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Abstract

High-content microscopy led to many advances in biology and medicine. This fast

emerging technology is transforming cell biology into a big data driven science.

Computer vision methods are used to automate the analysis of microscopy image

data. In recent years, deep learning became popular and had major success in

computer vision. Most of the available methods are developed to process natural

images. Compared to natural images, microscopy images pose domain specific

challenges such as small training datasets, clustered objects, and class imbalance.

In this thesis, new deep learning methods for object detection and cell segmentation

in microscopy images are introduced. For particle detection in fluorescence microscopy

images, a deep learning method based on a domain-adapted Deconvolution Network

is presented. In addition, a method for mitotic cell detection in heterogeneous

histopathology images is proposed, which combines a deep residual network with

Hough voting. The method is used for grading of whole-slide histology images of

breast carcinoma. Moreover, a method for both particle detection and cell detection

based on object centroids is introduced, which is trainable end-to-end. It comprises

a novel Centroid Proposal Network, a layer for ensembling detection hypotheses

over image scales and anchors, an anchor regularization scheme which favours prior

anchors over regressed locations, and an improved algorithm for Non-Maximum

Suppression. Furthermore, a novel loss function based on Normalized Mutual

Information is proposed which can cope with strong class imbalance and is derived

within a Bayesian framework.

For cell segmentation, a deep neural network with increased receptive field to

capture rich semantic information is introduced. Moreover, a deep neural network

which combines both paradigms of multi-scale feature aggregation of Convolutional

Neural Networks and iterative refinement of Recurrent Neural Networks is proposed.

To increase the robustness of the training and improve segmentation, a novel focal

loss function is presented.

In addition, a framework for black-box hyperparameter optimization for biomedical

image analysis pipelines is proposed. The framework has a modular architecture

that separates hyperparameter sampling and hyperparameter optimization. A visu-

alization of the loss function based on infimum projections is suggested to obtain

further insights into the optimization problem. Also, a transfer learning approach

is presented, which uses only one color channel for pre-training and performs fine-

tuning on more color channels. Furthermore, an approach for unsupervised domain

adaptation for histopathological slides is presented.

Finally, Galaxy Image Analysis is presented, a platform for web-based microscopy

image analysis. Galaxy Image Analysis workflows for cell segmentation in cell

cultures, particle detection in mice brain tissue, and MALDI/H&E image registration

have been developed.

The proposed methods were applied to challenging synthetic as well as real
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microscopy image data from various microscopy modalities. It turned out that

the proposed methods yield state-of-the-art or improved results. The methods

were benchmarked in international image analysis challenges and used in various

cooperation projects with biomedical researchers.
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Zusammenfassung

High-Content Mikroskopie führte zu vielen Fortschritten in der Biologie und Medi-

zin. Diese Technologie hat die Zellbiologie in eine durch große Daten getriebene

Wissenschaft transformiert. Computergestützte Bildanalyse wird genutzt, um

mikroskopische Bilddaten automatisiert auszuwerten. In den letzten Jahren ist

Deep Learning durch die Erfolge in der computergestützten Bildanalyse populär

geworden. Die meisten eingesetzten Methoden wurden für die Anwendung an Bildern

von natürlichen Szenen entwickelt. Im Vergleich dazu besitzen mikroskopische

Bilddaten domänenspezifische Herausforderungen wie wenig Trainingsdaten, hohe

Objektdichte und Klassenungleichgewicht.

In dieser Arbeit werden neue Deep Learning Methoden für Objekterkennung und

Zellsegmentierung in Mikroskopiebildern vorgestellt. Es wurde eine Methode für

Partikeldetektion in Fluoreszenzmikroskopiebildern auf Basis eines für diese Anwen-

dung optimierten Deconvolution Network entwickelt. Weiterhin wurde eine Methode

für die Detektion von mitotischen Zellen in heterogenen histopathologischen Bildern

entwickelt, welche ein Deep Residual Network mit Hough Voting kombiniert. Die

Methode wird für das Grading von Whole-Slide Histologiebildern genutzt. Darüber

hinaus wurde eine Methode für sowohl Partikeldetektion als auch Zelldetektion

basierend auf Objektzentroiden entwickelt, welche end-to-end trainiert werden kann.

Die Methode umfasst ein Centroid Proposal Network, ein Layer für die Aggrega-

tion von Detektionshypothesen über alle Bildskalen und Anker, sowie eine Methode

zur Regularisierung, die a-priori Anker gegenüber vorhergesagten Verschiebungen

bevorzugt, und einen verbesserten Algorithmus für Non-Maximum Suppression. Eine

neue Loss-Funktion basierend auf normalisierter Mutual Information wird vorgestellt,

die mit starkem Klassenungleichgewicht umgehen kann.

Für die Zellsegmentierung wird ein Neuronales Netz mit vergrößertem rezeptiven

Feld vorgestellt, um mehr semantische Informationen zu modellieren. Darüber hinaus

wird ein Neuronales Netz vorgeschlagen, dass die Paradigmen von Multi-Skalen-

Feature-Extraktion von Convolutional Neural Networks und iteratives Verfeinern

mittels Recurrent Neural Networks verbindet. Für ein robusteres Training und eine

verbessererte Segmentierung wurde eine Focal Loss basierte Loss-Funktion entwickelt.

Weiterhin wird ein Framework für Black-Box Hyperparameteroptimierung für

biomedizinische Bildverarbeitungspipelines vorgestellt. Dieses Framework nutzt

eine modulare Architektur, die Hyperparameterabtastung und Hyperparameterop-

timierung trennt. Eine Visualisierung der Loss-Funktion, basierend auf Infimum

Projektionen für die Analyse des Optimierungsprozesses, wird vorgeschlagen. Darüber

hinaus wird eine Transfer Learning Technik vorgestellt, die Netzwerke, die mit einem

Eingangskanal trainiert wurden, für Daten mit mehreren Eingangskanälen nutzbar

macht. Zusätzlich wurde eine Methode für Unsupervised Domain Adaptation in

histopathologischen Schnitten entwickelt.

Weiterhin wird Galaxy Image Analysis präsentiert, eine Platform für die web-
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basierte Analyse von mikroskopischen Bildern. Galaxy Image Analysis Workflows für

Zellsegmentierung in Zellkulturen, Partikeldetektion in Hirnschnitten von Mäusen,

und MALDI/H&E Registrierung werden vorgestellt.

Die vorgestellten Methoden wurden für synthetische und reale Mikroskopiedaten

mehrerer Modalitäten angewandt und erreichten Stand der Kunst oder bessere

Performanz. Die Methoden wurden in internationalen Wettbewerben evaluiert und

mit Kooperationspartnern in biomedizinischen Forschungsprojekten genutzt.
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1 Introduction

1.1 Motivation

In biomedical research, information about physiological processes is often required

to verify research hypotheses [18]. Microscopy imaging is one of the most important

techniques to extract such information [19]. Since manual analysis is generally too

slow, labour-intensive, and prone to errors, automatic analysis is required to process

the constantly increasing amount of microscopy image data.

The complexity of acquired microscopy images poses many challenges for image

analysis algorithms. In recent years, deep learning improved the state-of-the-art

in many computer vision tasks [20, 21, 22]. Especially, advances in deep learning

methods for object detection [23, 24, 25], semantic segmentation [26, 27, 28], and

classification of images [1, 29, 30] lead to improved results. Object detection and

segmentation are frequent tasks to analyse high-content microscopy images, and

deep learning has been used for such kind of images (e.g., [31, 32]). However, most

of the existing deep learning methods have been developed for images of natural

scenes. Biomedical images and particularly microscopy images raise additional

domain-specific challenges compared to images of natural scenes (e.g., small objects,

low SNR). The images vary significantly due to the experimental setup, imaging

workflows, and imaging modalities. In addition, large annotated training datasets like

COCO [33] or ImageNet [34] for natural images are not available for biomedical data.

Biomedical image datasets often suffer from low annotation standardization and

significant label noise. Moreover, usage of cutting-edge computer vision methods and

especially methods based on deep learning is currently quite complex. Utilization

of high-performance computing (HPC) and cloud compute infrastructure is too

cumbersome for most biomedical researchers.

This thesis addresses different challenges that are important for successfully using

deep learning in high-content microscopy image analysis. The main topics of this

thesis are outlined in Figure 1.1. The different chapters cope with challenges posed

by microscopy datasets, introduce novel deep learning methods, and consider the

deployment of image analysis workflows. Novel deep learning methods are proposed

for main tasks of microscopy image analysis, namely detection and segmentation.

In addition, automatic optimization of the hyperparameters of software pipelines,

transfer learning for reusing trained networks, and data augmentation to cope with

the lack of training data are investigated to address dataset-specific challenges.

Furthermore, a concept for web-based image analysis and a system for deployment of
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1 Introduction

Figure 1.1: Main topics of this thesis.

image analysis software in a research environment are presented.

1.1.1 Biomedical Microscopy Imaging

In medicine and biology, investigated structures like tissue microstructures, cells,

viruses, or bacteria are too small to be seen with the naked eye. Microscopy

techniques can provide magnified visual or photographic images of these structures

[19]. Microscopes leverage light (optical microscope), electrons (electron microscope),

or a scanning probe (scanning probe microscope) for capturing structures. This

thesis focuses on optical microscopy modalities and considers an application of

mass spectrometry imaging combined with optical microscopy. In the following, an

overview of these modalities is given.

An optical microscope typically consists of an object slide containing the structures

of interest, a system of lenses for magnification and filtering, which creates the image in

the intermediate plane and is observable in the eyepiece or digitalized using an image

sensor, and, depending on the technique, an illumination module [19]. An object is in

focus when the light rays originating from the object specimen converge in the eyepiece

or image sensor. In this thesis, datasets from translumination-based (bright-field,

phase-contrast, differential interference contrast) and fluorescence-based (widefield,

confocal, spinning disk) microscopes are analysed. Translumination microscopy

can image tissue by transmitting light through the object slide [19]. In bright-field

microscopy, the object slide is illuminated with white light and the absorption of the

light creates contrast in the resulting image [19]. Stainings can be used to increase

light absorption of certain structures, which accentuate them in the image. Unstained

tissue is hardly visible in bright-field microscopes as it is mostly translucent. Phase-

contrast microscopy can image translucent objects using phase shifts in light passing
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1 Introduction

through the object of interest. A phase-shift ring is used to shift the phase of the light

by 90◦ or -90◦ that passed the slide. After filtering, the background light and the light

scattered by the object overlay and the resulting constructive interference creates

visual contrast. Differential interference contrast (DIC) microscopy is an alternative

method to image translucent objects by interferometry. The light is first polarized

and then separated into two rays, which are focused on the sample. After passing the

sample, the rays are overlaid using a prism and contrast is created by constructive

interference. Fluorescence microscopy can image fluorophore stained tissue which

emits light when being illuminated [19]. The excitation spectrum is the required light

which has to be emitted by the fluorescent light source to stimulate the fluorophore

so that it emits light in its characteristic emission spectrum. There exist several

fluorescence microscopy techniques like widefield, laser scanning, and spinning disk

microscopy. The differences of the pattern of illumination is illustrated in Figure 1.2.

In widefield microscopy, the whole slide is illuminated which then excites fluorophores

[19]. The main disadvantage of widefield microscopy is that light emitted from the

specimen out-of-focus interferes with the light emitted within focus, which reduces

the maximum resolution in addition to the thickness of the specimen. Confocal

microscopy uses the pinhole principle to only detect light from the image plane in

focus. Confocal laser scanning microscopy (CLSM) uses a laser for illumination,

which scans the slide in a raster pattern and uses a photomultiplier tube to detect

the signal for each spot. Compared to widefield microscopy, single coordinates in

3D can be imaged. CLSM is comparably slow, since each coordinate has to be

imaged sequentially. In spinning disk confocal laser microscopy (SDCLM), multiple

coordinates are illuminated simultaneously by leveraging multiplexing. Multiple

pinholes are arranged on a mechanically spinning Nipkow disk in a specific pattern.

A dichroic mirror is used to separate scattered/reflected light and laser light from

the optics. Depending on the design, a second or the same Nipkow disk is used

as light shade for each corresponding pinhole of the first Nipkow disk transit. In

SDCLM, camera detectors are used instead of a photomultiplier tube. They have

the advantage of a higher quantum efficiency. Therefore, images with a higher signal

to noise ratio can be obtained compared to CLSM. Multiple operating modes can be

combined in a single device like the microscope shown in Figure 1.3. A drawback of

fluorescence microscopy is that fluorescent stains are phototoxic, invasive, and bleach

(a) Widefield (b) Laser scanning (c) Spinning disk

Figure 1.2: Illumination patterns in fluorescence microscopy
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Figure 1.3: Optical table with Nikon Eclipse Ti2 microscope, which supports phase-
contrast, DIC, CLSM, and SDCLM operating modes.

when being illuminated, which makes them more challenging for live cell imaging

than other techniques [19].

Many microscopy techniques benefit from or require stained specimen to enhance

contrast of structures of interest. Essential stains and dyes in biology and medicine

are hematoxylin and eosin stain (H&E) and 4’,6-diamidino-2-phenylindole (DAPI)

[19]. H&E staining is usually used for bright-field microscopy in histology [19].

Hematoxylin binds to basophilic substances and appears as dark blue or violet in

the image. Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are negatively

charged and therefore acidic, which makes them basophilic. The chromosomes

consisting of DNA are usually located in the cell nucleus, and RNA is highly

concentrated in the ribosomes of the rough endoplasmic reticulum (Figure 1.4).

The different cell states like cell division (mitotic phase), programmed cell death

(apoptosis), or premature cell death (necrosis) manifest in different chromosome

appearance. As opposed to hematoxylin, eosin binds to acidophilic substances and

is seen in red or pink in the image. Amino acids and proteins that are amino acid

complexes are basic, as the molecules are positively charged due to their arginine

and lysine residues. Amino acids and proteins are highly concentrated in structures

Figure 1.4: Eukaryotic cell in a simplified cutaway drawing
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like the cytoplasm and cell organelles (e.g., mitochondria, erythrocytes, collagen,

extracellular fibers). The Golgi apparatus, myelin, or adipocytes are hydrophobic

structures and remain clear when using H&E staining as the stain is water-based.

Immunostainings are used to detect specific proteins by exploiting the antibody

mechanism to target the proteins of interest. DAPI is an essential stain in fluorescence

microscopy [19]. It mainly binds to the regions rich in adenine-thymine in the DNA,

dyeing the nucleus. DAPI also binds to RNA with a different emission wavelength.

A main advantage of DAPI is that it can be combined with other popular dyes

like GFP or CY3. However, cross-talk and bleed-through can occur when multiple

stains are used. The cross-talk effect describes that dyes with overlapping excitation

spectrum are illuminated at the same time. Bleed-through describes the effect that

the emission spectra of two stains have an overlap so that the filters and detectors are

not able to separate the signals. More specialized fluorescence stainings (e.g., GFP,

CY3, FAM, Alexa Fluor) can be modified by using techniques like fluorescence in

situ hybridization (FISH) to bind to specific structures (e.g., centromeres, telomeres,

target genes).

A stain-free, but destructive microscopy method is spatially-resolved mass spec-

trometry [35]. Matrix-assisted laser desorption/ionization (MALDI) is an ionization

technique where a matrix material is added to the sample (Figure 1.5b) [36]. A

laser is used to ionize the sample and to excavate macro molecules. These ionized

molecules are usually proteins that can be detected using by their time of flight (ToF)

in a mass spectrometer (Figure 1.5a). When applying the laser grid-wise on a slide,

spatially-resolved mass spectra can be obtained. MALDI-ToF can be applied to an

already stained sample and can therefore be combined with optical microscopy [36].

The modalities, stainings, and dyes considered in this thesis are summarized in

Table 1.1.

(a) Matrix sprayer (b) MALDI-ToF mass spectrometry

Figure 1.5: MALDI-ToF mass spectrometry hardware
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Table 1.1: Overview of microscopy techniques considered in this thesis

Microscopy Principle Contrast Technique Modality Staining & Dye

Optical

Translumination
Bright-field H&E, Immuno

Phase-contrast
-

DIC

Fluorescence
Widefield DAPI, GFP,

CY3, FAM,
Alexa Fluor

CLSM
SDCLM

Mass spectrometry Desorption/Ionization MALDI -

1.1.2 Biomedical Microscopy Image Analysis

In a biological or medical research, where complex image data like high-content

or high-throughput microscopy images are acquired using the imaging techniques

described above, manual analysis is often not feasible. Automated image analysis

can help coping with the data. A meta image analysis workflow of images in biology

and medicine is illustrated in Figure 1.6 and consists of three main steps.

First, the images are pre-processed to improve the image quality and enhance

meaningful content. Methods for pre-processing images are mostly based on filters

(e.g., median rank filter, Gabor filter, histogram equalization). These filters can be

applied within a sliding window or the whole image.

Second, specific features of interest are extracted using image analysis methods like

object detection, segmentation, image classification, image registration, and object

Figure 1.6: Meta image analysis workflow with an example of cellular phenotyping
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tracking. Object detection can be performed by using local feature descriptors (e.g.,

SIFT, ORB) [37], which can be combined with a classifier (e.g., Logistic regression,

Random Forrest, Support Vector Machine) [38]. Segmentation methods can be

categorized by their definition of image segments. This includes methods without

shape guidance based on histogram thresholding (e.g, Otsu’s method) or clustering

(e.g., K-Means, Mean-Shift, Hierarchical clustering) and with shape guidance using

image regions (e.g., Region Growing) or model energy (e.g., Markov Random Fields,

Level sets) [39]. Image classification can be conducted using global feature descriptors

(e.g., Haralick features) [37] in combination with a classifier. Registration of images

can be performed based on image intensity or features and a similarity measure

(e.g., cross-correlation, mutual information) [39]. Object tracking can be based on

object detection (tracking-by-detection). The detections can be linked into tracks

(e.g., using a Kalman filter) [40]. Most traditional image analysis methods include

hand-crafted features. Development of good feature extractors requires deep domain

knowledge. Deep learning can be used to learn feature extractors without the need

of explicitly modelling domain knowledge. These feature extractors can be used

in various image analysis methods. Therefore, feature extraction and classification

can be performed jointly by using deep learning. State-of-the-art in image analysis

methods for detection and segmentation based on deep learning are described in

Chapter 2.

Finally, the extracted features (e.g., cell count, cell elongation, mean stain intensity,

tissue texture statistics, particle velocity) are quantified. Often, rule-based filtering

is used for the quantified data to account for sup-optimal image analysis results. The

resulting readout is used to reach a medical or biological conclusion along with the

hypothesis.

Software can help biologists to use existing image analysis methods on their image

data [41]. If no appropriate method for certain data is available or the required image

analysis pipeline is too complicated, image analysis researcher are consulted. In these

research projects, image analysis researchers and biologists collaborate closely. In

Figure 1.7, a typical workflow of such a project is sketched. The medical or biological

cooperation partner produces image data which is handed to the image analysis

researcher. The image analysis researcher develops a method and a corresponding

software and uses it to generate the desired readout (e.g., cell counts, cell phenotypes,

Figure 1.7: Workflow for general image analysis research projects
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particle behavior). The readout is given to the cooperation partner to answer their

biological or medical research hypothesis. Image acquisition and image analysis

methods are continuously improved during the project. However, often the image

analysis researcher has to run the software for a new dataset even if no changes to

the software have been introduced, since most of the experimental image analysis

pipelines are too cumbersome to use and therefore cannot be run by the biologist.

1.2 Contributions

This thesis proposes methods for easing frequent problems with biomedical microscopy

datasets, improves deep learning models for biomedical computer vision, and presents

a concept for deployment of cutting-edge algorithms in biomedical research projects.

More specifically, the main contributions of this thesis are:

� DetNet – Deep Neural Network for Particle Detection: A new method

for particle detection in microscopy images is proposed which uses deep learning

and is based on a domain-adapted Deconvolution Network. Compared to standard

deep neural network architectures, the number of parameters is significantly

reduced. The method achieved better detection and localization results than

previous methods.

� Deep Residual Hough Voting for Mitotic Cell Detection in Histopathol-

ogy Images: A new method for mitotic cell detection in histopathology images

is proposed which is based on a Deep Residual Network architecture combined

with Hough voting. A voting layer for neural networks is proposed. Also, a novel

loss function is introduced, which exploits polar coordinates and is invariant to

the absolute magnitude of the voting error. The network is learned from scratch

using cell centroids. In addition, a new method for grading whole-slide histology

images of invasive breast carcinoma is proposed which is based on mitotic cell

detection by a Deep Residual Network. The method combines a threshold-based

attention mechanism and a deep neural network for mitotic cell detection and

grading.

� Deep Consensus Network for Particle and Cell Detection: A new deep

neural network named Deep Consensus Network (ConsensusNet) for particle and

cell detection in microscopy images based on object centroids is introduced. The

network is trainable end-to-end and comprises a Feature Pyramid Network-based

feature extractor, a Centroid Proposal Network, and a layer for ensembling detec-

tion hypotheses over all image scales and anchors. Also, an anchor regularization

scheme that favours prior anchors over regressed locations is suggested. In addition,

an improved algorithm for Non-Maximum Suppression which significantly reduces

the algorithmic complexity, is introduced. The method was applied to challenging

data from the TUPAC16 mitosis detection challenge and the Particle Tracking
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challenge and generally yielded better results than DetNet, Deep Residual Hough

Voting, and previous methods.

� Loss Function for Strong Class Imbalance in Object Detection: For the

Deep Consensus Network, a novel loss function based on Normalized Mutual

Information is proposed. The loss can cope with strong class imbalance and is

derived within a Bayesian framework.

� ASPP-Net for Cell Segmentation: A deep learning method leveraging atrous

spatial pyramid pooling (ASPP) for cell segmentation is introduced. The ASPP

increases the receptive field of the network to capture rich semantic information.

The method is used in a workflow for large scale quantification of telomere length

and PITX1 expression per cell.

� GRUU-Net – Integrated Convolutional and Gated Recurrent Neural

Network for Cell Segmentation: The dominant paradigm in segmentation is

using convolutional neural networks, less common are recurrent neural networks.

A new deep learning method for cell segmentation is proposed which integrates

convolutional neural networks and gated recurrent neural networks over multiple

image scales to exploit the strength of both types of networks. The method was

applied to images of cells from various modalities and yielded better results than

previous methods.

� Loss Function to Cope with Difficult Samples in Image Segmentation:

To increase the robustness of the training and improve segmentation, a novel focal

loss function for GRUU-Net is introduced. A distributed scheme for optimized

training of the integrated neural network is presented as well.

� Hyperparameter Optimization: A framework for zero-order black-box hy-

perparameter optimization called HyperHyper is presented which has a novel

modular architecture that separates hyperparameter sampling and optimization.

A visualization of the loss function based on infimum projection to obtain further

insights into the optimization problem is also introduced.

� Multi-Channel Deep Transfer Learning: Two different approaches for trans-

fer learning using fluorescence images of glioblastoma cell tissue with a different

number of color channels are presented. The approaches exploit the similarity of

source image channels and target image channels and are based on the ASPP-Net.

� Unsupervised Domain Adaption for End-to-End Grading of Whole-

Slide Images: A novel deep learning method for domain adaption and classifica-

tion of whole-slide images and patient level breast cancer grading is described. The

proposed method is based on domain adaptation using a Cycle-Consistent Gener-

ative Adversarial Network (CycleGAN) in conjunction with a densely connected

deep neural network.
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� Web-Based Microscopy Image Analysis: The platform Galaxy Image Anal-

ysis for automated microscopy image analysis and cellular phenotyping within the

Galaxy platform is introduced. Workflows for cell segmentation in cell culture

images, particle detection in mice brain tissue data, and MALDI-/H&E image

registration based on Galaxy Image Analysis are presented.

1.3 Organization of the Thesis

The thesis describes novel deep learning methods for object detection and segmen-

tation. In Chapter 2, fundamentals of deep learning and previous work on object

detection and segmentation are outlined. Chapter 3 introduces novel deep learning

methods for detection of particles and cells. In Chapter 4, deep learning methods for

segmentation of cells and an application to telomere quantification in tissue images

are proposed. Chapter 5 introduces a framework for hyperparameter optimization of

software pipelines in microscopy image analysis. Chapter 6 describes new methods

for transfer learning for microscopy images. The evaluation of the proposed deep

learning methods is presented in Chapter 7. A web-based framework for microscopy

image analysis named Galaxy Image Analysis and applications are described in

Chapter 8.

An overview of the developed methods, their connections, and a classification

into the categories Dataset Challenges, Deep Learning Methods, and Deployment

described above (cf. Figure 1.1) is given in Figure 1.8.

Figure 1.8: Connectivity of sections and chapters in this thesis. The main topics of
the thesis are highlighted in bold. Connections between sections indicate
that the described methods build on each other.
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2 Foundations and Previous Work

In this chapter, fundamental concepts that are essential for this thesis are introduced.

In particular, foundations of deep learning for computer vision and recent develop-

ments in the field of microscopy image analysis for detection and segmentation are

reviewed. In this chapter, the fundamentals of deep learning for computer vision are

presented. A review of state-of-the-art deep learning methods for object detection

using bounding-boxes and centroids as well as semantic segmentation is conducted.

Furthermore, applications and extensions of these methods for microscopy image

analysis are elaborated on.

2.1 Deep Neural Networks for Computer Vision

Artificial Neural Networks (ANN) are a family of computation graphs loosely inspired

by biological neural networks in animal brains. In an ANN, each layer of q neurons

has the weight parameters W ∈ Rp×q and bias parameters b ∈ Rq, where p is the

number of neuron activations of the previous layer. The activation yi ∈ R of the i-th

neuron is calculated by a weighted sum of the neuron activations of the previous

layer x ∈ Rp×1 using the weights wi ∈ Rp×1 and the bias bi ∈ R followed by an

activation function σ. Therefore, the activation yi ∈ R of the i-th neuron in a layer

is as follows:

yi = σ((wi)
ᵀ x + bi) (2.1)

The activation function σ can be the identity function (linear function) or a non-linear

function. Non-linear functions are required to capture the properties of complex

data distributions. The orchestrated structure of multiple network components (e.g.,

layers, activations) is called network architecture. ANNs learn to perform a specific

task by changing its parameters in the training phase using an optimization algorithm.

The application of a trained network on data is called inference.

An ANN whose computation graph is directed and cycle-free is called feed-forward

neural network (Figure 2.1). An early ANN is the Perceptron, which has one layer

and the Heaviside step function as activation function [42]. If the network has at least

one hidden layer, it is called multi-layer perceptron (MLP). More generally, an ANN

with multiple consecutive hidden layers is called Deep Neural Network (DNN). The

universal approximation theorem [43, 44] states that under mild assumptions (e.g., if

σ is a non-constant, bounded, and a continuous function), a multi-layer feed-forward
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Figure 2.1: Feed-forward neural network

neural network can approximate any continuous function in a compact set Ω ∈ Rn

with an error bound which decreases with an increased number of neurons. Therefore,

even a neural network with one hidden layer is an universal approximator. This raises

the question how DNNs with a large number of parameters can be learned effectively

in practice [45]. Recent theories state that an underlying hierarchical generation

process exists in natural data, which can be decomposed into smaller problems by

using the mutual information chain rule [46, 47]. Due to weight sharing within layers

(see Section 2.1.1) and hierarchical composition of neurons, the underlying structure

in data can be exploited to ease the network’s training [47]. Moreover, the stochastic

algorithms for training neural networks favour local optima with good generalization

properties [48, 49, 50, 51].

Model Training

A popular algorithm for training DNNs is stochastic gradient descent (SGD) in

combination with backpropagation [52]. Firstly, the current output of the network

for a batch of samples is calculated, which is called forward pass. Next, an error

scoring function (loss) L ∈ R is calculated based on the corresponding reference. In

the backward pass, the i-th weight wi ∈ R of a neuron is updated in each iteration t

of the optimization using the SGD update rule with learning rate η ∈ R+:

wti ← wt−1
i − η∇wt−1

i
L (2.2)

Assuming that L is a function of y and y is a function of x, the gradient of the

loss ∇L for variables in lower layers can be back propagated using the chain rule of

derivatives:

∂L
∂x

=
∂L
∂y

∂y

∂x
(2.3)
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Therefore, unlike canonical gradient descent, SGD computes a parameter update for

every batch instead for the whole dataset [53]. The incremental gradient descent

of SGD introduces noise which helps escaping local minima and tends to more

flatter minima than canonical gradient descent [48]. However, the surface of the

loss, which depends on the data and the network’s architecture as visualized in [49],

can be flat or spiky in some regions. To exploit the shape of the loss surface in

the optimizer’s trajectory, an adaptive step size is advantageous. Therefore, the

momentum of convergence is often used which also speeds up training and reduces

oscillation of the loss. RMSprop is a popular extension to SGD, first presented by

G. Hinton in a lecture of his Coursera class, which adaptively reduces the learning

rate by exponentially decaying it by the squared derivative (∇wt−1
i
L)2 ∈ R [54]. The

influence of the momentum can be changed by β ∈ R+, which is usually set to 0.9:

wti ← wt−1
i − η

∇wt−1
i
L√

vti + ε
(2.4a)

vti ← βvt−1
i + (1− β)(∇wt−1

i
L)2 (2.4b)

where ε is a small constant to avoid division by zero. Adam [55] is a more recent

popular alternative to RMSprop, which in addition to the average of the squared

derivative vti ∈ R also uses the average of the derivative mt
i ∈ R. The influence of

mt
i and vti can be changed by the parameters β1 ∈ R[0,1] and β2 ∈ R[0,1], which are

usually set to 0.9 and 0.999 [55]:

wti ← wt−1
i − η m̂t

i√
v̂ti + ε

(2.5a)

m̂t
i =

mt
i

1− β1

(2.5b)

v̂ti =
vti

1− β2

(2.5c)

mt
i ← β1m

t−1
i + (1− β1)∇wt−1

i
L (2.5d)

vti ← β2v
t−1
i + (1− β2)(∇wt−1

i
L)2 (2.5e)

Reddi et al. [56] pointed out that the convergence of Adam can be harmed, since v̂i
does not necessarily increase when the learning rate η is constant or decreasing. They

proposed AMSGrad, which only keeps track of the maximum squared derivative, to
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ensure a decreasing learning rate over the training iterations:

wti ← wt−1
i − η m̂t

i√
v̂ti + ε

(2.6a)

m̂t
i =

mt
i

1− β1

(2.6b)

v̂ti =
max(vti , v̂

t−1
i )

1− β2

(2.6c)

mt
i ← β1m

t−1
i + (1− β1)∇wt−1

i
L (2.6d)

vti ← β2v
t−1
i + (1− β2)(∇wt−1

i
L)2 (2.6e)

Activation Functions

Several non-linear activation functions for neural networks are described in the

literature (e.g., [57, 58, 59, 22]). Due to the universal approximation theorem, their

expressiveness in a DNN is similar when using enough neurons [43, 44]. Their main

difference in practice is their effect on the gradient. A major challenge in training

deep neural networks is the vanishing gradient problem which was identified by

Hochreiter in 1991 [60]. Due to weight updates performed using backpropagation,

the gradient is proportional to the partial derivatives of the loss function. Poor

architectural choices can lead to contracting gradients which are accumulated by

the chain rule of derivatives. Bounded functions (e.g., Sigmoid, Tanh), for example,

also have a bounded gradient which can exponentially decrease the gradient when

used in every layer. A similar effect can be observed with exploding gradients where

gradients accumulate, resulting in large weight updates. These two effects lead to

unstable training or underfitted models. The Sigmoid function squashes the input x

to [0, 1]:

Sigmoid(x) =

{
1

1+e−x
, x > 0

ex

ex+1
, x ≤ 0

(2.7)

The output of the Sigmoid function is not zero-centred. This can be overcome with

the hyperbolic tangent (Tanh), which squashes the input to [−1, 1]. Due to the

bound of Sigmoid and Tanh, the optimization can be harmed. In 2011, Glorot et

al. [57] proposed the Rectified Linear Unit (ReLU) as an unbound alternative to
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previous activation functions:

ReLU(x) = max(0, x) (2.8)

When using ReLUs, the negative part of the neurons activation is not used. Therefore,

neurons can be in a state where they become untrainable, since they have a derivative

of zero. There are several variants of ReLUs that are designed to reduce this

problem. The Leaky Rectified Linear Unit (LReLU) [58] makes use of a small

negative component in its output by introducing a leakage parameter a = 0.2:

LReLU(x, a = const) =

{
x , x > 0

ax , otherwise
(2.9)

The Parametric Rectified Linear Unit (PReLU) [59] is a generalization of LReLU,

where the leakage parameter a ∈ R can be trained along with the network:

PReLU(x, a) =

{
x , x > 0

ax , otherwise
(2.10)

Network Weight Initialization

Weights in neural networks are initialized so that they keep a specific distribution

over multiple layers, and additionally break symmetry so that each neuron can learn

its distinct feature. Moreover, the activations should be zero-centered and have unit

variance. State-of-the-art initialization schemes use values in the weight matrix W

sampled from a scaled random uniform or Gaussian distribution. To ensure similar

distributions of activations in the network, Glorot and Bengio [57] proposed to use a

variance Var(W) of the sampling distribution based on the number of neurons nin in

the previous and the number of neurons nout in the current layer:

Var(W) =
2

nin + nout

(2.11)

When using activation functions like ReLU, half of the results are truncated. To

overcome this, He et al. [59] proposed to only rely on the number of neurons in the

previous layer:

Var(W) =

√
2

nin

(2.12)

Model Regularization

State-of-the-art neural networks have millions of parameters and thus many degrees

of freedom. They often have a learning capacity that exceeds the training dataset.

In practice, the bias-variance tradeoff has to be considered to keep underfitting due
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to high bias and overfitting due to high variance of the model in equilibrium [38]. By

using regularization of the model, overfitting can be prevented. A common technique

is to add `1 regularization:

L = Lobj + λ

N∑
i=1

|wi| (2.13)

or `2 regularization of the weight updates to the loss Lobj:

L = Lobj + λ

N∑
i=1

(wi)
2 (2.14)

where N is the number of elements of w. Regularization with `1 favours a sparse

weight matrix and `2 favours a Gaussian distribution of the weights [38]. The

influence of the regularization can be changed using the parameter λ ∈ R. Another

method of weight regularization using a norm is weight decay. Weight decay extends

the SGD update rule (2.2) by adding a rescaling factor with a parameter λ to the

weights:

wti ← wt−1
i − η∇wt−1

i
L(wt−1

i )− ηλwt−1
i (2.15)

When using SGD, weight decay is similar to `2 regularization [61]. However, this

does not hold for optimizers that use momentum. AdamW is an extension of Adam

with weight decay [61]:

wti ← wt−1
i − η m̂t

i√
v̂ti + ε

− ηλwt−1
i (2.16a)

m̂t
i =

mt
i

1− β1

(2.16b)

v̂ti =
vti

1− β2

(2.16c)

mt
i ← β1m

t−1
i + (1− β1)(∇wt−1

i
L+ λwt−1

i ) (2.16d)

vti ← β2v
t−1
i + (1− β1)(∇wt−1

i
L+ λwt−1

i ) (2.16e)

Another method to prevent overfitting is Dropout [62], which adds Gaussian or

Bernoulli noise to the layer’s activations. Dropout can be interpreted as building

random subgraphs within the neural network, which are robust to missing or wrong
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inputs. Moreover, by adding noise to the activations, a Gaussian prior is put on

the activations. In general, Dropout increases the training time, but improves the

performance of the network. As the activation and weight distribution of neurons

should not change throughout the network, the initial values of the parameters are

initialized with a mean value of 0 and a unit variance of 1. However, in a forward

pass, the distribution of activations can shift and scale, which also affects the weights

as training progresses. This causes the weight distribution to degrade, slowing down

training and triggering side-effects between layers. Batch normalization (BN) [63] is

a simple, but effective technique which normalizes the activations in every layer and

thus prevents the weight distributions from degradation. The shift β ∈ R and scale

γ ∈ R of the activation distributions are learnable parameters of the architecture.

The normalization is calculated for every batch with M samples using the mean value

µb ∈ R and the variance σ2
b ∈ R+. Therefore, these estimates are noisy, and batch

normalization acts as a regularizer which often eliminates the need for Dropout [64].

During inference, the mean value µ ∈ R and the variance σ2 ∈ R+ of the training

dataset are used instead of the batch wise µb and σ2
b :

BN(xi) ≡ γ x̂i + β (2.17a)

x̂i =
xi − µb√
σ2
b + ε

(2.17b)

µb =
1

M

M∑
m=1

xm (2.17c)

σ2
b =

1

M

M∑
m=1

(xm − µb)2 (2.17d)

In [65], the normalization is performed for each instance of a batch individually.

Moreover, instance normalization is also applied during inference without learning

any shift or scale parameters. In some use cases where dataset-wide shift and scale

parameters are hard to learn, instance normalization can still simplify the learning

process [65, 66]. A simple but effective method to improve generalization of the

model is data augmentation. Data augmentation is the process of distorting data to

enforce the network to learn invariance to these distortions. Common augmentations

are flipping, rotation, adding Gaussian or Poisson noise, color shifting, histogram

stretching, and elastic deformations [22]. Moreover, crops of a larger image can be

sampled to specifically analyze more important regions [67]. Controlling the sampling

of difficult cases and easy cases is referred to as hard negative mining. If the order of

the samples is following a specific scheme, it is referred to as curriculum learning
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[68]. Data augmentation can be performed offline on the training dataset, and online

during training and at test time [69]. Test time augmentation is usually performed

to exploit the invariance of the model and boost the performance by averaging the

predictions of several augmentations of the same input. In data augmentation, it

is important that the augmentation steps do not alter the semantics of the input.

In addition, excessive augmentation can lead to too much smoothing and therefore

underfitting. In general, a combination of regularization of the model and data

augmentation usually works best in practice [70]. By using proper regularization,

not only overfitting is avoided, but fast training of the model can be observed, which

is referred to as superconvergence [71].

Loss Functions

For neural networks, several training objectives (loss functions) are used in computer

vision. For classification tasks, the cross-entropy (CE) is commonly used, which mea-

sures the average bits needed to encode an event drawn from probability distribution

Q instead of the true distribution U , which is the sum of the entropy H of U and

the Kullback-Leibler divergence DKL of U with respect to Q where E is the expected

value operator with respect to the distribution U [38, 22]:

CE(U,Q) = EU [− log(Q)] = H(U) + DKL(U,Q) (2.18)

In the discrete case, where P (X) ∈ RM are the predicted probabilities for the samples

X = (X1, ..., XM) from Q and P (Y) ∈ RM the ground truth probabilities for the

labels Y = (Y1, ..., YM) from U , we can define a CE-based loss LCE for M samples:

LCE(X,Y) =
1

M

M∑
m=1

−P (Ym) log(P (Xm)) (2.19)

CE is defined for discrete events. Thus, classes are usually encoded in an indicator

vector (one-hot vector). Therefore, the output is one for the index of one class and

zero for all other classes. The output of the network can then be interpreted as a

probability distribution across the classes. Classification can also be viewed regarding

set theory. Based on the Dice coefficient, a smooth approximation can be minimized

over the sets X and Y, where a small ε prevents a division by zero [72, 73]:

LDice(X,Y) = − 2
∑M

m=1 P (Xm) P (Ym) + ε∑M
m=1 P (Xm) +

∑M
m=1 P (Ym) + ε

(2.20)

The LDice loss has the advantage of implicitly weighting the loss using the class

imbalance in the ground truth and the number of activations of the network. The

Jaccard similarity coefficient and the Cosine similarity can also be used analogously as

training objective. For regression tasks, usually a `p norm is used [22]. The `1 norm
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‖·‖1, which is also known as taxicab metric, should not be favored for regression, since

it has no always a unique solution and is therefore hard to optimize [38]. However, it

can be used to enforce sparse results, which is important in regularization for tasks

such as dictionary learning [74]. The `2 norm ‖·‖2 is also known as Euclidean norm,

has a unique solution, and is therefore the most common objective for regression. To

further improve the stability of the training process, the squared `2 norm is used in

the L`2 loss, which is also known as mean squared error (MSE):

L`2(v,vGT) =
1

M

M∑
m=1

‖vm − vGT
m ‖2

2 (2.21)

where v ∈ RM denotes the predicted values and vGT ∈ RM the ground truth values.

The L`2 loss is prone to outliers since errors contribute quadratically to the total

error. Huber [75] proposed a piecewise defined loss LH with hyperparameter δ ∈ R,

which is more robust than the L`2 loss:

LH(v,vGT) =
1

M

M∑
m=1

{
1
2
(vm − vGT

m )2 , |vm − vGT
m | ≤ δ

δ(|vm − vGT
m | − 1

2
δ) , otherwise

(2.22)

Instead of explicitly formulating an objective, the loss function can also be learned

along with the network [76] by using adversarial training [77]. In adversarial training,

a discriminator learns to classify a dataset, but engineered adversarial examples

are added to fool the discriminator. It has been shown that neural networks are

vulnerable to adversarial examples [78]. This method can be used by training a

discriminator network to distinguish adversarial or original samples. A generator

network is trained concurrently to generate adversarial samples from noise and is

updated alternately to the discriminator network. This zero-sum game between the

two networks forms an actor-critic model [79] known from reinforcement learning.

The described combination of a generator and discriminator network known as

Generative Adversarial Network (GAN) was introduced by Goodfellow et al. [76].

The last layer of the ANN (see Figure 2.1) is the output layer. In a multi-class

problem with C classes, and a class c is mutually exclusive, a generalization of the

logistic function (Sigmoid) is used to squash the output vector x ∈ RC of the last

layer into a probability distribution. The so called SoftMax function represents a

categorical distribution and is defined by:

SoftMax(x) =
ex∑C
c=1 exc

(2.23)

Learning Schemes and Transfer Learning

In supervised learning, the model learns a function of an input sample to a ground

truth label [38]. For this reason, labels have to be available during training. In
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unsupervised learning, the model learns to detect frequent patterns from the training

samples which is also known as clustering [38]. Semi-supervised learning combines su-

pervised and unsupervised learning [80]. Training neural networks is computationally

intensive. Moreover, obtaining curated and labeled datasets is cumbersome. Various

techniques of transfer learning try to reuse models and data. In transfer learning,

generalizable knowledge has to be extracted and negative knowledge transfer should

be avoided [81]. Transfer learning methods can be categorized in inductive and

transductive transfer [82]. In inductive transfer, knowledge is transferred to a new

task. Inductive techniques comprise, for example, multi-task learning and self-taught

learning. Transductive transfer learning can also be used to transfer knowledge to

new domains (domain adaption). In transductive transfer learning, knowledge is

transferred from a source domain to a target domain, where informed techniques

require labeled data from the target domain and supervised techniques labeled data

from the source domain [81]. Uninformed and unsupervised techniques do not need

labeled data from the respective domains. A popular approach used in combination

with neural networks is pre-training the model on a large dataset and fine-tuning

the model on a target dataset with less labels using a lower learning rate. The

pre-training dataset can also be obtained from a simulation or a generative model

trained on real data in an unsupervised scheme. Moreover, it can be beneficial to

fine-tune only the network’s biases and scaling parameters, if batch normalization is

used. The latter technique only compensates a covariate shift of the source to the

target domain. An easy, but effective method is introducing a sample selection bias,

where the model is trained on samples from the source and target domain. However,

only source-domain samples that match the data distribution of the target domain

are used, which is referred to as instance transfer. Domain adaption for deep neural

networks is a very active research field. In recent works, several deep neural network

components for domain adaption are proposed [83, 84, 85, 86]. In [83], Ganin et al.

use an adversarial objective to learn domain-invariant features by predicting the

domain of a sample in a separate branch. They propose a gradient reversal layer,

which enforces that the features in the base-feature extractor are optimized to be

domain invariant, while the features in the domain classifier are domain descriptive.

For life-long learning over multiple domains, Bilen et al. [84] proposed to learn the

same feature extractor over all available domains. However, the parameters for the

batch normalization layers are multiplexed over all available domains. Therefore,

the network has to learn just a few scale and shift parameters for each domain to

compensate covariate shift. In [85], Tamaazousti et al. propose to learn a network on

fine and coarse object categories to obtain very specific and generic features. They

use a SVM and an automatic relabeling strategy to learn a new classifier with their

pre-trained features.
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2.1.1 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a neural network architecture with

spatially tied parameters. Therefore, a layer in a CNN can be interpreted as a

convolution (∗) with a learnable filter W ∈ Rk×k×p×q followed by an element wise

non-linear activation function σ:

y = σ(W ∗ x + b) (2.24)

where k × k is the window size of the convolutional kernel, p the number of input

feature maps, and q the number of output feature maps. Like traditional neural

networks, CNNs have multiple layers. To increase or decrease the spatial resolution

of the feature maps, pooling operators are used. Applying a convolutional kernel

on a pooled feature map has a higher receptive field than applying it on a non-

pooled feature map. Thus, the convolutional layer can capture information in a

larger receptive field. Common pooling operators are max pooling, average pooling,

interpolation, and strided convolution. Max pooling and average pooling can only

reduce the spatial resolution [22]. Max pooling on a regular grid of values I ∈ Rw×h

with a window function f(i, j) = Iij of two times k at grid position i, j is defined by:

MaxPool(i, j) = max
∆i∈{−k,...,k}
∆j∈{−k,...,k}

f(i+ ∆i, j + ∆j) (2.25)

Equivalently, average pooling is defined by:

AVGPool(i, j) =
1

(2k)2

k∑
∆i=−k

k∑
∆j=−k

f(i+ ∆i, j + ∆j) (2.26)

As an alternative, interpolation (e.g., bilinear, bicubic) can be used to increase or

decrease the resolution of a grid. Convolutions can also be used to increase or

decrease the resolution by adding strides, which means that the filter kernel is not

shifted by one, but by a larger or smaller number of pixels. To increase computational

efficiency when increasing the spatial resolution, forward pass and backward pass

can be swapped using transposed convolution, which is also known as deconvolution,

or fractionally strided convolution in literature [87]. In contrast to pooling, dilated

convolutions can be used to computationally capture information within an increased

receptive more efficiently [88]. Dilated convolutions, which are also known as atrous

convolutions, introduce holes into the convolutional kernel that increase the kernel

without adding additional parameters [88].

Over the past years, the effectiveness of CNNs have been significantly improved by

development of new architectures. Several popular CNN architectures are outlined

in the next paragraph. CNN architectures typically consist of stacks of convolutional

layers and pooling layers followed by a fully connected layer (Dense layer). The
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described structure is also called base architecture [89, 90, 91]. Finally, additional

application-specific layers are appended (e.g., a SoftMax layer for classification).

The fully connected layer can also be replaced by global average or max pooling,

which performs the pooling operation in a window with the same spatial size as the

feature maps. In 2012, AlexNet [1] won the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) by reducing the top-5 error from 26% to 15.3%, which lead to

significant increase of the use of neural networks in computer vision. The architecture

of AlexNet is outlined in Figure 2.2. AlexNet consists of a convolutional layer with

48 different 3× 3 filters followed by max pooling with Local Response Normalization

(LRN) in a window of 3 × 3 and a stride of two. In the second layer, 128 filters

are extracted using 3× 3 filters followed by max pooling with LRN. The next three

convolutional layers extract 192, 192, and 128 feature maps using a 3× 3 convolution

followed by a ReLU activation function. Finally, two fully connected layers with

2048 neurons each, Dropout, and SoftMax are used to predict the class. In 2014,

the Visual Geometry Group (VGG) was the runner up of the ILSVRC using a

new architecture which gained increasing popularity as base architecture in many

applications. The so called VGG architecture [92] replaces the convolutional layers

of AlexNet with two convolutional layers, each using a ReLU activation function.

Variants with a total of 11, 16, and 19 layers, respectively called VGG-11, VGG-16,

and VGG-19, were proposed. However, the ILSVRC 2014 was won by GoogLeNet [93],

which aimed at reducing the computational complexity, and achieved a top-5 error

rate of 6.67%. Its layers had a variable receptive field due to their novel Inception

layers. Inception layers perform multiple convolutions using different kernel sizes and

concatenate the results into a feature stack. The Inception architecture was improved

in [94, 95]. The idea of the Inception layer was further used in [28] in their atrous

Figure 2.2: AlexNet architecture [1]. The feature maps tensor size is outlined at the
top and the detailed layer configuration is delineated at the bottom.
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spatial pyramid pooling (ASPP) blocks. Instead of using larger convolutional filters,

dilated convolutions are used in ASPP blocks to reduce the number of parameters.

The winner of ILSVRC 2015 was the Residual Network architecture (ResNet) [29]

with a top-5 error rate of 3.57%. In ResNets, the input xi ∈ Rw×h×p is added to

the output of a small subnetwork F ∈ Rw×h×q with parameters Wi ∈ Rk×k×p×q

to reduce gradient vanishing, where m × n is the spatial feature map size, p the

number of input filters, q the number of output filters, and k the window size of the

convolutional kernel:

yi = xi + F(xi; Wi) (2.27)

Adding the input to the output of the residual is referred to as skip connection.

Carefully designed recurrent units, which are explained further in Section 2.1.2,

are capable of using a residual as shown in [96]. In 2017, the concept of residual

connections was extended by the Densely Connected Neural Network (DenseNet)

architecture [30]. The authors introduced Densely Connected blocks, where each

layer has access to all feature maps of the previous layers. Therefore, layer i receives

the concatenated feature maps [x1; ...; xi] as input:

yi = F(x1; ...; xi; Wi) (2.28)

2.1.2 Recurrent Neural Networks

A Recurrent Neural Network (RNN) is an ANN for processing sequential data. In

1982, John Hopfield combined previous ideas to propose the Hopfield network, which

was one of the first RNNs [97]. The idea of an RNN is to use the same block on

each input xt ∈ Rp of the sequence with 0 < t ≤ T elements to produce the outputs

ot ∈ Rq, which is called unfolding (Figure 2.3). Therefore, an RNN is distinct from

feedforward neural networks, since it forms a cycled computation graph. Information

between consecutive steps are passed using an internal state h and forms a directed

graph along the sequence.

The Long Short-Term Memory (LSTM) is a popular implementation of RNN units

[98]. It was developed to handle exploding and vanishing gradients, which can occur

in a naive RNN implementation. An LSTM uses the previous state ht−1, the previous

memory cell ct−1, and the current input xt to compute the output ot, the current

Figure 2.3: Illustration of unfolding RNN over observations x.
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Figure 2.4: LSTM architecture

memory cell ct, and the current state ht (Figure 2.4). First, the input xt and the

previous state ht−1 are weighted to calculate the forget gate ft [99], which regulates

reset of the memory cell, the input gate it, which controls weighting of the input,

and the output gate ot, which controls the computation of the output activation:

ft = σ(Wᵀ
fxt + Uᵀ

fht−1 + bf ) (2.29)

it = σ(Wᵀ
ixt + Uᵀ

iht−1 + bi) (2.30)

ot = σ(Wᵀ
oxt + Uᵀ

oht−1 + bo) (2.31)

Afterwards, the candidate state gt is calculated and fused with the previous memory

cell ct−1 to calculate the current memory cell ct. The operator � denotes the

Hadamard product.

gt = tanh(Wᵀ
gxt + Uᵀ

ght−1 + bg) (2.32)

ct = ft � ct−1 + it � gt (2.33)

Finally, the new state ht is calculated using the current memory cell:

ht = ot � tanh(ct) (2.34)

A Gated Recurrent Unit (GRU) is an optimized RNN with similar performance as

an LSTM with less parameters. The structure of a GRU is sketched in Figure 2.5.

In contrast to an LSTM, a GRU has just a single output ht, which is concurrently

the new state and output. First, the reset gate rt and update gate zt are calculated

24



2 Foundations and Previous Work

Figure 2.5: GRU architecture

using the input xt and the parameters Wr, Ur, br, Wz, Uz, and bz:

rt = σ(Wᵀ
rxt + Uᵀ

rht−1 + br) (2.35)

zt = σ(Wᵀ
zxt + Uᵀ

zht−1 + bz) (2.36)

Then, the candidate state h̃t is calculated using the parameters Wh, Uh, bh:

h̃t = tanh(Wᵀ
hxt + Uᵀ

h(rt � ht−1) + bh) (2.37)

Finally, the previous state ht−1 and the candidate state h̃t are weighted to determine

the new state ht:

ht = ot = zt � ht−1 + (1− zt)� h̃t (2.38)

2.2 Object Detection

Object detection is the task of detecting semantic instances of specific objects within

images. The detection result can be described using the bounding-box of an object or

a location, such as the centroid. In this section, object detection using deep learning

is introduced and specialized methods for microscopy images are presented.

2.2.1 Methods in General Computer Vision

One of the first works on bounding box-based object detection using deep neural

networks was R-CNN by Girshick [100]. R-CNN uses the Selective Search algorithm

[101] to extract region proposals from an image. These regions are cropped and

rescaled. A CNN with VGG architecture is used to extract features from the cropped

image patches and an SVM is used to classify object proposals into object categories.

Hence, these networks are denoted as multi-stage object detectors. The author
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extended his approach to Fast R-CNN [102], which computes the CNN features

just once for the image before cropping and replacing the SVM with a classification

network. The regression is performed using the Huber loss for the bounding-box and

classification using the cross-entropy loss for the object categories. To learn both

networks simultaneously, Region of Interest Pooling (ROI Pooling) is introduced,

which can backpropagate the gradient through the rescaling step. In Faster R-CNN,

Ren et al. replaced the region proposal algorithm with a Region Proposal Network

(RPN), which directly proposes object candidates from the base CNN [23]. The RPN

predicts offsets to predefined bounding boxes with different aspect ratios (anchors)

and corresponding scores. Greedy non-maximum suppression (NMS) is used to only

pass boxes with high confidence and no overlap to the ROI Pooling step.

In the literature, the subnetwork that predicts object detections on top of extracted

feature maps is often referred to as detection head. In 2015, Redmon et al. introduced

You Only Look Once (YOLO) [24], which, in comparison to Faster R-CNN, is a

single stage detector and uses the Darknet [24] instead of the VGG architecture. The

YOLO approach was further improved in their follow-up works [103], [104]. YOLO

directly performs regression on the offsets to predefined bounding-box anchors and

corresponding confidences. NMS just has to be performed during inference. In

general, YOLO has faster inference than Faster R-CNN [24]. Single Shot MultiBox

Detector (SSD) introduced the detection of objects at different pooling stages of the

network [105]. In their follow-up work, Redmon et al. introduced YOLOv3 [104],

which also incorporated this technique. Feature Pyramid Networks (FPN) [106]

is an extension of this technique by using a down- and upstream path to extract

detections at different scales, similarly to a technique for semantic segmentation

previously proposed by Ronneberger [27]. RetinaNet [107] introduces Focal loss,

which scales the binary classification loss of predictions with low predicted confidence

(hard examples), where γ ≥ 0 is a modulating factor for negative mining:

LFL(X,Y) =
1

M

M∑
m=1

(−(1− P (Xm))γP (Ym) log(P (Xm))

− (xm)γ(1− P (Ym)) log(1− P (Xm)))

(2.39)

2.2.2 Methods for Microscopy Image Data

Bounding box-based detection networks have been successfully applied to microscopy

images. Rao [108] uses a modified Faster R-CNN for mitosis detection in H&E

stained histological images. Akram et al. [109, 110] use a Faster R-CNN for cell

tracking. The Faster R-CNN generates object proposals and a U-Net is used to

segment cells. A graphical model is used to perform further cell tracking.

In comparison to bounding box-based object detection, centroid-based object

detection tries to find only the centroid of an object without estimation of the

bounding box. Centroid-based object detection is a frequent task in microscopy image
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analysis, as the number of cells or particles and their distribution is often required

by biologists or pathologists [111, 112, 113, 114, 115, 116, 117, 118]. Classification

using a sliding window is a common approach for centroid-based object detection

[111, 113, 114, 115, 116]. Cireşan et al. proposed using multiple, independently

trained neural networks to predict the presence of a mitotic cell in the center of a

sliding window [111]. They average the results to calculate their final prediction.

Moreover, they use hard negative mining to improve their performance. Since mitotic

and apoptotic cells look relatively similar, apoptotic cells are often mistaken as

mitotic cells. Therefore, they train their network on mitotic cells (positive samples)

only. Afterwards, they perform inference on their training dataset and extract false

positive detections as negative samples and finally retrain their network using the

extracted positive and negative samples. In [113], the proposed neural network

predicts at each sliding window position M offset vectors z, m = 1, ...,M , and

corresponding confidences h. A cross-entropy loss between xj ∈ R and yj ∈ R is

used, where cj ∈ R2 is the j-th position in the predicted probability map, ẑm ∈ R2 is

the ground truth position of the m-th mitotic cell, zm ∈ R2 the predicted mitotic cell

position, hm ∈ R the corresponding confidence, and d ∈ R the maximum distance

threshold:

xj =


(

1

1+(‖cj−zm‖22)/2

)
hm ,∀m 6= m′, ‖cj − zm‖2 ≤ ‖cj − zm′‖2 ≤ d

0 , otherwise

(2.40a)

yj =


1

1+(‖cj−ẑm‖22)/2
, ∀m 6= m′, ‖cj − ẑm‖2 ≤ ‖cj − ẑm′‖2 ≤ d

0 , otherwise
(2.40b)

Predictions of patches in a radius of d = 4 pixels are averaged to obtain the final

ensemble prediction. The detection task can also be learned with density estimation as

auxiliary task [112, 117, 119, 120, 121, 122, 118]. In [112, 117, 119, 120, 121, 122, 118],

a density or distance map is predicted that describes the location of every object

that is nearest to a pixel, respectively. However, the methods mainly differ in neural

network architecture and training procedure. In addition to changing neural network

architecture and training procedure, in [122] densities at multiple scales are predicted,

and the average of the integrated density maps with respect to the number of objects

in the image are optimized. Methods like [113, 118] perform a prediction for every

pixel of the current sliding-window position. Predictions of overlapping pixels of all

sliding-window positions are summarized into a weighted average for robustness and

improved performance.
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2.3 Semantic Segmentation

Semantic segmentation is the prediction of a class label for each pixel of an image.

Deep learning for semantic segmentation has been widely used in computer vision

[90]. In this section, semantic segmentation using deep learning is introduced and

specialized methods for microscopy images are presented.

2.3.1 Methods in General Computer Vision

Classification networks can be used for operating in a sliding window to predict

the class of the windows center pixel [123, 124]. However, features for neighboring

pixels that are already computed cannot be reused, which makes these methods

computationally ineffective. In 2015, Long et al. proposed the Fully Convolutional

Network (FCN) for semantic segmentation [26]. It performs transposed convolution

for upsampling on feature maps at multiple scales and fuses them into the predic-

tion. In the Deconvolution Network [125], upsampling is performed gradually with

intermediate convolutions in the expanding path of the introduced network. This

architecture family is also known as hourglass-shaped neural networks. In Figure 2.6,

an archetype of the hourglass-shaped neural network architecture family is shown.

In the U-Net [27, 126, 127], long-range skip connections between the contracting and

expanding path were added. The features in the expanding path are concatenated

with the respective feature map from the contracting path. U-Net is therefore capable

Figure 2.6: Generic hourglass-shaped neural network architecture. The original image
is the input on the left and the output is generated on the right. Arrows
pointing downwards denote pooling and arrows pointing upwards denote
unpooling. The convolutional layer blocks perform feature extraction or
fusion. The dotted line separates the contracting path and the expanding
path of the network. More recently, architectures incorporate long skip
connections between contracting and expanding path.
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of retaining fine-grained details whilst incorporating context from a larger receptive

field. V-Net is a 3D extension of U-Net[72], which uses additional short-range residual

connections adapted from ResNet [29] in comparison to U-Net. Since algorithms are

often evaluated using the Dice coefficient, they proposed to train the network with

the Dice loss instead of the cross-entropy loss to improve performance. In [128], an

additional convolution was added to the long-range skip connections. The authors

also proposed to refactor the refinement step for a more efficient computation by

replacing the concatenation of the feature maps and the subsequent convolution by

a convolution on each set of feature maps by subsequent addition. In the Attention

U-Net [129], an attention mechanism was added, which weighs the features from the

skip connection with the features from the expanding path. Upsampling using trans-

posed convolutions can lead to ”checkerboard” artifacts [130] in the resulting feature

maps, and therefore inaccurate predictions. This effect can be prevented by carefully

choosing the stride factor or by using bilinear interpolation followed by a convolution.

A more careful design of the refinement and throughout use of residual connections

was presented in [131]. Jégou et al. showed in [132] that Densely Connected blocks

can be incorporated instead of residual or plain convolutional layers to further boost

performance. For more efficient use of parameters, in [133], the proposed capsules

from [134] are used. Capsules perform expectation maximization (EM) to route

the activations of the previous layer to the consecutive layer using corresponding

predicted voting vectors. Therefore, they use agreement of multiple weak predictions

similar to the idea of the Hough transform [135]. Milletari et al. [136, 137] proposed

Hough-CNN, which predicts a vector to the centroid of the corresponding object for

each pixel in the segmentation. Objects with high agreement are kept and the voting

pixels form the segmentation mask. In contrast to applying individual functions at

each scale in the expanding path, a convolutional RNN can be used to synthesize the

segmentation at all scales [138]. The rational behind using an RNN is that the RNN

is able to smooth single predictions and gradually combine them over all scales into

a single prediction. To avoid the need for long-range skip connections and reducing

and increasing the feature map resolution in the contracting and expanding path,

dilated convolutions [88] can be used. Alternatively, Segnet [139] uses the pooling

switches in the contracting path for unpooling in the expanding path, which is more

memory-efficient than U-Net. The features from the long-range skip connections

can also be aggregated at full resolution [140], which improves performance when

training from scratch on small datasets. Methods like ENet [141] optimize inference

speed by reducing the amount of parameters and computing steps using asymmetric

convolutions. A convolution is factorized into two consecutive convolutions with

dimensions 1× k and k × 1, where k is the size of the convolutional kernel. These

asymmetric convolutions were introduced in the Inception network in [94]. Moreover,

Paszke et al. observed in [141] that when using PReLU activations, the first layers

prefer a negative component, while consecutive layers prefer an activation close to

zero. The proposed semantic segmentation networks lack the compliance with global
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priors to avoid implausible segmentations. In [142], the global average pooled feature

map is concatenated with all feature maps to add global context. The Pyramid

Scene Parsing Network (PSPNet) [142] uses the output of an ASPP block [28] in a

residual after the base network to incorporate global priors into the segmentation.

In [143], the position of a pixel in the input image is added as feature map to enable

the network to reason about spatial relationships. Classical methods like Conditional

Random Fields (CRFs) [144] or Level Sets [145] were also reformulated as RNNs to

incorporate global priors into the segmentation. They use iterative refinement of the

feature maps to maintain consistency whilst improving the segmentation. In compar-

ison to their non-deep learning counterparts, parts of the algorithm like the potential

functions of the CRF are learned. To improve segmentation performance, detection

can be performed prior to segmentation. In Mask-CNN [146], a Faster R-CNN is used

for detection and the features of the detection head are passed to an expanding path

of a Deconvolution Network to predict a segmentation for each detected object. In

[73], a U-Net is used for coarse segmentation. Connected components are interpreted

as detection and passed to a second U-Net which performs segmentation at higher

resolution. The developers of the DeepLab neural networks evaluated several of the

described methods and established state-of-the-art networks for semantic segmenta-

tion [147, 148, 28, 149]. In DeepLabV1 [147], they use a VGG-16 network to predict

a coarse segmentation. To maintain spatial dimensions, they removed the pooling

layers and compensated the loss in receptive field by adding appropriate dilation

rates to the convolutional layers. The successor DeepLabV2 [28] uses a ResNet as

base network. Moreover, an ASPP is introduced to incorporate global context, and a

CRF is used to refine the predicted segmentation. In DeepLabV3 [148], several minor

improvements on the layer configuration were performed and the use of CRFs was

abandoned. The enhanced DeepLabV3+ [149] uses an hourglass-shaped architecture

while maintaining the ASPP to capture context. Moreover, convolutions are replaced

by more efficient depthwise separable convolutions from the Xception model [150].

Depthwise separable convolutions factorize the standard convolutional layer over k

feature maps into a depthwise convolution and a consecutive pointwise convolution.

The depthwise convolution applies a set of n convolutional kernels to each feature

map independently, which results in kn feature maps. The pointwise convolution is

a 1× 1 convolution which combines all feature maps from the depthwise convolution.

Note that factorized convolutional kernels can only represent a subset of possible

convolutional kernels, since matrices A with rank(A) > 1 are not always separable.

2.3.2 Methods for Microscopy Image Data

In microscopy image segmentation based on deep learning, several domain-specific

adaptions and extensions were proposed (e.g., [123, 27, 151, 110, 152, 153]). U-Net

[27] was developed for cell segmentation. In addition to the architecture, Ronneberger

et al. proposed a weighing function for the cross-entropy loss, which enforces the
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network to learn cell separation. Morphological operations are used to determine the

distance of each pixel to the object border. The distance to the next two objects is

used to reciprocally weigh the cross-entropy loss. Therefore, pixels that are close

to two objects are weighted higher than pixels with more distant object borders.

Drozdzal et al. [151] evaluated the effect of residual connections for microscopy

images and showed that both long-range and short-range residuals are important to

train very deep hourglass-shaped architectures. They also showed that the Dice loss

is beneficial to successfully segment cell borders due to the intrinsic class balancing.

In [154, 110], Akram et al. use a cascaded Faster R-CNN to extract object proposals

and a U-Net to perform segmentation, which improves cell separation. For small

datasets, Arbelle et al. [155] showed that adversarial training is beneficial for training

with limited amount of annotated data. In [156], a third class for cell borders was

added to the classes’ foreground and background to use it for cell separation.
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3.1 Overview and Task Description

Detection of prominent structures such as particles and cells in microscopy images is

a frequent and important task in quantitative microscopy. The results are used to

perform downstream tasks like nuclei density analysis or particle motion analysis.

Although many different types of methods for detection exist, in recent years deep

learning methods dominate the field of computer vision. Deep learning has been

successfully used for particle and mitosis detection (e.g., [114, 111, 157]). However,

domain-specific challenges in object detection in microscopy images arise. Usually,

many clustered objects of the same class have to be detected in very large images.

Therefore, splitting of close objects and robust fusion of information from multiple

image scales is important. To distinguish positive and negative samples which look

very similar, specialized training procedures are needed. Moreover, to cope with the

size of the images, the algorithms have to be fast and memory-efficient.

In this chapter, novel methods for detection of objects in microscopy images are

presented. A domain-adapted architecture for particle detection is proposed. In

addition, a novel neural network utilizing the benefits of the Hough transform for

mitotic cell detection is presented. Moreover, a novel network with a differentiable

consensus voting layer for object detection in microscopy images is proposed. The

methods were published in Wollmann et al. [16, 10, 2].

3.2 DetNet: Deep Neural Network for Particle

Detection in Fluorescence Microscopy Images

To gain insight on cellular processes, particle detection in fluorescence microscopy

images is an important task and a prerequisite for particle tracking. Main challenges

for particle detection are the small size of fluorescently labeled particles, low signal-to-

noise ratio (SNR), and lack of prominent shape and appearance characteristics. Due

to the large number of particles, manual detection is not feasible for many applications.

In previous pork, different approaches for particle detection in fluorescence microscopy

images were introduced (e.g., [158, 159, 160]) such as the spot-enhancing filter (SEF)

[161], a H-Dome transform-based detector (H-Dome) [159], or adaptive thresholding

with autoselected scale (ATLAS) [162]. SEF is often used for particle detection. In

combination with probabilistic tracking methods, state-of-the-art results are obtained
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[163, 40]. However, SEF assumes a relatively simple appearance model of particles,

namely a Gaussian function. Another disadvantage of such classical methods is that

several parameters need to be tuned. Recently, convolutional neural networks (CNNs)

were used for particle detection (e.g., [114, 116]). However, these methods are based

on a sliding window scheme or involve a relatively large number of parameters.

In this section, a novel deep learning method for particle detection in fluorescence

microscopy images using an hourglass-shaped deep neural network denoted as DetNet

(Wollmann et al. [10]) is presented. The network is a domain-adapted Deconvolution

Network and can cope with different particle shapes. DetNet is slim, fast, and can be

trained with only a few ground truth annotations. In contrast to the CNN in [116],

the method does not require a sliding window scheme, and all particles within an

image are detected at once by sharing full-image convolutional features. Compared

to the U-Net based approach in [114], the method has significantly less parameters

and the network structure differs (e.g., a Deconvolution Network [125] is used instead

of a U-Net as well as bilinear upsampling instead of transposed convolution). In

addition, it is suggested to use a Dice loss and optimize the parameter of the sigmoid

activation function to improve the performance.

The proposed deep neural network DetNet for particle detection is based on a

Deconvolution Network [125] which has been adapted to the application domain.

A Deconvolution Network is composed of a contracting (pooling) and an expand-

ing (unpooling) path. The network handles objects at multiple scales naturally by

the hourglass-shape of the network. A challenge in the application is that the ob-

jects (particles) are relatively small and lack complex shape information. Thus, data

augmentation does not significantly increase the variability of the training data. In

a setting with a limited number of training samples, overfitting is likely to occur. To

enable accurate particle detection and efficient training, multiple adaptations to the

Deconvolution Network architecture [125] are introduced. In particular, the number

of parameters is significantly decreased by reducing the number of extracted feature

maps. In addition, the size of the receptive field is reduced by employing pooling

only two times instead of five times. Long range skip connections are not used as in

[27], since in the application, detailed boundary information is not relevant, which

further reduces the number of parameters. Moreover, the convolutional layers are

replaced with residual blocks [29] and instance normalization [65] is used. This type

of normalization is used because the batch normalization in the original formulation

[29] needs a representative dataset to train moving averages, which is hardly available

when using only few training samples. In the network residual, blocks are used. By

using residual blocks, the problem of gradient vanishing is reduced, which improves

the efficiency of training deep architectures. Instead of using transposed convolutions,

bilinear upsampling is employed in the expanding path, which further reduces the

number of parameters and avoids checkerboard artifacts. ReLU activations are used

and the weights are initialized using HE initialization [59].

In total, the parameters were reduced to 17 k compared to a standard Deconvolution
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Network with 1.1 M parameters, a U-Net with 1.9 M parameters, and the CNN in

[114] with 400 k. The DetNet architecture is outlined in Figure 3.1. The network

is trained using a Dice loss and early stopping with the AMSGrad optimizer [56]

and a learning rate of linit = 0.001 as well as β1 = 0.9 and β2 = 0.999. The Dice

loss is a soft formulation of the standard Sørensen-Dice coefficient for the ground

truth and prediction, which performs implicit class balancing and penalizes easy

samples compared to the Cross-Entropy loss. It was found that the stability of the

training improves by calculating the Dice loss over all N pixels in a batch instead of

averaging the Dice loss over the single images. In contrast, when using a standard

Cross-Entropy loss, training was not successful due to the heavy class imbalance.

The training data is augmented using random flipping, rotation, and cropping.

In preliminary experiments, high precision and low recall for low SNR scenarios

was observed. However, the aim was to balance precision and recall (as represented

by the F1 score), and it was found that the F1 score can be significantly improved

by optimizing the shift a ∈ R of the sigmoid function of the neural network

Sigmoid(x) =
1

1 + e−(x−a)
(3.1)

To optimize a, the HyperHyper hyperparameter optimization framework presented

in Chapter 5 is used together with the other hyperparameters of the optimizer.

The detected particles can be used for subsequent tasks like particle tracking.

Tracking particles in time-lapse microscopy image sequences is important to quantify

dynamic behavior. Traditional tracking methods (e.g., [164, 165, 166, 167, 40, 168,

169]) use a handcrafted similarity measure to link particles between time steps.

Methods based on deep learning have the potential to learn the similarity measure

from data and improve performance. Previous methods using deep learning (e.g.,

Figure 3.1: Deep neural network architecture of DetNet. The specific layer configu-
ration is given above each layer.
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[170, 171, 172]) are based on appearance features (e.g., in pedestrian tracking, cell

tracking). However, particles appearance is less useful for linking than motion.

The Deep Particle Tracker (DPT) for particle tracking in time-lapse fluorescence

microscopy images based on an RNN proposed by Spilger, Wollmann, et al. in [14]

learns to determine assignment probabilities for correspondence finding, without

requiring a handcrafted similarity measure. The network architecture of DPT

is outlined in Figure 3.2. For each time step t and object i, the feature vector

xit = (xit, y
i
t, s

i
t, α

i
t) describes the objects position (x, y) and the speed and direction

denoted by s and α (computed using the positions at two successive time points).

For each object i, a fully-connected layer is used to compute an embedding zt from

xt−1. A sequence to sequence LSTM is used to calculate a sequence of hidden

states ht from the sequence of zt to capture the motion of the object. For each

time step, a fully-connected layer is used to compute an embedding qt from the

nearest neighbors of xt−1 in time step t. qt and ht are concatenated and passed

into a the final fully-connected layer followed by SoftMax to predict the assignment

probabilities a ∈ [0, 1]M+1 between the i-th object and the nearest detections M as

well as the probability for a missing detection. For better training, the feature vectors

x̂it are regressed by applying another fully-connected layer to ht. Gaussian dropout is

applied after each layer. The computed assignment probabilities and the probabilities

for missing detections (dummy detections in the probability matrix) are passed to

the Hungarian algorithm for determining one-to-one correspondences. The network

is trained using ground truth assignment probabilities (cross-entropy loss) and the

cross-entropy loss and auxillary regression loss using the ground truth locations

(mean squared error). Ground truth trajectories for microscopy image sequences

of biological particles is hardly available and manual annotation is cumbersome.

Therefore, synthetic data is used for training. Simulated trajectories of particles

perform Brownian motion or directed motion.

Figure 3.2: Deep neural network architecture of DPT.
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3.3 Deep Residual Hough Voting for Mitotic Cell

Detection in Histopathology Images

In the field of tissue microscopy, the detection and quantification of prominent cellular

structures is a central task. Main challenges are data heterogeneity, image noise,

and lack of training data. In addition, histology images typically have a very large

size, a high density of image structures, and imbalanced object class occurrence.

For the task of cell detection in histology images, several approaches exist (e.g.,

[111, 157, 173, 174]). Several advances of the architecture of ResNets have been

made recently (e.g., [175, 141, 176]). On the other hand, the Hough transform is a

robust method for object detection [177]. Due to the voting process in the Hough

transform, single noisy votes hardly influence the result. It has been shown that

CNNs can learn an implicit shape and texture representation [136, 113]. Therefore,

CNNs are capable to predict the relative location of an object within an image

patch, which can be exploited for Hough voting. However, existing approaches that

combine CNNs and Hough voting (e.g., [136]) require discretization of the voting

space, which leads to a rapidly growing voting space when using a larger number

of bins or a larger voting region. Also, these approaches require prediction of an

additional confidence score for each vote, which is an additional task for the network.

Some methods (e.g., [111]) are based on an ensemble of networks which increases

the computation time. In this section, a novel approach for mitotic cell detection in

heterogeneous histopathology images is proposed, which combines a deep residual

network with Hough voting. Also, a novel loss function is introduced, which exploits

polar coordinates and is invariant to the magnitude of the voting error. The method

was published in Wollmann et al. [16].

The method conducts fast feature extraction, multi-scale factor disentangling,

and Hough voting in a deep neural network. The network has a new two branch

architecture and is trained with a novel loss function. Training of the method is

performed using cell centroids (e.g., by selecting bounding boxes) and the original

image data. The architecture of the network is presented in Table 3.1. It consists

of (i) a downsampling part, (ii) a factor disentangling part, and (iii) a pixel-wise

classification part with two branches. The results can be upsampled if the exact

positions of the detections are needed.

Fast downsampling is performed by the downsampling blocks, which contain a

linear branch (no activation function) and a non-linear branch (non-linear activation

function). The linear branch in the downsampling block performs average pooling

and a 1x1 convolution to increase the feature maps. Within the non-linear branch a

strided 3x3 convolution is used followed by a 1x1 convolution. Except for the first

layer, the output of both branches are summed up and represent a residual block (res.

block). All non-linear branches in the residual blocks of the factor disentangling

part contain a 3x3 dilated convolution (DilConv) [88] to increase the receptive field,

which is followed by a 1x1 convolution for mapping to the target feature space.
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Table 3.1: Deep Residual Hough Voting architecture

Layer type Output size
input 3 x Nx x Ny

downsampling block (non res.) 32 x Nx/2 x Ny/2
downsampling block 64 x Nx/4 x Ny/4
downsampling block 64 x Nx/8 x Ny/8

res. block 64 x Nx/8 x Ny/8
res. block 64 x Nx/8 x Ny/8
res. block 64 x Nx/8 x Ny/8

res. block (dilated 2) 64 x Nx/8 x Ny/8
res. block (dilated 2) 64 x Nx/8 x Ny/8
res. block (dilated 2) 64 x Nx/8 x Ny/8
res. block (dilated 4) 64 x Nx/8 x Ny/8
res. block (dilated 4) 64 x Nx/8 x Ny/8
res. block (dilated 4) 64 x Nx/8 x Ny/8

fconv. res. block fconv. res. block 64 x Nx/8 x Ny/8
Dropout Dropout 64 x Nx/8 x Ny/8

conv. (+sigmoid) conv. (+sigmoid) 1 x Nx/8 x Ny/8
ϕ r 1 x Nx/8 x Ny/8

voting 1 x Nx/8 x Ny/8
bilinear upsampling 1 x Nx x Ny

Using a 3x3 convolution instead of a 1x1 convolution resulted in smoother, but

less accurate predictions. The linear branch does not perform a transformation on

the input. Several dilated residual blocks with different dilations are used, which

ensures a computational effective multi-scale feature aggregation. By employing

dilated convolutions, skip connections and deconvolutions are avoided. Dilations

larger than four pixels had no positive impact on the results. For all non-linear

layers, the rectified linear unit (ReLU) is used as activation function. Reduction of

covariate shift within the network is performed by batch normalization layers after

each convolutional layer with a non-linear function. The Dropout probability [62] of

data points was set to p = 0.5. Best results were achieved using Dropout of data

points along all spatial and feature dimensions, compared to Dropout only along the

spatial or feature dimensions, and any kind of Dropout within the residual blocks.

Regularization of the weights using an `2-norm did not improve the performance.

Weights in layers with ReLU activations are initialized utilizing HE initialization [59].

The other weights are initialized with Xavier initialization [178]. A fully convolutional

residual block performs in their non-linear branch twice a 1x1 convolution, which is

equivalent to applying a fully connected layer to each pixel. The resulting features

are spatially weighted by a 3x3 convolution. Finally, a sigmoid function is used to

scale the output to the range of polar coordinates, used for the Hough transform.

Separate branches for radius and angle prediction is employed. Hence, features are

shared between these branches, but the final non-linearities disentangle radius and
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angle. A benefit of using two branches is that a factor of two more neurons in the

network can be exploited. The results of the two branches are combined again in the

voting layer. The voting layer can be applied at a lower resolution since cells cover a

significant number of pixels there. This step further reduces the computation time.

Afterwards, the result is upsampled with bilinear interpolation to match the original

resolution.

In the proposed method, a formulation of the Hough transform in polar coordi-

nates (r, ϕ) is used:

v(i, j) =

∫ rt

r=0

∫ 2π

ϕ=0

δ(

(
i

j

)
− g(i+ r · cos(ϕ),

j + r · sin(ϕ))) dϕ dr

(3.2a)

g(i, j) =

(
i

j

)
+ rij ·

(
cos(ϕij)

sin(ϕij)

)
(3.2b)

where v ∈ R is the voting function, g ∈ R2 is the polar to Cartesian transform,

δ the Dirac delta function, and rij ∈ R and ϕij ∈ R are the predicted relative

vote coordinates for each pixel with the indices i and j. The voting function can

be efficiently implemented by separating g from the pixel-wise vote collection and

masking with the predicted radius r ∈ R2:

v(i, j) =
Nx∑
x=1

Ny∑
y=1

δ(

(
i

j

)
− g(x, y) · H(Rt − rxy)) (3.3)

where H ∈ {0, 1} denotes the Heaviside step function and rxy is the radius with

indices in Euclidean space. By using H, it is ensured that votes are collected only

within a region of radius Rt in an image of dimensions Nx ×Ny.

The optimization of the weights is formulated as a two-task regression problem

with loss function L:

L =
1

M

M∑
i=1

(
1

k
‖∆ri‖2

2 −
λ

k2

(
vec(∆ri) · 1k

)2

+
1

kiϕ
‖∆ϕi‖2

2 −
λ

kiϕ
2

(
vec(∆ϕi) · 1k

)2
)

(3.4a)

k = NxNy (3.4b)

kiϕ = ε+ vec(H(rt · 1k×k − rigt)) · 1k (3.4c)
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∆ri = ri − rigt (3.4d)

∆ϕi = (ϕi −ϕi
gt)�H(rt · 1k×k − rigt) (3.4e)

where M is the number of samples in a mini-batch, k the number of pixels in input

i, 1k a vector of length k of ones, 1k×k a k × k matrix of ones, vec denotes the

vectorization of a matrix, and λ is a hyperparameter. Since not all pixels contribute

to the angle related loss, the normalization factor kiϕ is introduced. To prevent a

division by zero, a constant ε = 10−8 is used. The deviation matrices ∆ri and ∆ϕi

in (3.4d), (3.4e) of dimension Nx ×Ny of the predictions for the radius ri and angle

ϕi to the ground truth rigt and ϕi
gt are optimized using the scale-invariant mean

squared error loss function in (3.4a). The loss function is a modification of the one

in [179], which is invariant with respect to the global scale of the feature maps. To

apply the binary mask represented by H for ∆ϕi, the Hadamard product (�) is used.

For better convergence, the radius r is normalized to the unit circle. The model is

trained using the Adam optimizer [55] with an initial learning rate linit = 0.001 as

well as β1 = 0.9 and β2 = 0.999.

3.4 Grading of Whole-Slide Images based on Mitotic

Cell Counts

Breast cancer is the most common type of cancer and the primary cause for cancer

deaths of women worldwide [180]. The progression of the disease is quantified by

pathologists using whole-slide images (WSIs) of tumors and lymph nodes, which are

stained with hematoxylin and eosin (H&E). Tumor growth is an important indicator

for determining the prognosis of breast cancer patients. A higher proliferation rate is

generally related to a worse prognosis due to increased probability for cancer relapse.

Therefore, the quantification of the proliferation rate is an important biomarker to

determine a suitable therapy. Currently, pathologists manually count mitotic cells in

hematoxylin and eosin (H&E) stained histological slide preparations. Automation

of this process is important and involves the detection of mitotic cells. Several

approaches for cell detection in tissue microscopy images exist (e.g., [111, 173, 174]).

Especially for mitosis detection several challenges have been conducted to compare

available methods using image sections [181, 182, 157], but complete whole-slide

images (WSI) were not used. In this section, a new approach is described, which

combines a threshold-based attention mechanism with a deep neural network (DNN)

for mitotic cell detection and grading of WSIs. The method was published in

Wollmann et al. [17, 5]. Compared to previous approaches, the proposed method

conducts fast feature extraction, multi-scale factor disentangling, and voting in a

DNN. Training of the mitotic cell detection method uses only ground truth centroids

and corresponding original images. Detection of mitotic cells is performed on
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Figure 3.3: Workflow for grading breast cancer WSIs based on mitotic cell counts.

automatically determined regions of interest (ROIs) of WSIs. The detections are

summarized over a selection of subregions within the ROI and classified into a

proliferation score by a shallow decision tree. An additional dataset with annotated

tumor grades is used to train the decision tree.

The proposed method uses a threshold-based attention mechanism to select a ROI

with subregions of size 2mm2 from a whole-slide image (WSI). A machine learning

method is used to predict the centroids of mitotic cells within each subregion. Using

a shallow decision tree a tumour classification is obtained for the WSI. An overview

of the workflow is shown in Figure 3.3.

ROI Selection

For selecting an appropriate region of interest (ROI), a multi-scale preprocessing

approach is used. Preprocessing is performed on the highest image scale to remove

artifacts like ink or non-flat tissue on the slide. In the first step, for removing ink

artifacts, thresholding is applied to a ratio image (intensities of the red channel

divided by the intensities of the green channel), which yields a mask. Within this

mask the intensities are set to the maximum intensity in each of the three color

channels of a WSI. Since the maximum intensity corresponds to background, the

masked pixels are not considered in the subsequent analysis (Figure 3.4).

The second step of the preprocessing removes black structures. To this end, the

intensities of the red and blue channel are added, and each pixel with an intensity

below the 1 % percentile of the intensity histogram is replaced by the maximum

intensity of the original image. This step removes black structures like flipped tissue.

Afterwards the image is thresholded based on the mean intensity of the red and blue

channel. For determining the threshold, the 2 % percentile of the histogram is used.

The resulting image is smoothed with a Gaussian filter and downscaled so that ∼1.5

pixels represent 2mm2 (high power field) (Figure 3.5). For this lower scale image,
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(a) Original WSI (b) Detected artifacts (white)

Figure 3.4: Example image demonstrating the artefact detection mechanism.

ten pixels with the highest intensities are selected and the corresponding 2mm2

subregions are extracted from the original high-resolution image. With this scheme

the subregions have an overlap of up to 50 %. Finally, the subregions are rescaled to

the pixel size the mitotic cell detector was trained on.

Mitotic Cell Detection and Counting

Mitotic cell detection is conducted using deep residual Hough voting presented in

Section 3.3. The network consists of a downsampling section, a factor disentangling

section, and a pixelwise classification section with two branches. Fast feature

(a) Original WSI (b) Segmented tissue
(white)

(c) Attention map for
WSI (white)

(d) Selected ROI
within WSI
(white)

Figure 3.5: Example demonstrating the attention mechanism.
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extraction is achieved by strided convolutions. In the proposed method, a formulation

of the Hough transform in polar coordinates is used, which includes a voting procedure

that exploits the predicted relative vote coordinates for each pixel. The optimization

is formulated as a two task regression problem. The model is trained using the Adam

optimizer [55]. Deep residual Hough voting is presented in more detail in Section 3.3.

Mitotic Cell Count Thresholding

To determine the final score for the whole slide the 95 % percentile of the cell counts

of the analysed subregions is calculated. This feature is used within a shallow decision

tree with two thresholds to obtain a score between 1 and 3. The lower threshold

turned out to be 6 and the upper was 10. These thresholds match the guideline

for grading tumors of [183], which gives a score of 1 for a cell count below 6 cells

per high power field and a score of 3 for a cell count above 10 cells per high power

field. The selection of the 95 % percentile was determined by performing a grid

search over different percentiles 70 % - 95 %, mean, median, and maximum of the

detected mitotic cell counts per image using the ground truth from the training

dataset. Corresponding thresholds were determined by a grid search between 0 and

30.

3.5 Deep Consensus Network for Particle and Cell

Detection

To determine object counts or object density, usually a characteristic location

such as the object’s centroid is used (e.g., [111, 112, 113, 114, 115, 116, 117, 118]).

Typically, classification networks (e.g., [92, 29]) are employed, that use a sliding

window scheme to predict the presence of an object of interest within the window

[111, 113, 114, 115, 116]. In contrast, centroid-based methods based on hourglass

networks (e.g., [16, 120, 121, 122, 10]) do not rely on a sliding window scheme and are

faster since multiple objects are detected at once by sharing full-image convolutional

features computed in a single forward pass. In Section 3.2 a method for particle

detection and in Section 3.3 a method for mitotic cell detection, which do not rely on

a sliding window scheme, are presented. A more general method for object detection

in microscopy images could be used for both particle detection and cell detection.

For images of natural scenes, the development of detection methods based on

predicting the bounding box of objects was strongly driven by the PASCAL VOC

[184] and MS COCO [33] challenges. In recent years, the leading methods were

two-stage or one-stage detectors based on convolutional neural networks. Two-stage

detectors like Faster-RCNN [23] use a region proposal network (RPN) on top of a

classification network (backbone network) to propose detection hypotheses. Non-

Maximum Suppression (NMS) is employed to filter the hypotheses, and a second
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network is used on the cropped image patches to refine the prediction. Multiple

bounding box priors called ”anchors” enable the network to focus on confidence score

prediction instead of bounding box regression, which showed improved performance

[23]. The variations of the You Only Look Once (YOLO) network [24, 103, 104]

that exploit a spatial grid can be trained faster, since they are one-stage schemes

and do not require performing NMS during training. One-stage networks use a

coarse spatial grid, where only one object hypothesis is obtained per bin. Gradients

are backpropagated only to bins where an object is present in the ground truth.

The Single Shot Detector (SSD) [105] network applies an RPN to multiple scales

of their backbone network to extract object hypotheses. In the Feature Pyramid

Network (FPN) [106] a contracting and expanding network path are combined with

skip connections to retain fine spatial details. An RPN is applied to each scale

to extract object hypotheses. RetinaNet [25] was the first one-stage network that

outperformed two-stage detectors by using their proposed Focal loss. The Focal

loss tackles the heavy class imbalance in object detection where most of the object

hypotheses are negatives. Due to sparse gradients and heavy class imbalance, the

training of detection networks from scratch is difficult. Therefore, detection networks

are typically pre-trained on an auxiliary task like classification [23] or segmentation

[185]. However, compared to object detection using bounding boxes much less work

exists on centroid-based object detection. Since centroid-based object detection has

similarities to object detection using bounding boxes, while the enclosing region of

the object is not predicted, advances for object detection using bounding boxes (e.g.,

FPN, anchors, NMS) could be transformed and exploited to improve centroid-based

object detection.

In this section, a novel deep neural network for centroid-based object detection

is introduced, which relies on a consensus of object detection hypotheses and is

denoted as Deep Consensus Network (ConsensusNet). Compared to previous ap-

proaches, object hypotheses for multiple centroid anchors are determined at multiple

image scales using a novel Centroid Proposal Network (CPN). The hypotheses are

aggregated in an differentiable voting space and a consensus is formed. A novel

anchor regularization scheme is introduced, to increase the robustness of training. To

retain fine spatial details, a modified FPN is used as backbone network. The method

can be trained end-to-end without pre-training. During inference, a centroid-based

NMS is used to remove conflicting hypotheses. An algorithmic improvement of NMS

combined with consensus voting that requires much less computing time than a

vanilla NMS is proposed. In addition, novel loss function is proposed, which is derived

based on insights on existing loss functions. The novel loss function is based on

Normalized Mutual Information (NMI) and emphasizes class balance and correlation.

The method has been submitted for publication [2].
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Overview of the Network Architecture

An overview of the proposed deep neural network architecture is given in Figure 3.6.

The proposed Deep Consensus Network has a similar architecture as RetinaNet [25]

and uses a Feature Pyramid Network (FPN) [106] to extract features at multiples

scales from a ResNet-50 [29] backbone with the squeeze-and-excite mechanism

[186] for the residuals. To enable detecting very small objects, a high-resolution

variant of the FPN is used. For the high-resolution Deep Consensus Network, an

additional upsampling layer to restore the same spatial resolution as the input is

included. In addition, to retain spatial details, the first two max pooling layers of

the network are removed and the filter size in the first layer was set to 3× 3 pixel.

Group normalization [187] and Leaky ReLU activation functions [58] are used. The

extracted feature maps at each scale are forwarded to the proposed Centroid Proposal

Network (CPN). In comparison to RetinaNet, the CPNs at each scale do not share

weights to capture different representations at each scale since all images within

the considered microscopy datasets have the same magnification. In contrast to an

RPN which predicts bounding boxes, the CPN predicts a set of centroids v′ with

corresponding confidence scores P (v′). Similar to the RPN in RetinaNet, anchors

as priors, but with a different configuration, are used. Figure 3.7 shows the anchor

configuration employed in the proposed network. For each spatial position, Na = 17

anchors in total including one anchor without offset, eight anchors with length 0.5

pixels and eight anchors with length 1 pixel, are used. The offset vectors are rotated

so that they well cover a unit disk. The i-th anchor ai ∈ R2 is applied to the i-th

Figure 3.6: Deep Consensus Network architecture. A FPN is used for multi-scale
feature extraction, CPNs for predicting object centroids, consensus voting
for aggregation of predictions, and centroid-based NMS for eliminating
conflicting proposals.
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predicted offset vector v′i ∈ R2 yielding:

vi = s (v′i + ai) + pos(v′i) , (3.5)

where pos(v′i) is the spatial position of the offset vector and s denotes a scaling factor

to normalize the distribution of v′i. To encourage the network to favour anchors

pointing close to the object, the confidence scores P (v′i) of large regression values

for the magnitude of v′i are penalized (regularized) to compute the confidence score

of vi:

P (vi) = P (v′i) e
− ln(2)‖v′i‖ (3.6)

For numerical reasons, the CPN predicts the logit (logarithm of the odds) x′i =

Logit (P (v′i)) ∈ R instead of directly predicting the confidence score P (v′i) ∈ R[0,1].

Thus, the regularization in (3.6) is performed in logit space yielding the logit:

xi = Logit (P (vi)) = Logit
(
P (v′i) e

− ln(2)‖v′i‖
)

= Logit (P (v′i)) + Logit
(
e− ln(2)‖v′i‖

)
= x′i + ln

(
e− ln(2)‖v′i‖

)
− ln

(
1− e− ln(2)‖v′i‖

)
= x′i − ln(2) ‖v′i‖ − ln

(
1− e− ln(2)‖v′i‖

)
(3.7)

The feature extractor of the proposed CPN is different from the RPN in RetinaNet

by concatenating the regressed No offsets v′ ∈ RNo×2 with the features extracted from

the FPN output xin ∈ RNo×p, with p feature maps, before predicting the logit vector

x′ ∈ RNo of the confidence scores P (v′) (see Figure 3.8). This has the advantage

that the confidence score branch of the proposed network can condition confidence

scoring on the regression results.

Figure 3.7: Anchors used as voting priors.
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Figure 3.8: Centroid Proposal Network (CPN) and subsequent anchor and regular-
ization steps. The offset vectors v′ predicted by the CPN are combined
with their corresponding anchors and the predicted confidence scores
P (v′) are regularized using the magnitude of the offset vectors v′.

Deep Multi-Scale Consensus Voting

Previous deep learning methods for object detection (e.g., [23, 24, 105, 106, 25])

concatenate all proposals and use Non-Maximum Suppression (NMS) to remove

conflicting proposals. Therefore, all information except the highest scoring proposals

are discarded. Methods like [185] improve the results by ensembling conflicting

proposals of multiple models. In the proposed approach, an extension of the voting-

based approach in [16] for ensembling arbitrary many proposals from multiple voting

anchors and image scales and is thus denoted as Deep Multi-Scale Consensus Voting

is used. Compared to the previous approach the proposed novel approach is more

general and trainable end-to-end, since the proposed voting scheme is differentiable.

After consensus voting, NMS is performed on the few ensembled proposals to eliminate

semantically conflicting detections.

By exploiting the spatial structure of an image, the number of proposals can be

greatly reduced prior to NMS. An adaptive voting space with spatial bin size so that

two neighboring detections within a minimum distance d do not fall in the same bin

is leveraged. Therefore, increasing the minimum distance between objects decreases

the number of bins of the voting space. Multiple votes and corresponding confidence

scores calculated by the previous steps in (3.5) and (3.7) can fall into the same bin.

Consensus Voting is used to ensemble the votes for each bin. Assume that the CPNs

yield in total N votes over all image scales and anchors in a single bin of the voting

space, where the i-th vote corresponds to the vector vi ∈ R2 and confidence score

P (vi) ∈ R[0,1]:

P (vi) = Sigmoid(xi) =
exi

exi + 1
(3.8)

where xi is the i-th logit predicted by the CPN. If the votes are independent and the

deviations ∆vi of the votes vi from the mean v ∈ R2 are normally distributed with
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the same standard deviation σv, we can model the confidence scores P (vi) using the

non-normalized Gaussian distribution, which ensures that P (vi) is in R[0,1]:

P (vi) =
exi

exi + 1
= e

− ‖∆vi‖
2

2σ2
v (3.9)

Using (3.9) we can derive:

‖∆vi‖2 =− 2σ2
v ln(P (vi)) = −2σ2

v ln

(
exi

exi + 1

)
=− 2σ2

v(xi − ln(exi + 1))

(3.10)

and compute the weighted arithmetic mean of the votes vi from weighted least

squares:

v =

∑N
i=1

vi
‖∆vi‖2∑N

i=1
1

‖∆vi‖2
=

∑N
i=1

vi
xi−ln(exi+1)∑N

i=1
1

xi−ln(exi+1)

(3.11)

In addition, using error propagation by taking the weighted mean of the squared

deviations:

‖∆v‖2 =
N∑
i=1

(
∂v

∂vi
‖∆vi‖

)2

=
N∑
i=1

(
1

‖∆vi‖2∑N
j=1

1
‖∆vj‖2

‖∆vi‖

)2

=

(
N∑
i=1

1

‖∆vi‖2

)−1

=

(
N∑
i=1

1

−2σ2
v(xi − ln(exi + 1))

)−1

,

(3.12)

we can determine the confidence score for the weighted arithmetic mean v in (3.11):

P (v) = e
− ‖∆v‖2

2σ2
v = e

1∑N
i=1

1
xi−ln(exi+1) (3.13)

Note that if the number of votes is N = 1, we obtain:

P (v) = ex1−ln(ex1+1) =
ex1

ex1 + 1
= Sigmoid(x1), (3.14)

which is the standard Sigmoid function. However, the formulation in (3.11) and (3.13)

has several numeric issues. The overflow and underflow in the exponential and

logarithmic functions can be prevented by using different functions for positive and

negative values of xi exploiting the two definitions of the Sigmoid function:

Sigmoid(xi) =

{
1

e−xi+1
, xi > 0

exi
exi+1

, xi ≤ 0
(3.15)

In addition, Laplace smoothing [188] is used to avoid division by zero. Thus, the
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following formulation for Deep Multi-Scale Consensus Voting which is numerically

more robust than (3.11) and (3.13) is used:

v =

∑N
i=1 f(xi)vi∑N
i=1 f(xi)

, (3.16a)

P (v) = e
− 1∑N

i=1
f(xi) , (3.16b)

f(xi) =

{
1+ε

ln(e−xi+1)+ε
, xi > 0

1+ε
ln(exi+1)−xi+ε , xi ≤ 0

(3.16c)

where ε is a small constant (e.g., 10−6). The computation can be easily parallelized

on GPUs. Therefore, the proposed consensus voting scheme only introduces a minor

computational overhead compared to RetinaNet.

Fast Centroid Non-Maximum Suppression

For the proposed Deep Consensus Network a centroid-based Non-Maximum Sup-

pression (NMS) approach analogously to bounding-box based detection methods is

proposed. NMS is a greedy solution to the NP-hard weighted independent set prob-

lem ([189, 190]). However, still the computation time increases quadratically with

the number of objects. NMS can be separated into smaller problems by exploiting

the spatial structure of the input data. This reduces the algorithmic complexity

from logarithmic to linear in the best case, while the algorithmic growth rate in the

worst case does not increase. In the proposed approach, the predicted proposals

are arranged in a grid of bins by consensus voting. Clusters of proposals that are

spatially disconnected in the grid do not conflict. Therefore, resolving conflicts

by NMS can be performed separately for each cluster. In the proposed approach,

clusters are determined by connected component analysis after thresholding the

confidence scores using a threshold Ts. The NMS is performed in parallel on each

partition. The pseudocode for the proposed centroid-based NMS approach is outlined

in Algorithm 1. In the pseudocode, the function ”connectedcomponents” yields

connected components in a grid of binary values, ”dilation” performs morphological

dilation using a specified window size, and ”argmax” yields the index of the input

with the highest value.

Figure 3.9 shows the computation time for performing the proposed centroid-based

NMS approach compared to a vanilla NMS for an image of size 5000× 5000 pixels

averaged over 10 runs using a workstation with an Intel i7-8550U CPU and a NVIDIA

Geforce MX150. It can be seen that the vanilla NMS has quadratic growth with

increasing number of objects while the proposed NMS approximately yields linear
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growth.

Input: v = {v1, ...,vN}; P (v) = {P (v1), ..., P (vN )}; Ts; Td
v: initial centroids
P (v): confidence scores for centroids
Ts: threshold for confidence score
Td: threshold for minimum distance between two centroids
Output: v∗; P (v∗)
v∗ ← {};
P (v∗)← {};
for c in connectedcomponents(dilation(P (v) > Ts, Td)) do

vc ← v[c];
Pc ← P (v)[c];
v∗
c ← {};

while vc 6= {} do
m← argmax(Pc);
M← vc[m];
add = True;
for v∗

ci in v∗
c do

if ‖v∗
ci −M‖ ≤ Td then
add = False;
break;

end

end
if add then

v∗
c ← v∗

c ∪M;
P (v∗)← P (v∗) ∪ Pc[m];

end
vc ← vc\M;
Pc ← Pc\Pc[m];

end
v∗ ← v∗ ∪ v∗

c ;

end

Algorithm 1: Centroid Non-Maximum Suppression (NMS) pseudocode.

Figure 3.9: Computation time for the proposed centroid-based NMS vs. a vanilla
NMS. The standard deviation over 10 runs is shown by error bars.
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Normalized Mutual Information as Loss Function for

Classification

In object detection, the ratio of positive and negative samples is typically very

imbalanced. This is caused by many easy to classify background samples and

rare, difficult to classify foreground (objects) samples. To cope with imbalance

of the foreground and background class, previous methods perform scaling of the

Cross-Entropy loss. For example, [25] introduce a Focal loss that emphasizes hard

negatives (samples that are easy incorrectly classified):

FL(X,Y) = − 1

N

K∑
k=1

N∑
i=1

(1− Pk(Xi))
γ Pk(Yi) ln(Pk(Xi)). (3.17)

Pk(X) ∈ RN are the predicted probabilities for the samples X = (X1, ..., XN) and

Pk(Y) ∈ RN the ground truth probabilities for the labels Y = (Y1, ..., YN) of the

corresponding k-th class, N the number of samples, γ is the scaling (penalty) factor

for false negative predictions, and K the number of classes. Pk(Xi) and Pk(Yi) denote

the i-th probability of the k-th class for X and Y, respectively. In our application,

Pk(X) are the aggregated probabilities P (v) from consensus voting in (3.16b). The

Focal loss reduces the expected number of the positive predictions P (X|Y = 1) by

down-weighting the loss of true positives. Thereby, false negatives are emphasized.

The Focal loss was extended in [3] by improving the robustness of the training using

momentum-based optimizers:

NFL(X,Y) = −
∑K

k=1

∑N
i=1wFL(X,Y, k, i) ln(Pk(Xi))∑K
k=1

∑N
i=1wFL(X,Y, k, i)

(3.18a)

wFL(X,Y, k, i) = Pk(Yi) (1− Pk(Xi))
γ . (3.18b)

However, the loss functions used in ([25, 3]) were derived without a probabilistic

interpretation. In the following, existing loss functions are analyzed and a novel

loss function for object detection within a Bayesian framework is derived. The loss

function is based on Normalized Mutual Information and copes with class imbalance

as well as emphasizes correlation.

First the Cross-Entropy loss function, which is often used in deep learning methods,

is considered. This loss can be formulated using the Bernoulli scheme for the positive

predictions:

P (X|Y = 1) ∝
K∏
k=1

N∏
i=1

Pk(Xi)
Pk(Yi) (3.19)

for K classes and N samples. We assume that the samples in X are identically
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distributed and independent. The negative log-likelihood of P (X|Y = 1) is equal to

the Cross-Entropy:

CE(X,Y) = H(Y) + DKL(X,Y) = − 1

N

K∑
k=1

N∑
i=1

Pk(Yi) ln(Pk(Xi)), (3.20)

where H(Y) is the entropy of Y, and DKL(X,Y) the Kullback-Leibler divergence.

Thus, minimizing the Cross-Entropy, maximizes the likelihood using the Bernoulli

scheme. However, this derivation assumes identically distributed samples within

classes which is often not the case in practice.

Other loss functions can be formulated based on the confusion matrix of the two

probability distributions of X and Y. The normalized confusion matrix in the binary

case is:

1

N

(
TP FP

FN TN

)
=

1

N

(∑N
i=1 P2(Xi)P2(Yi)

∑N
i=1 P2(Xi)P1(Yi)∑N

i=1 P1(Xi)P2(Yi)
∑N

i=1 P1(Xi)P1(Yi)

)

=
1

N

( ∑N
i=1 P2(Xi)P2(Yi)

∑N
i=1 P2(Xi)(1− P2(Yi))∑N

i=1(1− P2(Xi))P2(Yi)
∑N

i=1(1− P2(Xi))(1− P2(Yi))

)
,

(3.21)

where P2(Xi) and P2(Yi) are the predicted and ground truth foreground class probabil-

ities, respectively, and P1(Xi) and P1(Yi) the predicted and ground truth background

class probabilities, respectively, which are used to estimate the true positives (TP),

false positives (FP), true negatives (TN), and false negatives (FN). If we assume

that the entries in the normalized confusion matrix follow a multinomial distribution,

the common Dice loss can be derived as shown in the following.

The expectation of Pk(Y|X) of a particular class k can be formulated using a

Bernoulli scheme with a beta prior and yields the Precision [191]:

Preck(X,Y) = Pk(Y|X) =
N∑
i=1

Pk(Yi)Pk(Xi|X) (3.22)

where Pk(Xi|X) can be estimated empirically by Pk(Xi|X) = Pk(Xi)/
∑N

j=1 Pk(Xj).

The beta prior is a conjugate prior probability distribution for the Bernoulli distribu-

tion, since it is in the same probability distribution family. We can also formulate

the expectation of P (X|Y) which yields the Sensitivity:

Sensk(X,Y) = Pk(X|Y) =
N∑
i=1

Pk(Xi)Pk(Yi|Y) (3.23)

where Pk(Yi|Y) can be estimated empirically by Pk(Yi|Y) = Pk(Yi)/
∑N

j=1 Pk(Yj).

Both (3.22) and (3.23) should be optimized to increase the joint occurrence of X

and Y. Taking the (negative) arithmetic mean of Precision and Sensitivity in (3.22)
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and (3.23) results in a loss function with a symmetric distance measure regarding X

and Y:

Larith(X,Y) = −1

2

K∑
k=1

(Preck(X,Y) + Sensk(X,Y)) (3.24)

Another possibility of combining Precision and Sensitivity is using the minimum of

them:

Lmin(X,Y) = −
K∑
k=1

min {Preck(X,Y), Sensk(X,Y)} (3.25)

Taking the minimum has the advantage compared to the arithmetic mean that the

relatively rare worst case (maximum loss) is emphasized over the frequent average

case. Alternatively, the harmonic mean can be used which yields values between

the arithmetic mean and the minimum, if the values are in R+
0 , which is the case

for (3.22) and (3.23). Using the harmonic mean leads to the multi-class Dice loss

[191, 72]:

LDice(X,Y) =− 2
K∑
k=1

(
1

Preck(X,Y)
+

1

Sensk(X,Y)

)−1

=− 2
K∑
k=1

∑N
i=1 Pk(Xi)Pk(Yi)∑N

i=1(Pk(Xi) + Pk(Yi))

(3.26)

However, the estimators for Precision and Sensitivity of the Dice loss in (3.26)

have been derived using Bayesian inference of a Bernoulli scheme with a beta prior

[191]. Thus, the estimators are overoptimistic and focus on the true positives in the

confusion matrix while the other entries are not considered [192]. Therefore, the

Dice loss is not optimal to emphasize hard negatives as in the Focal loss [25].

Another possibility for a loss function is using the Matthews Correlation Coef-

ficient (MCC), which considers all entries in the confusion matrix [193]. MCC is

defined based on the geometric mean of the Markedness and Informedness regression

coefficients of the problem and its dual [192]. Analogously to the multi-class Dice

loss in (3.26), we can formulate the multi-class MCC loss for K classes to be defined

as:

LMCC(X,Y) =

−
K∑
k=1

K∑
l=1

K∑
m=1

gkk glm− gkl gmk√√√√√ K∑
k=1

(
K∑
l=1

glk

) K∑
m=1
m 6=k

K∑
n=1

gmn


√√√√√ K∑

k=1

(
K∑
l=1

gkl

) K∑
m=1
m 6=k

K∑
n=1

gnm


(3.27a)
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gkl =
N∑
i=1

Pk(Xi)Pl(Yi) (3.27b)

The binary MCC is equivalent to the discrete case of the Pearson Correlation

Coefficient:

ρX,Y =
cov(X,Y)

σX σY

(3.28)

which describes a normalized version of the linear dependency of the two variables

X and Y using their variances σX, σY and covariance cov(X,Y). Therefore, if

one variable is known, then the other variable can be predicted. The square of the

MCC is related to the χ2 statistic, which is the likelihood-ratio test statistic for χ2

distributions. Thus, the MCC does not include an additional beta prior like the

Dice. Due to the underlying assumptions, the MCC assumes homoscedasticity, which

means that the sum of squared deviations for each class has a Gaussian distribution,

with parameters uniformly distributed over all classes. In practice, a Gaussian

distribution cannot be assumed in the presence of hard negative samples. Therefore,

the MCC is prone to outliers due to hard negative samples and label noise.

Based on the analysis of loss functions above and the gained insights, a novel loss

function assuming a Bernoulli distribution instead of the Gaussian distribution as

for the MCC is proposed. The Bernoulli distribution is better suited in the case

of a small number of samples [194]. For a Bernoulli trial, the analog concept of

covariance is the mutual information, which represents the information gain knowing

both variables instead of just one:

MI(X,Y) =
N∑
i=1

P (Xi, Yi) log
P (Xi, Yi)

P (Xi)P (Yi)
(3.29)

MI assembles the popular Cauchy-Schwarz divergence [195] weighted by the joint

probability of X and Y. Compared to the Cauchy-Schwarz divergence, MI maximizes

the joint probability of X and Y in addition to the angle between marginal and joint

probabilities, which turned out to be beneficial in our multi-task learning problem.

Moreover, a complete geometric interpretation of the Cauchy-Schwarz divergence

and MI exists [195]. Since discrete events are considered, MI cannot be calculated

pointwise. Instead, MI is determined based on the confusion matrix in (3.21) and

assume independence between X and Y. The summand for the i-th entry in the

confusion matrix is computed by:

MIi(Xi, Yi) = P (Xi, Yi) log
P (Xi, Yi)

P (Xi)P (Yi)
(3.30)

A normalization of MI analogously to the Pearson Correlation Coefficient in (3.28) is
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suggested by using the uncertainty coefficients of MI [196]:

CXY(X,Y) =
N∑
i=1

MIi(Xi, Yi)

CE(Yi, Yi)
, CYX(X,Y) =

N∑
i=1

MIi(Xi, Yi)

CE(Xi, Xi)
(3.31)

where CE is the Cross-Entropy defined in (3.20). The uncertainty coefficients in (3.31)

can be combined in different ways yielding different variants of a normalized loss

function. Using the arithmetic mean leads to:

NMIAM(X,Y) =
1

2

N∑
i=1

MIi(Xi, Yi)

(
1

CE(Xi, Xi)
+

1

CE(Yi, Yi)

)
, (3.32)

the geometric mean yields:

NMIGM(X,Y) =
N∑
i=1

MIi(Xi, Yi)√
CE(Xi, Xi) CE(Yi, Yi)

, (3.33)

and the harmonic mean leads to:

NMIHM(X,Y) = 2
N∑
i=1

MIi(Xi, Yi)

CE(Xi, Xi) + CE(Yi, Yi)
(3.34)

The arithmetic mean in (3.32) is not well suited since, similar to the Dice and MCC

loss, the aim is to increase the influence of the estimator with the lowest value onto

the overall loss. Instead, we can utilize the geometric or harmonic mean. In the

following, it is shown that the harmonic mean in (3.34) is better suited since the

geometric mean in (3.33) generally increases the complexity of the loss surface and

therefore the expected number of local minima.

Without loss of generality, we show this for two functions f(x) and g(x) ∈ R+
0 .

Assuming that f(x) and g(x) are presented by Taylor series (polynomials) with

degrees m and n of the original functions, the derivative (gradient) for the geometric

mean can be calculated as:

∂

∂x

(√
f(x)g(x)

)
=
g(x)f ′(x) + f(x)g′(x)

2
√
f(x)g(x)

(3.35)

The polynomial complexity of (3.35) can be determined by analyzing and summing
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up the degree (deg) of each term:

deg

(
g(x)f ′(x) + f(x)g′(x)

2
√
f(x)g(x)

)
= max{(n+m− 1), (m+ n− 1)} −

(
n+m

2

)
= n+m− 1− n+m

2

=
n+m

2
− 1 (3.36)

The gradient of the harmonic mean is given by

∂

∂x

(
2f(x)g(x)

f(x) + g(x)

)
=

2(g(x)2f ′(x) + f(x)2g′(x))

(f(x) + g(x))2
(3.37)

and the polynomial degree is:

deg

(
2(g(x)2f ′(x) + f(x)2g′(x))

(f(x) + g(x))2

)
=

max{(2n+m− 1), (2m+ n− 1)} − (2 max{n,m}) (3.38a)

and without loss of generality for n ≤ m we obtain:

deg

(
2(g(x)2f ′(x) + f(x)2g′(x))

(f(x) + g(x))2

)
=− 2m− 1 +

{
2n+m ,n ≥ m

2m+ n , otherwise

= 2m+ n− 2m− 1

= n− 1 (3.38b)

Since n ≤ m is assumed, the degree of the harmonic mean n − 1 in (3.38b) is

always smaller or equal to the degree of the geometric mean (n+m)/2− 1 in (3.36).

Thus, the harmonic mean increases the complexity of the loss surface generally less

than the geometric mean. Therefore, the harmonic mean NMIHM is used in the

proposed approach. Usually, the mutual information is calculated over all entries in

the confusion matrix. This enables arbitrary correlation of variables, which is useful

in clustering where data to label association is unknown. However, in a supervised

setting as in our case the class affiliation is known. Therefore, we maximize NMIHM

over the diagonal entries of the confusion matrix (true positives and true negatives)

and minimize the off diagonal entries (false positives and false negatives) by weighting

the mutual information. However, in the experiments it was found that minimizing

the entries for the false positives reduced the performance. Therefore, only the

entries for the true positives and the true negatives are maximized. In the binary

case, where X = (X1, ..., XN) and Y = (Y1, ..., YN) denote the foreground class and

X− = (1−X1, ..., 1−XN) and Y− = (1− Y1, ..., 1− YN) the background class, we
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then have to minimize:

LNMI(X,Y) = −NMIHM(X,Y)− NMIHM(X−,Y−) (3.39)

Interestingly, due to the assumed multinomial model for the entries of the confusion

matrix, the mutual information of the confusion matrix is related to the G-test (up

to a factor of 2N) [197]. Therefore, maximizing the mutual information can be

interpreted as maximizing the G-test statistic. Moreover, mutual information can be

interpreted as the KL-divergence of the theoretical distribution from the empirical

distribution of X,Y pairs [198].

Note that normalization of the mutual information can also be based on interpret-

ing the mutual information as intersection of marginal entropies H(X) and H(Y). In

the context of classical medical image registration, [199] proposed a normalization

using the joint entropy H(X,Y) which is the union of H(X) and H(Y):

H(X) + H(Y)

H(X,Y)
= 1 +

MI(X,Y)

H(X,Y)
(3.40)

The normalized mutual information in (3.40) is the Intersection over Union (IoU),

while the proposed NMI in (3.34) corresponds to the Dice of the marginal entropies.

In general, IoU tends to penalize single estimates more than the Dice. In our ap-

plication, the estimation is performed for each batch. The Dice tends to be closer

to the average model performance, while the IoU is closer to the worst case model

performance. Thus, NMI in (3.34) is generally more robust to changes among batches

compared to (3.40).

The derived loss function LNMI in (3.39) emphasizes class balance and cor-

relation of X and Y. To achieve smooth predicted probabilities, the loss function

is combined with the binary Cross-Entropy and balance it so that the gradients

of LNMI and CE yield approximate equal contribution. The novel loss function for

classification (cls) is then given by:

Lcls(X,Y) =
3

4K
LNMI(X,Y) +

1

4N
CE(X,Y), (3.41)

where K is the number of classes and N the number of samples. Figure 3.10 shows

the gradient of CE, LDice, LNMI, and Lcls for two samples Xi, Yi in batches of samples

with varying class balance. In contrast to the other losses, CE is agnostic to class

imbalance. In addition, LDice and LNMI are penalizing class imbalance more than

incorrect classification. Lcls balances well between penalizing incorrect classification

and class imbalance.
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Figure 3.10: Gradient of CE, LDice, LNMI, and Lcls calculated on samples Xi, Yi
within batches X,Y with class balance of 0.01, 0.50, and 0.99. The
curve where x is equal to y is marked in black.

Model Training

The proposed Consensus Voting Network is trained by jointly performing regres-

sion (reg) of object centroids and classification (cls) based on corresponding pre-

dictions of confidence scores. For regression, the Charbonnier loss function [200]
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is adopted which serves as a smooth approximation to the Huber loss for robust

regression [75]:

Lreg(v,vGT) =
N∑
i=1

h(vGT
i , Td)

1

NTd

∥∥∥∥∥∥
√

1 +

(
2 (vi − vGT

i )

Td

)2

− 1

∥∥∥∥∥∥
1

(3.42)

where v denotes the aggregated predicted votes, vGT the ground truth votes, and

h(vGT
i , Td) an indicator function which is set to one if the length of vGT

i is smaller

than Td (minimum distance between two detections). The ground truth votes are the

relative offset vectors of each anchor to the nearest ground truth detection. The confi-

dence scores are optimized using the NMI-based classification loss Lcls(P (v), P (vGT))

in (3.41), where P (v) are the aggregated predicted confidence scores and P (vGT) the

ground truth confidence scores. The i-th ground truth confidence score is calculated

by:

P (vGT
i ) = z exp

(
− ‖vi − vGT

i ‖2
2

2(Td/(4
√

2))2

)
, (3.43)

where z is an indicator variable which is set to one if an object is present in the

ground truth. The final multi-task loss function L is a combination of the NMI-based

loss in (3.41) and the regression loss in (3.42):

L = Lcls + Lreg (3.44)

The multi-task loss is minimized using the AMSGrad optimizer [56] with decoupled

weight decay w = 10−4 [61] and a learning rate of linit = 0.0001 as well as β1 = 0.975

and β2 = 0.999. The training datasets are augmented by random cropping, brightness

changes, contrast changes, flipping, and rotation.
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Images

4.1 Overview and Task Description

Segmentation of prominent structures such as cells in microscopy images is a frequent

and important task. In particular, features computed from cell nucleus and cytoplasm

segmentations are used to determine phenotypes in quantitative microscopy.

There exist different types of methods for segmentation, but in recent years

methods based on deep learning dominate the field of computer vision. Segmentation

methods based on deep learning have been successfully used for cell segmentation

in microscopy images (e.g., [27, 110, 152, 153]). In microscopy images, context is

important to identify objects in complex data like histological images. Moreover,

splitting of close objects and robust fusion of information from multiple scales is

important to yield accurate object segmentations. In addition, usually, many clustered

objects of the same class have to be segmented in an image and object-wise readout

has to be calculated. Therefore, object instance identification is crucial. In this

chapter, novel methods for tackling these domain-specific challenges are presented.

In Section 4.2 an approach for increasing context information by increasing the

receptive field of hourglass-shaped neural networks is presented and a method for

automatic telomere quantification in glioblastoma and prostate tissue images is

described. In Section 4.3, an architecture which combines a CNN with an RNN for

robust fusion of information from multiple scales and a novel objective for multi-scale

feature extraction and iterative refinement of features are proposed. Approaches for

identification of clustered objects of the same class are investigated in Section 4.4.

The methods were published in Wollmann et al. [15, 13, 3].

4.2 ASPP-Net for Cell Segmentation

Splitting of cells is one of the major challenges in microscopic cell segmentation. For

example, the data from 3D tissue microscopy images of glioblastoma cells is very

challenging due to strong intensity variation, cell clustering, poor edge information,

missing object borders, strong shape variation, and low signal-to-noise ratio, which

can be seen in Figure 4.1. The receptive field of a CNN has to be relatively large

to collect enough clues in terms of context to determine if a pixel is an object

61



4 Segmentation of Microscopy Images

(a) Original image (b) Manual annotation

Figure 4.1: DAPI channel of original tissue image of glioblastoma cells and ground
truth annotation.

border. Therefore, a novel deep neural network based on atrous spatial pyramid

pooling (ASPP) [28] for cell segmentation is introduced in this thesis. The work has

been published in [15, 13].

The proposed deep learning method ASPP-Net combines a U-Net [27] with batch

normalization [63], residual connections [29], and ASPP [28]. ASPP has the ad-

vantage that large context information can be captured at multiple image scales.

An ASPP was modified by using dilations of 1, 2, and 4 as well as global average

pooling (pooling kernel equal to feature maps) to capture information from the

whole image (Figure 4.2b). After the ASPP block, Gaussian dropout (p = 0.5) is

employed. For the deep learning model, PReLU [59] was used as activation function.

Using a U-Net in conjunction with a PReLU activation function, it was observed

that the first layers mostly favour negative activations. However, PReLU increases

the computation time. Therefore, PReLU was only used in the first layer to make

use of negatively activated features while saving computation time. The network’s

architecture is outlined in Figure 4.2a. The network is trained using cross-validation

(a) Overview of ASPP-Net network architecture (b) Modified ASPP block

Figure 4.2: Deep neural network architecture of ASPP-Net
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and early stopping with the Adam optimizer and a learning rate of linit = 0.001 as

well as β1 = 0.9 and β2 = 0.999. The dataset is always split into 50 % training, 25 %

validation, and 25 % testing data. Datasets are augmented using random flipping,

rotation, cropping (200× 200 pixels), color shift, and elastic deformations.

The developed ASPP-Net was applied for telomere quantification in glioblastoma

and prostate tissue images. Telomeres form the end of linear chromosomes in humans

and prevent the DNA damage signaling machinery from recognizing chromosome ends

as double-strand breaks. During each cell replication, the number of 5’-TTAGGG-3’

sequence repeats of the telomeres decrease until it reached a critical limit, which

results in apoptosis. Cancer cells circumvent this control mechanism by telomerase,

which extends telomeres. Therefore, they can proliferate indefinitely. Mutations in the

promoter of the TERT gene as well as structural rearrangements of TERT enhancers

lead to telomerase [201, 202, 203]. On the other hand, alternative lengthening of

telomeres (ALT) mechanisms based on DNA recombination and repair processes

can also suppress telomerase, which can lead to heterogeneous telomere length

distribution within individual cells and across tumor cell populations [204]. For

example, PITX1 gene suppresses TERT activity by binding to the TERT promoter

[205]. Thus, studying telomere length and PITX1 expression could lead to better

understanding of TERT and yield a precursor for novel cancer therapies.

In this thesis, a workflow for automatic large scale quantification of telomere length

and PITX1 expression per cell is proposed. Tissue slides acquired from glioblastoma

and prostate tumors are considered which have been prepared and imaged similar

to the protocol in [206]. The proposed workflow outlined in Figure 4.3 projects

the 3D patches to 2D using maximum intensity projection (MIP). The patches are

stitched to a tissue core and the tumor is manually annotated by a pathologist.

The binary masks are sliced to match the patches and within the tumor regions

segmentation of cell nuclei is performed using ASPP-Net presented in Section 4.2.

Within the segmentation masks telomeres are detected using parametric intensity

models [207] and the mean intensity of PITX1 in the cell nuclei and telomere-wise

Figure 4.3: Workflow for telomere quantification in glioblastoma and prostate tissue
images.
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mean staining intensity is quantified. ASPP-Net is pre-trained on all training images

from the Cell Tracking Challenge [126]. Furthermore, the fractal nature of microscopy

images is exploited by training with progressive resizing from one quarter resolution

to the original resolution of the dataset, which significantly reduces training time.

Finally, the network is fine-tuned on the respective glioblastoma and prostate datasets

containing 50 manually annotated images each.

4.3 GRUU-Net: Integrated Convolutional and Gated

Recurrent Neural Network for Cell Segmentation

For cell segmentation, hourglass-shaped convolutional neural networks (CNNs) such

as the U-Net [27] or Deconvolution Network [125] are typically used, which aggregate

features at multiple image scales. In contrast, recurrent neural networks (RNNs)

iteratively refine the segmentation result by exploiting the recurrent structure and

mimic Conditional Random Fields (CRFs) or Level Sets [144, 145]. Often, RNN

approaches are used in a subsequent step to refine segmentation results from an

hourglass-shaped CNN [28]. Segmentation using multi-scale feature aggregation

by CNNs and iterative refinement performed by RNNs have distinct strengths and

weaknesses. It has been shown that CNNs are very effective in capturing hierarchical

patterns and extracting abstract features [46]. However, a drawback of standard

CNNs is that they handle each pixel as a separate classification task and do not

explicitly include global priors like shape. In contrast, RNNs iteratively minimize

global energies. Multiple weak predictions are combined and the final prediction is

iteratively improved using global priors like shape. Therefore, RNNs are robust to

local errors and require less parameters than CNNs. However, current RNN-based

approaches for segmentation [144, 145] incorporate features only at a single scale.

Combining iterative refinement with multi-scale feature aggregation and exploiting

their strengths could be beneficial. Recently, a CNN for segmentation of street

scenes in video images was proposed, which uses a full-resolution feature path

combined with hierarchical feature aggregation [140]. However, iterative refinement

of features is limited to summing up the extracted feature maps of each Full-

Resolution Residual Unit (FRRU). Other approaches perform full-resolution feature

extraction using dilated convolutions [88, 16]. However, with these approaches,

undesirable ”checkerboard” artifacts occur [130]. In addition, [88, 140, 16] do not use

an RNN for iterative refinement. Generally, deep neural networks tend to outperform

shallow networks [47], but due to non-linear activation functions and multiplications,

they suffer from gradient vanishing. In recent years, deep neural network (DNN)

architectures like ResNet [29] or DenseNet [30] have been proposed to improve the

gradient flow. Residual Connections [151] and Densely Connected blocks [132] have

been transferred from classification tasks to semantic segmentation.

Despite the effectiveness of deep learning methods dealing with large image datasets
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of natural scenes like ImageNet or MS COCO, it has been shown that training is

feasible with relatively small datasets. Common approaches for training on small

datasets are transfer learning, adversarial training, and data augmentation. For

microscopy images, it has been shown that transfer learning is not very effective, as

the properties of the images are quite different from natural images [124]. Adversarial

training improves the performance, but does not incorporate domain knowledge,

which can help to reduce overfitting (e.g., [155]). In contrast, data augmentation (e.g.,

[27, 13, 15]) is a computational efficient and effective method to increase the training

data set size, incorporate domain knowledge, and prevent overfitting. However, data

augmentation for real datasets poses a number of challenges. Enlarging the dataset

has to be performed with care to improve and not harm the training. In particular,

the utilized sampling strategy for the data can bias the network to a certain class

or feature. On the other hand, performing transformations like elastic deformation

can lead to degenerated objects. In addition, technical challenges arise when data

augmentation is performed with a huge amount of data. Heavy augmentation of

datasets can quickly result in millions of images, which exceed terabytes of data

volume, and even simple operations are then computationally demanding. By naively

transferring the generated images to the GPU memory for further processing, the

capabilities of the GPU are generally not fully exploited. Therefore, smart techniques

for efficient data streaming are required.

In this section, a novel deep neural network is introduced, which combines both

paradigms of multi-scale feature aggregation of CNNs and iterative refinement of

RNNs (Wollmann et al. [3]). Compared to previous approaches, in the proposed

method, a convolutional and a recurrent neural network are integrated to aggregate

features from different image scales. By employing Densely Connected blocks in

the CNN part and a gated recurrent unit (GRU) in the RNN part of the proposed

network, the number of learnable parameters and feature tensors are kept to a

minimum. Since the proposed network combines a GRU with a U-Net-like network,

it is denoted as GRUU-Net. A novel focal loss function is proposed for momentum-

based optimizers, which enforces the network to learn separating touching objects.

Also, a framework for performing data augmentation for generating huge amounts

of data is described. Pitfalls and solutions in data handling, dataset sampling, and

data transformations are described. A quantitative comparison with state-of-the art

methods using challenging real microscopy image data of DAPI stained cell nuclei

in glioblastoma tissue is performed. Insights into the proposed novel loss function,

the refinement process, and the proposed data augmentation scheme are provided.

In addition, the proposed method is benchmarked using a wide spectrum of all

22 real 2D and 3D datasets of the Cell Tracking Challenge, and yields superior or

competitive results for most of the datasets.
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4 Segmentation of Microscopy Images

Architecture of GRUU-Net

GRUU-Net has a fully convolutional network architecture as sketched in Figure 4.4.

The neural network unifies a recurrent processing stream with a pooling stream.

Both streams are based on different paradigms. The recurrent stream iteratively

refines features at full resolution, whereas the pooling stream extracts high-level

features within a large receptive field. The two streams are capable of exchanging

information on each resolution level. To maximize the gradient flow instead of

using a Feed-Forward Network [92], a Residual Network [29] is used, which is also a

recurrent network. Carefully designed recurrent units are capable of using a residual

as shown in [96]. Therefore, the principle of residual connections is kept throughout

the network to maximize gradient flow.

Recurrent Stream

The recurrent stream of GRUU-Net performs iterative refinement of initially extracted

features at full resolution. A GRU [208] is used and unfolded over all scales in both

bottom-up and top-down paths of the pooling stream. A GRU (Figure 2.5) computes

a candidate state h̃t ∈ Rm×n×p from the previous state ht−1 ∈ Rm×n×p and uses the

update gate zt ∈ Rm×n×p to weight the previous state and the candidate state. Instead

of a standard GRU, which operates in a fully-connected manner on a fixed image

size, a convolutional version of a GRU [89] is used. Therefore, all fully-connected

layers within the standard GRU are replaced by 3× 3 convolutions. First, the reset

gate rt ∈ Rm×n×p and update gate zt are calculated using the input xt ∈ Rm×n×p

Figure 4.4: GRUU-Net architecture. Red circles with an arrow pointing up-
ward/downward denote unpooling/pooling. At each scale Full-Resolution
Dense Units (FRDUs) extract features, which are aggregated by a gated
recurrent unit (GRU).
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and the parameters Wr ∈ Rk×k×p×g, Ur ∈ Rk×k×p×g, br ∈ R, Wz ∈ Rk×k×p×g,

Uz ∈ Rk×k×p×g, and bz ∈ R:

rt = σg(Wr ∗ xt + Ur ∗ ht−1 + br) (4.1)

zt = σg(Wz ∗ xt + Uz ∗ ht−1 + bz) (4.2)

σg(x) =
ex

ex + 1
(4.3)

where the operator ”∗” denotes convolution. Then, the candidate state h̃t is calculated

using the parameters Wh ∈ Rk×k×p×g, Uh ∈ Rk×k×p×g, bh ∈ R:

h̃t = σh(Wh ∗ xt + Uh(rt � ht−1) + bh) (4.4)

where the operator ”�” denotes the Hadamard product. For the activation function

σh, Leaky Rectified Linear Units (LReLU) [58] is used. Finally, the previous state

ht−1 and the candidate state h̃t are weighted to determine the new state ht ∈ Rm×n×p.

ht = zt � ht−1 + (1− zt)� h̃t (4.5)

Pooling Stream

The pooling stream consists of pooling blocks, Full-Resolution Dense Units (FRDUs),

and unpooling blocks. To increase the size of the receptive field and the number of

feature maps of the network, a bottom-up path with max pooling blocks is included.

To restore the original resolution and perform top-down inference, a top-down path

is constructed. Within this path, bilinear interpolation is performed instead of

transposed convolution as in the U-Net. In [106], it has been shown that both

bottom-up and top-down paths for feature extraction are important for capturing

the semantic information of an image. Both bottom-up and top-down paths consist

of alternating pooling/unpooling and FRDU blocks.

FRDU blocks (Figure 4.5) combine information from the recurrent stream with the

pooling stream and feed back the results to both streams. Therefore, the FRDU is

capable of integrating convolutional and gated recurrent neural networks. Thus, high

resolution information can be stored in the recurrent stream, and at the same time,

high-level features can be extracted in the pooling stream at multiple resolutions.

To combine the feature maps from both streams ht−1 and ot−1 ∈ Rm×n×p, max

pooling (arrow down) is used to map ht−1 to the resolution of ot−1 and concatenate

both feature maps. Afterwards, a batch normalized (BN) 1 × 1 convolution is

performed to create an embedding. Using bilinear interpolation instead of max

pooling decreased the stability of the training. Features ot ∈ Rm×n×p at the current

67



4 Segmentation of Microscopy Images

Figure 4.5: Full-Resolution Dense Unit (FRDU)

resolution are extracted by a Densely Connected block (Dense Block) [30] with k

layers. By including additional skip connections, the number of parameters can be

significantly reduced while increasing the depth of the network without harming

gradient flow or performance. The input xt of the GRU is extracted from ot by

performing a 1× 1 convolution and nearest neighbor interpolation (arrow up) to the

resolution of h. Using bilinear interpolation yielded inferior results.

Details on the layer configuration of the GRUU-Net are provided in Table 4.1. In

addition to the pooling and recurrent stream, the initial feature maps are extracted

by performing a 5× 5 convolution in the first layer. It has been shown that early

layers benefit from negative activations of the filters [141, 12, 13]. To minimize

the number of parameters while keeping the negative activations, Leaky Rectified

Linear Units (LReLU) [58] (see (2.9)) is used for all non-linear layers with a leakage

factor of 0.2. All filters are initialized using a scaled random normal distribution

[59]. The stability of the training is increased by using reflection-padding instead

of zero-padding. For computing the final prediction, a Residual Block and a 1× 1

convolution for the output x ∈ Rm×n×g of the recurrent stream is used followed by the

softmax function to compute the pixel-wise foreground and background probability.

The proposed network could be extended by using an additional class for object

borders. To better focus on the improvements of the base network, these extensions

were not explored, and no refinement with an additional CRF (e.g., [144]) was

performed.

Focal Loss Function

The network is trained using an extension of the focal loss in [107], which was

previously used for object detection in images of natural scenes using a stochastic

gradient descent optimizer. The focal loss is an extension of the cross-entropy loss,

which addresses very large class imbalance and performs implicit negative mining

by enforcing a higher loss on uncertain predictions. In this specific application,
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4 Segmentation of Microscopy Images

Table 4.1: GRUU-Net layer configuration. The superscripts denote the filter size for
the convolutions and the number of layers k in the Dense blocks of the
FRDU. The subscripts represent the number of output feature maps.
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32
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softmax

background pixels that are separating cells are rare compared to inner and outer

pixels of cells, and can hardly be learned via a traditional cross-entropy loss. Using

the focal loss relieves designing weighting functions as done in [27] and naturally

generalizes too many difficult applications. The focal loss in [107] was extended

by introducing a normalization and adapting it to semantic segmentation using a

momentum-based optimizer. The focal loss in [107] is defined by:

FL(X,Y) =

bmng∑
i=1

vec(−wFL(X,Y)� P (Y)� log(P (X)))i (4.6)

which is calculated pixel-wise probabilities over the vectorized (vec operator) predic-

tions P (X) ∈ Rb×m×n×g and ground truth P (Y) ∈ Rb×m×n×g, and summed up over

all pixels m× n, the two classes g = 2 (background, foreground), and the b samples
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within a batch, weighted using the weights:

wFL(X,Y) = P (Y)� (1− P (X))γ (4.7)

where 1 denotes a tensor of ones and γ the focusing parameter, and the cross-entropy:

CE(X,Y) =

bmng∑
i=1

vec(−P (Y)� log(P (X)))i (4.8)

Since scaling by wFL is equivalent to changing the learning rate, the focal loss

leads to an unequal learning rate over training batches. This can be seen when

inserting the focal loss FL into the equation of a standard gradient step to compute

a network weight W t ∈ R in one layer, using the learning rate l, the network

prediction P (Xt−1) ∈ Rb×m×n×g at iteration t − 1, and the corresponding ground

truth P (Yt−1) ∈ Rb×m×n×g:

W t ← W t−1 − l ∇W t−1

[
FL(P (Xt−1), P (Yt−1))

]
(4.9)

FL(Xt−1,Yt−1) =

bmng∑
i=1

vec(−wFL(Xt−1,Yt−1)� P (Yt−1)� log(P (Yt−1)))i

=

bmng∑
i=1

(−Diag(vec(wFL(Xt−1,Yt−1)))

vec(P (Yt−1)� log(P (Xt−1))))i

(4.10)

where the diagonal matrix Diag(vec(wFL(Xt−1,Yt−1))) performs an anisotropic scal-

ing of the cross-entropy. Momentum-based optimizers like ADAM [55] or AMSGrad

[56] use the loss to adjust the momentum and therefore the learning rate, which

interferes with the scaling by the focal loss. Combining focal loss and momentum-

based optimizers can therefore result in unstable training. To improve the stability

during training, normalizing the weights wFL to one within a batch using the sum

of all weights could be performed. Normalization of the focal loss for each image

independently was less stable. The same effect can be observed for the Dice loss

[72]. Incorporating an additional class weight did not improve the results in the

experiments. Thus, the proposed normalized focal loss L(X,Y) is defined by:

L(X,Y) =

∑bmng
i=1 vec(−wFL(X,Y)� P (Y)� log(P (X)))i∑bmng

i=1 vec(wFL(X,Y))i
(4.11)

In all experiments, a γ = 2 as in [107] was used. By normalizing wFL to one, the

trace of Diag(vec(wFL(Xt−1,Yt−1))) and thus the overall scaling remains the same

in all iterations. It was found that the proposed normalized focal loss improved the
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stability significantly.

Training

The datasets were augmented to increase the variability of the training data without

changing the semantic information. Since some data augmentation steps are computa-

tionally demanding, a scheme for distributed data augmentation (Figure 4.6) was de-

veloped. Data augmentation is usually done on a single machine (e.g., [209, 210, 211]).

When performing computationally demanding augmentation steps, the GPU cannot

be fully utilized. In this thesis distributed data augmentation using multiple com-

pute nodes, which has additional technical challenges (e.g., computation resource

management, job coordination, data transfer), is being utilized instead. A single

control node coordinates the data augmentation nodes, which generate augmented

training data, and the training nodes, which perform the actual training. Each data

augmentation node starts several threads that generate training data chunks in a

fast readable binary format (TFRecord). Files are transferred to the training nodes

via a shared file system and read by multiple CPU reader threads. These readers

constantly transfer the data to the GPU memory to prevent the GPU from being

Figure 4.6: Scheme for distributed data augmentation and training. Blue boxes are
CPU management processes and green boxes CPU compute threads. Grey
boxes represent pre-processed files and dotted lines indicate file access.
Red boxes represent GPU computations. Dashed rectangles denote
compute nodes connected by threads creation (solid lines) outlining the
hierarchy tree of thread forks.
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idle. Separate augmentation nodes for generating training data and validation data

are used. The nodes of the distributed system are connected by high throughput

InfiniBand, data is stored on up-to-date SSDs, and the CPUs are fourth generation

Intel Xeon CPUs. When using online multi-threaded data augmentation, a mean

GPU utilization of about 60% was observed. With the proposed distributed data

augmentation scheme, it was possible to increase the mean GPU utilization to 98%.

Note that the performance of multi-threaded and multi-machine data augmentation

strongly depends on the local hardware infrastructure. In this case, the utilized

distributed system has a negligible IO overhead, which is beneficial for distributed

data augmentation.

For training and validation, Ne epochs are randomly sampled from the original

images and respective ground truth data. Ne − 1 epochs are augmented using the

proposed distributed computing scheme. The last epoch is not augmented, so that

the network is fine tuned to the dataset. Instead of using whole images, small crops

with approximately the size of the largest object in the dataset are extracted. For

the regions of interest (ROIs), the bounding box of the ground truth segmentations

are used. During training, image crops from the ROIs are sampled to achieve a

balance between foreground and background samples. Each crop is augmented by

rotation, flipping, brightness, zoom, and elastic deformation. Augmenting by zoom

and elastic deformation pose special challenges in the case of microscopy images, as

altering the object structure in the ground truth can wrongly change the semantics

of the training data (e.g., cell splitting). A grid-based method to perform elastic

deformation is used. In this method, displacement vectors of the grid anchor points

are sampled from a normal distribution. The deformed image is then generated using

bicubic interpolation. To prevent merging of objects with the same label, an identity

is assigned to each object in the ground truth, and data augmentation is performed.

Afterwards, morphologic operations are used to ensure that previously separated

objects are still separated by at least one pixel. A one-hot encoding (vector of zeros

except one value) for each pixel of the crop is generated. Augmented crops exceeding

the original image dimensions are filled up with reflection padding.

The network is trained using the AMSGrad optimizer in [56]. A batch size of two

and an initial learning rate linit = 0.001 as well as β1 = 0.9 and β2 = 0.999 is used.

Each dataset is split into 50% for training, 25% for validation, and 25% for testing,

and the network is trained using early stopping and cross-validation. The proposed

model was implemented in Tensorflow [212], and an Intel i7-6700K workstation with

a NVIDIA GeForce GTX 1070 Ti GPU is used.

4.4 Instance Segmentation for Cell Images

Semantic segmentation in natural images usually deals with multiple object classes

but few objects with similar class. In contrast, microscopy images often contain many

objects of the same class. Instance segmentation approaches solve identification
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of objects by determining the object instance of a pixel in addition to the class.

The segmentation models proposed in this chapter can be combined with instance

segmentation approaches. However, instance segmentation approaches based on deep

learning use different feature extractors and thus their performance is not directly

comparable. Therefore, a comparison of four instance segmentation approaches using

a consistent experimental setup is conducted. In this setup, each method is used

with the same pre-processing and data augmentation pipeline and the methods are

modified to use a FPN [106] for feature extraction.

A FPN [106] was used as a baseline and compared to Mask R-CNN [146], the

Discriminative Loss [213], the Cosine Embedding Loss [214], and the Deep Water-

shed Transform [215]. Mask R-CNN uses a Faster R-CNN detection network for

detecting objects which could not be easily changed to a FPN. It uses a decoder to

segment the object in each detected bounding box. The Discriminative Loss and

the Cosine Embedding Loss are used along with an FPN to learn a metric used in a

clustering post-processing step for identifying object instances. The Discriminative

Loss minimizes the Euclidean distance in a cluster of pixels denoting an object

and maximizes the distance between clusters. The Cosine Embedding Loss uses

the Cosine similarity instead of the Euclidean distance for comparing embeddings.

Deep Watershed Transform learns the watershed transform energy of the Watershed

algorithm. In contrast, to the two-stage approach in [215], a FPN is used to predict

the binary segmentation mask and the watershed transform energy.
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Automatic analysis of microscopy data typically requires complex pipelines compris-

ing multiple methods to solve different image analysis tasks (e.g., image classification

[216], cell segmentation [27], particle tracking [163], and image registration [217]).

However, most methods suffer from determining application dependent hyperpa-

rameters to obtain the best performance. More generally, medical decision support

systems evaluating the patient status in the clinic can highly depend on specific

hyperparameters [218]. Also, the quality and performance of image-guided inter-

vention [219] generally highly depends on hyperparameters. For complex analysis

pipelines, manual optimization of hyperparameters is generally very time-consuming

and difficult for a high-dimensional hyperparameter space. Thus, automated op-

timization is required. However, computation of the gradient of the loss function

is often analytically or computationally infeasible, which prevents the use of first

or higher order optimization methods. This limitation can be overcome by using

zero-order optimization also known as black-box optimization [220], which does not

require gradient information of the loss function. Black-box optimization uses only a

limited number of evaluations (hyperparameter configurations) to determine a (local)

optimum of the generally non-convex optimization problem.

In this chapter, a framework for black-box hyperparameter optimization for biomed-

ical image analysis pipelines called HyperHyper is proposed. The work has been

published in Wollmann, Ritter, et al. [11, 4]. The HyperHyper framework has several

advantages compared to existing hyperparameter optimization frameworks such as

Google Vizier [221], Sherpa [222], Auto-WEKA [223], Spearmint [224], and Hyperopt

[225]. In Table 5.1 an overview of key features of most popular existing optimization

frameworks and HyperHyper is provided. The table extends the comparison in [222]

and also includes updated information about the frameworks. Existing frameworks

lack certain features (e.g., modular optimizer, job wrapper, and integrated scheduler),

which are essential to optimize complex image analysis pipelines using different

computing paradigms and environments. The pipelines for biomedical image analysis

typically include a large variety of hyperparameters, which increase the complexity of

the hyperparameter space and make optimization challenging. To determine optimal

solutions, the proposed HyperHyper framework employs more than 40 different opti-

mization methods, while existing frameworks include significantly less methods (e.g.,

up to five methods as in Table 5.1). The high number of optimizers in HyperHyper

was realized by separation of hyperparameter sampling and optimization strategy.

Except Auto-Weka, all frameworks in Table 5.1 can operate in a distributed comput-
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Table 5.1: Comparison of different hyperparameter optimization frameworks.

Feature Google
Vizier

Sherpa Auto-
WEKA

Spearmint HyperOpt HyperHyper

Number of 3 5 1 5 5 >40
optimization methods

Modular optimizer No No No No No Yes

Job wrapper No No No No No Yes

Distributed Yes Yes No Yes Yes Yes

Integrated scheduler No No No No Yes Yes

Early stopping Yes Yes No No No Yes

Transfer learning Yes No No No No Yes

Visualization Yes Yes No No No Yes

ing environment. However, the frameworks (except HyperOpt) do not include an

integrated scheduler. To optimize hyperparameters on different cluster computing

infrastructures, an integrated scheduler, which is advantageous when deploying image

analysis methods on heterogeneous computing infrastructures was implemented.

Overview of HyperHyper

The computing environments in the scientific community are very heterogeneous

due to different computing paradigms (e.g., HPC, Cloud, Mainframe) and multiple

programming languages. Moreover, the use cases for optimization of hyperparame-

ters vary a lot. Incorporation of prior knowledge about the hyperparameters from

domain knowledge or previous optimizations can significantly reduce the search

space. Therefore, a hyperparameter optimization framework should be designed

to be environment agnostic (e.g., programming language, compute infrastructure),

extendable through modularity, and should allow incorporating prior knowledge.

Moreover, flexible distribution of the computation should be supported since evalua-

tion of hyperparameter configurations is often computational expensive. In addition,

visualization of the optimization process and hyperparameter space is important to

reveal insights about the optimization problem.

In this chapter, the black-box optimization framework HyperHyper for distributed

computing is proposed. This framework subdivides hyperparameter optimization in

a hyperparameter space definition, a general optimizer containing a hyperparameter

candidate sampler and optimization strategy, and an evaluation loop (Figure 5.1).
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Figure 5.1: Schematic representation of HyperHyper software architecture with mod-
ular structure.

The candidate sampler and optimization strategy can be selected from a model zoo

to design an optimizer for a specific application. In addition, the hyperparameter

space definition incorporates prior distributions, bounds, and the sampling resolution.

The candidate sampler and optimization strategy can exploit the structure of the

hyperparameter space to improve convergence of the optimization. To find the

global optimum, Grid Search can be used. Moreover, by design the execution of the

evaluation loop can be performed highly distributed and is programming language

agnostic. Modules for monitoring and visualization to analyse the optimization

problem have been integrated. These visualizations including an infimum projection

can reveal insights into, for example, the performance of the optimization process

and the dependencies of the hyperparameters.

Optimizer

To perform optimization, constraints on the hyperparameter space have to be specified.

This includes the bounds and hierarchy of each parameter, the sampling resolution,

and additional prior distributions (e.g., discrete or continuous uniform, Gaussian,

log Gaussian, exponential distributions). In the conducted experiments, pipelines

that involve non-ordinal parameters were used. Therefore, optimizers were chosen

which can handle variables without a natural order (Table 5.2). To create optimizers

in HyperHyper as listed in Table 5.2, the sampling and optimization strategy can be

selected from the model zoo.

The most naive optimization strategy is to perform Random Search (Random) by

random sampling from the prior distributions. In Sequential Model-based Optimiza-

tion (SMBO) like SMAC [226], a surrogate model is fitted to the best performing

hyperparameters. SMAC with the original random forest (SMAC-RF), and with

XGBoost [227] as surrogate model were investigated. It was decided to use XGBoost,

since it is currently one of the most popular decision tree based models. More-

over, the Tree of Parzen Estimator (TPE), which performs a nonparametric density

approximation of the best performing hyperparameter configurations [228] was in-
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Table 5.2: Investigated optimizers and corresponding sampling and optimization
strategies

Optimizer Sampling strategy Optimization strategy

Random Search random -
TPE Parzen estimator -
CMA-ES multivariate normal evolutionary
SMAC-RF random random forest
SMAC-XGBoost random XGBoost

vestigated. Finally, Covariance Matrix Adaptation Evolution Strategy (CMA-ES),

which is a generic population-based meta-heuristic based optimizer [229] was used.

In CMA-ES feature sets are assumed as ”genomes”, which undergo evolutionary

processes like selection, recombination, or mutation to increase the probability for

sampling promising hyperparameter configurations.

HyperHyper evaluation loop

In the HyperHyper software architecture, the hyperparameter evaluation is decou-

pled from the optimization strategy. The hyperparameter evaluation is split into

the pre-hook, the evaluation, and a post-hook (see Figure 5.1). The pre-hook is

used for preparation of the experiment by performing a single experiment with a

specific set of hyperparameters based on the hyperparameter sampling and opti-

mization strategy. The evaluation step calculates the performance of the current

hyperparameter configuration using the desired objective function. The post-hook

performs clean up operations. Due to the generic formulation of the evaluation loop,

any concrete implementations can be used in this plug and play system. Direct

hooks for Python, job wrapper, and remote execution of workflows (e.g., Galaxy

Imaging [230, 8]) were investigated. For scripts directly written in Python, entry

points can be called directly by HyperHyper. A job wrapper, wraps pipelines that

can be called via command line. This approach is the most generic, since it can

handle arbitrary programming languages. Finally, remote execution of workflows

in workflow engines like Galaxy is useful to leverage already optimized third party

high performance computing (HPC) or cloud infrastructure. The execution of the

loop can be distributed using a central database for coordination and workers for

actual execution. Moreover, the distributed optimization process can be monitored

by retrieving status information from the central database. The workers can be

scheduled to available HPC or cloud infrastructure using, for example, Nextflow

[231]. This approach has the benefit, that it can leverage and even combine a vast

variety of schedulers or cloud systems, even at multiple sites.
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Image Data

6.1 Overview and Task Description

Acquisition of images at multiple imaging sites or with differing staining protocols

result in significant variations in appearance. However, most deep learning methods

are trained on a dataset from a subset of acquisition sites and specific staining

protocols. Transfer learning can be leveraged to reuse data from different sites and

protocols to reduce data requirements and improve performance.

In this chapter, a novel method based on deep learning for network transfer between

domains with a varying number of input color channels is presented. In addition, an

unsupervised domain adaption method for end-to-end grading of whole-slide images

with multiple data sources is presented. The work has been published in Wollmann

et al. [13, 12].

6.2 Multi-Channel Deep Transfer Learning

It is common in image analysis of natural scenes to pre-train a deep neural network

on a large dataset like ImageNet and fine-tune the network on the considered target

dataset, when only a small dataset is available for training [232]. However, images

of natural scenes are usually color images represented by three color channels, but

microscopy images generally have a varying number of color channel, often more

than three channels. For a convolutional neural network, in the first layer a filter

is used for each color channel to extract corresponding feature maps. Hence, the

number of channels is fixed in the network according to the considered data, and the

pre-trained network cannot directly be transferred to data with a different number

of channels. To cope with this, two transfer learning approaches were developed,

which use only one color channel for training and perform fine-tuning on more color

channels (Wollmann et al. [13]).

For transfer learning, two approaches are employed (Figure 6.1). In the first ap-

proach, an ASPP-Net trained on a dataset with one color channel is used (Figure 6.1a)

for a dataset with multiple color channels by altering the first layer of the network

and using the same trained convolutional filters for all channels (Figure 6.1b). This

is motivated by the assumption that the trained filters are generic for different types
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of images and can therefore be applied to other channels with different stainings. In

the second approach, the trained convolutional filters are used for the corresponding

channel in the new dataset and initialize the filters for the other channels by HE

initialization [59] (Figure 6.1c). With this approach, the pre-trained filters are kept

for one channel and all other filters are trained from scratch. The networks are

trained using cross-validation and early stopping with the Adam optimizer and a

learning rate of linit = 0.001 as well as β1 = 0.9 and β2 = 0.999. The dataset is

always split into 50 % training, 25 % validation, and 25 % testing data. Datasets are

augmented using random flipping, rotation, cropping (200× 200 pixels), color shift,

and elastic deformations.

(a) Original filter train-
ed on one channel

(b) Same trained filter
used for all chan-
nels

(c) Individual trained filter
for one channel

Figure 6.1: Different approaches for transfer learning.

6.3 Unsupervised Domain Adaption for End-to-End

Grading of Whole-Slide Images

In this section, the grading of lymph node metastases in histopathology whole-slide

images (WSIs) is considered. In order to grade the progression of cancers, the TNM

system is used [233]. In the TNM classification system, the parameter T describes

the size and tissue invasion status of the primary tumor. The parameter N reflects

the degree of cancer spread to regional lymph nodes. Metastasis developments

are graded by the parameter M. The proposed method focuses on determining

the parameter N for grading cancer spread into regional lymph nodes. Currently,

pathologists perform the pathological N-stage (pN-stage) grading manually, which is

tedious, time-consuming, and error-prone. Automation of this process, or at least

semi-automated assistance, could reduce manual work and errors. In recent years,

a number of methods for analyzing WSIs have been introduced, and challenges

comparing these methods have been carried out (e.g., [183, 234, 5]). Most methods
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use a sliding window approach for dense classification of WSIs, which is, however,

relatively slow and requires processing of many image regions [235, 236, 124]. Sparse

selection of regions of interest can significantly speed up the classification [17]. This is

important for performing the image analysis on a workstation to support the decision

process of a pathologist. Unfortunately, sparse classification generally reduces the

classification performance. However, this can be alleviated by model averaging

[237]. More importantly, previous classification methods (e.g., CAMELYON17

challenge) require pixel level annotations for training (e.g., [124]). Generating such

annotations is highly time-consuming and difficult. In addition, one has to cope

with the large variation of WSIs from different data sources (e.g., medical centers).

A promising approach to tackle this challenge is data normalization. In [124, 238]

an unsupervised clustering approach was used for normalization of different data

in color space. However, such approaches are heuristically designed based on a

priori knowledge about the domains. An unsupervised neural network method

for learning nonlinear transformations could reveal complex hidden properties to

improve the classification result. In [239] a neural network with an adversarial loss

and a classification network (DANN) were used to enforce domain invariant features

for mitotic cell detection. There, the number of domains is equal to the number

of classes, and labeled data from all considered domains is required. Separating

domain adaptation from the classifier would enable reusing the classifier with new

unlabelled data. Therefore, a new deep learning method for sparse classification of

WSIs and automatic breast cancer grading is introduced. The method was published

in Wollmann et al. [12].

Compared to previous methods based on pixel level annotations for training, the

proposed method uses end-to-end learning and requires only slide level annotations.

A Cycle-Consistent Generative Adversarial Network (CycleGAN) [240] is combined

with a densely connected deep neural network (DenseNet) [30]. The latter type of

network recently showed outstanding results for natural images. The CycleGAN

enables unpaired domain adaptation to transfer the appearance of data from one

source to another source (e.g., different medical centers) in an unsupervised manner.

In the proposed method, domain adaptation by CycleGAN is separated from the

classifier. Thus, domain adaption and classification can be trained independently,

and labeled data from only one source is required. The trained transfer networks

are used for domain adaptation and data augmentation. The proposed method was

evaluated on the challenging CAMELYON17 dataset [241, 216]. It turned out that

domain adaptation improves the classification result compared to state-of-the-art

data augmentation.

In the proposed method, first a region of interest is automatically selected by

color thresholding and then classified by a densely connected deep neural network.

The classification results are used to determine a slide level class and are further

aggregated to predict a patient level grade. The network is trained using domain

adaptation by a CycleGAN. Figure 6.2 illustrates the overall workflow of the proposed
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Figure 6.2: Overall workflow of the proposed method.

method.

Region of Interest Selection

Regions of interest (ROIs) within a WSI are determined by color thresholding,

similarly to the method in [17]. Thresholding is performed on ratio images using the

intensities of the green and red channels. Afterwards, a median filter with a disk-

shaped structuring element with a window size of 50 pixels is applied. Based on the

WSI with a downsampling factor of 64 as input, a ROI map is computed. For tissue

classification, 20 image patches with a size of 512×512 pixels are extracted from a 64

times downsampled WSI using the ROI map. The downsampling factor was chosen

so that metastases are visible. Since the WSIs have different spatial resolutions, they

are normalized using bilinear interpolation, so that a pixel in all training images has

the same spatial resolution of 0.24µm× 0.24µm prior to downsampling.

Domain Adaptation

A CycleGAN is used for domain adaptation and augmentation of the data. WSIs from

different data sources (e.g., different medical centers) typically have quite different

appearances due to different imaging techniques (e.g., different stainings and different

slide-scanner models). This significantly increases the difficulty of classification. In

the application, paired examples to learn a direct transformation between data from

different sources are not available, i.e. no data of the same sample imaged at different

medical centers is available. However, CycleGANs can be trained with unpaired

examples. A CycleGAN for each combination of data sources is trained for 100
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epochs. The models are trained using the Adam optimizer with an initial learning

rate linit = 0.001, as well as β1 = 0.9 and β2 = 0.999.

Tissue Classification

Tissue classification is performed on image patches determined by ROI selection. All

patches are classified into a one-hot encoding (vector of zeros except one value) of

four classes. The first class consists of WSIs containing isolated tumour cells (ITC).

The second class includes WSIs with macro metastases, and the third class comprises

WSIs with micro-metastases. The fourth class consists of WSIs that contain no

cancerous cells (negative). Model averaging is conducted by applying online data

augmentation (during training) using random rotations and flipping of the patches,

and subsequent averaging of the classification results. Thus, slide level classes are

determined by summing up the class activations of the last layer of the proposed

network and calculating the maximum over all 20 extracted image patches. Besides

using the maximum, an approach, which ranks the classes (by macro metastasis,

micro metastasis, ITC, and negative) and selects the highest ranked class, was also

investigated. However, the latter approach did not improve the classification result.

For classification, a method based on a DenseNet [30] was used. Compared to

ReLUs, PReLUs have the advantage that they allow negative activations, which

prevents discarding the information of negatively activated filters. However, the

computation time is significantly higher. It was observed that lower layers particularly

prefer negative activations, thus PReLU is used in the first layer and ReLU in all

other layers. This enables improved feature extraction and only somewhat increases

the computation time. In total, 32 feature maps are extracted in the first layer. In

addition, the feature maps are increased in every downsampling block by a factor of

two. Afterwards a dense block is used, since due to downsampling in the proposed

network, objects of interest are small. A downsampling block is employed twice

followed by dense blocks with feature map growth rates of 3, 6, and 4. Finally, global

average pooling (pooling kernel equal to feature maps) is used and a dense layer is

applied to determine the prediction.

Patient Level Grading

A patient level grade is determined based on the slide level classification (several

WSIs correspond to one patient). The following decision rules provided in the

CAMELYON17 challenge [241, 216] are used:

� pN0: No micro-metastases, macro-metastases, or ITCs found.

� pN0(i+): Only ITCs found.

� pN1mi: Micro-metastases found, but no macro-metastases.
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� pN1: Metastases found in 1-3 lymph nodes, of which at least one is a macro-

metastasis.

� pN2: Metastases found in 4-9 lymph nodes, of which at least one is a macro-

metastasis.

Model Training

The cross-entropy loss function is used to train the deep neural network model. The

network is trained on 50 % of the data (computation time of about two hours) and

kept 25 % of the data for validation and 25 % for testing the model. In each epoch the

class occurrences are balanced and augmentation of the image patches is performed.

The tissue classification network is trained using mini-batches containing 10 image

patches each. The image patches of size 512 × 512 pixels are extracted from the

downsampled WSIs using color thresholding, augmented using random rotation and

flipping, and passed to the deep neural network. Data augmentation and transfer to

the GPU node are optimized using multi-threaded data streaming jobs running on a

CPU cluster.
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Extensive qualitative and quantitative evaluations of the methods presented in

Chapters 3, 4, 5, and 6 were conducted. In this chapter, the experimental results are

presented. The methods are benchmarked on a large variety of microscopy imaging

modalities and datasets. The experimental results show that the proposed methods

are competitive or outperform state-of-the-art methods. Some of the proposed

methods achieved top ranks in international challenges in biomedical computer

vision.

7.1 Detection in Microscopy Images

The detection methods proposed in Chapter 3 were benchmarked against state-of-

the-art methods. In this section, comprehensive experiments are presented where

the performance of the algorithms was quantified using the following evaluation

measures:

F1: The F1 score is the harmonic mean of precision and recall and

measures the similarity of two paired sets X and Y, where |X| and |Y|
are the cardinalities of the sets:

F1(X,Y) =

(
(precision(X,Y))−1 + (recall(X,Y))−1

2

)−1

=
2 precision(X,Y) · recall(X,Y)

precision(X,Y) + recall(X,Y)
=

2|X ∩Y|
|X|+ |Y|

(7.1)

RMSE: The root-mean-squared error measures the spatial deviation of

the paired sets of vectors X and Y using the square root of the second

sample moment of their differences, where E denotes the expected value

operator:

RMSE(X,Y) =
√

E[(X−Y)2] (7.2)

Matching pairs of ground truth and prediction detections is performed either with

nearest neighbor or the Munkres algorithm [242] and a gating distance.
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7.1.1 DetNet: Deep Neural Network for Particle Detection in

Fluorescence Microscopy Images

The DetNet method presented in Section 3.2 has been benchmarked using data from

the Particle Tracking Challenge including particles with different shapes (round and

elongated). In addition, DetNet was evaluated on live cell fluorescence microscopy

data of fluorescently labeled hepatitis C virus (HCV) proteins. The data is very

challenging due to low and different SNR levels and bleaching as well as different

particle sizes and shapes.

The performance of DetNet has been assessed using data from the Particle Tracking

Challenge and a comparison with the Spot-Enhancing Filter (SEF) [161] and the

H-Dome transform [159] was performed. SEF consists of applying a Laplacian-of-

Gaussian filter (LoG) with standard deviation σLoG, followed by thresholding the

filtered image to detect particles. H-Dome also uses an LoG filter followed by a

H-Dome transform [243] and thresholding the transformed image.

The detection and localization performance of DetNet, SEF, and H-Dome has been

evaluated for all 2D scenarios of the challenge comprising round shaped vesicles and

receptors as well as elongated microtubules. SNR levels from SNR=1 to SNR=7 and

different object densities ranging from low to high particle density have been used. In

total, 3,600 images with size 512×512 pixels have been employed and the data in each

category was evaluated with a random split of 50% for training, 25% for validation,

and 25% for testing. For the detection performance, the mean F1 score ∈ [0, 1]

has been computed for each image sequence. For the localization performance, the

mean root mean square error (RMSE) between the individually assigned detections

and ground truth positions has been computed for each image sequence. The

assignment between particle detections and ground truth was determined by the

Munkres algorithm [242] with a maximal gating distance of five pixels.

The obtained performance values for all scenarios and all SNR levels are provided

in Table 7.1. For almost all scenarios and SNR levels, DetNet outperforms SEF and

H-Dome. For all scenarios with SNR=4 and 7, DetNet yields a mean F1 score higher

than 0.95. For a lower SNR level of SNR=2, the mean F1 score is still always higher

than 0.8. A crucial parameter of DetNet is the shift a of the sigmoid activation

in the last layer (see (3) above). Table 7.2 shows the result for DetNet with and

without optimized shift a as well as in comparison to SEF and H-Dome for vesicle

data with SNR=1, where the best results are highlighted in bold. It can be seen that

DetNet with optimized sigmoid shift yields a much better detection and localization

performance than DetNet with a fixed non-optimized sigmoid shift (a = 0.5), and

outperforms SEF and H-Dome.
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Table 7.1: Performance for the Particle Tracking Challenge data (mean ± standard
deviation).
Scenario SNR Method F1 RMSE

Microtubule

1
SEF 0.293± 0.072 2.955± 0.140

H-Dome 0.129± 0.070 3.851± 0.217
DetNet 0.481± 0.107 2.419± 0.195

2
SEF 0.447± 0.051 2.941± 0.106

H-Dome 0.159± 0.074 4.181± 0.282
DetNet 0.819± 0.035 1.310± 0.150

4
SEF 0.518± 0.098 2.880± 0.100

H-Dome 0.350± 0.062 4.221± 0.110
DetNet 0.964± 0.020 0.550± 0.087

7
SEF 0.524± 0.100 2.855± 0.095

H-Dome 0.416± 0.208 4.265± 0.265
DetNet 0.977± 0.017 0.411± 0.094

Receptor

1
SEF 0.170± 0.068 1.959± 0.246

H-Dome 0.147± 0.083 3.624± 0.270
DetNet 0.255± 0.124 1.789± 0.445

2
SEF 0.429± 0.149 1.033± 0.235

H-Dome 0.186± 0.088 3.741± 0.276
DetNet 0.802± 0.076 0.693± 0.078

4
SEF 0.673± 0.023 0.497± 0.123

H-Dome 0.351± 0.077 3.512± 0.158
DetNet 0.978± 0.017 0.415± 0.069

7
SEF 0.682± 0.010 0.413± 0.146

H-Dome 0.557± 0.058 3.777± 0.218
DetNet 0.974± 0.019 0.440± 0.082

Vesicle

1
SEF 0.257± 0.078 1.904± 0.187

H-Dome 0.108± 0.056 3.782± 0.283
DetNet 0.423± 0.127 1.857± 0.193

2
SEF 0.577± 0.031 1.200± 0.121

H-Dome 0.145± 0.075 3.913± 0.322
DetNet 0.939± 0.022 0.766± 0.080

4
SEF 0.686± 0.015 0.610± 0.158

H-Dome 0.354± 0.117 3.686± 0.107
DetNet 0.977± 0.016 0.459± 0.073

7
SEF 0.688± 0.011 0.527± 0.124

H-Dome 0.605± 0.104 3.751± 0.277
DetNet 0.976± 0.016 0.427± 0.090

Table 7.2: Impact of sigmoid shift a (vesicle data, SNR=1).
Method F1 RMSE

SEF 0.257± 0.078 1.904± 0.187
H-Dome 0.108± 0.056 3.782± 0.283
DetNet (a = 0.5) 0.106± 0.088 2.402± 1.365
DetNet (a optimized) 0.423± 0.127 1.857± 0.193
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Evaluation on Live Cell Microscopy Data

DetNet was also evaluated using challenging live cell microscopy data displaying

fluorescently labeled HCV proteins NS5A (Figure 7.1). The image data was acquired

with an Ultra-View ERS spinning disk confocal microscope and has an image size

of 355 × 447 pixels (Bartenschlager lab). To train DetNet, one cell of the image

data with 66 ground truth annotations (yellow box in Figure 7.1a on the left) was

used. For evaluation, 128 ground truth annotations of the other three cells have been

employed.

The detection performance was evaluated by precision, sensitivity, and the F1

score. The localization performance was assessed using the mean RMSE between

detected particles and ground truth. Detection results for DetNet, SEF, and H-Dome

are shown in Figure 7.1. Quantitative performance values are provided in Table 7.3.

It can be seen that DetNet yields significantly better results than SEF and H-Dome

for all performance metrics.

7.1.2 Deep Residual Hough Voting for Mitotic Cell Detection in

Histopathology Images

The Deep Residual Hough Voting method presented in Section 3.3 was quantitatively

evaluated based on the AMIDA13 challenge dataset consisting of invasive breast

carcinoma histology images [157]. In total, the dataset comprises 606 high power

(a) Ground truth (b) SEF (c) H-Dome (d) DetNet

Figure 7.1: Detection results for HCV live cell microscopy data. a) Ground truth
particles indicated by red circles. The yellow box represents the training
data. Detection results for b) SEF, c) H-Dome, and d) DetNet.

Table 7.3: Performance for HCV live cell microscopy data.
Method Precision Sensitivity F1 RMSE

SEF 0.467 0.677 0.553 1.574± 0.935
H-Dome 0.140 0.387 0.205 3.953± 0.371
DetNet 0.763 0.726 0.744 1.390± 0.746
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field RGB images of 23 patients. Each image has a size of 2000× 2000 pixels with a

spatial resolution of 0.25µm/pixel. The task is the automatic detection of mitotic

cells. To quantify the performance, the F1 score was used, and a comparison with

previous methods was performed.

For training of the proposed method, the dataset was augmented by generating

all permutations of flipped and rotated images. Since apoptotic and mitotic cells

appear very similar, but negative examples (e.g., apoptotic cells) are not labeled in

the dataset, the proposed network was trained one epoch on image patches of size

256× 256 pixels containing mitotic cells only. The full dataset was processed using

this classifier and a new training set was generated by extracting 256× 256 pixels

patches from the augmented dataset containing true-positive, false-positive, and

false-negative patches. The final training was performed on 60% of the generated

dataset, and model validation and selection on 20% of the generated dataset. Testing

was done on the remaining 20% of the corresponding original dataset. All training

steps used mini-batches of 80 samples. Maximum radius was set to 64 pixels and

the determined threshold for votes was 30% of the pixels within the voting circle.

The hyperparameter λ in (3.4) was set to the harmonic mean (0.5). To determine

votes at image borders, the images were padded by the size of the radius and filled

with a mirrored version of the image. The padded area was cropped again after

voting. As an example, Figure 7.2 shows the voting result for a region of an original

image. Intermediate results of the predicted radius r and the predicted angle ϕ are

shown as well. It can be seen that the mitotic cell in the middle of the region is

well extracted. Table 7.4 shows the performance of the proposed approach for all

606 images from the AMIDA13 dataset. The scores represent the performance of

detecting mitotic cells. The results of the best three methods from the AMIDA13

challenge are provided for comparison. The corresponding scores are taken from

the official ranking of the organizers [157]. The best results for Precision, Recall,

and the F1 Score are highlighted in bold. It can be seen that the proposed method

yields the best performance for Recall, and the F1 score is very similar to that of the

best method from the AMIDA13 challenge [111, 157]. An advantage of the proposed

(a) Original image (b) Voting map v (c) Predicted radius
values r

(d) Predicted angle
values ϕ

Figure 7.2: Example region of an original image with corresponding voting result
and predictions of the radius and angle.
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Table 7.4: Performance of the proposed approach and comparison with top-3 methods
from AMIDA13.

Method Precision Recall F1 score

IDSIA [111, 157] 0.610 0.612 0.611
DTU [244, 157] 0.427 0.555 0.483
SURREY [157] 0.357 0.332 0.344
Proposed 0.547 0.686 0.609

method is that it is 200 times faster than the reported computation time of previous

methods in [111, 157].

Computations were performed on an Intel i7-6700K workstation with a NVIDIA

Geforce GTX 970. The implementation was done in Tensorflow [212]. Final training

took 2.5 days for 17300 update iterations. The computation time for an image of

size 2000× 2000 pixels is 2.5 seconds.

7.1.3 Grading of Whole-Slide Images based on Mitotic Cell

Counts

The method presented in Section 3.4 for grading of WSIs was applied to histology im-

ages of invasive breast carcinoma from the MICCAI Tumor Proliferation Assessment

Challenge 2016 (TUPAC16) [183]. The method was used to predict the proliferation

score based on mitosis counting. Mitotic cell positions in images of 73 breast cancer

cases were provided to train the mitotic cell detector. In addition, 500 WSIs with

annotated proliferation scores were available. For testing, WSIs of 321 breast cancer

cases were provided. To quantify the performance, the quadratic weighted Cohen’s

kappa value between the predicted and ground truth proliferation scores was used.

The proposed method achieved a Cohen’s kappa of 0.417 using cross-validation on

the training dataset. Different automatic methods were compared in the TUPAC16

challenge [5]. LUNIT uses cell density estimation for ROI detection, a ResNet [29]

with hard negative mining for mitotic cell detection, and a SVM to grading. CON-

TEXTVISION uses color thresholding for ROI detection [111] with hard negative

mining for mitotic cell detection and heuristics for grading. HARKER uses multiple

custom CNNs for ROI detection and mitotic cell detection in combination with hard

negative mining and a SVM for grading. BELARUS uses [245] for ROI detection

and directly performs grading by averaging the prediction of a linear classifier over

20 ROIs. RADBOUD directly performs grading by a custom CNN by averaging 500

predictions from random crops. FLORIDA uses color thresholding for ROI detection,

AlexNet [1] for mitotic cell detection, and heuristics for grading. Results of the

challenge for grading of whole-slide images for methods that only trained on the

provided dataset are shown in Table 7.5. It can be seen that the proposed method

was among the top-3 methods.
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Table 7.5: Results for the methods in the TUPAC16 challenge that only used the
provided training dataset.

Method weighted Cohen’s kappa 98% CI

LUNIT 0.567 [0.454, 0.671]
CONTEXTVISION 0.534 [0.422, 0.646]
Proposed 0.417 [0.293, 0.540]
HARKER 0.367 [0.242, 0.492]
BELARUS 0.321 [0.190, 0.452]
RADBOUD 0.290 [0.171, 0.409]
FLORIDA 0.177 [0.052, 0.302]

7.1.4 Deep Consensus Network for Particle and Cell Detection

The Deep Consensus Network presented in Section 3.5 was applied to different types

of synthetic and real datasets and performed a quantitative comparison with state-

of-the-art methods. Datasets with a variety of image conditions regarding object

type, object density, scale, image noise, and appearance variability were considered.

Moreover, a comparison of the proposed NMI-based loss with other loss functions

was performed. Assignments between detections and ground truth are determined by

either the Nearest Neighbor or the Munkres algorithm [242] using a gating distance.

Evaluation of the NMI-based loss function

The robustness of the proposed NMI-based loss function Lcls in (3.41) in comparison to

Cross-Entropy (CE), Weighted Cross-Entropy (WCE), Normalized Focal Loss (NFL)

[3], Dice loss (LDice) in (3.26), and MCC loss (LMCC) in (3.27a) on synthetic data is

analyzed. Samples for predictions and ground truth were generated for normalized

confusion matrices (3.21) at grid positions. The sampling of true positives (TP),

false positives (FP), true negatives (TN), and false negatives (FN) was performed

1000 times while the predictions were augmented with noise from an exponential

distribution, which models the time between events in a Poisson point process.

Mean and standard deviation of the metrics TP, FP, TN, and FN for each trial

were calculated to examine the effect of imbalance in the confusion matrix and the

robustness of the loss functions. Figure 7.3 shows the results for pairs of varying

entries in the normalized confusion matrix while the other entries were fixed to 0.25.

All loss functions were normalized by the mean and standard deviation for reasons

of comparability. It can be seen in the ”FP vs. 1-FN” plot (top left) and the ”TP

vs. 1-TN” plot (bottom right) that CE and NFL are agnostic to class imbalance,

since they are nearly constant (values close to zero). LDice favours a balance between

FP and FN while WCE, Lcls, and LMCC favour an imbalance between FP and FN.

In all other plots the loss functions show similar behavior. Table 7.6 provides the

averaged standard deviation σa/b for the ab-th entry in the normalized confusion

matrix calculated for each loss function. A low standard deviation indicates that the
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Figure 7.3: CE (green), WCE (blue), NFL (magenta), LDice (yellow), LMCC (black),
and Lcls (red) for prediction/ground truth sample pairs from the normal-
ized confusion matrix. The predictions were augmented with exponential
noise. This scheme was repeated 1000 times. The figure shows the mean
as line and the standard deviation as colored area. For each subplot two
entries of the normalized confusion matrix were changed and the other
two were fixed (set to 0.25).

Table 7.6: Standard deviation of normalized performance metrics when changing two
entries of the confusion matrix (cf. Figure 7.3).

Loss σFP/1-FN σFP/1-TN σFN/1-TN σTP/1-FN σTP/1-FP σTP/1-TN

CE 0.999 0.067 0.068 0.067 0.999 0.068
WCE 0.165 0.067 0.057 0.067 0.208 0.058
NFL 0.999 0.090 0.091 0.090 0.999 0.091
LDice 0.404 0.044 0.040 0.044 0.103 0.040
LMCC 0.133 0.044 0.039 0.044 0.133 0.039
Lcls 0.121 0.044 0.037 0.044 0.126 0.037

loss is more robust to noise in the normalized confusion matrix (noise can occur due

to variability of label noise, sample difficulty, or influence of regularization across

neural network training steps). It turns out that the proposed NMI-based loss Lcls
yields the best overall result and is thus most robust.

Particle Tracking Challenge dataset

The performance of the proposed Deep Consensus Network was assessed for detection

of biological particles using data from the Particle Tracking Challenge [163]. The

high-resolution Deep Consensus Network was used and a comparison with the state-

of-the-art methods SEF [161], H-Dome [159], and DetNet [10] was performed. SEF

uses a Laplacian-of-Gaussian filter (LoG) with standard deviation σLoG, followed
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by thresholding the filtered image. H-Dome also employs an LoG filter followed by

a H-Dome transform [243] and thresholding the transformed image. DetNet is an

application specific hourglass-shaped deep neural network which performs detection

on large image patches without requiring a sliding window scheme. Also, DetNet

uses hyperparameter optimization to improve the performance.

The detection and localization performance of the proposed method was evaluated

for all 2D scenarios of the challenge (receptor, vesicle, microtubule) comprising round

shaped vesicles and receptors as well as elongated microtubules. All SNR levels from

SNR=1 to SNR=7 and all object densities from low to high particle density were

considered. Example sections of the used image data are shown in Figure 7.4. In

total, 3.600 images with size 512 × 512 pixels were considered and the data was

evaluated in each scenario with a random split of 50% for training, 25% for validation,
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Figure 7.4: Example images showing image sections of all employed scenarios from
the Particle Tracking Challenge dataset.

(a) Receptor, SNR=4 (b) Vesicle, SNR=1

Figure 7.5: Example detection results of the Deep Consensus Network for sections
from the Particle Tracking Challenge dataset.
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Table 7.7: Performance of different detection methods for the Particle Tracking
Challenge receptor data.
SNR Method F1 RMSE

1

SEF 0.170± 0.068 1.959± 0.246
H-Dome 0.147± 0.083 3.624± 0.270
DetNet 0.255± 0.124 1.789± 0.445
Deep Consensus Network 0.296± 0.105 1.396± 0.149

2

SEF 0.429± 0.149 1.033± 0.235
H-Dome 0.186± 0.088 3.741± 0.276
DetNet 0.802± 0.076 0.693± 0.078
Deep Consensus Network 0.822± 0.063 0.788± 0.113

4

SEF 0.673± 0.023 0.497± 0.123
H-Dome 0.351± 0.077 3.512± 0.158
DetNet 0.978± 0.017 0.415± 0.069
Deep Consensus Network 0.993± 0.006 0.425± 0.016

7

SEF 0.682± 0.010 0.413± 0.146
H-Dome 0.557± 0.058 3.777± 0.218
DetNet 0.974± 0.019 0.440± 0.082
Deep Consensus Network 0.993± 0.006 0.492± 0.021

Table 7.8: Performance of different detection methods for the Particle Tracking
Challenge vesicle data.
SNR Method F1 RMSE

1

SEF 0.257± 0.078 1.904± 0.187
H-Dome 0.108± 0.056 3.782± 0.283
DetNet 0.423± 0.127 1.857± 0.193
Deep Consensus Network 0.523± 0.132 1.887± 0.121

2

SEF 0.577± 0.031 1.200± 0.121
H-Dome 0.145± 0.075 3.913± 0.322
DetNet 0.939± 0.022 0.766± 0.080
Deep Consensus Network 0.950± 0.023 0.816± 0.098

4

SEF 0.686± 0.015 0.610± 0.158
H-Dome 0.354± 0.117 3.686± 0.107
DetNet 0.977± 0.016 0.459± 0.073
Deep Consensus Network 0.993± 0.005 0.552± 0.043

7

SEF 0.688± 0.011 0.527± 0.124
H-Dome 0.605± 0.104 3.751± 0.277
DetNet 0.976± 0.016 0.427± 0.090
Deep Consensus Network 0.992± 0.006 0.353± 0.016

and 25% for testing. For determining the detection performance, for each image

sequence the mean F1 score ∈ [0, 1] was computed using the Munkres algorithm

to determine assignments with a gating distance of five pixels. For quantifying

the localization performance, for each image sequence the mean root mean square

error (RMSE) between the individually assigned detections and ground truth positions
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Table 7.9: Performance of different detection methods for the Particle Tracking
Challenge microtubule data.
SNR Method F1 RMSE

1

SEF 0.293± 0.072 2.955± 0.140
H-Dome 0.129± 0.070 3.851± 0.217
DetNet 0.481± 0.107 2.419± 0.195
Deep Consensus Network 0.549± 0.126 2.185± 0.137

2

SEF 0.447± 0.051 2.941± 0.106
H-Dome 0.159± 0.074 4.181± 0.282
DetNet 0.819± 0.035 1.310± 0.150
Deep Consensus Network 0.829± 0.019 1.354± 0.148

4

SEF 0.518± 0.098 2.880± 0.100
H-Dome 0.350± 0.062 4.221± 0.110
DetNet 0.964± 0.020 0.550± 0.087
Deep Consensus Network 0.972± 0.018 0.679± 0.085

7

SEF 0.524± 0.100 2.855± 0.095
H-Dome 0.416± 0.208 4.265± 0.265
DetNet 0.977± 0.017 0.411± 0.094
Deep Consensus Network 0.980± 0.014 0.526± 0.037

was calculated. The results for the different scenarios are presented in Tables 7.7,

7.8, and 7.9. Example detection results of the Deep Consensus Network are shown

in Figure 7.5.

It can be seen that the proposed Deep Consensus Network yields the best F1 score

for all datasets and the best RMSE for 4 out of 12 datasets. Thus, the detection

performance of the Deep Consensus Network is superior to the previous methods.

Concerning the localization performance in terms of RMSE, DetNet is often the best,

but the difference between Deep Consensus Network and DetNet is relatively small.

Note that DetNet is an application specific network for particle detection while Deep

Consensus Network is a general network and applicable to a wide spectrum of data.

Figure 7.5 shows that the Deep Consensus Network can still detect objects if they

are hardly visible for a human observer.

Histopathological TUPAC16 challenge dataset

The proposed Deep Consensus Network was also evaluated based on the TUPAC16

challenge dataset consisting of invasive breast carcinoma histopathological images [5].

This dataset is very different from the Particle Tracking Challenge dataset considered

in Section 7.1.4 above. In total, the dataset comprises 606 high power field RGB

images of 73 patients from three pathology centers. The dataset includes 23 cases

from the AMIDA13 challenge [157] and 50 new cases. The images were acquired

with a magnification of 40x and a spatial resolution of 0.25µm/pixel, and consist

of up to 5657 × 5657 pixels. A main task is the automatic detection of mitotic

cells which is important for grading breast cancer tissue. Example image sections
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(a) Mitotic cell (b) Non-mitotic cell

Figure 7.6: Example images showing hard to distinguish mitotic and non-mitotic
cells from the TUPAC16 challenge dataset.

with hard to distinguish mitotic and non-mitotic cells are shown in Figure 7.6. To

quantify the performance, the F1 score with Nearest Neighbor assignment and a

gating distance of 30 pixels was used, as in TUPAC16 [157, 5]. A comparison with

the fully automatic methods in the TUPAC16 challenge was conducted, namely the

methods of Lunit Inc., Heidelberg University (Deep Hough Voting) [16], Pakistan

Institute of Engineering and Applied Sciences, University of South Florida, University

of Warwick, Shiraz University of Technology, Inha University, Instituto Politécnico

Nacional, and Healthcare Technology Innovation Centre IIT Madras [5]. For a fair

comparison, methods that use additional data for training or model ensembling

to boost their performance (e.g., Contextvision and Radboud [5]) were excluded.

The methods of Lunit Inc., Heidelberg University, University of South Florida, and

University of Warwick, as well as the proposed Deep Consensus Network, are based on

a deep neural network to detect mitosis along with hard negative mining. Note that

the methods of Lunit Inc., University of South Florida, and University of Warwick

perform pixel-wise classification using a sliding window scheme. In contrast, the

proposed Deep Consensus Network does not require a sliding window scheme, and is

thus more general. The proposed network is based on centroid-based object detection

and allows processing of large image patches, which makes inference much faster.

In the Deep Hough Voting method, multiple detection proposals are aggregated in

a post-processing step using the generalized Hough transform. In contrast, Deep

Consensus Network does not require a post-processing step, can be trained end-to-

end, and directly predicts the final detections. In addition, the proposed method

was compared with the deep neural network DetNet (see Section 3.2), which showed

promising results for particle detection. DetNet is an application specific deep neural

network for particle detection based on a Deconvolution Network (see also Section

7.1.4). The proposed Deep Consensus Network was applied without and with anchor

regularization (see Section 3.5). The results are presented in Table 7.10. It can be

seen that Deep Consensus Network is among the top-3 methods and yields similar

results as the application specific network Deep Hough Voting. It also turns out that

the anchor regularization of the Deep Consensus Network improves the result. An

example detection result of the Deep Consensus Network is shown in Figure 7.7, for

which all detections are correct. It can also be seen that the object density (mitotic
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Figure 7.7: Example detection result of Deep Consensus Network for a section of
5657× 3880 pixels from the TUPAC16 challenge dataset.

Table 7.10: Performance of the proposed approach and comparison with previously
proposed methods and top performer from TUPAC16.
Method F1 score

Lunit 0.652
Heidelberg (Deep Hough Voting) 0.481
Florida 0.440
Pakistan 0.424
Warwick 0.396
Shiraz 0.330
Inha 0.251
Instituto Politécnico Nacional 0.135
IIT Madras 0.017

DetNet 0.136
Deep Consensus Network (no anchor regularization) 0.421
Deep Consensus Network 0.470

cells) is very low, while for the Particle Tracking Challenge data (Section 7.1.4) the

object density is high. Thus, the proposed method can cope with both low and high

object density, and very different types of objects and image data.

7.2 Segmentation of Microscopy Images

The segmentation methods proposed in Chapter 4 were benchmarked against state-

of-the-art methods. In this section, comprehensive experiments are presented where
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the performance was quantified using the evaluation measures:

Dice: The Sørensen-Dice coefficient measures the similarity of two sets

X and Y, where |X| and |Y| are the cardinalities of the sets:

Dice(X,Y) =
2|X ∩Y|
|X|+ |Y|

(7.3)

JI: The Jaccard index measures the similarity of two sets X and Y,

where |X| and |Y| are the cardinalities of the sets:

Jaccard(X,Y) =
|X ∩Y|
|X ∪Y|

(7.4)

SEG: The object-wise Jaccard similarity index measures the Jaccard

similarity index of two matching objects [127]. An object in the two sets

X and Y is matched if the overlap is more than 50%. Objects consisting

of just one pixel are discarded.

HD: The Hausdorff distance measures the maximum occurring Euclidean

distance d between two sets X and Y:

Hausdorff(X,Y) = max(sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)) (7.5)

Warping Error: The Warping Error [246] is the minimum mean square

error between pixels of the segmentation and pixels of the topology-

preserving warped ground truth. All performance measures are calculated

for each image and averaged over the whole dataset.

RI: The Rand index measures the pixel-wise prediction accuracy of two

sets X and Y, where |X| and |Y| are the cardinalities, and Xc and Yc

the complements of the sets:

RI =
|X ∩Y|+ |Xc ∩Yc|
|X|+ |Y|+ |Xc|+ |Yc|

(7.6)

7.2.1 ASPP-Net for Cell Segmentation

The performance of ASPP-Net described in Section 4.2 as well as different meth-

ods for segmenting nuclei from tissue microscopy images of glioblastoma cells was

investigated.

In previous work, different comparisons of methods for cell segmentation in fluo-

rescence microscopy images were performed. Dima et al. [247] compared different

segmentation methods using fluorescence microscopy data from two cell lines. The

study revealed that K-means clustering yielded the best results, however, the used
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data does not seem to be very difficult and machine learning methods were not

considered. Coelho et al. [248] evaluated segmentation algorithms using hand-labeled

datasets including clustered nuclei. An approach based on merging multiple regions

from watershed segmentation performed best, however, the focus of the study was

on methods for high-throughput settings, and therefore, complex and time-intensive

methods were not included. Cheng and Rajapakse [249] presented a method to

segment and separate clustered nuclei using shape markers in a watershed-like algo-

rithm. The method was applied to noisy neuronal cell images. However, the data

they used is much less difficult compared to the data used in this study, particularly

the image contrast at edges is much better. In Maška et al. [127], different methods

for cell tracking were compared. The focus was on tracking, but the segmentation

performance was also quantified. Different types of data were considered compared to

this study (e.g., human breast carcinoma cells, mouse embryonic stem cells, human

squamous lung carcinoma cells).

In this section, nine different methods comprising thresholding, deformable models,

region growing, unsupervised learning, and supervised learning for segmentation of

glioblastoma cells in tissue microscopy images were studied:

Global and local thresholding: Global thresholding based on maxi-

mum entropy was used and for local thresholding the intensity contrast

was employed.

Fast marching and region competition: The image was first smooth-

ed by a Gaussian filter and intensity maxima were used as seed points.

For the deformable model in the fast marching method [250]. For the

region competition method [251], local intensity maxima were used for

initialization of a model based on a piece-wise constant energy function.

To cope with changes of the topology, creation of handles and fission was

utilized.

Unsupervised learning by K-means clustering: The image was

smoothed by a Gaussian filter and the number of clusters for K-means

clustering was set to three (foreground, background, unspecific signal).

The foreground cluster was used as segmentation result.

Supervised learning using Weka and Ilastik: A random forest clas-

sifier containing 200 trees with unlimited depth from Weka [252] was

used. Feature selection resulted in the following features: Gaussian blur,

Hessian, Membrane projections, Mean, Maximum, Anisotropic diffusion,

Gabor, Laplacian, Entropy, Variance, Minimum, Median, Bilateral, Kuwa-

hara, Structure, and Neighbors. In addition, a random forest classifier

from Ilastik [253] was used. All features provided by Ilastik were used.

Both classifiers (Weka, Ilastik) were trained using 20 images.
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Deep learning: Two deep neural networks based on U-Net [27] were

used. The first network is a U-Net with additional batch normalization

and residual blocks. The second network is the ASPP-Net described

in Section 4.2 which combines a U-Net with atrous spatial pyramid

pooling (ASPP) [28]. Data augmentation was performed using random

flipping, rotation, scaling, noise addition, and edge-aware elastic defor-

mation. The network was trained on 128× 128 pixel patches. Patches

were sampled to have approximately a balanced ratio of foreground and

background pixels. The network was trained using cross-validation and

early stopping with the Adam optimizer.

Multiple well-established pixel-based performance measures, namely the Dice

coefficient (Dice), Jaccard index (JI), Rand index (RI), Hausdorff distance (HD),

sensitivity (Sens.), specificity (Spec.), and accuracy (Acc.), were employed to com-

pare the segmentation results with ground truth data. In addition, object-based

performance measures were determined. The Jaccard index (JI) was used at object

level and also determined the number of missing, erroneously added, and incorrectly

merged objects.

All nine segmentation methods have been applied to 50 fluorescence microscopy

tissue images of glioblastoma cells. The images were acquired, using a Leica TCS

SP5 point scanning confocal microscope with a 63x objective lens (Erfle lab). The

voxel size was 100 nm in the xy-plane and 250 nm in z -direction. 45 axial layers were

acquired for each stack of the DAPI channel by exciting with a violet (405 nm) laser.

As can be seen in Figure 7.8, this data is very challenging due to strong intensity

variation, cell clustering, overlapping cells, poor edge information, missing object

borders, strong shape variation, and low signal-to-noise ratio. For segmentation,

MIP images of the stacks were used. Example images are shown in Figure 7.8. The

dataset was split into 30 images for hyperparameter optimization and 20 images for

performance evaluation. Example segmentation results of the investigated methods

are shown in Figure 7.9. It can be seen that only ASPP-Net achieved a clear

(a) Strong intensity
variation

(b) Overlapping cells (c) Poor edge informa-
tion

(d) Strong shape vari-
ation

Figure 7.8: Examples of tissue microscopy images of glioblastoma cells with different
challenges for image analysis.
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separation of close-by objects.

Quantitative results of all nine segmentation methods using pixel-based and object-

based performance measures are provided in Table 7.11 and Table 7.12. For the

pixel-based metrics, it can be seen that the two thresholding methods generally

yielded the lowest values. For the machine learning methods, better results for

specificity and sensitivity were obtained. Fast marching yielded the best result for

HD. ASPP-Net achieved the best values for Dice (0.925), Jaccard index (0.866),

Rand index (0.853), sensitivity (0.953), specificity (0.871), and accuracy (0.917). The

best random forest classifier (Weka) was worse (Dice: 0.914, accuracy: 0.904). Deep

learning with ASPP yielded slightly lower values (Dice: 0.911, accuracy: 0.901).

The results for the object-based metrics show that both deep learning models

yielded an above-average result for the number of erroneously added objects of

15 (without ASPP) and 23 (with ASPP). The ASPP-Net showed a slightly lower

(a) Original image (b) Ground truth
segmentation

(c) Global
thresholding

(d) Local
thresholding

(e) Fast marching (f) Region
competition

(g) K-means
clustering

(h) Ilastik

(i) Weka (j) Deep learning (k) Deep learning and
ASPP

Figure 7.9: Segmentation results of different methods for an example of a tissue
microscopy image of glioblastoma cells.
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Table 7.11: Pixel-based performance metrics for different segmentation methods. The
values are mean values over 20 images. The best results are highlighted
in bold. * Two different parameter settings used.

Method Dice JI RI HD Sens. Spec. Acc.

Global thresholding 0.884 0.807 0.794 1.665 0.928 0.792 0.864
Local thresholding 0.881 0.792 0.773 1.139 0.893 0.823 0.864

Fast marching* 0.905 0.832 0.814 0.775 0.933 0.836 0.891
Region competition 0.904 0.829 0.810 0.986 0.934 0.828 0.890
K-means clustering 0.910 0.839 0.821 0.848 0.927 0.846 0.896
Ilastik 0.911 0.845 0.828 0.794 0.941 0.841 0.897
Weka 0.914 0.848 0.833 0.814 0.939 0.853 0.904
Deep learning 0.925 0.866 0.853 1.102 0.953 0.871 0.917
ASPP-Net 0.911 0.843 0.829 1.299 0.946 0.847 0.901

Table 7.12: Object-based performance metrics for different segmentation methods.
The values are mean values over 20 images. The best results are high-
lighted in bold. * Two different parameter settings used.

Method JI Missing Added Merged

Global thresholding 0.342 1 25 43
Local thresholding 0.321 2 14 50

Fast marching* 0.321 3 5 42
Region competition 0.331 3 9 36
K-means clustering 0.332 1 8 44
Ilastik 0.354 0 11 34
Weka 0.345 1 8 36
Deep learning 0.377 0 15 23
ASPP-Net 0.366 0 23 14

object-based Jaccard index (0.366) compared to the model without ASPP (0.377),

which represents the best value. Region competition yielded 36 merged objects, which

is better compared to K-means clustering (44) and fast marching (42), although

three objects were not detected. Both deep learning models merged only few objects

incorrectly. The best result among all methods was achieved by ASPP-Net (14), the

second best result was achieved for the model without ASPP (23). Thus, ASPP-Net

was most effective in splitting merged cells.

7.2.2 GRUU-Net: Integrated Convolutional and Gated

Recurrent Neural Network for Cell Segmentation

The GRUU-Net presented in Section 4.3 was applied to different types of datasets

and a quantitative comparison with state-of-the-art methods was performed. To

quantify the performance, Dice, SEG, and Hausdorff measures, calculated as one

score integrated over all test images, were used.

102



7 Experimental Results

Ablation study for data augmentation method

An ablation study was performed to investigate the effectiveness of the proposed data

augmentation scheme. Therefore, different augmentation steps were disabled and the

performance of the proposed method was evaluated. A challenging dataset was used

consisting of 50 maximum intensity projection tissue images of glioblastoma cells [15].

The images have a size of 2048× 2048 pixel and a resolution of 0.12µm× 0.12µm,

and were acquired, using confocal spinning disc microscopy and show cell nuclei

with fluorescently stained telomeres, centromers, PML proteins, and DNA (Erfle

lab). The dataset is challenging due to high image noise, strongly heterogeneous

intensity variation, cell clustering and overlaps, high shape variation, and poor

contour information. Two experts manually determined the ground truth by drawing

contours using ImageJ for more than 250 cell nuclei. The dataset was split into

25 training, 5 validation, and 20 test images. The proposed distributed computing

scheme was used with different disabled augmentation steps to generate training

datasets. These datasets were used for training of GRUU-Net. To demonstrate

the generalization ability of the proposed data augmentation scheme for CNNs, a

standard U-Net [27] was also used. Both networks were trained with early stopping

by checking (every 100 iterations) whether a plateau is reached, and evaluated on

the test images. Table 7.13 shows the experimental results. It can be observed

that each augmentation step generally increases the performance. However, some

augmentation steps such as zoom decrease the performance of some measures due to

significantly increased variability of the dataset, and thus more difficult training. The

GRUU-Net yields better results than the U-Net, but not for all ablated augmentation

steps. The best result is obtained using all data augmentation steps (last column).

Note that the maximum training iteration number increases with the number of

augmentation steps. As expected, the number of iterations before a plateau of the

Table 7.13: Ablation study of the proposed data augmentation method for the
glioblastoma dataset using the U-Net and the proposed GRUU-Net

Experiment 1 2 3 4 5 6

Cropping X X X X X
Flipping/Rotation X X X X
Zoom X X X
Brightness X X
Deformation X

U
-N

et

Training Iteration 2000 2500 3500 5000 10000 10000
SEG 0.629 0.695 0.804 0.784 0.798 0.807
Dice 0.892 0.889 0.907 0.912 0.926 0.932
Hausdorff 36.844 34.190 22.106 27.019 22.277 15.489

G
R

U
U

-N
et Training Iteration 7500 9000 10000 12000 10000 10000

SEG 0.647 0.695 0.723 0.751 0.811 0.840
Dice 0.909 0.917 0.922 0.914 0.923 0.933
Hausdorff 56.091 71.864 60.918 52.457 20.436 14.179
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(a) Original images (b) Ground truth (c) U-Net (d) GRUU-Net

Figure 7.10: Segmentation results of GRUU-Net, U-Net, and corresponding ground
truth annotations for two example images of tissue microscopy images
of glioblastoma cells (top, bottom)

loss is reached (when using early stopping) increases with more data augmentation

due to increased variability in the training dataset. With increasing variability in the

training dataset, the generalization abilities increase and the network gets less prone

to overfitting. Sample images and segmentation results of GRUU-Net compared to

the U-Net using all augmentation steps are shown in Figure 7.10. It can be seen that

the GRUU-Net yields superior results and separates the cell nuclei better.

Evaluation of normalized focal loss

The proposed GRUU-Net was investigated using the original focal loss [107] and the

proposed normalized focal loss in Section 4.11 for the same glioblastoma dataset

employed in Section 7.13 above. To demonstrate the generalization ability of the

proposed normalized focal loss, a U-Net with the original focal loss and the proposed

normalized focal loss was also applied. In addition, a comparison with other methods

including supervised and unsupervised machine learning methods was performed.

Below, these methods are outlined.

Local thresholding [254]: Gaussian filtering was performed with σ = 4

followed by Bernsen’s thresholding method using a contrast threshold of

15.

Fast Marching [250]: The fast marching algorithm is based on level

sets and uses a deformable model. An image was first smoothed by a

Gaussian filter (σ = 4), and intensity maxima were used as seed points

for the deformable model.
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K-means clustering [255]: A Gaussian filter (σ = 4) was applied

for smoothing, and after that, the intensity values were clustered into

two clusters. The manually selected foreground cluster was used as

segmentation result.

Ilastik [253]: Ilastik uses a random forest classifier for pixel-wise seg-

mentation. All provided features were used and the image scales were

defined by σ = {0.3, 0.7, 1.0, 1.6, 3.5, 5.0, 10.0}. The classifier was

trained using 20 fully annotated images from the training set.

U-Net [27]: U-Net is a popular hourglass-shaped convolutional neural

network for semantic segmentation. A multi-scale classifier is learned

while preserving high resolution features through skip connections. Learn-

ing of difficult samples is enforced using a hand-crafted cross-entropy

weight map computed by morphological operations. Training was per-

formed using the same training data split and data augmentation as for

GRUU-Net.

ASPP-Net [13]: ASPP-Net is an hourglass-shaped convolutional neural

network for semantic segmentation. Compared to the U-Net, it incor-

porates an additional atrous spatial pyramid pooling (ASPP) block to

achieve a larger receptive field than the U-Net.

From the results in Table 7.14 it can be seen that the proposed GRUU-Net yields

the best performance. It also turns out that using the proposed normalized focal

loss improves the performance for SEG of GRUU-Net (0.840), ASPP-Net (0.833),

and of the U-Net (0.807), compared to using the Weighted CE loss by Ronneberger

et al. (U-Net: 0.553, ASPP-Net: 0.798, GRUU-Net: 0.772) or the original Focal

Table 7.14: Comparison of methods for the glioblastoma dataset
Method SEG Dice Hausdorff

Local thresholding 0.480 0.881 42.558
Fast Marching 0.491 0.905 36.678
K-means clustering 0.531 0.910 35.518
Ilastik 0.610 0.911 25.016
U-Net (Weighted CE loss) 0.770 0.925 18.024
U-Net (Non-Normalized FL) 0.553 0.865 61.278
U-Net (Normalized FL) 0.807 0.932 15.489
ASPP-Net (Weighted CE loss) 0.798 0.877 65.228
ASPP-Net (Non-Normalized FL) 0.708 0.844 69.299
ASPP-Net (Normalized FL) 0.833 0.911 23.351
GRUU-Net (Weighted CE loss) 0.772 0.930 18.020
GRUU-Net (Non-Normalized FL) 0.777 0.933 16.024
GRUU-Net 0.840 0.933 14.179
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(a) (b)

Figure 7.11: (a) Original and normalized focal loss for the validation set during
training. The values were normalized with respect to the maximum
value. (b) Dice coefficient for the validation set during training for
original and normalized focal loss.

loss (U-Net: 0.770, ASPP-Net: 0.708, GRUU-Net: 0.777). Figure 7.11 shows the

convergence curves of the original and normalized focal loss during training. It can

be seen that the proposed normalized focal loss leads to more stable training than

the original focal loss.

Visualization of iterative refinement of the GRUU-Net

To provide insight into the refinement process of GRUU-Net, segmentation results at

different iterations were investigated. As example image, a fluorescence microscopy

image of rat mesenchymal stem cells (Fluo-C2DL-MSC) from the Cell Tracking

Challenge [127, 126] was used. The results at different iterations were obtained

by applying the final residual block, convolution, and softmax function to the

corresponding hidden state of the GRU (cf. Figure 4.4). The refined results as a

function of the number of iterations are shown in Figure 7.12. It can be observed

that the segmentation is improved in each iteration. It can also be seen that in

the contracting path of the GRUU-Net (iterations 1 to 4), the segmented region

is continuously enlarged. In the expanding path (iterations 5 to 9) the segmented

object is smoothed.

Method comparison for Cell Tracking Challenge Data

The performance of GRUU-Net was also evaluated using the Cell Tracking Challenge

training data [127, 126]. The challenge compared several cell segmentation and

tracking methods (e.g., [256, 257, 258, 27]). GRUU-Net was applied to all available

real 2D and 3D datasets, comprising 11 different categories of data which represent a

very wide spectrum of cell microscopy data (see Figure 7.13). The datasets comprise

different microscope modalities (fluorescence, differential interference contrast, phase-
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(a) Original image (b) Ground truth (c) Iteration 1 (d) Iteration 2

(e) Iteration 3 (f) Iteration 4 (g) Iteration 5 (h) Iteration 6

(i) Iteration 7 (j) Iteration 8 (k) Iteration 9

Figure 7.12: (a) Original fluorescence microscopy image of rat mesenchymal stem cells
(Fluo-C2DL-MSC) from the Cell Tracking Challenge, (b) corresponding
ground truth, and (c)-(k) segmentation results of GRUU-Net for different
iterations.

contrast) and cells (rat mesenchymal stem cells, mouse stem cells, lung cancer cells,

human breast carcinoma cells, HeLa cells, U373 cells, pancreatic stem cells, C. elegans

embryo, CHO nuclei). In [126], only one method, namely UP-PT, was applied to

all these 22 real data of the challenge. Each category of datasets consists of two

videos. GRUU-Net was trained using the fully labeled frames of one video and

tested on the other video. Thus, quite limited data was used for training. In [126],

the measure SEG was employed to quantify the segmentation performance. To

complement the results in [126], the mean Dice coefficient and the mean Hausdorff

distance were computed if fully annotated images were available. Tables 7.15 and

7.16 respectively show the results of the proposed method for the 2D and 3D datasets.

For the 2D datasets, results for different variants of the proposed network (Weighted

Cross-Entropy loss, Non-Normalized Focal loss, and the proposed Normalized Focal

loss) were also provided. The results were also compared with the local adaptive

thresholding approach HD-Har [256] and the U-Net [27]. Note that in [126], for
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(a) DIC-C2DH-
HeLa

(b) Fluo-C2DL-
MSC

(c) Fluo-N2DH-
GOWT1

(d) Fluo-N2DH-HeLa

(e) PhC-C2DH-U373 (f) PhC-C2DL-PSC (g) Fluo-C3DH-
H157

(h) Fluo-C3DL-
MDA231

(i) Fluo-N3DH-CE (j) Fluo-N3DH-
CHO

(k) Fluo-N3DL-DRO

Figure 7.13: Sample images showing the variability of image data in the Cell Tracking
Challenge datasets (partially contrast-enhanced for better visibility).

the U-Net both videos of a dataset category were used for training and testing. In

this study, training was performed on one video and testing on the other video to

guarantee a fair comparison. In addition, results of other previous methods, which

are briefly outlined below, were included.

CPN [110]: A U-Net is used for cell segmentation and a Faster R-CNN

[23] for cell detection. The result of the Faster R-CNN is used by ROI

pooling to crop features from the U-Net to improve cell splitting.

HD-Har [256]: Local thresholding based on Otsu’s method on a Gaus-

sian filtered image is used after Gaussian filtering. A local threshold is

computed if the intensity variance within an image patch is higher than

a threshold, otherwise global Otsu thresholding is used.

CVXELL [259]: Ellipses are fitted to the regions of interest (ROIs)

using a sequence of convex programs. The ROIs are determined using a

blob detector and a modified Voronoi tessellation.
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BLOB [154]: Either graph-cuts or thresholding are used for initial

segmentation. Generalized Laplacian of Gaussian (gLOG) filter banks

and non-maxima suppression are employed to split cell clusters.

GC-ME [260]: This method uses graph cuts with asymmetric boundary

costs for cell segmentation.

UP-PT [257]: Non-maxima suppression is performed on the result of

an LoG filter. The cell shape is determined using a local convergence

filter.

Table 7.15: Results for the real 2D datasets of the Cell Tracking Challenge
Dataset Video Method SEG Dice Hausdorff

D
IC

-C
2D

H
-H

eL
a 1

UP-PT 0.345

U-Net 0.327 0.880 52.404

GRUU-Net (Weighted CE loss) 0.258 0.885 103.858

GRUU-Net (Non-Normalized FL) 0.290 0.907 88.803

GRUU-Net 0.648 0.886 36.673

2

UP-PT 0.125

U-Net 0.219 0.853 63.463

GRUU-Net (Weighted CE loss) 0.333 0.901 88.479

GRUU-Net (Non-Normalized FL) 0.420 0.899 84.652

GRUU-Net 0.490 0.870 46.856

F
lu

o-
C

2D
L

-M
S

C

1

UP-PT 0.382

HD-Har 0.450 0.593 109.631

U-Net 0.408 0.711 78.912

GRUU-Net (Weighted CE loss) 0.209 0.361 338.677

GRUU-Net (Non-Normalized FL) 0.222 0.451 381.431

GRUU-Net 0.329 0.620 84.126

2

UP-PT 0.264

HD-Har 0.598 0.745 101.842

U-Net 0.502 0.672 189.401

GRUU-Net (Weighted CE loss) 0.535 0.793 290.017

GRUU-Net (Non-Normalized FL) 0.543 0.792 293.935

GRUU-Net 0.550 0.772 137.963
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F
lu

o-
N

2D
H

-G
O

W
T

1

1

UP-PT 0.703

HD-Har 0.545 0.883 6.833

CPN 0.851

CVXELL 0.821 0.637

U-Net 0.814 0.864 23.219

GRUU-Net (Weighted CE loss) 0.854 0.939 100.644

GRUU-Net (Non-Normalized FL) 0.866 0.946 99.016

GRUU-Net 0.888 0.901 43.788

2

UP-PT 0.798

HD-Har 0.898 0.925 8.080

CPN 0.873

CVXELL 0.913 0.894

U-Net 0.832 0.826 21.995

GRUU-Net (Weighted CE loss) 0.843 0.929 176.479

GRUU-Net (Non-Normalized FL) 0.840 0.926 60.839

GRUU-Net 0.929 0.956 11.776

F
lu

o-
N

2D
H

-H
eL

a

1

UP-PT 0.627

HD-Har 0.744 0.887 9.943

CPN 0.831

BLOB 0.795

U-Net 0.775 0.875 6.674

GRUU-Net (Weighted CE loss) 0.706 0.838 91.530

GRUU-Net (Non-Normalized FL) 0.788 0.888 1.500

GRUU-Net 0.749 0.858 7.145

2

UP-PT 0.709

HD-Har 0.814 0.897 6.651

CPN 0.845

BLOB 0.839

U-Net 0.798 0.892 7.581

GRUU-Net (Weighted CE loss) 0.813 0.899 7.193

GRUU-Net (Non-Normalized FL) 0.788 0.901 7.009

GRUU-Net 0.809 0.911 7.341
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P
h

C
-C

2D
H

-U
3
73

1

UP-PT 0.356

CPN 0.734

GC-ME 0.875

U-Net 0.812 0.869 59.156

GRUU-Net (Weighted CE loss) 0.926 0.930 57.507

GRUU-Net (Non-Normalized FL) 0.922 0.941 53.957

GRUU-Net 0.938 0.942 47.463

2

UP-PT 0.359

CPN 0.738

GC-ME 0.757

U-Net 0.739 0.791 71.665

GRUU-Net (Weighted CE loss) 0.787 0.859 75.490

GRUU-Net (Non-Normalized FL) 0.796 0.874 42.402

GRUU-Net 0.814 0.889 34.513

P
h

C
-C

2D
L

-P
S

C

1

UP-PT 0.514

HD-Har 0.464 0.720 7.374

CPN 0.661

U-Net 0.347 0.663 8.141

GRUU-Net (Weighted CE loss) 0.256 0.497 105.252

GRUU-Net (Non-Normalized FL) 0.264 0.524 96.013

GRUU-Net 0.684 0.711 9.142

2

UP-PT 0.477

HD-Har 0.465 0.415 12.479

CPN 0.648

U-Net 0.272 0.635 8.520

GRUU-Net (Weighted CE loss) 0.311 0.121 39.735

GRUU-Net (Non-Normalized FL) 0.329 0.598 100.996

GRUU-Net 0.422 0.686 9.310
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Table 7.16: Results for the real 3D datasets of the Cell Tracking Challenge
Dataset Video Method SEG Dice Hausdorff

F
lu

o
-C

3D
H

-H
15

7

1

UP-PT 0.458

HD-Har 0.753 0.922 105.897

U-Net 0.017 0.007 21.664

GRUU-Net 0.759 0.929 29.216

2

UP-PT 0.557

HD-Har 0.573 0.766 36.825

U-Net 0.032 0.037 166.007

GRUU-Net 0.602 0.865 55.383

F
lu

o-
C

3D
L

-M
D

A
2
31

1

UP-PT 0.348

HD-Har 0.196 0.494 59.969

U-Net 0.340 0.521 90.787

GRUU-Net 0.570 0.703 75.506

2

UP-PT 0.429

HD-Har 0.290 0.521 5.663

U-Net 0.516 0.649 70.452

GRUU-Net 0.503 0.792 12.657

F
lu

o-
N

3D
H

-C
E 1

UP-PT 0.385

HD-Har 0.566 0.772 31.735

U-Net 0.627 0.760 17.844

GRUU-Net 0.598 0.716 19.485

2

UP-PT 0.355

HD-Har 0.486 0.735 24.539

U-Net 0.636 0.683 20.256

GRUU-Net 0.636 0.747 34.010

F
lu

o
-N

3D
H

-C
H

O

1

UP-PT 0.625

HD-Har 0.814 0.875 27.622

U-Net 0.579 0.661 29.887

GRUU-Net 0.595 0.671 36.449

2

UP-PT 0.682

HD-Har 0.903 0.950 8.740

U-Net 0.746 0.815 19.961

GRUU-Net 0.729 0.810 24.564

F
lu

o-
N

3D
L

-D
R

O

1

UP-PT 0.296

U-Net 0.423

GRUU-Net 0.534

2

UP-PT 0.205

U-Net 0.640

GRUU-Net 0.709

From the results in Tables 7.15 and 7.16 it turns out that the proposed method
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achieved the best performance for SEG for 13 out of 22 datasets, and was among

the top two methods for 14 out of 22 datasets. For the Dice coefficient, the proposed

method was best in 14 out of 20 datasets, and among the top two methods for 17

datasets. It was investigated whether GRUU-Net yields a statistically significant

improvement for SEG and Dice compared to UP-PT and U-Net, which were applied

to all datasets. A Shapiro-Wilk test revealed that the results for SEG and Dice

do not follow a normal distribution. Therefore, a Wilcoxon signed-rank test was

conducted with significance level of 5%. For the comparison of GRUU-Net with

UP-PT, p < 0.001 was obtained for SEG and Dice. GRUU-Net and U-Net yielded

p < 0.003 for SEG and p < 0.004 for Dice. Thus, the proposed method yields a

statistically significant improvement over UP-PT and U-Net. Comparing the different

variants of the proposed network in Table 7.15, it turns out that the results are

consistent with the results of the ablation study in Table 7.14. For some datasets, a

relatively high Hausdorff distance was observed, which is an indication for missed

objects (the Hausdorff distance was computed for the whole image). For some

datasets (e.g. DIC-C2DH-HeLa, Fluo-C3DH-H157), it can be observed that U-Net

overfitted much faster than the proposed GRUU-Net, which is indicated by the

maximum number of training iterations using early stopping (cf. Table 7.13). In

addition, the cell appearance in the two videos for a dataset is quite different. Thus,

the reason for the low performance is probably that the networks overfitted on the

specific appearance of one video and did not generalize well to the other video.

Partially, classical methods that do not use machine learning performed quite well.

However, these methods were probably tuned based on all training and challenge

data, which generally leads to overfitting. Since the proposed method achieved the

best results for SEG in most datasets, it can cope better with the high variability

in the 2D and 3D datasets compared to previous methods. GRUU-Net was part of

the Cell Segmentation Benchmark of the Cell Tracking Challenge at ISBI 2019 and

achieved top-3 rankings in three categories.

7.2.3 Instance Segmentation for Cell Images

A preliminary study of the instance segmentation methods described in Section 4.4

has been conducted using an Fully convolutional Networks (FPN) [106] backbone

on the 2018 Data Science Bowl challenge dataset to identify promising instance

segmentation approaches for microscopy cell segmentation (Tian, Wollmann et al.,

see [261]). The mean average precision (MAP) for Jaccard index thresholds, in

a range from 0.5 to 0.95 with a step size of 0.05, was used for evaluation. The

results are shown in Table 7.17. The Deep Watershed Transform performs best. It

was observed that anchors for small objects and false detections in Mask R-CNN

[146] harmed the performance. The performance of embedding-based approaches

[213, 214] highly relied on their post processing. Approaches predicting a distance

map, like the Deep Watershed Transform [215], turned out to be relatively robust.
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Table 7.17: Mean average precision of instance segmentation methods using a FPN
backbone on the 2018 Data Science Bowl challenge dataset.

Method MAP

FCN 0.234
Mask R-CNN 0.084
Discriminative Loss 0.070
Cosine Embedding Loss 0.072
Deep Watershed Transform 0.282

Therefore, approaches based on predicting distance maps seem promising for instance

segmentation in microscopy images.

7.3 Hyperparameter Optimization

To showcase the HyperHyper optimization framework presented in Chapter 5, four

different experiments were conducted. First, the segmentation of cell nuclei in

prostate tissue slides using a clustering and a deep learning pipeline was considered.

Second, the detection of hepatitis C virus (HCV) proteins in live cell fluorescence

microscopy images was studied. In these two experiments, it is revealed that the

separation of sampling and optimization strategy improves the optimal solution. In

the third experiment, an extension of the pipeline for detection of HCV proteins by

image pre-processing was considered. In this experiment, it is shown how an infimum

projection of the loss surface can provide insights into the optimization problem.

In the fourth experiment a larger pipeline for particle detection and tracking was

studied. In the following, the used hyperparameters that need to be optimized are

highlighted in italics.

Experiment 1: Segmentation of Cell Nuclei

In the field of histopathology, segmentation of cell nuclei in tissue microscopy images

is a pivotal and essential task. 2D DAPI stained prostate tissue image slices using

an Opera spinning disk confocal microscope at 60x magnification with a resolution

of 107.7nm× 107.7nm were acquired (Erfle lab). Cell nuclei segmentation is needed

for telomere quantification on a single-cell basis. Due to image noise, variation

of cell shape and image intensity, and low contrast, cell nuclei segmentation is

challenging (Figure 7.14) [11]. For analyzing high-content histological screening data,

hyperparameters of image analysis methods need to be optimized, which is often very

difficult or not feasible to perform manually due to the high dimensionality of the

hyperparameter space. HyperHyper was applied in conjunction with two different

segmentation pipelines to analyze tissue images of the prostate and investigate the

suitability of the proposed black-box hyperparameter optimization framework.

The first pipeline consists of K-means clustering after image smoothing by a
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(a) (b) (c) (d)

Figure 7.14: Examples of prostate tissue images showing various challenges for image
analysis. a) Strong background noise. b) Strong shape variation. c)
Strong intensity variation. d) Low contrast.

Gaussian filter with σGauss. The type of cluster initialization (random, k-means++)

is optimized and the seed value is set to a fixed value to generate a deterministic

segmentation pipeline. Subsequently, median filtering and morphological closing

of small holes was applied. Then, a geometric feature (e.g., major axis length,

eccentricity) determined by optimization was computed and for each cluster compared

to the mean of all clusters to assign the cluster to foreground. The segmented objects

are thresholded regarding area (upper and lower threshold) and solidity. In summary,

for this pipeline, the hyperparameters σGauss, cluster initialization, geometric feature,

area, and solidity need to be optimized.

The second pipeline consists of a U-Net [27] with Adam optimizer [55] and early

stopping. For the network, the same seed value was used for sampling the initial

weights as for the K-means clustering pipeline for a fair comparison. Data augmenta-

tion was performed with image rotation, flipping, and elastic deformation. To discard

small objects, the geometric feature ”area” was thresholded with area threshold. In

summary, for this pipeline, the hyperparameters learning rate, batch size, and area

threshold need to be optimized.

HyperHyper was applied for both pipelines using multiple optimizers, namely Ran-

dom, TPE, CMA-ES, SMAC-RF, and SMAC-XGBoost, and performed a distributed

optimization on 20 computer nodes. The K-means clustering pipeline was evaluated

with 10 runs and 200 evaluations for each optimizer (in total: 10,000 evaluations),

and the U-Net pipeline with 1 run and 200 evaluations for each optimizer (in total:

1,000 evaluations). To determine the global optimum, Grid Search was applied using

17,388 evaluations. The tissue images have different sizes and were divided into

256× 256 pixel image patches before randomly splitting them into 75% for training

and 25% for testing. For optimization purposes, 60 ground truth images annotated by

an expert were used. The K-means clustering and U-Net segmentation performance

was optimized with the soft Dice loss [72].

The results for both pipelines are reported in Table 7.18 as mean and standard

deviation of Dice (balancing precision and sensitivity), and as mean and standard

deviation of the difference (∆Dice) to the Dice value after the warm-up phase. The
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Table 7.18: Results for the K-means clustering and U-Net pipeline with different
optimizers. The table shows the improvement ∆Dice (mean ± std.) after
the warm-up phase and the absolute Dice value (mean ± std.). The best
results are highlighted in bold.

Pipeline Optimizer ∆Dice (Improvement) Dice

K-means clustering

Random 0.030±0.028 0.606±0.025
TPE 0.045±0.028 0.609±0.020

CMA-ES 0.077±0.034 0.642±0.021
SMAC-RF 0.094±0.043 0.642±0.026

SMAC-XGBoost 0.064±0.038 0.634±0.021
Grid Search (coarse) - 0.614

Grid Search - 0.654

U-Net

Random 0.019 0.847
TPE 0.038 0.850

CMA-ES 0.033 0.852
SMAC-RF 0.017 0.846

SMAC-XGBoost 0.039 0.847
Grid Search - 0.864

optimizers perform a warm-up phase for each run, and explore the hyperparameter

space by evaluating 20 random samples before applying the optimization strategy. The

overall improvement by the optimization for each optimizer is reflected by the mean

∆Dice. The Dice values as a function of the number of iterations for all optimizers are

shown in Figure 7.15. For the K-means clustering pipeline, CMA-ES and SMAC-RF

yield the best segmentation performance with a Dice value of 0.642. However, CMA-

ES has a lower standard deviation with a Dice value of 0.021 compared to SMAC-RF.

TPE yields the lowest standard deviation regarding Dice among all optimizers. The

global optimum of 0.654 was determined by Grid Search. Instead of using (dense)

Grid Search with a high number of evaluations (17,388 evaluations), a coarse grid

with a similar number of evaluations as for the optimizers (198 evaluations) was

used. For the K-means clustering pipeline a Dice value of 0.614 was obtained, which

(a) (b)

Figure 7.15: Convergence of different optimizers as a function of the number of
iterations. a) K-means clustering pipeline. b) U-Net pipeline.
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is lower compared to SMAC-XGBoost, SMAC-RF, and CMA-ES, but higher than

Random and TPE. Regarding ∆Dice, SMAC-RF obtains the largest improvement

∆Dice = 0.094 compared to all other optimizers. For the U-Net pipeline, CMA-

ES achieves the largest Dice value of 0.852, SMAC-XGBoost obtains the highest

improvement ∆Dice = 0.039. In Figure 7.16, the segmentation results for the best

optimizer for each pipeline for Dice and the best optimizer for ∆Dice are shown.

Comparing the results with the ground truth, it can be seen that the K-means

clustering pipeline has problems with splitting cell nuclei for both best optimizers for

Dice and ∆Dice. Overall, the best segmentation performance determined by Grid

Search is achieved by the U-Net pipeline, which yields a significantly higher Dice

value of 0.864 compared to the K-means clustering pipeline with 0.654. For K-means

clustering, comparing SMAC-RF and SMAC-XGBoost in Table 7.18, SMAC-RF

yields a better Dice value than SMAC-XGBoost. In contrast, for the U-Net pipeline,

SMAC-XGBoost yields a better Dice value than SMAC-RF. Since SMAC-RF and

SMAC-XGBoost use the same sampling strategy, but different optimization strategies,

this demonstrates that the proposed separation of sampling and optimization strategy

in HyperHyper yields better solutions.

(a) (b) (c)

(d) (e) (f)

Figure 7.16: Comparison of segmentation results for both pipelines with different
optimizers. a) Original image. b) Original image with ground truth
annotations by an expert. c) K-means clustering pipeline with CMA-ES.
d) K-means clustering pipeline with SMAC-RF. e) U-Net pipeline with
CMA-ES. f) U-Net pipeline with SMAC-XGBoost.
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Experiment 2: Detection of HCV Proteins

In the second experiment, HyperHyper was evaluated for live cell fluorescence mi-

croscopy data displaying fluorescently labeled HCV NS5A as small round particles.

Detection of subcellular structures such as proteins is a prerequisite for tracking

[163] to obtain quantitative information on cellular processes. The live cell data

was acquired using an Ultra-View ERS spinning disk confocal microscope with an

image size of 355× 447 pixels (Bartenschlager lab). To detect HCV proteins, the

spot-enhancing filter (SEF) [161] was used, which consists of applying a Laplacian-

of-Gaussian filter (LoG) with standard deviation σLoG, followed by thresholding the

filtered image. The threshold is based on the mean intensity of the filtered image

plus a factor c times the standard deviation of the filtered image intensities [40, 262].

To detect HCV proteins, the hyperparameters σLoG and c have to be optimized.

As in experiment 1, Random, TPE, CMA-ES, SMAC-RF, and SMAC-XGBoost for

hyperparameter optimization were used. 10 runs per optimizer with 3,500 evaluations

distributed on 20 compute nodes (in total: 175,000 evaluations) were performed. To

determine the global optimum, dense Grid Search with 35,000 evaluations distributed

on 20 compute nodes was used. The performance of SEF detection was optimized

and evaluated using the F1 score (balancing precision and sensitivity) and 128 ground

truth annotations. The assignment between the ground truth annotations and SEF

detections was determined using the Munkres algorithm [242] and a gating distance of

5 pixels. Similar to experiment 1, the mean and standard deviation of ∆F1 showing

the difference to the F1 score after the warm-up phase was computed.

The results for the different optimizers are shown in Table 7.19. The best perfor-

mance is obtained by SMAC-RF and SMAC-XGBoost with an F1 score of 0.872,

which are the only optimizers reaching the global optimum. The largest improve-

ment ∆F1 is obtained by SMAC-RF with 0.050. In Figure 7.17 c), the result for

SMAC-RF (green circles) is shown together with the ground truth (red circles) in

Figure 7.17 a) and the global optimum (Grid Search) in Figure 7.17 b). The F1 score

as a function of the number of iterations for all optimizers is depicted in Figure 7.18.

To better assess the convergence of the optimizers, only the first 2,000 iterations

Table 7.19: Results for the HCV protein detection pipeline with different optimizers.
The table shows the improvement ∆F1 (mean ± std.) after the warm-up
phase and the absolute F1 score (mean ± std.). The best results are
highlighted in bold.

Pipeline Optimizer ∆F1 (Improvement) F1

SEF

Random 0.043±0.033 0.871±0.002
TPE 0.041±0.023 0.867±0.000

CMA-ES 0.022±0.008 0.871±0.001
SMAC-RF 0.050±0.037 0.872±0.000

SMAC-XGBoost 0.041±0.037 0.872±0.000
Grid Search - 0.872
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are shown. The fastest convergence is obtained by SMAC-RF and SMAC-XGBoost,

whereas TPE is the slowest. To obtain more insights into the optimization process

and to visualize the dependency between the hyperparameters, the loss surface was

computed with Grid Search. The loss surface is shown in Figure 7.19 a), and the

global optimum is marked by a blue star. A clear dependence between c and σLoG is

visible by the valley shape of the loss surface. In addition, a visualization of the trail of

an optimizer on the loss surface is provided for spatial assessment of the convergence

process. In Figure 7.19 b), the best trails of Random and SMAC-RF are depicted.

A trail represents the connection of the best evaluations per optimization step. It

can be seen that Random finds the optimum more directly compared to SMAC-RF.

However, according to Figure 7.18, SMAC-RF has a much faster convergence than

Random.

(a) (b) (c) (d)

Figure 7.17: Detection results for HCV live cell microscopy data with different hy-
perparameter optimizations. a) Ground truth annotated by an expert.
b) Experiment 2 using Grid Search c) Experiment 2 using SMAC-RF. d)
Experiment 3 using Grid Search.

Figure 7.18: Convergence of different optimizers as a function of the number of
iterations.
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(a) (b)

Figure 7.19: Loss surface of experiment 2 for 2D hyperparameter space (c and σLoG).
a) The hyperparameter space was sampled with Grid Search and the
global optimum is marked with a blue star. b) Same as in a), but with
optimization trails of Random (green) and SMAC-RF (blue). For both
trails, the dot is the starting point and the star shows the found optimal
solution. Both trails represent the best evaluations per optimization
step over time.

Experiment 3: Image Pre-Processing for Detection of HCV

Proteins

With this experiment, the importance of an infimum projection as visualization of

the loss function to gain further insight on the dependency of the hyperparameters

is shown. An additional image pre-processing step for the pipeline for HCV protein

detection from experiment 2 above is studied. As pre-processing step, the image

is smoothed with a Gaussian filter with standard deviation σGauss and subtracted

the filtered image from the original image to enhance the particles and suppress

background noise. We now have a 3D hyperparameter space containing σGauss,

σLoG, and c. The global optimum was computed with Grid Search (total: 175,000

evaluations).

Figures 7.20 a) and b) display the original and filtered live cell data respectively.

Table 7.20 shows the improvement using the pre-processing step. The F1 score

using pre-processing is 1.6 % higher compared to the result from experiment 2

without pre-processing. The detection result using pre-processing is displayed in

Figure 7.17 d). All HCV proteins within the upper two cells are detected, whereas

without pre-processing, only a few of them were detected.

Table 7.20: Results for the two HCV protein detection pipelines (experiment 2 and
3) with Grid Search. The table shows the absolute F1 score. The best
result is highlighted in bold.

Pipeline F1

SEF 0.872
SEF + Pre-processing 0.888
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Table 7.21: Results of PCA for the whole loss surface data. The table provides
the eigenvectors and eigenvalues of the four principal components (PC)
together with the ratio between the cumulative variance and the total
variance in [%].

PCA Variable PC 1 PC 2 PC 3 PC 4

Eigenvectors c 0.224 -0.948 0.001 · 10−13 0.224
σLoG -0.668 -0.316 -0.081 -0.668
σGauss -0.054 -0.026 0.997 -0.054
loss -0.707 -0.002 · 10−12 0.003 · 10−14 0.707

Eigenvalues 1.692 1.000 1.000 0.308

Cumulative variance ratio 42.3 % 67.3 % 92.3 % 100.0 %

To obtain insights into the optimization process and to quantify the dependency

of the hyperparameters, a principal component analysis (PCA) [263] of the loss

function was conducted. The results are shown in Table 7.21. The values of the

loss function were normalized (zero mean and variance of one), and the eigenvectors

with corresponding eigenvalues were computed (principal components, PCs). It can

be seen that in order to represent 90 % of the variance, the first three PCs need

to be taken into account. For the first PC, the hyperparameter σGauss has a more

than ten times smaller influence than c and σLoG. In addition, the other two PCs

have a minor influence on the loss. Therefore, the influence of σGauss on the loss is

relatively small. Table 7.20 shows that pre-processing by a Gaussian filter improves

the detection pipeline performance. To further investigate the dependencies of the

hyperparameters, it is proposed to generate infimum projection visualizations. The

infimum projection of a countable finite n-dimensional loss L : Q1 × ...×Qn → R
into a lower dimensional projection P onto the index set I ⊆ [#Q] of features

(a) (b)

Figure 7.20: HCV fluorescence microscopy data. a) Original image. b) Pre-processed
image with optimal σGauss obtained by Grid Search.
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Q = {Q1, ..., Qn} with n elements can be performed by:

P(I; q1, ..., qn) = min
qk∈Qk
k 6∈I

{L(q1, ..., qn)} (7.7)

In Figure 7.21 a) - c), the infimum projections between the three hyperparameters

are shown. Figure 7.21 a) can be compared with the loss surface for c and σLoG in

experiment 2 in Figure 7.19 a), where both hyperparameters (c and σLoG) are plotted.

Both loss surfaces show the same structure, and therefore a priori knowledge from

experiment 2 could be transferred to the optimization problem in experiment 3. In

addition, from the loss surfaces in Figure 7.21 b) and c), one can see that the former

hyperparameters (c and σLoG) and the additional parameter σGauss seem to be inde-

pendent due to the homogeneous structures of the loss surfaces. Thus, the infimum

projection yields additional information for the PCA analysis. Figure 7.21 c) and d)

together with Table 7.20 indicate that the optimization problem can be restructured

by optimizing separately σGauss and c along with σLoG. This sequential optimization

procedure reduces the 3D hyperparameter optimization to a 1D optimization along

with a 2D optimization.

(a) (b)

(c)

Figure 7.21: Infimum projections of the loss surface from experiment 3 for the 3D
hyperparameter space (c, σLoG, and σGauss) sampled with Grid Search.
The global optimum is marked with a blue star.
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Experiment 4: Particle Detection and Tracking

Preliminary studies using larger image analysis pipelines have been conducted. A

combination of the DetNet particle detection network (Section 3.2) and the probabilis-

tic particle tracking method PDAE (Probabilistic Data Association with Elliptical

Sampling) [40] was used to track particles in microscopy image sequences (Ritter,

Wollmann, et al. [9]). DetNet-PDAE combines the benefits of both methods and can

cope with a small number of training samples. PDAE uses multiple measurements

from DetNet and an elliptical sampler, and integrates the information using a Kalman

filter via combined innovation. Model parameters of PDAE were optimized using

CMA-ES in HyperHyper [4]. The DetNet-PDAE method has been benchmarked

using data from the Particle Tracking Challenge.

It turned out that optimized DetNet-PDAE outperforms the non-optimized DetNet-

PDAE in all performance measures of the Particle Tracking Challenge.

7.4 Transfer Learning for Microscopy Image Data

In this section, the transfer learning methods proposed in Chapter 6 are evaluated.

7.4.1 Multi-Channel Deep Transfer Learning

The transfer learning method presented in Section 6.2 considers the segmentation

of nuclei from 3D tissue microscopy images of glioblastoma cells. This data is very

challenging due to strong intensity variation, cell clustering, poor edge information,

missing object borders, strong shape variation, and low signal-to-noise ratio. The

dataset consists of five 3D images acquired, using a Leica TCS SP5 point scanning

confocal microscope with a 63x objective lens and a voxel size of 100× 100× 250 nm

(Erfle lab). Four color channels were imaged sequentially: PML antibody stain (Alexa

647), FISH CY3 telomere probe, FAM labeled CENP-B PNA probe, and DAPI

nuclei stain. 45 axial sections were acquired for each 3D stack. Deep learning models

with transfer learning were trained on a dataset with glioblastoma cells containing 50

images stained with DAPI nuclei stain before training on the considered four color

channel dataset. However, the first dataset has only one channel and consists of

maximum intensity projection (MIP) images. Therefore, standard transfer learning

is not applicable and other approaches such as the two transfer learning strategies

described in Section 6.2 are needed. Four performance measures were used for

quantitative evaluation: SEG, IOU, Dice, and Warping Error (see Section 7.2

above). For a quantitative comparison, thresholding in combination with mean shift

clustering was used as well. The 3D images were pre-processed using 3D Gaussian

filtering (σ = 2 pixels). An empirically determined threshold of 160 was used. In

addition, an approach based on Gaussian filtering, mean shift clustering, and 3D

fast-marching level sets [264] was used. The segmentation results were post-processed
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Table 7.22: Performance of different segmentation methods. Bold and underline
highlights the best result, and bold indicates the second best result.

Method SEG JI Dice Warp Error [10−4]

Clustering & Thresholding 0.5782 0.6520 0.7884 0.093
Fast-Marching Level Set 0.5065 0.5682 0.7194 0.149

U-Net 0.6666 0.5774 0.7168 0.011
Proposed NN 0.7814 0.6154 0.7581 0.040
Proposed NN (transf., same filter) 0.7913 0.5221 0.6709 0.045
Proposed NN (transf., indiv. filters) 0.7981 0.6426 0.7775 0.030

(a) Original image (b) Ground truth (c) Clustering &
Thresholding

(d) Fast-Marching
Level Set

(e) U-Net (f) Proposed NN (g) Proposed NN
(transfer, same
filter)

(h) Proposed NN
(transfer, indiv-
idual filters)

Figure 7.22: Example tissue microscopy image of glioblastoma cells, ground truth,
and segmentation results of different methods.

using hole filling. All segmentation methods were evaluated on the 3D images from

the four channel dataset which were not used for training. The segmentation results

for five 3D images each containing 65 sections (in total 325 2D images per channel)

were compared. Ground truth segmentations for all images were determined by

manual annotation. Table 7.22 shows the results for all methods for the different

evaluation metrics.

It turns out that the proposed neural network combined with transferring individual

filters performs best for SEG and second best for JI, Dice and Warping Error.

Segmentation results for an example image are provided in Figure 7.22. It can be

seen that the proposed network performs best. In addition, transferring individual

filters improves cell separation. The high SEG and low Warping Error indicates that

the proposed model is more suited to correctly merge and split objects.
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7.4.2 Unsupervised Domain Adaption for End-to-End Grading of

Whole-Slide Images

The method presented in Section 6.3 for end-to-end grading of whole-slide images

was evaluated using the CAMELYON17 dataset [241]. The method was the only

segmentation-free method that participated in the CAMELYON17 challenge [241].

The data consists of WSIs from 100 patients collected from five medical centres in

the Netherlands. The WSIs show five lymph nodes per patient and are labelled

with a patient level pN-stage and a slide level class. Figure 7.23 shows examples

of automatically selected ROIs using the method. For evaluation of the proposed

deep learning method, three different experiments were performed. In the first

experiment (Standard), state-of-the-art data augmentation (without CycleGAN)

is used. In the second experiment (Domain adaptation), CycleGAN was used for

domain adaptation to transform all data from different medical centers to the data

from one center (Data 1). In a third experiment, CycleGAN was used to create all

combinations of transformations (10 GANs) between sources of data. However, the

latter approach performed worse, since the network was not able to learn invariance

from the very large variation in the dataset. In Figure 7.24 two examples from

Data 1 (Figure 7.24a,b) and results of image transfer from Data 3 and 4 to Data

1 are shown. It can be seen that the transformations learned by the CycleGANs

well capture the appearance of Data 1. For a quantitative evaluation, the weighted

Cohen’s kappa score was calculated for each experiment, which was also used in

the CAMELYON17 challenge. The weighted Cohen’s kappa score measures the

inter-rater agreement for exclusive classes.

The results are shown in Table 7.23. It turns out that domain adaptation using

CycleGAN yields a significant improvement compared to state-of-the-art data aug-

mentation. The computation time of the method for the classification of a 512× 512

image patch was performed on average in 0.04 seconds on an Intel i7-6700K worksta-

tion with a NVIDIA Geforce GTX 1070. The computation time for classification of

a whole WSI is 0.78 seconds and in total 3.90 seconds for predicting a patient level

grade. The forward pass in the proposed method is tenfold faster compared to the

original DenseNet.

(a) Original image (b) Regions of interest

Figure 7.23: Examples of regions of interest automatically selected from a WSI.
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(a) Data 1, Example 1 (b) Data 1, Example 2

(c) Data 3 (d) Data 3 transformed to
Data 1

(e) Data 4 (f) Data 4 transformed to
Data 1

Figure 7.24: Images (512× 512 pixels) from different data sources mapped to Data 1.

Table 7.23: Results for state-of-the-art data augmentation and for domain adaptation.
Method weighted Cohen’s kappa

Standard data augmentation 0.114
Domain adaptation 0.165
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Analysis

Since several years, high-content (HC) as well as high-throughput (HT) microscopy

and screening techniques have lead to many advances in biology and medicine. This

fast emerging technology is transforming cell biology into a big-data driven science

[265]. New challenges for data storing, processing, analysis, and interpretation

arise due to the huge amount of generated image data. Automated analysis of

microscopy images is a main bottleneck [266, 267, 268] and, unfortunately, scaling up

workflows is not straightforward. Moreover, there exists a vast variety of microscopy

image analysis software with multiple versions for different platforms, which often

impedes sharing workflows or reproducing analysis results [269]. Setting up the

computation environment for deep learning algorithms is especially challenging. In

biomedical research, a short time between the development of a novel microscopy

image analysis method and its application has the potential to accelerate research.

Therefore, translational efforts between image analysis researchers and biologists

are conducted. Developing workflows for a biological or medical image analysis

project involves constant exchange between the cooperation partners. The continuous

improvement of workflows, algorithms, and simultaneous generation of new data yields

challenges for FAIR [270] principles. The FAIR principles are findability, accessibility,

interoperability, and reusability [270]. Missing metadata can cause a lack of findability.

Impaired accessibility can arise from data or algorithms which can be exclusively used

by only one of the partners. General lack of usability and software that is cumbersome

to install prohibit reusability. Finally, non-standardized communication between

software can prevent interoperability of tools. An infrastructure for sharing resources

such as collaboration functionalities with co-workers or cooperation partners, data

storage, or computer cluster execution needs to be established. Hence, there are

several reoccurring challenges in large scale microscopy image analysis for biomedical

research. To cope with these challenges, a web-based system which supports complex

scientific microscopy image analysis workflows has been developed and is presented in

this chapter. The developed web-based system is complemented with a deployment

platform for biomedical image analysis software. The system was evaluated in

usability studies and used in research projects with biomedical partners. The work

was partially published in [8, 7, 6].
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8.1 Workflow Systems for Microscopy Image Analysis

Several scientific workflow management systems (SWMS) [271] exist that facilitate

the creation, provision, and maintenance of data analysis workflows (e.g., Galaxy,

KNIME, Taverna). SWMS allow scaling of image analyses and enable collaborative

data analyses and reproducible science. Moreover, they ease the use of image

analysis pipelines and high-performance computing (HPC) environments or a cloud

by non-expert users. To maximize the benefit for the scientific community, sharing

of data, software, and results should be as easy as possible [272]. Therefore, tool-,

data-, and workflow-sharing platforms have to be established. A microscopy image

analysis workflow processes acquired images to retrieve quantitative information

about a biological experiment. Quantitative information can be determined from the

images as a whole or from individual objects of interest in these images (e.g., cells or

subcellular structures). Such an analysis can span multiple levels of image resolution

and multiple image dimensions depending on the biological question or imaging

technique. As outlined in Section 1.1.1, a wide variety of different microscopy imaging

modalities exists. In addition, a large range of readouts can be obtained (e.g., global

intensity level, cellular and subcellular constellations, colocalization information, cell

count, cell shape). Common and central tasks in microscopy image analysis are

cell segmentation, counting, and feature extraction. The readout is combined with

additional metadata (e.g., position within a plate or well, color channel, time point,

or layout information), and specific statistics and visualizations are generated.

In an SWMS, established image analysis toolboxes should be integrated so that they

can be used in a standardized way. For all most popular programming environments,

there exists at least one microscopy image analysis toolbox [273]. For Matlab, the

Matlab Image Processing Toolbox and DIPimage are widely used. Within Python,

scikit-image [274] and Mahotas [275] are popular. ImageJ [276] is heavily used in

the Java community. Projects like Fiji [266], CellProfiler [277] or Icy [278] use image

analysis features of ImageJ. For C++, OpenCV [279], VTK [280], ITK [281], 3DSlicer

[282], MITK [283], Ilastik [253], and many more toolboxes are prevalent. Some of the

C++ toolboxes offer wrappers for Matlab, Python, and Java. These toolboxes share

several basic image analysis features, but also have exclusive advantages. An ideal

SWMS would integrate all features of the toolboxes in a meaningful way, achieving

interoperability.

Microscopy image analysis toolboxes typically have components for input/output

(IO), image processing, image analysis, and visualization. Usually, the toolboxes

embed IO libraries to read and write image files. Image analysis toolboxes typically

focus on a specific application area and therefore cannot read all common image file

types. Moreover, they include custom data structures to optimize image processing

and access (e.g., kd-trees, tensors). Image processing algorithms like filtering (e.g.,

mean filter, Gaussian filter, median filter) for noise reduction and low level feature

extraction (e.g., Haralick features, SIFT, HOG, LBP) are used in microscopy image
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analysis. The capabilities of the different microscopy image analysis toolboxes differ

considerably. Object detection, object segmentation, object classification, object

tracking, colocalization analysis, and image registration are common microscopy

tasks. There exists a huge variety of different methods to solve these tasks. Moreover,

a diversity of implementations and optimization schemes for different use cases

are available. Many image analysis methods heavily rely on vector/matrix/tensor

operations, which are highly parallelizable (e.g., convolution, rendering). These

operations are often accelerated by a graphics processing unit (GPU).

Most SWMS like Nextflow [231], Toil [284], Snakemake [285], or Bpipe [286] do

not offer a Graphical User Interface (GUI), being designed for power users and

less suitable for biologists and physicians. SWMS like KNIME [287] or Taverna

[288] focus on a desktop client which uses local resources. In contrast, the Galaxy

platform [289, 290, 230] focuses on a web-based client running in a high-performance

computing environment. However, Galaxy, KNIME, and Taverna provide web-based

and local clients, and high-performance computing support. The systems have

different mechanisms for workflow sharing, and a direct conversion of workflows

between the systems is currently not possible. The project MyExperiment [291]

enables the exchange of workflows for Galaxy, KNIME, and Taverna. In the following,

similarities, differences, and problems of SWMS for large scale microscopy image

analysis based on Galaxy and KNIME are described, as KNIME is already established

for bioimage analysis and Galaxy is an emerging fully open-source web-based platform

for biological data analysis.

KNIME is a platform for data analysis, reporting, and integration [292]. Individual

tasks are visually represented as modules or nodes which can be orchestrated to

workflows. KNIME consists of an open-source core and commercial extensions that

include multi-user functionality, web portal access, or server execution. External

tools can either be integrated through a command line call node or integrated as

plugin via the Eclipse plugin architecture. For some programming languages (e.g.,

Java, Python, Perl, R), dedicated nodes can directly execute code snippets. In

KNIME, data is represented as a tabular structure and used to pass data between

nodes. Each node has a table viewer, but can be replaced by specialized viewers

for specific data types. KNIME supports conditional execution and loop structures.

Nodes for image handling, conversion, normalization, filtering, labeling, segmentation,

or feature extraction along with visualization are available.

Galaxy is a software platform that enables biologists to perform web-based com-

putational analysis [289, 290, 230]. It supports the whole workflow of data storing,

data processing, data analysis, data visualization, and data publishing. Galaxy

allows processing of jobs in the cloud or on computer cluster systems like Terascale

Open-source Resource and QUEue Manager (TORQUE) or Slurm. Galaxy was

developed for genome analysis, and for DNA sequence analysis in particular. The

main Galaxy client is a web-based graphical user interface. In addition, the Bioblend

library can be integrated into third-party clients to communicate with the Galaxy
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API. Galaxy can be used through a public Galaxy server (https://usegalaxy.org),

cloud installations, or locally. Administrators can install tools and workflows to

Galaxy using the ToolShed (https://usegalaxy.org/toolshed). The ToolShed pro-

vides a web-interface to install not only tools and workflows, but also the required

dependencies automatically. Dependencies can be automatically installed from the

ToolShed itself, Conda repositories, Docker repositories, and PyPA pip. To pro-

vide long term availability of dependencies, the Galaxy community launched the

Cargo Port package repository, which is archiving source code of registered ToolShed

tools (https://depot.galaxyproject.org/software/). Over 7000 tools are available in

the official ToolShed. Galaxy also supports the Common Workflow Language (CWL)

[272] and the EDAM ontology [293] to be interoperable with workflows created

in other SWMS or databases providing ontology annotated data. In addition to

workflows, Galaxy offers the concept of interactive environments (GIE) [294], which

allows for interactive exploratory data analysis. For example, Jupyter and RStudio

are available for programming, Neo4J for graph analysis, and Ethercalc for modifying

tabular data. In Galaxy, tools are executed via command line calls and XML-based

tool descriptions are used to automatically generate dedicated user interfaces without

the need of writing complex plugins. So called tool runners are used to schedule the

computation jobs for local, cloud, or cluster execution. The Pulsar component can

transfer required files, scripts, configuration files, and results over Secure Shell (SSH),

if no direct communication to the computation infrastructure is possible. Data can

be uploaded by the user to Galaxy (e.g., web-interface, API, FTP) or retrieved from a

public or private database (e.g., EBI SRA, UC,SC Main, EuPathDB). In 2019, more

than 100 publicly accessible servers were available (https://galaxyproject.org/galaxy-

project/statistics/). The Galaxy community has a strong focus on training. The

Galaxy Training Network [295] organizes training materials, workshops, and confer-

ences like the annual GCC highlighting new Galaxy capabilities and research which

is using the Galaxy platform.

With both Galaxy and KNIME, design and execution of data processing workflows

is straightforward and easily comprehensible due to the graphical representation of the

workflow structure. However, the SWMS differ in their scope and applicability (Ta-

ble 8.1). KNIME focuses on tight coupling [296] with tools and hardware and a finer

tool granularity. Tools are either directly integrated within the KNIME framework as

plugins or by the user via command line calls. The performance of KNIME strongly

depends on the computation environment of the user. In the Galaxy platform, tools

are always executed via command line calls. Therefore, Galaxy focuses more on

a loose coupling [296] with tools. Galaxy also has loose coupling with computing

resources, since command line calls can also be executed easily on a remote system.

In Galaxy, cutting edge tools and algorithms can be easily made available, resources

can be assigned as required. The usage of Galaxy is straightforward and the user

does not require an installation of a local client or knowledge on using cloud or cluster

resources. KNIME can only resolve tool dependencies using the Eclipse Integrated
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Table 8.1: Comparison of KNIME and Galaxy characteristics.

Characteristic KNIME Galaxy

Code license GPL v3.0 AFL v3.0

Coupling with tools tight loose

Preferred tool granularity fine coarse

Stepwise workflow execution possible possible

Workflows executable in other SWMS impossible via CWL

Client type desktop client web-based client

Required computation resources client-side server-side

Cluster support commercial extension native

Development Environment (IDE)-based system provided by KNIME. In contrast,

Galaxy can use several dependency resolvers like Conda or Docker. Thus, Galaxy can

benefit from packaging efforts of multi-purpose repositories like Conda. As pointed

out, both workflow systems can solve similar tasks in data analysis in their respective

environment, but are complementary in implementation into scientific workflows.

KNIME is focused on providing a platform for orchestration of tools at the side of

the user, where the user maintains the KNIME installation, tools, workflows, and

infrastructure. Galaxy is focused on providing a platform for remote data analysis

where computer science experts provide tools, workflows, and infrastructure to less

experienced users. Hence, Galaxy is more suitable to support the workflow for image

analysis research projects presented in Section 1.1.2 by providing a platform for the

collaboration of image analysis experts and biologists. However, Galaxy lacks the

broad integration of image analysis tools in comparison to KNIME.

8.2 Deployment of Biomedical Data Analysis

Software

Installation of cutting edge data analysis software can be cumbersome due to the

focus on method development in research instead of software engineering. Therefore,

a lightweight solution to help researchers to manage software dependencies and

distribute software is required. The Conda package manager (https://conda.io)

is a cross-platform package manager. It is programming ecosystem and operat-

ing system agnostic. Conda builds the software packages in a controlled envi-

ronment and provides the resulting binary software artifacts. The software is

build to work in an isolated environment and can therefore be installed in mul-

tiple versions and combinations for different projects. Conda is nowadays inte-

grated into data analysis software for reproducible science like Galaxy [230], bcbio-

nextgen (https://github.com/chapmanb/bcbio-nextgen), and Snakemake [285]. Bio-

conda (https://bioconda.github.io) is a Conda software channel dedicated for the

life sciences [7]. The Bioconda project [7] provides over 6,000 software packages.
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Moreover, each Bioconda package is also provided in containers through Docker and

Singularity via the closely collaborating Biocontainers project [297]. The Bioconda

project has become a backbone of bioinformatics infrastructure with over 6.3 million

downloads until 2018 and the largest software repository for life sciences [7].

As a basis for Galaxy Image Analysis (see below), within this thesis image

analysis software was integrated into Bioconda and the formation of a Bioconda

community particularly for image analysis was supported [7]. More than 15 im-

age analysis related packages with over 200,000 downloads until the end of 2019

(https://anaconda.org/bioconda) have been included into Bioconda.

8.3 Galaxy Image Analysis

Galaxy is widespread in the field of biological data analysis and easy to use by non-

experts via the web-client. Therefore, in this thesis Galaxy was chosen as platform

and extended for the use in the field of microscopy image analysis. However, Galaxy

has been developed for genomic data, which has different requirements to an SWMS

compared to microscopy image data (Table 8.2). For example, the number of image

files is multiple orders higher in microscopy image analysis compared to genome

analysis. This poses the challenge of handling large amounts of metadata. In addition,

in microscopy imaging, metadata like the acquisition channel, plate position, or well

is often encoded in the filename which has to be parsed within Galaxy. Imaging

data also lack standardization in file type and metadata encoding. Reading out

this information can be even more complex, as images are often stored in container-

based data types (e.g., TIFF, VTK, PSD, HDF5). This is also a main difference

to genomic data analysis, where less data types are used. Even wrapping existing

microscopy image analysis tools into Galaxy can be more difficult than wrapping

genomic data analysis tools. Typically, microscopy image analysis tools have dozens

of dependencies with very specific libraries. Moreover, they are mainly controlled

via a graphical user interface (GUI). In genomic data analysis, it is more common

to use a command line interface (CLI). In addition, the field of genomic analysis

already uses widespread deployment structures like Bioconductor [298], Biocontainers

[297], or Bioconda [7]. A GUI is not only an obstacle for automation, but also often

requires a processing node equipped with a graphics card, which is not always

the case in a high-performance computing environment. Obviously, the resulting

data from applying microscopy image analysis workflows require visualization tools

enabled for the web. These visualization tools have to cope with the additional

challenge that image files are generally too large to be transferred and rendered in the

browser. Therefore, server-side tiling and rendering in combination with streaming

to a browser-based thin client is necessary.

These requirements were tackled in this thesis by contributing to the Galaxy

platform. Support for more than 10 microscopy image file types, support for datasets

with thousands of images (e.g., used in phenotype screenings), extensions for image
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Table 8.2: Comparison of genome data and image data.

Characteristic Genome data Image data

File size large medium

File count small large

File types
few with
proprietary extensions

proprietary and
open container-based types

Metadata
own file types
(many derivations)

implicit encoded /
proprietairy file types

Dataset standardization medium low

Visualization 1D/2D 2D/3D/ +channels/ +time

Galaxy tools available many very few

Tool interface
mostly via
Command Line Interface

mostly via
Graphical User Interface

data visualization, and over 50 image analysis tools were contributed. The work

has been published in Wollmann et al. [8]. In addition, workflows for Galaxy for

specific use cases were developed and published in [6]. Moreover, training material for

Galaxy Image Analysis was provided using the Galaxy Training Network [295]. In the

following, an example workflow for cell segmentation is presented. In this workflow,

the metadata is extracted from the image file and written to a tabular file, the image

is pre-processed, the cells are segmented, counted, and finally, the metadata and the

cell counts are merged into a unified table. Instead of calculating global features for

the whole image, object-wise features like mean intensity, area, or major axis length

can be computed. In case the relation of objects in two image channels is important,

a co-localization analysis can be performed. The presented workflows are easily

executable, shareable, and extendable through the Galaxy workflow management

capabilities. Galaxy interactive environments (GIEs) enable the user to interactively

explore data within the Galaxy platform. For example, for editing a readout of a

screen, which is stored in a tabular file, the Ethercalc (Figure 8.2a) GIE can be

Figure 8.1: Galaxy Image Analysis workflow for cell segmentation and counting.
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used. More advanced users can use the Jupyter (Figure 8.2b) GIE for custom data

analysis in Python or R. However, visualization of images is not possible. Especially

multi-dimensional data (e.g., 3D images, videos) are frequent in microscopy image

analysis and cannot be directly visualized in the browser. Therefore, a GIE based on

ParaView [299] was developed (Figure 8.3). The GIE performs server-side off-screen

rendering using the Mesa 3D graphics library, which supports GPU- and CPU-based

rendering. A JavaScript-based client communicates with the rendering engine using

the WebSocket protocol. However, for large images like histological slides, this

visualization technique is inefficient. Typically, large images are sliced and delivered

using lazy loading to the browser (e.g., OpenStreetMap, Google Maps). Therefore,

a GIE based on a Deep Zoom implementation of OpenSlide [300] was developed

(Figure 8.4).

8.4 Usability Evaluation of Galaxy Image Analysis

To measure the applicability of Galaxy Image Analysis, several usability studies were

conducted within this thesis. According to EN ISO 9241-11, usability is defined

as the product of effectiveness, efficiency, and satisfaction of a system in a specific

context of use [301]. Effectiveness describes the ability of the user to complete

(a) Ethercalc GIE (b) Jupyter GIE

Figure 8.2: GIEs for explorative data analysis.

Figure 8.3: GIE for server-side image rendering and visualization based on ParaView.
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Figure 8.4: GIE for WSI visualization based on OpenSlides Deep Zoom implementa-
tion.

tasks and achieve specific goals [301]. The effort the user has to spend is described

by the efficiency [301]. The satisfaction characterizes the user’s perceived ease

of use [301]. In addition, learnability describes the time span that is required so

that a user can efficiently use the system [301]. These factors can be quantified

by usability metrics [301]. The EN ISO 9241-11 proposed several methods such

as expert reviews, interviews, observations, and questionnaires to measure these

factors [302]. Questionnaires are a quick tool to measure the overall usability of a

software. Brooke et al. introduced the System Usability Scale (SUS) [303]. The SUS

questionnaire consists of 10 questions on the Likert scale from one to five. The Likert

scale is a bipolar scale and is able to measure positive or negative responses to a

given statement [304]. The score of every second answer is reversed and all answers

in the questionnaire are then summed up in the SUS score [305].

In the conducted studies within this thesis, the SUS was adapted with suggestions

from Finstad and Bangor et al. [306, 307], who suggest to change ”cumbersome”

to ”awkward”, to make it better understandable. Moreover, ”system” was changed

to ”software”. According to Lewis et al. [308], changing ”system” to a different

term has no measurable effect on the SUS score. The questionnaire was combined

with a master data section consisting of age, gender (options: male, female, divers),

profession, and software usage (options: never, occasionally, monthly, daily) to better

understand the cohort and identify confounding bias factors. According to Nielsen

[309], five test participants achieve an optimal cost-benefit ratio to identify major

usability issues using a quantitative study. Rubin et al. [310] recommend using at

least eight participants to have some buffer and strengthen statistical significance.

The target user group of the software system in this thesis are biomedical researchers

in a university environment. Therefore, students and researchers with biological

background were recruited. To form a baseline, a SUS study was performed in 2016

for the systems ImageJ, KNIME, and Galaxy Image Analysis. In 2018, a controlled

study on Galaxy Image Analysis was performed to identify usability issues. As part
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Table 8.3: SUS questionnaire usability studies for ImageJ, KNIME, and Galaxy.
Platform Year M/F/D Age SUS US LS

ImageJ 2016 6/11/0 29.2± 4.8 64.55± 21.06 67.61± 21.80 52.27± 23.60
KNIME 2016 7/7/0 30.7± 5.6 63.21± 11.96 66.52± 10.93 50.00± 27.00
Galaxy 2016 6/11/0 28.1± 5.2 50.68± 12.55 54.55± 12.91 35.23± 30.01
Galaxy 2018 5/7/0 22.7± 1.1 77.14± 16.98 77.68± 17.06 75.00± 23.94
ImageJ 2019 6/7/0 30.3± 4.0 65.71± 19.02 69.20± 16.18 51.79± 32.62
KNIME 2019 5/8/0 29.6± 4.2 52.81± 23.62 55.86± 24.40 40.62± 25.66
Galaxy 2019 5/8/0 29.6± 4.2 63.12± 23.21 64.06± 27.60 59.38± 19.76

of the study protocol, a structured tutorial on the respective software systems were

provided to the study cohort by an expert. Then, the participants were instructed to

perform different workflows on their own. Finally, a questionnaire containing the SUS

had to be filled and an interview was conducted to gather diagnostic information on

usability problems. Finally, in 2019, a SUS study on ImageJ, KNIME, and Galaxy

Image Analysis was conducted to measure any change in usability over the project

period. The results of the questionnaire are shown in Table 8.3. In this study, the

participants were only introduced into Galaxy and learning to use the system and

the perceived usability are mixed in the SUS. Therefore, the usability (US) and

learnability (LS) factors of the SUS identified by Lewis et al. [308] were calculated.

All users were able to complete their given tasks. For ImageJ, the interface design

and the complicated menu structure was criticized. Moreover, scaling up processing

is only possible using scripting. Participants in the KNIME study did not like the

limited amount of tools for image analysis. Moreover, they complained about software

crashes. In the 2016 Galaxy study, users had problems with software performance,

overloaded and non-intuitive menus, and the lack of tools. This changed tremendously

in the 2018 Galaxy study. In this study, it was noticeable that specific tool options

were not user-friendly enough for users to understand their functionality. Participants

still had some issues with the general usage of Galaxy due to overloaded and non-

intuitive menus. In the 2016 study, higher SUS, learnability, and usability were

measured for ImageJ and KNIME than for Galaxy. In comparison, in 2018 and

2019, Galaxy had improved SUS, learnability, and usability. It is noticeable that

the learnability increased more than the usability. This results probably from an

improved tutorial structure compared to 2016, and not from the system itself. The

cohorts for the studies were relatively similar in terms of age, gender, profession, and

previous knowledge. Only in the 2018 Galaxy study, all participants were students

and their mean age was lower than in the other studies. Age can have an influence on

reported usability [311, 312] due to different levels of digital nativeness. Therefore,

the Pearson correlation coefficients between age and SUS (−0.08), US (−0.04), and

LS (−0.14) were calculated. Since the correlation is not large, the overall conclusion

should remain, but the quantitative result is maybe biased to an overestimation of

usability in the 2018 study. Moreover, the Pearson correlation coefficients between
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Table 8.4: SUS questionnaire usability scores only for participants trained in the use
of the respective software.

Platform Year M/F/D Age SUS US LS

ImageJ 2016 6/9/0 30.2± 4.8 66.17± 17.70 66.88± 19.65 63.33± 22.89
KNIME 2016 3/1/0 33.2± 10.5 65.00± 10.21 66.41± 9.33 59.38± 18.75
Galaxy 2016 2/0/0 28.5± 2.1 63.75± 5.30 59.38± 8.84 81.25± 8.84
Galaxy 2018 0/0/0 - - - -
ImageJ 2019 5/6/0 28.3± 4.6 71.59± 12.96 75.28± 11.13 56.82± 27.02
KNIME 2019 1/3/0 27.2± 5.7 46.88± 22.49 49.22± 23.99 37.50± 22.82
Galaxy 2019 0/4/0 31.5± 4.2 79.38± 14.91 81.25± 18.58 71.88± 18.75

software usage on a scale from never (0) to daily (3) and SUS (0.22), US (0.20), and

LS (0.18) were calculated. It can be concluded that software usage is a potential

confounding bias factor for all scores. The introduction for the study was relatively

brief and ImageJ, KNIME, and Galaxy have a different level in software feature

complexity. Thus, only the scores for participants who are already trained in the

use of the respective software are reported in Table 8.4. Due to considerations of

previous experience in the respective systems, the variance of the scores was reduced.

It can be see seen that in 2016, the usability for participants used to the software was

similar for all systems. However, in 2019, SUS, usability, and learnability was highest

for Galaxy. The results should be handled with care, since the size of the subgroups

in Table 8.4 is small compared to Table 8.3. In general, it can be concluded that the

applicability of Galaxy Image Analysis increased during the project.

8.5 Applications of Galaxy Image Analysis

In addition to the general workflows described in Section 8.3, use-case specific

workflows have been developed within this thesis, which are presented in this section.

8.5.1 Quantification of Viral Spread in Cells

Several pathogenic viruses are capable of spreading within a host by multiple modes

of transmission (e.g., cell-free, cell-to-cell). In various viral infections, cell-to-cell

spread seems to play a dominant role, such as those caused by hepatitis C virus (HCV)

or human immunodeficiency virus (HIV) [313]. However, the spread of viruses by

each of these modes of transmission has not been quantified so far. Therefore as

part of this thesis, quantification of viral spread is conducted. The data is used for

mathematical modelling by the Graw lab. Counts of infected cells from 2D and 3D

in vitro cultures are used to test the mathematical models [313]. Due to the large

amount of acquired images and the high number of visible cells, automatic image

analysis is required. Imaging was performed by scientists from the Uprichard lab at

the Loyola University of Chicago, and mathematical modelling by scientists from
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the Graw lab at Heidelberg University. An image analysis pipeline was developed

and integrated into Galaxy Image Analysis (Section 8.3).

The workflow performs segmentation of the foci using a deep learning method

(Figure 8.5). If hardware requirements for the deep learning method are not met, a

segmentation method based on color thresholding can be used. Subsequently, objects

which are close are merged in the label map. Finally, an interactive tool (Figure 8.6)

can be used to estimate counts of cells based on mean area. The user can aggregate

the counts of multiple foci, which is important to analyse spatially non-connected,

but simultaneously infected cells. Segmentation based on deep learning uses the

ASPP-Net (Section 6.2). Example results for color thresholding and ASPP-Net along

with the corresponding ground truth are shown in Figure 8.7. By using Galaxy

Image Analysis, a cutting edge image analysis pipeline and computational resources

has been easily provided. Moreover, on the same platform, initial analysis could be

performed by the wet lab that acquired the images, and downstream analysis by a

mathematician.

Figure 8.5: Galaxy Image Analysis workflow for foci analysis.

Figure 8.6: User interface for interactive merging foci segmentation masks within the
foci analysis workflow.
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(a) Ground truth (b) Color thresholding (c) ASPP-Net

Figure 8.7: Example original and annotated image showing infected cells.

8.5.2 Quantification of Neurons in 3D Brain Tissue Images of

Mice

Alzheimer’s Disease is the most prevalent neurodegenerative disease in the elderly. It

is mainly characterized by extracellular senile plaques, composed of Amyloid-β (Aβ),

and intracellular neurofibrillary tangles (NFTs) that consist of hyperphosphorylated

tau protein [314]. Neurotoxic fragments and neuroprotective and neurotrophic

fragments are produced during processing amyloid precursor protein (APP) [315, 316].

Overexpression of the neuroprotective fragment can ameliorate the loss of inhibitory

interneurons. Different antibodies are used by the U. Müller lab to analyze the

inhibitory interneurons in the hippocampus of mutant mice.

Within this thesis, an image analysis pipeline was developed and integrated

into Galaxy Image Analysis (Section 8.3). Tools for particle detection and feature

extraction are leveraged to quantify stain intensity for detected interneurons in

specified regions of interest (Figure 8.8). The performance of the detection method

was benchmarked on a sample parvalbumin- and a SST-stained image (from U.

Müller lab). The results are shown in Table 8.5.

(a) Particle detection tool (b) Feature extraction tool

Figure 8.8: Galaxy user interface for configuring neuron quantification tools.
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Table 8.5: Quantitative evaluation of the neuron detection approach.
Parvalbumin SST

Precision 0.605 0.803
Sensitivity 0.629 0.917
F1 0.617 0.856
RMSE 8.144 7.155

8.5.3 Joint Analysis of MALDI and H&E Tissue Images

Analysis of mass spectrometry imaging (MSI) yields a broad range of biological and

clinical data and can be used for spatial proteomics [317, 318, 319, 320]. The most

common ionization sources are matrix-assisted laser desorption/ionization (MALDI),

desorption electrospray ionization (DESI), and secondary ion mass spectrome-

try (SIMS). Time of flight (TOF) sensors and ion traps are used to quantify mass.

The variety of MSI applications hinders harmonization and standardization of MSI

protocols. Recently, efforts to develop standardized sample preparation protocols

have been made [321, 322, 323, 324]. To overcome problems with accessibility of soft-

ware and computing resources, standardization, and reproducibility, MALDI/H&E

data analysis tools and workflows for Galaxy Image Analysis were established and

published in [6]. A reoccurring task is the selection of specific ROIs in the MALDI im-

age for further analysis. However, annotation on the MALDI image is not feasible due

to lack of visual features. Therefore, pathologists annotate the ROIs on H&E-stained

whole-slide images (WSIs) or tissue microarrays (TMAs) (Figure 8.9). Mapping the

ROIs from the coordinate system of the H&E-stained image to the MALDI images

requires registration. Therefore, in this thesis an algorithm for automatic registration

has been developed. The full registration workflow is shown in Figure 8.10. The

MALDI image is scaled and registered with the H&E-stained image. The estimated

transformation matrix is used to transform the ROIs to the coordinate system of

the MALDI image. Coordinates of the ROIs are extracted for further analysis and

an overlay is generated for visual assessment of the registration performance. If the

user notices by visual assessment of the registration result that the quality of the

automatic registration is not sufficient, a backup approach for registration using

manual annotated landmarks and random sample consensus (RANSAC) [325] can

be used, which has also been implemented.

Due to the large variety of visual appearance of objects in MALDI and H&E

images, the automatic registration approach segments the tissue in both modalities

first, and registers the segmentations afterwards. Segmentation is performed by color

thresholding along with post-processing using morphological operations. Registration

is performed in two steps. In the first step, a coarse registration is performed

by feature-based registration using the centroids of detected objects. Matching of

centroids is performed by the Hungarian algorithm [242]. The Histogram of Oriented

Neighbors is used to eliminate outliers. As part if this thesis, the Histogram of
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Oriented Neighbors is developed to yield a translation, rotation, and scale invariant

descriptor of a centroid in a grid of centroids. The descriptor is calculated by

accumulating the angle between the object and its neighbors into a histogram. To

achieve invariance, the values in the histogram are rotated, so that the most frequent

occurring angle is in the first bin. The Euclidean distance between the two histograms

(a) H&E WSI (b) WSI ROI (c) MALDI WSI

(d) H&E TMA (e) TMA ROI (f) MALDI TMA

Figure 8.9: Example H&E-stained and MALDI WSI and TMA images along with
ROIs annotated on the H&E-stained images.

Figure 8.10: MALDI and HE image registration workflow.
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Table 8.6: Quantitative evaluation of the automatic H&E and MALDI registration
approach.

H&E TMA

RMSE / px 2.07± 0.36 6.20± 1.70
Minimum distance / px 1.03± 0.32 2.30± 0.60
Maximum distance / px 2.65± 0.33 10.0± 2.60

is thresholded to eliminate outliers. The transformation matrix is estimated by the

iterative closest point (ICP) algorithm [326, 327]. To handle large rotations and

escape local minima, registration is performed multiple times with different initial

rotations. The best fit is used as result. In the second step, a fine registration

is calculated with intensity-based registration. A normalized distance transform

of the segmentation masks is calculated and registration is performed using phase

correlation [328]. An example registration result is shown in Figure 8.11. The

maximum acceptable error range for the clinicians in this application is three pixels.

Therefore, a quantitative evaluation has been conducted on three WSI/MALDI and

six TMA/MALDI image pairs (from Schilling lab). Ground truth landmark pairs have

been selected by an expert and the deviation after registration has been measured.

The results for root mean squared error (RMSE), minimum, and maximum landmark

distance along with their standard deviation are shown in Table 8.6. It can be seen

that for the dataset the registration performance for H&E-stained images is sufficient,

but the performance of TMA registration should be improved in follow up work.

Figure 8.11: Example result for the registration of an H&E image with a MALDI
image.
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In this thesis, different challenges for successfully using deep learning in high-content

microscopy image analysis have been considered. Novel deep learning-based methods

specialized for major tasks of microscopy image analysis such as detection and seg-

mentation have been proposed. Dataset-specific challenges have been addressed, for

example, the automatic optimization of the hyperparameters of biomedical image

analysis pipelines, and the lack of training data using techniques like data augmen-

tation and transfer learning. Furthermore, a platform for web-based deployment

of these cutting edge computer vision methods in a research environment using

large scale computing infrastructure has been presented. The proposed approaches

were evaluated qualitatively and quantitatively in different experiments, biomed-

ical image analysis challenges, and biomedical research projects. The presented

approaches contribute to the biomedical community by supporting the workflow of

research projects that include image analysis. Below, the proposed approaches are

summarized, limitations are discussed, and possible directions for future work are

described.

9.1 Summary

In this section, the contributions of this thesis are summarized.

Detection in Microscopy Images

� A novel deep learning method DetNet for particle detection in fluorescence

microscopy images was proposed. Compared to existing deep neural networks,

the number of parameters is significantly reduced. The proposed method can

cope well with particles of different shapes.

� A new efficient method for mitotic cell detection in histopathology images

was proposed which combines Deep Residual Networks with Hough voting.

The Deep Residual Hough Voting network architecture was optimized for

fast factor disentangling, resulting in relatively low computation time. Since

the proposed approach requires only cell centroids for training, generation of

training data is relatively easy. The centroids can be determined, for example,

from bounding box annotations or specification of a point. Since the proposed

method predicts the location of centroids, coping with overlapping objects is
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facilitated. The proposed method is relatively general and does not require

specific pre-processing or post-processing. Thus, the method is applicable to

detect diverse objects in different types of image data.

� An automatic method for breast cancer scoring based on whole-slide im-

ages (WSIs) was presented. The proposed method utilizes a neural network for

detecting mitotic cells, which are aggregated and used in a shallow decision

tree to score the tumor. The algorithm can process WSIs in approximately

five minutes on a standard workstation by using an attention mechanism and

by classifying large image regions at once. The trade-off between statistical

power and speed can be optimized by varying the number of regions in WSIs

where mitotic cells are counted. The proposed mitotic cell detection method is

trained on centroids, which are relatively easy to determine.

� The Deep Consensus Network, a new deep neural network for centroid-based

object detection in microscopy images, was introduced. The proposed method

employs a combination of an Feature Pyramid Network (FPN) with a differ-

entiable voting space. The method relies on a consensus of object detection

hypotheses and uses a novel Centroid Proposal Network (CPN) to predict

hypotheses at multiple image scales. Advances from object detection meth-

ods using bounding boxes were exploited for centroid-based object detection.

Therefore, the proposed method can utilize standard convolutional neural net-

work architectures in combination with other techniques like Feature Pyramid

Networks, anchors, and Non-Maximum Suppression (NMS). To increase the

robustness of training, a novel anchor regularization scheme was introduced.

The spatial structure of the voting space is exploited to improve centroid-

based NMS, which significantly reduces the algorithmic complexity. Based on

a thorough analysis of existing loss functions for neural networks and their

relationships, a novel loss function for object detection based on Normalized

Mutual Information (NMI) was derived within a Bayesian framework. This loss

function copes with class imbalance and also emphasizes correlation. Compared

to previous voting-based methods, the proposed network is trained end-to-end

and from scratch without requiring pre-training.

Segmentation in Microscopy Images

� The ASPP-Net for cell segmentation was introduced. The method is based

on an hourglass-shaped deep neural network with an atrous spatial pyramid

pooling (ASPP) block to increase the receptive field.

� The GRUU-Net was presented. A new deep neural network which integrates

convolutional neural networks and gated recurrent neural networks. The pro-

posed method combines a convolutional Gated Recurrent Unit (GRU) with

a dense hourglass-shaped U-Net architecture for iterative, multi-scale feature

144



9 Summary and Outlook

aggregation and refinement. The proposed network has much less parame-

ters (0.7 M) compared to a U-Net (1.9 M) and a Deconvolution Network (1.1 M).

To increase the robustness of the training and improve segmentation, a novel

normalized focal loss for momentum-based optimizers was introduced. The

proposed focal loss did not only improve the segmentation result of the pro-

posed network, but also the result of other deep neural networks such as the

U-Net. The network was trained end-to-end from scratch using relatively few

example images. Compared to previous deep learning approaches, all layers

in the proposed model have access to features from all previous layers over a

common memory at full resolution to improve the sharing of information and

better gradient flow. A common feature representation over all scales, which

introduces skip connections between all layers, is used to reduce overfitting

when using only a limited number of training samples. A distributed scheme

for data augmentation and optimized training of the proposed GRUU-Net was

also presented.

Hyperparameter Optimization

� A new hyperparameter optimization framework named HyperHyper was pro-

posed, which has several advantages compared to existing optimization frame-

works. While existing frameworks include only a limited number of optimization

methods, HyperHyper comprises more than 40 different optimizers, which was

achieved by a modular architecture that separates the sampling and optimiza-

tion strategy. Using two pipelines for segmentation of cell nuclei in tissue

microscopy images, the impact of separating sampling and optimization was

demonstrated. Furthermore, HyperHyper includes an integrated scheduler

and job wrapper to deal with different cluster computing infrastructures and

pipelines written in various programming languages. In addition, it was shown

that an infimum projection of the loss function can provide insights into the

structure of the optimization problem. This might also help in selecting an

optimal sampling and optimization strategy for similar optimization problems.

Transfer Learning for Microscopy Image Data

� The proposed ASPP-Net for cell segmentation was combined with a novel

approach for transfer learning to use trained networks from one-channel data

to multi-channel data. The method improves performance when using only a

limited number of training samples with multi-channel information.

� A novel, fast, and automatic deep learning method for patient level breast

cancer grading using lymph node whole-slide images (WSIs) was presented.

The proposed method requires only slide level annotations. To reduce the

effect of the variability of data from different data sources (medical centers), a
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generative model based on CycleGAN for domain adaptation was introduced

which is trained without supervision and does not require paired data. The

proposed method utilizes a region of interest selection and a densely connected

deep neural network (DenseNet) to perform sparse classification. The method

determines a patient level grade based on five WSIs in about four seconds on a

standard workstation.

Web-Based Microscopy Image Analysis

� Galaxy Image Analysis, a web-based platform for image analysis using Galaxy

was introduced. The platform provides tools, workflows, and visualizations

for microscopy image analysis to users with no computer science background.

Deployment of cutting edge data analysis software and compliance with FAIR

(findable, accessible, interoperable, reusable) principles is eased significantly

by establishing image analysis software into Bioconda, which emerged to the

largest biomedical software repository. The Galaxy Image Analysis platform

can be installed locally or centrally on a cloud or a high performance computing

(HPC) system. Therefore, Galaxy has the potential to accelerate research by

supporting the image analysis workflow in complex scientific projects.

9.2 Outlook

The following research questions could be addressed in future work.

� The detection approaches Deep Residual Hough Voting and Deep Consensus

Network leverage consensus by multiple predictions to improve the final result.

The proposed components like the Normalized Focal loss, the Normalized

Mutual Information (NMI) loss, anchor regularization, or the Consensus Voting

layer could also be used for other deep learning applications.

� GRUU-Net uses a full resolution branch to store cues for performing segmen-

tation. This memory module could be exploited in other tasks and combined

with other memory module-based methods like in [329]. Training data de-

mands could be reduced by leveraging few shot learning or self-supervision

techniques (e.g., [330, 331]).

� Currently, the hyperparameter optimization framework HyperHyper only sup-

ports transfer of hyperparameter distributions to a new hyperparameter study.

Deeper exploration of transfer learning in hyperparameter optimization could

be beneficial for reducing computed and required training data.

� The proposed transfer learning method supports transferring a network trained

on less color channels to a network with more color channels. The opposite
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direction of training a network on more color channels and transferring it to a

dataset with less color channels could be explored in future work.
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[200] P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud, “Deterministic

edge-preserving regularization in computed imaging,” IEEE Trans. Image

Process., vol. 6, no. 2, pp. 298–311, 1997.

[201] B. Heidenreich, P. S. Rachakonda, K. Hemminki, and R. Kumar, “TERT

promoter mutations in cancer development,” Curr. Opin. Genet. Dev., vol. 24,

pp. 30–37, 2014.

[202] M. Peifer, F. Hertwig, F. Roels, D. Dreidax, M. Gartlgruber, R. Menon,
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