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Die konstruktive Gravitationstheorie wurde im vergangenen Jahrzehnt entwickelt, um Einsteins
Herleitung der allgemeinen Relativitätstheorie auf Materietheorien mit nicht-Lorentzscher Geo-
metrie zu erweitern. Diese Arbeit beschäftigt sich mit der Phänomenologie der Generalisierten
Linearen Elektrodynamik (GLED), der maximalen linearen Verallgemeinerung der Maxwell-
schen Elektrodynamik, und der dazugehörigen Gravitationstheorie. Wir leiten die Regeln für
Streuprozesse in der Dirac-Quantenmechanik her und berechnen damit die Zerfallsbreite für den
Cherenkov-E�ekt im Vakuum, den überlichschnelle Teilchen in der GLED zeigen. Damit werden
zwei der nicht-Lorentzschen Parameter der GLED der Messung zugänglich. Im Grenzfall kleiner
Gravitationsfelder untersuchen wir die Stabilität symmetrischer astrophysikalischer Massevertei-
lungen, die durch die Eigengravitation gebunden sind, sowie die innere Struktur von Sternen.
Anhand der Rotationskurven von Galaxien lassen sich Bereiche für die beiden zusätzlichen Gra-
vitationskonstanten der schwachen GLED-Gravitation eingrenzen. Abschlieÿend wird das lineare
Wachstum von Strukturen im frühen Universum untersucht. Eine störungstheoretische Erweite-
rung der linearen Lösungen führt auf die führende Ordnung des Bispektrums.

In the last decade, the constructive gravity programme was developed to expand Einstein's
derivation of general relativity to matter bearing a non-Lorentzian geometric structure. This
thesis studies the phenomenology of general linear electrodynamics (GLED), the maximal linear
generalisation of Maxwellian electrodynamics, and its corresponding gravitational dynamics. We
derive quantum interaction rules for GLED Dirac quantum mechanics to determine the decay
width of the Cherenkov decay of superluminar particles in vacuum. With this, we obtain two non-
Lorentzian parameters of the GLED geometry. We employ a weak �eld limit of GLED gravity
in astrophysics, study the stability of symmetric gravitationally bound matter distributions and
the internal structure of stars. Using galaxy rotation curves, we are able to estimate ranges for
both additional gravitational constants arising from weak �eld GLED gravity. Finally, we derive
and solve the linear growth equation which governs the structure formation in the early Universe,
and calculate the bispectrum in tree-level perturbation theory.
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1. Introduction to General Linear

Electrodynamics Induced Gravity

1.1. The Link Between Matter and Geometry

Two very successful theories have been crucial to the development of modern physics: The stan-

dard model of particle physics for the description of matter and its interactions as the quantum

�eld extension of Maxwellian electrodynamics, and general relativity for dynamics of the space-

time structure being responsible for gravity. Both theories are based on a common Lorentzian

metric background geometry of the Universe. The discovery of new phenomena requires a consis-

tent adaptability of the current standard model. For instance, the Higgs mechanism seamlessly

�ts into an extension of the standard model, while the issue of dark matter still needs to be

solved.

The mystery of dark matter has been an ongoing topic in physics for more than eight decades

[51]. Over 80% of the Universe's matter seems to be unknown [1]. Phenomena connected to dark

matter are known on a large range of length scales between the size of galaxies and e�ects on the

cosmic microwave background. Two possible solutions have been widely discussed: New dark

matter particles further extending the standard model of particle physics and modi�cations of

gravity. Though neither has been able to completely explain dark matter phenomena yet [3, 7],

the discussion has led to interesting propositions beyond metric geometries. Most notable are

modi�cations to general relativity with the intention of an e�ective MOND(modi�ed Newtonian

dynamics)-like [35] phenomenology on galactic scales and emulating a cosmological constant on

even larger scales.

In these modi�cations, theories for gravity and matter often are considered separately; while

one is to be modi�ed, the other is left unchanged. However, if one takes the principles of

general relativity literally, both theories are entangled by their causal structure encoded in the

background geometry. Indeed, Einstein's derivation of general relativity was directly based on

the structure of Maxwellian electrodynamics [18]. This derivation was re�ned by [28, 32] using

modern mathematical techniques emphasising the bond between the descriptions of matter and

gravity. These results can be interpreted in a way that one speci�c matter theory can only

support a single matching theory of gravity.

During the last decade, the constructive gravity programme was developed to extend the insights

from the derivation of general relativity to other theories. Based on the idea that both matter

and geometric dynamics should share the same causality, a set of di�erential equations, called

1
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construction equations, was developed which o�ers a consistent way to derive the equations

of motion for a spacetime corresponding to any suitable action de�ning matter dynamics (see

section 1.2). Modifying the background geometry subtly changes physics on all scales. Known

e�ects for speci�c choices of non-Lorentzian matter actions include a geometry dependent split

of the hydrogen triplet [21], additional modes of gravitational waves [36] and the introduction of

a second scale factor in cosmology [17].

In this thesis, we inspect three di�erent phenomena for general linear electrodynamics (see 1.3),

a classical generalization of Maxwell's theory. We will see that the structure of spacetime is

buried even in fundamental insights known for decades, and both quantum theory and gravity

have to be changed accordingly. The e�ects may not show up in the laboratory, at least to the

expansion order considered in this work, but rather in extreme environments and integrated on

galactic to cosmological scales.

In chapter 2 we will develop the relativistic quantum mechanics for general linear electrodynamics

using the Dirac formalism. We will provide a prescription for calculating decay widths and cross

sections, and apply this to the Cherenkov e�ect in vacuum which is possible due to the more

complex spacetime structure of general linear electrodynamics.

Chapter 3 deals with the derivation of a weak �eld limit of linearised GLED gravity similar

to the Newtonian limit of general relativity. With this limit, we investigate orbital velocities,

gravitational stability conditions and symmetric models with two astrophysical applications:

We look into the structure of a star governed by general linear electrodynamics and estimate

gravitational constants using rotation curve observations of regular galaxies.

Chapter 4 covers cosmic structure formation. We will assess re�nements of the Jeans criterion,

derive a linear growth equation and inspect stability conditions on the growth of structures.

Afterwards, non-linear structure formation is covered perturbatively on tree-level.

In the concluding chapter 5 we will give an overview on the results derived in this thesis, pro-

pose regimes where to search for non-Lorentzian features covered by the constructive gravity

framework and give an outlook on future research topics.

2
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1.2. Constructive Gravity

The idea of the constructive gravity programme is that both the dynamics of matter �elds A(i)

and the gravitational dynamics of the spacetime background share the same causality in a sense

that they canonically evolve initial value surfaces in a common way. This can be used to derive

gravity from a prescription of the matter dynamics. The spacetime is de�ned as a pair (M,G)

of a smooth four-dimensional manifold M and a tensor �eld G(x), which will be a Lorentzian

metric in general relativity. Using this co-evolution condition it has been shown, that the entire

gravitational dynamics can be derived from the properties of the matter theory [49].

The causality of a matter theory that can be used to link it to its corresponding gravity theory is

encoded in the principal polynomial density P̃ (k). It can be derived from a scalar matter action

S[A;G) by taking the determinant of the highest derivative order F in the corresponding matter

�eld equations

0 = Qi1...iFAB (G(x))
(
∂i1 ...∂iFA

B) (x) +O(∂F−1A)

giving

P̃ (k) = ω̃ det
AB

(
Qi1...iFAB (G(x))ki1(x)...kiF (x)

)
(1)

for a �xed gauge. ω̃ is a free density factor to ensure P̃ (k) is of order one and the indices

A,B = 1...R denote a basis to the GL(4) transformation algebra of the matter �elds with R

dimensions.

For example, Maxwellian electrodynamics and its quantum counterparts up to the standard

model of particle physics share the same principal polynomial density

P̃ (k) =
√
−|g|gabkakb (2)

with the Lorentzian metric gab (see e.g. [16]).

By dedesitizing P̃ (k) with a non-vanishing factor ω(G) of opposite weight, one gains the principal

polynomial P (k) from which the whole spacetime kinematics can be derived. To be suitable for

this derivation, the principal polynomial of a matter theory has to satisfy certain conditions

[17, 43]:

3
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gabkakb = 0 habkakb = 0

gabkakb = 0

Fig. 1.: Examples for hyperbolicity cones of a metric principal polynomial P ∝ gabkakb (left)
and a bimetric polynomial P ∝ gabhcdkakbkckd (right) in cotangent space. The grey
cones in the upper and the lower half space individually provide a hyperbolicity
cone. The dashed line indicates a mass shell within the upper cone.

1. Predictivity: The theory shall allow for the unique prediction of future values of the matter

�elds A or, mathematically more precise, the dynamics of matter shall be a well-posed initial

value problem. The polynomial P has to be hyperbolic at every point of the manifold x ∈ M
to ful�l this condition [43]. A polynomial P is hyperbolic with respect to a covector p ∈ T ∗xM
that su�ces P (p) 6= 0 when all solutions λ0 to P (q + λp)(x) = 0 are real for any other covector

q ∈ T ∗xM , where T ∗xM is the cotangent space at a point x. If such a p exists, the connected set

of hyperbolic covectors it will be an open convex cone Cx(P,p) called the hyperbolicity cone. If

P (k) can be written as a �nite product of lower order polynomials

P (k) = P1(k)...Pn(k), (3)

the hyperbolicity cone is given by the intersections of the lower order cones [17]

Cx(P,p) = Cx(P1,p) ∩ ... ∩ Cx(Pn, p). (4)

Fig. 1 shows the hyperbolicity cones for a second order metric and a fourth order bimetric

principal polynomial. When both light cones of the latter do not intersect, eq. 4 states that the

inner null surface cone constitutes the hyperbolicity cone.

2. Momentum-velocity duality: A physical theory should allow for a distinct de�nition of the

direction of time. Otherwise, it would not be possible to de�ne observers and one could not iden-

tify a momentum from cotangent space with a velocity in tangent space, i.e. a Hamiltonian and

4



Cosmological and Astrophysical Tests of Constructive Gravity Hans-Martin Rieser

a Lagrangian description of the theory. As shown in [43], a distinct time orientation corresponds

to the hyperbolicity of the dual polynomial P# de�ned as the product

P#(x) :TxM → R

P#(x) =P#
1 (x)...P#

n (x)

where the gradients ∂Pi
∂k of the constituents of the principal polynomial from eq. 3 are the roots

of P#
i for all null covectors of Pi with non-vanishing gradient

P#
i

(
x,
∂Pi
∂k

(x, k)

)
= 0 ∀k ∈ T ∗xM |Pi(x, k) = 0 and

∂Pi
∂k

(x, k) 6= 0.

3. Energy Distinction: The last condition deals with giving the energy of momenta an observer-

independent sign, which is necessary for the theory to be canonically quantizable. This corre-

sponds to �nding the maximal set of local observers Ox ⊂ TxM whose dual cone

O+
x = {q ∈ T ∗xM |U(q) > 0∀U ∈ Ox} (5)

splits the cone of massless momenta Nx into disjunct positive and negative subsets

Nx\{0} =
(
Nx ∩ (+O+

x )
)
∪̇
(
Nx ∩ (−O+

x )
)
. (6)

The observer cones for a bi-hyperbolic geometry are provided by the ones whose dual in co-

tangent space is given by any of the hyperbolicity cones of P# [43].

A principal polynomial P that su�ces the three conditions now can be used to �nd massless and

massive dispersion relations

P (k) = 0

P (p) = mdegP .
(7)

The massive dispersion relation de�nes mass shells indicated in Fig. 1. A mass shell is the

hypersurface de�ned by the part of the solution for the dispersion relation that is within the

hyperbolicity cone of P for a given mass m. In most cases, it is possible for massive trajectories

to be outside the observer cone as the dual of the hyperbolicity cone of P does not coincide with

5



Cosmological and Astrophysical Tests of Constructive Gravity Hans-Martin Rieser

Σt−1

Σt

Σt+1

N0

Nα

Nβ

Fig. 2.: Spacetime foliation into initial value hypersurfaces

the hyperbolicity cone of P# in general. Therefore, massive momenta exist that do not de�ne

observers. These are not stable and decay via a Cherenkov e�ect in vacuum (see section 2.3.2).

The cone of massive momenta Cx can be mapped to tangent space by the Legendre map

lx : Cx → TxM ; lx(p) =
1

degP

∂ lnP

∂p
(x, p)

at each point x of the manifold M . As P is bi-hyperbolic, also the inverse l−1
x exists.

Gravitational Dynamics If the geometric spacetime structure of a matter theory ful�ls this

three conditions, the gravitational dynamics can be derived from its geometry, which has been

done �rst by [49]. For this thesis, a sketch of the underlying ideas is su�cient. The technical

details can be found in [16], who provide a signi�cant re�nement to previous derivations.

The geometric structure from above can be used to foliate spacetime into initial value hyper-

surfaces Σt along a time coordinate t where the Legendre maps lx and l−1
x are the link between

the tangent space coordinates and the dual frame. The evolution of these hypersurfaces can be

expressed by a lapse �eld N0 which describes the deformation in time direction given by the

hyperbolic co-normal ε0 and the shift �eld N operating within the hypersurface. Lapse and shift

are generated by functional di�erential operators Ht(N
0) and Dt(N) that su�ce a Lie algebra

known as deformation algebra.

Projecting the geometry to the hypersurfaces, the dynamical structure of foliated space time can

be identi�ed with a phase space description on the surfaces. The Lie deformation algebra induces

a Poisson algebra for the functionalsHt(N0) andDt(N) that act as phase space avatars ofHt(N
0)

and Dt(N). In this pahse space construction, a Hamiltonian H(φ, π,N0, N) = Ht(N0) +Dt(N)

describes the gravitational dynamics for arbitrary geometries [28].

Evaluating the deformation algebra relations on phase space, one gains a countable set of dif-

ferential equations that fully determine the gravitational action and the Hamiltonian dynamics.

The full calculation and the most recent version of these construction equations can be found in

[17].

6
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For a metric geometry, the principal polynomial P (k) = gabkakb corresponding to the density

from eq. 2 coincides with the metric tensor and the Legendre map lx also is given by the metric

itself. The three matter conditions translate to the requirement of a Lorentzian signature of the

metric. Plugging this into the construction equations, the Einstein-Hilbert action is recovered.

7
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1.3. General Linear Electrodynamics

Besides the matter theories with a Lorentzian geometric structure, the construction equations

have not been solved completely for any other theory yet. The most progress has been achieved

for general linear electrodynamics (GLED), a theory proposed e.g. by [26, 49] in analogy to

the e�ective theoretical description of birefringent anisotropic dielectrica. The theory is the

maximal linear extension of Maxwellian electrodynamics employing a non-metric causal structure

of spacetime. Its Lagrange density has the form

Lmat(x) = ja(x)Aa(x) + ωGabcdFabFab (8)

introducing a fourth rank tensor Gabcd = G([ab][cd]) antisymmetric in the �rst and the second pair

of indices and symmetric to an exchange of both pairs. It is sometimes referred to as area metric

because the geometry de�nes a area measure of two vectors x, y rather than a distance measure

as for a metric by

G([ab][cd])x
aybxcyd, (9)

where G([ab][pq])G([pq][cd]) = 4δD
[c
aδD

d]
b. General linear electrodynamics has a richer phenomeno-

logy compared to Maxwellian theory. Due to the similar geometric structure, phenomena known

from anisotropic dielectrica now can be found in vacuum, birefringence and Cherenkov radiation

for example. Furthermore, the interpretation of distance measurements has to be adjusted [37]

and lensing in vacuum is modi�ed [48]. The theory has been quantized on quantum mechani-

cal level and it has been shown that a quantum �eld theoretical description of general linear

electrodynamics is renormalisable [21].

In the constructive gravity framework, three main advancements towards gravitational dynamics

for this matter theory have been made. From seven algebraic classes for the tensor Gabcd only one

ful�ls the three matter conditions from the previous section [43]. Using a Petrov representation,

Gabcd always can be transformed to a frame where the independent components are given by



G0101 G0102 G0103 G0123 G0131 G0112

G0202 G0203 G0223 G0231 G0212

G0303 G0323 G0331 G0312

... G2323 G2331 G2312

G3131 G3112

G1212


=



−τ1 0 0 σ1 0 0

−τ3 0 0 σ3 0

−τ2 0 0 σ2

... τ2 0 0

τ3 0

τ1


(10)

8
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with six free parameters τi and σi. The special case of products of two Lorentzian metrics are

given by σi = 0; for τi = 1 the theory reduces to Maxwellian electrodynamics with a single

Lorentzian metric. The principal polynomial for general linear electrodynamics has the form

P abcd = − 1

Ψ2
εmnpqεrstuG

mnr(aGb|ps|cGd)qtu (11)

using the dedensitisation

Ψ =
√

4!εabcdG
abcd. (12)

The construction equations for this principal polynomial have not been solved yet, but grav-

itational equations of motion are available for small deviations h from a Minkowski metric

Gabcd = ηabηcd + habcd [44]. Both chapters 3 and 4 are based on this solution. We will call

this solution linearised GLED gravity in this thesis.

Using an approach with cosmological symmetries, three re�ned Friedmann equations were derived

by [17]. However, they have not been solved to date and therefore changes to the cosmological

background could not be included in this work (see section 4.1).

9



2. Dirac Quantum Theory for General Linear

Electrodynamics

The results of this chapter will be published as

H-M Rieser, B M Schäfer

Quantum Interactions in Possibly Birefringent Matter Theories

2.1. Non-Lorentzian Scattering Theory

A non-Lorentzian matter theory like general linear electrodynamics can be quantized similar to

Maxwellian electrodynamics. However, a theory's spacetime geometry is deeply inscribed into

the structure of its quantum counterpart. This has to be taken into account when dealing with

theories with a more complex spacetime.

In this section, we will revisit how scattering processes are modeled and carefully inspect every

step of the derivation whether a metric structure of spacetime is to be replaced by a more general

geometric object. The methods used are an extension of the standard approach from [23, 30, 45]

to general non-Lorentzian geometries.

Interaction

ST

..
.ni ..
. nf

Fig. 3.: A general model for a particle interac-
tion process

Scattering or decay processes can be seen as a

set of ni asymptotically free initial momentum

eigenstates that interact and produce a set of

nf free �nal momentum eigenstates. We will

refer to these states as particles. At this point,

the interaction is assumed to take place in a

de�ned spacetime box with the dimensions T ,

L3 centred at t = 0, xi = 0 containing no other

particles than the interacting ones as depicted

in Fig. 3. The box is assumed to be su�ciently

large such that no particles do interact with each other on the outside and therefore really are

free particle solutions of the respective matter theory. We will denote the quantum numbers of

initial states with |i〉 =
∣∣p(1), p(2), ..., p(ni)

〉
and the �nal states with a tilde above the respective

momenta (|f〉 =
∣∣p̃(1), p̃(2), ..., p̃(nf )

〉
) with three-dimensional momenta p. The interaction is

modeled by a unitary scattering matrix S connecting the initial and the �nal states

10
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∣∣i′〉
+T

2
= ST |i〉−T

2
,

with the old state |i〉−T
2
at time −T

2 and the new state |i′〉+T
2
at time T

2 , which usually is a

superposition of a whole set of possible �nal states F = {|f〉}. This set may be a subset of

all possible �nal states, e.g. all states that contain a certain amount of particles. Interaction

probabilities can be determined by using the pure scattering matrix R = S − 1 where the non-

interacting case has been removed. The probability density of getting from a given initial state

|i〉 to a single given �nal state |f〉 is

Pi→f =
|〈f |R |i〉|2

〈i |i〉 〈f |f 〉
(13)

with 〈· |· 〉 ∝ V n· , where V is a volume measure depending on the normalization of the states

|·〉.

As we assumed free particles outside the interaction box, two further aspects have to be con-

sidered. First, the T dependence drops out and one can take the limit T → ∞. Second, the

momenta of the particles are not arbitrary, but constrained to their mass shells M that are

3-dimensional hyperplanes of a 4-dimensional spacetime. Therefore, a phase space integration

over the probability densities of all f ∈ F has to be done on momenta on the mass shells instead

of plain R3. In spacetimes based on a single Lorentzian metric, this mass shell based phase space

reduces to what is known as Lorentz invariant phase space (LIPS).

The mass shells are determined by the solutions of the dispersion relation P (p), which restricts

the energy part of the four-dimensional momentum p
(i)
0 and p̃

(i)
0 via their respective dispersion

relations (see section 1.2):

� Massive particles have to ful�ll P (p) = mdegP

� Massless particles have to ful�ll P (k) = 0 (massless momenta are named k instead of p to

be easily distinguishable)

� Transforming a hypersurface integral to a R3 integral via some coordinate chart Φ as seen

in Fig. 4 yields
∫
M(f)

=
∫ d3p̃(f)

(2π)3

√∣∣∣DΦT
(f)DΦ(f)

∣∣∣ =
∫ d3p̃(f)

(2π)3 Ω(p̃(f))

So, the probability for an interaction to yield an entire set of �nal states F in some region

UF ⊂M of a mass shell is

Pi→F =
∑

nf∈{nF }

1

V (ni+nf )

∫ L
2

−L
2

d3x̃(1)d3x̃(2)...d3x̃(nf )

∫
UF

∣∣∣Rnf (p(1), ..., p(ni), p̃(1), ..., p̃(nf )
)∣∣∣2
(14)
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R3
(f)

M(f) ⊂ R4
Φ(f) Φ−1

(f)

Fig. 4.: Map between a mass shell submanifold and the coordinate chart

in the momentum representation, where the set F might consist of states with di�erent particle

numbers nf giving the set of particle numbers {nF }. When having di�erent particle types, the

particle number nf is replaced by a multi-index notation.

At this point the question arises, whether the volume elements used in the integration still

hold for non-metric geometries. In the Hamiltonian description using position variables and

conjugated momenta, the phase space is a symplectic manifold. For these manifolds, one can

directly construct the volume element of phase space given by the exterior product
∑D dxi∧dpi

for a D-dimensional underlying manifoldM. From the phase space of the symplectic manifold

one can construct a map to R2D with a volume element ∝ dDxdDp.

12
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2.2. General Linear Electrodynamics Induced Bimetric Theory

2.2.1. Geometric Structure

The considerations up to this point apply to any quantizable matter theory. To proceed further,

we need to employ a speci�c dispersion relation. Working in a 3+1-split, we can express the

principal polynomial of general linear electrodynamics from eq. 11 by spatial �elds deduced

from the full 4-dimensional tensor Gabcd, where Greek indices run from 1 to 3 [44]:

Gαβ =−G0α0β

Gαβ =
1

4detG
εαµνεβτωG

µντω

Gαβ =
1

2
√
detG

εβµνG
0αµν − δD α

β.

(15)

In this decomposition, we get for the components of P abcd

P 0000 =
4

Ψ2
εµντεωπφG

µωGνπGτφ

Pα000 =
12
√
detG··

Ψ2
εµντG

µαGνωGτ ω

Pαβ00 =
4detG··

Ψ2

[
2GαµGβνG

ν
µ + 2GβµGανG

ν
µ − 2GαβGµνG

ν
µ +GαβGννG

µ
µ −GµνGανGβµ

−GαµGβµGνν −GβµGαµGνν −GαβGµνGµν +GαµGβνGµν

]
Pαβγ0 =

2(detG··)
3
2

Ψ2

[
εαµν

(
2GβγGµτG

τ
ν +GβτGντG

γ
µ +GγτGντG

β
µ +GβµG

γ
τG

τ
ν +GγµG

β
τG

τ
ν

)
+ εβµν (2GαγGµτG

τ
ν +GατGντG

γ
µ +GγτGντG

α
µ +GαµG

γ
τG

τ
ν +GγµG

α
τG

τ
ν)

+εγµν
(

2GαβGµτG
τ
ν +GβτGντG

α
µ +GατGντG

β
µ +GβµG

α
τG

τ
ν +GαµG

β
τG

τ
ν

)]
Pαβγδ =

2(detG··)2

Ψ2
Gµτ

[
εαµνεβωτ

(
GνωG

γδ +GγωG
δ
ν +GγνG

δ
ω

)
+ εαµνεγωτ

(
GνωG

βδ+GβωG
δ
ν +GβνG

δ
ω

)
+ εαµνεδωτ

(
GνωG

γβ +GγωG
β
ν +GγνG

β
ω

)
+ εγµνεβωτ

(
GνωG

αδ +GαωG
δ
ν +GανG

δ
ω

)
+ εδµνεβωτ (GνωG

αγ +GγωG
α
ν +GγνG

α
ω)

+ εγµνεδωτ
(
GνωG

αβ +GαωG
β
ν +GανG

β
ω

)]
with the dedensitization Ψ given in eq. 12. In this projection,

Ψ =

√
4!detG··

(
1 +

GµνδD
ν
µ

3

)
.

13
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To obtain computable results, we will restrict general linear electrodynamics to a bimetric sub-

class of theories for the remainder of this chapter. So far, the term bimetric has been used

for a variety of theories that employ two metric tensors in di�erent ways [24, 27, 31]. In this

case, the dispersion relation will be constructed from two di�erent Lorentzian metrics g and h

as P (p) = g−1(p,p)h−1(p,p) = m4. These theories only su�ce the prerequisites of constructive

gravity if they are induced by general linear electrodynamics [43]. However, most ideas from

this derivation will also apply to theories with general bimetric dispersion relations and we will

make use of the restriction to general linear electrodynamics at a late stage. We will indicate the

few points where we speci�cally made use of its special structure. The spacetime described by

these two metrics does not necessarily need to be isotropic. If the bimetric structure is induced

by general linear electrodynamics, it will be either trivial in the sense of g = h or intrinsically

anisotropic.

For simplicity, we will restrict bimetric matter theory to the cases where both light cones are

coaxial and nonintersecting like shown in Fig. 1. They may touch however � which is the case

for a bimetric theory induced by general linear electrodynamics � or even coincide, reproducing

Maxwellian electrodynamics. From this construction, we immediately see that there exists a

local frame such that gab = ηab and hab = Da
c η

cb with the Minkowski metric η = diag(−1, 1, 1, 1)

and D = diag(D2
0, D

2
1, D

2
2, D

2
3) reducing the aforementioned non-intersection condition to ζα =

D2
α

D2
0
≥ 1. For massive particles, the bimetric dispersion relation reads now

h00g00p4
0 +

(
hααg00 − h00gαα

)
p2

0p
2
α + hααgββp2

αp
2
β = m4

D2
0p4

0 + (D2
0 +D2

α)p2
0p

2
α +D2

αp
2
αp

2
β = m4. (16)

2.2.2. Particle States

Solutions to the dispersion relation eq. 16 have to satisfy two conditions to be considered as a

representation of a physical particle as shown in section 1.2: Connected solution subspaces have

to be energy orientable and their covectors have to be hyperbolic. The energies E± = p0,solution

solving the fourth order constraint eq. 16 are all either positive or negative for all observer

frames. The two positive energy solutions are given by

E±(p) =
1√
2

√√√√√∑
α

p2
α(1 + ζα)±

√√√√(∑
α

p2
α(1− ζα)

)2

+
4m4

D2
0

. (17)

Massive particle solutions have to lie within the hyperbolicity cone, which is in this case limited

by the innermost null-surface given by the cone of hab. Only the positive solution E+ ful�ls this

condition and therefore quali�es for being a massive particle as depicted in Fig. 5.

14
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habkakb = 0

gabkakb = 0

E−

E+

pα

E

Fig. 5.: Positive energy solutions for a bimetric dispersion relation in cotangent space pro-
jected on a pα-direction where both light cones do not coincide (ζα 6= 1). Only E+

de�nes a mass shell inside the hyperbolicity cone.

For massless particles, the equation P (k) = g−1(k, k)h−1(k, k) = 0 decouples and yields separate

light cone solutions Eg(k) =
√∑

α k
2
α and Eh(k) =

√∑
α ζαk

2
α for the each of the metrics.

With a concrete spacetime geometry at hand, we can calculate the remaining objects from section

2.1. We �nd that the 4-D embedding factor Ω(p̃(f)) can be evaluated to be

Ω±(p̃(f)) =

∣∣∣∣∣∣∣∣∣∣

(
∂E
∂p̃1

)2
+ 1 ∂E

∂p̃1

∂E
∂p̃2

∂E
∂p̃1

∂E
∂p̃3

∂E
∂p̃1

∂E
∂p̃2

(
∂E
∂p̃2

)2
+ 1 ∂E

∂p̃2

∂E
∂p̃3

∂E
∂p̃1

∂E
∂p̃3

∂E
∂p̃2

∂E
∂p̃3

(
∂E
∂p̃3

)2
+ 1

∣∣∣∣∣∣∣∣∣∣

− 1
2

=

√√√√1 +
∑
α

(
∂E

∂p̃
(f)
α

)2

(18)

with

∂E

∂p̃(f)α
=

1

2E

2p̃(f)
α (1 + ζα) +

(p̃
(f)
α )3(1− ζα)2√(∑

β p̃
2
β(1− ζβ)

)2
+ 4m4

D2
0

 . (19)

for massive particles. In the massless case, the factor reduces to Ωg(k̃
(f)
α ) =

√
2 and Ωh(k̃

(f)
α ) =√

2
∑

α ζα.

To �nd the scattering matrix R, we need a Lagrange density to �nd the Feynman rules for the

speci�c matter theory [30]. In this case, this is the spinor part of the Lagrange density of the

matter theory

Lspinor = Ψ̄ (iΓa∂a −m) Ψ + Ψ̄ (iΓaAa) Ψ, (20)

15
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where Γa are the Dirac matrices corresponding to the particular matter theory. Except from the

usage of di�erent Dirac matrices, the Lagrange density has the canonical form for fermions cou-

pled to a gauge �eld. The changes in the total matter Lagrangian due to using a geometry beyond

the Lorentzian metric are limited to its electromagnetic part. General linear electrodynamics for

example will have a Lagrangian of the form of eq. 8. However, the electromagnetic part of the

Lagrange density has no bearing on the derivation of suitable semi-classical interaction rules, as

the electromagnetic �eld is still modeled in a classical fashion.

Now, we can directly read o� the Feynman rules and obtain

−iRif = Ψ̄(p̃) (iΓaAa(k)) Ψ(p)δD(p− p̃− p) (21)

for the interaction on tree-level and a corresponding generalised Dirac equation

[iΓaDa −m] Ψ = 0. (22)

using Da = ∂a+qAa. The Dirac matrices satisfying this equation can be found for any geometry

using the characteristic equation which is in our case

0 = ΓdegP (p)− P (p)I =
(

Γ(aΓbΓcΓd) − g(abhcd)I
)

papbpcpd.

Using the Dirac matrices from [43] we �nd for our general linear electrodynamics induced bimetric

theory

iΓaDa −m =



−m 0 0 σaDa
0 −m Daσ

aDa 0

Daσ̄
aDa 0 −m 0

0 σ̄aDa 0 −m

0

0

−m 0 σaDa 0

0 −m 0 Daσ
aDa

0 Daσ̄
aDa −m 0

σ̄aDa 0 0 −m


(23)

with the four dimensional Pauli matrices σa = {12×2, σα} and σ̄a = {12×2,−σα}. Note that this
actually is a 16 × 16 matrix with two separate blocks. This is not the minimal solution of the

Γa algebra, as a single one of the blocks would su�ce. However, one cannot �nd a Hermitean Γ

matrix similar to γ in the Lorentzian case for the one-block solution. The doubled representation

has

16
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Γ =



1 0

0 1

0 1

1

1

1 0

1 0

0 1


giving Ψ̄(p) = Ψ†(p)Γ = (Ψ∗7,Ψ

∗
8,Ψ

∗
6,Ψ

∗
5,Ψ

∗
4,Ψ

∗
3,Ψ

∗
1,Ψ

∗
2) for any particle state Ψ(p). 〈Φ|Ψ〉 =∫

Φ̄Ψ ful�lls the �rst two conditions for a complex inner product: It is semilinear (linear in

the second argument) and Hermitean (〈Ψ|Φ〉 = 〈Φ|Ψ〉∗). Nevertheless, the positive de�niteness
is not guaranteed. This doubling of the representation increases the dimension of the solution

space from two possible spin-like states to four. However, the states containing particles � i.e.

having non-vanishing norm � are still restricted to a two-dimensional hyperplane in this 4-D

solution space. The states without particle content can be interpreted as non-physical artefacts

of the doubling trick proposed by [43]. The non-physical states may be formally excluded by

introducing a Lagrange multiplier

Lexclude = Λ(x)
[
1 0 0 0 0 0 0 −1

]
Ψ.

At this point, we cannot fully exclude the possibility that this approach to non-metric quantum

theory may be too inspired from Lorentzian theory and there is an alternative to enlarging

the representation. However, no possible modi�cation of quantum theory for general linear

electrodynamics di�erent from the one shown has been found up to now having only normalizable

states, a physically interpretable scalar product and an algebra motivated by the underlying

fundamental theory at the same time. We will therefore use the interpretation that the non-

normalizable states are indeed artifacts that have to be excluded from further investigations.

The solutions to the Dirac equation (eq. 22) are the particle states of the theory. Here, we will

use a plane waves ansatz Ψ(p) = u(p)e−ipaxa . As both blocks of the matrix iΓaDa−m decouple

in the Dirac equation and each block has one undetermined degree of freedom left, four possible

independent states arise:

u(p) =

(
u1−4

u5−8

)
, u′(p) =

(
u′1−4

u′5−8

)
, u↑(p) =

(
u′1−4

u5−8

)
, u↓(p) =

(
u1−4

u′5−8

)
, (24)

determined by the equations
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mu1 = σapau4

mu2 = Daσ
apau3

mu3 = Daσ̄
apau1

mu4 = σ̄apau2

mu5 = σapau7

mu6 = Daσ
apau8

mu7 = Daσ̄
apau6

mu8 = σ̄apau5.

Having spinors with two a priori independent components, one may think of analogies to Weyl-

spinors with left- and right-handed spinor parts. We will see that the restriction to the norma-

lizable sub-manifold couples the upper and the lower spinor and therefore removes their inde-

pendence with the result of completely Dirac-like spinors. Combining all equations of one block

reconstructs the dispersion relation

m4 = paσ
apbσ̄

bpcσ
cDcpdσ̄

dDd = papbpcpdη
abηcdDcDd = g−1(p,p)h−1(p, p).

This means, one degree of freedom per block can be chosen freely which in fact is a choice of a

spinor basis. We may use the orthogonal choices

u1,8(p) =

(
1

0

)
and u′1,8(p) =

(
0

1

)

which gives the solutions

u1 =

(
1

0

)

u2 = h−1(p,p)
m2

(
1

0

)

u3 = 1
m

(
D0p0 −D3p3

−D1p1 − iD2p2

)

u4 = h−1(p,p)
m3

(
p0 − p3

−p1 − ip2

)

u′1 =

(
0

1

)

u′2 = h−1(p,p)
m2

(
0

1

)

u′3 = 1
m

(
−D1p1 + iD2p2

D0p0 +D3p3

)

u′4 = h−1(p,p)
m3

(
−p1 + ip2

p0 + p3

)

u5 = h−1(p,p)
m3

(
p0 + p3

p1 + ip2

)

u6 = 1
m

(
D0p0 +D3p3

D1p1 + iD2p2

)

u7 = h−1(p,p)
m2

(
1

0

)

u8 =

(
1

0

)

u′5 = h−1(p,p)
m3

(
p1 − ip2

p0 − p3

)

u′6 = 1
m

(
D1p1 − iD2p2

D0p0 −D3p3

)

u′7 = h−1(p,p)
m2

(
0

1

)

u′8 =

(
0

1

)
.
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Normalizing the plane waves to a box with volume V and a scalar product

〈u(p) |u(p)〉 =

∫ π
L

− π
L

d3p

8π3
u†(p)Γu(p) (25)

gives the normalization factor N−2
p0

= 8V h−1(p, p)/m2 for both u(p) and u′(p) states. The norm

of the mixed states u↑(p) and u↓(p) vanishes. These are the beforementioned artefact states

that do not contribute to the particle content of the interaction. Both remaining states can be

described by

Ψ(p) =

(
1,
h−1(p, p)

m2
,
Daσ̄

apa
m

,
h−1(p,p)σ̄apa

m3
,
h−1(p,p)σapa

m3
,
Daσ

apa
m

,
h−1(p, p)

m2
, 1

)T
⊗ u1.

(26)

This prescription gives the respective Ψ for all choices of a spinor basis. With this, the inner

product can be written as

〈
Ψ̃(p̃) |Ψ(p)

〉
= 〈ũ1(p̃) |u1(p)〉Ψ =

∫
dp ũ1

[
h−1(p,p)h−1(p̃, p̃)

m6

(
σ̄ap̃aσ

bpb + σap̃aσ̄
bpb

)
+
DaDb

m2

(
σ̄ap̃aσ

bpb + σap̃aσ̄
bpb

)
+

2h−1(p,p) + h−1(p̃, p̃)

m2

]
u1.

(27)

If p̃ = p, eq. 27 reduces to the normalization condition

〈
Ψ̃(p) |Ψ(p)

〉
=

8V h−1(p, p)

m2
ũ1u1.

For the electromagnetic �eld, the classical plane wave ansatz is Aµ = aεµe
−ikx. For calculating

|R|2 with normalized Aµ, only the polarization εµ is of interest and all other terms can be

absorbed into the normalization. The basis of the polarization vectors may be chosen freely, as

long as they su�ce the relation conditions with the momentum k for light rays (e.g. orthogonal

in Lorenz-gauge). In general linear electrodynamics however, both light cones feature speci�c

polarizations orthogonal to each other which we will use later on.

2.2.3. Momentum Space Volume

The momentum integral and the states of the plane wave ansatz have to be normalized by some

volume element as they do not decay towards in�nity. Common choices are either one particle

per unit volume in real or in momentum space. While the �rst choice can be implemented
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straightforward, the latter one depends on the distance of quantized momenta in phase space.

This can be derived via restricting the solutions u to a �nite box L3 as before, de�ned by

Φ(x) =

{
0 for 0 < xi < L, i ∈ {1, 2, 3}
∞ else

(28)

Inside the box we have free particle solutions that connect to the boundaries under the condition

Ψ(xi = ±L
2 ) = 0 for each direction xi. This problem consists of three one dimensional problems

that can be solved separately. With [43]'s time dependent Schrödinger equation for the free

particle with time independent ω(p) which is a solution to P (ω(p), p) = mdegP one �nds a time

independent equation:

i∂tΨ(t, x) = ω(i~∂)Ψ(t, x)

i∂tΦ(t)u(x) = ω(i~∂)Φ(t)u(x)

i∂tΦ(t)

Φ(t)
=
ω(i~∂)u(x)

u(x)
= E (29)

where the common separation ansatz was used. ω(p) = p0 can be found from the constraint of

the dispersion relation in section 2.2.2.

For massless particles or in the ultrarelativistic approximation |p| � m, one gets ω+ = |p|2 and

ω− = |p|2ζx. This yields the time independent Schrödinger equations

ω+(i~∂)u(x) = −∂2
xu(x) = Eu(x)

ω−(i~∂)u(x)ζx = −∂2
xu(x) = Eu(x)

(30)

with the solutions

u+(x) = A+ sin(px) +B+ cos(px)

u−(x) = A− sin(
√
ζxpx) +B− cos(

√
ζxpx).

(31)

The boundary condition u(0) = 0 gives B± = 0, the condition u(L) = 0 sets a condition on p:

p+,n =
πn

L
and p−,n =

πn√
ζxL

. (32)

With this, the distance of two allowed momenta in momentum space ∆p± depends on the ω-

solution of the particle. In three dimensions the volume distance of single state of massless
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particles can be found to be π3

L3 . [43] comes to a similar solution for his free states using a

di�erent approach.

The choice of normalization will not change the overall expression for decay widths and cross

sections as all normalization dependent volume terms will cancel in the end if they have been

introduced consistently. We will choose a normalization to V = L3 matching the construction of

the spacetime box at the beginning of this chapter.
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2.3. Tree-Level Processes

2.3.1. Decay Widths

At this point, all ingredients are available to evaluate |RiF |2 perturbatively for speci�c examples.
Eq. 14 gives the probability for a speci�c choice of RiF and eq. 21 contains the Feynman rules to

connect it to particle states. A simple, but illustrative example is a decay process of the form

involving one initial and one �nal particle state, and one photon. The object of interest is not

the overall decay probability for all times itself, but the decay width at a speci�c energy E0 of

the initial particle per unit time

ΓiF = lim
L,T→∞

Pi→F
E0T

= lim
L,T→∞

1

2E0T

(
L

π

)3 ∫ ∞
−∞

d3k

8π3

d3p̃

8π3
(2π)4L3Tδ4

D(p− p̃− k)

·
∑

(f1,2)

∣∣∣ū(f1)(p̃)Γαgε(f2)
α u(p)

∣∣∣2 L−6N2
E0
N2
E±Ω±(p̃)Ωg(k),

(33)

with Rif = −δ4
D(p− p̃−k)iū(p̃)Γagεau(p) for a tree level process. Using the de�nition of Dirac's

δD distribution via the limit of a Gaussian, [30] decompose the scattering matrix |Rif |2 =

|Mif |2|δ4
D(p− p̃−k)|2 with 1

L3T
|δ4
D(p− p̃−k)|2 = (2π)4δ4

D(p− p̃−k) restricted to the space-time

box TL3 we have been using before

|MiF |2 =
∑
F

|Mif |2 =
∑

(f1,2)

∣∣∣ū(f1)(p̃)Γαε(f2)
α u(p)

∣∣∣2 . (34)

Using the abbrevations

εσ =εασ
α =

[
ε3 ε1 − iε2

ε1 + iε2 −ε3

]
,

Dσ =
∑
α

Dαεασ
α,

u =u(p), ũ = u(p̃) and

H =
h−1(p̃, p̃)h−1(p,p)

m4
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both possible �nal states for a speci�c polarization ε
(f2)
α are now

|ũεαΓαu|2 =
1

m2
|ũ1D

σ(u3 − u6) +Hũ2ε
σ(u4 − u5) + (ũ∗3 − ũ∗6)Dσu1 +H(ũ∗5 − ũ∗5)εσu2|2

=
4

m2

∣∣∣∣∣∑
α

εα(D2
α +H)(pα + p̃α)

∣∣∣∣∣
2

(35)

∣∣ũ′εαΓαu
∣∣2 =

4

m2
|(D1D3ε1 + iD2D3ε2)(p3 + p̃3)−D1D3ε3(p1 + p̃1)− iD2D3ε3(p2 + p̃2)

+H ((ε1 + iε2)(p3 + p̃3)− ε3(p1 + p̃1 + ip2 + ip̃2))|2

=
4

m2
|(D0D1 +H) ((ε1 + iε2)(p3 + p̃3)− ε3(p1 + p̃1 + ip2 + ip̃2))|2 , (36)

or combined

|ũεαΓαu|2 +
∣∣ũ′εαΓαu

∣∣2 =
4

m2
(H +DεDp)

2 [(ε1(p1 + p̃1) + ε2(p2 + p̃2))2

+ε23((p1 + p̃1)2 + (p2 + p̃2)2) + (p3 + p̃3)2(ε21 + ε22 + ε23)
]
.

(37)

Up to this point, the derivation holds for any general bimetric electrodynamics. Now we will

introduce restrictions on the parameters to con�ne the theory to a bimetric subclass of general

linear electrodynamics. A bimetric dispersion relation is induced by general linear electrodyna-

mics if and only if the second metric h−1 has the coe�cients D2
0 = D2

3 = τ3
3 and D2

1 = D2
2 = τ1τ

2
3

in our frame. This corresponds to a tensor Gabcd being of the form from eq. 10 with σα = σ

and τ1 = τ2, where σ and τ1,3 are arbitray constants as stated at the beginning of this chapter.

This means, the light cones of both metrics touch in the p3 direction, but they do not intersect,

which meets our assumptions on the shape of the metrics from section 2.1.

Gabcd induces a spatial inner product −G0α0βpαp̃β = (ζp1p̃1 + ζp2p̃2 + p3p̃3) � where greek in-

dices denote a restriction to spatial dimensions � with only one parameter ζ1 = ζ2 = ζ = D1
D0

.

Plugging in the polarization ansatzes from equation (38), one observes that hαβkαε
(1)
β = 0 and

gαβkαε
(2)
β = 0, where

ε(1) =


0

cosφk cos θk

sinφk cos θk

sin θk

 and ε(2) =


0

− sinφk

cosφk

0

 . (38)

2.3.2. Vacuum Cherenkov Radiation

As seen in section 1.3, modi�ed matter theories can feature a wide variety of phenomena be-

yond standard Maxwellian electrodynamics. Vacuum birefringent theories, like general linear
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electrodynamics and the bimetric one used here, kinematically allow for a Cherenkov e�ect in

vacuum: If a particle is travelling faster than the minimum of the local speed of light, it is

outside the observer cone and can slow down while emitting a photon via Cherenkov radiation.

In a Lorentzian theory, this is only possible in some medium; in vacuum it is forbidden as the

stability cone coincides with the only light cone and this cone provides the limit for massive

particle momenta. For a more complex null surface structure like the bimetric one, however,

particles on a mass shell can be outside the stability cone and therefore emit massless particles

travelling on the outer light cone with the energy Eg(k), which may be �guratively called slow

light. Fig. 6 shows this process in a co-tangent space picture. From a tangent space perspective

this means massive particles can get faster than the slow type of light.

The limiting |p|lim where momenta start to spontaneously decay and therefore do not de�ne

observer worldlines anymore, is at ∇pE(p) = ∇kE(k)|k=p. Using eq. 19, we get

0 =

(
4m4

D2
0|p|4lim

)3

+

[
4m4

D2
0|p|4lim

]2 (
(cos2 θ∆ζ)4 + 9(cos2 θ∆ζ)2

)
+

4m4

D2
0|p|4lim

[
40(cos2 θ∆ζ)4 + 18(cos2 θ∆ζ)5 − 2(cos2 θ∆ζ)6 + 4(cos2 θ∆ζ)9

]
+ 32(cos2 θ∆ζ)6 + 18(cos2 θ∆ζ)7 − 4(cos2 θ∆ζ)8 + 4(cos2 θ∆ζ)11

(39)

which has one real solution for |p|lim. As one would expect, in the Lorentzian limit ζ → 1, the

solution diverges to |p|lim →∞, and therefore prohibits the vacuum Chernekov e�ect.

As only the polarization travelling on the g-cone is kinematically allowed for a vacuum Cherenkov

process, equation (34) reduces with the result from equation (37) to

|MiF |2 =
4

m2
(H +D1Dp)

2 [(cosφk(p2 + p̃2)− sinφk(p1 + p̃1))2 + (p3 + p̃3)2
]
, (40)

where k can be expressed by using momentum conservation

stability
cone

habkakb = 0

gabkakb = 0

g-l
igh

t c
on
e

|p|

g-p
ola
ris
ed

lig
ht

|p̃| ←

pα

E

Fig. 6.: The kinematics of Vacuum Cherenkov Decay in a direction where both metrics g
and h do not coincide. Full lines depict the light cones, dashed lines the mass shell
of |p|, dotted lines the stability cone for massive particles.
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cosφk =
p1 − p̃1√

(p1 − p̃1)2 + (p2 − p̃2)2
.

The decay width is now indepedent of the size of the interaction volume:

ΓiF =

√
2m2

2π5E3
0

∫ |p| d3p̃

E2
δD(E0 − E − Ek(p, p̃))

√√√√1 +
∑
α

(
∂E

∂p̃α

)2(H +D1Dp

D2
0

)2

·

[
(p1p̃2 − p̃1p2)2

(p1 − p̃1)2 + (p2 − p̃2)2
+ (p3 + p̃3)2

]
.

(41)

The limits of integration are set to |p| = |p|g as the momentum cannot increase due to Cherenkov

decay. On this point it is useful to switch to spherical coordinates with respect to the slow light

metric g. In these coordinates one can rewrite

δD(E0 − E − Ek(p, p̃)) =
δD(|p̃| − |p|Ξ)∣∣∣∣√ζ sin2 θ̃ + cos2 θ̃ − Ξ−cos ξ√

1+Ξ2−2Ξ cos ξ

∣∣∣∣ , (42)

where ξ is the angle between p and p̃. The factor |p|Ξ is the root of the function E0−E−Ek:

0 =|p|

√√√√(1 + ζ)−

√
(1− ζ)2 +

4m4

|p|4D4
0

− |p̃|

√√√√(1 + ζ)−

√
(1− ζ)2 +

4m4

|p̃|4D4
0

−
√

2|p|2 + 2|p̃|2 − 4|p||p̃| cos ξ

(43)

As it has been a prerequisite that |p| has to be faster than the speed of g-light, we apply an

ultra-relativistic approximation, where m → 0 for the derivation of the factor Ξ. One has to

note that this approximation does not contain the information about the limiting |p|lim where

no Cherenkov e�ect is possible anymore as this is encoded in the massive terms coming from

the mass shell constraint. However in combination with the constraint, it still holds for particles

with |p| � m. We arrive at the quadratic equation

0 = Ξ2∆ζ sin2 θ̃ − 2Ξ

[√
(∆ζ sin2 θ + 1)(∆ζ sin2 θ̃ + 1)− cos ξ

]
+ ∆ζ sin2 θ (44)

with ∆ζ = ζ − 1. From the solvability condition of this equation and the condition Ξ < 1 it

follows that sin2 θ < sin2 θ̃, therefore vacuum Cherenkov decay focuses the superluminal particles
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to the 1-2 plane, where the deviation of g from h is maximal. In the relativistic approximation,

Ω(p̃) is

Ω(p̃) ≈

√
1 +

ζ2 sin2 θ̃ + cos2 θ̃

ζ sin2 θ̃ + cos2 θ̃

and

H ≈ ζ2D4
0Ξ2|p|4

m4
(1− ζ)2 sin2 θ sin2 θ̃

when integrating over d|p̃|δD(|p̃| − |p|Ξ). This leads to an approximation of equation (41)

ΓiF ≈
m2

√
2π5|p|

∫
dφ̃ d cos θ̃

ζ sin2 θ̃ + cos2 θ̃

√
1 + ζ2 sin2 θ̃+cos2 θ̃

ζ sin2 θ̃+cos2 θ̃

(
ζ2D2

0Ξ|p|4
m4 ∆ζ2 sin2 θ sin2 θ̃

)2

∣∣∣∣√ζ sin2 θ̃ + cos2 θ̃ − Ξ−sin θ sin θ̃ cos φ̃+cos θ cos θ̃√
1+Ξ2−2Ξ sin θ sin θ̃ cos φ̃+cos θ cos θ̃

∣∣∣∣
·

[
Ξ2 sin2 θ sin2 θ̃ sin2 φ̃

sin2 θ + Ξ2 sin2 θ̃ − 2Ξ sin θ sin θ̃ cos φ̃
+ (cos θ + cos θ̃)2

]
,

=
D4

0|p|7

m6
· I(θ)

(45)

where we could choose the angular position of the initial particle to be φ = 0 due to the symmetry

on the 1-2 plane. All angular dependence can now be separated from the particle properties (m,

|p|) into some integral term I(θ). We see that the decay time τ = ~Γ−1
iF is proportional to |p|−7

everywhere except directly in the 3 direction. This is the direction in which both light cones

touch and no superluminal particles can exist.

For a �xed initial angle θ, the new particle is de�ected on a ring around the initial direction

similar to for the Cherenkov e�ect in media. In the case of a general linear electrodynamics

induced bimetric, this is no full circle, but a broken arc as shown in Fig. 9, caused by the

geometric anisotropy in the 3-direction and a preference for smaller changes in |p|. A direction

reversal like in the exaggerated depiction of Fig. 6 is theoretically possible but requires enormous

momenta, which coincides with results from [43]. Accelerated particles probably will emit light

way before they reach this regime, as the decay width scales with (p/m)6. Moreover, initial and

�nal momentum states pointing in the direction where both metrics coincide are not a�ected by

the bimetric structure on tree level and behave as if the spacetime structure was metric. The

larger the deviation between the metrics g and h, the larger is the e�ect on particles.

Integrating over all possible �nal angles numerically, we �nd that the decay width scales strongly

with the deviation factor ζ (see Fig. 7). An analysis of eq. 45 shows that the scaling behaviour
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is of the order ζ7 for ζ > 2. The �gure also shows a strong dependence on the initial angle with

respect to the 1-2 plane where the deviation between both metrics is maximal in this setup.

The decay width peaks at an angle of nearly π
3 o� the 1-2 plane, independent from the deviation

factor ζ. As Fig. 8 shows, only the width of the peak depends weakly on ζ.

Due to the dynamics given to the geometry by the constructive gravity formalism, vacuum

Cherenkov decay will probably not be important on cosmological scales, where the deviation from

a Lorentzian structure is assumed to be very small and therefore no integrated cosmological e�ects

will arise. If a theory like general linear electrodynamics is realized in our Universe, the vincinity

of strong gravitational �elds may yield the best chance of discovery, but as the full construction

equations for Gabcd are yet to be solved, to date no predictions on the speci�c behaviour of the

background structure can be made. Under these circumstances, both parameters of the metric

hab can be determined: The shape of the decay probability's angular dependence allows for the

determination of ζ = D1
D0

=
√

τ1
τ3

and both the limiting |p|lim and the decay prefactor contain

D2
0 = τ3

3 .
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Fig. 7.: Integral term I(θ,ζ)
Imax
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ζ for θ ∈ {π6 ,
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6 } depicted as
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lines.
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bottom to top at θ = 0.6).

Fig. 9.: Angular distribution of the �nal particle momenta p̃ for ζ = 1.5 and θ = π
2 . In the

projection the area where the decay probability vanishes is indicated in dark grey
breaking the full ring.
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3. Astrophysics in GLED Gravity

The results of this chapter will be published as

H-M Rieser, B M Schäfer

Astrophysical Applications of a Potentially Birefringent Matter Theory Based on a

Constructive Gravity Approach

and

H-M Rieser, B M Schäfer, F P Schuller

Area metric gravity: Confrontation with observations of galaxy rotation curves

In: Proceedings of the 15th Marcel Grossmann Meeting, World Scienti�c

3.1. Weak Field Limit of Linearised GLED Gravity

3.1.1. Derivation

For many astrophysical objects, a fully relativistic theory is not necessary as they involve non-

relativistic velocities in low density environments that are small compared to the curvature scale.

Indeed, the relevant quantity is not the total density, but the deviation from the mean value.

Cosmological situations where the mean is non-zero are discussed in chapter 4.

In this chapter, we will examine two astrophysical applications: We derive a simple stellar model

and calculate rotation curves for galactic systems. Although galaxies for example have a far

higher density than the universal average, on relativistic scales their medium with some atoms

per cubic metre can be considered as very low density. Furthermore the rotation velocities of test

particles within a galaxy do not exceed some hundred kilometers per second [34]. Even stellar

objects, except very compact ones like neutron stars and black holes, still can be described with

a non-relativistic theory with small relativistic corrections very well.

In these situations, a weak �eld limit of gravitation su�ces to describe the objects' dynamics.

For general relativity, this limit is Newtonian gravity. As the complete theory for GLED gravity

has not been solved yet, the weak �eld description will be based on the solutions of the linearised

theory for a small deviation from Minkowski space Gabcd = ηacηbd + habcd [44].

In a weak �eld limit, the linearised theory simpli�es in various ways. The linearization of eq. 8

gives
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L =M − M

2
gαβλ̇

αλ̇β +MA(λ(t)) +MΩαβ(λ(t))λ̇αλ̇β +
M

2
A(λ(t))γαβλ̇

αλ̇β

=M − M

2
gαβλ̇

αλ̇β +MA(λ(t)) +O(3) (46)

of which only the leading order terms contribute to the weak �eld potential. The gravitational

potential can be read o� directly from the theory's matter Lagrangian. Ω and A are at least

linear in the trajectory λ, so both the third and the fourth term are of higher order in λ, λ̇

and therefore are relativistic contributions. A(λ(t)) can be identi�ed with the weak �eld point

particle potential Φ of GLED gravity.

The equations of motion for the �eld A can be derived from the construction equations (see sec.

1.2) in a stationary 3+1 split. [4] derives the scalar-vector-tensor decomposition of the linearised

equations of motion used in this section. As only point particles contribute to the weak �eld

limit, one can neglect the vector and tensor terms because the particles will not have these

degrees of freedom. The gravitational equations of motion for linearised GLED gravity reduce

to a set of four equations with eight gravitational constants si. Separating trace and traceless

part one obtains

0 =s2∆E − s3∆C + s6E + s7C + s8F̃ + (s8 −
3

2
(s1 + s2))Ẽ − (3s1 + 3s2)A (ITF )

0 =(−s1

2
+
s2

2
)∆E − s3∆C + s6E + s7C − s8F̃ − (s8 −

3

2
(s1 + s2))Ẽ

+ (3s1 + 3s2)A
(IITF )

0 =− s3∆E + (s1 − 3s2)∆C + s7E − 4s6C (IIITF )

0 =(8s1 + 8s2 +
8

3
s8 − s28)∆F̃ + (8s1 + 8s2 + 4s8 − s28)∆Ẽ + s32F̃ + s32Ẽ

+ (4s1 + 4s2 +
4

3
s8)∆A− 2

9
s8∆∆E

(IT )

0 =(8s1 + 8s2 + 4s8 − s28)∆F̃ + (6s1 + 6s2 +
16

3
s8 − s28)∆Ẽ + s32F̃ + s32Ẽ

+
4

3
s8∆A+ (

s1

3
+
s2

3
− 2

9
s8)∆∆E

(IIT )

mδD(x) =∆
[
(12s1 + 12s2 + 4s8)F̃ + 4s8Ẽ + (2s1 + 2s2)∆Ẽ

]
(N)

with six scalar gravitational �elds E, F , Ẽ, F̃ , C and A, and one free parameter m that can

be identi�ed with the particle's mass. The equations can be solved straight forward: From eqs.

ITF + IITF and III one �nds by solving a Yukawa partial di�erential equation
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E(r) =
e−ρ cos(α)r

4πr
b cos(χ sin(α)r − β)

C(r) =
e−ρ cos(α)r

8πr
b sin(χ sin(α)r − β)

for a point particle at the origin using the constants α(si) ∈ R, β ∈ [0, 2π), γ ∈ R+, χ(si) ∈ R+
0 .

With this solutions the remaining eqns. ITF − IITF , IT + IIT and N can be solved:

Ẽ + F̃ =
νm

24πs8r
e−µr

Ẽ − F̃ =
M

24π(s1 + s2)r
+

(
1 +

2s8

3(s1 + s2)

)
(Ẽ + F̃ ) +

1

3
∆E

=
m

24πr(s1 + s2)r
+

(
1

6s8
+

1

9(s1 + s2)

)
νm

4πr
e−µr

+
bχ2e−χ cos(α)r

24πr
cos(χ sin(α)r − β − 2α)

4A =

(
−1 +

4s8

3(s1 + s2)

)
(Ẽ + F̃ ) +

1

3
∆E − (Ẽ − F̃ )

=− m

24πr(s1 + s2)
+

νm

24π(s1 + s2)r
e−µr.

In principle, the integration constant b could correspond to a possible second type of gravitational

charge besides the mass that sources a �eld with an oscillating component. However, [4] shows

in the relativistic case that b is proportional to the mass m, therefore the mass also sources

these oscillating degrees of freedom. As seen in eq. 46, only the solution for A(r) constitutes

the potential for the weak �eld Lagrangian which does not depend on any oscillating terms. The

other �elds E, C, Ẽ and F̃ only contribute to higher order terms including Ω. The weak �eld

potential for a classical point particle at some arbitrary position r′ takes the form

Φ(r) = − Gm

|r − r′|

(
1 + νe−µ|r−r

′|
)

= Φ̃(r) + Φ̄(r), (47)

where Φ̃ is the standard Newtonian potential and Φ̄ is the GLED correction. While Newtonian

physics is scale invariant, µ−1 introduces an intrinsic length scale to the correction term. If µ = 0

or µ =∞, the second term can be absorbed into the de�nition of Newton's constant Ḡ; if ν = 0,

the correction term completely vanishes and Newtonian gravity is recovered. The gravitational

constants G, ν and µ can be derived from the parameters of the relativistic GLED gravity theory

via
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G =
1

98π(s1 + s2)

ν =
48s8 + 16s2

8

(s1 + s2)(s1 + s2 + 2s8
3 +

s28
9 −

s32
6 )

µ =

√
s32

6s1 + 6s2 + 4s8 +
2s28
3 − s32

.

For the application on large astrophysical objects like galaxies, the point particle approach would

be perfectly applicable and even be justi�ed by counting every single star as individual particle.

However, a galaxy consists of hundreds of billions of stars and computing any properties of this

galaxy would be quite complicated. A continuum description with a particle density made up

from in�nitesimal light point particles is more appropriate on these scales:

Φρ(r) = −G
∫

d3r′
ρ(r′)

|r − r′|

(
1 + νe−µ|r−r

′|
)

= Φ̃− νG
∫

d3r′
ρ(r′)e−µ|r−r

′|

|r − r′|
. (48)

Alternatively to solving for the gravitational potential directly, eq. ITF to N can be condensed

to two coupled Poisson equations of the form

∆Φ(~r)− µ2 (Φ(~r)−Ψ(~r)) = 4πGmνδ3(~r)

∆Ψ(~r) = 4πGmδ3(~r)
(49)

with the auxiliary �eld Ψ(r). Using a Poisson equation instead of a point particle solution is

more suitable for applications where no matter density model is given beforehand.

A variety of modi�ed gravity theories like f(R) [41] or higher order relativistic theories [14]

have a weak �eld limit that contains Yukawa terms. Some of them even feature multiple Poisson

equations of a structure similar to eq. 49 [13]. In the approach from [6], similar Poisson equations

are introduced by anisotropic stress η. As long as no prerequisites from the underlying relativistic

GLED gravity background or the behaviour of matter are considered, all further results will also

apply to these theories. Some of these theories can be described as subclasses of GLED gravity

[43], but for most of them this has not been investigated yet.

3.1.2. Symmetric Mass Densities

Symmetric models provide a good approximation for a great variety of astrophysical objects.

Applying spherical symmetry to the mass density distribution condenses eq. 48 to
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− Φ̄ρ(r)

νG
=

∫
d3r′

ρ(r′)e−µ|r−r
′|

|r − r′|
= 2π

∫ ∞
0

dr′
∫

d cos θ r′2
ρ(r′)e−µ

√
r2+r′2−2rr′ cos θ

√
r2 + r′2 − 2rr′ cos θ

. (50)

As the shell theorem only holds for the Coulomb potential, the limits of integration span the

entire space occupied by matter ρ(r) 6= 0. The integration with respect to θ can be performed

directly:

2π

µr

∫ ∞
0

dr′ r′ρ(r′)
(
e−µ|r−r

′| − e−µ(r+r′)
)

=
4π

µr

(
e−µr

∫ r

0
dr′ r′ρ(r′) sinh(µr′) + sinh(µr)

∫ ∞
r

dr′ r′ρ(r′)e−µr
′
)

=
4π

µr

(
e−µrI0 + sinh(µr)I∞

)
with

I0 =

∫ r

0
dr′ r′ρ(r′) sinh(µr′)

I∞ =

∫ ∞
r

dr′ r′ρ(r′)e−µr
′
.

The integral expressions I0 and I∞ exist for any smooth density that is not exponentially grow-

ing. In particular, every density distribution that satis�es the integrability conditions for the

Newtonian potential will also have a �nite GLED contribution.

Considering a test body on a circular trajectory around the origin, the orbital velocity only is

determined by the density distribution and can be calculated via the equilibrium relation

∂Φ

∂r
=
v2

r
(51)

for any given density distribution ansatz ρ(r). In GLED gravity, both parts of the potential,

the standard Newtonian potential and the GLED correction term, can be treated separately as

the theory still is linear. The velocity of a test body on a circular orbit within a spherically

symmetric mass density distribution is given by the expression

v2 = r
∂Φ̃

∂r
+ 4πGν

(
1 + µr

µr
e−µrI0 +

sinh(µr)− µr cosh(µr)

µr
I∞
)
. (52)
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The general approach for a cylindrical potential is equivalent to the spherical case, but not as

easy to integrate:

− Φ̄ρ(R, z)

νG
=

∫ ∞
−∞

dz′
∫ ∞

0
dR′ R′ρ(R′, z′)

∫ 2π

0
dφ′

e−µ
√

(z−z′)2+R2+R′2−2RR′ cos(φ−φ′)√
(z − z′)2 +R2 +R′2 − 2RR′ cos(φ− φ′)

.

(53)

For a very thin disk ρ(R, z) ≈ δD(z−z′)Σ(R) using the substitution ϕ = φ′−φ we get an integral

similar to equation 50 that can be expanded around µR = 1 into Legendre polynomials of the

�rst kind Pn(x) and polynomials Qn(r, x) of order rn and xn for n > 0, except the �rst term Q0

which is of order r1:

Φ̄(R) =− νG
∫ R

0
dR′ Σ(R′)Θ(R,R′, cos θ)− νG

∫ ∞
R

dR′ Σ(R′)Θ(R′, R, cos θ) (54)

Θ(R,R′, cos θ) =

∫ 2π

0
dϕ

∑
`

(Q2`(R, cosϕ) + (µR+ 1)P2`(cosϕ))

(
R′

R

)2`+1

.

Due to the symmetry of cosϕ, the integrations over odd powers of cosϕ vanish and therewith

no odd orders of the expansion contribute to the potential. The �rst relevant orders of Qn are

Q0(r, x) =− µr

Q2(r, x) =
1

2!
µ2r2x2

Q4(r, x) =
1

4!
µ4r4x4 +

1

4!
µ3r3x2(5x2 − 3) +

1

8
µ2r2(15x4 − 12x2 + 1).

Potentials for arbitrary area densities Σ(R) of symmetric thin disks can be evaluated up to any

order in `. As Σ(R) is symmetric in ϕ the angular integral up to order O(` = 6) is

− Φ̄R

νπG
≈
∫ R

0
dR′ R′Σ(R′)

[
2 +

(
µ2 +

µ

R
+

2

R2

)
R′2

2

+

(
µ4 +

µ3

R
+

5µ2

R2
+

9µ

R3
+

9

R4

)
R′4

32

]
+

∫ ∞
R

dR′ R′Σ(R′)

[
2 +

(
µ2 +

µ

R′
+

2

R′2

)
R2

2

+

(
µ4 +

µ3

R′
+

5µ2

R′2
+

9µ

R′3
+

9

R′4

)
R4

32

]
(55)

and the GLED gravity contribution to the rotation velocity up to O(` = 6) is
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R

νπG

∂Φ̄

∂R
≈
∫ R

0
dR′ Σ(R′)

[
2R

R′
+

(
µ2

R
+

6µ

R2
+

4

R3

)
R′3

2

+

(
µ4

R
+

2µ3

R2
+

15µ2

R3
+

36µ

R4
+

45

R5

)
R′5

32

]
+

∫ ∞
R

dR′ Σ(R′)

[
2R′

R
+

(
µ2R′ + µ+

2

R′

)
3R

2

+

(
µ4R′ + µ3 +

5µ2

R′
+

9µ

R′2
+

9

R′3

)
5R3

32

]
.

(56)

3.1.3. Stable Self-Gravitating Systems

Large isolated objects like galaxies can be seen as a particle cloud bound by its own gravitational

potential and stabilized by internal movement. Directly measuring the matter distributions of

such large objects usually is not possible and estimates from accessible observables like luminosity

pro�les require prior knowledge or assumptions of the inner structure of the system.

While disc shaped objects are supported by ordered rotation, random motion is dominant in

self-gravitating spheres which are part of many simple galaxy models for instance. This may be

in form of a bulge or a halo in a spiral galaxy or an entire elliptical galaxy with low eccentricity.

As the stability of a speci�c con�guration strongly depends on the interactions involved, most

models used in standard Newtonian astrophysics will not be stable with respect to other theories

of gravity.

Random motion supported objects may be investigated using a statistical description. Regarding

their statistical physics, systems bound by gravity di�er from systems with other dominant

forces. In smaller astrophysical objects like stars or small gas clouds, electromagnetic interactions

are dominant. Their gravitational collapse is either balanced by some kind of electromagnetic

pressure like radiation pressure, or thermal pressure as the thermodynamic limit of the inner

random motion. In contrast, no thermodynamic limit exists for gravity dominated systems.

Due to the long range nature of gravitation and the lack of negative charges that could provide

shielding at some distance, quantities like the mean kinetic energy per particle are not intensive

any more but depend on the size of the system. Nevertheless, a microcanonical description can

be applied, where the pseudo-temperature parameter β does not bear a thermodynamic meaning

but still provides a measure of the mean kinetic energy. In principle, the pseudo-temperature

pro�le can be derived from observations of the object's velocity dispersion pro�le.

Based on the approach from [40], an approximate solution for a simple spherical isothermal model

with constant β can be derived. The microcanonical entropy

eS =
1

N !

∫
Ωd3Nxd3Npδ(E −H) =

A

N !

∫
d3Nx(E − 1

2

∑
ij

U(xi, xj))
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does not di�er much from the one on a metric background, where the constants arising from

the momentum integration are collected in a constant prefactor A. As seen in section 2.1 the

symplectic geometry of the general linear electrodynamics-induced spacetime structure allows for

the use of a phase space integral Ωd3Nxd3Np. For a nonrelativistic system, the Jacobian reduces

to a constant Ω that can be absorbed in the prefactor A. A can be identi�ed with the central

density ρ0, such that the non-metricity does not play a role for the dynamics. This is the same

as on metric spacetime and therefore the result

ρ(r) = Ae−βΦ(r) (57)

still holds. This can be used to set up a system of ODEs using the Poisson equation (eq. 49) in

the continuous description:

∆(Φ(r)−Ψ(r))− µ2(Φ(r)−Ψ(r)) = 4πG(1 + ν)ρ0e
−βΦ(r)

∆Ψ(r) = 4πGρ0e
−βΦ(r).

It is convenient to use dimensionless quantities from now on de�ned by

L0 =
√

4πGρ0β M0 =4πρ0L
3
0

x =
r

L0
µ̃ =µL0

q(x) =β(Φ(xL0)−Ψ(xL0)) p(x) =βΨ(xL0)

giving

∆q(x)− µ̃2q(x) = νe−(q(x)+p(x))

∆p(x) = e−(q(x)+p(x)).
(58)

The boundary conditions are not as clear as in the metric case, as the shell theorem does not

apply here (see section 3.1.2); the potential at the edge of the system Φ(R) is not the potential

of a point mass with the total mass M of the system any more. However, one may apply the

point mass condition for distances far larger than the object Φ′(R→∞) = Φpointmass(R→∞),

Ψ′(R→∞) = Ψpointmass(R→∞) because the GLED correction is decaying exponentially.

This system has no analytical solution and without having values for the gravitational constants

µ and ν beforehand, a numerical solution is not possible either. Assuming the GLED correction is
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small compared to Newtonian gravity at least allows for a crude approximation of the di�erential

equations that can be solved. The correction can be considered small for this purpose if ν � 1

such that the Newtonian potential p(x) can be treated independently from the correction term

q(x). This reduces the second equation from eq. 58 to

∆p(x) = e−p(x)

with the solution p(x) = ln
(
x2

2

)
. The right hand side of equation for q(x) can be linearised with

respect to ν, such that

q′′(x) +
2q′(x)

x
+

(
2ν

x2
− µ̃2

)
q(x)− 2ν

x2
= 0

with the analytic solution

q(x) =
√
π2

1
2

√
1−8µ̃2− 1

2 µ̃2 cot

(
1

2
π
√

1− 8µ̃2

)
Γ

(
1

4
− 1

4

√
1− 8µ̃2

)
(−i
√
νx)

1
2
− 1

2

√
1−8µ̃2

· j 1
2

(−
√

1−8µ̃2−1)

(
−i
√
νx
)

1F̃2

(
1

4
− 1

4

√
1− 8µ̃2; 1− 1

2

√
1− 8µ̃2,

5

4
− 1

4

√
1− 8µ̃2;

νx2

4

)
−
√
π2−

1
2

√
1−8µ̃2− 1

2 µ̃2 csc

(
1

2
π
√

1− 8µ̃2

)
Γ

(
1

4
(
√

1− 8µ̃2 + 1)

)
(−i
√
νx)

1
2

√
1−8µ̃2+ 1

2

· j 1
2

(−
√

1−8µ̃2−1)
(−i
√
νx) 1F̃2

(
1

4
(
√

1− 8µ̃2 + 1);
1

2
(
√

1− 8µ̃2 + 2),
1

4
(
√

1− 8µ̃2 + 5);
νx2

4

)
+
√
π2

1
2

√
1−8µ̃2− 1

2 µ̃2Γ

(
1

4
− 1

4

√
1− 8µ̃2

)
(−i
√
νx)

1
2
− 1

2

√
1−8µ̃2

y 1
2

(−
√

1−8µ̃2−1)
(−i
√
νx)

· 1F̃2

(
1

4
− 1

4

√
1− 8µ̃2; 1− 1

2

√
1− 8µ̃2,

5

4
− 1

4

√
1− 8µ̃2;

νx2

4

)
+ c1j 1

2
(−
√

1−8µ̃2−1)
(−i
√
νx) + c2y 1

2
(−
√

1−8µ̃2−1)
(−i
√
νx)

using the Gamma function Γ, the Bessel function of the �rst kind jn, the spherical Bessel func-

tion of the second kind yn, the regularized generalized hypergeometric function pF̃q and two

integration constants c1 and c2.

This shows that in GLED gravity even the simplest assumptions and crudest approximations

lead to results for stable potentials not suitable for further investigation, not to speak of the

use of r-dependent pseudo-temperatures or observed values. Therefore, a di�erent approach has

to be used to determine whether a speci�c density distribution is suitable for a galaxy model

concerning its stability.
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3.1.4. Virial Theorem

We have seen in the previous section that the stability of gravitationally bound objects depends

on very speci�c conditions that have to be met quite exactly which makes it di�cult to propose

suitable theoretical models. However, the description of astrophysical objects does not require

absolute stability of the model, but a lifetime long enough to explain the object's existence. The

virial theorem provides a convenient way expressing stability by comparing the kinetic and the

potential energy content of the system. As the kinetic energy can be derived directly from the

observation of test particle trajectories, only the mass density has to be modeled in a way that

a system stable on a known virial time scale arises.

For a system in virial equilibrium, the theorem requires the momentum of inertia I to be sta-

tionary, i.e. the time average of its second time derivative vanishes. We begin with the tensorial

and �nite form of the momentum of inertia

d2Iαβ

dt2
=

d2
∑N

k
m
2 r

α
k r

β
k

dt2
=

N∑
k

m
drαk
dt

drβk
dt

+mr
[α
k

d2

dt2
r
β]
k . (59)

The tensorial virial theorem in a GLED-induced spacetime does not di�er from a Lorentzian

one except for the de�nition of contractions. For the overall stability of objects, the contraction

of Iαβ is relevant. In a 3+1-split description of spacetime the tensor Gabcd separates into three

tensors Gαβ , Gαβ and Gαβ , where 2Gαβ and 1
2Gαβ play the role of the metric and its inverse

in standard theory (see section 2.2.1). Indeed, both also are metrics themselves. The scalar

momentum of inertia is

d2I

dt2
=

1

2
Gαβ

N∑
k

m
drαk
dt

drβk
dt

+
m

2
r

[α
k

d2

dt2
r
β]
k = 2

N∑
k

m

4
Gαβ

drαk
dt

drβk
dt

+
N∑
k

m

2
Gαβr

α
k

d2

dt2
rβk

where the �rst term can be identi�ed with the non-relativistic limit of the observed kinetic energy

Tobs. The latter term is the left hand side of the non-relativistic equations of motion in 3+1 split

from [36]. One gets

d2I

dt2
= 2

N∑
k

m

4
Gαβ

drαk
dt

drβk
dt
−

N∑
k

m

2
rαk ∂αΦ(rk). (60)

Averaging over some virial time scale τ and splitting the total potential Φ into individual point

particle interactions gives the standard result for polynomial point particle potentials of order n〈
d2I
dt2

〉
τ

= 2 〈T 〉τ + n 〈V 〉τ with the total kinetic energy T and the total potential energy V as

in standard Lorentzian spacetime. For practical purposes, one usually uses the average over the
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objects volume instead of the time average, as the interaction time of astrophysical objects in

most cases is far larger than the time scale mankind has su�cient observational data on.

With the application on particle orbits in mind, the second term with the derivative of the total

potential Φ in eq. 60 can be rewritten using the orbital velocity formula from section 3.1.2.

This term now has the form of a kinetic term, too, but had been derived from the modelled

mass distribution. One may call it the theoretical kinetic energy Ttheo. One gets that for models

satisfying

2 〈Tobs〉τ = 2 〈Ttheo〉τ , (61)

the average
〈

d2I
dt2

〉
τ
vanishes. Therefore, I is stationary and the system in virial equilibrium. In

other words, a model is in virial equilibrium if the observed particles in the system follow the

theoretically derived orbital velocities on average. In systems with cylindrical symmetry, this

applies to the ordered rotation curve, for spherical symmetry to the mean velocity dispersion. In

general, models virally stable in GLED gravity will be di�erent from stable models in Newtonian

gravity as the orbital velocity formula di�ers.

39



Cosmological and Astrophysical Tests of Constructive Gravity Hans-Martin Rieser

3.2. A Simple Stellar Model in GLED Gravity

3.2.1. Star Models

Most astrophysics textbooks cover the very simplistic model of a spherically symmetrical star

supported by thermal pressure. This model already shows many features of the structure and

appearance of stars. Later on, knowledge of the stellar structure will help to estimate whether

luminosity data from galaxies may be interpreted in the standard way or need some re�nements

to understand the connection between galactic mass density distributions and their luminosity

curve, the mass-luminosity-ratio. Due to the changed gravitational potential, stars might have

a di�erent light output and therewith alter the stellar mass distributions deduced from their

luminosity in the inner regions of galaxies. Observations of the outer edge of the galaxy are

based on the luminosity of hydrogen lines, which are only a�ected by the altered spacetime

structure to second order [21].

The spherical symmetric potential from section 3.1.2 allows for the construction of a simple

GLED star model and a rough estimate of its properties. The model does not include anything

not spherically symmetric, especially rotations and turbulences. The derivation in this section

closely follows the procedure [22] uses for Newtonian gravity. We will limit the model to a small

to medium size main series star, where only hydrogen is fused.

A star model has to obey certain prerequisites to be in hydrostatic equilibrium:

� The radiation energy (luminosity) Elum that is observed has to be accounted for by some

internal process, i.e. nuclear reactions Enuc

� Temperature T and (mass/number) density ρ / n have to be su�ciently high to support

nuclear reactions

� For light to escape the surface the energy transport time tET � tage the age of the star.

This implies an equilibrium where the energy generation rate balances the luminosity �ux

� As the star does not collapse there has to be some hydrostatic equilibrium between gravi-

tational and pressure force Fgrav = FP

� From the temperature pro�le T (r) one can deduce the energy generation E(r) due to our

knowledge of nuclear reactions and the Pressure P(r) due to a gas law

� Boundary conditions apply on the luminosity L and the integrated mass M(r) to avoid

divergences in the centre and to connect smoothly to the vacuum:

L(R) = L̃ total measured luminosity M(0) = 0 no central divergence

T (R) = T̃ measured color temperature O(ρ) ≥ O(r−3) from mass

P(R) = 0 star has an edge L(0) = 0 no central divergence

ρ(R) = 0 star has an edge (0) <∞ no central divergence
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3.2.2. Luminosity, Opacity and Power Generation

What can be observed from distant stars is their brightness or the luminosity L via the distance

calculated from redshift or other standard rulers. These distance measurements and hence the

luminosities can change for a GLED-induced spacetime [37], which could give an integrated e�ect

over long distances. However, when comparing stars in some neighbourhood, their luminosities

will only change by a common factor such that relative ratios and distribution shapes stay the

same.

As the photon dispersion in general linear electrodynamics is still linear, the emission spectrum

of a star can be assumed to be Planckian. The total luminosity of a black body radiator in

general linear electrodynamics is given by the Stefan-Boltzmann law

L = 4πR2I = 4πR2σSB
1

2

(
τ1

τ3
+
τ3

τ1

)
T 4(R) = bT 4 (62)

with R being the star's radius, I the energy �ux and σSB the Stefan-Boltzmann constant. For

general linear electrodynamics, the only change is an additional constant, that again depends on

τ1 and τ3 which indicate the non-metricity similar to chapter 2 [15]. This additional constant

can be absorbed in the prefactor b and will not play a further role in this derivation.

For a star, the radiant �ux can be calculated to �rst order in the temperature gradient using the

opacity κ. The �ow has been constructed integrating over all photons passing a test area with a

weighting of the photon's energy

dL(r) = 4πr2dI(r) = − 16πac

3κρ(r)
r2T 3 dT

dr
dr. (63)

The opacity is a mean value derived from all scattering/absorption and reemission processes in a

star. In the plasma, three transitions play an important role: electron scattering (e), bound-free

(bf) state transitions and free-free-state transitions (ff). Both bf and ff transitions can be

expressed by the Saha equation for transition probabilities between ionized states [22] resulting

in an opacity of

κbf,ff ∝
ρ

T 3,5

only depending on the element abundances within the star and a Gaunt correction factor to

account for the interference of several absorption/reemission processes within a short period of

time or a small volume. This factor is usually of order one and may be omitted for the further

derivation. The opacity from electron scattering is not dependent on density or temperature.

Therefore electron scattering dominates in hot environments with low densities, whereas both
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other processes are dominant in high density environments. In even denser environments, the

e�ective opacity would drop again as the heat conduction by electrons gets more important as

energy transportation mechanism.

Due to energy conservation, the power of the star has to come up for the luminosity L ≤W and

eventually non-electromagnetic ways of energy transportation like neutrino emission or particle

out�ux that are neglected in this simple approach. The star gets its power mainly from nuclear

reactions. The most abundant is the 6 1H → 4He+ 2 1H pp chain, that releases 26, 2 MeV per

reaction. In larger stars of later generations that contain heavier elements, hydrogen can be

fused into helium via the CNO cycle. This process only yields 25 MeV in radiation, as neutrinos

carry a larger share of the total energy. At about twice the size of the sun, the CNO cycle is the

dominant process. When fusing helium or even heavier elements in later stages of its evolution,

the star leaves the main series.

From the cross sections of the individual reactions and the thermal speed distribution one can

determine the temperature dependency [2]. In principle, the cross sections in stellar environ-

ments can change for general linear electrodynamics, as they are extrapolated from laboratory

conditions. Nevertheless, the values from metric geometry will be used as there are no investiga-

tions on this matter to date. The energy generation rate is w ∝ T 4 for the pp chain and w ∝ T 18

for the CNO cycle. So the energy production in a thin shell can be approximated by

dL = dW ∝ dTαreact(r) ∝ Tαreact−1(r)
dT

dr
dr =

{
T 3 dT

dr dr for pp chain

T 17 dT
dr dr for CNO cycle

(64)

comparing this to eq. (63) we see, that the prefactor for the power generation has to be the same

constant prefactor as for the out�ux.

3.2.3. Equation of State

The star in this model consists of a non-degenerate plasma, which obeys the ideal gas law. Its

total pressure also contains a radiation term proportional to the energy density ε = b
3T

4 for a

black body:

P = PPlasma + Prad =nkBT +
ε

3
=
ρkBT

mH

(
2ξH +

3

4
ξHe +

1

2
ξZ>2

)
+
b

3
T 4 (65)

with ξH + ξHe + ξZ>2 = 1 and b =
ñ3π2k4

B

15c3~3

(
τ1

τ3
+
τ3

τ1

)

where n is the number density, ρ the mass density of the particles and ñ the refractive index

of the plasma, while the ξi are the mass fractions of hydrogen (H), Helium-4 (He) and heavier

elements (Z > 2). The latter only account for a small fraction and are therefore approximated

as n ≈ m
2mH

.
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The relation between radiative pressure and energy density is obtained from integrating over

the photon �ux through a unit area carrying a direction and polarisation dependent momentum

E =
√
ζαp2

αc =
√
ζ~ω using the dispersion relation from chapter 2. As we assume a small

derivation from a Lorentzian structure in this chapter,
√
ζ ≈ 1.

In large stars, the radiation pressure is the dominant contribution, in small stars the thermal

pressure dominates over radiation pressure. The ions are usually non-degenerate as it is energet-

ically favourable to form a neutron star long before degeneracy, which will not be covered here.

In the non-degenerate case the partial pressures of ions and electrons are

Pi =
ρkBT

mH

(
ξH +

ξHe
4

)
(66)

Pe ≈
~c
4

3

√
3π2

(
1 + ξH
2mH

ρ

)4

. (67)

With these equations one has an equation of state P(T ) depending on the star type which holds

up to �rst order GLED perturbation around a Lorentzian background.

3.2.4. Potential Energies and Pressure

The last important ingredient for a star model is the derivation of the gravitational pressure for

establishing hydrostatic equilibrium. Inside non-degenerate stars, classical theories still can be

used, therefore the results from section 3.1.2 for a spherically symmetric star can be applied.

The potential self energy of the mass distribution gains a corretion term

U =

∫
d3r′ρ(r)Φρ(r

′)

=

∫ R

0

4πGρ(r′)

r′

(
M(r′) + 2π

ν

µ
e−µr

′
∫ r′

0
dr ρ(r)r sinh(−µr)

+2π
ν

µ
sinh(−µr′)

∫ R

r′
dr ρ(r)re−µr

)
.

(68)

The gravitational pressure can be calculated via the force

dPG(r) = −dr

∫
dφ d cos θ r2ρ(r)

d

dr
Φρ(r) = −dr 4πr2ρ(r)

d

dr
Φρ(r). (69)

Using a power law ansatz with ρ = ρ̄rz for an integer z yields solutions by integrating by parts,

with vanishing surface terms due to the boundary conditions from section 3.2.1:
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P(0)− P(R) = 16Gπ2

∫ R

0
drρ̄rz+2 d

dr
Φρ(r).

For vanishing pressure on the outer edge of the star one �nds for all radii r < R

P(r) = 16Gπ2

∫ R

r
dr′ ρ̄r′z+2 d

dr′
Φρ(r

′) (70)

and a total mass

M(R) =4π

∫ R

0
dr′ ρ̄r′z+2 (71)

ρ(r) =ρ̄rz =
(3 + z)M(R)

4πR3+z
rz. (72)

3.2.5. Building a Model

Now everything needed for a star model and especially for the mass to luminosity ratio is avail-

able. For a stable star in hydrostatic equilibrium, the gravitational pressure Pρ(r) from the last

section has to balance the particle and radiation pressure. Small stars have

ρkBT

mH

(
2ξH +

3

4
ξHe +

1

2
ξM

)
= 16Gπ2

∫ R

r
dr′ ρ̄r′z+2 d

dr′
Φρ(r

′)

T =
16Gπ2mH

ρkB
(
2ξH + 3

4ξHe + 1
2ξM

) ∫ R

r
dr′ ρ̄r′z+2 d

dr′
Φρ(r

′), (73)

while larger stars follow the relation

bT 4

3
= 16Gπ2

∫ R

r
dr′ ρ̄r′z+2 d

dr′
Φρ(r

′)

T = 4

√
48 · 45c3~3G

n3k4
B

∫ R

r
dr′ ρ̄r′z+2

d

dr′
Φρ(r′). (74)

Together with eq. 63 one gets a relation for the luminosity solely depending on the density

pro�le L = Lρ(r) with the contitions from section 3.2.1 and the density from eq. 72. As seen

in section 3.2.2, one can determine the proportionality constants for the luminosity (or at least

their dependence on r) to the energy generation processes via
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L =L(R)− L(0) = L̃+

∫
dL =

∫ R

0
CTαreact−1(r)

dT

dr
dr =

∫ R

0
CTαreact−4(r)T 3 dT

dr
dr (75)

where the constant C can be determined by the �ux of the blackbody radiator. For the pp

reactions C = − 16πac
3κρ(r)r

2 with κ from section 3.2.2.

So, in Lorentzian geometry one would expect for smaller, less dense stars a density pro�le of

ρ ∝ r2. Higher density stars larger than the Sun one would have ρ2 ∝ T 3.5r2 which approximately

corresponds to ρ ∝ r6. Even larger stars would reach higher powers of r.

In GLED gravity, two scenarios are possible depending on the value of the gravitational constant

µ. The �rst possible scenario is that the correction does not play any role on stellar scales. Then,

the GLED correction term is nearly constant and can be absorbed in the Newton's constant Ḡ

and the star model based on Newtonian gravity remains valid.

For a µ comparable to the sizes of stars, the model would give an exponential density pro�le of

the form ρ ∝ r
79
9 e

16
9
µr for large stars. Smaller stars do not change in this approximation.

This new exponential behaviour changes the results of the total mass calculation (eq. 71).

Nevertheless the relation M(R) ∝ ρ̄ stays intact, as this does not depend on the explicit form

of the pro�le or inversely spoken, only parts of the derived stellar model are needed to get an

approximation on the L ↔ M relation, as the total mass only appears in the prefactor ρ̄. The

whole dependency on the internal structure only determines the proportionality constant, but

not the proportionality itself.

L ∝ T 4

ρ
∝

(
1
ρ

∫
dr ρΦρ

)4

ρ
∝

(
1
ρ̄ ρ̄

2
)4

ρ̄
∝M(R)3 (76)

The results show two things. A massive star model using general linear electrodynamics will

be very di�erent in the inside structure from a standard one if the gravitational length scale µ

comparable to a star's size. The stellar interior may be probed using astroseismology at least for

the Sun. But on the outside both stellar models look the same and the luminosity-mass-relation

can be used in the same way as before.
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3.3. Galaxy Rotation Curves

3.3.1. The Internal Structure of Galaxies

In section 3.1, we derived the orbital velocities of test bodies. The theoretical results for di�erent

density distributions can be compared to real rotation curves of galaxies now. As there is a huge

di�erence between the observed movement of stars in galaxies and the theoretical values derived

from Newtonian gravity, rotation curves have been a relatively common testing ground for new

theories of gravity seeking to circumvent the use of dark matter to construct �at rotation curves.

This is not our prime intention here, we rather investigate whether rotation curves based on

GLED gravity can provide a reasonable description for galactic movement at all and estimate

values for the gravitational constants. The constant G cannot be derived directly as only terms

of GM with the total galaxy mass M occur in the formulae. However, G may be determined

for µ far smaller or far larger than a typically laboratory scale from the value of Newton's

constant measured in experiments (see section 3.3.3). This leaves the constants µ and ν to be

determined.

Technically, only stars within disk structures obey a rotation curve and therefore are stabilized by

ordered rotation. Strictly speaking, for spherical distributions the term rotation curve describes

the movement of stars in a very thin disk around the sphere that does not contribute signi�cantly

to the total potential and the sphere itself is supported by random motion of its matter. In GLED

gravity, the mean radial velocity or velocity dispersion still obeys the rotation curve for stable

mass distributions as seen in section 3.1.4. However, the shell theorem does not apply anymore

and therefore the whole mass density distribution has to be considered.

A typical spiral galaxy has three main features that are shown in Fig. 10. The central bulge

(yellow) contains the majority of stars and the most mass. It is often nearly spherical and

can be modelled similar to an elliptical galaxy. The bulge is surrounded by a disk made up

from stars and cold gas and the whole galaxy is embedded in an elliptical halo consisting of

hot hydrogen gas, globular clusters and probably dark matter. Except for internal structures

Fig. 10.: Sketch of a typical spiral galaxy with central bulge (yellow), disk and halo (dashed)
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Tab. 1.: Overview of galactic density models used in this work.

Density Newtonian Potential

Constant ρC(r) = ρ0 for r < re Φ̃C = −16
3 πGρ0r

2 for r < re

Isothermal sphere [10] ρI(r) = ρ0a2

r2 Φ̃I(r) = 4πGρ0a
2 ln(r/a)

NFW [38] ρN (r) = Φ̃N (r) ρ0
r
a(1+ r

a)
2 −4πGρ0a3

r ln
(
1 + a

r

)
Hernquist [10] ρH(r) = Ma

2πr(a+r)3 Φ̃H = −GMa
a+r

Plummer [10] ρP (r) = 3Ma2

4π(a2+r2)
5
2

Φ̃P (r) = GM√
r2+a2

Brownstein [12] ρB(r) = 3bM
(b+r)4 Φ̃B = −4πGM r2

(b+r)3

Kuzmin disk ρK(R, z) = δ(z) aM

2π(a2+R2)
3
2

Φ̃K = − GM√
R2+(a+|z|)2

of the disk like the spiral arms or an elongated bar that some galaxies have, spiral galaxies are

symmetric with respect to their central axis. Non-axisymmetric features are neglected in the

following calculations. As GLED gravity is still linear, the total potential of the galaxy can be

constructed from individual potentials for each feature. In this section, we will investigate six

spherical and one disklike mass distribution ansätze with di�erent properties. All models have

two free parameters, a characteristic size and the total mass or a central density respectively (see

Tab. 1)

Only a few of the integrals I0, I∞ have analytical solutions. A homogeneous sphere is the easiest

model to compute, but not very realistic for a galaxy. For a constant density up to a radius re

one �nds

I0
C =ρ0

µr cosh(µr)− sinh(µr)

µ2

I∞C =ρ0
e−µr(µr + 1)− e−µre(µre + 1)

µ2

for a particle inside the sphere. On the outside of course, only I0 applies up to the edge radius re.

For an in�nite sphere of constant density corresponding to an in�nite homogeneous distribution,

both integral terms cancel and the potential correction vanishes as expected. The orbital velo-

cities are now computed by plugging the models into equation 52. For re <∞ the modi�cations

to the velocities are given by:
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r
∂Φ̄C

∂r
=

4πGνρ0

µ3r

{
(1 + µre)e

−µre(sinh(µr)− µr cosh(µr)) for r < re

(1 + µr)e−µr(µre cosh(µre)− sinh(µre)) else.
(77)

Other models are not analytically integrable but can be symbolically evaluated using the sine and

cosine integrals Si and Ci, the hyperbolic sine and cosine integrals Shi and Chi and the elliptic

integral Ei (de�nitions see Appendix B). The isothermal sphere is a simple model that often is

used for galaxies including cold dark matter. As seen in section 3.1.3, it has been constructed to

give �at rotation curves in Newtonian gravity on large radii. The integrals evaluate to

I0
I =ρ0a

2Shi(µr)

I∞I =ρ0a
2Ei(−µr).

(78)

The backdraw of the isothermal sphere is its quadratic density divergence at r = 0, which can

be circumvented by adding an incremental o�set r + ε. More sophisticated models like the one

by Navarro, Frenk and White do not have this issue. The NFW model is a phenomenological

model, that also describes the shape of galaxies using dark matter. Here, I0 and I∞ are

I0
N =− ρ0a

2

2
Re [(sin(aµ) (Ci(aµ+ iµx) + Ci(iµx− aµ)− 2Ci(aµ))

+ cos(aµ) (Si(aµ− iµx) + Si(aµ+ iµx)− 2Si(aµ))]

I∞N =
ρ0a

2

2
Im

[
eiaµEi(−iaµ− µx)− e−iaµEi(iaµ− µx)

]
.

(79)

Models of the baryon content of a galaxy can be constructed by evaluating the luminosity curve

of a galaxy together with a model of the stellar size distributions within a galaxy. Two common

choices for the distribution of visible matter are Hernquist and Plummer spheres. The latter

has to be integrated numerically, Hernquist spheres have this symbolical form for the GLED

corrections

I0
H =− aMµ2

4π

[
(a+ r) cosh(µr) + sinh(µr)

µ(a+ r)2
− 1

µa2

+ sinh(aµ) (Chi(µ(a+ r))− Chi(µa)) + cosh(aµ) (Shi(µa)− Shi(µ(a+ r)))

]
I∞H =

aM

4π

[
µ2eµa(Ei(−µ(a+ r))− Ei(−µa)) + e−µr

µ(a+ r)− 1

(a+ r)2
− µa− 1

a2

]
.

(80)

[12] propose a model for the visible matter that could explain the rotation curves for some

galaxies in theory with modi�ed Newtonian dynamics. It has been included in the study as the
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weak �eld limit shares some features with MOND-like theories and the model has a symbolical

integral solution

I0
B =

bMµ2

2

 2

µ
+
b3 + 2b2r + b

(
r2 − 1

µ

)
− 3 r

µ2

(b+ r)3
sinh(µr)− 2b+ 3r

µ(b+ r)2
cosh(µr)

+ (3 sinh(µb) + cosh(µb)) (Chi(µb)− Chi(µ(b+ r)))

+ (sinh(µb) + 3 cosh(µb)) (Shi(µ(b+ r))− Chi(µb))

] (81)

I∞B =− bMµ2

2

b3 + 2b2
(
r + 1

µ

)
+ b

(
r2 + 5 rµ −

1
µ2

)
+ r2

µ −
r
µ2

(b+ r)3
e−µr

+ (3 + µb)eµb (Ei(−µ(b+ r))− Ei(−µb))
]
.

(82)

Disk shaped models like the Kuzmin disk uses here are calculated numerically as several of the

integrals arising here have no symbolical solution.

3.3.2. Methods and Data

The analysis itself was based on the Python Monte-Carlo Markov-Chain (MCMC) implementa-

tion of the emcee package from [20] (v2.2.1), where the highest density peak of the distribution

determined by a kernel density estimate was considered to be the best �t. Each individual run

used 20 walkers with 1000 samples each.

The script executes a three step algorithm illustrated in Fig. 11: First, a �t with Newtonian

gravity was done to provide starting values for the GLED gravity �t. Steps two and three are

quite sensitive to the right starting values because they use more constants and have a more

complicated form containing the integral expressions. Furthermore, it is possible to exclude

galaxies in this step for which the MCMC algorithm �nds no reasonable �t even for Newtonian

gravity. This may be caused by a irregular shape of the rotation curves indicating special physical

conditions within the galaxy like during mergers or a combination of very few data points with

large errors.

In a second step, weak �eld GLED gravity was �tted to the observation data to get individual

values for the gravitational constants {µ, ν}. Several value ranges for µ and ν were excluded

as unphysical beforehand. µ < 0 would result in a divergent gravitational potential, a value of

ν < −1 in a positive potential for small distances which would correspond to a repulsive force

of gravity at lab scales. For large values of µ, ν the integrals tend to converge very slowly, so

ν > 10 and µrX > 100 were excluded after checking that the estimates will not be within these

ranges. We will see later that such large values only appear as noise.

Possible estimates for the gravitational constants were derived by a kernel density estimate

of the individual values from each galaxy. This has been favoured over a weighted mean of
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Density Pro�les

Newtonian
potential

MCMC Fit #1
Newtonian

GLED potential

starting values

MCMC Fit #2
individual GLED

KDE
µ, ν

MCMC Fit #3
collective GLED

starting values

Fig. 11.: Three step algorithm for estimating gravitational constants and �tting galaxy ro-
tation curves

the individual results for these constants, as the distributions often are non-Gaussian and the

logarithmic likelihoods have multiple minima. Additionally, the density based estimations and

one-sided standard deviations avoid estimation biases due to the restrictions especially of µ > 0.

The minima of multi-peaked distributions have been considered individually as shown in the

next section.

Using the proposed values for the gravitational constants from step two and starting values from

both previous steps, a last MCMC run was done. This run was to determine the individual

galaxy parameters for the proposed collective set of {µ, ν} and to evaluate the χ2 values.

In principle, the script allows arbitrary combinations of up to two density pro�les that are either

spherical or disklike for the galaxies. Due to the higher amount of free parameters, �ts usually

did not converge for combined distributions on reasonable computational time scales. Therefore,

the rotation curves in the next section are based on single distribution mass density models.

For the comparison of the theoretical results with observed galactic velocity data and the deter-

mination of possible values for the gravitational constants µ and ν, we chose a data set of 26

low surface brightness galaxies derived by [34] from observations of the Kitt Peak and the Las

Campanas telescopes and the SPARC data set with 175 galaxies from the Spitzer telescope [33].

Only regular galaxy types were chosen due to the symmetry ansatz introduced before. Remov-

ing double counts and excluding extremely irregular rotation curves, 145 galaxies remain. The

number of data points per object varies between 4 and 212.

3.3.3. Gravitational Constants

Using a single density distribution in GLED gravity gives a four parameter �t per galaxy including

two gravitational constants and two galactic parameters. For all investigated models, the �ts

yielded meaningful estimates for the GLED gravitational constants µ and ν on a single galaxy

level. Figs. 12 to 14 show typical results for the gravitational constants of three models.
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Fig. 12.: µ-ν projection of the MCMC results for an isothermal sphere for the galaxies
E0140040 and F583-1.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

ν

µ[10−18m−1]

NGC3972

0 50 100 150 200 250
300

350

400

450

500

550

600

M

b[1018m]

NGC3972

Fig. 13.: MCMC results for a Hernquist sphere for the galaxy NGC3972 projected to the
µ-ν and the M -b planes. The colour ramps from blue (small) to red (large) values
of b and µ respectively.
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Fig. 14.: µ-ν projection of the MCMC results for a Kuzmin disk for the galaxies U11748 and
E4880049.
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Fig. 15.: Kernel density estimates for the gravitational constant values of an isothermal, a
NFW model, a Plummer and a Hernquist sphere, a model from Brownstein and a
Kuzmin disk. Level lines are at 0.1 increments each.

The individual �ts using an isothermal sphere model are usually degenerate on the {µ, 0}
and {0, ν} axes; two examples of the galaxies E0140040 and F583-1 are shown in Fig. 12

as illustration. Both branches correspond to a vanishing contribution from GLED gravity as

µ→ 0 : e−µr → 1, where the correction term becomes constant and can be completely absorbed

recovering Newtonian gravity. The kernel density estimate covering all 145 galaxies shown in

Fig. 15, gives the same result of a vanishing contribution with emphasis on the µ = 0 axis.

The isothermal sphere was expected to show little GLED gravity e�ects, as it already is a good

description for galaxy rotation curves in Newtonian physics.

For the Navarro-Frenk-White model a similar result to the isothermal sphere was expected.

However, no degeneracy showed up but a very distinct value that is very near the ν = 0 axis.

The deviation from 0 is not signi�cant, but slightly improves the results obtained in the next

section for common gravitational constants.

All other spherical models Hernquist, Plummer and Brownstein yield a stronger deviation from

Newtonian physics and a larger spread. Some galaxies show foci for negative ν, but they do

neither appear in other galaxies nor correspond to reasonable rotation curves. One reason for

the larger spread is the appearance of jet shaped features in the �t results pointing towards

in�nity for µ and ν. Fig. 13 shows one example of this situation. Adding another dimension

with colour coding shows that the jets in the µ-ν correspond to the edges of theM -b distributions.

The yellowish main peak in the µ-ν projection corresponds to the main peak in the M -b plane.

Furthermore, the shape of the jets di�ers between galaxies. The main reason for the occurrence

of the runaway jets is probably an instability produced by numerically slowly converging integral

expressions when the rotation curves are too far o� from stable con�gurations. This emphasises

the importance of good starting values.
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Tab. 2.: Best �t results for the gravitational constants of weak �eld GLED gravity

µ[(10−18m)−1] ν

Isothermal n/a 0.000002± 0.5
Plummer 0.011± 0.11 0.126± 0.152
Hernquist (0.016± 0.0037 0.21± 0.28)

0.13± 0.06 0.22± 0.15
NFW 0.031± 0.09 0.0038± 0.02
Brownstein 0.04± 0.11 0.037± 0.19
Kuzmin 0.011± 0.08 0.0044± 0.0037

Tab. 3.: Deviations of GLED gravity from the Newtonian theory for µ ≈ 10−19m−1 and
ν ≈ 10−1

Distance Deviation from G(1 + ν)

0.1 m −10−21

10 m −10−19

1010 m (Solar System) −10−10

1016 m (0.3 parsec) −1.00 · 10−5

1019 m −0.063
1020 m −0.1 + 4.54 · 10−6

uncertainty of G̃ [47] ±1.2 · 10−5

The Hernquist sphere has the lowest spread, but two peaks that have to be inspected. Around

(µ, ν) = (0, 0) several galaxies show a smaller peak, but this corresponds to the metric starting

values which provide a shallow local optimum. Further analysis shows that the left large peak

only gives reasonable rotation curves for about half of the galaxies while the other suits the most

quite well.

Using a Kuzmin disk gives an interesting result with a very narrow spread of the estimated

values for µ and ν over more than 95% of the galaxies. Fig. 14 shows two typical examples � the

distributions share the same shape in a similar parameter range. Neglecting noise from negative

starting values, the disk is also the only model where strictly ν > 0 for any galaxy. The GLED

correction term contributes very little with ν < 0.01 as the Newtonian theory already had been

a decent �t for this model.

All estimates for the gravitational constants µ and ν strongly depend on the galactic model uses,

but none deviates from zero by more than 2σ (see Tab. 2). One reason for this is that the

contributions from NFW and Kuzmin are very small and more data on length scales one to two

orders of magnitude larger should be considered.

The last missing constant of the weak �eld limit for GLED gravity is G as it cannot be extracted

from the rotation curves directly. For µr → 0 the GLED correction term νe−µr basically equals

ν. So, G is given by Newton's constant Ḡ as
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G =
Ḡ

1 + ν

recovering Newtonian gravity on this scale. Do typical scales accessible to direct experiments

meet the condition µr → 0? Setting upper limits for the gravitational constants of µ ≈ 10−19m−1

and ν ≈ 10−1, one �nds the deviations from Newtonian gravity shown in Tab. 3.

We see that the GLED deviation from Newtonian gravity is smaller than the current uncertainty

in the measurement of Newton's constant on laboratory and even Solar System scales, thus G

indeed can be derived from Newton's constant on small distances. At interstellar distances of

about a parsec, the GLED e�ect becomes relevant and therefore would be distinguishable as new

physics. Detectable e�ects can be seen on galactic scales with a maximal e�ect at about 1019 m.

For objects larger by only one order of magnitude, the relation quickly �attens and Newtonian

gravity with a gravitational constant reduced by a factor of 1 + ν is recovered.

Independent of the value of the gravitational length scale µ derived in this work, the e�ects of

weak �eld GLED gravity are limited to a narrow window of about four orders of magnitude in

distance. For smaller estimates of ν as seen for the NFW and the Kuzmin �t, the window gets

even smaller. What remains on scales outside this window, are Couloumb potentials with slightly

di�erent gravitational constants similar to MOND gravity.

3.3.4. Individual Galactic Fit Results

In the last step, the rotation curves were �tted again to the individual galaxies using the ob-

tained estimates for the gravitational constants. Both Plummer and Brownstein models yielded

reasonable �t results using µ and ν as free parameters, but this result could not be reproduced

using the common best �t gravitational constants. The theoretical rotation curves were far o�

the observed velocities, such that both models had to be excluded from further discussion. This

decision is supported by the χ2 of the �ts where these models give the worst results by far.

Several galaxies included in the study clearly did not �t the theoretical rotation curves provided

by the other galactic models as well. Some of them have a rather irregular shape, others have

features that some models cannot reproduce. Thus, the contributions from these few outliers

Tab. 4.: χ2 values for the �ts of all galaxy models excluding outliers of more than ten times
the median χi

Newtonian χ2 GLED χ2

isothermal 182 182
NFW 317 226
Hernquist 4797 1476
Plummer 17862 16607
Brownstein 6275 3239
Kuzmin 564 828
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dominate the overall χ2. We decided to set a limit of ten times the median individual galactic

χ2
i to be considered giving the χ2 values in Tab. 4.

For the remaining models Fig. 16 shows a selection of typical results. The rotation curves of all

galaxies for all six potentials can be found in Appendix A.

An isothermal sphere with vanishing GLED contribution provides the best �t for the observation

data of most galaxies with χ2 = 182 for 292 degrees of freedom. This has been expected, as it

is constructed to have a �at rotation curve for large radii. It can, however, not explain rotation

curves with more complex internal structure, as many curves have a small peak at low radii and

a plateau that is not constant but slightly decreasing at large radii.

For galaxies with more complex rotation curves, the NFW model provides the best �t. Over all,

its χ2 is comparable to the isothermal one and using GLED gravity improves this value.

While the Hernquist model cannot be considered a good �t for Newtonian gravity, it signi�cantly

improves in GLED gravity. χ2 still is almost 1500, but it provides a reasonable �t for about

two thirds of the galaxies. As illustrated in Fig. 16, this model is suitable for galaxies where

the rotation curve is slowly declining on large radii, but not for ones with constant v. For small

radii, the Henquist model gives a small additional peak in GLED gravity. This is a feature that

is present in the rotation curves of several galaxies but not in all.

The quality of the Kuzmin model decreases when using GLED gravity which seems to be coun-

terintuitive as an increasing χ2 should yield a vanishing GLED contribution. The issue with this

model is of technical nature. Due to the expansion around µr = 1, it only performs well in this

region. Here, the �t results are very good and many galaxies have not been observed beyond

about µr = 3, where the expansion still is valid. These galaxies dominate the estimation for the

gravitational constants. For very small and very large radii, the correction term diverges and

the rotation curve does not �t the observational data anymore. This problem could be solved by

using higher orders in the expansion. As the computing time for Kuzmin disks on average was

about ten times higher than for the other models already, this could not be performed.

Knowing the value of G, one in principle could calculate the total mass of the galaxies and

compare them to the Newtonian value. Indeed, this value decreases for the models for visible

matter (Hernquist, Plummer, Brownstein) by about half, but as they do not really provide a

good Newtonian �t, this mass di�erence bears not much information value.
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Fig. 16.: Seven typical examples for �tted galaxy rotation curves
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4. Cosmic Structure Formation

The results of this chapter will be published as

H-M Rieser, B M Schäfer

Structure Formation for Cosmologies with Possibly Birefringent Matter

4.1. Large Scale Structures and the Cosmological Background

The goal of cosmology is to explain the history of our Universe. One of the main aspects of

this evolution history is the formation of structures on large scales of galaxies and beyond. In

particular, one has to explain how tiny perturbations in the young Universe assumed to be

initially homogeneous evolve to the incredible disparities in matter density between the centres

of galaxies and intergalactic space today.

The formation of structures is governed by two e�ects that can be examined separately: The

Universe's expansion and the interactions of matter within it. For the latter, gravitational

instabilities are the main type of interaction [9]. As structure formation happens in regimes of

non-relativistic velocities and low gravitational �eld gradients due to either low matter densities

or a low density contrast, it is su�cient for most applications to use the weak �eld limit of gravity

for the matter interactions as derived in the previous chapter for general linear electrodynamics.

The expansion of the Universe intrinsically is a relativistic phenomenon that can be considered

as the dynamics of the geometric background structure formation takes place on. The cosmology

for a spacetime linked with general linear electrodynamics by the constructive gravity algorithm

has been studied extensively in [17]. The main di�erence to the standard Friedmann-Lemaître-

Robertson-Walker cosmology is the appearance of a second scale factor c that is linked to a new

property of matter Q complementing the scale factor a connected to the matter properties ρ and

p. The Friedmann equations derived for this cosmology feature an in�nite amount of unknown

functions, an issue that has not been resolved yet. Using the abbreviations

H =
ȧ

a
and Hc =

ċ

c

q = − äa
ȧ2

and qc = − c̈c
ċ2

similar to standard cosmology, the Friedmann equations can be cast in the form
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ρ

c3
=

3∑
m=0

Hm ((m− 1)fm(c,Hc) +Hcfm,Hc(c,Hc))

3P
c3

=
3∑

m=0

Hm

[
(m− 1)(mq +m− 3)fm(c,Hc)−m

Hcc

H
fm,c(c,Hc)

+ m (qc + 1)
H2
c

H
fm,Hc(c,Hc)

]
3(ρ+Q)

c3
=

3∑
m=0

Hm
[
(mq +m− 3)Hfm,Hc(c,Hc) +H2

c (qc + 1)fm,H2
c
(c,Hc)

+ c(fm,c(c,Hc)−Hcfm,c,Hc(c,Hc))]

with four unknown two-dimensional functions fm(c,Hc) analytical at least in the last argument

where the following constraints arise from the construction equations:

ρ̇+H(ρ+ P) +HcQ = 0

∂3−mfm(c,Hc)

∂H3−m
c

∣∣∣∣
Hc=0

= 0 for m ∈ {1, 2, 3}.

Physically, the �rst one can be interpreted as a continuity constraint during expansion, the

other three have no physical interpretation as the physical role of the functions themselves is yet

unknown. To date, these equations have not been solved. It is unclear whether the free functions

have to be determined by observations or if the Construction Equations bear further constraints

that have not been found yet. At least one further equation that connects the evolution of c to

a or H will be needed.

In addition, the interpretation of the involved quantities is still unknown. Especially, the roles of

c and Q are mostly unknown; it also has not been resolved whether the standard interpretations

of a, ρ and P as scale factor, density and pressure still hold. It has been shown that volume

elements scale with
(
a
c

)3
and the propagation of light rays with a only [19]. For the applica-

tion in structure formation however, one additionally needs to �nd the connection between the

Friedmann equations and the constants in standard cosmology like the cosmological constant Λ

or the energy content Ω and calculate the time evolution properties of both a and c by solving

the Friedmann equations.

As a complete cosmology for GLED gravity is not available yet, the spacetime background for

the derivation of structure formation in this chapter will still be standard cosmology. This

is justi�ed as the GLED deviation from a Lorentzian geometry is small by assumption when

using the linearised gravity theory. For a small deviation c → 1 and the Friedmann-Lemaître-

Robertson-Walker structure is recovered to leading order [17].
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4.2. Linear Structure Formation

4.2.1. The Growth Equation

The �uid dynamics of cosmological matter can be described by the Euler equation, the gravita-

tional interaction is governed by the Poisson equations from eq. (49). The continuity equation

ensures mass-energy conservation and entropy is also conserved

v̇ + v∇xv =−∇xΦ− ∇P
ρ

∆x(Φ−Ψ)− µ2(Φ−Ψ) =4πGνρ

∆xΨ =4πGρ

ρ̇+∇xvρ =0

Ṡ + v∇S =0

(83)

with the Newtonian potential Ψ and the GLED correction Φ̄ = Φ−Ψ. Technically, the entropy

equation is not de�ned for dark matter, but we will see that it does not contribute to linear order

and therefore no assumptions on the matter types have to be made. Converting to comoving

coordinates separates the Universe's expansion from the �uid dynamics:

x→ar

v =Hx+ δv → u

∇x →
1

a
∇

where H = ȧ
a is the Hubble parameter of a as before. As long as small deviations from a

homogeneous Universe are considered, it is convenient to introduce the density and entropy

contrasts δ and s with the mean density ρ̄

ρ =ρ̄(1 + δ)

S =S̄(1 + s)

dP =
∂P
∂ρ

dρ+
∂P
∂S

dS = c2
sdδ + σds

with the local sound speed cs and the stress σ. This leads to the following set of equations:
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˙̄ρ+ ρ̄H = 0 (84)

δ̇ +∇u+
δ

a
∇u+

u

a
∇δ = 0 (85)

u̇+ 2Hu+
1

a2
∇Φ +

∇c2
sδ

a
+
σ

ρ̄

∇s
a

= 0 (86)

1

a2
∆Φ̄− µ2Φ̄ = 4πGνρ̄δ (87)

1

a2
∆Ψ = 4πGρ̄δ (88)

ṡ+
u

a
∇s = 0. (89)

In a linear approximation where δ � 1 and s� 1, also the peculiar velocities u generating this δ

are small on the time scale where this approximation is valid. Therefore uδ = O(2). With this,

one sees that the entropy does not change over time to �rst order and linear structure formation

can be seen as an adiabatic process. Separating the expansion orders, the blue terms are the 0th

order that describe the evolution of the mean density in the Universe due to expansion and the

red terms are at least second order in δ, u, s. The remaining equations in black describe linear

structure formation in the Universe.

By taking ∇(86) and plugging in (85), ∂
∂t(85) and (87) + (88) one gets a set of two second order

di�erential equations

δ̈ + 2Hδ̇ + 4πG(1 + ν)ρ̄δ +
∇c2

sδ

a2
=− µ2Φ̄

∆Φ̄− a2µ2Φ̄ =4πGνρ̄a2δ.

(90)

The main di�erence to Newtonian structure formation is that the GLED correction of the po-

tential still remains in the growth equation and has to be determined by its respective Poisson

equation. Combining both gives a single equation governing the structure formation

0 =c2
s∆

2δ − a2∆δ̈ − 2Ha2∆δ̇ + (1 + ν)4a2πρ̄∆δ − µ2a2c2
s∆δ

+ µ2a4δ̈ + 2Ha4µ2δ̇ − 4πρ̄a4µ2δ
(91)

=
(
∆− a2µ2

)(
δ̈ + 2Hδ̇ + 4πG(1 + ν)ρ̄δ +

∆c2
sδ

a2

)
− 4πGµ2νρ̄a2δ.

Substituting dt = ∂a
∂t da, equation (91) may also be expressed in terms of the scale factor a(t).

Eq. (90) changes to
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∂2
aδ +

(
3 +

∂ lnH

∂ ln a

)
∂aδ +

1

H2a2

(
4πG(1 + ν)ρ̄δ +

∆c2
sδ

a

)
=− 1

H2a2
µ2Φ̃,

where we can identify the term
(
3 + ∂ lnH

∂ ln a

)
= 2−q

a with the deceleration q = − äa
ȧ2 . This gives a

growth equation

0 = c2
s∆

2δ −H2a4∆∂2
aδ −H2a3(2− q)∆∂aδ + (1 + ν)4πa2ρ̄∆δ − µ2a2c2

s∆δ

+H2µ2a6∂2
aδ + 2H2a5(2− q)µ2∂aδ − 4πρ̄a4µ2δ

0 =
1

µ2

[
H2∆∂2

aδ +H2 2− q
a

∆∂aδ +
3Ωm0

2χ2
Ha

3
(1 + ν)∆δ +

c2
s

a3
∆2δ

]
−H2a2∂2

aδ −H2a2 2− q
a

∂aδ −
3Ωm0

2χ2
Ha

3
δ − c2

s

a
∆δ.

(92)

For either ν = 0 or µ ∈ {0,∞} the growth equation for a FLRW background is recovered. The

initial and periodicity conditions for structure formation are

δ(r, t = 0) =δ0(r),

δ̇(r, t = 0) =0,

δ(r + ~nL, t) = δ(r, t)

for a su�ciently large distance L. As ansatz for the mean density, we will use the critical density

from FLRW cosmology

ρ̄ =Ωmρcrit = Ωm(a)
3H2

8πG
=

3Ωm0H
2
0

8πGa3
.

4.2.2. a-Adiabatic FLRW Cosmological Background

Choosing a separation of variables ansatz δ(r, t) = Sδ(r)Dδ(t) transforms eq. (91) to

0 =c2
s

∆2Sδ
Sδ
− ∆Sδ

Sδ

[
a2 D̈δ

Dδ
+ 2Ha2 Ḋδ

Dδ
− (1 + ν)

3Ωm0H
2
0

2a
− µ2a2c2

s

]

+ µ2a4 D̈δ

Dδ
+ 2Ha4µ2 Ḋδ

Dδ
− 3Ωm0H

2
0

2
aµ2

=F1(r) + F2(r)G1(t) +G2(t).

(93)

Applying the derivative ∇∂t gives

61



Cosmological and Astrophysical Tests of Constructive Gravity Hans-Martin Rieser

0 =∇F2(r)Ġ1(t),

so either F2(r) = k2 (case I) or G1(t) = χ (case II) are constant.

Case I In the �rst case, F2Sδ = ∆Sδ = k2Sδ has the solutions

Sδ,k(r) = c±,ke
±k·r.

k2 < 0 yields trigonometric solutions, k2 > 0 hyperbolic ones. Using the initial and boundary

conditions δ(r, t = 0) = δ0(r) and δ(r, t) = δ(r + ~nL, t) we can provide any initial density δ0(r)

by its Fourier decomposition and therewith the complete solution is

δ(r, t) =
∑
k

(
c+,ke

ik·r + c−,ke
−ik·r

)
Dδ,k2(t) (94)

with k = 2π~n
L . Having a solution for Sδ, a solution for Tδ can be derived: eq. 93 reduces to

D̈δ + 2HḊδ −Dδ

[
3Ωm0H

2
0

2a3

(
1 +

ν

1 + a2µ2L2

4π2n2

)
− 4π2n2c2

s

L2

]
= 0. (95)

To proceed at this point, a solution for the scale factor a(t) is needed. When linear structure

growth happens on a much faster time scale than the Universe's expansion a(t), one can ap-

proximate a and H � Ṫδ
T as constant on the timescale of the matter dynamics in an a-adiabatic

fashion. The solutions of eq. 95 are exponential functions. Depending on the length scale L,

the exponent can be either real or imaginary which corresponds to either a combination of a two

exponential modes or to an oscillation without structure growth. The modi�ed Jeans' length is

the upper bound on Ls having growing solutions

λJ =
2csπ
√

2√
4πGρ̄(1 + ν)− µ2c2

s +
√

(µ2c2
s − 4πGρ̄(1 + ν))2 + 16πρ̄Gµ2c2

s

.

Again, for either ν = 0 or µ ∈ {0,∞} this reduces to the regular Jeans' length for Lorentzian

metric backgrounds. Using the condition δ̇(t = 0) = 0, the full a-adiabatic solution is given by
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δ(r, t) =
∑
~n

(
c+,~ne

2πi~n r
L + c−,~ne

−2πi~n r
L

)
e−Ht cosh(

√
ωt) (96)

ω =H2 +
3Ωm0H

2
0

8πGa3

(
1 +

ν

1 + a2µ2L2

4π2n2

)
− 4π2n2c2

s

L2
(97)

which has a growing mode for L/n < λJ . The GLED gravity growth behaviour is of exponential

shape similar to Newtonian gravity. In contrast to the standard result, it is not the oscillation

that limits the growth of structures: In the range H2 > ω > 0, the solutions are still exponential,

but both modes are decaying. Even the amplitude of oscillating modes will decay on a Hubble

time scale.

Additionally, small perturbations will have a di�erent growth speed even in a pressureless �uid.

High values of n, i.e. small sized perturbations, grow faster than large ones. The GLED growth

timescale for large |n| is

lim
|~n|→∞

τ~n =
H

2

(
1 +

√
1 + 6(1 + ν)Ωm

)−1

asymptotically.

Case II The second case gives

0 =c2
s∆

2Sδ −∆Sδχ+ Sδ

[
χµ2a2 + ν

3Ωm0H
2
0

2
aµ2 − a4µ4c2

s

]
.

To allow for a purely spatial solution for S, the pre-factors have to be constant in time. So this

case is only a solution for a purely static universe. Considering the pre-factors constant, it is

possible to rede�ne χ in terms of k2 such that case I is recovered with the same solutions that

are degenerate in this case.

4.2.3. Dynamical FLRW Cosmological Background

In contrast to the last section's derivation, most solutions for cosmology in universes containing

some energy Ω have an evolution a(t) 6= a0. In this case, using the growth equation 92 is a better

choice for the description of structure growth as it includes the time only implicitly. Much of

the work can be done without knowing anything about H, q or ρ̄ yet.

Using separation of variables as before, case II again leads to a static universe which contradicts

the assumption. Case I has the same spatial solution
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Sδ,k(r) = c±,ke
±k·r

with a growth equation

0 =c2
sk

4 − k2

[
H2a4∂

2
aD

D
+H2a3(2− q)∂aD

D
− (1 + ν)4πGρ̄a2 + µ2a2c2

s

]
+H2a6µ2∂

2
aD

D
+H2a5µ2(2− q)∂aD

D
− 4πGρ̄a4µ2

0 =∂2
aD +

2− q
a

∂aD −
1

H2a4

[
k2c2

s + 4πGρ̄a2

(
1 +

ν

1− a2µ2

k2

)]
D. (98)

We may consider radiation, matter and cosmological constant dominated epochs with the prop-

erties

H(a) qi ci ni

radiation H0
√

Ωr0
a2 1 1 0

matter H0
√

Ωm0

a3/2
1
2

3
2 1

Λ H0

√
ΩΛ −1 3 4.

This leads to the three growth regimes

0 =∂2
aD +

ci
a
∂aD −

1

Ωiani

[
k2c2

s

H2
0

+
3Ωm0

2a

(
1 +

ν

1− a2µ2

k2

)]
D. (99)

This ODE does not have a general analytical solution.

Stability Before considering approximations for special limits of a, it is useful to perform a

stability analysis to check whether the behaviour of solutions identi�ed in the static Universe

can be transferred to a dynamical one. Eq. 99 can be written in the form

∂a −
 0 1

1
Ωiani

[
k2c2s
H2

0
+ 3Ωm0

2a

(
1 + ν

1−a2µ2

k2

)]
− ci
a

(D
D′

)
= 0. (100)

An examination of the eigenvalues
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ψ± = − ci
2a
±

√√√√ c2
i

4a2
+

k2c2
s

Ωi0aniH2
0

+
3Ωm0

2Ωi0ani+1

(
1 +

ν

1− a2µ2

k2

)

indicates the growth behaviour of the solutions even if they are not determined yet. For small

structures |k2| � µ2a2 nothing changes compared to the standard result. A complex ψ yields

oscillating solutions, ψ+ < 0 two decaying solutions which is the case for

ψ real:
c2
iΩi0a

ni−2

4
+
k2c2

s

H2
0

+
3Ωm0

2a

(
1 +

ν

1− a2µ2

k2

)
> 0,

ψ > 0:
c2
sk

2

H2
0

+
3Ωm0

2a

(
1 +

ν

1− a2µ2

k2

)
> 0.

One gets the following conditions on k2 for growing solutions:

−2k2 < A−
√
A2 + 4B,

−2k2 > A+
√
A2 + 4B

(101)

with

ψ real: A =
c2
i a
ni−2Ωi0H

2
0

4c2
s

− a2µ2 +
3Ωm0H

2
0

2ac2
s

(1 + ν)

B =
c2
i a
niµ2Ωi0H

2
0

4c2
s

+
3aµ2Ωm0H

2
0

2c2
s

ψ > 0: A = −a2µ2 +
3Ωm0H

2
0

2ac2
s

(1 + ν)

B =
3aµ2Ωm0H

2
0

2c2
s

.

All other modes do not grow.

Fig. 17 shows the growth regimes in the parameter space of µ, ν and Ωi which is the dominant

energy content. Both µ and k have been normalized to the length scale given by the sound speed

cs. In the lower half plane that corresponds to a hyperbolic Fourier decomposition, all real ψ still

will lead to growing solutions and oscillations otherwise. In the half plane of a regular Fourier

decomposition as used in eq. 94, the condition on ψ+ to be positive sets the lower border on

|k2| for the existence of growing modes. Comparing this result to the static case, the condition

reduces to −k2 < 2π
λ2
J
. If µ2 < 0, a second growth region arises for Fourier modes with large
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C = 1

C = 1

C = 0.5

C = 0.5

C = 1.5

C = 1.5

2µ2a3c2s
3Ωm0H2

0

−2k2ac2s
3Ωm0H2

0

−1 1

1

−1

oscillating

oscillating

@ growing mode

∃ growing mode

∃ growing mode

Fig. 17.: Ranges for the existence of growing modes k2 of the linear growth equation using
dimensionless quantities normalized by the sound speed scale and using ν = 0.1.
Continuous lines are used for the ψ real condition, dashed and dotted lines for
the ψ+ > 0 condition with di�erent values for the dimensionless constant C =
c2i a

ni−1Ωi0
6Ωm0

. Grey areas show the ranges for using ν ∈ {0.01, 0.2}.
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wavelengths. However, this would correspond to a complex µ with an oscillating point particle

potential in equation 47. [4] shows that this is no solution of the construction equations.

Varying ν will have only small e�ects on ψ when being in the ranges estimated in section 3.3.3.

For a choice of ν < −1, ψ+ > 0 crosses the ψ real line. But as this would correspond to

Newton's constant being negative and gravity being repulsive at small scales, this is an unphysical

parameter range. On the other hand, the cosmology dependent constant C has a large in�uence

on the slope of the border between growing and decaying solutions. One has to note, that the

limit µ→∞ corresponds to the Newtonian case, but µ→ 0 does not.

In the following, the a-evolution for three cases of interest is derived: The very early universe

where a ≈ 0, recent history (a→ 1) and the far future for an ever expanding universe (a→∞).

Early Universe (a → 0) For a young Universe, the leading terms in 1
a dominate the structure

growth behaviour. The growth equation approximately reads

0 =∂2
aD +

ci
a
∂aD −

[
3(1 + ν)Ωm0

2Ωi

1

ani+1
− k2c2

s

ΩiH2
0

1

ani
+

3νµ2Ωm0

k2Ωi

1

ani−1
+O(a2−ni)

]
D,

where the colors denote the di�erent orders in a. The leading order term is only a slight mod-

i�cation of the basic Newtonian equation by a factor of (1 + ν). The next order contains the

corrections from using a �uid with pressure, only third and higher order e�ects contain the GLED

length scale µ.

To leading order, structure formation in an early matter dominated Universe may be described

by a power law ansatz D ∝ ap with the solution

Dm(a) = c+a
− 1

4
+
√

25
16

+ 3ν
2 − c−a

− 1
4
−
√

25
16

+ 3ν
2 , (102)

where the �rst term is almost a1 for small ν and the second almost a−
3
2 . Radiation and Λ

dominated regimes have the solutions

Dr(a) =c+I0

√a6(1 + ν)Ωm0

Ωr0

+ c−K0

√a6(1 + ν)Ωm0

Ωr0

 (103)

DΛ(a) =c+

I1

(
1
a

√
3(1+ν)Ωm0

2Ωr0

)
a
√

3(1+ν)Ωm0

2ΩΛ

+ c−

K1

(
1
a

√
3(1+ν)Ωm0

2Ωr0

)
a
√

3π(1+ν)Ωm0

2ΩΛ

(104)

with the modi�ed Bessel functions of �rst and second kind In(x) and Kn(x), respectively. Kn(x)

drops very rapidly in the vincinity of x = 0, the In(x) branch is growing.
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Today's Universe (a→ 1) The �rst order approximation for a scale factor near a = 1 is given

by

0 =∂2
aD + ci(2− a)∂aD +

1

Ωi

[
(ni + 1)

k2c2
s

H2
0

− 3(ni + 2)Ωm0

2

(
1 +

ν

1− µ2

k2

)
−

3ν µ
2

k2 Ωm0

(1− µ2

k2 )2

− a

(
ni
k2c2

s

H2
0

− 3(ni + 1)Ωm0

2

(
1 +

ν

1− µ2

k2

)
−

3ν µ
2

k2 Ωm0

(1− µ2

k2 )2

)]
D

=∂2
aD + ci(2− a)∂aD + (aB + C)D.

The solutions to this equations are

Di(a) =c+e
aB
ci 1F1

(
−(2B + C)c2

i +B2

2c3
i

,
1

2
;
c2
i (a− 2)− 2B)2

2c3
i

)

+ c−e
aB
ci H c2

i
(2B+C)+B2

c3
i

c2
i (a− 2)− 2B
√

2c
3
2
i


with the Kummer con�uent hypergeometric function 1F1 and the generalized Hermite polyno-

mials Hn.

Late Expanding Universe (a → ∞) In the late Universe, evolution will be governed by the

equation

0 =∂2
aD +

ci
a
∂aD +

1

Ωiani

[
k2c2

s

H2
0

− 3Ωm0

2a

(
1 + ν

∑
n=1

(
k

µa

)2n
)]

D.

In this case the GLED e�ects are at least of fourth order and can be neglected. Thus this recovers

the case of a Universe with standard Newtonian gravity.

4.3. Perturbative Structure Formation

4.3.1. Fourier Analysis

Computing higher order structure formation processes is quite challenging. Having a solution to

the linear theory, the linearised equations can be used to approximate higher order contributions

perturbatively. For the derivation of higher order kernels, eqs. 85-88 have to be transformed to

their Fourier representation. Here, the convention
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A(k, t) =

∫
d3r

(2π)3
e−ik·rA(r, t)

will be used. Similar to the result from [9], the Fourier transform gives

∂δ(k, t)

∂t
+ θ(k, t) =−

∫
d3k1d

3k2δD(k − k12)α(k1, k2)θ(k1, t)δ(k2, t) (105)

∂θ(k, t)

∂t
+H(t)θ(k, t)− k2Φ(r, t) =−

∫
d3k1d

3k2δD(k − k12)β(k1, k2)θ(k1, t)θ(k2, t) (106)

k2Φ(k, t)− a2µ2Φ(k, t) =4πGνρ̄a2δ(k, t) (107)

with the abbrevation ∇·u(r, t) = θ(r, t), k12 = k1+k2 and the two non-linearity or mode coupling

functions

α(k1, k2) =
k12k1

k2
1

, β(k1, k2) =
k2

12(k1 · k2)

k2
1k

2
2

. (108)

A third, GLED speci�c non-linearity is introduced by eq. 107. Combining it with eq. 106 gives

∂θ(k, t)

∂t
+H(t)θ(k, t)− 4πGρ̄γ(k, t)δ(k, t) =−

∫
d3k1d

3k2δD(k − k12)β(k1, k2)θ(k1, t)θ(k2, t)

(109)

with

γ(k, t) = 1 + ν

(
1 +

a2(t)µ2

k2

)−1

.

Except for this term, the calculations in [9] are unchanged in GLED gravity. Therefore only the

term

−4πGρ̄γ(k, t)δ(k, t)

can introduce additional expansion terms, which are given by
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γ(k, t) = 1 + ν
∑
n=0

(
− 2a2

µ2k2

)n
(110)

for γ.

4.3.2. Tree-Level Correlation Functions

Using the structure formation equations in Fourier representation, the momentum spectra can

be calculated order by order. Their derivation also closely follows the procedure found in [9].

As shown there, we are interested in the connected part 〈·〉c of the correlations, as we can apply

Wick's theorem to construct higher order correlations from these as long as the initial distribution

of density deviations is a nearly Gaussian �eld. This is the case for most in�ationary scenarios

considered in cosmology today [8, 25, 46]. The �eld average

〈δ(k1)〉c = 〈δ(k1)〉 = 0

vanishes by construction, so the �rst relevant order is

〈δ(k1)δ(k2)〉c = 〈δ(k1)δ(k2)〉 − 〈δ(k1)〉c 〈δ(k2)〉c = δD(k1 + k2)P (k1, t) (111)

with the power spectrum P (k, t) in our convention of the Fourier representation. Other authors

use a di�erent convention such that the power spectrum gains an additional (2π)3 factor. The

power spectrum can be calculated with the help of the linearised solution from the last section.

First with the separation of variables, the time evolution can be extracted

P (k, t) = D2
+P (k, t0) = D2

+k
nT 2

tf (k) (112)

where D+ is an appropriate growing solution from section 4.2.3 depending on the growth regime.

Typically, this will be a solution for a matter dominated universe as t0 is set to the point of

decoupling of radiation and matter. The initial power spectrum P (k, t0) can be described as

a product of a factor determined only by the cosmological background kn with the primordial

spectral index n that is usually of order 1 and a transfer function Ttf [29]. Ttf represents

the evolution of initial perturbations before decoupling. It is determined by the cosmological

background, particle interactions and the structure growth during a radiation dominated era.

As background, we stay with the cold dark matter cosmology used by [29], particle interactions
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can be assumed to be una�ected by GLED to a precision su�cient for this task [21], but the

growing solution for the radiation dominated early Universe changes according to eq. 103:

Dr,+ ∝ I0

√a6(1 + ν)Ωm0

Ωr0

 ≈ [1− 3(1 + ν)

2

Ωm0

Ωr0
a+

9(1 + ν)2

16

Ω2
m0

Ω2
r0

a2

]
.

To �rst order, this is the same result as for Newtonian structure growth up to the additional

factor (1+ν). As it is constant, it can be carried through the calculations as a slight modi�cation

of the ratio Ωm0
Ωr0

. For large k we arrive at an expression

P (k, t) ∝ D2
m,+k

n ln2((1 + ν)|k|)
k4(1 + ν)4

. (113)

The next order, called the bispectrum B(k1, k2, t), is de�ned by

〈δ(k1)δ(k2)δ(k3)〉c = δD(k1 + k2 + k3)B(k1, k2, t)

and can be derived to tree-level by collecting all second order terms from eq. 105 and 109. Again,

the sole GLED contribution to both equations is the term containing γ, which can be expanded

to the following second order contributions

γ(2)δ(0) + γ(1)δ(1) + γ(0)δ(2) = −2νa2

µ2k2
· 0 + 0 · δ(1) + 1 · δ(2) = δ(2),

as the 0th order δ(0) = 〈δ〉 = 0 vanishes. This shows, that the second order structure formation

equations in Fourier space are not directly in�uenced by GLED gravity corrections and therefore

the derivation from [9] can be applied without change again. However, GLED gravity has an

indirect in�uence via the power spectrum P (k, t).

The second order equations of motion are solved in terms of the linear solutions by

δ2(k) =

∫
d3q1

∫
d3q2 δD(k − q1 − q2)F2(q1, q2)δ1(q1)δ1(q2) (114)

θ2(k) =

∫
d3q1

∫
d3q2 δD(k − q1 − q2)G2(q1, q2)δ1(q1)δ1(q2) (115)

with the second order kernels F and G. To get a tree-level expression for the bispectrum, all

connected second order diagrams involving the kernel F have to be considered. These are
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4· +4· +4·

giving

B(k1, k2, t) = 4F (k[1, k2])(k1, k2)P (k1, t)P (k2, t) + cycl.

for the bispectrum on linear tree-level order. Here, we used the symmetrized form F (k[1, k2]),

which can be solved for explicitly

F (k[1, k2]) =
5

14
[α(k1, k2) + α(k2, k1)] +

2

7
β(k1, k2) (116)

with α(k1, k2) and β(k1, k2) from eq. 108. This result approximately holds for a wide variety of

cosmologies with vanishing radiation content and curvature [9]. It is convenient to express the

bispectrum via the reduced bispectrum Q(k1, k1), as the time dependency drops on tree level:

Q(0)(k1, k2) =
4F (k[1, k2])P (k1, t)P (k2, t) + cycl.

P (k1, t)P (k2, t) + P (k1, t)P (k3, t) + P (k3, t)P (k2, t)
. (117)

Fig. 18 shows the reduced bispectra for a variety of primordial spectral indices. The deviation

of the GLED gravity result derived here from structure formation using Newtonian gravity is

at the order of ν itself, as the di�erence between both can be reformulated as a scaling of k to

linear order.

An inverse Fourier transform on the bispectrum gives the real space three point correlation

function

ξ3(r1, r2, r3) =

[
10

7
+
n+ 3

n
r13 · r23

(
|r23|
|r13|

+
|r13|
|r23|

)
+

4

7

3− 3(n+ 3) + (n+ 3)2(r13 · r23)2

n2

]
ξ(r13)ξ(r23) + cycl.

(118)

with rij = ri − rj and the two point correlation

ξ(r) =

∫
d3keik·rP (k).
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In real space, a reduced correlation function

Q(0)(r1, r2, r3) =
ξ3(r1, r2, r3)

ξ(r13)ξ(r23) + ξ(r13)ξ(r12) + ξ(r12)ξ(r23)
(119)

can be de�ned respectively. Though the shapes in real space are enhanced for using di�erent

spectral indices n as ξ(r) would be equivalent to using k3P (k) rather than P (k) [9], the di�erences

between GLED and Newtonian structure formation still are of the order of ν. The reason is that

the Fourier transform is independent of ν, such that the ν dependency is a simple pre-factor to

this perturbation order. This result can be seen as small scale Newton's constant G(1+ν) similar

to the results from the last chapter governing structure formation while the bare gravitational

constant G determines the cosmic critical density.

Higher loop orders will show the same behaviour as the tree-level bispectrum because F2 is

independent from GLED corrections. Considering higher order terms containing µ of the linear

solution which is used for the power spectrum P (k) will not contribute to the reduced spectra

and correlation function, as this drops with the whole time dependence due to the normalization

of the reduced spectrum.

Genuinely new GLED e�ects will arise when using the third or higher order kernels and corre-

lations introducing the gravity length scale µ. The third order contributions are a measure for

the asymmetry of cosmic structures. They are the solutions to the di�erential equations

∂δ3(k, t)

∂t
+ θ3(k, t) =

=−
∫

d3k1d
3k2δD(k − k12)α(k1, k2) [θ1(k1, t)δ2(k2, t) + θ2(k1, t)δ1(k2, t)]

∂θ3(k, t)

∂t
+H(t)θ3(k, t)− 4πGρ̄

[
(1 + ν)δ3(k, t)− 2

νa2

µ2k2
δ1(k, t)

]
=

=−
∫

d3k1d
3k2δD(k − k12)β(k1, k2) [θ2(k1, t)θ1(k2, t+ θ1(k1, t)θ2(k2, t))] .

The introduction of an explicit time or scale factor dependent term has two e�ects on the system

of di�erential equations: First, the explicit scale factor dependence mixes di�erent orders of

δmθn−m, such that the third order correlation is given by two terms of the form

K(k1, k2, k3, t) =A(t)F3(k1, k2, k3, (t))P (k1, t)P (k2, t)P (k3, t)

+ C(t)F̃31(k1, k2, k3, (t))P (k1, t) + cycl.

and second, time and momentum dependent parts of the solution are not separable any more

like in Newtonian structure formation, so the kernels will be time dependent. Therefore, it was

not possible to solve for the third order kernel F3 in weak GLED gravity up to now.
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Fig. 18.: Tree-level reduced bispectrum Q
(0)
GLED(k1, k2) for structure formation in GLED

gravity in dependence of the angle k1·k2
|k1||k2| = cosϕ for |k1|

|k2| = 1.5 for a range of

primordial spectral indexes n = {−2,−1.5,−1,−0.5, 0} from top to bottom at
ϕ = π (left diagram). The right diagram shows the deviation from Newtonian
structure formation.
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5. Summary and Future Directions

In this thesis, we investigated the phenomenology of general linear electrodynamics as an ex-

ample for theories with non-Lorentzian geometric structure and the corresponding gravitational

dynamics derived via the constructive gravity algorithm. We showed the feasibility of deriving

observable e�ects of non-Lorentzianity at this stage of the programme. The main insight is

that the background geometry is incorporated in almost every physical relation and changing it

requires the careful adaptation of physics on all scales.

Chapter 2 dealt with quantum phenomena in general linear electrodynamics. We reviewed the

modelling of scattering processes and adapted it to non-Lorentzian geometries. The main dif-

ferences were the use of modi�ed dispersion relations and the interpretation of Lorentz invariant

phase space as a mass shell based phase space.

To study particle interactions in a theory with a bimetric principal polynomial, we applied a

Dirac formalism. Although bimetric theories have had some attention within the modi�ed gravity

community, none of them has been based on the constructive gravity approach yet. Here, the

theory has been induced by general linear electrodynamics carrying a restricted version of its

spacetime structure. We calculated spinor states for the bimetric Dirac theory and were able to

consistently derive formulae for decay widths and cross sections.

The decay width of vacuum Cherenkov e�ect that is allowed by general linear electrodynamics

was studied as an application of the derived interaction rules. We showed that in contrast to

the regular Cherenkov e�ect in media, the vacuum version has a strong angular dependence due

to the anisotropy of the background geometry and it has the property to focus superluminar

particles to the plane of maximum deviation between both metrics.

In the highly relativistic limit, the Cherenkov decay width scales like (|p|/m)6 as soon as the

limiting momentum |p0| has been reached. In the Lorentzian limit where the metrics merge,

|p0| → ∞ forbids the e�ect in this case. As the general linear electrodynamics induced bimetric

theory has one distinct direction where both metrics coincide, the e�ect vanishes in this direction

completely � even more, particles travelling in this direction will not experience any di�erence

from a standard Lorentzian background.

The values of the limiting momentum and the decay width allow for the measurement of two

independent entries of the geometry tensor Gabcd. We expect, that these parameters are larger

in the vicinity of strong �elds, as [36] implies that some gravitational modes are massively

coupled and observations suggest that the majority of space is very well described by a Lorentzian

structure. Therefore, probably no integrated e�ects would arise if general linear electrodynamics
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was realised in our universe. As the gravitational dynamics of the geometric structure have not

been fully solved for this theory, there is no direct veri�cation yet.

To date, only few other research has been found using a similar approach. [21] worked on

non-relativistic quantum mechanics in a Born-Oppenheimer approximation and showed that a

possible quantum �eld theory would be renormalizable. Therefore, several topics that qualify for

further inspection should be studied to expand the knowledge on the quantum phenomenology

of general linear electrodynamics. In the non-relativistic limit, cross sections can be calculated

for di�erent interactions in bimetric general linear electrodynamics. This would probably change

the projection of measured cross sections to other ranges of the parameter space as it was used

in section 3.2.1 for stellar conditions. One also may extend the formalism to the full theory

of general linear electrodynamics which would require the derivation of the respective Dirac

algebra.

In chapter 3, the weak �eld limit of linearised GLED gravity was derived and applied to stellar

and galactic phenomena. We showed that the weak limit gravitational potential gains a Yukawa

correction term in addition to the Newtonian Coulomb potential introducing an intrinsic grav-

itational length scale µ. This has been studied in di�erent contexts before, e.g. as a limit of

f(R)-gravity or for massive gravitons [41] and it gives a behaviour of a modi�ed Newtonian

dynamics for r � µ−1 and r � µ−1 [35]. Using the solutions of the construction equations

for linearised general linear electrodynamics we do not only provide a di�erent consistent way

to derive this potential from a relativistic theory but also provide solutions for the remaining

gravitational �elds that carry higher order contributions to scalar particle dynamics that can be

used for post-Newtonian approximations. A symmetry ansatz yielded a simple prescription for

calculating potentials and orbital velocities that can be applied to any spherical and cylindrical

mass distribution.

Before examining astrophysical objects, a stability analysis for self-gravitating systems was per-

formed. We saw that it was possible to derive a statistical description of these random motion

supported systems using a microcanonical ensemble, but it was not possible to solve the arising

di�erential equations even for a simple isothermal sphere model without applying crude approx-

imations that would render the results useless for further inspection. However, we showed that

the virial theorem still holds in GLED geometry which implies stability of gravitationally bound

objects on virial time scales.

The �rst application of the weak �eld limit on astrophysical scales was the derivation of a stellar

model. Although it was based on simple assumptions, we showed that the physics governing

stellar structure will be a�ected on several points resulting in an altered internal structure es-

pecially for larger stars. As the sun is about the size where GLED e�ects become important,

a deviation from standard theory could be observed there. Integrated quantities are shown not

to change and relations like the mass-luminosity ratio still hold, so observational results of dis-

tant stars may be interpreted in the same way as in standard Newtonian gravity. For future

research, it would be interesting to develop more sophisticated stellar models featuring transport

mechanisms, deviations from spherical symmetry or rotations. But the results from these studies

probably would be of mere academic interest. As shown in section 3.3.3, GLED e�ects only span
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a range of �ve orders of magnitude maximum. If the gravitational length scale was in a range

where it a�ects stellar structure, it either could be easily measured within our solar system or

its e�ect would be negligible.

On a galactic scale, we investigated the rotation curves to six mass density models, two of them

modelling spherical galaxies containing dark matter, three models of the visible baryonic matter

content and a thin disk model. For four of these models, an analytical expression for the rotation

curves could be found. Although an isothermal sphere and the Navarro-Frenk-White model using

dark matter �t most galaxies investigated best with minor deviations from a Newtonian theory

of gravity, also a Hernquist model for the visible matter distribution and a Kuzmin disk were

able to provide reasonable rotation curves.

Although these four models can be used to explain galaxy rotation curves, the gravitational

constants derived from the �ts vary from model to model. When excluding the isothermal

sphere which basically had vanishing GLED contribution, the range between µ ∝ 10−19m−1

and µ ∝ 10−20m−1 is a promising candidate for the gravitational length scale that should be

investigated further to �nd possible signs of non-Lorentzian physics. This is in agreement with

the results of [5] who �nd µ−1 = 1.5 · 1020m for a NFW-model rotation curve �t. However, we

�nd the pre-factor ν being one order of magnitude lower than the results from this study. As we

have seen that the amplitude of the GLED term ν is heavily model dependent and the e�ect is

not signi�cant for either of the models yet, further studies are needed to either narrow the range

or to exclude GLED gravity on this length scale.

More complex galaxy models could provide better �ts than the used simple matter distributions

as realistic galaxies usually are made up of several features. One may combine a central bulge

and a disk or a dark matter halo. As this will at least double the number of free parameters,

even more data would be necessary to achieve su�cient accuracy for estimating gravitational

constants.

In chapter 4 we derive the growth equation of linear structure formation for GLED weak �eld

gravity which is a di�erential equation of order two in ∆ and ∂
∂t . On a background using

Friedmann-Lemaitre-Robertson-Walker cosmology, the Jeans criterion branches into two condi-

tions for the solutions to the linear growth equation. The solutions of this fourth derivative order

di�erential equation have an upper bound given by a modi�ed Jeans' length where structures

stop growing, but the oscillation starts only for even larger structures. This is an e�ect that

might be observable as a gap between the maximal size of overdensities becoming galactic or

cluster structures and the minimal size of cosmological oscillation features.

Linear structure formation has been approximately solved for three regimes of interest: The early

Universe a → 0, today's Universe a → 1 and the late Universe a → ∞. In both the early and

the late Universe, the leading order e�ect was the change of the gravitational constant G by a

factor of 1 + ν. The gravitational length scale µ only contributes to third or higher order in all

three approximations.

From the linear solution, higher order correlation kernels could be constructed. The second order

bispectrum has been known to be quite independent from the cosmological background [9] before,
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and our results show that it is also not directly a�ected by the introduction of GLED gravity apart

from adjusting Newton's constant. An indirect in�uence is introduced by the power spectrum.

This holds on tree level, but also for higher loop corrections, as long as they only use the kernel

de�ned by the bispectrum. To third order, the gravitational length scale was introduced to the

system of structure formation equations. This made temporal and spatial behaviour inseparable

and the system could not be solved. However, the third order kernel picks up an additional term

containing an explicit a-dependence that is not covered by the linear solution's time evolution.

Two lines of research will bring new insights to GLED structure formation in the early Universe.

First, a solution of the full GLED cosmology started by [17] would make it possible to inspect

its structure formation on the natural background which will mainly a�ect the scaling behaviour

of lengths and volumina. Second, a simulation of GLED structure formation is necessary to test

the results derived here, as the majority of comparison data for structure formation is numer-

ically generated based on Newton's law of gravity. Obviously, this data is prejudiced towards

Newtonian gravitation and cannot provide a benchmark for other underlying geometries. Fur-

thermore, a re�ned structure formation mechanism will have impact on several observables from

the young Universe: The CMB power spectrum depends on primordial �uctuations, Baryonic

acoustic oscillations happen in their gravity wells and the formation of galaxies, clusters and

other large scale structures are the result of ongoing nonlinear processes that further evolve the

initial conditions from the linear case.

The availability of solutions to the construction equations for GLED gravity is one of the main

limitations of this work. As neither a full solution nor the complete cosmological dynamics are

known to date, most of the results are based on a weak deviation from a Lorentzian geometry.

Therefore, some genuinely new e�ects of GLED gravity may be missed in this study. Even more,

it has been necessary to introduce strong approximations at several points of this thesis to obtain

computable results. Applying more computation power probably would allow for the utilisation

of another order in perturbation theory, but in our opinion, simulating certain phenomena using

GLED gravity will provide more insights.

Besides the limitations, we made a proof of principle for calculating e�ects for non-Lorentzian

geometries within the constructive gravity framework and developed techniques that can now

be applied in further studies that expand the set of phenomena investigated for general linear

electrodynamics or may employ di�erent background geometries.

Finally, the connection between matter and gravity makes it possible to measure quantum e�ects

of general linear electrodynamics in laboratory experiments and restrict the corresponding gravity

theory accordingly.
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A. Galaxy Rotation Curve Fits
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Fig. 20.: Galaxy rotation curves for the galaxies E0140040, E0840411, E1200211, E1870510,
E2060140, E3020120, E3050090, E4250180, E4880049, ESO079-G014, ESO116-
G012, ESO563-G021, F561-1, F565-V2, F567-2, F568-1, F568-3, F568-V1, F571-8,
F571-V1, F574-1, F574-2, F579-V1 for all six models using common µ and ν.
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Fig. 21.: Galaxy rotation curves for the galaxies F583-1, F583-4, IC2574, IC4202, NGC0024,
NGC0055, NGC0100, NGC0247, NGC0289, NGC0300, NGC0801, NGC0891,
NGC1003, NGC1090, NGC2403, NGC2683, NGC2841, NGC2903, NGC2955,
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mon µ and ν.
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Fig. 22.: Galaxy rotation curves for the galaxies NGC3972, NGC3992, NGC4010, NGC4013,
NGC4051, NGC4085, NGC4088, NGC4100, NGC4138, NGC4157, NGC4183,
NGC4217, NGC4389, NGC4559, NGC5005, NGC5033, NGC5055, NGC5371,
NGC5585, NGC5907, NGC6674, NGC6946, NGC7331, NGC7793, NGC7814,
U11454, U11583, U11616, U11648, U11748, U11819 for all six models using com-
mon µ and ν.
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Fig. 23.: Galaxy rotation curves for the galaxies UGC00128, UGC00191, UGC00634,
UGC00891, UGC01230, UGC01281, UGC02259, UGC02487, UGC02885,
UGC02916, UGC02953, UGC03205, UGC03546, UGC03580, UGC04278,
UGC04325, UGC04499, UGC05253, UGC05716, UGC05721, UGC05750,
UGC05986, UGC06399, UGC06446, UGC06614, UGC06628, UGC06667,
UGC06786, UGC06787, UGC06818, UGC06917 for all six models using common µ
and ν.
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Fig. 24.: Galaxy rotation curves for the galaxies UGC06930, UGC06973, UGC06983,
UGC07089, UGC07125, UGC07151, UGC07232, UGC07261, UGC07399,
UGC07524, UGC07603, UGC08286, UGC08490, UGC08550, UGC08699,
UGC09037, UGC09133, UGC10310, UGC11455, UGC11557, UGC11820,
UGC11914, UGC12506, UGC12632, UGC12732, UGCA442 for all six models using
common µ and ν.
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B. De�nitions

In this thesis the solutions to several integrals and di�erential equations are given by symbolical

functions. The non-analytical integrals Si(x), Ci(x), Shi(x) and Chi(x) are de�ned by the integral

expression

∫ ∞
x

dt
f(t)

t
,

with f(t) ∈ {sin(t), cos(t), sinh(t), cosh(t)}. Ei(x) is de�ned with a − sign due to historical

reasons

Ei(x) = −
∫ ∞
x

dt
e−t

t
.

The generalisation of the factorials Γ may be de�ned via

Γ(x) =

∫ ∞
0

dy yx−1e−y

on x > 0 and may continued analytically to the negative half plane when using complex numbers.

Several functions can be derived from the generalized hypergeometric function pFq(a1...ap; b1...bq;x).

The terms of its series expansion can be de�ned by

ck+1

ck
=

(k + a1)...(k + ap)

(k + b1)...(k + bq)(k + 1)
x.

We use the con�uent hypergeometric function 1F1(p, q, x), the Hermite polynomials Hn(x) =

2n1F1(−1
2n,

1
2 , x

2) for x > 0, the Legendre polynomials P`(x) =2 F1(−l, l+ 1; 1; (1−x)
2 ). The �rst

few Legendre polynomials used in section 3.1.2 are
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P0(x) = 1

P2(x) =
1

2
(3x2 − 1)

P4(x) =
1

8
(35x4 − 30x2 + 3)

A regularized hypergeometric function is de�ned by

pF̃q(a1...ap; b1...bq;x) =
pFq(a1...ap; b1...bq;x)

Γ(b1)...Γ(bq)
.

Bessel functions of the �rst and second kind Jn(x) and Yn(x) are the solutions to the di�erential

equation

x2 d2y

dx2
+ x

dy

dx
+ (x2 − n2)y = 0

and the modi�ed Bessel functions In(x) and Kn(x) solve

x2 d2y

dx2
+ x

dy

dx
+ (x2 + n2)y = 0.

The spherical Bessel function of the second kind yn(x) is derived from the Bessel function Yn(x)

via

yn(x) =

√
π

2x
Yn+1/2(x).
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