatility and is assumed to follow a mean-reverting unit-variance GJR-

GARCH(1,1) process:

gi,t = (1− α− γ/2− β) +
(
α+ γ1{εi−1,t<0}

) ε2
i−1,t

τt
+ βgi−1,t. (1.2)

Remark 1.1. We use the convention that ε0,t = εIt−1,t−1 and g0,t = gIt−1,t−1. Similarly, we can

write the long-term component as τi,t = τt for i = 1, . . . , n and τ0,t = τIt−1,t−1 = τt−1. That is,

for It > 1, τt is piecewise constant. If It = 1, then both components vary at the same frequency.

In this case we can write ε1,t = εt, g1,t = gt, ε0,t = ε1,t−1 = εt−1, and g0,t = g1,t−1 = gt−1. Thus,

we can drop the index i.

A characteristic of the two-component M-GARCH model defined in Equation (1.1) is that the

scaled returns, εi,t/
√
τt, are assumed to follow a GARCH process. Hence, the forcing variable

in Equation (1.2) is ε2
i−1,t/τt. This feature distinguishes the two-component M-GARCH specifi-

cation from standard GARCH models. In those models it is assumed that τt = 1 and hence the

returns themselves follow a GARCH process. Similarly, additive component GARCH models,

such as the model of Engle and Lee (1999), assume that τt = 1 and decompose gi,t into two or

more GARCH components (with forcing variable ε2
i−1,t). We make the following assumptions

regarding the innovation process Zi,t and the parameters of the short-term component.

Assumption 1.1. Let Zi,t be i.i.d. with E[Zi,t] = 0, E[Z2
i,t] = 1, and 1 < κ < ∞, where

κ = E[Z4
i,t].

Assumption 1.2. We assume that α > 0, α+ γ > 0, β ≥ 0, and α+ γ/2 + β < 1. Moreover,

the parameters satisfy the condition (α+ γ/2)2κ+ 2(α+ γ/2)β + β2 < 1.
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Assumptions 1.1 and 1.2 imply that εi,t/
√
τt =

√
gi,tZi,t is a covariance stationary GJR-

GARCH(1,1) process. The first- and second-order moments of gi,t are given by E[gi,t] = 1,

E[g2
i,t] =

1− (α+ γ/2 + β)2

1− (α+ γ/2)2κ− 2(α+ γ/2)β − β2
, (1.3)

and the fourth moment of
√
gi,tZi,t is finite. The role of the second component, τt, is to describe

smooth movements in the conditional variance. In general, we specify τt as a measurable,

positive-valued function, f(·), of the present and K ≥ 1 lagged values of an explanatory variable

Xt:

τt = f(Xt, Xt−1, . . . , Xt−K). (1.4)

The appropriate choice of the explanatory variable Xt and of the function f(·) is up to the

researcher and will depend on the specific application at hand.3 The explanatory variable can

either vary at the daily frequency (i.e., It = 1) or at a lower frequency (i.e., It > 1). Thus,

the choice of Xt defines the low frequency t. In GARCH-MIDAS-type models τt depends on

lagged values of Xt only. By explicitly allowing τt to depend on Xt in Equation (1.4), we ensure

that our setting also covers MS-GARCH models (see Subsection 1.2.2 for details). We make the

following assumption about the explanatory variable Xt and the function f(·):

Assumption 1.3. Let f(·) > 0 be a measurable function and Xt be a strictly stationary and

ergodic time series with E[|Xt|q] < ∞, where q is sufficiently large to ensure that E[τ2
t ] < ∞.

Xt is independent of Zi,t−j for all t, i and j.

Note that Assumption 1.3 implies that τt is strictly stationary (Billingsley, 1995, p. 495),

covariance stationary, and independent of the ‘GARCH part’ (i.e. gi,t−jZ
2
i,t−j) of the model. In

empirical applications the function f(·) > 0 is often chosen as being linear in the lagged Xt:

τt = m+ π1Xt−1 + . . .+ πKXt−K . (1.5)

The linear specification requires m > 0 and πl ≥ 0, for l = 1, . . . ,K, and is feasible only if Xt

is a nonnegative variable. If Xt can take positive as well as negative values, it is natural to opt

3While we focus on multiplicative GARCH models, Han and Park (2014) and Han (2015) analyze the properties
of a GARCH-X specification with an explanatory variable that enters additively into the conditional variance
equation. See also Francq and Thieu (2019).
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for an exponential specification:

τt = exp(m+ π1Xt−1 + . . .+ πKXt−K). (1.6)

The assumption that Xt is independent of Zi,t−j for all t, i, and j might appear to be rather

strong. However, without imposing any restrictions on the functional form of f(·), it greatly

simplifies the analysis when discussing the statistical properties of M-GARCH models in Sub-

section 1.2.3. From an empirical perspective, we believe that it is reasonable to assume that

a low-frequency explanatory variable Xt—such as monthly industrial production growth—is

(close to being) independent of the daily innovations Zi,t−j . For daily explanatory variables

(e.g., measures of realized volatility) the independence assumption might appear to be restric-

tive. However, even if there is a dependence between the innovation to the daily returns and

the daily explanatory variable, the dependence between τt and Zi,t−j is likely to be negligible.

This is because τt is a rather smooth function that is obtained as a weighted average of many

lags of the daily Xt. Indeed, in Section 1.3 and Appendix 1.6.4 we illustrate in simulations that

a mild violation of the independence assumption does not affect our main results.

It should also be noted that the same independence assumption has been previously made in

related literature on M-GARCH models, see Han and Kristensen (2015). Nevertheless, it clearly

imposes a limitation that should be overcome in future work. Two examples in this direction are

the estimation of GARCH-MIDAS models employing lagged values of realized variances (Wang

and Ghysels, 2015) and testing for an omitted long-term component in one-component GARCH

models (Conrad and Schienle, 2020).

Assumptions 1.1, 1.2, and 1.3 imply that the εi,t have mean zero, are uncorrelated, and have an

unconditional variance given by Var(εi,t) = E[τt]. Moreover, the unconditional variance of the

squared returns is well defined: Var(ε2
i,t) = κE[τ2

t ]E[g2
i,t]−E[τt]

2. If the long-term component

is constant and chosen as τt = ω/(1 − α − γ/2 − β), our model reduces to the GJR-GARCH

with intercept ω.

A measure that is often used to quantify the relative importance of the long-term component

is the following variance ratio (Engle, Ghysels, and Sohn, 2013):

VR = Var(log(τt))/Var(log(τtgt)), (1.7)
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where gt =
∑It

i=1 gi,t. The ratio measures how much of the total variation in the (log) conditional

variance can be explained by the variation in the (log) long-term component.

1.2.2 Nested and related specifications

We first discuss two models that are directly nested in the M-GARCH setting. The two models

are the GARCH-MIDAS of Engle, Ghysels, and Sohn (2013) and (a restricted version of) the MS-

GARCH model of Haas, Mittnik, and Paolella (2004). Closely related are the Spline-GARCH of

Engle and Rangel (2008) and the MTV-GARCH of Amado and Teräsvirta (2008). For further

models that have a multiplicative component structure see Amado, Silvennoinen, and Teräsvirta

(2019).

GARCH-MIDAS

In the GARCH-MIDAS model the long-term component is defined as in Equation (1.5) or

(2.8.1), whereby the weights πl are parsimoniously specified via a weighting scheme. The most

common choice for the long-term component is based on the exponential specification with

πl = θ · ϕl(w1, w2). Here, the parameter θ determines the sign of the effect of the lagged Xt

on the long-term component and the weights ϕl(w1, w2) ≥ 0 are parameterized via the Beta

weighting scheme

ϕl(w1, w2) =
(l/(K + 1))w1−1 · (1− l/(K + 1))w2−1

∑K
j=1(j/(K + 1))w1−1 · (1− j/(K + 1))w2−1

. (1.8)

By construction, the weights sum to one; that is
∑K

l=1 ϕl(w1, w2) = 1. It directly follows that

E[τt+1|Ft] = τt+1. Engle, Ghysels, and Sohn (2013) use monthly industrial production growth

and monthly inflation as explanatory variables, while Conrad and Loch (2015) employ quarterly

macroeconomic variables such as gross domestic product (GDP) growth. For further applications

of this model see Asgharian, Hou, and Javed (2013), Opschoor, van Dijk, and van der Wel (2014)

and Dorion (2016). Wang and Ghysels (2015) consider the special case that f(·) is linear, It = 1

and Xt =
∑J−1

j=0 ε
2
t−j . That is, Xt is the realized variance based on the last J daily returns.

Note that for this specification Xt and Zt are dependent and, hence, Assumption 1.3 would be

violated.
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MS-GARCH

In the MS-GARCH model the returns are given by εt = σ̃Xt,tZt, where {Xt} is a Markov

chain with finite state space S = {1, 2, . . . , s} and transition matrix P with typical element

pi,j = P (Xt = j|Xt−1 = i). A restricted version of the MS-GARCH model of Haas, Mittnik,

and Paolella (2004) is nested in our setting with It = 1. This is best illustrated in the case

of s = 2: We assume that the conditional variances in the regimes differ in the intercepts

but have the same ARCH and GARCH parameters; for example, σ̃2
k,t = ωk + αε2

t−1 + βσ̃2
k,t−1,

k ∈ S. Defining τt = ((2 − Xt)ω1 + (Xt − 1)ω2)/(1 − α − β), we can rewrite the returns as

εt =
√
σ̃2
Xt,t

Zt =
√
gtτtZt, where gt = (1−α−β)+(αZ2

t−1+β)gt−1. Thus, the conditional variance

has a multiplicative structure. In the following, we will refer to this model as MS-GARCH with

time-varying intercept (MS-GARCH-TVI). Stationarity conditions for MS-GARCH models can

be found in Haas, Mittnik, and Paolella (2004).

Spline-GARCH and Multiplicative Time-Varying (MTV) GARCH

In both models it is assumed that It = 1. The Spline-GARCH model specifies the long-term

component as a spline function and chooses Xt = t. Similarly, in the MTV-GARCH f(·) is

specified in terms of logistic transition functions and Xt = t/T is the rescaled time. Thus in both

models the long-term component is a deterministic function of time and hence Assumption 1.3

is violated.

1.2.3 Properties of the M-GARCH model

In the following, we derive properties of M-GARCH models for which Assumptions 1.1, 1.2,

and 1.3 are satisfied.

Kurtosis and autocorrelation function

Financial returns are often found to be leptokurtic. Hence, a desirable feature of a volatility

model is that it generates returns with a kurtosis that is similar to the one empirically observed

for financial returns. Under Assumptions 1.1, 1.2, and 1.3, the kurtosis of the returns defined

in Equation (1.1) is given by

KMG =
E[ε4

i,t]

(E[ε2
i,t])

2
=

E[σ4
i,t]

(E[σ2
i,t])

2
κ > κ.
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Thus, the kurtosis of the M-GARCH process is larger than the kurtosis of the innovation Zi,t.

This is a well known feature of GARCH-type processes. The following proposition relates the

kurtosis KMG of the M-GARCH to the kurtosis KGA of the nested GARCH(1,1).

Proposition 1.1. Under Assumptions 1.1–1.3, the kurtosis KMG of an M-GARCH process is

given by

KMG =
E[τ2

t ]

E[τt]2
· KGA ≥ KGA,

where KGA = κ ·E[g2
i,t] is the kurtosis of the nested GARCH process and where the equality holds

if and only if τt is constant.

Hence, for nonconstant τt the kurtosis KMG is the product of KGA and the ratio E[τ2
t ]/E[τt]

2 >

1. When τt = ω/(1 − α − γ/2 − β) is constant, Proposition 1.1 nests the kurtosis of the GJR-

GARCH model. Thus, for volatile long-term components the kurtosis of an M-GARCH process

can be much larger than the kurtosis of the nested GARCH model.4 Specifically, Proposition 1.1

holds for the GARCH-MIDAS and for the MS-GARCH-TVI defined in Section 1.2.2.

The empirical ACFs of volatility proxies such as squared returns or realized variances are

known to be very persistent (e.g., Ding, Granger, and Engle, 1993; Andersen et al., 2003). In

particular, squared returns are often found to decay more slowly than the exponentially decaying

ACF implied by the simple GARCH(1,1) model. In the literature on GARCH models, this is

usually interpreted as either evidence for long memory (e.g., Baillie, Bollerslev, and Mikkelsen,

1996), structural breaks (e.g., Hillebrand, 2005), or an omitted persistent covariate (Han and

Park, 2014) in the conditional variance.

The following propositions show that the theoretical ACFs of the M-GARCH process have a

much slower decay than the ACF of the nested GARCH component if the long-term component

is sufficiently persistent. Hence, the multiplicative structure provides an alternative explanation

for the empirical observation of highly persistent ACFs of squared returns or realized variances.

For Propositions 1.2 and 1.3, we consider the case that both components are varying at the

same frequency; that is, the length of the period t is one day (It = 1).

Proposition 1.2. If It = 1 and Assumptions 1.1-1.3 are satisfied, the ACF, ρMG
k (ε2), of the

4Han (2015) obtains a similar result for the sample kurtosis of the returns from a GARCH-X model with a
covariate that can either be stationary or nonstationary.
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squared returns from an M-GARCH process is given by

ρMG
k (ε2) = Corr(ε2

t , ε
2
t−k) = ρτk

Var(τt)

Var(ε2
t )

+ ρGAk
Var(gtZ

2
t )

Var(ε2
t )

(
ρτkVar(τt) + E[τt]

2
)

(1.9)

with ρτk = Corr(τt, τt−k) and

ρGAk = Corr(gtZ
2
t , gt−kZ

2
t−k) = (α+ γ/2 + β)k−1 (α+ γ/2)(1− (α+ γ/2)β − β2)

1− 2(α+ γ/2)β − β2

being the ACF of the GJR-GARCH component.5

Proposition 1.2 shows that the ACF of the squared returns is given by the sum of two terms:

The first term corresponds to the ACF of the long-term component ρτk times a constant, whereas

the second term equals the exponentially decaying ACF of the nested GARCH model ρGAk times

a term that depends again on ρτk. Hence, if τt is sufficiently persistent, ρMG
k (ε2) will essentially

behave as ρτk for k large.6 For τt being constant, the first term in Equation (1.9) is equal to

zero and the second term reduces to the ACF of an asymmetric GARCH(1,1). Also, note that

the ratio Var(τt)/Var(ε2
t ) is closely related to the variance ratio defined in Equation (1.7) and

measures how much of the variation in the squared returns can be attributed to the variation

in the long-term component; that is, it measures the importance of the long-term component.

Haas, Mittnik, and Paolella (2004, p. 503) make a similar observation for the MS-GARCH-TVI

model that we discussed in Subsection 1.2.2. For this model, they show that the autocorrelations

of the squared returns decay at a rate of max{α+β,$}, where $ = p1,1 +p2,2−1 is the degree of

persistence due to the Markov effects.7 If $ is close to one—that is, if the long-term component

is very persistent—the decay rate of this component dominates the decay of the autocorrelation

function.

A standard misspecification test for GARCH models is the Ljung-Box statistic applied to

the squared deGARCHed residuals, ε2
t /gt. The result in Proposition 1.2 may explain why in

empirical applications the null hypothesis of this test is often rejected. In the multiplicative

model, the ACF of the squared deGARCHed residuals is given by ρτk ·Var(τt)/(κE[τ2
t ]−E[τt]

2),

which follows the rate of decay of the long-term component and hence is still persistent. Using

5Note that ρGAk reduces to the ACF of a (symmetric) GARCH(1,1) when γ = 0 (Karanasos, 1999).
6Again, Han (2015) also obtains a bicomponent structure for the sample ACF of the squared returns from a

GARCH-X model with a fractionally integrated covariate. Similarly, Han and Kristensen (2015) show that
the empirical ACF in a multiplicative model can display long-memory-type behavior.

7Haas, Mittnik, and Paolella (2004) consider a symmetric GARCH. Hence, the persistence in the GARCH
component is α+ β.
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similar arguments to those in the proof of Proposition 1.2, we can derive the ACF of σ2
t .

Proposition 1.3. If It = 1 and Assumptions 1.1–1.3 are satisfied, the ACF, ρMG
k (σ2), of σ2

t is

given by

ρMG
k (σ2) = Corr(σ2

t , σ
2
t−k) = ρτk

Var(τt)

Var(σ2
t )

+ ρgk
Var(gt)

Var(σ2
t )

(
ρτkVar(τt) + E[τt]

2
)

(1.10)

with ρτk as before and ρgk = Corr(gt, gt−k) = (α+ γ/2 + β)k being the ACF of the gt component.

Again, Assumption 1.3 holds for the GARCH-MIDAS and the MS-GARCH-TVI.

The implications of Proposition 1.3 are depicted in Figure 1.1. The bars in light gray display

the empirical ACF of the daily S&P 500 realized variances for the 2000:M1 to 2018:M4 period.8

The autocorrelations were estimated using the instrumental variables estimator suggested in

Hansen and Lunde (2014). We employ their preferred specification, a two-Stage least squares

estimator in which lagged realized variances of order four to ten are used as instrumental variables

(Hansen and Lunde, 2014, p. 82). By choosing appropriate parameter values for a GARCH-

MIDAS process, we obtain an ACF of σ2
t (dashed red line) which behaves very similar to the

empirical ACF of the realized volatilities. The figure shows that the second term—that is, the

ACF of gt (dot-dashed blue line)—determines the decay behavior of ρk(σ
2)MG when k is small,

while the first term—that is, the ACF of τt (solid green line)—dominates when k is large. Finally,

it is important to note that although our results on the kurtosis and the ACFs are presented

for a GJR-GARCH(1,1) short-term component, they directly extend to a covariance stationary

GJR-GARCH(p, q) component.

Forecast evaluation with Mincer-Zarnowitz regression

In empirical applications, the coefficient of determination from a MZ regression is often used as

a measure of forecast accuracy. In this section, we will argue against using this measure when

comparing forecast performance across volatility regimes. We now exclusively focus on the case

of a GARCH-MIDAS. We assume that forecasts are produced at the last day It of period t and

denote the k-step-ahead volatility forecast by hk,t+1|t with k ≤ It+1. The optimal forecast from

the GARCH-MIDAS is hk,t+1|t = E[σ2
k,t+1|Ft] = τt+1gk,t+1|t, where gk,t+1|t = E[gk,t+1|Ft] =

1 + (α+ γ/2 + β)k−1(g1,t+1|t − 1). When evaluating the volatility forecast, one has to deal with

the problem that the true conditional variance, σ2
k,t+1, is unobservable. Patton (2011) discusses

8The underlying data will be described in detail in Subsection 1.4.1.
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Figure 1.1: Autocorrelation function of the volatility process in a GARCH-MIDAS model.
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Notes: We depict the ACF of the volatility process in a GARCH-MIDAS model (red, dashed) and its components:
the first (green, solid) and second term (blue, dot-dashed) in Equation (1.10). The long-term component is defined
as in Equation (2.8.1) and Equation (2.5) with m = −0.1, θ = 0.3, w1 = 1, w2 = 5, and K = 264. The explanatory

variable is given by Xt = φXt−1 + ξt, ξt
i.i.d.∼ N (0, σ2

ξ), where φ = 0.98 and σ2
ξ = 0.352. The GARCH(1,1)

parameters are α = 0.06, β = 0.91, and γ = 0. Moreover, we set κ = 3. Bars in light gray display the empirical
autocorrelation of S&P 500 daily realized variances in between 2000:M1 and 2018:M4 as measured by Hansen and
Lunde (2014). For details see Section 1.4.

the situation in which the forecast evaluation is based on some conditionally unbiased volatility

proxy σ̂2
k,t+1 instead. He defines a loss function L(σ2

k,t+1, hk,t+1|t) as robust if the expected

loss ranking of two competing forecasts is preserved when replacing σ2
k,t+1 by σ̂2

k,t+1. In the MZ

regression σ2
k,t+1 is often replaced by the conditionally unbiased but noisy proxy σ̂2

k,t+1 = ε2
k,t+1.9

The MZ regression for evaluating the k-step-ahead volatility forecast is given by:

ε2
k,t+1 = δ0 + δ1hk,t+1|t + ηk,t+1.

We denote the respective coefficient of determination by R2
k. As shown in Hansen and Lunde

(2006), the ranking of competing one-step-ahead volatility forecasts based on the R2
1 of the MZ

regression is robust to using the proxy ε2
1,t+1 instead of the latent conditional variance σ2

1,t+1

as the dependent variable. For hk,t+1|t = τt+1gk,t+1|t, the population parameters of the MZ

regression are given by δ0 = 0 and δ1 = 1 and hence the population R2
k can be written as:

R2
k = 1− Var(ηk,t+1)

Var(ε2
k,t+1)

= 1−
E[SE(ε2

k,t+1, hk,t+1|t)]

Var(ε2
k,t)

, (1.11)

where we use that the variance of ηk,t+1 equals the expected squared error (SE) loss of the

9To illustrate the severeness of the noise, consider an example with Zk,t+1 ∼ N (0, 1). Then ε2
k,t+1 will either

over- or underestimate the true σ2
k,t+1 by more than 50% with a probability of about 74%.
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forecast evaluated against ε2
k,t+1; that is E[SE(ε2

k,t+1, hk,t+1|t)] = E[(ε2
k,t+1 − hk,t+1|t)

2]. Using

that E[ε2
k,t+1|Fk−1,t+1] = σ2

k,t+1, it follows that

E[SE(ε2
k,t+1, hk,t+1|t)] = E[SE(σ2

k,t+1, hk,t+1|t)] + (κ− 1)E[σ4
k,t+1]. (1.12)

That is, the expected SE based on the noisy proxy equals the expected SE based on the latent

volatility plus a term that depends on the fourth moment, κ, of Zi,t and the expected value of

the squared conditional variance. Hence, using a noisy proxy for forecast evaluation can lead to

a substantially higher expected SE than the expected SE based on the latent volatility. Patton

(2011, p. 248) basically makes the same point by arguing that “although the ranking obtained

from a robust loss function will be invariant to noise in the proxy, the actual level of expected

loss obtained using a proxy will be larger than that which would be obtained when using the

true conditional variance.”

Using the insight from Equation (1.12) that the expected SE loss based on the noisy proxy is

at least (κ− 1)E[σ4
k,t], we obtain the following bound:

R2
k ≤ 1−

(κ− 1)E[σ4
k,t]

κE[σ4
k,t]− (E[σ2

k,t])
2

=
1− (E[σ2

k,t])
2/E[σ4

k,t]

κ− (E[σ2
k,t])

2/E[σ4
k,t]

<
1

κ
. (1.13)

The upper bound for R2
k given by Equation (1.13) nicely illustrates that a low R2

k is not nec-

essarily evidence for model misspecification but can simply be due to using a noisy volatility

proxy. This point has been made before by Andersen and Bollerslev (1998), but for the special

case of a one-step-ahead forecast from a GARCH(1,1).10 Note that the result in Equation (1.13)

does not depend on the two-component structure of the model but is true for any conditionally

heteroskedastic process.

Next, we derive an explicit expression for the Mincer-Zarnowitz R2
k of the GARCH-MIDAS

model.

Proposition 1.4. If ε2
k,t+1 follows a GARCH-MIDAS process, Assumptions 1.1–1.3 are satis-

fied, and hk,t+1|t = τt+1gk,t+1|t, then the population R2
k of the MZ regression is given by

R2
k =

Var(hk,t+1|t)

Var(ε2k,t+1)
=

E[g2k,t+1|t]E[τ2t+1]−E[τt+1]2

E[g2k,t+1]E[τ2t+1]κ−E[τt+1]2

10See Andersen, Bollerslev, and Meddahi (2005) for a model-free adjustment procedure for the predictive R2.
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with E[g2k,t+1] as in Equation (1.3) and

E[g2k,t+1|t] = 1 + (α+ γ/2 + β)2(k−1)(E[g21,t+1]− 1).

We obtain the following two properties:

1. R2
k decreases monotonically with increasing forecast horizon k and, in the limit, converges11 to

R2
∞ = Var(τt+1)/Var(ε2k,t+1).

2. R2
k increases monotonically in E[τ2t+1].

The first property rests on the insight that the forecast of the GARCH component converges

to one (as k →∞) and, hence, the MZ regression reduces to a regression of ε2
k,t+1 on a constant

and τt+1. Thus, the R2
∞ can be interpreted as the fraction of the total variation in daily returns

that can be attributed to the variation in the long-term component. Note that R2
∞ corresponds

to the weight that is attached to the ACF of τt in the first term in Equation (1.9).

Second, the result that R2
k increases when τt+1 gets more volatile implies that for the very

same model the R2
k will be higher in high-volatility regimes (i.e., when the squared error loss

is high) than in low-volatility regimes (i.e., when the squared error loss is low). This can be

misleading when calculating R2
k for different regimes. The intuition is best illustrated when

looking at one-step-ahead forecasts. Equations (1.11) and (1.12) imply

R2
1 = 1−

E[SE(ε2
1,t+1, h1,t+1|t)]

Var(ε2
1,t+1)

= 1−
(κ− 1)E[g2

1,t+1]E[τ2
t+1]

E[g2
1,t+1]E[τ2

t+1]κ−E[τt+1]2
. (1.14)

When E[τ2
t+1] is increasing, the unconditional variance of returns rises at a faster rate than the

expected squared error and hence the MZ R2
1 is increasing. We can express R2

1 directly as a

function of the model parameters:

Lemma 1.1. If ε2
k,t+1 follows a GARCH-MIDAS process, Assumptions 1.1–1.3 are satisfied,

and h1,t+1|t = τt+1g1,t+1, then the population R2
1 of the MZ regression is given by

R2
1 =

(1− (α+ γ/2 + β)2)E[τ2t+1]− (1− (α+ γ/2)2κ− 2(α+ γ/2)β − β2)E[τt+1]2

(1− (α+ γ/2 + β)2)E[τ2τ+1]κ− (1− (α+ γ/2)2κ− 2(α+ γ/2)β − β2)E[τt+1]2
. (1.15)

For τt+1 being constant and γ = 0, Equation (1.15) is reduced to the expression in Andersen

and Bollerslev (1998, p. 892) for the symmetric GARCH(1,1); that is, R2
1 = α2/(1− 2αβ − β2).

11Although by assumption k ≤ It in our setting, we can think of, for example, a semiannual period and daily
volatility forecasts. In this case k can be at most 132 (= 6 · 22). For such a large k and under reasonable
assumptions on the GARCH parameters, we have E[g2

132,t+1|t] ≈ 1.
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The effect of an increase in E[τ2
t+1] on E[SE(ε2

1,t+1, h1,t+1|t)], Var(ε2
1,t+1) and R2

1 is illustrated

in Figure 1.2. We set E[τt+1] = 1, α = 0.05, β = 0.92, γ = 0, and κ = 3. As expected, the left

panel shows that the expected squared error increases when we move from a low-volatility regime

(say E[τ2
t+1] = 2) to a high-volatility regime (say E[τ2

t+1] = 5). However, it also shows that the

variance of the returns is increasing even faster (as evident from the larger slope coefficient).

The right panel of Figure 1.2 shows that this translates into an increase of R2
1. That is, although

the expected squared error increases, the “forecast accuracy” as measured by R2
1 increases as

well. In this regard, the R2 of a MZ regression should be interpreted as a measure of relative

forecast accuracy; that is, forecast accuracy is measured relative to the unconditional variance

of the process. In contrast, the squared error loss is a measure of absolute forecast accuracy.

Note that for rather moderate values of E[τ2
t+1] the coefficient of determination is already close

to its upper bound of 1/3.

Figure 1.2: E[SE(ε21,t+1, h1,t+1|t)], Var(ε21,t+1), and MZ R2
1 as a function of E[τ2t+1].
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Notes: The left panel shows E[SE(ε2
1,t+1, h1,t+1|t)] (red, solid) and Var(ε2

1,t+1) (blue, dashed) as a function of
E[τ2

t+1] (see Equation (1.14)). The right panel depicts the corresponding population Mincer-Zarnowitz R2
1 as a

function of E[τ2
t+1]. We set E[τt+1] = 1, α = 0.05, β = 0.92, γ = 0, and κ = 3.

Although the previous results are derived under the assumption that squared daily returns

are used as the volatility proxy, it is true that the main insights still hold when using a better

volatility proxy. For example, consider the hypothetical case of observing σ2
k,t+1 ex-post. Then,

for k → ∞ we obtain R2
∞ = Var(τt+1)/Var(σ2

k,t+1) < 1. Hence, R2
∞ would still vary across

volatility regimes and increase in the variance of the long-term component. In the simulation in

Section 1.3, we will consider the case in which the realized variance is used as a proxy for σ2
k,t+1.

Finally, we consider cumulative volatility forecasts. The MZ regression for evaluating the
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cumulative k-day-ahead volatility forecast is given by

R̃V 1:k,t+1 = δ̃0 + δ̃1h1:k,t+1|t + η1:k,t+1,

where the latent variance is proxied by the realized variance R̃V 1:k,t+1 =
∑k

i=1 ε
2
i,t+1 (purely

based on daily return data) and h1:k,t+1|t =
∑k

j=1 hj,t+1|t. The corresponding R2
1:k is given by

R2
1:k =

Var(h1:k,t+1|t)

Var(R̃V 1:k,t+1)
=

E[τ2
t+1]E[(

∑k
i=1 gi,t+1|t)

2]− k2E[τt+1]2

E[τ2
t+1]E[(

∑k
i=1 gi,tZ

2
i,t)

2]− k2E[τt+1]2
.

As before, one can show that R2
1:k increases monotonically in E[τ2

t+1].

1.2.4 Forecasting long-term volatility

In the empirical application and in the simulation in Section 1.3 we also consider forecasting

volatility for horizons that are beyond one low-frequency period. The optimal forecast hk,t+s|t

with s > 1 is then given by E[τt+s|Ft]E[gk,t+s|Ft]. It is straightforward to obtain gk,t+s|t =

E[gk,t+s|Ft] = 1 + (α + γ/2 + β)(It+1+...+It+s−1+k−1)(g1,t+1|t − 1). Because we do not explicitly

model the dynamics of Xt, we are unable to obtain E[τt+s|Ft]. Instead, based on the information

set Ft, we forecast τt+s by τt+1. Holding the long-term component constant when forecasting

is reasonable if τt changes smoothly and the forecast horizon is not “too large.” Otherwise,

one may use predictions of Xt—for example, survey or time series forecasts—for calculating

predictions of τt (Conrad and Loch, 2015).

1.3 Simulation

In this section, we mainly focus on M-GARCH models from the GARCH-MIDAS class. Since

asymptotic theory for the QMLE is available only for the special case of a GARCH-MIDAS with

realized volatility as the explanatory variable (Wang and Ghysels, 2015), we first evaluate the

finite-sample performance of the QMLE in a Monte-Carlo simulation. Second, we compare the

QMLE of the correctly specified model with the QMLE of misspecified models. We consider

misspecification in terms of (i) lag length K, (ii) the explanatory variable being measured with

noise, (iii) both, or (iv) omitting the long-component completely. Finally, within the Monte-

Carlo simulation we evaluate the OOS forecast performance of the different models listed above

and provide empirical support for the theoretical results in Subsection 1.2.3. For each model
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specification, we perform 2,000 Monte-Carlo replications.

1.3.1 Data generating process

We simulate an intraday version of the two-component GARCH model as

εn,i,t =
√
gi,tτtZn,i,t/

√
N, (1.16)

where the index n = 1, . . . , N now denotes the intraday frequency. The Zn,i,t are assumed to

be i.i.d. and follow either a standard normal or a standardized Student’s t distribution with

five degrees of freedom. We generate N = 48 intraday returns. Hence, by aggregating returns

to a daily frequency, εi,t =
∑N

n=1 εn,i,t, the model in Equation (1.16) is consistent with our

daily model.12 Simulating intraday returns allows us to calculate the daily realized variance,

RVi,t =
∑N

n=1 ε
2
n,i,t, as a precise measure of the daily variance. Similarly, we obtain the realized

variance over the first k days of month t as RV1:k,t =
∑k

i=1RVi,t. We simulate data for a period of

40 years of intradaily returns, from which we construct 10,560 daily return and realized variance

observations. The parameters of the GARCH-component, gi,t, are given by α = 0.06, β = 0.91

and γ = 0. We consider two alternative specifications of the long-term component:

Monthly τt. The first specification assumes a mixed-frequency setting with τt fluctuating at a

monthly frequency. We assume that each month consists of It = 22 days. As in Equation (2.8.1),

we choose an exponential specification for the long-term component and specify the MIDAS

weights according to the Beta weighting scheme in Equation (2.5) with m = 0.1, θ = 0.3,

w1 = 1, w2 = 4, and K = 36. The choice of three years as MIDAS lag length follows Conrad

and Loch (2015). Setting w2 = 4 implies a monotonically decaying weighting scheme with

weights close to zero for lags greater than two-thirds of K. The explanatory variable Xt is

assumed to follow an AR(1) process, Xt = φXt−1 + ξt, ξt
i.i.d.∼ N (0, σ2

ξ ), with φ = 0.9 and

σ2
ξ = 0.32. When averaged over the 2,000 Monte-Carlo simulations, these parameter values lead

to an empirical VR of 18.60%/18.09% for normally/Student’s t distributed innovations (recall

that the VR was defined in Equation (1.7)).

Daily τt. The second specification assumes that both components fluctuate at a daily fre-

quency (i.e. It = 1). The parameters of the long-term component are chosen as m = −0.1,

12Alternatively, we simulated the intraday returns using a stochastic volatility model that is consistent with
our GARCH-MIDAS setting. The corresponding results, which are very similar to the ones based on the
specification in Equation (1.16), are presented in Appendix 1.6.5.
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θ = 0.3, w1 = 1, w2 = 5, and K = 264. Choosing a lag length of roughly one year is motivated

by our empirical results in Section 1.4 when estimating a GARCH-MIDAS model using realized

volatility as the explanatory variable. In addition, we choose φ = 0.98 and σ2
ξ = 0.22. In the

simulations, the former choice leads to an average VR of 32.49%/31.66% for normally/Student’s

t distributed innovations.

1.3.2 Parameter estimates

Correctly specified models: Bias and asymptotic standard errors

We use the first 20 years of simulated data as the “in-sample” period to obtain QML estimates of

the model parameters. Table 1.1 reports the average bias of the QMLE across the 2,000 Monte

Carlo simulations. In Panels A/B the innovations Zn,i,t are normally/Student’s t distributed.

First, we focus on Panel A. In this case the density is correctly specified and the QMLE is

the maximum likelihood estimator. Note that for all parameters except w2 the average bias is

close to zero when the conditional variance is correctly specified (i.e., with MIDAS lag length

of K = 36 (monthly) and K = 264 (daily) respectively). For w2 we clearly observe an upward

bias.13 Based on the 2,000 Monte Carlo replications, we also calculate the empirical standard

deviation of the estimated parameters. In Table 1.1 these figures are presented in curly brackets.

The numbers in parentheses are the average asymptotic standard errors based on the results in

Wang and Ghysels (2015). A comparison of these numbers shows that the asymptotic standard

errors are close to the empirical standard deviation of estimated parameters. The only exception

is the specification with monthly τt where the asymptotic standard errors of w2 appear to be too

big. Nevertheless, the overall performance of the asymptotic standard errors is very satisfying.

That is, the Wang and Ghysels (2015) asymptotic standard errors that were derived under the

assumption that Xt =
∑J−1

j=0 ε
2
t−j are applicable more generally.

Misspecified models: Bias

Next, we investigate the effect of model misspecification. First, we consider specifications with

a smaller lag length than the true one.14 Choosing a lag length that is too small (K = 12 for

13Figure 1.7 in the Appendix compares the histogram of the standardized parameter estimates over the 2,000
Monte Carlo replications with a standard normal distribution. The figure shows that for all parameters except
w2 the empirical distribution of the parameter estimates is very well approximated by the normal distribution.

14We do not report results for K being chosen too large as the Beta weighting scheme is flexible enough to
downweight uninformative lags to almost zero.
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monthly τt or K = 66 for daily τt) does not lead to a bias in the parameter estimates—with

the exception of w2. Now the QMLE of w2 is downwardly biased. As the estimated weighting

schemes in Figure 1.3 show, the downward bias in w2 translates into biased weighting schemes.

Second, we consider the case of observing the explanatory variable Xt with measurement error.

This is a reasonable scenario because in practice the true Xt is either unknown to or unobservable

for the researcher who will base her analysis on a reasonable proxy. We denote the proxy by

X̃t and specify it as Xt plus conditionally heteroscedastic noise. In the case of monthly τt the

noise is given by N (0, 0.2 + 0.8|Xt|) and in the case of daily τt by N (0, 0.5 + 0.8|Xt|). The

average correlation between Xt and X̃t is 68.79%/62.71% for monthly/daily τt. As before, only

the QML estimates of w2 appear to be biased when Xt is replaced with X̃t. Last, we estimate a

misspecified one-component GARCH model that is obtained when restricting τt to be constant.

Despite the omitted long-term component, the parameter estimates of α and β are essentially

unbiased.

Figure 1.3: Weighting schemes implied by mean parameter estimates.
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and purple (short dashed) line, the corresponding cases of a GARCH-MIDAS with measurement error are
reported. The black line shows the true weighting scheme.

Note that the numbers in Panel B of Table Table 1.1 are very similar to the ones in Panel A.

When replacing the normally distributed innovations with Student’s t distributed innovations,

the density in the maximum likelihood estimation is misspecified and the estimator is truly

QMLE. Nevertheless, this change hardly affects our findings. The only notable difference can

be seen in the last column of Table 1.1 which shows the average excess kurtosis of the fitted

standardized residuals. Those residuals are given by εi,t/
√
τ̂tĝi,t for the GARCH-MIDAS models

and by εi,t/
√
ĝi,t for the GARCH model. While the excess kurtosis is essentially zero in Panel
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A, in Panel B there is still excess kurtosis, reflecting the fact that the innovations are Student’s

t distributed.

1.3.3 Forecast evaluation

Next, we evaluate the forecast performance of the different specifications. Based on the in-

sample parameter estimates, we construct OOS volatility forecasts for the remaining 20 years.

Keeping the parameter estimates fixed is usually referred to as a “fixed (forecasting) scheme.”15

The forecast performance of the different models will be evaluated over the 2,000 Monte-Carlo

replications.

We compare the forecast performance of the correctly specified GARCH-MIDAS with all the

misspecified models presented in Table 1.1. In addition, we consider the two-state MS-GARCH-

TVI model that was introduced in Subsection 1.2.2.16

MZ regression

We first present the outcomes of MZ regressions. Figure 1.4 shows the R2
k of MZ regressions

for volatility forecasts, hk,t+1|t, with k = 1, . . . , 22 (i.e., for up to one month ahead). Fore-

cast evaluation is based on the noisy proxy ε2
k,t+1, whereby the data generating process is the

GARCH-MIDAS with monthly τt and normally distributed innovations. The forecasts are gen-

erated from the correctly specified GARCH-MIDAS model. We present the R2
k for the full OOS

period as well as for three different volatility regimes: low, normal and high. Volatility regimes

are defined as follows: We consider the empirical distribution of daily realized variances during

the OOS period. A forecast falls into the low/normal/high volatility regime if the level of the

realized variance on the day the forecast has been issued is below the 25% quantile, between the

25% and 75% quantile, or above the 75% quantile of the empirical distribution. In line with our

theoretical result in Proposition 1.4, the R2
ks for the full sample are decreasing with increasing

forecast horizon. As expected, R2
1 is below the upper bound of one-third (see Equation (1.13)).

Among the three regimes, we observe the highest R2
ks in the high volatility regime. Clearly, the

high R2
ks in the high volatility regime do not reflect an improved absolute forecast performance

15In contrast, in the empirical forecast evaluation in Subsection 1.4.4 we apply a “rolling scheme.” As we will
discuss below, this is important because it takes into account the real-time nature of the data and allows for
changes in the model parameters.

16In-sample parameter estimates for the MS-GARCH-TVI model can be found in the Appendix, Table 1.9. The
median estimates of α and β are close to the true values. The estimates of ω1 and ω2 represent a low and
a high volatility regime. As measured by $ = p1,1 + p2,2 − 1, the degree of persistence in the long-term
component is very high.
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Table 1.1: Monte-Carlo parameter estimates.

α β m θ w2 κ− 3

Panel A: Zn,i,t normally distributed

Monthly τt GARCH-MIDAS (36) -0.000 -0.004 -0.007 0.036 1.959 -0.010
{0.008} {0.014} {0.071} {0.145} {6.494}
(0.009) (0.015) (0.070) (0.137) (12.240)

GARCH-MIDAS (12) -0.000 -0.003 -0.006 -0.029 -0.470 -0.009

GARCH-MIDAS (36, X̃) 0.000 -0.003 -0.006 0.000 0.788 -0.009

GARCH-MIDAS (12, X̃) 0.000 -0.002 -0.005 -0.075 -0.869 -0.008

GARCH 0.000 0.003 0.009 — — 0.001

Daily τt GARCH-MIDAS (264) -0.000 -0.003 -0.003 0.010 1.030 -0.006
{0.008} {0.014} {0.063} {0.078} {5.020}
(0.008) (0.014) (0.062) (0.075) (4.786)

GARCH-MIDAS (66) -0.000 -0.002 -0.001 -0.053 -3.247 -0.004

GARCH-MIDAS (264, X̃) -0.000 -0.003 -0.002 0.002 0.332 -0.005

GARCH-MIDAS (66, X̃) 0.000 -0.002 0.000 -0.066 -3.414 -0.003

GARCH 0.003 0.003 0.031 — — 0.020

Panel B: Zn,i,t student-t distributed

Monthly τt GARCH-MIDAS (36) -0.000 -0.004 -0.008 0.040 1.491 0.108
{0.008} {0.014} {0.075} {0.152} {5.983}
(0.008) (0.015) (0.071) (0.141) (11.033)

GARCH-MIDAS (12) -0.000 -0.003 -0.006 -0.030 -0.589 0.109

GARCH-MIDAS (36, X̃) -0.000 -0.003 -0.006 0.003 0.715 0.110

GARCH-MIDAS (12, X̃) -0.000 -0.002 -0.004 -0.073 -0.797 0.111

GARCH -0.000 0.003 0.011 — — 0.122

Daily τt GARCH-MIDAS (264) -0.000 -0.003 -0.002 0.012 1.136 0.112
{0.008} {0.014} {0.065} {0.082} {5.896}
(0.008) (0.014) (0.063) (0.075) (6.039)

GARCH-MIDAS (66) 0.000 -0.002 0.000 -0.052 -2.730 0.114

GARCH-MIDAS (264, X̃) 0.000 -0.003 -0.001 0.003 0.341 0.114

GARCH-MIDAS (66, X̃) 0.000 -0.002 0.001 -0.064 -3.372 0.116

GARCH 0.003 0.003 0.034 — — 0.141

Notes: The table reports the average bias of parameter estimates and the corresponding
standard errors across 2,000 Monte-Carlo simulations. We provide results for both daily
and monthly long-term components. In curly brackets, empirical standard deviations of
parameter estimates are reported. Entries in parentheses correspond to the square root
of average Wang and Ghysels (2015) asymptotic variances. The parameter estimates
are based on (the first) 20 years of observations (i.e. the in-sample period). In both
long-term components (see Equations (2.8.1) and (2.5)), we choose θ = 0.3 and w1 = 1.
We use m = 0.1 and w2 = 4 in the monthly τt and m = −0.1 and w2 = 5 in the daily
τt. The long-term component is assumed to depend on K = 36 monthly or K = 264
daily observations. The covariate Xt is modeled as an AR(1) process; that is, Xt =

φXt−1 + ξt, ξt
i.i.d.∼ N (0, σ2

ξ), with φ = 0.9, σ2
ξ = 0.32 for a monthly, and φ = 0.98,

σ2
ξ = 0.22 for a daily τt. The parameters of the short-term component are in both cases

given by α = 0.06, β = 0.91 and γ = 0. For each model that is estimated based on the
true value of Xt, we also incorporate estimations in which Xt is replaced by a noisy proxy
X̃t. It is modeled as X̃t = Xt +N (0, 0.2 + 0.8|Xt|) in the case of the monthly varying τt
and X̃t = Xt +N (0, 0.5 + 0.8|Xt|) in the case of a daily varying τt. The column “κ− 3”
presents the mean excess kurtosis of the standardized residuals from each model.

but rather an improved relative forecast performance. Further, note that for almost all forecast

horizons the R2
ks in the full sample are higher than in each subsample.

For empirical applications, cumulative volatility forecasts are of greater importance than k-

step-ahead forecasts. Hence, in Figure 1.5 we present the R2
1:k of MZ regressions for cumulative

volatility forecasts, h1:k,t+1|t, with k = 1, . . . , 22. Note that, by construction, the volatility fore-

casts are non-overlapping. We now present forecasts from the correctly specified and the mis-
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Figure 1.4: MZ R2—monthly τt—evaluation based on ε2k,t+1.
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Notes: The figure shows the average R2
k of MZ regressions based on the predictions from the correctly specified

GARCH-MIDAS model over all 2,000 Monte Carlo replications. The true volatility is proxied by ε2
k,t+1. Besides

the full out-of-sample period, we consider low-, normal-, and high-volatility regimes. For the definition of the
regimes see Subsection 1.3.3.

specified GARCH-MIDAS models as well as from the MS-GARCH-TVI and the nested GARCH.

Forecast evaluation is based on the precise proxy RV1:k,t+1. Panels (a)/(b) show the results for

monthly/daily τt. Based on Figure 1.5, we are able to rank the different models’ forecast perfor-

mance. While the performance of all GARCH-MIDAS models is essentially indistinguishable,

the one-component GARCH and the MS-GARCH-TVI models lead to a lower R2
1:k. Differences

between models are most pronounced in the low and normal regime.

Model confidence sets

Next, we formally test for superior predictive ability. We base our analysis on the MCS approach

introduced by Hansen, Lunde, and Nason (2011). Following the arguments in Patton (2011),

we use the QLIKE loss as the evaluation criterion. For a k-step-ahead volatility forecast, the

QLIKE is defined as

QLIKE
(
σ2
k,t+1, hk,t+1|t

)
= σ2

k,t+1/hk,t+1|t − log
(
σ2
k,t+1/hk,t+1|t

)
− 1.

The QLIKE is the only robust loss function that depends solely on the standardized forecast

error, σ2
k,t+1/hk,t+1|t. As discussed in Patton (2011), the QLIKE is less sensitive with respect

to extreme observations than the squared error loss. Further, it can be shown that the moment

conditions required for Diebold and Mariano (1995) or Giacomini and White (2006) type tests

are weaker under QLIKE than under squared error loss (Patton, 2006).

We consider the following forecasting schemes. Based on the information available at the last
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Figure 1.5: MZ R2
1:k—monthly and daily τt—evaluation based on RV1:k,t+1.
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(b) Daily τt
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Notes: For each model the figure shows the average R2
1:k of the MZ regressions over the 2,000 Monte Carlo

replications. The true volatility is proxied by RV1:k,t+1. The upper/lower panels display the case of monthly/daily
long-term components. Besides the full out-of-sample period, we consider low-, normal-, and high-volatility
regimes. For the definition of the regimes see Subsection 1.3.3.

day of the current month, cumulative volatility forecasts are computed for horizons of one day

(1d), two weeks (2w) and one month (1m) as well as forecasts of volatility in two months (2m)

and three months (3m). Whenever the forecast horizon is longer than the frequency of the long-

term component, the optimal forecast requires predicting the long-term component. Instead,

we simply fix the long-term component at its current level (see Subsection 1.2.4). Forecast

evaluation is now based on the precise proxy RV1:k,t+1. Next, we explain how the MCS is

obtained. Denote by M the set of all competing models. We define

di,j(s, k) = QLIKE(RV1:k,t+s, ĥ
(i)
1:k,t+s|t)−QLIKE(RV1:k,t+s, ĥ

(j)
1:k,t+s|t)

as the difference in the QLIKE loss of models i and j. For example, when s = 1 and k ∈ {1, 5, 22}

the forecast ĥ
(i)
1:k,t+s|t denotes the cumulative forecast for the first (1d), the first five (1w), or all

twenty-two (1m) days in the following month while for s ∈ 2, 3 and k = 22 we obtain the forecast
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for two (2m) and three (3m) months in the future. We compute the average loss difference, di,j ,

and calculate the test statistic

tij = di,j/

√
V̂ar

(
di,j
)

for all i, j ∈M.

The MCS test statistic is then given by TM = max
i,j∈M

|ti,j | and has the null hypothesis that all

models have the same expected loss. Under the alternative, there is some model i that has an

expected loss greater than the expected loss of all other models j ∈M\ i. If the null hypothesis

is rejected, the worst performing model is eliminated. The test is performed iteratively, until no

further model can be eliminated. We denote the final set of surviving models by MMCS . This

final set contains the best forecasting model with confidence level 1 − ν. We set ν = 0.1. This

choice is common practice in the literature (e.g., Laurent, Rombouts, and Violante, 2013; Liu,

Patton, and Sheppard, 2015).

Since the asymptotic distribution of the test statistic TM is nonstandard, we approximate

it by block-bootstrapping as proposed by Hansen, Lunde, and Nason (2011), where the block

length is determined by fitting an AR(p) process to the series of loss differences. In our analysis,

8,000 bootstrap replications at each stage were sufficient in order to obtain stable results.17

Table 1.2 reports how often a certain model is included in the MCS across the 2,000 replica-

tions. Panel A provides results for normally distributed innovations and Panel B for Student’s

t distributed innovations. For example, for normally distributed innovations, monthly τt, and a

forecast horizon of one day, the correctly specified GARCH-MIDAS (36) is included in the MCS

in 85% of the replications. The table clearly shows that the misspecified one-component GARCH

model is included less often in the MCS than the GARCH-MIDAS models. In particular, this

is the case for daily τt. Further, for daily τt and forecast horizons of up to two months the

MS-GARCH-TVI is less often part of the MCS than all GARCH-MIDAS models. Additionally,

among the GARCH-MIDAS models the correctly specified one has the highest inclusion rates

in the MCS when the forecast horizon is up to one month. At least for monthly τt, it appears

that a misspecification of the lag length is less severe than observing the explanatory variable

with measurement error. Finally, at the longest forecast horizon (3m) all forecasts suffer from a

misspecified forecast of the long-term component and hence it becomes increasingly difficult to

17For implementing the MCS procedure, we use the R package rugarch (Ghalanos, 2018) which
includes the implementation used in the MFE Matlab Toolbox by Kevin Sheppard. See:
https://www.kevinsheppard.com/MFE Toolbox.

https://www.kevinsheppard.com/MFE_Toolbox


34 1 Multiplicative GARCH-MIDAS models

distinguish between models.

Table 1.2: Model confidence set inclusion rates.

1d 2w 1m 2m 3m

Panel A: Zn,i,t normally distributed

Monthly τt GARCH-MIDAS (36) 0.850 0.758 0.770 0.795 0.792
GARCH-MIDAS (12) 0.852 0.745 0.762 0.818 0.827

GARCH-MIDAS (36, X̃) 0.723 0.559 0.589 0.650 0.661

GARCH-MIDAS (12, X̃) 0.696 0.539 0.560 0.648 0.684

MS-GARCH-TVI 0.765 0.560 0.603 0.664 0.673
GARCH 0.477 0.221 0.216 0.260 0.310

Daily τt GARCH-MIDAS (264) 0.946 0.893 0.861 0.784 0.743
GARCH-MIDAS (66) 0.850 0.796 0.836 0.890 0.878

GARCH-MIDAS (264, X̃) 0.843 0.672 0.646 0.663 0.688

GARCH-MIDAS (66, X̃) 0.763 0.614 0.664 0.778 0.831

MS-GARCH-TVI 0.376 0.100 0.138 0.467 0.765
GARCH 0.257 0.043 0.050 0.244 0.493

Panel B: Zn,i,t student-t distributed

Monthly τt GARCH-MIDAS (36) 0.912 0.790 0.772 0.761 0.764
GARCH-MIDAS (12) 0.922 0.808 0.785 0.812 0.818

GARCH-MIDAS (36, X̃) 0.842 0.656 0.640 0.652 0.650

GARCH-MIDAS (12, X̃) 0.841 0.636 0.622 0.668 0.683

MS-GARCH-TVI 0.875 0.666 0.654 0.675 0.664
GARCH 0.734 0.331 0.267 0.280 0.309

Daily τt GARCH-MIDAS (264) 0.968 0.912 0.866 0.792 0.742
GARCH-MIDAS (66) 0.918 0.839 0.862 0.885 0.854

GARCH-MIDAS (264, X̃) 0.927 0.769 0.712 0.694 0.685

GARCH-MIDAS (66, X̃) 0.877 0.726 0.731 0.812 0.822

MS-GARCH-TVI 0.690 0.222 0.206 0.501 0.758
GARCH 0.602 0.112 0.093 0.276 0.485

Notes: The numbers are the empirical frequencies of a model being included in the
90% model confidence set at different forecast horizons: one day (1d), two weeks (2w),
one month (1m), two months (2m), and three months (3m). Panel A corresponds to
the simulation with normally distributed intraday returns and Panel B to standardized
Student’s t distributed intraday returns with five degrees of freedom. The averages are
taken across 2,000 Monte-Carlo replications.

In summary, independently of whether the long-term component is specified at a daily or

monthly frequency, the correctly specified GARCH-MIDAS model as well as the GARCH-

MIDAS with misspecified lag length clearly outperform the one-component GARCH as well

as the MS-GARCH-TVI in terms of forecast performance. For models with daily long-term

components this result also holds when the explanatory variable is observed with measurement

error. Only for monthly long-term components and measurement error in Xt, we find that the

MS-GARCH-TVI performs slightly better.

Remark 1.2. As discussed in Subsection 1.2.1, Assumption 1.3 is likely to hold for explana-

tory variables that are observed at a lower frequency than the daily returns. For certain daily
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explanatory variables (e.g. the VIX index) Assumption 1.3 might be violated. However, under

reasonable assumptions the correlation between the innovations to the daily returns and Xt it-

self can be expected to be small. The correlation with future τt will be even smaller. For a

more detailed discussion see Appendix 1.6.4, which also provides additional simulations. The

simulations show that even if Assumption 1.3 is mildly violated all the previous findings still

hold.

1.4 Empirical analysis

Last, we turn to an empirical application of the GARCH-MIDAS models to S&P 500 return data.

In Subsection 1.4.1 we introduce our data set. Full sample estimation results for various GARCH-

MIDAS models are reported in Subsection 1.4.2. Thereafter, in Subsection 1.4.3 we explain how

real-time volatility forecasts can be constructed when taking into account the release schedule

of macroeconomic variables. The forecast comparison is carried out in Subsection 1.4.4, where

we evaluate the GARCH-MIDAS volatility forecasts against forecasts from eight competitor

models.

1.4.1 Data

Stock market data

We consider daily log-returns on the S&P 500, calculated as ri,t = 100 · (log(pi,t)− log(pi−1,t)),

for the 1971:M1 to 2018:M4 period. For evaluating the volatility forecasts, we employ daily

realized variances, RVi,t, defined as the sum of the squared five-minute intraday log-returns on

day t plus the squared overnight log-return. The latter is defined as the log of the open price on

day t minus the log of the close price on day t−1. This approach follows Bollerslev et al. (2018),

among others. The data for constructing RVi,t were obtained from the Realized Library of the

Oxford-Man Institute of Quantitative Finance and are available from the year 2000 onwards

(Heber et al., 2009).

Explanatory variables

As explanatory variables we use daily measures of financial risk, a weekly measure of finan-

cial conditions and monthly macroeconomic variables. We employ backward- and forward-

looking measures of daily volatility. The former is proxied by a rolling window of the average
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realized volatility (based on squared daily returns) over the previous 22 days, RVol(22)i,t =
√

1/22
∑21

j=0 r
2
i−j,t, and the latter by the VIX index (converted to a daily level by dividing it by

√
252). In addition, we consider the difference between the VIX (divided by

√
252) and RVol(22)

as a proxy for the (square root of the) variance risk premium (VRP).18

We use the weekly National Financial Conditions Index (NFCI) as a measure for the tight-

ness of financial conditions in the USA. The NFCI is a weighted average of 105 standardized

financial indicators of risk, credit and leverage derived by dynamic factor analysis. Monthly

macroeconomic conditions are measured by the Chicago Fed National Activity Index (NAI)

and growth rates of industrial production and housing starts, both calculated as ∆Xt = 100 ·

(log(Xt)− log(Xt−1)). While the macroeconomic variables are included from 1971 onwards, the

NCFI series begins in 1973 and the VIX is available from 1990 onwards.19

Before we estimate GARCH-MIDAS models, we employ the Conrad and Schienle (2020) La-

grange multiplier (LM) test for an omitted multiplicative component in one-component GARCH

models. This test checks whether a simple GJR-GARCH(1,1) is misspecified in the sense of ne-

glecting a second component that is driven by an explanatory variable X. Since the test is of

the LM type, it requires estimation of the model under the null hypothesis only. Assuming that

under the alternative there is a second component which is driven by K lags of the variable X,

the test statistic can be shown to be χ2 with K degrees of freedom. An appealing property of

the test is that it can be applied in settings where X is observed at the same frequency as the

returns but also when X is observed at a lower frequency. Intuitively, the test checks whether the

squared standardized residuals from the GJR-GARCH are predictable using (functions of) past

values of X. Table 1.3 shows the outcome of the test when applied to each of our explanatory

variables. When either choosing K = 1 or K = 2, the test clearly rejects the null hypothesis

that a GJR-GARCH is correctly specified for all variables except housing starts. Thus, the LM

test results suggest using GARCH-MIDAS models instead. The estimates for a GARCH-MIDAS

model based on housing starts in Subsection 1.4.2 will show that housing starts are a leading

indicator with respect to financial volatility. This implies that the choice of K = 1 or K = 2

is too small. When redoing the LM test for a lag length of up to K = 12 the LM test indeed

18Note that the conventional definition of the variance risk premium is the squared VIX minus realized variance.
We are interested in expressing the quantity in volatility units. Because the realized VRP takes positive as
well as negative values, we take the square root of both quantities before we take the difference.

19Table 1.10 in the Appendix provides summary statistics for the stock returns and the seven explanatory vari-
ables. Figure 1.8 in the Appendix shows the evolution of the corresponding time series. Further details on the
data set are provided in Appendix 1.6.6.
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rejects the null hypothesis also for housing starts.

Table 1.3: LM test for misspecification of GJR-GARCH(1,1).

Xt VIX RVol(22) NFCI NAI ∆ IP ∆ Housing

K = 1 76.28
[<0.01]

14.38
[<0.01]

22.54
[<0.01]

15.25
[<0.01]

7.99
[<0.01]

0.18
[0.67]

K = 2 84.05
[<0.01]

19.03
[<0.01]

24.05
[<0.01]

17.34
[<0.01]

10.22
[<0.01]

0.18
[0.91]

Notes: The table reports the test statistics and the corresponding
p-values of the Conrad and Schienle (2018) misspecification test for
one-component GJR-GARCH(1,1) models. The test is implemented
using either one (K = 1) or two (K = 2) lags of the explanatory
variable Xt. For VIX and RVol(22) the test is based on daily data
from 1990 onwards, for NFCI, NAI, ∆ IP, and ∆ Housing starts the
test is based on weekly/monthly data from 1974 onwards.

We can also apply the LM test jointly to several variables at the same time. However, all

variables need to be observed at the same frequency. When including the NAI, industrial pro-

duction and housing starts and selecting an appropriate lag length, the NAI and housing starts

are individually significant while industrial production is not. This suggests that among the

macroeconomic variables the NAI and housing starts are most informative. We also aggregated

the VIX and the NFCI to a monthly frequency and performed the LM test jointly for all vari-

ables. While the overall LM statistic is highly significant, the VIX, the NFCI and housing starts

are the only variables that are individually significant.

1.4.2 Full sample parameter estimates

One explanatory variable

We first estimate a GARCH-MIDAS model for each explanatory variable for the full sample.

We include a constant in the mean equation; that is, returns are modeled as ri,t = µ+εi,t. After

visual inspection of the estimated weighting schemes for alternative choices of K, we select a

lag length that is rather too large than too small. As discussed in Section 1.3, the data will

identify the optimal weighting scheme as long as K is chosen large enough. We choose K = 264

for RVol(22), K = 3 for the VIX/VRP and K = 52 for the NFCI.20 Thus, for the forward-

looking VIX/VRP only the most recent information appears to drive long-term volatility, while

the backward-looking RVol(22) is smoothed over many lags. As in Conrad and Loch (2015),

we choose K = 36 for the monthly macroeconomic variables. The estimates for the parameters

20For all variables, Figure 1.9 in the Appendix shows the estimated weighting schemes for selected choices of K.
The figure illustrates that the estimated weighting schemes no longer change once the selected lag length is
sufficiently large. In all cases, our choice of the lag length is rather conservative.
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in the conditional variance are reported in Table 1.4. For all variables except housing starts,

we find that a restricted Beta weighting scheme with w1 = 1 is the best choice; that is, the

optimal weights are declining from the beginning. For housing starts, an unrestricted scheme

which allows for “hump-shaped” weights is required. This confirms the finding in Conrad and

Loch (2015) that housing starts are leading with respect to long-term volatility.21 Note that

the GARCH-MIDAS models based on the NFCI and the three macroeconomic variables employ

return data for the 1974:M1 to 2018:M4 period, while the models with daily τt employ data

from 1990:M1 onwards. Hence models based on daily τt cannot be compared to models based

on weekly/monthly τt in terms of log-likelihood or Bayesian Information Criterion (BIC).

Table 1.4: Full sample estimation results: GARCH-MIDAS with one explanatory variable.

α β γ m θ w1 w2 K LLH BIC VR(X)

Daily τt

RVol(22) 0.000 0.843*** 0.192*** −1.261*** 1.177*** 1 3.049*** 264 −9201 18465 42.78
(0.008) (0.012) (0.015) (0.112) (0.096) (0.675)

VIX 0.000 0.853*** 0.095*** −2.129*** 1.524*** 1 3.470** 3 −9138 18339 76.14
(0.010) (0.021) (0.015) (0.086) (0.067) (1.371)

VRP 0.017** 0.902*** 0.128*** −0.384*** 1.084*** 1 5.571** 3 −9174 18410 10.92
(0.007) (0.007) (0.011) (0.137) (0.096) (2.591)

Weekly τt

NFCI 0.017*** 0.902*** 0.115*** −0.101 0.252*** 1 2.892 52 −15103 30271 11.42
(0.006) (0.005) (0.007) (0.073) (0.048) (2.314)

Monthly τt

NAI 0.019*** 0.900*** 0.116*** −0.058 −0.359*** 1 9.066*** 36 −14569 29202 14.14
(0.006) (0.005) (0.007) (0.079) (0.073) (3.312)

∆ IP 0.019*** 0.903*** 0.113*** 0.074 −0.650*** 1 5.271*** 36 −14573 29211 10.63
(0.006) (0.005) (0.007) (0.089) (0.161) (1.782)

∆ Housing 0.019*** 0.897*** 0.119*** −0.079 −0.237*** 1.695*** 2.586*** 36 −14559 29192 19.63
(0.005) (0.005) (0.007) (0.076) (0.034) (0.383) (0.770)

GARCH 0.021*** 0.911*** 0.103*** −0.073 — — — — −15355 30757 —
(0.005) (0.005) (0.007) (0.098)

Notes: Estimation results for GARCH-MIDAS models are reported for seven explanatory variables. The
estimation using the NFCI, NAI, IP, and housing starts begins in 1974:M1 based on low-frequency observations
reaching as far as 1971:M1 in line with the lag length K. The estimation of the GARCH-MIDAS models using
RVol(22) and VIX as an explanatory variable employs daily return data starting in 1990:M1. For all explanatory
variables except housing starts a restricted weighting scheme is chosen (w1 = 1). Bollerslev-Wooldridge standard
errors are reported in parentheses where significance at the 1, 5, 10 % level is indicated by ***, **, and *. LLF is
the value of the maximized log-likelihood function and BIC is the Bayesian Information Criterion. The variance
ratio VR(X) = Var(log(τXM ))/Var(log(σXM )) is calculated on monthly aggregates. Estimates for µ are omitted.

Concerning the parameter estimates, it is interesting to observe that the GARCH-MIDAS

models with daily τt lead to lower estimates of β than models with weekly or monthly τt. While

for the models with daily τt the estimates of α are close to zero, there is strong evidence for

asymmetry (as indicated by the highly significant γ parameter). These parameter estimates

imply that the deviations of the short-term component from the long-term component are more

21Figure 1.10 in the Appendix shows the estimated weighting schemes.
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short-lived for GARCH-MIDAS models with daily τt.
22 The signs of the estimated θs for realized

volatility, the VIX, and the macroeconomic variables are in line with findings in the previous

literature. Higher levels of financial volatility tend to increase long-term volatility, whereas an

improvement in macroeconomic conditions decreases long-term volatility. The finding that a

higher variance risk premium and tighter financial conditions (i.e., an increase in the NFCI)

predict higher volatility is new. While the positive relation between realized/expected measures

of volatility and long-term volatility might be viewed as “mechanical,” the NFCI as well as the

macroeconomic variables can be considered fundamental drivers of financial volatility.

We gauge the importance of the variation in the long-term component for the overall expected

variation in return volatility by the variance ratio introduced in Equation (1.7). To facilitate

comparison across models, we focus on the monthly variation of volatility. That is, for all

models we denote the monthly aggregate volatility by σXM . For models with monthly long-term

components, we have that τXM = τXt . For models with daily or weekly long-term components,

τXM refers to monthly aggregates of the daily/weekly long-term component. We then calculate

VR(X) = Var(log(τXM ))/Var(log(σXM )), where X indicates that the variance ratio is based on

a specific explanatory variable. As Table 1.4 shows, the models with daily τt achieve much

higher variance ratios than the models with a weekly/monthly long-term component. Among

the models with daily long-term components, the variance ratio of 76.14% for the VIX-based

model is by far the highest and implies that three quarters of the expected variation in return

volatility can be traced back to variation in the VIX. In Section 1.4.4 we will investigate whether

a high variance ratio necessarily translates into good OOS predictive performance.

Two explanatory variables

The GARCH-MIDAS setting allows us to include two or more explanatory variables in the long-

term component. Based on the results in the previous section, the VIX appears to be better

suited to capture daily movements in the long-term component than RVol(22) or the VRP. Since

the NFCI and, in particular, the macroeconomic variables capture lower frequency movements,

it is natural to estimate GARCH-MIDAS models with the VIX and one of those variables jointly

in the long-term component. This allows us to formally check whether the NFCI and the three

macroeconomic variables contain information that is complementary to the VIX. The long-term

22This behavior is also evident from Figure 1.11 in the Appendix which shows the evolution of the annualized
long-term components and the conditional volatilities.
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component for those models is given by:

log τi,t = m+ θVIX
KVIX∑

l=1

ϕl(1, w
VIX
2 )VIXi−l,t + θX

KX∑

l=1

ϕl(w
X
1 , w

X
2 )Xt−l.

Estimation results are presented in Table 1.5. Note that KVIX and KX are chosen as in Table 1.4.

For all models the estimation period is now determined by the availability of the VIX. When

controlling for the VIX, the θX parameter turns out to be significant for the NAI and housing

starts. Thus, macroeconomic variables appear to contain information that is complementary to

the one included in the VIX. However, none of the models that include two variables achieves a

higher VR than the model based on the VIX alone.

Table 1.5: Full sample estimation results: VIX combined with second explanatory variable.
α β γ m θX wX

1 wX
2 θVIX wVIX

2 KX LLH BIC VR(VIX, X)

Daily τt

VIX 0.000 0.853*** 0.095*** −2.129*** — — — 1.524*** 3.470** 3 −9138 18339 76.14
(0.010) (0.021) (0.015) (0.086) (0.067) (1.371)

Weekly τt

NFCI 0.000 0.852*** 0.099*** −1.993*** 0.118 1 2.252 1.451*** 3.617** 52 −9110 18300 75.84
(0.010) (0.020) (0.016) (0.143) (0.085) (4.152) (0.093) (1.518)

Monthly τt

NAI 0.000 0.870*** 0.092*** −2.032*** −0.108** 1 119.372 1.431*** 3.775** 36 −9133 18346 75.06
(0.009) (0.018) (0.015) (0.100) (0.046) (326.330) (0.079) (1.594)

∆ IP 0.000 0.876*** 0.084*** −2.133*** −0.043 1 8.960 1.528*** 3.806** 36 −9139 18357 75.91
(0.009) (0.018) (0.014) (0.096) (0.089) (34.803) (0.072) (1.520)

∆ Housing 0.000 0.863*** 0.097*** −2.035*** −0.061** 1.001 2.139 1.446*** 3.605** 36 −9135 18359 74.99
(0.009) (0.019) (0.015) (0.094) (0.024) (0.743) (2.462) (0.074) (1.503)

Notes: Estimation results for GARCH-MIDAS models are reported in which the daily VIX is combined with
the low-frequency variables reported in Table 1.4—that is, the NFCI, NAI, and changes in industrial production
and housing starts. The estimates are based on daily return data from 1990:M1 to 2018:M4. For comparison,
the estimation results using only the VIX as a covariate from Table 1.4 are included in the first row. All
parameters with a superscript X relate to the second explanatory variable. KVIX is always equal to three.
Bollerslev-Wooldridge standard errors are reported in parentheses where significance at the 1, 5, 10 % level is
indicated by ***, **, and *. LLF is the value of the maximized log-likelihood function and BIC is the Bayesian
Information Criterion. The variance ratio VR(V IX,X) = Var(log(τV IX,XM ))/Var(log(σV IX,XM )) is calculated
on monthly aggregates. Estimates for µ are omitted.

More than two explanatory variables

As an extension to Subsection 1.4.2, one could employ more than two covariates. We ex-

perimented with combining three variables in the long-term component but found no further

improvements in terms of model fit. Moreover, GARCH-MIDAS models including more than

two variables in the long-term component are difficult to estimate because the likelihood is

relatively insensitive with respect to changes in the weighting parameters. Instead, in Subsec-

tion 1.4.4 on OOS forecasting, we will aggregate the information in the different variables by

simply calculating the average forecast across all GARCH-MIDAS models with one explanatory
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variable.

1.4.3 Real-time estimates

In the following, we make use of vintage data. This allows for a realistic evaluation of the

GARCH-MIDAS models’ ability to describe the behavior of long-term financial volatility in real

time.23 In order to compare full-sample estimates of the long-term component with correspond-

ing real-time estimates, we reestimate all GARCH-MIDAS models from Table 1.4 on a daily

basis. Estimation is performed on a rolling window. For each explanatory variable, the window

size is determined by the length of the first estimation period ending in 2009:M12. The period

2010:M1 to 2018:M4 will be used as the OOS period for the forecast evaluation in Section 1.4.4.

In order to ensure that our estimates of the long-term component are feasible in real time, we

employ vintage data that is available for the NFCI, the NAI, IP, and housing starts from the

ALFRED database hosted by the St. Louis Fed.24 When using real-time data, the long-term

component no longer changes its value at the beginning of a week/month but whenever a new

data release becomes available.

Figure 1.6 shows the estimated long-term components based on the full sample estimates

(as reported in Table 1.4, dotted lines) and based on the rolling window real-time estimates

(solid lines). For RVol(22), the VIX, and the VRP the long-term component estimates in the

full sample might differ from the rolling window estimates, because they are based on distinct

sample periods (rolling window vs. full sample). For the NFCI, the NAI, IP, and housing starts,

the two long-term components are not only based on distinct sample periods but also on different

data vintages (real-time vs. final). Figure 1.6 shows that for RVol(22), the VIX, and the VRP

the rolling window estimate of the long-term component is often somewhat higher than the

full-sample estimate. For the macroeconomic variables the real-time estimates of the long-term

component are occasionally below or above the full-sample estimates. However, the average

absolute differences are quite sizable. For example, the average absolute difference between the

full-sample and real-time estimates based on industrial production is 6.80%. To put this into

context, for industrial production the mean absolute revision from the initial release to the latest

available data was 2.18% during the 1965:Q3 to 2006:Q4 period (Croushore, 2011). Among the

variables considered in Croushore (2011), this is the highest value (even higher than for GDP).

23To the best of our knowledge, Lindblad (2017) appears to be the only other paper that makes use of real-time
data when estimating GARCH-MIDAS models.

24For more details on real-time data availability see Appendix 1.4.3.
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Similar numbers in terms of changes in the long-term component are obtained for the other

variables: 9.35% for housing starts, 4.78% for the NAI, and 2.68% for the NFCI. In summary,

these figures highlight the importance of using real-time instead of final data releases for the

macroeconomic variables for a realistic forecast evaluation.

Figure 1.6: Comparison of rolling window and full sample long-term components.
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Notes: For each explanatory variable, the monthly averaged long-term volatility components,
√
τt, are depicted

for the period 2010:M1 to the end of 2018:M1, the last month of issuing forecasts and, hence, real-time estimation.
The long-term component obtained from the full sample estimates is given in green (dotted). Real-time estimates
of the most recently fitted

√
τt are depicted in red (solid). Volatilities are presented on an annualized scale.

1.4.4 Forecast evaluation

Finally, we evaluate the predictive performance of the GARCH-MIDAS models in the 2010:M1

to 2018:M4 OOS period. As before, we consider cumulative volatility forecasts for horizons up

to three months. When computing the forecasts, we keep the long-term component fixed at its

current level. Volatility forecasts are based on the real-time rolling window parameter estimates

as obtained in Subsection 1.4.3 (i.e., we apply a “rolling (forecasting) scheme”).

Competitor models

For forecast comparison, we use an extensive range of competitor models which are either ex-

tensions of the simple GARCH specification or which model the realized variance directly.

First, we consider the simple one-component GARCH(1,1) model and a no-change (or random-
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walk) forecast which simply scales the realized variance on the last day of period t to the

appropriate horizon: h1:k,t+s|t = k · RVn,t. Second, we use the MS-GARCH-TVI model that

we employed in Subsection 1.3.3. The only difference is that we now use a GJR-GARCH

specification in both regimes. In addition, we use an MS-GARCH model that consists of two

GARCH equations with individual intercepts and individual ARCH and GARCH parameters.

We incorporate asymmetric effects in the low volatility regime only.25 We refer to this model

as MS-GARCH with time-varying coefficients (MS-GARCH-TVC). Further, we use the HEAVY

model by Shephard and Sheppard (2010) and the Realized GARCH model by Hansen, Huang,

and Shek (2012). The specifications of the HEAVY and the Realized GARCH models employ

a measure of pure intraday realized variance, RV int
i,t (defined as the sum of squared intraday

returns). Third, we consider two specifications that directly model the realized variance, RVi,t,

(including squared overnight returns) and allow us to compute direct (as compared to iterated)

volatility forecasts. We employ the HAR model of Corsi (2009) and the HAR model with leverage

effect proposed in Corsi and Renò (2012).

For more details on the exact specification of the competitor models, their estimation and

volatility forecasting see Appendix 1.6.7.26 For the OOS forecast evaluation all competitor

models are reestimated on a rolling window basis.

Forecast error statistics and model confidence set

As in Subsection 1.3.3, we base the comparison of the forecast performance of the different

models on the QLIKE loss. Table 1.6 reports the average QLIKE loss for each model and

forecast horizons of one day (1d), two weeks (2w), one month (1m), two months (2m), and three

months (3m). We use the MCS approach to test whether there is one or several models that

significantly outperform the others. As in Subsection 1.3.3, we rely on 90% model confidence

sets.27

MCS for full OOS period. Blue areas in Table 1.6 indicate that for the corresponding forecast

horizon the respective model is included in the final set, MMCS . For example, for a forecast

horizon of one day the only model that is included in the final MCS is the HAR model with

25Initially, we estimated a GJR-GARCH specification in both regimes. However, it turned out that the asymmetry
term was only significant in the component which represents the low volatility regime. In addition, we select
this specification because it is much more stable in the rolling window estimation than the one with two
GJR-GARCH regimes.

26Table 1.11 in the Appendix shows the full sample parameter estimates for the competitor models.
27As a robustness check, we present the corresponding results for a 95% MCS in Appendix 1.6.8. Essentially all

findings remain unaffected.
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Table 1.6: QLIKE losses and model confidence sets: full out-of-sample period.

1d 2w 1m 2m 3m

GARCH-MIDAS

RVol(22) 0.306 0.246 0.271 0.387 0.428
VIX 0.275 0.215 0.240 0.359 0.414
VRP 0.291 0.227 0.260 0.384 0.430
NFCI 0.324 0.248 0.264 0.363 0.393
NAI 0.343 0.266 0.283 0.391 0.424
∆ IP 0.345 0.267 0.285 0.395 0.438
∆ Housing 0.328 0.252 0.264 0.347 0.380

VIX and NFCI 0.274 0.213 0.236 0.349 0.399
VIX and NAI 0.275 0.215 0.241 0.358 0.409
VIX and ∆ IP 0.274 0.214 0.239 0.355 0.409
VIX and ∆ Housing 0.275 0.218 0.243 0.351 0.405
Avg. 0.317 0.246 0.264 0.364 0.400

Competitor models

GARCH 0.342 0.263 0.282 0.395 0.434
MS-GARCH-TVI 0.362 0.292 0.315 0.426 0.488
MS-GARCH-TVC 0.355 0.271 0.283 0.387 0.421

RealGARCH 0.260 0.206 0.233 0.356 0.390
HEAVY 0.277 0.238 0.299 0.539 0.662
HAR 0.254 0.210 0.243 0.368 0.419
HAR (lev.) 0.238 0.207 0.245 0.371 0.419

No-change 0.358 0.498 0.636 1.157 1.292

Notes: Numbers reported are the average out-of-sample QLIKE
losses for each model for one-day- (1d), two-week- (2w), one-month-
(1m), two-month- (2m) and three-month-ahead (3m) variance fore-
casts. Bold entries indicate the model with the lowest average QLIKE
loss per horizon. Blue-shaded numbers indicate that the respective
model is included in the 90% model confidence set. The average fore-
cast (avg.) is the mean forecast across all GARCH-MIDAS models
employing one explanatory variable. The out-of-sample evaluation
period spreads 2010:M1 to 2018:M4.
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leverage. Thus, at the very short horizon of one day the HAR with leverage dominates all

other models. At forecast horizons of two weeks the MCS includes both HAR models, the

Realized GARCH, and GARCH-MIDAS specifications that either include the VIX alone or in

combination with the NFCI/NAI/IP. At the one-month horizon only the Realized GARCH and

the GARCH-MIDAS that combines the VIX and the NFCI are included. The picture changes

at horizons of two and three months. At these horizons GARCH-MIDAS models that either

combine the VIX with the NFCI/housing starts or models based on housing starts alone are

included in the MCS. These results illustrate that the performance of a GARCH-MIDAS model

strongly depends on choosing the best horizon-specific explanatory variable. In summary, the

HAR model with leverage and the Realized GARCH achieve the lowest QLIKE at forecast

horizons of one day and two weeks/one month, respectively. In contrast, the GARCH-MIDAS

model based on housing starts performs best at horizons of two and three months ahead (see

the bold entries).

MCS for volatility regimes. In addition to the results for the full OOS period, we also provide

MCS for subsamples of low, normal, and high volatility. We define these regimes in the same way

as outlined in Subsection 1.3.3. Quantiles are now computed based on the empirical distribution

of full-sample realized variances. In total, we have 764 observations in the low, 961 in the normal,

and 304 in the high regime. Table 1.7 presents the regime-specific analysis.

Interestingly, in the low-volatility regime the Realized GARCH and the two HAR models are

the only models in the MCS for short horizons of one day and two weeks. For a forecast horizon of

one month, various GARCH-MIDAS models are included in the MCS. For three months ahead,

two GARCH-MIDAS specifications based on the VIX are the only models in the MCS. The

results for the normal-volatility regime are even more in favor of the GARCH-MIDAS models.

At essentially all horizons GARCH-MIDAS models based on the VIX are included in the MCS.

As for the full OOS period, the GARCH-MIDAS based on housing starts is the only model

in the three-month MCS. Finally, in the high volatility regime and for horizons of two weeks

and one month, essentially all models are included in the MCS. This result may be driven by

the fact that the intermediate-term forecast performance of all models substantially deteriorates

during the high-volatility regime and, therefore, it becomes increasingly difficult to distinguish

between models. Nevertheless, even in the high-volatility regime the GARCH-MIDAS models

are very competitive for longer forecast horizons. Specifically, GARCH-MIDAS models based

on the NFCI and housing starts are included in the MCS.
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In summary, we find that the informative content of the explanatory variables depends on the

volatility regime. While in low- and normal- volatility regimes GARCH-MIDAS models based

on the VIX or the VIX combined with another variable perform well, in high-volatility regimes

models purely based on macroeconomic variables are very competitive. Because recessions typ-

ically coincide with regimes of high volatility, our results are consistent with the finding from

the previous literature that macroeconomic variables are particularly useful to predict financial

volatility during the onset of recessions (e.g., Paye, 2012). At the longest forecast horizons,

housing starts and the NFCI become more and more important. Among the competitor models

it is again the Realized GARCH which performs very well across volatility regimes.

Mincer-Zarnowitz Regressions

Lastly, we consider the outcome of MZ regressions. As Table 1.8 shows, for forecast horizons of

one day and two weeks the highest R2 is achieved by GARCH-MIDAS type models. This is in

sharp contrast to the results from the previous section. However, for longer forecast horizons

(1m–3m) the winning models according to the R2 are exactly the same as when using the MCS

approach. Thus, at forecast horizons at which the correct modeling of the long-term component

pays off, the R2 selects the same model as the MCS. Again, the last three columns of Table 1.8

show that the highest R2s are obtained in the high-volatility regime.28

1.5 Conclusion

We introduce and discuss the properties of a class of multiplicative volatility models. This

class of models includes the GARCH-MIDAS but also a variant of the MS-GARCH. We show

that multiplicative volatility models can generate an autocorrelation structure in the conditional

variance that mimics the long-memory-type behavior that is often observed for realized variances.

We also argue that the R2 of a MZ regression can be a misleading measure of forecast accuracy

across volatility regimes because the R2 will be the highest in the regime with the highest

squared error loss. In a Monte-Carlo simulation, we investigate the properties of the QMLE of

the GARCH-MIDAS model and show that the estimator is unbiased and that the Wang and

Ghysels (2015) asymptotic standard errors are valid in the presence of exogenous explanatory

variables. We also reveal that forecast performance is relatively insensitive with respect to

28For brevity, we now focus on a forecast horizon of one month.
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moderate misspecification of the explanatory variable and the true lag length.

In an empirical application to S&P 500 stock returns, we compare the forecast performance of

the GARCH-MIDAS model with a wide range of competitor models. As expected, relative fore-

cast performance depends on the forecast horizon. Among all models, the HAR with leverage

performs best at a one-day horizon. For longer forecast horizons the Realized GARCH is very

competitive and performs best at forecast horizons of two weeks and one month. The perfor-

mance of GARCH-MIDAS models depends on the choice of the explanatory variable. The best

GARCH-MIDAS specifications generate volatility forecasts that are comparable to or improve

upon the forecasts from the Realized GARCH. Specifically, GARCH-MIDAS specifications that

combine the VIX with the NFCI are included in the MCS for forecast horizons of two weeks up

to two months. Most importantly, the GARCH-MIDAS based on housing starts achieves the

lowest QLIKE at forecast horizons of two and three months ahead. Thus, our results are use-

ful for selecting the appropriate horizon-specific explanatory variable and suggest that models

based on low-frequency information can be more useful than models that exploit high-frequency

intraday data.
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Table 1.8: Mincer-Zarnowitz R2.

Panel A: Full out-of-sample period Panel B: Volatility regimes

low normal high
1d 2w 1m 2m 3m 1m 1m 1m

GARCH-MIDAS

RVol(22) 0.312 0.367 0.340 0.086 0.008 0.037 0.061 0.314
VIX 0.347 0.346 0.321 0.145 0.047 0.071 0.099 0.297
VRP 0.343 0.404 0.354 0.128 0.030 0.041 0.083 0.324
NFCI 0.295 0.375 0.354 0.146 0.062 0.030 0.073 0.341
NAI 0.294 0.373 0.352 0.143 0.062 0.025 0.071 0.339
∆ IP 0.296 0.374 0.348 0.124 0.029 0.017 0.065 0.341
∆ Housing 0.293 0.372 0.355 0.168 0.102 0.031 0.077 0.334

VIX and NFCI 0.353 0.359 0.333 0.147 0.050 0.072 0.100 0.302
VIX and NAI 0.348 0.349 0.323 0.146 0.048 0.067 0.099 0.297
VIX and ∆ IP 0.348 0.347 0.321 0.145 0.047 0.070 0.099 0.296
VIX and ∆ Housing 0.347 0.346 0.321 0.153 0.056 0.064 0.099 0.295
Avg. 0.322 0.380 0.357 0.149 0.057 0.036 0.078 0.341

Competitor models

GARCH 0.288 0.373 0.353 0.138 0.051 0.027 0.068 0.343
MS-GARCH-TVI 0.316 0.357 0.288 0.118 0.016 0.005 0.015 0.339
MS-GARCH-TVC 0.311 0.390 0.368 0.142 0.052 0.030 0.066 0.374

RealGARCH 0.318 0.394 0.377 0.146 0.070 0.076 0.112 0.303
HEAVY 0.297 0.322 0.272 0.061 0.004 0.028 0.084 0.173
HAR 0.312 0.394 0.374 0.125 0.052 0.058 0.087 0.315
HAR (lev.) 0.342 0.392 0.366 0.122 0.053 0.056 0.088 0.303

No-change 0.254 0.227 0.189 0.060 0.020 0.046 0.044 0.088

Notes: We report coefficients of determination derived from MZ regressions. Bold entries indicate the models
with the highest R2 for a specific forecast horizon. The last three columns correspond to the forecast evaluation
divided in three volatility regimes; forecasts are issued at a day for which the daily realized volatility is below
the empirical 25% quantile (low regime), between the 25% and 75% quantile (normal regime), or above the
75% quantile (high regime). The out-of-sample evaluation period spreads 2010:M1 to 2018:M4.
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1.6 Appendix

1.6.1 Proofs

Proof of Proposition 1.1. The proof follows directly by applying the mutual independence of gi,t,

τt and Zi,t and by noting that Assumption 1.3 implies E[τ2
t ]/E[τt]

2 > 1 if τt is non-constant.

Proof of Proposition 1.2. First, note that under Assumptions 1.1, 1.2, and 1.3 the covariance

Cov(ε2
t , ε

2
t−k) exists for every k ∈ N and is time-invariant. In the proof, we use that τt and gt

are independent covariance stationary processes and that Zt are i.i.d. innovations.

ρMG
k (ε2) =

Cov(ε2
t , ε

2
t−k)√

Var(ε2
t )
√

Var(ε2
t−k)

=
E[τtτt−k]E[gtZ

2
t gt−kZ

2
t−k]−E[τt]E[τt−k]

Var(ε2
t )

=
E[τtτt−k]E[gtZ

2
t gt−kZ

2
t−k]−E[τtτt−k] + E[τtτt−k]−E[τt]E[τt−k]

Var(ε2
t )

=
E[τtτt−k]−E[τt]

2

Var(ε2
t )

+

(
E[gtZ

2
t gt−kZ

2
t−k]−E[gt]E[gt−k]

)
E[τtτt−k]

Var(ε2
t )

=
Cov(τt, τt−k)

Var(ε2
t )

+
Cov(gtZ

2
t , gt−kZ

2
t−k)(Cov(τt, τt−k) + E[τ2

t ])

Var(ε2
t )

= ρτk
Var(τt)

Var(ε2
t )

+ ρGAk

(
ρτkVar(τt) + E[τt]

2
)
Var(gtZ

2
t )

Var(ε2
t )

Proof of Proposition 1.3. Employing the assumptions used in the proof of Proposition 1.2 above,

we conclude similarly:

ρMG
k (σ2) =

Cov(σ2
t , σ

2
t−k)√

Var(σ2
t )
√

Var(σ2
t−k)

=
E[τtτt−k]E[gtgt−k]−E[τt]E[τt−k]

Var(σ2
t )

=
E[τtτt−k]E[gtgt−k]−E[τtτt−k] + E[τtτt−k]−E[τt]E[τt−k]

Var(σ2
t )

=
E[τtτt−k]−E[τt]

2

Var(σ2
t )

+

(
E[gtgt−k]−E[gt]E[gt−k]

)
E[τtτt−k]

Var(σ2
t )

=
Cov(τt, τt−k)

Var(σ2
t )

+
Cov(gt, gt−k)(Cov(τt, τt−k) + E[τ2

t ])

Var(σ2
t )

= ρτk
Var(τt)

Var(σ2
t )

+ ρgk

(
ρτkVar(τt) + E[τt]

2
)
Var(gt)

Var(σ2
t )

.
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Proof of Proposition 1.4. Equation (1.4) follows directly from the mutual independence of gi,t,

τt, and Zi,t. Next, Equation (1.4) is derived as

E[g2
k,t+1|t] = E

[(
1 + (α+ γ/2 + β)k−1(g1,t+1|t − 1)

)2
]

= 1 + 2(α+ γ/2 + β)k−1 (E[g1,t+1|t]− 1)
︸ ︷︷ ︸

=0

+(α+ γ/2 + β)2(k−1)(E[g2
1,t+1|t]− 1)

= 1 + (α+ γ/2 + β)2(k−1)(E[g2
1,t+1]− 1).

In the last step, we use that g1,t+1|t = g1,t+1. Now, consider the first property: As k → ∞,

E[g2
k,t+1|t] decreases monotonically towards one. Because the numerator decreases while the de-

nominator is constant, R2
k is decreasing in k. The limit follows readily from limk→∞E[g2

k,t+1|t] =

1.

For deriving the second property, note that Equation (1.4) is a rational function of linear

polynomials in E[τ2
t+1] with negative intercepts and positive gradients. By taking the first

derivative, the signs of intercepts and gradients imply the rational function in E[τ2
t+1] to be

strictly increasing.

Proof of Lemma 1.1. Using Equation (1.3), we obtain

R2
1 =

Var(gtτt)

Var(ε2
t )

=
E[g2

t ]E[τ2
t ]−E[τt]

2

E[g2
t ]E[τ2

t ]κ−E[τt]2

=
(1− (α+ γ/2 + β)2)E[τ2

t ]− (1− (α+ γ/2)2κ− 2(α+ γ/2)β − β2)E[τt]
2

(1− (α+ γ/2 + β)2)E[τ2
t ]κ− (1− (α+ γ/2)2κ− 2(α+ γ/2)β − β2)E[τt]2

.
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1.6.2 Additional tables

Table 1.9: Monte-Carlo parameter estimates of MS-GARCH-TVI.

ω1 ω2 α β p1,1 p2,2

Panel A: Zn,i,t normally distributed

Monthly τt 0.029 0.050 0.057 0.910 0.997 0.995
[0.024,0.034] [0.038,0.067] [0.053,0.062] [0.902,0.917] [0.992,0.999] [0.982,0.998]

Daily τt 0.020 0.038 0.058 0.912 0.993 0.991
[0.016,0.024] [0.029,0.051] [0.054,0.063] [0.906,0.919] [0.986,0.997] [0.978,0.996]

Panel B: Zn,i,t student-t distributed

Monthly τt 0.028 0.066 0.052 0.914 0.993 0.980
[0.021,0.035] [0.050,0.088] [0.045,0.058] [0.904,0.925] [0.984,0.997] [0.941,0.994]

Daily τt 0.019 0.050 0.053 0.917 0.990 0.978
[0.015,0.024] [0.038,0.066] [0.046,0.059] [0.907,0.925] [0.980,0.995] [0.946,0.990]

Notes: The table reports the median MS-GARCH-TVI parameter estimates and in brackets the
corresponding inter-quartile ranges across 2,000 Monte-Carlo simulations in which the true data-
generating process is a GARCH-MIDAS model, see description of Table 1.1.

Table 1.10: Summary statistics of stock market returns and explanatory variables.

Variable Freq. Start Obs. Min. Max. Mean Median Sd. Skew. Kurt.

Stock market data
S&P 500 returns d 1971 11938 -22.90 10.96 0.03 0.04 1.06 -1.04 28.81√

RV d 2000 4600 0.13 8.84 0.87 0.72 0.60 3.22 21.93
RVol(22) d 1989 7390 0.23 5.54 0.95 0.80 0.56 2.97 17.46

Explanatory variables
VIX d 1990 7135 0.58 5.09 1.22 1.10 0.49 2.08 10.63
NFCI w 1973 2470 -0.99 4.67 0.00 -0.33 1.00 1.94 6.53
NAI m 1971 568 -5.16 2.76 -0.00 0.06 1.00 -1.21 6.96
∆ IP m 1971 568 -4.43 2.38 0.18 0.22 0.72 -1.22 8.82
∆ Housing m 1971 568 -30.67 25.67 -0.07 -0.19 8.03 -0.03 3.77

Notes: The table presents summary statistics for the different variables, whereby the column “Freq.” in-
dicates whether the data is observed on a daily (d), weekly (w) or monthly (m) frequency. The column
“Start” indicates the year of the first observation for each variable. The data end in 2018:M4. The re-
ported statistics include the number of observations (Obs.), the minimum (Min.) and maximum (Max.), the
mean and median, the standard deviation (Sd.), the skewness (Skew.) and the kurtosis (Kurt.). We define

RVol(22)i,t =
√

1/22
∑21
j=0 r

2
i−j,t. Changes in industrial production and housing starts are measured in month-

over-month log differences, i.e. ∆Xt = 100 · (log(Xt)− log(Xt−1)).
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1.6.3 Additional figures

Figure 1.7: Histograms of standardized GARCH-MIDAS parameter estimates.
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Notes: Standardized empirical distributions of parameter estimates across 2,000 simulations are reported.
On the left, the underlying data is generated by a GARCH-MIDAS model with monthly varying τt, on the
right with daily varying τt, see Section 1.4 for further details. The standard normal distribution is depicted
in black.
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Figure 1.8: Time series of explanatory variables.
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Notes: Daily financial data for the 1990:M1 to 2018:M4 period and macroeconomic data for the
1971:M1 to 2018:M4 period. See Section 4.1 for definitions and Table 1.10 for descriptive statistics of
those variables.

Figure 1.9: Selected weighting schemes for different lag lengths.
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lengths K compared to those discussed in our empirical analysis.
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Figure 1.10: Weighting schemes for different explanatory variables.
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Notes: For each explanatory variable, the estimated Beta weighting scheme (see Equation (9)) based on full
sample estimates is depicted. For all variables except housing starts, we impose the restriction w1 = 1. The
corresponding parameters are reported in Table 1.4.

Figure 1.11: Estimated monthly conditional volatility components.
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Notes: The figure shows the monthly long-run volatility components
√
τM (blue, solid) and the monthly con-

ditional volatilities
√
gMτM (red, dot-dashed) for all GARCH-MIDAS models. To ensure comparability across

the seven models, all figures cover the 2000:M1 to 2018:M4 period. Circles correspond to realized volatilities.
Volatility is measured on an annualized scale.
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1.6.4 Simulations: Violation of Assumption 3

In the following we present the results of two additional simulations. The simulations cover

scenarios in which Assumption 1.3 is violated. In this section, we consider daily explanatory

variables (i.e. we set It = 1) because empirically a violation of Assumption 1.3 is more likely

to occur for daily explanatory variables than for low-frequency explanatory variables. Both

simulations show that even if Assumption 1.3 is violated, our theoretical results still apply.

First, we consider a daily explanatory variable, Xt, that is correlated with the daily innovations

Zt.
29 Recall that in our simulation the daily innovations are given by

Zt =
1√
N

N∑

i=1

Zn,t,

i.e. Zt
i.i.d.∼ N (0, 1). As before, we model Xt as an AR(1) process

Xt = φXt−1 + ξt

but the innovation is now given by

ξt/σξ = ρξ,ZZt +
√

1− ρ2
ξ,Z ξ̃t,

where ξ̃t
i.i.d.∼ N (0, 1), independent of Zt and ρξ,Z ∈ [−1, 1]. In this setting, the correlation

between the daily innovations Zt and ξt is ρξ,Z . We set ρξ,Z = −0.8. The negative correlation

between innovations to returns and innovations to Xt mimic the fact that changes in returns

and daily measures of risk (such as the VIX index) are typically negatively correlated. Under

our choice of φ = 0.98, the contemporaneous correlation between Zt and Xt is -0.16. Zt is also

correlated with future Xt but uncorrelated with past Xt.

In Table 1.12, Panel A shows that on average the QML estimates are still close to the true

parameter values and the asymptotic standard errors are accurate. Most importantly, Panel A

of Figure 1.12 illustrates that our results regarding the R2 of a MZ regression still hold when

Xt and Zt are correlated. Panel A of Table 1.13 shows the corresponding MCS inclusion rates.

Clearly, the correctly specified GARCH-MIDAS model with K = 264 and the GARCH-MIDAS

with misspecified lag-length still do very well. In contrast, for forecast horizons of up to two

29Since It = 1, we can drop the index i.
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months the forecast performance of the MS-GARCH-TVI appears to deteriorate considerably.

Second, we consider the GARCH-MIDAS-RV model, i.e. we choose

Xt = RVol(22)t =

√√√√ 1

22

21∑

j=0

r2
t−j .

This choice corresponds to the GARCH-MIDAS-RV specification that is estimated in the em-

pirical application in Section 4. Again, Zt is correlated with the contemporaneous and future

Xt but uncorrelated with lagged Xt. The results for this specification are presented in Panels

B of Table 1.12, Figure 1.12 and Table 1.13. Again, our previous findings regarding the MZ R2

and the MCS inclusion rates are confirmed.

Table 1.12: Monte-Carlo parameter estimates: Xt and Zt dependent.

α β m θ w2 κ− 3

Panel A: innovations to Xt correlated with Zt

GARCH-MIDAS (264) 0.000 -0.003 -0.001 0.008 0.890 -0.008
{0.008} {0.014} {0.064} {0.075} {5.675}
(0.008) (0.014) (0.063) (0.075) (7.741)

GARCH-MIDAS (66) 0.000 -0.003 0.002 -0.055 -3.185 -0.006

GARCH 0.003 0.003 0.034 — — 0.017

Panel B: Xt given by RVol(22)t

GARCH-MIDAS (264) -0.043 -0.034 0.370 -0.533 0.629 0.025
{0.013} {0.098} {0.599} {0.589} {2.432}
(0.013) (0.079) (0.329) (0.321) (4.555)

GARCH-MIDAS (66) -0.045 -0.026 1.067 -1.230 1.823 0.032

GARCH -0.052 0.087 1.373 — — 0.048

Notes: Modified version of Panel A in Table 1.1 for the case of a daily varying
long-term component but Assumption 1.3 being violated. In Panel A, the true
parameters are the same as in Table 1.1. However, the innovations ξt in the AR(1)

process of Xt are correlated with Zt, ξt/σξ = ρξ,ZZt+
√

1− ρ2
ξ,Z ξ̃t, ξ̃t

i.i.d.∼ N (0, 1).

In Panel B, Assumption 3 is violated by employing a rolling window of past realized

volatilities as a covariate, i.e. Xt = RVol(22)t =
√

1
22

∑21
j=0 r

2
t−j . In this case, the

GARCH-MIDAS parameters are given by µ = 0, α = 0.1, β = 0.8, K = 264,
m = −1, θ = 1.6, and w2 = 2.1.
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Table 1.13: Model confidence set inclusion rates: Xt and Zt dependent.

1d 2w 1m 2m 3m

Panel A: innovations to Xt correlated with Zt

GARCH-MIDAS (264) 0.953 0.896 0.867 0.802 0.755
GARCH-MIDAS (66) 0.848 0.786 0.832 0.882 0.874

MS-GARCH-TVI 0.362 0.100 0.135 0.471 0.757
GARCH 0.259 0.038 0.048 0.251 0.496

Panel B: Xt given by RVol(22)t

GARCH-MIDAS (264) 0.932 0.892 0.887 0.878 0.857
GARCH-MIDAS (66) 0.371 0.140 0.097 0.197 0.301

MS-GARCH-TVI 0.743 0.654 0.640 0.757 0.827
GARCH 0.152 0.048 0.046 0.098 0.138

Notes: Modified version of the upper panel of Table 1.2 for two
cases in which Xt depends on (past values of) Zt. See notes of
Table 1.12 for a detailed description of these two scenarios.

Figure 1.12: MZ R2
1:k—evaluation based on RV1:k,t+1—Xt and Zt dependent.
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Notes: Modified version of Figure 1.5 for two scenarios in which Xt depends on (past values of) Zt. See
notes of Table 1.12 for a detailed description of these two scenarios.
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1.6.5 Simulation with diffusion limit

In this section, we present simulation results for a situation in which the short-term discrete-time

GARCH component (Equation (1.2)) has been replaced by its diffusion limit (see Nelson, 1990).

In accordance with Andersen and Bollerslev (1998, pp. 894–895 and footnote 18 in the main

text), we simulate the continuous-time data generating process using an Euler discretization

scheme:

εs+∆,t = logPs+∆,t − logPs,t =
√
τtg̃s+∆,t∆WP,s,t

with

g̃s+∆,t = θ̃∆ + g̃s,t

(
1− θ̃∆ +

√
2θ̃λ̃∆Wg̃,s,t

)
,

where WP,s,t and Wg̃,s,t are independent standard normal variables and the unit-variance

GARCH-consistent parameters are given by

θ̃ = − log(α+ β)

and

λ̃ = 2 log(α+ β)2 ·
{((

1− (α+ β)2
)
· (1− β)2) · α−1 · (1− β · (α+ β))−1

)

+ 6 · log(α+ β) + 2 · log(α+ β)2 + 4 · (1− α− β)

}−1

.

We choose ∆ such that we obtain 20 price changes per five-minute interval.

Tables 1.14 and 1.15 are the equivalent of Tables 1.1 and 1.2. Figures 1.13 and 1.14 are the

equivalent of Figures 1.4 and 1.5.

As expected, the parameter estimates in Table 1.14 are close to the ones in Table 1.1. Only

in the case of a monthly τt do we observe an increase in bias for w2. Moreover, we note that

the excess kurtosis is considerably higher, even in comparison to our results regarding Student’s

t distributed intraday returns. Figure 1.13 makes it clear that we observe the same effect as in

Figure 4. The same holds for Figure 1.14 and the corresponding Figure 1.5 in the main text.

Likewise, the MCS inclusion rates reported in Table 1.15 confirm the overall results of Table 1.2

qualitatively. However, the MS-GARCH-TVI and GARCH models are less often excluded from

the MCS.
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Table 1.14: Monte-Carlo parameter estimates with GARCH diffusion.

α β m θ w2 κ− 3

Monthly τt GARCH-MIDAS (36) -0.000 -0.007 -0.010 0.037 3.905 0.404
GARCH-MIDAS (12) -0.000 -0.006 -0.009 -0.029 0.396 0.406

GARCH-MIDAS (36, X̃) -0.000 -0.006 -0.009 -0.001 1.476 0.406

GARCH-MIDAS (12, X̃) -0.000 -0.005 -0.008 -0.076 -0.818 0.407

GARCH -0.000 0.001 0.005 — — 0.421

Daily τt M-GARCH (264) -0.000 -0.006 -0.005 0.010 1.008 0.410
GARCH-MIDAS (66) -0.000 -0.005 -0.003 -0.050 -3.281 0.412

GARCH-MIDAS (264, X̃) -0.000 -0.006 -0.005 0.003 0.369 0.411

GARCH-MIDAS (66, X̃) 0.000 -0.005 -0.002 -0.061 -3.448 0.414

GARCH 0.003 0.001 0.030 — — 0.442

Notes: Modified version of the upper panel of Table 1.1. The only difference is that the
short-term GARCH component is replaced by a consistent diffusion limit.

Table 1.15: Model confidence set inclusion rates with GARCH diffusion.

1d 2w 1m 2m 3m

Monthly τt GARCH-MIDAS (36) 0.919 0.864 0.845 0.823 0.811
GARCH-MIDAS (12) 0.918 0.873 0.854 0.846 0.837

GARCH-MIDAS (36, X̃) 0.874 0.784 0.757 0.742 0.720

M-GARCH (12, X̃) 0.852 0.784 0.746 0.734 0.715

MS-GARCH-TVI 0.875 0.842 0.815 0.775 0.744
GARCH 0.771 0.621 0.571 0.495 0.477

Daily τt GARCH-MIDAS (264) 0.966 0.944 0.927 0.860 0.809
GARCH-MIDAS (66) 0.935 0.915 0.916 0.907 0.880

GARCH-MIDAS (264, X̃) 0.932 0.875 0.833 0.801 0.764

GARCH-MIDAS (66, X̃) 0.905 0.860 0.841 0.848 0.855

MS-GARCH-TVI 0.741 0.615 0.561 0.699 0.839
GARCH 0.676 0.478 0.412 0.497 0.627

Notes: Modified version of the upper panel of Table 1.2. The only difference is that
the short-term GARCH component is replaced by a consistent diffusion limit.

Figure 1.13: MZ R2—monthly τt—evaluation based on ε2k,t+1 (with diffusion).
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Notes: Modified version of Figure 1.4. The only difference is that the short-term GARCH component is replaced
by a consistent diffusion limit.
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Figure 1.14: MZ R2—monthly and daily τt—evaluation based on RV1:k,t+1 (with diffusion).
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(b) Daily τt
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Notes: Modified version of Figure 1.5. The only difference is that the short-term GARCH component is replaced
by a consistent diffusion limit.
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1.6.6 Additional details about data

In this section, we provide detailed information on the data sources as well as on the data

vintages that have been used. Whenever possible, we use real-time vintage data sets as available

in ALFRED.30 For downloading the respective data sources, we have written the R-package

(Kleen, 2017).31 We make use of the following time series:

• Realized volatility based on five-minute intraday returns which are provided by the Real-

ized Library of the Oxford-Man Institute of Quantitative Finance (Heber et al., 2009).

http://realized.oxford-man.ox.ac.uk/data/download/

• The Cboe Volatility Index (VIX) as a measure of option-implied volatility of S&P 500

returns (published by the Chicago Board Options Exchange).

http://www.cboe.com/micro/vix/historical.aspx

• The Chicago Fed’s National Financial Conditions Index (NFCI), measuring the risk, liq-

uidity and leverage of money markets, debt and equity markets, and the traditional and

shadow banking system. The NFCI takes positive/negative values whenever financial con-

ditions are tighter/looser than on average.

https://alfred.stlouisfed.org/series?seid=NFCI

• The Chicago Fed National Activity Index (NAI) is a weighted average of 85 filtered and

standardized economic indicators. Whereas positive NAI values indicate an expanding

US-economy above its historical trend rate, negative values indicate the opposite.

https://alfred.stlouisfed.org/series?seid=CFNAI

• Industrial Production Index (IP), which is released by the Board of Governors of the

Federal Reserve System.

https://alfred.stlouisfed.org/series?seid=INDPRO

• New Privately Owned Housing Units Started (HOUST), which is published by the U.S.

Bureau of the Census.

https://alfred.stlouisfed.org/series?seid=HOUST

For the macroeconomic variables, we report the real-time data availability in Table 1.16.

30https://alfred.stlouisfed.org
31https://cran.r-project.org/package=alfred

http://realized.oxford-man.ox.ac.uk/data/download/
http://www.cboe.com/micro/vix/historical.aspx
https://alfred.stlouisfed.org/series?seid=NFCI
https://alfred.stlouisfed.org/series?seid=CFNAI
https://alfred.stlouisfed.org/series?seid=INDPRO
https://alfred.stlouisfed.org/series?seid=HOUST
https://alfred.stlouisfed.org
https://cran.r-project.org/package=alfred
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Table 1.16: Real-time data availability.

Variable Frequency ALFRED ID First Vintage Release

NFCI weekly NFCI 2011-05-25
NAI monthly CFNAI 2011-05-23

Industrial production monthly INDPRO 1973-12-14
Housing starts monthly HOUST 1973-12-18

Note: For each macroeconomic variable, we report the real-time data availability
in the ALFRED data base.

1.6.7 Description of benchmark models

For the empirical implementation, we use the statistical computing environment R (R Core

Team, 2018, R: A Language and Environment for Statistical Computing. https://www.r-

project.org/). In the following, we present some details regarding the specification and estima-

tion of the different models. For all benchmark models we have that It = 1 and, hence, the

index i can be dropped.

• Two Markov-Switching GARCH models (MS-GARCH-TVI and MS-GARCH-TVC):

Our specification follows (Haas, Mittnik, and Paolella, 2004). Returns are decomposed

as εt = σ̃Xt,tZt, where {Xt} is a Markov chain with a finite state space S = {1, 2}. The

conditional variance in state Xt = k is given by

σ̃2
k,t = ωk + (αk + γk1{Zt−1<0})ε

2
t−1 + βkσ̃

2
k,t−1.

We employ two different specifications which nest the baseline GJR-GARCH model:

1. An MS-GARCH called MS-GARCH-TVI (time-varying intercept) in which only the

intercept is driven by the Markov chain while the ARCH/GARCH parameters are

the same in both equations. In the simulations we set γk = 0.

2. An MS-GARCH called MS-GARCH-TVC (time-varying coefficients) which models

one regime as a GJR-GARCH and another regime as a standard GARCH(1,1), i.e.

γ2 = 0.32

For estimation, we use the R-package MSGARCH, v2.3, by Ardia et al. (2019). In both

specifications we assume the innovations to be normally distributed which was numerically

the most stable.

• As a generalization of the GARCH model, we employ the Realized GARCH model

32Modeling both regimes as a GJR-GARCH turned out to be numerically unstable.

https://www.r-project.org/
https://www.r-project.org/
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(Hansen, Huang, and Shek, 2012). Here, the conditional variance of the returns rt−µRG =
√
σRGt ZRGt , ZRGt

i.i.d.∼ D(0, 1) at day t is modeled as

log σRGt = ωRG + αRG logRV int
t−1 + βRG log σRGt−1

and the realized measure RV int
t as

logRV int
t = ξRG + δRG log σRGt + ηRG1 ZRGt + ηRG2

((
ZRGt

)2
− 1

)
+ uRGt

with uRGt
i.i.d.∼ N (0, λRG). The innovations ZRGt and uRGt are independent. The estimation

of the Realized GARCH model and the forecast computation by simulation is carried out

using the R-package rugarch (Ghalanos, 2018).

• The HEAVY model by Shephard and Sheppard (2010) is a joint model of returns and

some realized measure. We use the intraday realized variance, RV int
t , as the realized

measure. The conditional variance equation of daily returns is given by

Var(ε2
t |Ft−1) =: σHV Yt = ωHV Y1 + αHV Y1 RV int

t−1 + βHV Y1 σHV Yt−1

and the realized measure equation by

E[RV int
t |Ft−1] =: σRV

int

t = ωHV Y2 + αHV Y2 RV int
t−1 + βHV Y2 σRV

int

t−1 .

We assume ωHV Y1 , ωHV Y2 , αHV Y1 , αHV Y2 , βHV Y2 ≥ 0; βHV Y1 ∈ [0, 1); and αHV Y2 + βHV Y2 ∈

[0, 1). The estimation is carried out by QML estimation. Note that both dynamic equations

can be estimated separately. Often, the conditional variance equation is estimated to be

unit-root. We compute iterative multi-step-ahead forecasts, see Shephard and Sheppard

(2010, Equation (11), p. 205).

• We also consider a HAR specification that models realized variances directly (see Corsi,

2009). We specify the HAR model in terms of the log of the realized variances. The model

for forecasting the k-period cumulative variance is given by

log

(
RV t+1:t+k

k

)
= b0 + b1 logRVt + b2 log

(
RVt−4:t

5

)
+ b3 log

(
RVt−21:t

22

)
+ ζt,k
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with RVt+1:t+k =
∑k

i=1RVt+i. The HAR model is estimated by OLS. Realized variance

forecasts are obtained as follows:

RVt+1:t+k|t = k·exp

(
b0 + b1 logRVt + b2 log

(
RVt−4:t

5

)
+ b3 log

(
RVt−21:t

22

)
+

1

2
Var(ζt,k)

)
,

assuming the residuals ζt,k to be normally distributed.

• HAR with leverage (Corsi and Renò, 2012):

log

(
RV t+1:t+k

k

)
= blev0 + blev1 logRVt + blev2 log

(
RVt−4:t

5

)
+ blev3 log

(
RVt−21:t

22

)

+ blev4 rt + blev5 ×
rt−4:t

5
+ blev6 ×

rt−21:t

22
+ ζ levt,k

As in the case of the HAR model without leverage effect, we assume the residuals ζ levt,k to

be normally distributed in order to get closed-form expressions for the respective forecasts.

• The estimation of the GARCH-MIDAS models (see Section 1.2) has been carried out

using QMLE, see Engle, Ghysels, and Sohn (2013), and can be replicated using the R-

package mfGARCH, v0.1.8, by Kleen (2018).33

33https://cran.r-project.org/package=mfGARCH

https://cran.r-project.org/package=mfGARCH
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1.6.8 95% model confidence sets

As a robustness check, the following Tables 1.17 and 1.18 replicate Tables 1.6 and 1.7 for a

confidence level of 95% instead of 90%.

Table 1.17: QLIKE losses and 95% model confidence sets: full out-of-sample period.

Full sample

1d 2w 1m 2m 3m

RVol(22) 0.306 0.246 0.271 0.387 0.428
VIX 0.275 0.215 0.240 0.359 0.414
VRP 0.291 0.227 0.260 0.384 0.430
NFCI 0.324 0.248 0.264 0.363 0.393
NAI 0.343 0.266 0.283 0.391 0.424
∆ IP 0.345 0.267 0.285 0.395 0.438
∆ Housing 0.328 0.252 0.264 0.347 0.380

VIX and NFCI 0.274 0.213 0.236 0.349 0.399
VIX and NAI 0.275 0.215 0.241 0.358 0.409
VIX and ∆ IP 0.274 0.214 0.239 0.355 0.409
VIX and ∆ Housing 0.275 0.218 0.243 0.351 0.405
Avg. 0.317 0.246 0.264 0.364 0.400

GARCH 0.342 0.263 0.282 0.395 0.434
MS-GARCH-TVI 0.362 0.292 0.315 0.426 0.488
MS-GARCH-TVC 0.355 0.271 0.283 0.387 0.421

RealGARCH 0.260 0.206 0.233 0.356 0.390
HEAVY 0.277 0.238 0.299 0.539 0.662
HAR 0.254 0.210 0.243 0.368 0.419
HAR (lev.) 0.238 0.207 0.245 0.371 0.419

No-change 0.358 0.498 0.636 1.157 1.292

Notes: See Table 1.6 but for a confidence level of 95% instead of
90%.
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2 Volatility forecasting for low-volatility

investing

Abstract

Low-volatility investing is typically implemented by sorting stocks based on simple
volatility proxies; for example, the empirical standard deviation of last year’s daily
returns. In contrast, we understand identifying next-month’s ranking of volatilities
as a forecasting problem aimed at the ex-post optimal sorting. We show that time
series models based on intraday data outperform simple risk measures in anticipating
the cross-sectional ranking of S&P 500 constituents in real time. The corresponding
portfolios are more similar to the ex-ante infeasible optimal portfolio in multiple
dimensions. However, even though some of the best models have higher returns
than the benchmark, this holds only before transaction costs are taken into account.

2.1 Introduction

In the financial industry, low-risk strategies have become increasingly popular during recent

years. Examples for those strategies are: betting against beta (Frazzini and Pedersen, 2014),

low-volatility portfolios (Blitz and van Vliet, 2007), minimum variance portfolios (Clarke, de

Silva, and Thorley, 2006), and volatility-managed portfolios (Moreira and Muir, 2017).

In this paper, we focus on the implementation of low-volatility portfolios. In financial prac-

tice, stocks are usually sorted according to some simple metric of a stock’s total or idiosyncratic

volatility. One example is the empirical standard deviation of monthly or daily returns over

a certain period (the previous year, the previous 6-months, the previous month).1 The corre-

sponding low-volatility portfolio simply consists of, say, the 20% stocks with the lowest volatility.

The portfolio is re-balanced on a monthly basis.

Clearly, from an ex-ante perspective it is not clear which proxy for stock volatility is best

suited for stock selection. Therefore, we think of targeting the optimal low-volatility portfolio as

1Bali, Engle, and Murray (2016) provide an overview of the various metrics that are commonly used.
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a forecasting problem. We first introduce the oracle low-volatility portfolio which we define as

the portfolio that an investor would choose with hindsight. Following the literature on estimating

volatility from high-frequency intraday return data, we measure the monthly volatility ex-post

by realized variances (Andersen et al., 2003). Using data for all stocks in the S&P 500 and

the period 2002–2018, we document the low-volatility anomaly from an ex-post perspective:

low-volatility stocks have higher returns than high-volatility stocks.

We then investigate the question whether state-of-the-art volatility models are useful for

anticipating the correct composition of the oracle portfolio in real time. That is, in each month

we estimate various volatility models and use them to forecast the next month’s volatility of

each stock in the S&P 500. We then form low-volatility portfolios based on the sorting of stocks

according to the forecasted volatilities.

During recent years there has been substantial progress in the development of volatility models.

We use those recent models but also more established approaches. First, we use simple RiskMet-

rics models and various generalized autoregressive conditional heteroskedasticity (GARCH)-type

models. In those models the conditional variance is treated as a latent process and daily (or

monthly) returns are used for estimating volatilities. Second, we use heterogeneous autore-

gression (HAR)- and mixed-frequency data sampling (MIDAS)-type models. Here, the realized

variances are modeled directly as a function of past realized variances. In addition, we consider

forecast combinations; that is, we combine the forecasts from various volatility models according

to measures of past forecast performance. We refer to those forecast combinations as “loss-based

forecasts.” We also use the measures that are commonly used for the volatility sorting of stocks

as forecasting “models.” For example, we consider the rolling window sample variance of daily

returns based on the previous twelve months as the forecast for next month’s volatility. We re-

fer to those models (forecasts) as benchmark models (forecasts). We then compare the forecast

performance of the volatility models with the forecast performance of those benchmark models.

For the evaluation of the forecast performance we take two alternative perspectives. The first

one is common in the financial econometrics literature (e.g., Ghysels et al., 2019): For each stock

we evaluate the forecast performance of each model and check which model performs best and

how the volatility models compare with the benchmark models. Unsurprisingly, the volatility

forecasts of state-of-the-art volatility models outperform the simple benchmark model when

measuring forecast accuracy by standard loss functions. For example, for 33% of the stocks

the best performing model (according to the squared error loss) is a HAR-type specification
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that also includes a variance forecast for the S&P 500. In general, the HAR models dominate

GARCH-type models and the benchmark models are dominated by essentially all other models.

However, identifying the “optimal” volatility model for each stock is only possible ex-post and

not in real-time because of potential time-variation in model performance and the small sample

period.

Alternatively, in each month we use a specific volatility model to forecast the volatilities of all

stocks. Based on the cross-sectional forecast performance of each model, we select the optimal

model on a period-by-period basis. This is our second perspective which is feasible in real

time. Now, we find that the Realized GARCH is the best model in 21% of months (according

to the squared error loss). Again, we find that GARCH- and HAR-type models dominate the

benchmark models but the differences in performance are now somewhat weaker. The loss-based

forecasts lead to further improvements in forecast performance.

Next, we investigate whether the model-based volatility forecasts allow us to construct low-

volatility portfolios that are “closer” to the oracle portfolio than the portfolios that are based on

the benchmark forecasts (henceforth benchmark portfolios). In that respect, it is important to

note that it is not necessary to perfectly forecast each stocks’ volatility in order to perfectly mimic

the oracle portfolio. For example, if a model generates volatility forecasts which overestimate

the volatility of each stock by 10%, the implied ordering of the stocks will still be fully correct. In

addition, the empirical evidence in previous studies suggests that the relation between risk and

return is rather flat for low- and medium-volatility stocks and then decreasing for high-volatility

stocks (Blitz, van Vliet, and Baltussen, 2019). Hence, misclassifying stocks may not be that

costly as long as we avoid to include high-volatility stocks in the portfolio. Our results suggest

that portfolios which employ loss-based forecasts (henceforth loss-based portfolios) mimic the

true oracle portfolio more closely than the benchmark portfolios. We measure “closeness” by

the “oracle overlap;” that is, the time series average of the share of stocks that a particular low-

volatility portfolio has in common with the oracle portfolio. At maximum we reach an oracle

overlap of 67% which is more than 2.5 percentage points above the oracle overlap of the best

benchmark portfolio. In that sense, the low-volatility portfolios that are based on state-of-the-art

volatility models clearly improve upon the benchmark low-volatility portfolios.

However, when we compare the performance in terms of returns there are no significant

differences between the model/loss-based portfolios and the best benchmark portfolio. There

are two explanations. First, as mentioned before, certain misclassifications are not costly as
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long as severe classification errors are avoided. The best benchmark model which uses returns

over the previous year appears to satisfy this criterion. In contrast, the benchmark model which

is based on returns over the previous month only, has a relatively low oracle overlap (58%)

and generates larger classification errors. Second, although volatilities are quite persistent, the

oracle portfolio has a relatively high turnover (71%). As a consequence, the model/loss-based

portfolios that achieve a high oracle overlap also generate a high turnover and, therefore, high

transaction costs. Hence, the high oracle overlap comes at the cost of high transaction costs. As

mentioned before, the best benchmark portfolio has a lower oracle overlap but also much lower

turnover (only 16%) and, as a result, lower transaction costs. After trading costs, there are no

significant differences in returns.

The rest of the article is structured as follows. In Section 2.2 we review the previous literature

and present empirical evidence for the low-volatility anomaly. Section 2.3 presents the volatility

models and Section 2.4 the data. We then evaluate the forecast performance of the volatility

models in Section 2.5. A comparison of the various low-volatility portfolios is provided in

Section 2.6. Finally, Section 2.7 concludes.

2.2 The low-volatility anomaly

2.2.1 Related literature

Since the 1970s, numerous empirical studies have shown that the risk-return relationship is either

flat or even negative which is in contrast to the prediction of the CAPM. The anomaly holds

irrespectively whether risk is defined to be beta (Black, Jensen, and Scholes, 1972; Haugen and

Heins, 1972, 1975), total volatility (Haugen and Heins, 1972, 1975), or idiosyncratic volatility

(Ang et al., 2006, 2009). This is due to the fact that on stock level total volatility is highly

correlated with idiosyncratic volatility and high-beta stocks are typically high-volatility stocks

(Baker, Bradley, and Wurgler, 2011; Blitz, van Vliet, and Baltussen, 2019).

Both rational and behavioral explanations have been proposed. One rational explanation

is that investors face leverage constraints (Black, 1972); for example, regarding short-selling.

Frazzini and Pedersen (2014) propose a model that incorporates such leverage constraints. An-

other rational explanation by Blitz and van Vliet (2007) argues that portfolio managers are

typically subject to relative performance objectives which might render low-volatility stocks

unattractive. A behavioral explanation is the possible preference of some investors for lottery-
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like payoffs examined by Barberis and Huang (2008) and Bali, Cakici, and Whitelaw (2011).

Asness et al. (2020) find evidence that support both the leverage and the lottery hypothesis.

In contrast to the studies above, we examine the low-volatility anomaly from a forecasting

perspective by employing time series models that are widely documented to perform better

than trailing volatility. Ghysels, Santa-Clara, and Valkanov (2005) derive variance forecasts

for the market based on mixed-data-sampling to provide evidence for a positive risk-return

relationship. In a similar manner, Fu (2009) uses the exponential generalized autoregressive

conditional heteroskedasticity model by Nelson (1991) to forecast idiosyncratic volatilities which

he finds to be positively correlated with returns—contradicting Ang et al. (2006, 2009). The

fact that total volatility predicts returns is also exploitable by machine-learning techniques as

shown by Gu, Kelly, and Xiu (2020). In this regard, Ghysels, Santa-Clara, and Valkanov (2005),

Fu (2009), and Gu, Kelly, and Xiu (2020) demonstrate the usefulness of time series models for

portfolio sorting but their analyses are restricted to using daily return data.

The literature on intraday data for variance-based portfolio sorting follows the simple trailing

volatility approach. The study by Boudt, Nguyen, and Peeters (2015) may be considered to be

closest to ours. Like us, they use a S&P 500 real-time constituents data set to overcome the

survivorship bias in De Pooter, Martens, and Van Dijk (2008) and Hautsch, Kyj, and Malec

(2015). In their analysis, they come to the conclusion that there is no (statistically significant)

benefit in returns from using intraday data but portfolio returns are less volatile. In contrast to

our study, they do not use volatility models and have a short sample from 2007–2012. However,

already Haugen and Heins (1975) note that high-volatility stocks are primarily outperformed by

low-volatility stocks at longer investment periods which they attribute to superior performance

during bear markets. Liu (2009) concludes that at a monthly investment horizon there is no

benefit from intraday data if an investor has access to at least 12 months of daily data. Similarly,

Amaya et al. (2015) find no significant predictive power of lagged realized variances on weekly

stock returns.

Another branch of the literature examines volatility timing for aggregated portfolio returns

(Moreira and Muir, 2017, 2019; Cederburg et al., 2020).

2.2.2 A new perspective on the anomaly

In this section, we take a new perspective on the low-volatility anomaly by creating and eval-

uating the performance of an ex-ante infeasible “oracle portfolio.” The usual approach in the
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literature on the low-volatility anomaly is as follows: At the end of each month m, all stocks are

ranked according to a proxy of their volatility. Volatility is often measured as the square-root of

the sum of squared daily returns over the previous month, the previous six months or the previ-

ous year (Bali, Engle, and Murray, 2016).2 Based on the ranking for month m, equally weighted

quintile portfolios for monthm+1 are constructed. Then, according to the low-volatility anomaly

the portfolio of stocks in the first quintile has higher average and risk-adjusted returns than the

portfolio of stocks in the fifth quintile (e.g., Blitz and van Vliet, 2007).

We now take an ex-post perspective by asking the following question: What would have

been the “true” quintile portfolios; that is, the portfolios that are formed based on the ex-post

volatilities? Because stock volatilities are latent, even ex-post the correct ranking of stocks is not

absolutely certain. We rely on the literature on estimating stock volatility from high-frequency

intraday data and, hence, base the ex-post oracle portfolios on realized variances: At the end of

each month m+ 1, we compute the monthly realized volatility of each stock as the square-root

of the sum of daily realized variances based on 5-minute intraday data and squared overnight

returns.3 We then consider the ex-ante infeasible quintile portfolios that are formed at the end

of month m according to the realized volatility from the end of month m + 1. Although these

quintile portfolios cannot be constructed in real-time, they tell us how an investor would have

behaved with hindsight. Figure 2.1 shows the performance of the quintile portfolios during the

2002 to 2018 period. The first quintile portfolio clearly outperforms all other quintile portfolios.

The weakest performance can be observed for the fifth quintile portfolio. Thus, the preliminary

results for our oracle portfolio confirm the low-volatility anomaly from an ex-post perspective.

In the following, we will refer to the first quintile portfolio as “the” oracle portfolio.4

In Table 2.1, we compare the performance of the infeasible oracle portfolio with the perfor-

mance of feasible low-volatility portfolios based on the volatility of the previous year (12m-RVd),

the previous six months (6m-RVd) and the previous month (1m-RVd). We will refer to those

three portfolios as (feasible) benchmark portfolios. Table 2.1 shows that the infeasible oracle

portfolio has a higher return, a lower volatility and, hence, a higher Sharpe ratio than the three

2Because total volatility and idiosyncratic volatility are typically highly correlated, Bali, Engle, and Murray
(2016) argue that portfolio sortings on one or the other measure of volatility usually lead to the same results.
Using a measure based on data from the last month was suggested in Ang et al. (2006, 2009).

3For details see Section 2.4.
4As an alternative oracle portfolio, we considered a portfolio that is based on a monthly volatility measure which

uses squared daily returns only. However, the oracle portfolio based on intraday realized variances clearly
outperforms the portfolio based on squared daily returns in terms of average excess returns and Sharpe ratio.
It also has considerably lower turnover.
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Figure 2.1: Discrete returns of oracle volatility portfolios.
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Notes: Monthly discrete excess returns of the quintile oracle portfolios based on all S&P 500 constituents;
2002:M1 to 2018:M12. As a benchmark, excess returns of the S&P 500 Total Return Index are depicted in
black.

benchmark portfolios. Note that the oracle as well as the benchmark portfolios clearly beat the

market portfolio in all three dimensions. While the oracle portfolio achieves a risk reduction of

33%, the benchmark portfolios reach a risk reduction of almost 30%.

Table 2.1: Summary of oracle and benchmark portfolio.

Avg Std SR ARVol OO SO TO

Oracle 12.92 9.44 1.37 20.45 — 65.29 70.87

12m-RVd 8.39 10.03 0.84 23.44 64.32 93.58 15.62

6m-RVd 8.33 10.07 0.83 23.40 64.93 88.71 25.09

1m-RVd 8.35 10.56 0.79 24.18 58.48 52.45 95.94

S&P 500 TR 6.42 14.12 0.45 — — — —

Notes: In Panel A, we report arithmetic means of discrete excess returns (Avg),
their standard deviation, and the corresponding Sharpe ratio (SR). ARVol
is the square-root of the time-averaged “average realized variance” which is
defined to be the cross-sectional average RV inside the corresponding low-

volatility portfolio, ARVol =
√

1
MN

∑M
m=1

∑N
i=1 RVi,m. Annualized scale.

Oracle overlap is the average share of ex-post oracle stocks that are included in
the benchmark portfolio. Self-overlap (SO) is the average share of stocks stay-
ing in the corresponding low-volatility portfolio. For the definition of turnover
(TO) see Subsection 2.6.3. OO, TN, and SO are reported in percentages.
The portfolios are based on the S&P 500 constituents in between 2002:M1–
2018:M12.

At first sight, there seem to be no major differences in the performance of the three benchmark

portfolios. However, differences become apparent when considering additional characteristics of

the portfolios. First, we compute the average realized volatility (ARVol) of each portfolio. That

is, in each month m we compute the cross-sectional average of the realized variance of the stocks

in the portfolio and then average over time. ARVol is the square-root of this quantity. By

construction, the oracle portfolio has the lowest ARVol. While the ARVol figures for 6m-RVd
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and 12m-RVd are similar, the ARVol figure for 1m-RVd is the highest which suggests that the

1m-RVd portfolio has the severest classification errors. This is confirmed when computing the

“oracle overlap” (OO): In each month m we count how many of the stocks that are included

in the benchmark portfolios are also part of the oracle portfolio. We average the corresponding

share over time. On average, only 58.44% of the stocks in the 1m-RVd portfolio are also part

of the oracle portfolio. This number increases to almost 65% for the 6m-RVd and 12m-RVd

portfolios. Next, we compute the self-overlap (SO) for each portfolio. We define the SO as the

average number of stocks that stay in the low-volatility portfolio from one month to the next.

Here, the differences between the benchmark portfolios become much more pronounced. While

the SO of the 1m-RVd portfolio is only 52% the SO of the 12m-RVd portfolio is almost 94%. This

is due to the fact that the ranking of the stocks’ volatility based on the previous month is much

more volatile than the ranking based on the previous year. From a practical perspective, this

makes a huge difference because the corresponding turnover (TO) of the two portfolios is 96.03%

and 15.62% respectively. This implies that after transaction costs the 12m-RVd portfolio clearly

dominates the 1m-RVd portfolio (see Section 2.6.4). Hence, in the following, we will refer to the

12m-RVd portfolio as the “benchmark portfolio.” Although the TO of the oracle portfolio is

comparably high, we will show that even after (reasonable) transaction costs it generates higher

returns than any of the benchmark portfolios.

Obviously, an investor would be interested in replicating the oracle portfolio as closely as

possible. We denote the realized variance of stock i, i = 1, . . . , n, in month m + 1 by RVi,m+1.

The oracle portfolio is based on the ascending ordering of the monthly realized variances of all

n stocks: RV1,m+1 ≤ RV2,m+1 ≤ . . . ≤ RVn,m+1. Hence, we can think of the task of replicating

the oracle portfolio as a forecasting problem. We forecast the realized variances of the n stocks

based on information up to the end of month m and form a portfolio based on the ranking that

is implied by the forecasted variances R̂V i,m+1, i = 1, . . . , n. We will address the forecasting

problem in three steps:

1. We first estimate various volatility models for each stock and evaluate the forecast perfor-

mance of each model. This allows us to answer the following questions: Do state-of-the-art

volatility models provide better forecasts of the cross-sectional stock volatility than the

simple benchmark models? Is there a single volatility model (or a few volatility models)

that outperform(s) the others? Because the benchmark models are not designed to accu-
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rately forecast volatility but rather to “identify” stocks that qualify for the low-volatility

portfolio, we expect that the answer to the first question will be “yes.” As most of the

literature on volatility forecasting focuses on daily forecasts, the one-month horizon that

is needed in our setting will shed some new light on the potential advantages of models

that directly model the realized variances over models that treat the conditional variance

as latent when forecasting volatility over longer horizons.

2. We will evaluate whether the forecasts from the volatility models do translate into a “more

accurate” ranking of stock volatilities than the forecasts from the benchmark models. We

will measure the accuracy by the oracle overlap. That is, we evaluate whether the decision

to include a stock in the low-volatility portfolio is correct. Note that the oracle overlap can

be high, even if the ranking that is implied by the volatility forecasts is far from perfect.

However, a perfect ranking would imply a 100% oracle overlap.

3. Do the portfolios with the highest oracle overlap generate the highest returns? We will see

that the answer to this question crucially depends on portfolio turnover and transaction

costs.

2.3 Models

We consider a wide range of models which represent the state of the art in volatility modeling.

The models can be broadly classified as either RiskMetrics, GARCH, HAR or MIDAS. While in

the GARCH and RiskMetrics approach volatility is treated as a latent variable, the HAR and

MIDAS specifications model realized variances directly. In the following, we briefly introduce

the various model specifications. A more detailed description of the different models can be

found in Appendix 2.8.1.

RiskMetrics (RM): We use four variants of the RiskMetrics model. Two variants employ

monthly realized variances based on squared daily returns while the other two employ weighted

averages of squared daily returns directly. The RiskMetrics models use either six or twelve

months of past return data. Note that the RiskMetrics models can be considered as restricted

GARCH models with fixed ARCH/GARCH parameters and a constant equal to zero.

GARCH: Besides the simple GJR GARCH of Glosten, Jagannathan, and Runkle (1993), we

employ a “Panel GARCH” model which uses variance targeting for each stock and restricts the
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ARCH/GARCH coefficients to be the same across stocks. We also use the Factor GARCH model

of Engle, Ng, and Rothschild (1990) and combine it with the GARCH-MIDAS of Engle, Ghysels,

and Sohn (2013). As explanatory variables in the long-term component, we use the VIX, housing

starts and the term spread. Those variables have been shown to be powerful predictors of longer

term volatility (Conrad and Loch, 2015; Conrad and Kleen, 2020). Correspondingly, these

models are denoted as Factor GARCH-VIX, Factor GARCH-∆Hous, and Factor GARCH-TS.

We also consider the Realized GARCH as suggested in Hansen, Huang, and Shek (2012) and

two types of multiplicative error (MEM) models (Engle and Gallo, 2006).

HAR: We consider the original HAR specification as suggested by Corsi (2009) as well as

seven extensions. In the original HAR model the realized variance is a linear function of the

lagged daily, weekly, and monthly realized variances. Among the extensions are specifications

that model the realized variance of stock i as depending on stock i’s lagged realized variances

but also on a HAR-type forecast for the S&P 500, or the VIX index. We also use the “Panel

HAR” model of Bollerslev et al. (2018).

MIDAS: This type of volatility model has been proposed in Ghysels, Santa-Clara, and Valka-

nov (2004, 2005, 2006). The realized variance is modeled as a weighted average of lagged

daily realized variances. The weights are parsimoniously parameterized via a flexible parametric

weighting scheme. The HAR model of Corsi (2009) is nested when imposing certain constraints

on the weights.

We estimate all models on a rolling window of four years with a minimum number of 600

observations.5 Forecasts are computed for month m = 1, . . . ,M .

Ghysels et al. (2019) study the performance of iterated versus direct multi-step ahead fore-

casting for GARCH, HAR and MIDAS models. Following their recommendations, we directly

forecast the average 22-day realized variance for all HAR-type models. Similarly, we construct

direct forecasts for the MIDAS models. The GARCH and MEM models are estimated using

daily data and then iterated volatility forecasts are computed.

5The only exceptions are three variants of Factor GARCH-MIDAS models which employ housing starts or term
spread data beginning in 1987 and the VIX and S&P 500 returns beginning in 1990 in order to identify the
long-term component.
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2.4 Data

Monthly portfolio returns are calculated from monthly CRSP total returns and the real-time

constituents list for the S&P 500 is downloaded from Compustat. We adjust for CRSP delisting

returns such that we have a survivorship bias free data set (Shumway, 1997; Bali, Engle, and

Murray, 2016).

Our data provider of one-minute intraday data for individual stocks is QuantQuote.6 One-

minute intraday data for the S&P 500 is downloaded from Tick Data. Daily values for the VIX

and monthly returns for the S&P 500 Total Return Index are obtained from the Cboe website.7

We estimate all time series models and evaluate our forecasts on the daily/intraday data set.

The first date of observations is January 02, 1998 and the last date is December 31, 2018. For the

intraday realized variance estimates, we include prices during market hours from 9:30 to 16:00

and calculate 5-minute log-returns. The first 5-minute return of each day is an open-close return

and all others are close-close ones. We use 5-minute returns for two reasons: First, because this

frequency is commonly used, it makes our analysis comparable. Second, it has been shown

to be a fairly robust choice as a trade-off between using high-frequency data and obstructing

micro-structure noise related estimation errors (Liu, Patton, and Sheppard, 2015). To further

strengthen our proxy, we average across subsampled 5-minute realized variances starting 9:30,

9:31, 9:32, 9:33, and 9:34. In order to have a measure on the daily scale, we add squared

overnight returns to the intraday realized variance. At day t and for stock i we will denote this

combined measure by RVi,t. The monthly realized variance, RVi,m, of stock i is the sum of RVi,t

over all days t in month m. Alternatively, squared daily (close-close) returns are often used as

a simple but less accurate measure of volatility. We will denote it by RV d
i,t.

Discrete excess market returns Rmkt,t and the corresponding risk-free rates Rrf,t are obtained

from Kenneth R. French’s data library.8 For further factor analyses, we use the Fama-French(-

Carhart) four- and five-factor portfolio returns; that is, daily average returns of SMB (Small

Minus Big), HML (High Minus Low), MOM (Momentum), RMW (Robust Minus Weak) and

CMA (Conservative Minus Aggresive) portfolios (Fama and French, 1993; Carhart, 1997; Fama

and French, 2015). These are also obtained from Kenneth R. French’s data library website.

6Similarly, Bollerslev, Li, and Zhao (2019) and Bollerslev, Patton, and Quaedvlieg (2020) merge CRSP with
NYSE TAQ data.

7http://www.cboe.com/products/vix-index-volatility/vix-options-and-futures/vix-index/vix-historical-data and
http://www.cboe.com/micro/buywrite/monthendpricehistory.xls

8https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/

http://www.cboe.com/products/vix-index-volatility/vix-options-and-futures/vix-index/vix-historical-data
http://www.cboe.com/micro/buywrite/monthendpricehistory.xls
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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SMBt is the return on a diversified portfolio of small stocks minus the return on a diversified

portfolio of big stocks, HMLt is the difference between the returns on diversified portfolios of high

and low book-to-market ratio stocks The two additional factors in the five-factor model can be

understood as measures of profitability and investment. Hence, RMWt is the calculated as the

difference between returns on diversified portfolios of stocks with robust and weak profitability,

and CMAt is calculated as the difference between returns on diversified portfolios of low and

high investment stocks, which Fama and French call conservative and aggressive. Because of

collinearity, Fama and French (2015) refrain from including the momentum effect in their five-

factor model and we follow their approach.

Last, real-time housing starts data is downloaded from ALFRED9 and term-spread data from

the New York Federal Reserve website.10

Due to the data restrictions from our rolling estimation scheme detailed in Section 2.3, we

include on average 480 S&P 500 constituents in our portfolio selection. In total we have 97,940

monthly stock returns in the investment period from 2002–2018.

2.5 Forecast evaluation and model selection

In a first step, we evaluate the volatility forecasts from the different models. In the following

subsection, we introduce four loss functions and then provide empirical results from an ex-post

and a real-time perspective.

2.5.1 Loss functions

Following Patton (2011), we evaluate the volatility forecasts using robust loss functions. Suppose

we are interested in evaluating the conditional variance forecast R̂V m+1|m against the true but

unobservable conditional variance σ2
m+1 using the loss function L(σ2

m+1, R̂V m+1|m).11

Then, the loss function is called robust if the expected loss ranking of two competing forecasts

is preserved when replacing σ2
m+1 by a conditionally unbiased proxy. In the empirical application,

we use the monthly realized variances RVm+1 as proxies for the unobservable σ2
m+1. We will

9https://alfred.stlouisfed.org/series?seid=HOUST
10https://www.newyorkfed.org/research/capital markets/ycfaq.html#/
11In this subsection, for simplicity in the notation we drop the index i.

https://alfred.stlouisfed.org/series?seid=HOUST
https://www.newyorkfed.org/research/capital_markets/ycfaq.html#/
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employ two popular loss functions which are robust: the squared error (SE) loss,

L(σ2
m+1, R̂V m+1|m) = (σ2

m+1 − R̂V m+1|m)2,

and the QLIKE loss,

L(σ2
m+1, R̂V m+1|m) = σ2

m+1/R̂V m+1|m − log(σ2
m+1/R̂V m+1|m)− 1.

As a third loss function, we consider the elementary loss (EL). For a pre-specified threshold θ,

the EL assigns a penalty if and only if R̂V m+1|m is below/above θ while σ2
m+1 is above/below θ:

L(σ2
m+1, R̂V m+1|m) =





|σ2
m+1 − θ| if R̂V m+1|m ≤ θ < σ2

m+1

|σ2
m+1 − θ| if σ2

m+1 ≤ θ < R̂V m+1|m

0 else.

More generally, all loss functions that belong to the so-called class of Bregman loss functions

satisfy the conditions for robustness (Patton, 2011). As Ehm et al. (2016) show that any

Bregman loss function can be expressed as an integral of elementary losses, we know that the

EL is also robust. In the case of low-volatility investing, a natural choice for θ is the 20%-quantile

(θ(20)) of the cross-sectional distribution of stock volatilities. Thus, we only penalize forecast

errors with respect to the targeted threshold of θ(20) in each month and denote the losses by

EL 20.

Finally, we rely on the cross-sectional Mincer-Zarnowitz R2 as a measure of forecast accuracy

(Mincer and Zarnowitz, 1969). This is the R2 from a cross-sectional regression of RVm+1 on

R̂V m+1|m (henceforth MZ R2). If the MZ R2 is equal to one, then we have perfectly forecasted

the ranking of the volatilities.12 The MZ R2 has also been shown to be robust (Hansen and

Lunde, 2006). We report the loss from the MZ R2 as 1/R2 so that lower means better as it is

the case for the SE, QLIKE, and EL.

The differences between the four evaluation criteria can be summarized as follows: While

the SE is a symmetric loss function, the QLIKE is asymmetric and penalizes underestimation

more heavily than overestimation. The QLIKE is less affected by extreme observations and

12Theoretically, the MZ R2 would also be equal to one if we perfectly forecasted the reverse ranking but this is
of no concern in our application.
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requires weaker moment conditions when performing Diebold-Mariano-type tests (Patton, 2006).

Empirically, the SE and QLIKE are based on the average forecast losses across all observations

whereas the EL assigns and averages (non-zero) losses only for those stocks which were falsely

included into/excluded from the low-volatility portfolio. Contrary to the previous three loss

functions, we can think of the MZ R2 as directly evaluating the entire forecast ranking.

2.5.2 Ex-post perspective

First, we evaluate the forecast performance of the various volatility models from an ex-post

perspective. For each stock i, we consider the out-of-sample volatility forecasts R̂V
j

i,m|m−1,

m = 1, . . . ,M , stemming from model j. For each loss function and with hindsight, we can

measure the average loss of model j for stock i across time as

Lji =
1

M

M∑

m=1

Lj(RVi,m, R̂V
j

i,m|m−1).

We denote the stock specific loss of the benchmark forecast (12m-RV d) by LBi . As a measure

for the forecast accuracy of a particular model j relative to the benchmark, we consider the

following statistic

LRji =
1

n

n∑

i=1

1
Lji/L

B
i <1

,

where 1
Lji/L

B
i <1

is an indicator function which equals one if Lji/L
B
i < 1 and zero else. Hence,

LRji reports the share of stocks for which model j outperforms the benchmark. Table 2.2 shows

LRji for the four loss functions. Independently of the loss function, almost all models beat

the benchmark for more than 50% of the stocks. In particular, we find that HAR-type models

perform very well relative to the benchmark. For example, the SE loss of the HAR-SPX-LR

model is lower than the loss of the benchmark (12m-RVd) for 93% of the stocks. Among the

GARCH-type models the Realized GARCH does best according to the SE. To the contrary,

the simple MEM appears to be outperformed by the benchmark. Interestingly, the RiskMetrics

model based on monthly returns (RM monthly) and twelve months performs very well but for

the EL 20.

In order to compare the various models not only to the benchmark but also with each other,

we also report the share of stocks for which a particular model j performed best (denoted by

Rkji ≤ 1) or was among the best four models (denoted by Rkji ≤ 4) as measured by Lji . Our
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Table 2.2: Ex-post comparison of model performance.

SE QLIKE EL 20 MZ R2

Model LRji Rkji ≤ 1 Rkji ≤ 4 LRji Rkji ≤ 1 Rkji ≤ 4 LRji Rkji ≤ 1 Rkji ≤ 4 LRji Rkji ≤ 1 Rkji ≤ 4

12m-RVd — 0.00 0.03 — 0.00 0.02 — 0.00 0.04 — 0.01 0.02

6m-RVd 0.74 0.01 0.03 0.71 0.00 0.02 0.58 0.00 0.04 0.87 0.01 0.03

1m-RVd 0.48 0.00 0.01 0.30 0.00 0.01 0.47 0.01 0.04 0.80 0.03 0.05

RM monthly, 12 months 0.93 0.01 0.03 0.93 0.01 0.02 0.34 0.00 0.03 0.90 0.00 0.02
RM monthly, 6 months 0.76 0.01 0.03 0.71 0.00 0.03 0.59 0.00 0.05 0.87 0.00 0.03
RM daily, 12 months 0.75 0.00 0.03 0.67 0.01 0.07 0.68 0.01 0.07 0.89 0.00 0.03
RM daily, 6 months 0.74 0.00 0.03 0.65 0.00 0.06 0.67 0.01 0.07 0.89 0.01 0.04

GJR-GARCH 0.75 0.01 0.05 0.79 0.01 0.08 0.72 0.03 0.09 0.79 0.02 0.06
Panel GJR-GARCH 0.71 0.03 0.07 0.72 0.03 0.08 0.67 0.02 0.09 0.83 0.03 0.07
Factor GARCH 0.85 0.01 0.07 0.85 0.02 0.13 0.75 0.02 0.07 0.86 0.01 0.05
Factor GARCH-VIX 0.84 0.02 0.08 0.64 0.01 0.03 0.47 0.01 0.05 0.87 0.01 0.06
Factor GARCH-∆Hous 0.84 0.01 0.07 0.66 0.01 0.03 0.46 0.01 0.05 0.86 0.00 0.04
Factor GARCH-TS 0.82 0.00 0.06 0.64 0.00 0.03 0.42 0.00 0.04 0.84 0.00 0.03
Realized GARCH 0.91 0.09 0.18 0.85 0.09 0.17 0.61 0.05 0.11 0.91 0.08 0.15
MEM 0.36 0.00 0.01 0.01 0.00 0.00 0.11 0.01 0.03 0.60 0.01 0.03
Panel MEM 0.65 0.01 0.05 0.04 0.00 0.01 0.21 0.01 0.03 0.80 0.01 0.05

HAR 0.86 0.01 0.12 0.90 0.01 0.17 0.81 0.03 0.18 0.89 0.01 0.09
HAR-SPX 0.91 0.17 0.64 0.92 0.06 0.41 0.81 0.05 0.30 0.93 0.16 0.64
HAR-LR 0.90 0.03 0.20 0.94 0.10 0.53 0.84 0.07 0.35 0.94 0.04 0.22
HAR-SPX-LR 0.93 0.33 0.76 0.94 0.27 0.70 0.82 0.11 0.46 0.96 0.39 0.79
Panel HAR 0.74 0.00 0.01 0.70 0.00 0.01 0.72 0.01 0.11 0.81 0.00 0.02
Panel HAR-LR 0.83 0.02 0.05 0.87 0.00 0.05 0.79 0.03 0.15 0.88 0.01 0.05
HAR-VIX 0.91 0.10 0.68 0.91 0.16 0.60 0.81 0.06 0.35 0.94 0.06 0.67
HAR-VIX-LR 0.92 0.12 0.69 0.91 0.18 0.63 0.81 0.09 0.42 0.96 0.10 0.73

MIDAS 0.72 0.00 0.01 0.85 0.00 0.02 0.77 0.01 0.08 0.83 0.00 0.01
Panel MIDAS 0.78 0.00 0.03 0.86 0.01 0.08 0.76 0.04 0.16 0.86 0.01 0.02

Notes: LRji reports the share of losses Lji to be smaller than LBi ; this is, the proportion of stocks for which the
loss of the respective model j is smaller than the one of the 12m-RVd benchmark model. Rkji ≤ 1 and Rkji ≤ 4
report the proportion of the model being the best or among the four best-performing models as measured by
Lji . The evaluation is based on the cross-section of S&P 500 constituents in between 2002:M1–2018:M12.

previous findings are confirmed: According to the SE loss, the HAR-SPX-LR model has the

lowest loss for 33% of the stocks. Other models that perform well are the HAR-SPX, the HAR-

VIX and the HAR-VIX-LR. Again, the best GARCH-type model is the realized GARCH. When

considering the top-4 models and according to the SE, the HAR-SPX-LR model is included

in this set for 76% of stocks. Interestingly, the three benchmark models are almost never

among the top-4. Note that the ranking of models is relatively robust across loss functions. In

summary, HAR-type models clearly dominate when forecast performance is evaluated for each

stock separately from an ex-post perspective; that is, based on the time series of out-of-sample

forecast errors for each stock. Our finding is largely in line with Ghysels et al. (2019).

2.5.3 Real-time perspective

The model and stock specific losses Lji are available ex-post only. Hence, we cannot use them

in the real-time portfolio selection process.13 Instead, we will rely on cross-sectional forecast

losses. That is, for each loss function and model j, we define the cross-sectional average loss in

13Of course, it is possible to compute the losses Lji for rolling/expanding windows of out-of-sample forecasts and
select models based on this. However, given the monthly frequency of the forecasts and our sample period,
model selection will be difficult due to the small sample that is used to compute a rolling/expanding window
version of Lji .
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month m as:14

Ljm =
1

n

n∑

i=1

Lj(RVi,m, R̂V
j

i,m|m−1).

We denote the loss of the benchmark model by LBm. The losses Ljm and LBm can be used in

real-time for the selection of models. Ex-post, we can also compute the statistic

LRjm =
1

M

M∑

m=1

1
Ljm/LBm<1

.

where 1
Ljm/LBm<1

equals one if Ljm/LBm < 1 and zero else. Hence, LRjm reports the share of

months during which model j outperforms the benchmark. As Panel A of Table 2.3 shows,

most model-based forecasts still beat the benchmark forecast from a cross-sectional perspective.

However, forecast improvements are less impressive with LRjm often being slightly above 50%.

While the HAR-SPX-LR still performs very well, the Realized GARCH has a slightly higher

LRjm statistic. In general, the HAR-type models are now less dominant. In addition, we now

report for how many months a specific model j is ranked top (denoted by Rkjm ≤ 1) or among

the top-4 models (denoted by Rkjm ≤ 4) in terms of Ljm. Independent of the loss function, the

Realized GARCH is most often the best model. The Realized GARCH and the HAR-SPX-LR

are most often among the top-4 models. However, we observe that many models are among

the top-4 in more than 10% of months. That is, from a cross-sectional perspective we do not

find that one specific model dominates all others. Also note that the 12m-RV d and 6m-RV d

benchmark models are among the top-4 in a non-negligible number of months.

Thus, the real-time forecast evaluation suggests either that the differences between the various

models are less pronounced from a cross-sectional perspective or that the forecast performance

of the different models varies over time. The latter could be the case if one model is particularly

suited for a high-volatility environment while another one performs best in a low-volatility

environment (Conrad and Kleen, 2020). In the following, we consider forecast combinations as

a means to safeguard against such time-varying model performance. The idea to combine the

forecasts from different models to achieve diversification gains was popularized by Bates and

Granger (1969). For further discussions see, for example, Timmermann (2006).

We follow the approach described in Caldeira et al. (2017) for combining the forecasts of the

various models. First, for each model j we determine the cross-sectional forecast performance

14For simplicity in the notation, we assume that the number of stocks, n, in the cross-section is fixed.
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Table 2.3: Real-time comparison of model performance.

SE QLIKE EL 20 MZ R2

LRjm Rkjm ≤ 1 Rkjm ≤ 4 LRjm Rkjm ≤ 1 Rkjm ≤ 4 LRjm Rkjm ≤ 1 Rkjm ≤ 4 LRjm Rkjm ≤ 1 Rkjm ≤ 4

Panel A: Model-based forecasts

12m-RVd — 0.01 0.13 — 0.03 0.17 — 0.03 0.20 — 0.03 0.22

6m-RVd 0.51 0.03 0.17 0.48 0.05 0.18 0.50 0.03 0.20 0.46 0.02 0.17

1m-RVd 0.31 0.01 0.02 0.24 0.00 0.00 0.26 0.00 0.03 0.20 0.00 0.01

RM monthly, 12 months 0.78 0.04 0.15 0.72 0.05 0.15 0.53 0.04 0.18 0.79 0.07 0.25
RM monthly, 6 months 0.51 0.03 0.17 0.49 0.03 0.20 0.52 0.09 0.20 0.49 0.03 0.19
RM daily, 12 months 0.54 0.01 0.11 0.49 0.00 0.18 0.50 0.03 0.18 0.43 0.02 0.08
RM daily, 6 months 0.54 0.00 0.08 0.47 0.01 0.14 0.47 0.03 0.19 0.43 0.00 0.07

GJR-GARCH 0.54 0.01 0.04 0.54 0.00 0.06 0.62 0.03 0.16 0.43 0.01 0.07
Panel GJR-GARCH 0.44 0.00 0.05 0.48 0.02 0.10 0.55 0.02 0.14 0.38 0.00 0.02
Factor GARCH 0.51 0.00 0.02 0.50 0.01 0.05 0.58 0.03 0.16 0.38 0.00 0.03
Factor GARCH-VIX 0.60 0.02 0.17 0.44 0.01 0.09 0.40 0.02 0.11 0.37 0.00 0.05
Factor GARCH-∆Hous 0.59 0.01 0.12 0.46 0.01 0.10 0.43 0.02 0.11 0.38 0.00 0.04
Factor GARCH-TS 0.59 0.01 0.19 0.48 0.01 0.09 0.41 0.01 0.10 0.38 0.00 0.03
Realized GARCH 0.77 0.21 0.44 0.70 0.20 0.35 0.64 0.16 0.33 0.72 0.25 0.46
MEM 0.37 0.03 0.08 0.11 0.00 0.03 0.04 0.00 0.01 0.18 0.00 0.01
Panel MEM 0.39 0.06 0.10 0.29 0.08 0.13 0.23 0.06 0.10 0.27 0.03 0.08

HAR 0.60 0.01 0.10 0.60 0.04 0.17 0.57 0.01 0.14 0.56 0.02 0.11
HAR-SPX 0.66 0.04 0.23 0.61 0.04 0.24 0.55 0.03 0.16 0.57 0.05 0.24
HAR-LR 0.67 0.04 0.25 0.64 0.09 0.32 0.58 0.06 0.24 0.64 0.05 0.34
HAR-SPX-LR 0.73 0.11 0.40 0.64 0.08 0.33 0.56 0.03 0.22 0.67 0.11 0.45
Panel HAR 0.45 0.02 0.07 0.41 0.02 0.05 0.46 0.01 0.07 0.44 0.00 0.06
Panel HAR-LR 0.51 0.01 0.09 0.47 0.01 0.10 0.51 0.03 0.13 0.56 0.02 0.16
HAR-VIX 0.70 0.04 0.33 0.63 0.02 0.25 0.51 0.02 0.18 0.63 0.05 0.27
HAR-VIX-LR 0.72 0.17 0.41 0.63 0.12 0.34 0.51 0.07 0.21 0.66 0.14 0.40

MIDAS 0.48 0.00 0.00 0.50 0.00 0.03 0.56 0.00 0.09 0.46 0.00 0.03
Panel MIDAS 0.52 0.02 0.09 0.55 0.03 0.14 0.56 0.07 0.16 0.52 0.05 0.15

Panel B: Combined forecasts

η = 0 0.78 — — 0.81 — — 0.72 — — 0.75 — —

η = 1/2 SE 0.78 — — 0.80 — — 0.71 — — 0.74 —- —
QLIKE 0.78 — — 0.79 — — 0.71 — — 0.75 —- —
EL 20 0.78 — — 0.79 — — 0.72 — — 0.74 —- —
MZ R2 0.79 — — 0.80 — — 0.71 — — 0.75 —- —

η = 1 SE 0.78 — — 0.79 — — 0.71 — — 0.74 — —
QLIKE 0.78 — — 0.80 — — 0.72 — — 0.75 — —
EL 20 0.77 — — 0.79 — — 0.71 — — 0.72 — —
MZ R2 0.79 — — 0.79 — — 0.71 — — 0.75 — —

η = 4 SE 0.79 — — 0.79 — — 0.70 — — 0.75 — —
QLIKE 0.79 — — 0.78 — — 0.68 — — 0.74 — —
EL 20 0.75 — — 0.74 — — 0.62 — — 0.69 — —
MZ R2 0.80 — — 0.80 — — 0.70 — — 0.77 — —

η =∞ SE 0.71 — — 0.63 — — 0.53 — — 0.64 — —
QLIKE 0.76 — — 0.68 — — 0.57 — — 0.67 — —
EL 20 0.72 — — 0.65 — — 0.58 — — 0.63 — —
MZ R2 0.79 — — 0.72 — — 0.66 — — 0.72 — —

Notes: LRjm reports the proportion of months in which the cross-sectional loss Ljm of model j is lower than
the one of the 12m-RVd benchmark forecast. Rkjm ≤ 1 and Rkjm ≤ 4 report the proportion of the model
being the best or among the four best-performing models as measured by Ljm. The evaluation is based on the
cross-section of S&P 500 constituents in between 2002:M1–2018:M12.

at month m as

L̄jm =
1

m

m−1∑

k=0

δkLjm−k, (2.1)

with δ ∈ (0, 1]. When δ approaches zero, we exclusively rely on the loss ratio in month m. In

the other extreme, when δ = 1, the forecast performance is measured by the simple average of

the loss ratios over the previous m months. For 0 < δ < 1 all loss ratios are taken into account

but the weights are declining from the most recent to the most distant observation in time.

Throughout the main analysis we will set δ = 0.98.15

15In Appendix 2.8.2 we report alternative returns for δ ∈ {0, 0.6, 0.8, 0.9, 0.94, 0.99, 0.999, 1}. Returns are slightly
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The combined forecast for the volatility of stock i, i = 1, . . . , n, in period m+ 1 is given by

R̂V
cf

i,m+1|m =

J∑

j=1

λj,mR̂V
j

i,m+1|m, (2.2)

where the weights are given by

λj,m =
(L̄jm)−η

∑J
j=1(L̄jm)−η

. (2.3)

with η ≥ 0. For η = 0, we attach equal weights, λj,m = 1/J , to each model. For η =∞ a weight

of one is attached to the model for which the loss in Equation (2.1) is the lowest and all other

models receive a weight of zero. When η = 1, the weights are inverse proportional to the loss

of the respective model. Note that η = 1/2 in combination with the SE means that the weights

are chosen according to the root mean squared error.

In Figure 2.2, we plot the time series of weights that are attached to each model class when

choosing η = 1 and δ = 0.98. For example, the green line shows the cumulative weights that

are attached to all GARCH-type models. The figure shows an interesting dichotomy: the SE

and the MZ R2 attach roughly the same weight (around 30%) to the HAR- and GARCH-type

models. The RiskMetrics models receive slightly more weight than the benchmark models. In

contrast, the QLIKE and, in particular, EL 20 assign substantially more weight to the HAR

models than to the GARCH models. In addition, while the plots for the SE and the MZ R2

suggest that the relative forecast performance is constant over time, the plots for the QLIKE

and EL 20 imply that there is some time-variation in forecast performance.

Figure 2.3 illustrates how the weights change for η = 4. According to Equation (2.3), we

now give stronger weights to those models with superior forecast performance. As a result, the

disparity among the weights increases. In particular, this is the case for the QLIKE and the

EL 20. Now, the QLIKE attaches an aggregated weight of up to 75% to the HAR models which

dominate the other model classes since the financial crisis in 2008. An even more distinctive

weighting can been seen for the EL 20. Beginning in 2003, the HAR models have a joint weight

of at least 60% and sometimes even more than 90%.

Panel B of Table 2.3 presents the forecast performance of the combined forecasts. There is a

remarkable finding which holds independently of the choice of the loss function and the choice

of η: For almost all combined forecasts the statistic LRcfm is considerably higher than for the

higher for δ = 1 but we choose δ = 0.98 as it seems to be a reasonable choice an investor could have made
ex-ante.
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Figure 2.2: Weight of model class per month for η = 1, δ = 0.98.
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Notes: Aggregated weights in the combined forecast per model class, see Equations (2.2) and (2.3). The
constituents of each class are listed in 2.3. The class “Benchmark” includes 12m-RVd, 6m-RVd, and 1m-RVd.

individual model-based forecasts. That is, the dominance of the combined forecasts over the

benchmark forecast is much stronger than for the individual models. For η =∞ the advantage

is less striking because in each month now all weight is attached to one specific model which

reduces the potential diversification gains. Thus, from a pure forecasting perspective it clearly

pays off to consider the combined forecast. The finding that the loss function which is used to

combine the individual model-based forecasts does not seem to matter much is highly interesting.
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Figure 2.3: Weight of model class per month for η = 4, δ = 0.98.
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Notes: See notes of Figure 2.2 but for η = 4, δ = 0.98.

The theoretical arguments that can be made in favor or against certain loss functions appear

not being relevant in our setting. Even a simple average (η = 0) of the forecasts appears to do

the job.
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2.6 Comparison of low-volatility portfolios

2.6.1 Portfolio construction

We illustrate the construction of the low-volatility portfolios for volatility forecasts based on

model j. Assume that the volatility forecasts R̂V
j

i,m|m−1 for the n stocks in month m are

already in ascending order; that is, R̂V
j

1,m|m−1 ≤ R̂V
j

2,m|m−1 ≤ . . . ≤ R̂V
j

n,m|m−1. Based on this

ordering of the forecasts, the 20% stocks with the lowest volatility are included in the portfolio

for month m. Those stocks receive equal weights (i.e., a weight of one over the number of stocks

in the portfolio). All remaining stocks receive a weight of zero. We denote the individual weights

by wjm|m−1.

When constructing low-volatility portfolios the decision whether a particular stock is included

in the portfolio or not solely depends on the ascending ordering of the forecasted volatilities of

all stocks. Hence, for correctly mimicking the oracle portfolio it is not necessary to perfectly

forecast volatility. All that matters is an accurate ranking of the stocks’ volatility. However, a

perfect forecast leads to an accurate ranking. Hence, we conjecture that volatility models which

provide more accurate forecasts should also deliver a more accurate ranking of the volatilities.

2.6.2 ARVol and oracle overlap

For each low-volatility portfolio the column denoted ARVol in Table 2.4 shows the time series

mean of the average cross-sectional volatility in each month. Recall that the oracle portfolio

has an ARVol of 20.45%. Among the model-based portfolios, the HAR-based portfolios achieve

the lowest ARVol. The best-performing model is the HAR with an ARVol of 22.9%. With the

exception of the η =∞ case, all loss-based portfolios (i.e. the portfolios which are based on the

combined forecasts) achieve lower ARVol’s than the HAR model. The ARVol of the 12m-RVd

benchmark is 23.44%.

The column denoted OO in Table 2.4 shows the oracle overlap of the low-volatility portfolios

that are either based on the volatility forecasts of a single model (Panel A) or the combined

forecasts (Panel B). The benchmark portfolio has an average overlap of 64.32%. That is, in

each month m and based on the volatility forecasts of the benchmark model for month m + 1

we decide whether or not to include a specific stock in the low volatility portfolio. The ex-post

comparison with the oracle portfolio in month m + 1 shows that on average the decision was

correct for 64.32% of the stocks. Panel A shows that the model-based portfolios generally do not
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Table 2.4: Portfolio characteristics.

ARVol OO SO TO

Panel A: Model-based portfolios

12m-RVd 23.44 64.32 93.58 15.62

6m-RVd 23.40 64.93 88.71 25.09

1m-RVd 24.18 58.48 52.45 95.94

RM monthly, 12 months 23.43 64.58 93.43 15.89
RM monthly, 6 months 23.36 65.05 88.70 25.08
RM daily, 12 months 23.36 64.72 79.03 43.87
RM daily, 6 months 23.37 64.57 78.74 44.44

GJR-GARCH 23.71 62.00 79.55 42.73
Panel GJR-GARCH 23.74 61.97 77.38 46.92
Factor GARCH 23.73 61.40 86.24 29.92
Factor GARCH-VIX 23.88 59.86 84.04 34.21
Factor GARCH-∆Hous 23.82 60.02 83.65 34.98
Factor GARCH-TS 23.83 59.92 83.86 34.57
Realized GARCH 23.31 65.95 80.83 40.50
MEM 24.92 54.31 83.24 36.79
Panel MEM 23.60 60.91 81.93 40.01

HAR 22.90 64.10 82.79 36.69
HAR-SPX 22.93 63.35 84.50 33.47
HAR-LR 22.92 63.97 81.56 39.12
HAR-SPX-LR 22.98 63.27 81.52 39.31
Panel HAR 23.39 63.46 88.80 25.00
Panel HAR-LR 23.28 64.99 91.00 20.71
HAR-VIX 22.98 63.37 83.95 34.51
HAR-VIX-LR 23.12 62.61 81.10 40.11

MIDAS 23.53 63.49 83.03 36.26
Panel MIDAS 23.22 65.79 85.58 31.22

Panel B: Loss-based portfolios

η = 0 22.70 66.94 87.02 28.26

η = 1/2 SE 22.71 66.87 87.06 28.17
QLIKE 22.69 66.88 87.24 27.83
EL 20 22.67 66.96 87.30 27.70
MZ R2 22.70 66.90 87.35 27.62

η = 1 SE 22.71 66.86 87.04 28.20
QLIKE 22.67 66.90 87.37 27.57
EL 20 22.56 66.95 87.46 27.42
MZ R2 22.69 66.93 87.55 27.23

η = 4 SE 22.70 66.89 87.09 28.12
QLIKE 22.53 66.80 87.42 27.54
EL 20 22.53 65.98 86.72 28.98
MZ R2 22.56 67.05 88.09 26.19

η =∞ SE 22.95 63.51 81.20 39.80
QLIKE 23.02 63.28 81.36 39.59
EL 20 22.98 63.29 81.73 38.86
MZ R2 22.88 65.14 79.69 42.76

Notes: Summary measures of the model-based and loss-
based portfolios are reported. ARVol is the annualized
square-root of the time-averaged cross-sectional realized
variance inside each portfolio, see notes in Table 2.1. Or-
acle overlap (OO), self-overlap (SO), and turnover (TO)
are reported in percentages, see Subsection 2.6.2 and
2.6.3. The evaluation is based on the cross-section of
S&P 500 constituents in between 2002:M1–2018:M12.

improve upon the benchmark portfolio. In contrast, with the exception of η =∞, all loss-based

portfolios lead to improvements. Their ARVol is close to 67%. The best loss-based portfolio uses



2.6 Comparison of low-volatility portfolios 91

the MZ R2 in combination with η = 4 and has an oracle overlap of 67.05%. Hence, the improved

forecast performance of the combined forecasts leads to improvements in the oracle overlap of

more than 2.5 percentage points relativ to the benchmark portfolio. Again, the simple average

(η = 0) of all model-based forecasts does surprisingly well.

2.6.3 Self-overlap, portfolio turnover and transaction costs

As we are interested in measuring the actual performance of our low-volatility portfolios, we

need to take into account the accruing transaction costs when implementing the strategy. As an

intermediate step, we report the self-overlap of each portfolio in column SO in Table 2.4. The

self-overlap of the benchmark 12m-RVd portfolio is 93.58%. In sharp contrast, most model-based

portfolios achieve only self-overlap of around 80%. This is due to the fact that the model-based

forecasts are typically not as persistent as the benchmark forecasts. This drawback is partially

addressed by the loss-based portfolios. As Panel B shows, the loss-based portfolios have a higher

self-overlap of around 87%. One exception is the loss-based portfolio for η = ∞. In this case,

in each month the best single model-based forecast achieves a weight of one and, hence, the

forecasts are less persistent and the corresponding portfolio has lower self-overlap.

The previous findings suggest that the model-based forecasts and the loss-based forecasts

should generate a higher portfolio turnover and thereby higher transaction costs than the bench-

mark model. We compute the turnover and the respective transaction costs following the re-

cent literature on portfolio-allocation based on high-frequency-based measures of realized (co-

)variation (Bandi, Russell, and Zhu, 2008; De Pooter, Martens, and Van Dijk, 2008; DeMiguel,

Garlappi, and Uppal, 2009; Hautsch, Kyj, and Malec, 2015; Nolte and Xu, 2015). Recall that

wji,m|m−1 is either zero or one divided by the number of stocks in the portfolio. Before the

next rebalancing at the end of period m, due to price movements, the weight of stock i changes

to wji,m|m−1
1+Ri,m/100

1+(wjm)′Rm/100
where wjm = (wj1,m, . . . , w

j
n,m)′ and Rm = (R1,m, . . . , Rn,m)′. Based

on the volatility forecasts for month m + 1, the new desired weights are wji,m+1|m. Hence, the

turnover due to portfolio rebalancing at the end of month m is given by

TOjm =
n∑

i=1

∣∣∣∣∣w
j
i,m+1|m − w

j
i,m|m−1

1 +Ri,m/100

1 + (wjm)′Rm/100

∣∣∣∣∣ .

The quantity TOm can be interpreted as the proportion of wealth reallocated at the end of

month m. In column TO, we report the average turnover for each portfolio. The turnover of
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the benchmark portfolio is 15.62% which means that per dollar invested the average transaction

volume per month is 15.62 cents. Relying on model-based forecasts increases the turnover for

most models to be in the 25%–40% range. The highest turnover is observed for the naive 1m-

RVd forecast. Except for the case of η =∞, the loss-based portfolios have a turnover of roughly

27%.

In summary, most loss-based portfolios outperform the benchmark in terms of oracle overlap

but not self-overlap and turnover. Hence, we expect that trading costs will hurt the model- and

loss-based portfolio performance. This is what we investigate next.

2.6.4 Portfolio returns

Assuming transaction costs to be proportional to the portfolio turnover TOm, we follow

DeMiguel, Garlappi, and Uppal (2009) and compute monthly portfolio excess returns as

Rjp,m =
W j
m

W j
m−1

− 1−Rrf,m,

where W j
m is the wealth of the model/loss-based portfolio which can be obtained as

W j
m = W j

m−1 · (1 + w′mRm) · (1− c · TOm).

We assume that c is ranging from 0 to 25bps which is a realistic range of recent cost estimates

for trading large US stocks (Novy-Marx and Velikov, 2016).

Table 2.5 shows the annualized returns of each portfolio for c ∈ {0, 15, 25}. When there are

no transaction costs, the benchmark portfolio earns an annualized return of 8.39%. For the

model and loss-based portfolio, we report the annualized return and, in brackets, the p-value of

a t-test using Newey-West standard errors that checks whether there is a significant difference

between the return of the respective model/loss-based portfolios and the benchmark. Although

the returns of most of the model/loss-based portfolios are somewhat higher than the return of

the benchmark, we do not find evidence for a significant difference besides for the HAR-SPX-LR

and HAR-VIX-LR, two of the best-performing models in Subsection 2.5.3. Hence, even without

transaction costs the superior performance of model (loss-based) volatility forecasts does not

necessarily translate into higher returns. The same holds for the standard deviation of returns

and the Sharpe ratios.
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Once we take transaction costs into account the picture is clearly more in favor of the bench-

mark 12m-RVd portfolio. For c equal to 15bps the return of the benchmark portfolio falls to

8.10% but only five HAR models generate returns higher than that. Because the turnover of

the benchmark is much lower than the turnover of the model/loss-based portfolios, its returns

are less affected.

An alternative strategy targeted at conservative investors are buy-and-hold portfolios. How-

ever, given that our asset-universe changes over time as companies enter or leave the S&P 500,

we can only compare ourselves to strategies that invest in a passive index-tracking fund. For

example, the average return of the S&P 500 Total Return Index, in which dividend-payments

are included, is 6.42% annually with a Sharpe ratio of 0.45 during our investment period (see

Table 2.1). Under the assumption of an expense ratio of around 0.1%, which is the current rate

of the SPDR S&P 500 ETF Trust, we see that even after transaction costs of 25bps all our

loss-based strategies generate returns more than 1 percentage point higher than a buy-and-hold

strategy on the S&P 500. This achievement comes not at the cost of higher volatility as all

loss-based portfolios have standard deviations close to 4 percentage points lower than the S&P

500 Total Return Index with a volatility of 14.12%. As a result of earning higher average returns

while reducing volatility, the Sharpe ratios of the low-volatility portfolios are almost twice as

large as the proposed buy-and-hold benchmark. The same holds for the 12m-RVd portfolio.

2.6.5 Utility analysis

We follow Fleming, Kirby, and Ostdiek (2001, 2003) and evaluate the various portfolios in a

utility-based framework. This allows us to judge whether the differences between the benchmark

and the model/loss-based portfolios are of economic significance. Using a quadratic utility

function with risk-aversion parameter γ, the monthly utility generated by a portfolio based on

model j is given by

Uγ(Rjp,m) = (1 +Rjp,m/100)− γ

2(1 + γ)

(
1 +Rjp,m/100

)2
.

We are now interested in comparing this utility with the utility from the oracle portfolio. Denote

the return of the oracle portfolio by Rop,m. We can compute the maximum fee ∆j
γ that an investor
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would be willing to pay in order to switch from portfolio j to the oracle portfolio by solving

M∑

m=1

Uγ(Rjp,m) =
M∑

m=1

Uγ(Rop,m −∆j
γ). (2.4)

The smaller ∆j
γ the closer the model j based portfolio mimics the utility of the oracle portfolio.

We report the fee ∆j
γ in Table 2.5 in annualized percentage points for γ = 1 and γ = 10. Again,

the model/loss-based portfolios outperform the benchmark portfolio only before transaction

costs in utility terms. We observe the lowest fees for the HAR-SPX-LR based portfolio.

2.6.6 Sector concentration

We now examine whether our low-volatility investing strategies may generate high exposure to

narrow classes of industries. In Figure 2.4 we depict histograms of the average sector concen-

tration by primary SIC codes. We report numbers for the entire S&P 500 cross-section (upper

left) and the low-volatility oracle, the 12m-RVd benchmark, and the SE-based portfolio with

η = ∞, δ = 0.98. For brevity, the latter is considered to be representative for our model-

based strategies. In Figure 2.4, we see that 40% of the S&P 500 constituents are classified

as “Manufacturing.”16 The second largest industry is the “Finance, Insurance, and Real Es-

tate” sector (18%), followed by “Transportation, Communications, Electric, Gas and Sanitary

service” (13%), “Services” (12%), “Trade” (11%), and “Mining and Construction” (6%). Less

than 1.5% of S&P 500 constituents are classified as “Public Administration” and “Forestry and

Farming.” We use realtime SIC codes from the CRSP files in order to allow companies to be

reassigned to a new sector. One example is S&P Global Inc., formerly McGraw-Hill Compa-

nies, for which industry classification changes from “Printing and Publishing,” which is part of

the “Manufacturing”-sector, to “Security and Commodity Brokers” in “Finance, Insurance, and

Real Estate” after the acquisition of financial service providers like SNL financial in April 2015

and divestures like the sale of McGraw-Hill Education in 2013.

The other three histograms of our low-volatility portfolios show that the higher returns

do not come at the cost of overexposure to one particular sector. The share of the large

“Manufacturing”-sector in our low-volatility portfolios is the same as in the aggregate S&P

500 which can also be observed for the “Finance, Insurance, and Real Estate”-sector. The

largest absolute difference to the composition of the S&P 500 can be seen in the weight on the

16SIC code 2 and 3, see https://www.osha.gov/pls/imis/sic manual.html.

https://www.osha.gov/pls/imis/sic_manual.html
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Figure 2.4: Sector concentration of S&P 500 vs. oracle and low-volatility portfolios.
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Notes: Sector concentration by realtime Standard Industrial Classification (SIC). We report the time-average
proportion in the S&P 500 and the infeasible oracle portfolio along the corresponding numbers for two exemplary
ex-ante feasible portfolios; the benchmark 12m-RVd and the SE-based portfolio with η =∞, δ = 0.98. Industries
are classified by the first number of the SIC code as follows: “Agriculture, Forestry and Fishing” (0), “Mining
and Construction” (1), “Manufacturing” (2 and 3), “Transportation, Communications, Electric, Gas and Sanitary
service” (4), “Trade” (5), “Finance, Insurance, and Real Estate” (6), “Services” (7 and 8), “Public Administration
and Other” (9). The evaluation period is 2002:M1–2018:M12.

“Transportation, Communications, Electric, Gas and Sanitary service”-sector which increases

by around 10 percentage points for all low-volatility portfolios. Noteworthy is also the decrease

in weight for the sector “Mining and Construction.” The weight for this sector is a good ex-

ample of the difference between our low-volatility portfolios and minimum-variance portfolios:

The mining companies are high-risk stocks but they exhibit only low correlation with other
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stocks (Blitz, van Vliet, and Baltussen, 2019). Hence, in a minimum-variance portfolio it may

be sensible to include such high-risk but low-correlation stocks in order to minimize the overall

portfolio risk. However, given the histograms we can conclude that both the benchmark and our

loss-based strategies do not generate excess returns on the downside of excessive sector exposure.

2.6.7 Factor analysis

In Table 2.6, we evaluate the trading strategies of the 12m-RVd benchmark and our loss-based

portfolios for the exemplary case of η =∞ and δ = 0.98 by means of Fama-French regressions.

First, we observe a statistically significant CAPM-excess return for both the benchmark portfo-

lio and the loss-based portfolios which is around half in size relative to the total portfolio return.

In the Fama-French-Carhart (FFC) four-factor model (Fama and French, 1993; Carhart, 1997),

we observe a significant negative coefficient for the SMB portfolio returns which is in line with

the observation that low-volatility is correlated with high market capitalization. Similarly, mo-

mentum also helps to partially explain the superior performance of the low-volatility strategies.

However, the average FFC-excess returns of our strategies are only slightly below the ones for

the CAPM. Turning to the Fama-French five-factor model (Fama and French, 2015), we see that

the excess returns are not as good captured by size but its exposure to highly profitable but

conservative investment stocks. The FF five-factor model implies a reduction in monthly excess

returns by around one-third. However, with values in range of 2.5–3.1% the annualized excess

returns are still statistically significant with a p-value of at most 2%. Using daily returns of

the entire CRSP cross-section but a longer evaluation period, Fama and French (2016) report

similar results for total (and idiosyncratic) volatility portfolios.

2.7 Conclusion

We examine the effect of employing intraday data and corresponding volatility models on long-

only low-volatility investments. The portfolio choice problem at hand is to identify the bottom

quintile of stocks with the lowest volatility among S&P 500 constituents. In general, the anomaly

is exploited by sorting based on last year’s volatility which we employ as our benchmark. How-

ever, the benchmark is at odds with the financial econometrics literature that demonstrated

repeatedly the usefulness of intraday data for volatility forecasting; in particular, for short-term

forecasting.
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First, we show that a large number of different time series models based on intraday data have

superior forecasting performance at a monthly horizon in comparison to our benchmark in the

years 2002–2018. Our set of models includes Riskmetrics, numerous GARCH- and HAR-type

models, and MIDAS regressions. The best-performing model is a HAR model that includes

a long-run and a market component. Interestingly, the overall dominance of the HAR-type

models across stocks is more pronounced if the models are evaluated on a stock-by-stock basis

instead of a monthly cross-sectional perspective. In general, forecast performance improves after

combining model-based forecasts in real time. Our forecast evaluation is robust against using

different loss functions.

Second, it is revealed that superior forecast performance translates into better assessment

of the volatility ranking. This is measured both in terms of lower realized variances across

stocks inside the low-volatility portfolios and a larger overlap with the infeasible oracle portfolio.

Loss-based forecast combination is also beneficial in terms of similarity to the oracle portfolio.

However, even though some of the best models have higher returns than the benchmark, they

are typically not significantly higher and do not survive transaction costs due to higher turnover.
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Table 2.6: Low-volatility portfolio returns and factor loadings.

CAPM FFC FF five-factor

α βMKT α βMKT βSMB βHML βMOM α βMKT βSMB βHML βRMW βCMA

12m-RVd 4.38 0.58 4.10 0.63 -0.13 0.08 0.09 2.62 0.67 -0.08 -0.05 0.28 0.23
[0.00] [0.00] [0.00] [0.00] [0.01] [0.15] [0.01] [0.02] [0.00] [0.14] [0.46] [0.00] [0.04]

SE 4.62 0.61 4.42 0.66 -0.13 0.07 0.07 2.98 0.69 -0.09 -0.06 0.25 0.27
[0.00] [0.00] [0.00] [0.00] [0.02] [0.15] [0.02] [0.01] [0.00] [0.11] [0.40] [0.00] [0.01]

QLIKE 4.43 0.61 4.18 0.66 -0.11 0.07 0.08 2.84 0.70 -0.07 -0.05 0.24 0.26
[0.00] [0.00] [0.00] [0.00] [0.05] [0.15] [0.01] [0.01] [0.00] [0.20] [0.43] [0.00] [0.01]

EL 20 4.60 0.61 4.35 0.66 -0.11 0.08 0.08 3.13 0.69 -0.07 -0.04 0.23 0.22
[0.00] [0.00] [0.00] [0.00] [0.06] [0.13] [0.01] [0.00] [0.00] [0.24] [0.59] [0.00] [0.02]

MZ R2 4.22 0.60 4.01 0.65 -0.12 0.09 0.07 2.54 0.69 -0.08 -0.05 0.25 0.28
[0.00] [0.00] [0.00] [0.00] [0.03] [0.08] [0.02] [0.02] [0.00] [0.13] [0.48] [0.00] [0.01]

Notes: Fama-French regressions for the low-volatility portfolio returns in the leading case with η = ∞ and
δ = 0.98. As factors we consider the excess market return MKT, the size factor SMB, the value factor HML
in conjunction with the momentum factor MOM, or the profitability factor RMW and the investment factor
CMA. Regarding the factor loading coefficients, we report p-values based on two-sided t-tests and Newey-West
standard errors in brackets. Excess returns are reported on an annualized scale. The evaluation period is
2002:M1–2018:M12.
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2.8 Appendix

2.8.1 Description of time series models

Because months have different numbers of days, all models forecast the 22-day-ahead average

realized variance which is then evaluated against the average realized variance in that month.

Let Ft denote the information set up to time t.

HAR-type models

• HAR: The HAR model (Corsi, 2009) employs the realized variances directly. In this

model, realized variances are regressed on past realized variances aggregated on a daily,

weekly, and monthly frequency. The model for forecasting the 22-day-ahead cumulative

variance is given by

RVi,t+1:t+22 = b0 + bdRVi,t + bwRVi,t−4:t + bmRVi,t−21:t + ηi,t

with RVi,t+1:t+l =
∑l

k=1 RVi,t+k and E[ηi,t|Ft−1] = 0.

• HAR-SPX: Now, let RVmkt,t denote the realized variance of the S&P 500 index. Then

the HAR-SPX model is the HAR model from above augmented by a HAR model forecast

for the market itself,

RVi,t+1:t+22 = bS0 + bSdRVi,t + bSwRVi,t−4:t + bSmRVi,t−21:t + bSmktR̂Vmkt,t+1:t+22|t + ηSi,t

with E[ηSi,t|Ft−1] = 0.

• HAR-LR: Given that we are only interested in monthly volatility forecast, we employ a

long-run version of the HAR model that includes a quarterly and semiannual component:

RVi,t+1:t+22 = bL0 +bLdRVi,t + bLwRVi,t−4:t + bLmRVi,t−21:t

+ bLq RVi,t−65:t + bLsRVi,t−131:t + ηLi,t

with E[ηLi,t|Ft−1] = 0.

• HAR-SPX-LR: As we did in the HAR-SPX, we can als define a HAR-SPX-LR model
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which employs both the long-run and the market component,

RVi,t+1:t+22 = bSL0 + bSLd RVi,t + bSLw RVi,t−4:t + bSLm RVi,t−21:t

+ bSLq RVi,t−65:t + bSLs RVi,t−131:t + bSLmktR̂Vmkt,t+1:t+22|t + ηSLi,t

with E[ηSLi,t |Ft−1] = 0.

• Panel HAR: The HAR model can also be estimated in a panel if the individual realized

variances are demeaned first. Let RVi be the average realized variance of stock i in the

estimation period. Then we estimate Panel HAR coefficients

RVi,t+1:t+22 − RVi = bPd (RVi,t − RVi) + bPw(RVi,t−4:t − RVi) + bPm(RVi,t−21:t − RVi) + ηPi,t

with E[ηPi,t|Ft−1] = 0. For forecasting the individual stock’s realized variance, we re-add

RVi in the end.

• Panel HAR-LR: The Panel HAR-LR model is then the long-run analogue of the Panel

HAR:

RVi,t+1:t+22 − RVi = bPLd (RVi,t − RVi) + bPLw (RVi,t−4:t − RVi)

+ bPLm (RVi,t−21:t − RVi) + bPLq (RVi,t−65:t − RVi) + bPLs (RVi,t−131:t − RVi) + ηPLi,t

with E[ηPLi,t |Ft−1] = 0.

• HAR-VIX: All models above are only backward-looking time series models and make

no use of expectations on future volatility; for example, those implied by option prices.

Hence, we include the squared VIX as a model-free risk-neutral measure of next-month’s

volatility of market returns,

RV i,t+1:t+22|t = bV0 + bVd RVi,t + bVwRVi,t−4:t + bVmRVi,t−21:t + bvixVIX
2
t + ηVi,t.

with E[ηVi,t|Ft−1] = 0. Bekaert and Hoerova (2014) use the same approach for forecasting

aggregate stock market volatility instead of individual stocks. Of course, one could derive

individual option-implied volatilities from each stock’s option prices but that is beyond

the scope of this paper.
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• HAR-VIX-LR: The HAR-VIX model may also be augmented by our two long-run com-

ponents:

RV i,t+1:t+22|t =bV L0 + bV Ld RVi,t + bV Lw RVi,t−4:t + bV Lm RV i,t−21:t

+ bV Lq RVi,t−66:t + bV Ls RVi,t−132:t + bV LvixVIX
2
t + ηV Li,t .

with E[ηV Li,t |Ft−1] = 0.

All HAR models are estimated by ordinary least squares estimation.

GARCH-type models

Let εmkt,t and εi,t denote the demeaned market and individual stock log returns. Likewise, let

σ̄2
mkt and σ̄2

i denote the empirical variances of the two in the corresponding estimation sample.

• GJR-GARCH: The GARCH specification of Glosten, Jagannathan, and Runkle (1993)

of returns εi,t =
√
hGJRi,t ZGJRi,t , ZGJRi,t ∼ D(0, 1), is given by

hGJRi,t = (1−αGJRi −βGJRi −γGJRi /2)σ̄2
i +αGJRi ε2

i,t−1 +γGJRi 1{εi,t−1<0}ε
2
i,t−1 +βGJRi hGJRi,t−1.

We determine the rolling-window coefficients by quasi-maximum-likelihood estimation

(QMLE).

• Panel GJR-GARCH: Instead of estimating the GARCH coefficients for every stock

separately, we can estimate a Panel GJR-GARCH in which

hPGJRi,t = (1− αPGJR−βPGJR − γPGJR/2)σ̄2
i + αPGJRε2

i,t−1

+ γPGJR1{εi,t−1<0}ε
2
i,t−1 + βPGJRhPGJRi,t−1 .

Under the assumption of the innovation terms being independent, the Panel GJR-GARCH

is estimated via QMLE by summing up the individual log-likelihoods.

• Factor GARCH: In this model introduced by Engle, Ng, and Rothschild (1990), the
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market return is modeled as a GJR-GARCH,

εmkt,t =
√
hCGmkt,tZ

CG
mkt,t,

with Zmkt,t ∼ D(0, 1) and

hmkt,t = (1− αCGmkt − βCGmkt − γCGmkt/2)σ̄2
mkt + αCGmktε

2
mkt,t−1

+ γCGmkt1{εmkt,t−1<0}r
2
mkt,t−1 + βCGmkth

CG
mkt,t−1.

The individual demeaned stock return is given by

εi,t = βCGi rmkt,t + ηCGi,t = βCGi rmkt,t +
√
hCGi,t Z

CG
i,t

with ZCGi,t ∼ D(0, 1) and

hCGi,t = (1− αCGi − βCGi )ω̄i + αCGi η2
i,t−1 + βih

CG
i,t−1,

where ω̄i denotes the empirical variance of the stock-specific CAPM residuals. Under

the assumption of independence of ZCGmkt,t and ZCGi,t , the forecast of the individual stock’s

conditional variance is given by

(
βCGi

)2
hCGmkt,t+1:t+22|t + hCGi,t+1:t+22|t

where hCGmkt,t+1:t+22|t and hCGi,t+1:t+22|t are the cumulated daily GARCH forecasts. The βCGi s

are estimated separately for each stock in the respective rolling window as well as the

GARCH models for the market and the CAPM-residuals.

• The Factor GARCH-MIDAS model is the same as the CAPM GARCH model but

the market return is now given by a GARCH-MIDAS model. It includes either the VIX,

changes in housing starts, or the term spread as a covariate and estimation has been carried

out using QMLE using the R-package mfGARCH by Kleen (2018).

More specifically, the standardized demeaned market return εmkt,t is now modeled as

εmkt,t√
τt

=
√
gmkt,tZmkt,t,
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where τt is specified as a function of a monthly explanatory variable Xm, gmkt,t follows

a daily GARCH equation, and Zmkt,t is an i.i.d. innovation process with mean zero and

variance one. The short-term component is assumed to follow a mean-reverting unit-

variance GJR-GARCH process:

gmkt,t = (1− αCGM − γCGM/2− βCGM )

+
(
αCGM + γCGM1{εmkt,t−1<0}

) ε2
mkt,t−1

τm
+ βCGMgmkt,t−1.

The long-term component τm in month m is given by

τm = exp


mCGM + θCGM

K∑

l=1

ϕl(w
CGM
1 , wCGM2 )Xm−l


 .

where the weights ϕl(w1, w2) ≥ 0 are parameterized via the Beta weighting scheme

ϕl(w1, w2) =
(l/(K + 1))w1−1 · (1− l/(K + 1))w2−1

∑K
j=1(j/(K + 1))w1−1 · (1− j/(K + 1))w2−1

. (2.5)

In our versions with either changes in housing starts or the term spread as the explanatory

variable Xm, we choose K = 36. In case of the VIX, we choose K = 3. For more details see

Conrad and Kleen (2020). We name our Factor GARCH-MIDAS models accordingly to the

covariate employed: Factor GARCH-VIX, Factor GARCH-∆Hous, and Factor GARCH-

TS.

• Realized GARCH: As a generalization of the GARCH model, we employ the Realized

GARCH model (Hansen et al., 2012). Here, the conditional variance of the returns εt =
√
σRGt ZRGt , ZRGt

i.i.d.∼ D(0, 1) at day t is modeled as

log σRGt = ωRG + αRG logRVintt−1 + βRG log σRGt−1

and the realized measure RVintt based on intraday returns only as

logRVintt = ξRG + δRG log σRGt + ηRG1 ZRGt + ηRG2

((
ZRGt

)2
− 1

)
+ uRGt

with uRGt
i.i.d.∼ N (0, λRG). The innovations ZRGt and uRGt are independent. The estimation
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of the Realized GARCH model and the forecast computation by simulation is carried out

using the R-package rugarch (Ghalanos, 2018).

• Multiplicative Error Model: The Multiplicative Error Model (MEM) by Engle and

Gallo (2006) employs as the dependent variable not (demeaned) returns but the realized

measure itself,
√

RVi,t = hMEM
i,t ZMEM

i,t , ZMEM
i,t ∼ D(0, 1), and

hMEM
i,t = (1− αMEM

i − βMEM
i )RVi + αMEM

i RVi,t−1 + βMEM
i hMEM

i,t−1

with RVi being the average RVi,t in the corresponding rolling estimation sample.

• Panel MEM: As in the Panel GARCH, we can estimate one parameter vector for all

stocks in a Panel MEM model by summing up the log-likelihoods with respect to all

centered conditional variance equations jointly,

hPMEM
i,t = (1− αPMEM − βPMEM )RVi + αPMEMRVi,t−1 + βPMEMhPMEM

i,t−1 .

MIDAS-type models

• MIDAS: The class of MIDAS models was introduced by Ghysels, Santa-Clara, and Valka-

nov (2004, 2005, 2006) which are very flexible distributed lag models that potentially em-

ploy data sampled on different frequencies (see the CAPM GARCH-MIDAS above). In

our case, the model is defined as

RVi,t+1:t+22|t − RVi = θMi

K−1∑

l=0

ϕl(1, w
M
i,2) · (RVi,t−l − RVi) + ηMi,t .

The weighting scheme is a Beta weighting scheme as in Equation (2.5) with w1 = 1 and

we choose K = 132 to match the long-run HAR models. We assume E[ηMi,t |Ft−1] = 0. The

parameters are obtained by minimizing the squared residuals.

• Panel MIDAS: Similar to our other panel variations for HAR and GARCH models,

we include a Panel MIDAS by restricting the scaling parameter θMi and the weighting

parameter wMi,2 to be the same for all stocks,

RVi,t+1:t+22|t − RVi = θPM
K−1∑

l=0

ϕl(1, w
PM
2 ) · (RVi,t−l − RVi) + ηPMi,t .



106 2 Volatility forecasting for low-volatility investing

We assume E[ηPMi,t |Ft−1] = 0. This is again estimated by minimizing the squared residuals.

Riskmetrics

Our Riskmetrics forecasts are based either on monthly (indexed by m) or daily data (indexed

by t). In total we employ four different versions. The first is RM monthly, 12 months and the

forecasts are given by

RVdm+1|m =
1

∑K−1
k=0 λk

K−1∑

k=0

λkRVdm−k

with K = 12 and RVdm being the realized variance in month m based on squared daily returns.

RM monthly, 6 months is the same but with K = 6. RM daily, 12 months, and RM daily, 6

months are similar but they use daily squared returns on the right hand side with the corre-

sponding number of lags to match the data of the monthly RM models. We choose λ = 0.97

because we target the monthly horizon.

All models are reestimated at the end of each month. In a handful of cases, the forecast

is unreasonable (e.g., negative for some stocks in the Panel HAR model). Thus, we apply

a rolling “sanity filter” which truncates forecasts by the 0.1%- and 99.9%-quantile of cross-

sectional monthly RVs in the estimation window.

2.8.2 Returns for additional combinations of η and δ

In this section, we discuss the possible alternative choices for δ in our empirical analysis. As

such, we report the average returns for our loss-based strategies in Table 2.7–2.10. Moreover, we

report alternative values for the proportional transaction costs c. In the case of SE and QLIKE,

we observe the highest average return for η = ∞ and δ = 1; that is, only considering the best

model and putting equal weight on all past cross-sectional forecast errors. For the EL 20, the

ex-post optimal combination without transaction costs is η =∞ and δ = 0.9. Among the three

loss function, EL 20 has the largest increase in average returns by up to more than 1 percentage

point in the case of η = ∞. Interestingly, for the MZ R2 the highest returns are observed for

η =∞ and δ = 0.
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Table 2.7: Average returns of SE-based portfolios.

δ

c η 0 0.6 0.8 0.9 0.94 0.98 0.99 0.999 1

0 0 8.43 — — — — — — — —
(0.14)

0.5 8.37 8.32 8.41 8.40 8.37 8.33 8.32 8.32 8.32
(-0.04) (-0.20) (0.07) (0.04) (-0.05) (-0.18) (-0.21) (-0.19) (-0.19)

1 8.29 8.27 8.31 8.37 8.33 8.30 8.30 8.34 8.34
(-0.29) (-0.34) (-0.23) (-0.05) (-0.17) (-0.25) (-0.25) (-0.14) (-0.15)

2 8.41 8.27 8.20 8.24 8.35 8.34 8.35 8.34 8.34
(0.08) (-0.34) (-0.54) (-0.42) (-0.10) (-0.12) (-0.11) (-0.12) (-0.13)

4 8.34 8.31 8.30 8.44 8.45 8.50 8.47 8.46 8.46
(-0.14) (-0.21) (-0.26) (0.17) (0.22) (0.34) (0.26) (0.23) (0.23)

10 8.42 8.39 8.32 8.49 8.53 8.53 8.50 8.50 8.49
(0.11) (0.03) (-0.20) (0.35) (0.44) (0.44) (0.35) (0.32) (0.32)

Inf 8.79 8.53 8.48 8.76 8.93 8.83 8.88 9.12 9.12
(1.01) (0.34) (0.23) (0.90) (1.26) (0.97) (1.09) (1.65) (1.65)

5 0 8.26 — — — — — — — —
(-0.10)

0.5 8.20 8.15 8.24 8.23 8.20 8.16 8.15 8.15 8.15
(-0.27) (-0.43) (-0.15) (-0.19) (-0.28) (-0.41) (-0.45) (-0.43) (-0.43)

1 8.12 8.10 8.14 8.20 8.16 8.13 8.13 8.17 8.17
(-0.52) (-0.57) (-0.46) (-0.27) (-0.40) (-0.48) (-0.48) (-0.37) (-0.37)

2 8.24 8.10 8.04 8.08 8.18 8.17 8.18 8.17 8.17
(-0.17) (-0.57) (-0.75) (-0.63) (-0.32) (-0.34) (-0.32) (-0.34) (-0.34)

4 8.15 8.14 8.13 8.27 8.28 8.33 8.30 8.29 8.29
(-0.42) (-0.44) (-0.48) (-0.07) (-0.02) (0.11) (0.02) (-0.01) (-0.01)

10 8.20 8.22 8.15 8.32 8.36 8.36 8.33 8.32 8.32
(-0.26) (-0.22) (-0.45) (0.11) (0.20) (0.20) (0.12) (0.10) (0.09)

Inf 8.46 8.26 8.22 8.51 8.69 8.59 8.65 8.89 8.89
(0.44) (-0.08) (-0.18) (0.54) (0.91) (0.65) (0.77) (1.33) (1.33)

10 0 8.09 — — — — — — — —
(-0.33)

0.5 8.03 7.98 8.07 8.06 8.03 7.99 7.98 7.98 7.98
(-0.50) (-0.66) (-0.38) (-0.42) (-0.51) (-0.65) (-0.68) (-0.66) (-0.66)

1 7.95 7.93 7.97 8.03 7.99 7.96 7.96 8.00 8.00
(-0.76) (-0.79) (-0.68) (-0.49) (-0.63) (-0.71) (-0.70) (-0.59) (-0.60)

2 8.06 7.93 7.87 7.91 8.01 8.00 8.01 8.01 8.00
(-0.41) (-0.80) (-0.97) (-0.85) (-0.53) (-0.55) (-0.54) (-0.55) (-0.55)

4 7.97 7.97 7.96 8.10 8.11 8.16 8.13 8.12 8.12
(-0.69) (-0.66) (-0.70) (-0.31) (-0.26) (-0.12) (-0.21) (-0.24) (-0.24)

10 7.99 8.05 7.97 8.16 8.19 8.18 8.16 8.15 8.15
(-0.62) (-0.48) (-0.69) (-0.13) (-0.03) (-0.04) (-0.11) (-0.13) (-0.14)

Inf 8.14 8.00 7.96 8.27 8.44 8.35 8.41 8.66 8.66
(-0.14) (-0.50) (-0.59) (0.18) (0.57) (0.33) (0.45) (1.02) (1.02)

15 0 7.92 — — — — — — — —
(-0.57)

0.5 7.86 7.81 7.90 7.89 7.86 7.82 7.81 7.81 7.81
(-0.73) (-0.88) (-0.61) (-0.66) (-0.74) (-0.88) (-0.92) (-0.89) (-0.89)

1 7.77 7.76 7.80 7.86 7.82 7.79 7.79 7.83 7.83
(-0.99) (-1.02) (-0.90) (-0.71) (-0.85) (-0.93) (-0.93) (-0.82) (-0.82)

2 7.88 7.76 7.70 7.74 7.84 7.83 7.84 7.84 7.83
(-0.66) (-1.03) (-1.18) (-1.07) (-0.75) (-0.77) (-0.75) (-0.77) (-0.77)

4 7.78 7.81 7.80 7.93 7.94 7.99 7.96 7.95 7.95
(-0.96) (-0.88) (-0.93) (-0.55) (-0.50) (-0.35) (-0.44) (-0.48) (-0.48)

10 7.77 7.87 7.80 7.99 8.02 8.01 7.99 7.98 7.98
(-0.98) (-0.73) (-0.94) (-0.37) (-0.27) (-0.27) (-0.34) (-0.35) (-0.36)

Inf 7.82 7.73 7.70 8.03 8.20 8.11 8.17 8.43 8.43
(-0.73) (-0.92) (-1.00) (-0.19) (0.22) (0.01) (0.14) (0.72) (0.72)

20 0 7.75 — — — — — — — —
(-0.80)

0.5 7.69 7.63 7.73 7.72 7.69 7.65 7.64 7.64 7.64
(-0.96) (-1.11) (-0.83) (-0.89) (-0.97) (-1.11) (-1.15) (-1.12) (-1.12)

1 7.60 7.59 7.63 7.69 7.65 7.62 7.62 7.66 7.66
(-1.23) (-1.24) (-1.12) (-0.93) (-1.08) (-1.16) (-1.15) (-1.04) (-1.05)

2 7.71 7.59 7.53 7.57 7.67 7.66 7.67 7.67 7.66
(-0.90) (-1.25) (-1.40) (-1.29) (-0.96) (-0.98) (-0.97) (-0.98) (-0.98)

4 7.60 7.64 7.63 7.76 7.77 7.82 7.79 7.78 7.78
(-1.23) (-1.10) (-1.15) (-0.79) (-0.74) (-0.58) (-0.67) (-0.71) (-0.71)

10 7.55 7.70 7.62 7.82 7.85 7.84 7.82 7.81 7.81
(-1.33) (-0.98) (-1.17) (-0.61) (-0.51) (-0.50) (-0.56) (-0.58) (-0.59)

Inf 7.49 7.47 7.44 7.78 7.96 7.87 7.93 8.19 8.19
(-1.33) (-1.33) (-1.40) (-0.55) (-0.12) (-0.31) (-0.18) (0.41) (0.41)

25 0 7.58 — — — — — — — —
(-1.03)

0.5 7.52 7.46 7.56 7.55 7.52 7.48 7.47 7.47 7.47
(-1.19) (-1.33) (-1.06) (-1.12) (-1.20) (-1.34) (-1.38) (-1.35) (-1.35)

1 7.43 7.42 7.46 7.52 7.48 7.45 7.45 7.49 7.49
(-1.46) (-1.47) (-1.34) (-1.15) (-1.30) (-1.38) (-1.37) (-1.26) (-1.27)

2 7.53 7.42 7.36 7.40 7.50 7.49 7.50 7.50 7.49
(-1.15) (-1.48) (-1.61) (-1.51) (-1.18) (-1.20) (-1.18) (-1.19) (-1.19)

4 7.41 7.47 7.46 7.59 7.60 7.65 7.62 7.61 7.61
(-1.49) (-1.32) (-1.36) (-1.02) (-0.97) (-0.80) (-0.90) (-0.94) (-0.94)

10 7.34 7.52 7.45 7.65 7.67 7.67 7.65 7.64 7.64
(-1.69) (-1.22) (-1.41) (-0.84) (-0.74) (-0.73) (-0.79) (-0.80) (-0.81)

Inf 7.17 7.20 7.18 7.54 7.71 7.63 7.69 7.96 7.96
(-1.93) (-1.75) (-1.80) (-0.91) (-0.47) (-0.62) (-0.49) (0.10) (0.10)

Notes: Average annualized excess SE-based mean returns for different com-
binations of η, δ, and proportional transaction costs c. Weights are given by
Equation (2.3). t-statistics for two-sided tests of equal returns using Newey-
West standard errors with three lags against the benchmark model 12m-RVd

are reported in parentheses. The evaluation period is 2002:M1–2018:M12.
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Table 2.8: Average returns of QLIKE-based portfolios.

δ

c η 0 0.6 0.8 0.9 0.94 0.98 0.99 0.999 1

0 0 8.43 — — — — — — — —
(0.14)

0.5 8.37 8.41 8.42 8.42 8.40 8.40 8.38 8.40 8.40
(-0.06) (0.07) (0.10) (0.10) (0.03) (0.05) (-0.02) (0.04) (0.05)

1 8.40 8.41 8.44 8.45 8.46 8.45 8.39 8.44 8.44
(0.04) (0.09) (0.17) (0.20) (0.23) (0.20) (0.02) (0.15) (0.15)

2 8.48 8.36 8.34 8.41 8.36 8.42 8.45 8.44 8.45
(0.29) (-0.07) (-0.13) (0.08) (-0.06) (0.10) (0.19) (0.15) (0.19)

4 8.42 8.40 8.47 8.47 8.59 8.55 8.57 8.57 8.59
(0.09) (0.03) (0.24) (0.24) (0.54) (0.44) (0.49) (0.48) (0.54)

10 8.44 8.60 8.46 8.48 8.58 8.89 8.82 8.81 8.80
(0.15) (0.56) (0.21) (0.27) (0.54) (1.37) (1.22) (1.18) (1.14)

Inf 8.33 8.65 8.61 8.57 8.54 8.69 8.90 8.94 8.94
(-0.13) (0.70) (0.61) (0.51) (0.40) (0.66) (1.08) (1.18) (1.18)

5 0 8.26 — — — — — — — —
(-0.10)

0.5 8.20 8.24 8.25 8.25 8.23 8.23 8.21 8.23 8.24
(-0.28) (-0.15) (-0.11) (-0.11) (-0.19) (-0.17) (-0.24) (-0.18) (-0.17)

1 8.23 8.25 8.28 8.29 8.30 8.28 8.22 8.27 8.27
(-0.18) (-0.13) (-0.04) (-0.01) (0.01) (-0.02) (-0.20) (-0.06) (-0.06)

2 8.31 8.19 8.17 8.25 8.20 8.26 8.29 8.28 8.29
(0.05) (-0.28) (-0.32) (-0.11) (-0.26) (-0.09) (-0.00) (-0.04) (-0.01)

4 8.22 8.22 8.30 8.30 8.42 8.39 8.41 8.40 8.42
(-0.19) (-0.19) (0.03) (0.04) (0.34) (0.25) (0.30) (0.29) (0.35)

10 8.22 8.41 8.27 8.30 8.40 8.71 8.64 8.63 8.62
(-0.21) (0.31) (-0.05) (0.01) (0.29) (1.13) (0.97) (0.94) (0.90)

Inf 8.03 8.39 8.35 8.31 8.28 8.45 8.66 8.70 8.70
(-0.63) (0.25) (0.17) (0.04) (-0.02) (0.34) (0.77) (0.87) (0.87)

10 0 8.09 — — — — — — — —
(-0.33)

0.5 8.03 8.07 8.08 8.08 8.06 8.06 8.04 8.06 8.07
(-0.50) (-0.37) (-0.33) (-0.33) (-0.41) (-0.39) (-0.46) (-0.40) (-0.39)

1 8.06 8.08 8.11 8.12 8.13 8.12 8.06 8.10 8.10
(-0.40) (-0.34) (-0.25) (-0.22) (-0.20) (-0.23) (-0.41) (-0.27) (-0.27)

2 8.13 8.02 8.00 8.08 8.03 8.09 8.13 8.11 8.13
(-0.19) (-0.49) (-0.52) (-0.30) (-0.45) (-0.27) (-0.19) (-0.23) (-0.20)

4 8.03 8.05 8.13 8.14 8.25 8.22 8.24 8.24 8.26
(-0.47) (-0.40) (-0.18) (-0.17) (0.14) (0.06) (0.11) (0.10) (0.16)

10 7.99 8.22 8.08 8.11 8.22 8.53 8.46 8.45 8.44
(-0.56) (0.05) (-0.31) (-0.24) (0.05) (0.90) (0.73) (0.71) (0.66)

Inf 7.73 8.12 8.10 8.04 8.03 8.21 8.42 8.47 8.47
(-1.13) (-0.19) (-0.26) (-0.43) (-0.44) (0.03) (0.47) (0.57) (0.57)

15 0 7.92 — — — — — — — —
(-0.57)

0.5 7.86 7.90 7.91 7.92 7.89 7.90 7.87 7.90 7.90
(-0.72) (-0.59) (-0.54) (-0.54) (-0.63) (-0.61) (-0.68) (-0.62) (-0.61)

1 7.89 7.92 7.94 7.95 7.96 7.95 7.89 7.94 7.94
(-0.63) (-0.55) (-0.46) (-0.43) (-0.41) (-0.45) (-0.62) (-0.48) (-0.48)

2 7.96 7.85 7.84 7.92 7.87 7.93 7.96 7.95 7.96
(-0.44) (-0.70) (-0.71) (-0.48) (-0.64) (-0.46) (-0.38) (-0.42) (-0.39)

4 7.84 7.87 7.96 7.97 8.08 8.05 8.07 8.07 8.09
(-0.75) (-0.61) (-0.39) (-0.37) (-0.05) (-0.13) (-0.08) (-0.08) (-0.03)

10 7.76 8.02 7.89 7.92 8.03 8.35 8.28 8.27 8.26
(-0.91) (-0.20) (-0.56) (-0.50) (-0.19) (0.66) (0.49) (0.47) (0.42)

Inf 7.43 7.86 7.85 7.78 7.77 7.97 8.18 8.23 8.23
(-1.63) (-0.64) (-0.70) (-0.89) (-0.86) (-0.27) (0.16) (0.26) (0.26)

20 0 7.75 — — — — — — — —
(-0.80)

0.5 7.70 7.74 7.75 7.75 7.72 7.73 7.71 7.73 7.73
(-0.94) (-0.80) (-0.75) (-0.75) (-0.84) (-0.82) (-0.89) (-0.84) (-0.83)

1 7.72 7.75 7.78 7.79 7.80 7.79 7.73 7.77 7.77
(-0.85) (-0.76) (-0.67) (-0.64) (-0.62) (-0.66) (-0.83) (-0.69) (-0.69)

2 7.79 7.68 7.67 7.75 7.70 7.77 7.80 7.79 7.80
(-0.68) (-0.90) (-0.90) (-0.67) (-0.84) (-0.64) (-0.56) (-0.61) (-0.58)

4 7.65 7.70 7.78 7.80 7.92 7.89 7.91 7.91 7.93
(-1.02) (-0.81) (-0.60) (-0.58) (-0.25) (-0.32) (-0.26) (-0.27) (-0.21)

10 7.54 7.83 7.70 7.74 7.85 8.17 8.10 8.09 8.08
(-1.27) (-0.46) (-0.82) (-0.75) (-0.43) (0.43) (0.25) (0.23) (0.18)

Inf 7.13 7.59 7.60 7.52 7.51 7.74 7.94 7.99 7.99
(-2.13) (-1.08) (-1.13) (-1.36) (-1.28) (-0.58) (-0.14) (-0.04) (-0.04)

25 0 7.58 — — — — — — — —
(-1.03)

0.5 7.53 7.57 7.58 7.58 7.56 7.56 7.54 7.56 7.56
(-1.15) (-1.02) (-0.96) (-0.97) (-1.06) (-1.04) (-1.11) (-1.05) (-1.04)

1 7.55 7.58 7.61 7.62 7.63 7.62 7.56 7.61 7.61
(-1.06) (-0.97) (-0.87) (-0.85) (-0.83) (-0.87) (-1.04) (-0.90) (-0.90)

2 7.61 7.52 7.50 7.59 7.54 7.60 7.64 7.62 7.63
(-0.91) (-1.11) (-1.09) (-0.85) (-1.03) (-0.82) (-0.75) (-0.79) (-0.76)

4 7.46 7.52 7.61 7.63 7.75 7.72 7.74 7.74 7.76
(-1.30) (-1.02) (-0.81) (-0.78) (-0.44) (-0.50) (-0.45) (-0.45) (-0.40)

10 7.31 7.64 7.51 7.55 7.67 7.99 7.92 7.91 7.90
(-1.62) (-0.71) (-1.07) (-1.00) (-0.67) (0.20) (0.02) (0.00) (-0.05)

Inf 6.83 7.32 7.34 7.26 7.25 7.50 7.70 7.75 7.75
(-2.63) (-1.52) (-1.56) (-1.82) (-1.70) (-0.89) (-0.45) (-0.35) (-0.35)

Notes: See Table 2.7 but for QLIKE-based portfolios.
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Table 2.9: Average returns of EL 20-based portfolios

δ

c η 0 0.6 0.8 0.9 0.94 0.98 0.99 0.999 1

0 0 8.43 — — — — — — — —
(0.14)

0.5 8.34 8.36 8.31 8.37 8.39 8.33 8.32 8.30 8.30
(-0.14) (-0.09) (-0.25) (-0.05) (0.00) (-0.16) (-0.20) (-0.26) (-0.26)

1 8.55 8.38 8.47 8.48 8.53 8.57 8.55 8.57 8.57
(0.51) (-0.02) (0.25) (0.28) (0.44) (0.55) (0.50) (0.56) (0.57)

2 8.28 8.36 8.42 8.50 8.54 8.61 8.61 8.61 8.61
(-0.31) (-0.08) (0.08) (0.32) (0.44) (0.60) (0.61) (0.63) (0.62)

4 8.33 8.43 8.42 8.60 8.67 8.70 8.69 8.75 8.73
(-0.17) (0.11) (0.08) (0.59) (0.79) (0.85) (0.82) (0.99) (0.94)

10 7.99 8.45 8.63 8.73 8.78 8.77 8.77 8.80 8.78
(-1.13) (0.16) (0.66) (0.94) (1.08) (1.02) (1.02) (1.08) (1.04)

Inf 7.72 8.70 8.79 8.90 8.88 8.86 8.89 8.83 8.83
(-1.72) (0.79) (0.97) (1.22) (1.14) (1.03) (1.08) (0.97) (0.97)

5 0 8.26 — — — — — — — —
(-0.10)

0.5 8.18 8.19 8.14 8.20 8.22 8.16 8.15 8.13 8.13
(-0.38) (-0.31) (-0.47) (-0.27) (-0.21) (-0.38) (-0.41) (-0.47) (-0.48)

1 8.38 8.22 8.30 8.32 8.37 8.40 8.38 8.40 8.41
(0.28) (-0.23) (0.04) (0.07) (0.23) (0.33) (0.28) (0.34) (0.36)

2 8.11 8.19 8.25 8.34 8.38 8.44 8.44 8.45 8.45
(-0.54) (-0.27) (-0.11) (0.13) (0.24) (0.40) (0.41) (0.43) (0.42)

4 8.14 8.26 8.25 8.43 8.50 8.52 8.51 8.58 8.56
(-0.46) (-0.09) (-0.12) (0.38) (0.58) (0.63) (0.60) (0.76) (0.71)

10 7.76 8.26 8.45 8.54 8.59 8.57 8.57 8.59 8.58
(-1.54) (-0.08) (0.42) (0.69) (0.82) (0.73) (0.73) (0.79) (0.76)

Inf 7.40 8.45 8.57 8.67 8.65 8.62 8.65 8.60 8.60
(-2.33) (0.40) (0.65) (0.89) (0.83) (0.72) (0.78) (0.66) (0.66)

10 0 8.09 — — — — — — — —
(-0.33)

0.5 8.01 8.03 7.97 8.04 8.05 8.00 7.98 7.97 7.96
(-0.62) (-0.54) (-0.70) (-0.49) (-0.43) (-0.60) (-0.63) (-0.69) (-0.69)

1 8.21 8.05 8.14 8.15 8.20 8.23 8.22 8.24 8.24
(0.06) (-0.44) (-0.17) (-0.14) (0.01) (0.11) (0.07) (0.13) (0.14)

2 7.93 8.03 8.09 8.18 8.22 8.28 8.28 8.28 8.28
(-0.77) (-0.46) (-0.30) (-0.06) (0.05) (0.21) (0.22) (0.23) (0.22)

4 7.94 8.08 8.08 8.26 8.33 8.35 8.34 8.40 8.38
(-0.75) (-0.29) (-0.32) (0.17) (0.37) (0.41) (0.38) (0.54) (0.49)

10 7.52 8.08 8.26 8.36 8.40 8.37 8.37 8.39 8.38
(-1.95) (-0.32) (0.18) (0.44) (0.55) (0.45) (0.45) (0.51) (0.47)

Inf 7.07 8.20 8.34 8.44 8.42 8.39 8.42 8.36 8.36
(-2.94) (0.00) (0.33) (0.57) (0.53) (0.42) (0.48) (0.35) (0.35)

15 0 7.92 — — — — — — — —
(-0.57)

0.5 7.84 7.86 7.81 7.87 7.89 7.83 7.82 7.80 7.80
(-0.85) (-0.77) (-0.92) (-0.70) (-0.64) (-0.81) (-0.84) (-0.90) (-0.91)

1 8.05 7.89 7.97 7.99 8.04 8.07 8.06 8.07 8.08
(-0.17) (-0.65) (-0.38) (-0.35) (-0.20) (-0.10) (-0.14) (-0.09) (-0.07)

2 7.76 7.86 7.92 8.01 8.05 8.11 8.11 8.11 8.11
(-1.00) (-0.65) (-0.48) (-0.24) (-0.14) (0.02) (0.02) (0.03) (0.03)

4 7.75 7.91 7.91 8.09 8.16 8.17 8.16 8.22 8.20
(-1.04) (-0.48) (-0.52) (-0.04) (0.16) (0.19) (0.16) (0.32) (0.27)

10 7.29 7.89 8.08 8.17 8.21 8.17 8.16 8.19 8.17
(-2.35) (-0.55) (-0.06) (0.18) (0.29) (0.17) (0.16) (0.22) (0.19)

Inf 6.75 7.95 8.11 8.21 8.20 8.16 8.18 8.12 8.12
(-3.54) (-0.39) (0.01) (0.25) (0.22) (0.12) (0.17) (0.04) (0.04)

20 0 7.75 — — — — — — — —
(-0.80)

0.5 7.68 7.70 7.64 7.70 7.72 7.66 7.65 7.63 7.63
(-1.08) (-0.99) (-1.14) (-0.92) (-0.86) (-1.02) (-1.06) (-1.12) (-1.12)

1 7.88 7.73 7.81 7.82 7.87 7.90 7.89 7.91 7.92
(-0.40) (-0.86) (-0.59) (-0.56) (-0.41) (-0.32) (-0.36) (-0.30) (-0.28)

2 7.58 7.70 7.76 7.85 7.89 7.94 7.95 7.95 7.95
(-1.23) (-0.83) (-0.67) (-0.43) (-0.33) (-0.17) (-0.17) (-0.16) (-0.17)

4 7.56 7.74 7.74 7.92 7.99 8.00 7.99 8.05 8.03
(-1.33) (-0.68) (-0.72) (-0.25) (-0.05) (-0.03) (-0.06) (0.10) (0.05)

10 7.05 7.71 7.90 7.98 8.02 7.97 7.96 7.99 7.97
(-2.76) (-0.79) (-0.30) (-0.06) (0.02) (-0.11) (-0.12) (-0.06) (-0.09)

Inf 6.42 7.69 7.88 7.98 7.97 7.92 7.95 7.89 7.89
(-4.15) (-0.78) (-0.30) (-0.07) (-0.09) (-0.19) (-0.13) (-0.27) (-0.26)

25 0 7.58 — — — — — — — —
(-1.03)

0.5 7.51 7.54 7.48 7.54 7.55 7.49 7.48 7.46 7.46
(-1.32) (-1.21) (-1.35) (-1.13) (-1.07) (-1.24) (-1.27) (-1.33) (-1.34)

1 7.71 7.56 7.64 7.66 7.71 7.74 7.73 7.74 7.75
(-0.62) (-1.06) (-0.80) (-0.77) (-0.62) (-0.53) (-0.57) (-0.51) (-0.49)

2 7.41 7.54 7.59 7.69 7.72 7.78 7.78 7.78 7.78
(-1.46) (-1.02) (-0.86) (-0.62) (-0.52) (-0.36) (-0.36) (-0.36) (-0.37)

4 7.37 7.57 7.57 7.75 7.82 7.82 7.81 7.87 7.85
(-1.62) (-0.87) (-0.92) (-0.46) (-0.26) (-0.24) (-0.28) (-0.12) (-0.17)

10 6.82 7.52 7.71 7.80 7.83 7.77 7.76 7.78 7.77
(-3.16) (-1.02) (-0.54) (-0.31) (-0.24) (-0.39) (-0.40) (-0.34) (-0.38)

Inf 6.09 7.44 7.65 7.75 7.74 7.69 7.71 7.65 7.65
(-4.75) (-1.17) (-0.62) (-0.39) (-0.39) (-0.49) (-0.44) (-0.58) (-0.57)

Notes: See Table 2.7 but for EL 20-based portfolios.



110 2 Volatility forecasting for low-volatility investing

Table 2.10: Average returns of MZ R2-based portfolios.

δ

c η 0 0.6 0.8 0.9 0.94 0.98 0.99 0.999 1

0 0 8.43 — — — — — — — —
(0.14)

0.5 8.36 8.37 8.40 8.39 8.39 8.38 8.39 8.38 8.39
(-0.07) (-0.04) (0.04) (0.01) (0.03) (-0.03) (-0.00) (-0.01) (0.01)

1 8.41 8.42 8.43 8.41 8.41 8.44 8.44 8.43 8.43
(0.06) (0.12) (0.13) (0.09) (0.08) (0.18) (0.17) (0.15) (0.15)

2 8.51 8.45 8.47 8.47 8.45 8.45 8.50 8.48 8.49
(0.38) (0.21) (0.26) (0.26) (0.18) (0.19) (0.35) (0.30) (0.32)

4 8.51 8.69 8.61 8.64 8.61 8.55 8.59 8.62 8.62
(0.37) (0.94) (0.72) (0.74) (0.66) (0.47) (0.60) (0.69) (0.70)

10 8.65 8.55 8.49 8.49 8.57 8.58 8.61 8.62 8.63
(0.78) (0.46) (0.30) (0.31) (0.50) (0.56) (0.63) (0.67) (0.68)

Inf 9.02 8.33 8.24 8.21 8.34 8.37 8.40 8.49 8.54
(1.39) (-0.16) (-0.41) (-0.49) (-0.11) (-0.03) (0.03) (0.25) (0.37)

5 0 8.26 — — — — — — — —
(-0.10)

0.5 8.19 8.20 8.23 8.22 8.23 8.21 8.22 8.22 8.22
(-0.30) (-0.26) (-0.18) (-0.21) (-0.20) (-0.25) (-0.22) (-0.23) (-0.22)

1 8.24 8.26 8.26 8.25 8.25 8.28 8.28 8.27 8.27
(-0.16) (-0.10) (-0.08) (-0.12) (-0.13) (-0.03) (-0.05) (-0.07) (-0.07)

2 8.34 8.29 8.31 8.31 8.29 8.29 8.34 8.32 8.33
(0.15) (-0.01) (0.06) (0.06) (-0.02) (-0.01) (0.15) (0.09) (0.11)

4 8.33 8.52 8.45 8.48 8.46 8.39 8.43 8.46 8.46
(0.12) (0.72) (0.51) (0.55) (0.48) (0.29) (0.41) (0.50) (0.51)

10 8.44 8.38 8.32 8.33 8.40 8.42 8.45 8.46 8.47
(0.45) (0.25) (0.08) (0.10) (0.30) (0.37) (0.45) (0.49) (0.50)

Inf 8.70 8.07 7.98 7.94 8.08 8.12 8.15 8.24 8.28
(0.91) (-0.66) (-0.88) (-0.98) (-0.57) (-0.42) (-0.35) (-0.12) (-0.02)

10 0 8.09 — — — — — — — —
(-0.33)

0.5 8.02 8.04 8.07 8.05 8.06 8.04 8.05 8.05 8.05
(-0.53) (-0.48) (-0.40) (-0.44) (-0.42) (-0.47) (-0.44) (-0.45) (-0.44)

1 8.07 8.10 8.10 8.09 8.08 8.12 8.11 8.11 8.11
(-0.38) (-0.31) (-0.29) (-0.33) (-0.35) (-0.25) (-0.26) (-0.28) (-0.28)

2 8.17 8.13 8.15 8.15 8.12 8.13 8.18 8.16 8.17
(-0.08) (-0.23) (-0.15) (-0.14) (-0.22) (-0.21) (-0.05) (-0.11) (-0.10)

4 8.15 8.36 8.29 8.32 8.30 8.23 8.27 8.30 8.30
(-0.14) (0.51) (0.30) (0.35) (0.29) (0.10) (0.22) (0.31) (0.32)

10 8.24 8.21 8.15 8.16 8.24 8.26 8.29 8.31 8.31
(0.11) (0.03) (-0.13) (-0.11) (0.11) (0.18) (0.28) (0.31) (0.32)

Inf 8.38 7.80 7.71 7.67 7.81 7.86 7.89 8.00 8.03
(0.41) (-1.16) (-1.35) (-1.47) (-1.04) (-0.81) (-0.73) (-0.49) (-0.40)

15 0 7.92 — — — — — — — —
(-0.57)

0.5 7.86 7.87 7.90 7.89 7.89 7.88 7.89 7.88 7.89
(-0.76) (-0.69) (-0.62) (-0.66) (-0.64) (-0.69) (-0.66) (-0.67) (-0.66)

1 7.90 7.93 7.94 7.92 7.92 7.95 7.95 7.94 7.94
(-0.60) (-0.52) (-0.50) (-0.54) (-0.56) (-0.46) (-0.47) (-0.49) (-0.49)

2 8.00 7.97 7.99 7.99 7.96 7.96 8.02 8.00 8.00
(-0.31) (-0.44) (-0.36) (-0.34) (-0.42) (-0.42) (-0.25) (-0.32) (-0.30)

4 7.97 8.20 8.13 8.16 8.14 8.07 8.11 8.15 8.15
(-0.39) (0.30) (0.09) (0.16) (0.11) (-0.08) (0.03) (0.13) (0.13)

10 8.03 8.04 7.98 7.99 8.07 8.10 8.14 8.15 8.16
(-0.22) (-0.18) (-0.34) (-0.31) (-0.08) (-0.00) (0.10) (0.13) (0.15)

Inf 8.06 7.53 7.45 7.40 7.55 7.60 7.64 7.75 7.78
(-0.09) (-1.66) (-1.81) (-1.96) (-1.50) (-1.19) (-1.11) (-0.87) (-0.78)

20 0 7.75 — — — — — — — —
(-0.80)

0.5 7.69 7.70 7.73 7.72 7.73 7.71 7.72 7.71 7.72
(-0.98) (-0.91) (-0.84) (-0.88) (-0.86) (-0.92) (-0.88) (-0.89) (-0.88)

1 7.74 7.77 7.77 7.76 7.75 7.79 7.78 7.78 7.78
(-0.82) (-0.73) (-0.71) (-0.75) (-0.77) (-0.67) (-0.68) (-0.70) (-0.70)

2 7.83 7.80 7.82 7.83 7.80 7.80 7.86 7.84 7.84
(-0.53) (-0.66) (-0.56) (-0.54) (-0.62) (-0.62) (-0.45) (-0.52) (-0.51)

4 7.79 8.04 7.97 8.00 7.99 7.92 7.96 7.99 7.99
(-0.64) (0.09) (-0.11) (-0.03) (-0.07) (-0.26) (-0.15) (-0.06) (-0.06)

10 7.82 7.86 7.82 7.83 7.91 7.94 7.98 7.99 8.00
(-0.56) (-0.40) (-0.56) (-0.52) (-0.27) (-0.18) (-0.08) (-0.04) (-0.03)

Inf 7.75 7.27 7.19 7.13 7.28 7.34 7.39 7.50 7.53
(-0.60) (-2.15) (-2.27) (-2.45) (-1.96) (-1.57) (-1.48) (-1.24) (-1.16)

25 0 7.58 — — — — — — — —
(-1.03)

0.5 7.52 7.54 7.56 7.55 7.56 7.54 7.55 7.55 7.55
(-1.21) (-1.12) (-1.05) (-1.09) (-1.08) (-1.14) (-1.10) (-1.11) (-1.09)

1 7.57 7.60 7.61 7.59 7.59 7.62 7.62 7.61 7.61
(-1.04) (-0.94) (-0.91) (-0.96) (-0.98) (-0.88) (-0.89) (-0.91) (-0.91)

2 7.66 7.64 7.66 7.67 7.64 7.64 7.70 7.68 7.68
(-0.76) (-0.87) (-0.77) (-0.74) (-0.82) (-0.82) (-0.65) (-0.73) (-0.71)

4 7.61 7.87 7.81 7.84 7.83 7.76 7.80 7.83 7.83
(-0.90) (-0.12) (-0.32) (-0.23) (-0.25) (-0.44) (-0.33) (-0.25) (-0.25)

10 7.61 7.69 7.65 7.66 7.75 7.79 7.82 7.84 7.84
(-0.91) (-0.61) (-0.77) (-0.72) (-0.46) (-0.36) (-0.25) (-0.22) (-0.20)

Inf 7.43 7.00 6.92 6.87 7.02 7.08 7.14 7.26 7.28
(-1.13) (-2.64) (-2.72) (-2.93) (-2.41) (-1.95) (-1.86) (-1.60) (-1.54)

Notes: See Table 2.7 but for MZ R2-based portfolios.



3 Measurement error sensitivity of loss

functions for distribution forecasts

Abstract

We examine the sensitivity of loss functions—equivalently called scoring rules—for
distribution forecasts in two dimensions: linear rescaling of the data and the influence
of measurement error on the forecast evaluation outcome. First, we show that all
commonly used scoring rules for distribution forecasts are robust to rescaling the
data. Second, it is revealed that the forecast ranking based on the continuous ranked
probability score is less sensitive to measurement error than the log score. Our
theoretical results are complemented by a simulation study aligned with quarterly
US GDP growth data and an empirical application forecasting realized variances of
28 Dow Jones Industrial Average constituents. In line with its proven gross-error
insensitivity, the ranking of the continuous ranked probability score is the most
consistent between evaluations based on the true outcome and the observations
with measurement error.

3.1 Introduction

Distribution forecasts provide means to communicate the uncertainty that comes along predict-

ing future outcomes as opposed to point predictions. However, in economic forecasting the true

outcome is often a latent variable and, thus, predictions have to be evaluated against noisy

proxy observations. A leading example in communicating the uncertainty of GDP estimates

and forecasts is the Bank of England’s Monetary Policy Committee who reports probabilistic

forecasts of inflation rates and GDP since February 1996 and November 1997, respectively.1 In

this paper, we analyze the sensitivity of distribution forecast evaluation in settings in which the

predictand is observed with measurement error or simply measured on different scales.

For assessing forecast accuracy, Gneiting and Raftery (2007) promote proper scoring rules—

equivalently called loss functions—as an incentive for stating honest beliefs about future out-

comes. We provide an overview of proper scoring rules for distribution forecasts in Table 3.1.

1https://www.bankofengland.co.uk/inflation-report/inflation-reports

https://www.bankofengland.co.uk/inflation-report/inflation-reports
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The table includes both widely used scoring rules like the log score (LogS) and the continuous

ranked probability score (CRPS) but also lesser known ones; for example, the power score or the

pseudo spherical score. Correctly scaled versions of the latter two scores include the log score as

a limiting case (Good, 1971). The quadratic score (QS) can be thought of being a continuous

analogue of the widely-used Brier score for discrete variables (Brier, 1950). The weighted loga-

rithmic scoring rule by Amisano and Giacomini (2007) is not listed as it is an improper scoring

rule (Gneiting and Ranjan, 2011).

Table 3.1: Common proper scoring rules for distribution forecasts

Name Definition Shape PDF CDF

Log(arithmic) score LogS(f, y) = − log f(y) – X –

Censored likelihood score CLS(f, y) = −1{y∈A} log f(y)− 1{y∈AC} log
(∫

AC f(s) ds
)

A ⊂ R X –

Power score PSγ(f, y) = −γf(y)γ−1 + (γ − 1)‖f‖γγ γ > 1 X –
Quadratic score QS(f, y) = PS2(f, y) = −2f(y) + ‖f‖22 – X –

Pseudo spherical score PseudoSδ(f, y) = −f(y)δ−1

‖f‖δ−1
δ

δ > 1 X –

Spherical score SphS(f, y) = PseudoS2(f, y) = − f(y)
‖f‖2 – X –

Hyvärinen score HyvS(f, y) = 2f
′′(y)
f(y) −

(
f ′(y)
f(y)

)2
– X –

Continuous ranked CRPS(F, y) =
∫∞
−∞(F (z)− 1{z>y}(z))2 dz – – X

probability score

Notes: The table provides an overview of proper scoring rules for distribution forecasts. To the best of our
knowledge, the corresponding scoring rules were shown to incentivize stating honest beliefs about future out-
comes by the following authors. LogS: Good (1952), CLS: Diks, Panchenko, and Dijk (2011), PS and QS:
Buehler (1971), SphS: Buehler (1971), PseudoS: Good (1971), HyvS: Hyvärinen (2005), CRPS: Matheson and
Winkler (1976). The latter two columns indicate whether the scoring rules are based on the probability density
function or the cumulative distribution function. ‖ · ‖γ refers to the Lγ norm.

We show that all scoring rules in Table 3.1 are robust to a linear rescaling of the data. This

is achieved by introducing the notion of scaling-invariance for loss functions, which is a slightly

more general definition of homogeneity than the one used in Patton (2011) for point forecasts.

However, this result cannot be generalized to hold for every proper loss function for distribution

forecasts, as it is possible to construct proper scoring rules that are not robust to rescaling by

combining scoring rules of different degrees of scaling-invariance.

When evaluating forecasts using scoring rules, a major problem is that the observed value

of the target variable is not necessarily equal to the true predictand’s value in many economic

situations. For example, in case of additive measurement error, the variance of the observations

is always higher than the variance of the true predictand. This causes proper scoring rules to

prefer distribution forecasts with larger variances than the conditional variance of the predictand

of interest. In order to address this misalignment, Ferro (2017) and Naveau and Bessac (2018)
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propose to calculate error-corrected scoring rules. Their underlying idea for eliminating the

bias introduced due to measurement error is to use the difference between the expected loss

when employing the noisy proxy and the expected loss when employing the true predictand.

However, this approach is tied to knowing the true predictand’s distribution, the underlying

error distribution, and the specific forecast distribution at hand. Such restrictive assumptions

are typically not fulfilled in economic applications. In case of the additive noise model, we only

have strictly proper error-corrected scoring rules if every entity follows a Gaussian distribution.

Therefore, we choose a different approach and quantify the expected deviation in loss due

to employing a noisy proxy for forecast evaluation. A desirable property of loss functions with

respect to our measure of loss-induced bias, the expected absolute deviation function, is that

measurement errors should not be able to increase the expected loss beyond any boundary. Loss

functions that have this property will be called gross-error insensitive. Our measure is linked

to the theory of robust estimators in the notion of Hampel (1968, 1971) and, more specifically,

the influence function of an estimator. The influence function of an estimator quantifies the

change of an estimate due to an infinitesimal distortion in the observations. However, we are

interested in the change of expected forecast rankings and, thus, employ an expected value

framework instead of an infinitesimal approach. The quadratic score and the CRPS turn out to

be gross-error insensitive but the log score is not.

Our results can be linked to the literature on robust estimation in regard to employing proper

scoring rules for M-estimation (Dawid, Musio, and Ventura, 2016). Basu et al. (1998) show that

power scoring rules that deviate from the limiting case of the log score are more robust to small

outliers in the data. On the contrary, Kanamori and Fujisawa (2015) find that large outliers

are best coped with using the pseudo spherical score. A good overview of this branch of the

literature can be found in Ovcharov (2017).

Our theoretical results are illustrated by a simulation study and an empirical application. We

use these to bridge the gap from observing losses in absolute terms to testing for equal predictive

ability in the form of Diebold-Mariano (DM) or Giacomini-White (GW) tests (Diebold and

Mariano, 1995; Giacomini and White, 2006). For simplicity, we will refer to tests for equal

forecast performance always as DM tests as the paper focuses on comparing forecasts, not

models. However, the test outcomes in the simulation and empirical application could also

be understood to be GW tests as they fulfill the criteria of a fixed/rolling window estimation

scheme.
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With a data-generating process aligned with real-time United States (US) gross domestic

product (GDP) growth data, we provide simulation-based evidence that using the CRPS in

DM tests is less sensitive to observational error than using the log score. In the simulation,

the employed measurement error process mimics the empirically observed level of measurement

error present in second-release data of GDP.2 We see that frequent but possibly small level of

observational error causes the quadratic score to perform even worse though it is a gross-error

insensitive loss function. The outcome of the quadratic score being “only” gross-error insensitive

but not “small-error insensitive” is confirmed in the empirical application.

In the empirical application, we evaluate distribution forecasts for asset price volatility of

28 Dow Jones Industrial Average (DJIA) constituents that are evaluated against two different

volatility proxies. As in the simulation, the DM test statistics display the CRPS to be the least

sensitive across different outcome estimates.

The outline of this paper is as follows. Section 3.2 introduces our theoretical results and

Section 3.3 validates their implications in a simulation study. Section 3.4 presents our em-

pirical application, and is followed by a discussion in Section 3.5. All proofs are deferred to

Appendix 3.6.1. We restrict the analysis to real-valued random variables and use the terms loss

function and scoring rule interchangeably while lower values are always considered to be associ-

ated with more precise forecasts. Distribution forecasts in form of densities are always denoted

by lower case letters. Distribution forecasts in form of distribution functions are denoted by

upper case letters.

3.2 Theory

In this paper, we consider loss functions for distribution forecasts that are proper, meaning

that a forecaster’s expected loss is minimized if she states the true conditional distribution of

the outcome variable (Gneiting and Raftery, 2007). As a consequence, proper loss functions

incentivize stating honest beliefs about future outcomes which is evidently a desirable property

of a good forecast evaluation criterion. In Table 3.1, it can be seen that there is a wide range

of different proper scoring rules for distribution forecasts: On the one hand, the log score’s and

2In our context of unconditional forecast evaluation, we subsume every deviation from the latent true predictand
as measurement error in contrast to discussions whether macroeconomic revisions are “news” or “noise” (e.g.,
Faust, Rogers, and Wright, 2005; Aruoba, 2008). Similarly, Clements and Galvao (2018) employ data revision
uncertainty in macroeconomic models for improving density forecasts. We will restrict ourselves to forecast
evaluation.
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the Hyvärinen score’s realized loss only depends on the value of the density function and its

derivatives at the outcome. On the other hand, the power score and the pseudo spherical score

employ the likelihood and the Lγ norm as an additional measure of sharpness that is independent

of the outcome. Contrary to all other loss functions listed in Table 3.1, the CRPS can also be

calculated without knowing the density function which is especially helpful when dealing with

Markov Chain Monte Carlo output. In the following, we examine the influence of rescaling the

data and measurement error on forecast evaluation.

3.2.1 Rescaling the data and forecast rankings

In economic applications, the units of measurement may vary; for example, returns are either

reported in decimals or percentages. Therefore, it is of interest if a simple linear rescaling of the

data may change the ranking of forecasts and for which loss functions the ranking is robust to

such data transformations. We will see that not every proper scoring rule has this property.

Regarding point forecasts, Patton (2011) shows that the expected ranking for homogeneous

loss functions does not change due to rescaling. In the context of evaluating a point forecast ŷ

for realization y, the homogeneity of a loss function L of degree k is given by

L(λŷ, λy) = λkL(ŷ, y) for all λ > 0.

As we consider distribution forecasts, we introduce a more general notion of the term homo-

geneity.

Definition 3.1. A scoring rule L for a distribution forecast F is said to be scaling-invariant of

order k ∈ R if for all λ > 0 and all possible realizations y we have that

L(Fλ, λy) = λkL(F, y) + C(λ, y)

with Fλ(y) = F (y/λ) and C being a function of λ and y.

Definition 3.1 says that if the distribution forecasts and the observations are scaled up or

down by the same constant λ > 0, the loss may increase or decrease multiplicatively in λ and

a shift C(λ, y) that does not depend on the forecast. Instead, the shift should only depend on

the realization and the scaling factor λ. As scaling-invariance is not merely defined for density

but for distribution forecasts in general, the notion of homogeneity of loss functions discussed
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in Patton (2011) is nested if one considers distribution forecasts with point mass one in the

outcome space:

Remark 3.1. If we consider a point forecast y0, F (x) = 1{y0≤x}(x), Definition 3.1 reduces to

the homogeneity of loss functions considered in Patton (2011, Proposition 3) with C ≡ 0.

The result that all commonly used loss functions in Table 3.1 are scaling-invariant is stated

below in Proposition 3.1.

Proposition 3.1. The log score, censored likelihood score, power score, pseudo spherical score,

Hyvärinen score, and continuous ranked probability score are scaling-invariant of the following

order. LogS: zero, CLS : zero, PSγ: 1− γ, PseudoSδ: (1− δ)/δ, HyvS: two, CRPS: one.

The following Proposition 3.2 is an analogous result to the findings laid out in Patton (2011,

Proposition 3). Instead of focusing on homogeneous loss functions for point forecasts, we now

examine these for distribution forecasts.

Proposition 3.2. (a) The ranking of two distribution forecasts by expected loss is invariant

to a rescaling of the data if the loss function is scaling-invariant.

(b) The ranking of two distribution forecasts by expected loss may not be invariant to a rescaling

of the data if the loss function is not scaling-invariant.

Hence, it is shown that all commonly used loss functions for distribution forecasts are robust to

rescaling the data because they fulfill the notion of scaling-invariance introduced in Definition 3.1.

The proof of the second part of Proposition 3.2 employs the sum of the LogS and the CRPS as

a proper scoring rule. As these two loss functions are scaling-invariant of different order, the

ranking can be reversed by rescaling the data even in the simple case of Gaussian distribution

forecasts.

It is worthwhile to note that the definition of scaling-invariance implies changes in loss dif-

ferences to be only scaled up or down by λk and, hence, the test outcome for equal predictive

ability by means of a DM or GW test statistic will be unaffected by the rescaling. A similar

notion has been discussed in Patton, Ziegel, and Chen (2019) where they consider scoring rules

for value-at-risk and expected shortfall that generate homogeneous loss differences of order zero.
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3.2.2 Measurement error and forecast rankings

After assessing robustness with respect to rescaling the data, we turn to assessing the impact

of additive measurement error present in many economic contexts. Our aim is to examine for

which loss functions the ranking of competing forecasts is less likely to reverse in the presence of

observational error and not to propose altered scoring rules that compensate the noise-induced

bias. In this section, we show theoretically that the rankings of forecasts by the CRPS and, to a

lesser extent, the quadratic score are less sensitive to measurement error than the log score. We

restrict ourselves to these three leading examples because the log score and CRPS are the most

widely-employed scoring rules for distribution forecasts and the quadratic score is interesting

due to its relationship to the log score.3 The implications will be analyzed via a simulation

study in Section 3.3 and an empirical application in Section 3.4.

In the following, the setup is always that there is a true latent predictand random variable Y

and corresponding observations Ỹ with measurement error, Ỹ = Y + U . We want to identify

forecasts that are superior in forecasting Y but we can only use Ỹ for forecast evaluation.4 For

quantifying the induced bias due to noise, we define the expected absolute deviation function.

Definition 3.2. The expected absolute deviation function of a loss function L with respect to

the distribution forecast F and forecast error distribution G at realization y is defined as

EADF(L,F, y,G) = EU

∣∣L(F, y + U)− L(F, y)
∣∣ ,

where U is G-distributed, U ∼ G.

The definition of the expected absolute deviation function is inspired by the notion of the

influence function in robust statistics (Hampel et al., 1986, p. 84). The influence function has

an intuitive interpretation as describing the effect of infinitesimal observational errors on the

asymptotic value of an estimator. Likewise, the expected absolute deviation function quantifies

the bias in the expected loss implied by a certain error distribution G with respect to a certain

distribution forecast F . The main difference is that in our definition we are considering expected

3In this paper, we only use analytical expression for the quadratic score of the normal and the log-normal
distribution but Appendix 3.6.2 includes additional results for the mixture of normals, student-t, generalized
beta, and two-piece normal distribution because they are widely applied in macroeconomics and financial
econometrics. For all distributions (besides the mixture of normals distribution) we report the more general
power score by calculating the densities’ Lγ norm instead of the L2 norm.

4We restrict ourselves to the additive measurement error specification because to us it appears to be the most
prevalent scenario in economics. Future research could extend our results to a multiplicative error structure.
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deviations with respect to a certain error distribution. Even though it is not the focus of this

paper, we will discuss the extension of our results in terms of finite-sample breakpoints (Hampel,

1968, 1971; Huber, 1984) in Remark 3.2 at the end of this section.

Definition 3.2 is bounded to one distribution forecast F and one forecast error distribution G.

However, in most forecasting situations one is confronted with time-varying distribution forecasts

and sometimes even time-varying measurement error. In order to address this problem, we

define a summary statistic of the expected absolute deviation function with respect to classes of

forecast and noise distributions. For example, when forecasting macroeconomic variables using

Bayesian vector autoregressive models, forecasts may have time-varying parameters but are part

of a certain family of distributions; for example, the class of mixture of normal distributions.

Similarly, one may not be able to model the measurement error accurately but may be sure

that the distribution of the measurement has at least a finite second moment. For assessing the

overall impact of measurement errors in this scenario, we want to quantify the expected absolute

deviation with respect to all possible distribution forecasts (e.g., the class of mixture of normal

distributions) and all possible error distributions that we assume to be realistic (e.g., the class of

all distributions with finite second moment). This motivates our next definition of loss function

sensitivity.

Definition 3.3. The gross-error sensitivity γ∗ of a loss function L with respect to a forecast

distribution F in PF and an error distribution G in PG is defined as

γ∗ = sup
y

EADF(L,F, y,G).

Moreover, we call the loss function L gross-error insensitive with respect to forecast distributions

F in PF and error distributions G in PG if γ∗ <∞ for all F ∈ PF and G ∈ PG.

The gross-error sensitivity γ∗ can be interpreted as an upper bound to the worst expected

absolute deviation of the loss function from its “true” value without observational error.

As it was the case in the definition of the expected absolute deviation function, our notion of

gross-error sensitivity is closely related to the (infinitesimal) gross-error sensitivity considered

by Hampel et al. (1986, p. 87).

The implications for the forecast ordering can be seen from the following example. Let F1

and F2 denote two different forecasts and Ỹ = Y + U the sum of the true predictand random

variable Y and a measurement error U ∼ G. Furthermore, assume that F1 is the better forecast
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in expectation; that is, there exists L > 0 such that

EY [L(F2, Y )]−EY [L(F1, Y )] = L > 0.

Given that the EADF is gross-error insensitive, we can find a sufficient condition for obtaining

the same ranking using the noisy proxy; that is,

E
Ỹ

[L(F2, Ỹ )]−E
Ỹ

[L(F1, Ỹ )] > 0. (3.1)

We assume L to be gross-error insensitive with respect to our forecasts F1, F2 and error dis-

tribution G (i.e., γ∗F1
for F1, γ∗F2

for F2). If we further assume that max{γ∗F1
, γ∗F2
} < L/2,

then

EY,U

[∣∣∣L(F2, Ỹ )− L(F2, Y )
∣∣∣+
∣∣∣L(F1, Ỹ )− L(F1, Y )

∣∣∣
]
≤ 2γ∗ < L. (3.2)

Hence, if γ∗F1
and γ∗F2

are small enough relative to the forecast loss difference L, the expected

ranking is ensured to stay the same as Equation (3.2) implies Equation (3.1) to hold.

Our approach of discussing the bias in forecast evaluation introduced by measurement error is

different from calculating error-corrected scoring rules as in Ferro (2017) and Naveau and Bessac

(2018) that are only available for a handful of concrete pairs of forecast and error distributions.

We highlight this difference by looking at the leading example of error-corrected scoring rules

in Ferro (2017): Assume that the forecast distribution F is a normal distribution with mean

µ and variance σ2. Additionally, the true predictand Y is normally distributed with mean µ0

and variance σ2
0 and the independent additive measurement error U is a zero-mean normally

distributed random variable with variance c2. Then, the expected score of F with respect to

Ỹ = Y + U is given by

E
Ỹ

[LogS(F, Ỹ )] =
1

2
log(2π) + log σ +

(µ− µ0)2 + σ2
0 + c2

2σ2
(3.3)

which exceeds the expected score of F with respect to Y ,

EY [LogS(F, Y )] =
1

2
log(2π) + log σ +

(µ− µ0)2 + σ2
0

2σ2
, (3.4)

by an amount of c2/(2σ2). Whereas Equation (3.4) is minimized for µ = µ0 and σ2 = σ2
0,

Equation (3.3) is minimized if µ = µ0 but σ2 = σ2
0 + c2. This is an example that the log score as
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a proper scoring rule favors a model that predicts Ỹ (the noisy variable) instead of a model that

predicts Y (the noise-free variable). Given our knowledge about the difference in E
Ỹ

[LogS(F, Ỹ )]

and EY [LogS(F, Y )], Ferro (2017) defines the error-corrected log score LogSc(F, Y ) in this sce-

nario to be

LogSc(F, y) = LogS(F, y)− c2

2σ2
. (3.5)

By construction, the expected core in Equation (3.5) is again minimized if µ = µ0 and σ2 = σ2
0.

Using this error-corrected scoring rule in contrast to the “vanilla” log score, one incentivizes

stating honest beliefs about the true predictand Y instead of Ỹ . However, this comes at a cost.

Evidently, Equation (3.5) readily implies that in empirical applications c has to be correctly spec-

ified in order to alter the incentives into the right direction. Moreover, error-corrected scoring

rules in our additive observation error model do not need to be as easily derived as suggested by

Equation (3.5). Ferro (2017) and Naveau and Bessac (2018) derive two error-corrected strictly

proper scoring rules for additive observational error: the error-corrected log score and CRPS—

but only so for Gaussian distribution forecasts with independently and normally distributed

noise. Alternatively, Ferro (2017) proposes an error-corrected Dawid-Sebastiani score (Dawid

and Sebastiani, 1999) under slightly more general terms but this score does not discriminate be-

tween forecast distributions with the same first and second moments. However, this means that

the evaluation of rivaling distribution forecasts is reduced to a joint point forecast evaluation of

predictive mean and variances.

Now, we come to the main proposition of this paper regarding the gross-error sensitivity of

selected scoring rules in Table 3.1.

Proposition 3.3. (a) The log score is generally not gross-error insensitive for any class of

forecasts that includes the class of normal distributions and error distributions with finite

second moment.

(b) The quadratic score is gross-error insensitive with respect to the subclass of all forecasts

f ∈ L2 which fulfill f(x) ≤ f for some individual upper bound f > 0 and arbitrary error

distributions G.

(c) The CRPS is gross-error insensitive with respect to forecast distributions F that have finite

first moment and error distributions G that have finite first absolute moment.

The counterexample in the proof of part (a) in Proposition 3.3 is a very general one for a
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Gaussian distribution forecast and a general error distribution U for which the only assumption

is E[U2] <∞.5

The proofs of part (b) and (c) in Proposition 3.3 provide additional insight: We show that

the upper bound of the CRPS with respect to error distributions U with finite first moments is

independent of the forecast distribution itself,

EADF(CRPS, F, y,G) ≤ EU |U | .

This is in contrast to the upper bound of the EADF of the QS,

EADF(QS, f, y, g) ≤ 2f

that depends on the upper bound of the density forecast f . This implies that for different

noise-to-signal scenarios either the QS or CRPS will perform better. In our simulations and the

empirical section, the CRPS reigns supreme.

In comparison to Patton (2011), we have not derived a class of loss functions for which the

ranking of two models will be preserved in expectation when using a noisy proxy for forecast

evaluation. However, we can say that the ranking is ensured to be less sensitive to measurement

error for some loss functions than for others.

An insight on the negative result regarding the log score can be gained from the literature

on M-estimation. The maximum likelihood estimator achieves the Cramér-Rao lower bound

and can be interpreted to put equal weight on each observation (Basu et al., 1998, p. 551)—

even distorted observations. For deriving their results, Basu et al. (1998) reinterpret maximum

likelihood estimation in terms of minimizing the Kullback-Leibler divergence which itself is the

divergence associated with the log score. Given that the log score is the limiting case of the

appropriately scaled power score for γ → 1, they examine an efficiency/robustness trade-off.

Another interpretation of our results is that if one wants to evaluate distribution forecasts in

the presence of noise and is interested in identifying good forecasts for the true predictand, one

should use a loss function that is not as discriminatory between distributions as the log score is.

Remark 3.2. Beyond the infinitesimal approach of error sensitivity that was the blue print for

our definition of expected loss deviation, Hampel (1968, 1971) and Huber (1984) also discuss

5Note that a similar argument as in the proof of part (b) could be made to prove the gross-error insensitivity of
the pseudo spherical score.
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finite sample characteristics of estimators: Given a finite sample x1, . . . , xn, and the correspond-

ing sample mean and median it can be shown that even distorting a single observational value

may cause the sample mean to increase by an arbitrarily large number whereas for the sample

median one would need to change n/2 observations to observe such a distortion. Hence, the sam-

ple mean is said to have a breakdown point of zero whereas the sample median has a breakdown

point of 1/2 and this notion can be extended to finite sample losses.

For comparing the influence of changing a single observation on loss differences, Figure 3.1

shows that the log score and the CRPS may increase above any upper bound if the realization is

far enough in the tails of the predictive distribution. On the contrary, the maximum value of the

quadratic score is always the squared L2 norm of the predictive density. In this sense, the log

score and the CRPS have a “loss breakdown point” of zero whereas for the quadratic score the

corresponding entity would be infinite.

Figure 3.1: LogS(f, y), QS(f, y) and CRPS(f, y) in case of a standard Gaussian density forecast f .
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Note: Losses are standardized by subtracting their values at y = 0.

Summing up the theoretical section, we proved the robustness of all commonly used scoring

rules for distribution forecasts to a linear rescaling of the data and the gross-error insensitivity

of the quadratic score and CRPS in comparison to the log score. The results hold even for

biased estimates of the true predictand and under mild regularity conditions on the additive

error process. However, in comparison to the results of Patton (2011) regarding point forecasts,

our findings do not imply that the expected forecast ranking using the noisy proxy always equals

the forecast ranking using the true latent outcome. Instead, it is more likely to coincide for the

QS and CRPS than for the log score.
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3.3 Simulation

We evaluate our theoretical results in a simulation study tailored to US GDP growth data,

which is the most prominent example for a time series featuring revision cycles in macroeco-

nomics (Croushore, 2011). In the simulation, we examine the influence of different degrees of

measurement error on the test outcomes of forecast rankings. The result is that the gross-error

insensitivity of the CRPS leads to more stable DM test statistics in the presence of observational

error.

3.3.1 ARMA model and observational error

The general idea is that we simulate a true underlying process which we want to forecast but,

as often in practice, we only observe the outcome measured with error. In the simulation, we

want to compare the alignment of forecast rankings with respect to three different measurement

error scenarios: small and large continuously added noise and infrequent gross errors. The

data-generating process is an ARMA(1,1),

Yt = 0.7Yt−1 − 0.38εt−1 + εt, (3.6)

with εt
i.i.d.∼ N (0, σ2

ε), σ
2
ε = 4.43. The parameters are chosen by maximum likelihood estimation

on final quarterly US GDP growth rates in between 1989Q1 to 2015Q4.6 In each of the 2,000

simulation runs, we simulate T = P + R observations with P = R = 100. This corresponds to

a scenario with each 25 years of quarterly data for estimation and forecast evaluation.

The observations used for model estimation and forecast evaluation are contaminated obser-

vations Ỹt = Yt +Ut. In Scenario 1, we set Ut
i.i.d.∼ N (0, σ2

1). We choose σ1 = 1.38, the empirical

standard deviation of the observed difference between the second release and the 12th release

of GDP growth estimates. Hence, this scenario corresponds to the case of the second release

measurement error of GDP growth for which the null hypothesis of normality using the Shapiro-

Wilk test is generally not rejected with a p-value of 0.94. In Scenario 2, we choose to simulate

an even larger Gaussian measurement error with σ2 = 2σ1 representing the case of a very low

signal-to-noise ratio. The measurement error in Scenario 3 is a normally distributed random

variable with a variance larger than in Scenario 1 and 2, σ2
3 > σ2

1, σ3 = 4, times an independent

Bernoulli random variable for which the success probability is chosen such that Var(Ut) = σ2
1

6The data used for calibration is explained in more detail in Appendix 3.6.3.
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in both Scenario 1 and 3,

Ut ∼ N (0, σ2
3)×Bernoulli(1−

√
1− σ2

1/σ
2
3).

This can be interpreted as a scenario with rare but possibly large measurement errors.

On the simulated data, we compare two forecasting models. First, an ARMA(1,1) model is

fitted on the first 100 “quarters” of the contaminated observations Ỹt in each simulation run.

The conditional distribution forecast is thus given by a Gaussian density in which the mean is

given by the conditional mean forecast of the fitted ARMA model and the conditional standard

deviation is given by the maximum likelihood estimate for σε. The second model is a simple

time-invariant Gaussian forecast density for which the mean and variance are given by the sample

mean and sample variance of Ỹt in the estimation period. Thus, the expected ranking of proper

scoring rules in the absence of measurement error favors the ARMA model as it is similar to

the true underlying process (subject to estimation error) while the alternative model is severely

misspecified.7

In each simulation run, we fit the two models on the contaminated observations Ỹt and compare

the forecast ranking outcomes with respect to Ỹt and the true but assumed to be unobservable

Yt. At time t in simulation run j, we calculate the corresponding loss differences dj,t and d̃j,t

where values smaller than zero indicate that the ARMA forecasts are better. The log scores of

our models are given by the logarithm of the normal density function evaluated at the outcome

values. For calculating the quadratic score, we need the squared L2-norm of the predictive

normal distribution which is given by

‖fNorm(µ, σ2)‖22 =
1

2
√
πσ

.

For details see Appendix 3.6.2. The closed-form solution of the CRPS of a normal distribution

forecast has been derived in Gneiting et al. (2005). Thereafter, we calculate the DM test statistics

using Newey-West standard errors (Newey and West, 1987) in each simulation run j; that is, for

both the loss differences dj,t using the true outcome and d̃j,t using the proxy observations with

7In finite samples, severely misspecified models may perform better in forecast performance than correctly
specified models. The setup is chosen such that this is avoided in our simulation.
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measurement error, we have

tj =
dj,t

V̂ar(dj,t)
and t̃j =

d̃j,t

V̂ar(d̃j,t)
.

3.3.2 Simulation results

In Table 3.2, we report summary figures across the simulation runs. In the first column, the

share of equal forecast rankings across all simulation runs j is given. The ranking of the models

appears to be most stable for the CRPS. It has the largest share of equal rankings in Scenario

1 and 2. In Scenario 3 the CRPS is just barely trailing behind the QS. The results reported in

the second column show that tj , the cross-simulational average of tj , is the smallest for the log

score. This is in line with the notion of the log score obtaining the highest power to distinguish

among densities. In the third column we report the difference between the averages tj and t̃j .

The bias in the test statistic due to employing Ỹt instead of the latent Yt is always the smallest

for the CRPS. It is noteworthy that the log score performs the worst in Scenario 3, the scenario

with infrequent gross errors. Here, the difference t̃j − tj is more than three times larger than

the difference for the CRPS.

Third, we report the standard deviation of the differences t̃j − tj . In Scenario 1 and 2, this

measure of variability is the lowest for the CRPS. In Scenario 3, it is only the second lowest for

the CRPS but closer in value to the QS than the LogS for which we observe the largest standard

deviation of t-statistic differences. All in all, the test statistics based on the CRPS are the least

affected by measurement error.

3.4 Empirical application

The empirical application in this paper is targeted at comparing two rivaling distribution fore-

casts of realized variances. In line with the simulation results in Section 3.3, the CRPS gives the

most consistent results between the outcome measurement that is considered to be the “true”

realization and another one with larger measurement error.

3.4.1 Forecasting volatility

We examine to what extent the ordering of two different models may change when using different

volatility proxies for forecast evaluation. It is known that the precision of realized variance
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Table 3.2: Out-of-sample forecast comparison for simulation study.

Equal loss DM test stat.

ranking tj t̃j − tj sd(t̃j − tj)
Scenario 1: Normally distributed noise, σ1 = 1.38

LogS 0.93 -2.45 -0.72 0.61
QS 0.91 -2.00 -0.61 0.71
CRPS 0.95 -2.05 -0.36 0.56

Scenario 2: Normally distributed noise, σ2 = 2σ1

LogS 0.81 -2.17 -1.51 1.23
QS 0.79 -1.64 -1.64 1.24
CRPS 0.85 -1.30 -0.67 1.04

Scenario 3: Infrequent outliers

LogS 0.95 -2.36 -0.40 0.55
QS 0.98 -1.95 -0.12 0.30
CRPS 0.98 -2.08 -0.11 0.31

Notes: Scenario 1, 2, and 3 correspond to three different mea-
surement error scenarios. The true data-generating process is
an ARMA(1,1) calibrated on quarterly US GDP growth rates,
see Equation (3.6). In Scenario 1, the observation error is
a mean zero Gaussian random variable with σ1 = 1.38. In
Scenario 2, the measurement error’s standard deviation is in-
creased to σ2 = 2σ1. The third panel corresponds to the case of
a mean zero normally distributed random variable with σ3 = 4
times an independent Bernoulli random variable such that the
variance of their product is equal to the measurement error
variance in Scenario 1. Figures in bold indicate the largest
share of equal rankings, the lowest observed average bias in
the DM test statistic based on Newey-West standard errors,
and the lowest standard deviation of the observed deviations
in the test statistic. In total there are 2,000 simulation runs.

estimators decreases on days on which the integrated quarticity of the price process is higher

(Barndorff-Nielsen and Shephard, 2002).

However, there are additional dimensions that make it important to have robust loss functions

for volatility forecasting. The underlying data may be of different quality across time even for a

single stock. For example, stocks that enter the S&P 500 are automatically traded more often

as they become part of numerous ETFs along this step. Similarly, the quality of the volatility

proxy may differ across stocks that enter a cross-sectional forecast evaluation. Last, given that

high-frequency data is vast and has to be thoroughly cleaned another source of error is the

cleaning process itself. Other authors discussing density forecasts for stock market volatility are

Corsi et al. (2008), Corradi, Distaso, and Swanson (2009, 2011), Nonejad (2017), and Catania

and Proietti (2020).
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Our data set comprises 28 DJIA stocks in between 2000 and 2017. Based on intraday data,

we compute at each day t and for each stock i two variance proxies denoted by RVi,t and

R̃V i,t that are based on either squared 5-minute or squared 15-minute returns. Additionally,

we compute 15-minute semivariances, R̃V
+

i,t and R̃V
−
i,t. More details on the data set can be

found in Appendix 3.6.4. The average absolute difference between the two volatility proxies RV

and R̃V in our sample across stocks and time is 0.65 when returns are measured in percentages

relative to an average RV value of 2.73. As an example, we present smoothed densities of the

differences in Figure 3.2 for the case of Apple Inc. The average level of RV for this stock is 5.04.

We divide the sample into two subgroups: differences recorded on days on which the 5-minute

realized variance is below (red) or above (blue) the empirical median inside the sample. It is

evident that most of the differences in measurement are concentrated around zero. However,

the dispersion of measurement errors is a lot higher in the high-volatility subsample depicted in

blue.

Figure 3.2: Difference between volatility proxies for Apple Inc.

0.0

0.5

1.0

1.5

2.0

-5.0 -2.5 0.0 2.5 5.0

R̃V− RV

Notes: Smoothed histograms of the difference between the realized variance sampled on 15- or 5-minute
returns; that is, R̃V - RV in case of Apple Inc. The density of observations below the empirical sample median
is depicted in red, above the median in blue. The histogram is truncated discarding 219 observations. The
time period is 2000–2017.

.

3.4.2 Volatility models

We employ two different heterogeneous autoregression (HAR) models for obtaining rivaling

distribution forecasts of future volatility. In contrast to wide strands of the literature on volatility

forecasting, we choose to model the realized variance process not in levels but in logs. The

benefit of modeling the logarithm of RV is the empirical observation that the logarithm of RV
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is approximately normally distributed which enables us to compute closed-form distribution

forecasts under the log-normality assumption.

First, our benchmark HAR model for each stock i is a simple autoregressive process that

models tomorrow’s log-volatility as a linear combination of past aggregated realized variances

on a daily frequency:

log R̃V i,t+1 = α0 + αd log R̃V i,t + αw log R̃V i,t−4:t + αm log R̃V i,t−21:t + ξi,t,

in which the k-period cumulative realized variance is defined as R̃V i,t−k:t = 1/k
∑k−1

j=0 R̃V i,t−j

and E[ξi,t|Ft−1] = 0 with Ft−1 denoting the information set up to time t − 1. This model was

introduced by Corsi (2009) and it readily implies one-step-ahead forecasts µ̂HAR
i,t+1|t for the log-

mean of future R̃V. The one-step-ahead log-standard deviations σ̂HAR
i,t+1|t of our predictive densities

are chosen to be the empirical standard deviations of the residuals in the rolling estimation

window.

Second, Patton and Sheppard (2015) employed the realized semivariances introduced by

Barndorff-Nielsen, Kinnebrock, and Shephard (2010) in a semivariance HAR (SHAR) model

by substituting the current-day realized variance by its up- and down-semivariance,

log R̃V i,t+1 = β0 + β+
d log R̃V

+

i,t + β−d log R̃V
−
i,t + βw log R̃V i,t−4:t + βm log R̃V i,t−21:t + ξ̃i,t

with E[ξ̃i,t|Ft−1] = 0. Here, we once again use the log-values in contrast to Patton and Sheppard

(2015) in order to get predictive values for the log-mean µ̂SHAR
i,t+1|t and log-standard deviation

σ̂SHAR
i,t+1|t. We denote the one-step-ahead density forecast at day t with

fHAR
i,t+1|t = fLNorm(µ̂HAR

i,t+1|t, (σ̂
HAR
i,t+1|t)

2) and fSHAR
i,t+1|t = fLNorm(µ̂SHAR

i,t+1|t, (σ̂
SHAR
i,t+1|t)

2),

where fLNorm(µ, σ2) is the log-normal density function with log-mean µ and log-variance σ2. Both

models are estimated using ordinary least squares estimation.

Both models are fitted separately for each stock on a daily rolling estimation window. The first

estimation window starts in January 2000 and ends on the last day of December 2004. In total,

we have T = 4518 days. The estimation window is of length R = 1246 and the out-of-sample

period of length P = 3272.
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3.4.3 Forecast evaluation for different volatility proxies

In order to examine the influence of using different volatility proxies for evaluating the distri-

bution forecasts, we calculate the out-of-sample forecast errors both with respect to RV based

on 5-minute returns and R̃V based on 15-minute returns. A closed-form solution for the CRPS

with respect to a log-normal distribution is derived in Baran and Lerch (2015). For the ana-

lytical solution for the QS we calculated the corresponding squared L2-norm of a log-normal

distribution fLNorm(µ, σ2) with log-mean µ and log-variance σ2,

‖fLNorm(µ, σ2)‖22 =
1

2
√
πσ

exp

(
σ2

4
− µ

)
.

A detailed derivation can be found in Appendix 3.6.2.

The forecast evaluation results are presented in Table 3.3. As in the simulation study, we

consider the sensitivity of the DM test statistics for stock i using the two volatility proxies,

denoted by tRV
i and tR̃V

i . In both cases, the variances of the corresponding loss differences are

estimated using Newey-West standard errors.

The average DM test statistic for the log score and the 5-minute RV is 3.16 in comparison to

an average value of 1.61 in the case of the CRPS as reported in column one of Table 3.3. We

observe that the average difference in the test statistics is the lowest for the CRPS, mimicking

our results in our previous simulation study. It is also noteworthy that the “bias” in the test

statistic for the CRPS is almost only one-third of the value for the log score. As an additional

measure to sensitivity of measurement errors, Table 3.3 also reports the standard deviation

between the DM test statistic with respect to RVt and R̃V t in column three. The standard

deviation of the difference across stocks is the highest for the log score and the lowest for the

CRPS. Hence, we have further evidence that comparing distribution forecasts with respect to

noisy proxies is less sensitive when using the CRPS instead of the log score.

3.5 Conclusion

This paper examines the evaluation of distribution forecasts in the presence of measurement

error. First, we address the forecast ranking invariance under linear rescaling of the data; for

example, reporting returns in percentages or annualized quarterly logarithmic growth rates. All

commonly used loss functions are shown to imply the same expected ranking for the rescaled
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Table 3.3: Out-of-sample forecast comparison for different volatility proxies.

DM test stat.

tRV
i tR̃V

i − tRV
i sd(ti

R̃V − tRV
i )

LogS 3.16 3.75 1.71
QS 2.30 3.30 1.78
CRPS 1.61 1.36 0.82

Notes: In the first column we report the average t-statistic of the DM tests across 28 DJIA stocks when
employing the more accurate volatility proxy based on 5-minute returns. The second and third column
report the differences and standard deviations of the DM tests based on 5-minute and 15-minute returns.
Numbers in bold report the smallest average difference and standard deviation. The initial estimation
period comprises the data from 2000 to 2004 which also determines the length of the rolling estimation
window. The losses are calculated on the evaluation period starting in 2005 and ending in 2017. DM tests
are calculated using Newey-West standard errors.

data as they do for the original data. Second, we address the influence of additive measurement

error present in many economic time series; for example, GDP growth and volatility. Evaluating

distribution forecasts in the presence of these errors is particularly difficult. On the one hand,

the forecasts are supposed to indicate the true uncertainty of the predictand’s future outcomes

but, on the other hand, they are evaluated against observations that are uncertain themselves.

Proper scoring rules will always favor forecasts that match the observations’ distribution and

not necessarily the distribution of the true predictand. However, in our theoretical findings we

show that the quadratic score and the CRPS are less prone to change forecast rankings in the

presence of observational error than the log score. Both the empirical application on a cross-

section of 28 DJIA constituents and the simulation aligned with US GDP growth rates are in line

with our theoretical results. The CRPS turns out to be the best measure for examining forecast

performance in the presence of small and gross observational error. Even though the quadratic

score is gross-error insensitive, the simulation study and the empirical findings suggests that it is

only insensitive with respect to possibly large but less frequent observational errors. The CRPS

does not suffer this drawback. Thus, it is our recommended forecast evaluation criterion.

As a direction for further research, we see the possible implications for multivariate forecasting.

Evaluating multivariate predictive distributions makes it possible to assess both the forecast

accuracy in each dimension and the joint dependency structure. It would be interesting to

examine the sensitivity of joint density evaluation for a set of variables with a varying degree of

measurement error. Empirical examples are the different degrees of measurement error in GDP

and inflation or multivariate volatility forecasting for different stocks.
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3.6 Appendix

3.6.1 Proofs

Lemma 3.1. Let Y be a random variable with density function fY (x), fY ∈ Lγ. Then, for the

corresponding scaled random variable λY, λ > 0 it holds that ‖fλY ‖γ = λ
1−γ
γ ‖fY ‖γ.

Proof of Lemma 3.1. If Y ∼ fY , then fλY (x) = fY (x/λ) · 1/λ. Hence, by substitution:

‖fλY ‖γ =

(∫ ∞

−∞
fY

(
x

λ

)γ
λ−γ dx

)1/γ

=

(
λ1−γ

∫ ∞

−∞
fY

(
x

λ

)γ 1

λ
dx

)1/γ

= λ
1−γ
γ

(∫ ∞

−∞
fY (x)γ dx

)1/γ

= λ
1−γ
γ ‖fY ‖γ

Proof of Proposition 3.1. Let Y ∼ FY and consider the corresponding scaled variable λY, λ > 0.

If Y has a continuous density fY , we have that λY ∼ fλY (x) = fY (x/λ) · 1/λ.

LogS: The scaled log score is given by

LogS(fλY , λy) = − log(fλY (λy))

= − log(fY (y)) + log(λ)

= LogS(fY , y) + log(λ)

Hence, it is scaling-invariant of order 0.

CLS: The initially defined region of interest A ⊆ R is scaled accordingly to Aλ = {x ∈

R | x/λ ∈ A}. Applying our results for the log score, we have that

CLS(fλY , λy) = −1{λy∈Aλ} log(fλY (λy))− 1{λy∈ACλ } log

(∫

ACλ

fλY (s) ds

)

= −1{λy∈Aλ}[log(fY (y))− log(λ)]− 1{λy∈ACλ } log

(∫

ACλ

fY (s/λ) · 1/λ ds

)

= −1{y∈A} log(fY (y)) + 1{y∈A} log(λ)− 1{y∈AC} log

(∫

AC
fY (s) ds

)
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= CLS(fY , y) + 1{y∈A} log(λ)

Hence, it is scaling-invariant of order 0.

PS: Next, we turn to the power score using Lemma 3.1:

PSγ(fλY , λy) = −γfλY (λy)γ−1 + (γ − 1)‖fλY ‖γγ

= −γfY (y)γ−1λ1−γ + (γ − 1)λ1−γ‖fY ‖γγ

= λ1−γ PSγ(fY , y)

Therefore, the power score is scaling-invariant of order 1− γ and, thus, the specific case of the

quadratic score is scaling-invariant of order −1.

PseudoS: Applying Lemma 3.1, we conclude for the pseudo spherical score the scaling-

invariance of order (1− δ)/δ:

PseudoSδ(fλY , λy) = −fλY (λy)δ−1

‖fλY ‖δ−1
δ

= −λ1−δ · λ
(1−δ)2
δ · fY (y)δ−1

‖fY ‖δ−1
δ

= λ
1−δ
δ PseudoSδ(fY , y)

HyvS: The Hyvärinen score can be found to be scaling-invariant of order 2:

HyvS(fλY , λy) = 2
f ′′λY (λy)

fλY (λy)
−
(
f ′λY (λy)

fλY (λx)

)2

= 2
f ′′Y (y) 1

λ3

fY (y) 1
λ

−
(
f ′Y (x) 1

λ2

fY (y) 1
λ

)2

=
1

λ−2
HyvS(fY , y)

CRPS: The CRPS is scaling invariant of order 1 by the change of variables formula:

CRPS(FλY , λy) =

∫ ∞

−∞

(
FλY (z)− 1{z>λy}(z)

)2
dz

=

∫ ∞

−∞

(
FY

(
z

λ

)
− 1{z/λ>y}(z)

)2

dz

= λ

∫ ∞

−∞

(
FY (z)− 1{z>y}(z)

)2
dz
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= λCRPS(FY , y)

Lemma 3.2. Consider Y ∼ N (0, 1) and the Gaussian forecast density f = ϕµ,σ2, which is mis-

specified for µ 6= 0 or σ2 6= 1. The corresponding expected log and continuous ranked probability

score are given by

EY [LogS(f, Y )] =
1

2
log(2π) + log σ +

1

2σ2
(1 + µ2)

and

EY [CRPS(f, Y )] =

√
2(1 + σ2)

πσ2
exp

(
− µ2

2(1 + σ2)

)
− 2µΦ

( −µ√
1 + σ2

)
+ µ− σ√

π
.

Proof. The expected LogS is given by

EY [LogS(f, Y )] = EY

[
1

2
log(2π) + log σ +

1

2

(
Y − µ
σ

)2
]

=
1

2
log(2π) + log σ +

1

2σ2
EY [Y 2 − 2Y µ+ µ2]

=
1

2
log(2π) + log σ +

1

2σ2
(1 + µ2).

The continuous ranked probability score of the Gaussian distribution forecast f is given by

(Gneiting et al., 2005):

CRPS(f, y) = σ


y − µ

σ

(
2Φ

(
y − µ
σ

)
− 1

)
+ 2ϕ

(
y − µ
σ

)
− 1√

π




Thus, for the expected continuous ranked probability score of a Gaussian distribution forecast

we obtain with Stein’s lemma:

EY [CRPS(f, Y )] = σEY


Y − µ

σ

(
2Φ

(
Y − µ
σ

)
− 1

)
+ 2ϕ

(
Y − µ
σ

)
− 1√

π




= EY

[
2Y Φ

(
Y − µ
σ

)
− 2µΦ

(
Y − µ
σ

)
− (Y − µ) + 2σϕ

(
Y − µ
σ

)
− σ√

π

]
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= 2 EY

[
Y Φ

(
Y − µ
σ

)]

︸ ︷︷ ︸
=EY [ϕ(Y−µ

σ
) 1
σ

]

−2µEY

[
Φ

(
Y − µ
σ

)]
+ µ+ 2σEY

[
ϕ

(
Y − µ
σ

)]
− σ√

π

=
2(1 + σ2)

σ
EY

[
ϕ

(
Y − µ
σ

)]
− 2µEY

[
Φ

(
Y − µ
σ

)]
+ µ− σ√

π

Next, we calculate the two remaining expectations. First,

EY

[
ϕ

(
Y − µ
σ

)]
=

∫ ∞

−∞

1√
2πσ

exp

(
−1

2

(y − µ)2

σ2

)
· 1√

2π
exp

(
−1

2
y2

)
dy

=
1√
2π

∫ ∞

−∞

1√
2πσ

exp

(
− 1

2σ2

(
(1 + σ2)y2 − 2yµ+ µ2

))
dy

=
1√
2π

∫ ∞

−∞

1√
2πσ

exp


− 1

2σ2

(
(
√

1 + σ2y)2 − 2
√

1 + σ2yµ√
1 + σ2

+
µ2

1 + σ2
+

σ2µ2

1 + σ2

)
 dy

=
1√

2π(1 + σ2)
exp

(
− µ2

2(1 + σ2)

)

×
∫ ∞

−∞

1√
2πσ

exp

(
− 1

2σ2

(√
1 + σ2y − µ√

1 + σ2

)2
)√

1 + σ2 dy

︸ ︷︷ ︸
=1

=
1√

2π(1 + σ2)
exp

(
− µ2

2(1 + σ2)

)

Second, let Z ∼ N (µ, σ2) independent of Y . Then, noting that Z − Y ∼ N (µ, 1 + σ2) and

applying the law of total probability,

EY

[
Φ

(
Y − µ
σ

)]
=

∫ ∞

−∞
Φ

(
y − µ
σ

)
d PY (y)

=

∫ ∞

−∞
P(Z ≤ y) d PY (y)

=

∫ ∞

−∞
P(Z ≤ Y |Y = y) d PY (y)

=

∫ ∞

−∞
P(Z − Y ≤ 0|Y = y) d PY (y)

= P(Z − Y ≤ 0)

= Φ

( −µ√
1 + σ2

)
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Jointly,

EY [CRPS(f, Y )] =

√
2(1 + σ2)

πσ2
exp

(
− µ2

2(1 + σ2)

)
− 2µΦ

( −µ√
1 + σ2

)
+ µ− σ√

π
.

Proof of Proposition 3.2. (a) If L is scaling-invariant, we have that for all λ > 0

EY [L(Fλ, λY )− L(Gλ, λY )] ≥ 0⇔ λkE[L(F, Y )− L(G, Y )] ≥ 0

⇔ E[L(F, Y )− L(G, Y )] ≥ 0

(b) Define S̃(f, y) = LogS(f, y) + CRPS(f, y). By construction, the loss function S̃ is not

scaling-invariant by being a sum of scaling-invariant loss functions of different order. Now,

let Y ∼ N (0, 1). We calculate the expected score difference of two misspecified Gaussian

forecasts g(x) = ϕ0,2(x) and g̃(x) = ϕ2,1/2(x) using Lemma 3.2 and obtain:

EY [S̃(g, Y )− S̃(g̃, Y )] = EY [LogS(g, Y )− LogS(g̃, Y )] + EY [CRPS(g, Y )− CRPS(g̃, Y )]

≈ −8.49 + 1.54 < 0

Thus, g is preferred over g̃ with respect to S̃. On the other hand, looking at scaled observa-

tions λY , λ > 0 and the corresponding scaled density forecasts gλ and g̃λ, Proposition 3.1

implies

EY [S̃(fλ, λY )− S̃(gλ, λY )]

= EY [LogS(gλ, λY )− LogS(g̃λ, λY )] + EY [CRPS(gλ, λY )− CRPS(g̃λ, λY )]

≈ −8.49 + λ · 1.54,

which may be greater than zero, for example if λ = 100; that is, presenting numbers in

percentages. In this case, rescaling the data changes the order of expected losses.

Proof of Proposition 3.3. Let ΩG denote the support of the error distribution.

(a) Let f be a standard Gaussian density and U ∼ G such that ΩG = R and EU [U2] < ∞.
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Then, applying the reverse triangle inequality,

EADF(LogS, f, y,G) = EU

∣∣∣∣∣
(y + U)2

2
− y2

2

∣∣∣∣∣

=
1

2
EU

∣∣∣2yU + U2
∣∣∣

=
1

2

∫

R

|2yu− (−u2)| dG(u)

≥ 1

2

∫

R

∣∣∣|2yu| − |u2|
∣∣∣ dG(u)

=
1

2

∫

R

|u| ·
∣∣|2y| − |u|

∣∣ dG(u)

≥ 1

2

∫

u∈R: |2y|>|u|
|u| ·

(
|2y| − |u|

)
dG(u)

= |y|
∫

u∈R: |2y|>|u|
|u| dG(u)

︸ ︷︷ ︸
→EU |U | as |y|→∞

−1

2

∫

u∈R: |2y|>|u|
u2 dG(u)

︸ ︷︷ ︸
→EU [U2] as |y|→∞

.

Hence, γ∗ =∞ as the last expression increases in |y| without boundary.

(b) If f(x) ≤ f , we have that |f(x1)− f(x2)| ≤ f for all x1, x2 in the support of f . Hence,

EADF(QS, f, y,G) = EU

∣∣∣∣−2f(y + U) + ‖f‖22 −
(
−2f(y) + ‖f‖22

)∣∣∣∣

= 2EU

∣∣f(y + U)− f(y)
∣∣

≤ 2f,

which implies γ∗ <∞.

(c) Let Y, Y ′ ∼ F be independent and U ∼ G with E|U | < ∞. Using the kernel score

representation of the continuous ranked probability score (Gneiting and Raftery, 2007),

CRPS(F, y) = EY |Y − y| −
1

2
EY,Y ′ |Y − Y ′|,

which is valid for any distribution forecast F with finite first moment, we derive

EADF(CRPS, F, y,G) = EU

∣∣CRPS(F, y + U)− CRPS(F, y)
∣∣

= EU

∣∣EY |Y − y − U | −EY |Y − y|
∣∣

=

∫

ΩG

∣∣∣∣∣

∫

ΩF

|x− y − u|dF (x)−
∫

ΩF

|x− y| dF (x)

∣∣∣∣∣ dG(u)
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≤
∫

ΩG

∫

ΩF

∣∣|x− y − u| − |x− y|
∣∣ dF (x) dG(u)

≤
∫

ΩG

∫

ΩF

|u| dF (x) dG(u)

= EU |U | .

as ||a− b| − |a|| ≤ |b| for all a, b ∈ R. This implies γ∗ <∞.

3.6.2 Analytical expressions of the quadratic and power score

Closed-form solutions of the quadratic score for the normal and the log-normal distribution are

used in this paper. Beyond these, we provide additional results for the mixture of normals,

student-t, generalized beta, and two-piece normal distribution.

Note that the analytical solutions for the Lγ norm can also be used to calculate analytical

expressions for the pseudo spherical score.

Normal

Proposition 3.4. Let γ > 1. The power score of degree γ with respect to a normal distribution

density forecast fNorm(µ,σ2) with mean µ ∈ R and standard deviation σ > 0,

fNorm(µ,σ2)(x) =
1√
2πσ

exp

(
−1

2

(x− µ)2

σ2

)
,

is given by

PSγ(fNorm(µ,σ2), y) = − γ√
2πσ

exp

(
−(γ − 1)(y − µ)2

2σ2

)
+

γ − 1
√
γ(2π)

γ−1
2 σγ−1

,

which implies

QS(fNorm(µ,σ2), y) = −
√

2√
πσ

exp

(
−1

2

(y − µ)2

σ2

)
+

1

2
√
πσ

.

Proof. Straightforward calculations yield

‖fNorm(µ, σ2)‖γγ =

∫ ∞

−∞


 1√

2πσ
exp

(
−1

2

(x− µ)2

σ2

)

γ

dx

=

∫ ∞

−∞

1

(2π)γ/2σγ
exp

(
−γ

2

(x− µ)2

σ2

)
dx
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=
1

(2π)γ/2σγ

√
2πσ√
γ

∫ ∞

−∞

1√
2π σ√

γ

exp


−

1

2

(x− µ)2

(
σ√
γ

)2


 dx

︸ ︷︷ ︸
=1

=
1

√
γ(2π)

γ−1
2 σγ−1

.

Mixture of normals

For the case of the mixture of normals, we only report an analytical solution for the quadratic

score and not for a general power score of order γ > 1. A generalization to arbitrary γ > 1 may

be possible but would possibly involve Newton’s generalized binomial theorem and integrals of

infinite series. We leave this for future research.

Proposition 3.5. Let fMixNorm(µ,σ2), µ ∈ Rn, σ ∈ Rn+, be a density of a mixture of n ∈ N

normal distributions, f(x) =
∑n

i=1wiϕi(x) with weights wi ≥ 0,
∑n

i=1wi = 1, and where ϕi(x)

denote normal densities with individual mean µi and standard deviation σi > 0. Then, the

quadratic score is given by

QS(fMixNorm(µ,σ2), y) = −2fMixNorm(µ,σ2) +
n∑

i=1

w2
i

2
√
πσi

+
n∑

i,j=1
i 6=j

wiwj
1√

2π(σ2
i + σ2

j )
exp

(
− (µi − µj)2

2(σ2
i + σ2

j )

)
.

Proof. We calculate the squared L2 norm of the respective density:

‖fMixNorm(µ,σ2)‖22 = ‖
n∑

i=1

wiϕi‖22

=

∫ ∞

−∞




n∑

i=1

wiϕi(x)




2

dx

=

∫ ∞

−∞

n∑

i=1

w2
i ϕi(x)2 +

n∑

i,j=1
i 6=j

wiwjϕi(x)ϕj(x) dx

=

n∑

i=1

w2
i ‖ϕi‖22 +

n∑

i,j=1
i 6=j

wiwj

∫ ∞

−∞
ϕi(x)ϕj(x) dx
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=
n∑

i=1

w2
i

2
√
πσi

+
n∑

i,j=1
i 6=j

wiwj
1√

2π(σ2
i + σ2

j )
exp

(
− (µi − µj)2

2(σ2
i + σ2

j )

)
,

where the last equation follow from Proposition 3.4 and completing the square,

∫ ∞

−∞
ϕi(x)ϕj(x) dx =

1√
2π

∫ ∞

−∞

1√
2πσiσj

exp


−1

2

(
(x− µi)2

σ2
i

+
(x− µj)2

σ2
j

)
 dx

=
1√

2π(σ2
i + σ2

j )

∫ ∞

−∞

√
σ2
i + σ2

j√
2πσiσj

exp



−1

2




(
x− µiσ

2
j+µjσ

2
i

σ2
i+σ2

j

)2

+
σiσj(µi−µj)2

(σ2
i+σ2

j )2

σ2
i σ

2
j (σ

2
i + σ2

j )
−1







dx

=
1√

2π(σ2
i + σ2

j )
exp

(
− (µi − µj)2

2(σ2
i + σ2

j )

)
.

Log-normal

Proposition 3.6. Let γ > 1. The power score of degree γ with respect to a log-normal distri-

bution density forecast fLNorm(µ,σ2) with parameters µ and σ > 0,

fLNorm(µ,σ2)(x) =
1√

2πσx
exp

(
−1

2

(log x− µ)2

σ2

)
, x > 0,

is given by

PSγ(fLNorm(µ,σ2), y) = −γfLNorm(µ,σ2)(y)γ−1 +
(γ − 1) exp

(
1

2γ ((γ − 1)2σ2 − 2γµ(γ − 1))
)

(2π)γ/2−1σγ−1√γ

which implies

QS(fLNorm(µ,σ2), y) = −2fLNorm(µ,σ2)(x) +
1

2
√
πσ

exp

(
σ2

4
− µ

)
.

Proof. The Lγ norm can be calculated as

‖fLNorm(µ, σ2)‖γγ =

∫ ∞

0


 1√

2πσx
exp

(
−1

2

(log x− µ)2

σ2

)

γ

dx
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=

∫ ∞

0

1

(2π)γ/2σγxγ
exp

(
−γ

2

(log x− µ)2

σ2

)
dx

=

∫ ∞

−∞

1

(2π)γ/2σγe(γ−1)u
exp

(
−γ

2

(u− µ)2

σ2

)
du

=

∫ ∞

−∞

1

(2π)γ/2σγ
exp

(
−γ

2

(u− µ)2 + 2σ2(γ − 1)u/γ

σ2

)
du

=

∫ ∞

−∞

1

(2π)γ/2σγ

× exp

(
−γ

2

u2 − 2u(γµ− (γ − 1)σ2)/γ + (γµ− (γ − 1)σ2)2/γ2

σ2

)

× exp

(
−γ

2

−(γµ− (γ − 1)σ2)2/γ2 + µ2

σ2

)
du

=
exp

(
1

2γ ((γ − 1)2σ2 − 2γµ(γ − 1))
)

(2π)γ/2−1σγ−1√γ

×
∫ ∞

−∞

1√
2πσ/

√
γ

exp

(
−1

2

(u− (γµ− (γ − 1)σ2)/γ)2

σ2/γ

)
du

︸ ︷︷ ︸
=1

=
exp

(
1

2γ ((γ − 1)2σ2 − 2γµ(γ − 1))
)

(2π)γ/2−1σγ−1√γ .

In the case of the L2 norm it simplifies to

‖fLNorm(µ, σ2)‖22 =
1

2
√
πσ

exp

(
σ2

4
− µ

)
.

Student-t

For calculating ‖ · ‖γγ of a student-t distribution with ν > 0 degrees of freedom, we prove the

following lemma.

Lemma 3.3. Let γ > 1 and ν > 0. It holds that

∫ ∞

0

(
1 +

x2

ν

)− γ(ν+1)
2

dx =

√
νπΓ

(
γ(ν+1)−1

2

)

2Γ
(
γ(ν+1)

2

) . (3.7)

where Γ denotes the Gamma function.

Proof. Calculating the left-hand integral by substitution x =
√
ν tan(u), which is invertible over
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0 < u < π
2 with inverse u = tan−1(x/

√
ν)),

∫ ∞

0

1
(

1 + x2

ν

) γ(ν+1)
2

dx =

∫ π
2

0

1
(
1 + tan2(u)

) γ(ν+1)
2

√
ν sec2(u) du

=
√
ν

∫ π
2

0

1
(
sec2(u)

) γ(ν+1)
2

sec2(u) du

=
√
ν

∫ π
2

0
cosγ(ν+1)−2(u) du,

in which we use that 1 + tan2(u) = sec2(u) and sec−1(u) = cos(u). Next, we calculate the

remaining right-hand integral:

∫ π
2

0
cosγ(ν+1)−2(u)du =

∫ π
2

0
sin2· 1

2
−1(u) · cos

2
(
γ(ν+1)−1

2

)
−1

(u) du

=
1

2
B

(
1

2
,
γ(ν + 1)− 1

2

)

=
1

2
·

Γ
(

1
2

)
Γ
(
γ(ν+1)−1

2

)

Γ
(
γ(ν+1)

2

)

=

√
πΓ
(
γ(ν+1)−1

2

)

2Γ
(
γ(ν+1)

2

)

as Γ
(

1
2

)
=
√
π which implies Equation (3.7).

Proposition 3.7. The power score of degree γ > 1 with respect to a student-t distribution with

ν > 0 degrees of freedom,

fstud-t(ν)(x) =
Γ
(
ν+1

2

)

√
νπΓ

(
ν
2

) (
1 + x2

ν

) ν+1
2

is given by

PSγ(fstud-t(ν), y) = −γfstud-t(ν)(y)γ−1 + (γ − 1)(νπ)
1−γ

2

Γγ
(
ν+1

2

)

Γγ
(
ν
2

)
Γ
(
γ(ν+1)−1

2

)

Γ
(
γ(ν+1)

2

) (3.8)

and, thus, the corresponding quadratic score for γ = 2 is given by

QS(fstud-t(ν), y) = −2fstud-t(ν)(y) +
Γ2
(
ν+1

2

)

√
νΓ2

(
ν
2

)
Γ
(
ν + 1

2

)

√
πΓ (ν + 1)

. (3.9)
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Proof. Equation (3.7) in Lemma 3.3 readily implies

‖fstud-t‖γγ =

∫ ∞

−∞




Γ
(
ν+1

2

)

√
νπΓ

(
ν
2

) (
1 + x2

ν

) ν+1
2




γ

dx

=
Γγ
(
ν+1

2

)

(νπ)γ/2Γγ
(
ν
2

)
∫ ∞

−∞

1
(

1 + x2

ν

) γ(ν+1)
2

dx

=
Γγ
(
ν+1

2

)

(νπ)γ/2Γγ
(
ν
2

) · 2
∫ ∞

0

(
1 +

x2

ν

)− γ(ν+1)
2

dx

=
Γγ
(
ν+1

2

)

(νπ)γ/2Γγ
(
ν
2

) ·
√
νπΓ

(
γ(ν+1)−1

2

)

Γ
(
γ(ν+1)

2

)

= (νπ)
1−γ

2

Γγ
(
ν+1

2

)

Γγ
(
ν
2

)
Γ
(
γ(ν+1)−1

2

)

Γ
(
γ(ν+1)

2

) .

Hence, for γ = 2 we have that

‖fstud-t‖22 =
Γ2
(
ν+1

2

)

√
νΓ2

(
ν
2

)
Γ
(
ν + 1

2

)

√
πΓ (ν + 1)

.

Remark 3.3. For ever increasing degrees of freedom, the student-t distribution approaches the

standard normal distribution. The consistency of our results regarding the quadratic score in

Proposition 3.7 and Proposition 3.4 for ν →∞ follows from Wendel’s limit (Wendel, 1948),

lim
x→∞

x−s
Γ(x+ s)

Γ(x)
= 1,

for arbitrary real numbers s and x. This equality implies

lim
x→∞

xt−s
Γ(x+ s)

Γ(x+ t)
= lim

x→∞
x−s

Γ(x+ s)

Γ(x)
xt

Γ(x)

Γ(x+ t)
= 1

for real numbers s, t and x, which leads us to

lim
ν→∞

Γ2
(
ν+1

2

)

√
νΓ2

(
ν
2

) ·
Γ
(
ν + 1

2

)

√
πΓ (ν + 1)
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= lim
ν→∞

1

2
·

2Γ2
(
ν+1

2

)

νΓ2
(
ν
2

)
︸ ︷︷ ︸

→1

·
√
νΓ
(
ν + 1

2

)

Γ (ν + 1)︸ ︷︷ ︸
→1

· 1√
π

=
1

2
√
π
.

Generalized beta distribution

Proposition 3.8. The power score of degree γ > 1 with respect to a generalized beta density

forecast

fGBeta(a,b,l,r)(x) =
(x− l)a−1(r − x)b−1

B(a, b)(r − l)a+b−1
,

shape parameter a, b > 1
γ , and upper and lower bound l, r ∈ R, l < r, is given by

PSγ(fGBeta(a, b, l, r), y) =





−γfGBeta(a,b,l,r)(y)γ−1 + (γ−1)B(γ(a−1)+1,γ(b−1)+1)
(r−l)γ−1B(a,b)γ

if l ≤ y ≤ r,
(γ−1)B(γ(a−1)+1,γ(b−1)+1)

(r−l)γ−1B(a,b)γ
else,

which implies

QS(fGBeta(a, b, l, r), y) =





−2fGBeta(a,b,l,r)(y) + B(2a−1,2b−1)
(r−l)B(a,b)2 if l ≤ y ≤ r,

B(2a−1,2b−1)
(r−l)B(a,b)2 else.

Proof. By rearranging terms we conclude,

‖fGBeta(a,b,l,r)‖γγ =

∫ r

l

(
1

B(a, b)(r − l)a+b−1
(x− l)a−1(r − x)b−1

)γ
dx

=
1

B(a, b)γ(r − l)(a+b−1)γ

∫ r

l
(x− l)γ(a−1)(r − x)γ(b−1) dx

=
B(γ(a− 1) + 1, γ(b− 1) + 1) · (r − l)γ(a+b−1)−γ+1

B(a, b)γ(r − l)(a+b−1)γ

×
∫ r

l

(x− l)γ(a−1)+1−1(r − x)γ(b−1)+1−1

B(γ(a− 1) + 1, γ(b− 1) + 1) · (r − l)γ(a+b−1)−γ+1
dx

︸ ︷︷ ︸
=1

=
B(γ(a− 1) + 1, γ(b− 1) + 1)

(r − l)γ−1B(a, b)γ
.

Remark 3.4. The constrained parameter space assumption a, b > 1/γ in Proposition 3.8 is
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necessary for ‖fGBeta(a,b,l,r)‖γγ to be defined. From a practical point of view this is no restraint

in most applications as it is often assumed that a, b > 1 in order to ensure unimodality and

continuity at x = l and x = r.

Two-piece normal

Next, we consider the two-piece normal distribution of Wallis (2004, 2014).

Proposition 3.9. Let γ > 1. The power score of degree γ with respect to a two-piece normal dis-

tribution density forecast fTPN(µ1,µ2,σ1,σ2) with location parameters µ ∈ R and scale parameters

σ1, σ2 > 0,

fTPN(µ,σ1,σ2)(y) =





√
2√

π(σ1+σ2)
exp

(
−1

2
(x−µ)2

σ2
1

)
if y ≤ µ,

√
2√

π(σ1+σ2)
exp

(
−1

2
(x−µ)2

σ2
2

)
if y ≥ µ.

is given by

PSγ(fTPN(µ,σ2
1 ,σ

2
2), y) = −γfγ−1

TPN(µ,σ2
1 ,σ

2
2)

(y) +
(γ − 1)2(γ−1)/2

π(γ−1)/2(σ1 + σ2)γ−1√γ

which implies

QS(fTPN, y) = −2fTPN(y) +
1

π(σ1 + σ2)
.

Proof. We calculate the Lγ norm to the power of γ,

‖fTPN(µ,σ1,σ2)‖γγ =

∫ ∞

−∞
fTPN(µ,σ1,σ2)(x)γ dx

=

∫ µ

−∞




√
2√

π(σ1 + σ2)
exp

(
−1

2

(x− µ)2

σ2
1

)

γ

dx

+

∫ ∞

µ




√
2√

π(σ1 + σ2)
exp

(
−1

2

(x− µ)2

σ2
2

)

γ

dx.

Next, we turn to the left-hand expression,

∫ µ

−∞




√
2√

π(σ1 + σ2)
exp

(
−1

2

(x− µ)2

σ2
1

)

γ

dx

=
2γ/2

πγ/2(σ1 + σ2)γ

∫ µ

−∞
exp

(
−γ

2

(x− µ)2

σ2
1

)
dx
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=
2γ/2

πγ/2(σ1 + σ2)γ

√
2πσ1√
γ

∫ µ

−∞

1√
2π σ1√

γ

exp


−

1

2

(x− µ)2

(
σ1√
γ

)2


 dx

︸ ︷︷ ︸
= 1

2

=
2(γ−1)/2σ1

π(γ−1)/2(σ1 + σ2)γ
√
γ
.

Thus,

‖fTPN‖γγ =
2(γ−1)/2σ1

π(γ−1)/2(σ1 + σ2)γ
√
γ

+
2(γ−1)/2σ2

π(γ−1)/2(σ1 + σ2)γ
√
γ

=
2(γ−1)/2

π(γ−1)/2(σ1 + σ2)γ−1√γ .

3.6.3 Data and revisions in US GDP growth.

For calibrating our simulation, we obtain quarterly releases of seasonally adjusted real GDP

estimates (GDPkt ) from the Federal Reserve Bank of Philadelphia.8 The subscript t refers to

the time period of the observation of GDP and the superscript k to the release wave.9 The

first release (k = 1) for quarter t is published in the following quarter t + 1. We obtained

observations for the range from 1966Q1 to 2015Q4 and their corresponding first release until

the release issued twelve quarters later. The observation for k = 12 will be considered to be

the “final release” (e.g., Aruoba, 2008; Jacobs and Van Norden, 2011). The lag in releases of

GDP estimates implies that the last observation, the final release for 2015Q4, is announced in

2019Q1.

Based on GDPkt , we calculate annualized quarter-over-quarter log GDP growth rates in per-

centages; that is, ∆GDPkt = 400× (logGDPkt − logGDPk+1
t−1 ). The increase from k to k+1 when

calculating the quarterly growth rates is due to the fact that at a time where there is the k-th

release of GDPt, we already know the (k + 1)-th release of GDPt−1.

In Figure 3.3, we depict the first and second release errors over time. In general, there seems

to be no clear pattern in the observation error. Two observations that stand out are the largest

upward revision in GDP growth at the end of the first oil crisis in the 1970s and the largest

8https://www.philadelphiafed.org/research-and-data/real-time-center/real-time-data/data-files/routput
9Technically, our series of “GDP” is partially based on gross national product.

https://www.philadelphiafed.org/research-and-data/real-time-center/real-time-data/data-files/routput
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downward revision during the financial crisis in the 2000s. Additionally, it may be said that the

revision error variance slightly decreased in the second half of the sample. This possible regime

change amidst the great moderation is our reason to restrict ourselves to a sample starting

in 1989Q1 for the calibration of our simulation. A natural question that arises is whether

measurement errors in GDP are predictable or not. Among others, Aruoba (2008) document

evidence of biasedness and predictability in multiple releases of macroeconomic variables. In

contrast, Faust, Rogers, and Wright (2005) find no predictability in US GDP revisions which we

will count as evidence for a mean-zero noise model. Similarly, Jacobs and Van Norden (2011)

show that the US Bureau of Economic Analysis does incorporate all relevant information for

each release.

Figure 3.3: Observation error ∆GDPkt − ∆GDP12
t for the first (k = 1) and second release (k = 2) of

GDP growth.

-6

-3

0

3

6

1969 1980 1990 2000 2010 2017

First release

Second release

Notes: We depict quarterly growth rate errors between the first/second release of GDP data and the corresponding
“final release” after three years. Log growth rates are measured on an annualized scale. NBER recessions indicator
in gray.

For illustrative purposes, we depict the averages (standard deviations) of the measurement

errors ∆GDPkt − ∆GDP12
t in red (blue) for k = 1, . . . , 11 in Figure 3.4. It can be seen that

preliminary releases are at least unconditionally unbiased proxies for the final release data as

the difference is always close to zero. Test statistics (not reported) also indicate that the null

hypothesis of unconditional unbiasedness cannot be rejected for any k = 1, . . . , 11. Similarly,

the standard deviation of the measurement error is downward-sloping.
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Figure 3.4: Average revision errors of US GDP growth and their standard deviations.

0.0

0.5

1.0

1.5

1 2 3 4 5 6 7 8 9 10 11

Avg. ∆GDPk
t − ∆GDP12

t

Sd. ∆GDPk
t − ∆GDP12

t

Notes: The figure reports measurement error statistics for ∆GDPkt −∆GDP12
t with k = 1, . . . , 11, the difference

between the 12th release of US GDP growth and the corresponding earlier ones. In red dots we depict the average
difference in the entire sample. The triangles in blue depict the empirical standard deviations of the observed
measurement errors.

3.6.4 Data for volatility forecasting

Our data compromises all 28 DJIA constituents on December 31, 2017 that traded continuously

since January 03, 2000. One-minute intraday price data is obtained from QuantQuote and is

aggregated to daily measures of realized variation. Prices are measured on day t at N equidistant

points in time τ0, . . . , τN denoted as p0,t, . . . , pN,t. We set τ0 to be the market opening and τN

to be the market closing times. Accordingly, we have N intraday returns rτ,t = 100 · (log pτ,t −

log pτ−1,t) from which we can derive our high-frequency variation estimators. A typical trading

day in our data set begins at 9:30 and ends at 16:00. Hence, most days have N = 78 5-minute

returns. We only consider intraday measures of volatility in this example; that is, we discard

overnight returns.

The average realized variance at day t is calculated as

RVt =

N∑

τ=1

r2
τ,t.

The entity RVt has been shown to converge to the actual quadratic variation of stock returns

(Andersen et al., 2003) as N → ∞. However, the presence of market micro-structure noise

puts a lower bound on the accuracy of the estimator. The choice of calculating RV sampled

on 5-minute returns is regularly seen as being a good trade-off. As a “distorted” measure of

realized volatility we also calculate R̃V based on prices sampled at a 15-minute frequency. Liu,

Patton, and Sheppard (2015) provide an extensive empirical assessment regarding the accuracy
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of a wide range of realized volatility estimators.

For the competitor model in our empirical exercise, we also compute two semivariance mea-

sures introduced by Barndorff-Nielsen, Kinnebrock, and Shephard (2010). They are defined as

follows,

RV +
t =

N∑

τ=1

r2
τ,t1{rτ,t≥0} and RV −t =

N∑

τ=1

r2
τ,t1{rτ,t<0}.

The reasoning for the decomposition of RV into RV+ and RV− is that negative returns have a

more pronounced effect on future RV than positive returns (Patton and Sheppard, 2015). This

phenomenon is typically known as the “leverage” effect. The measures are calculated separately

for each stock i and they are denoted by RVi,t, R̃V i,t, R̃V
+

i,t and R̃V
−
i,t.
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