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Abstract 
 
 
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in western world. 
This disease, with an indolent course and patients responding heterogeneously to 
recommended therapies, remains incurable. The Eµ-TCL1 mouse model, is a known useful 
tool for preclinical studies of CLL. In this thesis, I present a detailed in-silico view of CLL specific 
clonal heterogeneity and T cell tumor microenvironment (TME) as observed in spleen of Eµ-
TCL1 mouse and patient lymph nodes during the course of the disease.  
 
In the first part, I present clonal evolution orchestrated by dynamics of B cell receptor (BCR) 
rearrangements and somatic variations, using whole exome sequencing (WES) of serially 
transplanted Eµ-TCL1 mouse tumors. Low allele frequency mutations that were non-
overlapping between mouse tumors were identified. 10 out of 13 tumors were identified to 
be oligoclonal. In addition, three distinct patterns of evolving SNV-defined and BCR 
clonotypes emerged as the disease aggressed from primary to secondary tumor. Interestingly, 
I identified stereotypic CLL mouse BCRs having Ighv11 and Ighv12 genes that are known to 
undergo chronic stimulation in response to autoantigens, hence potentially contributing to 
CLL pathogenesis. These observations signified the importance of clonotype information for 
accurate interpretation of CLL disease course and drug efficacy, especially during time-series 
experiments involving adoptively transferred Eµ-TCL1 mouse tumors. Also, trisomy 15 was 
observed, hypothesizing involvement of Myc overexpression during CLL development in Eµ-
TCL1 mouse. It could be stated that, not just the overexpression of Tcl1 gene but other factors 
also contribute to CLL malignancy in mice. 
 
Following this, I investigated genetic (WES) and transcriptomic (RNA-seq) changes in 
monoclonal Eµ-TCL1 AT (adoptive transfer) mouse tumors, acquired as a result of ibrutinib 
resistance. Ibrutinib is widely used as a frontline treatment for CLL patients, some of which 
acquire resistance to the drug after showing an initial response.  In mouse tumors, loss of 
therapeutic efficacy followed by uncontrolled tumor growth was observed at 6 weeks of 
treatment initiation. Ibrutinib was not able to inflict an observable selection pressure on BCR 
clonality as well as mutation profile of these tumors in 6 weeks. However, the transcriptional 
profile of ibrutinib resistant tumors was unique in contrast to untreated ones. From top 
upregulated genes identified to be putatively involved in ibrutinib resistance, Tbet gene, is 
currently being followed up for in-vivo studies as a therapeutic target. 
 
In the second part of the thesis, I present subpopulations of CD3+ T cell compartment 
characteristically differentially expressed in the CLL TME as compared to that of controls. This 
analysis was the first of its kind to have utilized CLL patient lymph nodes (LN) for probing TME 
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at single cell level. Additionally, the patient’s bone marrow (BM) and peripheral blood (PB); 
as well as the spleens from Eµ-TCL1 AT mice were investigated for CLL infiltrating T cell 
subpopulations. 
 
Single cell (sc) CyTOF (mass cytometry) analysis using a panel of 32 surface protein markers 
revealed an increased abundance of exhausted phenotype in patient LNs as compared to BM 
and PB samples from the same patient. This observation raised uncertainty of PB and BM as 
the tissue of choice for studying CLL linked T cell exhaustion. Intriguingly, Eµ-TCL1 mouse T 
cell compartments showed presence of IFN-responders, absent from patient CD4+ cell type. 
7 out of 12 mouse Cd4+ subpopulations showed expression of Tcytotoxic markers, which 
could indicate activated subpopulations. 
 
The results presented in this thesis provide a detailed view of heterogeneity manifested by  
1) Eµ-TCL1 mouse tumors in course of disease progression; 2) the transformed CLL TME in 
patients and mouse. These findings would prove valuable during mechanistic and drug 
treatment studies in Eµ-TCL1 mouse and to evaluate their translational potency in CLL clinical 
setting under the influence of CLL specific tumor niche. 
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Zusammenfassung 
 

Chronische lymphatische Leukämie (CLL) ist die am häufigsten auftretende 
Leukämieerkrankung bei Erwachsenen in der westlichen Welt. Die CLL weist häufig einen 
langsamen Krankheitsverlauf auf und Therapieerfolge sind, abhängig vom Patienten, 
äußerst heterogen. Schlussendlich bleibt jedoch festzuhalten, dass CLL unheilbar ist.  
Das Eµ-TCL1-Maus-Mausmodell ist ein bekanntes nützliches Werkzeug für präklinische 
Studien zur CLL. In der vorliegenden Doktorarbeit präsentiere ich eine detaillierte in-
silico-Ansicht der CLL-spezifischen klonalen Heterogenität und der T-Zell-Tumor-
Mikroumgebung (TME), wie in Milz der Eµ-TCL1-Maus und Patientenlymphknoten im 
Verlauf der Krankheit. 

Im ersten Teil meiner Arbeit habe ich die klonale Entwicklung der CLL analysiert, welche 
maßgeblich durch die Dynamik von B-Zellrezeptorrearrangements (BCR) und 
somatischen Mutationen beeinflusst wird. Zu diesem Zweck wurden vollständige 
Exomsequenzierungen (WES) von seriell transplantierten Eµ-TCL1-Mäusetumoren 
untersucht. Es zeigte sich, dass Mutationen mit niedriger Allelfrequenz tumorspezifisch 
sind. Zehn von 13 Mäusetumoren waren oligoklonal. Zusätzlich konnten drei 
unterschiedliche Entwicklungsmuster beobachtet werden, welche sich durch 
unterschiedliche SNVs und BCR-Klonotypen definierten und zu einer Progression der 
Krankheit führten. Interessanterweise wurden Eµ-TCL1 maustypische B-Zell-
Rezeptorrearrangements unter Verwendung von zum Beispiel Ighv11 und Ighv12 
identifiziert. Von diesen ist bekannt, dass sie als Reaktion auf Autoantigene eine 
chronische Stimulation erfahren. Mit diesen Ergebnissen konnte die Bedeutung von 
Klonotypinformationen für die genaue Interpretation des CLL-Krankheitsverlaufs und 
der Arzneimittelwirksamkeit, insbesondere durch die Analyse von 
Zeitreihenexperimenten bei denen CLL-Tumoren adoptiv übertragen wurden, 
hervorgehoben werden. Es wurde auch Trisomie 15 beobachtet, wobei angenommen 
wurde, dass die Myc-Überexpression während der CLL-Entwicklung in Eµ-TCL1-Mäusen 
beteiligt ist. Es kann festgestellt werden, dass nicht nur die Überexpression des Tcl1-
Gens, sondern auch andere Faktoren zur CLL-Malignität bei Mäusen beitragen. 

Im Anschluss daran, untersuchte ich Veränderungen in Genome sowie Transkriptome 
bei monoklonalen Eµ-TCL1 AT-Mäusetumoren (Adoptivtransfer) als Ergebnis einer 
erworbenen Ibrutinib-Resistenz. Ibrutinib wird häufig als Frontline-Behandlung für CLL-
Patienten eingesetzt, von denen einige nach anfänglichem Ansprechen eine Resistenz 
gegen das Medikament entwickeln. Bei Mäusetumoren, Sechs Wochen nach Beginn der 
Behandlung, verlor die Therapie ihre Wirksamkeit und ein unkontrolliertes 
Tumorwachstum konnte beobachtet werden. Die Behandlung mit Ibrutinib war nicht in 
der Lage, innerhalb von 6 Wochen, einen für das Tumorwachstum nachteiligen 
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Selektionsdruck auf die BCR-Klonalität sowie Mutationsprofil auszuüben. Das 
Transkriptionsprofil von Ibrutinib-resistenten Tumoren war jedoch im Gegensatz zu 
unbehandelten einzigartig. Von den oben hochregulierten Genen, von denen festgestellt 
wurde, dass sie mutmaßlich an der Ibrutinib-Resistenz beteiligt sind, wird das Tbet-Gen 
derzeit für In-vivo-Studien als therapeutisches Ziel weiterverfolgt. 

Im zweiten Teil der Arbeit untersuche ich CD3-T-Zellsubpopulationen, welche im CLL 
TME im Vergleich zu Kontrollen ein charakteristisches Transkriptionsprofil aufweisen. 
Diese Analyse ist die erste ihrer Art, die CLL-Patientenlymphknoten (LN) zur 
Untersuchung von TME auf Einzelzellenebene verwendet. Zusätzlich das Knochenmark 
(BM) und das periphere Blut (PB) des Patienten; sowie die Milz des Eµ-TCL1-
Mausmodells wurden auf infiltrierende T-Zell-Subpopulationen untersucht. Die 
Einzelzell (SC) -CyTOF-Analyse (Massenzytometrie), unter Verwendung eines Panels von 
32 Oberflächenproteinmarkern, ergab eine erhöhte Fülle des T-Zell erschöpften 
Phänotyps in LNs im Vergleich zu BM- und PB-Proben desselben Patienten. Diese 
Beobachtung deutete darauf hin, dass PB und BM als Gewebe zur Untersuchung der CLL-
verknüpften T-Zell-Erschöpfung möglicherweise ungeeignet ist. Interessanterweise 
waren die Eµ-TCL1-Maus-T-Zellkompartimente Interessanterweise zeigten Eµ-TCL1-
Maus-T-Zellkompartimente das Vorhandensein von IFN-Respondern, die im CD4 + -
Zelltyp des Patienten nicht vorhanden waren. 7 von 12 Maus-Cd4 + -Subpopulationen 
zeigten die Expression von Tcytotoxic-Markern, was auf aktivierte Subpopulationen 
hinweisen könnte. 

Die in dieser Arbeit vorgestellten Resultate bieten einen detaillierten Überblick über die 
Heterogenität die sich durch 1) Eµ-TCL1-Mäusetumor im Verlauf des Krankheitsverlaufs 
manifestiert; 2) Das transformierte CLL TME bei Patienten und Mäusen. Diese Ergebnisse 
tragen dazu bei, Mausstudien für potenzielle Medikamente zur Behandlung von CLL 
besser zu verstehen und ihre Wirksamkeit im klinischen Einsatz unter dem Einfluss einer 
CLL-spezifischen Tumornische besser abschätzen zu können. 
  



 

v 
 

  



 

vi 
 

  



 

vii 
 

Contents 
 
Abstract                                                                                                                                i 

Zusammenfassung                                                                                                                                iii 

List of Figures                                                                                                                                          xi 

List of Abbreviations                                                                                                                            xiii 
 
1. Introduction                                                                                                                             1 
 

1.1 Cancer ........................................................................................................................ 1 

1.2 Hallmarks of Cancer ................................................................................................... 2 

1.3 Chronic Lymphocytic Leukemia (CLL) ......................................................................... 4 

1.4 B Cell Receptor (BCR) Clonal Dynamics in CLL ........................................................... 5 

1.5 Tumor Microenvironment (TME) of CLL .................................................................... 7 

1.6 T Cell Subsets and their Functions in the TME ........................................................... 8 

1.7 T Cell Exhaustion and its Impact on CLL ................................................................... 10 

1.8 Treating Chronic Lymphcytic Leukemia ................................................................... 13 

1.9 Eµ-TCL1 mouse: The Preclinical Model for studying CLL ......................................... 15 

1.10 Whole Exome Sequencing (WES) ............................................................................. 17 

1.11 RNA-sequencing (RNA-seq) ...................................................................................... 18 

1.12 Single cell droplet-based transcriptome profiling .................................................... 19 

1.13 CyTOF (Mass Cytometry) ......................................................................................... 20 

1.14 Computational Approaches Used ............................................................................ 22 

 
2. Materials and Methods                                                                                                      27 
 

2.1 Samples .................................................................................................................... 27 

2.1.1 Eµ-TCL1 mouse samples .................................................................................... 27 

2.1.2 Human samples for CyTOF and scRNA analysis ................................................ 27 

2.2 Data Generation ...................................................................................................... 28 

2.2.1 Whole exome sequencing (WES) ...................................................................... 28 

2.2.2 Mouse immunoglobulin repertoire sequencing ................................................ 28 

2.2.3 RNA-sequencing ................................................................................................ 29 

2.2.4 Mass cytometry (CyTOF) staining and acquisition of T cells ............................. 29 

2.2.5 Mass cytometry (CyTOF) panel and metal labeling of antibodies ..................... 29 



 

viii 
 

2.2.6 Generating single cell transcriptomes of CD3+ T cells from CLL TME ............... 30 

2.3 Steps involved in assessing clonal evolution dynamics of BCR and SNV-defined 
clonotypes in Eµ-TCL1 mouse tumors ............................................................................... 30 

2.4 Steps followed while studying genomic and transcriptomic changes inflicted in Eµ-
TCL1 mouse tumors on ibrutinib treatment ...................................................................... 34 

2.5  scRNA sequencing and CyTOF analysis (mass cytometry) workflow ....................... 36 

2.5.1 Steps involved in scRNA sequencing analysis .................................................... 36 

2.5.2 Identification of T cell receptor (TCR) rearrangements per cell ........................ 40 

2.5.3 CyTOF (mass cytometry) data analysis steps .................................................... 41 

 
3. Results                                                                                                                                    45 
 

3.1 10 out of 13 EµTCL1 mouse tumors have oligoclonal B cell receptors (BCRs) ......... 47 

3.2 Mutation load increases with subsequent tumor transplantations while low allele 
frequency mutations persist .............................................................................................. 48 

3.3 CLL clonal evolution dynamics in Eµ-TCL1 mice exhibit three kinds of patterns ..... 52 

3.4 Trisomy 15 corresponding to Myc over expression might be essential contributors to 
CLL pathogenesis ............................................................................................................... 57 

3.5 Effects of ibrutinib treatment on clonality of Eµ-TCL1 mouse tumors .................... 57 

3.6 Transcriptional profile of ibrutinib resistant Eµ-TCL1 mouse tumors ...................... 60 

3.7 Quality control diagnosis of CyTOF samples ............................................................ 66 

3.8 CD4+ subpopulations and their known and potential contribution to the tumor 
microenvironment ............................................................................................................. 67 

3.9 Associating CyTOF subpopulation abundances across samples to clinical information   
  ................................................................................................................................. 71 

3.10 Impact of variation in patient’s age on subpopulation abundances between tumor 
and control lymph nodes ................................................................................................... 74 

3.11 Differentially expressed CD4+ subpopulations in tumor v/s control lymph nodes . 75 

3.12 CD3+ T cell subpopulations identified using scRNA sequencing .............................. 79 

3.13 Nine CD4+ T cell subpopulations were identified using characteristic expression of 
top marker genes ............................................................................................................... 81 

3.14 Enrichment of clonally expanded CD3+ T cells revealed by TCR identification ....... 87 

3.15 VDJdb identifies biologically interesting clonotypes ................................................ 89 

3.16 Exhausted and effector memory cell populations show highest proportion of 
expanded clonotypes ......................................................................................................... 91 

3.17 Cd3+ T cell subpopulations identified from spleens of 2 Eµ-TCL1 AT mice ............. 93 

3.18 Eµ-TCL1 mouse Cd4+ T cells manifest naïve, regulatory and exhausted T cell 
subpopulations similar to those identified in human CD4+ T cells .................................... 94 



 

ix 
 

3.19 CLL specific subpopulations observed after integrating CLL lymph node data with 
publicly available breast cancer data ............................................................................... 101 

3.20 CLL specific cluster 9 (Tem1) is composed of a mixture of cells from both CD4+ and 
CD8+ cell types ................................................................................................................ 105 

 
4. Discussion                                                                                                                             107 
 
5. Publications                                                                                                                         117 
 
6. Supplementary Tables                                                                                                       119 
 

6.1 Supplementary Table 1 .......................................................................................... 119 

6.2 Supplementary Table 2 .......................................................................................... 120 

6.3 Supplementary Table 3 .......................................................................................... 122 

 
Acknowledgements                                                                                                                            125 
 
Bibilography                                                                                                                                        129 
 
  



 

x 
 



 

xi 
 

List of Figures 
 
Figure 1.1 Hallmarks of cancer. ................................................................................................ 2 
 
Figure 1.2: Interactions between B cells and the cells of the microenvironment in CLL. ......... 8 
 
Figure 1.3: Differentiation process of CD4+ and CD8+ T cells. ............................................... 10 
 
Figure 1.4: Difference in surface marker expression of Tm cell and Tex cell. ........................ 11 
 
Figure 1.5: Anti-PD1-PD-L1 immunotherapy .......................................................................... 12 
 
Figure 1.6: Treatment options for CLL. ................................................................................... 14 
 
Figure 1.7: The Eµ-TCL1 mouse and its usefulness in CLL. ..................................................... 16 
 
Figure 1.8: Steps involved in 10x chromium based scRNA-sequencing. ................................ 20 
 
Figure 1.9: Steps involved in mass cytometry ........................................................................ 21 
 
Figure 2.1: Steps used for assessing clonal heterogeneity in Eµ-TCL1 mouse tumors ........... 31 
 
Figure 2.2: Single cell analysis workflow adopted.. ................................................................ 37 
 
Figure 3.1: Eµ-TCL1 mouse clonotypes as sequenced by RACE-PCR ...................................... 46 
 
Figure 3.2: Mutation trends at target regions and VAF distribution of Eµ-TCL1 mouse tumors
 ................................................................................................................................................ 51 
 
Figure 3.3: Clonal evolution attributed to BCRs and somatic SNVs. ....................................... 56 
 
Figure 3.4: VAF distribution of ibrutinib and vehicle treated Eµ-TCL1 mouse tumors ........... 59 
 
Figure 3.5: Transcriotion profiles of ibrutinib and vehicle treated Eµ-TCL1 mouse tumors. . 62 
 
Figure 3.6: Cell counts per sample and MDS plot clustering for CyTOF samples. .................. 67 
 
Figure 3.7: 15 CD4+ subpopulations identified by CyTOF analysis and their marker expression
 ................................................................................................................................................ 68 
 
Figure 3.8: Hierarchical clustering of CD4+ subpopulation abundances across samples. ...... 73 
 
Figure 3.9: Differentially abundant CD4+ T cell subpopulations in tumor LN v/s control LN. 76 
 
Figure 3.10: ScRNA sequencing of CD3+ T cells from 3 CLL patient lymph nodes. ................. 79 
 
Figure 3.11: 9 identified CD4+ T cell subpopulations by scRNA-seq. ..................................... 81 



 

xii 
 

 
Figure 3.12: Total number of cells and identified clonotypes in 3 CLL samples ..................... 86 
 
Figure 3.13: 10 most frequent clonotypes, their abundances and biological role ................. 88 
 
Figure 3.14: CD4+ cell expression data highlighting top expanded clonotypes. .................... 90 
 
Figure 3.15: 12 Cd3+ T cell subpopulations identified from the spleen of Eµ-TCL1 mice ...... 92 
 
Figure 3.16: 11 identified Cd4+ T cell subopulations from the spleens of Eµ-TCL1 mice. ...... 94 
 
Figure 3.17: Integrated clustering using CCA for breast cancer (BC) and CLL cohort. .......... 100 
 
Figure 3.18: Tracking of cells from CLL specific subpopulations into the identified BC-CLL  
(Breast Cancer- CLL) integrated subpopulations .................................................................. 104 
 
  



 

xiii 
 

List of Abbreviations 
Gene names are written in italics not included in this list. 

ALL Acute Lymphocytic Leukemia 
AML Acute Myelomonocytic Leukemia 
AT Adoptive Transfer 
aTregs  activated regulatory T cells 
BC Breast Cancer 
BCR B Cell Receptor 
BM Bone Marrow 
BTK Bruton Tyrosine Kinase 
CCA Canonical Correlation Analysis 
CLL Chronic Lymphocytic Leukemia 
CML Chronic Myeloid Leukemia 
CMV Cytomegalovirus 
CNV Copy Number Variations 
controlLN Control Lymph Node 
CS Class Switching 
CyTOF Mass Cytometry 
EBV Epstein-Barr virus 
Eµ-TCL1 Enhancer(mu) - T Cell Leukemia 1 
FCS Flow Cytometry Standard 
FDC Follicular dendritic cells 
GEM Gel Bead in Emulsion  
HSP Heat Shock Proteins 
I.P. Intraperitoneal  
Ib-L Ibrutinib Late 
Ighv Immunoglobulin Heavy Chain  
IL Interleukins 
Klr Killer-cell Lectin 
KNN K-nearest Neighbour 
LIH Luxembourg Institute of Health 
LN Lymph Nodes 
MDC Monocyte-derived cells 
MDS Multi-Dimension Scaling 
MHC Major Histocompatibility Complex 
MNN Mutual Nearest Neighbour 
NCP National Cytometry Platform 
NGS Next Generation Sequencing 
OS Overall Survival 
PB Peripheral Blood 
PCA Principal Component Analysis  
PD-1 Programmed Cell Death Protein 1 



 

xiv 
 

PFS Progression Free Survival 
PtC Phosphatidylcholine 
rLNs reactive Lymph Node Samples  
rTregs resting regulatory T cells 
sc Single Cell 
SHM Somatic Hypermutation 
SNV Single Nucleotide Variation 
Tc Cytotoxic T cells 
Tcm Central Memory T cell 
TCR T cell receptors 
Teff/Tef Effector T cell 
Tem Effector Memory T cell 
Tex Exhausted T cell 
Tfh Follicular Helper T cells 
Tg Transgenic Mice 
Th Helper T cells 
Tm Memory T cells 
TME Tumor Microenvironment 
Tnaive Naïve T cell 
TOF Time of Flight 
Tregs Regulatory/Suppressor T cells 
tSNE t-distributed Stochastic Neighbor Embedding 
tumorBM Tumor sample from Bone Marrow 
tumorLN Tumor sample from Lymph Node 
tumorPB Tumor sample from Peripheral Blood 
UMAP Uniform Manifold Approximation and Projection 
UMI Unique Molecular Identifier  
V(D)J Variable (Diversity) Joining 
VAF Variant Allele Frequency 
Ve-E Vehicle Early 
Ve-L Vehicle Late  
WES Whole Exome Sequencing 
WGS Whole Genome Sequencing 
WHO World Health Organization  
WT Wild Type  
  

 

 
 
 
 
 
 
 
 



 

xv 
 

 
  



 

xvi 
 

 
 
 



 

1 
 

1.  Introduction 
 
1.1 Cancer 
 
Cancer is the uncontrolled, abnormal growth and division of cells. These cells eventually 

infiltrate surrounding normal tissue and may spread to other parts of the body through the 

blood or the lymphatic system. It disrupts normal functioning of the body including the 

immune system’s ability to counter the tumor. Presently cancer is diagnosed in more than 10 

million new people every year. It is the second leading cause of death in the world after 

cardiovascular disorders (1, 2). In Europe alone, there were an estimated 3.9 million new 

cases of cancer and 1.9 million cancer related deaths in the year 2018. The most common 

cancers in Europe in the same year were that of breast, colorectal, lung and prostate (3). In 

addition to reducing the quality of life for the patient, cancer and its treatment result in 

financial losses, morbidity and premature death.  

 

There are more than 200 types of known cancers. Broadly, they can be differentiated into 5 

types based on the cell of origin. They are carcinomas (skin, tissue lining), sarcomas 

(connective tissue like muscle etc.), leukemias (blood or bone marrow), lymphomas and 

myelomas (lymphatic tissues and bone marrow respectively), and, brain and spinal cord 

(central nervous system). Tumors are also classified according to their degree of potency into 

benign and malignant. Benign tumors are slow growing, do not spread to other parts of the 

body and are non-cancerous. On the contrary, malignant tumors grow much faster, 

metastasize and are cancerous. 

 

Risk factors that contribute to occurrence of cancer include aging, tobacco usage (smoking), 

prolonged exposure to sun (UV rays), internal exposure to radioactive materials and harmful 

chemicals persistent in polluted air and water, certain viruses (EBV, HPV, hepatitis B and 

hepatitis C virus etc.) and bacteria (H. pylori), hereditary and non-hereditary genetic 

mutations, over consumption of alcohol, lack of physical activity, and obesity (4). Several 

causes of cancer are preventable (tobacco usage, modifications in diet, controlled alcohol 

usage), whereas a family history of cancer or aging are unavoidable risk factors. 
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1.2 Hallmarks of Cancer 
 
To sustain themselves, cancer cells must acquire several essential biological capabilities. 

These traits are shared between most cancers and drive their transformation from normal to 

malignant. In addition, these biological hallmarks capacitate cancer cells to acquire a tumor 

growth facilitating niche, become malignant and eventually metastatic. Figure 1.1 depicts 

eight groups into which the acquired complexities of cancer developing cells can be divided 

(Hanahan and Weinberg 2011).  

 
 

Figure 1.1 Hallmarks of cancer (5). 

 

Two factors that form the basis of these inherent properties of all cancers are genome 

instability and inflammation. Genome instability refers to increased tendency of acquiring 

mutations by the cancer cells over successive cell divisions in order to survive immunological 

control systems and evolve. Genome integrity is kept in check by DNA damage and repair 

machinery, and mitotic checkpoints. Defects in these processes predispose the DNA to 

genomic alterations including chromosomal aberrations and DNA strand breaks. Tumor 

heterogeneity can be a result of genomic instability (Yao and Dai 2014). Chronic inflammation 

induced as a result of viral or bacterial infections or even non-infectious agents can contribute 

to cancer development. Inflammation driven carcinogenesis promotes other hallmarks of 
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tumor development like escape of apoptotic signals, enhancing signals for angiogenesis and 

metastasis, etc (Multhoff, Molls et al. 2011).  

 

These integral underlying components of the process of cancer development have provided 

a framework for understanding the biological complexities in the way of treating this disease. 

Owing to years of established research and understanding of underlying mechanisms of 

cancer phenotypic manifestations, treatments and medications are available for many cancer 

types. Early detection and advanced clinical interventions have provided successful remission 

including improved prognosis and overall survival for patients suffering from cancers of the 

breast, prostrate, thyroid, melanoma and cervix. On the other hand, cancers with worst 

survival include ones of the central nervous system, pancreatic cancer, lung cancer, gall 

bladder cancer and esophageal cancer with less than 20% patients surviving after 5 years of 

treatment (6). However, this number can vary even for the subtypes of same kind of cancer. 

For example, different types of leukemias have a varied percentage of patients surviving 

beyond 5 years post treatment (acute myelomonocytic leukemia (AML): 24% patients, chronic 

myeloid leukemia (CML): 66.9% patients, acute lymphocytic leukemia (ALL): 68.2% patients, 

chronic lymphocytic leukemia (CLL): 83.2% patients) (7). 

 

Even though CLL has a better 5-year survival rate as compared to other leukemias, it remains 

the most common leukemia in western countries. Many CLL patients relapse by becoming 

resistant to available chemotherapy and antibody treatment options due to acquired 

mutations in BTK and PLCG2 genes after the first treatment. Relapsed or progressive CLL is 

not curable except by allogenic stem cell transplantation (8). These patients however do 

respond to repeated palliative treatments, that prolong their life. It is well known that the 

course CLL disease development can vary between patients. Research in CLL is therefore 

focused to identify underlying genetic mutations, mechanisms and study therapeutic 

responses in as many patients as possible by enrolling them in clinical trials. The aim is hence 

to avoid relapse and disease progression into aggressive form. 

 

CLL is the cancer of study in this thesis. The following sections describe it in detail, followed 

by the caveats in our knowledge of CLL and its treatment. 
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1.3 Chronic Lymphocytic Leukemia (CLL) 
 

CLL is a slow growing malignancy characterized by the accumulation of CD19+ CD25+ CD23+ 

B cells in blood, bone marrow, spleen and secondary lymphoid organs. The median age at 

diagnosis is 70 years with the disease course as well as the genetic aberrations being quite 

heterogenous between patients. The indolent form of this disease generally goes undetected 

unless asymptomatic lymphocytosis is reported during incidental blood tests. Patients with 

progressive disease need treatment as they possess increasing lymphocyte count, 

adenopathy and hepatosplenomegaly. These patients also show infiltration in the bone 

marrow that may result in bone marrow failure and subsequent anemia and 

thrombocytopenia. To be diagnosed with CLL, a patient must possess at least 5,000 B cells 

per microliter in the peripheral blood (Garcia-Munoz, Galiacho et al. 2012). 

 

Clinical attributes of CLL mentioned above are the basis for the following classification 

systems for prognosis and treatment (Grabowski, Hultdin et al. 2005): 

1. Rai staging, and 

2. Binet staging 

 
In addition to the above, several biological and genetic markers are also of prognostic value. 

For example, chemoimmunotherapy resistant patients often manifest deletion in 

chromosome 17p and/or mutations in TP53. These patients constitute about 7% of relapsed 

CLL cases (Hallek 2019). 55% of CLL cases show recurrent deletions in chromosome 13q that 

includes the putative CLL driver DLEU2.  Deletion in chromosome 11q with driver genes ATM 

and BIRC3 and trisomy 12 make up 6%-18% and 12%-16% recurrent CLL cases respectively 

(Guieze and Wu 2015). Other genetic lesions reported in CLL that also aid in prognosis of the 

disease include mutations in NOTCH1, SF3B1, somatic hypermutation (SHM) in the IGHV gene 

and upregulation of cell surface markers CD38, CD49D, ZAP70 (Gaidano 2017).  

 

In all, only the above recurring mutations of importance occur at a frequency of >5% in CLL. 

Majority of the mutations that are identified in CLL patients are biologically and clinically 

uncharacterized and occur at lower frequencies. This means there are few clonal and mostly 

sub-clonal mutations in CLL. The overall low somatic mutation rate in CLL (approx. 1/Mb) as 
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compared to UV/carcinogen induced tumors like melanoma, and the indolent course of the 

disease imply vastly heterogenous nature of CLL, without a universal genetic event common 

to all patients. The rate of inter- (between patients) as well as intra- (within the same tumor) 

tumoral heterogeneity have been reportedly high in CLL; and is dynamic throughout the 

course of the disease. This has clinical implications such as treatment failure or resistance 

(Guieze and Wu 2015). 

 

Additionally, the BCR signaling pathway plays an important role in assessing CLL disease 

pathogenesis and is exploited as a therapeutic target. Other pathways of importance also 

influenced by CLL microenvironment include WNT signaling, NOTCH1 signaling, NF-kB nexus 

and CXCR4/CXCL12 signalling (Ferrer and Montserrat 2018). 

 

1.4 B Cell Receptor (BCR) Clonal Dynamics in CLL 
 

There are strong evidences that CLL arises due to chronic stimulation of the B cell receptor 

(BCR).  The general process includes selection and expansion of the malignant clone resulting 

in B cells with aggressive BCR. Structurally BCRs are proteins with an N-terminal variable 

region that binds to the antigen and a C-terminal constant region with effector functions. 

Genetically the BCR is composed of segments of immunoglobulin V (variable), D (diversity), J 

(joining) and C (constant) genes. Functional BCR protein is formed when individual V, D and J 

segments undergo recombination during B cell maturation. These genes are highly 

polymorphic and are responsible for the germline BCR diversity of an individual. Clonal 

expansion occurs after a B cell recognizes an antigen, which is followed by SHM in the 

germinal centers and class switching (CS). In CLL, clonal expansion of B cells can occur both 

before and after SHM, causing accumulation of clonally related CD19+ CD5+ IgM+ IgD+ B cells. 

Certain IGHV gene rearrangements are more common in CLL and are known as stereotypic 

clones, e.g. IGHV3-21 is identified in approximately 30% CLL cases. The reason for stereotypic 

V(D)J rearrangements in CLL could be attributed as a response to common antigens or a 

shared mechanism of clonal expansion of CLL B cells that drives growth of the malignant clone 

(Petrova, Muir et al. 2018).  Potential of expanded CLL clones to undergo SHM also makes 

way for the hypothesis that there could be modes other than antigenic stimulation for 
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malignant clonal expansion (Efremov 1996, Fais 1996). Such type of B cell response highly 

depends upon the sequence specific features of variable genes in V(D)J rearrangement 

(Duhren-von Minden, Ubelhart et al. 2012).  

Sequencing BCR repertoires could hence aid in tracking and delineating evolution of B cell 

responses in CLL by characterizing the diversity or types of identifiable V(D)J rearrangements. 

V(D)J clonotype information can then be associated to CLL progression to identify aggressive 

BCRs. This can help clinicians in predicting disease course and treatment response for patients 

harboring similar clonotypes.  

Eµ-TCL1 preclinical mouse model manifests a CLL like disease by overexpression of Tcl1 gene 

placed downstream of the promoter sequence Ighv gene locus in mouse. This is explained 

later in detail. B cell repertoire studies in Eµ-TCL1 CLL mouse model have shown that both 

early generated B-1 B cells and stereotypic clonotypes contribute to the progression of CLL in 

mouse (Hayakawa, Formica et al. 2016). However, in general there is lack of evidence on the 

diversity of usage of V(D)J genes that leads to disease evolution and accelerated progression 

with each adoptively transferred (AT) CLL Eµ-TCL1 mouse. Understanding how BCR clonotype 

evolution correlates with CLL progression in mice is important for preclinical studies of CLL.  

In addition, it has been observed that BCRs also evolve in response to microenvironment 

signals which are different in leukemia as compared to healthy individuals (Burger 2011). A 

leukemia supportive microenvironment probably signals evolution of relatively aggressive 

BCRs that can produce a sustained response adding to tumorigenicity.  

Hence, to study evolution of CLL in patients and Eµ-TCL1 mouse model, it is very important to 

understand the dynamics of the disease microenvironment. 
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1.5 Tumor Microenvironment (TME) of CLL 
 

CLL has a tumor supportive microenvironment that aids in homing, survival and proliferation 

of malignant B cells. Components of the CLL TME and the signaling mechanisms they employ 

to interact with B cells, could hence be potential targets to counter CLL progression. 

Components of CLL TME and the mechanisms by which they interact with CLL cells are shown 

in figure 1.2 adapted from (Ten Hacken and Burger 2016). Briefly, they are bystander cells like 

T cells, MDCs (monocyte-derived cells) and stromal cells like endothelial cells, pericytes and 

FDCs (follicular dendritic cells). Signals from these cells result in an immunotolerant milieu in 

CLL lymph nodes. In addition, such a niche promotes sustenance of neo-antigen expressing 

malignant B cells.  

The communication between B cells and cells of the TME is regulated by: 

 

1. Interleukins (ILs): e.g. IL-4 and IL-21- promoting cell survival and proliferation; and 1L-

10 facilitating immunosuppression 

2. Chemokines: e.g. CCL2, CCL3, CCL4, and CLL22 are involved in chemo-attraction of cell 

towards the TME 

3. Growth factors: e.g. IGF-1 (insulin-like growth factor one) promotes survival 

4. Membrane bound factors on bystander cells aiding in cell survival like CD40L and 

integrins. 

5. Micro vesicles and exosomes that are produced by both CLL and bystander cells help 

in signal transmission. 

6. Nucleoside adenosine: renders the tumor immune niche useless leading to tumor 

resistance in CLL cells. 

 

Since in this thesis I try to understand altered functional components of T cells from the CLL 

TME I review here normal T cell functions, subsets and then their established role in 

degenerating immune response in CLL including T cell exhaustion. 
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Figure 1.2: Interactions between B cells and the cells of the microenvironment in chronic lymphocytic 
leukemia  (Ten Hacken and Burger 2016). NLC = nurse like cells, NK = natural killer cells, BMSCs = bone 
marrow stromal cells, FDCs = follicular dendritic cells. 

 

1.6 T Cell Subsets and their Functions in the TME 
 

The TME of CLL is characterized by increased numbers and compromised functionality of T 

lymphocytes (both CD4+ and CD8+). There are several types of T cells functionally active in 

the TME and they are defined briefly below. Since each subpopulation of T cells can be 

identified by specific markers, after understanding their role in the CLL TME, specific 

subpopulations could be potential targets for therapy.  

 

T lymphocytes arise in the bone marrow and mature in the thymus. The spectra of responses 

generated by T cells are together called as cell-mediated immune responses. T cell receptors 

(TCRs) on T cells recognize antigen presented to them by MHC (major histocompatibility 

complex) molecules. In addition to the TCR, T cells express either the CD8 or the CD4 
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glycoproteins on their surface, and are then called cytotoxic or helper T cells, respectively. 

Based on the type of surface marker they express and function, there are four types of T cells 

(9): 

 
1. Cytotoxic T cells (Tc): Also called killer T cells, they express CD8 marker and can induce 

an infected cell to undergo apoptosis, hence killing it. 

2. Helper T cells (Th): These are CD4+ T cells, and they proliferate to activate B cells or 

CD8+ T cells. They function after transformation to effector cells upon activation. 

3. Memory T cells (Tm): They can be both CD4 and CD8 cells and help induce quick 

secondary responses upon interaction with the same antigenic stimuli that has also 

been experienced earlier. 

4. Regulatory/suppressor T cells (Tregs): as the name suggests, they help generate 

controlled immune T cell responses and avoid self-damage.  

 

Characterized by their unique cytokine profiles, CD4+ T cells can also be divided into Th1, 

Th2, Th9, Th17, Th22 and Tfh (follicular helper T cells).   

 
T cells get activated upon pathogenic antigen presentation to the naïve T (Tnaive) cell. These 

activated T cell proliferate and differentiate into effector T (Teff/Tef) cells, which get recruited 

to the site of infection to eliminate pathogens. Although the life of Teff cells is short, a subset 

transitions into long term memory cells, that retain memory of the pathogen in case of 

restimulation. Memory T (Tm) cells can either be in secondary lymphoid organs and there 

they are called central memory T (Tcm) cells; or they can be located at the site of freshly 

infected tissue and are there called as effector memory T (Tem) cells. Upon re-exposure to 

the same antigen, Tm cells can produce an immune response that is faster and stronger than 

the primary immune response. The unique features of Tm cells are hence, producing a more 

effective secondary immune response and antigen-independent self-renewal driven by IL-7 

and IL-15, and development of memory after absence of ongoing antigenic stimulation. The 

process of CD4+ and CD8+ T cell differentiation is shown in figure 1.3. Tregs are the 

components unique to CD4+ T cells. 
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Figure 1.3: Differentiation process of CD4+ and CD8+ T cells into Teff, Tem, Tcm on encountering an 
antigen. Modified from  (Golubovskaya and Wu 2016). 

 
1.7 T Cell Exhaustion and its Impact on CLL 
 

Persistent antigenic stimulation in chronic diseases and cancers, alters the differentiation 

mechanism of Tm cells, causing Teffs to become exhausted T (Tex) cells instead. Exhausted T 

cells have a transcriptionally distinct state as a result of stepwise loss of effector functions, 

constant upregulation, expression of inhibitory receptors (PDCD1, LAG3) and use of certain 

key transcription factors (MAF, TOX, EOMES). These altered effector cells, are unable to 

transition into memory state after absence of infection and are chronically stimulated 

(Wherry and Kurachi 2015). Figure 1.4 entails the differences in surface marker expression, 

cytokine production, proliferation and antigen dependency of the memory and exhausted T 

cell states. The table under the figure reports that exhausted cell types have characteristic 

reduced proliferation and cytokine production, increased expression of inhibitory receptors 

and no capacity of self-renewal. Exhaustion hence seems like a roadblock in the process of 

acquired immunity. 

CD8+ CD4+ 
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Figure 1.4: Difference in surface marker expression of Tm cell and Tex cell during acute and chronic 
infections respectively (Wherry and Kurachi 2015). 

 

If the infection persists way longer as is usually the case with cancers, effector T cells that 

were once functional against the cancer are completely lost. All that is left is inhibitory 

markers expressing exhausted T cells, incapable of producing cytokines like IFN-g, TNF (tumor 

necrosis factor), and IL-2 (Wherry 2011).  

 

Loss of effector functions renders the immune niche of an infection or a tumor (in case of 

cancer) functionless. However, the exhausted immune environment can be rescued by 

controlling and modulating inhibitors and pathways over expressed in exhaustion. The PD1-

PD-L1 nexus is well explored with respect to rescuing effector functions of chronically 

stimulated T cells. PD-1 (programmed cell death protein 1) is an inhibitory receptor present 

on the surface of activated T cells. Its function is to assure controlled immune response and 

avoid chronic autoimmune inflammation. When PD1 binds to its ligand PD-L1, it signals 

attenuation of T cell functions leading to T cell depletion. T cells respond against cancer cells 
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via effector functions, and this also leads to binding of PD-L1 expressed in high amounts on 

cancer cells to PD1 on effector T cells (figure 1.5 a). Once this happens, the effector T cells 

lose their functions. To rescue this anti-PD1/anti-PD-L1 antibodies have been proposed that 

block either PD1/PD-L1 epitopes and keep the T cell effector functions intact (figure 1.5 b). 

This results in resumed immune response against the tumor (Marchetti, Di Lorito et al. 2017, 

Angelousi, Chatzellis et al. 2018). 

 

Anti-PD1 therapy has shown promising results against melanoma (stage III/IV), metastatic 

renal cell carcinoma, refractory Hodgkin’s lymphoma, chronic lymphocytic leukemia and 

ovarian cancer to name a few. Anti-CTLA4 (e.g. Ipilimumab) in combination with anti-PD1 

therapy (Nivolumab) has been effective in treating melanoma (state III/IV), and non-small cell 

lung cancer (Seidel, Otsuka et al. 2018). Anti-LAG3 also holds potential for patients with CLL, 

gastric cancer and prostate cancer among others (Long 2018). These therapies could be used 

individually or in combination for best results. We as well as others have shown that anti-PD-

L1 (alone or in combination with ibrutinib monotherapy) as well as dual PD1/LAG3 blockade 

prevents immune dysfunction and suppresses leukemia in the CLL preclinical mouse model 

Eµ-TCL1 (Wierz 2018, Hanna, Yazdanparast et al. 2020). 

 

 
 

Figure 1.5: (a) PD-L1 on cancer cell interacts with PD1 on T cell to inhibit its activity (b) Anti-PD1 and 
Anti-PD-L1 antibodies block the epitope of PD1. This hinders the interaction of PD1 with PD-L1 on the 
cancer cell. This leads to a potential increase in T cell effector functions and immune response against 
the tumor (Abdin, Zaher et al. 2018). 

a. 

b. 
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In our group there have been studies on the dynamics of the PD1-PDL1 pathway in CLL tumor 

microenvironment in the Eµ-TCL1 mouse model (McClanahan, Riches et al. 2015). 

Researchers from our group have shown that effector CD8+ T cells from the CLL TME of both 

Eµ-TCL1 mouse spleens and patient lymph nodes and peripheral blood, are composed of two 

phenotypically and transcriptionally distinct populations separated by high (PD1hi) and 

intermediate (PD1int) expression of the PD1 gene. The subpopulation with PD1hi expression 

was found to resemble exhausted T cells with respect to compromised cytotoxicity and 

increased expression of inhibitory receptors like TIGIT and LAG3 and transcription factors like 

EOMES. However, CD8+ PD1int population still displayed potential for effector functions. It 

was observed that the balance between PD1hi and PD1int CD8+ T cell populations was tightly 

regulated by 1L10/STAT3 signaling; which when blocked shifted the proportion of PD1int 

population towards PD1hi. Hence IL10 was associated with shifting the CLL TME towards an 

immunocompromised one (Hanna 2020).  This mechanism was hence suggested as a 

potential therapeutic target for CLL. 

 

Effective therapies and their combinations have been useful for the treatment of CLL. Some 

of them target the highly upregulated BCR signaling pathway, and others work on the 

components of the tumor microenvironment to combat CLL. Presently, research on CLL 

involves deciphering the effectiveness of these therapies individually and in combination, 

both in the Eµ-TCL1 mouse as well as in CLL patients. 

 

1.8 Treating Chronic Lymphcytic Leukemia 
 

There is a plethora of treatment options available for chronic lymphocytic leukemia. 

Parameters like the stage and grade of CLL, symptoms manifested by the patient, previous 

infections/fitness of the patient, previous response to a treatment, remnants from previous 

treatment, whether it’s a primary or relapse disease state, availability of the drug in 

consideration and its economic burden on the patient (Burger 2011), all affect the choice of 

treatment for a patient. 
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Figure 1.6: Treatment options for CLL and the molecule/pathway they work on to inhibit progression 
of chronic lymphocytic leukemia (Yosifov, Wolf et al. 2019). 

 

Some of the common treatments are explained below in detail and also detailed in figure 
1.6. 

1. A common front-line treatment is monotherapy with ibrutinib. It is also used for CLL 

patients with TP53 mutation. This is a small molecule BTK (Bruton tyrosine kinase) 

inhibitor that covalently binds to BTK leading to downstream inactivation of cell 

survival pathways like NF-kB and MAP kinase, important for BCR signaling. 82.1% of 

the patients (total 84 patients) treated with ibrutinib showed signs of reduced tumor 

proliferation and cell death resulting in improved survival (Ahn, Underbayev et al. 

2017). However, other 17.1% of the patients after showing an initial decrease in 

malignant B cells, stop responding and relapse. These patients that show resistance 

to ibrutinib treatment have a mutation either in the gene BTK or PLCG2. 

There is a keen interest now in understanding the mechanism of CLL growth and 

evolution through acquired mutations and dynamic transcriptional changes that make 

way to a highly aggressive ibrutinib resistant disease.  
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2. The mechanism of BCR pathway inactivation by a BTK inhibitor (ibrutinib and 

acalabrunitib) is shown in figure 1.6. The figure also shows drugs (eg. Kinase inhibitors 

Idelasib, develisib targeting PI3K) used to inhibit different components of the BCR 

signaling pathway, with an aim to contain it and restrict B cell proliferation.  

 

3. Venetoclax is a Bcl-2 inhibitor that blocks the prosurvival functions of the Bcl-2 

protein. A combination of ibrutinib and venetoclax is also recommended, so that B 

cells that delocalize to the peripheral blood from secondary lymphoid tissues as a 

response to ibrutinib are fairly short lived (Souers, Leverson et al. 2013). 

 
Other treatment options employ Anti-CD20 antibodies that target CD20 surface protein 

expressed by malignant B cells (Huhn, von Schilling et al. 2001), or a combination therapy 

using fludarabine with cyclophosphamide (FC) (Eichhorst, Busch et al. 2006). 

 

The mechanism of action of treatment options for CLL, before undergoing clinical trials with 

enrolled patients, is studied in the pre-clinical mouse model of CLL, the Eµ-TCL1 model. This 

necessitates the study of genetic and transcriptomic make up of this mouse. Mouse models 

can help study treatment response rates and mechanism of action faster and reliably if the 

progression of the disease in mouse is comparable to that in human patients. I therefore 

review next, known facts about the Eµ-TCL1 mouse model and its suitability to study CLL. 

 

1.9 Eµ-TCL1 mouse: The Preclinical Model for studying CLL 
 

TCL1 is an oncogene activated in T-cell prolymphocytic leukemia. It is activated due to 

repeated reciprocal translocations occurring at the chromosome segment 14q32.1. It was 

also shown to be expressed in B cells in CLL, and not on the normal mature B cells (Yuille 

2001). This gene was then placed under the control of the promoter of the mouse 

immunoglobulin heavy chain (Ighv) gene in B cells, to enhance its production (Bichi, Shinton 

et al. 2002). In two months, this led to polyclonal proliferation of CD5+ B cells in the peritoneal 

cavity of the mice. At 3-5 months these cells could be detected in the spleen and at 5-8 

months in the bone marrow. At 8-9 months it was possible to detect high numbers of 

monoclonal B cells, and at 13-18 months CLL like symptoms of enlarged spleen and marked 
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lymphoadenopathy was confirmed. This phenotype was established as a prolymphocytic 

transformation of CLL and was henceforth used in many other studies a relevant medium to 

investigate CLL.  

 

The Eµ-TCL1 mouse model, hence, manifests a disease like the aggressive form of chronic 

lymphocytic leukemia. Since its development 17 years ago, the mouse model has been 

extensively used for studying CLL development, progression and pathogenesis, clonal 

evolution in CLL, screening drugs and elucidating their mechanism of action figure 1.7. 

 

This model and its adoptively transferred form (Eµ-TCL1-AT) has been used in our lab to 

understand the pathophysiology of CLL. The adoptive transfer model is one in which B cells 

from the spleen of Eµ-TCL1 mouse manifesting CLL, are taken and injected into the peritoneal 

cavity of another Eµ-TCL1 mouse. The secondary tumor in the AT mouse develops into CLL 

much faster than the primary tumor, i.e. in about 5-6 months. This approach also develops a 

more aggressive CLL. 

 
Figure 1.7: The Eµ-TCL1 mouse and its usefulness in testing disrupted biological pathways, drug 
development and treatment studies and evolution and progression of CLL (Pekarsky, Drusco et al. 
2015). 
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It is still needed to study the kind and mechanism of B cell clonal changes in the secondary 

tumor that causes faster development of the disease. This could answer whether there is a 

specific stage in B cell development that when transformed develops into a more aggressive 

CLL. Gap also remains to understand the suitability of the TCL1 mouse in studying the CLL 

tumor microenvironment. CLL progression is highly dependent upon signals from its 

microenvironment. In addition, it also needs to be studied how the genetic background of the 

mouse impacts CLL development.  

 

This thesis digs into genomic heterogeneity of cells from CLL patients and the above described 

mouse model by means of computational and bioinformatics approaches. Next Generation 

Sequencing (NGS) approaches were used to assess the mutational landscape, BCR dynamics 

(whole exome sequencing: WES) as well as transcriptional changes due to drug treatment 

(RNA-sequencing). In addition, a major part of the thesis comprehends the tumor 

microenvironment (TME) of CLL at single cell proteome and transcriptome using high 

throughput CyTOF (mass cytometry) as well as RNA-sequencing (scRNA-seq) respectively. 

These NGS and single cell measurement approaches are discussed next. 

 

1.10 Whole Exome Sequencing (WES) 
 

WES is targeted sequencing of the protein-coding regions in a genome. This means that only 

the exons of all the gene are captured and sequenced, hence the name “exome sequencing”. 

The protein coding region constitutes about 1% of the entire human genome. In order to 

identify genes that alter protein sequence, structure and eventually their function, genetic 

variants underlying exonic regions of approximately 30 million base pairs need to be assessed. 

Therefore, to identify only the protein altering genetic variants, sequencing the entire 

genome is both more cost and time consuming as compared to sequencing the exome. The 

first step in this process is to capture the target regions of interest by either capture oligos or 

hybridization arrays. This is followed by high throughput sequencing of the captured regions. 

In addition, the costs saved can be used to achieve higher coverage while sequencing only the 

targeted regions, and hence be useful for variant calls with higher read support and reliability 

(10).  
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Agilent SureSelect kits for human as well as mouse are common protocols for capturing 

targeted regions. They use approximately 120 base RNA probes to capture coding sequences. 

Briefly, the steps include fragmenting, denaturing and then hybridizing the DNA to capture 

oligos. Captured sequences are then labeled with paramagnetic beads conjugated with 

streptavidin. These are amplified further before sequencing on Illumina machine (Chen 2015). 

Illumina HiSeq 4000 platform was used for WES in this thesis. 4 samples were multiplexed per 

lane generating a total of 235 million paired reads. WES can be used to identify Single 

Nucleotide Variants (SNVs) and Copy Number Variations (CNVs) altering the coding region of 

the genome. WES has applications in identifying rare variants with higher coverage, 

identifying candidate genes for Mendelian disorders and other complex diseases, and to 

design panels for clinical diagnostics. 

 

1.11 RNA-sequencing (RNA-seq) 
 

RNA-seq is an NGS technique used to quantify the transcriptome of a cell. Changes in gene 

expression over time and in between conditions can hence be assessed. In addition, isoforms 

of a transcript as a result of alternate splicing, gene fusions and post translational 

modifications can be identified using RNA sequencing. In cancer biology, RNA sequencing 

often aids in quantifying the changes in transcriptional profile of the disease state in contrast 

to the control/normal state. Small RNAs as well as non-coding RNAs can also be sequenced, 

applying varied library preparation methods. In contrast to bulk RNA sequencing where RNA 

from the entire dissociated tissue is sequenced, newer technologies to isolate single cell and 

process their transcriptome are becoming increasingly common. These fall under the 

category of single cell RNA sequencing (scRNA-seq) and is explained below. Isolating and 

sorting single cells specific to a tissue or condition and quantifying their transcriptome 

prevents contamination from non-tissue sources, which is unavoidable in bulk sequencing. 

Bulk RNA-sequencing and scRNA-sequencing NGS approached have both been used in this 

thesis to answer separate biological questions. 
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1.12 Single cell droplet-based transcriptome profiling 
 

ScRNA sequencing has proved to be beneficial in studying tumor clonality and heterogeneity, 

track development and interrogate immune system cell types and diversity at single cell level. 

To study immune T cell populations infiltrating the CLL niche, scRNA sequencing paired with 

targeted single cell T cell receptor sequencing was used. There are several kinds of single cell 

library preparation techniques useful for different biological purposes. scRNA-seq methods 

differ based upon either amplifying full-length cDNA or cDNA at either 5’ or 3’ end attached 

with a unique molecular identifier (UMI). SMART-seq and SMART-seq2 are techniques that 

employ full length transcript. Protocols using UMIs include MARS-seq, STRT, CEL-seq and ones 

that used droplet-based platforms (Drop-seq, inDrop, 10X chromium). 

10x genomics chromium scRNA sequencing 

The 10X platform uses gel bead in emulsion (GEM) approach. Each cell gets encapsulated in a 

gel bead labeled with oligonucleotides. These oligonucleotides consist of a unique cell 

barcode (10bp UMI), sequencing adapters and primers, and a 30bp oligo-dT (See, Lum et al. 

2018). Steps involved in scRNA-seq using 10X genomics method is described in figure 1.8. 

Droplet strategy greatly increases the throughput to thousands of cells being profiled at once. 

Up to 8 samples can be simultaneously processed on the 10X microfluidics chip, at acceptable 

costs and minimal time (Zhang, Li et al. 2019). The current detection limit of this technique is 

500-1500 genes per cell on an average. However, there is little control over the number of 

cells analysed, the throughput being 50% of input cell number. This may lead to incorrect 

representation of systems inside the cells and may prevent detection of rare subpopulations. 

Importantly, 10X transcriptome profiling method can be used in combination to determine 

TCR repertoires of single cells in case of T cells or in general with cellular indexing of epitopes 

for multiplexed quantification of thousands of protein markers in each cell. This can be very 

useful for large scale immunophenotyping and studying post-transcriptional modifications at 

single cell level. Paired scRNA and TCR profiling have been used in this thesis. 
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Figure 1.8: (a) Steps involved in 10x chromium based scRNA-sequencing. (b) Structure of the 
oligonucleotide in each gel bead, and binding of a single poly(A) mRNA per oligo (above), and the final 
transcribed cDNA with UMI, ready for sequencing (below) (Zheng, Terry et al. 2017). 

 

Single cell libraries are sequenced on conventional Illumina machines depending upon the 

coverage required. Even the other NGS measurements used in this thesis like WES (whole 

exome sequencing) and RNA-sequencing, after library preparation employ Illumina machines 

for amplification. Illumina uses sequencing by synthesis approach with the important step of 

bridge amplification to create clonal clusters of the same fragment of DNA (11, 12). 

 

1.13 CyTOF (Mass Cytometry) 
 

Mass cytometry is the fusion of mass spectrometry and flow cytometry and is capable of 

recording over 40 parameters at the level of single cell resolution on an “-omics” scale. 

Conventional flow cytometry utilizes fluorophores as reporters, limiting measurement of 

several molecules together due to overlap of their fluorophore emission spectra. Mass 

cytometry utilizes interaction between the proteins to be measured their specific antibodies. 

The technique enables investigation, by coupling antibodies to heavy-metal isotopes, whose 

a. 

b. 
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reported quantity in a mass channel quantifies the molecular expression of several surface 

and intra-cellular proteins in one go, and that too with little signal overlap.  

The procedure of mass cytometry is represented in figure 1.10. Briefly, cells of interest (e.g. 

T cells) are first incubated with a cocktail of antibodies conjugated to stable heavy metal 

isotopes, carefully selected to study the phenotype of interest (e.g. T cell exhaustion) (Lou 

2007, Ornatsky 2008).  These antibody probes are designed to bind proteins of interest on 

the surface or within the cells, so that the attached metal ions can quantify the expression 

level of the target proteins. Creation of single cell suspensions is then initialized, followed by 

their transmission through a nebulizer to place the cells within droplets ready to be 

introduced into the mass cytometer. The cells pass through an argon plasma after entering 

the mass cytometer. Here, free atoms are produced by disintegration of covalent bonds. The 

ion cloud of atoms that get charged in the process then passes through a quadrupole that 

enriches for heavy-metal reporter ions. These ions are then separated by their mass-to-

charge ratio in a time of flight (TOF) mass spectrometer. The output is a data matrix (.fcs) of 

converted ion counts into electrical signals. Each column of the data matrix is a unique isotope 

and each row represents the scanned mass in every cell.  

 

 
Figure 1.9: Steps involved in mass cytometry. Adapted from (Spitzer and Nolan 2016). 
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Mass cytometry can be used to study cellular complexities simultaneously at several levels, 

e.g. measurement of proliferation markers, cell signaling molecules, activation and adhesion 

molecules together can report cellular behavior and stage during a biological process 

(Bendall, Davis et al. 2014). The technique also allows interrogating several cell types in the 

same assay. Number of parameters measured can also be scaled to approximately 100 in 

certain cases. This can help quantify cell-cell interactions in cancer and other scenarios to 

reveal coregulation and crosstalk between molecules.  

 

However, the procedure is limited in a way, that live cells are not feasible to recover because 

of ionization. In addition, compared to other single cell measurement techniques the 

throughput of mass cytometry is low. Some of the heavy isotopes are reportedly less sensitive 

than the conventional fluorophores making it difficult to measure features expressed at very 

low levels. Mass cytometry output can be analysed by conventional genomics and proteomics 

tools available for clustering cells to define subpopulations, visualization, and identifying 

differentially abundant populations between phenotypes. Certain software and workflows 

integrate specialized steps to normalize CyTOF intensities and interpret protein marker 

expression, e.g. HDCytoData, Citrus, SPADE, FLOW-MAP etc.  

 

1.14 Computational Approaches Used 
 

MiXCR 

MiXCR was used to identify B cell receptor (BCR) rearrangements from WES data of Eµ-TCL1 

mouse tumors in the present thesis. It can quantify B cell receptor (BCR) and T cell receptor 

(TCR) clonotype information from raw RNA or DNA, paired or single-end reads (Bolotin, 

Poslavsky et al. 2015). In addition, it handles sequencing and PCR errors, and identifies 

germline hypermutations. MiXCR taken in raw sequencing files (.fastq) and target regions 

(.gtf) to output the exact V, D, J gene segments, complementarity-determining region 3 

(CDR3) amino acid and nucleotide sequence, and frequency of the identified clonotype 

rearrangement. The thresholds used are explained in detail in the methods section. MiXCR 

was preferred over other available tools for identifying BCR and TCR rearrangements as it has 

previously been shown to be more flexible and accurate with a detailed documentation and 
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adjustable parameters to suit the analysis. It was proven reliable especially for analysis of 

UMI-based reads like the ones used in the present study (Afzal 2019). 

Mutect2 

Mutect2 was used to identify somatic variants from deeply sequenced (approximately 200x) 

WES data of Eµ-TCL1 mouse tumors and matched controls in the present thesis. Mutect2 can 

identify somatic variants from both WES (whole exome sequencing) and WGS (whole genome 

sequencing) data with higher sensitivity and precision as compared to other variant callers 

(Benjamin, Sato et al. 2019). It applies local assembly and alignment, a Bayesian somatic 

genotyping model, and new filtering methods to identify variants. Mutect2 is particularly 

suited for identifying variants with low allele frequencies and hence, subclonal mutations; 

and was decided to be best suited for studying the mutational landscape of CLL that manifests 

most variants at less than 5% allele frequency (also cited before in this thesis). 

CNVkit 

CNVkit was used to call copy number variations (CNVs) from WES data (Talevich, Shain et al. 

2016) of Eµ-TCL1 mouse tumors using a reference of pooled matched controls in the present 

thesis. CNVkit is easy to implement and produces detailed information on copy number 

segments and ranges. Most importantly it is able to infer CNVs using reads mapping to both 

on and off-target genomic regions. This was an important consideration for the present thesis 

because of availability of only WES mouse tumor data for analysis. Also, CNVkit allowed 

pooling of control samples, to infer CNVs accurately. It allows flexibility with commands 

‘scatter’ and ‘metrics’ to produce copy number visualizations and converting segmentation 

into copy number states for easy interpretation.  

PyClone for Estimating Cancer Cell Fraction (CSF) 

PyClone uses information about copy number states and allelic frequencies of SNVs as input 

to hierarchical Bayesian non-parametric statistical model to estimate clonal changes in 

tumors (Orbanz and Teh , Roth, Khattra et al. 2014). Accounting for change in copy number 

states, it corrects for allelic imbalances. PyClone has been validated to be accurate in 

predicting cellular prevalence of clonal clusters in tumors from time series experiments, 

especially with deeply sequenced genomes. Such an analysis helps to reflect tumor growth 
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dynamics. Beta-binomial emission densities uniquely used by PyClone accurately model the 

variance in allelic prevalence over time. Another distinguishing feature of PyClone is its ability 

to estimate clonal clusters even with relatively low number of SNVs from WES data. This was 

helpful as there were low number of high confidence mutations (read depth = 5 and allele 

frequency > 10%) identified in the mouse tumor cohort analysed in this thesis. Other filtering 

steps are detailed in the methods section. 

Limma: linear analysis for microarray data 

Though limma was developed to analyse microarray data, it can be used to fit many kinds of 

data types (expression, methylation, counts) into a broad class of data models (linear model, 

generalized linear model, generalized linear mixed model) to understand linear regression, as 

well as impact of covariates on the data by building contrast matrices (Ritchie, Phipson et al. 

2015). It uses Bayes moderation for differential testing. This kind of linear modelling, that 

internally normalizes variation in library sizes apparent in the data has been used twice in this 

thesis. It was used for studying 1) differential transcriptome changes by ibrutinib treatment 

on Eµ-TCL1 mouse tumors; and 2) differential subpopulation abundances between tumor LNs 

and control LNs. It was necessary in both the cases to either subtract or add effects of 

covariates like proliferation, time and treatment, gender respectively on the parameter 

(transcription profile and abundances) being evaluated. Therefore, the flexibility with which 

limma analysis can be modulated and its suitability with even 3-4 cases in each group was 

utilized in the present thesis (Law, Alhamdoosh et al. 2016). 

Clustering and Integrating single cell data across species and technologies 

Graph-based clustering 

Identifying similar subpopulations/groups of cells from scRNA-seq data involved a 2 step 

process. These were applied using functions in the Seurat workflow that are detailed in the 

methods. In the first step, Euclidean distances in a PCA space are used to construct a KNN (K-

nearest neighbour) graph. Edge weights between a pair of cells are refined based upon their 

locally shared overlap or Jaccard similarity (15). Graph based approaches (16) have been 

popularly used for high dimension data previously as well (Levine, Simonds et al. 2015, Xu and 

Su 2015, Liu, Song et al. 2019). 
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The second step, in addition applies a modularity approach, to assess the similarity of the 

connections in a group cell in comparison to random connections. Seurat uses the Louvain 

approach for this, which is popular over many domains (17) (Blondel 2008). 

Integrating scRNA-seq datsets 

To integrate scRNA-seq data across multiple datasets (CLL and Beast Cancer data set in the 

present thesis), species or technologies Seurat workflow first identifies common anchors 

between the datasets using canonical correlation analysis (CCA) and mutual nearest 

neighbour approach (MNN) (Haghverdi, Lun et al. 2018). The method works by calculating 

correlations between highly variable features identified in the datasets to be combined. This 

preserves the biological structure of each dataset. MNN pairs/anchors identified between 

datasets to be combined are then scored and corrections are applied. This method was found 

to outperform other existing data integration methods in terms of accuracy, preserving the 

original biological structure, and integrating diverse scRNA-seq datasets. This method also 

preserves rare subpopulations in the datasets being combined (Stuart 2019). 

The applied methods, functions and their used parameters and thresholds are explained in 

the methods section. 

  



 

26 
 

  



 

27 
 

2. Materials and Methods 
 

The following chapter describes the approaches and exact steps considered to address the 

biological problems within the scope of this thesis. Experimental work has been performed 

by other members participating in the project. All the analysis that have been performed and 

detailed below, is my work, unless otherwise mentioned. 

 

2.1 Samples 
 

2.1.1 Eµ-TCL1 mouse samples 

 

Wild type (WT) mice for adoptive transfer (AT) of TCL1 tumors were purchased from Charles 

River Laboratories (Sulzfeld, Germany). Eµ-TCL1 (TCL1) mice on C57BL/6 background were 

provided by Carlo M. Croce (The Ohio State University, Columbus, Ohio, USA). Adoptive 

transfer of TCL1 tumors was performed by enriching leukemic B cells from splenocytes of TCL1 

mice using EasySepTM mouse Pan-B Cell Isolation Kit (Stemcell Technologies, Cologne, 

Germany) according to the manufacturer’s protocol (Hanna, McClanahan et al. 2016). The 

CD5+ CD19+ content of purified cells was typically above 95%, as measured by flow cytometry. 

2*107 leukemic TCL1 splenocytes were transplanted by intraperitoneal (I.P.) injection into 6-

10 weeks old C57BL/6 WT females for TCL1 AT experiments. All animal experiments were 

carried out according to governmental and institutional guidelines and permitted by the local 

authorities (Regierungspräsidium Karlsruhe, permit numbers: G-36/14 and G-98/16). These 

experiments were performed by Dr. Selcen Özturk. 

 

2.1.2 Human samples for CyTOF and scRNA analysis 

 

Primary lymph nodes (LN), peripheral blood (PB) and bone marrow (BM) samples were 

obtained from CLL patients after informed consent in accordance with the guidelines of the 

Hospital Clinics Ethics Committees (University Hospital Clinic Barcelona and University of 

Heidelberg) and the Declaration of Helsinki. All primary CLL tumors in this study were 
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diagnosed according to the World Health Organization (WHO) classification criteria (Arber, 

Orazi et al. 2016). Detailed information about the CLL patient samples and cell counts per 

sample is provided in Supplementary Table 2, along with clinical information like age, IGHV 

status, treatment and gender. Non-malignant reactive lymph node samples (rLNs) were used 

as controls. Collaborators at University Clinic Barcelona who provided the samples: Dolors 

Colomer and Elías Campo. Collaborators at University Clinic Heidelberg who provided the 

samples: Sascha Dietrich and Tobias Roider.  

 

2.2 Data Generation 
 

2.2.1 Whole exome sequencing (WES) 

 
Library preparation for targeted sequencing of CD19+ B cells from spleen of Eµ-TCL1 mice was 

performed using SureSelectXT Mouse All Exon kit from Agilent. The samples were 

subsequently sequenced on HiSeq 4000 platform using 100bp paired-end reads with 4 

samples per lane according to the manufacturer’s instructions at the DKFZ Genomics and 

Proteomics Core Facility. 

 
2.2.2 Mouse immunoglobulin repertoire sequencing 

 
RNA quality was assessed with the Agilent Bioanalyzer and 300-500ng were used for RACE 

PCR as previously established (Turchaninova 2016, Afzal 2019). Briefly, cDNA was synthesized 

using primers annealing to immunoglobulin heavy or light chain constant regions and a 

barcoded template-switching primer. This was followed by AMPure bead purification. Next, 

two consecutive exponential PCRs were performed using 2 μl of the single-stranded cDNA or 

the first amplification product, respectively. Libraries were purified with AMPure beads and 

pool size selection was performed on agarose gels prior to 400+100bp paired-end sequencing 

in the Illumina MiSeq platform. This protocol was performed by collaborators at DKFZ (Dr. 

Saira Afzal, Dr. Irene Gil-Farina). 
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2.2.3 RNA-sequencing 

 
RNA libraries were prepared from CD19+ B cells from spleen Eµ-TCL1 mouse tumors using 

Illumina TruSeq Stranded mRNA protocol. The samples were subsequently sequenced on 

HiSeq 4000 platform using 125bp paired-end reads according to the manufacturer’s 

instructions at the DKFZ Genomics and Proteomics Core Facility. RNA isolation and 

experiments prior to that was performed by Haniyeh Yazdanparast. 

 

2.2.4 Mass cytometry (CyTOF) staining and acquisition of T cells 
 
Following staining, filtering and counting of CD19- cells, samples were analyzed at a flow rate 

of 0.030ml per minute using the Helios mass cytometer (CyTOF) (Fluidigm) of the National 

Cytometry Platform (NCP) at the Luxembourg Institute of Health (LIH) in Luxembourg. After 

acquisition, initial data processing and quality control were performed. NCP and FCS (flow 

cytometry standard) files were normalized with the HELIOS instrument acquisition software 

(version 6.7.1014) by using EQ beads as standard. Patient samples for CyTOF were processed 

in collaboration with Luxembourg Institute of Health (Marina Wierz, Etienne Moussay, Jérôme 

Paggetti). 

 
2.2.5 Mass cytometry (CyTOF) panel and metal labeling of antibodies 

 
A custom 43-marker panel focusing on T cell phenotyping and including both surface and 

intracellular markers was designed by Laura Llao Cid and Martina Seiffert and measurements 

performed in collaboration with Luxembourg Institute of Health (Marina Wierz, Etienne 

Moussay and Jérôme Paggetti). Combinations of markers and heavy metal isotopes are 

detailed in Supplementary Table 3. For most of the markers, heavy metal-conjugated 

antibodies were commercially available and purchased from Fluidigm. For the other markers 

(*) heavy metal labeling was performed using the Maxpar® X8 Multimetal Labeling kit 

(Fluidigm, ref 201300) according to the manufacturer’s instructions. 
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2.2.6 Generating single cell transcriptome of CD3+ T cells from CLL TME 

 
Single cell transcriptomes were generated for CLL patient LN as well as Eµ-TCL1 mouse tumors 

using the Chromium Single Cell Immune Profiling Solution Reagent Kit (ChromiumNext 

GEMSingle Cell V(D)JReagent Kits v1.1, 10X genomics) following the manufacture’s protocol. 

Briefly, 10.000 cells per sample were loaded into the Single Cell Chip for separation into 

nanoliter-scale Gel Beads-in-emulsion (GEMs), with the aim to retrieve 5,000 cells in the end 

(50% output). GEM generation was followed by reverse transcription to obtain full-length 

cDNA from poly-adenylated mRNA. GEMs were subsequently lysed and pooled cDNA was PCR 

amplified. 5’ Gene Expression library were prepared next. For targeted TCR enrichment, PCR 

amplification was performed using specific TCR primers. Libraries were prepared as 

recommended by 10X genomics (13). Samples for scRNA-seq were processed by Laura Llao 

Cid using the facilities at Single Cell Open lab (Jan-Philipp Mallm, Katharina Bauer, Michelle 

Liberio, Karsten Rippe) at DKFZ, Heidelberg. Sequencing of the libraries was accomplished on 

HiSeq 4000 machine (Illumnia) using 50bp single reads or a NovaSeq 6000 Paired-End (28+94 

bp) at DKFZ Genomics and Proteomics Core Facility. 

 
 

2.3 Steps involved in assessing clonal evolution dynamics of BCR and SNV-
defined clonotypes in Eµ-TCL1 mouse tumors 

 
The major steps involved in this part of the thesis are described as a flowchart in figure 2.1 

and are detailed individually. 

 

• Alignment 
 
Raw DNA sequencing reads (fastq) were aligned using an in house roddy framework that 

essentially used Burrows-Wheeler Aligner with default settings (bwa-mem v0.7.8) for 

alignment to the mouse reference assembly (UCSC mm10). The framework used biobambam2 

(v0.0.148) for sorting, marking duplicates and merging temporary alignment files to output 

aligned whole exome sequencing (WES) bam files. 
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Figure 2.1: Steps used for assessing clonal heterogeneity in Eµ-TCL1 mouse tumors. 

 
• Calling Single Nucleotide Variants (SNVs) 

 
SNVs were called from WES of mouse tumor and control samples using Mutect2 from GATK 

(v4.0.2.0) (Benjamin, Sato et al. 2019). Mutect2 calls somatic short variants (SNVs) and 

insertion and deletion (indel) variants using local assembly of haplotypes. Paired tumor-

matched normal setting of Mutect2 was utilized. The cohort included four primary Eµ-TCL1 

mouse tumors and their four serially transplanted secondary tumors. Information about 

mouse tumor samples is detailed in Supplementary Table 1. Additionally, all available mouse 

normal/control samples (n = 8; 3 primary tumor matched T cells from spleen and 5 primary 

tumor matched tails including 4 tails from separate Eµ-TCL1 mice as additional controls) were 

used to construct a PON (panel of normals) wherein mutations were called first on each 

normal sample as if it was a tumor sample (tumor-only mode). Resulting germline mutations 

from all normal/controls were then combined (CreateSomaticPanelOfNormals) and supplied 

during paired Mutect2 mutation calling. A PON can also be created using a set of unrelated 

normal/controls sequenced using similar technology and preparation method as the tumor 

samples under study. This aids in removing recurrent technical artifacts to ultimately 

minimize false positive SNVs. Other optional parameters used with Mutect2 were base quality 

score threshold of 25 (--base-quality-score-threshold) and dbSNP v142 for mm10 as a 

germline resource (--germline-resource) that helped to eliminate germline variants common 

in the population in general that were missed during mutation calling. Finally, pileup 
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summaries (GetPileupSummaries) were estimated for each tumor bam file. Pileup summaries 

infer read support for a set number of known variants and this was used to calculate fraction 

of probable contaminants (CalculateContamination) in each sample. These contaminants 

were then filtered out from the Mutect2 paired tumor-matched normal mutation calls to 

generate a final variant call format (.vcf) file. 

 
Variants were then annotated with ANNOVAR (v2017Jun1) and all the downstream analysis 

was performed with variants annotated by Mutect2 as ‘PASS’ and by ANNOVAR as ‘somatic’ 

(Wang, Li et al. 2010). 

 
Mutations were also called and annotated for Eµ-TCL1 tumor samples from publicly available 

dataset processed at Salzburg (SRP150049) following the procedure described above but with 

additional normals from Salzburg (n=7) used to prepare the PON. 

 
• Calling Copy Number Variations (CNVs) 

 
CNVkit (v0.9.7.dev0) with default parameters was used for detecting copy number variants 

and alterations from the available WES data of Eµ-TCL1 mouse tumors (Talevich, Shain et al. 

2016). The reference used while calling was built with all TCL1 mouse normal samples and a 

target .gtf file (downloaded from Agilent for SureSelectXT) supplied to infer CNV calls only 

from the genomic regions covered during sequencing. To get tumor specific focal aberrations, 

tumor CN (copy number) state calls were intersected with normal CN state calls. CNVkit 

maximizes copy number information that can be gathered from targeted sequencing data as 

it takes advantage of both high-resolution target reads and low resolution off target reads to 

determine genome wide copy number changes. 

 
• Identification of B Cell Receptor Rearrangements 

 
WES raw data in the form of FASTQ files was used to identify B cell receptors by quantitating 

V(D)J clonotypes. MiXCR (v3.0.8) was used to map and assemble  V, D and J gene segments 

from immunoglobulin region to report clonotypes for each tumor sample (Bolotin, Poslavsky 

et al. 2015). The tool was run with default parameters: starting material - ‘DNA’, adapters - 

‘present’ and receptor type - ‘IGH’. The position of V and J primers was mentioned to be 5’ 

and 3’ end respectively. The output file reported the frequency, number of supporting reads, 
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CDR3 (complementarity region 3) amino acid sequence, CDR3 nucleotide sequence, the 

detected V, D and J genes for each assembled clonotype. If a clonotype was supported by 

more than 5 reads it was considered a true hit. 

 
• Calculation of change in cellular prevalence of mutations from primary to serially 

transplanted tumors 
 
To infer if identified SNVs were contributing to clonal changes in mouse tumors, allele 

frequency changes of tumor specific and shared (between primary and adoptive transfer 

tumor pairs) mutations were calculated. It was also important to include sufficient read 

evidence for the called mutation. VAF (variant allele frequency) cutoff of minimum 10% and 

depth at least five reads support at any one time point (primary: time point 1 or transfer: time 

point 2) was considered to filter variants for the analysis that follows. To check if the absence 

of an SNV at any one time point is purely biological (i.e. contributes to clonal evolution of 

tumor) and not technical (possibly due to sequencing coverage irregularities at off target 

regions); it was decided to check the “probability of existence of an SNV” at the calculate 

coverage (as below by SAMtools mpileup) at any one time point, given it is called at the other 

time point with a specific success rate (AF of the called variant). This formed a case of a 

binomial experiment represented in R (v3.5.0) as:  

 
dbinom(n,size,prob) 

 

Where prob = VAF at time point 1 

 n = number of successes needed out of  

size = maximum attempts possible (coverage at time point 2) 

 

Samtools mpileup (v1.9) was used to calculate coverage (depth) of all called SNVs in their 

respective primary-transfer tumor pairs. The calculated coverage is placed at “size” for dbinom 

for time point two when the VAF (prob) is from time point one. Success (n) was defined as the 

probability of existence of an SNV with at least two reads at one time point given it has been 

called at the other time point with 10% VAF and at least five reads.  
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The final probability was inferred in Rv3.5 using: 

 

Probability <- 1-((dbinom(0, depth, VAF) + (dbinom(1, depth, VAF)))) 

 

To strictly avoid any technically artifactual SNVs, 1% error was allowed considering a 99% 

confidence interval for each SNV position. SNVs from here that passed adjusted p-value 

(Bonferroni correction (Armstrong 2014)) threshold of <0.05 were selected and used for 

plotting clonal changes between tumor pairs. Python tool PyClone (v0.13.0) was used for this 

(Roth, Khattra et al. 2014). PyClone uses a Bayesian statistical method and outputs putative 

clonal population clusters of grouped input SNVs. It also uses copy number state information 

to check for allelic imbalances in each sample and estimating accurate cellular prevalence of 

point mutation clusters defining clonal shifts in the tumor. Copy number states for the tumors 

was used as calculated during CNV calling as described above. 

 
2.4 Steps involved in studying genomic and transcriptomic changes inflicted in 

Eµ-TCL1 mouse tumors on ibrutinib treatment 
 
The TCL1 mouse model that manifests disease resembling aggressive form of CLL was used to 

study the effects of ibrutinib treatment (which is already a promising therapy in CLL patients). 

Intravenous adoptive transfer of 2*107 splenocytes from a TCL1 mouse into a 6 weeks old BL/6 

mouse was performed 2 weeks before ibrutinib treatment was started. Subsequently ibrutinib 

in an amount of 25mg/kg/day was mixed in the drinking water of the mice. Mice were 

dissected at time points of 3-, 5- and 8- weeks from the start of injection (adoptive transfer) 

which translates respectively to 1-, 3- and 6-weeks post treatment (ibrutinib) start. 

Splenocytes were isolated and flow sorted for CLL (CD5+ CD19+) cells on the same day for all 

three time points. DNA and RNA were isolated from frozen cell lysates. Experiments involving 

mouse work and cell sorting were performed by Haniyeh Yazdanparast. Raw WES data was 

processed and analyzed by me as discussed earlier in the methods section. 

 
• Alignment, QC and counting for RNA sequencing raw reads 

 

FASTQ files with raw RNA-sequencing data were aligned using STAR aligner (v2.5) with mm10 

mouse genome assembly and its associated genome annotation from Gencode (v14) retrieved 
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from UCSC table browser (Karolchik, Hinrichs et al. 2009, Dobin, Davis et al. 2013, Frankish, 

Diekhans et al. 2019). Quality control metrics for the aligned .bam files were generated with 

the command line tool RNA-SeQC(v1.1.8) (DeLuca, Levin et al. 2012). Transcript level feature 

counting was performed using the function ‘featureCounts’ from the command line 

functionality of subread package (v1.5.3) in the paired end, strand specific mode (reverse 

stranded) using the same genome annotation file (.gtf) from Gencode as mentioned above. 

Output from this was a numerical matrix of read counts, with samples as columns and 

transcripts as rows. 

 

• RNA-seq data exploration, transformation, normalization and differential expression 

 
Data exploration and downstream analysis was performed using DESeq2 (v1.28) workflow on 

R 3.5 (Love, Huber et al. 2014). Feature counts output was converted to log counts per million 

(LCPM) and normalized using the TMM method by Robinson and Oshlack (Robinson 2010). 

For exploring the transformed data and checking inherent patterns conferred by the specific 

treatment groups in the data, unsupervised clustering using principal component analysis 

(PCA) and sample-sample correlation analysis using the expression of all and 1000 most 

variable genes across all the samples respectively was performed. 

 
The aim of the study was to delineate factors responsible for ibrutinib resistance in TCL1 mice 

by comparing gene expression profiles of ibrutinib treated and untreated (vehicle) samples. 

 

For this purpose, the limma bioconductor package (v3.38.3) was used to design a complex 

linear model, that incorporated an empirical bayesian method to compare the various 

treatment groups under study and identify genes putatively differentially expressed in 

ibrutinib resistance tumor groups as compared to others (Ritchie, Phipson et al. 2015).  The 

following contrast was built: 
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IbResistance=(Ib.late-Ve.late)-(Ib.early-Ve.early) 

Ib.late: ibrutinib treated at late time point 

Ve.late: vehicle treated at late time point 

Ib.early: ibrutinib treated at early time point 

Ve.early: vehicle treated at early time point 

 

This model eliminated effects of transcriptional changes characteristic of proliferation (in 

vehicle groups) and ibrutinib treatment (in ibrutinib treated groups) and resulted into a gene 

list with a transcription profile manifesting changes specific to ibrutinib resistance. The output 

included associated log2 fold change, p-values and adjusted p-values (Benjamini and Hochberg 

1995) for the differentially expressed genes in ibrutinib resistance group. Significantly 

(adjusted p-value < 0.05) differentially expressed ibrutinib resistant genes were then displayed 

as a heatmap. 

 
2.5 ScRNA sequencing and CyTOF analysis (mass cytometry) workflow 
 

The workflow for single cell analysis is shown in figure 2.2 and described below in detail. 
 

2.5.1 Steps involved in scRNA sequencing analysis 
 

• Alignment for single cell transcriptome analysis 
 

Raw transcriptome sequencing data (.fastq) was aligned to specie specific reference genomes 

and reads were counted using the analysis pipeline Cell Ranger from 10x genomics (cell ranger 

count). The input used either mm10 reference genome assembly for mouse or hg38 reference 

assembly for human samples and raw sequencing files. The pipeline uses the STAR aligner. 

Output from this step was a sparse count matrix, where gene names were rows and cell 

barcodes were columns.  
 

In addition, results from this step also included quality control metrics for each sample and 

reported the number of cells and unique transcripts sequenced, identified and usable for 

further analysis. The count matrix generated was used for further downstream transcriptome 

analysis. This was a memory intensive step and needed at least 250GB memory and 16 cores. 
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Figure 2.2: Single cell analysis workflow adopted in this thesis. Figure adapted from work of Laura Llao 
Cid, but modified to include details of bioinformatics analysis. 

 
• Data preprocessing, normalization and scaling, dimension reduction, clustering and 

cell type identification using Seurat workflow 
 

Seurat v3 toolkit in R3.5 was used for analyzing single cell transcriptomics data (Butler, 

Hoffman et al. 2018, Stuart 2019). The workflow includes the following steps: 

 

1. QC and data filtration 
 

Count matrix generated by the Cell Ranger pipeline was read into Rv3.5 and converted to 

an S3 type Seurat object. Cells were then filtered based upon QC metrics, library size and 

their mitochondrial content. QC metrics include number of detected genes in each cell. It 

was made sure that the cells being used for analysis are not low-quality cells or empty 

droplets that have low genes expressed. For this reason, genes expressed in less than two 

cells and the cells expressing less than 200 genes (cutoff of > 300, changed the 

downstream results) were removed. Cells that had aberrantly high number of genes (eg: 

double than the median genes expressed by all cells) and could be potential cell doublets 

and were removed. Cells expressing greater than 3000 genes were removed, as the 

median was reached at around 1500 genes per cell. After these cut offs the final count 

matrix had approximately 3k cells (columns) and 15k-17k genes (rows). 
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Another important factor to be considered at this step was the percentage of 

mitochondrial genes expressed in each cell. Detection of high number of reads mapping 

to the mitochondrial genome could be a sign of low-quality cells or cells that have 

undergone apoptosis. Hence cells with greater than 10% mitochondrial reads were 

removed. The median number of mitochondrial reads was at 5% for all the cells. 

 

Therefore, downstream analysis steps were performed only on single cells with enough 

detected genes and minimal mitochondrial content. 

 

2. Normalization and data transformation 
 

The next step of data transformation was performed using the Seurat function 

SCTransform(). This function calls sctransform::vst. This function performs data 

normalization, identification of 3000 (by default) highly variable genes (to identify 

different populations in the data) and data scaling to remove technical bias (i.e. associate 

all genes with equal weights so that highly expressed genes do not dominate in 

downstream analysis). 
 

SCTransform() function is based upon ‘regularized negative binomial regression’ to keep 

biological heterogeneity in the data intact while removing technical variation by using 

cellular sequencing depth (that can vary between cells in single cell sequencing, even 

within the same cell type) as a covariate in a generalized linear model (Hafemeister and 

Satija 2019). This statistical model is applied to each gene, in contrast to other 

approaches that apply normalization techniques to genes pooled either by same cell type 

or similar library sizes. 
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3. Linear dimensional reduction and selecting significant principal components 
 

Highly variable features/genes identified within the SCTransform() function were then 

used to perform principal component analysis (PCA) to visualize the data in low-

dimension, using the Seurat function RunPCA(). PCA is a statistical technique used to 

interpret meaningful differences within large data sets by reducing dimensionality of the 

data while preserving maximum uncorrelated variability in the form of principal 

components (Ian T. Jolliffe 2016).  
 

The next step calculated PCA scores where each PC (principal component) represented a 

metafeature - essentially combining correlated information across a set of genes. In the 

present data it was observed that in most samples the first 10-15 PCs were significant, 

and the elbow appeared at PC 16 or 17. Hence approximately the first 15-18 PCs were 

used for clustering. 

 

4. Clustering for subpopulation identification 
 

To identify different subpopulations, present in the dataset, a K-nearest neighbor (KNN) 

graph was constructed based on the Euclidean distances in the PCA space of the principal 

components selected in the previous step. The weight edges between the cells were 

refined depending upon the shared overlap between their neighboring cells, that is using 

Jaccard similarity. FindNeighbors() function performs this step. 
 

This was followed by hierarchical clustering by means of Louvain algorithm. The Louvain 

method iteratively detects and merges communities into a single node while maximizing 

the modularity score for each community. In other words, it recursively compares density 

of node connections within a community to random connections and increases the 

modularity score for more connected nodes to eventually form a condensed node. 

Clustering was implemented using FindClusters() function. The resolution parameter for 

this function was set to 0.6 selected from the optimal range of 0.4-1.2 recommended for 

datasets of around 3k cells. This sets the granularity for downstream clustering. A greater 

granularity increases the number of clusters. For most of the samples a granularity of 0.6 

and approximately 15 PCs resulted into phenotypically distinct subpopulations. 
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5. Non-linear dimensional reduction for visualization 
 

To visualize and explore these data with an aim to place similar cells together in low-

dimensional space t-SNE (t-distributed stochastic neighbor embedding) or UMAP 

(uniform manifold approximation and projection) was used. As an input the same number 

of PCs was used as selected in the previous steps for clustering, i.e. approx. 15. Using 

these techniques, similar cells within the graph-based network described in the last step, 

co-localized in low dimension plot. 

 

6. Identifying differentially expressed marker genes for each cluster and identifying cell 

types 
 

For this important step Seurat helps identify marker genes that are representative for 

each identified cell population. FindMarkers() function (to identify markers different 

between two specific clusters or cell sets) and FindAllMarkers() function (to identify 

markers expressed in one cluster in comparison to all other clusters) used the non-

parametric Wilcoxon rank sum test. The resulting data frame reports the average log2 fold 

change between the two groups, p-value of significance, adjusted p-value (95% 

confidence interval based on Bonferroni correction), percentage of cells in the first cluster 

where the gene is detected (called as pct1), and, percentage of cells in the other cluster 

where the gene is detected (called as pct2). Top expressed markers in each subpopulation 

were then used to annotate its characteristic phenotype. 

 

2.5.2 Identification of T cell receptor (TCR) rearrangements per cell 
 

Cell Ranger pipeline from 10X genomics was used to align and count V(D)J rearrangements 

per cell (cellranger vdj). The specifics for the pipeline were the same as described above for 

scRNA seq alignment. This pipeline estimated total clonotypes expressed in each sample (S1, 

S2 and S3). A clonotype was considered as a rearrangement with an a chain and/or b chain of 

the TCR. If two cells had the same chain, it was said to have the same clonotype. Output from 

this step reported: number of cells of a particular clonotype (clonotype frequency), cell 

barcodes, VDJ genes used, and whether the rearrangement was productive. This information 

was then mapped to the metadata of scRNA profiles of the 3 samples within the Seurat 

workflow with the common cell barcode ids in the two datasets (scRNA and scTCR). Cells 
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within the Seurat clustering could then be marked/colored based upon their clonotype 

information e.g. clonotype frequency (all clonotypes expressed in more than 2 cells). 

 

2.5.3 CyTOF (mass cytometry) data analysis steps 
 

To interrogate CyTOF marker intensities for patterns, subpopulations and differential 

abundance in tumor lymph nodes (LN) v/s control lymph nodes (LN), the software suite 

HDCytoData was employed (Nowicka, Krieg et al. 2017). The workflow used R (v3.6) and 

Bioconductor (v1.9) based packages. Each sample specific .fcs file from mass cytometer had 

isotope names in the columns and cells in the rows.  

 

1. Quality control and pre-processing 
 

All .fcs files were merged into a flowSet object using the flowCore package (Hahne, 

LeMeur et al. 2009). This step by default transformed intensities and removed cells with 

extreme positive values for all samples. In addition, a metadata file was provided to the 

function that had information on patient id, sample id and the condition. Also, the panel 

of markers used, and their respective isotope information was provided. To transform the 

varying range of marker intensities, arcsinh transformation with a cofactor of 5 (default) 

was used (Bruggner, Bodenmiller et al. 2014). Wherever, the data was used for 

visualization it was transformed further to scale all the expression values in between 0 

and 1. The data from three files (flowSet object, panel information and metadata) was 

then stored in an object of class “SingleCellExperiment” (SCE). The data was then checked 

for cell counts and library size across all samples. Following this MDS (multi-dimension 

scaling) plot was used to assess similarities and potential technical batch effects in the 

data. The MDS plot used median arcsinh transformed marker expression of all the 

markers (n= 43) listed in the panel file, across all the cells in each sample. 

 

2. Clustering and cell population identification 
 

FlowSOM and ConcensusClusterPlus metaclustering approaches were used to identify 

cell clusters, as they were previously known to be the best approaches for CyTOF data in 

terms of speed and reliability (Wilkerson and Hayes 2010, Van Gassen, Callebaut et al. 
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2015, Weber and Robinson 2016). These methods were implemented in the workflow 

within a wrapper function cluster() of class CATALYST. All cells from all samples were used 

for clustering. Clustering was based upon arcsinh-transformed expression of 32 biological 

markers (Supplementary Table 3). Since the approach was based upon over-clustering, 

maxK (number of clusters the cell populations are allowed to form) was set as 15 to 

identify as many CD4+ subpopulations of relevantly different biological phenotypes as 

possible. K=15, resulted in phenotypically distinguishable subpopulations (k > 15 resulted 

in over fitting; k < 15 resulted in under fitting). For visualization purposes 1000 random 

cells from each sample were represented on a t-SNE plot. This step was repeated with a 

different seed for t-SNE and different number of random cells (but at least 500, i.e. 

approximately half the number of cells in the sample with lowest number of cells) from 

each sample, but 15 phenotypically distinguishable subpopulations were retained. Using 

only 1000 cells per sample reduced computation time and resources needed to display 

all cells from all samples. Identified subpopulations were then annotated based upon 

their unique marker expression into one of the several T cells subtypes (annotation was 

performed by Laura Llao Cid).  

 

3. Differential abundance analysis 
 

To identify subpopulations that were enriched in CLL LN (n=25) as compared to control 

LN (n=13), a limma model was constructed (Ritchie, Phipson et al. 2015). This model 

normalized for the variation in library size across all samples. Limma uses voom to 

calculate observation-level weights from variance in the data.  Also, effects of ‘treatment’ 

and ‘gender’ were added as covariates to check their influence on differential expression 

of subpopulations. Input for limma analysis was the proportion of cells contributed by 

each LN sample to each subpopulation. The input data matrix had samples as columns 

and subpopulations as rows. Proportions of cells per sample in each subpopulation was 

extracted from the daframe object created using CATALYST in step 2. Limma used 

empirical Bayesian method to calculate differential subpopulation abundance in CLL LN 

v/s control LN. Significantly (adjusted p-value < 0.05) different subpopulations were then 

displayed in the form of a heatmap along with their adjusted p-value (Banjamini and 

Hochberg method). 
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3. Results 
 

BCR clonal dynamics in Eµ-TCL1 CLL mouse model  

The Eµ-TCL1 mouse is a preclinical tool for investigative studies of CLL in lab. It manifests an 

aggressive form of CLL-like disease and offers a reliable method to monitor CLL progression. 

Mouse tumors can be serially transplanted and are then called adoptively transferred (AT) 

tumors1. After transfer they develop into a more aggressive CLL in less time. However, the 

long latency period in the primary mouse suggests that even though TCL1 over expression 

does predispose the animal to leukemia, additional genetic and clonal pressures are needed 

for CLL development. Therefore, to understand the course of CLL evolution in the Eµ-TCL1 

mouse model, I analysed data of somatic variations, frequency of mono- or oligoclonal BCRs 

and their dynamics over serially transplanted tumors. The following observations instate the 

heterogeneity identified between mouse tumors with respect to number and types of BCRs, 

patterns of evolving BCR and SNV-define clonotypes. Observations with respect to the copy 

number profiles of these samples offer a novel avenue, which could add to existing knowledge 

about development of CLL in the Eµ-TCL1 mouse.  

  

 
1 Experiments, serial transplantation of mouse was carried out by Dr. Selcen Özturk, RACE-PCR was performed by 
collaborators from DKFZ (Dr. Saira Afzal, Dr. Irene Gil-Farina), ibrutinib drug treatment study in-vivo and isolation of DNA, 
RNA was performed by Haniyeh Yazdanparast. 
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a. b. 

c.  d.    

 

 
Figure 3.1: Eµ-TCL1 mouse clonotypes as sequenced by RACE-PCR (collaborators Dr. Saira Afzal and Dr. 
Irene Gil-Farina), and identified using MiXCR. Only 3 out of 13 tumors are monoclonal. Clonotypes with 
identical V(D)J rearrangement are highlighted with same color. Total number of reads in each sample 
is indicated below the donut plot. Transfer number of the tumor is shown as, Example T3.1 is 3rd round 
of transplantation starting from the primary tumor. 
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3.1 10 out of 13 EµTCL1 mouse tumors have oligoclonal B cell receptors (BCRs) 
 
BCRs of tumor B cells from the CLL mouse model Eµ-TCL1 were sequenced using RACE-PCR 

(details in methods section, performed by experimental collaborators: Dr. Saira Afzal, Dr. 

Irene Gil-Farina).  

These samples were procured at both parallel and subsequent tumor transplantations. MiGEC 

(Shugay, Britanova et al. 2014) and MiXCR (Bolotin, Poslavsky et al. 2015) were then applied 

by myself to process the data and identify the underlying V(D)J rearrangements of Ighv genes 

from B cells of each sample. Clonotypes supported by more than 10 reads were considered 

for analysis. It is known that these tumors have not undergone somatic hypermutation and 

are hence of the unmutated-Ighv CLL type.  

Three primary tumors along with their transferred samples were analyzed (figure 3.1). V(D)J 

genes of the color coded clonotypes are described in the legend (figure 3.1 d). Number of 

total reads identified for each sample are described below each donut plot.  

 
Two kinds of clonotype evolution patterns were identified in Eµ-TCL1 mouse tumors: 

 
1. A new clonotype emerged as a major clone in subsequent transplantations: Tumors 

A3.1 and C2.3 showed this pattern, where the new major clonotype was previously 

undetected in the primary tumor. Such a pattern could be attributed to changing 

tumor microenvironment after transplantation, acquired new mutations, outgrowth 

of a previously small but aggressive subclone or heterogenous CLL course wherein 

more than one selected autoantigen seems to be driving the disease. Oligoclonality is 

observed in 10 of the 13 tumors depicted in figure 3.1. This is in contrast to patient 

CLL, which is mostly monoclonal (5-24% of total CLL cases (Darwiche, Gubler et al. 

2018)). 

 

2. Monoclonal disease persists in transplanted tumors, B2.1, B2.2 and B2.3 (figure 3.1 

b). Restricted BCRs are linked to severe disease and aggressive course in CLL patients 

(Yan, Albesiano et al. 2006, Sarkar, Liu et al. 2016).  
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Major clonotype in A3.1 with Ighv12-3 gene is identical to the major clonotype in B1.1 and its 

subsequent transplantations (B2.1, B2.2, B2.3). Ighv1-55, Ighv11-2, Ighv12-3 detected in 5 out 

of 12 clonotypes in 13 samples have previously been reported to be present as stereotyped 

BCRs in the CLL TCL1 mouse model. It has been reported that TCL1 Tg (transgenic mice) BCRs 

using - Ighv11 and Ighv12 genes are cross reactive with phosphatidylcholine (PtC). One of the 

ways of CLL progression is accelerated by preferential expansion of these BCRs to the 

autoantigen PtC (Chen 2010). Hence, CLL in at least six (A3.1, C2.3, B1.1, B2.1, B2.2, B2.3) mice 

can be attributed to chronic stimulation of BCRs by autoantigens. But PtC negative mice have 

also been known to show a BCR involving Ighv11. In addition, reports also suggest that 

combinations of preferentially selected light chains and virus specific heavy chains gives B 

cells the ability to recognize broad range of autoantigens that could contribute to leukemia 

progression (Jimenez de Oya, De Giovanni et al. 2017). There is, however, no information 

about viral infection in the analysed mouse tumors. 

 
3.2 Mutation load increases with subsequent tumor transplantations while low 

allele frequency mutations persist 
 
In-house whole exome sequencing (WES) was performed for B cells from spleens of 8 Eµ-TCL1 

mice manifesting CLL-like symptoms (Dr. Selcen Özturk and GPCF at DKFZ). Out of these eight, 

four were primary tumors and 4 secondary tumors transplanted from them. For each of the 

primary cases a matched control was also sequenced, which was either T cells from spleen or 

tail of the mice. More information about the 8 samples is presented in Supplementary Table 

1. I used Mutect2 to identify somatic mutations (Benjamin, Sato et al. 2019). In addition, 

publicly available CLL WES data (SRP150049) for three primary Eµ-TCL1 mouse tumors and 

their subsequent transplantations was included for analysis (Zaborsky, Gassner et al. 2019).  

Figure 3.2 gives an overview of somatic mutation trends in in-house CLL cohort (figure 3.2 a, 

b, c, d) and public dataset (figure 3.2 e, f, g). Since the public dataset was processed in 

Salzburg, those samples are denoted by sample number followed by (S). 
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g. i.  

 

g. ii. 

 

Figure 3.2: Column on the left shows an increase in number of variants with subsequent tumor 
transplantations in 7 TCL1 mouse tumors (refer to the left axis). It is also shown that this increase in 
number of variants is not necessarily correlated with increase in average depth at the region (refer to 
the right axis). Column on the right shows variant allele frequency (VAF) distributions all mutations in 
all primary and subsequent tumors transfers. Transfer number of the tumor is shown as, Example T3.1 
is 3rd transplantation and T7.1 is the seventh round of transplantation starting from the primary tumor. 
All tumors have data from 2 time points/transplantations except D22 (S) which has data from 3 time 
points. Salzburg cohort samples are indicated with (S) alongside their sample names. 

 

The following was concluded from single nucleotide variation (SNV) profiles of the two 

cohorts: 

1. Left column of figure 3.2 depicts number of mutations (left axis) and average depth 

(right axis) at the target (exonic) region for Heidelberg and Salzburg primary and 

transplanted tumors. Number of mutations in the target region increased with each 

transfer in all 7 tumors. The fact that increasing mutation numbers with adoptive 

transfer did not necessarily correlate with increase in average depth (for example in 

b. i., f. i. and g. i.) at exonic regions, indicated growing mutation load (purely biological 

and not technical) with tumor evolution. 

 

2. Right column of figure 3.2 shows variant allele frequency (VAF) distribution of all 

identified SNVs in primary and secondary tumors. In the Heidelberg samples (a. ii., b. 

ii., c. ii., d. ii.), the allele frequency peaked between 5% - 10%. However, allele 

frequency of mutations from Salzburg samples (e. ii., f. ii.) peaked at 25% and for (g. 

ii.) peak at 50%. 
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Low allele frequency mutations also occur in CLL patients (Guieze and Wu 2015). 

Identification of mutations with low VAFs could imply existence of several clones and 

subclones that would eventually evolve variedly when subjected to intrinsic and extrinsic 

factors like the tumor microenvironment and therapy pressure respectively. 

 

Therefore, I next inspected the clonal evolution dynamics of these serially transplanted 

tumors with respect to somatic mutation as well as their BCRs. 

 

3.3 CLL clonal evolution dynamics in Eµ-TCL1 mice exhibit three kinds of 
patterns 

 

Chronic lymphocytic leukemias are transformations of mature and differentiated B cells. 

Transformation to malignant B cells can be attributed to chronic stimulation of the BCR (by 

persistent or intermittent exposure to an antigen) as well as constitutive and acquired 

mutations. However, it is not clear which of these events provides a selective advantage for 

the mature B cell to persist, relentlessly proliferate and respond differently to signals from 

the microenvironment.  

 

The cohort of mouse tumors used for this analysis was the same as shown in section 3.2, i.e. 

4 sets of primary and transplanted Eµ- TCL1 mouse tumors from Heidelberg (in-house cohort), 

and 3 sets of publicly downloaded tumors (Salzburg cohort). FASTQ files from WES data were 

used as input for MiXCR to infer V(D)J clonotypes, and Mutect2 was used to identify somatic 

variants (Bolotin, Poslavsky et al. 2015, Benjamin, Sato et al. 2019).  

 

Filtered variants (only somatic SNVs), their allele frequencies and copy number states as 

estimated using CNVkit, were subsequently used as input for PyClone that evaluated clusters 

of putative somatic clones and changes in the fractions of their cellular prevalence from 

primary to transplanted tumor (Roth, Khattra et al. 2014, Talevich, Shain et al. 2016). Steps 

for both the analyses are detailed in the methods section along with the thresholds and 

criteria used. 
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Tracking the patterns of BCR evolution and changes in somatic mutation cellular prevalence, 

three different patterns of CLL progression emerged (figure 3.3): 
 

1. Displacement of one clonotype by a novel one identified by BCR clonotype change and 

the same change in the SNV-defined subclones. This pattern is indicative of an 

expanding new major clone that could be driven by acquired novel somatic SNVs in 

the secondary transplantations. Figure 3.3 a, b, and c (samples D729, C25 (S), E31 (S)) 

represent this pattern. These samples showed change from one stereotyped TCL1 

mouse BCR in the primary tumor to another stereotyped TCL1 mouse BCR in the 

transplanted tumor. E.g.: from Ighv1-55 in T1.1 to Ighv12-3 in T2.1 (figure 3.3 a).   

 

2. Stable BCR clonotype but ongoing SNV-defined subclone change indicative of a 

mutating tumor clone that might be unstable. Figure 3.3 g (sample A506) is an 

example of such a process. 

 

3. Stable clonotype proportions and SNV-defined subclones indicative of a stable disease 

course without novel somatic SNVs. Figure 3.3 d, e and f (samples B741, TCL1_774, 

D22 (S)) show this pattern. In this case, the same stereotyped BCR was consistently 

expressed in both primary and transplanted tumors. 
 

From these observations, the course of CLL evolution in mice can be attributed to either a 

BCR clonotype change from primary to transplanted tumor which is an indicative of 

displacement of one tumor clone by another (potentially a more stable one); or ongoing 

somatic mutations with stable BCR clonotype proportions demonstrating ongoing evolution 

on the genetic level.  

Patterns described in points 1, 2 and 3 are similar to ones previously associated with CLL 

pathogenesis. There have been reports that support CLL evolution by selection of somatic 

variants that can induce enhanced B cell receptor signaling by stronger binding affinities 

between the BCR and autoantigens (Domenech, Gomez-Lopez et al. 2012). 
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        BCR clonotypes     SNV-defined clones 

f.  

 

 

 

g.  

 

 

 

Figure 3.3: (a-g) Clonal evolution attributed to somatic mutations (right) and presence of one or more 
BCRs (left). BCRs and cellular prevalence that change by less than 10% between primary and transfers 
are marked by a dotted line. Pattern 1: a, b, and c (samples D729, C25 (S), E31 (S)); pattern 2: g (sample 
A506; pattern 3: d, e and f (samples B741, TCL1_774, D22 (S)). Transfer number of the tumor is shown 
as, Example T3.1 is 3rd transplantation and T7.1 is the seventh round of transplantation starting from 
the primary tumor. All tumors have data from 2 time points/transplantations except D22 (S) which has 
data from 3 time points. Salzburg cohort samples are indicated with (S) alongside their sample names. 
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3.4 Trisomy 15 corresponding to Myc over expression might be essential 
contributors to CLL pathogenesis  

 

A peculiar observation within copy number analysis was the frequent amplification of 

chromosome 15 in six out of 8 Heidelberg tumors and 10 out of 11 Salzburg cases (including 

the ones not used for analysis by myself), as also pointed out in their paper (Zaborsky, Gassner 

et al. 2019). On checking the genes lying in the amplified chromosome region 15, Myc 

oncogene was identified. It has been claimed in literature that TCL1-tg mice (a similar mouse 

model that instead develops a disease similar to human T cell prolymphocytic leukemia) 

exhibits trisomy 15 and over expression of Myc, which are essential contributors for 

malignant transformation (Shen 2006). It was therefore proposed to validate in-vitro Myc 

amplification in the in-house Eµ-TCL1 mouse tumors, and comment if it’s over expression was 

often a driver in CLL pathogenesis along with TCL1 over expression. Validation of this follow 

up experiment would genetically make this model very different from the CLL genetics in 

patient settings, raising speculations about its use in studying CLL. 

 

3.5 Effects of ibrutinib treatment on clonality of Eµ-TCL1 mouse tumors 
 

Eµ-TCL1 mice were analyzed for their transcription profiles, at time points 1-, 3- and 6-weeks 

post ibrutinib treatment start. Splenocytes were isolated and flow sorted for CLL (CD5+ 

CD19+) cells on the same day for all three time points (mouse work and experimentation 

performed by Haniyeh Yazdanparast). DNA was isolated and the whole exome was sequenced 

(HiSeq 4000 platform) to investigate genetic changes as a result of ibrutinib treatment and 

resistance. To identify effects of ibrutinib resistance on the clonality of Eµ-TCL1 tumors, 

ibrutinib late (6 weeks, n=3) and ibrutinib early (1 week, n=4) tumors were compared to 

vehicle late (6 weeks, n=4) and vehicle early (3 weeks, n=4) tumors. Tumors from ibrutinib 

late time point showed potential signs of resistance after which ibrutinib treatment had no 

effect, and the tumors started to grow again. 

 

Ibrutinib treatment may impact CLL development of the tumors at three genomic levels: Copy 

Number Variations (CNVs), dynamics of the B cell receptor (BCR) and somatic single 
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nucleotide variations (SNVs). Below, I detail my observations from analysis of CNVs, BCR 

dynamics and SNVs in 15 tumors included in this study. 

 

Copy number profiles of ibrutinib treated mouse tumors 

CNVs were analysed from WES data using CNVkit tool as described previously in this thesis. 

No focal changes were observed in ibrutinib treated tumors at the late time point as 

compared to ibrutinib treated tumors at the early time point. These tumors, however 

consistently showed amplification of chromosome 15 (trisomy 15), same as the primary Eµ-

TCL1 mouse from which tumors for this study were serially transplanted. Presence of trisomy 

15 in Eµ-TCL1 mouse tumors has been detailed in section 3.4 of this thesis as a potential 

genetic predisposition for leukemia in this mouse model.  

 

Impact of ibrutinib treatment on dynamics of BCR rearrangements 

Also, on probing into type of B cell receptor rearrangement conferred on these 15 tumors at 

different time points of ibrutinib and vehicle treatments, I identified the same BCR clonotype 

in all 15 tumors. The identified rearrangement included the Ighv11-2 gene. This gene is a part 

of a known stereotype mouse BCRs (as cited before in this thesis), and expands in response 

to autoantigens, adding to CLL pathogenesis by means of chronic stimulation of the BCR. 

Importantly, the primary tumor from which other tumors used for this analysis were serially 

transplanted and treated with ibrutinib, was also found to be monoclonal and harboured the 

same Ighv11-2. 

 

Identification of somatic SNVs from ibrutinib treated tumors 

I then investigated the SNV landscape of these tumors. Somatic mutations were called using 

Mutect2. Variant allele frequency (VAF) distribution of identified mutations in vehicle treated 

(early, n=4; late, n=4) and ibrutinib treated (early, n=4; late, n=3) groups are shown in figure 

3.4 a and b respectively. No difference was observed between treated and untreated samples 

with respect to the VAF distribution, as allele frequencies of identified variants across all 

samples peaked at less than 5%. This is indicative of presence of several SNV-defined 

subclones in the tumor. The aim here was however, to identify mutations specific to ibrutinib 

late time point, that is, mutations causing the tumors to become resistant. For this, mutations 

identified from tumors at vehicle late, vehicle early and ibrutinib early time points were 
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intersected out and only mutations identified from tumors at ibrutinib resistant time point 

were considered  

 

 

Interestingly, none of the ibrutinib late time point tumors manifested mutations in the known 

Btk and Plcg2 genes, as reported in ibrutinib resistant patient cases. Also, none of the 

identified mutations were linked to Bcr signalling pathway. 
 

From the above observations, it was concluded that the development of ibrutinib resistance 

within just 6 weeks of treatment in Eµ-TCL1 mice, is a relatively short period for identifiable 

genomic changes (CNVs/SNVs) to occur as a response to selection pressure from the drug. It 

was therefore hypothesized that ibrutinib resistance in the mouse model is visible by changes 

in transcriptional profile of the tumor rather than the genetic profile. Thus, I next examined 

a. 

 

b.  

 

Figure 3.4: (a) Variant allele frequencies (VAFs) of identified mutations from vehicle treated tumors 
at early and late time points. (b) Variant allele frequencies (VAFs) of identified mutations from 
ibrutinib treated tumors at early and late time points. 
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the transcriptional changes in ibrutinib treated v/s untreated tumors at late and early time 

points. 

 

3.6 Transcriptional profile of ibrutinib resistant Eµ-TCL1 mouse tumors 
 

To identify transcriptional changes attributed to ibrutinib resistance in Eµ-TCL1 mouse 

tumors, RNA sequencing of CD19+ B cells from the spleens of ibrutinib and vehicle treated 

tumors at early and late time points was performed (by Haniyeh Yazdanparast, described in 

methods section).  

 

Hierarchical clustering of  sample wise normalized and log transformed gene counts obtained 

by pre-processing raw RNA sequences of the 15 samples is shown in figure 3.5a. Clustering 

was based upon a distance matrix calculated using the thousand most variable genes across 

all samples (pairwise Euclidean distance and complete linkage). It can be seen from the plot 

that most of the variability in the samples is conferred by the sampling time point, as the late 

treated samples (ibrutinib and vehicle) clearly cluster together and separate from the early 

time point samples (except for one sample in each late and early time points that show 

otherwise). It can also be identified that vehicle early samples have the most distinct profile 

as compared to the late treated group.  

 

Overall differences between ibrutinib and vehicle treated tumor groups (biological) and 

presence of any potential batch effects (technical) are shown in the form of a 2D principal 

component plot depicting the first (PC1) and the second (PC2) principal components (figure 

3.5 b). Expression across all genes was used as input for principal component analysis (PCA). 

PC1 separates the treatment groups based on sampling time (early and late) and indicated 

heterogeneity within the same groups (technical variability of 43%, e.g.: ibrutinib early (Ib-

E)). PC2 clearly separates ibrutinib early treatment group from the rest three groups 

(variability: 15%).  
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a.                                                                     b. 

 

c. 
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Figure 3.5: (a) Unsupervised hierarchical clustering of the 1000 most variable genes across all samples 
(distance: Euclidean, linkage: Complete). (b) PCA plot showing sample clustering using expression of 
all genes. (c) Differentially expressed genes (DEG) in ibrutinib resistance phenotype as compared to the 
three other groups. Ibrutinib resistance phenotype is boxed in blue in the heatmap (distance: Euclidean, 
linkage: complete). Log2  fold change with significance of DEG in ibrutinib resistant phenotype are 
shown as vertical bars alongside the heatmap. (d) Tbet counts (left) and expression on log2 scale (right) 
at vehicle and ibrutinib treatment time points ‘early’ and ‘late’. Ib-E/IbEarly: ibrutinib early, Ve-
E/VeEarly: vehicle early, Ib-L/IbLate: ibrutinib late, Ve-L/VeLate: vehicle late. 
 

Separate clustering of Ib-E tumors could be attributed to their being the only ones manifesting 

the effects of ibrutinib treatment and, hence showing a different biological phenotype and 

transcription state. 

 

Also, it is not unexpected that the vehicle late (Ve-L) treated tumor group lies in between 

vehicle early (Ve-E) and ibrutinib late (Ib-L), as the phenotype of vehicle late tumors was both 

of increased cell proliferation (similar to ibrutinib late) and vehicle treatment (similar to 

vehicle early).  

 

To identify genes that specifically confer ibrutinib resistance in Eµ-TCL1 mouse tumors, a 

limma model ((Ritchie, Phipson et al. 2015), R/Bioconductor software package) was 

constructed that eliminated effects of proliferation (expected to be enhanced in the late 

treatment time points: Ve-L and Ib-L) and treatment (as expected in the ibrutinib early time 

point: Ib-E) (explained in detail in methods section). 803 genes were differentially regulated 

in ibrutinib resistance group as compared to other three groups at adjusted p-value < 0.05 

(Benjamini and Hochberg method). Unsupervised hierarchical clustering of the expression of 

d.  Tbet read counts 
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803 genes in the four groups (vehicle early, vehicle late, ibrutinib early and ibrutinib late) is 

shown in figure 3.5 c (Euclidean distance and complete linkage). Out of these, 456 genes were 

downregulated and 347 were upregulated in ibrutinib late treatment group as compared to 

others. Transcription profile of the ibrutinib late group (marked with a blue box) was distinct 

from that of the other groups, indicating pronounced transcriptional changes driving ibrutinib 

resistance in the mouse tumors. 

 

One of the top upregulated genes in the ibrutinib resistance phenotype, Tbet/Tbx21 was 

chosen for follow up studies. Its increased expression (> 2 fold on log2 scale) in ibrutinib late 

group as compared to others is shown in figure 3.5 d (left: read counts, right: log2 scale). Tbet 

has previously been reported to enhance survival of B cells. It possibly controls chronic 

inflammation in autoimmune diseases and in ankylosing spondylitis with a potential 

therapeutic role (Weigmann and Neurath 2002, Barnett, Staupe et al. 2016, Vecellio, Cohen 

et al. 2018). Studies of the tumor microenvironment showed its involvement in tumor 

immune surveillance in lung cancers (Reppert, Boross et al. 2011). Observations from this 

analysis made it possible to hypothesize that Tbet might represent a novel target to control 

ibrutinib resistance in the Eµ-TCL1 mouse model. Follow-up experiments are currently being 

performed (by Dr. Lavinia Arseni) to validate the role of Tbet in ibrutinib resistance of mouse 

tumors. 
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CyTOF single cell analysis 

CLL perpetuation as well as progression has been directly linked with a supportive tumor 

microenvironment (TME). The CLL (TME) is composed of both stromal and immune cells. With 

such deep infiltration of immune cells in the tumor, reinvigoration of the immune system to 

stimulate anti-tumor activity is a promising mode of therapy for CLL. Anti-PD-1/PD-L1 

antibody inhibitors are increasingly becoming therapeutically useful for establishing 

continuous immune surveillance in several malignancies (Hodi F.S. 2010, Topalian S.L. 2012, 

Xiaomo Wu 2019). 

Using information about surface marker intensities (relative abundances) from CyTOF (mass 

cytometry) analysis, I identified T cell subpopulations in the tumor microenvironment (TME) 

of CLL at the single cell level. 43 surface markers focusing on T cell phenotyping were 

measured2. The following subsections describe these subpopulations characterized by the 

intensities (expression) of one or more surface markers in detail. I also investigated 

differential abundance of these subpopulations across CLL lymph node (LN) samples from 23 

patients, out of which peripheral blood (PB) and bone marrow (BM) was also available from 

8 and 3 patients respectively. CLL T cell subpopulations were also compared in between 

tissues and to control LNs (n=13). Raw data was obtained in the form of .fcs files which were 

then processed for quality and downstream analysis to infer the observations detailed next. 

Both CD4+ and CD8+ cell types were assessed using CyTOF. However, the scope of this thesis 

is limited to observations on the CD4+ T cell subtype. 

  

 
2 CyTOF set up and experiment was performed in collaboration with Luxembourg Institute of Health (Marina Wierz, 
Etienne Moussay, Jérôme Paggetti). Laura Llao Cid and Martina Seiffert from DKFZ designed the panel. After clustering by 
myself, annotation of the identified subpopulations was performed by Laura Llao Cid. 
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3.7 Quality control diagnosis of CyTOF samples 
 
The total number of cells profiled across 48 samples was highly variable as displayed in figure 

3.7 a for CD4+ sorted sample subsets. Samples included in the analysis had at least 1000 cells. 

To identify any peculiar similarities between patients and potential technical outlier samples 

in an unsupervised manner, the samples were plotted on an MDS plot (Multi-Dimensional 

Scaling; distance measure: pairwise Euclidean, linkage: complete). The input for this plot were 

arcsinh-transformed median marker expression values for 32 surface markers (used to 

measure biological phenotypes) and 11 technical markers (used to identify in technical biases) 

mapped to 48 data points (number of samples=48). E.g.: 191Ir DNA1 and 193Ir DNA2 markers 

are expressed by single cells only, and this helps filter out potential doublets. Details of the 

samples used for CyTOF analysis is presented in Supplementary Table 2. CyTOF markers are 

detailed in Supplementary Table 3. Figure 3.6 b is an MDS representation for CD4+ samples. 

 

Expectedly, the one sample of Hodgkin lymphoma (in green) was different from other CLL 

samples, due to it being a completely different disease. Tumor PB (pink) mixed with control 

LN (cyan). Certain control LN (cyan) (RLN3, 6, 8 and 12) mixed with tumor LN (brown). It will 

be interesting to further investigate whether these samples that mix together also have 

similar phenotypic properties. No technical bias was identified from this step. 

 

After initial quality checks, it was decided to identify CD4+ and CD8+ cell subpopulations, and 

CD4+ subpopulations are discussed in this thesis. 
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a. 

 

 
 

Figure 3.6: Sampling across 6 conditions (tumorLN, controlLN, tumorPB, tumorBM, tumorAccLN, 
tumorHodgkinLN) (LN=lymph node, PB=peripheral blood, BM=bone marrow). (a) histogram of sample 
counts for CD4+ samples. (b) MDS plot clustering (distance measure: pairwise Euclidean, linkage: 
complete, 48 mapping points) using median marker expression of 43 markers (32 biological + 11 
technical across all cells in each sample of CD4 cell type). 
 
3.8 CD4+ subpopulations and their known and potential contribution to the 

tumor microenvironment 
 
All cells from all samples CD4+ T cell type were clustered by FlowSOM method (Van Gassen, 

Callebaut et al. 2015) as a functionality of the HDCytoData workflow (Nowicka, Krieg et al. 

2017) in Rv3.6. This included a stepwise process of building a self-organizing map (SOM), and 

meta-clustering of these SOM codes. Even though it was made sure that the clustering is 

performed using all the cells from each sample, for purpose of plotting and visualization, 1000 

random cells from each sample were selected and visualized using t-SNE dimension reduction 
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technique. Hence, every sample had equal representation despite differences in library sizes. 

The FlowSOM approach identified 15 CD4+ subpopulations as shown in figure 3.7 a. These 

populations were first annotated broadly into naïve, T central-memory (Tcm), T effector-

memory (Tem), and T effector (Tef) based upon expression of CCR7, CD45RA, and CD45RO 

surface markers as described in (Golubovskaya and Wu 2016). Annotation was performed by 

Laura Llao Cid. To further classify these broad groups, subpopulations were then named 

based upon the unique expression of a surface marker, e.g.  CD4+ Tem1 and Tem2 were both 

effector memory but characteristically expressed Ki67,CD38 and CD39 respectively. 

 

 

 

    

 
 

 
  

 
Figure 3.7: (a) 15 CD4+ subpopulations visualization by t-SNE plot. One naïve, one Tef (T effector), 3 
Tem (T effector memory), 2 Tcm (T central memory), 3 Tex (T exhausted), one Th1 (T helper 1), two 
Tregs (aTregs: activated regulatory T cells, rTregs: resting regulatory T cells), and two DP (double 
positive) subpopulations were identified. Extended annotation based upon specific marker expression 
is as follows: Tem1=Tem1 Ki67+ CD38+, Tem2=Tem2 CD39+, Tem3=Tem3 ICOShi (high), Tcm2=Tcm2 
CD39+, Tex1=Tex1 PD1hi (high), Tex2=Tex2 CD39+ Ki67+, Tex3=Tex3 EOMES+ PD1+, TH1=TH1 KLRG+ 
TBET+, DP TBET=DP Tem TBET+. 

 

Heatmap of transformed and normalized intensities of 32 surface markers that identify 15 

CD4+ subpopulations is shown in figure 3.7 b (distance measure: Pearson, linkage: complete). 

The 15 subpopulations represented row wise in the heatmap can be grouped broadly into 5 

recognizable biologically and/or CLL relevant phenotypes represented column wise (in 

colored boxes from right to left). They are: 

CD4+ 

a. 
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1. Set of activation and naïve cell markers (red box). The former decides the fate of 

various cell types in the TME, e.g. CD7 and IL7RA regulate activation of CD4+ T cells. 

Cell populations negative for CD7 are identified in pathological conditions. Expectedly 

this group is separated from the exhausted subpopulations (negative for CD7). TCF1, 

regulating T cell development and response to infection is also clustered in this group. 

Naïve cell markers include CCD7 and CD27. These subpopulations can be speculated 

to hold the capacity to divide and interact with tumor neoantigens. 

 

2. Markers associated with regulatory functions of T cells (black box): CD25 (expressed 

by Tregs), CD39 (expressed by Tregs and activated CD4+ and CD8+ T cells, and has a 

role in promoting an immunosuppressive environment in association with CD73), 

HELIOS (activation marker and expressed on a subset of Tregs), and FOXP3 (a Treg 

marker and high in patients with CLL). CD39+ CD73- T cell population has been found 

to be abundant in CLL patients and signifies inflammation (Raczkowski, Rissiek et al. 

2018).  

 

3. OX40 and CXCR5 (blue box) are involved in differentiation process of Tfh cells (Qin, 

Waseem et al. 2018). T follicular helper (Tfh) subsets are present in increased 

frequencies in advanced stage CLL patients, but their role in CLL is still unknown. 

 

4. Tumor inhibiting and CLL specific molecules (orange box): CTLA4 (highly expressed in 

CLL T cells, renders T cell proliferation and tumor inhibiting T cell functions)(Mittal, 

Chaturvedi et al. 2013), inhibitory molecules of exhaustion phenotype (PD-1 and 

TIGIT), transcription factor promoting exhaustion (TOX), CD38 (prognostic marker of 

CLL) (Matrai 2005), and FAS associated with poor survival in CLL (Groneberg, Pickartz 

et al. 2003). This group of markers is notably upregulated in exhaustion specific 

subpopulations and could be potential contributors of T cell inactivation. 
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Figure 3.7: (b) Marker intensities (columns) across CD4+ subpopulations (rows). 5 biologically relevant 
subgroups are numbered from right to left and marked with different colored boxes are explained in 
the text (distance measure: Pearson, linkage: complete). 

Identification of the above T cell phenotypes necessitates the study of how they interact and 

regulate the tumor niche by either promoting or supressing immune responsiveness in CLL. 

This is important because compromised immune response is one of the key reasons for 

treatment failure and disease relapse.  

 

The next step therefore would be to associate the abundance of identified clusters (that have 

distributed expression of at least the 5 phenotypes described above) to CLL patient clinical 

information (age, gender, treatment etc). This could broadly inform us about observable 

shifts in T cell phenotypes across stages of disease development in CLL patients. 

  

b. 
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3.9 Associating CyTOF subpopulation abundances across samples to clinical 
information 

 

Associating CD4+ subpopulation proportions in the CLL microenvironment to clinical 

parameters (age, IGHV status, treatment, gender and so on) across samples, can establish the 

clinical relevance of these populations in CLL pathogenesis. In addition, this enables 

identification of inter-patient heterogeneity with respect to their CLL microenvironment. 

 

Abundances of identified CD4+ subpopulations per sample along with associated clinical 

parameters: age, gender, treatment and IGHV status were studied and are shown in figure 

3.8. Subpopulation abundances (calculated as proportions) were then subjected to 

unsupervised hierarchical clustering (distance measure: Euclidean, linkage: complete), with 

the aim to group together patients manifesting similar microenvironment subpopulations. It 

should be noted that similar subpopulations have been represented with shades of the same 

color, e.g. all Tem subtypes have been shown with shades of yellow-brown, Tcm populations 

have been shown with shades of green. 
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Emerging patterns of samples with similar phenotypes are discussed below: 

CD4+ cell type abundances 
 
Based on CD4+ subpopulation abundance clustering, samples could be majorly grouped into 

5 sets as numbered in figure 3.8 from top to bottom (1-5). 

 

1. Tcm populations (in green) (Tcm1 and Tcm2 CD39+) occurred in all samples except for 

the ones that had Tem CD39+ T cell population (in brown) and increased aTregs 

(activated Tregs). With no naïve cell phenotype, these samples included a proportion 

of Tex3 EOMES+ PD1+ exhausted phenotype. These CLL LN samples showed mixed 

IGHV status and no gender bias; with most of them being untreated (6 out of 7 

samples). 

 

2. A group of 3 control LNs, 3 tumor LNs had naïve and Tcm subpopulations.  

 

3. All control samples with central memory, naïve and Tex1 PD1hi phenotypes. Tex1 was 

specifically represented in the control group and could be attributed to acute or 

chronic infections in samples whose rLNs (reactive lymph nodes) were acquired. 

 
4. Samples high in Tex3 EOMES+ PD1+ (darker blue) were all CLL patient lymph nodes, 

except for RLN6 and RLN10 (both control LNs), that in the MDS plot in section 3.7, also 

clustered with CLL samples. It could be suggested that they group together due to 

their similar exhausted phenotype. 
 

5. Group 5.1 (2 tumor PB and 1 tumor BM) and group 5.2 (5 tumor PB and 1 tumor BM 

were identified. Major cell types contributing to these were Tcm1 and TH1 KLRG1+ 

TBET+. Group 5.1 in addition, also had some proportion of naïve subpopulation. These 

groups were almost devoid of exhausted T cells. Tumor PB and tumor BM were 

matched tumor samples from CLL patients from whom lymph nodes were acquired 

(example BC9LN, BC09BM, BC09PB), and the latter had a much higher exhausted 

phenotype (group 4) in comparison to PB and BM. 
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Figure 3.8: Hierarchical clustering of CD4+ subpopulation abundances across samples. The 5 groups 
marked with characteristic enrichment of different subpopulations are explained in the text. Cluster 
abundances are associated with condition, state, tissue, IGHV status, gender, age and treatment. 

Extended annotation for cluster ids: Tem1=Tem1 Ki67+ CD38+, Tem2=Tem2 CD39+, Tem3=Tem3 
ICOShi (high), Tcm2=Tcm2 CD39+, Tex1=Tex1 PD1hi (high), Tex2=Tex2 CD39+ Ki67+, Tex3=Tex3 
EOMES+ PD1,TH1=TH1 KLRG+ TBET+, DP TBET=DP Tem TBET+. 

 

It was observed that while tumor LNs from different patients had varied abundances of cell 

types (Tcm, Tregs, Tex3, Tem39), they were also different from T cell microenvironments of 

bone marrow and peripheral blood from the same CLL patient (expressing Tcm1 and TH1 

KLRG1+ TBET+). This indicated inter as well as intra patient heterogeneity with respect to CLL 

TME.  
 

Moreover, tumor BM and tumor PB cluster together, which might be due to contamination 

of bone marrow samples with peripheral blood during procurement. CD4+ clustering based 

on subpopulation abundances showed mixed patterns of corresponding IGHV status, 

1 

2 

3 

4 

5.2 

5.1 

CD4+ 
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treatment and gender information. It was however noticeable that probands providing 

control LN samples had an age-range of 20-60 years, while age of the tumor patients was 

between 40-90 years. 
 

The next section compares subpopulation proportions across samples after statistically 

correcting for differences in their library sizes, and tests whether the differences are 

influenced by age, IGHV status and treatment.  

 

3.10 Impact of variation in patient’s age on subpopulation abundances between 
tumor and control lymph nodes  

 

As observed, the age of probands providing control LN samples was in the range of 20-60 

years, while age of the tumor patients was between 40-90 years. It was therefore decided to 

evaluate whether age related differences were confounding phenotypic differences between 

the samples. Therefore, subpopulation abundances across samples were correlated with 

provider’s age. 15 CD4+ subpopulations were hence evaluated for increasing/ decreasing/ 

constant abundances with age. Also, for a fair comparison a minimum and maximum age 

range cut off that included tumor patients and control persons within a similar age range were 

chosen. This criterion included 14 samples (5 controls LNs and 9 tumor LNs) within the age 

range of 40-60 years. Subpopulation proportion correlating significantly with age was that of 

DP Tcm (R = -0.79, p-value = 8.5e-4) showing decreasing proportion with age. All other 

subpopulation differences between tumor and control LNs could hence be attributed to 

effects of CLL in the TME of these samples. However, to robustly accept this claim, more 

samples should be included for the same analysis. 
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3.11 Differentially expressed CD4+ subpopulations in tumor v/s control lymph 
nodes 

 

A limma model for cell counts from lymph node samples (tumor, n=23; control, n=13) was 

constructed to model subpopulation proportions dependent on tumor status, treatment and 

gender. This model normalized the variance introduced by unequal library size across all 

samples. Figure 3.9 shows z-score scaled proportions across samples in the form of a 

heatmap. Vertical bars alongside the heatmap show whether a subpopulation abundance was 

significantly different between tumor and control samples (green = significant, grey = not 

significant). The first bar is tumor LNs v/s control LNs (model 1 = without covariates). The 

second and third bars include significance values after categorical covariates treatment and 

gender respectively are added to model 1 separately. Multiple testing to identify differentially 

abundant subpopulations was performed using eBayes method and was corrected for 

significance by p-value adjustment by Benjamini and Hochberg method. 

 

Proportions have also been shown for peripheral blood, bone marrow and Hodgkin 

malignancy lymph node samples, but they were not included in the limma model.  

 

From the heatmap in figure 3.9 a, naïve subpopulation was significantly decreased (-1.76-fold 

on log2 scale, adj. p-value = 2.4e-2) in the CLL group. Significantly reduced (-2.86-fold on log2 

scale, adj. p-value = 8.0e-04) Tex1 PD1hi (high) in tumor v/s control LN conveyed presence of 

exhausted cells in the control samples. This exhaustion could be attributed to acute and 

chronic infections other than CLL in the control group. Importantly, Tem1 Ki67+ CD38+ 

subpopulation was significantly decreased (-1.6-fold on log2 scale, adj. p-value = 1e-2) in 

tumor v/s control LNs. Strikingly, when treatment information was added to the model, the 

decrease attributed to CLL in naïve and Tem1 Ki67+ CD38+ subpopulations, was rescued. 

Convincingly, these subpopulations can be related to CLL pathogenesis in the present data. 

The covariate gender, however, had no impact. Box plots below the heatmap (figure 3.9 b) 

show the proportions of significantly different CD4+ T cell subpopulations in all tissues. The 

p-values are for differences between tumorLN v/s controlLN only. 
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Figure 3.9:  (a) Comparison of differentially abundant CD4+ T cell subpopulations in tumor LN v/s 
control LN setting using limma modelling. (b) Bar plots for significantly different populations are 
represented below the supervised heatmap (missing scale and legend). Adjusted (Adj. by Benjamini 
and Hochberg method) p-values mentioned below the box plot are significant values for differences 
between tumorLN and controlLN only. 
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ScRNA sequencing of the T cell compartment from CLL TME 
 

After having investigated the single cell proteomic differences between T cell subpopulations, 

additional information about RNA profiles of T cell compartments on the single cell level was 

obtained. Single cell RNA sequencing (scRNA-seq) of CD3+ T cells (including CD4+ and CD8+ 

sub types) from CLL TME of lymph nodes of 3 CLL patients and spleen of 3 Eµ-TCL1 mice was 

performed to understand the interplay between heterogenous T cell populations and CLL 

progression at transcript level3. However, the scope of this thesis is limited to assessment of 

CD3+ CD4+ T cell subset. 

 

Importantly, single cell expression of T cell subsets was supported by paired T cell receptor 

(TCR) clonotype information. Defining the TCR repertoire from the TME provided an insight 

into diversity of T cell clones surrounding, reacting and expanding in response to CLL and/or 

additional infections in the patients 

 

In the following sections I detail the transcriptional characterization of T cell subtypes in the 

CLL microenvironment from patient lymph node and compare it with that from the spleen of 

Eµ-TCL1 mice. I also characterize the TCR repertoire in patient samples and compare CLL T 

cell transcriptional profiles to that of T cells from breast cancer. 

 

Observations from these results point towards similar and unique microenvironment 

subpopulations in CLL patients and the mouse model, consisting of similar and unique 

subpopulations as identified by proteomic (CyTOF) and transcriptomic profiles, and CLL lymph 

node specific subpopulations, if any, as compared to breast cancer lymph nodes (the only 

publicly available lymph node samples that used droplet-based library preparation, similar to 

in-house CLL data at the time of this analysis). The results also describe subpopulation of 

potential therapeutic value, that could be targeted to reinstate immune response against CLL. 

  

 
3 ScRNA processing of samples and library preparation were performed by Laura Llao Cid using facilities at Single Cell 
Open lab of DKFZ (Jan-Philipp Mallm, Katharina Bauer, Michelle Liberio, Karsten Rippe). Annotation of T cell subsets was 
performed by Laura Llao Cid, after I performed the clustering. 
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Figure 3.10: ScRNA sequencing of CD3+ T cells from 3 CLL patient lymph nodes.(a) t-SNE clustering to 
visualize 9 T cell and one CLL subpopulation. (b) Uniform distribution of number of genes (left plot) and 
number of transcripts (right plot) across all subpopulations. (c) Identification of CD4+ (left plot) and 
CD8+ (right plot) cell types by overlaying expression of CD4 and CD8A genes. (d) Distribution of cells 
from three samples (S1, S2 and S3) across all 10 populations on the t-SNE (left plot) and quantification 
of the same as stacked bar plots (right). 

 

3.12 CD3+ T cell subpopulations identified using scRNA sequencing 
 

Paired scRNA and targeted TCR sequencing for CD3+ T cells from three CLL patient lymph 

nodes was performed (experiments by Laura Llao Cid).  Next, by graph based cluster analysis 

of CD3+ T cells followed by Louvain modularity optimization as a part of Seurat workflow, I 

observed 10 distinct subpopulations (Figure 3.10 a) (details of thresholds and data 

preprocessing steps in methods section). Figure 3.10 b shows uniform number of genes 

(nFeatures (left plot)) and transcripts (nCounts (right plot)) expressed in all cells across the 

clustering.  Broadly, clusters 1, 2, 4, 5, 6 and partially cluster 8 were high in expression of CD4 

marker (figure 3.10 c (left plot)). Clusters 0, 3, 7 and partially cluster 8 showed high expression 

of CD8A marker (figure 3.10 (right plot)). Cluster 9 showed enrichment of CD19+ cells. These 

CLL B cells were spiked in to monitor uniformity in sequencing depth, and genes identified 

across all cell types and to make sure that the clustering is not dominated by technical 

differences. 

 

d. 
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Also, sample wise contribution to the proportion of each cluster (figure 3.10 d t-SNE (left) and 

bar plot (right)) showed proportional representation of all samples in all clusters except in 

cluster 0 (CD8+ subtype), where cells from sample 2 (S2) were enriched.  

 

For further characterizing CD4+ and CD8+ T cell subsets, integrated CD3+ t-SNE was subset 

into two separate CD4 and CD8A cell types using respective cluster classification described 

above. Only the CD4+ T cell subset will be discussed in this thesis. 

 

 

 

 

a. 
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b. 

 

 

Figure 3.11: (a) 9 identified CD4+ T cell subpopulations (left), and their abundance in the three 
samples S1, S2 and S3 (right). (b) Subpopulations can be identified by the unique set of top 
upregulated genes they express, some of which are marked at the bottom of the heatmap (distance: 
Euclidean, linkage: complete). 

 

3.13 Nine CD4+ T cell subpopulations were identified using characteristic 
expression of top marker genes 

 

Graph based clustering and Louvain modularity optimization, as a part of Seurat workflow of 

CD4+ T cell subset identified 9 subpopulations (figure 3.11 a (left)), characterised by 

expression of top upregulated genes shown in figure 3.11 b. The heatmap depicts average 

expression of the top 10 highly upregulated genes in each subpopulation across all the cells 

in the subpopulation. Genes are clustered by column (distance=Euclidean, linkage=complete), 

and the expression values z-score normalized. The 9 subpopulations as in the heatmap are 

described below: 

 

CD4+ naïve cell populations 

Naïve and TCR phenotypes were enriched in CCR7, LEF1 and SELL. TCR cluster in addition to 

the highly expressed naïve cell markers, characteristically expressed the T cell receptor gene 

Z-score 
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TRBV20-1. Also, the marker gene list of these clusters showed high expression of ribosomal 

protein genes encoding ribosomal proteins in the small subunit (Rps_) and large subunit 

(Rpl_) of ribosomal translation machinery. It has been previously shown that ribosomal 

subunits are downregulated in CD8+ exhausted T cells as compared to naïve effector and 

memory T cells, attributed to supressed translation (Wherry, Ha et al. 2007). Similar 

differences in expression of ribosomal protein genes between CD4+ effector and naïve 

subsets could be speculated from the present observation. 

 

CD4+ regulatory T cells 

Subpopulations annotated as aTregs (activated regulatory T cells) and rTregs (resting 

regulatory T cells) expressed FOXP3, CTLA4, IL2RA. These markers were expressed at least 

three times more in aTregs as compared to rTregs, for example expression of FOXP3 in the 

former is 1.49-fold on log2 scale, as compared to the latter, where it is expressed at 0.4-fold 

on log2 scale. aTregs and rTregs were also previously described as phenotypically and 

functionally distinct subsets of FOXP3+ CD4+ T cells both in humans and in mouse  (Xin Chen 

2011). 

 

CD4+ exhausted T cells 

Coinhibitory molecules like PDCD1, LAG3, TIGIT and pro-inflammatory transcription factor 

MAF that drive T cell exhaustion and inhibit anticancer effector T cells were expressed in 

subpopulation annotated as T-exhausted (Verdeil 2016). 

 

CD4+ cytotoxic T cells 

The next subpopulation was highly upregulated in GZMK (2.3-fold on log2 scale) and GZMA 

(1.89-fold on log2 scale); and was downregulated in LEF1 (naïve T cell marker) and FOS. This 

cluster was hence annotated as cytotoxic CD4+ T cell subset. Such cells have previously been 

observed to have roles in antiviral immune responses (Takeuchi and Saito 2017, Hashimoto, 

Kouno et al. 2019). 
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CD4+ effector-memory T cells 

Last three subpopulations shown in the heatmap were those of antigen experienced effector 

memory CD4+ T cells. They expressed JUN, FOS and CD69 activation marks (in Tem1 and 

Tem2). Tem3 showed upregulation of ICOS, which is also a costimulatory molecule expressed 

by activated CD4+ T cells (Mahajan, Cervera et al. 2007).  
 

CD4+ T cells in the CLL TME, were found to exhibit naïve, regulatory, cytotoxic, effector-

memory and exhausted phenotypes. These subpopulations were identified in all three 

samples (figure 3.11 a (right)). 
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Adding T cell receptor information to singe cell transcription 

profiles of T cells 
 

TCR information is used to track clonality and developmental diversity of T Cells (Marco De 

Simone et al 2018, Han et al 2014). In the premise of the present study, identification of an 

expanded and inactive TCR could be correlated to a potential response against a tumor 

neoantigen. The ultimate aim would be to develop a treatment approach by activating the T 

cells that are identified to expand against the tumor. Therefore, to identify T cell populations 

recognizing potential tumor antigens and expanding to external stimuli, paired single cell 

V(D)J sequencing was employed along with single cell RNA sequencing for all cells of the three 

patient lymph node samples (S1, S2, and S3) under study. 10X chromium protocol dictates 

that the V(D)J sequencing be done by 5’ chemistry of single cell library preparation4. This is 

because, the V(D)J genes are closer to the 5’ end of the TCR mRNA. The following section 

details identified TCR clonotypes, some of which are biologically relevant, for the combined 

human CD3+ T cell dataset (including both CD4+ and CD8+ cell types) unless otherwise 

specified. After the raw sequencing data is pre-processed by Cellranger (cellranger vdj) 

pipeline from 10X genomics (details in methods section), the following information can be 

retrieved for each cell from the output files produced: 

1. The combination of V(D)J genes characteristic of each clonotype 

2. Frequency of occurrence of each clonotype 

3. Cell barcode associated with each clonotype 

4. CDR3 amino acid and nucleotide sequence for the alpha and beta variable chain 

associated with each clonotype 

  

 
4 TCR library preparation was performed by Laura Llao Cid at DKFZ Single Cell Open Lab (Jan-Philipp Mallm, Katharina 
Bauer, Michelle Liberio, Karsten Rippe). Annotating identified TCR clonotypes by VDJdb was performed by Laura Llao Cid 
and represented here by myself. 
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 Cells 
annotated 

with 
clonotypes 

Total  

S1 2789 2865 

S2 1572 1792 

S3 2061 2161 

 

 

 

  

 

 

 n=1 n=2 n>=3 

S1 2646 75 68 

S2 889 91 592 

S3 1658 131 272 

 

 

Figure 3.12: (a) Total number of cells (darker shade) and total number of cells annotated with 
clonotype information (lighter shade in the three samples S1, S2, S3). (b) Clonotype rearrangements 
mapping to only one cell (n=1), to two cells (n=2) and to three or more cells (n >=3), the same in 
proportions is depicted in (c). 
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3.14 Enrichment of clonally expanded CD3+ T cells revealed by TCR 
identification 

 

TCR information per cell was superimposed on the existing clustering of CD4+ and CD8+ T 

cells by common cell barcode information from both RNA-seq and V(D)J sequencing. Cells 

exhibiting the same V(D)J gene rearrangement were categorized under the same clonotype. 

While most cells presented at least one unique pair of a and b TCR chain alleles, a fraction of 

cells had non-unique allelic chain representations of single a, single b, two a and one b, or 

two b and one a. I defined a TCR as valid if it expressed one unique combination of paired a-

b chains. In total, I detected TCR information with productive alpha and beta chains for 95% 

of CD4+ T cells and 90% of the CD8+ T cells (6422 out of 6820 CD3+ T cells from three samples). 

Figure 3.12 a, shows total number of cells (darker shade) and cells with clonotype information 

(lighter shade), separately for all three samples. Also, an expanded clonotype was defined as 

the one that in addition to having one unique combination of paired a-b chains had its chain 

combination shared at least between 3 cells suggesting a common cell of origin (Zheng, Zheng 

et al. 2017). According to these criteria I identified 106 CD4 + T cells and 826 CD8+ T cells with 

shared clonotypes in at least 3 cells and annotated them as expanded T cell clonotypes. Figure 

3.12 b and c show the number and proportion respectively, of the cells with a unique 

clonotype (n=1), clonotypes shared between 2 cells (n=2), and clonotypes shared between 

three or more cells (n>=3, expanded clonotype). Sample ‘S2’ had the maximum proportion of 

expanded clonotypes. Following this, potential biologically interesting clonotypes were 

searched for from amongst all the identified clonotypes. 
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Figure 3.13: 10 most frequent clonotypes, their abundances and CDR3 amino acid sequence for (a) S1, 
(b) S2 and (c) S3. If a clonotype is mapped in VDJdb to a previously known antigen then it is accordingly 
marked with colored arrows, blue: cytomegalovirus (CMV), black: Epstein-barr virus (EBV), orange: 
BST2 (tetherin), green: influenza. 

  

a. 

b. 

c. 

Sample S1 

Sample S2 

Sample S3 

CMV 

EBV 

BST2 

Influenza 

Clinical information 
S1: CMV+ in 2010 
S2: CMV+, EBV status NA 
S3: CMV+ EBV+ 
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3.15 VDJdb identifies biologically interesting clonotypes 
 

VDJ database (VDJdb) is a collection of T cell receptor (TCR) sequences whose antigen 

specificity is known (Shugay, Bagaev et al. 2018). The CDR3 (complementarity region 3) amino 

acid sequences of the clonotypes identified, were queried against this online database by 

Laura Llao Cid. CDR3 amino acid sequence is highly diverse and cells having the same CDR3 

amino acid sequence share a clonotype. This results of this analysis identified biologically 

relevant VDJ rearrangements, whose antigen specificity has previously been documented. I 

represent these observations in figure 3.13, separately for the three samples (a) S1, (b) S2 

and (c) S3; alongside a tabulated information about the clonotype nucleotide sequence for 

each case. 
 

 

The frequency of the most abundant clone varies across the three samples. It was seen that 

S1 clonotype 7 and 9 resembled TCRs that recognize CMV (cytomegalovirus) and Influenza 

respectively (figure 3.13 a). In S2 the clonotype with highest frequency (S2 clonotype 1) was 

also known to recognize CMV (as per VDJdb, figure 3.13 b). This was in compliance with the 

clinical information of these two patients who previously tested positive for CMV.  

Interestingly, the CMV recognizing CDR3 sequence varied between the patients (S1 and S2) 

and also within one patient (S2). This might point towards multiple T cell epitopes recognizing 

the same antigen. S2 clonotype 7 showed the presence of EBV (Epstein-Barr virus) recognizing 

TCR (figure 3.13 b). However, there was no information of the EBV status of this patient to 

validate this. S3 clonotype 8 was identified to recognize BST2 (protein tetherin or CD317, 

figure 3.13 c) which is found to be over expressed in B cells in CLL (Gong 2015). Although this 

clonotype occurred in only 9 cells, it can still be hypothesized that these T cells were activated 

against CLL neoantigens. Further investigation including experimental verification is needed 

to prove this. Sample S3 was positive for CMV and EBV infections. However, TCRs detecting 

these infections were not identified at least in the top 10 most expanded clonotypes. 

 

Next, CD4 and CD8 cell type specific clonotypes were visualized on their respective cell type 

clusterings to identify the subpopulations where they overlap. For the scope of this thesis 

only CD4 cell type specific TCRs are discussed. The above mentioned BST2 specific clonotype 

overlapped with CD8 cell type and is not shown in this thesis. 
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Figure 3.14: (a) t-SNE map of the CD4+ cell expression data highlighting top expanded clonotypes. (b) 
proportions of all expanded clonotypes per CD4+ subpopulation. 

  

a. 

b. 
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3.16 Exhausted and effector memory cell populations show highest proportion 

of expanded clonotypes 

 

Clonotype information for the expanded clones (T cells) was mapped to the scRNA-seq 

profiles of individual cells of all three samples using the common cell barcode and visualized 

on the CD4+ t-SNE clustering previously obtained for scRNA sequencing. For purpose of clear 

visualization only the top 10 most abundantly expanded clonotypes from each sample, also 

discussed in figure 3.13, were displayed for CD4+ cell type as shown in figure 3.14 (a). 

 

Figure 3.14 a for CD4 cell type shows S1_clonotype 1 to be concentrated in T-exhausted 

subpopulation, whereas the clonotype responding to CMV (S2_clonotype 1) got mapped to 

phenotypes Tem1 and Tem3. S1 clonotype 9 mapped to Tem1 and T-cytotoxic. Figure 3.14 b 

quantifies the proportion of expanded clonotypes (i.e. not only the top 10 but all clonotypes 

present in 3 or more cells) in all subpopulations of CD4+ cell type, sample wise. T-exhausted 

is the only subpopulation that consistently shows higher proportion of expanded clonotypes 

in all three samples. Other than this, Tem1 had higher proportion of expanded clonotypes 

from S2 and T-cytotoxic had major contribution from S2 and S3. 
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a. 

 

b. 

 

c.  

 

 

Figure 3.15: (a) t-SNE expression map of 12 Cd3+ T cell subpopulations identified from the spleen of 

Eµ-TCL1 mice. Major subtypes: Cd4, Cd8a have been marked inside a colored bubble. A myeloid cell 

population and CLL B cell population was also identified. (b) Clustering was dominated by expression 

of Cd4 and Cd8a markers. (c) 2 subpopulations markers with arrows were unique to mouse M107. 
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3.17 Cd3+ T cell subpopulations identified from spleens of 2 Eµ-TCL1 AT mice 
 

Combined clustering of scRNA expression profiles of two Cd3+ T cell mouse samples was 

performed applying Seurat workflow and clustering techniques described in the methods 

section.  A total of 13 clusters emerged including 4 Cd4+ clusters, 2 Cd8+ clusters, 1 cluster of 

myeloid cells, 1 cluster with Cd19+ B cells (used as a spike) (figure 3.15 a). 5 clusters had mixed 

Cd4+ and Cd8+ cell types. The clustering was expectedly dominated by differences in Cd4+ 

and Cd8+ cell types (figure 3.15 b). Two Cd4+ sub populations specific to sample ‘M107’ were 

observed (figure 3.15 c). 

 

To identify subtype intrinsic subpopulations, Cd4+ and Cd8+ T cells were separated. Clusters, 

which had mixed populations of the two major cell types, were separated into their respective 

phenotypes based upon pairwise distances between counts (individual gene counts each 

from cells of c3,c5,c9,c11 and c12) and centroids (averages of same genes from rest of the 

clusters) of the most variable genes between CD4+ and Cd8+ specific clusters. The third 

mouse sample, for which there is information only about Cd8+ T cells, was added later to the 

Cd8 only clustering, after the two samples mentioned above have been sub-setted into Cd4 

and Cd8 types. For the scope of this thesis only the Cd4+ cell type is discussed further. 
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3.18 Eµ-TCL1 mouse Cd4+ T cells manifest naïve, regulatory and exhausted T cell 
subpopulations similar to those identified in human CD4+ T cells 

 

A total of 12 Cd4+ subpopulations were identified in T cells from spleens of two Eµ-TCL1 AT 

mice (figure 3.16 a). Figure 3.16 b represents the expression of these markers in each mouse 

subpopulation in detail in the form of violin plots (right column). Next to their expression in 

the mouse, subpopulations are also expressing the same markers as identified in CD4+ CLL 

patient clustering (left column). Comparing subpopulations in mouse and human in parallel 

gives an overview of similar and unique CD4+ T cell subpopulations in both species. 

 

a. 

 

 

 

 

 

Figure 3.16: (a) 11 identified Cd4+ T cell subopulations from the spleens of Eµ-TCL1 mice.  
(b) Comparison of human (left column) and mouse (right column) Cd4+ T cell subpopulations. 

 

  

CD4+ 
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             Human CD4 subpopulations                                   Mouse Cd4 subpopulations 
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Naïve, regulatory and exhausted CD4+ T cells are identified by the same markers in Eµ-TCL1 
mouse and CLL patient lymph nodes 
 
As seen in figure 3.16 b (right column), Cd4+ mouse clustering showed three subpopulations 

enriched in naïve cell markers Sell, Lef1 and Ccr7 (T-naive1, T-naive2, TCR). This was similar to 

patient samples (left column), where two naïve cell specific subpopulations were identified 

as well (T-naive, TCR).  

 

A similar trend was observed for regulatory T cells (Tregs); with two phenotypes (aTregs and 

rTregs) being identified in both mouse and human samples.  Foxp3, Ctla4, Ikzf2 and Tnfrsf4 

marker genes were upregulated in Tregs in both mouse and human samples.   

 

Existence of aTregs and rTregs has previously been reported in aging studies of mice (Elyahu 

2019). Tregs are specific to the CD4+ T cell type. Previous reports show increasing numbers 

of Tregs CLL patients and the Eµ-TCL1 mouse. They have been known to be high in progressive 

CLL (Giannopoulos K 2008; D’Arena G 2011; Biancotto A 2012).  

 

Two subpopulations with increased expression of inhibitory receptors Pdcd1, Lag3; 

transcription factors Tox, Maf and Eomes; were identified in mouse clustering (T-

exhausted1_eomes and T-exhausted2). One exhausted phenotype subpopulation was 

observed in patients (T-exhausted). 

 

Human unique CD4+ specific T-cytotoxic and T-effector-memory subpopulations 

T-cytotoxic represented one unique phenotype in the human clustering, however, in mouse 

T-cytotoxic human markers (GZMK, GZMB, NKG7) showed expression in all populations 

except naïve, Tregs and TCR groups. T-cytotoxic markers therefore can be said to represent 

antigen experienced activated populations in mouse. 

Similarly, the three distinct T-effector-memory (Tem1, Tem2, Tem3) subpopulations in human 

clustering represented by ANXA1, CCR6, KLRB1 and CXCR5 were not expressed in the mouse 

subtype. 
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Mouse CD4+ specific IFN responders and proliferation subpopulations 

Three subpopulations uniquely present in mouse TME were identified. The first 

subpopulation was enriched in Rsad2, Ifit3, Ifit2 and Isg15. These genes are related to 

interferon gamma signalling and cytokine signalling in the immune system. Interferon-

gamma-expressing CD4+ and CD8+ T cells are often in increasing numbers in CLL patient’s 

PBMCs (peripheral blood mononuclear cells) as previously reported (Zaki 2000).  

 

There were a few cells (number of cells = 84), that expressed Ube2c, Birc5 and Mki67, 

associated with proliferation phenotype.  

 

Another population identified specifically in mouse was that of myeloid cells. These cells 

express markers like Fcer1g, Lyz2 and Tyrobp. We recently in our group elucidated that 

myeloid cells in the tumor microenvironment contribute to the pathogenicity of CLL in 

patients as well as disease progression in Eµ-TCL1 mouse model (S.Hanna 2019, Hanna, 

Yazdanparast et al. 2020). However, inclusion of myeloid cells in this data is a contamination 

from cell sorting, and only the T cell compartment is important for the scope of this thesis. 

IFN responders, proliferating and myeloid cells were not identified in CLL patient lymph node 

samples in the present study. 

 

Classification and comparison of human and mouse Cd4+ T cell subpopulations showed 

marked similarities in expression of the markers recognizing naïve, Tregs and T-exhausted 

phenotypes. However, there was no specific T-effector-memory (Tem) mouse population, as 

was seen in the human CLL samples. Also, several mouse subpopulations expressed T-

cytotoxic markers GZMB, NGK7, upregulated specifically in only one human subpopulation. 

These might, however, indicate activated subpopulations in mice. Lastly, IFN responders were 

not observed in the human CD4+ subpopulation. 
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Comparison of CLL T cell compartment with that of Breast 

Cancer  

After comparing scRNA-seq profiles of CLL patients and those from the Eµ-TCL1 mouse model 

and having discussed the similar and unique subpopulations present in both the species, I also 

investigated differences between transcriptional profiles of T cell subsets from CLL and breast 

cancer patients.  

 

ScRNA-seq of breast cancer (BC) TME data was chosen because of their inclusion of patient 

matched lymph nodes (Azizi, Carr et al. 2018). Comparing similar tissue from different cancers 

(CLL and BC) helps remove tissue specific variation and identify CLL specific subpopulations. 

Also, libraries for BC data were prepared using similar droplet-based methods like the in-

house CLL data. The data was available with GEO ids: GSE114727, GSE114725, and 

GSE114725. These analyses paved way to define CLL specific subpopulations, absent in breast 

cancer TME. For the comparison, I used both CD4+ and CD8+ CLL subpopulations to overlay 

on the breast cancer data. 
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Figure 3.17: (a) Integrated clustering using canonical correlation analysis (CCA) for breast cancer (BC) 
and CLL cohort identified 33 clusters, the annotated T cell clusters (by Laura Llao Cid) are marked in 
the legend (b) CD4+ and CD8+ markers expression in the integrated clustering for broadly recognizing 
the phenotypes. 
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3.19 CLL specific subpopulations observed after integrating CLL lymph node data 
with publicly available breast cancer data 

 

Reference based Canonical correlation analysis (CCA), an extended functionality of Seurat 

workflow was used to integrate the in-house scRNA seq LN CLL samples to breast cancer (BC) 

public dataset. The BC dataset, being the larger one, was used as a reference. The workflow 

transformed both the datasets using SCTransform function (detailed in methods) 

(Hafemeister and Satija 2019). After normalization, highly variable features were identified 

(default = 3000), in each dataset. Mutual nearest neighbours /anchors were then scored 

between BC and CLL dataset. Anchors were scored based upon the how many similar anchors 

it was surrounded by. High scoring anchors were hence limited to the same biological 

phenotype. CLL query dataset was then integrated upon the BC reference dataset with 

highest scoring anchors in two-dimensional space. After this step, rest of the Seurat workflow 

remained the same as applied previously for other clusterings in this thesis (detailed in 

methods section). Seurat based CCA was applied because of its proven better performance 

that other available methods (Stuart, Butler et al. 2019). 

 

 Since the breast cancer cohort and CLL cohort were both prepared with drop-let based library 

preparation methods, strong technical variation due to libraries was not expected. 

 

After integration, 33 clusters were identified based upon the expression of their top regulated 

marker genes (figure 3.17 a). Five subpopulations of T-effector phenotype (TEF1-5), four of T-

naive (TN1-4), two T-effector-memory (TEM1-2), and one subpopulation each of T-exhausted 

(TEX) and that of aTregs (activated regulatory T cells) was identified.  

 

Functional annotation of the clusters based on marker gene expression was performed by 

Laura Llao Cid. The subpopulations not annotated were phenotypes other than T cells from 

the breast cancer TME. Integrated clustering was then looked at for the expression of the two 

major cell types of interest: CD4 and CD8A (figure 3.17 b left and right respectively). The two 

markers separated their subtype specific subpopulations. 
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The integrated t-SNE clustering was then faceted by tissues (breast/ lymph node/ peripheral 

blood) and the state (breast cancer/ CLL/ normal breast) to check the distribution of the same 

in 33 expression clusters, and is shown in figure 3.17 c. Cells from BC TME were spread in all 

the clusters. Subpopulations from naïve (clusters 1, 3, 6), effector (clusters 7, 15), Tex (cluster 

8), Tem1 (cluster 9) and others (non-T cells) were absent from the microenvironment of 

matched normal breast. These were speculated as breast cancer specific subpopulations in 

the TME.  
 

As compared to CLL lymph nodes (CLL_CD4 and CLL_CD8A) cells, breast lymph nodes 

(LymphNode) showed enrichment of naïve subpopulations (clusters 1, 3 and 6). 

Microenvironment of peripheral blood from breast cancer patients was enriched in naïve and 

effector phenotypes. 
 

CLL_CD4 and CLL_CD8A cell types overlapped with the naïve (clusters 1, 6), Tregs (cluster 5), 

effector subsets (clusters 13, 11, 7, 0) and effector-memory subset (cluster 18). Most 

interestingly, CLL_CD4 and CLL_CD8A had in common cluster 9 (Tem1), which was seen to be 

uniquely present in CLL lymph nodes. Next, to identify the phenotype of CLL cells that make 

up cluster 9, I tracked CD4+ and CD8+ CLL cells in the integrated breast cancer and CLL 

clustering.  
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c.   

 

Figure 3.17: (c) 33 expression clusters faceted by tissue (lymph node/ peripheral blood/ breast) and 
state (breast cancer/ CLL/ normal breast). CLL specific cluster 9 is in pink identified in both CLL_CD4 
and CLL_CD8A but absent from BC cohort. 

 TEF = Teffector, TN = Tnaive, aTregs = activated Tregs, TEX = Texhausted, TEM = Teffector-memory. 

 

  

T
IFN resp

 
T

EM2
 

T
EF5

 

T
EF4

 

T
EF3

 

T
EM1

 
T

EX
 

T
EF2

 
T

N4
 

aTregs 

T
N3

 
T

N2
 

T
N1

 
T

EF1
 



 

104 
 

 

 

 

 

Figure 3.18: (a) Tracking of cells from CD4 CLL specific subpopulations into the identified BC-CLL  (Breast 
Cancer- CLL) integrated subpopulations (b) Tracking of cells from CD8 CLL specific subpopulations into 
the identified BC-CLL integrated subpopulations. Tem=Teffector-memory, TCR=T cell receptor, TFC=T 
follicular cytotoxic, Tcm=Tcentral memory, Tregs=regulatory T cells, Tef=Teffector, Tn=Tnaive, Others: 
subpopulations other than T cells 

BC-CLL integrated CD4_CLL 

CD8_CLL 
BC-CLL integrated 

b. 

a. 
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3.20 CLL specific cluster 9 (Tem1) is composed of a mixture of cells from both 
CD4+ and CD8+ cell types 

 

CLL specific cells were tracked for CD4+ and CD8+ CLL subpopulations annotated earlier for 

the CLL cohort. This is shown in figure 3.18 a (CD4_CLL) and b (CD8_CLL). 

The following observations were made: 

1. Naïve cells from both CLL CD4+ and CD8+ were mixed into naïve subpopulation in the 

BC-CLL clustering (Tn1/Tn2/Tn4). 

2. Activated Tregs (aTregs) from CD4_CLL cell type were mapped to aTregs (cluster 5) 

from integrated clustering (figure 3.18 a). 

3. Tem1 GZMH and Tem2 GZMK populations from CLL CD8+ cell type, mixed into TEF1, 

TEF2, TEF3, TEF4 and TEF5 of the BC-CLL clustering (figure 3.18 b). 

4. CLL CD8+ Tem4 HSP cells mapped to TEF1 and TEF2 from the BC-CLL subpopulations. 

5. CLL CD8+ T-follicular cytotoxic (TFC) cells lie in cluster 5 (aTregs) and cluster 9 (CLL 

specific) of the integrated clustering. 

6. Cells from T-effector-memory populations of both CLL CD4+ and CD8+ cell types mixed 

together in cluster 9 (Tem1) of the integrated clustering. 

In general, similar phenotypic T cell subpopulations from both datasets fall together, with the 

exception of CLL specific cells in Tem1 (cluster 9) of the integrated breast cancer and CLL 

clustering. From figure 3.18 shows overlap of CD4_CLL and CD8_CLL subpopulations with 

Tem1 in the BC-CLL (Breast cancer-CLL) clustering. From here, it could be speculated that 

these CLL specific cells, that formed a separate subpopulation in the integrated clustering, 

were effector cells responding to specific CLL neoantigens. However, further analysis is 

needed to remark any further on this cluster. 
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4. Discussion 
  

Even though more options than ever, with tremendous therapeutic efficacy like ibrutinib are 

available for chronic lymphocytic leukemia (CLL), the disease remains incurable. The success 

of CLL treatment, right now is limited to increased progression free survival and avoidance of 

a full-blown relapse.  

Treatment outcome depends mainly upon patient age at diagnosis, existing comorbidities, 

IGHV mutation status as well as manifestation of prognostic mutations (del17p, del13q, 

NOTCH1, SF3B1) (Gaidano 2017). One of the factors that contributes to differential response 

against therapies across patients and complications in formulation of a curative medicament 

is tumor heterogeneity exhibited during CLL progression and pathogenesis. I have presented 

in my thesis clonal heterogeneity in the Eµ-TCL1 mouse model of CLL and heterogeneity with 

respect to CD4+ T cells in the TME of CLL patients and mouse tumors. 

 

CLL heterogeneity as contributed by CNVs, B cell receptor rearrangements and somatic 

variations in Eµ-TCL1 mouse tumors 

Investigation of copy number variations (CNVs) in Eµ-TCL1 primary and transplanted tumors 

identified gain of chromosome 15 in 6 out of 8 in-house samples, as well as all samples of the 

public dataset included in the analysis (7 out of total 11). This trisomy 15 included the “Myc” 

oncogene. Previously a similar observation has been reported in the context of malignant 

transformation in the TCL1-tg mouse model (Shen 2006). This is a similar mouse model that 

develops a disease similar to human T cell prolymphocytic leukemia, in contrast to Eµ-TCL1 

that develops B cell leukemia. Experiments are presently being performed to validate effects 

of trisomy 15 and amplified Myc expression on CLL pathogenesis in Eµ-TCL1 mouse tumors. 

A positive correlation between Myc overexpression and CLL progression would make the 

genetic predispositions of this mouse model very different to the ones in CLL patients. 
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The other two factors investigated in this thesis and contributing to CLL clonal heterogeneity 

in Eµ-TCL1 mice included evolution of B cell receptor (BCR) clonality and constitutive as well 

as acquired somatic variations. Exploring evolutionary dynamics contributing to tumor 

heterogeneity in the mouse validated the suitability of the mouse model as a preclinical tool 

for CLL.   

V(D)J gene rearrangements of Ighv genes, also called BCR clonotypes, were sequenced and 

analyzed in serially transplanted mouse tumors. BCR rearrangements in 10 out of 13 (77%) 

Eµ-TCL1 mouse tumors were oligoclonal. Mouse tumors have also previously been described 

to be oligoclonal (Lascano 2013). On the other hand, the disease is mostly monoclonal, and 

multiple IGHV rearrangements only occur inm5-24% of total CLL patient cases (Darwiche, 

Gubler et al. 2018). Restricted BCRs using the variable genes IGHV3-21 and IGHV1-69 are 

linked to poor prognosis in patients, and IGHV4-34 and IGHV2-30 are pronounced in patients 

with indolent course (Slupsky 2014). Even in the mouse model, overlapping BCRs between 

tumor samples were observed. Ighv12-3 occurred in all three independent mouse tumors: 

A1.1, B1.1, and C1.1 (figure 3.1), either in subsequent transfers (A1.1, C1.1) or as a single 

clonotype in B1.1 and its transfers. Proportion of oligoclonal BCRs was dynamic over serial 

transplantations, i.e. as the disease progressed. 

Identified stereotyped BCR rearrangements with variable genes Ighv11-2, 12-3 and 1-55, 

were previously reported in mice to expand in response to chronic stimulation by 

autoantigens like PtC and others; causing persistent inflammation and playing a vital role in 

CLL pathogenesis (Hayakawa, Formica et al. 2016, Jimenez de Oya, De Giovanni et al. 2017).  

From these observations it can be suggested that in this mouse model, Tcl1 overexpression 

acts only as a predisposing factor for pre-malignant transformation, and that an interplay by 

autoantigens is another likely factor that adds to leukemic progression. Further research on 

BCR evolution during adoptive transfer should be performed based on an independent cohort 

of 13 Eµ-TCL1 mouse primary tumors that were sequenced for their BCRs and were identified 

to be oligoclonal (not shown in this thesis). Three of these tumors had either no or late 

engraftments or grew very slowly (as observed by the mouse experimentalist). These tumors 

should be studied for clonal evolution by secondary transfers in the future, to strengthen the 

claims made in this thesis. 
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Another important contributor to CLL pathogenesis in Eµ-TCL1 mouse are genomic 

aberrations. Like in human CLL, non-overlapping low-allele frequency (< 5%) SNVs (Somatic 

Nucleotide Variations) were identified in primary and serially transplanted mouse tumors 

using WES (Guieze and Wu 2015). Cellular prevalence using variant allele frequencies (VAFs) 

was calculated over serial transplantations of tumors. This study was first of its kind that 

investigated tumor heterogeneity due to patterns of BCR dynamics in association with SNV-

defined subclones in serially transplanted Eµ-TCL1 mouse tumors (n=7, 4 in-house, 3 publicly 

available). Three patterns of evolving SNV-defined and BCR clonotypes emerged as the 

disease aggressed from primary to secondary tumor. In the first pattern, both BCR clonotypes 

as well as somatic variants were displaced by novel ones after serial transplantation of the 

tumors. In the second pattern BCR clonotype remained constant but new SNV defined 

subclones emerged, and in the last one the same BCR clonotype and somatic variants 

perpetuated at primary and transplanted time points. This revealed a variation in CLL tumor 

evolution with a potent impact on CLL progression, pathogenesis and treatment response. 

The dynamic usage of BCR clonotypes as well as SNV- defined subclones could be indicative 

of varied selection pressures defining the strength of immune responses during the course of 

CLL (Darwiche, Gubler et al. 2018). From these observations the course of CLL in Eµ-TCL1 

mouse seems as heterogenous as in patients. Moreover, the oligoclonality of BCRs in mice, 

reactivity with several autoantigens, and ‘Myc’ overexpression (as suggested in this thesis) 

could be attributed to development of aggressive CLL in the mouse within 5-6 months, which 

in humans occurs at a median age of 70 years. 

 

Effects of ibrutinib treatment on the BCR dynamics, somatic mutation landscape and 

transcription profile of Eµ-TCL1 mouse tumors 

Ibrutinib is used as a first line monotherapy to treat CLL patients. Often around 20% of 

patients relapse due to acquired resistance through mutations in the BTK or PLCG2 genes. 

Therefore, a monoclonal BCR tumor was serially transplanted (by Haniyeh Yazdanparast) to 

investigate genetic and transcriptomic changes inflicted upon ibrutinib treatment and 

eventual resistance in Eµ-TCL1 mouse tumors as well. Tumors were subjected to WES- and 

RNA-sequencing at 6 weeks after start of treatment when they were showing first signs of 

treatment resistance and uncontrolled growth. No apparent genomic changes were observed 
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as a result of ibrutinib treatment. It was hypothesized that 6 weeks was a relatively short 

period for the genetic make-up of the tumors to change as a response to ibrutinib treatment. 

Also, the same monoclonal BCR was identified before and after treating the tumors.  
 

Next, a limma model was constructed that removed effects of tumor proliferation and 

ibrutinib treatment effects, and instead only identified genes whose expression profiles were 

modulated by impact of potential ibrutinib resistance. Pronounced transcriptional changes 

were observed in ibrutinib resistant tumors as compared to vehicle treated ones. From the 

top upregulated genes identified to be putatively involved ibrutinib resistance, Tbet gene was 

chosen for mechanistic studies as a potential therapeutic target to counteract ibrutinib 

resistance (as a follow up study by Dr. Lavinia Arseni). Tbet has been implicated as a potential 

biomarker for pathogenic T cells (Ji, Sosa et al. 2011). It has also been known to enhance 

survival of B cells and play a role in B cell mediated immune responses (Barnett, Staupe et al. 

2016). However, its functional role in clinical setting with respect to B cells remains 

unexplored. 

Even though the tumors stayed monoclonal over the course of this treatment, to conclude 

that ibrutinib treatment induces no selection pressure on BCR dynamics is premature. 

Suggestively, the treatment study should be carried out on Eµ-TCL1 mouse tumors that are 

primarily oligoclonal. Only then a fair conclusion can be drawn about the impacts of ibrutinib 

treatment on BCR dynamics of Eµ-TCL1 mouse tumors. 

 

Heterogeneity in CLL and the Eµ-TCL1 mouse attributed to tumor microenvironment (TME) 

Chronic lymphocytic leukemia is known to have a pro-tumor microenvironment (Wiestner 

2017). The aim here was to first gather insights into differences in CD3+ T cell subpopulation 

abundances across CLL patients, and relate that to heterogeneity in the CLL TME T cell 

compartment in different tissues. Secondly, differential proportions of T cell subpopulations 

in CLL in comparison to control samples were investigated for their potential contribution to 

CLL pathogenesis. These subpopulations could be followed as potent therapeutic targets to 

reinvigorate otherwise supressed immune responses in CLL.  
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Intensities of 32 T cell surface markers were measured using a CyTOF single cell procedure for 

T cells from the TME of 23 lymph node (LN) CLL samples, matched peripheral blood (PB) and 

bone marrow (BM) samples from 8 and 3 patients respectively. This study was the first of its 

kind to study the TME of CLL LN samples at the single cell level. 
 

Interestingly, it was observed that the exhausted (Tex3) phenotype of CD4+ T cells was 

prominent in CLL lymph nodes as compared to PB and BM samples from the same patients. 

PB and BM samples on the other hand had enrichment of central-memory (Tcm) and TH1 

KLRB1 TBET+ cells (figure 3.8). Two previous gene expression microarray studies profiled B 

cells from matched LN, BM and PB samples from CLL patients. LN-resident malignant B cells 

manifested activated BCR, NF-kB signalling and showed an increased proliferation rate 

(Mittal, Chaturvedi et al. 2014). Furthermore, the fraction of newly divided B cells was found 

to be highest in LNs as compared to PB or BM (Wiestner 2017). My finding of enriched 

exhaustion in LNs is in line with observations from the microarray studies that are indicative 

of a pronounced disease in LN as compared to BM and PB. Also, the proteomic profile of BM 

and PB T cells was similar as these samples clustered together and separated from the LN 

samples in the CD4+ cell type. This raises concerns about appropriateness of BM and PB 

samples for investigating CLL linked exhaustion. 

 

A limma model that normalized differences in library size across samples was constructed to 

identify differentially expressed T cell subpopulations between CLL (n=23) and control (n=13) 

LNs. CD4+ naïve, Tex1 PD1hi and Tem1 Ki67+ CD38+ were significantly less frequent in tumor 

LNs v/s control LNs (figure 3.9). Intriguingly, T cells with higher expression of CD38 are known 

to promote immune response, and Ki67 is a proliferation marker (for T cells in this case) 

(Soares, Govender et al. 2010, Konen, Fradette et al. 2019, Santegoets, Duurland et al. 2019). 

Observation of reduced expression of these cells in CLL tumor LN complements a 

compromised immune response in CLL. When treatment information is added to the model, 

the decrease attributed to CLL in naïve and Tem1 Ki67+ CD38+ subpopulations, is rescued. 

However, it should be noted that increase in CD38 on T cells has also been known to enhance 
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immune-suppressiveness (Glaria and Valledor 2020). Their rescue after treatment addition, 

could also imply expansion of a treatment resistant CLL clone. 
 

Subpopulation with characteristic high expression of ICOS surface marker was identified in 

the CyTOF analysis of the CD4+ T cell type. Lymph node samples contributing a higher 

proportion of this subpopulation were of IGHV-mutated CLL type. There was a significant 

difference in contribution of ICOS+ cells between IGHV-mutated and IGHV-unmutated CLL 

cases (p-values for Wilcoxon rank sum test, performed by Dr. Murat Iskar: CD4+: 0.02). ICOS 

is known to be involved in development and reactivation of both T and B cells. They possibly 

contribute to survival of T cell responses (Mahajan, Cervera et al. 2007). This could be a reason 

for their enrichment in IGHV-mutated CLL cases and diminished expression in aggressive 

IGHV-unmutated cases.  
 

Further analysis is underway to identify T cell subpopulations that actively engage with CLL 

cells. This is being performed by Laura Llao Cid and Dr. Murat Iskar utilizing tools like 

CellPhoneDB (Efremova, Vento-Tormo et al. 2020) and NicheNet (Browaeys, Saelens et al. 

2020). Interacting populations will then be followed up for in-vivo studies. 
 

Nine CD4+ T cell subpopulations were identified using scRNA sequencing. T-cytotoxic 

subpopulation was uniquely identified in the transcriptome data as compared to the CyTOF 

proteome dataset. Several effector-memory T cell subtypes were identified. When patient 

CD4+ CLL T cell data was compared to that from spleens of Eµ-TCL1 mice, it was found that 

the mouse TME did not have specific T-effector-memory subpopulations (no expression for 

CCR6, KLRB1, CXCR5 was observed) (figure 3.16 b). Instead 7 out of 12 mouse subpopulations 

showed expression of T-cytotoxic markers like GZMB, GZMH and NKG7, pointing towards 

activated T cells potentially engaging with neoantigens. In addition, interferon responders 

were uniquely identified as one of CD4+ T cell subpopulations in mouse. The physiological and 

genetic predispositions of the CLL mouse model during disease development are very 

different from that of CLL in patients including the comparatively fast development of CLL in 

mice and minimum or no previous infections to generate T-effector-memory cells. These 

differences potentially contribute to a different TME in the mouse. 
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scTCR sequencing paired with scRNA seq for 3 CLL lymph node samples identified T cell 

clonotypes expanding in response to antigens including the ones presented by tumor cells. 

One of the expanded clonotypes identified using VDJdb (analysis by Laura Llao Cid) was 

previously reported to expand against DST2 (overexpressed on CLL B cells).  
 

Lastly, human CLL lymph node scRNA profiles for CD4+ and CD8+ subpopulations were 

compared to lymph node profiles from publicly available breast cancer LN TME data (Azizi, 

Carr et al. 2018). Most of the subpopulations like Tem, Tregs, and naïve from CLL CD4+ and 

CD8+ cell types integrated to similar subpopulations in the breast cancer dataset. 

Interestingly, however a CLL specific subpopulation with mixed CD4+ and CD8+ 

subpopulations were observed (annotated as Tem1 integrated dataset of two cohorts), that 

clustered separately from the breast cancer dataset (figure 3.18). It could be speculated that 

these are cells in the TME of CLL, that have a modulated disease specific transcription profile. 

Also, lymph nodes of breast cancer patients showed an increased proportion of naïve cell 

population as compared to CLL lymph nodes. The reason for decreased proportion of naïve 

subpopulation and increase in effector T cells in CLL lymph nodes as compared to those of 

breast cancer patients, is that the lymph node is the primary site of tumor cells in CLL. 

 

Limitations 

Ibrutinib treatment study should be performed in Eµ-TCL1 mouse tumors with oligoclonal 

BCRs, to claim whether ibrutinib resistance has a role in modulating BCR evolution 

culminating in an entirely new ibrutinib resistant BCR clone. 

Differences at single cell level in tumor microenvironment profiles of CLL from LN, BM and PB 

raise concerns about using BM and PB patient samples for studying CLL linked exhaustion. 

Another limitation of the present study was the absence of controls as reference for scRNA 

RNA profiles of CLL LNs.  
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Conclusion 

In conclusion, in this thesis I have pointed towards the possible role of ‘Myc’ amplification in 

predisposing the Eµ-TCL1 mouse to CLL. I inferred that there are three distinct patterns of 

tumor evolution in Eµ-TCL1 mouse tumors, characterized by dynamics of BCR clonotype and 

SNV-defined clones in primary and serially transplanted tumors. Oligoclonal BCRs were 

observed in 77% of mouse tumors. In addition, the previous role of autoantigens in CLL 

progression, was reinstated here by identification of stereotyped B cell receptor 

rearrangements in the in-house mouse tumor cohort. These observations point towards a 

heterogenous CLL course in mice. From my investigation of transcriptional profiles of ibrutinib 

treated tumors, the Tbet gene is now being followed up for its role in drug resistance. By the 

proteomic characterization of the T cell compartment in CLL patients and mouse model, I was 

able to identify several subpopulations that have roles in CLL pathogenesis, e.g. CD4+ Tem1 

Ki67+ CD38+ with potential role in rescuing the immune suppressive CLL niche. Lastly, I also 

compared CLL LN T cell transcription profiles to those from Eµ-TCL1 mouse and publicly 

available breast cancer dataset. Comparison with mouse revealed much more heterogenous 

effector and effector-memory subsets as compared to patients. I was able to identify CLL 

unique effector-memory subpopulation on comparison with T cells from breast cancer 

patients.  

Many of the observations in this thesis comply with existing knowledge about CLL patient and 

mouse BCRs, mutation landscape, and CLL TME. This proves that the computational 

approaches, thresholds, workflows and packages employed here were robust and could be 

used for similar analyses in the future. These findings are important considerations while 

designing mechanistic and drug treatment studies in the Eµ-TCL1 mouse, assessing their 

translational potential in the clinical setting, as well as in independent studies in CLL patients. 

Varied abundances of T lymphocyte exhausted and effector-memory subpopulations in the 

CLL LN, BM and PB are important to consider while testing novel CLL immunotherapies in 

patient samples. 
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6. Supplementary Tables 
 

6.1 Supplementary Table 1 
 
 
 

Sample Alternate_Id Transfer Gender Matched control tissue 

TCL1_217 A506 Primary Male Tail 

TCL1_218 D729 Primary Female T cells from blood 

TCL1_219 B741 Primary Female T cells from blood 
TCL1_220 TCL1_774 Primary Female T cells from blood 
TCL1_221 
(pTCL1_217) 3A3 Secondary Female Same as primary tumor 

TCL1_222 
(pTCL1_219) 2B1-5 Secondary Female Same as primary tumor 

TCL1_223 
(pTCL1_218) 2D3 Secondary Female Same as primary tumor 

TCL1_224 
(pTCL1_220) 2J3 Secondary Female Same as primary tumor 

 
Supplementary Table 1: Eight Eµ-TCL1 mouse tumor cohort used for assessing BCR clonal dynamics 
and SNV-defined clonotypes. 4 primary and their 4 serially transplanted tumors were used. 
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6.2 Supplementary Table 2 

sample_id type treatment TumorSite IGHVstatus gender age 
BC12PB tumor untreated PeripheralBlood NA male 77 

BC05PB tumor untreated PeripheralBlood mutated female 46 

BC09PB tumor untreated PeripheralBlood unmutated male 53 

BC13PB tumor untreated PeripheralBlood NA male 67 

BC14PB tumor treated PeripheralBlood unmutated male 60 

BC15PB tumor treated PeripheralBlood unmutated female 56 

BC1PB tumor untreated PeripheralBlood mutated male 70 

BC8PB tumor treated PeripheralBlood unmutated male 73 

BC3LN tumor untreated LymphNode unmutated female 57 

BC4LN tumor untreated LymphNode mutated male 53 

BC5LN1 tumor untreated LymphNode mutated female 46 

BC8LN tumor treated LymphNode unmutated male 73 

BC9LN tumor untreated LymphNode unmutated male 53 

HD1LN tumor pretreated LymphNode mutated male 72 

HD2LN tumor untreated LymphNode mutated male 77 

HD3LN tumor untreated LymphNode mutated male 69 

HD4LN tumor untreated LymphNode mutated male 79 

HD5LN tumor untreated LymphNode unmutated male 71 

HD6LN tumor untreated LymphNode mutated male 76 

HD8LN tumor untreated LymphNode mutated male 72 

HD9LN tumor untreated LymphNode NA male 75 

BC12LN tumor untreated LymphNode NA male 77 

BC5LN2 tumor untreated LymphNode mutated female 46 

BC13LN tumor untreated LymphNode NA male 67 

BC14LN tumor treated LymphNode unmutated male 60 

BC15LN1 tumor treated LymphNode unmutated female 56 

BC15LN2 tumor treated LymphNode unmutated female 56 

HD10LN tumor untreated LymphNode mutated male 70 

HD11LN tumor treated LymphNode NA male 69 

BC10LN tumorHodgkin untreated LymphNode unmutated female 59 

BC09BM tumor untreated BoneMarrow unmutated male 53 

BC11BM tumor treated BoneMarrow unmutated male 52 

BC3BM tumor untreated BoneMarrow unmutated female 57 

BC1LN tumorAcc untreated LymphNode mutated male 70 

BC2LN tumorAcc untreated LymphNode unmutated male 69 

RLN1 control untreated LymphNode NA male 36 
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Supplementary Table 2: 48 samples used for CyTOF analysis. Out of these 8 samples were from patient 
peripheral blood (PB), 3 from patient bone marrow (BM), 23 from patient lymph node (LN), and 13 
from control lymoh nodes (rLN).2 LN samples were from the same patient. 
 
  

RLN2 control untreated LymphNode NA male 32 

RLN3 control untreated LymphNode NA male 50 

RLN4 control untreated LymphNode NA female 39 

RLN5 control untreated LymphNode NA male 20 

RLN6 control untreated LymphNode NA male 49 

RLN7 control untreated LymphNode NA male 18 

RLN8 control untreated LymphNode NA male 33 

RLN10 control untreated LymphNode NA female 52 

RLN9 control untreated LymphNode NA male 20 

RLN11 control untreated LymphNode NA female 34 

RLN12 control untreated LymphNode NA male 30 

RLN13 control untreated LymphNode NA male 59 
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6.3 Supplementary Table 3 
 
 

Antigen Isotope Clone Manufacturer   
Exhaustion         

2B4 113 In C1.7 Biolegend   
KLRG1 115 In SA231A2 Biolegend   

CD278/ICOS 148Nd C398.4A Fluidigm   
TIGIT 153Eu MBSA43 Fluidigm   

CD152 (CTLA-4) 170Er 14D3 Fluidigm   
CD279 (PD-1) 174Yb EH12.2H7 Fluidigm   

CD38 144Nd HIT2 Fluidigm   
CD47 209Bi CC2C6 Fluidigm   

Enzymes       
 

CD73 (Ecto-5-nucleotidase) 168Er AD2 Fluidigm 
 

CD39 160Gd A1 Fluidigm 
 

General (for cell type discrimination) 
 

  
CD3 141Pr UCHT1 Biolegend T cells 
CD4 145Nd RPA-T4 Biolegend CD4 T cells 

CD8a 146Nd RPA-T8 Biolegend CD8 T cells 
FoxP3 162Dy 259D/C7 Fluidigm Tregs 
CD25 169Tm 2A3 Fluidigm Tregs (but not 

only) 
CD45RA 143Nd H100 Fluidigm 

 

CD45RO 164Dy UCHL1 Fluidigm 
 

CD27 155Gd L128 Fluidigm 
 

CD197 (CCR7) 167Er G043H7 Biolegend 
 

CD7 147Sm CD7-6B7 Fluidigm 
 

CD127 (IL-7Ra) 149Sm A019D5 Fluidigm 
 

CD185 (CXCR5) 171Yb 51505 Fluidigm 
 

Cytokines         
FAS 152Sm Mab11 Fluidigm 

 

granzyme K 142Nd GM26E7 Biolegend 
 

OX40 158Gd B27 Fluidigm 
 

CD44 166Er MQ1-
17H12 

Fluidigm 
 

Transcription Factors 
    

TCF1 163Dy 7F11A10 Biolegend 
 

Tbet 161Dy 4B10 Fluidigm 
 

Eomes 175Lu WD1928 ebioscience 
 

tox 150Nd TXRX10 ebioscience 
 

HELIOS 156Gd 22F6 Biolegend 
 

Proliferation 
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Ki-67 172Yb B56 Fluidigm 
 

Technical 
    

CD85J 190BCKG 
   

Ba138 138Ba 
   

Ce140 Ce140 
   

HLA_DR 151Eu 
   

127I 127I 
   

DNA1 191Ir 
   

DNA2 193Ir 
   

207Pb Pb207 
   

208Pb Pb208 
   

195Pt Pt195 
   

196Pt Pt196 
   

 
Supplementary Table 3: Panel of 43 markers used for CyTOF measurements. They have been divided 
into sections depending upon their characteristic phenotype. 
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