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Zusammenfassung

Zusammenfassung

Das Bose-Polaron-Problem befasst sich mit einem Fremdteilchen in einem
Bose-Einstein-Kondensat und ist ein Repräsentant des allgemeinen Kon-
zepts eines Teilchens im Medium. Die vorliegende Doktorarbeit behandelt
die Theorie der Bose-Polaronen mit Schwerpunkt auf dem Bereich starker
Wechselwirkung zwischen Fremdteilchen und Kondensat, der den Über-
gang zwischen attraktiver und repulsiver Streuung entlang einer Streures-
onanz bildet. Wir behandeln den Fall eines schweren Fremdteilchens in
einem idealen Kondensat analytisch, um detaillierte Erkenntnisse über
die Entstehung der Vielteilchenphysik aus der Zweiteilchenphysik zu
gewinnen, und leiten die exakte Lösung der Zeitentwicklung her. Das
wechselwirkende Bosegas wird mit der verbreiteten Bogoliubov-Methode
behandelt, was zu einer Theorie führt, die über das klassische Fröhlich-
Modell der Polaronen hinausgeht. Für starke Wechselwirkung stellt sich
heraus, dass die Bogoliubov-Beschreibung nicht länger anwendbar ist und
wir leiten eine neue Theorie stark deformierter Kondensate in Form einer
nicht-lokalen Erweiterung der Gross-Pitaevskii-Theorie her. Der gebun-
dene Zustand zwischen Fremdteilchen und Boson, den es für repulsive
Wechselwirkung gibt, erweist sich als verantwortlich für langlebige Oszil-
lationen in verschiedenen Observablen wie der Anzahl vom Fremdteilchen
angezogener Bosonen, dem Tan-Kontakt und dem Dichteprofil des Kon-
densats um das Fremdteilchen. In Letzterem ist ein bemerkenswerter
Halo reduzierter Dichte zu sehen, der periodisch eine Dichte von Null
in einem festgelegten Abstand zum Fremdteilchen erreicht. Polaron-
Trajektorien zeigen, dass sich das Fremdteilchen für attraktive Wechsel-
wirkung letztendlich wie ein freies Quasiteilchen mit höherer effektiver
Masse bewegt, während für repulsive Wechselwirkung Oszillationen in
der Geschwindigkeit auftreten, die zu Stop-and-Go-Verhalten führen.
Nahe der Im-Medium-Resonanz wird ein dynamischer Übergang von
repulsivem zu attraktivem Polaron beobachtet.
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Abstract

Abstract

The Bose polaron problem is concerned with an impurity particle moving
through a Bose-Einstein condensate, which is an instance of the general
concept of a particle in medium. This dissertation investigates the theory
of the Bose polaron with a focus on the region of strong coupling between
impurity and condensate that marks the transition between attractive
and repulsive scattering processes as a scattering resonance is crossed.
We use an analytical study of a heavy impurity in an ideal condensate to
obtain detailed insights on the emergence of many-body physics from two-
body physics and derive the exact solution of the time evolution. The
interacting Bose gas is treated by the widely-adopted Bogoliubov method,
which results in a theory beyond the classical Fröhlich description of
polarons. At strong coupling, the Bogoliubov description is found to be
no longer applicable and a new theory for strongly deformed condensates
is derived in the form of a non-local extension of Gross-Pitaevskii theory.
We find that the impurity-boson bound state that exists for repulsive
coupling is responsible for long-lived coherent oscillations in a number of
observables, such as the number of bosons attracted by the impurity, Tan’s
contact and the density profile of the condensate around the impurity. The
latter exhibits a remarkable depletion halo, which periodically reaches
zero density at a certain distance to the impurity. Polaron trajectories
show that the impurity eventually moves like a free quasi-particle with
enhanced effective mass for attractive coupling and present velocity
oscillations on the repulsive side, leading to stop-and-go motion. Close
to the in-medium resonance, a dynamical transition from a repulsive to
an attractive polaron is observed.
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Chapter 1

Introduction

When a quantum mechanical particle moves through a medium, it may
interact with the elementary excitations of the medium in such a way that
the combination of particle and excitations forms a single quasi-particle.
This concept is of a very general nature and occurs in a broad range of
physical contexts: An electron moving through an ionic crystal lattice
displaces the surrounding ions and polarises the lattice. The resulting
quasi-particle, the polaron, is the elementary charge carrier in these
crystals. An impurity atom moving through an ultracold gas becomes
“dressed” with phononic excitations, a situation which allows for highly
controllable experiments. The general concept of a particle immersed
in a medium includes fundamental effects such as the Higgs mechanism
and even the quantum mechanical vacuum may serve as a medium:
the dressing of electrons by virtual phonons results in renormalised
electron properties and the Lamb shift. The connection to ultracold gas
experiments has been drawn recently, by measurement of the phononic
Lamb shift of trapped atoms, with a surrounding Bose-Einstein condensate
(bec) serving as synthetic vacuum [Ren+16].

The concept of polarons was first introduced by Pekar and Landau
[Lan33; Pek46b; Pek46a; Pek47; Pek48; LP48] in the context of electrons
moving through a crystal lattice. They realised that the present theory of
conductivity was insufficient in that it considered the lattice ions as fixed,
giving rise to a static periodic potential for the conduction electrons. In
reality, the ions are displaced by the presence of the electrons. At first,
it was hypothesised that by this displacement, an effective potential for
the electron would be created in which it would come to rest, so that the
electron would be caught in a trap of its own making, an effect known as
self-localisation. It turned out that the electron is never fully trapped
but that it keeps moving, dragging the lattice polarisation along with
it. The ensemble of the electron and the lattice deformations around it
can be described as a quasi-particle with a higher effective mass than an
electron: a dressed electron which was called polaron by Pekar.

The concept of dressing a particle moving through a medium with
quasi-particle excitations and the question of self-localisation have found
their generalisation in different areas of physics. A rather new field
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CHAPTER 1. Introduction

of study investigates ultracold quantum gases as medium, in which
individual impurity atoms or ions of a different species or different internal
state become dressed by elementary excitations of the surrounding gas.
Depending on whether the gas consists of fermions or bosons, one speaks
of a Fermi or Bose polaron, respectively. The great interest that these
systems attract originates in the high amount of control that is available
in ultracold gas experiments. While for the classical solid-state polaron,
the strength of interactions is fixed by nature, the discovery of Feshbach
resonances enables experiments in which the coupling can be controlled
by a magnetic field. The high values that can be reached by this method
enable the investigation of new regimes for which interesting effects had
been predicted already by works on the solid-state polaron.

The Fermi polaron has been intensively studied in the context of the
unitary Fermi gas and the bec-bcs crossover [Zwe12]. Here, the two
spin states of a fermionic atom species form a bipartite atomic mixture
in a natural way. If such a gas is partly polarised, the mixture becomes
unbalanced and in the limit of strong imbalance, the physics of individual
particle in a medium dominates the behaviour.

In a bosonic gas, impurities are usually particles of a different atom
species or different isotopes. The increased tendency of bosons towards
collective behaviour promises new and interesting effects. A competition
occurs between two entirely different points of view: On one hand, an
impurity in a low-density gas will always have only a limited number of
host atoms in its vicinity and the few-body physics should dominate the
behaviour. On the other hand, bosons are not favourable for localisation
into separate regions of space, but form a condensate of macroscopic size,
which interacts with the impurity as a single collective mode.

In this dissertation, we follow the route to understand this competition,
to gain insights on the effect of a medium on a particle and, conversely,
to understand how a condensate reacts to a strong local perturbation.

1.1 Related Works and Summary of Results
Many aspects of the Bose polaron have already been studied theoretically
and some experiments have achieved the realisation of the Bose polaron.
This section lists previous works on the topic and summarises the new
results that this dissertation contributes to the field.

We start with some of the most relevant classical works on polaron physics.

• In 1933, Landau [Lan33] observed that when electrons move
through a crystal lattice with defects, they may be either scat-
tered off or enter bound states. His theory is highly relevant for a
large number of effects, for example colour centres in crystals, but
also polarons where lattice defects are introduced by the electrons
themselves.

• Pekar [Pek46a; Pek46b; Pek47; PD48; Pek48] realised the necessity
to account for lattice deformations by conduction electrons and
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1.1 Related Works and Summary of Results

introduced the polaron as elementary charge carrier. A particularly
important work is the joint paper of Landau and Pekar [LP48].

• Lee, Low, Pines [LLP53] and Fröhlich [Frö54] introduced a
second-quantised formulation and the famous Fröhlich Hamiltonian
that is widely used in polaron physics and still topic of theoretical
developments. A review was given by Devreese and Alexandrov
[DA09].

• In [LLP53], a canonical transformation, the llp transformation,
was presented that its applicable to many situations of particles in
medium.

• Feynman [Fey55] derived a particularly successful treatment of
the Fröhlich Hamiltonian by path integrals. His method has been
adapted to many polaronic contexts.

For the Bose polaron, experimental realisation became possible only
recently. The following results were obtained.

• By means of tightly confined atoms weakly coupled to a bec,
the effect of the bath on the impurity particles was investigated
[Sce+13; Ren+16] and the phononic Lamb shift was measured.

• With strongly imbalanced two-component mixtures in presence of
a magnetic field tuned to a Feshbach resonance, rf spectra and
polaron energies were measured at strong coupling [Hu+16; Jør+16;
Peñ+19; Yan+20].

• Rydberg atoms as impurities in becs were realised in [Cam+18].

• Recently, the coherence dynamics in presence of a Feshbach reso-
nance was measured [Sko+20].

Theoretically, the Bose polaron attracts significant attention in recent
times.

• The first investigation of an impurity in a bec dates back to 1961
[Gir61] and was directly motivated by the advances in solid-state
polaron physics that had been made.

• Interest renewed when the experimental realisation of Bose polarons
came within reach. Many early works focused on the concept of
self-trapping by describing the bec density variation via the Gross-
Pitaevskii equation to which a separate impurity wave function is
coupled [AP04; CT06; KB06; BBJ08; BBT13; MPS05; Tak+19].
The resulting spatial density distributions of impurity and bosons
provide information on the impurity localisation for weak coupling.

• A direct connection to the classical solid-state polaron can be drawn
by describing the Bose polaron via a Fröhlich-type Hamiltonian,
which can be derived from a Bogoliubov-description of the bec
when the impurity-boson (ib) coupling is small.

3



CHAPTER 1. Introduction

– A variety of methods has been developed for the Fröhlich
Hamiltonian and quasi-particle properties such as the effec-
tive mass and the energy have been computed [ST06; HW09;
Tem+09; Cas+11; CTD12; Sha+14; Gru+15; Gru16; KL16;
Shc+16a].

– Polaron trajectories were obtained in [DK13; Gru+18].
– A different method was presented in [Lam+17], where the

impurity motion was described as quantum Brownian motion
with a memory kernel.

– Dynamics of decoherence, correlations and entanglement be-
tween impurity and bath were investigated by [Nie+19] and
[Boy+19].

– [Vli+15] et al. employed diagrammatic Monte Carlo methods
and found a discrepancy to results obtained from Feynman’s
approach for the Bose polaron, even though the approaches
agree well for the acoustic polaron.

– For a review of the Fröhlich Hamiltonian in the context of the
Bose polaron we refer to [GD16].

• Numerically exact quantum Monte Carlo calculations [PG15] pro-
vide insights on the ground state properties, including the energy
and effective mass as well as density profiles of the condensate
around the impurity.

• Finite-temperature results are limited in number and predict a
qualitative change in the impurity’s properties when the critical
temperature is crossed [Bou14; SSD16; SZC17; Lev+17; Gue+18].
Cooling dynamics were investigated in [LWF18].

• The possibility of many-body bound states and Efimov physics has
been investigated with variational wave functions with a limited
number of excitations [LPB15; SZC17; Shi+18; Yos+18]. Such
states with two or more excitations are able to include the three-
body (four-body, etc.) physics in full detail in regions where not
more excitations are expected.

• [SL15] found that also rotational properties of the impurity are
renormalised by the medium.

• A different method consisting of a multi-layer multi-configuration
time-dependent Hartree method was presented in [Mis+19].

• At stronger ib coupling, the description of the impurity-bec system
by the Fröhlich polaron becomes inaccurate as was first observed in
[RS13]. Instead, second-order terms in the ib coupling that arise
in the Bogoliubov description need to be taken into account. This
also allows for the existence of a bound state, which is absent in the
Fröhlich model. The resulting model was adopted in an number of
works [RS13; LD14; CLB15; GAD17; Sch+18].
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1.1 Related Works and Summary of Results

– [VHZ15] compute time-dependent impurity density profiles
for the case of an ideal bec.

– [Shc+16b] compute the resulting rf spectrum across a Fesh-
bach resonance.

– Three regimes of qualitatively different dynamical behaviour
were found in [Gru+17; KL18]: between the weak-to-inter-
mediate-coupling attractive and repulsive regions, a dynam-
ically unstable region was found within the approximations
employed.

• In 1D, additional effects such as quantum flutter [MZD12] occur
and special techniques may be employed [VH17; Cat+12], which,
however, do not carry over to higher dimensions.

This dissertation makes the following new contributions. The essential
results are published in [DSE19; DSE20].

• An analytical study of an infinite-mass impurity and an ideal bec
improves the understanding of the relation between the two-body
physics between impurity and one boson and the many-body physics
of impurity and bec. Qualitative differences in the time-evolution
are explained as being related to many-body bound states and to
the zero-energy mode taking a role similar to a bound state. This
leads to oscillations that can be seen in a large class of observables.
The many-body spectrum is explained in terms of contributions
from the different parts of the two-body spectrum.

• A moving impurity is considered in a framework which allows
for stronger coupling than preceding works and in particular for
accessing both sides of a resonance. The repulsive side is found to
exhibit particularly interesting trajectories.

• Within the same approach, dynamical density profiles are computed
which provide intuitively accessible information on the polaron
formation.

• The number of bosons attracted by the impurity is used to quantify
the polaron size as it evolves in time for a wide range of couplings.

• An analytical argument shows how the oscillations found for the non-
interacting Bose gas remain stable and undamped in an interacting
gas described by Bogoliubov theory. A formula for the computation
of the frequencies is derived.

• It is argued that the dynamical instability found in [Gru+17] at
strong coupling is inherent to Bogoliubov theory and not related to
a specific ansatz. This shows the necessity to find a new theoretical
treatment when the deformation of the bec by a near-resonantly
interacting impurity becomes too large.

• We provide such a treatment by deriving a new non-local extension
to Gross-Pitaevskii theory. The resulting theory remains stable at
all couplings across a resonance.
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CHAPTER 1. Introduction

• In the course of deriving this treatment, we prove a general theorem
about expectation values of operators with respect to Jastrow
functions.

• We analyse the strong-coupling region between attractive and and
repulsive side and find that close to the critical point, a transition
occurs also dynamically in that initial repulsive features vanish in
favour of attractive ones.

• We find that the range of the interaction potentials, in addition
to the scattering length, becomes important as the condensate
deformation is increased and, in particular, that it sensitively affects
the position of the in-medium resonance.

1.2 Outline
The remainder of this introduction contains short outlines of the main
chapters and an overview over notational conventions. The ensuing main
text is organised in two parts.

In part I, we review background knowledge required for the under-
standing of the following. This is mostly elementary and we shall try to
focus on those points, which directly connect to points made in the results
section of the dissertation. Three topics are covered: (i) Basic concepts of
scattering theory with a focus on the zero-energy scattering state, which
is of great importance to the impurity-bec problem, and on the contact
potential, which we will employ frequently and whose peculiarities must
be well-understood. (ii) The successful and widely adopted theories of
the Bose gas that Bogoliubov theory (bt) and Gross-Pitaevskii theory
(gpt) constitute. (iii) The Lee-Low-Pines (llp) transformation as a
general technique for particles in media is discussed and applied to the
Bose polaron. This chapter introduces the general problem treated in
part II.

Part II is the main part of this work and contains the new techniques
and results developed and obtained. It is structured in three chapters
with the following contents.

Heavy Impurity in an Ideal BEC

In the first chapter, we treat the a priori simple case of an infinitely heavy
impurity and a non-interacting Bose gas. It is solved exactly by a product
state ansatz in terms of two-body (impurity-boson) eigenstates. Despite
its simplicity, many important properties of the Bose polaron can already
be understood within this framework. For the case of an impurity-boson
contact potential, we will be able to solve the time evolution analytically.
By means of a numerically exact rf spectrum, the relation between the
spectral properties of the two-body system on one hand and those of the
many-body system on the other hand are discussed.
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1.3 Notation and Conventions

The Bose Polaron in Bogoliubov Approximation
The second chapter makes use of the widely adopted Bogoliubov descrip-
tion of the condensed Bose gas.

By using a Hamiltonian, which goes beyond the classical Fröhlich
Hamiltonian from solid state physics (c.f. [RS13]), the dynamics of both
the attractive and the repulsive side of a scattering resonance are inves-
tigated. The mean-field solution and the different qualitative regions
(see [Gru+17]) are reviewed. Of the above-mentioned results, this chap-
ter contains the computation of polaron trajectories, dynamical density
profiles and boson numbers as well as the analytical treatment of oscil-
lations and the discussion on the applicability of Bogoliubov theory at
very strong coupling.

The Strong-Coupling Bose Polaron: A Non-Local Ex-
tension of Gross-Pitaevskii Theory
Previous technical developments allowed to extend the tractable parame-
ter region of the Bose polaron problem by developing new methods to
treat the Fröhlich and beyond-Fröhlich Hamiltonians. Yet the region of
strongest coupling that marks the transition from attractive to repulsive
coupling across a resonance remained inaccessible. In the third chapter,
we develop the new technique that is able to fill this gap. It contains the
theorem on Jastrow functions and its proof, the non-local extension of
Gross-Pitaevskii theory and the results obtained with it, which are the
transition across a resonance and the dependence of the in-medium shift
of the resonance on the potential range.

1.3 Notation and Conventions
The following conventions are employed throughout.

• Units in which h̄ = 1 are used.

• Vectors are written in bold, their absolute values non-bold.

• Position and momentum arguments to functions are frequently writ-
ten as subscripts. Subscripts are also used for indicating integration
variables, where integration is understood to be performed over a
three-dimensional volume V :∫

x,y

fxgyδ
3
x−y =

∫
V

d3x

∫
V

d3y f(x)g(y)δ3(x− y).

• For momentum space discussions, it is usually assumed that volume
is infinite and momentum space thus continuous. Integrals are
denoted by −

∫
, which indicates division by (2π)d:

−
∫
k

fk =

∫
R3

d3k

(2π)3
f(k).
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CHAPTER 1. Introduction

A superscript Λ indicates a momentum cutoff in the context of a
contact potential:

−
∫ Λ

k

· = −
∫
k

· f(k/Λ)

with a cutoff function f . If volume is explicitly assumed finite,
integral symbols are interpreted as scaled sums:

−
∫
k

fk =
1

V

∑
k

fk

and
(2π)3δ3k−q = V δk,q.

• F denotes the Fourier transform operator, scaled such as to repre-
sent transformation from position to momentum or from frequency
to time.

(Ff)(k) =

∫
x

e−ik·xf(x) (F−1g)(x) = −
∫
k

eik·xg(k)

(FA)(t) =

∫
R

dω e−iωtA(ω) (F−1S)(ω) = −
∫
R

dt eiωtS(t).

• â(†) are the field operators of the bosonic bath. We use the same
symbol for position and momentum space representations (to be
distinguished by argument name) and independently of whether
the argument is continuous or discrete:

âk =

∫
x

e−ik·xâx

[âx, â
†
y] = δ3(x− y)

[âk, â
†
q] = (2π)3δ3(k − q).

b̂(†) are the Bogoliubov mode (phonon) operators; ĉ(†), d̂(†) other
operators obtained through canonical transformations of â(†) in
specific contexts.
The boson vacuum is denoted by |0〉, the vacuum state for different
modes by |0b̂〉 etc.
For a single-particle wave function ψ(x), we will occasionally define
the creator of a particle in this state ψ̂† =

∫
x
ψxâ

†
x.

• z denotes the complex conjugate of z, A† the adjoint of A.

• HeA = (A+A†)/2 and AhA = (A−A†)/2i are the hermitian and
anti-hermitian part of an operator.1 Note that both are hermitian
operators.

1For a normal operator A, this corresponds to ReA and ImA as defined by
functional calculus. For non-normal A, however, common calculation rules for “Re”
and “Im” may fail, as in He(â He(â)) 6= He(â)He(â).
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1.3 Notation and Conventions

• Juxtaposed multiplication has higher precedence than division, as
in p2/2m.

• 1(condition) = 1 if condition fulfilled, 0 else.

Some more specialised shortening notations are used in specific contexts
and explained there.

1.3.1 Common Symbols and Abbreviations
The following abbreviations are used often:

• bec: Bose-Einstein condensation

• ib: Impurity-boson

• bb: Boson-boson

• bt: Bogoliubov theory

• gp, gpt, gpe: Gross-Pitaevskii (theory, equation)

• rf: Radio-frequency (spectroscopy)

• uv: Ultraviolet (in the sense of high momentum in integrals)

• llp: Lee-Low-Pines

• lsy: Lieb-Seiringer-Yngvason

In formulae, indices I and B stand for impurity and bosons, respectively,
as in the impurity position xI. The following symbols are encountered
frequently:

• aIB, aBB: ib and bb scattering lengths.

• mI,mB,mred: Masses of impurity and boson and their reduced
mass m−1

red = m−1
I +m−1

B . In the chapter on scattering theory, mred
is a general reduced mass, which can also mean the bb reduced
mass in applications.

• V IB, V BB, vIB, vBB, V ext: Interaction potentials in position space
(V ) and momentum space (v); external potential.

• N : Number of bosons.

• V : Volume, often taken to be R3.

• n, n0: Density of Bose gas and condensate density.

Other symbols are defined in their contexts.
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Chapter 2

Scattering Theory

The theory of two-body quantum mechanics, known as scattering theory,
is of a double significance for the impurity-BEC problem.

(i) The properties of a low-density gas alone are dominated by two-
body processes, such that scattering theory is fundamental for the
theory of ultracold gases in general. In the Bose polaron problem,
the two-body physics thus occurs in the form of boson-boson (bb)
scattering processes. For an ultracold gas, only the low-energy
states are important. Their effect can be characterised by a single
number, the scattering length, while further details of the potential
become unimportant.

(ii) Similarly, for the behaviour of an impurity in a gas, the two-body
physics of the impurity and a single bath particle is important. This
is particularly true when the bath particles are bosons, since then,
the eigenstates of a single bath particle in vicinity of the impurity
can be occupied by multiple bosons and even macroscopically.
Hence the significance of the impurity-boson (ib) scattering for
the problem. Since a low-temperature Bode gas is condensed in
the zero-momentum mode, also the zero-energy mode of the ib
scattering problem will be central.

In this chapter, we review basic concepts of scattering theory with a
focus on the zero-energy mode and discuss the example of a square-well
potential. Then, a particular choice of potential, the contact potential,
is treated in detail. It will be employed widely in part II. Even though
the material is mostly elementary, this constitutes the largest chapter
of the background part. The reason for this is that even some of the
most interesting features of the Bose polaron already have a direct
correspondence in the ib scattering problem.

Further information on scattering theory can be found in textbooks,
e.g. [Thi13; RS79]. Elementary properties in the context of the Bose gas
are given in [Yng14; Lie+05]. The contact potential is treated in detail
in [Alb+88].

13



CHAPTER 2. Scattering Theory

2.1 Definition of the Scattering Length
The general two-body Hamiltonian for particles of masses m1 and m2 is

H = −∆x1

2m1
− ∆x2

2m2
+ V (x1 − x2) ,

acting on wave functions ψ ∈ L2(R3 × R3) subject to

ψ(x1,x2) =


ψ(x2,x1) for identical Bosons
−ψ(x2,x1) for identical Fermions
arbitrary for distinguishable particles.

Transforming to centre-of-mass and relative coordinates, the eigenfunc-
tions take a product form ψ(x1,x2) = Ψ(R)φ(r) with R = x1m1+x2m2

m1+m2
,

r = x1 + x2 and

− ∆R

2(m1 +m2)
Ψ(R) = E1Ψ(R)(

− ∆r

2mred
+ V (r)

)
φ(r) = E2φ(r) (2.1)

where mred is the reduced mass, m−1
red = m−1

1 +m−1
2 , and

HΨ⊗ φ = (E1 + E2)Ψ⊗ φ .

Scattering theory is concerned only with the relative wave function φ
and we will assume E1 = 0 in the following. The symmetry condition
turns to

φ(−r) =


φ(r) for identical Bosons
−φ(r) for identical Fermions
arbitrary for distinguishable particles.

In particular, the relative wave function for Fermions cannot be spherically
symmetric, i.e. there is no s-wave scattering between identical Fermions.

In the context of ultracold gases, one is interested in the low-lying
part of the spectrum of the relative Hamiltonian, which consists of

• the bound states, i.e. the normalisable states with negative energy.

• the low-energy scattering states, i.e. tempered distributions that
are not L2-functions but fulfil the eigenvalue equation for some
energy E > 0.

Unless one is dealing with identical fermions, the lowest energies can
be obtained for spherically symmetric (s-wave) states, which have no
rotational energy. In this case, the Laplacian can be reduced to its s-wave
part, ∆ = r−1∂2rr. This formula is valid only for the regular and not
for the distributional Laplacian, but (2.1) implies that φ has no pole at
zero if V is a regular potential1. This implication must now be imposed

1This is different for the contact potential, which will be discussed in section 2.3
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2.1 Definition of the Scattering Length

explicitly, or one would get additional and wrong solutions. For the s-
wave states, it is convenient to define u = rφ which thus fulfils u(0) = 0.
The Schrödinger equation then turns into(

− ∂2

∂r2
+ V − E

)
u = 0 .

2.1.1 Zero-Energy Solution and Scattering Length
The low-energy scattering states are, in fact, determined by the zero-
energy state u0,

(−∂2r + V )u0 = 0 , (2.2)
alone. Often, it is referred to only as the scattering state and equation
(2.2) as the scattering equation, implying energy zero. It will turn out to
be central for the impurity-BEC problem.

If we assume, for simplicity, that the potential has a finite range rV ,
the scattering solution outside the ball of this radius (denoted BrV ) must
be of the form

u0(r > rV ) = const · (r − a) . (2.3)
The constant a is called the (s-wave) scattering length. It completely
quantifies the scattering solution for distances larger than the potential
range while telling little about smaller distances. In an ultracold gas,
the potential range is the smallest length scale by far, typically around
1-10 nm compared to the mean-particle distance of more than 100 nm.
In such a situation, only the long-range behaviour is important and the
properties of the gas are universally determined by the scattering length,
independent of the details of potential.

For purely repulsive potentials V > 0, the scattering length is always
positive and smaller than rV . For attractive potentials, it may be positive
or negative and take arbitrarily large absolute values.

For a general potential, u0 approaches the form in equation (2.3) as
r → ∞ and the scattering length is defined by [Yng14]

a = lim
r→∞

r − u0(r)

u′0(r)
. (2.4)

Except for some specific potentials, it is impossible to compute a
exactly, since this involves solving the second-order differential equation
(2.2)2.

2.1.2 Low-Energy States and Scattering Phase
The non-zero- but low-energy s-wave scattering states fulfil, again assum-
ing a finite potential range rV ,

uk(r) = const · sin(kr + δk) (r > rV )

2In fact, a first-order equation is sufficient: defining α(r) = r − u/u′, α fulfils
α′ = V (r)(r− α)2 with initial condition α(0) = 0 and α(∞) = a. From this, one may
also see that the potential is required to decay somewhat faster than r−3 to obtain a
well-defined scattering length: for V ∼ r−3, one would get α′ ∼ r−1 and logarithmic
divergence.
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CHAPTER 2. Scattering Theory

with a constant δk, the scattering phase, and energy E = k2/2mred.
δk constitutes a shift of the wave compared to the case without potential:
there, only δk = 0 is possible due to the boundary condition at r = 0.
For low energies, k ≈ 0, we may obtain a relation to the scattering length
by assuming that the boundary conditions at rV vary continuously with
k:

u0(rV )

u′0(rV )
≈ uk(rV )

u′k(rV )
.

The left-hand side is rV − a, the right-hand side is

sin (krV + δk)

k cos(krV + δk)
=

sin (δk) + krV cos(δk) +O(k2)

k cos(δk) +O(k2)
=

tan(δk)
k

+rV +O(k) ,

from which we get

a = lim
k→0

− tan(δk)
k

.

This is another common definition of the scattering length. It shows
that a (and therefore u0) determines the entire low-energy scattering
behaviour. Note that for a > 0, the wave functions uk are shifted away
from the centre (repulsive scattering) while for a < 0, they are shifted
inwards (attractive scattering).

2.1.3 The Born Approximation
There exists an expansion of the scattering length in powers of the inter-
action potential V , that can be used approximatively when maxx V (x)
is small, i.e. when v is sufficiently flat. It relies on comparing a scat-
tering state φk with the corresponding state φ0k of the free Hamiltonian
H0 = −∆/2mred.

Assume first, that the volume Ω is finite, such that the scattering
states are normalisable. By A′ we denote the generalised inverse of
a (non-invertible) matrix A, that projects out the subspace where A
cannot be inverted before inverting it on the remaining subspace. It
fulfils A′A = AA′ = 1 − Pker A where Pker A is the projector onto the
nullspace (kernel) of A. Applying the generalised inverse of H0 − E to
the stationary Schrödinger equation for E > 0,

(H0 − E) |φk〉 = −V |φk〉 ,

we get
(1− |φ0k〉 〈φ0k|) |φk〉 = −(H0 − E)′V |φk〉 .

We refer to (H0 − E)′ as Green’s operator3 G0(E). Since |φk〉 and |φ0k〉
are scattering states that differ only locally, it is clear that 〈φ0k|φk〉 → 1
as Ω → ∞. This leads to the Lippmann-Schwinger equation

|φk〉 = |φ0k〉 −G0(E)V |φk〉 .
3This essentially corresponds to (G++G−)/2 in terms of the retarded and advanced

Green operators G± = G(E ± iε).
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2.2 The Square-Well Potential

Iterating this equation yields the Born series

|φk〉 = |φ0k〉 −G0(E)V |φ0k〉+ (G0(E)V )2 |φ0k〉+ . . . ,

an expansion in powers of V . If it is broken off after the linear term, one
speaks of the Born approximation.

To obtain the scattering length from it, we need to look at E = 0:
Here, G0(0) = −2mred∆

′ is given by, by spectral decomposition,

(G0(0)f)(x) = lim
ε↘0

∫
k>ε

d3k

(2π)3

∫
d3y

2mred

k2
eik·(x−y)f(y) .

The ε projects out the zero mode as required by the generalised inverse.
Provided that f is continuous in momentum space at k = 0, the limit
can be taken and the momentum integral executed:

(G0(0)f)(x) =

∫
d3y

2mred

4π|x− y|
f(y) .

From a = limr→∞ r(1− φ0(r)) and φ00(r) = 1, we thus obtain

a = lim
r→∞

−r
∞∑

n=1

((−G0(0)V )n1)(r)

=
2mred

4π

∫
d3r V (r)

∞∑
n=0

((−G0(0)V )n1)(r) .

For small V , the series may be broken off after the first term, yielding
the Born approximation for the scattering length:

a ≈ 2mred

4π

∫
d3r V (r) . (2.5)

It should be pointed out here, that this approximation is not valid for
weak potentials in the sense of a small scattering length, but rather when
V (r) is small for every r, i.e. for flat potentials. For instance, a hard
sphere potential with radius a (i.e. V (r < a) = ∞, V (r > a) = 0) has
also scattering length a, but above integral diverges even for small a.

2.2 The Square-Well Potential
A simple exactly solvable model is that of a square well,

V (r) =

{
V0 if r < rV

0 if r > rV .

We shall solve it here explicitly. This allows us to demonstrate the basic
properties of the scattering length and to point out a feature that will be
relevant for the impurity-BEC problem. Also, we make use of it in the
next section to construct the contact interaction as the limit rV → 0.

The eigenvalue equation can be solved inside and outside BrV , the
ball of radius rV , independently before matching slope and value of the
wave function (or, simpler, of u(r)) at rV .
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CHAPTER 2. Scattering Theory

Bound States Bound states can, of course, occur only for V0 < 0. For
E < 0 the only solution outside BrV is

uB(r > rV ) = const · exp(−κr)

with κ > 0 and E = −κ2/2mred. The other formal solution, exp(+κr),
makes little physical sense and is, besides that, not a tempered distribu-
tion. Inside BrV , u(0) = 0 is required, such that

uB(r < rV ) = const · sin(qBr) .

where −V0 + E = q2B/2mred. If we had E < V0, qB would be imaginary
and the sin would really be a sinh. But it is clearly impossible to match
slope and value of the monotonically growing sinh with that of a decaying
exponential. Matching u′B/uB at rV as well as the energies yields the
equations, from which the binding energies can be obtained:

E = − κ2

2mred
= V0 +

q2B
2mred

(2.6a)

uB(rV )

u′B(rV )
= − 1

κ
=

tan(qBrV )
qB

. (2.6b)

The number of solutions and therefore bound states depends on the
potential depth V0. The minimum depth to allow for at least one is
obtained by setting κ = 0, which yields 2mred|V0|r2V = π2

4 .

Scattering Length For the zero-energy scattering equation, we have
outside BrV

u0(r > rV ) = const · (r − a)

and inside
u0(r < rV ) = const · sin(q0r)

where q20/2mred = −V0 (for V0 > 0, u0 can still be chosen real by adjusting
the constant). Matching boundary conditions yields

u0(rV )

u′0(rV )
= rV − a =

tan(q0rV )
q0

,

and we obtain the scattering length

a = rV

(
1− tan(q0rV )

q0rV

)
. (2.7)

Note that this is indeed always real. The relation is shown in figure
2.1. One can see that for repulsive potentials, the scattering length
is always positive and smaller than rV . For V0 = ∞, the hard-sphere
potential, one obtains a = rV ; this can be a useful model potential
for repulsive scattering. For attractive potentials, on the other hand,
a can take arbitrarily large values and changes its sign whenever the
number of bound states that is allowed by the potential changes. For
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2.2 The Square-Well Potential

Figure 2.1: Scattering length of a
square well potential as function of
potential height V0 and radius rV .
In comparison the Born approxima-
tion, valid for small values of V0.
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three particular values, the scattering solution is shown in figure 2.2.
The behaviour is simple in the cases a) and b) when no bound state
exists: the particles attract or repel each other, leading to an increased or
reduced absolute value of the relative wave function. Case c), however, is
more interesting since here, the potential is attractive but the scattering
length is positive. For r > rV , the scattering solution is the same as for
the repulsive potential b). At small distances, however, it crosses zero,
leading to a remarkable density profile where the probability of finding
the two particles at a certain distance between a and rV is zero. Note
that for a > rV , the zero-crossing is precisely at r = a and therefore
outside the potential range.

For the two-body problem, this peculiarity in the scattering solution
is of little interest. After all, it is just a formal solution and no physical,
normalisable state, and then, it is not even the ground state. But for the
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CHAPTER 2. Scattering Theory

impurity-BEC problem, the zero-energy scattering solution will prove
central as will be shown in the next chapters.

Scattering Phase Similarly, we get for the scattering equation with
non-zero energy

uk(r > rV ) = const · sin(kr + δk)

uk(r < rV ) = const · sin(qkr)

with q2k/2mred = −V0 + k2 and the boundary condition turns into
uk(rV )

u′k(rV )
=

tan(krV + δk)

k
=

tan(qkrV )
qk

, (2.8)

from which δk can be determined (again, the right-hand side is real even
if qk is imaginary).

2.3 The Contact Potential
Motivated by the separation of scales in an ultracold gas and the universal
dependence of its properties on the scattering length, one may ask if it
is possible to take the range of the interaction potentials to zero while
increasing their height in such a way, that the scattering length is kept
fixed. Such zero-range effective potentials are called point interactions
or contact potentials. One candidate would be, for example, the delta
function. In finding such a contact potential, one would forget about all
the unimportant details of the potential shapes and make the theoretical
description simpler and more universal. It turns out that this is possible
under conditions that are different depending on the dimensionality. In
3d, the situation is as follows:

• There is no purely repulsive contact potential, i.e. with positive
scattering length and no bound states. After all, for a positive
potential V > 0 of range rV , the scattering length can be no larger
than the potential range, such that rV → 0 implies a → 0. In
particular, a delta function with positive prefactor has scattering
length zero.

• There are contact potentials with negative scattering length and
no bound state and such with positive scattering length and one
bound state.

• There is no contact potential with negative scattering length and a
bound state, nor one with two or more bound states.

In the remainder of this section, we will construct the contact potential
explicitly as limit of square-well potentials. Then we discuss its properties,
compute the Green functions and finally derive the momentum-space
representation for later use in Bogoliubov theory. A more thorough treat-
ment that also explains above conditions can be obtained by considering
self-adjoint extensions of a Hamiltonian with reduced domain of defini-
tion. For this, we refer to [Alb+88], where also lower dimensions and
multiple scattering centres are treated.
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2.3 The Contact Potential

2.3.1 Construction as Limit of Square Well Poten-
tials

According to above conditions, it is the vicinity of the rightmost pole
in figure 2.1, that can be described as a point interaction. If rV → 0 is
taken in equation (2.7), tan(q0rV )/q0rV must diverge to yield a non-zero
scattering length. Since we are interested in the first divergence, this
implies q0rV = π

2 + ε with an ε → 0. Consequently, |V0| = O(r−2
V ). A

delta function with negative prefactor, on the other hand, has a height
of −O(r−3

V ), and is therefore much too strong to describe a valid contact
potential. This is very different from the repulsive case, where a delta
function is too weak to lead to a non-zero scattering length.

The leading term of q0 is independent of the scattering length and so
we must compute ε first order in rV by expanding the tangent:

tan(q0rV ) = tan
(π
2
+ ε
)
= −1

ε
+O(ε) ,

and from the scattering length equation (2.7), we get

aq0rV = −rV tan(q0rV ) +O(rV )

⇒ a
π

2
=
rV
ε

+O(rV )

⇒ ε =
2rV
πa

+O(r2V ) ,

which leads to the result for the potential height:

2mred|V0| =
π2

4r2V
+

2

arV
+O(1) .

As already mentioned, the scattering length appears only in the next-
to-leading term. A small relative (but large absolute) change in the
potential height thus leads to very different scattering physics.

Scattering States As rV → 0, the formulae for the region r > rV
become valid everywhere:

u0(r) ∼ r − a

uk(r) ∼ sin(kr + δk) .

Equation (2.8) for the scattering phase can be solved (for finite energies
k = O(1)): we have qk =

√
−V0 + k2 = q0 +O(rV ) and thus

tan(krV + δk)

k
=

tan(qkrV )
qk

=
−1/ε+O(rV )

π/2rV +O(1)
= −a+O(rV )

⇒ tan δk = −ak +O(rV ) .

With sin(kr + δk) = cos(δk)(sin(kr) + tan(δk) cos(kr)), this leads to

uk(r) ∼ sin(kr)− ak cos(kr) .
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Bound States From the binding energy equations (2.6a), we obtain

2mred|V0| = q2B + κ2 = q2B

(
1 +

1

tan2 qBrV

)
=

1

r2V

(qBrV )
2

sin2(qBrV )

⇒ (qBrV )
2

sin2(qBrV )
=
π2

4
+

2rV
a

+O(r2V ) .

The equation x2/ sin2(x) ≈ π2/4 has x ≈ π/2 as only solution. Therefore,
qBrV = π

2 + ε′ and ε′ can be determined to leading order:

π2

4 + πε′ +O(ε′
2
)

1 +O(ε′2)
=
π2

4
+ 2

rV
a

+O(r2V )

⇒ ε′ =
2rV
πa

+O(r2V ) .

From this we get

κ = − 1

rV

(qBrV )

tan(qBrV )
=

1

a
+O(rV ) .

From the requirement κ > 0, a bound state exists only for a > 0. In the
limit rV → 0, the wave function and energy are then given by

uB(r) ∼ exp(−r/a)

EB =
1

2mreda2
.

Even though we have derived these relations here for a square well
potential, they are valid for all potential shapes. It is interesting to
note that in general, the scattering length controls only the low-energy
scattering states but has nothing to do with the bound states. For the
contact potential, however, even the latter are parameterised by the
scattering length.

2.3.2 Contact Condition and Fermi Pseudo-Potential
The generalised eigenstates derived above have a peculiarity: they do not
fulfil u(0) = 0 as for regular potentials. Instead,

u(0) = −au′(0) , (2.9)

a relation known as the contact condition. The eigenvalue equation, on
the other hand, is simply

− u′′

2mred
= Eu , (2.10)

which looks exactly like the free radial Schrödinger equation. However, it
is not true that (−∆/2mred)φ = Eφ. After all, the boundary condition
(2.9) means, that φ has a r−1-pole at zero and the Laplacian gets a
distributional part in addition to the regular 1

r
∂2

∂r2 r.
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2.3 The Contact Potential

It is nonetheless possible to write the Hamiltonian in the familiar
form

H = − ∆

2mred
+ V ,

if one uses a so-called pseudo-potential, originally due to Fermi [Fer36;
Bre47; Bla52; HY57]:

V φ = 4πaδ(3)(r)
∂

∂r
(rφ) . (2.11)

Note that V is no longer a multiplication operator. It is designed in such
a way, that the distributional part of the Laplacian is cancelled if the
contact condition (2.9) is fulfilled by the s-wave part of the wave function.

Due to the different conditions at r = 0, the contact Hamiltonian has
a different domain of definition than a usual Hamiltonian, even though
both are dense subsets of the Hilbert space. This poses a problem when
considering the dynamics after a quench, that is, after an instantaneous
change in the interaction strength: One has to solve the Schrödinger
equation with an initial state, which is not in the domain of definition of
the Hamiltonian. Fortunately, the Schrödinger equation can be extended
to cover this in a well-defined way: after all, the time-evolution operator
exp(−iHt) is unitary, hence bounded, and can be continuously extended
to the entire Hilbert space. It is thus sufficient to approximate (in L2

norm) the initial state by one that has the correct contact condition.
Alternatively, one can directly apply the propagator, which we derive in
the next section, to arbitrary initial states.

2.3.3 Propagator of the Contact Hamiltonian
The propagator of the contact Hamiltonian can be computed analytically
from the generalised eigenstates. In the calculation, we shall make use of
some of the integrals in appendix A. Also, we set 2mred = 1 for simplicity;
the complete result can be obtained by rescaling t appropriately.

Normalisation of eigenstates
We have derived the s-wave eigenstates

u0 = r − a

uB = NB exp(−r/a) if a > 0

uk = Nk(sin(kr)− ak cos(kr)) for k > 0

of the contact Hamiltonian in section 2.3.1, but not yet computed
the normalisation constants. We choose the normalisation such that
4π
∫
R+

|uB |2 = 1 and 4π
∫
R+
uquk = δ(q − k). Note that if we had

Nk → k−1 as k → 0, then uk → u0 and we could include u0 as a special
case into the definition and normalisation condition of uk. However, we
will see that Nk → const and thus uk → 0 – that is, u0 cannot be nor-
malised in a meaningful way. This is of little importance for the two-body
problem, because a single continuum mode plays no essential role anyway.
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However, when turning to BEC physics, this will be different, because
the zero-mode can be occupied macroscopically.

The following alternative form of uk will be convenient in the following:

uk = −Nk Re eikr(ak + i) .

Bound State This one is easy:

4π

∫
R+

|uB |2 = 4πN 2
B

∫
R+

e−2r/a = 2πaN 2
B

⇒ NB =
1√
2πa

Continuum States These are a bit more involved as the integrals exist
only in the sense of distributions. The essential integral was pre-computed
in (A.1d).

4π

∫
R+

ukuq

Insert definition of uk, uq and expand the ‘Re’ in uq.

= 4πNkNq

∫
R+

drRe eikr(ak + i)
eiqr(aq + i) + e−iqr(aq − i)

2

Use (A.1d).

= 2πNkNq Re
[(
πδ(k + q) +

i

k + q

)
(ak + i)(aq + i)

+

(
πδ(k − q) +

i

k − q

)
(ak + i)(aq − i)

]
δ(k + q) = 0 since k, q > 0. Evaluate the ‘Re’.

= 2πNkNq

[
1

k + q
(−ak − aq) + πδ(k − q)(a2kq + 1) +

1

k − q
(ak − aq)

]
First and third terms cancel.

= 2π2(1 + a2kq)NkNqδ(k − q)

and thus
Nk =

1

π
√
2(1 + a2k2)

.

Derivation of the Propagator
Since the contact potential acts only on the s-wave part of the wave
function, it is sufficient to compute the s-wave part of the propagator.
The full propagator is then given by

ga(x,y, t) = g0(x− y, t) + ga, s-wave(x, y, t)− g0, s-wave(x, y, t)

where

g0(x− y, t) =
exp
(
− (x−y)2

4it

)
(4πit)3/2

.
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2.3 The Contact Potential

We have

ga, s-wave(x, y, t) = 1a>0 e
iEBtφB(x)φB(y)

+ lim
Im t↗0

∫
R+

e−ik2tφk(x)φk(y) dk .

The integral over the scattering states can be expressed in terms of
Gaussian integrals and integral (A.1b).∫

R+

e−ik2tφk(x)φk(y) dk

φk is anti-symmetric in k, so
∫
R+

can be replaced by 1
2

∫
R.

=
1

2

∫
R
e−ik2t−Re eikx(ak + i)

πx
√
2(1 + a2k2)

· −Re eiky(ak + i)

πy
√

2(1 + a2k2)
dk

Expand the right “Re” and cancel (ak + i).

=
1

8π2xy

∫
R
e−ik2t Re eikx

ak − i

[
eiky(ak + i) + e−iky(ak − i)

]
dk

The “Re” can be omitted since the imaginary part is anti-symmetric
anyway. Write (ak + i)/(ak − i) as 1 + 2i/(ak − i)

=
1

8π2xy

∫
R
e−ik2t

[
eik(x+y) + eik(x−y) + 2i

eik(x+y)

ak − i

]
dk

Compute Gaussian integrals and use (A.1b).

=
1

8π2xy

[√
π

it
e−

(x+y)2

4it +

√
π

it
e−

(x−y)2

4it

−2π

a
e

it
a2 − x+y

a

(
sgn(a)− erf

(√
it

a
− x+ y

2
√
it

))]

Together with the part of the bound state,

1a>0e
iEBtφB(x)φB(y) = 1a>0

e
it
a2 − x+y

a

2πaxy
,

this yields

ga, s-wave(x, y, t)

=
1

8π2xy

[√
π

it
exp
(
− (x+ y)2

4it

)
+

√
π

it
exp
(
− (x− y)2

4it

)

+
2π

a
exp
(
it

a2
− x+ y

a

)(
1− erf

(
x+ y

2
√
it

−
√
it

a

))]

=
1

8πxy

[
1√
iπt

exp
(
− (x− y)2

4it

)

+ exp
(
− (x+ y)2

4it

)(
1√
iπt

+
2

a
erfcx

(
x+ y

2
√
it

−
√
it

a

))]
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in terms of the scaled complementary error function erfcx z = ez
2

(1−erf z).
For the s-wave part of the free propagator, we can set a = 0 and get

g0, s-wave(x, y, t) =
1

8πxy
√
iπt

[
e−

(x−y)2

4it − e−
(x+y)2

4it

]

such that, in total,

ga(x,y, t) = g0(x− y, t) +
e−

(x+y)2

4it

4πxy

[
1√
iπt

+
1

a
erfcx

(
x+ y

2
√
it

−
√
it

a

)]
.

(2.12)

2.3.4 The Contact Interaction in Momentum Space
When discussing Bogoliubov theory, we will need a representation of the
contact interaction in momentum space.

Rescaling a potential in position space to a single point with growing
prefactor as V (r) = αrV Ṽ (r/rV ) corresponds in momentum space to
expanding it according to

v(k) = r3V αrV ṽ(krV ) .

Since α ∼ r−2
V , the prefactor tends to zero as rV . The potential operator

acts in momentum space by folding v with the wave function. However,
v varies on momentum scales Λ := r−1

V and one may approximate

(2π)−3(v ∗ ψ)(k) =
∫

d3q v(k − q)ψ(q) ≈
∫

d3q v(q)ψ(q)

for k = O(1), thereby simplifying V̂ to a rank-1 operator. The right-hand
side has, however, two inconveniences: (i) The operator defined by it is
not hermitian, since 〈φ|V ψ〉 =

∫
φ ·
∫
vψ while 〈V φ|ψ〉 =

∫
vφ ·

∫
ψ. (ii)

It is constant and therefore not normalisable despite the small prefactor
of v. Both can be fixed by also making a small adjustment to the scalar
product in terms of a cutoff function:

f(k/Λ) := v(k)/v(0)

(φ|ψ) :=
∫
φ(k)ψ(k)f(k/Λ)d3k .

This has vanishing impact on the scalar product of normalisable wave
functions because f(k/Λ) ≈ 1 for k = O(1). For practical purposes, using
the modified scalar product means that the cutoff function f must be
used in essentially every momentum integral. In the following, we will
make use of the shorthand notation∫ Λ

· d3k :=

∫
· f(k/Λ)d3k .

Depending on whether or not the limit Λ → ∞ exists for an expression, it
is called UV-convergent or UV-divergent. If an integral is UV convergent,
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2.3 The Contact Potential

we may usually directly take the limit and therefore omit the Λ. The
potential operator is commonly written as

V̂ ψ = gΛ −
∫ Λ

ψ(k)d3k

and gΛ = v(0) is known as the coupling parameter.
Since the shape of the potential becomes unimportant in the limit of

the contact interaction, it is not necessary to choose a shape in position
space and Fourier transform it. Instead, one may directly choose the
momentum space shape f and compute the prefactor gΛ accordingly to
match the scattering length. From the zero-energy scattering equation

k2

2mred
ψ0(k) + gΛ −

∫ Λ

ψ0(k)d3k = 0 ,

one can see that k2ψ0 must be constant, which is the case for ψ0 ∼ k−2

and for ψ0 ∼ δ3(k). Thus, with convenient choice of normalisation,

ψ0(k) = (2π)3δ3(k)− α

k2
(2.13)

where

− α

2mred
+ gΛ − αgΛ −

∫ Λ 1

k2
d3k = 0

⇒ g−1
Λ =

2mred

α

(
1− α −

∫ Λ 1

k2
d3k

)
.

From the Fourier transform ψ0(r) = 1−α/4πr one can see that α = 4πa
and thus

g−1
Λ = 2mred

(
1

4πa
− −
∫ Λ 1

k2
d3k

)
. (2.14)
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Chapter 3

The Bose Gas

In this chapter, we review two of the most widely used descriptions of the
Bose gas: Bogoliubov theory (bt) and Gross-Pitaevskii theory (gpt).
Both will appear again in part II on the Bose polaron. More information
on the Bose gas can be found in [PS03; Lie+05; Yng14].

3.1 Bogoliubov Theory
The problem of a weakly interacting Bose gas is not an easy one because
a perturbative treatment fails. In 1947, Bogoliubov [Bog47] was able
to provide a consistent description by assuming the majority of atoms
to be condensed in the zero-mode and treating the remaining ones as
fluctuations. He showed that a linear dispersion emerges and was able
to explain the phenomenon of superfluidity in Bose gases. His theory
has since become a standard description of condensates with no spatial
density variation.

In this section, we derive the basic theory. It serves as a prelude to
chapter 6, which treats the Bose polaron in bt, and introduces some of
the notations and symbols used therein.

3.1.1 Derivation
bt works in momentum space in order to be able to single out the zero-
momentum mode. We will assume that the volume is finite and interpret
integrals as scaled sums. The Hamiltonian of the Bose gas thus reads

H = −
∫
k

k2

2mB
â†kâk +

1

2
−
∫
p,k,q

vBB
p â†k+pâ

†
q−pâqâk.

The central assumption is that most particle are condensed in the
zero-mode. Therefore, terms involving three or more operators â(†)k with
k 6= 0 are considered small in comparison to those involving zero-mode
operators and are neglected. We follow Girardeau [Gir61] and first
isolate terms depending only on the total particle number N = −

∫
k
â†kâk
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CHAPTER 3. The Bose Gas

from the interaction part Hint of the Hamiltonian.

Hint =
vBB(0)

2V
−
∫
k,q

â†kâ
†
qâqâk + −

∫
p6=0

vBB
p

2
−
∫
k,q

â†k+pâ
†
q−pâqâk

= vBB(0)
N(N − 1)

2V
+ −
∫
p 6=0

vBB
p

2
−
∫
k,q

â†k+pâ
†
q−pâqâk.

To the remaining term, the approximation is applied.

≈ nNvBB(0)

2
+

1

2V 2
−
∫
p6=0

vBB
p

(
â†pâ

†
−pâ0â0 + â†0â

†
0â−pâp

+ â†pâ
†
0âpâ0 + â†0â

†
−pâ0â−p

)
.

The second step consists in replacing the zero-momentum operators
â†0 and â0 by c-numbers. The motivation for this is that when the
zero-mode is occupied by a macroscopic number of particles N0 of order
N – this amounts to â

(†)
0 ≈

√
N0V , such that −

∫
â†0â0 ∼ N – then the

commutator [â0, â
†
0] = V is negligible in comparison to â†0â0 ≈ N0V (1).

The resulting Hamiltonian reads

H =
nNvBB(0)

2
+He −

∫
k 6=0

[(
k2

2mB
+ n0v

BB
k

)
â†kak + n0v

BB
k âkâ−k

]
.

where n0 = N0/V is the condensate density.
Finally, this Hamiltonian is diagonalised by the Bogoliubov transfor-

mation
S = exp

(
1

2
−
∫
k

φk
(
â†kâ

†
−k − âkâ−k

))
for a spherically symmetric real function φ. It defines new operators b̂k =

SâkS
−1, which can be computed from the Hadamard lemma eX âe−X =∑

n[X, â]n / n!. We have

[lnS, âk] = −φkâ†−k

[lnS, â†k] = −φkâ−k

⇒ [lnS, âk]n =

{
φnk âk if n even
−φnk â

†
−k if n odd.

Thus

b̂k = cosh(φk) âk − sinh(φk)â†−k

b̂†k = cosh(φk) â†k − sinh(φk)â−k

and inversely

âk = cosh(φk) b̂k + sinh(φk)b̂†−k

â†k = cosh(φk) b̂†k + sinh(φk)b̂−k.

1In fact, it is not necessary that the zero-mode is occupied macroscopically, as was
shown by Ginibre [Gin68]: if it is not, we have just eliminated a single continuum
mode, which plays no role. But in this case, the replacement has no practical interest.
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3.1 Bogoliubov Theory

The requirement that terms of the form b̂kb̂
†
−k vanish leads to

tanh 2φk = − 1

1 + k2

2mBn0vBB
k

⇔ e4φk =
k2

k2 + 4mBn0vBB
k

.

The diagonalised Hamiltonian then reads

H = E0 + −
∫
k

ωk b̂
†
kb̂k

where

ωk =
k2

2mB
e−2φk =

k

2mB

√
k2 + 4mBn0vBB

k

E0 =
nNvBB

0

2
+ V −

∫
k

(
k2

mB

(√
1 +

4mBn0vBB
k

k2
− 1
)
− n0v

BB
k

2

)
.

An important point is that the dispersion ωk is linear for small k with
a proportionality constant c. According to Landau’s theory [Lan41],
this explains the phenomenon of superfluidity. One can show that the
critical velocity c is equivalent to the speed of sound in the Bose gas and
that the Bogoliubov modes can be interpreted as phonons.

The ground state of the system is given by the phonon vacuum

|0b̂〉 = S |0〉 .

(Note that |0〉 does not correspond to vacuum but to an ideal bec
because the zero-mode was removed by the c-number substitution.) Even
in the ground state, particles are removed from the condensate. This
condensate depletion is given by

n− n0 =
1

V
〈0b̂ | −

∫
k 6=0

â†kâk|0b̂〉 = −
∫
k

sinh(φk)2.

It was an initial requirement of the theory that this number be small
compared to n. For this to be true, φ – and in turn n0v

BB
k – must be

small.

3.1.2 Local Potential
Bogoliubov theory is most successful in combination with a Lee-Huang-
Yang pseudo-potential V BB(r) = 4πaBB

mB
δ3(r), leading to vBB(k) = 4πaBB

mB
.

This yields universal results that depend only on the scattering length
aBB. Most quantities can be conveniently expressed by another important
length scale, the healing length

ξ =
1√

8πaBBn0
.
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It defines the scale on which local perturbations of the condensate decay
(are healed). This leads to

e4φk =
ξ2k2

ξ2k2 + 2

ωk = ck

√
1 +

ξ2k2

2

c =
1√

2mBξ

n− n0 =

√
2

12π2ξ3
.

The relative condensate depletion depends only on the dimensionless gas
parameter n0a3BB:

n− n0
n

=
8

3
√
π

√
n0a3BB.

The applicability of bt is thus directly related to the smallness of the
gas parameter. A typical value for experiments is n0a3BB = 10−5.

3.2 Gross-Pitaevskii Theory
bt assumes condensation in the zero-momentum mode and thus homo-
geneity in space. It may thus be inapplicable for a trapped gas or one
with a local perturbation, which require spatial variation of the condensed
mode. A theory to treat such situations was developed independently
by Gross [Gro61] and Pitaevskii [Pit61] (gp) to describe vortices in
condensates.

3.2.1 Derivation
A heuristic derivation starts from the Hamiltonian with a Lee-Huang-
Yang potential term (V ext is an external trapping potential)

H =

∫
x

(
â†x

−∆

2mB
âx +

2πaBB

mB
â†xâ

†
xâxâx + V ext

x â†xâx

)
. (3.1)

It is now assumed that the particles are condensed in a single mode
φx, such that the wave function is a product state Ψ(x1, ...,xN ) =
φ(x1) · · ·φ(xN ) or, simpler, a coherent state

|Ψ〉 = exp
(∫

x

(
φxâ

†
x − φxâx

))
|0〉 .

The normalisation is
∫
x
|φx|2 = N to yield an average particle number of

N . Computing the energy expectation value 〈Ψ|H|Ψ〉 and the equations
of motion yields the gp energy functional and the gp equations (gpe)

E[φ] =

∫ (
|∇φ|2

2mB
+

2πaBB

mB
|φ|4 + V ext|φ|2

)
iφ̇ =

(
− ∆

2mB
+

4πaBB

mB
|φ|2 + V ext

)
φ.
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3.2 Gross-Pitaevskii Theory

Meanwhile these equations have become the standard tools to find the
ground state or time evolution of inhomogeneous condensates.

3.2.2 Applicability
The above derivation is simple but also misleading in some aspects. It
may appear, for example, that gpt is of limited scope because it relies
on a pure product state without any correlations between the particles.
Also one might think that the use of the local potential is a limitation
and that one would enhance the scope by using a product state with
arbitrary potential shapes2. Finally, it appears that the first term of
the energy functional constitutes the entire kinetic energy of the system
while the second captures only the bb repulsion.

These points are, in general, not true. In reality, the two approxima-
tions involved – the local potential and the product state – act in favour
of each other and removing one would put into question the validity of
the other.

The use of a local potential is motivated by a separation of scales,
namely that the scattering length is much shorter than the mean-particle
distance and than the scale, on which the condensate wave function varies.
But the Lee-Huang-Yang term is a peculiar one: even though the Born
approximation suggests that the potential 4πaBB/mB · δ3 has indeed a
scattering length of aBB, it really has one of zero. After all, for a repulsive
potential, the scattering length may not exceed the potential radius. The
result is that by a clever choice of wave functions, the energy of (3.1) with
V ext = 0 can be brought arbitrarily close to zero3, even though the real
ground state energy of the free Bose gas is known to be 4πaBBnN/mB.
We are led to say that (3.1) produces correct results for wave functions
that are not able to resolve short-range two-particle correlations. The
product state fulfils this requirement.

Conversely, a product state produces correct results with the local
potential, but not for arbitrary ones: for a hard-sphere potential, the
energy would even diverge.

gpt produces correct results for a large class of potentials. This
was proven in [LSY00] for the ground state and in [ESY07; ESY09] for
the dynamics. But in general, the real wave function is not of a pure
product type but it contains two-body correlations. They do not appear
in the final equations because the separation of scales allows to integrate
them out, resulting in the universal “potential” term of gpt – which, in
reality, also contains the kinetic energy arising from two-body correlations
[CS02]. How much of the bb energy is kinetic or potential depends on
the potential shape, just as in the two-body problem: For a hard-sphere
potential, the energy is entirely kinetic while for a soft one, it is entirely
potential.

2This is sometimes referred to as non-local gpt but different from the approach
in chapter 7.

3Take Ψ =
∏

i<j f(xi −xj) with f(r) = max(0, 1− ε/r) the zero-energy scattering
solution of a hard-sphere potential with radius ε. This vanishes when xi = xj for any
i, j and thus has a potential energy of zero. The kinetic energy is proportional to ε
and vanishes as ε→ 0.
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In the impurity-bec problem, we will find that the separation of
scales upon which gpt relies is no longer present at strong coupling
(chapter 7). We will therefore find that the two-body correlations can no
longer be integrated out and include them explicitly.
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Chapter 4

Impurity-BEC System

We now describe the general situation and present the Hamiltonian of an
impurity in a condensate that is investigated in part II.

Since only a single impurity is considered, it is convenient to describe
it in first quantised form in terms of its position and momentum operators
x̂I and p̂I. The Hamiltonian thus reads

H = HI +HB +HIB

where

HI =
p̂2

I

2mI

HB =

∫
x

â†x
−∆

2mB
âx +

1

2

∫
x,y

V BB(x− y)â†xâ
†
yâyâx

HIB =

∫
x

V IB(x− x̂I)â
†
xâx.

Wave functions are linear combinations of objects of the form ψI(xI)⊗
|ΨBB〉, i.e. elements of the Hilbert space HIB = L2(V )⊗ HB where HB

is the Fock space of bosons.

4.1 LLP Transformation
There is canonical transformation introduced by Lee, Low and Pines
(llp) [LLP53] that allows to eliminate the impurity degrees of freedom
(a slightly more detailed account was given by Girardeau [Gir61]). It
makes use of conservation of total momentum and is applicable to all
translation-invariant impurity-in-medium problems.

The transformation operator is

S = exp(i x̂I · P̂B)

where P̂B =
∫
x
â†xp̂Bâx is the total boson momentum operator. (Or

total momentum of medium excitations in different polaron contexts.
Note that the total momentum of Bogoliubov modes equals the total
Boson momentum, such that the llp transformation commutes with the
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CHAPTER 4. Impurity-BEC System

Bogoliubov transformation.) We will, this time, not define new mode
operators as result of the transformation but instead apply it directly to
the Hamiltonian:

HLLP = SHS−1.

The price for this is that the same quantities have different physical
meaning in the context of the llp Hamiltonian than for the original one.

The application of S to the involved operators yields

Sâ(†)x S−1 = â
(†)
x−x̂I

Sx̂IS
−1 = x̂I

Sp̂IS
−1 = p̂I − P̂B.

Note that in the first line, x changed its meaning from an absolute boson
coordinate to one relative to the impurity. In the last line, p̂I changed its
meaning to the total momentum, and will be denoted p̂0 in the following.

The transformed parts of the Hamiltonian read

SHIS
−1 =

(
p̂0 −

∫
x
â†xp̂âx

)2
2mI

SHBS
−1 = HB

SHIBS
−1 =

∫
x

V IB(x)â†xâx.

The last line has simplified considerably: In relative coordinates, the
ib potential plays the role of an external one. However, in HI, the
impurity momentum is now expressed as difference between total and
boson momentum. This leads to fourth order terms in boson operators,
which can be interpreted as an effective interaction induced by the mobile
impurity. Wave functions of the form ψ ⊗ |Ψ〉 are now more difficult
to interpret: Since x̂I commutes with S, |ψ(x)|2 still represents the
probability of finding the impurity at x. However,

∫
x
ψxp̂ψx is now the

expectation value of the total momentum.
The total momentum operator p̂0 commutes with the Hamiltonian

and may be replaced with its expectation value p0. This assumes that
the total wave function is in a momentum eigenstate. If it is not, it can
be written as linear combination of such states and each constituent may
be treated separately by using the Hamiltonian with the corresponding
momentum. Taking all terms together, the total Hamiltonian with fixed
momentum reads

HLLP =

(
p0 −

∫
x
â†xp̂âx

)2
2mI

+

∫
x

â†x
p̂2

2mB
âx

+
1

2

∫
x,y

V BB(x− y)â†xâ
†
yâyâx +

∫
x

V IB(x)â†xâx. (4.1)

This is the Hamiltonian that will be employed in part II.
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4.2 Quench Dynamics

4.2 Quench Dynamics
To probe the dynamical properties of the impurity-bec system, a common
approach is to start from a Bose gas in its ground state without impurity
and then add the impurity interactions at t = 0. This situation can
be realised in experiments by transferring the impurity from a non-
interacting to an interacting state by, for example, a hyperfine flip in
a situation where one hyperfine state is strongly interacting close to a
Feshbach resonance while the other state has negligible coupling. The
sudden switching on of interactions is called a quench. We will adopt
this scheme for the dynamical situations discussed in part II.
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Methods and Results
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Chapter 5

Heavy Impurity in an
Ideal BEC

The simplest case is that of a localised impurity in a non-interacting bec.
Despite – or perhaps rather because of – its simplicity, this problem has
not received much attention in the literature. Exceptions are a short
discussion in the context of rf spectra [Shc+16b], the investigation of
Efimov physics near unitarity in a two-channel model [Shi+18] and our
analysis in [DSE19], where we discuss qualitative features of the dynamics.
Nonetheless, this simple case does already present some surprisingly
interesting features, in particular when V IB allows for a bound state
between the impurity and one boson. In this case, the many-body energy
is not bounded below as N,V → ∞: in absence of any repulsion between
them, all bosons could collectively enter the bound state. One might
therefore suspect that the dynamics would be unstable as well with an
ever growing number of particles getting bound to the impurity. This
turns out not to be the case: In absence of inter-boson interactions, there
is no decay channel that allows the system to loose a sufficient amount
of energy such that it cannot approach the ground state. Instead, the
system keeps oscillating between the bec and the bound state.

For mI → ∞ and V BB → 0, the Hamiltonian reduces to a quadratic
one,

H =

∫
x

â†x

[
p̂2

2mB
+ V IB(x)

]
âx ,

which can be solved by a product state ansatz |Ψ〉 =
(∫

x
φxâ

†
x

)N |0〉. φ,
the condensate wave function, obeys the Schrödinger equation of the
two-body problem of the impurity and one boson in relative coordinates:

i∂tφ =

[
p̂2

2mB
+ V IB

]
φ . (5.1)

Since the condensate wave function evolves according to the same
equation (5.1) as the wave function of the two-body problem, it may
seem that the two problems are equivalent. There is, however, one
important difference, that concerns the domain of the functions φ, to
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CHAPTER 5. Heavy Impurity in an Ideal BEC

which the equation is applied. In the two-body case, they are square-
integrable. While the continuum states serve well as a calculational tool,
they are only relevant in normalisable superpositions, for otherwise, the
probability of finding the two particles at a finite distance is zero. For
the bec, on the other hand, the relevant wave functions are those that
correspond to a finite number of particles in each unit volume, such as
the constant function. It is convenient to choose the normalisation of the
φ as

∫
|φ|2 = N , in order to allow for convergence in the thermodynamic

limit.

5.1 Decomposition in Terms of Two-Body
Eigenstates

The difference between the two types of wave functions becomes clear
when decomposing φ with respect to the eigenstates of the two-body
Hamiltonian. Let us denote by ψb,i the bound states with energy −Eb,i

and by ψk the continuum states with energy Ek = k2, setting 2mB = 1
for convenience. We consider only s-wave states, such that k ∈ R+ is
scalar. A normalisable, spherically symmetric state φ2-body can therefore
be decomposed as

φ2-body =
∑
i

αb,iψb,i +

∫
R+

αkψk dk

and has the time-evolution (we set 2mB = 1 for this chapter)

φ2-body(t) =
∑
i

αb,iψb,ie
iEb,it +

∫
R+

αkψke
−ik2t dk . (5.2)

For a bec, however, the overlap with the k = 0-mode is infinite such
that, replacing αk → α0δ(k) + αk, one obtains

φBEC = α0ψ0 +
∑
i

αb,iψb,i +

∫
R+

αkψk dk

φBEC(t) = α0ψ0 +
∑
i

αb,iψb,ie
iEb,it +

∫
R+

αkψke
−ik2t dk . (5.3)

One can see two things from this decomposition.

(i) Even though the state is not normalisable the coefficients of the
bound states, αb,i, are finite: they are obtained from αb,i =∫

V ψb,iφBEC and ψb,i decays exponentially. This means that the
system does not approach its ground state with an infinite number
of particles in the lowest bound state, but it remains dynamically
stable.

(ii) In quantum mechanical systems, multiple energy levels can lead to
oscillations with a frequency corresponding to the energy difference.
In (5.2), this requires at least two bound states – oscillations between
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5.1 Decomposition in Terms of Two-Body Eigenstates

a single bound state and the continuum will always dephase. In
(5.3), however, the bec state ψ0 plays the role of an additional
bound state with energy zero, such that oscillations are possible
even when just one bound state exists.

This behaviour is visualised in fig. 5.1, where the density expectation
value |φ(r, t)|2 is shown for an initial normalisable (gaussian) state and a
bec state in the case where one bound state exists. While the gaussian
state converges to the profile of the bound state, the bec profile keeps
oscillating. Remarkably, it features a halo of depletion around the
impurity which reaches zero density at certain times. A more detailed
discussion of density profiles will be given in chapter 6 for an interacting
Bose gas, including attractive coupling and mobile impurities.

Energy of the Zero-Energy Mode Equation (5.3) is, in fact, not
quite correct. Namely, we have assumed infinite volume to obtain a
mode with k = 0 and a continuum, and only afterwards chosen the wave
function such that it corresponds to a density of n. In reality, volume
and particle number are large but finite and what we should really do is
take the thermodynamic limit and therefore start with a finite volume
and suitable boundary conditions (zero boundary conditions being the
most realistic). This causes essentially two differences:

• The continuum becomes discrete with the allowed values determined
by the boundary conditions. Approximating the resulting sums by
integrals as above causes an error O(V −1).

• k = 0 is not included in the allowed discrete values. The zero-mode
is therefore to be replaced with lowest-lying positive-energy mode,
which has an energy of O(V −1).

The first point is not important because the continuum is occupied by less
than O(V ) particles (precisely, by O(nV 1/3), as we will see below). The
second point, however, is important because the zero-mode is occupied
by O(N) particles, leading to a non-zero error O(n). Therefore, this
energy E0 = O(V −1) should be included in equation (5.3) by means of a
time-evolution factor exp(−iE0t) for the zero-mode.

The value of E0 can be estimated from using the formula for k = 0,
but not using the energy eigenvalue but the value of the energy functional
E[ψ0] =

∫
(|∇ψ0|2 + V IB|ψ0|2) /

∫
|ψ0|2. The two are different because

the boundary conditions are violated by ψ0: In a ball BR of radius R,
we have

E0 =

∫
BR

(|∇ψ0|2 + V IB|ψ0|2)
/∫

BR

|ψ0|2

=

(∫
∂BR

ψ0∇ψ0 · dr +

∫
BR

ψ0(−∆+ V IB)ψ0

)/ ∫
BR

|ψ0|2

By definition of the scattering length, ψ0 → 1− aIB/r for large r.

= 4πR2
(
1− aIB

R

) aIB

R2

/
(V +O(V aIB/R))

= 4πaIB / V +O(V −4/3).
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Figure 5.1: Comparison of the time evolution of a normalisable and a
non-normalisable initial state obeying the two-body Schrödinger equation.
The potential V IB is a contact interaction with positive scattering length
and thus has a single bound state. The last row shows the asymptotic
behaviour for long times, where the bec state keeps oscillating between
the two limit curves shown, while the normalisable state has converged
to the bound state. The scattering length is aIB = 1.0n−1/3, the time
unit is the bec time scale τ = mBn

−2/3
0 /h̄.
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5.2 Exact Time Evolution of a BEC in Presence of a Stationary Contact Potential

In fact, it does not matter if the time evolution factor exp(−iE0t) is
attributed only to the first term in (5.3) or to all terms, because only
the first one is of order N . Therefore, we may as well use a global phase
factor for the many-body wave function and retain expression (5.3):

|Ψ(t)〉 = e−i4πaIBnt
(
φ̂†BEC(t)

)N
|0〉 (5.4)

where φ̂†BEC(t) =

∫
x

φBEC(x, t)â
†
x.

For time-local observables, this plays no role but when computing, for
example, the rf spectrum from the time-dependent overlap, the phase
factor is essential.

5.2 Exact Time Evolution of a BEC in Pres-
ence of a Stationary Contact Potential

For the case where V IB is a contact potential, the coefficients and time
evolution in (5.3) can be computed explicitly for an initially flat bec,
φBEC(t = 0) =

√
n. This is not just an academic exercise but will serve

as a useful ingredient in our numerical computations for the interacting
case.

5.2.1 Projection of Condensate State onto Eigenstates
of the Contact Hamiltonian

In section 2.3 we have derived the eigenstates of the contact Hamiltonian

u0 = r − aIB

ub =
exp(−r/aIB)√

πaIB
if aIB > 0

uk =
sin(kr)− aIBk cos(kr)
π
√
2(1 + a2IBk

2)
for k > 0

and the coefficients α in equation (5.3) are computed from projecting the
bec state uBEC =

√
nr onto them. For the zero mode, we clearly get

α0 =
√
n. Thus,

uBEC =
√
nu0 + aIB

√
n ,

and we must project the remaining term aIB
√
n onto ub and uk. While

it is clear that the 0-mode part is not normalisable, it is interesting to
note that the remainder still is not. This basically means that there are
infinitely many particles in the continuum, even though this is only a
vanishing fraction of all particles:

∫
r
|
√
naIB

r |2 ∼ nV 1/3 in comparison to∫
r
|
√
nψ0|2 ∼ nV = N .

Projection onto Bound State This is just an integral over an expo-
nential.
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αb = 4π

∫
R+

aIB
√
nub(r)dr

= 2
√
2πaIBn

∫
R+

e−r/aIB dr

= 2aIB
√
2πaIBn .

Projection onto Continuum Here, the integral is in the sense of
distributions and we need, once again, equation (A.1d).

αk = 4π

∫
R+

aIB
√
nuk(r)dr

=
−2aIB

√
2n√

1 + a2IBk
2

Re
∫
R+

eikr(aIBk + i)dr

(A.1d)

=
−2a

√
2n√

1 + a2IBk
2

Re
(
πδ(k) +

i

k

)
(aIBk + i)

=
2aIB

√
2n

k
√

1 + a2IBk
2
.

5.2.2 Time Evolution

We can now insert the coefficients α into

uBEC(r, t) =
√
nu0(r) + 1aIB>0αbub(r)e

iEbt +

∫
R+

αkuk(r)e
−ik2t dk

and compute the k-integral. This is done by similar means as for the
propagator in section 2.3.31.

1We could have used the result for the propagator instead of computing the
coefficients αk, but it is more convenient to perform the integrals in reverse order.
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∫
R+

αkuk(r)e
−ik2t dk

=

∫
R+

e−ik2t−Re eikr(aIBk + i)

π
√
2(1 + a2IBk

2)

2aIB
√
2n

k
√
1 + a2IBk

2
dk

=
−2aIB

√
n

π

∫
R+

e−ik2t Re eikr

k(aIBk − i)
dk

The integrand is symmetric in k, so we can replace
∫
R+

→ 1
2

∫
R. For later

use, introduce an Im t < 0.

=
−aIB

√
n

π
lim

Im t↗0

∫
R
e−ik2t Re eikr

k(aIBk − i)
dk

The imaginary part of the fraction is anti-symmetric in k, so the “Re” can be
omitted. This requires using a principal value integral since the imaginary
part has a pole at 0. Then use a partial fraction decomposition.

=
−aIB

√
n

π
lim

Im t↗0
P
∫
R
e−ik2t+ikr

(
i

k
− aIBi

aIBk − i

)
dk

(A.1c), (A.1b)

= aIB
√
n

(
erf
(

r

2
√
it

)

− eit/a
2
IB−r/aIB

(
sgn aIB − erf

(√
it

aIB
− r

2
√
it

)))

Together with the parts of the bound state and the zero mode,

1aIB>0αbub(r)e
iEbt = 1aIB>02aIB

√
neit/a

2
IB−r/aIB

α0u0(r) =
√
nr −

√
naIB ,

this yields

φBEC(r, t) =
√
n−

√
n
aIB

r
e−r2/4it

(
erfcx

(
r

2
√
it

)

− erfcx
(

r

2
√
it

−
√
it

aIB

))
(5.5)

in terms of the scaled complementary error function erfcx z = ez
2

(1−erf z),
shown in fig. 5.2.

Asymptotics For long times, (5.5) has the asymptotics

φBEC →
√
n−

√
n
aIB

r

(
1− e−r/aIB erfcx

(
−
√
it

aIB

))
.

From fig. 5.2 one can see that erfcx (−
√
it/aIB) converges to zero for

aIB < 0. Here, the wave function converges to the scattering solution√
n(1 − aIB/r). For aIB > 0 however, erfcx (−

√
it/aIB) oscillates. But
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CHAPTER 5. Heavy Impurity in an Ideal BEC

the zeros of erfcx z are not precisely on the line z = −
√
it but shifted

further away from the real axis. Therefore, the wave function does not
periodically reach the zero-mode. Instead, we find that |erfcx| slowly
converges to 2 with oscillating phase factor. The real values of ±2 can
be considered the extremal cases and lead to the limiting curves in fig.
5.1. Here, the wave function is φBEC =

√
n
(
1− aIB

r

(
1∓ 2e−r/aIB

))
. In

particular, it periodically has a zero. This explains the fact that the
density reaches zero in fig. 5.1 but that these zeros are not located at
r = aIB as in the scattering solution. Instead, they are determined
by 1 = aIB

r0

(
1 + 2e−r0/aIB

)
, which yields r0/aIB ≈ 1.45. This value is

independent of parameters.
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z
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π

Figure 5.2: Absolute value and
phase of the scaled complementary
error function.

5.3 RF Spectrum
The knowledge of the wave function after a quench in an ideal bec gives
us access to a large number of physical observables in this limiting case.
The results are already interesting on their own and are also useful as
a basis for discussing results of approximating methods for the more
complicated cases of finite mass and an interacting bec.

In this section, we compute the time-dependent overlap and the rf
spectrum:

Time-dependent overlap: S(t) = 〈Ψ(0)|Ψ(t)〉
= 〈Ψ(0)|e−iHt|Ψ(0)〉

rf spectrum: A(ω) =
1

π
Re
∫ ∞

0

eiωtS(t)

= 〈Ψ(0)|δ(ω −H)|Ψ(0)〉 .

The rf spectrum is an interesting quantity because it allows to directly
measure spectral properties of the many-body Hamiltonian H. More
precisely, it corresponds to the weights of the spectral decomposition of the
initial state with respect to H. Such spectra have already been measured
with different atom species [Hu+16; Jør+16; Yan+20]. Theoretically,
they have been computed for an interacting gas in Bogoliubov theory in
[Sha+14] within the Fröhlich model (attractive side only) and in [RS13;
Shc+16b] beyond the Fröhlich model. The supplemental material of
[Shc+16b] contains a comparison with experiments, showing excellent
agreement. The interest in computing the spectrum here for the simpler
case lies in the fact that the result is numerically exact and can be well
understood due to the simple structure of the wave function. In fact, we
will find no qualitative difference to the situation in [Shc+16b].

5.3.1 Time-Dependent Overlap
It is convenient to use a coherent state instead of a product state, thereby
allowing for a relatively small variance in the number of particles, and to
normalise the wave function:

|ψ(t)〉 = exp
(
−i4πaIBnt+ φ̂†BEC(t)−

∫
|φBEC|2

2

)
|0〉 .
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5.3 RF Spectrum

Then, with the Baker-Campbell-Hausdorff formula,

S(t) = exp
(
−i4πaIBnt+ [φ̂BEC(0), φ̂

†
BEC(t)]−

∫
|φBEC|2

)
= exp

(
−i4πaIBnt+ 1aIB>0|αb|2

(
eiEbt − 1

)
+

∫ ∞

0

dk |αk|2
(
e−ik2t − 1

))
.

Once again, the integral can be computed analytically.∫ ∞

0

(
e−ik2t − 1

)
|αk|2 dk

Again,
∫∞
0 → 1

2

∫
R

= 4a2IBn

∫
R

e−ik2t − 1

k2(1 + a2IBk
2)

dk

= 4a2IBn

(∫
R

e−ik2t − 1

k2
dk − a2IB

∫
R

e−ik2t − 1

1 + a2IBk
2

dk
)

First integral I(t): ∂
∂t
I(t) = −i

∫
R e

−ik2t = −i
√

π
it

, thus I(t) = −2
√
iπt.

Second integral: Equation (A.1a).

= 4a2IBn

(
−2

√
iπt− aIBπe

it/a2
IB

(
sgn aIB − erf

√
it

aIB

)
+ aIBπ sgn aIB

)
Together with |αb|2

(
eiEbt − 1

)
= 8πa3IBn

(
eit/a

2
IB − 1

)
, we arrive at

S(t) = exp

(
−i4πaIBnt+ 4πa3IBn

(
erfcx

(
−
√
it

aIB

)
− 1− 2

aIB

√
it

π

))
.

(5.6)

5.3.2 RF Spectrum
Fourier-transforming (5.6) numerically for a range of scattering lengths,
we arrive at the rf spectrum, fig. 5.3. We can understand in detail how
it emerges from the two-body spectrum. For this, a different formulation
of A(ω) is useful, which allows to view it as a delta peak at ω = 0, which
is subsequently shifted and broadened by three operators corresponding
to the three parts of the two-body spectrum (zero-mode, bound state
and continuum).

A(ω) = (F−1S)(ω) Interpret S as multiplication
operator acting on the constant
function 1.= (F−1SFF−11)(ω)

= A0AbAcδ(ω)

where

A0 = F−1 exp(−i4πaIBnt)F

Ab = F−1 exp
(
|αb|2

(
eiEbt − 1

))
F

Ac = F−1 exp
(∫ ∞

0

dk |αk|2
(
e−ik2t − 1

))
F .
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Figure 5.3: Numerically exact rf
spectrum of a localised impurity in
an ideal bec. For weak coupling,
the spectrum is dominated by the
zero-energy mode φ0 with energy
4πaIBn. On the repulsive side, the
singly and multiply occupied bound
state leads to additional peaks at
distances, which are multiples of 1/
2mreda

2
IB. At strong coupling, the

ψ0-peak gets weaker and is replaced
by a smeared-out contribution of
the continuum.
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Note that these operators commute. Introducing the shift operator

σEf(ω) = f(ω − E)

σE = e−E∂ω = F−1e−iEtF ,

we can write

A0 = σ4πaIBn

Ab = exp
(
|αb|2(σ−Eb − 1)

)
Ac = exp

(∫ ∞

0

dk |αk|2(σk2 − 1)

)
.

The effect of the three parts of the two-body spectrum can thus be
discussed independently.

• The zero-mode simply shifts the many-body spectrum by 4πaIBn.
In fig. 5.3, this corresponds to the strongest peaks that may be seen
at weak coupling, but not at strong coupling due to the broadening
and shifting by the continuum.0

≥0.5

A
0
A

b
δ
(ω

)

Figure 5.4: The spectrum without
the continuum part, consisting of
the lines 4πaIBn − jEb with pois-
sonian weights. The axes are the
same as in fig. 5.3.

• For the effect of the bound state, we may expand

Ab =

∞∑
j=0

|αb|2j

j!
e−|αb|2σ−jEb . (5.7)

The bound state thus causes shifts by multiples of the binding
energy, leading to the additional lines on the repulsive side in the
figure. They correspond to many-body eigenstates of the form
ψ̂†j

b ψ̂
†N−j
0 |0〉. According to (5.7), their weights are given by a

Poisson distribution with mean value |αb|2 = 8πa3IBn. For weak
coupling, this value is small, meaning that the bound state is
occupied at most once and that only one additional peak may be
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5.4 Original Contribution and Relation to Other Works

seen. For stronger coupling, multiply bound states gain weight and
additional lines appear in the spectrum. As the lines get denser and
the broadening by then continuum stronger, a smooth crossover to
the attractive side takes place. A sketch of the purely discrete part
of the spectrum is shown in fig. 5.4.

• The continuum, finally, broadens the peaks. Since the energies are
positive, the broadening happens only in one direction, such that
the lines in fig. 5.4 constitute the lower bounds of the broadened
lines in fig. 5.3. At stronger coupling, the continuum contributes
also a shift that cancels the zero-energy shift on the attractive side
and the mean effect of the bound states on the repulsive side. This
is necessary because the initial state has energy zero and there are
no decay mechanisms that would allow for a convergence towards
the ground state.
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0.5

1.0

1.5

A
c
δ
(ω

)

|a−1
IB |=1.00n1/3
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Figure 5.5: Shape of the peaks in
the rf spectrum for different cou-
pling strengths.

The shape of the peaks is determined by Acδ(ω), which depends
only on |aIB|. It is shown for three values in fig. 5.5. For weak
coupling, we may estimate it by approximating |αk|2 ≈ 4a2IBn / k2,
leading to

∫∞
0

dk |αk|2
(
e−ik2t−1

)
≈ −8a2IBn

√
iπt. The exponential

of this has the Fourier transform

Acδ(ω) ≈ 1ω>0
4πa3IBn

ω3/2
exp

(
−16πa4IBn

2

ω

)
.

In fig. 5.5, the narrowest peak is of this form. One can see the
ω−3/2-shape, which is regularised by the exponential near zero. For
stronger couplings, the shape becomes more complicated as the
erfcx−1 in equation (5.6) becomes important.

5.4 Original Contribution and Relation to
Other Works

This section contains a summary of which findings of this chapter are
new and how they relate to previous works.

• Concerning the discussion that a single bound state can give rise
to oscillations, we have given an analytical argument similar to the
one in this chapter in [DSE19]. Therein, we worked in momentum
space and made use of a c-number substitution as in Bogoliubov
theory; c.f. the analysis in section 6.6.

• Dynamical density profiles were also computed in [DSE19]. The
more detailed discussion therein will be presented in the next
chapter for an interacting Bose gas.

• The analytical computation of the wave function and time-dependent
overlap are new and so far unpublished.

• An rf spectrum similar to fig. 5.3 has been computed by Shcha-
dilova et al. [Shc+16b] for a finite-mass impurity and an inter-
acting bec, using Bogoliubov approximation and a coherent state

51



CHAPTER 5. Heavy Impurity in an Ideal BEC

ansatz. Results for limited excitation number had been obtained
earlier by Rath and Schmidt [RS13] and a treatment of attractive
coupling within the Fröhlich model had been given by Shashi et
al. [Sha+14]. The computation here complements [Shc+16b] by
showing that the qualitative features remain correct in a numeri-
cally exact treatment. This is important because the Bogoliubov
treatment has a dynamical instability at strong coupling. That the
results agree nonetheless shows that this instability does not enter
in the rf spectrum even though it may lead to unphysical results
in other observables, as we will see in the next chapter.

• The discussion of the rf spectrum in [Shc+16b] covered the basic
relations to the two-body spectrum and how it is modified by the
bb interaction. For the non-interacting case, we went further in
this chapter by deriving the weights of the multiply bound states
and by discussing the shape of the peaks.

5.5 Summary and Outlook
We have treated the problem of an infinitely heavy impurity in an ideal
bec analytically and seen that qualitative differences to the two-body
problem emerge and originate in the macroscopic occupation of the zero-
mode. In presence of a bound state, oscillations between the zero-mode
and multiply bound states result. These do not decay within the ideal
gas and it will be an important question for the next chapters if this
remains true in an interacting gas.

The time evolution for the case of a contact potential has been solved
exactly. The result provides insights into the structure of the wave
function, in particular at long times. This explains halos of complete
depletion in the condensate density in the time evolution at a universal
distance r0/aIB ≈ 1.45. In contrast, the zero mode has a zero at r = aIB.
These depletion maxima are as well of particular interest for the analysis
of the interacting bec in the next chapters because a bb repulsion acts
in favour of a more homogeneous condensate.

We have computed an analytical formula for the time-dependent
overlap and used it to numerically compute the rf spectrum. Its features
can be well-understood in terms of the zero-mode, which causes a peak
at 4πaIBn, the bound state (if existent), which leads to additional peaks
at distances of the binding energy, and the continuum, which broadens
and shifts the peaks near the resonance and leads to a smooth crossover.
Remarkably, the results are very similar to those previously obtained
[Shc+16b] for the more complicated case of an interacting bec and a
mobile impurity.
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Chapter 6

The Bose Polaron in
Bogoliubov
Approximation

The most widely adopted method for theoretical investigations of the
Bose polaron is Bogoliubov theory. This is, for one thing, due to the fact
that Bogoliubov theory is a successful theory for the weakly interacting
Bose gas, that naturally includes quantum fluctuations and non-zero
temperature and can easily be extended to include an impurity. For the
other thing, a Fröhlich-type Hamiltonian can be derived from it with one
further approximation is made, thereby making direct connection to the
classical solid-state polaron and allowing techniques for it to be applied.

In this chapter, we first derive the general Hamiltonian and discuss a
number of further approximations that are commonly applied to it. An
overview of previous literature on the resulting models and techniques
for solving it follows. Afterwards, we go in more detail through the
methods, that were applied by the author in his own research and the
results obtained from it. These are, in large parts, published in [DSE19].

The material is presented in a self-contained way; a differentiation on
which findings are new and how they relate to previous works is given at
the end of the chapter.

6.1 The Bogoliubov Hamiltonian with Im-
purity

Starting point is, once again, the LLP Hamiltonian, but this time in
momentum space:

HLLP =

(
p0 − −

∫
k
kâ†kâk

)2
2mI

+ −
∫
k

k2

2mB
â†kâk

+
1

2
−
∫
k,q,p

vBB(p)â†k+pâ
†
q−pâqâk + −

∫
k,q

vIB(k − q)â†kâq .
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The derivation is relatively straight-forward: The Bogoliubov approx-
imation and rotation are applied to the bosonic part of the Hamil-
tonian in the same way as without impurity and all that is left to
do is to apply the c-number substitution and Bogoliubov rotation to
the impurity-related terms as well. For the kinetic term, note that
â†kâk − â†−kâ−k = b̂†kb̂k − b̂†−kb̂−k and that the zero-mode does not enter,
such that (

p0 − −
∫
k
kâ†kâk

)2
2mI

=

(
p0 − −

∫
k
kb̂†kb̂k

)2
2mI

.

For the interaction term (we write ck = cosh(φk) and sk = sinh(φk)),

−
∫
k,q

vIB(k − q)â†kâq

Split integral into k = q, yielding vIB(0)n, and k 6= q.
Insert âk =

√
n0(2π)3δ3(k) + ck b̂k + sk b̂

†
−k.

= vIB(0)n+
√
n0 −
∫
k

vIB(k)
(
ck b̂

†
k + sk b̂−k + ck b̂−k + sk b̂

†
k

)
+ −
∫
k 6=q

vIB(k − q)
(
ck b̂

†
k + sk b̂−k

)(
cq b̂q + sq b̂

†
−q

)
= vIB(0)n+

√
n0 −
∫
k

vIB(k)(ck + sk)
(
b̂†k + b̂−k

)
+ −
∫
k,q

vIB(k − q)
(
(ckcq + sksq)b̂

†
kb̂q + cksq

(
b̂†kb̂

†
−q + b̂kb̂−q

))
= vIB(0)n+ 2He

√
n0 −
∫
k

vIB(k)eφk b̂†k

+ He −
∫
k,q

vIB(k − q)
(

cosh(φk + φq)b̂
†
kb̂q + sinh(φk + φq)b̂

†
kb̂

†
−q

)
where the hermitian part of an operator has been denoted as He Â :=
(Â + Â†)/2. Neglecting the constant term, this leads to

HBog =

(
p2
0 − −

∫
k
kb̂†kb̂k

)2
2mI

+ −
∫
k

ωk b̂
†
kb̂k + 2He

√
n0 −
∫
k

vIB
k e

φk b̂†k

+ He −
∫
k,q

vIB
k−q

(
cosh(φk + φq)b̂

†
kb̂q + sinh(φk + φq)b̂

†
kb̂

†
−q

)
.

(6.1)

There exist many works that have discussed the impurity-BEC prob-
lem in Bogoliubov theory. However, the above Hamiltonian appears, in
this form, in none of them. Instead, there are a number of different fur-
ther steps that are in common use and lead to further simplifications.
The form (6.1) serves as a common basis to these various approaches.

BB Local Born Approximation Bogoliubov theory can capture fea-
tures of the bb potential up to the second term in the Born series,
as detailed in appendix A of [Lie+05]. In the majority of applica-
tions, however, Lee-Huang-Yang pseudo-potential is applied, which
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corresponds to a first-order Born approximation. This is consistent
with the experimental parameter values and with the assumptions
of Bogoliubov theory itself. This applies to most of the literature
on the Bose polaron as well, even though the results of the next
chapter suggest that it might have some interest to go beyond the
Born approximation.

IB Contact Interaction Due to the separation of scales in ultracold
gases, it is natural to expect that results depend universally on
the scattering lengths. A contact potential is usually the most
convenient choice of model potential and is employed in the vast
majority of the literature.

Fröhlich Hamiltonian The first line in equation (6.1), in which the
interaction term is linear in b̂, b̂† is of the same form as the well-
known Fröhlich Hamiltonian, which has first been introduced for the
solid-state polaron and was subsequently applied to other polaronic
situations as well. For the Bose polaron, it may be obtained when
the impurity-boson interaction is weak. Then, one can expand the
quadratic terms in the last line around a c-field and set b̂k = β0

k+δ̂bk,
neglecting quadratic terms in δ̂b, δ̂b

†
. This yields additional constant

and linear terms that are to be combined with the first line, and
therefore a Fröhlich Hamiltonian but with a coupling constant
different from gIB

Λ :

HFr =

(
p2
0 − −

∫ Λ

k
kb̂†kb̂k

)2
2mI

+ −
∫ Λ

k

ωk b̂
†
kb̂k+

√
n0g

IB
Fr −
∫ Λ

k

eφk(b̂†k+b̂k)+E

Various choices for the c-field βk lead to slightly different values
that can be found across the literature. The simplest is to take
the zero-energy scattering solution (2.13) of the two-body problem
(but without the δ-peak, since the zero-mode is excluded), trans-
formed by the Bogoliubov rotation: βk = −e−φk4πa

√
n0 / k

2. This
leads to the same coupling constant that appears in a local Born
approximation:

gIB
Fr =

2πa

mred

E = n0g
IB
Fr −

√
n0g

IB
Fr

2 −
∫ Λ

k

2mred

k2
.

Note that E is uv-divergent. Such a divergence of the potential
energy is normal in the limit of a point interaction and cancelled by
a corresponding divergence in the kinetic energy. A slightly more
detailed version uses the stationary solution of HFr for βk, thereby
taking into account the bose-bose interaction. This leads to a shift
in the inverse scattering length, gIB

Fr = 2π /mred(a
−1−a−1

+ ), and to
the same mean-field ground state energy as for the full quadratic
Hamiltonian.
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Quadratic Approximation in kinetic term Consistently with drop-
ping the fourth order terms in the bose-bose interaction, one may
do the same in the impurity kinetic term, i.e. in the effective inter-
action introduced by a moving impurity. While this simplification
has been made in the first treatment of the impurity-bec problem
[Gir61], it is absent in current works. The reason for this is that the
relevant term does not scale with the (small) bb coupling strength,
and turns out necessary when the impurity is moving fast.

6.2 Methods
The methods we shall employ in this chapter are of variational type,
investigating the Hamiltonian on a reduced submanifold |α〉 of the Hilbert
space, parameterised by some parameters αi. Projecting the Schrödinger
equation onto this submanifold is equivalent to requiring stationarity of
the functional

∫
L(α, α̇) dt =

∫
〈α|(i∂t −H)|α〉 dt. When the parameters

α are complex, it is convenient to write the Euler-Lagrange equations
in terms of the two Wirtinger derivatives ∂α, ∂α instead of ∂Re α, ∂Im α:
Since L is real, the two equations are equivalent, so it is sufficient to
require (

∂

∂αi
− d

dt
∂

∂α̇i

)
L = 0.

6.2.1 Few-Excitation Approach
Within the context of the problem, it is natural to describe any variational
state in terms of phononic excitations of the ground state without impurity
|0〉b. A simple choice is to restrict the number of such excitations while
allowing arbitrary quantum fluctuations between them. This approach
was taken in [LPB15; SZC17; Shi+18; Yos+18]. For instance, with up to
two excitations such an ansatz might read

|α〉 = |0〉b + −
∫
k

α
(1)
k b̂†k |0〉b + −

∫
k,q

α
(2)
k,q b̂

†
kb̂

†
q |0〉b .

For the Fermi polaron, such approaches have indeed turned out to be
an efficient choice. However, the boson’s increased tendency towards
collective behaviour makes them less appealing here than in the fermionic
setting. In particular, recall the results of chapter 5, where the exact
wave functions were of the form (absorbing the time evolution factors in
the alphas)

|φ〉 =
(
α0ψ̂

†
0 + αB(t)ψ̂

†
B +

∫
R+

αk(t)ψ̂
†
k dk

)N
|0〉 .

On the repulsive side, the bound state proved important for the qualitative
dynamics. To compare with above variational ansatz, we may imagine
to expand |φ〉 in powers of ψ̂†

B to obtain the weight of a singly occupied
bound state, a doubly occupied bound state etc. Note the difference
to the Fermi polaron, where each state can be occupied at most once.
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The result is readily obtained: for large N , the product state with
fixed particle number can be replaced by a coherent state. Splitting off
the coherent factor for the bound state, exp(αBψ̂

†
B), one sees that the

occupation of the bound state follows a Poisson distribution, centred
around the mean value |αB |2 = 8πa3IBn. In order to capture at least
qualitatively the results for the simple case of a heavy impurity in a
non-interacting BEC, the maximum number Nmax of excitations included
in a variational ansatz should therefore be large enough to approximate
this Poisson distribution well – or inversely, the coupling strength aIBn

1/3

should be significantly smaller than (Nmax / 8π)1/3 = 0.34... N
1/3
max. Even

though this estimate relied on the bound state, we may expect that a
similar reasoning applies to the continuum as well. Unfortunately, these
conditions are too restrictive for the parameter regimes in which we are
interested here, so we rely instead on approaches with a larger number
of excitations.

6.2.2 Coherent States
To allow for an arbitrary number of excitations, we use a coherent state
ansatz

|β〉 := exp
(

−
∫
k

(
βkb̂

†
k − |βk|2

2

))
|0〉b̂

= Dβ |0〉b̂ (6.2)
with the unitary displacement operator

Dβ := exp
(

−
∫
k

(
βkb̂

†
k − βkb̂k

))
.

Within this ansatz, no correlations between different phonon modes are
allowed. However, some correlations between boson modes are nonetheless
present within the phonon vacuum state. In this way, the model is
different from directly using a coherent state in terms of the boson
operators. The coherent state ansatz was first applied to the Fröhlich
Hamiltonian in [LLP53] and to the Bose polaron problem in [Sha+14;
Shc+16b].

In two limiting cases, the eigenstates are exactly of form (6.2): (i)
For mI = ∞ and aBB = 0, as shown in chapter 5. (ii) For mI = ∞ and
the Fröhlich model. For the latter, the ansatz has first been used in ref.
[LLP53]; the same, that introduced the llp transformation.

Since the phonon operators and the exponent lnDβ are second-
commuting, the transformed operators are given by

D−1
β b̂kDβ = b̂k − [lnDβ , b̂k] = b̂k + βk

D−1
β b̂†kDβ = b̂†k − [lnDβ , b̂

†
k] = b̂†k + βk.

The transformation thus shifts the operators by the c-numbers β, β. In
particular, taking the expectation value of a normal-ordered expression
with respect to |β〉 results in replacing b̂ and b̂† by β and β.
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6.2.3 Squeezed States
For infinite mass, or when the Bogoliubov approximation is applied to
the impurity-induced interaction as well, Hamiltonian (6.1) is quadratic
in the phonon operators, but it contains terms of the form b̂kb̂q. This is
similar to standard Bogoliubov theory, where terms like âkâ−k appear and
the Hamiltonian can be diagonalised by the Bogoliubov transformation
exp(iAh −

∫
k
φkâkâ−k). Here, the situation is more complicated because

all modes are coupled to each other, but the Bogoliubov transformation
can be generalised by replacing φ by a suitable matrix (we assume in this
section that momentum space is finite and the integral is an appropriately
scaled summation to keep the discussion simple). Such transformations
are known as squeezing transformations in quantum optics, the states
obtained when applying them to the vacuum or a coherent state are
called squeezed states1 or (correlated) Gaussian states. They have been
applied before to the Bose polaron in [Shc+16a; KL18].

Notation To keep the expressions short, we will employ a notation of
“vectors of operators” â = (âk)k∈R3 . The following conventions are used,
where v̂ , ŵ stand for vectors of operators, A,B for matrices and T for a
“scalar” operator.

• “Inner adjoint” v̂∗ = (v̂†k)k∈R3 , e.g. (Av̂)∗ = Av̂∗

• Transposition v̂T: v̂Tŵ = −
∫
k
v̂kŵk

• “Full adjoint” v̂† = v̂∗T, e.g.

â†Aâ = −
∫
k,q

Ak,qâ
†
kâq

(v̂TAŵ)† = ŵ†A†v̂∗

• Elementwise commutation with scalar operator: [T, v̂ ] = ([T, v̂k])k∈R3 ,
in particular

[T,Av̂ ] = A[T, v̂ ]

eT v̂e−T =
∑
n

[T, v̂ ]n
n!

[â†Aâ∗, â] = −(A+AT)â∗

Squeezing Operator The squeezing operator with a squeezing matrix
Ξ′ is now defined as

SΞ := exp
(
1

2

(
âTΞ′â − â†Ξ′â∗)) .

1The rationale for the name is the following: If one measures the observables
He â and Ah â of a single mode in a coherent state, the two-dimensional probability
distribution takes the form of a circle. The squeezing operator squeezes this circle
to an ellipsis. Note that if â, â† are the ladder operators of a particle in a harmonic
oscillator, then He â, Ah â are simply position and momentum in oscillator units.
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Since Ξ′ is multiplied with the same vector from left and right in both
cases, it can be chosen symmetric and therefore decomposed as Ξ′ =
U ′TΦU ′ with a unitary matrix U ′ and a real diagonal positive matrix
Φ. Note that this corresponds to first transforming â into a suitable
basis before squeezing the resulting modes individually. It will be more
convenient though to write this in terms of the hermitian (instead of
symmetric) Ξ := U ′TΦU ′ and the unitary symmetric U := U ′TU ′, such
that Ξ′ = ΞU . Then,

UU = U†U = 1

UΞ = ΞU

SΞ = exp
(
1

2

(
âTUΞâ − â†ΞU â∗)) .

For the commutators of the exponent with â, â∗, we find with the
commutator relations above

[lnSΞ, â ] = ΞU â∗

[lnSΞ, â
∗] = UΞâ

⇒ [lnSΞ, â]n =

{
Ξnâ if n even
ΞnU â∗ if n odd.

The transformed operators ĉ := SΞâS
−1
Ξ thus read

ĉ = cosh(Ξ) â + sinh(Ξ)U â∗

ĉ∗ = cosh(Ξ) â∗ + sinh(Ξ)U â,

with the inverse transformation

â = cosh(Ξ) ĉ − sinh(Ξ)U ĉ∗

â∗ = cosh(Ξ) ĉ∗ − sinh(Ξ)U ĉ.

6.3 Application of Coherent State Approach
We will now apply the coherent state approach to Hamiltonian (6.1) with
a contact interaction and study both the resulting energy functional and,
in particular, the dynamics that evolves when the impurity is quenched
from a non-interacting state into an interacting state.

Energy Functional The only expression in equation (6.1) which is
not normal ordered is the impurity kinetic term. Normal-ordering it
yields an additional −

∫
k
(k2/2mI)b̂

†
kb̂k. Thus

E[β] := 〈β|HBog|β〉

=

(
p0 − −

∫
k
k|βk|2

)2
2mI

+ −
∫
k

Ωk|βk|2 + 2Re
√
n0 −
∫
k

vIB
k e

φkβk

+ Re −
∫
k,q

vIB
k−q

(
cosh(φk + φq)βkβq + sinh(φk + φq)βkβ−q

)
.
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where Ωk = k2 / 2mI + ωk.
When V IB is a contact potential, the last line can be simplified because

the prefactor to β−q becomes symmetric in q:

gIB
Λ −
∫ Λ

k,q

Re
(

cosh(φk + φq)βkβq + sinh(φk + φq)βkβq

)
= gIB

Λ −
∫ Λ

k,q

(
eφk+φq Reβk Reβq + e−φk−φq Imβk Imβq

)
= gIB

Λ

(
−
∫ Λ

k

eφk Reβk
)2

+ gIB
Λ

(
−
∫ Λ

k

e−φk Imβk

)2

.

We can thus write the energy functional as

E[β] =
pI[β]

2

2mI
+ −
∫ Λ

k

Ωk|βk|2 + gIB
Λ

−1
(C1[β]

2 + C2[β]
2) (6.3)

where

Ωk =
k2

2mI
+

k2

2mB
e−φk

pI[β] = p0 − −
∫ Λ

k|βk|2

C1[β] = gIB
Λ

(
−
∫ Λ

k

eφk Reβk +
√
n0

)
C2[β] = gIB

Λ −
∫ Λ

k

e−φk Imβk.

These quantities are uv convergent: The contact condition requires β to
have a tail like k−2, which is, however, spherically symmetric because the
contact potential acts only on s-wave states. Therefore, the momentum
integral is not affected due to anti-symmetry in the integrand. For C1,2,
note that exp(φk) = 1 + O(k−2), such that C1,2 = gIB

Λ O(Λ) = O(1).
Together with the prefactor gIB

Λ
−1, however, the potential energy is O(Λ)

and cancels the divergence of the kinetic energy.

Dynamics From the first line in equation (6.2) we see

〈β|i∂t|β〉 = 〈β|i −
∫
k

(
β̇kb̂

†
k − β̇kβk + βkβ̇k

2

)
|β〉

=
i

2
(β̇kβk − βkβ̇k)

⇒

(
∂

∂βk

− d
dt

∂

∂β̇k

)
〈β|i∂t|β〉 = iβ̇k =

∂

∂βk

E[β],

thus
iβ̇k =

(
−k · vI[β] + Ωk

)
βk + eφkC1[β] + ie−φkC2[β] (6.4)
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where vI = pI/mI. Most of the dynamical results in this chapter will be
obtained by solving this equation numerically. Note that it is cubic is β.
If, however, p0 = 0 and the initial state is spherically symmetric, then the
symmetry cannot be broken and we have pI = 0 for all times. In this case,
the equation becomes linear in Reβ and Imβ, but not complex linear.
The same would always hold if we had used the quadratic approximation
in the impurity kinetic term as well, which would then read −k · v0 in
the differential equation.

6.3.1 Stationary Coherent State
By requiring β̇k = 0, we obtain the stationary solution βs:

βs
k = −e

φkCs
1 + ie−φkCs

2

Ωk − k · vs
I

.

Cs
1, Cs

2 and vs
I are to be determined self-consistently. The equations read

Cs
1 = −gIB

Λ −
∫ Λ

k

e2φk

Ωk − k · vs
I
Cs

1 + gIB
Λ

√
n0

Cs
2 = −gIB

Λ −
∫ Λ

k

e−2φk

Ωk − k · vs
I
Cs

2

ps
I = p0 − −

∫
k

k
e2φkCs

1
2 + e−2φkCs

2
2

(Ωk − k · vs
I )

2
.

The second line implies Cs
2 = 0 unless

−
∫ Λ

k

e−2φk

Ωk − k · vs
I
= −gIB

Λ
−1

= −
∫ Λ

k

2mred

k2
− mred

2πaIB
,

in which case Cs
2 is arbitrary. There exists two critical scattering lengths

a±(v
s
I ), defined by

mred

2πa±(v
s
I )

:= −
∫
k

(
2mred

k2
− e±2φk

Ωk − k · vs
I

)
. (6.5)

In particular, the value for vs
I = 0 is important, which can be computed

directly without a self-consistency requirement. It will be simply denoted
by a± := a±(0). Cs

1,2 can now be written as

Cs
1 =

2π
√
n0

mred(a
−1
IB − a+(v

s
I )

−1)

Cs
2 = 0 unless a = a−(v

s
I ).

For the energy one finds

Es =
2πn0

mred(a
−1
IB − a+(v

s
I )

−1)
+

p0 · ps
I

mI
− ps

I
2

2mI
.

Two remarks are in order.
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• The solution need not be unique: By choosing ps
I , it may be possible

to adjust a−(vs
I ) to match aIB. Then, Cs

2 can be determined such
that the chosen ps

I is self-consistent.

• For small k, Ωk ∼ ck with the Landau critical velocity c. If we had
vs

I > c, then βs would have a pole and some of the integrals would
diverge. This is consistent with Landau’s theory: By momentum
and energy balance, collision processes between phonons and an
impurity at sub-critical velocity are impossible unless there is also a
change in potential energy. A stationary state with vs

I < c, in which
the impurity moves freely, is thus possible. For vI > c, however,
collisions always take place and the impurity is slowed down further.

6.4 Expansion around Stationary Solution
Let us now focus on the case pI = 0 where the system is linear, and inves-
tigate the eigenvalues of the dynamics to obtain the qualitative behaviour.
By setting β = βs + δβ, the equation for δβ becomes homogeneous:

iδ̇βk = Ωkδβk + eφk C̃1[δβ] + ie−φkC2[δβ]

where

C̃1[δβ] = gIB
Λ −
∫ Λ

k

eφk Re δβk.

This can be written as(
Re δ̇β
Im δ̇β

)
=

(
0 H−

−H+ 0

)(
Re δβ
Im δβ

)
H± = Ω+ gIB

Λ e
±φ(e±φ)T

where Ω means a multiplication operator, exp is understood pointwise
and wT is defined by wTv := −

∫ Λ

k
wkvk as before. For the remainder of

this section, integrals will be abbreviated as 〈wv〉 := −
∫ Λ

k
wkvk.

6.4.1 Equations for Eigenvalues
The characteristics of the dynamics are determined by the eigenvalues of
above matrix. To determine them, we consider the squared matrix, that
yields decoupled second-order equations(

Re δ̈β
Im δ̈β

)
=

(
−H−H+ 0

0 −H+H−

)(
Re δβ
Im δβ

)
.

The operators H−H+ and H+H− are adjoints of each other and we may
use either of them. They consist of a multiplication operator and a rank-
2 perturbation:

H−H+ = Ω2 + gIB
Λ Ωeφ(eφ)T + gIB

Λ e
−φ(e−φ)TΩ+ gIB

Λ
2 〈1〉 eφ(e−φ)T.
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We wish to solve the eigenvalue equation

H−H+v = χv.

If an eigenvalue χ < 0 exists, then δβ has exponentially decaying and
growing modes. This would mean that the system is dynamically unstable,
which is not expected on physical grounds. If, on the other hand, we find
a χ > 0, then δβ will oscillate with frequency

√
|χ|. From the results of

chapter 5, such oscillations are expected for aIB > 0, with a frequency
corresponding to the two-body binding energy. If no eigenvalue exists,
the dynamics is fully governed by the continuous spectrum, which is
R+, since the rank-2 perturbation does not alter it. In this case, the
generalised eigenstates themselves are oscillatory, but these oscillations
dephase for a normalisable state and the system is expected to show
convergence towards the stationary state. This is the behaviour, which
we have found for aIB < 0 for the ideal BEC.

The invertibility of Ω2−χ depends on the sign of χ, so we distinguish
these two cases.

Case 1: χ < 0. In this case we can invert Ω2 − χ and obtain

v =
−gIB

Λ

Ω2 − χ

[
Ωeφ

〈
eφv
〉
+ e−φ

〈
e−φΩv

〉
+ gIB

Λ 〈1〉 e−φ
〈
eφv
〉]
. (6.6)

There appear two different integrals involving v on the right-hand side.
By integrating both sides with appropriate prefactors, we obtain a two-
dimensional linear equation system for them.

〈
eφv
〉
= −gIB

Λ

〈
Ωe2φ + 〈gIB

Λ 〉
Ω2 − χ

〉〈
eφv
〉
−
〈

gIB
Λ

Ω2 − χ

〉〈
e−φΩv

〉
(6.7a)

〈
e−φΩv

〉
= −gIB

Λ

〈
Ω2 + 〈gIB

Λ 〉Ωe−2φ

Ω2 − χ

〉〈
eφv
〉
−
〈
gIB
Λ Ωe−2φ

Ω2 − χ

〉〈
e−φΩv

〉
(6.7b)

For this to be a solvable system, the determinant of the corresponding
matrix must be zero. One finds, after some rearrangements,(

gIB
Λ

−1
+

〈
Ωe2φ

Ω2 − χ

〉)(
gIB
Λ

−1
+

〈
Ωe−2φ

Ω2 − χ

〉)
= χ

〈
1

Ω2 − χ

〉2

.

The negative eigenvalues of H−H+ can thus be obtained from solving
this equation for χ, which is numerically easy. It is convenient to write
the equation in a uv convergent way. With the definitions of gIB

Λ and
a±, one obtains(

∆+ + χ

〈
e2φ

Ω(Ω2 − χ)

〉)(
∆− + χ

〈
e−2φ

Ω(Ω2 − χ)

〉)
= χ

〈
1

Ω2 − χ

〉2

(6.8)

∆± =
mred

2π
(a−1

IB − a−1
± ).
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Figure 6.1: The three regimes of
qualitatively different behaviour of
the system in Bogoliubov theory.
The boundaries are given by the
curves a± (equation (6.5)).
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Case 2: χ > 0. In this case, there is a k0 such that Ω2
k0

= χ. Therefore,
Ω2−χ is not invertible as an operator, but (6.6) must still hold pointwise
for every k 6= k0. The resulting v may thus have a pole at k0. The formal
solutions to the eigenvalue equation can be given, similarly to equation
(6.6), as v = P 1

Ω2−χ [. . . ] + γδk0
where γ is determined such that the

equation is self-consistent. These are, however, no normalisable states
and simply form the continuum of H−H+. For a true eigenvalue, the
pole must vanish by the square bracket being zero at k0:

Ωk0
eφk0

〈
eφv
〉
+ e−φk0

〈
e−φΩv

〉
+ gIB

Λ 〈1〉 e−φk0

〈
eφv
〉
= 0. (6.9)

This is a third linear equation for
〈
eφv
〉

and
〈
e−φΩv

〉
in addition to eqs.

(6.7). The result (6.8) can be derived in the same way as before, even
though the splitting up of integrals over sums into sums of integrals in
(6.7) requires using principal value integrals. The positive eigenvalues
are thus given by the simultaneous solution of (6.8) with principal value
integrals and (6.9)2.

6.4.2 Solutions for Eigenvalues
By solving equations (6.8) and (6.9) numerically, we find three qualita-
tively different regions:

I. aIB < a−: No solution.

II. a− < aIB < a+: One solution χ < 0.

III. a+ < aIB: One solution χ > 0.

These are shown in figure 6.1. Regions I and III correspond to the
behaviour of convergence or oscillations for a < 0 or a > 0, respectively,
that was found in chapter 5 for aBB = 0 and mI = ∞. The strong-coupling
region II, on the other hand, presents a dynamical instability, which is

2An equivalent condition to equation (6.9), which we have given in [DSE19], is
that (6.8) holds for “different principal value integrals”, i.e. for arbitrary Ps

∫
R :=

limε↘0(
∫ k0−ε
−∞ +

∫∞
k0+sε).
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6.4 Expansion around Stationary Solution

not expected and absent in the setting of chapter 5. It is not physically
plausible that the inclusion of a boson repulsion should destabilise the
system. Rather, we must assume that one of the approximations made
in the derivation fails at strong coupling. These were:

(i) The Bogoliubov approximation, that dropped third- and fourth-
order terms in the bb interaction. This assumes that the majority
of bosons is in the zero-mode, around which the higher-momentum
terms represent fluctuations. In particular, the condensate density
should be sufficiently homogeneous.

(ii) The coherent state variational ansatz, which neglects correlations
beyond the unperturbed bec. This, as well, assumes that the
number of excited modes is limited, such that the correlations are
small corrections.

A number of arguments indicate that it is Bogoliubov theory itself that
fails.

• The instability corresponds to an unbounded growth of the number
of bosons in a vicinity of the impurity. When both interactions
are quadratic in the boson operators, one may outweigh the other
irrespective of the boson number, since both scale with n. But if
boson repulsion was included to fourth order, it would scale as n2.
Thus, it would become dominant when the boson density gets too
large at one point and prevent unbounded growth.

• Bogoliubov theory is based on the assumption that the density
is sufficiently homogeneous. This is not the case in presence of a
strong local impurity potential.

• When taking aBB → 0, the Bogoliubov approximation becomes
exact while the coherent state approach does not. Nonetheless, the
unstable region vanishes since a± → 0.

The failure of Bogoliubov theory is an important point, because many
theoretical investigations are based on applying different methods to
one or another Hamiltonian obtained from it. While these can produce
excellent results for weak to intermediate coupling, none is able to fully
treat arbitrarily strong coupling and the transition from attractive to
repulsive coupling across a Feshbach resonance. A promising solution is
the use of Gross-Pitaevskii theory, which does include the boson repulsion
to full fourth order and is intended to cover non-homogeneous condensates.
This will be discussed in chapter 7.

Within the regions I and III, on the other hand, we expect the
theory to be accurate: we will see that here, the number of bosons
removed from the condensate is only of order one to ten, which makes
the approximations plausible.

6.4.3 Oscillation Frequencies
From eqs. (6.8), (6.9), we can obtain the oscillation frequency ω =

√
|χ|

and compare it to the ideal-bec result, which was the binding energy
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Figure 6.2: Characteristic oscilla-
tion frequencies ω on the repulsive
side. In comparison, the two-body
binding energy k2 /2mred, which is
the exact result from chapter 5 for
a heavy impurity in an ideal bec.
Calculations were carried out at a
gas parameter of n0a3BB = 10−5

and a momentum cutoff of Λ =
1000ξ−1.
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IB. The result is shown in fig. 6.2. The agreement is excellent

for weak impurity-boson coupling. In particular, the result generalises
perfectly for the finite-mass case. As aIB approaches the critical value
a+, the frequency decreases until the oscillations vanish.

In chapter 5, we have conjectured that oscillations will eventually
decay due to the bb interaction. But, surprisingly, the oscillatory modes
are still eigenmodes of the coefficients β and hence continue for arbitrarily
long times. A decay can therefore only come from beyond-Bogoliubov
terms. Close to the unstable region, we may suspect that the higher-
order coupling terms are still more important than initially thought.
Further away, however, where the distortion of the bec by the impurity
gets smaller, the higher-order terms are less important, such that the
oscillations are indeed very long-lived.

6.5 Results of Dynamical Simulation
We now turn to the numerical solution of the time evolution equation
(6.4) with an initially non-interacting impurity being quenched into an
interacting state at t = 0. From the resulting wave function, the following
observables are computed:

• The impurity velocity vI(t) and position xI(t) = 〈x̂I(t)− x̂I(0)〉,
which, according to Ehrenfest’s theorem, is simply xI(t) =

∫ t

0
vI(t) dt.

• The bosonic density profile nB(x, t) at a distance x from the impu-
rity. While in the lab frame, it would be obtained from the correla-
tion function nB = 〈n̂B(x)n̂I(x)〉 = 〈n̂B(x+ x̂I)〉, in the llp frame
it is simply given by nB(x, t) = 〈n̂B(x)〉. In terms of the coherent
state, it takes the form

n(x) = (
√
n0 + Re F−1[βeφ])2 + (Im F−1[βe−φ])2.

With state-of-the-art imaging technologies, a direct observation of
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6.5 Results of Dynamical Simulation

density profiles is within reach of experiments, although challenging
due to the small length and time scales involved.

• The number of bosons removed from the condensate and gathered
around the impurity. Within Bogoliubov theory, it can be directly
obtained from the particle number operator. This excludes the
condensate because the zero-mode has been replaced by a c-number
and constitutes an essential polaronic property. Its expression is
not altered by the llp transformation and reads

∆NB(t) = 〈ψ(t)| −
∫
k

â†kâk |ψ(t)〉 − 〈0| −
∫
k

â†kâk |0〉

= −
∫
k

(
cosh(2φk)|βk|2 + sinh(2φk)Reβkβ−k).

6.5.1 Impurity Trajectories
Solving the equation for different initial velocities and coupling strengths,
the results in fig. 6.3 are obtained.
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Figure 6.3: Time evolution of ve-
locity and position on both sides of
the resonance. The behaviour on
the attractive side is characteristic
for polarons: the velocity decreases
as the polaron forms and reaches a
stationary final value. The latter
is always below the Landau criti-
cal velocity. On the repulsive side,
the interplay with the bound state
leads to oscillations in the veloc-
ity and to remarkable “stop-and-go”
trajectories. These become most
pronounced near the critical scat-
tering length a+. Here, the reduced
frequency is favourable for exper-
imental observation. Parameters
are n0a3BB = 10−5 and mB = mI.
A soft momentum cutoff e−3k2/Λ2

with Λ = 100ξ−1 was used.

Comparison of attractive and repulsive side The different be-
haviours that were announced for aIB < 0 and aIB > 0 are clearly visible.
On the attractive side, the impurity slows down due to scattering with
the bosons after switching on interactions, but reaches a non-zero final
velocity. On the repulsive side, however, the velocity oscillates with the
frequency derived before. Momentum is periodically exchanged back and
forth between the impurity and the bosons as it gathers more or less
particles around it. This can be understood as a periodically varying
effective mass of the polaron. In the trajectories, this leads to remarkable
“bumpy” behaviour up to stop-and-go motion when, at strong coupling,
the velocity periodically comes close to zero.
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CHAPTER 6. The Bose Polaron in Bogoliubov Approximation

Sub- vs. supercritical velocity If the impurity is initially slower
than Landau’s critical velocity c, the slow-down and the final velocity are
relative to the initial velocity. Note that the interaction of a sub-critical
particle with the bec is not in contradiction to Landau’s theory, since
the latter applies only for a stationary state, in which no further change
in potential energy occurs. If, on the other hand, the initial velocity is
much higher than c, the slow-down is stronger and ensures that the final
velocity is no larger than c.

6.5.2 Time Evolution of Density Profiles
Impurity at Rest Fig. 6.4 shows the density profiles for p0 = 0 for
scattering lengths from the three regimes. In the last line, the asymptotics
for t = ∞ is shown together with the profile obtained from the stationary
solution.

For a < a−, a peak around the impurity quickly forms and continues
to broaden until the stationary shape is reached. The sudden perturbation
of the bec leads to waves being emitted radially in an intuitive way.

In the unstable region a− < aIB < a+, the evolution starts quali-
tatively similar as in the other regions. We may thus expect that the
approach continues to describe the physics correctly at short times. How-
ever, the growth of the boson cloud around the impurity does not stop
and no convergence is reached.Figure 6.6: Stationary boson den-

sity profiles for a range of repulsive
coupling strengths. The points of
maximal depletion are compared
to the ib scattering lengths, where
they would lie without bb interac-
tion. Parameters are the same as
in fig. 6.3 but with a momentum
cutoff Λ = 600ξ−1 to resolve the
short-scale structure at weak cou-
pling.

For a > a+, a halo of depletion forms around the impurity in the same
way as for the situation in chapter 5. Remarkably, the depth of depletion
halos continues to reach zero density despite the boson repulsion, which
is expected to act in favour of a more homogeneous condensate. Also, the
oscillations in depth and their continuation for arbitrarily long times have
not been weakened. The zeros in the wave function are, in fact, present in
the stationary solution as well. For the ideal bec, they occur precisely at
r = aIB, as shown in chapter 5. For the stationary state in the interacting
case, this is essentially still the case, with a slight correction towards the
value of the healing length, as the bb coupling is included, as shown in
fig. 6.6. In the dynamics, the stationary profile is not reached precisely
and the minima are further shifted outwards. The factor of 1.45 that was
obtained in chapter 5 is still valid with good accuracy.

Moving Impurity For an initially moving impurity, the emerging
density profiles along the direction of motion are shown in fig. 6.5 (focusing
now on the parameter regions where the theory is applicable also for
longer times). In comparison to fig. 6.4, the behaviour is similar for
velocities up to the critical velocity but different when the impurity
is supersonic: here, an asymmetry arises which leads to an increased
depletion in front of the impurity. On the attractive side, it persists
even for long times when the attractive polaron has formed. On the
repulsive side, the impurity moves slowly whenever the depletion halo
is most pronounced. This may be unexpected, as there seem to be less
bosons around the impurity, such that a lower effective mass should be
expected. However, at these time points the attractive core is largest,
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Figure 6.4: Time evolution of boson density n(r) at a distance r from the impurity for p0 = 0. Three qualitatively different
behaviours are observed according to the three regimes. For a−1

IB < a−1
− , the density rapidly increases locally and the

attractive polaron forms. For a−1
− < a−1

IB < a−1
+ , the profile is similar for short times, but grows without bounds. This is not

physical, but due to the dynamical instability in Bogoliubov theory, that manifests itself at long times. For a−1
+ < a−1

IB , the
oscillating behaviour found for the ideal bec is preserved. In particular, the depletion halos occurring near r = aIB continue
to reach zero density and to not decay at long times. Parameters are like in fig. 6.3 with a soft momentum cutoff e−2k2/Λ2

and Λ = 80ξ−1.
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Figure 6.5: Density profiles for an initially moving impurity along the direction of motion. Arrows indicate the impurity
velocities. At subsonic speed, the results are similar to those of the stationary impurity (fig. 6.4). At supersonic speed, the
profiles become asymmetric with an accumulation of bosons building up in front of the impurity. The parameters are the
same as in fig. 6.4.
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giving rise to a higher number of attracted boson (cf. the next section)
and a larger effective mass. The asymmetry, on the other hand, is largest
whenever the impurity is moving and in particular when the velocity
changes. The connection between the asymmetry and changes in velocity
can be understood intuitively: At times where there are more bosons
in front of the impurity, the latter is accelerated due to the attractive
interaction, while at times with a higher number of bosons behind it, it
is decelerated. Likewise, in the attractive case, the initial asymmetry
leads to a deceleration, even though it is not clear why the profile is still
asymmetric when the stationary state is reached. Here, internal modes
beyond what is visible in the density seem to be important.

6.5.3 Number of Bosons attracted by the Impurity
The results for the boson number are shown in fig. 6.7. The characteristic

Figure 6.7: Number of bosons at-
tracted by the impurity. On the left:
time evolution for three scattering
lengths from the three regimes. It
converges on the attractive side and
oscillates on the repulsive side while
close to the resonance, the dynami-
cal instability leads to exponential
growth and the results are valid
only for short times. On the right:
the time evolution is solved for a
range of scattering lengths for times
up to tmax = 60mBξ2. At each
time point a low-opacity point is
drawn. Opaque regions indicate
convergence or recurrence. The pa-
rameters are the same as in fig. 6.4.
On the right, a hard momentum
cutoff at Λ = 20ξ−1 was used.

behaviours of the three regimes can be seen clearly: on the attractive side,
the number converges to a final value. For strong coupling, the dynamical
instability of the Bogoliubov description leads to exponential growth.
On the repulsive side, oscillations with the predicted frequency occur,
like in the density profiles. The time points of maximum boson number
correspond to the density profiles with maximum depletion. This is in
accordance with the interpretation of the profiles with non-zero impurity
velocity, that at these times the attractive core is most pronounced and
the effective mass highest.

The total number of attracted bosons depends strongly on the coupling
strength. At weak couplings, it is of order unity. At stronger coupling,
it is of order 10 while close to the unstable region, order 100 is reached.
At this point, the regularisation of higher-order coupling terms beyond
Bogoliubov theory is expected to become important.

Also the time to convergence depends on the coupling strength: at
strong coupling, it increases significantly, which can be seen from the fact
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CHAPTER 6. The Bose Polaron in Bogoliubov Approximation

that the curves are still washed-out and not yet fully converged.

6.6 Stability of Oscillations
The unexpected finding that the oscillations do not decay despite the
bb interaction deserves a separate discussion. In fact, this result can be
understood analytically for the case of infinite impurity mass. We had
already seen how stable oscillations emerge for the case of an ideal bec
in chapter 5, where we argued in position space. Now, we extend this
analysis to include a bb repulsion and this time, we work in momentum
space because we employ Bogoliubov theory.

We start with the Hamiltonian after the c-number substitution and
neglecting of 3rd and 4th order terms in the bb coupling, but do not yet
apply the Bogoliubov transformation.

H = −
∫
k,q

((
k2

2mB
+ gBBn0

)
(2π)3δ3k−q + gIB

Λ

)
â†kâq

+ gBBn0 −
∫
k

(
â†kâ

†
−k + âkâ−k

)
+ gIB

Λ

√
n0 −
∫
k

(
â†k + âk

)
Diagonalisation The first two lines are quadratic in the boson oper-
ators. They can be diagonalised by first applying a squeezing transfor-
mation as described in section 6.2.3 to remove terms of the form âkâ−k,
followed by a diagonalisation of the resulting terms involving â†qâk by a
unitary matrix V :

ĉ = Aâ +Bâ∗

â = Cĉ +Dĉ∗

where A = V cosh(Ξ), B = V sinh(Ξ)U , C = cosh(Ξ)V −1 and D =

− sinh(Ξ)UV −1. The usual Bogoliubov transformation is also of this
type. The difference is that here, all modes are coupled by gIB

Λ instead
of only k and −k. With suitable choice of Ξ, U and V , the Hamiltonian
then takes the form

H =

∫
E

ρE
(
Eĉ†E ĉE + vE ĉ

†
E + vE ĉE

)
+ const

for some vE , where we have now parameterised ĉ by the energy and
introduced the spectral density ρE . We shall not need to compute Ξ, U ,
V , ρ and v explicitly to see how stable oscillations can emerge.

The remaining linear terms can be removed by a displacement trans-
formation (section 6.2.2)

d̂E = ĉE +
vE
E
,

such that the Hamiltonian is brought to the simple form

H =

∫
E

ρEEd̂
†
E d̂E + const.
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Time evolution From this Hamiltonian, the time evolution of the
mode operators in Heisenberg picture can be obtained.

eiHtd̂Ee
−iHt = e−iEtd̂E

⇒ eiHtĉEe
−iHt = e−iEtĉE +

vE
E

(
e−iEt − 1

)
.

Before moving to â, let us discuss this intermediate result. (This is related
to the ideal-bec case, where â and ĉ differ only by the transformation V .)
The shift in c compared to d has led to the term e−iEt − 1, which
is responsible for the stable oscillations. Indeed, if we now compute
the expectation value of an operator such as

∫
E
ρE ĉ

†
E ĉE in the state

|0ĉ〉 – this corresponds to particle number operator and the bec state if
aBB = 0 – we obtain

〈0ĉ |eiHt

∫
E

ρE ĉ
†
E ĉE e−iHt|0ĉ〉 =

∫
E

ρE
2|vE |2

E2
(1− cos(Et)) .

If there is no bound state, ρ is regular and any oscillations between the
modes will eventually dephase. But if there is even just a single bound
state, an oscillatory term ∼ (2|vEb |2 / E2

b)(1 − cos(Ebt)) will remain.
Similar considerations hold true for a larger class of operators and states.

For the boson operators â, the expression is more complicated:

eiHtâke
−iHt = −

∫
p

∫
E

ρE

[
CkE

(
AEpâp +BEpâ

†
p

)
e−iEt

+DkE

(
AEpâ

†
p +BEpap

)
eiEt

+ CkE
vE
E

(
e−iEt − 1

)
+DkE

vE
E

(
eiEt − 1

) ]
.

The crucial term e−iEt − 1 is still present. Therefore, the mechanism is
still intact for the interacting Bose gas and undamped oscillations occur.
In fact, there is even a second term eiEt − 1, which could theoretically
lead to oscillations with frequency 2Eb. However, the prefactor D is
proportional to sinh(Ξ), which is small for a weakly interacting Bose gas,
and this effect is probably not visible.

6.7 Original Contribution and Relation to
Other Works

The material in this chapter was presented in a self-contained way, in-
cluding both new contributions and results, that were already known
to the community. We will now outline, which of the results are new
and which have been obtained before. We focus on works concerning the
situation in 3D, as the 1D setting is amenable to both techniques and
results, that do not carry over to 3D, such as quantum flutter [MZD12].
Exceptions are made when works are particularly related to our study.

The original results of this chapter have been published in [DSE19].
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Techniques The following list contains references, which employ tech-
niques related to those used by us.

• The stationary solution already emerges from the Fröhlich Hamil-
tonian – or, at least, a similar one if the mean-field correction
resulting from the second-order terms is not taken into account.
It was discussed in particular by Shashi et al. [Sha+14] and by
Grusdt et al. [Gru+17].

• The importance of second-order coupling terms at larger scattering
length has first been pointed out by Rath and Schmidt [RS13].
The resulting full Hamiltonian has been used in a number of works
[LD14; CLB15; VHZ15; Shc+16b; Shc+16a; Gru+17; GAD17;
KL18; Sch+18].

• The coherent state approach was first used in the context of po-
laron physics by Lee, Low and Pines [LLP53] in the solid-state
setting and in [Sha+14] for the Fröhlich description of the Bose
polaron. Shchadilova et al. [Shc+16b] subsequently applied it to
the beyond-Fröhlich Hamiltonian.

• Squeezed states have been used in [Shc+16a] with further approxi-
mations and by Kain and Ling [KL18] in an analytical study of
the 1D setting.

• The method of obtaining the structure of the time evolution of the
mode operators within the framework of coherent and squeezed
states is new to our work.

Results The findings of our work are related to other author’s contri-
butions as follows.

• The three regimes of different stability and the critical scattering
lengths were first obtained in [Gru+17]. The point, that the insta-
bility is inherent to the Bogoliubov description and not a conse-
quence of the coherent state approach, was first raised in [KL18]
for the 1D case and a stationary impurity and, independently3, in
our work for the general case.

• The coherent oscillations were already visible in figures in [Shc+16b],
but this work was focused on the many-body spectrum and did not
explain how the stable oscillations emerge from two-body physics.
Providing this explanation and solving the paradox, that the os-
cillations emerge from two-body physics even though there is only
one bound state in the two-body spectrum – such that oscillations
should be expected to dephase – was a key achievement of our work.
In this dissertation, the essential argument has been given in chap-
ter 5 in position space while in the paper, we argued in momentum
space and presented the extension of section 6.6 to include bb cou-
pling.

3The paper of Kain and Ling was published during the process of writing of our
paper.
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• The formula for the oscillation frequency and its relation to the
two-body binding energy are new findings; an analogous expression
for 1D and infinite mass has been obtained in [KL18].

• Static density profiles for the ground state have been obtained
by Peña Ardila and Giorgini [PG15] with quantum Monte
Carlo methods and, for 1D, in [KL18]. In our paper, we computed
dynamical density profiles for the first time, thereby tracking the
polaron formation in real space. In particular, the oscillating
behaviour on the repulsive side with the depletion halo reaching
zero density is a remarkable feature, as well as the asymmetry that
arises at supersonic velocities.

• Polaron trajectories had been obtained so far only from the Fröhlich
model by Dasenbrook and Komnik [DK13] and in [Sha+14;
Gru+18]. In the beyond-Fröhlich model, we were the first to
compute the non-spherically symmetrical case p0 6= 0, which gave us
the opportunity to study the interesting behaviour on the repulsive
side for a moving impurity, where the interplay with the bound
state leads to remarkable results.

6.8 Summary and Outlook
In this chapter, we have discussed the application of Bogoliubov theory to
the impurity-bec problem. We found that the coherent-state approach
is an effective description of the system for weak to moderate couplings,
while at strong coupling, the deviation of the condensate density from
a homogeneous bec becomes too large for Bogoliubov theory to be
applicable.

The oscillations that arise from the interplay of the zero-mode with
multiply bound states, as described in chapter 5, are not found to decay
in presence of bb interactions. This is remarkable since one should expect
that the coupling leads to decay channels, which allow the system to reach
its ground state. It is still likely that the real system eventually behaves
in this way, but that the relaxation can only be obtained by including
the full bb coupling beyond Bogoliubov theory, the latter thus being
applicable only for limited time scales on the repulsive side. This time
scale, however, is long for a weakly interacting Bose gas and moderate
numbers of excited bosons and we expect a large number of oscillations
to be observable.

A particularly fascinating result is that these oscillations occur also
in the impurity velocity. At strong coupling, this leads to trajectories
where the impurity periodically comes to rest and advances in steps of
short duration. It will be interesting to see if this can be observed in
experiments.

The density profiles are as well most interesting for repulsive coupling.
Despite the bosons interacting, they continue to periodically reach zero
density at a distance from the impurity.
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CHAPTER 6. The Bose Polaron in Bogoliubov Approximation

Experimentally, the high frequency of the oscillation – typically of the
order of one oscillation every 10–100 µs – makes an observation challenging
but possible. Direct imaging approaches should focus on the region of
stronger coupling, where both the time and the length scales are larger.
Another promising approach is Ramsey spectroscopy of the contrast.

For further research, the problems arising in Bogoliubov theory at
strong coupling necessitate a new approach. In the next chapter, such a
theory is developed. Another interesting direction is the investigation of
the interplay of multiple impurities and the effective interactions induced
between them by the spatial variation in the condensate density.
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Chapter 7

The Strong-Coupling
Bose Polaron: A
Non-Local Extension of
Gross-Pitaevskii Theory

In chapter 6, we have seen that Bogoliubov theory becomes unstable
when the coupling gets too strong because of the lack of third- and fourth-
order terms in the boson coupling. A natural candidate for approaching
the strong-coupling regime is therefore Gross-Pitaevskii theory (gpt),
which includes fourth-order coupling terms. It can easily be adapted to
include an impurity: in the llp Hamiltonian, the impurity potential
plays the role of an external one, which is already present in standard
gpt. The impurity kinetic term can be treated by replacing the boson
field operators by the collective wave function after normal ordering. The
resulting energy functional and nonlinear Schrödinger equation (obtained,
as usual, from iφ̇ = ∂φE[φ]) read

EGP[φ] =
(p0 −

∫
φp̂φ)2

2mI
+

∫ (
|∇φ|2

2mred
+ V IB|φ|2 + 2πaBB

mB
|φ|4

)
iφ̇ =

(
p0 −

∫
φp̂φ

mI
· i∇− ∆

2mred
+ V IB +

4πaBB

mB
|φ|2

)
φ.

Note the reduced mass, which appears due to the normal ordering in the
impurity kinetic term.

Unfortunately, these equations are not appropriate for studying the
system at hand and the reason for this is the impurity potential, which is
very different from the external potential in common applications of gpt.
The latter is, after all, of a much longer range than the inter-particle
distance. This leads to the condensate wave function varying slowly and a
local density approximation being applicable. Here, however, the impurity
potential is supposed to act on short length scales and furthermore to be
strong, which leads to a spatial variation of the density. The resulting
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CHAPTER 7. Non-Local Extension of Gross-Pitaevskii Theory

failure of the local density approximation can be immediately seen by
considering the extreme case of a contact potential. Then, φ must diverge
as 1/r near zero for the potential to have any effect, but this leads to a
divergence of the |φ|4 term. The process of “integrating out” the two-
body physics of boson collisions, that is included in gpt and leads to
the local potential term, is thus no longer possible in presence of a strong
local deformation. We will therefore, in this chapter, develop a non-local
extension of gpt, that includes the two-body physics more explicitly.

To conclude the discussion of gpt, there are, in fact, two situations
in which it can be applied.

• When V IB is long-range, such that it acts on scales large compared
to aBB, the original requirements of gpt are fulfilled. This is,
however, rather unphysical in the context of atomic mixtures where
the interaction ranges are of equal order.

• When both interaction potentials are weak, the Lee-Huang-Yang
pseudo-potential can be applied to both of them. This leads to
a stable theory and was adopted in [AP04; CT06; KB06; BBJ08;
BBT13; Tak+19].

7.1 A Theorem on Jastrow Functions
The two-body physics can be accounted for by using a wave function of
the form

Ψ(x1, ...,xN ) = φx1
· · ·φxN

Fx1,...,xN
.

Here, φ is the same condensate wave function that appears in gpt
and represents the collective behaviour of the bosons. F , on the other
hand, encodes the two-body bb physics in the following way: it is
one when all particles are far-apart from each other, behaves like a
low-energy scattering solution as two particles approach each other and
like a product of scattering solutions if multiple such pairs appear. In a
cluster development, the wave function is thus expected to be accurate
to the level of two-clusters, thereby appealing to the intuition that in a
low-density gas, only two-body physics is important.

A simple choice of F is

Fx1,...,xN
=
∏
i<j

f(xi − xj)

where f is the zero-energy solution to the two-boson problem. A wave
function of this form was first employed by Dingle [Din49], following
a suggestion of Mott, but with a different f . Later, Jastrow [Jas55]
treated such wave functions – this time with a choice of f directly
motivated by two-body physics – with a cluster expansion and extended
the analysis to fermionic systems. The name Jastrow function for this
ansatz has persisted and we will use it also here.

A different shape of F , but with the same behaviour on the level
of two-clusters, was employed by Dyson [Dys57] to compute an upper
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7.1 A Theorem on Jastrow Functions

bound to the ground state energy of a hard sphere Bose gas. Later on,
Lieb, Seiringer, Yngvason (lsy) generalised his method to include
the collective part φ in the context of proving the gpe [LSY00].

In this section, we make use of a technique that Dyson invented for
his wave function and that lsy adapted to the inhomogeneous case to
prove a general theorem on Jastrow functions.

7.1.1 Statement

The purpose of the technique in Dyson’s work was to compute upper
bounds to terms arising from the kinetic energy of his trial wave function
in the context of the hard-sphere Bose gas. Subsequently, lsy treated
various terms resulting from the Hamiltonian of the trapped gas in this
manner, with the extension that the wave function includes a spatial
variation in the form of φ. The Dyson wave function is not permutation
symmetric and therefore not a valid bosonic state – this was not required
in above-mentioned works, because therein, the wave functions served the
purpose of computing upper bounds to the ground state energy. Also for
this reason, only one-sided bounds for the different terms were computed.

Here, we will show how the method can be generalised to cover a large
class of operators, with the additional modification that we use wave
functions of Jastrow’s type instead of Dyson’s. This is not essential
but convenient because Jastrow functions are symmetric in the particle
coordinates, thereby also representing valid bosonic states. Also, we
include bounds from both sides to obtain the precise expectation values
of operators. This is, of course, not related to computing lower bounds to
the ground state energy, which is a more difficult task that was treated in
Dyson’s paper with great ideas but unsatisfactory results and completed
only forty years later by Lieb, Yngvason [LY98] for the free gas and
lsy [LSY00] for the trapped gas.

The theorem is concerned only with expectation values of k-particle
multiplication operators

Â =
∑

i1,i2,...,ik
all different

A(xik , ...,xik)

(wlog, A is symmetric under permutations). This matches typical poten-
tial terms, but not kinetic terms, which include derivatives. However,
when the derivative terms are applied to the wave function, we will see
that they can be written as a sum of effective multiplication operators
(with the coefficients A depending on f , φ and their derivatives).

Notation and Wave Function We write coordinate arguments as
subscripts and often abbreviate them by their indices, as in A1...k :=
A(x1, ...,xk) and

∫
1...N

:=
∫

V d3x1 · · ·
∫

V d3xN . For f , we write fij :=
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f(xj − xi). The wave function is given by

Ψ1...N := φ1 · · ·φNF1...N

F1...N :=
∏

i<j≤N

fij .

We use the same symbols with fewer indices to denote analogous functions
involving less coordinates and denote by F1...k|k+1...N the part of F , that
couples coordinates with indices up to k to those greater than k:

Ψ1...k := φ1 · · ·φkF1...k

F1...k :=
∏

i<j≤k

fij

F1...k|k+1...N :=
∏
i,j :

i≤k<j≤N

fij .

In particular,

Ψ12 = φ1φ2f12

Ψ1...N = Ψ1...kΨk+1...NF1...k|k+1...N .

Theorem 1 Let k,N,V ,Ψ and Â be as above with φ ∈ L2(V ,C) nor-
malised as

∫
V |φ|2 = N , f ∈ L1

loc(R3,R) satisfying 0 ≤ f ≤ 1 and
A : V k → C such that A1...k|φ1 · · ·φk|2 is integrable.

Then, as N,V → ∞ with n = N/V → 0,

〈Ψ|Â|Ψ〉
〈Ψ|Ψ〉

=

∫
1...k

(A1...k + kI|A1...k|)|Ψ1...k|2(1 +O(I))

where

I = sup
x∈V

∫
y

|φy|2(1− f2xy)

If A has constant sign, this implies

〈Ψ|Â|Ψ〉
〈Ψ|Ψ〉

=

∫
1...k

A1...k|Ψ1...k|2 (1 +O(I)) .

(We have assumed O(I) ≥ O(N−1), thereby neglecting simple cases such
as f = 1.)

As the statement suggests, I → 0 in applications, where, typically, |φ|2
is of order n and

∫
(1− f2) of order O(aBBn

−2/3). This will be detailed
later.

The purpose of the theorem is to reduce N -particle integrals to k-
particle integrals, leading to simple terms such as

∫
V ext|φ|2 in the gp

functional.
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7.1.2 Proof

Making use of the permutation symmetry of Ψ, we have to compute

〈Ψ|Â|Ψ〉
〈Ψ|Ψ〉

= N · · · (N − k + 1)

∫
1...N

A1...k|Ψ1...N |2∫
1...N

|Ψ1...N |2
.

Rationale The function f is supposed to be different from one only
when two particles are close to each other. We might be led to assume
that, in the low-density limit, this is an unlikely event and that therefore
F = 1 almost everywhere in configuration space. We could then compute
the normalisation of Ψ by

∫
|Ψ|2 ≈ (

∫
|φ|2)N = NN and would merely

have to find suitable similar approximations for 〈Ψ|Â|Ψ〉.
But the situation is more complicated as a simple argument shows.

Let us call two particles close to each other if one is in a fixed volume
V1 around the other. If we assume that the probability of finding a pair
is indeed small, we can estimate it to leading order as follows. There
are N(N − 1)/2 possible pairs of particles and each of these occurs with
a probability of V1/V . Neglecting the possibility of three- and larger
clusters – which are even less probable, the assumption granted – we
would thus find a pair with a probability of order N2V1/V . But that
this be small requires at least N2/V → 0 – more, in fact, because V1

itself must get large to give enough room for the two particles to acquire
a small energy. But this is a much stronger requirement than the low-
density limit N/V → 0. We may conclude that the probability of finding
a pair is appreciable – perhaps even close to one – and that, consequently,
F < 1 in a large region of configuration space. This renders the task of
computing the norm of Ψ hopeless.

This difficulty notwithstanding, Dyson was able to compute the
expectation value of the Hamiltonian. The reasoning may go as follows.
If it was possible to decouple in an integral such as

∫
A1|Ψ1...N |2 the

coordinate x1 from all the others, i.e. obtain
∫
1
A1|φ1|2

∫
2...N

|Ψ2...N |2
with small relative error, and to do the same in the denominator, then
the uncomputable term

∫
2...N

|Ψ2...N |2 could be cancelled. And indeed,
such an approximation seems possible: Since x1 is just one specific
coordinate, the probability of finding it close to another one is of order
NV1/V , which indeed gets small as n→ 0 and allows for V1 to grow by
an intermediate scale n−α, α < 1.

Decoupling Integrals in the Denominator The task being stated
in the previous paragraph, its execution is a matter of computation. We
start with k = 1 but allow for a reduced number M ≤ N of coordinates,
which will enable us to obtain the case of general k by induction (note
that Ψ1...N depends on N not only by the number of coordinates but
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also by the normalisation of φ).∫
1...M

|Ψ1...M |2

=

∫
1...M

|φ1|2|Ψ2...M |2F 2
1|2...M

Write F = 1− (1− F 2) to get a decoupled and an error
term.

=

∫
1

|φ1|2
∫
2...M

|Ψ2...M |2

−
∫
1...M

|φ1|2|Ψ2...M |2(1− F 2
1|2...M ).

To bound the error term, we make use of the fact that for numbers
0 ≤ zi ≤ 1 we have 1−

∏
i zi ≤

∑
i(1− zi).

Take zi = exp(−ri) and observe
that 1− exp(−r) is subadditive on

R+.
We thus get

1− F 2
1|2...M ≤

M∑
j≥2

(1− f21j).

and ∫
1...M

|φ1|2|Ψ2...M |2(1− F 2
1|2...M )

≤ (M − 1)

∫
1...M

|φ1|2|Ψ2...M |2(1− f21M )

Use M − 1 ≤ N and 1 − f21M ≤
supy 1− f21y.

≤ IN

∫
2...M

|Ψ2...k|2.

Hence, with
∫
|φ|2 = N ,∫

1...M

|Ψ1...M |2 = N

∫
1...M−1

|Ψ1...M−1| (1 +O(I)). (7.1)

For k arbitrary (but fixed as N → ∞), we obtain inductively

〈Ψ|Ψ〉 = Nk

∫
1...N−k

|Ψ1...N−k|2 (1 +O(I)). (7.2)

Decoupling Integrals in the Numerator The method is the same.
We have

〈Ψ|Â|Ψ〉

= N · · · (N − k + 1)

∫
1...N

A1...k|Ψ1...N |2

= N · · · (N − k + 1)

∫
1...k

A1...k|Ψ1...k|2
∫
k+1...N

|Ψk+1...N |2

−N · · · (N − k + 1)

∫
1...N

A1...k|Ψ1...k|2|Ψk+1...N |2

· (1− F 2
1...k|k+1...N ).
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For the decoupled first line, we may use (7.2) backwards as well as
N · · · (N − k + 1) = Nk(1 +O(1/N)):

N · · · (N − k + 1)

∫
1...k

A1...k|Ψ1...k|2
∫
k+1...N

|Ψk+1...N |2

=

∫
1...k

A1...k|Ψ1...k|2 〈Ψ|Ψ〉 (1 +O(I)).

For the error term, we obtain

N · · · (N − k + 1)

∫
1...N

A1...k|Ψ1...k|2|Ψk+1...N |2 (1− F 2
1...k|k+1...N )

1 − F 2
1...k|k+1...N

≤
∑

i≤k,j>k(1 − f2ij). Use permutation
symmetry of A and Ψ.

≤ Nkk(N − k)

∫
1...N

|A1...k||Ψ1...k|2|Ψk+1...N |2 (1− f21,k+1)

Decouple one more term: |Ψk+1...N |2 ≤ |Ψk+2...N |2|φk+1|2
and use

∫
k+1|φk+1|2(1− f21,k+1) ≤ I.

≤ Nk+1kI

∫
1...k

|A1...k||Ψ1...k|2
∫
k+2...N

|Ψk+2...N |2.

Apply (7.2) with k + 1.

= kI

∫
1...k

|A1...k||Ψ1...k|2 〈Ψ|Ψ〉 (1 +O(I)).

Thus, in total,

〈Ψ|Â|Ψ〉
〈Ψ|Ψ〉

=

∫
1...k

(A1...k + kI|A1...k|)|Ψ1...k|2(1 +O(I)),

q.e.d.

7.2 Application to Impurity-BEC Problem
We can now apply the general theorem to derive the energy expectation
value of the llp Hamiltonian (4.1). For f , we choose the zero-energy
solution of the two-boson problem. For instance, for a hard-sphere poten-
tial this amounts to f(r) = max(0, 1 − aBB/r). During the calculation,
the difference to 1 needs to be restricted to a volume V1, satisfying
V1 � V but V1 → ∞, as outlined before and discussed in detail in
[Dys57; LSY00], because the decay of 1/r is too slow. This does, however,
not enter in the final formula.

7.2.1 Energy Functional

The computation of the derivatives terms is analogous to [LSY00]. We
arrive at the following energy functional E[φ] = 〈Ψ|H|Ψ〉 / 〈Ψ|Ψ〉 for low
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densities:

E[φ] =

(
p0 −

∫
φp̂φ

)2
2mI

+

∫
x

(
|∇φ|2

2mred
+ V IB|φ|2

)
+

∫
x1x2

|φ1φ2|2
[
f ′

2
12

2mB
+
V BB
12

2
f212

]

+ Re
∫
x1x2

φ1∇φ1 · φ2∇φ2
(
1− f212

)
2mI

. (7.3)

It differs from the functional obtained from local gpt,

EGP[φ] =
(p0 −

∫
φp̂φ)2

2mI
+

∫ (
|∇φ|2

2mred
+ V IB|φ|2 + 2πaBB

mB
|φ|4

)
,

in two ways:
• The local bb term is replaced by a non-local one (line 2 of (7.3)),

that captures features of the two-boson scattering solution f when
the density |φ|2 varies on short length scales. If, instead, |φ|2 is al-
most constant on scales of V BB and f , then the integral over the rel-
ative coordinate decouples (square brackets) and yields 2πaBB/mB,
such that the theories come to agree (c.f. the proof of gpt for the
Bose gas in a large trap [LSY00]). Note that if φ diverges as 1/r
near zero, as for a contact potential, the double integral remains
finite.

• The additional last line is present. It includes effects of backreaction
of the medium on the impurity.

gpt is an efficient description of condensates varying on long length
scales with numerous applications. We expect that with the non-local
extension, the domain of applicability can be expanded even further to
include the difficult scenario of short-range density variations.

7.2.2 Dynamics
A dynamical bec can be described by letting the collective wave function
φ vary in time. The two-body correlations f , however, must remain
fixed because they are a property shared by the condensate across the
entire space. This is similar as in local gpt, where it has been proven
rigorously that the gpe describes the time evolution correctly [ESY07;
ESY09; BS19]. From variation of E[φ] with respect to φ, we obtain

i∂tφ1 = − ∆φ1
2mred

+ V IB
1 φ1

+ φ1

∫
x2

|φ2|2
[
f ′212
mB

+ V BB
12 f

2
12

]
+
i∇φ1
mI

·
(
p0 − Im

∫
x2

φ2∇φ2 f212
)

+
φ1
mI

∫
x2

φ2∇φ2 · f12f ′12
x2 − x1

|x2 − x1|
. (7.4)
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Again, we may compare this to the result from local gpt:

iφ̇ =

(
p0 −

∫
φp̂φ

mI
· i∇− ∆

2mred
+ V IB +

4πaBB

mB
|φ|2

)
φ.

Just like in the functional, the local φ3-term is replaced by an integral
involving f and V BB. The third line in (7.4) differs from gpt in that a
region x2 ≈ x1 is cut out or at least weakened by f12. However, here,
also the fourth line contributes, the integrand of which is nonzero only
when the coordinates are close to each other.

7.3 Results
We are now able to investigate the behaviour across the resonance as the
transition from an attractive to a repulsive polaron occurs. There is a
large space of parameters that is worth exploration: Apart from varying
the ib scattering length and the properties of the Bose gas in the form of
the gas parameter, we can tune the mass ratio and the potential ranges
and shapes of both interaction potentials and compare an impurity at
rest with one moving at subsonic or supersonic velocities.

The numerical implementation is nonetheless challenging and in the
scope of this dissertation, we need to focus on some of the most interesting
aspects and leave the remaining to future works. The focus here lies
on the transition regime that is inaccessible to Bogoliubov theory, the
question whether oscillations decay and the influence of the shape of bb
potential, which is included in neither Bogoliubov nor gp theory. To this
end, we use Gaussian potentials of different range for the bb interaction,

V BB(r) = exp(−r2/σ2
BB).

The ib potential is kept fixed. We employ, once again, the contact
potential. Here, the analytical forms of the two-body propagator and
the time evolution of an ideal bec are important ingredients for a more
efficient numerical implementation. The influence of a finite range in
the ib potential is an interesting question for future work; tests indicate
that it also has a quantitative effect, but that the following results are
qualitatively similar for such a potential.

The choice of mass ratio does not affect the complexity of the equations
and can be easily adapted to specific experimental settings. We use
mI = mB. For the velocity, a moving impurity is not necessary to address
above questions and so we stick to the simplest case of p0 = 0 where φ is
spherically symmetric.

Once again, we consider the situation of an initially flat bec, φ(x, t =
0) =

√
n, that starts interacting with the impurity at t = 0.

7.3.1 Transition from Attractive to Repulsive Polaron
The difference in behaviour between the attractive and repulsive side
can be tracked in the time evolution of various observables. Here, we
use the impurity-induced Tan contact [Tan08] C = |4π limr→0 rφ(r)|. It
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quantifies the current amount of interaction at short length scales and
serves as a measure of how many bosons are in very close proximity to
the impurity. It is also directly relevant to experiments and has been
measured in [Yan+20].

The result is shown in fig. 7.1 for three positive scattering lengths and
a bb potential range of σBB = 0.1n

−1/3
0 . In a), the contact converges

Figure 7.1: Time evolution of
impurity-induced Tan contact for
three repulsive scattering lengths.
In a), the typical behaviour for at-
tractive coupling is observed de-
spite the fact that a−1

IB is posi-
tive and larger than the mean-field
shift from the Bogoliubov descrip-
tion. In b), a dynamical transi-
tion from repulsive to attractive
behaviour occurs. For larger aIB
(c), the typical behaviour for the re-
pulsive side is observed with oscil-
lations being stable for a long time.
Calculations were carried out at
aBB = 0.03n

−1/3
0 , σBB = 0.1n

−1/3
0

and mB = mI. Time is measured
in units of the BEC time scale
τ = mBn

−2/3
0 /h̄.

0 1 2 3
0

50

100

150

C
n
−

1
/
3

0

a)

a−1
IB = 4.70n

1/3
0

0 1 2 3
0

50

100

150

C
n
−

1
/
3

0

b)

a−1
IB = 4.91n

1/3
0

0 1 2 3

t / τ

0

30

60

90

C
n
−

1
/
3

0

c)

a−1
IB = 5.30n

1/3
0

to a final value in the same way as we have observed for number of
attracted bosons for an attractive polaron in chapter 6. However, here,
the scattering length is positive and even smaller than the mean-field
shift a+, that demarks the region of repulsive behaviour in Bogoliubov
theory. The transition point has thus been shifted by the finite-range
potential. In b), the scattering length is close to this new critical point. A
dynamical transition occurs: first, oscillations are observed, but at some
point, they stop and the contact converges to a final value. The decay of
oscillations we had expected to occur when higher-order terms in the bb
coupling are included is present, but not in the form of a continuously
decreasing amplitude, but rather as a qualitative change of behaviour at
a critical time point. For lower coupling (c), however, the oscillations
continue for long times. We expect also here that there is eventually a
time when a transition as in b) occurs. Some additional tests suggest,
however, that the number of oscillations before the transition grows very
fast as the critical point is crossed.

In order to further investigate the dynamical transition in b), fig.
7.2 shows density profiles at the four time points indicated in fig. 7.1b).
Comparison with the profiles obtained from Bogoliubov theory yields a
clear picture: at early times (a), oscillations occur with a depletion halo
around the impurity, as we have found to be typical on the repulsive
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Figure 7.2: Density profiles at four
time points for the close-to-critical
coupling strength in fig. 7.1b). The
first two curves (a) correspond to
the typical oscillating profiles that
we have found in chapter 6 for re-
pulsive scattering. At a certain
point in time, the depletion halo
no longer reaches zero density and
moves outwards (b). Finally, a pro-
file similar to an attractive polaron
is approached (c). Parameters and
units are the same as in fig. 7.1b).
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side. The depletion reaches zero density at times where the bosons
number and the contact are maximal. Near a critical time point (b),
the depletion starts to grow again, but no longer reaches zero density.
Instead, the minimum starts moving away from the impurity. Finally
(c), the depletion gets weaker and the polaron reaches a shape similar to
that of an attractive polaron.

7.3.2 Influence of the Potential Shape on the critical
Scattering Length

The results for the contact show that for a finite-range bb interaction,
the resonance is shifted further into the repulsive regime than predicted
by Bogoliubov theory. To investigate this systematically, we solve the
time evolution for a range of repulsive ib scattering lengths and three bb
potentials with the same scattering length aBB = 0.03n

−1/3
0 , but different

height and width. Specifically, we use Gaussian potentials of range
σBB = 0.3n

−1/3
0 , σBB = 0.1n

−1/3
0 and a hard-sphere potential. From the

contact C(t), the oscillation frequencies are extracted. Fig. 7.3 shows the
results. The dependence of the resonance position on the potential range
is significant and different from the value a+, that emerges in Bogoliubov
theory. There, the bb interaction is described by a local term and one
might think that fort short ranges, the theories should come to agree.
The opposite is the case. The reason for this is the Born approximation,
which is inherent to the Bogoliubov description (as well as to gpt). It
is, in fact, accurate for soft, but not for narrow potentials, even if they
are weak.
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Figure 7.3: Oscillation frequencies
on the repulsive side for three bb
potentials with the same scatter-
ing length but different height and
width. The shift of the resonance
due to the bec is found to depend
crucially on the potential range.
The value from Bogoliubov theory
(dashed) is approached as the po-
tential gets softer. In comparison,
the two-body binding energy (dot-
ted). Inset: The bb potentials and
their effective ranges. Parameters
and units are the same as in fig. 7.1.
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At weaker ib coupling, the curves agree better. Here, the distortion
of the bec density by the impurity is less important and the local density
approximation becomes valid again.

It is an interesting question, if there is a second parameter of the
bb potential, that can be used in addition to the scattering length to
describe the physics universally. A candidate for this is the effective
range, which we have indicated in the inset. An analysis of Yoshida et
al. [Yos+18] concerning different impurity-boson potentials has shown
that here, the effective range does indeed play a central role and leads to
a universal description. We expect that the situation is similar for the
bb potential.

7.4 Original Contribution and relation to
other Works

The method developed and the results obtained in this chapter are new.
The Jastrow function method is inspired by the works of lsy and Dyson
[LSY00; Dys57] and the resulting theorem is a generalisation of their
techniques. A publication on the topic is being planned. The formulae
and the results for the Bose polaron problem are published separately
[DSE20] and in the process of reviewing at the time of writing.

Jastrow functions have first been introduced by Dingle and Jastrow
[Din49; Jas55]. They are in common use in quantum Monte Carlo
methods and, in similar form, in mathematical works on the Bose gas
[ESY07; ESY09; BS19].

gpt in its local form has been applied by various authors [AP04;
CT06; KB06; BBJ08; BBT13; Tak+19] to the Bose polaron problem,
usually with a local Born-approximated term in both interaction poten-
tials. This is a valid approach at weak couplings and focuses on different
questions than discussed here.
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7.5 Summary and Outlook

While the discussion of a non-local bb potential is new to our work,
insights concerning the role of different ib potentials were obtained in
works of Shi et al. [Shi+18] and Yoshida et al. [Yos+18].

7.5 Summary and Outlook
In this chapter, we have developed a new non-local extension of gpt and
applied it to the Bose polaron problem. It is the first theory that can
treat arbitrarily strong ib couplings in an interacting Bose gas without
becoming unstable and without an a priori limitation of the number
of excitations from the condensate. The results show that at strong ib
coupling, the Born approximation in the bb interaction is no longer valid.
The short-scale physics must be taken into account in more detail in
order to accurately describe the interplay of the bb repulsion with the
ib potential as the latter causes a strong local variation in density. In
particular, the shift of the resonance due to the many-body continuum is
found to depend sensitively on the bb potential range. Near this critical
point, a transition is also observed in time: the behaviour typical for
the repulsive side of the resonance transforms into that of an attractive
polaron.

The new method and its results open a number of promising directions
for future works. More results can be obtained directly within the
approach by further exploration of the parameter space. Interesting
points are in particular an in-depth investigation of the role of a nonzero
range of the impurity potential, the computation of polaron trajectories at
strong coupling and properties of the ground state, which can be obtained
by minimising the energy functional. Concerning the impurity potential,
Shi et al. [Shi+18] have found that in an ideal bec, a two-channel model
may deviate from a static potential. Combining our method with a two-
channel model could be another interesting approach.

Multiple impurities can be described by deriving an effective inter-
action between them [CB18]. It will be interesting to see how to what
form of interactions the density profiles in particular on the repulsive
side lead.

A different direction is the development of modifications to present
Bogoliubov approaches, that take into account the importance of the
bb potential range. It is not strictly necessary to apply the Born
approximation and to use a local interaction term in bt but instead, the
full Fourier transform of the potential may be used (this approach was
taken in [Gir61]). However, even then, bt makes similar assumptions as
the Born approximation (cf. the discussion in appendix A of [Lie+05])
and thus cannot directly be applied to narrow potentials. A solution
may be found in Bogoliubov’s original paper [Bog47] where he suggests
– with credit attributed to Landau – an a posteriori inclusion of the
two-body scattering states to treat arbitrary potential shapes. This will
not resolve the problem of instability at strong coupling, but still be
applicable in a parameter regime that is sensitive to the bb potential
shape.
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Conclusion

We have studied the behaviour of an impurity coupled to a Bose-Einstein
condensate close to a scattering resonance and focused on the dynamics
after a quench from a non-interacting to an interacting state.

In chapter 5, we have seen that many features could be understood in
terms of the two-body eigenstates of one boson and the impurity, which
are occupied collectively by the condensate wave function. Multiply
occupied bound states were found to be responsible for long-lived coherent
oscillations on the repulsive side of the resonance with a frequency given
by the binding energy 1/2mreda

2
IB. This is an important distinction to

the Fermi polaron, where the bound state can be occupied only once.
The time evolution for a contact potential was solved analytically and a
numerically exact rf spectrum was computed. Its emergence from the
two-body spectrum was discussed by separating contributions from the
zero-mode, the bound state and the continuum. In chapter 6, we have
seen that the findings for the ideal bec persist when a bb repulsion is
present. By an analytical study, a mechanism leading to stable oscillations
despite the additional decay channels was found and a formula for the
frequencies derived. The real-space formation of Bose polarons has been
discussed by means of bosonic density profiles. These converge to the
stationary solution for attractive coupling while for repulsive coupling,
they periodically reach zero density at a distance close to 1.45aIB. The
case of a moving impurity was considered and its velocity was found to
exhibit the same oscillations that are visible in different other observables.
This led to remarkable trajectories in the form of stop-and-go motion
near the resonance. Dynamical density profiles feature an asymmetry
when the particle is moving at supersonic velocities. It was found that
Bogoliubov theory becomes dynamically unstable at strong coupling. In
chapter 7, a new theory was derived to be able to describe becs that
are strongly deformed on a short length scale. It includes the two-boson
physics explicitly in the form of Jastrow functions and a general method
for working with them was developed. The resulting theory allowed
to treat the Bose polaron problem across a resonance, including the
transition region between the attractive and the repulsive polaron. Here,
also a dynamical transition from repulsive to attractive behaviour was
observed in the form of finitely many coherent oscillations followed by
convergence. At strong coupling, it turned out that the description of the
bb potential by a local term in Born approximation is no longer valid.
Instead, the potential range becomes important and strongly influences
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Conclusion

the position of the resonance in medium.
Inspiration for future investigations can be drawn in particular from

the results of the last chapter. More interesting findings can be expected
in the strong-coupling region, for instance by investigating the interplay
of ib and bb potential ranges and shapes or by considering a non-zero
initial velocity. Another route is the combination with works of Efimov
physics [Shi+18; Yos+18]: if few-body bound states are described in
full detail, the resulting states may yield an effective potential for the
remaining condensate, which is subsequently treated by the methods
described here. This may provide a route to address the difficult question
about the ground state on the repulsive side. At intermediate coupling,
the inclusion of a finite-range potential in bt could turn out an efficient
approach that is able to describe some features that cannot be obtained
with standard bt.

Experimental realisations of the Bose polaron are being achieved at
an increasing rate and we hope to have contributed to the awareness of
the interest of the repulsive side of a Feshbach resonance. The shift of the
resonance that we have found in chapter 7 might be of help here, because
the interesting transition region is situated further inside the repulsive
region where three-body-losses are less likely than at the resonance.
Ramsey experiments and direct imaging are promising techniques and
we are particularly curious on results about the time-resolved polaron
formation. A first such result concerning the coherence dynamics for
attractive coupling was obtained recently [Sko+20].

The Bose polaron is an instance of the general concept of a quantum
particle immersed in a medium. We presented techniques to treat the
strongly interacting region, which may be of interest also to other systems
where strong coupling is accessible. Likewise, the connections between
two-body and many-body physics and the influence of bound states are
general concepts, which may have their correspondence in other systems.
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Appendix A

Some integrals

In the context of the continuum states of the contact Hamiltonian, we
need the following integrals.

∫
R

e−ik2t

1 + a2k2
dk =

π

a
e

it
a2

(
sgn(a)− erf

√
it

a

)
(A.1a)∫

R

e−ik2t+ikx

ak − i
dk =

iπ

a
e

it
a2 − x

a

(
sgn(a)− erf

(√
it

a
− x

2
√
it

))
(A.1b)

P
∫
R

e−ik2t+ikx

k
dk = −iπ erf

(
x

2
√
it

)
(A.1c)∫

R+

eikr dr = πδ(k) + P i

k
(A.1d)

where Im t < 0 in (a)–(c) to ensure convergence of integral and (d) holds
in the sense of distributions of a scalar k ∈ R. The ‘P’ in P 1

k is omitted
in the applications in the main text.

Proof

In the following it is always easy to find dominating functions to show
holomorphy of integrals.

(a) Consider

I1(α, γ) =

∫
R

e−αk2

k2 + γ2
dk

for α ∈ C, Reα > 0, γ ∈ R \ {0}. Then

∂

∂α
e−αγ2

I1(α, γ) = −e−αγ2

∫
R
e−αk2

dk = −
√
π

α
e−αγ2

.
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Consequently,

I1(α, γ) = −eαγ
2

∫ α
√
π

α′ e
−α′γ2

dα′

s = γ
√
α′

= −
√
πeαγ

2

∫ γ
√
α

e−s2 2 ds
γ

= −π
γ
eαγ

2

(erf(γ
√
α) + C1(γ))

I1(+∞, γ) = 0

=
π

γ
eαγ

2

(sgn(γ)− erf(γ
√
α)) .

Equation (A.1a) follows with α = it, γ = 1/a.

(b) Now set

I2(α, β, γ) =

∫
R

e−αk2+βk

k − iγ
dk

for α, β ∈ C, γ ∈ R, Reα > 0. Then

∂

∂β
e−iγβI2 = e−iγβ

∫
R
e−αk2+βk dk =

√
π

α
e

β2

4α−iγβ .

Therefore,

I2 = eiβγ
∫ β

√
π

α
e

β′2
4α −iγβ′

dβ′

s = iβ′

2
√
α
+ γ

√
α

=

√
π

α
eiβγ

∫ iβ
2
√

α
+γ

√
α

e−s2+γ2α 2
√
α

i
ds

= −iπeiβγ+γ2α

(
erf
(

iβ

2
√
α
+ γ

√
α

)
+ C2(α, γ)

)
.

To evaluate the constant, compute I2(α, 0, γ):

I2(α, 0, γ) =

∫
R
e−αk2 k + iγ

k2 + γ2
dk = iγ

∫
R

e−αk2

k2 + γ2

= iγI1 = iπeαγ
2

(erf(γ
√
α)− sgn(γ)) .

Thus,

I2(α, β, γ) = iπeαγ
2+iβγ

(
sgn(γ)− erf

(
iβ

2
√
α
+ γ

√
α

))
.

(c) By the Sokhotski-Plemelj theorem,

P
∫
e−αk2+βk

k
dk = lim

γ→0

I2(α, β, γ) + I2(α, β,−γ)
2

= −iπ erf
( iβ

2
√
α

)
.
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(d) Taking β = ir in (c), the limit α↘ 0 can be taken if the integral
is understood in the sense of distributions. This yields∫

P e
irk

k
dk = −iπ sgn(r)

⇒ 2iF−1

[
P 1

k

]
= sgn .

Consequently,∫
R+

eikr dr = F [θ](k) =
1

2
F [1 + sgn ](k) = πδ(k) + P i

k
.
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