
 
 

 
 

Dissertation 

submitted to the 

Combined Faculty of Natural Sciences and Mathematics 

of the Ruperto Carola University of Heidelberg, Germany 

For the degree of 

Doctor of natural sciences 

 

 

 

 
 
 
 
 
 
 
 

Presented by 

 

                M.Sc. Biotechnologist Matteo Guerra 

            Born in: San Giovanni Rotondo, Italy 

                Oral examination: 30th June, 2020 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

From the plasma membrane to tangled DNA webs: 

 a roadway to track, investigate and employ spatially 

localized neutrophil elastase and cathepsin G activities 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Referees:        Prof. Dr. Edward Lemke 

                      Prof. Dr. Britta Brügger 
 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table of contents 

 

I 

 

Table of contents 
 

Abbreviations IV 

List of figures VI 

List of tables VIII 

Abstract IX 

Zusammenfassung XI 

 

1. Introduction 1 

1.1 Lungs as protective barrier 1 

1.2 CF and COPD airways 1 

1.3 Neutrophils shape the CF and COPD inflammatory microenvironment 2 

1.4 Protease classes and substrate specificity 5 

1.5 Neutrophil serine proteases (NSPs) pathobiology 6 

1.5.1 Neutrophil elastase (NE) 8 

1.5.2 Cathepsin G (CG) 9 

1.5.3 Proteinase 3 (PR3) 9 

1.6 Macrophage proteases contribute to chronic airway inflammation 10 

1.7 Extracellular DNA and neutrophil extracellular traps in inflammation 11 

1.8 Exosomes are active players in remodeling inflamed airways 13 

1.9 A palette of tools to visualize enzymes and diseases 14 

1.10 Searching for therapeutics and biomarkers in CF and COPD 17 

1.11 Why does it matter? Proteases and inflammation in COVID-19 lung disease 18 

 

2. Research aim and project overview 20 

 

3. Results 23 

3.1 Part I 23 

3.1.1 Biochemical characterization of a new set of cathepsin G FRET probes 23 

3.1.2 Evaluation of mSAM specificity, sensitivity and localization via confocal 

microscopy 25 

3.1.3 Cathepsin G activity as a marker of chronic airway inflammation 27 

3.1.4 Introducing small molecule FRET probes and flow cytometry into the clinics

 30 



Table of contents 

 

II 

 

3.1.5 Expansion of readouts of small molecule FRET flow cytometry 35 

3.2 Part II 36 

3.2.1 Differential patterns of NE activity in CF and COPD airways 36 

3.2.2 Cytokines and antiproteases are differentially expressed in CF and COPD 

airways 38 

3.2.3 Computational analysis reveals distinct inflammatory landscapes 39 

3.2.4 Characterization of CF and healthy sputum neutrophil phenotypes 41 

3.2.5 Assessing neutrophil behavior in the blood stream 43 

3.3 Part III 46 

3.3.1 Setting up a bulk assay to detect exosome associated NE 46 

3.3.2 A single nanoparticle assay based on flow cytometry 47 

3.3.3 Exosomes export active proteolytic enzyme to the surface of epithelial cells

 50 

3.3.4 General strategies for localizing FRET probes to DNA 51 

3.3.6 H-NE DNA localization 54 

3.3.7 NE but not CG is proteolytically active in its DNA-bound form 57 

3.3.8 Application of H-NE to human sputum 58 

3.3.9 DNA-bound NE activity in complex systems                                               59 

 

4. Discussion 61 

4.1 Part I 61 

4.1.1 CG activity is elevated in airway inflammation 61 

4.1.2 Small molecule FRET flow cytometry enables the rapid evaluation of 

inflammatory biomarkers at the single-cell level 64 

4.2 Part II 65 

4.2.1 CF and COPD airways feature similar membrane-bound NE activity but 

diverse inflammatory landscapes 65 

4.2.2 Neutrophil plasticity in sputum and blood of CF patients 66 

4.3 Part III 68 

4.3.1 Analysis of protease activity on blood and airway exosomes 68 

4.3.2 DNA binding probes to monitor extracellular DNA-bound NE and CG 

activities 69 

 

5. Conclusion 71 

 



Table of contents 

 

III 

 

6. Outlook 72 

 

7. Methods 73 

7.1 Chemicals and reagents 73 

7.2 Enzymes, substrates and antibodies 73 

7.3 Solid phase peptide synthesis of SAM, A-NE/A-CG and H-NE/H-CG reporters

 74 

7.4 Synthesis of Hoechst-azide 75 

7.5 Analysis of reporters’ performance in vitro 75 

7.6 Cell culture 76 

7.7 Human sputum processing and cell isolation 76 

7.8 Sputum samples preparation for plate reader and microscopy assays 77 

7.9 Human whole blood collection, neutrophil purification and stimulation 77 

7.10 Cytokine and antiprotease measurements 78 

7.11 Mouse lung slices 78 

7.12 Exosome purification and assays 79 

7.13 Confocal microscopy 80 

7.14 Flow cytometry 81 

7.15 Statistics 83 

 

8. References 84 

 

Appendix 93 

Structures and analytical data of synthetized compounds 93 

mSAM cleavage site demonstration 101 

Patients demographics 102 

 

Publications 103 

 

Acknowledgments 104 

 

 

 



Abbreviations 

 

IV 

 

Abbreviations 
 

16HBE14o-  human bronchial epithelial cell line 

ASL   airway surface liquid 

A1AT  alpha-1-antitrypsin 

BAL  bronchoalveolar lavage 

BALF  bronchoalveolar lavage fluid 

BV   Brilliant violet 

βENaC-Tg βENaC-overexpressing 

CD  cluster of differentiation 

CG  cathepsin G 

CF  cystic fibrosis 

CFTR  cystic fibrosis transmembrane conductance regulator 

COPD  chronic obstructive pulmonary disease 

Coum343 Coumarin 343 

CXCL   Chemokine ligand  

D/A  donor/acceptor 

ECM  extracellular matrix 

ENaC          epithelial sodium channel 

FACS   fluorescence activated cell sorting 

FEV1   Forced Expiratory Volume in 1 second 

FITC   Fluorescein isothiocyanate 

FMLP  N-Formylmethionyl-leucyl-phenylalanine 

Fmoc   fluorenylmethoxycarbonyl 

FRET   Förster resonance energy transfer 

HeLa   cell line derived from Henrietta Lacks 

HEK  cell line derived from human embryonic kidney  

HL-60   neutrophil-like cell line 

HPLC   high-pressure liquid chromatography 

H&E  hematoxylin and eosin 

IFN  Interferon 



Abbreviations 

 

V 

 

IL  Interleukin 

kDa   kilo Dalton 

LPS  lipopolysaccharide 

LUT  look up table 

MMP   matrix-metalloproteinase 

Mtt  4-Methyltrityl protecting group 

NADPH  reduced form of nicotinamide adenine dinucleotide phosphate 

NE   neutrophil elastase 

NE-/-   neutrophil elastase deficient 

NETs   neutrophil extracellular traps 

PCL   periciliary liquid 

PE  Phycoerythrin 

PEG   polyethylenglycol 

PerCP  Peridinin-chlorophyll-protein complex 

PMA   Phorbol 12-myristse 13-acetate 

PR3   proteinase 3 

ROS  reactive oxygen species 

SD  standard deviation 

SEM   standard error of the mean 

SLPI   secretory leukocyte protease inhibitor 

TAMRA  carboxytetramethylrhodamine 

Tg   Transgenic 

TIMP1  tissue inhibitor of matrix metalloproteinase 

TLR   toll-like receptor 

WT  wild type 

 

 

 

 

 

 



List of figures 

 

VI 

 

List of figures 
 

Figure 1 From healthy, CF and COPD airways to disease molecular biomarkers ..... 4 

Figure 2 Protease classes, mechanisms of action and substrate specificities ........... 6 

Figure 3 General design, chemical structures and features of protease imaging tools 

 ........................................................................................................................... 15 

Figure 4 Structure and cleavage characterization of spatially localized cathepsin G 

FRET reporters .................................................................................................. 23 

Figure 5 Performance of mSAM in cellular models  ................................................. 27 

Figure 6 mSAM and sSAM proved elevated cathepsin G activity on CF neutrophils 

and in CF and COPD BL fluids  ......................................................................... 29 

Figure 7 Implementing small molecule FRET reporters into flow cytometry  ........... 31 

Figure 8 Optimizing parameters for small molecule FRET flow cytometry ............... 33 

Figure 9 Setting up a diagnostic assay to evaluate disease severity and anti-

inflammatory treatments ..................................................................................... 34 

Figure 10 Measurement of MMP-12 activity on CF children BAL macrophages via 

LaRee1 probe .................................................................................................... 35 

Figure 11 Quantification of NE activity in disease and healthy airways ................... 36 

Figure 12 NE total amount quantification in human sputum .................................... 37 

Figure 13 Cytospin counts of four cell types in CF and COPD sputum samples ..... 38 

Figure 14 Inflammatory factors in CF and COPD sputum samples  ........................ 39 

Figure 15 PCA and heatmap of inflammatory factors in healthy, CF and COPD 

airways ............................................................................................................... 40 

Figure 16 FlowSOM analysis of sputum human neutrophils  ................................... 42 

Figure 17 Increased number of neutrophils in CF blood .......................................... 43 

Figure 18 Blood neutrophils response to stimuli ...................................................... 44 

Figure 19 CF neutrophils contain more and larger primary granules than healthy cells 

 ........................................................................................................................... 45 

Figure 20 Measuring NE activity on immunocaptured CD63+ sputum exosomes  ... 47 

Figure 21 Tuning a flow cytometer to “see” nanoparticles ....................................... 48 

Figure 22 Exosome FRET flow cytometry ................................................................ 49 

Figure 23 Membrane-bound NE activity on human bronchial epithelial cells ........... 50 

Figure 24 Overall representation of NETs and DNA-bound probes  ........................ 51 



 

 

VII 

 

Figure 25 Scheme of synthetic route for DNA-binding reporters .............................. 52 

Figure 26 Structure, cleavage and performance of DNA-bound reporters H-CG and 

H-NE  ................................................................................................................. 53 

Figure 27 H-NE does not enter live neutrophils and stains DNA via its Hoechst 

moiety ................................................................................................................ 54 

Figure 28 H-NE paints neutrophil extracellular traps DNA and detects NE activity in 

its DNA-bound state  .......................................................................................... 56 

Figure 29 DNA-bound NE retains its hydrolytic ability ............................................. 57 

Figure 30 DNA-bound CG does not retain its hydrolitytic ability .............................. 58 

Figure 31  H-NE stains large DNA condensates and reveals high NE activity on CF 

derived extracellular DNA  ................................................................................. 59 

Figure 32 H-NE application in ex-vivo mouse lung slices ........................................ 60 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



List of tables 

 

VIII 

 

List of tables 
 

Table 1 ..................................................................................................................... 30 

Table 2 ..................................................................................................................... 32 

Table 3  .................................................................................................................... 41 

 

 

 

 

 

 

 

 

 

  

file:///E:/Matteo/EMBL/PhD_thesis/3_results/results.docx%23_Toc35681768
file:///E:/Matteo/EMBL/PhD_thesis/3_results/results.docx%23_Toc35681769
file:///E:/Matteo/EMBL/PhD_thesis/3_results/results.docx%23_Toc35681770


Abstract 

 

IX 

 

Abstract 
 

Airways muco-obstruction and irreversible neutrophil-driven inflammation cause 

bronchiectasis in lung diseases such as cystic fibrosis (CF) and chronic obstructive pulmonary 

diseases (COPD). 

To enter the airway lumen, neutrophils secrete their proteases, namely cathepsin G (CG), 

neutrophil elastase (NE), proteinase 3 (PR3) and neutrophil serine protease 4 (NSP4). The 

released neutrophil serine proteases (NSPs) contribute directly and indirectly to the innate 

immunity. Released NSPs’ action is usually counteracted by endogenous antiproteases. 

However, the delicate balance between these two components is broken in chronic 

inflammation. Strikingly, NSPs greedily associate to the surface of the secreting neutrophil, to 

the myriad of extracellular vesicles filling the airway fluid and to the tangled DNA webs made 

of neutrophil extracellular traps (NETs). When fastened to such structures, NSPs seem to be 

less accessible to antiproteases and their persisting activity damages the connective tissue. 

As a result, more proinflammatory stimuli are released and the outcome is a vicious cycle 

leading to non-resolving airway neutrophilia.  

In order to expand our palette of fluorescent tools and to propose an alternative drug target 

and inflammatory biomarker, we developed of a new series of Förster resonance energy 

transfer (FRET)-based reporters, which revealed high cathepsin G activity in CF and COPD 

airways. Also, we were inspired by the demand of novel advanced diagnostic technologies to 

examine sputum samples in a hospital environment. Therefore, we established a new assay 

based on the combination of spatially localized FRET probes and flow cytometry. This 

combination was shown to be a valuable diagnostic technique applicable in a basic and 

translational biomedical context. The simplicity and throughput of the new method opened the 

doors to two novel biomedically relevant projects. 

First, to identify new inflammatory markers, we investigated the discriminants and common 

traits of inflammation in CF and COPD airways. We carried out a comprehensive 

characterization of sputum samples via analysis of protease activities, cytokines and 

antiprotease levels. We found that COPD airways appear to be characterized by less severe 

inflammation featuring elevated but not uttermost marker levels, compared to CF airways. As 

a key marker, high membrane-bound protease activity was the most significant indicator for 

COPD, suggesting this trait as a highly relevant early-inflammation biomarker. 

Second, we wondered if in addition to the neutrophil surface, CF- and COPD-derived 

exosomes carry active NE and how to measure such activity at a single nanoparticle level.  
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Therefore, we adapted our cytometric assay to monitor protease activity on human sputum 

particles as small as 100 nm in diameter. We showed that CF exosomes acquired NE at their 

surface in the inflamed airways and exported it to surrounding cells.   

Finally, we synthesized small-molecule probes designed to attach to DNA with the help of a 

DNA minor groove binder (Hoechst). The respective reporters were able to detect and quantify 

NE and CG activity on NETs, making them valuable tools to study the eclectic effect these 

enzymes have when embedded in DNA webs. Our reporters revealed that DNA-bound NE 

retained its catalytical activity.  When applied to 5 µm mouse lung slices, the probe allowed to 

both distinguish single cell nuclei and to quantify cell-specific NE activity within the section. 

In conclusion, the activity of enzymes like CG and NE can now be studied with unprecedented 

spatial resolution. Furthermore, this work brings a flow cytometric assay into biomedical 

research which, in combination with an expanding palette of FRET-based tools, bears the 

potential to allow for rapid and detailed diagnosis and treatment evaluation for lung disease 

patients, ideally at the early stage of the disease. 
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Zusammenfassung 
 

Schleimobstruktion und irreversible neutrophile Entzündung verursachen eine ausgedehnte 

Bronchiektasie bei Lungenerkrankungen wie Mukoviszidose (CF) und Chronisch Obstruktiven 

Lungenerkrankungen (COPD). 

Um in das Atemwegslumen zu gelangen, sezernieren Neutrophile ihre Proteasen, nämlich 

Cathepsin G (CG), Neutrophile elastase (NE), Proteinase 3 (PR3) und Neutrophil Serin 

Protease 4 (NSP4). Die freigesetzten neutrophilen Serinproteasen (NSPs) tragen direkt und 

indirekt zur angeborenen Immunität bei. Der Wirkung von freigesetzten NSPs wird 

normalerweise durch endogene Antiproteasen entgegengewirkt. Das empfindliche 

Gleichgewicht zwischen diesen beiden Komponenten fehlt jedoch bei chronischen 

Entzündungen völlig. Überraschenderweise, verbinden sich NSPs gierig mit der Oberfläche 

des sekretierenden Neutrophilen, mit der Vielzahl extrazellulärer Vesikel, die die 

Atemwegsflüssigkeit füllen, und mit den verwickelten Netzen aus neutrophil extracellular traps 

(NETs). Wenn NSPs an solchen Strukturen befestigt sind, scheinen sie für Antiproteasen 

weniger zugänglich zu sein, und ihre anhaltende Aktivität führt zu einer Schädigung des 

Bindegewebes. Infolgedessen werden mehr proinflammatorische Stimuli freigesetzt und das 

Ergebnis ist ein Teufelskreis, der zu einer nicht auflösenden Neutrophilie der Atemwege führt. 

Um unsere Palette an fluoreszierenden Reportern zu erweitern und ein alternatives 

Wirkstoffziel und einen entzündlichen Biomarker vorzuschlagen, haben wir eine neue Serie 

von Reportern auf der Basis des Förster resonance energy transfer (FRET) entwickelt, die 

eine hohe Cathepsin-G-Aktivität in CF- und COPD-Atemwegen zeigten. Wir waren auch 

bewegt von der Nachfrage nach neuartigen fortschrittlichen Diagnosetechnologien zur 

Untersuchung von Sputumproben. Daher haben wir einen neuen Assay etabliert, der auf der 

Kombination einer lokalisierten FRET-Sonde basiert, die für die Flow Cytometry verwendet 

wird. Es wurde gezeigt, dass diese Kombination eine wertvolle diagnostische Technik ist, die 

in grundlegenden und translationalen biomedizinischen Kontexten anwendbar ist. Die 

Einfachheit und der Throughput der neuen Methode öffneten die Türen zu zwei neuartigen 

biomedizinisch relevanten Projekten. 

Um neue Entzündungsmarker zu identifizieren, untersuchten wir zunächst die Diskriminanten 

und häufigen Merkmale von Entzündungen in CF- und COPD-Atemwegen. Wir führten eine 

umfassende Charakterisierung von Sputumproben durch Analyse der Proteaseaktivitäten, 

Zytokine und Antiprotease-Schutz durch. Wir fanden heraus, dass COPD-Atemwege im 

Vergleich zu CF-Atemwegen durch eine Situation weniger schwerer Entzündungen 
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gekennzeichnet zu sein scheinen, die erhöhte, aber nicht äußerste Markerwerte aufweisen. 

Als key Marker war eine hohe membrangebundene Proteaseaktivität der signifikanteste 

Indikator für den Krankheitstyp, was darauf hindeutet, dass dieses Merkmal ein hoch 

relevanter Biomarker für frühe Entzündungen ist. 

Zweitens fragten wir uns, ob CF- und COPD-Exosomen zusätzlich zur Neutrophilenoberfläche 

aktives NE tragen und wie diese Aktivität auf einer einzelnen Nanopartikelebene gemessen 

werden kann. Daher haben wir einen zytometrischen Assay entwickelt, um die 

Proteaseaktivität auf menschlichen Sputumpartikeln mit einem Durchmesser von nur 100 nm 

zu überwachen. Wir haben gezeigt, dass CF-Exosomen NE an ihrer Oberfläche in den 

entzündeten Atemwegen aufnehmen und in die umgebenden Zellen exportieren. 

Schließlich synthetisierten wir small molecule probes, die mit Hilfe einer Hoechst-Einheit 

(DNA-Minor-Groove-Binder) an DNA binden sollen. Die jeweiligen Reporter konnten die NE- 

und CG-Aktivität auf NETs nachweisen und quantifizieren, was sie zu wertvollen Werkzeugen 

machte, um den eklektischen Effekt dieser Enzyme zu untersuchen, wenn sie in DNA-Netze 

eingebettet sind. Im Gegensatz zu früheren Befunden zeigten unsere Reporter, dass DNA-

gebundenes NE, jedoch nicht CG, seine katalytische Aktivität beibehält. Bei Anwendung auf 

ganze Maus-Lungenschnitte konnte die Sonde sowohl einzelne Zellkerne unterscheiden als 

auch die zellspezifische NE-Aktivität quantifizieren. 

Zusammenfassend kann die Aktivität von Enzymen wie CG und NE nun mit beispielloser 

räumlicher Auflösung untersucht werden. Darüber hinaus bringt diese Arbeit einen flow 

cytometry Assay in die biomedizinische Forschung ein, der in Kombination mit einer 

wachsenden Palette von FRET-basierten Werkzeugen das Potenzial bietet, eine schnelle und 

detaillierte Diagnose und Bewertung der Behandlung von Patienten mit Lungenerkrankungen 

zu ermöglichen. 
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1. Introduction 
 

1.1 Lungs as protective barrier 
 

The respiratory tract is one of the most recent yet exquisitely complex systems evolved to allow 

gas exchange in most terrestrial animals1.  

Inevitably, lungs turn out to be also the first site of contact for most pathogens and noxious 

agents2. The lung’s innate and adaptive immunity interplay via continuous information 

exchange (i.e. cytokine), providing a solid defense platform to such external cues1. Inside the 

airways, a mucus gel layer, 0.5 to 5 µm thick, covers the cilia and the epithelium forming a 

mesh of about 500 nm2 pore size. Inhaled agents which escape the mucin trap come in contact 

with a mosaic of secretory, basal and multiciliated cells (coating the proximal airways) and 

pneumocytes (coating the alveoli) composing the lung epithelium3–5.  Such cells are capable 

of orchestrating an effective immune response via secreting antibacterial compounds 

(lactoferrins, defensins and ROS), antiproteases (elafin and SLPI) and surfactants (SP-A and 

SP-D), via tightening the transepithelial resistance through junctions and remodeling the 

cytoskeleton6,7.  Also, in response to bacterial (TLRs and NODs) or sterile (IL-1) inflammation8 

the epithelium releases a plethora of cytokines: IL-8 is the major neutrophil chemoattractant 

into the airways while IL-33 initiates a Type 2 inflammatory response7.  Importantly, most of 

these mechanisms are inducible, therefore can be therapeutically manipulated7. 

The lung epithelium is not only the platform where inflammation develops and progresses but 

it is also the most affected component for mutations in the CFTR gene (the cause of cystic 

fibrosis) and it is the primary site of molecular and histological changes in both cystic fibrosis 

(CF) and chronic obstructive pulmonary disease (COPD) lung diseases (Figure 1)9–11. 

 

1.2 CF and COPD airways  
 

Lung homeostasis relies on the interplay of physical barriers, epithelium, microbiome and 

adaptive and innate immune cells4. Cystic fibrosis (CF) lung disease exemplarily demonstrates 

how an irreversible shift from such equilibrium culminates in morbidity and mortality12. This 

genetic autosomal recessive disease is due to mutations in the CFTR gene encoding for a 

channel mainly localized at the apical surface of ciliated cells and pulmonary ionocytes13,14. 

Over 1700 mutations have been reported to occur in the CFTR gene. Despite ~15% of them 
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do not result in any clinical manifestation, class I, II and III type of mutations cause the channel 

to be absent from the cell surface or its regulation to be defective. Class IV, V and VI type of 

mutations leave the CFTR channel with some residual function, hence the patients show a 

milder disease phenotype15.  

The mutated CFTR protein is responsible for impaired chloride secretion, for sodium 

hyperabsorption and defective bicarbonate secretion into the airways9,15,16 (Figure 1). The 

resulting pathological environment features i) mucus dehydration and stasis ii) altered pH 

which affects the function of antibacterial molecules, iii) promotion of anaerobic bacterial 

growth (such as the opportunistic pathogen P. aeruginosa), which altogether initiate and fuel 

airway inflammation (Figure 1). However, it was recently proposed that hypoxic necrosis of 

epithelial cells due to mucus thickening could be sufficient to trigger inflammation even in a 

sterile environment 17,18. 

COPD is a general term referring to all conditions featuring irreversible and deteriorating long 

term poor airflow into the airways. COPD is the third leading and unopposed cause of death 

world-wide: in contrast to deaths due to cardiac diseases which decreased steadily in the last 

decades, the number of COPD cases has doubled19.  

The main cause of COPD is tobacco smoke, but a complex network of genetic ( such as alpha-

1-antitrypsin deficiency) and environmental cues contributes importantly to its onset and 

progression10. Even though COPD and CF diseases have distinct etiogenesis, they both 

converge to strikingly similar molecular phenotypes and disease manifestations. Indeed, 

proinflammatory and noxious agents contained in tobacco smoke and polluted breathing air 

induce CFTR misfunction directly, via inhibiting the channel activity, or indirectly, by inducing 

mucus thickening, dehydration and epithelium death (Figure 1). These result mainly in 

neutrophil infiltration, whose prominent mediators, the neutrophil serine proteases, cleave and 

activate the epithelial sodium channel (ENaC) and inhibit CFTR, thereby generating close 

similarity to CF’s molecular landscape20 (Figure 1). 

 

1.3 Neutrophils shape the CF and COPD inflammatory    

microenvironment 
 

Neutrophils are indispensable soldiers recruited to fight invading pathogens. They differentiate 

in the bone marrow from myeloid progenitors21. During the course of their maturation, 

neutrophils sequentially produce four different types of granules: primary, secondary, tertiary 

and secretory ones. These compartments serve as reservoirs of proinflammatory and 
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bactericidal substances (NADPH oxidase, myeloperoxidase, NSPs, lactoferrin) which are 

released upon specific signals via a process known as neutrophil degranulation22. Chronically 

inflamed airways experience continuous neutrophilic infiltration. Also known as 

polymorphonuclear cells (PMNs), neutrophils sense IL-8 and are polarized by signal-relay 

leukotriene B4 (LTB4) gradients to migrate to the site of inflammation23. 

Once having reached their destination (i.e. the inflamed lungs), neutrophils release their 

granular content, phagocytose and kill bacteria intracellularly. They also establish a continuous 

crosstalk with the surrounding epithelium, immune cells and the microbiome24 (Figure 1). As 

a result, neutrophils actively contribute to the transformation of diseased airways into a poorly 

characterized microenvironment full of static mucus, a plethora of mediators of inflammation, 

bacteria, proinflammatory cytokines, filled up with extracellular DNA and vesicles (Figure 1) 

25. 

In such a context, a paradox unfolds: despite the large increase in neutrophil density, control 

of bacterial growth and virulence is far less efficient than expected. This contradiction may 

originate from altered local pH, defects in neutrophil secondary and tertiary granules release 

and “immunological exhaustion”, paving the way to the main pathogens colonizing CF airways 

(P. aeruginosa and S. aureus) and COPD ones (H. influenzae), as well as fungi such as A. 

fumigatus 26,27. 

This apparent inability of neutrophils to dampen infection suggests that they might not be mere 

effectors of bacterial clearance, but could play additional distinct roles, raising questions about 

the unexplored concept of neutrophil plasticity. 

The translocation of neutrophils to the inflamed airways has been linked to their general 

activation via degranulation (overexpression of CD63), loss of phagocytosis activity (sharp 

decrease in CD16 expression) and metabolic reprogramming (mTOR and NALP3 signaling 

mediated)28–30. However, it is unknown whether such activation is followed by a ramification in 

distinct subpopulations that would exert tailored functionalities and may underline diverse 

disease phenotypes or outcomes. 

So far, the identification of putative subpopulations relied on analysis of individual marker 

genes, while a comprehensive picture of the covariance of multiple markers characterizing 

neutrophils in the bloodstream and upon translocation in the airways is missing31,32. Portraying 

neutrophil plasticity could have great value as a prognostic and diagnostic marker. 
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Figure 1 From healthy, CF and COPD airways to disease molecular biomarkers.                           
Genetic (i.e. CFTR defects) and/or environmental factors (i.e. tobacco smoke) cause non-
resolving inflammation in the airways promoting mucostasis, continuous bacterial infections and 
substantial neutrophil infiltration. In turn, neutrophils propagate inflammation even further via 
secreting several mediators such as proteases. These enzymes, in addition to ECM remodeling, 
associate to the cell surface, to exosomes and to extracellular DNA where they function in a 
context dependent and poorly understood fashion. PCL = periciliary layer; ASL = air surface 
liquid, ENaC = epithelial sodium channel. 
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1.4 Protease classes and substrate specificity 
 

Proteases catalyze the hydrolysis of peptide bonds. The human genome encodes for 569 

different proteases, which can be grouped in at least seven different classes according to the 

key residues involved in the catalytic action33,34. Most proteases belong to either the serine, 

cysteine, aspartyl or metalloproteinase class (Figure 2 a). Threonine, glutamic and asparagine 

ones are found less frequently, yet the proteasome catalytic subunits possess a threonine-type 

endopeptidase activity35. Proteases recognize their target substrate via an array of 

complementary interactions between the protease specificity pockets (Sn) and the 

corresponding substrate residues (Pn) (Figure 2 b). Generally, the shape and chemical space 

of the S1 pocket and the substrate residue N-terminal to the cleavage site (P1) mainly tune the 

specificity of serine proteases. For example, cathepsin G, which shows a chymotrypsin-like 

substrate specificity, accommodates large, hydrophobic aminoacids in its ample S1 pocket 
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(Figure 2 c). Inversely, neutrophil elastase and proteinase 3 (showing trypsin-like specificity) 

S1 pockets are narrow and packed with two phenylalanine and two valine residues (Figure 2 

d). Therefore, only substrates featuring small hydrophobic residues at P1 will be recognized 

by NE and PR3 (Figure 2 d). In addition, the S2’ pocket on proteinase 3 is positively charged, 

while it is flat and hydrophobic in neutrophil elastase33. These differences have been 

characterized, studied and exploited to generate more and more specific protease substrates 

and inhibitors.  It should be highlighted that often proteases present exosites, defined as 

surface pockets different from the active site which contribute significantly to the protease 

specificity (Figure 2 b). Since exosites are poorly characterized and understood, their 

existence renders the design of protease specific substrates and inhibitors a more challenging 

task33.  

 

1.5 Neutrophil serine proteases (NSPs) pathobiology 
 

NSPs are versatile tools in the neutrophil repertoire. Neutrophil elastase (NE), cathepsin G 

(CG), proteinase 3 (PR3) and neutrophil serine proteinase 4 (NSP4) are members of the 

chymotrypsin family of serine proteases36. NSPs proteolytic action relies on a so-called 

catalytic triad: an evolutionary conserved motif comprising a serine, an histidine and an 

aspartate  residue22(Figure 2 a).  

NSPs are synthetized as pre-proforms which undergo four post-translational modifications to 

become fully active and targeted to neutrophil primary granules. Such post-translational 

modifications are carried out by two proteases: dipeptidyl peptidase I (DPPI) and cathepsin C. 

The evidence that cathepsin C activity is required for the correct activation and localization of 

Figure 2   Protease classes, mechanisms of action and substrate specificities. a) Schematic of 
the active site of serine, cysteine, aspartyl and metallo proteases. Serine and cysteine 
proteases catalyze the hydrolysis of the peptide bond via nucleophilic attack of the eponymous 
group.  While in the serine and cysteine proteases the activation of the catalytic residue is 
mediated by a proton-withdrawing group, in aspartyl proteases and metalloproteases a water 
molecule becomes activated and functions as a nucleophile. b) According to the Schechter 
and Berger nomenclature, S pockets on the enzyme bind P residues at the N terminus of the 
scissile bond, whereas S’ pockets bind P’ residues after the cleavage site, towards the C 
terminus of the peptide. The presence of potential exosites which may contribute to protease 
specificity beyond the S’ pockets is highlighted. c) Schematic of the S1, S2 and S3 pockets of 
cathepsin G which accommodate the synthetic substrate EPFWEDQ (N- to C- terminal) 
derived from the physiological cathepsin G substrate PAR-1. d) Schematic of the S2 and S1 
pockets of neutrophil elastase and the S2’ pocket of proteinase 3 bound to the synthetic 
substrate APEEIMRRQ (N- to C- terminal) derived from the physiological neutrophil elastase 
substrate PAI-1. The differences in the chemical environment of each pocket are exploited to 
develop specific substrates which can then be turned into protease reporters.  
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the four NSPs makes it an attractive yet unexplored anti-inflammatory drug target37. Primary 

or azurophilic granules bear a highly destructive arsenal of NSPs and myeloperoxidase. 

Therefore, they are used as last resort weapons. Indeed, neutrophils need to be sequentially 

challenged with priming (TNFα) and activating (FMLP or LPS) stimuli to secrete their primary 

granule content38,39. Furthermore, it has been recently proposed that different types of primary 

granules exist, each hosting a single NSP. However, the underlying molecular mechanism and  

functional consequences of such discriminatory packaging system remain obscure40.  

NSPs are deeply involved in starting and propagating inflammation. They act as potent 

bactericidal compounds inside the phagolysosome: neutrophil elastase has a primary noxious 

effect on Gram-negative bacteria, while cathepsin G is responsible for Gram-positive (e.g. S. 

aureus) infection clearance. In addition, they act as potent mediators of inflammation in the 

extracellular environment, by cleaving and activating cytokines and surface receptors 22,41. 

Moreover, NSPs evolved different substrate specificities which result in the activation of distinct 

parallel proinflammatory pathways, creating a network of complex protease relationships far 

from being understood33,41. A key factor in the regulation of protease networks is the action of 

the endogenous antiprotease shield. During the course of lasting airway inflammation 

development, for instance in CF, the continuous secretion of proteases overcomes the 

stoichiometric ratio of proteases/antiproteases, setting the stage for chronicity42. 

So far, monitoring of the protease/antiprotease balance as a clinical parameter focused on 

measuring NE concentration and activity in soluble fractions of patient airways43. However, 

NSPs also bind to the plasma membrane via a combination of electrostatic and hydrophobic 

interactions38. Such association has a strong impact on the way NSPs and neutrophils 

propagate inflammation: at the cell surface NSPs become inaccessible to antiproteases and 

this masking effect increases with the size of the inhibitor39. From the clinical standpoint, it 

therefore becomes crucial to monitor membrane-bound protease activity to catch the earliest 

stage of inflammation, when the protease/antiprotease balance is still unbroken44. 

Finally, mutations in genes encoding for NSPs or for proteins responsible for their correct 

maturation (i.e. dipeptidyl peptidase I, DPPI) cause several hereditary diseases, such as 

Papillon–Lefèvre syndrome,  acute promyelocytic leukaemia and Wegener’s granulomatosis22. 

Therefore, advancing the knowledge of NSPs biology will become fundamental in the fight 

against these conditions. 
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1.5.1 Neutrophil elastase (NE) 

 

Among NSPs, neutrophil elastase has been the most studied so far. At the pathophysiological 

level, increased and uncontrolled NE secretion in response to inflammation causes goblet cells 

metaplasia, mucus hypersecretion, CFTR inactivation and extracellular matrix remodeling into 

the ariways26. In addition, neutrophil elastase turned out to be an extremely valuable biomarker 

and predictor for CF lung disease severity and outcome. In fact, CF infants whose 

bronchoalveolar lavage (BAL) show elevated NE activity are more likely to develop 

bronchiectasis43. These studies laid the foundations for the detailed explorations of neutrophil 

elastase in CF. 

First, the NEmo series of FRET probes was developed to allow real time quantification of NE 

activity in a spatially localized fashion45. Importantly, NEmo-2 is a FRET reporter which is 

equipped with a palmitic acid anchor that renders the visualization and quantification of NE at 

the neutrophil surface possible. Next, the β-ENaC overexpressing cystic fibrosis-like mouse 

model46 was crossed with a mouse lacking for the NE-encoding gene (ELA2). The β-ENaC 

model overexpresses the ENaC sodium channel (Figure 1) and phenocopies ion transport 

defects observed in human CF lungs. As a result, airway surface liquid (ASL) depletion, 

reduced mucus transport, mucus obstruction and neutrophil-driven inflammation are common 

features of β-ENaC-Tg mice46. The phenotypic characterization of β-ENaC-Tg/NE-/- mice led 

to the discovery that NE absence reduced emphysema development, mucus plugs and 

neutrophilic infiltration into the airways47. Applied to this model, NEmo FRET probes showed 

undetectable NE activity in the soluble fractions of mouse lungs, but elevated activity on the 

neutrophil surface. These results indicated that despite free NE activity was shielded by BAL 

fluid antiproteases, membrane-bound NE was active, masked from inhibitors and therefore 

contributing to ECM remodeling and tissue damage47. Last, a human study involving adult CF 

patients demonstrated that membrane-bound NE activity negatively correlated with pulmonary 

function44. 

Despite the significant advancement of knowledge fueled by these studies, targeting NE via 

small molecule inhibitors never resulted in marketed therapeutics48. 

Similarly to CF, COPD airways feature elevated NE activity and a COPD-like mouse model 

lacking NE is protected from emphysema development49. However, NE activity on the cell 

surface was never investigated in the context of COPD airways. 
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1.5.2 Cathepsin G (CG) 

 

Cathepsin G is the most phylogenetically distant among neutrophil serine proteases36,40. Like 

other NSPs, it participates in inflammation: it processes cytokines like CXCL5, which in turn 

recruit neutrophils. In concert with NE, it activates TNFα and IL-1β and cleaves protease-

activated receptors (PARs) on the epithelium which in turn activate phospholipase C and NF-

κB22,50.  

Unlike other NSPs, CG can activate integrins when it localizes to the neutrophil surface, 

thereby promoting cytoskeleton rearrangement51. Furthermore, CG binds to the membrane 

receptor formyl peptide receptor (FPR). This association leads to calcium ion influx, mitogen-

activated protein kinase activation and protein kinase C translocation, promoting cathepsin G-

induced chemotactic activity in neutrophils50,51. Extracellularly, CG specifically modulates 

inflammation, given its unique role in activating two members of the IL-1 family, IL-36α and IL-

36β41.  

The variety of unique and shared functionalities of CG is nested into the intricate and poorly 

understood protease social network. The existence of such complex relationships might 

explain why targeting NE alone proved insufficient and highlights the need for tools to untangle 

the protease network42,52. Finally, we lack any information on the possible correlation of CG 

activity with CF and COPD disease progression. Indeed, its utility as a clinical biomarker could 

not be explored so far, caused by the lack of appropriate tools and animal models. 

 

1.5.3 Proteinase 3 (PR3) 

 

Neutrophils secrete also proteinase 3. Its bactericidal activity consists mainly of indirect effects 

such as processing of human cathelicidin (hCAP18) to its active LL-37 form. Due to its different 

substrate specificity, PR3 but not NE cleaves and activates IL-1833. Also, PR3 uniquely 

processes IL-36γ and inactivates IL-3353. In addition, PR3 is a strong inducer of apoptosis in 

endothelial cells. Even though the mechanism of PR3 translocation into the endothelium and 

its molecular targets have not been clearly defined, cell clearance by apoptosis plays an 

important role in inflammation resolution22,33.  

Interestingly, PR3 plasma membrane association seems to be genetically determined: only a 

particular subset of neutrophils which express the membrane receptor CD177 will carry PR3 

at their surface54. In fact, the interaction between CD177 and PR3 has been recently 

described55. Importantly, membrane-bound PR3 is then recognized by the anti-neutrophil 
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cytoplasmic autoantibodies (c-ANCA) which activate neutrophils in the bloodstream causing 

necrotizing vasculitis which results in the fatal autoimmune disease known as Wegener’s 

granulomatosis (WG). A strong correlation between CD177/PR3 expression and WG disease 

severity has been found. On the other hand, a possible link between PR3 expression, secretion 

and membrane association and CF and COPD disease severity has not been explored yet.  

 

1.6 Macrophage proteases contribute to chronic airway 

inflammation 
 

Neutrophils dominate the cellular composition of inflamed CF airways. However, the role of 

other innate immune cells and their secreted products should not be underestimated in such 

context.  In fact, despite the βENaC-Tg/NE−/−  model clearly demonstrated NE involvement in 

the in vivo pathogenesis of CF-like lung disease, the protease activity was found to account 

for only about 50% of the observed structural lung damage. To search for additional players 

contributing to the alveolar damage, a whole-genome expression profiling study was carried 

out by Trojanek JB et al. This work showed that macrophage metalloproteinase 12 (MMP-12) 

contributed relevantly to tissue disruption in mice56,57. Also, the MMP12 gene turned out to be 

strongly up-regulated in inflamed mice airways and its expression correlated with emphysema 

development. In addition, a link between polymorphism in MMP12 (rs2276109) and the 

severity of lung disease was identified57. Importantly, a series of FRET probes which fueled 

and contributed to the aforementioned studies were generated. Similarly to NEmo-2, the MMP 

reporter LaRee-1 reporter localizes to macrophage surfaces and reports on MMP-12 activity. 

Strikingly, the lipidated LaRee-1 donor moiety is internalized after enzymatic cleavage 

generating a “memory” effect inside cells bearing active MMP-12 at their surface58. 

Cathepsin S (CatS) is a cysteine protease which is secreted in large amounts by tumor 

associated macrophages. Therefore, its activity has been largely exploited as tumor marker 

and to develop new contrast agents and imaging technologies for accurate tumor surgical 

resection59,60. Cathepsin S gene has been found to be overexpressed in adult CF patient 

airways as well61. Recently, βENaC-Tg mice were crossed with CatS deficient ones. The 

resulting βENaC-Tg/CatS -/- model showed reduced lung damage and mucus obstruction 

compared to the βENaC-Tg mouse. In addition, direct or indirect inhibition of CatS reduced 

airway inflammation and mucin production, indicating the strict involvement of cathepsin S in 

the pathogenesis of CF-like lung disease61. 
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MMP-9 or gelatinase B is a matrix metalloprotease expressed by many cell types (epithelium, 

macrophages and neutrophils) whose activity has been found to be elevated in CF airways 

and serum. Also, a strong correlation (rho = -0.78)  between CF adult patients lung functionality 

and MMP-9 was demonstrated62 .  

While fluorescent reporters to monitor MMP-12 and CatS activity were generated59,60,63, the 

development of MMP-9 probes featuring excellent specificity and allowing for satisfactory 

spatiotemporal resolution has so far been hampered by several factors, including the 

protease’s close similarity to other proteases such as MMP-2 and its broad substrate 

recognition ability64. 

 

1.7 Extracellular DNA and neutrophil extracellular traps in 

inflammation 
 

Perhaps the most fascinating way neutrophils modulate inflammation and kill bacteria is the 

active release of their nuclear DNA into the extracellular space via a process known as 

neutrophil extracellular traps (NET) formation65.  

In 2004, Brinkmann and colleagues65 noticed that, upon stimulation with phorbol myristate 

acetate (PMA) or LPS, neutrophils reacted by flattening their surface, forming membrane 

protrusions and secreting thin and fragile filaments in the extracellular space. Such 

membraneless fibers were composed of chromatin shaped in smooth stretches (15 nm in 

diameter) alternated to round domains (25 nm). Interestingly, the secreted DNA could 

aggregate and form threads hundreds of nanometers in length, in turn tangled into intricate 

webs whose function seemed to consist prevalently in hooking and containing bacteria65. The 

entire molecular pathway leading to NETs production has not been clearly understood yet66. 

However, the process relies on a strong ROS cytosolic production, generated by NADPH 

oxidase following RAF1 and MAP2 kinases activation. Importantly, neutrophil elastase (NE) is 

deeply involved in the cellular death pathway causing NETs66,67: when neutrophils are 

challenged with NETs stimulants, primary granules translocate into the nucleus and NE 

cleaves histones causing DNA decompaction together with the epigenetic modifier of histonic 

tails PAD4. In parallel, NE cytosolic fraction propagates the cascade of events via proteolysis 

of F-actin, hence impairment of cell structural maintenance, culminating in plasma membrane 

rupture and DNA secretion 67–69. 

Since its recent discovery, the presence of neutrophil extracellular DNA has been linked to 

many inflammatory processes and not exclusively to bacteria trapping and killing. For example, 
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the main driver of pathogenesis in atherosclerosis is an uncontrolled secretion of IL-1β by 

macrophages. To become fully active, these cells require to be challenged sequentially by a 

priming and an activating stimulus. In atherosclerosis, the macrophage priming is mediated by 

cholesterol crystals, yet the activation mechanisms remained elusive.  Neutrophil extracellular 

traps were found to be the missing link between the two stages: macrophages can phagocyte 

the released nucleic acid and become licensed to release proinflammatory cytokines as IL-1β, 

which in turn elicit an Th-17 driven inflammatory response70.                                             

In addition, NETs may play an important role in “dormant” cancer cell awakening. So far, a 

correlation between inflammation and cancer relapse has been observed but was never 

explained mechanistically71. To shed light on the molecular switches responsible for the 

reactivation of metastatic cells, Albrengues and colleagues72 injected mice intravenously with 

breast cancer stem cells (murine D2.0R and human MCF-7 cell lines). Then, animals were 

challenged repeatedly with LPS to simulate a sustained airway inflammation. Such treatment 

led to the formation of aggressive lung metastases and to massive neutrophil infiltration. 

Importantly, NETosis inhibition or treatment with DNases prevented cancer formation, 

revealing that NETs were responsible for the re-entry of dormant cancer cells into the cell 

cycle72.  

Moreover, Extracellular DNA presence and accumulation turned out to be critical even for 

gallstones formation, which remains one of the most prevalent causes for hospitalization in the 

world73. The molecular mechanisms leading to gallstone formation were poorly understood 

until last year, when a team of researchers led by Martin Herrmann solved the puzzle and 

showed that extracellular DNA is a large component of gallstones and that NETs self-assemble 

into larger and larger structures promoting gallstones growth and crystallization73. 

Importantly, due to the enormous number of infiltrating neutrophils, CF and COPD airway 

mucus plugs are filled with DNA originated from “NETing”, necroting and apoptotic cells5,25. In 

fact, the most widely adopted palliative treatment to alleviate CF lung disease symptoms 

consists in the inhalation of the DNase Dornase alpha (PULMOZYME®)74. However, nothing 

is known about the clinical and biological relevance of such DNA structures into the airways 

and their diagnostic potential remains to be understood.  

Strikingly, DNA-bound neutrophil elastase activity was found to be directly responsible for 

many of the pathological conditions associated to NETs72. In fact, a proteome-wide screen of 

NETs components revealed that NE and CG are tightly associated to extracellular DNA75,76. 

Therefore, NETs might act as protease scaffolds: Albrengues and colleagues72 showed that 

when bound to DNA, neutrophil elastase processes laminin-111 in the extracellular matrix. 
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Such remodeling exposes the cleaved product of laminin which is then recognized by an 

integrin β1 receptor culminating in the aforementioned cancer cell awakening72. 

Although it is clear that many of the NETs immunological features are mediated by the 

association of proteases to DNA, no spatio-temporal information on the protease activity in this 

physiological context has been achievable due to the lack of suitable tools. As a consequence, 

possible links among extracellular DNA content, its protease activity, the associated molecular 

signatures and disease severity could not be investigated so far. Also, such tools would reveal 

novel insights into molecular mechanisms underlying NETs formation. 

 

1.8 Exosomes are active players in remodeling inflamed airways 
 

Novel pathogenic entities in the COPD airways have been recently discovered: the “activated” 

neutrophil exosomes which carry at their surface active and antiprotease inaccessible NE and 

provoke emphysema in COPD patients77. 

Exosomes are lipid enclosed small particles (50-250 nm in diameter) secreted by almost any 

cell type in response to different stimuli. They form through the endolysosomal pathway and, 

once secreted, participate to cell-to-cell communication by carrying macromolecular messages 

(protein, miRNAs and mRNAs)78. Depending on the delivered molecules, exosomes mediate 

different cellular processes: they allow immune cells for “long-distance” communication, they 

dampen immune responses and promote cellular adhesion and motility in tumors79. Exosomes 

are also being exploited as “molecular cargoes” transporters for biotechnological and 

biomedical applications, given their broad biocompatibility and modularity80. 

At the molecular level, exosomes can be distinguished from other extracellular vesicles by the 

presence at their surface of tetraspanin receptors (CD9, CD81 and especially CD63), serving 

as “exosomal markers”81. 

In the context of chronic airway inflammation, CF neutrophil exosomes are capable of 

stimulating airway smooth muscle proliferation82 which might in turn cause fibrosis. Further, 

exosomes derived from CF patient airways are 700-fold more concentrated compared to 

healthy controls83. This might be explained by the lower pH typical of inflamed airways, known 

to favor exosome trafficking among cells84. 

Given the challenges of handling and characterizing such minuscule entities, especially at the 

single nanoparticle level, NSPs activity on exosomes is hardly decipherable to date. Moreover, 
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in contrast to COPD, protease activity on CF exosomes has not been investigated so far, 

leaving the door open for their involvement in CF bronchiectasis. 

 

1.9 A palette of tools to visualize enzymes and diseases 
 

In the last decade, the combined effort of biologists, chemists and physicians resulted in the 

development of a variety of molecules, assays and imaging tools capable of lighting up 

protease activity in different settings, from cellular models up to entire living organisms. Many 

reached the clinics and are transforming surgeons’ daily routine by enhancing the pre- and 

post- operative planning and diagnostics. In-vivo surgical guidance and “on fly” decision-

making support will also become a reality in the near future60.  

Generally, disease- and context- dependent enzymes (esterases, hydrolases and proteases) 

are leveraged to visualize tumors, sites of inflammation and to quantify metabolic processes. 

A plethora of techniques serve this purpose, from fluorimetric read-outs, to advanced 

fluorescence microscopy and in vivo imaging via CT scans, PET and MRI85–87.  Historically, 

the first types of protease reporters to be widely employed were the chromogenic ρ-nitroanilide 

based substrates88 (Figure 3 a). By tuning the recognition motif of these molecules, which is 

flanked by the chromogenic part, more and more specific probes were synthetized. An 

increasing number of enzymes, ranging from cathepsins to caspases and bacterial proteins, 

can now be specifically studied thanks to the availability of tailored tools60. Such progresses 

were fueled by methods allowing a detailed characterization of the proteases’ substrate 

preference at single Sn site resolution52.  

Importantly, Förster resonance energy transfer (FRET)-based probes found widespread 

applications as optical contrast agents and biomarker reporters due to their ability to measure 

the activity of an enzymatic target, their ratiometric read-out and their high signal-to-noise 

ratio60. To function, such molecules need a moiety which is recognized by the target enzyme 

and rely on FRET, a photophysical process where a donor fluorophore passes energy in non-

radiative form to an acceptor molecule. To occur efficiently, FRET demands i) an overlap 

between the donor emission and acceptor absorption spectra, ii) the close proximity (< 10 nm) 

of the two molecules, iii) and the proper orientation of their dipoles. The processing operated 

by the target enzyme on the probe, usually the cleavage of the recognition part, results in the 

acceptor to diffuse away from the donor: the division of the donor and acceptor emission 

intensities over time generates a ratiometric read-out of the protein activity. FRET-based 

probes are usually classified in activity-based (ABPs) or substrate-based89. ABPs are often  
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Figure 3 General design, chemical structures and features of protease imaging tools.    
a) Chromogenic substrates are composed of a short peptide and a chromogenic part. The 
protease cleaves the bond between the two and the reaction can be monitored by measuring 
the absorbance shift (usually at ~ 400 nm). b) FRET probes can be divided in activity-based 
and substrate-based. The addition of chemical anchors confers substrate-based probes a 
precise spatial localization. c) MRI probes are characterized by a short substrate coupled to a 
ß-phosphorylated nitroxide moiety. The spectroscopic properties of the probe change upon 
enzymatic cleavage becoming detectable in vitro via Electronic Paramagnetic Resonance 
(EPR) and in vivo by MRI. 
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composed of a small molecule suicide inhibitor (warhead) which covalently binds to the 

enzyme of interest yielding high specificity, signal retention and localization to the site of 

enzymatic activity (Figure 3 b)60,89. Often, the acceptor part of ABPs consists of a non-

fluorescent dye, namely a quencher. The advantage of this strategy is the possibility to employ 

far-red fluorophores as energy donors which in turn allow for in vivo imaging, at the cost of 

losing the self-normalizing ratiometric readout. Probes belonging to the ABP class of molecules 

are exemplarily represented by the toolbox of cysteine cathepsin probes generated by Bogyo 

and colleagues over the years90,91 (Figure 3 b). Such ABPs made in vivo imaging of cancer 

growth possible and revealed that cathepsins are strong promoters of tumorigenesis, opening 

the doors for their exploration as promising therapeutic targets92,93.  

On the other hand, the recognition motif of substrate-based FRET probes is a cleavable 

fragment (i.e. short peptide) whose products do not covalently bind the enzyme, ensuring for 

signal amplification via the continuous processing of intact reporter molecules60 (Figure 3 b). 

Until recently, biomedical applications of substrate-based FRET probes were hampered by 

their intrinsic lack of spatial resolution due to diffusion and dilution of the reporter signal. To 

overcome such limitations, the insertion of molecular tags like lipid anchors or poly-L-lysine 

backbones for membrane and lysosomes targeting, respectively, permitted for a localized 

read-out45,58,60 (Figure 3 b).  Such strategy allowed for the development of LaRee-1 and 

NEmo-2, two plasma membrane-localized substrate-based FRET probes that fueled a deeper 

understanding of MMP-12 and NE proteases in cystic fibrosis, respectively45,47,57,58. Also the 

probe 3 developed by Hu et al.59 bears a lipid anchor for cell surface localization. However, 

this probe is based on the “reverse design” principle: an optimized and specific inhibitor for 

cathepsin S was turned into a high turnover substrate by placing an amide bond close to the 

protease active center59 (Figure 3 b).  

Recently, probes bearing MRI detectable and positron emission tomography (PET) tracers 

(such as 11C and 18F) became excellent tools to image disease-specific and enzyme-mediated 

processes94,95 (Figure 3 c). In the future, a specific and perfectly localized molecule bearing a 

PET tracer and a FRET pair would be employable for both the pre-operative planning and 

during surgery becoming an essential tool in the hands of pathologists and surgeons60. 
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1.10 Searching for therapeutics and biomarkers in CF and COPD 
 

In 2019, Food and Drug Administration (FDA) approved the use of TrikaftaTM for the treatment 

of nearly 90% of the cystic fibrosis population. The revolutionary drug relies on the combination 

of two CFTR correctors (Elexacaftor and Tezacaftor) which stabilize the channel in its properly 

folded state and one potentiator (Ivacaftor) that shifts the channel equilibrium towards its open 

conformation. FEV1% predicted is a clinical parameter widely used to assess lung 

functionality. When administered to patients with at least one allele carrying the F508del 

mutation, TrikaftaTM improved their lung functionality by an average of 14.3%, setting an 

unprecedented standard in CF treatment96,97. 

Unfortunately, such groundbreaking treatment is unlikely to stop antibiotic-resistant microbial 

infections to happen, to restore functionality of irreversibly damaged airways and to dampen 

chronic inflammation15. As a matter of fact, the 2019 The Lancet Respiratory Medicine 

Commission report section 2.2 highlights how developments in the early detection of 

inflammation, organ damage, and infection remain key challenges for the upcoming years15. 

Moreover, with the diffusion of new treatments, endpoints as FEV1% predicted value and 

frequency of exacerbation number are becoming less sensitive and poorly predictive of the 

disease status9. 

On the other hand, COPD remains an irreversible condition, with no cure available on the 

market. In addition, very few valuable biomarkers for mortality and lung function decline have 

been identified, despite the tremendous economic, social and health burden this pathology 

represents. These indicators include the 6 min walk distance (6MWD), white cell count (WCC), 

and blood levels of fibrinogen, C reactive protein (CRP), IL-6 and IL-898,99 . Unfortunately, they 

are generally considered to be “weak” markers, some do not even originate in the lung, and all 

of them fail to detect the disease in its earliest stages, which remains the hardest challenge for 

a successful COPD prognosis and treatment100,101. However, the decline in lung function 

observed in COPD patients, that was previously thought to be sudden, may start even decades 

before the first clinical signs appear. This data points to the premature presence of actors, 

such as proteases, capable of modeling a proinflammatory niche as early as in the 

asymptomatic COPD airway100.  

Proteases hold great promises not only as drug targets but also as biomarkers of inflammation, 

disease predictors and indicators of treatments efficacy. Therefore, the physiopathological 

networks they are embedded in still needs to be untangled with powerful chemical biology 

approaches. As importantly, advanced diagnostic technologies to examine sputum samples 

are required for the rapid characterization of new bio-indicators, the evaluation of anti-
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inflammatory treatments and the description of cellular subsets in a personalized manner and 

on a large cohort basis. 

 

1.11 Why does it matter? Proteases and inflammation in COVID-19 

lung disease 
 

In December 2019, a novel human virus named SARS-COV-2 was identified in the city of 

Wuhan and has since spread globally. As of April 24th, there are more than 2.7 million people 

affected by COVID-19 lung disease, and a mortality rate of approximately 6.99% has been 

calculated (https://www.worldometers.info/coronavirus/#countries). 

SARS-COV-2 is a RNA virus whose genome main products are two polyproteins: pp1a and 

pp1ab102. The main coronavirus protease (Mpro) is responsible for the processing of the 

polyproteins into functional polypeptides. Mpro belongs to the chymotrypsin family of proteases 

and shows a unique cleavage specificity featuring a substrate recognition motif (S2 to S1’) L-

Q- / (S, A, G) which is not found in any other human protease. This key feature makes it the 

most attractive drug target among the 26 viral proteins, for Mpro inhibitors would interrupt viral 

replication and are unlikely to be toxic in humans102,103.  

Very importantly, such unique specificity can also be leveraged to turn Mpro inhibitors (which 

have been already developed) into activity- or substrate- based probes for the rapid and easy 

detection and diagnosis of SARS-COV-2 infection at the point-of-care via the analysis of nose 

swabs or sputum samples. Also, such compounds could be turned into MRI contrast agents 

and be employable for the univocal discrimination of SAR-COV-2 induced pneumonia from 

other interstitial pneumonia of bacterial origin. 

The molecular elements of SARS-COV-2 responsible for its pathogenic mechanism are still 

mainly obscure104,105. It is though clear that pneumonia is the main cause of morbidity and 

mortality in severe COVID-19 patients. SARS-COV-2 seems to induce a tremendous immune 

response in the host, phenomenon known as cytokine release syndrome (CRS) or “cytokine 

storm”. Among the plethora of inflammatory mediators pouring out the airways and the 

bloodstream, the main player seems to be IL-6, a proinflammatory cytokine secreted by 

activated leukocytes104,106 . Blocking IL-6 or its receptor with anti-inflammatory compounds or 

antibodies may be an effective therapeutic strategy105. Repurposed IL-6 receptor antibodies 

like tocilizumab (Actemra, Roche) whose use is already FDA-approved for rheumatologic 
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disease are being currently tested worldwide for their effect to dampen the immune response 

in severe COVID-19 patients107.  

An important neutrophil and macrophage infiltration into the COVID-19 inflamed airways is well 

documented and the blood neutrophil-to-lymphocyte ratio seems to be a good disease severity 

predictor105. Interestingly, neutrophil elastase is a major player in pneumonia and promotes 

tissue damage which causes TNFα and IL6 over production and secretion. Therefore, it is 

reasonable to speculate that the NE/IL6 axis might contribute in setting the stage for the severe 

COVID-19 phenotype. In addition, the role neutrophils play and the potential of NSPs and 

macrophage proteases as inflammatory markers and their contribution to the profound lung 

disruption in COVID-19 patients remain completely uncharted territories. 

Although the development of the aforementioned diagnostic tools and the study of viral 

proteases in COVID-19 lung disease is out of the scope of this thesis, the concepts we apply 

for probe design and to decipher inflammation may be translatable into the fight against the 

recently emerged disease. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. Research aim and project overview 

 

20 

 

2. Research aim and project overview 
 

Overall, the goal of this project was to unravel the complexity of the neutrophil protease 

network in chronic airway inflammation at an unprecedented molecular resolution. 

To obtain a more comprehensive picture of protease pathobiology, we expanded the panel of 

available FRET reporters to include cathepsin G, a poorly characterized NSP. To this goal, a 

novel series of probes to study cathepsin G at the cell surface and in human fluids needed to 

be synthetized and characterized in depth. These reporters aimed at studying cathepsin G 

pathomechanism in airway inflammation and validating it as drug target. 

In parallel, we addressed our efforts to overcome present difficulties routinely encountered in 

the study of proteases in human sputum. To fill this gap, we aimed to design a new high 

throughput and broadly applicable assay based on flow cytometry. The set-up of such assay 

required i) the design and validation of a highly informative antibody panel to gate and study 

neutrophil phenotypes of interest and ii) the implementation of FRET reporters to correlate 

information on protease activity with neutrophil subsets and patient clinical parameters. 

We next aimed at exploring the discriminants and common traits of inflammation in CF and 

COPD airways. To this end, the newly developed technologies were to be exploited to broadly 

characterize sputum samples via analysis of localized protease activities, cytokines, 

antiprotease levels and subsets of cellular populations. In addition, we hypothesized that a 

state of chronic airway inflammation could modify the neutrophil behavior in the blood stream. 

As a first step towards a better understanding of immune cell reprogramming at the systemic 

level, we aimed at evaluating the response of CF and healthy blood neutrophils to external 

cues such as priming and activating agents.  

Finally, studying NSPs activity at neglected localizations is critically required to complete the 

picture of protease pathobiology and should to be considered when drugs are designed and 

anti-inflammatory treatments are evaluated. Therefore, an important demand was to 

investigate exosomes- and extracellular DNA-bound proteases. Quantifying NE activity in its 

exosome-bound form was achieved in bulk by immuno-capturing to magnetic beads or at the 

single nanoparticle level via a purification free cytometric assay. The transfer of exosome-

bound NE on the surrounding epithelium was monitored but the effect in terms of tissue 

damage and triggering of inflammatory response remains to be evaluated.  

The successful visualization of extracellular DNA-bound NE and CG activity required small 

molecule FRET probes to localize to the nucleic acids. This was achieved by tagging the 
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reporters with a DNA minor groove binder. The new probe set revealed new exciting biology 

of DNA-bound proteases and opened the door to translational projects correlating DNA 

content, protease activity and disease severity. 

The paucity of anti-inflammatory strategies remains the most daunting challenge in chronic 

airway diseases. This project provides the instruments enabling a more comprehensive study 

of protease driven inflammation and provides new avenues for testing drug candidates in 

model organisms and human subjects. The potential applications expand beyond lung 

diseases. 
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3. Results 
 

3.1 Part I 
 

3.1.1 Biochemical characterization of a new set of cathepsin G FRET probes 

  
To detect and quantify the activity of the serine protease cathepsin G in chronic airway 

inflammation, we designed and synthetized two reporters: mSAM and sSAM (Figure 4 a, see 

appendix for analytical data). Both reporters were synthetized via solid phase peptide 

Figure 4 Structure and cleavage characterization of spatially localized cathepsin G FRET 
reporters. a) Structures of sSAM and mSAM reporters. Top: representative line plot showing 
mSAM fluorescence signal increase recorded for 70 min after cathepsin G [1 nM] addition. 
b) Time dependent mSAM donor/acceptor ratio increase after addition of six different CG 
concentrations [50, 10, 1, 0.1, 0.05 and 0.01 nM]. c) Time dependent sSAM donor/acceptor 
ratio increase after addition of seven different CG concentrations [680, 340, 170, 85, 42.5, 
21.25 and 10.75 nM].  d, e) Bar charts representing the log10 of linear regression slopes 
calculated from donor/acceptor ratio increase of mSAM incubated with either 1 and 10 [nM] 
of cathepsin G (CG), neutrophil elastase (NE), proteinase 3 (P3), cathepsin S (CS) or matrix-
metallopreinase-12 (MMP-12).  Mean ± sem of technical triplicates are shown. f) Bar charts 
showing sSAM cleavage rates calculated as in c) and d) of sSAM incubated with seven 
concentrations [680, 340, 170, 85, 42.5, 21.25 and 10.75 nM] of cathepsin G (CG), neutrophil 
elastase (NE) and proteinase 3 (P3). Figure adapted from Guerra M. et al., DOI: 
10.1021/acscentsci.8b00933 
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synthesis (SPPS). The strategy we employed was to carry out SPPS on a Wang resin coupled 

to a lysine whose side chain was protected with a 4-methyltrityl (Mtt) group. Differently from 

the widely used fluorenylmethyloxycarbonyl (Fmoc), which is a base labile protective group for 

amines, the Mtt groups is removed in slightly acidic solutions.  Therefore, this design allowed 

for the full peptide (Fmoc-PEG-EPFWEDQK, N- to C- terminal) to be grown on the resin. 

Eventually, the two fluorophores were installed via two consecutive orthogonal deprotection 

and coupling steps: the C-terminal lysine (K) was Mtt deprotected first and the TAMRA dye 

coupled, then the Fmoc deprotection of the N-terminus allowed for coumarin343 to be inserted 

(sSAM) or for a palmitoyl lysine to be coupled followed by coumarin 343 (mSAM). Therefore, 

both probes composed of a central peptide core, EPFWEDQ (N- to C- terminal) surrounded 

by coumarin343 (the energy donor) and 5-(6)-TAMRA (the energy acceptor) dyes. The 

aminoacid sequence was derived from the natural CG substrate PAR-1, was developed and 

optimized by Attucci et al.108 , and proved to be highly specific over NE and PR3 (Figure 4 d 

and f). A short PEG linker separated the donor from the peptide: previous experience showed 

that a short dioxaoctane spacer placed in-between the dyes and the central peptide favored 

better enzyme-substrate recognition and improved general reporter solubility and membrane 

impermeability45,63. mSAM was also equipped with a lipid anchor (palmitic acid) that conferred 

the reporter the ability to associate to the cell surface, hence a precise spatial localization. 

Previously, such membrane anchoring strategy had turned out to be successful and granted   

membrane localization and signal stability for LaRee-1 and NEmo-2 probes, lipidated reporters 

which successfully monitored MMP-12 and NE activity, respectively45,63.  Optimal substrate-

based FRET probes should be recognized and cleaved at a specific amide bond (between the 

P1 and the P1’ sites). Such univocal cleavage permits to achieve a satisfactory ratiometric 

readout and to avoid signal artifacts. Therefore, the presence of secondary cleavage sites 

needed to be assessed. We showed via HPLC-MS that the mSAM peptide was recognized 

and cleaved by cathepsin G exclusively between Trp and Phe (see appendix for cleavage site 

demonstration). When the probe was incubated with NE or PR3, no observable by-products 

could be detected.  

Overall, sSAM reported on cathepsin G activity in human fluids (sputum, bronchoalveolar 

lavage, blood) while mSAM was useful to visualize the membrane-bound protease activity. 

mSAM's optimal excitation wavelength was found to be 430 nm (Figure 4 a, top panel) 

whereas sSAM was excited with a 405 nm laser. Coum343 and TAMRA λ max emission turned 

out to be around 480 nm and 580 nm respectively. In the presence of cathepsin G, the probes 

showed a time dependent increase of the donor fluorescence emission and a decrease in the 
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acceptor emission. This resulted in a ratiometric measurement of the reporter cleavage directly 

reflecting cathepsin G activity (Figure 4 a, top panel).   

Both the reporters showed satisfactory in vitro sensitivity:  mSAM discriminated CG activity in 

the picomolar range (Figure 4 b) while sSAM clearly distinguished CG activity as low as 10 

nM (Figure 4 c). 

To evaluate the reporters’ in vitro specificity mSAM was incubated with the other two main 

neutrophil serine proteases (neutrophil elastase and proteinase 3), a major lysosomal 

cathepsin involved in progression of CF lung disease (cathepsin S) and a member of matrix 

metalloproteinases secreted by activated macrophages (MMP-12), respectively (Figure 4 d 

and e). None of the proteases significantly cleaved the reporter in vitro. sSAM was challenged 

with neutrophil elastase and proteinase 3, showing satisfactory specificity towards cathepsin 

G (Figure 4 f). 

 

3.1.2 Evaluation of mSAM specificity, sensitivity and localization via confocal 

microscopy 
 

mSAM is the lipidated FRET probe geared towards monitoring cathepsin G activity in a 

spatially localized fashion, namely at the neutrophil surface. In order to be a valuable tool for 

biomarker discovery and validation, mSAM should i) associate with the plasma membrane, ii) 

reside at the cell surface for the entire duration of the assay and iii) prove high sensitivity, an 

essential prerequisite for detecting early-inflammation. 

First, we confirmed mSAM specificity via confocal microscopy of neutrophil-like cells (HL-60) 

incubated with either NE, P3 or CG. Only when cathepsin G was present, we detected a ~3-

fold increase in the donor/acceptor ratio compared to the mock treated cells (Figure 5 a). Then, 

we confirmed that mSAM was capable of detecting CG concentrations as low as 2 nM at the 

surface of HL-60 cells (Figure 5 b). To visualize and confirm the localization of mSAM, HL-60 

cells were co-incubated with a commercial plasma membrane stain and the FRET reporter. 

Then, the Pearson correlation coefficient (0.58 ± 0.1) and the area overlap (0.87 ± 0.05) 

between the two channels were calculated showing satisfactory colocalization and minimal 

internalization of the reporter after 20 min from reporter addition (Figure 5 c). mSAM showed 

comparable performance also on HEK293 cells (Figure 5 d) that we used as a model to 

demonstrate that, after addition of CG the ratio between the donor and acceptor emission 

intensities increased over time (Figure 5 d). Also, we wondered if mSAM could show a 

“memory effect” 63 due to the internalization of the hydrophobic donor moiety separated by the  
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negatively charged acceptor part after enzymatic cleavage.  Neither on HL-60 nor on HEK293 

cells (Figure 5 d) an increase of donor fluorescence in the cell cytosol after cleavage was 

observed. To confirm this, we synthetized the mSAM donor fragment and incubated it on 

HEK293 cells. No internalization of the fragment was observed even after one hour of imaging, 

indicating absence of “memory effect” and that the donor part was sufficient to grant cell 

surface retention (Figure 5 e). This observation may be explained by the presence of a 

negatively charged aminoacid (Glu) in mSAM's donor fragment which prevented its 

internalization (Figure 5 e), while LaRee1’s fragment was composed of exclusively 

hydrophobic residues (one proline and one leucine). Finally, mSAM proved a stable plasma 

membrane localization also on human bronchial epithelial cells (16HBE14o-) for up to one hour 

(data not shown). 
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3.1.3 Cathepsin G activity as a marker of chronic airway inflammation 
 

We wondered if cathepsin G activity is increased in diseased human airways and therefore 

can be used as an inflammatory biomarker. Therefore, we employed mSAM and sSAM on 

healthy and CF sputum samples and COPD bronchial lavage (BL) fluids to quantify and 

spatially define CG activity in human airways.    

The measurement of membrane-bound CG activity on sputum neutrophils from 10 healthy 

donors and 14 CF patients showed an average 3.03 increase in activity in the disease group 

(Figure 6 a and b). As far as soluble fractions are concerned, a similar situation was observed: 

CF sputum supernatants and COPD BL showed a 3.53 and 2.15-fold increase in CG activity 

compared to healthy sputum supernatants, respectively (Figure 6 c).  

Given the complex nature of human sputum and bronchial lavages, we performed a series of 

experiments to confirm we were assessing univocally CG activity. Firstly, we incubated patient 

sputum with the endogenous antiprotease alpha-1-antichymotripsin (ACT) resulting in a 

marginal, non-significant increase in donor/acceptor ratio at the neutrophil surface (Figure 6 d 

and f). A similar result was observed when the small molecule cathepsin G inhibitor I (CGI) 

was added to sputum cells (Figure 6 g). In contrast, no decrease in FRET change was 

observed when the NE inhibitor Sivelestat was present, indicating that neutrophil elastase, 

despite being abundant in inflamed airways, was not responsible for any cleavage of mSAM 

(Figure 6 g). Similarly, the incubation of patient sputum supernatants with the small molecule 

cathepsin G inhibitor I led to complete inhibition of signal increase (Figure 6 e).  

In addition to neutrophils and macrophages, the airway milieu can be populated by mast cells 

and basophils, especially in allergic conditions. Chymase is a chymotrypsin-like enzyme 

Figure 5 Performance of mSAM in cellular models. a) Confocal microscopy quantification of 
donor/acceptor ratio increase at the surface of HL-60 cells incubated with mSAM [2 µM] after 
addition of either buffer (mock), neutrophil elastase (NE), proteinase 3 (P3) or cathepsin G 
(CG). N = 50-100 cells per group. b) Confocal microscopy quantification of donor/acceptor 
ratio increase at the surface of HL-60 cells incubated with mSAM [2 µM] after addition of five 
different cathepsin G concentrations [1, 0.2, 0.02, 0.002, 0.0002 µM]. N = 50-100 cells per 
group.  c) Left panel: representative confocal microscopy images of HL-60 cells incubated with 
the commercial plasma membrane stain CellMask, mSAM and the merge of the two channels. 
Right panel: boxplots representing the Pearson correlation coefficient and area overlap 
between CellMask and mSAM channels. N = 101 cells, 2 replicates. d)  Confocal microscopy 
images of HEK293 cells incubated with mSAM 30 min after addition of cathepsin G [1nM]. The 
right panel shows quantification of the enzyme dependent donor/acceptor (D/A) ratio increase. 
e) Chemical structure (left panel) and mSAM donor fragment cellular localization on HEK293 
cells after 60 min incubation. Scale bars: 10 µm. Figure adapted from Guerra M. et al., DOI: 
10.1021/acscentsci.8b00933 
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secreted by mast cells, and, despite it does not associate to the cell surface, it shares extensive 

substrate recognition motif similarities with cathepsin G37,109. Therefore, chymase presence 

and activity in CF and COPD airways needed to be assessed carefully. Unfortunately, we 

observed that neither ACT nor CGI were capable of binding and inhibiting human mast cell 

chymase with similar potency as for CG (data not shown), making a simple inhibition assay 

insufficient for such purpose. 

Attucci et al.110, showed that chymase has a higher cleavage rate than cathepsin G on the 

substrate we employed (EPFQEDW). Accordingly, chymase cleaved sSAM more rapidly than 

any other protease tested in Figure 4 (Figure 6 h).  However, cathepsin G was still able to 

hydrolyze the reporter from 2.5 to 8 times faster when the two enzymes were incubated at the 

same molar concentration (Figure 6 h). Although unexpected, we hypothesize that this change 

stems from the introduction of bulky fluorophores and the PEG linker which may influence 

enzyme affinities. In addition, we quantified chymase activity by means of the Chymase Activity 

Assay Kit (CS1140, Merck. Darmstadt, Germany) which is cleaved by chymase and not CG 

(Figure 6 i). This substrate was then used for 10 CF sputum samples and 6 COPD lavages 

(Figure 6 j). No activity was detected in any of the COPD samples, and CF specimens showed 

an average of 24.7 nM active chymase (Figure 6 j, left panel). In parallel, the same CF samples 

were incubated with sSAM, revealing 488 nM active cathepsin G (Figure 6 j, right panel). 

These high signals cannot be explained by the low concentration of active chymase we 

measured (Figure 6 j, left panel). 

We also quantified the overall chymase concentration in 16 CF and 8 COPD samples via 

ELISA (Human Mast Cell Chymase ELISA Kit, EKC34542, Biomatik). We detected an average 

of 7.1 nM and 0.1 nM chymase, respectively (Figure 6 k). At 7 nM concentration, chymase 

can only generate less than 1.4% of the cathepsin G signal in Figure 6 j, right panel. 

The insignificant amount of chymase detected was in line with the histological cellular count of 

CF sputum and COPD BL. In CF, we quantified that neutrophils accounted for 90-99% of the 

overall cellular population, with the second most common population being represented by 

macrophages and occasionally epithelial cells. The concentration of mast cells did no go 

further than 0-0.5 %. A similar scenario was observed in COPD where neutrophil abundance 

was 50-90% of the total, followed, in different proportions, by macrophages and lymphocytes. 

If mast cell were present, we could not detect any. 

Our general results and conclusions were supported by Fahy J. et al.111 . In this study the 

authors could also not detect any tryptase (protease expressed and secreted together with 

chymase by mast cells) in 11 out of 12 of CF sputum specimens they analyzed, and they 
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reported the same range of cellular populations we observed. In conclusion, we excluded that 

our results were affected by mast cell chymase activity in the tested samples. However, we 

recommend that chymase quantity should be always checked especially in conditions 

characterized by mast cells infiltration. 

Figure 6 mSAM and sSAM proved elevated cathepsin G activity on CF neutrophils and in 
CF sputum supernatant and COPD BL fluid. a) Confocal microscopy images of healthy and 
CF sputum neutrophils. Upper panel shows neutrophils segmented nuclei (orange 
arrowheads), the lower panel shows D/A ratio on neutrophils incubated or not with alpha-1-
antichymotrypsin (ACT) 10 min before mSAM addition. b) Bar charts showing the 
quantification of CG activity on sputum neutrophils derived from 10 healthy donors and 14 
CF patients. c) Bar charts showing the quantification of soluble CG activity derived from 7 
healthy donor and 27 CF patient sputum supernatants and 12 COPD BL fluids. d) D/A ratio 
quantification of CG activity on neutrophils from 5 patients after 1 and 20 min incubation with 
mSAM and ACT [3 µM]. e) D/A ratio quantification of soluble CG activity in sputum 
supernatants in presence of the small molecule cathepsin G inhibitor I [25 µM]. f) Single cell 
confocal microscopy quantification of patient samples showed in d). g) Quantification of D/A 
increase on CF neutrophil 20 min after addition cathepsin G inhibitor I [5 µM] and sivelestat 
[3 and 60 µM]. h) Linear regression slopes derived from D/A ratio increase of sSAM 
incubated with 4 concentrations of human mast cell chymase and cathepsin G. i) Linear 
regression slopes derived from fluorescence increase of Suc-AAPF-PNA substrate 
incubated with CG or chymase.  j) Quantification of chymase (left) and cathepsin G activity 
(right) in 10 CF and 6 COPD sputum samples via chymase activity assay kit (left panel) and 
mSAM (right panel). k) Quantification of total chymase amount via ELISA assay in 16 CF 
sputum samples and 7 COPD BL. Scale bars: 10 µm. For all the microscopy experiments 
50-100 cells were imaged and analyzed. Each sample was prepared and imaged in 
duplicate. Bar charts show mean ± sd. Wilcoxon rank sum test was employed for statistics. 
Figure adapted from Guerra M. et al., DOI: 10.1021/acscentsci.8b00933 
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3.1.4 Introducing small molecule FRET probes and flow cytometry into the 

clinics 
 

FRET based protease quantification in human sputum by confocal microscopy is remarkably 

expensive and time consuming, low throughput and difficult to be widely adopted. To overcome 

all these difficulties, we implemented the use of mSAM into the flow cytometry technology.  

The first step required the design of an antibody panel (Table 1) to discriminate among the 

major cellular populations present in human sputum: neutrophils, macrophages and epithelial  

cells. The marker 7AAD was implemented to detect live cells. Overall, this panel allowed to 

selectively gate live neutrophils as 7AAD-, CD45+, CD66b+, CD16+, CD14-, CD169- cells both 

in healthy and CF samples (Figure 7 a and b).  

To avoid any spillover of antibodies into the reporter channels, we kept the violet laser line free 

of surface markers and used the 450/50 nm detector as donor channel and the 585/42 nm 

detector as acceptor one for the FRET reporter. The division of the MFI measured in these two 

channels over time provided a ratiometric readout of protease activity on gated neutrophils by 

flow cytometry. 

We isolated sputum cells as for microscopy, stained them with the antibody panel and 

subsequently with the reporter, immediately before flow cytometry. 

A cathepsin G-dependent increase in the donor/acceptor ratio on selectively gated live patient 

neutrophils was observed over time (Figure 7 c). The active enzyme at the cell surface induced 

a shift of the donor over the acceptor channel providing a read out of reporter cleavage. Such 

shift was not observed on CF cells incubated with ACT and on healthy subject neutrophils, 

proving the specificity of the reporter and confirming the results observed by microscopy 

(Figure 7 c, d and e). As a proof of concept validation of the new method, we performed in 

parallel flow cytometry and confocal microscopy on 11 human samples (5 CF and 6 healthy)  

Laser Filter Dye Antibody Localization

1 610/20 Pe-Dazzle 594 CD66b membrane

2 780/60 Pe-Cy7 CD14 membrane

3 670/14 Alexa Fluor 647 CD169 membrane

4 730/45 Alexa Fluor 700 CD16 membrane

5 780/60 APC-Cy7 CD45 membrane

Blue

Red

Table 1 Antibody panel employed for the for the set-up of sputum small molecule FRET flow 
cytometry and showed in  in Figure 7. 
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obtaining a significant correlation (rho =0.82; p = 0.002) between the two assays (Figure 7 f).    

Our ultimate goal was to prove small molecule FRET flow cytometry to be fully translatable 

into clinical diagnostics. Therefore, we developed an easily scalable, standardized and fully 

optimized protocol that can be shared among different research and medical sites. First, we 

identified the largest dynamic range reachable by small molecule FRET flow cytometry by 

Figure 7 Implementing small molecule FRET reporters into flow cytometry.  a, b) Dot plots 
showing the strategy employed to gate healthy donors (a) and CF (b) live sputum neutrophils.  
c, d) Representative dot plots showing donor/acceptor ratio change at the surface of gated 
neutrophils by flow cytometry at five different time points after mSAM addition. e) Bar charts 
showing the quantification of the mean donor/acceptor ratio measured on sputum neutrophils 
derived from 6 healthy donors and 5 CF samples after 10 minutes and treated with ACT 
inhibitor. f) Correlation between paired flow cytometry and microscopy measurements on the 
11 human samples showed in e). n= 50-70 for microscopy, n ≥ 1000 for flow cytometry. Data 
are represented as mean ± sd. Each human sample was measured in duplicate. Wilcoxon rank 
sum and Spearman rank correlation tests were employed for statistics. Figure adapted from 
Guerra M. et al., DOI: 10.1021/acscentsci.8b00933 

 



3. Results 

 

32 

 

varying cell number, reporter concentration and starting donor/acceptor ratio by changing PMT 

voltage ratio (indicated as PMT for simplicity). These experiments were repeated for mSAM 

and NEmo-2. We identified that mSAM performs best when 250000 cells are incubated with 

2µM of probe and the initial donor/acceptor ratio is set to 1:5 by changing the PMT voltages 

accordingly (Figure 8). Optimal conditions for NEmo-2 turned out to be: 2 µM reporter, 500000 

cells and a 1:5 ratio (data not shown). Both probes reached the highest signal after 10 min of 

incubation. Additionally, bleed through of the donor into the acceptor channel was measured 

by incubating cells with the donor fragment whose chemical structure is shown in Figure 3 e 

(Figure 8 d).  

In parallel, we redesigned the antibody panel to make it “universal”, so that it could fully 

discriminate among cellular populations derived from blood, sputum and BL samples (Table 

2). The second panel also includes CD63, a marker for neutrophil activation and exocytosis112. 

The combination of surface markers for gating and phenotyping shows how the assay can be 

used to correlate protease activity with a cellular phenotype of interest.  

Since neutrophil elastase is recognized as the enzyme responsible for the connective tissue 

disruption in CF and COPD airways and an excellent predictor of bronchiectasis in CF infants43 

we focused on combining the use of flow cytometry with the lipidated FRET reporter NEmo-2, 

geared toward measuring membrane-bound NE (Figure 9 a, b and c). Compared to 

conventional microscopy (Figure 9 d), we demonstrated the higher robustness of the 

technology which also guaranteed for a larger dynamic range in the FRET change (Figure 9 

d).   

In clinical routine, when patients are evaluated for their lung functionality, their forced expiratory 

volume in one second (FEV1 %) is measured. Importantly, the FEV1 % predicted in CF 

patients correlated negatively with cell-bound NE activity measured by FRET flow cytometry 

Laser Filter Dye Antibody Localization

1 610/20 Pe-Dazzle 594 CD66b membrane

2 780/60 Pe-Cy7 CD14 membrane

3 670/14 Alexa Fluor 647 CD63 membrane

4 730/45 Alexa Fluor 700 CD16 membrane

5 780/60 APC-Cy7 CD45 membrane

Blue

Red

Table 2 A “universal” antibody panel employed for the experiments showed in Figure  9. 
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(Figure 9 e). When NE activity was measured for the same patients by microscopy the 

correlation resulted in a lower and less-significant trend (data not shown). 

Overall, these results highlighted how small-molecule FRET flow cytometry scored better by 

analyzing fewer human samples via selectively gating on live-cells, specifically neutrophils, in 

a high-throughput manner and excluding the signal coming from any background or debris. 

 

 

 

Figure 8 Optimizing parameters for small molecule FRET flow cytometry. a) Bar charts 
showing changes in D/A values at different PMT voltages measured on HL-60 cells after 5 min 
incubation with CG [15 nM] and mSAM. b) D/A values measured at different mSAM 
concentrations c) General overview of D/A ratio values measured by tuning the number of 
stained cells, mSAM concentration and PMT ratio. d) MFI values measured for the donor and 
acceptor channel when cells where incubated with either mSAM or the donor fragment.  
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Figure 9 Setting up a diagnostic assay to evaluate disease severity and anti-inflammatory 
treatments. a) Representative sputum neutrophil gating strategy. b)  Mean fluorescence 
intensity of donor and acceptor channels measured for cells incubated with NEmo-2 in the 
presence or absence of the NE inhibitor Sivelestat. c) Donor/acceptor ratio increase on CF 
neutrophils treated or not with Sivelestat, normalized to the first time point measured for 
Sivelestat treated cells.  d)  Flow cytometry and confocal microscopy measurements 
correlation. e) Correlation between flow cytometry donor/acceptor ratio and FEV1% predicted 
measurements. Correlations were calculated via Spearman rank order method. f) Schematic of 
the workflow of small molecule FRET flow cytometry. Cells are isolated from the biosample, 
then stained with a proper antibody panel. Before measurement, the reporter is added and 
surface bound activity is detected over time and results are collected within one hour since the 
beginning of the procedure. Figure adapted from Hagner M.*, Frey D.*, Guerra M.* et al., DOI: 
10.1183/13993003.02355-2019 
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3.1.5 Expansion of readouts of small molecule FRET flow cytometry 

 

Fueled by the increasing availability of probes, we envision that small molecule FRET flow 

cytometry will become a useful tool for the study of protease role in various diseases and on 

diverse cell types and human samples. For example, we measured MMP-12 activity on 

macrophages derived from BAL of one CF child by means of the lipidated FRET reporter 

LaRee1. The gating strategy and the signal increase we observed are shown in Figure 10 a 

and b.  

The method was also easily adapted to study blood neutrophils, which will be described in 

the result part “Assessing neutrophil behavior in the blood stream”. 

 

 

 

 

 

 

 

 

 

 

Figure 10 Measurement of MMP-12 activity on CF children BAL macrophages via LaRee1 
probe. a) Gating strategy employed to selectively monitor BAL macrophages. b) Time 
dependent increase in donor/acceptor ratio at the surface of macrophages after addition of 
LaRee1. 
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3.2 Part II. 
 

3.2.1 Differential patterns of NE activity in CF and COPD airways 
 

The ultimate goal of this project was to characterize similarities and differences of CF and 

COPD airways in terms of mediators of inflammation as well as specific neutrophil phenotypes.  

First, we quantified NE activity in sputum supernatant and on neutrophils of CF, COPD and 

healthy subjects (Figure 11 a and b). When compared to healthy controls, NE activity was 

significantly higher in disease. However, we found specific differences: CF supernatant 

contained more than two times active NE than COPD supernatant (Figure 11 a). In contrast, 

similar levels of membrane NE activity were observed on CF and COPD neutrophils (Figure 

11 b). Interestingly, no changes in mucus weight and total protein content were measured 

which might have accounted for the diversity in NE activities among disease groups. 

Figure 11 Quantification of NE activity in disease and healthy airways. a) Fluorimetric 
quantification of soluble NE activity. The slope is calculated by linear regression of the 
donor/acceptor increase over time after incubation of the reporter NEmo-1 with sputum 
supernatants. CF group: mean = 2.4, sd = 1.9. COPD group = 1.1, sd = 1.9. b) Quantification 
of membrane-bound NE activity on neutrophils by FRET flow cytometry. Data are shown as 
donor/acceptor values after 10 min incubation with NEmo-2. CF group: mean = 3.6, sd = 0.7. 
COPD group = 3.6, sd = 1. Wilcoxon rank sum test was employed for statistics. **: p<0.01, 
****: p<0.0001. 
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The differences in soluble NE activity might not necessarily reflect a diverse total concentration 

of NE. Therefore, we performed Western blot analysis of 9 sputum supernatants for each group 

(CF, COPD and healthy) (Figure 12 a). When performing Western blot analysis on human 

sputum, it is good practice to normalize the antibody signal to the total protein content due to 

the unavailability of proper endogenous markers (i.e. GAPDH). We made sure that the exact 

same amount of protein was loaded on each lane by BCA quantification of sputum supernatant. 

Western blots reflected FRET measurements and showed that NE accounted for the 0.13 ± 

0.07 % of the CF sputum total protein content, versus the 0.03 ± 0.03 % and the 0.002 ± 0.0019 

% measured in COPD and healthy supernatant, respectively (Figure 12 b). In addition, the 

comparison of relative percentages of neutrophils, macrophages, eosinophils and lymphocytes 

in CF and COPD sputum revealed significant differences in neutrophil count (higher in CF) and 

eosinophils (higher in COPD) (Figure 13). These data indicate that factors present in CF 

airways may attract more neutrophils to the site and perhaps induce them to secrete more NE-

containing primary granules.  

Figure 12 NE total amount quantification in human sputum. a) Representative Comassie gel 
and Western blot membrane stained with an anti-NE antibody. Control: purified NE loaded at 
2 different concentrations, 1 and 2.5 µg respectively. b) Quantification of normalized NE 
content derived from Western blot analysis. Wilcoxon rank sum test was employed for 
statistics. p<0.01, ***: p<0.001, ****: p<0.0001. N = 9 samples per group.   
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3.2.2 Cytokines and antiproteases are differentially expressed in CF and COPD 

airways 

 
Alpha-1-antitrypsin (A1AT) is the antiprotease which defends tissues from inflammatory 

enzymes, especially neutrophil elastase. TIMP-1 is the main inhibitor of matrix 

metalloproteinases (MMPs)113. Neither A1AT or TIMP-1 levels resulted to be different between 

CF and COPD sputum (Figure 14 a and b). SLPI is an antiprotease and a target for active 

NE113. The concentration of the cleaved SLPI positively correlates with disease severity114. 

SLPI was the only protein whose levels were found higher in COPD (Figure 14 c), arguably in 

line with the lower amount of soluble NE in these samples. To rule out that different modes of 

neutrophil degranulation and consequent protease levels are connected to the presence (or 

absence) of unique inflammatory niches, we quantified the concentration of 7 pro- and anti- 

inflammatory cytokines in CF, COPD and healthy sputum. Among these, IL-8, a potent 

proinflammatory cytokine, showed intermediate levels of expression in COPD (Figure 14 d), 

while IL-10, a protective cytokine, was present in COPD at comparable levels to the healthy 

counterpart (Figure 14 e).  

 

Figure 13 Cytospin counts of four cell types in CF and COPD sputum samples. Wilcoxon rank 
sum test was employed for statistics. *: p<0.05. N = 8-10 patients per group. 



3. Results 

 

39 

 

  

3.2.3 Computational analysis reveals distinct inflammatory landscapes 
 

Principal Component Analysis (PCA) on the 13 variables (NE activities, antiprotease and 

cytokine levels) measured for 26 subjects demonstrated how the three groups (healthy, CF 

and COPD) were well separated by their expression levels of IL-8, IL-1β, TGF-β1, TNFα and 

soluble NE activity, with the latter being the best represented variable on the principal 

component one (Figure 15 a). On this axis, COPD are placed in-between CF and healthy for 

the intermediate concentration of pro-inflammatory factors. In addition, COPD data are 

separated along the second principal component by IL-6, IL-10, SLPI and IFN-γ.  

Despite the milder inflammatory phenotype described in COPD, membrane-bound NE activity 

was the only proinflammatory factor whose expression level was shared between the COPD 

and CF group (Figure 15 a, 1st quadrant clockwise). 

Figure 14 Inflammatory 
factors in CF and COPD 
sputum samples. 

 (a-c) Quantification of 
antiprotease content in 
sputum supernatants via 
ELISA assay. 

(d, e) Representative 
quantification of pro- 
and anti- inflammatory 
cytokines in sputum 
supernatants via 
cytometric bead array 
(CBA) assay.  

The number of samples 
measured for each 
experiment is reported 
at the bottom of every 
graph. All statistics were 
calculated by Wilcoxon 
rank sum test (U test). 
**: p<0.01, ***: p<0.001, 
****: p<0.0001. 
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A heatmap on the same factors revealed how CF samples cluster by their very low levels of 

anti-inflammatory variables (top panel, left side branch, Figure 15 b) and very high pro-

inflammatory ones (top panel, right side branch, Figure 15 b). A specular image was observed 

in the healthy group (middle panel, Figure 15 b) where anti-inflammatory agents and 

antiproteases were elevated. COPD proved to be a variegate group, with elevated inter- and 

intra-group variability (lower panel, Figure 15 b). Nonetheless, the only inflammatory factor 

which was uniformly elevated for most of the COPD samples turned out to be membrane-

bound NE (Figure 15 b, “mem NE” column). The same variable was also the most down-

regulated in the healthy group. 

Singularly, the COPD scenario featured at the same time low soluble NE activity and high 

signal on neutrophil membranes. This concurrence has been also measured in the β-ENaC 

mouse model 47 and indirectly in CF children 112, both characterized by moderate inflammation.  

In light of our data, elevated membrane NE seems a more evident and promising biomarker 

for early inflammation than before. 

Figure 15 PCA and heatmap of inflammatory factors in healthy, CF and COPD airways. a) 
PCA biplot including ellipses for the three types of disease. The dots represent the 
observations and they are colored by disease type. The larger dots represent the centre of the 
ellipse. Arrows represent the variables. The length of the variables indicates the quality of the 
variables to the factor map.  Soluble NE is the variable which described the best the separation 
of healthy, CF and COPD along the Dim1 axis, while IL-6 on the Dim2 axis. Var = variables. 
(b) Heathmap of the 13 factors measured in sputum samples. Variables were clustered 
according to hierarchical clustering, patient annotation (CF, COPD and healthy) was defined 
manually.  
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3.2.4 Characterization of CF and healthy sputum neutrophil phenotypes 

 

To challenge our hypothesis that the three different inflammatory environments are linked to 

neutrophil plasticity, we designed a 12-color antibody panel (Table 3) meant to cover some of 

the possible phenotypes cells may acquire when exposed to different stimuli. Due to samples 

availability we initially focused on the characterizing differences between healthy and CF 

samples. After antibody titration, IgG controls and compensation set-up were carried out, 19 

CF and 5 healthy sputa were stained and measured by flow cytometry. The resulting dataset 

was then analyzed by FlowSOM, an unsupervised machine learning algorithm which clusters 

multidimensional data 115 (Figure 16 a).  Healthy neutrophils did not show variability of marker 

expression and were all centered around a phenotype which can be described as: CD63low, 

Arg1high, NE high, ICAM1 high, CD66b high, CD45 high, CD16 high and TLR4 high (left panel, Figure 16 

b and c). In contrast, this population disappeared almost completely in CF neutrophils. In fact, 

the nodes which were populated by CF neutrophils showed generally a strong signal for CD63 

(Figure 16 c, CD63 panel), but they were also separated by the differential expression of 

TLR4, CD45 and especially CD16 (Figure 16 c). This latter marker is responsible for the 

antibody-antigen complex recognition, it is known as a target of NE and its expression is 

usually used to define the phagocytic ability of neutrophils.  

This analysis provides the first general (but superficial) picture of the neutrophil heterogeneity 

in human airways. We are now improving the analysis by setting up a 22-color panel by 

spectral flow cytometry (Aurora Cytek) to describe in more detail precise phenotypes. Also 

COPD samples should be included in the study to describe yet another disease condition. The 

final goal is to identify potential cellular subsets which correlate with disease phenotypes and 

describe their relationship to the diverse factors present in the airway milieu. 

Laser Filter Dye Antibody Phenotype Localization

1 530/30 FITC CD63 NE secretion membrane

2 575/26 PE Arginase 1 Immuno suppression intracellular

3 610/20 PE-dazzle-594 ICAM1(CD54) Reverse traslocation membrane

4 695/40 PerCPcy 5.5 CD66b Secondary granules secretion membrane

5 780/60 PE-Cy7 CD14 Macrophage marker membrane

6 450/50 BV421 CXCR1 (CD181) Traslocation/IL8 receptor membrane

7 525/50 BV500 CD45 Leukocyte marker membrane

8 605/12 BV605 CXCR4 (CD184) Aging membrane

9 710/50 BV711 TLR4 (CD284) Pathogen sensing membrane

10 670/14 AF647 ELA NE intracellular

11 730/45 AF700 CD16 Phagocytosis ability membrane

12 780/60 APC-Cy7 live/dead membrane

Blue

Violet

Red

Table 3 Antibody panel used to generate data shown in Figure 16. 
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Figure 16 FlowSOM analysis of sputum human neutrophils. a) PlotStars of the FlowSOM 
analysis carried out on roughly 2.5 mio cells in total. The background color indicates which 
metacluster each node is assigned to. The length of the marker triangle into each node 
indicates the level of expression for that marker. For each sputum sample (19 CF, 5 healthy) 
20000 to 300000 cells were recorded. b) PlotStars showing the percentage of cells populating 
each node, divided by the number of healthy and CF derived cells. The size of each node is 
proportional to the number of cells present in the node itself.  c) Plot of six out of the eight 
markers utilized for the clustering algorithm. The size of the circle inside each node indicates 
the expression of such marker for the cells included in that node. The plots are made by 
including both CF and healthy cells. 
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3.2.5 Assessing neutrophil behavior in the blood stream 

 

To depict a broader picture of inflammation at a systemic level, we assessed whether 

neutrophils behavior is reprogrammed when in the bloodstream. To become fully active and 

secrete their primary granule content, neutrophils evolved a protective mechanism which 

requires a “priming” stimulus followed by an activating trigger. We wondered if CF blood 

neutrophils respond differently when challenged with inflammatory cues. First, we showed that 

blood of CF patients contained roughly four 

times more neutrophils per milliliter then healthy 

donors (Figure 17), underlying an increased 

mobilization of neutrophils out of the bone 

marrow, a phenomenon known as “left shift”21. 

We then used NE secretion and activity in the 

supernatants and at the cell membrane as a 

biomarker of full-blown neutrophil activation. At 

resting state, we observed a moderate yet 

constitutive secretion of NE by purified 

neutrophils which was higher for healthy cells 

(left panel, Figure 18 a). Then, we incubated 

blood neutrophils with the priming agent TNFα, 

with a combination of TNFα and the stimulating peptide FMLP, to resemble the physiological 

neutrophilic activation, or with a combination of FMLP and Cytochalasin B, to induce the most 

potent activation possible. As expected, the priming agent alone was not sufficient to induce 

further granule release. In contrast, the other two stimulatory combinations induced CF 

neutrophils to secrete significantly higher amount of soluble NE (Figure 18 a, right panel). The 

stimulated cells were then analyzed by flow cytometry and their membrane-bound NE activity 

was measured. This analysis revealed higher surface NE activity on CF neutrophils stimulated 

with Cytochalasin B and FMLP (Figure 18 b, right panel).  

We hypothesized that a systemic inflammation could shape neutrophil maturation into bone 

marrow and equip them with a higher NE content. Therefore, we counted the number of NE 

containing granules inside blood neutrophils isolated from 12 CF and 10 healthy samples 

(Figure 19 a and b). As a result, we observed that CF blood neutrophils contained in average 

of 12.8 ± 12.2 granules per cell against the 9.08 ± 8.5 in healthy ones (Figure 19 b). CF 

neutrophil granules turned out to have a slightly larger volume (24.4 ± 15.9 pixel2) than healthy 

ones (17.0 ± 11.4 pixel2) (Figure 19 c).  

Figure 17 

Increased number 
of neutrophils in 
CF blood. 
Neutrophils from 
20 CF and 9 
healthy blood 
samples were 
purified from 8 mL 
of whole blood and 
counted. Statistics 
are calculated via 
Wilcoxon rank sum 
test (U test). ***: 
p<0.001 
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Figure 18 Blood neutrophils response to stimuli. Soluble (a) and membrane-bound NE activity 
(b) measured in the supernatants and at the cell surface after treatment of blood neutrophils. 
Data on the right panels are shown per patient, normalized to its respective unstimulated value 
(shown on the left). Statistics are calculated via Wilcoxon rank sum test (U test) *: p<0.05, **: 
p<0.01. 
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Figure 19 CF neutrophils contain more and larger primary granules than healthy cells. a) 
Representative maximal projection of confocal microscopy stacks of blood neutrophils stained 
with a NE antibody and DAPI as nuclear marker. b) Quantification of granules contained in 
each neutrophil. Each data point indicates the number of granules contained per cell. c) 
Quantification of granule volume (indicated as pixel2). Each point represents a granule. 
Statistics are calculated via Wilcoxon rank sum test (U test) *: p<0.05, ****: p<0.0001 
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3.3 Part III 

 

3.3.1 Setting up a bulk assay to detect exosome associated NE 

 

In a major advance in 2019, exosomes and extracellular vesicles were described as 

pathogenic entities mainly responsible for emphysema onset and progression in COPD via the 

unopposed NE activity associated to their surface77. 

To provide the extracellular vesicle research field with a rapid and versatile tool, we extended 

the NEmo-2’ spectrum of applicability and made it suitable to quantify NE activity on exosomes.  

We started from the purification of extracellular vesicles from CF and healthy sputum via the 

Total Exosome Isolation (TEI) Reagent (Invitrogen™) (Figure 20 a). The presence of correctly 

sized particles (50-250 nm) and shape (cup-shaped after drying) was confirmed by 

transmission electron microscopy (TEM) (Figure 20 b). In addition to being a neutrophil 

activation status indicator, CD63 is a transmembrane tetraspanin protein routinely used as 

exosomal marker116. Western blot analysis demonstrated that CF exosomes carried NE at their 

surface in considerably higher amount compared to healthy ones, also when NE amount was 

normalized to CD63 (Figure 20 b).  

To ensure a complete and specific purification of exosomes from human sputum, we coupled 

the precipitation mediated by the TEI with an immune capture of particles to CD63-derivatized 

magnetic beads (Figure 20 c). Then, beads loaded with exosomes were carefully washed up 

to five times to remove any debris and remnants of free NE. The successful removal of the 

unbound fraction was confirmed by the absence of NE activity in the wash supernatants (data 

not shown).  

Treatment of nanosized particles with a nonionic detergent represents a crucial control117. The 

detergent preferentially dissolves lipid enclosed particles and not immune complexes or non-

specific aggregates. Therefore, Triton X-100 treatment of immunocaptured particles should 

solubilize exosomes and transfer NE activity from the bead to the supernatant fraction. After 

carefully washing the bead-exosome complexes and treating them with the detergent, we 

observed an almost complete loss in NE activity in the bead fraction and reappearance of such 

signal in the supernatant fraction (Figure 20 c).  

Finally, we excluded the possibility that elastase was non-specifically thethered to beads by 

incubating the magnetic beads with different NE concentrations. In fact, no activity was 

detected on beads after they were treated identically to the exosome-beads complex. 
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Next, we explored whether exosomes acquired NE at their surface in the airways or if such 

association happened already in the bloodstream. This assay showed that neither CF nor 

healthy blood exosomes carried active NE at their surface, while CF sputum exosomes 

possessed an “activated” phenotype (Figure 20 d).   

 

 

3.3.2 A single nanoparticle assay based on flow cytometry 

 

We worked on developing a cytometric assay that would permit for a rapid, “purification free” 

and single-nanoparticle based evaluation of vescicles number, antigen repertoire and NE 

activity in human samples. First, our flow cytometer needed to be calibrated to identify and 

gate particles in the range of 100-500 nm (Figure 21 a). Commercial polystiren or glass beads 

Figure 20 Measuring NE activity on immunocaptured CD63+ sputum exosomes. a) Schematic 
depiction of the exosome purification strategy. b) Top: Representative transmission electron 
microscopy images of exosomes isolated from human sputum via Thermo Fisher Isolation Kit. 
Bottom and right: representative Western blot for CD63 and neutrophil elastase (bottom) and 
the quantification of their ratio (right) for 10 CF and 5 healthy exosome isolates. c) Slopes 
indicating free NE activity obtained from the incubation of immunocaptured exosomes and their 
supernatant after four washing steps and samples treated with Triton X-100 (0.1%) for 15 min. 
N = 5 exosome samples isolated from 5 different CF patients. d) Slopes indicating free NE 
activity obtained from the linear regression of donor/acceptor increase over time of plasma 
(top) and sputum (bottom) exosomes incubated with NEmo-2.   
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differ from exosomes in terms of refractive index, and their use as standard reference is not 

advised118. 

Therefore, we turned to niosomes, lipid-enclosed particles developed by Lozano-Andrès et 

al.118, designed to resemble exosomes features and physical properties. By means of such 

FITC-beads, we could set proper threshold and voltage settings to properly discriminate 100, 

200 and 500 nm particles (Figure 21 a). 

Once the machine was calibrated, we proceeded wiht the isolation of sputum exosomes via 

TEI which were stained with CD63-FITC or CD63-AF647 and their respective IgG controls. In 

both positive stainings, a clear population of events reflecting the expected particle size were 

Figure 21 Tuning a flow cytometer to “see” nanoparticles. a) Representative FSC-H vs. FITC-
530/30Blue plots of differently sized (100,200 and 500 nm) niosomes. b) Dotplots of sputum 
exosomes stained with either CD63-FITC or CD63-AF647(center panel) and respective IgG 
controls (left panel). Boxplots in the right panel indicate the frequency of the positive 
populations shown in the dotplots. N = 5-7 sputum exosomes per group. Statistics were 
performed using Wilcoxon rank sum test (U test), *: p<0.05. 
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identified (Figure 21 b, central panel). In both cases, no or very few stained events were 

detected when samples were incubated with the IgG control (Figure 21 b, left panel).  

Once again, treatment of sputum exosomes with triton X-100 resulted in a 10.5 fold decrease 

in the number of CD63+ events, confirming that the identified cloud consists of lipid-enclosed 

nanoparlticles (Figure 22 a).   

Finally, by analysing CF sputum exosomes incubated with the FRET reporter NEmo-2 via flow 

cytometry a ratiometric measurement of NE activity on airways-derived nanopartcles was 

achieved (Figure 22 b).  

 

Figure 22 Exosome FRET flow cytometry. a) Representative FSC-H vs. 530/30 Blue (FITC) 
plots (left side) and population quantification (right side) of exosomes (gated positive 
population) treated with two different concentration of Triton X-100 (0.05 and 0.1%) for 15 min. 
N = 7 human sputa (4 CF and 3 healthy). b) (left panel) Time dependent donor/acceptor 
increase on CF (top) and healthy (lower) exosomes gated as CD63 positive nanoparticles. 
(Central panel) Histograms showing the time dependent change of the signal of the reporter 
NEmo-2 on exosomes. (Right panel) Quantification of the measured donor/acceptor increase 
after 10 min incubation with nemo-2 on 3 healthy and 4 CF exosomes. Statistics were 
performed using Wilcoxon rank sum test (U test). 
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3.3.3 Exosomes export active proteolytic enzyme to the surface of epithelial 

cells 
 

Exosomes might act as carriers of active NE to the surface of surrounding cells. Upon such 

transfer, NE might cleave protease activated receptors (PARs) and start inflammatory 

cascades on target cells119. To test this hypothesis, we purified exosomes from human sputum 

as CD63, CD9 and CD81 positive particles. We next supplemented identical amounts (3 µg / 

mL) of CF and healthy exosomes to human bronchial epithelial cells (16HBE14o-) stained with 

NEmo-2 and recorded the increase of donor/acceptor ratio at the plasma membrane by 

confocal microscopy (Figure 23 a). CF exosomes transferred significantly higher amounts of 

active NE to the cell surface of human bronchial cells compared to healthy exosomes (Figure 

23 b). Confirming that the transfer was exosome-mediated, Triton X-100 treatment abolished 

the signal increase. Moreover, incubation of CF exosomes with A1AT and Sivelestat proved 

that the effect was NE-specific (Figure 23 b). 

 

 

Figure 23 Membrane-bound NE activity on human bronchial epithelial cells. a) Representative 
confocal microscopy images showing the donor/acceptor ratio at plasma membrane of HBE 
cells after 1 min (top image) and 50 min (bottom panel) incubation with 0.3 µg/mL CF 
exosomes purified from patient sputum. b) Mock subtracted quantification of donor/acceptor 
ratio change on the surface of cells incubated with healthy or CF exosome isolates. For four 
CF samples, exosomes where treated with Triton X-100 (0.1%) for 15 min at RT, and then 
incubated on HBE cells. Additional 3 and 2 CF samples were treated with the NE inhibitors 
Sivelestat and A1AT for 15 min at RT, respectively. Roughly 400 cells were measured. 
Statistics performed using Wilcoxon rank sum test (U test), *: p<0.05. 
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3.3.4 General strategies for localizing FRET probes to DNA 

 

Many inflammatory processes such as atherosclerosis and gout are mediated by proteases 

bound to extracellular DNA70.  However, the study of such enzymes in their DNA-bound form 

has been challenging due to the lack of proper tools to visualize their activity.  

We hypothesized that by redesigning the structure of localized FRET reporters, we could 

address our probes to extracellular nucleic acids, and therefore provide a useful reporter 

capable of shedding light on DNA-bound proteases pathobiology (Figure 24). The successful 

targeting to DNA can be achieved via coupling DNA-binding agents, short domains like zinc-

fingers or oligonucleotides to the probe of interest. The resulting compound would therefore 

tether to nucleic acids. First, we chose to add an acridine moiety to our probes. Acridines are 

known intercalating compounds and their availability as 9-acridinecarboxylic acid makes them 

directly suitable for SPPS. However, acridine-containing FRET probes did not possess 

satisfactory DNA localization and therefore such design was rapidly set aside. Second, we 

were inspired by SiR-Hoechst, a widely used DNA stain agent that finds broad application for 

live cell nanoscopy applications120. SiR-Hoechst binds DNA with a Kd of ~8 µM and is 

composed of a far-red silicon-rhodamine dye (SiR) directly coupled to the bisbenzimide core 

of the Hoechst dye. The employment of such DNA minor groove binder allowed us to 

successfully monitor NE and CG activity on extracellular DNA and neutrophil extracellular traps 

(NETs). 

 

 
Figure 24 Overall representation of NETs and DNA-bound probes.  Neutrophil serine 
proteases NE and CG bind to extracellular DNA due to electrostatic interactions and 
participates to innate immunity. By targeting FRET reporters to the nucleic acid we visualize 
and quantify DNA-bound extracellular protease activity. 
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3.3.5 H-NE and H-CG: bisbenzimide-containing FRET probes synthesis and 

characterization 

 

Our strategy to target small-molecule probes to DNA was to anchor the minor groove binder 

Hoechst 33258 to the FRET probe. We imagined such anchoring to be mediated via a copper-

catalyzed azide-alkyne Huisgen cycloaddition since click chemistry possesses great 

orthogonality over the other reactions performed during the SPPS routine. First, the free base 

of the commercial fluorophore Hoechst 33258 (compound 2) was obtained. Then, compound 

3 (Hoechst-azide) was derived from the alkylation of compound 2 by a bromide-PEG-azide 

(Figure 25 a) (see appendix for complete chemical characterization, NMR and high resolution 

mass spectrometry). Hoechst-azide was then clicked on the propargylglicine connecting the 

PEG spacer and the energy donor via copper-catalyzed click chemistry reaction to generate 

the probes H-CG and H-NE respectively (Figure 25 b and Figure 26 a). In addition to the H-

NE and H-CG probes (compound 4), also the precursor alkyne containing probes were cleaved 

off the resin to generate the control probes A-NE and A-CG (Figure 26 a). 

Figure 25  Scheme of synthetic route for DNA-binding reporters. a) Commercial Hoechst 33258 
hydrochloride was precipitated in a K2CO3 solution. Bromide-PEG-Azide was then added to 
the compound 2 and the compound 3 (Hoechst-azide) was obtained.  b) Copper-catalyzed 
click reaction was performed on resin-bound peptides terminating with a propargylglicine to 
obtain the desired final product. The non-clicked peptides were used to generate the control 
probes A-NE and A-CG (Figure 26 a). 
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To evaluate the performance of H-NE and H-CG we determined their emission spectra in 

aqueous solution and observed a rather low acceptor sensitized emission, indicating that the 

acceptor is serving mainly as a quencher (Figure 26 a, top panel). When the enzyme was 

added, a strong increase in the donor emission was recorded, indicating loss of FRET and  

cleavage of the reporters (Figure 26 a, top panel). 

H-CG reporter is meant to monitor CG activity since it bears the same peptide we employed 

for mSAM, while H-NE reports on NE (the peptide is a neutrophil elastase substrate developed 

and characterized by Korkmaz et al.87, also shown in Figure 2 d). When tested against NE, 

CG, P3, chymase, MMP-12 and cathepsin S, H-NE showed high specificity towards its target 

protease (Figure 26 b). Also H-CG showed optimal performance in terms of specificity towards 

NE and PR3 (Figure 26 c). 

 
 

Figure 26 Structure, cleavage and performance of DNA-bound reporters H-CG and H-NE. a) 
Scheme of probes with chemical structures of the control reporters A-CG/A-NE and the 
corresponding DNA minor groove binder probes H-CG and H-NE. Top: representative H-NE 
fluorescence signal increase at 1, 30 and 60 min after addition of neutrophil elastase (NE). 
Data are shown as mean ± standard deviation, n = 3 technical replicates.   b) Bar graphs 
showing cleavage rates calculated from linear regression slopes of H-NE [2 µm] incubated 
with 5 different concentrations of different proteases for 60 min. Data are shown as mean ± 
standard deviation, n = 3-6 technical replicates. Enzyme concentrations: 0, 1.56, 6.25, 25, 100 
µm. MMP-12: matrix metalloproteinase-12. c) Bar graphs showing cleavage rates calculated 
from linear regression slopes of H-CG [2 µm] incubated with [20nM] of CG, NE or PR3 for 20 
min.  
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3.3.6 H-NE DNA localization 

 

To assess the property of H-NE as a DNA dye, we purified neutrophils from whole blood, which 

were then fixed and incubated with 2 µM of the reporter. A clear nuclear staining appeared 

only inside neutrophils which had been previously permeabilized (Figure 27, left side). This 

result indicated that H-NE did not penetrate live-cells.  The permeabilized neutrophils resulted 

to be homogenously and brightly stained 30 min after addition of H-NE.  Next, we compared 

H-NE DNA binding specificity with the probe A-NE. The latter compound served as a negative 

control due to the absence of the Hoechst moiety on the terminal amino acid. In fact, no specific 

nuclear signal was detected when blood neutrophils were incubated with 2 µM of A-NE. Only 

a diffused and dim signal was observed inside permeabilized neutrophils, possibly due to the 

non-specific binding of A-NE to organelles and other “sticky” cellular structures (Figure 27, 

right side). 

 

The goal of our set of probes was to light up protease activity on extracellular DNA such as the 

one secreted by neutrophils in response to inflammation in the form of neutrophil extracellular 

traps. Therefore, the DNA binding properties of H-NE were assessed on extracellular DNA 

secreted by blood neutrophils. NETs formation was recently described to be a novel cellular 

death pathway, molecularly distinct from apoptosis and necrosis67. Phorbol myristate acetate 

(PMA) is a plant derived tumorigenic compound121. PMA is a strong activator of protein kinase 

Figure 27 H-NE does not enter live neutrophils and stains DNA via its Hoechst moiety.  
Purified blood neutrophils were fixed with PFA 4% and permeabilized (0.1% Triton X-100 for 
10 min) or left untreated. Then cells were incubated with either H-NE and A-NE. (bottom) 
representative confocal microscopy images. Experiments were performed in duplicate and 
cells derived from two healthy blood donors. Scale bars: 5 µm. 
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C which induces ROS- and NADPH- dependent pathways culminating in NETosis122. 

Therefore, PMA-induced blood neutrophils are a widely used model to study extracellular DNA 

properties and biology. We purified blood neutrophils (purity > 95 %) from two healthy donors 

and stimulated cells with PMA. H-NE painted the nuclear DNA which is released after nucleus 

and plasma membrane rupture following NETosis (Figure 28 a). Once again, we observed 

that H-NE did not penetrate intact cells (white arrows in Figure 28 a). Thin DNA filaments less 

than 1 µm in diameter were also clearly distinguishable in the reporter channel (Figure 28 a, 

magnified images). A further proof of the DNA localization of H-NE came from the fluorescence 

line profile analysis of NETs incubated with the commercial DNA stain agent Draq5 in the 

presence of H-NE (Figure 28 b). The profiles showed almost complete overlap between the 

two channels indicating high colocalization (Figure 28 c). Accordingly, we calculated Pearson 

correlation coefficient (0.76 ± 0.17) and area overlap (0.94 ± 0.07) between Draq5 and H-NE 

channels on 199 NETs. When incubated with the control probe A-NE which does not possess 

any DNA-affine part, only aspecific signal was detected (Pearson: - 0.008 ± 0.21, Overlap: 

0.51 ± 0.20, n = 176) (Figure 28 d). The probe was also successfully employed in live cell 

imaging to stain neutrophils nuclei over the course of NETosis. During live cell imaging, we 

observed the appearance of reporter signal in the nucleus only right after plasma membrane 

rupture was observed (Figure 28 e).  

As a proof of concept of H-NE ability to reveal NET-associated enzymatic activity, we incubated 

blood neutrophil NETs with increasing concentrations of NE (Figure 28 f). After carefully 

washing the unbound protease, H-NE was added for 30 minutes and the signal was recorded 

via confocal microscopy. A concentration-dependent increase in donor/acceptor ratio was 

observed (Figure 28 g). Importantly, the measured ratio increase was due to a fluorescence 

increase in the donor and a simultaneous decrease in the acceptor channel (Figure 28 h). 

We concluded that the attachment of bisbenzimide derivatives to substrate-based FRET 

probes successfully targeted ligands to DNA and permitted the generation of probes for the 

visualization of proteases in their DNA-bound form. 

 

 



3. Results 

 

56 

 

 

Figure 28 H-NE paints neutrophil extracellular traps DNA and detects NE activity in its DNA-
bound state.  a) (Left panel) Representative maximum intensity Z-projection of a confocal 
tilescan of fixed neutrophils after PMA stimulation ([2 µM] for 2.5 hours) and incubated with 
the commercial DNA stain (Draq5) and H-NE [2 µm] for 30 min. Arrows point to cells not 
having undergone NETosis and stained by Draq5 only. Scale bars: 30 µm, LUT: ICA.  (Right 
panel) Magnification and 90° rotation of the selected area showing staining of decompacted 
DNA filaments by Draq5 (top) and H-NE (lower). Scale bars: 30 µm, LUT: fire. b) 
Representative confocal images of fixed PMA-stimulated neutrophils incubated with Draq5 
and H-NE. The magnified area shows lines used to generate the data analyzed in (c). Scale 
bars: 10 µm. LUT: grays and fire (magnified area). c) Line profile analysis of the four 
selections shown in (b, magnified areas) for Draq5 (orange) and H-NE (green) channels. d) 
Violin and boxplot showing Pearson correlation coefficient and area overlap between Draq5 
and H-NE (Pearson: 0.76 ± 0.17, overlap: 0.94 ± 0.07, n = 199) or Draq5 and the control 
probe A-NE (Pearson: - 0.008 ± 0.21, Overlap: 0.51 ± 0.20, n = 176). NETs were generated 
from blood of two healthy donors and technical duplicates were imaged. Statistics are 
calculated via Wilcoxon rank-sum test.  ****: p<0.0001. e) Confocal Z-stack showing PMA-
stimulated live neutrophils undergoing NETosis and incubated with Draq5 (top panel) and H-
NE [2 µm] (lower panel). Scale bars: 10 µm. LUT: fire. f) Schematic of experiments performed 
in g) and h). g) Boxplots showing measured donor/acceptor ratio on extracellular DNA after 
incubation for 30 min of 5 NE concentrations [1,10,20,100,200 nM]. The “0” indicates NETs 
incubated with Sivelestat [100 µM] for 30 min as a negative control. h) Line plots of donor 
increase and acceptor decrease measured in g.  
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3.3.7 NE but not CG is proteolytically active in its DNA-bound form 

 

The general opinion regarding NETs bound proteases is that they serve as a reservoir of active 

proteases which are kept inactive as a consequence of nucleic acid binding123. However, these 

observations originated from experiments carried out via a fluorimetric readout on purified DNA 

and suffered from lack of a direct measurement and spatial localization.  

Therefore, we challenged this view by applying H-NE and H-CG to NETs derived from four and 

two different healthy donor blood samples, respectively. Surprisingly, we could detect a time-

dependent and inhibitor-sensitive signal increase on such DNA web-like structures incubated 

with H-NE over the course of 120 min (Figure 29 a and b). This suggests that DNA-bound NE 

Figure 29 DNA-bound NE retains its hydrolytic ability. a) Representative confocal images of 
blood NETs incubated with H-NE for different time periods (5, 30, 60 ,120 min). D: donor 
channel, A: acceptor channel, R: donor/acceptor ratio channel. Right panel: confocal image 
showing blood NETs incubated with H-NE after addition of [200 nm] of active NE as a positive 
control. Scale bars: 10µm, LUT: grays and fire (ratio images). b) Violin and boxplots showing 
the quantification of NE activity on NETs derived from blood neutrophils isolated from 4 healthy 
donors. Sivel: cells were preincubated with Sivelestat [100 µm] for 10 min prior of H-NE 
addition. NE: NETs were preincubated with active NE [200 nm] for 10 min prior of H-NE 
addition (shown in the right panel). Statistics are calculated via Wilcoxon rank-sum test. ****: 
p<0.0001. 
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retains its activity to cleave substrates in close proximity and has functional implications 

regarding the roles of the protease in the DNA bound form. Conversely, H-CG did not reveal 

any signal increase due to cathepsin G activity after incubation with blood neutrophils NETs 

(Figure 30, left panel). The lack of donor/acceptor ratio increase was not due to lack of reporter 

sensitivity, since the incubation of blood NETs with exogenous CG prior to H-CG addition could 

generate a strong signal increase (Figure 30, right panel).  Therefore, in contrast to its 

membrane-bound form, DNA-bound CG seems to be differently regulated or inhibited. Taken 

together, these results highlight the importance to finely dissect protease activity in all their 

forms and subcellular locations since the understanding of context dependence will allow for 

more tailored anti-inflammatory treatments.  

 

3.3.8 Application of H-NE to human sputum 
 

The value of H-NE as a translational tool highly depends on its ability to monitor DNA-bound 

NE on extracellular DNA derived from CF and COPD airways. The presence of high amounts 

of free nucleic acid coming from necrotic and apoptotic cells as well as NETotic neutrophils is 

well documented25,69 and can be observed in Figure 31 a.  

H-NE successfully stained large DNA condensates filling up the CF sputum (Figure 31 b). In 

addition, we could quantify NE activity on sputum DNA, which could be inhibited by 

pretreatment with a specific inhibitor, the small molecule Sivelestat (Figure 31 c and d). In 

Figure 31 c, left side, the semi-decondensed DNA of a neutrophil nucleus in the process of 

NETosis can be observed. The NE activity seemed to be localized in the condensed nuclear 

region. 

Figure 30 DNA-bound CG does not retain its hydrolytic ability. The figure shows violin and 
boxplots showing the quantification of CG activity on NETs derived from blood neutrophils 
isolated from healthy donors. CGI: cells were preincubated with cathepsin G inhibitor I [100 
µm] for 10 min prior of H-CG addition. CG: NETs were preincubated with active CG [200 nm] 
for 10 min prior of H-CG addition (shown in the right panel). Statistics are calculated via 
Wilcoxon rank-sum test.  
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3.3.9 DNA-bound NE activity in complex systems 
 

Finally, the simultaneous monitoring of DNA spatial information and enzymatic activity bears 

the potential to generate a comprehensive picture of extracellular DNA mediated inflammatory 

processes in the context of large anatomical structures such as liver, lungs and veins. We 

chose β-ENaC-Tg (also indicated as Scnnb1-Tg) mice as a model, because its airways are 

often clogged by mucus plugs25,47. Trapped inside the mucin webs, immune cells and large 

quantities of extracellular DNA can be found.  

We fixed, embedded and cut mice lungs into 5 µm serial transversal lung slices (Figure 32 a). 

H-NE stained clearly the DNA contained in the mouse airways at more than satisfactory 

resolution, making it possible to quantify NE activity at the single-cell level (Figure 32 b and 

c). Specifically, we could assess NE activity inside the nuclei of neutrophils, monocytes, 

epithelium and on mucus-embedded free DNA of lung slices incubated solely with the probe 

or in combination with the negative control Sivelestat (Figure 32 d).  We observed higher NE 

activity in neutrophils and on free DNA compared to the Sivelestat control. As expected, no 

activity was found inside the nucleus of monocytes and epithelial cells (Figure 32 d).  

Figure 31  H-NE stains large DNA condensates and reveals high NE activity on CF derived 
extracellular DNA. a) H&E cytospins of healthy (left) and CF (right) sputum depicting different 
amount of extracellular DNA content. Magnified area: segmented nuclei of healthy neutrophils 
(left) and decondensed and potentially netting nuclei of CF neutrophils(right). b) Confocal Z-
stack of CF sputum stained with Draq5 (left) and H-NE (right). Area of the larger orange region: 
~ 7000 µm2 LUT: fire. c) Representative confocal images showing measured NE activity on 
extracellular DNA present in CF sputum. LUT: fire and grays (Draq5 images). Scale bars: 10 
µm. d) Boxplots showing quantification of NE activity on CF sputum extracellular DNA 30 min 
after addition of H-NE, incubated with or without Sivelestat [100 µm] prior to H-NE addition for 
10 min. Patient A045: Sivelestat treated (D/A= 4.00 ± 1.61), untreated (6.87 ± 2.46). Patient 
B234: Sivelestat treated (D/A= 5.16 ± 2.08), untreated (9.09 ± 1.85).  Data are shown as single 
DNA structure derived from 2 CF patients. Statistics were calculated via Wilcoxon rank sum 
test. ****: p < 0.0001   
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Figure 32 H-NE application in ex vivo mouse lung slices. a) 5 µm transverse serial lung 
sections of CF-like Scnnb1-tg mice were incubated for 3 hours with either H-NE alone or H-
NE and Sivelestat [1mM]. Three dimensional tilescans of entire airways were then acquired 
via confocal microscopy and NE activity inside the nuclei and on free floating extracellular DNA 
was calculated.   b, c) Maximal projections of confocal tilescan images of PFA-fixed and 
paraffin-embedded 5 μm thick lung slices of Scnn1b-Tg mice stained with H-NE [2 μM] (b) and 
treated with Sivelestat [1mM] for 30min prior to HNE staining for 3 hours (c). d) Representative 
confocal images showing donor/acceptor ratio of epithelial cells (1), mucus-embedded DNA 
(2), neutrophil (arrow) and monocyte (arrowhead) (3) and respective NE activity quantification 
(lower panel in d). Scale bars: 200 μm (b, c), 10 μm (d). Statistics were calculated using 
Wilcoxon rank sum test. ***: p<0.001. 
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4. Discussion 
 

Function and dysfunction of the innate immune system is central for the disease progression 

in chronic airway inflammation as during CF and COPD lung diseases. Neutrophils are 

recognized as primary actors in such context and they exert their functionalities via the 

secretion of eclectic effectors such as proteases, myeloperoxidase and cytokines. The past 

decade has seen a renewed interest in the study of proteases since they are valuable 

biomarkers, their involvement in many pro- and anti-inflammatory pathways makes them 

attractive drug targets, and they are handles for creative scientific exploration from a chemical 

biology standpoint. The ultimate goal of this research project was to equip the biomedical 

research with new assays and tools to explore uncharted NSPs activity and relationships. 

 

4.1 Part I  

 

4.1.1 CG activity is elevated in airway inflammation  
 

Neutrophil elastase is widely considered to be a leading player in the onset and progression 

of CF and COPD lung diseases56,124. Recently, the use of this enzyme has considerably risen 

as disease-status predictor43. Moreover, several imaging approaches were established to 

measure and localize elastase activity, from simple chromogenic substrates to MRI suitable 

probes95. Despite NE utility as a diagnostic and prognostic tool, clinical candidate NE inhibitors 

such as Sivelestat and AZD9668 always resulted in poor therapeutic outcome and unaltered 

tissue disruption42,48. On one hand, such discrepancies could be resolved with a more 

appropriate patient cohorts’ design: NE inhibitors were administered to adult CF patients, 

which feature prominent and non-resolving inflammation. In contrast, the administration of anti-

inflammatory agents to CF children and adolescents may drown inflammation in its earliest 

stages and reach the desired clinical endpoints (i.e. reduced neutrophilia, IL-8 secretion, lung 

function). On the other hand, an improved understanding of protease biology in airway 

inflammation seems to be central to designing novel inhibitors. In fact, new evidence suggests 

that the concerted action of the three NSPs cause more severe lung damage than NE alone. 

In mice, the simultaneous knock-out of the NSPs has the effect to reduce the concentration of 

active proteases such as MMP-9 and MMP-12 which in turn activate pro-inflammatory 

cytokines125. Moreover, NSP interplay causes higher ECM destruction and remodeling, 

measured as increased wall-to-wall distances of alveoli (Lm) compared to NE deficient mice125.  
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Importantly, although NE and CG double knockout mice are more protected from smoke-

derived lung damage, they also feature more susceptibility to Streptococcus pneumoniae and 

mycobacterial infections126. Such duality highlights that i) NSPs play multi-faceted roles in 

innate immunity, ii) the bottleneck to unravel such complexity lays in the availability of tools 

and assays to study mediators of inflammation in patients and animal models. 

The first attempts to develop CG specific substrates date back to the early eighties127. Since 

then, several groups focused on developing more and more specific chromogenic reporters. 

Recently, Attucci et al. designed and optimized the substrate sequence EPFWEDQ, (N- to C- 

terminal). The peptide showed high specificity over NE and PR3 and we employed it for the 

CG reporters showed in this work (Figure 4 a and Figure 26 a).  

So far, all the substrate-based reporters to monitor CG activity could not provide any spatial 

localization and information. To fill this gap, we synthetized and characterized the SAM series 

of FRET reporters. We employed the general design optimized and validated by Gehrig and 

Cobos-Correa45,63. LaRee-1, NEmo-2 and mSAM reporters feature a palmitic acid derived lipid 

anchor, the energy donor (Coumarin 343) at the amino terminus of the peptide and the energy 

acceptor (5-(6)-TAMRA) at the carboxyl terminus. After protease cleavage, such arrangement 

permits signal retention at the plasma membrane of the fluorescent donor moiety and the 

diffusion of the acceptor one. Importantly, the two-fluorophore design permits for a ratiometric 

readout of the enzyme activity. The outcome is a spatially localized, self-normalizing signal 

which is less affected by environmental and experimental conditions (pH, polarity, laser power, 

reporter concentration) than single-fluorophore based and/or nonratiometric probes. Such 

advantage is crucial to study activity in complex samples like sputum, which commonly 

features within-patient variability, is usually filled with sticky mucus, includes 10 to 40% percent 

dying cells, and is therefore susceptible to many interfering external factors.  

Even though Coumarin 343 and 5-(6)-TAMRA turned out to be a successful FRET pair, it 

needs to be highlighted that the Coumarin 343 excitation maximum (around 430 nm) limits in 

vivo imaging applications for LaRee, NEmo and SAM probes due to poor tissue penetration 

and elevated phototoxicity of blue lasers. However, membrane-bound NE activity on 

neutrophils loaded with NEmo-2 was exemplarily monitored via two-photon intravital real-time 

confocal microscopy in the ear dermis of a mouse model of epidermolysis bullosa acquisita128. 

Therefore, such potential application should be considered for future physiological and in vivo 

studies.  

When characterized both in vitro and in cellulo, sSAM and mSAM showed adequate sensitivity. 

CG activity could be easily discriminated at low nanomolar concentration and the dynamic 
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range turned out to be ~7 for both reporters (Figure 4 b and c). Moreover, thanks to its palmitic 

acid tag, mSAM showed stable and satisfactory plasma membrane retention on HEK293, HL-

60 (Figure 5 c and d) and 16HBE14o- cells.  

When validating our novel set of probes and investigating the presence and activity of 

cathepsin G in CF and COPD airways, it was essential to carefully determine the reporters’ 

specificity. The existence of proteases with minimal cleavage site requirements renders the 

design and synthesis of a perfectly specific protease substrate a daunting task. However, the 

physiological context in which the probe will be employed comes to help. Therefore, to test the 

in vitro specificity of SAM reporters we selected an array of enzymes whose presence and 

relevance in airway inflammation is well documented (Figure 4 d, e and f). None of the control 

proteases tested (neutrophil elastase, proteinase 3, matrix-metalloproteinase 12 and cathepsin 

S) cleaved the reporters. Only mast cell chymase could recognize and significantly cleave 

sSAM. However, chymase featured a 2.5 to 8-fold smaller turnover rate than CG (Figure 6 h). 

Also, we excluded its presence from patient samples (Figure 6 i-k). Moreover, the in vivo 

specificity of SAM reporters was thoroughly validated in human samples as well: the incubation 

of human sputum neutrophils and sputum supernatants or BL with specific cathepsin G 

inhibitors led to the abolishment of any significant increase in D/A (Figure 6 d-g). A limitation 

of this characterization is the lack of evidence about mouse NSP: it is known that homology 

between human and mouse neutrophil serine proteases is rather high37, but if SAM reporters 

retain the same specificity towards mouse NSPs needs to be carefully assessed. 

We then applied the newly characterized reporters to human samples.  Free CG activity was 

studied via sSAM in healthy and cystic fibrosis sputum supernatants and COPD bronchial 

lavage fluids (Figure 6 c). Soluble elevated enzyme activity could be detected only in disease-

derived samples. This result suggests that, in adult patients, CG overwhelms the antiprotease 

shield (that for CG is composed mainly of alpha-1-antichymotrypsin) and its activity becomes 

detectable in airway fluids. The plasma membrane localization of mSAM permitted the 

visualization and quantification of cell-surface bound CG activity (Figure 6 a and b), which 

turned out to be elevated on CF neutrophils.  Importantly, the pool of CG which is membrane-

bound may be useful for neutrophil translocation into the airways and to direct a precise ECM 

remodeling. In fact, it has been recently demonstrated that upon neutrophil adhesion a 

protected microenvironment is created between the cell and its target structure128. Such 

“closed compartments” ensure locally elevated protease concentration and protect the enzyme 

from inhibitors action. Therefore, the close contact of the triad neutrophil-enzyme-tissue seems 

to be indispensable for the damage to happen, and only tailored tools and drugs permit to 

unveil and prevent the phenomenon, respectively. 
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Unfortunately, we were not able to evaluate CG activity on COPD neutrophils due to lack of 

sample availability. It will be important to compare the differential levels of CG and other 

proteases (PR3 and NSP4, for which very little is known) in CF and COPD lung diseases. 

In the future, the degree of activity and inhibition of free and membrane-bound CG activity 

should also be tested in β-ENaC mice and CF children, conditions characterized by milder 

airway inflammation. 

 

4.1.2 Small molecule FRET flow cytometry enables the rapid evaluation of 

inflammatory biomarkers at the single-cell level 
 

We sought to expand the way to monitor protease activity on cells and to overcome some key 

problems encountered with other technologies: plate reader measurements collect and 

average the signal originated from a whole cellular population, and do not allow for any cell-

to-cell discrimination. Instead, confocal microcopy permits such spatial resolution. However, 

live cells cannot be discriminated from dying ones and mucus plugs produce a special 

environment. Sample preparation artifacts are common as well. Moreover, apart from the 

enzyme membrane-bound activity, no additional layer of information can be gathered. In 

contrast, other than measuring localized protease activity, flow cytometry analysis permits for 

a precise characterization of almost any cell type in biosamples, improves the quality of the 

measurement by excluding debris and dead cells via its microfluidics nature, and studying cell 

populations variability becomes possible. 

To set up a versatile and informative flow cytometry assay, we designed and validated proper 

antibody panels (Table 1, 2 and Figure 7). Several optimization experiments where performed 

to improve the sensitivity and dynamic range of the assay (Figure 8). Then, cleavage of 

reporters was monitored over time in a ratiometric manner on human sputum. The technology 

was finally validated by correlating samples measured both via flow cytometry and microscopy 

(Figure 7 f and Figure 9 d). Moreover, we showed that the flow assay can be combined with 

clinical parameters (FEV1% predicted) and become a powerful tool to rapidly assess lung 

disease severity in hospital settings (Figure 9 e). We also envision that clinical studies will 

greatly benefit from the automation of such assay, which could be easily scaled to auto-

sampling machines and 96 to 384-well plates and used to assess anti-inflammatory treatments 

at a large scale. 

Recently, small molecule FRET probes that allow for the quantification of intracellular and 

phagolysosomal NE activity were developed86.  
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The simultaneous measurement of intracellular and surface-associated NE activity via the 

combination of NEmo-2 and the aforementioned intracellular FRET probe has the potential to 

quantify and correlate enzymatic activities in distinct sub-cellular compartments. Interestingly, 

such advanced multiplexed assay might provide novel insights into how neutrophils secrete, 

regulate and localize proteases in the context of the airway microenvironment. In addition, the 

measurement of intracellular NE could add information regarding the amount of enzyme which 

is not secreted by the neutrophil even in the presence of strong proinflammatory stimuli. 

 

4.2 Part II 
 

4.2.1 CF and COPD airways feature similar membrane-bound NE activity but 

diverse inflammatory landscapes 
 

Membrane-bound NE represents a fraction of the enzyme which is biologically active, 

inaccessible to antiproteases and fully retains its proteolytic activity33. Recently, it was shown 

in β-ENaC mice that NE activity appears at the neutrophil surface even before the free NE 

overwhelms the antiprotease shield in BAL fluids47. Therefore, the main focus of this project 

was to assess such spatially localized activity in CF and COPD adult patient sputum to unveil 

its diagnostic and therapeutic potential.  Small molecule FRET flow cytometry assay fueled the 

analysis of a vast number of sputum samples (36 CF, 10 COPD, 8 healthy, at time of writing) 

in a significantly reduced amount of time. Interestingly, elevated and almost identical NE 

activity on CF and COPD neutrophils was observed (Figure 11 b). Such result does not reflect 

the comparison of NE content and activity in sputum supernatants, where CF supernatants 

show considerably higher values than COPD samples (Figure 11 a and Figure 12). To 

understand where this discrepancy comes from, we tried to depict the inflammatory 

environment in the healthy, CF and COPD airways. 

In general, CF airways seemed to be characterized by a higher number of infiltrating 

neutrophils, higher pro-inflammatory factor levels (IL-8, IL-1β, TGF-β1, TNFα and soluble NE 

activity) and lower levels of the anti-inflammatory cytokine IL-10 (Figure 13 and Figure 14). 

PCA and heatmap analysis confirmed the separation of the CF and COPD groups for the 

expression of unique patterns of inflammatory factors, while membrane-bound NE was 

elevated in both disease types (Figure 15 a and b).  

These results depict a preliminary comparison of CF and COPD airway inflammatory factors. 

However, the study needs to be completed with the analysis of at least 15 to 20 further COPD 

sputum samples. Also, a more comprehensive picture will be obtained with the inclusion of 
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additional cytokines into the analysis, such as LTB4, IL5 and IL-1α. Importantly, LTB4 

quantification in the bloodstream and in the airways of CF and COPD patients may provide a 

mechanistic explanation of the increased neutrophil number in the CF airways. Moreover, 

some COPD patients featured a prominent eosinophilic infiltration (Figure 13). The airways of 

such patients need to be deeply characterized; particularly, the correlation of eosinophil 

number with neutrophil subsets, cytokine content and NE activity may be useful to subclassify 

patient groups, and, as a result, to rethink tailored anti-inflammatory treatments. Finally, the 

access and analysis of membrane-bound and soluble NE activity in early stage COPD patient 

samples remain critical for the benchmark of the protein activity as excellent early inflammation 

biomarkers. 

 

4.2.2 Neutrophil plasticity in sputum and blood of CF patients 
 

The latest advancements in single-cell RNA-Seq and computational flow cytometry are 

providing the unprecedented opportunity to molecularly describe immune cell subsets, which 

often result in precious biomarkers129–131. The identification of neutrophil subpopulations in CF 

and COPD airways might result in tailored and more efficient therapeutic interventions and 

improve our understanding of neutrophil plasticity.  

Therefore, we employed and validated a 12 color antibody panel (Table 3). Such array of 

antibodies allows for the study of different neutrophil phenotypes: CD63 is an indicator of 

neutrophil activation and primary granules secretion112, Arginase 1 is secreted by neutrophils 

and induces T cells hyporesponsiveness132, ICAM1 is expressed in combination with CXCR1 

on neutrophils that reversely translocated from the site of inflammation to the bloodstream133, 

CD66b is present at the surface of activated neutrophils which released their secondary and 

tertiary granules112, CXCR4 is abundant on aged neutrophils21, TLR4 is the receptor for PAMPs 

and CD16 is the Fc gamma receptor III which recognizes antibody-antigen complexes and 

induces neutrophils to phagocyte such aggregates. Importantly, CD16 is recognized and 

cleaved by two proteases (ADAM17 and NE), therefore its surface expression and the 

neutrophil phagocytosis ability is reduced when NE secretion is uncontrolled134. 

The analysis of sputum neutrophils via flow cytometry followed by FlowSOM revealed that 

healthy neutrophils consist of a more homogeneous population, all centered around a non-

activated stage (Figure 16 b). Instead, CF neutrophils branch out and show a more intricate 

variety of markers expression (Figure 16 b). For example, the central and lower part of the CF 

graph (Figure 16 b and c) is composed of neutrophils which express CD16, indicating 
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phagocytic competence, while the top part features neutrophils which lost expression of such 

receptor. The expression of CD16 seems to be mutually exclusive to the expression of TLR4 

(Figure 16 c). An explanation for this duality might be that neutrophils which are tailored to do 

phagocytosis do not sense bacteria and therefore do not secrete their granules and instead 

exploit the granular content to digest pathogens intracellularly134. Another functional 

consequence of the loss of CD16 at the neutrophil surface is an increased propensity to react 

via NETs production. In addition to support the hypothesis that phagocytosis and NETosis 

could be opposing neutrophil behaviors135, a therapeutic shift towards an increase in the CD16 

positive neutrophil population might be beneficial by reducing inflammation, maintaining 

neutrophil phagocytic ability and avoiding the secretion of large amounts of the pro-

inflammatory NETs into the airways. Another interesting feature emerged from the FlowSOM 

analysis, namely that live neutrophils retain 70 to 90 % active NE in the primary granules, 

despite the cytokine storm that these cells face into the inflamed airways (Figure 16 c).  

Once again, this study is limited by sample availability. Also, a more proper characterization 

will greatly benefit from an expanded antibody color panel. New technologies as spectral flow 

cytometry and mass cytometry will allow for more cellular populations and phenotypes to be 

analyzed together and different diseases could be compared. 

Next, we investigated if the CF blood neutrophil response to inflammatory stimuli is different 

from the healthy cell behavior. The rationale of this investigation is that neutrophil remodeling 

and reprogramming may happen in the bloodstream before the neutrophils reach the target 

site in conditions characterized by intense or chronic inflammation such as bronchiectasis or 

CF.  Bronchiectasis features extensive neutrophil inflammation and recurrent chest infections. 

Recently, it was shown that blood neutrophils in bronchiectasis patients are characterized by 

prolonged lifespan, reduced rate of apoptosis, increased release of myeloperoxidase, as well 

as defective bacterial phagocytosis and killing of PAO130. Also, Pohl and coworkers showed 

that CF blood neutrophils feature impaired secretion of secondary and tertiary granules 

compared to healthy controls. This dysfunction was traced back to the lack of CFTR function 

in CF cells which impacted on cellular ion homeostasis. In fact, the treatment of CF blood 

neutrophils with a CFTR potentiator (Ivacaftor) rescued the defective phenotype136. 

To investigate neutrophil functionality in CF blood, we first counted the number of neutrophil 

per mL of blood in CF and healthy donors (Figure 17). CF blood count turned out to be 

elevated, pointing to potential changes in neutrophil behavior which might happen before 

translocation, when neutrophils circulate in the blood. At baseline, healthy blood neutrophils 

secreted more soluble NE (Figure 18 a). However, CF blood neutrophils responded by 
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secreting more active NE when challenged with proinflammatory stimuli (Figure 18 a, left 

panel). A similar scenario was observed when membrane-bound NE activity was measured 

(Figure 18 b) via small molecule FRET flow cytometry. In conclusion, CF blood neutrophils 

seemed to not be highly preactivated and did not show signs of dramatic reprogramming in 

terms of NE secretion, unless strongly stimulated. Immunofluorescence experiments carried 

out on unstimulated CF and healthy neutrophils showed that CF neutrophils contain in average 

more primary granules than healthy ones (Figure 19 a and b). Also, the volume of such 

granules turned out to be larger for CF cells (Figure 19 c). However, these results were not 

confirmed by immunostaining of intracellular NE and analysis via flow cytometry. Such 

discrepancy might be due to the different antibodies used for the assays or could reflect a 

different activation status due to the different preparation procedures for the two assays. 

 

4.3 Part III 
 

4.3.1 Analysis of protease activity on blood and airway exosomes 
 

Extracellular vesicles populate the supernatant fraction of sputum and BAL fluids116. So far, 

the contribution and role of exosomes to the pathogenesis of lung diseases has been 

unexplored. Importantly, the measurement of NE activity in airway fluids might have been 

flawed by the lack of consideration towards the pool of enzyme in its exosome-bound form. In 

fact, no efforts were put into the separation of nano- and micro- sized vesicles from sputum 

and BAL supernatants. Our goal was to purify airway and blood nanovesicles and to dissect 

their exosome-bound NE activity.  

Therefore, we first successfully isolated and characterized exosomes from healthy and CF 

sputum (Figure 20 a and b). Western bot analysis confirmed that CF but not healthy CD63+ 

particles carried NE. Then, we set up an assay to study their NE associated activity and we 

could show that blood exosomes do not acquire any NE at their surface, highlighting how the 

vesicles become decorated with the enzyme only once in the inflamed airway (Figure 20 c 

and d). However, the absence of NE activity in blood exosomes could also be explained by 

the very high concentration of antiproteases such as A1AT which is commonly found in human 

plasma.  

Exosome purification is a non-trivial and time-consuming process. The most used techniques 

are ultracentrifugation, commercial kits and size exclusion chromatography137. Often two or 

more methods need to be combined to achieve the desired vesicle purity. However, such long 
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procedures might affect exosomes integrity and drastically reduce protease activity. Also, the 

requirement of specialized equipment and personnel impairs the study of exosomes in a 

clinical setting. Therefore, we developed and validated an assay which takes advantage of a 

finely calibrated flow cytometer to measure activity on single nanoparticles, which offers drastic 

reduction in time required for sample preparation (Figure 21 and Figure 22). A clear 

ratiometric signal was measured on exosomes stained with the specific exosomal markers 

CD63 and incubated with the reporter NEmo-2. This method will benefit further from the 

inclusion of additional surface markers for the discrimination of the cellular origin of airways 

exosomes. For example, CD63 and CD66b positive vesicles are known to be exclusively 

secreted by granulocytes116. Therefore, the inclusion of CD66b into the assay will permit to 

identify and quantify the proportion of neutrophil derived exosomes over the total vesicle 

population.   

In addition, we employed the flow cytometric assay to rapidly screen patient samples for high 

exosomal NE activity. These samples were then used to visualize the export of active NE from 

the exosome to the surface of human bronchial cells (16HBE14o-) (Figure 23). However, if 

the export is facilitated by the contact of exosomes with the surface of epithelial cells or if the 

process will happen with the same efficiency when only free NE is tested, remains to be 

clarified. An interesting step forward will be the investigation of the inflammatory pathways at 

the molecular level which are activated by the action of exosomal NE and the degree of tissue 

disruption operated by the enzyme bound to such membrane systems where they are masked 

from endogenous antiproteases. 

 

4.3.2 DNA binding probes to monitor extracellular DNA-bound NE and CG 

activities  
 

To date, little information is available on the role, action and regulation of proteases bound to 

extracellular DNA. To fill this gap, we aimed at developing a tool to monitor protease activity in 

on DNA with high spatio-temporal resolution. To target a peptide to DNA, we initially employed 

an acridine derivative. Such molecules are known intercalating agents and have the advantage 

of bearing a carboxylic acid on the central pyridine ring for the direct coupling to the resin-

bound peptide. However, the resulting probes failed to paint extracellular DNA properly. Next, 

we tested the hypothesis if bisbenzimide derivatives could serve as better DNA anchors. Such 

molecules are known DNA minor groove binders and represent the precursors of the widely 

used Hoechst stains. However, these molecules do not bear any functional group which can 

be employed for SPPS. Therefore, Hoechst 33258 needed first to be modified to present an 
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azide moiety which serves as orthogonal handle and can be coupled to an alkyne containing 

resin-bound peptide via click chemistry (Figure 25). This design allowed us to synthetize the 

DNA-binding H-CG and H-NE (Figure 26). The DNA-binding Hoechst localized the two FRET 

probes perfectly to DNA (Figure 27 and Figure 28). However, the Kd of DNA binding remains 

to be calculated for both the probes.  Also, at time of writing, the H-CG reporter has been only 

partially characterized in terms of specificity and sensitivity. Therefore, the results produced 

with H-NE are more emphasized through the text. The central peptides we selected for H-NE 

and H-CG were known to be highly specific towards their target proteases, thanks to the 

intensive optimization and careful design carried out by Korkmaz and colleagues over the past 

years87,108,138.  In fact, H-NE and H-CG possess great specificity and were cleaved only by NE 

and CG, respectively. Importantly, extracellular DNA traps and contains an high number of 

bacteria65,139. This aspect, which was not considered for membrane-bound or soluble probes 

characterization, highlights the importance to evaluate H-NE and H-CG specificity over 

bacterial elastases. These experiments are currently work in progress and the FRET probes 

are being challenged against S. aureus and P. aeruginosa elastases as well as whole bacterial 

lysates.  

H-NE and H-CG showed that NE but not CG is active in its extracellular DNA bound form 

(Figure 29 and Figure 30). This result represents the first evidence that DNA has not a 

complete inhibitory effect on NE and therefore does not act only as a mere “protease reservoir”. 

Instead, DNA-bound NE may directly model the inflammatory environment. Interestingly, 

Albrengues and colleagues observed that the inhibition of NE but not CG in NETs-containing 

extracellular matrix prevents the awakening of dormant breast cancer cells in a model of 

inflammation72. Our results support such observations with a functional explanation and 

strengthen the concept that each protease activity has to be assesses in a context- and 

disease-dependent fashion.  

When applied to human sputum, we could quantify elevated NE activity in large mucus-

embedded DNA structures filling up the CF airways (Figure 31). This type of analysis and 

quantification will open the doors to new intriguing translational projects.  

Finally, we also demonstrated that H-NE can be used to stain entire mouse lung slices (Figure 

32). However, the way the mouse slices were prepared could be improved. In fact, we 

employed and sectioned paraffin-embedded lungs which were already present “in house”, 

while a paraformaldehyde perfusion fixation followed by cryosectioning would likely preserve 

enzymatic activity better140. However, since clear results in terms of NE activity inside 

neutrophils and on mucus-embedded DNA were observed, we decided to not sacrifice further 

animals for this purpose.  
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5. Conclusion 
 

In the first part of this project, we describe the synthesis and characterization of specific FRET 

probes to monitor cathepsin G activity with spatial resolution. The probes proved to be sensitive 

and specific, therefore suitable for biomedical and clinical applications. In fact, the reporters 

showed elevated and potentially detrimental cathepsin G activity in CF and, for the first time 

COPD airways. Next, we implemented the use of NEmo-2, mSAM and LaRee-1 into flow 

cytometry. The assays showed great rapidity, simplicity of use and cross applicability, 

promising to aid in the study and assessment of inflammation in a plethora of conditions. 

In the second part, we investigated NE activity in the context of COPD disease and compared 

it to the CF scenario. Interestingly, membrane-bound NE activity resulted to be elevated in all 

COPD patients independently of other bio-inflammatory markers or eosinophilic infiltration. We 

quantified that CF airways contained higher levels of IL-8, TNFα and IL1β, while COPD have 

more anti-inflammatory cytokine IL-10. The two main antiprotease A1AT and TIMP-1 seemed 

to be present at the same levels, with the exception of SLPI, a NE substrate. In light of this 

comparison, NE activity in COPD was confined at the neutrophil surface, while in the soluble 

fraction the antiprotease content might have been elevated enough to shield soluble NE. The 

identification of differences in blood neutrophils responsiveness in disease conditions could in 

principle constitute an important diagnostic parameter. However, only minor differences in NE 

secretion or neutrophil response were observed in CF compared to healthy blood cells. 

In the last part of the project, we studied exosome-bound NE activity in CF airways and showed 

that exosomes carried active enzyme at their surface and potentially exported it to the 

surrounding cells. Finally, we synthetized and characterized FRET probes which associated to 

extracellular DNA and reported on NE and CG activity. They showed optimal localization, great 

sensitivity and their biomedical applicability was demonstrated. In addition, H-NE revealed 

elastase activity on blood NETs where it is presumably shielded from inhibitors under 

physiological conditions and contributes to inflammation. Finally, H-NE successfully stained 

cells in entire mouse lung slices, allowing for single-cell quantification of NE activity inside the 

nucleus of any cell-type. High activity was found in the nucleus of activated neutrophils and on 

mucus-embedded DNA. 

Overall, this work highlights proteases as promising airway inflammation biomarkers and 

provides the tools to finely dissect their roles in diverse conditions. 
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6. Outlook 
 

In the near future, we will focus our efforts on continuing the study of proteases at poorly 

characterized locations, such as exosomes and DNA webs. In particular, it will be interesting 

to unveil which protease-activated receptors (PARs) are activated by neutrophil elastase upon 

transfer from exosomes to epithelial cells. Furthermore, it will be important to characterize and 

quantify the diverse cellular origins of sputum exosomes by means of the single nanoparticle 

cytometric assay we developed. As far as DNA-bound proteases are concerned, our newly 

developed tools should reveal useful for the investigation of in vivo NE and CG activity in other 

complex systems, such as gallstones and tumors. 

Our main long term ambition is the broad application of the tools developed in this thesis and 

from previous work in the clinical routine. We envision that in the future specific neutrophil 

phenotypes will be linked to distinct disease statuses and improve treatments in a patient 

tailored fashion. 

Furthermore, small molecule FRET flow cytometry has the concrete potential of turning 

membrane-bound protease activity into a useful clinical endpoint. For example, cathepsin C 

inhibitors are currently under development and attract attention and funding37. Since cathepsin 

C is fundamental for the processing of the protease proforms, their potential relies on the 

simultaneous effect on all NSPs. We believe that small molecule FRET flow cytometry is the 

perfect fit for testing the efficacy of such drugs on a large scale. 

Indeed, the assessment of membrane-bound NE activity by small molecule FRET flow 

cytometry was included as secondary endpoint into the ANAKINRA clinical trial earlier this 

year, which is evaluating the effect of IL-1 receptor antagonists to dampen inflammation in 

human cystic fibrosis. 

The relevance of research at the intersection of inflammation and chemical biology, the 

importance of developing fast and easy-to-use diagnostic tools and their implementation in 

hospitals have been exposed to the general public by the difficulties faced to counteract rapidly 

spreading diseases, such as COVID-19. 
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7. Methods 
 

7.1 Chemicals and reagents 
 

Standard solvents for chemical synthesis were bought from Fluka, Sigma-Aldrich (Steinheim, 

Germany) and Novabiochem (Darmstadt, Germany) and used without further purification. 

Coumarin 343 was purchased from Sigma Aldrich (Darmstadt, Germany). 5,6-

Carboxytetramethylrhodamine-N-Hydroxysuccinimide (5,6-TAMRA-NHS ester) was 

purchased from Anaspec.  COMU was from Sigma Aldrich, SPPS resins and Fmoc-protected 

aminoacids were from Novabiochem, Fmoc-O2Oc-OH (PEG-linker) was from Iris Biotech, 

Fmoc-Lys(palmitoyl)-OH was from Sigma Aldrich. Hoechst (bisBenzimide H 33258) was 

purchased from Sigma. Fmoc-propargyl-Gly-OH was purchased from Sigma Aldrich, Br-PEG-

azide was purchased from BroadPharm (SanDiego, USA). Cell culture media and supplements 

for the HEK293, HL-60 and 16HBE14o-cell lines were ordered from Gibco/Thermo Fisher 

Scientific.  

 

7.2 Enzymes, substrates and antibodies 
 

Neutrophil elastase, proteinase 3 and cathepsin G were purchased from Elastin Products 

Company Inc. (Owensville, Missouri). MMP-12 (catalytic domain, human, recombinant) was 

from Enzo Life Sciences. Chymase and cathepsin S were purchased from Sigma Aldrich.  

Chymase substrate, activity kit and ELISA assay was from Sigma-Aldrich. Cytometric Array 

Beads (CBA) kits were purchased from BD Biosciences (Heidelberg, Germany). Cytokine and 

antiprotease ELISA kits were purchased from R&D Systems (Minneapolis MN).  Phorbol 12-

myristate 13-acetate (PMA) was purchased from Sigma Aldrich.  Antibodies used for flow 

cytometry were purchased as follow: 

antibody company catalog clone

BV421 Mouse Anti-Human CD181 BD 73419 5A12

BV711 Mouse Anti-Human TLR4 (CD284) BD 564404 TF901

BD Horizon™ V500 Mouse Anti-Human CD45 BD 560779 HI30

BD Pharmingen™ Alexa Fluor® 700 Mouse anti-Human CD16 BD 557920 3G8

BD Pharmingen™ APC-Cy™7 Mouse Anti-Human CD45 BD 557833 2D1 

BD Pharmingen™ PE-Cy™7 Mouse Anti-Human CD14 BD 557742 M5E2 

FITC anti-human CD63 Antibody BioLegend 353005 H5C6

PE/Dazzle™ 594 anti-human CD54 Antibody BioLegend 353117 HA58

PerCP/Cyanine5.5 anti-human CD66b Antibody BioLegend 305107 G10F5

Brilliant Violet 605™ anti-human CD184 (CXCR4) Antibody BioLegend 306521 12G5

PE anti-human Arginase I Antibody BioLegend 369703 14D2C43

Alexa Fluor® 647 anti-human CD63 Antibody BioLegend 353016 H5C6

PE/Dazzle™ 594 anti-human CD66b Antibody BioLegend 305122 G10F5

Human Neutrophil Elastase/ELA2 Alexa Fluor® 647-conjugated Antibody R&D IC91671R 950317

Alexa Fluor® 647 anti-human CD169 Antibody BioLegend 346006 7-239
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7.3 Solid phase peptide synthesis of SAM, A-NE/A-CG and H-NE/H-CG 

reporters 
 
All peptides were synthesized via standard solid phase peptide synthesis (SPPS) on a Wang 

resin preloaded with Fmoc-Lys(Mtt)-OH. The resin was swelled in DMF for 30 min and Fmoc-

deprotected by treatment with 20% piperidine/DMF. After three deprotection steps, complete 

removal of Fmoc was monitored via loss of Fmoc absorbance. All amino acids and the PEG 

linker were coupled using 3 equivalents of the respective amino acid, 3 equivalents of COMU, 

4 equivalents DIPEA in DMF two times for 45 min at RT. The resin was washed three times 

with DMF in-between all reactions. To protect unreacted free amino groups, the peptides were 

treated two times for 5 min with acetic anhydride/pyridine (1:9). Dyes (3 equivalents of 

coumarin 343 carboxylic acid, 2 equivalents of 5(6)-TAMRA NHS ester) were coupled with 

COMU/DIPEA (3:4 equivalents) for coumarin and 6 equivalents of DIPEA for 5,6-TAMRA-NHS 

ester, two times for 45 min at RT. 

Once the central peptide and the PEG linker were completed, individual probes were 

synthetized as follow: 

 

- sSAM was obtained by first deprotection of the methyltrityl group of the C-terminal 

lysine (TFA/TIS/DCM 1:2:97, 4 min, seven times), followed by 5,6-TAMRA-NHS ester 

coupling. Finally, the N-terminal Fmoc group was deprotected, and coumarin 343 was 

coupled. 

- mSAM was obtained by first coupling 5,6-TAMRA-NHS ester to the C-terminal lysine. 

Then, the N-terminal lysine (palmitic acid) was Fmoc-deprotected and coumarin-343-

coupled. 

- For A-NE and A-CG, the Mtt group was cleaved. Then, 5,6-TAMRA-NHS ester was 

coupled. For coumarin coupling the peptide was deprotected and coumarin 343 was 

coupled.  

- For H-NE and H-CG, the alkyne containing reporters (A-NE and A-CG) were incubated 

with 5 equivalents of Hoechst-azide over night at RT with Copper(I) and TBTA in a 1:1 

water/DMSO solution.  

 

Eventually, the final products were cleaved off the resin using a 96% TFA solution, precipitated 

in diethylether (-20°C) and centrifuged. The precipitated reporter was resuspended in methanol 

and purified by a semipreperative HPLC using appropriate water acetonitrile gradient. The 

concentration of the all the probes was measured via UV/VIS spectroscopy using the 

absorbance of Coumarin343 (extinction coefficient ε=44140 L*mol-1*cm-1) in ethanol. 
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Reporters analytical HPLC, purity, high resolution mass spectrometry and NMR of Hoechst-

azide can be found in the appendix section. 

 

7.4 Synthesis of Hoechst-azide 

 

Br-PEG-azide was employed for the alkylation of the free base of the Hoechst 33258 dye to 

obtain the Hoechst-azide (Compound 3 in Figure 25). The free base of Hoechst 33258 was 

prepared by dissolving Hoechst 33258 hydrochloride in H2O (0.1 M) and adding a solution of 

3.1 equivalents of 7 M K2CO3. The precipitate thus formed was isolated by centrifugation, 

washed with H2O and freeze dried. Hoechst 33258 base 2 (1 eq) was then resuspended in dry 

DMF (0.2 M) and K2CO3 (0.15 mM). Eventually, Br-PEG-azide (3 equivalents) was added. The 

reaction was heated at 60 °C and stirred under vacuum for 18 h. Once the mixture was cooled 

to RT, it was purified via semipreperative HPLC. 

 

7.5 Analysis of reporters’ performance in vitro 
 
Neutrophil elastase, proteinase 3, cathepsin G, matrix metalloproteinase 12, chymase and 

cathepsin S activities were measured in activity assay buffer (100 mM TRIS, 500 mM NaCl, 

pH 7.5) at RT. For assays of the lipidated reporters like mSAM, 1 mM liposome solution was 

prepared of phosphatidylcholine/phosphatidylserine (PC/PS) (9:1) (Avanti Polar Lipids, Inc., 

Alabaster, AL) in activity assay buffer by extrusion following standard protocols. Briefly, lipids 

were dissolved in chloroform. Afterwards, the solution was evaporated under slow argon flow. 

Finally, the lipids were rehydrated in activity assay buffer at 62°C, and shaken for 1 h at 62°C. 

Afterwards, the liposomes were extruded by means of an extruder. The homogeneity and size 

of the liposomes was assessed by dynamic light scattering (DLS).  

Assays of H-CG and H-NE were carried out in activity assay buffer supplemented with 20µM 

of the hairpin-forming oligonucleotide 5′-CGCGAATTCGCGTTTTCGCGAATTCGCG-3′ 

(28 bp) purchased from Microsynth120. mSAM assays were performed in black cuvettes and 

measured by the FP-8500 JASCO spectrofluorometer at RT. The assays for sSAM and HNE 

and HCG and ANE and ACG were performed in polystyrene 96 well half area assay plates 

(Corning Inc., Acton, MA) with a fluorescence plate reader (Safire II Tecan, Crailsheim, 

Germany) at RT. Unless otherwise specified the reporter concentration for in vitro experiments 

was 2 µM. For mSAM measurements, enzymes were added, and reporter cleavage was 

followed by recording emission spectra every 5 min over a period of 20−70 min with the 

settings: λexc = 430 nm, λem = 450−650 nm, all measurements were performed in technical 

triplicates. For sSAM, H-NE, H-CG, A-NE and A-CG measurements, enzymes were added, 
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and the emission maxima of donor (485 nm) and acceptor (580 nm) fluorophores after 405 nm 

excitation were recorded every 90 s over a period of 60 min and plotted as donor/acceptor 

ratio. All measurements were performed at least two times. The dynamic range of the reporters 

was defined as complete cleavage of the probe calculated as maximal ratio change (RCmax). 

 

7.6 Cell culture 
 
HL-60 cells were passaged and maintained in Iscove's Modified Dulbecco's Medium with 20 

% FBS in T-75 culture flasks. Cell density was kept between 1 x 105 and 1 x 106 viable cells/mL. 

Medium change and cell splitting was performed every 2-3 days. HEK cells were cultured in 

high glucose Dulbecco's modified Eagle’s Medium containing 10% FBS and 1 % 

penicillin/streptomycin in T-75 culture flasks. Medium change and cell splitting was performed 

every 2-3 days and cell confluence was kept below 95%. 16HBE14o- cells were obtained from 

Dr. Catherine M Greene (Royal College of Surgeons in Ireland). Cells between 47 and 63 

passage number were used. Cells were seeded on plastics coated with LHC-8 medium (Gibco, 

#12678-017) with 2.9 mg/mL collagen type I (Corning, #354231), 1 mg/mL fibronectin 

(Calbiochem, #341635) and 1 mg/mL BSA (Sigma-Aldrich, #A9647) and grown at 37 °C and 

5 % CO2 in minimal essential medium (MEM) (Gibco, #21090-022) containing 2 mM glutamine 

(Gibco, #25030- 024), 10 % FBS (Gibco, #10270-106) and 0.1 mg/mL Primocin™ (InvivoGen, 

#ant-pm-1) with medium change every 2/3 days. 

 

7.7 Human sputum processing and cell isolation  

 

All human samples were collected upon signed written informed consent, which was approved 

by the Ethics Committee of the University Hospital Heidelberg. To induce sputum in healthy 

donors, the mouth cavity was rinsed with water first, then an aerosol of 6% sodium chloride 

solution was inhaled for 15-20 minutes. The bronchodilator Salbutamol was used to widen the 

bronchi and avoid adverse autoimmune effects. The induced sputum was then collected in a 

petri dish. 4 volumes of 10% Sputolysin solution (Calbiochem, Darmstadt, Germany) were 

added to sputum to dissolve mucins and the mixture was mildly shaken for 15 min at room 

temperature. The mixture was then diluted by adding the same volume of cold PBS and filtered 

twice through 100 and 40 μm cell strainers. Finally, the solution was centrifuged at 300g and 

4°C for 10 min. Cell pellets were resuspended in PBS and counted whereas sputum 

supernatants were frozen at - 80° for further analysis.  
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7.8 Sputum samples preparation for plate reader and microscopy assays 

 

Healthy, CF and COPD sputum supernatant was diluted in 100 mM TrisHCl pH 7.5, 500 Mm 

NaCl. All kinetic assays were performed at 25 °C. Supernatants were preincubated with 25 μM 

cathepsin G inhibitor I (CAS 429676-93-7, Merck, Darmstadt, Germany) for 15 min at room 

temperature as negative control. For quantification of CG activity with sSAM, 40 μL of 

supernatant was added in polystyrene 96-well half area assay plates (Corning Inc., Acton, 

MA). Finally, sSAM was added to a final concentration of 2 µM. For CG concentration 

quantification, a standard curve made by defined enzyme concentrations were included in 

each plate. All measurements were performed in technical duplicates. Then, the active enzyme 

concentration was calculated via interpolation of the measured slopes via linear fitting. 

For microscopy experiments, 30 000 human CF or healthy donor sputum cells were incubated 

in 50 µL of PBS with mSAM [2 μM] and Draq5 DNA stain (BioStatus Limited, Shepshed, U.K.) 

(1:1000 dilution), for 1 or 20 min at room temperature. For H-NE experiments, only 2 µM of the 

probe were incubated with sputum cells. α1-antichymotrypsin (ACT) (Merck KGaA, Darmstadt, 

Germany), cathepsin G inhibitor I (CGI) (CAS 429676-93-7, Merck, Darmstadt, Germany), 

cOmplete Protease Inhibitor Cocktail with EDTA (Merck, Darmstadt, Germany), or Sivelestat 

(S7198, Merck, Darmstadt, Germany) were used as inhibitor controls. Eventually, the reaction 

mixture was quenched at different time points by adding 100 μL of ice cold PBS, and cells 

were quickly cytospun on microscopy slides, fixed for 10 min in ice cold methanol, and mounted 

with Roti-Histokitt (Carl Roth, Karlsruhe, Germany).  

 

7.9 Human whole blood collection, neutrophil purification and stimulation 

 

Peripheral venous blood was collected in Vacutainer tubes (BectonDickinson) with citric acid 

as anticoagulant and processed rapidly after collection (within 15 min). Blood neutrophils were 

purified by means of the MACSxpress Whole Blood Neutrophil Isolation Kit (Miltenyi Biotec, 

#130-104-434) according to manufacturer’s protocol. To eliminate erythrocytes, the protocol 

was modified by adding 4.5 mL red blood cell lysis buffer (Invitrogen™, #00-4300-54) before 

the last centrifugation step and cell counting. 

For blood neutrophil stimulation experiments, after cell counting, neutrophils were seeded in 

HBSS medium (with Calcium and Magnesium) at a concentration varying from 75000 to 

125000 cells in 8-wells chamber slides for 30 min at 37°C 5% CO2. Then, cells were stimulated 

with priming agents (TNFα) or Cytochalasin B for 5 minutes and followed by 30 min stimulation 

of FMLP. Once stimulation was complete, cells were scraped with a pipette tip and supernatant 
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was separated via centrifugation at 300g for 10 min at 4°C. Neutrophils were then analyzed by 

flow cytometry whereas supernatant measured at the plate reader.   

For blood neutrophil NETs production experiments, after cell counting, neutrophils were 

seeded in HL-60 medium at a concentration varying from 75000 to 125000 cells in 8-wells 

chamber slides for 30 min at 37°C 5% CO2. Then, cells were stimulated with PMA [2µM] for 2.5 

hours. When H-NE and Draq5 colocalization experiments were assessed, H-NE [2µM] was 

incubated with 1:30000 Draq5 for 30 min on PMA-stimulated blood neutrophils. Then, cells 

were washed 1x with PBS, fixed with PFA 4% in PBS for 20 min at 37°C 5%, washed 1x with 

PBS and 2x with distilled water, dried and mounted. For H-NE and H-CG experiments with NE 

and CG addition (both for positive controls in Figure 29 and 30 and to prove the suitability of 

the reporter to detect DNA-bound enzymatic activity in Figure 28 f-h), PMA-stimulated NETs 

were washed 1x with PBS, then incubated with enzyme for 30 min. After enzyme incubation, 

NETs were carefully washed 2x with PBS to remove enzyme unbound excess. Then 2µM of 

reporter was incubated for 30 min. Finally, NETs were washed 1x with PBS, fixed with PFA 

4% in PBS for 20 min at 37°C 5%, washed 1x with PBS and 2x with distilled water, dried and 

mounted. For permeabilization experiments showed in Figure 27, neutrophils were seeded for 

30 min and then fixed with PFA as aforementioned. Next, cells were permeabilized with 0.1% 

Triton X100, then washed 2x with PBS. Finally, reporter was added for 30 min and cells 

washed 1x with PBS and 2x with distilled water, dried and mounted. 

 

7.10 Cytokine and antiprotease measurements 
 

Sputum supernatants were thawed on ice and cytokines were measured via cytometric array 

beads (CBA) assay (BD Bioscience, Heidelberg, Germany).  IL-1α, IL-1β and IL-8 were 

measured via standard measurement, while IL-6, IL-10, TNF-α, INF-γ and TGF-β1 via 

enhanced sensitivity kit. All measurements were carried out according to manufacturer’s 

protocol.  A1AT, TIMP, and SLP were measured via ELISA assays according to manufacturer’s 

protocol.  

 

7.11 Mouse lung slices 
 

Mouse handling and lung sectioning were performed by Dr. Matthias Hagner and Jolanthe 

Schatterny. Briefly, mice sacrificed by intraperitoneal injection with ketamine (120 mg/kg) and 

xylazine (16 mg/kg) followed by exsanguination. Then, the lungs were inflated with fixative of 
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4 % buffered formalin to 25 cm of fixative pressure, stored in 4 % buffered formalin.  For cutting, 

the apical part of the fixed lungs was cropped transversally and lungs were placed in 

embedding cassettes (Steinbrenner Laborsysteme, Wiesenbach, Germany) and dehydrated 2 

times for 30 minutes in 96 % ethanol, 2 times for 45 minutes in 100 % ethanol, and overnight 

in xylene. Samples were then submerged in paraffin and vacuum was applied for 2 hours 

followed by 1 hour at atmospheric pressure. Afterwards, lungs were placed in embedding 

molds. Paraffin blocks were kept overnight at 4°C for complete solidification. Then, lungs were 

sectioned with a microtome (Leica Microsystems, Nussloch, Germany). Section height was 

kept to 5 μm and lungs were sectioned transversally at the level of the proximal intra-pulmonary 

main axial airway. For microscopy experiments and H-NE staining, lung sections were 

deparaffined in xylene and rehydrated 2 times for 10 minutes in 100 % ethanol, 2 times for 2 

minutes in 96 % ethanol, 2 times for 2 minutes in 70 % ethanol and finally rinsed in distilled 

H2O. Then, lung sections were incubated with 200 µL of a PBS solution of [1mM] Sivelestat 

or active NE for 30 min. Afterwards, the slices were washed in PBS and incubated with a 

solution of 200 µL of a PBS solution with [2µM] H-NE for 3 hours in dark at RT. Finally, lungs 

were washed in PBS, dried and mounted with RotiHisto Kit.  

 

7.12 Exosome purification and assays 

 

Exosomes from whole blood were isolated using Total Exosome Isolation Kit (from plasma) 

(Invitrogen™, #4484450) according to manufacturer’s protocol and the retrieved exosomes 

pellet was resuspended in PBS and stored at -80 °C. As far as exosome isolation from sputum 

sample is concerned the Total Exosome Isolation Kit (from cell culture) was employed 

according to manufacturer’s protocol.  The exosomes pellet was resuspended in PBS and 

either stored at -80 °C or used directly for flow cytometry staining and measurements. Total 

exosome protein content was then measured via Pierce™ BCA Protein Assay Kit (Thermo 

Scientific™, #23225).  Transmission electron microscopy of purified sputum exosomes was 

performed with the help Christian Zimmerli. Exosomes were visualized with uranyl acetate 

negative staining. Briefly, samples were deposited on glow discharged TEM grids and, after 

PFA 4% fixation for 5 min at RT, 2% uranyl acetate was added for 1 min. After 2x washing with 

distilled water, grids were left to dry. A Morgagni microscope equipped with a side-mounted 

1K CCD Camera (SIS) was used to image grids. 

Western blots were performed by loading 10 µg of total protein on polyacrylamide gel and run 

at 50V for 5 min and then 45 min at 150V. Then, the gel was blotted on a PVDF membrane for 

30 minutes at 1.0 A and up to 25 V. After washing three times in TBTS buffer, the membrane 
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was blocked in TBTS buffer containing 5% milk powder. The primary anti neutrophil elastase 

antibody was diluted 1:5000 and the anti CD63 1:250 in blocking buffer and incubated with the 

membrane overnight at RT and mildly shaking. Afterwards, the membrane was washed with 

blocking buffer and the secondary antibody incubated for one hour at RT.  After washing, 

chemiluminescent signal was read with the CCDcamera-based ChemiDoc™ XRS+ system. 

To isolate and use for NE activity measurements CD63+ exosomes the Exosome–Human 

CD63 Isolation/Detection (from cell culture medium) kit (Invitrogen, #10606D) was employed 

in combination with the Dynabeads® magnetic separation technology. For the simultaneous 

purification of CD63, CD9 and CD81 positive sputum exosomes, the Tetraspanin Exo-Flow 

Combo Capture Kit (System Biosciences, #EXOFLOW150A-1) was used.  For plate reader 

experiments showed in Figure 20 c, the same amount (measured via BCA assay) of exosomes 

bound to CD63 Dynabeads® were either washed with isolation buffer (0.1% BSA in PBS 

filtered through 0.2 μm filter) or incubated with 0.1% Triton X-100 for 10 minutes. The NE 

activity on exosomes bound to beads was measured via plate reader assay using NEmo-1 

reporter. Furthermore, CD63-antibody coupled beads were incubated with NE to examine 

whether the protease unspecifically finds to the purification beads.  

 

7.13 Confocal microscopy 
 

All microscopy images were acquired using a confocal Leica SP8 microscope (Leica 

Microsystems, Wetzlar, Germany) equipped with either a PL APO 40x or 63X oil objective. 

Hoechst 33258 was excited with the 405 UV laser line. Coumarin 343 was excited with the 458 

nm Argon laser and its emission sampled between 470 and 500 nm. 5,6-TAMRA direct 

excitation was carried out with the 561nm diode pumped solid state (DPSS) laser and sampled 

between 590 and 630 nm. Sensitized acceptor emission was recorded, upon coumarin 343 

excitation, between 590 and 630 nm. The nuclear stain Draq5 and the secondary antibodies 

of immunofluorescence experiments which were coupled with the Alexa Fluor 647 dye were 

excited with a helium-neon-laser line at 633 nm.  The pinhole was set variably. For live cell 

imaging, an environment chamber (EMBL, Heidelberg) set at 37°C and 5 % CO2 was used. 

Images and movies were analyzed by Fiji and the ImageJ macro “FluoQ” (version 3-97)141. 

The macro operates a background subtraction by ImageJ’s built-in rolling ball function, then, it 

allows the operator to set manually a channel threshold. Finally, images are smoothed via a 

median filter. Region of interest (ROIs) are selected manually by drawing their border with the 

pencil tool. When z stacks were processed, the Z-projection of the average intensity of the 
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donor channel was used as channel for cell segmentation. The change in donor/acceptor ratio 

was then calculated as mean pixel intensity of each ROI (over time in case of time series) from 

both channels and the ratio between the donor and acceptor was obtained. The same macro 

was used for colocalization analysis and Pearson correlation coefficient and Area overlap 

calculation. Plots and analysis were carried out with R version 3.6.1. 

As far as imaging of exosomes stimulated 16HBE14o- cells is concerned, the cells were let to 

grow for 2-4 days in 8-wells chambered cover glasses, seeding the day 1 from 20 to 50000 

cells per well. Right before imaging, cells were washed with MEM 1x two times and Draq5 and 

NEmo-2 [2 µM] were added. After circa 10 minutes of imaging, CF or healthy exosomes 

(0.3ug/µL final concentration) were added to cells and movies were recorded for 50 min more. 

For immunofluorescence experiments, purified blood neutrophils were seeded for 30 min in 8-

well Nunc™ Lab-Tek™ Chambered Coverglass with removable wells at 37°C, 5% CO2. Cells 

were then fixed with a solution of 4% PFA in PBS for 20 min at RT, then washed 1x with PBS. 

Cells were permeabilized with Triton X-100 0.1% for 10 min at RT, then washed 3x PBS. After, 

blocking solution (Block Aid, thermo fisher) was added to each well at RT for 30 min. Then the 

primary antibody Anti-ELA2 (10 µg/mL final concentration, diluted in blocking buffer) was 

added and incubated for 1 hour at RT. Cells were then washed 3 times with PBS and the 

secondary antibody was added for 1 hour in dart at RT. Finally, cells were washed 3x with 

PBS, Hoechst 33258 was incubated for 5 min and wells washed one last time 2x with PBS and 

2x with distilled water before drying, and mounting.  

 

7.14 Flow cytometry 

 

Flow cytometry was performed on a LSR Fortessa flow cytometer (BD Biosciences, 

Heidelberg, Germany) equipped with 3 lasers at wavelengths of 405, 488, and 633 nm. For 

the measurement of enzymatic activity, the probe was excited with the 405 nm laser and the 

donor and acceptor emission intensities were recorded with a 450/50nm and a 585/42 nm filter, 

respectively. The acceptor filter had an upstream long-pass filter in front to reflect light below 

550 nm.  For FRET flow cytometry, cells were isolated from healthy, CF and COPD sputum, 

and 1 million cells were resuspended in 100 µL of PBS, followed by incubation with 2 µL of 

FcBlock (BD Biosciences, Heidelberg, Germany) for 5 min. Afterwards, cells were stained with 

surface specific monoclonal fluorochrome-conjugated antibodies or the respective isotype 

antibodies serving as negative control. Staining was performed for 30 min at 4°C. Then cells 

were resuspended in 200 µL PBS and incubated with the 7AAD (Biolegend, San Diego, USA) 
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viability stain for 10 min at 4°C. Then, the appropriate reporter was added to cells and flow 

cytometry was performed immediately after. At least 1000 neutrophils were always recorded.  

Data were analyzed with FACS Diva software v8.0.1 (BD Biosciences, Heidelberg, Germany) 

or Flow Jo software v10 (Treestar, Ashland, OR).   

For the optimization experiments showed in Figure 8, HL-60 cells were used. Different cell 

numbers were incubated with different concentrations of mSAM or NEmo-2 and analyzed by 

flow cytometry (LSRFortessa, Becton Dickinson, Heidelberg). Such cells were stained only 

with the 7AAD viability marker and were gated with the forward and side scatter that allow to 

exclude doublets in addition to 7AAD negativity.  To compensate for bleed-through the mSAM 

donor fragment was added at different concentrations and its MFI in the donor and acceptor 

channels measured.   

For the analysis of sputum neutrophil phenotypes shown in Figure 16, the antibody panel 

contained 9 surface markers, 2 intracellular ones and the 7AAD viability stain (Table 3). First, 

a master mix (32 µL x n samples) containing the surface antibodies was prepared:  

o FITC CD63 5 µL 

o PEDAZZLE CD54 5 µL 

o Percpcy55 CD66b 3 µL 

o BV605 CD184 5 µL 

o BV421 CD181 2 µL 

o BV711 TLR4 5 µL 

o V500 CD45 3 µL 

o PECY7 CD14 2 µL  

o AF700 CD16 2 µL 

The, 32 µL of the master mix were incubated per tube for 30 min at RT. Then, staining with 

surface markers was followed by fixation and permeabilization with FIX & PERM Cell Fixation 

& Cell Permeabilization Kit (Thermo Fisher) according to manufacturer’s instructions and 

subsequently incubated with NE-AF647 and Arginase1-PE antibodies. Briefly, after incubation 

for 30 min with the surface marker panel, cells were resuspended in 2 mL cold PBS, then 

centrifuged 1400 rpm 5min 4°C and resuspended 1 mL PBS. 0,75 µL live/dead marker was 

added to each tube and incubated 20 min dark on ice. After, cells are washed in 2 mL FACS 

buffer and centrifuged 1400 rpm 5min 4°C and 3 mL cold PBS are added followed by 

centrifugation 1400 rpm 5min 4°C. Cells were resuspended in 100 µL cold PBS and 150 µL of 

Fixation Buffer added and incubated 40 min dark RT. After, 2 mL cold PBS were added 

followed by centrifugation 1400 rpm 5min 4°C. Cells were resuspended in 200 µL PBS and left 
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overnight at 4°C. The day after 2 mL of 1x Permeabilization buffer were added and incubated 

10 min at 4°C. Cells were centrifuged 1400 rpm 5 min 4°C and resuspended in 100 µL Perm 

buffer 1x. Then a master mix containing the intracellular antibodies was prepared as follow (5 

µL x n samples):  

o AF647 ELA2 2 µL 

o PE Arg1 3 µL 

5 µL of master mix were added per tube and incubated for 30 min on ice in dark. Finally, 2 mL 

of 1x Perm buffer were added, followed by centrifugation and 2 mL PBS addition, one last step 

of centrifugation and cells were resuspended in 200 µL of PBS and ready for analysis. Flow 

cytometry was performed on a BD LSRFortessa cell analyzer (BD Biosciences, Heidelberg, 

Germany) and data were analyzed with FACSDiva software or Flow Jo software.  

Antibodies were titrated and IgG controls were performed as follow: 

 

7.15 Statistics 
 

All statistical tests and FlowSOM analysis were performed using R software (R version 3.6.1) 

and GraphPad version 6.01. Two-tailed Wilcoxon rank sum test (U Test), Pearson or 

Spearman’s rank correlation coefficient tests, and linear or 4PL fitting to standard curves were 

applied when appropriate.  

Fluorophore Antibody Stock concentration µL to add
FITC CD63 0,2 (mg/ml) 2,3,5

PE Arg1 0,05 (mg/ml) 1,2,3,5,

PEDazzle594 CD54 0,1 (mg/ml) 1,2,3,5,

PerCPcy5.5 CD66b 0,05 (mg/ml) 2,3,5

BV605 CD184 (CXCR4) 0,1 (mg/ml) 1,2,3,5

unstained

IgG Isotype Stock concentration Dilution factor µL to add
FITC 0,2 (mg/ml) 1x 2,3,5

PE 0,2 (mg/ml) 4x 1,2,3,5,

PEDazzle594 0,2 (mg/ml) 2x 1,2,3,5,

PerCPcy5.5 0,1 (mg/ml) 2x 2,3,5

BV605 0,1 (mg/ml) 1x 1,2,3,5

Table 4 List of antibodies and concentration employed for the validation of the antibody 
panel. Data refers to staining of one million cells.  



8. References 

 

84 

 

8. References 

 

1. Zepp, J. A. & Morrisey, E. E. Cellular crosstalk in the development and regeneration of 
the respiratory system. Nat. Rev. Mol. Cell Biol. 20, 551–566 (2019). 

2. The lungs at the frontlines of immunity. Nat. Immunol. 16, 17 (2015). 

3. McMillan, S. J. et al. Matrix Metalloproteinase-9 Deficiency Results in Enhanced 
Allergen-Induced Airway Inflammation. J. Immunol. 172, 2586–2594 (2004). 

4. Lloyd, C. M. & Marsland, B. J. Lung Homeostasis: Influence of Age, Microbes, and the 
Immune System. Immunity 46, 549–561 (2017). 

5. Fahy, J. V. & Dickey, B. F. Airway Mucus Function and Dysfunction. N. Engl. J. Med. 
363, 2233–2247 (2010). 

6. Mostowy, S. et al. Entrapment of intracytosolic bacteria by septin cage-like structures. 
Cell Host Microbe 8, 433–444 (2010). 

7. Leiva-Juárez, M. M., Kolls, J. K. & Evans, S. E. Lung epithelial cells: Therapeutically 
inducible effectors of antimicrobial defense. Mucosal Immunol. 11, 21–34 (2018). 

8. Montgomery, S. T., Mall, M. A., Kicic, A. & Stick, S. M. Hypoxia and sterile inflammation 
in cystic fibrosis airways: Mechanisms and potential therapies. Eur. Respir. J. 49, 1–13 
(2017). 

9. Elborn, J. S. Cystic fibrosis. Lancet 388, 2519–2531 (2016). 

10. Decramer, M., Janssens, W. & Miravitlles, M. Chronic obstructive pulmonary disease. 
1341–1351 (2012). doi:10.1016/S0140-6736(11)60968-9 

11. De Rose, V., Molloy, K., Gohy, S., Pilette, C. & Greene, C. M. Airway epithelium 
dysfunction in cystic fibrosis and COPD. Mediators Inflamm. 2018, (2018). 

12. Hartl, D. et al. Innate immunity in cystic fibrosis lung disease. J. Cyst. Fibros. 11, 363–
382 (2012). 

13. Montoro, D. T. et al. A revised airway epithelial hierarchy includes CFTR-expressing 
ionocytes. Nature 560, 319–324 (2018). 

14. Plasschaert, L. W. et al. A single-cell atlas of the airway epithelium reveals the CFTR-
rich pulmonary ionocyte. Nature 560, 377–381 (2018). 

15. Bell, S. C. et al. The future of cystic fibrosis care: a global perspective. Lancet Respir. 
Med. 8, 65–124 (2020). 

16. Mall, M., Grubb, B. R., Harkema, J. R., O’Neal, W. K. & Boucher, R. C. Increased airway 
epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice. Nat. Med. 
10, 487–493 (2004). 

17. Fritzsching, B. et al. Hypoxic epithelial necrosis triggers neutrophilic inflammation via IL-
1 receptor signaling in cystic fibrosis lung disease. Am. J. Respir. Crit. Care Med. 191, 
902–913 (2015). 

18. Montgomery, S. T., Mall, M. A., Kicic, A. & Stick, S. M. Hypoxia and sterile inflammation 
in cystic fibrosis airways : mechanisms and potential therapies. 1–13 
doi:10.1183/13993003.00903-2016 



8. References 

 

85 

 

19. Wang, H. et al. Global, regional, and national life expectancy, all-cause mortality, and 
cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for 
the Global Burden of Disease Study 2015. Lancet 388, 1459–1544 (2016). 

20. Dey, T., Kalita, J., Weldon, S. & Taggart, C. Proteases and Their Inhibitors in Chronic 
Obstructive Pulmonary Disease. J. Clin. Med. 7, 244 (2018). 

21. Hidalgo, A., Chilvers, E. R., Summers, C. & Koenderman, L. The Neutrophil Life Cycle. 
Trends Immunol. 40, 584–597 (2019). 

22. Pham, C. T. N. Neutrophil serine proteases: Specific regulators of inflammation. Nat. 
Rev. Immunol. 6, 541–550 (2006). 

23. Afonso, P. V. et al. LTB4 Is a Signal-Relay Molecule during Neutrophil Chemotaxis. Dev. 
Cell 22, 1079–1091 (2012). 

24. Zhang, D. & Frenette, P. S. Cross talk between neutrophils and the microbiota. Blood 
133, 2168–2177 (2019). 

25. Marcos, V. et al. Free DNA in Cystic Fibrosis Airway Fluids Correlates with Airflow 
Obstruction. Mediators Inflamm. 2015, 408935 (2015). 

26. Gifford, A. M. & Chalmers, J. D. The role of neutrophils in cystic fibrosis. Curr. Opin. 
Hematol. 21, (2014). 

27. Khan, M. A., Ali, Z. S., Sweezey, N., Grasemann, H. & Palaniyar, N. Progression of 
Cystic Fibrosis Lung Disease from Childhood to Adulthood: Neutrophils, Neutrophil 
Extracellular Trap (NET) Formation, and NET Degradation. Genes (Basel). 10, 183 
(2019). 

28. Makam, M. et al. Activation of critical , host-induced , metabolic and stress pathways 
marks neutrophil entry into cystic fibrosis lungs. 106, (2009). 

29. Tirouvanziam, R. et al. Profound functional and signaling changes in viable inflammatory 
neutrophils homing to cystic fibrosis airways. 105, 4335–4339 (2008). 

30. Bedi, P., Davidson, D. J., McHugh, B. J., Rossi, A. G. & Hill, A. T. Blood Neutrophils are 
Reprogrammed in Bronchiectasis. Am. J. Respir. Crit. Care Med. (2018). 
doi:10.1164/rccm.201712-2423OC 

31. Mollinedo, F. Neutrophil Degranulation, Plasticity, and Cancer Metastasis. Trends 
Immunol. 40, 228–242 (2019). 

32. Silvestre-Roig, C., Hidalgo, A. & Soehnlein, O. Neutrophil heterogeneity: Implications 
for homeostasis and pathogenesis. Blood 127, 2173–2181 (2016). 

33. Korkmaz, B., Horwitz, M., Jenne, D. & Gauthier, F. Neutrophil elastase, proteinase 3, 
and cathepsin G as therapeutic targets in human diseases. Pharmacol. Rev. 62, 726–
759 (2010). 

34. López-Otín, C. & Bond, J. S. Proteases: Multifunctional enzymes in life and disease. J. 
Biol. Chem. 283, 30433–30437 (2008). 

35. Ekici, O. D., Paetzel, M. & Dalbey, R. E. Unconventional serine proteases: variations on 
the catalytic Ser/His/Asp triad configuration. Protein Sci. 17, 2023–2037 (2008). 

36. Korkmaz, B., Moreau, T. & Gauthier, F. Neutrophil elastase, proteinase 3 and cathepsin 
G: Physicochemical properties, activity and physiopathological functions. Biochimie 90, 
227–242 (2008). 



8. References 

 

86 

 

37. Korkmaz, B. et al. Therapeutic targeting of cathepsin C: from pathophysiology to 
treatment. Pharmacol. Ther. 190, 202–236 (2018). 

38. Owen, C. A., Campbell, M. A., Sannes, P. L., Boukedes, S. S. & Campbell, E. J. Cell 
surface-bound elastase and cathepsin G on human neutrophils: A novel, non-oxidative 
mechanism by which neutrophils focus and preserve catalytic activity of serine 
proteinases. J. Cell Biol. 131, 775–789 (1995). 

39. Campbell, E. J., Campbell, M. A. & Owen, C. A. Bioactive Proteinase 3 on the Cell 
Surface of Human Neutrophils: Quantification, Catalytic Activity, and Susceptibility to 
Inhibition. J. Immunol. 165, 3366–3374 (2000). 

40. Kasperkiewicz, P., Altman, Y., D’Angelo, M., Salvesen, G. S. & Drag, M. Toolbox of 
Fluorescent Probes for Parallel Imaging Reveals Uneven Location of Serine Proteases 
in Neutrophils. J. Am. Chem. Soc. 139, 10115–10125 (2017). 

41. Clancy, D. M. et al. Extracellular Neutrophil Proteases Are Efficient Regulators of IL-1, 
IL-33, and IL-36 Cytokine Activity but Poor Effectors of Microbial Killing. Cell Rep. 22, 
2937–2950 (2018). 

42. McKelvey, M. C., Weldon, S., McAuley, D. F., Mall, M. A. & Taggart, C. C. Targeting 
proteases in cystic fibrosis lung disease paradigms, progress, and potential. Am. J. 
Respir. Crit. Care Med. 201, 141–147 (2020). 

43. Sly, P. D. et al. Risk Factors for Bronchiectasis in Children with Cystic Fibrosis. N. Engl. 
J. Med. 368, 1963–1970 (2013). 

44. Dittrich, A. S. et al. Elastase activity on sputum neutrophils correlates with severity of 
lung disease in cystic fibrosis. Eur. Respir. J. 1701910 (2018). 
doi:10.1183/13993003.01910-2017 

45. Gehrig, S., Mall, M. A. & Schultz, C. Spatially resolved monitoring of neutrophil elastase 
activity with ratiometric fluorescent reporters. Angew. Chemie - Int. Ed. 51, 6258–6261 
(2012). 

46. Zhou, Z. et al. The ENaC-overexpressing mouse as a model of cystic fibrosis lung 
disease. J. Cyst. Fibros. 10, S172–S182 (2011). 

47. Gehrig, S. et al. Lack of neutrophil elastase reduces inflammation, mucus 
hypersecretion, and emphysema, but not mucus obstruction, in mice with cystic 
fibrosislike lung disease. Am. J. Respir. Crit. Care Med. 189, 1082–1092 (2014). 

48. Polverino, E., Rosales-mayor, E., Dale, G. E. & Dembowsky, K. The Role of Neutrophil 
Elastase Inhibitors in Lung Diseases. Chest 152, 249–262 (2017). 

49. Wright, J. L., Cosio, M. & Churg, A. Animal models of chronic obstructive pulmonary 
disease. Am. J. Physiol. Cell. Mol. Physiol. 295, L1–L15 (2008). 

50. Pham, C. T. N. Neutrophil serine proteases fine-tune the inflammatory response. Int. J. 
Biochem. Cell Biol. 40, 1317–1333 (2008). 

51. Raptis, S. Z., Shapiro, S. D., Simmons, P. M., Cheng, A. M. & Pham, C. T. N. Serine 
protease cathepsin G regulates adhesion-dependent neutrophil effector functions by 
modulating integrin clustering. Immunity 22, 679–691 (2005). 

52. Vizovišek, M. et al. Protease Specificity: Towards In Vivo Imaging Applications and 
Biomarker Discovery. Trends Biochem. Sci. 43, 829–844 (2018). 

53. Clancy, D. M. et al. Extracellular Neutrophil Proteases Are Efficient Regulators of IL-1, 



8. References 

 

87 

 

IL-33, and IL-36 Cytokine Activity but Poor Effectors of Microbial Killing. Cell Rep. 22, 
2937–2950 (2018). 

54. Bauer, S. et al. Proteinase 3 and CD177 are expressed on the plasma membrane of the 
same subset of neutrophils. J. Leukoc. Biol. 81, 458–464 (2007). 

55. Jerke, U., Marino, S. F., Daumke, O. & Kettritz, R. Characterization of the CD177 
interaction with the ANCA antigen proteinase 3. Sci. Rep. 7, 43328 (2017). 

56. Wagner, C. J., Schultz, C. & Mall, M. A. Neutrophil elastase and matrix 
metalloproteinase 12 in cystic fibrosis lung disease. Mol. Cell. Pediatr. 3, 25 (2016). 

57. Trojanek, J. B. et al. Airway mucus obstruction triggers macrophage activation and 
matrix metalloproteinase 12-dependent emphysema. Am. J. Respir. Cell Mol. Biol. 51, 
709–720 (2014). 

58. Cobos-Correa, A., Trojanek, J. B., Diemer, S., Mall, M. A. & Schultz, C. Membrane-
bound FRET probe visualizes MMP12 activity in pulmonary inflammation. Nat. Chem. 
Biol. 5, 628–630 (2009). 

59. Hu, H. Y. et al. In vivo imaging of mouse tumors by a lipidated cathepsin S substrate. 
Angew. Chemie - Int. Ed. 53, 7669–7673 (2014). 

60. Garland, M., Yim, J. J. & Bogyo, M. A Bright Future for Precision Medicine: Advances 
in Fluorescent Chemical Probe Design and Their Clinical Application. Cell Chem. Biol. 
23, 122–136 (2016). 

61. Small, D. M. et al. Targeting of Cathepsin S Reduces Cystic Fibrosis-like Lung Disease. 
Eur. Respir. J. 1801523 (2019). doi:10.1183/13993003.01523-2018 

62. Gaggar, A. et al. The role of matrix metalloproteinases in cystic fibrosis lung disease. 
Eur. Respir. J. 38, 721–727 (2011). 

63. Cobos-Correa, A., Trojanek, J. B., Diemer, S., Mall, M. a & Schultz, C. Membrane-bound 
FRET probe visualizes MMP12 activity in pulmonary inflammation. Nat. Chem. Biol. 5, 
628–30 (2009). 

64. Kridel, S. J. et al. Substrate Hydrolysis by Matrix Metalloproteinase-9. J. Biol. Chem. 
276, 20572–20578 (2001). 

65. Brinkmann, V. et al. Neutrophil Extracellular Traps Kill Bacteria. Science (80-. ). 303, 
1532–1535 (2004). 

66. Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the 
Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25, 486–541 (2018). 

67. Fuchs, T. A. et al. Novel cell death program leads to neutrophil extracellular traps. J. 
Cell Biol. 176, 231–241 (2007). 

68. Wang, Y. et al. Histone hypercitrullination mediates chromatin decondensation and 
neutrophil extracellular trap formation. J. Cell Biol. 184, 205–213 (2009). 

69. Porto, B. N. & Stein, R. T. Neutrophil Extracellular Traps in Pulmonary Diseases: Too 
Much of a Good Thing? Front. Immunol. 7, 1–13 (2016). 

70. Warnatsch, A., Ioannou, M., Wang, Q. & Papayannopoulos, V. Inflammation. Neutrophil 
extracellular traps license macrophages for cytokine production in atherosclerosis. 
Science 349, 316–320 (2015). 

71. Pierce, B. L. et al. Elevated biomarkers of inflammation are associated with reduced 



8. References 

 

88 

 

survival among breast cancer patients. J. Clin. Oncol. 27, 3437–3444 (2009). 

72. Albrengues, J. et al. Neutrophil extracellular traps produced during inflammation awaken 
dormant cancer cells in mice. Science 361, eaao4227 (2018). 

73. Muñoz, L. E. et al. Neutrophil Extracellular Traps Initiate Gallstone Formation. Immunity 
51, 443-450.e4 (2019). 

74. Mall, M. A., Mayer-hamblett, N. & Rowe, S. M. Cystic Fibrosis: Emergence of Highly 
Effective Targeted Therapeutics and Potential Clinical Implications. 1–64 (2019). 
doi:10.1164/rccm.201910-1943SO 

75. Petretto, A. et al. Neutrophil extracellular traps (NET) induced by different stimuli: A 
comparative proteomic analysis. PLoS One 14, e0218946–e0218946 (2019). 

76. Chapman, E. A. et al. Caught in a Trap? Proteomic Analysis of Neutrophil Extracellular 
Traps in Rheumatoid Arthritis and Systemic Lupus Erythematosus   . Frontiers in 
Immunology   10, 423 (2019). 

77. Genschmer, K. R. et al. Activated PMN Exosomes : Pathogenic Entities Causing Matrix 
Destruction and Disease in the Lung Article Activated PMN Exosomes : Pathogenic 
Entities Causing Matrix Destruction and Disease in the Lung. Cell 176, 113-126.e15 
(2019). 

78. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel 
mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007). 

79. Maas, S. L. N., Breakefield, X. O. & Weaver, A. M. Extracellular Vesicles: Unique 
Intercellular Delivery Vehicles. Trends Cell Biol. 27, 172–188 (2017). 

80. van den Boorn, J. G., Daßler, J., Coch, C., Schlee, M. & Hartmann, G. Exosomes as 
nucleic acid nanocarriers. Adv. Drug Deliv. Rev. 65, 331–335 (2013). 

81. Andreu, Z. & Yáñez-Mó, M. Tetraspanins in Extracellular Vesicle Formation and 
Function   . Frontiers in Immunology   5, 442 (2014). 

82. Vargas, A., Roux-Dalvai, F., Droit, A. & Lavoie, J.-P. Neutrophil-Derived Exosomes: A 
New Mechanism Contributing to Airway Smooth Muscle Remodeling. Am. J. Respir. 
Cell Mol. Biol. 55, 450–461 (2016). 

83. Szul, T. et al. Toll-Like Receptor 4 Engagement Mediates Prolyl Endopeptidase Release 
from Airway Epithelia via Exosomes. Am. J. Respir. Cell Mol. Biol. 54, 359–369 (2016). 

84. Parolini, I. et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. 
J. Biol. Chem. 284, 34211–34222 (2009). 

85. Wielpütz, M. O. et al. In vivo monitoring of cystic fibrosis-like lung disease in mice by 
volumetric computed tomography. Eur. Respir. J. 38, 1060–1070 (2011). 

86. Craven, T. H. et al. Super-silent FRET Sensor Enables Live Cell Imaging and Flow 
Cytometric Stratification of Intracellular Serine Protease Activity in Neutrophils. Sci. Rep. 
8, 13490 (2018). 

87. Korkmaz, B. et al. Measuring elastase, proteinase 3 and cathepsin G activities at the 
surface of human neutrophils with fluorescence resonance energy transfer substrates. 
Nat Protoc 3, 991–1000 (2008). 

88. Castillo, M. J., Nakajima, K., Zimmerman, M. & Powers, J. C. Sensitive substrates for 
human leukocyte and porcine pancreatic elastase: A study of the merits of various 



8. References 

 

89 

 

chromophoric and fluorogenic leaving groups in assays for serine proteases. Anal. 
Biochem. 99, 53–64 (1979). 

89. Hu, H.-Y. et al. FRET-based and other fluorescent proteinase probes. Biotechnol. J. 9, 
266–281 (2014). 

90. Blum, G., von Degenfeld, G., Merchant, M. J., Blau, H. M. & Bogyo, M. Noninvasive 
optical imaging of cysteine protease activity using fluorescently quenched activity-based 
probes. Nat. Chem. Biol. 3, 668–677 (2007). 

91. Blum, G. et al. Dynamic imaging of protease activity with fluorescently quenched 
activity-based probes. Nat. Chem. Biol. 1, 203–209 (2005). 

92. Vasiljeva, O. et al. Tumor Cell–Derived and Macrophage-Derived Cathepsin B 
Promotes Progression and Lung Metastasis of Mammary Cancer. Cancer Res. 66, 5242 
LP – 5250 (2006). 

93. Joyce, J. A. et al. Cathepsin cysteine proteases are effectors of invasive growth and 
angiogenesis during multistage tumorigenesis. Cancer Cell 5, 443–453 (2004). 

94. Chuang, C.-H. et al. &lt;em&gt;In Vivo&lt;/em&gt; Positron Emission Tomography 
Imaging of Protease Activity by Generation of a Hydrophobic Product from a 
Noninhibitory Protease Substrate. Clin. Cancer Res. 18, 238 LP – 247 (2012). 

95. Jugniot, N., Voisin, P., Bentaher, A. & Mellet, P. Neutrophil Elastase Activity Imaging: 
Recent Approaches in the Design and Applications of Activity-Based Probes and 
Substrate-Based Probes. Contrast Media &#x26; Mol. Imaging 2019, 7417192 (2019). 

96. Middleton, P. G. et al. Elexacaftor–Tezacaftor–Ivacaftor for Cystic Fibrosis with a Single 
Phe508del Allele. N. Engl. J. Med. 381, 1809–1819 (2019). 

97. Heijerman, H. G. M. et al. Efficacy and safety of the elexacaftor plus tezacaftor plus 
ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del 
mutation: a double-blind, randomised, phase 3 trial. Lancet 394, 1940–1948 (2019). 

98. Fermont, J. M. et al. Biomarkers and clinical outcomes in COPD : a systematic review 
and meta-analysis. 439–446 (2019). doi:10.1136/thoraxjnl-2018-211855 

99. Anderson, G. P. Advances in understanding COPD [ version 1 ; referees : 3 approved ] 
Referee Status : 5, (2016). 

100. Lange, P. et al. Lung-Function Trajectories Leading to Chronic Obstructive Pulmonary 
Disease. N. Engl. J. Med. 373, 111–122 (2015). 

101. Mannino, D. M. Biomarkers in COPD : the search continues ! 872–874 (2015). 
doi:10.1183/09031936.00236314 

102. Hilgenfeld, R. From SARS to MERS: crystallographic studies on coronaviral proteases 
enable antiviral drug design. FEBS J. 281, 4085–4096 (2014). 

103. Zhang, L. et al. Crystal structure of SARS-CoV-2 main protease provides a basis for 
design of improved α-ketoamide inhibitors. Science (80-. ). eabb3405 (2020). 
doi:10.1126/science.abb3405 

104. Cascella M, Rajnik M, C. A. Features, Evaluation and Treatment Coronavirus (COVID-
19) [Updated 2020 Mar 20]. (2020). Available at: 
https://www.ncbi.nlm.nih.gov/books/NBK554776/.  

105. Cao, X. COVID-19: immunopathology and its implications for therapy. Nat. Rev. 



8. References 

 

90 

 

Immunol. 2019, (2019). 

106. Shi, Y. et al. COVID-19 infection: the perspectives on immune responses. Cell Death 
Differ. (2020). doi:10.1038/s41418-020-0530-3 

107. Genentech Initiates Phase III Clinical Trial Of Actemra In Hospitalized Patients With 
Severe COVID-19 Pneumonia. Available at: https://www.gene.com/media/press-
releases/14841/2020-03-18/genentech-initiates-phase-iii-clinical-t.  

108. Attucci, S. et al. Measurement of free and membrane-bound cathepsin G in human 
neutrophils using new sensitive fluorogenic substrates. Biochem. J. 366, 965–70 (2002). 

109. Korkmaz, B. et al. Discriminating between the activities of human cathepsin G and 
chymase using fluorogenic substrates. FEBS J. 278, 2635–2646 (2011). 

110. Korkmaz, B. et al. Discriminating between the activities of human neutrophil elastase 
and proteinase 3 using serpin-derived fluorogenic substrates. J. Biol. Chem. 277, 
39074–39081 (2002). 

111. Fahy, J. V, Liu, J., Boushey, H. A. & Francisco, S. Respiratory pathophysiologic 
responses Prominent neutrophilic inflammation in sputum from subjects with asthma 
exacerbation. 843–852 

112. Margaroli, C. et al. Elastase Exocytosis by Airway Neutrophils Associates with Early 
Lung Damage in Cystic Fibrosis Children. Am. J. Respir. Crit. Care Med. (2018). 
doi:10.1164/rccm.201803-0442OC 

113. Twigg, M. S. et al. The Role of Serine Proteases and Antiproteases in the Cystic Fibrosis 
Lung. Mediators Inflamm. 2015, 1–10 (2015). 

114. Weldon, S. et al. Decreased levels of secretory leucoprotease inhibitor in the 
Pseudomonas-infected cystic fibrosis lung are due to neutrophil elastase degradation. 
J. Immunol. 183, 8148–8156 (2009). 

115. Van Gassen, S. et al. FlowSOM: Using self-organizing maps for visualization and 
interpretation of cytometry data. Cytom. Part A 87, 636–645 (2015). 

116. Genschmer, K. R. et al. Activated PMN Exosomes: Pathogenic Entities Causing Matrix 
Destruction and Disease in the Lung. Cell 176, 113-126.e15 (2019). 

117. Osteikoetxea, X. et al. Differential detergent sensitivity of extracellular vesicle 
subpopulations. Org. Biomol. Chem. 13, 9775–9782 (2015). 

118. Lozano-Andrés, E. et al. Tetraspanin-decorated extracellular vesicle-mimetics as a 
novel adaptable reference material. J. Extracell. Vesicles 8, (2019). 

119. Gieseler, F., Ungefroren, H., Settmacher, U., Hollenberg, M. D. & Kaufmann, R. 
Proteinase-activated receptors (PARs) - Focus on receptor-receptor- interactions and 
their physiological and pathophysiological impact. Cell Commun. Signal. 11, 1 (2013). 

120. Lukinavičius, G. et al. SiR-Hoechst is a far-red DNA stain for live-cell nanoscopy. Nat. 
Commun. 6, 1–7 (2015). 

121. Chen, M.-S., Lin, W.-C., Yeh, H.-T., Hu, C.-L. & Sheu, S.-M. Propofol specifically 
reduces PMA-induced neutrophil extracellular trap formation through inhibition of p-ERK 
and HOCl. Life Sci. 221, 178–186 (2019). 

122. Yang, H. et al. New insights into neutrophil extracellular traps: Mechanisms of formation 
and role in inflammation. Front. Immunol. 7, 1–8 (2016). 



8. References 

 

91 

 

123. Dubois, A. V. et al. Influence of DNA on the activities and inhibition of neutrophil serine 
proteases in cystic fibrosis sputum. Am. J. Respir. Cell Mol. Biol. 47, 80–86 (2012). 

124. Gehrig, S. et al. Lack of neutrophil elastase reduces inflammation, mucus 
hypersecretion, and emphysema, but not mucus obstruction, in mice with cystic 
fibrosislike lung disease. American Journal of Respiratory and Critical Care Medicine 
189, (2014). 

125. Guyot, N. et al. Unopposed cathepsin G, neutrophil elastase, and proteinase 3 cause 
severe lung damage and emphysema. Am. J. Pathol. 184, 2197–2210 (2014). 

126. Steinwede, K. et al. Cathepsin G and Neutrophil Elastase Contribute to Lung-Protective 
Immunity against Mycobacterial Infections in Mice. J. Immunol. 188, 4476 LP – 4487 
(2012). 

127. Levy, H. & Feinstein, G. The digestion of the oxidized B chain of insulin by human 
neutrophile proteases: Elastase and chymotrypsin-like protease. Biochim. Biophys. 
Acta - Enzymol. 567, 35–42 (1979). 

128. Yu, X. et al. Neutrophil Adhesion Is a Prerequisite for Antibody-Mediated Proteolytic 
Tissue Damage in Experimental Models of Epidermolysis Bullosa Acquisita. J. Invest. 
Dermatol. 138, 1990–1998 (2018). 

129. Saeys, Y., Gassen, S. Van & Lambrecht, B. N. Computational flow cytometry : helping 
to make sense of high-dimensional immunology data. (2016). doi:10.1038/nri.2016.56 

130. Tibbitt, C. A. et al. Single-Cell RNA Sequencing of the T Helper Cell Response to House 
Dust Mites Defines a Distinct Gene Expression Signature in Airway Th2 Cells Resource 
Single-Cell RNA Sequencing of the T Helper Cell Response to House Dust Mites 
Defines a Distinct Gene Exp. 169–184 (2019). doi:10.1016/j.immuni.2019.05.014 

131. Barcenilla, H., Åkerman, L., Pihl, M. & Ludvigsson, J. Mass Cytometry Identifies Distinct 
Subsets of Regulatory T Cells and Natural Killer Cells Associated With High Risk for 
Type 1 Diabetes. 10, (2019). 

132. Kropf, P. et al. Arginase activity mediates reversible T cell hyporesponsiveness in 
human pregnancy. Eur. J. Immunol. 37, 935–945 (2007). 

133. de Oliveira, S., Rosowski, E. E. & Huttenlocher, A. Neutrophil migration in infection and 
wound repair: going forward in reverse. Nat. Rev. Immunol. 16, 378–391 (2016). 

134. Wang, Y. & Jönsson, F. Expression, Role, and Regulation of Neutrophil Fcγ Receptors   
. Frontiers in Immunology   10, 1958 (2019). 

135. Branzk, N. et al. Neutrophils sense microbe size and selectively release neutrophil 
extracellular traps in response to large pathogens. Nat. Immunol. 15, 1017–1025 (2014). 

136. Pohl, K. et al. A neutrophil intrinsic impairment affecting Rab27a and degranulation in 
cystic fibrosis is corrected by CFTR potentiator therapy. Blood 124, 999–1009 (2014). 

137. Li, P., Kaslan, M., Lee, S. H., Yao, J. & Gao, Z. Progress in Exosome Isolation 
Techniques. Theranostics 7, 789–804 (2017). 

138. Korkmaz, B. et al. Design and use of highly specific substrates of neutrophil elastase 
and proteinase 3. Am. J. Respir. Cell Mol. Biol. 30, 801–807 (2004). 

139. Young, R. L. et al. Neutrophil extracellular trap (NET)-mediated killing of pseudomonas 
aeruginosa: Evidence of acquired resistance within the CF airway, independent of 
CFTR. PLoS One 6, (2011). 



 

 

92 

 

140. Higuchi, S., Suga, M., Dannenberg, A. M. & Schofield, B. H. Histochemical 
demonstration of enzyme activities in plastic and paraffin embedded tissue sections. 
Biotech. Histochem. 54, 5–12 (1979). 

141. Stein, F. et al. FluoQ - a tool for rapid analysis of multiparameter fluorescence imaging 
data applied to oscillatory events Supplementary Figures and Tables. ACS Chem. Biol. 
14, 1–23 (2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 

 

93 

 

Appendix 
 

Structures and analytical data of synthetized compounds 
 

High resolution mass spectra (ESI negative mode) found for the compounds presented 

throughout the thesis: 

 

o sSAM:  

[M+1] + exp. 1902.74, found 1901.77 

 

o mSAM: 

[M+1] + exp. 2268.11, found 2268.08 

 

o Hoechst-azide: 

[M+1] + exp. 581.29, found 582.29 

 

o A-NE: 

[M+1] + exp. 2177.02, found 2178.02 

 

o A-CG: 

[M+1] + exp. 1997.02, not found, [M+2]2+ exp. 998.51, found 1010.91 

 

o H-NE: 

[M+1] + exp. 2758.30, found 2757.06, [M+2]2+ 1379.15, found 1380.15 

 

o H-CG: 

o [M+1] + exp. 2579.11, not found, [M+2]2+ 1289.55, found 1290.56 
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mSAM cleavage site demonstration 

mSAM [1mM] was dissolved in 0.1 M Tris-HCl, pH 7.5 and 200 nM human cathepsin G were 

added and incubated for 1 h at room temperature. The fragments originated by the enzymatic 

cleavage were analyzed by HPLC-MS. HPLC chromatograms of CG treated (a and b) and 

untreated (c and d) mSAM. a) Peak 1 in showed the characteristic TAMRA absorption and the 

mass corresponding to the acceptor fragment shown in e. The Peak 2 and 1’ in a and c 

corresponded to the uncleaved reporter (coumarin 343 and TAMRA absorption and the mass 

shown in g. Due to the impossibility to separate such a hydrophobic compound in only one 

HPLC run, peak 3, corresponding to the donor fragment possessing exclusively coumarin343 

absorption shown in b and d and mass shown in f, was eluted in the subsequent HPLC run. 

Figure from Guerra M. et al., DOI: 10.1021/acscentsci.8b00933 
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Patients demographics 

The first data table refers to data shown in Figure 6 and 7. The second table refers to the 

data shown in Figure 9 and the last table refers to Figures 10, 11 and 16. 

 

 

 
 

 

CF COPD Healthy

Number of subjects 34 Number of subjects 12 Number of subjects 11

Age (years) Median 28 Age (years) Median 68 Age (years) Median 27

Range 16-73 Range 50-83 Range 23-49

Males 23 Males 5 Males 7

Females 11 Females 7 Females 4

CFTR genotype

F508del/F508del 18

F508del/other 11

other/other 5

CF Healthy

Number of subjects 12 Number of subjects 5

Age (years) Median 30 Age (years) Median 36

Range 22-58 Range 27-49

Males missing Males missing

Females missing Females missing

CFTR genotype

F508del/F508del 6

F508del/other 1

other/other 5

CF COPD

Number of subjects 26 Number of subjects 13

Age (years) Median 29 Age (years) Median 66

Range 4_73 Range 50-75

Males 18 Males 8

Females 8 Females 5

CFTR genotype

F508del/F508del 3

F508del/other 19

other/other 4
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