Dissertation submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences

> Presented by: M.Sc. Sara Mahmoud Hegy Ahmed Born in: Cairo Oral-examination: 28.07.2020

Inter-organ control of gut sexual dimorphism by steroid hormone signaling in *Drosophila*

Referees: 1st examiner (Erstgutachter) Prof. Dr. Sylvia Erhardt 2nd examiner (Zweitgutachter)- Wissenschaftler Betreuer Prof. Dr. Aurelio Teleman

بِسْمِ ٱللهِ ٱلرَّحْمَانِ ٱلرَّحِيمِ

وَاعْبُدُ رَبَّكَ حَتَّىٰ يَأْتِيَكَ الْيَقِينُ مَنْ عَمِلَ صَالِحًا مِّن ذَكَرٍ أَوْ أُنتَىٰ وَهُوَ مُؤْمِنٌ فَلَنُحْبِيَنَّهُ حَيَاةً طَيِّبَةً وَلَنَجْزِيَنَّهُمْ أَجْرَهُم بِأَحْسَنِ مَا كَانُوا يَعْمَلُونَ رَبِّ أَوْزِ عْنِي أَنْ أَشْكُرَ نِعْمَتَكَ الَّتِي أَنْعَمْتَ عَلَيَّ وَ عَلَىٰ وَالِدَيَّ وَأَنْ أَعْمَلَ صَالِحًا تَرْضَاهُ وَأَدْخِلْنِي بِرَحْمَتِكَ فِي عِبَادِكَ الصَّالِحِينَ يا ربّ بالمصطفى بلّغ مقاصدنا..واغفر لنا ما مضى يا واسعَ الكرَم اللهم أحسن لوالدي في الدنيا والآخرة كما أحسنوا إلى

Summary

Suggestive evidence points that exogenous exposure to steroid hormones has detrimental consequences that are not well explored specifically in the gut, where nutrient uptake occurs. The human gastrointestinal (GI) tract expresses endogenous steroid hormone receptors in the crypts and the enterocytes but their functions are not well understood. Accumulating epidemiological data suggest that GI tumor progression in most cases maybe endocrine dependent. Given the complexity of the mammalian gut yet, the genetic amenability of cell-type specific gene manipulation in *Drosophila melanogaster*, I studied the effect of exogenously fed or endogenous steroid hormone signaling on the gut and its implications during homeostasis and disease.

In this PhD thesis, I discover the gut to be a sexually dimorphic organ that is regulated by steroid sex hormone: 20-hydroxyecdysone (20HE), which binds EcR•Usp receptor complex and activates downstream target gene transcription during aging and after mating, but not after stress (the receptors have non-overlapping functions). 20HE stimulates intestinal stem cell (ISC) division in a biphasic manner when fed for 16-20hrs, with males being insensitive to the 1st peak and both sexes competent to divide at the 2nd peak of ISC division. EcR functions in the ISCs cell autonomously and in enteroblasts (EBs) non-autonomously to regulate the ISC division. Females have higher levels of circulating 20HE than the males and I identified the ovaries as an endogenous ecdysone source to control mating-induced ecdysone-dependent ISC mitoses and post-matingdependent gut growth to promote optimal egg-laying. This reproductive advantage given by the highly active female gut comes at the expense of a faster aging epithelium and higher propensity to tumors. Interestingly, exogenous 20HE feeding to males overrides the restricted ability of male ISCs to divide and abolishes the sex differences in ISC division accompanied by transcriptional regulation of metabolic and cell-cycle related genes and subsequent gut growth.

All in all, this study identifies sexually dimorphic 20HE levels as a regulator of ISC behavior and intestinal growth at the expense of gut deterioration and aging.

Zusammenfassung

Hinweise deuten darauf hin, dass eine exogene Exposition mit Steroidhormonen nachteilige Folgen hat, die speziell im Darm, wo die Nährstoffaufnahme auftritt, nicht gut erforscht sind. Der menschliche Magen-Darm-Trakt (GI) exprimiert endogene Steroidhormonrezeptoren in den Krypten und den Enterozyten, aber ihre Funktionen sind nicht gut verstanden. Akkumulierende epidemiologische Daten legen nahe, dass das Fortschreiten des GI-Tumors in den meisten Fällen möglicherweise endokrinabhängig ist. Angesichts der Komplexität des Säugetierdarms und der genetischen Eignung zur zelltypspezifischen Genmanipulation bei Drosophila melanogaster untersuchte ich die Wirkung von exogen gefütterten oder endogenen Steroidhormonsignalen auf den Darm und ihre Auswirkungen während der Homöostase und Krankheit. In dieser Doktorarbeit entdecke ich, dass der Darm ein sexuell dimorphes Organ ist, das durch das Steroid-Sexualhormon reguliert wird: 20-Hydroxyecdyson (20HE), das den EcR-Usp-Rezeptorkomplex bindet aktiviert die nachgeschaltete Transkription von Zielgenen während des Alterns und nach der Paarung aber nicht nach Stress (die Rezeptoren haben nicht überlappende Funktionen). 20HE stimuliert die Teilung von Darmstammzellen (ISC) zweiphasig, wenn es 16 bis 20 Stunden lang gefüttert wird, wobei Männechen unempfindlich gegenüber dem 1. Peak sind und beide Geschlechter faehig sind, sich am 2. Peak der ISC-Teilung zu teilen. EcR funktioniert in der ISC-Zelle autonom und in Enteroblasten (EBs) nicht autonom, um deren ISC-Teilung zu regulieren. Weibchen haben einen höheren zirkulierenden 20HE-Spiegel als die Männchen. Ausserdem identifiziere ich die Eierstöcke als endogene Ecdysonquelle zur Kontrolle der durch Paarung induzierten Ecdyson-abhängigen ISC-Mitosen und des nach der Paarung abhängigen Darmwachstums, was eine optimale Eiablage zu fördert. Dieser Fortpflanzungsvorteil des hochaktiven weiblichen Darms geht zu Lasten eines schneller alternden Epithels und einer höheren Neigung zu Tumoren. Interessanterweise überschreibt die exogene 20HE-Fütterung von Männern die eingeschränkte Fähigkeit männlicher ISCs, sich zu teilen, und hebt die Geschlechtsunterschiede bei der ISC-Teilung auf, begleitet von der Transkriptionsregulation von metabolischen und zellzyklusbezogenen Genen und dem anschließenden Darmwachstum. Insgesamt identifiziert diese Studie sexuell dimorphe 20HE-Spiegel als Regulator des ISC-Verhaltens und des Darmwachstums auf Kosten der Darmverschlechterung und des Alterns.

Declaration

I, Sara Mahmoud Hegy Ahmed, hereby declare that the work in this thesis represents my original research results. The thesis has been written by myself using the references and resources indicated. Any work of others has been appropriately marked. The work has been conducted under the supervision of Prof. Dr. Aurelio Teleman. This thesis is being submitted for the degree of Doctor of Natural Sciences at Heidelberg University, Germany, and has not been presented to any other university as part of an examination or degree.

Place & Date

Sara Mahmoud Hegy Ahmed

Acknowledgements

To my supervisors Aurelio and Bruce, thank you so incredibly much for giving me this honor of being taught by you. It is with great pleasure and gratitude that I admit that my long search for mentors has not failed me. I have enjoyed a lot knocking on either of your doors every time during the last 5 years. Even during tough times, I still learned a lot! It is with a lot of thankfulness that I take every bit you taught me both personally and intellectually hoping that I can continue to pass it onto the many lives I am meant to touch. A special extra thank you to Aurelio for being THE person who taught how to do many things properly!

My TAC committee, Prof.Dr. Bernd Bukau for your incredible advice and support ever since I stepped feet in Heidelberg 8 years ago, Prof.Dr. Sylvia Erhardt for your encouraging support and feedback and for meeting me everytime with a smile, Prof.Dr. Ingrid Lohmann for your prompt agreement to evaluate my thesis.

Behind every good story, there is "behind the scenes" and it is no secret that mine was eventful and as I write these words today, I acknowledge being incredibly thankful to everyone who brought joy to my heart during my rough times and especially my anchors, my parents Mahmoud and Howaida. To my siblings, the shining stars, Ahmed, Marwa (my better half), Yousr and Jana, may you shine brighter, everyday! To my Uncle Mohamed, one of the kindest hearts I ever met, thank you for every bit..thank you for being you! To my most incredible best friends Jonathan and Sandra Bohlen, I thank my stars everyday that I have you in my life! To my Nanna, aunties Shimaa and Eman, uncle Ashraf, thank you for always having faith in me when I was all weary!

It is with a lot of mounting strength that I gratefully and thankfully made it through! To every who passed by or is in my life, who lit my candle with support, love and hope, Thank you!

To Marwa Mahmoud Hegy Ahmed, a lot of this would not have happened without you.. Thank you for your dedication to help and support me whenever I was going crazy.. You're awesome..

To Mohamed Noseir, you are the best friend any person can ask for.. Thank you for being mine..

To Sanja, the kind heart I met that changed my life forever, you are my savior and I cannot thank you enough for your kindness..

To Ehab Allam, Thank you for making my heart laugh, every time! Thank you for supporting me unconditionally during my roughest times..

To Federica, Omneya and Nadja, some of my deepest most unique friendships, I am so blessed you light my candle so bright..

To Ehab El Agamy, thank you for bringing absolute pure joy to my heart when I did not think anyone could..

To Samaa, Thank you for the many laughs I had and for the good company you've given me as I wrote my thesis..

To Islam Mohamed, Thank you for your unparalleled support and kindheartedness, as I am closing the Heidelberg chapter, knowing you has made me realize that the best is yet to come..

To Omar Hany, Thank you for being a great friend and for helping me create such a fancy model for my paper.

To Mohamed Assem, Thank you for your prompt help in drawing the 20HE structure on such a short notice.

To Saioa, Thank you for always being one of the first people to help me when I needed any help and for nice breaks I had with you when everything was so hectic..

To the rest of the Teleman Lab, who endured many years of boastful and passionate lab meetings with about sex hormones, ecdysone feeding and stem cells. Thank you for the brilliantly intellectual atmosphere and positive advice.

List of abbreviations:

20Eoic	20-hydroxyecdysonoic acid
20HE	20-hydroxyecdysone
24-methylE	24-methylecdysone
Apc	Adenomatous polyposis coli
AR	Androgen receptor
Atoh1	atonal homolog 1
BMP	bone morphogenetic protein
BR-C	Broad Complex
C. elegans	Caenorhabditis elegans
C2	cysteine
CBC stem	crypt base columnar stem cells
cells	5 I
CDK	cyclin-dependent kinase
CK1a	casein kinase 1α
CK1a	casein kinase 1α
CNVs	copy number variants
DBD	DNA-binding domain
dFOXO	Drosophila Foxo
Dhh	desert hedgehog
dhMaA	24(28)-dehydromakisterone
Diap1	Death-associated inhibitor of apoptosis 1
Dilp3	Drosophila insulin-like peptide3
DLL	Delta-like ligand
Dmrt1	Doublesex and Mab3 Related
Dillini	Transcription factor 1
Dome	Domeless
dpERK	diphospho-ERK
Dpp	Drosophila homolog Decapentaplegic
Dpp	Decapentaplegic
dS6k or S6K	ribosomal S6 kinase
DSS	Dextran sulfate sodium
dsx	doublesex
dTOR	Drosophila Tor
DVL	dishevelled
E1	estrone
E2	17β-estradiol
E3	estriol
E4	estetrol
EBs	enteroblasts
EcR	ecdysone receptor gene
ECs	enterocytes
EEs/ees	Enteroendocrine cells

EFG	epidermal growth factor
EGFR	epidermal growth factor receptor
Eip75B	ecdysone-inducible puff 75B
eQTLs	expression quantitative trait loci
ER	Estrogen receptor
ER	estrogen receptor
EREs	estrogen response elements
ERα	Estrogen receptor alpha
ERβ	Estrogen receptor beta
ESD	environmental sex determination
esg	escargot
FGF9	fibroblast growth factor 9
FGF9	fibroblast growth factor 9
FKHR	Forkhead-related transcription
	factor (
FLP	Flippase
FOXO	forkhead transcription factor
fru	fruitless
FXR	farnesoid X receptors
Fz	Frizzled
Fz2	Frizzled 2
FZD	Frizzled
FZD	frizzled
Gbb	Glass bottom boat
GCK	germinal center protein kinase
GH	Growth hormone
GI	gastrointestinal tract
GPER1	G protein-coupled estrogen receptor 1
GR	glucocorticoid receptor
GSD	genetic sex determination
GSK3β	glycogen synthase kinase 3β
GWAS	genome-wide association studies
H2	histidine
H_2O_2	hydrogen peroxide
HDACs	histone deacetylases
Нер	Hemipterous
hpo	hippo
Hr3	Drosophila Hormone Receptor 3
Hr96	Drosophila Hormone Receptor 96
IGF1	insulin-like growth factor 1
IGF2	insulin-like growth factor 2
IGFs	Insulin-like growth factors
IL-22	interleukin-22
ILC	innate lymphoid cells
IPCs	insulin-producing cells
IRS	insulin receptor substrate
ISC	intestinal stem cell
JAG	Jagged

JAK	Janus kinase
Jak-Stat	Janus Kinas-Signal Transducer and activato
	of Transcription pathway
JNK	c-Jun N-terminal kinase
Krn	keren
LATS1/2	large tumour suppressor 1/2
LBD	ligand-binding domain
LRCs	label-retaining cells
Lrp5/6	low-density lipoprotein receptor-related
-	protein 5/6
LXR	liver X receptors
LXR	liver X receptor
М	Microfold
MaA	20-hydroxylated derivative makisteroneA
Mad	Mothers-against-Dpp
Mad	Mothers against dpp
MAPK	mitogen-activated protein kinase
MARCM	mosaic analysis with a repressible cell
	marker
Mats	Mob as a tumour suppressor
mCD8-GFP	Gal4-driven membrane-targeted green
	fluorescent protein
Med	Co-Smad Medea
MOB1A/B	Mps one binder kinase activator-like 1A
	and 1B
msl-2	male specific lethal 2
Msn	Mishapen
MST1/2	mammalian sterile 20-like kinase 1/2
NCs	nuclear receptors
NICD	Notch intracellular domain
NICD	Notch intracellular domain
nprl	non-pupariating
<i>P.e.</i>	Pseudomonas entomophila
PDGF	platelet-derived growth factor
PDGF	platelet-derived growth factor
PDK-1	Phosphatidylinositol dependent kinase
	1
PI3K	phosphatidyl- inositol 3-kinase
PKC	protein kinase C
PLC	phospholipase C
PM	peritrophic membrane or matrix
PNR	photoreceptor-specific nuclear receptor
PPAR	peroxisome proliferator activated
1 1 / 111	receptors
PPAR	peroxisome proliferator activated
	receptors
PTEN	lipid phosphatase
1 11/1 1	npro prospiratuoe

ptgds	prostaglandin D2 synthase
RAR	retinoic acid receptor
rbp	reduced bristles on palpus
Rho	Rhomboid
ROR	retinoid-related orphan receptor
RXR	retinoid X receptor
SAV1	Salvador
Sax	Saxophone
Sd	Scalloped
shaggy or	Glycogen synthase kinase-3
GSK-3	
SNPs	single- nucleotide polymorphisms
Spi	Spitz
sQTLs	splicing quantitative trait loci
Sry	sex determining region Y
stat	signal transducer of activation
ТА	Transit amplifying cells
TAZ	WW domain-containing transcription
	regulator 1
TCF/LEF	T-cell factor/lymphoid enhancer factor
TGF-β	transforming growth factor-β
Tkv	type-I receptors Thickvein
TR	thyroid hormone receptor
tra	transformer
unf/Hr51	Hormone Receptor 51 or unfulfilled
Usp	Ultraspiracle
VM	visceral muscle
Vn	Vein
wg	Drosophila WNT ligand wingless
Wts	Warts
Yki	Yorkie
β-TrCP E3	β -transducin repeat-containing protein, an
	E3 ubiquitin ligase

Introduction	
1.1. Drosophila and mammalian midgut morphology	15
1.2. ISC behavior during homeostasis or regenerative damage	17
1.3. ISC niche in mammals vs <i>Drosophila</i>	
1.4 Signaling Pathways controlling intestinal stem cell division during home	
and stress	
a. Wnt/wingless signaling:	
b. EGF signaling:	
c. JAK/Stat pathway:	
d. Insulin signaling	
e. JNK pathway:	
f. Hippo/Wts pathway:	
g. Notch pathway:	
h. Dpp/BMP signaling:	
1.5. Epithelial aging and loss of integrity	
1.6. Differences in male and female <i>Drosophila</i> ISC division and its conseque	
1.7. Nuclear Receptors	
1.7. Nuclear Receptors	
1.9. Eip75B, Hr3 and Hr51 as hormone nuclear receptors in <i>Drosophila</i> :	
1.10. Broad as an ecdysone target:	
1.11. Sex determination in mammals and <i>Drosophila</i> :	
1.12. Effect of sex hormones on sex and non-sex organs:	
1.13. Impact of exogenous sex hormones on health	
1.14. Fly genetics.	
Results	
2.1. 20HE induces ISC proliferation in male and female guts.	
2.2. 20HE acts independent of the sex-determination pathway 2.3. EBs provide pro-mitotic factors that non-cell autonomously regulate 20	
induced mitoses	
2.4. 20HE induces ISC mitoses in 2 distinct waves, ISC autonomous then ISC i	
autonomous wave.	
2.5.1-3 20HE induces ISC mitoses cell autonomously through EGF signaling a	
unpaired cytokines in the first peak then unpaired cytokines are required in	
ECs non-cell autonomously to induce ISCs mitoses in the second peak	
2.6. Sexually dimorphic 20HE levels lead to increased ISC divisions and mide	
growth in males or virgins	-
2.7 1-6 Prolonged 20HE feeding in males causes a change in the ISC metabol	
signature	
2.8.1-2 Intestinal EcR signaling regulates post-mating ISC mitoses in the fem	ale
midguts	97
2.9. Ovary-derived ecdysone signaling regulates post-mating gut growth in t	he
female midguts	
2.10 Masculinized female progenitors are able to resize their midguts after	-
	104
2.11. Mating leads to an additive advantage on female ISC proliferation	
2.12. <i>rho</i> and <i>upd2</i> induction are a physiological consequence of mating	
2.13. 20HE feeding is not supra physiological and induces target genes simil	
mated females.	
2.14. Mating induces symmetric ISC divisions and ISC expansion.	110

2.15. 20HE is involved in the regulation of enteroblast differentiation into
enterocytes as well as maintaining proper EC number113
2.16.1-2 Intestinal EcR is required for optimal reproductive capacity
2.17 Functional bifurcation of the canonical heterodimeric EcR•Usp during
regenerative ISC mitoses
2.18 Usp may function with Hr38 to regulate ISC mitoses
Fig 2.19 <i>Eip75B</i> and <i>Broad</i> are downstream effectors of midgut ecdysone signaling.
Fig 2.20 Eip75B interacts with Hr3 to modulate ISC divisions.
Fig 2.21 NO regulates Eip75B to Hr3 to modulate ISC divisions
Fig 2.22 Endogenous JH is required for infection-induced ISC mitoses while
exogenous JH feeding has suppressive effects on ISC mitoses
Fig 2.23 Intestinal EcR signaling drives dysplasia and epithelial aging146
Fig 2.24 Intestinal EcR signaling possibly shortens the female lifespan
Fig 2.25 Elevated ecdysone levels pre-disposes flies to intestinal tumorigenesis.152
Discussion
3.1 Parallels between the mechanisms of action of ecdysone and estrogen:
3.2. Physiological functions of estrogen and ecdysone signaling in the intestine .157
3.3. Pathophysiological implications of sex steroids in GI tumors
3.4. Exogenous exposure to steroids has detrimental consequences:
3.5. JH signaling is dually required for stimulation or inhibition of ISC proliferation:
3.6. Mating causes symmetric ISC mitoses:
3.7. Functional bifurcation of EcR and Usp
3.8. Role of Eip75B in ISC proliferation
3.9.The influence of hormones on sex traits: parallels from fly to humans
a) Sexually dimorphic ecdysone levels regulate ISC mitoses in males versus females
b) Factors influencing sex genotypic traits and how could sex hormones possibly
regulate them:
Steroid-mediated regulation of metabolic function
3.10. Fecundity versus lifespan
Materials and Methods:
References:
Tables

Introduction

1.1. Drosophila and mammalian midgut morphology

The *Drosophila* gut is analogous to the mammalian gut. They are both tubes with distinctive compartments where different steps of food utilization take place. They both undergo continuous homeostatic turnover across the organism's lifetime by a stem cell compartment that reside basally. Both have a microbiome which are commensal bacterial species populating the gut which are essential for the health of the organism¹.

The Drosophila and mammalian gastrointestinal (GI) tracts share a high degree of similarity in their structures, their overall physiology, and the signaling pathways directing tissue turnover¹. Both *Drosophila* and mammalian digestive systems comprise an upper region where food uptake occurs, followed by a middle region where food digestion takes place then, and a last region where nutrient absorption occurs. In mammals, the GI tract evolved into complex structures composed of histologically distinct regions. But in Drosophila, regionalization is achieved through physical separation by major constrictions referred to as anatomical boundaries. The upper region in the mammalian GI tract consists of the mammalian mouth, pharynx, and esophagus while in *Drosophila* it comprises the esophagus, the crop and the cardia. The middle region consists of a mammalian stomach and duodenum, and it is analogous to the Drosophila middle acidic copper cell and iron region². The final region of the digestive tract consists of the mammalian small intestine and colon that are the functional equivalents of the Drosophila midgut and hindgut respectively. The anatomical boundaries in the midgut alone divide it into 6 histologically different regions with distinct gene expression patterns: R0-R5. R4-R5 is the region where most nutrient absorption takes place ^{1,3}. At the cellular level the two GI tracts are organized similarly and the relative position of the ISCs within the epithelium is also highly alike, even though the mammalian intestine has a more complex ISC lineage. The mammalian intestine consists of layered crypt-villi structures whereby the gastrointestinal stem cells reside at the bottommost positions of the stomach, small intestine, and colon crypts⁴.

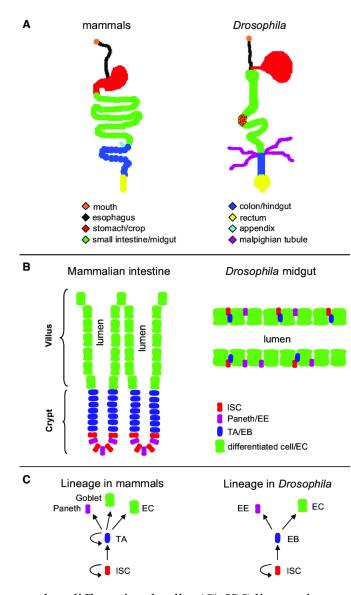


Figure 1.1: Comparison of the physiological resemblance between the mammalian and Drosophila Digestive Tracts. (A) Anatomy of the gut. The upper region of the gut is comprised of mouth and esophagus in mammals and esophagus, crop and cardia in Drosophila. The middle region consists of the stomach in mammals and copper cell region in Drosophila. The final region consists of the small intestine and the colon in mammals and the midgut and hindgut in Drosophila. Excrement elimination takes place via the rectum. Malpighian tubules are the functional analogs of the mammalian kidney and they branch at the midhindgut junction (shown in purple). **(B)** Cellular composition of the gut. The mammalian gut is organized in crypts and villi. The crypt base columnar (CBC) stem cells reside at the bottom of the crypt together with Paneth cells. Drosophila gut is organized in a simple epithelial monolayer where ISCs basally reside, situated between

other differentiated cells. (C) ISC lineage in mammals and *Drosophila*. Actively cycling stem cells asymmetrically divide to give rise to transit amplifying (TA) cells that divide and terminally differentiate into all secretory and absorptive epithelial lineages of the villus in mammals. In *Drosophila*, ISCs asymmetrically divide to self-renew and give rise to an enteroblast (EB) daughter cell. The EB differentiates into either an enterocyte (EC) or enteroendocrince (ee) cell. Adopted from Pitsouli et al,2009.

Similarly the adult *Drosophila* ISCs reside basally within the simple epithelial monolayer of the gut⁵. The mammalian ISCs divide to give rise to transient amplifying cells (TAs) that expand and differentiate into epithelial cells as they migrate upwards from the crypt. Mammalian epithelial cells are either absorptive enterocytes, mucus-secreting goblet cells, secretory enteroendocrine cells or paneth cells that secrete antimicrobial peptides and essential factors for stem cell maintenance. Additionally, the mammalian intestine

has two more rare cell populations: secretory mechanosensing Tuft cells that sense the intestinal luminal contents and M (microfold) cells that are located above Peyer's patches of lymphatic tissue to communicate with the gut's immune system and monitor intestinal microflora (reviewed in⁶). The nutrient-absorbing enterocytes constitute most of the villi lining. Those enterocytes have microvilli projections that form the striated or brush border, providing a greater surface area for nutrient absorption. The mammalian gastrointestinal tract is profusely innervated along its entire length and is surrounded by longitudinal and circular muscles that initiate peristaltic contractions. When Drosophila ISCs divide, they self-renew and give rise to daughter cells that turn into transient but committed progenitor cells, called enteroblasts. Drosophila midgut enteroblasts directly differentiate into large absorptive polyploid enterocytes (ECs) or diploid enteroendocrine cells (EEs), with secretory properties. The structure of the *Drosophila* gut is organized in a simple monolayer, yet it remains quite complex because it is extensively regionalized into six regions with their major constrictions referred to as anatomical boundaries. Each region has its specific histological and cellular features (villi length, lumen width), nutrient content, physical properties (e.g., luminal pH), and gene expression profiles^{2,3}. The *Drosophila* intestine is ensheathed along its length by circular and longitudinal layers of mesodermally derived visceral muscle (VM). Within the epithelium, the ISCs are located just above the extracellular matrix-rich basement membrane, which separates the epithelium from the underlying visceral muscle cells. Inside the intestinal lumen, a glycoprotein-based chitinous membrane, called the peritrophic membrane or matrix (PM), lines the epithelium, isolating it from the ingested food and serves as a structural barrier against the gut bacteria. An extensively branched network of intestinal trachea is present in close proximity to the VM and reaches the epithelium to deliver oxygen to the cells. Neuronal innervations are present around parts of the anterior midgut: (esophagus and cardia), the midgut-hindgut boundary and the rectum, whereas most of the midgut has no neuronal innervations (reviewed in ⁷).

1.2. ISC behavior during homeostasis or regenerative damage

The intestinal epithelial lining of the digestive system represents one of the most intensively self-replenishing organs whereby self-renewal occurs through the intestinal stem cells (ISCs) to replenish dead or lost cells. Normally, the entire epithelium gets replaced every 5-7 days in both *Drosophila*⁸ and mammals⁶. In both systems, the ISCs integrate extracellular cues, provided by neighboring niche cells through a multitude of local, paracrine, and systemic signals and signaling pathways. Collectively, these decisions direct the ISC behavior to meet the homeostatic function or regenerative demands upon insult of the organ.

Both mammalian and *Drosophila* guts contain sub-populations of stem cells that display distinct behavioral characteristics. In the mammalian small intestine, there are two different ISC populations: a predominant population (crypt base columnar cells, or CBCs) which are the only cell type with long-term self-renewing ability and a slow dividing, Bmi1+ 'reserve stem cell' population, also called position 4/+4 cells or label-retaining cells (LRCs) which are located four cell diameters above the base of the crypt and are directly adjacent to the CBC/Paneth region⁹. Also in the *Drosophila* midgut, ISCs of the different morphological regions divide at different rates² however there are no known subpopulations of ISCs with varying cycling rhythmicity defined within a region.

Stem cells cycle between two modes of cell division: symmetric whereby two identical daughter cells are produced, both of which are stem cells, and asymmetric division which results in only one stem cell and a committed progenitor cell. Asymmetric division is associated with unequal segregation of proteins or RNA within the daughters, resulting in different genetic programs to direct the fate of the newly formed progenitor. In the mammalian intestine, symmetric cell divisions occur during continuous homeostatic renewal of the gut epithelium, however during inflammation asymmetric stem cell divisions are enforced ⁹. Similarly, in the *Drosophila* midgut, expansion of stem cell populations during early feeding-induced organ growth¹⁰ or during clonal competition^{11,12} occurs mainly via symmetric ISC divisions. Upon acute regenerative stress response, asymmetric ISC division occurs¹³. Hence, strikingly, both digestive systems follow a pattern of neutral drift dynamics during homeostasis in which stem cell-derived clones expand and contract at random until they either take over the crypt or they are lost. Interestingly, under extreme instances of extensive tissue damage, mammalian progenitor or early enterocyte populations can de-differentiate and revert to stem-like cells to

replenish the crypt⁶. In *Drosophila*, physical or functional loss of ISCs during starvation or aging likewise induces amitotis: a process through which polyploid enterocytes dedifferentiate leading to a depolyploidization to give rise to functional ISCs¹⁴.

1.3. ISC niche in mammals vs Drosophila

The ISC niche is a complex cellular structure of several cell types that supports and regulates the ISC functions. The mammalian and Drosophila niche share some similarity in their organization and in the signaling ligands that the niche provides to ISCs. The mammalian ISC niche consists of the neighboring epithelial Paneth cells and subepithelial mesenchymal myofibroblasts, fibroblasts, telocytes, neuronal and smooth muscle cells surrounding the crypt base basal lamina¹⁵. The physical proximity of the niche cells with ISCs enables the supply of essential factors for ISC division and maintenance⁶. The mesenchymal part of the niche provides the ISCs with various Wnt ligands and R-spondins (Wnt agonists) bone morphogenetic protein (BMP) inhibitors to repress BMP-mediated differentiation, and epidermal growth factor (EGF) to maintain the ISCs and trigger their division. The intestinal integrity is disrupted and ISCs are lost when the functions of the neighboring epithelial Paneth cells or mesenchymal component are compromised respectively though Paneth cells seem to have a more redundant role invivo¹⁶⁻¹⁸. Similarly, the *Drosophila* ISC niche consists of mesodermally-derived visceral muscle, the neighboring enteroblasts and enterocytes. VM expresses the EGFR ligand: vein¹⁹, a JAK-STAT ligand: upd1²⁰, *Drosophila* insulin-like peptide3 (Dilp3)¹⁰, and Drosophila WNT ligand wingless (wg)²¹, which contribute to the ISC proliferation, longterm ISC maintenance or both. Additionally, muscle-derived bone morphogenetic proteins (BMPs) Drosophila homolog Decapentaplegic (Dpp) limits over-expansion of ISCs through regulating EGF and Jak-Stat signaling^{22,23}. Most studies focused on the requirement of EBs or ECs as niche components during regenerative ISC responses²⁴ Fewer homeostatic epithelial components of the niche have been identified, except for EB-derived wg and EGF signaling which contribute to the homeostatic ISC renewal²⁵ and division²⁶ respectively and the requirement of Notch or restrictive Hippo signaling in EBs to keep the ISCs in check, avoiding accumulation of hyper-dividing ISCs^{27,28}.

1.4 Signaling Pathways controlling intestinal stem cell division during homeostasis and stress.

Both the *Drosophila* and mammalian adult intestine displays a remarkable regenerative response to many stressors or damaging agents, which disrupt epithelial integrity. In *Drosophila*, subjecting the flies to stress-inducing agents such as Dextran sulfate sodium (DSS), bleomycin²⁹, ROS producing agents such as paraquat and hydrogen peroxide $(H_2O_2)^{30}$. Examples of bacterial infections that stimulate host immune responses include infection with the Gram-negative lethal bacteria *Pseudomonas entomophila* (*P.e.*)³¹, and non-pathogenic *Erwinia carotovora* carotovora 15^{32} .

Below is a summary of the most important pathways governing the ISC division during intestinal homeostasis and damage.

a. Wnt/wingless signaling:

Wnt signaling promotes ISC division and maintenance in both the *Drosophila* and mammals GI tracts. Wnt ligands are produced in mammals by Paneth cells³³ and mesenchymal cells³⁴ which bind to their receptors Frizzled (FZD) and low-density lipoprotein receptor-related protein 5/6 (Lrp5/6) at the surface of on ISCs. In *Drosophila*, muscle²¹ and enteroblasts²⁵ secrete wingless which binds Frizzled (Fz) and Frizzled 2 (Fz2) in ISCs. Wnt/wg activation leads to the stabilization and nuclear entry of the transcriptional co-activator β -catenin (mammals) or Armadillo (*Drosophila*) to drive target genes expression involved in ISC division or maintenance^{21,35}. *Adenomatous polyposis coli (Apc)* is a part of a destruction complex that marks β -catenin (mammals) or Armadillo (*Drosophila*) for proteosomal degradation. Remarkably, *Apc* mutation is considered a cancer driver mutation, which leads to the activation of wnt/wg signaling, thereby, promoting the formation of small adenomas in both mammals³⁶ and *Drosophila*³⁷. Subsequently, additional mutations in KRAS, BRAF, p53, MLH1, or TGF- β signaling promote the progression to colorectal carcinomas^{38,39}.

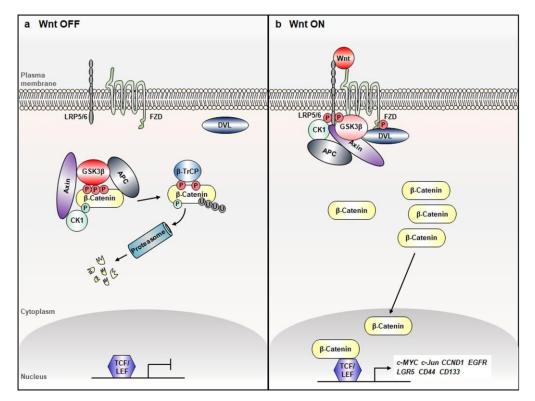


Figure 1.2: An illustration of the canonical Wnt signaling in mammals. (a) In the absence of Wnt ligands, APC (adenomatous polyposis coli) and Axin are recruited into the " β -catenin destruction complex". The phosphorylations by CK1 α (casein kinase 1 α) and GSK3 β (glycogen synthase kinase 3 β) recruit β -TrCP E3 linker (β -transducin repeat-containing protein, an E3 ubiquitin ligase), which signal β -catenin for its ubiquitination and degradation via the proteasome pathway. (b) The presence of Wnt ligands causes the association of Axin with phosphorylated LRP5/6 (lipoprotein receptor-related protein 5/6) and recruitment of phosphorylated DVL (dishevelled) to FZD (frizzled) lead to the dissociation of the destruction complex. This causes the accumulation and stabilization of β -Catenin, leading to its translocation into the nucleus, forms the complex with TCF/LEF (T-cell factor/lymphoid enhancer factor), and subsequently activates the target genes. CCND1, cyclin D1; EGFR, epidermal growth factor receptor; LGR5, Leucine-rich repeat-containing G protein coupled receptor 5, CD44 cell-surface glycoprotein involved in cell adhesion and CD133 transmembrane glycoprotein that is enriched in the stem cells. P, phosphorylation; U, ubiquitination. Adopted from: Jeong Jeong et al,2018.

b. EGF signaling:

EGF signaling is yet another highly conserved pathway that is required for intestinal stem

cell proliferation and maintenance in both mammals⁴⁰ and Drosophila⁴¹. EGF extracellular ligands stimulate cell growth, proliferation, and differentiation by binding to its cognate receptor the epidermal growth factor receptor (EGFR). Upon activation of EGFR, it dimerizes and its intrinsic intracellular protein-tyrosine kinase activity is activated leading to downstream signaling effectors including mitogen-activated protein kinase (MAPK), phosphatidyl- inositol 3-kinase (PI3K)/Akt, c-Jun N-terminal kinases (JNK), Jak/STAT and phospholipase C (PLC) pathways⁴². In mammals, similar to Wnt signaling, EGF ligands are produced in the ISC niche by the neighboring Paneth cells³³ and activate signaling in ISCs and transient amplifying cells⁴³. In *Drosophila*, there are three EGF ligands, vein (vn), spitz (spi), and Keren (Krn) that are produced from visceral muscle, ISC, enteroblasts or enterocytes. Rhomboid (Rho) is an intramembrane protease that cleaves and activates EGF ligands, which act in a paracrine or autocrine manner on ISCs to stimulate ISC proliferation through the RAS/RAF/MAPK pathway^{19,41}. Activation of EGFR signaling results in intestinal hyperplasia^{19,44} and it is cellautonomously required for homeostatic and regenerative ISC mitoses^{44,45}. Ras-null mutant clones have differentiated ECs suggesting that EGFR signaling is not required for EC differentiation²⁶. However, EGFR is required for EB to EC growth and endoreplication during stress- induced midgut regeneration²⁶.

c. JAK/Stat pathway:

The Janus kinase (JAK), signal transducer of activation (stat) pathway is another evolutionarily conserved signaling cascade from *Drosophila* to vertebrates that transduces cytokine signals and functions in ISC proliferation and maintenance. Mammals have a wide variety of extracellular ligands such as interferons and interleukins, which bind to the transmembrane receptors, causing the activation of the receptor-associated JAKs. Upon conformational activation and active phosphorylation, JA phosphorylates and activates STATs. Activated STATs translocate to the nucleus where they bind promoters of their target genes, activating their transcription⁴⁶. In mammals there are four JAKs that activate seven downstream stats whereas in *Drosophila* only one transmembrane receptor called Domeless (dome) and one receptor-associated Janus Kinase Hopscotch (Hop) activate the downstream STAT3-like

transcription factor STAT92E^{47,48}. Activation of the JAK/stat pathway cell autonomously and non-cell autonomously stimulates ISC mitoses. Indeed, EGFR and Jak/Stat pathways function synergistically to induce ISC proliferation^{8,19,41}. Notably, Jak/Stat signaling is also required for ISC self-renewal and EB to EC differentiation. High Jak/Stat signaling and low Notch preferentially directs the fate of differentiating cells towards enteroendocrine (ee) cells⁴⁸. STAT92E is normally expressed in both ISCs and EBs^{48,49}. After stress-induced damage, dying enterocytes ⁴¹ and the surrounding muscle ⁴⁵ presumably inactivate wingless signaling which in turn activate the expression of Upds⁵⁰. Secreted Upd ligands non-cell autonomously act to drive ISC proliferation. Jak/Stat activation in ISCs is essential for the *P.e.*-induced ISC mitoses⁸. Similarly after intestinal injury in mammals, innate lymphoid cells (ILCs) produce interleukin-22 (IL-22) that activates Jak/Stat signaling in ISCs promoting their expansion ⁵¹. Additionally, pervasive inflammation also activates JAK/STAT-1 signaling in reserve-ISCs to functionally contribute to epithelial restitution⁵².

d. Insulin signaling

Insulin-like growth factors (IGFs) in *Drosophila* closely resemble insulin/IGF signaling and function in mammals functions⁵³. Both pathways synchronize the nutritional homeostasis with systemic growth control. In mammals, three insulin ligands exist: insulin, insulin-like growth factor 1 (IGF1),and insulin-like growth factor 2 (IGF2), that bind and activate five distinct receptor isoforms: two insulin receptor isoforms, IRα and IRβ; the insulin-like growth factor receptor, IGF1R; and two hybrid dimer receptors⁵³. Upon ligand binding to the receptor, tyrosine phosphorylation activates cellular substrates, include insulin receptor substrate (IRS)1, IRS2, IRS3 or IRS4, or other scaffold proteins—SHC, CBL, APS and SH2B, GAB1, GAB2, DOCK1 and DOCK2,and CEACAM1. These substrates activate downstream signaling cascades such as PI3K and AKT⁵³. Similarly, the *Drosophila* genome encodes eight insulin-like peptides (Dilps). At least three of these (Dilp2, Dilp3 and Dilp5) are secreted from the insulin-producing cells (IPCs) in the brain, which are homologous to pancreatic beta cells in mammals⁵⁴. Dilps regulate organ growth, triglyceride storage and glucose/trehalose levels in circulation⁵³. Dilps interact with a single orthologous insulin-like receptor tyrosine kinase. Chico is the *Drosophila* homolog of insulin receptor substrate that gets phosphorylated to activate phosphatidylinositol 3-kinase (PI3K) and AKT (Akt1). Among the downstream targets of AKT is the Forkhead box transcription factor *Drosophila* Foxo (dFOXO), which is negatively regulated by insulin and regulates many cell cycle, apoptosis, DNA repair, metabolic homeostasis, redox balance genes. FOXO phosphorylation promotes its accumulation in the cytosol and nuclear exclusion to regulate its target genes⁵³. AKT also inhibits the tumor suppressor proteins TSC1 and TSC2, which inhibit a small GTPase called Rheb, an activator of *Drosophila* Tor (dTOR). dTOR also regulates the nutritional status through direct amino acid sensing independent of Dilp/InR. The mechanism how AKT regulates FOXO or mTOR is conserved from flies to humans^{55,56}.

Although not much is known about insulin signaling in the mammalian intestine, it is required for both homeostatic and regenerative aspects of the *Drosophila* midgut. Feeding behavior regulates adaptive gut growth, which requires visceral muscle secretion of Dilp3 as well as systemic Dilps to activate insulin receptor in ISCs leading to homeostatic ISC division¹⁰. Moreover, locally-secreted insulin from the niche is required to regulate intestinal cell density and organ growth¹⁰. Interestingly, scute mutant flies which are devoid of enteroendocrine cells have impaired Dilp3 expression from the visceral muscle and hence, the feeding-stimulated midgut growth is diminished and flies have a shorter lifespan⁵⁷.

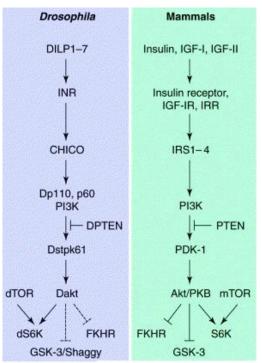


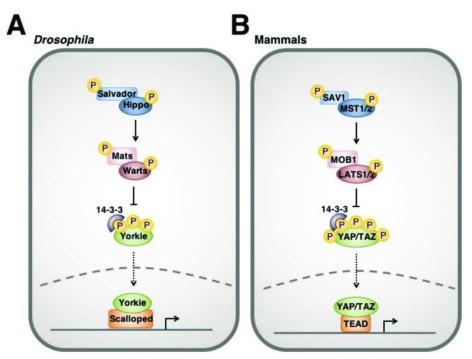
Figure 1.3.: Insulin signaling pathway in Drosophila (left) or mammals (right). Insulinlike peptides (dilp1-7 or Insulin, Insulin-like growth factors I,II) bind Insulin receptors (INR or IGF-IR, IRR) leading to its phosphorylation. Insulin Receptor Substrates (chico or IRS 1-4). Downstream of Insulin receptor activation, PI3K, Phosphatidylinositol-dependent kinase-1 (Dstpk61 or PDK-1) and serine/threoninespecific protein kinase B Akt (Drosophila akt or Akt/Protein Kinase B) homologs are activated. PI3K is negatively regulated at this step by homologs of the lipid phosphatase PTEN (Drosophila PTEN or PTEN). Akt/PKB inhibits the kinase Glycogen synthase kinase-3 (shaggy or

TRENDS in Endocrinology & Metabolism

GSK-3), and Forkhead-related transcription factor (FKHR) in mammals though their homologs have been identifies in *Drosophila* but their relationship to the insulin signaling has not yet been demonstrated (broken line). In both species though, Target of rapamycin (dTOR, Drosophila TOR; mTOR, mammalian TOR) are upstream activators of p70 ribosomal S6 kinase (dS6k or S6K), most probably in response to nutrients, and act together with PI3K to upregulate translation and growth. Not included: Akt inactivation activates the downstream transcription factor: forkhead transcription factor (dFOXO or FOXO), which regulates the expression of target genes, which contribute to longevity. Adopted from: Garofalo,2002.

Collectively, these findings postulate a comprehensible model how different cell types communicate: enteroendocrine cells and visceral muscle to influence ISC mitoses and drive adaptive midgut growth through insulin signaling. Upon feeding with detergent or the DNA-damaging agent bleomycin, impaired systemic insulin signaling blocks the regenerative ISC mitoses⁵⁸. Insulin signaling mutants are robustly long-lived⁵⁹⁻⁶¹, suggesting that the reduction of insulin signaling in intestinal dysplasia could extend longevity. Indeed, direct moderate depletion of insulin signaling or overexpression of FOXO targets in ISCs and EBs may significantly delay the onset of age-related dysplasia and extend lifespan⁶². The role of mammalian insulin in the gut remains far less understood. Nevertheless, insulin is reported to increase proliferation in the colorectal epithelium⁶³. Analogous to the insulin-dependent midgut growth in *Drosophila*, diet-induced obesity increases insulin-like growth factor 1 (IGF1) levels and intestinal *Igf1* mRNA, increased crypt density and ISC numbers ⁶⁴ Human studies also suggest that insulin receptor isoform A, which is expressed in highly proliferative ISCs in the crypts⁶⁵ is linked to development of adenoma cases in patients with high plasma insulin⁶⁶.

e. JNK pathway:


Jun-N-terminal Kinase (JNK) is a stress-activated protein MAPK-type kinase that is involved in compensatory injury-induced cell division in both *Drosophila* and mammals. Though its role in the mammalian gut is not well characterized, *Drosophila* JNK is upregulated upon UV irradiation, ROS or DNA damage, bacterial or fungal infection, and aging. *Drosophila* contains a single JNK, Basket (Bsk), and two JNK Kinases, Hemipterous (Hep) and dMKK4. After infection⁸ or as the flies age⁶², JNK is activated in ECs to stimulate compensatory ISC mitoses. While JNK activation in ECs is not required

for *P.e.*-induced ISC mitoses, its downregulation in either ISCs or ECs is sufficient to slow down aging-dependent elevation of ISC mitoses. Remarkably, dFOXO can also be phosphorylated and activated by JNK⁶⁷. Indeed, ECs have a chronic age-dependent activation of JNK/dFOXO, which represses intestinal lipases leading to disruption of the systemic lipid homeostasis and of the ability the ECs to activate the innate immune responses⁶⁸. In a more physiological context, long-lived insulin mutants similarly have lower levels of JNK signaling⁶². Moreover, Upd3 production is downstream of the activation of JNK signaling in weak/unfit cells, which is necessary for their elimination by fitter wild-type cells¹¹. Similarly, activated JNK triggers apoptosis of enterocytes to stimulate compensatory ISC division⁶⁹. JNK signaling also boosts $APC^{-/-}$ adenoma growth and drives cell competition⁷⁰. In detergent-induced regenerative responses, JNK signaling in ISCs and EBs is necessary and sufficient to stimulate Hedgehog production and drive compensatory ISC division⁷¹.

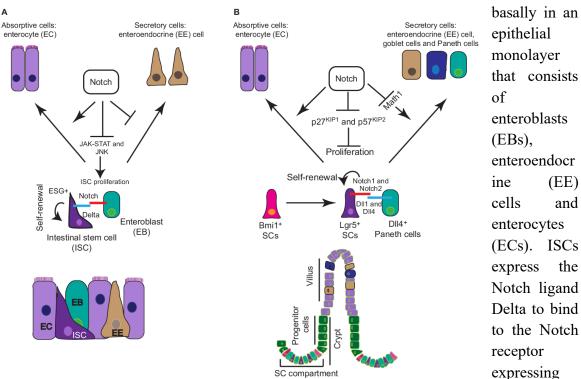
f. Hippo/Wts pathway:

The Hippo pathway is another highly conserved signaling pathway that regulates global growth and cell proliferation across Drosophila and mammals. Thus, it in interacts with several signaling cascades including TGFB/BMP, Wnt, EGFR/MAPK, and others to regulate cell proliferation, tissue growth, apoptotic resistance, and tumor progression⁷²⁻⁷⁴. Hippo pathway deregulation is tightly associated with tumorigenesis, metastasis and chemo-resistance⁷⁵. Hippo signaling regulates ISC division in *Drosophila* both cell autonomously and non-cell autonomously. Hippo pathway is comprised of genes that act as tumor suppressor genes such as hippo (hpo) and warts (wts), and oncogenes such as yorkie (yki). The mammalian homologs of yorkie are YAP and TAZ. In Drosophila, canonical Hippo signaling acts through a kinase cascade and involves activation of Hippo (Hpo) serine/threonine kinase, which forms a complex with Salvador (Sav) scaffold protein and Mob as a tumour suppressor (Mats) adaptor protein to phosphorylate and activate serine/threonine kinase Warts (Wts). Activated Wts phosphorylates Yki leading to its cytoplasmic sequestration, signaling it for proteasomal degradation and preventing its nuclear interaction with Scalloped (Sd) to regulate the target genes. Similarly, in mammals, mammalian sterile 20-like kinase 1/2 (MST1/2) kinases form a complex with Salvador family WW domain containing protein 1 (SAV1) and Mps one binder kinase activator-like 1A and 1B (MOB1A/B or collectively, MOB1) to phosphorylate large tumour suppressor 1/2 (LATS1/2). LATS1/2 phosphorylation of Yes-associated protein (YAP) and its paralog, WW domain-containing transcription regulator 1 (TAZ) blocks the nuclear translocation of YAP/TAZ and their subsequent interaction with transcription factors (i.e., TEAD family members and others) to regulate downstream target gene transcription⁷⁶.

The precise roles of Hippo signaling in the mammalian intestine are gradually revealed. Endogenous YAP1 protein expression is restricted to the stem cell niche at the bottom of the intestinal crypts and its high activity promotes ISC division through positively regulating intestinal Notch^{15,77}. *mst1/2* mutations or YAP1 overactivity are associated with expansion of the ISC pool and undifferentiated progenitors, that replace differentiated cells in the villi^{78,79}. This leads to dysplastic epithelia enlarged crypt structures, increased polyps, adenoma formation and colorectal cancer progression⁷⁹⁻⁸¹.

Figure 1.4: Hippo signaling pathway in Drosophila (A) and mammals (B). Hippo signaling is initiated by a variety of upstream stimuli such as cell-cell contact, mechanotransduction, cellular stress and oxygen availability. Activation of *Drosophila* Hippo or mammalian MST1/2 causes phosphorylation of Warts or mammalian LATS1/2. Downstream of the Hippo pathway is the effector *Drosophila* Yorkie or mammalian YAP/TAZ. Warts or LATS1/2 phosphorylation of Yorkie or YAP/TAZ leads to its cytoplasmic sequestration by 14-3-3 proteins and degradation. Unphosphorylated Yorkie

or YAP/TAZ translocates to the nucleus where it interacts with its *Drosophila* Scalloped or mammalian TEAD transcription factors to upregulate the transcription of a variety of genes involved in cell cycle progression and cell survival.


Nuclear YAP1/TAZ complex is also required for differentiation of progenitor cells towards the goblet cell secretory lineage⁸². After dextran sulfate sodium (DSS) or whole body irradiation-induced intestinal injury, YAP1 is essential for the crypt regenerative proliferation and survival⁸³. Of note, over proliferation and liver enlargement is also associated with sav1 and mst1/2 mutations⁸⁴. In Drosophila, Yki is required to control ISC division in cell-autonomously and non-cell autonomously from the niche components such as EBs and ECs. Under unstressed conditions, members of the Hippo complex function in the progenitors to restrict ISC division by limiting the nuclear activity of Yki/Sd complex. In contrast, Yki does not seem to function in regulating differentiation. Under stress conditions or Hippo pathway deregulation, Yki is cellautonomously activated to regulate downstream genes such as Cyclin E, Diapl (apoptosis inhibitor) and *bantam* miRNA to stimulate ISC mitoses^{85,86}. Yki is also activated in the ECs to induce a dramatic increase in the production of Jak/Stat and EGFR ligands to initiate non-cell autonomous compensatory ISC mitoses⁸⁷. Additionally, Misshapen (Msn), a member of the germinal center protein kinase (GCK) family acts within the EBs to restrict the expression of Upd3, through interaction with Wts to inhibit Yki activity²⁸.

g. Notch pathway:

Both mammals and *Drosophila* ISCs require Notch signaling as a niche factor for ISC maintenance though they require it differently. Notch is a type I integral membrane cell surface receptor that forms a heterodimer after being cleaved. Notch signaling is initiated when Notch receptor (signal-receiving) binds one of several ligands (signal-sending) belonging to the Delta, Serrate, and Lag-2 (DSL) family of integral membrane proteins, which are expressed on the surface of neighboring cells. Ligand binding induces a conformational change in the Notch extracellular region that gets cleaved and releases Notch intracellular domain (NICD, a transcription factor) into the cytoplasm, which can then translocate to the nucleus, to recruit a transcriptional co-activator complex and regulate target gene expression. The level of Notch signaling is determined by receptor exposure to the ligand on the surface of the signal-sending cells i.e. Delta-positive cells⁸⁸.

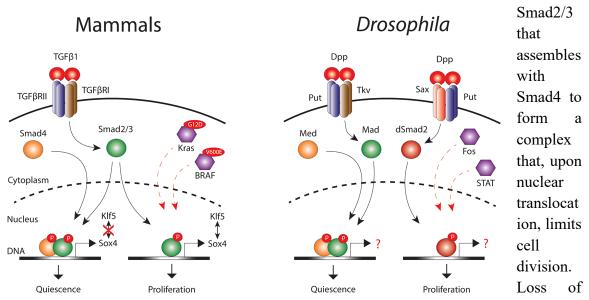
In the mammalian gut, there are four Notch receptors (Notch 1–4) and five Notch ligands (Delta-like (DLL) 1, 3, 4 and Jagged (JAG) 1, 2), which are all transmembrane proteins⁸⁹. Active Notch signaling defines the mammalian stem cells of the gut. The intestinal fast-cycling crypt base columnar stem cells express Notch1, 2 receptors while the neighbouring Paneth cells express Notch ligands Dll1 and Dll4⁹⁰ and Notch critically regulates the cell fate decision between absorptive and secretory cell types. Notch signaling induces expression of the transcription factor Hes1 (hairy and enhancer of split 1) that consequently represses cyclin-dependent kinase (CDK) inhibitors p27Kip1 and p57Kip2 and also suppresses the expression of Math1 (or Atoh1 (atonal homolog 1))-dependent differentiation towards secretory lineages^{90,91}.

Figure 1.5: An illustration of Notch regulation in *Drosophila* and mammalian intestine. (A) In the *Drosophila* midgut, intestinal stem cells (ISCs) (escargot+) reside

EBs. Strong Notch signaling in EBs favors the EC cell fate. Activated Notch signaling in EBs also blocks proliferation of ISCs by antagonizing the JAK-STAT and JNK pathways under physiological and stress conditions. (B) Role of Notch in mammalian ISCs: long-lived Bmi1+ SCs reside at the +4 position in the crypt compartment and when needed, divides to give rise to mitotically active Lgr5+ SCs. In the crypt compartment, Notch expressing Lgr5+ SCs are sandwiched between Delta-like 4+ Paneth cells. Activation of

Notch signaling in Lgr5+ cells maintains SC self-renewal and proliferation by negative regulation of the cyclin-dependent kinase inhibitors p27KIP1 and p57KIP2, and the transcription factor Math1, which is necessary for differentiation of the secretory cell lineages. Notch thus biases cell fate choice towards the absorptive lineage. Adopted from: Koch et al,2017.

Overexpression of Notch pathway components blocks the commitment of cells towards a secretory lineage fate and is highly associated with gastric and intestinal cancers⁹⁰. Conversely, inhibition of Notch signaling leads to a loss of the proliferative ISCs and the crypt compartment and conversion of crypt progenitors into goblet secretory cells⁹⁰. In contrast, in the *Drosophila* midgut, ISCs are always Delta-positive, and are located at the basal side of the epithelium. The daughter cells lack delta and express different levels of Notch that define fate specification of the ISC progeny. pre-ECs invariably express high levels of Delta in cytoplasmic vesicles, but EE precursor contained few or no cytoplasmic Delta vesicles²⁷. Notch activates dTOR through the inhibition of TSC2 in the EB, leading to endoreplication and EC differentiation^{26,92}. Ectopic activation of Notch signaling in ISCs causes a loss of ISCs through their differentiation²⁷ and Notch loss results in accumulation of ISC tumors with increased numbers of EEs and a loss of ECs⁹³.


Accordingly, Notch signaling acts in concert with Jak-Stat and EC-JNK or Yki/YAP signaling to determine the balance between ISCs and other cells of the midgut. For intestinal tumor outgrowth to develop in the *Drosophila* midgut, *Notch*-defective ISCs stimulate Spi production in an autocrine fashion, which is necessary for ISC divisions to initiate tumor growth. After a series of initial divisions, the adjacent ECs show elevated JNK and Yki/YAP activity, which promote their detachment, extrusion and apoptosis. Consequently, tumor-adjacent ECs express unpaired cytokines, while domeless and Stat92E are expressed in tumor cells and are necessary for tumor growth^{94,95}. Interestingly, Stat92E is epistatic to Delta/Notch signaling in cell fate specification of the ISC daughters suggesting that Jak/Stat pathway functions downstream or in parallel during the differentiation of the ISC daughters such that low Notch signaling is associated with high Jak/Stat and results in EE differentiation⁴⁹.

Exogenous lipids strongly also influence Delta ligand and Notch extracellular domain stability and alter their trafficking and turnover in endosomal vesicles. This suggests an intriguing link between the dietary effects on the intestine relative to the levels of Delta /Notch signaling that reflect the ISC number and differentiation towards EE secretory lineage⁹⁶. In fact, intestinal tumor progression is slowed down on a low sterol diet⁹⁷. Similarly, high fed diets in mammals also boost ISC numbers and their tumorigenicity⁹⁸ which suggest that the underlying concept of regulation is conserved.

h. Dpp/BMP signaling:

BMP signaling is conserved in both Drosophila and mammals. It functions to suppress ISC differentiation through secretion of Dpp/BMP ligands by the niche components in both GI tracts. Nevertheless, it is also cell-autonomously required in *Drosophila* ISCs to initiate stress-induced mitoses. BMP receptors are single transmembrane proteins that possess serine/threonine kinase activity in their intracellular domains. In Drosophila, Decapentaplegic (Dpp) and Glass bottom boat (Gbb) are the two major BMP ligands which synergistically act to bind two type-I receptors Thickvein (Tkv) and Saxophone (Sax), and a type-II receptor Punt (Put). Activated receptors causes phosphorylation of the Drosophila Smad Mothers-against-Dpp (Mad), which forms a complex with the co-Smad Medea and activate target gene expression in the nucleus. Dpp establishes an activity gradient that regulates expression of target genes in a concentration-dependent manner⁹⁹. Both Dpp and Gbb are produced by ECs¹⁰⁰ and trachea²³. Dpp is also expressed in the VM²². BMP signaling altogether plays complex and opposing roles in progenitors and ECs depending on the degree of activation of the signaling and in which cell type this occurs to regulate the balance between ISC self-renewal and proliferation of the adult Drosophila midgut. Below is a brief description of some observations. Firstly, clonal analyses of ISC with perturbed BMP signaling revealed that injury-induced BMP signaling acts autonomously in ISCs to inhibit over-proliferation. Thus, ectopic expression of BMP signaling components dampen the stress-induced ISC mitoses²². Secondly, BMP signaling seems to regulate differentiation and survival of ECs. ECderived BMP stabilizes the EC fate and consequently dampens the production of JAK-STAT and EGFR pathway ligands also to limit unnecessary over-proliferation of ISCs²³. As a result, Dpp inhibition in ECs leads to ectopic activation of EGF ligands that non-cell autonomously promote ISC over-proliferation^{23,101}. Thirdly, BMP pathway is asymmetrically activated between ISC/EB pair such that ISCs, located basally, have higher levels of BMP signaling activity than the apical EBs. BMP acts together with Notch to regulate the ISC/EB fate choice. Under homeostatic conditions, loss of Dpp in progenitors results in a significant loss of ISCs that differentiate into EBs and give rise to atypical EB/EB pairs. In contrast, BMP abundance within the ISCs favors symmetric ISC/ISC outcome of an ISC division and formation of large ISC-like cell clusters¹⁰⁰. This evidence indicates that BMP signaling regulates ISC self-renewal. Fourthly, inhibition of Dpp receptors with a progenitor-specific driver suppress detergent- or bleomycin-induced ISC mitoses indicating that Dpp signaling is cell-autonomously required for ISC mitoses as well as lineage differentiation¹⁰⁰.

Figure 1.6a: An illustration of the complex mammalian and Drosophila TGF- β signaling. In mammals, TGF β 1 ligand activates TGF β receptors (RI,RII) to activate the

the inhibitory Smad4 in over-activated Kras^{G12D}- or BRAF^{V600E}-mutant cells alter the phosphorylated Smad2/3 activity to promote cell proliferation and survival. In *Drosophila*, Decapentaplegic (Dpp) ligand binds Punt (Put) and Thickveins (Tkv) receptors to activate the canonical nuclear complex that is comprised of Mothers against dpp (Mad) and Co-Smad Medea (Med), to regulate genes promoting cellular quiescence. Similarly, over-activated EGFR/Fos and Jak/Stat signaling re-directs Dpp to activate the alternate Put–Saxophone (Sax) receptor complex. This complex then activates dSmad2, which translocates into the nucleus independently of Med and induces tumor-like stem cell growth and dysplasia. Modified from: Ayyaz et al,2017.

Remarkably, beside its complex roles in intestinal homeostasis, Dpp secreted from enterocytes at the regional boundaries between the posterior midgut and the middle midgut sets up a morphogen gradient that determines the regional identity of the ISCs and defines the size of the gastric acidic copper cell region¹⁰². Similarly, in mammals, BMP ligands that belong to the transforming growth factor- β (TGF- β) superfamily of proteins bind BMP type I and type II receptors (Bmpr1–2) that form a hetero- tetrameric complex.

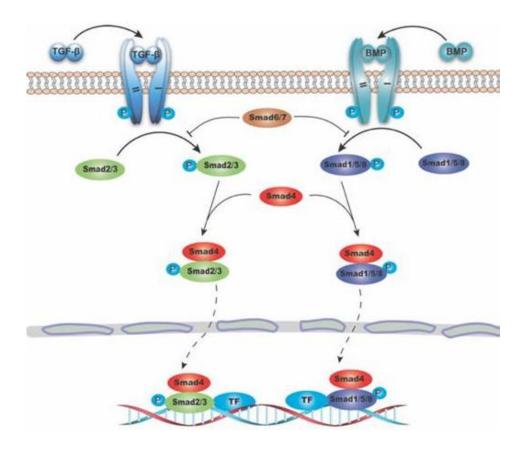
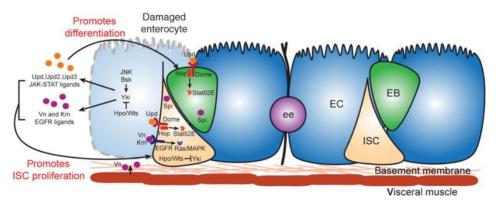



Figure 1.6b: An illustration of mammalian TGF- β and BMP signaling in the intestine. Ligands of the (TGF- β) superfamily includes TGF- β s and bone morphogenetic proteins (BMPs) which bind type II and I receptors (T- β R II and T- β R I) or (BMPR II and BMPR I) respectively. TGF- β R activation phosphorylates SMAD2/3 which forms a heterodimeric complex with SMAD4 and translocate to the nucleus to control target gene transcription. BMP R activation phosphorylates SMAD1/5/8 that also forms a complex with SMAD4 leading to its translocation to the nucleus to control target gene transcription. Adopted from: Zhao et al,2018

This causes phosphorylation of BMP-specific receptor-bound R-Smads1/5/8 (receptor-regulated Smads) which forms a complex with core mediator Smad4 to regulate target gene transcription. Several extracellular antagonists, such as Noggin, follistatin or gremlin sequester BMP ligands, thereby blocking their interaction with their receptors¹⁰³.

BMP pathway is activated to drive the differentiation of the mature epithelial cells and its inactivation is correlated with development of colorectal cancer. BMP ligands are expressed by the intravillus and intercrypt mesenchymal cells as well as differentiated epithelial cells to ensure that the epithelial villus cells are kept in their differentiated state¹⁰⁴. BMP antagonists are tightly produced around the crypts to ensure ISCs remain functional and are capable of self-renewal. BMP represses the nuclear accumulation of β -catenin and is expressed in an opposing gradient along the crypt–villus axis, with highest BMP signaling in the differentiated cells at the luminal surface. Unlike *Drosophila* midgut, it is unclear whether BMP signaling plays a cell-autonomous role in the ISCs, though BMP receptor is present in ISCs.

Figure 1.7: Enterocyte (EC) damage causes compensatory ISC proliferation in the *Drosophila* midgut. Damaged and dying ECs activate Jun N-terminal kinase (JNK) and inhibit Yorkie (Yki) signaling respectively to upregulate Janus Kinas-Signal Transducer and Activator of Transcription (Jak-Stat) ligands (unpaireds: upds) and EGF ligands production that activate EGFR and Jak-Stat signaling to stimulate regenerative ISC mitoses. Jak-Stat signaling activation in enteroblasts promotes their differentiation into enterocytes to compensate for the lost cells. EGFR signaling is required for the endoreplication of enterocytes. Adopted from Lucchetta and Ohlstein, 2012.

1.5. Epithelial aging and loss of integrity.

Continual bouts of ISCs division across the organismal lifespan bring about dysfunction in the homeostatic signaling mechanisms, which lead to chronic intestinal inflammation in both *Drosophila* and mammals. The ISCs are highly plastic, as they respond to stress and nutritional cues to sustain the epithelial integrity and to adjust epithelial size to changing dietary conditions¹⁰⁵. Hence, maintaining the ISC function is critical for optimal

lifespan. In aging Drosophila animals however, deregulated elevated ISC divisions cause epithelial dysplasia and perturb epithelial function. This is accompanied by a prominent gut-wide increase in oxidative DNA damage, and increased ROS levels that is primarily sensed by ECs to promote accelerated ISC mitoses^{105,106}. Consequently, this results in disruption of metabolic homeostasis⁶⁸, loss of barrier function, systemic infection¹⁰⁷, and ultimately mortality. Similarly, in aging mammalian intestines, the loss of regulatory mechanisms leads to intestinal barrier break down and increased microbiota loads (dysbiosis) accompanied by increasing cellular stress and DNA damage that disrupt the tissue homeostasis. Accordingly, individuals become more susceptible to infectious diseases, including inflammatory disorders¹⁰⁸, colorectal cancer¹⁰⁹, metabolic imbalances¹¹⁰ and gastrointestinal infections¹¹¹. The reports on the aging effects of crypt architecture are mixed. Some studies counter-intuitively reported a decline in crypt number but increased crypt length and width, decreased number of mitotic cells and attenuated regenerative capacity of aged crypts at the expense of increased ISC differentiation¹¹². Others reported that aged mice or rat intestines have increased crypt numbers accompanied with hyperproliferation of active ISCs, activatable reserve ISC and enteroendocrine cells ^{113,114}. This disparity could be due to differences in the animal strains, housing conditions and whether or not they were cultured in a germ-free environment¹¹².

Besides the cell-autonomous deregulation of the pathways controlling ISC divisions or ISC maintenance, several signaling pathways non-cell autonomously lead to excessive activation of ISC divisions and eventually, intestinal dysplasia. In *Drosophila*, these include hyper-activation of innate immunity components¹¹⁵, JNK signaling and insulin signaling⁶² in ECs. Notably despite the limited knowledge of pathways involved in mammalian intestinal aging, mechanisms driving age-related dysplasia of the stem cell function are conserved from *Drosophila*^{62,116} to mammals¹¹⁷ such as expression of stress-protective FOXO target genes, that is sufficient to limit ISC over-division and maintain metabolic homeostasis⁶².

1.6. Differences in male and female Drosophila ISC division and its consequences:

There were reported longstanding differences between the rate of the ISC epithelial homeostatic⁸ or regenerative turnover in males and females in *Drosophila*^{8,118} that are only recently beginning to be understood. Female fly intestines turn over at faster rates relative to males, which result in females being more susceptible to develop progressive age-mediated intestinal hyperplasia then dysplasia. These gut epithelial deregulation together with dysbiosis drive a loss of intestinal integrity and gut immune barrier¹¹⁹, which may lead to compromised life span^{62,120-122}. Further studies revealed that sex differences are owed to a combination of factors including: differences in food uptake¹²³, cell autonomous differences in stem cell behavior¹¹⁸, differences in epithelial structure and loss of gut barrier function¹²⁴ possibly due to differential activation and hyper activity of pathways such as JNK or insulin signaling in females relative to males^{62,120}. It remains much less carefully examined in mammals if the sexual identity also affects the intestinal turnover and response to regeneration. Indeed, studies usually report results of mixed intestines of males and females or prefer males to females to exclude the effects of the reproductive status on the intestinal function.

1.7. Nuclear Receptors

Cholesterol, fatty acids, fat-soluble vitamins, and other lipids are an essential component of the diet of both *Drosophila* and mammals. They do not only function in providing metabolic building blocks for macromolecules but, they also serve as precursors for ligands that bind to a class of transcription factors in the nucleus called nuclear receptors (NRs). NRs are integrators of hormonal and nutritional signals, mediating changes to metabolic pathways within the body. For lipids to become biologically active, they first get absorbed by the intestine then are enzymatically converted to metabolically active signaling molecules. Ultimately, a tight balance is achieved between the lipid absorption and elimination to maintain a normal physiological state. Hence, the need to study the detailed functions of NRs in the organ where nutrient absorption and excrement discharge occurs becomes crucial to our understanding of how the intestinal physiology is regulated and how impaired functions of NRs result in disease states¹²⁵. NRs are best described as ligand regulated DNA-binding transcription factors that exert activating or repressive effects on target genes, thereby directly modulating target gene expression¹²⁶. The human genome has 48 members of this highly conserved transcription factor family and the Drosophila genome has 18 members¹²⁷. This superfamily includes: classic endocrine receptors that mediate the steroid hormones actions such as estrogen receptor (ER), androgen receptor (AR) glucocorticoid receptor (GR) or *Drosophila* ecdysone receptor (EcR), *Drosophila* Hormone Receptor 96 (Hr96). Receptors that bind non-steroid hormones include thyroid hormone receptor (TR) and retinoic acid receptor (RAR). Receptors that bind products of lipid metabolism i.e. fatty acids and their derivatives such as prostaglandins include peroxisome proliferator activated receptors (PPAR), liver X receptors (LXR), farnesoid X receptors (FXR) and the highly conserved *Drosophila* and mammalian Hepatocyte Nuclear Factor $4\alpha^{128}$. Finally, the rest are grouped into orphan receptor subfamily for which the regulatory ligands were/are unknown¹²⁷.

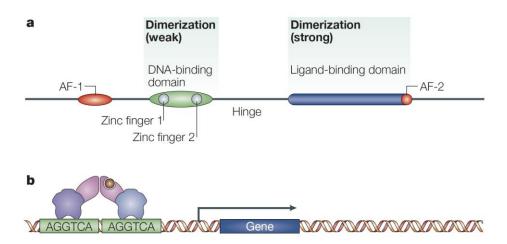


Figure 1.8: Schematic illustrating the basic structural components of a Nuclear receptor and how it mediates its function. a) Nuclear receptors are comprised of three domains, a highly conserved DNA-binding domain (DBD), a ligand-binding domain (LBD) that are joined by a flexible hinge region and a N-terminal domain that contains AF-1 transactivation domain. The DBD consists of two C4 zinc fingers that mediate specificity of target DNA binding. The less conserved LBD is located C-terminal to the DBD and has a strong dimerization surface to bind different receptors. The LBD comprises 11–13 α helices that form a hydrophobic pocket for the binding of small lipophilic molecules. Recruitment of coactivators takes place through ligand dependent

AF-2 and ligand independent AF-1 transactivation domains. b) Each nuclear receptor binds to a half site that is derived from, or identical to, the standard AGGTCA sequence through a stretch of five amino acids known as the P-box located in the DBD. Adopted from: Sara Ahmed's master thesis,2015⁴⁶⁴ and originally from Krist-Jones & Thummel, 2005.

NRs consist of an amino terminus with a trans-activation domain (AF-1), highly conserved DNA- binding domain (DBD) and a less conserved C-terminal ligand-binding and dimerization domain (LBD). The AF-1 acts in a ligand-independent fashion and facilitates the recognition of NR by transcriptional co-regulators such as co-activators or co-repressors. The DBD comprises zinc-finger domains that provide DNA-binding specificity and a dimerization interface through which the interaction with a target DNA takes place¹²⁹. The LBD consists of a hydrophobic binding pocket where the ligand docks and a transactivation domain AF-2, that recruits co-activators, often through a ligand-dependent fashion. NR bind target genes through receptor-specific conserved DNA sequences termed nuclear response elements¹²⁷.

Most ligand-bound activated NRs translocate to the nucleus to modulate transcriptional regulation of target genes themselves. However, reports also describe the existence of extranuclear receptor pools that coordinate the classic nuclear pools^{130,131}. The actions of NRs can be non-genomic, genomic or epi-genetic¹³². Non-genomic functions include interaction with membrane-localized cell-signaling effectors such as estrogen-induced generation of cyclic AMP¹³³ or progesterone-induced interference with G-protein signaling to activate Erk¹³⁴, among many others¹³⁵. Genomic functions include direct modification of the activity of transcription factors¹³⁶ such as estrogen-mediated down-regulation of transcriptional repressors such as Mad4 and JunB and up-regulation of cell cycle progression genes such as cyclin D¹³⁷. The action of NR even extends to regulating epigenome^{132,138} through regulating histone deacetylases (HDACs)^{139,140}, histone methyltransferase¹⁴¹ or altering chromatin compaction^{142,143}. Owing to their wide functions, dysfunction of nuclear receptor signaling is associated with proliferative, neuronal reproductive and metabolic diseases such as cancer, infertility, obesity and diabetes^{144,147}.

1.8. *Drosophila* ecdysone in development and adulthood:

Drosophila has two main physiologically active lipophilic hormones, the steroid hormone ecdysone and a sesquiterpinoid, juvenile hormone. Ecdysone signaling works in concert with juvenile hormone to regulate major developmental transitions in the Drosophila life cycle, including the larval molts and metamorphosis, as well as sexual maturation¹⁴⁸. Most of the ecdysone signaling effects reported in the literature are investigating the actions of a 20-hydroxylated derivative of ecdysone (referred to as 20HE). Though it is becoming more evident that only studying the actions of 20HE is an all-too-simple view. Though it was recently described that Drosophila can produce different classes of ecdysteroids, which are derived from four types of dietary sterol precursors: cholesterol, C27 sterol, C28 and C29 plant sterols and C28 fungal sterols (e.g. ergosterol) with an epi-C-24methyl group, which has the opposite chirality to plant sterols¹⁴⁹. In total, ecdysteroidome of *Drosophila* comprises seven major ecdysteroids: α-Ecdysone, 20HE, 20-hydroxylated derivative makisteroneA (MaA), 24-methylecdysone (24-methylE), 24epi-methylE, 24-epi-MaA, 24(28)-dehydromakisterone (dhMaA), and two catabolites – 20-hydroxyecdysonoic acid (20Eoic) and MaAoic acids¹⁴⁹. It remains very interesting to figure out how those different classes differ in their actions during development and in adulthood, whether they all bind EcR•Usp, and how they would dynamically regulate target gene expression. To date, 8 CYP450 enzymes (Halloween genes) are implicated in ecdysone synthesis from dietary cholesterol¹⁵⁰. During larval development prothoracic glands are the principal source of ecdysone synthesis¹⁵¹. However, the main site of ecdysone synthesis during adulthood is the female ovaries and the male accessory glands are reported to express 20HE-synthesizing enzymes¹⁵². Higher levels of circulating ecdysone exist in females than males^{153,154}. Accordingly, α -Ecdysone is released into the hemolymph after which it gets converted by the sexually dimorphic enzyme shade into 20HE at the target tissues^{118,155}. After mating, there is a boost of ecdysone production in the female ovarian follicles and its levels double as early as 24 hours after mating¹⁵⁶⁻¹⁵⁸. Classically, the ecdysone receptor dimer consists of the ligand-binding *EcR* subunit and the DNA-binding subunit Ultraspiracle (Usp), which are orthologous to human farnesoid X and liver X receptors (FXR, LXR), and the retinoid X receptor (RXR) respectively¹²⁷.

Drosophila ecdysone receptor gene (EcR) encodes up to six protein isoforms (Flybase Apr 14, 2020 release) including the functionally distinct, well characterized EcR-A, EcR-B1, and EcR-B2^{159,160}. The difference in the isoforms lies in their N-terminal, A/B region but they share a common DBD and LBD. During Drosophila larval development, ecdysone-liganded EcR•Usp heterodimers activate transcription of "early" genes including the Broad Complex (BR-C) and the ecdysone-inducible puff 75B (Eip75B), which in turn induce transcription of a set of "late" genes that orchestrate major developmental events in the life cycle¹⁶¹⁻¹⁶³. In adults, ecdysone functions to regulate sleep ¹⁶⁴, courtship memory formation¹⁶⁵, lifespan and stress resistance¹⁶⁶, and establishes a female metabolic state conducive to reproduction¹²³. Ecdysone signaling has also been shown to be involved in terminal differentiation of neural stem cells in the adult *Drosophila* brain ¹⁶⁷ and to maintain germline stem cells in the ovaries ¹⁶⁸ and cyst stem cells in testes¹⁶⁹. To date, a role of ecdysone EcR signaling in the adult gut has not yet been described, and it is this subject of this thesis, though its mammalian orthologs LXR and FXR regulate a multitude of metabolic pathways in the GI tract including bile acid, lipid and carbohydrate metabolism^{170,171}.

Downstream of the ecdysone cascade, there are many ecdysone-inducible targets that relay the ecdysone effects¹⁷². Below is a short summary of the ecdysone targets whose functions were examined during the course of this project.

1.9. Eip75B, Hr3 and Hr51 as hormone nuclear receptors in Drosophila:

Ecdysteroid-inducible protein 75B (Eip75B) is encoded by the early gene *E75* that maps to the 75B early puff. Puffs are enlargements of specific loci on the giant salivary gland polytene chromosomes after ecdysone binds them, which correlate with increased local transcriptional activity at these sites. The closest vertebrate homologues of Eip75B are members of the NR1D/Rev-Erb family. These mammalian nuclear receptors include Rev-Erba (Rev-ErbA- α , THRAL, EAR-1; NR1D1) and Rev-erb β (Rev-ErbB- β , RVR, EAR-1R, BD-73; NR1D2) respectively¹⁷³. The percentage amino acid identity in DBD/LBD of Eip75B to REV-ERB is 80/25 which ranks both NRs amongst the most highly conserved proteins during evolution¹²⁷. Similar to REV-ERB, Eip75B tightly binds heme in its LBD. However unlike REV-ERB, heme is essential for Eip75B protein folding and accumulation. Both proteins undergo redox-dependent ligand switching and CO- and NO-induced ligand displacement raising the possibility of their functions as redox sensors¹⁷⁴. Indeed, cellular levels of Eip75B are proportional to heme amounts available in the cell suggesting that Eip75B acts as a heme sensor¹⁷⁵. Generally, REV-ERBs and Eip75B function as repressors of transcription^{173,176-178}. Accordingly, Eip75B and REV-ERB have overlapping functions in regulating circadian rhythm and metabolism in both *Drosophila*^{179,180} and mammals^{181,182}. Eip75B has at least seven protein isoform Eip75B-RC (E75A), RA (E75B), RF, RD, RG, RB and RE (Flybase Apr 14, 2020 release), 3 of which are characterized in the literature¹⁸³. Alternative splicing gives rise to protein isoforms that differ in their N-terminal sequences but share a common LBD in the C-terminus. During development, Eip75B functions in development to regulate molting, pupal development, metamorphosis and adult viability¹⁸³. Interestingly, Eip75B also acts as upstream of ecdysone as a regulator of ecdysone production in the prothoracic gland¹⁸⁴.

Drosophila Hormone Receptor 3 (Hr3) is orthologous to the vertebrate retinoid-related orphan receptor (ROR) and together they share a percentage amino acid identity in DBD/LBD of 76/35 ¹²⁷. Consistent with its similarity to ROR, Hr3 binds as a monomer to its response element on its target genes acting as a transcriptional activator. All Eip75B isoforms are reported to be able to bind Hr3 both in vivo and in vitro ^{175,177,184}. Classically, Eip75B binds Hr3 blocking its transcriptional activities on target genes. This Eip75B•Hr3 interaction is regulated by NO binding, which disrupts the interaction of Eip75B with Hr3. The function of this nuclear receptor cascade has been validated across development in various contexts. Eip75B•Hr3 regulates behavior, fat deposition and developmental timing^{177,185-187}.

Drosophila Hormone Receptor 51 or unfulfilled (unf/Hr51) is orthologous to the vertebrate PNR (photoreceptor-specific nuclear receptor) and together they share a percentage amino acid identity in DBD/LBD of 70/47¹²⁷. Although not much is known about Hr51, it is reported to function together with Eip75B to regulate circadian rhythm in the pacemaker neurons ¹⁸⁸ and direct developmental axon regrowth ¹⁸⁹in a-NO dependent fashion. However, it is unclear whether Hr51 is an ecdysone-inducible target.

1.10. Broad as an ecdysone target:

The *Broad-Complex* (*BR-C*) or *broad* is a complex gene that encodes a family of zinc finger transcription factors mapping to the 2B5 early puff. The *broad* complex contains up to four classical complementation groups (*broad*, *reduced bristles on palpus (rbp)*, l(1)2Bc and l(1)2Bd), as well as a group of non-pupariating (*npr1*) alleles. Through alternative splicing, at least 14 transcript isoforms form from a single pre-messenger RNA transcript. The broad family consists of a common core N-terminal region with a protein–protein interaction domain BTB/POZ that they use to interact with other transcription factors or with chromatin and a pair of cysteine (C2) and histidine (H2) zinc fingers that bind to DNA of its target genes. ¹⁹⁰. BR-C functions as an early ecdysone target to coordinate the stage-specificity of the ecdysone response during growth of imaginal discs, neuronal development, metamorphosis¹⁹¹. In adults, BR-C functions in regulating oogenesis¹⁹² and modulating innate immune responses¹⁹³.

1.11. Sex determination in mammals and Drosophila:

As shortly presented in the introduction and discussed further, the steroid NRs bind steroid hormones and the active hormone receptor complex binds its hormone response elements to control target gene expression. The gonadal sex steroids are a subclass of the steroid NRs that are mainly synthesized from the gonads to act on many target tissues. Accordingly, sex hormones act as chemical mediators of gonadal sex that are involved in sex differentiation too. Sex hormones interact with the intrinsic genetic sex at different levels and, synchronously work to regulate the organismal homeostatic needs. Under certain conditions: predisposition to genetic diseases or exposure to external environmental cues result in disturbance of this interaction, posing a significant risk on the organism's general and reproductive health or survival. Studies on how the two sex components: genetic and gonadal sex interact to control mechanisms that lead to sex differences would expand the knowledge of the fundamental biology of sex differences in physiology and disease processes, facilitating therapeutic outcomes of sporadic and genetic diseases. The interplay between gonadal sex, psychological sex and the intrinsic sex chromosome constitution of individual cells is likely to determine several behavioral aspects of organ physiology and disease as shown in examples (¹⁹⁴⁻¹⁹⁶). Hence, it remains interesting to study how the non-cell autonomous sex-determining mechanisms and the sex hormones cross talk with the cell-autonomous cellular composition of the sex chromosomes to regulate tissue homeostasis.

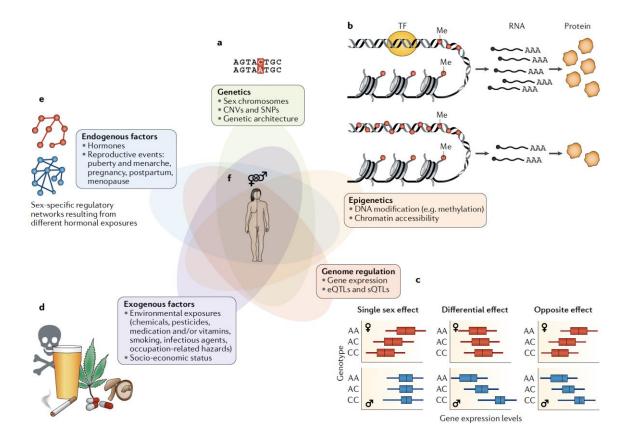


Figure 1.9: Factors contributing to phenotypic sex differences in physiology and disease. A multitude of factors contribute to the disease and non- disease human traits including the intrinsic genetic makeup of the cells (genetic components that lead to genetic variation in an individual's genome represented in (a) single- nucleotide polymorphisms (SNPs) and copy number variants (CNVs)) and de novo mutations, (b) epigenetic differences in DNA accessibility and methylation status such that hypomethylation associates with accessibility of transcription factor (TF) binding to promote transcription and hypermethylation associates with compact chromatin. (c) the genotype imparted differences in gene expression vary between males and females. Genetic variants that affect RNA splicing are termed sQTLs, splicing quantitative trait loci. Genetic variants that differ in their regulatory mechanisms i.e. they can act in one sex and not the other, or with different effect sizes or even allelic direction in males and females are termed eQTLs, expression quantitative trait loci. (d) exogenous factors such as environmental exposures, lifestyle choices and occupation- related hazards (e) endogenous factors such as sex hormones and reproductive status all function together to regulate sex-biased gene expression and formation of sex- specific regulatory networks. Adopted from: Khramtsova et al,2019.

In mammals, our current understanding is that there are distinct levels of sex determination and identity. There is the environmental sex determination (ESD) whereby external factors such as temperature, toxicants, population density, nutrients and hormones regulate the sex of the organism. There is also the genetic sex determination (GSD), which is driven by mechanisms regulating gonadal sex determination as well as the chromosomal differences between the sexes.

Gonadal sex determination is dominant over most sexually dimorphic characteristics. There is also the much-less understood psychological sex determination, which acts in the brain to determine gender identity and partner preference¹⁹⁷. Sex chromosomes (XY) have evolved as morphologically distinct from autosomes. The Y chromosome carries the sex determining region Y (Sry) gene, which translates into a transcription factor that initiates testicular development in a gonad with the potential to be of male or female fates equally¹⁹⁸⁻²⁰⁰. Expression of SRY in the somatic supporting cell lineage (i.e Sertoli cells in testis) causes the activation of its downstream target Sox9, which acts in a feed-forward loop with fibroblast growth factor 9 (FGF9), to suppress Wnt 4 and the female signature and instead, amplify the male biased signature of desert hedgehog $(Dhh)^{201}$, prostaglandin D2 synthase (*Ptgds*)²⁰² and platelet-derived growth factor (PDGF)²⁰³. In many egg-laving species including birds and turtles, despite the presence of a strong genetic sex determination system, they can be sex-reversed to female by the application of estrogen during the critical period of gonad formation and commitment to testis or ovarian fate, thereby reverting a testis into an ovarian fate²⁰⁴. In a similar context, in mammals that develop within a uterus (eutherian mammals), XX individuals can be fully sex-reversed to phenotypic males if Sry initiates testicular development, suggesting that gonadal sex determination non-cell autonomously exert control over the sex chromosome constitution of individual cells²⁰⁰. In *Drosophila* however, cells know their sex by their sex chromosome constitution, independent of their neighbors. An elegant demonstration of this concept is the existence of Gynandromorphs, which are animals that possess male regions and female regions in their body. This can happen when an X chromosome is lost from one embryonic nucleus. As a result, the cells that descend from this particular cell, instead of being XX (female), are XO (male)^{205,206}.

Fly sex determination is achieved through a combination of dosage compensation and sex

chromosome sensing mechanisms²⁰⁷, where X/X is female and X/Y is male. The bigger ratio of X chromosomes to autosomes (In females, the X:A ratio is 1) leads to activation of the expression of the master X-linked regulatory gene cascade starting with sex-lethal (sxl) that becomes activated in a positive-feedback loop to maintain its own alternative splicing, and also the splicing of transformer (tra) and female-specific isoforms of the transcription factor genes doublesex (dsx) and fruitless (fru) resulting in expression of a "female" transcriptional regulatory complex and a female sexual development genetic landscape i.e. female "ON" state²⁰⁷. At the same time, Sxl expression regulates dosage compensation through inhibiting male specific lethal-2 (msl-2) expression. Conversely, when msl-2 protein is expressed, it causes the formation of the male-specific MSL complex which is targeted to the single male X chromosome to activate 2-fold upregulation of the male chromosome (dosage compensation)²⁰⁸. In parallel, msl-2 promotes the expression of male-specific doublesex (dsx) and fruitless (fru) isoforms, all of which work in synchrony to instruct male specific traits. So far, the majority of the sexual differentiation in Drosophila sex traits are reported to largely depend on the on/off state of Sxl²⁰⁹. Although, recent studies reveal the existence in *Drosophila* of sex-biased expression of tissue specific miRNAs that contribute in maintaining the sex identity of various tissues, through rather complex mechanisms that are still not fully understood. 30 miRNAs are enriched at least fivefold in the male body suggesting distinct somatic functions. Whereas in females, 45 miRNAs are enriched in female somatic tissues, 28 of which are almost exclusively detected in the somatic tissues rather than the ovaries. As an example, miRNA let-7 expression is sexually dimorphic and regulated by the sex-biased hormone ecdysone. Ecdysone-regulated let-7 modulates the sex-determination hierarchy. During the late-larval to late pupal developmental stages, Let-7 levels are important to specify male and female sexual identity. While, during adulthood, let-7 helps establish and sustain gonadal differentiation and sexual identity in males and females²¹⁰. This growing evidence demonstrates that sex-hormonal control of cellular sexual identity exists in *Drosophila*, similar to vertebrates²¹¹.

Mammalian sexual differentiation is related to *Drosophila* sexual differentiation in a number of ways. First, females are X/X and males are X/Y. Second, in mammals females have two copies of a large, gene-rich X chromosome, whereas males have one X and a small, gene-poor Y chromosome. Hence, to avoid imbalance of genes and proteins and

drastic phenotypic effects, dosage compensation mechanisms have evolved that equilibrate the level of X-linked gene products between the sexes. Accordingly, twofold up-regulation in the expression of X-linked gene in males²¹² exists as well as the almost complete (but not all) inactivation of the genes on one of the two X chromosomes in females²¹³. Third, *Drosophila* dsx, which is expressed in a male-specific pattern and is required for male differentiation, shares a high degree of homology to Mab3²¹⁴, which is present in *C.elegans*, and Doublesex and Mab3 Related Transcription factor 1 (DMRT1) in reptiles, zebrafish²¹⁵ and mammals²¹⁶. It remains striking that the sex determination mechanisms is highly conserved across species from *C.elegans* to *Drosophila* and mammals and argues that future studies will reveal even more similarities in the global regulation of sex traits.

Environmental cues also influence sex determination. One example is the regulation of sex identity by estrogen through the differential expression of an epigenetic histone modifier in reptiles. It has been shown that temperature or estrogen levels affect the sex determination pathway in reptiles by modulating the expression of the histone demethylase KDM6B in a sexually dimorphic manner. Expression of the chromatin modifier: KDM6B is high at male- producing temperatures (26° C) and low at warmer, female producing temperatures (32° C). KDM6B demethylates the trimethylated histone H3 lysine 27 (H3K27me3) which activates gene expression at the highly conserved key sex-determining gene locus, *Dmrt1*²¹⁷. This leads to the expression of the testicular Sertoli cell markers *Sox9* and *Amh* and the inhibition of ovarian markers *Cyp19a1* and *Foxl2*. In contrast, high temperature or the presence of estrogen at low temperatures is sufficient to down-regulate relative expression levels of KDM6B, which gives rise to females²¹⁷.

Hence there is a strong interaction across species²¹⁸ between the cell-autonomous sex determination whereby cells know their sex by their sex chromosome constitution, and non-cell autonomous gonadal sex whereby the gonadal sex elements primarily creates a system that is responsive to the sex-specific endocrine milieu characteristic of the stage of development, as well as the specific male and female environments, controling at least in part some aspects of the cellular sex as well as secondary sex characteristics^{211,219}.

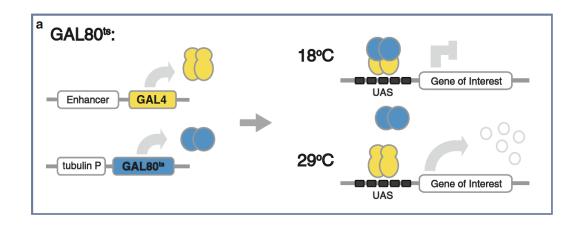
1.12. Effect of sex hormones on sex and non-sex organs:

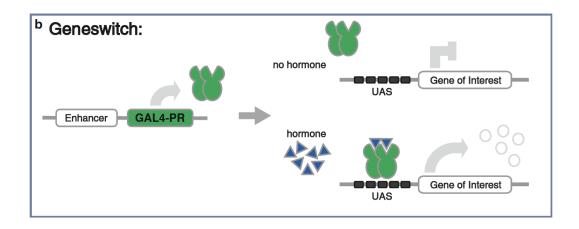
Sex hormones are the chief systemic mediators of the sex differences imparted by the gonadal sex. They are responsible for many aspects of the sexual maturation and appearance of secondary sex characteristics. Nevertheless, there is accumulating evidence linking sex hormones to the physiology of non-sex organs as well. Sex steroids are steroid hormones that are cholesterol-derived²²⁰, and synthesized by Cytochrome P450 enzymes mainly in the gonads of the animal but also to much lesser extents in the kidney, adipose tissue, skin, and brain²²⁰. In mammals, sex steroids include: estrogen, progesterone and testosterone. Sex hormones are involved in many processes including stem cell division^{221,222}, renewal of reproductive^{223,224} and non-reproductive organs^{225,226}, central regulation of systemic metabolism²²⁷ and stimulating appetite and food intake²²⁸.Similarly, sex steroids are known for their pro-^{229,230} or anti-inflammatory^{231,232}, immune-modulatory^{233,234}, angiogenic^{235,236} roles as well as for the recruitment of stromal cells in the tumour microenvironment during cancer development^{237,238}. Even development of severe body-wasting syndrome called cachexia shows a strong sex preference with higher prevalence in males than females possibly due to the protective effects of estrogen on the muscle mass^{239,240}. Since the 20HE hormone I studied is of high resemblance to estrogen in both its structure and function¹²³, I focus on the roles of estrogen and to a lesser extent progesterone (collectively termed female sex steroids) in the next paragraph. There are four naturally occurring steroid estrogens: estrone (E1), 17β -estradiol (E2), estriol (E3) and the pregnancy-specific estetrol (E4). All estrogens are derived from cholesterol. E2 is the major product during the premenopausal period in a woman's life, whereas E1 is synthesized from the adipose tissue²⁴¹ and plays a larger role after menopause. E3 is the least potent estrogen and together with E4 they are secreted by the placenta and remodel the organs during pregnancy. Estrogens are interconverted to each other through CYP450 enzymes in a process named metabolism. Metabolism is the enzymatic modification of exogenous or endogenous compounds, which either alters their metabolic stability or detoxifies them for clearance outside the body²⁴². Similarly, endogenous hormones are metabolized into less active forms such as estrogen inactivation of E2 involves its conversion to a lesser active form E1 or E3 or addition of sulfation adducts by estrogen sulfotransferases which inactivate the estrogens^{243,244}. Estrogens bind to at least three different estrogen receptors (ERs), ESR1 (ERalpha, or

ER α), ESR2 (ERbeta or ER β) and a membrane G-protein coupled receptor, GPR30 (or GPER1). ER α and ER β are well-identified nuclear receptors and are products of distinct genes located on different chromosomes. The actions of $ER\beta$ seem to be opposing to ER α -mediated transcriptional responses^{245,246}. 17 β -estradiol binds equally to ER α and $ER\beta$, hence the genomic response in the target tissue depends on the ratio between $ER\alpha$ and $ER\beta^{247}$. Stimulation of target gene expression in response to estrogen-bound ERs occurs through (i) 'direct binding' to estrogen response elements (EREs) in the target genes and interacting directly with coactivator proteins and components of the RNA polymerase II transcription initiation complex resulting in enhanced transcription or (ii) 'tethering' of liganded ER to another DNA-bound transcription factor such as RARa, Sp1, AP-1, and NF κ B in a way that stabilizes the DNA binding of that transcription factor and/or recruits coactivators to the complex²⁴⁶. The latter mode of ER transactivation extends the ER influence to genes that do not contain ERE sequences in their promoter regions adding yet more complexity to the transcriptional regulation. Similarly, both ER α and ER β interact with receptor tyrosine kinases, scaffolding proteins, guanine nucleotide exchange (G)-proteins, as well as other intracellular signaling proteins, to activate a wide array of cytoplasmic signaling pathways, independent of their transcriptional effects²⁴⁸. Alternatively, the transmembrane or endoplasmic reticulumbound GPR30 was shown to bind endogenous E2 as a ligand and to activate Erk and PI3K-Akt signaling in breast cancer cell lines^{249,250}.

Generally, female sex steroids regulate the growth, development and physiology of the reproductive organs during puberty, the estrus cycle and pregnancy ^{224,251-254} as well as their carcinogenesis^{255,256}. Moreover, the female sex steroids are required in a paracrine or intracrine fashion to regulate the physiology and tissue-specific functions of the brain^{257,258}, bone²⁵⁹ or adipose tissue²⁶⁰ with or without dependency on circulating levels of ovary-derived sex hormones. Surprisingly, estrogen-synthesizing aromatase and estrogen receptors are also expressed in diverse sites of the male gonads. E2 is required for spermiogenesis, sperm maturation and sperm motility ^{261,262}. Additionally, estrogen is required for neuronal functions and aromatase-knockout mice, which are unable to synthesize estrogen, are impaired in many behaviors including sexual, aggressive, and locomotive behaviors²⁶³. Hence, there's a tight balance between estrogen synthesis and deactivation to regulate organ-wide homeostasis and its deregulation leads to many

pathologies²⁶⁴.


1.13. Impact of exogenous sex hormones on health.


In the more recent years, exogenous exposure to sex steroid hormones has proven to have harmful effects on the reproductive health of many organisms in the ecosystem, including humans. As an example, estrogen will be discussed below as nearly all body tissues develop a response to estrogens²⁶⁵. Exogenous sources of estrogen may include exposure from environmental sources, dietary sources or through use of oral contraceptives and hormone replacement therapies. Estrogen can leak into the environment through the wastewater or manure of livestock as well as urine of women on oral contraceptives or hormone replacement therapy^{266,267}. Of note, all food of animal origin contains detectable estrogen and its metabolites at variable concentrations. 17ß-estradiol is the most potent estrogen, but even the least potent naturally occurring or synthetic estrogens have drastic effects that warrant for concern²⁶⁷. The relative potency of 17β -estradiol is 10^4 to 10^6 times compared to some xenoestrogens in-vitro²⁶⁸. Elevated levels of 17β-estradiol in the environment^{266,269-271} are responsible for a plethora of endocrine disturbances including predisposition to obesity²⁷², increased occurrence of genital abnormalities among new born boys and precocious puberty in girls^{273,274}, disturbances in male spermatogenesis and fertility ²⁶²as well as sex reversal in fish^{275,276}. As dietary or environmental exposure to steroid hormones and their metabolites is inevitable, it is therefore of prime importance to investigate if there is an impact of environment loading²⁶⁷ or dietary exposure of steroid hormones on the physiology of mammalian organs and health. Indeed, as an example dietary exposure to milk products supplies about 60-80% of ingested female sex steroids, that come from the animal's endogenous stores even without the animals being raised on estradiol^{277,278}. As early as 1-2 hours after cow milk consumption, both serum and urine concentrations of estrogen and progesterone metabolites were significantly increased in all men, women and children^{277,279}. Milk consumption from pregnant cows also caused suppression of gonadotropin hormone secretion concurrent with the absorption of exogenous estrogens²⁷⁹. Elevated sex hormones are known to result in a negative feedback loop on the hypothalamic-pituitary-gonadal axis, which suppress gonadotropin hormone secretion. Gonadotropin hormone secretion is essential for the

regulation of the menstrual cycle and its disturbances is associated with some reproductive endocrine disorders including anovulatory amenorrhea and hypoestrogenemia²⁸⁰. In congruence with the hypothesis that dietary intake of estrogenrich foods interferes with the normal reproductive functions, dairy food intake is associated with twice higher risk of sporadic anovulation²⁸¹, reproductive senescence and diminished ovarian reserve (accelerated ovarian aging)²⁸². Similarly, suggestive evidence shows that exogenous dietary hormone intake, through milk consumption is associated with significantly higher risk of endometrial cancer progression, especially in postmenopausal women²⁸³. Collectively, the current evidence associating sex hormone intake with reproductive health suggests that indeed the hormones in the food get absorbed to the blood, which are associated with detrimental long-term consequences on the reproductive health. Accordingly, the effect of dietary intake of naturally occurring sources of high sex steroids on the organismal health deserves more detailed study.

1.14. Fly genetics.

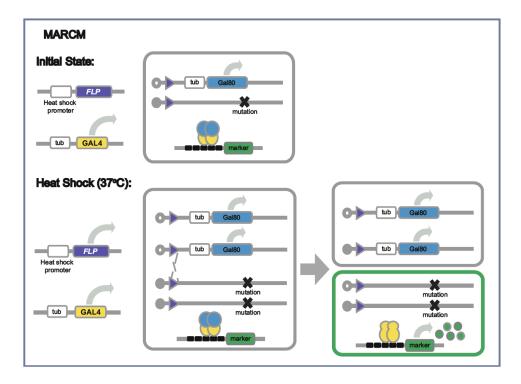

Most of the experiments done in this thesis were based on the GAL4-UAS^{ts} binary expression system, a P element based system –that allows patterns of an enhancer-driven expression to reflect the expression of any gene of interest. P elements are transposable DNA elements that hop and insert themselves into the genomic DNA, preferentially into sequences that regulate gene expression (i.e. enhancers). A GAL4-UAS is designed by replacing an "enhancer trap" P construct with the yeast transcription factor, Gal4 followed by the introduction of the gene of interest in a second P element.

Figure 1.10 Genetic modifications of the GAL4 system to obtain spatiotemporal control of gene expression. (a) Ubiquitously expression of temperature- sensitive allele of GAL80 (tubGAL80^{ts}) will inhibit GAL4 activity at the permissive temperature of 18 °C. At the restrictive temperature of 29 °C GAL80^{ts} cannot bind GAL4 to inhibit it, therefore allowing GAL4-dependent transgene expression. (b) The GeneSwitch system is an example of ligand- inducible GAL4. Fusion of the GAL4 DNA binding domain to the ligand-binding domain of the progesterone receptor results in GAL4 activity only in the presence of the drug RU486/Mifprestone. Illustrations adopted from: Caygill and Brand, 2016. DOI 10.1007/978-1-4939-6371-3_2

Hence, the promoter will be activated by Gal4 binding and the candidate gene of interest will be expressed wherever Gal4 is expressed. Then, the GAL4-UAS system has another modification which is the introduction of a temperature sensitive version of the Gal4 repressor a Gal80 protein that represses Gal4 at permissive temperature (18°C) but allows Gal4 expression upon shift to a higher temperature (25-29°C). This method allows for spatiotemporal control of gene expression such that other tissues where the gene of interest is expressed are not affected and the phenotype results from the specific manipulation of gene expression where the Gal4 is expressed. This system can be extended for clonal analysis by the introduction of UAS-flp Act>CD2>Gal4). This introduction of a sequence encoding for flippase enzyme flips a stop codon cassette spaced between the Act and Gal4 sequence, allowing the ubiquitous expression of actindriven genes thereafter⁸. Enhancers used for the Gal4 conditional systems include esg expressed in progenitor cells, esg^{ts} Su(H)Gal80 expressed in ISCs, Su(H) expressed in enreroblasts, Myo1A expressed in enterocytes, pros expressed in enteroendocrine cells and how expressed in visceral muscle. A different modification of the Gal4 system includes GeneSwitch GAL4 system which replaces the traditional Gal4 with chimeric

Gal4 protein, that it is activated only in response to feeding with the hormone analog mifepristone/RU486²⁸⁴.

Figure 1.11 Mosaic Analysis with a Repressible Cell Marker (MARCM) uses FLP/FRT system to generate loss-of- function clones. Both GAL4 and GAL80 are ubiquitously expressed from the tubulin promoter, which causes the repression of the GAL4-inducible marker. Heat shock at 37°C induces expression of FLP recombinase that catalyzes recombination between FRTs on homologous chromosomes carrying either the mutation of interest or a tubGAL80 construct. GAL80 segregates from the mutation into different daughter cells, one that inherits two copies of the tubGAL80 and remains wildtype and the other that carries the mutation on the two chromosome arms i.e. homozygous mutant cell. GAL4 labels these mutant clones. Illustrations adopted from: Caygill and Brand, 2016. DOI 10.1007/978-1-4939-6371-3 2

Alternatively, to analyze the function of impaired a small subset of cells in otherwise phenotypically wild-type organism, A MARCM (mosaic analysis with a repressible cell marker) system can be used to label homozygous mutant cells uniquely in mosaic tissues, In MARCM, initially, all cells are heterozygous for transgene encoding Gal80, which keeps the Gal4 activity inhibited. Then, FLP/FRT-mediated mitotic recombination takes place as the cells receive the stimulus to divide resulting in one daughter cell that expresses 2 copies of Gal80, and another cell that is devoid of Gal80, instead allowing the

expression of a Gal4-driven membrane-targeted green fluorescent protein (GFP) (mCD8-GFP). Usually, a mutation is located on the chromosome arm *in-trans* to the chromosome arm containing the Gal80 transgene, the uniquely labeled Gal80-negative (Gal80–) cells should be homozygous for this mutation. Hence, homozygous mutant cells become labeled in a mosaic tissue²⁸⁵.

Results

The text of the following section (**Results**) has been taken and strongly modified from (Ahmed et al., 2020) and has been originally written by myself:

2.1. 20HE induces ISC proliferation in male and female guts.

To study the effects of steroid hormones on the gut, I first hypothesized that exogenous exposure of flies to steroids will be absorbed by the fly gut, similar to the human studies^{265,277}. Therefore, I added 20HE to high sucrose, low yeast food or standard fly food and I fed the flies overnight between 16hrs to 22hrs, then I assayed actively dividing ISCs/midgut by phospho-Ser10-histone 3 staining. I used enteric infection with *Pseudomonas entomophila (P.e.)* as a positive control that is known to cause strong ISC proliferation in mated females but not in males¹¹⁸ (Fig 2.1.1a). In contrast, I discovered that exogenous overnight feeding of 20HE induces ISC division in midguts of males or mated females regardless of the nutrient composition (Fig 2.1.1a,c). Next, I used the intestinal lineage-tracing system *esg-FlipOut (esg^{ts}-FO)* that marks ISCs and their resulting progeny by GFP⁴¹. Feeding 5mM 20HE overnight resulted in ISC division accompanied by clonal expansion and growth in the midgut of both sexes, though the clonal expansion was more prominent in females (Fig 2.1.1b).

20HE is known to act through the EcR•Usp complex, whereby 20HE binds the EcR•Usp complex, activating it to modulate target gene expression. To test if 20HE acts through EcR•Usp complex in the midgut and whether this effect is strictly ISC-autonomous or not, I used temperature sensitive esgGal4 tub-Gal80ts (*esg*^{ts}) driver to deplete either EcR or Usp specifically in progenitors. The robust 20HE induced ISC divisions in control flies were efficiently blocked when EcR or Usp was knocked-down in either males or females indicating that 20HE acts cell-autonomously through midgut progenitors (Fig 2.1.1c,d). I

validated the results by an independent/isoform specific RNAi line (Fig 2.1.1e-f) or ectopic misexpression of dominant negative EcR isoform (Fig 2.1.1g-h).

In both cases, I have used *P.e.* as a positive control but I will explain and refer to these results in a later section. Additionally, I used the MARCM system to generate GFP-marked ISC clones homozygous for depleted EcR levels²⁸⁵. Consistent with the RNAi results, MARCM EcR depleted ISC clones failed to divide under basal conditions and after 20HE-feeding. In both cases, they mostly remained less than 10 small cells/clone (Fig 2.1.2c-d).

EcR has 3 prominent isoforms: EcR A, EcR B1 and EcR B2 that are reported to regulate target gene expression differently^{159,286,287}. In an attempt to figure out which isoform is functional in ISCs of the gut, I used dominant negative (DN) isoforms to mis-express EcR A or B1. Ectopic expression of DN EcR A in progenitors competes with endogenous EcR A and blocks 20HE induced mitoses (Fig 2.1.1g-h). Additionally, I used isoform specific UAS-RNAi constructs to deplete EcR A or EcR B in progenitors and fed the flies overnight with 5mM 20HE then I scored ISC-mitoses. I found that EcR A depletion blocks the 20HE-induced mitoses while EcR B depleted progenitors show a minor defect in their division rates relative to control ISCs (Fig 2.1.1f).

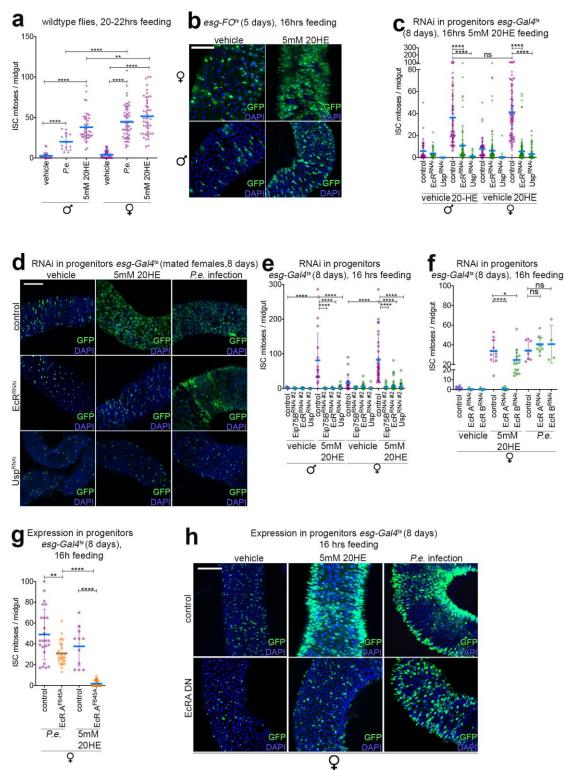


Fig 2.1.1

Figure 2.1.1: 20HE promotes ISC division through EcR A/Usp cell autonomously in male and female progenitors. Text and images have been taken and modified from (Ahmed et al., 2020) and have been originally written and made by myself: (a) Midguts from adult wildtype animals were treated for 20 hrs with enteric infection with *Pseudomonas entomophila* (*P.e.*) bacteria or 5mM 20HE exogenous feeding on low yeast diet overnight. Midguts were scored for phospho-histone3+ mitotic ISCs per time point. Males ISCs modestly divide while female ISCs divide strongly in response to *P.e.* infection. Both males and females had strong mitotic counts upon exogenous 5mM 20HE feeding. I have produced the female data of this panel during my master's study and I used it in my master's thesis as well, Sara Ahmed, 2015⁴⁶⁴.

(b) Using ISC lineage tracing tool, $esgFO^{ts}$. clonal growth was assessed such that GFP labels ISCs as well as their progeny. Upon 18-20 hrs 20HE feeding, females had a vast turnover in their epithelium whereas males had a slightly moderate turnover in their epithelium reflected by the mild increase in the GFP⁺ cells. This result shows that exogenous 20-HE boosts ISC mitoses and ISC clonal growth.

(c-d) EcR and Usp are cell-autonomously required in progenitors for 20HE-induced mitoses c) Mitotic counts of EcR^{RNAi} and Usp^{RNAi} male and females progenitors fed with 20HE overnight. d) EcR is not required for *P.e.*-induced ISC mitoses unlike Usp. Representative confocal images of the R4 region in the posterior midgut of mated females. Mated females were fed with exogenous 20HE, infected with *P.e.* for 20-22 hrs. I have produced the female data of this panel during my master's study and I used it in my master's thesis as well Sara Ahmed,2015⁴⁶⁴.

(e) Mitotic counts of 20HE-fed EcR^{RNAi} , Usp^{RNAi} , $Eip75B^{RNAi}$ (EcR-downstream target) male and females progenitors. Results are shown for an alternative independent RNAi line.

(f) 20HE through isoform EcR-A but not EcR-B mediates ISC division. Progenitor specific depletion of EcR- A^{RNAi} and EcR- B^{RNAi} shows that EcR-A mainly, and to a much lesser extent EcR-B is required in progenitors for their 20HE-induced ISC response 18 hrs after feeding. Depletion of EcR-A or EcR-B did not affect the strength of *P.e.*-induced ISC mitoses relative to age-matched controls.

(g-h) (g) Expression of EcR A dominant negative isoform inhibits the ISC proliferative response to 20HE but not to enteric infection 18-20 hrs after feeding. (h) Representative images of progenitors expansion following 20HE feeding indicative of ISC proliferation in control mated females, which is restricted by expression of EcR A DN in progenitors. Progenitors of control mated females or with EcR A DN misexpression expand across the epithelium to replace lost cells after infection.

To check the requirement of EcR-specific isoform in basal ISC mitoses, I induced ISC clones with EcR A or B DN expression and I let the clones form under non-stressed basal conditions. ISC clones with EcR A DN expression have impeded growth. While, ISC

clones with EcR B DN induces a full epithelial turnover accompanied with mild hyperplasia of the gut at 3 days after clonal formation (Fig 2.1.2a-b). Hence, my results indicate that EcR isoform A is the main functioning receptor partner that forms a complex with Usp in the ISCs of the midgut to regulate target gene transcription.

To further validate my findings, I checked the pattern of 20HE activation. I used EcR.LBD >GFP ligand trap reporter flies ^{186,288} that express GFP in cells with active 20HE signaling. The "ligand/sensor trap" system consists of the DNA-binding domain of yeast GAL4 (hs-Gal4>) fused to the nuclear receptor ligand-binding domain (LBD) under control of a heat-shock inducible promoter.

The expression of the fusion protein binds a UAS-controlled GFP reporter gene. Heat shock in these transgenic flies will drive ubiquitous expression of the transgenic fusion proteins only when the ligand is present, it will bind to the Gal4 fusion protein and activate the UAS-GFP reporter expression. As the active protein binds a UAS-linked GFP, nuclear GFP expression is induced¹⁸⁶. Additionally, I labeled delta (ISC marker) positive cells or Su(H) (EB marker) positive cells. After 20HE feeding, I detected active 20HE signaling in many ISC singlets, ISC doublets and in fewer enteroblasts of both males and females (Fig 2.2e-h). Remarkably, 20HE feeding activated EcR signaling in delta⁺ ISC pairs in the midguts of both males and females, suggestive of symmetric ISC division¹². This finding is particularly intriguing because most instances of reported ISC mitoses in the *Drosophila* midgut occur in the asymmetric mode of division^{5,93}.

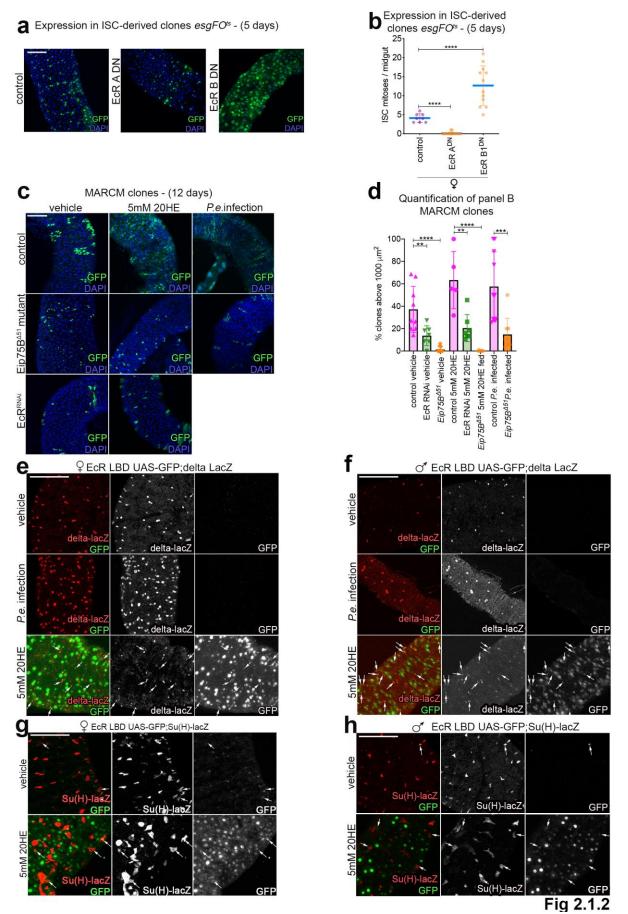


Fig 2.1.2 20HE feeding to male and female flies require EcR and Eip75B to activate

EcR LBD reporters in symmetrically and asymmetrically dividing ISCs.

Text and images have been taken and modified from (Ahmed et al., 2020) and have been originally written and made by myself: (a) EcR isoform A but not B is required for driving intestinal hyperplasia in mated females as shown by representative images of the posterior midgut of mated females expressing EcR A DN or EcR B DN. EcR isoform A but not isoform B is required for ISC-derived epithelial turnover.

(b) ISC-derived clones with low levels of EcR A have impaired basal ISC mitoses. ISC mitotic counts were quantified after expressing different EcR dominant negative isoforms in mated female midguts.

(c-d) (c) EcR depleted and the ecdysone-inducible target Eip75B mutant clones fail to divide after 20HE feeding. Eip75B mutant clones fail to regenerate the epithelium after enteric infection. Representative images of MARCM ISC clones that were generated through heat shock induction and the R4 region of the posterior midgut was examined 12 days after clonal induction. Vehicle-fed control clones were multicellular and spread throughout the epithelium but, EcR depleted clones were considerably small, mostly between 2-4 cells and rarely up to 10 small cells/clone and Eip75B mutant ISC clones mostly remained single-celled clones. After 16hrs of 20-HE feeding, the epithelium is populated with newly formed cells within the control clones however, Eip75B mutant and EcR depleted ISC clones failed to promote ISC division. Upon enteric infection, Eip75B mutant clones minimally divide to give rise to clones with \leq 10 cells in contrast to control clones. (d) Quantification of panel k by a macro designed to assess clonal sizes/maximum Z projection. (see methods).

(e-h) 5mM 20-HE feeding caused a strong increase in the activity of EcR reporter indicated by increased GFP expression in the posterior midgut Males or mated females of the genotypes Gal4.DBD-EcR.LBD>GFP (Gal4-EcR>GFP) were heat shocked for 30 min, infected with *P.e.*, fed with 5mM 20HE or vehicle and dissected 18-20hrs later. These GFP ligand traps express GFP under the control of heat-inducible promoter and mark cells with active 20HE signaling. When fed with vehicle, Gal4-EcR>GFP is expressed in few cells in the R4 region posterior midgut (image shown) and in a lot more in the anterior midgut (image not shown). White arrows indicate cells that are double positive for delta or Su(H) lacZ markers. GFP was expressed in many delta⁺ cells (panels m,n) and much fewer Su(H)⁺ (panels o,p) of both males and females upon 5mM 20-HE feeding. The majority of the remaining positive cells are enterocytes. Upon 20 hrs of *P.e.* infection, GFP signal disappears from males and females guts indicating that EcR does not play a role in infection-induced stress response (panels m,n).

2.2. 20HE acts independent of the sex-determination pathway.

In Drosophila, the cell-intrinsic sex determination pathway controls growth and metabolism through differential sex-biased expression of splicing factors¹¹⁸. Accordingly, females express sex lethal (sxl) and transformer (tra), the master regulators of both sexual development and dosage compensation. Presence of sxl and tra activates a "feminized" epi-/genetic landscape in the ISC that cell-autonomously controls ISC division¹¹⁸. When virgin females are challenged with SDS or enteric infection with *P.e.*. ISC proliferation increases in control virgin females, and this is blunted when ISCs are masculinized through sxl or tra depletion (Fig 2.2a)¹¹⁸, partly explaining the difference in the ISC behavior between males and females. I then hypothesized that the hormonal differences in 20HE titers between males and females would act as an additional non-cell autonomous signal that influences ISC proliferation, independent of the sex identity. To test the former, I fed tra-depleted virgin female flies with 5mM 20HE overnight and found that it strongly induced ISC divisions at similar rates to control virgins (Fig 2.2a) accompanied by a fast epithelial turnover represented by the numerous GFP+ progenitors populating the posterior midgut (Fig 2.2b). These results indicate that masculinized female progenitors remain competent to respond to the 20HE mitotic stimulus, partly simulating the competence of male ISCs to divide in response to 20HE. In turn, this evidence suggests that 20HE functions independently of the sex identity of the ISCs. Thus, a combination of ISC-autonomous and non-autonomous hormonal factors affect ISC proliferation.

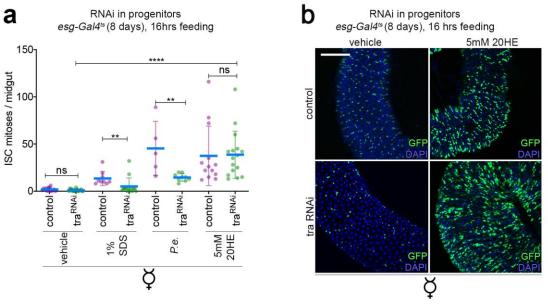


Fig 2.2 20HE induces ISC mitoses independent of the ISC-intrinsic sex determination pathway. Text and images have been taken and modified from (Ahmed et al., 2020) and have been originally written and made by myself: (a-b) Masculinized progenitors (ISC+EB) exhibit impaired mitoses in response to *P.e.* or SDS, but not to exogenous 20HE. (a) Mitotic counts of tra^{RNAi} treated virgin progenitors after 16-18 hrs *P.e.* infection, 5mM 20HE or SDS feeding. (b) Representative images of expanding GFP-marked tra^{RNAi} -treated progenitors upon feeding with exogenous 5mM 20HE.

2.3. EBs provide pro-mitotic factors that non-cell autonomously regulate 20HEinduced mitoses.

In an attempt to figure out whether other midgut cell types besides the ISCs require EcR to signal for the ISCs to divide after 20HE feeding, I targeted the different midgut cell types using conditional, cell type-specific Gal4 drivers and multiple independent UAS-RNAi lines or dominant negative expression to check which cells require EcR for the 20HE-induced ISC mitoses. Mitotic counts revealed that ISCs cell autonomously require EcR and Usp for the 20HE-induced ISC mitoses (Fig 2.3a). Surprisingly, EcR depletion in enteroblasts also completely blunted the 20HE-induced ISC mitoses (Fig 2.3b). In contrast, the ISC divisions were only mildly compromised when EcR was depleted in enterocytes with RNAi or dominant negative expression (Fig 2.3c). Similarly, requirement of EcR in enteroendocrine cells for the 20HE-induced ISC mitoses was rather marginal (Fig 2.3d). As some cells of the nervous system also express esg^{289} , I validated if EcR is required in those cells for the intestinal 20HE-induced mitoses. Expression of a pan-neuronal driver $elav^{ts 290}$ did not alter the mitotic counts of dividing ISCs to 20HE feeding in EcR depleted neurons relative to control neurons (Fig 2.3e). Hence, cell-specific analysis of EcR function in the different cells revealed that EcR is unexpectedly important in enteroblasts as well as ISCs for 20HE's proliferative actions in the midgut, suggestive of cell-autonomous and non-autonomous roles of EcR.

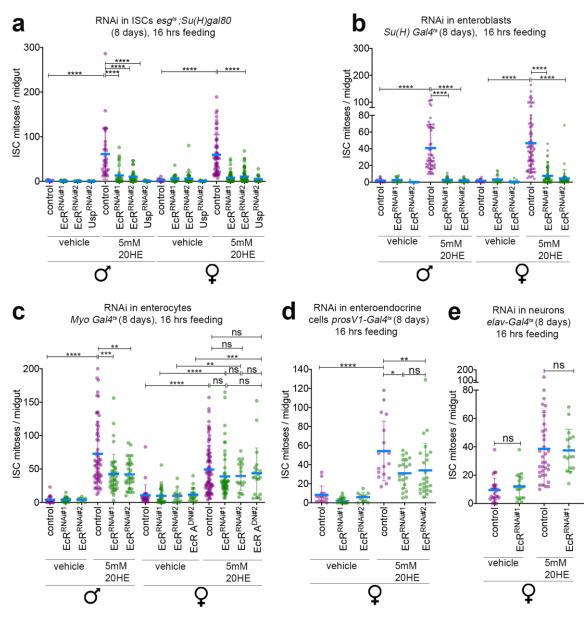


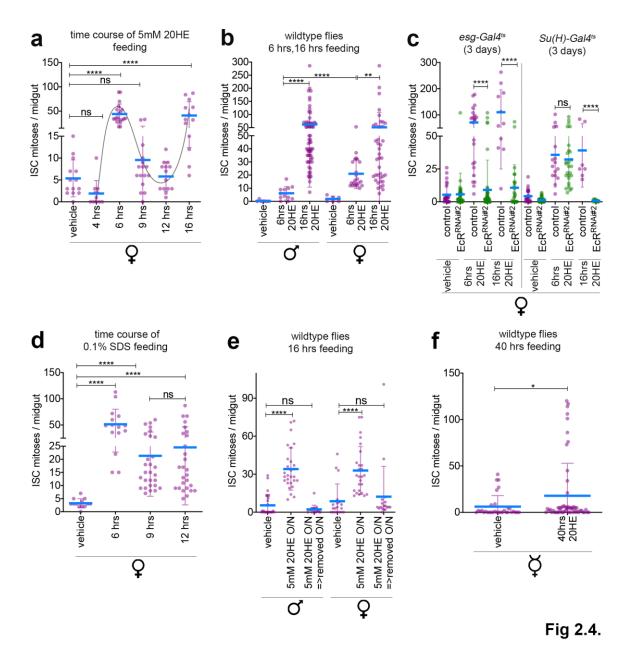
Fig 2.3 The mitotic wave of 20HE feeding at 16-18 hrs requires EcR and Usp in enteroblasts. Text and images have been taken and modified from (Ahmed et al., 2020) and have been originally written and made by myself: (a) Both EcR and Usp are required by the ISCs for the 20HE induced-mitoses. Scored mitotic counts after 16-18hrs of 20HE feeding show diminished ISC mitoses upon 5mM 20-HE feeding in males and mated females midguts with ISC-specific EcR^{RNAi} or Usp^{RNAi} . Results shown are for 2 different RNAi lines.

(b) EcR is required by the enteroblasts for promoting the mitoses induced by 16hrs of 20HE feeding. ISCs cannot divide after 20HE feeding when enteroblasts lack EcR in males and mated females. Results shown are for 2 different RNAi lines. This experiment

indicates that EcR is required non-cell autonomously in EBs for 20HE induced ISC divisions.

(c) EcR is marginally required in enterocytes for peak induction of ISC mitoses 16 hrs after 20HE feeding. ISC mitoses to 20HE are slightly compromised relative to controls when EcR levels are reduced in enterocytes. Results shown are for 2 different RNAi lines for both males and females, and dominant negative isoform of EcR in females. This indicates a non-cell autonomous requirement of EcR in ECs to induce optimal ISC mitoses in response to 20-HE.

(d) EcR in enteroendocrine cells plays a minimal role in 20HE-induced ISC mitoses of the male and female midguts. Enteroendocrine cells-specific EcR^{RNAi} slightly compromises 20HE-induced ISC mitoses indicating that EcR in enteroendocrine cells is rather dispensable to 20HE-induced ISC mitoses. Results are shown for 2 different RNAi lines.


(e) EcR in the central nervous system neurons is not required for 20HE-induced ISC mitoses of the midgut. *Elav^{ts}*; that is a pan-neuronal driver for the adult central nervous system was used to induce EcR^{RNAi} . Mitotic counts show that EcR depletion in the CNS did not alter the ISC division rates relative to control females. The period of RNAi induction is indicated above every panel. Results are from 3 or more pooled independent experiments. N≥10, for each genotype in the scatter plot. Error bars represent ± SD. Statistical analysis was performed using unpaired non-parametric two-tailed Mann-Whitney test (*p≤ 0.05,**p≤0.01,***p≤0.001, ****p<0.0001). The overnight standard period of feeding the flies was 16-20 hours. $\stackrel{\circ}{\supset}$ refers to males and $\stackrel{\bigcirc}{\rightarrow}$ refers to mated females.

2.4. 20HE induces ISC mitoses in 2 distinct waves, ISC autonomous then ISC noncell autonomous wave.

The intriguing observation that EcR in EBs contributes to the 20HE-induced mitoses had led us to question the cell-autonomous role of ISCs after 20HE feeding and I attempted to examine if there is a period of the proliferative response where EcR is exclusively and initially required only in ISCs. If EcR is always required in the EBs to signal to the ISCs to divide then it means that the only ISCs with intact EcR would never divide to the mitotic stimulus of 20HE feeding. It also would suggest that the 20HE-induced mitoses are not a direct consequence of 20HE feeding but rather a secondary effect of the EBs sensing increased levels of 20HE in the midgut. So, I tried a time course feeding of 20HE to mated female flies and I scored the mitoses/midgut at 5 different time points. Strikingly, I discovered an early peak of 20HE-induced ISC mitoses that starts at 6hrs and it blunts already by 9hrs then ISC division peaks again by 16hrs until 22hrs after feeding (Fig 2.4a), (compare to Fig 2.1a). Strikingly, when males were fed with 20HE for 6hrs their ISCs barely divided, whereas female ISCs had been dividing already albeit at slightly lower levels relative to 16hrs (Fig 2.4b). This could be due to biological variability in the potency of 20HE to induce ISC mitoses or that those flies particularly did not eat so much 20HE by 6hrs relative to ones in Fig2.4a. This is quite spectacular because the male ISCs seem to either have delayed or skipped initial ISC mitoses at 6hrs but then they become equally competent to female ISCs in their divisions after 20HE feeding. This finding goes in line with the evidence suggesting sex specific differences in the proportions of ISCs in the different cell cycle phases¹¹⁸.

After revealing the earlier peak of 20HE-induced ISCs mitoses in females, I tried to figure out if EcR in enteroblasts contribute to that phase as well. Hence, I depleted EcR specifically in the progenitors (ISCs+EBs) or enteroblasts and then fed mated females with 20HE for 6 hrs (first mitotic peak) or 16 hrs (second mitotic peak). Progenitor-specific reduction of endogenous EcR suppressed ISC mitoses at both time points, because the ISCs have reduced EcR levels. In contrast, depletion of EcR in enteroblasts had no effect on the ISC mitoses during the 1st mitotic peak but it blocked ISCs from dividing again at 16 hrs (Fig 2.4c). Hence, I was able to conclude that in females 20HE through EcR induces an ISC autonomous mitotic phase early after exposure, and then induces an ISC-non-cell autonomous mitotic phase that requires signals from enteroblasts.

Next, I wanted to check whether the kinetics of ISC response is similar to other promitotic stimuli in the intestine (supplementary fig 1c in 291), (supplementary fig 4^{292}). Thus, I did a time course of SDS feeding and I scored the mitoses at 3 different time points (compare to Fig 2.2c). Mitotic count analyses revealed that SDS-induced mitoses are detected by 6hrs of feeding however, unlike 20HE, the mitoses are extended over the assayed different time points (Fig 2.4d) (compare to Fig 2.2c). Upon provoking the midgut with different mitotic stimuli i.e. *P.e.* infection, detergent-induced stress that cause ISC divisions, the dynamics of the ISC mitoses are relatively extended over a time period ranging from 6 hrs to 48 hrs. Unlike, 20HE feeding, which causes at least a biphasic response of ISC mitoses, a unique behavior of 20HE-fed ISCs.

Fig 2.4 20HE induces ISC mitoses in a bi-phasic manner. Text and images have been taken and modified from (Ahmed et al., 2020) and have been originally written and made by myself: (a) 20HE induces 2 successive waves of ISC division, the first at 6hrs and the second at 16hrs. ISC mitotic counts of control mated females fed with 5mM 20HE for different durations.

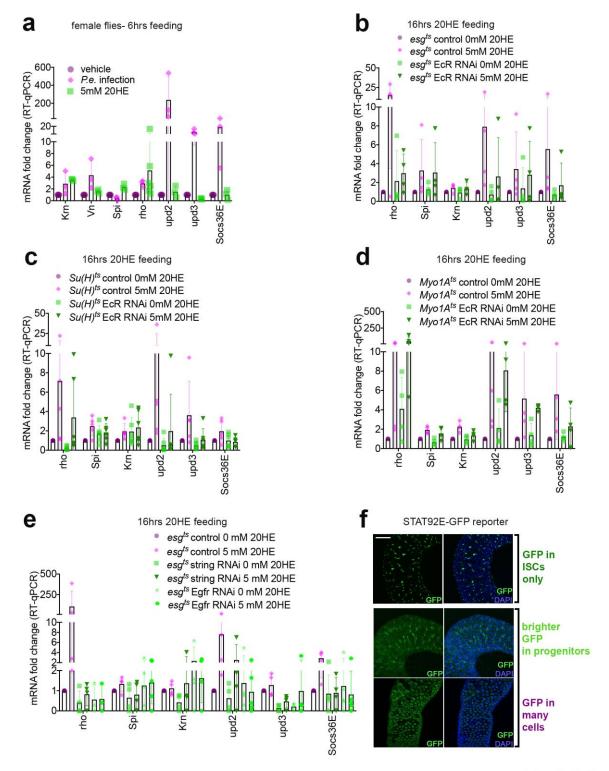
(b) At 6hrs, male ISCs unlike female ISCs fail to divide upon 20HE feeding, however, at 16hrs, both male and female ISCs are equally competent to divide in response to 20HE feeding. ISC mitotic counts of control males or mated females fed with 5mM 20HE for 6hrs or 16hrs.

(c) EcR is required in ISCs but not EBs during the 1st mitotic wave at 6hrs. However, EcR is required in both ISCs and EBs for the 2nd mitotic wave. ISC mitoses in midguts

expressing EcR^{RNAi} in progenitors (left) or enteroblasts (right) after 6 or 16hrs of exogenous 20HE feeding. RNAi was induced for 3 days before 20HE feeding. ISCs of control and EcR depleted enteroblasts divide at equal rates at 6 hrs. Midguts with EcR depleted enteroblasts have diminished ISC mitoses by 16hrs.

(d) ISCs start dividing by 6 hrs and the ISC mitoses extend over a period of at least 12hrs. ISC mitotic counts of control mated females fed with 0.1% SDS feeding.

(e) 20HE induces ISC mitoses briefly then mitoses return to basal levels, quantified by mitotic indices of male and female wildtype flies subjected to 2-day treatment regimes. ISC proliferation was restored to basal levels after 5mM 20HE was withdrawn, suggesting that 20HE's actions are not detrimental. Male and female flies were fed vehicle or 20HE in different successions such that flies were exposed for 20hrs to the first treatment, then for another 24hrs to the second treatment. ISC mitoses returned to basal levels after 16-20hrs treatments with 20HE then vehicle.


(f) 20HE-induced mitoses returns back to basal levels within 40hrs of feeding. Virgin females were fed with 5mM 20HE and ISC mitoses were scored after 40hrs. ISC mitoses stimulated at 16hrs of feeding (refer to Fig 2.14) subside to basal mitoses by 40hrs.

Statistical tests performed by unpaired non-parametric two-tailed Mann-Whitney test (ns p>0.05, ** $p\leq0.01$, ***p<0.001, ****p<0.001). \bigcirc : males. \bigcirc : mated females.

Stress stimuli such as bleomycin feeding or *P.e.* enteric infection are known to cause massive ISC divisions for at least 48hrs^{8,293}. Injury stimulated expansion of ISCs such as combined bleomycin and heatshock treatments can recover back to basal levels, although not entirely after 72 hrs of recovery²⁹². Hence, I asked whether 20HE similarly ISC mitoses. So, I fed the flies overnight with 20HE then removed it for another 16-18hrs after which I scored mitotic counts. The 20HE induced ISC mitoses quickly subsided and returned to basal levels similar to mock-fed males and females (Fig 2.4e). In a separate set of experiments, I subjected female virgins to 20HE for 40hrs (Fig 2.4f) during which the flies were constantly feeding on 20HE, yet the 20HE-induced ISC mitoses were very low and almost comparable to basal ISC mitoses. The former finding indicates that the 20HE-mitotic effect is readily reversible while the latter finding supports the biphasic manner of 20HE-induced mitoses observed in Fig 2.4a.

2.5.1-3 20HE induces ISC mitoses cell autonomously through EGF signaling and unpaired cytokines in the first peak then unpaired cytokines are required in EBs or ECs non-cell autonomously to induce ISCs mitoses in the second peak. To find out how 20HE causes ISCs to divide, I first asked which targets are being transcriptionally upregulated after 20HE, then I tested several reporters of some critical pathways involved in stress-inducible ISC mitoses^{8,41}. Finally, I continued to functionally deplete the targets via RNAi or whole body mutants when available. According to previous reports, stress-induced damage to the epithelium causes EGF ligands and unpaireds 2,3 (Jak-Stat) ligands production mainly from the ECs and to a lesser extent from the EBs that in a positive feedback loop stimulate compensatory ISC division²⁹⁴. In contrast, what I found is that the 20HE-induced ISC mitoses in the 1st wave at 6hrs initially require EGFR signaling and maybe upd2 from the ISCs. Then, 20HE feeding requires and regulates both upd2 in EBs and ECs and to a lesser extent upd3 in the progenitors for the 2nd wave of mitoses at 16-18hrs to occur (Fig 2.5.3c). When the cell cycle and the initial mitoses are halted, upd2 and upd3-transcriptional upregulation does not occur in response to 20HE feeding. The novelty of these described results is in that they support a model²⁹⁵ in which 20HE-induced ISC divisions is a primary not a secondary consequence of 20HE feeding.

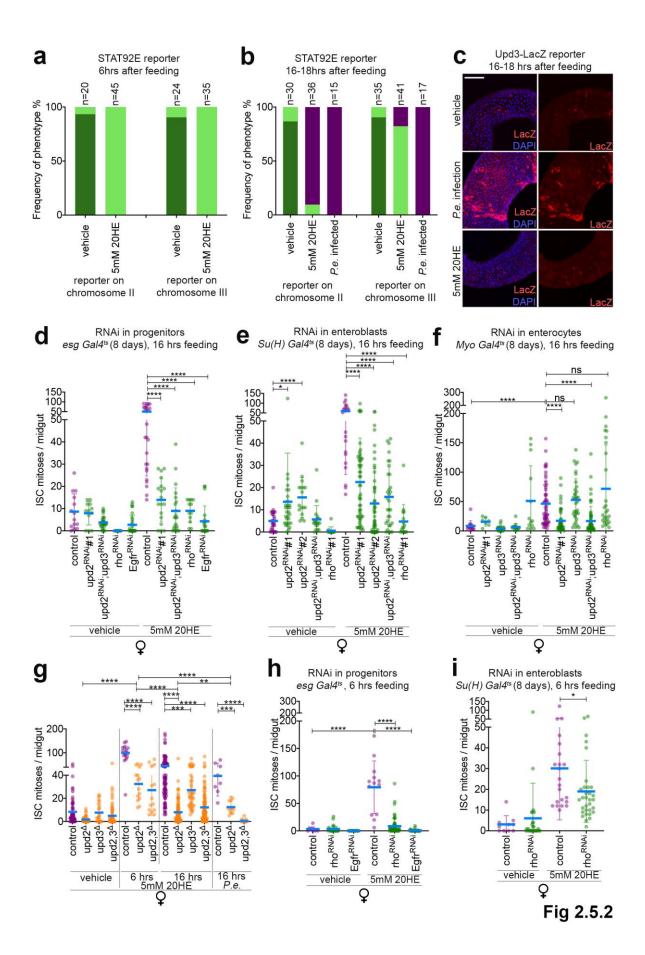
To obtain the findings described above, I started by measuring endogenous induction of some of the well-studied signaling pathway components of Egfr and Jak-Stat signaling at an early time point after 20HE feeding (coincides with the first mitotic phase) and I used enteric infection as a positive control. I found that while *P.e.* infection caused mild upregulation of vein, keren Egf ligands, rho the protease cleaving them, it caused a drastic upregulation of upd2, upd3 and Socs36E in infected whole midguts (Fig 2.5.1a)⁸. In contrast, 20HE caused a mild increase of keren, spi, rho, very slightly upd2 but, unchanged upd3 and Socs36E mRNA levels (Fig 2.5.1a). Thus, I deduced that 20HE at its first mitotic phase of 6 hrs-post feeding regulates Egf signaling. Next, I noticed a very mild induction of upd2 at 6hrs and I wondered how is Jak-Stat signaling regulated by EcR in response to 20HE feeding.

Fig 2.5.1 2nd mitotic wave of 20HE feeding regulates EGF and JAK-STAT signaling. Text and images have been taken and modified from (Ahmed et al., 2020) and have been originally written and made by myself: (a) 20HE transcriptionally induces rho and spi or krn EGF ligands, but very mildly induces unpaired ligands relative to infected controls. Mated females were fed with 20HE or *P.e.* bacteria for 6 hrs. Midguts were extracted and the mRNA levels were analyzed by qRT-PCR, normalized to β -tubulin. Expression is indicated as mean fold change relative to vehicle-treated midguts ± SD (n≥3).

(b) Expression of rho, upd2 and STAT target Socs36E is transcriptionally upregulated through EcR in progenitors 16-18 hrs after 20HE feeding. Midguts were extracted and mRNA levels were analyzed by qRT-PCR, normalized to β -tubulin. Expression is indicated as mean fold change relative to vehicle-treated midguts ± SD (n≥3).

(c) Expression of rho, upd2 and STAT target Socs36E is transcriptionally upregulated through EcR in enteroblasts 16-18 hrs after 20HE feeding. Midguts were extracted and mRNA levels were analyzed by qRT-PCR, normalized to β -tubulin. Expression is indicated as mean fold change relative to vehicle-treated midguts ± SD (n≥3).

(d) EcR^{RNAi} in enterocytes does not control the 20HE-induced transcriptional upregulation of rho, upd2 and Socs36E. Midguts were extracted and mRNA levels were analyzed by qRT-PCR, normalized to β -tubulin. Expression is indicated as mean fold change relative to vehicle-treated midguts \pm SD (n \geq 3).


(e) Reduced EGF signaling through $Egfr^{RNAi}$ in progenitors or cell cycle arrest via $string^{RNAi}$ in progenitors blocks the 20HE-induced transcriptional upregulation of rho, upd2 and Socs36E. EFG signaling and cell cycle cell-autonomously control the subsequent induction of JAK-STAT signaling. Expression is indicated as mean fold change relative to vehicle-treated midguts \pm SD (n \geq 3).

(f) Representative images of the STAT92E-GFP reporter phenotypes on chromosome II or III. Reporter activation is grouped into 3 different categories. Category: GFP in ISCs only has GFP expression in single ISCs and is labeled dark green. Category: brighter GFP in progenitors has GFP expression in doublets and is labeled bright green. Category: GFP in many cells has GFP expression diffuse throughout most cells. GFP, in green; DAPI, in blue. Scale bar, 100 μ m.

The following experiments were all done at the time point that coincides with the 2nd mitotic phase of ISCs to 20HE feeding and it is the time point where I observed the most transcriptional induction of upd2. To investigate how EcR regulates Egf and Jak-Stat signaling components, I proceeded with cell-specific depletion of EcR (in progenitors, enteroblasts or enterocytes) and I measured transcriptional induction of the same targets I used earlier. 16 hours post feeding, 20HE caused rho, upd2, modest upd3 and Socs36E induction, which is dependent on EcR in progenitors (Fig 2.5.1b). Although, there was a mild increase in spi and keren ligands, it did not seem to be regulated through EcR in

progenitors. Enteroblast-specific EcR^{RNAi} blocked the 20HE-induction of rho, upd2, upd3 and Socs36E (Fig 2.5.1c). In contrast, enterocyte-specific EcR^{RNAi} did not affect the 20HE-induction of rho, upd3 at all, though there was a marginal decrease in upd2 and Socs36E. Moreover, it slightly impaired the modest increase of spi and keren transcripts (Fig 2.5.1d). In summary, EcR seems to regulate rho, upd2 upd3 and Socs36E in progenitors, partly through enteroblasts while EcR in enterocytes seems to regulate Egf ligands after 16-18 hrs of 20HE feeding. Next to investigate whether EC- or EBdependent upregulation of upd2 was a secondary consequence of ISC division. To test this hypothesis, I first blocked ISC mitoses using an RNAi against String (stg), a Cdc25 homolog required for all somatic cell mitoses in *Drosophila*²⁹⁶. Alternatively, I blocked ISC reception of EGF ligand by $Egfr^{RNAi}$ in progenitors. Progenitor-specific $Egfr^{RNAi}$ or string^{RNAi} almost completely blocks the inductive peaks of rho, upd2, upd3 and Socs36E caused by EBs and ECs. This result argues that the ISC autonomous division is what consequently drives the non-cell autonomous inductive peaks of rho and upd2 (Fig 2.5.1e). Afterwards, I proceeded to validate the qPCR results by examining the expression of Jak-Stat pathway activation reporter after 20HE feeding in the different cell types of the posterior midgut. 10×Stat92E-GFP is a GFP reporter with 10 copies of STAT-binding sites at the promoter, which serves as a reliable marker for STAT92E activation in vivo²⁹⁷. Fig 2.5.1f shows example images of the categories of Jak-Stat activity, with GFP signal localized in mostly single cells (basal), in many pairs (moderate) or in all cells (strong). Under basal conditions, I found the Stat92E reporter to be active in mostly single cells and to a lesser extent in doublets. After 6 hrs of 20HE feeding, activity of the reporter was more diffuse, in doublets or small clusters (Fig 2.5.2a). In contrast, 18 hrs after 20HE feeding, Stat92E activity varied from moderate to strong depending on the reporter's genetic background. However, the 20HE-induced reporter's activity was much weaker in comparison to the strong reporter activity induced by P.e., observed in all infected guts (Fig 2.5.2b).

I also tested the upd3-lacZ reporter, a lacZ enhancer trap of upd3, which shows expression of β -galactosidase in the epithelial cells producing upd3²⁹⁸. I found the upd3-lacZ reporter to be unchanged after 20HE feeding relative to its strong activity in cell

Fig 2.5.2 Upd2, rho and Egfr are required in progenitors for 20HE-induced mitoses.

Text and images have been taken and modified from (Ahmed et al., 2020) and have been originally written and made by myself: (a) Under homeostatic conditions, the reporter expresses GFP mostly in ISCs alone (dark green bar). By 6 hrs of 20HE feeding, GFP is localized in midgut progenitors all over the gut (bright green bar). 18% of the guts that express the reporter on chromosome II show a slight accumulation of GFP in other cells upon 20HE feeding, but the GFP signal was not as strong as in the category "GFP in many cells". Phenotypes were scored in the R4 region. Bright green bars denote a milder activation pattern while dark green bars denote no activation of the reporter. 5-7 days old mated females were used for the experiment.

(b) 20HE feeding induces STAT92E-GFP reporter activity much slighter than does *P.e.* infection. Frequency of phenotype occurrence is analyzed based on the categories of activity in panel f. Under homeostatic conditions, the reporter expresses GFP only in ISCs (dark green bar). 16 hrs after 20HE feeding, most midguts of the reporter on chromosome II have GFP localized in many midgut cells including polyploid enterocytes (purple bar). However, most midguts of the reporter on chromosome III have GFP localized in the midgut progenitors (bright green bar). In contrast, *P.e.* infected midguts of the reporters on either chromosome exhibited a strong uniform activation pattern in all midgut cells of the R4 region. % Frequency of phenotype was plotted in reference to phenotypes observed in the R4 region. Purple bars denote the strongest activation pattern; bright green bars denote a milder activation pattern while dark green bars denote no activation of the reporter. 5-7 days old mated females were used for the experiment.

(c) Upd3-lacZ reporter is not activated by 20HE feeding. Images of the R4 region of the midgut showing basal expression of the upd3 reporter in vehicle fed flies relative to strong activation of the reporter upon *P.e.* infection. In contrast, 16hrs of 20HE feeding did not appreciably activate the upd3 reporter. This data indicates that 20HE does not primarily activate upd3 to promote ISC mitoses in the midgut. 5-7 days old mated females were used for the experiment. All images were acquired at the same settings and the intensities of activation are accurately represented.

(d) Number of mitoses in control and progenitor-specific downregulation of *upd2*, *upd2*, *upd3*, *Egfr* or *rho* for 8 days. Flies were exposed to exogenous 20HE feeding for 16 hrs. *upd2*, *upd3*, *Egfr* and *rho* from progenitors are required for the 20HE-induced ISC mitoses.

(e) Number of mitoses in control and enteroblast-specific downregulation of *upd2*, *upd2*, *upd3* or *rho* for 8 days. Flies were exposed to exogenous 20HE feeding for 16 hrs. *upd2*, *upd3* and *rho* from enteroblasts are required for the 20HE-induced ISC mitoses.

(f) Number of mitoses in control and enterocyte-specific downregulation of *upd2*, *upd2*, *upd3* or *rho* for 8 days. Flies were exposed to exogenous 20HE feeding for 16 hrs. *upd2* but not *upd3*, *rho* from enterocytes are required for the 20HE-induced ISC mitoses.

(g) Midgut mitotic counts of $upd2\Delta$, $upd3\Delta$, $upd2,3\Delta$ whole body mutants and control flies after 6 or 16hrs of 20HE feeding and 16hrs of *P.e.* infection. ISCs of $upd2\Delta$ and

 $upd2,3\Delta$ mutants can divide yet, to a weaker extent relative to controls in response to the 1st wave of ISC mitoses at 6 hrs. ISCs of $upd3\Delta$ mutants show a minimal defect in ISC division at the 2nd wave of 20HE induced mitoses however ISCs of $upd2\Delta$ and $upd2,3\Delta$ are unable to divide at the 2nd mitotic wave of 20HE feeding. $upd2\Delta$ and $upd2,3\Delta$ cannot divide after *P.e.* infection. Thus, chiefly upd2 and marginally upd3 are required for ISC activation the 2nd mitotic wave of 20HE-mitoses while both are additively required for *P.e.* infection.

(h) Number of mitoses in control and progenitor-specific downregulation of *Egfr* or *rho* for 8 days. Flies were exposed to exogenous 20HE feeding for 6 hrs. *Egfr* and *rho* from progenitors are required for the 20HE-induced ISC mitoses.

(i) Number of mitoses in control and enteroblast-specific downregulation of *rho* for 8 days. Flies were exposed to exogenous 20HE feeding for 6 hrs. *rho* from enteroblasts is required to a lesser extent for the 20HE-induced ISC mitoses. Error bars represent \pm SD. Statistical analysis was performed using unpaired non-parametric two-tailed Mann-Whitney test (ns p>0.05, **p≤0.01,****p<0.0001). LacZ, in red; DAPI, in blue. Scale bar, 100 µm.

clusters after *P.e.* infection (Fig 2.5.2c). These reporter data are consistent with the qPCR data, which suggest the mild activation of upd3-Jak-Stat signaling induced by 20HE feeding.

To validate the functional involvement of the pathway components I tested above, I proceeded with depleting them with the cell-specific drivers and scored 20HE-induced mitoses. Consistent with the qPCR results, RNAi-mediated progenitor specific depletion of upd2 alone, upd2 upd3, rho or EGFR suppresses the 20HE-mediated mitotic response (Fig 2.5.2d).

As I observed earlier that EcR in progenitors and to a lesser extent in ECs regulate Jak-Stat and EGF signaling components, I sought to deplete upd2, upd3 and rho in progenitors to examine if they are required for 20HE-induced ISC mitoses. EB-specific depletion of upd2 alone, upd2 upd3 or rho severely compromised the mitotic response to 20HE feeding (Fig 2.5.2e). Consistent with the qPCR data, upd3 and rho were not required in ECs for 20HE-mediated ISC divisions. However, EC-specific depletion of upd2 or upd2,upd3 prevented the ISCs from dividing after 20HE feeding (Fig 2.5.2f). This effect could be due to the RNAi perduring to the young newly born ECs as a result of the rapid 20HE-mediated divisions. By now, I had identified that mainly upd2 is required in progenitors including EBs as well as ECs for the 20HE-induced ISC mitoses. To further corroborate the role of 20HE-induced upd2-Jak-Stat signaling in the midgut, I used single whole body mutants for upd2, upd3 or the double mutant upd2,3 which I fed with 20HE for 6hrs (1st peak), 16hrs (2nd peak) and I used enteric *P.e.* infection as a positive control that absolutely requires upd2 and upd3 in an additive manner for the regenerative *P.e.*–induced ISC mitoses²⁹⁹. At the 1st mitotic peak after 20HE feeding, ISCs of the mutant backgrounds upd2^{Δ} or upd2,3^{Δ} were competently dividing in response to 20HE feeding, albeit at lower levels relative to control midguts. However, at the 2nd mitotic wave, ISCs of upd2^{Δ} or upd2,3^{Δ} flies barely divided (Fig 2.5.2g). upd3^{Δ} ISCs showed some defect in their response to 20HE feeding, indicating the marginal significance of upd3 in 20HE-induced mitoses. Relative to 20HE mitotic stimulus, ISCs of upd2^{Δ} are moderately impaired in their *P.e.*-induced mitoses (Fig 2.5.2g), which shows the specificity of the differential requirement of upd2 for 20HE divisions.

Then owing to the transcriptional peak of EGF ligands I observed 6 hrs after 20HE feeding, I hypothesized that active EGF signaling in progenitors would contribute to the latter effect. To examine this, I depleted EGF signaling in progenitors through *Egfr-RNAi* or *rho-RNAi*, which caused a complete suppression of ISC mitoses after 20HE feeding (Fig 2.5.2h). Nevertheless, active EGF signaling was marginally required from EBs specifically to provide active EGF ligands, suggesting that majorly ISC cell-autonomous EGF is sufficient to sustain 20HE-induced mitoses at 6 hrs (Fig 2.5.2i). The EGFR activity readout, diphospho-ERK (dpERK), was also mildly activated by 20HE after 16hrs, mostly in progenitors but occasionally in ECs¹⁹. Consistent with this result, EGF signaling through EGFR or rho from progenitors and mainly ISCs, but not ECs is indispensible to the 20HE-induced mitoses. Furthermore, Erk activation in response to the 20HE-induced mitoses requires upd2 in the midgut cells (Fig 2.5.3a,b). Collectively, mostly upd2 and to a lesser extent upd3 are required for 20HE-induced mitoses possibly relaying signals for EGFR activation.

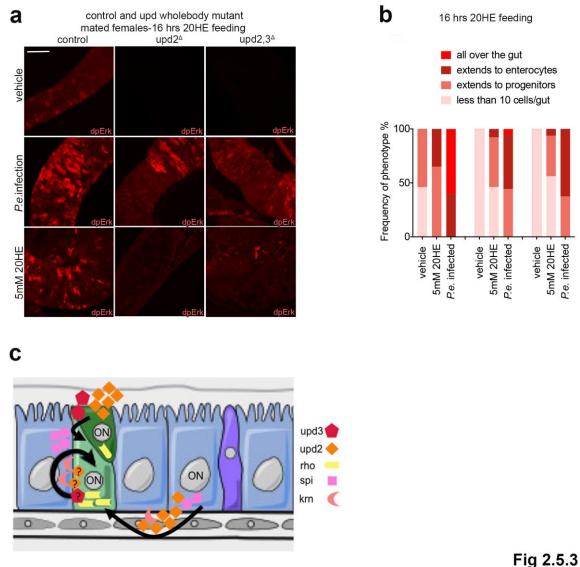


Fig 2.5.3 20HE feeding activates dpErk in an-upd2 dependent fashion. Text and images have been taken and modified from (Ahmed et al., 2020) and have been originally written and made by myself: (a-b) 20HE feeding increases dpErk activity in progenitors. (a) Representative images of Erk activity showing the most prevalent phenotype for each condition, assayed as (diphospho-Erk) dpErk after 20HE feeding or enteric infection. (b) Quantifications of dpErk staining. Under non-stressed conditions, dpErk is present either in very few ECs per gut, or in progenitor cells and very few ECs. Upon enteric infection, dpErk is substantially increased mainly in ECs. Although 20HE feeding also induces dpErk in midguts, the pattern is distinct from the one caused by enteric infection. Upon 20HE feeding, dpErk in mainly visible in progenitors and young ECs, and the signal is often localized to small patches of cells. In contrast, *P.e.* infection induces strong dpErk broadly throughout the gut. dpErk is absent in non-stressed upd2 or upd2,3 mutants. Enteric infection induces dpErk also in upd2 or upd2,3 mutants, albeit to a lower level than wildtype flies. In contrast, upd2 or upd2,3 mutants show very little or no dpErk upon

20HE feeding. 5-8 days old mated females were used for the experiment. Representative images are shown. dpErk, in red. Scale bar, 100 µm.

(c) A model summarizing the cell-type specific supply of Jak-Stat and EGF ligands after 20HE feeding. ON denotes cells with active 20HE EcR signaling. ISCs and to a lesser extent EBs have active rho signaling. ISCs produce their EGF ligands to stimulate cell-autonomous divisions. EBs and ECs produce mainly upd2, and EBs only produce much less upd3 ligands that are required for 20HE induced mitoses. ECs do not seem to require active rho signaling though some EGF ligand induction is regulated by the ECs. Whether ISCs cell-autonomously produce upd2 and upd3 or not remains an open question, although the data presented in Fig 2.7.1e supports this possibility.

2.6. Sexually dimorphic 20HE levels lead to increased ISC divisions and midgut growth in males or virgins.

Male ISCs divide less strongly than female ISCs in response to any mitotic stimulus¹¹⁸. This coincides with the females having more abundant expression of transcripts related to cell cycle processes in the midgut and more female ISCs in G2/S-phase, suggestive of sex-biased differences in ISC mitoses, that are partly dependent on the intrinsic ISC identity¹¹⁸. Consistent with this idea, feminizing the male ISCs by expressing a feminizing variant of transformer, traF, in male progenitors increased stress-induced ISC mitoses¹¹⁸. However, under non-stressed conditions, feminized male ISCs did not divide any more than control male ISCs¹¹⁸. In parallel, mated females produce more ecdysone than virgin females or males³⁰⁰⁻³⁰². Thus, I was intrigued to examine whether the dimorphic circulating ecdysone levels between males and mated females regulates sexspecific differences in the intestinal stem cell divisions. Congruous with this notion, raising males on 1mM 20HE-laced food for 2 weeks increased male ISC mitoses, accelerated epithelial turnover, and increased midgut size (Fig 2.6a-b, c-d). 20HE also promoted male ISC proliferation on a low protein diet (Fig 2.6e), implying that it enhances ISC proliferation independently of protein or nutrient availability. Of note, no other stimulus is reported to similarly affect male ISC mitoses or illicit gut growth^{8,118,303}. In order to figure out if the 20HE-dependent gut growth acts in part via the sex determination pathway, I overexpressed a feminizing variant of transformer, traF, in male progenitors (Fig 2.6d), which failed to drive midgut growth.

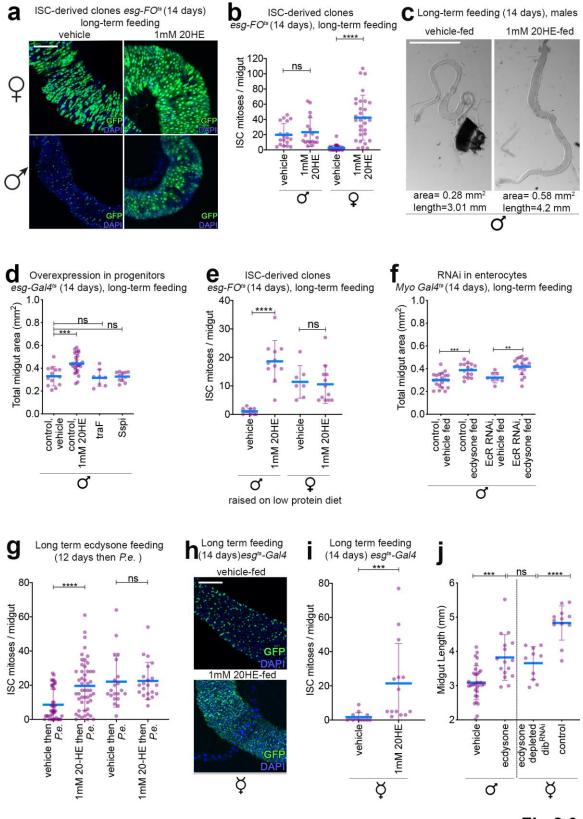


Fig 2.6: Prolonged 20HE feeding abrogates the sex differences in ISC division. Text and images have been taken and modified from (Ahmed et al., 2020) and have been originally written and made by myself: (a-b) (a) Representative images of the ISC lineage tracing: $esgF/O^{ts}$ in both sexes after 14 days of feeding with low 20HE doses. 20HE

feeding promotes ISC clonal growth and gut epithelial renewal. 1mM 20HE feeding stimulates epithelial turnover more rapidly in males than females.

(b) 20HE induces an atypical boost in male ISC mitoses. Mitotic counts of control flies fed on 20HE-laced food relative to age-matched controls. At homeostatic conditions, vehicle-fed females divide at much-elevated rates than vehicle-fed males. However, dietary supplementation of 1mM 20HE in fly food caused male ISCs to divide dramatically, matching basal ISC mitoses in females.

(c-d) Male midguts with *traF*-feminized progenitors are unable to grow. Similarly, male midguts overexpressing secreted spitz (Sspi) in progenitors are unable to grow. (c) Representative brightfield images of vehicle-fed or 20HE-fed males, 14 days after feeding showing that 20HE-fed males grow in length and area. (d) Long term 20HE feeding causes male-specific midgut growth, a unique phenotype to males. Midgut areas of vehicle-fed or 20HE-fed males relative to genetically manipulated males.

(e) 20HE causes a strong increase in male ISC divisions on a nutrient-deprived diet. Mitoses of control flies fed on 20HE-laced low yeast high sugar diet relative to agematched controls. At homeostatic conditions, more vehicle-fed female ISCs divide than ISCs of vehicle-fed males. However, 20HE-fed males had a strong increase in their mitotic index compared to vehicle-fed males.

(f) 20HE triggers midgut growth independent of EcR in ECs. Raising males on prolonged 20HE-laced diet causes 20HE-dependent midgut growth in midguts with EcR depleted ECs. This suggests that EcR in ECs is not required for the 20HE-induced midgut growth and implies that EcR in progenitors is sufficient to elicit 20HE-dependent midgut growth. (g) 20HE promotes ISC mitoses in *P.e.* infected males, altering their behavior to resemble *P.e.*-induced ISC division in females, as assayed by mitotic counts of males and females. Flies were raised on 20HE or vehicle-supplemented food for 12 days then the treatment was withdrawn overnight followed by *P.e.* infection for 20hrs. Male ISCs that were 20HE-fed were able to respond to *P.e.* infection at similar rates to the age-controlled females fed on 20HE or vehicle.

(h-i) Long-term 20HE-supplemented virgins have an accelerated midgut turnover in comparison to age-controlled virgins. Age-controlled virgins have infrequently dividing ISCs. (h) Representative images of control progenitors in virgins raised on vehicle or 20HE-laced food for 14 days. 20HE-fed virgins have accumulated GFP+ progenitors across the intestinal epithelium. (i) ISC mitotic counts show increased ISC mitoses of 20HE fed virgins relative to vehicle-fed virgins. 20HE fed virgins resemble the basal mitotic behavior of aged mated females.

(j) Midgut lengths of control males, vehicle and 20HE-fed or virgins with ecdysonedepleted ovaries via dib^{RNAi} or control virgins showing the plasticity of male and female midgut growth to circulating 20HE levels. Virgins with dib^{RNAi} have much shorter gut length than control virgins. 20HE-fed males have a longer gut length than vehicle-fed males. Error bars represent \pm SD. Statistical analysis was performed using one-way ANOVA, followed by Bonferroni's multiple comparisons test and unpaired nonparametric two-tailed Mann-Whitney test (ns p>0.05, *** p \leq 0.001, ****p<0.0001). \bigcirc refers to mated females. \heartsuit refers to virgins. \bigcirc : males. Representative images are shown.

Similarly, if a boost in pro-mitotic factors are sufficient to induce midgut growth, then expression of sSpi, a potent ISC mitogen¹⁹ would be sufficient to enlarge the male midgut. However, sSpi-overexpressing progenitors had no difference in their gut sizes similar to control males (Fig 2.6d). This result implied that 20HE does more than simply triggering ISC mitoses.

Finally, since the gut's densest populations (numbers/total cells) are enterocytes followed by progenitors (ISCs+enteroblasts)²⁹¹, I asked whether enterocytes contribute to the 20HE-induced male midgut growth. Hence, I induced enterocyte-specific depletion of EcR in males and fed the males with 1mM 20HE for 14 days only to find that the 20HEfed midguts were still able to grow. This result indicates that progenitors are sufficient to elicit 20HE-induced midgut growth (Fig 2.6f). Another sex difference between males and females is that female ISCs proliferate more strongly upon enteric infection than male ISCs^{41,118} (Fig 2.1.1a). Hence, I sought to test whether 20HE feeding would sensitize more male ISCs to divide in response to stress. Indeed, pre-feeding males with 20HE potentiated their ISC proliferative response to levels similar to those in females (Fig 2.6g). Likewise, long-term 20HE feeding caused virgin female ISCs to proliferate under basal conditions similar to basal counts of ISCs mitoses in mated females (Fig 2.6h,i). In contrast, reduced ovarian-ecdysteroids (Fig 2.6j) or intestinal EcR signaling in midgut progenitors led to reduced midgut sizes (Fig 2.6j). In summary, my results show that sexually dimorphic aspects of ISC proliferative behavior as well as gut sizing are determined in part by 20HE levels.

2.7 1-6 Prolonged 20HE feeding in males causes a change in the ISC metabolic signature.

Since there are no preceding reports of sex steroid feeding causing non-sex organ growth, I was intrigued to figure out how in this case ecdysone elicits the male-specific intestinal growth. To answer this question, I focused on the genetic changes that could be attributed to the gain-of-function phenotype, caused by exogenous 20HE feeding in males. Hence, I

fed both control males and females with 20HE or vehicle for 14 days in the background of mira-GFP (which marks only the ISCs) then I FACS-sorted the ISCs and sequenced the transcriptome of the sorted ISCs and aligned the single reads with STAR aligner (Fig. 2.7.1a-d). I have aligned the reads using the *Drosophila* transcriptome as a reference and with built-in gene model with splice junction information, to detect isoform abundance. Firstly, the abundance of normalized transcript reads/sample shows that Oatp74D: the ecdysone transporter was indeed expressed in the ISCs³⁰⁴ and it is slightly higher expressed in males than females. Moreover, EcR variant A and the Eip75B variant C (used for overexpression in later sections of this thesis) are indeed the major variants expressed in the ISCs of the midgut (Fig 2.7.1a-b). It is interesting to note that there are several Eip75B isoforms expressed in the ISCs, all of which are ecdysone-inducible in males (Fig 2.7.1b). Br isoforms are much less abundant than Eip75B (Fig 2.7.1c). One predominant isoform variant B is normally expressed at higher levels in males and is induced after 20HE feeding. Components of Egf signaling such as rho, the ligandscleaving protease, Spitz, Keren and Vein are also present in sorted ISCs of both males and females though do not appear to be significantly changed after 20HE feeding consistent with the result in (Fig 2.6d) which showed that enforced spi expression is insufficient to elicit the 20HE-induced midgut growth (Fig 2.7.1d). Similarly, my results confirmed that upd2 and upd3 are expressed in the sorted ISCs, though at lower levels in males (Fig 2.7.1e) and Stat92E, the transcriptional activator of the Jak/Stat pathway was expressed at slightly higher levels in males relative to females consistent with the higher reporter activity also observed in males³⁰⁵. 20HE caused upd2 and upd3 transcriptional upregulation in ISCs, better seen in the male samples. Alternatively, a negative regulator of Jak/Stat signaling Heix, a tumor suppressor gene³⁰⁶, with unexplored functions in the midgut is transcriptionally inhibited by 20HE feeding in both males and females (Fig. 2.7.1e).

As previously reported, genes with sex differences in expression are enriched for distinct biological processes; genes assigned to cell cycle-related processes, lipid and fatty acid metabolism were upregulated in females (Table 2.1b,c,d), whereas genes coding for proteins that function in MAPK, Wnt pathways, carbohydrate metabolism and glutathione oxidoreductive processes are preferentially expressed in males ISCs (Table 2.2a,e,f), (Fig 2.7.2a-b)¹¹⁸.

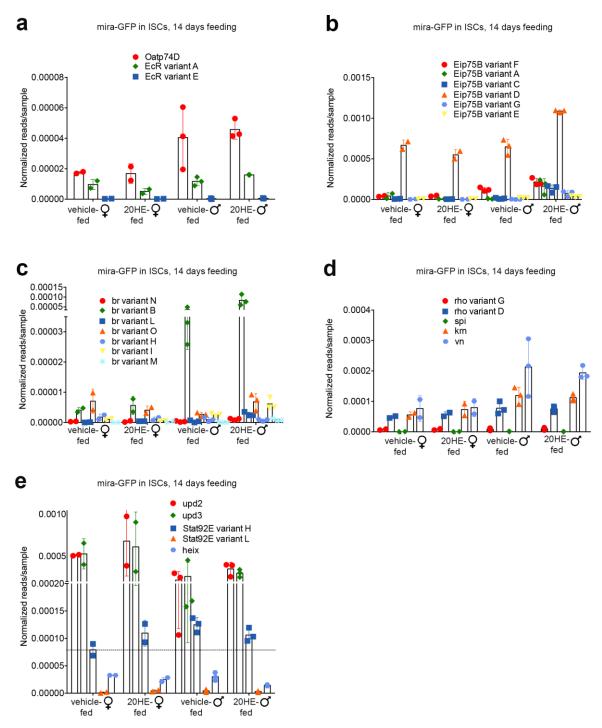


Fig 2.7.1

Fig 2.7.1: 20HE feeding transcriptionally upregulates ecdysone-inducible genes, Jak/Stat and EGF ligands. (a) EcR A and Oatp74D are expressed in *Drosophila* ISCs. Normalized transcript reads of the ecdysone transporter Oatp74D and EcR variants outputted after STAR alignment to reflect transcript abundance in GFP sorted ISCs of both females and males +/- exogenous 20HE feeding.

(b) Eip75B variant D is predominantly expressed in *Drosophila* ISCs yet, all Eip75B variants are induced in 20HE-fed males. Normalized transcript reads of the ecdysone-

inducible Eip75B outputted after STAR alignment to reflect transcript abundance in GFP sorted ISCs of both females and males +/- exogenous 20HE feeding.

(c) Br variant B is predominantly expressed in male *Drosophila* ISCs yet, br variants B,L,O,I are mildly induced in 20HE-fed males. Normalized transcript reads of the ecdysone-inducible br outputted after STAR alignment to reflect transcript abundance in GFP sorted ISCs of both females and males +/- exogenous 20HE feeding.

(d) Egf signaling pathway components are relatively unchanged by long term 20HE feeding. Normalized transcript reads of rho variants, spi, krn and vn (latter are 3 EFG ligands) outputted after STAR alignment to reflect transcript abundance in GFP sorted ISCs of both females and males +/- exogenous 20HE feeding.

(e) Upd2 and upd3 are expressed at higher levels in females relative to males. Downstream target Stat92E is expressed at slightly higher levels in males relative to females. Normalized transcript reads of Jak/Stat signaling pathway components outputted after STAR alignment to reflect transcript abundance in GFP sorted ISCs of both females and males +/- exogenous 20HE feeding.

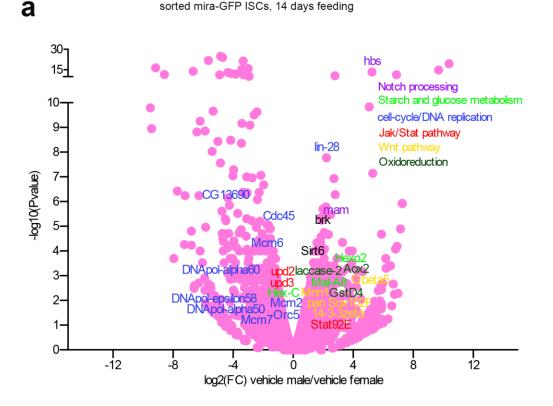
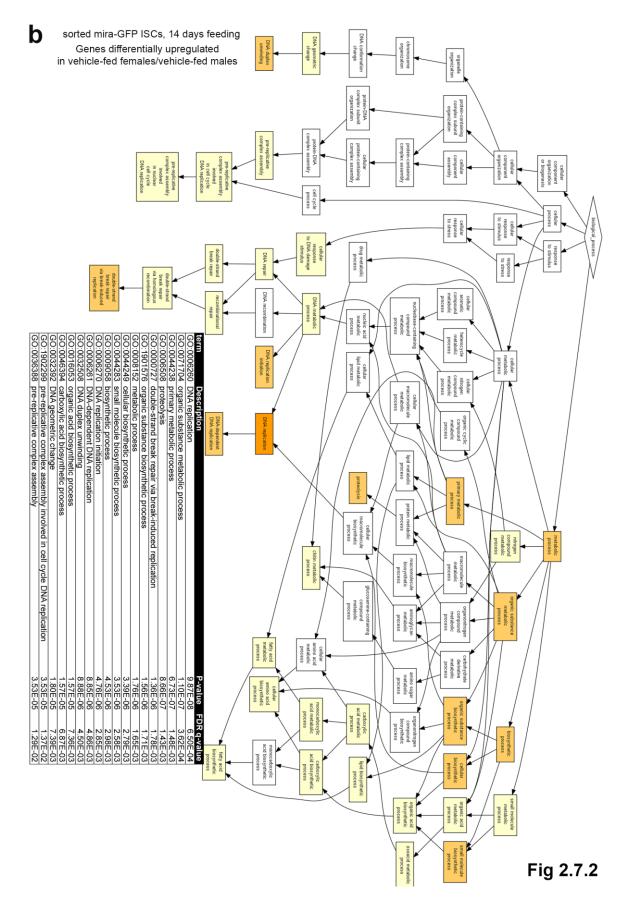



Fig 2.7.2

Fig 2.7.2 Sex-biased differential gene expression between vehicle fed males and females. (a) Volcano plot of differentially expressed genes between vehicle-fed female to vehicle-fed male sorted ISCs with some annotated hits to complement Table 2.1

(b) An interactive map outputted by Gorilla tool of GO terms that are enriched between vehicle-fed females/vehicle-fed males at p-value threshold of 10^{-3} . Yellow-colored terms are presented by p-value 10^{-3} to 10^{-5} and orange-colored terms are presented by p value: 10^{-5} to 10^{-7} . A short table is presented below with the 'FDR q-value', which is the correction of the above p-value for multiple testing using the Benjamini and Hochberg method.

Males exposed to 20HE for a longtime have elevated string and png (positive regulators of the mitotic cell cycle) levels as well as a highly abundant metabolic signature associated with starch, aminoacid derivatives and lipid metabolism in their ISCs (Fig 2.7.3a,d). This enrichment in metabolic hits reflects an upgrade in the metabolic capacity of the 20HE-fed males, possibly to satisfy increasing tissue homeostatic needs (Fig 2.7.3a,d), (Table 2.2ab,d-g). Positively enriched metabolic signature of lipid and carbohydrate processing in 20HE-fed males is also consistent with the sexually dimorphic role of 20HE in promoting triglyceride and glycogen uptake in fertilized females¹²³.

Next, a previous report determined the presence of sex-biased expression of different genes in the *Drosophila* midgut¹¹⁸. Those genes were inherently different in their expression levels between males and females such that it is highly expressed in one sex and is inversely expressed in the other sex. Interestingly, differential analysis of the sorted 20HE-fed male ISCs showed an enhanced expression of a subset of those sexually dimorphic genes (75 hits in the ISCs from 826 hits detected in the ISC transcriptome or 1305 hits from all cell types in whole midguts) (Fig 2.7.3b,c), (Table 2.2c). Those genes showed a striking upregulation in their expression relative to control males. The colored genes in the volcano plot were hits with identified metabolic function, yet the functions of the rest remain uncharacterized (Fig 2.7.3b,c).

Next, as a control for the male effects, I examined how 20HE affects females. Despite not having obvious differences on ISC proliferation in females (refer to Fig 2.6a-b), 20HE feeding still affected several aspects of the transcriptome of the sorted female ISCs. 20HE caused a strong positive enrichment for regulation of immune response modulators, antimicrobial peptide production consistent with previous reports of how ecdysone-

inducible transcriptional networks controls the IMD immune response in Drosophila^{307,308} (Fig 2.7.4a).

20HE feeding also correlated with positive histone acetylation of H2 and H4 but a strongly downregulated enrichment in carbohydrate metabolizing genes (Fig 2.7.4a) (Table 2.3,a,b,d-g).

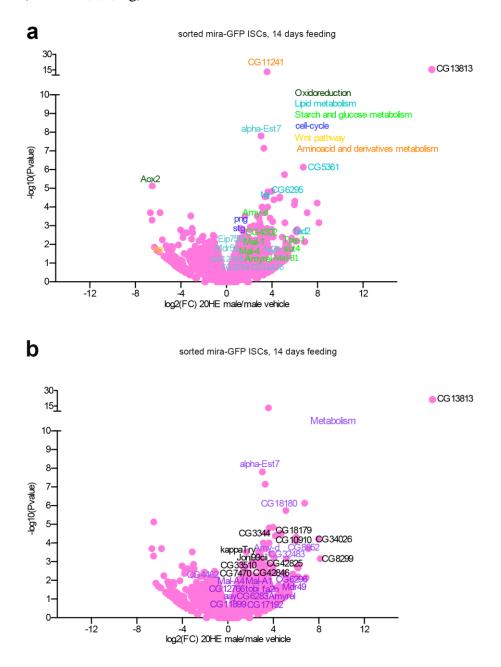
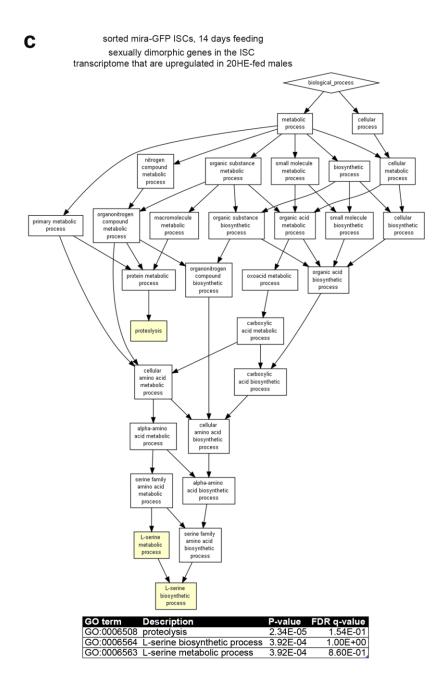


Fig 2.7.3



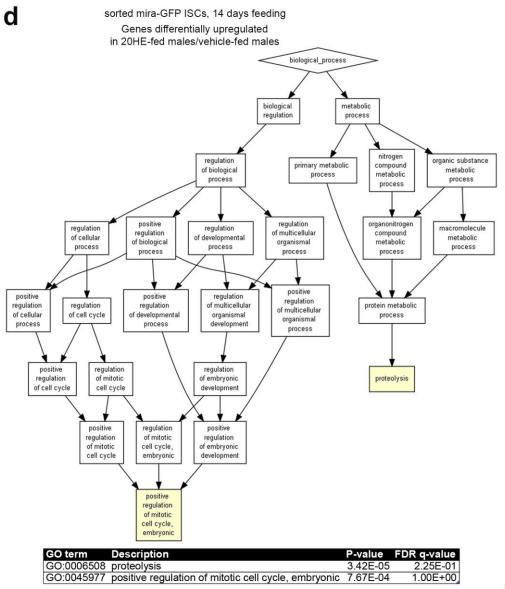

Fig 2.7.3

Fig 2.7.3 20HE feeding alters the metabolic transcriptome of males.

(a) Volcano plot of differentially expressed genes between 20HE-fed males to vehicle-fed male sorted ISCs with some annotated hits to complement Table 2.2.

(b) Volcano plot of genes that are the sexually dimorphic between males and females but are revealed to be regulated by 20HE feeding in males. The annotated hits in purple are hits of known metabolic function. These hits complement Table 2.2c.

(c) An interactive map outputted by Gorilla tool of GO terms that sexually dimorphic between males and females yet, are upregulated between ecdysone-fed males/vehicle-fed males at p-value threshold of 10^{-3} . Yellow-colored terms are presented by p-value 10^{-3} to

Fig 2.7.3

 10^{-5} A short table is presented below with the 'FDR q-value', which is the correction of the above p-value for multiple testing using the Benjamini and Hochberg method.

(d) An interactive map outputted by Gorilla tool of GO terms that are upregulated between ecdysone-fed males/vehicle-fed males at p-value threshold of 10^{-3} . Yellow-colored terms are presented by p-value 10^{-3} to 10^{-5} A short table is presented below with the 'FDR q-value', which is the correction of the above p-value for multiple testing using the Benjamini and Hochberg method.

Strikingly, another subset of the aforementioned sexually dimorphic genes¹¹⁸ were downregulated (n=62) and upregulated (n=9) in vehicle-fed females relative to 20HE-fed females (Table 2.3c), suggesting the high plasticity of the ISCs to adapt to increased levels of 20HE, though the number of replicates (n=2 vs 3 for females vs male samples) was quite low and the statistical significance was not as robust as in the male samples. This data suggests the presence of a subset of sexually dimorphic genes within ISCs that are regulated by 20HE feeding, implying that in part the circulating levels of the sex hormones could function to maintain the identity of the intrinsic sex of the cells, partly through metabolic changes.

RNA seq analyses showed an increased abundance of fatty acid metabolic, carboxylic acid genes and DNA replication/cell cycle related processes in vehicle fed females relative to 20HE-fed males (Table 2.4a,f-g,i). 20HE-fed males have upregulated hits associated with improved carbohydrate metabolism, increased receptor tyrosine kinase, insulin receptor signaling, formation of piwi RNAs and notch processing (Fig 2.7.5a-c) (Table 2.4b,d,e). Intriguingly, among the gene candidates that is highly expressed in 20HE-fed males relative to vehicle-fed females is lin-28. Lin-28 is highly enriched in the ISCs and it positively regulates insulin signaling, promotes symmetric ISC divisions and mediates gut growth in response to nutrients³⁰⁹. This candidate provides an interesting link between ISC symmetric divisions and insulin signaling that could explain the underlying boost of metabolic functions and subsequent gut growth.

Since it is known that the levels of 20HE are sexually dimorphic, I asked if this would also affect the underlying gene regulation between males and females. Fig 2.7.6a shows a correlation plot of normalized reads to ecdysone feeding between males and females that shows an inverse correlation between the presence of ecdysone and the abundance of the transcript. Transcripts skewed to the right bottom are enriched in females and diminished in males and are dependent on 20HE. While transcripts skewed to the upper left quadrant are highly abundant in males but lack in females and are 20HE dependent. Similarly, Fig 2.7.6b (left) shows a correlation plot of normalized reads to ecdysone feeding in males relative to normalized reads between vehicle-fed males and females. Transcripts skewed to the upper left are of higher levels in 20HE-fed males relative to vehicle-fed males and are also higher in vehicle-fed females relative to vehicle-fed males.

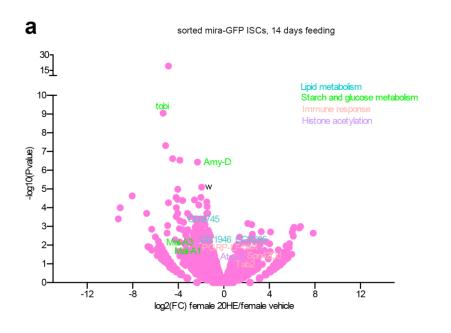
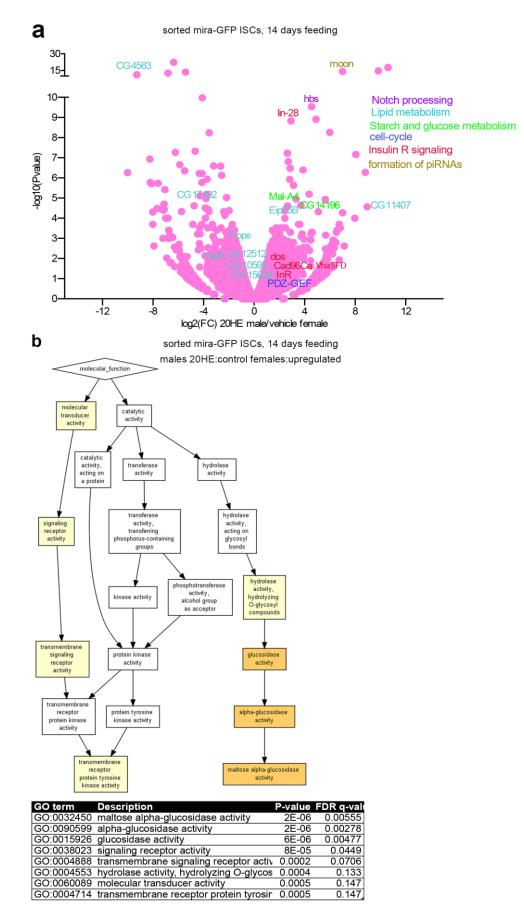


Fig 2.7.4


Fig 2.7.4 20HE feeding alters the metabolic transcriptome of females.

(a) Volcano plot of differentially expressed genes between 20HE-fed females to vehicle-fed female sorted ISCs with some annotated hits to complement Table 2.3.

While transcripts skewed to right bottom of the plot are more abundant in vehicle-fed males relative to vehicle-fed females but, downregulated by 20HE feeding in males. This distribution is strongly dependent on 20HE, hence revealing a sexually dimorphic pattern in the gene expression between males and females.

Then, I explored if and which subsets of genes would be similar between females with physiological levels of 20HE and males with supra-physiological levels of exogenous 20HE. I reasoned that the subset of genes that would be equalized by exogenous 20HE feeding in males would be one of the underlying reasons for the unique sexually dimorphic 20HE-induced ISC mitoses and subsequent midgut growth. Accordingly, I searched for the list of hits that satisfy the criteria of being sex-biased differentially expressed between control males and females yet at the same time were equalized to or surpassed female levels by 20HE feeding (Fig 2.6.b (right)).

Table 2.4ci-ii,h shows the list of these hits and their GO or pathway enrichment terms. 20HE availability seems to correlate with many metabolic aspects as well as regulation of the cell cycle (Fig 2.7.6c-d).

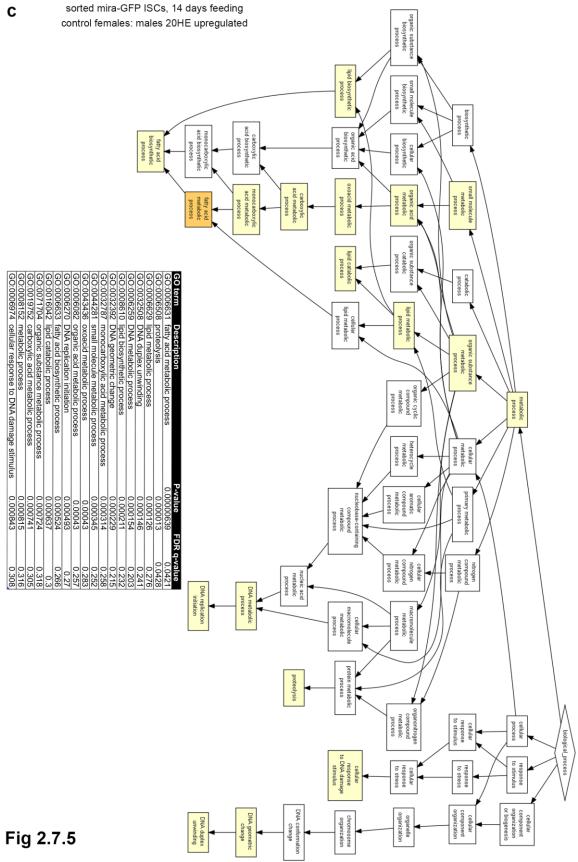
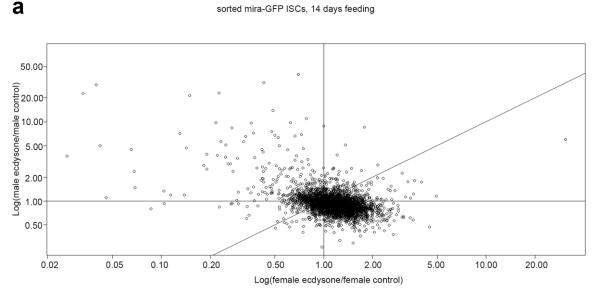



Fig 2.7.5: 20HE feeding upregulates metabolic hits in the ISC transcriptome of **20HE-fed males relative to control females.** (a) Volcano plot of differentially expressed genes between vehicle-fed female to 20HE-fed male sorted ISCs with some annotated hits to complement Table 2.4.

(b) An interactive map outputted by Gorilla tool of GO terms that are enriched between 20HE-fed males/vehicle-fed females at p-value threshold of 10⁻³. Yellow-colored terms are presented by p-value 10^{-3} to 10^{-5} and orange-colored terms are presented by p value: 10⁻⁵ to 10⁻⁷. A short table is presented below with the 'FDR q-value', which is the correction of the above p-value for multiple testing using the Benjamini and Hochberg method.

(c) An interactive map outputted by Gorilla tool of GO terms that are enriched between vehicle-fed females /20HE-fed males at p-value threshold of 10⁻³. Yellow-colored terms are presented by p-value 10^{-3} to 10^{-5} and orange-colored terms are presented by p value: 10⁻⁵ to 10⁻⁷. A short table is presented below with the 'FDR q-value', which is the correction of the above p-value for multiple testing using the Benjamini and Hochberg method.

Collectively, this experiment reveals the novelty of a sex steroid maybe partly adjusting the metabolism and cell cycle independent of the intrinsic genetic landscape of cells within non-sex organs, a hypothesis that remains highly unexplored and should prove interesting for future studies. As shortly presented in the introduction and discussed further, understanding how sex steroids act as signaling relays from sex organs to other non-sex organs would help us understand the physiological effects of sex hormones and evaluate their outcome on disease risk, prognosis and treatment efficacy³¹⁰.

sorted mira-GFP ISCs, 14 days feeding

b

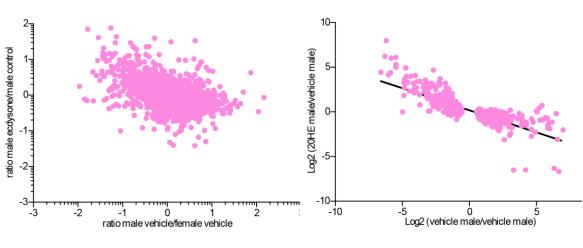


Fig 2.7.6: 20HE feeding normalizes metabolic and cell cycle hits in the ISC transcriptome of 20HE-fed males. (a) LC scatter plot showing the correlation between 2 variables: ecdysone and the fly sex. Females or males were normalized as follows: log values of 20HE-fed samples/ vehicle-fed samples for each gender. Ratio higher than 1 are genes that are transcriptionally induced by 20HE feeding. The left upper quadrant shows the proportion of genes that are inversely correlated between "being male" and 20HE feeding. Highly abundant transcripts in this quadrant are specific to 20HE-fed males and are extremely low in 20HE-fed females. The lower right quadrant shows that the majority of the genes cluster together which suggests that the exogenous 20HE feeding does not correlate with "being female". This negative correlation between the "male" sex and 20HE presence suggests that a decrease of 20HE was correlated with an increase in the abundance of male-specific genes.

(b) (left) LC scatter plot showing the correlation between 2 variables: ecdysone feeding in males and genes that are different between the females and males. Females or males were normalized as follows: ratio of normalized reads of 20HE-fed samples/ vehicle-fed samples relative to ratio of normalized reads of vehicle-fed male/ vehicle-fed female. Axes are in log scale. The left upper quadrant shows the proportion of genes that are regulated by 20HE feeding in males and are low expressed in females. The lower right quadrant shows genes that are highly abundant in males but downregulated by 20HE feeding. (right) The log2 values from EdgeR are shown for the subset of genes from Table 2.4cii. R^2 is 0.6402.

(c) An interactive map outputted by Gorilla tool of GO terms that are differentially expressed between males and females but are rather unchanged between vehicle-fed females and 20HE-fed males at p-value threshold of 10^{-3} . Yellow-colored terms are presented by p-value 10^{-3} to 10^{-5} , orange-colored terms are presented by p value: 10^{-5} to 10^{-7} and red-colored terms are presented by p value: 10^{-7} to 10^{-9} . A short table is presented

below with the 'FDR q-value', which is the correction of the above p-value for multiple testing using the Benjamini and Hochberg method.

(d) An interactive map outputted by Gorilla tool of GO terms that are differentially expressed between males and females but are rather unchanged between vehicle-fed females and 20HE-fed males at p-value threshold of 10^{-3} . Yellow-colored terms are presented by p-value 10^{-3} to 10^{-5} and orange-colored terms are presented by p value: 10^{-5} to 10^{-7} . A short table is presented below with the 'FDR q-value', which is the correction of the above p-value for multiple testing using the Benjamini and Hochberg method.

sorted mira-GFP ISCs, 14 days feeding Genes that are not changing between control females and 20HE-fed males, but are differentially expressed between vehicle-fed males and females

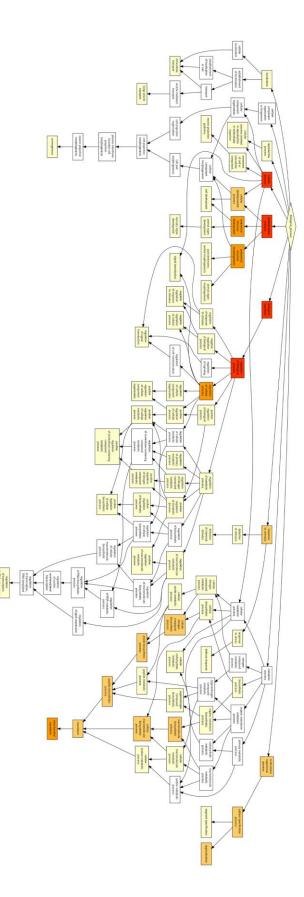


Fig 2.7.6

sorted mira-GFP ISCs, 14 days feeding

d

Genes that are not changing between control females and 20HE-fed males, but are downregulated between vehicle-fed males and females

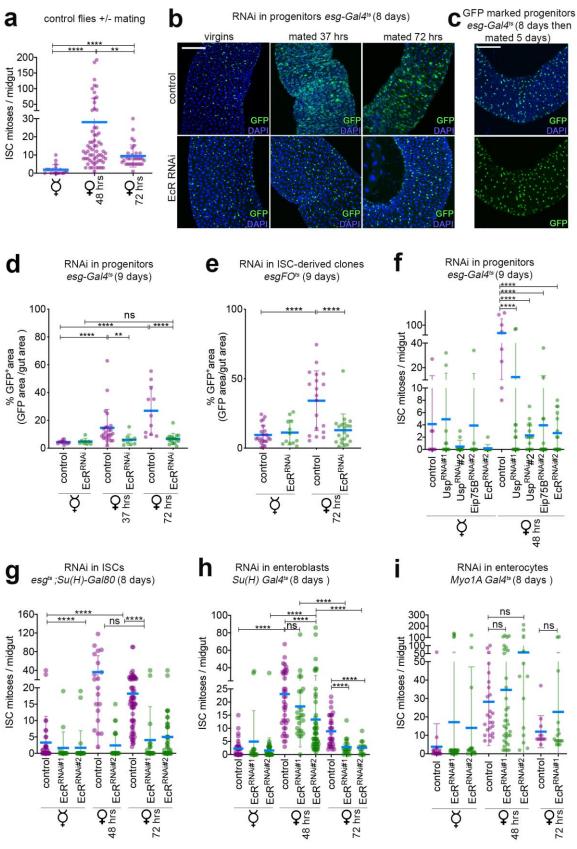

GO term	Description	P-value	FDR q-value
GO:0032543	mitochondrial translation	3.86E-06	2.54E-02
GO:0006261	DNA-dependent DNA replication	1.50E-05	4.93E-02
GO:0006270	DNA replication initiation	2.44E-05	5.36E-02
GO:0006260	DNA replication	2.85E-05	4.69E-02
GO:0033108	mitochondrial respiratory chain complex assembly	1.14E-04	1.50E-01
GO:0034645	cellular macromolecule biosynthetic process	1.94E-04	2.13E-01
GO:0044249	cellular biosynthetic process	3.20E-04	3.01E-01
GO:1901576	organic substance biosynthetic process	4.30E-04	3.54E-01
GO:0009059	macromolecule biosynthetic process	6.14E-04	4.49E-01
GO:0009058	biosynthetic process	8.80E-04	5.79E-01

Fig 2.7.6

2.8.1-2 Intestinal EcR signaling regulates post-mating ISC mitoses in the female midguts.

The consequence of 20HE feeding on ISC divisions and gut growth begged the question of whether those exogenous feeding effects could have any physiological relevance? Mated females have much higher ecdysteroid levels than virgin females or males³⁰¹ and the endogenous ecdysone is mainly produced by the ovaries¹⁵³. Total ecdysteroid levels almost doubles only 24 hours after mating³⁰². Thus, I sought to mate the flies for different durations and assay the actively dividing ISC divisions as a consequence of mating. It has been reported that 3 days post mating, flies experience an increase in the number and diameter of their enterocytes accompanied with a very modest increase in ISC divisions³¹¹. Hence, I mated female virgins and checked the ISC mitoses 2 and 3 days post-mating. Indeed, mating induced a transient, yet, massive increase in ISC proliferation (Fig 2.8.1a), expansion of gut progenitors and consequently an enlarged gut size across the whole midgut (Fig 2.8.2a-c), and not only growth restricted to the most posterior gut region as reported earlier³¹¹. This GFP progenitor expansion was also transient and 5 days after mating, the GFP signal was restricted to many doublets unlike the initial post-mating expansion (Fig 2.8.1b,c). Next, I asked if intestinal ecdysone signaling in progenitors was responsible for these ISC divisions and resulting midgut growth. EcR depletion in progenitors or ISCs impaired both the expansion of GFPexpressing progenitors (Fig 2.8.1d) or ISC clones (Fig 2.8.1e) as well as ISC mitoses (Fig 2.8.1f,g) and in both cases the resulting gut growth was repressed (Fig 2.8.2a-e). Similarly, Usp, EcR's receptor partner was required for mating-induced ISC mitoses (Fig 2.8.1f) and mating-dependent gut sizing (Fig 2.8.2d).

In further tests, I examined the role of non-cell autonomous role of EcR signaling in EBs or ECs on the mating-induced ISC mitoses and the mating-dependent gut sizing. Similar to 20HE feeding, mating-induced ISC mitoses absolutely necessitated EcR in EBs at later time points by 72 hrs but, EcR was dispensable to the initial ISC mitoses by 48 hrs (Fig 2.8.1h). Interestingly, in addition to the cell-autonomous roles of EcR in ISCs to drive mitoses and midgut sizing, ecdysone/EcR-dependent midgut resizing marginally required EcR in enteroblasts for the optimal gut resizing after mating (Fig 2. 8.2h). In contrast, EcR in ECs was not required for the mating induced ISC mitoses (Fig 28.1i).

Fig 2.8.1: Mating induces a burst of EcR-dependent ISC mitoses. Text and images have been taken and modified from (Ahmed et al., 2020) and have been originally written and made by myself: (a) Mating leads to an increase in the number of ISC mitoses/gut. Mitotic counts of control virgin females 48hrs and 72hrs post mating.

(b) Representative confocal images of transient progenitor expansion seen in control females after mating and upon progenitors-specific downregulation of EcR in the R4 region of the posterior midgut of females (below). Females were mated to males with no genetic manipulations. Equal number of males and females were allowed to mate (a ratio of 1:1) and females were allowed to mate for the indicated times above the panels. GFP, in green; DAPI, in blue. Scale bar, 100 μm.

(c) Representative images of the progenitor distribution in females that were mated for 5 days. This shows how the GFP expression is restricted in progenitor doublets after their transient dense coverage at earlier time points (compare to panel b) suggesting that the mating effects are transient. GFP, in green; DAPI, in blue. Scale bar, 100 μ m.

(d) Progenitors expand shortly after mating and EcR regulates this progenitor expansion as shown in (b). Percentage of cells positive for the intestinal progenitor marker (esg+GFP+/gut area) in controls and females with progenitor-restricted downregulation of *EcR*. Quantifications are done through a macro that calculates the area of GFP+ cells relative to the gut area (see methods)

(e) ISC clones require EcR to expand after mating. Percentage of ISC clones covering the posterior midguts with EcR-depleted ISC clones relative to control midguts. Quantifications are done through a macro that calculates the area of GFP+ cells relative to the gut area (see methods)

(f) *Usp, Eip75B, EcR* in progenitors are required for the mating-induced ISC mitoses. Number of mitoses in control and progenitor-specific depletion of *Usp, Eip75B, EcR* for 8 days. Virgins were allowed to mate for 48 hrs. Results are shown for 2 independent RNAi lines for Usp.

(g) EcR in ISCs are required for the mating-induced ISC mitoses. Number of mitoses in control and ISC-specific downregulation of EcR for 8 days. Virgins were allowed to mate for 48 hrs and 72 hrs. Results are shown for 2 independent RNAi lines.

(h) EcR in enteroblasts is not required at an earlier time point but, is rather required at the later 72 hour time point for the mating-induced ISC mitoses. Number of mitoses in control and enteroblast-specific downregulation of EcR for 8 days. Virgins were allowed to mate for 48 hrs and 72 hrs. Results are shown for 2 independent RNAi lines.

(i) *EcR* in enterocytes is not required at either time points for the mating-induced ISC mitoses. Number of mitoses in control and enterocyte-specific downregulation of *EcR* for 8 days. Virgins were allowed to mate for 48 hrs and 72 hrs. All panels: Error bars represent \pm SD. Statistical analysis was performed using unpaired non-parametric two-tailed Mann-Whitney test (ns p>0.05, **p≤0.01,****p<0.0001). \bigcirc refers to mated females. \heartsuit refers to virgins. Representative images are shown.

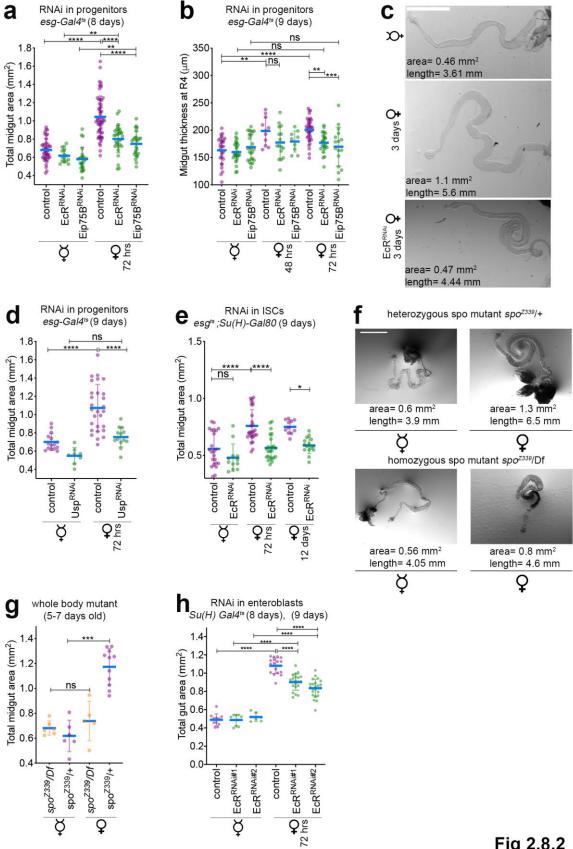


Fig 2.8.2: Mating induces EcR-dependent gut growth. Text and images have been taken and modified from (Ahmed et al., 2020) and have been originally written and made by myself: (a) Midguts with *EcR*- or *Eip75B*-depleted progenitors do not grow post mating. Midgut size measurements of virgin and mated females, with and without EcR^{RNAi} or $Eip75B^{RNAi}$ expressed in progenitors. Quantifications are done through a macro that calculates aspects of midgut morphology (see methods). Midgut areas are outputted and plotted in prism.

(b) Midguts with EcR- or Eip75B-depleted progenitors fail to increase the midgut width after mating. Midgut width at R4 of virgin and mated females, with and without EcR^{RNAi} or $Eip75B^{RNAi}$ expressed in progenitors. Quantifications are done through a macro that calculates aspects of midgut morphology (see methods).

(c) Mating causes EcR-dependent gut growth. Representative bright-field images of a virgin, control or EcR-depleted mated female.

(d) Midguts with Usp-depleted progenitors do not grow post-mating Midgut areas of virgin and mated females, with and without Usp^{RNAi} expressed in progenitors.

(e) Control females reveal a mating-dependent increase in gut size that is regulated by EcR in ISCs. Midgut size measurements of virgin and mated females, with and without EcR^{RNAi} expressed in ISCs. Females were allowed to mate for 72 hrs only or raised mated. (f) Ovary production of ecdysone is essential for mating-dependent midgut growth. Representative bright field images of whole body spo mutants that are heterozygous and hence, viable with no growth or egg laying defects (1st upper panels) and survivor sterile homozygous spo mutants that are rescued to adulthood by a pulse of 20HE given to dechorionated embryos (2nd lower panels), quantified in (g). Scale bar 1mm.

(g) *spo* mutants fail to undergo mating-dependent gut growth. Midgut areas from wholebody homozygous *spo* mutants (spo^{Z339}/Df) rescued to adulthood by an exogenous 20HE pulse given to embryos, and heterozygous controls ($spo^{Z339}/+$).

(h) EcR is needed in enteroblasts for an optimal full-grown gut post-mating. Midgut areas of virgin and mated females, with and without EcR^{RNAi} expressed in enteroblasts.

Error bars represent \pm SD. Statistical analysis was performed using one-way ANOVA, followed by Bonferroni's multiple comparisons test (ns p>0.05, *p \leq 0.05, *p \leq 0.01, *** p \leq 0.001, ****p<0.0001). \bigcirc refers to mated females. \heartsuit refers to virgins. Representative images are shown.

Whether EcR in ECs is required for the mating-dependent midgut resizing remains unexplored. Additionally, to validate the RNAi results, I used whole body spo mutant animals, that are ecdysone-deficient and embryonic lethal, but can be rescued to adulthood by exogenous 20HE given during embryogenesis³¹². Remarkably, surviving adult mated *spo* mutant females were sterile and failed to resize their midguts (Fig 2. 8.2g-h), suggesting that ovary-to-gut signaling is essential for mating-adaptive gut

resizing.

2.9. Ovary-derived ecdysone signaling regulates post-mating gut growth in the female midguts.

The main source of 20HE production is the ovaries^{153,301}. So, in a next step I investigated if they are the source of 20HE that affects the midgut. Hence, I depleted 2 different ecdysone biosynthetic cytochrome P450 enzymes *disembodied* (*dib*) or *spook* (*spo*) with ovary-specific drivers (*C587-Gal4*^{ts}, *tj-Gal4*)^{123,302,313,314}, then I examined the effects on the gut post-mating.

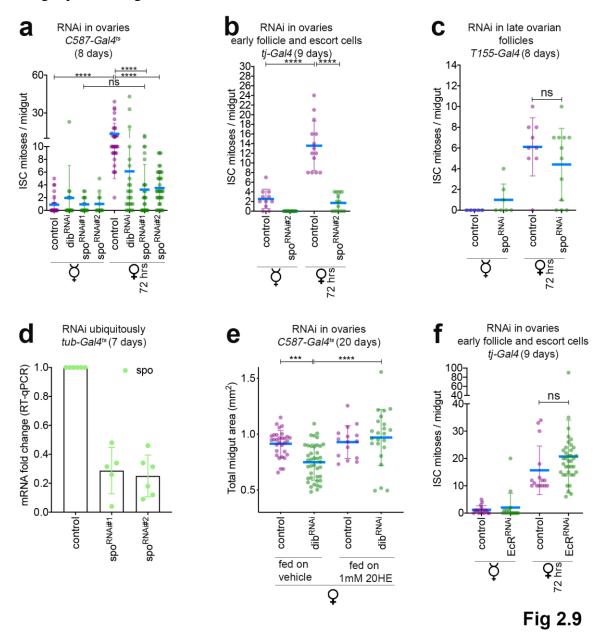
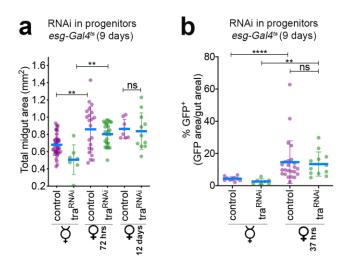


Fig 2.9: Ovary-derived 20HE production regulates mating-induced ISC mitoses. Text and images have been taken and modified from (Ahmed et al., 2020) and have been originally written and made by myself: (a) Ovarian ecdysone controls mating-induced ISC mitoses. Ecdysone production was suppressed in adult females by expressing spo^{RNAi} or dib^{RNAi} under the control of the ovarian somatic cell-specific Gal4 driver $c587^{ts}$. Midguts were scored for mitotic cells 3 days after mating. Mated females with reduced ecdysteroidogenic enzymes in the ovaries have impairment in their mating-induced ISC mitoses. Results are shown for 2 independent RNAi lines for *spo*.

(b) Ovarian ecdysone controls mating-induced ISC mitoses. Ecdysone production was suppressed in adult females by expressing spo^{RNAi} under the control of the ovarian somatic cell-specific Gal4 driver traffic jam (*tj*). Midguts were scored for mitotic cells 3 days after mating. Mated females with reduced spo in the ovaries have impairment in their mating-induced ISC mitoses.

(c) Ovarian ecdysone from early stage follicles contributes to most of the mating-induced ISC mitoses. Ecdysone production was suppressed in adult females by expressing spo^{RNAi} under the control of the ovarian late follicle cell-specific Gal4 driver (*T155*). Midguts were scored for mitotic cells 3 days after mating. Mated females with reduced spo in their late follicle have a slight non-significant impairment in their mating-induced ISC mitoses. (d) Knock down efficiency of *spo* was confirmed by qPCR on adult ovaries constitutively expressing the RNAi construct under the control of *tub*^{ts}.

(e) Ecdysone production was suppressed in adult females by expressing dib^{RNAi} under the control $c587^{ts}$. Midgut sizes of mated females defective in ecdysteroidogenic enzymes are significantly smaller than age-matched controls. This gut size defect was rescued by raising the females on 20HE-supplemented food.


(f) Maintenance of ovarian somatic cells does not affect mating ISC-induced mitoses of the gut. EcR^{RNAi} was expressed under the control of the ovarian somatic cell-specific Gal4 driver $c587^{ts}$. Midguts were scored for mitotic cells 3 days after mating. Mated females with reduced EcR signaling in the ovaries do not impact mating-induced intestinal EcR signaling in the gut. All panels: Error bars represent \pm SD. Statistical analysis in e was performed by one-way ANOVA, followed by Bonferroni's multiple comparisons test otherwise unpaired non-parametric two-tailed Mann-Whitney test was used (ns p>0.05, *** p ≤ 0.001 , ****p< 0.0001). \bigcirc refers to mated females. \heartsuit refers to virgins.

Ecdysone production is reported to occur in the early follicles and escort cells of the ovaries and the drivers I used C587- $Gal4^{ts}$, tj-Gal4 are also reported to act in those cells^{313,314}. As predicted, reduced ecdysone levels abolished the mating-induced ISC proliferation (Fig 2.9a-b) and midgut re-sizing, which could be restored by raising the flies on exogenous 20HE in their diet (Fig 2.9e). The suppressed gut effects were specific to the depletion of the ecdysone-synthesizing enzymes because EcR^{RNAi} in the early

ovarian follicles, which is vital for the follicle formation³¹⁵, was uncoupled from its actions on the mating-induced ISC mitoses of the midgut (Fig 2.9f). In contrast, depleting *spo* with a late ovarian-follicle specific driver (*T155-Gal4*) did not completely diminish the mating-induced ISC mitoses indicating that the late ovarian follicles are not the predominant source of endogenous ecdysone (Fig 2.9c). These results complement the whole body mutant results and prove that ovary-derived ecdysone regulate intestinal stem cell division and gut size.

2.10 Masculinized female progenitors are able to resize their midguts after mating.

My results so far have suggested that there are 2 non-overlapping pathways controlling ISC mitoses: 1^{st} is the cell-autonomous sex determination pathway and 2^{nd} is the non-cell autonomous ovary to gut 20HE signaling. Thus, I asked whether the consequences of ovary-derived 20HE after mating diverge from the effects of the sex determination pathway on ISC behavior. So, I induced progenitor-specific tra^{RNAi} in virgin females, then I mated them for 3 days, and found that virgins with tra^{RNAi} progenitors remain competent to expand their gut size post-mating (Fig 2.10a). Consequently, control virgin midguts or masculinized virgin midguts with tra^{RNAi} progenitors grow similarly after mating. When control females or females with masculinized progenitors were raised mated, the sizes of their midguts were comparable (Fig 2.10a).

Fig 2.10

Fig 2.10: Females with progenitors masculinized by tra^{RNAi} are able to resize their midguts after mating. Text and images have been taken and modified from (Ahmed et al., 2020) and have been originally written and made by myself: (a) Both control and tra^{RNAi} progenitors female midguts exhibit a mating-dependent increase in gut size. Gut

growth is unaffected by masculinizing the identity of the progenitors. Midgut size measurements of virgin and mated females, with masculinized progenitors by *tra*-depletion. Females were only allowed to mate for 72 hrs or raised mated.

(b) Progenitors expand shortly after mating and this expansion is independent of *tra*. Percentage of progenitors positive for the GFP+/gut area in controls and females with progenitor-restricted downregulation of *tra*. Error bars represent \pm SD. Statistical analysis in a was performed by one-way ANOVA, followed by Bonferroni's multiple comparisons test otherwise unpaired non-parametric two-tailed Mann-Whitney test was used (ns p>0.05, ** p \leq 0.01, ****p<0.0001). \bigcirc refers to mated females. \checkmark refers to virgins.

Similarly, quantification of the GFP signal, reflective of progenitor expansion in masculinized progenitors reveals that the progenitors are competent to expand after mating similar to control progenitors (Fig 2.10b). The absence of an intestinal resizing defect in masculinized progenitors after mating is consistent with the hypothesis that the intestinal growth is non-cell autonomously controlled by the ovaries of mated females, independent of the cell-intrinsic mechanisms regulating ISC behavior.

2.11. Mating leads to an additive advantage on female ISC proliferation.

Next, I asked whether endogenous hormonal differences between virgin females (physiological low 20HE levels) relative to mated ones (physiological high 20HE level)³⁰¹ would impart any differences on the ISC proliferation under stress or during homeostasis. To test this hypothesis, I induced masculinization of virgin or mated ISCs by repressing the sex-determination genes sex lethal or transformer in ISC clones. I raised some flies are virgins and others were left to mate with males until dissection then I let the flies feed on SDS detergent, 16-18 hrs before dissection¹¹⁸. ISC mitotic counts show that indeed ISCs of wildtype mated females are more efficient in dividing after detergentinduced stress relative to wildtype virgin females. Furthermore, as previously shown ISC mitoses in virgin sxl-/tra- depleted ISC clones were completely suppressed (Fig 2.11a)¹¹⁸. In contrast, ISCs of mated females with sxl^{RNAi} or tra^{RNAi} in their ISC clones are somewhat proficient in their regenerative mitoses. Alternately, I sought to suppress intestinal EcR signaling via EcR or its downstream target Eip75B-depletion in ISCs and assayed their mitotic responses to detergent-induced stress (Fig 2.11b). ISCs in EcR^{RNAi} or *Eip75B^{RNAi}* ISC clones shown significant defects in replenishing the midguts upon detergent-induced stress. This suggests that the mating status relays a stimulatory signal via intestinal EcR signaling to improve the response of the midguts to stress-induced midgut mitoses. Additionally, mating also regulates basal ISC mitoses under non-stressed conditions. Aging ISCs of virgin tra^{RNAi} or sxl^{RNAi} ISC clones barely divide, nonetheless ISCs of mated tra^{RNAi} or sxl^{RNAi} ISC clones divide 11-76 times more frequent than virgin clones (Fig 2.11c).

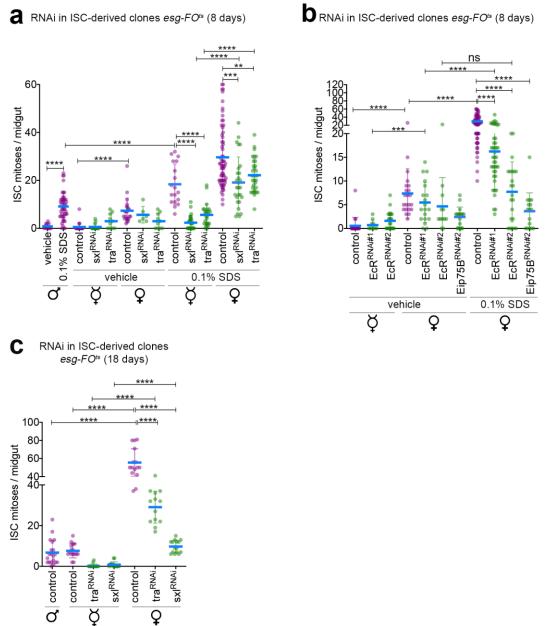
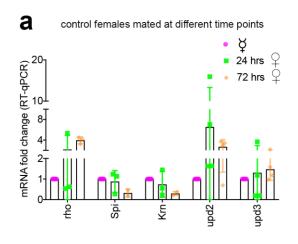


Fig 2.11

Fig 2.11: Mating cross talks with the cell-autonomous sex determination pathway to regulate ISC mitoses basally and under stress. Text and images have been taken and modified from (Ahmed et al., 2020) and have been originally written and made by myself: (a) Mating boosts the mitotic divisions of ISCs. Feeding 0.1% SDS for 16 hrs to

virgin females induces ISCs mitoses while male ISCs divide minimally to the stress. Mitoses are suppressed by masculinizing ISC clones using sxl^{RNAi} or tra^{RNAi} . Mating increases the ISC mitotic responses to SDS feeding and somewhat restores the ability to masculinized ISCs to divide to detergent-stress.

(b) Ecdysone signaling via EcR and Eip75B is required in ISC clones of mated females for optimal regenerative SDS-induced ISC mitoses. ISC mitotic counts of virgin females are minimal under basal conditions. Basal mitoses are increased in mated females. Upon SDS feeding, control mated ISC clones divide to regenerate the epithelium but EcR or Eip75B depleted ISC clones are significantly impaired in their ability to divide. RNAi was induced in ISC clones for 8 days before 16-18 hrs of 0.1% SDS feeding.


(c) Mating causes an additive increase in homeostatic divisions independent of the sex identity. ISC counts of masculinized ISC clones using sxl^{RNAi} or tra^{RNAi} show that masculinized midguts can still adapt to the increased basal ISC mitoses in mated relative to virgin females. Error bars represent \pm SD. Statistical analysis was performed using unpaired non-parametric two-tailed Mann-Whitney test. (ns p>0.05,**p≤0.01,***p<0.0001). $\overrightarrow{\sim}$ refers to males, $\widecheck{\lor}$ refers to virgins and \bigcirc refers to mated females.

These results indicate that the mating status per se transduces additional hormonal noncell autonomous signals to the gut that promote the ISC mitoses upon detergent-induced ISC response and during aging. Highly competent ISCs have the advantage and the benefit of meeting the homeostatic tissue needs and high reproductive demand of the females, however, if this comes at the expense of faster deterioration of the gut or not is something I will explore in later sections. Hence, both ISC-autonomous and nonautonomous hormonal factors alter ISC proliferation.

2.12. rho and upd2 induction are a physiological consequence of mating

As I discovered that 20HE exogenous feeding up-regulates rho and upd2, I wondered if mating induces the midgut expression of *upd2* and *rho* to a similar degree as 20HE feeding (Fig 2.12a) (Compare to Fig 2.5b). Indeed, whole gut qPCRs show that *upd2* and *rho* induction also occur in response to mating suggesting that they are a part of the normal physiological mating response. This is particularly intriguing because these

targets were only previously described as a part of the gut epithelial damage or stress responses in *Drosophila*^{8,41,291}.

Fig 2.12

Fig 2.12: Mating prompts *rho* and *upd2* **upregulation.** Text and images have been taken and modified from (Ahmed et al., 2020) and have been originally written and made by myself: (a) Mating-induced *rho* and *upd2* induction is physiological and not stress-related. mRNA expression was measured by qPCR of control midguts that are virgins or mated for 24 hrs or 72 hrs. Relative to virgins, a moderate increase in mRNA expression levels of *rho* and *upd2* is detected as a consequence of mating.

2.13. 20HE feeding is not supra physiological and induces target genes similar to mated females.

Since in earlier sections I described mitotic effects and midgut growth that occurs in male and virgin *Drosophila* in response to different 20HE feedings, which hasn't been unparalleled in previous reports, I wondered if this 20HE I was giving the flies was within the physiological range or not.

Thus, I fed virgin females with various doses of 20HE and I compared the strength of the 20HE-target gene induction to virgin flies that I mated for 24hrs or 48hrs (Fig 2.13a). I picked 2 of the well-known early 20HE-inducible targets the nuclear receptor *Eip75B* and the transcription factor *Broad* that I will refer to again in later chapters of this thesis. In parallel, I fed the flies with the same doses of 20HE and assayed the ISC mitoses 16-18 hrs after feeding and compared it to basal mitoses in young mated female guts (Fig 2.13b). Firstly, mating induced target genes 2-2.5 fold higher than virgin females,

consistent with the increased ecdysone levels produced by the ovaries. Similarly, ranges of 20HE doses between 0.5-5mM 20HE induced target genes 2-2.5 fold higher than that of mated females, while 10mM 20HE induced target genes almost 3 fold higher than that of mated females. Secondly, mitotic counts of 0.25-1mM 20HE-fed virgin flies were not significantly changed compared to mitotic counts of mated non-stressed females. Only 2mM 20HE modestly increased ISC mitoses, but consistent with previous data, 5mM 20HE boosted mitotic counts. These experiments indicate that the 20HE-dependent target gene induction did not reach its highest levels with the doses of 20HE that I have used in my studies. Also, a mild induction of 20HE target genes caused by exogenous feeding was not sufficient to induce a transient boost of ISC mitoses (compare to Fig 2.8.1a). Probably, mating results in different kinetics of 20HE-target gene induction, in parallel with an organism-wide activation of metabolic processes that work in synchrony to direct ISC mitoses and gut growth³¹¹. These experiments also implied that 1mM 20HE that I have used for my long-term feeding experiments was well tolerated by the flies.

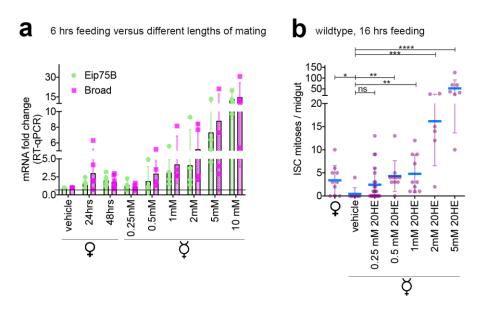
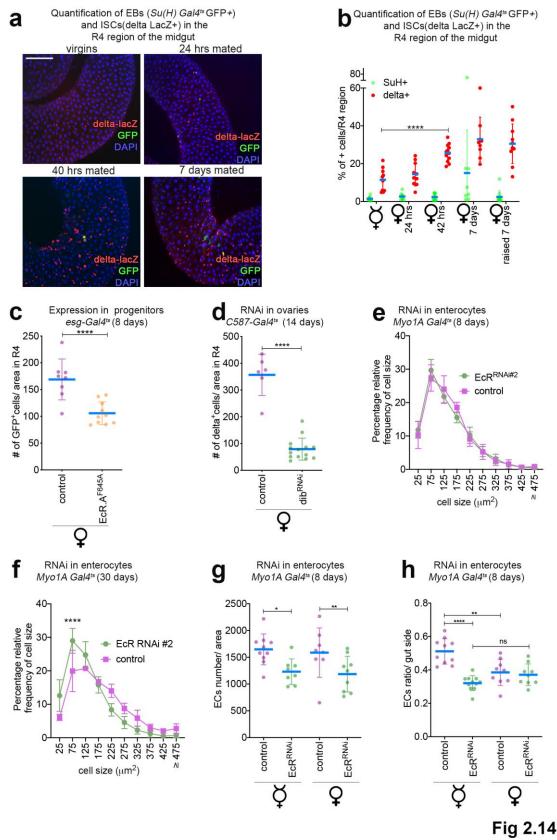


Fig 2.13


Fig 2.13: 20HE causes a dose-dependent induction in target genes and subsequent ISC mitoses.

(a) Midguts of 24-48 hrs post-mated flies have upregulated levels of their ecdysone targets, similar to exogenous 20HE feeding. qRT-PCR measurements from whole midguts show that expression levels of *Eip75B* and *broad* mRNA are induced in a dose-dependent manner after 20HE feeding relative to vehicle-fed virgins.

(b) 20HE feeding causes 20HE causes ISC divisions in a dose-dependent manner in ISCs of virgin females. Virgins were fed different concentrations of 20HE and their mitotic indexes were assessed after 16- 18hrs of feeding. At 0.25-1mM 20HE, ISCs divide similar to basal levels in mated females. At 2mM 20HE feeding, ISCs mildly divide (3-4x higher than divisions induced by 1mM 20HE). At 5mM 20HE, ISCs divide at 10-11x higher that divisions induced by 1mM 20HE. Error bars represent \pm SD. Statistical analysis was performed by unpaired non-parametric two-tailed Mann-Whitney test (ns p>0.05,*p≤ 0.05,*p≤0.01,***p≤0.001, ****p<0.0001). \bigcirc refers to mated females. \heartsuit refers to virgins.

2.14. Mating induces symmetric ISC divisions and ISC expansion.

As the gut size is enlarged post-mating, it could be a consequence of increased cell number, size or both. As, I have discovered that there is a massive transient increase in ISC divisions, I wondered if the mode of most of those divisions was asymmetric or symmetric as previously described during regeneration³¹⁶ or homeostatic adaptive gut growth¹². If ISCs divide symmetrically, they give rise to two competent ISCs. Asymmetric ISC division however, gives rise to one ISC and a short-lived enteroblast³¹⁶. To figure this out, I have used virgin female midguts with GFP-marked enteroblasts and LacZ-marked delta⁺ ISCs. Then, I mated them for 24, 40 hrs and 7 days. 24hrs-post mating, LacZ⁺ ISCs remained singlets, similar to virgins (Fig 2.14a-b). However, 40 hrspost mating, $LacZ^+$ ISCs had mostly become doublets or triplets, indicating that those young ISCs are partly a result of symmetric ISC divisions. 7 days post mating, regardless of whether the flies have mated once/night or co-housed with males for the whole duration, there was an irreversible increase in the number of LacZ⁺ ISCs across the epithelial layer, with occasional doublets or triplets as a result of mating. However, the number of enteroblasts remained relatively low. This observation supports the view of an asymmetric division signature (Fig 2.14a-b). All in all, mating causes an ovarian ecdysone-dependent-(Fig 2.1.2m, Fig 2.14d) and EcR-dependent (Fig 2.8a,b,f, Fig 2.14c) increase in ISC numbers after mating. The claim that the increase in the progenitor population drives mating-dependent gut growth was supported by the quantification of EC size between EcR-depleted ECs of mated females versus ECs of control mated females (Fig 2.14e,f), and the quantification of EC numbers between flies that were raised as virgins or mated respectively (Fig 2.14g,h).

Fig 2.14: Mating induced 20HE regulates symmetric ISC divisions, ISC cell number, EC size and numbers. Text and images have been taken and modified from (Ahmed et al., 2020) and have been originally written and made by myself: (a-b) (a) Mating induces a symmetric increase in delta+ cells shortly after mating. Representative images of the R4

region of the midgut in virgin females shortly after mating or 7 days after mating. ISCs are marked with delta+ (red) and EBs are marked with GFP (green) Su(H)+ cells. At 24 hrs post mating, most delta+ cells remain singlets, similar to virgins. At 40 hrs post mating, most delta+ cells expand to become doublets or triplets. At 7 days after the 1st mating, most delta positive cells are again singlets, however their numbers are irreversibly increased relative to virgins. Females were mated to mate (a ratio of 1:1) and females were allowed to mate for 18-20 hrs after which males were removed, except for the condition "raised mated for 7 days" whereby males were always in the vial with the females. Images are acquired in the R4 region. delta, in red; GFP, in green; DAPI, in blue. Scale bar, 100 μ m. (b) Quantification of (a). Each dot represents a gut, and % of delta+ or Su(H)+ cells are derived from absolute number of positive cells relative to total DAPI+ cells (see Methods).

(c) Intestinal EcR signaling regulates progenitor cell number in the R4 region. Quantification of GFP+ progenitors/area of the midgut stack shows that $EcRA^{DN}$ progenitors are reduced relative to control progenitors of mated females.

(d) Ovarian ecdysone signaling regulates delta+ cell numbers in the R4 region. Quantification of delta+ cells/area of the midgut stack shows that dib^{RNAi} ovaries have intestines with drastically reduced numbers of delta+ cells relative to delta+ cells of control mated females.

(e) R4 midgut enterocytes expressing EcR^{RNAi} in young mated flies causes a nonsignificant accumulation of smaller-sized cell populations relative to age controlled mated females. Shown is a frequency distribution of the different cell sizes. EcR depleted enterocytes have a very slight bigger proportion of cells sized 75-175 μ m² than control midguts (also observed in other contexts). However, the differences in distribution of the cell sizes are statistically non-significant.

(f) Depletion of EcR in midgut enterocytes of old mated flies causes an accumulation of smaller-sized cell populations relative to age controlled mated females. Cells of the midgut were stained with a cytoplasmic stain and a macro was designed to segment the cells according to their sizes (see Methods). Shown is a frequency distribution of the different cell sizes. Control flies have a bigger proportion of cells sized 200-825 μ m² than midguts with *EcR*^{RNAi} enterocytes. Images are taken in the R4 region.

Collectively, data in panels e and f indicate that EcR regulates cell size of enterocytes that may consequently alter nutrient absorption from the gut. Data are from $n\leq 5$ stacks of midguts taken at the R4 region.

(g) EcR is required for optimal increase of ECs number irrespective of mating. Midguts with EcR depleted ECs have a defect in the number of their ECs of the R4 region. Each dot represents the number of ECs/midgut quantified from R4 stitches (see Methods). While mating does not cause an increase in the number of ECs per se, EcR depleted ECs have a defect in their numbers that is not compensated by the "mating" process.

(h) Mating causes an increase in the ratio of other midgut cell types/ECs. Virgins have a higher number of ECs/total DAPI+ cells as quantified from R4 stitches. Mating causes a drop in this ratio indicative of a relative increase in the number of total EC⁻DAPI+ cells. Conversely, virgins with EcR depleted ECs have a defect in sustaining a high ratio of ECs/total DAPI+ cells suggesting that these midguts have a higher ratio of EC⁻DAPI+ cell types. This ratio is not altered after mating. Statistical analysis was performed using one-way ANOVA, followed by Bonferroni's multiple comparisons test panels: g,h or unpaired non-parametric two-tailed Mann-Whitney test (ns p>0.05,*p≤ 0.05,*p≤0.01, ****p<0.0001). Q refers to mated females. Q refers to virgins.

To figure out the size distribution of cells in the R4 region, I stained the gut with a plasma membrane stain, then I imaged cells in the R4 region and counted them and generated a frequency distribution histogram of the percentage of cells versus cell size. EcR depletion in ECs of young guts did not show a measurable or significant difference in their distribution relative to control guts (Fig 2.14e). However, EcR depletion in ECs of old mated females caused a significant reduction in EC size (fractions higher than 176µm²) relative to control guts indicating that intestinal EcR signaling affects EC size (Fig 2.14f). Secondly, mated females did not show a striking increase in EC numbers in R4 region as a consequence of mating per se (Fig 2.13g,h) but there were specific effects of EcR on ECs on aspects of cell number, which I re-allude to in later sections of this thesis. This comes slightly in contrast to what a previous report finds³¹¹ though the differences could be attributed to two factors: Reiff et al focuses on R5 region which is the most posterior region of the midgut and it is a much smaller and functionally distinct than $R4^{2,3}$. Moreover, the differences they observe are slight, and they quantify the enterocytes across the whole gut, while I only took stitches focusing on the R4 region. Thus, I conclude that gut growth is highly dependent on the action of ovary-derived ecdysone on the midgut progenitors.

2.15. 20HE is involved in the regulation of enteroblast differentiation into enterocytes as well as maintaining proper EC number.

Several results I had from my experiments pointed towards a possible role of ecdysone signaling in differentiation, .in this section I will gather all the evidence I obtained during

the course of my thesis to support the role of intestinal EcR signaling in differentiating EBs or differentiated ECs.

Enteroblasts are the cell type that differentiates to give rise to either absorptive enterocytes (ECs) or secretory entero-endocrine cells (ees)^{5,93,317}. This fate specification step depends on the level of Notch signalling in the enteroblasts: High level of notch activates a transcriptional program in the enteroblasts that leads to its differentiation into an EC ³¹⁷⁻³¹⁹. ECs can be marked by nubbin (Pdm1) expression, a POU-domain transcription factor specifically expressed in mature ECs³²⁰. Firstly, EcR depleted ISC clones of mated females leads to formation of clones with smaller cell sizes, which mostly fail to give rise to the large polyploid enterocytes (Fig 2.1.2k,l and Fig 2.23d,e). Then, as I investigated earlier which cell types are required for the 20HE-induced mitoses, I noticed that EcR depleted enteroblasts by SuH^{ts} leads to accumulation of many enteroblasts (Fig 2.15.1a). Conversely, overexpression of the ecdysone-inducible target Eip75B I characterize in later sections of the thesis (Fig 2.17-19) led to the accumulation of Pdm1⁺, GFP⁺ polyploid big-sized cells (Fig 2.15.1b), or large enteroblasts (Fig 2.17f) suggestive of Eip75B pushing cells through differentiation. As a matter of fact, every time the ISCs expressed high levels of Eip75B but were not triggered to divide, the ISCs start developing abnormal morphology and misdifferentiate. This adverse effect was rescued by sensitizing the ISCs to proliferate with a brief heatshock prior to ectopically increasing the Eip75B levels by shifting to 29°C (Fig 2.17e). So primary evidence suggests that intestinal EcR signaling, through Eip75B regulates EB differentiation.

To determine whether EcR plays a role in establishing the cell number/size of both enteroblasts or ECs, I conducted a series of experiments to measure the number of EBs or ECs from microscope stitches taken in the R4 region of the midgut of males and females. This allowed me to count the number of cells from the respective driver background to examine the effects of EcR depletion in EBs or ECs upon exogenous 20HE feeding or mating. For this experiment, I fed males and females with vehicle or 20HE for 14 days that was replaced every 1-2 days. Fig 2.15.1c shows the total number of cells of male or female guts from different genetic backgrounds *SuH*^{ts} or *Myo1A*^{ts} to reflect the robustness of the quantification. Indeed, the technique I used for getting the automated stitches and counting them is quite robust, reflected by the narrow standard deviation. Remarkably, 20HE supplementation for 14 days causes a significant increase in the cellularity of the

midguts relative to vehicle-fed flies (Fig 2.15.1d). Nevertheless, 20HE feeding to control flies for 15 days does not increase the number of EBs relative to vehicle-fed control flies. This is not the case with transient overnight 20HE feeding, whereby there is an increase in the number of enteroblasts (data not shown), probably consistent with the state of increased transient ISC mitoses.

Then, I examined the effect of reduced EcR levels in the EB population of the male and female midguts. When EcR was depleted in EBs of either male or female flies, there was a substantial accumulation of the enteroblast population in the posterior midgut suggesting that differentiation to ECs is blocked (Fig 2.15.1e,f). Strikingly, 20HE supplementation in the food releases this block and the number of EBs return to similar levels relative to control animals (Fig 2.15.1e,f). It remains unclear how 20HE would function to rescue this prominent EB defect of EcR depleted EBs in both sexes. It could be that the remaining EcR would be enough to transduce 20HE signalling to the EBs though highly unlikely as EcR depleted EBs suppress 20HE- or mating-induced ISC mitoses (Fig 2.3b and Fig 2.8.1h). Alternatively, EcR depletion with the co-increase of 20HE availability could cause a compensatory changes such as upregulation of EcR expression or slowed trafficking or recycling of EcR in response to its hypofunction similar to a paradigm described for dopaminergic or seretonergic receptors^{321,322}.

Since there is hyperplasia of the midguts of 20HE-fed flies, I attributed it to increased number of the remaining midgut populations: ECs, ISCs or EECs (Fig 2.15.1d). Consistent with this idea, midguts with EcR depleted EBs that are raised on exogenous 20HE have bigger midguts, though the effect is more pronounced in females (Fig 2.15.1g). Thus, 20HE feeding causes hyperplasia which results in some gut growth and it is required also required for EB differentiation.

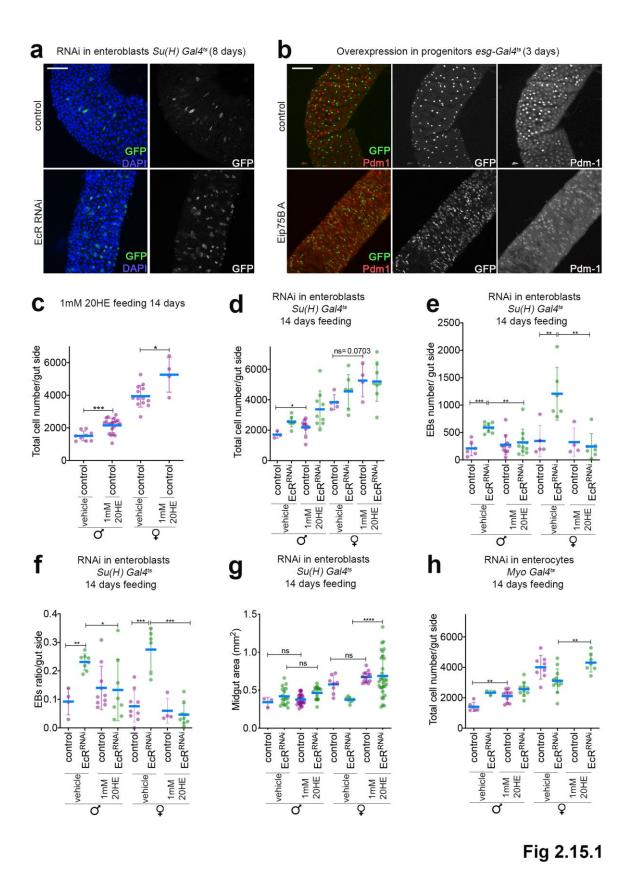


Fig 2.15.1: Intestinal EcR signaling functions in fine-tuning the balance between proliferation and differentiation.

(a) Mated female midguts with EcR^{RNAi} expressing EBs accumulate numerous EBs relative to age-matched mated control females. Representative confocal images of midgut with EcR depleted EBs.

(b) Eip75B overexpression leads to the appearance of GFP+ /Pdm1+ cells, suggestive of aberrant cell growth or precocious differentiation. Representative confocal images of midguts overexpressing Eip75B in the progenitors co-stained with the EC differentiation marker Pdm1+.

(c) Total cell number of DAPI⁺ cells/gut side/midgut stitch in the R4 region from the different driver backgrounds: $Su(H)^{ts}$ Gal4 or $MyoIA^{ts}$ Gal4 of male and female midguts +/- prolonged 20HE feeding. Females have more than double the number of cells relative to males. 20HE feeding in both males and females causes a significant increase in the total number of cells/midgut R4 region as quantified from automated stitches/R4 gut region (refer to methods section). Each dot represents a midgut. The same stitches are used for analyses in panels d-f.

(d) 20HE feeding causes an increase in the total number of DAPI⁺ cells/gut side/midgut stitch in the R4 region of $Su(H)^{ts}$ Gal4 male and female midguts.

(e) EcR depletion in EBs causes a significant sturdy accumulation in EBs that is relieved by 20HE feeding in both males and females. Quantification of the EB number from midgut stitches from the genetic background $Su(H)^{ts}$ Gal4 +/- EcR depletion shows that the loss of EcR in EBs leads to tripling the amounts of the EBs in male midguts and 4 times increase in the number of EBs in females. Such massive increase in EBs is stabilized back to basal levels when the flies are raised on 20HE for 14 days, suggesting that 20HE promotes the differentiation of the depleted EcR EBs.

(f) Ratios of EB numbers/total DAPI⁺ cells in midgut stitches of males and females in the background of $Su(H)^{ts}$ Gal4 shows the relative increase in EB number upon EcR depletion and its drop back to basal levels relative to vehicle-fed animals after raising the animals on exogenous 20HE.

(g) A rescue in the area of midguts with EcR depleted EBs, particularly that of females after 20HE feeding suggest that 20HE feeding is capable of rescuing the EcR depleted EB defects directly or indirectly. Midgut areas of animals raised on exogenous 20HE for 14 days in the background of $Su(H)^{ts}$ Gal4.

(f) 20HE feeding causes an increase in the total number of DAPI⁺ cells/gut side/midgut stitch in the R4 region of *MyoIA*^{ts} Gal4 male and female midguts. Cells/midgut R4 region are quantified from automated stitches/R4 gut region (refer to methods section). Each dot represents a midgut. The same stitches are used for analyses in panels 1f and 2a-b.All panels: Error bars represent \pm SD. Statistical analysis was performed using one-way ANOVA, followed by Bonferroni's multiple comparisons test for panel g or unpaired parametric t-test with Welch's correction. Unless specified, p values are (ns p>0.05,*p≤ 0.05,**p≤0.001, ****p<0.0001). \triangleleft refers to males, $\stackrel{\bigcirc}{=}$ refers to mated females.

Initially, I aimed to investigate the effects of EcR RNAi depletion on the transcriptome of progenitor cells that are virgins or mated. For that reason, I raised female flies as virgins then I mated them for 37hrs prior to the dissection of their midguts and FACS-sorting their progenitors to extract RNA from and sequence afterwards. I never managed to sequence the RNA from this experiment yet, I observed an interesting phenotype that complements the data I show in Fig 2.15a to support the requirement of EcR for differentiating EBs. FACS-sorted female GFP⁺ progenitors have 3 different GFP⁺ expressing populations (GFP^{low} P6, GFP^{medium} P7, GFP^{high} P8). They are seemingly different in the intensities of their GFP⁺ expression. Mated control flies have predominantly a uniform population of GFP^{medium} expressing progenitors, with not so obvious changes in distribution of the GFP population between the virgins and the mated flies (Fig 2.15.2a,b). However, EcR depleted progenitors of female virgins show an accumulation of the GFP^{low} P6 and GFP^{medium} P7 (compare Fig 2.15.2a,b). This accumulation is quickly relieved when the females were mated, as early as 37hrs after mating (Fig 2.15.2b,d). This phenotype was replicated thrice with similar distribution of the GFP population, indicating an accumulation of cells that gets relieved after mating. Thus, both the FACS data and the microscope stitches suggest that non-cell autonomous mating that release endogenous 20HE or feeding exogenous 20HE affects the process of differentiating enteroblasts.

Afterwards, I examined the effects of intestinal EcR signaling on EC numbers. 20HE feeding to control flies causes a slight increase in the number of ECs though I couldn't conclude that with a lot of confidence due to the small (n) numbers and the missing control female guts.

When EcR was depleted from ECs of females; there was a significant reduction in the number of ECs (Fig 2.15.2e). 20HE-feeding to female guts with EcR depleted ECs increases the number of ECs albeit non-significantly, possibly due to the high variability between the midguts and the small (n) numbers. 20HE seems to rescue the EC numbers in guts with EcR depleted ECs to similar numbers in the control flies (Fig 2.15.2e-f).

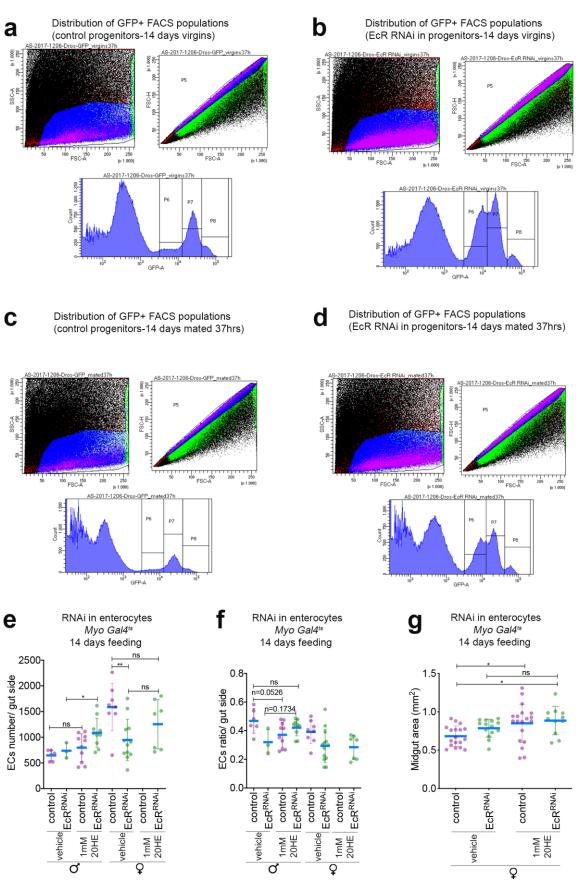


Fig 2.15.2

Fig 2.15.2: Intestinal EcR signaling regulates EB differentiation to ECs.

(a) Histogram distribution of FACS sorted GFP+ cells isolated from progenitors of 14 days old control virgins. 3 different GFP+ populations exist and the same gating strategy is applied for panels 1-o (GFP^{low} P6, GFP^{medium} P7, GFP^{high} P8). GFP^{low} and GFP^{high} are less than 250 counts, GFP^{medium} are around 750 counts.

(b) Histogram distribution of FACS sorted GFP+ cells isolated from EcR-depleted progenitors of 14 days old virgins. GFP^{low} are 1500 counts, GFP^{medium} are 1800 counts and GFP^{high} are less than 250 counts.

(c) Histogram distribution of FACS sorted GFP+ cells isolated from progenitors of 14 days old mated controls. Mating commenced 37 hours prior to dissection. . GFP^{low} and GFP^{high} are less than 100 counts, GFP^{medium} are around 300 counts.

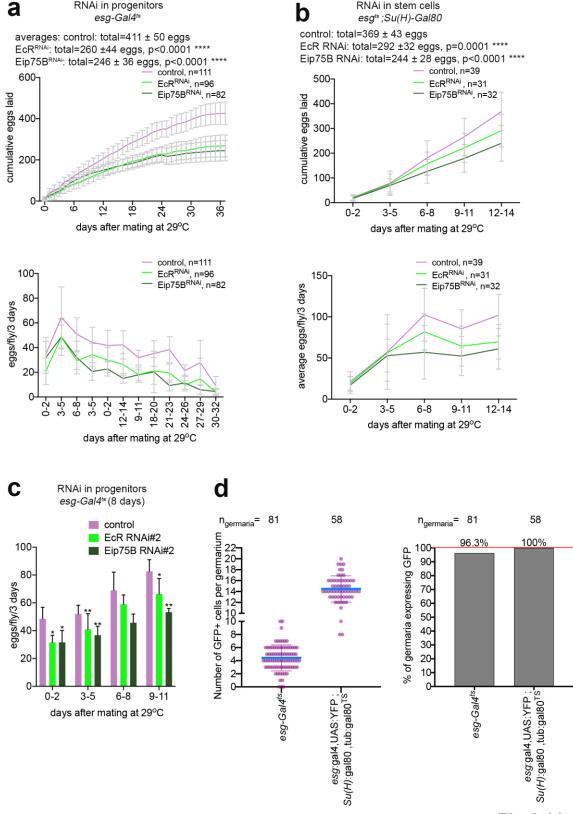
(d) Histogram distribution of FACS sorted GFP+ cells isolated from EcR-depleted progenitors of 14 days old mated females. Mating commenced 37 hours prior to dissection. GFP^{low} are around 500 counts, GFP^{medium} are around 700 counts and GFP^{high} are around 100 counts. Accumulation of GFP+ progenitors is more observed when EcR is depleted and mating relieves this effect. All panels: Error bars represent \pm SD. Statistical analysis was performed using one-way ANOVA, followed by Bonferroni's multiple comparisons test for panel k or unpaired parametric t-test with Welch's correction. Unless specified, p values are (ns p>0.05,*p≤0.05,**p≤0.01). \triangleleft refers to males, \Diamond refers to mated females.

(e) EcR depletion in ECs causes a pronounced drop in the number of ECs/R4 midgut region in females that is fully rescued by exogenous 20HE feeding for 14 days. A similar increase of EC number in male midguts is also detected after 20HE feeding though a reduction of EC number is not observed in males possibly because of the low n number.

(f) Ratios of EC numbers/total DAPI⁺ cells in midgut stitches of males and females in the background of $Myo1A^{ts}$ Gal4 shows the relative drop of EC ratio in control males after 20HE feeding. This complements the result in Fig 2.6f and suggests that there is an increase in other EC⁻ cell types upon prolonged 20HE feeding. Conversely, EcR depleted ECs have an inherent defect in their numbers that is fully rescued by exogenous 20HE feeding. EcR depleted feeding. EcR depleted female ECs do not seem to be rescued by exogenous 20HE.

(g) Midgut areas of females raised on exogenous 20HE for 14 days in the background of $Myo1A^{ts}$ Gal4. There seems to be an initial increase in the midgut areas with EcR-depleted ECs but no additional increase in the midgut area occurs after exogenous 20HE feeding.

20HE feeding recovers the deficit in the number of ECs so that their numbers/R4 region matches vehicle-fed control midguts. Yet, the experiment's results were not so robust due to the small n numbers. However, preliminary results suggest that EcR depletion in ECs causes a reduction in their number that is rescued by raising the flies on 20HE (Fig 2.15.2e-f). Nevertheless, the 20HE-mediated increase in the number of ECs is not so


pronounced to explain the hyper-cellularity phenotype observed in 20HE-fed guts (Fig 2.15.2a). Although there are differences in the number of EcR depleted ECs with 20HE feeding, it does not seem to exert much difference on midgut areas (Fig 2.15.2g). Midguts with EcR^{RNAi} -enterocytes are initially slightly bigger than vehicle-fed control females. 20HE-fed midguts with EcR^{RNAi} -enterocytes have slightly higher but insignificant increase in their overall midgut area relative to vehicle fed midguts with EcR^{RNAi} -enterocytes. Hence, there seems to be an effect of intestinal 20HE signaling on EC size and number in the posterior region of the midgut. Altogether, my data suggest that intestinal EcR is involved in the epithelial differentiation of EB to ECs, possibly also regulate EC number to supply the gut with optimal number of nutrient-absorbing enterocytes. This preliminary evidence suggests that investigating the role of EcR in differentiating EBs or differentiated ECs should prove relevant and interesting in the future.

2.16.1-2 Intestinal EcR is required for optimal reproductive capacity.

Reproduction is a costly process and it is crucial for the females that conduct most of the reproductive burden to devise mechanisms that maximize their reproductive fitness³²³. Accordingly, ovary-induced steroid signaling causes both behavioral and metabolic changes that lead to maximal reproductive output ^{158,252,253,301,302,123,324,325}.

A female fly at its reproductive peak lays up to 5 times its weight per day in its fertilized eggs ^{326,327}, which is limited by nutrient availability to the ovaries^{328,329}. Thus, I wondered if intestinal EcR is involved in remodeling the gut size to maximize the reproductive output.

This would be in line with the hypothesis that mating-induced gut growth increases the nutrients absorbed by the intestine and, thereby, nutrient availability to the fly's other organs such as the ovary. For that, I expressed EcR^{RNAi} in midgut progenitors or ISCs under the control of the esg^{ts} -Gal4 driver, or the esg^{ts} -Gal4 Su(H)-Gal80 driver respectively. Then, I monitored the amount of eggs deposited by females over a long period of time. Both approaches to reduce intestinal EcR signaling diminished egg production by up to ~40% (Fig. 2.16.1a-b).

RNAi in stem cells

RNAi in progenitors

Fig 2.16.1

Fig 2.16.1: Intestinal EcR signaling is required to maintain reproductive demand of females. Text and images have been taken and modified from (Ahmed et al., 2020) and have been originally written and made by myself: (a) Mated females expressing EcR^{RNAi} or $Eip75B^{RNAi}$ in their midgut progenitors have reduced reproductive output. Flies with control, EcR- or Eip75B-depleted midgut progenitors were raised as virgins for 1-2 days then were shifted to the permissive temperature and mated to males with no genetic manipulations at a ratio of 1:1 in populations of 5-7 females/cage. Eggs were collected from the fly vials every day for up to 40 days and the cumulative sums (upper graph) or average total eggs/fly every 3 days (lower graph) are plotted. Control females lay more eggs than midguts expressing EcR^{RNAi} or $Eip75B^{RNAi}$ in progenitors. Replicates from 3 independent experiments are shown. Error bars represent S.D. and p-values are calculated by general linear mixed model (GLM).

(b) Mated females expressing EcR^{RNAi} or $Eip75B^{RNAi}$ in their midgut ISCs have reduced reproductive output. Flies with control, EcR- or Eip75B-depleted midgut ISCs were raised at 18°C for 2 days maximum then were shifted to 29°C and allowed to mate to males with no genetic manipulations at a ratio of 1:1. Flies were pooled together the first night of mating to ensure mating then on the next day, a single female was housed with a control male in a single vial. Eggs were collected from the fly vials every 48hrs for up to 14 days and the first graph on top shows the cumulative eggs laid across 14 days while the graph below shows the same data as a function of the average total eggs/fly every 3 days plotted across 14 days. Control females lay more eggs than midguts with EcR^{RNAi} or $Eip75B^{RNAi}$ in ISCs. Error bars represent S.D. and p-values are calculated by GLM.

(c) Egg laying assay with an independent alternative 2nd RNAi against EcR and Eip75B is shown to complement results in a-b. Females were raised as virgins from 8 days at 29°C then they were allowed to mate to males with no genetic manipulations at a ratio of 1:1 and their eggs were scored for up to 11 days post mating. 3 days averages are plotted, error bars represent S.D. and p-values are calculated by two-tailed t-test with Welch's correction.

(d left) The number of GFP+ cells per germarium for both midgut drivers: esg^{ts} or esg^{ts} Su(H)gal80 which is expressed in midgut progenitors and ISCs respectively. Examination of esg^{ts} driver shows that it is expressed in around 4 escort cells while esg^{ts} Su(H)gal80 driver shows expression in around 14 escort cells. n of germaria analyzed is indicated above each driver. Control germaria typically have 45-70 escort cells³³⁰. This quantification was done by Dr. Clothilde Pénalva in the Edgar Lab. (d right) Most midgut drivers express GFP in their germaria. The frequency of germaria expressing GFP is displayed in a bar graph. Ovaries of the esg^{ts} driver have some escapers that have no GFP in their germarium while almost all ovaries of the esg^{ts} Su(H)gal80 driver have no escapers and all ovaries express GFP. This quantification was done by Dr. Clothilde Pénalva in the Edgar Lab.

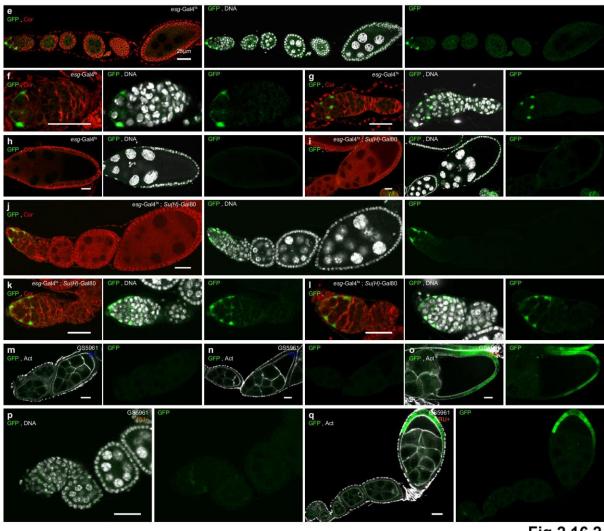


Fig 2.16.2

Fig 2.16.2: *Drosophila* midgut drivers express GFP at different stages of the developing egg chambers. Text and images have been taken and modified from (Ahmed et al., 2020) and have been originally written and made by Dr. Pénalva. e-q) Drosophila ovaries are composed of 16 ovarioles. At the anterior tip of every ovariole the germarium contains the germline stem cells and the somatic stem cells that constantly produce follicles or egg chambers. As the follicles progress to the posterior end of the ovariole they develop to lead to the formation of a mature egg. Follicle development is divided into 14 stages. In the most anterior part of the germarium (Region I) the cap cells and the escort cells constitute the niche required for the maintenance of the GSCs and the proper differentiation of the early germline cyst. expression of the esg-Gal4ts and the esgts Su(H)-Gal80 drivers was detected within the germarium in a subset of escort cells. e-h) Confocal sections of follicles from stage 2-7 (e), stage 9 (h) and germaria (f,g) isolated from esg-Gal4ts flies and stained for GFP (green), Coracle (red) and DNA (DAPI, gray). No GFP signal was detected in follicles from stage 2 to 9 (e,h)or in later stages (not

shown). However, 96% of germaria showed GFP in a subset of cells in the anterior region I (f,g). The GFP expressing cells were located in between the germline cysts and exhibited a triangular shape indicating that they were the escort cells. i-l) Similarly, all germaria from esgtsSu(H)-Gal80 flies presented GFP expression in escort cells (a,j,k,l) and no GFP expression was detected from stage 2 to 9 (i,j) or in later stages (not shown). m-q) The expression of the Switch GS5961-Gal4 driver was detected within the posterior follicular cells of the ovaries from stage 8 of oogenesis. Confocal section of follicles isolated from GS5961/UAS-GFP flies kept 4 days on yeast paste only (RU-) or yeast paste supplemented with RU486 (RU+) for 4 days and stained for GFP (green), actin (phalloidin, gray) or DNA (DAPI, gray). In absence of RU induction no GFP was detected in the ovary (m,n). After RU feeding no expression was detected in germaria or follicles prior to stage 7 (p,q). At stage 7 a subset of the most posterior follicular cells started to express weakly the GFP, this expression was then stronger and spreading to more follicular cells in a posterior to anterior gradient during stage 8 of oogenesis (q most posterior follicle) and maintained later on in most of the posterior follicular cells that cover the oocyte (o -stage10).

*All pictures are presented with the anterior on the left and the posterior on the right.

I have validated the fecundity result by using an independent alternative RNAi (Fig. 2.16.1c). Thus, I concluded that midgut resizing affects the female fecundity to optimize their reproductive output.

However, these drivers were reported to express in some cells of the ovary³¹¹. I have asked an expert in *Drosophila* ovary stainings in the Edgar lab of Utah to stain the ovaries of both drivers and check which ovarian cells express GFP. Dr. Pénalva (Edgar lab) found that GFP is expressed in a subset of escort cells in the germarium of the ovary. *esg^{ts}*-Gal4 has an average of 4 GFP⁺ cells, while *esg^{ts}* -Gal4 *Su*(*H*)-Gal80 has an average of 14 GFP⁺ cells (Fig. 2.16d-1)³³⁰. It remains unexplored if EcR might be required in these ovarian escort cells and would in turn contribute to the optimal fecundity. Notably, control germaria typically have 45-70 escort cells³³⁰. Thus only 8.3%-24% would be affected by genetic manipulations with both midgut drivers *esg^{ts}*-Gal4 and *esg^{ts}*-Gal4 *Su*(*H*)-Gal80 respectively. Collectively, my results reveal a post-mating organ cross-talk between the gut to deliver nutrients to the ovaries to maximize nutrient deposition in their fertilized eggs.

2.17 Functional bifurcation of the canonical heterodimeric EcR•Usp during regenerative ISC mitoses.

As EcR was required for detergent-induced ISC mitoses, I next wondered if intestinal ecdysone signaling is required for regenerative compensatory ISC proliferation following infection with pathogenic bacteria. To answer that, I induced progenitor-specific depletion of EcR, then infected the flies overnight, and scored their mitotic indexes (Fig 2.1d,f 2.17.1a). Reduced EcR levels did not affect the *P.e.*-induced ISC mitoses relative to control flies. Strikingly, Usp depletion abolished the regenerative response (Fig 2.17.1a). The result was confirmed using an independent alternative RNAi line to Usp and EcR (Fig 2.17.1a). This result is surprising because most of ecdysone's functions described during development and throughout this thesis too (20HE feeding or mating), act through the EcR/Usp heterodimer³³¹.

Yet, a number of results support that reduced levels of EcR is not necessary for P.e.induced ISC mitoses. The efficacy of the EcR RNAi was validated by its ability to suppress 20HE- or mating-induced mitoses (Fig 2.1.1c). Likewise, the expression of isoform specific RNAi against EcR A or B as well as EcR A DN did not compromise the ISC mitoses to *P.e.* infection (Fig 2.1.1f-h). Next, I sought to identify which cell type specifically require EcR or Usp. I used ISC- or EB-specific drivers to deplete EcR or Usp and then I scored mitoses after P.e. infection. EcR^{RNAi} in either ISCs or EBs did not cause any significant change in the mitotic response to P.e. infection (Fig 2.17.1b,c). However, Usp^{RNAi} in ISCs but not in EBs strongly compromised the ISCs to divide after infection (Fig 2.17.1b-c). This indicates a cell autonomous requirement of Usp only by ISCs to control their proliferation in a context where EcR is dispensable to ISCs. To check whether EcR in ECs would also contribute to the non-cell autonomous *P.e.*-induced ISC mitoses, I depleted EcR from ECs (Fig 2.17.1d). EcR-depleted enterocytes cause the ISCs to remain competent to the *P.e. regenerative* responses, even at slightly higher rates relative to controls. Consistently, when constitutive *tub*^{ts} driver was used to deplete EcR or Usp, the same phenotypes described above were recapitulated (Fig 2.17.1e). To confirm Usp activity in vivo during P.e. infection or 20HE feeding, I used the Usp Gal4-LBD 'ligand trap'^{186,288}. 20hrs after heat shock induction, at basal conditions, Usp is mildly active in a few small cells in the posterior midgut of control flies. 20HE feeding activates ecdysone signaling in midgut cell clusters containing singlets, neighboring cell pairs and big polyploid cells (Fig 2.17.1f). After *P.e.* infection though, the Usp reporter was still detected in most cells (Fig 2.17.1f), though contrastingly, EcR reporter activity was absent from all cells (Fig 2.1.2 m-p). Altogether, my results show that unlike detergent-induced ISC mitoses, EcR in all epithelial cells is dispensable to the *P.e.*-induced ISC mitoses. More importantly, this is the first report of a functional bifurcation between EcR and Usp in the adult *Drosophila*³³².

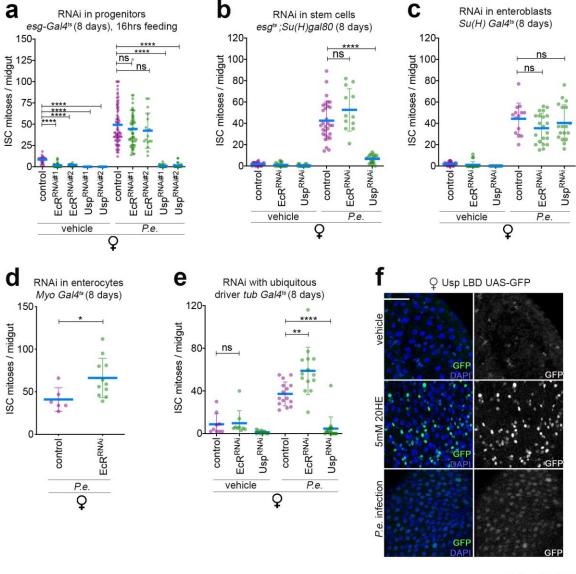


Fig 2.17

Fig 2.17: Only Usp but not EcR is required in ISCs during *P.e.* infection. Text and images have been taken and modified from (Ahmed et al., 2020) and have been originally

written and made by myself: (a) Usp is essential while EcR is dispensable to the regenerative response after infection. Progenitor-specific expression of Usp^{RNAi} after enteric infection strongly ablates *P.e.*-induced ISC mitoses however; progenitor-specific expression of EcR^{RNAi} did not deplete *P.e.*-induced ISC mitoses. Hence, Usp but not EcR is indispensable regenerative infection-induced ISC mitoses. Results are shown for 2 independent RNAi lines. I have produced half of this panel during my master's study and I used it in my master's thesis as well, Sara Ahmed, 2015⁴⁶⁴.

(b) Usp is essential while EcR is dispensable to the regenerative response after infection. ISC-specific expression of Usp^{RNAi} after enteric infection strongly ablates *P.e.*-induced ISC mitoses however; ISC-specific expression of EcR^{RNAi} did not deplete *P.e.*-induced ISC mitoses. Hence, Usp but not EcR is indispensable regenerative infection-induced ISC mitoses.

(c) EcR and Usp are dispensable to the enteroblasts during the regenerative response after infection. Enteroblast-specific expression of EcR^{RNAi} and Usp^{RNAi} after enteric infection does not inhibit *P.e.*-induced ISC mitoses. Hence, depletion of EcR and Usp from the enteroblasts is not important to regenerative infection-induced ISC mitoses.

(d) EcR is dispensable to the enterocytes during the regenerative response after infection. Enterocyte-specific expression of EcR^{RNAi} after enteric infection does not inhibit *P.e.*-induced ISC mitoses. Hence, depletion of EcR from the enterocytes is not important to regenerative infection-induced ISC mitoses.

(e) Usp is essential while EcR is dispensable to the regenerative response after infection. Ubiquitous expression of Usp^{RNAi} with tub^{ts} driver after enteric infection causes a strong suppression of *P.e.*-induced ISC mitoses however; expression of *EcR*^{RNAi} did not deplete *P.e.*-induced ISC mitoses. Hence, constitutive depletion of EcR from the different cell types is not important to regenerative infection-induced ISC mitoses.

(f) Usp activity is present after *P.e.* infection and 20HE feeding. Representative images of the heat-shock inducible *Gal4.DBD-Usp.LBD>GFP* reporter. Mated female flies were heat shocked for 30 mins then exposed to vehicle, *P.e.* infection or 5mM 20HE for 20 hrs. Gal4-*Usp* activity was detected in few cells under basal conditions. However, following *P.e.* infection, low levels of the Usp reporter were detected in most cells of the midgut. 20HE feeding induces the Gal4-*Usp* activity restricted in distinct doublets or large polyploid cells. GFP, in green; DAPI, in blue. Scale bar, 100 µm.

Statistical analysis was performed using unpaired non-parametric two-tailed Mann-Whitney test (* $p \le 0.05$, ** $p \le 0.01$, ****p < 0.0001).

2.18 Usp may function with Hr38 to regulate ISC mitoses.

My interesting observations about Usp functions raised the possibility that a nuclear receptor other than EcR might interact with Usp in ISCs, modulating the *P.e.*-induced regenerative ISC mitoses. Hence, I tested a panel of hormone receptors (*e.g.* Hr38, Hr96,

Hr83 and Hr51) known to heterodimerize with the Usp mammalian homologue RXR^{333,334}.

Progenitor-specific depletion of receptor partners (Hr96, Hr51) (data not shown for Hr83 RNAi +P.e.) was not required for P.e. infection. Nevertheless, Hr51 and Hr83 were required for 20HE-induced mitoses. In contrast, Progenitor-specific depletion of Hr38 strongly suppressed the ISC divisions in response to P.e. infection or 20HE feeding (Fig. 2.18a). Moreover, Hr38 reduction also causes a drastic loss in the number of GFP⁺ progenitors, which suggests that Hr38 functions in progenitors survival (Fig 2.18b). I validated these results using an alternative independent RNAi line against Hr38 (Fig 2.18a). Conversely, P.e.-induced ISC mitoses do not require Hr51 or Hr96 and Hr83 (data not shown for Hr83 RNAi +P.e.). Next, I examined the function of the same receptor partners during homeostatic epithelial renewal. ISC with reduced levels of Hr96 either did not form clones or completely renewed the midgut epithelia (prevalence of the phenotype was assessed and a representative picture is shown) (Fig 2.18d). Similarly, ISC clones with depleted Hr51; Hr83 did not exhibit a recognizable perturbation in their basal ISC clonal formation (data not shown). However, only Hr38-depleted ISC clones exhibited a striking defect in their renewal functions (Fig 2.18d). Considerably, a significant number of ISCs were absent or remained a single cell. Nevertheless when the ISCs divided they gave rise to multicellular clones as depicted in the representative picture (Fig 2.18d) (compare to Fig 2.23e for Usp). Hence, my results strongly suggest that loss of Hr38 phenocopies the loss of Usp function. Consequently, I hypothesized that Usp and Hr38 interact together in vivo to regulate ISC mitoses. To determine the validity of this hypothesis, I used heterozygous whole body mutants for Usp or Hr38 then, I combined both mutations in trans to generate Usp Hr38 double mutant animals. Either heterozygous mutant displayed a defect in their P.e. or 20HE-induced ISC mitoses (Fig. 2.18e). Trans-heterozygotes Usp $^{\Delta/x}$ Hr38 $^{\Delta/2}$ showed a synergistic defect in their ISC response to *P.e.* infection or 20HE feeding suggesting that they both interact together to modulate ISC division (Fig 2.18e). Jointly, these results all solidify the hypothesis that indeed Hr38 and Usp interact in a heterodimeric complex to regulate aspects of ISC division, maintenance or both. Notably, Hr38 is the only other Drosophila nuclear receptor known to heterodimerize with Usp to regulate cuticle formation³³⁵⁻³³⁷

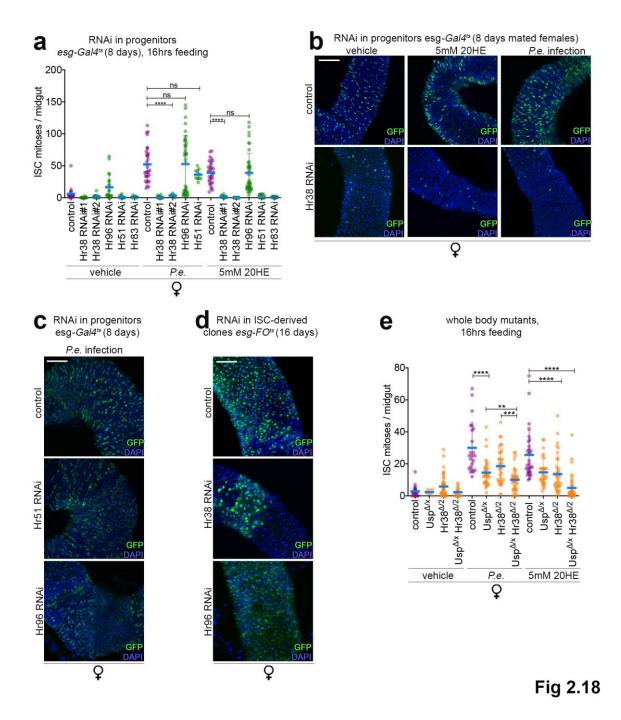


Fig 2.18: Hr38 loss of function phenocopies Usp depletion in ISCs. (a-b) (a) Depletion of Hr38 ablates *P.e.*- or 20HE- induced mitoses. Progenitors-specific depletion of some hormone receptor candidates: Hr38, Hr96 and Hr51 thought to partner with Usp after enteric infection or 20HE feeding. Progenitor-specific depletion of Hr83 was also tested and was not found to phenocopy Usp depletion (data not shown for *P.e.* infection). ISCs of $Hr96^{RNAi}$ progenitors divide at similar extents relative to control midguts after *P.e.*- or 20HE-feeding. ISCs of $Hr51^{RNAi}$ progenitors divide at similar extents relative to control midguts after *P.e.*- or ISCs of midguts with $Hr51^{RNAi}$ progenitors while Hr96 is dispensable to 20HE-induced mitoses.

mitoses. ISCs of $Hr38^{RNAi}$ progenitors are unable to divide to neither pro-mitotic stimuli. Hence, Hr38 depletion resembles Usp depletion in midgut progenitors.

(b) Representative images of Hr38-depleted progenitors after 20HE feeding or enteric infection. A strong reduction in the number of GFP+ progenitors was noticed after Hr38 is depleted, implicating Hr38 in the viability as well as proliferation of the progenitors. (c) Representative images of $Hr51^{RNAi}$ or $Hr96^{RNAi}$ progenitors after *P.e.*-feeding shows that GFP progenitors expand after infection at similar extents to control midguts.

(d) *Hr38*^{RNAi} or *Hr96*^{RNAi} and control ISC clones in the midgut 16 days after clonal induction under homeostatic conditions. Epithelia in control midguts are almost completely turned over. In midguts with Hr38 depleted ISC clones, ISCs are occasionally lost, however when the ISCs divided, they gave rise to big well-differentiated multicellular clones. Hr96 depleted ISC clones divide at normal rates relative to control midguts, marked by the complete epithelial renewal observed in most guts.

(e) Hr38 and Usp may partner together in ISCs of the midgut. Genetic interaction between heterozygous whole body Hr38, Usp mutants or Hr38 Usp whole body double mutants in trans-heterozygosis. After 20HE- or *P.e.*-infection, there is an additive defect in ISC mitoses of trans-heterozygote double mutants. Representative images are shown. GFP, in green; DAPI, in blue. Scale bars, 100 μ m. Statistical analysis was performed using unpaired non-parametric two-tailed Mann-Whitney test (*p≤0.05, **p≤0.01, ***p≤0.001, ***p<0.0001).

Fig 2.19 *Eip75B* and *Broad* are downstream effectors of midgut ecdysone signaling.

The nuclear receptor Eip75B and the zinc finger transcription factor Broad are wellcharacterized as early ecdysone effector genes during embryogenesis ³³⁸, ³³⁹metamorphosis^{177,191}and oogenesis^{340,341}. I have demonstrated earlier that Broad and Eip75B are transcriptionally regulated by 20HE feeding (Fig 2.13a). Then, I sought to examine if either or both relays the ecdysone signals to ISCs of the midgut and how does the more relevant effector then act to regulate ISC functions, with a deeper focus on ISC mitoses. Firstly, I asked whether Broad and Eip75B are more generally regulated by other pro-mitotic stimuli or not. I checked their mRNA regulation after *P.e.* infection. Indeed, they were transcriptionally induced after *P.e.* infection suggesting that they function independently of the ecdysone hierarchy and not only explicitly ecdysone targets (Fig 2.19a). Next, to determine if Broad and Eip75B from progenitors (Fig 2.19b). Consistent with the PCR data, both Broad and Eip75B were essential to the 20HE or *P.e.*-induced

mitoses (Fig 2.19b). To examine the role of Broad and Eip75B in the homeostatic epithelial renewal, I induced ISC clones with reduced levels of Eip75B and broad over time. Clonal analyses revealed that Broad was dispensable for the basal ISC divisions that sustain the midgut during homeostasis. However, Eip75B was essential for the ISC clonal growth (Fig 2.19d). Conversely, overexpression of Eip75B causes massive clonal overgrowth and increased mitotic indexes supporting the hypothesis that Eip75B is sufficient to cause ISC division (Fig 2.19c). When I tried validating this result in the background of the progenitor-specific *esg^{ts}*, I found that increased levels of Eip75B in progenitors only did not increase the PH3 counts per-se (Fig 2.19g). Nevertheless, the GFP signal that should only be restricted to progenitor doublets was widely spread to include many polyploid cells (Fig 2.19g). The same results were obtained with the ISC-specific driver that supposedly only mark single or doublet cells. Similarly, overexpression of Eip75B with the EB-specific driver gives rise to increased numbers of enteroblasts with aberrant morphology (Fig 2.19f-g). This has led me to propose several ideas about the discrepancy in the phenotype observed in UAS-Eip75B-expressing ISC clones relative to UAS-*Eip75B*-expressing progenitors or ISCs. Firstly, despite not detecting ISC mitoses, ISCs appear to have divided, evident by the strong GFP signal that extends to the polyploid enterocytes and the formation of what appears to be a clone of ISC progeny. Secondly, there were definitively always changes in the cellular morphology of cells overexpressing Eip75B. UAS-Eip75B-expressing cells look bigger relative to control cells (Fig 2.19g). Lastly, despite repeating each experiment many times, the esg^{ts}FO driver was the only

background in which Eip75B overexpression resulted in increased ISC mitoses. Interestingly. This effect was not likely due to damage to ECs, since driving *Eip75B* with the EC-specific *MyoIA*^{ts} driver did not trigger ISC mitoses (data not shown). This ambiguous result has led me to think that either the highly expressing Eip75B ISCs divide too fast or they mis-differentiate and ISC pool is somewhat severely depleted^{316,342}. Consistent with the latter hypothesis, overexpression of Eip75B for 9 days caused a prominent loss in regionalization of the midgut (Fig 2.21f).

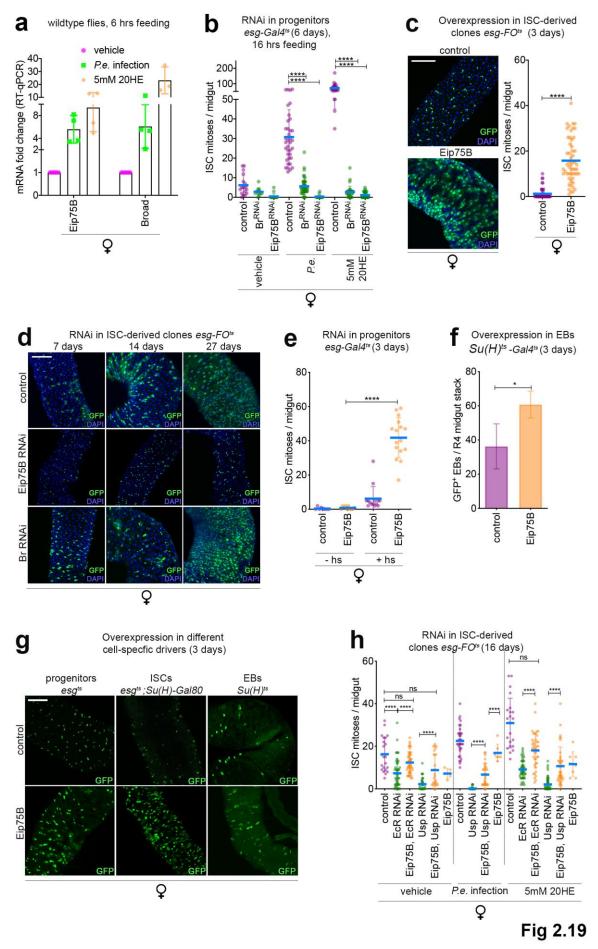


Fig 2.19: Eip75B and broad are downstream 20HE-inducible targets in the *Drosophila* midgut. Text and images have been taken and modified from (Ahmed et al., 2020) and have been originally written and made by myself: (a) 20HE feeding or *P.e.* infection transcriptionally upregulate the ecdysone-inducible targets Eip75B and broad. qRT-PCR measurements from whole midguts show that expression levels of *Eip75B* and *broad* mRNA are induced by *P.e.* infection or 20HE feeding 6 hrs after treatment. Expression is indicated as mean fold change relative to vehicle-treated midguts \pm SD (n \geq 3).

(b) 20HE and *P.e.*-induced ISC mitoses require *Eip75B* and *broad*. Midguts with RNAimediated depletion of *Eip75B* or *broad* in progenitors had suppressed ISC mitoses relative to control midguts18 hrs after 20HE feeding or enteric infection.

(c) Overexpression of Eip75B in ISC clones is sufficient to promote ISC mitoses. ISC clones ectopically expressing Eip75B show that Eip75B is pro-proliferative and sufficient to induce clonal growth (left). Mitotic counts show that clonal Eip75B overexpression activates ISC proliferation (right). I have produced this data during my master's study and I used it in my master's thesis as well, Sara Ahmed,2015⁴⁶⁴.

(d) Eip75B but not broad is required for epithelial renewal. ISC-GFP marked clones are generated by the esgF/O system showing that control mated females have constantly renewed epithelium, with full replacement taking 1-2 weeks. The size of ISC clones with $Eip75B^{RNAi}$ was dramatically reduced but, the size of $Broad^{RNAi}$ ISC clones was seemingly unaffected.

(e) Heatshock-sensitized midguts with progenitor-specific *Eip75B* overexpression vigorously triggers ISCs mitoses. Midgut mitotic figures were quantified after overexpressing *Eip75B* under the control of the progenitor-specific driver *esg^{ts}* for 3 days. Prior to inducing *Eip75B* overexpression via temperature shift, flies were subjected to heat-shock for 30 mins or left untreated. Heat-shock alone causes a mild increase in ISC mitoses. Eip75B overexpression in progenitors was insufficient to increase ISC divisions. Heat-shock of Eip75B overexpressing progenitors resulted in a synergistic effect on ISC mitoses.

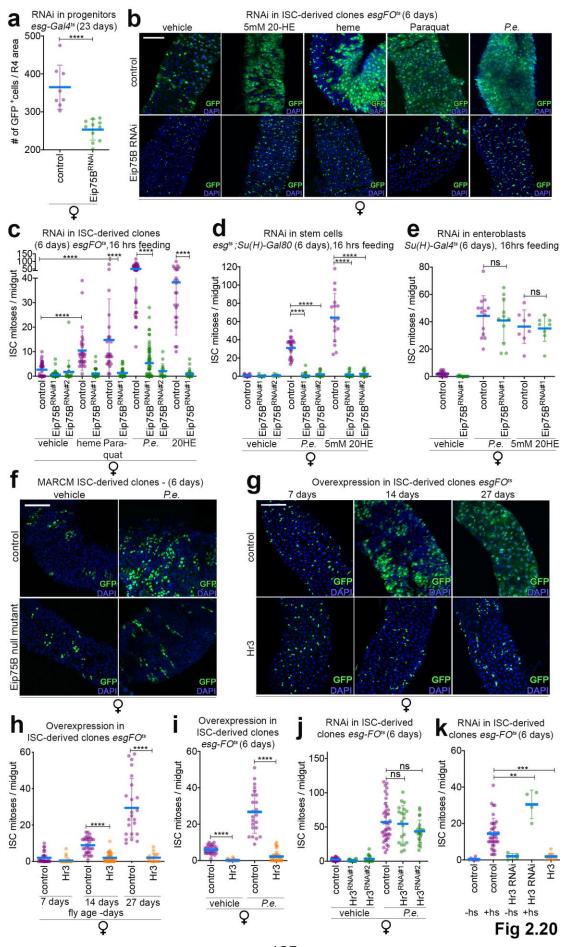
(f) Overexpression of E75A in enteroblasts induces a slight expansion in their number as shown by the counts of enteroblasts/midgut stack at the R4 region. I have produced this data during my master's study and I used it in my master's thesis as well, Sara Ahmed,2015⁴⁶⁴.

(g) Eip75B overexpression results in aberrant enlargement of the cell size and precocious differentiation. Eip75B was induced by different cell-specific drivers in progenitors (esg^{ts}), ISCs (esg^{ts} Su(H)gal80) or enteroblasts ($Su(H)^{ts}$) respectively. In all cases, the numbers of GFP⁺ cells were much higher than in age-controlled midguts without genetic manipulation. When misexpressed in progenitors or only in ISCs, many cells with large nuclei, typically enterocytes also accumulated. Eip75B misexpression in EBs resulted in more cells with abnormal morphology. Hence, Eip75B is maybe involved in both proliferation and differentiation.

(i) Eip75B is downstream of EcR and Usp receptors. Mitotic indexes of ISCs reflecting the epistatic relationship between EcR/Usp depletion and Eip75B misexpression under homeostatic conditions or after 20HE feeding. Under both conditions, Eip75B partially rescues the proliferative defect of clonal EcR or Usp depletion which suggest that Eip75B relays at least part of the intestinal EcR•Usp in the ISCs. Representative images are shown. GFP, in green; DAPI, in blue. Scale bars, 100 μ m. Statistical analysis was performed using unpaired non-parametric two-tailed Mann-Whitney test (ns p>0.05, *p≤0.05, ****p<0.0001).

Given this massive disturbance in the dynamic of dividing ISCs, I sought to prompt immediate activation of ISC divisions from the moment I induced Eip75B expression. Hence, I sensitized the flies with a brief heat shock (15 min, 37 degrees) prior to shifting them to 29°C to activate UAS-Eip75B in progenitors. 3 days later, Eip75B over expressing ISCs were markedly pro-mitotic (Fig 2.19e). Similar results were obtained with Hr3 depletion in ISC clones, as will be shown in a later section (Fig 2.20j). Next to determine whether Eip75B acts as a downstream effector of the intestinal ecdysone signaling pathway, I examined the effect of Eip75B depletion on the mating-induced midgut mitoses (Fig 2.8.1i) and subsequent midgut growth (Fig 2.8.2a-b). In both contexts, Eip75B was required to transduce the ovary-derived ecdysone signaling in ISCs of the midgut post-mating. Similarly, reduced Eip75B levels in progenitors suppressed the reproductive output of mated females (Fig 2.16.1a-c). Next, I performed epistatic tests between the loss of function of EcR/Usp together with the overexpression of Eip75B (Fig 2.19h). Usp-depleted ISC clones had dramatically impaired ISC divisions. However, when Eip75B was co-overexpressed with Usp^{RNAi} , ISC mitoses were partially rescued. Importantly, this mitotic rescue was not observed only under basal homeostatic conditions but also after 20HE feeding yet, much less after P.e.-infection. Similarly, loss of function of EcR after 20HE feeding was rescued by Eip75B co-overexpression (Fig 2.19h). These results indicate that Eip75B functions downstream of the EcR•Usp receptor complex.

Fig 2.20 Eip75B interacts with Hr3 to modulate ISC divisions.


I have figured out that Eip75B is the more relevant 20HE target in the general context of basal and regenerative ISC mitoses. I next aimed to investigate how Eip75B functions to

regulate ISCs. Traditionally, Eip75B binds Hr3 and block its ability to regulate target genes during development^{175,185,189}. In a less traditional model, Hr51 was also shown to interact with Eip75B in the *Drosophila* circadian pacemaker neurons and axon regeneration^{189,343}.

To control the proper balance between stem cell division, self-renewal and differentiated progeny, the ISCs must be maintained that they are not lost from the tissue over time. So, first, I determined whether Eip75B is involved in maintenance of the ISCs within the ISC pool, prolonged loss of Eip75B in progenitors was induced and 23 days later, the cell numbers were counted by Dr. Gabi de Silva in the Edgar lab. There was only a 30% decrease of intestinal stem cell number, suggesting that Eip75B is non-essential for ISC maintenance (Fig 2.20a). To investigate the role of Eip75B in proliferation, I suppressed Eip75B in ISC clones and fed the flies with various stresses that are known to cause compensatory ISC proliferation and midgut epithelial regeneration³⁰. When Eip75B signaling was suppressed in ISC clones by Eip75B RNAi, midgut regeneration was completely inhibited in response to ROS-induced stress or P.e. infection as well as 20HE feeding (Fig 2.20b,c). The mild mitotic response of heme feeding also requires the presence of Eip75B in the ISCs (Fig 2.20b,c) consistent with the fact that heme is the obligate ligand for Eip75B and is required for the Eip75B stability and accumulation¹⁷⁵. Hence, Eip75B plays an essential role in ISC proliferation. To further explore whether Eip75B is required for ISC mitoses in a ISC-autonomous or non-autonomous manner, I depleted Eip75B from ISCs or EBs with the cell-type specific drivers, then I fed the flies with P.e. or 20HE to stimulate ISC mitoses. Eip75B was not required in EBs for either the P.e. or 20HE-induced ISC mitoses (Fig 2.20e), but the ISCs failed to divide when they had suppressed levels of Eip75B (Fig 2.20d) revealing the ISC-autonomous requirement of Eip75B for ISC mitoses.

To validate the phenotype of Eip75B in ISCs, I generated mosaic ISC clones homozygous for $Eip75B^{\Delta 51}$, a null allele for all Eip75B isoforms ¹⁸⁴ via the MARCMs system²⁸⁵ (Fig 2.20f, Fig 2.1.2k). I used two different recombinants and for one I quantified the size of generated ISC clones after clone induction then overnight 20HE feeding or *P.e.* infection.

136

Fig 2.20: Eip75B stimulates ISC proliferation through inhibiting Hr3. Text and images have been taken and modified from (Ahmed et al., 2020) and have been originally written and made by myself: (a) Basal levels of Eip75B are required for ISC maintenance. Quantification of the number of GFP+ progenitor cells 23 days after RNAi-mediated depletion showed a small reduction (~25%) in the GFP+ progenitor pool size implying that Eip75B does not critically function in ISC survival. This quantification was done by Dr. Gabriela Da Silva from the Edgar Lab. I have used it in my master's thesis as well, Sara Ahmed,2015⁴⁶⁴.

(b-c) Eip75B depletion in ISC clones completely represses any stress-induced or stimulatory ISC proliferative responses. (b) Representative images of ISC clones in mated females after 20HE, heme, paraquat and *P.e.* infection. While control mated females were able to replace almost the entire epithelium 18 hrs after feeding. (c) Mitotic counts of *Eip75B*-depleted clones were strongly suppressed after being subjected to different promitotic stimuli. Results for *P.e.*-induced mitoses are shown for 2 independent Eip75B RNAi lines.

(d) Eip75B is cell-autonomously required by ISCs for proliferation caused by *P.e.*-or 20HE feeding. Mitotic indexes of midguts with ISC-specific depletion of Eip75B ablated both the *P.e.*-or 20HE induced ISC mitoses

(e) Eip75B in EBs is dispensable to ISC mitoses as shown by mitotic indexes of midguts with EB-specific depletion of Eip75B. Eip75B-depleted EBs did not affect the *P.e.*-or 20HE induced ISC mitoses.

(f) *Eip75B* mutant clones fail to divide and grow after *P.e.* infection. MARCM ISC Eip75B null mutant or control clones were induced in female adult midgut epithelia. Vehicle-fed control clones were multicellular but, Eip75B null mutant clones remained as single ISC clones. After *P.e.* infection, progeny expanded in control clones yet, Eip75B null mutant clones were incapable of replenishing the lost epithelial cells. I have produced this data during my master's study and I used it in my master's thesis as well, Sara Ahmed,2015⁴⁶⁴.

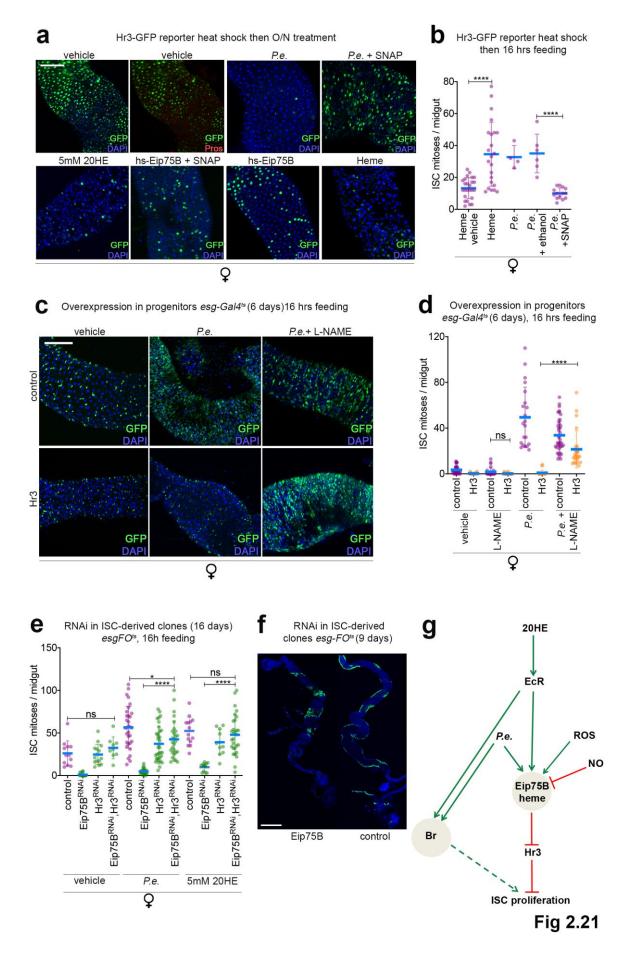
(g-h) ISC clones overexpressing Hr3 are unable to divide and maintain the homeostatic tissue demands of the epithelium. (g) Representative images of the gut epithelial turnover upon Hr3 misexpression using the *esgF/O* system. ISC clones in control female guts give rise to newborn progeny and self-replenish the whole epithelium in contrast to Hr3 overexpressing clones, (h) Mitotic counts of accumulating ISC divisions in control epithelia as the flies age, however increased levels of Hr3 prevent basal ISC divisions. I have produced this data during my master's study and I used it in my master's thesis as well, Sara Ahmed, 2015⁴⁶⁴.

(i) Hr3 inhibits ISC proliferation. Mitotic counts of midguts misexpressing Hr3 in ISC clones strongly inhibited *P.e.*-induced ISC mitoses relative to control infected females.
(i) H 2 the latitude of the induced ISC mitoses relative to control infected females.

(j) Hr3 depletion is insufficient to induce ISC proliferation. Mitotic indexes of midguts with ISC clonal induction of $Hr3^{RNAi}$ after 18-20 hrs of enteric infection. No significant difference was observed relative to control infected flies. Results are shown for 2

independent RNAi lines. Dr.Gabriela Da Silva from the Edgar Lab did this experiment. I have used this data in my master's thesis as well, Sara Ahmed,2015⁴⁶⁴.

(k) After being sensitized with heatshock, midguts with $Hr3^{RNAi}$ ISC clones have elevated ISCs mitoses. Midgut mitotic figures were quantified after heatshock in $Hr3^{RNAi}$ ISC clones relative to control or Hr3-overexpressing flies. Prior to inducing Hr3 depletion via temperature shift, flies were subjected to heat-shock for 30 mins or left untreated. Heat-shock alone caused a mild increase in ISC mitoses. When Hr3 was depleted in ISC clones without heatshock, basal ISC mitoses were minimal similar to guts with Hr3 overexpressing ISC clones. Representative images are shown. GFP, in green; DAPI, in blue. Scale bars, 100 μ m. Statistical analysis was performed using unpaired non-parametric two-tailed Mann-Whitney test (ns p>0.05, *p≤0.05, ****p<0.0001).


The clonal size of Eip75B mutant clones was severely compromised and most cells remained singlets or each clone consisted of very few cells (Fig 2.1.2k). Then, based on both models of Eip75B's action described above, I sought to investigate which binding partner does Eip75B have in the gut. Hr51 depletion in progenitors was insufficient to block the *P.e.*-induced ISC mitoses despite being required for the 20HE-induced ISC mitoses excluding the possibility that Eip75B binds Hr51 (Fig 2.18a,c). Afterwards, I was prompted to test if Hr3 is the binding partner of Eip75B. Therefore, I hypothesized that overexpressing UAS-Hr3 would mimic the loss of Eip75. To validate that, I induced ISC clones with increased levels of Hr3, and then I traced the clonal sizes at intervals after clone induction under homeostatic conditions as well as the mitotic activity of ISCs. By 26 days, the whole epithelium was renewed in mated control females accordant with the elevated ISC mitoses; however, Hr3-overexpressing ISC clones had barely divided. (Fig 2.20g,h). Consistently, ISC clones ectopically expressing Hr3 had ablated ISC mitoses after being subjected to *P.e.* infection (Fig 2.20i).

Hence, I concluded that the loss of Eip75B phenocopies overexpression of Hr3. As Hr3 overexpression modulated the ISC mitoses, I expected that Hr3 depletion could potentiate the ISC mitoses, so ISC clones with suppressed Hr3 levels were generated and upon infection, ISC mitoses were scored. Nevertheless, control and Hr3-depleted ISC clones divided at similar rates implying that the increased Eip75B availability in the cell per se is not sufficient to promote ISC mitoses or that additional 20HE-dependent targets may be required downstream of Eip75B (Fig 2.20j). In an alternative approach to sensitize those ISCs to a promitotic stimulus prior to the RNAi-mediated depletion of Hr3, flies were

heatshocked prior to shifting to 29°C. 6 days later, the quantification of the basal mitotic indexes of the sensitized Hr3 depleted flies revealed that they were mitotically even more active than "heat-shock" sensitized control flies (Fig 2.20k).

Fig 2.21 NO regulates Eip75B to Hr3 to modulate ISC divisions.

To validate the interaction between Eip75B and Hr3, I used a Gal4-LBD 'ligand sensor' system to monitor the transcriptional activity of Eip75B and Hr3¹⁸⁶. Due to the transcriptional repressive function of Eip75B, I could not use the GFP reporter to monitor the interaction in the reversible manner¹⁸⁶. No GFP signal was detected in guts expressing the Gal4-Eip75B fusion protein (data not shown). After heatshock, the Gal4-Hr3 sensor showed a strong GFP signal in most midgut cells (progenitors and enterocytes, but not pros⁺ enteroendocrine cells; Fig 2.21a), reflective of Hr3 activity in those cells. Gal4-Hr3 activity was significantly repressed by co-expression of Eip75B or by stimuli that are shown to induce Eip75B activity or transcriptional levels i.e.: heme feeding, P.e. infection or 20HE feeding (Fig 2.21a). Furthermore, NO interacts with the heme moiety of Eip75B, thereby restraining its ability to interact with Hr3^{176,185}. Accordingly, I proposed that increased NO levels would stabilize Hr3 reporter activity. To prove that, I fed the reporter flies with NO donor (±)- S-Nitroso-N-acetylpenicillamine (SNAP) in combination with enteric infection, which effectively reversed the P.e.-suppressed Hr3 reporter activity (Fig 2.21a). Interestingly, heat-shocked reporter flies were more sensitized to heme feeding (Fig 2.21b) relative to flies that are not subjected to this treatment (compared to Fig 2.20c), in agreement with the idea that heatshock would stress the midgut and induce upregulation of Eip75B in ISCs which is further stabilized by heme addition, resulting in a more pronounced mitotic effect (Fig 2.21b). Consistently, *P.e.*-induced ISC division was also significantly repressed by SNAP feeding (Fig 2.21b). Conversely, feeding the flies with NO inhibitor, Nω-Nitro-L-arginine methyl ester (L-NAME) rescued the GFP expansion and mitotic defects shown in ISCs ectopically expressing Hr3 (Fig 2.21c,d). Finally, my findings were corroborated by epistasis experiments showing that the Eip75-mediation repression of ISC mitoses was

Fig 2.21: NO regulates *Eip75B/Hr3* **to adjust ISC mitoses.** Text and images have been taken and modified from (Ahmed et al., 2020) and have been originally written and made by myself: (a-b) (a) Eip75B activity is regulated by heme. Representative images of heatshock inducible Hr3 reporter (hs-Gal4.DBD-Hr3.LBD>GFP) activity in the posterior midgut of mated flies after different treatments. *Eip75B* interacts with the heat-shock inducible GAL4-*Hr3* fusion protein, blocking its ability to activate GFP expression. Upon heat shock for 30 mins, flies were exposed for 20 hrs to vehicle, hs-*Eip75B*, hs-*Eip75B* +10mM SNAP feeding (NO donor compound), 0.5mM Heme, *P.e.*, *P.e.* +10mM SNAP or 5mM 20HE. Upon vehicle feeding, *Gal4-Hr3* fusion protein was active and induced strong GFP expression in most cells. The *Hr3*-mediated GFP expression was repressed by the co-expression of *Eip75B*, 20HE or heme feeding, *P.e.* infection. Increasing NO levels by SNAP feeding in hs-*Eip75B* transgenic flies or during *P.e.* infection relieved the repressive action on GFP expression. I have produced half of the panel (a) during my master's study and I used it in my master's thesis as well, Sara Ahmed, 2015⁴⁶⁴.

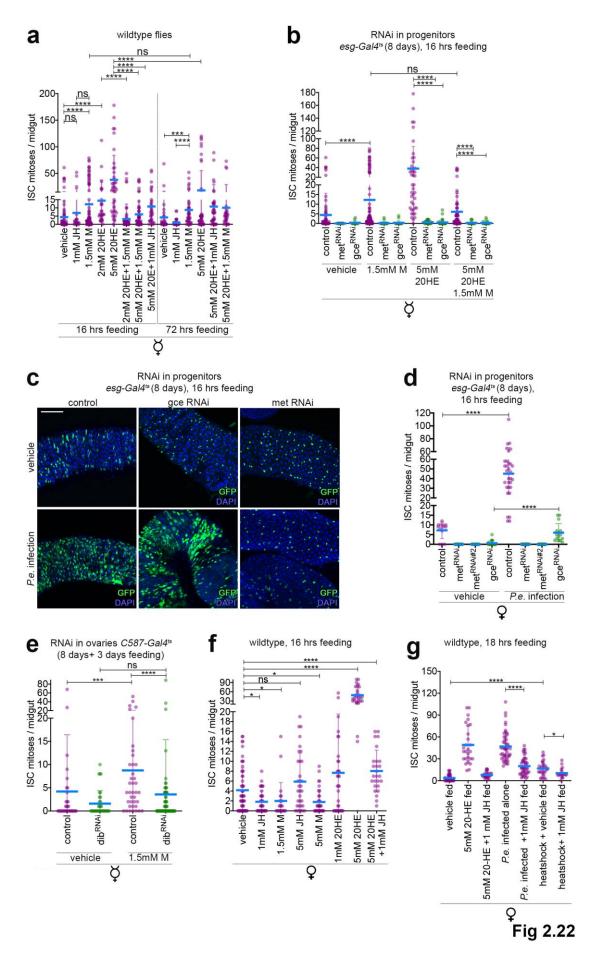
(b) SNAP feeding acts as Nitric Oxide (NO) donor and increased NO binding prevents Eip75B interaction with Hr3. The *Gal4-Hr3* reporter repression upon exposure to heme and *P.e* caused a significant increase in ISC proliferation. SNAP feeding inhibited *P.e*-induced ISC division. Mitotic counts of the Hr3 reporter after different pro-mitotic treatments. Heme or *P.e* feeding stimulates ISC division.

(c-d) NO inhibition rescues the repressive effects of Hr3 misexpression on ISC mitoses. (c) Representative images (d) mitotic counts of progenitors with ectopic Hr3 expression after treatment with L-NAME (NO inhibitor) +/- enteric infection. Increased Hr3 levels in progenitors suppress *P.e.*-induced ISC mitoses. NO interferes with the ability of the Eip75B protein to interact with Hr3 protein thereby, allowing Hr3's transcriptional regulation of its targets. Treatment with L-NAME rescued the Hr3-repressed ISC mitoses and progenitor expansion after enteric infection. I have produced this data during my master's study and I used it in my master's thesis as well, Sara Ahmed, 2015⁴⁶⁴.

(e) Hr3 is epistatic to Eip75B. Mitotic counts of midguts examining the epistatic relationship between Hr3 and Eip75B during homeostasis, after 20HE feeding or *P.e.* infection. $Eip75B^{RNAi}$, $Hr3^{RNAi}$ was induced in ISC clones of the epithelial midgut. $Eip75B^{RNAi}$ in ISC clones prevents ISC mitoses basally or to any of the treatments. $Hr3^{RNAi}$ in ISC clones does not have an obvious phenotype. However, repressed ISC mitoses in Eip75B depleted ISC clones are entirely rescued by Hr3 depletion under all conditions.

(f) Overexpression of Eip75B causes a significant loss of gut regionalization. Representative confocal stitches of guts with Eip75B-overexpressing ISCs relative to aged-matched controls.

(g) A model summarizing my findings. Representative images are shown. GFP, in green; DAPI, in blue. Scale bars, 100 μ m. Error bars represent ± SD. Statistical analysis was performed using two-tailed Mann-Whitney test (ns p>0.05, *p≤0.05, ****p<0.0001).


reversed by co-depletion of Hr3 under homeostatic conditions, 20HE feeding or P.e.

infection (Fig 2.21e). Altogether these results suggest a model in which 20HE-activated EcR regulates the expression of Eip75B and broad. Nevertheless, both genes seem to be regulated also independently from EcR during *P.e.* regenerative responses. In all cases, Eip75B binds its ligand heme and negatively regulates Hr3's action on its target genes. Hr3 presumably promotes expression of anti-mitotic genes in ISCs, and Eip75B interfere with this function, thereby promoting ISC division (Fig 2.21g).

Fig 2.22 Endogenous JH is required for infection-induced ISC mitoses while exogenous JH feeding has suppressive effects on ISC mitoses.

Since I figured out in a very detailed manner how 20HE and its downstream pathway affect ISC mitoses, I further inquired how 20HE interacts with the other sesquiterpenoid hormone named JH. In the midgut, JH was reported to promote mating-dependent gut growth³¹¹ and its feeding to virgins had a slight pro-mitotic effect on ISC mitoses³¹¹. Hence, I started with feeding virgins with several hormone treatments alone or in combination for different durations of time (Fig2.22a). Feeding the virgins with 1mM JH overnight caused no effect on dividing ISCs and feeding the flies constantly for 3 days actually seemed to inhibit ISC mitoses, yet it definitively did not exert a promitotic effect on ISCs (Fig2.22a).

On the other hand, feeding virgins with the JH agonist, methoprene overnight or continually for 3 days caused a slight but significant promitotic effect on dividing ISCs (Fig2.22a). Alternatively, overnight feeding of 2mM like 5mM 20HE stimulates ISC mitoses albeit at lower levels (Fig2.22a). As shown earlier however, 3-day feeding of 5mM 20HE causes most ISC mitoses to return to almost basal levels. Surprisingly, synergistic effect of 20HE and methoprene feeding causes the ISC mitoses to significant drop to close to basal levels (compare the magnitude of the drop vehicle vs 20HE vs 20HE+M or JH). This antagonistic effect of combined hormone feeding on ISC mitoses is observed after overnight or 3 days feeding (Fig2.22a). Hence, the relationship between the 20HE and JH signaling seems antagonistic rather than synergistic. Next, I asked how 20HE-induced ISC mitoses interact with the endogenous JH receptors. Thus, I depleted the JH receptors Methoprene-tolerant (met) or germ cell-expressed bHLH-PAS (gce)

Fig 2.22: JH and methoprene act as mild pro-mitotic stimuli. Text and images have been taken and modified from (Ahmed et al., 2020) and have been originally written and made by myself: (a) 20HE acts as a strong promitotic stimulus that peaks transiently at 16-18 hrs then ISC mitoses revert to basal levels by 3 days. JH or methoprene is a mild ISC-inducing agent that causes few but enduring ISC mitoses, which lasts after 3 days of feeding. Combination feeding of 20HE and methoprene or JH has an inhibitory effect on 20HE-induced ISC mitoses. Different feeding regimes single or in a combination (JH, methoprene and 20HE) were given to virgin females overnight or for 3 days then mitotic counts were assayed.

(b) JH receptors met or gce are required for 20HE-induced ISC mitoses. Progenitorspecific depletion of gce or met suppresses the ISC mitoses induced by 20HE or methoprene feeding to virgin females, as shown by ISC counts.

(c-d) Progenitor-specific depletion of met completely ablates *P.e.*-induced ISC mitoses while reduced levels of gce strongly inhibited *P.e.*-induced ISC mitoses but, ISCs still slightly divided following infection. (c) Representative images of gce or met depleted progenitors after *P.e.*-infection relative to the control female midguts. Gce-depleted progenitors show mild expansion after enteric infection. (d) Met and gce in progenitors are required for *P.e.*-induced ISC mitoses.

(e) Methoprene requires ovarian ecdysone for its mild proliferative effect on ISCs. Virgin guts with depleted ovaries have impaired ISC mitotic response to methoprene feeding, as shown by ISC counts.

(f) 1mM or 5mM methoprene feeding insignificantly affect ISC mitoses after 16hrs feeding to mated females. Similar to feedings of virgin females, JH or methoprene alone did not induce ISC mitoses. 20HE feeding induced strong ISC mitoses but combined JH and 20HE feeding inhibit the 20HE induced ISC mitoses, as shown by ISC counts.

(g) Exogenous JH feeding inhibits the mitotic response to any ISC stimulus. Combined feeding of JH and enteric bacteria strongly inhibit *P.e.*-induced ISC mitoses. Similarly, heat shock causes mild ISC mitoses that are suppressed by exogenous feeding of JH after the heat shock, as shown by ISC counts. Duration of treatment or feeding is 16 to 18hrs. Representative images are shown. GFP, in green; DAPI, in blue. Scale bars, 100 μ m. Statistical analysis was performed using unpaired non-parametric two-tailed Mann-Whitney test (ns p>0.05, *p≤0.05, ***p<0.001, ****p<0.0001).

then, I fed the flies with methoprene, 20HE or both (Fig2.22b). As previously reported, met or gce depleted progenitors could not divide in response to the methoprene-induced mitoses consistent with the hypothesis that met or gce are redundant JH receptors³¹¹. Surprisingly, feeding 20HE to midguts with met or gce depleted progenitors completely represses the 20HE-induced mitoses (Fig2.22b). Additionally, reduction of met or gce in the progenitors of mated females completely ablated the *P.e.*-induced ISC mitoses

(Fig2.22c,d). Both latter data indicate that endogenous JH signaling is required for the ecdysone- or *P.e.*-stimulated ISC mitoses. Additionally, this also suggests that the effect of endogenous JH signaling pathway components is permissive to ISC divisions yet, the exogenous JH feeding has an inhibitory effect on ISC mitoses. Next I examined the epistatic relationship between methoprene and ecdysone. Feeding ecdysone-depleted ovary-mediated *dib^{RNAi}* virgin flies with methoprene impaired their mild stimulatory effect on ISC division indicating that intact ecdysone signaling is also required for the methoprene-induced ISC mitoses to occur (Fig2.22e). The various magnitudes of effects the different treatments had on stimulating ISC mitoses had intrigued me to examine whether the same effects apply to mated females (Fig2.22f). Intriguingly, feeding mated flies with JH or methorprene at the same or much higher concentrations did not cause ISC mitoses in mated females, indicating that the methoprene-promitotic effects are context specific to virgin females. Similar to virgins, combined ecdysone and JH hormone treatments blocked the ecdysone-induced ISC mitoses (Fig2.22f). I then asked, if this inhibitory effect of exogenous JH is specific to 20HE or general to other stimuli. Hence, I stressed mated flies with different mitotic stimuli such as P.e. infection or heat shock (Fig2.22g). All in all, my results reveal an interplay between 20HE and JH, yet further work is required to elucidate the discrepancy in the effect between endogenous and exogenous JH feeding on dividing ISCs, and their physiological relevance.

Fig 2.23 Intestinal EcR signaling drives dysplasia and epithelial aging.

As females age, they experience progressive gut dysplasia, wherein ISCs over-proliferate and fail to differentiate properly, leading to intestinal barrier breakdown, and a decrease in lifespan ^{8,62,68,118,120,124,311,344}. I thereby asked how the ecdysone/EcR signaling axis affects the gut as the flies age. Consistent with previous reports^{62,120}, I observed that aged fly guts accumulate many actively dividing ISCs as well as GFP^{+ve} progenitors that are positive for enterocyte differentiation marker Pdm-1. Occasionally, these cells are also double positive for Ph3 (Fig 2.23.1a-c). Remarkably, progenitor-specific reduction of EcR signaling components at the receptor complex level or downstream target Eip75B in the gut significantly inhibited the hallmarks of gut aging, whether it is accumulation of progenitors or mis-differentiated progenitors or elevated ISC mitoses (Fig 2.23.1a-c).

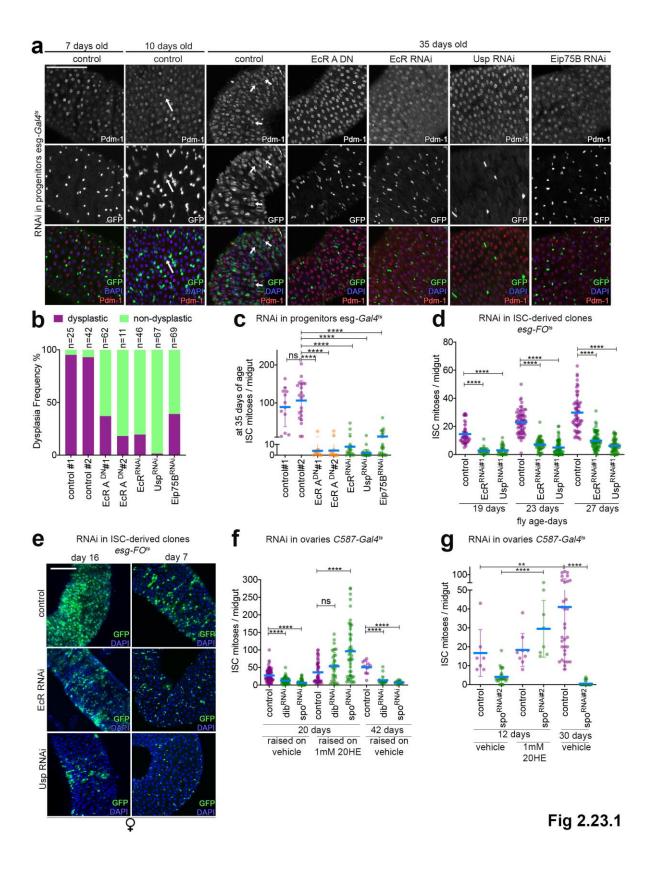


Fig 2.23.1: Ovary derived ecdysone to intestinal EcR signaling regulates agedependent gut dysplasia. Text and images have been taken and modified from (Ahmed

et al., 2020) and have been originally written and made by myself: (a-c) (a) Aging progenitors of the control mated female midguts start accumulating aberrantly misdifferentiated dividing GFP+ progenitors. (Shown by representative images: compare 7 days, 10 days and 35 days old control flies. Thick white arrows point to Pdm-1⁺, GFP⁺ progenitors. The small arrow points to a dividing Pdm-1⁺, GFP+ progenitor cell. The occurrence of this process across the midgut I refer to hereafter as dysplasia. Gut dysplasia is strongly dependent on intestinal EcR signaling through Eip75B. Progenitor-specific reduction of EcR, Usp Eip75B levels strongly hinders the gut from becoming dysplastic. Quantification of dysplastic guts is shown in (b). If at least 10 cells accumulate pdm-1+ GFP+ signal in the R4 region, it is classified as dysplastic, otherwise the gut is termed non-dysplastic. (c) Mitotic counts of midguts with progenitor-specific depletion of EcR, Usp, Eip75B or EcR A dominant negative expression.

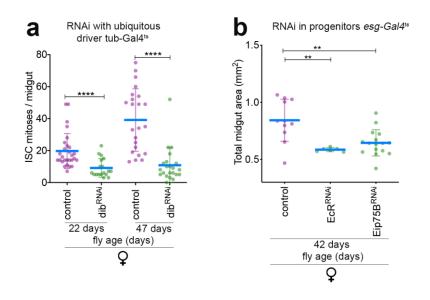
(d-e) (d) Mitotic counts of the ISC clones using the *esgF/O* system with EcR or Usp depletion at different ages. (e) Representative images of EcR or Usp depleted ISC clones relative to age-matched controls at 2 different time points. Female gut turnover is slowed down upon reduced 20HE intestinal signaling. I have produced this data during my master's study and I used it in my master's thesis as well, Sara Ahmed, 2015^{464} .

(f) Ecdysone-depleted ovaries have midguts with impaired ISC mitoses. Ecdysone production was suppressed in mated female flies by expressing spo^{RNAi} or dib^{RNAi} under the control of the ovarian somatic cell-specific $C587^{ts}$ -Gal4 driver. Mitotic counts show diminished ISC mitoses of ovary-depleted guts as the flies age (20 and 42 days old) and their mitotic indexes remain low relative to aged control midguts. The mitotic defect of spo^{RNAi} or dib^{RNAi} midguts was fully rescued when the adult flies were raised on 20HE-supplemented food.

(g) Ovarian-specific depletion of spo inhibits ISC mitoses and is fully rescued by 20HE feeding. A second alternative RNAi was used against *spo*^{*RNAi*} to complement results in panel f. Representative images are shown. GFP, in green; DAPI, in blue. Scale bars, 100 μ m. Error bars represent \pm SD. Statistical analysis was performed using two-tailed Mann-Whitney test (ns p>0.05, **p≤0.01, ****p<0.0001).

The phenotype was also replicated with *esg*^{ts}-*FO* driver to assess the clonal growth and ISC divisions. As expected, the whole midgut epithelium was renewed by day 16 and this clonal growth was severely suppressed by EcR or Usp depletion in aging flies (Fig 2.23.1d-e). Similarly, I found that depleting ecdysteroigenic-synthesizing enzymes (*dib*, *spo*) from the ovary follicles (Fig 2.23.1f,g) or ubiquitously by a *tub*^{ts} driver (Fig 2.23.2h), also significantly inhibited the age-dependent elevation of mitotic counts. This impaired ISC function was completely rescued when the females were reared on exogenous 20HE implicating the ovaries as a main organ to drive and potentiate gut dysplasia (Fig 2.23.1f-g). Intestinal dysplasia is accompanied by a decrease in the midgut

size and a subsequent loss of regionalization (Fig 2.23.2i) (compare to Fig 2.8.2a). Nevertheless, midguts of EcR and Eip75B-depleted progenitors were detectably more shrunken than aged control midguts, reflective of the idea that they cannot sustain the homeostatic tissue needs (Fig 2.23.2i)



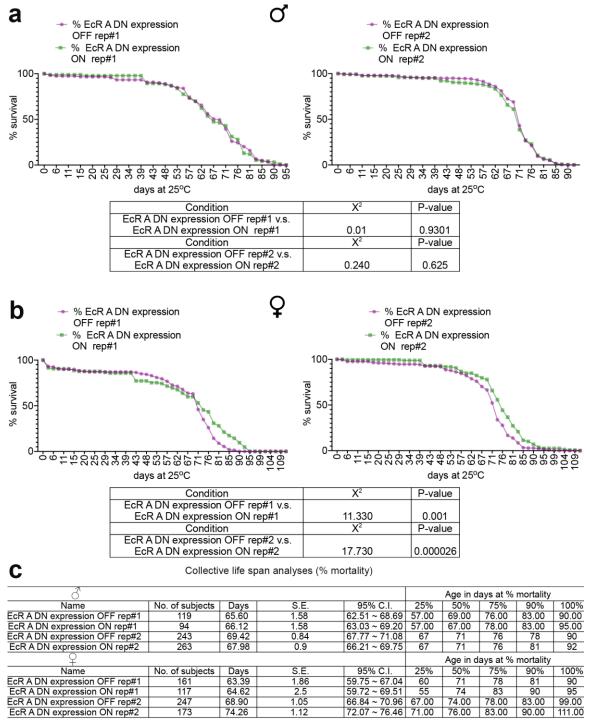

Fig 2.23.2

Fig 2.23.2: Ovary ecdysone to EcR in the intestine signaling regulates the hallmarks of aging. Text and images have been taken and modified from (Ahmed et al., 2020) and have been originally written and made by myself: (a) Ubiquitous expression of dib^{RNAi} under the control of the tub^{ts} driver in mated females significantly impaired ISC mitosis at 22 and 47 days old.

(b) Reduced intestinal EcR signaling in progenitors accelerates the loss of midgut size. Midgut sizes of EcR/Eip75B depleted progenitors show that Eip75 and EcR are required to maintain midgut cellularity and morphology, without which it deteriorates somewhat faster than control epithelia. Error bars represent \pm SD. Statistical analysis was performed using two-tailed Mann-Whitney test (**p ≤ 0.01 , ****p< 0.0001).

Fig 2.24 Intestinal EcR signaling possibly shortens the female lifespan.

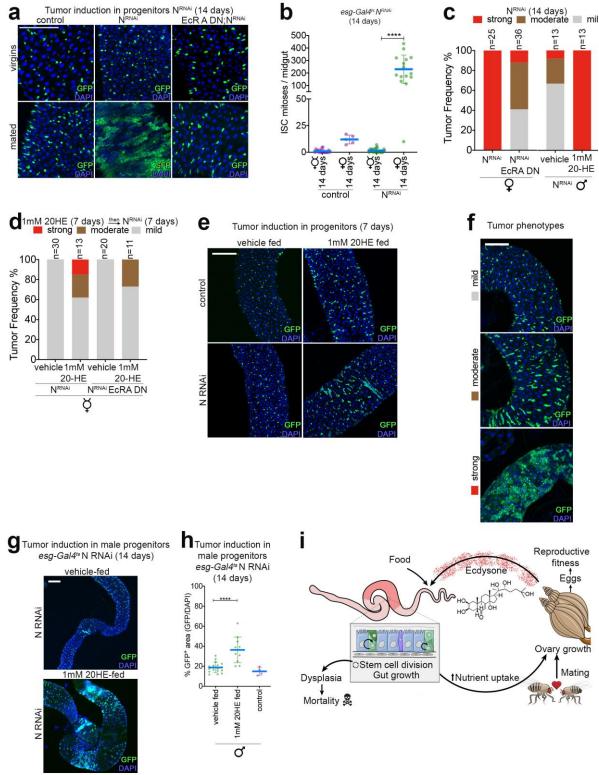
The gastrointestinal tract, due to its role as a digestive organ and function as a barrier between the exterior and interior milieu, is critically impacted by dietary, environmental, and inflammatory conditions that influence the organismal health and lifespan¹⁰⁵. Indeed, both gut dysplasia and tumorigenesis shorten lifespan^{62,95,107,345,346}.

Fig 2.24

Fig 2.24: Reduction of intestinal EcR signaling may extend the lifespan of *Drosophila* **females.** Text and images have been taken and modified from (Ahmed et al., 2020) and have been originally written and made by myself: Progeny of the genotype GS5961-Gal4 UAS-EcRF645A were mated for 48 hrs. The populations followed up were segregated based on their sex and separated into groups of 25 flies/vial. Approximately half of the flies were fed with 0.2 mg/ml RU486 to induce RNAi depletion in progenitors

and the other half were fed with vehicle. RU486 or vehicle (ethanol) were deposited on the food vials 4-6 hrs before flipping the flies into the vials at 48 hr intervals. Dead flies were visually identified and recorded. Life span assays were performed in two replicates and for each replicate days elapsed after the start of the assay were plotted as a function of percentage survival. (a) shows the 2 independent replicates performed on male subjects whereas (b) shows the 2 independent replicates performed on female subjects. Statistical analysis was performed using log rank test. x2 represents chi-squared value and is present below the plots. (c) displays the analyses of the experimental male or female replicates.

As I have confirmed that mating-induced ecdysone is pro-mitotic and accordingly prodysplastic, my findings suggested that ecdysone might also have an adverse effect on lifespan.


Consistent with this idea, whole-body suppression of ecdysone signaling is reported to extend *Drosophila* lifespan¹⁶⁶. To figure out whether this life span extension is in part due to suppression of age-dependent gut dysplasia, I conducted a lifespan assay with EcR dominant negative misexpression via the RU-inducible gut driver GS5961⁶² in both males and females, in 2 independent replicates. EcR misexpression in male intestines had no apparent advantage on the lifespan (Fig 2.24a,c). In contrast, EcR misexpression in female intestines ameliorated their survival fitness relative to controls (Fig 2.24b,c). Despite being a highly significant effect, the magnitude of the lifespan extension effect was not so drastic (Fig 2.24c). Unfortunately, in figuring out in whether the GS5961 is highly specific to the gut, Dr. Pénalva in the Edgar lab detected GFP expression in the posterior follicular cells from stage 8 of oogenesis (Fig 2.16.2m-q). This result confounds with the lifespan extension effect I observed during my experiments, as reduced fecundity was also reported to extend lifespan in Drosophila ³⁴⁷. Thus, the effect of the driver on the gut could be explained as a result of slower gut aging or lesser eggs laid due to a smaller gut. And the effect of the driver on the ovary could be through an off-target indirect effect from the damaged ovarian follicles since EcR functions in migration, differentiation, and production of the egg shell ³⁴⁸. Nevertheless, misexpression of the same EcR allele I used in my assay was found to cause female sterility when expressed in late stage follicle cells ³⁴⁸, (the stages where Dr. Pénalva detected the driver expression in the ovary) but, the flies I used for the assay were perfectly fertile across their lifespan. This indicates and suggests that the magnitude of the GS5961 driver effect in the ovary is relatively minor. Crucially, the careful examination of all the midgut drivers by Dr.

Pénalva indicated that the same caveat applies to all the commonly used midgut drivers (*esg-Gal4, MyoIA-Gal4, Mex-Gal4, Su*(H)-Gal4), each of which had some expression in the ovary (Fig 2.16 and data not shown). Hence, it remains currently imprecise whether the lifespan advantage in all lifespan reports come from gene effects on the gut, in the ovary or both and it remains of prime importance to find highly tissue specific gut or ovary drivers for future studies.

Fig 2.25 Elevated ecdysone levels pre-disposes flies to intestinal tumorigenesis.

It is well known that females are more susceptible to forming ISC-derived tumors than males 95,345,346 . There are several models to induce intestinal tumorigenesis in *Drosophila* 346,349,350 among which is depletion of *Notch* receptor required for EB differentiation which leads to accumulation of constantly dividing undifferentiated tumor masses along the midgut (Fig 2.25a-h). *Notch*^{*RNAi*} in mated females resulted in tumor induction in 100% of the flies (Fig 2.25a,b). Notably, *Notch*^{*RNAi*} in virgin females was far less tumorigenic. Similarly, males display lower tumor burden despite being more prone to develop spontaneous neoplasias³⁰³ (Fig 2.25c,g,h). I thereby proposed that the tumorigenic potential was dependent on 20HE-EcR signaling. To test that, I blocked EcR signaling in mated females in the *Notch*^{*RNAi*} expressing progenitors with dominant negative expression of EcR A, which drastically repressed the tumor growth and progression (Fig 2.25a-c). Conversely, I used *Notch*^{*RNAi*} infemales, which were unable to form tumors, and I fed them with 20HE prior to *Notch*^{*RNAi*} induction. This treatment augmented the tumor initiation frequencies (Fig 2.25 b,d,e).

Moreover, to test the tumorigenicity of ecdysone in males, I reared them on 20HE-laced food, which led to increased tumor burden (Fig 2.25c,g,h).

Fig 2.25

Fig 2.25: 20HE signaling predisposes intestinal tumorigenesis. Text and images have been taken and modified from (Ahmed et al., 2020) and have been originally written and made by myself: (a-b) Intestinal tumor progression is dependent on intestinal EcR signaling in progenitors and Notch depleted tumors fail to initiate in virgin females. (a)

Representative images of midguts with tumor induction in virgins, mated females or EcR A DN misexpressing progenitors. (b) Mitotic counts of Notch depleted adult virgin or mated females.

(c) Quantification of the phenotypes of the intestinal tumors in mated females +/- reduced 20HE signaling scored as categorized in (f) (first half of the panel). 2nd half of the panel is the phenotypes scored in male intestines raised on 1mM 20HE supplemented food as categorized in (g).

(d) Tumors initiate in virgins fed on 20HE for 1 week prior to induction of Notch depletion. Quantification of the phenotypes of the intestinal tumors scored as categorized in (e).

(e) Representative images of virgins fed on 20HE-laced food with initiated tumors relative to vehicle-fed virgins without tumor clusters.

(f) Representative images of the 3 categories scored in female tumors: strong tumors are denoted in red, moderate are depicted in brown while non-tumorous are depicted in grey. (g-h) Representative images of 20-HE-fed notch depleted males that develop and progress tumors faster than in intestines that are vehicle-fed. (h) Quantifications are shown by deriving ratios between GFP+/DAPI+ areas of 20-HE or vehicle-fed *Notch*^{RNAi} males. Tumor induction commenced few days prior to 20-HE feeding. GFP, in green; DAPI, in blue. Scale bars, 100 μ m. Statistical analysis was performed using unpaired non-parametric two-tailed Mann-Whitney test (****p<0.0001).

(i) Model summarizing my conclusions. Ovary-derived ecdysone is released after mating, whereby it resizes the midgut expanding its area through partly symmetric ISC mitoses. Subsequently, this gut resizing allows better nutrient uptake to satisfy the high reproductive demands of the mated female. This progressive midgut growth comes at the expense of increased predisposition to dysplasia and tumors, hence shortening the lifespan.

To sum up, my experiments showed that steroid hormone signaling robustly stimulated ISC division in the midgut of both sexes independently of the sex identity of the ISCs, possibly through exerting metabolic effects. Moreover, I also revealed a cross-talk between the ovary and the gut whereby, mating-induced release of ovary-derived ecdysone stimulates phasic ISC mitoses, conceivably EB differentiation and increased gut cellularity, that leads to gut growth. Gut growth occurs to expand the gut's capacity to absorb nutrients thereby, meeting the female's reproductive demand. However, this gut re-sizing process comes at the cost of promoting age-dependent gut dysplasia, increased tumor burden and shortened lifespan (Fig 2.25i).

Discussion

I reveal an organ-organ communication signal through which the release of an ovaryderived sex specific signal directs intestinal stem cells of the gut to divide and initiate intiestinal growth. This depends on the actions of the highly conserved EcR signaling and its downstream target Eip75B. Below I provide a brief overview of the resemblances between *Drosophila* and mammals in the context of their female sex hormones ecdysone and estrogen: their actions on the gut and their similarities in the sexual maintenance mechanisms as well as similarities in the phenotypes they regulate. This goes along a number of implications and connections to existing data, which are worth discussing further and could present possible avenues for future research.

3.1 Parallels between the mechanisms of action of ecdysone and estrogen:

Both estrogen and ecdysone are cholesterol-derived sex-specific steroid hormones that are known to control aspects of sexual behavior and reproductive function in mammals²⁶⁴ and *Drosophila³⁰⁰*. They are both being produced by the ovaries^{302,351}. Estrogen release is directed by luteinizing hormone (LH), follicle-stimulating hormone (FSH) and gonadotropin-releasing hormone (GNRH) in mammals while ecdysone release is modulated by PTTH (prothoracicotropic hormone) in *Drosophila³⁵²*. The similarity in their structure, site of synthesis, regulated secretion and actions on the reproductive system implies that they could have resemblances in their actions in other organs too.

Although there is still a lot more to be discovered, there are interesting parallels in our current knowledge on how estrogen and ecdysone works.

Liganded ER α , which is most highest expressed in intestinal crypts has been implicated in several cell cycle regulatory events. First, estrogen-activated ER α shortens the cell cycle significantly by altering the cell cycle duration in the S and G₂/M phases. Notably, cyclins A and B and well as ER α protein levels display a synchronous behavior in their kinetics as the cells progress through the cell cycle after release from G₁ arrest. These cell-cycle dependent changes in ER α protein expression are likely not mediated via transcriptional changes in gene expression, rather via a post-transcriptional mechanism^{353,354}. Secondly, ER α also interacts with cyclins A, B, D1 and E and it too directly interferes with the nuclear accumulation of CDK inhibitors including p27, CCNG2, p21^{CIP1} (CDKN1A), GADD45 to promote cell cycle progression^{355,356} both invitro and in-vivo. Thirdly, distinct patterns of gene regulation are identified after estrogen administration most prominently between 4-8 hrs and 24-48 hrs, most of which are genes involved in cell cycle and nucleotide processing³⁵⁷.

Short term pulses of 20HE or estrogen lead to upregulation of EGF and Jak/Stat signaling components. I have not had the chance to study the ecdysone-induced genetic profiles with such detail. However, remarkably, I find interesting similarities in the pathways they activate such as transcriptional induction of Egfr/MAPK and Jak/Stat pathways after overnight 20HE feeding consistent with their requirement for cell division to occur^{357,358}. This suggests that 20HE and estrogen impinge to some extent on similar pathways, sharing at least a degree of conservation in their actions to direct cellular proliferation.

All these mechanistic details that underlie the rhythmicity of the response to female sex hormones are very relevant to study and understand because they probably direct most growth in a female's lifetime (in the sex organs to satisfy the reproductive demand but, also now I show that the effects extend to non-sex organs too). Indeed, the biphasic response of ISC mitotic stimulation was unique to 20HE feeding in females. Notably, as I have observed rhythmicity in the pattern of ISC divisions after mating or 20HE feeding in the intestine, the female reproductive tissues similarly undergo cyclical changes of growth and degeneration in-vivo directed by gonadal sex hormones. For example: the rodent uterine tissues are highly responsive to estrogen, and it causes cell division in a biphasic manner similar to what I have observed with 20HE feeding on ISCs of the midgut. A single dose of estradiol (most bioactive estrogen) causes early and late tissue responses to estrogen. The strength of the response is dependent on the bioavailability of the estrogen and the duration of interaction with its receptor. The early response usually occurs during the first 6 hrs after estrogen administration and it corresponds to increases in RNA and protein synthesis, stimulation of proliferative genes such as MYC and fos as well as water retention. This is followed by late estrogen responses include cycles of DNA synthesis and epithelial cell mitosis, which begin 10-16 hrs after estrogen administration. Two waves of mitoses occur: one wave after ~ 16 hrs and the other after $\sim 24 \text{ hrs}^{356}$.

Accordingly, it would be interesting to profile ecdysone's response on ISC divisions of the gut in-vivo in further detail. I propose repeating the ecdysone feeding and the mating experiments in an extended time course from 0-72 hrs (feeding), 0-5 days (mating) to define whether: 1. The phasic response observed in 20HE-fed flies extends over time or there are only 2 distinct proliferative peaks as I have described. 2. Using RNA seq, identifying different patterns of gene regulation to identify early only, late only and early and late 20HE regulated genes that correspond to 20HE-induced ISC mitoses. 3.Similar rhythmicity of ISC mitoses occurs in response to mating and if they correlate with changes in the female uterus to maximize nutrient deposition in fertilized eggs.

3.2. Physiological functions of estrogen and ecdysone signaling in the intestine

Estrogens and ecdysone contribute to the physiological function of the intestine. Not only do ecdysone and female mammalian sex hormones share a strong resemblance in reproductive actions in Drosophila 123,158,359 and mammals 323,360, evidence emerged suggesting that they have similar actions in other organs. Prior to this report, functions of sex-specific steroids on the intestine remain uncharacterized in flies and controversial in humans. ERa and ERB are present in the stomach and intestine of both males and females^{247,361-363}. ER α is mainly expressed at the base of the intestinal and colonic crypts of males and females, where the ISCs lie and can stimulate c-fos in an estrogendependent manner^{361,364}. ERß expression is predominantly restricted to the differentiated epithelial cells of the intestine³⁶⁵. To date, ER functions in the maintenance of the epithelial integrity through the sexually dimorphic estrogen levels, that regulates mucosal bicarbonate secretion in the duodenum in mice and humans^{366,367}. Estrogen signaling deregulation correlates with prevalence of duodenal ulcers³⁶⁶. Moreover, female sex hormones also function to regulate of smooth muscle contractility and motility of the GI tract, inhibit pro-inflammatory cytokine production, stimulate wound healing, and increase barrier function of the intestinal epithelial cells^{362,368}. The data I gathered during my work suggests that EcR functions in the ISCs to regulate mitotic responses during epithelial renewal and detergent-induced regeneration. Moreover, my RNA sequencing data suggests that ecdysone is associated with increased abundance of digestive enzymes, lipid and starch metabolic enzymes. EcR also functions in the enteroblasts to regulate their differentiation in enterocytes. EcR seems to also be required for maintenance of the epithelial cells in the midgut raising the possibility that it could function in maintaining the epithelial integrity or barrier function, similar to ER functions in the mammalian GI tract. To date, the function of the sex hormones regulating digestive functions or metabolic enzymes in the gut is not well-characterized which should not be peculiar given the conserved roles of sex steroids as central regulators of systemic metabolism in mammals acting at CNS, adipose tissue and skeletal muscle³⁶⁹ and in *Drosophila* acting at CNS¹⁶⁷, ovaries¹²³ and fat body³⁷⁰. However, the novel notion revealed by my experiments here is that at least some aspects of metabolism in a non-sex organ are controlled in a sexually dimorphic manner through the sex-specific hormone, 20HE.

3.3. Pathophysiological implications of sex steroids in GI tumors

Increased levels of estrogen correlate with tumorigenesis in the GI tract of males and females. Similarly, I show that tumor initiation and progression in the *Drosophila* males and females depend on ecdysone levels and the extent of active EcR signaling. Ecdysone feeding promotes tumor initiation in virgin females and increases tumor aggressiveness presented in the males. Reduced EcR levels in progenitors drastically slow tumor progression. In line with these results, accumulating biological evidence from mammalian studies strongly suggest a link between gastrointestinal adenomas and malignant tumors arising from different GI tissues and higher estrogen levels in both males and females³⁷¹⁻³⁸². Moreover, the rather conflicting long-held view that higher estrogens lower the risk of CRC has been debunked by recent studies³⁸³. In fact, increased circulating endogenous female hormones are linked to promoting CRC tumor progression in postmenopausal women³⁸⁴⁻³⁸⁶.

Precisely, metabolism and inactivation of endogenous estrogens is suppressed in the vicinity of the GI tumors. Hence, the bioavailability of estrogen is higher in the tumor microenvironment relative to the surrounding tissues^{380,387,388}. Moreover, in-vivo and invitro studies show that estrogen acts a pro-mitotic stimulus to colorectal cells and it drives its tumorigenic effects through induction of c-fos. C-src and activation of the mitogen-activated protein kinase (MAPK) cascades^{389,390}. Interestingly, estrogen also increases DNA replication activity and mediates alkalinization of colonic crypts isolated from human distal colon and colorectal cancer cell lines through activation of calciumdependent protein kinase C (PKC) that alters pH in human colonic cells³⁹¹. Similarly, increased expression of ER α is shown after DSS-induced intestinal inflammation¹²² and GI tumors such as, duodenal familial adenomatous polyposis³⁹². In ER α and ER β negative cell lines, GPER is also alternatively upregulated to transduce estrogen's proliferative and pro-angiogenic actions. In CRC, GPER expression is significantly associated with poor survival³⁹³. Collectively, tumor progression is potentiated by estrogen actions on its receptors. The fact that estrogen increases DNA replication is interesting and it coincides with several observations from my RNA seq experiments. Males and females are intrinsically different in the expression of DNA-replication and cell cycle related genes such that females express higher levels of DNA polymerases and other helicases involved in DNA replication initiation. There are also more ISCs in the S/G2-phase in females than males in the adult midgut¹¹⁸. These differences could be in part explained by the differences in 20HE levels, as 20HE-fed males become more similar to females in genes associated with DNA replication.

3.4. Exogenous exposure to steroids has detrimental consequences:

As briefly introduced in the first chapter, many estrogens from oral contraceptives or hormone replacement therapy, dietary sources, livestock production and manure persist in the environment posing serious risks on the individuals health and ecosystem. Indeed, recent studies show that ethinyl estradiol (EE₂, the active component of many birth control formulations) initiate rapid non-genomic (i.e. without modulation of target gene expression) activation of MAPK, ERK, and JNK pathways in pituitary tumor cells³⁹⁴. Moreover, environmental estrogen modulates hepatic insulin sensitivity, energy expenditure and distribution of body fat and adipose tissue³⁶⁹. This suggests that exogenous exposure to bioactive steroids or endocrine disruptors can mimic endogenous estrogens, exacerbating cell proliferation, altering their metabolic profile and increasing tumor predisposition. In light of the above and my findings on the actions of exogenous 20HE feeding promoting ISC mitoses at the expense of faster aging of the gut, I suggest that exogenous steroids exposure may represent a real risk factor in the development of the metabolic syndrome and their actions should be studied in more detail.

3.5. JH signaling is dually required for stimulation or inhibition of ISC proliferation:

My epistasis and feeding experiments led me to a series of conclusions regarding the regulation of the cross-talk between the highly complex JH and 20HE signaling networks. Exogenous feeding of JH agonist methoprene, but not JH stimulates ISC proliferation in virgin females³¹¹. Endogenous JH receptors Gce and met are required for the mating-induced ISC division³¹¹, as well as homeostatic maintenance of progenitors. Additionally, they are also required for tumor growth ³⁹⁵, 20HE-induced ISC mitoses and stress-induced mitoses (i.e. in response to paraquat ³¹¹ or *P.e.* infection) in both virgins and mated females. Collectively, these findings rather argue that met and partly gce are generally required for basal ISC divisions. JH production from at least two different sources influences the midgut ISC mitoses. After mating, ovary-derived ecdysone causes JH production from the corpora allata, to trigger ISC mitoses³²⁴. Additionally, midgut progenitors also locally synthesize JH, which is required for their maintainence³⁹⁵. The required level of JH signaling in mated females but not virgin females seems sufficient because exogenous JH or methoprene cause ISC division in virgin females, not in fertilized females.

Interestingly, the epistasis experiments between 20HE and JH signaling propose a model whereby JH signaling components act downstream of 20HE and it is accordingly also differentially expressed between males and females. First, in adult flies, reproductive success in both males and females is achieved through ecdysone-mediated release of JH³²⁴. Accordingly, JH is also produced in the corpora allata of males and its release is a consequential effect of ecdysone³²⁴. Congruent to this model³²⁴, my results also suggest that JH signaling require ovary-derived ecdysone to trigger methoprene-induced ISC mitoses. Hence, I propose that at least partly, ecdysone and JH follow a similar hierarchy through which the 20HE regulates JH, partly through converging on similar targets such as: Eip75B ^{396,397} and Krh-1^{311,398}. Consistent with the sexual dimorphism in 20HE, there is a sex-biased expression of both met and gce between female and male midguts¹¹⁸. This argues that 20HE levels may regulate the extent of activation of JH signaling.

Additionally, JH signaling needs to be tightly controlled for ISCs to divide. Exogenous JH or methoprene feeding suppressed any stimulus-induced ISC mitoses in either virgin or mated females. The stimuli tested included: heatshock, *P.e.* infection 20HE-feeding.

3.6. Mating causes symmetric ISC mitoses:

In response to feeding, ISCs remodel the gut by expanding the ISC pool via symmetric divisions, and by increasing their proliferation rate¹⁰. This causes a feeding-induced gut growth that is highly adaptable to nutritional cues. Subsequent rounds of feeding, fasting, and re-feeding cause an adjustable change in gut sizes leading to growth, shrinkage then growth¹⁰. My experiments suggest that mating-dependent 20HE release from the ovary causes an increase in the number of ISCs, possibly via symmetric stem cell divisions as shown by EcR reporter activation in delta LacZ⁺ doublets. In contrast to nutrientdependent gut resizing, overnight mating during which females presumably copulate with males once appears to cause an irreversible increase in the ISC numbers, which fail to regress back to a "virgin-state". Hence, Mating in flies irreversibly alter the physiology, and perhaps the life history, of female flies. I propose these changes to be analogous to morphological changes in different organs accompanied with the state of parity in mammals (termed as: the number of pregnancies in mammals)^{399,400}. In an analogous manner, one could argue that a primigravida state (that is referring to a female pregnant once) may be sufficient to similarly alter the mammalian gut physiology. This is likely to be an important distinction that is mostly unaccounted for in mammalian studies.

3.7. Functional bifurcation of EcR and Usp

EcR and Usp function together to modulate gene expression in response to 20HE feeding or mating. However, I discovered the first evidence of functional bifurcation between EcR and Usp upon *P.e.* infection in adult *Drosophila*. EcR was dispensable to the ISCs or other midgut cell types for the *P.e.*-induced ISC mitoses, while Usp depletion completely suppressed *P.e.*-induced ISC mitoses. This is one of the non-overlapping functions described for Usp that fit with literature reports suggesting that Usp interacts with other nuclear receptor partners across the developmental stages of *Drosophila* ³³². During embryogenesis, mutation in DBD/LBD of EcR results in embryonic lethality but, mutation in the DBD of Usp causes lethality only in larval stages: during the first to second larval molt^{159,401}. Ecdysone-dependent induction of larval glue genes, a behavioral event prior to pupal commitment is also mediated by EcR but, not through Usp⁴⁰². Additionally, Usp forms a complex with Hr38 that is indirectly activated by ecdysteroids to function in cuticle formation ^{336,337}, carbohydrate metabolism⁴⁰³, or regulating 20-HE-dependent transcription^{335,337}. Intriguingly, this interaction is also mediated by the mammalian counterparts and is conserved across the vertebrate species³³³. In the *Drosophila* midgut ISCs, loss of Hr38 phenocopies depleted Usp functions suggesting that they function in ISC maintenance. While depletion of other possible Usp partners such as Hr96, Hr51, and Hr83 did not suppress *P.e.*-induced mitoses. Moreover, genetic interaction tests validated the interaction between Usp and Hr38 mutants to mediate *P.e.* or 20HE-induced ISC mitoses. Hence, Usp seems to interact with Hr38 in midgut ISCs, similar to other contexts^{335-337,404,405}.

3.8. Role of Eip75B in ISC proliferation

Downstream of 20HE feeding, I identified Eip75B as a critical regulator of ISC mitoses. Eip75B is highly homologous to the mammalian REV-ERB¹²⁷. They are both hemebound¹⁸², structurally conserved and function in regulating proliferative and metabolic genes^{181,185,406,407}. Eip75B functions as a transcriptional repressor, functioning directly at promoters of target genes^{176,184} or through repressing the activatory functions of Hr3^{175,177} or Hr51^{189,408}. Genetic epistasis data imply that Eip75B does not function with Hr51 in the Drosophila midgut ISCs. Rather, Eip75B represses the transcriptional functions of Hr3 not Hr51 to regulate ISC proliferation. Expression of many Eip75B isoforms were detected in the transcriptome of the sorted ISCs, not ruling out the likelihood that Eip75B can regulate transcriptional targets through direct binding to DNA. Furthermore, I showed that Eip75B actions in ISCs are modulated *in-vivo* through nitric oxide (NO) availability in the midgut. NO binds the heme moiety of Eip75B interfering with its ability to inhibit Hr3's activity or recruit co-repressors^{176,185,189}. This implicates Eip75B as a redox sensor in the ISCs of the midgut^{175,182}. Indeed, Eip75B was required for Paraquat-induced (ROS-producing agent that leads to oxidative stress) and age-dependent elevation of ISC mitoses that also occurs as a result of increased oxidative stress¹⁰⁶.

Accordingly, it becomes particularly interesting to address the role of Eip75B in redox homeostasis to control regenerative and self-renewal ISC mitoses, or age-related changes in redox state which result in the age-related stem cell dysfunction of ISCs and intestinal dysplasia.

Similarly, heme is required for Eip75B stability and heme availability determines Eip75B levels¹⁷⁵. Indeed, exogenous heme feeding induces ISC mitoses in an Eip75B dependent manner suggesting that Eip75B might act as a heme sensor in the gut. Heme is essentially required by metabolic, free radical detoxifying enzymes, hormone synthesizing CYP450 and energy utilizing enzymes^{175,409}. If indeed Eip75B is sensing heme, it would function to regulate a balance between heme availability and enzyme biogenesis^{175,409-413}. This notion is supported by the evidence that steroidogenesis in *Drosophila* require both ferredoxins for Fe-S cluster biosynthesis and Eip75B isoform A (now called variant D) ^{184,414-416}. Notably, the requirement of ferredoxins for steroidogenesis is conserved across mammals⁴¹⁶. How Eip75B would similarly function in tightly regulating redox or metabolic enzymes in the midgut remains an open question.

In summary, my findings are consistent with the previous reports that established the function and validated the interaction of this Eip75B•Hr3 complex in other contexts during *Drosophila* development^{175,185,189}. As Eip75B is highly expressed basally in all midgut cell types (Flygutseq database) but also in ISCs of 20HE-fed animals (my sequencing data), it should be interesting to identify which genes it actually regulates. Given that Eip75B and REV-ERB have overlapping functions in regulating circadian rhythm and metabolism in both *Drosophila* ^{179,180} and mammals ^{181,182} and the fact that REV-ERB is highly expressed across the GI tract (human Protein Atlas database), further studies on the impact of REV-ERB in the context of intestinal stem cell biology should prove interesting.

3.9.The influence of hormones on sex traits: parallels from fly to humans

Sex is a fundamental biological characteristic that influences nearly all-organismal traits from health to disease to mortality. According to the classical textbook definition traits can refer to an observable phenotype (termed phenotypic trait) or the underlying genetic loci that cause the phenotype (termed genotypic trait). Often traits are termed complex because they are multi-factorial. There is increasing evidence from model organisms to genome-wide association studies (GWAS) in humans that suggest that sexually differentiated traits are the result of a coalescence of genetic, epigenetic, gonadal hormone and external environmental cues. As an example I discuss evidence I obtained which supports the contribution of hormonal signaling: 20HE regulation and its parallel in humans to the phenotypic and underlying genotypic sex differences in ISC mitoses, determined by 20HE levels.

The central dogma is that sex maintenance arises from the primary sex-determining genes i.e. sex chromosomes in and outside of the gonads and gonadal sex-biased downstream products, such as gonadal hormones, which interact together to impart female and male specific sex traits, thereby defining and maintaining the sex of the individual, as discussed further.

a) Sexually dimorphic ecdysone levels regulate ISC mitoses in males versus females

My results identify circulating ecdysone levels as a sex-specific non-cell autonomous systemic signal that acts in concert with the intrinsic sex determination pathway to strongly regulate the mitotic ISC behavior in both males and females. Exposure to increased levels of exogenous 20HE for varying durations caused striking different phenotypes in both sexes. Firstly I begin with the phenotypes observed after short exposure to 20HE. 20HE feeding for 6 hrs stimulated 20HE only in females but not in males. Then, by 18 hrs, 20HE feeding promoted ISC mitoses rather equally in both sexes. Several open questions remain. How can the male ISCs miss the 1st mitotic wave but, remain competent to divide at the 2nd wave? Considering that the male gut area is only one third that of a young mated female, does this mean that males have less ISCs/gut? It could generally be implied that they have less ISCs/midgut because males do not to have a significantly higher density of ISCs than male ISCs/area^{118,316}, hence it remains quite possible that the total number of available ISCs to divide/time point across the gut is different between a male and a female. Males and females do not have differences in the ratio of symmetric versus asymmetric divisions but, females have higher proportion of their ISCs at the G2/S transition indicating that they have shorter cell cycles¹¹⁸. Interestingly, the ratio of ISCs in the G2/S phase relative to the G1 phase is an aspect regulated by the intrinsic sex determination pathway¹¹⁸. It is interesting to note that the EcR reporter was active in many delta LacZ⁺ doublets in the posterior midgut, linking 20HE activity to symmetric ISC mitoses. So does 20HE exposure boost symmetric ISC division in male midguts that suddenly the guts are filled with unusual numbers of dividing ISCs? Does 20HE synchronously push the male ISCs through shorter cell cycles thereby, bypassing the male-specific trait of the "slower cell cycle" dictated by the intrinsic sex of the ISCs? However 20HE is acting, it surely acts differently between males and females, which begs further investigation of the sex-specific underlying mechanisms that stimulate ISC mitoses.

Remarkably, short-term 20HE effects on the ISC mitoses remain transient because overnight withdrawal of 20HE was sufficient to regress ISC mitoses to basal levels in either sex. That is not typical of other pro-mitotic stimuli in the midgut that cause persistent ISC mitoses. Interestingly also, 20HE-induced mitoses plummet by 16-20 hrs after 20HE feeding but by 40 hrs of continuous exogenous feeding on 20HE, the ISC mitoses fall back to basal levels. Does that mean that females have developed the capacity to adapt to increased 20HE levels, thus protecting the ISCs from exhausting their ecdysone-responsive proliferative transcriptional network to limit over-proliferation?

Indeed, suggestive of the previous idea, long term exogenous 20HE feeding in mated females does not give an obvious advantage to dividing ISCs, and they divide at similar rates relative to age-matched controls. Consistent with this, ecdysone targets are known to autoregulate their expression, hence limiting the activation of their target genes¹⁵¹. Suggestive evidence to support this idea is the fact that 14 days 20HE-fed females do not have a transcriptional upregulation of their ecdysone-inducible targets in contrast to the transcriptional upregulation of the same targets observed as early as 6 hrs of 20HE feeding. In other earlier experiments I did, I observed that the transcriptional induction of the ecdysone-inducible targets was not as strong by 20 hrs of 20HE feeding (data not shown). Hence, 20HE appear to transiently upregulate its targets to cause ISC divisions in mated females.

Do males possess the same machinery to adapt and downsize the effects of prolonged 20HE exposure on ISC mitoses? Augmented ISC divisions accompanied by a strong induction of the ecdysone-inducible targets after 14 days of feeding males on exogenous 20HE dispute that males deploy the identical "20HE-female specific" mechanisms to limit over division of the ISCs. It is possible that such discrepancy occurs because male

ISCs do not have an evolutionary benefit in experiencing such high ecdysone levels. Indeed, this notion coincides with the male ISCs being quite resistant to stress responses^{8,118,303}.

Collectively, my findings identify the relevance of non-cell autonomous sex steroid signaling as a critical determinant of the mitotic ISC behavior, possibly acting through different effectors.

b) Factors influencing sex genotypic traits and how could sex hormones possibly regulate them:

There are several mechanisms with which the sexually different traits could be explained including the gonadal or sex-biased hormones. Hence, below, I concisely mention each mechanism and discuss the sex hormones factor more in depth since it is most relevant to my work. There are generally 4 mechanisms recently proposed to best explain the sex differences in the transcriptome and epigenome⁴¹⁷. First is the sex biased gene expression between males and females in different tissues and across different developmental or environmental changes. This difference can be attributed to the difference in the sex chromosomes (X in males versus XX in females). Indeed, the X chromosome is enriched for sexually dimorphic genes. Of note, the relative change between female and male expression levels in sexually dimorphic genes is rather small³¹⁰. The sex bias in differential gene expression often results in a higher predisposition to a certain disease, depending on the affected tissue. For example females have higher predisposition to autoimmune diseases, consistent with gene ontology enrichment for female-biased genes regulated by estrogen or linked to inflammation in gene expression data from the blood^{418,419}. The study of 2,500 samples from 15 different human tissues and 9 different organs revealed differential expression between males and females in several tissues, including anterior cortex in the brain (1,818 genes), heart (375 genes), kidney (224 genes), colon (163 genes) and thyroid (163 genes). Most sexually dimorphic genes had a magnitude fold change <1 between males and females⁴²⁰. In *Drosophila*, sex differences in intestinal physiology and predisposition to tumors exist between males and females. Accordingly, sex biased gene expression between males and females exist too. 8.3% of all genes in the midgut display significant sexual dimorphism in gene expression¹¹⁸. Not surprisingly, the genes cluster into distinct biological processes¹¹⁸. I also observed similar sex biased gene expression in ISCs of the midgut. In total (around 800 in ISCs from the 1305 genes detected from the whole midgut) genes are also differentially expressed between male and female ISCs.

Additionally, sex- biased splicing also contributes to sex differences in gene expression levels^{421,422}. This adds a powerful layer of transcriptional complexity because nearly all genes in the genome undergo alternative splicing. 95% of the sex-biased spliced genes in the human genome reside on the autosomes and 50% of sex- biased spliced genes are associated with genetic diseases⁴²³. Importantly, even though hormones are known to regulate differential gene expression for example in the context of immunity⁴²⁴, only 32% of the sexually dimorphic autosomal genes contain androgen or estrogen hormone response elements, suggesting that around two- thirds of the rest of the sexually dimorphic genes are not directly regulated by sex hormones⁴²⁰. Additionally, sex hormone receptors do not show sex-biased expression in most tissues, suggesting that the downstream sex-biased gene regulation is not solely explained by differences in mRNA levels of these receptors.-Indeed, network analyses of gene regulation revealed extensive regulation by the sex hormone receptors and other non-steroid transcription factors, that drive the underlying sex differences in the gene regulatory networks⁴²⁵. Similarly, in the Drosophila ISC transcriptome, I do not find differences in the abundance of EcR mRNA between males and females, instead the differences are in some ecdysone pathway components that determine the amounts of 20HE within the cells¹¹⁸ such as controlled transport by Oatp74D transporter³⁰⁴ and activation by Shade enzyme¹⁵⁵. This suggests that 20HE is tightly regulated systemically via its controlled production from the sex organs³⁰⁰ and also locally within the midgut.

It remains an open question if the difference in 20HE levels between males and females contribute to the sex-biased differences in gene splicing. Of note, approximately 5.6% of the whole midgut transcriptome shows sex-biased isoform gene expression among which is Shade enzyme, that transforms ecdysone to its more active form 20HE^{118,155}.

The second mechanism, which could explain sex-biased gene expression, is the presence of genetically inherited variants that either influence RNA splicing and are termed splicing quantitative trait loci (sQTLs), or genetic variants that exert their effects through gene regulatory mechanisms and are termed expression quantitative trait loci

(eQTLs)^{426,427}. Sexually-biased eQTLs may act in one sex but not the other or could be shared by both sexes but with larger effect in one sex over the other. Sex-biased eQTLs and sQTLs have not received so much attention in Drosophila or mammals yet, however, it is hypothesized that predisposition to sex-biased genetic disease could be due to accumulation of small effects across a broad range of variants⁴¹⁷. The third mechanism is the underlying sex differences in the epigenome which include differentially methylated autosomal CpG sites^{428,429}. Sex differences in chromatin accessibility result in sex-biased expression of genes. Sites with sex- specific chromatin accessibility are enriched for genes with sex- biased expression and eQTL genetic variants⁴²⁷. 20HE feeding may affect positive regulation of histone acetylation through the upregulation of the evolutionarily conserved histone acetyltransferase Atac2430, which is involved in nucleosome remodeling⁴³¹. Notably, the pattern of Atac2 expression displays a sex antagonistic relationship in males and females, that is, 20HE-feeding results in higher levels of Atac2 transcript in females but appears to show an opposite effect in males. Another histone acetylase Hcf is not detected in vehicle-fed control males yet it is increased in males after 20HE feeding⁴³². This could suggest that 20HE exerts some of its actions indirectly through the modulation of chromatin accessibility of its target genes. It is known that Atac2 activity regulates ISC identity; its high levels cause the ISCs to directly differentiate without interfering with lineage specification and its low levels cause expansion of ISCs clusters⁴³⁰. Atac2 is also involved in coordinating cellular responses to stress through interactions with several kinases such as MAPKs, Msn, JNK^{433,434}. What are Atac2 targets in the ISCs? Whether 20HE indeed regulates their functions or not is interesting to figure out. It would support the growing body of evidence that steroid hormones affect the epigenome through regulating histone deacetylases (HDACs)¹³⁹ and histone methyltransferases¹⁴¹.

The fourth mechanism is the underlying sex differences in the gonadal sex hormones and its direct interaction with gene regulation. Growing evidence suggests that sexually dimorphic gene expression could be explained in part due to the interaction of hormone-regulated transcription factors such as FOXA and STAT5 with sex-biased histone modifications that lead to differential responsiveness to ligand-activated nuclear receptor signaling and distinct enrichments for functional gene categories between males and females^{435,436}. This is in part caused by differences in hormone receptor binding, for

example: the effect of growth hormone (GH) signaling on the liver. GH is secreted by the pituitary gland in a highly pulsatile manner in males, while in females GH secretion is continual and it is considered as a major hormonal determinant of liver sex differences^{436,438}. Accordingly, continuous growth hormone infusion causes feminization of the male-specific patterns of gene expression and inhibition of a vast majority of male-specific transcript patterns in the liver⁴³⁷. This is very interesting because it identifies the role of growth hormone, an extra-gonadal hormone that exhibits a sex-biased secretory pattern from the pituitary gland. Such example for hormonal regulation suggests that sexual dimorphism is not only limited to gonadal hormones but may also be determined by extra-gonadal hormones.

As intestinal ecdysone/EcR signaling is causing both male and female ISCs to divide and EcR is a nuclear receptor, which exerts its effects mainly through transcriptional regulation of target genes. I reasoned that the different circulating 20HE levels would lead to differential gene expression between males and females, partly through 20HE. Indeed, my primary analyses of the RNA seq dataset revealed the presence of sexually dimorphic genes in the transcriptome of the ISCs of the *Drosophila* midgut, a subset of which are regulated by 20HE feeding (75 genes/826 genes at p-value cut off of 0.05 and 103 genes at a p-value cut off of 0.1) (discussed more below). Notably, this is the first report of sexually dimorphic subset of genes in a specific cell type within a tissue in *Drosophila* (ISCs of the midgut) and also reporting changes upon 20HE feeding. The elegance of *Drosophila* genetics is that it gives us the ability to investigate particular subtypes of cells within a tissue in a way that is not yet possible in humans. Functional in-depth validation of the gene signatures I define as possibly regulated by 20HE will provide a mechanistic insight on the hormonal control of the genotypic sex trait that would, in part explain the underlying differences in ISC mitoses.

Steroid-mediated regulation of metabolic function

Differential gene expression between 20HE –fed and vehicle-fed males revealed that at least 20 of the 75 sexually dimorphic ISC transcripts regulated by 20HE are associated with metabolic functions¹¹⁸. Yet, the functions of many remain uncharacterized. Additionally, 20HE feeding in males resulted in upregulation of lipid and carbohydrate transcriptional signatures including digestive enzymes, transporters and metabolizing

enzymes in ISCs, all correlating with the amplified ISC divisions, possibly enhanced nutrient absorption that would result in the midgut growth. It is worth noting that increased 20HE levels in females are similarly reported to regulate glycogen and triglyceride levels through EcR signaling in the ovaries of mated flies, to maximize nutrient deposition in their fertilized eggs¹²³. 20HE-fed males also have transcriptional upregulation of the insulin pathway components. Along this line of evidence, mammalian estrogen also increases the expression of insulin receptors in adipocytes and skeletal muscle via regulating the expression and translocation of glucose transporters. This increases glucose utilization, decreases lipid deposition preventing the development of obesity or insulin resistance^{439,440}. Interestingly, from my RNA seq data, Lin-28, a highly expressed candidate of this insulin signature is involved in positively regulating symmetric ISC mitoses and nutrient-driven adaptive gut growth³⁰⁹. Similarly, the highly conserved mammalian Lin-28 is required for symmetric divisions in many stem cell and progenitor populations⁴⁴¹⁻⁴⁴³. It does so partly through promoting sensitization to insulin, stimulating glucose uptake and metabolism, and oxidative phosphorylation^{444,445}. Thus, it is defined as a central regulator of mammalian glucose metabolism. This implies that ecdysone might regulate insulin signaling, in part to satisfy the increased intestinal metabolic demands of the 20HE-fed males. Additionally, my results suggested that upd2 is preferentially regulated by 20HE in EBs, ECs and possibly in ISCs. Intriguingly, upd2 is known be a growth promoting factor and to have metabolic functions in the adult fly. Upd2 is secreted from the fat body to regulate insulin-like peptide secretion from the insulin-producing cells in the brain, to promote systemic growth and fat storage⁴⁴⁶. Upd2 is homologous to mammalian Leptin hormone, which is also secreted by adipose tissue, to act on its receptors in the brain to regulate energy homeostasis⁴⁴⁷. The differential regulation of upd2 by 20HE in the midgut signals could signal for a preferential nutrient uptake of more carbohydrate and lipids Does that also indirectly contribute to the "fedstate" of a fly?

Future studies on how 20HE affects metabolism in the midgut should prove very insightful.

3.10. Fecundity versus lifespan

Often fecundity and longevity appear to anti-correlate in females, and a common belief is

that this is due to limited resources, that need to be allocated either towards egg laying or towards repairing one's own tissues. However, it has been shown that fecundity and longevity can be uncoupled^{166,448}. Furthermore, it has been shown that this balance in resource allocation does not fit with tracer experiments using stable isotope-labeled food⁴⁴⁹. This work argued that reproductive costs are not caused by resource allocation, but rather by indirect damage to the soma when reproduction is activated. Indeed, there is a growing body of evidence that suggests that gonadal steroid signaling activates lipid metabolism in the gut to regulate aging. Adult Drosophila flies lacking germline stem cells (GSCs) live 50 % longer than the controls⁴⁵⁰. The underlying mechanism suggesting that gonadal inputs could regulate aging and determine longevity may well be conserved. Also in mice, ovary transplantation from young females increases the life expectancy of the older female recipients⁴⁵¹. Additionally, arrested germ cell proliferation also promotes longevity in *C.elegans*⁴⁵². The underlying longevity effects require gonadal steroids from the somatic gonad that signal to the intestine and the nervous system of *C.elegans*^{453,454}. In C.elegans, ecdysone equivalents, dafachronic acids (DA), are synthesized in the somatic gland via DAF-9/cytochrome P450 and other hydroxysteroid dehydrogenase enzymes, similar to the steroid-synthesizing enzymatic cascade in the Drosophila ovary. In the intestine, the DA receptor DAF-12, EcR paralog in *C.elegans* increases longevity in germline-ablated animals via regulating downstream target lipolytic genes expression⁴⁵⁵, activating nuclear receptors to regulate the expression of stearoyl-CoA- Δ 9-desaturases and via promoting FOXO/DAF-16 nuclear localization in the intestine⁴⁵⁶. Notably, DA supplementation can restore longevity of the whole gonad-deficient worms lacking both germline and somatic gonad, which requires the presence of intestinal receptor DAF- 12⁴⁵⁷. In parallel, my results show that the activation of reproduction comes at the cost of increased dysplasia and tumor risk so also, strengthening this gonadal-gut axis regulation that determines the organism's lifespan. Intriguingly, human FOXO3 variants are also associated with longevity again suggesting that the regulatory mechanism is evolutionarily conserved ^{458,459}.

My findings within this work thus contribute to the growing insight of the hormonal regulation on the intestine. I propose that active gonadal sex hormones render the gut more responsive to increased reproductive demands thereby, creating a trade-off between

satisfying reproductive demands and longevity in flies. This may be reminiscent of a conserved strategy in mammals where estrogens might have an initial advantage to the female gut functions, but over time accumulation of more estrogen metabolites contributes to inflammation and tumorigenesis of the GI tract. Given the evidence, I propose that the possible contribution of sex hormones to intestinal physiology deserves further investigation.

Materials and Methods:

The text of the following section (**Materials and Methods**) has been taken from (Ahmed et al., 2020) and has been originally written by myself:

Fly stocks and cultures

Drosophila melanogaster were raised on standard media and maintained in incubators with controlled temperature and humidity on a 12 h light/dark cycle. Flies were transferred to fresh vials every 2 days. Male and female *Drosophila* were raised mated for all experiments, unless indicated otherwise. w^{1118} (VDRC #60000) flies were typically used as wild-type controls and y w[1118];P{attP,y[+],w[3`]} (VDRC #60100) were used as wild-type controls for KK RNAi lines.

Gal4 driver lines:

esgts: y,w; esg-Gal4/Cyo; tub-Gal80ts UAS-GFP/TM6B 5

esg^{ts} F/O: w; esg-Gal4 tub-Gal80ts UAS-GFP/Cyo; UAS-flp, act>CD2>Gal4/TM6B ⁴¹ esg^{ts} Su(H)-Gal80: esg-Gal4, UAS-2XEYFP; Su(H)GBE-Gal80 tub-Gal80^{ts} (Gift from Steven Hou)

Su(H)-GBEts: Su(H)GBE-Gal4,UAS-CD8-GFP/CyO; tub-Gal80ts/TM6B

MyoIAts: w; Myo1A-Gal4NP0001/CyO; tub-Gal80ts, UAS-GFP/TM6B

prosts: w;tub-Gal80ts,UAS-GFP/CyO,wglacZ;Prosv1-Gal4

tub^{ts}: tub-Gal4; tubGal80^{ts}/TM3, ser (Gift from Valeria Cavaliere's lab)

how^{ts}: how-Gal4; tubGal80^{ts}

elav^{ts}: Elav-Gal4, UAS-GFP/FM7C;+; Tub-Gal80TS/TM2Ubx

C587ts: c587-Gal4; tubGAL80ts

UAS transgenes:

UAS-Eip75B on II (kindly provided by Henry Krause, University of Toronto, Canada)

UAS-Hr3 on III (kindly provided by Henry Krause, University of Toronto, Canada)

UAS-EcR.A.F645A (BDSC 9452)

UAS-EcR.A.W650A (BDSC 9451)

UAS-EcR.B1-ΔC655.W650A (BDSC 6872)

UAS-TraF (kindly provided by Irene Miguel-Aliaga)

RNAi stocks:

UAS-EcR RNAi (VDRC GD 37059, BDSC 29374 TRiP JF02538)

UAS-Usp^{RNAi} (VDRC GD 16893 and BDSC 27258)

UAS-tra^{RNAi} (BL:2851 kindly provided by Irene Miguel-Aliaga)

UAS-Eip75B^{RNAi} (VDRC GD 44851 and BDSC 35780, TRiP.HMS01530)

UAS-Hr3^{RNAi} (VDRC GD 12044, BDSC 27253, TRiP.JF02542, and NIG 12208R-2)

UAS-Spo^{RNAi} (BDSC 51496, spok RNAi 2A2;2A3 kindly provided by Michael O'Connor)

UAS-Dib^{RNAi} (v101117 kindly provided by Michael O'Connor)

UAS-Br^{RNAi} (KK 104648)

UAS-Notch^{RNAi} (VDRC GD 27228)

UAS-Upd2^{RNAi} (TRIP 33988, HMS00948)

UAS-Upd3^{RNAi 460}

UAS-Rho^{RNAi} (TRIP 41699)

UAS-string^{RNAi} (NIG 1395R-1)

UAS-Egfr^{RNAi} (TRIP 31183)

UAS-met^{RNAi} (KK100638, TRIP 26205)

UAS-gce^{RNAi} (TRIP 26323)

MARCM stocks:

MARCM 80B yw hs-flp1.22 tub-Gal4 UAS-GFP(NLS); +; tub-Gal80 FRT80B/TM6B

FRT 80B: W; [neoFRT]80B/TM6B,sb1

Eip75B^{Δ 51} FRT 80B: Eip75B^{Δ 51}P[neoFRT]80B ry506 (recombinant #1)/TM3.sb in Fig ED 3b,c (kindly provided by, Elizabeth T.Ables East Carolina University School of Biology, North Carolina, USA).

Eip75B^{Δ 51} FRT 80B: Eip75B^{Δ 51}P[neoFRT]80B/TM3.sb in ED Fig 16c (kindly provided by Yijie Li, Johns Hopkins University School of Medicine, Baltimore, USA)

Reporter lines:

w¹¹¹⁸; hs-GAL4-DHR3.LBD.HA; UAS-Stinger (BDSC 28868)

w¹¹¹⁸; UAS-Stinger; hs-GAL4-EcR.LBD (BDSC 28863)

w¹¹¹⁸; UAS-Stinger; hs-GAL4-Usp.LBD (BDSC 28864)

w¹¹¹⁸; P{10XStat92E-GFP}1 (BDSC 26197)

w¹¹¹⁸; P{10XStat92E-GFP}1 (BDSC 26198)

IF/CyO; Upd3.1 LacZ/TM6B Gbet Su(H)-lacZ/x Delta05151/tm3.sb

Mutant stocks:

w* upd2 Δ (BDSC 55727) w* upd2 Δ upd3 Δ (BDSC 55729) w* upd3 Δ (BDSC 55728) Dmspo^{Z339} (Kindly provided by Michael O'Connor) spo¹ st¹ e¹/TM3, Sb1 (BDSC 3276)

Deficiency stocks:

w[1118]; Df(3L)Exel6105, P{w[+mC]=XP-U}yorkExel6105/TM6B, Tb[1] Bloomington #7584

w[1118]; Df(3L)BSC387/TM6C, Sb[1] cu[1]] Bloomington #24411

Drosophila husbandry

For transgene expression using the Gal4/Gal80^{ts} system, experimental crosses were maintained at 18°C (permissive temperature for GAL80^{ts}) in standard medium. Animals of the desired sex and genotype were collected within 48h of eclosion and aged for an average of 5 days before shifting to 29°C (restrictive temperature for GAL80^{ts}) to induce UAS transgene expression. Adult midguts were dissected after different periods of time as indicated in on top of each figure panel. The esg-Flip-Out system (esgF/O^{ts})⁴¹ and the MARCM system²⁸⁵ were used to generate ISC-derived clones. Flies were aged for 3-6 days after eclosion before clonal induction by temperature shift to 29°C for esg-FO clones or heat-shock for MARCM clones. Additional details on transgene expression times are indicated in the corresponding figure legends. MARCM 80B flies were heat shocked for 45-60 min in a 37°C water bath, and then aged for 12 days at 29°C before overnight treatment with vehicle, 5mM 20HE or *Psuedomonas entomophila (P.e.)*.

Mating experiments

At least 10-15 virgin females for each genotype were collected at 18°C as they emerged. They were aged for ~5 days and then shifted to 29°C until the time points indicated in each figure panel. At the start of mating, females were transferred to fresh vials and allowed to mate with equal numbers of adult 3-7 days old wild type w¹¹¹⁸ males, devoid of any transgenes, at 25°C, for optimal fecundity. Time when males were introduced to females in the same vial is denoted as t0. If indicated as mated once, then after 18-20 hours, the males were removed and the females were flipped into fresh vials every 48 hours until the indicated time in the respective figure panels. Otherwise, males were left together with the females for the following time points: 24 hours, 37-40 hours, 46-48 hours or 72-74 hours.

GAL4-LBD 'ligand sensor' system

Adult flies with bipartite detection system consisting of the LBD of the Drosophila nuclear receptor (NR) fused to the DNA-binding domain of yeast GAL4, along with a GAL4 UAS-controlled GFP reporter gene were used as previously described^{186,288}. Flies were raised and maintained at 25°C. For visualization of ligand sensor patterns, 5-7 day-old mated females were starved for 2-4h, heat-treated for 30 min in a 37°C water bath only once for EcR, Usp and Hr3 reporters, and allowed to recover at room temperature for 15 minutes. Then, flies were transferred to vials containing a fresh feeding vial (see Feeding Experiments) and kept at 25 °C for 16-18 hrs until dissection.

In vivo 10XSTAT92E-GFP reporter system:

Adult mated female flies of the genetic background 10XSTAT92E-GFP that have 10 Stat92E binding sites driving GFP expression were aged for 5-7 days and treated for 6hrs with 5mM 20HE and for 16-18 hrs with 5mM 20HE or *P.e.* infection.

In vivo Upd3 lacZ reporter:

Adult mated female flies of the genetic background Upd3.1 LacZ/TM6B were aged for 5-7 days and treated for 16-18 hrs with 5mM 20HE or *P.e.* infection.

Overnight Feeding Experiments

For all experiments except 20HE/SDS feeding (as indicated in the fig panel), flies were fed for 16-20 hrs, then dissected to remove the intestines, which were analyzed using immunofluorescence and confocal imaging. For 20HE feeding, flies were fed as early as 4 hrs, then 6, 9, 12, 16 hrs and as late as 22 hrs. We observed a window of strong mitotic response at 6 hrs and again at 16-18 hrs that persisted to 22 hrs after exposing the flies to the 20HE feeding solution.

For 20HE removal experiments, flies were fed overnight (O/N) for 16-18hrs with 5mM 20HE, and then transferred to a fresh vial for another O/N treatment after which the midguts were dissected and stained.

20-hydroxy-ecdysone (20HE) feeding: 10-15 adult male, mated female, or virgin female flies were used for the ecdysone feeding experiments, as indicated. 20HE was weighed out of the supplier's vial and was first dissolved in 100% ethanol. Water was then added to make up a 25mM stock solution in 10% ethanol. 25mM 20HE stocks were stored at - 20°C. A final concentration of 0.25-10 mM ecdysone or 2% ethanol (as control) was used for the feeding experiments as indicated. 200 μ L of 5% sucrose solution, 5 mg/ 1mL dry yeast + 5mM 20HE (Sigma-Aldrich H5142) mix was deposited on top of a standard food vial to which flies were transferred. If the experiment required *P.e.* infection, then 400 μ L of the same yeast/sucrose mix (described above) was deposited on filter-paper discs (Whatmann) to which flies were being transferred. The sucrose yeast mix with 2% ethanol was used as vehicle treatment.

Detergent treatment: flies were left to feed on yeast sucrose solution (described above) with 0.1% or 1% SDS for 18-20h or at the times indicated.

Enteric *P.e.* infection: A 25 mL pre-culture was started the first day by inoculating *Pseudomonas entomophila* (*P.e.*) bacteria from glycerol stocks (stored at -80°C) in Rifampicin-supplemented Luria Broth (LB; final antibiotic concentration: 100 μ g /mL). The pre-culture was grown overnight at 29°C, shaking at 130 rpm. Next day, the pre-culture was diluted in 175 mL Rifampicin supplemented LB and the culture was again grown overnight at 29°C, shaking at 130 rpm. After the growth of the bacterial culture reached optical density (O.D) \approx 0.5, the culture was spun down at 2500 g for 25 min at 4°C and the pellet was re-suspended in 3 mL of 5% sucrose + 150 μ L yeast. Prior to infection, flies were starved for 2 hrs (optional step), and then placed in vials with 500 μ L of this *P.e.* solution or 5% sucrose with yeast as the control vehicle.

Other treatments include feeding with 2.5mM Paraquat, Nω-Nitro-L-arginine methyl ester hydrochloride (Sigma-Aldrich, N5751) (200 mM L-NAME stock solution in (±)-S-Nitroso-Ndistilled water; final 10 mMconcentration used). was acetylpenicillamine (Sigma-Aldrich, N3398) (500 mM SNAP stock solution in 10% ethanol and 10mM SNAP final solution was used), Hemin (Frontier Scientific, H651-9) (2 mM stock solution dissolved in 0.1M NaOH, pH adjusted to 7 with sodium phosphate buffer and 0.5 mM final solution was immediately used) and their corresponding vehicle. Treatments were diluted in 400 μ L total volume of 5% sucrose and 5 mg/1 mL yeast then added vials containing a fresh feeding paper.

Long term ecdysone feeding

At least 10-15 adult male and/or female flies were transferred to standard fresh food vials (2.5 cm diameter) containing circa 3 mL of food. To prepare ecdysone treated food, the food in the vial was scraped on the surface and 200 μ L 1mM 20HE, 22 mg/mL yeast in 5% sucrose solution was added. After 15 minutes, this solution diffused into the food. Flies were added to these vials and flipped into fresh 20HE containing vials every 48 hrs for 14 days unless otherwise indicated. As vehicle, vials with fly media containing 200 μ L 0.43% ethanol in sucrose/yeast solution were used. Flies were dissected to remove the intestines, which were analyzed using immunofluorescence and confocal imaging. For the flies raised on low nutrient food, flies were fed with 1mM 20HE, 5 mg/mL yeast in 5% sucrose solution that was deposited on filter-paper discs (Whatmann) and exchanged every 24-30 hrs. For *P.e.* infection after long-term 20HE feeding, I discontinued feeding the flies on ecdysone-containing food for one day before the flies were fed with the *P.e.* bacterial solution.

Fecundity assays

At max 10-15 virgin females for each genotype/replicate were collected at 18°C as they eclosed, and pooled in one vial. For each genotype 3-4 replicates were performed. Virgins were aged one day and then shifted to 29°C to activate Gal4. Females were then transferred to fresh cages and allowed to mate with equal numbers of w¹¹¹⁸ males. Females were housed in groups of 7-10 with equal number of males for this experiment.

Standard Drosophila media was poured in 5 cm plates and stored at 4°C. Flies in each egg collection cage were flipped onto fresh food plates every 24-48 hours for the indicated number of days, the number of eggs/replicate were scored and averaged over the number of flies in each cage. 3-4 replicates were pooled for each genotype.

Virgins were aged 8 days at shifted 29°C to activate Gal4 first before mating to equal number of males. Females were housed in groups of 7-10 with equal number of males for this experiment. Flies in each egg collection cage were flipped onto fresh food plates every 24-48 hours for the indicated number of days, the number of eggs/replicate were scored and averaged over the number of flies in each cage.

Virgins were aged one day and then shifted to 29°C to activate Gal4. Females were then transferred to fresh vials and allowed to mate with equal numbers of w¹¹¹⁸ males. All subjects were housed overnight in the same vial to ensure mating success and numbers of eggs were counted and averaged for the number of females/vial. Next day, every female/male pair was separated and individual female/vial were followed up for 14 days. Vials were exchanged every 24-48 hours in this experiment and total number of eggs laid/2 days was counted for every female fly.

A 3 day sum was calculated from the average number of eggs/fly laid every day, then an average sum of eggs laid/fly/3 days across the replicates was plotted with error bars \pm confidence intervals (c.i.). Alternatively, the average/individual cumulative numbers of eggs were summed up and mean values were plotted with error bars \pm standard deviation (s.d.). To test statistical significance for each day (source data), Two-sample unequal variance t-test were performed, with a two-tailed distribution assuming unequal variance for test genotype relative to control at every time point. Alternatively, general linear models (GLMs) with binomial errors were used to examine the effect of the genotype on the average cumulative number of eggs.

spo mutant rescue experiment

Males of either deficiency backgrounds BM#7584 or BM#24411 were crossed to heterozygous *spo* mutant virgins and allowed to lay eggs on apple plates for several days prior to the experiment. 2 deficiency genotypes were used to increase the likelihood to getting rescued homozygous spo mutant flies. On the day of the experiment, the parents were left to lay eggs for 4 hours then, were removed. The eggs were allowed to age 4-6

hours at 25°C then, were all pooled in a sieve and de-chorionated by bleach. After washing in PBS-T, the de-chorionated embryos were incubated in PBS-T supplemented with 100 μ M 20E for 3 hours. The embryos were covered with Halocarbon 27 *Oil and incubated at 18°C overnight. Over the next 2 days,* homozygous spo embryos were selected under a fluorescent stereoscope by the lack of GFP expression in the hatched larvae. The phenotypically correct larvae were collected in fresh food vials at the density of 40-60 larvae/vial and allowed to develop at 25°C until eclosion and selection of virgin or mated homozygous spo mutant flies.

Lifespan assays

Males and females of the genotype 5961GS EcR A DN were allowed to mate for 48hrs then were isolated in groups of 25 flies of the same sex/vial. For RU486 food supplementation, 100 μ l of a 5 mg/ml solution of RU486 or vehicle (ethanol 80%) were deposited on top of a food vial and dried for at least 4-6 hours, resulting in a 0.2 mg/ml concentration of RU486 in the food accessible to flies. Flies were flipped every 48hrs into a fresh vial. Dead flies were visually identified (flies not moving, not responding to mechanical stimulation and laying on their side or back were deemed dead), and the number of dead flies was recorded. Oasis software was used for data analysis⁴⁶¹. Logrank non-parametric test was performed by the software and the p values were derived from pairwise comparison with Bonferroni correction as displayed in ED 10 g-h.

FACS sorting of ISCs:

C587^{ts} mira-GFP on chromosome II progeny were collected and aged 7-9 days at 18 degrees then shifted at 29 degrees in groups of 60. (so, 30 males and 30 females/vial). 350 μ L of 1mM ecdysone or 10% ethanol are supplied to the flies daily for 15 days till sequencing date.

FACS sorting protocol is adopted from Dutta et al, 2015.

Midguts were dissected in in nuclease/RNAse free 1xPBS (80-100 midguts per sample) then transferred to 1.5 ml eppis with 450 μ l nuclease/RNAse free 1xPBS on ice. 100uL elastase (0.4% w/v stock solution kept at -20°C) was added. This was incubated for 1.5 hour at 27°C (300 rpm only the last 30 minutes) and the tube flicked every 10 mins.

Then, centrifuged at 2500 rpm for 12 mins. The supernatant was discarded without letting the pellet dry and fresh 500 μ l nuclease/RNAse free 1xPBS was added. Propidium Iodide (PI) 1:1000 to stain dead cells. Then, cell suspension was pipetted onto blue cap of FACS tubes and gently tapped to help flow through. (RNAse free) 1.5 ml eppis with 250 μ l Extraction Buffer was prepared for FACS sorting and RNA was extracted and sent for sequencing. The kit for RNA extraction used was Arcturus PicoPure RNA isolation kit (Applied Biosystems) according to the manufacturer's instructions.

Sequencing:

Library prep (done by DKFZ core facility) using SMARTer® Ultra® Low Input RNA Kit for Sequencing (Clontech Laboratories, Inc.) and Low Input Library Prep Kit (Clontech Laboratories, Inc.). Ultra Low RNA Seq was carried out using HiSeq V4 SR50 sequencer. Total RNA was sequenced.

Sequencing analysis: The FASTA files were aligned to the Drosophila transcriptome as follows: Adaptor-trimmed reads were mapped to a file containing coding sequences of combined *Dmel* transcripts and filtered for only uniquely mapping reads . Unique *Dmel* reads were re-mapped to the transcriptome *Dmel* release 6.02 genome using STAR (Spliced Transcripts Alignment to a Reference) Aligner on the galaxy.org server with the following settings: single-end reads. The mapped.bam alignment files were then assessed for their strandedness and counted with featurecounts on the Galaxy server. Single alignment was ensured and the percentage of reads mapped to multiple loci for every sample was 0%. The percentage of uniquely mapped reads for the total number of reads aligned. Afterwards, differentially expressed genes were determined using edgeR on the count data files.

edgeR differential expression: count files were imported into the compaRNA function of the Husar Platform with the following parameters: P-Value Threshold for EdgeR 5.0e-2. The results were imported to excel, 0.05 p value was set as a cut-off for enriched hits in any sample, then -log10(p values) were calculated. The enriched hits were imported to Flymine v49 2020. Gene Ontology Enrichment or Pathway Enrichment widgets were used to compare hits against the background of my aligned reads filtered for reads>10,

max p-value was set to 0.05. Homologues were retrieved from Mouse or Human Mines and similarly Gene Ontology Enrichment or Pathway Enrichment widgets were used. The sexually dimorphic hits were determined in reference to the supplementary table of Hudry et al,2016 list of sexually dimorphic genes.

The set of similar hits between 20HE fed males and vehicle fed females were determined by comparing the lists of genes that are differentially expressed between males and females and the list of genes that are differentially expressed between 20HE fed males and females (a p-value cut off of 0.05 or 0.1) and have more than 10 total reads. Through a series of vlookup functions, the list of genes that are different between males and females but are no longer different between 20HE fed males and females are the list of genes presented in 2.7.6 and table 2.4. Those hits reflect genes that are becoming "more similar to vehicle females" after 20HE feeding.

Immunohistochemistry and microscopy

Drosophila adult midguts were dissected in 1x phosphate-buffered saline (PBS) and fixed with 4% paraformaldehyde for 30 min at room temperature (RT). For all immunestainings except anti-dpErk, samples were washed with 0.015% Triton-X in PBS thrice at RT, then permeabilized with 0.15% Triton-X in PBS for 15 min at RT with shaking. Then, samples were re-washed and blocked in PBS with 2.5% BSA, 10% normal goat serum and 0.1% Tween-20 (blocking solution) for at least 1hr at RT. Midguts were incubated with primary antibody at 4 °C overnight at the following dilutions: chicken anti-GFP (Life Technologies/Molecular probes, 1:500); rabbit anti-phospho-Histone 3 (Merck Millipore 1:1000); mouse anti-phospho-Histone 3 (Cell Signaling, 1:1000); guinea pig anti-GFP (Teleman Lab, 1:1000); chicken anti-□-galactosidase (Abcam, 1:1000).

For the dpErk detection, samples were fixed in 4% paraformaldehyde, dehydrated for 5 min in 50%, 75%, 87.5%, and 100% methanol, and rehydrated for 5 min in 50%, 25%, and 12.5% methanol in PBST (0.1% Triton X-100 in 1×PBS). After washing in 1×PBST, midguts were blocked in PBS with 2.5% BSA, 10% normal goat serum and 0.1% Tween-20 (Blocking solution) for at least 1hr at RT then incubated with rabbit phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) #9101 (Cell Signaling, 1:400) at 4 °C overnight.

182

After washing, all samples were incubated with secondary antibodies (Alexa 488, 568 or 633, Invitrogen) >2 hours at RT at a dilution of 1:1000. All antibody incubations were performed in blocking solution. DNA was stained with 0.5 μ g/mL DAPI (Sigma).

For the plasma membrane cell stain: Freshly dissected midguts were stained with CellMaskTM deep red plasma membrane stain, Thermofisher® in 1x PBS at a concentration of 1:1000 then fixed in 4% formaldehyde and stained with 1x PBS/DAPI according to the manufacturer's instructions.

Ovary staining: One day old mated females have been place on active yeast paste for 4-5 days at 29°c. Ovary have been dissected in dPBS, transfer in PBS, PFA8% and fixed for 10min at room temperature under mixing. After washes in PBS triton 0.15% the ovaries have been blocked for 1 hour in PBST0.15%, BSA 2,5%. The primary antibodies incubated at 4°c overnight in blocking buffer: chicken anti-GFP 1/500, mouse anti-coracle 1/500 (http://dshb.biology.uiowa.edu/C566-9_2). Then the ovaries have been washed 5 times 5 minutes in PBS T0.15% and incubated 1h30 with the secondary antibodies +dyes in blocking buffer at room temperature: Goat anti-chicken488 1/1000, Goat anti- Mouse568 1/1000, Hoechst 1/1000, phalloidine633 1/10000 . After two washes of 10min in PBST0.15%, the ovaries have been mounted between slide and coverslip in Vectashield. Images have been acquired using a Leica Sp8 confocal microscope and the figures made using Fiji with the ScientiFig plugin.

Imaging: Midguts were mounted on glass slides in VectaShield (Linaris®). All midgut images were acquired on a Leica TCS SP5II inverted confocal microscope, equipped with HCX Plan APO 20x/1.30 glycerol-immersion (for quantifications) or 40x/1.30 oil-immersion objectives (for representative images/ quantifications), using Leica Application Suite (LAS) AF software and processed with Fiji/ImageJ software⁴⁶². Representative images are shown. GFP, in green (native GFP for all genotypes except for the reporter midguts and Su(H)+ cells marked with Su(H)^{ts} driver that were additionally stained with GFP for better visualization of the signal); DNA: DAPI, in blue. For displaying images in the figure panels, a Z-stack of defined steps for control and test genotypes in a single field was acquired in the R4 region (a region which is bounded by the apex of the midgut tube's most distal 180° turn) as described in⁴⁶³. Images represent maximal intensity projections of the acquired Z-Stacks. Scale bars are 100 µm in all images, unless otherwise indicated.

Quantifications and statistics

ISC proliferation: Mitotic indices were determined by manually counting all PH3 positive cells in entire midguts using Leica DM5000B or Zeiss Axiophot fluorescence microscopes through a 40x objective. Statistical analysis of all the mitotic counts was performed using two-tailed Mann-Whitney test (ns p> $0.05,*p \le 0.05,*p \le 0.01,***p \le 0.001,***p \le 0.001$). All dot plot graphs indicating mitoses are showing mean values \pm s.d. Exact p values are provided in a table in the supplemental material. Data were plotted from at least 3 independent experiments.

Quantification of the GFP⁺/delta⁺ cells: Z-stacks of both epithelial sides in R4a/b region were imaged at steps of 5.0 μ m at 40x then the total number of GFP⁺ or delta⁺ cells were analyzed after limiting the particle size to 10-250 μ m, circularity 0.00-1.00 and excluding holes after maximal Z-projects have been applied.

Quantification of the delta+ and Su(H)+ cells: Z-stacks of both epithelial sides in the R4a/b region were imaged by confocal Zeiss LSM 780 Spinning Disc. The total number of DAPI+, Su(H)+ and delta+ cells were automatically segmented and counted by a designed Image J/FIJI macro. Su(H)+ and delta+ cells were manually recounted and verified and the numbers of each cell type were recorded to derive %cell type to total cell number/stack.

Quantification of cell size: Midguts were mounted as previously described and Z-stacks of both epithelial sides in the R4a/b were imaged at steps $5.0 \,\mu\text{m}$ at 40x then an Image J/FIJI macro was created to segment the cytoplasm in reference to DAPI nuclear stain and internuclear distances. Area of the cells in μm^2 were outputted to Microsoft Excel and a mixed effects 2-way ANOVA statistical model was computed to calculate the significance between the different conditions.

Quantification of clonal size: Z-stacks of both epithelial sides in the R4a/b were imaged at steps 5.0 μ m at 40x then an Image J/FIJI macro was designed to semi-automatically segment and determine the location and size of the GFP+ clones then the sizes in μ m²

were outputted to Microsoft Excel and a mixed effects 2-way ANOVA statistical model was computed to calculate the significance between the different conditions.

Quantification of the GFP⁺ areas: For analysis of the mating effects, Z-stacks of both epithelial sides in R4a/b region were imaged at steps 5.0 μ m either at 40x or at 20xs. For analysis, the quantification of the area occupied by GFP⁺ cells was performed automatically using an ImageJ / FIJI macro. The macro created maximum Z-Projection of image stacks, median and gaussian filtering, automatic thresholding and measurement of GFP⁺ and gut occupying area. The measurements were exported to Microsoft Excel and the GFP⁺ / gut area ratio was derived from these values for at least 10 midguts for most experiments.

Quantification of the GFP⁺ area/ DAPI⁺ cells: For analysis of the tumor effects (ED 10e), a fixed median filter was created for each stack, a fixed gaussian blur value was applied then the midgut was thresholded for the DAPI⁺ cells and GFP⁺ cells then areas for both have been calculated and a ratio was derived. An Image J/FIJI macro was used.

Data are displayed in scatter plots with the mean values \pm standard deviation (s.d.) for each series of experiments. Data shown are representative of at least 2-3 independent repeated experiments with similar results. Statistical significance was calculated either by two-tailed Mann-Whitney test without a multiple comparison test. Results were considered to be significantly different at p<0.05. All calculations were performed using the Prism 7.0 software (GraphPad Software, La Jolla, CA, USA).

Gut measurements: After immunofluorescence staining and prior to mounting, midguts were put on a glass slide and imaged using a Leica M205 FA Stereo Microscope or Stereo Discovery.V8, unmounted guts were imaged at a defined magnification and these images were exported to Fiji for further analysis. An Image J/FIJI macro was designed to threshold each image then measure the area of every midgut and with the distance mapping technique, the midgut length was derived. For the width measurements, a line was drawn. Before quantifying any midgut dimensions, the genotype of each sample was concealed. Samples were randomly analyzed then the genotype was revealed only after

completing analysis. For statistical analyses of gut sizes, normality test was performed with Shaprio-Wilk normality test and the gut sizes showed normal Gaussian distribution. Thus, statistical significance of gut size measurements was calculated by ordinary ANOVA test, followed by Bonferroni's multiple comparisons test. P values were calculated as follows: (ns p> $0.05,*p \le 0.05,*p \le 0.01,***p \le 0.001,***p \le 0.0001$). Data are displayed in scatter plots with the mean values \pm standard deviation (s.d.). Data were plotted from at least 3 independent repeated experiments with similar results.

All Image J/FIJI macros are available as supplementary online source material, or upon request from the authors.

Sample sizes, Randomization, and Blinding

No statistical method was used to predetermine sample sizes, but typically between 5 and 20 flies were used per replicate per genotype in each experiment. Exact n values for each experiment can be found in the online source data. When selecting animals for an experiment, the parental genotype was not concealed because it was required to select pertinent progeny. Animals were first selected by genotype and then randomly chosen for experimental analysis. For measurements of mitoses/gut, gut sizes and tumor frequencies, the genotype of each sample was concealed during analysis. Samples were then randomly scored and genotypes were revealed only after completing the analysis.

RT-qPCR

10–12 female intestines per genotype were dissected and RNA isolated using the RNAeasy kit (QIAGEN). 750 ng of total RNA was used for cDNA synthesis reactions using the QuantiTect reverse transcription kit (QIAGEN). RT-qPCR was performed on a Light Cycler 480 II (Roche) using SYBR Green I (Roche). Experiments were performed in at least biological triplicates. Relative fold differences in expression level of target genes were calculated as ratios to the mean of the reference genes rp49 and tubulin using the $\Delta\Delta$ Ct method. A series of 10-fold dilutions of an external standard was used in each run to produce a standard curve. Primer sequences are listed in the online Supplementary Information.

 $\Delta\Delta Ct$ method: $\Delta\Delta Ct$ (or log2 fold change) is the difference in threshold cycles for the test and control sample normalized to the threshold cycles for the reference gene. $\Delta\Delta C_t = \Delta C_t (test) - \Delta C_t (control)$ $\Delta C_t (test) \text{ or } \Delta C_t (control) = C_t \text{ target gene} - C_t \text{ reference gene}$ All data are presented as mean fold change (log₂) with s.d.

RT-qPCR primers

Rp49 –Forward:TCGATATGCTAAGCTGTC Rp49–Reverse:GGCATCAGATACTGTCCCTTG β-tubulin-Forward: ACATCCCGCCCGTGGTC β-tubulin-Reverse: AGAAAGCCTTGCGCCTGAACATAG Actin5C-Forward: CTCGCCACTTGCGTTTACAGT Actin5C- Reverse: TCCATATCGTCCCAGTTGGTC Rho-Forward: ATCGGCTTTCTGGTGCTAAA Rho-Reverse: GTGCAACAGATGCTGGGTAA Eip75-Forward: AACTGCACCACCACTTGACA Eip75-Reverse: TTCTTCTCGTTGCCCGACTC spi-Forward: CCTTCTATTTGCGCTTCGAG spi- Reverse: CGCATGTGGTAGGGTAGCTT krn-Forward: CGTGTTTGGCAACAACAAGT krn- Reverse: TGTGGCAATGCAGTTTAAGG Upd2- Forward: CACAAGTGCGGTGAAGCTAA Upd2- Reverse: GGCTCTTCTGCTGATCCTTG Upd3- Forward: CCACAGTGAGCACCAAGACT Upd3- Reverse: GCGAAGGTTCAACTGTTTGCT Socs36E- Forward: CAGTCAGCAATATGTTGTCG Socs36E- Reverse: ACTTGCAGCATCGTCGCTTC Spo-Forward: TCCGCGAGGTGCTCAATCAA Spo-Reverse: CGCTCGCCACCAAATAGTTT

References:

- 1 Pitsouli, C., Apidianakis, Y. & Perrimon, N. Homeostasis in Infected Epithelia: Stem Cells Take the Lead. *Cell Host & Microbe* **6**, 301-307, doi:https://doi.org/10.1016/j.chom.2009.10.001 (2009).
- Marianes, A. & Spradling, A. C. Physiological and stem cell compartmentalization within the Drosophila midgut. *eLife* 2, e00886, doi:10.7554/eLife.00886 (2013).
- Buchon, N. *et al.* Morphological and Molecular Characterization of Adult Midgut Compartmentalization in Drosophila. *Cell Reports* **3**, 1725-1738, doi:https://doi.org/10.1016/j.celrep.2013.04.001 (2013).
- 4 Barker, N. *et al.* Identification of stem cells in small intestine and colon by marker gene Lgr5. *Nature* **449**, 1003-1007, doi:10.1038/nature06196 (2007).
- 5 Micchelli, C. A. & Perrimon, N. Evidence that stem cells reside in the adult Drosophila midgut epithelium. *Nature* **439**, 475-479, doi:10.1038/nature04371 (2006).
- 6 Spit, M., Koo, B.-K. & Maurice, M. M. Tales from the crypt: intestinal niche signals in tissue renewal, plasticity and cancer. *Open Biology* **8**, 180120, doi:doi:10.1098/rsob.180120 (2018).
- 7 Kux, K. & Pitsouli, C. Tissue communication in regenerative inflammatory signaling: lessons from the fly gut. *Frontiers in Cellular and Infection Microbiology* **4**, doi:10.3389/fcimb.2014.00049 (2014).
- 8 Jiang, H. *et al.* Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. *Cell* **137**, 1343-1355, doi:10.1016/j.cell.2009.05.014 (2009).
- Beumer, J. & Clevers, H. Regulation and plasticity of intestinal stem cells during homeostasis and regeneration. *Development (Cambridge, England)* 143, 3639-3649, doi:10.1242/dev.133132 (2016).
- 10 O'Brien, L. E., Soliman, S. S., Li, X. & Bilder, D. Altered modes of stem cell division drive adaptive intestinal growth. *Cell* **147**, 603-614, doi:10.1016/j.cell.2011.08.048 (2011).
- Kolahgar, G. *et al.* Cell Competition Modifies Adult Stem Cell and Tissue
 Population Dynamics in a JAK-STAT-Dependent Manner. *Developmental Cell* 34, 297-309, doi:https://doi.org/10.1016/j.devcel.2015.06.010 (2015).
- 12 de Navascues, J. *et al.* Drosophila midgut homeostasis involves neutral competition between symmetrically dividing intestinal stem cells. *The EMBO journal* **31**, 2473-2485, doi:10.1038/emboj.2012.106 (2012).
- 13 Miguel-Aliaga, I., Jasper, H. & Lemaitre, B. Anatomy and Physiology of the Digestive Tract of Drosophila melanogaster. *Genetics* **210**, 357-396, doi:10.1534/genetics.118.300224 (2018).
- 14 Lucchetta, E. M. & Ohlstein, B. Amitosis of Polyploid Cells Regenerates Functional Stem Cells in the Drosophila Intestine. *Cell Stem Cell* **20**, 609-620.e606, doi:https://doi.org/10.1016/j.stem.2017.02.012 (2017).

- 15 Barker, N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nature reviews. Molecular cell biology 15, 19-33, doi:10.1038/nrm3721 (2014).
- 16 Kaestner, K. H. The Intestinal Stem Cell Niche: A Central Role for Foxl1-Expressing Subepithelial Telocytes. *Cellular and Molecular Gastroenterology* and Hepatology 8, 111-117,
 - doi:https://doi.org/10.1016/j.jcmgh.2019.04.001 (2019). Degirmenci, B., Valenta, T., Dimitrieva, S., Hausmann, G. & Basler, K. GLI1-
- 17 expressing mesenchymal cells form the essential Wnt-secreting niche for colon stem cells. *Nature* **558**. 449-453. doi:10.1038/s41586-018-0190-3 (2018).
- 18 Sato, T. et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469, 415-418, doi:10.1038/nature09637 (2011).
- 19 Jiang, H., Grenley, M. O., Bravo, M. J., Blumhagen, R. Z. & Edgar, B. A. EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila. Cell Stem Cell 8, 84-95, doi:10.1016/j.stem.2010.11.026 (2011).
- 20 Lin, G., Xu, N. & Xi, R. Paracrine unpaired signaling through the JAK/STAT pathway controls self-renewal and lineage differentiation of drosophila intestinal stem cells. *Journal of molecular cell biology* **2**, 37-49, doi:10.1093/jmcb/mjp028 (2010).
- 21 Lin, G., Xu, N. & Xi, R. Paracrine Wingless signalling controls self-renewal of Drosophila intestinal stem cells. *Nature* **455**, 1119-1123, doi:10.1038/nature07329 (2008).
- 22 Guo, Z., Driver, I. & Ohlstein, B. Injury-induced BMP signaling negatively regulates Drosophila midgut homeostasis. *J Cell Biol* **201**, 945-961, doi:10.1083/jcb.201302049 (2013).
- 23 Li, Z., Zhang, Y., Han, L., Shi, L. & Lin, X. Trachea-Derived Dpp Controls Adult Midgut Homeostasis in Drosophila. Developmental Cell 24, 133-143, doi:https://doi.org/10.1016/j.devcel.2012.12.010 (2013).
- 24 Lucchetta, E. M. & Ohlstein, B. The Drosophila midgut: a model for stem cell driven tissue regeneration. Wiley interdisciplinary reviews. Developmental *biology* **1**, 781-788, doi:10.1002/wdev.51 (2012).
- 25 Cordero, J. B., Stefanatos, R. K., Scopelliti, A., Vidal, M. & Sansom, O. J. Inducible progenitor-derived Wingless regulates adult midgut regeneration in Drosophila. The EMBO journal 31, 3901-3917, doi:10.1038/emboj.2012.248 (2012).
- 26 Xiang, J. et al. EGFR-dependent TOR-independent endocycles support Drosophila gut epithelial regeneration. *Nature communications* **8**, 15125, doi:10.1038/ncomms15125 (2017).
- 27 Ohlstein, B. & Spradling, A. Multipotent Drosophila Intestinal Stem Cells Specify Daughter Cell Fates by Differential Notch Signaling. Science (New York, N.Y.) **315**, 988-992, doi:10.1126/science.1136606 (2007).
- 28 Li, O. et al. The Conserved Misshapen-Warts-Yorkie Pathway Acts in Enteroblasts to Regulate Intestinal Stem Cells in Drosophila. *Developmental Cell* **31**, 291-304, doi:https://doi.org/10.1016/j.devcel.2014.09.012 (2014).

- Tauc, H. M., Tasdogan, A., Meyer, P. & Pandur, P. Nipped-A regulates intestinal stem cell proliferation in Drosophila. *Development* 144, 612, doi:10.1242/dev.142703 (2017).
- 30 Chatterjee, M. & Ip, Y. T. Pathogenic stimulation of intestinal stem cell response in Drosophila. *J Cell Physiol* **220**, 664-671, doi:10.1002/jcp.21808 (2009).
- 31 Chakrabarti, S., Liehl, P., Buchon, N. & Lemaitre, B. Infection-Induced Host Translational Blockage Inhibits Immune Responses and Epithelial Renewal in the Drosophila Gut. *Cell Host & Microbe* **12**, 60-70, doi:https://doi.org/10.1016/j.chom.2012.06.001 (2012).
- 32 Buchon, N., Broderick, N. A., Poidevin, M., Pradervand, S. & Lemaitre, B. Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. *Cell Host Microbe* **5**, 200-211, doi:10.1016/j.chom.2009.01.003 (2009).
- 33 Sato, T. *et al.* Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. *Nature* **469**, 415-418, doi:10.1038/nature09637 (2011).
- 34 Valenta, T. *et al.* Wnt Ligands Secreted by Subepithelial Mesenchymal Cells Are Essential for the Survival of Intestinal Stem Cells and Gut Homeostasis. *Cell Rep* **15**, 911-918, doi:10.1016/j.celrep.2016.03.088 (2016).
- 35 van de Wetering, M. *et al.* The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. *Cell* **111**, 241-250, doi:10.1016/s0092-8674(02)01014-0 (2002).
- 36 Kinzler, K. W. & Vogelstein, B. Cancer-susceptibility genes. Gatekeepers and caretakers. *Nature* **386**, 761, 763, doi:10.1038/386761a0 (1997).
- 37 Lee, W.-C., Beebe, K., Sudmeier, L. & Micchelli, C. A. Adenomatous polyposis coli regulates Drosophila intestinal stem cell proliferation. *Development (Cambridge, England)* **136**, 2255, doi:10.1242/dev.035196 (2009).
- 38 Martorell, Ò. *et al.* Conserved mechanisms of tumorigenesis in the Drosophila adult midgut. *PloS one* **9**, e88413-e88413, doi:10.1371/journal.pone.0088413 (2014).
- Vogelstein, B. *et al.* Genetic alterations during colorectal-tumor development.
 The New England journal of medicine **319**, 525-532,
 doi:10.1056/nejm198809013190901 (1988).
- 40 Suzuki, A., Sekiya, S., Gunshima, E., Fujii, S. & Taniguchi, H. EGF signaling activates proliferation and blocks apoptosis of mouse and human intestinal stem/progenitor cells in long-term monolayer cell culture. *Laboratory investigation; a journal of technical methods and pathology* **90**, 1425-1436, doi:10.1038/labinvest.2010.150 (2010).
- 41 Jiang, H. & Edgar, B. A. EGFR signaling regulates the proliferation of Drosophila adult midgut progenitors. *Development* **136**, 483-493, doi:10.1242/dev.026955 (2009).
- 42 Jorissen, R. N. *et al.* Epidermal growth factor receptor: mechanisms of activation and signalling. *Experimental cell research* **284**, 31-53, doi:10.1016/s0014-4827(02)00098-8 (2003).

- 43 Yang, Y.-P. *et al.* A Chimeric Egfr Protein Reporter Mouse Reveals Egfr Localization and Trafficking In Vivo. *Cell Reports* **19**, 1257-1267, doi:https://doi.org/10.1016/j.celrep.2017.04.048 (2017).
- 44 Xu, N. *et al.* EGFR, Wingless and JAK/STAT signaling cooperatively maintain Drosophila intestinal stem cells. *Developmental Biology* **354**, 31-43, doi:https://doi.org/10.1016/j.ydbio.2011.03.018 (2011).
- 45 Buchon, N., Broderick, N. A., Kuraishi, T. & Lemaitre, B. Drosophila EGFR pathway coordinates stem cell proliferation and gut remodeling following infection. *BMC Biol* **8**, 152, doi:10.1186/1741-7007-8-152 (2010).
- 46 O'Shea, J. J. *et al.* The JAK-STAT pathway: impact on human disease and therapeutic intervention. *Annu Rev Med* **66**, 311-328, doi:10.1146/annurev-med-051113-024537 (2015).
- 47 Arbouzova, N. I. JAK/STAT signalling in Drosophila: insights into conserved regulatory and cellular functions. *Development (Cambridge, England)* **133**, 2605-2616, doi:10.1242/dev.02411 (2006).
- 48 Lin, G., Xu, N. & Xi, R. Paracrine Unpaired Signaling through the JAK/STAT Pathway Controls Self-renewal and Lineage Differentiation of Drosophila Intestinal Stem Cells. *Journal of molecular cell biology* **2**, 37-49, doi:10.1093/jmcb/mjp028 (2009).
- 49 Beebe, K., Lee, W.-C. & Micchelli, C. A. JAK/STAT signaling coordinates stem cell proliferation and multilineage differentiation in the Drosophila intestinal stem cell lineage. *Developmental Biology* **338**, 28-37, doi:https://doi.org/10.1016/j.ydbio.2009.10.045 (2010).
- 50 Tian, A., Benchabane, H., Wang, Z. & Ahmed, Y. Regulation of Stem Cell Proliferation and Cell Fate Specification by Wingless/Wnt Signaling Gradients Enriched at Adult Intestinal Compartment Boundaries. *PLOS Genetics* **12**, e1005822, doi:10.1371/journal.pgen.1005822 (2016).
- 51 Lindemans, C. A. *et al.* Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. *Nature* **528**, 560-564, doi:10.1038/nature16460 (2015).
- 52 Richmond, C. A. *et al.* JAK/STAT-1 Signaling Is Required for Reserve Intestinal Stem Cell Activation during Intestinal Regeneration Following Acute Inflammation. *Stem Cell Reports* **10**, 17-26, doi:10.1016/j.stemcr.2017.11.015 (2018).
- 53 Taguchi, A. & White, M. F. Insulin-Like Signaling, Nutrient Homeostasis, and Life Span. *Annual Review of Physiology* **70**, 191-212, doi:10.1146/annurev.physiol.70.113006.100533 (2008).
- 54 Rulifson, E. J., Kim, S. K. & Nusse, R. Ablation of Insulin-Producing Neurons in Flies: Growth and Diabetic Phenotypes. *Science (New York, N.Y.)* **296**, 1118, doi:10.1126/science.1070058 (2002).
- 55 Astrinidis, A. & Henske, E. P. Tuberous sclerosis complex: linking growth and energy signaling pathways with human disease. *Oncogene* **24**, 7475-7481, doi:10.1038/sj.onc.1209090 (2005).
- 56 Brown, A. K. & Webb, A. E. Regulation of FOXO Factors in Mammalian Cells. *Current topics in developmental biology* **127**, 165-192, doi:10.1016/bs.ctdb.2017.10.006 (2018).

- 57 Amcheslavsky, A. *et al.* Enteroendocrine cells support intestinal stem-cellmediated homeostasis in Drosophila. *Cell Rep* **9**, 32-39, doi:10.1016/j.celrep.2014.08.052 (2014).
- 58 Amcheslavsky, A., Jiang, J. & Ip, Y. T. Tissue damage-induced intestinal stem cell division in Drosophila. *Cell Stem Cell* **4**, 49-61, doi:10.1016/j.stem.2008.10.016 (2009).
- 59 Tatar, M. *et al.* A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. *Science (New York, N.Y.)* **292**, 107-110, doi:10.1126/science.1057987 (2001).
- 60 Clancy, D. J. *et al.* Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. *Science (New York, N.Y.)* **292**, 104-106, doi:10.1126/science.1057991 (2001).
- 61 Wessells, R. J., Fitzgerald, E., Cypser, J. R., Tatar, M. & Bodmer, R. Insulin regulation of heart function in aging fruit flies. *Nature genetics* **36**, 1275-1281, doi:10.1038/ng1476 (2004).
- 62 Biteau, B. *et al.* Lifespan extension by preserving proliferative homeostasis in Drosophila. *PLoS Genet* **6**, e1001159, doi:10.1371/journal.pgen.1001159 (2010).
- 63 Tran, T. *et al.* Hyperinsulinemia, But Not Other Factors Associated with Insulin Resistance, Acutely Enhances Colorectal Epithelial Proliferation in Vivo. *Endocrinology* **147**, 1830-1837, doi:10.1210/en.2005-1012 (2006).
- 64 Mah, A. T., Van Landeghem, L., Gavin, H. E., Magness, S. T. & Lund, P. K. Impact of diet-induced obesity on intestinal stem cells: hyperproliferation but impaired intrinsic function that requires insulin/IGF1. *Endocrinology* **155**, 3302-3314, doi:10.1210/en.2014-1112 (2014).
- 65 Andres, S. F. *et al.* Insulin receptor isoform switching in intestinal stem cells, progenitors, differentiated lineages and tumors: evidence that IR-B limits proliferation. *Journal of cell science* **126**, 5645-5656, doi:10.1242/jcs.132985 (2013).
- 66 Santoro, M. A. *et al.* Reduced insulin-like growth factor I receptor and altered insulin receptor isoform mRNAs in normal mucosa predict colorectal adenoma risk. *Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology* **23**, 2093-2100, doi:10.1158/1055-9965.EPI-14-0177 (2014).
- 67 Wang, M. C., Bohmann, D. & Jasper, H. JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. *Cell* **121**, 115-125, doi:10.1016/j.cell.2005.02.030 (2005).
- 68 Karpac, J., Biteau, B. & Jasper, H. Misregulation of an Adaptive Metabolic Response Contributes to the Age-Related Disruption of Lipid Homeostasis in Drosophila. *Cell Reports* **4**, 1250-1261, doi:https://doi.org/10.1016/j.celrep.2013.08.004 (2013).
- 69 Apidianakis, Y., Pitsouli, C., Perrimon, N. & Rahme, L. Synergy between bacterial infection and genetic predisposition in intestinal dysplasia. *Proceedings of the National Academy of Sciences* **106**, 20883-20888, doi:10.1073/pnas.0911797106 (2009).

- Suijkerbuijk, S. J. E., Kolahgar, G., Kucinski, I. & Piddini, E. Cell Competition
 Drives the Growth of Intestinal Adenomas in Drosophila. *Current Biology* 26, 428-438, doi:https://doi.org/10.1016/j.cub.2015.12.043 (2016).
- 71 Tian, A. *et al.* Injury-stimulated Hedgehog signaling promotes regenerative proliferation of Drosophila intestinal stem cells. *Journal of Cell Biology* **208**, 807-819, doi:10.1083/jcb.201409025 (2015).
- 72 Moroishi, T., Hansen, C. G. & Guan, K. L. The emerging roles of YAP and TAZ in cancer. *Nat Rev Cancer* **15**, 73-79, doi:10.1038/nrc3876 (2015).
- 73 Attisano, L. & Wrana, J. L. Signal integration in TGF-β, WNT, and Hippo pathways. *F1000Prime Rep* **5**, 17-17, doi:10.12703/P5-17 (2013).
- 74 Ayyaz, A., Attisano, L. & Wrana, J. Recent advances in understanding contextual TGF? signaling [version 1; peer review: 2 approved]. *F1000Research* **6**, doi:10.12688/f1000research.11295.1 (2017).
- Kim, W. & Jho, E. H. The history and regulatory mechanism of the Hippo pathway. *BMB reports* 51, 106-118, doi:10.5483/bmbrep.2018.51.3.022 (2018).
- 76 Taha, Z., Janse van Rensburg, H. J. & Yang, X. The Hippo Pathway: Immunity and Cancer. *Cancers* **10**, doi:10.3390/cancers10040094 (2018).
- 77 Camargo, F. D. *et al.* YAP1 increases organ size and expands undifferentiated progenitor cells. *Curr Biol* **17**, 2054-2060, doi:10.1016/j.cub.2007.10.039 (2007).
- 78 Camargo, F. D. *et al.* YAP1 Increases Organ Size and Expands Undifferentiated Progenitor Cells. *Current Biology* **17**, 2054-2060, doi:https://doi.org/10.1016/j.cub.2007.10.039 (2007).
- 79 Zhou, D. *et al.* Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance. *Proc Natl Acad Sci U S A* **108**, E1312-1320, doi:10.1073/pnas.1110428108 (2011).
- 80 Zhang, L. *et al.* NDR functions as a physiological YAP1 kinase in the intestinal epithelium. *Curr Biol* **25**, 296-305, doi:10.1016/j.cub.2014.11.054 (2015).
- 81 Cai, J. *et al.* The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. *Genes & development* **24**, 2383-2388, doi:10.1101/gad.1978810 (2010).
- 82 Imajo, M., Ebisuya, M. & Nishida, E. Dual role of YAP and TAZ in renewal of the intestinal epithelium. *Nat Cell Biol* **17**, 7-19, doi:10.1038/ncb3084 (2015).
- Hong, A. W., Meng, Z. & Guan, K.-L. The Hippo pathway in intestinal regeneration and disease. *Nature Reviews Gastroenterology & Hepatology* 13, 324-337, doi:10.1038/nrgastro.2016.59 (2016).
- Lu, L. *et al.* Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. *Proceedings of the National Academy of Sciences* **107**, 1437, doi:10.1073/pnas.0911427107 (2010).
- 85 Huang, H. *et al.* Bantam is essential for Drosophila intestinal stem cell proliferation in response to Hippo signaling. *Developmental Biology* **385**, 211-219, doi:https://doi.org/10.1016/j.ydbio.2013.11.008 (2014).

- 86 Karpowicz, P., Perez, J. & Perrimon, N. The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. *Development* **137**, 4135-4145, doi:10.1242/dev.060483 (2010).
- 87 Ren, F. *et al.* Hippo signaling regulates Drosophila intestine stem cell proliferation through multiple pathways. *Proceedings of the National Academy of Sciences* **107**, 21064, doi:10.1073/pnas.1012759107 (2010).
- 88 Conner, S. D. in *International Review of Cell and Molecular Biology* Vol. 323 (ed Kwang W. Jeon) 107-127 (Academic Press, 2016).
- 89 Demitrack, E. S. & Samuelson, L. C. Notch regulation of gastrointestinal stem cells. *J Physiol* **594**, 4791-4803, doi:10.1113/JP271667 (2016).
- 90 Pellegrinet, L. *et al.* Dll1- and Dll4-Mediated Notch Signaling Are Required for Homeostasis of Intestinal Stem Cells. *Gastroenterology* **140**, 1230-1240.e1237, doi:10.1053/j.gastro.2011.01.005 (2011).
- 91 Riccio, O. *et al.* Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. *EMBO reports* **9**, 377-383, doi:10.1038/embor.2008.7 (2008).
- 92 Kapuria, S., Karpac, J., Biteau, B., Hwangbo, D. & Jasper, H. Notch-mediated suppression of TSC2 expression regulates cell differentiation in the Drosophila intestinal stem cell lineage. *PLoS genetics* **8**, e1003045-e1003045, doi:10.1371/journal.pgen.1003045 (2012).
- 93 Ohlstein, B. & Spradling, A. The adult Drosophila posterior midgut is maintained by pluripotent stem cells. *Nature* **439**, 470-474, doi:10.1038/nature04333 (2006).
- 94 Patel, P. H., Dutta, D. & Edgar, B. A. Niche appropriation by Drosophila intestinal stem cell tumours. *Nature Cell Biology* **17**, 1182-1192, doi:10.1038/ncb3214 (2015).
- 95 Cordero, J. B., Stefanatos, R. K., Myant, K., Vidal, M. & Sansom, O. J. Nonautonomous crosstalk between the Jak/Stat and Egfr pathways mediates Apc1-driven intestinal stem cell hyperplasia in the Drosophila adult midgut. *Development* **139**, 4524-4535, doi:10.1242/dev.078261 (2012).
- 96 Fre, S. *et al.* Notch signals control the fate of immature progenitor cells in the intestine. *Nature* **435**, 964-968, doi:10.1038/nature03589 (2005).
- 97 Obniski, R., Sieber, M. & Spradling, A. C. Dietary Lipids Modulate Notch Signaling and Influence Adult Intestinal Development and Metabolism in Drosophila. *Developmental cell* **47**, 98-111.e115, doi:10.1016/j.devcel.2018.08.013 (2018).
- 98 Beyaz, S. *et al.* High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. *Nature* **531**, 53-58, doi:10.1038/nature17173 (2016).
- Hamaratoglu, F., Affolter, M. & Pyrowolakis, G. Dpp/BMP signaling in flies:
 From molecules to biology. *Seminars in Cell & Developmental Biology* 32, 128-136, doi:https://doi.org/10.1016/j.semcdb.2014.04.036 (2014).
- 100 Tian, A. & Jiang, J. Intestinal epithelium-derived BMP controls stem cell selfrenewal in Drosophila adult midgut. *eLife* **3**, e01857, doi:10.7554/eLife.01857 (2014).

- 101 Tian, A. & Jiang, J. Intestinal epithelium-derived BMP controls stem cell selfrenewal in Drosophila adult midgut. *eLife* **3**, e01857-e01857, doi:10.7554/eLife.01857 (2014).
- 102 Li, H., Qi, Y. & Jasper, H. Dpp signaling determines regional stem cell identity in the regenerating adult Drosophila gastrointestinal tract. *Cell reports* **4**, 10-18, doi:10.1016/j.celrep.2013.05.040 (2013).
- Hardwick, J. C., Kodach, L. L., Offerhaus, G. J. & van den Brink, G. R. Bone morphogenetic protein signalling in colorectal cancer. *Nature reviews. Cancer* 8, 806-812, doi:10.1038/nrc2467 (2008).
- Hardwick, J. C., Kodach, L. L., Offerhaus, G. J. & Van Den Brink, G. R. Bone morphogenetic protein signalling in colorectal cancer. *Nature Reviews Cancer* 8, 806-812, doi:10.1038/nrc2467 (2008).
- 105 Jasper, H. Exploring the physiology and pathology of aging in the intestine of Drosophila melanogaster. *Invertebr Reprod Dev* **59**, 51-58, doi:10.1080/07924259.2014.963713 (2015).
- 106 Hochmuth, C. E., Biteau, B., Bohmann, D. & Jasper, H. Redox regulation by Keap1 and Nrf2 controls intestinal stem cell proliferation in Drosophila. *Cell Stem Cell* **8**, 188-199, doi:10.1016/j.stem.2010.12.006 (2011).
- 107 Guo, L., Karpac, J., Tran, S. L. & Jasper, H. PGRP-SC2 promotes gut immune homeostasis to limit commensal dysbiosis and extend lifespan. *Cell* **156**, 109-122, doi:10.1016/j.cell.2013.12.018 (2014).
- 108 Clemente, J. C., Ursell, L. K., Parfrey, L. W. & Knight, R. The impact of the gut microbiota on human health: an integrative view. *Cell* **148**, 1258-1270, doi:10.1016/j.cell.2012.01.035 (2012).
- 109 Patel, B. B. *et al.* Age-related increase in colorectal cancer stem cells in macroscopically normal mucosa of patients with adenomas: a risk factor for colon cancer. *Biochem Biophys Res Commun* **378**, 344-347, doi:10.1016/j.bbrc.2008.10.179 (2009).
- 110 Roberts, S. B. & Rosenberg, I. Nutrition and aging: changes in the regulation of energy metabolism with aging. *Physiological reviews* **86**, 651-667, doi:10.1152/physrev.00019.2005 (2006).
- 111 Duncan, S. H. & Flint, H. J. Probiotics and prebiotics and health in ageing populations. *Maturitas* **75**, 44-50, doi:10.1016/j.maturitas.2013.02.004 (2013).
- Nalapareddy, K. *et al.* Canonical Wnt Signaling Ameliorates Aging of Intestinal Stem Cells. *Cell reports* 18, 2608-2621, doi:10.1016/j.celrep.2017.02.056 (2017).
- 113 Moorefield, E. C. *et al.* Aging effects on intestinal homeostasis associated with expansion and dysfunction of intestinal epithelial stem cells. *Aging* **9**, 1898-1915, doi:10.18632/aging.101279 (2017).
- 114 Holt, P. R. & Yeh, K. Y. Small intestinal crypt cell proliferation rates are increased in senescent rats. *Journal of gerontology* 44, B9-14, doi:10.1093/geronj/44.1.b9 (1989).
- 115 Guo, L., Karpac, J., Tran, S. L. & Jasper, H. PGRP-SC2 promotes gut immune homeostasis to limit commensal dysbiosis and extend lifespan. *Cell* **156**, 109-122, doi:10.1016/j.cell.2013.12.018 (2014).

- 116 Biteau, B., Hochmuth, C. E. & Jasper, H. Maintaining tissue homeostasis: dynamic control of somatic stem cell activity. *Cell stem cell* **9**, 402-411, doi:10.1016/j.stem.2011.10.004 (2011).
- 117 Tothova, Z. *et al.* FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. *Cell* **128**, 325-339, doi:10.1016/j.cell.2007.01.003 (2007).
- 118 Hudry, B., Khadayate, S. & Miguel-Aliaga, I. The sexual identity of adult intestinal stem cells controls organ size and plasticity. *Nature* **530**, 344-348, doi:10.1038/nature16953 (2016).
- 119 Bonnay, F. *et al.* big bang gene modulates gut immune tolerance in Drosophila. *Proceedings of the National Academy of Sciences of the United States of America* **110**, 2957-2962, doi:10.1073/pnas.1221910110 (2013).
- 120 Biteau, B., Hochmuth, C. E. & Jasper, H. JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. *Cell Stem Cell* **3**, 442-455, doi:10.1016/j.stem.2008.07.024 (2008).
- 121 Regan, J. C. *et al.* Sex difference in pathology of the ageing gut mediates the greater response of female lifespan to dietary restriction. *eLife* **5**, e10956-e10956, doi:10.7554/eLife.10956 (2016).
- 122 Buchon, N., Broderick, N. A., Chakrabarti, S. & Lemaitre, B. Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. *Genes & development* **23**, 2333-2344, doi:10.1101/gad.1827009 (2009).
- 123 Sieber, M. H. & Spradling, A. C. Steroid Signaling Establishes a Female Metabolic State and Regulates SREBP to Control Oocyte Lipid Accumulation. *Curr Biol* **25**, 993-1004, doi:10.1016/j.cub.2015.02.019 (2015).
- 124 Regan, J. C. *et al.* Sex difference in pathology of the ageing gut mediates the greater response of female lifespan to dietary restriction. *Elife* **5**, e10956, doi:10.7554/eLife.10956 (2016).
- 125 Chawla, A., Repa, J. J., Evans, R. M. & Mangelsdorf, D. J. Nuclear Receptors and Lipid Physiology: Opening the X-Files. *Science* **294**, 1866, doi:10.1126/science.294.5548.1866 (2001).
- 126 Perissi, V. & Rosenfeld, M. G. Controlling nuclear receptors: the circular logic of cofactor cycles. *Nature reviews. Molecular cell biology* **6**, 542-554, doi:10.1038/nrm1680 (2005).
- 127 King-Jones, K. & Thummel, C. S. Nuclear receptors--a perspective from Drosophila. *Nat Rev Genet* **6**, 311-323, doi:10.1038/nrg1581 (2005).
- 128 Storelli, G., Nam, H. J., Simcox, J., Villanueva, C. J. & Thummel, C. S. Drosophila HNF4 Directs a Switch in Lipid Metabolism that Supports the Transition to Adulthood. *Dev Cell* **48**, 200-214.e206, doi:10.1016/j.devcel.2018.11.030 (2019).
- 129 Renaud, J. P. & Moras, D. Structural studies on nuclear receptors. *Cellular and molecular life sciences : CMLS* **57**, 1748-1769, doi:10.1007/pl00000656 (2000).
- 130 Sen, A. *et al.* Paxillin mediates extranuclear and intranuclear signaling in prostate cancer proliferation. *J Clin Invest* **122**, 2469-2481, doi:10.1172/JCI62044 (2012).

- 131 Pedram, A., Razandi, M. & Levin, E. R. Nature of functional estrogen receptors at the plasma membrane. *Molecular endocrinology (Baltimore, Md.)* **20**, 1996-2009, doi:10.1210/me.2005-0525 (2006).
- 132 Levin, E. R. & Hammes, S. R. Nuclear receptors outside the nucleus: extranuclear signalling by steroid receptors. *Nature reviews. Molecular cell biology* **17**, 783-797, doi:10.1038/nrm.2016.122 (2016).
- 133 Spaziani, E. & Szego, C. M. Early effects of estradiol and cortisol on water and electrolyte shifts in the uterus of the immature rat. *The American journal of physiology* **197**, 355-359, doi:10.1152/ajplegacy.1959.197.2.355 (1959).
- 134 Lutz, L. B., Kim, B., Jahani, D. & Hammes, S. R. G protein beta gamma subunits inhibit nongenomic progesterone-induced signaling and maturation in Xenopus laevis oocytes. Evidence for a release of inhibition mechanism for cell cycle progression. *J Biol Chem* **275**, 41512-41520, doi:10.1074/jbc.M006757200 (2000).
- Fuentes, N. & Silveyra, P. Estrogen receptor signaling mechanisms. *Adv Protein Chem Struct Biol* **116**, 135-170, doi:10.1016/bs.apcsb.2019.01.001
 (2019).
- 136 Frasor, J. *et al.* Profiling of estrogen up- and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype. *Endocrinology* **144**, 4562-4574, doi:10.1210/en.2003-0567 (2003).
- 137 Sabbah, M., Courilleau, D., Mester, J. & Redeuilh, G. Estrogen induction of the cyclin D1 promoter: involvement of a cAMP response-like element. *Proceedings of the National Academy of Sciences of the United States of America* **96**, 11217-11222, doi:10.1073/pnas.96.20.11217 (1999).
- 138 Glass, C. K. & Ogawa, S. Combinatorial roles of nuclear receptors in inflammation and immunity. *Nature reviews. Immunology* **6**, 44-55, doi:10.1038/nri1748 (2006).
- 139 Pedram, A. *et al.* Estrogen regulates histone deacetylases to prevent cardiac hypertrophy. *Mol Biol Cell* **24**, 3805-3818, doi:10.1091/mbc.E13-08-0444 (2013).
- 140 Shay, N. F. & Banz, W. J. Regulation of gene transcription by botanicals: novel regulatory mechanisms. *Annual review of nutrition* **25**, 297-315, doi:10.1146/annurev.nutr.25.050304.092639 (2005).
- 141 Bredfeldt, T. G. *et al.* Xenoestrogen-induced regulation of EZH2 and histone methylation via estrogen receptor signaling to PI3K/AKT. *Molecular endocrinology (Baltimore, Md.)* **24**, 993-1006, doi:10.1210/me.2009-0438 (2010).
- 142 Green, K. A. & Carroll, J. S. Oestrogen-receptor-mediated transcription and the influence of co-factors and chromatin state. *Nature Reviews Cancer* **7**, 713-722, doi:10.1038/nrc2211 (2007).
- Aranda, A. & Pascual, A. Nuclear hormone receptors and gene expression.
 Physiological reviews 81, 1269-1304, doi:10.1152/physrev.2001.81.3.1269 (2001).
- 144 Tobin, J. F. & Freedman, L. P. Nuclear receptors as drug targets in metabolic diseases: new approaches to therapy. *Trends Endocrinol Metab* **17**, 284-290, doi:10.1016/j.tem.2006.07.004 (2006).

- 145 Moutinho, M., Codocedo, J. F., Puntambekar, S. S. & Landreth, G. E. Nuclear Receptors as Therapeutic Targets for Neurodegenerative Diseases: Lost in Translation. *Annual Review of Pharmacology and Toxicology* **59**, 237-261, doi:10.1146/annurev-pharmtox-010818-021807 (2019).
- 146 Zollner, G. & Trauner, M. Nuclear receptors as therapeutic targets in cholestatic liver diseases. *British Journal of Pharmacology* **156**, 7-27, doi:10.1111/j.1476-5381.2008.00030.x (2009).
- 147 Garattini, E. *et al.* Lipid-sensors, enigmatic-orphan and orphan nuclear receptors as therapeutic targets in breast-cancer. *Oncotarget* **7** (2016).
- 148 Riddiford, L. M. Hormone receptors and the regulation of insect metamorphosis. *Receptor* **3**, 203-209 (1993).
- Lavrynenko, O. *et al.* The ecdysteroidome of Drosophila: influence of diet and development. *Development* 142, 3758-3768, doi:10.1242/dev.124982 (2015).
- 150 Gilbert, L. I. Halloween genes encode P450 enzymes that mediate steroid hormone biosynthesis in Drosophila melanogaster. *Mol Cell Endocrinol* **215**, 1-10, doi:10.1016/j.mce.2003.11.003 (2004).
- 151 Ou, Q. & King-Jones, K. What goes up must come down: transcription factors have their say in making ecdysone pulses. *Current topics in developmental biology* **103**, 35-71, doi:10.1016/b978-0-12-385979-2.00002-2 (2013).
- 152 Hentze, J. L. *et al.* Accessory Gland as a Site for Prothoracicotropic Hormone Controlled Ecdysone Synthesis in Adult Male Insects. *PLOS ONE* **8**, e55131, doi:10.1371/journal.pone.0055131 (2013).
- 153 Bownes, M., Dübendorfer, A. & Smith, T. Ecdysteroids in adult males and females of Drosophila melanogaster. *Journal of Insect Physiology* **30**, 823-830, doi:https://doi.org/10.1016/0022-1910(84)90019-2 (1984).
- Handler, A. M. Ecdysteroid titers during pupal and adult development in Drosophila melanogaster. *Dev Biol* 93, 73-82, doi:10.1016/0012-1606(82)90240-8 (1982).
- 155 Petryk, A. *et al.* Shade is the Drosophila P450 enzyme that mediates the hydroxylation of ecdysone to the steroid insect molting hormone 20-hydroxyecdysone. *Proc Natl Acad Sci U S A* **100**, 13773-13778, doi:10.1073/pnas.2336088100 (2003).
- Harshman, L. G., Loeb, A. M. & Johnson, B. A. Ecdysteroid titers in mated and unmated Drosophila melanogaster females. *Journal of Insect Physiology* 45, 571-577, doi:https://doi.org/10.1016/S0022-1910(99)00038-4 (1999).
- 157 Ameku, T. & Niwa, R. Mating-Induced Increase in Germline Stem Cells via the Neuroendocrine System in Female Drosophila. *PLoS genetics* **12**, e1006123e1006123, doi:10.1371/journal.pgen.1006123 (2016).
- 158 Deady, L. D., Shen, W., Mosure, S. A., Spradling, A. C. & Sun, J. Matrix metalloproteinase 2 is required for ovulation and corpus luteum formation in Drosophila. *PLoS Genet* **11**, e1004989, doi:10.1371/journal.pgen.1004989 (2015).
- 159 Bender, M., Imam, F. B., Talbot, W. S., Ganetzky, B. & Hogness, D. S. Drosophila ecdysone receptor mutations reveal functional differences among receptor isoforms. *Cell* **91**, 777-788, doi:10.1016/s0092-8674(00)80466-3 (1997).

- 160 Davis, M. B., Carney, G. E., Robertson, A. E. & Bender, M. Phenotypic analysis of EcR-A mutants suggests that EcR isoforms have unique functions during Drosophila development. *Developmental biology* **282**, 385-396, doi:10.1016/j.ydbio.2005.03.019 (2005).
- 161 Buszczak, M. & Segraves, W. A. Insect metamorphosis: out with the old, in with the new. *Curr Biol* **10**, R830-833 (2000).
- 162 Thummel, C. S. From embryogenesis to metamorphosis: the regulation and function of Drosophila nuclear receptor superfamily members. *Cell* **83**, 871-877 (1995).
- 163 Thummel, C. S. Flies on steroids--Drosophila metamorphosis and the mechanisms of steroid hormone action. *Trends Genet* **12**, 306-310 (1996).
- 164 Ishimoto, H. & Kitamoto, T. The steroid molting hormone Ecdysone regulates sleep in adult Drosophila melanogaster. *Genetics* **185**, 269-281, doi:10.1534/genetics.110.114587 (2010).
- Ishimoto, H., Sakai, T. & Kitamoto, T. Ecdysone signaling regulates the formation of long-term courtship memory in adult Drosophila melanogaster. *Proc Natl Acad Sci U S A* **106**, 6381-6386, doi:10.1073/pnas.0810213106 (2009).
- 166 Simon, A. F., Shih, C., Mack, A. & Benzer, S. Steroid control of longevity in Drosophila melanogaster. *Science* **299**, 1407-1410, doi:10.1126/science.1080539 (2003).
- 167 Homem, C. C. F. *et al.* Ecdysone and mediator change energy metabolism to terminate proliferation in Drosophila neural stem cells. *Cell* **158**, 874-888, doi:10.1016/j.cell.2014.06.024 (2014).
- 168 Morris, L. X. & Spradling, A. C. Steroid signaling within Drosophila ovarian epithelial cells sex-specifically modulates early germ cell development and meiotic entry. *PLoS One* **7**, e46109, doi:10.1371/journal.pone.0046109 (2012).
- 169 Li, Y., Ma, Q., Cherry, C. M. & Matunis, E. L. Steroid signaling promotes stem cell maintenance in the Drosophila testis. *Developmental Biology* **394**, 129-141, doi:https://doi.org/10.1016/j.ydbio.2014.07.016 (2014).
- 170 Calkin, A. & Tontonoz, P. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. *Nature reviews. Molecular cell biology* **13**, 213-224, doi:10.1038/nrm3312 (2012).
- 171 Hong, C. & Tontonoz, P. Liver X receptors in lipid metabolism: opportunities for drug discovery. *Nature Reviews Drug Discovery* **13**, 433-444, doi:10.1038/nrd4280 (2014).
- 172 Ashburner, M., Chihara, C., Meltzer, P. & Richards, G. Temporal control of puffing activity in polytene chromosomes. *Cold Spring Harbor symposia on quantitative biology* **38**, 655-662, doi:10.1101/sqb.1974.038.01.070 (1974).
- 173 Kojetin, D. J. & Burris, T. P. REV-ERB and ROR nuclear receptors as drug targets. *Nature Reviews Drug Discovery* **13**, 197-216, doi:10.1038/nrd4100 (2014).
- Marvin, K. A. *et al.* Nuclear Receptors Homo sapiens Rev-erbβ and Drosophila melanogaster E75 Are Thiolate-Ligated Heme Proteins Which Undergo Redox-Mediated Ligand Switching and Bind CO and NO. *Biochemistry* 48, 7056-7071, doi:10.1021/bi900697c (2009).

- 175 Reinking, J. *et al.* The Drosophila nuclear receptor e75 contains heme and is gas responsive. *Cell* **122**, 195-207, doi:10.1016/j.cell.2005.07.005 (2005).
- 176 Johnston, D. M. *et al.* Ecdysone- and NO-mediated gene regulation by competing EcR/Usp and E75A nuclear receptors during Drosophila development. *Mol Cell* **44**, 51-61, doi:10.1016/j.molcel.2011.07.033 (2011).
- 177 White, K. P., Hurban, P., Watanabe, T. & Hogness, D. S. Coordination of Drosophila metamorphosis by two ecdysone-induced nuclear receptors. *Science* **276**, 114-117 (1997).
- 178 Palanker, L. *et al.* Dynamic regulation of Drosophila nuclear receptor activity in vivo. *Development (Cambridge, England)* **133**, 3549, doi:10.1242/dev.02512 (2006).
- 179 Uryu, O., Ameku, T. & Niwa, R. Recent progress in understanding the role of ecdysteroids in adult insects: Germline development and circadian clock in the fruit fly Drosophila melanogaster. *Zoological Lett* **1**, 32, doi:10.1186/s40851-015-0031-2 (2015).
- 180 Kamoshida, Y. *et al.* Ecdysone receptor (EcR) suppresses lipid accumulation in the Drosophila fat body via transcription control. *Biochem Biophys Res Commun* **421**, 203-207, doi:10.1016/j.bbrc.2012.03.135 (2012).
- 181 Kojetin, D. J. & Burris, T. P. REV-ERB and ROR nuclear receptors as drug targets. *Nature reviews. Drug discovery* 13, 197-216, doi:10.1038/nrd4100 (2014).
- Marvin, K. A. *et al.* Nuclear receptors homo sapiens Rev-erbbeta and Drosophila melanogaster E75 are thiolate-ligated heme proteins which undergo redox-mediated ligand switching and bind CO and NO. *Biochemistry* 48, 7056-7071, doi:10.1021/bi900697c (2009).
- 183 Bialecki, M., Shilton, A., Fichtenberg, C., Segraves, W. A. & Thummel, C. S. Loss of the Ecdysteroid-Inducible E75A Orphan Nuclear Receptor Uncouples Molting from Metamorphosis in Drosophila. *Developmental Cell* 3, 209-220, doi:https://doi.org/10.1016/S1534-5807(02)00204-6 (2002).
- 184 Bialecki, M., Shilton, A., Fichtenberg, C., Segraves, W. A. & Thummel, C. S. Loss of the ecdysteroid-inducible E75A orphan nuclear receptor uncouples molting from metamorphosis in Drosophila. *Dev Cell* 3, 209-220, doi:S1534580702002046 [pii] (2002).
- 185 Caceres, L. *et al.* Nitric oxide coordinates metabolism, growth, and development via the nuclear receptor E75. *Genes & development* **25**, 1476-1485, doi:10.1101/gad.2064111 (2011).
- 186 Palanker, L. *et al.* Dynamic regulation of Drosophila nuclear receptor activity in vivo. *Development* **133**, 3549-3562, doi:10.1242/dev.02512 (2006).
- 187 Ruaud, A.-F., Lam, G. & Thummel, C. S. The Drosophila nuclear receptors DHR3 and betaFTZ-F1 control overlapping developmental responses in late embryos. *Development (Cambridge, England)* **137**, 123-131, doi:10.1242/dev.042036 (2010).
- 188 Jaumouillé, É., Pedro, Stähli, P., Koch, R. & Nagoshi, E. Transcriptional Regulation via Nuclear Receptor Crosstalk Required for the Drosophila Circadian Clock. *Current Biology* 25, 1502-1508, doi:10.1016/j.cub.2015.04.017 (2015).

- 189 Rabinovich, D., Yaniv, S. P., Alyagor, I. & Schuldiner, O. Nitric Oxide as a Switching Mechanism between Axon Degeneration and Regrowth during Developmental Remodeling. *Cell* 164, 170-182, doi:10.1016/j.cell.2015.11.047 (2016).
- 190 DiBello, P. R., Withers, D. A., Bayer, C. A., Fristrom, J. W. & Guild, G. M. The Drosophila Broad-Complex encodes a family of related proteins containing zinc fingers. *Genetics* **129**, 385-397 (1991).
- 191 Karim, F. D., Guild, G. M. & Thummel, C. S. The Drosophila Broad-Complex plays a key role in controlling ecdysone-regulated gene expression at the onset of metamorphosis. *Development* **118**, 977-988 (1993).
- 192 Tzolovsky, G., Deng, W. M., Schlitt, T. & Bownes, M. The function of the broadcomplex during Drosophila melanogaster oogenesis. *Genetics* **153**, 1371-1383 (1999).
- 193 Rus, F. *et al.* Ecdysone triggered PGRP-LC expression controls Drosophila innate immunity. *The EMBO journal* **32**, 1626-1638, doi:10.1038/emboj.2013.100 (2013).
- 194 Pol, H. *et al.* Changing your sex changes your brain: Influences of testosterone and estrogen on adult human brain structure. *European Journal of Endocrinology, Supplement* **155**, doi:10.1530/eje.1.02248 (2006).
- 195 Klein, K. O. *et al.* Estrogen Replacement in Turner Syndrome: Literature Review and Practical Considerations. *The Journal of Clinical Endocrinology & Metabolism* **103**, 1790-1803, doi:10.1210/jc.2017-02183 (2018).
- 196 Unger, C. A. Hormone therapy for transgender patients. *Transl Androl Urol* **5**, 877-884, doi:10.21037/tau.2016.09.04 (2016).
- 197 Capel, B. Vertebrate sex determination: evolutionary plasticity of a fundamental switch. *Nat Rev Genet* **18**, 675-689, doi:10.1038/nrg.2017.60 (2017).
- 198 Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P. & Lovell-Badge, R. Male development of chromosomally female mice transgenic for Sry. *Nature* **351**, 117-121, doi:10.1038/351117a0 (1991).
- 199 Sinclair, A. H. *et al.* A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. *Nature* **346**, 240-244, doi:10.1038/346240a0 (1990).
- 200 McClelland, K., Bowles, J. & Koopman, P. Male sex determination: insights into molecular mechanisms. *Asian J Androl* **14**, 164-171, doi:10.1038/aja.2011.169 (2012).
- Yao, H. H., Whoriskey, W. & Capel, B. Desert Hedgehog/Patched 1 signaling specifies fetal Leydig cell fate in testis organogenesis. *Genes & development* 16, 1433-1440, doi:10.1101/gad.981202 (2002).
- 202 Wilhelm, D. *et al.* SOX9 regulates prostaglandin D synthase gene transcription in vivo to ensure testis development. *J Biol Chem* **282**, 10553-10560, doi:10.1074/jbc.M609578200 (2007).
- 203 Brennan, J., Tilmann, C. & Capel, B. Pdgfr-alpha mediates testis cord organization and fetal Leydig cell development in the XY gonad. *Genes & development* **17**, 800-810, doi:10.1101/gad.1052503 (2003).

- 204 Scheib, D. Effects and role of estrogens in avian gonadal differentiation. *Differentiation; research in biological diversity* **23 Suppl**, S87-92, doi:10.1007/978-3-642-69150-8_15 (1983).
- 205 Szabad, J. & Nöthiger, R. Gynandromorphs of Drosophila suggest one common primordium for the somatic cells of the female and male gonads in the region of abdominal segments 4 and 5. *Development* **115**, 527-533 (1992).
- Janning, W. Gynandromorph fate maps in Drosophila. *Results and problems in cell differentiation* **9**, 1-28, doi:10.1007/978-3-540-35803-9_1 (1978).
- 207 Salz, H. & Erickson, J. W. Sex determination in Drosophila: The view from the top. *Fly* **4**, 60-70, doi:10.4161/fly.4.1.11277 (2010).
- 208 Lucchesi, J. C. & Kuroda, M. I. Dosage compensation in Drosophila. *Cold Spring Harbor perspectives in biology* **7**, doi:10.1101/cshperspect.a019398 (2015).
- 209 Pomatto, L. C. D., Tower, J. & Davies, K. J. A. Sexual Dimorphism and Aging Differentially Regulate Adaptive Homeostasis. *J Gerontol A Biol Sci Med Sci* 73, 141-149, doi:10.1093/gerona/glx083 (2018).
- 210 Fagegaltier, D. *et al.* A genome-wide survey of sexually dimorphic expression of Drosophila miRNAs identifies the steroid hormone-induced miRNA let-7 as a regulator of sexual identity. *Genetics* **198**, 647-668, doi:10.1534/genetics.114.169268 (2014).
- 211 Kinsley, C., Bardi, M., Neigh, G. N. & Lambert, K. in *Sex Differences in Physiology* (eds Gretchen N. Neigh & Megan M. Mitzelfelt) 5-15 (Academic Press, 2016).
- 212 Deng, X. *et al.* Evidence for compensatory upregulation of expressed X-linked genes in mammals, Caenorhabditis elegans and Drosophila melanogaster. *Nature genetics* **43**, 1179-1185, doi:10.1038/ng.948 (2011).
- 213 Brockdorff, N. & Turner, B. M. Dosage compensation in mammals. *Cold Spring Harb Perspect Biol* **7**, a019406-a019406, doi:10.1101/cshperspect.a019406 (2015).
- 214 Yi, W., Ross, J. M. & Zarkower, D. Mab-3 is a direct tra-1 target gene regulating diverse aspects of C. elegans male sexual development and behavior. *Development* **127**, 4469 (2000).
- 215 Kossack, M. E. & Draper, B. W. Genetic regulation of sex determination and maintenance in zebrafish (Danio rerio). *Current topics in developmental biology* **134**, 119-149, doi:10.1016/bs.ctdb.2019.02.004 (2019).
- 216 Huang, S., Ye, L. & Chen, H. Sex determination and maintenance: the role of DMRT1 and FOXL2. *Asian journal of andrology* **19**, 619-624, doi:10.4103/1008-682x.194420 (2017).
- 217 Ge, C. *et al.* The histone demethylase KDM6B regulates temperaturedependent sex determination in a turtle species. *Science (New York, N.Y.)* **360**, 645, doi:10.1126/science.aap8328 (2018).
- 218 DeFalco, T. & Capel, B. Gonad morphogenesis in vertebrates: divergent means to a convergent end. *Annu Rev Cell Dev Biol* **25**, 457-482, doi:10.1146/annurev.cellbio.042308.13350 (2009).
- 219 Capel, B. Vertebrate sex determination: evolutionary plasticity of a fundamental switch. *Nature Reviews Genetics* **18**, 675-689, doi:10.1038/nrg.2017.60 (2017).

- Hu, J., Zhang, Z., Shen, W.-J. & Azhar, S. Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. *Nutr Metab (Lond)* 7, 47-47, doi:10.1186/1743-7075-7-47 (2010).
- 221 Nakada, D. *et al.* Oestrogen increases haematopoietic stem-cell self-renewal in females and during pregnancy. *Nature* **505**, 555-558, doi:10.1038/nature12932 (2014).
- 222 Tiede, B. & Kang, Y. From milk to malignancy: the role of mammary stem cells in development, pregnancy and breast cancer. *Cell Res* 21, 245-257, doi:10.1038/cr.2011.11 (2011).
- 223 Sasson, I. E. & Taylor, H. S. Stem cells and the pathogenesis of endometriosis. *Annals of the New York Academy of Sciences* **1127**, 106-115, doi:10.1196/annals.1434.014 (2008).
- 224 Cheng, G., Weihua, Z., Warner, M. & Gustafsson, J.-Å. Estrogen receptors ERα and ERβ in proliferation in the rodent mammary gland. *Proceedings of the National Academy of Sciences of the United States of America* **101**, 3739, doi:10.1073/pnas.0307864100 (2004).
- 225 Patrone, C. *et al.* Regulation of postnatal lung development and homeostasis by estrogen receptor beta. *Mol Cell Biol* **23**, 8542-8552, doi:10.1128/mcb.23.23.8542-8552.2003 (2003).
- Wada-Hiraike, O. *et al.* Role of estrogen receptor beta in colonic epithelium.
 Proc Natl Acad Sci U S A 103, 2959-2964, doi:10.1073/pnas.0511271103
 (2006).
- Barros, R. P. & Gustafsson, J. A. Estrogen receptors and the metabolic network. *Cell metabolism* 14, 289-299, doi:10.1016/j.cmet.2011.08.005 (2011).
- Faas, M. M., Melgert, B. N. & de Vos, P. A Brief Review on How Pregnancy and Sex Hormones Interfere with Taste and Food Intake. *Chemosens Percept* 3, 51-56, doi:10.1007/s12078-009-9061-5 (2010).
- 229 Lai, J. J. *et al.* Monocyte/macrophage androgen receptor suppresses cutaneous wound healing in mice by enhancing local TNF-alpha expression. *J Clin Invest* **119**, 3739-3751, doi:10.1172/jci39335 (2009).
- Fang, L. Y. *et al.* Infiltrating macrophages promote prostate tumorigenesis via modulating androgen receptor-mediated CCL4-STAT3 signaling. *Cancer Res* 73, 5633-5646, doi:10.1158/0008-5472.Can-12-3228 (2013).
- 231 Straub, R. H. The complex role of estrogens in inflammation. *Endocr Rev* **28**, 521-574, doi:10.1210/er.2007-0001 (2007).
- 232 Monteiro, R., Teixeira, D. & Calhau, C. Estrogen signaling in metabolic inflammation. *Mediators Inflamm* **2014**, 615917-615917, doi:10.1155/2014/615917 (2014).
- Fish, E. N. The X-files in immunity: sex-based differences predispose immune responses. *Nature reviews. Immunology* 8, 737-744, doi:10.1038/nri2394 (2008).
- Lai, J. J. *et al.* Androgen receptor influences on body defense system via modulation of innate and adaptive immune systems: lessons from conditional AR knockout mice. *The American journal of pathology* 181, 1504-1512, doi:10.1016/j.ajpath.2012.07.008 (2012).

- 235 Pequeux, C. *et al.* Stromal estrogen receptor-alpha promotes tumor growth by normalizing an increased angiogenesis. *Cancer Res* **72**, 3010-3019, doi:10.1158/0008-5472.Can-11-3768 (2012).
- 236 Seo, K. H. *et al.* Estrogen enhances angiogenesis through a pathway involving platelet-activating factor-mediated nuclear factor-kappaB activation. *Cancer Res* **64**, 6482-6488, doi:10.1158/0008-5472.Can-03-2774 (2004).
- 237 Slavin, S. *et al.* Estrogen receptor alpha in cancer-associated fibroblasts suppresses prostate cancer invasion via modulation of thrombospondin 2 and matrix metalloproteinase 3. *Carcinogenesis* **35**, 1301-1309, doi:10.1093/carcin/bgt488 (2014).
- 238 Gupta, P. B. *et al.* Systemic stromal effects of estrogen promote the growth of estrogen receptor-negative cancers. *Cancer Res* **67**, 2062-2071, doi:10.1158/0008-5472.Can-06-3895 (2007).
- 239 Baracos, V. E., Reiman, T., Mourtzakis, M., Gioulbasanis, I. & Antoun, S. Body composition in patients with non-small cell lung cancer: a contemporary view of cancer cachexia with the use of computed tomography image analysis. *The American journal of clinical nutrition* **91**, 1133s-1137s, doi:10.3945/ajcn.2010.28608C (2010).
- 240 Cosper, P. F. & Leinwand, L. A. Cancer causes cardiac atrophy and autophagy in a sexually dimorphic manner. *Cancer research* **71**, 1710-1720, doi:10.1158/0008-5472.CAN-10-3145 (2011).
- 241 Misso, M. L. *et al.* Adipose aromatase gene expression is greater in older women and is unaffected by postmenopausal estrogen therapy. *Menopause (New York, N.Y.)* **12**, 210-215, doi:10.1097/00042192-200512020-00016 (2005).
- 242 Di, L. & Kerns, E. H. in *Drug-Like Properties (Second Edition)* (eds Li Di & Edward H. Kerns) 161-194 (Academic Press, 2016).
- 243 Kotov, A., Falany, J. L., Wang, J. & Falany, C. N. Regulation of estrogen activity by sulfation in human Ishikawa endometrial adenocarcinoma cells. *The Journal of steroid biochemistry and molecular biology* **68**, 137-144, doi:10.1016/s0960-0760(99)00022-9 (1999).
- 244 Xu, Y. *et al.* Effect of estrogen sulfation by SULT1E1 and PAPSS on the development of estrogen-dependent cancers. *Cancer Sci* **103**, 1000-1009, doi:10.1111/j.1349-7006.2012.02258.x (2012).
- 245 Matthews, J. & Gustafsson, J. A. Estrogen signaling: a subtle balance between ER alpha and ER beta. *Molecular interventions* **3**, 281-292, doi:10.1124/mi.3.5.281 (2003).
- 246 Paech, K. *et al.* Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites. *Science* **277**, 1508-1510 (1997).
- 247 Foley, E. F., Jazaeri, A. A., Shupnik, M. A., Jazaeri, O. & Rice, L. W. Selective loss of estrogen receptor beta in malignant human colon. *Cancer Res* 60, 245-248 (2000).
- Caiazza, F., Ryan, E. J., Doherty, G., Winter, D. C. & Sheahan, K. Estrogen receptors and their implications in colorectal carcinogenesis. *Front Oncol* 5, 19, doi:10.3389/fonc.2015.00019 (2015).

- 249 Revankar, C. M., Cimino, D. F., Sklar, L. A., Arterburn, J. B. & Prossnitz, E. R. A Transmembrane Intracellular Estrogen Receptor Mediates Rapid Cell Signaling. *Science* **307**, 1625, doi:10.1126/science.1106943 (2005).
- 250 Filardo, E. J. Epidermal growth factor receptor (EGFR) transactivation by estrogen via the G-protein-coupled receptor, GPR30: a novel signaling pathway with potential significance for breast cancer. *The Journal of steroid biochemistry and molecular biology* **80**, 231-238, doi:10.1016/s0960-0760(01)00190-x (2002).
- 251 Kumar, P. & Magon, N. Hormones in pregnancy. *Nigerian Medical Journal : Journal of the Nigeria Medical Association* **53**, 179-183, doi:10.4103/0300-1652.107549 (2012).
- 252 Reed, B. G. & Carr, B. R. in *Endotext* (eds L. J. De Groot *et al.*) (2000).
- 253 Tal, R., Taylor, H. S., Burney, R. O., Mooney, S. B. & Giudice, L. C. in *Endotext* (eds L. J. De Groot *et al.*) (2000).
- Pedram, A., Razandi, M., Lewis, M., Hammes, S. & Levin, E. R. Membrane-localized estrogen receptor α is required for normal organ development and function. *Developmental cell* 29, 482-490, doi:10.1016/j.devcel.2014.04.016 (2014).
- 255 Deroo, B. J. & Korach, K. S. Estrogen receptors and human disease. *J Clin Invest* **116**, 561-570, doi:10.1172/JCI27987 (2006).
- 256 Clocchiatti, A., Cora, E., Zhang, Y. & Dotto, G. P. Sexual dimorphism in cancer. *Nature Reviews Cancer* **16**, 330-339, doi:10.1038/nrc.2016.30 (2016).
- 257 Bakker, J. & Baum, M. J. Role for estradiol in female-typical brain and behavioral sexual differentiation. *Frontiers in neuroendocrinology* **29**, 1-16, doi:10.1016/j.yfrne.2007.06.001 (2008).
- Do Rego, J. L. *et al.* Neurosteroid biosynthesis: enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides. *Frontiers in neuroendocrinology* 30, 259-301, doi:10.1016/j.yfrne.2009.05.006 (2009).
- Frenkel, B. *et al.* Regulation of adult bone turnover by sex steroids. *J Cell Physiol* **224**, 305-310, doi:10.1002/jcp.22159 (2010).
- 260 Santen, R. J., Brodie, H., Simpson, E. R., Siiteri, P. K. & Brodie, A. History of aromatase: saga of an important biological mediator and therapeutic target. *Endocr Rev* **30**, 343-375, doi:10.1210/er.2008-0016 (2009).
- Carreau, S., de Vienne, C. & Galeraud-Denis, I. Aromatase and estrogens in man reproduction: a review and latest advances. *Advances in medical sciences* 53, 139-144, doi:10.2478/v10039-008-0022-z (2008).
- O'Donnell, L., Robertson, K. M., Jones, M. E. & Simpson, E. R. Estrogen and spermatogenesis. *Endocr Rev* 22, 289-318, doi:10.1210/edrv.22.3.0431 (2001).
- 263 Honda, S.-I., Wakatsuki, T. & Harada, N. Behavioral analysis of genetically modified mice indicates essential roles of neurosteroidal estrogen. *Front Endocrinol (Lausanne)* **2**, 40-40, doi:10.3389/fendo.2011.00040 (2011).
- 264 Cui, J., Shen, Y. & Li, R. Estrogen synthesis and signaling pathways during aging: from periphery to brain. *Trends Mol Med* **19**, 197-209, doi:10.1016/j.molmed.2012.12.007 (2013).

- 265 Malekinejad, H. & Rezabakhsh, A. Hormones in Dairy Foods and Their Impact on Public Health - A Narrative Review Article. *Iran J Public Health* **44**, 742-758 (2015).
- 266 Wise, A., O'Brien, K. & Woodruff, T. Are Oral Contraceptives a Significant Contributor to the Estrogenicity of Drinking Water? *Environmental Science & Technology* **45**, 51-60, doi:10.1021/es1014482 (2011).
- Adeel, M., Song, X., Wang, Y., Francis, D. & Yang, Y. Environmental impact of estrogens on human, animal and plant life: A critical review. *Environment International* 99, 107-119, doi:https://doi.org/10.1016/j.envint.2016.12.010 (2017).
- 268 Jobling, S. & Sumpter, J. P. Detergent components in sewage effluent are weakly oestrogenic to fish: An in vitro study using rainbow trout (Oncorhynchus mykiss) hepatocytes. *Aquatic Toxicology* 27, 361-372, doi:https://doi.org/10.1016/0166-445X(93)90064-8 (1993).
- 269 Johnson, A. C., Williams, R. J. & Matthiessen, P. The potential steroid hormone contribution of farm animals to freshwaters, the United Kingdom as a case study. *The Science of the total environment* **362**, 166-178, doi:10.1016/j.scitotenv.2005.06.014 (2006).
- Combalbert, S. & Hernandez-Raquet, G. Occurrence, fate, and biodegradation of estrogens in sewage and manure. *Applied microbiology and biotechnology* 86, 1671-1692, doi:10.1007/s00253-010-2547-x (2010).
- 271 Lange, I. G. *et al.* Sex hormones originating from different livestock production systems: fate and potential disrupting activity in the environment. *Analytica Chimica Acta* **473**, 27-37, doi:https://doi.org/10.1016/S0003-2670(02)00748-1 (2002).
- 272 Remesar, X. *et al.* Estrone in food: a factor influencing the development of obesity? *European journal of nutrition* 38, 247-253, doi:10.1007/s003940050068 (1999).
- 273 Aksglaede, L., Juul, A., Leffers, H., Skakkebaek, N. E. & Andersson, A. M. The sensitivity of the child to sex steroids: possible impact of exogenous estrogens. *Human reproduction update* **12**, 341-349, doi:10.1093/humupd/dml018 (2006).
- 274 Cutler, G. B., Jr. The role of estrogen in bone growth and maturation during childhood and adolescence. *The Journal of steroid biochemistry and molecular biology* **61**, 141-144 (1997).
- 275 Nichols, D. J., Daniel, T. C., Moore Jr., P. A., Edwards, D. R. & Pote, D. H. Runoff of Estrogen Hormone 17β-Estradiol from Poultry Litter Applied to Pasture. *Journal of Environmental Quality* **26**, 1002-1006, doi:10.2134/jeq1997.00472425002600040011x (1997).
- 276 Jobling, S. *et al.* Predicted exposures to steroid estrogens in U.K. rivers correlate with widespread sexual disruption in wild fish populations. *Environ Health Perspect* **114 Suppl 1**, 32-39, doi:10.1289/ehp.8050 (2006).
- 277 Hartmann, S., Lacorn, M. & Steinhart, H. Natural occurrence of steroid hormones in food. *Food Chemistry* 62, 7-20, doi:https://doi.org/10.1016/S0308-8146(97)00150-7 (1998).
- 278 Maruyama, K., Oshima, T. & Ohyama, K. Exposure to exogenous estrogen through intake of commercial milk produced from pregnant cows. *Pediatrics*

international : official journal of the Japan Pediatric Society **52**, 33-38, doi:10.1111/j.1442-200X.2009.02890.x (2010).

- 279 Maruyama, K., Oshima, T. & Ohyama, K. Exposure to exogenous estrogen through intake of commercial milk produced from pregnant cows. *Pediatrics International* **52**, 33-38, doi:10.1111/j.1442-200x.2009.02890.x (2010).
- 280 Marques, P., Skorupskaite, K., George, J. T. & Anderson, R. A. in *Endotext* (eds K. R. Feingold *et al.*) (MDText.com, Inc., 2000).
- 281 Kim, K. *et al.* Dairy Food Intake Is Associated with Reproductive Hormones and Sporadic Anovulation among Healthy Premenopausal Women. *The Journal of nutrition* **147**, 218-226, doi:10.3945/jn.116.241521 (2017).
- 282 Souter, I. *et al.* The association of protein intake (amount and type) with ovarian antral follicle counts among infertile women: results from the EARTH prospective study cohort. *BJOG : an international journal of obstetrics and gynaecology* **124**, 1547-1555, doi:10.1111/1471-0528.14630 (2017).
- 283 Ganmaa, D., Cui, X., Feskanich, D., Hankinson, S. E. & Willett, W. C. Milk, dairy intake and risk of endometrial cancer: a 26-year follow-up. *International journal of cancer* **130**, 2664-2671, doi:10.1002/ijc.26265 (2012).
- 284 Nicholson, L. *et al.* Spatial and temporal control of gene expression in Drosophila using the inducible GeneSwitch GAL4 system. I. Screen for larval nervous system drivers. *Genetics* **178**, 215-234, doi:10.1534/genetics.107.081968 (2008).
- 285 Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. *Neuron* **22**, 451-461 (1999).
- 286 Cherbas, L., Hu, X., Zhimulev, I., Belyaeva, E. & Cherbas, P. EcR isoforms in Drosophila: testing tissue-specific requirements by targeted blockade and rescue. *Development* **130**, 271-284 (2003).
- 287 Mouillet, J. F., Henrich, V. C., Lezzi, M. & Vogtli, M. Differential control of gene activity by isoforms A, B1 and B2 of the Drosophila ecdysone receptor. *European journal of biochemistry* **268**, 1811-1819 (2001).
- 288 Kozlova, T. & Thummel, C. S. Spatial patterns of ecdysteroid receptor activation during the onset of Drosophila metamorphosis. *Development* **129**, 1739-1750 (2002).
- 289 Loza-Coll, M. A., Southall, T. D., Sandall, S. L., Brand, A. H. & Jones, D. L. Regulation of Drosophila intestinal stem cell maintenance and differentiation by the transcription factor Escargot. *The EMBO journal* **33**, 2983-2996, doi:10.15252/embj.201489050 (2014).
- Koushika, S. P., Lisbin, M. J. & White, K. ELAV, a Drosophila neuron-specific protein, mediates the generation of an alternatively spliced neural protein isoform. *Curr Biol* 6, 1634-1641, doi:10.1016/s0960-9822(02)70787-2 (1996).
- 291 Buchon, N., Broderick, N. A., Kuraishi, T. & Lemaitre, B. DrosophilaEGFR pathway coordinates stem cell proliferation and gut remodeling following infection. *BMC Biology* **8**, 152, doi:10.1186/1741-7007-8-152 (2010).
- 292 Tian, A., Wang, B. & Jiang, J. Injury-stimulated and self-restrained BMP signaling dynamically regulates stem cell pool size during Drosophila midgut regeneration. Proceedings of the

National Academy of Sciences **114**, E2699, doi:10.1073/pnas.1617790114 (2017).

- 293 Dutta, D. *et al.* Regional Cell-Specific Transcriptome Mapping Reveals Regulatory Complexity in the Adult Drosophila Midgut. *Cell Reports* **12**, 346-358, doi:https://doi.org/10.1016/j.celrep.2015.06.009 (2015).
- 294 Lucchetta, E. M. & Ohlstein, B. The Drosophila midgut: a model for stem cell driven tissue regeneration. *Wiley Interdiscip Rev Dev Biol* **1**, 781-788, doi:10.1002/wdev.51 (2012).
- 295 Zhang, P. *et al.* An SH3PX1-Dependent Endocytosis-Autophagy Network Restrains Intestinal Stem Cell Proliferation by Counteracting EGFR-ERK Signaling. *Dev Cell* 49, 574-589.e575, doi:10.1016/j.devcel.2019.03.029 (2019).
- Edgar, B. A. & O'Farrell, P. H. Genetic control of cell division patterns in the Drosophila embryo. *Cell* 57, 177-187, doi:https://doi.org/10.1016/0092-8674(89)90183-9 (1989).
- 297 Bach, E. A. *et al.* GFP reporters detect the activation of the Drosophila JAK/STAT pathway in vivo. *Gene Expr Patterns* **7**, 323-331, doi:10.1016/j.modgep.2006.08.003 (2007).
- 298 Zhou, F., Rasmussen, A., Lee, S. & Agaisse, H. The UPD3 cytokine couples environmental challenge and intestinal stem cell division through modulation of JAK/STAT signaling in the stem cell microenvironment. *Developmental biology* **373**, 383-393, doi:10.1016/j.ydbio.2012.10.023 (2013).
- 299 Osman, D. *et al.* Autocrine and paracrine unpaired signaling regulate intestinal stem cell maintenance and division. *Journal of Cell Science* **125**, 5944, doi:10.1242/jcs.113100 (2012).
- 300 Schwedes, C. C. & Carney, G. E. Ecdysone signaling in adult Drosophila melanogaster. *J Insect Physiol* **58**, 293-302, doi:10.1016/j.jinsphys.2012.01.013 (2012).
- 301 Harshman, L. G., Loeb, A. M. & Johnson, B. A. Ecdysteroid titers in mated and unmated Drosophila melanogaster females. *J Insect Physiol* 45, 571-577 (1999).
- 302 Ameku, T. & Niwa, R. Mating-Induced Increase in Germline Stem Cells via the Neuroendocrine System in Female Drosophila. *PLoS Genet* **12**, e1006123, doi:10.1371/journal.pgen.1006123 (2016).
- 303 Siudeja, K. *et al.* Frequent Somatic Mutation in Adult Intestinal Stem Cells Drives Neoplasia and Genetic Mosaicism during Aging. *Cell Stem Cell* 17, 663-674, doi:10.1016/j.stem.2015.09.016 (2015).
- 304 Okamoto, N. *et al.* A Membrane Transporter Is Required for Steroid Hormone Uptake in Drosophila. *Dev Cell* **47**, 294-305 e297, doi:10.1016/j.devcel.2018.09.012 (2018).
- 305 Hudry, B. *et al.* Sex Differences in Intestinal Carbohydrate Metabolism Promote Food Intake and Sperm Maturation. *Cell* **178**, 901-918.e916, doi:10.1016/j.cell.2019.07.029 (2019).
- 306 Xia, Y., Midoun, S. Z., Xu, Z. & Hong, L. Heixuedian (heix), a potential melanotic tumor suppressor gene, exhibits specific spatial and temporal expression

pattern during Drosophila hematopoiesis. *Dev Biol* **398**, 218-230, doi:10.1016/j.ydbio.2014.12.001 (2015).

- 307 Rus, F. *et al.* Ecdysone triggered PGRP-LC expression controls Drosophila innate immunity. *The EMBO journal* **32**, 1626-1638, doi:10.1038/emboj.2013.100 (2013).
- Flatt, T. *et al.* Hormonal regulation of the humoral innate immune response in Drosophila melanogaster. *The Journal of experimental biology* 211, 2712-2724, doi:10.1242/jeb.014878 (2008).
- 309 Chen, C. H., Luhur, A. & Sokol, N. Lin-28 promotes symmetric stem cell division and drives adaptive growth in the adult Drosophila intestine. *Development* **142**, 3478-3487, doi:10.1242/dev.127951 (2015).
- 310 Khramtsova, E. A., Davis, L. K. & Stranger, B. E. The role of sex in the genomics of human complex traits. *Nat Rev Genet* **20**, 173-190, doi:10.1038/s41576-018-0083-1 (2019).
- Reiff, T. *et al.* Endocrine remodelling of the adult intestine sustains reproduction in Drosophila. *Elife* **4**, e06930, doi:10.7554/eLife.06930 (2015).
- 312 Ono, H. *et al.* Spook and Spookier code for stage-specific components of the ecdysone biosynthetic pathway in Diptera. *Dev Biol* **298**, 555-570, doi:10.1016/j.ydbio.2006.07.023 (2006).
- 313 Kai, T. & Spradling, A. An empty Drosophila stem cell niche reactivates the proliferation of ectopic cells. *Proc Natl Acad Sci U S A* **100**, 4633-4638, doi:10.1073/pnas.0830856100 (2003).
- Li, M. *et al.* Traffic jam regulates the function of the ovarian germline stem cell progeny differentiation niche during pre-adult stage in Drosophila. *Scientific Reports* **9**, 10124, doi:10.1038/s41598-019-45317-6 (2019).
- 315 Morris, L. X. & Spradling, A. C. Steroid signaling within Drosophila ovarian epithelial cells sex-specifically modulates early germ cell development and meiotic entry. *PloS one* **7**, e46109-e46109, doi:10.1371/journal.pone.0046109 (2012).
- 316 Jin, Y. *et al.* Intestinal Stem Cell Pool Regulation in Drosophila. *Stem Cell Reports* **8**, 1479-1487, doi:10.1016/j.stemcr.2017.04.002 (2017).
- 317 Pasco, M., Loudhaief, R. & Gallet, A. The cellular homeostasis of the gut: What the Drosophila model points out. *Histology and histopathology* **30**, doi:10.14670/HH-30.277 (2014).
- 318 Ohlstein, B. & Spradling, A. Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. *Science (New York, N.Y.)* **315**, 988-992, doi:10.1126/science.1136606 (2007).
- Bardin, A. J., Perdigoto, C. N., Southall, T. D., Brand, A. H. & Schweisguth, F. Transcriptional control of stem cell maintenance in the Drosophila intestine. *Development (Cambridge, England)* 137, 705-714, doi:10.1242/dev.039404 (2010).
- Lee, W. C., Beebe, K., Sudmeier, L. & Micchelli, C. A. Adenomatous polyposis coli regulates Drosophila intestinal stem cell proliferation. *Development (Cambridge, England)* 136, 2255-2264, doi:10.1242/dev.035196 (2009).
- 321 Reinholz, J. *et al.* Compensatory weight gain due to dopaminergic hypofunction: new evidence and own incidental observations. *Nutr Metab* (*Lond*) **5**, 35-35, doi:10.1186/1743-7075-5-35 (2008).

- 322 Arango, V. *et al.* Serotonin 1A receptors, serotonin transporter binding and serotonin transporter mRNA expression in the brainstem of depressed suicide victims. *Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology* **25**, 892-903, doi:10.1016/s0893-133x(01)00310-4 (2001).
- 323 Speakman, J. R. The physiological costs of reproduction in small mammals. *Philos Trans R Soc Lond B Biol Sci* **363**, 375-398, doi:10.1098/rstb.2007.2145 (2008).
- 324 Meiselman, M. *et al.* Endocrine network essential for reproductive success in Drosophila melanogaster. *Proc Natl Acad Sci U S A* **114**, E3849-E3858, doi:10.1073/pnas.1620760114 (2017).
- 325 Meiselman, M. R., Kingan, T. G. & Adams, M. E. Stress-induced reproductive arrest in Drosophila occurs through ETH deficiency-mediated suppression of oogenesis and ovulation. *BMC Biol* **16**, 18, doi:10.1186/s12915-018-0484-9 (2018).
- 326 Church, R. B. & Robertson, F. W. A biochemical study of the growth of Drosophila melanogaster. *Journal of Experimental Zoology* **162**, 337-351, doi:10.1002/jez.1401620309 (1966).
- 327 Barnes, A. I., Wigby, S., Boone, J. M., Partridge, L. & Chapman, T. Feeding, fecundity and lifespan in female <i>Drosophila melanogaster</i>. *Proceedings of the Royal Society B: Biological Sciences* **275**, 1675-1683, doi:doi:10.1098/rspb.2008.0139 (2008).
- 328 Ikeya, T., Galic, M., Belawat, P., Nairz, K. & Hafen, E. Nutrient-Dependent Expression of Insulin-like Peptides from Neuroendocrine Cells in the CNS Contributes to Growth Regulation in Drosophila. *Current Biology* **12**, 1293-1300, doi:https://doi.org/10.1016/S0960-9822(02)01043-6 (2002).
- 329 Drummond-Barbosa, D. & Spradling, A. C. Stem Cells and Their Progeny Respond to Nutritional Changes during Drosophila Oogenesis. *Developmental Biology* **231**, 265-278, doi:https://doi.org/10.1006/dbio.2000.0135 (2001).
- 330 Su, Y.-H. *et al.* Diet regulates membrane extension and survival of niche escort cells for germline homeostasis via insulin signaling. *Development (Cambridge, England)* **145**, dev159186, doi:10.1242/dev.159186 (2018).
- Hall, B. L. & Thummel, C. S. The RXR homolog ultraspiracle is an essential component of the Drosophila ecdysone receptor. *Development* 125, 4709 (1998).
- 332 Buszczak, M. & Segraves, W. A. Drosophila metamorphosis: the only way is USP? *Curr Biol* **8**, R879-882 (1998).
- 333 Evans, R. M. & Mangelsdorf, D. J. Nuclear Receptors, RXR, and the Big Bang. *Cell* **157**, 255-266, doi:10.1016/j.cell.2014.03.012 (2014).
- 334 Safe, S. *et al.* Nuclear receptor 4A (NR4A) family orphans no more. *J Steroid Biochem Mol Biol* **157**, 48-60, doi:10.1016/j.jsbmb.2015.04.016 (2016).
- 335 Baker, K. D. *et al.* The Drosophila orphan nuclear receptor DHR38 mediates an atypical ecdysteroid signaling pathway. *Cell* **113**, 731-742 (2003).
- Kozlova, T. *et al.* Drosophila hormone receptor 38 functions in metamorphosis: a role in adult cuticle formation. *Genetics* 149, 1465-1475 (1998).

- 337 Sutherland, J. D., Kozlova, T., Tzertzinis, G. & Kafatos, F. C. Drosophila hormone receptor 38: a second partner for Drosophila USP suggests an unexpected role for nuclear receptors of the nerve growth factor-induced protein B type. *Proc Natl Acad Sci U S A* **92**, 7966-7970 (1995).
- 338 Bilder, D. & Scott, M. P. Genomic regions required for morphogenesis of the Drosophila embryonic midgut. *Genetics* **141**, 1087-1100 (1995).
- 339 Ruaud, A. F., Lam, G. & Thummel, C. S. The Drosophila nuclear receptors DHR3 and betaFTZ-F1 control overlapping developmental responses in late embryos. *Development* 137, 123-131, doi:10.1242/dev.042036 (2010).
- Buszczak, M. *et al.* Ecdysone response genes govern egg chamber development during mid-oogenesis in Drosophila. *Development* 126, 4581-4589 (1999).
- 341 Tzolovsky, G., Deng, W. M., Schlitt, T. & Bownes, M. The function of the broadcomplex during Drosophila melanogaster oogenesis. *Genetics* **153**, 1371-1383 (1999).
- Zipper, L., Jassmann, D., Görlich, B. & Reiff, T. Ecdysone steroid hormone remote controls intestinal stem cell fate decisions via the PPARγ-homologue E75B in Drosophila. *bioRxiv*, 2020.2002.2024.962829, doi:10.1101/2020.02.24.962829 (2020).
- 343 Jaumouillé, E., Machado Almeida, P., Stähli, P., Koch, R. & Nagoshi, E. Transcriptional Regulation via Nuclear Receptor Crosstalk Required for the Drosophila Circadian Clock. *Current Biology* 25, 1502-1508, doi:https://doi.org/10.1016/j.cub.2015.04.017 (2015).
- 344 Biteau, B., Karpac, J., Hwangbo, D. & Jasper, H. Regulation of Drosophila lifespan by JNK signaling. *Exp Gerontol* **46**, 349-354, doi:10.1016/j.exger.2010.11.003 (2011).
- 345 Martorell, O. *et al.* Conserved mechanisms of tumorigenesis in the Drosophila adult midgut. *PLoS One* **9**, e88413, doi:10.1371/journal.pone.0088413 (2014).
- 346 Patel, P. H., Dutta, D. & Edgar, B. A. Niche appropriation by Drosophila intestinal stem cell tumours. *Nat Cell Biol* **17**, 1182-1192, doi:10.1038/ncb3214 (2015).
- 347 Yamamoto, R., Bai, H., Dolezal, A. G., Amdam, G. & Tatar, M. Juvenile hormone regulation of Drosophila aging. *BMC Biol* **11**, 85, doi:10.1186/1741-7007-11-85 (2013).
- 348 Hackney, J. F., Pucci, C., Naes, E. & Dobens, L. Ras signaling modulates activity of the ecdysone receptor EcR during cell migration in the Drosophila ovary. *Dev Dyn* **236**, 1213-1226, doi:10.1002/dvdy.21140 (2007).
- 349 Zhai, Z. *et al.* Accumulation of differentiating intestinal stem cell progenies drives tumorigenesis. *Nature communications* **6**, 10219, doi:10.1038/ncomms10219 (2015).
- 350 Brumby, A. M. *et al.* Identification of novel Ras-cooperating oncogenes in Drosophila melanogaster: a RhoGEF/Rho-family/JNK pathway is a central driver of tumorigenesis. *Genetics* **188**, 105-125, doi:10.1534/genetics.111.127910 (2011).

- 351 Fowler, P. A., Sorsa-Leslie, T., Harris, W. & Mason, H. D. Ovarian gonadotrophin surge-attenuating factor (GnSAF): where are we after 20 years of research? *Reproduction* **126**, 689-699 (2003).
- 352 McBrayer, Z. *et al.* Prothoracicotropic hormone regulates developmental timing and body size in Drosophila. *Dev Cell* **13**, 857-871, doi:10.1016/j.devcel.2007.11.003 (2007).
- 353 JavanMoghadam, S., Weihua, Z., Hunt, K. K. & Keyomarsi, K. Estrogen receptor alpha is cell cycle-regulated and regulates the cell cycle in a ligand-dependent fashion. *Cell Cycle* **15**, 1579-1590, doi:10.1080/15384101.2016.1166327 (2016).
- 354 Dalvai, M. & Bystricky, K. Cell Cycle and Anti-Estrogen Effects Synergize to Regulate Cell Proliferation and ER Target Gene Expression. *PLOS ONE* **5**, e11011, doi:10.1371/journal.pone.0011011 (2010).
- 355 Moghadam, S. J., Hanks, A. M. & Keyomarsi, K. Breaking the cycle: An insight into the role of ERα in eukaryotic cell cycles. *Journal of carcinogenesis* **10**, 25, doi:10.4103/1477-3163.90440 (2011).
- 356 Groothuis, P. G., Dassen, H. H. N. M., Romano, A. & Punyadeera, C. Estrogen and the endometrium: lessons learned from gene expression profiling in rodents and human. *Human Reproduction Update* **13**, 405-417, doi:10.1093/humupd/dmm009 (2007).
- 357 Frasor, J. *et al.* Profiling of Estrogen Up- and Down-Regulated Gene Expression in Human Breast Cancer Cells: Insights into Gene Networks and Pathways Underlying Estrogenic Control of Proliferation and Cell Phenotype. *Endocrinology* **144**, 4562-4574, doi:10.1210/en.2003-0567 (2003).
- 358 Improta-Brears, T. *et al.* Estrogen-induced activation of mitogen-activated protein kinase requires mobilization of intracellular calcium. *Proceedings of the National Academy of Sciences of the United States of America* **96**, 4686-4691, doi:10.1073/pnas.96.8.4686 (1999).
- 359 Sun, J. & Spradling, A. C. Ovulation in Drosophila is controlled by secretory cells of the female reproductive tract. *Elife* **2**, e00415, doi:10.7554/eLife.00415 (2013).
- 360 Hammond, K. A. Adaptation of the maternal intestine during lactation. *J Mammary Gland Biol Neoplasia* **2**, 243-252 (1997).
- Thomas, M. L., Xu, X., Norfleet, A. M. & Watson, C. S. The presence of functional estrogen receptors in intestinal epithelial cells. *Endocrinology* 132, 426-430, doi:10.1210/endo.132.1.8419141 (1993).
- van der Giessen, J., van der Woude, C. J., Peppelenbosch, M. P. & Fuhler, G. M.
 A Direct Effect of Sex Hormones on Epithelial Barrier Function in
 Inflammatory Bowel Disease Models. *Cells* 8, 261, doi:10.3390/cells8030261
 (2019).
- Gan, L. *et al.* Expression profile and prognostic role of sex hormone receptors in gastric cancer. *BMC Cancer* 12, 566, doi:10.1186/1471-2407-12-566 (2012).
- Cho, N. L., Javid, S. H., Carothers, A. M., Redston, M. & Bertagnolli, M. M.
 Estrogen receptors alpha and beta are inhibitory modifiers of Apc-dependent tumorigenesis in the proximal colon of Min/+ mice. *Cancer Res* 67, 2366-2372, doi:10.1158/0008-5472.CAN-06-3026 (2007).

- Wada-Hiraike, O. *et al.* Role of estrogen receptor β in colonic epithelium.
 Proceedings of the National Academy of Sciences of the United States of America 103, 2959-2964, doi:10.1073/pnas.0511271103 (2006).
- 366 Tuo, B. *et al.* Estrogen regulation of duodenal bicarbonate secretion and sexspecific protection of human duodenum. *Gastroenterology* **141**, 854-863, doi:10.1053/j.gastro.2011.05.044 (2011).
- 367 Smith, A. *et al.* Gender-specific protection of estrogen against gastric acidinduced duodenal injury: stimulation of duodenal mucosal bicarbonate secretion. *Endocrinology* **149**, 4554-4566, doi:10.1210/en.2007-1597 (2008).
- 368 Zielińska, M. *et al.* G protein-coupled estrogen receptor and estrogen receptor ligands regulate colonic motility and visceral pain. *Neurogastroenterology & Motility* **29**, e13025, doi:10.1111/nmo.13025 (2017).
- Ropero, A. B., Alonso-Magdalena, P., Quesada, I. & Nadal, A. The role of estrogen receptors in the control of energy and glucose homeostasis. *Steroids* 73, 874-879, doi:10.1016/j.steroids.2007.12.018 (2008).
- Delanoue, R., Slaidina, M. & Léopold, P. The steroid hormone ecdysone controls systemic growth by repressing dMyc function in Drosophila fat cells. *Dev Cell* 18, 1012-1021, doi:10.1016/j.devcel.2010.05.007 (2010).
- Heijmans, J. *et al.* Oestrogens promote tumorigenesis in a mouse model for colitis-associated cancer. *Gut* 63, 310-316, doi:10.1136/gutjnl-2012-304216 (2014).
- 372 Basu, A., Seth, S., Arora, K. & Verma, M. Evaluating Estradiol Levels in Male Patients with Colorectal Carcinoma. *Journal of Clinical and Diagnostic Research : JCDR* **9**, BC08-BC10, doi:10.7860/JCDR/2015/10508.5397 (2015).
- Wu, H. *et al.* Association of estrogen receptor betavariants and serum levels of estradiol with risk of colorectal cancer: a case control study. *BMC Cancer* 12, 276, doi:10.1186/1471-2407-12-276 (2012).
- 374 Gunter, M. J. *et al.* Insulin, insulin-like growth factor-I, endogenous estradiol, and risk of colorectal cancer in postmenopausal women. *Cancer Res* **68**, 329-337, doi:10.1158/0008-5472.Can-07-2946 (2008).
- 375 Glinkova, V., Shevah, O., Boaz, M., Levine, A. & Shirin, H. Hepatic haemangiomas: possible association with female sex hormones. *Gut* **53**, 1352-1355, doi:10.1136/gut.2003.038646 (2004).
- Giannitrapani, L. *et al.* Sex hormones and risk of liver tumor. *Annals of the New York Academy of Sciences* 1089, 228-236, doi:10.1196/annals.1386.044 (2006).
- Howard, J. H. & Pollock, R. E. Intra-Abdominal and Abdominal Wall Desmoid Fibromatosis. *Oncology and Therapy* 4, 57-72, doi:10.1007/s40487-016-0017-z (2016).
- 378 Di Leo, A. *et al.* Epithelial turnover in duodenal familial adenomatous polyposis: A possible role for estrogen receptors? *World Journal of Gastroenterology* **22**, 3202-3211, doi:10.3748/wjg.v22.i11.3202 (2016).
- 379 Mignemi, N. A. *et al.* Signal transduction pathway analysis in desmoid type fibromatosis: Transforming growth factor-β, COX2 and sex steroid receptors. *Cancer Science* **103**, 2173-2180, doi:10.1111/cas.12037 (2012).

- 380 English, M. A. *et al.* Loss of estrogen inactivation in colonic cancer. *J Clin Endocrinol Metab* **84**, 2080-2085, doi:10.1210/jcem.84.6.5772 (1999).
- 381 Sato, R. *et al.* Aromatase in colon carcinoma. *Anticancer research* **32**, 3069-3075 (2012).
- Gilligan, L. C. *et al.* Estrogen Activation by Steroid Sulfatase Increases
 Colorectal Cancer Proliferation via GPER. *The Journal of Clinical Endocrinology & Metabolism* 102, 4435-4447, doi:10.1210/jc.2016-3716
 (2017).
- 383 Charlton, B. M. *et al.* Oral Contraceptive Use and Colorectal Cancer in the Nurses' Health Study I and II. *Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology* **24**, 1214-1221, doi:10.1158/1055-9965.EPI-15-0172 (2015).
- 384 Chlebowski, R. T. *et al.* Estrogen plus progestin and colorectal cancer in postmenopausal women. *The New England journal of medicine* **350**, 991-1004, doi:10.1056/NEJMoa032071 (2004).
- 385 Foster, P. A. Oestrogen and colorectal cancer: mechanisms and controversies. International journal of colorectal disease 28, 737-749, doi:10.1007/s00384-012-1628-y (2013).
- 386 Gunter, M. J. *et al.* Insulin, insulin-like growth factor-I, endogenous estradiol, and risk of colorectal cancer in postmenopausal women. *Cancer research* **68**, 329-337, doi:10.1158/0008-5472.CAN-07-2946 (2008).
- 387 Oduwole, O. O., Isomaa, V. V., Nokelainen, P. A., Stenbäck, F. & Vihko, P. T. Downregulation of estrogen-metabolizing 17 beta-hydroxysteroid dehydrogenase type 2 expression correlates inversely with Ki67 proliferation marker in colon-cancer development. *International journal of cancer* 97, 1-6, doi:10.1002/ijc.1567 (2002).
- 388Rawłuszko, A. A., Horbacka, K., Krokowicz, P. & Jagodziński, P. P. Decreased
expression of 17β -hydroxysteroid dehydrogenase type 1 is associated with
DNA hypermethylation in colorectal cancer located in the proximal colon.
BMC cancer **11**, 522-522, doi:10.1186/1471-2407-11-522 (2011).
- Hennessy, B. A., Harvey, B. J. & Healy, V. 17beta-Estradiol rapidly stimulates c-fos expression via the MAPK pathway in T84 cells. *Mol Cell Endocrinol* 229, 39-47, doi:10.1016/j.mce.2004.10.001 (2005).
- 390 Di Domenico, M., Castoria, G., Bilancio, A., Migliaccio, A. & Auricchio, F. Estradiol activation of human colon carcinoma-derived Caco-2 cell growth. *Cancer Res* **56**, 4516-4521 (1996).
- Winter, D. C., Taylor, C., G, C. O. S. & Harvey, B. J. Mitogenic effects of oestrogen mediated by a non-genomic receptor in human colon. *The British journal of surgery* 87, 1684-1689, doi:10.1046/j.1365-2168.2000.01584.x (2000).
- 392 Di Leo, A. *et al.* Epithelial turnover in duodenal familial adenomatous polyposis: A possible role for estrogen receptors? *World J Gastroenterol* **22**, 3202-3211, doi:10.3748/wjg.v22.i11.3202 (2016).
- Bustos, V. *et al.* GPER mediates differential effects of estrogen on colon cancer cell proliferation and migration under normoxic and hypoxic conditions.
 Oncotarget 8, 84258-84275, doi:10.18632/oncotarget.20653 (2017).

- 394 Saraf, M. K., Jeng, Y. J. & Watson, C. S. Nongenomic effects of estradiol vs. the birth control estrogen ethinyl estradiol on signaling and cell proliferation in pituitary tumor cells, and differences in the ability of R-equol to neutralize or enhance these effects. *Steroids*, 108411, doi:10.1016/j.steroids.2019.01.008 (2019).
- 395 Rahman, M. M., Franch-Marro, X., Maestro, J. L., Martin, D. & Casali, A. Local Juvenile Hormone activity regulates gut homeostasis and tumor growth in adult Drosophila. *Sci Rep* 7, 11677, doi:10.1038/s41598-017-11199-9 (2017).
- 396 Dubrovsky, E. B. *et al.* The Drosophila FTZ-F1 nuclear receptor mediates juvenile hormone activation of E75A gene expression through an intracellular pathway. *J Biol Chem* **286**, 33689-33700, doi:10.1074/jbc.M111.273458 (2011).
- 397 Dubrovskaya, V. A., Berger, E. M. & Dubrovsky, E. B. Juvenile hormone regulation of the E75 nuclear receptor is conserved in Diptera and Lepidoptera. *Gene* **340**, 171-177, doi:10.1016/j.gene.2004.07.022 (2004).
- 398 Pecasse, F., Beck, Y., Ruiz, C. & Richards, G. Krüppel-homolog, a Stage-Specific Modulator of the Prepupal Ecdysone Response, Is Essential for Drosophila Metamorphosis. *Developmental Biology* **221**, 53-67, doi:https://doi.org/10.1006/dbio.2000.9687 (2000).
- 399 D'Cruz, C. *et al.* Persistent parity-induced changes in growth factors, TGF-beta 3, and differentiation in the rodent mammary gland. *Molecular endocrinology (Baltimore, Md.)* **16**, 2034-2051, doi:10.1210/me.2002-0073 (2002).
- 400 Ginger, M. R. & Rosen, J. M. Pregnancy-induced changes in cell-fate in the mammary gland. *Breast Cancer Res* **5**, 192-197, doi:10.1186/bcr603 (2003).
- 401 Oro, A. E., McKeown, M. & Evans, R. M. The Drosophila retinoid X receptor homolog ultraspiracle functions in both female reproduction and eye morphogenesis. *Development (Cambridge, England)* **115**, 449-462 (1992).
- 402 Costantino, B. F. *et al.* A novel ecdysone receptor mediates steroid-regulated developmental events during the mid-third instar of Drosophila. *PLoS Genet*4, e1000102, doi:10.1371/journal.pgen.1000102 (2008).
- 403 Ruaud, A. F., Lam, G. & Thummel, C. S. The Drosophila NR4A nuclear receptor DHR38 regulates carbohydrate metabolism and glycogen storage. *Mol Endocrinol* **25**, 83-91, doi:10.1210/me.2010-0337 (2011).
- 404 Kozlova, T., Lam, G. & Thummel, C. S. Drosophila DHR38 nuclear receptor is required for adult cuticle integrity at eclosion. *Developmental dynamics : an official publication of the American Association of Anatomists* **238**, 701-707, doi:10.1002/dvdy.21860 (2009).
- Hall, B. L. & Thummel, C. S. The RXR homolog ultraspiracle is an essential component of the Drosophila ecdysone receptor. *Development* 125, 4709-4717 (1998).
- 406 De Mei, C. *et al.* Dual inhibition of REV-ERBβ and autophagy as a novel pharmacological approach to induce cytotoxicity in cancer cells. *Oncogene* 34, 2597, doi:10.1038/onc.2014.203
- https://www.nature.com/articles/onc2014203#supplementary-information (2014).

- 407 Cho, H. *et al.* Regulation of circadian behaviour and metabolism by REV-ERBalpha and REV-ERB-beta. *Nature* **485**, 123-127, doi:10.1038/nature11048 (2012).
- 408 Jaumouillé, E., Machado Almeida, P., Stähli, P., Koch, R. & Nagoshi, E. Transcriptional regulation via nuclear receptor crosstalk required for the Drosophila circadian clock. *Curr Biol* **25**, 1502-1508, doi:10.1016/j.cub.2015.04.017 (2015).
- 409 Pardee, K., Reinking, J. & Krause, H. Nuclear hormone receptors, metabolism, and aging: what goes around comes around. Transcription factors link lipid metabolism and aging-related processes. *Sci Aging Knowledge Environ* **2004**, re8, doi:10.1126/sageke.2004.47.re8 (2004).
- 410 Schulman, I. G. Nuclear Receptors as Drug Targets for Metabolic Disease. *Advanced drug delivery reviews* **62**, 1307-1315, doi:10.1016/j.addr.2010.07.002 (2010).
- 411 Calkin, A. C. & Tontonoz, P. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. *Nature Reviews Molecular Cell Biology* **13**, 213, doi:10.1038/nrm3312 (2012).
- 412 Kojetin, D. J. & Burris, T. P. REV-ERB and ROR nuclear receptors as drug targets. *Nature Reviews Drug Discovery* **13**, 197, doi:10.1038/nrd4100 (2014).
- 413 Lonard, D. M. & O'Malley, B. W. Nuclear receptor coregulators: modulators of pathology and therapeutic targets. *Nature Reviews Endocrinology* **8**, 598, doi:10.1038/nrendo.2012.100 (2012).
- 414 Ou, Q. *et al.* The Insect Prothoracic Gland as a Model for Steroid Hormone Biosynthesis and Regulation. *Cell Rep* **16**, 247-262, doi:10.1016/j.celrep.2016.05.053 (2016).
- 415 Llorens, J. V., Metzendorf, C., Missirlis, F. & Lind, M. I. Mitochondrial iron supply is required for the developmental pulse of ecdysone biosynthesis that initiates metamorphosis in Drosophila melanogaster. *J Biol Inorg Chem* **20**, 1229-1238, doi:10.1007/s00775-015-1302-2 (2015).
- 416 Palandri, A., L'Hote, D., Cohen-Tannoudji, J., Tricoire, H. & Monnier, V. Frataxin inactivation leads to steroid deficiency in flies and human ovarian cells. *Hum Mol Genet* **24**, 2615-2626, doi:10.1093/hmg/ddv024 (2015).
- 417 Khramtsova, E. A., Davis, L. K. & Stranger, B. E. The role of sex in the genomics of human complex traits. *Nature Reviews Genetics* **20**, 173-190, doi:10.1038/s41576-018-0083-1 (2019).
- 418 Jansen, R. *et al.* Sex differences in the human peripheral blood transcriptome. *BMC genomics* **15**, 33, doi:10.1186/1471-2164-15-33 (2014).
- 419 Ngo, S. T., Steyn, F. J. & McCombe, P. A. Gender differences in autoimmune disease. *Frontiers in neuroendocrinology* **35**, 347-369, doi:10.1016/j.yfrne.2014.04.004 (2014).
- 420 Mayne, B. T. *et al.* Large Scale Gene Expression Meta-Analysis Reveals Tissue-Specific, Sex-Biased Gene Expression in Humans. *Frontiers in genetics* **7**, 183, doi:10.3389/fgene.2016.00183 (2016).
- 421 Manning, K. S. & Cooper, T. A. The roles of RNA processing in translating genotype to phenotype. *Nature reviews. Molecular cell biology* **18**, 102-114, doi:10.1038/nrm.2016.139 (2017).

- 422 Li, Y. I. *et al.* RNA splicing is a primary link between genetic variation and disease. *Science* **352**, 600-604, doi:10.1126/science.aad9417 (2016).
- Hamosh, A., Scott, A. F., Amberger, J., Valle, D. & McKusick, V. A. Online Mendelian Inheritance in Man (OMIM). *Human mutation* 15, 57-61, doi:10.1002/(sici)1098-1004(200001)15:1<57::Aid-humu12>3.0.Co;2-g (2000).
- 424 Vasanthakumar, A. *et al.* Sex-specific adipose tissue imprinting of regulatory T cells. *Nature* **579**, 581-585, doi:10.1038/s41586-020-2040-3 (2020).
- 425 Chen, C.-Y. *et al.* Sexual dimorphism in gene expression and regulatory networks across human tissues. *bioRxiv*, 082289, doi:10.1101/082289 (2016).
- 426 Stranger, B. E. & Raj, T. Genetics of human gene expression. *Current opinion in genetics & development* **23**, 627-634, doi:10.1016/j.gde.2013.10.004 (2013).
- 427 Kukurba, K. R. *et al.* Impact of the X Chromosome and sex on regulatory variation. *Genome research* **26**, 768-777, doi:10.1101/gr.197897.115 (2016).
- 428 Singmann, P. *et al.* Characterization of whole-genome autosomal differences of DNA methylation between men and women. *Epigenetics & chromatin* **8**, 43, doi:10.1186/s13072-015-0035-3 (2015).
- 429 van Dongen, J. *et al.* Genetic and environmental influences interact with age and sex in shaping the human methylome. *Nature communications* **7**, 11115, doi:10.1038/ncomms11115 (2016).
- 430 Ma, Y., Chen, Z., Jin, Y. & Liu, W. Identification of a histone acetyltransferase as a novel regulator of Drosophila intestinal stem cells. *FEBS Lett* **587**, 1489-1495, doi:10.1016/j.febslet.2013.03.013 (2013).
- 431 Suganuma, T. *et al.* ATAC is a double histone acetyltransferase complex that stimulates nucleosome sliding. *Nature structural & molecular biology* **15**, 364-372, doi:10.1038/nsmb.1397 (2008).
- 432 Guelman, S. *et al.* Host cell factor and an uncharacterized SANT domain protein are stable components of ATAC, a novel dAda2A/dGcn5-containing histone acetyltransferase complex in Drosophila. *Molecular and cellular biology* **26**, 871-882, doi:10.1128/mcb.26.3.871-882.2006 (2006).
- 433 Feller, C., Forné, I., Imhof, A. & Becker, P. B. Global and specific responses of the histone acetylome to systematic perturbation. *Mol Cell* **57**, 559-571, doi:10.1016/j.molcel.2014.12.008 (2015).
- 434 Suganuma, T. *et al.* The ATAC acetyltransferase complex coordinates MAP kinases to regulate JNK target genes. *Cell* **142**, 726-736, doi:10.1016/j.cell.2010.07.045 (2010).
- 435 Sugathan, A. & Waxman, D. J. Genome-wide analysis of chromatin states reveals distinct mechanisms of sex-dependent gene regulation in male and female mouse liver. *Molecular and cellular biology* **33**, 3594-3610, doi:10.1128/mcb.00280-13 (2013).
- Zhang, Y., Laz, E. V. & Waxman, D. J. Dynamic, Sex-Differential STAT5 and BCL6 Binding to Sex-Biased, Growth Hormone-Regulated Genes in Adult Mouse Liver. *Molecular and cellular biology* 32, 880-896, doi:10.1128/mcb.06312-11 (2012).
- 437 Ling, G., Sugathan, A., Mazor, T., Fraenkel, E. & Waxman, D. J. Unbiased, genome-wide in vivo mapping of transcriptional regulatory elements reveals

sex differences in chromatin structure associated with sex-specific liver gene expression. *Molecular and cellular biology* **30**, 5531-5544, doi:10.1128/MCB.00601-10 (2010).

- 438 Ling, G., Sugathan, A., Mazor, T., Fraenkel, E. & Waxman, D. J. Unbiased, genome-wide in vivo mapping of transcriptional regulatory elements reveals sex differences in chromatin structure associated with sex-specific liver gene expression. *Molecular and cellular biology* **30**, 5531-5544, doi:10.1128/mcb.00601-10 (2010).
- 439 Clegg, D. J., Brown, L. M., Woods, S. C. & Benoit, S. C. Gonadal hormones determine sensitivity to central leptin and insulin. *Diabetes* **55**, 978-987, doi:10.2337/diabetes.55.04.06.db05-1339 (2006).
- 440 Björnholm, M. & Zierath, J. R. Insulin signal transduction in human skeletal muscle: identifying the defects in Type II diabetes. *Biochemical Society transactions* **33**, 354-357, doi:10.1042/bst0330354 (2005).
- Yang, M. *et al.* Lin28 promotes the proliferative capacity of neural progenitor cells in brain development. *Development* 142, 1616, doi:10.1242/dev.120543 (2015).
- 442 Cimadamore, F., Amador-Arjona, A., Chen, C., Huang, C.-T. & Terskikh, A. V. SOX2–LIN28/let-7 pathway regulates proliferation and neurogenesis in neural precursors. *Proceedings of the National Academy of Sciences* **110**, E3017, doi:10.1073/pnas.1220176110 (2013).
- Zheng, K., Wu, X., Kaestner, K. H. & Wang, P. J. The pluripotency factor LIN28 marks undifferentiated spermatogonia in mouse. *BMC Developmental Biology* 9, 38, doi:10.1186/1471-213X-9-38 (2009).
- 444 Zhu, H. *et al.* The Lin28/let-7 axis regulates glucose metabolism. *Cell* **147**, 81-94, doi:10.1016/j.cell.2011.08.033 (2011).
- 445 Shyh-Chang, N. *et al.* Lin28 enhances tissue repair by reprogramming cellular metabolism. *Cell* **155**, 778-792, doi:10.1016/j.cell.2013.09.059 (2013).
- Rajan, A. & Perrimon, N. Drosophila cytokine unpaired 2 regulates
 physiological homeostasis by remotely controlling insulin secretion. *Cell* 151, 123-137, doi:10.1016/j.cell.2012.08.019 (2012).
- 447 Kelesidis, T., Kelesidis, I., Chou, S. & Mantzoros, C. S. Narrative review: the role of leptin in human physiology: emerging clinical applications. *Ann Intern Med* **152**, 93-100, doi:10.7326/0003-4819-152-2-201001190-00008 (2010).
- 448 Piper, M. D., Partridge, L., Raubenheimer, D. & Simpson, S. J. Dietary restriction and aging: a unifying perspective. *Cell metabolism* **14**, 154-160, doi:10.1016/j.cmet.2011.06.013 (2011).
- 449 O'Brien, D. M., Min, K.-J., Larsen, T. & Tatar, M. Use of stable isotopes to examine how dietary restriction extends Drosophila lifespan. *Current biology : CB* **18**, R155-156, doi:10.1016/j.cub.2008.01.021 (2008).
- 450 Flatt, T. *et al.* Drosophila germ-line modulation of insulin signaling and lifespan. *Proceedings of the National Academy of Sciences of the United States of America* **105**, 6368-6373, doi:10.1073/pnas.0709128105 (2008).
- 451 Cargill, S. L., Carey, J. R., Müller, H. G. & Anderson, G. Age of ovary determines remaining life expectancy in old ovariectomized mice. *Aging cell* **2**, 185-190, doi:10.1046/j.1474-9728.2003.00049.x (2003).

- 452 Arantes-Oliveira, N., Apfeld, J., Dillin, A. & Kenyon, C. Regulation of life-span by germ-line stem cells in Caenorhabditis elegans. *Science* **295**, 502-505, doi:10.1126/science.1065768 (2002).
- 453 Beckstead, R. B. & Thummel, C. S. Indicted: Worms Caught using Steroids. **124**, 1137-1140, doi:10.1016/j.cell.2006.03.001 (2006).
- 454 Wollam, J. *et al.* A novel 3-hydroxysteroid dehydrogenase that regulates reproductive development and longevity. *PLoS biology* **10**, e1001305, doi:10.1371/journal.pbio.1001305 (2012).
- 455 Wang, M. C., O'Rourke, E. J. & Ruvkun, G. Fat metabolism links germline stem cells and longevity in C. elegans. *Science* **322**, 957-960, doi:10.1126/science.1162011 (2008).
- 456 Libina, N., Berman, J. R. & Kenyon, C. Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. *Cell* **115**, 489-502, doi:10.1016/s0092-8674(03)00889-4 (2003).
- 457 Lin, C.-c. J. & Wang, M. C. in *Stem Cell Aging: Mechanisms, Consequences, Rejuvenation* (eds Hartmut Geiger, Heinrich Jasper, & Maria Carolina Florian) 51-70 (Springer Vienna, 2015).
- 458 Willcox, B. J. *et al.* FOXO3A genotype is strongly associated with human longevity. *Proc Natl Acad Sci U S A* **105**, 13987-13992, doi:10.1073/pnas.0801030105 (2008).
- 459 Flachsbart, F. *et al.* Association of FOXO3A variation with human longevity confirmed in German centenarians. *Proc Natl Acad Sci U S A* **106**, 2700-2705, doi:10.1073/pnas.0809594106 (2009).
- 460 Agaisse, H., Petersen, U.-M., Boutros, M., Mathey-Prevot, B. & Perrimon, N. Signaling Role of Hemocytes in Drosophila JAK/STAT-Dependent Response to Septic Injury. *Developmental Cell* **5**, 441-450, doi:https://doi.org/10.1016/S1534-5807(03)00244-2 (2003).
- Han, S. K. *et al.* OASIS 2: online application for survival analysis 2 with features for the analysis of maximal lifespan and healthspan in aging research. *Oncotarget* 7, 56147-56152, doi:10.18632/oncotarget.11269 (2016).
- 462 Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis. *Nature methods* **9**, 676-682, doi:10.1038/nmeth.2019 (2012).
- 463 Liang, J., Balachandra, S., Ngo, S. & O'Brien, L. E. Feedback regulation of steady-state epithelial turnover and organ size. *Nature* **548**, 588-591, doi:10.1038/nature23678 (2017).
- 464 Where it is indicated, parts of this work were done during my thesis study titled: A novel perspective of regenerative stem cell biology: the role of Ecdysone-induced protein 75B (Eip75B) and its upstream regulators in directing the decisions of intestinal stem cells in homeostasis and regeneration of Drosophila midgut and presented to: Faculty of Biosciences at the Ruprecht-Karls-Universität Heidelberg in 2015.

Tables

Table 2.1a: list of genes diffelist of hits>10 raw reads	log2FC edgeR	p-value edgeR	-log10(pvalue)
roX2	10.3968	3.43E-20	19.46470588
CR43961	9.6857	1.36E-15	14.86646109
hbs	5.2622	4.35E-14	13.36151074
CG12721	6.8849	3.43E-12	11.46470588
CG3703	2.7943	2.13E-11	10.6716204
CG43101	5.0713	1.47E-10	9.832682665
lin-28	2.2286	1.67E-08	7.777283529
CG42854	5.3013	7.13E-08	7.14691047
CG31436	2.7205	1.17E-07	6.931814138
CR44748	2.8154	5.16E-07	6.287350298
CG34323	7.2681	1.17E-06	5.931814138
rha	7.2782	1.21E-06	5.91721463
Dcp-1	2.1891	1.63E-06	5.787812396
RNaseMRP:RNA	1.9841	1.99E-06	5.701146924
mam	2.4681	3.22E-06	5.492144128
CG3568	2.4859	3.38E-06	5.4710833
Sik2	2.0738	4.07E-06	5.390405591
brk	1.8637	4.50E-06	5.346787486
CG32638	1.9232	5.64E-06	5.248720896
vilya	7.1651	1.29E-05	4.88941029
CG44006	2.0812	1.78E-05	4.749579998
CG15263	5.8997	2.07E-05	4.684029655
Сурба20	2.3502	2.15E-05	4.66756154
CG10337	1.8802	2.66E-05	4.575118363
olf413	3.2921	4.47E-05	4.349692477
CG13917	1.8386	4.51E-05	4.345823458
CG12643	1.5994	4.57E-05	4.3400838
CG44329	6.9175	6.44E-05	4.191114133
CR43257	2.0949	8.21E-05	4.085656843
CR45522	6.833	8.31E-05	4.080398976
Sirt6	1.8338	9.85E-05	4.00656377
CG6040	1.4772	0.0001	4
CR43973	1.7045	0.0001	4
Faa	2.0159	0.0001	4
pirk	1.9361	0.0001	4
CG32599	3.9445	0.0001	4
CG11656	3.7341	0.0001	4

HP1D3csd	2.9281	0.0002	3.698970004
CG8468	2.0774	0.0002	3.698970004
CG13894	6.1784	0.0002	3.698970004
cv-2	1.3604	0.0003	3.522878745
Vti1a	1.605	0.0003	3.522878745
CG14626	1.6102	0.0003	3.522878745
CG34401	1.9702	0.0003	3.522878745
CG14367	3.9078	0.0003	3.522878745
CG44405	6.4872	0.0004	3.397940009
SIFa	6.4242	0.0004	3.397940009
CG3739	2.7317	0.0004	3.397940009
CG11374	1.9882	0.0004	3.397940009
CG30356	2.1258	0.0004	3.397940009
CG13659	2.3504	0.0004	3.397940009
CG18599	6.1882	0.0005	3.301029996
Hexo2	2.096	0.0005	3.301029996
Arc1	1.4615	0.0005	3.301029996
laccase2	1.7841	0.0005	3.301029996
Ir41a	3.6464	0.0005	3.301029996
CR44547	1.5763	0.0006	3.22184875
Rcd2	1.9022	0.0006	3.22184875
Arc2	1.4441	0.0006	3.22184875
CG13658	2.5539	0.0006	3.22184875
snoRNA:Psi18S-1275	4.2518	0.0006	3.22184875
CR44608	1.4873	0.0007	3.15490196
daw	3.3024	0.0007	3.15490196
CG9422	2.9673	0.0007	3.15490196
geko	4.6444	0.0007	3.15490196
CR46095	1.7289	0.0008	3.096910013
CG12868	2.2823	0.0008	3.096910013
CR44984	2.4553	0.0009	3.045757491
Tie	1.3156	0.001	3
CG13893	2.1632	0.001	3
CG31510	1.144	0.0011	2.958607315
CG11275	1.3763	0.0011	2.958607315
Mal-A8	2.9946	0.0011	2.958607315
laza	1.5465	0.0012	2.920818754
CG18467	2.8655	0.0012	2.920818754
AOX2	4.1932	0.0013	2.886056648
Tab2	2.6302	0.0013	2.886056648

bou	1.6098	0.0015	2.823908741
CR45820	1.5134	0.0016	2.795880017
CG5644	2.3154	0.0016	2.795880017
Paip2	1.2104	0.0017	2.769551079
CG42393	2.0341	0.0017	2.769551079
Gbeta5	3.2562	0.0017	2.769551079
CG6405	2.6438	0.0017	2.744727495
CG8072	3.1698	0.0018	2.744727495
ed	1.3308	0.0018	2.744727493
CG42364	3.0074	0.0019	2.721246399
CG17265	1.1532	0.0019	2.698970004
	2.207	0.002	2.698970004
comm2			
fs(1)Yb	5.9694	0.0021	2.677780705
CG31627	3.5992	0.0021	2.677780705
CG8343	2.6626	0.0021	2.677780705
CG17111	2.2656	0.0022	2.657577319
CG43968	6.6815	0.0022	2.657577319
sinu	1.3859	0.0024	2.619788758
CR44566	1.5582	0.0024	2.619788758
CR46093	1.6771	0.0024	2.619788758
CR45922	3.6394	0.0024	2.619788758
CG4404	1.2706	0.0025	2.602059991
tut	2.3639	0.0025	2.602059991
swa	5.8367	0.0026	2.585026652
CG6628	4.2165	0.0027	2.568636236
Mnn1	1.2723	0.0028	2.552841969
CR41257	2.6619	0.0028	2.552841969
CG10376	1.1156	0.0029	2.537602002
CR44445	2.1109	0.0029	2.537602002
GstD4	1.4306	0.0031	2.508638306
CG15515	3.8202	0.0034	2.468521083
PGRP-SD	1.4328	0.0034	2.468521083
pan	2.0604	0.0035	2.455931956
CR41620	5.893	0.0036	2.443697499
GstD5	1.7283	0.0036	2.443697499
kirre	3.789	0.0037	2.431798276
grim	2.2474	0.0037	2.431798276
CG31808	2.0769	0.0038	2.420216403
ppk27	2.2913	0.0038	2.420216403
CR41583	2.6348	0.0038	2.420216403

CHKov2	1.1893	0.0039	2.408935393
Pzl	5.6772	0.004	2.397940009
E(spl)malpha-BFM	0.9859	0.0041	2.387216143
CG15084	1.3227	0.0042	2.37675071
Lac	1.7848	0.0044	2.356547324
CG18745	0.9955	0.0045	2.346787486
CG4297	1.2786	0.0045	2.346787486
CR46249	2.6149	0.0045	2.346787486
Ugt86Dd	2.012	0.0046	2.337242168
CG42365	1.6352	0.0047	2.327902142
sima	1.3636	0.0048	2.318758763
Tsp42Ej	1.2016	0.005	2.301029996
CR44538	2.5992	0.005	2.301029996
NC2alpha	1.0801	0.0051	2.292429824
CG32040	1.5381	0.0051	2.292429824
Ir85a	6.991	0.0052	2.283996656
Lcch3	1.6661	0.0054	2.26760624
CG13436	1.9279	0.0055	2.259637311
CG7966	1.1856	0.0056	2.251811973
CG3556	3.7323	0.0057	2.244125144
CR43242	1.2398	0.0057	2.244125144
Eip75B	1.4818	0.0057	2.244125144
CR45625	1.8807	0.0057	2.244125144
CR44862	6.7535	0.0057	2.244125144
CG42553	1.5631	0.0059	2.229147988
PDZ-GEF	1.2065	0.006	2.22184875
CG31370	1.4272	0.0061	2.214670165
CG18368	3.4388	0.0061	2.214670165
CR45028	2.0076	0.0061	2.214670165
Or45a	1.8044	0.0062	2.207608311
CG3262	1.1419	0.0065	2.187086643
CG30047	1.5275	0.0065	2.187086643
SSX	1.7262	0.0065	2.187086643
CG3982	2.1697	0.0065	2.187086643
CG6683	1.2906	0.0066	2.180456064
sprt	1.7393	0.0067	2.173925197
E(spl)m7-HLH	1.2983	0.0068	2.167491087
Gld	3.7078	0.0069	2.161150909
CG14196	2.3556	0.0069	2.161150909
CR45824	3.7784	0.007	2.15490196

sing	1.7179	0.0072	2.142667504
CR44138	2.9391	0.0074	2.13076828
CG14837	3.0839	0.0075	2.124938737
ebd1	1.1263	0.0075	2.124938737
CG4462	1.534	0.0075	2.124938737
CR43974	1.5003	0.0077	2.113509275
CG30440	3.1719	0.0078	2.107905397
CR45745	2.6296	0.008	2.096910013
CR45171	1.6826	0.0081	2.091514981
CG8319	1.1084	0.0082	2.086186148
a	1.4025	0.0082	2.086186148
CG3008	1.0991	0.0084	2.075720714
CG34040	1.843	0.0084	2.075720714
CG2064	1.0013	0.0085	2.070581074
CG9328	1.3172	0.0087	2.060480747
bnl	3.9421	0.0089	2.050609993
TTLL3B	4.5217	0.0089	2.050609993
shams	1.2587	0.009	2.045757491
CR45166	3.8602	0.0091	2.040958608
mir-4968	1.903	0.0093	2.031517051
CG11000	2.0193	0.0095	2.022276395
sstn	1.1359	0.01	2
Hsromega	0.9131	0.0103	1.987162775
Spn85F	5.7881	0.0105	1.978810701
PlexA	1.6684	0.0106	1.974694135
CG4723	5.4225	0.0108	1.966576245
CG32845	1.1811	0.011	1.958607315
Tsp42El	0.8762	0.0112	1.950781977
CG14443	1.1166	0.0118	1.928117993
Pig1	2.6019	0.0118	1.928117993
Ptip	0.9546	0.0119	1.924453039
ect	1.9081	0.012	1.920818754
snoRNA:Me18S-U1356b	2.9272	0.012	1.920818754
Hsc70-3	1.6867	0.0122	1.913640169
CG6602	1.5814	0.0122	1.913640169
CG33928	5.854	0.0123	1.910094889
CG6330	1.4688	0.0124	1.906578315
CG34348	0.9579	0.0126	1.899629455
CG10559	1.9955	0.0127	1.896196279
MYPT-75D	1.284	0.0128	1.89279003

CG6465	1.085	0.0131	1.882728704
CG32486	0.8503	0.0132	1.879426069
Sox102F	2.5682	0.0133	1.876148359
ITP	1.0552	0.0137	1.863279433
NFAT	1.0928	0.0138	1.860120914
dpr1	2.6599	0.0139	1.8569852
CG33267	1.7543	0.014	1.853871964
CG12398	1.4175	0.0141	1.850780887
Smurf	1.4153	0.0144	1.841637508
Muc14A	2.6604	0.0146	1.835647144
CG10730	2.0963	0.0146	1.835647144
CG13088	1.7539	0.0147	1.832682665
Gk2	1.9101	0.0147	1.832682665
CR44276	1.7043	0.015	1.823908741
Xpac	1.1253	0.0152	1.818156412
CG32795	1.1811	0.0153	1.815308569
Cyp6d5	1.2239	0.0153	1.815308569
Ugt86Dc	2.1373	0.0154	1.812479279
vn	1.3266	0.0154	1.812479279
Atac1	1.0038	0.0161	1.793174124
bigmax	0.8526	0.0162	1.790484985
CR46015	1.6168	0.0165	1.782516056
hog	2.7888	0.0166	1.779891912
CG8492	6.582	0.0167	1.777283529
CG32450	5.904	0.0167	1.777283529
InR	1.0259	0.0167	1.777283529
St3	5.4924	0.0168	1.774690718
Csk	0.975	0.0169	1.772113295
Fhos	2.1468	0.017	1.769551079
Cad96Ca	2.1732	0.0171	1.76700389
Cad87A	1.0345	0.0176	1.754487332
Cpr64Ad	3.7841	0.0177	1.752026734
CG8281	0.9718	0.0179	1.747146969
Dat	0.9879	0.0179	1.747146969
CG6791	1.1082	0.018	1.744727495
Atf6	1.7831	0.0181	1.742321425
CG17687	2.9685	0.0182	1.739928612
Ppt2	1.0215	0.0185	1.732828272
CG5059	0.9555	0.019	1.721246399
CG30484	1.9182	0.019	1.721246399

CG8369	5.3843	0.0192	1.716698771
CG30441	2.0064	0.0192	1.716698771
CG5114	2.7561	0.0196	1.707743929
CG14074	1.0616	0.0198	1.70333481
l(1)G0193	1.1074	0.0199	1.701146924
mst	1.2879	0.02	1.698970004
Ir40a	5.3376	0.0205	1.688246139
CG4586	1.0314	0.0205	1.688246139
Naam	1.1167	0.0212	1.673664139
Ac3	1.4742	0.0214	1.669586227
CG30324	5.8996	0.0216	1.665546249
snoRNA:Psi18S-1086	1.3938	0.0217	1.663540266
CG14838	4.1728	0.0219	1.659555885
lt	1.8493	0.0219	1.659555885
CR45939	1.3041	0.0222	1.653647026
CG3838	2.0134	0.0226	1.645891561
mdy	1.37	0.0228	1.642065153
CG9676	1.7505	0.0229	1.640164518
snoRNA:Me28S-C437	2.023	0.023	1.638272164
ric8a	1.1698	0.0236	1.627087997
Pih1D1	0.8711	0.0237	1.625251654
stas	1.5531	0.024	1.619788758
Mal-A4	1.9423	0.0243	1.614393726
CG8273	3.2718	0.0244	1.612610174
GstD3	0.8419	0.0244	1.612610174
CG3709	1.0353	0.0246	1.609064893
row	1.1986	0.0246	1.609064893
CG6013	0.9282	0.0247	1.607303047
CG11486	0.9139	0.025	1.602059991
CR32636	2.1814	0.0252	1.598599459
TSG101	0.7575	0.0253	1.596879479
CG3995	0.9071	0.0253	1.596879479
Obp18a	1.0706	0.0258	1.588380294
ttm2	1.0203	0.0258	1.588380294
CR45549	1.7662	0.0258	1.588380294
lbm	0.9544	0.0259	1.586700236
GstE8	1.8313	0.0259	1.586700236
CG43925	5.2682	0.026	1.585026652
CG11655	1.1625	0.026	1.585026652
CR44440	3.0132	0.0262	1.581698709

CG33640	1.3798	0.0265	1.576754126
CG31111	0.9597	0.0267	1.573488739
rost	1.4463	0.0207	1.563837353
	0.7423	0.0273	1.559090918
sty CG15760			
	3.1645	0.0278	1.555955204
CG9945	2.1893	0.0278	1.555955204
CG33463	2.5122	0.0279	1.554395797
CG31347	1.1841	0.028	1.552841969
CG32855	3.9694	0.0281	1.55129368
CG11893	2.7618	0.0283	1.548213564
CG17786	1.1182	0.0286	1.543633967
CG17929	2.3807	0.0287	1.542118103
CG34160	1.3319	0.0288	1.540607512
Krn	0.9228	0.0289	1.539102157
CG10638	1.1155	0.029	1.537602002
MFS3	1.2377	0.0294	1.53165267
Elp1	1.2653	0.0295	1.530177984
CR45082	1.2995	0.0295	1.530177984
CkIIalpha-i1	1.019	0.0296	1.528708289
CG32371	2.9078	0.0301	1.521433504
mir-967	1.2742	0.0302	1.519993057
CG4676	4.2871	0.0303	1.518557371
AhcyL2	2.0109	0.0303	1.518557371
ntc	1.2166	0.0304	1.517126416
CG31431	2.3541	0.0305	1.515700161
Rbcn-3B	0.9687	0.0306	1.514278574
fs(1)Ya	5.5434	0.0307	1.512861625
CG11226	2.2606	0.0308	1.511449283
CG3876	0.9948	0.0309	1.510041521
MFS14	2.365	0.0312	1.505845406
CG33710	1.6746	0.0315	1.501689446
Rab2	0.839	0.0319	1.496209317
CR45280	3.1041	0.032	1.494850022
Drep4	1.0395	0.0322	1.492144128
CG34231	1.2231	0.0322	1.492144128
Snap24	0.903	0.0323	1.490797478
ppk	2.3817	0.0323	1.490797478
Kif3C	1.6404	0.0324	1.48945499
Eaf6	0.8476	0.0326	1.4867824
CR45128	2.8805	0.0327	1.485452247

CG45782	1.7442	0.0327	1.485452247
CG30022	0.9609	0.0329	1.482804102
1(3)02640	1.2891	0.0329	1.482804102
CG7194	1.1992	0.0332	1.478861916
CG14252	1.007	0.0339	1.469800302
PGRP-LF	0.8559	0.0341	1.467245621
CG18635	0.9945	0.0342	1.465973894
CG7564	1.4161	0.0342	1.465973894
Tsp42Ef	0.8197	0.0346	1.460923901
dsx-c73A	1.6027	0.0348	1.458420756
CG31817	1.1168	0.0349	1.457174573
bun	0.8356	0.035	1.455931956
CG5282	5.0661	0.0353	1.452225295
CR41544	0.9233	0.0354	1.450996738
CG7706	0.9693	0.0354	1.450996738
14-3-3zeta	2.6466	0.0355	1.449771647
Cyp4p3	2.5236	0.0358	1.446116973
CG30197	1.2278	0.0358	1.446116973
CG14227	1.469	0.036	1.443697499
Ugt37b1	1.4352	0.036	1.443697499
CG32444	2.4488	0.0362	1.441291429
сwo	1.1985	0.0368	1.434152181
SmydA-5	1.839	0.0369	1.432973634
swi2	1.6533	0.0373	1.428291168
CR44404	5.0069	0.0375	1.425968732
CG14352	0.9396	0.0375	1.425968732
CG16898	1.2699	0.0377	1.42365865
baz	0.8178	0.0379	1.42136079
bip1	3.4011	0.0381	1.419075024
CG30099	1.9384	0.0381	1.419075024
Tbc1d15-17	2.6204	0.0382	1.417936637
GstE1	0.7994	0.0382	1.417936637
nmo	1.5664	0.0382	1.417936637
CG8223	5.0496	0.0384	1.415668776
CrebA	0.8864	0.0385	1.41453927
CG9821	0.7877	0.0385	1.41453927
bowl	3.076	0.0387	1.412289035
mthl14	0.7281	0.0387	1.412289035
CG16833	1.646	0.0389	1.410050399
GluRIIE	1.2433	0.0391	1.407823243

CG14965	1.2148	0.0393	1.40560745
Rbp1	0.8507	0.0394	1.404503778
CR46094	1.8881	0.0395	1.403402904
lace	0.8839	0.0399	1.399027104
Mrp4	0.9631	0.0399	1.399027104
fidipidine	0.8277	0.04	1.397940009
CG43672	3.1657	0.0401	1.396855627
CG17684	2.164	0.0401	1.396855627
CR32218	0.8255	0.0401	1.396855627
CR43405	1.4843	0.0401	1.396855627
CG45428	2.3132	0.0404	1.393618635
Taf11	0.8644	0.0407	1.390405591
JhI-26	1.2491	0.0409	1.388276692
CR44817	0.9615	0.0413	1.384049948
CG9684	0.7183	0.0414	1.382999659
CR43653	1.5591	0.0416	1.380906669
CR43849	1.8358	0.0417	1.379863945
flfl	0.7277	0.0419	1.377785977
CR45915	1.0206	0.0421	1.375717904
GstE7	1.4537	0.0421	1.375717904
CG42818	3.3062	0.0422	1.374687549
CR45054	0.8759	0.0431	1.36552273
Cyp311a1	1.0462	0.0432	1.364516253
CG14770	3.9382	0.0439	1.35753548
CR46204	1.264	0.0443	1.353596274
CR43909	2.1516	0.0445	1.351639989
CG43646	1.4886	0.0447	1.349692477
Axs	0.9161	0.045	1.346787486
CG14877	1.8853	0.0456	1.341035157
pkaap	0.9219	0.0457	1.3400838
CR45148	1.3193	0.0458	1.339134522
shg	0.6812	0.046	1.337242168
CG30456	3.1243	0.0468	1.329754147
glec	0.6871	0.0468	1.329754147
CR45224	1.5462	0.0468	1.329754147
mrt	4.9315	0.0475	1.32330639
CG17018	3.0817	0.0478	1.320572103
foi	3.0088	0.0479	1.319664487
CG33160	4.9219	0.0479	1.319664487
yuri	2.7061	0.0482	1.316952962

wts	0.74	0.0489	1.310691141
Tgi	1.1551	0.0492	1.308034897
Ir51b	1.6574	0.0494	1.306273051
CG9505	1.0175	0.0498	1.302770657
CG33468	1.4953	0.0498	1.302770657
Lap1	1.068	0.0499	1.301899454
CG16716	2.2466	0.0501	1.300162274
CG4660	2.3861	0.0504	1.297569464
CR44145	1.1697	0.0505	1.296708622
RhoGAP71E	1.1517	0.0506	1.295849483
dgt1	0.89	0.0508	1.294136288
kune	0.8278	0.0509	1.293282218
CR45102	0.8436	0.051	1.292429824
CG4455	0.7209	0.0512	1.290730039
CR45256	2.5225	0.0514	1.289036881
CG9425	1.4977	0.0514	1.289036881
CG16711	0.9123	0.0515	1.288192771
CG3163	0.8182	0.0518	1.28567024
CR44348	2.2763	0.0521	1.283162277
qkr58E-1	1.1166	0.0525	1.279840697
Src42A	0.9192	0.0528	1.277366077
CR46064	0.6989	0.0531	1.274905479
CG5642	0.6598	0.0531	1.274905479
Atac2	1.024	0.0531	1.274905479
mir-4964	1.4584	0.0532	1.274088368
CR43399	0.8411	0.0533	1.273272791
AttD	1.3997	0.0533	1.273272791
CG6843	0.8012	0.0534	1.272458743
CG42816	5.3067	0.0535	1.271646218
CG43192	1.3107	0.0538	1.269217724
CG15563	2.6022	0.0541	1.266802735
snoRNA:Psi18S-841b	1.6456	0.0544	1.2644011

Table 2.1b: list of genes differentially upregulated in control females relative to control males

list of hits>10 raw reads	log2FC edgeR	p-value edgeR	-log10(pvalue)
Pebp1	-4.8196	9.78E-26	25.00966115
CG6295	-4.6944	8.94E-25	24.04866248
pre-rRNA:CR45845	-5.6419	1.58E-22	21.80134291
yip7	-3.3174	3.17E-22	21.49894074
CG6296	-9.1509	3.41E-17	16.46724562
Jon65Aiii	-2.9835	9.12E-17	16.04000516

Jon65Aiv	-3.4131	3.28E-16	15.48412616
CG4563	-6.6562	9.45E-15	14.02456819
Jon25Biii	-4.3475	8.47E-14	13.07211659
PGRP-SC2	-4.1219	5.33E-13	12.27327279
thetaTry	-3.8188	1.34E-12	11.8728952
CG10182	-8.576	2.52E-12	11.59859946
CG11241	-3.2885	4.75E-12	11.32330639
CG5506	-4.8881	4.93E-12	11.30715308
CG42747	-2.9459	4.37E-11	10.35951856
CG18180	-2.9197	6.50E-11	10.18708664
CG13813	-9.5056	1.63E-10	9.787812396
CG12374	-5.3231	2.19E-10	9.659555885
CG30090	-2.4048	2.37E-10	9.625251654
RpS28b	-2.5891	3.10E-10	9.508638306
Jon66Ci	-6.1965	5.52E-10	9.258060922
CG8661	-3.4006	6.89E-10	9.161780778
CG8952	-2.8699	8.09E-10	9.092051478
CG8299	-9.4315	1.13E-09	8.946921557
CG17192	-5.8606	1.37E-09	8.863279433
CR42767	-6.4065	1.52E-09	8.818156412
CG6891	-4.1601	3.26E-09	8.4867824
CG8745	-5.0092	3.71E-09	8.43062609
Jon99Cii	-3.438	4.30E-09	8.366531544
CR43264	-5.3834	9.43E-09	8.025488307
tej	-4.838	2.72E-08	7.565431096
epsilonTry	-3.9521	5.15E-08	7.288192771
pyd3	-2.136	8.60E-08	7.065501549
Muc68E	-4.0152	8.96E-08	7.04769199
Cyp6d2	-3.0961	1.00E-07	7
alphaTry	-2.723	1.10E-07	6.958607315
O-fut2	-1.9538	2.12E-07	6.673664139
CG9686	-7.7017	3.80E-07	6.420216403
CG12170	-2.2561	4.19E-07	6.377785977
CG4830	-3.326	4.20E-07	6.37675071
CG5804	-3.0577	4.42E-07	6.354577731
CG13690	-3.2136	4.80E-07	6.318758763
CR45714	-7.1849	5.66E-07	6.247183569
CG16775	-6.2695	5.72E-07	6.242603971
CG15605	-4.3396	7.14E-07	6.146301788
dgt3	-2.3691	8.38E-07	6.076755981

Jon25Bi	-4.2436	1.43E-06	5.844663963
gt	-4.7392	2.43E-06	5.614393726
CG3344	-3.6964	3.00E-06	5.522878745
CG14526	-3.0884	4.91E-06	5.308918508
Jon99Fii	-4.5286	5.05E-06	5.296708622
RfC3	-2.7579	5.88E-06	5.230622674
Jon65Aii	-4.4725	5.97E-06	5.224025669
CG33127	-2.2061	6.15E-06	5.211124884
CDC45L	-1.7469	8.65E-06	5.062983893
Lrpprc2	-1.6397	9.02E-06	5.044793462
CG30411	-5.8252	1.09E-05	4.962573502
Pen	-2.4468	1.12E-05	4.950781977
Npc2a	-1.5065	1.25E-05	4.903089987
CG8460	-1.5604	1.27E-05	4.896196279
nrv3	-3.465	1.38E-05	4.860120914
CG15630	-6.7702	1.58E-05	4.801342913
bora	-3.5976	1.86E-05	4.730487056
CG9825	-4.7276	1.93E-05	4.714442691
CG31041	-4.2934	1.94E-05	4.71219827
CG17633	-4.4683	1.97E-05	4.705533774
CG7280	-2.0548	2.01E-05	4.696803943
CG14205	-3.132	2.54E-05	4.595166283
CG34010	-1.9096	2.76E-05	4.559090918
Fmo-2	-1.5026	3.08E-05	4.511449283
Jon99Fi	-4.6745	3.09E-05	4.510041521
alphaTub84D	-1.523	3.20E-05	4.494850022
Meltrin	-2.2999	3.67E-05	4.435333936
Cht9	-3.9465	3.95E-05	4.403402904
fa2h	-4.6489	4.07E-05	4.390405591
mms4	-2.0956	4.24E-05	4.372634143
Mcm6	-1.9351	4.64E-05	4.333482019
CG6733	-4.0288	5.09E-05	4.293282218
Jon66Cii	-7.2419	5.45E-05	4.263603498
CG31266	-6.7755	5.83E-05	4.234331445
LysX	-4.1949	5.99E-05	4.222573178
RnrL	-1.7067	6.37E-05	4.195860568
CG11700	-1.7091	6.74E-05	4.171340103
Zwilch	-2.0546	6.79E-05	4.168130226
CG7298	-4.3337	7.30E-05	4.13667714
stv	-2.4853	7.42E-05	4.129596095

Ag5r2	-3.7558	7.42E-05	4.129596095
CG7458	-1.9279	7.61E-05	4.118615343
Ntf-2	-1.9192	7.64E-05	4.116906641
Est-Q	-3.064	8.45E-05	4.073143291
Amy-d	-1.716	9.15E-05	4.038578906
Snm1	-1.7708	9.87E-05	4.005682847
Jon99Ciii	-3.1431	9.99E-05	4.000434512
CG34026	-6.1937	0.0001	4
CG5590	-1.3111	0.0001	4
CG8834	-1.5794	0.0001	4
Arc42	-1.5688	0.0001	4
CG44475	-2.5543	0.0001	4
Fit2	-2.1947	0.0001	4
GILT3	-4.6563	0.0001	4
CG15044	-3.599	0.0001	4
CG5107	-2.6941	0.0001	4
CR44830	-4.0446	0.0002	3.698970004
amn	-1.2833	0.0002	3.698970004
blw	-1.1524	0.0002	3.698970004
CG6028	-1.4401	0.0002	3.698970004
CG33966	-2.9453	0.0002	3.698970004
Cht4	-4.1867	0.0002	3.698970004
MFS1	-7.9437	0.0002	3.698970004
CG8642	-4.5985	0.0003	3.522878745
LysE	-6.0438	0.0003	3.522878745
CG3663	-1.468	0.0003	3.522878745
CG7246	-1.4757	0.0003	3.522878745
RnrS	-1.4527	0.0003	3.522878745
CG5254	-1.5475	0.0003	3.522878745
GILT2	-1.7271	0.0003	3.522878745
CG5770	-3.8369	0.0003	3.522878745
CG10505	-2.9852	0.0003	3.522878745
CG11068	-1.4338	0.0004	3.397940009
Lim1	-3.954	0.0005	3.301029996
Fdh	-1.1835	0.0005	3.301029996
psidin	-1.2624	0.0005	3.301029996
CG14798	-1.6379	0.0005	3.301029996
CG18179	-2.6814	0.0005	3.301029996
CG14820	-2.7741	0.0005	3.301029996
CG6067	-2.306	0.0005	3.301029996

DNApol-alpha60	-2.0268	0.0005	3.301029996
ppk3	-4.0899	0.0006	3.22184875
CG32212	-1.3523	0.0006	3.22184875
CG33514	-1.7575	0.0006	3.22184875
Acox57D-d	-1.751	0.0006	3.22184875
spd-2	-1.9026	0.0006	3.22184875
CG32698	-1.8154	0.0007	3.15490196
CG5767	-3.2492	0.0007	3.15490196
Sirt2	-3.7083	0.0008	3.096910013
CG31345	-4.3575	0.0008	3.096910013
CG30049	-1.2043	0.0008	3.096910013
CG6126	-1.4303	0.0008	3.096910013
CR42491	-1.2842	0.0008	3.096910013
Fpps	-1.2116	0.0009	3.045757491
Debcl	-1.3602	0.0009	3.045757491
CG13151	-1.5259	0.0009	3.045757491
CG3011	-1.5287	0.0009	3.045757491
CG33109	-4.2282	0.0009	3.045757491
CG43207	-2.8238	0.0009	3.045757491
Jheh3	-1.5069	0.001	3
Peritrophin-15a	-2.2241	0.001	3
CG18404	-3.0291	0.001	3
Art7	-1.2619	0.0011	2.958607315
l(3)mbt	-1.4972	0.0011	2.958607315
upd2	-1.4017	0.0011	2.958607315
CR43989	-5.8887	0.0012	2.920818754
CG11752	-1.1346	0.0012	2.920818754
CG31076	-1.7577	0.0012	2.920818754
Jon99Ci	-1.6693	0.0012	2.920818754
CG45080	-4.0419	0.0012	2.920818754
dome	-1.0767	0.0013	2.886056648
pav	-1.6301	0.0013	2.886056648
Mesh1	-1.4387	0.0013	2.886056648
CG45061	-1.4532	0.0013	2.886056648
Rbf2	-1.7261	0.0013	2.886056648
alpha-Est7	-2.1577	0.0013	2.886056648
CG5724	-3.9339	0.0013	2.886056648
CG31198	-2.3491	0.0013	2.886056648
LysD	-4.1733	0.0014	2.853871964
CG1827	-1.1237	0.0014	2.853871964

CG16734	-1.4096	0.0014	2.853871964
CG15127	-2.2699	0.0014	2.853871964
CG32750	-3.5019	0.0014	2.853871964
CG32641	-1.2955	0.0015	2.823908741
CG42327	-2.9296	0.0015	2.823908741
CG10869	-3.1761	0.0015	2.823908741
CG6180	-1.1227	0.0016	2.795880017
Irp-1B	-1.3168	0.0016	2.795880017
W	-1.1467	0.0016	2.795880017
Tina-1	-1.6139	0.0016	2.795880017
CG15414	-1.5644	0.0016	2.795880017
CG42397	-2.9139	0.0016	2.795880017
CG9577	-1.2377	0.0017	2.769551079
CG42825	-2.6209	0.0017	2.769551079
Syx4	-1.9948	0.0017	2.769551079
CG34288	-1.8548	0.0018	2.744727495
DNaseII	-2.5348	0.0018	2.744727495
CG10000	-6.2936	0.002	2.698970004
CG9581	-1.2346	0.002	2.698970004
RecQ4	-1.8007	0.002	2.698970004
msd1	-1.7031	0.002	2.698970004
CG3625	-5.6614	0.0022	2.657577319
CG34132	-1.0549	0.0022	2.657577319
Gfat2	-1.1256	0.0023	2.638272164
ATPsyndelta	-1.462	0.0023	2.638272164
CG4053	-6.5793	0.0025	2.602059991
bsf	-1.0145	0.0025	2.602059991
CG42826	-3.237	0.003	2.522878745
CG10912	-1.8515	0.003	2.522878745
CG5892	-6.5945	0.0032	2.494850022
Vha36-1	-0.9724	0.0032	2.494850022
CG10911	-1.731	0.0032	2.494850022
CG2681	-1.47	0.0033	2.48148606
Tps1	-5.4786	0.0034	2.468521083
Rif1	-1.3765	0.0034	2.468521083
Osbp	-1.1662	0.0035	2.455931956
dgt6	-1.3624	0.0035	2.455931956
upd3	-1.2787	0.0035	2.455931956
CG15617	-2.6728	0.0035	2.455931956
E(spl)m8-HLH	-1.4124	0.0036	2.443697499

mag	-2.6766	0.0037	2.431798276
mag CCHa2		0.0037	
	-3.9725		2.420216403
CR44692	-1.5844	0.0038	2.420216403
CG42714	-2.3019	0.0038	2.420216403
CG16700	-5.8742	0.0039	2.408935393
CG16749	-2.0923	0.0039	2.408935393
CG7630	-0.947	0.004	2.397940009
Muc68Ca	-2.1575	0.004	2.397940009
CG6310	-1.1733	0.0042	2.37675071
CG7593	-1.3492	0.0042	2.37675071
CG13300	-2.1127	0.0042	2.37675071
asp	-1.5967	0.0042	2.37675071
CG1946	-2.8083	0.0043	2.366531544
CG14629	-1.1207	0.0044	2.356547324
Hex-C	-1.6447	0.0044	2.356547324
l(2)10685	-1.4056	0.0045	2.346787486
CG8562	-2.4317	0.0046	2.337242168
E(spl)m2-BFM	-1.508	0.0046	2.337242168
CG31915	-1.1234	0.0048	2.318758763
CG33116	-1.1036	0.0049	2.30980392
CG31918	-1.1841	0.0049	2.30980392
Orc1	-1.9861	0.0051	2.292429824
SPH93	-2.6705	0.0052	2.283996656
CG13082	-2.9375	0.0052	2.283996656
DNApol-alpha180	-1.5868	0.0053	2.27572413
CG12512	-1.842	0.0053	2.27572413
CG12237	-0.9133	0.0054	2.26760624
Ctf4	-1.7625	0.0054	2.26760624
phyl	-3.076	0.0054	2.26760624
lectin-46Ca	-2.2805	0.0054	2.26760624
Oatp33Eb	-2.7066	0.0055	2.259637311
AP-1-2beta	-0.9117	0.0056	2.251811973
CG3906	-2.1752	0.0056	2.251811973
Pmm45A	-0.9843	0.0058	2.236572006
CG12171	-1.084	0.0059	2.229147988
CG1287	-1.2043	0.0059	2.229147988
dmGlut	-2.2373	0.0059	2.229147988
CG11899	-1.8165	0.0059	2.22184875
CG32091	-1.075	0.0061	2.214670165
CG3430	-1.143	0.0063	2.200659451

Nup107	-0.9609	0.0064	2.193820026
CG7470	-1.573	0.0065	2.187086643
ecd	-1.2147	0.0066	2.180456064
CG9663	-1.1279	0.0069	2.161150909
AIMP1	-0.9664	0.007	2.15490196
CG8773	-1.1429	0.007	2.15490196
CG4194	-2.9168	0.0071	2.148741651
CG6745	-1.2721	0.0072	2.142667504
Glo1	-0.9258	0.0074	2.13076828
CG4839	-3.365	0.0075	2.124938737
Gip	-0.9008	0.0076	2.119186408
Ssb-c31a	-0.975	0.0077	2.113509275
caix	-2.0302	0.0079	2.102372909
rev7	-1.159	0.0081	2.091514981
CG10592	-1.448	0.0081	2.091514981
CG12926	-1.5003	0.0081	2.091514981
CR44478	-1.5281	0.0081	2.091514981
SLC22A	-1.4758	0.0082	2.086186148
CG17855	-1.021	0.0083	2.080921908
CG7277	-1.0007	0.0084	2.075720714
CR43253	-3.3622	0.0085	2.070581074
CG17660	-0.9807	0.0085	2.070581074
CG10584	-1.1102	0.0085	2.070581074
CG43295	-1.4949	0.0086	2.065501549
OX	-0.9341	0.0087	2.060480747
CG6178	-0.9505	0.0087	2.060480747
CR44724	-1.5208	0.0087	2.060480747
CG11911	-2.3515	0.0087	2.060480747
CG1942	-3.0977	0.0088	2.055517328
CR15061	-1.1414	0.0089	2.050609993
Npc2f	-1.511	0.0089	2.050609993
CG10939	-1.4819	0.0089	2.050609993
LysP	-4.802	0.009	2.045757491
Ndc1	-1.073	0.009	2.045757491
spdo	-1.4527	0.0091	2.040958608
CG30339	-1.1875	0.0092	2.036212173
CG7379	-0.9279	0.0093	2.031517051
Tsr1	-0.9652	0.0093	2.031517051
Cbs	-2.6174	0.0094	2.026872146
PRAS40	-0.8926	0.0095	2.022276395

CG9344	-0.9773	0.0096	2.017728767
CG10470	-0.9783	0.0099	2.004364805
ATPsynO	-0.8388	0.01	2
CG31344	-1.3962	0.01	2
Vha14-1	-0.8828	0.0101	1.995678626
CG11403	-1.0944	0.0104	1.982966661
kappaTry	-1.5835	0.0105	1.978810701
DNApol-epsilon58	-1.5802	0.0108	1.966576245
CG14120	-1.9513	0.0111	1.954677021
CR44704	-1.6696	0.0111	1.954677021
CG13364	-0.9317	0.0112	1.950781977
CG3021	-0.9642	0.0115	1.93930216
alpha-Est1	-1.352	0.0115	1.93930216
CG12288	-1.6251	0.0117	1.931814138
Mcm2	-1.2083	0.0118	1.928117993
CG14104	-1.1868	0.0118	1.928117993
Zw10	-0.9916	0.0119	1.924453039
msd5	-1.3071	0.0121	1.91721463
CG17278	-1.3087	0.0123	1.910094889
Mdr50	-1.9491	0.0123	1.910094889
CG1907	-1.0513	0.0126	1.899629455
CG6454	-2.3263	0.0126	1.899629455
Spindly	-1.059	0.0127	1.896196279
Mur29B	-2.8587	0.0127	1.896196279
CG8419	-2.694	0.0128	1.89279003
pont	-0.9701	0.0128	1.89279003
Pex13	-0.9569	0.0134	1.872895202
schuy	-1.3296	0.0135	1.869666232
CR44868	-1.1198	0.0136	1.866461092
cN-IIIB	-0.9915	0.0138	1.860120914
CG12129	-0.8985	0.0139	1.8569852
CG32483	-2.1871	0.0139	1.8569852
CG1236	-0.9315	0.014	1.853871964
snoRNA:Psi18S-531	-0.9388	0.014	1.853871964
CG5958	-2.2533	0.0142	1.847711656
mRpS11	-0.9011	0.0143	1.844663963
ATPsynE	-2.7804	0.0147	1.832682665
CG2781	-1.7457	0.0149	1.826813732
aurB	-1.1795	0.015	1.823908741
CG14543	-0.9749	0.0152	1.818156412

CG7889	-0.9004	0.0156	1.806875402
CG5214	-0.8173	0.016	1.795880017
CG18765	-1.6818	0.016	1.795880017
Hsp70Bbb	-1.374	0.0162	1.790484985
cry	-0.8161	0.0163	1.787812396
Klp61F	-1.1187	0.0163	1.787812396
Mcm5	-1.1862	0.0164	1.785156152
CG30283	-1.0092	0.0165	1.782516056
Sdhaf3	-1.4575	0.0169	1.772113295
Thiolase	-0.7639	0.0172	1.764471553
CG15210	-1.7408	0.0172	1.764471553
ND-B15	-0.8083	0.0174	1.759450752
Ote	-1.0235	0.0174	1.759450752
Gr94a	-1.4248	0.0174	1.759450752
xit	-0.9028	0.0177	1.752026734
CR45037	-2.0532	0.0179	1.747146969
CG12825	-0.9348	0.0179	1.747146969
CG31469	-1.3156	0.0179	1.747146969
beta'COP	-0.8089	0.0181	1.742321425
sqa	-2.2568	0.0182	1.739928612
CG13324	-1.9554	0.0183	1.73754891
Eip63F-1	-4.8873	0.0184	1.735182177
Hydr1	-4.8873	0.0184	1.735182177
msb11	-1.06	0.0187	1.728158393
Taldo	-0.7726	0.0189	1.723538196
CG31126	-0.9685	0.019	1.721246399
CG5010	-1.3646	0.019	1.721246399
CG10184	-0.8636	0.0192	1.716698771
SdhB	-0.8379	0.0192	1.716698771
CG14270	-0.8766	0.0194	1.71219827
CG34200	-1.0483	0.0195	1.709965389
CG30345	-0.8749	0.0195	1.709965389
Bap60	-0.7654	0.0198	1.70333481
CycE	-4.8498	0.02	1.698970004
CG13008	-2.2695	0.02	1.698970004
ico	-1.0794	0.02	1.698970004
Orc5	-1.2574	0.0202	1.694648631
CG32669	-1.7431	0.0203	1.692503962
Cpr73D	-1.2152	0.0204	1.690369833
CG10472	-1.8595	0.0204	1.690369833

	0.0000	0.000	1 (0 (10050
Ssrp	-0.8088	0.0206	1.68613278
Mdh2	-0.7414	0.0208	1.681936665
rasp	-0.9329	0.0208	1.681936665
CG5569	-0.855	0.0213	1.671620397
CG31550	-1.6585	0.0213	1.671620397
CG14079	-2.1857	0.0214	1.669586227
Cyp1	-0.7485	0.0215	1.66756154
CG34198	-1.0695	0.0218	1.661543506
Irp-1A	-0.7889	0.0219	1.659555885
DNApol-alpha50	-1.1517	0.0219	1.659555885
CG8818	-0.8412	0.0224	1.649751982
CCHa1-R	-5.4678	0.0227	1.643974143
Gr8a	-5.4678	0.0227	1.643974143
Mms19	-1.2029	0.0227	1.643974143
Gycalpha99B	-5.4678	0.0228	1.642065153
CG13704	-1.6407	0.0235	1.628932138
toy	-1.2875	0.0237	1.625251654
CG8607	-1.1266	0.0241	1.617982957
CG32201	-2.2022	0.0241	1.617982957
CG7567	-2.4586	0.0244	1.612610174
CG11912	-3.0418	0.0244	1.612610174
IntS4	-0.8836	0.0247	1.607303047
Sc2	-0.7491	0.0247	1.607303047
Egm	-0.8233	0.0248	1.605548319
CG4743	-0.9078	0.0249	1.603800653
Tgt	-0.7701	0.025	1.602059991
RtcB	-0.884	0.025	1.602059991
CG7837	-1.0392	0.0252	1.598599459
dnd	-2.1773	0.0257	1.590066877
CG33080	-2.8231	0.0258	1.588380294
ida	-1.0191	0.0258	1.588380294
CG2254	-1.7202	0.0258	1.588380294
Takl1	-2.3563	0.0258	1.588380294
CG5167	-0.8917	0.0259	1.586700236
beta4GalT7	-0.9063	0.026	1.585026652
Pcl	-1.2837	0.026	1.585026652
Cisd2	-0.8436	0.0262	1.581698709
CG8258	-0.8155	0.0262	1.581698709
CG8258 CG11878	-0.8155 -1.5233	0.0262	1.581698709

CG34404	-1.6497	0.0263	1.580044252
CG4627	-0.9998	0.0267	1.573488739
CG8728	-0.8683	0.0267	1.573488739
CG8891	-0.815	0.0268	1.571865206
CG12321	-0.9057	0.0269	1.57024772
mRpL36	-0.8362	0.0271	1.567030709
CG14499	-3.3853	0.0274	1.562249437
CG4557	-0.8553	0.0279	1.554395797
CG11777	-1.035	0.0281	1.55129368
Lgr3	-1.6167	0.0281	1.55129368
CG10910	-1.4877	0.0284	1.54668166
Gs11	-0.9892	0.0287	1.542118103
CG2144	-1.0058	0.0291	1.536107011
CG32284	-2.498	0.0295	1.530177984
mRpL12	-0.7659	0.0296	1.528708289
TBC1D5	-0.9011	0.0297	1.527243551
mRpL47	-0.7491	0.0298	1.525783736
CR45474	-2.142	0.0301	1.521433504
Vha100-4	-2.4277	0.0302	1.519993057
CG17841	-0.7886	0.0304	1.517126416
Pi3K59F	-0.8379	0.0305	1.515700161
CG9568	-1.335	0.0306	1.514278574
Nsun2	-0.8112	0.0313	1.504455662
r-l	-0.8568	0.0314	1.503070352
CG3868	-1.14	0.0314	1.503070352
mRpL20	-0.9376	0.0315	1.501689446
arx	-1.1859	0.0315	1.501689446
CG11562	-0.8511	0.0317	1.498940738
mRpL34	-0.867	0.0318	1.49757288
CG30493	-0.8443	0.0319	1.496209317
GlcT-1	-0.7685	0.0319	1.496209317
CG31251	-1.2222	0.0319	1.496209317
CR45973	-2.675	0.032	1.494850022
CG15362	-1.0852	0.0323	1.490797478
CG18577	-1.87	0.0323	1.48945499
AsnRS-m	-0.9829	0.0321	1.478861916
mRpL10	-0.7908	0.0332	1.477555766
CG7542	-1.9263	0.0333	1.477555766
CG9752	-1.3752	0.0334	1.476253533
Sld5	-1.1048	0.0335	1.474955193
Sub	-1.1040	0.0555	1.4/4933193

CG1671	-0.8347	0.0339	1.469800302
Caf1-180	-0.8242	0.034	1.468521083
Rrp42	-0.8999	0.034	1.468521083
tam	-0.9897	0.0342	1.465973894
CPT2	-0.8034	0.0343	1.46470588
CG17570	-1.8716	0.0346	1.460923901
Spp	-0.7317	0.0349	1.457174573
p47	-0.7331	0.0351	1.454692884
CG12173	-0.8793	0.0351	1.454692884
CG12279	-0.8807	0.0351	1.454692884
CG13492	-1.3371	0.0357	1.447331784
vanin-like	-2.3264	0.0357	1.447331784
CG9360	-1.1292	0.0359	1.444905551
lectin-46Cb	-1.3304	0.036	1.443697499
Nrk	-0.9285	0.0367	1.435333936
beg	-0.8028	0.0368	1.434152181
Rrp46	-0.9698	0.037	1.431798276
CG16979	-0.8644	0.0371	1.43062609
mRpS35	-0.8175	0.0372	1.42945706
Adgf-C	-3.9081	0.0375	1.425968732
mRpL18	-0.7157	0.0376	1.424812155
CstF-50	-0.9761	0.0376	1.424812155
TyrRS-m	-0.8269	0.0377	1.42365865
AdSL	-0.7638	0.0378	1.4225082
CG3909	-0.878	0.0378	1.4225082
CG4278	-0.7921	0.0379	1.42136079
Xpd	-0.8764	0.0387	1.412289035
CG17145	-1.3064	0.0391	1.407823243
CG11964	-0.7555	0.0393	1.40560745
CG3706	-2.3299	0.0394	1.404503778
RpS14a	-0.9624	0.0395	1.403402904
mRpL44	-0.7429	0.0397	1.401209493
CG17068	-0.8435	0.0397	1.401209493
CG12204	-0.7785	0.0398	1.400116928
Ing3	-0.8467	0.0398	1.400116928
CG11590	-0.8507	0.0402	1.395773947
Pdxk	-0.779	0.0405	1.392544977
vls	-0.7659	0.0405	1.392544977
CG7560	-4.9788	0.0417	1.379863945
Mgstl	-0.8917	0.042	1.37675071

CG30371	-3.6713	0.0424	1.372634143
CG11164	-2.283	0.043	1.366531544
Gk1	-1.0721	0.043	1.366531544
Pgm	-0.7341	0.0434	1.36251027
Surf4	-0.7551	0.0436	1.360513511
Fadd	-0.8332	0.0439	1.35753548
tex	-0.7888	0.0442	1.354577731
Acp53Ea	-1.2018	0.0442	1.354577731
beta-PheRS	-0.7443	0.0445	1.351639989
ATPsynB	-0.6863	0.0453	1.343901798
mRpL54	-0.7493	0.0456	1.341035157
nht	-1.9533	0.0458	1.339134522
Ibf2	-1.198	0.0459	1.338187314
NK7.1	-0.8137	0.046	1.337242168
Ptp52F	-0.9791	0.0461	1.336299075
CG11858	-0.8994	0.0464	1.333482019
CG8323	-0.8838	0.0466	1.331614083
glu	-0.9794	0.0468	1.329754147
IP3K2	-1.0778	0.0468	1.329754147
CG30287	-0.8938	0.0469	1.328827157
Sym	-0.7792	0.0471	1.326979093
stg	-1.288	0.0472	1.326058001
CG5255	-1.9321	0.0482	1.316952962
Mcm7	-1.5807	0.049	1.30980392
CG33178	-1.6823	0.0494	1.306273051
l(2)dtl	-0.8239	0.0496	1.304518324
RpS15Ab	-0.7814	0.0497	1.303643611
CG14424	-2.1247	0.0499	1.301899454
CG8311	-0.7509	0.0499	1.301899454
CG30001	-0.9443	0.0499	1.301899454
mRpL30	-0.7406	0.0502	1.299296283
Sas-4	-0.962	0.0502	1.299296283
GckIII	-0.7637	0.0503	1.298432015
COX7A	-0.8646	0.0505	1.296708622
CG34220	-1.0087	0.0508	1.294136288
CR32194	-1.1546	0.051	1.292429824
SelG	-0.8175	0.0515	1.288192771
l(1)G0045	-0.8147	0.0525	1.279840697
CCHa1	-1.822	0.0526	1.279014256
SPE	-1.9281	0.0527	1.278189385

CG15247	-3.1939	0.053	1.27572413
AGBE	-0.7303	0.053	1.27572413
CG43120	-1.1863	0.053	1.27572413
Ddx1	-0.8651	0.0531	1.274905479
Gr66a	-2.2459	0.0533	1.273272791
Tfb4	-0.7257	0.0535	1.271646218
cue	-0.7187	0.0546	1.262807357
Oga	-0.7987	0.0549	1.260427656

Table 2.1c: GO enrichment for hits differentially upregulated in control females relative to control males

GO enrichment	p- value	Hits	Gene matche s	GOID
organic	0.0020	FBgn0000078,FBgn0000477,FBgn0000543,FBgn0000	160	GO:0071
substance	691	591,FBgn0001150,FBgn0001187,FBgn0002441,FBgn0		704
metabolic		003044,FBgn0003076,FBgn0003257,FBgn0003356,FB		
process		gn0003357,FBgn0003358,FBgn0003525,FBgn0003863		
		,FBgn0003996,FBgn0004403,FBgn0004406,FBgn0004		
		432,FBgn0010278,FBgn0010382,FBgn0010425,FBgn0		
		011211,FBgn0011555,FBgn0011703,FBgn0011704,FB		
		gn0011762,FBgn0011768,FBgn0011770,FBgn0011787		
		,FBgn0013725,FBgn0013972,FBgn0014023,FBgn0014		
		427,FBgn0014861,FBgn0015075,FBgn0015271,FBgn0		
		015277,FBgn0015299,FBgn0016691,FBgn0017577,FB		
		gn0019644,FBgn0019650,FBgn0020391,FBgn0020633		
		,FBgn0020906,FBgn0022700,FBgn0023477,FBgn0024		
		194,FBgn0024227,FBgn0024321,FBgn0024957,FBgn0		
		024958,FBgn0024997,FBgn0025352,FBgn0025373,FB		
		gn0025463,FBgn0025592,FBgn0025680,FBgn0025814		
		,FBgn0025815,FBgn0026079,FBgn0026143,FBgn0026		
		411,FBgn0026679,FBgn0026702,FBgn0026741,FBgn0		
		026876,FBgn0026879,FBgn0027560,FBgn0027578,FB		
		gn0027791,FBgn0027794,FBgn0027868,FBgn0028342		
		,FBgn0029718,FBgn0029823,FBgn0029828,FBgn0029		
		856,FBgn0029906,FBgn0029977,FBgn0030054,FBgn0		
		030081,FBgn0030136,FBgn0030507,FBgn0030688,FB		
		gn0030945,FBgn0030966,FBgn0031003,FBgn0031092		
		,FBgn0031145,FBgn0031231,FBgn0031248,FBgn0031		
		249,FBgn0031252,FBgn0031260,FBgn0031309,FBgn0		
		031321,FBgn0031381,FBgn0031653,FBgn0031663,FB		
		gn0031678,FBgn0031703,FBgn0031713,FBgn0031875		
		,FBgn0031996,FBgn0031999,FBgn0032144,FBgn0032		
		187,FBgn0032244,FBgn0032638,FBgn0032781,FBgn0		
		033179,FBgn0033187,FBgn0033235,FBgn0033377,FB		
		gn0033382,FBgn0033431,FBgn0033454,FBgn0033527		
		,FBgn0033549,FBgn0033555,FBgn0033733,FBgn0033		
		774,FBgn0033890,FBgn0033921,FBgn0034052,FBgn0		
		034065,FBgn0034085,FBgn0034141,FBgn0034177,FB		
		gn0034564,FBgn0034579,FBgn0034582,FBgn0034614		

			1	
		,FBgn0034629,FBgn0034817,FBgn0034988,FBgn0035		
		006,FBgn0035064,FBgn0035154,FBgn0035374,FBgn0		
		035383,FBgn0035471,FBgn0035644,FBgn0035665,FB		
		gn0035666,FBgn0035670,FBgn0035718,FBgn0035779		
		,FBgn0035886,FBgn0035887,FBgn0035901,FBgn0036		
		023,FBgn0036024,FBgn0036157,FBgn0036321,FBgn0		
		036335,FBgn0036512,FBgn0036691,FBgn0036738,FB		
		gn0036826,FBgn0036948,FBgn0036953,FBgn0036996		
		,FBgn0037045,FBgn0037073,FBgn0037146,FBgn0037		
		301,FBgn0037305,FBgn0037330,FBgn0037338,FBgn0		
		037345,FBgn0037356,FBgn0037371,FBgn0037513,FB		
		gn0037534,FBgn0037569,FBgn0037669,FBgn0037678		
		FBgn0037815,FBgn0037996,FBgn0038038,FBgn0038		
		135,FBgn0038173,FBgn0038224,FBgn0038390,FBgn0		
		038437,FBgn0038467,FBgn0038474,FBgn0038482,FB		
		gn0038485,FBgn0038546,FBgn0038742,FBgn0038788		
		,FBgn0038928,FBgn0039052,FBgn0039094,FBgn0039		
		102,FBgn0039156,FBgn0039175,FBgn0039258,FBgn0		
		039403,FBgn0039404,FBgn0039470,FBgn0039471,FB		
		gn0039472,FBgn0039580,FBgn0039596,FBgn0039650		
		,FBgn0039687,FBgn0039777,FBgn0039778,FBgn0040		
		060,FBgn0040078,FBgn0040290,FBgn0040337,FBgn0		
		040959,FBgn0041103,FBgn0041147,FBgn0042112,FB		
		gn0043471,FBgn0043575,FBgn0046689,FBgn0050049		
		,FBgn0050085,FBgn0050090,FBgn0050287,FBgn0050		
		371,FBgn0050493,FBgn0050502,FBgn0051126,FBgn0		
		051198,FBgn0051266,FBgn0051469,FBgn0051550,FB		
		gn0052201,FBgn0052284,FBgn0052483,FBgn0053080		
		,FBgn0053116,FBgn0053127,FBgn0053138,FBgn0053		
		178,FBgn0053265,FBgn0067102,FBgn0083983,FBgn0		
		085249,FBgn0085484,FBgn0086708,FBgn0086712,FB		
		gn0243511,FBgn0250815,FBgn0259113,FBgn0259227		
		,FBgn0259676,FBgn0259678,FBgn0259748,FBgn0259		
		791,FBgn0260477,FBgn0261850,FBgn0262559,FBgn0		
		263133,FBgn0265140,FBgn0266420,FBgn0266465,FB		
		gn0267824,FBgn0283525,FBgn0283680,FBgn0284256		
		,FBgn0286788		
primary	0.0050	FBgn0000078,FBgn0000477,FBgn0000543,FBgn0000	160	GO:0044
metabolic	247	591,FBgn0001150,FBgn0001187,FBgn0002441,FBgn0		238
process	2.17	003044,FBgn0003076,FBgn0003257,FBgn0003356,FB		230
process		gn0003357,FBgn0003358,FBgn0003525,FBgn0003863		
		FBgn0004403,FBgn0004406,FBgn0004432,FBgn0010		
		278,FBgn0010382,FBgn0010425,FBgn0011211,FBgn0		
		011555,FBgn0011703,FBgn0011704,FBgn0011762,FB		
		gn0011768,FBgn0011787,FBgn0013725,FBgn0013972		
		,FBgn0014023,FBgn0014028,FBgn0014427,FBgn0014		
		861,FBgn0015075,FBgn0015271,FBgn0015277,FBgn0		
		015299,FBgn0016691,FBgn0017577,FBgn0019644,FB		
		gn0019650,FBgn0020391,FBgn0020633,FBgn0020906		
		,FBgn0022700,FBgn0023477,FBgn0024194,FBgn0024		
		227,FBgn0024321,FBgn0024957,FBgn0024958,FBgn0		
		024997,FBgn0025352,FBgn0025373,FBgn0025463,FB		
		gn0025592,FBgn0025680,FBgn0025814,FBgn0025815		
		FBgn0026079,FBgn0026143,FBgn0026411,FBgn0026		
		679,FBgn0026702,FBgn0026741,FBgn0026876,FBgn0		
		026879,FBgn0027560,FBgn0027578,FBgn0027791,FB		
		gn0027794,FBgn0027868,FBgn0028342,FBgn0029718		

JFE gn0029823, FE gn0029823, FE gn0029856, FE gn0009 JFE gn0031003, FE gn003054, FE gn0030081, FE gn003103, FE gn003103, FE gn003102, FE gn0031231, FE gn0031248 JG031003, FE gn003167, FE gn003123, FE gn0031248 JFE gn003124, JFE gn003123, FE gn003103, FE gn003103, FE gn003103, FE gn003103, FE gn0031703, FE gn003190, FE gn003130, FE gn003103, FE gn0033170, FE gn00333, FE gn0033, FE gn00333, FE gn0033, FE gn0033, FE gn0033, FE gn003, FE gn0033, FE gn003, FE gn002, F					
0.3013.67.FBg.n0030507,FBg.n0030123,FBg.n0031248 gn0031003,FBg.n003122,FBg.n0031260,FBg.n0031 309,FBg.n003122,FBg.n003132,FBg.n0031563,FBg.n0 309,FBg.n0031678,FBg.n0031703,FBg.n003190,FB gn003109,FBg.n0031678,FBg.n0033170,FBg.n0033197,FBg.n0033 187,FBg.n0033223,FBg.n0033377,FBg.n0033382,FBg.n0 03343,FBg.n003342,FBg.n0033377,FBg.n0033382,FBg.n0 03343,FBg.n0033454,FBg.n003377,FBg.n0033382,FBg.n0 03343,FBg.n0033454,FBg.n003377,FBg.n003349,FB gn0033921,FBg.n0033454,FBg.n003374,FBg.n003380 FBg.n0033921,FBg.n003374,FBg.n0033842,FBg.n0 03457,FBg.n0034582,FBg.n003506,FBg.n0035064 FBg.n0035141,FBg.n003581,FBg.n0035044 FBg.n0035141,FBg.n0035301,FBg.n003503,FBg.n003504 FBg.n003517,FBg.n003501,FBg.n003501,FBg.n0035024 FBg.n0036157,FBg.n003570,FBg.n003731,FBg.n003584,FBg.n0 03569,FBg.n003704,FBg.n003573,FBg.n003731,FBg.n0037 513,FBg.n003769,FBg.n003733,FBg.n0037 513,FBg.n003764,FBg.n003733,FBg.n0037 513,FBg.n003764,FBg.n003737,FBg.n0037334,FBg.n0037 513,FBg.n003764,FBg.n003737,FBg.n003734,FBg.n0037 513,FBg.n003764,FBg.n003737,FBg.n00374,FBg.n0037 513,FBg.n003764,FBg.n003737,FBg.n0038038,FB n003781,FBg.n003847,FBg.n003847,FBg.n003843,FBg.n0038463,FBg.n0038467,FBg.n003947,FBg.n003944,FBg.n00					
gn0031003_FBgn0031249_FBgn0031251_FBgn0031243 FBgn0031249_FBgn0031252_FBgn0031260_FBgn0031 309_FBgn0031521_FBgn0031351_FBgn003163_FBgn003163_FBgn003163 1003163_FBgn003167_FBgn003170_FBgn003187_FBgn003334 gn003199_FBgn0031454_FBgn0033177_FBgn0033349_FB gn0033545_FBgn0033527_FBgn0033549_FB gn003355_FBgn0033547_FBgn0033549_FB gn003355_FBgn0033454_FBgn00335527_FBgn0033549_FB gn003355_FBgn003454_FBgn003405_FBgn0034065_FBgn0034 Q85_FBgn003454_FBgn003405_FBgn0034065_FBgn0035064 FBgn00345141_FBgn0034052_FBgn0034065_FBgn0035064 FBgn0035154_FBgn0034057_FBgn0035064 FBgn0035154_FBgn0035779_FBgn0035064 FBgn0035154_FBgn0035778_FBgn0035064 FBgn0035154_FBgn0035778_FBgn0036023_FBgn0036024 FBgn0037045_FBgn0037035_FBgn0037035_FBgn0036024 FBgn0037045_FBgn0037035_FBgn0037373_FBgn003768_FBgn0 036996_FBgn0037035_FBgn0037037_FBgn003768_FBgn0 03730_FBgn0037354_FBgn0037037_FBgn003768_FBgn0 03730_FBgn003735_FBgn003705_FBgn0038038_FB gn003315_FBgn003735_FBgn0037678_FBgn0 03731_FBgn003754_FBgn0039767_FBgn0038038_FB gn003315_FBgn003976_FBgn0038038_FB gn003940_FBgn003975_FBgn0039403_FBgn0039403 FBgn003940_FBgn0039977_FBgn0039403 FBgn003					
FBgn0031249/FBgn0031252/FBgn0031260.FBgn0031 309,FBgn0031231,FBgn0031381,FBgn003195,FBgn0 031663,FBgn0031678,FBgn0031703,FBgn003196,FB gn0031999,FBgn0032144,FBgn0033173,FBgn003244 FBgn003263,FBgn0033774,FBgn0033179,FBgn0033 187,FBgn003325,FBgn0033377,FBgn0033549,FB gn0033555,FBgn0033454,FBgn0033774,FBgn0033549,FB gn0033555,FBgn0033454,FBgn0033774,FBgn0033549,FB gn0033551,FBgn0034177,FBgn0034564,FBgn0 034579,FBgn003452,FBgn0034065,FBgn0034629,FB gn0034817,FBgn0035474,FBgn0035306,FBgn003566,FBgn0 034579,FBgn0035544,FBgn003566,FBgn003586,FB gn003587,FBgn0035718,FBgn0035731,FBgn003562,FBgn0035624 ,FBgn0035157,FBgn0035731,FBgn003582,FBgn003624 ,FBgn003754,FBgn003763,FBgn0037330,FBgn0037338 ,FBgn003754,FBgn0037637,FBgn003773,FBgn0037146,FB gn00387,FBgn003781,FBgn0037637,FBgn003773,FBgn0037 513,FBgn003754,FBgn003766,FBgn0037637,FBgn0037 513,FBgn003754,FBgn003766,FBgn0037637,FBgn0037 513,FBgn003781,FBgn003766,FBgn0037637,FBgn0037 513,FBgn003854,FBgn003766,FBgn0037637,FBgn0037 513,FBgn003854,FBgn00376,FBgn0037637,FBgn0037 513,FBgn003977,FBgn00376,FBgn0037637,FBgn0037 513,FBgn003977,FBgn003977,FBgn003977,FBgn0037 513,FBgn00316,FBgn003977,FBgn00397,FBg					
309.FBgm0031321.FBgm0031381.FBgm0031996.FB gn0031999.FBgm003216314,FBgm0031703.FBgm0032244 FBgm0032638,FBgm0032781.FBgm0033179.FBgm00332244 FBgm0032638,FBgm003377.FBgm0033382,FBgm0 033431.FBgm0033255.FBgm0033377.FBgm0033382,FBgm0 033431.FBgm0033454,FBgm003377.FBgm0033592,FBgm0 033431.FBgm0033454,FBgm003377.FBgm0033549,FB gm0033555.FBgm0033733,FBgm003377.FBgm003465,FBgm0034 085.FBgm0034141,FBgm0034177,FBgm0034564,FBgm0034629,FB gm0034817,FBgm0035664,FBgm0035665,FBgm0035664,FBgm0 034570.FBgm0035544,FBgm0035665,FBgm0035566,FBgm0 035670.FBgm0035501,FBgm003303,FBgm003586,FB gm003887,FBgm0035501,FBgm003373,FBgm003626,FBgm0 036996,FBgm0037045,FBgm003733,FBgm0037146,FB gm003315,FBgm003756,FBgm003773,FBgm0037146,FB gm003315,FBgm003756,FBgm0037373,FBgm0037734,FBgm003738 FBgm0033157,FBgm0033769,FBgm0037737,FBgm003828,FBgm0 03781,FBgm003753,FBgm003769,FBgm003808,FB gm0033155,FBgm003377,FBgm003744,FBgm00388,FB gm003315,FBgm003377,FBgm003744,FBgm003824,FBgm003848 FBgm003155,FBgm003377,FBgm003904,FBgm003102,FB gm0033155,FBgm003977,FBgm0033741,FBgm003848,FBgm0 03892,FBgm0039052,FBgm003996,FBgm0039102,FB gm0039404,FBgm003977,FBgm0033741,FBgm004060,FB gm004417,FBgm003174,FBgm0033747,FBgm003471,					
031663.FBgn0031678,FBgn0031703,FBgn0032244 FBgn0032638,FBgn0032144,FBgn0033179,FBgn0033244 FBgn0032638,FBgn0033778,FBgn0033179,FBgn0033549,FB 9033431,FBgn0033545,FBgn0033774,FBgn0033890 033431,FBgn0033225,FBgn0033502,FBgn0033549,FB 90033555,FBgn003373,FBgn0033774,FBgn0033890 FBgn0033221,FEgn0034052,FBgn003465,FBgn003 085,FBgn0034177,FBgn0034654,FBgn0 034579,FBgn0034141,FBgn0034177,FBgn0034564,FBgn0 034579,FBgn0035644,FBgn003506,FBgn003566,FBgn0 035577,FBgn003574,FBgn003506,FBgn003566,FBgn0 035677,FBgn003574,FBgn003506,FBgn003566,FBgn0 035670,FBgn003501,FBgn003506,FBgn003566,FBgn0 035677,FBgn003501,FBgn0036024 FBgn003154,FBgn003570,FBgn003733,FBgn0036024 FBgn003704,FBgn003703,FBgn003714,6,FB gn0037301,FBgn003703,FBgn003773,FBgn003714,6,FB 9003733,FBgn003714,FBgn003773,FBgn003773,FBgn0037 513,FBgn003754,FBgn003756,FBgn003778,FBgn003738 FBgn003734,FBgn003736,FBgn003778,FBgn0038390 ,FBgn003874,FBgn003874,FBgn003878,FBgn0 037815,FBgn003874,FBgn003874,FBgn0038390 ,FBgn003815,FBgn003874,FBgn003878,FBgn0 037815,FBgn003874,FBgn0038768,FBgn0038390 ,FBgn0038156,FBgn003874,FBgn0038768,FBgn0038390 FBgn003915,FBgn003977,FBgn003818,FBgn0 037815,FBgn003977,FBgn003977,FBgn0038482,FBgn00384 85,FBgn003917,FBgn003977,FBgn00387678,FBgn005994,FBgn0039403					
gn0031999,FBgn0032144,FBgn0032187,FBgn0033 FBgn0032638,FBgn0033377,FBgn0033179,FBgn0033 187,FBgn0033235,FBgn0033377,FBgn0033890 033451,FBgn003352,FBgn0033527,FBgn0033890 gn0033552,FBgn003453,FBgn0033574,FBgn0033642,FBgn0034065,FBgn0034 085,FBgn0034141,FBgn0034177,FBgn003564,FBgn003571,FBgn003574,FBgn003574,FBgn003574,FBgn003574,FBgn003574,FBgn003730,FBgn003730,FBgn003734,FBgn003731,FBgn003730,FBgn003731,FBgn003731,FBgn003731,FBgn003731,FBgn003734,FBgn003734,FBgn003734,FBgn003736,FBgn003733,FBgn003738,FBgn003733,FBgn003733,FBgn003733,FBgn003733,FBgn003734,FBgn003754,FBgn003769,FBgn003874,FBgn003874,FBgn003874,FBgn003874,FBgn003874,FBgn003874,FBgn003874,FBgn003874,FBgn003874,FBgn003874,FBgn003874,FBgn003874,FBgn003874,FBgn003874,FBgn003874,FBgn003874,FBgn003874,FBgn003874,FBgn003940,FBgn0039102,FBgn003956,FBgn003956,FBgn003956,FBgn003956,FBgn003956,FBgn003956,FBgn003956,FBgn003956,FBgn003956,FBgn003956,FBgn0039470,FBgn0039470,FBgn003941,FBgn0034437,FBgn0034437,FBgn003444,FBgn003178,FBgn003447,FBgn003447,FBgn003447,FBgn003447,FBgn0035126,FBgn028437,FBgn0035126,FBgn028437,FBgn0035126,FBgn028437,FBgn0035126,FBgn028437,FBgn0035126,FBgn028547,FBgn0035126,FBgn028437,FBgn0035126,FBgn028437,FBgn0035126,FBgn028437,FBgn0035126,FBgn028437,FBgn0035126,FBgn028437,FBgn0035126,FBgn028437,FBgn0005312,FBgn00051550					
FBgn003263;FBgn0033781;FBgn0033377;FBgn0033382,FBgn0 187,FBgn0033235,FBgn0033377;FBgn0033382,FBgn0 033431;FBgn0033555;FBgn0033373;FBgn003374;FBgn0033890; FBgn0033555;FBgn0033733;FBgn0034065;FBgn0034 085,FBgn00334141;FBgn003452;FBgn0034065;FBgn0034 085,FBgn0034582;FBgn0035404;FBgn0035064 085,FBgn0035154;FBgn0035734;FBgn0035064 ,FBgn00355154;FBgn0035734;FBgn0035064 ,FBgn0035154;FBgn0035734;FBgn003586;FBgn0035064 ,FBgn003564;FBgn0035734;FBgn003666;FBgn0 05570;FBgn0035714;FBgn0035703;FBgn0036024 ,FBgn0037501;FBgn0035703;FBgn0036024 ,FBgn0037301;FBgn003735;FBgn003731;FBgn003735;FBgn0037 512;FBgn003754;FBgn003735;FBgn003731;FBgn003735;FBgn0037 513;FBgn003754;FBgn003735;FBgn003731;FBgn003733;FBgn0037 513;FBgn003754;FBgn003874;FBgn0038224;FBgn0038390 ,FBgn003845;FBgn003905;FBgn003874;FBgn00383890 ,FBgn0038546;FBgn003905;FBgn003874;FBgn003874; gn039156;FBgn0039077;FBgn0038725;FBgn0038403;FB gn0039156;FBgn00390;FBgn003373;FBgn00374 gn039156;FBgn00390;FBgn003373;FBgn00374 gn0039156;FBgn00390;FBgn003373;FBgn00374;FBgn003838,FB gn0039156;FBgn00390;FBgn003374;FBgn003376;FBgn003874;FBgn0038374;FBgn003844;FBgn003844;FBgn003844;FBgn003844;FBgn003844;FBgn003844;FBgn003844;FBgn003844;FBgn003844;FBgn003844;FBgn003944;FBgn003944;FBg					
187.FB gn0033255,FB gn003377,FB gn0033549,FB gn0033554,FB gn003354,FB gn0033557,FB gn003354,FB gn0033574,FB gn0033549,FB gn0033255,FB gn0034052,FB gn0034564,FB gn00346429,FB gn0034579,FB gn0034117,FB gn003506,FB gn0035064,FB gn003506,FB gn003506,FB gn0035064,FB gn003506,FB gn003506,FB gn003506,FB gn003506,FB gn003506,FB gn003506,FB gn003506,FB gn003506,FB gn0035064,FB gn0035664,FB gn003506,FB gn003506,FB gn003506,FB gn003506,FB gn003506,FB gn003588,FB gn0035547,FB gn003562,FB gn0035062,FB gn0035647,FB gn003621,FB gn003535,FB gn003562,FB gn0035647,FB gn003621,FB gn003535,FB gn00355,FB gn003564,FB gn0036021,FB gn0035779,FB gn003588,FB gn003564,FB gn003621,FB gn00362,FB gn003781,FB gn003730,FB gn003733,FB gn003731,FB gn003735,FB gn00376,FB gn003736,FB gn003735,FB gn00376,FB gn003735,FB gn00376,FB gn00376,FB gn00375,FB gn00376,FB gn00376,FB gn0038482,FB gn003846,FB gn003846,FB gn003842,FB gn003840,FB gn0039102,FB gn0039102,FB gn0039102,FB gn0039102,FB gn0039102,FB gn0039102,FB gn0039102,FB gn0039102,FB gn0039103,FB gn0039102,FB gn0039102,FB gn0039103,FB gn0039102,FB gn0039103,FB gn0039103,FB gn0039404,FB gn0039404,FB gn0039404,FB gn0039404,FB gn0039404,FB gn0039404,FB gn0039102,FB gn0039103,FB gn0039404,FB gn0039404,FB gn0039103,FB gn0039404,FB gn0039404,FB gn0039102,FB gn0039103,FB gn0050085,FB gn003977,FB gn003950,FB gn0039103,FB gn0051108,FB gn0039404,FB gn0039103,FB gn003400,FB gn003471,FB gn0039404,FB gn0039404,FB gn0039404,FB gn0039102,FB gn0025126,FB gn0025045,FB gn0025045,FB gn0025045,FB gn0025045,FB gn0025045,FB gn0025045,FB gn0025045,FB gn0025150,FB gn0025126,FB gn0025150,FB gn0025150,FB gn0025126,FB gn0025077,FB gn0025126,FB gn002547,FB gn0025126,FB gn002547,FB gn0025126,FB gn002547,FB gn0025313,FB gn0041103,FB gn0024118,FB gn0025126,FB gn00256452,FB gn00256452,FB gn00256452,FB gn00256452,FB g					
033431,FBgn003354,FBgn0033527,FBgn0033549,FB gn0033555,FBgn0033733,FBgn0033774,FBgn003366,FBgn0034 085,FBgn0034141,FBgn0034052,FBgn003465,FBgn003564 gn0034579,FBgn0034582,FBgn003506,FBgn0035064 ,FBgn0035154,FBgn0035506,FBgn0035664,FBgn0035664 ,FBgn0035154,FBgn0035563,FBgn003566,FBgn0035664 05670,FBgn003571,FBgn0035237,FBgn003566,FBgn0035670,FBgn003571,FBgn0035023,FBgn0036624 ,FBgn0035154,FBgn0035701,FBgn0035335,FBgn0036 512,FBgn003571,FBgn0035703,FBgn0036624 ,FBgn003661,FBgn0035703,FBgn0036624 ,FBgn003661,FBgn003703,FBgn0037338 ,FBgn0037045,FBgn003703,FBgn0037338 ,FBgn0037534,FBgn0037073,FBgn0037338 ,FBgn003754,FBgn003705,FBgn003730,FBgn0037338 ,FBgn003754,FBgn003703,FBgn0037338 ,FBgn003754,FBgn003703,FBgn003838,FB gn0038135,FBgn0038173,FBgn003842,FBgn0038390 ,FBgn0038546,FBgn0038742,FBgn0038742,FBgn0038744 ,FBgn0039156,FBgn0038742,FBgn0038742,FBgn0038740 ,FBgn0039156,FBgn003904,FBgn00383474,FBgn0038403 ,FBgn003904,FBgn0038742,FBgn0038742,FBgn0038744 ,FBgn003904,FBgn003974,FBgn0038403 ,FBgn003904,FBgn0039047,FBgn0039410,FBgn0039 ,FBgn003904,FBgn003904,FBgn0039410,FBgn0039 ,FBgn0052047,FBgn0059317,FBgn003941,FBgn0039					
gn0033555,FBgn003373,FBgn0033774,FBgn003380 ,FBgn0033921,FBgn0034052,FBgn0034052,FBgn0034 085,FBgn0034141,FBgn0034052,FBgn003564,FBgn0 034579,FBgn003488,FBgn0035064,FBgn0035064 ,FBgn0031514,FBgn0035374,FBgn0035066,FBgn0035 471,FBgn0035644,FBgn0035665,FBgn0035666,FBgn0 035670,FBgn0035718,FBgn00350602,FBgn0036024 FBgn0035154,FBgn00350623,FBgn0036024 ,FBgn0035154,FBgn003501,FBgn0036023,FBgn0036024 FBgn0035157,FBgn003735,FBgn0036623,FBgn0036024 ,FBgn003761,FBgn003703,FBgn003733,FBgn003761,FBgn0037338 FBgn0037301,FBgn003735,FBgn0037337,FBgn0037338 ,FBgn0037345,FBgn003735,FBgn003733,FBgn0037338 FBgn0037345,FBgn0037357,FBgn0037337,FBgn0037338 ,FBgn0037345,FBgn0037357,FBgn003796,FBgn0038038,FB gn0038135,FBgn0037891,FBgn003842,FBgn0038842,FBgn003888,FBgn0038845,FBgn0038474,FBgn0038474,FBgn003842,FBgn003888,FB gn0038135,FBgn0037547,FBgn0038474,FBgn003842,FBgn00388 485,FBgn0038546,FBgn0038474,FBgn003842,FBgn0039403 ,FBgn0039052,FBgn0039052,FBgn0039403 ,FBgn0039404,FBgn0039470,FBgn0039471,FBgn003946 ,FBgn0039404,FBgn0039470,FBgn0039471,FBgn0039463 FBgn0039404,FBgn003959,FBgn003960,FBgn0039403 ,FBgn00315178,FBgn0041202,FBgn005306,FBgn0039403 ,FBgn003156,FBgn005306,FBgn003960,FBgn003960,FBgn003960,FBgn003960,FBgn003960,FBgn003960,FBgn005317,FBgn0051146,FBgn0051166,FBgn0051146,FBgn0051146,FBgn0051146,FBgn0051146,FBgn0051146,FBgn0051146,FBgn0053174,FBgn0053174,FBgn0053174,FBgn0053174,FBgn0053174,FBgn0053174,FBgn0053					
iFBgn0033921,FBgn0034052,FBgn0034065,FBgn0034 iNS,FBgn003411,FBgn003452,FBgn0034629,FB gn0034817,FBgn003452,FBgn0035064,FBgn0035064 i,FBgn0035154,FBgn003507,FBgn003566,FBgn0035064 i,FBgn003564,FBgn003507,FBgn003566,FBgn003562 iA1,FBgn003564,FBgn003507,FBgn0035686,FB gn003587,FBgn003501,FBgn0036023,FBgn003602 i,FBgn0035617,FBgn0036321,FBgn0036023,FBgn003603 i,FBgn0036157,FBgn0036321,FBgn003623,FBgn003603 i,FBgn0037045,FBgn003703,FBgn003731,FBgn003738 i,FBgn003734,FBgn003705,FBgn003737,FBgn003738 i,FBgn003734,FBgn003735,FBgn003737,FBgn0037 i,S,FBgn003734,FBgn003735,FBgn003737,FBgn0037 i,S,FBgn003734,FBgn003735,FBgn003737,FBgn0037 i,S,FBgn003734,FBgn003769,FBgn003737,FBgn0037 i,S,FBgn0038467,FBgn003769,FBgn0038788,FB gn003813,FBgn003745,FBgn0038742,FBgn0038788,FB gn003813,FBgn0039175,FBgn0039474,FBgn0038788,FBgn003848 i,FBgn0039404,FBgn0039474,FBgn0038742,FBgn0038102,FB gn0039156,FBgn0039477,FBgn0039471,FBgn0039403 i,FBgn003950,FBgn003950,FBgn003950,FBgn0039403 i,FBgn0003950,FBgn003950,FBgn0039102,FB gn0041147,FBgn0042112,FBgn0039471,FBgn0039403 i,FBgn005049,FBgn0050502,FBgn0051550 i,FBgn005041,FBgn0050502,FBgn0051126,FB					
085.FBgn0034141,FBgn0034177,FBgn0034564,FBgn0 034579,FBgn0034582,FBgn0034614,FBgn0035064 034579,FBgn0035154,FBgn0035506,FBgn0035064 ,FBgn0035154,FBgn0035734,FBgn0035506,FBgn00 035670,FBgn0035184,FBgn0035737,FBgn003586,FB 035670,FBgn0035718,FBgn003662,FBgn0036024 035670,FBgn0035718,FBgn0036732,FBgn003662,FBgn0 036996,FBgn003661,FBgn0036335,FBgn003662,FBgn0 036996,FBgn003661,FBgn0036735,FBgn003731,FBgn003731 FBgn0037345,FBgn003735,FBgn003731,FBgn003731,FBgn003735,FBgn003731,FBgn003735,FBgn003735,FBgn003735,FBgn003735,FBgn003735,FBgn003735,FBgn003735,FBgn003735,FBgn0037678,FBgn0 036996,FBgn0037345,FBgn003735,FBgn0037678,FBgn0 037891,FBgn003736,FBgn0037678,FBgn0 037315,FBgn003734,FBgn003742,FBgn0038788,FBgn0 037891,FBgn0038474,FBgn0038424,FBgn0038482,FBgn0038 455,FBgn0038464,FBgn0038742,FBgn0038788,FBgn0 038928,FBgn0039052,FBgn0039094,FBgn0039102,FB gn003915,FBgn0039175,FBgn003950,FBgn0039403 ,FBgn003917,FBgn003971,FBgn0040107,FBgn0040407,FBgn0039404,FBgn003956,FBgn0039403,FBgn0039404,FBgn003956,FBgn0051469,FBgn0051469,FBgn0051469,FBgn0051469,FBgn0051126,FB gn0051198,FBgn0050049,FBgn0050085,FBgn00503178,FBgn0041103 ,FBgn005126,FBgn0051469,FBgn0051126,FB gn0041147,FBgn0042112,FBgn0043471,FBgn0041103 ,FBgn005126,FBgn0050367,FBgn0051126,FB gn0051198,FBgn005036,FBgn0053178,FBgn00 050287,FBgn0050317,FBgn0053178,FBgn00 050287,FBgn0053127,FBgn0050502,FBgn0053178,FBgn00					
034579,FBgn0034582,FBgn0034614,FBgn0034629,FB gn0034817,FBgn0034988,FBgn0035064,FBgn003534 IFBgn0035154,FBgn0035374,FBgn0035354 171,FBgn0035154,FBgn0035779,FBgn0035866,FBgn0 035670,FBgn0035718,FBgn003666,FBgn0 035670,FBgn003501,FBgn0036023,FBgn00366,FB 103587,FBgn003551,FBgn003501,FBgn003603,FBgn0036024 IFBgn0036157,FBgn003603,FBgn0036024 IFBgn0036157,FBgn0036733,FBgn0037146,FB 103696,FBgn0037045,FBgn003735,FBgn0037146,FB gn0037301,FBgn003705,FBgn0037330,FBgn0037146,FB IFBgn0037301,FBgn003735,FBgn0037330,FBgn0037330,FBgn0037331,FBgn003735,FBgn003735,FBgn003735,FBgn003735,FBgn003735,FBgn0037354,FBgn0037669,FBgn0038038,FB 1037815,FBgn0038747,FBgn0038038,FB gn0038135,FBgn0038173,FBgn003803474,FBgn0038038,FB 1038928,FBgn0038467,FBgn0039054,FBgn0039102,FB gn0039150,FBgn003903,FEgn0039102,FB 1038928,FBgn0039052,FBgn0039054,FBgn0039102,FB gn0039150,FBgn0039471,FBgn0039403,FBgn0039403 1,FBgn0039404,FBgn003956,FBgn003956,FBgn00 039687,FBgn003956,FBgn003956,FBgn003960,FBgn00 0039687,FBgn0039777,FBgn0039550,FBgn00 039687,FBgn003956,FBgn003955,FBgn0040060,FB 178,FBgn005201,FBgn0039778,FBgn0040460,FB 689,FBgn0050049,FBgn005313,FBgn0040357,FBgn004046 689,FBgn0050049,FBgn005313,FBgn005317,FBgn00511520 IFBgn005217,FBgn005313,FBgn0053178,FBgn00 116,FBgn005217,FBgn0025483,FBgn0053178,FBgn00 160 116,FBgn0025425,FBgn0254645,FBgn026782,FB </td <td></td> <td></td> <td></td> <td></td> <td></td>					
gn0034817.FBgn0034988,FBgn0035006,FBgn0035064 ,FBgn0035154,FBgn0035374,FBgn0035583,FBgn0035 471.FBgn003514,FBgn003567,FBgn003566,FBgn0 035670,FBgn0035718,FBgn0035779,FBgn0036024 ,FBgn0036157,FBgn0036021,FBgn0036023,FBgn0036024 ,FBgn00366157,FBgn003632,FBgn0036024 ,FBgn003661,FBgn0036738,FBgn003626,FBgn0 036996,FBgn003704,FBgn003738,FBgn003730,FBgn0037338 gn0037301,FBgn003730,FBgn003730,FBgn0037338 FBgn0037345,FBgn003730,FBgn0037731,FBgn0037338 ,FBgn0037345,FBgn003769,FBgn0037678,FBgn0 03791,FBgn003735,FBgn0037678,FBgn003803,FB gn0037315,FBgn003780,FBgn0038224,FBgn0038038,FB gn0038145,FBgn0038474,FBgn0038422,FBgn0038038,FB gn0038145,FBgn0038474,FBgn003842,FBgn0038038,FB gn0039052,FBgn003904,FBgn0039102,FB gn0038175,FBgn003977,FBgn003904,FBgn0039039 ,FBgn003904,FBgn0039102,FB gn003916,FBgn0039175,FBgn003903471,FBgn003903 ,FBgn0039470,FBgn003977,FBgn003904,FBgn003903,FB gn0040078,FBgn004029,FBgn003977,FBgn003960,FBgn0 039687,FBgn003977,FBgn003977,FBgn003912,FB gn0040078,FBgn00420,FBgn0031469,FBgn0051126,FB gn0051126,FBgn0051260 Gn9040078,FBgn0051266,FBgn005312,FBgn005003,FBgn0051126,FB gn0051128,FBgn0053138,FBgn0086712,FB gn0051198,FBgn005201,FBgn0051368,FBgn005313,FBgn00260 ,FBgn0259676,FBgn0259913,FBgn00260 477,FBgn0259676,FBgn0259513,FBgn0026708,FBgn00260					
FBgn0035154,FBgn0035374,FBgn0035383,FBgn00356 471,FBgn0035644,FBgn003566,FBgn003566,FBgn003566,FBgn0035673,FBgn0035886,FB gn0035887,FBgn003501,FBgn0036023,FBgn0036024 ,FBgn0035617,FBgn003521,FBgn0036335,FBgn0036 S12,FBgn003501,FBgn0036023,FBgn0036826,FBgn0 036996,FBgn003705,FBgn003703,FBgn0037146,FB gn0037301,FBgn0037045,FBgn003703,FBgn0037146,FB gn0037305,FBgn003730,FBgn003731,FBgn003733, ,FBgn0037345,FBgn003730,FBgn003731,FBgn0037 513,FBgn003753,FBgn003730,FBgn003737,FBgn003733, ,FBgn0037534,FBgn003756,FBgn0037678,FBgn0 037815,FBgn003759,FBgn003824,FBgn0038390 ,FBgn0038467,FBgn0038474,FBgn0038482,FBgn00 037815,FBgn003905,FBgn003974,FBgn0039102,FB gn0039156,FBgn0039773,FBgn0039258,FBgn0039403 ,FBgn003940,FBgn0039747,FBgn0039102,FB gn003916,FBgn0039777,FBgn0039258,FBgn0039403 ,FBgn003940,FBgn0039778,FBgn0039403,FBgn0039403 ,FBgn003940,FBgn0039777,FBgn0039258,FBgn0039403 ,FBgn003940,FBgn0039778,FBgn004006,FBgn0041103 ,FBgn0039040,FBgn005085,FBgn005090,FBgn0 039687,FBgn0050971,FBgn00502,FBgn0051126,FB gn0041147,FBgn0052126,FBgn0051469,FBgn0051126,FB gn0051126,FBgn005126,FBgn0051126,FB gn0051198,FBgn005203,FBgn0053138,FBgn005031 116,FBgn005217,FBgn00529791,FBgn005125,FBgn0259791,FBgn0025067 ,FBgn0025061,FBgn025483,FBgn0053178,FBgn0025113,FBgn00 6670,028983,FBgn00259791,FBgn00259791,FBgn0025979,FBgn0					
471,FBgn0035644,FBgn0035665,FBgn0035866,FBgn0 935670,FBgn0035718,FBgn0035079,FBgn0035866,FBgn0 9003587,FBgn0035901,FBgn0036023,FBgn0036024 ,FBgn0036157,FBgn003633,FBgn003624 9003587,FBgn0036691,FBgn003633,FBgn003624,FBgn0 036996,FBgn0037045,FBgn003773,FBgn0037146,FB 90037301,FBgn0037305,FBgn003730,FBgn0037371,FBgn0037 512,FBgn0037354,FBgn003736,FBgn0037371,FBgn0037678,FBgn0 90037301,FBgn0037354,FBgn003766,FBgn0038038,FB 90037315,FBgn0037534,FBgn003769,FBgn0038038,FB 903813,FBgn0037534,FBgn0038173,FBgn0038038,FB 90038135,FBgn0038173,FBgn0038038,FB 9038135,FBgn0038173,FBgn0038224,FBgn0038390 ,FBgn0038467,FBgn0038173,FBgn003842,FBgn0038390 ,FBgn0038467,FBgn0038173,FBgn003824,FBgn0038788,FBgn0 038928,FBgn003905,FBgn003904,FBgn0039102,FB 90039156,FBgn0039175,FBgn003974,FBgn0039102,FB 90039156,FBgn0039580,FBgn0039778,FBgn0039102,FB 90039156,FBgn0039177,FBgn0039778,FBgn0039102,FB 90059156,FBgn003977,FBgn0039778,FBgn0039102,FB 90040078,FBgn0039175,FBgn0039778,FBgn0039040 689,FBgn0039580,FBgn003978,FBgn0039102,FB 9004078,FBgn0039580,FBgn003978,FBgn0039041103 ,FBgn000502,FBgn0039778,FBgn00377,FBgn00051126,FB 90040078,FBgn00050371,FBgn00051126,FB 90051126,FB 90051198,FBgn005202,FBgn005308,FBgn0053118,FBgn005318,FBgn0053116,FBgn005318,FBgn0053178,FBgn00259227 ,FBgn0005312,FBgn0025042,FBgn0025971,FBgn00259227 7Bgn0259676					
035670,FBgn0035718,FBgn0035779,FBgn0035886,FB gn0035887,FBgn0035901,FBgn0036023,FBgn0036024 ,FBgn0036157,FBgn0036321,FBgn0036325,FBgn0036 512,FBgn0036691,FBgn0036321,FBgn0036325,FBgn0036826,FBgn0 036996,FBgn0037045,FBgn0037735,FBgn0037146,FB gn0037301,FBgn0037305,FBgn0037331,FBgn0037338 ,FBgn0037345,FBgn0037669,FBgn0037678,FBgn0 037815,FBgn0037891,FBgn0037669,FBgn0037678,FBgn0 037815,FBgn0038173,FBgn0038224,FBgn0038038,FB gn0038135,FBgn0038173,FBgn0038422,FBgn0038038,FB gn0038145,FBgn0038174,FBgn0038742,FBgn0038788,FBgn0 038928,FBgn0039052,FBgn003904,FBgn0039102,FB gn0039156,FBgn0039175,FBgn0039258,FBgn0039403 ,FBgn0039404,FBgn0039470,FBgn0039471,FBgn0039403 ,FBgn0039404,FBgn003977,FBgn0039258,FBgn00390403 039687,FBgn0039052,FBgn003905,FBgn0039403 ,FBgn0039404,FBgn003977,FBgn003977,FBgn004060,FB gn0040078,FBgn0003956,FBgn003956,FBgn0039560,FBgn0 039687,FBgn003950,FBgn003977,FBgn0040060,FB gn004078,FBgn00040290,FBgn00337,FBgn0041103 ,FBgn0041147,FBgn0042112,FBgn004371,FBgn0041103 ,FBgn0051126,FBgn0050371,FBgn0051126,FB gn0051198,FBgn0051266,FBgn0053178,FBgn0051550 ,FBgn0052201,FBgn005126,FBgn0053178,FBgn0259227 ,FBgn0259676,FBgn025287,FBgn0259791,FBgn025227 ,FBgn0259676,FBgn0259791,FBgn0053137,FBgn0259227 ,FBgn025150,FBgn026420,FBgn0266458,FBgn0252727 ,FBgn025150,FBgn026420,FBgn0266458,FBgn0257914,FBgn0259227 ,FBgn025150,FBgn0264259,FBgn0267313,FBgn0 265140,FBgn00258455,FBgn0284256,FBgn0267824,FB gn0283525,FBgn0284256,FBgn0267824,FB gn0283525,FBgn0284256,FBgn0267824,FB gn0283525,FBgn00284256,FBgn00267824,FB gn0283525,FBgn00284256,FBgn00267824,FB gn0283525,FBgn00284256,FBgn000543,FBgn000356,FB </td <td></td> <td></td> <td></td> <td></td> <td></td>					
gn0035887,FBgn0035901,FBgn0036023,FBgn0036024 ,FFgn0036157,FBgn0036321,FBgn0036335,FBgn0036826,FBgn0 S12,FBgn00360517,FBgn003703,FBgn003703,FBgn0037146,FB gn0037031,FBgn0037045,FBgn003703,FBgn0037338 JFBgn0037345,FBgn003705,FBgn0037678,FBgn0037738,FBgn0037678,FBgn003763,FBgn003763,FBgn003763,FBgn003763,FBgn003763,FBgn003763,FBgn003763,FBgn003763,FBgn0037534,FBgn0037596,FBgn0038038,FB gn0038135,FBgn0037891,FBgn003769,FBgn0038708,FBgn0038708,FBgn0038783,FBgn0038742,FBgn00387742,FBgn0038788,FBgn0 037815,FBgn0038474,FBgn0038742,FBgn0038788,FBgn0 038928,FBgn0039052,FBgn0039054,FBgn0039102,FB gn0039156,FFgn0039057,FBgn0039403 ,FBgn0039404,FBgn0039059,FEgn003956,FBgn0039600,FBgn0 038928,FBgn0039471,FBgn0039403,FBgn0039403 ,FBgn0039404,FBgn003959,FEgn003950,FBgn0039403 ,FBgn0039404,FBgn003956,FBgn003956,FBgn0039650,FBgn0 03687,FBgn0039477,FBgn0039778,FBgn0041103 ,FBgn0041147,FBgn0042112,FBgn0053090,FBgn005090,FBgn0 035227,FBgn0050371,FBgn0050500,FBgn0 050287,FBgn005317,FBgn0050502,FBgn0051126,FB gn0051198,FBgn0051266,FBgn0053178,FBgn0 067102,FBgn005312,FBgn005313,FBgn0053178,FBgn0 067102,FBgn0052201,FBgn005313,FBgn0053178,FBgn0 477,FBgn0259678,FBgn0053178,FBgn0053178,FBgn0 067102,FBgn0025463,FBgn0026415,FBgn0263133,FBgn00 067102,FBgn0025463,FBgn0053178,FBgn0 477,FBgn0259678,FBgn0263133,FBgn0026412,FB gn0243511,FBgn0259678,FBgn0263133,FBgn0026415,FBgn0267824,FB gn0243525,FBgn0284256,FBgn0263733,FBgn0006					
i.FBgn0036157,FBgn0036321,FBgn0036335,FBgn0036 i.FBgn0036691,FBgn003703,FBgn003703,FBgn0037146,FB gn0037301,FBgn0037045,FBgn0037037,FBgn0037146,FB gn003731,FBgn003735,FBgn0037073,FBgn0037338 ,FBgn0037345,FBgn003756,FBgn0037371,FBgn0037 513,FBgn003753,FBgn0037669,FBgn0037678,FBgn0 037815,FBgn003753,FBgn003799,FBgn003808,FB gn003813,FBgn0038173,FBgn0038224,FBgn00388,FB gn03813,FBgn003846,FBgn0038424,FBgn0038482,FBgn0038482,FBgn003846,FBgn0039052,FBgn0039044,FBgn0039102,FB gn039156,FBgn0039052,FBgn003904,FBgn00390102,FB gn0039156,FBgn0039175,FBgn00390471,FBgn0039102,FB gn0039156,FBgn0039177,FBgn0039044,FBgn0039043 ,FFBgn0039404,FBgn0039470,FBgn0039050,FBgn0 039687,FBgn003958,FBgn0039650,FBgn0 039687,FBgn003958,FBgn0039650,FBgn0 039687,FBgn003950,FBgn0039471,FBgn00466,FB 689,FBgn0050049,FBgn004290,FBgn0050090,FBgn0 050287,FBgn005012,FBgn005126,FBgn0053112,FB gn0051198,FBgn0051266,FBgn005318,FBgn0053 116,FBgn005211,FBgn005202,FBgn005318,FBgn0053 116,FBgn0053127,FBgn005136,FBgn0053178,FBgn0 067102,FBgn005313,FBgn0053138,FBgn00633 116,FBgn0025405,FBgn025971,FBgn0259277 ,FBgn00259676,FBgn025971,FBgn0260 477,FFBgn0259676,FBgn025678,FBgn025973,FBgn0260 477,					
s12,FBgn0036691,FBgn0036738,FBgn0036826,FBgn0 036996,FBgn0037045,FBgn0037073,FBgn0037146,FB gn0037301,FBgn003705,FBgn003730,FBgn0037338 ,FBgn0037345,FBgn0037356,FBgn0037371,FBgn0037 s13,FBgn003734,FBgn0037356,FBgn0037371,FBgn0037 513,FBgn003754,FBgn003769,FBgn0038038,FB gn0038135,FBgn0038173,FBgn0038038,FB gn0038135,FBgn0038173,FBgn0038224,FBgn0038038,FB gn0038135,FBgn0038474,FBgn003842,FBgn0038 485,FBgn0038467,FBgn0038474,FBgn0038482,FBgn0039102,FB gn0039156,FBgn0039052,FBgn0039094,FBgn0039102,FB gn0039156,FBgn003915,FBgn00390471,FBgn0039403 ,FBgn0039404,FBgn0039470,FBgn0039471,FBgn0039403 ,FBgn003940,FBgn0039778,FBgn004060,FB gn0041047,FBgn0040290,FBgn0039778,FBgn0041103 ,FBgn005126,FBgn003977,FBgn004060,FB gn0041147,FBgn0041212,FBgn0050052,FBgn0051126,FB gn0051198,FBgn005126,FBgn005137,FBgn0046 689,FBgn0051266,FBgn0051469,FBgn005178,FBgn0051 ,FBgn005126,FBgn0053178,FBgn0053178,FBgn0053 116,FBgn0053127,FBgn00529073,FBgn0053178,FBgn0 667102,FBgn00529678,FBgn0259791,FBgn0259277 ,FBgn00259676,FBgn0259579,FBgn0266465,FBgn0259791,FBgn0260 477,FBgn0259676,FBgn0226579,FBgn0263133,FBgn0 6067102,FBgn0266420,FBgn0266465,FBgn0267824,FB gn0283525,FBgn0266453,FBgn0267824,FB gn0283525,FBgn0266420,FBgn0286788 160 60,00058 FBgn00000477,FBgn0000477,FBgn00					
metabolic 036996,FBgn0037045,FBgn003703,FBgn0037146,FB gn0037301,FBgn0037305,FBgn003730,FBgn0037338 ,FBgn0037345,FBgn0037350,FBgn0037371,FBgn0037 513,FBgn0037345,FBgn0037569,FBgn0037678,FBgn0 037815,FBgn003781,FBgn003799,FBgn0038038,FB gn0038135,FBgn0038173,FBgn0038224,FBgn003848,FB gn0038135,FBgn0038742,FBgn0038482,FBgn003848 485,FBgn0038546,FBgn0038742,FBgn0038482,FBgn0038 485,FBgn0039052,FBgn003904,FBgn0039102,FB gn0039156,FBgn0039052,FBgn00390471,FBgn0039403 ,FBgn0039404,FBgn0039175,FBgn0039471,FBgn0039403 ,FBgn0039404,FBgn0039175,FBgn0039471,FBgn0039403 ,FBgn0039050,FBgn003977,FBgn0039778,FBgn004006,FB gn0040078,FBgn0040290,FBgn004337,FBgn0041103 ,FBgn005049,FBgn005008,FBgn0051126,FB gn0051198,FBgn0051266,FBgn0051469,FBgn0051550 ,FBgn0053127,FBgn0053138,FBgn0053178,FBgn0053 116,FBgn0250815,FBgn025971,FBgn025927 ,FBgn0259678,FBgn025971,FBgn0260 477,FBgn0256678,FBgn026645,FBgn0267824,FB gn023525,FBgn0266450,FBgn00267824,FB gn023525,FBgn0026420,FBgn00267824,FB gn023525,FBgn002804256,FBgn0267824,FB gn023551,FBgn00284256,FBgn0267824,FB gn023551,FBgn00284256,FBgn0028788 metabolic					
metabolic gn0037301,FBgn0037305,FBgn0037330,FBgn0037338 gn0037345,FBgn0037356,FBgn0037371,FBgn0037 513,FBgn003754,FBgn003766,FBgn0037678,FBgn0 037815,FBgn0037891,FBgn0037996,FBgn0038038,FB gn0038135,FBgn0038173,FBgn0038224,FBgn0038390 ,FBgn0038467,FBgn0038474,FBgn0038482,FBgn0038 485,FBgn0038546,FBgn0038742,FBgn0038788,FBgn0 038928,FBgn0039052,FBgn0039094,FBgn0039102,FB gn0039156,FBgn0039175,FBgn0039258,FBgn0039403 ,FBgn0039404,FBgn0039470,FBgn0039471,FBgn0039 472,FBgn0039580,FBgn0039596,FBgn0039650,FBgn0 039687,FBgn0039777,FBgn0039778,FBgn0040060,FB gn0040178,FBgn004209,FBgn0043471,FBgn0041103 ,FBgn0051147,FBgn005008,FBgn0005008,FBgn005008,FBgn00 050287,FBgn0050371,FBgn0051266,FBgn0051469,FBgn0051550 ,FBgn0051261,FBgn0053178,FBgn0053178,FBgn0 067102,FBgn005398,FBgn005318,FBgn0053178,FBgn0 067102,FBgn00259678,FBgn0259173,FBgn0259277 ,FBgn00259676,FBgn025645,FBgn0259791,FBgn0260 477,FBgn0261850,FBgn0266442,FBgn0259791,FBgn0260 477,FBgn0261850,FBgn002642559,FBgn0263133,FBgn0 265140,FBgn000678,FBgn0000543,FBgn0000543,FBgn0000 160 GO:0008 gn023525,FBgn0266420,FBgn026645,FBgn0267824,FB gn023525,FBgn00266420,FBgn0					
metabolic ,FBgn0037345,FBgn0037356,FBgn0037678,FBgn0 937815,FBgn0037534,FBgn0037669,FBgn0037678,FBgn0 037815,FBgn0037534,FBgn0037996,FBgn0038038,FB 90038135,FBgn0038173,FBgn0038224,FBgn00380390 ,FBgn0038467,FBgn0038474,FBgn0038482,FBgn0038482,FBgn0038482,FBgn0038482,FBgn0039052,FBgn0039052,FBgn0039094,FBgn0039102,FB 90039156,FBgn0039052,FBgn0039094,FBgn0039170,FBgn0039471,FBgn0039471,FBgn0039404,FBgn003940,FBgn0039470,FBgn0039471,FBgn0039471,FBgn0039477,FBgn0039580,FBgn0039052,FBgn0039052,FBgn0039052,FBgn0039052,FBgn0039052,FBgn0039052,FBgn0039050,FBgn0040060,FB 90040078,FBgn0039777,FBgn0039778,FBgn0040060,FB gn0040078,FBgn0039777,FBgn0039778,FBgn0040060,FB 900501147,FBgn0039777,FBgn0039778,FBgn00401103 ,FBgn00500371,FBgn005008,FBgn005009,FBgn0 050287,FBgn00500371,FBgn005008,FBgn0051126,FB gn0051198,FBgn0051266,FBgn0051469,FBgn0051550 90051198,FBgn0051266,FBgn005318,FBgn0053178,FBgn0 067102,FBgn0083983,FBgn005318,FBgn0053178,FBgn0 067102,FBgn0083983,FBgn005315,FBgn0259913,FBgn0260 477,FBgn0259678,FBgn0259678,FBgn0259791,FBgn0260 477,FBgn0261850,FBgn0266450,FBgn0257971,FBgn0260 477,FBgn0266420,FBgn0259678,FBgn0263133,FBgn0 265140,FBgn0026420,FBgn026645,FBgn0267824,FB gn0283525,FBgn0284256,FBgn0266784 gn023352,FBgn00266420,FBgn0000543,FBgn0000 160 G0:0008 FBgn00000187,FBgn0000543,FBgn0003356,FB					
513,FBgn0037534,FBgn0037669,FBgn0037678,FBgn0 037815,FBgn0037891,FBgn0037996,FBgn0038038,FB gn0038135,FBgn0038173,FBgn0038224,FBgn0038390 ,FBgn0038467,FBgn0038474,FBgn003842,FBgn00384390 ,FBgn0038467,FBgn0038474,FBgn0038482,FBgn0 38928,FBgn0039052,FBgn0039094,FBgn0039102,FB gn0039156,FBgn003915,FBgn0039094,FBgn0039403 ,FBgn0039404,FBgn0039470,FBgn0039650,FBgn0039403 ,FBgn0039404,FBgn0039470,FBgn0039650,FBgn003960,FBgn0039403 ,FBgn0039404,FBgn0039596,FBgn0039650,FBgn003960,FBgn0039650,FBgn004066,FB gn0040078,FBgn003977,FBgn003977,FBgn0040460,FB gn0040078,FBgn003977,FBgn003977,FBgn004046037,FBgn0041103 ,FBgn0051147,FBgn0042112,FBgn0043471,FBgn0046 689,FBgn0050049,FBgn0050085,FBgn005090,FBgn0 050287,FBgn0050371,FBgn0051469,FBgn0051126,FB gn0051198,FBgn0051266,FBgn0051469,FBgn0051126,FB gn0051198,FBgn0051266,FBgn0051469,FBgn0051126,FB gn0051178,FBgn0053178,FBgn0 067102,FBgn0083983,FBgn0086712,FB gn0243511,FBgn005318,FBgn0053178,FBgn0 116,FBgn0259676,FBgn0259791,FBgn0260 477,FBgn0261850,FBgn026645,FBgn0259791,FBgn0260 477,FBgn0261850,FBgn026678,FBgn0267824,FB gn024352,FBgn0284256,FBgn0267824,FB gn0243525,FBgn0284256,FBgn0266788 160 GO:0008 FBgn0000078,FBgn0000177,FBgn0000241,FBgn0 160 gn0283525,FBgn0034257,FBgn0003356,FB 152					
037815,FBgn0037891,FBgn0037996,FBgn0038038,FB gn0038135,FBgn0038173,FBgn0038224,FBgn0038390 ,FBgn0038467,FBgn0038474,FBgn0038482,FBgn0038 485,FBgn0038546,FBgn0038742,FBgn0039102,FB gn0039156,FBgn0039052,FBgn0039094,FBgn0039102,FB gn0039156,FBgn0039175,FBgn0039258,FBgn0039403 ,FBgn0039404,FBgn0039596,FBgn0039650,FBgn0 039687,FBgn0039580,FBgn0039596,FBgn0039650,FBgn0 039687,FBgn0039777,FBgn0039778,FBgn0040060,FB gn0040078,FBgn0042112,FBgn004337,FBgn0041103 ,FBgn0041147,FBgn0042112,FBgn0043471,FBgn0046 689,FBgn0050149,FBgn0050085,FBgn0050126,FB gn0051198,FBgn0051266,FBgn0051469,FBgn0051550 ,FBgn0051198,FBgn0051266,FBgn0053178,FBgn0 050287,FBgn0053127,FBgn005318,FBgn0053178,FBgn0 067102,FBgn0083983,FBgn00571,FBgn0086712,FB gn0243511,FBgn0250815,FBgn0259791,FBgn0250227 ,FBgn0259676,FBgn0259678,FBgn0259791,FBgn0260 477,FBgn0261850,FBgn026465,FBgn0267824,FB gn0283525,FBgn0284256,FBgn0267824,FB gn0283525,FBgn0284256,FBgn0267824,FB gn0283525,FBgn0284256,FBgn0286788 160 GO:0008 metabolic 0.0058 FBgn0000078,FBgn0000177,FBgn0000147,FBgn0000543,FBgn0 160 GO:0008 152					
gn0038135,FBgn0038173,FBgn0038224,FBgn0038390 ,FBgn0038467,FBgn0038474,FBgn0038482,FBgn0038 485,FBgn0038467,FBgn0038742,FBgn0038788,FBgn0 038928,FBgn0039052,FBgn0039094,FBgn0039102,FB gn0039156,FBgn0039175,FBgn003904,FBgn0039403 ,FBgn0039404,FBgn0039470,FBgn0039471,FBgn0039403 ,FBgn0039580,FBgn0039596,FBgn0039650,FBgn0 039687,FBgn0039477,FBgn0039560,FBgn0039650,FBgn0 039687,FBgn0039777,FBgn0039778,FBgn0040060,FB gn0040078,FBgn0040290,FBgn0040337,FBgn0041103 ,FBgn0041147,FBgn0042112,FBgn0043471,FBgn0046 689,FBgn0050049,FBgn005008,FBgn005009,FBgn0 050287,FBgn0050371,FBgn005038,FBgn005039,FBgn0 050287,FBgn0050248,FBgn0051126,FB gn0051198,FBgn0051266,FBgn0051469,FBgn0051550 ,FBgn005127,FBgn0053138,FBgn0053178,FBgn0 067102,FBgn0053127,FBgn0053138,FBgn0086712,FB gn0243511,FBgn0259678,FBgn025971,FBgn0259227 ,FBgn0250815,FBgn025971,FBgn0259227 ,FBgn0259676,FBgn0259678,FBgn0259791,FBgn0260 477,FBgn0261850,FBgn0259579,FBgn0263133,FBgn0 265140,FBgn0266420,FBgn0266455,FBgn0267824,FB gn0243511,FBgn026420,FBgn0266465,FBgn0267824,FB 160 GO:0008 gn023525,FBgn000477,FBgn00001477,FBgn0000543,FBgn0000 160 GO:0008 gn0243511,FBgn0003076,FBgn0026445,FBgn0266788 152 152					
i,FBgn0038467,FBgn0038474,FBgn0038482,FBgn0038 i,FBgn0038546,FBgn0038742,FBgn0038788,FBgn0 038928,FBgn0039052,FBgn0039094,FBgn0039102,FB gn0039156,FBgn0039175,FBgn0039258,FBgn0039403 i,FBgn0039404,FBgn0039470,FBgn0039471,FBgn00394403 i,FBgn0039404,FBgn0039596,FBgn003950,FBgn0039670,FBgn003967,FBgn0039670,FBgn0039773,FBgn0040060,FB gn0040078,FBgn004290,FBgn0039778,FBgn0040060,FB gn0040078,FBgn0050040290,FBgn0040337,FBgn0041103 i,FBgn0050049,FBgn0050085,FBgn005090,FBgn0 050287,FBgn0050049,FBgn005002,FBgn0051126,FB gn0051198,FBgn0051266,FBgn0051469,FBgn0051550 i,FBgn0051201,FBgn0051266,FBgn0053178,FBgn0 067102,FBgn0053127,FBgn0086708,FBgn0086712,FB gn0243511,FBgn0250815,FBgn02597911,FBgn00259227 i,FBgn0259676,FBgn0259678,FBgn0259791,FBgn025927 i,FBgn0259676,FBgn0259678,FBgn0259791,FBgn025927 i,FBgn0259676,FBgn0266420,FBgn0263133,FBgn0 265140,FBgn026420,FBgn0266455,FBgn0267824,FB gn0283525,FBgn0284256,FBgn0286788					
485,FBgn0038546,FBgn0038742,FBgn0038788,FBgn0 038928,FBgn0039052,FBgn0039094,FBgn0039102,FB gn0039156,FBgn0039175,FBgn0039258,FBgn0039403 ,FBgn0039404,FBgn0039470,FBgn0039471,FBgn0039 472,FBgn0039580,FBgn0039596,FBgn003960,FBgn0 039687,FBgn0039777,FBgn0039778,FBgn0040060,FB gn0040078,FBgn0040290,FBgn0040337,FBgn0041103 ,FBgn0050049,FBgn0050085,FBgn0050090,FBgn0 050287,FBgn0050371,FBgn005002,FBgn0051126,FB gn0051198,FBgn0051266,FBgn0051469,FBgn0051550 ,FBgn0052201,FBgn0053128,FBgn0053178,FBgn0 067102,FBgn0053127,FBgn0086708,FBgn0053178,FBgn0 067102,FBgn0250815,FBgn0259791,FBgn00259227 ,FBgn0259676,FBgn0266440,FBgn0263133,FBgn0 067102,FBgn026420,FBgn026645,FBgn0263133,FBgn0 265140,FBgn026420,FBgn0266455,FBgn0267824,FB gn0283525,FBgn0084708,FBgn0026478,FBgn0000 477,FBgn0001150,FBgn0000177,FBgn0000543,FBgn0000 160 GO:0008 process 731 591,FBgn0001150,FBgn0003257,FBgn0003356,FB 152					
038928,FBgn0039052,FBgn003904,FBgn0039102,FB gn0039156,FBgn0039175,FBgn0039258,FBgn0039403 ,FBgn0039404,FBgn0039470,FBgn0039471,FBgn0039 472,FBgn0039580,FBgn0039596,FBgn0039650,FBgn0 039687,FBgn0039777,FBgn0039778,FBgn0040060,FB gn0040078,FBgn0040290,FBgn0040337,FBgn0041103 ,FBgn0041147,FBgn0042112,FBgn0043471,FBgn0046 689,FBgn0050049,FBgn005085,FBgn005090,FBgn0 050287,FBgn0050371,FBgn0050085,FBgn0051126,FB gn0051198,FBgn0051266,FBgn0051469,FBgn0051550 ,FBgn0052201,FBgn0052483,FBgn005318,FBgn0053178,FBgn0 067102,FBgn0053127,FBgn0053138,FBgn0053178,FBgn0 067102,FBgn0259678,FBgn0259711,FBgn0259227 ,FBgn0259676,FBgn0259678,FBgn0259791,FBgn0259227 ,FBgn0259676,FBgn0259678,FBgn0263133,FBgn0 265140,FBgn0266420,FBgn0266465,FBgn0267824,FB gn0283525,FBgn0284256,FBgn0286788 metabolic 0.0058 process 731 591,FBgn0001150,FBgn0001187,FBgn0002441,FBgn0 152					
gn0039156,FBgn0039175,FBgn0039258,FBgn0039403 ,FBgn0039404,FBgn0039470,FBgn0039471,FBgn0039 472,FBgn0039580,FBgn0039596,FBgn0039650,FBgn0 039687,FBgn0039777,FBgn0039778,FBgn0040060,FB gn0040078,FBgn0040290,FBgn0040337,FBgn0041103 ,FBgn0041147,FBgn0042112,FBgn0043471,FBgn0046 689,FBgn0050049,FBgn0050085,FBgn0050090,FBgn0 050287,FBgn0050371,FBgn005002,FBgn0051126,FB gn0051198,FBgn0051266,FBgn0051469,FBgn0051550 ,FBgn0053127,FBgn0053138,FBgn0053178,FBgn0 067102,FBgn0053127,FBgn0053138,FBgn0086712,FB gn0243511,FBgn0250815,FBgn0259791,FBgn0259227 ,FBgn0259676,FBgn0259678,FBgn0259791,FBgn0260 477,FBgn0261850,FBgn0264259,FBgn0263133,FBgn0 265140,FBgn026420,FBgn0266465,FBgn0286788 metabolic 0.0058 process 731 591,FBgn0001150,FBgn0001187,FBgn0003257,FBgn0003356,FB					
,FBgn0039404,FBgn0039470,FBgn0039471,FBgn0039 ,FBgn0039580,FBgn0039596,FBgn0039650,FBgn0 039687,FBgn0039580,FBgn0039596,FBgn0039650,FBgn0 039687,FBgn0039777,FBgn0039778,FBgn0040060,FB gn0040078,FBgn0040290,FBgn0040337,FBgn0041103 ,FBgn0041147,FBgn0042112,FBgn0043471,FBgn0046 689,FBgn0050049,FBgn0050085,FBgn0050090,FBgn0 050287,FBgn0050371,FBgn0050502,FBgn0051126,FB gn0051198,FBgn0051266,FBgn0051469,FBgn0051550 ,FBgn0052201,FBgn0052483,FBgn0053178,FBgn0 067102,FBgn0053127,FBgn0053138,FBgn0053178,FBgn0 067102,FBgn00520815,FBgn0259113,FBgn0259227 ,FBgn0259676,FBgn0259678,FBgn0259791,FBgn0260 477,FBgn0261850,FBgn0266465,FBgn0267824,FB gn0283525,FBgn0284256,FBgn0286788 265140,FBgn000078,FBgn0000477,FBgn0000543,FBgn0000 160 GO:0008 metabolic 0.0058 FBgn00001150,FBgn0001187,FBgn0002441,FBgn0 152 152					
472,FBgn0039580,FBgn0039596,FBgn0039650,FBgn0 039687,FBgn0039777,FBgn0039778,FBgn0040060,FB gn0040078,FBgn0040290,FBgn0040337,FBgn0041103 ,FBgn0041147,FBgn0042112,FBgn0043471,FBgn0046 689,FBgn0050049,FBgn0050085,FBgn005090,FBgn0 050287,FBgn0050371,FBgn0050052,FBgn0051126,FB gn0051198,FBgn0051266,FBgn0051469,FBgn0051550 ,FBgn0052201,FBgn0052483,FBgn0053178,FBgn0 067102,FBgn0083983,FBgn0086708,FBgn0086712,FB gn0243511,FBgn0250815,FBgn0259113,FBgn0259227 ,FBgn0259676,FBgn0259678,FBgn0260 477,FBgn0261850,FBgn0262559,FBgn0263133,FBgn0 265140,FBgn0266420,FBgn0266465,FBgn0267824,FB gn0283525,FBgn0284256,FBgn0286788 metabolic 0.0058 FBgn0000078,FBgn0000477,FBgn0000543,FBgn0000 160 GO:0008 152 process 731 591,FBgn003150,FBgn003257,FBgn003257,FBgn003356,FB 152 152					
metabolic 0.39687,FBgn0039777,FBgn0039778,FBgn0040060,FB 160 GO:0008 gn0040078,FBgn0040290,FBgn0040337,FBgn0041103 ,FBgn0041147,FBgn0042112,FBgn0043471,FBgn0046 152 689,FBgn0050049,FBgn0050085,FBgn0050090,FBgn0 050287,FBgn0050049,FBgn0050085,FBgn0051126,FB 160 GO:0008 gn0051198,FBgn0050371,FBgn0050085,FBgn0051126,FB gn0051198,FBgn0052201,FBgn0051266,FBgn0051850 160 GO:0008 gn0051198,FBgn0052201,FBgn0052483,FBgn0053178,FBgn0 067102,FBgn0053127,FBgn0053138,FBgn0053178,FBgn0 160 GO:0008 gn0243511,FBgn0250815,FBgn0259713,FBgn0259227 ,FBgn0259676,FBgn0259678,FBgn0259791,FBgn0260 152 wetabolic 0.0058 FBgn0000078,FBgn000477,FBgn0266465,FBgn02667824,FB 160 GO:0008 152					
gn0040078,FBgn0040290,FBgn0040337,FBgn0041103 ,FBgn0041147,FBgn0042112,FBgn0043471,FBgn0046 689,FBgn0050049,FBgn0050085,FBgn0050090,FBgn0 050287,FBgn0050371,FBgn0050502,FBgn0051126,FB gn0051198,FBgn0051266,FBgn0051469,FBgn0051550 ,FBgn0052201,FBgn0052483,FBgn0053080,FBgn0053 116,FBgn0053127,FBgn0053138,FBgn0053178,FBgn0 067102,FBgn0083983,FBgn0086708,FBgn0086712,FB gn0243511,FBgn0250815,FBgn0259113,FBgn0259227 ,FBgn0259676,FBgn0259678,FBgn0259791,FBgn0260 477,FBgn0261850,FBgn0266455,FBgn0267824,FB gn0283525,FBgn0284256,FBgn0286788 metabolic process 731 591,FBgn0001150,FBgn0001187,FBgn00003257,FBgn0003356,FB 160 GO:0008 152 152					
,FBgn0041147,FBgn0042112,FBgn0043471,FBgn0046 689,FBgn0050049,FBgn0050085,FBgn0050090,FBgn0 050287,FBgn0050371,FBgn0050502,FBgn0051126,FB gn0051198,FBgn0051266,FBgn0051469,FBgn0051550 ,FBgn0052201,FBgn0052483,FBgn0053080,FBgn0053 116,FBgn0053127,FBgn0053138,FBgn0053178,FBgn0 067102,FBgn0083983,FBgn0086708,FBgn0086712,FB gn0243511,FBgn0250815,FBgn0259113,FBgn0259227 ,FBgn0259676,FBgn0259678,FBgn0263133,FBgn0 265140,FBgn0266420,FBgn0266465,FBgn0267824,FB gn0283525,FBgn0284256,FBgn0286788 metabolic 0.0058 process 731 591,FBgn0001150,FBgn0003257,FBgn0003356,FB 160					
689,FBgn0050049,FBgn0050085,FBgn0050090,FBgn0 050287,FBgn0050371,FBgn0050502,FBgn0051126,FB gn0051198,FBgn0051266,FBgn0051469,FBgn0051550 ,FBgn0052201,FBgn0052483,FBgn0053080,FBgn0053 116,FBgn0053127,FBgn0053138,FBgn0053178,FBgn0 067102,FBgn0083983,FBgn0086708,FBgn0086712,FB gn0243511,FBgn0250815,FBgn0259113,FBgn0259227 ,FBgn0259676,FBgn0259678,FBgn0259791,FBgn0260 477,FBgn0261850,FBgn0266465,FBgn0267824,FB gn0283525,FBgn0284256,FBgn0286788 metabolic process 731 591,FBgn0001150,FBgn0003076,FBgn0003257,FBgn0003356,FB					
050287,FBgn0050371,FBgn0050502,FBgn0051126,FB gn0051198,FBgn0051266,FBgn0051469,FBgn0051550 ,FBgn0052201,FBgn0052483,FBgn0053080,FBgn0053 116,FBgn0053127,FBgn0053138,FBgn0053178,FBgn0 067102,FBgn0083983,FBgn0086708,FBgn0086712,FB gn0243511,FBgn0250815,FBgn0259113,FBgn0259227 ,FBgn0259676,FBgn0259678,FBgn0259791,FBgn0260 477,FBgn0261850,FBgn0266465,FBgn0263133,FBgn0 265140,FBgn0266420,FBgn0266465,FBgn0267824,FB gn0283525,FBgn0284256,FBgn0286788 metabolic 0.0058 FBgn00001150,FBgn0001187,FBgn0002441,FBgn0 for GO:0008 process 731 591,FBgn003076,FBgn003257,FBgn0003356,FB					
metabolic 0.0058 FBgn00000078,FBgn0000477,FBgn000543,FBgn000543,FBgn000000000000000000000000000000000000					
intervalue intervalue <td></td> <td></td> <td></td> <td></td> <td></td>					
116,FBgn0053127,FBgn0053138,FBgn0053178,FBgn0 067102,FBgn0083983,FBgn0086708,FBgn0086712,FB gn0243511,FBgn0250815,FBgn0259113,FBgn0259227 ,FBgn0259676,FBgn0259678,FBgn0259791,FBgn0260 477,FBgn0261850,FBgn0262559,FBgn0263133,FBgn0 265140,FBgn0266420,FBgn0266465,FBgn0267824,FB gn0283525,FBgn0284256,FBgn0286788 metabolic 0.0058 FBgn00001150,FBgn0001187,FBgn0000543,FBgn0000 160 GO:0008 152					
067102,FBgn0083983,FBgn0086708,FBgn0086712,FB gn0243511,FBgn0250815,FBgn0259113,FBgn0259227 ,FBgn0259676,FBgn0259678,FBgn0259791,FBgn0260 477,FBgn0261850,FBgn0262559,FBgn0263133,FBgn0 265140,FBgn0266420,FBgn0266465,FBgn0267824,FB gn0283525,FBgn0284256,FBgn0286788 metabolic 0.0058 FBgn00001150,FBgn0001187,FBgn0000543,FBgn0000 160 GO:0008 152					
gn0243511,FBgn0250815,FBgn0259113,FBgn0259227 ,FBgn0259676,FBgn0259678,FBgn0259791,FBgn0260 477,FBgn0261850,FBgn0262559,FBgn0263133,FBgn0 265140,FBgn0266420,FBgn0266465,FBgn0267824,FB gn0283525,FBgn0284256,FBgn0286788 Image: Constraint of the second					
FBgn0259676,FBgn0259678,FBgn0259791,FBgn0260 477,FBgn0261850,FBgn0262559,FBgn0263133,FBgn0 265140,FBgn0266420,FBgn0266465,FBgn0267824,FB gn0283525,FBgn0284256,FBgn0286788 metabolic 0.0058 FBgn0000078,FBgn0000477,FBgn0000543,FBgn0000 160 GO:0008 process 731 591,FBgn0003076,FBgn0003257,FBgn0003356,FB					
477,FBgn0261850,FBgn0262559,FBgn0263133,FBgn0 477,FBgn0261850,FBgn0262559,FBgn0263133,FBgn0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 <					
265140,FBgn0266420,FBgn0266465,FBgn0267824,FB 6000000000000000000000000000000000000					
gn0283525,FBgn0284256,FBgn0286788 GO:0008 metabolic 0.0058 FBgn0000078,FBgn0000477,FBgn0000543,FBgn0000 160 GO:0008 process 731 591,FBgn0001150,FBgn0001187,FBgn0002441,FBgn0 152 152 003044,FBgn0003076,FBgn0003257,FBgn0003356,FB 003044,FBgn0003076,FBgn0003257,FBgn0003356,FB 152 152					
metabolic 0.0058 FBgn0000078,FBgn0000477,FBgn0000543,FBgn0000 160 GO:0008 process 731 591,FBgn0001150,FBgn0001187,FBgn0002441,FBgn0 152 003044,FBgn0003076,FBgn0003257,FBgn0003356,FB 152					
process 731 591,FBgn0001150,FBgn0001187,FBgn0002441,FBgn0 003044,FBgn0003076,FBgn0003257,FBgn0003356,FB 152	metabolic	0.0058		160	GO:0008
003044,FBgn0003076,FBgn0003257,FBgn0003356,FB				100	
	1	,			
gn0003357,FBgn0003358,FBgn0003525.FBgn0003863			gn0003357,FBgn0003358,FBgn0003525,FBgn0003863		
,FBgn0003996,FBgn0004403,FBgn0004406,FBgn0004		1			
			,FBgn0003996,FBgn0004403.FBgn0004406.FBgn0004		
gn0011703,FBgn0011704,FBgn0011762,FBgn0011768			432,FBgn0010278,FBgn0010380,FBgn0010382,FBgn0		
,FBgn0011770,FBgn0011787,FBgn0013725,FBgn0013			432,FBgn0010278,FBgn0010380,FBgn0010382,FBgn0 010425,FBgn0011211,FBgn0011227,FBgn0011555,FB		

972,FBgn0014023,FBgn0014028,FBgn0014427,FBgn0
014861,FBgn0015075,FBgn0015271,FBgn0015277,FB
gn0015299,FBgn0016691,FBgn0017577,FBgn0019644
,FBgn0019650,FBgn0020391,FBgn0020633,FBgn0020
906,FBgn0022700,FBgn0023477,FBgn0024194,FBgn0
024227,FBgn0024321,FBgn0024957,FBgn0024958,FB
gn0024997,FBgn0025352,FBgn0025373,FBgn0025463
,FBgn0025592,FBgn0025680,FBgn0025814,FBgn0025
815,FBgn0026079,FBgn0026143,FBgn0026411,FBgn0
026679,FBgn0026702,FBgn0026741,FBgn0026876,FB
gn0026879,FBgn0027560,FBgn0027578,FBgn0027791
FBgn0027794,FBgn0027868,FBgn0028342,FBgn0029
131,FBgn0029718,FBgn0029823,FBgn0029828,FBgn0
029856,FBgn0029906,FBgn0029977,FBgn0030054,FB
gn0030081,FBgn0030136,FBgn0030507,FBgn0030688
,FBgn0030945,FBgn0030966,FBgn0031003,FBgn0031
092,FBgn0031145,FBgn0031231,FBgn0031248,FBgn0
031249,FBgn0031252,FBgn0031260,FBgn0031309,FB
gn0031321,FBgn0031381,FBgn0031653,FBgn0031663
,FBgn0031678,FBgn0031703,FBgn0031713,FBgn0031
875,FBgn0031996,FBgn0031999,FBgn0032144,FBgn0
032187,FBgn0032244,FBgn0032638,FBgn0032781,FB
gn0033079,FBgn0033179,FBgn0033187,FBgn0033235
,FBgn0033377,FBgn0033382,FBgn0033431,FBgn0033
454,FBgn0033527,FBgn0033549,FBgn0033555,FBgn0
033733,FBgn0033774,FBgn0033890,FBgn0033921,FB
gn0033961,FBgn0034052,FBgn0034065,FBgn0034085
,FBgn0034141,FBgn0034177,FBgn0034564,FBgn0034
579,FBgn0034582,FBgn0034614,FBgn0034629,FBgn0
034756,FBgn0034817,FBgn0034988,FBgn0035006,FB
gn0035064,FBgn0035154,FBgn0035374,FBgn0035383
FBgn0035471,FBgn0035619,FBgn0035644,FBgn0035
665,FBgn0035666,FBgn0035670,FBgn0035718,FBgn0
035779,FBgn0035886,FBgn0035887,FBgn0035901,FB
gn0036023,FBgn0036024,FBgn0036157,FBgn0036321
,FBgn0036335,FBgn0036512,FBgn0036691,FBgn0036
738,FBgn0036826,FBgn0036948,FBgn0036953,FBgn0
036996,FBgn0037045,FBgn0037073,FBgn0037146,FB
gn0037301,FBgn0037305,FBgn0037330,FBgn0037338
,FBgn0037345,FBgn0037356,FBgn0037370,FBgn0037
371,FBgn0037513,FBgn0037534,FBgn0037569,FBgn0
037669,FBgn0037678,FBgn0037815,FBgn0037891,FB
gn0037996,FBgn0038038,FBgn0038135,FBgn0038173
,FBgn0038224,FBgn0038390,FBgn0038437,FBgn0038
467,FBgn0038474,FBgn0038482,FBgn0038485,FBgn0
038546,FBgn0038742,FBgn0038788,FBgn0038928,FB
gn0039052,FBgn0039094,FBgn0039099,FBgn0039102
,FBgn0039156,FBgn0039175,FBgn0039258,FBgn0039
403,FBgn0039404,FBgn0039470,FBgn0039471,FBgn0
039472,FBgn0039580,FBgn0039596,FBgn0039650,FB
gn0039687,FBgn0039777,FBgn0039778,FBgn0040060
,FBgn0040069,FBgn0040078,FBgn0040290,FBgn0040
337,FBgn0040529,FBgn0040959,FBgn0041103,FBgn0
041147,FBgn0042112,FBgn0043471,FBgn0043575,FB
gn0046689,FBgn0050049,FBgn0050085,FBgn0050090
FBgn0050287,FBgn0050371,FBgn0050493,FBgn0050
502,FBgn0051126,FBgn0051198,FBgn0051266,FBgn0
562, 2 Bussel 120, 1 Bussel 170, 1 Bussel 1200, 1 Bussel

	1			
		051469,FBgn0051550,FBgn0052201,FBgn0052284,FB		
		gn0052483,FBgn0052750,FBgn0053080,FBgn0053116		
		,FBgn0053127,FBgn0053138,FBgn0053178,FBgn0053		
		265,FBgn0067102,FBgn0083983,FBgn0085249,FBgn0		
		085484,FBgn0086708,FBgn0086712,FBgn0243511,FB		
		gn0250815,FBgn0259113,FBgn0259227,FBgn0259676		
		,FBgn0259678,FBgn0259748,FBgn0259791,FBgn0260		
		477,FBgn0261850,FBgn0262559,FBgn0263133,FBgn0		
		265140,FBgn0266420,FBgn0266465,FBgn0267824,FB		
		gn0283525,FBgn0283680,FBgn0284256,FBgn0286788		
organonitraga	0.0167	FBgn0001187,FBgn0003257,FBgn0003356,FBgn0003	157	GO:1901
organonitroge			137	
n compound	065	357,FBgn0003358,FBgn0003525,FBgn0003863,FBgn0		564
metabolic		003996,FBgn0004403,FBgn0004432,FBgn0010278,FB		
process		gn0010382,FBgn0010425,FBgn0011211,FBgn0011555		
		,FBgn0011703,FBgn0011704,FBgn0011768,FBgn0011		
		787,FBgn0013725,FBgn0013972,FBgn0014023,FBgn0		
		014427,FBgn0016691,FBgn0019644,FBgn0020391,FB		
		gn0020906,FBgn0022700,FBgn0024194,FBgn0024227		
		,FBgn0024997,FBgn0026741,FBgn0026879,FBgn0027		
		578,FBgn0027791,FBgn0027794,FBgn0028342,FBgn0		
		029718,FBgn0029823,FBgn0029828,FBgn0029856,FB		
		gn0029906,FBgn0030136,FBgn0030688,FBgn0030945		
		FBgn0031003,FBgn0031145,FBgn0031231,FBgn0031		
		248,FBgn0031249,FBgn0031260,FBgn0031309,FBgn0		
		031653,FBgn0031678,FBgn0031999,FBgn0032144,FB		
		gn0032187,FBgn0032638,FBgn0033179,FBgn0033187		
		,FBgn0033235,FBgn0033431,FBgn0033527,FBgn0033		
		555,FBgn0033774,FBgn0034052,FBgn0034085,FBgn0		
		034177,FBgn0034579,FBgn0034582,FBgn0034817,FB		
		gn0034988,FBgn0035064,FBgn0035154,FBgn0035374		
		,FBgn0035665,FBgn0035666,FBgn0035670,FBgn0035		
		718,FBgn0035779,FBgn0035886,FBgn0035887,FBgn0		
		036023,FBgn0036024,FBgn0036157,FBgn0036335,FB		
		gn0036512,FBgn0036738,FBgn0036948,FBgn0036953		
		,FBgn0037045,FBgn0037146,FBgn0037301,FBgn0037		
		305,FBgn0037330,FBgn0037513,FBgn0037534,FBgn0		
		037678,FBgn0038135,FBgn0038173,FBgn0038224,FB		
		gn0038467,FBgn0038474,FBgn0038482,FBgn0038485		
		,FBgn0038788,FBgn0038928,FBgn0039052,FBgn0039		
		094,FBgn0039102,FBgn0039156,FBgn0039175,FBgn0		
		039258,FBgn0039580,FBgn0039650,FBgn0039687,FB		
		gn0039777,FBgn0039778,FBgn0040060,FBgn0040078		
		,FBgn0040959,FBgn0041147,FBgn0042112,FBgn0043		
		471,FBgn0043575,FBgn0046689,FBgn0050049,FBgn0		
		050090,FBgn0050287,FBgn0050371,FBgn0051198,FB		
		gn0051266,FBgn0051469,FBgn0052201,FBgn0052284		
		,FBgn0052483,FBgn0053127,FBgn0053178,FBgn0053		
		265,FBgn0067102,FBgn0083983,FBgn0085249,FBgn0		
		085484,FBgn0086708,FBgn0243511,FBgn0250815,FB		
		gn0259227,FBgn0259678,FBgn0259748,FBgn0259791		
		,FBgn0260477,FBgn0262559,FBgn0263133,FBgn0265		
		140,FBgn0266465,FBgn0267824,FBgn0284256		
small	4.43E-	FBgn0000543,FBgn0001187,FBgn0003076,FBgn0003	62	GO:0044
molecule	07	257,FBgn0011211,FBgn0011703,FBgn0011704,FBgn0		281
metabolic		011768,FBgn0011770,FBgn0013972,FBgn0014427,FB		
process		gn0016691,FBgn0019644,FBgn0024957,FBgn0024958		
-		,FBgn0025352,FBgn0025592,FBgn0025814,FBgn0028		

		342,FBgn0029823,FBgn0030507,FBgn0030966,FBgn0 031092,FBgn0031381,FBgn0031663,FBgn0031703,FB gn0031713,FBgn0033733,FBgn0034177,FBgn0034629 ,FBgn0034988,FBgn0035006,FBgn0035064,FBgn0035 383,FBgn0035471,FBgn0036157,FBgn0036691,FBgn0 037146,FBgn0037305,FBgn0037356,FBgn0037513,FB gn0037534,FBgn0037996,FBgn0038173,FBgn0038224 ,FBgn0038437,FBgn0038467,FBgn0038742,FBgn0039 052,FBgn0039094,FBgn0039156,FBgn0039175,FBgn0 039258,FBgn0039580,FBgn0039650,FBgn0050493,FB gn0050502,FBgn0053178,FBgn0085484,FBgn0086712 ,FBgn0262559,FBgn0283680		
proteolysis	9.114 E-06	FBgn0003356,FBgn0003357,FBgn0003358,FBgn0003 863,FBgn0010425,FBgn0011555,FBgn0011703,FBgn0 011704,FBgn0013725,FBgn0020906,FBgn0024997,FB gn0027578,FBgn0029828,FBgn0029856,FBgn0030688 ,FBgn0031248,FBgn0031249,FBgn0031260,FBgn0031 653,FBgn0031678,FBgn0032144,FBgn0032638,FBgn0 033179,FBgn0033235,FBgn0033774,FBgn0034052,FB gn0035154,FBgn0035665,FBgn0035666,FBgn0035670 ,FBgn0035718,FBgn0035779,FBgn0035886,FBgn0035 887,FBgn0036023,FBgn0036024,FBgn0036512,FBgn0 036738,FBgn0037678,FBgn0038135,FBgn0038482,FB gn0038485,FBgn0038928,FBgn0039102,FBgn0039777 ,FBgn0039778,FBgn0040060,FBgn0041147,FBgn0043 471,FBgn0050049,FBgn0051266,FBgn0052483,FB gn0053127,FBgn0250815,FBgn0260477,FBgn0262559 ,FBgn0265140	61	GO:0006 508
cell cycle process	0.0318 894	FBgn0000140,FBgn0003525,FBgn0003885,FBgn0004 378,FBgn0004643,FBgn0010382,FBgn0011020,FBgn0 011692,FBgn0014861,FBgn0015271,FBgn0015391,FB gn0017577,FBgn0020633,FBgn0024227,FBgn0025815 ,FBgn0026143,FBgn0026876,FBgn0027500,FBgn0027 868,FBgn0029977,FBgn0030054,FBgn0031549,FBgn0 032244,FBgn0033549,FBgn0033890,FBgn0033921,FB gn0034569,FBgn0035644,FBgn0038390,FBgn0039403 ,FBgn0039638,FBgn0040078,FBgn0040290,FBgn0041 147,FBgn0050085,FBgn0061476,FBgn0259113,FBgn0 259791,FBgn0261850,FBgn0286788	40	GO:0022 402
organic acid metabolic process	4.282 E-06	FBgn0001187,FBgn0011770,FBgn0014427,FBgn0024 957,FBgn0024958,FBgn0025352,FBgn0025814,FBgn0 029823,FBgn0030966,FBgn0031092,FBgn0031703,FB gn0033733,FBgn0034177,FBgn0034629,FBgn0035006 ,FBgn0035064,FBgn0035383,FBgn0035471,FBgn0036 157,FBgn0036691,FBgn0037146,FBgn0037305,FBgn0 037356,FBgn0037513,FBgn0037534,FBgn0037996,FB gn0038437,FBgn0038742,FBgn0039052,FBgn0039094 ,FBgn0039156,FBgn0039175,FBgn0039258,FBgn0050 502,FBgn0053178,FBgn0086712,FBgn0262559	37	GO:0006 082
oxoacid metabolic process	4.282 E-06	FBgn0001187,FBgn0011770,FBgn0014427,FBgn0024 957,FBgn0024958,FBgn0025352,FBgn0025814,FBgn0 029823,FBgn0030966,FBgn0031092,FBgn0031703,FB gn0033733,FBgn0034177,FBgn0034629,FBgn0035006 ,FBgn0035064,FBgn0035383,FBgn0035471,FBgn0036 157,FBgn0036691,FBgn0037146,FBgn0037305,FBgn0 037356,FBgn0037513,FBgn0037534,FBgn0037996,FB	37	GO:0043 436

		gn0038437,FBgn0038742,FBgn0039052,FBgn0039094 ,FBgn0039156,FBgn0039175,FBgn0039258,FBgn0050 502,FBgn0053178,FBgn0086712,FBgn0262559		
carbohydrate derivative metabolic process	0.0015 541	FBgn0001187,FBgn0003257,FBgn0011211,FBgn0011 703,FBgn0011704,FBgn0013972,FBgn0016691,FBgn0 019644,FBgn0022700,FBgn0023477,FBgn0025592,FB gn0027791,FBgn0028342,FBgn0029906,FBgn0030507 ,FBgn0033187,FBgn0033431,FBgn0034582,FBgn0034 988,FBgn0036948,FBgn0036953,FBgn0038038,FBgn0 038173,FBgn0038224,FBgn0038467,FBgn0039156,FB gn0039258,FBgn0039580,FBgn0039650,FBgn0040959 ,FBgn0043575,FBgn0052284,FBgn0053265,FBgn0067 102,FBgn0085249,FBgn0259748	36	GO:1901 135
carboxylic acid metabolic process	9.758 E-06	FBgn0001187,FBgn0011770,FBgn0014427,FBgn0024 957,FBgn0024958,FBgn0025352,FBgn0025814,FBgn0 029823,FBgn0031092,FBgn0031703,FBgn0033733,FB gn0034177,FBgn0034629,FBgn0035006,FBgn0035064 ,FBgn0035383,FBgn0035471,FBgn0036157,FBgn0036 691,FBgn0037146,FBgn0037305,FBgn0037356,FBgn0 037513,FBgn0037534,FBgn0037996,FBgn0038437,FB gn0038742,FBgn0039052,FBgn0039094,FBgn0039156 ,FBgn0039175,FBgn0050502,FBgn0053178,FBgn0086 712,FBgn0262559	35	GO:0019 752
lipid metabolic process	0.0031 557	FBgn0000543,FBgn0015277,FBgn0025352,FBgn0025 373,FBgn0025592,FBgn0025814,FBgn0029906,FBgn0 031092,FBgn0031381,FBgn0031703,FBgn0033187,FB gn0033382,FBgn0033733,FBgn0034141,FBgn0034629 ,FBgn0035006,FBgn0035383,FBgn0035471,FBgn0036 691,FBgn0036996,FBgn0037356,FBgn0037534,FBgn0 037996,FBgn0038038,FBgn0038742,FBgn0039156,FB gn0039470,FBgn0039471,FBgn0039472,FBgn0050502 ,FBgn0053116,FBgn0053178,FBgn0067102,FBgn0086 712	34	GO:0006 629
oxidation- reduction process	0.0252 941	FBgn0003076,FBgn0011211,FBgn0011227,FBgn0011 703,FBgn0011704,FBgn0011768,FBgn0014028,FBgn0 023477,FBgn0024957,FBgn0024958,FBgn0025352,FB gn0025814,FBgn0030966,FBgn0031092,FBgn0031713 ,FBgn0033079,FBgn0033961,FBgn0034629,FBgn0034 756,FBgn0035383,FBgn0036157,FBgn0037146,FBgn0 037370,FBgn0037891,FBgn0038038,FBgn0038742,FB gn0039099,FBgn0040529,FBgn0050502,FBgn0052201 ,FBgn0053138,FBgn0053178,FBgn0086712,FBgn0262 559	34	GO:0055 114
DNA metabolic process	0.0001 931	FBgn0000477,FBgn0004406,FBgn0010382,FBgn0011 762,FBgn0014861,FBgn0015075,FBgn0015271,FBgn0 017577,FBgn0020633,FBgn0025815,FBgn0026143,FB gn0027868,FBgn0029977,FBgn0030054,FBgn0031252 ,FBgn0031309,FBgn0032244,FBgn0033549,FBgn0033 890,FBgn0035644,FBgn0036321,FBgn0037301,FBgn0 037338,FBgn0037345,FBgn0039403,FBgn0040290,FB gn0050085,FBgn0259113,FBgn0259676,FBgn0261850 ,FBgn0286788	31	GO:0006 259
small molecule biosynthetic process	1.60E- 07	FBgn0000543,FBgn0014427,FBgn0025814,FBgn0029 823,FBgn0031381,FBgn0031663,FBgn0031703,FBgn0 031713,FBgn0033733,FBgn0034988,FBgn0035006,FB gn0035383,FBgn0035471,FBgn0036157,FBgn0036691 ,FBgn0037146,FBgn0037305,FBgn0037356,FBgn0037	29	GO:0044 283

		513,FBgn0037534,FBgn0037996,FBgn0038173,FBgn0 039094,FBgn0039156,FBgn0039650,FBgn0050493,FB gn0053178,FBgn0085484,FBgn0283680		
cellular lipid metabolic process	0.0055 799	FBgn0015277,FBgn0025352,FBgn0025373,FBgn0025 592,FBgn0025814,FBgn0029906,FBgn0031092,FBgn0 031703,FBgn0033187,FBgn0033382,FBgn0033733,FB gn0034141,FBgn0034629,FBgn0035006,FBgn0035383 ,FBgn0035471,FBgn0036691,FBgn0037356,FBgn0037 534,FBgn0037996,FBgn0038038,FBgn0038742,FBgn0 039156,FBgn0050502,FBgn0053116,FBgn0053178,FB gn0067102,FBgn0086712	28	GO:0044 255
mitotic cell cycle process	0.0134 237	FBgn0000140,FBgn0003525,FBgn0003885,FBgn0004 378,FBgn0004643,FBgn0010382,FBgn0011692,FBgn0 014861,FBgn0015271,FBgn0015391,FBgn0024227,FB gn0025815,FBgn0026143,FBgn0031549,FBgn0033549 ,FBgn0034569,FBgn0035644,FBgn0038390,FBgn0039 403,FBgn0039638,FBgn0040078,FBgn0040290,FBgn0 041147,FBgn0061476,FBgn0259113,FBgn0259791,FB gn0261850,FBgn0286788	28	GO:1903 047
organophosph ate metabolic process	0.0133 514	FBgn0001187,FBgn0003257,FBgn0011211,FBgn0011 703,FBgn0011704,FBgn0013972,FBgn0015277,FBgn0 016691,FBgn0019644,FBgn0023477,FBgn0025373,FB gn0025592,FBgn0028342,FBgn0030507,FBgn0031663 ,FBgn0033187,FBgn0034141,FBgn0034988,FBgn0038 224,FBgn0038467,FBgn0039156,FBgn0039580,FBgn0 039650,FBgn0053116,FBgn0085484,FBgn0283680	26	GO:0019 637
drug metabolic process	3.89E- 06	FBgn0011211,FBgn0011768,FBgn0016691,FBgn0019 644,FBgn0022700,FBgn0024957,FBgn0024958,FBgn0 028342,FBgn0029823,FBgn0034582,FBgn0035383,FB gn0036948,FBgn0036953,FBgn0037305,FBgn0038173 ,FBgn0038224,FBgn0038437,FBgn0038467,FBgn0039 094,FBgn0040959,FBgn0052284,FBgn0053265,FBgn0 085249,FBgn0085484,FBgn0259748	25	GO:0017 144
cellular response to DNA damage stimulus	0.0044 455	FBgn0004406,FBgn0014861,FBgn0015075,FBgn0017 577,FBgn0020633,FBgn0025815,FBgn0026143,FBgn0 027868,FBgn0029131,FBgn0029588,FBgn0029977,FB gn0030054,FBgn0031252,FBgn0031309,FBgn0032244 ,FBgn0033549,FBgn0033890,FBgn0035644,FBgn0037 301,FBgn0037338,FBgn0039403,FBgn0040290,FBgn0 050085,FBgn0261850	24	GO:0006 974
DNA replication	8.10E- 08	FBgn0004406,FBgn0010382,FBgn0011703,FBgn0011 762,FBgn0014861,FBgn0015271,FBgn0017577,FBgn0 020633,FBgn0025815,FBgn0026143,FBgn0030054,FB gn0031875,FBgn0032244,FBgn0033549,FBgn0033890 ,FBgn0035644,FBgn0039403,FBgn0040290,FBgn0050 085,FBgn0259113,FBgn0259676,FBgn0286788	22	GO:0006 260
DNA repair	0.0008 795	FBgn0004406,FBgn0014861,FBgn0015075,FBgn0017 577,FBgn0020633,FBgn0025815,FBgn0026143,FBgn0 027868,FBgn0029977,FBgn0030054,FBgn0031252,FB gn0031309,FBgn0032244,FBgn0033549,FBgn0033890 ,FBgn0035644,FBgn0037301,FBgn0037338,FBgn0039 403,FBgn0040290,FBgn0261850	21	GO:0006 281
lipid biosynthetic process	0.0009 743	FBgn0000543,FBgn0015277,FBgn0025373,FBgn0025 814,FBgn0031381,FBgn0031703,FBgn0033187,FBgn0 033733,FBgn0034141,FBgn0035006,FBgn0035471,FB gn0036691,FBgn0037356,FBgn0037534,FBgn0037996 ,FBgn0038038,FBgn0039156,FBgn0050502,FBgn0053	21	GO:0008 610

		116,FBgn0053178,FBgn0067102		
DNA- dependent DNA replication	2.67E- 07	FBgn0004406,FBgn0011762,FBgn0014861,FBgn0015 271,FBgn0017577,FBgn0020633,FBgn0025815,FBgn0 026143,FBgn0030054,FBgn0031875,FBgn0032244,FB gn0033549,FBgn0033890,FBgn0035644,FBgn0039403 ,FBgn0040290,FBgn0050085,FBgn0259113,FBgn0259 676,FBgn0286788	20	GO:0006 261
monocarboxyl ic acid metabolic process	0.0001 07	FBgn0001187,FBgn0011770,FBgn0025352,FBgn0025 814,FBgn0031092,FBgn0031703,FBgn0033733,FBgn0 034629,FBgn0035006,FBgn0035383,FBgn0035471,FB gn0036691,FBgn0037356,FBgn0037534,FBgn0037996 ,FBgn0038742,FBgn0039156,FBgn0050502,FBgn0053 178,FBgn0086712	20	GO:0032 787
nucleobase- containing small molecule metabolic process	0.0076 182	FBgn0001187,FBgn0003257,FBgn0011211,FBgn0011 703,FBgn0011704,FBgn0013972,FBgn0016691,FBgn0 019644,FBgn0028342,FBgn0029823,FBgn0030507,FB gn0031663,FBgn0034988,FBgn0037513,FBgn0038173 ,FBgn0038224,FBgn0038467,FBgn0039156,FBgn0039 580,FBgn0039650	20	GO:0055 086
carbohydrate derivative biosynthetic process	0.0339 194	FBgn0003257,FBgn0011211,FBgn0011703,FBgn0011 704,FBgn0013972,FBgn0016691,FBgn0019644,FBgn0 025592,FBgn0027791,FBgn0028342,FBgn0029906,FB gn0033187,FBgn0038038,FBgn0038173,FBgn0038224 ,FBgn0038467,FBgn0039156,FBgn0039258,FBgn0039 580,FBgn0067102	20	GO:1901 137
organophosph ate biosynthetic process	0.0049 102	FBgn0003257,FBgn0011211,FBgn0011703,FBgn0011 704,FBgn0013972,FBgn0015277,FBgn0016691,FBgn0 019644,FBgn0025373,FBgn0025592,FBgn0028342,FB gn0033187,FBgn0034141,FBgn0038224,FBgn0038467 ,FBgn0039156,FBgn0053116,FBgn0085484,FBgn0283 680	19	GO:0090 407
regulation of mitotic cell cycle	0.0108 642	FBgn0002441,FBgn0003525,FBgn0004643,FBgn0010 382,FBgn0024227,FBgn0026143,FBgn0031549,FBgn0 033549,FBgn0034569,FBgn0038390,FBgn0039403,FB gn0039638,FBgn0040290,FBgn0041147,FBgn0061476 ,FBgn0259791,FBgn0261850,FBgn0266465,FBgn0286 788	19	GO:0007 346
organic acid biosynthetic process	3.645 E-06	FBgn0014427,FBgn0025814,FBgn0029823,FBgn0031 703,FBgn0033733,FBgn0035006,FBgn0035471,FBgn0 036157,FBgn0036691,FBgn0037146,FBgn0037305,FB gn0037356,FBgn0037513,FBgn0037534,FBgn0037996 ,FBgn0039094,FBgn0039156,FBgn0053178	18	GO:0016 053
carboxylic acid biosynthetic process	3.645 E-06	FBgn0014427,FBgn0025814,FBgn0029823,FBgn0031 703,FBgn0033733,FBgn0035006,FBgn0035471,FBgn0 036157,FBgn0036691,FBgn0037146,FBgn0037305,FB gn0037356,FBgn0037513,FBgn0037534,FBgn0037996 ,FBgn0039094,FBgn0039156,FBgn0053178	18	GO:0046 394
fatty acid metabolic process	5.632 E-06	FBgn0025352,FBgn0025814,FBgn0031092,FBgn0031 703,FBgn0033733,FBgn0034629,FBgn0035006,FBgn0 035383,FBgn0035471,FBgn0036691,FBgn0037356,FB gn0037534,FBgn0037996,FBgn0038742,FBgn0039156 ,FBgn0050502,FBgn0053178,FBgn0086712	18	GO:0006 631
generation of precursor metabolites and energy	0.0071 37	FBgn0001187,FBgn0003076,FBgn0011211,FBgn0011 227,FBgn0011768,FBgn0014028,FBgn0016691,FBgn0 023477,FBgn0024957,FBgn0024958,FBgn0027794,FB gn0033961,FBgn0035383,FBgn0037891,FBgn0040529	18	GO:0006 091

		,FBgn0053138,FBgn0262559,FBgn0284256		
regulation of cell cycle process	0.0098 543	FBgn0003525,FBgn0004643,FBgn0010382,FBgn0024 227,FBgn0026143,FBgn0031549,FBgn0034569,FBgn0 035644,FBgn0038390,FBgn0039403,FBgn0039638,FB gn0040290,FBgn0041147,FBgn0050085,FBgn0061476 ,FBgn0259791,FBgn0261850,FBgn0286788	18	GO:0010 564
mitochondrial translation	0.0011 225	FBgn0011787,FBgn0014023,FBgn0026741,FBgn0027 794,FBgn0029718,FBgn0031231,FBgn0034579,FBgn0 035064,FBgn0035374,FBgn0036335,FBgn0037330,FB gn0038474,FBgn0042112,FBgn0083983,FBgn0263133 ,FBgn0284256	16	GO:0032 543
mitochondrial gene expression	0.0043 101	FBgn0011787,FBgn0014023,FBgn0026741,FBgn0027 794,FBgn0029718,FBgn0031231,FBgn0034579,FBgn0 035064,FBgn0035374,FBgn0036335,FBgn0037330,FB gn0038474,FBgn0042112,FBgn0083983,FBgn0263133 ,FBgn0284256	16	GO:0140 053
nucleoside phosphate metabolic process	0.0107 824	FBgn0001187,FBgn0003257,FBgn0011211,FBgn0011 703,FBgn0011704,FBgn0013972,FBgn0016691,FBgn0 019644,FBgn0028342,FBgn0030507,FBgn0031663,FB gn0034988,FBgn0038224,FBgn0038467,FBgn0039156 ,FBgn0039650	16	GO:0006 753
mitotic nuclear division	0.0169 61	FBgn0004378,FBgn0004643,FBgn0010382,FBgn0011 692,FBgn0015271,FBgn0015391,FBgn0024227,FBgn0 031549,FBgn0034569,FBgn0039638,FBgn0040078,FB gn0041147,FBgn0061476,FBgn0259791,FBgn0261850	15	GO:0140 014
double-strand break repair	0.0004 804	FBgn0014861,FBgn0015075,FBgn0017577,FBgn0020 633,FBgn0025815,FBgn0026143,FBgn0027868,FBgn0 029977,FBgn0030054,FBgn0033549,FBgn0037301,FB gn0037338,FBgn0039403,FBgn0040290	14	GO:0006 302
regulation of cell cycle phase transition	0.0025 978	FBgn0003525,FBgn0004643,FBgn0010382,FBgn0024 227,FBgn0026143,FBgn0031549,FBgn0038390,FBgn0 039403,FBgn0040290,FBgn0041147,FBgn0050085,FB gn0061476,FBgn0261850,FBgn0286788	14	GO:1901 987
cell cycle phase transition	0.0177 676	FBgn0003525,FBgn0004643,FBgn0010382,FBgn0024 227,FBgn0026143,FBgn0031549,FBgn0038390,FBgn0 039403,FBgn0040290,FBgn0041147,FBgn0050085,FB gn0061476,FBgn0261850,FBgn0286788	14	GO:0044 770
nucleotide metabolic process	0.0377 349	FBgn0001187,FBgn0003257,FBgn0011211,FBgn0011 703,FBgn0011704,FBgn0013972,FBgn0016691,FBgn0 019644,FBgn0028342,FBgn0030507,FBgn0038224,FB gn0038467,FBgn0039156,FBgn0039650	14	GO:0009 117
DNA recombination	0.0023 796	FBgn0014861,FBgn0017577,FBgn0020633,FBgn0025 815,FBgn0026143,FBgn0027868,FBgn0029977,FBgn0 030054,FBgn0033549,FBgn0037301,FBgn0039403,FB gn0040290,FBgn0261850	13	GO:0006 310
regulation of mitotic cell cycle phase transition	0.0044 564	FBgn0003525,FBgn0004643,FBgn0010382,FBgn0024 227,FBgn0026143,FBgn0031549,FBgn0038390,FBgn0 039403,FBgn0040290,FBgn0041147,FBgn0061476,FB gn0261850,FBgn0286788	13	GO:1901 990
DNA conformation change	0.0086 556	FBgn0014861,FBgn0015075,FBgn0015271,FBgn0015 391,FBgn0017577,FBgn0020633,FBgn0024227,FBgn0 025815,FBgn0026143,FBgn0026876,FBgn0030054,FB gn0040290,FBgn0261850	13	GO:0071 103
small molecule catabolic	0.0105 96	FBgn0003076,FBgn0011768,FBgn0025352,FBgn0029 823,FBgn0031092,FBgn0034629,FBgn0034988,FBgn0 035383,FBgn0038173,FBgn0038742,FBgn0039094,FB	13	GO:0044 282

process		gn0039650,FBgn0086712		
mitotic cell cycle phase transition	0.0238 005	FBgn0003525,FBgn0004643,FBgn0010382,FBgn0024 227,FBgn0026143,FBgn0031549,FBgn0038390,FBgn0 039403,FBgn0040290,FBgn0041147,FBgn0061476,FB gn0261850,FBgn0286788	13	GO:0044 772
purine- containing compound metabolic process	0.0258 011	FBgn0001187,FBgn0011211,FBgn0013972,FBgn0016 691,FBgn0019644,FBgn0028342,FBgn0029823,FBgn0 034988,FBgn0038173,FBgn0038224,FBgn0038467,FB gn0039156,FBgn0039650	13	GO:0072 521
ribonucleotide metabolic process	0.0270 761	FBgn0001187,FBgn0003257,FBgn0011211,FBgn0013 972,FBgn0016691,FBgn0019644,FBgn0028342,FBgn0 030507,FBgn0038224,FBgn0038467,FBgn0039156,FB gn0039650	12	GO:0009 259
ATP metabolic process	0.0294 131	FBgn0001187,FBgn0011211,FBgn0011227,FBgn0014 028,FBgn0016691,FBgn0019644,FBgn0027794,FBgn0 028342,FBgn0033961,FBgn0038224,FBgn0040529,FB gn0284256	12	GO:0046 034
ribose phosphate metabolic process	0.0345 188	FBgn0001187,FBgn0003257,FBgn0011211,FBgn0013 972,FBgn0016691,FBgn0019644,FBgn0028342,FBgn0 030507,FBgn0038224,FBgn0038467,FBgn0039156,FB gn0039650	12	GO:0019 693
fatty acid biosynthetic process	7.03E- 05	FBgn0025814,FBgn0031703,FBgn0033733,FBgn0035 006,FBgn0035471,FBgn0036691,FBgn0037356,FBgn0 037534,FBgn0037996,FBgn0039156,FBgn0053178	11	GO:0006 633
monocarboxyl ic acid biosynthetic process	0.0002 471	FBgn0025814,FBgn0031703,FBgn0033733,FBgn0035 006,FBgn0035471,FBgn0036691,FBgn0037356,FBgn0 037534,FBgn0037996,FBgn0039156,FBgn0053178	11	GO:0072 330
aminoglycan metabolic process	0.0007 067	FBgn0022700,FBgn0034582,FBgn0036948,FBgn0036 953,FBgn0039258,FBgn0040959,FBgn0043575,FBgn0 052284,FBgn0053265,FBgn0085249,FBgn0259748	11	GO:0006 022
nucleotide biosynthetic process	0.0175 982	FBgn0003257,FBgn0011211,FBgn0011703,FBgn0011 704,FBgn0013972,FBgn0016691,FBgn0019644,FBgn0 028342,FBgn0038224,FBgn0038467,FBgn0039156	11	GO:0009 165
nucleoside phosphate biosynthetic process	0.0194 314	FBgn0003257,FBgn0011211,FBgn0011703,FBgn0011 704,FBgn0013972,FBgn0016691,FBgn0019644,FBgn0 028342,FBgn0038224,FBgn0038467,FBgn0039156	11	GO:1901 293
cell cycle DNA replication	0.0003 947	FBgn0014861,FBgn0017577,FBgn0020633,FBgn0025 815,FBgn0026143,FBgn0030054,FBgn0033890,FBgn0 035644,FBgn0259113,FBgn0286788	10	GO:0044 786
double-strand break repair via homologous recombination	0.0005 684	FBgn0014861,FBgn0017577,FBgn0020633,FBgn0025 815,FBgn0026143,FBgn0027868,FBgn0030054,FBgn0 037301,FBgn0039403,FBgn0040290	10	GO:0000 724
recombination al repair	0.0005 684	FBgn0014861,FBgn0017577,FBgn0020633,FBgn0025 815,FBgn0026143,FBgn0027868,FBgn0030054,FBgn0 037301,FBgn0039403,FBgn0040290	10	GO:0000 725
amino sugar metabolic process	0.0010 665	FBgn0022700,FBgn0034582,FBgn0036948,FBgn0036 953,FBgn0039580,FBgn0040959,FBgn0052284,FBgn0 053265,FBgn0085249,FBgn0259748	10	GO:0006 040
regulation of mitotic nuclear	0.0036 566	FBgn0004643,FBgn0010382,FBgn0024227,FBgn0031 549,FBgn0034569,FBgn0039638,FBgn0041147,FBgn0 061476,FBgn0259791,FBgn0261850	10	GO:0007 088

division				
regulation of nuclear division	0.0065 731	FBgn0004643,FBgn0010382,FBgn0024227,FBgn0031 549,FBgn0034569,FBgn0039638,FBgn0041147,FBgn0 061476,FBgn0259791,FBgn0261850	10	GO:0051 783
purine- containing compound biosynthetic process	0.0075 273	FBgn0011211,FBgn0013972,FBgn0016691,FBgn0019 644,FBgn0028342,FBgn0029823,FBgn0038173,FBgn0 038224,FBgn0038467,FBgn0039156	10	GO:0072 522
DNA replication initiation	7.091 E-06	FBgn0014861,FBgn0015271,FBgn0017577,FBgn0020 633,FBgn0025815,FBgn0026143,FBgn0050085,FBgn0 259113,FBgn0286788	9	GO:0006 270
chitin metabolic process	0.0005 122	FBgn0022700,FBgn0034582,FBgn0036948,FBgn0036 953,FBgn0040959,FBgn0052284,FBgn0053265,FBgn0 085249,FBgn0259748	9	GO:0006 030
glucosamine- containing compound metabolic process	0.0023 822	FBgn0022700,FBgn0034582,FBgn0036948,FBgn0036 953,FBgn0040959,FBgn0052284,FBgn0053265,FBgn0 085249,FBgn0259748	9	GO:1901 071
mitotic spindle organization	0.0034 304	FBgn0000140,FBgn0004378,FBgn0011692,FBgn0015 271,FBgn0024227,FBgn0034569,FBgn0039638,FBgn0 040078,FBgn0259791	9	GO:0007 052
chromosome separation	0.0034 304	FBgn0004643,FBgn0015391,FBgn0017577,FBgn0024 227,FBgn0029977,FBgn0031549,FBgn0033549,FBgn0 041147,FBgn0061476	9	GO:0051 304
ribonucleotide biosynthetic process	0.0213 646	FBgn0003257,FBgn0011211,FBgn0013972,FBgn0016 691,FBgn0019644,FBgn0028342,FBgn0038224,FBgn0 038467,FBgn0039156	9	GO:0009 260
ribose phosphate biosynthetic process	0.0265 672	FBgn0003257,FBgn0011211,FBgn0013972,FBgn0016 691,FBgn0019644,FBgn0028342,FBgn0038224,FBgn0 038467,FBgn0039156	9	GO:0046 390
microtubule cytoskeleton organization involved in mitosis	0.0265 672	FBgn0000140,FBgn0004378,FBgn0011692,FBgn0015 271,FBgn0024227,FBgn0034569,FBgn0039638,FBgn0 040078,FBgn0259791	9	GO:1902 850
positive regulation of cell cycle process	0.0029 71	FBgn0003525,FBgn0010382,FBgn0024227,FBgn0026 143,FBgn0035644,FBgn0039403,FBgn0040290,FBgn0 041147	8	GO:0090 068
maturation of SSU-rRNA	0.0074 43	FBgn0004403,FBgn0030081,FBgn0030136,FBgn0033 454,FBgn0034564,FBgn0037073,FBgn0038474,FBgn0 039404	8	GO:0030 490
proton transmembran e transport	0.0087 49	FBgn0011211,FBgn0016691,FBgn0019644,FBgn0022 097,FBgn0028342,FBgn0038224,FBgn0038613,FBgn0 262512	8	GO:1902 600
positive regulation of cell cycle	0.0204 304	FBgn0003525,FBgn0010382,FBgn0024227,FBgn0026 143,FBgn0035644,FBgn0039403,FBgn0040290,FBgn0 041147	8	GO:0045 787
purine ribonucleotide biosynthetic process	0.0260 53	FBgn0011211,FBgn0013972,FBgn0016691,FBgn0019 644,FBgn0028342,FBgn0038224,FBgn0038467,FBgn0 039156	8	GO:0009 152
purine	0.0363	FBgn0011211,FBgn0013972,FBgn0016691,FBgn0019	8	GO:0006

11	770	(11 ED 0000010 ED 0000001 ED 00001(7 ED 0		164
nucleotide biosynthetic	772	644,FBgn0028342,FBgn0038224,FBgn0038467,FBgn0 039156		164
process		059150		
ribosomal	0.0403	FBgn0004403,FBgn0030081,FBgn0030136,FBgn0033	8	GO:0042
small subunit	551	454,FBgn0034564,FBgn0037073,FBgn0038474,FBgn0	0	274
biogenesis	551	039404		274
	3.362		7	GO:0032
DNA duplex		FBgn0014861,FBgn0015075,FBgn0020633,FBgn0025	1	508
unwinding	E-05	815,FBgn0026876,FBgn0040290,FBgn0261850	7	
DNA	5.886	FBgn0014861,FBgn0015075,FBgn0020633,FBgn0025	7	GO:0032 392
geometric	E-05	815,FBgn0026876,FBgn0040290,FBgn0261850		392
change	0 772	ED 0014061 ED 0017577 ED 0020622 ED 0025	7	00000
nuclear DNA	9.773	FBgn0014861,FBgn0017577,FBgn0020633,FBgn0025	7	GO:0033
replication	E-05	815,FBgn0026143,FBgn0035644,FBgn0259113		260
cellular amino	0.0022	FBgn0014427,FBgn0029823,FBgn0036157,FBgn0037	7	GO:0008
acid	279	146,FBgn0037305,FBgn0037513,FBgn0039094		652
biosynthetic				
process				~~~~~
aerobic	0.0279	FBgn0011227,FBgn0014028,FBgn0024957,FBgn0024	7	GO:0009
respiration	379	958,FBgn0037891,FBgn0040529,FBgn0262559		060
double-strand	1.359	FBgn0014861,FBgn0017577,FBgn0020633,FBgn0025	6	GO:0000
break repair	E-06	815,FBgn0026143,FBgn0039403		727
via break-				
induced				
replication				
positive	0.0012	FBgn0003525,FBgn0010382,FBgn0026143,FBgn0039	6	GO:1901
regulation of	276	403,FBgn0040290,FBgn0041147		992
mitotic cell				
cycle phase				
transition				
positive	0.0023	FBgn0003525,FBgn0010382,FBgn0026143,FBgn0039	6	GO:1901
regulation of	561	403,FBgn0040290,FBgn0041147		989
cell cycle				
phase				
transition	0.00.67			GO 1001
alpha-amino	0.0067	FBgn0014427,FBgn0029823,FBgn0036157,FBgn0037	6	GO:1901
acid	269	146,FBgn0037305,FBgn0039094		607
biosynthetic				
process				
maturation of	0.0103	FBgn0004403,FBgn0030081,FBgn0033454,FBgn0037	6	GO:0000
SSU-rRNA	453	073,FBgn0038474,FBgn0039404		462
from				
tricistronic				
rRNA				
transcript				
(SSU-rRNA,				
5.8S rRNA,				
LSU-rRNA)	0.0102	ED ~ 0002525 ED ~ 0010202 ED ~ 0025142 ED ~ 0020		CO.0047
positive	0.0103	FBgn0003525,FBgn0010382,FBgn0026143,FBgn0039	6	GO:0045
regulation of	453	403,FBgn0040290,FBgn0041147		931
mitotic cell				
cycle	0.0151	ED 0005050 ED 0001000 ED 0004500 ED 0005		00.0000
fatty acid	0.0151	FBgn0025352,FBgn0031092,FBgn0034629,FBgn0035	6	GO:0009
catabolic	647	383,FBgn0038742,FBgn0086712		062
process	0.0171		-	00.0000
nucleoside	0.0151	FBgn0011211,FBgn0016691,FBgn0019644,FBgn0028	6	GO:0009
triphosphate	647	342,FBgn0031663,FBgn0038224		141
metabolic				

process				
carbohydrate derivative catabolic process	0.0180 78	FBgn0022700,FBgn0034582,FBgn0034988,FBgn0038 173,FBgn0039650,FBgn0043575	6	GO:1901 136
monocarboxyl ic acid catabolic process	0.0290 547	FBgn0025352,FBgn0031092,FBgn0034629,FBgn0035 383,FBgn0038742,FBgn0086712	6	GO:0072 329
regulation of chromosome segregation	0.0494 389	FBgn0004643,FBgn0024227,FBgn0031549,FBgn0041 147,FBgn0061476,FBgn0261850	6	GO:0051 983
DNA biosynthetic process	0.0494 389	FBgn0010382,FBgn0025815,FBgn0026143,FBgn0035 644,FBgn0040290,FBgn0286788	6	GO:0071 897
mitotic DNA replication	0.0002 631	FBgn0014861,FBgn0025815,FBgn0026143,FBgn0035 644,FBgn0259113	5	GO:1902 969
DNA amplification	0.0057 867	FBgn0010382,FBgn0025815,FBgn0026143,FBgn0040 290,FBgn0286788	5	GO:0006 277
energy coupled proton transport, down electrochemic al gradient	0.0057 867	FBgn0011211,FBgn0016691,FBgn0019644,FBgn0028 342,FBgn0038224	5	GO:0015 985
ATP synthesis coupled proton transport	0.0057 867	FBgn0011211,FBgn0016691,FBgn0019644,FBgn0028 342,FBgn0038224	5	GO:0015 986
ATP biosynthetic process	0.0099 8	FBgn0011211,FBgn0016691,FBgn0019644,FBgn0028 342,FBgn0038224	5	GO:0006 754
purine nucleoside triphosphate biosynthetic process	0.0195 623	FBgn0011211,FBgn0016691,FBgn0019644,FBgn0028 342,FBgn0038224	5	GO:0009 145
purine ribonucleoside triphosphate metabolic process	0.0195 623	FBgn0011211,FBgn0016691,FBgn0019644,FBgn0028 342,FBgn0038224	5	GO:0009 205
purine ribonucleoside triphosphate biosynthetic process	0.0195 623	FBgn0011211,FBgn0016691,FBgn0019644,FBgn0028 342,FBgn0038224	5	GO:0009 206
tricarboxylic acid cycle	0.0237 538	FBgn0014028,FBgn0024957,FBgn0024958,FBgn0037 891,FBgn0262559	5	GO:0006 099
fatty acid beta-oxidation	0.0237 538	FBgn0025352,FBgn0031092,FBgn0034629,FBgn0035 383,FBgn0086712	5	GO:0006 635
purine nucleoside triphosphate metabolic	0.0237 538	FBgn0011211,FBgn0016691,FBgn0019644,FBgn0028 342,FBgn0038224	5	GO:0009 144

process				
regulation of mitotic metaphase/ana phase transition	0.0284 835	FBgn0004643,FBgn0024227,FBgn0031549,FBgn0041 147,FBgn0061476	5	GO:0030 071
ribonucleoside triphosphate metabolic process	0.0337 694	FBgn0011211,FBgn0016691,FBgn0019644,FBgn0028 342,FBgn0038224	5	GO:0009 199
ribonucleoside triphosphate biosynthetic process	0.0337 694	FBgn0011211,FBgn0016691,FBgn0019644,FBgn0028 342,FBgn0038224	5	GO:0009 201
fatty acid oxidation	0.0337 694	FBgn0025352,FBgn0031092,FBgn0034629,FBgn0035 383,FBgn0086712	5	GO:0019 395
regulation of metaphase/ana phase transition of cell cycle	0.0337 694	FBgn0004643,FBgn0024227,FBgn0031549,FBgn0041 147,FBgn0061476	5	GO:1902 099
nucleoside triphosphate biosynthetic process	0.0396 254	FBgn0011211,FBgn0016691,FBgn0019644,FBgn0028 342,FBgn0038224	5	GO:0009 142
lipid oxidation	0.0396 254	FBgn0025352,FBgn0031092,FBgn0034629,FBgn0035 383,FBgn0086712	5	GO:0034 440
DNA endoreduplica tion	0.0453 913	FBgn0017577,FBgn0030054,FBgn0033890,FBgn0035 644,FBgn0286788	5	GO:0042 023
pre-replicative complex assembly involved in nuclear cell cycle DNA replication	3.541 E-05	FBgn0014861,FBgn0017577,FBgn0020633,FBgn0025 815	4	GO:0006 267
pre-replicative complex assembly	3.541 E-05	FBgn0014861,FBgn0017577,FBgn0020633,FBgn0025 815	4	GO:0036 388
pre-replicative complex assembly involved in cell cycle DNA replication	3.541 E-05	FBgn0014861,FBgn0017577,FBgn0020633,FBgn0025 815	4	GO:1902 299
DNA unwinding involved in DNA replication	0.0019 261	FBgn0014861,FBgn0020633,FBgn0025815,FBgn0040 290	4	GO:0006 268
activation of cysteine-type endopeptidase activity	0.0032 566	FBgn0011703,FBgn0011704,FBgn0038928,FBgn0262 559	4	GO:0006 919

involved in apoptotic				
process				
neuropeptide signaling pathway	0.0050 992	FBgn0038147,FBgn0038199,FBgn0050106,FBgn0086 782	4	GO:0007 218
fatty acid derivative biosynthetic process	0.0050 992	FBgn0025814,FBgn0035383,FBgn0039156,FBgn0053 178	4	GO:1901 570
DNA- dependent DNA replication maintenance of fidelity	0.0144 114	FBgn0004406,FBgn0033549,FBgn0035644,FBgn0050 085	4	GO:0045 005
fatty acid derivative metabolic process	0.0189 686	FBgn0025814,FBgn0035383,FBgn0039156,FBgn0053 178	4	GO:1901 568
eggshell chorion gene amplification	0.0243 231	FBgn0010382,FBgn0025815,FBgn0040290,FBgn0286 788	4	GO:0007 307
neurotransmitt er metabolic process	0.0243 231	FBgn0011768,FBgn0029823,FBgn0037513,FBgn0039 094	4	GO:0042 133
positive regulation of cysteine-type endopeptidase activity involved in apoptotic process	0.0243 231	FBgn0011703,FBgn0011704,FBgn0038928,FBgn0262 559	4	GO:0043 280
positive regulation of cysteine-type endopeptidase activity	0.0375 221	FBgn0011703,FBgn0011704,FBgn0038928,FBgn0262 559	4	GO:2001 056
nucleobase- containing small molecule biosynthetic process	0.0453 913	FBgn0031663,FBgn0034988,FBgn0038173,FBgn0039 650	4	GO:0034 404
positive regulation of DNA metabolic process	0.0040 921	FBgn0037301,FBgn0037345,FBgn0261850	3	GO:0051 054
insemination	0.0077 161	FBgn0015584,FBgn0040092,FBgn0040093	3	GO:0007 320
serine family amino acid biosynthetic process	0.0077 161	FBgn0014427,FBgn0029823,FBgn0039094	3	GO:0009 070

(m. o. ###2)	0.0077	$ED_{an}0015584 ED_{an}0040002 ED_{an}0040002$	3	GO:0046
sperm competition	161	FBgn0015584,FBgn0040092,FBgn0040093	3	692
resolution of meiotic recombination intermediates	0.0127 341	FBgn0017577,FBgn0029977,FBgn0033549	3	GO:0000 712
regulation of oxidative phosphorylati on	0.0127 341	FBgn0027794,FBgn0040529,FBgn0284256	3	GO:0002 082
purine nucleoside catabolic process	0.0127 341	FBgn0034988,FBgn0038173,FBgn0039650	3	GO:0006 152
multi- multicellular organism process	0.0127 341	FBgn0015584,FBgn0040092,FBgn0040093	3	GO:0044 706
purine ribonucleoside catabolic process	0.0127 341	FBgn0034988,FBgn0038173,FBgn0039650	3	GO:0046 130
nucleoside catabolic process	0.0192 188	FBgn0034988,FBgn0038173,FBgn0039650	3	GO:0009 164
N-terminal protein amino acid modification	0.0192 188	FBgn0024194,FBgn0039687,FBgn0243511	3	GO:0031 365
nucleobase- containing small molecule catabolic process	0.0192 188	FBgn0034988,FBgn0038173,FBgn0039650	3	GO:0034 656
ribonucleoside catabolic process	0.0192 188	FBgn0034988,FBgn0038173,FBgn0039650	3	GO:0042 454
positive regulation of G1/S transition of mitotic cell cycle	0.0192 188	FBgn0010382,FBgn0026143,FBgn0039403	3	GO:1900 087
mitochondrial transcription	0.0271 999	FBgn0011787,FBgn0027794,FBgn0284256	3	GO:0006 390
serine family amino acid metabolic process	0.0271 999	FBgn0014427,FBgn0029823,FBgn0039094	3	GO:0009 069
regulation of mitotic cell cycle, embryonic	0.0271 999	FBgn0002441,FBgn0003525,FBgn0261850	3	GO:0009 794
neurotransmitt er biosynthetic process	0.0271 999	FBgn0029823,FBgn0037513,FBgn0039094	3	GO:0042 136

nucleobase biosynthetic	0.0271 999	FBgn0003257,FBgn0029823,FBgn0037513	3	GO:0046 112
response to acid chemical	0.0366	FBgn0029823,FBgn0030108,FBgn0035870	3	GO:0001 101
aminoglycan catabolic process	0.0366 716	FBgn0022700,FBgn0034582,FBgn0043575	3	GO:0006 026
copulation	0.0366 716	FBgn0015584,FBgn0040092,FBgn0040093	3	GO:0007 620
meiotic chromosome separation	0.0366 716	FBgn0017577,FBgn0029977,FBgn0033549	3	GO:0051 307
nucleoside phosphate catabolic process	0.0366 716	FBgn0031663,FBgn0034988,FBgn0039650	3	GO:1901 292
positive regulation of cell cycle G1/S phase transition	0.0366 716	FBgn0010382,FBgn0026143,FBgn0039403	3	GO:1902 808
DNA strand elongation involved in DNA replication	0.0476	FBgn0020633,FBgn0032244,FBgn0259113	3	GO:0006 271
DNA strand elongation	0.0476	FBgn0020633,FBgn0032244,FBgn0259113	3	GO:0022 616
glycosyl compound catabolic process	0.0476	FBgn0034988,FBgn0038173,FBgn0039650	3	GO:1901 658
regulation of ATP metabolic process	0.0476	FBgn0027794,FBgn0040529,FBgn0284256	3	GO:1903 578
DNA replication, synthesis of RNA primer	0.0059 794	FBgn0011762,FBgn0259676	2	GO:0006 269
activation of adenylate cyclase activity	0.0059 794	FBgn0039354,FBgn0086782	2	GO:0007 190
response to iron(II) ion	0.0059 794	FBgn0024957,FBgn0024958	2	GO:0010 040
positive regulation of G2/M transition of mitotic cell cycle	0.0059 794	FBgn0003525,FBgn0040290	2	GO:0010 971
nuclear envelope reassembly	0.0059 794	FBgn0033179,FBgn0266420	2	GO:0031 468

positive regulation of DNA recombination	0.0059 794	FBgn0037301,FBgn0261850	2	GO:0045 911
guanosine- containing compound catabolic	0.0059 794	FBgn0034988,FBgn0039650	2	GO:1901 069
process response to L- canavanine	0.0059 794	FBgn0030108,FBgn0035870	2	GO:1901 354
cell cycle DNA replication initiation	0.0059 794	FBgn0014861,FBgn0259113	2	GO:1902 292
nuclear cell cycle DNA replication initiation	0.0059 794	FBgn0014861,FBgn0259113	2	GO:1902 315
positive regulation of cell cycle G2/M phase transition	0.0059 794	FBgn0003525,FBgn0040290	2	GO:1902 751
mitotic DNA replication initiation	0.0059 794	FBgn0014861,FBgn0259113	2	GO:1902 975
prostaglandin biosynthetic process	0.0170 167	FBgn0025814,FBgn0053178	2	GO:0001 516
citrate metabolic process	0.0170 167	FBgn0024957,FBgn0024958	2	GO:0006 101
glycine biosynthetic process	0.0170 167	FBgn0029823,FBgn0039094	2	GO:0006 545
L-serine metabolic process	0.0170 167	FBgn0014427,FBgn0029823	2	GO:0006 563
L-serine biosynthetic process	0.0170 167	FBgn0014427,FBgn0029823	2	GO:0006 564
deoxyribonucl eotide biosynthetic process	0.0170 167	FBgn0011703,FBgn0011704	2	GO:0009 263
astral microtubule organization	0.0170 167	FBgn0000140,FBgn0027500	2	GO:0030 953
endoplasmic reticulum calcium ion homeostasis	0.0170 167	FBgn0030350,FBgn0032746	2	GO:0032 469
preblastoderm mitotic cell cycle	0.0170 167	FBgn0002441,FBgn0033890	2	GO:0035 185

regulation of mitochondrial mRNA stability	0.0170 167	FBgn0027794,FBgn0284256	2	GO:0044 528
icosanoid biosynthetic process	0.0170 167	FBgn0025814,FBgn0053178	2	GO:0046 456
prostanoid biosynthetic process	0.0170 167	FBgn0025814,FBgn0053178	2	GO:0046 457
tRNA-guanine transglycosyla tion	0.0170 167	FBgn0031321,FBgn0034614	2	GO:0101 030
regulation of mitochondrial transcription	0.0170 167	FBgn0027794,FBgn0284256	2	GO:1903 108
reactive nitrogen species metabolic process	0.0170 167	FBgn0011768,FBgn0030966	2	GO:2001 057
prostanoid metabolic process	0.0322 968	FBgn0025814,FBgn0053178	2	GO:0006 692
prostaglandin metabolic process	0.0322 968	FBgn0025814,FBgn0053178	2	GO:0006 693
nuclear envelope organization	0.0322 968	FBgn0033179,FBgn0266420	2	GO:0006 998
deoxyribonucl eotide metabolic process	0.0322 968	FBgn0011703,FBgn0011704	2	GO:0009 262
maintenance of gastrointestina l epithelium	0.0322 968	FBgn0030904,FBgn0053542	2	GO:0030 277
intracellular sterol transport	0.0322 968	FBgn0031381,FBgn0039154	2	GO:0032 366
intracellular cholesterol transport	0.0322 968	FBgn0031381,FBgn0039154	2	GO:0032 367
nuclear- transcribed mRNA catabolic process, exonucleolytic , 3'-5'	0.0322 968	FBgn0034065,FBgn0037815	2	GO:0034 427
U4 snRNA 3'- end processing	0.0322 968	FBgn0034065,FBgn0037815	2	GO:0034 475
tetrahydrofola te interconversio	0.0322 968	FBgn0029823,FBgn0036157	2	GO:0035 999

n				
DNA replication proofreading	0.0322 968	FBgn0004406,FBgn0035644	2	GO:0045 004
brain morphogenesi s	0.0322 968	FBgn0000140,FBgn0019650	2	GO:0048 854
intestinal epithelial structure maintenance	0.0322 968	FBgn0030904,FBgn0053542	2	GO:0060 729
extrinsic apoptotic signaling pathway	0.0322 968	FBgn0029131,FBgn0038928	2	GO:0097 191

 Table 2.1d: Pathway enrichment for hits differentially upregulated in control females relative to control males

Pathway enrichmen t	p-value	Hits	Gene matche s	Pathway ID
Metabolis m	7.92553 E-05	FBgn0001187,FBgn0003076,FBgn0003257,FBg n0010241,FBgn0011211,FBgn0011227,FBgn00 11703,FBgn0011704,FBgn0011768,FBgn00140 28,FBgn0014427,FBgn0015277,FBgn0016691,F Bgn0019644,FBgn0019982,FBgn0020626,FBgn 0023477,FBgn0025352,FBgn0025373,FBgn002 5463,FBgn0025592,FBgn0025814,FBgn002834 2,FBgn0029823,FBgn0029994,FBgn0030816,F Bgn0030966,FBgn0031048,FBgn0031248,FBgn 0031663,FBgn0031703,FBgn0033215,FBgn003 3216,FBgn003377,FBgn0033382,FBgn003396 1,FBgn0034629,FBgn0034919,FBgn0034988,F Bgn0035383,FBgn0035471,FBgn0036691,FBgn 0036157,FBgn0036381,FBgn0036691,FBgn003 7146,FBgn0037186,FBgn0037305,FBgn003737 0,FBgn0037513,FBgn0037534,FBgn0037891,F Bgn0038224,FBgn0039258,FBgn0039470,FBgn003 9471,FBgn0039472,FBgn0039486,FBgn003967 4,FBgn0040069,FBgn0040383,FBgn0050345,F Bgn0050502,FBgn0052669,FBgn0052750,FBgn 0053116,FBgn0053178,FBgn0067102,FBgn008 5484,FBgn0262559,FBgn0283450,FBgn028368 0	75	R-DME-1430728
Metabolic pathways	1.38283 E-06	FBgn0000078,FBgn0001187,FBgn0003076,FBg n0003257,FBgn0004406,FBgn0011211,FBgn00 11227,FBgn0011703,FBgn0011704,FBgn00117 62,FBgn0011768,FBgn0011770,FBgn0014028,F Bgn0014427,FBgn0015277,FBgn0015568,FBgn 0015575,FBgn0016691,FBgn0019644,FBgn002 2097,FBgn0023477,FBgn0024957,FBgn002495 8,FBgn0025352,FBgn0025373,FBgn0025592,F Bgn0028342,FBgn0029823,FBgn0029906,FBgn 0031048,FBgn0031663,FBgn0031703,FBgn003 1713,FBgn0033377,FBgn0033961,FBgn003414	66	1100

		1,FBgn0034629,FBgn0035619,FBgn0035644,F Bgn0036157,FBgn0036691,FBgn0037146,FBgn 0037186,FBgn0037356,FBgn0037513,FBgn003 7891,FBgn0038080,FBgn0038224,FBgn003846 7,FBgn0038613,FBgn0038742,FBgn0039094,F Bgn0039258,FBgn0039580,FBgn0039596,FBgn 0040069,FBgn0052201,FBgn0053116,FBgn005 3138,FBgn0067102,FBgn0085484,FBgn025911 3,FBgn0259676,FBgn0262512,FBgn0262559,F Bgn0283680		
Metabolis m of lipids	0.00258 5092	FBgn0010241,FBgn0015277,FBgn0020626,FBg n0025352,FBgn0025373,FBgn0025463,FBgn00 25592,FBgn0025814,FBgn0029994,FBgn00310 48,FBgn0031703,FBgn0033215,FBgn0033216,F Bgn003382,FBgn0034629,FBgn0035383,FBgn 0035471,FBgn0035619,FBgn0036381,FBgn003 6691,FBgn0037534,FBgn0038407,FBgn003874 2,FBgn0039470,FBgn0039471,FBgn0039472,F Bgn0050502,FBgn0053116,FBgn0053178,FBgn 0067102	30	R-DME-556833
Cell Cycle	0.00165 5286	FBgn0003525,FBgn0010382,FBgn0011692,FBg n0011762,FBgn0014861,FBgn0015271,FBgn00 15391,FBgn0017577,FBgn0020633,FBgn00242 27,FBgn0025463,FBgn0025815,FBgn0026143,F Bgn0027868,FBgn0029856,FBgn0032244,FBgn 0035644,FBgn0038390,FBgn0039125,FBgn003 9403,FBgn0041147,FBgn0259113,FBgn025967 6,FBgn0259791,FBgn0286788	25	R-DME-1640170
Cell Cycle, Mitotic	0.00092 757	FBgn0003525,FBgn0010382,FBgn0011692,FBg n0011762,FBgn0014861,FBgn0015271,FBgn00 15391,FBgn0017577,FBgn0020633,FBgn00242 27,FBgn0025815,FBgn0026143,FBgn0027868,F Bgn0029856,FBgn0032244,FBgn0035644,FBgn 0038390,FBgn0039125,FBgn0039403,FBgn004 1147,FBgn0259113,FBgn0259676,FBgn025979 1,FBgn0286788	24	R-DME-69278
DNA Replication	0.00028 0248	FBgn0010382,FBgn0011762,FBgn0014861,FBg n0015271,FBgn0017577,FBgn0020633,FBgn00 25815,FBgn0026143,FBgn0029856,FBgn00322 44,FBgn0035644,FBgn0039403,FBgn0041147,F Bgn0259113,FBgn0259676,FBgn0286788	16	R-DME-69306
G1/S Transition	0.00016 0573	FBgn0003525,FBgn0010382,FBgn0011762,FBg n0014861,FBgn0015271,FBgn0017577,FBgn00 20633,FBgn0025815,FBgn0026143,FBgn00298 56,FBgn0035644,FBgn0038390,FBgn0259113,F Bgn0259676,FBgn0286788	15	R-DME-69206
Mitotic G1 phase and G1/S transition	0.00058 2619	FBgn0003525,FBgn0010382,FBgn0011762,FBg n0014861,FBgn0015271,FBgn0017577,FBgn00 20633,FBgn0025815,FBgn0026143,FBgn00298 56,FBgn0035644,FBgn0038390,FBgn0259113,F Bgn0259676,FBgn0286788	15	R-DME-453279
Synthesis of DNA	0.00077 2417	FBgn0010382,FBgn0011762,FBgn0014861,FBg n0017577,FBgn0020633,FBgn0025815,FBgn00 29856,FBgn0032244,FBgn0035644,FBgn00394 03,FBgn0041147,FBgn0259113,FBgn0259676,F Bgn0286788	14	R-DME-69239

S Phase	0.00232 4736	FBgn0010382,FBgn0011762,FBgn0014861,FBg n0017577,FBgn0020633,FBgn0025815,FBgn00 29856,FBgn0032244,FBgn0035644,FBgn00394 03,FBgn0041147,FBgn0259113,FBgn0259676,F Bgn0286788	14	R-DME-69242
Fatty acid metabolis m	0.00087 2613	FBgn0025352,FBgn0025814,FBgn0031703,FBg n0033215,FBgn0033216,FBgn0034629,FBgn00 35383,FBgn0035471,FBgn0036691,FBgn00375 34,FBgn0038407,FBgn0038742,FBgn0053178	13	R-DME-8978868
DNA Replication Pre- Initiation	0.00057 0692	FBgn0011762,FBgn0014861,FBgn0015271,FBg n0017577,FBgn0020633,FBgn0025815,FBgn00 26143,FBgn0029856,FBgn0035644,FBgn02591 13,FBgn0259676,FBgn0286788	12	R-DME-69002
Oxidative phosphoryl ation	0.00480 4838	FBgn0011211,FBgn0011227,FBgn0014028,FBg n0016691,FBgn0019644,FBgn0022097,FBgn00 28342,FBgn0033961,FBgn0038224,FBgn00386 13,FBgn0040529,FBgn0262512	12	190
Mitochond rial translation elongation	0.00544 0535	FBgn0011787,FBgn0014023,FBgn0026741,FBg n0029718,FBgn0031231,FBgn0034579,FBgn00 35374,FBgn0037330,FBgn0038474,FBgn00421 12,FBgn0083983,FBgn0263133	12	R-DME-5389840
Mitochond rial translation	0.00691 2208	FBgn0011787,FBgn0014023,FBgn0026741,FBg n0029718,FBgn0031231,FBgn0034579,FBgn00 35374,FBgn0037330,FBgn0038474,FBgn00421 12,FBgn0083983,FBgn0263133	12	R-DME-5368287
Phospholip id metabolis m	0.00968 982	FBgn0015277,FBgn0025352,FBgn0031048,FBg n0033215,FBgn0033216,FBgn0033382,FBgn00 35619,FBgn0036381,FBgn0039470,FBgn00394 71,FBgn0039472,FBgn0053116	12	R-DME-1483257
Cell Cycle Checkpoint s	0.01951 3066	FBgn0003525,FBgn0014861,FBgn0015271,FBg n0017577,FBgn0020633,FBgn0025463,FBgn00 25815,FBgn0026143,FBgn0029856,FBgn00322 44,FBgn0041147,FBgn0286788	12	R-DME-69620
The citric acid (TCA) cycle and respiratory electron transport	0.03823 3499	FBgn0011211,FBgn0011227,FBgn0014028,FBg n0016691,FBgn0019644,FBgn0028342,FBgn00 33961,FBgn0034919,FBgn0037891,FBgn00382 24,FBgn0262559,FBgn0283450	12	R-DME-1428517
Activation of the pre- replicative complex	5.19E- 07	FBgn0011762,FBgn0014861,FBgn0015271,FBg n0017577,FBgn0020633,FBgn0025815,FBgn00 26143,FBgn0035644,FBgn0259113,FBgn02596 76,FBgn0286788	11	R-DME-68962
DNA replication	1.39539 E-06	FBgn0011762,FBgn0014861,FBgn0017577,FBg n0020633,FBgn0025815,FBgn0030507,FBgn00 31252,FBgn0032244,FBgn0035644,FBgn02591 13,FBgn0259676	11	3030
Glyceroph ospholipid biosynthesi s	0.00206 6775	FBgn0025352,FBgn0031048,FBgn0033215,FBg n0033216,FBgn0033382,FBgn0035619,FBgn00 36381,FBgn0039470,FBgn0039471,FBgn00394 72,FBgn0053116	11	R-DME-1483206
Mitochond rial translation termination	0.01627 0993	FBgn0011787,FBgn0014023,FBgn0026741,FBg n0029718,FBgn0031231,FBgn0034579,FBgn00 35374,FBgn0037330,FBgn0038474,FBgn00421 12,FBgn0083983	11	R-DME-5419276
Activation of ATR in	6.18517 E-05	FBgn0003525,FBgn0014861,FBgn0015271,FBg n0017577,FBgn0020633,FBgn0025815,FBgn00	9	R-DME-176187

response to replication		26143,FBgn0032244,FBgn0286788		
stress G2/M Checkpoint s	0.00132 9919	FBgn0003525,FBgn0014861,FBgn0015271,FBg n0017577,FBgn0020633,FBgn0025815,FBgn00 26143,FBgn0032244,FBgn0286788	9	R-DME-69481
Pyrimidine metabolis m	0.02721 9846	FBgn0003257,FBgn0011703,FBgn0011704,FBg n0011762,FBgn0031663,FBgn0035644,FBgn00 37513,FBgn0259113,FBgn0259676	9	240
Metabolis m of nucleotides	0.01046 1081	FBgn0003257,FBgn0011703,FBgn0011704,FBg n0019982,FBgn0031663,FBgn0034988,FBgn00 37513,FBgn0038467	8	R-DME-15869
Switching of origins to a post- replicative state	0.04133 7481	FBgn0010382,FBgn0014861,FBgn0017577,FBg n0020633,FBgn0025815,FBgn0029856,FBgn00 41147,FBgn0286788	8	R-DME-69052
Metabolis m of water- soluble vitamins and cofactors	0.04569 9379	FBgn0029823,FBgn0031248,FBgn0036157,FBg n0040069,FBgn0050345,FBgn0052669,FBgn00 52750,FBgn0085484	8	R-DME-196849
Amino sugar and nucleotide sugar metabolis m	0.00291 5205	FBgn0001187,FBgn0003076,FBgn0004427,FBg n0022700,FBgn0033377,FBgn0034582,FBgn00 39580	7	520
Iron uptake and transport	0.00997 0999	FBgn0022097,FBgn0024957,FBgn0024958,FBg n0029856,FBgn0038613,FBgn0050345,FBgn02 62512	7	R-DME-917937
Assembly of the pre- replicative complex	0.03244 4058	FBgn0014861,FBgn0015271,FBgn0017577,FBg n0020633,FBgn0025815,FBgn0029856,FBgn02 86788	7	R-DME-68867
Fatty acid metabolis m	0.00858 8522	FBgn0011768,FBgn0025352,FBgn0031703,FBg n0034629,FBgn0035383,FBgn0038742	6	71
Formation of ATP by chemiosmo tic coupling	0.00138 9367	FBgn0011211,FBgn0016691,FBgn0019644,FBg n0028342,FBgn0038224	5	R-DME-163210
Cristae formation	0.00138 9367	FBgn0011211,FBgn0016691,FBgn0019644,FBg n0028342,FBgn0038224	5	R-DME-8949613
Mitochond rial biogenesis	0.00211 5626	FBgn0011211,FBgn0016691,FBgn0019644,FBg n0028342,FBgn0038224	5	R-DME-1592230
Telomere Maintenan ce	0.00433 63	FBgn0011762,FBgn0032244,FBgn0035644,FBg n0259113,FBgn0259676	5	R-DME-157579
Telomere C-strand (Lagging Strand)	0.00433 63	FBgn0011762,FBgn0032244,FBgn0035644,FBg n0259113,FBgn0259676	5	R-DME-174417

Synthesis				
Extension of Telomeres	0.00433 63	FBgn0011762,FBgn0032244,FBgn0035644,FBg n0259113,FBgn0259676	5	R-DME-180786
Chromoso me Maintenan ce	0.00433 63	FBgn0011762,FBgn0032244,FBgn0035644,FBg n0259113,FBgn0259676	5	R-DME-73886
DNA strand elongation	0.00591 267	FBgn0011762,FBgn0032244,FBgn0039403,FBg n0259113,FBgn0259676	5	R-DME-69190
Citrate cycle TCA cycle	0.02908 7828	FBgn0014028,FBgn0024957,FBgn0024958,FBg n0037891,FBgn0262559	5	20
Dual Incision in GG-NER	0.02908 7828	FBgn0029856,FBgn0031309,FBgn0032244,FBg n0035644,FBgn0261850	5	R-DME-5696400
Polymeras e switching on the C- strand of the telomere	0.00104 6392	FBgn0011762,FBgn0032244,FBgn0259113,FBg n0259676	4	R-DME-174411
Telomere C-strand synthesis initiation	0.00104 6392	FBgn0011762,FBgn0035644,FBgn0259113,FBg n0259676	4	R-DME-174430
DNA replication initiation	0.00104 6392	FBgn0011762,FBgn0035644,FBgn0259113,FBg n0259676	4	R-DME-68952
Polymeras e switching	0.00104 6392	FBgn0011762,FBgn0032244,FBgn0259113,FBg n0259676	4	R-DME-69091
Leading Strand Synthesis	0.00104 6392	FBgn0011762,FBgn0032244,FBgn0259113,FBg n0259676	4	R-DME-69109
Inhibition of replication initiation of damaged DNA by RB1/E2F1	0.00196 5216	FBgn0011762,FBgn0038390,FBgn0259113,FBg n0259676	4	R-DME-113501
E2F mediated regulation of DNA replication	0.00196 5216	FBgn0011762,FBgn0038390,FBgn0259113,FBg n0259676	4	R-DME-113510
Glyoxylate and dicarboxyl ate metabolis m	0.00520 1449	FBgn0011770,FBgn0024957,FBgn0024958,FBg n0262559	4	630
mRNA decay by 3'	0.00520 1449	FBgn0027524,FBgn0034065,FBgn0034988,FBg n0037815	4	R-DME-429958

to 5'				
exoribonuc				
lease	0.00520	ED == 0025252 ED == 0021702 ED == 0026601 ED =		D DME 77290
Mitochond rial Fatty Acid Beta- Oxidation	0.00520 1449	FBgn0025352,FBgn0031703,FBgn0036691,FBg n0038742	4	R-DME-77289
Arachidoni c acid metabolis m	0.00767 9416	FBgn0025814,FBgn0033215,FBgn0033216,FBg n0053178	4	R-DME-2142753
Neuroactiv e ligand- receptor interaction	0.01469 5025	FBgn0003863,FBgn0010425,FBgn0011555,FBg n0039354	4	4080
Metabolis m of Angiotensi nogen to Angiotensi ns	0.01933 9339	FBgn0031678,FBgn0032144,FBgn0033774,FBg n0035718	4	R-DME-2022377
Lagging Strand Synthesis	0.01933 9339	FBgn0011762,FBgn0032244,FBgn0259113,FBg n0259676	4	R-DME-69186
Glycine, serine and threonine metabolis m	0.04625 0778	FBgn0014427,FBgn0029823,FBgn0037186,FBg n0039094	4	260
Formation of the activated receptor complex	0.00176 7154	FBgn0030904,FBgn0043903,FBgn0053542	3	R-DME-209209
Vitamin B6 metabolis m	0.00416 3478	FBgn0014427,FBgn0031048,FBgn0085484	3	750
Formation of the activated STAT92E dimer and transport to the nucleus	0.00416 3478	FBgn0030904,FBgn0043903,FBgn0053542	3	R-DME-209228
The retinoid cycle in cones (daylight vision)	0.00416 3478	FBgn0029994,FBgn0033215,FBgn0033216	3	R-DME-2187335
Dephospho rylation by PTP61F phosphatas es	0.00784 9313	FBgn0030904,FBgn0043903,FBgn0053542	3	R-DME-210688

Synthesis of PE	0.01295 1503	FBgn0031048,FBgn0036381,FBgn0053116	3	R-DME-1483213
JAK/STAT pathway	0.01954 3275	FBgn0030904,FBgn0043903,FBgn0053542	3	R-DME-209405
Lysine catabolism	0.01954 3275	FBgn0036381,FBgn0037891,FBgn0040383	3	R-DME-71064
Triglycerid e biosynthesi s	0.01954 3275	FBgn0025592,FBgn0033215,FBgn0033216	3	R-DME-75109
Synthesis of bile acids and bile salts	0.02765 3751	FBgn0010241,FBgn0020626,FBgn0034629	3	R-DME-192105
Vitamin B5 (pantothen ate) metabolis m	0.02765 3751	FBgn0040069,FBgn0052669,FBgn0052750	3	R-DME-199220
Removal of the Flap Intermediat e	0.03727 6166	FBgn0011762,FBgn0259113,FBgn0259676	3	R-DME-69166
Processive synthesis on the lagging strand	0.04837 4947	FBgn0011762,FBgn0259113,FBgn0259676	3	R-DME-69183
Glycogen synthesis	0.00605 94	FBgn0003076,FBgn0033377	2	R-DME-3322077
Beta oxidation of hexanoyl- CoA to butanoyl- CoA	0.00605 94	FBgn0025352,FBgn0038742	2	R-DME-77350
Phosphoryl ation of proteins involved in G1/S transition by active Cyclin E:Cdk2 complexes	0.01724 0412	FBgn0010382,FBgn0038390	2	R-DME-69200
Digestion of dietary carbohydra te	0.03271 3669	FBgn0000078,FBgn0022700	2	R-DME-189085
AKT phosphoryl ates targets in the cytosol	0.03271 3669	FBgn0025463,FBgn0267824	2	R-DME-198323

mitochondr ial fatty acid beta- oxidation of saturated fatty acids	0.03271 3669	FBgn0025352,FBgn0038742	2	R-DME-77286
Wax biosynthesi s	0.03271 3669	FBgn0033215,FBgn0033216	2	R-DME-9640463

Table 2.1e: GO enrichment for hits differentially upregulated in control males relative to control
females

GO enrichmen t	p- value	Hits	Gene matche s	GOID
multicellul ar organismal process	0.0489 251	FBgn0000008,FBgn0000152,FBgn0000163,FBgn00003 95,FBgn0000451,FBgn0000547,FBgn0000568,FBgn000 0928,FBgn0001112,FBgn0001218,FBgn0001234,FBgn0 002524,FBgn0002566,FBgn0002633,FBgn0002643,FBg n0002732,FBgn0003391,FBgn0003655,FBgn0003984,F Bgn0004396,FBgn0004797,FBgn0004893,FBgn000490 7,FBgn0010238,FBgn0010240,FBgn0010501,FBgn0010 651,FBgn0010894,FBgn0011739,FBgn0011817,FBgn00 14073,FBgn0014135,FBgn00258,FBgn0020300,FB gn0022800,FBgn0023510,FBgn0024236,FBgn0024250, FBgn0024555,FBgn0025741,FBgn0024236,FBgn0024250, FBgn0024555,FBgn0025741,FBgn0026263,FBgn00282 92,FBgn0030596,FBgn003985,FBgn0031461,FBgn00 031853,FBgn0031885,FBgn0032843,FBgn0031461,FBgn0 031853,FBgn0031885,FBgn0032843,FBgn0033032,FBg n0033127,FBgn0035461,FBgn0035513,FBgn003562 6,FBgn0036801,FBgn0037802,FBgn0038592,FBgn0036 666,FBgn0036801,FBgn004532,FBgn0040726,FBgn 0041160,FBgn0041629,FBgn004532,FBgn0040726,FBgn 0041160,FBgn0051216,FBgn0052133,FBgn00854 32,FBgn0052364,FBgn0053527,FBgn0085430,FBgn00854 32,FBgn005455,FBgn0053527,FBgn0085430,FBgn00854 32,FBgn0261799,FBgn0259683,FBgn0263316,FBgn00854 32,FBgn0261799,FBgn0259683,FBgn02603316,FBgn0026 1284,FBgn0261799,FBgn026084,FBgn0260316,FBgn0026 1284,FBgn0261799,FBgn026084,FBgn0266316,FBgn0 264959,FBgn0265778,FBgn026084,FBgn0266411,FBg n0283499,FBgn0265778,FBgn026084,FBgn0266411,FBg n0283499,FBgn0265778,FBgn0260281,FBgn0266411,FBg n0283499,FBgn0265778,FBgn0260281,FBgn0266411,FBg n0283499,FBgn0265778,FBgn0260281,FBgn0266411,FBg n0283499,FBgn0265778,FBgn0260281,FBgn0266411,FBg n0283499,FBgn0265778,FBgn0260281,FBgn0266411,FBg n0283499,FBgn0265778,FBgn0260281,FBgn0266411,FBg n0283499,FBgn0265778,FBgn0260281,FBgn0266411,FBg n0283499,FBgn0265778,FBgn0266084,FBgn0266411,FBg n0283499,FBgn0265778,FBgn0266084,FBgn0266411,FBg n0283499,FBgn0265778,FBgn0266084,FBgn0266411,FBg n0283499,FBgn0285455,FBgn0266084,FBgn0266411,FBg n0283499,FBgn0285455,FBgn0266084,FBgn0266411,FBg n0283499,FBgn0285455,FBgn0266084,FBgn0266411,FBg n0283499,FBgn0285455,FBgn0266084,FBgn0266411,FBg n0283499,FBgn0283545,FBgn0266084,FBgn0266411,FBg	102	GO:003250 1
anatomical structure developme nt	0.0470 289	FBgn0000008,FBgn0000163,FBgn0000395,FBgn00004 51,FBgn0000547,FBgn0000568,FBgn0000928,FBgn000 1112,FBgn0001234,FBgn0002524,FBgn0002566,FBgn0 002633,FBgn0002643,FBgn0002732,FBgn0003391,FBg n0003655,FBgn0003984,FBgn0004396,FBgn0004797,F Bgn0004893,FBgn0004907,FBgn0010238,FBgn001050 1,FBgn0010651,FBgn0010894,FBgn0011705,FBgn0011 739,FBgn0011817,FBgn0014073,FBgn0014135,FBgn00 14388,FBgn0015229,FBgn0015946,FBgn0016032,FBgn 0022800,FBgn0023510,FBgn0024236,FBgn0024250,FB gn0024555,FBgn0025741,FBgn0026263,FBgn0028292, FBgn0028369,FBgn0029006,FBgn0029082,FBgn00305 96,FBgn0031461,FBgn0031853,FBgn0031885,FBgn003 3032,FBgn0033127,FBgn0034262,FBgn0034279,FBgn0	88	GO:004885 6

	035153,FBgn0035461,FBgn0035513,FBgn0035626,FBg n0035977,FBgn0036518,FBgn0036666,FBgn0036801,F Bgn0037802,FBgn0038592,FBgn0039048,FBgn004053 2,FBgn0041160,FBgn0043900,FBgn0045842,FBgn0050 456,FBgn0051216,FBgn0052133,FBgn0052179,FBgn00 52364,FBgn0085430,FBgn0085432,FBgn0259176,FBgn 0259938,FBgn0261245,FBgn0261284,FBgn0261799,FB gn0262081,FBgn0263316,FBgn0264959,FBgn0265778, FBgn0266084,FBgn0266411,FBgn0283499,FBgn02862 03		
cell 0.0322 communic 915 ation	FBgn0000395,FBgn0000547,FBgn0000568,FBgn00012	61	GO:000715 4
signaling 0.0272 355	FBgn0000395,FBgn0000547,FBgn0000568,FBgn00012	60	GO:002305 2
signal 0.0281 transductio 688 n	FBgn0000395,FBgn0000547,FBgn0000568,FBgn00012 18,FBgn0001234,FBgn0002643,FBgn0002732,FBgn000 3984,FBgn0004907,FBgn0010240,FBgn0011739,FBgn0 011817,FBgn0014009,FBgn0014073,FBgn0014135,FBg n0014388,FBgn0015946,FBgn0022800,FBgn0023416,F Bgn0024250,FBgn0025625,FBgn0025741,FBgn002829 2,FBgn0029006,FBgn0029082,FBgn0030011,FBgn0031 461,FBgn0031885,FBgn0034262,FBgn0034647,FBgn00 35023,FBgn0035153,FBgn0035626,FBgn0035806,FBgn 0035977,FBgn0036518,FBgn0037007,FBgn0037163,FB gn0039273,FBgn0043900,FBgn0050440,FBgn0050456, FBgn0052179,FBgn0052476,FBgn0052638,FBgn00535 27,FBgn0085432,FBgn0086358,FBgn0262081,FBgn026	53	GO:000716 5
tube 0.0057	4959,FBgn0265778,FBgn0266411,FBgn0283499 FBgn0000163,FBgn0000395,FBgn0000451,FBgn00005	34	GO:003529

developme nt	055	47,FBgn0002524,FBgn0002643,FBgn0003391,FBgn000 3984,FBgn0004893,FBgn0010651,FBgn0011739,FBgn0 011817,FBgn0014135,FBgn0014388,FBgn0023510,FBg n0024236,FBgn0024250,FBgn0029006,FBgn0029082,F Bgn0031461,FBgn0031885,FBgn0036518,FBgn003666 6,FBgn0036801,FBgn0040532,FBgn0043900,FBgn0050 456,FBgn0052133,FBgn0085432,FBgn0263316,FBgn02 64959,FBgn0265778,FBgn0266084,FBgn0283499		5
morphogen esis of an epithelium	0.0424 701	FBgn0000163,FBgn0000395,FBgn0000547,FBgn00026 43,FBgn0003391,FBgn0003984,FBgn0004893,FBgn001 0238,FBgn0010894,FBgn0011817,FBgn0014135,FBgn0 014388,FBgn0024236,FBgn0024250,FBgn0029082,FBg n0031461,FBgn0031885,FBgn0036518,FBgn0036666,F Bgn0036801,FBgn0043900,FBgn0050456,FBgn005217 9,FBgn0085432,FBgn0264959,FBgn0265778,FBgn0266 084	27	GO:000200 9
imaginal disc developme nt	0.0356 385	FBgn0000395,FBgn0000547,FBgn0002524,FBgn00026 43,FBgn0003391,FBgn0003984,FBgn0004893,FBgn001 0651,FBgn0011739,FBgn0011817,FBgn0014135,FBgn0 024250,FBgn0031461,FBgn0031885,FBgn0036518,FBg n0036801,FBgn0040532,FBgn0043900,FBgn0050456,F Bgn0052133,FBgn0085432,FBgn0263316,FBgn026495 9,FBgn0265778,FBgn0266084,FBgn0283499	26	GO:000744 4
tube morphogen esis	0.0176 962	FBgn0000163,FBgn0000395,FBgn0000547,FBgn00026 43,FBgn0003391,FBgn0003984,FBgn0004893,FBgn001 1817,FBgn0014135,FBgn0014388,FBgn0023510,FBgn0 024236,FBgn0024250,FBgn0029006,FBgn0031461,FBg n0031885,FBgn0036518,FBgn0036666,FBgn0036801,F Bgn0043900,FBgn0050456,FBgn0085432,FBgn026495 9,FBgn0265778,FBgn0266084	25	GO:003523 9
epithelial tube morphogen esis	0.0273 455	FBgn0000163,FBgn0000395,FBgn0000547,FBgn00026 43,FBgn0003391,FBgn0003984,FBgn0004893,FBgn001 1817,FBgn0014135,FBgn0014388,FBgn0024236,FBgn0 024250,FBgn0031461,FBgn0031885,FBgn0036518,FBg n0036666,FBgn0036801,FBgn0043900,FBgn0050456,F Bgn0085432,FBgn0264959,FBgn0265778,FBgn026608 4	23	GO:006056 2
regulation of cell differentiat ion	0.0258 182	FBgn0000547,FBgn0002633,FBgn0003391,FBgn00036 55,FBgn0003984,FBgn0004797,FBgn0011739,FBgn001 4073,FBgn0014388,FBgn0025741,FBgn0028369,FBgn0 031461,FBgn0052179,FBgn0085430,FBgn0259176,FBg n0259938,FBgn0263353,FBgn0264959,FBgn0265778,F Bgn0266084,FBgn0283499	21	GO:004559 5
response to abiotic stimulus	0.0204 374	FBgn0004832,FBgn0004907,FBgn0010651,FBgn00117 39,FBgn0011817,FBgn0014073,FBgn0015946,FBgn002 0258,FBgn0030505,FBgn0031885,FBgn0033132,FBgn0 034335,FBgn0037163,FBgn0038530,FBgn0039464,FBg n0045842,FBgn0263316,FBgn0266411,FBgn0267430,F Bgn0283499	20	GO:000962 8
regulation of cell developme nt	0.0210 157	FBgn0000547,FBgn0002633,FBgn0003391,FBgn00036 55,FBgn0003984,FBgn0004797,FBgn0011739,FBgn001 4073,FBgn0014388,FBgn0025741,FBgn0031461,FBgn0 052179,FBgn0085430,FBgn0259176,FBgn0259938,FBg n0264959,FBgn0265778,FBgn0266084,FBgn0283499	19	GO:006028 4
respiratory system developme	0.0002 383	FBgn0000163,FBgn0000547,FBgn0003391,FBgn00102 38,FBgn0010894,FBgn0011739,FBgn0014135,FBgn001 4388,FBgn0023510,FBgn0024236,FBgn0033032,FBgn0	18	GO:006054 1

nt		036666,FBgn0085432,FBgn0261284,FBgn0264959,FBg n0266084,FBgn0266411,FBgn0283499		
enzyme linked receptor protein signaling pathway	0.0091 84	FBgn0000395,FBgn0000547,FBgn0003984,FBgn00049 07,FBgn0014073,FBgn0014135,FBgn0014388,FBgn002 2800,FBgn0024250,FBgn0025625,FBgn0029006,FBgn0 031461,FBgn0035626,FBgn0052179,FBgn0264959,FBg n0266411,FBgn0283499	17	GO:000716 7
post- embryonic appendage morphogen esis	0.0436 033	FBgn0000395,FBgn0000547,FBgn0002643,FBgn00033 91,FBgn0003984,FBgn0004893,FBgn0011817,FBgn002 4250,FBgn0031461,FBgn0036518,FBgn0036801,FBgn0 043900,FBgn0050456,FBgn0085432,FBgn0264959,FBg n0265778,FBgn0266084	17	GO:003512 0
imaginal disc- derived appendage morphogen esis	0.0486 28	FBgn0000395,FBgn0000547,FBgn0002643,FBgn00033 91,FBgn0003984,FBgn0004893,FBgn0011817,FBgn002 4250,FBgn0031461,FBgn0036518,FBgn0036801,FBgn0 043900,FBgn0050456,FBgn0085432,FBgn0264959,FBg n0265778,FBgn0266084	17	GO:003511 4
open tracheal system developme nt	0.0012 062	FBgn0000163,FBgn0000547,FBgn0003391,FBgn00102 38,FBgn0010894,FBgn0011739,FBgn0014135,FBgn001 4388,FBgn0023510,FBgn0024236,FBgn0033032,FBgn0 036666,FBgn0085432,FBgn0261284,FBgn0264959,FBg n0283499	16	GO:000742 4
cell adhesion	0.0007 773	FBgn0000163,FBgn0000547,FBgn0003391,FBgn00102 38,FBgn0010894,FBgn0015229,FBgn0022800,FBgn002 5741,FBgn0028369,FBgn0029082,FBgn0037963,FBgn0 043900,FBgn0264959,FBgn0266084	14	GO:000715 5
biological adhesion	0.0008 548	FBgn0000163,FBgn0000547,FBgn0003391,FBgn00102 38,FBgn0010894,FBgn0015229,FBgn0022800,FBgn002 5741,FBgn0028369,FBgn0029082,FBgn0037963,FBgn0 043900,FBgn0264959,FBgn0266084	14	GO:002261 0
embryonic morphogen esis	0.0163 682	FBgn0000163,FBgn0000547,FBgn0002643,FBgn00033 91,FBgn0004893,FBgn0010238,FBgn0010894,FBgn002 8292,FBgn0029006,FBgn0036518,FBgn0085432,FBgn0 264959,FBgn0265778,FBgn0283499	14	GO:004859 8
transmemb rane receptor protein tyrosine kinase signaling pathway	0.0187 95	FBgn0000547,FBgn0003984,FBgn0004907,FBgn00140 73,FBgn0014135,FBgn0014388,FBgn0022800,FBgn002 5625,FBgn0035626,FBgn0052179,FBgn0264959,FBgn0 266411,FBgn0283499	13	GO:000716 9
defense response to bacterium	0.0160 245	FBgn0024987,FBgn0033980,FBgn0034647,FBgn00358 06,FBgn0035813,FBgn0035977,FBgn0038530,FBgn004 0384,FBgn0052133,FBgn0086358,FBgn0264959,FBgn0 265052	12	GO:004274 2
response to bacterium	0.0315 131	FBgn0024987,FBgn0033980,FBgn0034647,FBgn00358 06,FBgn0035813,FBgn0035977,FBgn0038530,FBgn004 0384,FBgn0052133,FBgn0086358,FBgn0264959,FBgn0 265052	12	GO:000961 7
cell-cell adhesion	0.0004 45	FBgn0000163,FBgn0000547,FBgn0003391,FBgn00102 38,FBgn0015229,FBgn0022800,FBgn0028369,FBgn002 9082,FBgn0037963,FBgn0043900,FBgn0264959	11	GO:009860 9
determinati on of adult	0.0261 507	FBgn0002566,FBgn0015946,FBgn0031461,FBgn00318 85,FBgn0033127,FBgn0035977,FBgn0037802,FBgn005	11	GO:000834 0

lifespan		1216,FBgn0259176,FBgn0263316,FBgn0283499		
multicellul ar organism aging	0.0276 998	FBgn0002566,FBgn0015946,FBgn0031461,FBgn00318 85,FBgn0033127,FBgn0035977,FBgn0037802,FBgn005 1216,FBgn0259176,FBgn0263316,FBgn0283499	11	GO:001025 9
positive regulation of intracellula r signal transductio n	0.0293 142	FBgn0000547,FBgn0001234,FBgn0003984,FBgn00049 07,FBgn0014135,FBgn0031885,FBgn0050440,FBgn005 0456,FBgn0262081,FBgn0264959,FBgn0283499	11	GO:190253 3
aging	0.0327 437	FBgn0002566,FBgn0015946,FBgn0031461,FBgn00318 85,FBgn0033127,FBgn0035977,FBgn0037802,FBgn005 1216,FBgn0259176,FBgn0263316,FBgn0283499	11	GO:000756 8
cell-cell junction organizatio n	0.0007 144	FBgn0000163,FBgn0003391,FBgn0010238,FBgn00108 94,FBgn0028369,FBgn0033032,FBgn0261284,FBgn026 2081,FBgn0264959,FBgn0265778	10	GO:004521 6
cell junction organizatio n	0.0008 173	FBgn0000163,FBgn0003391,FBgn0010238,FBgn00108 94,FBgn0028369,FBgn0033032,FBgn0261284,FBgn026 2081,FBgn0264959,FBgn0265778	10	GO:003433 0
sulfur compound metabolic process	0.0204 494	FBgn0010039,FBgn0010040,FBgn0010041,FBgn00150 11,FBgn0032986,FBgn0034335,FBgn0050022,FBgn006 3492,FBgn0063493,FBgn0265052	10	GO:000679 0
positive regulation of phosphorus metabolic process	0.0204 494	FBgn0001234,FBgn0003984,FBgn0014073,FBgn00141 35,FBgn0022800,FBgn0025741,FBgn0031461,FBgn003 1885,FBgn0264959,FBgn0283499	10	GO:001056 2
positive regulation of phosphate metabolic process	0.0204 494	FBgn0001234,FBgn0003984,FBgn0014073,FBgn00141 35,FBgn0022800,FBgn0025741,FBgn0031461,FBgn003 1885,FBgn0264959,FBgn0283499	10	GO:004593 7
cell-cell adhesion via plasma- membrane adhesion molecules	1.38E- 05	FBgn0000163,FBgn0000547,FBgn0003391,FBgn00102 38,FBgn0015229,FBgn0022800,FBgn0028369,FBgn002 9082,FBgn0037963	9	GO:009874 2
regulation of locomotion	0.0170 422	FBgn0003391,FBgn0003984,FBgn0014073,FBgn00141 35,FBgn0025741,FBgn0052179,FBgn0085430,FBgn026 6084,FBgn0266411	9	GO:004001 2
regulation of cellular component movement	0.0170 422	FBgn0003391,FBgn0003984,FBgn0014073,FBgn00141 35,FBgn0025741,FBgn0052179,FBgn0085430,FBgn026 6084,FBgn0266411	9	GO:005127 0
positive regulation of	0.0386 17	FBgn0001234,FBgn0003984,FBgn0014073,FBgn00141 35,FBgn0022800,FBgn0031461,FBgn0031885,FBgn026 4959,FBgn0283499	9	GO:004232 7

phosphoryl ation				
MAPK cascade	0.0487 412	FBgn0001234,FBgn0003984,FBgn0014135,FBgn00143 88,FBgn0031885,FBgn0035977,FBgn0264959,FBgn026 5778,FBgn0283499	9	GO:000016 5
cell-cell junction assembly	0.0008 342	FBgn0000163,FBgn0003391,FBgn0010238,FBgn00108 94,FBgn0028369,FBgn0033032,FBgn0261284,FBgn026 5778	8	GO:000704 3
cell junction assembly	0.0009 864	FBgn0000163,FBgn0003391,FBgn0010238,FBgn00108 94,FBgn0028369,FBgn0033032,FBgn0261284,FBgn026 5778	8	GO:003432 9
cuticle developme nt	0.0045 878	FBgn0000451,FBgn0001112,FBgn0004396,FBgn00355 13,FBgn0043900,FBgn0085432,FBgn0261799,FBgn028 6203	8	GO:004233 5
regulation of cell migration	0.0071 917	FBgn0003391,FBgn0003984,FBgn0014073,FBgn00141 35,FBgn0025741,FBgn0052179,FBgn0266084,FBgn026 6411	8	GO:003033 4
regulation of cell motility	0.0097 811	FBgn0003391,FBgn0003984,FBgn0014073,FBgn00141 35,FBgn0025741,FBgn0052179,FBgn0266084,FBgn026 6411	8	GO:200014 5
detection of stimulus	0.0130 077	FBgn0020258,FBgn0033404,FBgn0035806,FBgn00371 63,FBgn0037630,FBgn0040849,FBgn0050081,FBgn025 9683	8	GO:005160 6
stem cell proliferatio n	0.0216 965	FBgn0000163,FBgn0011739,FBgn0024555,FBgn00282 92,FBgn0031461,FBgn0035626,FBgn0085432,FBgn025 9176	8	GO:007208 9
stem cell division	0.0273 108	FBgn0000163,FBgn0000928,FBgn0003391,FBgn00245 55,FBgn0028292,FBgn0035626,FBgn0052364,FBgn028 3499	8	GO:001714 5
homophilic cell adhesion via plasma membrane adhesion molecules	6.751 E-05	FBgn0000547,FBgn0003391,FBgn0010238,FBgn00228 00,FBgn0028369,FBgn0029082,FBgn0037963	7	GO:000715 6
glutathione metabolic process	0.0021 294	FBgn0010039,FBgn0010040,FBgn0010041,FBgn00343 35,FBgn0050022,FBgn0063492,FBgn0063493	7	GO:000674 9
chitin- based cuticle developme nt	0.0025 003	FBgn0001112,FBgn0004396,FBgn0035513,FBgn00439 00,FBgn0085432,FBgn0261799,FBgn0286203	7	GO:004000 3
morphogen esis of a branching structure	0.0033 893	FBgn0000163,FBgn0000547,FBgn0003391,FBgn00141 35,FBgn0014388,FBgn0024236,FBgn0036666	7	GO:000176 3
branching morphogen esis of an epithelial tube	0.0033 893	FBgn0000163,FBgn0000547,FBgn0003391,FBgn00141 35,FBgn0014388,FBgn0024236,FBgn0036666	7	GO:004875 4
branching involved in open tracheal	0.0033 893	FBgn0000163,FBgn0000547,FBgn0003391,FBgn00141 35,FBgn0014388,FBgn0024236,FBgn0036666	7	GO:006044 6

system developme				
nt morphogen esis of a branching epithelium	0.0033 893	FBgn0000163,FBgn0000547,FBgn0003391,FBgn00141 35,FBgn0014388,FBgn0024236,FBgn0036666	7	GO:006113 8
cellular modified amino acid metabolic process	0.0118 394	FBgn0010039,FBgn0010040,FBgn0010041,FBgn00343 35,FBgn0050022,FBgn0063492,FBgn0063493	7	GO:000657 5
posttranscr iptional gene silencing	0.0145 638	FBgn0001218,FBgn0011291,FBgn0024987,FBgn00314 88,FBgn0035626,FBgn0036451,FBgn0039972	7	GO:001644 1
modulation of chemical synaptic transmissio n	0.0324 448	FBgn0010501,FBgn0030505,FBgn0030850,FBgn00339 26,FBgn0051201,FBgn0262081,FBgn0264959	7	GO:005080 4
regulation of trans- synaptic signaling	0.0324 448	FBgn0010501,FBgn0030505,FBgn0030850,FBgn00339 26,FBgn0051201,FBgn0262081,FBgn0264959	7	GO:009917 7
establishm ent of planar polarity	0.0407 185	FBgn0000163,FBgn0000547,FBgn0003391,FBgn00118 17,FBgn0014388,FBgn0029082,FBgn0052179	7	GO:000173 6
morphogen esis of a polarized epithelium	0.0407 185	FBgn0000163,FBgn0000547,FBgn0003391,FBgn00118 17,FBgn0014388,FBgn0029082,FBgn0052179	7	GO:000173 8
establishm ent of tissue polarity	0.0407 185	FBgn0000163,FBgn0000547,FBgn0003391,FBgn00118 17,FBgn0014388,FBgn0029082,FBgn0052179	7	GO:000716 4
detection of chemical stimulus	0.0027 514	FBgn0033404,FBgn0035806,FBgn0037630,FBgn00408 49,FBgn0050081,FBgn0259683	6	GO:000959 3
adherens junction organizatio n	0.0039 19	FBgn0000163,FBgn0003391,FBgn0028369,FBgn02620 81,FBgn0264959,FBgn0265778	6	GO:003433 2
apical junction assembly	0.0054 184	FBgn0000163,FBgn0003391,FBgn0010238,FBgn00108 94,FBgn0033032,FBgn0261284	6	GO:004329 7
establishm ent of ommatidial planar polarity	0.0083 991	FBgn0000547,FBgn0003391,FBgn0011817,FBgn00143 88,FBgn0029082,FBgn0052179	6	GO:004206 7
gastrulatio n	0.0217 839	FBgn0000163,FBgn0002643,FBgn0003391,FBgn00282 92,FBgn0036518,FBgn0085432	6	GO:000736 9

cell fate specificatio n	0.0320 726	FBgn0000547,FBgn0002732,FBgn0003984,FBgn00117 39,FBgn0031461,FBgn0259176	б	GO:000170 8
positive regulation of cell population proliferatio n	0.0415 766	FBgn0003984,FBgn0031461,FBgn0035626,FBgn00521 79,FBgn0259176,FBgn0283499	6	GO:000828 4
regulation of tube architectur e, open tracheal system	0.0451	FBgn0003391,FBgn0010238,FBgn0010894,FBgn00235 10,FBgn0033032,FBgn0261284	6	GO:003515 2
regulation of oogenesis	0.0451	FBgn0003391,FBgn0003655,FBgn0003984,FBgn00047 97,FBgn0014073,FBgn0052179	6	GO:190587 9
ommatidial rotation	0.0032 684	FBgn0000547,FBgn0003391,FBgn0011817,FBgn00143 88,FBgn0052179	5	GO:001631 8
intestinal stem cell homeostasi s	0.0040 587	FBgn0001218,FBgn0032691,FBgn0259176,FBgn02649 59,FBgn0283499	5	GO:003633 5
homeostasi s of number of cells	0.0040 587	FBgn0001218,FBgn0032691,FBgn0259176,FBgn02649 59,FBgn0283499	5	GO:004887 2
hippo signaling	0.0294 005	FBgn0000547,FBgn0004907,FBgn0011739,FBgn00290 06,FBgn0262081	5	GO:003532 9
regulation of epithelial cell migration	0.0327 878	FBgn0003391,FBgn0003984,FBgn0014073,FBgn00141 35,FBgn0052179	5	GO:001063 2
positive regulation of cell migration	0.0364 089	FBgn0003391,FBgn0003984,FBgn0014073,FBgn00521 79,FBgn0266084	5	GO:003033 5
regulation of defense response to bacterium	0.0364 089	FBgn0034647,FBgn0035806,FBgn0035977,FBgn00521 33,FBgn0086358	5	GO:190042 4
molting cycle, chitin- based cuticle	0.0443 641	FBgn0000568,FBgn0001112,FBgn0004396,FBgn00439 00,FBgn0085432	5	GO:000759 1
molting cycle	0.0443 641	FBgn0000568,FBgn0001112,FBgn0004396,FBgn00439 00,FBgn0085432	5	GO:004230 3
positive regulation of cell motility	0.0487 023	FBgn0003391,FBgn0003984,FBgn0014073,FBgn00521 79,FBgn0266084	5	GO:200014 7
cuticle developme nt involved	0.0031 394	FBgn0001112,FBgn0004396,FBgn0043900,FBgn00854 32	4	GO:004233 7

in chitin-				
based				
cuticle				
molting				
cycle				
adherens	0.0055	FBgn0000163,FBgn0003391,FBgn0028369,FBgn02657	4	GO:003433
junction	339	78		3
assembly				
execution	0.0089	FBgn0010501,FBgn0015946,FBgn0028406,FBgn00342	4	GO:009719
phase of	118	79		4
apoptosis				
regulation	0.0191	FBgn0003984,FBgn0014135,FBgn0014388,FBgn02649	4	GO:007037
of ERK1	338	59		2
and ERK2				
cascade				
circadian	0.0261	FBgn0034136,FBgn0035023,FBgn0053527,FBgn02834	4	GO:004274
sleep/wake	696	99		5
cycle	0,70			0
regulation	0.0261	FBgn0000547,FBgn0014388,FBgn0264959,FBgn02657	4	GO:011011
of	696	78		6
compound	0,0			0
eye				
photorecep				
tor cell				
differentiat				
ion				
feeding	0.0301	FBgn0020258,FBgn0039509,FBgn0040726,FBgn02834	4	GO:000763
behavior	97	99		1
ERK1 and	0.0301	FBgn0003984,FBgn0014135,FBgn0014388,FBgn02649	4	GO:007037
ERK1 and ERK2	97	59	4	1
cascade	91	57		1
syncytium	0.0345	FBgn0011705,FBgn0028369,FBgn0029082,FBgn02612	4	GO:000076
formation	704	45	4	8
by plasma	704	+5		0
membrane				
fusion				
syncytium	0.0345	FBgn0011705,FBgn0028369,FBgn0029082,FBgn02612	4	GO:000694
formation	704	45	4	9
	0.0345	FBgn0011705,FBgn0028369,FBgn0029082,FBgn02612	4	GO:000752
myoblast fusion		45	4	0
	704		4	
septate	0.0345	FBgn0010238,FBgn0010894,FBgn0033032,FBgn02612	4	GO:001999
junction	704	84		1
assembly	0.0245	ED		CO.00(105
peptidogly	0.0345	FBgn0034647,FBgn0035806,FBgn0035977,FBgn00863	4	GO:006105
can	704	58		7
recognition				
protein				
signaling				
pathway	0.0245		4	00.01.400
cell-cell	0.0345	FBgn0011705,FBgn0028369,FBgn0029082,FBgn02612	4	GO:014025
fusion	704	45		3
tight	0.0392	FBgn0010238,FBgn0010894,FBgn0033032,FBgn02612	4	GO:012019
junction	924	84		2
assembly				
tight	0.0392	FBgn0010238,FBgn0010894,FBgn0033032,FBgn02612	4	GO:012019
junction	924	84		3
organizatio				

n				
positive regulation of border follicle cell migration	0.0443 641	FBgn0003391,FBgn0003984,FBgn0014073,FBgn00521 79	4	GO:190368 8
positive regulation of epithelial cell migration	0.0497 853	FBgn0003391,FBgn0003984,FBgn0014073,FBgn00521 79	4	GO:001063 4
myotube differentiat ion	0.0497 853	FBgn0011705,FBgn0028369,FBgn0029082,FBgn02612 45	4	GO:001490 2
positive regulation of epithelial cell differentiat ion	0.0497 853	FBgn0003391,FBgn0003984,FBgn0014073,FBgn00521 79	4	GO:003085 8
regulation of border follicle cell migration	0.0497 853	FBgn0003391,FBgn0003984,FBgn0014073,FBgn00521 79	4	GO:190368 4
symmetric stem cell division	0.0001 266	FBgn0003391,FBgn0035626,FBgn0052364	3	GO:009872 4
symmetric cell division	0.0004 874	FBgn0003391,FBgn0035626,FBgn0052364	3	GO:009872 5
calcium- dependent cell-cell adhesion via plasma membrane cell adhesion molecules	0.0038 068	FBgn0003391,FBgn0022800,FBgn0037963	3	GO:001633 9
protein polyglycyl ation	0.0084 735	FBgn0026147,FBgn0031853,FBgn0034459	3	GO:001809 4
response to osmotic stress	0.0116 594	FBgn0015946,FBgn0030505,FBgn0031885	3	GO:000697 0
negative regulation of cell adhesion	0.0116 594	FBgn0000163,FBgn0025741,FBgn0043900	3	GO:000716 2
chitin- based larval cuticle pattern	0.0116 594	FBgn0004396,FBgn0043900,FBgn0085432	3	GO:003529 3

formation				
negative regulation of secretion by cell	0.0116 594	FBgn0030505,FBgn0032428,FBgn0283499	3	GO:190353 1
heterophili c cell-cell adhesion via plasma membrane cell adhesion molecules	0.0154 43	FBgn0015229,FBgn0028369,FBgn0029082	3	GO:000715 7
peptidyl- glutamic acid modificatio n	0.0154 43	FBgn0026147,FBgn0031853,FBgn0034459	3	GO:001820 0
negative regulation of secretion	0.0154 43	FBgn0030505,FBgn0032428,FBgn0283499	3	GO:005104 8
larval chitin- based cuticle developme nt	0.0198 366	FBgn0004396,FBgn0043900,FBgn0085432	3	GO:000836 3
tube fusion	0.0198 366	FBgn0000547,FBgn0003391,FBgn0024236	3	GO:003514 6
branch fusion, open tracheal system	0.0198 366	FBgn0000547,FBgn0003391,FBgn0024236	3	GO:003514 7
negative regulation of imaginal disc growth	0.0248 458	FBgn0011739,FBgn0036666,FBgn0262081	3	GO:004557 1
positive regulation of hippo signaling	0.0304 701	FBgn0000547,FBgn0004907,FBgn0262081	3	GO:003533 2
positive regulation of ERK1 and ERK2 cascade	0.0304 701	FBgn0003984,FBgn0014135,FBgn0264959	3	GO:007037 4
female mating behavior	0.0367 042	FBgn0028424,FBgn0053527,FBgn0283499	3	GO:006018 0
regulation of peptidogly	0.0367 042	FBgn0034647,FBgn0035806,FBgn0035977	3	GO:006105 8

can				
recognition protein signaling pathway				
histone H4 acetylation	0.0435	FBgn0031876,FBgn0032691,FBgn0035624	3	GO:004396 7
R8 cell differentiat ion	0.0435	FBgn0000547,FBgn0011739,FBgn0031461	3	GO:004546 5
germline stem cell symmetric division	0.0025 308	FBgn0003391,FBgn0052364	2	GO:009872 9
male germline stem cell symmetric division	0.0025 308	FBgn0003391,FBgn0052364	2	GO:009873 0
mesoderma l cell fate determinati on	0.0073 393	FBgn0002643,FBgn0085432	2	GO:000750 0
gonadal mesoderm developme nt	0.0073 393	FBgn0003391,FBgn0024236	2	GO:000750 6
phenol- containing compound catabolic process	0.0073 393	FBgn0016013,FBgn0037153	2	GO:001933 6
response to anoxia	0.0073 393	FBgn0263316,FBgn0283499	2	GO:003405 9
response to light intensity	0.0141 912	FBgn0033132,FBgn0037163	2	GO:000964 2
gonad morphogen esis	0.0141 912	FBgn0003391,FBgn0024236	2	GO:003526 2
histone H2A acetylation	0.0141 912	FBgn0032691,FBgn0035624	2	GO:004396 8
CENP-A containing chromatin organizatio n	0.0141 912	FBgn0002643,FBgn0037624	2	GO:006164 1
negative regulation of feeding behavior	0.0141 912	FBgn0020258,FBgn0283499	2	GO:200025 2
regulation of striated muscle tissue developme	0.0228 698	FBgn0028369,FBgn0029082	2	GO:001620 2

nt				
chromatin remodeling at centromere	0.0228 698	FBgn0002643,FBgn0037624	2	GO:003105 5
CENP-A containing nucleosom e assembly	0.0228 698	FBgn0002643,FBgn0037624	2	GO:003408 0
regulation of muscle tissue developme nt	0.0228 698	FBgn0028369,FBgn0029082	2	GO:190186 1
negative regulation of peptide secretion	0.0331 752	FBgn0032428,FBgn0283499	2	GO:000279 2
cell-cell adhesion mediated by cadherin	0.0331 752	FBgn0003391,FBgn0037963	2	GO:004433 1
delaminati on	0.0331 752	FBgn0000163,FBgn0043900	2	GO:006023 2
mesenchy me developme nt	0.0331 752	FBgn0003391,FBgn0024236	2	GO:006048 5
mesoderma l cell fate commitme nt	0.0449 226	FBgn0002643,FBgn0085432	2	GO:000171 0
DNA replication- independen t nucleosom e assembly	0.0449 226	FBgn0002643,FBgn0037624	2	GO:000633 6
mechanose nsory behavior	0.0449 226	FBgn0020258,FBgn0267430	2	GO:000763 8
response to salt stress	0.0449 226	FBgn0030505,FBgn0031885	2	GO:000965 1
contractile actin filament bundle assembly	0.0449 226	FBgn0000547,FBgn0266084	2	GO:003003 8
centromere complex assembly	0.0449 226	FBgn0002643,FBgn0037624	2	GO:003450 8
mesoderma l cell differentiat ion	0.0449 226	FBgn0002643,FBgn0085432	2	GO:004833 3

negative	0.0449	FBgn0020258,FBgn0283499	2	GO:004852
regulation	226			1
of behavior				

 Table 2.1f: Pathway enrichment for hits differentially upregulated in control males relative to control females

p-value	Hits	Gene matches	Pathway ID
0.00288 7389	FBgn0000163,FBgn0000568,FBgn0003984,FBgn0004907,F Bgn0011739,FBgn0011817,FBgn0014135,FBgn0014388,FB gn0022800,FBgn0022986,FBgn0023416,FBgn0025741,FBgn 0029006,FBgn0030011,FBgn0030505,FBgn0031461,FBgn00 31885,FBgn0033205,FBgn0033815,FBgn0034706,FBgn0036 290,FBgn0036518,FBgn0039938,FBgn0043900,FBgn005044 0,FBgn0050456,FBgn0085432,FBgn0262081,FBgn0264959, FBgn0265778,FBgn0283499	31	R-DME- 162582
0.01914 754	FBgn0004907,FBgn0011817,FBgn0029006,FBgn0030011,F Bgn0030505,FBgn0031885,FBgn0039938,FBgn0043900,FB gn0085432	9	R-DME- 195721
0.00038 3677	FBgn0010039,FBgn0010040,FBgn0010041,FBgn0026755,F Bgn0034335,FBgn0040256,FBgn0063493	7	980
0.00038 3677	FBgn0010039,FBgn0010040,FBgn0010041,FBgn0026755,F Bgn0034335,FBgn0040256,FBgn0063493	7	982
0.01355 4847	FBgn0010240,FBgn0023416,FBgn0030011,FBgn0034136,F Bgn0038752,FBgn0051201,FBgn0266720	7	R-DME- 112315
0.03531 5175	FBgn0014135,FBgn0015011,FBgn0024236,FBgn0030638,F Bgn0031002,FBgn0034136,FBgn0038752	7	R-DME- 425407
0.00464 45	FBgn0003984,FBgn0004907,FBgn0014135,FBgn0022800,F Bgn0262081,FBgn0265778	6	R-DME- 5673001
0.00524 8567	FBgn0003984,FBgn0004907,FBgn0014135,FBgn0022800,F Bgn0262081,FBgn0265778	6	R-DME- 5684996
0.00825 1417	FBgn0003984,FBgn0004907,FBgn0014135,FBgn0022800,F Bgn0262081,FBgn0265778	6	R-DME- 5683057
0.00825 1417	FBgn0003984,FBgn0004907,FBgn0014135,FBgn0022800,F Bgn0262081,FBgn0265778	6	R-DME- 9607240
0.03043 6918	FBgn0004907,FBgn0029006,FBgn0031885,FBgn0039938,F Bgn0043900,FBgn0085432	6	R-DME- 201681
0.00549 5592	FBgn0010039,FBgn0010040,FBgn0010041,FBgn0034335,F Bgn0063493	5	480
0.01509 0854	FBgn0024236,FBgn0030638,FBgn0031002,FBgn0034136,F Bgn0038752	5	R-DME- 425366
0.00946 1437	FBgn0011817,FBgn0030011,FBgn0030505,FBgn0085432	4	R-DME- 4086398
0.00946 1437	FBgn0025741,FBgn0030011,FBgn0050440,FBgn0050456	4	R-DME- 416482
0.03446 5988	FBgn0026755,FBgn0033294,FBgn0033297,FBgn0040256	4	500
0.03807 0252	FBgn0010240,FBgn0023416,FBgn0030011,FBgn0051201	4	R-DME- 112314
0.04188 3273	FBgn0014135,FBgn0031461,FBgn0031885,FBgn0037772	4	R-DME- 381426
0.04188 3273	FBgn0014135,FBgn0031461,FBgn0031885,FBgn0037772	4	R-DME- 8957275
0.00994 3728	FBgn0031885,FBgn0043900,FBgn0085432	3	R-DME- 201722
0.01256	FBgn0000163,FBgn0029006,FBgn0031461	3	R-DME-

2316			2173791
0.01256 2316	FBgn0003984,FBgn0014135,FBgn0022800	3	R-DME- 6811558
0.02258 2152	FBgn0004797,FBgn0026755,FBgn0040256	3	830
0.02258 2152	FBgn0003984,FBgn0014135,FBgn0022800	3	R-DME- 199418
0.02258 2152	FBgn0004907,FBgn0039938,FBgn0085432	3	R-DME- 3769402
0.03109 1166	FBgn0026755,FBgn0039273,FBgn0040256	3	514
0.04656 2625	FBgn0030367,FBgn0033397,FBgn0036290	3	R-DME- 193144
0.00866 5626	FBgn0000547,FBgn0028369	2	R-DME- 373753
0.00866 5626	FBgn0036986,FBgn0037818	2	R-DME- 5423646
0.01407 4039	FBgn0043900,FBgn0085432	2	R-DME- 209421
0.01407 4039	FBgn0004907,FBgn0011739	2	R-DME- 390098
0.02057 3844	FBgn0030011,FBgn0051201	2	R-DME- 500657
0.03648 3803	FBgn0004907,FBgn0011739	2	R-DME- 2028269
0.03648 3803	FBgn0014135,FBgn0031461	2	R-DME- 3000170
0.03648 3803	FBgn0004797,FBgn0035266	2	R-DME-75109
0.04572 5398	FBgn0014135,FBgn0031461	2	R-DME- 3000171
0.04572 5398	FBgn0033205,FBgn0036290	2	R-DME- 975634
0.03916 3624	FBgn0014135	1	R-DME- 190241
0.03916 3624	FBgn0014135	1	R-DME- 190242
0.03916 3624	FBgn0014135	1	R-DME- 190370
0.03916 3624	FBgn0014135	1	R-DME- 190371
0.03916 3624	FBgn0014135	1	R-DME- 190373
0.03916 3624	FBgn0014135	1	R-DME- 190374
0.03916 3624	FBgn0014135	1	R-DME- 190375
0.03916 3624	FBgn0014135	1	R-DME- 190377
0.03916 3624	FBgn0034136	1	R-DME- 379401

Table 2.2a: list of genes differentially upregulated in control males relative to 20HE males

Tuble 2224 list of genes anter endury up egulated in condition males relative to 20112 males			
list of hits>10 raw reads	log2FC edgeR	p-value edgeR	-log10(pvalue)

AOX2	-6.5067	7.42E-06	5.129596095
CG43968	-6.6688	0.0002	3.698970004
CG12446	-5.8271	0.0002	3.698970004
Pig1	-3.1216	0.0003	3.522878745
CG42818	-6.5236	0.0005	3.301029996
CG3246	-3.0039	0.0014	2.853871964
CG31391	-4.0215	0.0017	2.769551079
CG14545	-2.9623	0.0024	2.619788758
CG18003	-3.4764	0.0024	2.619788758
CG1602	-1.161	0.0032	2.494850022
CG14291	-2.0361	0.0036	2.443697499
CG3709	-1.0501	0.0039	2.408935393
CG31287	-2.1138	0.0039	2.408935393
CG7406	-3.8103	0.0043	2.366531544
Sr-CIII	-5.6264	0.0057	2.244125144
CG14837	-2.4124	0.0064	2.193820026
Zip88E	-1.4633	0.007	2.15490196
CR44566	-1.093	0.0075	2.124938737
snoRNA:Me28S-C3227b	-1.8774	0.008	2.096910013
CR43849	-1.596	0.0082	2.086186148
CG4462	-1.0211	0.0084	2.075720714
CG14238	-4.2035	0.0107	1.970616222
CG14695	-2.7579	0.0125	1.903089987
CG17681	-1.6223	0.0125	1.903089987
CG42364	-1.5618	0.0132	1.879426069
snoRNA:Psi28S-2648	-1.5208	0.0135	1.869666232
CG14367	-1.5871	0.0138	1.860120914
DptA	-6.3191	0.0142	1.847711656
RpL13A	-1.7022	0.0147	1.832682665
CG12868	-1.2714	0.016	1.795880017
CG42672	-2.1561	0.0161	1.793174124
heix	-0.894	0.0162	1.790484985
CG13843	-2.2947	0.0162	1.790484985
CG3335	-0.8243	0.0163	1.787812396
tos	-1.4721	0.0165	1.782516056
Fur2	-2.0955	0.0166	1.779891912
CR44833	-2.7113	0.0167	1.777283529
GluRS-m	-0.9863	0.0173	1.761953897
CG10581	-1.9571	0.0174	1.759450752
CG6568	-2.1704	0.0177	1.752026734

CG17249	-0.9304	0.0179	1.747146969
CG7137	-0.8816	0.021	1.677780705
CG10933	-6.1121	0.021	1.677780705
CR44611	-1.5672	0.0215	1.66756154
snoRNA:Me18S-C419	-2.2584	0.0216	1.665546249
snoRNA:Me28S-A982a	-1.8086	0.0231	1.63638802
Ser7	-1.24	0.0239	1.621602099
CG44002	-0.9024	0.024	1.619788758
CG8319	-0.806	0.0247	1.607303047
CG6712	-0.7023	0.0249	1.603800653
CG14252	-0.9	0.0254	1.595166283
wor	-1.6041	0.0255	1.59345982
Tab2	-1.2721	0.0278	1.555955204
CG6574	-1.18	0.0296	1.528708289
mir-967	-0.9719	0.0296	1.528708289
Сурба20	-0.8244	0.03	1.522878745
CG42258	-2.6432	0.0303	1.518557371
CG8072	-1.7811	0.0315	1.501689446
CG14971	-0.7776	0.0316	1.500312917
CR44138	-1.6638	0.0318	1.49757288
snoRNA:Psi28S-2949	-1.0821	0.0321	1.493494968
CG16833	-1.4088	0.0324	1.48945499
SerRS-m	-1.3166	0.0337	1.472370099
CG13494	-1.157	0.0348	1.458420756
CR44022	-2.0912	0.0354	1.450996738
CG33331	-0.8178	0.0363	1.440093375
snoRNA:Me28S-A992	-1.6987	0.0367	1.435333936
snoRNA:Me28S-G764	-1.5829	0.0379	1.42136079
snoRNA:Psi18S-1275	-1.5073	0.038	1.420216403
CG10063	-2.3783	0.0411	1.386158178
snoRNA:Me28S-G3255b	-1.2316	0.0412	1.385102784
fray	-2.0595	0.0412	1.385102784
Arc1	-0.6566	0.0419	1.377785977
Kif19A	-5.4692	0.0429	1.367542708
CG6962	-0.8724	0.0441	1.355561411
dsx-c73A	-1.3142	0.0448	1.348721986
CG34231	-0.9484	0.0449	1.347753659
Atxn7	-1.8506	0.045	1.346787486
CG31606	-1.6906	0.0455	1.341988603
CG32396	-1.2616	0.0457	1.3400838

mthl10	-1.3117	0.0463	1.334419009
CG8492	-3.0693	0.0479	1.319664487
snoRNA:Psi18S-920	-1.3085	0.048	1.318758763
CG12909	-0.6273	0.0481	1.317854924
CG7857	-0.6874	0.0486	1.313363731
CR46220	-1.6496	0.0491	1.308918508
isoQC	-1.074	0.0501	1.300162274
CG1463	-4.4261	0.0502	1.299296283
CG43101	-0.9784	0.0506	1.295849483
snoRNA:nop5-x16-a	-1.3274	0.0508	1.294136288
CG13868	-1.1543	0.051	1.292429824
CR46102	-2.2176	0.051	1.292429824
SmydA-5	-1.4836	0.0511	1.2915791
CR45823	-4.6824	0.0516	1.287350298
CG11257	-0.7572	0.0517	1.286509457
dpr18	-0.8827	0.0521	1.283162277
CG17294	-0.7187	0.0527	1.278189385
CG10730	-1.6359	0.0531	1.274905479
Rbp4	-1.6379	0.0534	1.272458743
Hexo2	-0.8738	0.0538	1.269217724
CG43370	-0.9773	0.054	1.26760624
TBC1D16	-0.9783	0.054	1.26760624

Table 2.2b: list of genes differentially upregulated in 20HE males relative to control males

list of hits>10 raw reads	log2FC edgeR	p-value edgeR	-log10(pvalue)2
CG13813	15.064	6.06E-26	25.21752738
CG11241	3.5682	5.70E-14	13.24412514
alpha-Est7	3.0456	1.57E-08	7.804100348
snoRNA:Me28S-A30	3.2883	7.11E-08	7.148130399
CG5361	6.7608	7.45E-07	6.127843727
CG18180	5.1105	1.86E-06	5.730487056
CG6295	3.9842	1.45E-05	4.838631998
tej	3.6374	1.54E-05	4.812479279
CG3344	3.414	2.80E-05	4.552841969
CG18179	4.6862	2.89E-05	4.539102157
CG10910	4.6753	3.32E-05	4.478861916
CG44286	4.1695	4.07E-05	4.390405591
CG30411	6.0163	4.93E-05	4.307153081
CG34026	7.9805	6.12E-05	4.213248578
CR45127	3.6236	0.0001	4

CG10869	3.1314	0.0001	4
CG32483	3.1875	0.0002	3.698970004
CR45921	3.3383	0.0002	3.698970004
png	1.6477	0.0003	3.522878745
Amy-d	2.7046	0.0003	3.522878745
CG8952	2.8574	0.0004	3.397940009
CG31690	3.8478	0.0004	3.397940009
Muc68E	4.0708	0.0006	3.22184875
CG8299	8.1206	0.0007	3.15490196
CG42825	2.9383	0.0007	3.15490196
CG42846	2.8918	0.0009	3.045757491
CG8568	2.3918	0.001	3
Est-Q	3.0296	0.0011	2.958607315
CG14694	2.3192	0.0011	2.958607315
Jon99Cii	2.8035	0.0011	2.958607315
Jon99Ci	2.0867	0.0012	2.920818754
kappaTry	2.6034	0.0013	2.886056648
CG33510	1.2647	0.0014	2.853871964
CR44867	3.5541	0.0014	2.853871964
CG15605	3.9996	0.0016	2.795880017
stg	2.0629	0.0016	2.795880017
CG10000	6.2272	0.0016	2.795880017
CR46322	6.1148	0.0019	2.721246399
E(spl)m6-BFM	1.5074	0.002	2.698970004
E(spl)m8-HLH	1.4753	0.0021	2.677780705
ninaD	2.811	0.0022	2.657577319
CAH2	3.2068	0.0023	2.638272164
CG31345	3.9613	0.0026	2.585026652
CG2772	1.6162	0.0035	2.455931956
CG42714	2.9918	0.0036	2.443697499
Ucp4C	4.1052	0.004	2.397940009
CG45080	4.909	0.0041	2.387216143
CG5506	1.8863	0.0041	2.387216143
CG7458	1.2286	0.0046	2.337242168
CR44150	3.6154	0.0051	2.292429824
CG4302	1.6118	0.0062	2.207608311
thetaTry	2.8663	0.0064	2.193820026
CG33109	6.191	0.0065	2.187086643
Tps1	6.1082	0.0068	2.167491087
CG30339	1.087	0.0077	2.113509275

Cpr73D	1.1698	0.0079	2.102372909
gskt	2.0345	0.0082	2.086186148
dgt3	1.1599	0.0084	2.075720714
CG7470	1.3092	0.0089	2.050609993
GstD7	2.3818	0.0091	2.040958608
CG6067	1.6202	0.0099	2.004364805
CG33127	1.112	0.01	2
CG4835	5.4578	0.0117	1.931814138
CG15695	3.4705	0.0119	1.924453039
Jon99Ciii	3.2062	0.0124	1.906578315
CR45272	3.1296	0.0137	1.863279433
CG30371	5.1978	0.0138	1.860120914
PGRP-SC2	2.1279	0.0139	1.8569852
CR45908	1.5726	0.0145	1.838631998
CG9396	1.6802	0.0145	1.838631998
CG34347	0.9676	0.0146	1.835647144
Eip78C	1.2406	0.0152	1.818156412
CG33301	3.7144	0.0156	1.806875402
fa2h	3.137	0.0159	1.798602876
CG11192	1.4458	0.016	1.795880017
Eip75B	0.9144	0.0161	1.793174124
CG12780	1.2326	0.0172	1.764471553
Mtp	0.9393	0.0173	1.761953897
CG42327	2.7127	0.0183	1.73754891
sut4	5.153	0.0184	1.735182177
lcs	4.4828	0.0187	1.728158393
Mdr50	1.7958	0.0211	1.675717545
Gr8a	5.0115	0.0219	1.659555885
LysP	4.9099	0.022	1.657577319
CG11426	1.7413	0.0222	1.653647026
CG6296	4.8824	0.023	1.638272164
CG32054	2.0331	0.0232	1.634512015
CR44429	0.938	0.0241	1.617982957
CG12766	1.5593	0.0258	1.588380294
CG12219	0.7943	0.0264	1.578396073
CG8642	3.2986	0.0275	1.560667306
CG5804	0.992	0.0279	1.554395797
CG9498	2.4184	0.0279	1.554395797
CR45045	2.4959	0.0294	1.53165267
CR44868	0.9162	0.0296	1.528708289

CG5254	0.7791	0.0297	1.527243551
CG3739	1.673	0.0332	1.478861916
CG33346	2.0919	0.0337	1.472370099
aay	0.993	0.0338	1.4710833
CR45298	1.8549	0.034	1.468521083
lin-28	0.7338	0.0353	1.452225295
CG31300	1.5904	0.0356	1.448550002
Nuf2	0.7842	0.0369	1.432973634
upd2	0.8034	0.038	1.420216403
CR45949	1.0705	0.038	1.420216403
Amyrel	1.6441	0.0392	1.406713933
CG14526	1.5213	0.0401	1.396855627
etaTry	1.6679	0.0409	1.388276692
CG15497	4.5702	0.0419	1.377785977
Dtg	0.648	0.0426	1.370590401
CG15263	2.4167	0.0494	1.306273051
CCHa1-R	5.2994	0.0515	1.288192771
CG2254	1.3734	0.0536	1.27083521

Table 2.2c: list of sexually dimorphic hits in reference to Hudry et al,2016 Table S1

alpha-Est7		
CG18180		
tobi		
CG6283		
CG11155		
CG3739		
CG33346		
aay		
CG31300		
CG13325		
Amyrel		
CG14160		
CG11407		
CG11899		
CG17681		
RpL13A		
CG12868		
CG6712		
fray		
CG16833		

Arc1	
CG8368	
CG4462	
CG15263	
CG16965	
CG42846	
Jon99Cii	
Jon99Ci	
kappaTry	
CG33510	
CG8299	
CG42825	
Amy-d	
CG8952	
CG32483	
CG34026	
CG3344	
CG18179	
CG10910	
ninaD	
CAH2	
CG42714	
CG5506	
CG3699	
CG4363	
CG31104	
thetaTry	
CG11878	
CG4053	
CG7470	
GstD7	
CG17839	
CG13360	
Ser8	
CG4835	
Jon99Ciii	
CG9396	
CG6484	
CG33301	
Mal-A1	

2h	
G11898	
G12780	
al-A4	
G31463	
G6296	
G32054	
G4377	
idr49	
G10659	
G12766	
G17192	
G17633	
G9498	
G10912	

Table 2.2d: Pathway enrichment for hits differentially upregulated in 20HE males relative to control	
males	

Pathway enrichmen t	p-value	Hits	Gene matches	Pathway ID
Starch and sucrose metabolis m	8.42E-07	FBgn0000078,FBgn0002570,FBg n0020506,FBgn0027073,FBgn00 27560,FBgn0033294,FBgn02615 75	7	500
Metabolis m of lipids	9.2643E-05	FBgn0000568,FBgn0010241,FBg n0029994,FBgn0035476,FBgn00 36381,FBgn0037166,FBgn00377 86,FBgn0039470,FBgn0039471,F Bgn0039472,FBgn0039474,FBgn 0050502,FBgn0053177	13	R-DME-556833
Galactose metabolis m	0.00014491	FBgn0002570,FBgn0033294,FBg n0035476,FBgn0261575	4	52
Synthesis of PA	0.00021659	FBgn0037786,FBgn0039470,FBg n0039471,FBgn0039472,FBgn00 39474	5	R-DME-1483166
Acyl chain remodellin g of PS	0.00027321	FBgn0039470,FBgn0039471,FBg n0039472,FBgn0039474	4	R-DME-1482801
Glyceroph ospholipid biosynthesi s	0.00042991	FBgn0036381,FBgn0037786,FBg n0039470,FBgn0039471,FBgn00 39472,FBgn0039474	6	R-DME-1483206
Metabolic pathways	0.00159037	FBgn0000078,FBgn0002570,FBg n0015568,FBgn0015575,FBgn00 20506,FBgn0023129,FBgn00270 73,FBgn0033294,FBgn0035476,F Bgn0037146,FBgn0037166,FBgn 0037186,FBgn0037786,FBgn003	17	1100

		8070,FBgn0039596,FBgn005222 0,FBgn0261575		
Phospholip id metabolis m	0.0017436	FBgn0036381,FBgn0037786,FBg n0039470,FBgn0039471,FBgn00 39472,FBgn0039474	6	R-DME-1483257
Metabolis m	0.00278954	FBgn0000568,FBgn0010241,FBg n0023129,FBgn0027843,FBgn00 29994,FBgn0034200,FBgn00354 76,FBgn0036381,FBgn0037146,F Bgn0037166,FBgn0037186,FBgn 0037786,FBgn0037845,FBgn003 9470,FBgn0039471,FBgn003947 2,FBgn0039474,FBgn0040383,FB gn0050502,FBgn0053177	20	R-DME-1430728
Lysine catabolism	0.00381016	FBgn0036381,FBgn0040383	2	R-DME-71064
Neuroactiv e ligand- receptor interaction	0.00429203	FBgn0003863,FBgn0011554,FBg n0011555	3	4080
SUMOylat ion of intracellula r receptors	0.00462862	FBgn0000568,FBgn0004865	2	R-DME-4090294
Digestion	0.00502788	FBgn0000078,FBgn0020506,FBg n0037786	3	R-DME-8935690
Glycerolipi d metabolis m	0.00767307	FBgn0035476,FBgn0037166,FBg n0038070	3	561
Digestion and absorption	0.00817995	FBgn0000078,FBgn0020506,FBg n0037786	3	R-DME-8963743
Digestion of dietary carbohydra te	0.00862443	FBgn0000078,FBgn0020506	2	R-DME-189085
Metabolis m of amino acids and derivatives	0.0094115	FBgn0023129,FBgn0034200,FBg n0036381,FBgn0037146,FBgn00 37186,FBgn0040383	6	R-DME-71291
Drug metabolis m - other enzymes	0.0158108	FBgn0015568,FBgn0015575,FBg n0027073	3	983
Nuclear Receptor transcriptio n pathway	0.01663373	FBgn0000568,FBgn0004865	2	R-DME-383280
Transcripti onal regulation of white adipocyte differentiat ion	0.01896242	FBgn0000568	1	R-DME-381340

Cellular hexose	0.02146927	FBgn0028560,FBgn0034247	2	R-DME-189200
transport				
Glycine, serine and threonine metabolis m	0.02319595	FBgn0023129,FBgn0037186	2	260
Keratinizat ion	0.02319595	FBgn0031533,FBgn0038070	2	R-DME-6805567
Formation of the cornified envelope	0.02319595	FBgn0031533,FBgn0038070	2	R-DME-6809371
Sphingolip id de novo biosynthesi s	0.02681444	FBgn0037166,FBgn0050502	2	R-DME-1660661
Signaling by Retinoic Acid	0.02681444	FBgn0000568,FBgn0029994	2	R-DME-5362517
Transcripti onal regulation of granulopoi esis	0.03757247	FBgn0000568	1	R-DME-9616222
Serine biosynthesi s	0.03757247	FBgn0023129	1	R-DME-977347
Collagen degradatio n	0.04674736	FBgn0036381	1	R-DME-1442490
Polo-like kinase mediated events	0.04674736	FBgn0003525	1	R-DME-156711
Vitamin B1 (thiamin) metabolis m	0.04674736	FBgn0037845	1	R-DME-196819
Formation of the activated receptor complex	0.04674736	FBgn0030904	1	R-DME-209209
Metabolis m of steroids	0.04929803	FBgn0010241,FBgn0029994,FBg n0035476	3	R-DME-8957322

Table 2.2g: GO enrichment for hits differentially upregulated in 20HE males relative to control males

GO enrichment	p- value	Hits	Gene matche s	GO ID
proteolysis	3.502 E-05	FBgn0003356,FBgn0003357,FBgn0003358 ,FBgn0003863,FBgn0011554,FBgn001155 5,FBgn0019928,FBgn0027578,FBgn00298 28,FBgn0030688,FBgn0032144,FBgn0034 052,FBgn0034507,FBgn0035154,FBgn003 6023,FBgn0036024,FBgn0038482,FBgn00 38702,FBgn0043471,FBgn0050371,FBgn0 051266,FBgn0052483,FBgn0053127	23	GO:0006508
positive regulation of mitotic cell cycle, embryonic	0.000 5896 2	FBgn0000826,FBgn0003525	2	GO:0045977
positive regulation of embryonic development	0.002 6803 3	FBgn0000826,FBgn0003525	2	GO:0040019
lipid metabolic process	0.003 8512 1	FBgn0000568,FBgn0031533,FBgn0037166 ,FBgn0038070,FBgn0038733,FBgn003947 0,FBgn0039471,FBgn0039472,FBgn00394 74,FBgn0040349,FBgn0050502,FBgn0053 177	12	GO:0006629
carbohydrate metabolic process	0.004 5203 3	FBgn0000078,FBgn0002570,FBgn0020506 ,FBgn0027560,FBgn0032387,FBgn003329 4,FBgn0039596,FBgn0261575	8	GO:0005975
lipid catabolic process	0.006 3439 1	FBgn0039470,FBgn0039471,FBgn0039472 ,FBgn0039474,FBgn0040349	5	GO:0016042
regulation of mitotic cell cycle, embryonic	0.008 3762 1	FBgn0000826,FBgn0003525	2	GO:0009794
tetraterpenoid transport	0.010 0278	FBgn0002939	1	GO:0046866
carotenoid transport	0.010 0278	FBgn0002939	1	GO:0046867
trehalose metabolism in response to stress	0.010 0278	FBgn0027560	1	GO:0070413
negative regulation of extrinsic apoptotic signaling pathway via death domain receptors	0.010 0278	FBgn0033985	1	GO:1902042
response to cold	0.010 9026 1	FBgn0031757,FBgn0034296	2	GO:0009409
glucose import	0.015 2361 7	FBgn0028560,FBgn0034247	2	GO:0046323
glucose transmembrane transport	0.015 2361 7	FBgn0028560,FBgn0034247	2	GO:1904659
hexose transmembrane transport	0.016 8195 6	FBgn0028560,FBgn0034247	2	GO:0008645
monosaccharide	0.016	FBgn0028560,FBgn0034247	2	GO:0015749

transmembrane	8195 6			
transport carbohydrate transmembrane transport	0.018 4698 7	FBgn0028560,FBgn0034247	2	GO:0034219
isoprenoid transport	0.019 9560 3	FBgn0002939	1	GO:0046864
terpenoid transport	0.019 9560 3	FBgn0002939	1	GO:0046865
regulation of G2/MI transition of meiotic cell cycle	0.019 9560 3	FBgn0003525	1	GO:0110030
positive regulation of G2/MI transition of meiotic cell cycle	0.019 9560 3	FBgn0003525	1	GO:0110032
positive regulation of meiotic cell cycle phase transition	0.019 9560 3	FBgn0003525	1	GO:1901995
regulation of extrinsic apoptotic signaling pathway via death domain receptors	0.019 9560 3	FBgn0033985	1	GO:1902041
negative regulation of production of miRNAs involved in gene silencing by miRNA	0.019 9560 3	FBgn0035626	1	GO:1903799
regulation of pre- miRNA processing	0.019 9560 3	FBgn0035626	1	GO:2000631
negative regulation of pre-miRNA processing	0.019 9560 3	FBgn0035626	1	GO:2000632
negative regulation of extrinsic apoptotic signaling pathway	0.019 9560 3	FBgn0033985	1	GO:2001237
carbohydrate transport	0.021 9653 8	FBgn0028560,FBgn0034247	2	GO:0008643
response to insecticide	0.023 8077	FBgn0010241,FBgn0030108	2	GO:0017085
oligosaccharide biosynthetic process	0.025 7111 8	FBgn0027560,FBgn0039596	2	GO:0009312
trehalose biosynthetic process	0.029 7856 7	FBgn0027560	1	GO:0005992
proline biosynthetic	0.029 7856	FBgn0037146	1	GO:0006561

process	7			
L-serine biosynthetic process	0.029 7856 7	FBgn0023129	1	GO:0006564
extrinsic apoptotic signaling pathway via death domain receptors	0.029 7856 7	FBgn0033985	1	GO:0008625
negative regulation of posttranscriptional gene silencing	0.029 7856 7	FBgn0035626	1	GO:0060149
negative regulation of gene silencing by miRNA	0.029 7856 7	FBgn0035626	1	GO:0060965
response to L- canavanine	0.029 7856 7	FBgn0030108	1	GO:1901354
regulation of production of miRNAs involved in gene silencing by miRNA	0.029 7856 7	FBgn0035626	1	GO:1903798
lipid localization	0.030 6695 7	FBgn0002939,FBgn0015575,FBgn0030904 ,FBgn0266369	4	GO:0010876
fatty acid metabolic process	0.034 9513 3	FBgn0038733,FBgn0040349,FBgn0050502 ,FBgn0053177	4	GO:0006631
organic acid biosynthetic process	0.036 7566 4	FBgn0023129,FBgn0037146,FBgn0038733 ,FBgn0053177	4	GO:0016053
carboxylic acid biosynthetic process	0.036 7566 4	FBgn0023129,FBgn0037146,FBgn0038733 ,FBgn0053177	4	GO:0046394
prostaglandin biosynthetic process	0.039 5176 8	FBgn0053177	1	GO:0001516
mitochondrial pyruvate transmembrane transport	0.039 5176 8	FBgn0037714	1	GO:0006850
G2/MI transition of meiotic cell cycle	0.039 5176 8	FBgn0003525	1	GO:0008315
positive regulation of G2/M transition of mitotic cell cycle	0.039 5176 8	FBgn0003525	1	GO:0010971
disaccharide biosynthetic process	0.039 5176 8	FBgn0027560	1	GO:0046351
icosanoid biosynthetic process	0.039 5176 8	FBgn0053177	1	GO:0046456
prostanoid	0.039	FBgn0053177	1	GO:0046457

biosynthetic	5176			
process	8			
regulation of	0.039	FBgn0003525	1	GO:1901993
meiotic cell cycle	5176			
phase transition	8			
positive regulation	0.039	FBgn0003525	1	GO:1902751
of cell cycle G2/M	5176	C .		
phase transition	8			
regulation of	0.039	FBgn0033985	1	GO:2001236
extrinsic apoptotic	5176	C .		
signaling pathway	8			
oligosaccharide	0.047	FBgn0027560,FBgn0039596	2	GO:0009311
metabolic process	8151			
1	2			
dephosphorylation	0.047	FBgn0003525,FBgn0023129,FBgn0037166	5	GO:0016311
1 1 2	8215	,FBgn0037786,FBgn0259227		
	5			
L-serine metabolic	0.049	FBgn0023129	1	GO:0006563
process	1530	8		
F	3			
prostanoid	0.049	FBgn0053177	1	GO:0006692
metabolic process	1530			
F	3			
prostaglandin	0.049	FBgn0053177	1	GO:0006693
metabolic process	1530	8		
····· · · ·	3			
phototransduction,	0.049	FBgn0002939	1	GO:0007604
UV	1530			
	3			
detection of biotic	0.049	FBgn0033301	1	GO:0009595
stimulus	1530	8		
	3			
response to	0.049	FBgn0283451	1	GO:0009608
symbiont	1530		-	0010007000
5511010110	3			
xenobiotic	0.049	FBgn0010241	1	GO:0042908
transport	1530	0		/ 00
r	3			
symmetric stem	0.049	FBgn0035626	1	GO:0098724
cell division	1530			20.0000121
	3			
pyruvate	0.049	FBgn0037714	1	GO:1901475
transmembrane	1530		1	20.1701 175
transport	3			
ansport	5			

Table 2.2e: GO enr	ichment for h	its differentially	upregulated in contr	ol males rel	ative to 20HE
males					

GO enrichment	p-value	Hits	Gene matches	GO ID
menaquinone metabolic process	0.0053614	FBgn0028375	1	GO:0009233
menaquinone biosynthetic process	0.0053614	FBgn0028375	1	GO:0009234
lactate oxidation	0.0053614	FBgn0061356	1	GO:0019516
proteoglycan	0.0053614	FBgn0038660	1	GO:0030167

catabolic process				
heparan sulfate proteoglycan	0.0053614	FBgn0038660	1	GO:0030200
catabolic process	0.0052614	ED 0000275	1	CO 0022104
ubiquinone biosynthetic process via 3,4- dihydroxy-5- polyprenylbenzoat e	0.0053614	FBgn0028375	1	GO:0032194
positive regulation of histone ubiquitination	0.0053614	FBgn0031420	1	GO:0033184
SAGA complex assembly	0.0053614	FBgn0031420	1	GO:0036285
cellular response to glucose starvation	0.0053614	FBgn0034422	1	GO:0042149
vitamin K biosynthetic process	0.0053614	FBgn0028375	1	GO:0042371
regulation of transcription by glucose	0.0053614	FBgn0034422	1	GO:0046015
mitochondrial seryl-tRNA aminoacylation	0.0053614	FBgn0021750	1	GO:0070158
vesicle-mediated intercellular transport	0.0053614	FBgn0033926	1	GO:0110077
positive regulation of histone H2B ubiquitination	0.0053614	FBgn0031420	1	GO:2001168
ncRNA metabolic process	0.00734357	FBgn0021750,FBgn0030406,FBgn 0031227,FBgn0032408,FBgn00335 07,FBgn0036629	6	GO:0034660
defense response to bacterium	0.00827174	FBgn0004240,FBgn0033980,FBgn 0034210,FBgn0035813,FBgn00863 58	5	GO:0042742
maturation of LSU-rRNA	0.01044144	FBgn0030406,FBgn0032408	2	GO:0000470
chromatin silencing at rDNA	0.01069458	FBgn0034422	1	GO:0000183
lactate metabolic process	0.01069458	FBgn0061356	1	GO:0006089
glutamyl-tRNA aminoacylation	0.01069458	FBgn0036629	1	GO:0006424
seryl-tRNA aminoacylation	0.01069458	FBgn0021750	1	GO:0006434
UDP-glucose transmembrane transport	0.01069458	FBgn0035449	1	GO:0015786
histone H2B ubiquitination	0.01069458	FBgn0031420	1	GO:0033523
fat-soluble vitamin biosynthetic process	0.01069458	FBgn0028375	1	GO:0042362

vitamin K metabolic process	0.01069458	FBgn0028375	1	GO:0042373
snoRNA localization	0.01069458	FBgn0030406	1	GO:0048254
regulation of histone H2B ubiquitination	0.01069458	FBgn0031420	1	GO:2001166
response to bacterium	0.01425925	FBgn0004240,FBgn0033980,FBgn 0034210,FBgn0035813,FBgn00863 58	5	GO:0009617
sphingomyelin catabolic process	0.01599969	FBgn0037958	1	GO:0006685
fat-soluble vitamin metabolic process	0.01599969	FBgn0028375	1	GO:0006775
tRNA aminoacylation for protein translation	0.01753328	FBgn0021750,FBgn0036629	2	GO:0006418
tRNA aminoacylation	0.01932178	FBgn0021750,FBgn0036629	2	GO:0043039
amino acid activation	0.02024368	FBgn0021750,FBgn0036629	2	GO:0043038
peptidyl- pyroglutamic acid biosynthetic process, using glutaminyl-peptide cyclotransferase	0.02127688	FBgn0036999	1	GO:0017186
peptidyl-glutamine modification	0.02127688	FBgn0036999	1	GO:0018199
tRNA pseudouridine synthesis	0.02127688	FBgn0031227	1	GO:0031119
cardiolipin metabolic process	0.02127688	FBgn0067628	1	GO:0032048
cardiolipin biosynthetic process	0.02127688	FBgn0067628	1	GO:0032049
tRNA aminoacylation for mitochondrial protein translation	0.02127688	FBgn0021750	1	GO:0070127
defense response to Gram-negative bacterium	0.02412875	FBgn0004240,FBgn0033980,FBgn 0035813	3	GO:0050829
glycoprotein catabolic process	0.02652629	FBgn0038660	1	GO:0006516
phosphatidylglycer ol biosynthetic process	0.02652629	FBgn0067628	1	GO:0006655

Table 2.2f: Pathway	y enrichme	nt for hits differentially	v upregulated in co	ontrol males rel	ative to 20HE
males					

Pathway	p-value	Hits	Gene	Pathway ID
enrichment			matches	
Glycosaminoglyca	0.00114	FBgn0038660,FBgn0041629	2	531

n degradation	4691			
Metabolism of vitamin K	0.00663 7902	FBgn0028375	1	R-DME- 6806664
Histidine	0.00663	FBgn0061356	1	R-DME-
catabolism	7902			70921
Kinesins	0.00669 1187	FBgn0038205,FBgn0052396	2	R-DME- 983189
Glycosphingolipid biosynthesis - globo series	0.01323 3932	FBgn0041629	1	603
Thiamine	0.01323	FBgn0037046	1	730
metabolism	3932			
Aminoacyl-tRNA biosynthesis	0.01330 4972	FBgn0021750,FBgn0036629	2	97
Glycosphingolipid biosynthesis - ganglio series	0.01978 834	FBgn0041629	1	604
Removal of aminoterminal propeptides from gamma- carboxylated proteins	0.01978 834	FBgn0004598	1	R-DME- 159782
Gamma- carboxylation, transport, and amino-terminal cleavage of proteins	0.01978 834	FBgn0004598	1	R-DME- 159854
Vitamin B1 (thiamin) metabolism	0.01978 834	FBgn0037846	1	R-DME- 196819
Transport of bile salts and organic acids, metal ions and amine compounds	0.02551 1531	FBgn0038312,FBgn0038752	2	R-DME- 425366
Factors involved in megakaryocyte development and platelet production	0.02551 1531	FBgn0038205,FBgn0052396	2	R-DME- 983231
COPI-dependent Golgi-to-ER retrograde traffic	0.03212 8162	FBgn0038205,FBgn0052396	2	R-DME- 6811434
Activation of Matrix Metalloproteinases	0.03277 3283	FBgn0004598	1	R-DME- 1592389
Zinc transporters	0.03277 3283	FBgn0038312	1	R-DME- 435354
Zinc influx into cells by the SLC39 gene family	0.03277 3283	FBgn0038312	1	R-DME- 442380
Lysosome	0.03639 1051	FBgn0038660,FBgn0041629	2	4142
SIRT1 negatively regulates rRNA	0.04559 4705	FBgn0034422	1	R-DME- 427359

expression				
Negative epigenetic regulation of rRNA expression	0.04559 4705	FBgn0034422	1	R-DME- 5250941
Mismatch Repair	0.04559 4705	FBgn0015553	1	R-DME- 5358508
Mismatch repair (MMR) directed by MSH2:MSH6 (MutSalpha)	0.04559 4705	FBgn0015553	1	R-DME- 5358565

 Table 2.3a: list of genes differentially upregulated in 20HE females relative to control males

list of hits>10 raw reads	log2FC edgeR	p-value edgeR	-log10(pvalue)
CR44748	2.1014	0.0007	3.15490196
CR43405	2.4557	0.0008	3.096910013
mAChR-C	6.736	0.001	3
nvd	6.6191	0.0012	2.920818754
CG33160	6.0842	0.0014	2.853871964
CG11656	3.2921	0.0019	2.721246399
CG13894	4.1039	0.002	2.698970004
CG33928	6.0018	0.0021	2.677780705
CG5361	7.8665	0.0023	2.638272164
Tdc1	2.5141	0.0026	2.585026652
CG44405	6.1148	0.0033	2.48148606
CG10337	1.394	0.0037	2.431798276
CG6405	2.3727	0.0044	2.356547324
CR46249	2.5628	0.005	2.301029996
CR44708	3.2341	0.006	2.22184875
Gld	3.7396	0.0067	2.173925197
AhcyL2	2.7617	0.0067	2.173925197
CG32055	1.7764	0.0075	2.124938737
Cad96Ca	2.112	0.008	2.096910013
rha	5.7705	0.0083	2.080921908
snoRNA:Psi18S-1275	4.0322	0.0084	2.075720714
CG6465	1.2105	0.0093	2.031517051
CG14367	3.1864	0.0095	2.022276395
CG31436	1.2678	0.01	2
CG8492	5.4687	0.0109	1.962573502
CG11407	5.4687	0.0109	1.962573502
Arc1	1.0416	0.0121	1.91721463
CG8252	2.9416	0.016	1.795880017
yuri	3.002	0.017	1.769551079

Arc2	0.9961	0.0173	1.761953897
snoRNA:Me28S-	2.4565	0.0175	1.756961951
A2634b	2.7305	0.0175	1.750701751
ninaD	4.7921	0.0177	1.752026734
CR45166	3.5683	0.0192	1.716698771
E(spl)mdelta-HLH	5.5024	0.0202	1.694648631
CG15865	2.8461	0.0215	1.66756154
CG32040	1.5573	0.0217	1.663540266
Tab2	2.1419	0.0218	1.661543506
PGRP-LF	1.233	0.022	1.657577319
CG33258	4.0752	0.0221	1.655607726
CR45824	3.3435	0.0225	1.647817482
CG7387	2.6304	0.0238	1.623423043
cact	1.492	0.0248	1.605548319
snoRNA:Me18S- U1356a	2.2627	0.0253	1.596879479
CG4676	3.3425	0.0256	1.591760035
CR43832	2.3318	0.0275	1.560667306
Pig1	2.0741	0.0277	1.557520231
CG14740	2.9134	0.0297	1.527243551
CG43101	1.8727	0.0298	1.525783736
BBS8	5.5167	0.0302	1.519993057
CG34401	1.5229	0.0313	1.504455662
CG15818	3.6395	0.0314	1.503070352
bip1	3.2594	0.0318	1.49757288
CR43411	5.2125	0.0323	1.490797478
CR32636	2.2817	0.0333	1.477555766
CG32450	5.0165	0.034	1.468521083
CG43925	5.0044	0.0352	1.453457337
CG5282	5.0288	0.0363	1.440093375
Efhc1.1	2.194	0.0365	1.437707136
Grd	1.8655	0.0376	1.424812155
fig	1.1609	0.0381	1.419075024
CG8468	1.3221	0.0384	1.415668776
Cbp53E	2.6048	0.0391	1.407823243
snoRNA:Me18S- U1356b	2.4191	0.0402	1.395773947
Cyp4p3	2.4069	0.0407	1.390405591
Spn42Dd	1.0623	0.0421	1.375717904
Atac2	0.9165	0.0451	1.345823458
CG44329	5.2286	0.0455	1.341988603
CG18417	1.7246	0.0462	1.335358024

CG31897	1.7993	0.047	1.327902142
mthl14	0.7291	0.0516	1.287350298
CG14856	1.7005	0.0517	1.286509457
CR41620	4.8367	0.0525	1.279840697
CR46093	1.1195	0.0526	1.279014256
CG4424	1.045	0.0532	1.274088368
Dcp-1	0.9085	0.0534	1.272458743
AOX2	3.9142	0.0541	1.266802735

Table 2.3b: list of genes differentially upregulated in control females relative to 20HE females

Gene name	log2FC edgeR	p-value edgeR	-log10(pvalue)
CG18180	-4.8605	6.61E-20	19.17979854
tobi	-5.3313	8.83E-10	9.054039296
CG18179	-5.1045	4.87E-08	7.312471039
CG43055	-4.4978	2.39E-07	6.621602099
PGRP-SC2	-3.8534	2.89E-07	6.539102157
Amy-d	-2.3118	3.66E-07	6.436518915
W	-1.9389	8.10E-06	5.091514981
Jon66Ci	-4.0409	1.03E-05	4.987162775
CG33109	-8.0444	2.33E-05	4.632644079
Jon25Bi	-2.0005	2.81E-05	4.55129368
CG17633	-4.1914	2.85E-05	4.54515514
nerfin-1	-4.0555	3.55E-05	4.449771647
CG3739	-2.5789	3.81E-05	4.419075024
Jon25Biii	-3.6153	4.14E-05	4.382999659
Jon65Aiv	-1.4887	4.96E-05	4.304518324
CG8299	-4.8541	5.47E-05	4.262012674
CG6484	-2.1864	7.19E-05	4.14327111
Jon65Aiii	-1.461	8.74E-05	4.058488567
CG18404	-4.1627	0.0001	4
CG45080	-9.0884	0.0001	4
CG17192	-1.4986	0.0002	3.698970004
alphaTry	-1.4007	0.0002	3.698970004
CG3906	-4.0425	0.0002	3.698970004
Cyp28a5	-3.1808	0.0002	3.698970004
CG15630	-6.7813	0.0002	3.698970004
CG31104	-2.9523	0.0003	3.522878745
Jon65Aii	-4.1788	0.0003	3.522878745
CG5107	-1.7528	0.0004	3.397940009
Jon99Ci	-2.0447	0.0004	3.397940009
CG6067	-2.4944	0.0004	3.397940009

1	0.2652	0.0004	2 207040000
lcs	-9.2652	0.0004	3.397940009
Jon99Cii	-1.9279	0.0005	3.301029996
CG10910	-2.4245	0.0005	3.301029996
Jon99Fi	-3.8571	0.0005	3.301029996
CG8834	-1.791	0.0006	3.22184875
CG13813	-3.5184	0.0006	3.22184875
CG9896	-2.3041	0.0007	3.15490196
CG12374	-1.6431	0.0008	3.096910013
stv	-1.9563	0.0008	3.096910013
CG11878	-2.1455	0.0009	3.045757491
CG7916	-4.9286	0.0009	3.045757491
CG8745	-2.3306	0.001	3
CG33346	-2.516	0.0011	2.958607315
CG10869	-3.8835	0.0013	2.886056648
CG7567	-6.3309	0.0014	2.853871964
CG10659	-2.3237	0.0014	2.853871964
CG18577	-2.0732	0.0015	2.823908741
alpha-Est8	-3.1631	0.0015	2.823908741
Jon99Fii	-3.6303	0.0015	2.823908741
Lrpprc2	-1.3609	0.0016	2.795880017
CG4329	-1.907	0.0017	2.769551079
CG31041	-3.2548	0.0019	2.721246399
mag	-2.6956	0.0022	2.657577319
Meltrin	-1.6346	0.0023	2.638272164
Jon66Cii	-4.9687	0.0023	2.638272164
CG6295	-1.253	0.0024	2.619788758
CG3699	-2.2543	0.0024	2.619788758
CG3344	-2.4773	0.0026	2.585026652
CG16965	-2.6821	0.0026	2.585026652
CG3868	-1.8129	0.0027	2.568636236
Ag5r2	-3.3454	0.0029	2.537602002
CG10911	-1.1594	0.0033	2.48148606
CG34345	-6.0006	0.0036	2.443697499
Toll-7	-2.3863	0.0037	2.431798276
CG5770	-3.2293	0.0039	2.408935393
Hsp70Bbb	-1.3497	0.0043	2.366531544
Muc68E	-2.1028	0.0043	2.366531544
CG13315	-1.9901	0.0044	2.356547324
CG42397	-2.2297	0.0052	2.283996656
CG11912	-4.2693	0.0052	2.283996656

CG14780	-2.7606	0.0055	2.259637311
CG10912	-1.4752	0.0056	2.251811973
CG14688	-5.7389	0.0061	2.214670165
epsilonTry	-1.2405	0.0064	2.193820026
Mur18B	-3.8614	0.0068	2.167491087
Mal-A3	-3.105	0.0072	2.142667504
Listericin	-2.8063	0.0077	2.113509275
CG6454	-2.7844	0.0077	2.113509275
CG6839	-3.4208	0.0078	2.107905397
CG1946	-1.7025	0.0081	2.091514981
Gr93b	-5.6851	0.009	2.045757491
CG9396	-1.4788	0.0093	2.031517051
CG7024	-3.3823	0.0096	2.017728767
CG7091	-2.566	0.01	2
CG15605	-2.3932	0.0106	1.974694135
CG2652	-5.5333	0.0107	1.970616222
LysP	-6.6646	0.0119	1.924453039
Ing3	-1.2343	0.0119	1.924453039
CG42714	-1.9435	0.0119	1.924453039
Cyp28d1	-1.7643	0.0124	1.906578315
CG13324	-2.686	0.0125	1.903089987
CG31077	-6.4862	0.0128	1.89279003
CG5892	-6.6007	0.0128	1.89279003
Prx2540-1	-2.1171	0.0129	1.88941029
CG42826	-2.733	0.0136	1.866461092
Jon99Ciii	-2.0618	0.0139	1.8569852
CR44295	-2.1387	0.0145	1.838631998
CG5639	-5.8025	0.0146	1.835647144
CG31785	-1.4184	0.0148	1.829738285
CG4563	-1.5862	0.0156	1.806875402
CG9903	-1.7253	0.0162	1.790484985
CG34220	-1.378	0.0171	1.76700389
GstE9	-1.1892	0.0172	1.764471553
CG43207	-1.9199	0.0172	1.764471553
CG30357	-1.2529	0.0178	1.749579998
CR45921	-3.2092	0.0184	1.735182177
CG30371	-6.3129	0.0188	1.725842151
CG10725	-5.4188	0.0194	1.71219827
CG11671	-0.9715	0.0196	1.707743929
CG42724	-1.4053	0.0198	1.70333481

Mal-A1	-1.2821	0.0199	1.701146924
CG10505	-2.1447	0.0199	1.701146924
CDC45L	-1.0214	0.02	1.698970004
CG12896	-2.0809	0.0214	1.669586227
Gr64f	-3.5044	0.022	1.657577319
lectin-24A	-3.955	0.0222	1.653647026
CG10472	-1.9923	0.0222	1.653647026
Inx7	-1.2924	0.0227	1.643974143
CG5958	-1.4071	0.023	1.638272164
prtp	-2.7135	0.0234	1.630784143
CG34431	-1.6441	0.0242	1.616184634
Sytbeta	-5.5891	0.0244	1.612610174
CR45962	-1.169	0.0246	1.609064893
Pebp1	-0.8804	0.0249	1.603800653
CG4267	-1.7522	0.0259	1.586700236
lectin-46Cb	-1.7195	0.0284	1.54668166
CG5767	-1.758	0.0288	1.540607512
CG4734	-1.0377	0.0295	1.530177984
CheB42b	-3.3329	0.0301	1.521433504
CG31265	-3.8124	0.0305	1.515700161
CG8665	-2.2354	0.0306	1.514278574
CG11029	-1.5351	0.0313	1.504455662
CR45272	-3.3745	0.0314	1.503070352
CG2681	-1.2706	0.0317	1.498940738
Trxr-1	-1.8192	0.0318	1.49757288
CG13074	-2.8025	0.0325	1.488116639
Hsp70Bc	-0.8509	0.0327	1.485452247
CR43904	-2.2765	0.0329	1.482804102
isoQC	-1.5416	0.0329	1.482804102
Npc1b	-3.1448	0.0331	1.480172006
AOX1	-0.8752	0.0335	1.474955193
CG5010	-1.5782	0.0336	1.473660723
CG8258	-0.8805	0.0353	1.452225295
E(spl)m6-BFM	-1.0904	0.0354	1.450996738
bdl	-1.7942	0.0358	1.446116973
yip7	-0.814	0.0359	1.444905551
CG44836	-3.8514	0.0374	1.427128398
Pask	-1.4019	0.0379	1.42136079
Lim1	-2.0041	0.0401	1.396855627
CG8952	-1.0905	0.0406	1.391473966

		0.0.40-	
Actbeta	-2.7354	0.0407	1.390405591
Est-Q	-1.2619	0.0412	1.385102784
CR44299	-1.3272	0.0418	1.378823718
CG9663	-0.9388	0.0427	1.369572125
CG31848	-1.6486	0.043	1.366531544
CG8642	-2.4511	0.0432	1.364516253
CG15439	-0.9319	0.0433	1.363512104
CR46214	-5.5692	0.0434	1.36251027
CG5157	-1.9982	0.0441	1.355561411
Ptpmeg	-2.4651	0.0456	1.341035157
CG17930	-1.3686	0.0458	1.339134522
mus81	-1.6181	0.0458	1.339134522
phyl	-1.5518	0.0463	1.334419009
CG7785	-0.8683	0.0467	1.330683119
CCKLR-17D3	-1.9264	0.0469	1.328827157
Nurf-38	-2.0135	0.0474	1.324221658
CG16749	-1.4458	0.049	1.30980392
CR44149	-2.0322	0.0496	1.304518324
Vha100-4	-1.5016	0.0501	1.300162274
CG7379	-0.7894	0.0506	1.295849483
CG15414	-1.0432	0.051	1.292429824
CG10592	-1.0868	0.0522	1.282329497
CG14262	-3.2894	0.0528	1.277366077
CG7458	-0.9456	0.0539	1.268411235

Table 2.3c: list of sexually dimorphic hits that are regulated by 20HE feeding in females in reference to Hudry et al,2016 Table S1

Amy-d		
Arc1		
CG10659		
CG10910		
CG10912		
CG11407		
CG11878		
CG16965		
CG17192		
CG17633		
CG18179		
CG18180		
CG31104		

CG33346	
CG3344	
CG3699	
CG3739	
CG42714	
CG6484	
CG8299	
CG8952	
CG9396	
Jon99Ci	
Jon99Cii	
Jon99Ciii	
Mal-A1	
ninaD	
tobi	
Ag5r2	
alpha-Est8	
Arc2	
cact	
CG10505	
CG11912	
CG12374	
CG13315	
CG13324	
CG15818	
CG16749	
CG18577	
CG1946	
CG31041	
CG33258	
CG5157	
CG5770	
CG5958	
CG6465	
CG7916	
CG8258	
CG8834	
CG9663	
CG9896	
epsilonTry	

GstE9
on25Bi
on25Biii
on65Aii
on65Aiii
on66Ci
on66Cii
on99Fi
on99Fii
nag
Mal-A3
nth114
Prx2540-1
Prx2540-2
Ptpmeg
Sytbeta
V
/ip7

Pathway	p-value	Hits	Gene matches	Pathway ID
enrichment	•			
Aflatoxin activation and detoxification	0.00020088	FBgn0036986,FBgn0037818	2	R-DME-5423646
Biological oxidations	0.00311735	FBgn0033397,FBgn0036986, FBgn0037818	3	R-DME-211859
Synthesis of Leukotrienes (LT) and Eoxins (EX)	0.01191451	FBgn0036986	1	R-DME-2142691
Bicarbonate transporters	0.01782136	FBgn0015011	1	R-DME-425381
TAK1 activates NFkB by phosphorylati on and activation of IKKs complex	0.01782136	FBgn0000250	1	R-DME-445989
Insect hormone biosynthesis	0.02369485	FBgn0287185	1	981
BBSome- mediated cargo- targeting to cilium	0.02369485	FBgn0031255	1	R-DME-5620922

Table 2.3d:Pathway enrichment for hits differentially upregulated in 20HE females relative to control females

Regulation of KIT signaling	0.02953516	FBgn0022800	1	R-DME-1433559
DL and DIF homodimers bind to TUB and phosphorylate d PLL in the TL receptor 'signalling complex'	0.02953516	FBgn0000250	1	R-DME-214842
DL and DIF homodimers complexed with CACT are all phosphorylate d in the TL receptor 'signalling complex'	0.02953516	FBgn0000250	1	R-DME-214844
Phosphorylate d CACT, DL and DIF homodimers dissociate from the TL receptor 'signalling complex'	0.02953516	FBgn0000250	1	R-DME-214869
Amine ligand- binding receptors	0.03534247	FBgn0029909	1	R-DME-375280
p75NTR signals via NF-kB	0.04111694	FBgn0000250	1	R-DME-193639
NF-kB is activated and signals survival	0.04111694	FBgn0000250	1	R-DME-209560
Signaling by SCF-KIT	0.04685875	FBgn0022800	1	R-DME-1433557
Activation of the IkappaB kinase complex, KEY:IRD5 dimer:KEY	0.04685875	FBgn0086358	1	R-DME-209447

Table 2.3e: GO enrichment for hits differentially upregulated in control females relative to 20HE males

GO enrichment	p-value	Hits	Gene matche s	GO ID
proteolysis	4.51E- 09	FBgn0003356,FBgn0003357,FBgn0003358,FBgn0 003863,FBgn0010425,FBgn0013725,FBgn0020906 ,FBgn0024997,FBgn0025383,FBgn0029828,FBgn0	33	GO:000650 8

		030688,FBgn0031248,FBgn0031653,FBgn0032144 ,FBgn0033774,FBgn0034052,FBgn0035154,FBgn0 035665,FBgn0035666,FBgn0035670,FBgn0035886 ,FBgn0035887,FBgn0036023,FBgn0036024,FBgn0 037678,FBgn0038702,FBgn0039777,FBgn0039778 ,FBgn0040060,FBgn0050371,FBgn0051265,FBgn0 250815,FBgn0265140		
cell redox homeostasis	0.00026 64	FBgn0020653,FBgn0030329,FBgn0033518,FBgn0 033520,FBgn0033521	5	GO:004545 4
aminoglycan metabolic process	0.00175 486	FBgn0030999,FBgn0036362,FBgn0043575,FBgn0 051077,FBgn0053265,FBgn0085249,FBgn0259748	7	GO:000602 2
cofactor catabolic process	0.00183 107	FBgn0032945,FBgn0033518,FBgn0033520	3	GO:005118 7
chitin metabolic process	0.00305 58	FBgn0030999,FBgn0036362,FBgn0051077,FBgn0 053265,FBgn0085249,FBgn0259748	6	GO:000603 0
glucosamine- containing compound metabolic process	0.00451 867	FBgn0030999,FBgn0036362,FBgn0051077,FBgn0 053265,FBgn0085249,FBgn0259748	6	GO:190107 1
heat shock- mediated polytene chromosome puffing	0.00472 029	FBgn0013279,FBgn0051354	2	GO:003508 0
drug metabolic process	0.00510 05	FBgn0030999,FBgn0033518,FBgn0033520,FBgn0 036362,FBgn0051077,FBgn0053265,FBgn0085249 ,FBgn0259748,FBgn0267408	9	GO:001714 4
amino sugar metabolic process	0.00522 897	FBgn0030999,FBgn0036362,FBgn0051077,FBgn0 053265,FBgn0085249,FBgn0259748	6	GO:000604 0
polytene chromosome puffing	0.00585 494	FBgn0013279,FBgn0051354	2	GO:003507 9
hydrogen peroxide catabolic process	0.00585 494	FBgn0033518,FBgn0033520	2	GO:004274 4
double-strand break repair via break- induced replication	0.00845 576	FBgn0026143,FBgn0040347	2	GO:000072 7
hydrogen peroxide metabolic process	0.00991 647	FBgn0033518,FBgn0033520	2	GO:004274 3
guanine nucleotide transport	0.01181 493	FBgn0003996	1	GO:000140 8
innate immune response activating cell	0.01181 493	FBgn0034476	1	GO:000222 0

surface				
receptor				
signaling				
pathway				
immune	0.01181	FBgn0034476	1	GO:000242
response-	493			9
activating cell				
surface				
receptor				
signaling				
pathway				
cell surface	0.01181	FBgn0034476	1	GO:000275
pattern	493			2
recognition				
receptor				
signaling				
pathway	0.01101	ED 0022045	1	GO 000025
10-	0.01181	FBgn0032945	1	GO:000925
formyltetrahy drofolate	493			8
catabolic				
process folic acid-	0.01181	FBgn0032945	1	GO:000939
containing	493	FBg110032943	1	00.000939 7
compound	495			,
catabolic				
process				
intestinal	0.01181	FBgn0261675	1	GO:003029
cholesterol	493	8		9
absorption				
negative	0.01181	FBgn0261985	1	GO:003085
regulation of	493			7
epithelial cell				
differentiation				
pteridine-	0.01181	FBgn0032945	1	GO:004256
containing	493			0
compound				
catabolic				
process pyridoxal	0.01181	FBgn0267408	1	GO:004281
metabolic	493	1 ⁻ Dgil0207408	1	00.004281 7
process	495			,
lipid digestion	0.01181	FBgn0261675	1	GO:004424
npiù uigestion	493		1	1
negative	0.01181	FBgn0034950	1	GO:004571
regulation of	493			9
glycogen				
biosynthetic				
process				
intestinal	0.01181	FBgn0261675	1	GO:005089
absorption	493			2
histamine	0.01181	FBgn0003996	1	GO:005161
uptake	493	TD 0000000		5
cyclic	0.01181	FBgn0003996	1	GO:007072
nucleotide	493			9
transport				

C) (D	0.01101	ED 0002007	1	00.007072
cGMP	0.01181 493	FBgn0003996	1	GO:007073
transport	0.01181	FBgn0261675	1	1 GO:009885
intestinal lipid absorption	493	FBgli0201075	1	6
mitotic DNA replication preinitiation complex	0.01181 493	FBgn0026143	1	GO:190297 7
assembly	0.01101	ED	1	CO.100269
negative regulation of border follicle cell migration	0.01181 493	FBgn0261985	1	GO:190368 7
amine	0.01314	FBgn0003996,FBgn0261090	2	GO:001583
transport	524			7
antibiotic catabolic process	0.01314 524	FBgn0033518,FBgn0033520	2	GO:001700 1
apoptotic DNA fragmentation	0.01871 844	FBgn0036831,FBgn0053346	2	GO:000630 9
cellular component disassembly involved in execution phase of apoptosis	0.01871 844	FBgn0036831,FBgn0053346	2	GO:000692 1
apoptotic nuclear changes	0.01871 844	FBgn0036831,FBgn0053346	2	GO:003026 2
defense response to virus	0.01997 379	FBgn0033593,FBgn0034476,FBgn0037562	3	GO:005160 7
organonitroge n compound metabolic process	0.02151 901	FBgn0003356,FBgn0003357,FBgn0003358,FBgn0 003863,FBgn0003996,FBgn0010425,FBgn0013725 ,FBgn0020906,FBgn0024913,FBgn0024997,FBgn0 025383,FBgn0027794,FBgn0029722,FBgn0029828 ,FBgn0030688,FBgn0030945,FBgn0030999,FBgn0 031248,FBgn0031653,FBgn0032144,FBgn0032945 ,FBgn0033774,FBgn0034052,FBgn0034950,FBgn0 035154,FBgn0035665,FBgn0035666,FBgn0035670 ,FBgn0035886,FBgn0035887,FBgn0036023,FBgn0 036024,FBgn0036362,FBgn0036999,FBgn0037678 ,FBgn0038702,FBgn0039777,FBgn0039778,FBgn0 040060,FBgn0043575,FBgn0050371,FBgn0051077 ,FBgn0051265,FBgn0053265,FBgn0063491,FBgn0 085249,FBgn0085374,FBgn0086708,FBgn0250815 ,FBgn0259748,FBgn0261985,FBgn0265140,FBgn0 267408	53	GO:190156 4
regulation of glycogen biosynthetic process	0.02349 143	FBgn0034950	1	GO:000597 9
R1/R6 cell fate commitment	0.02349 143	FBgn0013725	1	GO:000746 2

coenzyme catabolic	0.02349 143	FBgn0032945	1	GO:000910 9
process				
negative regulation of epithelial cell migration	0.02349 143	FBgn0261985	1	GO:001063 3
regulation of glucan biosynthetic process	0.02349 143	FBgn0034950	1	GO:001096 2
regulation of polysaccharid e biosynthetic process	0.02349 143	FBgn0034950	1	GO:003288 5
induction of bacterial agglutination	0.02349 143	FBgn0262357	1	GO:004315 2
regulation of lipoprotein metabolic process	0.02349 143	FBgn0086708	1	GO:005074 6
positive regulation of lipoprotein metabolic process	0.02349 143	FBgn0086708	1	GO:005074 7
negative regulation of glycogen metabolic process	0.02349 143	FBgn0034950	1	GO:007087 4
DNA replication preinitiation complex assembly	0.02349 143	FBgn0026143	1	GO:007116 3
regulation of protein lipidation	0.02349 143	FBgn0086708	1	GO:190305 9
positive regulation of protein lipidation	0.02349 143	FBgn0086708	1	GO:190306 1
regulation of apoptotic cell clearance	0.02349 143	FBgn0030329	1	GO:200042 5
positive regulation of apoptotic cell clearance	0.02349 143	FBgn0030329	1	GO:200042 7
DNA catabolic process, endonucleolyti c	0.02510 873	FBgn0036831,FBgn0053346	2	GO:000073 7

ammonium	0.02510	FBgn0003996,FBgn0261090	2	GO:001569
transport response to	873 0.02832	FBgn0033593,FBgn0034476,FBgn0037562	3	6 GO:000961
virus	579			5
DNA catabolic	0.03225 301	FBgn0036831,FBgn0053346	2	GO:000630 8
process				
10-	0.03503	FBgn0032945	1	GO:000925
formyltetrahy drofolate metabolic process	111			6
negative regulation of cellular carbohydrate	0.03503	FBgn0034950	1	GO:001067 7
metabolic				
process	0.02502	ED 002(142		00.002102
regulation of chromatin silencing at	0.03503	FBgn0026143	1	GO:003193 8
telomere	0.02502	ED	1	CO-004501
negative regulation of carbohydrate metabolic	0.03503	FBgn0034950	1	GO:004591 2
process	0.02502	ED ~~ 0002006	1	CO:0051(0
histamine	0.03503	FBgn0003996	1	GO:005160 8
transport	0.03503	ED ~~ 0007704	1	o GO:190310
regulation of mitochondrial transcription	0.03505	FBgn0027794	1	8
response to hypoxia	0.03674 316	FBgn0013279,FBgn0020653,FBgn0051354	3	GO:000166 6
antibiotic	0.03740	FBgn0033518,FBgn0033520	2	GO:001699
metabolic process	512			9
cofactor	0.03959	FBgn0029722,FBgn0032945,FBgn0033518,FBgn0	6	GO:005118
metabolic process	033	033520,FBgn0063491,FBgn0267408		6
organic hydroxy compound transport	0.04009 154	FBgn0261090,FBgn0261675	2	GO:001585 0
regulation of generation of precursor metabolites	0.04284 88	FBgn0027794,FBgn0034950	2	GO:004346 7
and energy response to decreased	0.04462 91	FBgn0013279,FBgn0020653,FBgn0051354	3	GO:003629 3
oxygen levels 'de novo' posttranslation al protein folding	0.04567 487	FBgn0013279,FBgn0051354	2	GO:005108 4

chaperone cofactor- dependent protein refolding	0.04567 487	FBgn0013279,FBgn0051354	2	GO:005108 5
immune response- regulating cell surface receptor signaling pathway	0.04643 555	FBgn0034476	1	GO:000276 8
acetyl-CoA biosynthetic process from pyruvate	0.04643 555	FBgn0029722	1	GO:000608 6
mitochondrial pyruvate transmembran e transport	0.04643 555	FBgn0037714	1	GO:000685 0
eye pigment precursor transport	0.04643 555	FBgn0003996	1	GO:000685 6
peptidyl- pyroglutamic acid biosynthetic process, using glutaminyl- peptide cyclotransfera se	0.04643 555	FBgn0036999	1	GO:001718 6
peptidyl- glutamine modification	0.04643 555	FBgn0036999	1	GO:001819 9
regulation of carbohydrate biosynthetic process	0.04643 555	FBgn0034950	1	GO:004325 5
regulation of mitochondrial mRNA stability	0.04643 555	FBgn0027794	1	GO:004452 8
negative regulation of oogenesis	0.04643 555	FBgn0261985	1	GO:190588 0
metabolic process	0.04784 699	FBgn0000078,FBgn0002570,FBgn0002571,FBgn0 003356,FBgn0003357,FBgn0003358,FBgn0003863 ,FBgn0003996,FBgn0010425,FBgn0013725,FBgn0 016687,FBgn0020653,FBgn0020906,FBgn0024913 ,FBgn0024997,FBgn0025383,FBgn0025838,FBgn0 026143,FBgn0026411,FBgn0027794,FBgn0028940 ,FBgn0028999,FBgn0029722,FBgn0029828,FBgn0 030688,FBgn0030945,FBgn0030999,FBgn0031248 ,FBgn0031653,FBgn0031689,FBgn0031735,FBgn0 032144,FBgn0032387,FBgn0032945,FBgn0033518 ,FBgn0033520,FBgn0033521,FBgn0033733,FBgn0	84	GO:000815 2

	,FBgn0035006,FBgn0035154,FBgn0035619,FBgn0		
	035665,FBgn0035666,FBgn0035670,FBgn0035886		
	,FBgn0035887,FBgn0036023,FBgn0036024,FBgn0		
	036362,FBgn0036831,FBgn0036996,FBgn0036999		
	,FBgn0037678,FBgn0038546,FBgn0038702,FBgn0		
	039471,FBgn0039472,FBgn0039777,FBgn0039778		
	,FBgn0040060,FBgn0040347,FBgn0040349,FBgn0		
0.04856		2	GO:009719
777			4
0.04965	FBgn0039471,FBgn0039472,FBgn0040349,FBgn0	4	GO:001604
137	264979		2
	777 0.04965	035665,FBgn0035666,FBgn0035670,FBgn0035886 ,FBgn0035887,FBgn0036023,FBgn0036024,FBgn0 036362,FBgn0036831,FBgn0036996,FBgn0036999 ,FBgn0037678,FBgn0038546,FBgn0038702,FBgn0 039471,FBgn0039472,FBgn0039777,FBgn0039778 ,FBgn0040060,FBgn0040347,FBgn0040349,FBgn0 043575,FBgn0050371,FBgn0051077,FBgn0051265 ,FBgn0053265,FBgn0053346,FBgn0063491,FBgn0 085249,FBgn0085374,FBgn0086708,FBgn0250815 ,FBgn0259748,FBgn0261575,FBgn0261641,FBgn0 261985,FBgn0264979,FBgn0265140,FBgn0267408 0.04856 777 0.04965 FBgn0039471,FBgn0039472,FBgn0040349,FBgn0	,FBgn0035006,FBgn0035154,FBgn0035619,FBgn0 035665,FBgn0035666,FBgn0035670,FBgn0035886 ,FBgn0035887,FBgn0036023,FBgn0036024,FBgn0 036362,FBgn0036831,FBgn0036996,FBgn0036999 ,FBgn0037678,FBgn0038546,FBgn0038702,FBgn0 039471,FBgn0039472,FBgn0039777,FBgn0039778 ,FBgn0040060,FBgn0040347,FBgn0040349,FBgn0 043575,FBgn0050371,FBgn0051077,FBgn0051265 ,FBgn0053265,FBgn0053346,FBgn0063491,FBgn0 085249,FBgn0085374,FBgn0086708,FBgn0250815 ,FBgn0259748,FBgn0261575,FBgn0261641,FBgn0 261985,FBgn0264979,FBgn0265140,FBgn0267408 0.04856 777 0.04965 FBgn0039471,FBgn0039472,FBgn0040349,FBgn0

 Table 2.3f: Pathway enrichment for hits differentially upregulated in control females relative to

 20HE females

Pathway enrichment	p-value	Hits	Gene matche s	Pathway ID
Glycerophosph olipid biosynthesis	1.9399E- 05	FBgn0031735,FBgn0033216,FBgn003 5619,FBgn0036381,FBgn0039471,FB gn0039472,FBgn0264979	7	R-DME-1483206
Phospholipid metabolism	0.0001592 2	FBgn0031735,FBgn0033216,FBgn003 5619,FBgn0036381,FBgn0039471,FB gn0039472,FBgn0264979	7	R-DME-1483257
Synthesis of PA	0.0010249 8	FBgn0035619,FBgn0039471,FBgn003 9472,FBgn0264979	4	R-DME-1483166
Neuroactive ligand-receptor interaction	0.0010943 9	FBgn0003863,FBgn0010425,FBgn003 0954	3	4080
Starch and sucrose metabolism	0.0017142 7	FBgn0000078,FBgn0002570,FBgn000 2571,FBgn0261575	4	500
Galactose metabolism	0.0020688	FBgn0002570,FBgn0002571,FBgn026 1575	3	52
Digestion and absorption	0.0020688	FBgn0000078,FBgn0035619,FBgn026 1675	3	R-DME-8963743
Acyl chain remodelling of PS	0.0024830	FBgn0039471,FBgn0039472,FBgn026 4979	3	R-DME-1482801
Phenylalanine metabolism	0.0038803 7	FBgn0033518,FBgn0033520	2	360
Neutrophil degranulation	0.0073557 7	FBgn0013279,FBgn0020508,FBgn003 0329,FBgn0038613,FBgn0039527,FB gn0040092,FBgn0051354,FBgn02623 57,FBgn0265140,FBgn0284436	10	R-DME-6798695
Degradation of the extracellular matrix	0.0090207	FBgn0036381,FBgn0265140	2	R-DME-1474228
Digestion	0.0160208	FBgn0000078,FBgn0035619	2	R-DME-8935690
Cytosolic tRNA aminoacylation	0.0165947 6	FBgn0016687	1	R-DME-379716

tRNA	0.0165947	$ED_{cm}0.016697$	1	R-DME-379724
Aminoacylation	0.0103947	FBgn0016687	1	K-DNE-579724
Mitochondrial	0.0165947	FBgn0016687	1	R-DME-379726
tRNA	0.0103947	FBgil0010087	1	K-DIVIE-379720
aminoacylation	0			
Pyrophosphate	0.0165947	FBgn0016687	1	R-DME-71737
hydrolysis	6.0103947	1 Dgil0010007	1	K-DIVIL-71757
GABA synthesis,	0.0187347	FBgn0013279,FBgn0051354	2	R-DME-888590
release, reuptake	6	1 DE110013279,1 DE110031354	2	R DNL 000570
and degradation	0			
Metabolism of	0.0216277	FBgn0032144,FBgn0033774	2	R-DME-2022377
Angiotensinogen	8		-	
to Angiotensins				
HSF1-dependent	0.0216277	FBgn0013279,FBgn0051354	2	R-DME-3371571
transactivation	8		_	
Innate Immune	0.0247681	FBgn0013279,FBgn0020508,FBgn003	11	R-DME-168249
System	5	0329,FBgn0038613,FBgn0039527,FB		
2		gn0040092,FBgn0051354,FBgn02619		
		85,FBgn0262357,FBgn0265140,FBgn		
		0284436		
Regulation of	0.0276202	FBgn0013279,FBgn0051354,FBgn008	3	R-DME-3371453
HSF1-mediated	3	6708		
heat shock				
response				
Antagonism of	0.0329195	FBgn0024913	1	R-DME-2473224
Activin by	4			
Follistatin				
Intestinal lipid	0.0329195	FBgn0261675	1	R-DME-8963678
absorption	4			
Cellular response	0.0418232	FBgn0013279,FBgn0051354,FBgn008	3	R-DME-3371556
to heat stress	3	6708		
Peptide hormone	0.0463723	FBgn0032144,FBgn0033774	2	R-DME-2980736
metabolism	7			
Selenocompound	0.0489786	FBgn0020653	1	450
metabolism	7	ED 002/201		
Collagen	0.0489786	FBgn0036381	1	R-DME-1442490
degradation	7	ED 0021240	1	D D (C 10/241
Cobalamin (Cbl,	0.0489786	FBgn0031248	1	R-DME-196741
vitamin B12)	7			
transport and				
metabolism Resolution of D-	0.0489786	EP. ap.0040247	1	D DME 5602527
Loop Structures	0.0489/86	FBgn0040347	1	R-DME-5693537
Resolution of D-	0.0489786	FBgn0040347	1	R-DME-5693568
loop Structures	0.0489786	1 [·] DSII0040347	1	K-DIVIE-3093308
through Holliday				
Junction				
Intermediates				
memeutates				

 Table 2.3e: GO enrichment for hits differentially upregulated in 20HE females relative to control females

GO enrichment	p-value	Hits	Gene matches	GOID
antimicrobial	0.00094857	FBgn0000250,FBg	4	GO:0019730
humoral response		n0028988,FBgn00		
		35977,FBgn00863		
		58		

negative regulation of antimicrobial peptide production	0.00111074	FBgn0000250,FBg n0028988	2	GO:0002785
humoral immune response	0.00120994	FBgn0000250,FBg n0028988,FBgn00 35977,FBgn00863 58	4	GO:0006959
negative regulation of immune effector process	0.00147404	FBgn0000250,FBg n0028988	2	GO:0002698
negative regulation of production of molecular mediator of immune response	0.00147404	FBgn0000250,FBg n0028988	2	GO:0002701
regulation of defense response to fungus	0.00147404	FBgn0000250,FBg n0028988	2	GO:1900150
negative regulation of response to biotic stimulus	0.00148786	FBgn0000250,FBg n0028988,FBgn00 35977	3	GO:0002832
negative regulation of defense response	0.00148786	FBgn0000250,FBg n0028988,FBgn00 35977	3	GO:0031348
negative regulation of immune response	0.00148786	FBgn0000250,FBg n0028988,FBgn00 35977	3	GO:0050777
negative regulation of antimicrobial humoral response	0.00188629	FBgn0000250,FBg n0028988	3	GO:0008348
negative regulation of Toll signaling pathway	0.0023468	FBgn0000250,FBg n0028988	2	GO:0045751
regulation of response to stress	0.00265316	FBgn0000250,FBg n0004580,FBgn00 22800,FBgn00289 88,FBgn0035977,F Bgn0086358	6	GO:0080134
negative regulation of multi-organism process	0.00269392	FBgn0000250,FBg n0028988,FBgn00 35977	3	GO:0043901
negative regulation of humoral immune response	0.00285486	FBgn0000250,FBg n0028988	2	GO:0002921
negative regulation of response to external stimulus	0.00290351	FBgn0000250,FBg n0028988,FBgn00 35977	3	GO:0032102
negative regulation of immune system process	0.00312289	FBgn0000250,FBg n0028988,FBgn00 35977	3	GO:0002683
antimicrobial peptide production	0.00437188	FBgn0000250,FBg n0028988,FBgn00 86358	3	GO:0002775
regulation of antimicrobial peptide production	0.00437188	FBgn0000250,FBg n0028988,FBgn00 86358	3	GO:0002784

production of molecular mediator of immune response	0.00465304	FBgn0000250,FBg n0028988,FBgn00 86358	3	GO:0002440
regulation of production of molecular mediator of immune response	0.00465304	FBgn0000250,FBg n0028988,FBgn00 86358	5	GO:0002700
regulation of response to external stimulus	0.00472177	FBgn0000250,FBg n0028988,FBgn00 35977,FBgn00854 30,FBgn0086358	5	GO:0032101
regulation of antimicrobial humoral response	0.0052477	FBgn0000250,FBg n0028988,FBgn00 86358	3	GO:0002759
regulation of humoral immune response	0.00588627	FBgn0000250,FBg n0028988,FBgn00 86358	3	GO:0002920
regulation of defense response	0.00661344	FBgn0000250,FBg n0028988,FBgn00 35977,FBgn00863 58	4	GO:0031347
negative regulation of antifungal peptide production	0.00745968	FBgn0000250	1	GO:0002789
G protein-coupled acetylcholine receptor signaling pathway	0.00745968	FBgn0029909	1	GO:0007213
cytoplasmic sequestering of NF-kappaB	0.00745968	FBgn0000250	1	GO:0007253
phototransduction, UV	0.00745968	FBgn0002939	1	GO:0007604
pupal chitin-based cuticle development	0.00745968	FBgn0001112	1	GO:0008364
detection of UV	0.00745968	FBgn0002939	1	GO:0009589
regulation of ubiquinone biosynthetic process	0.00745968	FBgn0039694	1	GO:0010795
negative regulation of nervous system process	0.00745968	FBgn0001134	1	GO:0031645
positive regulation of histone acetylation	0.00745968	FBgn0032691	1	GO:0035066
negative regulation of action potential	0.00745968	FBgn0001134	1	GO:0045759
isoprenoid transport	0.00745968	FBgn0002939	1	GO:0046864
terpenoid transport	0.00745968	FBgn0002939	1	GO:0046865
tetraterpenoid transport	0.00745968	FBgn0002939	1	GO:0046866

•••	0.005450.00	FD 0000000		GO 004606 7
carotenoid transport	0.00745968	FBgn0002939	1	GO:0046867
regulation of coenzyme metabolic process	0.00745968	FBgn0039694	21	GO:0051196
regulation of transmission of nerve impulse	0.00745968	FBgn0001134	1	GO:0051969
negative regulation of transmission of nerve impulse	0.00745968	FBgn0001134	1	GO:0051970
synaptic transmission, glycinergic	0.00745968	FBgn0001134	1	GO:0060012
positive regulation of histone H4 acetylation	0.00745968	FBgn0032691	1	GO:0090240
acetylcholine receptor signaling pathway	0.00745968	FBgn0029909	1	GO:0095500
regulation of action potential	0.00745968	FBgn0001134	1	GO:0098900
regulation of neuronal action potential	0.00745968	FBgn0001134	1	GO:0098908
postsynaptic signal transduction	0.00745968	FBgn0029909	1	GO:0098926
vesicle-mediated intercellular transport	0.00745968	FBgn0033926	1	GO:0110077
regulation of long- term synaptic potentiation	0.00745968	FBgn0004580	1	GO:1900271
positive regulation of protein acetylation	0.00745968	FBgn0032691	1	GO:1901985
negative regulation of neuronal action potential	0.00745968	FBgn0001134	1	GO:1904456
response to acetylcholine	0.00745968	FBgn0029909	1	GO:1905144
cellular response to acetylcholine	0.00745968	FBgn0029909	1	GO:1905145
positive regulation of histone H4-K16 acetylation	0.00745968	FBgn0032691	1	GO:2000620
positive regulation of peptidyl-lysine acetylation	0.00745968	FBgn0032691	1	GO:2000758
regulation of immune response	0.00756881	FBgn0000250,FBg n0028988,FBgn00 35977,FBgn00863 58	4	GO:0050776
regulation of immune effector process	0.00847882	FBgn0000250,FBg n0028988,FBgn00 86358	3	GO:0002697

cilium organization	0.00847882	FBgn0031255,FBg n0038170,FBgn00	3	GO:0044782
regulation of	0.00854911	45842 FBgn0004580,FBg	2	GO:1903034
response to wounding	0.0000 1911	n0022800	_	
regulation of response to biotic stimulus	0.00916677	FBgn0000250,FBg n0028988,FBgn00 35977,FBgn00863 58	4	GO:0002831
ketone biosynthetic process	0.00945465	FBgn0039694,FBg n0287185	2	GO:0042181
regulation of Toll signaling pathway	0.0145835	FBgn0000250,FBg n0028988	2	GO:0008592
regulation of synaptic plasticity	0.0145835	FBgn0004580,FBg n0033926	2	GO:0048167
peptidoglycan recognition protein signaling pathway	0.0145835	FBgn0035977,FBg n0086358	2	GO:0061057
negative regulation of NF-kappaB transcription factor activity	0.0148652	FBgn0000250	1	GO:0032088
sperm storage	0.0148652	FBgn0001112	1	GO:0046693
regulation of cofactor metabolic process	0.0148652	FBgn0039694	1	GO:0051193
antifungal innate immune response	0.0148652	FBgn0028988	1	GO:0061760
regulation of antifungal innate immune response	0.0148652	FBgn0028988	1	GO:1905034
negative regulation of antifungal innate immune response	0.0148652	FBgn0028988	1	GO:1905035
regulation of histone H4-K16 acetylation	0.0148652	FBgn0032691	1	GO:2000618
response to external stimulus	0.01603822	FBgn0000250,FBg n0002939,FBgn00 28988,FBgn00339 26,FBgn0035813,F Bgn0035977,FBgn 0045842,FBgn008 5430,FBgn008635 8	9	GO:0009605
defense response to fungus	0.01811977	FBgn0000250,FBg n0028988	2	GO:0050832
Toll signaling pathway	0.01937146	FBgn0000250,FBg n0028988	2	GO:0008063
defense response to other organism	0.02053956	FBgn0000250,FBg n0028988,FBgn00 35813,FBgn00359 77,FBgn0086358	5	GO:0098542

regulation of	0.02140815	FBgn0000250,FBg	4	GO:0002682
immune system process		n0028988,FBgn00 35977,FBgn00863 58		
neuronal action potential	0.02221695	FBgn0001134	1	GO:0019228
negative regulation of protein secretion	0.02221695	FBgn0032428	1	GO:0050709
long-term synaptic potentiation	0.02221695	FBgn0004580	1	GO:0060291
regulation of histone H4 acetylation	0.02221695	FBgn0032691	1	GO:0090239
regulation of presynaptic cytosolic calcium ion concentration	0.02221695	FBgn0004580	1	GO:0099509
chloride transmembrane transport	0.02221695	FBgn0001134	52	GO:1902476
negative regulation of response to wounding	0.02221695	FBgn0004580	1	GO:1903035
defense response	0.02245378	FBgn0000250,FBg n0028988,FBgn00 35813,FBgn00359 77,FBgn0086358	5	GO:0006952
response to fungus	0.02333727	FBgn0000250,FBg n0028988	2	GO:0009620
synaptic signaling	0.02834487	FBgn0001134,FBg n0004580,FBgn00 29909,FBgn00339 26	4	GO:0099536
peptidoglycan metabolic process	0.02951531	FBgn0035977	1	GO:0000270
peptidoglycan catabolic process	0.02951531	FBgn0035977	1	GO:0009253
transmission of nerve impulse	0.02951531	FBgn0001134	1	GO:0019226
ciliary basal body organization	0.02951531	FBgn0045842	1	GO:0032053
S- adenosylmethionin e cycle	0.02951531	FBgn0015011	1	GO:0033353
cellular response to UV	0.02951531	FBgn0002939	1	GO:0034644
multicellular organismal signaling	0.02951531	FBgn0001134	1	GO:0035637
cytoplasmic sequestering of transcription factor	0.02951531	FBgn0000250	1	GO:0042994
histone H2A acetylation	0.02951531	FBgn0032691	1	GO:0043968
R1/R6 cell differentiation	0.02951531	FBgn0002734	1	GO:0048052

cytoplasmic sequestering of protein	0.02951531	FBgn0000250	1	GO:0051220
regulation of defense response to bacterium	0.030616	FBgn0035977,FBg n0086358	2	GO:1900424
immune response	0.033856	FBgn0000250,FBg n0028988,FBgn00 35977,FBgn00863 58	4	GO:0006955
response to biotic stimulus	0.03481612	FBgn0000250,FBg n0028988,FBgn00 35813,FBgn00359 77,FBgn0086358	5	GO:0009607
response to external biotic stimulus	0.03481612	FBgn0000250,FBg n0028988,FBgn00 35813,FBgn00359 77,FBgn0086358	5	GO:0043207
response to other organism	0.03481612	FBgn0000250,FBg n0028988,FBgn00 35813,FBgn00359 77,FBgn0086358	5	GO:0051707
cellular ketone metabolic process	0.03536095	FBgn0039694,FBg n0287185	2	GO:0042180
regulation of multi-organism process	0.03649488	FBgn0000250,FBg n0028988,FBgn00 35977,FBgn00863 58	4	GO:0043900
action potential	0.03676066	FBgn0001134	1	GO:0001508
glycosaminoglycan catabolic process	0.03676066	FBgn0035977	1	GO:0006027
intercellular transport	0.03676066	FBgn0033926	1	GO:0010496
regulation of ketone biosynthetic process	0.03676066	FBgn0039694	1	GO:0010566
behavioral response to starvation	0.03676066	FBgn0033926	1	GO:0042595
negative regulation of hemocyte differentiation	0.03676066	FBgn0000250	1	GO:0045611
S- adenosylmethionin e metabolic process	0.03676066	FBgn0015011	1	GO:0046500
signal transduction involved in cellular response to ammonium ion	0.03676066	FBgn0029909	1	GO:1903831
immune system process	0.04145909	FBgn0000250,FBg n0026263,FBgn00 28988,FBgn00359 77,FBgn0086358	5	GO:0002376
immune effector	0.04257944	FBgn0000250,FBg	3	GO:0002252

process		n0028988,FBgn00 86358		
antifungal peptide production	0.04395336	FBgn0000250	1	GO:0002781
regulation of antifungal peptide production	0.04395336	FBgn0000250	1	GO:0002788
negative regulation of peptide secretion	0.04395336	FBgn0032428	1	GO:0002792
insemination	0.04395336	FBgn0001112	1	GO:0007320
rhodopsin biosynthetic process	0.04395336	FBgn0002939	1	GO:0016063
rhodopsin metabolic process	0.04395336	FBgn0002939	1	GO:0046154
sperm competition	0.04395336	FBgn0001112	1	GO:0046692
inorganic anion transmembrane transport	0.04395336	FBgn0001134	1	GO:0098661
aminoglycan metabolic process	0.04744436	FBgn0035977,FBg n0053258	2	GO:0006022

Table 2.4a: list of genes differentially upregulated in control females relative to 20HE males

list of hits>10 raw reads	log2FC edgeR	p-value edgeR	-log10(pvalue)
pre-rRNA:CR45845	-6.3651	3.96E-23	22.40230481
Pebp1	-5.4311	2.77E-14	13.55752023
CG5767	-6.8077	2.62E-13	12.58169871
CG4563	-9.2771	7.73E-12	11.11182051
CG8661	-4.0981	1.05E-10	9.978810701
CG8773	-3.5478	5.76E-09	8.239577517
Jon25Bi	-4.6617	4.70E-08	7.327902142
CG10182	-6.2323	5.44E-08	7.2644011
CR42767	-8.2402	1.18E-07	6.928117993
Jon66Ci	-5.8805	2.20E-07	6.657577319
CG1946	-3.1847	2.54E-07	6.595166283
CG30090	-2.6413	2.59E-07	6.586700236
Vha100-4	-5.4985	4.38E-07	6.358525889
CG5770	-10.0087	5.40E-07	6.26760624
CG14205	-4.1118	5.93E-07	6.226945307
CG6296	-4.3183	6.03E-07	6.219682688
CG42747	-2.5566	7.37E-07	6.132532512
Jon25Biii	-3.7039	1.15E-06	5.93930216
CG6891	-4.1297	1.69E-06	5.772113295
Cht4	-8.2014	1.69E-06	5.772113295
CG16775	-7.5924	1.83E-06	5.73754891

CG7298	-8.1153	1.93E-06	5.714442691
CG8299	-7.0528	3.77E-06	5.42365865
CG8745	-3.7376	6.54E-06	5.184422252
CG17192	-4.2785	7.69E-06	5.11407366
thetaTry	-3.8037	8.58E-06	5.066512712
RpS28b	-2.1765	9.49E-06	5.022733788
CG6277	-3.8016	1.07E-05	4.970616222
CG15044	-7.1295	2.01E-05	4.696803943
CG18404	-4.7382	2.42E-05	4.616184634
Peritrophin-15a	-3.8604	3.14E-05	4.503070352
CG9686	-7.6712	3.28E-05	4.484126156
CG9825	-7.3528	3.45E-05	4.462180905
CG33460	-7.109	3.57E-05	4.447331784
CG4830	-3.6388	3.57E-05	4.447331784
CR45714	-7.1573	4.03E-05	4.394694954
pyd3	-1.9811	4.24E-05	4.372634143
CG6733	-5.745	4.59E-05	4.338187314
CG5958	-3.5698	4.61E-05	4.336299075
vanin-like	-2.3955	4.76E-05	4.322393047
CG33109	-8.0038	4.91E-05	4.308918508
Orc1	-2.3069	7.13E-05	4.14691047
CG4558	-6.8057	0.0001	4
CG32750	-6.9859	0.0001	4
bora	-3.8354	0.0001	4
CG17658	-4.8365	0.0002	3.698970004
CG7542	-4.1347	0.0002	3.698970004
O-fut2	-1.7192	0.0002	3.698970004
CG6839	-8.0134	0.0002	3.698970004
yip7	-3.2953	0.0002	3.698970004
Cht9	-4.3142	0.0003	3.522878745
Fmo-2	-1.7394	0.0003	3.522878745
SLC22A	-2.6139	0.0003	3.522878745
CG7912	-3.2177	0.0003	3.522878745
CG15617	-3.6656	0.0003	3.522878745
CG15630	-6.7416	0.0004	3.397940009
CG5590	-1.537	0.0004	3.397940009
CG10914	-1.9412	0.0004	3.397940009
CG14820	-2.9238	0.0004	3.397940009
CG11068	-1.7532	0.0005	3.301029996
CG5804	-2.2227	0.0005	3.301029996

CG6048	-4.4566	0.0006	3.22184875
CG8834	-1.8817	0.0006	3.22184875
CG3011	-2.1125	0.0006	3.22184875
Jon99Fi	-4.2774	0.0006	3.22184875
Debcl	-1.6166	0.0007	3.15490196
Mms19	-1.7071	0.0007	3.15490196
Pen	-2.009	0.0007	3.15490196
CG45080	-6.6695	0.0007	3.15490196
Fpps	-1.5834	0.0008	3.096910013
CR43264	-3.2388	0.0008	3.096910013
CG10301	-6.4444	0.0009	3.045757491
pav	-1.7349	0.0009	3.045757491
CG9360	-1.898	0.0009	3.045757491
Jon66Cii	-7.2096	0.001	3
CG31266	-6.7559	0.001	3
CG13151	-1.8735	0.001	3
tos	-2.1576	0.001	3
CG34198	-1.6172	0.0011	2.958607315
CG31344	-2.04	0.0011	2.958607315
CG5506	-3.1168	0.0011	2.958607315
CG8460	-1.4618	0.0013	2.886056648
CG10505	-2.6599	0.0015	2.823908741
CG15127	-2.2121	0.0016	2.795880017
CG30049	-1.442	0.0017	2.769551079
CR44830	-4.3288	0.0018	2.744727495
Lrpprc2	-1.3919	0.0018	2.744727495
mms4	-1.8952	0.0019	2.721246399
CG6310	-1.5	0.002	2.698970004
Npc1b	-5.9448	0.002	2.698970004
Meltrin	-1.7936	0.002	2.698970004
Mcm6	-1.7582	0.0021	2.677780705
CG13300	-2.2013	0.0021	2.677780705
CCHa1	-2.2786	0.0022	2.657577319
CG18473	-3.0452	0.0022	2.657577319
Arc42	-1.3485	0.0024	2.619788758
MFS1	-7.9272	0.0024	2.619788758
CG7567	-6.2889	0.0027	2.568636236
Sr-CIII	-6.0098	0.0027	2.568636236
CG11700	-1.6033	0.0027	2.568636236
Acox57D-d	-2.1186	0.0027	2.568636236

CG12926	-1.859	0.0028	2.552841969
CG44475	-2.0327	0.0028	2.552841969
dmGlut	-1.9304	0.0028	2.552841969
CG12374	-3.618	0.0029	2.537602002
CG7280	-1.5357	0.003	2.522878745
CG42329	-4.1747	0.0031	2.508638306
bsf	-1.2427	0.0031	2.508638306
CG12170	-1.7743	0.0032	2.494850022
Npc2a	-1.228	0.0034	2.468521083
CG2781	-2.1675	0.0034	2.468521083
CG15126	-1.7793	0.0035	2.455931956
CDC45L	-1.4594	0.0036	2.443697499
Tina-1	-1.5577	0.0037	2.431798276
nrv3	-2.4447	0.0037	2.431798276
epsilonTry	-3.2273	0.0037	2.431798276
CG31041	-4.4018	0.0037	2.431798276
TyrR	-6.1434	0.0038	2.420216403
Mst36Fa	-5.9129	0.0038	2.420216403
CG10137	-3.0528	0.0039	2.408935393
CG1671	-1.3846	0.0041	2.387216143
gt	-3.0424	0.0043	2.366531544
1(2)10685	-1.7053	0.0044	2.356547324
CG34010	-1.4232	0.0045	2.346787486
CG15423	-1.8733	0.0045	2.346787486
GILT2	-1.6841	0.0046	2.337242168
CG15210	-2.5549	0.0046	2.337242168
Jon65Aii	-3.1645	0.0046	2.337242168
CG14079	-3.1461	0.0048	2.318758763
Mcm10	-2.0607	0.0048	2.318758763
QC	-2.9766	0.0049	2.30980392
CG8728	-1.1915	0.0049	2.30980392
Ddx1	-1.7968	0.0049	2.30980392
psidin	-1.2737	0.0051	2.292429824
Cbs	-3.1907	0.0052	2.283996656
CG31198	-1.8326	0.0052	2.283996656
SPE	-3.3508	0.0054	2.26760624
Tsr1	-1.2907	0.0054	2.26760624
Zip88E	-1.9368	0.0056	2.251811973
CG33966	-2.4914	0.0057	2.244125144
Fdh	-1.1425	0.0058	2.236572006

AdSL	-1.2171	0.0061	2.214670165
CG8064	-1.3141	0.0064	2.193820026
ida	-1.5447	0.0064	2.193820026
Jon99Fii	-3.32	0.0064	2.193820026
Ntf-2	-1.5511	0.0065	2.187086643
cN-IIIB	-1.3606	0.0067	2.173925197
CG9903	-2.1008	0.0068	2.167491087
Gfat2	-1.2154	0.007	2.15490196
CG14036	-5.7083	0.0073	2.13667714
CG10184	-1.2204	0.0073	2.13667714
Gr94a	-2.9089	0.0073	2.13667714
CR44873	-3.8832	0.0074	2.13076828
CG6962	-1.4878	0.0075	2.124938737
CG9568	-1.9648	0.0075	2.124938737
Gnmt	-5.8601	0.0078	2.107905397
CR43989	-5.8601	0.0078	2.107905397
CG1371	-1.189	0.0079	2.102372909
Pmm45A	-1.1531	0.0079	2.102372909
CG33514	-1.4165	0.0079	2.102372909
amn	-1.1495	0.008	2.096910013
lectin-24A	-5.3089	0.008	2.096910013
CG13912	-2.5162	0.0082	2.086186148
RnrS	-1.2507	0.0089	2.050609993
CG3430	-1.3453	0.0089	2.050609993
CG31265	-6.914	0.0095	2.022276395
Scp2	-5.7512	0.0097	2.013228266
AsnRS-m	-1.5104	0.0098	2.008773924
Jon65Aiv	-2.7792	0.0098	2.008773924
CG6178	-1.1543	0.0103	1.987162775
CG32698	-1.4959	0.0103	1.987162775
Oseg6	-3.0926	0.0105	1.978810701
Rif1	-1.3933	0.0106	1.974694135
CG42826	-3.0576	0.0107	1.970616222
CG16736	-5.5882	0.011	1.958607315
CG2144	-1.3111	0.0114	1.943095149
CG8607	-1.3361	0.0115	1.93930216
Ag5r2	-2.7881	0.0116	1.935542011
alpha-Est8	-3.0311	0.0117	1.931814138
CG6126	-1.2791	0.0119	1.924453039
CG6028	-1.1787	0.012	1.920818754

CG3625	-5.6337	0.0123	1.910094889
		0.0123	1.906578315
l(3)mbt	-1.3612		
Irp-1B	-1.1844	0.0126	1.899629455
CG7246	-1.325	0.0127	1.896196279
PRAS40	-1.0695	0.0129	1.88941029
CPT2	-1.19	0.013	1.886056648
CG4743	-1.3586	0.013	1.886056648
CG12512	-1.656	0.0131	1.882728704
CG42728	-3.6264	0.0131	1.882728704
CG11598	-5.4818	0.0138	1.860120914
CG3520	-1.4398	0.0142	1.847711656
Ser6	-2.1843	0.0142	1.847711656
CG18765	-2.7293	0.0143	1.844663963
CG11123	-1.3043	0.0144	1.841637508
CR42491	-1.0555	0.0151	1.821023053
CG9143	-1.1164	0.0152	1.818156412
Lim1	-2.9122	0.0153	1.815308569
xit	-1.12	0.0158	1.801342913
RecQ4	-1.8545	0.0158	1.801342913
DNApol-alpha60	-1.5519	0.0158	1.801342913
IP3K2	-1.6809	0.0158	1.801342913
CG11103	-1.2545	0.0159	1.798602876
CG4053	-6.5628	0.016	1.795880017
CG14424	-3.6028	0.0161	1.793174124
CG18788	-2.288	0.0161	1.793174124
CG17726	-1.3977	0.0163	1.787812396
CG12171	-1.1048	0.0164	1.785156152
LysP	-6.6245	0.0166	1.779891912
RfC3	-1.6405	0.017	1.769551079
CG7277	-1.1297	0.0171	1.76700389
Snm1	-1.3059	0.0175	1.756961951
CG31469	-1.7399	0.0175	1.756961951
CG34301	-3.5871	0.0177	1.752026734
Pex13	-1.1344	0.0178	1.749579998
CG32641	-1.1683	0.0178	1.749579998
Egm	-1.0441	0.0179	1.747146969
CG5157	-2.4948	0.0181	1.742321425
fa2h	-2.849	0.0183	1.73754891
heix	1.210	0.0194	1 71010007
псіх	-1.218	0.0194	1.71219827

CG13690	-1.3186	0.0197	1.705533774
CG14120	-1.9371	0.0198	1.70333481
CG14545	-2.5358	0.0199	1.701146924
CG8419	-3.0404	0.0205	1.688246139
CR45037	-2.5396	0.0209	1.679853714
CR43253	-3.6744	0.0217	1.663540266
CG14629	-1.0631	0.0218	1.661543506
RtcB	-1.0482	0.0219	1.659555885
CG10933	-5.7914	0.0226	1.645891561
CG5639	-5.7603	0.0226	1.645891561
CG7730	-5.7603	0.0226	1.645891561
otk2	-1.6825	0.0235	1.628932138
Nsun2	-1.0774	0.0236	1.627087997
CG15362	-1.3813	0.0242	1.616184634
CG31343	-1.4063	0.0245	1.610833916
beta-PheRS	-1.1583	0.0247	1.607303047
Mcm7	-1.3406	0.0247	1.607303047
CG10592	-1.2281	0.0249	1.603800653
CG14798	-1.215	0.0252	1.598599459
AGBE	-1.0353	0.0254	1.595166283
Ote	-1.1858	0.0254	1.595166283
Gk1	-1.2997	0.0254	1.595166283
CG30371	-6.273	0.0255	1.59345982
GILT3	-2.9457	0.026	1.585026652
CR45938	-1.8857	0.026	1.585026652
CG3663	-1.0822	0.0264	1.578396073
CG9577	-1.0915	0.0266	1.575118363
lcs	-4.2892	0.0267	1.573488739
MESK2	-1.5649	0.0269	1.57024772
CG1827	-0.9419	0.027	1.568636236
ico	-1.1121	0.027	1.568636236
CG3021	-1.0484	0.0272	1.565431096
l(2)dtl	-1.1823	0.0272	1.565431096
Oatp33Eb	-2.6721	0.0272	1.565431096
Zip89B	-3.4193	0.0278	1.555955204
Ssrp	-0.9484	0.0281	1.55129368
CG7593	-1.1954	0.0282	1.549750892
SdhB	-0.9244	0.0287	1.542118103
CG45061	-1.024	0.0287	1.542118103
alpha-Est4	-5.1983	0.0288	1.540607512

CG33116	-1.0918	0.0291	1.536107011
Takl1	-2.8719	0.0293	1.53313238
CG33080	-3.0718	0.0298	1.525783736
CG43207	-2.146	0.0298	1.525783736
CG11911	-2.1631	0.0298	1.525783736
blw	-0.8956	0.0302	1.519993057
r-l	-0.9856	0.0307	1.512861625
CG10470	-1.0115	0.0307	1.512861625
Nup107	-0.961	0.031	1.508638306
CG6180	-0.9581	0.0311	1.507239611
Rrp46	-1.2152	0.0317	1.498940738
Syx4	-1.7451	0.0318	1.49757288
CG7406	-3.3421	0.0319	1.496209317
CG31915	-1.0831	0.0323	1.490797478
alphaTub84D	-0.9969	0.0325	1.488116639
rev7	-1.1847	0.0328	1.484126156
Zwilch	-1.2035	0.033	1.48148606
Cyp6t1	-1.2044	0.0331	1.480172006
TBC1D5	-1.1251	0.0336	1.473660723
CG32572	-1.6695	0.0337	1.472370099
CG9663	-1.0664	0.0339	1.469800302
AlaRS-m	-1.0702	0.0343	1.46470588
CG7137	-1.1815	0.0344	1.463441557
CG6271	-3.7069	0.0345	1.462180905
cue	-1.0029	0.0345	1.462180905
upd3	-0.9525	0.0346	1.460923901
Thiolase	-0.8613	0.036	1.443697499
CR44704	-1.4842	0.036	1.443697499
CG13704	-1.5901	0.036	1.443697499
CG6325	-1.0797	0.037	1.431798276
asl	-1.0366	0.0371	1.43062609
CCKLR-17D3	-1.8066	0.0372	1.42945706
spd-2	-1.2167	0.0372	1.42945706
CG30377	-3.2566	0.0374	1.427128398
CG31097	-2.7315	0.0376	1.424812155
LysX	-2.9429	0.0376	1.424812155
Sytbeta	-5.5508	0.0378	1.4225082
CG18335	-1.9689	0.0383	1.416801226
CG6574	-1.3936	0.0386	1.413412695
CG33127	-1.3018	0.0389	1.410050399

CG31391	-3.3131	0.0393	1.40560745
Art7	-0.9828	0.0397	1.401209493
CR45158	-2.2982	0.0397	1.401209493
Tcp-1zeta	-0.9094	0.0401	1.396855627
Sym	-1.0556	0.0403	1.394694954
Pi3K59F	-0.992	0.0413	1.384049948
CG11752	-0.8841	0.0414	1.382999659
CG32212	-0.9485	0.0414	1.382999659
CG18190	-1.4024	0.0416	1.380906669
CR46102	-2.6128	0.0418	1.378823718
pont	-0.909	0.0418	1.378823718
Тао	-1.7571	0.0423	1.373659633
CG16749	-1.4462	0.0423	1.373659633
snoRNA:Me18S-G1189	-1.4086	0.0429	1.367542708
NK7.1	-1.0172	0.0436	1.360513511
stv	-1.1939	0.0436	1.360513511
Kif19A	-5.8077	0.044	1.356547324
RnrL	-0.9965	0.0444	1.35261703
CG18528	-1.153	0.0446	1.350665141
Jon65Aiii	-2.056	0.0463	1.334419009
CG15629	-0.9041	0.0464	1.333482019
Xpd	-0.9409	0.0467	1.330683119
CG14301	-3.5842	0.0476	1.322393047
CG13843	-2.4964	0.0477	1.321481621
CNT1	-1.6745	0.05	1.301029996
AOX1	-0.8833	0.0502	1.299296283
Surf4	-0.8341	0.0503	1.298432015
CG12288	-1.3139	0.0503	1.298432015
CG6287	-1.1329	0.0505	1.296708622
CG17010	-5.6936	0.0507	1.294992041
Listericin	-1.9964	0.0508	1.294136288
Jheh3	-1.146	0.0509	1.293282218
fzr2	-1.3374	0.051	1.292429824
CG5255	-1.5677	0.051	1.292429824
nero	-0.9047	0.0519	1.284832642
CG17855	-0.8825	0.052	1.283996656
snoRNA:Psi28S-1135b	-2.3694	0.0527	1.278189385
Trxr-1	-1.6965	0.0531	1.274905479
CG3987	-1.0286	0.0531	1.274905479
Fen1	-1.0301	0.0538	1.269217724

CG43774	-1.6751	0.0539	1.268411235
CG7839	-0.9414	0.0549	1.260427656

list of hits>10 raw reads	log2FC edgeR	p-value edgeR	-log10(pvalue)
roX2	10.6073	1.76E-18	17.75448733
CR43961	9.8493	2.07E-15	14.68402965
CG12721	7.0139	6.61E-15	14.17979854
hbs	4.5641	2.88E-10	9.540607512
CG3739	4.9048	1.22E-09	8.913640169
lin-28	2.9282	1.47E-09	8.832682665
CG42854	5.9939	5.55E-09	8.255707017
CG3703	2.6459	5.91E-08	7.228412519
CG34323	8.0601	6.89E-08	7.161780778
CG31436	2.7115	1.55E-07	6.809668302
CG44006	2.8502	3.33E-07	6.477555766
CG43101	3.8771	4.07E-07	6.390405591
CG15263	8.8117	5.34E-07	6.272458743
CG3568	2.8316	1.18E-06	5.928117993
CR44748	3.1285	2.32E-06	5.634512015
snoRNA:Me28S-A30	4.3504	6.35E-06	5.197226275
Mal-A4	3.3322	1.12E-05	4.950781977
CG13813	5.6432	1.17E-05	4.931814138
CG14196	3.7162	2.28E-05	4.642065153
CG42393	2.6649	2.46E-05	4.609064893
CG11407	8.9582	2.67E-05	4.573488739
Eip75B	2.441	4.18E-05	4.378823718
ninaD	5.0995	4.72E-05	4.326058001
vilya	7.0011	5.29E-05	4.276544328
CG34401	2.4342	0.0001	4
CG15695	7.9833	0.0001	4
gskt	3.6281	0.0002	3.698970004
Mal-A8	3.5256	0.0002	3.698970004
CG44286	6.8248	0.0003	3.522878745
CG6465	1.7598	0.0003	3.522878745
CG32040	2.1534	0.0003	3.522878745
sing	2.4851	0.0003	3.522878745
CR45522	6.5808	0.0004	3.397940009
E(spl)malpha-BFM	1.4602	0.0004	3.397940009
CG12643	1.5203	0.0004	3.397940009

geko	4.6019	0.0005	3.301029996
ip1 4.5666		0.0005	3.301029996
CG5361	6.5239	0.0005	3.301029996
brk	1.6085	0.0005	3.301029996
Mal-A1	2.8683	0.0005	3.301029996
CR45824	4.5159	0.0006	3.22184875
Sik2	1.7774	0.0006	3.22184875
mam	2.0317	0.0006	3.22184875
Gbeta5	3.8145	0.0006	3.22184875
CG32638	1.7381	0.0007	3.15490196
CG9498	5.6766	0.0007	3.15490196
CG32599	3.7467	0.0008	3.096910013
CG13917	1.7188	0.0008	3.096910013
CR43257	1.9416	0.0008	3.096910013
CG32055	2.3407	0.0011	2.958607315
tobi	3.9505	0.0011	2.958607315
CG10257	6.2574	0.0012	2.920818754
TTLL3B	4.4842	0.0012	2.920818754
CG6040	1.4885	0.0013	2.886056648
GstD5	1.964	0.0014	2.853871964
CG31808	2.7052	0.0014	2.853871964
Faa	1.8345	0.0015	2.823908741
fs(1)Yb	6.4755	0.0016	2.795880017
CG4363	3.1302	0.0016	2.795880017
ed	1.4121	0.0018	2.744727495
CG11192	2.3564	0.0019	2.721246399
CG3699	2.9869	0.002	2.698970004
Ir40a	6.1369	0.0022	2.657577319
E(spl)m6-BFM	1.6686	0.0022	2.657577319
CR44429	1.9689	0.0022	2.657577319
tut	2.2542	0.0022	2.657577319
br	6.0958	0.0023	2.638272164
CG31510	1.2895	0.0023	2.638272164
CR44445	2.2644	0.0023	2.638272164
rha	7.1366	0.0024	2.619788758
laccase2	1.8044	0.0024	2.619788758
CG13658	1.849	0.0025	2.602059991
CG30484	2.4471	0.0025	2.602059991
Eip78C	2.3785	0.0026	2.585026652
CG13659	1.6834	0.0027	2.568636236

Gld	4.2053	0.0028	2.552841969
GstD8	3.9181	0.0028	2.552841969
CG10559	2.1509	0.0028	2.552841969
Hsromega	1.2852	0.0029	2.537602002
CG30324	6.3372	0.003	2.522878745
CG8468	1.9052	0.003	2.522878745
CG8343	2.9287	0.0032	2.494850022
RNaseMRP:RNA	1.4928	0.0032	2.494850022
CR45922	3.5121	0.0033	2.48148606
GstD4	1.5997	0.0033	2.48148606
Gbp2	5.6621	0.0033	2.48148606
Paip2	1.2468	0.0034	2.468521083
CR44547	1.5687	0.0034	2.468521083
CG3505	2.77	0.0038	2.420216403
CG10337	1.5041	0.0039	2.408935393
CG30356	2.1808	0.0039	2.408935393
CG13894	4.3874	0.004	2.397940009
Dcp-1	1.5625	0.004	2.397940009
CG3764	1.493	0.004	2.397940009
HP1D3csd	2.4688	0.0041	2.387216143
Ect3	2.4384	0.0041	2.387216143
cv-2	1.2455	0.0042	2.37675071
CG32354	1.891	0.0042	2.37675071
CG32523	2.8379	0.0047	2.327902142
CG13893	1.9995	0.0047	2.327902142
CG31370	1.4779	0.0048	2.318758763
CR44380	3.1324	0.0049	2.30980392
CG11275	1.4415	0.0049	2.30980392
CG33160	5.9843	0.0051	2.292429824
CG30197	1.5773	0.0051	2.292429824
pirk	1.7012	0.0054	2.26760624
Sirt6	1.5188	0.0055	2.259637311
Ac3	2.0016	0.0056	2.251811973
CR46095	1.6041	0.0058	2.236572006
CG44329	6.2133	0.006	2.22184875
CG11374	1.7808	0.006	2.22184875
CG17111	2.046	0.0061	2.214670165
CG14838	3.9156	0.0064	2.193820026
Tsp42Ej	1.3247	0.0065	2.187086643
CG43672	3.4032	0.0067	2.173925197

Rcd2	1.4405	0.0067	2.173925197
Ir7g	5.7403	0.0069	2.161150909
CG15515	3.9085	0.0072	2.142667504
CG43647	2.9645	0.0073	2.13667714
CG12728	1.1736	0.0073	2.13667714
MYPT-75D	1.4028	0.0074	2.13076828
CR44538	2.7403	0.0078	2.107905397
alphagamma- element:CR32865	1.4048	0.0079	2.102372909
Сурба20	1.6509	0.0079	2.102372909
CR45280	3.3498	0.008	2.096910013
Ir41a	3.0098	0.008	2.096910013
CG18745	1.1206	0.0083	2.080921908
CR46250	1.9422	0.0087	2.060480747
CG9422	2.3003	0.0091	2.040958608
CG14141	3.8201	0.0093	2.031517051
Lac	1.8498	0.0093	2.031517051
CG5059	1.1545	0.0096	2.017728767
vn	1.3779	0.0096	2.017728767
Obp18a	1.4386	0.01	2
sprt	1.4795	0.01	2
Drep4	1.3272	0.0101	1.995678626
Ddr	2.1813	0.0101	1.995678626
E(spl)m7-HLH	1.3505	0.0102	1.991399828
CR44608	1.361	0.0103	1.987162775
Vti1a	1.3318	0.0105	1.978810701
SIFa	5.8133	0.0106	1.974694135
Or45a	1.8002	0.0106	1.974694135
kirre	3.9349	0.0107	1.970616222
CG4377	2.414	0.0107	1.970616222
mst	1.5371	0.0108	1.966576245
CR45082	1.5962	0.0111	1.954677021
Oatp74D	1.2807	0.0113	1.946921557
Rad23	1.1065	0.0115	1.93930216
CG43389	6.7413	0.0117	1.931814138
CG4660	2.7839	0.0118	1.928117993
CG17265	1.1251	0.0119	1.924453039
ND-51L1	1.9582	0.0119	1.924453039
snoRNA:Me28S-C437	2.0905	0.012	1.920818754
CR45102	1.1325	0.0122	1.913640169
CR44276	2.0229	0.0122	1.913640169

CG3262	1.2415	0.0123	1.910094889
pac 1.3311		0.0123	1.910094889
CG11226	2.2916	0.0125	1.899629455
Cad96Ca	2.2510	0.0120	1.896196279
CG34040	4.4697	0.0127	1.890190279
CR44784	1.3856	0.0128	1.89279003
CR41257			
CG11893	2.4539	0.013	1.886056648
	1.9762	0.013	1.886056648
CR32636	2.7446	0.0133	1.876148359
Mal-A2	1.8969	0.0133	1.876148359
CG18467	2.581	0.0134	1.872895202
Mos	2.8721	0.0136	1.866461092
daw	2.6111	0.0136	1.866461092
krimp	1.2256	0.0137	1.863279433
Spn85F	5.7664	0.0138	1.860120914
CR44145	1.622	0.0141	1.850780887
CR9162	2.1438	0.0142	1.847711656
CG6683	1.2553	0.0142	1.847711656
Csk	1.1004	0.0143	1.844663963
CR45793	1.7582	0.0144	1.841637508
pan	1.6901	0.0145	1.838631998
CR44984	2.0928	0.0146	1.835647144
CG14227	1.4603	0.0146	1.835647144
CG5644	1.9557	0.0146	1.835647144
mGluR	2.8347	0.0147	1.832682665
CR44564	2.6101	0.0149	1.826813732
CG10910	3.3373	0.0153	1.815308569
Gr47b	2.0142	0.0156	1.806875402
Fhos	2.5471	0.0157	1.804100348
CG33267	1.502	0.0163	1.787812396
CG32706	1.7724	0.0169	1.772113295
CG12483	5.6657	0.0171	1.76700389
CG9821	0.9801	0.0171	1.76700389
CG31104	2.8709	0.0172	1.764471553
Ptip	1.0735	0.0172	1.752026734
CG14626	1.0325	0.0177	1.752026734
sty	0.9656	0.0192	1.716698771
CG17186	1.2444	0.0192	1.716698771
Cbp53E	3.0872	0.0192	1.71219827
CR43973	1.2134	0.02	1.698970004

sqz	1.145	0.0201	1.696803943
GATAd	1.1365	0.0203	1.692503962
CG5281	1.6784	0.0204	1.690369833
snoRNA:Me28S- A3407a	1.7987	0.0204	1.690369833
CG34348	1.1264	0.0207	1.684029655
Hsp67Bc	1.1376	0.0209	1.679853714
Rbp1	1.0379	0.0212	1.673664139
CHKov2	1.1208	0.0216	1.665546249
noe	1.1162	0.0216	1.665546249
CR45625	1.7592	0.0216	1.665546249
CG18368	2.8286	0.0217	1.663540266
CR44723	2.4509	0.0219	1.659555885
VhaSFD	5.3989	0.022	1.657577319
CR44404	5.3989	0.022	1.657577319
snoRNA:Psi18S-1854a	1.97	0.0224	1.649751982
CR45745	2.4539	0.0227	1.643974143
CR45964	3.3242	0.0228	1.642065153
l(1)G0193	1.3413	0.0233	1.632644079
CR44862	6.216	0.0237	1.625251654
CG12655	1.8331	0.0237	1.625251654
CG14160	4.49	0.0237	1.625251654
olf413	2.1822	0.0239	1.621602099
CR46204	1.4381	0.024	1.619788758
CG30099	2.0324	0.024	1.619788758
Cad87A	1.1541	0.0241	1.617982957
CR46093	1.4163	0.0241	1.617982957
CG9328	1.2636	0.0242	1.616184634
CG31300	2.0997	0.0242	1.616184634
scaRNA:MeU5-C46	0.976	0.0245	1.610833916
ntc	1.3526	0.0246	1.609064893
laza	1.168	0.0251	1.600326279
CG32368	1.0242	0.0253	1.596879479
CG9684	0.9432	0.0254	1.595166283
CG3281	1.0923	0.0254	1.595166283
dos	1.4552	0.0259	1.586700236
CG5282	6.2688	0.0261	1.583359493
Traf4	1.2	0.0262	1.581698709
CG10376	1.0088	0.0264	1.578396073
Gycbeta100B	2.4884	0.0265	1.576754126
TSG101	0.9168	0.0265	1.576754126

png	2.0923	0.0269	1.57024772
CG13436	1.7852	0.0269	1.57024772
Mnn1	1.0997	0.0271	1.567030709
Ugt37b1	3.2953	0.0272	1.565431096
CR46021	5.3113	0.0275	1.560667306
CG4586	1.1636	0.0276	1.559090918
BtbVII	2.2912	0.0277	1.557520231
InR	1.068	0.028	1.552841969
CR31451	2.9495	0.0282	1.549750892
grim	1.9379	0.0286	1.543633967
TwdlC	3.1165	0.0287	1.542118103
CG31288	1.6415	0.0288	1.540607512
Ugt86Dd	1.3672	0.0289	1.539102157
CG13739	3.3503	0.0296	1.528708289
CG42816	6.0676	0.0298	1.525783736
kcc	5.2406	0.0298	1.525783736
CG7747	1.0688	0.0299	1.524328812
CG45782	1.92	0.0299	1.524328812
CG32795	1.2035	0.03	1.522878745
GstD3	0.9395	0.0303	1.518557371
CG10514	3.3346	0.0304	1.517126416
CR45549	1.8994	0.0307	1.512861625
Eaf6	1.0492	0.0309	1.510041521
cact	1.1734	0.031	1.508638306
CG1657	1.0623	0.0311	1.507239611
CR45187	1.5706	0.0312	1.505845406
Sp212	3.4438	0.0316	1.500312917
CR43242	1.1103	0.0317	1.498940738
snoRNA:Me18S- U1356b	2.6828	0.032	1.494850022
flfl	0.9242	0.0323	1.490797478
CG32625	1.3806	0.0323	1.490797478
CR45234	2.421	0.0328	1.484126156
CG8281	1.0712	0.0331	1.480172006
Arc2	0.9756	0.0332	1.478861916
CR45166	3.6136	0.0338	1.4710833
CR44892	1.2216	0.0339	1.469800302
Gr32a	2.8891	0.0341	1.467245621
yuri	2.8838	0.0343	1.46470588
CG9425	1.5979	0.0343	1.46470588
CG32444	2.0573	0.0345	1.462180905

	2 00 12	0.0215	1.469.100005
CG9676	2.0843	0.0345	1.462180905
CG33643	1.8114	0.0345	1.462180905
CG11155	1.872	0.0354	1.450996738
PDZ-GEF	1.0469	0.0361	1.442492798
Axs	1.0648	0.0361	1.442492798
Gr77a	1.3273	0.0361	1.442492798
CR44720	1.7117	0.0364	1.438898616
E(spl)m3-HLH	0.8409	0.0366	1.436518915
Mal-A6	3.5228	0.0385	1.41453927
CG34160	1.1947	0.039	1.408935393
CG18128	2.1524	0.0392	1.406713933
dop	1.3293	0.0392	1.406713933
CG3876	1.0554	0.0393	1.40560745
CG31245	3.4138	0.0401	1.396855627
comm2	1.4001	0.0406	1.391473966
CG7194	1.3092	0.0409	1.388276692
Smyd4-2	2.4454	0.0411	1.386158178
CR41620	5.0637	0.0413	1.384049948
bigmax	0.8964	0.0413	1.384049948
mir-4974	2.1807	0.0415	1.381951903
CR45127	2.1552	0.0417	1.379863945
CG8369	5.0393	0.0418	1.378823718
ec	5.0393	0.0418	1.378823718
CG4297	0.9686	0.0424	1.372634143
CR43974	1.2848	0.0428	1.368556231
NFAT	0.9721	0.043	1.366531544
DJ-1alpha	2.3331	0.0434	1.36251027
nvd	5.7154	0.0435	1.361510743
CG12224	1.0328	0.0435	1.361510743
fs(1)Ya	5.7154	0.0436	1.360513511
omd	1.5098	0.0438	1.358525889
insc	0.8159	0.044	1.356547324
CR46094	2.0502	0.0442	1.354577731
snoRNA:Psi18S-1854b	1.1552	0.0446	1.350665141
CG8568	1.8494	0.0446	1.350665141
swi2	1.8474	0.0447	1.349692477
Ppt2	1.001	0.0449	1.347753659
1(2)35Cc	2.8217	0.0451	1.345823458
CG6013	0.9736	0.0452	1.344861565
CG31111	1.015	0.0456	1.341035157

CG33463	2.4061	0.046	1 1.336299075
godzilla	2.2268	0.046	
ect	1.6446		
Ucp4C	2.4212	0.046	
CR45028	1.6695	0.046	
Vav	0.8683	0.04	
RhoGAP71E	1.1549	0.047	
bowl	3.4322		
Cpr51A	0.8572	0.047	
CR46044	1.2346		
Tsp42El	0.8205	0.047	
CG17361	1.0572	0.047	9 1.319664487
CG34136	2.1762	0.048	4 1.315154638
CG32109	0.8844	0.048	7 1.312471039
Tie	0.9211	0.048	8 1.311580178
CG33510	1.3994	0.048	8 1.311580178
baz	0.9138	0.049	2 1.308034897
Cpr64Ad	3.4976	0.049	3 1.30715308
kek5	0.8218	0.049	5 1.30539480
CG42365	1.1459	0.049	5 1.305394801
FASN3	2.1101	0.050	1 1.300162274
CG18180	2.439	0.050	4 1.297569464
CG31463	1.5931	0.050	6 1.295849483
Krn	0.9266	0.050	7 1.29499204
CG16894	3.8045	0.050	8 1.294136288
BBS8	5.6118	0.051	1 1.291579
Gbp1	5.7689	0.051	5 1.28819277
Rab2	0.8635	0.052	5 1.279840697
glec	0.806	0.052	5 1.279840697
CG11655	1.1328	0.05	3 1.27572413
CG10638	1.1463	0.053	2 1.274088368
CAH2	1.9189	0.053	5 1.271646218
CR44867	2.7064		8 1.269217724
lt	1.4674		
CR44809	1.6071	0.054	
Table 2.4c:			
threshold p=0.1 in the r 20HE	nale control versus male fed list	20HI	e male control versus male E fed list
-	nale control versus female rol list	-	male control versus female trol list
Genes that are upregulated in control males but were	Genes that are downregulated in control males but were	Genes that are upregulated in control males but were	Genes that are downregulated in control males but were equalized

equalized to female levels by 20HE feeding	equalized to female levels by 20HE feeding	equalized to female levels by 20HE feeding	to female levels by 20HE feeding
ave	mus101	a	Acp53Ea
CG6999	CG4653	AhcyL2	Adgf-C
Stim	1(2)05287	AOX2	AIMP1
CG33107	mRpL51	Arc1	alpha-Est1
snRNA:U7	rdgBbeta	Atac1	alpha-Est7
CG8578	Hsp67Ba	Atf6	alphaTry
FucTC	CG32054	bnl	Amy-d
Pc	CG5346	bou	AP-1-2beta
Ugt86Dj	RfC4	bun	arx
Cyp4ac3	CG12736	CG10638	asp
viaf	Spc25	CG10730	ATPsynB
CG32202	DNApol-alpha73	CG11000	ATPsyndelta
crb	Acf	CG11486	ATPsynE
Ugt36Ba	mRpS33	CG11655	ATPsynO
hebe	CAH1	CG11656	aurB
CR40611	CG30280	CG12398	Bap60
CG3036	icln	CG12868	beg
crim	CG30069	CG13088	beta'COP
CG10324	Rpn11	CG14074	beta4GalT7
CR45753	CR42874	CG14252	Caf1-180
ZIPIC	CG16941	CG14352	caix
CR42746	DNA-ligI	CG14367	CCHa1-R
CG11638	betaggt-II	CG14443	CCHa2
CG9018	CG5728	CG14770	CG10000
alphaTub67C	FK506-bp2	CG14837	CG10472
Mst36Fb	BubR1	CG14877	CG10584
ATP7	CG11060	CG14965	CG10869
rgr	CG16985	CG15084	CG10911
CR46104	fng	CG15760	CG10912
CG5002	CG14969	CG16833	CG10939
CG17977	m	CG16898	CG11164
CG6770	CG33679	CG17018	CG11241
CG30385	CG32278	CG17684	CG11403
CG3223	CG11788	CG17687	CG11562
CG33645	Inx7	CG17786	CG11590
CG17765	tank	CG17929	CG11777
Gmap	DIP-iota	CG17929 CG18599	CG11858
alpha-Man-Ia	Tsp42Ec	CG18635	CG11838 CG11878
-	mRpL45	CG18655 CG2064	CG11878 CG11899
Fcp3C Ns2	Eps-15	CG2064 CG30022	CG11899 CG11912

CR45798	CG11851	CG30047	CG11964
CG15461	babo	CG3008	CG12129
mbc	GAPcenA	CG30440	CG12173
CG15879	ND-13B	CG30441	CG12204
CG7332	GstE9	CG30456	CG12237
CG2641	CR44026	CG31347	CG12279
nahoda	l(1)G0004	CG31431	CG12288
snoRNA:Psi28S-2566	Bap111	CG31627	CG12321
Sin1	CG33301	CG31817	CG1236
CG12025	Cyp305a1	CG32371	CG12825
wake	CG12093	CG32450	CG1287
CR44992	btn	CG32486	CG13008
Cys	pn	CG32845	CG13082
CG15611	CG14757	CG32855	CG13324
Sry-delta	crn	CG33468	CG13364
Aatf	CG7992	CG33640	CG13492
CG8713	CG4332	CG33710	CG14104
AspRS-m	CG2233	CG33928	CG14270
CG13252	CG13928	CG34231	CG14499
azot	UQCR-C1	CG3556	CG14526
CG15818	CG31546	CG3709	CG14543
Ctr1A	Trxr-1	CG3838	CG15414
RIOK2	CG12608	CG3982	CG15605
Pde6	wrapper	CG3995	CG16700
snoRNA:nop5-x16-a	CG10194	CG42364	CG16734
CR43241	CG13563	CG42553	CG16979
zetaCOP	Set	CG42818	CG17068
Сурба13	CAH2	CG43646	CG17145
Grd	CSN7	CG43925	CG17278
btv	SC	CG43968	CG17570
CG5567	CG16953	CG4404	CG17633
CG8036	CG10425	CG44405	CG17660
CG6138	CG16723	CG4462	CG17841
Trim9	CG17760	CG45428	CG17855
scaRNA:PsiU5-44	CG2533	CG4676	CG18179
CG5810	CG10467	CG4723	CG18180
CG1360	CG6462	CG5114	CG18577
CR45979	Mip	CG6330	CG1907
CG5071	CG11880	CG6405	CG1942
CG6443	CG2608	CG6602	CG2254
prt	CG8417	CG6628	CG2681
CR45035	lab	CG6791	CG30001

bin3	CG4045	CG7564	CG30283
Sodh-2	Nup75	CG7706	CG30287
CG12909	lds	CG7966	CG30339
CR32690	rin	CG8072	CG30345
CG32814	Ugt36Bb	CG8223	CG30411
Cul2	CR45607	CG8273	CG30493
Lrch	Cks30A	CG8319	CG31076
Gbp1	Tango4	CG8492	CG31126
mir-2b-2	CG14694	CG9505	CG31251
ex	Cdk7	CG9945	CG31345
Prx2540-1	Ube3a	CkIIalpha-i1	CG31550
da	Fen1	CR32218	CG31918
CG14353	CG11771	CR41544	CG32091
Ak6	CG7156	CR41583	CG32201
Su(H)	OstStt3	CR43405	CG32284
CG3335	l(2)35Bd	CR43653	CG32483
CR44758	sel	CR43849	CG32669
CG9951	Cdc6	CR43909	CG33178
CG14562	ATPsynD	CR44138	CG3344
Stat92E	rig	CR44440	CG34026
let-7-C	CG8858	CR44566	CG34132
Smr	mus301	CR44817	CG34200
noc	Prosalpha4	CR45054	CG34288
CG13339	CG15673	CR45128	CG34404
CG11384	Mulk	CR45148	CG3706
su(r)	CG6495	CR45171	CG3868
CG42450	SWIP	CR45224	CG3906
CG3308	Dhc36C	CR45820	CG3909
CG10516	CG8192	CR45915	CG4194
ZC3H3	CG5267	CR45939	CG42327
CG5500	CG34150	CR46015	CG42397
CG4022	CG42239	CR46249	CG42714
cnir	Gga	CrebA	CG4278
CG32783	edl	сwo	CG42825
CG7611	CR44512	Cyp311a1	CG43295
cv-d	CG30344	Cyp4p3	CG4557
snoRNA:Me18S- U1356a	mRpS18A	Cyp6d5	CG4627
snoRNA:684	GCC88	Dat	CG4839
CR45188	ND-B14.5A	dpr1	CG5010
az2	Scox	dsx-c73A	CG5107
CR44779	CG6227	ebd1	CG5167
fand	CG15536	Elp1	CG5214

sgl	Prosalpha7	fidipidine	CG5254
CR45620	CG14407	foi	CG5255
CG6665	Cat	Gk2	CG5569
smg	CG17059	glec	CG5724
CG10262	CG3803	GluRIIE	CG5892
Tdc2	CG9065	GstE1	CG6067
Su(Tpl)	Tcp-1eta	GstE7	CG6295
CG33137	CR46245	GstE8	CG6454
CG12007	Drat	Hexo2	CG7379
CHKov1	Pms2	hog	CG7458
4EHP	CG15422	Hsc70-3	CG7470
Spn42Dd	CG11034	Ir51b	CG7560
CG30414	CG34253	Ir85a	CG7630
scaf6	mRpS24	ITP	CG7837
CG17249	IleRS-m	JhI-26	CG7889
ymp	CG10877	Kif3C	CG8258
egl	CG4880	Krn	CG8311
mthl10	st	1(3)02640	CG8323
fs(1)K10	CG5721	lace	CG8562
CG32437	mtSSB	Lap1	CG8642
CG5705	CR45804	lbm	CG8818
CR43899	CG42763	Lcch3	CG8891
CG13108	CG3902	lt	CG8952
CG31606	CR45921	mdy	CG9344
CG14855	mys	MFS14	CG9581
CG43188	CG31798	MFS3	CG9752
Su(z)2	CG1598	mir-4968	Cisd2
Efa6	GluProRS	mir-967	Cpr73D
fzo	CG4406	Mrp4	CR15061
р	CG2680	mrt	CR44478
CG7794	CG17646	mthl14	CR44692
CG8239	CG14683	Muc14A	CR44724
CR43644	FK506-bp1	Naam	CR44868
CG6340	CG10628	NC2alpha	CR45474
CG32095	CG12219	nmo	CR45973
tws	Miro	PGRP-LF	cry
Edc3	CG8132	PGRP-SD	CstF-50
CR44022	CG12375	Pig1	Ctf4
Spt20	Amyrel	Pih1D1	CycE
RhoL	CG13365	pkaap	Cyp1
CG15766	CG15653	PlexA	Cyp6d2
CG42258	CG5589	ppk	dgt3

jumu	Rpn1	ppk27	dgt6
pwn	CG6428	Pzl	DNApol-alpha180
CG12003	l(2)37Bb	Rab2	DNApol-alpha50
gkt	Oga	Rbcn-3B	DNApol-epsilon58
CG42266	Tfb4	ric8a	DNaseII
CR43436	Gr66a	rost	dnd
wde	CG43120	row	dome
DptA	CG15247	shams	E(spl)m2-BFM
Eph	l(1)G0045	shg	E(spl)m8-HLH
Or85f	SelG	sima	ecd
MED1	CR32194	sinu	Eip63F-1
Vps39	CG34220	Smurf	Est-Q
pcs	COX7A	SmydA-5	Fadd
рудо	GckIII	Snap24	Fit2
snoRNA:Psi18S-841b	Sas-4	snoRNA:Psi18S-1086	Gip
CG15563	mRpL30	snoRNA:Psi18S-1275	GlcT-1
CG43192	CG8311	Sox102F	Glo1
CG6843	CG30001	sstn	glu
CR43399	RpS15Ab	SSX	Gr8a
AttD	CG33178	St3	Gs11
mir-4964	CG5255	stas	Gycalpha99B
CR46064	stg	swa	hdm
CG5642	CG30287	Tab2	Hex-C
Atac2	glu	Taf11	Hsp70Bbb
Src42A	CG8323	Tbc1d15-17	Hydr1
qkr58E-1	CG11858	Tgi	Ibf2
CR44348	Ptp52F	Tsp42Ef	Ing3
CG3163	Ibf2	ttm2	IntS4
CG16711	nht	Ugt86Dc	Irp-1A
CR45256	mRpL54	wts	Jheh3
CG4455	ATPsynB		Jon99Ci
kune	tex		Jon99Cii
dgt1	Acp53Ea		Jon99Ciii
CG16716	Fadd		kappaTry
Lap1	Pgm		Klp61F
CG9505	CG11164		lectin-46Ca
CG33468	Mgstl		lectin-46Cb
Ir51b	CG7560		Lgr3
Tgi	Pdxk		LysD
wts	vls		LysE
foi	CG11590		mag
CG17018	Ing3		Mcm2

mrt	CG12204	Mcm5
glec	mRpL44	Mdh2
CR45224	CG17068	Mdr50
CG30456	RpS14a	Mesh1
shg	CG3706	Mgstl
CR45148	CG11964	mRpL10
pkaap	CG17145	mRpL12
CG14877	CG4278	mRpL18
CG43646	CG3909	mRpL20
CR43909	TyrRS-m	mRpL34
CG14770	mRpL18	mRpL36
Cyp311a1	CstF-50	mRpL44
CR45054	Adgf-C	mRpL47
CG42818	mRpS35	mRpL54
GstE7	CG16979	mRpS11
CR45915	beg	mRpS35
CR43849	Nrk	msb11
CR43653	lectin-46Cb	msd1
CR44817	CG13492	msd5
JhI-26	p47	Muc68Ca
Taf11	CG12279	Muc68E
CG45428	CG12173	Mur29B
CR43405	Spp	ND-B15
CR32218	CG17570	Ndc1
CG17684	tam	nht
fidipidine	Rrp42	Npc2f
Mrp4	Caf1-180	Nrk
lace	Sld5	Orc5
CG14965	CG9752	Osbp
GluRIIE	mRpL10	OX
CG16833	CG18577	p47
mthl14	CR45973	pcl
CrebA	GlcT-1	Pdxk
CG8223	CG31251	Pgm
Tbc1d15-17	CG30493	PGRP-SC2
nmo	mRpL34	phyl
GstE1	CG11562	ppk3
CG16898	arx	Ptp52F
CG14352	mRpL20	rasp
SmydA-5	CG3868	Rbf2
cwo	CG17841	RpS14a
Cyp4p3	CR45474	RpS15Ab

14-3-3zeta	mRpL47	Rrp42
CR41544	mRpL12	Sc2
CG7706	CG32284	schuy
bun	Gs11	Sdhaf3
CG31817	Lgr3	Sirt2
dsx-c73A	CG11777	Sld5
Tsp42Ef	CG4557	snoRNA:Psi18S-531
CG7564	CG14499	spdo
CG18635	mRpL36	SPH93
PGRP-LF	CG12321	Spindly
CG14252	CG8891	Spp
l(3)02640	CG4627	sqa
CG30022	CG34404	Ssb-c31a
CR45128	hdm	stg
Kif3C	Cisd2	Surf4
Snap24	CG8258	Taldo
ppk	CG11878	tam
CG34231	pcl	tej
Rab2	beta4GalT7	tex
CG33710	CG5167	Tgt
MFS14	CG2254	toy
Rbcn-3B	dnd	Tps1
CG31431	CG7837	TyrRS-m
CG4676	Tgt	upd2
AhcyL2	IntS4	Vha14-1
mir-967	Sc2	Vha36-1
CG32371	CG11912	vls
CkIIalpha-i1	CG32201	W
Elp1	toy	
MFS3	Gycalpha99B	
CG10638	Gr8a	
CG17929	CCHa1-R	
CG17786	CG8818	
CG32855	DNApol-alpha50	
CG31347	Irp-1A	
CG9945	Cyp1	
CG15760	CG5569	
rost	CG31550	
CG33640	rasp	
CR44440	Mdh2	
CG43925	Cpr73D	
CG11655	CG10472	

GstE8	CG32669
lbm	Orc5
ttm2	CycE
CG3995	CG13008
CG11486	Bap60
CG3709	CG34200
row	CG30345
CG8273	CG14270
stas	CG5010
Pih1D1	CG31126
ric8a	Taldo
mdy	msb1l
CG3838	Hydr1
CR45939	Eip63F-1
lt	CG13324
snoRNA:Psi18S-1086	sqa
Naam	beta'COP
CG14074	CG12825
CG5114	ND-B15
CG30441	Sdhaf3
CG17687	CG30283
Atf6	Mcm5
CG6791	Klp61F
Dat	cry cry
St3	Hsp70Bbb
CG8492	CG5214
CG32450	CG7889
hog	CG14543
CR46015	aurB
Atac1	ATPsynE
Ugt86Dc	mRpS11
Cyp6d5	snoRNA:Psi18S-531
Gk2	CG1236
CG13088	CG32483
Muc14A	CG12129
CG10730	CR44868
Smurf	schuy
CG12398	Spindly
dpr1	Mur29B
ITP	CG6454
Sox102F	CG1907
CG32486	Mdr50

CG6330	CG17278	
CG33928	msd5	
Hsc70-3	Zw10	
CG6602	Mcm2	
Pig1	CG14104	
CG14443	alpha-Est1	
CG32845	CG13364	
CG4723	DNApol-epsilon58	
PlexA	kappaTry	
sstn	CG11403	
CG11000	Vha14-1	
mir-4968	ATPsynO	
shams	CG9344	
bnl	CG7379	
CG2064	CG30339	
CG3008	spdo	
CG8319	Ndc1	
a	Npc2f	
CR45171	CG10939	
CG30440	CR15061	
ebd1	CG1942	
CG4462	OX	
CG14837	CR44724	
CR44138	CG43295	
CG3982	CG17660	
CG30047	CG10584	
SSX	CG17855	
CG42553	CR44478	
CG3556	caix	
CG7966	Ssb-c31a	
Lcch3	Gip	
Ir85a	CG4839	
NC2alpha	Glo1	
sima	CG4194	
CR46249	AIMP1	
CG15084	ecd	
Pzl	CG7470	
ppk27	CG32091	
CR41583	CG11899	
PGRP-SD	CG1287	
CG6628	CG3906	
swa	AP-1-2beta	

CG4404	phyl
sinu	lectin-46Ca
CR44566	Ctf4
CG43968	CG12237
CG31627	DNApol-alpha180
CG42364	SPH93
CG8072	CG13082
CG6405	CG31918
CR45820	E(spl)m2-BFM
bou	CG8562
AOX2	Hex-C
Tab2	asp
CG12868	Muc68Ca
snoRNA:Psi18S-1275	CG7630
Arc1	CG16700
Hexo2	CR44692
CG18599	CG42714
CG44405	CCHa2
CG14367	mag
CG11656	E(spl)m8-HLH

 Table 2.4d: Pathway enrichment for hits differentially upregulated in 20HE males relative to control females

Pathway	p-value	Hits	Gene matches	Pathway ID
enrichment				
Galactose	9.47362E-06	FBgn0002569,FBg	6	52
metabolism		n0002570,FBgn00		
		33294,FBgn00332		
		97,FBgn0260746,F		
		Bgn0261575		
Starch and sucrose	5.93946E-05	FBgn0002569,FBg	7	500
metabolism		n0002570,FBgn00		
		26755,FBgn00332		
		94,FBgn0033297,F		
		Bgn0040256,FBgn		
		0261575		
PI5P, PP2A and	0.000454317	FBgn0003984,FBg	4	R-DME-6811558
IER3 Regulate		n0016794,FBgn00		
PI3K/AKT		22800,FBgn00400		
Signaling		68		
Negative	0.000774174	FBgn0003984,FBg	4	R-DME-199418
regulation of the		n0016794,FBgn00		
PI3K/AKT		22800,FBgn00400		
network		68		
Metabolism of	0.003300173	FBgn0010039,FBg	5	980
xenobiotics by		n0010040,FBgn00		
cytochrome P450		10041,FBgn00267		
		55,FBgn0040256		
Drug metabolism -	0.003561307	FBgn0010039,FBg	5	982

cytochrome P450		n0010040,FBgn00 10041,FBgn00267		
PI3K events in ERBB2 signaling	0.004529543	55,FBgn0040256 FBgn0003984,FBg n0016794	2	R-DME-1963642
Nephrin family interactions	0.004529543	FBgn0000547,FBg n0028369	2	R-DME-373753
Signaling by Receptor Tyrosine Kinases	0.005106565	FBgn0003984,FBg n0014388,FBgn00 16794,FBgn00228 00,FBgn0027779,F Bgn0040068,FBgn 0052055,FBgn026 2081,FBgn028349 9	9	R-DME-9006934
Signaling by Insulin receptor	0.005853482	FBgn0016794,FBg n0022800,FBgn00 27779,FBgn02834 99	4	R-DME-74752
FLT3 Signaling	0.009468478	FBgn0003984,FBg n0016794,FBgn00 22800,FBgn02620 81,FBgn0265778	5	R-DME-9607240
Signaling by SCF- KIT	0.010497272	FBgn0022800,FBg n0040068	2	R-DME-1433557
Signaling by ERBB2	0.010688809	FBgn0003984,FBg n0016794,FBgn02 62081	3	R-DME-1227986
Signaling by EGFR	0.0118715	FBgn0014388,FBg n0016794,FBgn00 52055	3	R-DME-177929
Aflatoxin activation and detoxification	0.012969919	FBgn0036986,FBg n0037818	2	R-DME-5423646
SUMOylation of intracellular receptors	0.015669143	FBgn0000568,FBg n0004865	2	R-DME-4090294
Signal Transduction	0.017769782	FBgn0000163,FBg n0000250,FBgn00 00568,FBgn00012 29,FBgn0003984,F Bgn0014388,FBgn 0016794,FBgn001 9985,FBgn002280 0,FBgn0023416,F Bgn0027779,FBgn 0030011,FBgn003 0505,FBgn003146 1,FBgn0031885,F Bgn0034706,FBgn 0036290,FBgn003 6518,FBgn004006 8,FBgn0052055,F Bgn0085432,FBgn 0262081,FBgn026 5778,FBgn028349 9	24	R-DME-162582

	0.001011002	ED - 0010020 ED -	4	400
Glutathione metabolism	0.021811993	FBgn0010039,FBg n0010040,FBgn00 10041,FBgn00100 44	4	480
Ca2+ pathway	0.022205774	FBgn0030011,FBg n0030505,FBgn00 85432	3	R-DME-4086398
Downregulation of ERBB2 signaling	0.025040297	FBgn0003984,FBg n0262081	2	R-DME-8863795
PI3K Cascade	0.028560994	FBgn0016794,FBg n0022800	2	R-DME-109704
Formation of the beta-catenin:TCF transactivating complex	0.028560994	FBgn0031885,FBg n0085432	2	R-DME-201722
RAF/MAP kinase cascade	0.031215951	FBgn0003984,FBg n0022800,FBgn02 62081,FBgn02657 78	4	R-DME-5673001
IRS-mediated signalling	0.032266979	FBgn0016794,FBg n0022800	2	R-DME-112399
IRS-related events triggered by IGF1R	0.032266979	FBgn0016794,FBg n0022800	2	R-DME-2428928
Surfactant metabolism	0.032266979	FBgn0032223,FBg n0263747	2	R-DME-5683826
MAPK1/MAPK3 signaling	0.032726615	FBgn0003984,FBg n0022800,FBgn02 62081,FBgn02657 78	4	R-DME-5684996
Transcriptional regulation of white adipocyte differentiation	0.035453374	FBgn0000568	1	R-DME-381340
TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition)	0.03615065	FBgn0000163,FBg n0031461	2	R-DME-2173791
Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R)	0.03615065	FBgn0016794,FBg n0022800	2	R-DME-2404192
IGF1R signaling cascade	0.03615065	FBgn0016794,FBg n0022800	2	R-DME-2428924
Non-integrin membrane-ECM interactions	0.040204616	FBgn0031461,FBg n0053531	2	R-DME-3000171
Insulin receptor signalling cascade	0.040204616	FBgn0016794,FBg n0022800	2	R-DME-74751
MAPK family signaling cascades	0.042682581	FBgn0003984,FBg n0022800,FBgn02 62081,FBgn02657 78	4	R-DME-5683057
Presynaptic function of Kainate	0.044421685	FBgn0030011,FBg n0039927	2	R-DME-500657

receptors				
Signaling by FGFR4	0.048794866	FBgn0014388,FBg n0016794	2	R-DME-5654743

Table 2.4f: Pathway enrichment for hits differentially upregulated in control females relative to20HE males

p-value	Hits	Gene matche s	Pathway ID
0.00708 5029	FBgn0003257,FBgn0011211,FBgn0011703,FBgn0011704,FBgn0011 768,FBgn0014028,FBgn0015277,FBgn0025352,FBgn0025373,FBgn 0025592,FBgn0028375,FBgn0029823,FBgn0030966,FBgn0031630,F Bgn0031703,FBgn0032350,FBgn0033216,FBgn0033377,FBgn00346 29,FBgn0034988,FBgn0035383,FBgn0035619,FBgn0036381,FBgn0 036575,FBgn0037513,FBgn0037534,FBgn0037846,FBgn0037880,F Bgn0037958,FBgn0038074,FBgn0038407,FBgn0038467,FBgn00385 42,FBgn0038742,FBgn0039470,FBgn0039472,FBgn0039475,FBgn0 039476,FBgn0040069,FBgn0050502,FBgn0052750,FBgn0053116,F Bgn0283680	43	R-DME- 1430728
0.01592 2058	FBgn0003257,FBgn0011211,FBgn0011703,FBgn0011704,FBgn0011 768,FBgn0014028,FBgn0015277,FBgn0015572,FBgn0024957,FBgn 0025352,FBgn0025373,FBgn0025592,FBgn0029823,FBgn0029906,F Bgn0031703,FBgn0031713,FBgn0032350,FBgn0033377,FBgn00346 29,FBgn0035619,FBgn0037356,FBgn0037513,FBgn0037958,FBgn0 038467,FBgn0038613,FBgn0038742,FBgn0039094,FBgn0039580,F Bgn0040069,FBgn0053116,FBgn0053138,FBgn0259676,FBgn02836 80	33	1100
0.00180 5804	FBgn0015277,FBgn0025352,FBgn0025373,FBgn0025592,FBgn0031 630,FBgn0031703,FBgn0033216,FBgn0034629,FBgn0035383,FBgn 0035619,FBgn0036381,FBgn0037534,FBgn0037958,FBgn0038407,F Bgn0038742,FBgn0039470,FBgn0039472,FBgn0039475,FBgn00394 76,FBgn0050502,FBgn0053116	21	R-DME- 556833
0.03059 6156	FBgn0011692,FBgn0015553,FBgn0020633,FBgn0025815,FBgn0025 832,FBgn0026143,FBgn0027868,FBgn0029856,FBgn0032244,FBgn 0032929,FBgn0041147,FBgn0259676,FBgn0259791,FBgn0286788	14	R-DME- 1640170
0.03125 1957	FBgn0011692,FBgn0020633,FBgn0025815,FBgn0025832,FBgn0026 143,FBgn0027868,FBgn0029856,FBgn0032244,FBgn0032929,FBgn 0041147,FBgn0259676,FBgn0259791,FBgn0286788	13	R-DME- 69278
0.00180 4544	FBgn0015277,FBgn0025352,FBgn0033216,FBgn0035619,FBgn0036 381,FBgn0039470,FBgn0039472,FBgn0039475,FBgn0039476,FBgn 0053116	10	R-DME- 1483257
0.00328 9324	FBgn0020633,FBgn0025815,FBgn0025832,FBgn0026143,FBgn0029 856,FBgn0032244,FBgn0032929,FBgn0041147,FBgn0259676,FBgn 0286788	10	R-DME- 69306
0.04482 8241	FBgn0013548,FBgn0015553,FBgn0025832,FBgn0029856,FBgn0032 244,FBgn0033549,FBgn0037345,FBgn0040078,FBgn0261850,FBgn 0267727	10	R-DME- 73894
0.00063 4202	FBgn0025352,FBgn0033216,FBgn0035619,FBgn0036381,FBgn0039 470,FBgn0039472,FBgn0039475,FBgn0039476,FBgn0053116	9	R-DME- 1483206
0.01131 9054	FBgn0015553,FBgn0020633,FBgn0025815,FBgn0026143,FBgn0029 856,FBgn0032244,FBgn0032929,FBgn0041147,FBgn0286788	9	R-DME- 69620
0.00822 3325	FBgn0025352,FBgn0031703,FBgn0033216,FBgn0034629,FBgn0035 383,FBgn0037534,FBgn0038407,FBgn0038742	8	R-DME- 8978868
0.01522 2878	FBgn0020633,FBgn0025815,FBgn0025832,FBgn0029856,FBgn0032 244,FBgn0041147,FBgn0259676,FBgn0286788	8	R-DME- 69239
0.02764	FBgn0020633,FBgn0025815,FBgn0025832,FBgn0029856,FBgn0032	8	R-DME-

311	244,FBgn0041147,FBgn0259676,FBgn0286788		69242
0.00112 775	FBgn0015553,FBgn0020633,FBgn0025815,FBgn0026143,FBgn0032 244,FBgn0032929,FBgn0286788	7	R-DME- 69481
0.01071 3028	FBgn0020633,FBgn0025815,FBgn0026143,FBgn0029856,FBgn0032 929,FBgn0259676,FBgn0286788	7	R-DME- 69002
0.03771 378	FBgn0020633,FBgn0025815,FBgn0026143,FBgn0029856,FBgn0032 929,FBgn0259676,FBgn0286788	7	R-DME- 69206
0.00063 1673	FBgn0011768,FBgn0025352,FBgn0031703,FBgn0034629,FBgn0035 383,FBgn0038742	6	71
0.00063 1673	FBgn0020633,FBgn0025815,FBgn0026143,FBgn0032929,FBgn0259 676,FBgn0286788	6	R-DME- 68962
0.00079 9516	FBgn0020633,FBgn0025815,FBgn0026143,FBgn0032244,FBgn0032 929,FBgn0286788	6	R-DME- 176187
0.00099 984	FBgn0020633,FBgn0025815,FBgn0025832,FBgn0031252,FBgn0032 244,FBgn0259676	6	3030
0.00971 6104	FBgn0003257,FBgn0011703,FBgn0011704,FBgn0034988,FBgn0037 513,FBgn0038467	6	R-DME- 15869
0.04470 2805	FBgn0003257,FBgn0011703,FBgn0011704,FBgn0020653,FBgn0037 513,FBgn0259676	6	240
0.00859	FBgn0035619,FBgn0039470,FBgn0039472,FBgn0039475,FBgn0039 476	5	R-DME- 1483166
0.03020 9845	FBgn0015553,FBgn0025832,FBgn0032244,FBgn0033549,FBgn0267 727	5	R-DME- 5693532
0.00679 1084	FBgn0039470,FBgn0039472,FBgn0039475,FBgn0039476	4	R-DME- 1482801
0.00841 9111	FBgn0029823,FBgn0032350,FBgn0038074,FBgn0039094	4	260
0.03080 024	FBgn0022700,FBgn0033377,FBgn0034582,FBgn0039580	4	520
0.03926 3616	FBgn0013548,FBgn0029856,FBgn0032244,FBgn0037345	4	R-DME- 73893
0.04394 5631	FBgn0015553,FBgn0025832,FBgn0032244,FBgn0033549	4	R-DME- 5693538
0.04394 5631	FBgn0029856,FBgn0031092,FBgn0033812,FBgn0034629	4	R-DME- 9033241
0.00944 7184	FBgn0025352,FBgn0031703,FBgn0038742	3	R-DME- 77289
0.02031 0018	FBgn0010425,FBgn0011555,FBgn0030954	3	4080
0.02031 0018	FBgn0029856,FBgn0032244,FBgn0037345	3	R-DME- 110312
0.02031 0018	FBgn0029856,FBgn0032244,FBgn0037345	3	R-DME- 5655862
0.02031 0018	FBgn0029856,FBgn0032244,FBgn0037345	3	R-DME- 5656121
0.02497 991	FBgn0025832,FBgn0032244,FBgn0259676	3	R-DME- 69186
0.03589 8487	FBgn0025832,FBgn0032244,FBgn0259676	3	R-DME- 69190
0.03589 8487	FBgn0022700,FBgn0035619,FBgn0261675	3	R-DME- 8963743
0.00217 5169	FBgn0025352,FBgn0038742	2	R-DME- 77350
0.01226 1509	FBgn0025352,FBgn0038742	2	R-DME- 77286

0.01226	FBgn0038135,FBgn0051343	2	R-DME-
1509			983170
0.01981	FBgn0031630,FBgn0033216	2	R-DME-
1617			2187335
0.01981	FBgn0038312,FBgn0038412	2	R-DME-
1617			435354
0.01981	FBgn0038312,FBgn0038412	2	R-DME-
1617			442380
0.02881	FBgn0034988,FBgn0037513	2	R-DME-
3137			73621
0.03911	FBgn0036381,FBgn0053116	2	R-DME-
5641			1483213
0.03911	FBgn0032244,FBgn0259676	2	R-DME-
5641			174411
0.03911	FBgn0032244,FBgn0259676	2	R-DME-
5641			69091
0.03911	FBgn0032244,FBgn0259676	2	R-DME-
5641			69109
0.04679	FBgn0040069	1	780
7212			
0.04679	FBgn0051915	1	R-DME-
7212			1474290
0.04679	FBgn0051915	1	R-DME-
7212			1650814
0.04679	FBgn0038542	1	R-DME-
7212			392023
0.04679	FBgn0028375	1	R-DME-
7212			6806664
0.04679	FBgn0029823	1	R-DME-
7212			71262
0.04679	FBgn0011768	1	R-DME-
7212			71384
0.04679	FBgn0025352	1	R-DME-
7212			77285
0.04679	FBgn0025352	1	R-DME-
7212			77310
0.04679	FBgn0038742	1	R-DME-
7212			77352

Table 2.4e: GO enrichment for hits differentially upregulated in 20HE males relative to contr	rol
females	

GO enrichment	p-value	Hits	Gene matches	GO ID
multicellular	0.0032011	FBgn0000152,FBgn0000163,FBgn00	89	GO:00
organismal process		00250,FBgn0000395,FBgn0000451,		32501
		FBgn0000542,FBgn0000547,FBgn00		
		00568,FBgn0000826,FBgn0000928,		
		FBgn0001112,FBgn0001234,FBgn00		
		02566,FBgn0002609,FBgn0002632,		
		FBgn0002633,FBgn0002643,FBgn00		
		02732,FBgn0003984,FBgn0004893,		
		FBgn0010238,FBgn0010501,FBgn00		
		10768,FBgn0011674,FBgn0014073,		
		FBgn0014388,FBgn0015229,FBgn00		
		15946,FBgn0016794,FBgn0019985,		
		FBgn0020300,FBgn0022800,FBgn00		

response to stimulus	0.00265597	24250,FBgn0024555,FBgn0026263, FBgn0026319,FBgn0027779,FBgn00 28369,FBgn0029082,FBgn0030985, FBgn0031461,FBgn0031853,FBgn00 31885,FBgn0033942,FBgn0033985,FBgn00 34098,FBgn0034199,FBgn0034262, FBgn0035461,FBgn0035513,FBgn00 35626,FBgn0036282,FBgn0036518, FBgn0036666,FBgn0036732,FBgn00 36801,FBgn0037802,FBgn0038168, FBgn0038832,FBgn0039469,FBgn00 39509,FBgn0040068,FBgn0040532, FBgn0041160,FBgn0041241,FBgn00 41246,FBgn0045474,FBgn0045842, FBgn0045327,FBgn0052133,FBgn00 52179,FBgn0052354,FBgn0053531,FBgn00 5430,FBgn0085432,FBgn0259683, FBgn002603841,FBgn0265778,FBgn02 66084,FBgn0267390,FBgn0283451, FBgn000250,FBgn000395,FBgn00 00547,FBgn000568,FBgn0001229, FBgn0001234,FBgn002566,FBgn00 02632,FBgn0002643,FBgn002732, FBgn001234,FBgn0011674,FBgn00 4580,FBgn00028432,FBgn002732, FBgn001234,FBgn002566,FBgn00 02632,FBgn000243,FBgn002300, FBgn001234,FBgn0014073, FBgn001234,FBgn0014073, FBgn0014388,FBgn0014073, FBgn0014388,FBgn0014073, FBgn0014388,FBgn0014073, FBgn0014388,FBgn0014073, FBgn0014388,FBgn0014073, FBgn0014388,FBgn0014073, FBgn0014388,FBgn0014073, FBgn0014388,FBgn0014073, FBgn0014388,FBgn0014073, FBgn0014388,FBgn0014073, FBgn0014388,FBgn0014073, FBgn0014388,FBgn0025625, FBgn0022800,FBgn0023416,FBgn00 30505,FBgn003416,FBgn00 30505,FBgn003404,FBgn003984,FBgn00 30505,FBgn0031016,FBgn003773, FBgn003385,FBgn0033980,FBgn00 33985,FBgn003404,FBgn0033773, FBgn0034262,FBgn0033980,FBgn00 33985,FBgn003404,FBgn0033773, FBgn0034262,FBgn0033980,FBgn00 33985,FBgn003404,FBgn0033773, FBgn0034262,FBgn0033980,FBgn00 33985,FBgn0034199,FBgn0033773, FBgn0034262,FBgn0033980,FBgn00 33985,FBgn003404,FBgn0033773, FBgn0034262,FBgn0033980,FBgn00 33985,FBgn0034199,FBgn0033773, FBgn0034262,FBgn0033980,FBgn00 33985,FBgn0034199,FBgn0033773, FBgn0034262,FBgn0033980,FBgn00 33985,FBgn0034199,FBgn0033773, FBgn0034262,FBgn0033980,FBgn00 3399,FBgn0053527,FBgn0033980,FBgn00 3399,FBgn0053527,FBgn0033980,FBgn00 3399,FBgn0053527,FBgn003373, FBgn0052638,FBgn0052706,FBgn00 3399,FBgn0053527,FBgn0033731, FBgn0052638,FBgn0052706,FBgn00 3399,FBgn0053527,FBgn005	80	GO:00 50896
developmental	0.01555884	59683,FBgn0261794,FBgn0262081, FBgn0265778,FBgn0266084,FBgn02 67390,FBgn0283451,FBgn0283499 FBgn0000163,FBgn0000250,FBgn00	78	GO:00
process		00395,FBgn0000451,FBgn0000542,		32502

		FBgn0000547,FBgn0000568,FBgn00		
		00826,FBgn0000928,FBgn0001112,		
		FBgn0001234,FBgn0002566,FBgn00		
		02609,FBgn0002632,FBgn0002633,		
		FBgn0002643,FBgn0002732,FBgn00		
		03984,FBgn0004893,FBgn0010238,		
		FBgn0010501,FBgn0010768,FBgn00		
		11674,FBgn0014073,FBgn0014388,		
		FBgn0015229,FBgn0015946,FBgn00		
		16794,FBgn0022800,FBgn0024250,		
		FBgn0024555,FBgn0026263,FBgn00		
		26319,FBgn0027779,FBgn0028369,		
		FBgn0029082,FBgn0031461,FBgn00		
		31853,FBgn0031885,FBgn0032223,		
		FBgn0033773,FBgn0033942,FBgn00		
		33985,FBgn0034098,FBgn0034199,		
		FBgn0034262,FBgn0035461,FBgn00		
		35513,FBgn0035626,FBgn0036282,		
		FBgn0036518,FBgn0036666,FBgn00		
		36732,FBgn0036801,FBgn0037802,		
		FBgn0038168,FBgn0039048,FBgn00		
		39469,FBgn0040068,FBgn0040532,		
		FBgn0041160,FBgn0045842,FBgn00		
		52133,FBgn0052179,FBgn0052354,		
		FBgn0052364,FBgn0053531,FBgn00		
		85430,FBgn0085432,FBgn0261245,		
		FBgn0262081,FBgn0265778,FBgn02		
		66084,FBgn0267390,FBgn0283451,		
		FBgn0283499,FBgn0286203,FBgn02		
		87185		
anatomical	0.00650427	FBgn0000163,FBgn0000250,FBgn00	76	GO:00
structure		00395,FBgn0000451,FBgn0000542,		48856
development		FBgn0000547,FBgn0000568,FBgn00		
		00826,FBgn0000928,FBgn0001112,		
		FBgn0001234,FBgn0002566,FBgn00		
		02609,FBgn0002632,FBgn0002633,		
		FBgn0002643,FBgn0002732,FBgn00		
		03984,FBgn0004893,FBgn0010238,		
		FBgn0010501,FBgn0010768,FBgn00		
		11674,FBgn0014073,FBgn0014388,		
		FBgn0015229,FBgn0015946,FBgn00		
		16794,FBgn0022800,FBgn0024250,		
		FBgn0024555,FBgn0026263,FBgn00		
		26319,FBgn0027779,FBgn0028369,		
		FBgn0029082,FBgn0031461,FBgn00		
		31853,FBgn0031885,FBgn0033773,		
		FBgn0033942,FBgn0033985,FBgn00		
		34098,FBgn0034262,FBgn0035461,		
		FBgn0035513,FBgn0035626,FBgn00		
		36282,FBgn0036518,FBgn0036666,		
		FBgn0036732,FBgn0036801,FBgn00		
		37802,FBgn0038168,FBgn0039048,		
		$1/12 \approx 0.0201460 \text{ ED} \approx 0.010060 \text{ ED} \approx 0.01000000000000000000000000000000000$		
		FBgn0039469,FBgn0040068,FBgn00		
		40532,FBgn0041160,FBgn0045842,		
		40532,FBgn0041160,FBgn0045842, FBgn0052133,FBgn0052179,FBgn00		
		40532,FBgn0041160,FBgn0045842,		

		61245,FBgn0262081,FBgn0265778, FBgn0266084,FBgn0267390,FBgn02 83451,FBgn0283499,FBgn0286203, FBgn0287185		
multicellular organism development	0.00675677	FBgn0000163,FBgn0000250,FBgn00 00395,FBgn0000451,FBgn0000542, FBgn0000547,FBgn0000568,FBgn00 00826,FBgn0001112,FBgn0002566, FBgn0002609,FBgn0002632,FBgn00 02633,FBgn0002643,FBgn0002732, FBgn0003984,FBgn0004893,FBgn00 10238,FBgn0010501,FBgn0010768, FBgn0011674,FBgn0014073,FBgn00 14388,FBgn0015229,FBgn0015946, FBgn0016794,FBgn0022800,FBgn00 24250,FBgn0024555,FBgn0026263, FBgn0026319,FBgn0027779,FBgn00 28369,FBgn0029082,FBgn0031461, FBgn0031853,FBgn0031885,FBgn00 33942,FBgn003985,FBgn0034098, FBgn0034262,FBgn0035461,FBgn00 35513,FBgn0036282,FBgn0036518, FBgn0036666,FBgn0036732,FBgn00 36801,FBgn0037802,FBgn0038168, FBgn0039469,FBgn0040068,FBgn00 40532,FBgn0041160,FBgn0045842, FBgn0052133,FBgn0052179,FBgn00 52354,FBgn0053531,FBgn0085430, FBgn0085432,FBgn026084,FBgn02 65778,FBgn0266084,FBgn0267390, FBgn0283451,FBgn0283499,FBgn02 86203,FBgn0287185	69	GO:00 07275
cell communication	0.00251377	FBgn0000250,FBgn0000395,FBgn00 00547,FBgn0000568,FBgn0001234, FBgn0002566,FBgn0002632,FBgn00 02643,FBgn0002732,FBgn0002939, FBgn0003984,FBgn0004580,FBgn00 10501,FBgn0013973,FBgn0014009, FBgn0014073,FBgn0014388,FBgn00 15946,FBgn0016794,FBgn0019985, FBgn0022800,FBgn0023416,FBgn00 24250,FBgn0025625,FBgn0026319, FBgn0029082,FBgn0030011,FBgn00 30286,FBgn0030505,FBgn0031016, FBgn0031461,FBgn0031885,FBgn00 33773,FBgn0033885,FBgn0033985, FBgn0034199,FBgn0034200,FBgn00 34262,FBgn0034647,FBgn0035626, FBgn0036518,FBgn0036732,FBgn00 37007,FBgn0037163,FBgn0039927, FBgn0040068,FBgn0052179,FBgn00 52638,FBgn0053527,FBgn0053531, FBgn0085432,FBgn0262081,FBgn02 65778,FBgn0267390,FBgn0283499	55	GO:00 07154
signaling	0.00223074	FBgn0000250,FBgn0000395,FBgn00 00547,FBgn0000568,FBgn0001234, FBgn0002632,FBgn0002643,FBgn00	54	GO:00 23052

		02732,FBgn0002939,FBgn0003984, FBgn0004580,FBgn0010501,FBgn00 13973,FBgn0014009,FBgn0014073, FBgn0014388,FBgn0015946,FBgn00 16794,FBgn0019985,FBgn0022800, FBgn0023416,FBgn0024250,FBgn00 25625,FBgn0026319,FBgn0029082, FBgn0030011,FBgn0030286,FBgn00 30505,FBgn0031016,FBgn0031461, FBgn0031885,FBgn0033773,FBgn00 33885,FBgn0033985,FBgn0034169, FBgn0034200,FBgn0034262,FBgn00 34647,FBgn0035626,FBgn0036518, FBgn0036732,FBgn0037007,FBgn00 37163,FBgn0039927,FBgn0040068, FBgn0052179,FBgn0052638,FBgn00 53527,FBgn0053531,FBgn0085432, FBgn0262081,FBgn0265778,FBgn02		
cellular response to stimulus	0.00087659	67390,FBgn0283499 FBgn0000250,FBgn0000395,FBgn00 00568,FBgn0001229,FBgn0001234, FBgn0002566,FBgn0002643,FBgn00 02939,FBgn0003984,FBgn0004832, FBgn0010501,FBgn0013973,FBgn00 14009,FBgn0014073,FBgn0014388, FBgn0015946,FBgn0016794,FBgn00 19985,FBgn0022800,FBgn0023416, FBgn0024250,FBgn0024555,FBgn00 25625,FBgn0026319,FBgn0026777, FBgn0029825,FBgn0030011,FBgn00 30286,FBgn0031016,FBgn0031461, FBgn0031885,FBgn0033132,FBgn00 33885,FBgn0033985,FBgn0034199, FBgn0034200,FBgn0034262,FBgn00 35626,FBgn0036518,FBgn0036732, FBgn0037007,FBgn0037163,FBgn00 40068,FBgn0052179,FBgn0052638, FBgn0053527,FBgn0053531,FBgn00 85432,FBgn0261794,FBgn0265778, FBgn0267390,FBgn0283451,FBgn02	53	GO:00 51716
cellular developmental process	0.01542028	83499 FBgn0000163,FBgn0000250,FBgn00 00542,FBgn0000547,FBgn0000568, FBgn0000928,FBgn0001234,FBgn00 02609,FBgn0002632,FBgn0002633, FBgn0002643,FBgn0002732,FBgn00 03984,FBgn0010501,FBgn0010768, FBgn0011674,FBgn0014073,FBgn00 14388,FBgn0015946,FBgn0016794, FBgn0024555,FBgn0026319,FBgn00 28369,FBgn0029082,FBgn0031461, FBgn0031853,FBgn0032223,FBgn00 33773,FBgn0033985,FBgn0034098, FBgn0035461,FBgn0035626,FBgn00 36282,FBgn0036518,FBgn0036666, FBgn0038168,FBgn0039048,FBgn00 40068,FBgn0041160,FBgn0045842,	52	GO:00 48869

		FBgn0052179,FBgn0052354,FBgn00 52364,FBgn0085430,FBgn0085432, FBgn0261245,FBgn0262081,FBgn02 65778,FBgn0266084,FBgn0267390, FBgn0283451,FBgn0283499		
cell differentiation	0.01475489	FBgn0000163,FBgn0000250,FBgn00 00542,FBgn0000547,FBgn0000568, FBgn0000928,FBgn0001234,FBgn00 02609,FBgn0002632,FBgn0002633, FBgn0002643,FBgn0002732,FBgn00 03984,FBgn0010501,FBgn0010768, FBgn0011674,FBgn0014073,FBgn00 14388,FBgn0015946,FBgn0016794, FBgn0024555,FBgn0026319,FBgn00 28369,FBgn0029082,FBgn0031461, FBgn0031853,FBgn0032223,FBgn00 33773,FBgn0033985,FBgn0034098, FBgn0035461,FBgn0035626,FBgn00 36282,FBgn0036518,FBgn0036666, FBgn0038168,FBgn0040068,FBgn00 41160,FBgn0045842,FBgn0052179, FBgn0052354,FBgn0052364,FBgn00 85430,FBgn0085432,FBgn0261245, FBgn0262081,FBgn0265778,FBgn02 66084,FBgn0267390,FBgn0283451, FBgn0283499	51	GO:00 30154
signal transduction	0.00080948	FBgn0000250,FBgn0000395,FBgn00 00547,FBgn0000568,FBgn0001234, FBgn0002632,FBgn0002643,FBgn00 02732,FBgn0002939,FBgn0003984, FBgn0013973,FBgn0014009,FBgn00 14073,FBgn0014388,FBgn0015946, FBgn0016794,FBgn0019985,FBgn00 22800,FBgn0023416,FBgn0024250, FBgn0025625,FBgn0026319,FBgn00 29082,FBgn0030011,FBgn0030286, FBgn0031016,FBgn0031461,FBgn00 31885,FBgn0033773,FBgn0033885, FBgn0033985,FBgn0034199,FBgn00 34200,FBgn0034262,FBgn0034647, FBgn0035626,FBgn0036518,FBgn00 36732,FBgn0037007,FBgn0037163, FBgn0040068,FBgn0052179,FBgn00 52638,FBgn0053527,FBgn0053531, FBgn0085432,FBgn0262081,FBgn02 65778,FBgn0267390,FBgn0283499	50	GO:00 07165
multi-organism process	0.02079769	FBgn0000152,FBgn0000163,FBgn00 00250,FBgn0000547,FBgn0000568, FBgn0000826,FBgn0000927,FBgn00 00928,FBgn0001112,FBgn0001234, FBgn0002643,FBgn003984,FBgn00 10501,FBgn0011674,FBgn0014073, FBgn0014388,FBgn0015946,FBgn00 19985,FBgn0026319,FBgn0031853, FBgn0033773,FBgn0033980,FBgn00 34098,FBgn0034199,FBgn0034647, FBgn0035461,FBgn0035626,FBgn00	44	GO:00 51704

		40068,FBgn0040384,FBgn0041246, FBgn0045842,FBgn0046332,FBgn00 52133,FBgn0052179,FBgn0052364, FBgn0052706,FBgn0053329,FBgn00 53527,FBgn0262081,FBgn0265778, FBgn0267390,FBgn0283451,FBgn02 83499,FBgn0283545		
regulation of cell communication	0.01419327	FBgn0000250,FBgn0000395,FBgn00 00547,FBgn0001234,FBgn0002632, FBgn0002732,FBgn0003984,FBgn00 04580,FBgn0010501,FBgn0013973, FBgn0014388,FBgn0016794,FBgn00 19985,FBgn0024250,FBgn0026319, FBgn0029082,FBgn0030286,FBgn00 30505,FBgn0031016,FBgn0031461, FBgn0031885,FBgn0033773,FBgn00 33885,FBgn0033985,FBgn0034199, FBgn0034647,FBgn0035626,FBgn00 39927,FBgn0040068,FBgn0262081, FBgn0283499	31	GO:00 10646
regulation of signaling	0.01419327	FBgn0000250,FBgn0000395,FBgn00 00547,FBgn0001234,FBgn0002632, FBgn0002732,FBgn0003984,FBgn00 04580,FBgn0010501,FBgn0013973, FBgn0014388,FBgn0016794,FBgn00 19985,FBgn0024250,FBgn0026319, FBgn0029082,FBgn0030286,FBgn00 30505,FBgn0031016,FBgn0031461, FBgn0031885,FBgn0033773,FBgn00 33885,FBgn0033985,FBgn0034199, FBgn0034647,FBgn0035626,FBgn00 39927,FBgn0040068,FBgn0262081, FBgn0283499	31	GO:00 23051
cell surface receptor signaling pathway	0.0125462	FBgn0000250,FBgn0000395,FBgn00 00547,FBgn0002632,FBgn0002643, FBgn0002732,FBgn0003984,FBgn00 14073,FBgn0014388,FBgn0016794, FBgn0019985,FBgn0022800,FBgn00 24250,FBgn0025625,FBgn0026319, FBgn0029082,FBgn0031016,FBgn00 31461,FBgn0033985,FBgn0035626, FBgn0040068,FBgn0052179,FBgn00 53531,FBgn0085432,FBgn0283499	25	GO:00 07166
intracellular signal transduction	0.01656247	FBgn0000547,FBgn0001234,FBgn00 03984,FBgn0013973,FBgn0014009, FBgn0014388,FBgn0015946,FBgn00 16794,FBgn0023416,FBgn0025625, FBgn0026319,FBgn0030286,FBgn00 31885,FBgn0033773,FBgn0033885, FBgn0033985,FBgn0034199,FBgn00 34262,FBgn0036518,FBgn0040068, FBgn0262081,FBgn0265778,FBgn02 67390,FBgn0283499	24	GO:00 35556
post-embryonic development	0.02584292	FBgn0000395,FBgn0000547,FBgn00 00568,FBgn0001112,FBgn0002643, FBgn0003984,FBgn0004893,FBgn00 14388,FBgn0015946,FBgn0024250,	24	GO:00 09791

		FBgn0026263,FBgn0026319,FBgn00 28369,FBgn0031461,FBgn0031885, FBgn0034262,FBgn0036518,FBgn00 36732,FBgn0036801,FBgn0085432, FBgn0265778,FBgn0266084,FBgn02 83451,FBgn0287185		
phosphorylation	0.02714477	FBgn0000826,FBgn0001229,FBgn00 01234,FBgn0003984,FBgn0014073, FBgn0014388,FBgn0022800,FBgn00 25625,FBgn0026319,FBgn0031461, FBgn0031885,FBgn0032702,FBgn00 33773,FBgn0033885,FBgn0034199, FBgn0034251,FBgn0040068,FBgn00 46332,FBgn0053531,FBgn0262081, FBgn0265778,FBgn0267390,FBgn02 83499	23	GO:00 16310
morphogenesis of an epithelium	0.04646577	FBgn0000163,FBgn0000395,FBgn00 00542,FBgn0000547,FBgn0002643, FBgn0003984,FBgn0004893,FBgn00 10238,FBgn0014388,FBgn0024250, FBgn0026319,FBgn0029082,FBgn00 31461,FBgn0031885,FBgn0036518, FBgn0036666,FBgn0036801,FBgn00 40068,FBgn0052179,FBgn0085432, FBgn0265778,FBgn0266084	22	GO:00 02009
protein phosphorylation	0.0038016	FBgn0000826,FBgn0001229,FBgn00 01234,FBgn0003984,FBgn0014073, FBgn0014388,FBgn0022800,FBgn00 25625,FBgn0026319,FBgn0031461, FBgn0031885,FBgn0032702,FBgn00 33773,FBgn0034199,FBgn0040068, FBgn0046332,FBgn0053531,FBgn02 62081,FBgn0265778,FBgn0267390, FBgn0283499	21	GO:00 06468
epithelial cell differentiation	0.027283	FBgn0000163,FBgn0000250,FBgn00 00547,FBgn0000928,FBgn0002643, FBgn0003984,FBgn0014073,FBgn00 14388,FBgn0026319,FBgn0029082, FBgn0031461,FBgn0036518,FBgn00 40068,FBgn0052179,FBgn0267390, FBgn0283451,FBgn0283499	17	GO:00 30855
regulation of cell differentiation	0.03410763	FBgn0000250,FBgn0000542,FBgn00 00547,FBgn0002609,FBgn0002633, FBgn0003984,FBgn0014073,FBgn00 14388,FBgn0028369,FBgn0031461, FBgn0033985,FBgn0038168,FBgn00 52179,FBgn0085430,FBgn0265778, FBgn0266084,FBgn0283499	17	GO:00 45595
enzyme linked receptor protein signaling pathway	0.00203711	FBgn0000395,FBgn0000547,FBgn00 03984,FBgn0014073,FBgn0014388, FBgn0016794,FBgn0022800,FBgn00 24250,FBgn0025625,FBgn0031016, FBgn0031461,FBgn0035626,FBgn00 40068,FBgn0052179,FBgn0053531, FBgn0283499	16	GO:00 07167
regulation of catalytic activity	0.02438309	FBgn0014073,FBgn0014388,FBgn00 15946,FBgn0022800,FBgn0026319,	16	GO:00 50790

		FBgn0029082,FBgn0030286,FBgn00 32702,FBgn0035461,FBgn0037772, FBgn0040068,FBgn0040348,FBgn00 53531,FBgn0265778,FBgn0267390, FBgn0283499		
regulation of cell development	0.03754967	FBgn0000542,FBgn0000547,FBgn00 02609,FBgn0002633,FBgn0003984, FBgn0014073,FBgn0014388,FBgn00 31461,FBgn0033985,FBgn0038168, FBgn0052179,FBgn0085430,FBgn02 65778,FBgn0266084,FBgn0283499	15	GO:00 60284
regulation of phosphorylation	0.00721047	FBgn0001234,FBgn0003984,FBgn00 14073,FBgn0014388,FBgn0022800, FBgn0026319,FBgn0031461,FBgn00 31885,FBgn0032702,FBgn0033773, FBgn0034199,FBgn0040068,FBgn00 53531,FBgn0283499	14	GO:00 42325
regulation of phosphate metabolic process	0.01338992	FBgn0001234,FBgn0003984,FBgn00 14073,FBgn0014388,FBgn0022800, FBgn0026319,FBgn0031461,FBgn00 31885,FBgn0032702,FBgn0033773, FBgn0034199,FBgn0040068,FBgn00 53531,FBgn0283499	14	GO:00 19220
regulation of phosphorus metabolic process	0.01338992	FBgn0001234,FBgn0003984,FBgn00 14073,FBgn0014388,FBgn0022800, FBgn0026319,FBgn0031461,FBgn00 31885,FBgn0032702,FBgn0033773, FBgn0034199,FBgn0040068,FBgn00 53531,FBgn0283499	14	GO:00 51174
cell fate commitment	0.01527561	FBgn0000163,FBgn0000547,FBgn00 02632,FBgn0002643,FBgn0002732, FBgn0003984,FBgn0011674,FBgn00 16794,FBgn0024555,FBgn0026319, FBgn0031461,FBgn0032223,FBgn00 85432,FBgn0283451	14	GO:00 45165
cellular response to organic substance	0.04264694	FBgn0000395,FBgn0000568,FBgn00 14388,FBgn0024250,FBgn0025625, FBgn0026319,FBgn0031016,FBgn00 31461,FBgn0034199,FBgn0035626, FBgn0036732,FBgn0052638,FBgn02 83451,FBgn0283499	14	GO:00 71310
transmembrane receptor protein tyrosine kinase signaling pathway	0.00738567	FBgn0000547,FBgn0003984,FBgn00 14073,FBgn0014388,FBgn0016794, FBgn0022800,FBgn0025625,FBgn00 31016,FBgn0035626,FBgn0040068, FBgn0052179,FBgn0053531,FBgn02 83499	13	GO:00 07169
positive regulation of cellular protein metabolic process	0.02486577	FBgn0001229,FBgn0001234,FBgn00 03984,FBgn0015946,FBgn0026319, FBgn0029082,FBgn0031461,FBgn00 31885,FBgn0033773,FBgn0034199, FBgn0035461,FBgn0040068,FBgn02 83499	13	GO:00 32270
positive regulation of protein metabolic process	0.03793025	FBgn0001229,FBgn0001234,FBgn00 03984,FBgn0015946,FBgn0026319, FBgn0029082,FBgn0031461,FBgn00 31885,FBgn0033773,FBgn0034199,	13	GO:00 51247

		FBgn0035461,FBgn0040068,FBgn02 83499		
positive regulation of phosphorylation	0.00021974	FBgn0001234,FBgn0003984,FBgn00 14073,FBgn0022800,FBgn0026319, FBgn0031461,FBgn0031885,FBgn00 33773,FBgn0034199,FBgn0040068, FBgn0053531,FBgn0283499	12	GO:00 42327
positive regulation of phosphorus metabolic process	0.00033108	FBgn0001234,FBgn0003984,FBgn00 14073,FBgn0022800,FBgn0026319, FBgn0031461,FBgn0031885,FBgn00 33773,FBgn0034199,FBgn0040068, FBgn0053531,FBgn0283499	12	GO:00 10562
positive regulation of phosphate metabolic process	0.00033108	FBgn0001234,FBgn0003984,FBgn00 14073,FBgn0022800,FBgn0026319, FBgn0031461,FBgn0031885,FBgn00 33773,FBgn0034199,FBgn0040068, FBgn0053531,FBgn0283499	12	GO:00 45937
positive regulation of catalytic activity	0.00738567	FBgn0014073,FBgn0015946,FBgn00 22800,FBgn0026319,FBgn0029082, FBgn0035461,FBgn0040068,FBgn00 40348,FBgn0053531,FBgn0265778, FBgn0267390,FBgn0283499	12	GO:00 43085
positive regulation of molecular function	0.0266796	FBgn0014073,FBgn0015946,FBgn00 22800,FBgn0026319,FBgn0029082, FBgn0035461,FBgn0040068,FBgn00 40348,FBgn0053531,FBgn0265778, FBgn0267390,FBgn0283499	12	GO:00 44093
embryonic morphogenesis	0.03242536	FBgn0000163,FBgn0000547,FBgn00 02643,FBgn0004893,FBgn0010238, FBgn0026319,FBgn0036518,FBgn00 40068,FBgn0085432,FBgn0265778, FBgn0283499	11	GO:00 48598
regulation of protein phosphorylation	0.035288	FBgn0001234,FBgn0003984,FBgn00 14388,FBgn0026319,FBgn0031461, FBgn0031885,FBgn0032702,FBgn00 33773,FBgn0034199,FBgn0040068, FBgn0283499	11	GO:00 01932
MAPK cascade	0.00413587	FBgn0001234,FBgn0003984,FBgn00 14388,FBgn0026319,FBgn0031885, FBgn0033773,FBgn0034199,FBgn00 40068,FBgn0265778,FBgn0283499	10	GO:00 00165
signal transduction by protein phosphorylation	0.00640013	FBgn0001234,FBgn0003984,FBgn00 14388,FBgn0026319,FBgn0031885, FBgn0033773,FBgn0034199,FBgn00 40068,FBgn0265778,FBgn0283499	10	GO:00 23014
cell adhesion	0.00894071	FBgn0000163,FBgn0000547,FBgn00 10238,FBgn0015229,FBgn0022800, FBgn0028369,FBgn0029082,FBgn00 34199,FBgn0037963,FBgn0266084	10	GO:00 07155
biological adhesion	0.00953063	FBgn0000163,FBgn0000547,FBgn00 10238,FBgn0015229,FBgn0022800, FBgn0028369,FBgn0029082,FBgn00 34199,FBgn0037963,FBgn0266084	10	GO:00 22610
positive regulation of protein modification process	0.01219293	FBgn0001229,FBgn0001234,FBgn00 03984,FBgn0026319,FBgn0031461, FBgn0031885,FBgn0033773,FBgn00 34199,FBgn0040068,FBgn0283499	10	GO:00 31401

positive regulation of intracellular signal transduction	0.01538287	FBgn0000547,FBgn0001234,FBgn00 03984,FBgn0026319,FBgn0031885, FBgn0033773,FBgn0034199,FBgn00 40068, FBgn0262081,FBgn00282400	10	GO:19 02533
positive regulation of cell development	0.0224073	40068,FBgn0262081,FBgn0283499 FBgn0000542,FBgn0002609,FBgn00 03984,FBgn0014073,FBgn0031461, FBgn0033985,FBgn0038168,FBgn00 52179,FBgn0266084,FBgn0283499	10	GO:00 10720
positive regulation of cell differentiation	0.02604027	FBgn0000542,FBgn002609,FBgn00 03984,FBgn0014073,FBgn0031461, FBgn0033985,FBgn0038168,FBgn00 52179,FBgn0266084,FBgn0283499	10	GO:00 45597
cell-cell adhesion	0.00118625	FBgn0000163,FBgn0000547,FBgn00 10238,FBgn0015229,FBgn0022800, FBgn0028369,FBgn0029082,FBgn00 34199,FBgn0037963	9	GO:00 98609
positive regulation of protein phosphorylation	0.00412466	FBgn0001234,FBgn0003984,FBgn00 26319,FBgn0031461,FBgn0031885, FBgn0033773,FBgn0034199,FBgn00 40068,FBgn0283499	9	GO:00 01934
regulation of MAPK cascade	0.00666673	FBgn0001234,FBgn0003984,FBgn00 14388,FBgn0026319,FBgn0031885, FBgn0033773,FBgn0034199,FBgn00 40068,FBgn0283499	9	GO:00 43408
cell-cell adhesion via plasma- membrane adhesion molecules	1.9281E-05	FBgn0000163,FBgn0000547,FBgn00 10238,FBgn0015229,FBgn0022800, FBgn0028369,FBgn0029082,FBgn00 37963	8	GO:00 98742
positive regulation of MAPK cascade	0.00115956	FBgn0001234,FBgn0003984,FBgn00 26319,FBgn0031885,FBgn0033773, FBgn0034199,FBgn0040068,FBgn02 83499	8	GO:00 43410
positive regulation of programmed cell death	0.00387376	FBgn0000542,FBgn0001234,FBgn00 15946,FBgn0026319,FBgn0035461, FBgn0037007,FBgn0262081,FBgn02 83451	8	GO:00 43068
positive regulation of cell death	0.00611912	FBgn0000542,FBgn0001234,FBgn00 15946,FBgn0026319,FBgn0035461, FBgn0037007,FBgn0262081,FBgn02 83451	8	GO:00 10942
response to hormone	0.03226562	FBgn0000568,FBgn0025625,FBgn00 34262,FBgn0035626,FBgn0036732, FBgn0052638,FBgn0283451,FBgn02 83499	8	GO:00 09725
sensory perception of chemical stimulus	0.0045763	FBgn0020300,FBgn0030985,FBgn00 33404,FBgn0041241,FBgn0041246, FBgn0045474,FBgn0259683	7	GO:00 07606
cuticle development	0.0045763	FBgn0000451,FBgn0001112,FBgn00 33942,FBgn0035513,FBgn0039469, FBgn0085432,FBgn0286203	7	GO:00 42335
cell-cell junction organization	0.00907956	FBgn0000163,FBgn0010238,FBgn00 26319,FBgn0028369,FBgn0040068, FBgn0262081,FBgn0265778	7	GO:00 45216
cell junction organization	0.00992108	FBgn0000163,FBgn0010238,FBgn00 26319,FBgn0028369,FBgn0040068, FBgn0262081,FBgn0265778	7	GO:00 34330

modulation of chemical synaptic	0.00992108	FBgn0004580,FBgn0010501,FBgn00 13973,FBgn0019985,FBgn0030505,	7	GO:00 50804
transmission		FBgn0039927,FBgn0262081		
regulation of trans- synaptic signaling	0.00992108	FBgn0004580,FBgn0010501,FBgn00 13973,FBgn0019985,FBgn0030505, FBgn0039927,FBgn0262081	7	GO:00 99177
stem cell proliferation	0.01881843	FBgn0000163,FBgn0002609,FBgn00 11674,FBgn0024555,FBgn0031461, FBgn0035626,FBgn0085432	7	GO:00 72089
stem cell division	0.02327013	FBgn0000163,FBgn0000928,FBgn00 11674,FBgn0024555,FBgn0035626, FBgn0052364,FBgn0283499	7	GO:00 17145
cellular response to hormone stimulus	0.02490298	FBgn0000568,FBgn0025625,FBgn00 35626,FBgn0036732,FBgn0052638, FBgn0283451,FBgn0283499	7	GO:00 32870
positive regulation of hydrolase activity	0.02490298	FBgn0015946,FBgn0029082,FBgn00 35461,FBgn0040068,FBgn0040348, FBgn0265778,FBgn0267390	7	GO:00 51345
regulation of proteolysis	0.04322665	FBgn0001234,FBgn0015946,FBgn00 26777,FBgn0029082,FBgn0034706, FBgn0035461,FBgn0037772	7	GO:00 30162
regulation of kinase activity	0.04568728	FBgn0014073,FBgn0014388,FBgn00 22800,FBgn0026319,FBgn0032702, FBgn0053531,FBgn0283499	7	GO:00 43549
homophilic cell adhesion via plasma membrane adhesion molecules	0.00015927	FBgn0000547,FBgn0010238,FBgn00 22800,FBgn0028369,FBgn0029082, FBgn0037963	6	GO:00 07156
adherens junction organization	0.0011657	FBgn0000163,FBgn0026319,FBgn00 28369,FBgn0040068,FBgn0262081, FBgn0265778	6	GO:00 34332
chitin-based cuticle development	0.00346874	FBgn0001112,FBgn0033942,FBgn00 35513,FBgn0039469,FBgn0085432, FBgn0286203	6	GO:00 40003
cellular response to abiotic stimulus	0.00577872	FBgn0002939,FBgn0004832,FBgn00 14073,FBgn0015946,FBgn0033132, FBgn0261794	6	GO:00 71214
cellular response to environmental stimulus	0.00577872	FBgn0002939,FBgn0004832,FBgn00 14073,FBgn0015946,FBgn0033132, FBgn0261794	6	GO:01 04004
positive regulation of cell population proliferation	0.014778	FBgn0002609,FBgn0003984,FBgn00 31461,FBgn0035626,FBgn0052179, FBgn0283499	6	GO:00 08284
striated muscle cell differentiation	0.014778	FBgn0014388,FBgn0028369,FBgn00 29082,FBgn0040068,FBgn0261245, FBgn0283451	6	GO:00 51146
muscle cell differentiation	0.02088399	FBgn0014388,FBgn0028369,FBgn00 29082,FBgn0040068,FBgn0261245, FBgn0283451	6	GO:00 42692
detection of stimulus	0.0377774	FBgn0002939,FBgn0029968,FBgn00 33404,FBgn0037163,FBgn0040849, FBgn0259683	6	GO:00 51606
establishment of planar polarity	0.04036259	FBgn0000163,FBgn0000542,FBgn00 00547,FBgn0014388,FBgn0029082, FBgn0052179	6	GO:00 01736
morphogenesis of a	0.04036259	FBgn0000163,FBgn0000542,FBgn00	6	GO:00

polarized epithelium		00547,FBgn0014388,FBgn0029082, FBgn0052179		01738
establishment of tissue polarity	0.04036259	FBgn0000163,FBgn0000542,FBgn00 00547,FBgn0014388,FBgn0029082, FBgn0052179	6	GO:00 07164
establishment of ommatidial planar polarity	0.01299446	FBgn0000542,FBgn0000547,FBgn00 14388,FBgn0029082,FBgn0052179	5	GO:00 42067
phenol-containing compound metabolic process	0.0180364	FBgn0015946,FBgn0016013,FBgn00 33885,FBgn0037153,FBgn0040068	5	GO:00 18958
urogenital system development	0.02422652	FBgn0000163,FBgn0011674,FBgn00 24250,FBgn0028369,FBgn0029082	5	GO:00 01655
renal system development	0.02422652	FBgn0000163,FBgn0011674,FBgn00 24250,FBgn0028369,FBgn0029082	5	GO:00 72001
gastrulation	0.0290305	FBgn0000163,FBgn0002643,FBgn00 26319,FBgn0036518,FBgn0085432	5	GO:00 07369
cell fate specification	0.04034337	FBgn0000547,FBgn0002632,FBgn00 02732,FBgn0003984,FBgn0031461	5	GO:00 01708
positive regulation of apoptotic process	0.04353597	FBgn0001234,FBgn0015946,FBgn00 26319,FBgn0035461,FBgn0037007	5	GO:00 43065
response to osmotic stress	0.00041991	FBgn0015946,FBgn0030505,FBgn00 31885,FBgn0261794	4	GO:00 06970
ommatidial rotation	0.00848941	FBgn0000542,FBgn0000547,FBgn00 14388,FBgn0052179	4	GO:00 16318
syncytium formation by plasma membrane fusion	0.01585731	FBgn0028369,FBgn0029082,FBgn00 40068,FBgn0261245	4	GO:00 00768
syncytium formation	0.01585731	FBgn0028369,FBgn0029082,FBgn00 40068,FBgn0261245	4	GO:00 06949
myoblast fusion	0.01585731	FBgn0028369,FBgn0029082,FBgn00 40068,FBgn0261245	4	GO:00 07520
positive regulation of JNK cascade	0.01585731	FBgn0001234,FBgn0026319,FBgn00 31885,FBgn0034199	4	GO:00 46330
cell-cell fusion	0.01585731	FBgn0028369,FBgn0029082,FBgn00 40068,FBgn0261245	4	GO:01 40253
of stress-activated MAPK cascade	0.01817229	FBgn0001234,FBgn0026319,FBgn00 31885,FBgn0034199	4	GO:00 32874
positive regulation of stress-activated protein kinase signaling cascade	0.01817229	FBgn0001234,FBgn0026319,FBgn00 31885,FBgn0034199	4	GO:00 70304
myotube differentiation	0.02340506	FBgn0028369,FBgn0029082,FBgn00 40068,FBgn0261245	4	GO:00 14902
detection of chemical stimulus	0.02633032	FBgn0029968,FBgn0033404,FBgn00 40849,FBgn0259683	4	GO:00 09593
response to ecdysone	0.03637304	FBgn0000568,FBgn0034262,FBgn00 36732,FBgn0283451	4	GO:00 35075
response to sterol	0.03637304	FBgn0000568,FBgn0034262,FBgn00 36732,FBgn0283451	4	GO:00 36314
response to ketone	0.04014807	FBgn0000568,FBgn0034262,FBgn00 36732,FBgn0283451	4	GO:19 01654
regulation of stem	0.04413795	FBgn0002609,FBgn0031461,FBgn00	4	GO:00

cell proliferation		35626,FBgn0085432		72091
response to salt stress	0.00191883	FBgn0030505,FBgn0031885,FBgn02 61794	3	GO:00 09651
basal protein localization	0.00298069	FBgn0000163,FBgn0011674,FBgn00 24555	3	GO:00 45175
heterophilic cell- cell adhesion via plasma membrane cell adhesion molecules	0.00803979	FBgn0015229,FBgn0028369,FBgn00 29082	3	GO:00 07157
asymmetric protein localization involved in cell fate determination	0.01314246	FBgn0000163,FBgn0011674,FBgn00 26319	3	GO:00 45167
adherens junction assembly	0.01972316	FBgn0000163,FBgn0028369,FBgn02 65778	3	GO:00 34333
execution phase of apoptosis	0.02781216	FBgn0010501,FBgn0015946,FBgn00 28406	3	GO:00 97194
positive regulation of stem cell proliferation	0.02781216	FBgn0002609,FBgn0031461,FBgn00 35626	3	GO:20 00648
positive regulation of endopeptidase activity	0.03740398	FBgn0015946,FBgn0029082,FBgn00 35461	3	GO:00 10950
positive regulation of peptidase activity	0.03740398	FBgn0015946,FBgn0029082,FBgn00 35461	3	GO:00 10952
sensory perception of taste	0.04275372	FBgn0041241,FBgn0041246,FBgn00 45474	3	GO:00 50909
nucleotide-excision repair, DNA damage recognition	0.00156981	FBgn0004832,FBgn0026777	2	GO:00 00715
mesodermal cell fate determination	0.00458594	FBgn0002643,FBgn0085432	2	GO:00 07500
phenol-containing compound catabolic process	0.00458594	FBgn0016013,FBgn0037153	2	GO:00 19336
symmetric stem cell division	0.00458594	FBgn0035626,FBgn0052364	2	GO:00 98724
response to light intensity	0.00893217	FBgn0033132,FBgn0037163	2	GO:00 09642
cellular response to UV	0.00893217	FBgn0002939,FBgn0004832	2	GO:00 34644
symmetric cell division	0.00893217	FBgn0035626,FBgn0052364	2	GO:00 98725
regulation of striated muscle tissue development	0.01449913	FBgn0028369,FBgn0029082	2	GO:00 16202
cellular response to osmotic stress	0.01449913	FBgn0015946,FBgn0261794	2	GO:00 71470
regulation of muscle tissue development	0.01449913	FBgn0028369,FBgn0029082	2	GO:19 01861
mesodermal cell fate commitment	0.02889002	FBgn0002643,FBgn0085432	2	GO:00 01710

I-kappaB kinase/NF-kappaB signaling	0.02889002	FBgn0026319,FBgn0033985	2	GO:00 07249
calcium-dependent cell-cell adhesion via plasma membrane cell adhesion molecules	0.02889002	FBgn0022800,FBgn0037963	2	GO:00 16339
contractile actin filament bundle assembly	0.02889002	FBgn0000547,FBgn0266084	2	GO:00 30038
dopamine metabolic process	0.02889002	FBgn0033885,FBgn0037153	2	GO:00 42417
mesodermal cell differentiation	0.02889002	FBgn0002643,FBgn0085432	2	GO:00 48333
cyclic purine nucleotide metabolic process	0.02889002	FBgn0013973,FBgn0023416	2	GO:00 52652
RNA 5'-end processing	0.03752647	FBgn0033092,FBgn0052706	2	GO:00 00966
epithelial cell morphogenesis involved in gastrulation	0.03752647	FBgn0026319,FBgn0036518	2	GO:00 03381
catecholamine metabolic process	0.03752647	FBgn0033885,FBgn0037153	2	GO:00 06584
cyclic nucleotide biosynthetic process	0.03752647	FBgn0013973,FBgn0023416	2	GO:00 09190
catechol-containing compound metabolic process	0.03752647	FBgn0033885,FBgn0037153	2	GO:00 09712
peptide hormone secretion	0.03752647	FBgn0034199,FBgn0283499	2	GO:00 30072
ncRNA 5'-end processing	0.03752647	FBgn0033092,FBgn0052706	2	GO:00 34471
regulation of peptide hormone secretion	0.03752647	FBgn0034199,FBgn0283499	2	GO:00 90276
apical constriction involved in gastrulation	0.04700803	FBgn0026319,FBgn0036518	2	GO:00 03384
endosome organization	0.04700803	FBgn0036666,FBgn0267390	2	GO:00 07032
regulation of muscle organ development	0.04700803	FBgn0028369,FBgn0029082	2	GO:00 48634
endonucleolytic cleavage of tetracistronic rRNA transcript (SSU- rRNA, 5.8S rRNA, 2S rRNA, LSU- rRNA)	0.03971774	FBgn0065098	1	GO:00 00483
negative regulation of antifungal	0.03971774	FBgn0000250	1	GO:00 02789

peptide production				
tyrosine catabolic process	0.03971774	FBgn0016013	1	GO:00 06572
hypotonic response	0.03971774	FBgn0261794	1	GO:00 06971
activation of NF- kappaB-inducing kinase activity	0.03971774	FBgn0026319	1	GO:00 07250
cytoplasmic sequestering of NF-kappaB	0.03971774	FBgn0000250	1	GO:00 07253
phototransduction, UV	0.03971774	FBgn0002939	1	GO:00 07604
pupal chitin-based cuticle development	0.03971774	FBgn0001112	1	GO:00 08364
detection of UV	0.03971774	FBgn0002939	1	GO:00 09589
response to high light intensity	0.03971774	FBgn0033132	1	GO:00 09644
regulation of translational initiation by eIF2 alpha phosphorylation	0.03971774	FBgn0001229	1	GO:00 10998
keratinocyte differentiation	0.03971774	FBgn0031461	1	GO:00 30216
positive regulation of homotypic cell- cell adhesion	0.03971774	FBgn0034199	1	GO:00 34112
nuclear speck organization	0.03971774	FBgn0001234	1	GO:00 35063
negative regulation of fusion cell fate specification	0.03971774	FBgn0000547	1	GO:00 35157
angiotensin- activated signaling pathway	0.03971774	FBgn0052638	1	GO:00 38166
hypotonic salinity response	0.03971774	FBgn0261794	1	GO:00 42539
regulation of translational initiation in response to stress	0.03971774	FBgn0001229	1	GO:00 43558
skin development	0.03971774	FBgn0031461	1	GO:00 43588
histone H4-K5 acetylation	0.03971774	FBgn0035624	1	GO:00 43981
histone H3-K14 acetylation	0.03971774	FBgn0035624	1	GO:00 44154
metaphase/anaphas e transition of meiotic cell cycle	0.03971774	FBgn0033773	1	GO:00 44785
regulation of R8 cell differentiation	0.03971774	FBgn0000547	1	GO:00 45679

negative regulation	0.03971774	FBgn0000547	1	GO:00
of R8 cell differentiation				45680
isoprenoid transport	0.03971774	FBgn0002939	1	GO:00 46864
terpenoid transport	0.03971774	FBgn0002939	1	GO:00 46865
tetraterpenoid transport	0.03971774	FBgn0002939	1	GO:00 46866
carotenoid transport	0.03971774	FBgn0002939	1	GO:00 46867
protein heterotetramerizati on	0.03971774	FBgn0283499	1	GO:00 51290
protein heterooligomerizati on	0.03971774	FBgn0283499	1	GO:00 51291
establishment of centrosome localization	0.03971774	FBgn0000163	1	GO:00 51660
garland nephrocyte differentiation	0.03971774	FBgn0028369	1	GO:00 61321
positive regulation of fat cell proliferation	0.03971774	FBgn0283499	1	GO:00 70346
cellular hypotonic response	0.03971774	FBgn0261794	1	GO:00 71476
cellular hypotonic salinity response	0.03971774	FBgn0261794	1	GO:00 71477
cellular response to high light intensity	0.03971774	FBgn0033132	1	GO:00 71486
regulation of actin cytoskeleton organization by cell-cell adhesion	0.03971774	FBgn0000547	1	GO:00 90138
cell-cell adhesion involved in establishment of planar polarity	0.03971774	FBgn0000163	1	GO:00 90250
synaptic signaling by nitric oxide	0.03971774	FBgn0013973	1	GO:00 99163
trans-synaptic signaling by soluble gas	0.03971774	FBgn0013973	1	GO:00 99543
trans-synaptic signaling by nitric oxide	0.03971774	FBgn0013973	1	GO:00 99548
trans-synaptic signaling, modulating synaptic transmission	0.03971774	FBgn0013973	1	GO:00 99550
trans-synaptic signaling by soluble gas, modulating	0.03971774	FBgn0013973	1	GO:00 99554

synaptic				
transmission trans-synaptic signaling by nitric oxide, modulating synaptic transmission	0.03971774	FBgn0013973	1	GO:00 99555
regulation of glutamate receptor clustering	0.03971774	FBgn0014009	1	GO:01 06104
negative regulation of imaginal disc- derived wing vein specification	0.03971774	FBgn0014388	1	GO:01 10109
regulation of long- term synaptic potentiation	0.03971774	FBgn0004580	1	GO:19 00271
positive regulation of NIK/NF-kappaB signaling	0.03971774	FBgn0026319	1	GO:19 01224
negative regulation of meiotic cell cycle phase transition	0.03971774	FBgn0033773	1	GO:19 01994
homogentisate metabolic process	0.03971774	FBgn0016013	1	GO:19 01999
homogentisate catabolic process	0.03971774	FBgn0016013	1	GO:19 02000
regulation of extrinsic apoptotic signaling pathway via death domain receptors	0.03971774	FBgn0033985	1	GO:19 02041
negative regulation of extrinsic apoptotic signaling pathway via death domain receptors	0.03971774	FBgn0033985	1	GO:19 02042
regulation of metaphase/anaphas e transition of meiotic cell cycle	0.03971774	FBgn0033773	1	GO:19 02102
negative regulation of metaphase/anaphas e transition of meiotic cell cycle	0.03971774	FBgn0033773	1	GO:19 02103
regulation of receptor clustering	0.03971774	FBgn0014009	1	GO:19 03909
cellular response to angiotensin	0.03971774	FBgn0052638	1	GO:19 04385
regulation of meiotic chromosome separation	0.03971774	FBgn0033773	1	GO:19 05132
negative regulation	0.03971774	FBgn0033773	1	GO:19
			1	

of meiotic				05133
chromosome				
separation				
negative regulation	0.03971774	FBgn0014388	1	GO:19
of morphogenesis				05331
of an epithelium				~ ~ ~ ~
response to	0.03971774	FBgn0052638	1	GO:19
angiotensin				90776
regulation of ATP- dependent microtubule motor activity, minus-	0.03971774	FBgn0267390	1	GO:20 00577
end-directed				~ ~ ~
positive regulation of ATP-dependent microtubule motor activity, minus- end-directed	0.03971774	FBgn0267390	1	GO:20 00579
negative regulation of extrinsic apoptotic signaling pathway	0.03971774	FBgn0033985	1	GO:20 01237
muscle fiber	0.04700803	FBgn0014388,FBgn0283451	GO:0048747	1
development	0.01700000		22.0010/11	
negative regulation of synaptic	0.04700803	FBgn0010501,FBgn0030505	GO:0050805	
transmission	0.04007654	ED - 0000579 ED - 0025725 ED - 00	CO-0071405	
cellular response to endogenous stimulus	0.04807654	FBgn0000568,FBgn0025625,FBgn00 31461,FBgn0034199,FBgn0035626, FBgn0036732,FBgn0052638,FBgn02 83451,FBgn0283499	GO:0071495	
regulation of endopeptidase activity	0.04834249	FBgn0015946,FBgn0029082,FBgn00 35461,FBgn0037772	GO:0052548	
cell population proliferation	0.04844707	FBgn0000163,FBgn0002609,FBgn00 03984,FBgn0011674,FBgn0024555, FBgn0031461,FBgn0031885,FBgn00 35626,FBgn0051111,FBgn0052179, FBgn0085432,FBgn0262081,FBgn02 83499	GO:0008283	
negative regulation of epidermal growth factor receptor signaling pathway	0.04846444	FBgn0000547,FBgn0014388,FBgn00 31016,FBgn0040068	GO:0042059	
regulation of ERK1 and ERK2 cascade	0.04846444	FBgn0003984,FBgn0014388,FBgn00 40068	GO:0070372	
cellular response to light stimulus	0.04846444	FBgn0002939,FBgn0004832,FBgn00 33132	GO:0071482	
negative regulation of ERBB signaling	0.04846444	FBgn0000547,FBgn0014388,FBgn00 31016,FBgn0040068	GO:1901185	

GO	р-	Hits	Gene	GO ID
----	----	------	------	-------

enrichmen t	value		matches	
enrichmen t metabolic process	value 0.0309 9917	FBgn0001150,FBgn0002441,FBgn0003257,FBgn0010278 ,FBgn0011704,FBgn0011211,FBgn0011555,FBgn001170 3,FBgn0015075,FBgn0015277,FBgn0015553,FBgn0020 633,FBgn0020653,FBgn002906,FBgn0022700,FBgn002 4321,FBgn002653,FBgn0025352,FBgn0025373,FBgn002 5592,FBgn0025815,FBgn0025352,FBgn0025079,FBgn0 026143,FBgn0026411,FBgn0027791,FBgn0027794,FBgn 0027868,FBgn0028375,FBgn0028962,FBgn0029906,FB gn0030081,FBgn0030136,FBgn0030966,FBgn0031030,F Bgn0031092,FBgn0031145,FBgn0031182,FBgn00310349, FBgn0031252,FBgn0031145,FBgn0031653,FBgn0031703 ,FBgn0031252,FBgn0031875,FBgn003196,FBgn0031703 ,FBgn0032244,FBgn0031875,FBgn0031996,FBgn0031703 ,FBgn0032244,FBgn0033079,FBgn0033187,FBgn0033 235,FBgn0033737,FBgn0033431,FBgn0034629,FBgn00 34177,FBgn003422,FBgn0034582,FBgn0034629,FBgn0 34177,FBgn0034937,FBgn003488,FBgn0034629,FBgn0 34177,FBgn0034937,FBgn003565,FBgn003506,FBgn 0035718,FBgn0035619,FBgn0035887,FBgn0035001,FB gn0037073,FBgn0037301,FBgn0037338,FBgn0035901,FB gn0037678,FBgn0037371,FBgn0037848,FBgn0035901,FB gn0037678,FBgn003781,FBgn0037848,FBgn0037073, FBgn0037958,FBgn003796,FBgn0037848,FBgn0037073, FBgn0037958,FBgn003796,FBgn003807,FBgn00380 74,FBgn0037678,FBgn0037683,FBgn003807,FBgn00380 74,FBgn0037678,FBgn0037683,FBgn003807,FBgn00380 74,FBgn0037678,FBgn003796,FBgn003807,FBgn00380 74,FBgn0037678,FBgn003796,FBgn003807,FBgn00380 74,FBgn0039094,FBgn003796,FBgn003807,FBgn00380 74,FBgn0039094,FBgn0039099,FBgn0039102,FBgn00 39156,FBgn0039094,FBgn0039099,FBgn0039102,FBgn00 39156,FBgn0039094,FBgn0039099,FBgn0039102,FBgn00 39156,FBgn0039094,FBgn0039099,FBgn0039102,FBgn00 39156,FBgn0039175,FBgn0039189,FBgn0039102,FBgn00 39156,FBgn0039175,FBgn0039189,FBgn0039102,FBgn00 39156,FBgn0039175,FBgn0039189,FBgn0039102,FBgn00 39156,FBgn0039175,FBgn0039189,FBgn0039102,FBgn00 39156,FBgn0039094,FBgn0039189,FBgn0039102,FBgn00 39156,FBgn0039094,FBgn0039189,FBgn0039102,FBgn00 39156,FBgn0039175,FBgn0039189,FBgn0039102,FBgn00 39156,FBgn0039094,FBgn0031469,FBgn0053143 ,FBgn0053460,FBgn00511669,FBgn0053171,FBgn0053143 ,FBgn0053460,FBgn0051469,FBgn0053171,FBgn005	matches	GO:0008 152
organic substance metabolic process	0.0383 5981	65140,FBgn0266420,FBgn0267408,FBgn0267824,FBgn0 283525,FBgn0283680,FBgn0284256,FBgn0286788 FBgn0001150,FBgn0002441,FBgn0003257,FBgn0010278 ,FBgn0010425,FBgn0011211,FBgn0011555,FBgn001170 3,FBgn0011704,FBgn0011768,FBgn0011834,FBgn00150 75,FBgn0015277,FBgn0015553,FBgn0020633,FBgn0020 906,FBgn0022700,FBgn0024321,FBgn0024957,FBgn002 5352,FBgn0025373,FBgn0025592,FBgn0025815,FBgn00 25832,FBgn0026079,FBgn0026143,FBgn0026411,FBgn0 027791,FBgn0027794,FBgn0027868,FBgn0028375,FBgn 0028962,FBgn0029823,FBgn0029827,FBgn0029856,FBg n0029906,FBgn0030081,FBgn0030136,FBgn0030966,FB	161	GO:0071 704

		Bgn0031252,FBgn0031381,FBgn0031653,FBgn0031703, FBgn0031713,FBgn0031875,FBgn0031996,FBgn0031999 FB an 0022244, FB an 0022250, FB an 0022424, FB an 0022278		
		,FBgn0032244,FBgn0032350,FBgn0032424,FBgn003278 1,FBgn0032929,FBgn0033187,FBgn0033235,FBgn00333		
		77,FBgn0033431,FBgn0033454,FBgn0033549,FBgn0033 733,FBgn0033774,FBgn0034052,FBgn0034177,FBgn003		
		4422,FBgn0034582,FBgn0034629,FBgn0034817,FBgn00		
		34937,FBgn0034988,FBgn0035006,FBgn0035383,FBgn0 035665,FBgn0035666,FBgn0035718,FBgn0035886,FBgn		
		0035887,FBgn0035901,FBgn0036321,FBgn0036738,FBg		
		n0036831,FBgn0036948,FBgn0037073,FBgn0037301,FB		
		gn0037338,FBgn0037345,FBgn0037356,FBgn0037371,F Bgn0037513,FBgn0037534,FBgn0037678,FBgn0037814,		
		FBgn0037815,FBgn0037958,FBgn0037996,FBgn0038067		
		,FBgn0038074,FBgn0038135,FBgn0038467,FBgn003848		
		2,FBgn0038485,FBgn0038597,FBgn0038632,FBgn00387 42,FBgn0039052,FBgn0039094,FBgn0039102,FBgn0039		
		156,FBgn0039175,FBgn0039189,FBgn0039470,FBgn003		
		9472,FBgn0039475,FBgn0039476,FBgn0039580,FBgn00		
		39687,FBgn0039777,FBgn0039778,FBgn0040060,FBgn0 040078,FBgn0040290,FBgn0040337,FBgn0040959,FBgn		
		040078,FBgn0040229,FBgn0040537,FBgn0040537,FBgn0040537,FBgn0040537,FBgn00405085,FBg		
		n0050090,FBgn0050371,FBgn0050502,FBgn0051198,FB		
		gn0051265,FBgn0051266,FBgn0051343,FBgn0051469,F Bgn0052412,FBgn0053080,FBgn0053116,FBgn0053127,		
		FBgn0053138,FBgn0053460,FBgn0086708,FBgn0086712		
		,FBgn0243511,FBgn0250815,FBgn0259676,FBgn025979		
		1,FBgn0261479,FBgn0261681,FBgn0261850,FBgn02631 33,FBgn0265140,FBgn0266420,FBgn0267408,FBgn0267		
		824,FBgn0283525,FBgn0283680,FBgn0284256,FBgn028		
		6788		
small molecule	1.2133 E-05	FBgn0003257,FBgn0011211,FBgn0011703,FBgn0011704 ,FBgn0011768,FBgn0024957,FBgn0025352,FBgn002559	40	GO:0044 281
metabolic	E-05	2,FBgn0028375,FBgn0028962,FBgn0029823,FBgn00309		201
process		66,FBgn0031092,FBgn0031381,FBgn0031703,FBgn0031		
		713,FBgn0032350,FBgn0032424,FBgn0033733,FBgn003 4177,FBgn0034629,FBgn0034988,FBgn0035006,FBgn00		
		35383,FBgn0037356,FBgn0037513,FBgn0037534,FBgn0		
		037996,FBgn0038074,FBgn0038467,FBgn0038742,FBgn		
		0039052,FBgn0039094,FBgn0039156,FBgn0039175,FBg		
		n0039580,FBgn0050502,FBgn0086712,FBgn0267408,FB gn0283680		
proteolysis	5.6745	FBgn0010425,FBgn0011555,FBgn0011703,FBgn0011704	40	GO:0006
	E-05	,FBgn0011834,FBgn0020906,FBgn0029827,FBgn002985		508
		6,FBgn0031249,FBgn0031653,FBgn0033235,FBgn00337 74,FBgn0034052,FBgn0034937,FBgn0035665,FBgn0035		
		666,FBgn0035718,FBgn0035886,FBgn0035887,FBgn003		
		6738,FBgn0037678,FBgn0038135,FBgn0038482,FBgn00		
		38485,FBgn0039102,FBgn0039777,FBgn0039778,FBgn0 040060,FBgn0041147,FBgn0050049,FBgn0050090,FBgn		
		0050371,FBgn0051198,FBgn0051265,FBgn0051266,FBg		
		n0051343,FBgn0053127,FBgn0053460,FBgn0250815,FB gn0265140		
organic	0.0388	FBgn0011768,FBgn0022700,FBgn0025352,FBgn0027794	31	GO:1901
substance catabolic	2098	,FBgn0029823,FBgn0029856,FBgn0031092,FBgn003125 2,FBgn0034582,FBgn0034629,FBgn0034937,FBgn00349		575
process		88,FBgn0035383,FBgn0036321,FBgn0036831,FBgn0037		

n003 gn00 Bgn0 25592 27 3170 0350 0037 n003	GO:0006 629
Bgn0 25592 27 3170 0350 0037 n003	
25592 27 3170 0350 0037 n003	
3170 0350 0037 n003	
3170 0350 0037 n003	
0350 0037 n003	629
0037 n003	
n003	
00	
gn00	
29823 25	GO:0006
3235	082
0350	
0037	
n003	
gn00	
29823 25	GO:0043
3235	436
0350	
0037	
29823 24	GO:0019
	752
1768 22	GO:0055
	114
25815 21	GO:0006
	259
1020	
25592 21	GO:0044
3318	255
0353	235
0037	
0037 n005	<u>CO-0055</u>
0037 n005 32435 21	
0037 n005 32435 21 3461	GO:0055 085
0037 n005 32435 21 3461 0378	
0037 n005 32435 21 3461	GO:0055 085
	3235 3235 0350 0037 n003 gn00 19823 25 3235 25 0037 0033 1003 24 0037 24 0037 24 0037 24 0037 24 0037 24 0037 22 0037 22 0035 21 00363 2037 00363 2037 0026 21

homeostati c process	0.0380 6386	FBgn0011204,FBgn0015277,FBgn0020653,FBgn0024957 ,FBgn0029131,FBgn0031030,FBgn0031381,FBgn003167 7,FBgn0032746,FBgn0032946,FBgn0034629,FBgn00353 83,FBgn0037338,FBgn0038074,FBgn0038613,FBgn0050 085,FBgn0050377,FBgn0053542,FBgn0086712,FBgn026 6420	20	GO:0042 592
carbohydra te derivative metabolic process	0.0380 6386	FBgn0003257,FBgn0011211,FBgn0011703,FBgn0011704 ,FBgn0022700,FBgn0025592,FBgn0027791,FBgn002990 6,FBgn0033187,FBgn0033431,FBgn0034582,FBgn00349 88,FBgn0036948,FBgn0038074,FBgn0038467,FBgn0038 632,FBgn0039156,FBgn0039580,FBgn0040959,FBgn026 1681	20	GO:1901 135
cellular response to DNA damage stimulus	0.0018 7823	FBgn0015075,FBgn0015553,FBgn0020633,FBgn0025815 ,FBgn0025832,FBgn0026143,FBgn0027868,FBgn002913 1,FBgn0029588,FBgn0031030,FBgn0031252,FBgn00322 44,FBgn0033549,FBgn0037301,FBgn0037338,FBgn0040 290,FBgn0050085,FBgn0261850	18	GO:0006 974
small molecule biosyntheti c process	0.0001 1852	FBgn0028375,FBgn0029823,FBgn0031381,FBgn0031703 ,FBgn0031713,FBgn0033733,FBgn0034988,FBgn003500 6,FBgn0035383,FBgn0037356,FBgn0037513,FBgn00375 34,FBgn0037996,FBgn0038074,FBgn0039094,FBgn0039 156,FBgn0283680	17	GO:0044 283
drug metabolic process	0.0004 5547	FBgn0011211,FBgn0011768,FBgn0022700,FBgn0024957 ,FBgn0029823,FBgn0034582,FBgn0035383,FBgn003694 8,FBgn0038074,FBgn0038467,FBgn0038632,FBgn00390 94,FBgn0040959,FBgn0261681,FBgn0267408	15	GO:0017 144
fatty acid metabolic process	4.2887 E-06	FBgn0025352,FBgn0031092,FBgn0031703,FBgn0033733 ,FBgn0034629,FBgn0035006,FBgn0035383,FBgn003735 6,FBgn0037534,FBgn0037996,FBgn0038742,FBgn00391 56,FBgn0050502,FBgn0086712	14	GO:0006 631
monocarbo xylic acid metabolic process	0.0002 9901	FBgn0025352,FBgn0031092,FBgn0031703,FBgn0033733 ,FBgn0034629,FBgn0035006,FBgn0035383,FBgn003735 6,FBgn0037534,FBgn0037996,FBgn0038742,FBgn00391 56,FBgn0050502,FBgn0086712	14	GO:0032 787
DNA repair	0.0027 8036	FBgn0015075,FBgn0015553,FBgn0020633,FBgn0025815 ,FBgn0025832,FBgn0026143,FBgn0027868,FBgn003125 2,FBgn0032244,FBgn0033549,FBgn0037301,FBgn00373 38,FBgn0040290,FBgn0261850	14	GO:0006 281
lipid biosyntheti c process	0.0029 862	FBgn0015277,FBgn0025373,FBgn0031381,FBgn0031703 ,FBgn0033187,FBgn0033733,FBgn0035006,FBgn003735 6,FBgn0037534,FBgn0037958,FBgn0037996,FBgn00391 56,FBgn0050502,FBgn0053116	14	GO:0008 610
DNA replication	0.0002 9309	FBgn0011703,FBgn0020633,FBgn0025815,FBgn0026143 ,FBgn0031875,FBgn0032244,FBgn0032929,FBgn003354 9,FBgn0040290,FBgn0050085,FBgn0259676,FBgn02867 88	12	GO:0006 260
organopho sphate biosyntheti c process	0.0178 0335	FBgn0003257,FBgn0011211,FBgn0011703,FBgn0011704 ,FBgn0015277,FBgn0025373,FBgn0025592,FBgn003318 7,FBgn0038467,FBgn0039156,FBgn0053116,FBgn02836 80	12	GO:0090 407
chemical homeostasi s	0.0451 3263	FBgn0011204,FBgn0024957,FBgn0031381,FBgn0031677 ,FBgn0032746,FBgn0032946,FBgn0034629,FBgn003538 3,FBgn0038074,FBgn0038613,FBgn0050377,FBgn00867 12	12	GO:0048 878
lipid catabolic process	0.0003 4632	FBgn0025352,FBgn0031092,FBgn0034629,FBgn0035383 ,FBgn0037958,FBgn0038742,FBgn0039470,FBgn003947 2,FBgn0039475,FBgn0039476,FBgn0086712	11	GO:0016 042

organic acid biosyntheti c process	0.0003 4632	FBgn0029823,FBgn0031703,FBgn0033733,FBgn0035006 ,FBgn0037356,FBgn0037513,FBgn0037534,FBgn003799 6,FBgn0038074,FBgn0039094,FBgn0039156	11	GO:0016 053
carboxylic acid biosyntheti c process	0.0003 4632	FBgn0029823,FBgn0031703,FBgn0033733,FBgn0035006 ,FBgn0037356,FBgn0037513,FBgn0037534,FBgn003799 6,FBgn0038074,FBgn0039094,FBgn0039156	11	GO:0046 394
DNA- dependent DNA replication	0.0004 4532	FBgn0020633,FBgn0025815,FBgn0026143,FBgn0031875 ,FBgn0032244,FBgn0032929,FBgn0033549,FBgn004029 0,FBgn0050085,FBgn0259676,FBgn0286788	11	GO:0006 261
small molecule catabolic process	0.0049 6955	FBgn0011768,FBgn0025352,FBgn0029823,FBgn0031092 ,FBgn0034629,FBgn0034988,FBgn0035383,FBgn003874 2,FBgn0039094,FBgn0086712	10	GO:0044 282
response to drug	0.0287 0394	FBgn0010497,FBgn0029823,FBgn0031030,FBgn0031182 ,FBgn0036381,FBgn0037140,FBgn0037668,FBgn003935 7,FBgn0086782,FBgn0261090	10	GO:0042 493
double- strand break repair	0.0036 555	FBgn0015075,FBgn0020633,FBgn0025815,FBgn0026143 ,FBgn0027868,FBgn0033549,FBgn0037301,FBgn003733 8,FBgn0040290	9	GO:0006 302
DNA recombinat ion	0.0049 2357	FBgn0015553,FBgn0020633,FBgn0025815,FBgn0026143 ,FBgn0027868,FBgn0033549,FBgn0037301,FBgn004029 0,FBgn0261850	9	GO:0006 310
cellular amino acid metabolic process	0.0195 7051	FBgn0028962,FBgn0029823,FBgn0032350,FBgn0034177 ,FBgn0037513,FBgn0038074,FBgn0039052,FBgn003909 4,FBgn0039175	9	GO:0006 520
organic acid catabolic process	0.0051 3011	FBgn0025352,FBgn0029823,FBgn0031092,FBgn0034629 ,FBgn0035383,FBgn0038742,FBgn0039094,FBgn008671 2	8	GO:0016 054
carboxylic acid catabolic process	0.0051 3011	FBgn0025352,FBgn0029823,FBgn0031092,FBgn0034629 ,FBgn0035383,FBgn0038742,FBgn0039094,FBgn008671 2	8	GO:0046 395
fatty acid biosyntheti c process	0.0013 821	FBgn0031703,FBgn0033733,FBgn0035006,FBgn0037356 ,FBgn0037534,FBgn0037996,FBgn0039156	7	GO:0006 633
amino sugar metabolic process	0.0029 6798	FBgn0022700,FBgn0034582,FBgn0036948,FBgn0038632 ,FBgn0039580,FBgn0040959,FBgn0261681	7	GO:0006 040
monocarbo xylic acid biosyntheti c process	0.0029 6798	FBgn0031703,FBgn0033733,FBgn0035006,FBgn0037356 ,FBgn0037534,FBgn0037996,FBgn0039156	7	GO:0072 330
cellular lipid catabolic process	0.0089 1742	FBgn0025352,FBgn0031092,FBgn0034629,FBgn0035383 ,FBgn0037958,FBgn0038742,FBgn0086712	7	GO:0044 242
DNA replication initiation	0.0002 188	FBgn0020633,FBgn0025815,FBgn0026143,FBgn0032929 ,FBgn0050085,FBgn0286788	6	GO:0006 270

fatty acid catabolic	0.0012 6835	FBgn0025352,FBgn0031092,FBgn0034629,FBgn0035383 ,FBgn0038742,FBgn0086712	6	GO:0009 062
process				
monocarbo xylic acid catabolic process	0.0026 97	FBgn0025352,FBgn0031092,FBgn0034629,FBgn0035383 ,FBgn0038742,FBgn0086712	6	GO:0072 329
chitin metabolic process	0.0031 9207	FBgn0022700,FBgn0034582,FBgn0036948,FBgn0038632 ,FBgn0040959,FBgn0261681	6	GO:0006 030
double- strand break repair via homologou s recombinat ion	0.0087 4888	FBgn0020633,FBgn0025815,FBgn0026143,FBgn0027868 ,FBgn0037301,FBgn0040290	6	GO:0000 724
recombinat ional repair	0.0087 4888	FBgn0020633,FBgn0025815,FBgn0026143,FBgn0027868 ,FBgn0037301,FBgn0040290	6	GO:0000 725
glucosamin e- containing compound metabolic process	0.0087 4888	FBgn0022700,FBgn0034582,FBgn0036948,FBgn0038632 ,FBgn0040959,FBgn0261681	6	GO:1901 071
lipid homeostasi	0.0191 5643	FBgn0011204,FBgn0031381,FBgn0034629,FBgn0035383 ,FBgn0038074,FBgn0086712	6	GO:0055 088
aminoglyc an metabolic process	0.0211 2945	FBgn0022700,FBgn0034582,FBgn0036948,FBgn0038632 ,FBgn0040959,FBgn0261681	6	GO:0006 022
lipid modificatio n	0.0388 4904	FBgn0015277,FBgn0025352,FBgn0031092,FBgn0034629 ,FBgn0035383,FBgn0086712	6	GO:0030 258
DNA duplex unwinding	0.0003 0339	FBgn0015075,FBgn0020633,FBgn0025815,FBgn0040290 ,FBgn0261850	5	GO:0032 508
DNA geometric change	0.0004 3786	FBgn0015075,FBgn0020633,FBgn0025815,FBgn0040290 ,FBgn0261850	5	GO:0032 392
drug transport	0.0023 5624	FBgn0010497,FBgn0037140,FBgn0037668,FBgn0039357 ,FBgn0261090	5	GO:0015 893
fatty acid beta- oxidation	0.0029 3478	FBgn0025352,FBgn0031092,FBgn0034629,FBgn0035383 ,FBgn0086712	5	GO:0006 635
fatty acid oxidation	0.0043 8844	FBgn0025352,FBgn0031092,FBgn0034629,FBgn0035383 ,FBgn0086712	5	GO:0019 395
lipid oxidation	0.0052 8033	FBgn0025352,FBgn0031092,FBgn0034629,FBgn0035383 ,FBgn0086712	5	GO:0034 440
maturation of SSU- rRNA	0.0305 2081	FBgn0030081,FBgn0030136,FBgn0033454,FBgn0037073 ,FBgn0038597	5	GO:0030 490
neurotrans mitter	0.0042 325	FBgn0011768,FBgn0029823,FBgn0037513,FBgn0039094	4	GO:0042 133

metabolic process				
DNA amplificati on	0.0054 3906	FBgn0025815,FBgn0026143,FBgn0040290,FBgn0286788	4	GO:0006 277
cellular amino acid biosyntheti c process	0.0272 0496	FBgn0029823,FBgn0037513,FBgn0038074,FBgn0039094	4	GO:0008 652
positive regulation of mitotic cell cycle	0.0272 0496	FBgn0026143,FBgn0032929,FBgn0040290,FBgn0041147	4	GO:0045 931
regulation of DNA metabolic process	0.0395 0524	FBgn0037301,FBgn0037345,FBgn0050085,FBgn0261850	4	GO:0051 052
positive regulation of DNA metabolic process	0.0009 42	FBgn0037301,FBgn0037345,FBgn0261850	3	GO:0051 054
double- strand break repair via break- induced replication	0.0030 7374	FBgn0020633,FBgn0025815,FBgn0026143	3	GO:0000 727
DNA unwinding involved in DNA replication	0.0047 4912	FBgn0020633,FBgn0025815,FBgn0040290	3	GO:0006 268
vitamin metabolic process	0.0068 7967	FBgn0028375,FBgn0029823,FBgn0267408	3	GO:0006 766
neurotrans mitter biosyntheti c process	0.0068 7967	FBgn0029823,FBgn0037513,FBgn0039094	3	GO:0042 136
nucleobase biosyntheti c process	0.0068 7967	FBgn0003257,FBgn0029823,FBgn0037513	3	GO:0046 112
sulfur compound transport	0.0068 7967	FBgn0037668,FBgn0039357,FBgn0039736	3	GO:0072 348
peptide catabolic process	0.0162 3751	FBgn0038135,FBgn0051198,FBgn0051343	3	GO:0043 171
organic hydroxy compound transport	0.0203 9263	FBgn0031381,FBgn0261090,FBgn0261675	3	GO:0015 850
nucleobase metabolic process	0.0250 7592	FBgn0003257,FBgn0029823,FBgn0037513	3	GO:0009 112

ribonucleo side monophos phate metabolic process	0.0250 7592	FBgn0003257,FBgn0034988,FBgn0038467	3	GO:0009 161
eggshell chorion gene amplificati on	0.0302 8677	FBgn0025815,FBgn0040290,FBgn0286788	3	GO:0007 307
nucleoside monophos phate metabolic process	0.0302 8677	FBgn0003257,FBgn0034988,FBgn0038467	3	GO:0009 123
defense response to Gram- positive bacterium	0.0302 8677	FBgn0033593,FBgn0038973,FBgn0039102	3	GO:0050 830
acylglycer ol homeostasi s	0.0302 8677	FBgn0011204,FBgn0035383,FBgn0038074	3	GO:0055 090
triglyceride homeostasi s	0.0302 8677	FBgn0011204,FBgn0035383,FBgn0038074	3	GO:0070 328
inorganic anion transport	0.0360 2086	FBgn0010497,FBgn0037668,FBgn0039736	3	GO:0015 698
nuclear DNA replication	0.0360 2086	FBgn0020633,FBgn0025815,FBgn0026143	3	GO:0033 260
positive regulation of mitotic cell cycle phase transition	0.0422 7057	FBgn0026143,FBgn0040290,FBgn0041147	3	GO:1901 992
detoxificati on	0.0490 2542	FBgn0011768,FBgn0031182,FBgn0038412	3	GO:0098 754
chromatin silencing at rDNA	0.0021 7883	FBgn0034422,FBgn0039687	2	GO:0000 183
positive regulation of DNA recombinat ion	0.0021 7883	FBgn0037301,FBgn0261850	2	GO:0045 911
glycine biosyntheti c process	0.0063 3435	FBgn0029823,FBgn0039094	2	GO:0006 545
deoxyribon ucleotide biosyntheti c process	0.0063 3435	FBgn0011703,FBgn0011704	2	GO:0009 263

response to nicotine	0.0063 3435	FBgn0031030,FBgn0036381	2	GO:0035 094
regulation of mitochondr ial mRNA stability	0.0063 3435	FBgn0027794,FBgn0284256	2	GO:0044 528
protein homotetra merization	0.0063 3435	FBgn0029823,FBgn0038074	2	GO:0051 289
regulation of mitochondr ial transcriptio n	0.0063 3435	FBgn0027794,FBgn0284256	2	GO:1903 108
reactive nitrogen species metabolic process	0.0063 3435	FBgn0011768,FBgn0030966	2	GO:2001 057
pre- replicative complex assembly involved in nuclear cell cycle DNA replication	0.0122 7841	FBgn0020633,FBgn0025815	2	GO:0006 267
deoxyribon ucleotide metabolic process	0.0122 7841	FBgn0011703,FBgn0011704	2	GO:0009 262
pre- replicative complex assembly	0.0122 7841	FBgn0020633,FBgn0025815	2	GO:0036 388
pre- replicative complex assembly involved in cell cycle DNA replication	0.0122 7841	FBgn0020633,FBgn0025815	2	GO:1902 299
chitin catabolic process	0.0198 3602	FBgn0022700,FBgn0034582	2	GO:0006 032
N-terminal protein amino acid acetylation	0.0198 3602	FBgn0039687,FBgn0243511	2	GO:0006 474
sulfate transport	0.0198 3602	FBgn0037668,FBgn0039736	2	GO:0008 272
regulation of mitochondr	0.0198 3602	FBgn0029131,FBgn0029588	2	GO:0046 902

ial membrane				
permeabilit				
y matain	0.0100	$ED_{m}0020822 ED_{m}0028074$		GO:0051
protein tetrameriza tion	0.0198 3602	FBgn0029823,FBgn0038074	2	262
necrotic cell death	0.0198 3602	FBgn0029131,FBgn0029588	2	GO:0070 265
regulation of membrane permeabilit y	0.0198 3602	FBgn0029131,FBgn0029588	2	GO:0090 559
'de novo' pyrimidine nucleobase biosyntheti c process	0.0288 4451	FBgn0003257,FBgn0037513	2	GO:0006 207
glycine metabolic process	0.0288 4451	FBgn0029823,FBgn0039094	2	GO:0006 544
phosphate ion transport	0.0288 4451	FBgn0010497,FBgn0037668	2	GO:0006 817
serine family amino acid biosyntheti c process	0.0288 4451	FBgn0029823,FBgn0039094	2	GO:0009 070
cholesterol transport	0.0288 4451	FBgn0031381,FBgn0261675	2	GO:0030 301
amino sugar catabolic process	0.0288 4451	FBgn0022700,FBgn0034582	2	GO:0046 348
glucosamin e- containing compound catabolic process	0.0288 4451	FBgn0022700,FBgn0034582	2	GO:1901 072
regulation of oxidative phosphoryl ation	0.0391 5282	FBgn0027794,FBgn0284256	2	GO:0002 082
digestion	0.0391 5282	FBgn0053542,FBgn0261675	2	GO:0007 586
sterol transport	0.0391 5282	FBgn0031381,FBgn0261675	2	GO:0015 918
pyrimidine nucleobase biosyntheti c process	0.0391 5282	FBgn0003257,FBgn0037513	2	GO:0019 856
RNA exon ligation	0.0467 7419	FBgn0032781	1	GO:0000 378

nucleotide- excision repair, DNA duplex	0.0467 7419	FBgn0261850	1	GO:0000 717
unwinding				
tRNA exon	0.0467	FBgn0032781	1	GO:0000
ligation	7419	1 Dgi10032701	1	968
tRNA exon	0.0467	FBgn0032781	1	GO:0000
ligation utilizing 2',3' cyclic phosphate of 5'-exon as source of linkage phosphate	7419			971
biosyntheti c process of antibacteri al peptides active against Gram- positive bacteria	0.0467 7419	FBgn0039102	1	GO:0002 815
regulation of biosyntheti c process of antibacteri al peptides active against Gram- positive bacteria	0.0467 7419	FBgn0039102	1	GO:0002 816
L-serine catabolic process	0.0467 7419	FBgn0029823	1	GO:0006 565
fat-soluble vitamin metabolic process	0.0467 7419	FBgn0028375	1	GO:0006 775
positive regulation of biosyntheti c process of antibacteri al peptides active against Gram-	0.0467 7419	FBgn0039102	1	GO:0006 965

positive bacteria				
regulation of preblastode rm mitotic cell cycle	0.0467 7419	FBgn0002441	1	GO:0007 347
specificatio n of segmental identity, labial segment	0.0467 7419	FBgn0001150	1	GO:0007 381
peptidyl- lysine modificatio n to peptidyl- hypusine	0.0467 7419	FBgn0261479	1	GO:0008 612
menaquino ne metabolic process	0.0467 7419	FBgn0028375	1	GO:0009 233
menaquino ne biosyntheti c process	0.0467 7419	FBgn0028375	1	GO:0009 234
response to amine	0.0467 7419	FBgn0038542	1	GO:0014 075
S- adenosyl- L- methionine transport	0.0467 7419	FBgn0039357	1	GO:0015 805
nucleoside transport	0.0467 7419	FBgn0033371	1	GO:0015 858
acetylcholi ne transport	0.0467 7419	FBgn0037140	1	GO:0015 870
protein nitrosylatio n	0.0467 7419	FBgn0011768	1	GO:0017 014
peptidyl- cysteine S- nitrosylatio n	0.0467 7419	FBgn0011768	1	GO:0018 119
glycine biosyntheti c process from serine	0.0467 7419	FBgn0029823	1	GO:0019 264
intestinal cholesterol absorption	0.0467 7419	FBgn0261675	1	GO:0030 299
protection from non- homologou s end	0.0467 7419	FBgn0037338	1	GO:0031 848

joining at telomere				
regulation of deoxyribon uclease activity	0.0467 7419	FBgn0037345	1	GO:0032 070
positive regulation of nuclease activity	0.0467 7419	FBgn0037345	1	GO:0032 075
positive regulation of deoxyribon uclease activity	0.0467 7419	FBgn0037345	1	GO:0032 077
ubiquinone biosyntheti c process via 3,4- dihydroxy- 5- polyprenyl benzoate	0.0467 7419	FBgn0028375	1	GO:0032 194
negative regulation of synaptic transmissio n, cholinergic	0.0467 7419	FBgn0037140	1	GO:0032 223
geranyl diphosphat e metabolic process	0.0467 7419	FBgn0025373	1	GO:0033 383
geranyl diphosphat e biosyntheti c process	0.0467 7419	FBgn0025373	1	GO:0033 384
beta- alanine biosyntheti c process via 3- ureidoprop ionate	0.0467 7419	FBgn0037513	1	GO:0033 396
internal genitalia morphogen esis	0.0467 7419	FBgn0267728	1	GO:0035 260
neurotroph in signaling pathway	0.0467 7419	FBgn0267824	1	GO:0038 179
nitrate metabolic	0.0467 7419	FBgn0030966	1	GO:0042 126

process				
nitrate assimilatio n	0.0467 7419	FBgn0030966	1	GO:0042 128
cellular response to glucose starvation	0.0467 7419	FBgn0034422	1	GO:0042 149
fat-soluble vitamin biosyntheti c process	0.0467 7419	FBgn0028375	1	GO:0042 362
vitamin K biosyntheti c process	0.0467 7419	FBgn0028375	1	GO:0042 371
vitamin K metabolic process	0.0467 7419	FBgn0028375	1	GO:0042 373
pyridoxal metabolic process	0.0467 7419	FBgn0267408	1	GO:0042 817
telomere maintenanc e in response to DNA damage	0.0467 7419	FBgn0037338	1	GO:0043 247
'de novo' UMP biosyntheti c process	0.0467 7419	FBgn0003257	1	GO:0044 205
lipid digestion	0.0467 7419	FBgn0261675	1	GO:0044 241
regulation of transcriptio n involved in anterior/po sterior axis specificatio n	0.0467 7419	FBgn0001150	1	GO:0044 324
sodium- dependent phosphate transport	0.0467 7419	FBgn0010497	1	GO:0044 341
positive regulation of mitotic recombinat ion	0.0467 7419	FBgn0261850	1	GO:0045 951
regulation of transcriptio n by glucose	0.0467 7419	FBgn0034422	1	GO:0046 015

formaldehy de metabolic process	0.0467 7419	FBgn0011768	1	GO:0046 292
formaldehy de catabolic process	0.0467 7419	FBgn0011768	1	GO:0046 294
folic acid metabolic process	0.0467 7419	FBgn0029823	1	GO:0046 655
ketone body biosyntheti c process	0.0467 7419	FBgn0035383	1	GO:0046 951
neurotroph in TRK receptor signaling pathway	0.0467 7419	FBgn0267824	1	GO:0048 011
S- adenosylm ethionine catabolic process	0.0467 7419	FBgn0038074	1	GO:0050 843
intestinal	0.0467	FBgn0261675	1	GO:0050
absorption coenzyme transport	7419 0.0467 7419	FBgn0039357	1	892 GO:0051 182
L- glutamate import	0.0467 7419	FBgn0010497	1	GO:0051 938
apoptotic process involved in morphogen esis	0.0467 7419	FBgn0029131	1	GO:0060 561
regulation of chromatin silencing at rDNA	0.0467 7419	FBgn0039687	1	GO:0061 187
cellular response to amine stimulus	0.0467 7419	FBgn0038542	1	GO:0071 418
replication fork arrest involved in DNA replication termination	0.0467 7419	FBgn0050085	1	GO:0071 807
tyramine signaling pathway	0.0467 7419	FBgn0038542	1	GO:0071 928
nitrogen cycle	0.0467 7419	FBgn0030966	1	GO:0071 941

metabolic process				
regulation of nitric oxide metabolic process	0.0467 7419	FBgn0011768	1	GO:0080 164
peptidyl- N- phospho- arginine dephospho rylation	0.0467 7419	FBgn0051469	1	GO:0098 628
intestinal lipid absorption	0.0467 7419	FBgn0261675	1	GO:0098 856
cellular detoxificati on of aldehyde	0.0467 7419	FBgn0011768	1	GO:0110 095
cellular response to aldehyde	0.0467 7419	FBgn0011768	1	GO:0110 096
regulation of phospholip ase C- activating G protein- coupled receptor signaling pathway	0.0467 7419	FBgn0038542	1	GO:1900 736
positive regulation of phospholip ase C- activating G protein- coupled receptor signaling pathway	0.0467 7419	FBgn0038542	1	GO:1900 738
sarcosine metabolic process	0.0467 7419	FBgn0038074	1	GO:1901 052
sarcosine biosyntheti c process	0.0467 7419	FBgn0038074	1	GO:1901 054
acetate ester transport	0.0467 7419	FBgn0037140	1	GO:1901 374
nucleoside transmemb rane transport	0.0467 7419	FBgn0033371	1	GO:1901 642

negative regulation of compound eye retinal cell apoptotic process	0.0467 7419	FBgn0032929	1	GO:1901 693
regulation of exodeoxyri bonuclease activity	0.0467 7419	FBgn0037345	1	GO:1902 392
positive regulation of exodeoxyri bonuclease activity	0.0467 7419	FBgn0037345	1	GO:1902 394
mitotic DNA replication preinitiatio n complex assembly	0.0467 7419	FBgn0026143	1	GO:1902 977
regulation of tRNA metabolic process	0.0467 7419	FBgn0032781	1	GO:1903 326
positive regulation of tRNA metabolic process	0.0467 7419	FBgn0032781	1	GO:1903 328
microtubul e bundle formation involved in mitotic spindle midzone assembly	0.0467 7419	FBgn0011692	1	GO:1903 562
regulation of cytoplasmi c transport	0.0467 7419	FBgn0015277	1	GO:1903 649
response to tetrahydrof olate	0.0467 7419	FBgn0029823	1	GO:1904 481
cellular response to tetrahydrof olate	0.0467 7419	FBgn0029823	1	GO:1904 482
positive regulation of double- strand	0.0467 7419	FBgn0037301	1	GO:1905 168

break				
repair via				
homologou				
S				
recombinat				
ion				
regulation	0.0467	FBgn0037345	1	GO:1905
of	7419			777
exonucleas				
e activity				
positive	0.0467 7419	FBgn0037345	1	GO:1905
regulation of	/419			779
exonucleas				
e activity	0.0467	ED~~0011770	1	CO.2000
regulation	0.0467 7419	FBgn0011768	1	GO:2000 169
of	/419			169
peptidyl-				
cysteine S-				
nitrosylatio				
n				
regulation	0.0467	FBgn0032781	1	GO:2000
of tRNA	7419			235
processing				
positive	0.0467	FBgn0032781	1	GO:2000
regulation	7419			237
of tRNA				
processing				
regulation	0.0467	FBgn0015277	1	GO:2000
of early	7419			641
endosome				
to late				
endosome				
transport				
positive	0.0467	FBgn0037301	1	GO:2000
regulation	7419	0	-	781
of double-				
strand				
break				
repair				
repuir			1	

Table 2.4h: GO enrichment for hits equalized in control females relative to 20HE males

GO	p-value	Hits	Gene	GO ID
enrichmen			matche	
t			S	
mitocho	4.82E-	FBgn0011787,FBgn0014023,FBgn0026741,FBgn00297	21	GO:0032
ndrial	07	18,FBgn0031231,FBgn0032053,FBgn0032486,FBgn003		543
translation		3184,FBgn0034579,FBgn0035064,FBgn0035374,FBgn0		
		036335,FBgn0036569,FBgn0037330,FBgn0038426,FBg		
		n0038474,FBgn0039159,FBgn0042112,FBgn0051450,F		
		Bgn0083983,FBgn0263863		
DNA-	1.2254E	FBgn0002878,FBgn0003116,FBgn0004406,FBgn00056	19	GO:0006
dependent	-06	96,FBgn0010438,FBgn0011762,FBgn0014861,FBgn001		261
DNA		5271,FBgn0017577,FBgn0030054,FBgn0032290,FBgn0		
replication		032813,FBgn0033890,FBgn0035644,FBgn0035918,FBg		
		n0039403,FBgn0259113,FBgn0260985,FBgn0262619		

DNA replication	1.2492E -06	FBgn0002878,FBgn0003116,FBgn0004406,FBgn00056 96,FBgn0010382,FBgn0010438,FBgn0011762,FBgn001 4861,FBgn0015271,FBgn0017577,FBgn0030054,FBgn0 032290,FBgn0032813,FBgn0033890,FBgn0034495,FBg n0035644,FBgn0035918,FBgn0039403,FBgn0259113,F Bgn0260985,FBgn0262619	21	GO:0006 260
mitochondr ial gene expression	7.7436E -06	FBgn0011787,FBgn0014023,FBgn0026741,FBgn00297 18,FBgn0031231,FBgn0032053,FBgn0032486,FBgn003 3184,FBgn0034579,FBgn0035064,FBgn0035374,FBgn0 036335,FBgn0036569,FBgn0037330,FBgn0038426,FBg n0038474,FBgn0039159,FBgn0042112,FBgn0051450,F Bgn0083983,FBgn0263863	21	GO:0140 053
DNA replication initiation	0.00029 005	FBgn0002878,FBgn0005696,FBgn0014861,FBgn00152 71,FBgn0017577,FBgn0035918,FBgn0259113	7	GO:0006 270
heterocycle metabolic process	0.00052	FBgn0000377,FBgn0000477,FBgn0000543,FBgn00005 62,FBgn0000591,FBgn0001187,FBgn0002522,FBgn000 2542,FBgn0002566,FBgn0002878,FBgn0002899,FBgn0 003042,FBgn0003044,FBgn0003116,FBgn0003512,FBg n0003515,FBgn0003996,FBgn0004170,FBgn0004396,F Bgn000574,FBgn0005696,FBgn000437,FBgn0010 382,FBgn001786,FBgn0011291,FBgn0011660,FBgn001 11762,FBgn0011787,FBgn0013972,FBgn0014037,FBgn 0014861,FBgn0014949,FBgn0015271,FBgn0015299,FB gn0015396,FBgn0015778,FBgn0016070,FBgn0016120, FBgn0016691,FBgn0016917,FBgn0017577,FBgn00196 44,FBgn0019650,FBgn0022986,FBgn0023214,FBgn002 4987,FBgn0025185,FBgn0025832,FBgn0026629,FBg n0026702,FBgn0026876,FBgn0027499,FBgn0026679,FBg n0026702,FBgn0026876,FBgn0027499,FBgn0027620,F Bgn0028342,FBgn0030085,FBgn0030093,FBgn0030 365,FBgn0030699,FBgn0031227,FBgn0031309,FBgn 0031321,FBgn0031643,FBgn0031663,FBgn0031851,FB gn0032130,FBgn0032290,FBgn0032400,FBgn0032813, FBgn003390,FBgn0033921,FBgn003361,FBgn003 30653,FBgn003430,FBgn003507,FBgn0032813, FBgn0032956,FBgn003391,FBgn003644,FBgn003 4065,FBgn003693,FBgn003507,FBgn0032813, FBgn003290,FBgn003591,FBgn003671,FBgn0032813, FBgn003290,FBgn003591,FBgn003671,FBgn0038 59,FBgn00364310,FBgn003507,FBgn00361,FBgn003 4065,FBgn0034310,FBgn003507,FBgn0037109,FBgn 0035246,FBgn0035918,FBgn0035986,FBgn003601 8,FBgn0036157,FBgn003673,FBgn003674,FBgn00361 8,FBgn0036157,FBgn003673,FBgn003674,FBgn00361 8,FBgn0036157,FBgn003673,FBgn003674,FBgn0037109,FBgn 0037146,FBgn003730,FBgn0037607,FBgn0037109,FBgn 0037146,FBgn003730,FBgn0037607,FBgn0037109,FBgn 0037146,FBgn0038244,FBgn0036627,FBgn003674,FBgn0037105,FBg 00377146,FBgn0038274,FBgn0037607,FBgn0037607,FBgn0037607,FBgn0037607,FBgn003718, FBgn0037926,FBgn0038173,FBgn0036754,FBgn003718, FBgn0037926,FBgn0038173,FBgn003650,FBg 00377146,FBgn0039462,FBgn0038474,FBgn0037607,FBgn0037160,FBgn0037607,FBgn0037607,FBgn003716,FBgn003772,FBgn0037607,FBgn003718, FBgn0037940,FBgn0038474,FBgn0038546,FBgn0038546,FBgn0038546,FBgn0038546,FBgn0038546,FBgn0038546,FBgn0038546,FBgn0038546,FBgn0038546,FBgn00385155 0,FBgn003716,FBgn003936,FBgn0039403,FBg	177	GO:0046 483

		0260985,FBgn0261287,FBgn0261872,FBgn0262467,FB gn0262619,FBgn0263144,FBgn0263237,FBgn0263855, FBgn0265048,FBgn0265523,FBgn0265623,FBgn02664 11,FBgn0266917,FBgn0267792,FBgn0267821,FBgn028 6027,FBgn0286506		
mitotic DNA replication	0.00053 522	FBgn0014861,FBgn0032290,FBgn0035644,FBgn02591 13,FBgn0262619	5	GO:1902 969
cellular aromatic compound metabolic process	0.00101 431	FBgn0000377,FBgn0000477,FBgn000543,FBgn00005 62,FBgn0000591,FBgn0001187,FBgn0002522,FBgn000 2542,FBgn0003504,FBgn0002878,FBgn0002899,FBgn0 003042,FBgn0003044,FBgn0003116,FBgn0003512,FBg n0003515,FBgn0003906,FBgn0004170,FBgn0004396,F Bgn0005674,FBgn0005696,FBgn0004837,FBgn0004900 7,FBgn0005674,FBgn0005696,FBgn0005771,FBgn0010 382,FBgn0011787,FBgn0011291,FBgn001160,FBgn00 11762,FBgn0011787,FBgn0013972,FBgn0014037,FBgn 0014380,FBgn0014861,FBgn0015778,FBgn0016070, FBgn0015299,FBgn001596,FBgn0015778,FBgn001670, FBgn0016120,FBgn0016691,FBgn0015778,FBgn001670, FBgn0016120,FBgn0019650,FBgn0022986,FBgn002 3214,FBgn0024987,FBgn0025185,FBgn0025463,FBgn0 025629,FBgn0025680,FBgn0025741,FBgn0026876,F Bgn0027499,FBgn0026679,FBgn0026702,FBgn0026876,F Bgn0027499,FBgn0026702,FBgn0030432,FBgn003 085,FBgn003093,FBgn003065,FBgn003142,FBgn0030 085,FBgn003093,FBgn0030683,FBgn0031643,FB gn0031663,FBgn0031851,FBgn0031321,FBgn0031643,FB gn0031663,FBgn0032813,FBgn0032956,FBgn003300 10,FBgn003390,FBgn0033859,FBgn003389,FBgn0033 9221,FBgn003398,FBgn003405,FBgn0034310,FBgn0 3921,FBgn003399,FBgn003405,FBgn0034310,FBgn0 3921,FBgn003399,FBgn003663,FBgn003389,FBgn003389 ,FBgn003597,FBgn003564,FBgn0033891,FBgn003591 8,FBgn003597,FBgn003564,FBgn0036157,FBgn003591 8,FBgn003597,FBgn003710,FBgn0035246,FBgn0037607,FB gn003597,FBgn0037109,FBgn003730,FBgn003582, FBgn003597,FBgn0037109,FBgn003730,FBgn003582, FBgn003597,FBgn0037109,FBgn003730,FBgn003582, FBgn003597,FBgn0037109,FBgn003730,FBgn0037607,FB gn003597,FBgn0037109,FBgn003730,FBgn0037607,FB gn003597,FBgn0037109,FBgn003730,FBgn0037607,FB gn0037669,FBgn0037109,FBgn003730,FBgn003822, FBgn003597,FBgn0037109,FBgn003730,FBgn0037607,FB gn003760,FBgn0037109,FBgn003730,FBgn003822, FBgn003597,FBgn003714,FBgn003792,FBgn0038474,FBgn003822, FBgn003598,FBgn003716,FBgn0037607,FB gn003760,FBgn0037109,FBgn003730,FBgn003822, FBgn0038237,FBgn003792,FBgn0038474,FBgn003822, FBgn0038237,FBgn0039404,FBgn003938,FBgn003972,F gn0041103,FBgn003792,FBgn003504,FBgn0038464,FBgn003822, FBgn003844,FBgn0039462,FBgn003504,FBgn003	178	GO:0006 725
copper ion transport	0.00107 248	FBgn0030343,FBgn0030610,FBgn0062413,FBgn02624 67	4	GO:0006 825

nuclear DNA	0.00117 708	FBgn0014861,FBgn0017577,FBgn0032290,FBgn00356 44,FBgn0259113,FBgn0262619	6	GO:0033 260
replication				
nuclear DNA replication organic cyclic compound metabolic process	0.00117 708 0.00118 241	FBgn0014861,FBgn0017577,FBgn0032290,FBgn00356 44,FBgn0259113,FBgn0262619 FBgn0000377,FBgn0000477,FBgn0000543,FBgn00005 62,FBgn0000591,FBgn0001187,FBgn0002522,FBgn000 2542,FBgn0002566,FBgn0002878,FBgn0002899,FBgn0 003042,FBgn0003044,FBgn0003116,FBgn0003512,FBg n0003515,FBgn0003996,FBgn0004170,FBgn0004396,F Bgn0004403,FBgn000406,FBgn0004837,FBgn000490 7,FBgn0005674,FBgn0005696,FBgn0005771,FBgn0010 382,FBgn0011786,FBgn0011291,FBgn0011660,FBgn00 11762,FBgn0011787,FBgn0013972,FBgn0014037,FBgn 0014380,FBgn0014861,FBgn0015778,FBgn0016070, FBgn0016120,FBgn001691,FBgn0015778,FBgn0016070, FBgn0016120,FBgn001691,FBgn0015778,FBgn0016070, FBgn0019644,FBgn0019650,FBgn0022986,FBgn002 3214,FBgn0024987,FBgn0025185,FBgn0025463,FBgn0 025629,FBgn0026680,FBgn0025741,FBgn0025832,FBg n0025936,FBgn0026679,FBgn0028342,FBgn0026876,F Bgn0027499,FBgn0027620,FBgn0028342,FBgn002900 6,FBgn003093,FBgn0030651,FBgn0030432,FBgn003 085,FBgn003093,FBgn0030631,FBgn0030432,FBgn003 085,FBgn0031227,FBgn0031309,FBgn0031321,FB gn0031643,FBgn0031663,FBgn0032813,FBgn0032130, FBgn0032290,FBgn003506,FBgn0032813,FBgn0032130, FBgn003291,FBgn003507,FBgn0033859,FBgn003 3890,FBgn0033921,FBgn003507,FBgn0033859,FBgn003 3890,FBgn0033921,FBgn003507,FBgn003465,FBgn00 34310,FBgn0035064,FBgn0035153,FBgn003465,FBgn00 34310,FBgn003507,FBgn003507,FBgn003663,FBgn00 3673,FBgn0033921,FBgn003507,FBgn003465,FBgn00 36734,FBgn0035064,FBgn0035153,FBgn003465,FBgn00 36734,FBgn0035064,FBgn003507,FBgn003465,FBgn00 36734,FBgn003507,FBgn003507,FBgn0036077,FBgn0035246,F Bgn0035918,FBgn003507,FBgn0036018,FBgn003507,FBgn003590 0,FBgn0035918,FBgn003507,FBgn0036071,FBgn0036077,FBgn003590 0,FBgn0035918,FBgn003507,FBgn0036077,FBgn0036077,FBgn0036077,FBgn003590 0,FBgn0035918,FBgn003507,FBgn0036077,FBgn0036644,FBgn003664,FBgn00366474,FBgn0036644,FBgn00366474,FBgn0036644,FBgn0036644,FBgn0036644,FBgn0036644,FBgn0036644,FBgn0036644,FBgn0036677,FBgn0036644,FBgn0036677,FBgn0036679,FBgn0037146,FB gn0035318,FBgn0036827,FBgn003674,FBgn0037146,FB gn0037330,FBgn0036827,FBgn0037109,FBgn0037146,FB	6	GO:0033 260 GO:1901 360
		157,FBgn0036373,FBgn0036374,FBgn0036569,FBgn00 36734,FBgn0036735,FBgn0036754,FBgn0036771,FBgn 0036826,FBgn0036827,FBgn0037109,FBgn0037146,FB		
	0.001.05	739,FBgn0053100,FBgn0053504,FBgn0061469,FBgn00 85484,FBgn0086450,FBgn0086679,FBgn0250850,FBgn 0259113,FBgn0259176,FBgn0259938,FBgn0260817,FB gn0260985,FBgn0261287,FBgn0261872,FBgn0262467, FBgn0262619,FBgn0263144,FBgn0263237,FBgn02638 55,FBgn0265048,FBgn0265523,FBgn0265623,FBgn026 6411,FBgn0266917,FBgn0267792,FBgn0267821,FBgn0 286027,FBgn0286506		60.0000
maturation of SSU- rRNA	0.00165 345	FBgn0002899,FBgn0004403,FBgn0030085,FBgn00316 43,FBgn0034564,FBgn0036754,FBgn0038474,FBgn003 9306,FBgn0039404	9	GO:0030 490
mitochondr ial DNA replication	0.00172 323	FBgn0003116,FBgn0004406,FBgn0010438	3	GO:0006 264

aminergic neurotrans mitter loading into synaptic	0.00172 323	FBgn0003515,FBgn0003996,FBgn0043005	3	GO:0015 842
vesicle cell cycle DNA replication	0.00233 396	FBgn0014861,FBgn0017577,FBgn0030054,FBgn00322 90,FBgn0033890,FBgn0035644,FBgn0259113,FBgn026 2619	8	GO:0044 786
replication nucleobase -containing compound metabolic process	0.00269 511	FBgn0000377,FBgn0000477,FBgn0000543,FBgn00005 62,FBgn0000591,FBgn0001187,FBgn0002522,FBgn000 2542,FBgn0002878,FBgn0002899,FBgn0003042,FBgn0 003044,FBgn0003512,FBgn0004170,FBgn0004396,FBg n000403,FBgn0004406,FBgn0005771,FBgn0004397,F Bgn0005674,FBgn0005696,FBgn0005771,FBgn001038 2,FBgn0011291,FBgn0011660,FBgn0011762,FBgn0011 787,FBgn0013972,FBgn0014037,FBgn0014861,FBgn00 14949,FBgn0015271,FBgn0016120,FBgn0016691,FB gn0016917,FBgn0015777,FBgn0019644,FBgn0016691,FB gn0022986,FBgn0025629,FBgn0025680,FBgn002 5741,FBgn0025463,FBgn0026679,FBgn0026702,FBgn002 5741,FBgn0025463,FBgn0026679,FBgn0026702,FBgn00 026876,FBgn0029079,FBgn0027620,FBgn0028342,FBg n0029006,FBgn003093,FBgn0030365,FBgn003043 2,FBgn0031057,FBgn0030631,FBgn0030363,FBgn003043 2,FBgn003127,FBgn00313139,FBgn0031321,FBgn00 31643,FBgn0031663,FBgn0031851,FBgn0032130,FBgn 0032290,FBgn0032400,FBgn0032813,FBgn0033290,FBgn0033921,FBgn003507,FBgn003597,FBgn00365,FBgn003463,FBgn003 1043,FBgn0031663,FBgn0034614,FBgn00351318,FBgn 0035290,FBgn003507,FBgn0036373,FBgn0036373,FBgn003 5064,FBgn0035644,FBgn003673,FBgn003675 4,FBgn0035644,FBgn003670,FBgn0036373,FBgn003677 4,FBgn0035644,FBgn003670,FBgn0036373,FBgn003677 4,FBgn003507,FBgn00362246,FBgn0036373,FBgn003607 5064,FBgn003507,FBgn003673,FBgn0036374,F Bgn0036771,FBgn0036018,FBgn003673,FBgn003675 4,FBgn003730,FBgn003604,FBgn003673,FBgn003675 4,FBgn003730,FBgn003604,FBgn003673,FBgn003675 4,FBgn003730,FBgn003604,FBgn003673,FBgn003675 4,FBgn003730,FBgn0037607,FBgn0037607,FBgn003675 4,FBgn003730,FBgn003604,FBgn003673,FBgn003675 4,FBgn003730,FBgn0037607,FBgn0037607,FBgn003675 4,FBgn003730,FBgn0038224,FBgn003827,FB gn003890,FBgn003874,FBgn003824,FBgn003827,FB gn003890,FBgn0038173,FBgn003824,FBgn003826,FBgn003890,FBgn0039403,FBgn0039972,FBgn0041103,FBgn 043796,FBgn004390,FBgn00591126,FBgn025913,FBgn0	167	GO:0006 139
mitochondr	0.00316	gn0267821,FBgn0286027,FBgn0286506 FBgn0002021,FBgn0011227,FBgn0030610,FBgn00312	8	GO:0033
ial respiratory	855	47,FBgn0033274,FBgn0034919,FBgn0038437,FBgn026 2467	0	108

chain				
complex				
assembly				
regulation of helicase activity	0.00328 788	FBgn0010438,FBgn0014861	2	GO:0051 095
ATP	0.00365	FBgn0016120,FBgn0016691,FBgn0019644,FBgn00283	6	GO:0006
biosyntheti c process	611	42,FBgn0038224,FBgn0262467	-	754
mitotic cell cycle phase transition	0.00413 304	FBgn0002878,FBgn0003525,FBgn0004583,FBgn00046 43,FBgn0004837,FBgn0004889,FBgn0010382,FBgn001 1739,FBgn0024227,FBgn0031549,FBgn0032047,FBgn0 035918,FBgn0038390,FBgn0039403,FBgn0263855	15	GO:0044 772
mitotic cell cycle	0.00437 591	FBgn0000140,FBgn0002878,FBgn0003042,FBgn00035 25,FBgn0004170,FBgn0004378,FBgn0004583,FBgn000 4643,FBgn0004837,FBgn0004889,FBgn0004907,FBgn0 010314,FBgn0010382,FBgn0011020,FBgn0011739,FBg n0014861,FBgn0015271,FBgn0015391,FBgn0024227,F Bgn0028292,FBgn0031549,FBgn0032047,FBgn003229 0,FBgn0033890,FBgn0034495,FBgn0034569,FBgn0035 249,FBgn0035644,FBgn0035918,FBgn0038390,FBgn00 38565,FBgn0039403,FBgn0039638,FBgn0087021,FBgn 0087040,FBgn0259113,FBgn0262619,FBgn0263237,FB gn0263855,FBgn0265523,FBgn0266418,FBgn0266465, FBgn0266917	43	GO:0000 278
regulation of mitotic cell cycle phase transition	0.00456 763	FBgn0002878,FBgn0003525,FBgn0004583,FBgn00046 43,FBgn0004837,FBgn0004889,FBgn0010382,FBgn002 4227,FBgn0031549,FBgn0035918,FBgn0038390,FBgn0 039403,FBgn0263855	13	GO:1901 990
mitotic cell cycle process	0.00484 144	FBgn0000140,FBgn0002878,FBgn0003525,FBgn00043 78,FBgn0004583,FBgn0004643,FBgn0004837,FBgn000 4889,FBgn0010382,FBgn0011739,FBgn0014861,FBgn0 015271,FBgn0015391,FBgn0024227,FBgn0028292,FBg n0031549,FBgn0032047,FBgn0032290,FBgn0034495,F Bgn0034569,FBgn0035249,FBgn0035644,FBgn003591 8,FBgn0038390,FBgn0039403,FBgn0039638,FBgn0087 021,FBgn0087040,FBgn0259113,FBgn0262619,FBgn02 63855,FBgn0266418	32	GO:1903 047
cellular copper ion homeostasi s	0.00552 936	FBgn0030343,FBgn0062413,FBgn0262467	3	GO:0006 878
neurotrans mitter loading into synaptic vesicle	0.00552 936	FBgn0003515,FBgn0003996,FBgn0043005	3	GO:0098 700
peripheral nervous system developme nt	0.00607 998	FBgn0004170,FBgn0010382,FBgn0025936,FBgn00517 21,FBgn0061469,FBgn0087040,FBgn0259938,FBgn026 0440,FBgn0267821	9	GO:0007 422
nucleic acid metabolic	0.00625 836	FBgn0000377,FBgn0000477,FBgn0000543,FBgn00005 91,FBgn0002522,FBgn0002542,FBgn0002878,FBgn000 2899,FBgn0003042,FBgn0003044,FBgn0003512,FBgn0	148	GO:0090 304

process		004170,FBgn0004396,FBgn0004403,FBgn0004406,FBg		
process		n0004837,FBgn0004907,FBgn0005674,FBgn0005696,F		
		Bgn0005771,FBgn0010382,FBgn0011291,FBgn001166		
		0,FBgn0011762,FBgn0011787,FBgn0014037,FBgn0014		
		861,FBgn0014949,FBgn0015271,FBgn0015299,FBgn00		
		15396,FBgn0015778,FBgn0016070,FBgn0016917,FBgn		
		0017577,FBgn0019650,FBgn0022986,FBgn0023214,FB		
		gn0024987,FBgn0025185,FBgn0025463,FBgn0025629,		
		FBgn0025680,FBgn0025832,FBgn0026679,FBgn00267 02,FBgn0027499,FBgn0027620,FBgn0029006,FBgn002		
		9079,FBgn0029977,FBgn0030054,FBgn0030085,FBgn0		
		030093,FBgn0030365,FBgn0030432,FBgn0030507,FBg		
		n0030631,FBgn0030699,FBgn0031227,FBgn0031309,F		
		Bgn0031321,FBgn0031643,FBgn0031851,FBgn003213		
		0,FBgn0032290,FBgn0032400,FBgn0032813,FBgn0032		
		956,FBgn0033010,FBgn0033507,FBgn0033859,FBgn00		
		33890,FBgn0033921,FBgn0033998,FBgn0034065,FBgn		
		0034310,FBgn0034564,FBgn0034614,FBgn0034650,FB		
		gn0035064,FBgn0035153,FBgn0035246,FBgn0035318,		
		FBgn0035397,FBgn0035644,FBgn0035900,FBgn00359		
		18,FBgn0035986,FBgn0036018,FBgn0036373,FBgn003		
		6374,FBgn0036569,FBgn0036734,FBgn0036735,FBgn0		
		036754,FBgn0036771,FBgn0036826,FBgn0036827,FBg		
		n0037109,FBgn0037330,FBgn0037607,FBgn0037669,F		
		Bgn0037716,FBgn0037722,FBgn0037822,FBgn003791		
		8,FBgn0037926,FBgn0038390,FBgn0038474,FBgn0038 546,FBgn0038592,FBgn0039182,FBgn0039306,FBgn00		
		39403,FBgn0039404,FBgn0039462,FBgn0039740,FBgn		
		0039938,FBgn0039972,FBgn0041103,FBgn0043796,FB		
		gn0043900,FBgn0051126,FBgn0051550,FBgn0051739,		
		FBgn0053504,FBgn0061469,FBgn0250850,FBgn02591		
		13,FBgn0259176,FBgn0259938,FBgn0260817,FBgn026		
		0985,FBgn0261287,FBgn0261872,FBgn0262619,FBgn0		
		263144,FBgn0263237,FBgn0263855,FBgn0265048,FBg		
		n0265523,FBgn0265623,FBgn0266411,FBgn0266917,F		
		Bgn0267792,FBgn0267821,FBgn0286027		
regulation	0.00691	FBgn0002878,FBgn0003525,FBgn0004583,FBgn00046	13	GO:1901
of cell	18	43,FBgn0004837,FBgn0004889,FBgn0010382,FBgn002		987
cycle		4227,FBgn0031549,FBgn0035918,FBgn0038390,FBgn0		
phase		039403,FBgn0263855		
transition	0.00702	ED., 001(120 ED., 001((01 ED., 0010(44 ED., 00202	7	CO.0000
nucleoside triphosphat	0.00703 878	FBgn0016120,FBgn0016691,FBgn0019644,FBgn00283	7	GO:0009 141
	0/0	42,FBgn0031663,FBgn0038224,FBgn0262467		141
e metabolic				
process				
cell cycle	0.00745	FBgn0002878,FBgn0003525,FBgn0004583,FBgn00046	15	GO:0044
phase	462	43,FBgn0004837,FBgn0004889,FBgn0010382,FBgn001	15	770
transition		1739,FBgn0024227,FBgn0031549,FBgn0032047,FBgn0		
		035918,FBgn0038390,FBgn0039403,FBgn0263855		
purine	0.00748	FBgn0016120,FBgn0016691,FBgn0019644,FBgn00283	6	GO:0009
nucleoside	54	42,FBgn0038224,FBgn0262467		145
triphosphat				
e				
biosyntheti				
c process				
purine	0.00748	FBgn0016120,FBgn0016691,FBgn0019644,FBgn00283	6	GO:0009

ribonucleo side triphosphat e metabolic process	54	42,FBgn0038224,FBgn0262467		205
purine ribonucleo side triphosphat e biosyntheti c process	0.00748 54	FBgn0016120,FBgn0016691,FBgn0019644,FBgn00283 42,FBgn0038224,FBgn0262467	6	GO:0009 206
negative regulation of Notch signaling pathway	0.00807 882	FBgn0004837,FBgn0013725,FBgn0035060,FBgn00392 73,FBgn0259685,FBgn0260440,FBgn0265523	7	GO:0045 746
metabolic process	0.00812 459	FBgn0000078,FBgn0000261,FBgn0000377,FBgn00004 77,FBgn0000543,FBgn0000562,FBgn0000591,FBgn000 0810,FBgn0001187,FBgn0001218,FBgn0002021,FBgn0 002522,FBgn0002524,FBgn000342,FBgn0003044,F Bgn0003076,FBgn0003116,FBgn000342,FBgn0003035 7,FBgn0003358,FBgn000390,FBgn000406,FBgn000 04170,FBgn0004396,FBgn0004403,FBgn0004406,FBgn 0004432,FBgn0004797,FBgn0004837,FBgn0004889,FB gn0004907,FBgn0005674,FBgn0005696,FBgn0005771, FBgn0010314,FBgn001380,FBgn0010382,FBgn00104 38,FBgn0010786,FBgn0011227,FBgn0011291,FBgn001 1300,FBgn001136,FBgn0011591,FBgn0011660,FBgn 001439,FBgn0011227,FBgn0011291,FBgn001 1300,FBgn0013269,FBgn0013725,FBgn0011787,FBg n0011817,FBgn0013269,FBgn0014037,FBgn0011787,FBg n0011817,FBgn0015271,FBgn0014861,FBgn0014 35,FBgn0015513,FBgn0015771,FBgn0015299,FBgn0014 139,FBgn0015513,FBgn0015771,FBgn0015299,FBgn001 5396,FBgn0015513,FBgn0015771,FBgn0015070,FBg n0019644,FBgn0019650,FBgn002391,FBgn0012506, FBgn002653,FBgn002391,FBgn0023445,FBgn002 4194,FBgn0024227,FBgn0025185,FBgn0025463,FBg n0024995,FBgn0024997,FBgn0025185,FBgn0025463,FBg n0025629,FBgn0025680,FBgn0025741,FBgn0025814,F Bgn0024297,FBgn002578,FBgn0025814,FBgn0025814,F Bgn0024297,FBgn002578,FBgn0027844,FBgn 0025629,FBgn0025680,FBgn0025936,FBgn002560, FBgn0025689,FBgn0025936,FBgn0025936,FBgn002614 7,FBgn0026679,FBgn0025741,FBgn0025814,F Bgn0025632,FBgn0025839,FBgn0025936,FBgn002560, FBgn0026679,FBgn0027499,FBgn0027844,FBgn 0028342,FBgn002898,FBgn0025936,FBgn0027844,FBgn 0028342,FBgn002898,FBgn0029936,FBgn0027844,FBgn 0028342,FBgn002898,FBgn0029936,FBgn0027844,FBgn 0028342,FBgn002898,FBgn0029936,FBgn0027844,FBgn 0028342,FBgn002898,FBgn002988,FBgn0029979, FBgn0029689,FBgn0027943,FBgn003063,FBgn0030367,FBgn003 0365,FBgn003067,FBgn0030432,FBgn00300357,FBgn003 0365,FBgn003067,FBgn0030432,FBgn00300357,FBgn003 0365,FBgn003067,FBgn0030432,FBgn0030507,FBgn0030357,FBgn0030357,FBgn0030357,FBgn003063,FBgn0030507,FBgn0030432,FBgn0030507,FBgn0030507,FBgn003063,FBgn003063,FBgn0030507,FBgn003063,FBgn003063,FBgn003063,FBgn0030507,FBgn003063,FBgn0030507,FBgn003063,FBgn0030	283	GO:0008 152

0,FBgn0031309,FBgn0031321,FBgn0031635,FBgn0031
643,FBgn0031663,FBgn0031678,FBgn0031695,FBgn00
31741,FBgn0031805,FBgn0031851,FBgn0031876,FBgn
0032047,FBgn0032053,FBgn0032130,FBgn0032144,FB
gn0032187,FBgn0032290,FBgn0032400,FBgn0032486,
FBgn0032638,FBgn0032691,FBgn0032813,FBgn00329
56,FBgn0033010,FBgn0033061,FBgn0033179,FBgn003
3184,FBgn0033188,FBgn0033274,FBgn0033304,FBgn0
033382,FBgn0033397,FBgn0033507,FBgn0033520,FBg
n0033527,FBgn0033555,FBgn0033815,FBgn0033859,F
Bgn0033890,FBgn0033921,FBgn0033935,FBgn003396
1,FBgn0033988,FBgn0033998,FBgn0034030,FBgn0034
065,FBgn0034085,FBgn0034141,FBgn0034199,FBgn00
34310,FBgn0034335,FBgn0034459,FBgn0034495,FBgn
0034527,FBgn0034564,FBgn0034579,FBgn0034614,FB
gn0034650,FBgn0034756,FBgn0034938,FBgn0035064,
FBgn0035124,FBgn0035153,FBgn0035154,FBgn00352
46,FBgn0035266,FBgn0035318,FBgn0035374,FBgn003
5397,FBgn0035471,FBgn0035644,FBgn0035663,FBgn0
035670,FBgn0035679,FBgn0035779,FBgn0035806,FBg
n0035900,FBgn0035918,FBgn0035977,FBgn0035986,F
Bgn0036018,FBgn0036023,FBgn0036157,FBgn003623
7,FBgn0036258,FBgn0036290,FBgn0036335,FBgn0036
373,FBgn0036374,FBgn0036512,FBgn0036549,FBgn00
36569,FBgn0036671,FBgn0036691,FBgn0036713,FBgn
0036734,FBgn0036735,FBgn0036754,FBgn0036760,FB
gn0036771,FBgn0036824,FBgn0036826,FBgn0036827,
FBgn0036910,FBgn0036953,FBgn0036996,FBgn00370
45,FBgn0037109,FBgn0037146,FBgn0037293,FBgn003
7305,FBgn0037330,FBgn0037370,FBgn0037538,FBgn0
037569,FBgn0037607,FBgn0037669,FBgn0037687,FBg
n0037716,FBgn0037722,FBgn0037822,FBgn0037891,F
Bgn0037918,FBgn0037926,FBgn0038038,FBgn003817
3,FBgn0038194,FBgn0038224,FBgn0038237,FBgn0038
271,FBgn0038348,FBgn0038390,FBgn0038426,FBgn00
38437,FBgn0038474,FBgn0038485,FBgn0038546,FBgn
0038588,FBgn0038592,FBgn0038593,FBgn0038788,FB
gn0038870,FBgn0038928,FBgn0038981,FBgn0039023,
FBgn0039159,FBgn0039182,FBgn0039252,FBgn00392
58,FBgn0039273,FBgn0039304,FBgn0039306,FBgn003
9347,FBgn0039403,FBgn0039404,FBgn0039462,FBgn0
039464,FBgn0039471,FBgn0039507,FBgn0039596,FBg
n0039650,FBgn0039740,FBgn0039938,FBgn0039972,F
Bgn0040529,FBgn0040754,FBgn0041103,FBgn004162
9,FBgn0042112,FBgn0043471,FBgn0043575,FBgn0043
796,FBgn0043900,FBgn0044872,FBgn0047038,FBgn00
50022,FBgn0050047,FBgn0050287,FBgn0050414,FBgn
0050446,FBgn0050493,FBgn0051126,FBgn0051450,FB
gn0051550,FBgn0051721,FBgn0051739,FBgn0052201,
FBgn0052284,FBgn0052483,FBgn0053100,FBgn00531
78,FBgn0053265,FBgn0053504,FBgn0061469,FBgn006
3491,FBgn0063492,FBgn0063493,FBgn0067102,FBgn0
083983,FBgn0085249,FBgn0085484,FBgn0086358,FBg
n0086450,FBgn0086679,FBgn0250850,FBgn0259113,F
Bgn0259170,FBgn0259176,FBgn0259227,FBgn025967
8,FBgn0259685,FBgn0259748,FBgn0259938,FBgn0260
477,FBgn0260750,FBgn0260817,FBgn0260985,FBgn02

		61287,FBgn0261445,FBgn0261872,FBgn0262449,FBgn 0262467,FBgn0262559,FBgn0262619,FBgn0263144,FB gn0263237,FBgn0263260,FBgn0263780,FBgn0263855, FBgn0263863,FBgn0264494,FBgn0264959,FBgn02650 48,FBgn0265052,FBgn0265523,FBgn0265623,FBgn026 6411,FBgn0266465,FBgn0266917,FBgn0267792,FBgn0 267821,FBgn0286027,FBgn0286506		
leading strand elongation	0.00847 253	FBgn0032813,FBgn0259113,FBgn0260985	3	GO:0006 272
purine nucleoside triphosphat e metabolic process	0.00877 658	FBgn0016120,FBgn0016691,FBgn0019644,FBgn00283 42,FBgn0038224,FBgn0262467	6	GO:0009 144
tRNA- guanine transglycos ylation	0.00948 75	FBgn0031321,FBgn0034614	2	GO:0101 030
response to L- canavanine	0.00948 75	FBgn0030108,FBgn0035870	2	GO:1901 354
regulation of mitotic cell cycle	0.01028 673	FBgn0002878,FBgn0003525,FBgn0004170,FBgn00045 83,FBgn0004643,FBgn0004837,FBgn0004889,FBgn001 0314,FBgn0010382,FBgn0024227,FBgn0031549,FBgn0 034569,FBgn0035249,FBgn0035918,FBgn0038390,FBg n0039403,FBgn0039638,FBgn0263855,FBgn0265523,F Bgn0266465	20	GO:0007 346
energy coupled proton transport, down electroche mical gradient	0.01046 341	FBgn0016120,FBgn0016691,FBgn0019644,FBgn00283 42,FBgn0038224	5	GO:0015 985
ATP synthesis coupled proton transport	0.01046 341	FBgn0016120,FBgn0016691,FBgn0019644,FBgn00283 42,FBgn0038224	5	GO:0015 986
cellular transition metal ion homeostasi s	0.01046 341	FBgn0024236,FBgn0024958,FBgn0030343,FBgn00624 13,FBgn0262467	5	GO:0046 916
ribonucleo side triphosphat e metabolic process	0.01182 359	FBgn0016120,FBgn0016691,FBgn0019644,FBgn00283 42,FBgn0038224,FBgn0262467	6	GO:0009 199
ribonucleo side triphosphat e	0.01182 359	FBgn0016120,FBgn0016691,FBgn0019644,FBgn00283 42,FBgn0038224,FBgn0262467	6	GO:0009 201

biosyntheti c process				
positive regulation of Ras protein signal transductio n	0.01187 745	FBgn0004907,FBgn0015513,FBgn0034194,FBgn00504 40,FBgn0050456,FBgn0050476,FBgn0051158	7	GO:0046 579
positive regulation of small GTPase mediated signal transductio n	0.01187 745	FBgn0004907,FBgn0015513,FBgn0034194,FBgn00504 40,FBgn0050456,FBgn0050476,FBgn0051158	7	GO:0051 057
one-carbon metabolic process	0.01217 255	FBgn0027843,FBgn0027844,FBgn0036157	3	GO:0006 730
protein stabilizatio n	0.01359 687	FBgn0004889,FBgn0004907,FBgn0028292,FBgn00288 36,FBgn0259685,FBgn0267821	6	GO:0050 821
ribosomal small subunit biogenesis	0.01380 91	FBgn0002899,FBgn0004403,FBgn0030085,FBgn00316 43,FBgn0034564,FBgn0036754,FBgn0038474,FBgn003 9306,FBgn0039404	9	GO:0042 274
DNA strand elongation involved in DNA replication	0.01403 523	FBgn0032813,FBgn0259113,FBgn0260985,FBgn02626 19	4	GO:0006 271
DNA strand elongation	0.01403 523	FBgn0032813,FBgn0259113,FBgn0260985,FBgn02626 19	4	GO:0022 616
determinati on of adult lifespan	0.01445 96	FBgn0000261,FBgn0002566,FBgn0004657,FBgn00113 00,FBgn0015575,FBgn0016120,FBgn0020653,FBgn003 0350,FBgn0033127,FBgn0033448,FBgn0035132,FBgn0 035977,FBgn0038788,FBgn0051216,FBgn0259170,FBg n0259176,FBgn0263316	17	GO:0008 340
apical junction assembly	0.01503 664	FBgn0003391,FBgn0010894,FBgn0033032,FBgn00361 98,FBgn0259685,FBgn0261284,FBgn0266465	7	GO:0043 297
chromoso me separation	0.01540 763	FBgn0004643,FBgn0004889,FBgn0015391,FBgn00175 77,FBgn0024227,FBgn0029977,FBgn0031549,FBgn026 3855	8	GO:0051 304
positive regulation of G1/S transition of mitotic cell cycle	0.01665 79	FBgn0004837,FBgn0010382,FBgn0039403	3	GO:1900 087
multicellul ar organism aging	0.01700 86	FBgn0000261,FBgn0002566,FBgn0004657,FBgn00113 00,FBgn0015575,FBgn0016120,FBgn0020653,FBgn003 0350,FBgn0033127,FBgn0033448,FBgn0035132,FBgn0 035977,FBgn0038788,FBgn0051216,FBgn0259170,FBg	17	GO:0010 259

		n0259176,FBgn0263316		
copper ion homeostasi s	0.01724 405	FBgn0030343,FBgn0033274,FBgn0062413,FBgn02624 67	4	GO:0055 070
nucleoside triphosphat e biosyntheti c process	0.01768 425	FBgn0016120,FBgn0016691,FBgn0019644,FBgn00283 42,FBgn0038224,FBgn0262467	6	GO:0009 142
prostaglan din biosyntheti c process	0.01825 495	FBgn0025814,FBgn0053178	2	GO:0001 516
lagging strand elongation	0.01825 495	FBgn0259113,FBgn0262619	2	GO:0006 273
eye pigment precursor transport	0.01825 495	FBgn0003515,FBgn0003996	2	GO:0006 856
ocellus developme nt	0.01825 495	FBgn0005771,FBgn0019650	2	GO:0008 056
regulation of nucleotide biosyntheti c process	0.01825 495	FBgn0025741,FBgn0262467	2	GO:0030 808
positive regulation of nucleotide biosyntheti c process	0.01825 495	FBgn0025741,FBgn0262467	2	GO:0030 810
copper ion transmemb rane transport	0.01825 495	FBgn0030343,FBgn0062413	2	GO:0035 434
DNA replication proofreadi ng	0.01825 495	FBgn0004406,FBgn0035644	2	GO:0045 004
positive regulation of nucleotide metabolic process	0.01825 495	FBgn0025741,FBgn0262467	2	GO:0045 981
icosanoid biosyntheti c process	0.01825 495	FBgn0025814,FBgn0053178	2	GO:0046 456
prostanoid biosyntheti c process	0.01825 495	FBgn0025814,FBgn0053178	2	GO:0046 457
regulation of purine	0.01825 495	FBgn0025741,FBgn0262467	2	GO:1900 371

nucleotide biosyntheti				
c process				
	0.01925	ED == 0025741 ED == 0262467	2	CO.1000
positive regulation of purine nucleotide biosyntheti c process	0.01825 495	FBgn0025741,FBgn0262467	2	GO:1900 373
positive regulation of purine nucleotide metabolic process	0.01825 495	FBgn0025741,FBgn0262467	2	GO:1900 544
cell cycle DNA replication initiation	0.01825 495	FBgn0014861,FBgn0259113	2	GO:1902 292
nuclear cell cycle DNA replication initiation	0.01825 495	FBgn0014861,FBgn0259113	2	GO:1902 315
mitotic DNA replication initiation	0.01825 495	FBgn0014861,FBgn0259113	2	GO:1902 975
positive regulation of chromatin organizatio n	0.02083 228	FBgn0016917,FBgn0025463,FBgn0027499,FBgn00326 91,FBgn0037669,FBgn0263855,FBgn0265623	7	GO:1905 269
ommochro me biosyntheti c process	0.02087 48	FBgn0002566,FBgn0003515,FBgn0003996,FBgn00866 79	4	GO:0006 727
ocellus pigment biosyntheti c process	0.02087 48	FBgn0002566,FBgn0003515,FBgn0003996,FBgn00866 79	4	GO:0008 055
ocellus pigmentati on	0.02087 48	FBgn0002566,FBgn0003515,FBgn0003996,FBgn00866 79	4	GO:0033 060
ommochro me metabolic process	0.02087 48	FBgn0002566,FBgn0003515,FBgn0003996,FBgn00866 79	4	GO:0046 152
ocellus pigment metabolic process	0.02087 48	FBgn0002566,FBgn0003515,FBgn0003996,FBgn00866 79	4	GO:0046 158
regulation of exit from mitosis	0.02194 419	FBgn0004583,FBgn0010382,FBgn0263855	3	GO:0007 096

intestinal stem cell homeostasi s	0.02310 798	FBgn0000261,FBgn0001218,FBgn0032691,FBgn02591 76,FBgn0264959	5	GO:0036 335
aging	0.02313 687	FBgn0000261,FBgn0002566,FBgn0004657,FBgn00113 00,FBgn0015575,FBgn0016120,FBgn0020653,FBgn003 0350,FBgn0033127,FBgn0033448,FBgn0035132,FBgn0 035977,FBgn0038788,FBgn0051216,FBgn0259170,FBg n0259176,FBgn0263316	17	GO:0007 568
regulation of mitotic nuclear division	0.02511 586	FBgn0004583,FBgn0004643,FBgn0004889,FBgn00103 82,FBgn0024227,FBgn0031549,FBgn0034569,FBgn003 9638,FBgn0263855	9	GO:0007 088
organic substance metabolic process	0.02523 394	FBgn0000078,FBgn0000377,FBgn000477,FBgn00005 43,FBgn0000562,FBgn0000591,FBgn0000810,FBgn000 1187,FBgn0001218,FBgn0002522,FBgn0002524,FBgn0 002542,FBgn0002566,FBgn0002878,FBgn0003516, FBgn0003042,FBgn0003357,FBgn000376,FBgn0003515, 2,FBgn0003515,FBgn0003525,FBgn0003863,FBgn00035 996,FBgn0004406,FBgn0004432,FBgn0004396,FBgn00 04403,FBgn0004406,FBgn0004432,FBgn0004396,FBgn00 04403,FBgn0004406,FBgn0004432,FBgn0004396,FBgn00 04403,FBgn0004406,FBgn0004432,FBgn0004797,FBgn 0004837,FBgn0005671,FBgn0011291,FBgn0011382, FBgn00110438,FBgn0010786,FBgn0011291,FBgn00113 00,FBgn0011762,FBgn0011770,FBgn0011660,FBgn001 1739,FBgn0011762,FBgn0011394,FBgn00113972,FBg n0014023,FBgn0014037,FBgn0014135,FBgn0014380,F Bgn0014427,FBgn0014861,FBgn0014394,FBgn001501 1,FBgn0015271,FBgn0015299,FBgn0015396,FBgn0015 513,FBgn0016917,FBgn0017577,FBgn0016120,FBgn00 16691,FBgn0023214,FBgn002506,FBgn0025986,FB gn0023175,FBgn0023214,FBgn0023477,FBgn0023545, FBgn0024194,FBgn0024997,FBgn0025185,FBgn002 5463,FBgn0025629,FBgn0025680,FBgn0025185,FBgn002 5463,FBgn0026702,FBgn0025680,FBgn0025185,FBgn002 5463,FBgn0026702,FBgn0025680,FBgn0025185,FBgn002 5463,FBgn0026702,FBgn0025680,FBgn0026674,FBg gn02834,FBgn0026702,FBgn0025741,FBgn002 5463,FBgn0026702,FBgn002568,FBgn0025741,FBgn 025814,FBgn0026702,FBgn002568,FBgn0025741,FBgn 025814,FBgn0026702,FBgn002894,FBgn002577 8,FBgn0027620,FBgn002894,FBgn002898,FBgn002 5463,FBgn0026679,FBgn0028970,FBgn002898,FBgn002 5463,FBgn0026679,FBgn0028970,FBgn002898,FBgn008 695,FBgn002836,FBgn003631,FBgn0030683,FBgn003068 8,FBgn003069,FBgn0030363,FBgn003045,FB gn003093,FBgn0031678,FBgn0031231,FBgn0031643,FBg 0031663,FBgn0031678,FBgn0031244,FBgn0031643,FBg 0031663,FBgn0031678,FBgn0031244,FBgn0031643,FBg 0031663,FBgn0031741,FBgn0031248,FBgn0032047,FBgn0032205 3,FBgn0032140,FBgn0031741,FBgn0031443,FBg 0031663,FBgn0031876,FBgn0033184,FBgn0033185,F Bgn0031851,FBgn0031876,FBgn0033184,FBgn0033184,FBgn00332047,FBgn0033284,FBgn0033184,FBgn0033188,FB 0033061,FBgn0033182,FBgn0033184,FBgn0033188,FB 0033061,FBgn0033382,FBgn0033507,FBgn0033	283	GO:0071 704

		FBgn0033555,FBgn0033815,FBgn0033859,FBgn00338		
		90,FBgn0033921,FBgn0033935,FBgn0033988,FBgn003		
		3998,FBgn0034030,FBgn0034065,FBgn0034085,FBgn0		
		034141,FBgn0034199,FBgn0034310,FBgn0034335,FBg		
		n0034459,FBgn0034495,FBgn0034527,FBgn0034564,F		
		Bgn0034579,FBgn0034614,FBgn0034650,FBgn003493		
		8,FBgn0035064,FBgn0035124,FBgn0035153,FBgn0035		
		154,FBgn0035246,FBgn0035266,FBgn0035318,FBgn00		
		35374,FBgn0035397,FBgn0035471,FBgn0035644,FBgn		
		0035663,FBgn0035670,FBgn0035679,FBgn0035779,FB		
		gn0035806,FBgn0035900,FBgn0035918,FBgn0035977,		
		FBgn0035986,FBgn0036018,FBgn0036023,FBgn00361		
		57,FBgn0036237,FBgn0036258,FBgn0036335,FBgn003		
		6373,FBgn0036374,FBgn0036512,FBgn0036549,FBgn0		
		036569,FBgn0036671,FBgn0036691,FBgn0036713,FBg		
		n0036734,FBgn0036735,FBgn0036754,FBgn0036760,F		
		Bgn0036771,FBgn0036826,FBgn0036827,FBgn003695		
		3,FBgn0036996,FBgn0037045,FBgn0037109,FBgn0037		
		146,FBgn0037293,FBgn0037305,FBgn0037330,FBgn00		
		37538,FBgn0037569,FBgn0037607,FBgn0037669,FBgn		
		0037687,FBgn0037716,FBgn0037722,FBgn0037822,FB		
		gn0037918,FBgn0037926,FBgn0038038,FBgn0038173,		
		FBgn0038224,FBgn0038237,FBgn0038271,FBgn00383		
		48,FBgn0038390,FBgn0038426,FBgn0038437,FBgn003		
		8474,FBgn0038485,FBgn0038546,FBgn0038588,FBgn0		
		038592,FBgn0038788,FBgn0038870,FBgn0038928,FBg		
		n0039023,FBgn0039159,FBgn0039182,FBgn0039252,F		
		Bgn0039258,FBgn0039273,FBgn0039304,FBgn003930		
		6,FBgn0039347,FBgn0039403,FBgn0039404,FBgn0039		
		462,FBgn0039464,FBgn0039471,FBgn0039507,FBgn00		
		39596,FBgn0039650,FBgn0039740,FBgn0039938,FBgn		
		0039972,FBgn0040754,FBgn0041103,FBgn0041629,FB		
		gn0042112,FBgn0043471,FBgn0043575,FBgn0043796,		
		FBgn0043900,FBgn0044872,FBgn0050022,FBgn00500		
		47,FBgn0050287,FBgn0050414,FBgn0050446,FBgn005		
		0493,FBgn0051126,FBgn0051450,FBgn0051550,FBgn0		
		051721,FBgn0051739,FBgn0052201,FBgn0052284,FBg		
		n0052483,FBgn0053100,FBgn0053178,FBgn0053265,F		
		Bgn0053504,FBgn0061469,FBgn0063491,FBgn006349		
		2,FBgn0063493,FBgn0067102,FBgn0083983,FBgn0085		
		249,FBgn0085484,FBgn0086358,FBgn0086450,FBgn00		
		86679,FBgn0250850,FBgn0259113,FBgn0259170,FBgn		
		0259176,FBgn0259227,FBgn0259678,FBgn0259685,FB		
		gn0259748,FBgn0259938,FBgn0260477,FBgn0260750,		
		FBgn0260817,FBgn0260985,FBgn0261287,FBgn02614		
		45,FBgn0261872,FBgn0262449,FBgn0262467,FBgn026		
		2559,FBgn0262619,FBgn0263144,FBgn0263237,FBgn0		
		263260,FBgn0263780,FBgn0263855,FBgn0263863,FBg		
		n0264494,FBgn0264959,FBgn0265048,FBgn0265523,F		
		Bgn0265623,FBgn0266411,FBgn0266465,FBgn026691		
		7,FBgn0267792,FBgn0267821,FBgn0286027,FBgn0286		
•.	0.00505	506	202	00.000
itrogen	0.02727	FBgn0000377,FBgn0000477,FBgn0000543,FBgn00005	283	GO:0006
compound	286	62,FBgn0000591,FBgn0000810,FBgn0001187,FBgn000		807
netabolic		1218,FBgn0002522,FBgn0002524,FBgn0002542,FBgn0		
process		002566,FBgn0002878,FBgn0002899,FBgn0003042,FBg		
		n0003044,FBgn0003116,FBgn0003356,FBgn0003357,F		

Bgn0003358,FBgn0003512,FBgn0003525,FBgn000386	
3,FBgn0003996,FBgn0004066,FBgn0004170,FBgn0004	
396,FBgn0004403,FBgn0004406,FBgn0004432,FBgn00	
04837,FBgn0004889,FBgn0004907,FBgn0005674,FBgn	
0005696,FBgn0005771,FBgn0010314,FBgn0010382,FB	
gn0010786,FBgn0011291,FBgn0011300,FBgn0011336,	
FBgn0011591,FBgn0011660,FBgn0011739,FBgn00117	
62,FBgn0011787,FBgn0011817,FBgn0013725,FBgn001	
3954,FBgn0013972,FBgn0014023,FBgn0014037,FBgn0	
014135,FBgn0014427,FBgn0014861,FBgn0014949,FBg	
n0015271,FBgn0015299,FBgn0015396,FBgn0015513,F	
Bgn0015778,FBgn0016070,FBgn0016120,FBgn001669	
1,FBgn0016917,FBgn0017577,FBgn0019644,FBgn0019	
650,FBgn0020391,FBgn0022986,FBgn0023175,FBgn00	
23214,FBgn0023545,FBgn0024194,FBgn0024227,FBgn	
0024987,FBgn0024995,FBgn0024997,FBgn0025185,FB	
gn0025463,FBgn0025629,FBgn0025680,FBgn0025741,	
FBgn0025832,FBgn0025936,FBgn0026147,FBgn00266	
79,FBgn0026702,FBgn0026741,FBgn0026876,FBgn002	
6879,FBgn0027499,FBgn0027578,FBgn0027620,FBgn0	
028342,FBgn0028694,FBgn0028695,FBgn0028836,FBg	
n0028970,FBgn0028988,FBgn0029006,FBgn0029079,F	
Bgn0029689,FBgn0029718,FBgn0029828,FBgn002997	
7,FBgn0030054,FBgn0030085,FBgn0030093,FBgn0030	
365,FBgn0030432,FBgn0030507,FBgn0030631,FBgn00	
30683,FBgn0030688,FBgn0030699,FBgn0030776,FBgn	
0030945,FBgn0031003,FBgn0031227,FBgn0031231,FB	
gn0031248,FBgn0031260,FBgn0031309,FBgn0031321,	
FBgn0031643,FBgn0031663,FBgn0031678,FBgn00317	
41,FBgn0031805,FBgn0031851,FBgn0031876,FBgn003	
2047,FBgn0032053,FBgn0032130,FBgn0032144,FBgn0	
032187,FBgn0032290,FBgn0032400,FBgn0032486,FBg	
n0032638,FBgn0032691,FBgn0032813,FBgn0032956,F	
Bgn0033010,FBgn0033179,FBgn0033184,FBgn003327	
4,FBgn0033507,FBgn0033527,FBgn0033555,FBgn0033	
815,FBgn0033859,FBgn0033890,FBgn0033921,FBgn00	
33935,FBgn0033988,FBgn0033998,FBgn0034030,FBgn	
0034065,FBgn0034085,FBgn0034199,FBgn0034310,FB	
gn0034335,FBgn0034459,FBgn0034527,FBgn0034564,	
FBgn0034579,FBgn0034614,FBgn0034650,FBgn00349	
38,FBgn0035064,FBgn0035124,FBgn0035153,FBgn003	
5154,FBgn0035246,FBgn0035318,FBgn0035374,FBgn0	
035397,FBgn0035644,FBgn0035663,FBgn0035670,FBg	
n0035779,FBgn0035806,FBgn0035900,FBgn0035918,F	
Bgn0035977,FBgn0035986,FBgn0036018,FBgn003602	
3,FBgn0036157,FBgn0036237,FBgn0036258,FBgn0036	
335,FBgn0036373,FBgn0036374,FBgn0036512,FBgn00	
36549,FBgn0036569,FBgn0036671,FBgn0036734,FBgn	
0036735,FBgn0036754,FBgn0036760,FBgn0036771,FB	
gn0036826,FBgn0036827,FBgn0036953,FBgn0037045,	
FBgn0037109,FBgn0037146,FBgn0037293,FBgn00373	
05,FBgn0037330,FBgn0037538,FBgn0037607,FBgn003	
7669,FBgn0037687,FBgn0037716,FBgn0037722,FBgn0	
037822,FBgn0037918,FBgn0037926,FBgn0038173,FBg	
n0038224,FBgn0038237,FBgn0038271,FBgn0038390,F	
Bgn0038426,FBgn0038474,FBgn0038485,FBgn003854	
6,FBgn0038588,FBgn0038592,FBgn0038788,FBgn0038	
0,FB2II0036366,FB2II0036392,FB2II0036766,FB2II0036	

double- strand break repair via break- induced	0.02803 595	870,FBgn0038928,FBgn0039023,FBgn0039159,FBgn00 39182,FBgn0039252,FBgn0039258,FBgn0039273,FBgn 0039304,FBgn0039306,FBgn0039347,FBgn0039403,FB gn0039404,FBgn0039462,FBgn0039464,FBgn0039650, FBgn0039740,FBgn0039938,FBgn0039972,FBgn00407 54,FBgn0041103,FBgn0042112,FBgn0043471,FBgn004 3575,FBgn0043796,FBgn0043900,FBgn0044872,FBgn0 050022,FBgn0050047,FBgn0050287,FBgn0050414,FBg n0050446,FBgn0051126,FBgn0051450,FBgn0051550,F Bgn0051721,FBgn0051739,FBgn0052201,FBgn005228 4,FBgn0052483,FBgn0053100,FBgn0053178,FBgn0053 265,FBgn0053504,FBgn0061469,FBgn0063491,FBgn00 63492,FBgn0063493,FBgn0067102,FBgn0083983,FBgn 0085249,FBgn0085484,FBgn0086358,FBgn0086450,FB gn0250850,FBgn0259113,FBgn0259170,FBgn0259176, FBgn0259227,FBgn0259678,FBgn0259685,FBgn02597 48,FBgn0260985,FBgn0260477,FBgn0260750,FBgn026 0817,FBgn0260985,FBgn0261287,FBgn0261445,FBgn0 261872,FBgn0263144,FBgn0263237,FBgn0263260,F Bgn0263780,FBgn0263144,FBgn0263237,FBgn0263260,F Bgn0263780,FBgn0263144,FBgn0263237,FBgn0263260,F Bgn0263780,FBgn0263449,FBgn0263237,FBgn0263260,F Bgn0263780,FBgn0263855,FBgn0263863,FBgn026495 9,FBgn0265048,FBgn0265523,FBgn0265623,FBgn0266 411,FBgn0266465,FBgn0266917,FBgn0267792,FBgn02 67821,FBgn0286027,FBgn0286506 FBgn0014861,FBgn0017577,FBgn0039403	3	GO:0000 727
replication positive regulation of defense response to virus by	0.02803 595	FBgn0016917,FBgn0038928,FBgn0086358	3	GO:0002 230
host regulation of defense response to virus by host	0.02803 595	FBgn0016917,FBgn0038928,FBgn0086358	3	GO:0050 691
prostanoid metabolic process	0.02927 61	FBgn0025814,FBgn0053178	2	GO:0006 692
prostaglan din metabolic process	0.02927 61	FBgn0025814,FBgn0053178	2	GO:0006 693
protein- cofactor linkage	0.02927 61	FBgn0010786,FBgn0033274	2	GO:0018 065
respiratory chain complex II assembly	0.02927 61	FBgn0033274,FBgn0038437	2	GO:0034 552

mitochondr ial respiratory chain complex II assembly	0.02927 61	FBgn0033274,FBgn0038437	2	GO:0034 553
regulation of Notch signaling pathway	0.02929 277	FBgn0002592,FBgn0004837,FBgn0011591,FBgn00137 25,FBgn0035060,FBgn0039273,FBgn0259685,FBgn026 0440,FBgn0265523	9	GO:0008 593
nuclear- transcribed mRNA poly(A) tail shortening	0.02944 978	FBgn0016070,FBgn0035246,FBgn0035397,FBgn00399 72	4	GO:0000 289
protein peptidyl- prolyl isomerizati on	0.02944 978	FBgn0004432,FBgn0013954,FBgn0033527,FBgn00393 47	4	GO:0000 413
sensory organ developme nt	0.02975 204	FBgn0000008,FBgn0000543,FBgn0000591,FBgn00025 92,FBgn0003116,FBgn0003174,FBgn0003391,FBgn000 4170,FBgn0004583,FBgn0004837,FBgn0004889,FBgn0 005771,FBgn0010380,FBgn0010382,FBgn0011300,FBg n0011591,FBgn0011739,FBgn0011817,FBgn0013725,F Bgn0014135,FBgn0015396,FBgn0015778,FBgn001965 0,FBgn0020391,FBgn0023214,FBgn0033179,FBgn0034 243,FBgn0043903,FBgn0045073,FBgn0050476,FBgn00 51158,FBgn0051721,FBgn0259176,FBgn0259685,FBgn 0260440,FBgn0264959,FBgn0267821	37	GO:0007 423
regulation of mitotic metaphase/ anaphase transition	0.03011 154	FBgn0004643,FBgn0004889,FBgn0024227,FBgn00315 49,FBgn0263855	5	GO:0030 071
regulation of chromoso me organizatio n	0.03081 074	FBgn0004643,FBgn0004889,FBgn0014861,FBgn00169 17,FBgn0024227,FBgn0025463,FBgn0027499,FBgn002 7620,FBgn0031549,FBgn0032691,FBgn0037607,FBgn0 037669,FBgn0039507,FBgn0043796,FBgn0263855,FBg n0265623,FBgn0267792	17	GO:0033 044
ncRNA metabolic process	0.03139 418	FBgn0002899,FBgn0004403,FBgn0005674,FBgn00256 29,FBgn0026679,FBgn0026702,FBgn0030085,FBgn003 1227,FBgn0031321,FBgn0031643,FBgn0033507,FBgn0 033921,FBgn0034065,FBgn0034564,FBgn0034614,FBg n0035064,FBgn0035986,FBgn0036569,FBgn0036754,F Bgn0037330,FBgn0037822,FBgn0037926,FBgn003847 4,FBgn0039306,FBgn0039404,FBgn0051739,FBgn0263 144	27	GO:0034 660
mitotic cell cycle, embryonic	0.03139 468	FBgn0003042,FBgn0003525,FBgn0004907,FBgn00103 14,FBgn0011020,FBgn0033890	6	GO:0045 448
cell cycle process	0.03203 942	FBgn0000140,FBgn0002542,FBgn0002878,FBgn00028 99,FBgn0003525,FBgn0004378,FBgn0004583,FBgn000 4643,FBgn0004837,FBgn0004889,FBgn0010314,FBgn0 010382,FBgn0011020,FBgn0011739,FBgn0014861,FBg	45	GO:0022 402

		n0015271,FBgn0015391,FBgn0017577,FBgn0024227,F Bgn0026876,FBgn0028292,FBgn0029977,FBgn003005 4,FBgn0031549,FBgn0032047,FBgn0032290,FBgn0033 890,FBgn0033921,FBgn0034495,FBgn0034569,FBgn00 35249,FBgn0035644,FBgn0035918,FBgn0038390,FBgn 0039403,FBgn0039638,FBgn0052371,FBgn0087021,FB gn0087040,FBgn0259113,FBgn0259685,FBgn0260985, FBgn0262619,FBgn0263855,FBgn0266418		
cellular metal ion homeostasi s	0.03297 3	FBgn0024236,FBgn0024958,FBgn0030343,FBgn00303 50,FBgn0034136,FBgn0034199,FBgn0045073,FBgn006 2413,FBgn0261872,FBgn0262467	10	GO:0006 875
homeostasi s of number of cells	0.03406 246	FBgn0000261,FBgn0001218,FBgn0032691,FBgn02591 76,FBgn0264959	5	GO:0048 872
regulation of metaphase/ anaphase transition of cell cycle	0.03406 246	FBgn0004643,FBgn0004889,FBgn0024227,FBgn00315 49,FBgn0263855	5	GO:1902 099
exit from mitosis	0.03492 824	FBgn0004583,FBgn0010382,FBgn0263855	3	GO:0010 458
regulation of heterochro matin assembly	0.03492 824	FBgn0016917,FBgn0025463,FBgn0027620	3	GO:0031 445
bicoid mRNA localizatio n	0.03492 824	FBgn0000562,FBgn0003512,FBgn0003655	3	GO:0045 450
negative regulation of behavior	0.03492 824	FBgn0020258,FBgn0033257,FBgn0036713	3	GO:0048 521
regulation of nuclear- transcribed mRNA poly(A) tail shortening	0.03492 824	FBgn0016070,FBgn0035246,FBgn0039972	3	GO:0060 211
positive regulation of nuclear- transcribed mRNA poly(A) tail shortening	0.03492 824	FBgn0016070,FBgn0035246,FBgn0039972	3	GO:0060 213
positive regulation of cell cycle G1/S phase	0.03492 824	FBgn0004837,FBgn0010382,FBgn0039403	3	GO:1902 808

cellular	0.03560	FBgn0000261,FBgn0000377,FBgn0000477,FBgn00005	283	GO:0044
metabolic	41	43,FBgn0000562,FBgn0000591,FBgn0000810,FBgn000	205	237
process		1187,FBgn0001218,FBgn0002522,FBgn0002524,FBgn0		237
process		002542,FBgn0002566,FBgn0002878,FBgn0002899,FBg		
		n0003042,FBgn0003044,FBgn0003076,FBgn0003116,F		
		Bgn0003512,FBgn0003515,FBgn0003525,FBgn000399		
		6,FBgn0004066,FBgn0004170,FBgn0004396,FBgn0004		
		403,FBgn0004406,FBgn0004432,FBgn0004797,FBgn00		
		04837,FBgn0004889,FBgn0004907,FBgn0005674,FBgn		
		0005696,FBgn0005771,FBgn0010314,FBgn0010380,FB		
		gn0010382,FBgn0010438,FBgn0010786,FBgn0011227,		
		FBgn0011291,FBgn0011300,FBgn0011336,FBgn00115		
		91,FBgn0011660,FBgn0011739,FBgn0011762,FBgn001		
		1770,FBgn0011787,FBgn0011817,FBgn0013269,FBgn0		
		013725,FBgn0013954,FBgn0013972,FBgn0014023,FBg		
		n0014037,FBgn0014135,FBgn0014380,FBgn0014427,F		
		Bgn0014861,FBgn0014949,FBgn0015011,FBgn001527		
		1,FBgn0015299,FBgn0015396,FBgn0015513,FBgn0015		
		778,FBgn0016070,FBgn0016120,FBgn0016691,FBgn00		
		16917,FBgn0017577,FBgn0019644,FBgn0019650,FBgn		
		0020391,FBgn0022986,FBgn0023175,FBgn0023214,FB		
		gn0023477,FBgn0023545,FBgn0024194,FBgn0024227,		
		FBgn0024958,FBgn0024987,FBgn0024995,FBgn00249		
		97,FBgn0025185,FBgn0025463,FBgn0025629,FBgn002		
		5680,FBgn0025741,FBgn0025814,FBgn0025832,FBgn0		
		025839,FBgn0025936,FBgn0026147,FBgn0026679,FBg		
		n0026702,FBgn0026741,FBgn0026876,FBgn0026879,F		
		Bgn0027499,FBgn0027560,FBgn0027620,FBgn002784		
		3,FBgn0027844,FBgn0028342,FBgn0028694,FBgn0028		
		695,FBgn0028836,FBgn0028970,FBgn0028988,FBgn00		
		29006,FBgn0029079,FBgn0029689,FBgn0029718,FBgn		
		0029977,FBgn0030054,FBgn0030085,FBgn0030093,FB		
		gn0030365,FBgn0030432,FBgn0030507,FBgn0030596,		
		FBgn0030631,FBgn0030683,FBgn0030699,FBgn00309		
		45,FBgn0031003,FBgn0031227,FBgn0031231,FBgn003		
		1260,FBgn0031309,FBgn0031321,FBgn0031635,FBgn0		
		031643,FBgn0031663,FBgn0031851,FBgn0031876,FBg		
		n0032047,FBgn0032053,FBgn0032130,FBgn0032187,F		
		Bgn0032290,FBgn0032400,FBgn0032486,FBgn003269		
		1,FBgn0032813,FBgn0032956,FBgn0033010,FBgn0033		
		179,FBgn0033184,FBgn0033274,FBgn0033382,FBgn00		
		33507,FBgn0033520,FBgn0033527,FBgn0033555,FBgn		
		0033815,FBgn0033859,FBgn0033890,FBgn0033921,FB		
		gn0033935,FBgn0033961,FBgn0033988,FBgn0033998,		
		FBgn0034030,FBgn0034065,FBgn0034085,FBgn00341		
		41,FBgn0034199,FBgn0034310,FBgn0034335,FBgn003		
		4459,FBgn0034495,FBgn0034527,FBgn0034564,FBgn0		
		034579,FBgn0034614,FBgn0034650,FBgn0034938,FBg		
		n0035064,FBgn0035124,FBgn0035153,FBgn0035154,F		
		Bgn0035246,FBgn0035266,FBgn0035318,FBgn003537		
		4,FBgn0035397,FBgn0035471,FBgn0035644,FBgn0035		
		4,FBgn0055597,FBgn0055471,FBgn0055044,FBgn0055 900,FBgn0035918,FBgn0035977,FBgn0035986,FBgn00		
		36018,FBgn0036157,FBgn0036258,FBgn0036335,FBgn		
		0036373,FBgn0036374,FBgn0036549,FBgn0036569,FB		
		gn0036671,FBgn0036691,FBgn0036713,FBgn0036734, FBgn0036735,FBgn0036754,FBgn0036760,FBgn00367		

		71,FBgn0036826,FBgn0036827,FBgn0036953,FBgn003 7045,FBgn0037109,FBgn0037146,FBgn0037293,FBgn0		
		037305,FBgn0037330,FBgn0037538,FBgn0037607,FBg n0037669,FBgn0037687,FBgn0037716,FBgn0037722,F Bgn0037822,FBgn0037891,FBgn0037918,FBgn003792		
		6,FBgn0038038,FBgn0038173,FBgn0038224,FBgn0038 237,FBgn0038271,FBgn0038348,FBgn0038390,FBgn00		
		38426,FBgn0038437,FBgn0038474,FBgn0038546,FBgn 0038588,FBgn0038592,FBgn0038593,FBgn0038788,FB		
		gn0038870,FBgn0038928,FBgn0039159,FBgn0039182, FBgn0039252,FBgn0039258,FBgn0039273,FBgn00393		
		04,FBgn0039306,FBgn0039347,FBgn0039403,FBgn003 9404,FBgn0039462,FBgn0039464,FBgn0039650,FBgn0		
		039740,FBgn0039938,FBgn0039972,FBgn0040529,FBg		
		n0040754,FBgn0041103,FBgn0042112,FBgn0043575,F Bgn0043796,FBgn0043900,FBgn0044872,FBgn004703		
		8,FBgn0050022,FBgn0050446,FBgn0050493,FBgn0051 126,FBgn0051450,FBgn0051550,FBgn0051721,FBgn00		
		51739,FBgn0052201,FBgn0052284,FBgn0052483,FBgn 0053100,FBgn0053178,FBgn0053265,FBgn0053504,FB		
		gn0061469,FBgn0063491,FBgn0063492,FBgn0063493, FBgn0067102,FBgn0083983,FBgn0085249,FBgn00854		
		84,FBgn0086358,FBgn0086450,FBgn0086679,FBgn025 0850,FBgn0259113,FBgn0259170,FBgn0259176,FBgn0		
		259227,FBgn0259678,FBgn0259685,FBgn0259748,FBg n0259938,FBgn0260750,FBgn0260817,FBgn0260985,F		
		Bgn0261287,FBgn0261445,FBgn0261872,FBgn026244 9,FBgn0262467,FBgn0262559,FBgn0262619,FBgn0263		
		144,FBgn0263237,FBgn0263855,FBgn0263863,FBgn02 64494,FBgn0264959,FBgn0265048,FBgn0265052,FBgn		
		0265523,FBgn0265623,FBgn0266411,FBgn0266465,FB gn0266917,FBgn0267792,FBgn0267821,FBgn0286027,		
		FBgn0286506		
asymmetri c cell	0.03580 441	FBgn0000140,FBgn0003391,FBgn0004837,FBgn00048 89,FBgn0010382,FBgn0011020,FBgn0024227,FBgn002	11	GO:0008 356
division	0.00440	8292,FBgn0028836,FBgn0260440,FBgn0266418		
regulation of nuclear division	0.03643 352	FBgn0004583,FBgn0004643,FBgn0004889,FBgn00103 82,FBgn0024227,FBgn0031549,FBgn0034569,FBgn003 9638,FBgn0263855	9	GO:0051 783
wing disc	0.03673	FBgn0004837,FBgn0010651,FBgn0011591,FBgn00118	7	GO:0048
dorsal/vent ral pattern formation	362	17,FBgn0014037,FBgn0259685,FBgn0263316		190
rRNA	0.03678	FBgn0002899,FBgn0004403,FBgn0026702,FBgn00300	14	GO:0006
processing	627	85,FBgn0031643,FBgn0033507,FBgn0034065,FBgn003 4564,FBgn0035986,FBgn0036754,FBgn0037822,FBgn0 038474,FBgn0039306,FBgn0039404		364
mRNA transport	0.03840 119	FBgn0000562,FBgn0033926,FBgn0034310,FBgn00359 00,FBgn0037569,FBgn0087040	6	GO:0051 028
transition metal ion homeostasi	0.03840	FBgn0024236,FBgn0024958,FBgn0030343,FBgn00332 74,FBgn0062413,FBgn0262467	6	GO:0055 076
s	0.03905	EBan0004240 EBan0010651 EDan0020652 EDan00221	9	GO:0070
response to oxygen levels	0.03905	FBgn0004240,FBgn0010651,FBgn0020653,FBgn00331 88,FBgn0038437,FBgn0038530,FBgn0051354,FBgn026 3316,FBgn0266411	9	482

cell cycle	0.03946 61	FBgn0000140,FBgn0002542,FBgn0002878,FBgn00028 99,FBgn0003042,FBgn0003525,FBgn0004170,FBgn000 4378,FBgn0004583,FBgn0004643,FBgn0004837,FBgn0 004889,FBgn0004907,FBgn0010314,FBgn0010382,FBg n0011020,FBgn0011739,FBgn0014861,FBgn0015271,F Bgn0015391,FBgn0017577,FBgn0024227,FBgn002687 6,FBgn0028292,FBgn0029977,FBgn0030054,FBgn0031 549,FBgn0032047,FBgn0032290,FBgn0032400,FBgn00 33890,FBgn0033921,FBgn0034495,FBgn0034569,FBgn 0035249,FBgn0035644,FBgn0035918,FBgn0034569,FBgn 0035249,FBgn0038565,FBgn0039403,FBgn0039638, FBgn0052371,FBgn0087021,FBgn0087040,FBgn02591 13,FBgn0259685,FBgn0260985,FBgn0262619,FBgn026 3237,FBgn0263855,FBgn0265523,FBgn0266418,FBgn0 266465,FBgn0266917	55	GO:0007 049
cellular chemical homeostasi s	0.03951 186	FBgn0001187,FBgn0011300,FBgn0023510,FBgn00242 36,FBgn0024958,FBgn0030343,FBgn0030350,FBgn003 4136,FBgn0034199,FBgn0045073,FBgn0062413,FBgn0 261872,FBgn0262467	13	GO:0055 082
DNA endoredupl ication	0.03982 656	FBgn0017577,FBgn0030054,FBgn0033890,FBgn00356 44	4	GO:0042 023
cellular nitrogen compound metabolic process	0.04215 74	FBgn0000377,FBgn0000477,FBgn0000543,FBgn00005 62,FBgn0000591,FBgn0000810,FBgn0001187,FBgn000 2522,FBgn0002542,FBgn0002878,FBgn0002899,FBgn 003042,FBgn0003044,FBgn0003512,FBgn0003996,FBg n0004170,FBgn0004396,FBgn0004403,FBgn0004406,F Bgn0004837,FBgn0004907,FBgn0005674,FBgn000569 6,FBgn0005771,FBgn0010382,FBgn0010786,FBgn0011 291,FBgn0011660,FBgn0011762,FBgn0011787,FBgn00 13972,FBgn0014023,FBgn0014037,FBgn0014861,FBgn 0014949,FBgn0015271,FBgn0015299,FBgn0015396,FB gn0015778,FBgn0016070,FBgn0016120,FBgn0016691, FBgn0016917,FBgn0017577,FBgn0019644,FBgn00196 50,FBgn0022986,FBgn0023214,FBgn0024987,FBgn002 5185,FBgn0025463,FBgn0025629,FBgn0026680,FBgn0 025741,FBgn0025832,FBgn0026679,FBgn0026702,FBg n0026741,FBgn0026876,FBgn0026879,FBgn0027499,F Bgn0027620,FBgn0028342,FBgn0029006,FBgn002907 9,FBgn003085,FBgn0030093,FBgn003065,FBgn00 30432,FBgn0031227,FBgn0031643,FBgn0031663, FBgn0031805,FBgn0032213,FBgn0031260,FB gn0031309,FBgn003121,FBgn0031643,FBgn0031260,FB gn0031309,FBgn0031227,FBgn0031643,FBgn0031260,FB gn0031309,FBgn0031240,FBgn0033184,FBgn0033507,FBgn0 30455,FBgn0033010,FBgn0033184,FBgn0033507,FBgn0 303555,FBgn0033400,FBgn0033184,FBgn0033507,FBgn0 303598,FBgn0034005,FBgn0034310,FBgn0033507,FBgn0 303598,FBgn003405,FBgn0034310,FBgn0033507,FBgn0 303555,FBgn0033010,FBgn0033184,FBgn0033507,FBgn0 303555,FBgn0034005,FBgn0033184,FBgn0033507,FBgn0 303555,FBgn0034057,FBgn0034310,FBgn0033507,FBgn0 303555,FBgn0034057,FBgn003503,FBgn0033507,FBgn0 303555,FBgn0034057,FBgn003503,FBgn0033507,FBgn0 303555,FBgn0034057,FBgn003505,FBgn003553,FBgn0	209	GO:0034 641

		7607,FBgn0037669,FBgn0037687,FBgn0037716,FBgn0 037722,FBgn0037822,FBgn0037918,FBgn0037926,FBg n0038173,FBgn0038224,FBgn0038237,FBgn0038390,F Bgn0038426,FBgn0038474,FBgn0038546,FBgn003859 2,FBgn0038928,FBgn0039159,FBgn0039182,FBgn0039 252,FBgn0039306,FBgn0039403,FBgn0039404,FBgn00 39462,FBgn0039464,FBgn0039650,FBgn0039740,FBgn 0039938,FBgn0039972,FBgn0041103,FBgn0042112,FB gn0043575,FBgn0043796,FBgn0043900,FBgn0050022, FBgn0051126,FBgn0051450,FBgn0051550,FBgn00517 39,FBgn0053100,FBgn0053178,FBgn0053504,FBgn006 1469,FBgn0063491,FBgn0063492,FBgn0063493,FBgn 067102,FBgn0083983,FBgn0085484,FBgn0086358,FBg n0086450,FBgn0250850,FBgn0259113,FBgn0259176,F Bgn0259938,FBgn0260750,FBgn0260817,FBgn026098 5,FBgn0261287,FBgn0261872,FBgn0262449,FBgn0262 467,FBgn0262619,FBgn0263144,FBgn0263237,FBgn02 63855,FBgn0263863,FBgn0265048,FBgn0265523,FBgn 0265623,FBgn0266411,FBgn0266917,FBgn0267792,FB gn0267821,FBgn0286027,FBgn0286506		
neurotrans mitter uptake	0.04226 429	FBgn0003996,FBgn0034136	2	GO:0001 504
regulation of nucleotide metabolic process	0.04226 429	FBgn0025741,FBgn0262467	2	GO:0006 140
icosanoid metabolic process	0.04226 429	FBgn0025814,FBgn0053178	2	GO:0006 690
polarity specificatio n of dorsal/vent ral axis	0.04226 429	FBgn0002899,FBgn0263260	2	GO:0009 951
protein geranylger anylation	0.04226 429	FBgn0028970,FBgn0037293	2	GO:0018 344
translesion synthesis	0.04226 429	FBgn0032813,FBgn0035644	2	GO:0019 985
regulation of purine nucleotide metabolic process	0.04226 429	FBgn0025741,FBgn0262467	2	GO:1900 542
organic substance biosyntheti c process	0.04237 17	FBgn0000543,FBgn0000562,FBgn0000591,FBgn00008 10,FBgn0002522,FBgn0002524,FBgn0002542,FBgn000 2566,FBgn0002878,FBgn0002899,FBgn0003042,FBgn0 003044,FBgn0003076,FBgn0003116,FBgn0003512,FBg n0003515,FBgn0003996,FBgn0004170,FBgn0004396,F Bgn0004403,FBgn0004406,FBgn0004797,FBgn000483 7,FBgn0004907,FBgn0005674,FBgn0005696,FBgn0005 771,FBgn0010382,FBgn0010438,FBgn0010786,FBgn00 11291,FBgn0011336,FBgn0011591,FBgn0011762,FBgn 0011787,FBgn0013972,FBgn0014023,FBgn0014037,FB gn0014427,FBgn0014861,FBgn0014949,FBgn0015271,	182	GO:1901 576

		FBgn0015299,FBgn0015396,FBgn0016070,FBgn00161		
		20,FBgn0016691,FBgn0016917,FBgn0017577,FBgn001		
		9644,FBgn0019650,FBgn0023214,FBgn0023545,FBgn0		
		024194,FBgn0025185,FBgn0025463,FBgn0025680,FBg		
		n0025741,FBgn0025814,FBgn0026741,FBgn0026879,F		
		Bgn0027499,FBgn0027560,FBgn0027620,FBgn002834		
		2,FBgn0029006,FBgn0029718,FBgn0030054,FBgn0030		
		093,FBgn0030432,FBgn0030683,FBgn0030699,FBgn00		
		31231,FBgn0031309,FBgn0031663,FBgn0031851,FBgn		
		0032053,FBgn0032130,FBgn0032290,FBgn0032400,FB		
		gn0032486,FBgn0032813,FBgn0032956,FBgn0033010,		
		FBgn0033184,FBgn0033507,FBgn0033555,FBgn00338		
		15,FBgn0033890,FBgn0033998,FBgn0034141,FBgn003		
		4310,FBgn0034495,FBgn0034579,FBgn0034650,FBgn0		
		034938,FBgn0035064,FBgn0035153,FBgn0035246,FBg		
		n0035266,FBgn0035374,FBgn0035471,FBgn0035644,F Bgn0035018 EBgn0026157 EBgn0026258 EBgn002623		
		Bgn0035918,FBgn0036157,FBgn0036258,FBgn003633		
		5,FBgn0036373,FBgn0036374,FBgn0036569,FBgn0036		
		691,FBgn0036713,FBgn0036771,FBgn0036826,FBgn00		
		36827,FBgn0037109,FBgn0037146,FBgn0037305,FBgn		
		0037330,FBgn0037607,FBgn0037669,FBgn0037722,FB		
		gn0037918,FBgn0038038,FBgn0038173,FBgn0038224,		
		FBgn0038390,FBgn0038426,FBgn0038474,FBgn00385		
		46,FBgn0038592,FBgn0038870,FBgn0038928,FBgn003		
		9159,FBgn0039258,FBgn0039273,FBgn0039304,FBgn0		
		039403,FBgn0039462,FBgn0039464,FBgn0039596,FBg		
		n0039650,FBgn0039740,FBgn0039938,FBgn0041103,F		
		Bgn0042112,FBgn0043575,FBgn0043796,FBgn004390		
		0,FBgn0044872,FBgn0050493,FBgn0051126,FBgn0051		
		450,FBgn0051739,FBgn0053100,FBgn0053178,FBgn00		
		61469,FBgn0067102,FBgn0083983,FBgn0085484,FBgn		
		0086358,FBgn0086450,FBgn0086679,FBgn0259113,FB		
		gn0259176,FBgn0259938,FBgn0260985,FBgn0261445,		
		FBgn0262449,FBgn0262467,FBgn0262619,FBgn02631		
		44,FBgn0263237,FBgn0263855,FBgn0263863,FBgn026		
		5048,FBgn0265523,FBgn0265623,FBgn0266411,FBgn0		
		267792,FBgn0267821,FBgn0286506		
mechanose	0.04260	FBgn0020258,FBgn0023096,FBgn0267430	3	GO:0007
nsory	806	8 , 8 , 8	_	638
behavior				
response to	0.04260	FBgn0030108,FBgn0034199,FBgn0035870	3	GO:0043
amino acid	806			200
response to	0.04260	FBgn0004240,FBgn0038437,FBgn0038530	3	GO:0055
hyperoxia	806	1 5610007270,1 5610050757,1 5610050550	5	093
positive	0.04260	FBgn0025741,FBgn0053100,FBgn0262467	3	GO:0062
regulation	0.04200 806	1 DE110023 / T1,1 DE110033 100,1 DE110202407	5	013
of small	800			015
molecule				
metabolic				
process	0.04260	ED an 0.016070 ED an 0.025046 ED an 0.020072	2	CO-1000
regulation	0.04260	FBgn0016070,FBgn0035246,FBgn0039972	3	GO:1900
of nuclear-	806			151
transcribed				
mRNA				
catabolic				
process,				
deadenylati				

on- dependent				
decay				
positive regulation of nuclear- transcribed mRNA catabolic process, deadenylati on- dependent decay	0.04260 806	FBgn0016070,FBgn0035246,FBgn0039972	3	GO:1900 153
	0.04343	$ED_{an}0000277 ED_{an}0000542 ED_{an}0016017 ED_{an}00200$	7	CO:0007
hindgut morphogen esis	0.04343 44	FBgn0000377,FBgn0000543,FBgn0016917,FBgn00290 06,FBgn0033859,FBgn0043903,FBgn0259685	1	GO:0007 442
hindgut developme nt	0.04343 44	FBgn0000377,FBgn0000543,FBgn0016917,FBgn00290 06,FBgn0033859,FBgn0043903,FBgn0259685	7	GO:0061 525
negative regulation of organ growth	0.04569 919	FBgn0004583,FBgn0011739,FBgn0015778,FBgn02596 85	4	GO:0046 621
RNA metabolic process	0.04650 811	FBgn0000377,FBgn0000543,FBgn0000591,FBgn00025 22,FBgn0002542,FBgn0002899,FBgn0003042,FBgn000 3044,FBgn0003512,FBgn0004170,FBgn0004396,FBgn0 004403,FBgn0004837,FBgn0004907,FBgn0005674,FBg n0005771,FBgn0011291,FBgn0011762,FBgn0011787,F Bgn0014037,FBgn0014949,FBgn0015299,FBgn001539 6,FBgn0015778,FBgn0016070,FBgn0016917,FBgn0019 650,FBgn0022986,FBgn0023214,FBgn0024987,FBgn00 25185,FBgn0025463,FBgn0025629,FBgn0025680,FBgn 0026679,FBgn0026702,FBgn0027499,FBgn0027620,FB gn0029006,FBgn0029079,FBgn0030085,FBgn0030093, FBgn003065,FBgn0030432,FBgn00300507,FBgn00306 31,FBgn0031643,FBgn0031227,FBgn0031309,FBgn003 1321,FBgn0031643,FBgn0031851,FBgn0032130,FBgn0 032400,FBgn0032956,FBgn0033010,FBgn0033507,FBg n0033859,FBgn0033921,FBgn0034614,FBgn0034065,F Bgn0035064,FBgn0035153,FBgn0035246,FBgn003 36018,FBgn003673,FBgn0036774,FBgn0035986,FBgn0 36018,FBgn0036735,FBgn0036774,FBgn003730, FBgn0037607,FBgn003790,FBgn0037926,FBgn 0036734,FBgn0036827,FBgn003716,FBgn0037330, FBgn0037607,FBgn0037918,FBgn0037926,FBgn003 8390,FBgn0038474,FBgn0038546,FBgn0037926,FBgn003 8390,FBgn0038474,FBgn003590,FBgn0037926,FBgn003 8390,FBgn0038474,FBgn00359404,FBgn0037926,FBgn003 8390,FBgn0038474,FBgn00359404,FBgn003592,FBgn003 8390,FBgn0038474,FBgn0038546,FBgn003592,FBgn003 8390,FBgn0038474,FBgn003504,FBgn0037926,FBgn003 8390,FBgn0038474,FBgn003504,FBgn003592,FBgn003 8390,FBgn0038474,FBgn003504,FBgn0037926,FBgn003 8390,FBgn0038474,FBgn003504,FBgn0037926,FBgn003 8390,FBgn0038474,FBgn0038546,FBgn0038592,FBgn0 039182,FBgn003906,FBgn0039404,FBgn0038592,FBgn0 039182,FBgn0039036,FBgn0039404,FBgn0038592,FBgn0 039182,FBgn0039036,FBgn0039404,FBgn0038592,FBgn0 039182,FBgn0039036,FBgn0039404,FBgn0038592,FBgn0 039182,FBgn0039036,FBgn0039404,FBgn0038592,FBgn0 039182,FBgn0263144,FBgn0263237,FBgn0261287,FBgn026 850,FBgn0259176,FBgn025938,FBgn0261287,FBgn0263855,FBgn 0265048,FBgn026523,FBgn026523,FBgn0263855,FBgn 0265048,FBgn026523,FBgn026523,FBgn0263855,FBgn	126	GO:0016 070

cellular biosyntheti c process	0.04693 523	FBgn0000543,FBgn0000562,FBgn0000591,FBgn00008 10,FBgn0002522,FBgn0002524,FBgn0002542,FBgn000 2566,FBgn0002878,FBgn0002899,FBgn0003042,FBgn0 0030515,FBgn0003996,FBgn0004170,FBgn0004396,F Bgn0004403,FBgn0004406,FBgn000477,FBgn0004396,F Bgn0004403,FBgn0005674,FBgn0005696,FBgn0005 771,FBgn001382,FBgn0016574,FBgn001786,FBgn000 11291,FBgn001336,FBgn0014023,FBgn0011762,FBgn 0011787,FBgn0013972,FBgn0014023,FBgn0014037,FB gn0014427,FBgn0013972,FBgn0014023,FBgn0014037,FB gn001427,FBgn0015396,FBgn0016970,FBgn0016 20,FBgn0016691,FBgn0016917,FBgn0017577,FBgn001 9644,FBgn0019650,FBgn0025463,FBgn0025680,FBg n0025741,FBgn0025185,FBgn0025463,FBgn0025680,FBg n0025741,FBgn0025185,FBgn0027620,FBgn002834 2,FBgn0029006,FBgn0027560,FBgn0030699,FBgn003 093,FBgn0030432,FBgn0031663,FBgn0030699,FBgn003 093,FBgn003109,FBgn0031663,FBgn003440,FB gn0032486,FBgn0032130,FBgn0032290,FBgn0032400,FB gn0032486,FBgn0032130,FBgn003256,FBgn0032400,FB gn0032486,FBgn0032130,FBgn003256,FBgn0032400,FB gn0032486,FBgn0032130,FBgn003256,FBgn0033010, FBgn0033184,FBgn0033507,FBgn0033555,FBgn00338 15,FBgn0033184,FBgn003507,FBgn0033557,FBgn0035246,FBg n0035374,FBgn003507,FBgn0033557,FBgn003546,FBgn003518,F gn0036374,FBgn003507,FBgn0033557,FBgn003546,FBg n003517,FBgn0036258,FBgn0036691,FBgn0035918,F gn0036157,FBgn0036258,FBgn0036691,FBgn003637 3,FBgn0036374,FBgn0035153,FBgn0037330,FBgn 034938,FBgn003504,FBgn0035153,FBgn003518,FB gn0036157,FBgn0036258,FBgn0036691,FBgn003637 3,FBgn0036374,FBgn0036569,FBgn0036691,FBgn003637 3,FBgn0036374,FBgn0036258,FBgn0036691,FBgn003637 3,FBgn0036374,FBgn0036258,FBgn0036691,FBgn003637 3,FBgn0038173,FBgn003722,FBgn003730,FBgn 037607,FBgn0037146,FBgn003772,FBgn003730,FBgn 037607,FBgn0038173,FBgn0035173,FBgn0037940,FBgn 03838,FBgn0038173,FBgn003824,FBgn0037940,FBgn 039462,FBgn0038474,FBgn0038546,FBgn0037940,FBgn 039462,FBgn0038474,FBgn003650,FBgn003740,FBgn 039462,FBgn0038474,FBgn003650,FBgn003740,FBgn 039462,FBgn0038474,FBgn003735,FBgn003740,FBgn 039462,FBgn0038474,FBgn003650,FBgn003740,FBgn 039462,FBgn0038474,FBgn003650,FBgn003740	180	GO:0044 249
C1/6	0.04777	3,FBgn0051126,FBgn0051450,FBgn0051739,FBgn0053 100,FBgn0053178,FBgn0061469,FBgn0067102,FBgn00 83983,FBgn0085484,FBgn0086358,FBgn0086450,FBgn 0086679,FBgn0259113,FBgn0259176,FBgn0259938,FB gn0260985,FBgn0261445,FBgn0262449,FBgn0262467, FBgn0262619,FBgn0263144,FBgn0263237,FBgn02638 55,FBgn0263863,FBgn0265048,FBgn0265523,FBgn026 5623,FBgn0266411,FBgn0267792,FBgn0267821,FBgn0 286506	5	CQ.0000
G1/S transition of mitotic cell cycle	0.04777 039	FBgn0004837,FBgn0010382,FBgn0011739,FBgn00383 90,FBgn0039403	5	GO:0000 082
regulation of cell cycle	0.04881 975	FBgn0002878,FBgn0003525,FBgn0004170,FBgn00045 83,FBgn0004643,FBgn0004837,FBgn0004889,FBgn001 0314,FBgn0010382,FBgn0024227,FBgn0031549,FBgn0 032047,FBgn0032400,FBgn0034569,FBgn0035249,FBg n0035644,FBgn0035918,FBgn0037716,FBgn0038390,F	26	GO:0051 726

		Bgn0039403,FBgn0039638,FBgn0260985,FBgn026323 7,FBgn0263855,FBgn0265523,FBgn0266465		
rRNA	0.04913	FBgn0002899,FBgn0004403,FBgn0026702,FBgn00300	14	GO:0016
metabolic	521	85,FBgn0031643,FBgn0033507,FBgn0034065,FBgn003		072
process		4564,FBgn0035986,FBgn0036754,FBgn0037822,FBgn0		
		038474,FBgn0039306,FBgn0039404		

Table 2.4i:Pathway enrichment for hits differentially upregulated in control females relative to 20HE
males

Pathway enrichment	p-value	Hits	Gene matche s	Pathwa y ID
DNA replication	8.09E- 07	FBgn0005696,FBgn0010438,FBgn0011762,FBgn001486 1,FBgn0017577,FBgn0025832,FBgn0030507,FBgn00328 13,FBgn0035644,FBgn0259113,FBgn0260985,FBgn0262 619	12	3030
Mitochondri al translation termination	2.0637 E-05	FBgn0011787,FBgn0014023,FBgn0026741,FBgn002971 8,FBgn0031231,FBgn0032053,FBgn0032486,FBgn00345 79,FBgn0035374,FBgn0037330,FBgn0038426,FBgn0038 474,FBgn0039159,FBgn0042112,FBgn0051450,FBgn008 3983,FBgn0263863	17	R-DME- 5419276
Mitochondri al translation	2.4345 E-05	FBgn0011787,FBgn0014023,FBgn0026741,FBgn002971 8,FBgn0031231,FBgn0032053,FBgn0032486,FBgn00345 79,FBgn0035374,FBgn0037330,FBgn0038426,FBgn0038 474,FBgn0039159,FBgn0042112,FBgn0051450,FBgn008 3983,FBgn0263863	17	R-DME- 5368287
G1/S Transition	4.1676 E-05	FBgn0003525,FBgn0004066,FBgn0005696,FBgn001031 4,FBgn0010382,FBgn0011762,FBgn0014861,FBgn00152 71,FBgn0017577,FBgn0023175,FBgn0028694,FBgn0028 695,FBgn0032047,FBgn0035644,FBgn0035918,FBgn003 8390,FBgn0259113,FBgn0263237	18	R-DME- 69206
Mitotic G1 phase and G1/S transition	5.6144 E-05	FBgn0003525,FBgn0004066,FBgn0004889,FBgn000569 6,FBgn0010314,FBgn0010382,FBgn0011762,FBgn00148 61,FBgn0015271,FBgn0017577,FBgn0023175,FBgn0028 694,FBgn0028695,FBgn0032047,FBgn0035644,FBgn003 5918,FBgn0038390,FBgn0259113,FBgn0263237	19	R-DME- 453279
Mitochondri al translation elongation	5.7761 E-05	FBgn0011787,FBgn0014023,FBgn0026741,FBgn002971 8,FBgn0031231,FBgn0032053,FBgn0034579,FBgn00353 74,FBgn0037330,FBgn0038426,FBgn0038474,FBgn0039 159,FBgn0042112,FBgn0051450,FBgn0083983,FBgn026 3863	16	R-DME- 5389840
DNA strand elongation	0.0003 6464	FBgn0005696,FBgn0011762,FBgn0025832,FBgn003940 3,FBgn0259113,FBgn0260985,FBgn0262619	7	R-DME- 69190
Synthesis of DNA	0.0005 4656	FBgn0004066,FBgn0005696,FBgn0010382,FBgn001176 2,FBgn0014861,FBgn0017577,FBgn0023175,FBgn00258 32,FBgn0028694,FBgn0028695,FBgn0032047,FBgn0035 644,FBgn0035918,FBgn0039403,FBgn0259113,FBgn026 0985,FBgn0262619	17	R-DME- 69239
S Phase	0.0006 263	FBgn0004066,FBgn0005696,FBgn0010314,FBgn001038 2,FBgn0011762,FBgn0014861,FBgn0017577,FBgn00231 75,FBgn0025832,FBgn0028694,FBgn0028695,FBgn0032 047,FBgn0035644,FBgn0035918,FBgn0039403,FBgn025 9113,FBgn0260985,FBgn0262619	18	R-DME- 69242
Activation of the pre- replicative complex	0.0006 7525	FBgn0005696,FBgn0011762,FBgn0014861,FBgn001527 1,FBgn0017577,FBgn0035644,FBgn0035918,FBgn02591 13	8	R-DME- 68962

Lagging	0.0007	FBgn0005696,FBgn0011762,FBgn0025832,FBgn025911	6	R-DME-
Strand	3792	3,FBgn0260985,FBgn0262619	0	69186
Synthesis	3172			07100
DNA Replication	0.0007 6884	FBgn0004066,FBgn0005696,FBgn0010382,FBgn001176 2,FBgn0014861,FBgn0015271,FBgn0017577,FBgn00231 75,FBgn0025832,FBgn0028694,FBgn0028695,FBgn0032 047,FBgn0035644,FBgn0035918,FBgn0039403,FBgn025 9113,FBgn0260985,FBgn0262619	18	R-DME- 69306
Processive synthesis on the lagging strand	0.0009 9917	FBgn0005696,FBgn0011762,FBgn0025832,FBgn025911 3,FBgn0262619	5	R-DME- 69183
Telomere C- strand synthesis initiation	0.0010 4899	FBgn0005696,FBgn0011762,FBgn0035644,FBgn025911 3	4	R-DME- 174430
DNA replication initiation	0.0010 4899	FBgn0005696,FBgn0011762,FBgn0035644,FBgn025911 3	4	R-DME- 68952
Inhibition of replication initiation of damaged DNA by RB1/E2F1	0.0017 9059	FBgn0005696,FBgn0011762,FBgn0038390,FBgn025911 3	4	R-DME- 113501
E2F mediated regulation of DNA replication	0.0017 9059	FBgn0005696,FBgn0011762,FBgn0038390,FBgn025911 3	4	R-DME- 113510
Formation of ATP by chemiosmot ic coupling	0.0020 8883	FBgn0016120,FBgn0016691,FBgn0019644,FBgn002834 2,FBgn0038224	5	R-DME- 163210
Cristae formation	0.0020 8883	FBgn0016120,FBgn0016691,FBgn0019644,FBgn002834 2,FBgn0038224	5	R-DME- 8949613
Vitamin B6 metabolism	0.0025 6753	FBgn0014427,FBgn0031048,FBgn0085484	3	750
Polymerase switching on the C- strand of the telomere	0.0028 3042	FBgn0005696,FBgn0011762,FBgn0259113,FBgn026098 5	4	R-DME- 174411
Polymerase switching	0.0028 3042	FBgn0005696,FBgn0011762,FBgn0259113,FBgn026098 5	4	R-DME- 69091
Leading Strand Synthesis	0.0028 3042	FBgn0005696,FBgn0011762,FBgn0259113,FBgn026098 5	4	R-DME- 69109
Cell Cycle	0.0034 9065	FBgn0002878,FBgn0003525,FBgn0004066,FBgn000488 9,FBgn0004907,FBgn0005696,FBgn0010314,FBgn00103 82,FBgn0011762,FBgn0014009,FBgn0014861,FBgn0014 879,FBgn0015271,FBgn0015391,FBgn0017577,FBgn002 3175,FBgn0024227,FBgn0025463,FBgn0025832,FBgn00 28694,FBgn0028695,FBgn0032047,FBgn0034310,FBgn0 035644,FBgn0035918,FBgn0038390,FBgn0039125,FBgn 0039403,FBgn0259113,FBgn0260985,FBgn0262619,FBg n0263237,FBgn0263855	33	R-DME- 1640170

NOTCH4 Activation and Transmissio n of Signal to the	0.0043 3111	FBgn0004907,FBgn0259685	2	R-DME- 9013700
Nucleus Formation of the activated STAT92E dimer and transport to the nucleus	0.0048 8501	FBgn0016917,FBgn0030904,FBgn0043903	3	R-DME- 209228
DNA Replication Pre- Initiation	0.0051 1388	FBgn0004066,FBgn0005696,FBgn0011762,FBgn001486 1,FBgn0015271,FBgn0017577,FBgn0023175,FBgn00286 94,FBgn0028695,FBgn0035644,FBgn0035918,FBgn0259 113	12	R-DME- 69002
Removal of the Flap Intermediate	0.0060 0359	FBgn0005696,FBgn0011762,FBgn0025832,FBgn025911 3	4	R-DME- 69166
Mismatch repair	0.0065 0023	FBgn0010438,FBgn0011660,FBgn0032813,FBgn026098 5,FBgn0262619	5	3430
Cyclin E associated events during G1/S transition	0.0066 9738	FBgn0003525,FBgn0004066,FBgn0010314,FBgn001038 2,FBgn0023175,FBgn0028694,FBgn0028695,FBgn00320 47,FBgn0038390,FBgn0263237	10	R-DME- 69202
Cell Cycle, Mitotic	0.0071 7698	FBgn0003525,FBgn0004066,FBgn0004889,FBgn000569 6,FBgn0010314,FBgn0010382,FBgn0011762,FBgn00140 09,FBgn0014861,FBgn0014879,FBgn0015271,FBgn0015 391,FBgn0017577,FBgn0023175,FBgn0024227,FBgn002 5832,FBgn0028694,FBgn0028695,FBgn0032047,FBgn00 34310,FBgn0035644,FBgn0035918,FBgn0038390,FBgn0 039125,FBgn0039403,FBgn0259113,FBgn0260985,FBgn 0262619,FBgn0263237,FBgn0263855	30	R-DME- 69278
Dephosphor ylation by PTP61F phosphatase s	0.0081 339	FBgn0016917,FBgn0030904,FBgn0043903	3	R-DME- 210688
Telomere Maintenanc e	0.0082 0811	FBgn0005696,FBgn0011762,FBgn0035644,FBgn025911 3,FBgn0260985	5	R-DME- 157579
Mitochondri al biogenesis	0.0082 0811	FBgn0016120,FBgn0016691,FBgn0019644,FBgn002834 2,FBgn0038224	5	R-DME- 1592230
Telomere C- strand (Lagging Strand) Synthesis	0.0082 0811	FBgn0005696,FBgn0011762,FBgn0035644,FBgn025911 3,FBgn0260985	5	R-DME- 174417
Extension of	0.0082	FBgn0005696,FBgn0011762,FBgn0035644,FBgn025911	5	R-DME-
Telomeres Chromosom e Maintenanc	0811 0.0082 0811	3,FBgn0260985 FBgn0005696,FBgn0011762,FBgn0035644,FBgn025911 3,FBgn0260985	5	180786 R-DME- 73886

e				
Starch and sucrose metabolism	0.0113 5767	FBgn0000078,FBgn0001187,FBgn0003076,FBgn002050 6,FBgn0027560,FBgn0040250,FBgn0040261,FBgn00402 62,FBgn0261445	9	500
Insulin effects increased synthesis of Xylulose-5- Phosphate	0.0124 2561	FBgn0023477,FBgn0037607	2	R-DME- 163754
TP53 regulates transcription of several additional cell death genes whose specific roles in p53- dependent apoptosis remain uncertain	0.0124 2561	FBgn0028970,FBgn0037293	2	R-DME- 6803205
Phosphoryla tion of proteins involved in G1/S transition by active Cyclin E:Cdk2 complexes	0.0124 2561	FBgn0010382,FBgn0038390	2	R-DME- 69200
Signaling by NOTCH4	0.0124 2561	FBgn0004907,FBgn0259685	2	R-DME- 9013694
G2/M Checkpoints	0.0172 4178	FBgn0002878,FBgn0003525,FBgn0004907,FBgn001486 1,FBgn0015271,FBgn0017577,FBgn0035918,FBgn02609 85	8	R-DME- 69481
Reversible hydration of carbon dioxide	0.0176 8199	FBgn0027843,FBgn0027844,FBgn0039486	3	R-DME- 1475029
JAK/STAT pathway	0.0176 8199	FBgn0016917,FBgn0030904,FBgn0043903	3	R-DME- 209405
Triglyceride biosynthesis	0.0176 8199	FBgn0004797,FBgn0033215,FBgn0035266	3	R-DME- 75109
PCNA- Dependent Long Patch Base Excision Repair	0.0179 0198	FBgn0025832,FBgn0035644,FBgn0260985,FBgn026261 9	4	R-DME- 5651801
Metabolism	0.0189 2694	FBgn0001187,FBgn0002524,FBgn0003076,FBgn000406 6,FBgn0004797,FBgn0010241,FBgn0010786,FBgn00112 27,FBgn0014427,FBgn0016120,FBgn0016691,FBgn0019 644,FBgn0019982,FBgn0020626,FBgn0022359,FBgn002	92	R-DME- 1430728

		3175,FBgn0023477,FBgn0025463,FBgn0025814,FBgn00 25839,FBgn0027843,FBgn0027844,FBgn0028342,FBgn0 028694,FBgn0028695,FBgn0029689,FBgn0029708,FBgn 0029994,FBgn0030367,FBgn0030584,FBgn0030638,FBg n0030683,FBgn0030816,FBgn0031048,FBgn0031248,FB gn0031663,FBgn0031695,FBgn0032790,FBgn0033205,F Bgn0033215,FBgn0031695,FBgn0032790,FBgn0033205,F Bgn0033754,FBgn0033238,FBgn0033815,FBgn003396 1,FBgn0034919,FBgn0034938,FBgn0035266,FBgn00354 71,FBgn0036157,FBgn0036290,FBgn0036691,FBgn0036 824,FBgn0037109,FBgn0037146,FBgn0037186,FBgn003 7305,FBgn0037370,FBgn0037607,FBgn0037845,FBgn00 37891,FBgn0038224,FBgn0039304,FBgn0039464,FBgn 038752,FBgn0039258,FBgn0039304,FBgn0039674,FBg n0040250,FBgn0040257,FBgn0040383,FBgn0039674,FBg n0040250,FBgn0050022,FBgn0050344,FBgn0050345,F Bgn0052669,FBgn0050178,FBgn0067102,FBgn0085484, FBgn0086450,FBgn0260750,FBgn0261445,FBgn026255 9,FBgn0265523,FBgn0283450		
Respiratory electron transport, ATP synthesis by chemiosmot ic coupling, and heat production by uncoupling proteins.	0.0193 6936	FBgn0011227,FBgn0016120,FBgn0016691,FBgn001964 4,FBgn0025839,FBgn0028342,FBgn0033961,FBgn00349 19,FBgn0038224,FBgn0038271,FBgn0047038	11	R-DME- 163200
Phosphoryla tion- independent inhibition of YKI	0.0237 7146	FBgn0004583,FBgn0011739	2	R-DME- 451806
Activation of ATR in response to replication stress	0.0250 1701	FBgn0003525,FBgn0014861,FBgn0015271,FBgn001757 7,FBgn0035918,FBgn0260985	6	R-DME- 176187
Cyclin D associated events in G1	0.0251 819	FBgn0004889,FBgn0010314,FBgn0032047,FBgn003839 0,FBgn0263237	5	R-DME- 69231
G1 Phase	0.0251 819	FBgn0004889,FBgn0010314,FBgn0032047,FBgn003839 0,FBgn0263237	5	R-DME- 69236
Metabolic pathways	0.0263 6559	FBgn0000078,FBgn0000261,FBgn0001187,FBgn000252 4,FBgn0003076,FBgn0004406,FBgn0004797,FBgn00056 74,FBgn0005696,FBgn0010786,FBgn0011227,FBgn001 336,FBgn0011762,FBgn0011770,FBgn0014427,FBgn001 5011,FBgn0015568,FBgn0015575,FBgn0016120,FBgn00 16691,FBgn0019644,FBgn0020506,FBgn0022097,FBgn0 022359,FBgn0023477,FBgn0023545,FBgn0024958,FBgn 0025839,FBgn002342,FBgn0030596,FBgn0030610,FBg n0030683,FBgn0031048,FBgn0031663,FBgn0033520,FB gn0033961,FBgn0034141,FBgn0034938,FBgn0035266,F	70	1100

		Bgn0035644,FBgn0036157,FBgn0036691,FBgn0036824, FBgn0037146,FBgn0037186,FBgn0037607,FBgn003789 1,FBgn0038080,FBgn0038224,FBgn0039258,FBgn00392 93,FBgn0039304,FBgn0039464,FBgn0039596,FBgn0040 250,FBgn0040261,FBgn0040262,FBgn0041629,FBgn004 7038,FBgn0052201,FBgn0067102,FBgn0085484,FBgn00 86450,FBgn0259113,FBgn0259170,FBgn0260750,FBgn0 261445,FBgn0262512,FBgn0262559,FBgn0286506		
Resolution of AP sites via the multiple- nucleotide patch replacement pathway	0.0271 2762	FBgn0025832,FBgn0035644,FBgn0260985,FBgn026261 9	4	R-DME- 110373
Cell Cycle Checkpoints	0.0287 5638	FBgn0002878,FBgn0003525,FBgn0004066,FBgn000490 7,FBgn0014861,FBgn0015271,FBgn0017577,FBgn00231 75,FBgn0025463,FBgn0028694,FBgn0028695,FBgn0035 918,FBgn0260985,FBgn0263855	14	R-DME- 69620
Drug metabolism - other enzymes	0.0289 4952	FBgn0015568,FBgn0015575,FBgn0031663,FBgn003946 4,FBgn0040250,FBgn0040261,FBgn0040262,FBgn00864 50	8	983
Nucleotide excision repair	0.0321 0262	FBgn0031309,FBgn0032813,FBgn0035644,FBgn026098 5,FBgn0262619,FBgn0263237	6	3420
Oxidative phosphoryla tion	0.0344 9947	FBgn0011227,FBgn0016120,FBgn0016691,FBgn001964 4,FBgn0022097,FBgn0025839,FBgn0028342,FBgn00306 10,FBgn0033961,FBgn0034938,FBgn0038224,FBgn0040 529,FBgn0047038,FBgn0262512	14	190
Formation of the activated receptor complex	0.0379 0741	FBgn0030904,FBgn0043903	2	R-DME- 209209
Synthesis of Dolichyl- phosphate	0.0379 0741	FBgn0030683,FBgn0034141	2	R-DME- 446199
Base excision repair	0.0387 3329	FBgn0025832,FBgn0032813,FBgn0035644,FBgn026261 9	4	3410
Metabolism of folate and pterines	0.0387 3329	FBgn0036157,FBgn0037845,FBgn0050344,FBgn005034 5	4	R-DME- 196757
Circadian Clock pathway	0.0489 5275	FBgn0004066,FBgn0004889,FBgn0023175,FBgn002568 0,FBgn0028694,FBgn0028695,FBgn0050476,FBgn02599 38,FBgn0264959	9	R-DME- 432626
Synthesis of PC	0.0494 9968	FBgn0031048,FBgn0033382,FBgn0039637	3	R-DME- 1483191
Regulation of lipid metabolism by PPARalpha	0.0494 9968	FBgn0025463,FBgn0037109,FBgn0265523	3	R-DME- 400206
Triglyceride metabolism	0.0494 9968	FBgn0004797,FBgn0033215,FBgn0035266	3	R-DME- 8979227