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Abstract

ARTT GRAPPA: A Novel GRAPPA Reconstruction Algorithm to Accelerate 1H Mag-
netic Resonance Spectroscopic Imaging
Magnetic resonance spectroscopic imaging (MRSI) has the ability to noninvasively interrogate metab-
olism in vivo. However, excessively long scan times have thus far prevented its adoption into routine
clinical practice. Generalized autocalibrating partially parallel acquisitions (GRAPPA) is a parallel
imaging technique that allows one to reduce acquisition duration and use spatial sensitivity correla-
tions to reconstruct the unsampled data points. The coil sensitivity weights are determined implicitly
via a fully-sampled autocalibration region in k-space. In this dissertation, a novel GRAPPA-based
algorithm is presented for the acceleration of 1H MRSI. Autocalibration Region extending Through
Time (ARTT) GRAPPA instead extracts the coil weights from a region in k-t space, allowing for un-
dersampling along each spatial dimension. This technique, by exploiting spatial-spectral correlations
present in MRSI data, allows for a more accurate determination of the coil weights and subsequent
parallel imaging reconstruction. This improved reconstruction accuracy can then be traded for more
aggressive undersampling and a further reduction of acquisition duration. It is shown that the ARTT
GRAPPA technique allows for approximately two-fold more aggressive undersampling than the con-
ventional technique while achieving the same reconstruction accuracy. This accelerated protocol is
then applied to acquire high-resolution brain metabolite maps in less than twenty minutes in three
healthy volunteers at B0 = 7 T.

ARTT GRAPPA: Ein neuer GRAPPA Rekonstruktionsalgorithmus für beschleunigte 1H
Magnetresonanzspektroskopische Bildgebung
Die Magnetresonanzspektroskopische Bildgebung (MRSI) ermöglicht die nicht-invasive Untersuchung
des Metabolismus in vivo. Übermäßig lange Scan-Zeiten haben jedoch bisher die Übernahme in die
klinische Routine verhindert. Die verallgemeinerte autokalibrierende partiell parallele Datenaufnahme
(GRAPPA) ist eine parallele Bildgebungstechnik, mit der die Aufnahmedauer verkürzt werden kann.
Dabei wird eine Phased-Array-Spule genutzt um räumliche Sensitivitätskorrelationen zu extrahieren
und nicht abgetastete Datenpunkte zu rekonstruieren. Die Spulensensitivitätsgewichtungen werden
implizit über einen vollständig abgetasteten Autokalibrierungsbereich im k-Raum bestimmt. In dieser
Dissertation wird ein neuartiger GRAPPA-basierter Algorithmus zur Beschleunigung von 1H-MRSI
implementiert. Durch die Erweiterung des GRAPPA-Autokalibrierungsbereichs auf die Zeit (ARTT),
werden die Spulengewichtungen aus einem Bereich im k-t-Raum extrahiert, was eine Unterabtastung
entlang jeder räumlichen Dimension ermöglicht. Durch Ausnutzung der in den MRSI-Daten vorhan-
denen räumlich-spektralen Korrelationen, ermöglicht diese Technik eine genauere Bestimmung der
Spulengewichtungen und eine anschließende parallele Bildrekonstruktion. Diese verbesserte Rekon-
struktionsgenauigkeit kann dann für eine stärkere Unterabtastung und eine weitere Verkürzung der
Aufnahmedauer eingetauscht werden. Es wird gezeigt, dass die ARTT GRAPPA-Technik eine cir-
ca zweifach stärkere Unterabtastung als die herkömmliche Technik ermöglicht, während die gleiche
Rekonstruktionsgenauigkeit erreicht wird. Dieses beschleunigte Protokoll wird dann angewendet, um
hochauflösende Hirnmetabolitenkarten mit einer Auflösung von 3, 75 mm in Bildebene in weniger als
zwanzig Minuten bei drei gesunden Probanden bei B0 = 7 T aufzunehmen.
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Chapter 1

Introduction

In 1900, Planck was studying the blackbody radiation emitted by a cavity [1]. Earlier classical anal-

yses carried out by Rayleigh [2] and Jeans [3] exhibited a divergence from experimental observation.

In particular, the Rayleigh-Jeans theory predicted that the energy density, defined as the energy con-

tained in a unit volume of the cavity at a given temperature in a specified frequency interval, should

tend towards infinity as frequency increases [4]. This calculation utilized the law of equipartition of

energy [5] which is derived by integrating the Boltzmann distribution over all possible energies. Planck

realized that if energy is instead treated as a discrete variable, then the integral would be replaced

by a summation, and his calculated energy density would agree perfectly with experiment [6]. This

so called quantum theory would go on to revolutionize physics over the next three decades, and nu-

merous breakthroughs were to follow. In 1905, Einstein [7] proposed the existence of the photon as a

quantum of energy to explain the observation of the photoelectric effect [8]. Further evidence for the

quantum nature of light was provided by Compton [9] when he described the scattering of a photon

by a charged particle. In 1923, de Broglie [10] asserted that particles alternatively possess wave-like

properties. Pauli [11] put forth the exclusion principle and Heisenberg [12] articulated the uncertainty

principle in 1925 and 1927, respectively. In 1926, Schrödinger [13] developed wave mechanics which

caused the world’s leading physicists to meet in Brussels the following year to formulate this nascent

quantum theory.

At the same time that quantum mechanics was being developed, physicists were also attempting to

construct a model that describes the structure of the atom. In 1904, seven years after his discovery

of the electron [14], Thomson [15] proposed his so called plum pudding atomic model in which the

negatively charged electrons were distributed throughout a sea of homogenous positive charge. This

plum pudding model was displaced in 1911, when Rutherford [16] postulated the existence of the

atomic nucleus after Geiger and Marsden [17] observed large deflections of α particles when passing

through a gold foil. Rutherford’s atomic model contained a dense, localized core of positive charge

surrounded by orbiting electrons. However, this model was not in agreement with physical observa-

tion since an electron orbiting a nucleus would continuously release electromagnetic radiation causing

it to lose energy, spiral inward, and, ultimately, collapse in a timescale on the order of picoseconds.

To ensure atomic stability, two years later Bohr [18] proposed that electrons are permitted to revolve

around the atomic nucleus only in stationary orbits at discrete distances from that nucleus. The major

implication of this proposal was that the angular momentum of the revolving electron was quantized
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CHAPTER 1. INTRODUCTION

[19]. Sommerfeld [20] expanded on these ideas by further quantizing the shapes and orientations of

the allowed electron orbits.

In 1922, Stern and Gerlach [21] devised an experiment that would test the veracity of the Bohr-

Sommerfeld model and sent a beam of silver atoms through a nonuniform magnetic field while observ-

ing the deflection of each atom as it struck a metallic plate. They found that the deflected atoms split

into two discrete groupings which implied the existence of spin angular momentum. Dirac [22] later

demonstrated theoretically that spin was a natural consequence of the union of quantum mechanics

with special relativity.

The phenomenon of nuclear magnetic resonance (NMR) was first discovered in 1938 by Rabi [23] of

Columbia University. Rabi exhibited that the nuclei in a beam of lithium chloride molecules could

be induced to flip the orientation of their spins via the application of an oscillating magnetic field in

the radiofrequency (RF) regime. Rabi received the 1944 Nobel Prize in physics for this discovery of

NMR. Immediately after the war independent teams led by Purcell [24] and Bloch [25] first demon-

strated NMR in solid state with experimental setups using paraffin and water, respectively. Purcell

and Bloch shared the 1952 Nobel Prize in physics for this work. In 1950, Hahn [26] developed the

concept of a spin echo. In 1964, Ernst and Anderson [27] revolutionized the magnetic resonance (MR)

field when they developed Fourier transformation NMR spectroscopy. They simultaneously excited all

resonances by applying a series of short intense RF pulses and collected time-domain data which was

subsequently analyzed using a computer. These early spectroscopic experiments ultimately allowed

scientists to interrogate the structure, interaction dynamics, and chemical environment of molecules

and belatedly earned Ernst the Nobel Prize in chemistry in 1991.

NMR was first applied to interrogate biological systems in 1955 by Odeblad and Lindström [28]. Their

experiments demonstrated that different types of tissues exhibit different relaxation times, a finding

that would ultimately be exploited as contrast in producing anatomical images. Further biological

studies were to follow [29]. In 1967, Lignon [30] measured the relaxation of water in the arm of a

human, and in 1968, Jackson and Langham [31] were the first to perform NMR on an entire living

organism. In 1971, Damadian [32] became the first to apply NMR towards diagnostic oncology and

showed that malignant tissue exhibits different relaxation times than normal tissue. Although there

were grave errors in his experimental setup and the conclusions he ultimately drew [33], Damadian’s

intense advertisement of NMR’s utility in biomedical applications attracted a great amount of pub-

licity and ultimately propelled the NMR field forward.

The major step towards the development of magnetic resonance imaging (MRI) was taken in 1973 by

Lauterbur [34] when he introduced the concept of spatial encoding using gradient magnetic fields. By

spatially perturbing the strength of the magnetic field, he was able to discern the location at which an

NMR signal originates by observing the modulated field’s influence on a spin’s precessional frequency.

Lauterbur’s initial developments performed the image reconstruction via a back projection [35], but

Ernst and his colleagues incorporated their previous aforementioned work in Fourier transformation

2



NMR spectroscopy into the MRI reconstruction process and established the Fourier-based reconstruc-

tion technique that is used today. Lauterbur initially called this process zeugmatography [36], but

it eventually came to be referred to as the more familiar MRI. Lauterbur’s contribution to the MRI

field did not end with his initial developments, as he and his colleagues went on to pioneer various

subfields of MRI such as radiofrequency coil design [37], X-nuclei imaging [38], cardiac imaging [39],

magnetization transfer [40], and the use of contrast agents [41]. This work earned Lauterbur one-half

of the 2003 Nobel Prize in physiology or medicine. This prize was shared with Mansfield who was the

first to acquire an in vivo MR image [42] and developed the concept of echo planar imaging [43]. It

should be duly noted that at roughly the same time that MRI was being developed, the other vastly

influential biomedical imaging modality, computed tomography (CT), was invented by Hounsfield [44]

and collaborators.

Magnetic resonance has found applications in a wide variety of biomedical research. One such appli-

cation is oncology. In addition to producing anatomical images of tumors, the functional aspects of

MR can allow one to probe the complex biochemical processes that occur in malignant tissue such

as metabolism. Cancerous cells exhibit severely dysregulated metabolic activity. In particular, they

typically catabolize glucose via the energy-inefficient pathway of aerobic glycolysis [45], while normal

differentiated cells under the same aerobic conditions will metabolize their energy via oxidative phos-

phorylation in the mitochondria, an observation first made by Warburg [46]. The concentrations of

numerous important metabolites are altered in malignant tissue [47], so observing these metabolic

changes could be useful in diagnostic oncology. In addition, metabolism is downstream from genetic

modifications, so observing tumor metabolism may provide insights into tumor progression or alter-

natively allow for an earlier prediction of a tumor’s response to a given therapy. When an oncologist

prescribes a cancer patient with a particular drug, it is not known whether the patient will respond

to that drug or not until after the treatment regimen has run its course; therefore, it is important

to identify biomarkers which may predict a drug’s efficacy at an earlier timepoint in the treatment

process so that the course of treatment can be appropriately modified if needed. The various forms

of altered metabolic expression serve as potential oncologic biomarkers [48], so a method that interro-

gates tumor metabolism in a localized and noninvasive manner that can be applied serially is highly

desirable.

Magnetic resonance spectroscopic imaging (MRSI) could potentially satisfy this clinical need. MRSI

allows for the determination of the relative concentrations of numerous metabolites in a spatially lo-

calized fashion and leads to the production of metabolic images. Spectroscopic imaging can be applied

serially since magnetic resonance does not utilize ionizing radiation. Although MRSI has been around

for decades its adoption into routine clinical practice has been hampered by a number of technical

challenges, the most damaging of which is the excessively long scan time required for an examination

[49]. This is due to the fact that MRSI requires the acquisition of an extra data dimension, the

temporal dimension, in addition to each of the spatial dimensions. Thus, the application of conven-

tional spectroscopic imaging techniques often demands scan times on the order of one hour for spatial

resolutions on the order of 5 mm. The maximum achievable spatial resolution is further restricted by

the sensitivity of MRSI, which scales with size of the voxels. Although proton spectroscopic imaging

is significantly more sensitive than MRSI using more exotic nuclei, this still presents a fundamental
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limit on how large of an imaging matrix size can be achieved, especially when interrogating lower

concentration metabolites. Sensitivity can be increased by acquiring multiple averages, but this nec-

essarily increases the acquisition time. Thus, there exists a complex interplay between sensitivity and

acquisition duration that need be considered when designing an accelerated, high-resolution MRSI

experiment.

Recent advances, however, have demonstrated the feasibility of acquiring MRSI datasets and produc-

ing two-dimensional metabolite maps of a number of key neurometabolites in a clinically acceptable

amount of time [50]. The reduction of acquisition time was accomplished via parallel imaging which

decreases the time needed for acquisition by utilizing information regarding the spatial distribution

and sensitivities of the individual receiver coil elements in a phased array [51]. In particular, parallel

imaging allows one to reduce the total number of required phase encoding steps, and then uses the

spatial-sensitivity profile of the phased array to reconstruct the missing data. Other techniques such

as echo planar spectroscopic imaging, spiral-based trajectories, and compressed sensing also allow for

the acceleration of acquisition duration, and each has found its use in a variety of applications. The

only necessity of parallel imaging is that it requires the use of a phased array which are becoming

ever more ubiquitous in clinical practice. The reconstruction robustness and general applicability of

parallel imaging make it an attractive option, and, therefore, parallel imaging is the strategy which is

employed in this work.

Two main flavors of parallel imaging exist: k-space-based reconstructions and image space-based

reconstructions. The k-space-based techniques, the most common of which is generalized autocali-

brating partial parallel acquisition (GRAPPA), calculate the coil weights in an implicit fashion via the

complete acquisition of a central autocalibration region [52], and this procedure requires the full ac-

quisition of one of the spatial dimensions. Therefore, undersampling is only possible along N−1 of the

dimensions where N = 2 or 3 is the number of spatial dimensions acquired. In MRSI a fully-sampled

time dimension is directly acquired and can be used in the calculation of the coil weights instead of

using one of the spatial directions. Significant spatial-spectral correlations exist in MRSI data, but the

incorporation of the spectral component into an MRSI parallel imaging algorithm is often neglected.

However, it is possible to exploit these spatial-spectral correlations by using an autocalibration region

in k-t space. In this work, a novel time domain-based GRAPPA technique, autocalibration region

extending through time (ARTT), is presented and subsequently applied to accelerate the acquisition

of spectroscopic imaging data.
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Chapter 2

Fundamentals of Nuclear Magnetic

Resonance

2.1 Nuclear Spin and the Zeeman Effect

The nucleus of a hydrogen atom consists of a single proton. The proton is a fermion and, therefore,

has a spin of one-half. Spin is an intrinsic form of angular momentum and behaves analogously to

the quantum mechanical formulation of orbital angular momentum. The spin angular momentum

operators along each of the three coordinate axes do not commute with each other and, instead, obey

the following relation [53]:

[Îi, Îj ] = i~εijk Îk (2.1)

However, one can define the total squared spin angular momentum operator as

Î2 = Î2
x + Î2

y + Î2
z (2.2)

which does commute with the individual component spin angular momentum operators [54]:

[Î2, Îk] = 0 (2.3)

for k ∈ {x, y, z}. The following eigenvalue equations for the spin operators appearing in Equation 2.3

determine the physical observables of the system:

Î2|I,m〉 = ~2I(I + 1)|I,m〉 (2.4)

Îz|I,m〉 = ~m|I,m〉 (2.5)

A nuclear spin constitutes a magnetic dipole moment given by:

~̂µ = γ~̂I (2.6)

Here, the constant of proportionality γ is the so-called gyromagnetic ratio which is specific to the

nucleus in question. For example, the proton [55] possesses a gyromagnetic ratio of
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γ(1H) = 2.675× 108 rad

Ts
(2.7)

Often in the literature, the gyromagnetic ratio of the proton is given in its reduced form as γ
2π (1H) =

42.58MHz
T , but the gyromagnetic ratio given by Equation 2.7 is used exclusively in the rest of this work.

If a constant external magnetic field of magnitude B0 is applied along the z axis, the interaction of

the magnetic dipole moment of a nucleus with this external field can be described by the Hamiltonian

operator [56]:

Ĥz = −~̂µ · ~B = −γ~̂I ·B0ẑ (2.8)

If this Hamiltonian is inserted into the time-independent Schrödinger equation

Ĥz|I,m〉 = Em|I,m〉 (2.9)

then it is observed that the Hamiltonian shares the same eigenstates as the spin angular momentum

operator along the z axis and obtains the following set of allowed eigenenergies:

Em = −γ~mB0 (2.10)

Thus, in the presence of an external magnetic field, a spectral line will split into 2S+1 discrete energy

levels. The separation between each allowed energy level is given by:

∆E = γ~B0 (2.11)

This observation was first made by Zeeman [57] in 1896 and is analogous to Stark’s [58] observation

that spectral lines split in the presence of an external electric field.

In NMR, transitions between these allowed energy levels are induced by the presence of an oscillating

magnetic field, and the energy of the system is altered via the absorption or emission of a photon.

When a collection of spins is placed in an external magnetic field, their net magnetic dipole moment

vector will precess around the field direction with frequency

ω0 = γB0 (2.12)

Equation 2.12 is known as the Larmor equation and was articulated prior to the development of

quantum mechanics [59].

2.2 Macroscopic Magnetization

Consider a canonical macroscopic ensemble [60] of N nuclei with spin S = 1
2 in thermal equilibrium

with a heat bath at a fixed temperature T . There are 2S + 1 = 2 possible energy levels, E+ and E−,

and the probability P that the system is in either state is given by.

P± =
1

Z
e−E±/kT (2.13)

Here, Z is the partition function and takes the form
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Z = e−E+/kT + e−E−/kT (2.14)

in this two-state system. To calculate the net magnetic moment of the macroscopic ensemble, one

must sum over the N individual magnetic moments. Assume that there is a static magnetic field of

magnitude B0 pointing along the z axis. The component of the net magnetic moment in the transverse

plane vanishes, and the net magnetic moment vector points along z [61]. The expectation value of an

individual magnetic moment is given by:

〈µ̂z〉 = γ〈Iz〉 =
γ~
2

(P 1
2
− P− 1

2
) (2.15)

where

N+ −N−
N

= P 1
2
− P− 1

2
(2.16)

When the degree of polarization is modest, which is the case at the low magnetic field strengths used

in clinical magnetic resonance studies, the thermal energies are far greater than the energies associated

with spin orientation. In this case, a first-order Taylor expansion can be applied to the exponential

term appearing Equation 2.13, and plugging this result into Equation 2.15 and Equation 2.16 yields:

〈µ̂z〉 =
γ2~2B0

4kT
(2.17)

Thus, the macroscopic magnetization in a volume V is

M0 =

N∑
i=1

〈µ̂z〉
V

=
Nγ2~2B0

4kTV
(2.18)

Note that in Equation 2.18, the magnetization is directly proportional the magnetic field strength but

indirectly proportional to the temperature of the system. This observation is a statement of Curie’s

law [62], named after Pierre Curie.

2.3 Nuclear Magnetic Resonance

The fundamental equation of motion that describes the torque on a magnetic moment in the presence

of a magnetic field [63] is

d~µ

dt
= γ~µ× ~B (2.19)

Taking the derivative with respect to time of both sides of Equation 2.18 and inserting Equation 2.19

yields:

d ~M

dt
= ~M × γ ~B (2.20)

First consider the situation in which the ensemble of spins is only subjected to a static B0 field

pointing in the z direction. In that case, both the magnetization and the magnetic field appearing

on the right-hand side of Equation 2.20 point along the z direction. Since the vector product of

two parallel vectors vanishes, Equation 2.20 implies that the magnetization is constant in time. Now

consider the situation where an RF field that oscillates in the transverse plane at frequency ω1 is

7
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introduced:

~B1 = B1 cos (ω1t)x̂+B1 sin (ω1t)ŷ (2.21)

At this point, it is customary to transform into a frame of reference known as the rotating reference

frame: x
′

y′

z′

 =

cos (ω1t) 0 0

0 sin(ω1t) 0

0 0 1


xy
z

 (2.22)

In this frame, Equation 2.20 becomes

d ~M ′

dt
= ~M ′ × γ ~Beff (2.23)

where the effective magnetic field is defined as

~Beff = B1x̂
′ + (B0 −

ω1

γ
)ẑ′ (2.24)

The components of Equation 2.23 about each of the three principle axes are known as the Bloch

equations [64]. The effective magnetic field is the field that appears in Equation 2.19 when µ is

transformed into the rotating reference frame. As can be seen in Equation 2.24, as a result of being in

this rotating reference frame, the system experiences a fictitious magnetic field along the z direction

opposing the static magnetic field. When the resonance condition is achieved, ωRF = ω1, this fictitious

field exactly cancels the static field and the z component of Equation 2.24 vanishes. The effective

magnetic field then points in the x′ direction which induces precession in the y-z plane. Thus, the

application of an RF pulse on resonance allows for the flipping of the magnetization vector into the

transverse plane. The angle by which the magnetization is rotated away from the z axis, the so-called

flip angle α [65], by a constant RF pulse B1 of duration τ is given by the following equation:

α = ω1τ = γB1τ (2.25)

2.4 Relaxation

2.4.1 Spin-Lattice Relaxation

In an in vivo NMR experiment, the spins being interrogated do not exist in isolation; instead these

spins are inside atoms which compose molecules which, in turn, compose biological systems. These

molecules are undergoing constant vigorous motion, so-called molecular tumbling [66]. The magnetic

field that a given spin sees is the superposition of the static field with a microscopic field due to the

chemical environment in which the spin exists. This microscopic field is constantly changing in both

magnitude and direction due to the rapid motion of the molecules. These microscopic fields modulate

the precessional motion of a given magnetic moment so that after a long time the magnetic moment

of each spin wanders between different precessional cones, until the entire range of possible orienta-

tions is sampled. This wandering motion is anisotropic, as it is marginally more favorable for a spin

to assume an orientation with a low magnetic field energy; that is, the wandering motion is biased

towards orientations in which the magnetic moment is parallel to the field [67].
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This biased wandering of spin polarization along the direction of the external field is the basis of

spin-lattice relaxation. When a 90◦ RF pulse is initially applied, the magnetization is flipped entirely

into the transverse plane so that the longitudinal magnetization is zero. However, due to spin-lattice

relaxation, the longitudinal magnetization slowly starts to recover. The rate of recovery is determined

by the spin-relaxation time constant T1, which is specific for a given material or tissue-type. This T1

relaxation mechanism can be modeled as an exponential recovery. For example, following a 90◦ pulse

the recovery of the longitudinal magnetization is given by [68]:

Mz(t) = M0(1− e−
t
T1 ) (2.26)

2.4.2 Spin-Spin Relaxation

The other relaxation mechanism that is important in NMR is spin-spin relaxation. When the mag-

netization is flipped into the transverse plane, it continues to precess around the longitudinal axis

at the Larmor frequency. Again, these individual precessing spins will experience a slightly different

magnetic field due to differing chemical environments which modifies a given spin’s Larmor frequency.

Because the spins are precessing at slightly different frequencies, they eventually dephase, leading to

the exponential decay of the transverse magnetization. This decay is categorized by the spin-spin

relaxation time constant T2 which, like T1, is tissue-dependent. This T2 relaxation mechanism can be

modeled as an exponential decay [68]:

Mxy(t) = M0e
− t
T2 (2.27)

In actuality, the dephasing of the transverse magnetization occurs much more rapidly than what would

be expected with a time constant of T2 due to inhomogeneities in the magnetic field. This more rapid

relaxation process is categorized by the time constant T ∗2 which is less than T2 [69]. In particular, if

∆B characterizes the inhomogeneity of the field across a volume element, T ∗2 and T2 are related via

the following equation:

1

T ∗2
=

1

T2
+ γ∆B (2.28)

The Bloch equations, given by each component of Equation 2.23, can be extended to include T1 and

T2 relaxation processes:

dMx

dt
= γ( ~M × ~B)x −

Mx

T2
(2.29)

dMy

dt
= γ( ~M × ~B)y −

My

T2
(2.30)

dMz

dt
= γ( ~M × ~B)z −

M0 −Mz

T1
(2.31)

Further modifications to the Bloch equations have been made by Torrey [70] and McConnell [71] by

incorporating diffusion and chemical exchange, respectively.
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2.5 Principles of Signal Detection

In order to be detected, the magnetization must be rotated into the transverse plane. After the

application of a 90◦ RF pulse, the magnetization starts to precess in the transverse plane. As the

magnetization precesses, the magnetic flux φ [72] rotates as well. Because of this changing magnetic

flux, an electromotive force will be induced [73] through which the flux sweeps. This observation was

first articulated independently by Faraday [74] and Henry [75], and Faraday’s law of induction went

on to be one of the four fundamental equations in Maxwell’s classical formulation of electrodynamics

[76]. The electromotive force induced by a changing magnetic flux is given by:

emf = −dΦ

dt
(2.32)

The Lorentzian principle of reciprocity [77] states that an electromotive force induced in a given circuit

X will give rise to the same current in another circuit Y as would be induced in X if the electromotive

force operated in Y [78]. Using this principle, Faraday’s law can be expressed in an NMR setting as:

emf = − d

dt

∫∫∫
sample

d3r ~M(~r, t) · ~Breceive(~r) (2.33)

Here, ~Breceive is the field that is produced by the receiver coil at all points with nonvanishing magne-

tization. Thus, the precessing magnetization induces a current in this coil which constitutes the NMR

signal.

2.6 Chemical Shift

In the Larmor equation given by Equation 2.12, the frequency about which a spin precesses is deter-

mined by the gyromagnetic ratio and the external magnetic field. The magnetic field a given spin

experiences also depends on the chemical environment in which the spin exists [79], a phenomenon

known as chemical shift. It is caused by the fact that spins in different chemical environments will

experience different magnetic fields due to the shielding of the static field by the electrons surrounding

a given spin [80]. In particular, the electrons precess around the static field in the opposite direction

as the precessing nuclei. This establishes a microscopic magnetic field that opposes the static field,

and this diamagnetic shielding acts to decrease the magnetic field experienced by the nucleus. If

σ is a dimensionless shielding constant characterizing a spin’s chemical environment, then the field

experienced by that spin is given by [81]:

~B = (1− σ) ~B0 (2.34)

Thus, the actual resonant frequency is determined by plugging Equation 2.34 into Equation 2.12:

ω = γB = (1− σ)γB0 (2.35)

The chemical shift δ is typically defined as [61]:

δ[ppm] =
ω − ωref
ωref

· 106 (2.36)

where the multiplicative factor of 106 ensures that δ is given in units of parts per million (ppm). Here,
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ωref is the Larmor frequency of a reference compound. While the choice of this reference is completely

arbitrary, it is conventionally taken to be tetramethylsilane (TMS) [82] in proton spectroscopic studies.

While the phenomenon of chemical shift is a nuisance in MRI, as it can cause artifacts in MR images

[83], it is the principle that makes spectroscopy possible.

2.7 Spectroscopy

Magnetic resonance spectroscopy (MRS) is a safe, noninvasive technique by which one can probe the

biochemical makeup of in vivo tissue or an ex vivo compound. Spectroscopic studies targeting the

proton (1H) [84, 85, 86, 87, 88, 90], carbon-13 (13C) [91, 92, 93, 94, 95, 96, 97], phosphorus-31 (31P)

[98, 99, 100, 101], fluorine-19 (19F) [102, 103], sodium-23 (23Na) [104], potassium-39 (39K) [105], and

chlorine-35 (35Cl) [106] have been applied to a wide variety of biochemical applications in the liter-

ature. Henceforth in this work, unless otherwise specified, it will be assumed that the nucleus being

interrogated is 1H.

When the magnetization is flipped into the transverse plane it starts to precess about the longitudinal

axis. Simultaneously, this transverse magnetization undergoes T ∗2 decay, as discussed in Section 2.4.2.

Thus, the magnetization along one of the transverse axes as a function of time undergoes damped

oscillations: the product of a purely sinusoidal function with a decaying exponential function charac-

terized by time constant T ∗2 . This observable signal is known as a free induction decay (FID) [107].

In general, if the sample being measured contains numerous protons oscillating with different chem-

ical shifts, this NMR signal is a superposition of signals oscillating at different frequencies. Fourier

analysis [108] allows one to parse out the individual contributions from each frequency component.

This is performed by taking the Fourier transformation of the FID to yield an NMR spectrum. This

concept is illustrated in Figure 2.1 which was modified from a figure taken from Zaiss [109]. In Figure

2.1.A, an FID that oscillates at a single frequency is shown decaying in time. Figure 2.1.B depicts the

Fourier transformation of this monofrequency FID as a spectrum with a single peak. The number of

frequency components contributing to a given FID will correspond to the number of peaks present in

its resultant spectrum. As can be seen in the figure, the line width of the peak, quantified by its full

width at half maximum (FWHM) is inversely proportional to T ∗2 ; thus, a more homogeneous magnetic

field will produce spectra with sharper resonances.

An exemplary in vivo 1H NMR spectrum is displayed in Figure 2.2, an illustration taken from De

Graaf [61]. This spectrum was acquired at B0 = 11.75 T in the brain of a living rat. Many commonly

observed metabolites are labeled. The horizontal axis is chemical shift, as was discussed in Section

2.6, and the intensity of the peaks corresponds to the relative concentration of that metabolite in the

region of interest [110]. The location of a resonance on the chemical shift axis allows one to identify

to which metabolite a signal corresponds, although overlapping peaks do occur and render metabolite

quantification difficult. In this figure the chemical shift range was censored between four and five ppm

in order to omit the unsuppressed water peak occurring at approximately 4.7 ppm [111].

A given metabolite containing M nonequivalent proton groups will show up as M different resonances

occurring at unique chemical shifts in a 1H NMR spectrum. Scalar coupling, which is the indirect

coupling of two spins via the chemical bonds connecting these spins, causes a given resonance line to
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Figure 2.1: A monofrequency free induction decay (FID) with its typical damped sinusoidal form
(2.1A) and its Fourier transformation which is a spectrum (2.1B) - Since the FID contains a single
oscillatory frequency, a single peak is present in the spectrum. This figure was modified from reference
[109].

Chemical Shift (ppm)
Figure 2.2: An exemplary in vivo 1H spectrum of rat brain acquired at 11.75 T with the resonances
of various metabolites labeled - This figure was modified from reference [61].
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split into a multiplet [112]. The number of peaks into which a given resonance splits is determined

by the number of equivalent protons attached to adjacent carbon atoms, which is a statement of the

N + 1 rule [113].
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Chapter 3

Biomedical Considerations

3.1 Cancer Metabolism

Metabolism is the collection of all chemical and physical processes that occur within an organism and

result in the biochemical processing of energy and materials [114]. Metabolism can be divided into

two main categories: anabolism and catabolism. Anabolism necessarily requires the input of energy

and is the construction of larger, more complex molecules starting with simpler ones. In contrast,

catabolism results in the release of energy and is the breakdown of more complex molecules into sim-

pler ones [115]. Enzymes catalyze most metabolic reactions, so the modulation of the activities of

these enzymes crucially regulate metabolic activity [116].

Cancerous cells exhibit severely dysregulated metabolic properties [117], and this metabolic dysreg-

ulation is commonly considered one of the hallmarks of cancer [118]. Healthy differentiated cells

usually catabolize energy through oxidative phosphorylation under normal conditions but then switch

to anaerobic glycolysis in hypoxic environments [119]. On the other hand, tumor cells preferentially

catabolize energy through glycolysis even in the presence of an abundant supply of oxygen. This

aerobic glycolysis is very energy inefficient relative to oxidative phosphorylation [120]. In particular,

four moles of adenosine triphosphate (ATP), the energy currency of living cells, are produced for each

mole of glucose in aerobic glycolysis, as compared to thirty-six moles of ATP produced per mole of

glucose in oxidative phosphorylation [121]. The upregulation of glycolysis in malignant cells leads to

an increase in the production of lactic acid [122], a biological process which is the subject of intense

investigation using 13C MRS with hyperpolarized pyruvate [123]. The observation that cancer cells

preferentially undergo glycolysis is known as the Warburg effect since it was first described in 1925 by

Warburg [46, 124] who went on to receive the Nobel prize in physiology or medicine for this work in

1931. In general, metabolism is downstream from genomics, transcriptomics, and proteomics [125], so

observing tumor metabolism provides crucial insight into the biological processes underlying tumor

progression. Moreover, studying tumor metabolism allows for both the diagnosis of cancer and the

assessment of a tumor’s therapeutic response.
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3.2 The Neurochemical Profile

N-acetyl aspartate (NAA) is one of the most commonly observed metabolites in 1H MRS. Despite a

plethora of research investigating its possible role in neurometabolism [126, 127], its precise function

is still not well understood [128]. It is mainly observed as a singlet at 2.01 ppm originating from its

methyl group, but smaller resonances appear at 2.49 ppm, 2.67 ppm, 4.38 ppm, and 7.82 ppm, respec-

tively [61]. Its concentration varies spatially throughout the brain [129]. In MRS it is used to detect

neuronal loss since NAA concentration decreases in pathologies where neuronal density decreases such

as stroke [130] and multiple sclerosis [131]. This is particularly true in an oncological setting, as NAA

concentrations are known to decrease in gliomas [132]. NAA is a precursor to N- acetylaspartylglu-

tamate (NAAG) which is a neurotransmitter [133]. The primary resonance of NAAG is a singlet

located at 2.04 ppm arising from the protons in its acetyl group. Because of its proximity to the

NAA resonance, it is difficult to resolve NAA and NAAG, although not impossible [134]. The concen-

trations of NAAG across the brain also vary significantly but are usually within 0.6 mM to 3.0 mM [61].

Creatine (Cr) and phosphocreatine (PCr) are neurometabolites that are involved in energy metabolism

[135]. In particular, PCr acts as an energy buffer [136] in maintaining adenosine triphosphate (ATP)

levels by regenerating ATP from adenosine diphosphate (ADP). It also acts as an energy shuttle

between the mitochondria, where the ATP is produced [137], and the site of energetic utilization in

the cytoplasm. Being very similar in chemical structure, the resonances of Cr and PCr are located

very close to each other on a proton spectrum; thus, they are difficult to resolve and often quantified

together as total creatine (tCr). The prominent resonance of total creatine is a singlet at 3.03 ppm

originating from the sole methyl group, but there is also a singlet at 3.92 ppm originating from the

methylene group. The in vivo concentrations in the human brain of Cr and PCr are 4.5 mM to 6.0

mM and 4.0 mM to 5.5 mM, respectively, with slightly higher concentrations found in gray matter

as compared to white matter [61]. Total creatine concentrations are relatively stable in the presence

of most pathologies [138], so it is often used as a relative concentration reference, but this usage re-

mains controversial [139]. Total creatine concentrations are observed to decrease in brain tumors [140].

One of the most prominent resonances in proton spectroscopy is that of total choline (tCho) which is

comprised of contributions from free choline, phosphorylcholine, and glycerophosphorylcholine (GPC)

[141]. There is a conglomeration of peaks arising from tCho located at approximately 3.2 ppm, al-

though each compound possesses a number of smaller resonances to the left of the dominant peak.

Concentrations of tCho are heterogeneous across the human brain but typically in the range of 1 mM

to 2 mM [142]. Compounds containing choline aid in the synthesis and degradation of phospholipids

and are thus involved in membrane turnover [143]. Choline concentrations have been observed to

increase in a number of pathologies such as multiple sclerosis [144], Alzheimer’s disease [145], and

cancer [146].

Lactate, as discussed in Section 3.1, is the end product of glycolysis. Since glycolysis is strongly upregu-

lated in tumorous tissue, its concentration increases in tumors [147]. Increases in lactate concentration

are also observed during an ischemic stroke [148], functional activation [149], hyperventilation [150],

and under hypoxic conditions [151]. Lactate’s primary resonance, arising due to the protons in its

methyl group, is a doublet located at 1.31 ppm, but there also exists a quartet located at 4.10 ppm

arising due to the single proton in the methine group. Detection of lactate in proton spectroscopy is
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nontrivial since the methyl peak overlaps with a large lipid signal and was not accomplished in this

work. The normal in vivo concentration of lactate is approximately 0.5 mM [61].

Glutamate is the most abundant excitatory neurotransmitter in the human brain [152] and is the

precursor to gamma aminobutyric acid (GABA) [153], which is important in reducing neuronal ex-

citability in the human nervous system [154]. Glutamate is also vital in the synthesis of some smaller

metabolites along with larger peptides and proteins [155]. Closely related to glutamate is glutamine.

Neurons release glutamate or GABA which is then subsequently taken up by astrocytes [156]. The

astrocytes then release glutamine which is taken up by the neurons [157]. This metabolic pathway

is known as the glutamate-glutamine cycle [158]. Glutamate and glutamine have a similar chemical

structure with both molecules possessing two methylene groups and a methine group. Therefore, the

proton spectrum of the two molecules are quite similar, so the combination of glutamine and glutamate

is typically quantified and referred to as Glx. The methine proton resonates as a doublet of doublets

at 3.75 ppm and a triplet at 3.76 ppm for glutamate and glutamine, respectively. The methylene

protons form multiplets located between 2.04 ppm and 2.35 ppm for glutamate and between 2.12 ppm

and 2.46 ppm for glutamine. GABA has three methylene groups which produce triplets at 2.28 ppm

and 3.01 ppm and a quintet at 1.89 ppm [61]. In vivo glutamate concentrations vary between 6 mM

and 12.5 mM with significant differences observed between white and gray matter [159]. Glutamine

concentrations are a bit lower, typically between 2 mM and 4 mM [160]. Glutamate is believed to be a

tumor growth factor [161], and glutamate concentration has been observed to increase in the periph-

eral region of glioblastoma tumors [162]. Glutamine is known to be rapidly consumed by cancer cells

[163], a process that is dependent on numerous factors such as the tumor microenvironment, tissue

type, or underlying genetic factors [164]. Glutamine metabolism in cancer has been interrogated via
13C hyperpolarized MRS [165], and glutamine can alternatively be used as a metabolic imaging agent

via positron emission tomography (PET) [166].

Three additional signals are present in proton spectroscopic studies that complicate the metabolite

quantification process. The first of these is water which shows up as a large resonance at 4.7 ppm.

Water suppression is discussed in Section 6.2. The next bothersome signal is the lipid resonance at

approximately 1.5 ppm. While it is true that dysregulated lipid metabolism may serve as a biomarker

for cancer [167], the lipid signal observed in 1H MRS brain studies originates in the thin layer of

pericranial lipids surrounding the skull and, therefore, should be suppressed. The removal of pericra-

nial lipids is discussed further in Section 6.6. The final signal that must be considered is that of the

macromolecules (MM) in the tissue, arising from proteins and membrane structures [1495-1496]. No

less than ten MM resonances appear in the human brain [168], but it is not possible to assign the

specific proteins from which the signals originate.
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Chapter 4

Magnetic Resonance Imaging

4.1 Spatial Encoding and Slice Selection

MRI is made possible through the application of gradient magnetic fields. These gradient fields

introduce small perturbations to the value of the magnetic field linearly along a given direction. Three

separate gradient fields are applied, one along each of the three spatial dimensions. By appropriately

combining these three gradients, a gradient field can be applied in any desired direction, endowing

MRI with the ability to image in arbitrary planes [169]. The guiding principle of MRI is that by

spatially perturbing the value of the magnetic field, one spatially perturbs the precessional frequency

of the nucleus. Since they then oscillate at different resonant frequencies, it is possible to discriminate

from where a given component of the NMR signal originates, a process known as spatial encoding.

Therefore, when gradient fields are introduced, the Larmor frequency becomes spatially dependent,

and Equation 2.12 is modified as follows:

ω(~r) = γ(B0 + ~G · ~r) (4.1)

Here, ~r is the spatial position, and ~G is the gradient field.

In conventional two-dimensional imaging, a slice of spins must first be excited. This is typically

accomplished by applying an RF excitation pulse with a finite bandwidth. Since frequency scales

linearly with position due to the application of the gradient field, the finite bandwidth corresponds to

a finite slice along the direction of the gradient.

4.2 k-Space

MRI data is acquired in a spatial frequency domain called k-space. It is easily accessed since spatial

frequency is proportional to gradient strength. In particular, if Gi is the gradient along the ith

dimension for i ∈ {x, y, z}, then one can calculate ki as [62]:

ki(t) = γ

∫ T

0

Gi(t)dt (4.2)

Here, the gradient is taken to have been turned on from 0 to T .
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Following slice selection, data are acquired by applying gradients in the orthogonal directions to

traverse k-space. The gradient in one in-plane dimension is referred to as the frequency encoding

gradient or the readout gradient, while the gradient in the other in-plane direction is typically called

the phase encoding direction. Trajectories through k-space can be Cartesian [170], spiral [171], radial

[172], or follow a zig-zag pattern [173]. Once k-space is populated, an anatomical image of the spin

density can be produced by taking a multidimensional discrete inverse Fourier transformation. More

precisely, in the case of three-dimensional imaging, one can find the desired spin density ρ from the

measured k-space data s via the following relation [63]:

ρ(~r) =

∫∫∫
k−space

s(~k)e2πi~k·~rd3k (4.3)

4.3 Signal-To-Noise

MRI is considered a low-sensitivity imaging modality [174]. In particular, at conventional clinical field

strengths, only a handful more spins out of a million will populate the lower energy state relative

to the higher energy state and ultimately contribute to the measured signal [986]. This sensitivity

issue is circumnavigated by the fact that most clinical applications target hydrogen atoms in water

molecules due to the relatively high natural abundance of such hydrogen atoms in the human body.

However, this advantage is neutralized when it is desired to interrogate hydrogen atoms not in water

molecules or nonhydrogeneous nuclei.

The MRI signal is proportional to the spin density [175] in the region of interest and the third power

of the nucleus’ gyromagnetic ratio [176]. The signal is inversely proportional to the temperature of the

system [177] and is approximately proportional to the square of the magnetic field strength, although

this dependence subquadratic as B0 increases [178]. The spin density is a fundamental property of

the tissue being examined and cannot be altered. The gyromagnetic ratio is dependent on the nucleus

being probed and is largest for hydrogen. The temperature cannot be adjusted either since MRI need

be performed at physiological temperature. The only adjustable parameter that increases the MRI

signal is the external field strength, which explains the trend in recent years to push to higher field

strengths [179]. The use of phased array coils also increases SNR since each individual element only

detects signals from local regions and, thus, ignores the noise arising in further regions. In addition,

surface coils have a high coupling to tissue.

Noise is ever present in any MR experiment, originating mainly from random thermal fluctuations

in the electronics of the receiver coil and the sample [180]. These fluctuations are characterized by

a Rician distribution which is the probability distribution of the amplitude of a bivariate circular

normal random variable with a mean that does not necessarily vanish [181]. If A is the noise-free pixel

intensity, M is the measured pixel intensity and σ2 is the variance of the signal, then the probability

distribution ρ for the intensity M is given by [182]:

pM (M) =
M

σ2
e

−(M2+A2)

2σ2 I0(
AM

σ2
) (4.4)

Here, I0 is the modified zeroth order Bessel function of the first kind. By inspecting Equation 4.3, it

is seen that for small A
σ (high noise), the probability distribution is given by a Rayleigh distribution

[183], but for A
σ > 3 (decreasing noise), it starts to approach a Gaussian distribution [184].
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The deleterious effects of noise in MRI, as in numerous other fields of signal processing, can be

quantified via the signal-to-noise ratio (SNR). If S is the mean signal intensity, then the SNR is

defined as:

SNR =
S

σ
(4.5)

There exists a complex interrelationship between SNR, spatial resolution, and image acquisition dura-

tion, as one parameter is typically improved at the expense of the others [185]. For example, acquiring

N datasets and averaging them will increase the SNR by
√
N but will double the acquisition duration.

4.4 Contrast

In order to generate contrast in MRI one must exploit a difference in some MR-observable parame-

ter. Some common examples include proton density, tissue relaxation properties, diffusion, perfusion,

chemical exchange, and magnetic susceptibility. The two most commonly employed contrast mecha-

nisms in clinical MRI are T1 and T2. The mechanism behind these tissue relaxation properties was

discussed in detail in Section 2.4, and the basis for T1 and T2 contrast are discussed below for the

illustrative example of a spin echo sequence.

In a spin echo experiment [26], one of the most utilized MRI pulse sequences, a 90◦ pulse initially

rotates the magnetization into the transverse plane. The spins are then allowed to dephase but after

some time, TE2 , a 180◦ pulse is applied and the spins rephase and form an echo at the echo time (TE).

This procedure is then serially repeated after each repetition time (TR). The signal S of a spin echo

experiment is proportional to the following quantity:

S ∝ (1− e−
TR
T1 )e

−TE
T∗
2 (4.6)

When TR is long

Long TR⇒ e−
TR
T1 → 0 (4.7)

and the contrast’s dependence on T1 is reduced. Similarly, when TE is short

Short TE ⇒ e
−TE
T∗
2 → 1 (4.8)

and the contrast’s dependence on T2 is reduced. Thus, to produce a T1-weighted image, both TE

and TR should be short, while to produce a T2-weighted image, both TE and TR should be long.

To produce a proton-density image, the effect of both T1 and T2 relaxation need be reduced, so TR

should be long and TE should be short.

Roughly 50% of all MRI examinations worldwide are contrast-enhanced [186], most of which are

gadolinium based [187]. Gadolinium is paramagnetic and, thus, becomes magnetized in the presence

of a magnetic field. The gadolinium accumulates in tissue, shortens its T1, and consequentially ren-

ders it bright in a T1-weighted image [188]. Gadolinium also shortens T2 [189], but this effect is less

pronounced since T1 is typically much longer than T2 in vivo.
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The contrast-to-noise ratio (CNR) is defined as the difference in mean signal intensities between a

tissue St of interest and a reference tissue Sref relative to the noise σ [190]:

CNR =
|S̄t − S̄ref |

σ
(4.9)

4.5 Magnetic Resonance Spectroscopic Imaging

Magnetic resonance spectroscopic imaging (MRSI) combines the features of unlocalized NMR spec-

troscopy discussed Section 2.7 and the localization techniques employed by MRI discussed in Section

4.1. It was developed in the early 1980’s, and the initial in vitro [191, 192] and in vivo [193, 194]

applications were soon to follow.

MRSI is analogous to MRI except that at each point in k-space, an FID is acquired rather than a

single complex datapoint. Thus, an FID is read out at each point as a series of phase encoding steps

are iterated through each spatial direction. Each phase encoding step has a temporal duration of TR.

The readout of the FID captures the spectroscopic information, while the sequence of phase encoding

gradients performs spatial encoding. Consider an MRSI experiment in three spatial dimensions. For

the sake of simplicity, assume that the sampling rate is infinite so that the signal can be described

as a continuous function. Also assume that the region of interest is the entirety of space, and the

measurement duration is throughout all of time. A time-dependent signal S(t) is acquired from the

coil and is the sum of each signal arising in volume elements s(x, y, z, t)dxdydz from each spatial

location (x, y, z) in the region of interest:

S(t) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

s(x, y, z, t)dxdydz (4.10)

When gradients are applied, a set of FIDs in k-space can be acquired and subsequently transformed

into a set of spectra in k-space F :

F (kx, ky, kz, ω) =

∫ ∞
−∞

S(kx, ky, kz, t)e
−iωtdt (4.11)

The set of spectra in image space f can then be found from F by taking the three-dimensional Fourier

transformation from k-space into image space.

f(x, y, z, ω) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

F (kx, ky, kz, ω)e−i(kxx+kyy+kzz)dkxdkydkz (4.12)

The physical case proceeds analogously except that boundary conditions are placed on the temporal

and spatial dimensions and the sampling is discrete in both time and space so that discrete Fourier

transformations are applied rather than their continuous versions [61].
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4.6 MRSI at Higher Fields

Most clinical scanners operate at magnetic field strengths of either 1.5 T or 3 T. In recent years,

there has been a push to higher field strengths for a variety of MR-based applications and MRSI is no

exception [195, 196, 197]. At higher field strength, SNR is increased, spectral dispersion is increased,

and the effects of scalar coupling are reduced because of the regime change from a strongly coupled

system to a weakly coupled system [198]. However, these benefits come with a number of challenges.

For example, as one moves from 3 T to 7 T, B0 inhomogeneities become more problematic since static

field perturbations arising from magnetic susceptibility differences increase proportionally to B0 [199].

B1 inhomogeneities also become more problematic due to the fact that the wavelength of an RF pulse

required to excite a spin at 7 T is shorter than the dimensions of the human skull [200]. A further

challenge is the shorter T2 relaxation which must be compensated by using very short echo times [201].

Despite the many challenges it is still advantageous to perform MRSI at higher field strength, so

the entirety of this work is performed at 7 T. With the aforementioned improvement in spectral res-

olution at higher fields, relative, single-voxel in vivo concentrations of approximately twenty [198]

neurometabolites can be assessed, although these are not all detected in this work. Some of the more

important of these were discussed above in Section 3.2. The benefits and disadvantages of MRSI at

higher field strength are also discussed in Section 8.1.1.
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Chapter 5

Parallel Imaging

5.1 Acceleration of MRSI

As discussed in Section 4.5, MRSI has the ability to produce high-resolution metabolite maps in a non-

invasive manner. This is extremely useful in an oncological setting due to the dysregulated metabolic

phenotype expressed by malignant cells. Metabolic images can aid in tumor diagnosis. Also, since

MR does not employ ionizing radiation, metabolic images can be acquired serially and thus be used

to monitor a tumor’s therapeutic response.

Despite this tremendous potential, MRSI has not been fully adopted into routine clinical practice

[202]. Although there are numerous challenges associated with MRSI, the major limitation of its

clinical implementation is the excessively long scan times required for data acquisition [203], as MRSI

examinations with a modest imaging matrix of 64 × 64 can often take upwards of one hour. This

is because MRSI requires the acquisition of an extra dimension of data, the temporal dimension, as

compared to MRI. In addition, a long TR is typically used in MRSI in order to achieve sufficient

spectral resolution. The combination of the long TR and the full phase-encoding requirements impose

extremely long acquisition durations. Therefore, the main objective of this project was to reduce the

required acquisition duration for an MRSI examination and thus increase the feasibility of MRSI’s

routine clinical adoption.

The acceleration of image acquisition can be accomplished via parallel imaging which decreases the

time needed for acquisition by utilizing information regarding the spatial distribution and sensitivities

of the individual receiver coil elements in a phased array. Image reconstruction is thereby converted

from a direct Fourier transformation to the solution of an ill-conditioned inverse problem [204]. As

discussed in great detail in the following section, parallel imaging can be superficially subdivided into

two main categories: those that are performed in k-space and those that are performed in image

space. The parallel imaging techniques that are performed in k-space conventionally require the

full acquisition of one of the spatial dimensions to calculate the coil weighting factors, but since

MRSI additionally acquires a fully-sampled temporal dimension, this requirement may no longer be

necessary. In this work, a novel technique to perform k-space-based parallel imaging using only the

time domain data to calculate the coil weighting factors is presented. This ARTT GRAPPA parallel

imaging technique allows for greater flexibility in potential sampling patterns, exploits spatial-spectral

correlations in the data, and, ultimately, allows for more aggressive undersampling schemes.
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5.2 General Principles of Parallel Imaging

The major limitation preventing the widespread adoption of 1H MRSI into clinical practice is the

extremely long time required to acquire MRSI data, as high-resolution MRSI examinations can often

take upwards of one hour. The reduction of acquisition time has long been a focus in MRI research

[205]. Numerous fast MRI techniques have been developed and applied ubiquitously in the litera-

ture in a variety of applications. These include echo planar imaging (EPI) [43], fast low-angle shot

(FLASH) [206], and turbo spin echo (TSE) [207]. These fast image acquisition techniques have revo-

lutionized the magnetic resonance field and have been applied to accelerate MRSI. In particular, echo

planar spectroscopic imaging (EPSI) has been utilized in proton MRSI [208, 209, 210], phosphorus

MRSI [211], and hyperpolarized carbon MRSI [212]. Due to the nature of how spatial encoding is

accomplished in these fast MRI techniques, rapidly switching gradients are required to achieve further

acceleration. Although gradient performance has improved markedly in recent decades, these fast

MRI techniques still exhibit methodological and hardware limitations [213].

Parallel imaging allows for image acquisition acceleration without the reliance on increased gradient

performance. By contrast, parallel imaging decreases the time needed for acquisition by utilizing

information regarding the spatial distribution and sensitivities of the individual receiver coil elements

in a phased array. A phased array is an array of individual coil elements which are fed into separate

receiver chains and spatially distributed around the anatomy of interest [214]. Surface coils, which are

small coils placed directly on the surface of the patient as close as possible to the anatomy of interest,

typically have a high SNR but limited anatomical coverage [215]. By combining many small surface

coils together and arranging them around the anatomy of interest in a phased array, one achieves

both a high SNR and a large field coverage [216]. The only disadvantage of using a phased array

compared to a single channel coil is that the final images acquired from a phased array exhibit an

inhomogeneous SNR distribution [214].

These individual surface coils in the array have both different sensitivities and different spatial posi-

tions, and this spatial sensitivity information can allow for the reduction in MRI acquisition duration

[217]. Normally in MRI, when phase encoding lines are skipped during the filling of k-space, acquisi-

tion duration is reduced but marked aliasing or wrap-around artifacts [218] are introduced. Aliasing

artifacts are errant features in an MR image that appear when the FOV is smaller than the object

being imaged. It reflects the fact that the spacing between adjacently acquired k-space lines is too

small to properly resolve frequencies from different locations within an object [219]. Normally, in

order to avoid aliasing effects, the Nyquist criterion must be satisfied, mandating that the sampling

rate must be greater than or equal to twice the highest frequency contained in the signal [220]. In

MRI the Nyquist criterion restricts the maximum allowable spacing between successive k-space phase

encoding lines [221] which, for a given spatial resolution, fixes the number of required phase encoding

lines. Thus, since image acquisition duration is proportional to the number of phase encoding lines

acquired, the Nyquist criterion fixes the image acquisition time for a given TR. Parallel imaging allows

one to accelerate image acquisition duration past the minimum time imposed by the Nyquist limit

and largely minimizes these aliasing effects by using the spatial sensitivity profile of the phased array

to reconstruct the missing data.

The coil sensitivity of a single channel is a function of three-dimensional position. At a given point
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in space, it describes how sensitive that coil is at that position. These sensitivities, which depend

on the coil loading [222], the interaction of the patient with the RF coil, may vary from patient to

patient. Thus, one cannot simply determine the sensitivity profile once and blindly apply it for each

measurement; it must be determined on an individual basis. Moreover, since parallel imaging makes

use of differences in coil sensitivities, one can only accelerate along dimensions for which there are

sufficient coil sensitivity variations. For example, if an array were geometrically constructed so that it

consisted of n coils arranged in a line along the y direction, then acceleration would only be possible

along the y direction, not the x or z directions. Therefore, the geometry of the array, by dictating

the coil sensitivity profile, determines the acceleration that can be achieved in the implementation of

parallel imaging.

5.3 SENSE

There are two main flavors of parallel imaging reconstructions: image space-based reconstructions

and k-space-based reconstructions. The main image space-based reconstruction technique is sensi-

tivity encoding (SENSE) [223], which has been applied ubiquitously in the literature for a variety

of applications [224, 225, 226], including MRSI [227, 228, 229, 230, 231]. Other image space-based

reconstructions such as parallel imaging with localized sensitivities (PILS) [232] have been developed

but have not been significantly applied in the literature. In image space-based techniques, the coil

sensitivity maps must be known a priori, which is typically accomplished via a prescan prior to the

MRI examination.

The SENSE reconstruction algorithm works as follows. Assume that the phased array has M coils

and that there are N = XY pixels in a two-dimensional image, where X and Y are the number of

pixels in both of the principal directions. Let the coil sensitivity profile form an M by N matrix S

such that the ijth element Sij indicates the sensitivity of the jth coil in the ith pixel. Furthermore,

let F be an M -dimensional vector of complex-valued measured aliased signal intensities in each coil,

and let Ψ be an M by M matrix that characterizes the noise in the acquisition channels. Thus, if the

desired separated pixel values form an N -dimensional vector p, signal separation is performed via the

following matrix equation:

~p = (S†Ψ−1S)−1S†Ψ−1 ~F (5.1)

Here, the superscript dagger denotes the Hermitian conjugate, and the superscript −1 denotes the

matrix inverse. This procedure is then repeated for each pixel in the reduced FOV in order to

reconstruct a non-aliased full-FOV image [223].

5.4 GRAPPA

The major k-space-based parallel imaging reconstruction technique is generalized autocalibrating par-

tial parallel acquisition (GRAPPA) [233]. GRAPPA, like SENSE, has been applied ubiquitously in the

literature for a variety of applications [234, 235, 236, 237], including MRSI [238, 239, 240, 241, 242, 243].

GRAPPA is the fourth generation of k-space-based parallel imaging reconstruction techniques and

is the most generalized version of its predecessors: simultaneous acquisition of spatial harmon-

ics (SMASH) [244], automatically calibrated simultaneous acquisition of spatial harmonics (AUTO-
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Figure 5.1: The interpolation net utilized in GRAPPA - A single ACS point is linked to each of
its neighboring points throughout each coil. This interpolation net is then used to reconstruct the
unsampled points in k-space. This figure was modified from reference [247].

SMASH) [245], and variable density automatically calibrated simultaneous acquisition of spatial har-

monics (VD-AUTO-SMASH) [246].

Unlike SENSE, which requires an explicit determination of the coil sensitivity profile, GRAPPA is a

data-driven approach which determines the coil sensitivity profile in an implicit fashion through the

full acquisition of a central autocalibration region. GRAPPA is essentially a sophisticated interpo-

lation technique that uses correlations between neighboring points in k-space and the calculated coil

sensitivity profile to estimate the complex value of an unsampled k-space point had it been sampled.

This procedure is repeated for each unsampled k-space point in each coil until a fully-reconstructed

k-space exists for each channel in the array. After an appropriate coil combination algorithm and a

multidimensional discrete Fourier transform, the reconstructed image is recovered.

The idea behind this procedure is illustrated in Figure 5.1, which was modified from a figure taken

from Wang et al [247]. The red circles embedded inside white cylinders represent autocalibration

signal (ACS) points, which are the fully-sampled points at the center of k-space and are used in the

determination of the GRAPPA weights. The blue and white circles embedded inside white cylinders

represent points belonging to fully-acquired k-space lines and unsampled k-space lines, respectively.

In GRAPPA, an interpolation net is formed linking a single ACS point to its neighboring points
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throughout each coil. This interpolation net extracts correlations in the composite spatial frequency-

coil domain and is then used to reconstruct each unsampled point. Let R be the acceleration factor,

which is defined as the integer spacing between successively acquired k-space lines in the undersampled

peripheral region. Then a block, which is shown shaded in gray in the figure, is defined as a single

acquired k-space line for each coil followed by R− 1 unsampled k-space lines for each coil. Using this

formalism, the GRAPPA algorithm can be expressed succinctly as follows [233]:

Sj(ky − r∆ky) =

Nc∑
l=1

Nb−1∑
b=0

W (j, b, l, r)Sl(ky − bR∆ky) (5.2)

Here, Sj is the signal to be obtained in line ky − r∆ky for the jth coil, ∆ky is the sampling interval

along the ky direction, r is the ordinal line number of the missing data point in a block [247], Sl is

the known signal in the lth coil, Nc is the number of coils, b is the block index, Nb is the number of

blocks, and W contains GRAPPA weights. The indices j, b, l, and r run from 1 to Nc, Nb, Nc, and

R, respectively.

5.5 The Implementation of GRAPPA

Because a thorough understanding of GRAPPA is essential for much of what is to follow, a more

detailed description of the GRAPPA algorithm is presented here using conventional two-dimensional

imaging as an illustrative example. The basic two-dimensional GRAPPA sampling scheme is shown

in Figure 5.2, which was modified from a figure taken from Breuer et al [248]. The kx dimension

runs from left to right, and the ky dimension runs from bottom to top. Here, the ky dimension is

the direction that is undersampled, and the kx dimension is fully-sampled. Note that one dimension

is always required to be fully-sampled in order to determine the GRAPPA weights. Therefore, the

implementation of GRAPPA into N -dimensional imaging allows for undersampling along N − 1 di-

mensions. In Figure 5.2, there are seven ACS lines, the acceleration factor is three, and the number of

blocks is four. In this example, the product of R and Nb divided by the number of ACS lines (NACS)

is less than two for illustrative purposes, but it is important to note that this value is typically larger,

e.g., 2 to 5, allowing for greater overall acceleration.

The first step in a GRAPPA reconstruction is to fill so-called source and target matrices. A kernel is

placed at the top left of the central autocalibration region, as shown in Figure 5.2. In this example, the

kernel dimensions are Xk = 3 and Yk = 2. The horizontal kernel dimension need be an odd number

less than or equal to the number of points in the kx direction. The vertical kernel dimension can be

any number less than or equal to NACS − 2, but the reconstruction technique is easiest to understand

when this dimension equals R− 1, as in the example. At this kernel position, the six source points, or

more generally the 2Xk source points, shown as small shaded circles inside larger circles, are extracted

and placed into a source vector. Analogously, the two target points, or more generally the Yk target

points, shown as circles with a bold border, are extracted and placed into a target vector. The kernel

is then translated horizontally to the right by some horizontal step size ∆Sx, and new source and

target vectors are extracted. This procedure is repeated until the kernel cannot travel any further in

the horizontal direction, at which point it is translated vertically downward by some vertical step size

∆Sy and then proceeds to travel back to the left. Thus, the kernel traverses the entire autocalibration

region in the manner just described, extracting source vectors and target vectors at each of the Nk
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Figure 5.2: The basic GRAPPA reconstruction technique - The GRAPPA weights are determined
by allowing a kernel to traverse the central autocalibration region. Once the GRAPPA weights are
determined the unsampled k-space points can then be estimated. This figure was modified from
reference [248].

kernel positions. Each source vector and each target vector are then appended horizontally to form a

single-coil source matrix and a single-coil target matrix, respectively. The single-coil source matrix has

dimensions 2Xk by Nk, and the single-coil target matrix has dimensions Yk by Nk. Finally, this proce-

dure is then repeated for each channel in the phased array, and each single-coil source matrix and each

single-coil target matrix are appended vertically to form the source matrix Ssrc and the target ma-

trix Strg, respectively. Here, Ssrc has dimensions 2XkNc by Nk, and Strg has dimensions YkNc by Nk.

The next step in a GRAPPA reconstruction is the determination of the GRAPPA weights which

implicitly hold the information regarding the coil sensitivity profile. The GRAPPA weights W are

then found via the following equation:

W = Strgpinv(Ssrc) (5.3)

Here, pinv is the Moore-Penrose pseudoinverse, which is a generalized version of matrix inversion [249].

The dimensions of W are YkNc by XkNc, as it maps a given source point in channel i to a given target

point in channel j for all pairs of channels i and j in the array. This can be more easily visualized

in Figure 5.3. In this representation, W is a matrix of dimensions Nc by Nc where each element of

W is itself a matrix of dimensions Yk by Xk. Because the GRAPPA weights are calculated from a

low-resolution dataset with sufficiently high SNR and a large number of kernel positions within the

ACS, the use of the Moore-Penrose pseudoinverse results in GRAPPA weights that can be considered

noise free [248].

Once the GRAPPA weights are determined, one can then estimate the missing points in the peripheral

undersampled region of k-space. One first places the kernel in the undersampled region, as shown at
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W =

Yk by Xk

Yk by Xk
Yk by Xk

Yk by Xk Yk by Xk

Yk by XkYk by XkYk by Xk

Yk by Xk

Figure 5.3: A schematic of the GRAPPA weights - The GRAPPA weights can be interpreted as an
array of dimensions the number of coils by the number of coils with elements that are themselves
arrays of dimensions the number of target points by the number of source points.

the top of Figure 5.2. In this figure, the target vector in the fourth column of the first block in the ith

channel is being reconstructed. One first extracts the source vector Sj at the specified kernel position

for each channel in the array using the same procedure as described above. Then the desired target

vector Ti is reconstructed via the following equation:

Ti =
∑
j

wijSj (5.4)

Here, the sum is taken over all channels, and wij is the ijth, Yk by Xk submatrix of W . This procedure

is then iterated for each target vector in each block in each channel until the entirety of k-space has

been reconstructed.

5.6 SNR in Parallel Imaging

One drawback of parallel imaging is that it necessarily reduces the SNR. This is due to the fact that

a parallel imaging-based examination acquires less data than a corresponding examination that does

not use parallel imaging. In particular, the reduction of the SNR is described by

SNRpi =
SNRnormal

g
√
R

(5.5)

Here, SNRnormal is the SNR of a normal, corresponding, non-parallel imaging study, and SNRpi is the

SNR of the parallel imaging study. In addition, R is the acceleration factor, and g is the geometry

factor which depends on the number and spatial distribution of the individual receiver coil elements,

the loading of the coil, and the orientation of the imaging plane. In addition, this geometry factor

varies throughout the image but typically is between 1 and 2 [248].

The influence of Equation 5.5 can be seen in Figure 5.4 where the SNRnormal

SNRpi
is plotted against

√
R.

These data were acquired in the retrospectively undersampled in vivo analysis described below in

Section 6.8.3. The average SNR of each spectrum throughout the brain of a healthy volunteer was
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Figure 5.4: The degredation of SNR in parallel imaging with increasing acceleration factor.

measured for both the fully-sampled dataset and a series of retrospectively undersampled reconstructed

datasets. Here, it can be seen that SNRnormal

SNRpi
varies approximately linearly with

√
R and that g is

slightly greater than unity.
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Materials & Methods

6.1 Scanner and Coils

All measurements were performed at the German Cancer Research Center on a 7 Tesla whole-body

MAGNETOM MRI scanner (Siemens Healthineers, Erlangen, Germany). The scanner used in this

work is displayed in Figure 6.1A, which was modified from a figure taken from Windschuh [250]. The

static magnetic field is B0 = 6.98 T which corresponds to a proton resonance frequency of 297.15

MHz. The system is equipped with a set of three mutually perpendicular gradients each with a

maximum strength of 28 mT/m and a slew rate of 170 mT/m/s [251]. A twenty-four channel receive

head coil coupled with a birdcage coil for transmission [252], shown in Figure 6.1B, was used for all

measurements.

A. B.

Figure 6.1: The 7 Tesla whole-body MAGNETOM MRI scanner (6.1A) and the 24-channel receive
head coil (6.1B) used in this work - Figure 6.1 A was modified from reference [250].
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6.2 Water Suppression

6.2.1 Water Suppression Introduction

Water, consisting of two hydrogen atoms, appears in a proton spectrum as a peak located at ap-

proximately 4.7 ppm. It can be three to four orders of magnitude larger than the peaks arising from

the metabolites of interest. Although modern analog-to-digital converters can adequately discrimi-

nate these low metabolite signals, the presence of the large water peak can lead to distortions of the

spectral baseline and errant signals arising from vibration-induced signal modulation [61]. These dis-

tortions render the metabolite detection process unreliable [253]. Therefore, most proton spectroscopic

applications implement some type of water suppression technique.

6.2.2 Chemical Shift Selective Pulses

Frequency selective RF pulses are the most commonly applied means of suppressing water. Here,

a spectrally selective RF pulse excites all spins within the specified frequency band which are then

subsequently dephased using a spoiler gradient. These chemical shift selective (CHESS) pulses [254]

are able to precede any arbitrary pulse sequence and do not modulate the metabolite peaks outside

of the designated frequency band. A single CHESS pulse would adequately suppress water in the

presence of homogeneous B0 and B1 fields. In practice, however, both B0 [255, 256] and B1 [257]

are inhomogeneous, so the CHESS pulse is repeated multiple times. This will broaden and flatten

the frequency range centered about the water frequency, reducing the technique’s sensitivity to B0

inhomogeneities. In addition, B1 insensitivity is achieved since the residual longitudinal magnetization

following n CHESS pulses is given by the relation [61]:

Mz(α) = Mz,0(cosα)n (6.1)

Here, Mz,0 is the initial longitudinal magnetization at the start of the CHESS sequence, and α is

the achieved flip angle. Because of the exponential dependence on the number of CHESS pulses, flip

angles differing from π
2 will have less of an effect on the water suppression scheme.

Numerous CHESS-based techniques have been applied in the literature, including water suppression

enhanced through T1 effects (WET) [258], multiply optimized insensitive suppression train (MOIST)

[259], suppression of water with adiabatic modulated pulses (SWAMP) [260], and low-power water

suppression by hyperbolic secant pulses with controlled offsets and delays (WASHCODE) [261]. These

approaches differ in the number of CHESS pulses applied, the amplitude and shape of the CHESS

pulses, and the delay times separating each pulse. In addition, three techniques have been applied in

the literature where water suppression is applied after excitation, during a following spin echo period.

These include water suppression by gradient tailored excitation (WATERGATE) [262], excitation

sculpting [263], and Mescher-Garwood (MEGA) [264]. However, these frequency selective refocusing

approaches were not used here because they necessarily increase the required echo time, and a short

echo time approach is desirable since it avoids the degradation of spectral information due to T2

relaxation and J-coupling effects. Thus, it was decided to employ a CHESS-based technique prior to

excitation.
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Figure 6.2: The asymmetric sinc shape of a single VAPOR pulse - The strength of the B1 field is
expressed in µT , and the pulse length is 20 ms.

6.2.3 VAPOR

Variable power radiofrequency pulses with optimized relaxation delays (VAPOR) is a CHESS-based

water suppression technique that has been optimized for insensitivity in the presence of B1 inhomo-

geneities [265]. Its application is ubiquitous in the literature.

VAPOR consists of seven CHESS pulses each with the shape of an asymmetric sinc function. In the

implementation here, the temporal extent of the pulse could be adjusted by the user within the range

of 5 ms to 30 ms. The sinc pulse had five lobes in total; 4.5 lobes were to the left of the maximum

point, while one half of a lobe was to the right of the maximum point. In Figure 6.2, a single VAPOR

pulse is shown, illustrating its asymmetric sinc shape. In this figure, the pulse length is 20 ms, and

the prescribed RF power profile is given in units of µT . In the VAPOR scheme, the seven interpulse

delay times were 150 ms, 80 ms, 160 ms, 80 ms, 100 ms, 30 ms, and 26 ms, respectively. The flip

angle α of a single pulse of length Tp was calculated via the following relation:

α = γ

∫ Tp

0

B1(t)dt (6.2)

Here, γ is the gyromagnetic ratio of the proton given in Equation 2.7. Equation 6.2 is the generaliza-

tion of Equation 2.25 for an arbitrarily shaped pulse. The prescribed RF power of the first, second,

fourth, and sixth pulse was chosen so that the flip angle was π
2 . The prescribed RF power of the third,

fifth, and seventh pulses were a factor of 1.78 larger than that of the previously described group. The

entire VAPOR pulse train is displayed in Figure 6.3, where the amplitude A shown in the figure is

that which will ensure a π
2 flip angle, as calculated via Equation 6.2. As in Figure 6.2, the pulse length

was chosen to be 20 ms, and the prescribed RF power profile is given in units of µT .

Following each VAPOR pulse, a spoiler gradient was applied to null the transverse magnetization.
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Figure 6.3: The VAPOR pulse train - VAPOR consists of seven asymmetric sinc-shaped CHESS
pulses with optimized amplitudes and interpulse delay times.

When designing the spoiler gradient pulses, care needed to be taken in order to avoid unwanted

echoes that can form and distort the peak amplitudes and lineshapes in a spectrum [266]. In order

to think about this problem, it can be helpful to introduce the concept of coherence first formulated

by Bodenhausen et al [267]. Coherence is a generalization of the concept of transverse magnetization.

In particular, it can describe an arbitrary transition between any pair of eigenstates, r and s, in a

system. Transverse magnetization corresponds to the specific subset of coherence for which the order

of coherence equals positive or negative unity. Here, the order of coherence [268] is defined as the

difference in magnetic quantum numbers between the two states: Mr–Ms.

A gradient pulse Gζ applied in the direction ζ for a time duration δ induces an acquired phase φ

across a voxel of

φ = pγGζδ∆rζ (6.3)

Here, p is the order of coherence, γ is the gyromagnetic ratio of the proton, and ∆rζ is the voxel

dimension in the ζ direction, where ζ can be either of the three spatial dimensions. Analogously,

when the sequence of a VAPOR pulse and subsequent gradient spoiling is repeated n times, the phase

gained during the entire sequence is

Φζ =
∑
n

φn = γ∆rζ
∑
n

pnGζ,nδn (6.4)

If φζ,min describes the minimum accumulated phase required for sufficient dephasing in a single pulse

experiment, then echoes are sufficiently dispersed if

Φζ ≥ φζ,min (6.5)
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Since the magnitude of each component of the order of coherence vector appearing in Equation 6.4

must be less than or equal to unity, it can be seen that the requirement of Equation 6.5 can be

satisfied by doubling the magnitude of each subsequent gradient moment along a given direction

[269]. Since there are seven VAPOR pulses, adequate spoiling can be accomplished with the following

set of gradient amplitudes:

G ∈ {µGx,min, 2µGx,min, µGy,min, 2µGy,min, µGz,min, 2µGz,min, 4µGz,min} (6.6)

Here, µ is some arbitrary constant greater than or equal to unity in place to ensure that the employed

gradient amplitudes are at least the minimum required gradient amplitude to achieve sufficient de-

phasing in a single pulse experiment. In addition, for simplicity, it was assumed that the gradient

duration δ is the same for each spoiler gradient. The slice direction was chosen as the dimension with

three spoiler gradients since spoiling is optimal along the largest voxel dimension.

To find the minimum required gradient amplitude, Equation 6.3 can be modified to give

|∆φmin| = γGζ,minδ∆rζ (6.7)

which can be rearranged to yield

Gζ,min =
|∆φmin|
γδ∆rζ

(6.8)

Here, the minimum phase dispersion |∆φmin| can be taken to be 4π [270]. Using a voxel dimension

of 5 mm and a gradient duration of 20 ms, one finds a minimum required gradient amplitude of

1.9 mTm−1. Since this amplitude is substantially less than the technical limits imposed by modern

gradient performance, a relatively large µ of 2.6 was chosen so that the three employed gradient

amplitudes were 5, 10, and 20 mTm−1. In addition, since MR gradients are slew rate limited, a ramp

time of 300 µs was used. This ramp time corresponds to a slew rate of 67 Tm−1s−1, well within the

slew rate performance capabilities of modern MR systems. An example of the various radiofrequency

pulse and gradient parameters employed for each of the seven pulses is summarized in Table 6.1 and

Table 6.2, respectively.

Pulse Number Desired Pulse Amplitude (µT) Pulse Length (ms) Delay Time (ms)
1 1.59 20 150
2 1.59 20 80
3 2.83 20 160
4 1.59 20 80
5 2.83 20 100
6 1.59 20 30
7 2.83 20 26

Table 6.1: Shown are the various VAPOR pulse parameters employed in this work.

6.2.4 Water Suppression Simulations

Prior to implementation, simulations were performed to track the evolution of the magnetization

throughout the VAPOR scheme. Here, the Bloch equations of Equation 2.29 through 2.31 were solved

numerically using a MATLAB toolbox available online [271]. In Figure 6.4, the excitation profile is

shown. Namely, the longitudinal magnetization at the end of the VAPOR sequence normalized by
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Pulse Number Gradient Amplitude (mTm−1) Gradient Direction Gradient Length (ms)
1 5 z 20
2 5 y 20
3 5 x 20
4 10 z 20
5 10 y 20
6 10 x 20
7 20 z 20

Table 6.2: Shown are the various VAPOR gradient parameters employed in this work.

the initial longitudinal magnetization is plotted against the frequency in Hz. In Figure 6.4A, the

excitation profile is shown for a variety of flip angles: 75◦, 90◦, 105◦, and 120◦. Here, one can see the

B1 insensitivity of the VAPOR technique since the excitation profile does not drastically change as

the flip angle is varied. In Figure 6.4B, the excitation profile is shown for a variety of pulse lengths:

10 ms, 20, ms, and 30 ms. As one would expect, increasing the length of each VAPOR pulse decreases

the saturation bandwidth.

The B1 insensitivity of the VAPOR technique is most effectively demonstrated by Figure 6.5, where

the normalized longitudinal magnetization at the center frequency is tracked as a function of time

throughout the VAPOR scheme. As can be seen in the figure, regardless of the prescribed flip an-

gle, the longitudinal magnetization is nulled at the end of the VAPOR scheme. Further simulations

were performed in order to characterize the dependence of VAPOR’s performance on certain sequence

parameters, namely pulse length and final delay time, t7. Figure 6.6 plots normalized residual lon-

gitudinal magnetization at the center frequency as a function of flip angle while both pulse length

and t7 are varied. In Figure 6.6A, it is seen that the pulse length has little effect on the resultant

magnetization profile and that adequate saturation is achieved over a wide range of prescribed flip

angles. In Figure 6.6B, it is seen that modifying t7, which alters the overall time that the system is

subjected to T1 relaxation, results roughly in a vertical translation of the magnetization profile. The

optimal final delay time was found to be 26 ms, as was used in the original VAPOR manuscript [265].

6.2.5 Water Suppression Realization

A VAPOR water suppression scheme, as described in Section 6.2.3, was implemented first into a single

voxel spectroscopic sequence and eventually into the localized spectroscopic sequence, described below

in Section 6.3. Figure 6.7 illustrates the effect that the VAPOR pulse train has on a representative

resultant spectrum. In Figure 6.7A, no water suppression has been applied, and the metabolites of

interest are not visible. In Figure 6.7B, VAPOR has been applied, and the water has been suppressed

down to the order of magnitude of the metabolites of interest.

The dependence of the VAPOR scheme’s efficacy on two of the suppression pulse parameters was

investigated and is shown in Figure 6.8. Here, if a = 4.5 ppm and b = 5.0 ppm the efficacy of the

VAPOR scheme was quantified using the suppression factor which is defined here as:

H =

∫ b
a
SNo VAPOR(δ)dδ∫ b
a
SVAPOR(δ)dδ

(6.9)

That is, an integral was performed over a chemical shift range containing the water peak for spectra
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Figure 6.4: Bloch simulated excitation profiles showing the longitudinal magnetization as a function of
offset frequency from the water peak - In Figure 6.4A, the relative insensitivity to B1 inhomogeneities
can be seen, as Bloch simulated excitation profiles are shown for a variety of flip angles. In Figure 6.4B,
the Bloch simulated excitation profiles are seen to become narrower as the pulse length is increased.
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Figure 6.5: The insensitivity of VAPOR to B1 inhomogeneities as seen by simulating the evolution of
the longitudinal magnetization at the water frequency throughout the VAPOR pulse sequence - For
each simulated flip angle, the longitudinal magnetization at the water frequency nearly vanishes at
the end of the VAPOR pulse sequence.

without and with water suppression, and the ratio was then taken. In Figure 6.8A, the suppression

factor is plotted against the pulse length of the VAPOR pulses. It is seen that varying the pulse length

has little effect on the overall suppression achieved. In Figure 6.8B, the suppression factor is plotted

against the prescribed flip angle. It is seen that adequate suppression was achieved over a prescribed

flip angle range from 60◦ to 140◦. Thus, the water suppression scheme is robust in the presence of

realistic B1 inhomogeneities.
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Figure 6.6: The simulated normalized residual longitudinal magnetization at the water frequency
plotted as a function of flip angle while both pulse length (6.6A) and final delay time t7 (6.6B) are
varied.
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Figure 6.7: A representative spectrum without (6.7A) and with (6.7B) VAPOR water suppression -
After water suppression, the intensity of the water peak is on the same order of magnitude as the
metabolites of interest.
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Figure 6.8: The efficacy of water suppression as pulse length (6.8A) and flip angle (6.8B) are varied
- In Figure 6.8A, one sees that suppression is rather insensitive to changes in pulse length. In Figure
6.8B, one sees that suppression falls off only when the prescribed flip angle deviates too far from 90◦.
Adequate suppression was achieved over a prescribed flip angle range from 60◦ to 140◦.
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6.3 FID MRSI Pulse Sequence

The pulse sequence applied in this work is the direct acquisition of an FID following excitation [272].

This FID MRSI technique, by construction, utilizes ultrashort echo times. The benefit of using these

ultrashort TE sequences at higher field strengths is twofold. Firstly, at higher B0, T2 relaxation times

decrease. This is due to the fact that microscopic susceptibility differences scale with field strength

and are, therefore, more prominent at higher fields. This more rapid transverse relaxation offsets the

SNR benefit obtained from transitioning to higher field strength, but an ultrashort TE value minimizes

the amount of time that the magnetization has to relax and, thus, maximizes SNR. Secondly, scalar

coupling evolution induces signal dephasing which further reduces SNR and increases the overlap of

spectral resonances [272]. An ultrashort TE also reduces this scalar coupling evolution effect.

One repetition of the pulse sequence is illustrated in Figure 6.9 which was modified from a figure

taken from Korzowski [251]. First the seven-pulse water suppression scheme is applied. Next, an

excitation pulse is applied which flips the magnetization into the transverse plane, and the FID is

then directly acquired. The application of the gradients was such that data were acquired in a

GRAPPA CAIPIRINHA-like pattern, which is discussed in more detail in the following section.

VAPOR

RF/ADC

Gread

Gphase

Gslice

Excitation Readout SpoilingWater
Suppression

Figure 6.9: The FID MRSI pulse sequence used throughout this work - This figure was modified from
reference [251].

6.4 A Novel Temporal Domain GRAPPA Algorithm

The conventional GRAPPA algorithm was described in detail in Sections 5.4 and 5.5. Recall that in

this algorithm the GRAPPA weights are determined by having a kernel traverse the ACS region. This

ACS region is depicted in Figure 6.10A. The ACS region contains the central rows in the vertical ky

direction but is sampled fully in the horizontal kx direction. Thus, conventional GRAPPA requires one
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of the k-space directions to be fully-sampled which places restrictions on the possible sampling schemes

that can be implemented. In MRSI, an FID is acquired at each position in k-space, so there exists a

fully-sampled temporal dimension in MRSI data that is not present in MRI data. Several dynamic

MRI studies [273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289] have

incorporated temporal domain data in combination with k-space data to determine the coil weights,

but no studies exist where the GRAPPA weights are determined exclusively using the time domain

data as the fully-sampled ACS dimension.

In the first two decades of the twentieth century, Einstein developed his special [290] and general [291]

theories of relativity. The development of relativity revolutionized theoretical physics and led to a

number of previously counterintuitive physical implications such as length contraction, time dilation,

the constancy of the speed of light, the equivalence of mass and energy, the gravitational redshift,

and the gravitational deflection of light. Whereas prior to Einstein’s work it was thought that time

and space were separate entities that are independent of each other, it is now understood that they

are fundamentally intertwined and influence each other as described by the Lorentz transformation

[292, 293, 294]. It was this understanding of the fundamental equivalence of time and space that

motivated the main hypothesis of this dissertation: that GRAPPA can be applied to accelerate MRSI

using only the time domain data to calculate the coil weights.

To understand the concept of ARTT GRAPPA, consider Figure 6.10. Figure 6.10A depicts a conven-

tional GRAPPA sampling pattern. Here, the coil weights are calculated by having the kernel traverse

an ACS region that extends fully in the kx direction. For a given unsampled ky, each kx point in that

row is reconstructed. Figure 6.10B illustrates the ARTT GRAPPA concept, where the kx direction

has been replaced by the temporal dimension. Thus, the kernel traverses an ACS region which is

some number of vertically stacked FIDs, and the coil weights are calculated using an ACS region in

k-t-space. For a given unsampled ky, an entire FID is reconstructed. To additionally reconstruct along

the kx direction, a higher dimensional GRAPPA implementation is needed. This can be accomplished

either by manually augmenting the dimensionality of the GRAPPA reconstruction algorithm by brute

force or by the GRAPPA operator approach [295], but the literature indicates that the GRAPPA

operator approach is the more accurate technique [296]. Here, GRAPPA is extended into the third

dimension by repeatedly applying a series of 2D GRAPPA reconstructions for each k-t slice along

one undersampled k-space dimension then applying another series of 2D GRAPPA reconstructions

for each k-t slice along the other undersampled k-space dimension.

By calculating the GRAPPA weights using only time domain data one can now simultaneously under-

sample along multiple dimensions in k-space which greatly increases the number of possible sampling

patterns. To visualize the possible sampling schemes in a multidimensional setting consider a simple

experiment with two phase encoding directions. This is illustrated in Figure 6.11 which is an amal-

gamation of numerous figures taken from Breuer et al [297]. In particular, Figure 6.11A depicts the

case when k-space is fully-sampled. If one wants to achieve an effective acceleration factor of two,

then there are three possible ways it can be achieved. One can apply two-fold acceleration along the

vertical k-space direction while keeping the spacing in the horizontal k-space direction fixed, as shown

in Figure 6.11B. Alternatively, one can apply two-fold acceleration along the horizontal k-space direc-

tion while keeping the spacing in the vertical k-space direction fixed, as shown in Figure 6.11C. The

third possible sampling pattern is a checkerboard-like pattern that combines the first two methods, as
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Figure 6.10: The difference between conventional MRSI GRAPPA (6.10A) and ARTT GRAPPA
(6.10B) - In the conventional approach the reconstruction is performed in k-space and iteratively
repeated for each timepoint in the FID. In the approach applied in this work, the reconstruction is
instead performed in k-t-space, and the GRAPPA operator method is used to reconstruct along the
additional k-space dimension.

shown in Figure 6.11D. Aliasing necessarily results from undersampling and occurs in the undersam-

pled direction. Thus, the resulting image obtained from reconstructing the data shown in Figure 6.11B

and 6.11C will result in aliasing along the vertical and horizontal image dimensions, respectively. By

dividing the undersampling along both eligible k-space dimensions, the resulting image obtained from

reconstructing the data shown in Figure 6.11D will exhibit an altered aliasing signature relative to

6.11B and 6.11C.

This is the underlying logic behind the controlled aliasing in parallel imaging results in higher ac-

celeration (CAIPIRINHA) [298] concept which aims to modify the appearance of aliasing effects in

order to reduce the dependence of the parallel imaging implementation on the geometry of the phased

array. CAIPIRINHA has been applied to minimize aliasing artifacts in a variety of applications

[299, 300, 301]. As the effective acceleration increases the number of possible sampling patterns in-

creases factorially leading to high levels of flexibility when choosing potential sampling schemes. This

is illustrated in Figure 6.12 which was taken from Breuer et al [297]. Here, one considers all four by

four subsets of k-space which achieve an effective acceleration factor of four. Conventional sampling

patterns utilizing acceleration schemes of one by four, two by two, and four by one are shown, respec-

tively, in the left part of this figure. Additionally, four CAIPIRINHA-like patterns are constructed

by systematically circularly shifting subsequent rows of data rightward by some integral distance ∆,

as illustrated in the right part of the figure. By sampling data in these CAIPIRINHA-like patterns,

one is able to more readily control aliasing artifacts and minimize the effect that aliasing has on the

resultant image.

The workflow for the ARTT GRAPPA reconstruction algorithm is illustrated in Figure 6.13 for the
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A. B.

C. D.

Figure 6.11: Various two-fold undersampled k-space sampling schemes - In Figure 6.11A, k-space
is fully-sampled. In Figure 6.11B and 6.11C, two-fold undersampling is applied along vertical and
horizontal dimensions, respectively. Figure 6.11D shows the third possibility, a checkerboard-like
pattern that combines both vertical and horizontal and undersampling. This figure was modified from
reference [297].
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Conventional CAIPIRINHA

Figure 6.12: The difference between conventional undersampling schemes and CAIPIRINHA-like
schemes - This figure was modified from reference [297].
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A. B. C.
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Figure 6.13: The workflow of the GRAPPA Operator approach - Each partially sampled column in the
undersampled dataset (6.13A) is reconstructed. Then each underampled row from the intermediate
dataset (6.13B) is reconstructed until the fully-reconstructed dataset (6.13C) is recovered.

case of a two dimensional MRSI experiment. First, the data are sparsely sampled in a CAIPIRINHA-

like GRAPPA sampling scheme, as shown in Figure 6.13A. Here, the figure depicts k-space, but since

it is an MRSI experiment, each blue circle represents a complete FID going into the plane of the

paper, as indicated by the axes in the figure. In this example, the undersampled regions utilize two

by two acceleration with a four by four ACS region, and there is a ∆ = 1 CAIPIRINHA shift in the

vertical direction. The first step in the algorithm is to reconstruct the left column. Observing that

the ky-t plane in Figure 6.13A resembles the ky-t plane in Figure 6.10B, one can apply the ARTT

GRAPPA method described above to reconstruct this column. This procedure is then repeated until

each undersampled column has been reconstructed, as shown in Figure 6.13B. Next the rows are re-

constructed by applying the ARTT GRAPPA method to each kx-t plane and iterating over each ky

position until the entirety of k-space has been reconstructed, as shown in Figure 6.13C. Alternatively,

when the CAIPIRINHA shift is in the horizontal direction, one first reconstructs the rows and then

reconstructs the columns. In a three dimensional MRSI experiment, this procedure is then iterated

for each partition encoding k-space slice until the entire dataset has been reconstructed.

The effective acceleration factor Reff is the parameter of importance, as it represents the factor by

which the image acquisition would be accelerated. It is defined as

Reff =
Nk
NxNy

(6.10)

where Nx = Ny = 64 specifies the matrix size in each direction, and Nk is the total number of FID’s

acquired or, in the case of artificial undersampling, retained.

6.5 Coil Combination Algorithm

After the missing data points have been reconstructed, the FIDs from each individual coil element need

be combined to obtain a resultant FID in a given voxel. At this point the data array is five-dimensional:

three spatial dimensions, a temporal dimension, and a coil dimension. The coil dimension must be
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Figure 6.14: Normalized intensity plotted against singular value - The intensity falls off rapidly as the
singular value number increases.

collapsed so that the conventional four-dimensional MRSI data format can be recovered. Coil combi-

nation is often accomplished using a sum-of-squares based approach [302], but this reduces the SNR

of the combined FID and, hence, its corresponding spectrum. Singular value decomposition (SVD) is

a mathematical technique that can be thought of as a generalized version of eigenvalue decomposition

in the case of non-square matrices. The singular values can be divided into those originating from

signal and those arising from noise [303], and the SNR can be increased by discarding the contribu-

tions from singular vectors corresponding to the singular values arising from noise. This is illustrated

in Figure 6.14 where normalized signal intensity is plotted against singular value in a representative

single-voxel spectroscopy experiment. In this figure, there are twenty-four singular values since the

data were acquired using a twenty-four channel head coil. One can see a large intensity for the first

singular value which corresponds to authentic signal in the data. After that first value, the intensity

of the subsequent singular values falls off rapidly, indicating that they increasingly arise from noise in

the data. Thus, this method allows one to find the optimal rank-1 solution for the N individual signals.

In order to illustrate how this approach works, consider first a single-voxel spectroscopy experiment

for simplicity. Here, FIDs consisting of N time points have been acquired by each of the m individual

receiver coils in the phased array. The m individual FIDs, {yi(t)}, need be combined into a resultant

signal of interest, φ(t). This situation can be modeled mathematically via the following relation:

yi(t) = βiφ(t) + λi(t) (6.11)

for t = 1, . . . , N and i = 1, . . . ,m. Here, {yi(t)} are the observed signals from the m coil elements, βi

are the unknown sensitivities of the m coil elements, {λi(t)} are the noise profiles from each of the m

coil elements, and φ(t) is the signal of interest [304].
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There are numerous techniques with which to find φ(t). Initially, a parametric approach was imple-

mented in which the signal, φ(t), was modeled as a sum of exponentially damped sinusoids [305]. The

data were then arranged as a Hankel matrix, which is a square matrix whose skew diagonal entries

are constant. The complex amplitudes, damping coefficients, and frequencies of each mode were then

determined via SVD and subsequently finding the eigenvalues of the solution to a least squares re-

gression problem. This parametric approach had two main drawbacks. The first drawback was that

it was too computationally intensive, typically taking on the order of tens of seconds to compute. In

a single voxel setting, this would be acceptable, but such a computational burden is not optimal in a

multi-voxel setting where the coil combination algorithm need be applied thousands of times, once for

each voxel in the image. The second drawback is that one must know a priori the number of modes

with which to model the signal. The number of modes should equal the number of resonances in a

given spectrum. However, this value is not generally known prior to the experiment nor is it generally

fixed from voxel to voxel in an MRSI experiment. Thus, it was determined to instead use a simpler,

non-parametric approach that is more robust in settings where the number of metabolites in a given

voxel is variable.

In order to determine φ(t), one first recasts Equation 6.11 into a matrix equation as shown:

Y = βφ∗ + Λ (6.12)

Here, Y is an m by N matrix with the component Yij specifying the observed signal detected by the

ith coil at the jth time point. Analogously, Λ is an m by N matrix with the component Λij specifying

the noise profile of the ith coil at the jth time point. β is a column vector of length m specifying the

sensitivity of each coil element, and φ∗ is a row vector of length N that is the conjugate transpose

of the signal of interest. In spectra with a sufficiently high SNR, Λ can be neglected, and Y can be

approximated by the rank-one matrix βφ∗ [304]. One can decompose Y using SVD:

Y = UΣV∗ (6.13)

Here, U and V are unitary matrices of dimensions m and N , respectively, Σ is a diagonal matrix

of dimension m by N , and V∗ denotes the conjugate transpose of the matrix V. A schematic illus-

trating the dimensionality of the SVD is shown in Figure 6.15. The diagonal entries of Σ are termed

the singular values, which are listed in descending order. These singular values are analogous to the

eigenvalues determined in eigenvalue decomposition.

Letting σ1 denote the maximum singular value and letting u and v be the left and right singular

vectors, respectively, one can estimate the coil sensitivities βi and the desired signal φ(t) as follows

[304]:

βi = ui (6.14)

φ(t) = σ1v(t) (6.15)

The described algorithm applies to single-voxel, multi-channel datasets. This technique can then be

extended to multi-voxel, multi-channel datasets via the successive application of the algorithm in each

voxel in the image. Figure 6.16 illustrates a non-water suppressed image of a healthy volunteer’s brain

50



6.5. COIL COMBINATION ALGORITHM

Figure 6.15: A schematic illustrating the relevant dimensions of the singular value decomposition
performed in the coil combination algorithm.

for which the multi-voxel version of this algorithm has been applied.

It should be noted that the order in which one performs this coil combination and the 3D Fourier

transformation is important. The model described in Equations 6.11 and 6.12 operates in the spatial

domain. If both the Fourier transformation and the SVD were linear functions, then it would not

matter in which domain the algorithm was performed, but either function being nonlinear would

necessitate that the algorithm be performed in image space. The Fourier transformation is a linear

function, but the SVD is not. If one defines the function

F : Cm×N 7→ CN (6.16)

such that F maps a matrix Y to a signal φ(t) using the method described above, it can be seen that

the linearity requirement

F(αY1 + βY2) = αF(Y1) + βF(Y2) (6.17)

does not hold ∀ α, β ∈ C and ∀ Y1, Y2 ∈ Cm×N . In particular, the 3D Fourier transformation must

first be applied followed by the SVD. Thus, the coil combination need be performed in image space.

Figure 6.17 illustrates in non-water suppressed phantom images artifacts that will arise if the coil

combination is mistakenly applied in k-space. In particular, the same dataset has been combined in

both k-space (6.17A) and image space (6.17B).
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Figure 6.16: A non-water suppressed image of a healthy volunteer’s brain for which the multi-voxel
version of this algorithm has been applied.

0

0.2

0.4

0.6

0.8

1A B

0

0.2

0.4

0.6

0.8

1

Figure 6.17: A non-water suppressed phantom image for which the coil combination was performed in
k-space (6.17A) and image space (6.1B). One sees that the coil combination need be applied in image
space.
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6.6 Lipid Suppression

A further challenge in proton spectroscopy is the subcutaneous layer of fat surrounding the skull.

These pericranial lipids produce a number of strong resonances, the most prominent of which occurs

around 1.5 ppm, which tend to be quite broad. The point spread function (PSF), which describes the

response of an imaging system to a point source or point object, is nonideal in MRSI due to the limited

number of acquired phase encoding increments [61]. Because the lipid resonance is so large, the side

lobes of the PSF cause the lipid signal originating outside of the skull to bleed into nearby voxels

[306] which contaminates spectra otherwise containing only brain tissue. The extent of this problem

is illustrated in Figure 6.18. In particular, Figure 6.18A shows an in vivo brain tissue spectrum with

characteristic lipid contamination. A very large lipid resonance is found extending approximately

between 1 and 2 ppm. In Figure 6.18B, an NAA metabolite map of a non-lipid suppressed dataset

is shown. Despite NAA appearing at 2.01 ppm, on the border of this lipid contaminated spectral

region, only voxels in the peripheral ring of the skull appear with appreciable relative NAA concen-

trations. The concentrations depicted in Figure 6.18B are displayed in arbitrary units, as this figure

aims to give only a qualitative description of the problem. Lipid suppression is usually accomplished

prior to or during data acquisition using relaxation-based methods [307] or outer volume suppression

[308]. However, in order to avoid both unnecessarily increasing the specific absorption rate (SAR)

and extending the minimum achievable TR by suppressing the lipid signal during image acquisition,

an algorithm that suppresses the lipid signal after data acquisition was highly desirable.

This work utilized a lipid suppression algorithm based off L2 regularization [309]. Regularization is

the act of incorporating prior knowledge to solve ill-posed problems, and L2 refers to the fact that a

quadratic loss function is used [310]. This process is alternatively commonly referred to as Tikhonov

regularization [311] or ridge regression [312] in the literature. The benefits of L2 regularization is that

the regularization process admits a closed-form solution that can be easily computed.

The first step of the algorithm utilizes dual density reconstruction which uses two datasets with

different resolutions [313]. The high resolution dataset allows for the generation of a lipid image, and

the low resolution dataset has a sufficiently high SNR for metabolite signal quantification [309]. First

a dual density k-space dataset is obtained via the following relation:

dual = F−1(F(lipid) + F(csilow)) (6.18)

Here, F and F−1 represent the Fourier transformation and its inverse, respectively, csilow is the low

resolution dataset, and

lipid = Mlipidcsihigh (6.19)

where csihigh is the high resolution dataset and Mlipid is a binary mask that selects only the ring

surrounding the skull [309]. Lipid-basis penalty solves an optimization problem forcing the lipid and

metabolite spectra to be mutually orthogonal [314]. Where the lipid-basis penalty method considers

the sum of the absolute value of the inner products between the lipid and metabolite spectra, this L2

regularization instead performs the summation in quadrature as follows:

min ||x− dual||22 + β
∑

i∈Mbrain

||L∗xi||22 (6.20)
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Figure 6.18: An illustration of the need for lipid suppression - Figure 6.18A shows an in vivo brain
tissue spectrum with representative lipid contamination. A very large lipid resonance is found approx-
imately between 1 and 2 ppm. In Figure 6.18B, an NAA metabolite map of a non-lipid suppressed
dataset is shown. Only voxels in the peripheral ring of the skull appreciably appear in the metabolite
map. The blue pixel seen in Figure 6.18B specifies the position of the spectrum shown in Figure
6.18A.

Here Mbrain is a binary mask that selects only brain tissue, xi is the desired spectrum in the ith

voxel, β = 0.65 is a regularization parameter, L is the lipid-basis matrix, and ∗ denotes the conjugate

transpose. L is generated by taking the spectra from the dual-density image inside the lipid mask

[309]. The solution can then be computed in closed-form. Namely, if i is an element of Mbrain, then

xi = (I + βLL∗)−1duali (6.21)

Otherwise,

xi = duali (6.22)

In this work, the lipid and brain masks are determined in a semi-automated fashion, and this L2

regularization algorithm is applied to the dataset following both GRAPPA reconstruction and coil

combination. The effect of this algorithm is shown in Figure 6.19 which shows the same spectrum,

both before and after lipid suppression. In Figure 6.19A, a large lipid signal is observed extending

approximately between 1 and 2 ppm. In Figure 6.19B, the large signal is completely removed, although

other features of the spectrum remain unchanged.
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Figure 6.19: A non-lipid supressed spectrum (6.19A) and the same spectrum following lipid suppres-
sion via L2 regularization (6.20B).

6.7 Metabolite Quantification

LCModel (LCModel Inc., Oakville, Canada) [315] is the most commonly employed algorithm to quan-

tify proton spectra. It models a spectrum as a linear combination of a number of basis spectra, where

each basis element is an in vitro spectrum acquired in a region containing only a single metabolite

using the same pulse sequence, the same echo time and on a scanner of the same field strength. The

basis set should include all metabolites, lipid resonances, and macromolecular peaks that may appear

in the in vivo dataset that is to be quantified. These basis spectra can either be directly acquired or

simulated [316]. In this work, simulated basis spectra provided by LCModel were used. LCModel is

fully automated and can be used to quantify multi-voxel datasets [317].

After the basis sets are determined, either via simulation or direct measurement, the first step in the

LCModel algorithm is to zero fill both the in vivo dataset and the in vitro basis sets in order to double

the spectral resolution. Next, the modeled spectrum Y (νk) is calculated using the following equation:

Y (νk) = e−i(φ0+νkφ1)

NB∑
j=1

βjBj(νk) +

Nm∑
l=1

Cl

Ns∑
n=−Ns

SnMl(νk−n, γl, εl)

 (6.23)

where

Ml(ν, γl, εl) = F{ml(t)e
−(γl+iεl)t} (6.24)

Here, νk is the set of all spectral points. The zeroth-phase correction is given by φ0 and is needed due

to the gross misadjustment of the phase of the detector. The first order phase correction is given by

φ1 and is needed due to the time delay between excitation and detection, flip angle variations across

the spectrum, and phase shifts induced by the filter that is applied to reduce noise outside the spectral

bandwidth.
∑
βjBj is a frequency domain baseline correction where the baseline is modeled as NB

cubic B-splines. The concentrations of interest of the Nm metabolites in the spectrum are given by

Cl. Sn are the line shape coefficients, and
∑
SnMl is a finite discrete convolution from −Ns to Ns to

account for static field inhomogenieties, eddy currents, and other distortions. Moreover, γl modifies
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Figure 6.20: A typical LCModel output file.

the basis spectra to account for the shortening of T2 in vivo [318], and εl modifies the basis spectra

to account for referencing errors. Lastly, ml(t) is inverse fast Fourier transformation of the model

spectrum, and F is the corresponding fast Fourier transformation into the spectral domain [315]. The

algorithm then applies a constrained, Marquardt-modified Gauss Newton least-squares analysis [319]

to solve for the 3Nm+2Ns+NB+3 unknowns: the concentrations, T2 shortening terms, and referencing

terms of Nm metabolites in the spectrum, the NB baseline coefficients, the 2Ns + 1 line shape terms,

and the two phase correction parameters. It should be noted that the number of metabolites Nm is

specified by the user in the input of the basis set, while NB and Ns are calculated by the algorithm

by the linewidth of the spectrum. LCModel is then applied iteratively to quantify multi-voxel datasets.

Figure 6.20 illustrates the typical output of LCModel. On the left of the figure, the actual spectrum

is shown in black, while the fit is shown in red. For each resonance in the basis set the concentration

and relative concentration normalized by the total creatine amplitude is provided. As a measure of

the variance the Cramér–Rao lower bound (CRLB) [320, 321] is also provided for each resonance in

the basis.

6.8 Experimental Techniques

6.8.1 Simulation Experimental Setup

A digital phantom was constructed for initial simulation studies. The digital phantom contained four

circular test tubes arranged in a square-like pattern. Each test tube possessed a different simulated

spectral signature: creatine, creatine and choline, creatine and NAA, and creatine and lactate. The

simulated coil sensitivity profile varied circularly in the in-plane direction and parabolically along the

longitudinal axis. With the exception of the acceleration factor, none of the other parameters should
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exhibit a dependence on the orientation of the reconstruction, so these initial simulations utilized a

conventional MRSI GRAPPA implementation. Each parameter was successively varied in order to

characterize the reconstruction accuracy’s dependence on that parameter. Reconstruction accuracy

was quantified by taking the mean squared error (MSE) of the entire dataset. In particular, if Xi are

the observed values, X̂i are the predicted values, and N is the number of data points in both datasets,

then the MSE can be computed via the following equation:

MSE =
1

N

N∑
i=1

(X̂i −Xi)
2 (6.25)

Here, i ∈ {1, 2, ..., N} is the index which, in this case, runs over both spatial dimensions, the temporal

dimension, and the coil dimension. While varying a given parameter, the largest MSE was assigned a

value of unity and all other MSE values were normalized by that value. The varied parameters were

the acceleration factor R, the number of acquired autocalibration lines NACS , the kernel dimension in

the fully-sampled direction Kx, and the distance S between consecutive kernel positions as it traverses

the autocalibration region.

6.8.2 Retrospectively Undersampled Phantom Experimental Setup

Next phantom studies were performed using an in-house built phantom which was a cooler filled with

water. Inside the cooler, four 60-mL test tubes were inserted and fixed in place. The test tubes

contained a combination of choline, creatine, NAA, and lactate, the concentrations of which are sum-

marized in Table 6.3. A photograph of the phantom showing the layout of the test tubes prior to

being filled with water is shown in Figure 6.21A. A schematic depicting the contents of the four test

tubes in the phantom is shown in Figure 6.21B.

Tube Number Creatine (mM) Choline (mM) NAA (mM) Lactate (mM)
1 50 0 0 0
2 50 100 0 0
3 0 0 100 0
4 50 0 0 100

Table 6.3: The molar concentrations of the four metabolites in each test tube of the phantom.

A fully-sampled, two-dimensional dataset was acquired. The matrix size was 64 × 64, and the slice

thickness was 15 mm. The FOV was 240×240 mm2, yielding an in-plane resolution of 3.75 mm. A TR

of 920 ms was used so that the entire fully-sampled measurement took 62 minutes. The fully-sampled

data was then retrospectively undersampled using seven ARTT GRAPPA sampling patterns varying

from an effective acceleration of 2.50 to 4.71. The specifics of each undersampling pattern are illus-

trated in Table 6.4. In this table, the number of ACS lines (NACS) in both x and y, the acceleration

factor (R) in both x and y, and the effective acceleration factor are listed.

Each of the seven retrospectively undersampled datasets was reconstructed using the ARTT GRAPPA

approach described in Section 6.4. The fully-sampled dataset and each reconstructed dataset were

quantified using LCModel to produce metabolite maps of the four metabolites in the phantom.

The error of the GRAPPA reconstruction was then measured as a function of effective acceleration
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Figure 6.21: The phantom used in the retrospectively undersampled phantom analysis - Figure 6.21A
is a photograph of the phantom prior to being filled with water. Figure 6.21B is a schematic depicting
the contents of the four test tubes in the phantom.

Pattern Number Rx Ry NACS,x NACS,y Reff

1 2 2 10 10 2.50
2 2 2 6 6 2.89
3 3 3 12 12 3.23
4 4 4 12 12 3.75
5 5 5 12 12 4.04
6 4 4 10 10 4.33
7 5 5 10 10 4.71

Table 6.4: The retrospectively undersampled acquisition patterns used in this phantom analysis.

factor. Two metrics were used to this end. The first metric was the root mean squared (RMS) error of

the LCModel-quantified metabolite concentrations normalized by the concentration of the metabolite

in the tubes in which it is present. Thus, if Cf (i,M) is the concentration of the metabolite M in the ith

pixel as determined using the fully-sampled dataset, Cr(i,M) is the concentration of the metabolite

M in the ith pixel as determined using the reconstructed dataset, and i ∈ {1, 2, ..., N} is the index

which runs over the N pixels in the analysis, then the RMS error can be calculated for the metabolite

M as follows:

RMSE(M) =

√√√√ 1

N

N∑
i=1

(Cf (i,M)− Cr(i,M))2 (6.26)

The second metric used to assess reconstruction accuracy was simply the mean squared error between

the reconstructed datasets and the fully-sampled dataset. With this metric, the unprocessed datasets

are compared, so there has been no coil combination, Fourier transformation into image space, nor

LCModel quantification. Here, if Sf (j) is the complex-valued signal value in the jth data point
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of the fully-sampled dataset, Sr(j) is the complex-valued signal value in the jth data point of the

reconstructed dataset, and j ∈ {1, 2, ..., J} is the index, then the RMS error of the unprocessed

reconstruction is given by

RMSEu =

√√√√ 1

J

J∑
j=1

(Sf (j)− Sf (j))2 (6.27)

Here, J is the total number of data points in each dataset which runs over two spatial dimensions,

the temporal dimension, and the coil dimension. The first metric is used to quantify the influence

of the ARTT GRAPPA reconstruction on the quantification of metabolites, which is the end goal

of the MRSI protocol. The second metric instead quantifies the raw error on the complete dataset

introduced via the ARTT GRAPPA reconstruction.

In order to quantify local concentration deviations introduced by the GRAPPA reconstruction, a

region of interest (ROI) analysis was performed. The four ROI’s were taken to be the four tubes.

Within each ROI, the mean and standard deviation of concentrations were calculated along with the

mean and standard deviation of the Cramér–Rao lower bounds.

6.8.3 Retrospectively Undersampled In Vivo Experimental Setup

An in vivo analysis with retrospective undersampling, similar to that described in Section 6.8.2, was

performed. A fully-sampled dataset was acquired in the brain of a healthy volunteer that was a

23-year old male. All imaging parameters were kept the same as in Section 6.8.2. The matrix size

was 64× 64, and the slice thickness was 15 mm. The FOV was 240× 240 mm2, yielding an in-plane

resolution of 3.75 mm. A TR of 920 ms was used. A fully-sampled MRSI dataset was acquired in 62

minutes, and retrospective undersampling was performed. The specific undersampling patterns used

are summarized in Table 6.5.

Pattern Number Rx Ry NACS,x NACS,y Reff

1 2 2 10 10 2.50
2 3 3 12 12 3.23
3 3 3 10 10 3.58
4 4 4 12 12 3.75
5 5 5 12 12 4.04

Table 6.5: The retrospectively undersampled ARTT GRAPPA acquisition patterns used in this in
vivo analysis.

To quantify reconstruction accuracy, the same metrics utilized in the phantom analysis were reused

here. These were the root mean squared error of the LCModel-quantified metabolite concentrations

normalized by the mean concentration of that metabolite in the brain, as described in Equation 6.26,

and the mean squared error between the reconstructed datasets and the fully-sampled dataset, as

described in Equation 6.27. In addition, an ROI analysis was performed in order to quantify local

concentration deviations. Two ROI’s were chosen for this analysis, both of which are located in the

parietal lobe of the volunteer’s brain. The MRSI slice was acquired at an oblique angle which explains

why both ROI’s were taken to be in the parietal lobe. The positioning of these two ROI’s is shown in

Figure 6.22, where ROI 1 is shown in dark pink, and ROI 2 is shown in cyan.
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ROI 1

ROI 2

Figure 6.22: The locations of the two regions of interest in the in vivo local concentration analysis.

To compare ARTT GRAPPA with the conventional approach, the data were also retrospectively

undersampled in a variety of conventional MRSI GRAPPA patterns. These patterns are analogous

to k-space sampling patterns for GRAPPA imaging reconstructions, similar to the pattern shown in

Figure 6.10A. These retrospectively undersampled datasets were then reconstructed using the conven-

tional MRSI GRAPPA algorithm, in which a GRAPPA imaging reconstruction is applied iteratively

at each time point, and relative metabolite concentrations were quantified in LCModel. The error

of these reconstructions were assessed by comparison with the fully-sampled relative concentration

values, and, as above, the normalized RMS error’s dependence on effective acceleration factor was

characterized. The reconstruction accuracy for both the novel ARTT GRAPPA approach and the

conventional approach were then able to be compared. The conventional MRSI GRAPPA undersam-

pling schemes used here are summarized in Table 6.6. Possible undersampling patterns with NACS

values ranging from 8 to 12 were chosen except for the least aggressive pattern. This pattern utilized

an exaggeratedly large NACS in order to try to find a conventional reconstruction pattern that pro-

duced errors comparable to the less aggressive ARTT GRAPPA reconstruction patterns.

6.8.4 Prospectively Undersampled In Vivo Experimental Setup

In order to demonstrate the feasibility of this accelerated 1H MRSI protocol, prospectively under-

sampled datasets were acquired for three healthy volunteers. Volunteer 1 was a 34 year old male.

Volunteer 2 was a 33 year old male. Volunteer 3 was a 25 year old male. Two accelerated acquisitions
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Pattern Number R NACS Reff

1 2 32 1.33
2 2 10 1.78
3 3 12 2.28
4 3 8 2.46
5 4 10 2.91

Table 6.6: The retrospectively undersampled acquisition patterns used in this conventional MRSI
GRAPPA in vivo analysis.

were performed on each volunteer: one with Reff = 2.50 for a 25 minute acquisition and the other

with Reff = 3.58 for a 17 minute acquisition. All imaging and parameters were kept the same. The

matrix size was 64× 64, and the slice thickness was 15 mm. The FOV was 240× 240 mm2, yielding

an in-plane resolution of 3.75 mm. A TR of 920 ms was used.

6.8.5 Homogeneous Phantom Experimental Setup

In order to assess the influence of the spatial-spectral correlations in MRSI data, an additional phan-

tom experiment was performed. This phantom, which is shown in Figure 6.23, is spherical in shape and

homogeneously filled with a solution containing lithium lactate and sodium acetate. Both compounds

have a spatially homogeneous concentration of 100 mM. Since each voxel in the phantom contains

the same spectral signature, there are no spatial-spectral correlations for the ARTT GRAPPA re-

construction algorithm to exploit. Here, a fully-sampled dataset of this phantom was acquired. As

before, the matrix size was 64 × 64, and the slice thickness was 15 mm. The FOV was 240 × 240

mm2. A TR of 920 ms was used corresponding to an acquisition time of 62 minutes. As before,

retrospective undersampling and subsequent reconstruction was performed using both the ARTT

GRAPPA and the conventional GRAPPA approaches. This had a very similar experimental setup

as in Section 6.8.3, but the key difference is that the phantom is spatially and spectrally homogeneous.

Pattern Number R NACS Reff

1 3 8 2.46
2 5 9 3.20
3 6 10 3.56
4 6 10 3.76
5 7 10 4.00

Table 6.7: The retrospectively undersampled acquisition patterns used in this conventional MRSI
GRAPPA homogeneous phantom analysis.

As before, a number of ARTT GRAPPA reconstructions and conventional MRSI GRAPPA recon-

structions were performed. Unlike the in vivo results that will be presented below in Section 7.1.3, it

was found that the conventional MRSI GRAPPA approach performs similarly to the ARTT GRAPPA

approach. This is discussed in more detail in Section 7.2, however, it induced a modified conventional

MRSI GRAPPA sampling pattern profile in this experiment. In particular, the conventional MRSI

GRAPPA undersampling schemes utilized here were more aggressive than those used in Section 6.8.3

and are shown in Table 6.7. These sampling patterns were chosen so that their effective acceleration

factors match most closely with the ARTT GRAPPA sampling patterns and a bijective comparison

could most easily be made. The ARTT GRAPPA undersampling schemes used were the same as in the
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Figure 6.23: The homogeneous spectroscopy phantom.

in vivo experiment and are listed above in Table 6.5. The concentrations of the two metabolites were

quantified by integrating under the specified peak since these artificial metabolites are not contained

in the provided LCModel basis set. The reconstructed metabolite concentrations were then compared

with the fully-sampled metabolite concentrations, and the behavior of the normalized RMS error of

the concentration as a function of effective acceleration factor was characterized for both compounds.

6.9 Data Processing

After the data are acquired, the ARTT GRAPPA reconstruction algorithm described in Section 6.4 was

applied to reconstruct the missing data points. Following reconstruction the multi-voxel SVD-based

coil combination algorithm described in Section 6.5 was applied to combine the individual receiver coil

elements. Next, the L2 regularization algorithm described in Section 6.6 was applied to remove the

errant lipid signal from the data. Gaussian filtering [322] was then performed in the spectral domain.

In particular, if ~y is the unfiltered FID, δ is a time constant, and BW is the bandwidth, then the

filtered FID ~y′ is given by

~y′ = ~ye−
δ2

BW2 t
2

(6.28)

Here, a time constant of 10 Hz was used.

Metabolite concentrations were then quantified using LCModel, as described in Section 6.7. After

LCModel quantification, the metabolite maps were transformed back into k-space and two-fold zero

filling [323] was applied along both spatial dimensions so that the imaging matrix size was increased

62



6.9. DATA PROCESSING

to 128 × 128. After transformation back into image space, a spatial Hamming filter was applied in

both spatial dimensions. If wn is the windowed data point, n is spatial index, N is the number of

data points, and a0 = 0.54 is the Hamming coefficient, a one-dimensional spatial Hamming filter [324]

is described by:

wn = a0 − (1− a0) cos(
2πn

N
) (6.29)

The two-dimensional analog of Equation 6.29 was applied to each metabolite map.
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Chapter 7

Results

7.1 Proof-of-Concept

7.1.1 Simulation Studies

When performing a GRAPPA reconstruction, a number of parameters need to be specified in advance.

These include the acceleration factor R, the number of acquired autocalibration lines NACS , the kernel

dimension in the fully-sampled direction Kx, and the distance S between consecutive kernel positions

as it traverses the autocalibration region. In order to get a sense how varying these parameters affects

the quality of reconstruction, simulations studies were first performed.

Each parameter was successively varied in order to characterize the reconstruction accuracy’s de-

pendence on that parameter. Reconstruction accuracy was quantified by taking the normalized mean

squared error of the entire dataset, as described by Equation 6.25. The results are shown in Figure 7.1

for the acceleration factor (7.1A), number of ACS lines (7.1B), kernel dimension in the fully-sampled

direction (7.1C), and step size (7.1D). In Figure 7.1A, it can be seen that as acceleration factor is

increased, the accuracy of the reconstruction degrades which makes sense since less data have been

sampled. By the same logic, in figure 7.1B, as the number of ACS lines is increased, the accuracy of

the reconstruction improves, rapidly at first but then only marginally as NACS is increased further.

Here, it is shown that an optimal NACS range exists between 8 and 12. As NACS is decreased past

8, the reconstruction accuracy rapidly degrades, and as NACS is increased past 12, no real benefit in

reconstruction accuracy is observed to make up for the reduced image acceleration that accompanies

an increase in NACS . These conclusions are specific for the 64 × 64 imaging matrix size chosen in

these simulations which is the matrix size ultimately used in later studies. In Figure 7.1C, it is seen

that smaller kernel sizes are preferred, and in Figure 7.1D, a unit step size is shown to produce the

optimal reconstruction. In all further implementations, a kernel size of 3 and a step size of 1 were

chosen.

7.1.2 Retrospectively Undersampled Phantom Analysis

Figure 7.2 shows reconstructed spectra via ARTT GRAPPA from a representative voxel obtained with

effective accelerations of Reff = 2.50 (7.2A), Reff = 3.23 (7.2B), Reff = 4.04 (7.2C), and Reff = 4.71

(7.2D). The voxel shown here was inside tube 2 and, thus, had choline and creatine in concentrations

of 100 mM and 50 mM, respectively. These reconstructed spectra are shown in red and are overlaid
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A. B.

C. D.

Figure 7.1: A characterization of how the accuracy of the reconstruction depends on the acceleration
factor (7.1A), the number of ACS lines (7.1B), the kernel size in the fully sampled dimension (7.1C),
and the step size (7.1D) - These results were obtained via simulation studies.
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Figure 7.2: Reconstructed spectra in a representative voxel contained in tube 2 of the phantom overlaid
on top of the fully-sampled spectrum in that voxel - The reconstructed spectra are shown in red, and
the fully-sampled spectra are shown in blue. The reconstructed spectra utilized effective accelerations
of Reff = 2.50 (7.2A), Reff = 3.23 (7.2B), Reff = 4.04 (7.2C), and Reff = 4.71 (7.2D). No significant
spectral deviations are observed, even for the most aggressive undersampling schemes.
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Figure 7.3: Phantom metabolite maps for total choline (7.3A), total NAA (7.3B), lactate (7.3C), and
total creatine (7.3D) - These metabolite maps are those produced from the fully-sampled dataset and
the reconstructed datasets for which Reff = 2.50, Reff = 3.23, and, Reff = 4.04.

on top of the fully-sampled spectrum from this voxel shown in blue. As can be seen, the reconstructed

spectra very accurately recapitulate the fully-sampled spectrum for modest all the way up to very

aggressive acceleration.

The phantom metabolite maps are shown in Figure 7.3. Here, the fully-sampled metabolite maps

along with the reconstructed metabolite maps for which Reff = 2.50, Reff = 3.23, and, Reff = 4.04

are shown for total choline (7.3A), total NAA (7.3B), lactate (7.3C), and total creatine (7.3D). The

metabolite maps depicting total choline and lactate are both shown normalized by total creatine

concentration which is the convention in 1H spectroscopy, while the total NAA (tNAA) and total

creatine (tCr) maps are in an absolute scale. NAA is expressed in an absolute scale since there is

no creatine in tube 3. It can be seen that the ARTT GRAPPA reconstruction is working quite well

since the reconstructed metabolite maps qualitatively resemble the fully-sampled metabolite map for

each metabolite in the phantom. Negligible amounts of aliasing are observed even in the metabolite

maps with greater than four-fold acceleration. Any discernible differences that are observed between

the different reconstructions, which are negligible, more represent fluctuations in the performance of

LCModel than systematic influences introduced by the reconstruction process.

The quantification of reconstruction accuracy is shown in Figure 7.4A where metabolite-specific nor-
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Figure 7.4: Two metrics to characterize reconstruction accuracy’s dependence on effective accelera-
tion factor in this phantom analysis - Figure 7.4A plots the normalized root mean squared error of
the quantified metabolite amplitudes against Reff. Figure 7.4B plots the mean squared error of the
unprocessed datasets against Reff.

malized RMS error, as described by Equation 6.26, is plotted against Reff. The error behavior for all

four metabolites, creatine (black), choline (red), NAA (green), and lactate (blue), is illustrated. As is

expected, the accuracy of the reconstruction degrades as Reff increases for each metabolite. However,

the accuracy of the reconstruction is quite stable over a wide range of accelerations, as errors stay

below 10% for each metabolite even at effective accelerations up to Reff = 4.71. The hypothesized

explanation for this stability are twofold. Firstly, these spectra have a high SNR due to the supraphys-

iological concentrations of each metabolite in a given test tube. GRAPPA reconstructions perform

better with higher SNR which explains the stability of the reconstruction at high accelerations. The

fact that the GRAPPA reconstruction performs better at higher SNR can be seen from this figure

since the choline peak has the highest SNR and the lowest error values while creatine has the lowest

SNR and the highest error values. The other explanation as to why the algorithm performance is so

stable with respect to effective acceleration factor in this phantom analysis has to do with the relative

spatial homogeneity of this phantom as compared to the situation in vivo. When an object is more

spatially homogeneous the peripheral region of k-space contains less information content. Since the

undersampling of this ARTT GRAPPA pattern is primarily on the periphery of k-space, less informa-

tion is lost, and the reconstruction is more robust at higher accelerations. In addition, the RMS error

of the unprocessed datasets is shown in Figure 7.4B where mean squared error of the unprocessed

reconstructed datasets is plotted against effective acceleration factor.

In order to quantify local concentration deviations introduced by the GRAPPA reconstruction, an

ROI analysis was performed in which the concentrations and CRLB’s of each metabolite across each

tube for each reconstruction were calculated. The results are shown in the tables in the appendix. In

particular, Tables 10.1, 10.2, 10.3, and 10.4 present the results of this ROI analysis for choline, lactate,

NAA, and creatine, respectively. Each table lists both mean and standard deviation concentrations

and mean and standard deviation CRLB’s within a specified ROI. There are four ROI’s: tube 1,

tube 2, tube 3, and tube 4. For each metabolite in each ROI, the fully sampled dataset and the

seven reconstructed datasets were analyzed. Concentrations are given normalized to total creatine
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concentration for both total choline (10.1) and lactate (10.2), while absolute concentrations are given

for total NAA (10.3) and total creatine (10.4). It can be seen from these tables that the ARTT

GRAPPA reconstruction does not appreciably alter local concentrations. This can be more easily

visualized in Figure 7.5 where local concentration within a specified ROI is plotted for the fully sampled

dataset and the seven reconstructed datasets for choline (7.5A), lactate (7.5B), NAA (7.5C), and

creatine (7.5D). The left column shows the ROI analyses in a tube for which the specified metabolite

was present. No appreciable differences are observed which demonstrates that any errors introduced by

the ARTT GRAPPA reconstruction are considerably less than the statistical fluctuations in LCModel

quantification. The right column shows the ROI analyses in tubes for which the specified metabolite

was not present. Again, no appreciable differences are observed which demonstrates that the signals

due to metabolites in adjacent tubes do not bleed into the ROI. Here, the measured concentrations

do not exactly match the prescribed concentrations due to inaccuracy in the phantom construction

process and errant model assumptions in LCModel. For example, LCModel corrects the basis spectra

to account for the shortening of relaxation times in vivo but such a correction is not appropriate for

the quantification of metabolites in a phantom.

7.1.3 Retrospectively Undersampled In Vivo Analysis

While the phantom experiments demonstrated the feasibility of the ARTT GRAPPA approach, they

do not give a sense of how aggressively one can accelerate an in vivo acquisition. Thus, a similar

analysis to that done for the phantom dataset was performed on an in vivo dataset. The experimental

setup and error assessment methods used for this study is described in Section 6.8.3.

Figure 7.6 shows the reconstructed spectra (red) overlaid on top of the fully-sampled spectrum (blue)

in a representative voxel for the five undersampling schemes. At low accelerations, the reconstructed

spectrum very accurately matches the fully-sampled spectrum. This match qualitatively starts to

degrade as effective acceleration factor is increased, although the performance is still quite good up

to an acceleration of Reff = 3.75. At an effective acceleration of Reff = 4.04, the two spectra no longer

match well is some regions, which surely will affect the accuracy of the metabolite quantification.

High-resolution metabolite maps of tCho, tNAA, glutamine + glutamate (Glx), and tCr were obtained

for each undersampling pattern and are shown in Figure 7.7. In each subfigure, the fully-sampled

metabolite map is presented along with the reconstructed metabolite maps for which Reff = 2.50,

Reff = 3.23, Reff = 3.58, Reff = 3.75, and Reff = 4.04. Figure 7.7A shows the total choline concen-

tration normalized by the total creatine concentration. Figure 7.7B shows the total NAA concentra-

tion normalized by the total creatine concentration. Figure 7.7C shows the glutamine + glutamate

concentration normalized by the total creatine concentration. Lastly, Figure 7.7D shows the total

creatine concentration approximately in mM. Qualitatively, one observes good recapitulation of the

fully-sampled choline, Glx, and total creatine maps for accelerations up to and including Reff = 3.58

but sees deviations at more agressive effective accelerations. For total NAA, one observes that even

the most aggressive reconstructed metabolite maps accurately recapitulate the fully-sampled map.

This superior performance in reconstructing NAA maps is due to the fact that the SNR of the NAA

resonance in the human brain is larger than the other resonances, and, as discussed in Section 7.1.2,

this reconstruction algorithm performs better in higher SNR scenarios.
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Figure 7.5: Local concentration fluctuations in representative tubes of the phantom as determined in
the phantom ROI analysis.
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Figure 7.6: In vivo spectral comparisons for Reff = 2.50, Reff = 3.23, Reff = 3.58, Reff = 3.75, and
Reff = 4.04 - The reconstructed spectra are shown in red, and the fully-sampled spectra are shown in
blue.
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Figure 7.7: A fully-sampled metabolite map along with reconstructed metabolite maps for which
Reff = 2.50, Reff = 3.23, Reff = 3.58, Reff = 3.75, and Reff = 4.04 - These comparisons are shown
for choline (7.7A), NAA (7.7B), Glx (7.7C), and creatine (7.7D). Choline, NAA, and Glx maps are
shown normalized by total creatine concentration.
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Figure 7.8: Two metrics to characterize reconstruction accuracy’s dependence on effective acceler-
ation factor in this in vivo analysis - Figure 7.8A plots the normalized root mean squared error of
the quantified metabolite amplitudes against Reff. Figure 7.8B plots the mean squared error of the
unprocessed datasets against Reff.

The error of each reconstruction was quantified and is displayed in Figure 7.8A, which plots the nor-

malized RMS error against Reff for tCr, tCho/tCr, tNAA/tCr, and Glx/tCr. As before, the accuracy

of the reconstruction degrades as Reff increases for each metabolite. If one aims for a reconstruction

accuracy within approximately 10%, an effective acceleration of Reff = 3.58 can be achieved. As the

acceleration becomes increasingly more aggressive, errors in metabolite quantification become larger

than is deemed acceptable. Also, as before, the second metric used was the mean squared error be-

tween the reconstructed dataset and the fully-sampled dataset. This is shown in Figure 7.8B where

mean squared error of the unprocessed reconstructed datasets is plotted against effective acceleration

factor. While it is difficult to make any absolute statement about this plot since the units of the MSE

are not so meaningful, it can be observed that the mean squared errors obtained in this in vivo analysis

are orders of magnitude larger than the mean squared errors obtained in the phantom analysis, as

should be expected due to the lower SNR in this in vivo dataset.

In order to quantify local concentration deviations introduced by the GRAPPA reconstruction, an

ROI analysis was performed in which the concentrations and CRLB’s of each metabolite for each

reconstruction were calculated within two ROI’s. Both ROI’s were in the parietal lobe of the brain

and are depicted in Figure 6.22. The results are shown in the tables in the appendix. In particular,

tables 10.5, 10.6, 10.7, and 10.8 present the results of this ROI analysis for choline, NAA, Glx,

and creatine, respectively. Each table lists both mean and standard deviation concentrations and

mean and standard deviation CRLB’s within a specified ROI. For each metabolite in each ROI, the

fully sampled dataset and the five reconstructed datasets were analyzed. Concentrations are given

normalized to total creatine concentration for total choline (10.5), total NAA (10.6) and Glx (10.7),

while absolute concentrations are given for and total creatine (10.8). It can be seen from these tables

that the ARTT GRAPPA reconstruction does not appreciably alter local concentrations. This can be

more easily visualized in Figure 7.9 where local concentration within a specified ROI is plotted for the

fully sampled dataset and the seven reconstructed datasets for choline (7.9A), lactate (7.9B), NAA

(7.9C), and creatine (7.9D). The left column shows the ROI analyses in ROI 1, and the right column
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shows the ROI analyses in ROI 2. No appreciable differences are observed which demonstrates that

any errors introduced by the ARTT GRAPPA reconstruction are considerably less than the statistical

fluctuations in LCModel quantification. Thus, it is demonstrated that the use of ARTT GRAPPA

does not markedly alter metabolite concentrations in an in vivo setting.

7.1.4 Prospectively Undersampled In Vivo Images

To demonstrate the feasibility of this protocol, prospectively undersampled data were acquired on

three healthy volunteers. Figure 7.10 depicts all metabolite maps for one of the healthy volunteers. In

this figure, the metabolite maps are overlaid on top of anatomical images. Metabolite maps are shown

for total choline, total NAA, glutamine + glutamate, and total creatine for both effective acceleration

factors: Reff = 2.50 (7.10A) and Reff = 3.58 (7.10B). Concentrations are given normalized to total

creatine concentration for total choline, total NAA, and Glx, while absolute concentrations are given

for and total creatine. Figure 7.11 shows accelerated choline and NAA maps produced at the lower

acceleration (Reff = 2.50) for all three volunteers. Figure 7.12 shows accelerated choline and NAA

maps produced at the higher acceleration (Reff = 3.58) for all three volunteers. As usual, both choline

and NAA maps are normalized relative to total creatine concentration. Hence, the viability of the

ARTT GRAPPA technique in producing accelerated metabolic images is illustrated.

7.1.5 Proof-of-Concept Summary

Throughout this section, the feasibility of an ARTT GRAPPA reconstruction for the acceleration

of 1H MRSI has been demonstrated in the human brain at 7 T. High-resolution metabolite maps

have been produced with an acquisition time less than twenty minutes while maintaining less than

a 10% error relative to the fully-sampled dataset. Simulations were initially performed to optimize

some of the reconstruction parameters. The feasibility of the ARTT GRAPPA reconstruction was

first demonstrated in a phantom followed by a retrospectively undersampled in vivo experiment.

Finally, three prospectively undersampled datasets were acquired, and accelerated metabolite maps

were produced.
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Figure 7.9: Local concentration fluctuations in two regions of interest in the brain of a healthy
volunteer.
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Figure 7.10: Prospectively undersampled metabolite maps from Volunteer 1 - Metabolite maps are
shown for choline, NAA, Glx, and creatine for both effective acceleration factors: Reff = 2.50 (7.10A)
and Reff = 3.58 (7.10B).
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Figure 7.11: Choline (7.11A) and NAA (7.11B) maps acquired with Reff = 2.50 for each of the three
healthy volunteers - These images were acquired in 25 minutes.
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Figure 7.12: Choline (7.12A) and NAA (7.12B) maps acquired with Reff = 3.58 for each of the three
healthy volunteers - These images were acquired in 17 minutes.
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7.2 Comparison to the Conventional Technique

7.2.1 Retrospectively Undersampled In Vivo Studies

In section 7.1, the feasibility of using ARTT GRAPPA to accelerate 1H MRSI acquisitions has been

demonstrated. This section will compare the ARTT GRAPPA approach with the conventional ap-

proach. In conventional MRSI GRAPPA, a standard GRAPPA imaging algorithm, as described in

Section 5.5, is applied iteratively over each timepoint in the FID individually. A straightforward bijec-

tive comparison between ARTT GRAPPA and conventional MRSI GRAPPA is not possible. This is

because conventional MRSI GRAPPA only accelerates along a single dimension, so the set of effective

acceleration factors corresponding to possible conventional MRSI GRAPPA undersampling schemes

is not the same the set of effective acceleration factors corresponding to possible ARTT GRAPPA

undersampling schemes. However, conventional MRSI GRAPPA sampling schemes similar in effective

acceleration factor to the ARTT GRAPPA sampling schemes were chosen.

The results of this comparison are illustrated in Figure 7.13. Figures 7.13 A, B, C, and D depict

the errors in choline, NAA, creatine, and Glx concentrations, respectively. It can be seen that the

ARTT GRAPPA reconstruction algorithm markedly outperforms the conventional MRSI GRAPPA

reconstruction algorithm. In particular, the ARTT GRAPPA approach allows one to accelerate ap-

proximately twice as aggressively as the conventional approach if the same level of reconstruction

accuracy is to be achieved. For a quantitative example of this, refer to the choline concentrations

shown in Figure 7.13A. The conventional MRSI GRAPPA sampling pattern with an effective accel-

eration of Reff = 1.33 matches the fully-sampled dataset to within 8.6%. With ARTT GRAPPA, the

undersampling scheme that achieves similar accuracy (8.7%) has an effective acceleration factor of

Reff = 3.23. Thus, a 19-minute scan reconstructed using ARTT GRAPPA produces similarly accurate

metabolite maps as a 47-minute scan reconstructed using conventional MRSI GRAPPA. As a further

example with choline concentrations, the conventional MRSI GRAPPA sampling pattern with an effec-

tive acceleration of Reff = 1.78 matches the fully-sampled dataset to within 13.0%. Compare this with

the ARTT GRAPPA with an effective acceleration of Reff = 3.75 which matches the fully-sampled

dataset to within 12.2%. Thus, a 16-minute scan reconstructed using ARTT GRAPPA produces more

accurate metabolite maps than a 35-minute scan reconstructed using conventional MRSI GRAPPA.

Similar statements can be made for the other three metabolites depicted in Figure 7.13 as well. Thus,

the novel ARTT GRAPPA reconstruction presented in this work performs markedly better and allows

for more aggressive acceleration than the conventional approach.

7.2.2 Potential Mechanistic Explanation

In the previous section, it was shown that ARTT GRAPPA markedly outperforms conventional MRSI

GRAPPA in an in vivo setting. This is likely due to the fact that the ARTT GRAPPA approach, by

construction, simultaneously exploits correlations in both the spatial and spectral domains. In order

to test the veracity of this hypothesis, an additional experiment was performed on the homogeneous

phantom described in Section 6.8.5. The results of this analysis are shown in Figure 7.14 for sodium

acetate (7.14A) and lithium lactate (7.14B). It can be seen that the two algorithms perform similarly

for both metabolites. Thus, in this phantom, where there are no spatial-spectral correlations to

exploit, the advantage of ARTT GRAPPA over conventional MRSI GRAPPA is negated.
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Figure 7.13: A comparison between the ARTT GRAPPA reconstruction and the conventional MRSI
GRAPPA reconstruction in vivo for total choline (7.14A), total NAA (7.14B), total creatine (7.14C),
and glutamine + glutamate (7.14D) - Normalized RMS error is plotted as a function of effective accel-
eration factor. The ARTT GRAPPA reconstruction performs markedly better than the conventional
reconstruction.
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lactate (7.14B) - Normalized RMS error is plotted as a function of effective acceleration factor. When
no spatial-spectral correlations are available to exploit, the two algorithms perform similarly.
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Chapter 8

Discussion

8.1 Technical Considerations

8.1.1 High Field Strength

As discussed in Section 4.6, there are numerous advantages and disadvantages to higher field MRSI.

The benefits are threefold: a higher SNR, larger spectral dispersion, and a reduction of the effects

of J-coupling. The higher SNR allows for higher spatial resolution in a shorter acquisition time.

Major disadvantages include more pronounced field inhomogeneities, both B0 and B1, and shorter

T2 relaxation times. In this work, the shorter T2 relaxation times were compensated for by using

ultra short echo times which minimizes the time that the magnetization has to relax. The increased

B1 inhomogeneities were compensated, at least in regards to water suppression, by using VAPOR

which is optimized to be stable in the presence of B1 inhomogeneities. In addition, the employed

pulse sequence FID MRSI also maintains robustness of low flip angle excitation pulses in the presence

of B1 inhomogeneities. The increased B0 inhomogeneities were the most problematic, especially in

pixels nearby tissue-air interphases. The system’s three-dimensional shim algorithm was performed

prior to each MRSI experiment to correct for static field inhomogeneities, but it was difficult to obtain

linewidths less than 30 Hz. At times, these spectral peaks were then too broad for proper metabolite

quantification in LCModel, as the algorithm would be unable to identify a peak that was clearly

present. This occurred most often in creatine quantification. The other possibility for shimming is

using the system’s fast automatic shimming technique by mapping along projections (FASTMAP)

algorithm [325]. The FASTMAP algorithm and its variants [326, 327] measure the inhomogeneity in

the static field in a localized region along a number of linear projections and determine the spherical

harmonic coefficients corresponding to the shim corrections. Using FASTMAP in these experiments

yielded smaller linewidths but in a localized region much smaller than the desired FOV. Therefore,

it was ultimately decided to proceed with the three-dimensional shim algorithm and accept the large

linewidth in exchange for a larger shim volume. Newer 7 T systems are being designed with more

sophisticated shim systems which can achieve higher levels of B0 homogeneity, but while using this

system, some level of B0 inhomogeneity is an unavoidable consequence of working at higher fields.

8.1.2 Pulse Sequence Considerations

At clinical field strengths, single-voxel spectroscopy is typically performed using a sequence known as

point resolved spectroscopy (PRESS) [328]. Spatial localization in PRESS is accomplished using a 90◦
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excitation pulse followed by two 180◦ refocusing pulses [329]. However, at higher field strengths, the

chemical shift displacement artifact becomes too pronounced within reasonable RF energy deposition

limits, so the use of PRESS is not recommended at high fields [330]. PRESS is also rather sensitive

to B1 inhomogeneities. Alternatives to PRESS at high field strength include localization by adiabatic

selective refocusing (LASER) [331], stimulated echo acquisition mode (STEAM) [332], and spin-echo

full-intensity acquired localized (SPECIAL) [333]. However, the sequence semi-LASER [334] which is

a combination of conventional excitation with full localization via the adiabatic selective refocusing

used in LASER [335] is now accepted within the community as the preferred technique to acquire

single-voxel spectra at high fields due to its robustness [336].

The situation is quite similar for MRSI, as PRESS is not recommended for use at high fields [198],

and semi-LASER is utilized as a replacement [337]. Another approach that is entirely different sim-

plifies localization to the direct acquisition of an FID [272] and has been regaining popularity in the

literature. This FID MRSI technique is now considered the method of choice for 1H MRSI at higher

field strengths. When utilized with short echo times and repetition times it allows for minimal chem-

ical shift displacement, high SNR, short acquisition duration, and robustness in the presence of B1

inhomogeneities [198]. These qualities made FID MRSI the ideal pulse sequence with which to base

the protocol presented in this work, so it was ultimately decided to utilize this pulse sequence.

8.1.3 Water Suppression

In order to suppress water or any particular spectral resonance for that matter, one must exploit a

difference in an NMR observable parameter. Examples of exploitable properties include chemical shift,

relaxation, scalar coupling, or diffusion [61]. Relaxation-based suppression techniques such as water

eliminated Fourier transform (WEFT) [338] and driven equilibrium Fourier transform (DEFT) [339]

have been employed by others in the past. However, since the difference between the T1 relaxation

time of water and the metabolites of interest is quite small, the sensitivity of the detected metabolites

is necessarily reduced. Moreover, since the in vivo T1 relaxation time of water is not homogeneous,

water suppression is often incomplete.

Suppression of water is also possible after the data have been acquired. Such an algorithm was im-

plemented. Briefly, this was accomplished by modeling the FID as a superposition of exponentially

damped sinusoids, finding those components with frequencies close to the water frequency, and re-

moving those components [340]. After applying this algorithm to spectral data, the water signal

completely disappears as desired. The main disadvantage of this technique is that it is computation-

ally intensive. The computational time required is on the order of tens of seconds to several minutes

depending on the size of the spectral dimension. In a single voxel setting, this would be accept-

able, but such a computational burden is not optimal in a multi-voxel setting where the artificial

water suppression algorithm need be applied thousands of times, once for each voxel in the image. In

addition, this technique imposes a model on the spectral data which may effect the metabolite quantifi-

cation process. Thus, a technique in which water is suppressed prior to data acquisition was necessary.

As discussed in section 6.2.2, the majority of water suppression implementation in the literature utilizes

frequency selective RF pulses. VAPOR is typically considered the gold standard and most commonly

employed water suppression technique, so this was the technique chosen in this work. Its insensitivity
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to B1 inhomogenieties was a strong consideration in making this choice. However, implementing

WET would have had its advantages as well. In particular, WET uses only three CHESS pulses, so

the sequence of water suppression pulses takes less time. While the suppression may not be as complete

with WET as with VAPOR and may be slightly less robust in the presence of B1 inhomogenieties,

using WET would allow the repetition time to be reduced by a factor of approximately 2
3 . The only

requirement is that the water suppression is sufficient enough to not interfere with the metabolite

concentration quantification process. If this can be achieved with WET, this would constitute a

future improvement to this protocol, as the high-resolution metabolite maps would then be able to be

acquired in approximately 12 minutes.

8.1.4 Lipid Suppression

Lipid suppression is a very important component of 1H MRSI of the human brain. The prominent

lipid resonance located at approximately 1.5 ppm has the tendency to severely degrade data quality,

due to imperfect spatial localization. In particular, the side lobes of the PSF cause the pericranial lipid

signal to bleed into voxels that should only contain brain tissue. A technique that eliminates these

spurious signals without altering other spectral features is necessary for the application of reliable

proton spectroscopic imaging.

The first class of lipid suppression algorithms are based on differences in relaxation times. The dif-

ference in T2 relaxation between the lipid signal and the metabolite signal is not sufficiently large

and is not typically used. However, the difference in T1 relaxation between the lipid signal and the

metabolite signal is much more discernible [61], and one typically exploits T1 relaxation differences

via the method of inversion recovery (IR) [341]. Here, an initial 180◦ pulse inverts the magnetization.

The longitudinal magnetization is then negative and as time passes, T1 relaxation processes will cause

the longitudinal magnetization to become less negative, pass through a point where it has completely

vanished, and eventually start to grow in the positive longitudinal direction again. If one then waits

the exact time that it takes the lipid signal to recover to zero longitudinal magnetization and applies

a 90◦ pulse, the lipid signal is eliminated. This is because, at that time, there is no lipid-originating

longitudinal magnetization to be flipped into the transverse plane. However, since the 90◦ pulse was

applied at a time specific for the lipid signal, there is still some residual metabolite-originating mag-

netization flipped into the transverse plane which is able to be detected. The main drawback of this

technique is that the SNR of the metabolite signals is necessarily reduced which is not desirable in a

high-resolution study which is already SNR-limited.

The most commonly utilized method of lipid suppression is outer volume suppression (OVS) which

consists of placing multiple spatially selective saturation bands over all regions containing lipids [342].

This technique first excites narrow slices that contain the sources of the pericranial lipid signal. A

crusher gradient is then applied to dephase the transverse magnetization in a non-spectrally specific

manner. Immediately after these OVS elements, brain signals not within these OVS bands can then

be excited and detected.

There are, however, a number of drawbacks to using OVS that were taken into account here when

deciding to go in a different direction. The first main drawback is that OVS is sensitive to B1 in-

homogeneity since its successful application requires that the OVS excitation pulse is exactly 90◦.
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As discussed in section 8.1.1, B1 is never homogeneous and even less so at the high magnetic field

strength of 7 T used here. When B1 inhomogeneities exist, the achieved flip angle will differ from

90◦ which will cause some of the longitudinal magnetization to remain and the lipid suppression to

be incomplete. Also, in the time between the OVS module and the signal excitation, there will be

some nonzero T1 relaxation causing some of the longitudinal magnetization to recover and rendering

lipid suppression incomplete [61]. Another drawback is the additional time it takes to employ the

pulses that achieve OVS. Since the overarching goal of this work was to minimize total acquisition

time, it is advantageous to keep TR to a minimum. However, OVS is often interleaved with the water

suppression protocol, so the time added to the repetition time is not a major concern. The more

pertinent disadvantage of OVS is the additional RF energy deposition required by the OVS proce-

dure. RF energy deposition can cause the patient’s body temperature to rise and is quantified using

a metric known as specific absorption rate (SAR) which is defined as the rate at which RF energy is

absorbed by tissue during an MR procedure [343]. Regulations exist on how much SAR can safely

be deposited during an examination and, if these limits are exceeded, TR must be increased until the

SAR delivered is reduced to back within the allowable range. The water suppression protocol already

delivers a lot of RF power, so it was advantageous to avoid additional power deposition to suppress

lipids. This potential required increase in TR would also be disadvantageous since it would increase

acquisition duration. Due to all of the considerations listed here, it was decided that a technique that

suppresses the lipid signal without the use of OVS pulses is highly desirable.

L2 regularization was a perfect alternative for this application. Since it achieves lipid suppression

by manipulating the data after it has already been acquired, no high SAR pulses are necessary. In

addition, the lipid suppression achieved via L2 regularization, as illustrated in Section 6.6, is quite

robust and certainly did not interfere in the metabolite detection and quantification process.

8.2 A Novel GRAPPA Algorithm for the Acceleration of MRSI

8.2.1 GRAPPA versus SENSE

GRAPPA and SENSE are the two major parallel imaging implementations. The superficial difference

between the two techniques is that GRAPPA is performed in k-space, and SENSE is performed in

image space. However, this difference is actually unsubstantial since the GRAPPA reconstruction

procedure described in detail in Section 5.5 can also be recast into a convolution of the undersampled

k-space dataset with a convolution kernel [314]. By applying the convolution theorem shown below,

one can further recast the GRAPPA reconstruction as a pointwise multiplication in image space.

F{A ∗B} = F{A}F{B} (8.1)

Here, F denotes the Fourier transformation, A and B are two matrices, and ∗ denotes convolution.

Thus, it is seen that the difference between image space-based reconstructions and k-space-based re-

constructions is more conventional than fundamental. The coil sensitivity profile, which is explicitly

measured in image space-based reconstructions but implicitly determined in k-space-based reconstruc-

tions, can be explicitly recovered in k-space-based reconstructions by taking the Fourier transformation

of the convolution kernel. However, in applying the algorithm described in detail in Section 5.5, this

is unnecessary, and a GRAPPA reconstruction is performed without the explicit determination of the

coil sensitivity profile.
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GRAPPA and SENSE are similar in that they both use the coil sensitivity profile to reconstruct

undersampled data and produce an accelerated image. Fundamental differences between the two

algorithms exist, and care must be taken when deciding which implementation is most appropriate for

a given application. The major superficial difference between GRAPPA and SENSE, as was mentioned

above, is that GRAPPA is performed in k-space and SENSE is performed in image space. However,

it was also shown above that due to the convolution theorem, GRAPPA can actually be performed

in image space and that this distinguishing feature between the two flavors of implementation is

actually less fundamental than at first glance. The other major difference is that SENSE requires the

explicit determination of the coil sensitivity profile, usually through a measurement at the beginning

of the protocol, while GRAPPA determines the coil weights in a more implicit fashion using a fully-

sampled central autocalibration region. Because of this ACS region, GRAPPA achieves slightly less

acceleration than SENSE for a given acceleration factor. SENSE also achieves a marginally higher

SNR than GRAPPA, but this difference is only noticeable at very high acceleration factors. GRAPPA

is the preferred method when imaging inhomogeneous regions of the body, such as the lungs [344] or

intracranial cavities [345], since it is difficult to obtain accurate coil sensitivity profiles when imaging

inhomogeneous anatomy. Furthermore, SENSE is more adversely affected by patient motion since

discrepancies in the patient’s position at the time of data acquisition and at the time the coil sensitivity

profiles are measured violates the assumptions of the SENSE algorithm. GRAPPA, in which the coil

sensitivities are implicitly determined directly from the data, avoids this problem altogether and is,

therefore, more robust in the presence of motion. Finally, GRAPPA is the preferred method when

acquiring data using an echo planar readout, again due to the explicit calibration process employed by

SENSE. Here, the magnetic susceptibility profiles, which describe a medium’s propensity to become

magnetized in the presence of an applied magnetic field, are different when acquiring EPI images

compared to when acquiring the coil sensitivity profiles, ultimately leading to distortions in SENSE

reconstructions [346]. Although this thesis does not employ an echo planar readout, it would be

advantageous for this protocol to be translatable to EPSI readouts in the future. The implementation

of EPSI could allow for the realization of an accelerated three-dimensional MRSI protocol. Therefore,

due to the many considerations discussed above, it was ultimately decided to implement GRAPPA

rather than SENSE.

8.2.2 Spatial-Spectral Correlations

In this work, a novel GRAPPA algorithm is presented to accelerate MRSI acquisitions. The GRAPPA

weights are extracted from an autocalibration region in k-t space. Conventional GRAPPA, by con-

struction, requires the full acquisition of one of the spatial dimensions, but ARTT GRAPPA no longer

has this requirement and, thus, allows for undersampling along both k-space directions. In a three-

dimensional acquisition, in principle, acceleration along all three dimensions would be possible. In

Section 7.2, it is shown that this novel GRAPPA algorithm incontrovertibly outperforms the conven-

tional MRSI GRAPPA technique. This is likely due to the fact that ARTT GRAPPA exploits the

spatial-spectral correlations available in the data.

Parallel imaging exploits spatial correlations in the data. In particular, parallel imaging utilizes in-

formation regarding the spatial distribution and relative sensitivities of the individual receiver coil

elements in a phased array. Other approaches such as partial Fourier methods [347] and reduced FOV
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techniques [348] in dynamic imaging also exploit spatial correlations. Another class of techniques

which have been applied to dynamic MRI examinations exploits temporal correlations in the data.

These include keyhole imaging [349], unaliasing by Fourier-encoding the overlaps using the temporal

dimension (UNFOLD) [350], and view sharing strategies [351]. Some techniques, however, combine

both of these approaches by exploiting both spatial and temporal correlations. These methods in-

clude the Noquist method [352], UNFOLD SENSE [353], k-t SENSE [354], and k-t GRAPPA [273]

and have been applied exclusively to exploit spatiotemporal correlations in dynamic MRI. The algo-

rithm presented in this work falls into this third class of approaches but exploits these aforementioned

spatiotemporal correlations in MRSI datasets, as is discussed in more detail below. As compared to

dynamic MRI, MRSI has much more temporal data than dynamic acquisitions. Therefore, ARTT

GRAPPA is able to reconstruct images using only the fully-sampled temporal dimension in a central

region of k-space and, hence, can fully accelerate along both spatial dimensions.

Significant spatial-spectral correlations are present in MRSI datasets [355, 356]. The utility of spatial-

spectral correlations can be illustrated by means of the following example. Consider an MRSI exper-

iment investigating a human brain that contains two broad types of tissue: healthy brain tissue and

tumorous brain tissue. The tumorous brain tissue can be described by a basis spectrum which, roughly

speaking, has relatively high choline concentrations, intermediate creatine concentrations, relatively

low NAA concentrations, and some lactate. Contrastingly, the healthy brain tissue can be described

by a basis spectrum with relatively low choline concentrations, intermediate creatine concentrations,

and relatively high NAA concentrations. This hypothetical dataset was acquired using a two-channel

array with one channel on the left side of the brain seeing mostly tumorous brain tissue and the other

channel on the right side of the brain seeing mostly healthy brain tissue but with a small metastasis

present. Assume that metastasis is very small and that the SNR of the dataset is too low for the

lactate concentration in the metastasis to be determined, but the choline and NAA resonances are

clearly discernible. Although the lactate in the metastasis is not visible, the spatial-spectral corre-

lations present in the data can be used to deduce the concentration of lactate in the metastasis by

observing the choline and NAA levels in that pixel.

It was shown in Section 7.2, that ARTT GRAPPA allows for effectively twice as aggressive acceleration

than conventional MRSI GRAPPA for an in vivo dataset. However, in a phantom in which every

pixel has the same spectral signature, the advantage of ARTT GRAPPA disappears and the two

techniques become comparable. This strongly suggests that the benefit of this approach is, in fact,

the exploitation of these spatial-spectral correlations which allows for a more accurate determination

of the individual receiver coil weights. In the in vivo dataset, where spatial-spectral correlations

are present, ARTT GRAPPA markedly outperforms the conventional approach, but in a phantom

dataset without spatial-spectral correlations to be exploited, the ARTT approach and the conventional

approach perform similarly. This is encouraging since the desired application of this technique is clearly

in vivo examinations.

8.2.3 Sampling with ARTT GRAPPA

The nature of how the ARTT GRAPPA algorithm works calls for unique sampling patterns. In par-

ticular, conventional GRAPPA, by construction, always requires that one of the spatial dimensions is

fully-sampled. However, in ARTT GRAPPA, this is no longer a requirement, so greater flexibility in
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possible sampling schemes is allowed.

Whenever attempting to accurately measure an oscillating signal, sampling must be performed at a

sufficiently high rate. When the sampling rate is too low, the true frequency of oscillation may be

underestimated, an effect known as aliasing. The general rule to avoid aliasing, as discussed in Section

5.2, is given by the Nyquist criterion. In parallel imaging the data are purposely undersampled to re-

duce examination duration, so aliasing is an impediment to the accurate reconstruction of the missing

data. Aliasing was counteracted in this work by using a technique called CAIPIRINHA, discussed in

detail in Section 6.4, which allows for the modification of aliasing conditions in a well-defined manner

[298]. The downside of employing CAIPIRINHA is that it necessarily adds to the number of required

data points for a given sampling scheme. This is due to the fact that the CAIPIRINHA sampling

phase shift along a given dimension then necessitates the inclusion of autocalibration data at each line

along the CAIPIRINHA-shifted dimension. To illustrate this with a concrete example, consider the

two sampling schemes used in the prospectively undersampled experiments presented in Section 7.1.4.

They both utilized a 10 × 10 autocalibration scheme, while one utilized a 2 × 2 acceleration scheme

and the other used a 3× 3 acceleration scheme, yielding effective acceleration factors of 2.50 and 3.58,

respectively. However, if CAIPIRINHA were not employed, effective acceleration factors of 2.99 and

5.16 would have been achieved. Often this additionally sampled data necessitated by CAIPIRINHA is

on the periphery of k-space and does not appreciably contribute to the fidelity of the reconstruction.

It would be interesting to see how the badly the exclusion of CAIPIRINHA degrades reconstruction

accuracy. It could be that although aliasing is more pronounced without CAIPIRINHA, the time

saved via its exclusion allows for a less aggressive acceleration scheme which counteractively reduces

aliasing. A more detailed analysis of the ultimate effect of CAIPIRINHA could prove fruitful.

The other consideration when discussing sampling patterns is whether Cartesian or elliptical patterns

should be used. Elliptical sampling patterns excludes the periphery of k-space in, as the name sug-

gests, an elliptical pattern. The logic is that the periphery of k-space contains less useful information

than its center, so by acquiring data in an elliptical fashion, examination acquisition duration is re-

duced without greatly affecting image quality. This is a standard option on most scanners and is often

utilized in the field, so its incorporation was considered in this work. However, initial experiments

not presented here demonstrated that nothing is gained by incorporating an elliptical acquisition. In

particular, consider the sampling pattern utilizing a 12× 12 autocalibration scheme and 3× 3 acceler-

ation scheme, yielding an effective acceleration factor of 3.23. By changing the Cartesian acquisition

into an elliptical acquisition, and effective acceleration factor of 3.52 could be achieved. However, this

produced slightly less accurate results than the Cartesian sampling scheme with an effective accelera-

tion factor of 3.58. This observation was also corroborated in other examples, so it seems that nothing

is gained by going to an elliptical acquisition, as the additional acceleration can be just as accurately

achieved by simply transitioning to a more aggressive Cartesian acquisition.

In summary, the ARTT GRAPPA approach allows for much greater flexibility in sampling patterns.

In any parallel imaging approach, there is always a delicate balance between minimizing examina-

tion acquisition duration while still accurately recapitulating the object being imaged, and ARTT

GRAPPA brings these considerations to the forefront, since many more potential sampling schemes

are possible. Although thoughtful consideration was taken in choosing appropriate sampling patterns,

a more detailed optimization of the sampling scheme may be beneficial and allow for a more optimal
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trade off between scan time and reconstruction accuracy.

8.2.4 Other Notable Approaches in the Literature

In 2017, Gruber et al. [50] utilized an innovative parallel imaging-based technique to accelerate the

acquisition of high-resolution MRSI datasets. In short, a gradient echo prescan was acquired prior

to the MRSI acquisition and subsequently used in the determination of the coil weighting factors.

The parallel imaging reconstruction was then performed in k-space, and high-resolution metabolite

maps of the human brain with an imaging matrix size of 64 × 64 and a sub-five mm resolution were

acquired in six minutes. While the technique describes itself as GRAPPA, according to the discussion

in Section 8.2.1, it is seen to be more SENSE-like than GRAPPA-like. The distinguishing feature

of GRAPPA is that the coil weighting factors are acquired via autocalibration, while in SENSE, a

prescan is required. Whether the reconstruction is performed in k-space or image space is immaterial

by the arguments given above.

The Gruber et al. approach [50] accelerates more aggressively than the ARTT GRAPPA approach

and achieves an effective acceleration of 5.0 as compared to an effective acceleration of 3.58. However,

there is an important limitation to this approach which allows the ARTT GRAPPA approach to

retain its value. Namely, as mentioned above, the Gruber et al. approach [50] requires the acquisition

of a SENSE-like prescan in the determination of the coil weights. This feature makes it difficult to

apply this technique to nuclei other than protons. X-nuclei imaging with nuclei such as 31P and 13C

is plagued with very much lower sensitivities compared to 1H imaging, so this technique would not

be appropriate in these settings. The ARTT GRAPPA approach, however, acquires the coil weights

via proper autocalibration, and, thus, this approach can be easily translated to 31P MRSI or 13C

MRSI. Also, the Gruber et al. approach [50], like all SENSE-like parallel imaging techniques using

a prescan, is sensitive to patient motion in the time between the prescan and data acquisition. The

ARTT GRAPPA approach, again due to its use of proper autocalibration, is less sensitive to patient

motion. It is these advantages of ARTT GRAPPA which will make its application useful to the MRSI

community and provide X-nuclei spectroscopic imaging a viable parallel imaging alternative that does

not require the acquisition of calibration scans prior to spectroscopic imaging acquisition.

8.3 Future Applications

8.3.1 Cancer Imaging

As discussed in Section 3.1, tumorous tissue exhibits dysregulated metabolic activity. This is consid-

ered one of the fundamental hallmarks of cancer. Namely, tumor cells, even in presence of an ample

supply of oxygen, preferentially undergo glycolysis. Some of the metabolites commonly observed in
1H spectroscopy are known to have altered concentrations in cancerous cells, so observing how these

concentrations change is very important. Most notably, NAA levels are known to decrease specifically

in gliomas [131], and choline levels are known to increase in tumors [145]. The technique presented

in this work has the ability to noninvasively produce high-resolution choline and NAA maps. Thus,

one can interrogate changes in choline and NAA concentration levels in a spatially localized manner.

This technique can aid in cancer diagnosis, but its main strength lies in its ability to monitor thera-

peutic response. Since MRSI does not use ionizing radiation, this technique can be applied serially to

observe how metabolism changes throughout a course of treatment. Metabolism is downstream from
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genomics, transcriptomics, and proteomics, so observing tumor metabolism provides crucial insight

into the biological processes underlying tumor progression and therapeutic response.

In a recent study carried out by other members of Professor Bachert’s laboratory, Meißner et al. [357]

used single-voxel proton spectroscopy to observe longitudinal changes in choline-to-NAA ratios of a

number of glioma patients as they underwent chemoradiotherapy. Scans were performed at three

timepoints: before treatment, immediately following treatment, and six weeks after treatment. It was

observed that choline-to-NAA ratios decreased in those patients that responded to therapy but stayed

roughly constant in non-responders. The technique presented in this work would surely add value to

such a study due to the heterogeneous nature of tumors. The single-voxel spectroscopy in this study

observed ratiometric changes in a large voxel of 2× 2× 2 cm3, but it would have been advantageous

to observe smaller scale changes with an in-plane resolution less than 4 × 4 mm2. Since 1H MRSI

datasets can now be acquired in less than 20 minutes, it is now feasible to include this protocol as

part of larger studies attempting to predict therapeutic response.

8.3.2 X-Nuclei Spectroscopy

A major potential application of this technique is the acceleration of X-nuclei spectroscopic imaging.

SENSE-like techniques are not ideal for X-nuclei spectroscopic imaging since they explicitly require

the acquisition of coil sensitivity maps. These are often difficult or not possible to acquire using nuclei

other than protons. Even if they are able to be acquired, the SNR of these maps would be quite low

which renders the determination of the coil weights and subsequent reconstruction process unreliable.

The technique presented here, on the other hand, determines the coil weighting factors directly from

the MRSI data, so no prescan is required. This will make this approach very amenable to X-nuclei

applications. The improvement of this technique relative to conventional MRSI GRAPPA will allow

for more aggressive X-nuclei MRSI sampling schemes, which can then be traded for more averages in

order to increase SNR.

In particular, two specific X-nuclei spectroscopy applications come to mind: 31P MRSI and hyper-

polarized 13C MRSI. Members of the laboratory recently published a study that uses 31P MRSI to

volumetrically map intracellular and extracellular pH in glioma patients [358]. In an oncological set-

ting, pH is quite important since intracellular pH increases in tumors relative to healthy tissue, while

extracellular pH decreases in tumors. In addition to pH, 31P MRSI is able to interrogate energy

metabolism and phospholipid turnover. The implementation of ARTT GRAPPA into this protocol

would be highly beneficial. As with most X-nuclei, 31P MRSI has low intrinsic sensitivity in the hu-

man brain, so multiple averages are typically required which add to the overall scan time and partially

prohibit the acquisition of large image matrix sizes. The implementation of this ARTT GRAPPA al-

gorithm would allow for the acquistion duration to be reduced which could then be traded for more

averages and ultimately be used to improve the sensitivity of the technique.

The other major X-nuclei spectroscopy application is hyperpolarized 13C MRSI. The German Cancer

Research Center recently installed a device that can improve the sensitivity of 13C applications by

four orders of magnitude by driving spins into a specified energy state by transferring polarization

from free electrons to nuclei via microwave irradiation at low temperatures [359]. The hyperpolarized

nucleus which is conjugated to some biomolecule, such as pyruvate, is injected into the patient and
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the metabolic evolution of that molecule can be followed dynamically. Since the T1 relaxation time

of 13C-conjugated pyruvate is on the order of tens of seconds, the hyperpolarized signal only lasts for

a short time. This technical limitation necessitates fast imaging sequences, so this ARTT GRAPPA

algorithm is well suited to be utilized in this application as well.
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Summary

Proton magnetic resonance spectroscopic imaging provides the means to noninvasively interrogate

metabolism in vivo. However, despite tremendous potential it has failed to be adopted into routine

clinical practice in part due to the excessively long amount of time required for a 1H MRSI examina-

tion. In this work, a novel parallel imaging algorithm was developed and an accelerated high-resolution
1H MRSI protocol was established.

In order to construct this protocol six main components were realized. A pulse sequence was created

that directly acquires an FID at various locations in k-space. This pulse sequence collects data in

an ARTT GRAPPA-based sampling pattern, and these locations are offset in a CAIPIRINHA-like

scheme in order to minimize the effects of aliasing. Prior to data acquisition seven CHESS pulses

with varying amplitudes and interpulse delays were applied. This VAPOR implementation succeeds

in suppressing the large water signal by many orders of magnitude so that it is comparable to the

metabolite resonances. A novel ARTT GRAPPA reconstruction algorithm was developed which allows

for an over three-fold acceleration of the image acquisition. The appropriate GRAPPA reconstruction

parameters were determined via a number of simulation studies. A multi-voxel coil combination that

is based on singular value decomposition was achieved in order to combine the data acquired in each

individual coil element. An L2 regularization algorithm was implemented which removes the lipid

signal that contaminates the brain spectra. This signal arises from the pericranial lipids surrounding

the skull and bleeds into adjacent voxels but is completely eliminated via L2 regularization. The final

component of this protocol was to incorporate the software LCModel which allows for the quantifica-

tion of the proton spectra.

The main novelty of this work was the development of the ARTT GRAPPA reconstruction algorithm.

The defining feature of GRAPPA is that the coil weights used in the reconstruction process are not

explicitly measured but instead implicitly determined via the full acquisition of a central autocalibra-

tion region. Conventionally this autocalibration region extends along one of the k-space directions

which prohibits undersampling along that dimension. In MRSI, an FID is acquired at each sampled

position in k-space, so the autocalibration region can instead be taken to extend along the tempo-

ral dimension. This ARTT GRAPPA approach determines the coil weights using an autocalibration

region in k-t-space which allows for a greater flexibility in sampling schemes since one is no longer

forced to fully sample one of the k-space direction. This work exhibits the feasibility of this ARTT

GRAPPA approach demonstrating that the coil weights can be determined using time domain data.

89



CHAPTER 9. SUMMARY

In addition to the feasibility of this approach it is also shown that ARTT GRAPPA performs markedly

better than the conventional approach. In particular, ARTT GRAPPA allows for approximately twice

as much acceleration than conventional MRSI GRAPPA for the same level of reconstruction accuracy.

This was demonstrated in vivo using a fully sampled MRSI dataset of a healthy volunteer’s brain via a

retrospective undersampling analysis. The ARTT GRAPPA reconstruction algorithm is demonstrated

to be more accurate than a conventional MRSI GRAPPA reconstruction algorithm, and this superior

accuracy can be traded to more aggressively accelerate the image acquisition or to reconstruct lower

SNR datasets.

The hypothesized reason why ARTT GRAPPA performs better than conventional MRSI GRAPPA

is that ARTT GRAPPA exploits the spatial-spectral correlations in the data. Data suggesting this

were presented since the same analysis performed on a homogeneous phantom, where there are no

spatial-spectral correlations to exploit, showed no benefit to using ARTT GRAPPA. It is only when

spatial-spectral correlations are available in the data to exploit, which is surely the case for in vivo

applications, does the use of ARTT GRAPPA become beneficial.

This protocol was then applied to acquire prospectively undersampled MRSI data and produce high-

resolution metabolite maps of NAA, choline, and creatine in three healthy volunteers, achieving an

in-plane resolution of 3.75 mm. Two undersampling schemes were employed: an effective acceleration

of 2.50 acquired in 25 minutes and an effective acceleration of 3.58 acquired in 17 minutes. This is in

comparison to the 62 minutes that such an examination would have taken without the implementa-

tion of parallel imaging. Thus, it is demonstrated that accurate, high-resolution proton spectroscopic

imaging is possible in less than twenty minutes which greatly increases this technique’s clinical feasi-

bility.

This accelerated 1H MRSI protocol is now in place and can be utilized in the future to interrogate

neurometabolism in a number of pathologies. In particular, metabolism is severely dysregulated in

cancerous tissue, so this technique is well-suited to interrogate malignant systems. Often in oncology,

it is not known a priori whether a patient will respond to a given treatment. Therefore, this protocol

would be useful in serially monitoring tumor metabolism and assessing therapeutic response. In

addition, because the ARTT GRAPPA approach is a fully autocalibrating parallel imaging approach, it

is readily translatable into MRSI applications targeting nuclei other than protons. Future applications

include the implementation of ARTT GRAPPA into 31P MRSI which can image tumor pH and

interrogate energy metabolism and dynamic 13C MRSI which observes metabolic transitions in real

time.
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Appendix

Reff C[tCho] / C[tCr]) CRLB (%) Tube
Fully Sampled 0.037 ± 0.020 372 ± 479 1

2.50 0.040 ± 0.022 414 ± 488 1
2.89 0.044 ± 0.030 411 ± 490 1
3.23 0.045 ± 0.034 528 ± 500 1
3.75 0.032 ± 0.017 546 ± 484 1
4.04 0.039 ± 0.025 414 ± 487 1
4.33 0.049 ± 0.037 688 ± 462 1
4.71 0.036 ± 0.025 537 ± 491 1

Fully Sampled 2.17 ± 0.16 2.6 ± 0.5 2
2.50 2.16 ± 0.16 2.6 ± 0.6 2
2.89 2.18 ± 0.16 2.6 ± 0.5 2
3.23 2.18 ± 0.17 2.6 ± 0.5 2
3.75 2.18 ± 0.16 2.6 ± 0.5 2
4.04 2.17 ± 0.16 2.6 ± 0.5 2
4.33 2.19 ± 0.16 2.8 ± 0.4 2
4.71 2.17 ± 0.16 2.7 ± 0.5 2

Fully Sampled 0.019 ± 0.010 764 ± 387 3
2.50 0.015 ± 0.012 691 ± 395 3
2.89 0.018 ± 0.013 751 ± 385 3
3.23 0.027 ± 0.017 271 ± 316 3
3.75 0.020 ± 0.018 321 ± 298 3
4.04 0.030 ± 0.011 467 ± 447 3
4.33 0.024 ± 0.020 310 ± 327 3
4.71 0.022 ± 0.018 403 ± 375 3

Fully Sampled 0.028 ± 0.022 457 ± 491 4
2.50 0.021 ± 0.018 377 ± 444 4
2.89 0.022 ± 0.020 437 ± 473 4
3.23 0.022 ± 0.014 576 ± 488 4
3.75 0.021 ± 0.014 439 ± 473 4
4.04 0.048 ± 0.043 393 ± 471 4
4.33 0.036 ± 0.024 378 ± 476 4
4.71 0.059 ± 0.046 301 ± 445 4

Table 10.1: The variation of local choline concentration across the four test tubes - Concentrations are
expressed relative to the total creatine concentration, and CRLB’s are listed as percentages. Choline
is only present in tube 2.
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Reff C[Lac] / C[tCr]) CRLB (%) Tube
Fully Sampled 0.007 ± 0.006 763 ± 333 1

2.50 0.008 ± 0.006 880 ± 278 1
2.89 0.006 ± 0.006 773 ± 289 1
3.23 0.006 ± 0.006 808 ± 301 1
3.75 0.009 ± 0.006 753 ± 355 1
4.04 0.006 ± 0.004 785 ± 323 1
4.33 0.003 ± 0.003 918 ± 201 1
4.71 0.002 ± 0.001 944 ± 410 1

Fully Sampled 0.018 ± 0.015 848 ± 259 2
2.50 0.021 ± 0.015 864 ± 246 2
2.89 0.015 ± 0.014 886 ± 238 2
3.23 0.022 ± 0.017 844 ± 278 2
3.75 0.022 ± 0.014 822 ± 275 2
4.04 0.029 ± 0.021 785 ± 308 2
4.33 0.021 ± 0.011 818 ± 266 2
4.71 0.029 ± 0.023 831 ± 289 2

Fully Sampled 0.069 ± 0.022 765 ± 384 3
2.50 0.057 ± 0.040 777 ± 369 3
2.89 0.075 ± 0.033 798 ± 366 3
3.23 0.063 ± 0.046 575 ± 427 3
3.75 0.061 ± 0.049 571 ± 420 3
4.04 0.079 ± 0.051 630 ± 429 3
4.33 0.064 ± 0.054 552 ± 408 3
4.71 0.077 ± 0.042 477 ± 412 3

Fully Sampled 2.71 ± 0.64 8.4 ± 2.7 4
2.50 2.46 ± 0.67 8.5 ± 2.8 4
2.89 2.31 ± 0.71 6.4 ± 2.2 4
3.23 3.04 ± 0.39 1.9 ± 1.6 4
3.75 2.91 ± 0.46 3.0 ± 2.1 4
4.04 2.65 ± 0.64 12.5 ± 4.3 4
4.33 2.98 ± 0.45 2.2 ± 1.3 4
4.71 2.99 ± 0.42 3.2 ± 1.8 4

Table 10.2: The variation of local lactate concentration across the four test tubes - Concentrations are
expressed relative to the total creatine concentration, and CRLB’s are listed as percentages. Lactate
is only present in tube 4.
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Reff C[NAA] (mM) CRLB (%) Tube
Fully Sampled 3.1 ± 2.0 320 ± 437 1

2.50 3.0 ± 1.9 285 ± 416 1
2.89 2.3 ± 1.9 255 ± 358 1
3.23 3.0 ± 1.8 191 ± 360 1
3.75 2.1 ± 1.4 260 ± 381 1
4.04 2.5 ± 1.6 497 ± 465 1
4.33 2.5 ± 2.1 148 ± 265 1
4.71 1.8 ± 1.5 376 ± 414 1

Fully Sampled 1.6 ± 0.6 596 ± 310 2
2.50 1.5 ± 0.8 421 ± 242 2
2.89 1.2 ± 0.9 572 ± 315 2
3.23 2.1 ± 1.1 282 ± 178 2
3.75 1.7 ± 1.0 384 ± 217 2
4.04 1.8 ± 1.3 460 ± 314 2
4.33 2.2 ± 1.3 330 ± 257 2
4.71 2.1 ± 0.9 319 ± 222 2

Fully Sampled 103.6 ± 10.2 4.8 ± 1.2 3
2.50 102.6 ± 9.1 4.8 ± 1.2 3
2.89 102.6 ± 9.3 4.9 ± 1.3 3
3.23 112.4 ± 8.8 4.3 ± 1.1 3
3.75 112.0 ± 8.7 4.3 ± 1.1 3
4.04 106.4 ± 8.7 4.6 ± 1.2 3
4.33 111.3 ± 9.0 4.3 ± 1.1 3
4.71 110.3 ± 8.4 4.3 ± 1.1 3

Fully Sampled 0.6 ± 0.5 701 ± 414 4
2.50 0.4 ± 0.4 601 ± 393 4
2.89 0.7 ± 0.7 758 ± 378 4
3.23 1.7 ± 1.2 295 ± 407 4
3.75 1.4 ± 1.5 430 ± 420 4
4.04 0.9 ± 0.5 574 ± 428 4
4.33 1.5 ± 1.8 340 ± 430 4
4.71 1.9 ± 1.7 252 ± 350 4

Table 10.3: The variation of local NAA concentration across the four test tubes - Concentrations are
expressed in mM, and CRLB’s are listed as percentages. NAA is only present in tube 3. Here, NAA
is shown in absolute concentrations since there is no creatine present in tube 3.
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Reff C[tCr] (mM) CRLB (%) Tube
Fully Sampled 46.4 ± 2.3 1.7 ± 0.7 1

2.50 46.3 ± 2.0 1.7 ± 0.5 1
2.89 46.6 ± 2.3 1.6 ± 0.6 1
3.23 45.8 ± 2.3 1.9 ± 0.6 1
3.75 45.3 ± 2.2 1.8 ± 0.7 1
4.04 46.3 ± 2.2 2.0 ± 0.5 1
4.33 45.3 ± 2.4 2.1 ± 0.6 1
4.71 46.0 ± 2.6 1.8 ± 0.5 1

Fully Sampled 38.7 ± 7.4 7.5 ± 0.9 2
2.50 38.5 ± 7.4 7.6 ± 0.9 2
2.89 38.9 ± 7.1 7.6 ± 1.0 2
3.23 38.1 ± 8.4 7.8 ± 1.2 2
3.75 37.8 ± 7.7 7.9 ± 1.2 2
4.04 38.2 ± 7.5 7.7 ± 1.5 2
4.33 38.6 ± 8.6 7.9 ± 1.2 2
4.71 38.1 ± 7.5 8.0 ± 1.3 2

Fully Sampled 4.1 ± 3.5 619 ± 399 3
2.50 3.9 ± 3.4 585 ± 364 3
2.89 4.1 ± 3.1 624 ± 396 3
3.23 3.2 ± 3.1 466 ± 297 3
3.75 3.9 ± 3.9 705 ± 443 3
4.04 3.7 ± 3.3 742 ± 460 3
4.33 3.4 ± 3.1 538 ± 324 3
4.71 3.6 ± 3.5 556 ± 321 3

Fully Sampled 32.7 ± 14.1 5.0 ± 3.3 4
2.50 29.0 ± 16.2 6.4 ± 3.1 4
2.89 28.3 ± 16.7 6.0 ± 3.6 4
3.23 36.7 ± 9.0 2.3 ± 1.8 4
3.75 35.1 ± 11.0 3.3 ± 2.1 4
4.04 31.6 ± 15.5 4.6 ± 2.9 4
4.33 35.8 ± 10.7 2.4 ± 1.4 4
4.71 36.7 ± 10.4 8.6 ± 4.0 4

Table 10.4: The variation of local creatine concentration across the four test tubes - Concentrations
are expressed in mM, and CRLB’s are listed as percentages. Creatine is present in tubes 1, 2, and 4.
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Reff C[tCho] / C[tCr]) (mM) CRLB (%) Region
Fully Sampled 0.405 ± 0.104 9.8 ± 0.8 ROI 1

2.50 0.414 ± 0.108 11.1 ± 1.0 ROI 1
3.23 0.395 ± 0.092 11.8 ± 0.9 ROI 1
3.58 0.375 ± 0.119 15.3 ± 1.3 ROI 1
3.75 0.384 ± 0.100 13.7 ± 1.6 ROI 1
4.04 0.371 ± 0.084 13.6 ± 1.8 ROI 1

Fully Sampled 0.280 ± 0.037 7.4 ± 3.6 ROI 2
2.50 0.276 ± 0.033 10.6 ± 4.5 ROI 2
3.23 0.282 ± 0.035 12.6 ± 7.2 ROI 2
3.58 0.273 ± 0.051 13.8 ± 5.5 ROI 2
3.75 0.238 ± 0.036 13.6 ± 5.9 ROI 2
4.04 0.268 ± 0.060 8.3 ± 6.1 ROI 2

Table 10.5: The variation of local choline concentration in ROI 1 and ROI 2 of the brain of a healthy
volunteer - Concentrations are expressed relative to the total creatine concentration, and CRLB’s are
listed as percentages.

Reff C[tNAA] / C[tCr]) (mM) CRLB (%) Region
Fully Sampled 1.908 ± 0.153 6.6 ± 0.5 ROI 1

2.50 1.964 ± 0.165 7.4 ± 0.5 ROI 1
3.23 1.929 ± 0.150 7.6 ± 0.5 ROI 1
3.58 1.986 ± 0.183 9.0 ± 1.2 ROI 1
3.75 2.035 ± 0.232 8.0 ± 0.4 ROI 1
4.04 2.029 ± 0.198 8.4 ± 0.6 ROI 1

Fully Sampled 1.786 ± 0.183 4.5 ± 1.5 ROI 2
2.50 1.768 ± 0.135 5.7 ± 1.8 ROI 2
3.23 1.809 ± 0.258 6.2 ± 2.3 ROI 2
3.58 1.799 ± 0.232 5.7 ± 2.7 ROI 2
3.75 1.793 ± 0.282 5.5 ± 2.9 ROI 2
4.04 1.776 ± 0.446 6.8 ± 3.3 ROI 2

Table 10.6: The variation of local NAA concentration in ROI 1 and ROI 2 of the brain of a healthy
volunteer - Concentrations are expressed relative to the total creatine concentration, and CRLB’s are
listed as percentages.
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Reff C[Glx] / C[tCr]) (mM) CRLB (%) Region
Fully Sampled 0.500 ± 0.085 4.0 ± 0.9 ROI 1

2.50 0.533 ± 0.069 3.9 ± 0.6 ROI 1
3.23 0.508 ± 0.060 5.6 ± 1.6 ROI 1
3.58 0.561 ± 0.081 8.1 ± 3.5 ROI 1
3.75 0.478 ± 0.093 12.8 ± 3.8 ROI 1
4.04 0.446 ± 0.072 7.8 ± 1.8 ROI 1

Fully Sampled 0.436 ± 0.124 7.3 ± 1.4 ROI 2
2.50 0.465 ± 0.118 5.6 ± 1.1 ROI 2
3.23 0.484 ± 0.154 12.8 ± 1.8 ROI 2
3.58 0.498 ± 0.211 9.2 ± 1.1 ROI 2
3.75 0.398 ± 0.130 12.8 ± 1.2 ROI 2
4.04 0.474 ± 0.145 12.6 ± 2.3 ROI 2

Table 10.7: The variation of local Glx concentration in ROI 1 and ROI 2 of the brain of a healthy
volunteer - Concentrations are expressed relative to the total creatine concentration, and CRLB’s are
listed as percentages.

Reff C[tCr] (mM) (mM) CRLB (%) Region
Fully Sampled 5.60 ± 0.66 5.3 ± 1.1 ROI 1

2.50 5.38 ± 0.69 6.1 ± 1.2 ROI 1
3.23 5.88 ± 0.65 6.3 ± 1.0 ROI 1
3.58 5.11 ± 0.74 8.6 ± 1.9 ROI 1
3.75 5.64 ± 0.77 6.8 ± 1.3 ROI 1
4.04 5.75 ± 0.70 6.2 ± 1.1 ROI 1

Fully Sampled 4.60 ± 0.58 4.9 ± 0.8 ROI 2
2.50 4.44 ± 0.58 4.7 ± 0.6 ROI 2
3.23 4.32 ± 0.61 5.2 ± 0.9 ROI 2
3.58 4.43 ± 0.86 5.8 ± 1.2 ROI 2
3.75 4.30 ± 0.66 7.3 ± 1.2 ROI 2
4.04 4.46 ± 0.78 9.1 ± 1.8 ROI 2

Table 10.8: The variation of local creatine concentration in ROI 1 and ROI 2 of the brain of a healthy
volunteer - Concentrations are expressed in mM, and CRLB’s are listed as percentages.
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