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An extreme ultraviolet frequency comb for highly charged ion metrology
Highly charged ions (HCI) have been proposed as extremely sensitive probes for physics
beyond the Standard Model, such as a possible a-variation, and as novel frequency stan-
dards, due to their insensitivity to external fields. We aim at performing ultra-high preci-
sion spectroscopy of HCI in the extreme ultraviolet (XUV) region, where many transitions
are located. Therefore, we have developed an XUV frequency comb. Femtosecond pulses
from a 100 MHz phase-stabilized near-infrared comb are amplified and fed into an en-
hancement cavity inside an ultra-high vacuum chamber. In the tight focus (wy = 15 um)
of the astigmatism-compensated cavity, intensities ~ 1014 W /ecm? are reached. As a first
application, we perform multi-photon ionization of xenon using the velocity-map imaging
technique. The high repetition rate facilitates fast data acquisition even at low intensities,
enabling future precision tests in nonlinear physics. Finally, we have observed outcou-
pled XUV radiation, produced in the cavity focus, up to the 35th harmonic order (42eV;
30nm). No signs of mirror degradation were observed during five hours of continuous
operation. Using He:Xe gas mixtures, improved phase-matching conditions led to 49 yW
output power at 16 eV. This is sufficient to drive HCI transitions with kHz excitation rates
and is an important step towards XUV frequency metrology with HCI.

Ein ultravioletter Frequenzkamm fiir die Metrologie mit hochgeladenen Ionen
Hochgeladene Ionen (HCI) gelten als vielversprechende Kandidaten fiir hochempfindliche
Messungen, die iiber das Standardmodell hinausgehen, wie beispielsweise bei der Suche
nach einer moglichen a-Variation. Aufgrund ihrer hohen Unempfindlichkeit gegeniiber
externen Storungen wurden sie aulerdem fiir zukiinftige Atomuhren vorgeschlagen. Unser
Ziel ist die Ultrahochprézisionsspektroskopie mit HCI im extrem ultravioletten (XUV)
Spektralbereich, in welchem HCI viele Ubergange aufweisen. Um diese anzuregen wurde
ein XUV Frequenzkamm entwickelt. Femtosekundenpulse aus einem 100 MHz phasen-
stabilen Kamm im nahen Infrarotbereich werden verstiarkt und in einem Uberhhungs-
resonator in einer Ultrahochvakuumkammer tiberlagert. Im kleinen Fokus (wp = 15 pm)
der Astigmatismus-kompensierten Kavitit werden Intensititen von ~ 10 W/cm? er-
reicht. Als erste Anwendung haben wir Multiphotonenionisation von Xenon mithilfe
der ’velocity-map imaging’ Technik realisiert. Die hohe Repetitionsrate erlaubt auch bei
niedrigen Intensitdten eine sehr schnelle Datenaufnahme und ermoglicht zukiinftige Prézi-
sionstests in der nichtlinearen Physik. Wir konnten im Fokus der Verstarkungskavitit
XUV Strahlung bis zur 35. harmonischen Ordnung (42eV; 30nm) beobachten. Wéhrend
des kontinuierlichen Betriebs iiber fiinf Stunden war keine Spiegeldegradation feststellbar.
Durch die Verwendung von He:Xe Gasmischungen konnte eine Verbesserung der Phase-
nanpassung im Fokus erzielt werden und die gemessene Ausgangsleistung auf 49 uW bei
16 eV erhoht werden. Dies gentigt um HCI mit kHz Raten anzuregen und ist ein wichtiger
Schritt in Richtung XUV Frequenzmetrologie mit HCI.
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Chapter 1
Introduction

In this chapter we cover the background and motivation of the research performed in the
scope of this thesis. First, in Section 1.1, a general introduction to today’s open questions
in physics is provided and some approaches for searches of new physics are discussed,
followed by a brief introduction of the frequency comb, in Section 1.2, that has enabled
a tremendous increase in the measurement precision of laboratory experiments. Section
1.3 focuses on one of these approaches; the possible variation of fundamental constants,
and how such an effect could be detected. Next, in Section 1.4, highly charged ions
(HCI) are introduced as sensitive probes for new physics. Subsequently, in Section 1.5,
we discuss how high-precision spectroscopy could be extended from the optical into the
extreme ultraviolet regime. Section 1.6 provides an overview of how this new concept is

implemented experimentally. Finally, a brief outline of this thesis is given in Section 1.7.

1.1 Probing fundamental physics

Over the course of the last century, our understanding of the physical universe has greatly
improved: from processes at the smallest scales, where interactions of fundamental par-
ticles take place, to the largest scales in the visible universe, where superclusters form
massive structures of galaxies. The former is described by the Standard Model (SM) of
particle physics [1], while the latter is governed by the predictions of the theory of general
relativity (GR) [2]. The SM has proven to be exceptionally successful in describing funda-
mental interactions to a high precision. Numerous experiments have confirmed its validity
and the level of correspondence between theoretically predicted and experimentally mea-
sured values is astonishing. Despite its overwhelming success, there are important cases
where the SM does not correspond to reality. It cannot, for instance, explain the appar-
ent imbalance between matter and antimatter. Nor does it account for the existence of
dark matter (DM) and dark energy, for which a large amount of evidence has been found.
Furthermore, although numerous attempts have been made, so far the SM has not suc-

cessfully been unified with GR to form a consistent theory of gravitation and fundamental
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interactions.

As for the first point, the most easily observable parts of our universe, namely stars and
gases, are almost completely made up of ordinary matter in the form of protons, neutrons
and electrons. The baryon content of the universe thus largely outweighs its antibaryonic
counterpart, of which almost nothing is observed. This asymmetry is believed to arise from
fundamental interaction laws in the early stages of the universe [3]. However, within the
SM, baryon number, and also lepton number, is conserved to a very good approximation,
since no renormalizable interaction terms exist which violate either conservation of baryon
number or the individual lepton numbers [4]. Several theoretical mechanisms have been
proposed to induce the observed asymmetry, but so far none of these have been confirmed
by experimental observations.

The first experimental evidence for the second problem of the SM, the fact that baryonic
matter only makes up a small part of our universe, originates from observations of galaxy
rotation curves in 1932 [5]. Since then, many experiments have searched for the nature of
the mysterious dark matter [6]. This type of matter seems only to interact with baryonic
matter through gravitational interactions and makes up 26% of the universe according to
a recent study of the cosmic microwave background [7]. Despite numerous investigations
in a variety of directions, the origin of dark matter remains unclear to date, although the
parameter space for possible dark matter candidates has been constrained considerably
over the last decades. Where the nature of dark matter is already mysterious, we have even
less of a clue of what makes up the largest part of our universe. Astronomical observations
of type I supernovae in distant galaxies have revealed that the expansion of the universe is
accelerating [8], a result that can only be explained by the presence of some kind of dark
energy. The origin of dark energy, acting like a repulsive gravitational force, is completely
unclear, although it makes up 69% of our universe.

In conclusion, despite major scientific breakthroughs and many important discoveries,
we have essentially no idea what makes up 95% of our universe. Nor is it clear why it is
almost solely made up of matter and how this has survived annihilation with antimatter
shortly after the big bang. These big open questions show that our understanding of the
underlying fundamental processes which have formed the present universe is still far from
complete and are a strong motivation to look for new physics beyond the SM.

When it comes to experimental searches for new physics, two distinct but complementary
approaches can be identified. On the one hand, large-scale collider experiments running
at ~ TeV energies, such as the Large Hadron Collider at CERN, can be used to search for
new particles by directly producing and detecting them. This recently led to the discovery
of the Higgs boson, along with many other subatomic particles over the past decades. The
disadvantage of this type of experiments is the large scale, and thus costs, of the facilities

that are required to reach ever increasing energies to produce new particles. On the other
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hand, there are table-top experiments which operate at much lower energies ~ eV but
can achieve a very high precision [9, 10]. Even though possible new particles or fields are
not expected to be produced at these energies, their existence can be detected indirectly
by looking for tiny deviations from the SM predictions for known quantities. Very good
control over the atomic or molecular system under observation, mainly enabled by the
development of laser technology since the 1960s, permits high-accuracy measurements
of their transition energies. In this way, table-top experiments can be sensitive to new
physics at large energy scales, while these kinds of experiments take place at low energies,
in small-scale laboratories at modest costs.

Since the SM is based on symmetry principles, one suitable method of testing its predic-
tions is to measure if the underlying symmetries really hold or if they are slightly broken.
The three discrete symmetries of the SM are charge conjugation (C'), parity (P) and time
reversal (T') and their combinations. The combined C'PT symmetry is conserved for any
relativistic quantum field theory. Its conservation has also been confirmed by experiments
to a very high precision [11]. Although the SM includes a small amount of T violation, this
is by far insufficient to explain the observed matter-antimatter imbalance. Violation of T’
can manifest itself as a permanent electric dipole moment (EDM) in a fundamental parti-
cle, which can be measured in experiments. The electron EDM, for instance, has recently
been measured using ThO molecules to be < 1.1 x 1072? ecm [12], putting constraints
on new 7T-violating physics at the multi-TeV level [13]. A measurement of P violation
in Cs atoms [14] provides the most accurate low-energy tests to date on the electroweak
sector of the SM [10]. Violation of the fundamental principle of local Lorentz invariance
(LLI), which has been suggested by some theoretical developments in quantum gravity, is
also being experimentally tested, with one of the most stringent limits originating from
experiments with atomic dysprosium [15]. These are just a few examples of how the SM
can be tested using high-precision, table-top experiments. In the following section, we
will discuss one of the major technological breakthroughs that has enabled substantial

improvements in the precision of such experiments: the frequency comb (FC).

1.2 Invention of the frequency comb

With the first development of tunable, monochromatic laser sources and Doppler-free
spectroscopy techniques in the 1970s, rapid advances were made in the field of precision
spectroscopy. To measure frequencies in an absolute sense, comparison with a reference
is necessary [16]. Since 1967, the definition of the second is provided by the frequency
of the cesium clock transition at 9.2 GHz [17]. Optical frequencies, however, are in the
range of several hundred THz, much higher than what can be counted electronically. As

a consequence, this large frequency gap needed to be overcome, which was done using
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a chain of frequency links consisting of a high number of different types oscillators with
electronically controlled frequencies relative to neighboring oscillators in the chain. Due
to their size, high level of complexity and difficult operation, only a few of such systems

have been employed, mainly at national laboratories.

Already in the late 1970s the use of pulsed lasers for frequency measurements was demon-
strated [18]. The comb lines of the phase-coherent pulse train were used as a frequency
ruler, with a line interval equal to the repetition rate f.p, of the pulsed laser, to measure
fine-structure energy differences. However, the unknown phase-slips between consecutive
pulses, which shift the entire frequency spectrum, prevented absolute measurements. This
changed in the late 1990s, when techniques for broadening the comb spectrum became
available. In work which was honored by the Nobel-prize, Theodor Hansch, John Hall and
coworkers developed a self-referencing method to extract the carrier-to-envelope offset

frequency fcgo for the first time [19, 20].

With a stabilized repetition rate and offset frequency, a train of femtosecond pulses
thus turns into a FC. The frequency of the comb tooth with mode number n can then be
described by [21]

fn :fCEO+nfrep- (1-1)

The comb can be thought of as a ruler for optical frequencies which can be used to
measure large frequency differences. Since the frequency of each individual mode is fully
determined by two radio-frequency (RF) signals and the tooth number n, the FC provides
a direct link between the optical (THz) range and the MHz domain, where frequencies
can be counted electronically. The introduction of the FC has thus made the cumbersome
frequency chains superfluous since optical frequencies could now be counted with standard

RF electronics, with fractional uncertainties as small as 1072 [22].

Soon after its invention, a frequency comb at even higher frequencies was generated via
the production of high harmonics. In 2005, the groups of Thomas Udem in Garching and
Jun Ye in Boulder reported the generation of coherent radiation below 100nm [23, 24],

extending the frequency comb techniques to the extreme ultraviolet range.

In conclusion, the frequency comb has revolutionized frequency metrology by enabling
frequency determinations with unprecedented precision. It has proven to be an indis-
pensable tool for the development of optical clocks [25], and has found numerous other
applications, for instance in the fields of molecular spectroscopy [26], exoplanet observa-
tions [27], attosecond science [28] and optical communication [29]. In the next section, we
will discuss how such precise frequency measurements can be used to search for possible

variation of fundamental constants.
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1.3 Variation of fundamental constants

The SM contains a set of dimensionless parameters, 19 in its minimal version, of which
the values need to be determined by experiments. These fundamental constants have been
measured extensively [30] and within the SM their values are unchanging. However, in
many proposed theories unifying gravity with other interactions, these constants become
dynamical fields that can vary in time or space. The values of the fundamental constants
could thus be different in distant regions of the universe. Since the value of many fun-
damental constants, such as the Planck constant h or speed of light ¢, depends on the
unit definition that is used, it is reasonable to only consider variation of dimensionless
constants. Since they are most important for atoms, molecules, chemistry and life, most
of the recent studies have been focusing on possible variation of the proton-to-electron

mass ratio u = myp/me and the fine structure constant «, which is defined as

1 €2
a= —
Ameg he’

(1.2)

where €y is the vacuum permittivity and e is the elementary charge.

These types of searches are conducted in a diverse range of systems, such as meteorite
dating, cosmic microwave background, big bang nucleosynthesis and the Oklo natural
nuclear reactor [31]. The first experimental evidence for varying fundamental constants
originates from quasar absorption spectra and hinted towards a dipole-like space variation
of a on cosmological distances [32]. Although there is an ongoing debate about the in-
fluence of instrument distortions on the measurement result [33, 34], the discovery of the

so-called Australian dipole has triggered many laboratory searches for « variation.

From Dirac’s theory of the hydrogen atom it becomes clear that atomic spectroscopy
enables the detection of possible variation of a. The energy levels E, ; of an electron

bound to an infinite-mass, point-like nucleus are given by [10]

—-1/2

(Za)? , (1.3)

[n =3 = (1/2) + /(5 +1/2)2 = (Za)?)?

Enj=mec® |1+

where Z is the charge of the nucleus in units of the elementary charge, n the principle
quantum number and j the electronic angular momentum in units of . When E, ; is
expanded in powers of «, it becomes clear that for electronic states with different n, the
energy splitting scales as o, whereas for states with different j but the same n, it scales
as o*. Therefore, frequency ratios between these different types of transitions are sensitive

to a variation of a. In more complicated atomic systems, the dependence of the energy
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Figure 1.1: Recent progress in the accuracy of optical atomic clocks and microwave
frequency standards. The trends for both clock types are indicated by colored bands as
guides to the eye. Since a little over one decade, the systematic uncertainty of optical
clocks have surpassed the uncertainty of cesium clocks. Figure from E. A. Dijck [36].

level E on « can be parametrized by the coefficient g [35]:

(§)2—4, (1.4)

where «aq is the current value of o and Ej the corresponding energy. Since the value of ¢

E(a)=FEy+q

depends only weakly on electron correlations, it can be determined from atomic structure
calculations with a higher accuracy than the absolute energy level values. The g parameter
can then be linked to variation of the transition frequency f = E/h via
S _fa _pa (1.5)
Jo oo g
such that variation of « can be expressed in terms of a dimensionless sensitivity factor
K = 2q/fy. The sensitivity of a frequency comparison between two different atomic
frequencies to « variation is then given by the difference in their respective K values:
AK = |Ky — K1|. The larger this difference, the more sensitive the measurement is to
variation of . It is therefore advantageous to select a set of transitions with a large AK,

ideally with opposite signs of K.

The accuracy of frequency determinations in the optical region has increased tremen-
dously over the course of the past decades, and optical atomic clocks can now measure

electronic transitions with fractional uncertainties in the 1071 range [37]. This level of
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Figure 1.2: Overview of constraints from different optical clocks measurements on the
variation of & and p. The bands show 1o uncertainty regions. Figure from DeMille et al.
[9], original from Huntemann et al. [42].

accuracy surpasses that of the best Cs microwave frequency standards, which is on the
order of 1076, and thereby the definition of the second [38]. This is illustrated in Fig-
ure 1.1, where the recent development of the fractional frequency uncertainty of optical
and microwave clocks is shown. Due to their superior performance, optical clocks are
considered for a potential future redefinition of the second [39]. Until then, only relative
measurements can be performed beyond fractional uncertainties of 10716 by measuring

the frequency ratios between different optical clocks.

At such high accuracy levels, optical clocks have become very sensitive probes for dif-
ferent types of physics. It is therefore not surprising that they find applications in a
wide range of fields, including navigation, telecommunication, radio astronomy, geodesy,
metrology and fundamental physics. In the field of geodesy, for instance, clocks can be
used as very accurate references for geodetic measurements of the Earth’s surface [40]. A
height difference of 1 cm at sea level causes, due to the relativistic effect of the gravitational
potential, a fractional frequency shift of 1 x 1078 in the measured atomic transition. In a
recent proposal, it was suggested that optical clocks could be used to search for topological
defect dark matter [41]. Light dark matter fields could form macroscopic structures, which
could be detected when the Earth passes through a domain wall, as a transient effect on

the frequency measured of atomic clocks.

Now let us return to the possible variation of fundamental constants and examine the
sensitivity of the current generation of atomic clocks to «. For most of these, the afore-

mentioned K factors lie between zero and one and are therefore relatively small, except
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for the octupole transitions in Hgt (K = —3) and Yb™ (K = —6). Using a combination of
one of the octupole transitions together with one of the other transitions therefore results
in a good candidate to measure « variation. To date, the most accurate limit from a single

clock comparison was set by a combination of Al* and Hg™ and resulted in a standard
error of 2.3 x 10717 yr=1 [43].

Hyperfine transitions, as are used in microwave clocks, are sensitive to both «, p and the
strong interaction parameter X,, which equals the ratio between the average light quark
mass and the quantum chromo-dynamic energy scale Agcp. Extraction of X, however,
requires nuclear structure calculations, which depend on a particular theoretical model
[10]. Utilizing a combination of different microwave and optical clocks, the variations in
a, pand X, can be measured independently, as is illustrated in Figure 1.2 for the former

two. The present day best limits are given by [42, 44]

9 = (0.14 4+ 0.09) x 10716 yr~!

x
>
|

= (=2.04£2.0) x 1077 yr! (1.6)

=(02+1.1) x 10716 yr=1,

TI= L2

where kcs, is the dimensionless sensitivity factor of the Cs hyperfine transition to the

variation of the light quark masses.

1.4 Highly charged ions

The set of atomic and ionic species that can be employed as an atomic clock is very limited
due to both technical constraints and the limited number of elements to choose from in the
periodic table. As a result, there are only a handful of K factors available for measuring
« variation. To further increase the sensitivity of such a measurement, atomic systems
with larger K factors need to be used. By utilizing HCI, atomic species in higher charge
states, systems with much larger K factor become available. The charge state can be
used as a third degree of freedom, apart from proton and neutron number, in the periodic
table for selecting a species with optimal properties. The electronic energy levels of a HCI
scale proportional to (Q + 1)2 R, where @ is the ionization charge and R, the Rydberg
constant [45]. Since g scales as a?Z%(Q + 1)? in general, K does not directly scale with
charge state (). However, in optical transitions that occur close to level crossings in HCI,
where the filling order of the electron shells changes from the Madelung rule to Coulomb

with increasing ion charge [46], the scaling of the transition frequency is suppressed, such
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that
K o 2a*Z2(Q + 1) (1.7)

The sensitivity of these optical transitions in HCI to « variation is thus enhanced by a

factor (Q + 1)2, which is on the order of 100, as compared to neutral atomic systems.

Several theoretical studies have identified a number of suitable HCI candidates possess-
ing K factors up to several hundred [47-50]. Although the energy levels of HCI scale
with the charge state squared towards higher energies, forbidden transitions in the optical

regime can be found, due to level crossings between states with accidental near degeneracy.

Apart from an increased sensitivity to a variation, HCI have more advantages com-
pared to neutral or singly charged systems. Due to their strong binding energies, the
electronic cloud shrinks and the HCI are therefore much more insensitive to external elec-
tric and magnetic fields, leading to significantly smaller systematic perturbations. This is
particularly relevant for determining transition energies with a very high accuracy. The
uncertainty budgets of the current generation of optical clocks are limited by systematic
effects like Stark shifts, black-body radiation shifts and Zeeman shifts. These all originate
from external perturbations to the electronic wavefunction and are significantly lower in
HCI [51]. Therefore, HCI have been proposed as promising candidates for novel high-
accuracy atomic clocks [45, 52]. Furthermore, the strong binding energies induce large
fractional energy contributions from nuclear, quantum electrodynamic and special rela-
tivity effects. They form an ideal platform for benchmarking theory calculations with
experimental observations [53]. Finally, recent investigations have shown that HCI are
also very sensitive probes to other fundamental physics effects, for instance violation of
LLI [54, 55].

Although HCI offer many advantages as probes for fundamental physics, their produc-
tion and handling is much more challenging compared to singly charged ions. To reach the
desired charge state, a large amount of energy is required to strip off the electrons from
the neutral atom. Therefore, these ions are usually produced in an electron beam ion trap
(EBIT) [57], where a high-intensity electron beam is focused by a strong magnetic field
from a pair of coils in Helmholtz configuration, as it is shown in Figure 1.3. Neutral atoms
are fed to the focus region and are ionized by the impact of the electron beam. Once
ionized, the particles are radially trapped by the negative space charge of the electron
beam. Longitudinal confinement is provided by a set of drift tubes, electrodes surround-
ing the trap region. The ions, trapped in the vicinity of the electron beam, are further
ionized by electron impact ionization. Their charge state increases until the energy of the
incoming electrons is no longer sufficient to reach the next charge state. The continuous
electron bombardment of the electron beam populates highly excited states and induces

a steady-state emission of photons via many different decay channels. This fluorescence
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Helmholtz coils

drift tubes

collector

electron gun

Figure 1.3: Schematic overview of an EBIT. Electrons (orange) are emitted by the
electron gun and travel towards the collector. The magnetic field lines (violet), generated
by a pair of Helmholtz coils, compress the electron beam. The produced ions (green) are
radially confined by its space charge. By lowering the (relative) potential on the central
drift tube, axial confinement of the ions is ensured, as illustrated by the blue potential
curve. Figure from S. Bernitt [56].

light can then be used to monitor the charge state and identify transition energies.

Spectroscopy inside an EBIT is a task of crucial importance, since there is an enormous
scarcity of experimental data. Many possible ions have never been explored and therefore
reside in the so-called spectral desert [45]. Due to the continuous supply of energy by
the electron beam, typical temperatures of the ion cloud in an EBIT are of the order of
MK. This can be reduced by roughly one order of magnitude by lowering the electrode
potentials and evaporatively cooling the HCI cloud. Still, at such high temperatures the
linewidths of the observed transitions are Doppler broadened by tens of GHz, severely
limiting the attainable spectroscopic accuracy to a few parts per million (ppm) at most.
In contrast, singly charged ion traps routinely achieve temperatures below uK enabling
accuracies on the order of 107!%, as discussed in the previous section. To bridge this
enormous gap, the HCI need to be extracted from the EBIT and subsequently cooled and
stored in a more controllable environment.

Direct laser cooling, the standard tool for neutrals and singly charged ions, is not avail-
able for most HCI due to the lack of fast-cycling optical transitions. The fast electric-dipole
(E1) transitions are shifted towards the x-ray domain and the remaining optical lines are
usually forbidden and therefore have long lifetimes. To overcome this difficulty, sympa-
thetic cooling of the HCI by a different, singly charged ionic species can be employed.
This technique was experimentally realized a few years ago at the Max-Planck-Institut
fiir Kernphysik (MPIK) in the Cryogenic Paul Trap Experiment (CryPTEx) [58]. Ar3*
ions were extracted from the EBIT, decelerated and subsequently retrapped in a cryo-

genic Paul trap. A crystal of Bet ions was used for sympathetic cooling of the HCI and
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brought down their temperature to the mK region. In a more recent follow-up experiment
at the Physikalisch-Technische Bundesanstalt (PTB), HCI were cooled to below 50 uK
[59]. Quantum logic spectroscopy (QLS), where one HCI is co-trapped with a single cool-
ing ion, was implemented on the forbidden ?P; /2 = ’p, /2 transition in Ar'3t at 441 nm.
The strong Coulomb coupling between both ions enables reading out the state of the HCI
via the logic ion [60]. Although the systematic shifts are not yet fully evaluated, the
observed fractional uncertainty of 3 x 107! is seven orders of magnitude smaller than
that of previous measurements in EBITs. This result demonstrates that HCI can be used
for ultrahigh precision spectroscopy, enabling novel high-accuracy atomic clocks and new

tests of fundamental physics based on HCI.

1.5 Extreme ultraviolet spectroscopy

The performance of an optical clock is often expressed in terms of the Allan deviation
oy, which provides a measure of the statistical errors during a frequency determination
[61]. For a Ramsey interrogation scheme of the clock transition frequency fp with the 7 /2
pulses being short compared to the probe time 7;, and perfect detection efficiency, the

Allan deviation is given by [25]

1
2o/ NIt

Here, N is the number of uncorrelated atoms or ions and ¢ is the total averaging time.

oy(t) (1.8)

Clearly, a large atom number, long probe time and high transition frequency result in a
lower instability and thus better resolution within a given averaging time. Increasing the
atom number can dramatically lower the averaging times, which is ~ 10 minutes for the
best Sr lattice clocks [62], but also leads to additional systematic shifts originating from
the trapping potentials. The probe time is limited either by the lifetime of the excited state
or by the coherence of the clock laser. The current most stable lasers with a flicker noise
floor of 4 x 10717 achieve phase coherence times of a few tens of seconds [63]. Increasing
the transition frequency is the final possibility of improving the stability of the clock. It is
mainly for this reason that optical atomic clocks, with transition frequencies in the THz
region, outperform the Cs microwave frequency standards at 9 GHz.

It would therefore make sense to further increase the clock frequency in order to improve
on its stability. However, clock operation at higher frequencies is not that easy and has so
far been prevented by two main issues. First, lack of a suitable atomic system, since most
neutrals and singly charged ions are ionized when exposed to extreme ultraviolet (XUV) or
x-ray radiation. Narrow linewidth clock transitions with considerably higher frequencies

are therefore scarce among these systems. Second, the lack of coherent light sources in the

11



Chapter 1 Introduction

XUV and x-ray domains limits the attainable frequency determination accuracy outside
the infrared (IR) and optical regions. We will now briefly discuss both issues and their

possible solutions in more detail.

The first limitation can be overcome by using clock transitions at higher frequencies in
HCI, since they are robust against the high energy photons from XUV and x-ray radiation.
In recent theoretical studies, many possible clock transitions have been identified with long
lifetimes and low sensitivity to external perturbations [45, 46, 64]. Although most of the
suggested forbidden lines lie in the optical or near-infrared (NIR) region such that they
are easily accessible by standard laser technology, the vast majority of HCI transitions are
located in the XUV and x-ray regions due to the ~ (Q + 1)?Ry scaling. Among these,
many suitable clock transitions can be found, of which the properties can be carefully fine-
tuned by selecting the appropriate charge state, atomic number and isotope. Apart from
HCI, there is also the possibility to use a nuclear excitation as a clock transition. Many
investigations have been performed towards the thorium isomer, the first excited state of
the 22Th nucleus. At an energy of 7.8 £ 0.5eV, this unique nuclear transition has been
proposed as an ideal clock candidate with a very long excited state lifetime [65]. Recently
also a different nuclear transition in ?*>U at 76eV was proposed as an alternative [66].
It was shown that using a specific charge state, 23°U7*, the electronic bridge mechanism
greatly enhances the probability of a nuclear excitation. Also for the thorium isomer,
using certain charge states might increase the transition probability via this mechanism.
It thus becomes evident that highly charged systems are crucial for the development of

XUV or even x-ray clocks.

The second limitation, the lack of coherent light sources for driving narrow transitions
beyond the optical region, stems from the fact that almost all solid materials start to
absorb electromagnetic radiation below ~200nm, limiting the choice of gain media to
gases. The scarcity of highly reflective mirrors in this spectral region further complicates
the development of this type of lasers. Beams of high energy photos can be delivered by
large-scale facilities such as synchrotrons or free-electron lasers (FEL). Where the emitted
radiation is incoherent in the case of a synchrotron, self-amplified spontaneous emission in
an FEL leads to microbunching of the electrons in the undulator. The outgoing photons
within one bunch are likely to be emitted in phase, producing a quasi-coherent photon
beam with much higher brilliance compared to a synchrotron. Although radiation from
such facilities can be used for spectroscopy of HCI [67-69], the lack of coherence limits the
attainable fractional uncertainty to >1ppm. An alternative method to generate XUV ra-
diation is the upconversion of laser radiation from optical or NIR wavelengths. Techniques
such as second-harmonic generation (SHG), third-harmonic generation and four-wave mix-
ing are widely used in frequency metrology laboratories in order to obtain coherent light

at the desired wavelengths. By cascading several of such frequency conversions, radiation
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in the vacuum ultraviolet region can be produced [70, 71].

To reach even higher energies and obtain XUV wavelengths, high harmonic generation
(HHG) can be used. This highly non-linear process produces odd harmonics of the funda-
mental radiation via the interaction of a high intensity laser field with a dense gas cloud
[72-74]. Photon energies up to keV can be produced [75], requiring very high laser in-
tensities in the range of 10'® — 10> W/cm?2. These can be reached by strongly focusing
ultrashort laser pulses. Since such short pulses posses a broad spectrum of frequencies,
they are usually not suitable for precise frequency determinations. Omne solution is the
use of longer pulses in the ns range, which provide still enough power to drive the non-
linear conversion process, but also have a sufficiently narrow bandwidth to allow for XUV
frequency spectroscopy [76, 77]. A different approach is to produce harmonics with a sta-
bilized train of femtosecond pulses and utilize its comb structure, as introduced in Section
1.2.

The resulting XUV comb has been rapidly evolving since its first introduction in 2005.
The generated power has increased by roughly six orders of magnitude, from initial nW
power levels to the current generation of several mW per harmonic [78-80]. The develop-
ment of fiber laser technology has enabled switching from Ti:sapph sources to more robust
fiber-based systems [81, 82]. Subsequently, the maximum generated photon energies have
increased from ~ 20eV in the first experiments, to over 100eV in recent years [83, 84].
Furthermore, in an experiment of crucial importance, it was shown that such combs can
generate radiation with long coherence times > 1s [85]. XUV combs can thus be used
for direct frequency spectroscopy in the XUV [86], while exploiting the standard, well-
developed laser stabilization techniques that are available in the optical and NIR. In this
way, the XUV comb principally allows for reaching fractional accuracies in the XUV that

are similar to that of modern optical clocks.

In conclusion, the development of XUV comb technology enables ultra-high precision
spectroscopy in the XUV and HCI are very robust and suitable targets in this spectral
region. So far, no spectroscopy with a precision exceeding a few ppm has been performed
on HCI in the XUV region, and XUV comb technology has not been applied to HCI.
The aim of this work is to develop an XUV comb to enable measuring XUV transitions
in HCI with an unprecedented precision. Since copies of the original frequency comb are
generated simultaneously at all odd multiples up to a certain cut-off energy, the XUV
comb covers a very broad spectrum. Any HCI transitions within this spectrum can in
principle be driven, provided the excited state has a suitable lifetime. This will open up
a new, unexplored region of high-accuracy frequency determinations in the XUV, which
could lead to hints of new physics. Furthermore, this development paves the way for a

novel generation of even more accurate atomic clocks operating at higher frequencies.
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a)

Figure 1.4: Schematic overview of the experiment. a) HCI production in a compact
EBIT. b) deceleration of the HCI bunches. c¢) the HCI are retrapped in a linear Paul trap,
where they are sympathetically cooled by a crystal of Be™ ions. d) a FC produces 200 fs
pulses at a rate of 100 MHz. e) the FC pulses are amplified inside a passive enhancement
cavity. XUV radiation, produced in the cavity focus, is coupled out via a grating mirror
and the desired wavelength, selected by a vertical slit, is send to the cold HCI in the Paul
trap.

1.6 Experimental implementation

To enable the first XUV spectroscopy of HCI, a second generation of the earlier men-
tioned cryogenic Paul trap experiment is being constructed at the MPIK: CryPTEx II. A
schematic overview of the experimental setup is shown in Figure 1.4. HCI are produced
in a novel, compact EBIT (a), which operates at room-temperature and with permanent
magnets rather than superconducting magnets, that are used in conventional EBITS, in
order to reduce construction, maintenance and operation costs [87]. By pulsing a high
voltage on one of the drift tubes, a bunch of HCI can be extracted from the EBIT. An
electrostatic bender (not shown) selects the desired charge state by their ¢/m ratio. These
ions are then decelerated by a pair of pulsed serrated electrodes (b). The serrated design
produces a linearly increasing potential, which is quickly pulsed to zero when the ions are
in the interlaced region. In this way, the longitudinal kinetic energy spread of the ion
bunches is reduced. The ion bunch is then guided towards a linear Paul trap (c), where
they are trapped by two switchable mirror electrodes on the trap axis. The ion bunch
starts to oscillate between these two electrodes. Each time the bunch passes by the center
of the trap, it interacts with a Coulomb crystal of hundreds of laser-cooled Be™ ions, re-
ducing the kinetic energy of the HCI. Eventually the HCI crystallize and become trapped
inside the Be™ crystal. The number of Be™ ions can now be reduced such that one HCI
is sympathetically cooled by a single Be™ ion. The HCI can then be illuminated by XUV
light to resonantly drive XUV transitions, and the HCI state can be read out via QLS.

In order to perform high-accuray frequency determinations in the HCI using an XUV
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comb, the combs line spacing needs to be much larger than the linewidth of the transition.
Otherwise, it would become very hard to determine the tooth number that is resonant while
the repetition rate is scanned. Once the resonant tooth number has been determined, the
absolute transition frequency is immediately known via the comb repetition rate and offset
frequency. In our case, the comb laser (d) is operating at a repetition rate of 100 MHz with
a central wavelength of 1039 nm and a 14 nm bandwidth. At such a high repetition rate,
it is much harder to reach the peak powers required for HHG > 10'3 W /cm?, as compared
to kHz laser systems. Therefore, several amplification steps are necessary. The pulses
from the oscillator are enhanced by several fiber amplifiers and subsequently compressed
to an average power of 80 W with a 200 fs pulse duration. The pulses are then send into
a passive enhancement cavity (e), situated in a large vacuum chamber. In this cavity, the
incident pulses are resonantly overlapped and strongly focused on a gas target. High-order
harmonics are produced in the cavity focus and propagate collinearly with the NIR beam.
In order to separate the XUV radiation from the resonant cavity beam, a grating mirror
is used, resulting in a spatially dispersed harmonic spectrum. The desired wavelength is
then selected by a vertical slit, and the XUV light can be focused on the trapped HCI in

the Paul trap by a few grazing incidence optics.

One of the main challenges of using a frequency comb for direct spectroscopy of a single
atomic transition is that the laser power is divided over many (~ 10°) comb lines, of which
only one contributes to driving the transition. Although there are alternative ways to use
many modes of the comb spectrum, such as employing a two-photon excitation scheme [89],
Fourier-transform spectroscopy [90] or Ramsey-comb spectroscopy [91], these methods
come with their own challenges such as complicated alignment issues. To estimate what
level of XUV power is required to obtain a reasonable excitation probability, calculations
were performed by C. Lyu and Z. Harman [88]. The results are shown in Figure 1.5 for
the 2P, — 1Sy transition in Ar®* at 88nm (14.1eV) with a lifetime of 1.3 us. For the
calculations, the XUV comb was assumed to consist of 200 fs pulses at a repetition rate of
100 MHz, focused to an area of 10 um?. The linewidth of the comb tooth was taken to be
100 kHz, which is on the same order of magnitude as the 122 kHz natural linewidth of the
transition. For a 4mW comb, the Rabi-frequency is 720 kHz, such that Rabi oscillations
can be observed, as is visible in Figure 1.5f). The chaotic behavior due to the limited
coherence time of 1.6 us, visible in orange, is averaged out when using a large set of different
noise samples, visible in blue. With 40 yW of power per harmonic, an average fractional
population inversion of 0.14 can be reached, corresponding to a fluorescent photon rate of
17kHz. If the power is increased to 4 mW, the average excited state population increases
to 0.49, resulting in a fluorescent rate of 59 kHz. These calculations thus show that several
tens of uW of power per harmonic is sufficient to observe resonant excitations in HCI,

such that ultra-precise frequency determinations can be performed.
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Figure 1.5: Excitation dynamics for the 3P, — 1S transition in Ar® at 88 nm (14.1eV),
interacting with 200 fs pulses, separated by 10ns, from an XUV comb with a linewidth
of 100kHz and 40 uW per harmonic for a), b) and c¢), and 4mW per harmonic for d), e)
and f). The number of excitation is normalized such that full population inversion equals
to one. The step-wise excitations visible in a) and d) originate from the pulsed nature of
the radiation (blue solid line) and become smooth when continuous-wave (CW) light with
the same average power is considered instead (orange solid line). In c) and f), the orange
lines represent the dynamics of the first 10 us in a) and d), respectively, while the blue
lines show the behavior averaged over a 1000 samples. Clear Rabi-oscillations appear for
the 4mW comb. Figure from C. Lyu [88].
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1.7 Thesis outline
1.7 Thesis outline

The main objective of this thesis is the development of an XUV comb for HCI spectroscopy
for tests of fundamental physics. The theoretical background and principles of HHG and
enhancement cavities are treated in Chapter 2. The experimental setup, which was built
from scratch in the scope of this thesis, is introduced in Chapter 3. First, the laser
system is introduced, followed by the design and realization of the enhancement cavity.
Subsequently, the vacuum system accommodating the cavity and the differential pumping
system for removal of HHG target gas are described. In Chapter 4, experimental results of
the first multi-photon ionization measurements at a rate of 100 MHz are presented. Xenon
atoms were ionized in the focus of the enhancement cavity and images of the photo-electron
distribution are analyzed. In Chapter 5, the results of intra-cavity HHG are discussed,
where different gas mixtures were used to boost the output power of the XUV radiation.

Finally, a summary and outlook are provided in Chapter 6.

17






Chapter 2

Theoretical background

In this chapter we cover the theoretical aspects that are relevant for producing an XUV
frequency comb. We start with a brief treatment of ultra-short pulses that is key to
understanding the principles of a frequency comb. Next, a theoretical description of HHG
in the single-pulse regime is provided. Subsequently, harmonic generation with a phase-
stabilized pulse train, resulting in an XUV comb, is discussed. We will then treat the
basics of optical resonators and how they can be used to amplify laser radiation. Finally,
we will consider the enhancement of femtosecond pulses, that is required for XUV comb

generation, in such a cavity.

2.1 Ultrashort laser pulses

In this section, some of the basis properties of ultrashort laser pulses are introduced,
following the treatment of J.-C Diels and W. Rudolph [92]. Subsequently, we describe the
characteristics of a coherent pulse train. Finally, the frequency comb, already introduced

in Section 1.2, is discussed in more detail.

2.1.1 Pulse propagation

The behavior of electromagnetic fields is described by Maxwell’s equations for electrody-
namics. Rewriting these equations in the absence of charges and currents in vacuum leads
to the wave equation,
1
2 2
O;E(z,t) — C—QatE(z,t) =0, (2.1)

here considered in one dimension. The plane wave solution represents a traveling wave

Ho
the vacuum permittivity and pg the vacuum permeability. The electric field component

propagating in z-direction at the speed of light ¢ = 1/, /<& = 299792458 m /s, with €y being

of this wave is given by
E(z,t) = Ege'@et=k2), (2.2)
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Chapter 2 Theoretical background

The wave is oscillating at the carrier frequency w. and characterized by the wave number
k = we/c. The oscillation amplitude is given by Fy. In the case of a pulse of light, the
field consists of many waves oscillating at different frequencies w. The pulse can then be

represented by integrating over all frequency components,
1 [ . :
E(z,t) = / A(w — we) e¥te k2 dy, (2.3)
21 J_

where the amplitude factor A(w — w.) describes the amplitude of the different frequency
components in the wave-packet. To find the frequency distribution of the pulse, a Fourier
transformation can be applied. Equation (2.3) is already in an appropriate form such that

the Fourier transform is simply given by
Sy . .
E,(z,w) = F{E(z,t)} = / Ei(z,t)e ™t = A (w — we) e, (2.4)
—0oQ

In order to simplify the theoretical description of pulse propagation and interaction,
A (w — w,) can be separated into the carrier frequency w, and an envelope function such
that A (w — w.) = A(w)e~™*! [93]. The wave number k can also be expanded around w,
such that k = k. + 0k, and Equation (2.3) becomes

o0
Ei(z,t) = ei(wct—kcz)/ A(w)eiwte—iékzdw
- (2.5)

= A(z,t)elwet=ke)

Hence, the wave-packet can be expressed as a fast oscillating carrier wave and an envelope
function that determines the shape of the pulse in time and frequency domain. This
separation is justified as long as the spectral bandwidth of the pulse is small compared to
the carrier frequency. Or, equivalently, when the pulse envelope and phase vary by a small
amount within one optical cycle, the slowly varying envelope approximation holds [92].
The pulse envelopes in the time and frequency domain are relation via the the Fourier

transform: -
A(z,t) = / Ay(z,w)e“duw. (2.6)
—o0
Now let us observe the temporal evolution of the pulse amplitude at a specific position
z = 0 in space,
E(0,t) = Ay (0,t)e™et

E,(0,w)=A,(0,w —w). (2.7)

The amplitude distribution factors A;(0,¢) and A, (0,w — w,) describe the pulse envelope

in both the time and frequency domain, linked via the Fourier transform. Several possible

shapes of the envelope function are sech?, Lorentzian or Gaussian, the latter of which is
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2.1 Ultrashort laser pulses

most widely used. The Gaussian temporal and spectral dependence yield

21n2t2
A ( ) Eoe 2
7'2 w—wc 2 (28)
Ap(w —we) = Ept 217;267 S

In the time domain, pulses are characterized by specifying a pulse duration 7 which equals
the full-width half-maximum (FWHM) of the intensity profile I(t) = |E(t)|>. The spectral
width Af is given by the FWHM of the spectral intensity. Since 7 and Af are related via

the Fourier transform, a minimal time-bandwidth product can be defined as
2nTAf > 21 - 0.441, (2.9)

where the factor 0.441 is specific for Gaussian pulses and depends on the shape of the
pulse. For bandwidth-limited pulses, which have the shortest possible duration for a given
spectral bandwidth, the equality holds. If there is a frequency variation (chirp) across the
pulse, the duration of the pulse will be larger than that of a bandwidth-limited pulse.

2.1.2 Train of pulses

Now we will discuss the behavior of the spectral distribution in case of multiple pulses
instead of a single one. Consider a pulse train of N pulses, delayed by the repetition time

Trep- The electric field of the pulse train can then be expressed as [94]
ptt Z At rep 7I(W(:t_TL‘IJC,Trep“I‘WIAQSCE)’ (210)

where A¢cg is the carrier-to-envelope phase. If A¢cg is zero, the envelope maximum over-
laps with a maximum of the underlying electric field oscillating at the carrier frequency for
every pulse. A non-zero carrier-to-envelop phase (CEP) is defined as the phase difference
between the electric field maximum and the envelope maximum, as shown in Figure 2.2,
where the pulse-to-pulse phase ’slips’ by an amount equal to A¢cg. The electric field in
the frequency domain is given by the Fourier transform of Equation (2.10)
N-1
Bpaa(w) = 3 el@scnaclio) [ p, (¢ = i g)ellomiay
" (2.11)

N—-1
w wc § :ez (nA¢cr— anrep)

n
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Figure 2.1: Pulse shape in both the time and frequency domain, which are linked via
the Fourier transform. The oscillating electric field F(t) under the pulse envelope A(t)
is shown in blue, the corresponding spectral intensity in orange. The pulse length of the
electric field 75 is related to the pulse duration 7 via a factor V2. For more than one
pulse, the intensity distribution is modulated by the pulse repetition rate fep, resulting
in a series of equidistant sharp peaks when the number of pulses increases.

22



2.1 Ultrashort laser pulses

Here the relations A(w) = [A(t)e”™“!dt and [ f(x—a)e ®®dx = e~ [ f(z)e~®*dzx were

used to simplify the expression. With the identity Zflvz_ol " = 11_ me, the electric field of

the pulse train can be expressed as

1 _ e—iN(wTrep—‘rAd)CE)

Ept (W) = Aw(w — we) (2.12)

1— e—i(WTrep+A¢CE) '
Using |1 — e7™|2 = (1 — cos(z))? + (—sin(z))? and the trigonometric identities sin?(x) +

cos?(x) = 1 and cos(2z) = 1 — 2sin?(z), the laser intensity then yields

Sin2 (N ((UTrep + AquE) /2)

Lyt (@) = | Bprw(@)[* = To(w) sin® ((WTep + Adcr) /2)

(2.13)

The intensity spectrum of a train of pulses is thus that of a single pulse modified by
a periodic function. This results in equidistant modes with their maximum intensity
separated by frep = 1/Trep. The electric field and intensity spectrum in the time and
frequency domain, respectively, of pulse trains consisting of two and eight pulses are shown
in Figure 2.1. For two pulses, a cosine modulation appears in the intensity spectrum, while
for many pulses the modes become much narrower. To derive an expression for the electric

field in the case of an infinite number of pulses, we can use the Poisson sum formula

oo

> ;F (’;) e¥kT/P = N f(w — mp), (2.14)

k=—oc0 m=—o0

with F(y) being the Fourier transform of f(z). Using the fact that the Fourier transform

of §(t) is constant, we can rewrite Equation (2.11) as

[e.e]
Bpt(w) = Ay (W —we) Y 6 (WThep + Adcr — n2r). (2.15)
n=0
Thus, in the limit of N — oo, the electric field becomes a series of infinitely sharp fre-
quency lines under the envelope. This pattern can be recognized as a comb of well-defined
frequencies resulting from an infinite train of pulses with a fixed phase relation, hence the

name frequency comb.

2.1.3 The frequency comb

In this subsection, we discuss the general principles of FCs, while a detailed description of
the experimental realization is provided in Section 3.1.1. The intensity distribution of the
pulse train in Equation (2.15) is only nonzero when the pulse-to-pulse phase wTiep + A¢cr
is an integer multiple of 2. Using the definition of ¢cg as the pulse-to-pulse phase slip
from Equation (2.10), we can define Topo as the time it takes, until ¢pcg has changed by
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Chapter 2 Theoretical background

an amount of 27. The repetition rate fr.p and the carrier-envelope offset frequency fcro

then become

1
f rep — Ti
rep
2.16
fopo = A¢cg (2.16)
CEO 27TTrep )

fully describing the regular pattern of frequency modes. This leads to the famous definition
of the FC spectrum [21]

Jn = fceo + nfrep- (217)

The comb thus consists of equidistant discrete teeth (modes) that are separated by frep
and have an offset from zero of fogo. It is the combination of only these two frequencies
that determine the absolute position of all frequency modes in the spectrum. The mode
locations are thus independent of other properties of the pulse train, such as the temporal
pulse shape or frequency chirp. Since these frequencies both lie in the RF domain, they

can be easily counted and stabilized electronically.

The comb spectrum is illustrated in Figure 2.2. In practice, the number of modes in the
comb spectrum is on the order of 10° and the width of the comb teeth is determined by
the stability of frep and fcro. While the repetition rate can be easily detected by a fast
photodiode and subsequently fed back to the oscillator via locking electronics, access to
the offset frequency of the comb is more complicated. In the work that formed the basis
for the development of the frequency comb, a self-referencing method to extract focgo was
developed in the late 1990s [19, 20]. The technique compares two different parts of the
comb spectrum. An octave-spanning spectrum is generated by spectral broadening in a
non-linear fiber, giving rise to comb lines at twice the original frequency: fo, = 2n frep +
feeo. Frequency doubling the original comb (2f,) and mixing it with the broadened
spectrum (fa,) leads to a beat-signal from which the offset frequency can be detected:
2fn — fon = foEo.

With the comb fully defined, parts of the comb spectrum can be used to generate a
beat signal with a CW laser to determine its absolute frequency. This can be done by
measuring several beatnotes at different repetition rates, yielding a unique solution for
the mode number n. Alternatively, if the wavelength of the CW laser is known with an
uncertainty less than frep, for instance by using a wavemeter, a single beat signal suffices
to determine the absolute CW frequency. By stabilizing the beat signal, the CW laser
can be phase-locked to the comb, or vice-versa. Recent experiments have shown that
in this way it is possible to transfer the stability of one CW laser to another via the
frequency with an uncertainty that is independent of the phase noise of the comb [95].
Over the past few decades, frequency combs have proven to be indispensable tools for

atomic clocks and frequency standards. They are widely used to transfer the stability of
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Figure 2.2: Schematic representation of a frequency comb in time and frequency domain.
The comb modes, centered around the carrier frequency are separated by fep and the
carrier envelope phase A¢cg gives rise to a frequency offset from zero, fcgro.
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an extremely narrow line width laser, referenced to an ultra-stable cavity, to the clock
laser interrogating the electronic transition. In this way, the absolute frequency of very
narrow transitions in atoms and ions can be determined with extremely high precision [37,
62, 96, 97]. Nowadays, frequency combs are commercially available and have become a

standard piece of equipment in many frequency spectroscopy labs.

2.2 HHG

The production of high harmonic radiation from an intense laser field was discovered in
1987 by focusing picosecond laser pulses into a gas jet [73, 74]. To fully understand the
underlying physical process, a non-perturbative quantum mechanical model is required.
However, a semi-classical description known as the three-step model (TSM) can provide an
intuitive picture and even predict some important phenomena of the process [98, 99]. We
therefore start this section with a discussion of the TSM, before we turn to the quantum
mechanical description of HHG. Finally, the macroscopic HHG response and the principles

of phase-matching will be covered.

2.2.1 The three-step model

The TSM is illustrated in Figure 2.3. A pulsed laser beam produces an electric field with
a magnitude comparable to the Coulomb potential of an atom present in the laser focus.
The electric field therefore modifies the Coulomb potential such that an outer electron can
tunnel out (1.). The free electron is then accelerated by the steep electric field gradient
of the oscillating laser field. Half a laser cycle later, when the electric field has changed
sign, the electron can be driven back towards the parent ion (2.). It can then recombine
with the parent ion and thereby emit a high-energy photon, releasing the excess energy
the electron gained by the driving laser field (3.). This process can happen twice per laser
cycle at specific ionization times, thereby generating a train of even shorter pulses with a
much higher energy than the driving field. In a dense gas jet, the propagating laser field
generates many XUV photons, which, as we will see in short, results in a collimated beam

of odd integer multiples of the fundamental light.

2.2.2 lonization by a laser field

In the first step of the TSM, the laser field perturbs the Coulomb potential of the atom.
Depending on the intensity of the laser, several different regimes can be identified. The

time-averaged energy of an electron executing a harmonic motion in an oscillating laser
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Elaser

2.

Figure 2.3: Schematic overview of the TSM. During the first step, the Coulomb potential
of the atom is modified by the laser field so that the electron can tunnel out. Second, the
electron is accelerated by the oscillating laser field. Finally, the electron can recombine
with the parent ion under emission of a high-energy photon.

field is known as ponderomotive energy of the field and is given by

2 112 2
e“Ey e Ipeak

dmew?  2cegmew?’

(2.18)

Upond =

where Ipeqi is the peak intensity of the field. Consequently, the well-known Keldysh

parameter can be defined as [100]

Uion
2(]pond ’

v = (2.19)
with Ujon being the ionization potential of the atom. The Keldysh parameter is thus
proportional to the laser frequency and inversely proportional to the laser intensity. For
~ > 1, the ponderomotive energy is low compared to the ionization potential and multi-
photon ionization (MPI) is dominant. In this process, many photons are absorbed for each
photon that is emitted. The ionization rate depends strongly on the photon number N
required for ionization and therefore scales with the laser intensity as V. This is discussed
in more detail in Chapter 4, where the ionization of xenon is studied in the MPI regime.
When v ~ 1, the electric field is strong enough so that tunnel ionization becomes the

dominant process. This is the regime in which HHG experiments are typically performed,
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Element Ujey (eV)

He 24.59
Ne 21.56
Ar 15.76
Kr 14.00
Xe 12.13

Table 2.1: Ionization energies of the most common gases used for HHG.

100 L
—— Xxenon
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10-1f — argon
—— neon
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21072}
©
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51072}
©
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210
1073
10_16013 1o 1015

laser intensity (W/cm?)

Figure 2.4: Ionization fraction as a function of the laser intensity for 200 fs pulses with a
central wavelength of 1039 nm. The ionization rates were calculated according to modified
ADK theory [101], using code from C. Benko [102].

as described in Chapter 5. With v < 1, the electric field becomes so strong that it reduces
the ionization barrier and the electron can easily leave the atom, a regime that is known
as over-the-barrier, or barrier-suppression, ionization.

In order to calculate the ionization rate under the influence of an intense laser field,
a theoretical method was developed by Perelomov, Popov and Terent’ev, which is now
known as PPT theory [103]. A simplified formulation of this formalism was developed by
Ammosov, Delone and Krainov, which is referred to as ADK theory [104]. Although this
theory is easier to implement than PPT theory, it overestimates the ionization rates in the
barrier-suppression regime. To improve the accuracy of ADK theory, Tong and Lin came
up with a modified version that is based on an empirical formula, which is valid for both

the tunnel ionization and the barrier-suppression regime [101]. The ionization fraction n
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2.2 HHG

resulting from a laser field is given by
n=1—exp <—/ wADK(t)dt> , (2.20)

where wapk (t) is the instantaneous ionization rate calculated from modified ADK theory

that is integrated over the laser pulse duration. The modified ADK rate is given by

Cf @+ +|m))! 1 (2n3)226/~—lm—1
WADK =

oAmlim)l 2(1—|m|)!  K2Z/n-1 \ F (2.21)
% e—2n3/3F(F)e—a(Z3/Uion)(F/nB)‘

In this equation, C; represents the amplitude of the electron wavefunction in the tunneling
region, [ and m are the orbital angular momentum and magnetic quantum numbers of the
valence electron(s) of the atom, k = /2Uion, Z. is the asymptotic charge seen by the
electron, F' is the laser field strength and « is an empirical fitting parameter for the
barrier-suppression region. In Table 2.1, the ionization potentials of the most common
gases used for HHG are shown. Using these values, the ionization fraction is plotted as a
function of laser intensity in Figure 2.9, for 200 fs laser pulses centered around 1039 nm.
Clearly, the ionization rate varies strongly for the different atomic species. It also becomes
clear, that in order to ionize a significant fraction, laser intensities above 10 W/cm? are
needed. As we will see in Section 2.2.7, the ionization fraction of the gas is an important

parameter for the macroscopic yield of HHG.

2.2.3 Semi-classical approach

After ionization, the motion of the electron can be well described by classical mechanics.
The Coulomb force from the parent ion is sufficiently small during most of the electron
trajectory so that the electron kinematics can be treated as a free charged particle moving
in the presence of an oscillating electric laser field E = Ejcos(wt). We assume that
the electron starts its trajectory with zero velocity at the ionization time t; and define
¢; = wt; as the corresponding phase of the driving field at this instant [105]. The velocity

and position of the electron are then given by

2(0) = 0 (cos gy~ cos o+ (6~ 6)sin ).
oe (2.22)
v(g) = :LE(E (sin ¢ — sin ;) ,

where the time evolution is expressed in terms of the laser phase ¢ = wt. Several possible
trajectories are shown in Figure 2.5 for different values of ¢;. It becomes clear that for

values of ¢; between 0 and 7/2, the electron trajectory leads back to the ion such that
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Figure 2.5: Position of the electron over time. A few possible electron trajectories are
shown with indicated ionization phase ¢;. For ¢;=0.31 the electron has maximum kinetic
energy when it returns to the parent ion.

recollision can take place. For ¢; < 0.22 recombination could happen even after more than
one laser cycle, while for ¢; > 7/2, the electron is driven away from the parent ion.
Upon recollision, the energy of the electron can be released as a high-energy photon.

The kinetic energy of the electron follows from Equation (2.22) and (2.18)
Eiin = 2Uponda (sin(¢) — sin(¢;))”. (2.23)

Solving for z(¢) = 0 gives the phase of recombination, from which Fy;, can be calculated.
The result is shown in Figure 2.6, where the kinetic energy of the electron at the moment
of recombination with the parent ion is shown in orange as a function of the ionization
phase ¢;. The same distribution is also plotted against the recombination phase ¢,. The
electron gains a maximum excess kinetic energy of 3.17Upong for ¢; = 0.31, corresponding
to ¢, = 4.4. Therefore the maximum energy of the emitted photon, the HHG cutoff
energy, is given by

Emax = Uion + 3.17Up0nd- (2.24)

Since the laser field is still close to its maximum value at the ionization time for which
this largest energy is reached, harmonic generation is efficient even near the cutoff energy.

Electrons with ¢; < 0.31, thus emitted before the kinetic energy peak, follow a trajectory

that leads to recombination at ¢, > 4.4 and therefore follow a long trajectory. Electrons
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Figure 2.6: Kinetic energy of the electron at the moment of recombination, normalized
to the ponderomotive energy. The maximum kinetic energy of 3.17U,onq occurs for an
ionization phase of ¢;=0.31 and a recombination phase of ¢;=4.4, indicated by the dotted
lines.

emitted at ¢; > 0.31 recombine at ¢, < 4.4 and follow short trajectories. Each ¢; leads
to a specific ¢, as a solution of Equation (2.22) and so do ¢; + mm and ¢, + mm. The
long and short trajectories can thus take place every half-cycle of the laser field, with an
alternating phase. This leads to harmonic generation with an alternating field direction
twice per laser cycle. In frequency domain, this means that the harmonic field contains
only odd multiples of w.. This is shown in Figure 2.7, where the electric field composed
of odd harmonic orders 9 — 21 is shown in orange. Indeed the phase changes every half
cycle of the laser electric field as shown in blue. The intensity of the HHG field, which
is emitted as a train of pulses separated by half a laser cycle, from a single laser pulse is

shown in green.

2.2.4 Quantum theory of HHG

The preceding classical discussion of the TSM provides an intuitive understanding of
the process and agrees well with experimental findings. It reproduces some of the basic
features resulting from an analytical quantum mechanical description of HHG, known as
the Lewenstein model [105, 106]. A brief summary of this model is provided here in atomic
units.

The interaction between an atom and a driving laser field, linearly polarized in the

x direction, can be described by the time-dependent Schrodinger equation in the length
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Figure 2.7: Ilustration of HHG by the electric field of a single IR pulse. Harmonic
bursts are emitted each half laser cycle, with alternating electric field directions due to
the changing direction of the driving field. The intensity envelope of the HHG field, which
here consists of harmonic orders 7 up to 21, is shown in green.
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gauge

t 1
1(%}(8):’) = —§V2 + V(%) 4+ Ep cos(wt)z | (x,1), (2.25)
where V' (x) is the atomic potential. Now the following three assumptions, which are widely

used within the strong field approximation (SFA), are made:

e Excited electronic states of the atom do not play a role in the process of tunnel

ionization due to the high laser intensities.

e The effect of the atomic potential on the freed electron driven by the strong laser

field is negligible.

e Depletion of the ground state population can be neglected.

Using these approximations, an expression for the time-dependent dipole moment z(t) =
(¥(x,t)|z|1p(x,t)) can be obtained

z(t) = i/t dt’ / d*pEcos (wt')d (p— A (¢)) d*(p — A(t)e P Lee (2.26)

Here d(v) = (v|z|0) is the dipole transition matrix element from the ground state |0)
to the continuum state |v), parallel to the electric field polarization axis. The canonical
momentum p is defined as p = v + A(¢), with the vector potential of the laser field
A(t) = [E(t)dt = (—£2 sin(wt), 0,0). The quasi-classical action S(p,t,t') is defined as

S (p,t,t) = /t dt” (MW + Ip> . (2.27)

t/ 2

Equation (2.26) has a physical meaning related to the three-step model. The first part
of the integral, F cos(wt')d (p — A (t')) can be interpreted as the probability amplitude
of the electron excitation to the continuum at time ¢'. The free electron wave function

—iS(Ptt")  The quasi-classical

propagates until time ¢ while acquiring a phase factor of e
action S thus describes the movement of the driven electron with momentum p. At time
t, the electron recombines with the parent ion with a transition amplitude equal to the
term d*(p — A(t)).

In the quasi-classical limit, the action defined in Equation (2.27) represents the sum
over all relevant electron paths, the long and short trajectories. For each trajectory,
an intensity-dependent dipole phase is acquired in the continuum, which can be defined
as [107]

¢](q’ I) = qwct/ ) (pa ta t,) 9 (228)

where ¢ represents the harmonic order. The accumulated phase during the electron prop-

agation in the laser field depends strongly on the laser intensity I and the trajectory j

33



Chapter 2 Theoretical background

considered. ¢;(q,I) therefore has a large influence on the spatial and spectral properties
of the generated harmonics. Within a specific harmonic order, ¢;(q, I) is very sensitive to
changes in the intensity for the long trajectories, whereas ¢;(q,I) is much less sensitive
to intensity changes for the short trajectories. In both cases the dipole phase changes

approximately linearly with the space- and time-dependent intensity I(r, z,t):

0i(q,I) = ap(q) — a(q)I(r, 2, 1), (2.29)

where o j(¢) and «;(q) depend on both the harmonic order and the electron trajectory.
The time variation of the intensity I induces a change in the instantaneous frequency, a
chirp, to the harmonic field Aw;(t) = —0¢;(t)/0t, which leads to spectral broadening and
a decreased coherence time of the harmonic field. The radial variation of the intensity
causes a wavefront curvature, which increases the divergence of the generated harmonics.
Since aiong (¢) is larger than agnere (¢) by roughly a factor 25 for typical conditions [108], the
long trajectories have both a shorter coherence time and a significantly larger divergence.

For frequency metrology, the short trajectories are therefore preferred.

2.2.5 Macroscopic HHG response

So far, we discussed the emission of single photons by the interaction of an atom with a
driving laser field. Now we consider how a superposition of many emitters in the medium
leads to a coherent, directed beam of XUV light. The relative phases of the emitted
photons from different atoms in the interaction region are dictated by the driving field
and do therefore not change, except for possible perturbations due to for instance intensity
fluctuations or variations in the laser spatial profile, as will discus in the next section. The
HHG process itself is coherent, and the coherence properties of the emitted XUV radiation
only depend on the driving laser characteristics.

The coherent light emission from a set of single emitters in a medium scales quadratically
with the density, provided the relative phase stays constant everywhere in the emission
volume [109]:

Sy = p*Sy. (2.30)

Here, S, is the yield of the ¢g-th harmonic, p the gas density and Sy a factor that accounts
for phase-matching and re-absorption of the emitted radiation by the medium. For perfect
phase-matching and without re-absorption, the equality S4 = 1 holds, while for all other
cases Sy takes a value between 0 and 1. In most practical cases, S; depends on the
gas density and the quadratic scaling is not perfectly reproduced even for phase-matched
generation.

For an efficient buildup of high harmonic radiation along the propagation direction
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Figure 2.8: HHG yield for various phase matching conditions. a) harmonic signal as
function of nonlinear medium length, for different values of Ak. When reabsorption by
the medium is neglected (L,ps = 00), the signal either grows to infinity or oscillates with
Lieq, depending on the wave vector mismatch. b) yield as function of Ak for constant

medium length.

within the nonlinear medium, phase matching of the laser-induced polarization and gen-
erated harmonic orders is required. In other words, the phase front of the generated field
needs to match with the phase front of the laser field. The phase velocity of the gth har-
monic is vq = wq/kq = qui1/kq, while the phase velocity of the driving field is v; = wy /kq.

We can therefore define
Ak(q) = gk1 — kq; (2.31)

as the phase mismatch between the wave vector of the fundamental beam ky and the g-th

harmonic wave vector kgq.

The generated XUV field results from a coherent sum over all atoms in the medium of

length L4 and can be expressed as [110]
2

Lmed 3
/ dzdg exp [i (Ak + ! > (Limed — z)]
0 2Labs

I

Sy

(2.32)

where d; is the dipole amplitude for the gth harmonic. The effect of reabsorption of the

generated XUV photons by the medium is represented by the absorption length Lpg

(op)~t, with o being the ionization cross section for the harmonic radiation. Assuming dg
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and L,ps remain constant over the generation volume, Equation (2.32) becomes

~Leq COsh (Lmd) — cos(AkLyed)
P e A ——
Ak? + (2Labs)

AkLmed

s

e L2, 4 sinc? < ) . (2.33)
For L,ps = oo, phase matching in the absence of harmonic absorption is described by a
sinc function, as shown in Figure 2.8. There, the quadratic growth of the harmonic signal
with medium length is also shown. Depending on the value of Ak, the signal saturates due
to reabsorption at a certain medium length. The coherence length of the emitted radiation
can be defined as L., = m/Ak, which can be used to define a parameter space for which
the harmonic yield for absorption-limited HHG is at least half of the maximum value. This
is the case for Lyeq > 3Laps and Leop > 5Laps [110]. Without absorption (L,ps = 00), the
harmonic yield grows indefinitely in the case of perfect phase-matching. For non-phase-
matched generation, the signal starts to oscillate with increasing medium length. So-called

Maker fringes appear [111], which can also be observed experimentally [112].

2.2.6 Phase matching contributions

In a HHG geometry where a Gaussian driving laser beam is focused on a gas target
in free space, four terms contribute to the phase mismatch between the harmonic and
fundamental field [109]:

Ak = Akg + Akq + Aky, + Akp. (2.34)

Here, Akg denotes the wave vector mismatch due to the Gouy phase and Akq the mis-
match induced by the dipole phase, arising from the electron trajectory. Ak, and Akp
represent the wave vector mismatch due to the neutral gas dispersion and plasma disper-
sion, respectively. The different contributions and their origins are discussed below. For

simplicity, only propagation along the laser direction z is considered.

The phase shift of a focused Gaussian laser beam in propagation direction z, compared
to that of a plane wave with the same frequency, is known as the Gouy phase and is given
by [113]

k 2
douy (; 2) = — tan (;) + ﬁzz), (2.35)

where zp = 7rw(2) /Ao is the Rayleigh range, wy the beam waist size at the laser focus, Ag
the laser wavelength, r the radial coordinate and R(z) = z + Z12~2/ z the beam radius of

curvature. The resulting phase mismatch between the fundamental and the gth harmonic
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order due to the acquired Gouy phase at the optical axis (r = 0) is

a ou
QLG&Y (&), = (2.36)

Ak, = -

The Gouy phase shift of the harmonic beam can be neglected due to its much smaller
divergence. For small z, Ak, is approximately constant and reaches a maximum at z = 0.
By adjusting the position of the gas nozzle in relation to the laser focus, the size of the

Gouy phase shift can therefore be tuned slightly.

The second component of the phase mismatch is induced by the dipole phase defined in
Equation (2.28). Using the approximation in Equation (2.29), the wave vector mismatch

yields
oI(r, z)

0z '’

where the proportionality constant a;(q) is positive. Since the intensity varies with both

Akg = —ay(q) (2.37)

z and r, the dipole wave vector mismatch can change substantially over spatial position
within the nonlinear medium. However, within the laser focus Akq can be approximated
to be zero [114].

The third contribution is the wave vector mismatch due to neutral gas dispersion of the

generation medium and can be expressed as [115]
Ak, = q%P (1= 1) (no — ng + nal) (2.38)

where P is the pressure in atmosphere and ng, n, are the refractive indices of the gas
medium for the fundamental laser and the harmonic beam, respectively. ns is the intensity-
dependent index of refraction, the value of which usually is small compared to the other
wave vector mismatch contributions. The intensity dependent contribution to Ak, can
therefore be neglected. Values of n, can be found in literature [116], while ng can be

approximated well using the Sellmeier equations [117].

The last term in Equation (2.34), Ak, incorporates plasma dispersion. The probability
for a tunnel-ionized electron to recombine with its parent ion is relatively small, therefore
many electrons are freed and a plasma is formed. Both the ions and the electrons cause
dispersion, but the contribution from the ions is usually neglected due to their large mass
and higher resonance frequencies. The change of the refractive index due to free electrons

leads to a wave vector mismatch given by [118§]

We

w
Ak, = qf(no,el — Ngel) & —q=—pnNaTe, (2.39)

2me

where N, is the atomic number density, and r. the classical electron radius. The free-

electron dispersion of the harmonic field can be neglected since the harmonic frequencies
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Figure 2.9: Phase matching of neutral gas dispersion and plasma dispersion due to free
electron production. a) dispersion as function of ionization fraction for xenon gas with a
pressure of 200 mbar in the interaction region using a driving laser at 1040 nm. The dotted
line indicates the ionization fraction 7¢t for which the neutral gas dispersion compensates
the plasma dispersion. b) values of 7 as function of wavelength for different gases. The
critical ionization fraction drops for increasing ionization potential. The star marks the
vertical dotted line shown in a).

are much higher than the plasma frequency.

2.2.7 Pressure-induced phase matching

Since the neutral gas dispersion contribution is positive while the plasma dispersion con-
tributes negatively, it is possible to balance both contributions, as is shown in Figure 2.9a
as a function of the ionization fraction 7. Dispersion values are plotted for xenon gas,
ionized by a 1040 nm driving laser at a pressure of 200 mbar. At the ionization fraction
indicated by the vertical dotted line, the dispersion of both contributions is balanced. This

defines the critical ionization fraction, given by [119]
A%Nare -1
it = | 5= ———~ +1 . 2.40
1= (5700 g 1) 240

Values for 7t are usually on the order of a few percent and are shown in Figure 2.9 for
xenon, argon and krypton and harmonic orders between 13 and 41. For gases with a lower
ionization potential, the critical ionization fraction is larger due to larger refractive index

differences. Furthermore, 7. decreases for increasing driving wavelengths.
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Figure 2.10: Pressure-induced phase matching conditions as a function of ionization
fraction for a 1040nm driving field. a) phase matching pressure for several gases and
indicated harmonic orders, using a focus waist size of 14.7 um. b) phase matching pressure
color plot of xenon for harmonic 15, as function of ionization fraction and focus waist size.
The horizontal dashed line indicates the waist size used in a). For such tight focusing, a
relatively large pressure is needed to achieve phase matching for a significant ionization
fraction.
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Since the Gouy phase contributes negatively to the phase mismatch, ideal phase match-
ing Ak = 0 can only be achieved for ionization fractions 17 < 7eit, assuming Akg ~ 0. The
gas density can be used as a parameter to adjust the dispersion contribution to compensate

for the Gouy phase. By rewriting Equation (2.34) we obtain

Ak, | 0Ak,
oP " op

Proatch [ } + Akg =0, (2.41)
where the gas density was assumed to be linearly dependent on the pressure, i.e. assuming
a constant temperature. The pressure for which phase-matching is achieved is now given
by [120]

S
2m2wiA(ng — ng) (1 — ) ,

Tlcrit

Pmatch = PO

(2.42)

where P, is the standard atmospheric pressure. Figure 2.10a shows Ppatcn for a few gases
and harmonics as function of ionization fraction. The pressure required for ideal phase
matching increases with the ionization potential of the target gas. At low 7, the phase
matching pressure does not depend strongly on the ionized fraction, thus a large part of
the harmonic spectrum can be phase-matched. As the ionization fraction increases, the
phase matching pressure grows rapidly.

In Figure 2.10b, the dependence of pyatcn on the laser focus waist size wg and ionization
fraction is shown for the 15th harmonic using xenon. For tighter focusing geometries,
higher pressures are required for phase matching. The focus size used in this thesis is
indicated by the horizontal dashed line. Since the pressure in the interaction region is
~ 10 % of the nozzle backing pressure, it becomes clear that backing pressures of multiple

bars are necessary to achieve phase-matching in xenon, even for small ionization fractions.

2.3 XUV frequency combs

In the previous section, we discussed the generation of XUV light by a single IR driving
pulse. The HHG process causes photons to be emitted in bursts at odd multiples of
the driving frequency, which results in a train of attosecond pulses collinear with the
outgoing IR light. Within this pulse train produced by a single drive pulse, the different
emitted harmonics have been shown to be phase-locked [121]. Also, the attosecond pulse
train possesses a high degree of spatial coherence [122]. However, these properties do not
automatically hold for series of attosecond pulse trains generated by multiple IR pulses.
The most widely used approach for HHG is to focus a high power laser onto a gas target.
Typically, mJ pulse energies are used with wavelengths varying from 400 nm to the mid-IR
in order to reach peak intensities in the 104 — 10'®> W /cm? region to generate harmonics

with energies up to a few hundred eV. The requirement of high pulse energy usually leads
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Figure 2.11: Harmonic spectrum of a driving pulse train. a) without a stable phase rela-
tion between consecutive IR pulses, each harmonic spans a broadband spectrum centered
at odd multiples of the drive lasers central frequency f.. In accordance with Equation
(2.24), harmonics are generated up to a cutoff frequency feytof = Emax/h. b) when fiep
and fcgpo are stabilized, a comb structure under the harmonic envelopes emerges. Each
harmonic becomes a copy of the original comb, with equal repetition rate.

to a laser repetition rate of a few kHz, although high power systems at several hundred kHz
exist [123, 124]. Even though CEP stabilization is very well possible [125], the repetition
rate of such systems is almost never stabilized since the long time period between pulses
makes stabilization very hard. Without f., stabilized, the harmonic spectrum looks like
that shown in Figure 2.11a. Harmonics appear at odd multiples of the central driving
frequency f., up to the cutoff frequency feutof = FEmax/h, defined in Equation (2.24).
Each harmonic contains broadband radiation with its coherence properties determined by
the IR pulse.

Now lets consider what happens when the driving laser repetition rate is indeed stabi-
lized. The XUV bursts generated in a single IR pulse are produced in every subsequent
pulse from the laser pulse train in the exact same way. The time at which the attosecond

bursts appear is now fixed not only within a single IR pulse, but also between consecutive
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drive pulses. The XUV radiation is generated at regularly spaced intervals, dictated by
the temporal coherence of the driving laser. As described by Equation (2.13), the har-
monic spectrum thus consists of an envelope determined by the shape of a single-pulse
attoburst and an underlying structure governed by the properties of the pulse train. This
is illustrated in Figure 2.11b, where the harmonic spectrum generated by a fundamental
field with a stabilized repetition rate, for instance a frequency comb, is depicted. Each
harmonic order ¢ thus contains a copy of the original comb, centered around ¢qf.. Because
the generated electric field oscillates ¢ times as fast as the fundamental, the CEO frequency
increases with the same factor. Since the repetition rate of the driving field governs the
time structure of the generated harmonics, fiep is the same for all harmonic orders. The

resulting XUV comb can thus be described by a modified version of Equation (2.17):

fmq = quEO + nfrep- (243)

The preceding arguments only hold if the HHG process itself remains phase coherent over
the duration of many IR pulses. Recently, it has been shown experimentally that this is
indeed the case for coherence times as long as one second, corresponding to 154 million
pulses [85].

The experimental realization of a stabilized pulse train for HHG is however more in-
volved compared to the conventional systems mentioned earlier. Frequency combs typically
run with frep ~ 100 MHz or larger, implying that the pulse energy is orders of magnitude
below that of unstabilized high-power kHz systems. Since the HHG conversion efficiency
strongly depends on the laser intensity, the frequency comb pulses need to be amplified in
order for them to reach intensities feasible for HHG. Although the techniques of enhancing
short pulses in fiber amplifiers rapidly advance, the standard solution for XUV combs has
been the use of passive enhancement cavities. The HHG process then takes place in a
cavity which recycles the infrared pulses, and therefore allows for operation at high peak

intensities and high repetition rates.
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I
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Figure 2.12: Schematic overview of an optical resonator in bow-tie configuration. The
ingoing beam Iy, enters through the back of the IC mirror. After reflection from the other
cavity mirrors (M1, M2 and M3), the cavity beam overlaps with the incident beam at the
reflective surface of the IC. The reflectivities and transmissions of the cavity mirrors are
indicated by R; and T;.

2.4 Optical resonators

The principle of an optical cavity is very widely used in many different experimental fields.
Of course, the laser itself contains a cavity, but its applications reach much further; from
cavity ring-down spectroscopy used to trace rare gases for medical purposes to apply-
ing the strong electric field inside the cavity as a force to trap single molecules [126] to
studying the interaction between a single cavity photon and a confined atom [127]. Most
applications employ a cavity in combination with a CW laser, but for the scope of this
work it is necessary to enhance a pulsed light source, which comes with some additional
complications. This section will therefore first explore some basic properties of optical
cavities. Subsequently, the enhancement of pulses in a femtosecond enhancement cavity

is explored.

2.4.1 Energy relations

This subsection follows the treatment of optical cavities compiled by Nagourney [128]. We
start by considering an optical cavity consisting of four mirrors in bow-tie configuration,
as shown in Figure 2.12. The incident beam with intensity I;, = |E;i,|? enters the cavity
through the back of the input coupler (IC) mirror. The IC has a field reflectivity coefficient
of r; = v/R; and a transmission coefficient of t; = \/T;. R and T are the mirror reflectivity
and mirror transmission, respectively. Energy conservation yields 7"12 + t? + l? = 1, with
l; representing the field losses due to scattering or absorption. For IR mirrors coated
with dielectric stacks, these losses are typically small and are therefore neglected in the

rest of this section. After passing through the input coupler, the field reflects from the
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other cavity mirrors M1, M2 and M3, which is summarized in a single cavity reflectivity

coefficient r. = rirors. The field inside the cavity in steady state can then be written as
4 4 2 4 3
E.(w) = Eint; <1 + riree®@) 4 <rircez¢(°’)> + <rircel¢(”)> +.. > , (2.44)

where ¢(w) denotes the total phase shift of the electric field after one cavity round-trip,
due to, for instance, dispersion from mirror reflections or propagation through a gas.
Here, a perfect overlap between the incident beam and the cavity mode is assumed, as
mode matching effects are discussed in more detail later. Since the reflectivity coefficients
in Equation (2.44) are smaller than one, the expression can be written as a converging

geometric series
Einti

EFEo=——-—.
C 1 — poret?

(2.45)

In a similar way, an expression for the electric field that is reflected by input coupler

mirror, as shown in Figure 2.12, can be derived:

E;,t2 , , 2
Eief = —Ejpri + Zl ! <rirce’¢(”) + (rirce"b(”)) +.. >
‘ (2.46)

Tct?eid’(w) -1

myz rirctieidw)”
The square of the absolute value of Equation (2.45) yields the intra-cavity intensity

Lint?
1+ 72r? — 2rer; cos ¢
t7
(1 — 7’@'7'0)2 + 4rire Sln2(¢(w)/2)
t? I;
T (U= rire)? | Ariresin?(6(w)/2)”

(1=rire)?

Icav =

= Iin (2.47)

The intra-cavity field thus reaches its maximum value when ¢(w) = 0 + p27 for any
integer p. At this value, the cavity is said to be at resonance. The total phase shift can
be expressed as

6(w) = kL + ¢a(w) = ZL + du(w), (2.48)

where L is the cavity path length and ¢4 is the phase shift due to dispersion in the cavity.

Omitting dispersion for the moment, we obtain

YL = pon, (2.49)
C
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which defines the spacing between the cavity resonances, known as the free spectral range
(FSR) of the cavity. It is given by

2me

In order to find the width of the intensity peaks, we observe from Equation (2.47) that

half the maximum intensity occurs at a phase ¢/, for which
(1 = r17e)” = driresin® ¢y o /2 (2.51)
holds. For ¢/, in case of a low-loss cavity, the solution is given by

#1721 1 — 1y

<Z51/2 ~ Jrite

The FWHM of the resonance peak of the circulating field Aw;/y is a measure for the

. (2.52)

resonance peak width. It is given by

L 2c(1—rre
AW1/2 = 2¢1/2; = (L e )

and known as the line width of the cavity. Now, we can define the finesse (F) of the cavity
as the ratio of the FSR and the line width

(2.53)

F_ Awrsr _ TTiTe (2.54)
Awyp 1 —rire

If we define the losses inside the cavity Liot by an overall round-trip attenuation factor

(1-Liot), an effective cavity field reflection of
r|? = e~ (17 Fret) (2.55)

is obtained [129]. Plugging this into Equation (2.54) yields a simplified expression for the

finesse
s men(—(1=La)/d) ozt 2m

- 1-— exp (—(1 — Etot)/Q) - Etot.

(2.56)
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The same result can be derived directly from Equation (2.54) by assuming 7', Tc < 1:

VRiR.
(1- Va-T)I-T))

F=

2

%
Q
_

|

| 3,
!

|
&3
T

(2.57)
2
~ 2
(3(T; + T.))
_ 2
£t0t7

where the total losses are the sum of the losses from the input coupler and other cavity
mirrors Lot = L; + L.. The finesse provides a measure for the quality factor of the cavity.
A high finesse is reached by using high reflective, low-loss mirrors, minimizing the losses
in the resonator and resulting in narrow peaks in the cavity transmission spectrum, the
cavity resonances. On resonance, the intensity of the light field inside the cavity is larger
than that of the driving field. Since this effect is the most important reason to utilize
a cavity in this work, it is useful to characterize the enhancement factor 8 of the cavity
at resonance (¢(w) = 0) as the ratio between the intra-cavity intensity and the incident

intensity. From Equation (2.47) we obtain

Teay t2 T; F?
e S (e T (2.58
in (1 —rire) (§<Tz + Tc)) g

where similar approximations and manipulations as in Equation (2.57) were used. This
result is valid for a ring cavity and differs from a two-mirror, linear Fabry-Perot cavity by
a factor of 4 due to constructive interference of the overlapping forward- and backward
traveling beam paths inside the cavity. In a similar way, the reflected intensity at resonance

can be expressed as

Ireﬂ,res = Iz

(ri —7¢)? L AL-T) (F
wm
2

2
(L—rre)? " (LATP o (T — E)) : (2.59)

It becomes clear that the reflected power approaches zero when the transmission of the
input coupler matches the losses in the rest of the cavity. If this is the case, the cavity
is impedance matched. For L; > L. the cavity is overcoupled, while for £; < L. it is
undercoupled. For a femtosecond enhancement cavity, it is desirable to have a low finesse,
since a high finesse increases the amount of spectral filtering, which results in a lower

average power and an increase of the pulse length inside the cavity [130]. We thus want
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Figure 2.13: Cavity resonances as a function of the laser frequency for T; = 0.2, T, = 0.05,
e = 1 and I;n=1. a) the intra-cavity intensity shows sharp resonances with cavity line
width Aw, /9, separated by the FSR. The circulating intensity is 3 times larger than the
incident field. b) the reflected intensity dips when the cavity is resonant. The signal at
resonance is given by Ii.qres from Equation (2.59), while the depth ratio of the dips is
characterized by the cavity contrast C from Equation (2.62).

to keep the finesse low, while maximizing the enhancement. For an impedance matched
cavity (T; = T¢), B equals %, while for an overcoupled cavity the enhancement is given by
b= % The maximum enhancement for a given finesse is thus reached in the overcoupled

case, where the losses are dominated by the input coupler.

Using the above definitions and assumptions, the intra-cavity and reflected intensities

can now be summarized as

B1;
Icav = 2F - 2
1+ (25 sin(rw/Awpsr))
2.60
rog o 22 em 1,)" + (& sin(mw/Awrsr))” .
refl = Lin '

1+ (% sin(ﬂw/AwFSR))2

Both intensities are shown as function of laser frequency w in Figure 2.13. When the
frequency equals an integer number times Awpsg, the circulating field possesses a sharp
resonance, with its width determined by the cavity line width Awy/, and the height by

the enhancement factor 5. The reflected intensity shows dips at the position of the cavity
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resonances, indicating that light is coupled into the resonator. The depth of these dips
depends on both the impedance matching and the spatial mode matching of the cavity, as

discussed in the next section. Far from resonance, practically all incident light is reflected.

2.4.2 Spatial mode matching

So far we assumed that at resonance, all power from the incident beam was coupled
into the resonator. In practice, only a part of the incident light beam profile spatially
overlaps with the cavity mode and can be fed into the resonator. This effect can be taken
into account by multiplying the circulating intensity from Equation (2.60) with the mode

matching factor e [131]. The reflected intensity at resonance is modified to become

Ireﬂ,total = elrep + (1 - G)Im, (2'61)
such that a cavity contrast C can be defined as the ratio between the decrease of the
reflected intensity and the off-resonance intensity:

Ii — drefl,total J 2
= —_ = - TC - E . 2 2
¢ == c—e(@m-m) (262)

This ratio can easily be measured experimentally by placing a photodiode in the reflected
beam. Similarly, the enhancement factor 5 can be determined by observing the amount
of light that is leaking through one of the cavity mirrors, since this signal is directly
proportional to the intra-cavity intensity. By removing the input coupler, calibration can
be performed between the circulating power and the measured transmitted signal.

Now since both C and 8 depend on the mode matching factor €, determination of this
factor can be achieved by a direct measurement of the cavity finesse /. When the cavity
is at resonance, photons are stored inside the resonator for some time 7. before leaking
out through the mirrors or by scattering. Tuning the cavity at a resonance and then
interrupting the seed laser thus yields an exponential decay of the circulating power over
time given by

P(t) = Pye V™, (2.63)

where P, is the power at resonance, proportional to 8I;,. Now by using Equation 2.55,
we can write the losses per round-trip as

e = ¢~ L/(7e0), (2.64)

which with Equation (2.56) then results in an expression for the finesse

Cc

F= 27TTcE. (2.65)
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Via such a cavity ring-down measurement, the finesse can thus be determined indepen-
dently of the mode matching factor e. Instead of rapidly turning off the laser, it is also
possible to sweep its frequency across a cavity resonance at a rate much faster than the
cavity lifetime. In this case, the light leaking out of the cavity, after the laser frequency
has passed over the resonance, interferes with the off-resonant laser light reflecting from
the input coupler [132]. A heterodyne beat is formed between the fixed-frequency cavity
leakage and the chirped incident light due to the frequency scan, which can be fitted by
a damped, chirped cosine wave to yield the decay time and thus provide an independent
measure for the cavity finesse. The experimentally measured contrast or buildup can then

be used to compute the mode matching factor e.

2.4.3 Gaussian beam propagation

So far we have considered the longitudinal resonance properties of a ring cavity. In order
to study the behavior of the resonators transverse mode profile, the formalism of Gaussian
beam propagation and ABCD matrices is used [133], which will be briefly discussed in this

section. We start by defining the electromagnetic wave propagating in the z direction as
B(z,y,2) = u(z,y,2)e ", (2.66)

where u(z,y,z) is the complex scalar wave amplitude describing the transverse beam
profile. By substituting into the wave equation (Equation (2.1)) and assuming that the z
dependence of u is varying slowly compared to the transverse components, we arrive at

the paraxial wave equation

ou(z,y, 2)

2 — 2k
vtu(xayaz) ¢ 8,2

=0, (2.67)
where the transverse Laplace operator is defined as V? = 9/dz + 0/0y. The paraxial
approximation is valid for waves traveling at angles 8 < 30° from the optical axis. One of
the analytical solutions of Equation (2.67) is the lowest order Gaussian spherical wave in

free space, which is given by

1 2

w(z,y, 2) = m exp <_w(rz)2 — ik <z n 21;22)) +itan™! (;)) (2.68)

as a function of the transverse radial coordinate r? = x? + 2. The beam waist at position
z is given by
z

w(z) = woy /1 + ()2 (2.69)

ZR
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The wavefront curvature radius R(z) can be expressed as

R(z) = = <1 + ("’R)z> , (2.70)

z
which reaches infinity at z = 0, implying a planar wavefront at the focus. Although
Equation (2.68) provides a full description of the properties of the Gaussian beam for any

x,y and z, it is often easier to propagate the beam by using the complex g parameter

defined by . ) . y \ .
q(z)  R(z) ww(z)* '

Equation (2.68) can now be rewritten as

S exp | —thkz —1 r
u(z,y, z) = woq(?) p ( k k2q(z)> , (2.72)

where gy is the beam parameter at the focus, defined as ¢y = iz,. It is now very easy to

propagate the ¢ parameter to distance z from the focus in free space:
q(z) = qo + 2. (2.73)
The following beam parameters in free space can be extracted from the ¢ parameter:

Distance to waist = — Re(q(z))
\ (2.74)

wo = /2 Im(a(2).

To propagate the beam parameters through more complicated optical elements such as
lenses and curved mirrors, the ABCD matrix formalism can be used [133]. Let Mo be a

ray transfer matrix of the optical system of interest

()
Mot = (275)
C D.

The ¢ parameter at the exit then evolves from the incident beam ¢; according to

_Ap +B

= i D (2.76)

q2

For each optical element in the system, a transfer matrix can be formulated. The total

transfer matrix is then found by matrix multiplication of all elements:

Moy = My Mi,_1...MaM. (2.77)
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The ray matrices for the optical elements used in our system are shown in Table 2.2. The
ray matrix for a curved optical element depends on the incidence angle, and thus it is
relevant in which plane this angle is located. The plane containing both the optical axis
of the incoming and outgoing ray is the tangential plane. The plane orthogonal to that,
containing only the ingoing ray, is known as the sagittal plane. In all cases, R > 0 for a

converging lens.

Optical element ABCD matrix
o 1 z/ng
Free Space, refractive index ng 0 1
. . 1 0
Thin lens, normal incidence SUf 1
. . 1 0
Curved mirror, tangential plane < —2/(Reos(0)) 1 )
. . 1 0
Curved mirror, sagittal plane ( —2cos(6)/R 1 )
Curved interface, tangential plane cos(62) 0
nysin(6) = na sin(6) ( ACOS(&;% cos(01) )
Ane = (ng cos(fz) — ny cos(61))/(cos(61) cos(62)) ne/ cos(f2)
Curved interface, sagittal plane 1 0
nq sin(fy) = ng sin(fz) ( Anc/R 1 )

Ane = (ng cos(f2) — nq cos(01))

Table 2.2: Ray matrices for optical elements used in this thesis. f is the focal length,
positive for converging lenses, R is radius of curvature, positive for concave mirrors, 6 and
Ao are the incidence and exit angle, n1 and ng are the refractive indexes of the material
before and after the interface, respectively.

2.4.4 Geometrical properties

The formalism described in the previous section can be used to find the transverse beam
properties of the intra-cavity field [133]. We define ¢; as the incident beam on the input
coupler. After a full round-trip through the cavity, the beam returns to the input coupler,
where it now labeled as ¢go. The ABCD matrix of all optical elements in the cavity M,, can
now be used to relate ¢s to q1, as given in Equation (2.76). In the case of a ring cavity, the
horizontal (tangential) plane needs to be treated differently than the vertical (sagittal)
plane, due to nonzero incidence angles at the curved optics. Consequently, a separate
ABCD matrix needs to be constructed for both planes, with horizontal and vertical beam

properties being calculated separately. For stable cavity operation, we require that the
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Chapter 2 Theoretical background

incident beam overlaps with the resonator beam after one full round-trip

A+ B

q1 = q2

By solving for 1/¢;, we obtain

1 D-A 1
= +—+/(A— D)2 +4BC. 2.
o~ 2 TapVl ) +4BC (2.79)

By comparing this expression with the definition of the ¢ parameter in Equation (2.71),
it can be seen that the first term in Equation (2.79) must be linked to the real part of 1/¢

since the elements of M,y are real. The second term must then be purely imaginary, so

oo 2B (2.80)
"\ 7y/A—(A+D)2’

These values are only valid at the reference point chosen to set the equality in Equation

that we can extract

(2.78). The curvature radius and waist size at other positions in the cavity can now
be obtained by propagating g1 through M., or by simply using Equations (2.70) and
(2.69) for propagation in free space. In order to obtain a real value for the beam waist in

Equation (2.79), A and D are constraint by
|A+ D] <2. (2.81)

In all other cases, the cavity waist becomes imaginary, a non-physical situation which in
practice means that it is not possible to overlap the beam in subsequent cavity round-trips.
Equation (2.81) is therefore known as the stability criterion and defines a stability region

of values for A and D for which stable cavity operation is possible.

2.5 Femtosecond enhancement cavity

In the previous sections, we discussed the enhancement of CW light in an optical cavity.
When pulsed light needs to be amplified, the situation becomes slightly more complicated.
In this section, the enhancement of femtosecond pulses in a resonator is discussed [82].
In order for a single-mode CW laser to be on resonance with the cavity, its frequency
needs to match an integer multiple of the FSR. For pulsed light, all frequency modes
need to be resonant with the cavity simultaneously. Although principally selective parts
of broadband radiation could be enhanced, in practice passive enhancement can only be
achieved when the frequency lines are evenly spaced, i.e. for driving lasers with pulse-to-

pulse coherence. From Equation (2.17) we know that the FC modes are spaced by frep,
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Figure 2.14: Overlap of frequency comb modes (orange, dashed lines) with the resonances
of an enhancement cavity (blue, solid lined). a) When the cavities FSR matches the lasers
repetition rate, each comb mode can be amplified. b) When there is a mismatch between
wrep and Awpsr, only part of the comb modes is enhanced. In reality, the number of comb
modes (~ 10%) is much larger than illustrated here, and a tiny mismatch is enough to
modify the resonant spectrum.

so if this spacing matches Awpsg of the cavity, the enhancement of all ~ 10° comb modes
is possible, as shown in Figure 2.14a. However, when there is a mismatch between both
frequencies only a part of the comb spectrum can be effectively enhanced, as illustrated
in Figure 2.14b.

This leads to the most essential difference between an optical cavity for CW light and
a femtosecond enhancement cavity (fsEC): dispersion of the different circulating wave-
lengths. Where for a CW cavity the mirrors reflect only one wavelength with a high
efficiency, in an fsEC the cavity mirrors need to reflect the whole bandwidth of the inci-
dent pulses efficiently as well as introduce minimum phase differences between different
parts of the circulating spectrum. In the ideal case, where there is no high-order disper-
sion, all cavity modes are evenly spaced by the FSR and all comb lines can be resonant
at the same time. In practice, no ideal mirrors exist and some dispersion is introduced
upon reflection from the mirror surface, resulting in a shift of the cavity’s resonance fre-
quency. Since now the cavity resonances are no longer evenly spaced, not all comb modes

fit simultaneously in the cavity, reducing the enhancement of parts of the spectrum.

The total phase shift for one cavity round-trip was defined in Equation (2.48) as the sum
of the propagation phase wL/c and the dispersive phase ¢4. This term can be expanded
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in a Taylor series around the central comb frequency w.:

Bufw) = § we) + ¢ () (0 = ) + 59" () (0 = we)? + 56" (we) (0 — e+ ...

= g0+ ¢1 (w — we) + ¢2 (w — we)? + ¢3 (w — we)?

(2.82)
...

The first term, ¢g, adds a constant shift to the electric field under the pulse envelope, but
does not change its position. The second term, ¢1, is known as the group delay and causes
a time delay of the pulse envelope, usually also affecting the offset phase. ¢o named group
delay dispersion (GDD) is responsible for symmetrically broadening the pulse in time.
Third order dispersion (TOD), ¢3, and higher order terms cause the pulse to broaden in

more complex ways.

Now consider what happens when a pulse is circulating inside a cavity where the mirrors
add some dispersion each round-trip Adeqy(w). When ¢g is the only non-zero dispersion
term, a constant phase is added to the electric field under the envelope each round-trip.
In order to avoid destructive interference at the IC with the incident pulses after a certain
number of round-trips, the offset phase of the comb needs to be adjusted to ensure the
electric field of the incoming pulses is shifted by the same amount. Equivalently, in
frequency space, ¢g shifts all cavity resonances by an equal amount, and fogpo of the
comb needs to be adjusted to change its modes by that same amount. With only ¢
present, the pulse envelope is delayed during each round-trip, effectively changing the
optical path length of the cavity. This effect can be compensated by changing the time
interval between the arriving pulses by adjusting f.., of the comb or by changing the

cavity length.

In order to derive an expression for the resonance condition for a dispersive cavity as
a function of the cavity length and laser frequency, we start by setting the total cavity

phase shift from Equation (2.48) equal to an integer (p) multiple of 27 [135]:

2mp = % + ¢a(w) (2.83)

For a FC, the angular repetition frequency wrep, = 27 frep, angular offset frequency woro =
27 fceo and angular mode frequency w are related by an integer n such that we can rewrite
Equation (2.17) to obtain

n = Y WCEO (2.84)

Wrep

The mode numbers of the FC (n) and enhancement cavity (p) can now be related via

p=n+m
W — WCEO (2.85)

+m,
Wrep
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Figure 2.15: Simulation of a cavity (F = 25) without dispersion, fed with 100 fs pulses at
100 MHz, with a 15 nm bandwidth centered around 1039 nm. a) resonance map of the three
central fringes. At L = Lg, the comb modes align vertically and are all enhanced equally.
Since the cavity FSR depends on wavelength, the neighboring fringes are tilted. b) intra-
cavity spectrum at Lg, which is equal to the driving laser spectrum. c) Total enhancement
as a function of the cavity length. Since the side fringes are tilted, the enhancement peak
broadens and is lower compared to the central fringe. Graphical representation inspired
by T. J. Hammond & A. K. Mills et al. [82, 134].
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where m is an integer labeling the resonance fringe. Substitution in Equation (2.83) and

solving for the cavity length L results in

_ 2mc 2me [WCEO —m} _ Cﬁbd(“’)‘ (2.86)

L(w) = S — ”

Wrep w Wrep

This relation describes at which cavity length L the FC mode frequencies w are resonant.
In the simplest case, without dispersion and wg = 0, the cavity length is independent
of the laser frequency when m = 0. This means that the whole spectrum of the comb
is amplified, as illustrated in Figure 2.15. The resonance map shows the enhancement
factor as a function of the cavity length and laser wavelength [82, 134]. The length 0
indicates L = Lo = 2m¢/wrep. The incident radiation is a 100 fs transform-limited pulse
train centered at 1039 nm, the input coupler and the cavity transmission are the same
as in Figure 2.13 (7; = 0.2, T, = 0.05). For m = =£1, the resonant spectra are slightly
tilted, since the cavity FSR is frequency dependent. Therefore, only at Lo, all laser modes
are resonant at the same cavity length and maximum enhancement is achieved while the
neighboring modes show a reduced enhancement for any given cavity length. For higher

values of m, the tilt increases and the enhancement is further reduced.

Now consider the more general case, where the constant and linear dispersive phase
terms from Equation (2.82) are present, such that ¢4(w) = ¢o + ¢1(w — we). Equation
(2.86) then becomes

— 0 2.87
et : (2.87)

2 2 c
o= 2y (0 )

containing some frequency-dependent terms and some independent of w. By setting the
frequency-dependent part equal to zero and solving for wy, an explicit expression for the
optimal choice of the comb’s offset frequency can be obtained

(chz)l - ¢0)

WCEO = o Wrep + M. (288)

By solving the frequency-independent part of Equation (2.87), wyep can be deduced:

2me

o = ¢ 2.
Wrep T+ o (2.89)

Thus, for these choices of wrep, and wyp, the phase shift and group delay in the resonator
can be matched. Equations (2.88) and (2.89) show that a constant phase offset of the
cavity can be mitigated by a suitable choice of wy, demonstrating an equivalence between
the two. The effect of such a constant phase is shown in Figure 2.16, where fcpo =
65 MHz. The resonance fringes are shifted in position and slightly tilted, also affecting
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Figure 2.16: Resonance map similar to Figure 2.15, but with focgo = 65MHz. The
fringes in a) are shifted and rotated, such that the central fringe is no longer exactly
vertical. This results in slight spectral narrowing shown in b), where the dotted black line
indicates the cavity spectrum at the position of the dotted lines in a) and b), and the solid
blue line represents the incident spectrum. The enhancement /3 of the central fringe in c)
has dropped from 12.8 to 11.7. Graphical representation inspired by T. J. Hammond &
A. K. Mills et al. [82, 134]
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Figure 2.17: Resonance map for a cavity with 7; = 0.007, T, = 0.002 and a round-trip
GDD of 25fs2. a) second-order dispersion causes a quadratic curvature of the resonance
fringe. This causes significant spectral narrowing in b) (dotted line), compared to the
input spectrum (solid line). ¢) the maximum attainable enhancement drops from 345 for
a dispersive-less cavity to 192 and the broadened resonance peak becomes asymmetric.
Graphical representation inspired by T. J. Hammond & A. K. Mills et al. [82, 134]

their enhancement. Since the central fringe is no longer independent of frequency, the

resonant spectrum at the cavity length corresponding to the maximum enhancement is

slightly narrowed.

With higher order dispersion terms present, the resonance fringes become nonlinear,
and the cavity bandwidth decreases even further. This is shown for the case of a nonzero
GDD in Figure 2.17. Here, realistic cavity parameters, 7; = 0.007 and F = 700, were used
with ¢9 = 25fs2. The quadratic dispersion relation results in a parabola-shaped fringe and
an asymmetric line shape. The resonant cavity spectrum is significantly narrower than

the incident spectrum at any cavity length.

These example simulations show that GDD and higher orders of dispersion cannot be
easily compensated by adjusting some experimental parameters. Therefore, it is very

important that all intra-cavity elements only add a minimal amount of higher order dis-
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persion to the circulating pulse in order to avoid spectral narrowing and pulse-broadening

inside the cavity.
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Chapter 3

Experimental setup

In this chapter, the experimental setup of the XUV comb is described. The apparatus is
shown in Figure 3.1, with references to the relevant sections. First, an overview of the
laser system is provided, followed by a detailed description of the most important part of
the setup: the femtosecond enhancement cavity. Subsequently, the vacuum system hosting
the resonator is reported. Finally, the design and realization of the differential pumping

system for removal of the target gas in the cavity focus is presented.

Titanium rod structure N
Section 3.3.1 z

Differential pump system
Section 3.4 /

Vacuum chamber . [ E e . . -
Section 3.3.2 ; a1

Enhancement cavity
Section 3.2

Laser system
Section 3.1

Figure 3.1: Overview of the experimental setup and its different parts.
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3.1 Laser system

The first XUV combs were operated using mode-locked Ti:sapph lasers [23, 24|, as it is
also the standard workhorse for single-pass HHG systems. Typically, Ti:sapph lasers have
an output power of up to a few Watts, which then requires a high finesse cavity (F > 1000)
to amplify the pulses to the kW-level necessary for HHG. The generation of harmonics
inside such a high finesse cavity has turned out to be difficult due to plasma instabilities
and it is therefore more convenient to lower the cavity finesse and start off with a higher
laser power [82]. Rapid evolution of laser technology over the past few decades has enabled
the use of high power fiber-based laser systems, offering the advantage of both a better
power scalability and robust alignment over time. For these reasons, Yb:fiber lasers are
now typically used to feed fSEC for the generation of XUV light. We have also adapted
such a laser system, which will be described in this section. First the commercial oscillator
is introduced, followed by the home-build optical pulse characterization setup. Finally, a

description of the home-built amplifier and compressor is provided.

3.1.1 Oscillator

In our setup, we use a commercial frequency comb (Menlo Systems, FC1000-250) with a
14nm FWHM spectral bandwidth centered around 1039 nm. An overview of the oscillator
and subsequent components of the purchased system is shown in Figure 3.2. The oscillator
largely consists of Yb-doped fiber apart from a short free space part, where offset and
repetition rate frequency can be modified. The repetition rate of 100 MHz can be changed
up to 1% by moving the end mirror of the cavity with a motorized stage. Fast feedback can
be applied to a piezo element to which the mirror is attached. The offset frequency can be
adjusted by moving a second stage changing the amount of dispersion inside the oscillator.
Fast feedback to the offset frequency can also be applied by acting on the oscillator pump
power.

An overview of the electronics for stabilizing the comb parameters is shown in Figure
3.3. The repetition rate of the comb is detected by a fast photodiode, and can be stabilized
to a 20 MHz signal provided by a direct digital synthesizer (DDS), which has a frequency
resolution of 10 xHz. The 10" harmonic of the detected signal at 1 GHz is mixed with
a 980 MHz signal from a phase locked oscillator (PLO), a low-noise fixed frequency syn-
thesizer. The resulting 20 MHz beat-note is compared with the DDS signal in an analog
phase detector. A subsequent proportional-integral-derivative (PID) controller then pro-
vides feedback to the repetition rate by acting on the intra-cavity piezo. For the scope
of this thesis, the DDS and PLO were referenced to a 10 MHz local oscillator, which in
turn is referenced by GPS-data from atomic clocks. In this way, the repetition rate can

be stabilized to a fractional uncertainty of 10~'? within 1 second, currently limited by the
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Figure 3.2: Overview of the commercial system with oscillator and subsequent amplifiers
and compressors, provided by the manufacturer. The 'main out 1’ output can be used for
beating the comb with a CW laser for phase-locking. The high power output 'main out 2’
is used to feed the home-built amplifier and enhancement cavity.
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Figure 3.3: Overview of locking electronics of the laser system, provided by the man-
ufacturer. Blue solid lines represent the 10 MHz reference signal. For the scope of this
thesis, the repetition rate and offset frequency are stabilized to a GPS reference. For future
experiments it is also possible to increase the stability by locking to an optical reference.
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ICenter: 100.0000000 MHz 10 MHz/DIV Span: 100 MHz

Figure 3.4: Beat-note of the comb with a 441 nm spectroscopy laser, sweep time 1s. The
central peak originates from the 100 MHz repetition rate, both symmetric signals on the
sides are beat-notes with the laser.

frequency reference. The repetition rate stability can be further increased by locking it to
an optical reference, which is planned for the future. The necessary locking electronics is

already available and also shown in Figure 3.3.

The offset frequency of the comb is detected in the XPS-800 unit using a f-2f self-
referencing scheme [19, 20], described in Section 2.1.3. The offset frequency beat signal is
filtered and amplified before it is compared to the DDS 20 MHz frequency with a phase
detector and fed into a PID controller, which provides feedback by adjusting the oscillator
pump power. Although the offset frequency can be observed on a spectrum analyzer for
any value, the band-pass filter in the OFD module prevents counting and locking the offset
frequency for frequencies outside a 7 MHz bandwidth centered at 21.4 MHz. In practice,
this is not limiting us since the free-running offset frequency of the comb is stable enough

to run the cavity without locking fopo, as described in Section 3.2.3.

Part of the light from the oscillator is send to two subsequent fiber amplifiers and
a compressor stage, before it exits as a free space beam of >200mW. The output is
subsequently broadened by a nonlinear fiber, and can be used to generate beat-notes
with other optical lasers for locking them to the comb, or vice-versa, or determining their
absolute frequency. This was, for example, applied to check the stability of the 441 nm
laser used for the first optical excitation of a HCI in a Penning trap [136]. In Figure 3.4,
the beat-note of this laser with the comb is shown on a spectrum analyzer. In the middle,
the 100 MHz repetition signal is visible, surrounded by two symmetric beat-note signals
of the 441 nm light. The width of the detected signal is a measure for the line-width of
the 441 nm laser, in this case several MHz over a time-interval of 1s. The line-width of
the comb itself is ~300 kHz.
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Figure 3.5: Autocorrelator and spectrometer setup, together forming a FROG for pulse
characterization. A beamsplitter (BS) splits the pulse in two copies, one of which is
delayed in time by a variable amount 7. Both pulses are focused in a BBO crystal and
the emerging SHG signal is send to the spectrometer through a fiber. An Echelle grating
and a sensitive line camera ensure a high spectral resolution. The wavelength range is
adjustable by rotating the grating.

Finally, light is coupled out from the oscillator towards the high power output. It
is first stretched by 60m of fiber (XP980-PM, Nufern) to 24 ps before it is amplified
by two pre-amplifiers. Subsequently, the fiber-coupled main amplifier further intensifies
the pulses to an average power of ~ 15W. A free-space TOD grating prism (GRISM)
compressor shortens the pulses to a minimum of 170fs before exiting the system. This
12 W compressed output was used for MPI experiments in the fsEC, described in Chapter
4. For intra-cavity HHG, further amplification of the pulses is necessary, so the TOD
compressor is bypassed and uncompressed pulses from the main amplifier are used for
further amplification.

Because of its fiber-based operating principle, the pointing stability of the laser is excel-
lent. Over timescales of months, the pointing of the beam does not change significantly,
and the incoupling into the amplifier fiber or fsEC is never lost. Some minor alignment
optimization is necessary at most. Furthermore, the system is turn-key and does not need

any daily optimization or alignment.

3.1.2 Pulse characterization: FROG

For characterization of the amplified and compressed pulses we have built an optical
gating setup together with a spectrometer. For measuring the duration of a femtosecond

pulse, electronic devices are too slow. The pulses are therefore gated and compared to
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Figure 3.6: FROG-trace recorded after the grating compressor, at 69 W average power.
A pulse length of 222 fs is measured. Figure from A. Ackermann [138].

each other, overlapping two copies of the same pulse in a non-linear medium and varying
the time delay between both pulses [137]. We have implemented this technique, known
as autocorrelation, by focusing two copies of the same pulse in a 100 um beta-barium
borate (BBO) crystal. For small delays, the pulses overlap inside the crystal and a SHG
signal at 532 nm appears between the two beams behind the crystal, as shown in Figure
3.5. Measuring the intensity of the SHG beam with a photodiode as function of time
delay results in an auto-correlation signal. By assuming a certain pulse-shape, the pulse
duration can be inferred. However, the pulse-shape itself cannot be measured using auto-
correlation, neither can information about the phase be obtained, and it therefore does

not provide a complete characterization of the pulse.

By extending the autocorrelator with a spectrometer, a more comprehensive charac-
terization of the pulses can be achieved. In frequency-resolved optical gating (FROG),
the full frequency-doubled pulse spectrum is recorded for every time-delay step [139].
The fiber-coupled spectrometer in our setup uses an Echelle-grating (79 grooves/mm, 75°
blaze angle) and a line camera (LC100, Thorlabs), resulting in an excellent resolution of
0.01 nm/pixel at 532nm. In this way, a 2-D spectrum is obtained where the intensity is
represented by a color scale as function of both wavelength and time-delay. This SHG-
FROG-trace contains all information about the phase and duration of the pulse, but in a
very non-intuitive manner and it can therefore not be easily extracted from the obtained

data [140]. A phase-retrieval-based algorithm can be used to reconstruct the original pulse

67



Chapter 3 Experimental setup

comb laser > 1035 nm, 10 W
24 ps, 100 MHz
Yb-doped
camera )2 OAP | A fiber

976 nm, 250 W J:E

¢ CW pump
diodes

80 W grating
24 ps compressor

75W, 200 fs

% - output

Figure 3.7: Overview of the home-built part of the laser system. Long pulses from the
commercial comb are first amplified by a rod-type amplifier and then compressed by a
grating compressor. ISO: optical isolator, A\/2: half-wave plate, OAP: off-axis parabolic
mirror.

information by an iterative procedure. Different algorithms have been developed over time
[141, 142]. We chose to use the freely available FROG software [141]. In Figure 3.6, an
example of a FROG-trace is shown [138].

3.1.3 Amplifier and Compressor

To further amplify the 12 W pulses from the comb, a home-built chirped pulse amplifica-
tion (CPA) system was developed, consisting of a rod-type fiber amplifier and a grating
compressor. Compared to CW laser amplification, enhancing fs pulses presents more chal-
lenges. First, the high peak powers of ultrafast lasers can damage the amplification fibers,
requiring stretching of the fs pulses to picoseconds or nanoseconds. Furthermore, the ma-
terial of the long amplification fiber add a large amount of dispersion to the pulses, thereby
stretching the pulses in time. Finally, non-linear phase shifts due to self-phase modulation
(SPM) in the amplifier fiber can distort the pulse shape at high peak intensities in the
fiber. Generally, two different approaches can be taken to tackle theses problems; either

utilizing the SPM as a spectral broadening mechanism in the amplifier fiber itself, which
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enables the out-coming pulse to be even shorter than the seed pulse [143, 144]. Or alter-
natively, stretching the pulse and using large mode area (LMA) fibers to try to minimize
nonlinear phase shifts, i.e. operating the amplifier in the linear regime [145-147]. For
frequency combs, the latter is more desirable, since operation in the non-linear regime
strongly amplifies any spectral or amplitude noise present in the seed pulses [148]. In
the linear regime, the amplified pulse coherence properties are mainly determined by the
oscillator itself, and are not so sensitive to amplitude noise on the pump diodes.

Since a stretcher is already present in the comb laser providing sufficient long pulses,
we decided to use these directly for amplification. The built-in TOD compressor is not
suitable for high power of the amplified pulses, so have constructed our own compressor
to shorten the amplified pulses to < 200fs. An overview of the amplifier and compressor
system is shown in Figure 3.7.

To protect the laser from any amplified back-reflections, a Farady isolator (PAVOS-
Ultra-05-1-1015-1065, Soliton), capable of isolating up to 100 W average power, is installed
right after the laser output port. The amplifier fiber is a 80 cm long Yb-doped photonic
crystal fiber rod (aeroGAIN-ROD-MODULE-2.0 PM85, NKT photonics) with a 3300 ym?
mode field area, mounted in a rigid aluminum body with integrated water cooling. The
fiber is pumped by a fiber-coupled 250 W CW diode (D4F2522-976.3-250C-1S58.1, DILAS
Diodenlaser GmbH) at 976 nm, which is coupled in the back of the fiber cladding with
an off-axis parabolic gold-coated mirror (MPD229H-M03, Thorlabs). The mirror has a
23 mm central hole to couple out the seed pulses, which together with the coating induces
losses of only 8% to the pump light due to the large beam diameter of 19 mm. At such
high pump powers, these losses are significant and the mirror mount is water-cooled to
transport away the generated heat. At the front of the fiber, the divergent pump beam is
absorbed by a water-cooled beam dump with a central hole for letting through the seed
pulse. After the collimating lens, the remaining pump light is separated from the seed
beam by a dichroic mirror (Layertec).

The transmission of the seed pulses through the fiber without pump light is about
80%. When turning on the pump diodes the seed is amplified up to 93 W, as shown
in Figure 3.8. The plot shows linear amplification directly after the fiber. A Gaussian
mode profile appears both at low and high power. The pump wavelength is stabilized
and fixed with an internal volume Bragg grating, although it could be slightly tuned by
controlling the temperature of the pump diodes via setting the chiller temperature. Since
the absorption feature in Yb at 975 nm is rather narrow [149], tuning could increase the
pumping efficiency. In practice, this turns out not to be necessary and linear amplification
is observed without changing the diode temperature.

One major concern with the amplifier fiber is fatal damage that can occur when the

seed pulses are interrupted, for instance due to a loss of mode-lock or something blocking
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Figure 3.8: Performance of the main amplifier. Optical output power of the amplified
pulses directly after the amplifier and after the compressor is measured as a function of
amplifier diode pumping power at 975 nm. The insets show far-field beam profiles without
amplification and with maximum amplification.
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Figure 3.9: Pulse spectra at different positions in the laser system. The broad spectrum
from the oscillator is significantly narrowed by the amplifiers in the commercial system

The main amplifier reduces the bandwidth only slightly.

the beam. With no seed available, pump energy is stored in the fiber until complete
population inversion is reached. Now, when any seed pulse arrives the stored energy is
converted in such a strong pulse, that it can destroy the fiber. In order to avoid this kind
of damage, after the seed has disappeared the pump diodes must be switched off on the
same timescale as the storage time in Yb of roughly 1 ms. Therefore, we have implemented
a fast analog interlock circuit, monitoring the seed pulses with a fast photodiode. As soon
as the measured value drops below a set threshold, the output of the current drive unit
supplying the pump diodes is interrupted within 1.5 ms. A slower interlock operated by an

Arduino microcontroller prevents switching on the pump current when not enough seed
light is present. As a safety precaution, we operate the pump diodes with a minimum seed

of 2W, which is the estimated saturation power of the fiber, although other groups have

used much lower seeding powers without observing damage [145].
A grating compressor is employed to shorten the amplified pulses. A 1000 lines/mm

transmission grating (1158 28x18_6.35_H, Gitterwerk GmbH) is inserted between two re-
flective retro-reflectors and traversed four times. The diffraction efficiency into the first
order is specified to be > 98.5%, resulting in a total compressor transmission efficiency of
95%. The performance of the compressor is shown in Figure 3.8. Although not perfectly
Gaussian, the beam profile after the compressor is of a very good quality. No thermal lens-
ing is observed even at maximum output power. The compressed pulse length amounts
to 220fs. With a GRISM-compressor slightly shorter pulse lengths are possible, however
the transmission is then also decreased [138]. In Figure 3.9, the spectrum of the system
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is shown at different positions. The first amplifiers after the oscillator cause significant

gain-narrowing, but the rest of the CPA setup does not alter the spectrum significantly.
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3.2 Enhancement cavity

The majority of HHG experiments are carried out by focusing an amplified pulsed laser
onto a gas target [150, 151]. Using an ultrafast laser with ~ 1mJ of power and short
pulse durations ~ 10 fs, peak intensities ~ 10'* W /cm? can be reached, which is sufficient
for HHG. Such high pulse energies are typically reached by systems with a repetition
rate of a few kHz [151]. To generate an XUV frequency comb, similar pulse energies are
required at a much higher repetition rate. This means that the average power has to be
much higher: a 0.1 mJ pulse train at a rate of 100 MHz will have an average power of
0.1mJ x100 MHz = 10kW. As of now, such high average powers have not been realized
yet with actively pumped amplifiers. It is however possible to reach such values inside
an optical resonator, therefore passively enhancing the pulse train. In this section, the
enhancement cavity for our 100 MHz laser pulses is described. First, the general design
goals and criteria are determined. Then, a generic cavity geometry is discussed, followed
by a specific design fulfilling our criteria. Finally, several important aspects of the cavity

implementation, performance and operation are treated.

3.2.1 Design considerations

Previous experiments using intra-cavity HHG have shown a few important issues that
strongly influence the performance and durability of XUV light generation. This knowl-
edge is incorporated in the design of our system to optimize its operation.

Perhaps the most important parameter of the enhancement cavity is the focus waist size,
which determines the volume of the focal spot. In this region, the interaction of target gas
atoms with the intra-cavity beam will generate ultraviolet light. In principle, with a larger
focal volume comes a larger number of target gas interactions, and therefore a higher HHG
output if the phase-matching conditions can be kept the same. However, a larger focus
decreases the IR intensity, dramatically reducing the efficiency of the HHG process due
to its nonlinear nature. Typical waist sizes used in other XUV comb experiments vary
between 5 and 25 um [23, 24, 78, 83, 86, 152-154], a larger waist requiring either a higher
cavity finesse or a very high power of the input beam in order to reach intensities necessary
for HHG. Due to disturbing effects of the target gas plasma on the cavity mode [155], it is
desirable to keep the cavity finesse low to reduce the sensitivity to such effects. Therefore,
more recent experiments operate mostly with a finesse < 1000 [156-158] and a high input
power > 10 W. However, in order to then reach a sufficiently high peak intensity for HHG,
it is necessary to focus the laser strongly. Furthermore, to reduce the amount of persisting
plasma in the focus, a small focus size is advantageous since ions leave the interaction
region within a shorter time [159]. Thus, for optimal HHG conditions using a low finesse

cavity and a limited amount of incident laser power, we need to keep the focus waist size
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as small as possible.

The length Lg of the enhancement cavity for which consecutive pulses overlap, given by
Equation (2.86), is determined by frep of the comb, and is in our case 3m. To achieve
tight focusing however, curved mirrors have to be placed close to the focus. Therefore a
linear cavity is ruled out and a bow-tie configuration is commonly used, with one short
arm for focusing (~ 25cm) and one long arm to match the cavity length to 3m. This
long arm could be folded multiple times, in order to decrease the overall size of the cavity.
However, with each mirror that is added to the cavity comes a small amount of loss and
dispersion for the intra-cavity beam. Moreover, since mirror degradation has shown to be
a serious problem for intra-cavity HHG [80], having more mirrors means more effort to
clean and eventually replace them. Hence we prefer to keep the number of optics in the
cavity as low as possible, and thus choose a simple bow-tie geometry with one short and
one long arm, which is also the easiest to align.

The XUV output coupling method is a critical part of the cavity. The various established
methods, described in Appendix A, all have their advantages and disadvantages. Since
the goal of our experiment is to perform frequency-resolved spectroscopy, we just need
a single comb tooth to interact with the ion. Therefore, we need to spatially separate
the high harmonics to select just a very small wavelength portion and send it to the
ion. Using the Yost-style grating mirror as an output coupler [160] has the big advantage
that it can couple out the high harmonics from the cavity, and spatially separate them
at the same time. When using any of the other out-couplers, the harmonics are coupled
out collinearly and still need to be spatially separated with a grating later-on. These
two steps each introduce losses, while with the grating mirror both steps are combined
and the losses are just determined by the grating design. The grating can be optimized
for maximum diffraction efficiency of certain wavelengths, as will be described in Section<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>