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Physikalische Modelle für das Zusammenspiel von Mechanik und
Selbstassemblierung im Aktin Zytoskelett

Viele zelluläre Prozesse wie Zellmigration oder Zellteilung erfordern einen Kompro-
miss aus struktureller Stabilität und dynamischer Reorganisation der belasteten El-
emente. Für tierische Zellen hat das Aktinzytoskelett diese Funktion entwickelt,
allerdings fehlt es am physikalischem Verständnis des Zusammenspiels von mechanis-
chen Prozessen und Selbstassemblierung. Hier modelliere ich zwei paradigmatische
Situationen dieser Art. Zuerst untersuche ich die Selbstassemblierung von Nicht-
muskel Myosin II Minifilamenten, besonders im Hinblick auf stochastische Effekte,
die aufgrund der kleinen Systemgröße von ca. 30 tragenden Elementen auftreten,
die zugleich dynamisch ausgetauscht werden und Kraft generieren. Das Selbstassem-
blierungsmodell beruht auf einer Konsensarchitektur, wodurch es die geometrischen
Nachbarschaftsbeziehungen der Myosin II Monomere mit Bindungsenergien zwischen
ihnen in Beziehung setzt. Es zeigt sich durch Simulation der Master-Gleichung des
Systems, sowie durch eine Mean-Field Theorie, die die komplexe Assemblierungsstruk-
tur mit einem Monomer Additionsschema in Beziehung setzt, dass der Austausch von
Monomeren vom mechanochemischen Querbrückenzyklus abhängt. In einem rheol-
ogischen Rahmen charakterisiere ich die verschiedenen mechanischen Eigenschaften
von Nichtmuskel Myosin II Minifilamenten, die aufgrund der Unterschiede in den
Querbrückenzyklen der verschiedenen Myosin II Isoformen auftreten, die in Het-
erofilamenten koassemblieren können. Die frequenzabhängige mechanische Antwort
kann durch den komplexen Modulus eines Maxwell Elements beschrieben werden und
zeigt einen Übergang von viskosem zu elastischem Verhalten durch Erhöhung des An-
teils der langsamen Isoform eines gemischten Ensembles. Danach untersuche ich die
dynamische Stabilität einer peripheren Stressfaser, in Abhängigkeit des Zusammen-
spiels von Myosin II Minifilamenten, Polymerisation von neuen Aktinfilamenten an
beiden Enden der Stressfaser und kortikaler Spannung. Zusammen mit Experimen-
tatoren, konnten wir zeigen wie sich die Zusammensetzung der Stressfaser aus den
verschiedenen Isoformen von Nichtmuskel Myosin II im Phänotyp der Stressfaser
widerspiegelt und konnten die Position im Stabilitätsphasendiagramm der Stress-
faser darstellen. Diese Ergebnisse zeigen quantitativ wie mechanische Prozesse und
Selbstassemblierung auf verschiedenen Skalen im Aktinzytoskelett interagieren.





Modeling the interplay of mechanics and self-assembly in the actin
cytoskeleton

Many cellular processes such as cell migration or division require a trade-off be-
tween structural integrity and dynamic reorganization of the load-bearing elements.
The actin cytoskeleton has evolved to provide this function for animal cells, but a
physical understanding of the interplay between its mechanics and self-assembly is
missing. Here I model theoretically two paradigmatic situations of this kind. First,
I consider the self-assembly of non-muscle myosin II minifilaments, with a special
focus on the stochastic effects that arise due to the small system size of around 30
load bearing elements that turn-over simultaneously to producing contractile force.
The self-assembly model follows a consensus architecture, thereby relating the geo-
metrical neighborhood relations of the myosin II monomers with associated binding
energies. I find that the turn-over of monomers depends on the mechanochemistry
of the cross-bridge cycle by simulating the associated master equation explicitly and
by a mean-field approach that maps the complex assembly structure to a simple
monomer-addition scheme. Using a rheological framework, I characterize the dis-
tinct mechanical properties of non-muscle myosin II minifilaments that arise due to
differences in the cross-bridge cycle of the different myosin II isoforms, that can co-
assemble in one hetero-filament. Quantitative analysis of the frequency dependent
response by a complex modulus, reveals a cross over from viscous to elastic behavior
as the ratio of slow to fast isoforms working together is increased. Second I consider
the dynamical stability of a peripheral stress fiber, that depends on the interplay
of contraction by myosin II minifilaments, self-assembly of new actin filaments at
both ends of the fiber and cortical tension. In collaboration with an experimental
group, we could show how the myosin II isoform content is differentially reflected by
the phenotype of peripheral stress fibers and show their position in a stability phase
diagram of the stress fiber. These results demonstrate quantitatively how mechanics
and self-assembly interact on different scales in the actin cytoskeleton.
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1. Introduction

Self-assembly and mechanical processes are often considered to occur with no tem-
poral overlap: First a machine is build, then it performs its work. In biology this is
sometimes very different. The human, as one example for a higher developed organ-
ism, is composed of ∼ 1013 cells that, in addition to constantly having to renew, have
to arrange in a very specific way for the organism to function correctly [1]. Renewal
and correct arrangement – key concepts of dynamic self-assembly – in this case are
critically dependent on migration of cells on deformable media, which is clearly an
interesting mechanical problem. Thus, at the scale of entire organisms self-assembly
and mechanics both play central roles.
On smaller length scales, biological load bearing structures are normally self-

assembled from smaller constituents. On the one hand, changes within the regulation
of self-assembly of these structures lead to distinct changes in mechanical behavior
[2]. On the other hand, and perhaps more surprisingly, biological cells respond to
changes in mechanical stresses by either reinforcing (when stress is increased) or
partly dissolving their load bearing structures (when stress is decreased) [3–5]. Thus
mechanical cues can lead to changes in self-assembly and vice versa. This is very
reminiscent of the motor-generator duality, where from an electrical current either
torque can arise or from torque an electrical current arises, and, similarly, is a sign
for a feedback loop, which is an omnipresent motif in mechanobiology [6, 7]. Clearly,
also at this scale there is a temporal overlap of self-assembly and arising mechan-
ical processes, as mechanical tasks have to be performed during remodeling of the
structure at hand by self-assembly.
The fact, that biological load-bearing structures are often reinforced after being

stressed is a remarkable observation in itself: Standard materials we know from
our typical environment either bend, deform or shatter when applying appreciable
amounts of force to them, with self-healing properties staying reserved to the newly
emerging metamaterials [8]. In the actin cytoskeleton, a network of the biopolymer
actin that gives mechanical stability to biological cells, the catch bond is the central
kinetic motif that is thought to lead to reinforcement of stressed structures [9, 10].
Both, the slip bond and the catch bond describe the force dependent stability of a
receptor-ligand connection. While the slip bond more intuitively decreases its sta-
bility with increasing force, i.e. the stochastic rupturing rate of a bond increases
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CHAPTER 1. INTRODUCTION

with force, the catch bonds show an increased stability with increasing force up to
a certain maximal force, where increasing the force further destabilizes the force.
Accordingly, the catch bond is thought to be implemented biologically in a large
array of proteins that have to function under load with examples including molecu-
lar motors such as non-muscle myosin II or the bacterial flagellar motor [5, 9] and
network-crosslinkers such as α-actinin [9].
This thesis models phenomena involving concurrent self-assembly and force-generation

with a strong focus on the role of myosin II in the actin cytoskeleton. Dependent
on the size of the system studied, modeling approaches either take into account
the stochastic nature of molecular processes such as the assembly of single myosin II
minifilaments which are mechanically active structures formed from ∼ 30 monomers,
or they neglect them in the case of stress fibers, actin bundles containing many
minifilaments and being constructed from a huge amount actin monomers.

Outline

Chapter 2 lays down the biological and theoretical background providing the basis
of the following chapters. After introducing the cytoskeleton, an interacting network
of dynamically self-assembling polymers, many facets of myosin II molecular motors
are described. Following this, theoretical concepts important to the work are intro-
duced. Finally, some experimental methods, that probe assembly and mechanics are
highlighted.
Chapter 3 discusses a classical approach to self-assembly, a modified version of the

Becker-Döring system. Here the dynamics of growth of a complex with a distinct
maximum size, that grows or shrinks by adding or subtracting monomers is described
by chemical rate equations. After outlining the equilibrium behavior of the model,
I follow a perturbative approach to approximate timescales relevant to the relax-
ation to equilibrium and finally compare to numerical results. The central result of
this chapter is that of self-assembly processes slow down near a critical monomer
concentration, the critical aggregation concentration (CAC).
Chapter 4 introduces a model for force-dependent self-assembly of myosin II minifil-

aments. A stochastic assembly model that builds upon a consensus architecture of
myosin II minifilaments and bond energies neighboring monomers is coupled to a
stochastic crossbridge model in order to study the interplay of mechanics and self-
assembly at the small scale of minifilaments. Similar to the previous chapter, there
is a critical monomer concentration where assembly dynamics slows down. This
concentration depends the availability of actin and force and shows that force can
facilitate assembly. The model introduced here is also used to simulate fluorescence
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recovery after photobleaching (FRAP) experiments as a means to show agreement
with experimental results.
Chapter 5 describes the response of an ensemble of slow and fast myosin II molec-

ular motors to an oscillatory force in a rheological framework. The combination of
short term resistance to deformation and long term remodeling of the actin cytoskele-
ton has often been connected to viscoelastic material properties. Here we show, that
the mean response a crossbridge model is also viscoelastic. I further investigate the
dependence of this phenomenon on the speed of the motors and the size of the system
and outline arising non-linear effects.
Motivated by the previous chapter, chapter 6 introduces a dynamical self-assembly

model of a contractile viscous stress fiber that is subject to a normal force. The
deterministic model describes the length change introduced by motor contraction
and disassembly in the center of the stress fiber and self-assembly of additional
cytoskeletal material at the boundary points. By searching for stable solutions one
finds a correlation between spanning distance and radius of curvature of the fiber
that is dependent on the motor properties.
Chapter 7 describes collaborative work with experimentalists. We investigate cells

with deficiencies in the slow and fast non-muscle myosin II (NM II) isoforms respec-
tively. Using phenotypical characterization and the model introduced in the previous
chapter we consistently connect the experimental observations with the known motor
properties of the two isoforms. FRAP experiments also reveal a dynamic turnover
in myosin minifilaments that is dependent on the force generating crossbridge cycle
as suggested by the model introduced in chapter 4.
Finally, chapter 8 concludes and summarizes the work done in this thesis and offers

some future perspectives.
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2. Mechanics and self-assembly in the
actin cytoskeleton

2.1. The cytoskeleton

In order to function correctly cells must be able to mechanically interact with their
environment and each other. Often it is crucial, that they maintain and control
their shape and position in space in some way. All cells however must be able to
reorder their inner constituents, when they grow, divide or have to adapt to changes
in their environment. The very dynamic mechanical stability needed for this is
provided by a system of filaments called the cytoskeleton [11]. The cytoskeleton
performs its various tasks by utilizing three filament subsystems: actin filaments,
microtubules and intermediate filaments. Each filament system has its characteristic
mechanical traits and biological function, however typically all three are required for
providing the cell with its shape, mobility and stability. Here we introduce all three
filament families briefly, but later discuss mainly the actin filaments since the focus
of this thesis lies on contraction of actin filaments by myosin II motors and related
phenomena.

2.1.1. The three filament systems

The three biological filament types occuring in eucaryotic cells by their mechanics
all qualify as semi-flexible polymers that are very resistant to stretch. Semi-flexible
polymers can be described by the worm-like chain model which from comparing the
bending rigidity of a flexible rod to the thermal energy predicts a length scale, the
so called persistence length, along which these filaments are relatively straight in a
thermal environment [12]

lp =
EI

kBT
, (2.1)

where E is the Young’s modulus, I is the geometric moment and kBT is the thermal
energy. Eq. (2.1) can already give an intuition about the typical behavior: Thick
or short filaments will be straight, while long or thin filaments will buckle under
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CHAPTER 2. MECHANICS AND SELF-ASSEMBLY IN THE ACTIN
CYTOSKELETON

Actin filaments Microtubules
Intermediate
filaments

Figure 2.1.: Three types of filaments with different traits make up the cytoskeleton.
(a) Schematic drawing of the localization and qualitative organization of actin
filaments (left), microtubules with the centrosome in orange (center) and inter-
mediate filaments (right). (b) Close-up cartoon of the three different filaments
with typical length scales. (c) STORM microscopy image of the ventral actin
fibers. (d) In cell mitosis the kinetochores (pink) are pulled apart by an assembly
of microtubules (green). (e) Intermediate filaments (green) can stabilize cells are
strained. In this case they become straight. Adapted from [13–16].

thermal fluctuations if they are longer than their persistence length. The overall me-
chanical properties of the cytoskeleton of course do not only depend on the filaments
themselves but also on associated proteins, that crosslink filaments, seed polymer-
ization of new filaments, disassemble or contract filaments. Each filament system
has its own specialized proteins that are able to perform these tasks on the specific
filament. There are of course also proteins that mediate interactions between two
different filament families [13] by e.g. crosslinking them with each other. Fig. 2.1

6



2.1. THE CYTOSKELETON

shows a schematic of the typical organization of the three different filaments along-
side a sketch of their appearance on the nano-scale and exemplary microscopy images
of the filament systems in distinct situations where they are vital.

Actin filaments Actin filaments are double-stranded helical polymers with a diam-
eter of ∼ 7 nm (see Fig. 2.1(b)) that have a persistence length of lp ≈ 15 µm, made of
the globular protein G-actin [12]. They also show a sense of directionality, i.e. they
are polar, which stems from the asymmetry in G-actin. This is apparent from their
fast and slow growing end which are called their plus or barbed end and their minus
or pointed end respectively. It is this polarity, that enables the molecular motor
myosin, that walks along actin filaments, to give rise to directed motion. Typically
myosins walk form the pointed to the barbed end. So far only one exeption to this
rule has been found, myosin VI [17, 18].
In the cytoskeleton actin filaments occur in many different supramolecular orga-

nizations, that are determined from the actin associated proteins that interact with

Ventral
stress fiber

transverse
arc

Dorsal
stress fiber

Figure 2.2.: The actin cytoskeleton. Actin together with associated proteins forms
very diverse structures. Examples include filopodia, bundeled parallel actin fila-
ments forming fingerlike cell protrusions, lamellipodia, branched networks, driving
the advancement of the leading edge of the cell, the cortex, a crosslinked network
stabilizing the plasmamembrane and stress fibers, contractile actin bundles pow-
ered by myosin. Adapted from [19].
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CYTOSKELETON

any given actin structure such as cross linkers (e.g. α-actinin), polymerization agents
(e.g. formins) and molecular motors (e.g. myosin) [11]. The spatial organization of
these actin structures is shown in Fig. 2.2. In the cell periphery Arp2/3-dependent
branched networks push forward the plasma membrane of a migrating cell by poly-
merizing against it. This structure is called the lamellipodium and defines the leading
edge of migrating cells. At the leading edge also filopodia emerge. These are bundles
of parallel actin filaments that form fingerlike protrusions in the plasma membrane.
Also in the periphery, crosslinked contractile networks, the actin cortex, stabilize the
fragile plasma membrane against mechanical perturbations from the environment.
In the center so called stress fibers form, which can be categorized into four groups
from the front to the back of the cell: dorsal stress fibers, transverse arcs, ventral
stress fibers and the perinuclear actin cap [20]. Dorsal stress fibers are anchored
to focal adhesions, that mediate interactions between the cell and the extracellular
matrix, at one side. They are not contractile [21] but connect to the transverse arcs
that are contractile but are not anchored to focal adhesions. Instead, the contraction
of the transverse arcs leads to the flat phenotype of the lamellum. This occurs as the
focal adhesions of the dorsal stress fiber attaches to acts as a fulcrum[21, 22]. Ventral
stress fibers, that are situated at the rear of the cell are contractile and are consid-
ered to be the strongest with typical forces of 10 nN they apply to the extra cellular
matrix (ECM) via the focal adhesions they are anchored to on both sides[23, 24]. In
addition to mechanical sensing and signaling, they also pull the trailing edge of the
cell forward during cell migration. Fig. 2.1(c) shows a super resolution microscopy
image highlighting the different organizations of actin filaments coexisting in the ven-
tral cytoskeleton of a cultured cell adhering to a glass slide. One can clearly discern
the highly crosslinked and disordered cortical actin network from the relatively long
straight and thick actin stress fibers.

Microtubules Microtubules are stiff tubular filaments with a thickness of ≈ 25 nm
and a much longer persistence length than actin filaments of lp ≈ 3mm [12]. They
are made up of 13 protofilaments that are helically arranged around a hollow core and
themselves polymerize from a dimer of α- and β-tubulin as illustrated in Fig. 2.1(b).
The asymmetry in the tubulin dimer also leads to a polarity of the microtubules
which – as with actin filaments – enables the molecular motors kinesin and dynein
walking on microtubules to sense their direction. Kinesins typically walk towards
the plus-end of the microtubule, which is typically located in the periphery of the
cell, while dyneins walk in the other direction, typically towards the center [25].

Similar to actin filaments there exist also so called microtubule-associated proteins
that regulate polymerization, depolymerization and the organization of microtubules.
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2.1. THE CYTOSKELETON

Key players in this regard are the microtubule-organizing centers, from where mi-
crotubules can spread throughout the cell in an aster-like fashion. Mammalian cells
have one microtubule-organizing center called the centrosome, which is located near
the nucleus [11]. The typical organization is sketched in Fig. 2.1(a).
Microtubules play a central role in many key cellular processes, such as the intra-

cellular transport of vesicles or even entire organelles [26] or splitting of the genomic
information during cell divisions, which is shown in Fig. 2.1(d). Both of these pro-
cesses require molecular motors.

Intermediate filaments Intermediate filaments are a diverse family of many differ-
ent proteins that have been lumped together into one class. These different proteins
are expressed in a cell-type specific manner [11]. In stark contrast to actin and micro-
tubules the monomers are elongated proteins that are also non-polar, which implies
that there should not be able to act as tracks for translational molecular motors [27].
By a hierarchical self-assembly the monomers, e.g. keratins or vimentins, of a typi-
cal thickness of 2 nm and a length of ∼ 50 nm, form rope like filaments of thickness
∼ 10 nm, as sketched in Fig. 2.1(b) [28]. The mechanism by which they provide tear
strength to cells has been investigated in detail. In essence, the monomers contain
domains that unfold upon being stretched. The mechanical response to force nat-
urally depends on the type of intermediate filament and has been found to depend
on differences in lateral coupling of subunits to each other in vimentin and keratin
fibers [29]. Fig. 2.1(e) shows the tear strength inducing process in action in Madison-
Darby Canine Kidney cells. Here, the intermediate filaments that are normally quite
disordered as sketched in Fig. 2.1(a)
are loaded and become straight as the cell is strained to a multiple of its typical

area [16].

2.1.2. Molecular motors

In this section different molecular motors are classified by the type of movement
they generate. What all molecular motors have in common is, that they use useful
energy, i.e. non-thermal energy, that is typically stored as chemical energy, in order
to move different objects in a directed manner. The two archetypal storage forms
utilized by cells are the chemical compound adenosine triphosphate (ATP), which
can be hydrolyzed to adenosine diphosphate (ADP) and phosphate at an energy
gain, and concentration gradients of ions. The three different molecular motors
types introduced here are shown in Fig. 2.3: Cargo motors, that typically move
biomolecules enclosed in a vesicle to their target location, filament translation motors,
that move their respective tracks against each other, and rotary motors, that act to
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(c)

(a) (b)

Kinesin-5

Figure 2.3.: Three different motor classes by type of action. (a) Three different
cargo motors: The microtubule motors kinesin-2 and dynein and the actin mo-
tor myosin V. These can connect to vesicles, that enclose cargo and transport it
along their respective filament tracks. (b) Filament translation motors: Kinesin-5
translocates microtubules by walking towards the plus end of the microtubules
with both of its head groups and thereby pushes the minus ends of the micro-
tubules appart from each other. (c) Rotary motors: The bacterial flagellar motor,
a large complex that is mechanically fixed to the cell wall of bacteria, rotates the
flagellum in order to propel the bacterium. Adapted from [30–32].

rotate a central structure around its axis in order to e.g. generate a hydrodynamic
flow.
Another overarching theme in molecular motors is the fact that they move in a

stepwise fashion, with each step being tightly connected to a discrete amount of fuel
used – be it one hydrolyzed ATP or the movement of a set amount of molecules down
the concentration gradient.

Cargo motors Cargo motors move vesicles along their respective substrate track
into a preferred direction. There are two big families of molecular motors moving
on microtubules: the kinesin and the dynein family [11]. While kinesins typically
walk towards the plus end of the microtubules, dyneins walk towards the minus end.
Together with the location of the centrosome this means, that kinesins (with few
exceptions) transport cargo towards the periphery of the cell while dyneins transport
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2.1. THE CYTOSKELETON

cargo towards the nucleus of the cell. Cargo motors are not exclusive to microtubules
as the myosin family provides several motors that perform this action. Myosin V
is a very universal example for such a motor, that moves its cargo by processively
walking along the actin filaments, i.e. at least one head is bound to actin at each
point in time [33], with ∼ 36 nm steps and generating a maximum force of ∼ 3.6 pN
when both heads are bound to actin. The melanosome is a well studied model system
in which motors of all three families of cargo motors mentioned here work together
in concert with a variety of regulatory proteins to control the pigmentation of our
skin [32] (see Fig. 2.3(a)).

Filament translation motors Filament translation motors are arguably a type of
cargo motor, their cargo are however cytoskeletal filaments themselves. Thereby
they play a central role in the morphology and mechanical properties of the filament
network they are connected to. The most prominent example of this sort of motor
is myosin II, which is responsible for the contraction in muscle cells and also for the
– albeit much smaller – contractile forces in platelets or fibroblasts [34, 35]. There
are also microtubule based filament translation motors, one example being kinesin-5,
which plays a vital role in cell division, as it pushes the duplicate genomic information
apart by moving its heads towards the plus direction of two anti-parallely arranged
microtubules [31] (see Fig. 2.3(b)). While both of these two systems slide filaments
against each other one might ask, why in the microtubule system the sliding leads
to pushing two objects apart, while in the actin system this leads exclusively to
contraction. The reason for the difference has been found to lie fundamentally in the
fact that the persistence length of microtubules is much larger than the persistence
length of actin filaments. This leads to actin filaments buckling more easily under
pushing forces. In an initially disordered network of crosslinked actin filaments this
leads to a selection of actin filaments bearing contractile load and to an overall
contraction by severing actin filaments that buckle under compressive forces [36–39].
This effect does not occur in the much more rigid microtubules.

Rotary motors Contrary to the previously presented motor classes, where the direc-
tion of movement was linear along a polymer track, these motors rotate subdomains
of proteins or larger structures as flagella around a stationary axis as in the ATP
synthase or the flagellar motor respectively [12]. These are the two main examples
of rotary motors.
The ATP synthase that produces ATP actually consists of two distinct rotary

motors, the so called F0 and F1 motor. The F0 motor utilizes a concentration
transmembrane gradient in hydrogen ions in order to rotate. The F1 motor rotates in
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the opposite direction via ATP hydrolysis. In typical conditions the torque produced
by the F0 motor surpasses the torque of the F1 motor, which forces the F1 to rotate in
reverse, which produces ATP. If the driving force, i.e. the transmembrane gradient,
is weak however, ATP is hydrolyzed in order to pump hydrogen ions against their
concentration gradient [12].
The flagellar motor shown in Fig. 2.3(c) is similar to the F0 motor as it also uses a

hydrogen ion transmembrane gradient to power a rotation. It is tightly fixed in the
cell wall of bacteria and rotates the flagellum to provide motility to the bacterium.
The flagellar motor consists of a reasonably complex arrangement of many proteins.
In particular there is the so called C-ring, that is anchored to the cell wall and
the MS-ring, which is anchored to the flagellum. In between, stator units are the
elements that produce the torque. They can reversibly bind to the MS-ring and it
has been shown, that increasing the total torque the flagellum is leads to increases in
the number of stator units bound to the MS-ring [5, 40]. This intriguing phenomenon
can be interpreted as a mechanism that increases efficiency: At low torque only a low
amount of stators – and thereby only a low flux of hydrogen ions, a measurement of
power in this context – is needed for rotation. By dynamic self-assembly of additional
stator units the torque can be increased which in turn increases the flux of hydrogen
ions.

2.1.3. Myosin II

Motor proteins that travel along actin tracks are called myosins. They form a very
diverse superfamily of molecular motors [17] that share a common mechanism to
convert chemical energy in the form of ATP to mechanical work [42], their task within
cells however differ greatly from each other. These tasks range from generation of
strong contractile forces in skeletal muscles or the heart muscle (by numerous different
types of myosin II [43, 44]) over length regulation of the stereocilia in hair cells
(by myosin IIIa/b [45] and myosin XVa [46] ) to mechanosensors (notably myosin
IC in hair cells [47, 48], but also non-muscle myosin II (NM II) in migratory cells
[49]). This wealth of different tasks surely comes with a wealth of different biological
challenges that evolution has addressed by introducing the astonishing amount of
slightly different myosin proteins. Biologists have classified these into 17 classes as
the phylogenetic tree in Fig. 2.4 visualizes.
The structure of most myosins can be best described by the serial arrangement of

three functional units [17]

1. the motor domain, that interacts with actin and hydrolyses ATP

2. the neck domain, that can bind additional proteins
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Figure 2.4.: The phylogenetic tree of myosins proteins. Depending on their con-
struction from subdomains, myosins are classified into 17 classes. Adapted from
[41].

3. the tail domain, which is meant to position the head in such a way, that it can
productively interact with actin.

While the motor domains are quite well conserved, the neck domain contains different
amounts of repeats the so-called IQ motiv, which leads to varying lengths of this
region. The most diverse domain is the tail region, perhaps because it defines to
which structures myosin can bind. In the case of myosin V – a cargo motor – clearly
has to bind something different (namely vesicle adaptor proteins [50]) than myosin II
which should contract actin filaments and thereby should bind to actin at two points
that can travel into different directions.

Assembly In order to be able to connect and later contract two actin filaments,
myosin II assembles larger structures by virtue of the long helical coiled-coil domain
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(a)

(b)

(c) (d)

Figure 2.5.: Myosin II and its assemblies. (a) Structure of the myosin hexamer con-
sisting of two heavy chains (blue), two ELCs (orange) and two RLCs (green).
The heavy chain can be subdivided into three regions, the head, the neck and the
α-helical coiled-coil rod, which ends with a non-helical tailpiece. (b) The charge
distribution along the rod of myosin supports antiparallel and parallel arrange-
ment of rods with distinct staggering. (c) Striated muscle bipolar filaments, an
example for a very large myosin assembly. A schematic is shown together with an
electron microscopy image of scallop thick filaments and a cryo-electron tomog-
raphy of the Lethocerus flight muscle. (d) Non-muscle myosin bipolar filaments
are an example of a small assembly of myosin II. A schematic is shown together
with negative stain electron microscopy images of the three isoforms of NM II.
Adapted from [51–54].

along which electrical charge is organized such, that it allows for association of addi-
tional myosin II [51, 54]. The structure of myosin II is depicted in Fig. 2.5(a). The
myosin II hexamer – which is often called the monomer, as it can be seen as the
functional unit of myosin II – is formed by two heavy chains (blue), two essential
light chains (ELC) and two regulatory light chains (RLC). Myosin II monomers can
associate to each other in an antiparallel and parallel fashion with distinct staggers as
depicted in Fig. 2.5(b). These arise due to the charge distribution along the myosin
rod [55]. Near the tailpiece there is a predominantly positively charged region, while
the rest of the rod is predominantly negatively charged. Thereby this region is criti-
cal for self-assembly to occur [56]. Presumably dependent on the details of the charge
distribution, which varies between isoforms [57], different higher order structures of
myosin II form.

Fig. 2.5(c) shows an example for a very large and higly ordered myosin II assembly:
the straited muscle bipolar filament. These are very long myosin filaments with heads
splaying to the outside, that produce the high forces required for muscle contraction
and the beating of our heart [11]. In the middle of the thick filament there is a bare
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zone, where no heads splay outwards. In the core of the thick filament the myosin
rods are densely packed. Since the geometrical arrangement of the rods is of central
importance for the electrostatic interaction, it was hypothesized on how the myosin
rods could be packed inside the core of the filament [58] and for some species, the
rod packing could be investigated experimentally in detail by electron tomography
[53].
A much smaller and presumably much less ordered assembly of myosin II is de-

picted in Fig. 2.5(d), the NM II bipolar filament, which was first discovered in human
platelets [34]. It takes a central role in many different cellular processes, such as cell
division, cell adhesion, migration and the organization of the actin cytoskeleton, and
is present in almost all mammalian cells [59]. It is also important in muscle cells,
as in heart muscle cells non-muscle myosin takes the role of a pioneer filament, that
cooperatively aligns actin filaments during maturation leading to a highly structured
actin cytoskeleton in mature cells [60]. NM II occurs in three different isoforms in
mammals, NM IIA, NM IIB, NM IIC. From electron microscopy of the purified pro-
tein there is no phenotypical difference between NM IIA and NM IIB. Both filaments
are ∼ 300 nm long and the bare zone has a thickness of ∼ 12 nm. Together with
the typical thickness of the rod of ∼ 2 nm this indicates that there are around ∼ 30

myosin monomers in one NM II filament of isoforms A or B. NM IIC filaments have a
similar length, however are much thinner, consistent with less myosin heads pointing
outward compared to NM IIA/B filaments (see Fig. 2.5(d))[54].

The crossbridge cycle Once assembled, bipolar myosin II filaments can perform
their actual task: the contraction of actin filaments. The contraction mechanism
is typically explained by a sequence of mechanochemical states of the myosin head
region, based on the crossbridge model, which was pioneered by Huxley [61]. The
crossbridge cycle – sometimes also the actomyosin ATPase cycle [62] – has been
studied in great detail via dynamical experiments [63–67] together with numerous
modeling studies [68–78] as well as via structural investigations [62, 79]. It is shown
schematically in Fig. 2.6.
The crossbridge cycle can be summarized as follows:

• Starting from the unbound state where ATP is already hydrolyzed the myosin
head binds to actin. The motor domain is now reversibly bound to actin.

• Subsequent phosphate release and movement of the lever arm lead to a move-
ment of ∼ 5.5 nm along the actin fiber. This transition is often termed the first
powerstroke.

• Now ADP can dissociate from the motor head and the second, shorter power-
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Figure 2.6: The cross-
bridge cycle shows the
mechanochemical states
of the myosin motor
domain and its subdo-
mains while it interacts
with actin. It links the
ATPase chemistry with
the mechanics of force
generation. Modified
from [62].

unbound state

stroke (∼ 2.5 nm) is performed.

• From the so-called rigor state dissociation from actin happens as soon as fresh
ATP binds to the head. In rigor mortis, it is the depleted ATP, which blocks
myosin in an actin attached state, which leads to stiff muscles.

• The newly bound ATP is hydrolyzed and the lever arm returns to its original
position, i.e. the recovery stroke is performed. Sometimes this transition is
also called repriming of the lever arm.

Similar to the motor domain, also the crossbridge cycle is well conserved, however the
transition rates and affinities highly vary, which allows for tuning myosin to perform
many different functions [42]. Myosin can also perform its crossbridge cycle without
actin, however in this case it is much slower [49]. For this reason myosin ist often
called an actin-activated ATPase.

Regulation As most cellular processes, also the assembly and force generation of
myosin II have to be regulated in space and time. In muscle cells the thick bipolar fil-
aments come already assembled into the higher order structure of sarcomeres, highly
ordered actomyosin structures with additional linking proteins. Here, regulation of
contractile forces occurs primarily by a Ca2+-dependent blocking of actin binding
sites by tropomyosin [11], which is additionally modulated by phosphorylation of the
RLC and other regulatory proteins. This additional regulation may transition motor
domains of a thick filament in the super-relaxed state [80], in which myosin heads are

16



2.1. THE CYTOSKELETON

Figure 2.7.: Regulation scheme of NM II. From the assembly-incompetent form,
phosphorylation of the RLC (by e.g. MLCK or ROCK) leads to a transition into
the assembly-competent form, which can self-assemble into NM II minifilaments.
Adapted from [49].

trapped very close to the backbone structure and cannot interact with actin [81, 82].

NM II is regulated in a spatio-temporally different way, as forces have to be dy-
namically produced on demand. Here contraction is regulated by assembly itself: if
NM II is not assembled into bipolar filaments, no appreciable force can be produced.
Assembly of NM II dependends critically on the phosphorylation of the RLC. If it is
unphosphorylated, the myosin rod folds onto itself. This configuration is called the
10S assembly-incompetent NM II and is characterized by inhibition of most function-
alities of NM II such as ATPase activity and binding to actin [83]. Upon phosphory-
lation of the RLC the rod can unfold into the 6S assembly-competent form as shown
in Fig. 2.7. It is this form that can assemble into bipolar filaments that can contract
anti-parallel actin filaments. The assembly is additionally regulated by phosphoryla-
tion of the tail region in an isoform dependent manner [49]. The viewpoint, that only
the assembly-competent NM II can assemble into oligomeres, has been challenged by
a study which identified folded oligomeres in electron microscopy images of in vitro
assemblies [84]. It is however unclear, how big of a role this phenomenon plays in
vivo, where it could lead to faster filament assembly [59, 84, 85]. Notably, the up-
stream regulation of the RLC phosphorylation by the RhoA-pathway concurrently
upregulates actin assembly by activating formins, which means, that motor tracks
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and the motors themselves are built on-the-fly as needed by the cell [86, 87], which
is in stark contrast to the rather static assembly situation in muscle cells. This moti-
vates the modeling approach of simulating concurrent assembly and force generation
of myosin minifilaments that is presented in chapter 4.

The different isoforms of non-muscle myosin II As mentioned above, non-muscle
myosin II occurs in three different isoforms in mammals, NM IIA, NM IIB and NM
IIC, encoded by three different genes for the heavy chain Myh9, Myh10 and Myh14.
The assembled hexamers only differ in their heavy chain, while their ELC and RLC
remain the same, indicating that RLC-regulation is not isoform specific [59]. In
turn, the regulation heavy-chain phosphorylation may be isoform specific as distinct
phosphorylation loci exist along the myosin rod [49]. NM IIA and IIB is expressed
by most cells, while NM IIC is only expressed by a few specialized cell types [59]. As
little is known about the details of the mechanics of NM IIC we here focus on the
other two isoforms NM IIA and NM IIB.
For assessing the mechanical capabilities of molecular motors there are two central

quantities that link mechanics and motor chemistry and thereby dictate whether the
motors are slow, fast, weak or strong: the duty ratio and the rate of ATP-hydrolysis
[71]. The duty ratio describes the fraction of time spent attached to actin and can be
interpreted as a measure for how strong a motor is, since one myosin head can carry
a maximum force of ∼ 2 pN [64] only if it is attached. The rate of ATP-hydrolysis
characterizes how much time a motor needs to complete one crossbridge cycle and
thereby can be interpreted as a measure for speed. Compared to skeletal muscle
myosin, non-muscle myosins are very slow and attach to actin quite strongly. Of the
two, NM IIA can be characterized as the faster but weaker motor as it cycles through
the actin bound states of the crossbridge cycle faster than NM IIB but spends less
time in actin attached states. It was shown that different NM II isoforms can co-
assemble into one bipolar filament yielding hetero-filaments [88, 89]. A theoretical
study has shown, that these filaments show an intermediate behavior between pure
NM IIA or NM IIB filaments [72].
Many cellular processes, such as cell migration, rely on the differences in mechano-

chemical properties between the two major NM II isoforms. NM IIB is more often
incorporated more ordered and long lived structures such as ventral stress fibers,
that have to exert forces over long periods of time [49, 59, 90]. In contrast NM IIA
can be found in more dynamic actin structures such as transverse arcs, where its
higher contraction speed compared to NM IIB is vital to flatten the lamellum [22,
59]. Overall in migrating cells, there exists a well known front to back pattern
of more NM IIA in the front and more NM IIB in the back of the cell [22, 90,
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91]. An appealing mechanistic model mechanistically explaining the emergence of
this pattern is described in [90]. NM IIA and NM IIB coassemble stochastically at
the cell front and follow the retrograde flow of actin towards the cell rear. During
this movement, higher turnover of NM IIA versus NM IIB, that has been found
experimentally [91, 92], leads to an increased dissociation of NM IIA, which in turn
leads to more NM IIB in the cell rear, than in the cell front. This process is likely
additionally steered by differential regulation via the myosin tail region [49, 59].

2.2. Theoretical concepts

In the following theoretical concepts are introduced that are useful for the description
of assembly and mechanics in the actin cytoskeleton.

2.2.1. Master equation

Due to the small size of the constituents of the cell and the energy scales involved
in cellular processes being near the thermal energy kBT , biological processes are
often subject to appreciable fluctuations. In the case of molecular motors a reason
for appreciable fluctuations lies also within the small number of motors that work
together. Processes like these, that can be captured by a discrete set of states,
are best described in the framework of master equations, that are introduced here
following [93].
Suppose Xt is a random variable of a time dependent stochastic process, which

could be the position of a diffusive brownian particle or the size of a self-assembling
complex. If we collect this value at many discrete time steps we have obtained a so
called trajectory {x1, x2, ...} for the times {t1, t2, ...}. The probability distribution
function for each time t assigns a probability p(x, t)dx for the random variable be in
the interval between x and x+dx to each time. Importantly for the interpretation as
a probability, p(x, t) is normalized such that

∫
p(x)dx = 1 and non-negative p(x) ≥

0. One can now also define the joint probability distribution function of n points
pn(x1, t1;x2, t2; ...), which describes the probability for the system to have taken a
specific trajectory. Often systems have no memory of their complete trajectory and
thereby future states only depend on the present state, but not on the entire history
of the system. These are called Markov processes. The following relation holds

pn(xn+1, tn+1|xn, tn;xn−1, tn−1, ...) = p2(xn+1, tn+1|xn, tn). (2.2)

The conditional probability of whether state xn+1 is reached at time tn+1 given that
it is in state xn at tn can be interpreted as a transition probability. This implies, for
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the three times t1 ≤ t2 ≤ t3 that

p2(x3, t3|x1, t1) =

∫
dx2p2(x3, t3|x2, t2)p2(x2, t2|x1, t1), (2.3)

which is called the Chapman-Kolmogorov equation. It states that the transition
probability from state x1 at t1 to x3 at t3 can be calculated as a sum of transition
probabilities over all intermediate steps x2.

For small time differences τ between states x1 and x2 the Chapman-Kolmogorov
equation implies

p2(x2, t1 + τ |x1, t1) = (1− aτ)δ(x2 − x1) + τw(x2|x1) +O(τ2), (2.4)

which in essence states, that if the time difference is zero, no state change will occur,
while at small τ the probability that a change occurs is given by w(x2|x1). The
Chapman-Kolmogorov equation together with the limit τ → 0 now implies

∂p2(x3|x1)

∂t
=

∫ (
w(x3|x2)p2(x2|x1)− w(x2|x3)p2(x3|x1)

)
dx2, (2.5)

which is the master equation. It should be interpreted as a time evolution equation
for the probability to find the system in state x at time t when it was in state x1 at
time t1. Bearing this in mind, one typically writes this equation in a less convoluted
way by dropping the conditional probabilities. Additionally, when reasoning about a
system with discrete states rather than continuous ones the integral becomes a sum
and the equation is now

dpn(t)

dt
=
∑
n

(
wnn′pn′(t)− wn′npn(t)

)
, (2.6)

where wnn′ is the transition probability per unit time from state n′ to state n. From
this equation it becomes clear, that the master equation is a balance equation of
probability fluxes. This equation can be further simplified by introducing the W
matrix

Wnn′ = wnn′ − δnn′
∑
n′′

wn′′n, (2.7)

which can be used to rewrite eq. (2.6) as

d~p(t)

dt
= W~p(t). (2.8)
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W can be diagonalized, since −W is a non-singular M-matrix (for more details see
[94, 95]), solutions to the master equation are now given by the ansatz

~p(t) =
∑
i

Cie
λit~vi, (2.9)

where λi and ~vi are the eigenvalues and right eigenvectors of W respectively, while Ci
are coefficients. Since the probability is conserved, the column sum of W vanishes,
which implies, that (1, 1, ..., 1) is a left eigenvector ofW to the eigenvalue λ0 = 0. The
corresponding right eigenvector corresponds to the stationary state of the system.
The other eigenvalues cannot be given in general, however their real value is neg-

ative [94], which corresponds to a damping of non steady state probability distri-
butions. Since W is not generally symmetric, in principle also complex eigenvalues
can occur, however if detailed balance is fulfilled, i.e. there exists a steady state peq

n

where all fluxes peq
n wnn′ are balanced with fluxes in the opposite direction peq

n′wn′n,
the eigenvalues are real and thereby no oscillations occur in the solution of the master
equation.
A special example of a master equation that is often studied is the one-step master

equation. In these processes states can be numbered by an integer n and the W
matrix only permits transitions between adjacent sites. These can be written in the
form

dpn(t)

dt
= rn+1pn+1 + gn−1pn−1 − (rn + gn)pn. (2.10)

rn = wnn−1 and gn = wnn+1 are the probability per unit time that a transition from
state n to state n− 1 and n+ 1 occur respectively. It can be used to model a wide
variety of stochastic processes such as recombination and generation of charges in
semiconductors and birth-and-death problems, as arise in the dynamics of adhesion
clusters [96, 97], in the load-dependent self-assembly of the bacterial flagellar motor
[5] or in adhesion mediated cellular uptake of particles [98, 99].

2.2.2. Self-assembly and chemical rate-equations

Self-assembly of multiple individual constituents to a functioning whole is at the
heart of many biological processes. Be it the assembly of a virus capsid [100], the
assembly of cytoskeletal filaments [101] or the synthetic biology approach of DNA-
origami [102], the single constituent does not fullfil a purpose (apart from being able
to assemble that is), but the assembled structure can sometimes be a quite intrigu-
ing. In the advent of larger-scale computer simulations, that model self-assembly
from diffusion and reaction of explicit particles in three dimensions [103], more sim-
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ple models of self-assembly that model only the size of complexes may sometimes be
overlooked. However in some scenarios it is not the exact geometric arrangement that
is important for the self-assembled to perform its job, but it is the size. Examples
for these sorts of complexes include lipid membranes, that – essentially for biological
cells – compartmentalize an aqueous environment and have to provide large enough
compartments to fit all cellular constituents, adhesion clusters, that are only stable
to force if they contain enough adhesion proteins [97], ensembles of non-processive
motors, that can move processively if enough motors join the ensemble [69], or syn-
thetic fibers, where the tensile strength of a fiber depends strongly on the typical
molar weight of the polymers [104].

To capture the essential features of the self-assembly of these complexes, as they
do not depend strongly on explicit geometry, a description in terms of a network of
distinct chemical reactions is often sufficient. The Smolochowski-Kolmogorov coagu-
lation fragmentation equation is a classical example for such a network, that is based
on the law of mass action [105–107]. It describes the time evolution of concentrations
during reversible reactions of clusters consisting of n and s monomers of the form
Cn + Cs 
 Cn+s and is given by

dcn
dt

=
1

2

n−1∑
s=1

as,n−scscn−s −
∞∑
s=1

an,scncs

− 1

2
cn

n−1∑
s=1

bs,n−s +

∞∑
s=1

bn,scn+s.

(2.11)

The coagulation and fragmentation kernels are as,n and bs,n respectively and describe
the chemical rates of each of the reactions. Mathematical research typically focuses
on the situation where clusters can grow indefinitely (as is indicated by the upper
limit∞ in the second and last sum) and asks questions about the long time behavior
[106]. However, there are also applications of this equation to systems with a maximal
cluster size, such as the assembly SASS-6 proteins that to rings that later serve as
scaffolds for microtubule nucleation [108–110].

The Smolochowski-Kolmogorov aggregation-fragmentation equation can be simpli-
fied if one assumes clusters can only grow or shrink by addition or dissociation of one
monomer. This reaction network is described in the literature as the Becker-Döring
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equation [111] and can be written as

dc1

dt
= −2J1 −

∞∑
n=2

Jn (2.12)

dcn
dt

= Jn−1 − Jn, n ≥ 2 (2.13)

with Jn = knonc1cn − knoffcn+1. The evolution of the monomer concentration is much
more complex, since monomers participate in reactions of all cluster sizes. Again,
mathematical research focuses on the situation where clusters can grow infinitely
large [112] and investigates predominantly long time behavior and the existence
of steady states [113]. While earlier typically the monomer concentration was held
constant for ease of calculations, in more recent work eq. (2.12) is into account which
should ensure mass conservation. Surprisingly, in situations of high initial mass
the equilibrium solution which is approached can become zero for all finite cluster
sizes. This implies that at t → ∞ all initial monomers have formed a superparticle
[112, 114].

As stated above, a maximal cluster size with dynamical systems in mind, such as
assembling viruses, where the respective monomers are produced concurrently to self-
assembly and release of finished clusters from the system, the Becker-Döring model
can be used in a modified version to model open molecular self-assembly [115, 116].
Here, an influx of monomer and outflux of complexes of different sizes are introduced
to the system of equations and the changed behavior is studied. Remarkably, also
oscillatory solutions are found [116].

2.2.3. Linear viscoelasticity

Many different experiments indicate that the mechanics of animal cells is neither
purely elastic, nor purely viscous, but depends on the experiment. Be it the reaction
of red blood cells to prolonged deformation in a microchannel [117], time-dependent
contraction of stress fibers using opto-genetics [2] or the mechanical response of sub-
cutaneous adipose tissue [118], the mechanics of cells is best described as viscoelastic,
i.e. a combination of both elastic and viscous response. Myosin II, as it is the main
molecular motor that affects the actin cytoskeleton, has been found to play a cen-
tral role in determining the mechanical behavior of the cell [119–122]. As chapter 5
makes use of viscoelastic theory, to relate the chemical properties of myosin II to
viscoelastic properties, basic theoretical results are given here.

This chapter follows [123, 124] in laying the basis for understanding the linear
viscoelastic behavior of materials. A general linear response of a viscoelastic system
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to an applied strain ε(t) or an applied stress σ(t) can be written as

σ(t) =

t∫
−∞

G(t− t′)dε(t′) (2.14)

ε(t) =

t∫
−∞

J(t− t′)dσ(t′). (2.15)

The functions J(t) and G(t) are called the creep compliance and the relaxation mod-
ulus respectively, or also the material functions of the viscoelastic material. They
describe the response of the viscoelastic material to a unit step in force or strain
respectively, i.e. ε(t) = Θ(t) ⇒ σ(t) = G(t) and σ(t) = Θ(t) ⇒ ε(t) = J(t). Since
the current response of a material should not depend on an applied strain or stress
in the future – this would violate causality – the material functions should vanish for
t < 0. Experimental evidence shows, that the material functions are non-negative
monotonic functions. While J(t) is increasing, G(t) is monotonically decreasing. The
limiting values of the material functions at t→ 0+ and t→ +∞ can already be used
to qualitatively classify a viscoelastic material. The values for t → 0+ relate to the
instantaneous (glass) response and are denoted by Jg and Gg, while the values for
long times t → +∞ are related to the equilibrium response and are denoted by Je
and Ge. It can be shown, that the material functions are not independent of each
other but there is a one-to-one correspondence between the two. For the limiting
values of the material functions one in particular finds Jg = G−1

g and Je = G−1
e .

For a derivation see [123]. This allows to classify viscoelastic materials according
to their instantaneous and equilibrium responses into four types, as shown in Table
2.1. Type I materials can be deformed elastically on very short time scales and still
exhibit some elastic resistance to deformation at long timescales. Type II materials
behave elastically on short timescales, but flow on long timescales. Type III materi-
als cannot be deformed at short timescales, but behave elastically at long timescales.
Finally, Type IV materials cannot be deformed instantly, but flow at long timescales.

Type Jg := J(0+) Je := J(+∞) Gg := G(0+) Ge := G(+∞)

I > 0 <∞ <∞ > 0
II > 0 =∞ <∞ = 0
III = 0 <∞ =∞ > 0
IV = 0 =∞ =∞ = 0

Table 2.1.: The four types of viscoelasticity following [125].
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Animal cells should fall into the the material type II category, as for small times
they are deformable but remember their original configuration and are able to return
to it, while reorganization of the cytoskeleton makes them flow on long timescales.
This is also consistent with the description of cells as exhibiting a soft-glassy rheology
[126, 127] with a power-law creep compliance J(t) ∼ (t/τ0)β with typical values for
β between 0.1 and 0.5.

In experimental situations sample materials are often not subjected to a step in
strain or stress but to a sinusoidal excitation. One can calculate the corresponding
dynamic functions from the material functions by assuming a loading history of
ε(t;ω) = eiωt and σ(t;ω) = eiωt in eqns. (2.14) and (2.15) respectively. Here a
complex notation is used for convenience and ω denotes the angular frequency. One
finds

σ(t) = G∗(ω)eiωt, with G∗(ω) := iω

∞∫
0

G(t)e−iωtdt (2.16)

ε(t) = J∗(ω)eiωt, with J∗(ω) := iω

∞∫
0

J(t)e−iωtdt. (2.17)

The functions G∗(ω) and J∗(ω) are called complex modulus and complex compliance.
For consistency of eqns. (2.14) and (2.15) it also follows that G∗(ω)J∗(ω) = 1. Since
these functions are complex of course the stress and strain response of the material is
phase shifted by the so called loss angle δ(ω) compared to the sinusoidal excitation.
If one separates the real and imaginary parts of the dynamic functions one can write

G∗(ω) = G′(ω) + iωG′′(ω) = |G∗(ω)|eiδ(ω) (2.18)

J∗(ω) = J ′(ω)− iωJ ′′(ω) = |J∗(ω)|e−iδ(ω), (2.19)

with tan δ(ω) = G′′(ω)/G′(ω) = J ′′(ω)/J ′(ω). The real parts G′ and J ′ are called
storage modulus and compliance respectively, while the imaginary parts G′′ and J ′′

are termed loss modulus and compliance.

While the material and dynamic functions can be used easily to describe experi-
mental results, classical mechanical models composed of linear springs and dashpots
can be helpful to gain a better intuition of the meaning of these functions. The
mechanical models always relate to a so called constitutive equation which relates
stress and strain (along with their derivatives w.r.t. time). From these it is possible
to obtain the material functions via eqns. (2.14) and (2.15). We here focus on the
Maxwell model, a serial arrangement of a spring with spring constant k and a dash-
pot with friction coefficient η as shown in the inset of Fig. 2.8, which is the simplest
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Figure 2.8.: Visualization of the the material functions (left) and the dynamic func-
tions (right) of the Maxwell model, where solid lines denote the real part and
dashed lines denote the imaginary part.

viscoelastic material of type II. For more examples of mechanical models refer to
[123].
The constitutive equation, which relates stress to strain and their derivatives w.r.t.

time, for the Maxwell model is given by

σ(t) +
η

k

dσ

dt
= η

dε

dt
. (2.20)

Hence the material functions are given by

G(t) = ke−t/τ G∗(ω) =
k(ηω)2 + iωk2η

(ηω)2 + k2
(2.21)

J(t) =
1

k
+
t

η
J∗(ω) =

1

k
− i 1

ωη
(2.22)

with relaxation time τ = η/k. All functions are visualized in Fig. 2.8.

2.3. Experimental techniques

The following section highlights some central experimental methods that have been
utilized to characterize the mechanics or self-assembling behavior of the actomyosin
system.
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(a) (b) (c)

(d) (e)

Figure 2.9.: Micropatterning techniques and applications. (a) Changes of cytoskele-
tal organization due to adhesion constraints can be investigated using micropat-
terning. (b) Principle of microcontact printing: A micro inked with alkanethiol
is brought into contact with a thin gold/silver surface and leaves a function-
alized mark for protein absorption. The remaining surface is washed with an-
other alkanethiol not suitable for protein absorption. (c) A more recent technique
uses electron beam lithography to selectively functionalize a surface is techni-
cally more involved but is able produce smaller features. (d) U2OS cell on a
cross-pattern of fibronectin. Image is courtesy of Kai Weißenbruch. (e) Cell on
a dotted substrate showing invaginated arcs between the adhesive dots. Adapted
from [128, 129, 131, 132].

2.3.1. Micropatterning on two-dimensional substrates

Biological cells are often cultivated on adhesive surfaces where even one cell line
typically shows a variety of phenotypes that are difficult to quantify in a meaningful
way. In order to conduct well controlled experiments that probe the cytoskeletal or-
ganization it has been found to be instructive to control the area the cells can adhere
to by fixing proteins normally found in the extracellular matrix (as e.g. fibronectin
[11]) to constrained areas [128–130]. Fig. 2.9(a) shows how the actin and microtubule
cytoskeleton organization changes depending on the shape of the adhesive surface,
which only gives a glimpse of the possibilities for controlled investigation of cell be-
havior. This section gives an overview of the different techniques that have been
developed to fabricate such substrates.
Microcontact printing, a technique of soft lithography, has been utilized to produce

microfluidic devices or bendable microelectronics [133]. Microcontact printing can be
used to chemically functionalize a metal surface for protein absorption and has been
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used very early to confine cell spreading to a predefined area [134]. In brief, a stamp,
which has been produced from a master and is typically made of polydimethylsiloxane
(PDMS), a transparent elastomer, is inked and used to leave a pattern predetermined
by the master on a given surface as shown in Fig. 2.9(b). For biological applications
one can use glass slides with a thin gold film as the surface and stamp on alkanethiols
that form self-assembled monolayers that can adsorb proteins. A subsequent washing
step with a different sort of alkanethiol also forming self-assembled monolayers, that
importantly resist the adsorption of protein concludes the patterning. In a last step
purified protein can be introduced to the surface and after excess protein is washed
away we receive a surface with a well defined pattern of attachment points for cells
[132]. This is a quite cost-effective and simple method to generate micropatterned
surfaces in a lab environment without a clean room and hence has been used in
numerous studies from stress fibers [128, 135] (see Fig. 2.9(d) and (e)) to the influence
of cell shape on stem cell differentiation [136].
Direct photolithographic processes have also become available where, using a pho-

tomask, extracellular matrix protein is more directly coated to a glass surface [137].
These procedures allow for a production of large quantities of patterned surfaces.
Another technique, which focuses on the production of very small patterns, uses
electron beams to directly write free thiolene functional groups patterns to glass sur-
faces (see Fig. 2.9(c)). In subsequent steps these can used to immobilize biomolecules
on the predefined pattern with features as small as 250 nm.

2.3.2. Fluorescence recovery after photobleaching

FRAP makes use of the normally unfavorable behavior of photobleaching that typi-
cal fluorescent markers used in biological experiments show. Shining light onto these
fluorophores over time leads to a permanent loss of the fluorophores ability to fluo-
resce. In FRAP experiments this property is utilized by purposely bleaching a small
domain using a focused laser beam. The recovery of the fluorescence that may be
observed in the target area stems from the stochastic exchange of permanently dam-
aged fluorophores with undamaged ones [138]. This turnover can be either driven by
active transport or diffusion [139] and can be slowed down significantly if the fluores-
cent particle is bound to a stationary object [140]. In the theoretical description of
FRAP therefore two limits which are described in the following can be distinguished
assuming active transport does not play a major role: The diffusion-limited case and
the reaction-limited case [141].

Diffusion-limited recovery In this regime fluorescent particles are assumed to not
bind to any other particle. Thus the fluorescence recovery is only governed by diffu-
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sion and therefore should be modeled using the diffusion equation

∂C

∂t
= D∆C, (2.23)

where C is the concentration of fluorophore and D is the diffusion constant, with
appropriate starting conditions for the bleached spot [139]. The exact solution de-
pends on the starting condition and other conditions, such as the dimensionality
of the space that is available for diffusion. For a circular bleach spot of radius w
of a fluorophore diffusing in two dimensions there is an analytical formula for the
detected FRAP dynamics with the modified Bessel functions I0 and I1

FRAP (t) = e−
τD
2t

[
I0

(τD
2t

)
+ I1

(τD
2t

)]
with τD =

w2

D
. (2.24)

Other closed form recovery dynamics emerging from different dimensionalities can be
found in [142] together with a thorough discussion about the impact of the choice of
boundary conditions on the physical properties estimated from experimental profiles.

Reaction-limited recovery In this regime reversible attachment of the fluorescent
particle to a stationary object is important and diffusion is expected to be fast. The
simplest reaction that can be considered is the reversible binding of free diffusible
protein F to vacant immobile binding sites S, with binding rate kon and unbinding
rate koff , forming the complex C

F + S
kon−−⇀↽−−
koff

C.

The recovery dynamic has here been given in the literature [141]

FRAP (t) = 1− k∗on

k∗on + koff
e−koff t (2.25)

where k∗on = Seqkon is the effective first-order rate constant given the solution is
in equilibrium prior to performing the bleaching (which is assumed to be true in
typical scenarios). This formula assumes, that free proteins fully contribute to the
fluorescence signal, which however may not apply in a confocal microscope, if the
studied complex fully fills up the focal plane such that free proteins are not detected.

In these situations often the fluorescence does not recover fully, which is attributed
to only a fraction of the fluorophores being able to be exchanged in the timescale
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(a)

(b) (c) (d)

Figure 2.10.: FRAP of non-muscle myosin IIA. (a) SIM imaging of GFP tagged
NM IIA heavy chain after photobleacing the white circle. (b-d) FRAP data of
the RLC, the heavy chain with and without suppressed actin polymerization
dynamics are similar, suggesting, that the recovery is due to complete exchange
of myosin hexamers. Adapted from [143].

probed by the experiment. In practice recovery profiles of the form

FRAP (t) = δ
(

1− e−koff t
)

(2.26)

with the mobile fraction of fluorophores δ are observed [143]. This approach has
been used to study NM II turnover dynamics (see Fig. 2.10) in conjunction with
structured illumination microscopy (SIM), a super resolution microscopy technique.
The FRAP dynamics neither depended on the specific fluorescently tagged protein
in the myosin II hexamer, as the tagged RLC (Fig. 2.10(b)) and the tagged heavy
chain (Fig. 2.10(c)) recover similarly, nor on actin dynamics, as inhibition using two
chemical compounds known for inhibiting actin dynamics did not change the FRAP
dynamics (see Fig. 2.10(d)). Thus, this study indicates, that myosin II hexamers are
in dynamic turnover with a small fraction – the immobile fraction – which does not
exchange with the environment on the timescale probed by the experiment.

2.3.3. Microrheological methods

This section briefly describes some approaches that have been utilized to investigate
the rheology of the cytoskeleton. All approaches build upon the idea that thermal
or non-thermal forces act upon the cytoskeleton and the response can be recorded.
They can probe different substructures of the cytoskeleton, depending on the location
and magnitude of the stress they exert. They are shown in a very schematic way in
Fig. 2.11.
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Atomic force

microscopy

Optical tweezers

Magnetic twisting

Microplate
rheometer

Magnetic tweezers

Particle tracking
microrheology

Figure 2.11.: Sketches of standard microrheological measurement methods. Adapted
from [127].

Atomic force microscopy uses a tip attached to a soft cantilever to press down on
a material and measure the force dependent on the indentation of the material [144].
Due to its high spatial resolution, which is primarily limited by the tip sharpness,
it is often viewed as an imaging technique but can also shed light on mechanical
properties of a biological sample. By utilizing tipless cantilevers, also the whole
cell can be deformed at once, thereby probing a more global response of the cell to
pressure [122].

Magnetic twisting has been conceived very early for probing the rheology of biolog-
ical cells [145]. Protein-coated ferromagnetic but non-magnetized beads are allowed
to bind to the cell. After magnetization of the cell bound beads, the beads can be
rotated by an external field and the orientation of the beads magnetic field can be
recorded with a magnetometer. This setup allows to measure many cells in parallel,
the twisting can be done over a large frequency domain from 0.01 ∼ 1000Hz [127].

Magnetic tweezers can be utilized to pull on protein-coated paramagnetic beads
that have been brought into close contact with the cell membrane in order to probe
the mechanics of the actin cytoskeleton below the plasma membrane [146]. Beads can
be subject to a maximum force of ∼ 100 nN using this method [127]. Since magnets
either pull or push on the same para- or diamagnetic bead forces can only be applied
in one direction and probing the response to oscillatory forces is not possible.

Optical tweezers can manipulate microbeads using a focused laser light [147].
Beads are always pushed towards the focal point of the laser. Only small forces
of up to ∼ 50 pN can be generated, however therefore it is a very precise method,
which can be used to study the mechanics of single molecular motors [33]. They
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have also been used to measure the shear response of the cytoskeleton, by fixing an
adherent bead in space with optical tweezers and applying an oscillatory force by
moving the sample slide via a piezoelectric motor [148].

A microplate rheometer investigates the cellular rheology by pushing and pulling
on a cell attached to two glass plates [149]. Due to the setup it is possible to control
the prestress the cell is subject to by controlling the distance between the two plates.
With this approach it has been shown that cells are typically stress stiffening [150].

Particle tracking microrheology relies on thermal forces rather than forces pro-
duced by a measurement apparatus [151]. Instead – after bringing marker beads to
the points of measurement – one follows the thermal fluctuations of the marker beads
as they move together with the cytoskeleton. Remarkably, it is possible to obtain
the complex modulus of the material in which the beads have been embedded from
the mean squared displacement ∆r2(t) as

G∗(ω) =
2kBT

3πaiωFu[∆r2(t)]
,

where a is the radius of the bead and Fu[·] is the unilateral Fourier transform [151].
As the above formula relates fluctuations – quantified by ∆r2(t) – with an impedance
G∗(ω) in a thermodynamic equilibrium situation, it can be interpreted as a form of
the fluctuation dissipation theorem. While the method has been developed with
equilibrium fluctuations in mind, particle tracking microrheology has also been ap-
plied to systems in which molecular motors play a central role. By comparison of
results with and without motor action it was shown that additional fluctuations by
motors occur at specific slower timescales [152].

2.3.4. Laser cutting

In order to extract meaningful information about the mechanical properties of a ma-
terial the typical approach is deforming it by a prescribed protocol and recording
the response of the material [153]. This is also true for the cytoskeleton or cells in
general, as numerous such techniques exist that stress the cell mechanically [127] as
pointed out in the previous section. Additionally, since the cytoskeleton is typically
prestressed by molecular motors such as myosin II, it is possible to probe the me-
chanics by partly disrupting the structure. This can be done in practice by laser
cutting, a technique where a focused femtosecond laser is aimed at a cytoskeletal
filament in order to laser-ablate it [154].
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An often performed experiment that is performed with this technique is sim-
ply ablating part of a fiber and observing the retraction with confocal microscopy
[154, 156–158] (see Fig. 2.12(a)). The retraction is often found to be divided in a
virtually instant elastic retraction and a following exponential retraction with a typ-
ical timescale on the order of tens of seconds [159]. The standard linear solid model
includes both instant elastic relaxation and viscoelastic retraction in its response to
a sudden release of strain.

Peripheral stress fibers can be isolated by ’shaving’ off cortical actin in the pe-
riphery as shown in Fig. 2.12(b). In this study an active standard linear solid model
could describe the mechanics of the isolated stress fibers inside cells in response
to micromanipulation with an intracellular bead as depicted in Fig. 2.12(c) [155].
Additionally they could show, that myosin contraction and crosslinking leads to an
increase in stiffness of the peripheral stress fiber as the same elongation of the stress
fiber leads to a lower force when myosin is inhibited (see Fig. 2.12(d)).

A very recent study The laser cutting and ’shaving’ of the cortex approach has since
also been applied in conjunction with traction force microscopy [160], a method to
quantify the traction forces cells exert on their substrate [161]. By measuring changes
in traction force due to cutting and shaving the peripheral stress fibers in several

(a) (b)

(c)

(d)

Figure 2.12.: Applications of lasercutting of actin filaments. (a) (left) A fluorescently
labeled actin filaments that is cut at the arrow head shows a retraction. (right) A
300 nm hole is punched into a filament which elongates over time into an elliptical
shape. (b) The peripheral stress fiber that bridges the lower part of an S-shaped
micropattern has been isolated by cutting/’shaving’ off the cortical actin network.
(c) A microbead that was inserted into the cells is used to manipulate the isolated
stress fiber. (d) The strain-stress response curve can be modeled by an active
standard linear solid material law. Inhibition of actomyosin with Y27632 leads to
a decrease in force at similar elongations. Adapted from [154, 155].
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geometries and comparing to theoretical modeling, the authors conclude that stress
fibers should be considered as well embedded contractile structures into a contractile
actin network.
Recapitulating, laser cutting has developed to be a versatile tool to probe the me-

chanical properties, the organization and force transduction within the cytoskeleton.
Especially in conjunction with rigorous methods for force measurements this method
is very powerful.
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3. Becker Döring model for finite size
clusters

3.1. Introduction

The Becker-Döring equations, as introduced briefly in section 2.2.2, have been studied
in great detail [106] in the past as they are a simple and generic approach to describe
the dynamics of self-assembly of very different systems from phospholipid micelles
[162] to viral capsids [163], while also correctly predicting critical phenomena such
as Ostwald ripening [164].
In many classical systems such as the originally studied super-saturated vapor

[111] or binary alloys, in principle clusters of infinite size can form. In the realm of
biology there is however often a maximum cluster size at which the cluster is either
fully assembled or the dynamics change. Examples for such self-assemblies include
viral capsids, where a set amount of proteins assembles into a shell that closes onto
itself [163, 165], or prion fibrils that nucleate from individual missfolded proteins
and are stabilized once a threshold size is reached [166]. NM II minifilaments are
also such an example, as they contain a well defined number of . 30 non-muscle
myosin II (NM II) monomers [34, 54]. Systens like these have also been studied with
mathematical rigour mainly motivated by numerical approaches[167, 168].
Independent of the specific system studied, there is typically a great interest in the

timescale on which self-assembly occurs. These can vary widely even in the realm
of biology. While β-amyloid fibrils, protein aggregates which have been related to
neurodegenerate diseases such as Alzheimer’s, Huntington’s and Parkinson’s disease
[169, 170], assemble on very long timescales of multiple hours, virus capsids and
NM II minifilaments can assemble within minutes [54, 165].
In their form, where monomer concentrations are held constant and there is a

maximum cluster size, the Becker-Döring equations are a finite dimensional linear
system of equations and hence timescales can be extracted from the eigenvalues of
their Jacobian matrix. Here, I investigate such a modified version of the Becker-
Döring equations, where the maximum sized cluster is stabilized. Investigaton of
the equilibrium properties of this system, in particular of the dependence of to-
tal monomers in the system on free monomer concentration, reveals that there is a
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monomer concentration at which this scaling changes dramatically, the critical aggre-
gation concentration (CAC), which is a typical occurence in self-assembling systems
[171]. I approximate the eigenvalues of the system using a perturbative approach
supported with numerical calculations. Furthermore, the stochastic dynamics of the
size of one cluster of this system is modeled by a one step-master equation. Anal-
ysis of the equilibrium and dynamic properties of the one-cluster system reveals a
maximum in relaxation time very close to the CAC, which is in contrast to the bulk
system, where the relaxation time only increases with increasing monomer concentra-
tion. Finally, the applicability of these results to situations where the total monomer
concentration is conserved is discussed briefly.

3.2. Model outline

The Becker-Döring equations [111] describes the dynamic growth of clusters with
rate equations

ċ1 = −2J1 −
∞∑
n=2

Jn

ċn = Jn−1 − Jn, n ≥ 2

Jn = konc1cn − koffcn+1,

. (3.1)

where cn is the concentration of clusters containing n monomers, i.e. n-mers, koff is
the off-rate, kon is the second order rate constant for association of a monomer to a
cluster and Jn are the net fluxes of concentration from n-mers to n + 1-mers. For
clusters with maximum size N with a stabilized fully assembled cluster this changes
to

ċ1 = −2J1 −
N−1∑
n=2

Jn

ċn = Jn−1 − Jn, 2 ≤ n < N

ċN = JN−1 = koncN−1 − εkoffcN

Jn = konc1cn − koffcn+1 2 ≤ n < N − 1,

(3.2)

where the small constant ε > 0 was introduced. The reaction network of this system
of equation is shown in Fig. 3.1.

This system can be non-dimensionalized by using the rescaled time τ = tkoff and
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Figure 3.1.: Schematic of the rate equation studied in this chapter. The off-rate of
the fully assembled cluster εkoff is assumed to be small compared to koff .

measuring concentration in units of koff/kon, which yields

θ̇1 = −2J1 −
N−1∑
n=2

Jn

θ̇n = Jn−1 − Jn, 2 ≤ n < N

θ̇N = JN−1 = θ1θN−1 − εθN

Jn = θ1θn − θn+1, θn =
koncn
koff

,

(3.3)

with the dimensionless concentrations θn. We call θ1 = θ the reduced monomer
concentration.

3.3. Ensemble dynamics near equilibrium

3.3.1. Equilibrium

The behavior of this nonlinear set of equations can be analyzed by holding the
reduced monomer concentration θ constant, which removes the nonlinearity. The
rough experimental protocol to achieve this would be:

1. Allocate volume V of solvent and put in x amount of monomer.

2. While the reaction occurs record the n-mer concentrations and add new monomer
to the solution such that the monomer concentration stays constant.

The time evolution equation can be written as a matrix vector equation

~̇θ = J~θ + ~f, (3.4)

37



CHAPTER 3. BECKER DÖRING MODEL FOR FINITE SIZE CLUSTERS

where J is the Jacobian and the vector ~θ contains the concentration of n-mers for
n ≥ 2. J and ~f have the form

J =



−(1 + θ) 1 0 · · · 0 0

θ −(1 + θ) 1
. . .

...
...

0 θ −(1 + θ)
. . . 0 0

...
. . .

. . .
. . . 1 0

0 · · · 0 θ −(1 + θ) ε

0 · · · 0 0 θ −ε


(N−1)×(N−1)

(3.5)

~f =


θ2

0
...

0

 . (3.6)

Note, that J is a tridiagonal Toeplitz matrix up to the entries in the last column,
which arise due to the missing flux to bigger clusters for finite maximum size clusters
and the reduced dissociation rate.
Enforcing detailed balance on (3.4) with updated J yields

θeqn = θn, 2 ≤ n < N

θeq
N =

1

ε
θN .

(3.7)

The total concentration of monomer θtot can now be calculated

θtot(θ) =
N∑
n=1

nθeq
n =

N−1∑
n=1

nθn +
1

ε
NθN

=
θ −NθN + (N − 1)θN+1

(θ − 1)2
+

1

ε
NθN .

(3.8)

Here we used the derivative of the geometric sum in the last step. The monoton-
ically increasing function θtot(θ) is visualized in Fig. 3.2. There is a kink in the
function where the power-law scaling changes. This kink can be found numerically
by maximizing

d2

dξ2
ln θtot(e

ξ) (3.9)

with respect to the reduced monomer concentration θ = eξ. We call this concentra-
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Figure 3.2: Different terms
in the total concentra-
tion θtot(θ). The orange
and green line denote the
amount of monomers in
maximum size clusters
and the sum of all other
monomers respectively. θc
is the critical aggregation
concentration, where θtot

has a kink and θε is the
concentration where half
of the monomers are in
maximum sized clusters.

tion the CAC θc(N, ε). At lower θ, increases in the total concentration are accom-
panied by sizable increases in the equilibrium monomer concentration, while beyond
θc, increases in θtot go almost exclusively towards generating new clusters. In ad-
dition to the critical monomer concentration we define the monomer concentration
where half of all monomers are build into maximum size clusters as θε. Both of these
concentrations are also visualized in Fig. 3.2.
Fig. 3.3(a) shows the CAC as a function of ε and maximum cluster size N . θc

typically increases for increasing ε and N . Holding ε constant θc increases and
approaches θc = 1 for increasing N as shown in Fig. 3.3(b). Conversely, for constant
N and decreasing ε, θc decreases and scales approximately as θc ∼ ε

1
N for ε � 1

(see Fig. 3.3(c)). This can be seen by investigating the power law scaling θc ∼ εα as
a function of N at low ε. Here we determine the powerlaw by comparing θc at two
different (low) ε extracting the power law exponent as

α(N) =
ln θc(N, ε1)− ln θc(N, ε2)

ln ε1 − ln ε2
, with ε1 = 10−6, ε2 = 10−7. (3.10)

The result in Fig. 3.4 suggests, that indeed the exponent of the power law again
scales with a power law.

3.3.2. Relaxation behavior

We now look for the eigenvalues of J in the case that ε is small, later we will
approximate the contribution of ε as a linear perturbation. The eigenvalue problem
can be solved by using the known eigenvalues of tridiagonal Toeplitz matrices and
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Figure 3.3.: The critical aggregation concentration θc (a) as a function of ε and N ,
(b) as a function of N and (c) as a function of ε.

Laplace Expansion of J along the last column

det(J − λE) = −λ det(T − λE)
!
= 0

⇔ λ = 0 ∨ det(T − λE) = 0.
(3.11)

Thus the eigenvalues are λ0 = 0 (with right eigenvector ~v0 = (0, . . . , 1)T ) and the
eigenvalues of the matrix T which is the matrix J where the last row and the last
column are omitted. The eigenvalues λ, right eigenvectors ~v and the left eigenvectors
~wT of T are

λn = −(1 + θ)− 2
√
θ cos

(
πn

N − 1

)
vkn = θk/2 sin

(
kπn

N − 1

)
wkn = θ−k/2 sin

(
kπn

N − 1

)
, n, k ∈ {1, ..., N − 2}

(3.12)

Now we construct the right eigenvectors of J that correspond to the eigenvalues we
obtained from T . Assume ~d is an eigenvector of J for the eigenvalue λ and ~v is the
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Figure 3.4: Power law scaling ex-
ponent of θc ∼ εα as a func-
tion of N . The blue line
denotes the numerical result,
while the dashed black line de-
notes γN−1 with γ = 1.131.

corresponding eigenvector of T , then ~d is

~d =


|
~v

|
x

 (3.13)

with the condition that x must fulfill T
0
...

0 · · · 0 θ 0



|
~v

|
x

 =


|
λ~v

|
λx

 (3.14)

i.e. (vN−2 is the last element of ~v):

x =
vN−2θ

λ
(3.15)

For the left eigenvectors ~fT of J a similar calculation yields

~fT =
(
~wT , 0

)
(3.16)

for the eigenvalues pertaining to T . The left eigenvector for λ0 can be obtained by
solving the recurrence relation

−(1 + θ)f1 + θf2
!
= 0

fn − (1 + θ)fn+1 + θfn+2
!
= 0.

(3.17)
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This yields

f0
n = −θ

−n − 1

θ − 1
. (3.18)

Now we can calculate the perturbation of the eigenvalues of J that ε induces to first
order as:

δλn =
~fTn δJ

~dn
~fn~dn

, (3.19)

where ~dn and ~fT are right and left eigenvectors corresponding to the eigenvalue λn
respectively. We obtain:

~fn~dn =

N−2∑
k=1

sin2

(
kπn

N − 1

)
=

1

2
(N − 1)

δλn = 2ε
θ sin2

(
(N−2)πn
N−1

)
(N − 1)λn

+O(ε2)

(3.20)

~f0
~d0 = −θ

−(N−1) − 1

θ − 1

δλ0 = −εθ−(N−1) 1− θ
θ−(N−1) − 1

+O(ε2)

(3.21)

Solutions to the starting value problem of (3.4) could now be approximated by

~θ(τ) ≈ ~θeq +
N−2∑
n=0

Cn(~dn + δ~dn)e(λn+δλn)τ , (3.22)

where Cn are constants that are determined by the starting condition, ~θeq contains
the equilibrium concentrations of n-mers starting from n = 2 and δ~dn are the per-
turbations of the eigenvectors, which were not calculated here.

The largest non zero eigenvalue will yield the primary relaxation time as τ0 =

−1/λ0, which becomes the most important prominent relaxation for longer timescales,
i.e. towards equilibration of the system. It is easy to convince yourself, that τ0(θ)

shows a biphasic behavior. Starting from (3.21), for large enough N it follows that

τ0 =
1

ε(1− θ)
(
1− θN−1

)
≈

 1
ε(1−θ) , θ � 1

θN−2

ε , θ � 1
. (3.23)
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3.4. Single cluster dynamics near equilibrium

3.4.1. Equilibrium

In order to compare the calculations made so far to simulations of a single cluster
in a solution that has reached equilibrium, we here look at the situation where we
follow one cluster and describe its probability to be of a certain size. The probability
pn follows

ṗ1 = −J̃1

ṗn = J̃n−1 − J̃n, n ≥ 2

ṗN = J̃N−1

J̃n = θpn − pn+1.

(3.24)

Note the similarity to equation (3.4) – with the exception of the dynamics of ṗ1, that
have been adapted in such a way, that the sum of all probabilities is a conserved
quantity. This system can be rewritten as

~̇p = J̃~p (3.25)

J̃ =



−θ 1 0 · · · 0 0

θ −(1 + θ) 1
. . .

...
...

0 θ −(1 + θ)
. . . 0 0

...
. . .

. . .
. . . 1 0

0 · · · 0 θ −(1 + θ) ε

0 · · · 0 0 θ −ε


N×N

. (3.26)

This system is in equilibrium if all fluxes Jn are zero, yielding

pn = θn−1p1 n 6= N (3.27)

pN = pN−1
1

ε
, (3.28)

where p1 is given by the normalization 1 =
∑
pn. Note that in contrast to the bulk

solution system, where we worked with a (N − 1) × (N − 1) sized Jacobian, the
dimension of the Jacobian is now N ×N , since the dynamics of the probability for
the cluster being of size n = 1 has to be taken into account.
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3.4.2. Relaxation behavior

In a similar fashion to the preceeding section we want to perturbatively calculate the
eigenvalues of J̃ . Because of the entry J1,1 however, the relations from the Toeplitz
matrices cannot be used. Instead the eigenvalues of the submatrix T̃ can only be
calculated analytically if θ = 1 [172]. They read

λk = −2θ + 2θ cos
(2k − 1)π

2N − 1
, k ∈ 1, ..., N − 1. (3.29)

The corresponding left and right eigenvectors are

vkj = wkj = cos
(2k − 1)(2j − 1)π

2(2N − 1)
. (3.30)

Together with equation (3.15) the last entry of the right eigenvectors of J̃ can be
constructed as in equation (3.13). The left eigenvectors last entry is zero as enforced
by the second to last row of J̃T .
The right and left eigenvectors corresponding to λ0 = 0 are uk0 = δN,k and wk0 = 1

respectively. Employing equation (3.19) for the linear perturbation yields

δλ0 = 0 (3.31)

~fn~dn =
2N − 1

4
(3.32)

δλn =
4εθ cos2 (2n−1)(2N−3)π

2(2N−1)

λn(2N − 1)
+O(ε2). (3.33)

with the approximate knowledge of the eigenvalues one can approximate the temporal
evolution of the probability similar to eq. (3.22). Note that eq. (3.31) is in fact exact,
as the total probability is conserved, as explained in section 2.2.1.

3.5. Comparison of bulk and single cluster dynamics

The question we want to address in this section is what can we learn from the
relaxation behavior of the bulk about the relaxation dynamics of a single cluster?
What are the main differences and similarities?
We start our analysis by revisiting the total monomer concentration θtot(θ). In a

typical experimental scenario, the experimenter will predefine the total concentra-
tion θtot and from this, the equilibrium monomer concentration θ will follow accord-
ing to θtot(θ). From this perspective θtot(θ) can be interpreted as a control curve.
Figs. 3.5(a) and (d) show this control curve at varying ε and maximum cluster size
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Figure 3.5.: Relation of total monomer to free monomer (a, d) and timescales τ
(b, e) related to λ0 (dashed lines and circles) and λ1 (solid lines and crosses) as
functions of θ. Lines denote the perturbative approximation, while markers denote
the numerically determined value. The dashed black line denotes the timescale of
λ1 of the unperturbed system. Note that at free monomer concentrations where
the dependency θtot(θ) becomes very steep the relaxation time scales become very
long. (c, f) Relaxation times for the single cluster in an equilibrium solution (solid
lines) compared to the relaxation of a system where the monomer concentration
is held constant (dashed lines). The dots denote the perturbatively calculated
value for θ = 1 from equation (3.33). For (a-c) N = 30 and (d-f) ε = 0.01.
The right pointed arrowheads denote the critical concentration θc, while the left
pointed arrowheads denote the concentration θε where half of all monomers are
polymerized in maximum sized clusters.
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N respectively. Decreasing ε shifts the CAC to lower values while leaving the scal-
ing of θtot(θ) scaling at concentration lower than and also above the CAC more or
less unchanged. Conversely, increases in N shift the CAC to higher values which
approach 1, while also steepening the scaling at reduced monomer concentrations
beyond the CAC. Interestingly, for decreasing ε, θc and θε move closer together
which is consistent with the notion, that for decreasing ε the amount of maximum
size clusters becomes more important overall.

Figs. 3.5(b) and (e) show the longest two relaxation times τ0 and τ1 for the bulk
solution. Consistent with the approximation in eqn. (3.23) for high and low θ the
scaling of the longest timescale τ0 does not change much with varying ε. The absolute
value however increases strongly with decreasing ε. Also, similar to the control curve
θtot, changes in the maximum cluster size N do not change the behavior much for
low θ but the scaling for high θ changes as we could see in eqn. (3.23). The second
longest timescale τ1 rises with increasing θ to a maximum which is typically close to
θ = 1. This is also the behavior of the unperturbed system, i.e. this timescale does
not show qualitative differences which arise by the perturbation. For increasing N
the maximum becomes more pronounced and sharp. We finally compare the longest
relaxation timescale of the bulk solution with that of the single cluster. This is
summarized in Figs. 3.5(c,f). Remarkably, the longest relaxation time scale of both
systems agree for low monomer concentration. At some monomer concentration
this behavior stops. While the relaxation time of the bulk continues to increase
monotonically, the relaxation time for the single cluster reaches a maximum τmax at
θmax, beyond which it decreases again. This also leads to the observation that at
the concentration θmax the bulk system always relaxes more slowly than the single
cluster probability. Interestingly, the monomer concentration at this maximum is
very close to the critical concentration θc. As shown in Fig. 3.5(c), the maximum
is shifted to lower monomer concentration and increased in magnitude by increasing
the stability of the maximum sized cluster (i.e. by decreasing ε). Increasing the
maximum cluster size asymptotically shifts the maximum towards θ = 1 in addition
to increasing its magnitude (see Fig. 3.5(f)).

Fig. 3.6 quantifies the qualitative observations on the relation of bulk system to the
single cluster dynamics at the monomer concentration θmax from Figs. 3.5(c) and (f).
Fig. 3.6(a) compares the critical concentration θc (dotted lines) with the maximum
relaxation time concentration θmax for a range of maximum cluster sizes N as a
function of the stability parameter of the maximum sized cluster ε. For all ε the two
values are very close to each other, for very low ε (i.e. a very stable maximum sized
cluster) the agreement becomes especially good. This is also illustrated in Fig. 3.6(d)
where θmax and θc (dotted lines) are shown as a function of maximum cluster size
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Figure 3.6.: Maximum relaxation time τmax w.r.t. θ as functions of ε and maximum
cluster size N . (a, d) Reduced concentration θ yielding maximum relaxation
time θmax of the single cluster dynamics. The dotted line denotes the critical
concentration θc. (b, e) Maximum relaxation time τmax of the single cluster
dynamics (solid lines) and relaxation time of the bulk system at θmax (dashed
lines). (c, f) Ratio of maximum single cluster dynamics timescale and appropriate
bulk timescale.

N for a range of stability parameters ε. Fig. 3.6(b) shows the associated maximum
relaxation time τmax together with the relaxation time of the bulk at θmax (dashed
lines). The relaxation time decreases with decreasing stability of the maximum sized
cluster (i.e. for increasing ε). For very low ε τmax scales with a power law τmax ∼ ε−ζ

with ζ . 1. This behavior is intuitive from the perturbative result in eqn. (3.23)
for the bulk system, as θmax � 1 for low enough ε. Since ε � 1 is required for
the perturbative solution to be correct it is not surprising, that the power law stops
being valid for ε & 10−2. Evidently, this behavior carries over to the single cluster
dynamics. Fig. 3.6(c) shows the quotient of τmax and the bulk relaxation time at the
same monomer concentration τbulk(θmax) = τ0(θmax). We find typical values for the
quotient which are & 0.25 for higher ε and approach 1 for ε→ 0. In the intermittent
regime ε ∼ 10−2 we see a quite abrupt change in the value of the quotient, which
traces back to the power law ∼ ε−ζ being valid for higher ε for the single cluster
than the bulk system (see Fig. 3.6(b)).
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Fig. 3.6(e) shows the maximum relaxation time τmax as a function of maximum
cluster size N for a range of ε. The relaxation time increases with size and while
the bulk system relaxes more slowly than the single cluster, for low enough N it also
increases more quickly in the bulk system than for the single cluster. Overall, this
leads to the quotient of the two timescales decreasing with increasing cluster size as
is shown in Fig. 3.6(f).

3.6. Relation to constant total concentration case

We now turn to the case where not the monomer concentration θ is held constant
but θtot. The rough respective experimental protocol is:

1. Solve x amout of monomer in volume V of solvent

2. Wait and record concentration of n-mers

Here, the system of ordinary differential equations (ODEs) becomes nonlinear be-
cause of the time evolution equation for the monomer concentration. As polymeriza-
tion of two monomers to a dimer is a two particle reaction, the polymerization speed
of monomers is quadratic in monomer concentration. For this reason—and the fact
that even if we were to linearize the system it would become too complicated to solve
analytically—we base our investigations of this section on numerical solutions of the
ODE system, which we compare to solutions of constant monomer concentration
case.
Fig. 3.7(a) shows a solution of the Becker-Döring equations for a maximum size of

N = 10 for a constant total concentration of θtot = 1000. After an initial phase of
relaxation of the monomer concentration (see Fig. 3.7(b)) the solution is described
well by

~θ(τ) = θeq −
N−2∑
n=0

Cn~dneλnτ−τconst . (3.34)

Here ~dn and λn are the numerically determined eigenvectors and corresponding
eigenvalues—these are sorted in descending order—of the Jacobian and τconst is the
time after which the further relaxation can be described well. Fig. 3.7(c) shows some
examples of the eigenvectors. The coefficients Cn are chosen, such that at τ = τconst

the numerical solution of the ODE match θ(τ) from eqn. (3.34). One can clearly
observe, that the lower the eigenvalue, i.e. the faster the relaxation time, the more
often the eigenvectors change sign. This can be interpreted as follows, oscillations of
different frequencies as eigenvectors of a system enable representing many different
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Figure 3.7.: Comparison of constant total concentration simulation to constant
monomer situation with ε = 0.1 and N = 10 and θ(τ = 0) = θtot = 1000.
(a) Time course of concentrations of n-mers (from top to bottom on the left side
n = 2, ..., 10). The solid lines denote the numerical solution of the ODE system,
while the ’+’ markers indicate the linear relaxation close to equilibrium where the
monomer concentration is assumed to be constant. (b) Time course of monomer
concentration θ, the dashed line denotes the time τconst at which changes in the
monomer concentration become small. (c) Typical numerically determined eigen-
vectors of the linear system, where n denotes the according n-mer. i = 0 is the
eigenvector with longest relaxation time. (d) Constants Ci given by the starting
conditions at τconst. Only the three slowest relaxation modes matter.

vectors as linear combinations of the eigenvectors. In this system the high frequency
oscillations (the eigenvectors with highly negative eigenvalue) decay much faster in
time, much like in the diffusion equation high spatial frequency distributions decay
faster. This comparison is very intuitive in the sense, that the Becker-Döring model
as-well as the diffusion equation are very local models. In the Becker-Döring equa-
tions the concentration of n-mers communicates with the concentration of m-mers
via all the j-mers with size between n and m but no direct concentration fluxes
between n- and m-mers exist if |n −m| 6= 1, similarly in the diffusion equation the
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differential operator dictates a local dynamic. The result of this in the Becker-Döring
equation can be seen in Fig. 3.7(d). Here the coefficients Cn of eq. (3.34) are shown.
Consistent with the previous argument, only the first three eigenvectors contribute
to the result in a meaningful way. This illustrates that while oftentimes the time
evolution of observables of experimental self-assembly studies can be described well
by a sum of multiple saturating exponential functions we should not hope for this
experimentally observed set of relaxation timescales to be exhaustive. Instead, there
will often be processes with timescales which are hidden because they are smaller
than the time the monomer concentration needs to relax to its equilibrium value.
These faster processes in the model presented here are ones, that locally smooth out
the concentration profile ~θ.

3.7. Conclusion

This chapter introduced a version of the Becker-Döring equation that serves as a
simple model system for self-assembling systems that reach a fully assembled state,
which is stabilized. Similar to other studies of the Becker-Döring equations with
a maximum cluster, here we also found an appreciable gap between characteristic
timescales which indicates the existence of metastable solutions [167, 168, 173].
More importantly, the relation between the stochastic dynamics of a single cluster

in an equilibrated solution was compared to the dynamics of the bulk system. The
graph θtot vs. θ in Fig. 3.5(a) and (d) shows how the total amount of monomer scales
with the amount of free monomer in solution. It can be viewed as a control curve that
is probed when performing a polymerization experiment i.e. insert θtot monomers to
achieve an equilibrium behavior characterized with monomer concentration θ. The
relation becomes very steep where finite size clusters tend to form often; which makes
it a priori quite likely that experiments are carried out close to this concentration,
the CAC.
Interestingly, at concentrations near the CAC the relaxation time of the single

cluster system is maximal (see Fig. 3.5(c) and (f)). When comparing the relaxation
of the a single complex to the relaxation time of the bulk system it becomes clear,
that the relaxation time of the bulk system with constant monomer concentration
will typically be an upper bound to the relaxation time of the single complex. For
particularly small maximum size clusters that are also very stable, the relaxation
times at the CAC of single cluster and bulk dynamics approximately equal. For
system sizes studied here, the differences between the two relaxation times were
always less than an order or magnitude.
These findings have implications on the comparison of single cluster simulations,
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that are often performed due to limited computational resources, to the dynamics
of self-assembly experiments, where it is very difficult to follow a single cluster, but
much simpler to gauge the average molar weight of the clusters by light scattering
[54, 165, 174]. If a monomer concentration vs. relaxation timescale of the single
complex can be obtained for a given model and typical relaxation timescale for the
experimental system are known, this allows for a rough estimation of the on- and
off-rate. One should find the maximum relaxation time τmax(θmax) in units of inverse
off-rate which is related to the experimental value texp by

τmaxkoff . texp. (3.35)

For the typical on-rate koncmax at the CAC it follows that

koncmax = koffθmax . θmax
texp

τmax
, (3.36)

which introduces bounds for both on- and off-rate, that become better approxima-
tions as maximum cluster size decreases and maximum cluster stability increases.
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4. Mechanosensitive self-assembly of
myosin II minifilaments

Self-assembly and force generation are two central processes in biological systems
that usually are considered in separation. However, the signals that activate non-
muscle myosin II molecular motors simultaneously lead to self-assembly into myosin
II minifilaments as well as progression of the motor heads through the crossbridge
cycle. Here we investigate theoretically the possible effects of coupling these two
processes. Our assembly model, which builds upon a consensus architecture of the
minifilament, predicts a critical aggregation concentration at which the assembly ki-
netics slows down dramatically. The combined model predicts that increasing actin
filament concentration and force both lead to a decrease in the critical aggregation
concentration. We suggest that due to these effects, myosin II minifilaments in a
filamentous context might be in a critical state that reacts faster to varying condi-
tions than in solution. We finally compare our model to experiments by simulating
fluorescence recovery after photobleaching.
The results of this chapter have been published in Physical Review E [175].

4.1. Introduction

Molecular motors powered by ATP-consumption are ubiquitous in living organisms,
converting chemical energy into movement and force at the right time and place
[176]. The most important molecular motor for force generation is the two-headed
non-processive molecular motor myosin II, which occurs in many different variants.
In skeletal muscle, hundreds of skeletal myosin II motors are assembled into the
thick filament that forms the core of the sarcomere. Large assemblies of the corre-
sponding myosin II variants also exist in cardiac and smooth muscle. In non-muscle
cells, however, non-muscle myosin II assembles into much smaller groups, so-called
myosin II minifilaments, that due to their small size can be dynamically regulated
to generate forces on demand, in particular in the actomyosin cortex and in stress
fibers [49, 51]. Very importantly for the way myosin II minifilaments function, it is
not only force generation, but also assembly that is regulated in non-muscle cells.
In particular, the Rho-pathway leading to myosin II minifilament activation has two
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branches, one regulating actin assembly through the formin mDia1 and one leading
to phosphorylation of the myosin II regulatory chain [86, 87]. This in turn leads
both to myosin II assembly and cycling of the motor heads. Together, these different
elements make sure that myosin II minifilaments are assembled in a functional state
in which motor heads and actin filaments work together synergistically. However,
because assembly and force generation of non-muscle myosin II minifilaments are
usually studied in isolation, no quantitative understanding exists for how these two
processes are coupled in cells. Here we introduce and analyze a mathematical model
for this purpose.

Regarding force generation, we start from earlier models of force generation, which
occurs by myosin cycling through a set of mechanochemical states, as first formalized
by Huxley [61]. Briefly, myosin binds to actin, then the lever arm performs the
powerstroke, the myosin detaches from actin and the lever arm resets. This cycle
is powered by ATP-hydrolysis and each of these states corresponds to a step in
the hydrolysis cycle. Cross-bridge models are master equation models using this
discrete sets of states, and have been used with great success to study a variety of
effects that arise due to the mechanochemistry of molecular motors [68, 69, 71, 73–
75, 77]. One important aspect is the realization that myosin II acts as a catch bond,
which means that bond lifetime is increased under mechanical force [4, 64]. This
leads to accumulation of myosin to stressed parts of the actin network [177]. Earlier
we have incorporated the catch bond character of myosin II in a master equation
approach for minifilaments and showed that it can explain many aspects of cellular
mechanosensitivity [70].

While the force generating aspect of myosin II has been studied and modeled in
great detail, the literature describing the dynamic self-assembly of myosin II minifila-
ments is less developed. For myosin II minifilaments from the amoeba Dictyostelium,
a very detailed model has been developed, that however incorporates some biologi-
cal details that do not necessarily apply to other minifilament systems [4, 177–180].
Here we aim at a more generic model in the spirit of the aggregation-fragmentation
theory by Smoluchowski [105] and Becker and Döring [111], which is the standard
model for assembly processes. Our starting point is the observation that non-muscle
myosin II minifilaments from human cells assemble to a stereotypic size of 28 to 30
molecules, corresponding to a linear size around 300 nm [34, 54]. Thus, they are
an example for molecular assemblies of well-defined size, similar to e.g. virus cap-
sids, whose assembly has been modeled before in great detail [100, 163, 181, 182].
The very regular architecture of the virus capsids could be determined by electron
microscopy, which motivated self-assembly models that were built upon the neigh-
borhood relations of the constituents of the capsid. It has been argued that assembly
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of finite-sized complexes works best if the cluster size distribution is relatively flat
with peaks only for the monomer and complete complexes [183]. Other examples
for self-assembling protein complexes that have been modeled include clathrin coats,
adhesion complexes, cytoskeletal fibers and chromatin [103].

In order to model myosin II self-assembly in detail, we use the observation that
non-muscle myosin II assembles into bipolar filaments of approximately 30 proteins
by electrostatic interactions of the coiled-coil tail domain, where electric charges are
periodically arranged and support both parallel and anti-parallel alignment of rods
[55]. Binding energies have been estimated to be about 35 kBT at zero ionic strength,
however, due to the low screening length in cytoplasma (∼ 1 nm at 100mM NaCl)
for physiological conditions, we expect and employ much lower binding energies in
our model. Different options for rod arrangement within a bipolar filament have
been proposed for muscle myosins of various species [58, 184]. The three-dimensional
structures of the side regions of bipolar filaments of muscle cells from different species
have been reconstructed from cryo-electron microscopy images with a resolution of
∼ 2 nm [81, 185]. This quasi-atomic resolution has been able to be achieved using
the known helicity of and periodicity within the side regions of the muscle bipolar
filament. In these region myosin heads project out from the core, which is made up
of the myosin tails, at equidistantly recurring axial levels, so called crowns [186]. Be-
tween two subsequent crowns there is typically a well defined axial twist that varies
between species. Potentially due to the missing spatial periodicity in the bare zone,
until now it has only been possible to reconstruct the bare zone of bipolar filaments
with a resolution of ∼ 5 nm which does not suffice to identify individual myosin tails
[187]. The authors could nevertheless show that the bare zone consists of multiple
protofilaments interacting with each other. Here we will use this molecular infor-
mation to develop an assembly model that takes this known molecular information
into account, but on the other side is generic enough to describe myosin II minifil-
aments from different species. We then couple it to our crossbridge model for force
generation and analyze the combined model in great detail. Finally we will discuss
its relation to experimental data.

This chapter is organized as follows. We first introduce our model as a graph.
Growth of a minifilament is identified with increasing occupancy of the nodes of
this graph. For a given cluster, we then assume actin binding and force generation
through motor cycling. We analyze the dynamics of the combined model and iden-
tify steady states. We find that at a certain monomer concentration the relaxation
time increases dramatically. We explore the equilibrium properties of the model as
a function of applied force and monomer concentration around this concentration,
revealing that already unloaded actin facilitates minifilament assembly, with applied
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Figure 4.1.: Assembly model. (a) Artistic 3D rendering of a myosin minifilament
that contracts actin fibres. (b) Schematic representation of a slice consisting of
two anti-parallel protofilaments with indicated lengths (minifilament length L,
bare zone length Lb, parallel stagger lp, anti-parallel stagger la and rod length
lr). (c) The graph on which the assembly occurs. The light red and the dark
blue discs represent sites with opposing myosin heads. The solid red lines in the
middle represent strong interactions between anti-parallel myosin rods, the dotted
blue lines represent interactions caused by a favorable parallel overlap of myosin
rods and the dashed green lines represent weak anti-parallel interactions. (d)
Artistic representation of intermediates (right), with corresponding regions of the
graph indicated (left). (top) Initial nucleation seed of two anti-parallel molecules.
(middle) Inner core of the minifilament containing three of the nucleation seeds.
(bottom) One protofilament.

force enhancing this effect. In addition we produce fluorescence recovery after pho-
tobleaching (FRAP) trajectories which can be compared to experiments.

4.2. Models and methods

4.2.1. Minifilament organization

Fig. 4.1(a) shows an artistic representation of a myosin II minifilament that is con-
tracting opposing actin filaments. The number of myosin II molecules in a minifila-
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ment has been estimated to be between 28 and 30 [34, 54], from which we take the
later value, because it allows for a more symmetric cluster architecture. Each myosin
is a hexamer comprised of two myosin heavy chains, two essential light chains and
two regulatory light chains. The heavy chain globular region (i.e. the myosin head)
can bind to actin filaments and displace them by undergoing a powerstroke in the
neck region behind the head region. The two heavy chains form a long and relatively
stiff rod due to hydrophobic interactions. To the outside, this rod carries a very spe-
cific pattern of charged amino acids which leads to favorable interactions with other
myosin rods at well-defined staggering distances [54, 55, 58]. The most important
one seems to be the anti-parallel overlap at la = 45 nm, which establishes the basic
bipolar structure of the minifilament. The most favorable parallel staggers are at
14.3 nm and 43 nm. Here we focus on the first one, lp = 14.3 nm. Fig. 4.1(b) shows
a schematic two-dimensional representation of the most likely arrangement of myosin
II rods in a slice through the minifilament given these two prominent staggers. With
the rod length lr = 160 nm, the overall minifilament length is L = 2lr − la = 275

nm and the length of the bare zone (no myosin heads) is Lb = L− 8lp = 160 nm, in
good agreement with electron microscopy data [54]. Note that three such slices have
to be combined to give the full minifilament with 30 molecules.

In order to represent the full three-dimensional structure of the minifilament, we
represent it by the graph shown in Fig. 4.1(c). Here the two opposing directions
of the rods are represented by two different colors for the nodes. The core of the
filament is defined by six rods forming a hexagon, with three rods from each direction.
They are held together by the anti-parallel overlap with staggering length la and we
assign a binding energy of Ga to this kind of bond. From each of the six rods in the
core, one string with four additional rods of the same orientation spirals out to the
periphery. These five rods define the five crowns and together our graph contains
the 2 × 3 × 5 = 30 molecules assumed in our model. Note that two neighboring
spirals together form the slice shown in Fig. 4.1(b). The spiraling rods are held
together by the parallel stagger with lp and we assign a binding energy Gp to these
bonds. Because intermediates with both anti-parallel and parallel staggers have been
observed and in the absence of further information, here we assume that Ga and Gp
have similar values. Note that the three-dimensional structure does not change the
linear lengths L and Lb for the minifilament and the bare zone given above. Finally
we note that our graph from Fig. 4.1(c) requires anti-parallel rods of not so favorable
staggers to be in close proximity. Although not directly observed experimentally yet,
these interactions must be present in order to fulfill the geometrical constraint that
the bare zone is roughly six times as thick as the diameter of one myosin tail while
maintaining an architecture which is organized from a core that is located in the
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center of the minifilament. We note that a central core and thereby very accessible
side regions explain the relatively fast exchange times that have been measured with
FRAP [90, 143] and also the dynamic rearrangements of minifilaments observed in
live cell microscopy with structured illumination [188]. We assign a relatively low
binding energy Gs to this kind of bonds.

Although our model is a strong simplification, it captures all the geometrical prop-
erties known from the literature. We note that it is highly likely that real minifila-
ments are more disordered than assumed here. For example, we do not expect all six
rods in the core to be exactly aligned, because they form a tight bundle in which also
next-nearest neighbors are relevant and which might use some of the other staggers
known for myosin [55]. It is also known that different species form different staggers
and have different rod architectures. The graphical model suggested here should be
considered to be a consensus architecture that captures most of the known general
features of myosin II minifilaments.

4.2.2. Minifilament assembly

We now use the graph introduced in Fig. 4.1(c) to define the minifilament growth
dynamics. Starting from one myosin molecule in the core, the minifilament most
likely polymerizes by recruiting new myosin molecules onto neighboring sites. Thus
the growth dynamics can be represented by populating more and more of the nodes
of the graph. Fig. 4.1(d) shows different intermediates of the assembly process, both
as subsets of the graph and as artistic representations in space. We assume that
association is diffusion-limited, with a rate kon that does not depend on the binding
energy gained, but is proportional to the concentration of myosin molecules. Disso-
ciation corresponds to turning an occupied site into an unoccupied one. Assuming
detailed balance, this occurs with a rate

koff = k0
off exp

(
−nsGs + npGp + naGa

kBT

)
(4.1)

that is dependent on the number of each particular bonds (ns, np, na) that are broken
due to the removal of the dissociating myosin II molecule. If a myosin dissociates
from the minifilament such that two separate patches are generated, we remove the
patch that does not contain the central region of the graph. Our growth model is
now complete and can be simulated using the Gillespie algorithm for reaction kinetics
[189].
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Table 4.1.: Parameters used in the simulation of minifilament assembly and force
generation.

Parameter Symbol Value References

Transition k01 0.2 [72]
rates [s−1] k20, 0 0.35 [72]

∆c 0.92 [72]
Force scales Fc 1.66 [72]
[pN] Fs 10.35 [72]
Energy scales Ga 3 our estimate
[kBT ] Gp 3 our estimate

Gs 1 our estimate

4.2.3. Crossbridge model

The crossbridge cycle of a single myosin II protein is modeled according to the Parallel
Cluster Model (PCM) [68, 69]. In the PCM, the crossbridge cycle is described by
a three-state system as depicted schematically in Fig. 4.2(a). The first state of the
PCM is the unbound state (UB) of myosin. From there a myosin head can bind to
actin into the weakly bound state (WB). Now the lever arm can swing backwards
which reversibly transitions the myosin head to the post-powerstroke state (PPS).
This transition is very fast (milliseconds). Finally, from the PPS state myosin can
unbind from actin via two different reaction paths, namely the catch-path and the slip
path. The reaction rate along the catch-path decreases exponentially with increasing
force, while along the slip-path it increases exponentially. The model summarizes
these effects into a cumulative rate that depends on the force that the myosin-actin
bond retains, i.e.

k20(F ) = k20, 0

[
∆c exp

(
− F
Fc

)
+ (1−∆c) exp

(
F

Fs

)]
, (4.2)

where ∆c is the fraction of myosin heads that use the catch-path to unbind at zero
force, Fc and Fs are the critical forces for the catch-path and the slip-path, respec-
tively, and k20, 0 is the rate at zero force. The inverse of the rate, i.e. the mean dwell
time, is shown in Fig. 4.2(b). Here the typical time scale is larger than seconds.

When part of an ensemble is retaining a force, it is assumed that, by consecutive
unbinding and rebinding of the heads, the strain of all motors that are in the same
mechanochemical state is the same. Thus, the strain only depends on the current
state of the ensemble (i.e. how many motors are in each state of the crossbridge
cycle) and not on the history of the filament. In this manner the model describes an
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Figure 4.2.: Parallel Cluster Model (PCM) for force generation. (a) The PCM con-
siders the three most important states of the crossbridge cycle. The reaction rates
k01 and k10 are constant, while the rate k20 depends on force as given in (4.2).
The rates k12, k21 are high compared to the other rates. (b) Mean dwell time of
a single myosin head on actin assuming catch-slip bond (∆c = 0.92), a pure slip
bond (∆c = 0) and a pure catch-bond (∆c = 1).

ensemble of N motors where i ≤ N motors are in an actin bound state and j ≤ i

motors have performed the powerstroke. Hereby it is possible to calculate the strain
xij of the weakly bound motors when the cluster is balancing against an external
force Fext yielding xij = (Fext − jkd)/ik, where k is the spring constant of the neck
linkers and d the length of the powerstroke.

The high transition rates between the PPS state and the WB state compared to
the unbinding rates allow to maintain a local thermal equilibrium (LTE) between
the two bound states. The probability for j motors being in the PPS state, when i
are bound, follows the Boltzmann distribution p(j|i) = exp(−Eij/kBT )/Z, with the
partition sum Z. The energy Eij = Eel + jEpp +Eext is the sum of the elastic energy
Eel = k[(i − j)x2

ij + j(xij + d)2]/2 stored in the neck linkers, the free energy bias
towards the PPS state Epp ≈ −60 pNnm and the contribution of any conservative
external force field Eext. For a non-conservative constant force – as discussed here –
Eext = 0.
LTE of the bound states allows us to average over all possible numbers of motors j
in the PPS, thus making it possible to describe the probability of i motors bound to
actin in the one-step master equation

d
dt
pi = r(i+ 1)pi+1 + g(i− 1)pi−1 − [r(i) + g(i)]pi . (4.3)

As N − i motors can bind, the binding rate g(i) is given by g(i) = (N − i)k01.
Unbinding is possible from the WB state and the PPS state such that the rate
reads r(i, j) = (i − j)k10 + jk20(f(i, j)), where f(i, j) = (Fext − dk(i − j))/i is
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the force that is retained by one motor in the PPS state. Averaging over j yields
r(i) =

∑
j p(j|i)r(i, j). In the case of constant non-conservative forces, this sum

has been found to be approximated well by r(i) = r(i, i) [69]. The model depends
strongly on the chosen rates. Here we use the rates that we have previously used
to study non-muscle myosin IIB [71], which is considered to be the main isoform
responsible for maintaining long lasting forces [59].

4.2.4. Coupling of self-assembly and force generation

Each occupied site of the self-assembly model can be in one of the three states of the
crossbridge model. The two sub-ensembles with the different orientations (blue and
red in the graph) work against each other in a tug-of-war situation which has been
modeled before with the PCM for fixed minifilament sizes [70]. This implies that
force can be generated only if both sides are attached to actin. Here we assume that
for each two-headed myosin molecule, only one head can be active at a given time,
as experiments have suggested that one of the two heads mainly optimizes the force
generating action of the other, while not being active itself [190, 191]. Thus from the
60 heads, only 30 are considered in our model. To complete the model, we now have
to couple the minifilament to a specific mechanical environment. Here we choose
to work with a constant force ensemble, in contrast to an elastic environment with
own stiffness. In this way, we can avoid any dependence of our model on neck linker
stiffness, whose effective value is known to depend on context [64, 192]. Earlier,
neck linker stiffness values have been used that lead to strong occupancy of the PPS
states [68–70]. In the combined model, actin-bound motors cannot dissociate from
the ensemble directly, but must first unbind from actin by going into the UB state.
This makes dissociation of the actin bound motors a two-step process that depends
on features of both models.

4.2.5. Mean-field theory

In order to obtain an intuition for the behavior of the system it is instructive to coarse
grain the assembly model to one variable. We consider one side of the minifilament,
e.g. all myosin monomers with heads pointing to the right in Fig. 4.1(a), and denote
its size with N . A monomer addition scheme for polymerization means

HN +H1
β−−−⇀↽−−−

αN+1

HN+1 , (4.4)

where H1, HN , HN+1 represent monomers, N -mers and (N + 1)-mers, respectively,
and β and αN+1 are the association and dissociation rates for the half-filament. The
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equilibrium size distribution for this model is solved recursively via detailed balance:

pN+1 =
β

αN+1
pN . (4.5)

If we now require the dissociation rates αN of the monomer addition scheme to be
such that the equilibrium size distribution of one side of the minifilament assembly
model from section 4.2.2 is reproduced, equation (4.5) provides a conditional equa-
tion for the dissociation rates αN if β is given. The rate β however is not known since
the total association rate depends on the current assembly state of the minifilament.
We assume β = 3kon, as each side of the graph is made up of three protofilaments.
Additionally, matching with the assumption that actin-bound motors cannot disso-
ciate from the ensemble, the dissociation rate has to be weighted by the fraction
(N − i)/N of motors in the UB state.

Now, the state of the filament can be projected to two integers per side of the
filament, the cluster size N and the number of actin bound motors i. The master
equation for one side of the filament is

d
dt
pN,i =−

(
αN

N − i
N

+ βN

)
pN,i

+ αN+1
N + 1− i
N + 1

pN+1,i + βN−1pN−1,i

− (ri + gN,i)pN,i + ri+1pN,i+1 + gN,i−1pN,i−1 ,

(4.6)

where βN = 3 kon if 1 ≤ N ≤ 14 and zero otherwise. The αN are chosen as
explained after Eq.(4.5) if 2 ≤ N ≤ 15 and zero otherwise. These rules ensure
that the normalization of the probability pN,i(t) is time-independent in the allowed
domain 1 ≤ N ≤ 15 and 0 ≤ i ≤ N . From the master equation (4.6) it is possible to
construct a mean-field description. Starting from〈

d
dt
N

〉
=
∑
N,i

N
d
dt
pN,i〈

d
dt
i

〉
=
∑
N,i

i
d
dt
pN,i

(4.7)

and shifting summation indices and Taylor expanding around (〈N〉, 〈i〉) yields

〈Ṅ〉 = β − α(〈N〉)〈N〉 − 〈i〉
〈N〉

+O(σ2
N + σ2

i + cov(N, i))

〈i̇〉 = (〈N〉 − 〈i〉)k01 − 〈i〉k20(F/〈i〉) +O(σ2
N + σ2

i + cov(N, i)) .

(4.8)

62



4.3. RESULTS

It is possible to compute the time development of the second central moments. These
however depend on third central moments, resulting in a closure problem. In the
following the second central moments are dropped for simplicity.
From equation (4.8) it is possible to calculate the two nullclines of the system

〈N〉〈i̇〉=0 = 〈i〉
(

1 +
k20(F/〈i〉)

k10

)
〈i〉〈Ṅ〉=0 = 〈N〉

(
1− β

α(〈N〉)

)
.

(4.9)

4.2.6. FRAP-experiments

The presented model allows for performing in silico FRAP experiments by associ-
ating another Boolean variable to every occupied site that indicates whether the
associated myosin is fluorescently labeled. By starting the Monte Carlo simulation
from a non-fluorescent state drawn from the equilibrium distribution and filling up
holes that form after dissociation of one molecule with new, fluorescent myosin pro-
teins, FRAP traces can be obtained by calculating the time course of the ensemble
average of the number of fluorescently labeled sites.

4.3. Results

4.3.1. Assembly dynamics

We first discuss the assembly model based on the graphical model from Fig. 4.1(c),
that is we do not consider yet the coupling to the motor model. We simulated the
mean number of assembled myosins N (maximal value 30) for the model described
in section 4.2.2 using the Gillespie algorithm and the parameter values from Table
4.1. Fig. 4.3(a) shows the mean trajectory and its standard deviation. We see that
the mean assembly dynamics can be described well by an exponentially saturating
function Na (1− exp(−τ/τ0)) + 1, where τ = tk0

off is the dimensionless time. Note
that the minimal cluster size at τ = 0 has to be 1.
Fig. 4.3(b) shows the plateau value Nplat = Na+ 1 as a function of the dimension-

less association rate κ = kon/k
0
off. One sees that the larger the association rate, the

more the mean size Nplat approaches the maximal value 30, and that the function
has a hyperbolic character, indicating a crossover at the inflection point. Fig. 4.3(c)
shows the variance of N , which has a clear peak at a critical value κc = 0.018, indi-
cating a transition between partially and fully assembled minifilaments. Fig. 4.3(d)
shows the relaxation time τ as a function of association rate κ, which again has a
clear peak at κc = 0.018 (with value τ ≈ 800). We interpret these results as crit-
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Figure 4.3.: Assembly dynamics. (a) Time course of the mean minifilament size
for dimensionless association rate κ = 0.018 (black line) with standard deviation
(grey area). (b) Mean number of assembled myosins as a function of κ. (c)
Variance of N as a function of κ. A peak at κc ≈ 0.018 indicates the transition
between partially and fully assembled minifilaments. (d) Relaxation time of the
minifilament as a function of κ as obtained from a saturating exponential fit to
the mean size of an assembling cluster.

ical slowing down. Because the association rate κ is proportional to the myosin II
concentration in solution, the critical association rate κc corresponds to a critical
aggregation concentration (CAC). In the following, we will investigate our model
around this critical point.

From the stochastic simulations, we can also obtain the full cluster size proba-
bility distribution. From here on, we will still simulate the full minifilament, but
only show results for one half, because the two halves are statistically equivalent.
Thus from here on the maximal cluster size is 15. The size distribution for a half-
filament is shown in Fig. 4.4(a). At association rates below the critical value κc,
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Figure 4.4.: Equilibrium distribution p and dissociation rates α as a function of
association rate κ. (a) Equilibrium distribution p(N) of the assembly model for
different values of κ. (b) Resulting dissociation rates α(〈N〉) (compare eqn. (4.5))
that are used in the mean-field model or in a coarse grained model.

the distributions are approximately exponential. At the critical association rate, the
distribution becomes very broad. Above the critical value, a clear maximum emerges
close to full assembly. As explained in section 4.2.5, from these distributions one can
calculate effective equilibrium constants (eq. (4.5)) that map the graphical model
to a monomer addition scheme. Fig. 4.4(b) shows the effective off-rate αN obtained
from equation (4.5). These are used in the mean field approach in the following.

4.3.2. Steady state results

We now investigate the full model that couples assembly and force generation. Start-
ing from here we stop using dimensionless quantities, since the dynamics of the
myosin crossbridge cycle are experimentally measured for specific isoforms and we
choose to study the effects on non-muscle myosin IIB, where the fraction of time a
single myosin head is attached to actin (the so-called duty ratio) is comparatively
high [71]. In addition, we utilize the assembly rates documented in table 4.1 (justified
later in section 4.3.3). In order to obtain a complete understanding of our combined
model, we investigate how the mean values of the number of assembled motors N
and the mean values of the number of bound motors i of one side of the filament
change with association rate kon and force F . In addition, we record the variances
of these quantities, because this indicates transitions between different regimes. The
corresponding results are shown in Fig. 4.5(a). Here we also show the values of the
critical association rate: the solid and dashed lines show these transitions with and
without motor cycle dynamics, respectively. While the dashed line corresponds to

65



CHAPTER 4. MECHANOSENSITIVE SELF-ASSEMBLY OF MYOSIN II
MINIFILAMENTS

Figure 4.5.: Steady states. (a) Mean-values and variances of the full model for differ-
ent forces F and on-rate kon (k0

off = 10 s−1). The red dashed line represents the
critical on-rate kon for a cluster without actin, whereas the solid line represents
the critical on-rate as a function of force. (b) Equilibrium distribution p(i,N)
(top row) and phase portrait (bottom row) in the 3 different regions. In the top
row the solid white line depicts the nullcline of i whereas the blue line depicts
the nullcline of N . The dashed white line depicts the nullcline of i at zero force.
The red circles denote stable fixed points of the meanfield theory for the indicated
force (middle) and zero force (right). The phase portraits (bottom row) illustrate
how a change in force and on-rate affects the flow lines (blue) and the nullclines
(red region 〈i̇〉 < 0, blue region 〈Ṅ〉 < 0).

the results from section 4.3.1, for the full model we numerically searched for the max-
imal relaxation time. From Fig. 4.5(a) we see that there exist three different regimes
(marked by labels 1, 2 and 3) which are separated by small parameter regions with
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high variance in either the cluster size N or the number of actin bound motors i.
The solid line for the critical values for the relaxation times nicely corresponds to the
transition region defined by the variance in N . The dashed line from the assembly
model is always higher, suggesting that actin binding lowers the CAC.

We now discuss the three different regimes identified in Fig. 4.5(a) in more detail.
The regime 1 at low association rates kon is characterized by a small mean cluster
size 〈N〉. Due to low association, there are not enough monomers to support an
assembled minifilament. At higher association rate and up to medium forces, regime
2 emerges, in which minifilaments are typically assembled and attached to actin with
both sides. The border of this region to the prior one is convex, indicating that the
catch-slip bond mechanism facilitates assembly under medium forces by increasing
the amount of actin-bound myosin that is unable to dissociate from the minifilament.
At higher forces and high on-rates, there is regime 3, in which the minifilaments
are typically assembled, however, the number of actin bound motors i of the half-
filament is reduced to half the value which one would obtain with F = 0 pN. The
underlying reason is that now the slip pathway dominates and therefore one half of
the minifilament unbinds, while the other side binds without force.

In order to understand why these three regimes form, in Fig. 4.5(b) we show the
probability distributions p(N, i) for cluster size N and bound motors i. In addition
we show the phase portraits of the deterministic (mean-field) system described in
section 4.2.5. As shown at the left side of Fig. 4.5(b), the half-filament is of size 1

at low monomer concentration and force. In the corresponding phase portrait one
can see that the regime 1 forms because the net flux of the system is always directed
either towards lower size N or lower actin-bound myosin heads i which enhances each
other in the model. Although the phase portrait shows a node at (N ≈ 8, i ≈ 6), the
proximity to a saddle makes it unstable to noise.

The regime 2, in which both sides of the filament are attached, is shown in the
middle of Fig. 4.5(b) and is characterized by a stable fixpoint at large N and i with a
large basin of attraction. This leads to a maximum in the equilibrium distribution at
the boundary N = 15. In regime 2, the force is sufficiently small so that the motors
are stabilized by their catch behavior.

In regime 3, there are two populations: one at i = 0 and the other distributed
around the nullcline of i at zero force. This indicates that the minifilament is not
fully attached to actin, but only attached with one side and hence is not sustaining
a force. At this high level of force, the slip pathway dominates and the mean field
description fails, because it only describes one half-filament and assumes that the
force can be applied. This would not happen for a pure catch bond and our results
for this case are shown as Fig. A.1 in the appendix. Then minifilaments can assemble
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at very low on-rate, just as long as the force is high enough. Additionally, there is no
region where only one side of the filament is attached, but both sides are typically
attached at the same time.
In summary, the force-dependence of the distributions indicates that with increased

force, the probability for the system to be near the assembled maximum of the
distribution increases. At high forces this probability decreases again. This behavior
is illustrated in Fig. A.2 where the probability that the system is of size N ≥ 8 is
shown.

4.3.3. Comparison with experiments

As described in section 4.2.6, by using the proposed model, it is possible to pre-
dict trajectories of FRAP experiments from the model. We investigated the effect
of different forces with or without the crossbridge cycle, of which the latter mim-
ics myosins heads that are blocked in the unbound state (experimentally this can
be achieved by using the pharmacological inhibitor blebbistatin [193]). Fig. 4.6(a)
shows the mean number of fluorescent proteins in a minifilament 〈N(t)〉 starting
the dynamical self-assembly simulation with a non-fluorescent minifilament drawn
from the appropriate equilibrium distribution. Similar to the fluorescence intensity
in FRAP experiments, 〈N(t)〉 is a saturating and monotonously increasing function
of time that can be described by a saturating exponential.
When fitting an exponential function of type Na(1−exp(−t/τ)) to the fluorescence

recovery traces at different forces and different on-rates close to the critical on-rate
for the minifilament without actin, we choose k0

off = 10 s−1 such that we obtain val-
ues close to the recovery times measured in cells [90, 143] (see Fig. 4.6(b)). We note
that the recovery times calculated here are on the lower end of the wide spectrum of
reported experimental values, indicating that k0

off should be seen as an upper bound.
For increasing force the fluorescence recovery time increases until it reaches a maxi-
mum at around 80 pN from where it drops down to a constant value. This constant
value is always higher than the fluorescence recovery time for minifilaments without
actin, underlining once again that at very high forces one side of the minifilament
is attached. If pure catch bonds are used to simulate the motor dynamics, the fluo-
rescence recovery time rises monotonically with force, underlining that the drop we
observe at intermediate forces for the catch-slip bond occurs due to the instability
of slip bonds beyond a certain force. With our choice for the value of k0

off, we revisit
Fig. 4.3(d), which indicates the maximum relaxation time is t0 & 80s, consistent
with light scattering measurements in in vitro assembly assays [54] (texp ≈ 580 s).
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Figure 4.6.: (a) Time-dependent mean number of fluorescently labeled myosin pro-
teins per minifilament starting from a non-fluorescent minifilament drawn from
the equilibrium distribution at kon = 0.4 s−1 for different forces and with the
myosins heads blocked in the unbound state. The transparently colored regions
denote the region of one standard deviation. (b) Results for fitting functions of
type N(1 − exp(−t/τ)) to the mean number of fluorescently labeled myosins for
different on-rates and forces. The dashed lines indicate the fluorescence recovery
if the motor cycle is turned off, which is always significantly faster, even at forces
where the minifilament is not bound to actin on both sides but typically only on
one. The dotted lines indicate the result when using pure catch-bonds.

4.4. Discussion

In this chapter we have proposed an assembly model of myosin II filaments, that
explains the mechanosensivity of myosin II self-assembly by coupling assembly and
motor activity in one model. In particular, we suggested a graph representing the
consensus architecture of human myosin II minifilaments. Although myosin II minifil-
aments tend to differ in the details of their architecture from species to species, our
approach is very generic and does not depend much on the details of this graph
(Figs. A.3 and A.4 in the supplement). We investigate the dynamical model on
this graph in a range around a critical aggregation concentration (CAC), which we
identified by critical slowing down. We identified and characterized three regimes.
Finally we performed FRAP simulations that yielded recovery times which we used
to find plausible assembly rates.
It is a common feature of self-assembling systems that, as soon as the equilibrium

concentration of free monomers is beyond a threshold, i.e. the CAC, it does not
increase much anymore with added total monomer, since the added monomer goes
mainly towards forming additional assembled structures [171]. Myosin minifilaments
do not form an exception here, as has been experimentally shown [84]. This means,
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that a system of assembling myosin tunes itself, such that forming new filaments
becomes very slow after the equilibrium concentration has been reached. However,
this is only valid for solutions without actin. Our simulation results suggest that in
contact with actin the assembly could be facilitated by coupling assembly to force
generation. This leads to the CAC of minifilaments being lowered locally near actin
filaments, in agreement with experimental observations [194]. If the solution can
support the assembly of minifilaments already without actin, i.e. the concentration
of monomers is near the CAC, minifilaments operating on actin might associate
new myosin molecules with the critical association rate of the solution, which is
well above the critical association rate of the minifilaments that are attached to
actin. This mechanism in conjunction with regulation of the equilibrium between
assembly-competent and incompetent myosin II [49] yields a system that can show
a very dynamic response to change of external conditions. In addition, it explains
the known mechanoaccumulative behavior of myosin II [9].

Since blebbistatin, an often utilized small molecule inhibitor of myosin, blocks
the myosin II head domain mainly in an actin-detached state [193], the assembly-
enhancing effect of actin, that our model predicts, could be experimentally investi-
gated using already available methods [143]. Hence, the model assumption that a
myosin II protein is not able to dissociate from its respective minifilament when its
head is bound to actin can in principle be verified.

We were not able to fully explain the wide spectrum of recovery rates reported
by changes in retained force alone. Instead, also other mechanisms will be involved.
However the rates we extract are consistent with light scattering data from in vitro
assembly assays, where assembly has turned out to be slower by a factor of 7 than our
lower bound. This seemingly large deviation should however be put into perspective
by noting that live cell FRAP experiments [90, 143] were used to obtain absolute
rates, which then were used to compare the model to in vitro experiments [54], that
in addition have been conducted at a 17 °C lower temperature. In order to test
our predictions in quantitative detail, one had to conduct FRAP-experiments under
controlled loading conditions.

Our model suggests that the strong force-dependence of minifilament self-assembly
arises due to the catch-bond characteristic of unbinding myosin from actin after per-
forming the powerstroke. This constellation, where self-assembly of a motor complex
is markedly affected by the binding dynamics to its track, is not unique to myosin
II. Another interesting example is the bacterial flagellar motor (BFM), which in con-
trast to myosin II is a rotary motor, but similar to minifilaments is a complex with
multiple load bearing elements (i.e. stators). It has been shown that increasing load
(i.e. torque) increases the amount of stators in the BFM [195]. Later studies have
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suggested this to be due to the dissociation rate of the stators decreasing with in-
creased torque [40, 196], i.e. the BFM also implements a catch bond which modulates
self-assembly. The catch bond feature is also central to the function of actomyosin,
where it modulates the transient response to mechanical stress and guides accumu-
lation of myosin to stressed parts of the actin network [4, 64]. We conclude that the
interplay of assembly and force generation described here might be at play in other
protein clusters that have to function under mechanical load.
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5. Rheology of mixed motor ensembles

The rheology of biological cells is not only determined by their cytoskeletal networks,
but also by the molecular motors that crosslink and contract them. Recently it has
been found that the assemblies of myosin II molecular motors in non-muscle cells are
mixtures of fast and slow motor variants. Using computer simulations and a mean
field theory of a crossbridge model for myosin II motors, we show that such motor
ensembles effectively behave as active Maxwell elements. We calculate storage and
loss moduli as a function of the model parameters and show that the rheological
properties cross over from viscous to elastic as one increases the ratio of slow to fast
motors. This suggests that cells tune their mechanical properties by regulating the
composition of their myosin assemblies.
This chapter is partly based on a paper that is currently in preparation [197].

5.1. Introduction

The rheology of animal cells is essential for many physiological functions, including
the function of epithelial and endothelial cell layers under continous loading, e.g.
in lung, skin, intestines or vasculature. It is also essential for single cell processes
such as cell migration and division, which are characterised by large-scale flows and
deformations. For these reasons, single cells and cell ensembles have been widely
studied using rheological approaches as commonly applied in materials science [122,
127, 148, 150, 198, 199] (see section 2.3.3 for more details on experimental methods).
Cells typically show a wide relaxation spectrum indicating the relevance of different
time scales. Often power-law relaxation spectra have been reported [148, 198], which
can be related to soft glassy rheology [126], but there is also evidence for an upper
cut-off at a maximum relaxation time [122]. Despite this complexity of cell rheology,
however, for many purposes linear viscoelasticity has turned out to be a surprisingly
good description of the effective mechanical properties of cells and cell monolayers
[2, 200–205].
Cells control their mechanical properties mainly by changing the assembly status

and activity of their actomyosin cytoskeleton. Although much is known about the
effective rheology of these networks [152, 206], it is less clear how the microscopic
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properties of the different types of myosin motors contribute to cell rheology. Re-
cently, it has been found that cells co-assemble fast and slow isoforms of myosin II
[88, 89]. While the fast myosin II isoform A is mainly found at the front of the cell,
where fast assembly and flow is required, the slow myosin II isoform B is incorporated
towards the back, where strong and long-lasting forces are required. Here, we explore
the intriguing possibility that cells control their rheology by differential assembly of
their myosin assemblies. We address this important question theoretically by using
a microscopic crossbridge model for small ensembles of myosin motors, which earlier
has been applied only to ensembles of one isoform [71, 72]. By extending this frame-
work to mixed ensembles and calculating their complex modulus, we show that such
assemblies operate as active Maxwell elements that can tune their rheology from
viscous to elastic by increasing the ratio of slow versus fast motors.

Figure 5.1.: Model. (a) Scheme used for rheology simulations of myosin II ensembles.
Myosin crossbridges with individual motor strains ξi and linker stiffness kl. z and
A sinωt are the strain on the elastic environment and the oscillatory manipulation.
Blue and red myosin crossbridges denote the fast and slow isoforms A and B,
respectively. (b) Maxwell element in parallel with active force Fs with spring
constant keff and friction coefficient η pulling on a linear spring with constant kf .
(c) Crossbridge model illustrating the mechanochemical rates and states.

5.2. Mechanical setup & simulation

Fig. 5.1(a) shows a schematic representation of the situation that we analyze here.
A central spring with extension z and spring constant kf is pulled from two sides.
On the right hand side, we have a mechanical motor that pulls with fixed frequency
ω and amplitude A. On the left hand side, we have a small ensemble of N myosin II
motor heads that walk towards the barbed end of an actin filament. For the myosin
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II minifilaments in non-muscle cells, we typically would have N = 15. From these N
motor heads, Na are assumed to be of isoform A. Then Nb = N −Na are of isoform
B.

We first demonstrate that this setup should effectively behave like an active Maxwell
element as shown in Fig. 5.1(b). The Maxwell element is the simplest possible vis-
coelastic model and features a spring with spring constant keff and a dashpot with
friction coefficient η in series; in an active Maxwell model, there is a constant pull
Fs operating in parallel. We assume that the motor ensemble depicted in Fig. 5.1(a)
should have a well-defined force-velocity relation v(F ), with a free velocity v0 at
F = 0 and vanishing velocity at the stall force F = Fs. Moreover, the motor ensem-
ble should have an effective spring constant keff . With all motors having the same
crossbridge spring constant kl, this should simply be keff = ikl, with i being the
average number of bound motors. This leads to a differential equation for extension
z

ż = κ [v(kfz) +Aω cos(ωt)] , κ =
keff

keff + kf
. (5.1)

After expanding the force-velocity relation around the stall force Fs with a slope
v′(Fs) = −1/η, we easily can solve this equation:

z(t) =
Fs
kf

+ C exp

(
κkf
η
t

)
+

ωκA√
ω2 + (κkf/η)2

sin(ωt− δ), tan δ =
κkf
ωη

.

(5.2)

We obtain three terms, each with a clear physical meaning. The first term is the
constant pull of the active Maxwell element, arising from the stall force as expected.
The second term is initial relaxation with a constant C determined by the initial
conditions. The third term is our most important result: the system response is
oscillatory with the same frequency as the external perturbation, but with a loss
angle δ that depends on the details of the motor ensemble. The calculated oscillations
correspond to a complex modulus

G∗ =
κkfω

2η2

(κkf )2 + ω2η2
+ i

(κkf )2ωη

(κkf )2 + ω2η2
(5.3)

which is exactly the result for a Maxwell model, with effective spring constant κkf
and friction coefficient η.

In order to validate our prediction that motor ensembles should effectively be-
have as active Maxwell systems, we conducted computer simulations of a detailed
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crossbridge model for myosin II as shown in Fig. 5.1(c). If successful, such an
approach allows us to predict how the effective rheological properties of the sys-
tem depend on both the microscopic rates of the single motors and the ensemble
parameters Na and Nb. In our model, each of the N crossbridges of the ensem-
ble is in one of three mechanochemical states that are connected by force depen-
dent transition rates [71]. The transition from the unbound (UB) to the weakly
bound (WB) state occurs with rate k01 = 0.2 s−1. The strain-dependent reverse
rate k10(ξ) = k0

10 exp klξ
+/fs, where k0

10 = 0.004 s−1 is the rate at zero strain,
kl = 0.3 pN/nm is the crossbridge stiffness and ξ+ = max(0, ξ) is the positive
part of the crossbridge strain ξ. The transitions between the WB and the post-
powerstroke (PPS) states is governed by the difference in elastic energy stored in the
crossbridges ∆Eel and the change in chemical energy ∆G = −60 pNnm. The rates
considered here are k12/21 = kps exp(±β(∆Eel+∆G)/2) with kps = 1000 s−1. Finally,
the unbinding from the post-powerstroke state is modeled as a catch-slip bond, i.e.
k20(ξ) = k

0a/b
20 (∆c exp−klξ+/fc + ∆s exp klξ

+/fs). Here ∆c = 0.92 is the fraction
following the catch-path at zero force with force scale fc = 1.66 pN, ∆s = 0.08 is the
fraction following the slip-path at zero force with force scale fs = 10.55 pN/nm. For
the faster NM IIA motors we use k20 = 1.71 s−1, while for the slower NM IIB we use
k20 = 0.35 s−1. By mixing Na NM IIA and Nb NM IIB motors, we can explore how
the mixing ratio determines the effective rheology of motor ensembles.
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Figure 5.2.: Computer simulations of crossbridge model for N = 15 motor heads. (a)
Force velocity relations. Zero crossings define the stall force Fs and the (negative)
linear slope around this point the friction coefficient η. Throughout this section
the fraction of NM IIA motors is color coded as a gradient from dark blue for
Na = 0 to light red for Na = N . (b) Overall system response. The colored areas
denote the region of one standard deviation. The black lines denote the fits with
sin(ωt− δ) + const., while the colored vertical tics serve as indicators of where a
non phase lagged sine oscillation starts.
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Fig. 5.2(a) shows that indeed our microscopic model leads to well-defined force-
velocity relations, which define both the stall force Fs and the effective friction coef-
ficient η. We clearly see that as the number of fast motors Na is increased, Fs and
η decrease. Fig. 5.2(b) shows that, as predicted by Eq. (5.2), the system response is
oscillatory and can be fit well with a sine wave (black lines), but with a varying lag
phase. We see that the loss angle δ increases while the oscillatory component of the
force F ∗ and the constant offset force Fs decrease with increasing NM IIA content.
This suggests that the system crosses over from elastic to viscous as the myosin IIB
motors are replaced by myosin IIA motors.

In order to achieve an accurate mapping between the microscopic motor rates and
the effective Maxwell rheology, we next developed a self-consistent mean field treat-
ment of our crossbridge model for motor ensembles [68, 69]. As before, we assume
equal load sharing between all bound motors. In steady state binding and unbinding
from the track is balanced. Assuming the powerstroke is performed immediately af-
ter binding and approximating the stall force of the ensemble as the sum of the single
motor stall forces F̂s = kld for all bound motors Fs ≈ iF̂s we find the self-consistent
number of bound motors at stall force

i(F̂s) =
k01N

k20(d) + k01
. (5.4)

Using the speed when all i bound motors are in the pps. state in the parallel cluster
model (PCM), given by [69]

vi(F ) = (N − i)k01
id− F/kl
i(i+ 1)

(5.5)

we can now give the friction coefficient η and the effective spring constant κkf as
functions of the mechanochemical rates, the environmental stiffness kf and the en-
semble size N

κkf =
klN

1 + k20(d)
k01

+ klN
kf

(5.6)

η =
kli(F̂s)(i(F̂s) + 1)

(N − i(F̂s))k01

. (5.7)

To approximate the quantities for motor ensembles with heterogeneous composition,
we use the harmonic mean of off-rates of the two considered isoforms

k0
20(Na, Nb) =

Na +Nb

Na/k0a
20 +Na/k0b

20

, (5.8)
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with Na, k
0a
20 , Nb, k

0b
20 the total number and the off-rates of NM IIA and B heads,

respectively. This follows the intuition, that the average dwell time of a motor head
on the track is the pivotal quantity. We note, that this approach is not the only
possibility to combine NM IIA and IIB using this approximation. However, since ka0

20

and kb020 do not differ too much from each other, it is quite successful. In section 5.3
we outline a different linear mean-field theory that can be used if ka0

20 and kb020 differ
too much from each other. In addition, we note that this mean field approximation
should carry over to passive crosslinkers by setting the powerstroke distance d = 0.
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Figure 5.3.: Mechanical response depends on ensemble isoform content for an en-
semble of size N = 15 with kf = 1 pN/nm. (a) The dynamic modulus G∗ of a
ensembles with Na ∈ {0, 10, 15} (dark blue, light violet, light red). The diamonds
and crosses denote the storage and loss as determined from the simulation, respec-
tively, while the black lines are Maxwell model fits. The dotted colored lines are
the result of the mean field approximation. (b, c, d) Effective spring constant κkf ,
friction coefficient η and ensemble stall force Fs as a function of NM IIA content
Na. Blue and black circles denote the results obtained from the simulation and
the mean field approximation, respectively.

In accordance to eqn. (5.3) Figs. 5.3(b) and (c) show the effective spring constant
κkf of the motor ensemble and its environment and the friction coefficient η as calcu-
lated from a fit of the Maxwell element eqn. (5.3) to the simulation results, alongside
the theoretical prediction from the mechanochemical rates (eqns. (5.6) and (5.7),
respectively). The effective spring constant decreases slightly with increasing NM
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Figure 5.4.: Mechanical response dependence on ensemble size. (a) Dynamic modulus
for NM IIA ensembles of size N = Na ∈ {5, 25, 50} (light to dark red) with
kf = 1 pN/nm (for symbol description see Fig. 5.3(a)). (b, c, d) motor ensemble
spring constant keff , friction coefficient η and ensemble stall force Fs as a function
of ensemble size N for Na ∈ {0, N/2, N} (dark blue, violet, light red). Dots and
lines represent the simulation and mean field approximation, respectively.

IIA content which is consistent with the lower duty ratio of a single NM IIA motor
compared to NM IIB. The friction coefficient decreases markedly with increasing NM
IIA starting from η ≈ 30 pN s/nm without NM IIA and ending at η ≈ 2 pN s/nm
with purely NM IIA for a motor ensemble with 15 motors. The stall force Fs goes
from ∼ 20 pN/nm for ensembles of purely NM IIB to ∼ 10 pN/nm for purely NM
IIA, as shown in Fig. 5.3(d).

We also investigate the size dependence of the mechanical response, which is sum-
marized in Fig. 5.4. Ensemble spring constant keff = ikl, Stall force Fs and friction
coefficient η rise linearly with size. This suggests, that one can think of a single
motor of the ensemble as an active Maxwell element which in the context of the
ensemble is in parallel to others. The linear relationships also motivate calculating
the effective Young’s modulus E = keff l/πr

2, the bulk viscosity Y = ηl/πr2 and the
active stress σa = Fs/πr

2 generated by a one half minifilament of length l ≈ 150 nm
with a typical crosssectional radius of r ≈ 20 nm, i.e. the distance the heads typically
splay outward from the center of the filament with N = 15 motors [54]. We find
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E = 160 .. 460 kPa, Y = 0.45 .. 4.8 MPa s and σa = 2 .. 5 kPa for pure NM IIA and
NM IIB ensembles, respectively.
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Figure 5.5.: Mechanical response dependence on elastic environment. (a) Dynamic
modulus for NM IIA and NM IIB ensembles of size N = 15 at kf = 0.01 pN/nm
(dark blue, light red) (for symbol description see Fig. 5.3(a)). (b, c, d) κ, friction
coefficient η and ensemble stall force Fs as a function of environment stiffness kf
for Na ∈ {0, 5, 10, 15} (dark blue, dark violet, light violet, light red). Dots and
lines represent the simulation and mean field approximation, respectively. Dashed
lines represent the expected duty ratio ρ of the ensemble at F = 0.

The mechanical response also depends on the stiffness of the elastic environment kf
as shown in Fig. 5.5. Typically, the timescale τ = η/(κkf ) and stiffness normalized to
the environment stiffness κ decrease with increasing environment stiffness. In most
cases, also the force does not depend much on the stiffness. Interestingly, the mean
field approximation fails for NM IIA ensembles of size N = 15 for environments less
stiff than kf = 0.1 pN/nm. In this case κ < 1 for kf → 0, which is not included in
the mean field theory due to implicitly assuming that at least one motor is bound
at all times. If no motor is bound κ = 0, while if at least one motor is bound κ = 1.
Thus, the mean value can be approximated by κ = ρ = 1− [k0

20/(k
0
20 +k01)]N , where

ρ is the duty ratio of the ensemble at F = 0, i.e. the probability that at least one
motor is bound at a given time. Here, the mean field theory also overestimates the
timescale τ and stall force Fs. The timescale of the NM IIA ensemble reaches a
maximum at kf ≈ 0.05 pN/nm and falls off to higher and lower stiffnesses. The stall
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force rises with environment stiffness.

5.3. An alternative mean-field approach

Above we noted, that the mean-field approach used until now where mixed motor
ensembles were approximated by taking the harmonic mean of the isoform-dependent
off-rates ka0

20 and kb020 (see eq. (5.8)), which follows from intuition about the cross-
bridge cycle. Taking a more mechanical perspective one can also think of a mixed
motor ensemble as two directly coupled ensembles with different mechanical proper-
ties working in parallel, as shown in the inset of Fig. 5.6. Naively, one could now use
eqs. (5.4) and (5.7), replace N with Na and Nb, respectively in order to calculate the
stall forces, the effective stiffnesses ensembles and the effective friction coefficients
of the two ensembles. While the mean number of bound motors at stall force i(F̂s)
scales linearly with ensemble size, the friction coefficient only does so approximately
for large ensembles. For small ensembles, in particular the first motors added to
the cluster effectively contribute more towards the friction coefficient than the later
added ones. Therefore, it is more instructive to calculate the friction coefficient per
motor for the limit of an infinitely large cluster and use this value as the friction
coefficient per motor when determining the mechanical properties of the two coupled
ensembles. It is given by

η̃a/b = lim
N→∞

ηeff(N)

N
=

k01kl

k20(d)(k
a/b
20 (d) + k01)

. (5.9)

The complex modulus of each ensemble is then the Maxwell modulus

G∗a/b(ω) =
keff(Na/bη̃a/bω)2 + iωk2

effNa/bη̃a/b

(Na/bη̃a/bω)2 + k2
eff

. (5.10)

The total complex modulus of the system, i.e. the mixed ensemble with the serially
attached external spring, then follows

G∗(ω) =
[
(G∗a(ω) +G∗b(ω))−1 + k−1

f

]−1
. (5.11)

As a proof of concept Fig. 5.6 shows the complex modulus of an ensemble of Na = 10

NM IIA and Nb = 1 NM IIB, however here the off-rate of the slower motor has been
set to kb020 = 0.05 s−1, thereby leading to an appreciable distance in timescales of the
two motors and two distinct peaks in the imaginary part of the complex modulus.
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Figure 5.6: Complex modulus of an
ensemble of Nb = 1 and Na =
10, where the slower motor has
been made slower by adapt-
ing k0b

20 = 0.05 s−1. One can
clearly see two distinct peaks in
the imaginary part of the com-
plex modulus G∗, as a result
of two parallely arranged active
Maxwell materials with distinct
characteristic times. Points de-
note results from the full simu-
lation of the crossbridge cycle,
while the solid and dotted line
denotes the mean-field result for
the storage and loss modulus,
respectively.

[

[

5.4. Nonlinear behavior

Until now, only relatively small changes in force ∆F . 10 pN have been considered.
If the amplitude is increased further, the linear theory does not produce valid results
anymore, which is a typical restriction of linear theories. A nonlinear mean field
time evolution equation that can in principle account for effects arising due to higher
amplitude can be given by combining eqs. (4.8), (5.1) and (5.5) to

di

dt
= (N − i)k01 − ik20(kfz/i) +O(σ2

i + σ2
z + cov(i, z))

dz

dt
= κ

[
(N − i)k01

id− kfz/kl
i(i+ 1)

+Aω cos(ωt)

]
+O(σ2

i + σ2
z + cov(i, z)).

(5.12)

As these equations are difficult to analyze analytically, we turn to numerical methods.
In particular, eqs. (5.12) are solved by an expicit adaptive Runge-Kutta method of
order five as implemented in the scipy package for scientific computing in Python
[207]. Throughout this section we simulate an ensemble of N = Nb = 15 NM IIB
motors as an example until the oscillation does not depend on initial conditions
anymore. The results are summarized in Fig. 5.7. Fig. 5.7(a) shows the mean
number of actin bound motors as a function of time and indeed – as assumed in the
previous section – the change in number of bound motors i over time is negligible for
low amplitudes. At larger amplitudes the number of bound motors oscillates around
a mean value. Similar to the force response as shown in Fig. 5.7(b). The phase angle
between these oscillations depends on frequency. At low frequencies the phase of the
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Figure 5.7.: Increased amplitudes make the system depart form linear response.
Crosses denote the numeric solution of the mean-field equation (5.12), lines denote
the mean according to the simulation and the colored surface denotes the region
of one standard deviation. Here simulations of N = Nb = 15 NM IIB motors
are shown. (a) Oscillatory response of the mean number of bound motors. Note
that for very low frequencies the response becomes strongly non-sinusoidal. (b)
Time-dependent force response of the system. (c) Trajectory of strain imposed
by the motor versus the total force. (d) Trajectory of the strain rate imposed by
the motor versus the total force.
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Figure 5.7 (previous page): For purely harmonic oscillations (c) and (d) should show
only ellipses, while this is approximately true for low amplitude this breaks down
at higher amplitudes. Note that the trajectories furthermore do not exhibit odd
symmetry, indicating that the motor ensemble can be understood as an anisotropic
material.

oscillation in i follows the oscillation of force rather closely implying that the typical
time the motor ensemble needs to reach its steady state is much shorter than an
oscillation period. At high frequencies this changes however, as the peak in number
of bound motors lags behind the force slightly.
The force response departs most obviously from a harmonic oscillation at low

frequencies and high amplitudes as shown in Fig. 5.7 at frequency f = 0.001 Hz and
amplitude A = 100 nm. Here the oscillation is deformed such that the maximum the
oscillation passes through is sharper, while the minimum is less defined.
Fig. 5.7(c) and (d) shows diagrams that are also referred to as Pipkin diagrams

[208]. The elastic Pipkin diagram, i.e. Fig. 5.7(c), shows the trajectory of strain
imposed on the system by the motor against the force response, while the viscous
Pipkin diagram , i.e. Fig. 5.7(d), shows the trajectory of strain rate imposed on the
system by the motor against the force response. In the elastic Pipkin diagram straight
lines indicate the response of a purely elastic material, while in the viscous Pipkin
diagrams are indicative of a purely viscous material. Linear viscoelastic materials
show ellipses in the Pipkin diagram with major axes that are neither aligned with
x- nor with y-axis. Accordingly, for low amplitudes we observe trajectories that are
close to ellipses while the higher the amplitude of the imposed strain becomes, the
more deformed they become. In typical large amplitude rheological measurements
investigating the response of a material to shear, where the material response to
oscillatory strain is assumed to have odd symmetry – as the direction of applied
stress should not change the material response in isotropic materials – only odd
harmonics contribute to the response [209]. If no odd symmetry is exhibited by
the trajectories in the Pipkin diagrams it follows that the material is anisotropic, as
observed here, where the system responds stronger to stretching than to compression.
All trajectories that are observed here are closed loops indicating that, unsurpris-

ingly, the force response of the system is periodic. As the response is also smooth, it
can be described as a Fourier series. The response to the oscillatory strain depicted
in Fig. 5.1 can therefore be described by

z =
∞∑
n=0

A
[
G′n(ω,A) sin(nωt) +G′′n(ω,A) cos(nωt)

]
. (5.13)
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Figure 5.8.: Fourier analysis of the force response of the mean-field equation. The
first harmonic of the in phase response G′1(f,A) (a), as well as the first harmonic
of the out of phase response G′′1(f,A) (b) are independent of amplitude in the
region shown and match that shown in Fig. 5.3 in the studied paramter regime.
(c, d) Fourier coefficients of the second harmonic, indicating a response that is
dependent on the direction of deformation at higher amplitudes A.

If the response is linear, all terms with n > 1 must vanish. For n = 0 only G′′0(ω,A) is
relevant and together with the amplitude AG′′0(ω,A) can be interpreted as a constant
offset. The n = 1 terms can be identified with storage and loss modulus, respectively.
Since trajectories in the Pipkin diagrams are not ellipses, the first higher order terms
that contribute are G′2 and G′′2. As the full simulation of the crossbridge cycle
and the oscillatory perturbation is computationally very expensive, we here turn
to the mean field theory which gives reasonable results in the frequency interval
f = 0.001 ∼ 0.01 Hz for amplitudes A ≤ 50 nm. We fit eq. (5.13) (stopping the sum
at n = 2) to one oscillation period of the mean field solution to obtain the Fourier
coefficients. The results are shown in Fig. 5.8. In detail, Fig. 5.8(a) and (b) show
the Fourier coefficients of the base frequency. These turn out to be independent
of amplitude A in the parameter regime investigated and, as expected, match the
complex modulus of the Maxwell model from Fig. 5.3. The Fourier coefficients of
the second harmonic are shown in Fig. 5.8(c) and (d). Combined, they indicate,
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that there is an anisotropic response of the system dependent on the direction of
deformation, that becomes appreciable for higher amplitudes. On their own, the
Fourier coefficients as well as their cause are however difficult to understand. As a
toy model, suppose we apply an oscillatory strain x = Ã sin(ωt) to a nonlinear spring
with force extention relation F (x) = k1x+k2x

2. Trigonometric identities then imply
that the force response is

F (t) =
1

2
Ã2k2 + Ãk1 sin(ωt)− 1

2
Ã2k2 cos(2ωt). (5.14)

Comparison of coefficients with eq. (5.13) implies for the second harmonic oscillation
that

√
G′22 +G′′22 = Ãk2/2.

But how does this relate to the system studied here? Of course, and in contrast
to the toy model, due to the viscoelastic nature of the system, there is a loss angle
between imposed strain and output stress. If we however take the oscillation of force
as given and investigate the response of the neck linker strain to the force, we can
gain further insight. If we assume, that relaxation of the bound motors to their
steady states given the force applied to the system is fast, such that the number
of bound motors relaxes to its steady state value instantaneously, one can formally
write the number of bound motors as a function of force i(F ). This assumption is
valid at low frequencies, where the number of bound motors and the force oscillate
in phase (see Fig. 5.7(a) and (b). Any change in force ∆F can now be related to a
change of neck linker strain ∆x

∆F (∆x) = i(Fs + ∆F )kl∆x = kl∆x
(
i(F̂s) + ∆i(∆F )

)
. (5.15)

If we now interpret ∆i(∆F ) as the oscillation amplitude of the number of bound
motors, this implies, that kl∆i is the elastic nonlinearity in the crossbridge ensemble.
Thereby we should expect the whole system with the external spring in series with
the motor ensemble to have a non-linear contribution of

k2 ≈
∆iklkf

i(Fs)kl + kf
, (5.16)

which together with our nonlinear spring toy model suggests, that as long as our
assumption holds, the amplitude in the oscillation of bound motors ∆i should be
related to the magnitude of the second harmonic of the force oscillation by√

G′22 +G′′22 ≈
K

2

∆iklkf
i(Fs)kl + kf

, (5.17)

with proportionality constant K. Fig. 5.9(a) shows an example frequency f =
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Figure 5.9.: Relation of oscillation amplitude of bound motors ∆i and the con-
tribution of the second harmonic to the force oscillation. (a) For frequency
f = 0.001Hz eq. (5.17) holds well. Symbols denote results derived from the full
simulation, while solid lines denote results from the mean-field equation. Blue
relates to the left side of (5.17) while orange relate to the right side. (b) Depen-
dence of K on amplitude and frequency as a result of the mean field theory. In the
regime, where the mean field equations apply, K mainly depends on frequency.

0.001 Hz where this proportionality holds quite well for the mean-field equation and
the full model. Fig. 5.9(b) shows the proportionality factor K for different frequen-
cies and amplitudes as a result of numerically solving the mean field equation (5.12).
It is mostly independent of A as assumed by our calculation and mainly depends on
the frequency f , as expected from the approximation. While at this point the mean-
ing of the proportionality factor K which has units of an inverse spring constant,
this result suggests, that the nonlinear behavior that the system exhibits is due to
the force dependent transition rates. The catch-bond that is implemented in cross-
bridge cycle in the detachment from the post powerstroke state (PPS) thus leads to
compression-softening and -fluidizing as well as stretch-stiffening and -hardening.

5.5. Conclusion

In this chapter, we proposed a theory that relates a stochastic crossbridge model
to an active linear viscoelastic model, which thereby predicts rheological properties
from microscopic chemical rates and showcased what we can learn about the two
myosin isoforms NMII A/B using this approach. In brief, NM IIA behaves more
fluidlike than NM IIB, stiffer elastic environments lead to a more fluid response
and increasing the number of crossbridges yields an increasingly solid behavior. In
addition we gave an outlook into the anisotropic nonlinear behavior of the system,
that resists stretching more than it does compression.
In the context of live-cell experiments studying the implications of our theory
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seems most promising in the context of stress fiber microsurgery assays [154]. Here,
stress fibers are cut by laser ablation and the viscoelastic recoil is recorded. The
recoil can be divided into an instaneous, presumably elastic and an exponential
relaxation with a typical time scale of several seconds to minutes. Corresponding
with the heterogeneous distribution of NM IIA/B within cells measured relaxation
times differ significantly with location and stress fiber type [159, 210]. Strikingly,
the relaxation time of mature stress fibers, which normally contain a mix of NM IIA
and B, can be reduced by suppressing NM IIB gene expression [211]. Additionally,
as the stiffness of a fiber with constant elastic modulus and cross sectional area
decreases with increasing length, the notion, that stress fibers of increasing length
show increasing relaxation times [157], is also consistent with our model predictions
(see Fig. 5.5(c)).
The response to cutting of stress fibers motivates modeling stress fibers as a stan-

dard linear solid with additional active stress. This has been demonstrated recently
by mechanically isolating stress fibers in live cell experiments with microsurgery and
subsequent micromanipulation with soft cantilevers [155]. The model presented here,
in conjunction with this experimental result suggests, that in stress fibers contractile
myosin II minifilaments should not only be in series with passive crosslinkers, but also
in parallel. This may be a key ingredient of a future model explaining the currently
observed inconsistency [24] between predictions of maximum force of molecular mo-
tors from crossbridge models ∼ 50 pN and chemical rates and the typical traction
force of stress fibers of ∼ 10 nN [156].
In general, proteins are thought to have been optimized by evolution for their

specific task. The different tasks at hand specifically for myosin II pertain to differ-
ent spatiotemporal localizations of NM IIA/B [212, 213]: there is more NM IIA in
transverse arcs than NM IIB and vice versa in ventral stress fibers. In turn, trans-
verse arcs are thought to flatten the lamellum at the advancing edge of migrating
cells [21], while ventral stress fibers produce the traction forces that are needed for
detaching the trailing edge of the cell, which are typically much larger than in other
stress fibers [23]. These different tasks surely bear different challenges with differing
optimal solutions. We conclude that the cytoskeleton should be seen as a system
consisting of many different components whose chemical properties, such as binding
affinities, have been tuned such that the mechanical properties arising as described
here result in optimal performance.
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6. Tension Viscosity Model

This chapter follows up on the tradition of models explaining the circular arc that
is often observed in peripheral stress fibers that bridge a non-adhesive region [128,
130, 214–216]. Much like previous models, it explains the experimentally observed
correlation between spanning distance and arc radius of peripheral stress fibers, but
adding a dynamical twist. The model assumes, that experimentally observed periph-
eral stress fibers are in a steady state, where contraction by motors with distinct force
velocity relation is balanced with stress fiber elongation at both ends by polymeriza-
tion of additional actin fibers. While this chapter introduces the model and analyzes
the stability of the steady states theoretically, the model is applied to experiments
in chapter 7.

6.1. Introduction

In deformable materials, such as biological cells, solid bodies or even soap bubbles
the shapes we observe typically are generated by a stable balance of forces of some
sort. Be it a balance of body forces and contact forces in the Hertz Problem [217],
the balance of pressure and surface tension in the forming of a soap bubble or the
intricate interplay of surface tension, bending energy and osmotic pressure deter-
mining the shape of red blood cells [218]. Adherent cells, which can be thought
of as a two dimensional contractile sheet, show a similarly interesting phenomenon
of invaginated peripheral stress fibers between focal adhesions. These invaginations
arise due to balancing of forces along the stress fiber. The shape that is observed
is a result of a balance of the contractile force along the peripheral stress fiber with
the force that is applied to the fiber from the environment. A surface tension in the
environment which leads to forces with non zero normal part to the stress fiber can
only be balanced by a curved stress fiber when assuming negligible bending rigidity
[128, 130, 214, 219, 220]. Circular arcs arise, when this surface tension is isotropic
[128, 130, 214], while elliptical arcs should form if the tension within the cell has a
preferred direction [219]. Experimentally it has been found, that often the radius of
the circular arc is correlated positively with the distance between the associated focal
adhesions [128, 130], which can be explained by an elastostatic theory for the stress
fiber. Similar results have been obtained theoretically when investigating active ca-
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ble networks, that additionally show fundamental properties of the cytoskeleton such
as robustness of cell shape to the detailed topology of the network [215].
Here, instead of assuming a static elasticity of the stress fiber, we approach the

tension generation from a dynamical perspective. Stress fibers are organized sim-
ilar to muscle sarcomeres. Regions of alternating actin polarity are alternatingly
crosslinked by passive crosslinkers such as α-actinin, and active myosin II motors,
which can additionally contract the anti-parallel fibers [51, 143]. Therefore the num-
ber of motors in series scales linearly with stress fiber length, but the contraction
force is independent of length as experimental evidence suggests [221]. In essence
there are two dynamical processes that occur within a stress fiber. These are firstly,
the contraction by molecular motors and secondly actin polymerization at the fo-
cal adhesions which leads to a flow of material towards the center of the stress fiber
[2, 143, 222–224]. In a steady state situation these two processes, polymerization and
contraction have to be balanced. In this chapter we develop a dynamical model for
the peripheral stress fiber which balances the force that is produced dynamically by
the interplay of polymerization and contraction against the isotropic surface tension
from the inside of the cell. This model which depends on the mechanical properties of
the molecular motors will allow us to explain shape differences that arise from differ-
ences in the force-velocity relations of the different isoforms of myosin II [66, 71, 72]
that produce the active contractile stress.

6.2. Active contractile flows may control cell shape

As stated above, the model we introduce here considers the interplay of three pro-
cesses, as visualized in Fig. 6.1:

1. Sarcomeric contraction by serially arranged molecular motors with speed v(F,L),
that may depend on tension F within the stress fiber and length L of the stress
fiber

2. Actin polymerization at the focal adhesions with speed vp(F,L), that in prin-
ciple may also depend on the tension F within the stress fiber and length L of
the stress fiber

3. Balance of an isotropic surface tension σ from the cell surface with the tension
F inside the stress fiber, by curving the stress fiber into a circular arc of radius
R = F/σ, a modified Laplace law [128, 214].

The two velocities lead to a length change

L̇ = vp(F,L)− v(F,L) (6.1)
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Figure 6.1: Model sketch. A pe-
ripheral stress fiber forms a cir-
cular arc by balance of surface
tension σ and tension F within
the stress fiber. This tension
is generated by the interplay of
contractile elements that are ar-
ranged in series along the stress
fiber and polymerization of ad-
ditional actin filaments.

of the stress fiber, which is the central dynamic equation that we study here.
From the knowledge that the contractile speed of molecular motors can be modeled

by a force velocity relation of type

vm(F ) =
1

ηm
(Fs − F ) (6.2)

with motor stall force Fs and effective friction coefficient ηm for a sarcomeric unit
of reference length L0, linear scaling of contraction speed with stress fiber length
implies for a stress fiber of length L

vm
L0

=
v(F,L)

L
⇔ v(F,L) =

L

η0
(Fs − F ). (6.3)

Here η0 is the friction coefficient of the stress fiber normalized to the length, such
that the stress fiber contracts faster when it is longer. This is the contraction speed
of the molecular motors inside the stress fiber.
For the polymerization speed of actin at the focal adhesions we here investigate

two different force dependencies: Constant, i.e. independent of force, and linear with
force. The related velocities vp(F,L) are given in the according sections.
The line tension we obtain from the interplay of contraction and polymerization

can now be related to the circular arc radius R with the modified Laplace Law

R =
F

σ
, (6.4)

where σ is the contractile surface tension. This defines how surface tension and line
tension within the stress fiber is balanced and shows, that the tension-dependencies
in the dynamic equation (6.1) are in fact dependencies on radius of curvature R, that
in turn will depend on the length of the stress fiber and the spanning distance d.
Thus, to close eq. (6.1) to a well defined equation of motion, a geometric formula

that relates these quantities is required. Stress fiber length L and the radius R are
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Figure 6.2: The arc radius R(L) is
a function of arc length L on
the interval L ∈ (d,∞). For
L < π/2 it is monotonically de-
creasing for L > π/2 it increases
monotonically. Normalizing R
and L to the spanning distance
d yields a universal result. 0 1 π/2 2 3 4
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trivially related with the central angle ϕ by L = Rϕ. The central angle is in turn
dependent on spanning distance d and radius of curvature R by the trigonometric
functions. Overall

L =

2R arcsin d
2R 0 ≤ ϕ ≤ π

2R(π − arcsin d
2R) π ≤ ϕ ≤ 2π

(6.5)

relates spanning distance, radius of curvature and stress fiber length. While circular
arcs with larger central angle than π have not been observed experimentally, from
geometrical deliberations they are also permissible. For completeness, they are also
considered here. The function R(L) that will be important for studying the dynamics
is implicitly given by eqn. (6.5) and is visualized in Fig. 6.2. The relation becomes
independent of spanning distance d, if distances are measured in units of d. For
small central angles (i.e. large radii) eq. (6.5) can be approximated by L = d. Since
sinϕ/2 = d/2R, the relative error of this approximation is given by

∆L

L
=

2R arcsin d
2R − d

2R arcsin d
2R

= 1− 2

ϕ
sin

ϕ

2
< 0.1 if ϕ ≤ π

2
. (6.6)

6.2.1. Constant polymerization speed

We now study the first case, a constant polymerization speed, vp(F ) = vconst. Using
eqs. (6.3) together with the Laplace Law (6.4) and the constant polymerization speed
in eq. (6.1) we arrive at

L̇ = − L
η0

(Fs − σR(L)) + vconst. (6.7)
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Figure 6.3.: Stability analysis, l̇ as a function of l. (a) l̇ for a range of spanning
distances d̃ for ξ̃ = 1.1. For small spanning distances there are two steady states,
the one at lower l is stable, while the other one is instable. For increasing d the
system approaches a saddle-node distribution, beyond which both steady states
vanish and the length of the peripheral arc increases indefinitely. (b) l̇ for a range
of ξ̃ and spanning distance d̃ = 1. Similarly for increasing ξ̃ the two steady states
vanish in a saddle node bifurcation.

By measuring distance in units of Rmax = Fs/σ and time in units of τ = Rmax/vconst

we can nondimensionalize this equation of motion for the length of the peripheral
arc L with result

l̇ = − l

ξ̃2
(1− r(l)) + 1,

with ξ̃ =
ξ

Rmax
=

√
vconstη0

σ

Rmax
, r

(
l =

L

Rmax

)
=
R(L)

Rmax
and l =

L

Rmax
.

(6.8)

For a stability analysis of possible steady states, l̇ is visualized in Fig. 6.3 as a
function of l. For low spanning distances d̃ = d/Rmax and ξ̃ we find there exist two
steady states. The ones at smaller and larger arc length are stable and unstable
respectively. There is a bifurcation point at some (d̃crit, ξ̃crit), where the two steady
states merge into one metastable steady state. Increasing either d̃ or ξ̃ leads to a
completely instable system, in which the arc length increases indefinitely.

The steady states can formally be found by setting l̇ = 0. From this we can also
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find a conditional equation for the steady state radius. We find

r = 1− ξ̃2/l, or in dimensional quantities (6.9)

R = Rmax −
ξ2

L
. (6.10)

From these equations it becomes clear, that the process depends on two different
length scales namely Rmax, the 2D-Laplace radius, and ξ, which depends on the slope
of the length nomalized force-velocity relation of the stress fiber, the polymerization
speed at the focal adhesions and the surface tension.
Together with the geometrical relation (6.5) this equation can be solved implicitly

or alternatively one can use the approximation L = d for small central angles. Using
sinϕ/2 = d̃/2r in eq. (6.9) we find

ξ̃2 +

(
d̃− sinϕ/2

)2

sin2 ϕ/2
ϕ

= 1, (6.11)

i.e. given that there is a stable solution, the central angle ϕ as a function of (ξ̃, d̃)

will have elliptical contour lines with ellipse centers at (0, sinϕ/2) and major/minor
axes of sin(ϕ/2)/

√
ϕ and 1. In particular for the exact relation, this means that

there is a lower as well as an upper bound for the spanning distance and associated
radius, where polymerization speed and contraction speed can be balanced for arcs
with central angle 0 ≤ ϕ ≤ π

Rhigh/low =
Rmax

2
±

√(
Rmax

2

)2

− ξ2

π
and dhigh/low = Rmax ±

√
R2

max −
4ξ2

π
.

(6.12)

Above the upper bound and below the lower bound the stable steady states are either
arcs with central angle ϕ > π or there exist no stable steady states. The solutions
are shown later in Figs. 6.5(a) and (b) as well as the phase diagram which is shown
in Fig. 6.5(c) in section 6.2.3.

6.2.2. Force-dependent polymerization speed

We now study the second case, where we assume, that actin filaments are polymerized
at the focal adhesions with linearly increasing speed, when increasing the force

vp =
F

ηf
. (6.13)
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Figure 6.4.: Stability analysis, l̇ as a function of l. (a) l̇ for a range of spanning
distances d for d̃m = 2. For small spanning distances there are two steady states,
the one at lower l is stable, while the other one is instable. For increasing d the
system approaches a saddle-node distribution, beyond which both steady states
vanish and the length of the peripheral arc increases indefinitely. (b) l̇ for a range
of d̃m and spanning distance d = Rmax. Similarly for increasing ξ̃ the two steady
states vanish in a saddle node bifurcation.

Again using eqs. (6.3) together with the Laplace Law (6.4) we now obtain

L̇ = − L
η0

(Fs − σR(L)) +
σR(L)

ηf
. (6.14)

We again nondimensionalize the equation of motion by measuring distance in units
of Rmax = Fs/σ and time in units of τ = ηf/σ with result

l̇ = − l

d̃m
(1− r) + r, with d̃m =

dm
Rmax

=
η0

ηfRmax
. (6.15)

Fig. 6.4 shows l̇ as a function of l. We find very similar qualitative results as in the
case of constant polymerization speed, i.e. there is a saddle-node bifurcation at a
certain (d̃, d̃m), where increasing either d̃m or d̃ leads to a complete destabilization
of the system. Also here the fiber grows indefinitely.

We again formally find the steady states by setting l̇ = 0 and derive a conditional
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equation for the steady state radius from the geometric relation (6.5). We arrive at

r =
l

d̃m + l
, or in dimensional quantities (6.16)

R =
L

dm + L
Rmax. (6.17)

This coincidentally is a mechanical analogon to the Michaelis-Menten kinetics with
radius R corresponding to reaction rate, Rmax corresponding to the maximum re-
action rate, arc length L corresponding to the substrate concentration, dm corre-
sponding to the Michaelis constant, which is the arc length of half maximal radius.
Here the two competing length scales are again the 2D-Laplace radius Rmax and the
ratio of the slopes of the length normalized force-velocity relation of the fiber and
the force-velocity relation of the focal adhesion.
Using ϕr = l and sinϕ/2 = d/2r in eq. (6.16) we find

d̃ = 2 sin
ϕ

2

(
1− d̃m

ϕ

)
, (6.18)

i.e. the contour lines of the central angle ϕ as a function of (d̃, d̃m) are linear func-
tions. In particular for central angles 0 < ϕ < π we find a maximum spanning
distance

dhigh = 2(Rmax −
dm
π

). (6.19)

At higher spanning distances the central angle ϕ > π, i.e. the central angle ϕ > π.
At some dcrit > dhigh the steady states cease to exist. The solutions are shown in
Fig. 6.5(d) and (e) together with the the emerging phase diagram in Fig. 6.5(f) in
section 6.2.3.

6.2.3. Comparison of R(d) relation

In Fig. 6.5 we compare typical relations of arc radius R to the spanning distance d,
which is the relation that is best accessible experimentally and give phase diagrams
indicating whether the system is stable and if so, whether the central angle ϕ is
larger or smaller than π.
The constant polymerization speed model for small ξ̃ leads to R(d) relations that

for small d curving upward and reach the line of minimal radius Rmin = d/2 at dlow

as shown in Fig. 6.5(a). In this region ϕ > π. Beyond this point ϕ < π and the radius
increases monotonically into a plateau region. Near dhigh the slope of R(d) increases
again (here again ϕ > π) until dcrit, where the stable steady state ceases to exist. At
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Figure 6.5.: Comparison of R(d) relationship and phase diagram for the two models.
Blue solid lines are related to stable steady state lengths, where the arc is smaller
than a half cicle, while dashed blue lines represent the result with approximation
arcsinx = x. Solid orange lines represent stable steady states where the arc is
bigger than a half circle and dotted orange lines represent instable steady states.
The dashed green line denotes d = 2R, which corresponds to the circle of smallest
radius by geometry. The colors in the phase diagrams represent parameter regions,
where stable solutions can be found and represent arcs that are smaller (blue)
and bigger (orange) than half circles respectively. In the white area the arc curls
inward and increases its radius indefinitely. Constant polymerization speed: (a)
ξ̃ = 0.5 (b) ξ̃ = 1.1 (c) Phase diagram. (d) d̃m = 1 (e) d̃m = 3.5 (f) Phase
diagram.

the value ξ̃ used in Fig. 6.5(a) this region is too small to visualize appropriately. At
these parameters the approximation yields reasonable results compared to the exact
solution, as long as the central angle ϕ < π.
For a higher ξ̃ >

√
π/4 (where the discriminant in eqn. (6.12) becomes negative)

the steady state always relates to an arc with ϕ > π. Correspondingly, the R(d)

relation curves upward throughout all spanning distances d until the critical spanning
distance dcrit, where the saddle-node bifurcation occurs, which is shown in Fig. 6.5b.
The phase diagram of the constant polymerization model is shown in Fig. 6.5(c).

For spanning distances greater than 2Rmax no steady states occur. This is consistent
with the notion, that the interplay of polymerization at the focal adhesion and con-
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Figure 6.6.: Central angle ϕ and dimensionless radius r as a function of spanning
distance and polymerization length scales. Left: Constant polymerization speed,
right: force-dependent polymerization speed.

traction within the fiber always reduces the force within the fiber below the stall force
of the motors. For increasing ξ̃ the maximum spanning distance dcrit decreases until
it reaches zero at ξ̃ =

√
π/2. This value can be can be calculated by setting l = 2πr

in eqn. (6.9) and solving for r. The solutions for r are only real for ξ̃ ≤
√
π/2. While

the regions of stability could only be determined numerically, the region, where the
peripheral arc’s central angle ϕ < π was determined analytically (see eqn. (6.12))
and follows an elliptical shape as all contour lines of ϕ (compare eq. 6.11).

For the force-dependent polymerization rate model we find R(d) relations that
always start at R(0) = 0. From there, the function increases monotonically while
curving downward and approaching a plateau for low dm. At dhigh the function stops
approaching the plateau and the central angles ϕ > π. Shortly after, at dcrit, the
saddle-node bifurcation occurs and at higher spanning distances d no steady state
exists anymore. This behavior is visualized in Fig. 6.5(d). At the chosen parameters,
dhigh ≈ dcrit for this reason the region where central angles ϕ > π is very small. At
these parameters the approximation yields reasonable results compared to the exact
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solution for spanning distances that are not too large.
At higher d̃m ≥ π, the central angle ϕ > π. The R(d) relation again starts at zero

for zero spanning distance and curves upward until reaching the critical value for d
where the steady states do not exist anymore as shown in Fig. 6.5(e).
Fig. 6.5(f) summarizes this behavior in a phase diagram. The region of stability,

as before, is bounded by d ≤ 2Rmax, which is the result for polymerization speed zero
or ηf → ∞. Increasing d̃m leads to a decrease of the maximum spanning distance
dcrit. For d̃m < π arcs with central angles ϕ < π occur at d < dhigh while central
angles ϕ > π at values dhigh < d < dcrit. For π ≤ d̃m ≤ 2π only arcs with ϕ > π are
observed. At dm = 2π the only configuration that is stable is a full circle, accordingly
with spanning distance d = 0.
Fig. 6.6 summarizes the dependencies of the central angle ϕ and the radius r on

the spanning distance and the respective additional length scale ξ̃ and d̃m. Indeed,
apart from the quantitative results and shapes of the stable domain, the qualitative
behavior is similar. At very low values of the additional length scales the modified
Laplace Law recovered and at high polymerization speeds that however still allow
for stable stationary solutions of the dynamical equation, the radius approaches
zero for the force dependent polymerization, while it remains finite for the constant
polymerization speed model.
The key difference between the two models is the following: The constant poly-

merization speed model predicts arcs with central angles ϕ > π for small and large
spanning distances as long as the polymerization length scale is small enough. In
the force dependent polymerization model central angles that are larger than π only
occur at large enough spanning distances.

6.3. Summary

This chapter introduced two similar contour models that take into account the dy-
namic interplay of surface tension, force produced by motors and self-assembly of
additional actin filaments at focal adhesions for the maintenance of peripheral stress
fibers. The model results depend strongly on the properties of the motors that re-
side in the stress fibers and therefore could be a valuable tool when quantitatively
studying cell shape in conditions with varying quantities of the respective NM II
isoforms.
Both studied models show a very similar behavior if the polymerization speed

of actin at the focal adhesions is rather slow, which is the typical experimental
condition in live cell experiments, where one finds values of ∼ 1 nm/s [2, 222, 223].
In the following chapter however we restrict the analysis of experimental data to the
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force-dependent model consistent with an optogenetic study showing an increased
centripetal flow of cytoskeletal material towards the inside after activation of the
center of the stress fiber [2].
In contrast to other contour models in two dimensions, where the contour shape

results from a static (and sometimes elastic) balance of forces [128, 214, 219, 220],
in these models the steady state is characterized by a dynamic balance of inflow
of cytoskeletal material at the boundary points, the focal adhesion and disassembly
by contraction all along the stress fiber. It can therefore be interpreted as another
model system, where self-assembly and mechanical processes may occur with tem-
poral overlap. This is similar to myosin minifilaments that are also an example for
self assembling complexes that turn over their constituents during the mechanical
process they are designed to perform (see chapter 4). In contrast, here the number of
constituents is much larger, indicating that we can turn to a deterministic description
of the interplay of mechanics and self-assembly.
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7. Interplay of non-muscle myosin II
isoforms in live-cells

This chapter is based on a preprint from a collaboration with experimentalists, with
the working title “Distinct roles of non-muscle myosin II isoforms A and B for estab-
lishing cell morphology: dynamic generation of tension versus elastic stability” [225].
Here, I focus on the application of the mathematical models to the experimental data
but still follow the biophysical narrative of the preprint. More experimental details
can be found in the publication or in Kai Weißenbruch’s PhD thesis [226].

7.1. Introduction

The morphology of non-muscle cells depends strongly on dynamics in the actin cy-
toskeleton, where non-muscle myosin II (NM II) minifilaments contract and crosslink
actin filaments by hydrolysis of ATP. This active interplay of NM II and actin is
critical during processes that involve cellular shape changes, such as cell migration
or spreading [49]. As these processes have spatio-temporally different mechanical re-
quirements, the dynamic tension generation and longer lasting tension maintenance
have to be precisely tuned.
To accomplish this, mammalian cells can express up to three different isoforms of

NM II, that have been introduced in section 2.1.3: NM IIA, NM IIB and NM IIC.
In brief, NM IIA contracts much faster than NM IIB when no force is applied, but
NM IIB can withstand much higher forces due to its higher affinity for actin after the
first powerstroke [71, 72, 227, 228], while not much details are known for NM IIC.
In addition, several cell culture studies have shown, that isoforms A and B can co-
assemble into mixed, heterotypic filaments containing both NM IIA and NM IIB
[88, 229].
Micropatterned substrates (see also section 2.3.1) are an ideal tool to quantitatively

analyze cellular morphogenesis as they can normalize cell shape [230] sometimes to
such an extent, that the cell shape can be described well by only a handful of numbers
[128]. This is in stark contrast to the high diversity of cell shapes that occur on
unpatterned substrates. In an early study this approach has been used to quanitify
the positioning of cell organelles, such as the golgi, centrosome or the nucleus [231].
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Another study discovered, that cells can span accross regions that are nonadhesive
by forming stress fibers that invaginate while spanning over these regions [135]. Later
work has investigated these so called peripheral stress fibers more quantitatively on
dot-shaped micropatterns [128]. The experiments show that cell shape is determined
by a balance of surface tension in the cell and a line tension in the cell contour,
as described by a modified Laplace law. Additionally, the experiments revealed a
correlation of spanning distance and radius of curvature of the invaginated stress
fiber, which was theoretically interpreted by the interplay of a tensional element
and an elastic element in the line tension in the tension elasticity model (TEM).
The underlying molecular mechanism for these elements however remain unclear.
We therefore asked, whether NM II isoforms could contribute differentially to the
observed cell shape by virtue of their different mechanochemical properties and from
there arising different force-velocity relations [71].

To investigate the specific functions of the two NM II isoforms our experimental
collaborators generated two knock-out (KO) cell lines NM IIA-KO and NM IIB-KO
from the U2OS cell line, which is widely used to study stress fiber dynamics [20],
using the CRISPR/Cas9 genome editing system [232]. For quantitative analysis
they used cross shaped adhesive micropatterns that, similar to dot-patterns, lead to
invaginated arcs, but with more continuously distributed spanning distances. Phe-
notypical investigation of the cells shows, that NM IIA initiates tension generation
by forming filaments containing only NM IIA. Without NM IIA cells neither able to
form mature stress fibers nor focal adhesions, which underlines the pioneering role
NM IIA has also shown in system such as developing cardiomyocytes [60]. Knock-out
of NM IIB in contrast leads to much less pronounced changes. Quantitative analysis
using the cross-shaped micropatterns strikingly reveals that knock-out of NM IIB
prevented the correlation between spanning distance and arc radius from occuring.
This can be understood in terms of the dynamic variant of the TEM, that accounts
for the faster crossbridge cycle of NM IIA compared to NM IIB which was analyzed
theoretically in chapter 6. Furthermore, and as suggested by the self-assembly model
introduced in chapter 4, our FRAP-experiments show that the exchange dynamics
of NM II also depends on the specifics of the crossbridge cycle.

In summary, we have found signatures of the isoform specific crossbridge cycle
in live cells by a combination of theoretical modeling and experiments; particularly,
by studying the quantitative phenotype of peripheral stress fibers and the turnover
behavior of each isoform. Together our results underline that NM IIA and NM IIB
have complementary roles in establishing the morphology of single cells that are
reflected by the interplay of the self-assembly and the isoform specific crossbridge
cycle of NM II. Fast NM IIA is responsible for tension generation, while slower
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NM IIB is responsible for the upkeep of this tension, thereby providing stability to
longer lasting structures.

7.2. Phenotypical characterization of NM II-KO and NM
IIB-KO cell lines

First, the effect of NM IIA and B-KO was investigated on homogeneously protein
coated coverslip by visualizing stress fibers and focal adhesions by staining for actin
and paxillin, which are known to depend on actomyosin contractility [49]. As dis-
cussed in section 2.1.1, migratory cells can form different types of stress fibers. In
U2OS wild type (WT) cells we observe dorsal stress fibers, connected to one focal
adhesion, as well as transverse arcs located near the leading edge and ventral stress
fibers that are connected to focal adhesions at both ends (see Fig. 7.1(a)), as pre-
viously described in the literature [20]. KO of NM IIA led to a severe disruption
of the actin cytoskeleton leading to a branched phenotype of the cell body, with no
dorsal stress fibers and no transverse arcs as shown in Fig. 7.1. The stress fibers that
remain can be best classified as ventral stress fibers, due to them being connected
to two focal adhesions, and occur much lower in number. Additionally, NM IIA-KO
cells only show very small focal adhesions localized mainly along the leading edges.
NM IIB-KO cells show a much less pronounced change in phenotype compared to
NM IIA-KO as shown in Fig. 7.1(c). All stress fiber types are observed, however
their distribution within the cell was sometimes disrupted.
We quantified the observed phenotypes by measuring the area of each focal ad-

hesion, the number of focal adhesions per cell and the number of focal adhesions
normalized to each cell’s area. We found, that the number of focal adhesions per cell
was significantly reduced by NM IIA-KO, with no significant difference between WT
and NM IIB-KO as shown in Fig. 7.1(d). Fig. 7.1(e) shows the cell average of the
focal adhesion area. HereNM IIA-KO cells showed a significant reduction compared
to the WT, but we found no significant difference between NM IIB-KO and the two
other cell lines. Consistent with the lack of difference between cell areas (not shown),
the number density of focal adhesions showed a significant reduction by NM IIA-KO
(see Fig. 7.1(f). Fig. 7.1(g) shows that the normalized distribution of focal adhe-
sion areas follows an exponential distribution, which, consistent with the mean area
shown in Fig. 7.1(e) has a much lower spread for NM IIA-KO compared to WT.
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Figure 7.1.: Phenotypical changes induced by NM IIA and NM IIB-KO in stress
fiber and focal adhesion formation. (a) USOS wildtype cells show clearly distin-
guishable dorsal stress fibers, transversal arcs and ventral stress fibers. Elongated
clusters of paxillin indicate the presence of mature focal adhesions at the distal
end of dorsal stress fibers aswell as both ends of ventral stress fibers. (b) NM IIA-
KO leads to drastic changes in the phenotype marked by the loss of most stress
fibers and mature focal adhesions. (c) NM IIB-KO leads to only mild pheno-
typical change, where ventral stress fibers and transversal arcs are unspecifically
distributed within the cell. The number of focal adhesions per cell (d), the mean
area of the focal adhesions (e), and the number density of focal adhesions (f)
are reduced significantly for NM IIA cells compared to the WT. (g) Focal adhe-
sion sizes are approximately exponentially distributed. WT cells show the highest
spread followed by NM IIB-KO and finally NM IIA-KO cells. Adapted from [225].
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7.3. QUANTITATIVE ANALYSIS OF NM II A/B-KO PHENOTYPES SHOW
SIGNATURES OF ISOFORM-SPECIFIC FORCE-VELOCITY RELATION

7.3. Quantitative analysis of NM II A/B-KO phenotypes
show signatures of isoform-specific force-velocity
relation

We let the cells spread on adhesive micropatterns with cross-shapes and – as expected
– observed that four invaginated circular arcs form at the periphery, as shown in
Fig. 7.2(a) through (c). The occurence of circular arcs has been explained before by
models that assume a balance between surface tension generated in the actin cortex
and line tension generated in peripheral stress fibers [128, 130, 214]. Quantitative
image analysis has revealed a positive correlation between spanning distance d and
arc radius R and has been interpreted as evidence for an elastic nature of the stress
fibers [128]. Here we follow this earlier work, but explore a more dynamical approach
that allows us to focus on the role of the different myosin II isoforms, which are known
to have very different rates in their crossbridge cycles. We also find such a correlation
for WT and NM IIA-KO cells as shown in Figs. 7.2(a) and (b), respectively. KO of
NM IIB however disrupts this correlation as visualized in Fig. 7.2(c).

To explain this result theoretically, we consider the model introduced in sec-
tion 6.2.2, that describes the stress fiber as a contractile structure that sustains
a continuous transport of cytoskeletal material from the focal adhesion towards the
center of the stress fiber as visualized in Fig. 7.2(d). This flow in stress fibers can
be observed experimentally and like retrograde flow is believed to be driven both
by actin polymerization in the focal adhesions and myosin force in the stress fiber
[2, 143, 222–224]. Therefore, it should depend on the details of the myosin II isoforms
residing in the stress fibers. As described in chapter 5, stress fibers should contract
faster at low forces if the isoform ratio favors NM IIA. Like muscle, mature stress
fibers are organized with sarcomeric arrangements of the myosin motors [51, 143].
Accordingly, the number of serially arranged motor ensembles increases linearly with
stress fiber length and stress fiber contraction speed should increase with length.
The stall force Fs however should not depend on stress fiber length because in a one-
dimensional system, each sarcomere feels the same force. Indeed, the linear scaling
between contraction speed and length as well as the length-independence of the stall
force have been observed experimentally for reconstituted stress fibers [221]. We also
assume that the flow of stress fibers out of focal adhesions increases with force in the
stress fiber as demonstrated by optogenetics [2]. Finally, we assume that the force
in the contour is related to its radius by the Laplace equation [128, 214].

In chapter 6 we have defined a dynamical model with these ingredients for invagi-
nated arcs. We then have identified its steady states that should correspond to the
stationary shapes observed in the experiments. The mathematical analysis gave the
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Figure 7.2.: NM II-KO phenotypes on cross patterns.
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Figure 7.2 (previous page): (a-c) Phenotypes and quantification of R-d relations.
(d) Model sketch of the modified TEM. Circular arcs form from the balance of
line tension λ and surface tension σ. The blue arrows indicate the inward flow
of cytoskeletal material. The inset visualizes the geometry of peripheral stress
fibers with maximum central angle. (e) Normalizing experimental results using
the respective fit parameters yields a master curve. NM IIB-KO cells fall into
the plateau regime of the Michaelis-Menten analogon, WT and NM IIB-KO into
the linear regime. (f) dm/Rmax vs ratio of maximum observed spanning distance
and Rmax. The region marked in red denotes the theoretical prediction where
the central angle of the arc is smaller than 90°. Points denote bootstrapped fit
results. Solid lines denote the bootstrapped mean fit of the model sketched in (d),
dashed colored lines denote fits of the tension control TEM. (g-i) Distributions
of differences between observed radius and minimum allowed radius normalized
to the minimum allowed radius resemble cut-off gaussian distributions, we can
estimate the fraction of non-formed arcs by calculating the grey area. Adapted
from [225].

following approximate relation between R and d

R(d) =
d

dm + d
Rmax (7.1)

which is formally similar to a Michaelis-Menten relation, with maximal radiusRmax =

Fs/σ, given by the ratio of stall force Fs and surface tension σ. It can be interpreted
as the radius that would be observed if there was no reduction of tension by the
polymerization at the focal adhesions. The spanning distance at half maximal ra-
dius is found to be dm = ηSF/ηFA and determines whether the force is bounded by
the contraction speed of the fiber or by the maximum force Fs that can be produced.
If the spanning distance is small against dm, the observed radius is dependent on the
length of the stress fiber, while at spanning distances that are large against dm, the
radius depends primarily on surface tension and the stall force that can be generated
by the motors.

We also note that due to geometrical constraints, the circular arcs on our cross
pattern can have a central angle of up to 90°, as indicated in the inset of Fig. 7.2(d).
If angle were larger, peripheral arcs would have to span across adhesive regions of
the substrate, which was never observed. This maximally allowed central angle leads
to a minimal possible radius given the spanning distance d as Rmin = d/

√
2.

We fitted eq. 7.1 to the experimental data and obtained reasonable agreement (see
Fig. 7.2(a)-(c)). We find mean fit parameters from bootstraps: WT: Rmax = (199±
8) µm, dm = (100±7) µm ; NM IIA-KO: Rmax = (190±30) µm, dm = (134±20) µm;
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NM IIB-KO: Rmax = (100 ± 20) µm, dm = (20 ± 10) µm. Note that the fits have
been constrained such that Rmax and dm are always smaller than 200 µm, since the
radii and spanning distances we observe are well below 200 µm. Standard deviations
are calculated from bootstraps. These results are consistent with the experimental
finding that NM IIA motors, which are the only motors present in NM IIB-KO cells,
are weaker but faster than NM IIB motors. A mix of both as is present in WT
cells leads to intermediate motor strenghts and speeds [66, 71, 72]. By rescaling
the experimental values using the fit parameters, the points roughly follow a master
curve which is shown in Fig. 7.2(e). This illustrates that the data we have obtained
for NM IIB-KO cells lies in the plateau region of the Michaelis Menten curve, while
the data we collected for the other cells lies in the linear regime.

We have theoretically predicted the region in (dm/Rmax, d/Rmax) where the cen-
tral angle is lower than 90°, i.e. permissible by our cross pattern (see Fig. 7.2 (f)),
by using eq. (6.18). This region is triangular; bounded by an upper spanning dis-
tance d/Rmax. For each cell line, we show the bootstrapped results of the maximum
spanning distance and the fit parameters in this space. We see, that the cell lines are
sorted along the x-axis from NM IIB-KO to NM IIA-KO, with NM IIA-KO being
closest to the edge of the theoretically permissible region, which is consistent with
the fact that in these cells we sometimes find, that arcs do not form. We explore this
phenomenon further by analyzing the distribution of arc radii. Fig. 7.2 (g)-(i) shows
that the distribution of the difference of observed radius to the minimum radius
normalized to the minimum radius approximately follows a Gaussian distribution,
that is however cut off at zero difference. For the approximately linear R(d) rela-
tions, we can interpret this spread as a Gaussian fluctuation of the maximum radius
Rmax. Assuming the cut off part of the distribution relates to the fraction of arcs
that have not formed despite possible from the cell spread on the cross, we find there
should be approximately 10%, 18% and 7% non formed arcs for WT, NM IIA-KO
and NM IIB-KO cells respectively. These estimates should be considered as upper
bounds, since we have not considered the error in measurement, which will increase
the variance of the shown distributions. Consistently, we observe non-formed arcs
only in NM IIA-KO cells. In these cells we observe this 13% of the time.

To get another perspective on these results, we fit the original TEM [128] to
the data, which assumes a static elastic fiber with no contributions by flow. The
model additionally assumes that the rest length scales linearly with the spanning
distance with a factor α. Using this model it is possible to determinde upper bounds
for the scaling factor α. For the different cell types we find mean values: WT:
α = 1.029± 0.003, NM IIA-KO: α = 1.051± 0.004, NM IIB-KO: α = 1.021± 0.005

(Standard deviations are calculated from bootstraps). These results suggest, that
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the more influence NM IIA has on the cell, the more the rest length of the stress
fiber is regulated to be smaller, by actomyosin contraction. This is consistent with
the interpretation of the results obtained in the here introduced dynamical model.

7.4. Isoform specific differences in turn-over depend on
the crossbridge cycle

Having found a signature of the isoform specific crossbridge cycle which leads to
distinct force-velocity relations in mixed minifilaments depending on the isoform
content (see chapter 5) in the quantitative phenotype, we turn to FRAP experiments
probing the turnover dynamics of NM II. Motivated by the theoretical result from
section 4.3.3 that NM II turnover may depend on force and also be modulated by the
isoform specific crossbridge cycle, we performed FRAP experiments in reconstituted
cells. These were prepared from NM IIA-KO and NM IIB-KO cells by reintroducing
a fluorescently labeled version of the missing isoform. Exemplary image sequences
of the FRAP experiment of the isoforms A and B are shown in Figs. 7.3 (a) and
(b), respectively. Image sequences like these are analyzed by fitting the normalized
intensity

I(t) = δ(1− exp−t/τ) (7.2)

to the trajectory after correcting for photobleaching and drift of the region of interest
as described in detail in the appendix (see section A.3.2). We find a wide spread
of recovery trajectories for both investigated isoforms of NM II (see Figs. 7.3(c) and
(f)). Consistent with previous experiments, NM IIA shows a much faster exchange
dynamics than NM IIB [90, 143]. For NM IIA we find a distribution of recovery
times τ and mobile fractions δ with means and standard deviations τ = (69± 53) s

and δ = (0.63± 0.29). For NM IIB we find τ = (230± 140) s and δ = (0.47± 0.28).
Inhibition of myosin crossbridge cycle by para-aminoblebbistatin, a photostable and
non-fluorescent blebbistatin derivative [193, 233], leads to only miniscule changes in
the FRAP of NM IIA, as visualized in Fig. 7.3(d). Here we find τ = (52±30) s. The
FRAP dynamics of NM IIB however is accelerated by para-aminoblebbistatin and
we here find τ = (63 ± 44) s and δ = (0.64 ± 0.33). The fit results are summarized
in scatter plots in Fig. 7.3(e) for NM IIA and Fig. 7.3(h) for NM IIB. For a better
comparison of the results for both isoforms, boxplots of the recovery time and mobile
fraction of all four experiments are shown in Figs. 7.3(i) and (j), respectively.
Since recovery time and mobile fraction are not statistically independent variables

as they arise from the same fit and are correlated, as shown in Figs. 7.3(e) and (h),
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we compare the joint distribution of mobile fraction and recovery time by a two-
dimensional version of the Kolmogorov-Smirnoff test, the Peacock test [234, 235].
The p-values are indicated in Figs. 7.3(i) and (j). Note that the reported values are
the same in both figures, as the joint distribution is compared. The statistical test
shows, that of the four experiments only untreated NM IIB resulted in significantly
different distributions of recovery time and mobile fraction. In particular, since
the recovery times of NM II become independent of isoform if treated with para-
aminoblebbistatin and since blebbistatin is known to inhibit the phosphate release
in the crossbridge cycle [193, 236], this experimental result suggests that self-assembly
of NM II depends on the mechanochemistry of actomyosin, as already proposed in
chapter 4.

Aiming for a mechanistic understanding of this effect, we extend the graph based
assembly model introduced in chapter 4 to allow for mixed isoform minifilaments.
Fig. 7.4(a) visualizes the graph on which the assembly occurs. The assembly follows
similar rules as introduced in section 4.2.2, i.e. the association rate of each site
with neighboring occupied sites is constant and the dissociation rate is governed by
eq. (4.1), as long as the motor head of the associated myosin is not attached to
actin. Overall turnover is thereby reduced by actin bound myosins. Reminiscent of
the extension of the Ising model to a Potts model, now however each site can not
only be occupied or unoccupied, but has three possible states in total, unoccupied,
occupied by NM IIA and occupied by NM IIB. The assembly model now by principle
has to define separate association rates for of NM IIA and NM IIB which are defined
by

ka/bon = ∆a/bkon, (7.3)

where kon is the total association rate and ∆a/b can be interpreted as the relative
amounts of NM IIA and B in solution, with ∆a + ∆b = 1. In principle, also the
dissociation rate could depend on isoform, as binding energies of the assembly de-
pend on specifics of the charge distribution along the myosin coiled-coil [55, 237],
however – favoring model simplicity – we here assume the dissociation rate does not
depend on isoform. Following the argument about the CAC from chapter 4, we use
a dimensionless association-rate κ = kon/k

0
off = 0.017, which implies a concentration

very close to, but below the CAC of myosin in solution without the stabilizing effect
of the crossbridge cycle. This is consistent with the idea, that cells will not assem-
ble myosin minifilaments if there is no actin that can be contracted. FRAP of one
minifilament is simulated as described before in section 4.2.6, by associating an addi-
tion Boolean value to each occupied space indicating whether the associated myosin
is fluorescent. The inset of Fig. 7.4(a) visualizes the two step process of replacement
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(j)(i)

(g)

Figure 7.3.: FRAP recovery time difference between NM II isoforms is abolished by
inhibition with blebbistatin. (a,b) Exemplary FRAP image sequence showing
qualitatively faster exchange dynamics for NM IIA. (c,d,f,g) Normalized FRAP
dynamics of NM IIA and B in the absence and presence of photostable
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Figure 7.3 (previous page): para-aminoblebbistatin. Transparent lines denote sin-
gular measurements of the normalized intensity, solid lines represent the mean
normalized intensity. (e,f) Scatter plot of NM IIA and B fitted recovery time and
mobile fraction in the absence (transparent circles) and presence (gray pluses)
of para-aminoblebbistatin. Boxplots of recovery time (i) and mobile fraction (j)
in the four experimental conditions. p-values denote the result of a Peacock-
test comparing the two-dimensional distribution of mobile fraction and recovery
timescale. Adapted from [225].

of a non-fluorescent myosin with a fluorescent one.
The experiments with fluorescent NM IIA and B are performed in different cell

lines: NM IIA experiments are conducted with NM IIA-KO cells with reintroduced,
but fluorescently tagged NM IIA, while NM IIB experiments are conducted using
NM IIB-KO, with reintroduced fluorescent NM IIB. Accordingly, we consider sim-
ulations of the two systems separately in simulations where NM IIA is assumed to
be fluorescent, we assume ∆a = 0.9, while we use ∆b = 0.3, as NM IIA is more
abundantly available in the U2OS cells used here [88]. The ratio will most likely also
depend on the specific cell studied, miniscule changes to these values however do not
change the qualitative result of the simulation.
The crossbridge cycle of the model is visualized in Fig. 7.4(b). Myosin heads

bind from the unbound state to a weakly bound state with rate k01 = 0.2 s−1 that
is non-stereospecifically bound to actin [236] and therefore is very prone to direct
unbinding events, which occur with rate k10 = 0.4 s−1. From this weakly bound
state, the powerstroke occurs quickly, with rate k12 = 1.4 · 106 s−1 [71, 72]. This is
the rate that is strongly reduced by the presence of blebbistatin, as it is also linked
to the phosphate release. When simulating FRAP in the presence of blebbistatin
we use kBlebb

12 = 1.5 s−1 [236]. After having performed the powerstroke, myosin can
either return to the weakly bound state with relatively small rate k21 or it can unbind
from actin with a force- and isoform-dependent rate

k
a/b
20 (F ) = k

0a/0b
20 [∆c exp(−klξi/fc) + (1−∆c) exp(−klξi/fs)]. (7.4)

The model additionally considers a tug-of-war situation between the two sides of
the minifilament, which is depicted Fig. 7.4(c). The minifilament works against two
external springs with strains z− and z+, respectively. In addition, each side of the
minifialment consists of a variable number of NM IIA and NM IIB motors N−a , N−b ,
N+
a and N+

b , respectively, that are dynamcially exchanged according to the rules
of the assembly model. At all times the forces acting on the myosin heads of each
sides has to be balanced against the force in the external springs. Balancing of the
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weakly bound
state

unbound state

post-powerstroke 
state

(a) (b)

(c)
Blebb

Figure 7.4.: Simulating FRAP of NM II hetero-filaments. (a) Graph of the assembly
model. Red and gray circles denote NM II monomers with heads pointing to
either direction of the minifilament, while violet, red and gray lines denote bonds
with differing associated bond energies Ga, Gp and Gs. The inset illustrates
the two-step process of exchanging a non-fluorescent monomer with a fluorescent
molecule (green). (b) The crossbridge cycle is modeled by three mechanochemical
states, the unbound state, the weakly bound state and the post-powerstroke state.
k01, k10 and k21 are assumed to be constant and independent of isoform, k20(F )
depends on force and isoform and k12 is decreased strongly in the presence of
blebbistatin. (c) NM II motors of either side of the minifilament work against
each other in a tug-of-war, straining external springs with spring constant kf in
the process. The simulation considers individual strains ξi for each neck linker,
with spring constant kl.

forces is described in detail in the appendix in section A.3.3. The stochastic model
can now be simulated using the Gillespie algorithm [189]. All model parameters are
summarized in Table A.1 in the appendix.
After an initial burn-in time, the number of NM IIA and NM IIB fluorescent

myosins N j
pre in the minifilament is recorded at one time-step before the bleach time

in NM IIA and NM IIB FRAP simulations. At the time of photobleaching, all assem-
bled myosin are set to be non-fluorescent. Newly assembling proteins from that point
on however are fluorescent, which over time leads to an increase in the number of
fluorescent myosin N j

fluor(t), which is also recorded. We now simulate these systems
until the time after bleach matches, the time the respective FRAP experiment has
been conducted. As myosin minifilaments are very small, we assume multiple minifil-
aments are recorded in the region of interest that was recorded. Accordingly, n = 4
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independent simulations of one minifilament showing the time-dependent number of
fluorescent myosin monomers were used to obtain one normalized FRAP trajectory
that can be compared to the experiment by

Isim(t) =

n∑
j=1

N j
fluor(t)

n∑
j=1

N j
pre

. (7.5)

We started by simulating NM IIA in the absense of blebbistatin and obtain trajec-
tories comparable to the experiment, as shown in Fig. 7.5(a) by using an association
rate of kon = 5 s−1, which is reasonably close to the value estimated in chapter 4.
After this, we simulated NM IIA in the presence blebbistatin, which had little ef-
fects on the dynamics, as in the experiment. We further quantified this by fitting
eq. (7.2) to the simulated trajectories. The results of the fits to simulation data
are visualized in Fig. 7.5(c). As in the experiment, mobile fraction and recovery
timescale are correlated with each other. In absence of blebbistatin, myosin II cycles
through the states shown in Fig. 7.4 in a clockwise fashion. Since k12 ≫ kBlebb

12 ,
this does not occur as regularly when considering the presence of blebbistatin. In-
stead, the specific transition rates between unbound and weakly bound state are
probed much more, because the weakly bound state becomes more populated in the
presence of blebbistatin. As the rates used here lead to similar overall duty ratios
of NM IIA, independent of blebbistatin presence, the recovery dynamics is not af-
fected much. Overall for NM II we find mean timescales and standard deviations of
τa = (61± 30) s and τBlebba = (64± 81) s and mobile fractions of δa = 0.53± 0.12 and
δBlebb
a = 0.62± 0.4, similar to the experiments.

Turning to NM IIB, as expected from the higher duty ratio of the NM IIB, we
find a slower recovery dynamic compared to NM IIA. The trajectories are shown in
Fig. 7.5(d). In contrast to NM IIA, reduction of the powerstroke rate to kBlebb

12 here
markedly quickens the dynamics of turnover as shown in Fig. 7.5(e). In Fig. 7.5(f) the
fitted mobile fraction and recovery time are summarized for NM IIB in the absence
and presence of blebbistatin. The two different point clouds are clearly discernible
from each other. Quantitatively our simulations for NM IIB yield mean recovery
times and standard deviations of τb = (145±129) s and τBlebb

b = (62±54) s and mean
mobile fractions and standard deviations of δb = 0.54±0.27 and δBlebb

b = 0.52±0.29.
These results are visualized in boxplots in Figs. 7.5(g) and (h). Overall for NM IIB
the result for the fluorescence recovery in the absence of blebbistatin does not match
the experiment exactly, however the simulation captures the qualitative behavior of
NM IIB in response to blebbistatin well. Using a slower detachment rate from the
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Figure 7.5.: The assembly model can qualitatively explain the experimental exper-
imental findings. (a,b,d,e) Simulated FRAP trajectories of NM IIA and B with
powerstroke rate k12 for (-Blebb) column and kBlebb

12 for (+Blebb) column. (c,f)
Scatter plot of mobile fraction and recovery time as fitted from the simulated data
for NM IIA and B, respectively. (g,h) Visualization of recovery times and mobile
fractions as boxplots. The parameters used for the simulation are given in the
appendix (Table A.1).
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post powerstorke state k0b
20 = 0.15 s−1 gives better quantitative results for NM IIB,

while not changing much for the results of NM IIA as shown in Fig. A.5 in the
appendix. This may indicate, that the mechanochemistry of NM IIB depends even
more strongly on force than assumed until now. However, due to the complexity of
the system it is difficult to come up with a definite explanation of the difference.

7.5. Discussion

The experimental results together with the theoretical interpretations presented in
this chapter highlight the complementary mechanochemistry of the two isoforms:
The fast NM IIA and the slower but stronger NM IIB. While NM IIA with its high
velocity at low forces typically acts as an initiator of contraction in dynamic situations
as in the transverse arcs at the lamellum, NM IIB with its lower velocity but higher
stall force gives stability to longer lasting structures such as ventral stress fibers in the
center of the cell [90]. Interestingly, these mechanical dynamics are also reflected by
the dynamics of self-assembly of the two isoforms. Our FRAP results indicate, that
this close relation of mechanical dynamics and self-assembly dynamics is neither by
design nor by chance, but by a coupling of the crossbridge cycle to the self-assembly
dynamics in which actin takes the role of a stabilizing template.
Using cross shaped micropatterns produced by microcontact printing, we found

that the previously reported correlation of arc radius R and spanning distance d
of peripheral stress fibers [128] depended critically on the presence of the NM IIB
isoform. The phenotypes of invaginated stress fibers were explained by the contour
model introduced in chapter 6, which explains the observed arcs as steady states
determined by three mayor factors. These are firstly myosin contractility-dependent
self-assembly of actin filaments at the focal adhesions at either end of the stress fiber,
that has previously been observed experimentally [2, 222, 223], secondly the force-
velocity relation, that is well known to be explained by the characteristic crossbridge
cycle of each NM II isoform [71, 72], and lastly cortical tension.
In the FRAP experiment, we also found signatures of the different biochemical

properties as suggested by the theory presented in chapter 4. Consistent with pre-
vious reports of FRAP experiments on NM IIA and B [90, 91, 143] our experiment
also found that NM IIA fluorescence recovery occurs much faster than NM IIB, which
could at least partly be linked to the differences in the crossbridge cycle transition
rates that have been measured experimentally [227, 228]. The differences in FRAP
dynamics were leveled by treatment with a photostable and non-fluorescent deriva-
tive of blebbistatin [233]. In particular the FRAP dynamics of NM IIB was sped
up to be as quick as NM IIA, while NM IIA FRAP dynamics did not show a sig-
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nificant reaction to treatment with the blebbistain derivative. While the model of
mechanosensitive assembly reasonably explains the observed results, in light of super-
resolution microscopy data, indicating that treatment by blebbistatatin decreases the
cortical network density [14], this is a surprising result, as a denser network typi-
cally hinders diffusion, which should slow down the fluorescence recovery. Consistent
with the notion, that NM IIB assembly is affected more than NM II by addition of
blebbistatin, as indicated by the reduced exchange time, solubility assays have also
shown a much stronger increase in solubility of NM IIB after treatment of cells with
blebbistatin [91].
Overall, both the micropattern experiment and the FRAP experiment show sig-

natures of the isoform specific crossbridge cycle of NM II where it modulates the
self-assembly of actin filaments and the NM II minifilament itself.
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8. Conclusion

Mechanical stability and the ability to interact with its mechanical environment is
given to cells by a dynamic self-assembled superstructure, the cytoskeleton. Thus, the
central processes generating the cell mechanical behavior have to integrate chemical
quantities such as reaction rates of cytoskeletal constituents and mechanical prop-
erties such as forces generated by molecular motors. In this thesis I studied such
processes by developing and analyzing mathematical models specifically addressing
the interplay of self-assembly and mechanics. In particular together with experimen-
tal collaborators, we could show, that self-assembly and mechanical processes are
tightly intertwined in NM II minifilaments as well as whole stress fibers.
Chapter 3 started from the Becker-Döring equations to explore how the assembly

dynamics of a solution near equilibrium of many self-assembling structures relates to
the stochastic size dynamics of one single cluster in an equilibrated solution. Here I
focused on clusters with finite size, where the fully assembled cluster is stabilized by a
low dissociation rate of monomers, and a constant free monomer concentration which
leads to a linear system of dynamical equations. Using a linear perturbative approach
I calculated the eigenvalues of the Jacobian that governs the time-evolution of con-
centrations in this system. These eigenvalues can be interpreted as inverse relaxation
timescales. Comparison with numerical calculations showed reasonable agreement.
Furthermore I quantified – mostly numerically – the eigenvalues of the single clus-
ter size dynamics’ master-equation. Here I found a phenomenon of critical slowing
down at a certain on-rate, where the relaxation timescales reach a maximum at the
onset of assembly. Interestingly, this maximum was related very closely to the CAC,
which was defined as the monomer concentration, where the scaling of the relation of
free monomers to total monomers in the system changes dramatically. Experiments
showing stable assembly of clusters will be close to this concentration. In the model
system studied, the longest timescale of the entire system was an upper bond to the
maximum relaxation time of the single cluster dynamics, becoming very close for
very low free monomer concentrations. This could be used to give lower bounds on
association and dissociation rates of theoretical assembly models given experimental
data describing the dynamics. Further research could more thoroughly investigate
how these findings transfer to the case where not free monomer concentration is held
constant, but the total amount of monomers in the system.
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CHAPTER 8. CONCLUSION

Chapter 4 introduced a self-assembly model of NM II minifilaments that is based
on a consensus architecture of the minifilament. This model couples self-assembly
and force generation of NM II in the intuitive fashion, that myosins can only unbind
from the minifilament if it currently is not in an actin bound state of its cross-bridge
cycle. Similar to chapter 3 there is a critical on-rate where assembly slows down
dramatically which marks the onset of assembly. Analysis of the parameter space
showed that this concentration depends on force and is reduced by the coupling
of self-assembly and the cross-bridge cycle, illustrating that actin and force may
stabilize myosin II minifilaments. In addition, a mean-field model, that mapped the
complexity of the graph into rates of a monomer addition scheme, could explain
the qualitatively different behaviors of the system in the different parameter regimes
by the occurrence of saddle-node bifurcations. The model used here also allowed
for simulating FRAP experiments, which, consistent with the general behavior of
the system, showed a slower dynamics at higher forces. In turn, if no interaction
with actin was simulated the FRAP became faster, which was later backed up by
experiments, discussed in chapter 7, using the pharmacological inhibitor blebbistatin,
that specifically inhibits the cross-bridge cycle.

Chapter 5 investigated the mechanical response of a mixed motor ensemble con-
taining the fast and slow isoforms of NM IIA and B to an oscillatory strain. This
simulation, which was motivated by typical rheological experiments, showed that
the mechanical response of the mixed motor ensemble could be modeled as active
Maxwell element. Increasing the ratio of slow to fast isoforms led to a transition
of viscous to elastic behavior. As expected, the complex modulus scaled linearly
with system size. These findings are also captured by a mean-field theory that as-
sumes a linear force-velocity relation, with a finite free velocity at zero force and a
finite stall force at which the velocity becomes zero. The slope of the force veloc-
ity relation and the stall force were estimated from a self-consistent approximation
based on the PCM. While the ensemble responded approximately linear to small
oscillatory strain, large amplitude oscillations revealed the anisotropic property of
stretch strengthening and compression weakening which should be attributed to the
catch-bond behavior of myosin implemented in the simulation. Further investiga-
tions should be complemented by appropriate experiments that probe the response
of myosin motor ensembles to oscillatory strain.

Chapter 6 introduces a dynamical model for peripheral stress fiber shape. As in
previous models, cortical tension is assumed to be isotropic, as well as the tension
within the stress fiber which has to be constant throughout the stress fiber, due to
force balancing. Motivated by the rheology of mixed motor ensembles, as discussed
in chapter 5, but neglecting the short timescale behavior of the active Maxwell model
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proposed therein, the stress fiber is modeled as a viscous contractile material that
is renewed at both ends and turns over its elements by a flow of material towards
its center. As previous models, also this model predicts correlation of the arc radius
and the spanning distance of the stress fiber, this is however also dependent on the
effective friction coefficient of the stress fiber material, which showed a pronounced
myosin isoform-dependence in the analysis of chapter 5. Future models could aim
to extend the framework of dynamic contour models to transiently allow for less
restrictive shapes than circles by introducing additional viscous forces that lift the
requirement for a spatially constant line tension. This could help shed light on shape
responses of the contour to transient stimulation of contractility.
Chapter 7 discusses results of a collaboration, where biological experiments with

live-cells expressing either both or only one of the two NM II isoform A and B could
be studied using the models introduced in chapter 4 and 6. Both models explain the
phenomena observed in a manner that is consistent with the known motor properties
of the NM II isoforms A and B. Further research could study the stress fiber dynamics
of the generated cell lines by investigating the forces more quantitatively which would
help make more quantitative statements on the mechanical properties of these cells.
In conclusion, this thesis expands further on the perspective that self-assembling

structures performing mechanical work may show signatures of the self-assembly
dynamics in the mechanical process and vice versa also signatures of the mechanical
process could show in the self-assembly dynamics.
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A. Appendix

A.1. List of abbreviations

ATP adenosine triphosphate

ADP adenosine diphosphate

CAC critical aggregation concentration

ECM extra cellular matrix

ELC essential light chain

FRAP fluorescence recovery after photobleaching

GFP green fluorescent protein

KO knock-out

MLCK myosin light-chain kinase

NM II non-muscle myosin II

ODE ordinary differential equation

PCM parallel cluster model
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PDMS polydimethylsiloxane

PPS post powerstroke state

RLC regulatory light chain

ROCK Rho-associated kinase

SIM structured illumination microscopy

TEM tension elasticity model

WT wild type
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A.2. Supplementary figures to chapter 4

Figure A.1.: Steady states. (a) Mean-values and variances of the full model for
different forces and on-rates (k0

off = 10 s−1). Here the results are shown for catch
bonds only. (b) Phase portraits for selected parameters for pure catch bonds. In
this case force can be sufficient to assemble the minifilament even if the on-rates
are very small.
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Figure A.2.: The fraction of half-minifilaments with a size N ≥ 8 for different on-
rates. Solid lines denote the simulations with catch-slip bonds, while dashed lines
denote the ones with pure catch bonds (the orange and green dashed lines are
both at 1).

Figure A.3.: Alternative graph topology, which yields the results shown in Fig. A.4.
The top schematic illustrates the connectivity to be similar to the vertices of 2
prisms that have been axially rotated against each other by 180◦. Cutting the
bonds along the gray dotted line yields the unwrapped graph on the bottom.
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Figure A.4.: Same quantities as Fig. 5 (main text) for the graph shown in Fig. A.3
(k0

off = 20 s−1), giving similar results as the main model.
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A.3. Supplemental material to chapter 7

A.3.1. Focal adhesion quantification

Quantification of FAs was performed using the pixel classification functunality of the
image analysis suite ilastik [238]. First, ilastik was trained to mark the cell area. In
a separate classification project ilastik was trained to discern between FA and non-
FA. The segmentations were exported in the .npy file format for analysis in custom
scripts. To determine the number of FAs connected component analysis was applied
to the segmented FAs as implemented in openCV 3.4.1 [239].

A.3.2. FRAP analysis

To correct for drift, the feature detection and matching ORB-algorithm [240], as im-
plemented in openCV [239], was applied to a temporal gaussian filtered image series.
In slices of 20 frames, features were detected and matched. Matches were used to de-
termine a shift per frame. This shift per frame was used to align the original videos
such that the regions of interest do not move, which was implemented in custom
scripts. Two square regions of interest were defined in ImageJ: The bleach spot and
a reference spot with similar pre-bleach intensity. In these regions the intensity was
recorded as Ibleach, Iprebleach, Iref , Iref,prebleach the intensity of the bleached spot after
bleaching, the mean intensity before bleaching, the intensity of the reference spot
after bleaching and the mean intensity before bleaching respectively. The intensity
was normalized and corrected for unwanted photobleaching with

Inorm =
Ibleach(t)− Ibleach(0)

Iprebleach

Iref,prebleach

Iref(t)
(A.1)

The normalized intensities were fit to Ifit(t) = δ(1 − exp(−t/τ)). The fit values
were reported as recovery time and mobile fraction. Resulting distributions where
compared using the Peacock test [234, 235].

A.3.3. Balancing of Forces

Here the procedure of balancing the forces in a tug-of-war of myosin motors as shown
in Fig. 7.4(c) is given following [241]. Consider the two external springs with strain
z− and z+ and spring constant kf and the two ensembles working against each other
in a tug-of-war of i− and i+ actin bound myosin heads with neck linker stiffness kl
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and strains {ξ−j } and {ξ
+
j }. The force balance then reads

F = kfz+ =

i−∑
j=0

klξ− =

i+∑
j=0

klξ+ = k+z+. (A.2)

After an event that disrupts this force balance, e.g. one motor performing a power-
stoke, the transient force balance is compensated by movement of the minifilament
position ∆z and the change of the strains on the external springs ∆z− and ∆z+.
With now unbalanced strains {ξ−j }, {ξ

+
j }, z− and z+ the force balance reads

kf (z− + ∆z−)
!
=

i−∑
j=1

kl(ξ
−
j + ∆z −∆z−)

!
=

i+∑
j=1

kl

(
ξ+
j + ∆z −∆z−

) !
= kf (z+ + ∆z+).

(A.3)

As long as i+ 6= 0 or i− 6= 0 this can be solved for ∆z, ∆z− and ∆z+

∆z =
Σ− − Σ+ − i+∆z+ + i−∆z−

i+ + i−
(A.4)

∆z+ =
−k2

fz+(i+ + i−)− klkf i+i−z+ + klk−(i+Σ− + i−Σ+ + i+i−z−)

k2
f (i+ + i−) + 2klkf i+i−

(A.5)

∆z− =
−k2

fz−(i+ + i−)− klkf i+i−z− + klk+ + (i+Σ− + i−Σ+ + i+i−z+

k2
f (i+ + i−) + 2klkf i+i−

(A.6)

where we introduced the sum of strains on either side of the minifilament
∑i±

j=1 ξ
±
j =

Σ±. Overall neck linker strains and strains of the external springs have to be updated
by

z± → z± + ∆z± (A.7)

ξ±j → ξ±j ∓∆z −∆z±. (A.8)

This is valid as long as at least one motor is bound to the track. If this does not
hold anymore, all force is released and the system resets to ∆z± = ξ±i .
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A.3.4. FRAP simulation

Table A.1.: Parameters used in the FRAP simulation.

Parameter Symbol Value Comments

Transition rates [s−1] ka0
20 1.71 [71, 72]
ka0

20 0.35 [71, 72]
k01 0.2 [71, 72]
k10 0.4 a non-stereospecific actin

bound state is probed most
in the presence of blebbistatin
[236]

k12 4 · 106 [71, 74]
kBlebb

12 1.5 [236]
k21 0.7 [71, 74]

Association rate [s−1] kon 5 Fit such, that NM IIA
timescale matches the exper-
iment

Dimensionless association rate κ = kon/k
0
off 0.017 Below the critical aggregation

without actin dynamics [175]
Catch-path fraction ∆c 0.92 [71, 72]
Isoform fractions ∆a 0.9 When simulating FRAP of

NM IIA
∆b 0.3 When simulating FRAP of

NM IIB
Neck-linker stiffness [pN/nm] kl 0.7 [71, 72]
Powerstroke distance [nm] d 8 [68, 69, 74]
Binding energies [kBT ] Ga 3 [175]
Binding energies [kBT ] Gp 3 [175]
Binding energies [kBT ] Gs 1 [175]
External springs [pN/nm] kf 4 At high enough values, this

parameter does not impact
the quantitative results [70]
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure A.5.: Same simulation as Fig. 7.5 but kb20 = 0.15 s−1 with minimal effect on
NM IIA recovery but increasing the NM IIB recovery time to values comparable
to the experiment. (a,b,d,e) Simulated FRAP trajectories of NM IIA and B with
powerstroke rate k12 for (-Blebb) column and kBlebb

12 for (+Blebb) column. (c,f)
Scatter plot of mobile fraction and recovery time as fitted from the simulated data
for NM IIA and B, respectively. (g,h) Visualization of recovery times and mobile
fractions as boxplots.
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