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Abstract 

Small-angle scattering (SAS) of X-rays and neutrons allows the study of biological 
macromolecules in solution, at close to native conditions. The rapidly increasing popularity of the 
technique is attributed to both improvement in experimental facilities and continuous development 
of SAS data analysis and structure modeling tools. ATSAS, a software suite developed at the EMBL, is 
arguably the most comprehensive and utilized computer package for SAS data analysis worldwide. I 
present here the development of three computational tools, two of which have already been 
integrated into ATSAS:  (1) SAS-guided normal mode analysis in torsion angle space (TNMA); (2) the 
use of sequence coevolution to reduce the ambiguity of SAS-based modeling; and (3) computation of 
anomalous scattering (ASAXS) effects in the context of SAXS data. Further, this PhD work contains the 
results of integrative structural biology projects in collaborations with user groups of the ESRF and 
EMBL Hamburg SAXS beamlines, where the newly developed methods were utilized. 

In normal mode analysis, macromolecular motion is approximated as collective, low 
frequency harmonic oscillations around an initial, equilibrium structure. NMA in Cartesian space 
(CNMA) has been demonstrated to reasonably approximate conformational changes for a large set of 
proteins, and was thus used as the basis for SREFLEX, a method in the ATSAS suite to morph 
crystallographic structures to fit SAS data. However, it was shown in this work that SAS-guided CNMA 
results in stereochemically broken structures when applied to RNA. In comparison, SAS-guided TNMA 
of the same RNA structures resulted in improved models, in terms of both accuracy and 
stereochemistry. An implementation of SAS-guided TNMA, NMATOR, was thus developed and made 
available in the latest ATSAS v3.0.0 package. NMATOR was also used to generate SAXS-based solution 
structure models of Alu RNA, and the condensin HEAT-repeat protein Ycg1, and the ISC proteins HscA 
and IscU. The solution properties and structure of Ycg1, as determined through SAXS, have been 
published (Manalastas-Cantos et al, 2019).  

SAS modeling ambiguity was also tackled in this work and two ways of ameliorating it through 
the generation of distance constraints were discussed: (1) experimentally, through anomalous 
scattering effects; and (2) bioinformatically, by evaluating sequence coevolution. A program to 
account for energy-dependent anomalous effects when computing SAXS data from macromolecular 
models was written and is available in ATSAS version 3.0.0, for planning and analyzing ASAXS 
experiments. In addition, sequence coevolution analysis and the integration of identified coevolving 
pair distance constraints into SAXS-guided modelling, was shown to improve heterodimer modeling 
accuracy. Sequence coevolution was utilized to generate distance constraints for HscB-IscU 
heterodimer modeling. 
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Zusammenfassung 

Die Kleinwinkelstreuung (SAS) von Röntgenstrahlen und Neutronen ermöglicht die 
Untersuchung biologischer Makromoleküle in Lösung unter nahezu natürlichen Bedingungen. Die 
schnell zunehmende Popularität der Technik ist sowohl auf die Verbesserung der experimentellen 
Einrichtungen als auch auf die kontinuierliche Entwicklung von SAS-Datenanalyse- und 
Strukturmodellierungsmethoden zurückzuführen. ATSAS, eine am EMBL entwickelte Software-Suite, 
ist das wohl umfassendste und am meisten genutzte Computerpaket für die SAS-Datenanalyse 
weltweit. Ich präsentiere hier die Entwicklung von drei neuen Analyseprogrammen, von denen zwei 
bereits in ATSAS integriert wurden: (1) SAS-gesteuerte Normalmodenanalyse im Torsionswinkelraum 
(TNMA); (2) die Verwendung von Sequenzkoevolution, um die Mehrdeutigkeit der SAS-basierten 
Modellierung zu verringern; und (3) Berechnung von Anomalous Scattering (ASAXS) -Effekten in SAXS-
Daten. Darüber hinaus enthält diese Doktorarbeit die Ergebnisse integrativer strukturbiologischer 
Projekte in Zusammenarbeit mit Anwendergruppen der SAXS-Beamlines des ESRF und des EMBL 
Hamburg, bei denen die neu entwickelten Methoden zum Einsatz kamen. 

In der Normalmodenanalyse wird die makromolekulare Bewegung als kollektive, 
niederfrequente harmonische Schwingung um eine anfängliche Gleichgewichtsstruktur angenähert. 
Es wurde gezeigt, dass NMA im kartesischen Raum (CNMA) Konformationsänderungen für einen 
großen Satz von Proteinen annähernd annimmt, und es wurde daher als Grundlage für SREFLEX 
verwendet, eine Methode in der ATSAS-Suite, um kristallographische Strukturen an SAS-Daten 
anzupassen. In dieser Arbeit wurde jedoch gezeigt, dass SAS-gesteuertes CNMA bei Anwendung auf 
RNA zu stereochemisch gebrochenen Strukturen führt. Im Vergleich dazu führte SAS-gesteuertes 
TNMA mit denselben RNA-Strukturen zu verbesserten Modellen sowohl hinsichtlich der Genauigkeit 
als auch der Stereochemie. Daher wurde eine Implementierung von SAS-gesteuertem TNMA, 
NMATOR, entwickelt und im neuesten ATSAS v3.0.0-Paket verfügbar gemacht. NMATOR wurde auch 
verwendet, um SAXS-basierte Lösungsstrukturmodelle von Alu-RNA und dem Kondensin-HEAT-
Repeat-Protein Ycg1 sowie den ISC-Proteinen HscA und IscU zu generieren. Die durch SAXS 
bestimmten Lösungseigenschaften und Strukturen von Ycg1 wurden veröffentlicht (Manalastas-
Cantos et al., 2019). 

In dieser Arbeit wurde auch die Zweideutigkeit der SAS-Modellierung behandelt, und es 
wurden zwei Möglichkeiten zur Verbesserung durch die Erzeugung von Abstandsbeschränkungen 
erörtert: (1) experimentell durch anomale Streueffekte; und (2) bioinformatisch durch Auswertung 
der Sequenzkoevolution. Ein Programm zur Berücksichtigung energieabhängiger anomaler Effekte bei 
der Berechnung von SAXS-Daten aus makromolekularen Modellen wurde geschrieben und ist in ATSAS 
Version 3.0.0 für die Planung und Analyse von ASAXS-Experimenten verfügbar. Darüber hinaus wurde 
gezeigt, dass eine Sequenzkoevolutionsanalyse und die Integration identifizierter Zwangsbedingungen 
für Koevolutionspaare in eine SAXS-geführte Modellierung die Genauigkeit der Heterodimer-
Modellierung verbessern. Die Sequenzkoevolution wurde verwendet, um Abstandsbeschränkungen 
für die HscB-IscU-Heterodimer-Modellierung zu erzeugen. 
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1 Introduction 
 

1.1 Small-angle scattering fundamentals 

 Small-angle scattering (SAS) is a method that is used to characterize macromolecules 

in solution, yielding low-resolution information about their structure and interactions. In a 

typical solution SAS experiment (Figure 1-1A), the macromolecules of interest are suspended 

in the appropriate buffer, drawn through a capillary, and exposed to a beam of X-rays (SAXS) 

or neutrons (SANS). The incident beam is scattered due to elastic collisions with electrons in 

the case of SAXS, or nuclei in the case of SANS, producing interfering waves that are then 

collected by a detector. Since the macromolecules are found in random orientations in 

solution, the detector collects isotropic data (Figure 1-1B) that can be radially-averaged into 

a one-dimensional (1D) profile of scattering intensity 𝐼𝐼(𝑠𝑠) over the range of momentum 

transfer 𝑠𝑠 = (4𝜋𝜋 sin 𝜃𝜃)/ 𝜆𝜆, where 2𝜃𝜃 is the scattering angle, and 𝜆𝜆 is the wavelength of 

the incident radiation. The scattering from the buffer without the macromolecules is also 

measured, radially-averaged, and subtracted as background, yielding the scattering 

contribution from the macromolecules in the sample (Figure 1-1C) (Svergun et al., 2013). 

If the macromolecular solution is ideal and monodisperse (i.e. is pure and sufficiently 

dilute to prevent interparticle interactions), several parameters can be derived directly from 

the 1D SAS profile. At very low angles, two parameters provide information about the 

particles’ molecular weight and size: the forward scattering and radius of gyration. The 

forward scattering is the scattering intensity at zero angle, 𝐼𝐼(0). 𝐼𝐼(0) corresponds to in-

phase scattering from the whole macromolecule and is thus proportional to molecular 

weight. The radius of gyration (𝑅𝑅𝑔𝑔) is derived from low-angle SAS data, and is related to the 

forward scattering according to Guinier’s law (Guinier, 1939): 

𝐼𝐼(𝑠𝑠) = 𝐼𝐼(0)𝑒𝑒
−𝑠𝑠2𝑅𝑅𝑔𝑔

2

3          (1-1) 
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Figure 1-1. (A) Solution SAS experimental setup. (B) Two-dimensional (2D) image data collected by the 
detector is isotropic; this is radially-averaged to get the one-dimensional SAS profile. (C) Radially-averaged 
SAS data from the buffer (blue) is subtracted from the data from the macromolecular solution (black), yielding 
the scattering data from the macromolecule alone (red) 

  

The forward scattering cannot be directly measured since it is in the path of the 

incident beam, most of which is not scattered during a SAS experiment. However, 𝐼𝐼(0) can 

be approximated as the zero-intercept of the Guinier plot, 𝑙𝑙𝑙𝑙 𝐼𝐼(𝑠𝑠) vs. 𝑠𝑠2 (derived from eq. 

1-1), which is linear at small angles (sRg < 1.3), for monodisperse samples free of interparticle 

effects (aggregation or repulsion) (Figure 1-2A).  The radius of gyration can be derived from 

the slope of the Guinier plot, and is sensitive to both the particle size and shape, i.e. the 

volume or mass distribution.   

In addition to the scattering at low angles, the scattering over the whole angular range 

can be used to derive the 𝑃𝑃(𝑟𝑟) function (Figure 1-2B), a histogram of distances between all 

scattering pairs in the macromolecule.  The scattering intensity 𝐼𝐼(𝑠𝑠)  is the Fourier 

transform of the 𝑃𝑃(𝑟𝑟) function, as shown: 

𝐼𝐼(𝑠𝑠) =  4𝜋𝜋 ∫ 𝑃𝑃(𝑟𝑟) 𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠)
𝑠𝑠𝑠𝑠

𝑑𝑑𝑟𝑟𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚
0          (1-2)  

    

 

 

8 
 



And, thus, inversely: 

𝑃𝑃(𝑟𝑟) =  1
2𝜋𝜋2 ∫ 𝐼𝐼(𝑠𝑠)𝑠𝑠𝑟𝑟 𝑠𝑠𝑠𝑠𝑙𝑙(𝑠𝑠𝑟𝑟)𝑑𝑑𝑠𝑠∞

0           (1-3) 

Equation 1-3 shows that the calculation of 𝑃𝑃(𝑟𝑟)  from 𝐼𝐼(𝑠𝑠)  requires integration 

from zero to infinity, which is not practicable due to the limited angular range that is physically 

measurable, and the increased noise of experimental SAS data at higher angles. Instead, the 

𝑃𝑃(𝑟𝑟) function is derived indirectly, by using the relationship in eq. 1-2 to parametrize 𝑃𝑃(𝑟𝑟), 

such that the 𝐼𝐼(𝑠𝑠)  matches the experimental SAS data (Glatter, 1977; Semenyuk and 

Svergun, 1991). 

 An estimate of particle volume in solution can also be directly derived from the SAS 

data (called the Porod volume, 𝑉𝑉𝑝𝑝): 

𝑉𝑉𝑝𝑝 = 2𝜋𝜋2𝐼𝐼(0)
∫ 𝐼𝐼(𝑠𝑠)𝑠𝑠2𝑑𝑑𝑠𝑠∞
0

              (1-4) 

The denominator of eq. 1-4 is known as the Porod invariant, so-called because it was 

shown to yield a constant independent of the nature of the scattering particle (Porod, 1951).  

Although the Porod invariant is another infinite integral, it is approximated by extrapolating 

to infinity using the Porod asymptotic, which shows that scattering intensity decays 

proportionally to 𝑠𝑠−4, assuming a sharp interface between the scattering particle and the 

solvent. 

   𝑙𝑙𝑠𝑠𝑙𝑙𝑠𝑠 → ∞ 𝐼𝐼(𝑠𝑠) =  2𝜋𝜋(∆𝜌𝜌)2𝑆𝑆𝑠𝑠𝑙𝑙𝑖𝑖
𝑠𝑠4𝑉𝑉           (1-5) 

where ∆𝜌𝜌 is the excess scattering length density, 𝑆𝑆𝑠𝑠𝑙𝑙𝑖𝑖  is the sum of internal scattering 

surfaces, and 𝑉𝑉 is the illuminated volume of the sample (Porod, 1951; Debye, Anderson Jr 

and Brumberger, 1957). However, this asymptotic behavior is sensitive to the particle’s 

folding state. This sensitivity can be used to qualitatively distinguish between a well-folded, 

globular particle, and an unfolded, flexible one.   
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Figure 1-2. (A) Guinier plots for a monodisperse (black) and aggregated (red) sample. (B) The 𝑷𝑷(𝒓𝒓) function 
is a histogram of all interatomic distances. The largest distance (arrow), corresponds to the maximum 
dimension, 𝑫𝑫𝒎𝒎𝒎𝒎𝒎𝒎, of the particle. (C) The Kratky plot can be used to distinguish between globular (black) and 
flexible (red) particles. (D) The Kratky plot can be normalized by particle size to facilitate comparison. 

 

 Particle flexibility can be qualitatively observed by representing the scattering data as 

a Kratky plot, 𝑠𝑠2 × 𝐼𝐼(𝑠𝑠)  vs. 𝑠𝑠  (Figure 1-2C) (Kratky, 1982), which can be normalized by 

particle size ( �𝑠𝑠𝑅𝑅𝑔𝑔�2 × 𝐼𝐼(𝑠𝑠) 𝐼𝐼(0)⁄  vs. 𝑠𝑠𝑅𝑅𝑔𝑔 ) (Figure 1-2D). Globular molecules have the 

expected intensity decay proportional to 𝑠𝑠−4, resulting in a bell-shaped Kratky plot. On the 

other hand, unfolded particles show a slower intensity decay.  With random chains, for 

example, scattering intensity decays proportional to 𝑠𝑠−2 (Debye, 1947). Thus, when viewed 

as a Kratky plot, flexible molecules show a plateauing signal, instead of a well-defined 

maximum. 

 

1.2 Modeling biomolecular structure from SAS data 

 The usefulness of SAS data for structural biology has increased over the past five 

decades, as structure modeling tools for SAS data has improved with increasing 

computational resources. These modeling tools range from ab initio modeling methods that 

are conceptually based on either envelope reconstruction (Stuhrmann, 1970; Svergun and 
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Stuhrmann, 1991), or finite element modeling (Chacon et al., 1998; Svergun, 1999), to those 

that leverage high-resolution structures as building blocks for modeling (Petoukhov and 

Svergun, 2005; Schneidman-Duhovny, Hammel and Sali, 2011; Franke et al., 2012; Panjkovich 

and Svergun, 2016). The specific software tools discussed in this manuscript will primarily 

come from the ATSAS software suite, which is a comprehensive collection of computer 

programs for SAS data processing, analysis, and modeling (Franke et al., 2017), though the 

underlying concepts should hold for other software implementations.  

 Ab initio modeling tools can be used without any prior information about the structure 

of a biomolecule. Due to the limited ability of envelope analysis to reconstruct complex 

shapes, such as those with large concavities, current ab initio modeling methods are mostly 

based on finite element (bead) modeling. In bead modeling, the structure is modeled as an 

arrangement of beads of similar scattering density to the object being modeled. Methods 

such as DAMMIN and DAMMIF (as well as multiphase modeling method MONSA) incorporate 

restrictions such as continuity and compactness to improve modeling quality (Svergun, 1999; 

Franke and Svergun, 2009). Continuity refers to the interconnectivity of the beads, while 

compactness means that the beads must be arranged in a way that reflects the compactness 

of typical biomolecules. These conditions must be specified because ab initio modeling from 

SAS data can often yield many different, yet equally likely models. This is known as the 

modeling ambiguity problem, and is an intrinsic limitation of the method and a direct 

consequence of the information lost through the isotropic tumbling of macromolecules that 

occurs in solution, that results in the time and orientational averaging of scattering 

amplitudes. Nonetheless, ab initio models are often informative, and as long as the ambiguity 

is adequately characterized, can give structural insights in the absence of high-resolution 

information. Modeling ambiguity can be quantified a priori by examining the SAS data itself 

for inherent ambiguity (Petoukhov and Svergun, 2015), or by examining the variance of the 

models from multiple modeling instances (Volkov and Svergun, 2003; Tuukkanen, Kleywegt 

and Svergun, 2016). 

 Analogous to the use of heavy atoms for macromolecular phasing in X-ray 

crystallography, the anomalous scattering of heavy atoms can be used as a molecular ruler in 

SAXS experiments. In particular, the distances between the heavy atoms can be derived by 

performing scattering experiments near and at the absorption edge of the atoms, and 
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evaluating the resulting decrease in scattering signal. Although at present, only a few 

biological studies using anomalous SAXS have been published (Stuhrmann and Notbohm, 

1981; Miake-Lye, Doniach and Hodgson, 1983; Pabit et al., 2010), anomalous scattering could 

conceptually be used as a source of distance constraints to reduce SAXS modeling ambiguity. 

 Using high-resolution structures as building blocks for modeling (i.e. hybrid modeling) 

can also somewhat ameliorate, though not completely remove, modeling ambiguity. Cases in 

which high-resolution structures are used in conjunction with SAS data include (1) validating 

if the high-resolution structure corresponds to the solution structure, and (2) building the 

solution structure of the full-length protein, oligomer, or complex, when only partial 

structures are known. 

For the first case, gross structural changes can be seen by SAS. Tools such as CRYSOL 

can give a measure of the agreement between a high-resolution structure and experimental 

SAS data (Svergun, Barberato and Koch, 1995). This is achieved by computing the theoretical 

scattering of the high-resolution model, and comparing the model scattering with the 

experimental SAS data, through the 𝜒𝜒2 metric: 

𝜒𝜒2 = 1
𝑁𝑁𝑝𝑝

∑ �𝐼𝐼𝑒𝑒(𝑠𝑠𝑖𝑖)−𝑐𝑐𝐼𝐼𝑚𝑚(𝑠𝑠𝑖𝑖)
𝜎𝜎(𝑠𝑠𝑖𝑖)

�
2𝑁𝑁𝑝𝑝

𝑠𝑠=1          (1-6) 

where 𝑁𝑁𝑝𝑝 is the number of experimental points, 𝐼𝐼𝑒𝑒 is the experimental scattering, 

𝐼𝐼𝑚𝑚 is the computed scattering from the model, σ(𝑠𝑠𝑠𝑠) are the experimental errors, and 𝑐𝑐 is 

the scaling factor. A 𝜒𝜒2  fit of around 1 is considered a good fit, given accurate error 

estimates. Specifically, if the estimated errors are too large, any differences between two 

scattering profiles are attributed to error, resulting in a spuriously low 𝜒𝜒2 . Conversely, 

artificially poor fits (high 𝜒𝜒2) could result from underestimated errors.  

In the case of poor fit between a high-resolution model and experimental SAS data, 

conformational changes can be modeled as domain movements simulated by normal mode 

analysis. SREFLEX is a method in the ATSAS suite that morphs an initial high-resolution 

structure along its normal modes in Cartesian space, such that it corresponds well with a given 

scattering profile (Panjkovich and Svergun, 2016). 

 

12 
 



For the case wherein a full-length protein, oligomer, or complex is built from partial 

structures and SAS data, rigid-body modeling is often employed. In rigid body modeling, the 

partial structures are treated as immutable blocks which are arranged in 3D space to optimally 

fit the experimental SAS data, while also meeting geometric criteria such as structure 

connectedness and lack of clashes. In the ATSAS suite alone, there are several SAS-guided 

rigid-body modeling methods that are each suitable to different modeling scenarios: methods 

that, additionally, reconstruct any missing residues (BUNCH for single proteins, CORAL for 

complexes), a method that models oligomers and complexes based on the subunit structures 

(SASREF), and even one that models partially-dissociating oligomers and complexes as a 

mixture of the oligomer/complex and the constituent subunits (SASREFMX) (Petoukhov and 

Svergun, 2005; Franke et al., 2012; Petoukhov et al., 2013). As with ab initio modeling, SAS-

based hybrid modeling could be ambiguous, and as such, benefits from the characterization 

of this ambiguity, which involves performing multiple modeling runs, and examining the 

variance of the resulting solutions. 

 

1.3 The scope of this work 

 The main interests tackled in this work are modeling biomolecular flexibility, and 

reducing modeling ambiguity. Currently, normal mode analysis in Cartesian space (CNMA) has 

been shown to reasonably model interdomain motions for a large set of proteins (Krebs et 

al., 2002), and to combine well with SAS data in order to model protein flexibility in solution 

(Panjkovich and Svergun, 2016). However, the performance of SAS-guided CNMA for nucleic 

acid structures had not been extensively tested. In Chapter 2, I discuss the development of an 

NMA tool in torsion-angle space (TNMA), and show that it is better suited to modeling RNA 

than CNMA, both in terms of accuracy and stereochemistry. 

 SAS modeling ambiguity can often be reduced by providing complementary 

information, such as contacts or solvent exposure data. In the absence of additional 

experimental data, sequence coevolution was tested here as a way to specify contacts 

between subunits in a heterodimer. In Chapter 3, I discuss the development, applications, and 

limitations of a contact-prediction method based on sequence coevolution. 
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 Modeling ambiguity can also be addressed by experimental methods such as ASAXS. 

In Chapter 4, I discuss the development of a software module to account for anomalous 

effects when computing scattering from a biomolecule, and the potential of this module to 

guide ASAXS experiments. 

 Lastly, in Chapters 5-7, I present several experimental user projects, in which I was 

involved during the PhD: (1) Alu RNA, (2) condensin HEAT-repeat proteins, and (3) HscA and 

HscB-IscU bacterial proteins. The experimental SAXS data in these projects were analyzed 

with ATSAS programs and specifically, with the new methods developed in this work. 
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2 Modeling flexible motions with normal mode analysis in torsion 
angle space 

 

 

2.1 Normal mode analysis and SAS 

The simulation of macromolecular dynamics in biologically-relevant timescales is 

important for understanding macromolecular function. Normal mode analysis approximates 

macromolecular motion as collective harmonic motions of the component atoms around an 

initial, equilibrium position (Goldstein, 1950), and as such, is a less computationally-intensive 

method of simulating protein dynamics than all-atom molecular dynamics (MD). The 

computational cost of NMA could be further decreased by employing coarse-graining (i.e. 

representing the structure with a limited set of representative atoms, e.g. the Cα atoms in 

proteins). Coarse-grained NMA in Cartesian space (CNMA) has been shown to reproduce 

conformational changes in proteins (Tama and Sanejouand, 2001; Krebs et al., 2002; 

Alexandrov et al., 2005; Tobi and Bahar, 2005). As a result, one application of coarse-grained 

CNMA has been to morph high-resolution structures to fit electron density maps from cryo-

electron microscopy (Tama, Miyashita and Brooks III, 2004), and more relevant to this work, 

solution scattering data (Panjkovich and Svergun, 2016). Below, I discuss the mathematical 

formalism of NMA in a manner agnostic of the coordinate system used, in order to compare 

between the widely-employed CNMA, and the approach used in this work, NMA in torsion 

angle space (TNMA).  

If the initial structure is taken to be the equilibrium position (represented as a set of 

𝑁𝑁 coordinates, 𝒒𝒒𝟎𝟎), the potential energy is assumed to be a quadratic function around this 

minimum.   

𝐸𝐸𝑝𝑝 = 1
2

∑ 𝐻𝐻𝑠𝑠,𝑗𝑗
𝑁𝑁
𝑠𝑠,𝑗𝑗 (𝑞𝑞𝑠𝑠 − 𝑞𝑞𝑠𝑠

0)�𝑞𝑞𝑗𝑗 − 𝑞𝑞𝑗𝑗
0� =  1

2
(𝒒𝒒 − 𝒒𝒒𝟎𝟎)𝑯𝑯(𝒒𝒒 − 𝒒𝒒𝟎𝟎)       (2-1) 
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The kinetic energy of the system can be similarly expressed as a quadratic function of 

the velocities: 

𝐸𝐸𝑘𝑘 = 1
2

∑ 𝑇𝑇𝑠𝑠,𝑗𝑗
𝑁𝑁
𝑠𝑠,𝑗𝑗 �̇�𝑞𝑠𝑠�̇�𝑞𝑗𝑗 = 1

2
�̇�𝒒𝑻𝑻𝑻𝑻�̇�𝒒         (2-2) 

The potential and kinetic energy functions can then be used to solve Lagrange’s 

equations of motion, which are generalizable to any coordinate system: 

   𝑑𝑑
𝑑𝑑𝑑𝑑

� 𝜕𝜕𝜕𝜕
𝜕𝜕�̇�𝑞𝑖𝑖

� = � 𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞𝑖𝑖

� where 𝐿𝐿 = 𝐸𝐸𝑘𝑘 − 𝐸𝐸𝑝𝑝          (2-3) 

From eqs. 2-1 and 2-2, we get 𝜕𝜕𝐿𝐿 𝜕𝜕�̇�𝑞𝑠𝑠⁄ = ∑ 𝑇𝑇𝑗𝑗
𝑁𝑁
𝑗𝑗 �̇�𝑞𝑗𝑗  and 

𝜕𝜕𝐿𝐿 𝜕𝜕𝑞𝑞𝑠𝑠 = − ∑ 𝐻𝐻𝑗𝑗
𝑁𝑁
𝑗𝑗 �𝑞𝑞𝑗𝑗 − 𝑞𝑞𝑗𝑗

0�⁄ , which can be substituted into eq. 2-3, as follows: 

       ∑ 𝑇𝑇𝑗𝑗
𝑁𝑁
𝑗𝑗 �̈�𝑞𝑗𝑗 = − ∑ 𝐻𝐻𝑗𝑗

𝑁𝑁
𝑗𝑗 �𝑞𝑞𝑗𝑗 − 𝑞𝑞𝑗𝑗

0�         (2-4) 

Given that each set of coordinates 𝑞𝑞𝑗𝑗  is a function of time, 𝑞𝑞𝑗𝑗 =  𝑞𝑞𝑗𝑗
0 +

∑ 𝐴𝐴𝑗𝑗𝑘𝑘 ∝𝑘𝑘 𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔𝑘𝑘𝑖𝑖 + 𝛿𝛿𝑘𝑘)𝑁𝑁
𝑘𝑘 , then �̈�𝑞𝑗𝑗 = − ∑ 𝐴𝐴𝑗𝑗𝑘𝑘 ∝𝑘𝑘 𝜔𝜔𝑘𝑘

2𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔𝑘𝑘𝑖𝑖 + 𝛿𝛿𝑘𝑘)𝑁𝑁
𝑘𝑘 . Substituting 𝑞𝑞𝑗𝑗 − 𝑞𝑞𝑗𝑗

0 

and �̈�𝑞𝑗𝑗 into eq. 2-4:   

   − ∑ 𝑇𝑇𝑗𝑗
𝑁𝑁
𝑗𝑗 �∑ 𝐴𝐴𝑗𝑗𝑘𝑘 ∝𝑘𝑘 𝜔𝜔𝑘𝑘

2𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔𝑘𝑘𝑖𝑖 + 𝛿𝛿𝑘𝑘)𝑁𝑁
𝑘𝑘 � = − ∑ 𝐻𝐻𝑗𝑗

𝑁𝑁
𝑗𝑗 �∑ 𝐴𝐴𝑗𝑗𝑘𝑘 ∝𝑘𝑘 𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔𝑘𝑘𝑖𝑖 + 𝛿𝛿𝑘𝑘)𝑁𝑁

𝑘𝑘 �   (2-5) 

Which for all values of 𝑖𝑖 simplifies to: 

∑ 𝑇𝑇𝑗𝑗
𝑁𝑁
𝑗𝑗 𝐴𝐴𝑗𝑗𝑘𝑘𝜔𝜔𝑘𝑘

2 = ∑ 𝐻𝐻𝑗𝑗
𝑁𝑁
𝑗𝑗 𝐴𝐴𝑗𝑗𝑘𝑘        (2-6) 

Which, in matrix notation, can be written as a generalized eigenvalue problem: 

𝑻𝑻𝑻𝑻𝑻𝑻 = 𝑯𝑯𝑻𝑻         (2-7) 

Where the matrix of eigenvectors 𝑻𝑻  contains the normal modes, and 𝑻𝑻  is the 

diagonal matrix of eigenvalues, which are the vibration frequencies associated with each 

mode. The normal modes are orthogonal, and as such, macromolecular motion is typically 

approximated by a linear combination of the low frequency modes. 

If 𝒒𝒒 is composed of the Cartesian coordinates of identical representative atoms (e.g. 

coarse-graining using Cα atoms only), the kinetic energy matrix 𝑻𝑻 becomes a diagonal matrix 

of identical masses, and eq. 2-7 can be reduced to 𝑻𝑻𝑻𝑻 = 𝑯𝑯𝑻𝑻 , where 𝑯𝑯  is the mass-

weighted potential energy Hessian matrix. This simplified form has been used extensively 

over the years, and has been shown in many instances to reasonably reproduce protein 
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flexibility-related metrics such as crystallographic temperature factors (Atilgan et al., 2001), 

domain architectures (Hinsen, Thomas and Field, 1999), and conformational changes (Tama 

and Sanejouand, 2001; Krebs et al., 2002; Alexandrov et al., 2005; Tobi and Bahar, 2005).  

The concept of using other non-Cartesian coordinate systems, however, is not new. In 

fact, several early works using NMA to simulate macromolecular motion used 

dihedral/torsion angles (Figure 2-1) instead of Cartesian coordinates (Go, Noguti and 

Nishikawa, 1983; Levitt, Sander and Stern, 1985), because this more accurately represents 

the degrees of freedom of the macromolecule (i.e. bond rotations occur to a greater extent 

than bond stretching). In addition, using torsion angles decreases the variables compared to 

an all-atom representation, consequently reducing the sizes of the potential and kinetic 

energy matrices. For example, a protein with 𝑁𝑁 amino acids would have at most 2𝑁𝑁 − 2 

backbone torsion angles (the 𝜑𝜑 and 𝜓𝜓 angles, excluding the terminal ones; Figure 2-1A), 

and at least 4𝑁𝑁 heavy (not hydrogen) atoms, which is at minimum, a two-fold decrease in 

the number of variables. CNMA-based approaches have gotten around this by employing 

coarse-graining: for example, by representing each amino acid residue by only the Cα atoms, 

as in the examples cited above, or by grouping residues into rigid blocks (rotations-

translations of blocks, RTB) (Tama et al., 2000). 

As mentioned previously, CNMA has been used to refine high-resolution protein 

structures against SAS data (Gorba and Tama, 2010; Miyashita, Gorba and Tama, 2011; 

Panjkovich and Svergun, 2016). In particular, it was shown that given a set of proteins with 

two known conformations, in most of the cases, CNMA was able to morph the structure from 

one conformation to the other, guided only by the SAS data and the innate domain 

organization of the protein structure. RTB coarse-graining, specifically the automatic 

detection of protein domains based on topology, was key to accurately reconstituting the 

target structure from SAS data, and is currently implemented in the ATSAS program SREFLEX 

(Panjkovich and Svergun, 2016). However, SAS-guided CNMA was developed and extensively 

tested only on protein structures; the method’s performance on nucleic acid structures was 

yet unknown. 
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Figure 2-1. (A) Backbone structures of RNA and proteins. Highlighted in red are the backbone bonds considered 
rotatable by NMATOR, and the torsion angles which they define are specified as Greek letters. The C3’-C4’ 
bond in RNA is assumed rigid, disallowing changes in the ribose moiety. (B) A torsion angle φ as viewed from 
the upstream N atom.  

 

In this work, we benchmarked and compared two SAS-guided NMA methods on a set 

of RNA structures, one based on RTB-CNMA (SREFLEX), and the other based on TNMA 

(NMATOR, discussed below). We show that in most cases, TNMA produced RNA models of 

greater accuracy and better stereochemistry than RTB-CNMA, when applied to the problem 

of SAS-guided structure refinement of RNA structures. That the stereochemistry of the 

resulting models would be better was somewhat an expected result, as CNMA could 

sometimes result in non-physical motions, such as bonds being stretched beyond what is 

physically possible. Since bond lengths are kept fixed in TNMA (only bond rotations occur, 

Figure 2-1), excessive bond stretching does not occur with TNMA. Several works have also 

shown that that the circular motions from TNMA better approximate structural transitions 

between two conformations, for both RNA and proteins (Mendez and Bastolla, 2010; Bray, 

Weiss and Levitt, 2011; Lopéz-Blanco, Garzón and Chacón, 2011). 

Currently, there is no published NMA-based tool for modeling RNA structures against 

SAS data. Instead, the high-resolution structure—either known experimentally, or predicted 

from sequence with tools such as MC-SYM and FARNA (Das and Baker, 2007; Parisien and 

Major, 2008)—is used as a starting point for molecular dynamics (MD) simulations, and the 

resulting pool of conformations are fitted against the scattering data (Chen and Pollack, 2016; 

Cantara, Olson and Musier-Forsyth, 2017). However, NMA has two main advantages over MD, 

which are the speed of computation, and ease of use. Both of these factors make NMA 
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accessible to a wider array of users. The minimal computational requirements of NMA means 

that it can easily be run on a wider range of computers. Also, NMA-based tools like NMATOR 

usually require less parameter optimization from the user than MD, which requires some 

basal level of expertise. 

 
 

2.2 NMATOR implementation 

 A software implementation of SAS-guided TNMA, called NMATOR (NMA in torsion 

angle space), was developed and incorporated into the ATSAS software suite. NMATOR can 

be divided into two main parts: (1) the calculation of normal modes in torsion angle space 

(TNMs), and (2) morphing an initial high-resolution structure along its TNMs to fit a given SAS 

profile. A third feature, the generation of a pool of conformations given an initial structure, is 

also available and under development, and is intended to be an alternative to MD, as a less-

computationally expensive way of doing ensemble modeling. 

 

2.2.1 Calculating the torsional normal modes (TNMs) 

 In order to compute the TNMs, one must solve the generalized eigenvalue problem in 

eq. 2-7, which requires the computation of the potential and kinetic energy Hessian matrices. 

Here we approximate the potential energy as an elastic potential around the initial structure 

(i.e. atoms within a distance threshold are interacting with a non-atom-specific harmonic 

potential) (Tirion, 1996). Given 𝑁𝑁  rotatable bonds, each term of the 𝑁𝑁 × 𝑁𝑁  potential 

energy Hessian matrix 𝐻𝐻 is obtained as follows:   

𝐻𝐻𝛼𝛼,𝛽𝛽 = 𝐻𝐻𝛽𝛽,𝛼𝛼 = 𝝌𝝌𝜶𝜶
𝑻𝑻𝑹𝑹𝜶𝜶,𝜷𝜷𝝌𝝌𝜷𝜷        (2-8) 

Where 𝛼𝛼, 𝛽𝛽 ≤ 𝑁𝑁, 𝝌𝝌𝜶𝜶 = �
𝒆𝒆𝜶𝜶

𝒆𝒆𝜶𝜶 × 𝒓𝒓𝜿𝜿(∝)
�, 𝒆𝒆∝  is the unit vector along the rotatable bond 𝛼𝛼, 

𝜅𝜅(∝)  is the ordinal number of the root atom of 𝛼𝛼 , and 𝒓𝒓𝜿𝜿(𝜶𝜶)  defines the Cartesian 

coordinates of the root atom (Figure 2-2A). For each pair of rotatable bonds 𝛼𝛼 and 𝛽𝛽, 𝑹𝑹𝜶𝜶,𝜷𝜷 

is the Hookean potential between the atoms that are moved by the rotation of each with 

respect to the other: 

𝑹𝑹𝜶𝜶,𝜷𝜷 = ∑ 𝛾𝛾𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖

𝑠𝑠𝑖𝑖𝑖𝑖
2 �

𝒓𝒓𝒊𝒊 × 𝒓𝒓𝒋𝒋
𝒓𝒓𝒊𝒊 − 𝒓𝒓𝒋𝒋

� [𝒓𝒓𝒊𝒊 × 𝒓𝒓𝒋𝒋 𝒓𝒓𝒊𝒊 − 𝒓𝒓𝒋𝒋]𝑠𝑠 ≤ 𝜅𝜅(𝛼𝛼)
𝑗𝑗 ≥ 𝜅𝜅(𝛽𝛽)

, 𝛿𝛿𝑠𝑠𝑗𝑗 = �
0  𝑠𝑠𝑖𝑖 𝑟𝑟𝑠𝑠𝑗𝑗 > 𝑟𝑟𝑠𝑠𝑠𝑠𝑑𝑑
1  𝑠𝑠𝑖𝑖 𝑟𝑟𝑠𝑠𝑗𝑗 ≤ 𝑟𝑟𝑠𝑠𝑠𝑠𝑑𝑑

       (2-9) 
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where atom 𝑠𝑠 is upstream of bond 𝛼𝛼, and 𝑗𝑗 is downstream of bond 𝛽𝛽 (Figure 2-2B). The 

Kronecker delta function 𝛿𝛿𝑠𝑠𝑗𝑗 restricts the potential to atom pairs with distance 𝑟𝑟𝑠𝑠𝑗𝑗 ≤ 𝑟𝑟𝑠𝑠𝑠𝑠𝑑𝑑 

(here 𝑟𝑟𝑠𝑠𝑠𝑠𝑑𝑑 = 10Å ). The spring constant 𝛾𝛾𝑠𝑠𝑗𝑗  used here is the following sigmoid function 

(Lopéz-Blanco, Garzón and Chacón, 2011): 

𝛾𝛾𝑠𝑠𝑗𝑗 =
1

1 + �
𝑟𝑟𝑠𝑠𝑗𝑗
3.8�

6 

 In order to eliminate redundant computations, the computations are done in the 

following order: 𝑹𝑹𝟏𝟏,𝑵𝑵, 𝑹𝑹𝟏𝟏,𝑵𝑵−𝟏𝟏,…, 𝑹𝑹𝟏𝟏,𝟏𝟏, 𝑹𝑹𝟐𝟐,𝑵𝑵, 𝑹𝑹𝟐𝟐,𝑵𝑵−𝟏𝟏,…, 𝑹𝑹𝟐𝟐,𝟐𝟐,…, 𝑹𝑹𝑵𝑵,𝑵𝑵, with consequent 𝐑𝐑𝛂𝛂,𝛃𝛃 

using computed values in earlier steps (Abe et al., 1984). A weighting factor, 3𝑙𝑙𝑠𝑠𝑙𝑙(𝐻𝐻∝,∝), is 

added to the diagonal terms of the resulting Hessian matrix in order to “weigh down” the 

ends of the structure; otherwise, motions from these floppy ends would dominate the lowest 

frequency modes (Lu, Poon and Ma, 2006). 

 Similarly, each term of the 𝑁𝑁 × 𝑁𝑁 kinetic energy Hessian matrix 𝑇𝑇 is calculated as 

follows: 

𝑇𝑇𝛼𝛼,𝛽𝛽 = 𝑇𝑇𝛽𝛽,𝛼𝛼 = 𝝌𝝌𝜶𝜶
𝑻𝑻𝑲𝑲𝜶𝜶,𝜷𝜷𝝌𝝌𝜷𝜷        (2-10) 

𝑲𝑲𝜶𝜶,𝜷𝜷 = 1
𝑀𝑀

� 𝑷𝑷∝
𝑻𝑻

𝑀𝑀∝𝟏𝟏� (𝑷𝑷𝜷𝜷 𝑀𝑀𝛽𝛽𝟏𝟏) + � 𝑰𝑰𝜶𝜶
𝑷𝑷𝜶𝜶

� 𝑰𝑰−𝟏𝟏�𝑰𝑰𝜷𝜷 𝑷𝑷𝜷𝜷
𝑻𝑻�       (2-11) 

Where 𝑀𝑀 = total mass of the molecule, 𝑀𝑀∝ = ∑ 𝑙𝑙𝑠𝑠𝑠𝑠≤𝜅𝜅(𝛼𝛼) , 

𝟏𝟏 = �
1 0 0
0 1 0
0 0 1

�, 𝑷𝑷𝒊𝒊 = �
0 −𝑧𝑧𝑠𝑠 𝑦𝑦𝑠𝑠
𝑧𝑧𝑠𝑠 0 −𝑥𝑥𝑠𝑠

−𝑦𝑦𝑠𝑠 𝑥𝑥𝑠𝑠 0
�, 𝑷𝑷𝜶𝜶 = ∑ 𝑙𝑙𝑠𝑠𝑷𝑷𝒊𝒊𝑠𝑠≤𝜅𝜅(𝛼𝛼) , and 𝑰𝑰𝜶𝜶 = ∑ 𝑙𝑙𝑠𝑠𝑠𝑠≤𝜅𝜅(𝛼𝛼) 𝑷𝑷𝒊𝒊

𝑻𝑻𝑷𝑷𝒊𝒊 

 With the matrices 𝐻𝐻 and 𝑇𝑇 computed, the generalized eigenvalue problem in eq. 

2-7 is solved with the LAPACK subroutine DGGEV (Anderson et al., 1999). 
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Figure 2-2. (A) The rotatable bond α can be defined by the unit vector 𝒆𝒆𝒎𝒎  pointing in the downstream 
direction along the bond (to the C terminus for proteins, and the 3’ end for nucleic acids). 𝜿𝜿(𝜶𝜶) refers to the 
ordinal atom number along the chain when going from the N/5’ to the C/3’ end. (B) Atoms upstream from 
bond α are shown in blue, while atoms downstream of bond β and shown in red.  

 

 

2.2.2 SAS-guided torsional normal mode analysis 

 SAS-guided TNMA was implemented as a greedy algorithm, shown schematically in 

Figure 2-3. The initial structure is morphed along the first ten normal modes in both positive 

and negative directions (negative means the sign of the normal mode is flipped), and the χ2 

fit of each of the twenty resulting models against the SAS data is computed. The best-fitting 

model is selected as the new initial structure. These steps are repeated until one of the three 

following conditions occurs: (1) a model with fit to SAS data χ2 ≤ 1.1 is obtained; (2) After 

30 iterations, a model with χ2 < 2 was obtained; or (3) after 50 iterations, the χ2 fits of 

the resulting models no longer improve. 
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Figure 2-3. SAS-guided structure modeling using torsional normal modes, as implemented in NMATOR 

 

 The best model obtained after the initial greedy optimization was used as the seed 

structure to obtain other possibly symmetric models that fit the SAS data, but with the moves 

on each of the normal modes flipped. For example, if the moves from the initial structure to 

the best model can be described by the 10-vector 𝑀𝑀𝑔𝑔𝑠𝑠𝑒𝑒𝑒𝑒𝑑𝑑𝑔𝑔 = [𝑠𝑠1, … , 𝑠𝑠10], where 𝑠𝑠𝑠𝑠 is the 

number of steps taken along 𝑇𝑇𝑁𝑁𝑀𝑀𝑠𝑠, and a negative sign indicates that the TNM was taken in 

the opposite (negative) direction, then greedy optimization was performed at most more ten 

times, using as starting structures models of the form 𝑀𝑀𝑓𝑓𝑓𝑓𝑠𝑠𝑝𝑝,𝑠𝑠 = �0, … , −𝑀𝑀𝑔𝑔𝑠𝑠𝑒𝑒𝑒𝑒𝑑𝑑𝑔𝑔(𝑠𝑠), … ,0�, 

where 𝑠𝑠 = [1,10] and 𝑀𝑀𝑔𝑔𝑠𝑠𝑒𝑒𝑒𝑒𝑑𝑑𝑔𝑔(𝑠𝑠) ≠ 0. 

 

2.2.3 Generating a pool of conformers with TNMA 

The TNMs computed by NMATOR could also be used to generate a pool of 

conformations, given an initial, high-resolution structure. The pool is generated by taking all 

possible combinations of the first five normal modes, in both positive and negative directions, 
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for a maximum of five moves. Expressed mathematically, each conformation 𝑠𝑠 in the pool 

differs from the initial conformation by the move vector 𝑀𝑀𝑠𝑠 = [𝑠𝑠1, … , 𝑠𝑠5], where ∑ �𝑠𝑠𝑗𝑗�5
𝑗𝑗=1 ≤ 5.  

 

2.3 NMATOR benchmarking methodology 

As an initial, proof-of-principle run, a small dataset of nonredundant RNA sequences 

in two different conformations—open and closed, as defined by the radius of gyration (𝑅𝑅𝑔𝑔)—

was assembled. Five of the RNA structure pairs were taken from a previous study which 

modeled structural transitions in RNA (Lopéz-Blanco, Garzón and Chacón, 2011). The 

remaining four RNA structure pairs were obtained by getting a representative sequence from 

each RNA category as defined in the Nucleic Acid Database (NDB) (Berman et al., 1992), and 

screening the PDB for at least two structures that share the same sequence, but have an all-

atom rmsd of 3 Å or more. 

SAXS data were simulated for the structures in the dataset using CRYSOL (Svergun, 

Barberato and Koch, 1995). Angle-dependent random errors were added to the simulated 

intensities based on the variance of 1000 independently-measured 1s scattering frames of 

water, as previously described (Franke, Jeffries and Svergun, 2015). Structures were further 

screened based on whether or not the open and closed states can be distinguished using the 

simulated SAXS data: in particular, if 𝜒𝜒2 ≤ 2 between the open structure and the simulated 

data from the corresponding closed structure (or vice versa), the structure pair was excluded. 

The remaining structure pairs are shown in Table 2-1. 

A larger dataset of RNA structure pairs was also collated, that were of redundant 

sequence but nonredundant structure. The dataset was acquired from the PDB by searching 

for structures solved by solution NMR consisting of more than one model. Similar to the initial 

benchmark dataset, SAXS data was simulated for each of the models. Only pairs of models 

that had at least 10 Å all-atom rmsd between them, and a 𝜒𝜒2 > 2 between one structure in 

the pair and its partner’s simulated SAXS data were kept in the dataset. Additionally, 

redundant structure pairs were removed by clustering the NMR structures, such that 

structures with all-atom rmsd < 4 Å were considered the same structure. This left a total of 

138 distinct RNA structure pairs: 66 open-to-closed, and 68 closed-to-open cases (Table 2-2; 

for the full list, see Appendix).  
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Table 2-1. Small RNA dataset: nonredundant sequences 

OPEN CLOSED number 
of bases 

rmsd 
(Å) Name 

PDB ID Rg PDB ID Rg 

3cul_D 24.9 3cun_C 23.8 91 3.1 tRNA aminoacylase (synthetic ribozyme) 

1u63_D 19.2 2vpl_B 19.0 48 4.4 Fragment of mRNA for L1 

1z2j_13_A 20.1 2l94_9_A 18.2 44 5.4 HIV-1 frameshift inducing element 

3knj_W 23.6 1gts_B 22.9 74 5.6 tRNA-Gln of E. coli 

3fih_Y 23.5 1pns_W 23.0 75 5.7 A/T-site tRNA Phe (synthetic) 

1uui_B 15.1 2l8h_5_A 12.2 28 6.6 HIV TAR RNA 

2i7z_17_B 20.9 2jyf_1_A 18.7 42 7.2 GAAA tetraloop receptor RNA 
(synthetic) 

3r9w_B 27.3 3r9x_C 21.6 34 16.3 16S rRNA, nt 1506-1542 

1u6p_16_B 35.1 1s9s_3_A 32.7 101 21.4 MLV Psi encapsidation site 

 

 

Table 2-2. Large RNA dataset: redundant sequences, nonredundant structures 

 
PDB ID number 

of bases 

 
Name 

number of 
open-to-

closed pairs 

number of 
closed-to-
open pairs 

1anr 29 HIV-1 TAR (cis-acting RNA regulatory element) 8 8 

1ikd 22 tRNA-Ala acceptor stem of E.coli 1 1 

1m5l 38 Modified HIV-1 packaging signal stem-loop 1 4 4 

1s9s 101 MLV Psi encapsidation site 34 34 

2m58 59 2’-5’ lariat forming ribozyme (synthetic) 9 9 

2mtj 47 III-IV-V 3-way junction of the Varkud Satellite 
ribozyme 

0 2 

2n3q 62 II-III-VI 3-way junction of the Varkud Satellite 
ribozyme 

4 4 

2pcv 35 U65 Box H/ACA snoRNA 5 5 

6hag 43 SAM riboswitch 1 1 
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Torsional NMA was performed with NMATOR on each of the structure pairs, in both 

open-to-closed, and closed-to-open directions. Open-to-closed here means that the initial 

structure is the open form which is iteratively morphed along the TNMs to fit the simulated 

SAXS data from the closed form, which we refer to as the target structure (and vice versa for 

the closed-to-open case). The Cartesian NMA method SREFLEX was run on the same cases as 

a comparison. 

For both small and large benchmarking runs, the following metrics were computed for 

each resulting model: 𝜒𝜒2 fit to the simulated SAXS data, rmsd from the target structure, and 

a stereochemistry score. The all-atom rmsd of models from the target structures (𝑟𝑟𝑙𝑙𝑠𝑠𝑑𝑑𝑚𝑚𝑚𝑚𝑑𝑑𝑒𝑒𝑓𝑓) 

were computed using SUPPDB, a program in the ATSAS suite which superimposes two 

structures optimally with the Kabsch algorithm (Kabsch, 1976). From 𝑟𝑟𝑙𝑙𝑠𝑠𝑑𝑑𝑚𝑚𝑚𝑚𝑑𝑑𝑒𝑒𝑓𝑓 , the 

normalized change in rmsd (∆𝑟𝑟𝑙𝑙𝑠𝑠𝑑𝑑𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚) was derived, which is defined as follows: 

∆𝑟𝑟𝑙𝑙𝑠𝑠𝑑𝑑𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚 = 𝑠𝑠𝑚𝑚𝑠𝑠𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑚𝑚−𝑠𝑠𝑚𝑚𝑠𝑠𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚
𝑠𝑠𝑚𝑚𝑠𝑠𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚

        (2-12) 

where 𝑟𝑟𝑙𝑙𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠𝑖𝑖𝑓𝑓 is the rmsd between the initial and target structures. A negative value for 

∆𝑟𝑟𝑙𝑙𝑠𝑠𝑑𝑑𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚  indicates that the model is closer to the target structure than the initial 

structure, with ∆𝑟𝑟𝑙𝑙𝑠𝑠𝑑𝑑𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚 = −1  being the ideal case (𝑟𝑟𝑙𝑙𝑠𝑠𝑑𝑑𝑚𝑚𝑚𝑚𝑑𝑑𝑒𝑒𝑓𝑓 = 0 ). Conversely, a 

positive ∆𝑟𝑟𝑙𝑙𝑠𝑠𝑑𝑑𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚 indicates that the model is farther away from the target structure than 

the initial structure. 

 Stereochemical integrity was quantified by comparing how much bonds in the model 

are stretched in comparison to the initial structure. As such, the “breaks score” is defined as 

follows: 

1
𝑁𝑁

∑ �𝑑𝑑𝑠𝑠
𝑚𝑚𝑚𝑚𝑑𝑑𝑒𝑒𝑓𝑓 − 𝑑𝑑𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠𝑖𝑖𝑓𝑓�
2𝑁𝑁

𝑠𝑠=1           (2-13) 

where 𝑑𝑑𝑠𝑠 is the length of the 𝑠𝑠th backbone bond, and 𝑁𝑁 is the number of backbone bonds 

in the structure. 
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2.4 TNMA benchmarking results 
 
 The overall performance of TNMA-based tool NMATOR, and CNMA-based SREFLEX for 

the small RNA dataset is shown in Table 2-3. For both open-to-closed and closed-to-open 

categories, TNMA was able to find a model with improved rmsd over the initial structure for 

more cases than CNMA. CNMA was not able to find models with good fit to the scattering 

data (we set “good” here as 𝜒𝜒2 ≤ 2) for the four cases with the highest rmsd, indicating that 

these might be topologically inaccessible if moving the structure in Cartesian space. In 

contrast, models with good fit to the SAXS data were obtained by TNMA for all 18 test cases. 

However, for both NMA methods, the best rmsd model was not necessarily the one with the 

best fit to the SAXS data, indicating a need for additional information to resolve this 

ambiguity. 

 The results from the individual test cases are shown in Figure 2-4. One notable result 

is that the magnitude of the initial 𝜒𝜒2 is not necessarily indicative of the rmsd between initial 

and target structures. An example case where the initial 𝜒𝜒2 suggests a higher initial rmsd 

than is actually the case is shown in Figure 2-4 (panel B1). In this example, the structure is 

small, so even sub-10 Å movements could result in a significantly more compact shape (and 

consequently, a very different scattering profile). In other cases, a high initial 𝜒𝜒2 but small 

initial rmsd causes cases such as that shown in Figure 2-4 (panel B3), where TNMA resulted in 

better fit to the scattering data, but worse rmsd than the initial structure. However, this 

“worsening” puts the model rmsd still in the sub-10 Å range, and shows the overall change in 

shape (in this case, that the RNA bending increases), which is to be expected, given the 

resolution limits of SAS. 

 

Table 2-3. NMA benchmarking results for small RNA dataset 

 number of cases 

 
Initial 

model with χ2 ≤ 2 found model with improved 
rmsd found 

model with best χ2 has 
improved rmsd 

CNMA TNMA CNMA TNMA CNMA TNMA 

open to closed 9 7 (78%) 9 (100%) 6 (67%) 8 (89%) 5 (56%) 6 (67%) 

closed to open  9 7 (78%) 9 (100%) 5 (56%) 6 (67%) 2 (22%) 4 (44%) 
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Figure 2-4. The lowest rmsd models from Cartesian and torsional SAS-guided NMA, compared to the initial 
structure. (A) For the majority of cases, both CNMA and TNMA were able to get models with both a good fit 
to the SAXS data, and improved rmsd from the initial structure. However, TNMA outperforms CNMA in terms 
of model stereochemistry in almost all cases. For the highest initial rmsd cases (rightmost bars of open-to-
closed and closed-to-open panels), TNMA was able to find models of significantly lower rmsd than CNMA. 
Interesting cases are highlighted and numbered, and shown in B. (B) Comparison of the initial (green) and 
target (gray) structures, and the best models found by CNMA (blue), and TNMA (red). 

 

 SAS-guided structural modeling clearly provides the best results for cases where the 

high initial 𝜒𝜒2 is observed due to a pronounced change in the overall structure. Such a case 

is presented in Figure 2-4 (panel B2). The structural change involves a large pivot of the short 

helix, which was reached by torsional NMA, but not by CNMA, indicating that this movement 

was not accessible as linear motions in Cartesian space without significantly breaking 

stereochemistry. 
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 Both NMA methods, however, were not able to establish hybridized base-pairing from 

an unpaired initial state (Figure 2-4, panel B4a). Both methods attempted to get the double-

helical shape of the self-complementary region by compressing the same end into a tighter 

single-helix, with the TNMA model having better stereochemistry than the CNMA model. The 

inverse problem (i.e. undoing self-complementary regions; Figure 2-4, panel B4b) seems to 

be easier, with torsional NMA able to get a model with almost no base-pairing. This result 

indicates the need for accurate secondary structure information, which can be obtained from 

both experiment and prediction tools. 

The larger RNA benchmark yielded similar results. Table 2-4 shows the results of 

TNMA and CNMA benchmarking on the large RNA dataset. Similar to the small benchmark, 

CNMA was not able to find models with good fit to the SAS data for a significant fraction of 

the dataset, indicating that these might have necessitated bond-breaking moves in Cartesian 

space. TNMA, on the other hand, was able to find models that fit the simulated SAXS data in 

all the cases. 

 Both NMA methods were able to find models with improved rmsd over the initial 

structure for the majority of cases, with TNMA doing particularly well in the open-to-closed 

cases. However, as in the initial benchmark run, these improved models were not always the 

ones with best 𝜒𝜒2 fit to the SAXS data. This is due to the ambiguity of SAS-based modeling, 

and highlights the need for orthogonal datasets, to be able to pick the best out of a pool of 

likely models. 

 

Table 2-4. NMA benchmarking results for large RNA dataset 

 number of cases 

 
initial 

model with χ2 ≤ 2 found model with improved 
rmsd found 

model with best χ2 has 
improved rmsd 

CNMA TNMA CNMA TNMA CNMA TNMA 

open to closed 66 44 (67%) 66 (100%) 51 (77%) 64 (97%) 41 (62%) 36 (55%) 

closed to open  68 42 (62%) 68 (100%) 57 (84%) 61 (90%) 47 (69%) 52 (76%) 
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Figure 2-5. Benchmarking results from Cartesian and torsional NMA on a large RNA dataset. (A) shows the 
rmsd of the initial from the target structures (broken gray line), as compared to the rmsd of the best CNMA 
(blue), and TNMA (red) models. The rmsd distribution shifted to the left for both NMA methods, indicating an 
overall improvement compared to the initial structure, with TNMA resulting in a greater improvement, 
particularly for high initial rmsd cases. (B) The normalized change in rmsd (∆𝒓𝒓𝒎𝒎𝒓𝒓𝒓𝒓𝒏𝒏𝒏𝒏𝒓𝒓𝒎𝒎) shows similar results, 
with both NMA methods resulting in a net rmsd decrease, but with TNMA resulting in a greater magnitude of 
improvement for more cases. (C) Goodness-of-fit (𝝌𝝌𝟐𝟐) to the target SAXS data shows that TNMA was able to 
obtain models with good 𝝌𝝌𝟐𝟐 fit (𝝌𝝌𝟐𝟐 ~ 1) for more cases than CNMA. (D) shows the bond breaks score of the 
pool of best models from CNMA and TNMA. Typical breaks scores from TNMA models are several orders of 
magnitude lower than from CNMA models, indicating that the bond lengths were largely preserved by 
torsional NMA. (E) The histogram of backbone bond lengths shows that TNMA largely preserves the bond 
lengths, while around 5% of backbone bonds in the CNMA models are noticeably stretched or compressed 
compared to the initial structure.  
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Metrics from the large RNA benchmark run are shown in Figure 2-5. Both NMA 

methods improved rmsd from the initial structure for cases where the initial rmsd was around 

10 Å (Figure 2-5A). For cases with higher initial rmsd (~30 Å), only torsional NMA resulted in 

visible improvements, which is similar to the result observed in the smaller initial benchmark. 

The normalized change in rmsd ( ∆𝑟𝑟𝑙𝑙𝑠𝑠𝑑𝑑𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚 ) shows that there is greater net 

improvement of rmsd with torsional than Cartesian NMA (Figure 2-5B). Also similar to the 

initial benchmark, most of the TNMA models fit the SAS data well (𝜒𝜒2~1), while CNMA had a 

significant number of models which did not (Figure 2-5C). A comparison of the bond breaks 

scores shows that the average CNMA model had a score that is several orders of magnitude 

higher than the average TNMA model (Figure 2-5D), indicating that bonds are stretched to a 

much greater extent when moving the structure in Cartesian space, as compared to torsion 

angle space. Figure 2-5E compares the backbone bond lengths between the initial RNA 

structures and the corresponding models from CNMA and TNMA. It was observed that around 

5% of the backbone bonds were stretched to 2 Å or more, or compacted to less than 1 Å, 

from an initial average length of ~1.5 Å. A pair of representative models from Cartesian and 

torsional NMA are shown in Figure 2-5E to illustrate the difference. 

That torsional NMA would result in less bond stretching or breakage was expected, 

since the bond lengths are implicitly kept fixed when molecular motions are restricted to bond 

rotations. However, it is important to note that while the Cartesian approximation has been 

shown to be more than sufficient in modeling protein flexibility, it has been shown here to be 

inappropriate for modeling nucleic acid structures undergoing large conformational changes. 

A possible reason might be that protein domains are generally separated by flexible loop 

regions, while the double helical RNA domains are separated by stiffer, double-stranded 

junctions that are not topologically independent of the helical domains (Figure 2-6). 

Specifically, rotations of the bonds at RNA junctions cannot happen without the torsional 

strain being released through rotations in the RNA helices themselves.  
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Figure 2-6. Comparison of flexible regions (shown in red) in (A) RNA, and (B) protein structures. RNA flexible 
regions are the non-base paired regions between double-helical domains, and as such, are often double-
stranded. In contrast, protein loop regions are often single-stranded, which results in greater topological 
freedom compared to the flexible regions in RNA. 

 

The topological constraints on RNA junctions due to base-pairing have been 

repeatedly observed in high-resolution structures (Lescoute and Westhof, 2006), modeled 

extensively (Bailor, Sun and Al-Hashimi, 2010; Mustoe et al., 2011), and quantified with RNA-

like bodies (Chu et al., 2009). Taken together, these studies seem to indicate that the base-

paired regions greatly influence the conformational space that the junctions can occupy, and 

thus cannot be modeled as independent, rigid bodies, which is the approximation that occurs 

with RTB-CNMA. 

Another interesting thing to note is how well greedy optimization worked for the RNA 

benchmark. The applicability of the greedy algorithm usually means a corresponding 

smoothness of the energy function being optimized (in this case, the 𝜒𝜒2 fit) (Cormen et al., 

2009). That good models could be reached simply by following the best fitting model per 

iteration warrants further investigation into the actual smoothness of the 𝜒𝜒2  landscape 

around the correct model, and whether the method of move generation (moving by bond 

rotations along normal modes) has a role in this apparent smoothness.  

 
 

2.5 Conclusion and outlook 

A SAS-guided NMA modeling tool in torsion angle space, NMATOR, was developed and 

tested on RNA structures, and compared to a corresponding SAS-guided Cartesian NMA 

method, SREFLEX. RNA structure pairs, each with the same sequence but different structures, 
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were used to assess the performance of the two NMA algorithms. Torsional NMA 

outperformed CNMA in terms of model stereochemistry, as well as in model correctness, 

predicting a model closer to the target structure in most of the cases. This improvement 

makes a compelling case for torsional NMA as a method for modeling RNA conformational 

change, especially given its advantages in terms of ease and accessibility compared to 

molecular dynamics. 

NMATOR is available in ATSAS version 3.0.0, and can be used in the command line in 

three modes: (1) torsional normal mode computation only, (2) fitting an initial high-resolution 

structure to a given SAS profile, and (3) generating a pool of conformations from an initial 

structure. As of this writing, NMATOR only works for single chains, and requires at least a full 

backbone structure. There is also currently no support for hetero atoms, such as attached 

metal ions. Multichain and hetero atom support is slated to be added in the next ATSAS 

release.  

Conceptually, NMATOR could be used to perform TNMA on protein and DNA 

structures, but this has not been extensively tested. This could be a direction of subsequent 

studies, and based on the results of this work, the approach may provide advantages in 

modeling conformational changes in proteins with limited portions of defined structure. 
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3 Using sequence coevolution to reduce SAXS modeling ambiguity 
 

 

 

 

3.1 Sequence coevolution and SAS 
 

The amount of known biological sequence information has increased dramatically in 

the past decade, propelled by developments in high-throughput nucleic acid sequencing 

technologies (Goodwin, McPherson and McCombie, 2016). Structural biology, on the other 

hand, has yet to experience a boom of similar magnitude, despite numerous global initiatives, 

such as the Structural Genomics Consortium (Chandonia and Brenner, 2006). As of this 

writing, the number of structures in the PDB (~150 000) differs from the number of gene 

sequences in UniProt (~500 000 annotated, and ~200 M unannotated) by around a factor of 

1000. This very large, accessible set of biological sequences is highly amenable to various 

statistical and data mining methods. 

Among the various approaches that leverage biological sequence information is using 

coevolution to make predictions of long-range protein contacts. The use of coevolution in 

protein contact prediction is based on the correlated mutations model: i.e. that there is 

selective pressure to maintain inter-residue interactions that are essential for function. Thus, 

if a mutation event occurs in one of the interacting loci, the other locus must also mutate 

(hence, "coevolve") in order to maintain the interaction. This coevolution signal is detected 

by analyzing the sequences of the same protein across multiple species, and statistically 

determining which pairs of positions tend to covary (Juan, Pazos and Valencia, 2013) (Figure 

3-1). 
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Figure 3-1. Using coevolution to derive structural information. The assumption made in coevolution analysis 
is that if positions A and B in a protein are interacting, and if A mutates, there is selective pressure for B to 
mutate as well. This coevolution could be tracked by examining positions A and B of the protein across multiple 
species. Conversely, if two positions in a protein sequence are seen to be coevolving, there is a greater 
probability that they are interacting in the protein structure. 

 

Applications of coevolution information include the prediction of long-range contacts 

within single proteins (Yeang and Haussler, 2007; Morcos et al., 2011; Marks, Hopf and 

Sander, 2012; Wang and Xu, 2013), and between monomers in a homodimer (Dos Santos et 

al., 2015). The method can also be extended to predicting contacts between subunits in a 

complex, simply by concatenating the sequences of the subunits into one long sequence. This 

approach has been shown to capture inter-protein interactions in highly-conserved systems 

such as the ribosome, and more generally, bacterial complexes (Halperin, Wolfson and 

Nussinov, 2006; Hopf et al., 2014; Ovchinnikov, Kamisetty and Baker, 2014; Feinauer et al., 

2016). However, there are currently no published studies using coevolution analysis to predict 

contacts in eukaryotic protein complexes. This is due to the inherent requirement for the 

protein subunits to be interacting in all of the evaluated species, which is more difficult to 

establish in eukaryotes than in bacteria, where interacting proteins are often located close 

together in the genome, often in the same operon. Eukaryotic genomes, with their much less 

compact organization, are not amenable to the same approach.   

In addition, no studies have thus far been published that combined sequence 

coevolution with SAS data in order to model protein structures. Conceptually, however, the 
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two methods are complementary. SAS provides overall geometric information that defines a 

protein’s gross structural features, while the residue contacts predicted by coevolution could 

reduce the ambiguity of SAS-guided structure modeling.  

 Long-range contacts could be obtained through experimental methods, such as cross-

linking mass spectrometry (MS) or fluorescence resonance energy transfer (FRET) (Selvin, 

1995; Sinz, 2006). However, in silico methods could still be a useful part of the structural 

biology toolkit, in that they can serve as a relatively quick and cheap aid in experimental 

design. In this case, for example, coevolution-based contact predictions could serve as 

candidates for contact validation by site-directed mutagenesis. 

 This work consists of two main parts: (1) developing and evaluating a coevolution-

based method for heterodimer contact prediction, and (2) using coevolution-predicted 

contacts for SAS-guided rigid body modeling.  

 

3.2 Quantifying the accuracy of coevolution-based contact predictions 
 

To evaluate whether sequence coevolution could be used to predict heterodimer 

contacts, a set of representative heterodimers was acquired from the PDB. The 

representative heterodimers were queried to each have the following properties: 

1. The X-ray resolution of the structure is at worst 3 Å 

2. Sequence homology is 30% or less compared to other heterodimers in the set 

3. The heterodimer must not have a high homodimeric tendency: 

a. Low structural similarity between subunits: when the subunit structures 

are aligned, 𝑠𝑠𝑚𝑚𝑠𝑠𝑑𝑑
#𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝑑𝑑𝑟𝑟𝑒𝑒𝑠𝑠

> 0.03 Å/𝑟𝑟𝑒𝑒𝑠𝑠𝑠𝑠𝑑𝑑𝑟𝑟𝑒𝑒 

b. Low sequence identity between subunits: when the subunit sequences 

are aligned, the sequence identity is less than 25% 

Heterodimers with a high homodimeric tendency were excluded from the 

representative heterodimer set because for these cases, the coevolution signal is dominated 

by equivalent positions on the subunits, instead of the interacting pairs of residues.  
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Figure 3-2. Heterodimer DCA workflow. Full-length protein sequences were obtained from UniProt. The 
sequences (labeled Q) were used to query the UniProt Reference Proteomes database (version 2016_08), 
containing the complete proteomes of 5783 species.  The top match from each proteome was taken, with 
sequences from the same proteome matched (unmatched sequences were discarded).  Each remaining 
sequence was aligned, concatenated with its partner sequence, and the resulting concatenated multiple 
sequence alignment used for DCA. The DCA scores were then mapped back to the dimer structure. 

  

Using the above criteria, 177 representative heterodimers were obtained (for full list, 

see Appendix). The amino acid sequences of the proteins were obtained from UniProt 

(Wasmuth and Lima, 2016), along with the mapping of each residue in the UniProt sequence 

to its position in the PDB file (Martin, 2005). The amount of coevolution between each pair of 

residues in each heterodimer was then computed through the following workflow 

(summarized graphically in Figure 3-2). Related, homologous sequences to each heterodimer 

subunit were queried with HMMer (version 3.1b2) (Eddy, 2011), from the UniProt database 

of reference proteomes (version 2016_08) (UniProt Consortium, 2011), which contained 

around 6000 complete proteomes at the time of analysis. Only hits with at least 70% the 

length of the query sequences were kept. Of the remaining hits, only the ones where both 

sequences could be found in the same species were kept. The underlying assumption behind 

this species-matching is that if sequence homologs of both subunits of a heterodimer are 
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found in the proteome of another species, they must also be forming a heterodimer in that 

species. This is a major assumption that is expected to add some noise to the analysis, which 

will be discussed in the next section. 

Each heterodimer subunit sequence was aligned to its remaining homologous 

sequences with Clustal Omega (version 1.2.3) (Sievers et al., 2011). The resulting multiple 

sequence alignments were then concatenated into one long MSA for each heterodimer. Each 

heterodimer MSA was subjected to direct coupling analysis (DCA), a statistical method to 

detect covarying positions in the alignment (Morcos et al., 2011).  

As output, DCA gives a list of all pairs of positions in the concatenated sequence, along 

with the likelihood that the positions are coevolving. We will call this likelihood the DCA score, 

and consider it a likelihood that the pair of residues is interacting in the structure. All scores 

produced by DCA were converted to z-scores (number of standard deviations above mean), 

so that they can be compared between heterodimers.  

𝑧𝑧 = 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖−𝜇𝜇𝐷𝐷𝐷𝐷𝐴𝐴

𝜎𝜎𝐷𝐷𝐷𝐷𝐴𝐴
         (3-1) 

 where 𝐷𝐷𝐷𝐷𝐴𝐴𝑠𝑠𝑗𝑗 is the DCA score between the 𝑠𝑠th and 𝑗𝑗th residues in the MSA, 𝜇𝜇𝐷𝐷𝐷𝐷𝐷𝐷 

is the mean DCA score for all 𝑠𝑠, 𝑗𝑗, and 𝜎𝜎𝐷𝐷𝐷𝐷𝐷𝐷 the standard deviation.  

Since we are looking for long-range contact predictions, residue pairs that are in the 

same subunit were discarded, leaving only the inter-subunit pairs. This left a total of 5.2 

million residue pairs, which were mapped back to the PDB structures. Residue pairs were 

classified as contacts if they were within 10 Å inter-Cα distance. 

From this survey of heterodimers, it was observed that when picking a pair of residues 

at random, one from each subunit, the likelihood that the pair forms a contact is around 1%. 

If one takes coevolution into account, this likelihood increases depending on the DCA score 

and the number of sequences used for coevolution analysis. Figure 3-3A shows how the 

likelihood that an inter-subunit pair of residues forms a contact increases proportional to the 

computed DCA score and the number of sequences used in the alignment.  
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Figure 3-3. (A) A probability map that a pair of residues are within 10 Å, given their coevolution score (y-axis), 
and the length-normalized number of sequences used for DCA analysis (x-axis). The dark blue area on the 
bottom right corner represents regions where no information is available (i.e. the coevolution score and/or 
number of sequences are too high). The contact probability is directly proportional to both the coevolution 
score and the number of sequences used. In particular, the DCA score required to reach a certain contact 
probability decreases as the number of sequences used is increased. This indicates that reliability of the 
coevolution score is highly dependent on having a minimum amount of sequences. (B) The average inter-Cα 
distance also reflects that a pair of residues are more likely to form a contact (cyan to light blue), the higher 
the coevolution score (and the greater the number of sequences used to derive the coevolution score). 

 

 From Figure 3-3, it can be seen that the reliability of DCA-based contact prediction is 

highly-dependent on the number of sequences used for analysis. The sequence-dependence 

of coevolution analysis has been reported in previous work (Ovchinnikov, Kamisetty and 

Baker, 2014; Dos Santos et al., 2015; Feinauer et al., 2016). The maximum contact probability 

represented by at least 30 inter-subunit contacts was around 70%. To reach this region of 70% 

contact probability, one either needs a large number of sequences, a high DCA score or both. 

There seems to be a drastic reduction in the minimum DCA z-score required to get 70% 

contact probability at around the 1 sequence/(dimer length) mark (see inflection point on 

Figure 3-3A). Specifically, a good rule of thumb to get a 70% prediction confidence is to use at 

least 1 sequence per residue in the heterodimer (i.e. smaller heterodimers require fewer 

sequences, and larger heterodimers more), and to take the top DCA scoring pairs as contacts 

if their DCA z-score is at least 15 (i.e. the coevolution score is fifteen standard deviations 

above the average). For heterodimers where the combined sequence length is 1000 residues, 

this would mean that at least 1000 species-matched sequences for both subunits is 

recommended. 
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 This large sequence requirement is around the same as what was previously reported 

in other work that used DCA. The minimum coevolution score, on the other hand is quite high.  

This might be caused by the noise introduced by the assumption of interaction, which would 

not be true for all the sequences included in this heterodimer survey. However, limiting the 

analysis only to confirmed interactions would have severely limited the dataset. Nonetheless, 

this method is very suitable for systems where there are many sequences available, such 

highly-conserved eukaryotic biological pathways. For these cases, DCA can identify contact 

pairs which can be used as distance constraints for SAS-based structure modeling, when 

experimental evidence of these contacts are not available. 

  

3.3 Using DCA-predicted contacts in SAS-guided modeling 

To test the effect of providing contact predictions from coevolution on SAS-guided 

modeling, we selected 17 heterodimers from the dataset for which the top contact was 

predicted at 70% confidence (Table 3-1). SAXS data was simulated for each heterodimer using 

CRYSOL (Svergun, Barberato and Koch, 1995) . Angle-dependent random errors were added 

to the simulated intensities based on the variance of 1000 independently-measured 1s 

scattering frames of water, as previously described (Franke, Jeffries and Svergun, 2015). Each 

heterodimer structure was then reconstructed from the subunits and the simulated data 

using the SAS-guided rigid-body modeling method SASREF (Petoukhov and Svergun, 2005). 

SASREF was performed twenty times for each heterodimer both without additional 

information, and using the top predicted heterodimer contact as a distance constraint.  

Model fitness was quantified using three metrics: (1) the ligand rmsd (𝐿𝐿𝑟𝑟𝑙𝑙𝑠𝑠𝑑𝑑), (2) the 

fraction of native contacts (𝑖𝑖𝑠𝑠𝑖𝑖𝑑𝑑), and (3) the model’s 𝜒𝜒2 fit to the simulated SAXS data. 

Ligand rmsd is the rmsd of the smaller subunit from the target structure, if the larger subunits 

on the model and the target structures are aligned. The fraction of native contacts refers to 

how many inter-subunit heavy atom pairs within 5 Å in the target structure can be found in 

the model. We define a model to be acceptable if the 𝐿𝐿𝑟𝑟𝑙𝑙𝑠𝑠𝑑𝑑  is at most 10 Å, and the 

𝑖𝑖𝑠𝑠𝑖𝑖𝑑𝑑 ≥ 0.1, consistent with CAPRI (Critical Assessment of Prediction of Interactions) standards 

(Lensink, Méndez and Wodak, 2007). 
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Table 3-1. Heterodimers with DCA-predicted contacts at 70% probability 

DIMER 
PDB ID SUBUNIT 1 SUBUNIT 2 

CONTACT 
PREDICTED 

ACTUAL 
CONTACT 
DISTANCE 

(Å) 

1EUD 
Mitochondrial succinate-CoA 
ligase subunit alpha 

Mitochondrial succinate-CoA 
ligase subunit beta 

A_106 (GLY) to 
B_228 (ASN) 4.9 

1FM0 
Molybdopterin synthase sulfur 
carrier subunit 

Molybdopterin synthase catalytic 
subunit 

D_11 (ARG) to 
E_53 (GLU) 11.3 

1FS0 ATP synthase, epsilon subunit ATP synthase, gamma subunit 
E_81 (ASP) to 
G_222 (ARG) 8.8 

1KA9 
Imidazole glycerol phosphate 
synthase subunit HisF 

Imidazole glycerol phosphate 
synthase subunit HisH 

F_220 (GLU) to 
H_115 (ARG) 10.0 

1R6O 
ATP-dependent Clp protease 
adapter protein ClpS 

ATP-dependent Clp protease 
ATP-binding subunit ClpA 

C_79 (GLU) to 
A_83 (SER) 6.2 

1RP3 Anti-sigma factor FlgM 
RNA polymerase sigma factor 
FliA 

B_76 (ASP) to 
A_183 (SER) 6.1 

3A1P 
Ribosome maturation factor, 
rimM 30S ribosomal protein S19 

B_53 (ASN) to 
A_82 (PRO) 33.4 

3EGV 50S ribosomal protein L11 
Ribosomal protein L11 
methyltransferase 

B_43 (ALA) to 
A_193 (TYR) 32.6 

3FPN UvrB interaction domain UvrA interaction domain 
B_166 (GLU) to 
A_210 (LYS) 15.8 

3ZEU Putative M22 peptidase yeaZ 
tRNA N6-adenosine 
threonylcarbamoyltransferase 

D_43 (GLN) to 
E_100 (PHE) 8.8 

4A9A Ribosome-interacting GTPase 1 
Translation machinery-associated 
protein 46 

A_256 (SER) to 
C_238 (LEU) 6.2 

4LX3 DNA-directed DNA polymerase 
Nucleic acid binding, OB-fold, 
tRNA/helicase-type 

A_-1 (HIS) to 
B_35 (SER) 11.6 

4QTT 
18S rRNA (guanine(1575)-
N(7))-methyltransferase 

Multifunctional methyltransferase 
subunit TRM112 

B_105 (PRO) to 
A_2 (LYS) 15.6 

4XD9 
Putative ribosome biogenesis 
protein, Rpf2 

Ribosome biogenesis regulatory 
protein, Rrs1 

A_26 (GLY) to 
B_98 (HIS) 9.9 

5DUD Uncharacterized protein YbgJ Uncharacterized protein YbgK 
B_49 (GLY) to 
A_227 (HIS) 4.9 

5JCA 
Sulfide dehydrogenase subunit 
beta 

Sulfide dehydrogenase subunit 
alpha 

S_74 (LYS) to 
L_287 (ASP) 8.3 

5UNI 
NAD(P) transhydrogenase 
subunit alpha 2 

NAD(P) transhydrogenase 
subunit beta 

A_32 (THR) to 
B_81 (MET) 9.0 

 

 
Table 3-2. SAS-based modeling with and without contact prediction 

 # of cases 

 Initial Found acceptable model*  Model with best χ2 is acceptable* 

Unconstrained 17 9 (53%) 8 (47%) 

with DCA contact 13 (76%) 12 (71%) 
* acceptable means rmsd ≤ 10 and fnat ≥ 0.1 
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Figure 3-4. Rigid-body modeling with and without a distance constraint from coevolution analysis. (A) shows 
the average 𝑳𝑳𝒓𝒓𝒎𝒎𝒓𝒓𝒓𝒓 achieved in twenty SASREF runs for each the 19 heterodimers. The average 𝑳𝑳𝒓𝒓𝒎𝒎𝒓𝒓𝒓𝒓 is 
lower in the constrained case, indicating that the pool of solutions is closer to the target structure in the 
constrained case, compared to the default. (B) shows the minimum 𝑳𝑳𝒓𝒓𝒎𝒎𝒓𝒓𝒓𝒓 achieved for each heterodimer. 
The constrained modeling cases were able to reach lower 𝑳𝑳𝒓𝒓𝒎𝒎𝒓𝒓𝒓𝒓 for a larger number of cases, except for 
when the distance constraint specified was wrong (the two cases with 𝑳𝑳𝒓𝒓𝒎𝒎𝒓𝒓𝒓𝒓 ~ 𝟑𝟑𝟎𝟎 Å). (C) shows the average 
𝒇𝒇𝒏𝒏𝒎𝒎𝒏𝒏  was higher for the pool of constrained models, compared to the default models, indicating an 
improvement in average model quality with the addition of one distance constraint. (D) The quality of the best 
model in terms of 𝒇𝒇𝒏𝒏𝒎𝒎𝒏𝒏 was also improved with the addition of a distance constraint, indicating that the 
correct binding interface and ligand orientation was captured. (E) The resulting fits to the SAXS data from both 
unconstrained and constrained runs were similar, indicating that good fits to the data were found in both 
cases. However, (F) ambiguity, as measured by the number of distinct models in twenty runs, was markedly 
decreased in the constrained case. 
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The overall results of rigid-body modeling on each heterodimer are shown in Table 

3-2. Without constraints, a good model was found in around 50% of the cases. Adding one 

DCA-predicted distance constraint improved this, with an acceptable model being found in 13 

out of 17 cases (76%). The likelihood that the model with the best 𝜒𝜒2 fit to the SAXS data 

also increased in the constrained versus the default case. 

Figure 3-4 is a more detailed look at the rigid-body modeling results in terms of 

𝐿𝐿𝑟𝑟𝑙𝑙𝑠𝑠𝑑𝑑, 𝑖𝑖𝑠𝑠𝑖𝑖𝑑𝑑, 𝜒𝜒2, and modeling ambiguity. Adding one distance constraint resulted in overall 

lower 𝐿𝐿𝑟𝑟𝑙𝑙𝑠𝑠𝑑𝑑  models, compared to the unconstrained case. There was also a significant 

improvement in 𝑖𝑖𝑠𝑠𝑖𝑖𝑑𝑑 upon the addition of a distance constraint, indicating that the correct 

binding interface and ligand orientation was captured more often in the constrained cases. 

On the other hand, there was no significant overall difference in the model fits between 

unconstrained and constrained cases, indicating that the fit to the SAXS data alone is 

insufficient to resolve which set of models are more accurate. 

Adding even a single distance constraint noticeably reduced modeling ambiguity, 

lowering the number of distinct models found in twenty independent SASREF runs. This is an 

expected result, since the distance constraint effectively reduces the solution search space. 

One distance constraint was not enough to reduce the number of distinct models to one (the 

ideal case where there is absolutely no ambiguity), but the addition of complementary 

information—such as biological insights, or other experimental data—could resolve the 

remaining ambiguity. 

Figure 3-5 is a visual comparison of the results of SAS-guided rigid-body modeling with 

and without the coevolution-derived distance constraint. In general, it can be seen that 

adding one distance constrained improved the likelihood of getting a solution close to the 

PDB model, and also markedly decreased the variability of the set of resulting models.  
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Figure 3-5. Rigid-body modeling results for 17 independent unconstrained (top), and constrained (bottom) 
SASREF runs. The orientation of the ligand in the PDB structure is shown in dark blue. The purple lines define 
the shortest inter-subunit distance found in the PDB structure; thus, long lines indicate that the ligand is placed 
far from the correct position. The lines also give a visual assessment of the variability of the pool of models 
produced by SASREF (a tighter cluster of lines indicates a less varied set of solutions). Generally, the variability 
of the models decreased with the addition of a distance constraint. The solid green boxes highlight cases in 
which an acceptable model was found only in the constrained runs, while the dotted red boxes indicate the 
opposite case (acceptable model found only in unconstrained runs). Providing one distance constraint to SAS-
guided rigid body modeling increased the likelihood of reconstructing a solution near the PDB structure, and 
also decreases overall model variability.  
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Among the 17 heterodimers, there were two cases for which the contact predicted by 

coevolution analysis was known to be very false (inter-Cα distance >> 10 Å): 3A1P, and 3EGV. 

For these cases, we were effectively biasing the modeling towards the wrong solutions by 

providing the false information.  

Figure 3-6 shows that in cases where contact prediction is wrong, the difference in 𝜒𝜒2 

fits between the pool of constrained and unconstrained solutions could be a hint that 

something is amiss. For 3A1P and 3EGV, it was indeed the case that the SAXS data served as 

a check for contact prediction accuracy. In particular, in the cases where the distance 

constraint was wrong, the pool of constrained SASREF models had poorer average fit than the 

pool of unconstrained models. This same trend does not hold for the cases wherein the 

constraint was correct. Therefore, just as contact predictions from coevolution can enhance 

SAS-based modeling by reducing ambiguity, SAS data can in turn validate DCA contact 

predictions, at least in some cases.  

 
 

 
Figure 3-6. Rigid body modeling with incorrect contact information. For the heterodimers 3A1P and 3EGV, the 
contacts predicted by coevolution were false (pair distance >> 10 Å). Using these false contacts for a set of 
rigid body modeling runs resulted in a pool of structures with noticeably worse fit to the SAXS data, compared 
to the pool of models from unconstrained runs. In contrast, for cases where the contact information was 
correct, the average fit of the pool of constrained models was not markedly worse than the pool of 
unconstrained models. This indicates that the SAXS data can verify whether contact predictions are correct, 
for some cases. 
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3.4 Conclusion and outlook 
 
 The viability of inter-residue coevolution, as quantified with the direct coupling 

analysis method, in predicting heterodimer contacts was examined. The accuracy of the 

method has previously been shown to be highly dependent on the quantity of sequence 

information provided, and the same was observed here. This makes the technique suitable 

for systems where there much sequence information is available, such as bacterial complexes, 

or eukaryotic complexes in highly-conserved pathways. While coevolution-based 

heterodimer contact prediction might not be generally applicable at present, the approach is 

worth revisiting when the UniProt set of reference proteomes significantly grows in size. 

 Additionally, we showed that the combination of SAS data and contact information 

can result in better quality, less ambiguous models than either method by itself. In particular, 

contact predictions from coevolution can reduce SAS modeling ambiguity, while SAS data can 

serve as a filter for wrong contact predictions from DCA.  
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4 Computing anomalous scattering from structure 
 

 

4.1 Anomalous SAXS: concept and biological applications 
 

So far, our discussion of small-angle scattering has focused on elastic scattering of the 

incident radiation. Indeed, in the general case, the scattering can be adequately 

approximated as purely elastic. However, this approximation breaks under certain conditions. 

In the case of anomalous X-ray scattering, for example, atoms in the sample can alter the total 

scattering if the incident X-ray wavelength is close to their absorption edge, i.e. to energies 

that correspond to electronic transitions in a particular element. As a result, if the energy of 

the incoming photons is close to or at an absorption edge, atoms absorb the incident 

radiation, and electrons are excited to higher energy states. 

At wavelengths far from the absorption edge, photoelectric absorption does not occur 

to a significant extent. The atomic scattering length is therefore only dependent on the 

number of electrons, 𝑍𝑍 .  However, at wavelengths close to the absorption edge, the 

photoelectric effect begins to play a non-negligible role.  The X-ray scattering factor, 𝑖𝑖(𝜆𝜆), 

could then be represented as a function containing a complex term: 

𝑖𝑖(𝜆𝜆) =  𝑖𝑖0 + 𝑖𝑖′(𝜆𝜆) + 𝑠𝑠𝑖𝑖"(𝜆𝜆)        (4-1) 

where 𝑖𝑖0  is the 𝑍𝑍 -dependent, 𝜆𝜆 -independent factor, and the magnitude of the 𝜆𝜆 -

dependent factors 𝑖𝑖′ and 𝑖𝑖" increase as the wavelength gets closer to the absorption edge 

of the particular element (James, Bragg and Bragg, 1948). 

At present, the most common biological application of anomalous scattering is the de 

novo phasing of X-ray diffraction data (Hendrickson, 2014). Anomalous small-angle X-ray 

scattering (ASAXS) has had relatively few published biological applications, which include 

estimating the distances between the four iron atoms bound to hemoglobin (Stuhrmann and 
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Notbohm, 1981), terbiums in the calcium-binding sites of parvalbumin (Miake-Lye, Doniach 

and Hodgson, 1983), and metal ion clouds around DNA (Pabit et al., 2010). 

A possible reason why ASAXS experiments are not more common, aside from the 

scarcity of wavelength-tunable X-ray sources, is the low contrast of SAXS experiments due to 

strong solvent scattering. Whereas anomalous scattering from native sulfur atoms can 

sometimes be used for phasing in X-ray crystallography experiments (Hendrickson and Teeter, 

1981), their effect is very difficult to detect in solution SAXS experiments (D. Svergun, personal 

communication). However, the use of atoms with higher correction factors f’ and f” could 

result in strong enough absorbance to overcome the low contrast in solution SAXS 

experiments, due to both strong solvent scattering, and dilute sample concentrations. A 

method of computationally simulating ASAXS data, therefore, could be a useful tool in guiding 

experimentalists in which ASAXS experiments have a reasonable chance of overcoming the 

low contrast of solution SAXS experiments. A number of tools have been developed to 

simulate SAS data from molecular structure, but the approaches can be roughly divided into 

two conceptual families: those based on the Debye formula (Pantos and Bordas, 1994; 

Schneidman-Duhovny, Hammel and Sali, 2010; Stovgaard et al., 2010; Dos Reis, Aparicio and 

Zhang, 2011), and those based on spherical harmonics (Svergun, Barberato and Koch, 1995; 

Grishaev et al., 2010). 

The scattering intensity can be computed from 𝑁𝑁 discrete spherical bodies using the 

Debye formula (Debye, 1915), a discrete form of eq. 1-2: 

𝐼𝐼(𝑠𝑠) = ∑ 𝑖𝑖𝑠𝑠
2𝑁𝑁

𝑠𝑠=1 (𝑠𝑠) + 2 ∑ ∑ 𝑖𝑖𝑠𝑠(𝑠𝑠)𝑖𝑖𝑗𝑗(𝑠𝑠) 𝑠𝑠𝑠𝑠𝑠𝑠 (𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖)
𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖

𝑁𝑁
𝑗𝑗=𝑠𝑠+1

𝑁𝑁−1
𝑠𝑠=1        (4-2) 

Where 𝑖𝑖𝑠𝑠(𝑠𝑠)  is the form factor of sphere 𝑠𝑠 , and 𝑟𝑟𝑠𝑠𝑗𝑗  the distance between the 

centers of spheres 𝑠𝑠 and 𝑗𝑗. While conceptually simple, the calculation of scattering using 

the unmodified Debye formula can get slow for even small to medium-sized biological 

molecules. Put in terms of the big O notation, which gives an estimate of computational run 

time as a function of input size, computing the scattering from a macromolecule with 𝑁𝑁 

atoms necessitates (𝑁𝑁)(𝑁𝑁 − 1) 2⁄  computations with the Debye formula, making the run 

time in the order of 𝑂𝑂(𝑠𝑠𝑁𝑁2).  

In comparison, spherical harmonics-based methods are particularly suited to cases 

where 𝑁𝑁 is not small. The scattering is represented as a combination of spherical harmonics 
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(𝑌𝑌𝑓𝑓𝑚𝑚), which are a set of angular basis functions in spherical coordinates (𝑟𝑟, 𝜔𝜔) = (𝑟𝑟, 𝜃𝜃, 𝜑𝜑), 

which are composed of trigonometric functions of orders 𝑙𝑙 and 𝑙𝑙: 

𝑌𝑌𝑓𝑓𝑚𝑚(𝜃𝜃, 𝜑𝜑) = �(2𝑓𝑓+1)(𝑓𝑓−𝑚𝑚)!
4𝜋𝜋(𝑓𝑓+𝑚𝑚)!

𝑃𝑃𝑓𝑓
|𝑚𝑚|(𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃)𝑒𝑒𝑥𝑥𝑝𝑝 (𝑠𝑠𝑙𝑙𝜑𝜑)        (4-3) 

Where 𝑙𝑙  and 𝑙𝑙  are integers, 0 ≤ 𝑙𝑙 < ∞ , −𝑙𝑙 ≤ 𝑙𝑙 ≤ 𝑙𝑙 , and 𝑃𝑃𝑓𝑓
|𝑚𝑚|(cos 𝜃𝜃)  are 

associated Legendre polynomials of the first kind. The scattering 𝐼𝐼(𝑠𝑠) of a system of 𝑁𝑁 

atoms is then: 

𝐼𝐼(𝑠𝑠) = 2𝜋𝜋2 ∑ ∑ |𝐴𝐴𝑓𝑓𝑚𝑚(𝑠𝑠)|2𝑓𝑓
𝑚𝑚=−𝑓𝑓

∞
𝑓𝑓=0          (4-4) 

Where 𝐴𝐴𝑓𝑓𝑚𝑚(𝑠𝑠) = 4𝜋𝜋𝑠𝑠𝑓𝑓 ∑ 𝑖𝑖𝑗𝑗(𝑠𝑠)𝑗𝑗𝑓𝑓(𝑠𝑠𝑟𝑟𝑗𝑗)𝑌𝑌𝑓𝑓𝑚𝑚
∗ (𝜔𝜔𝑗𝑗)𝑁𝑁

𝑗𝑗=1 , 𝑖𝑖𝑗𝑗(𝑠𝑠) is the form factor of atom 𝑗𝑗, 

(𝑟𝑟𝑗𝑗, 𝜔𝜔𝑗𝑗) its spherical coordinates, and 𝑗𝑗𝑓𝑓(𝑠𝑠𝑟𝑟𝑗𝑗) are spherical Bessel functions. 

Lower order harmonics define gross structural features, while higher order harmonics 

describe finer details (Svergun et al., 2013). As it is impracticable to use 𝐿𝐿 = ∞, 𝐿𝐿 is set to 

a maximum value. A cutoff of 𝐿𝐿 = 50—already a very good approximation of scattering to 

wide angles—would put run time in the order of 𝑂𝑂(𝑠𝑠𝐿𝐿2𝑁𝑁) = 𝑂𝑂(2500𝑠𝑠𝑁𝑁), which makes 

spherical harmonic-based methods faster than the unmodified Debye formula for systems 

with at least 2500 atoms (equivalent to a ~125 amino acid protein, or nucleic acid molecule 

with ~80 nucleotides). 

In either case, the computation of anomalous scattering simply entails adding 

wavelength-dependent terms to the form factor, and does not change the underlying 

mathematics of either method. The method described below adds the wavelength-

dependent terms of the form factor to CRYSOL (Svergun, Barberato and Koch, 1995), a 

spherical harmonics-based method widely used in the biological SAS community. 

  

4.2 Adding anomalous scattering to CRYSOL 
 

The wavelength-dependent anomalous correction terms 𝑖𝑖′ and 𝑖𝑖" for atoms from 

calcium to heavier were obtained from the University of Washington Biomolecular Structure 

Center (http://skuld.bmsc.washington.edu/scatter/AS_periodic.html), spanning each of their 

L and K absorption edges. The correction factors for bromine, iron and terbium are shown in 

Figure 4-1 for the recommended energy range for ASAXS experiments at the EMBL P12 SAXS beamline. 
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Figure 4-1. Anomalous correction factors f' and f" for bromine, iron, and terbium, shown for the range of 
energies recommended for ASAXS experiments in the EMBL P12 SAXS beamline. The relevant absorption edges 
are indicated (K-edge for bromine and iron, L-III edge for terbium). 

 

The 𝑖𝑖′  and 𝑖𝑖"  tables were stored as constants in ATSAS (in 

libatsas/constants/asaxs_fprimes.for). CRYSOL was then amended to add the wavelength-

dependent terms to the scattering factor of affected atoms if a wavelength is specified by the 

user. In the command line, the ASAXS mode of CRYSOL can be used by using the following 

command: 

$ crysol <pdbfile> -en <energy in eV> 

Optionally, the user can also specify a comma-separated file containing the 

wavelength-dependent terms of the form factor of a particular element (each line in the 

format energy in eV,f’,f”). CRYSOL can be used in this mode as follows: 

$ crysol <pdbfile> -en <energy, eV> -ff <.csv file with f’ and f”>  

    -el <two-letter element name> 

The ASAXS module of CRYSOL was compared to an implementation of the Debye 

formula for a 30 Å-diameter bead composed of a 10 Å-diameter core of bromine atoms 

surrounded by carbon atoms. Optimal atomic packing was generated using Packmol 

(Martinez et al., 2009). Scattering data was simulated for this test object at a range of energies 

around the K-absorption edge of bromine (13474 eV). Figure 4-2 shows that there is good 

correspondence between the in vacuo scattering profiles computed by both methods. The 

scattering intensities dip at the same values of 𝑠𝑠, and the absorbance is greatest at the 

absorption edge, resulting in the lowest scattering intensities at and near 13474 eV.  
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Figure 4-2. Simulated scattering data from a Br-C bead, computed with (A) the Debye formula, and (B) 
anomalous CRYSOL, at a range of energies at and around the Br K-absorption edge (13474 eV). 

 

However, anomalous CRYSOL has some important advantages over the Debye 

formula. First, this particular test object consisted of exactly 2500 atoms, which is the 

inflection point at which a spherical harmonics implementation should be faster than the 

Debye formula. This was certainly observed during scattering data simulation, with 

anomalous CRYSOL with a run time in the order of minutes, and the Debye formula 

implementation in the order of hours. Granted, this dramatic difference might be due to a 

lack of optimization in the Debye formula implementation, but a speedup was nonetheless 

expected based on mathematical principles. The difference is even more stark considering 

that the scattering profile produced with anomalous CRYSOL was of tenfold higher resolution 

(5000 points) than the one produced with the Debye formula implementation (~500 points). 

 Another useful feature of anomalous CRYSOL is that the solvated scattering is also 

computed along with the in vacuo scattering. This is makes it particularly suited for simulating 

anomalous scattering from biomolecules, which is the intended use case for anomalous 

CRYSOL. In fact, there is at least one documented case of CRYSOL being utilized to compute 

anomalous scattering of biomolecules. In this case, the anomalous scattering due to iron in 

myoglobin was approximated by replacing the iron atom with an atom of the same effective 
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form factor (i.e. reduced number of electrons), as iron at its K-absorption edge (Makowski et 

al., 2012). This case of CRYSOL utilization suggests that there is an interest from the 

community, which along with in-house projects in EMBL Hamburg, would profit from the 

developed ASAXS module. 

 
4.3 Using anomalous CRYSOL to compute scattering from biomolecules 

The anomalous mode of CRYSOL was used to simulate anomalous scattering at and 

away from the absorption edge, for two historical biological ASAXS examples: (1) human 

hemoglobin with four bound iron atoms (Stuhrmann and Notbohm, 1981), and (2) rabbit 

parvalbumin with terbium atoms at the two calcium binding sites (Miake-Lye, Doniach and 

Hodgson, 1983).  

In 1981, Stuhrmann and Notbohm derived the distances and tetrahedral geometry of 

the four bound iron atoms in human hemoglobin from ASAXS data. They predicted that the 

total contribution of the iron atoms would be very small, causing relative changes in scattering 

intensity in the order of 0.001-0.01. The anomalous scattering of solvated human hemoglobin 

was simulated from the PDB structure (PDB ID: 1a3n) using anomalous CRYSOL. The 

difference in scattering intensity measured away and at the K-absorption edge of iron is 

indeed quite subtle (Figure 4-3A), due to both the relative scarcity of iron atoms compared to 

the size of the protein (four iron atoms in a ~600 residue protein), and the low f’ and f” 

anomalous correction factors at the K-absorption edge of iron. A couple of years later, Miake-

Lye and colleagues did a similar experiment with a smaller protein parvalbumin, which binds 

calcium at two sites. They replaced the calcium atoms with terbium, which has the advantage 

of having an absorption edge with relatively high magnitude f’ and f” correction factors, at an 

energy that is reachable by synchotron radiation (Figure 4-1). Expectedly, the difference 

between scattering intensity at and away from the absorption edge of terbium was quite 

pronounced. We observed a similar phenomenon upon simulating anomalous scattering of 

parvalbumin at similar energies (Figure 4-3B). 
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Figure 4-3. (A) The scattering of solvated hemoglobin (PDB ID: 1a3n), as computed with anomalous CRYSOL, 
both at and away from the Fe K-absorption edge (7115 eV). The overall contribution of the four Fe atoms to 
the scattering is small. A zoomed in version emphasizing the change is shown at the center panel. (B) The 
scattering of solvated rabbit parvalbumin (PDB ID: 1pal) with two bound terbium atoms in the calcium-binding 
sites, as computed with anomalous CRYSOL, both at and away from the Tb L-III absorption edge (7517 eV). 
The two Tb atoms have a large contribution to the resulting scattering, due to the relatively large f' and f" 
values at the L-III absorption edge. 

 

These two cases show that it is possible to extract useful information from ASAXS data 

from biological systems, although one must be judicious about whether ASAXS is applicable 

to one’s system of interest. ASAXS experiments are significantly longer than regular SAXS, 

since the beam has to be tuned to multiple wavelengths, but it is convenient to do if one 

already has samples and beamtime (one essentially gets additional information "for free", 

notwithstanding the time investment). As such, anomalous CRYSOL could serve as a useful 

tool for users to determine a priori whether ASAXS can be applied to solve their particular 

biological problem. 

 

 

4.4 Conclusion and outlook 
 
 We have developed a module in CRYSOL allowing for the computation of anomalous 

scattering effects. Further developments could include making the simulated data more 

realistic by adding varying levels of noise. A systematic test could also be undertaken using 
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the anomalous CRYSOL module to determine the required ratio of anomalous scatterers to 

size of the biomolecule to get a detectable signal, analogous to the Bijvoet ratio in X-ray 

crystallographic phasing. Experimental validation of the simulated ASAXS data would also be 

extremely useful. 

 As currently implemented, however, anomalous CRYSOL can be a useful sandbox for 

experimentalists to try out their anomalous scattering experiments in silico, before doing 

actual ASAXS experiments.  The anomalous mode of CRYSOL is available in ATSAS v3.0.0.  
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5 Modeling the solution structure of Plasmodium falciparum Alu 
RNA and the Alu-SRP9/14 complex 

 

 
 In this and the following two sections, SAXS was used for the structural 

characterization of different macromolecular systems, including proteins, nucleic acids, and 

their complexes. The work described here stems from collaborative projects with user groups 

at the ESRF and the EMBL P12 SAXS beamline, where I was the responsible contact. The data 

analysis methods described in previous sections, in particular the NMA-based approaches for 

model refinement and coevolution analysis, were used wherever appropriate. 

 

5.1 The signal recognition particle (SRP) 

The signal recognition particle (SRP) is a universally-conserved RNA-protein complex 

that is involved in the transport of nascent proteins from the ribosome. The ~300nt RNA 

component of the eukaryotic SRP folds into two domains of about equal length: an Alu 

domain and an S domain. The Alu domain forms a complex with protein heterodimer SRP9/14. 

The Alu-SRP9/14 complex causes the retardation of protein translation, possibly through 

binding competitively to the elongation factor binding site on the ribosome (Wild and Sinning, 

2014). 

 Previously, it was demonstrated that drug-induced disruption of the transport of SRP9 

and SRP14 across the nuclear membrane prevented the formation of the SRP complex in 

Plasmodium falciparum, drastically reducing cell growth in vitro (Panchal et al., 2014). As a 

result, the drug (ivermectin) is a candidate for an anti-malarial prophylactic (Metzger et al., 

2019). Thus, elucidating the molecular details of the Alu-SRP9/14 interaction in P. falciparum 

is of interest, both as a basic scientific question, and as a source of drug targets. 

We analyzed solution SAXS data from the SRP9/14 heterodimer and the Alu domain 

of the SRP RNA from Plasmodium falciparum (Pf), for both the wildtype sequence (AluWT, 
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118 nucleotides) and several synthetic variants. Size-exclusion chromatography SAXS (SEC-

SAXS) was also performed for each Alu variant in combination with SRP9/14 to check for 

complex formation in each case (Graewert et al., 2015). Models of the solution structures of 

the Pf Alu RNA variants, SRP9/14 heterodimer, and the AluWT-SRP9/14 complex are 

proposed. 

 

Table 5-1. Sample properties 

 AluWT AluRigid AluH1 Alu106 Alu76 SRP9/14 

Organism P. falciparum 

Source  See Figure 1 Panchal et al., 
2014 

Molecule 
name 

Alu, wild-
type 

Alu, rigid 
variant 

(synthetic) 

Alu, with 
extended H1 

helix 
(synthetic) 

Alu, 106-nt 
truncation 

variant 
(synthetic) 

Alu, 76-nt 
truncation 

variant 
(synthetic) 

Signal 
recognition 

particle 
heterodimer, 

9/14 kDa 
 

 

 

 
Figure 5-1. Pf Alu wild-type RNA (top left) and its length and flexibility variants. 
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5.2 Experimental procedures 

5.2.1 SAXS data collection and processing 

Pf SRP9/14 protein and Pf Alu RNA (wild-type sequence, and several length and 

flexibility variants) were produced and subjected to small-angle X-ray scattering at the SAXS 

beamline BM29 of the European Synchotron Radiation Facility (Grenoble) (Pernot et al., 

2013), by Komal Soni (Sinning group, Heidelberg University). Sample details are summarized 

in Table 5-1, while the sequence and secondary structure of each Alu RNA variant is shown in 

Figure 5-1. SAXS data were measured for each sample individually, and for each Alu variant in 

combination with SRP9/14. The Alu-SRP9/14 mixtures were subjected to size exclusion 

chromatography (SEC) upstream of the SAXS measurement, in order to separate the 

monomeric fractions from any complexes formed (Mathew, Mirza and Menhart, 2004). The 

radially-averaged time-course SEC-SAXS data were viewed with CHROMIXS (Panjkovich and 

Svergun, 2017), from where buffer and sample frames were manually selected.  Data 

averaging and buffer subtraction were then done using Primus (Konarev et al., 2003), to 

produce the scattering profile from the putative complex.  

The analysis of the SAXS data was performed using the ATSAS 2.8 suite (Franke et al., 

2017). The concentration series SAXS data for each Alu RNA variant (Figure 5-2), and SRP9/14 

(Figure 5-5, panels A and B), as well as the SEC-SAXS profiles of each Alu-SRP9/14 mixture 

(Figure 5-2), were assessed for the absence of aggregation and interparticle effects, by 

checking for a linear Guinier region. Based on these criteria, the scattering profiles from the 

following samples were selected: 2.8 mg/ml AluWT, 2.9 mg/ml AluRigid, 1.6 mg/ml AluH1, 2.6 

mg/ml Alu106, 0.45 mg/ml Alu76, and 5 mg/ml SRP9/14. 

For each scattering profile, the forward scattering 𝐼𝐼(0) and the radius of gyration 

𝑅𝑅𝑔𝑔 were obtained from the Guinier approximation (Guinier, 1939), following the standard 

procedures (Konarev et al., 2006). The distribution of pair distances 𝑃𝑃(𝑟𝑟) was computed 

using the indirect Fourier transformation method implemented in GNOM (Semenyuk and 

Svergun, 1991).  From the 𝑃𝑃(𝑟𝑟) function, an alternative estimate of 𝑅𝑅𝑔𝑔 and the maximum 

particle dimension 𝐷𝐷𝑚𝑚𝑖𝑖𝑚𝑚   were obtained. Molecular weights (MW) in solution of the Alu 

variants were assessed from the SAXS data with two methods: (a) from 𝐼𝐼(0), with the data 
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adjusted to absolute scale (Jeffries et al., 2016), (b) from the volume of correlation, 𝑉𝑉𝑐𝑐, which 

has a correction factor for RNA samples (Rambo and Tainer, 2013). For SRP9/14, MW 

estimates were derived from 𝐼𝐼(0) using a bovine serum albumin standard, and through a 

consensus Bayesian MW assessment method (Hajizadeh et al., 2018). Since no concentration 

data was available for the Alu-SRP SEC-SAXS data, only 𝑉𝑉𝑐𝑐 -based MW estimation was 

performed on these scattering profiles. To adapt 𝑉𝑉𝑐𝑐 -based MW estimation to the RNA-

protein complexes, 𝑀𝑀𝑀𝑀𝑉𝑉𝑐𝑐 was computed assuming that the data represented pure protein 

or pure RNA. The resulting MW estimates were averaged and reported as the MW of the 

complex. 

 

5.2.2 SAXS data analysis and structure modeling 

The ab initio modeling program DAMMIF (Franke and Svergun, 2009) was used to 

produce low-resolution bead models of the Alu variants and SRP9/14 from their respective 

scattering profiles. Ten independent DAMMIF models were generated, superimposed with 

SUPCOMB (Kozin and Svergun, 2001), compared and averaged using DAMAVER (Volkov and 

Svergun, 2003), and the resolution computed with SASRES (Tuukkanen, Kleywegt and 

Svergun, 2016).  

The theoretical scattering curve from the high-resolution structure of human SRP9/14 

(PDB ID: 4uyk) was computed, and its χ2 fit against the experimental SAXS data evaluated 

using CRYSOL (Svergun, Barberato and Koch, 1995). To obtain a model that better fits the 

experimental scattering data, missing loop regions were added to the human SRP9/14 

structure using CORAL (Franke et al., 2012). The resulting model was further refined against 

the SAXS data with Cartesian NMA using SREFLEX (Panjkovich and Svergun, 2016). Since there 

were no available high-resolution structures for any of the Pf Alu RNA variants, models of 

each were built from sequence using the MC-SYM pipeline (Parisien and Major, 2008). The 

resulting models were refined to fit the SAXS data using NMA in torsion angle space (approach 

discussed in Chapter 2). Complex formation between each Alu variant and SRP9/14 was 

probed from the SAXS data using OLIGOMER (Konarev et al., 2003). OLIGOMER was used to 

approximate the SAXS data from the Alu-SRP9/14 mixtures as a sum of the monomer 

scattering profiles. Inability to fit the mixture data as a combination of monomers indicates 

57 
 



the presence of another scattering species, which in this case is the Alu-SRP9/14 complex. 

Using this procedure, complex formation was detected for all Alu-SRP9/14 mixtures. 

Ab initio models for each Alu-SRP complex were generated by multiphase modeling 

using MONSA (Svergun, 1999), wherein the RNA and protein are modeled as separate phases, 

and the model is built to fit the scattering data from the RNA, the protein, and the RNA-

protein mixture simultaneously. The MONSA models of the different Alu-SRP complexes were 

used to identify a consensus binding site for SRP9/14 on the Alu RNA. Using the information 

from the Alu-SRP9/14 MONSA models, as well as contact information derived from the crystal 

structure of the complex between Pyrococcus horikoshii Alu RNA and human SRP9/14 (PDB 

ID: 4uyk) (Bousset et al., 2014), hybrid models for Pf AluWT-SRP were constructed through 

constrained rigid-body modeling with SASREF (Petoukhov and Svergun, 2005). 

 
5.3 Solution characteristics and models for Pf Alu RNA variants and Pf SRP9/14 

The scattering profiles from the Alu RNA variants, both in unbound form and in 

combination with SRP9/14, are shown in Figure 5-3 (panels A and B), along with the 

OLIGOMER profile, which represents a combination of the component monomers. In each 

Alu-SRP9/14 mixture, the OLIGOMER profile does not adequately approximate the 

experimental data, suggesting complex formation between components. Guinier analysis of 

each Alu variant indicates that no concentration-dependent oligomerization is occurring 

(Figure 5-2, left panel insets), while the MW and Porod volume estimates suggest a 

monomeric state for each (Table 5-2). For each Alu-SRP scattering profile, the Porod volume 

and MW estimates (Table 5-3) suggest the formation of a 1:1 complex, which in the case of 

Alu76-SRP9/14, might be partially dissociated. 

The 𝑃𝑃(𝑟𝑟) function for each Alu variant indicates a two-domain structure (seen from 

the shoulder in each plot) that disappears upon binding of the SRP9/14 protein (Figure 5-3, 

panels C and D). The Kratky plots (Figure 5-3, E and F) confirm this two-domain structure, and 

show that these two domains have a small amount of flexibility between them that is 

decreased by SRP9/14 binding. 
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Figure 5-2. Concentration series data from Alu RNA variants (left) and SEC-SAXS data from each Alu-SRP complex (right), 
with Guinier plots for each scattering profile (inset). 
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Table 5-2. Data collection and structure statistics for small angle X-ray scattering analysis (monomers) 

Data collection parameters AluWT AluRigid AluH1 Alu106 Alu76 SRP9/14 

    Instrument BM29 (ESRF, Grenoble) 

    Beam geometry (mm2) 0.7×0.7 

    Wavelength (Å) 0.99 

    s range (Å-1) 0.003-0.5 

    Exposure time (s) 5 (10×0.5s) 

    Temperature (K) 293 

    Concentration range measured 
      (mg ml-1) 

0.4 – 2.8 0.4 – 2.9 0.4 – 3.1 0.3 – 2.6 0.2 – 1.8 0.3 – 5 

    Concentration used (mg ml-1) 2.8 2.9 1.6 2.6 0.45 5 

Structural parameters  

    Rg (Å) (from P(r)) 33±1 35±1 34±1 31±1 33±1 21±1 

    Rg (Å) (from Guinier plot) 33±1 35±1 34±1 31±1 34±2 21±1 

    Dmax (Å) 110±10 120±10 120±10 110±10 110±10 74±7 

    Porod volume estimate, Vp (103Å3) 75 72 77 54 60 44 

    Excluded volume estimate§ (103Å3)  79 81 87 70 52 48 

Molecular weight determination (kDa)  

    From volume of correlation (Vc) 40±2 40±2 45±3 37±2 31±2 22±4 

    From Bayesian assessment  n.a. n.a. n.a. n.a. n.a. 19±2 

    From I(0) 28±6 49±9 44±8 38±7 40±8 23±5 

    Calculated monomeric MW from  
    sequence 

38 38 42 34 25 24 

Software employed  

    Primary data reduction SASFLOW 

    Data processing PRIMUS 

    Ab initio analysis DAMMIF 

    Validation and averaging DAMAVER 

    3D structure prediction MC-SYM 

    Flexibility modeling NMATOR NMATOR NMATOR NMATOR NMATOR SREFLEX 

    Computation of model intensities CRYSOL 

    3D graphics representations PyMOL+ 
§excluded volume calculations made with human SRP9/14, and the MC-SYM RNA structures, using Mol_volume, 
Version 1.0, Theoretical Biophysics Group, University of Illinois (retrieved from "http://www.ks.uiuc.edu/ 
Development/MDTools/molvolume/") 
+The PyMOL Molecular Graphics System, Version 1.7.2.1, Schrödinger, LLC 
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Table 5-3. Data collection and structure statistics for small angle X-ray scattering analysis (complexes) 

Data collection parameters 
AluWT-
SRP9/14 

AluRigid-
SRP9/14 

AluH1-
SRP9/14 

Alu106-
SRP9/14 

Alu76-
SRP9/14 

    Instrument BM29 (ESRF, Grenoble) 

    Beam geometry (mm2) 0.7×0.7 

    Wavelength (Å) 0.99 

    s range (Å-1) 0.003-0.5 

    Exposure time (s) 1s ×2500 frames 

    Temperature (K) 293 

    Concentration range (mg ml-1) unknown (SEC) 

Structural parameters 

    Rg (Å) (from P(r)) 35±1 37±1 35±1 32±1 33±1 

    Rg (Å) (from Guinier plot) 36±1 37±1 34±1 32±1 32±1 

    Dmax (Å) 120±10 125±10 120±10 110±10 110±10 

    Porod volume estimate, Vp (103Å3) 121 118 131 112 77 

    Excluded volume estimate§ (103Å3)  127 129 135 118 100 

Molecular weight determination (kDa) 

    From volume of correlation (Vc) 60±6 62±6 77±9 59±6 28±4 

    Calculated monomeric MW from  
    Sequence 

62 63 66 58 49 

Software employed 

    Primary data reduction SASFLOW SASFLOW SASFLOW SASFLOW SASFLOW 

    Data processing CHROMIXS, 
PRIMUS 

CHROMIXS, 
PRIMUS 

CHROMIXS, 
PRIMUS 

CHROMIXS, 
PRIMUS 

CHROMIXS, 
PRIMUS 

    Ab initio analysis MONSA MONSA MONSA MONSA MONSA 

    Detection of complex formation OLIGOMER OLIGOMER OLIGOMER OLIGOMER OLIGOMER 

    Rigid body modelling SASREF n.a. n.a. n.a. n.a. 

    Computation of model intensities CRYSOL CRYSOL CRYSOL CRYSOL CRYSOL 

    3D graphics representations PyMOL+ PyMOL+ PyMOL+ PyMOL+ PyMOL+ 
§excluded volume calculations made with human SRP9/14, and the MC-SYM RNA structures, using Mol_volume, 
Version 1.0, Theoretical Biophysics Group, University of Illinois (retrieved from "http://www.ks.uiuc.edu/ 
Development/MDTools/molvolume/") 
+The PyMOL Molecular Graphics System, Version 1.7.2.1, Schrödinger, LLC 
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Figure 5-3. SAXS profiles, and SAXS-derived geometric and flexibility information for Alu RNA variants, with 
and without bound SRP9/14. (A and B) are the scattering profiles for each Alu variant without and with 
SRP9/14, respectively.  The red overlay in B is the scattering profile from a combination of monomers that 
best fit the scattering data. The 𝝌𝝌𝟐𝟐 fit is poor in each case, indicating complex formation. (C and D) show the 
pair distance distributions, 𝑷𝑷(𝒓𝒓), of each Alu variant without and with SRP9/14, respectively. There is a 
shoulder in the 𝑷𝑷(𝒓𝒓) function of each Alu variant, indicating a two-domain structure that disappears when 
SRP9/14 is added. (E and F) are the normalized Kratky plots, which show a similar two-domain structure with 
a small amount of flexibility between them, in the unbound Alu variants. Upon the addition of SRP9/14, this 
flexibility decreases, resulting in a relatively rigid Alu-SRP9/14 complex in each case. 
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The solution structure of each Alu variant was further characterized through ab initio 

and hybrid modeling, and the typical reconstructed models for each Alu variant are presented 

in Figure 5-4. Both bead and hybrid models were consistent with the two-domain architecture 

seen from the P(r) and Kratky plots of each Alu RNA variant. The bead models varied in 

whether this two-domain structure was represented as a hook shape or a branched shape. 

On the other hand, due to the constraints of secondary structure, the hybrid models from 

TNMA consistently modeled the Alu RNA variants as branched structures, with a long double 

helix present in all the variants, connected by a flexible junction to a shorter helix that varied 

in length for the truncation variants Alu76 and Alu106. 

 

 

Figure 5-4. Bead and hybrid models of Alu RNA variants. For each, a typical DAMMIF model (cyan), and a 
hybrid model from MC-SYM-TNMA (orange) is shown, along with the respective model fits to the SAXS data. 
The resolution from ten independent ab initio reconstructions are shown below each bead model. 
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The properties and structure of SRP9/14 in solution was characterized from the SAXS data. No 

concentration-dependent effects were observed (Figure 5-5A), so the SAXS profile from the highest 

measured concentration was selected (Figure 5-5B). MW estimates indicated that SRP9/14 was not 

forming higher order structures in solution (Table 5-2). Based on the 𝑃𝑃(𝑟𝑟) function (Figure 5-5C) and 

Kratky plot (Figure 5-5D), the SRP9/14 heterodimer was observed to be globular and compact. 

Comparison of typical models from ab initio (Figure 5-5E) and hybrid modeling (Figure 5-5F) show that 

the bead model is roughly the same configuration as the high-resolution structure, save for some extra 

volume which could be due to the missing loop residues in the PDB structure. The addition of these 

missing residues improved the fit to the SAXS data, with subsequent CNMA only changing the loop 

conformations. The final Pf SRP9/14 hybrid model is mostly consistent with the human version, 

suggesting that the structure of the heterodimer is conserved between the two species. 

 

Figure 5-5. (A) Concentration series data from SRP9/14 shows no concentration effects, so (B) the SAXS profile from 5 
mg/ml SRP9/14 was selected. (C) The 𝑷𝑷(𝒓𝒓) function and (D) normalized Kratky plot show that SRP9/14 is compact 
and globular. (E) A typical ab initio model (gray) has some volume unaccounted for in the high-resolution model, which 
is missing some loop regions. (F) Missing loops were filled in (green), after which the resulting structure was refined by 
CNMA (red). Model resolution and fits to the SAXS data and are indicated where appropriate. 
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5.4 A consensus model of the AluWT-SRP9/14 interaction 

 

Figure 5-6. Ab initio MONSA models of the Alu-SRP9/14 complexes (A) AluWT-SRP9/14, (B) AluRigid-SRP9/14, 
(c) AluH1-SRP9/14, (d) Alu106-SRP9/14, and (e) Alu76-SRP9/14. In each case, the structure on the left shows 
the model with the best fit out of ten MONSA runs, with the RNA phase in cyan, and the protein phase in 
magenta.  Each hybrid RNA model is superimposed on the RNA phase as comparison. The structure on the 
right shows all of the ten MONSA models, aligned with respect to the RNA phase, and shows the variability of 
the MONSA solutions obtained. 
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Ab initio models of each Alu-SRP9/14 complex were constructed by multiphase 

modeling using MONSA, in order to narrow down the docking site of the SRP protein. Figure 

5-6 shows typical ab initio models of each Alu-SRP complex, with the hybrid model of the Alu 

RNA molecule optimally superimposed on the RNA phase. Although the models are still quite 

variable with respect to the SRP docking site, it can be seen that most of the MONSA models 

either have the SRP9/14 bound to the side of the long helix (AluRigid-SRP9/14, Figure 5-6B), 

or near the junction between the short and long helices (AluWT-SRP9/14, Figure 5-6A). Of 

these two possible SRP9/14 binding sites, only SRP9/14-binding near the junction would seem 

to have the observed effect of decreasing the flexibility of the Alu RNA upon binding, 

suggesting that there is a greater likelihood that the SRP9/14 heterodimer binds at the 

junction. 

With the SRP9/14-binding site narrowed down, the next thing to consider was the 

orientation of the SRP9/14 protein. The crystal structure of the complex between Pyrococcus 

horikoshii Alu RNA and human SRP9/14 was used as a reference for possible contacts between 

Pf AluWT and Pf SRP (Figure 5-7).  

 

 

Figure 5-7. Rigid body modeling of the AluWT-SRP9/14 complex. (A) The crystal structure of P. horikoshii Alu 
RNA in complex with human SRP (PDB ID: 4uyk) was used to specify distance constraints for modeling. 
Highlighted in red are the most proximal regions between the RNA and protein. The same RNA motif was 
found for the P. falciparum AluWT model, and the regions used as distance constraints for SASREF are similarly 
shown in red. (B) shows the best-fitting AluWT-SRP model which meets the distance constraint, and in which 
the SRP also interacts with the short helix, which could account for the reduction in flexibility observed upon 
SRP binding. 
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At the binding interface of the PhAlu-SRP9/14 complex, it was observed that a cluster 

of basic residues on the beta-sheet region of the SRP9/14 heterodimer was interacting with 

a short UGU motif on the Alu RNA (Figure 5-6A) (Bousset et al., 2014). This same UGU motif 

was seen near the hinge region of the AluWT model. This information was used to specify 

distance constraints for rigid body modeling with SASREF. Figure 5-7B shows a model with 

reasonable fit to the SAXS data, that shares a similar binding interface as the related 

crystallographic structure.  

 

5.5 Conclusion and outlook 

Solution SAXS studies on P. falciparum SRP9/14 protein, and Alu RNA (along with Alu 

RNA synthetic variants) have shown the Alu RNA likely forms a branched structure with some 

flexibility in solution. Upon binding of the SRP9/14 heterodimer, this branched structure 

disappears, along with its concomitant flexibility. Based on these observations, plausible 

branched models for the solution structures of the Alu RNA variants, were constructed using 

a combination of 3D structure prediction and TNMA. The AluWT-SRP9/14 complex was then 

built using distance constraints from a related crystallographic structure to guide SAXS-based 

rigid body modeling.  

Additional validation experiments are recommended, to verify both the assumptions 

made to construct these models, as well as to check the accuracy of the models themselves.  
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6 Solution structures of condensin HEAT-repeat proteins Ycg1 and 
Ycs4 from Chaetomium thermophilum 

 
 

 

Condensins are protein complexes that are involved in the segregation of eukaryotic 

chromosomes during mitotic and meiotic cell divisions (Houlard et al., 2015; Uhlmann, 2016). 

Condensins consist of a dimer of Structural Maintenance of Chromosomes (SMC) subunits 

and a kleisin subunit Brn1 (Ivanov and Nasmyth, 2005; Cuylen, Metz and Haering, 2011; 

Wilhelm et al., 2015), which recruits two additional subunits, Ycg1 and Ycs4, that are 

composed of tandem repeats of short, amphiphilic α-helices known as HEAT repeats (named 

after four proteins that contain this motif: Huntingtin, Elongation factor 3, the A subunit of 

protein phosphatase 2A (PP2A) and the signaling kinase TOR1) (Andrade and Bork, 1995; 

Neuwald and Hirano, 2000). 

Ycg1 has previously been shown to have a horseshoe-shaped structure when bound to 

Brn1 in several co-crystal structures. The Ycg1-Brn1 complex was demonstrated to bind to 

double-stranded DNA via the formation of a positively-charged groove that contacts the 

negative charges in the DNA backbone, as well as the entrapment of the DNA helix within a 

flexible Brn1 loop, which thereby acts analogous to a safety-belt that pins the DNA double 

helix in place (Kschonsak et al., 2017). Ycs4 has also had its high-resolution structure in 

complex with Brn1 elucidated, although its exact function in the condensin complex is less 

clear (Hassler et al., 2019). 

HEAT-repeat proteins have been shown to exhibit significant flexibility (Grinthal et al., 

2010; Kappel et al., 2010), and solution scattering experiments were expected to validate 

whether this flexibility existed for both Ycg1 and Ycs4. Our hypothesis was that the binding of 

the Brn1 ligand was responsible for both recruiting the two HEAT-repeat proteins to the 

condensin complex, and also restricting the conformations of both to their functional form. 
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Here, we examined the structure and flexibility of the Chaetomium thermophilum (Ct) 

condensin subunits Ycg1 and Ycs4 in solution using SAXS, each in their unbound form as well 

as in complex with the kleisin Brn1. Both Ycg1 and Ycs4 were shown to be flexible in solution, 

with this flexibility restricted upon binding to Brn1. The average solution structures of 

unbound Ycg1 and Ycs4 were modeled, and seen to be significantly different from their 

conformations in the condensin complex, suggesting that the binding to Brn1 induces 

structural transitions to the functional conformation for both HEAT-repeat proteins. In 

addition, unbound Ycg1 was found to oligomerize in solution in the absence of Brn1, which 

might also have a role in regulating condensin function (Manalastas-Cantos et al., 2019). 

 

 

6.1 Experimental procedures 

6.1.1 SAXS data collection and processing 

Ct Ycg1 and Ycs4, alone or in complex with various ligands in the condensin complex 

were produced by Marc Kschonsak (Haering group, EMBL Heidelberg), as previously described 

(Haering et al., 2017; Hassler et al., 2019). Ycg1 and Ycs4 and their respective complexes are 

described in Table 6-1. SAXS data for each sample were collected at the SAXS beamline P12 

of the PETRA III storage ring (Deutsches Elektronen-Synchrotron, Hamburg) (Blanchet et al., 

2015). The details of the data collection conditions are summarized in Table 6-2 and Table 

6-3. The scattering data were collected with a PILATUS 2M pixel detector at a distance of 4.0 

m from the sample. For each sample, solute concentrations ranging from 0.25 to 10 mg/ml 

were measured. The samples were loaded using an automatic sample changer, constantly 

flowed through the capillary during the X-ray exposure in order to minimize radiation damage. 

The two-dimensional pixel data from the detector were converted to one-dimensional 

scattering profiles using the automated pipeline SASFLOW, which performed radial averaging, 

outlier removal, data averaging, and buffer subtraction (Franke, Kikhney and Svergun, 2012).  
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Table 6-1. Sample properties 

 Ycg1 Ycg1–Brn1 Ycs4 Ycs4-Brn1short Ycs4-Brn1 Ycs4-Brn1-
Smc4 

Organism C. thermophilum 

Source 
(reference) Kschonsak et al., 2017 Hassler et al., 2019 

Protein name 
(residues in 
construct)  

Ycg124-1006 
Ycg124-1006 in 
complex with 

Brn1515-634 

 
Ycg13-1222 

Ycs43-1222 in 
complex with 

Brn1336-418 

Ycs43-1222 in 
complex with 

Brn1225-418 

Ycs43-1222 in 
complex with 
Brn1225-418 and 

Smc4263-1542 

Solvent 300 mM NaCl, 25 mM tris-HCl pH 7.5, 1 mM DTT 

 

The analysis of the SAXS data was performed using the ATSAS 2.8 suite (Franke et al., 

2017). The concentration series SAXS data for each sample were assessed for the absence of 

aggregation and concentration effects, by checking for linearity in the Guinier region (Figure 

6-1). For Ycg1, noticeable concentration effects were observed and the scattering data from 

0.25 and 0.5 mg/ml were extrapolated to zero concentration using Primus (Konarev et al., 

2003). Only minor concentration effects were observed for the other samples, which could 

be ameliorated by data merging. A composite scattering profile for Ycg1–Brn1 was generated 

by merging the low-angle scattering at 0.5 mg/ml and high-angle scattering at 5 mg/ml. For 

Ycs4, a composite scattering curve was produced by merging low-angle scattering from 0.5 

mg/ml and high-angle scattering from 10 mg/ml. For the Ycs4 complexes, monodispersity was 

validated by performing singular value decomposition (SVD) (Konarev et al., 2003) on buffer-

subtracted concentration series SAXS data from Ycs4-Brn1short, Ycs4-Brn1, and Ycs4-Brn1-

Smc4. Based on SVD, composite scattering curves for both the Ycs4-Brn1short and the Ycs4-

Brn1 complexes were generated by merging low angle data from 0.5 mg/ml with high angle 

data from 5 mg/ml. For the Ycs4-Brn1-Smc4 complex, the data at 0.5mg/ml was computed to 

consist of only one component, and was selected for further analysis. 

All relevant, either derived or selected scattering profiles, were used for further 

analysis and modeling. The 𝐼𝐼(0) and 𝑅𝑅𝑔𝑔  were obtained from the Guinier approximation 

(Guinier, 1939), following the standard procedures (Konarev et al., 2006). The 𝑃𝑃(𝑟𝑟) function 

was computed using the indirect Fourier transformation method implemented in GNOM 

(Semenyuk and Svergun, 1991). From the 𝑃𝑃(𝑟𝑟) function, alternative estimates of 𝑅𝑅𝑔𝑔 and 

𝐷𝐷𝑚𝑚𝑖𝑖𝑚𝑚  were obtained. Molecular weights in solution were assessed from the SAXS data with 
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three methods: (a) using 𝐼𝐼(0) and comparing against a reference solution of bovine serum 

albumin (Jeffries et al., 2016), (b) from the excluded (Porod) volume 𝑉𝑉𝑝𝑝 (given that 𝑉𝑉𝑝𝑝 in 

nm3 is about 1.6 times the MW in kDa) (Franke et al., 2012), and (c) a consensus Bayesian MW 

assessment method (Hajizadeh et al., 2018). 

 

6.1.2 Molecular weight assessment of Ycg1 oligomers with light scattering 

The oligomeric states of Ycg1 were analyzed by analytical size-exclusion 

chromatography (SEC), coupled to a multiangle static light scattering (MALS) detector. SEC 

was performed using an Agilent 1260 Infinity II Bio-inert LC system, and an analytical 

Superdex200 10/300 GL column (GE Healthcare) equilibrated with the sample buffer (25 mM 

tris, 300 mM NaCl, 1 mM DTT, pH 7.5) at 20°C. Seven microliters of Ycg1 at 10 mg/ml was 

injected, with the experiment performed at a flow rate of 0.8 ml/min. Protein elution was 

detected by absorbance at 280 nm, and protein concentration quantified with differential 

refractometry using an Optilab T-rEX detector (Wyatt). Light scattering data was measured 

with a miniDAWN TREOS multiangle light scattering detector (Wyatt). Molecular weights 

were computed from the refractometry and light scattering data using the software ASTRA 

version 7.1.3.15 (Wyatt) 

Batch dynamic light scattering (DLS) measurements were also performed for Ycg1 at 

concentrations 0.6, 1.4, 2.5, 5.5, 10.8, and 22.1 mg/ml with a DynaPro NanoStar DLS detector 

(Wyatt). Light scattering data collection and analysis was performed with the software 

DYNAMICS version 7.6.0 (Wyatt).  For each concentration, ten 5-second acquisitions were 

performed. 

 
6.1.3 SAXS data analysis and structure modeling 

For Ycg1 and Ycg1-Brn1, the ab initio modeling program DAMMIF (Franke and 

Svergun, 2009) was used to produce low-resolution bead models from the SAXS data. Ten 

independent DAMMIF models were generated, superimposed with SUPCOMB (Kozin and 

Svergun, 2001), compared and averaged using DAMAVER (Volkov and Svergun, 2003) , and 

the resolution computed with SASRES (Tuukkanen, Kleywegt and Svergun, 2016). 

For all samples, the theoretical scattering curves from available high-resolution 

models were computed, and their χ2 fits against the experimental SAXS data evaluated using 
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CRYSOL (Svergun, Barberato and Koch, 1995). For Ycg1 and Ycg1-Brn1, the crystal structure 

of Saccharomyces cerevisiae Ycg1-Brn1 (PDB ID: 5oqq) was used. For Ycs4 and its complexes, 

models were derived from the C. thermophilum Ycs4-Brn1-Smc4 crystal structure (PDB ID: 

6qj4). 

To obtain models that better fit the experimental scattering data, hybrid modeling 

was performed for Ycg1, Ycs4, and their respective complexes. Normal mode analysis in 

Cartesian space (CNMA) was performed on Ycg1 and Ycg1-Brn1 using the program SREFLEX 

(Panjkovich and Svergun, 2016). Torsional NMA (TNMA) was also performed for Ycg1 as 

comparison, and yielded similar results to CNMA. For the Ycs4 complexes, CORAL was first 

used to build the missing loop regions in the crystal structure, keeping the high-resolution 

structure fragments fixed in space (Franke et al., 2012). To build the Ycs4-Brn1short model, the 

loop regions were built such that the resulting structure fit the SAXS data from both Ycs4 and 

Ycs4-Brn1short simultaneously. Similarly, for the Ycs4-Brn1-Smc4 complex, three SAXS datasets 

(Ycs4, Ycs4-Brn1, and Ycs4-Brn1-Smc4) were used simultaneously. The Ycs4-Brn1short model 

was further refined with NMA to fit the scattering data. 

As the unbound Ycg1 exhibited signs of oligomerization, a dimer structure and its 

proportion at elevated concentrations in solution was further modeled using SASREFMX 

(Petoukhov and Svergun, 2005; Franke et al., 2012; Petoukhov et al., 2013). The SAXS data for 

Ycg1 at 5 and 10 mg/ml were further modeled with SASREFMX as a mixture of monomers, 

dimers and tetramers, with the tetrameric structure built as a dimer of dimers.  

The results for Ycg1 and Ycg1-Brn1 have been published (Manalastas-Cantos et al., 

2019). The experimental SAXS data and the models for Ycg1 and Ycg1-Brn1 were also 

deposited on SASBDB (Small Angle Scattering Biological Data Bank; accession numbers 

SASDFC4 [Ycg1 monomer], SASDFD4 [Ycg1-Brn1 monomer], SASDFE4 [Ycg1 tetramer], 

SASDFG4 [Ycg1 dimer], and SASDFF4, SASDFH4, SASDFJ4, SASDFK4 [Ycg1 concentration 

series]) (Valentini et al., 2014). 
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Table 6-2. Data collection and structure statistics for small angle X-ray scattering analysis 

Data collection parameters Ycg1 Ycg1- Brn1515-634 

    Instrument EMBL P12 (PETRA III, DESY, Hamburg) 

    Beam geometry (mm2) 0.2×0.12 

    Wavelength (Å) 1.24 

    s range (Å-1) 0.002-0.38 

    Exposure time (s) 1 (20×0.05s) 

    Temperature (K) 283 

    Concentration range measured (mg ml-1) 0.25–10 

    Concentration used (mg ml-1) 0 (extrapolated) 0.5 and 5 (merged) 

Structural parameters  

    Rg (Å) (from P(r)) 46±1 42±1 

    Rg (Å) (from Guinier plot) 46±1 43±1 

    Dmax (Å) 160±10 140±10 

    Porod volume estimate, Vp (103Å3) 190 230 

    Excluded volume estimate§ (103Å3)  186 205 

Molecular weight determination (kDa)   

    From Porod volume (Vp/~1.6) 119±24 144±29 

    From consensus Bayesian assessment 109 ±11 138±15 

    From I(0) 102±9 122±10 

    Calculated monomeric MW from  
    Sequence 

109 125 

Software employed   

    Primary data reduction SASFLOW SASFLOW 

    Data processing PRIMUS PRIMUS 

    Ab initio analysis DAMMIF DAMMIF 

    Validation and averaging DAMAVER DAMAVER 

    Rigid body modelling SASREFMX n.a. 

    Flexibility modeling SREFLEX, NMATOR SREFLEX 

    Computation of model intensities CRYSOL CRYSOL 

    3D graphics representations PyMOL+ PyMOL+ 
§excluded volume calculations made with the crystal structures, using Mol_volume, Version 1.0, Theoretical 
Biophysics Group, University of Illinois (retrieved from "http://www.ks.uiuc.edu/Development/MDTools/ 
molvolume/") 
+The PyMOL Molecular Graphics System, Version 1.7.2.1, Schrödinger, LLC 
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Table 6-3. Data collection and structure statistics for small angle X-ray scattering analysis (continued) 

Data collection parameters Ycs4 Ycs4- 
Brn1short 

Ycs4- Brn1 Ycs4- Brn1-
Smc4 

    Instrument EMBL P12 (PETRA III, DESY, Hamburg) 

    Beam geometry (mm2) 0.2×0.12 

    Wavelength (Å) 1.24 

    s range (Å-1) 0.003-0.51 

    Exposure time (s) 1 (20×0.05s) 

    Temperature (K) 293 

    Concentration range measured 
      (mg ml-1) 

0.25–10 

    Concentration used (mg ml-1) 0.5 and 10 
(merged) 

0.5 and 5 
(merged) 

0.5 and 5 
(merged) 

0.5 

Structural parameters    

    Rg (Å) (from P(r)) 54±1 50±1 50±1 52±1 

    Rg (Å) (from Guinier plot) 52±2 50±1 49±2 51±2 

    Dmax (Å) 180±10 170±10 160±10 180±10 

    Porod volume estimate, Vp (103Å3) 285 286 308 341 

    Excluded volume estimate§ (103Å3)  206 210 219 301 

Molecular weight determination (kDa)     

    From Porod volume (Vp/~1.6) 178±36 179±36 193±39 213±43 

    From consensus Bayesian assessment  159±17 173±22 192±29 199±22 

    From I(0) 142±14 150±15 167±17 197±20 

    Calculated monomeric MW from  
    Sequence 

138 147 159 219 

Software employed     

    Primary data reduction SASFLOW SASFLOW SASFLOW SASFLOW 

    Data processing PRIMUS PRIMUS PRIMUS PRIMUS 

    Rigid body modelling CORAL CORAL CORAL CORAL 

    Flexibility modeling SREFLEX SREFLEX n.a. n.a. 

    Computation of model intensities CRYSOL CRYSOL CRYSOL CRYSOL 

    3D graphics representations PyMOL+ PyMOL+ PyMOL+ PyMOL+ 
§excluded volume calculations made with the crystal structures, using Mol_volume, Version 1.0, Theoretical 
Biophysics Group, University of Illinois (retrieved from "http://www.ks.uiuc.edu/Development/MDTools/ 
molvolume/") 
+The PyMOL Molecular Graphics System, Version 1.7.2.1, Schrödinger, LLC 
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Figure 6-1. Concentration series data and corresponding Guinier plots (lower left inset) of (A) Ycg1, (B) Ycg1-
Brn1, (C) Ycs4, (D) Ycs4-Brn1short, (E) Ycs4-Brn1, and (F) Ycs4-Brn1-Smc4. The slope of the Guinier plots (and 
hence the 𝑹𝑹𝒈𝒈) for Ycg1 increased systematically with increasing concentration, indicating concentration-
dependent oligomerization. For the rest of the samples, only minimal concentration effects were observed.  
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6.2 The effect of ligand binding on Ycg1 and Ycs4 structure 

 

Figure 6-2. SAXS profiles, and SAXS-derived geometric and flexibility information for HEAT-repeat proteins Ycg1 and Ycs4, 
with and without additional ligands. (A and B) are the scattering profiles for the Ycg1 and Ycs4 samples, respectively.  
The red overlay in each case indicates the computed scattering profiles of the existing crystallographic structures. (C and 
D) show the pair distance distributions, 𝑷𝑷(𝒓𝒓), of the Ycg1 and Ycs4 samples, respectively. The unbound forms of both Ycg1 
and Ycs4 appear to have the greatest maximum dimension (𝑫𝑫𝒎𝒎𝒎𝒎𝒎𝒎 ) compared to their ligand-bound forms, possibly 
indicating that the unbound forms have a more open conformation. In addition, Ycs4 and Ycs4-Brn1short have a shoulder in 
their 𝑷𝑷(𝒓𝒓) functions, indicating a two-domain structure. (E and F) are the dimensionless Kratky plots, which show that 
unbound Ycg1, Ycs4, and Ycs4-Brn1short have some flexibility which is reduced with the binding of additional ligands. 
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The scattering profiles from the HEAT-repeat proteins Ycg1 and Ycs4, both in unbound 

form and with various ligands from the condensin complex, are shown in Figure 6-2 (panels A 

and B), along with the computed scattering of their corresponding crystallographic structures. 

Except for the full complexes, there was poor agreement between the experimental and 

computed scattering data for both Ycg1 and Ycs4, indicating that the less ligand-bound forms 

of these HEAT-repeat proteins might have a significantly different conformation than what is 

found in the crystal. The pair distance distributions of Ycg1 and Ycs4 (Figure 6-2, panels C and 

D) show that the maximum dimension of the unbound HEAT-repeat proteins are either 

comparable or slightly larger than their ligand-bound counterparts, suggesting that unbound 

Ycg1 and Ycs4 might have a more extended conformation in solution, compared to the 

conformation in the crystal structure. The normalized Kratky plots (Figure 6-2, panels E and 

F) show significant flexibility for Ycg1, and a moderate amount of hinge-like flexibility for Ycs4 

and Ycs4-Brn1short, which suggests that this conformational difference might be due to the 

inherent flexibility of the two HEAT-repeat proteins in the absence of a ligand.   

The MW estimates from 𝐼𝐼(0) confirm a monomeric form for both Ycg1 and Ycs4 

(Table 6-2 and Table 6-3), indicating that the difference in scattering is due to a difference in 

conformation, and not due to polydispersity. MW estimates from 𝐼𝐼(0) for Ycg1-Brn1, Ycs4-

Brn1short, and Ycs4-Brn1 also indicated a 1:1 stoichiometry, and the Ycs4-Brn1-Smc4 complex 

a 1:1:1 stoichiometry, as was expected based on the crystal structures. In order to 

characterize the conformational differences between free and ligand-bound HEAT-repeat 

proteins, solution structure models were constructed from the SAXS data. Typical bead and 

hybrid models of Ycg1 and Ycg1-Brn1 are shown in Figure 6-3. 
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Figure 6-3. Ab initio models of (A) Ycg1, and (B) Ycg1–Brn1. A typical DAMMIF model is shown on the lower 
left corner, with the combined envelopes from 10 DAMMIF runs overlaid in gray. Ycg1 bead models appear 
elongated compared with bead models of Ycg1–Brn1. NMA models of (C) Ycg1, and (D) Ycg1–Brn1 show 
similar features to the bead models. Initial Ycg1 structures are shown in gray, with the Brn1 peptide shown in 
blue. Ycg1 structures after CNMA are shown in green, TNMA in cyan. Ycg1 CNMA and TNMA models are very 
similar. Red arrows on the initial structures depict the movement of the domains after CNMA. Ycg1 has a much 
larger rmsd (17 Å) than Ycg1–Brn1515-634 (7 Å), which could be attributed to an increased flexibility in the 
absence of the ligand. (Figure edited from Manalastas-Cantos et al., 2019) 
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Both the bead and hybrid models show that Ycg1 solution structure is more elongated 

and open than Ycg1-Brn1. SAXS-guided NMA of the Ycg1-Brn1 crystal structure resulted in a 

net movement of only 7 Å, which is not a significant change at low resolution. On the other 

hand, both Cartesian and torsional NMA refinement of the Ycg1 crystal conformation resulted 

in a larger swivel movement of around 17 Å. This suggests that Brn1 binding corrals the 

protein into its functional, horseshoe shaped conformation that is capable of binding double-

stranded DNA. Interestingly, Ycg1 by itself has previously been shown to have much lower 

DNA binding activity than the Ycg1-Brn1 complex (Kschonsak et al., 2017). Conformational 

selection and restriction through Brn1 binding might be a mechanism behind this observed 

phenomenon. 

SAXS-based hybrid models were also built for Ycs4-Brn1short and Ycs4-Brn1-Smc4. The 

Ycs4-Brn1short and Ycs4-Brn1-Smc4 models are shown in Figure 6-4. The Ycs4-Brn1short model 

(Figure 6-4A) the fit the scattering data from both Ycs4 and Ycs4-Brn1short, indicating that the 

binding of the truncated Brn1 ligand did not significantly affect Ycs4 structure and flexibility. 

On the other hand, the Ycs4-Brn1-Smc4 model (Figure 6-3B) only fit the SAXS data from Ycs4-

Brn1 and Ycs4-Brn1-Smc4, but fit the SAXS data from unbound Ycs4 poorly. This indicates a 

significant conformational difference between free and Brn1-bound Ycs4, which was 

quantified as a 9.5 Å swivel motion of one side of the structure in the unbound Ycs4 structure 

(Figure 6-3C). Thus, similar to Ycg1, Ycs4 undergoes conformational restriction to a more 

closed structure upon Brn1 binding. The functional significance of this closed Ycs4 structure 

is still unclear, but it has been proposed that the Ycs4-Brn1-Smc4 complex forms a 

compartment for DNA-binding, similar to Ycg1-Brn1. The timing of DNA association and 

dissociation may allow the condensin molecule to “walk” along the DNA in one direction 

(Hassler et al., 2019). 
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Figure 6-4. Hybrid models of Ycs4-Brn1short, and Ycs4-Brn1-Smc4. (A) The Ycs4- Brn1short model was further 
refined by NMA to fit the scattering data. (B) The Ycs4-Brn1-Smc4 model is consistent with the SAXS data from 
both Ycs4-Brn1, and Ycs4-Brn1-Smc4, but fits the data from free Ycs4 poorly, indicating a conformational 
difference between free and Brn1-bound Ycs4. This conformational difference is shown in (C), and involves a 
9.5 Å swivel motion of one side of the structure. 

 

6.3 Characterizing Ycg1 oligomerization 

Ycg1 oligomerization was observed from the concentration series SAXS data, which 

showed the formation of increasingly large, non-aggregated particles with increasing 

concentration (Figure 6-1). Dimer and tetramer models and their proportions at different 

concentrations were obtained with SASREFMX and shown in Figure 6-4. In this model, the 

Ycg1 dimerization interface partially overlaps with the Brn1 binding site, which might explain 

the lack of oligomerization in the Brn1-bound Ycg1 sample.  
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Figure 6-5. Ycg1 concentration-dependent oligomerization. (A) Scattering data from a Ycg1 concentration 
series were modeled as mixtures of monomer, dimer, and tetramer molecules. As Ycg1 concentration 
increases, the amount of dimeric and tetrameric species in solution increases. (B) The Ycg1-Brn1 crystal 
structure, compared with dimer and tetramer Ycg1 models. In the dimer model, the dimerization interface 
partly overlaps with the Brn1 (blue) binding site, which might explain why oligomerization was not observed 
to occur for Ycg1–Brn1 (Figure is from Manalastas-Cantos et al., 2019) 

 

 Ycg1 oligomerization was confirmed with SEC-MALS and DLS experiments. The DLS 

measurements revealed a systematic increase in the average hydrodynamic radius 𝑅𝑅ℎ (from 

about 6.5 to about 9 nm) and apparent MW (from about 250 to about 500 kDa) with 

increasing solute concentration (Figure 6-4A). Size exclusion chromatography coupled to 

multiangle static light scattering (SEC-MALS) revealed three components in the elution profile 

(Figure 6-4B). These components correspond to MW values of monomeric, dimeric and 

tetrameric Ycg1 (~100, ~200 and ~400 kDa), which is in excellent agreement with SAXS 

modeling results. 
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 Although the condensin HEAT-repeat subunits have previously been speculated to 

self-assemble (‘phase separate’) via multivalent, weak interactions (Yoshimura and Hirano, 

2016), there had been no direct experimental evidence to support this notion. The function 

of such self-assembling behavior is unclear in the context of Ycg1 and the condensin complex. 

Nonetheless, the implications of this oligomerization behavior, combined with the oligomer-

dissociating effect of Brn1-binding, is an interesting avenue to explore in future studies. 

 

 

 
Figure 6-6. Concentration-dependent oligomerization of Ycg1 assessed by light scattering. (A) Batch DLS measurements 
show Rh and MW increasing with concentration, similar to SAXS. (B) SEC-MALS of Ct Ycg1 confirms the presence of 
oligomeric species with monomeric (1: ~100 kDa), dimeric (2: ~200 kDa), and tetrameric (3: ~400 kDa) MWs. Note that the 
dimers and tetramers may be dissociating during chromatography due to dilution, causing them to be present in much 
smaller amounts compared to the SAXS experiment. (Figure is from Manalastas-Cantos et al., 2019) 
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6.4 Conclusion and outlook 

The condensin HEAT-repeat proteins Ycg1 and Ycs4 were shown to be flexible in 

solution, with this flexibility constrained by the binding of Brn1. For both Ycg1 and Ycs4, Brn1-

binding appears to bring the flexible proteins into their functional conformation in the 

condensin complex. Additionally, Ycg1 was observed to form dimers and tetramers in 

solution, that are dissociated upon Brn1 binding. This was the first time condensin HEAT-

repeat protein oligomerization was observed experimentally. The functional role of this 

oligomerization, as well as how frequently it occurs for HEAT-repeat proteins in general, 

would be interesting to explore in future work. 

For detailed information regarding the SAXS data analysis and modeling of Ycg1, 

readers are advised to consult the paper (Manalastas-Cantos et al., 2019).  
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7 Modeling iron-sulfur cluster biosynthesis proteins in Escherichia 
coli: HscA, HscB, IscU and the HscB-IscU complex 

 

 

 

 

Iron–sulfur (Fe-S) clusters are used by more than 200 different types of proteins and as 

such, represent one of the most ubiquitous biological prosthetic groups across multiple 

branches of life. Hence, the Fe-S cluster biosynthesis pathway is remarkably conserved in both 

prokaryotic and eukaryotic organisms. For bacteria such as Escherichia coli, the ISC operon 

contains the primary set of genes involved in Fe–S cluster biosynthesis Figure 7-1. Moreover, 

aside from a few additional components, the eukaryotic mitochondrial machinery also uses 

the ISC system for Fe–S cluster biogenesis. This ubiquity, functional importance, and high-

degree on conservation makes the ISC system of considerable interest (Bandyopadhyay, 

Chandramouli and Johnson, 2008). 

The ISC system consists of a scaffold protein (IscU or IscA), upon which a cysteine 

desulfurase IscS attaches transient [2Fe–2S]2+ and [4Fe–4S]2+ clusters, to be transferred to 

acceptor proteins. The operon contains additional genes that encode a regulatory protein 

(IscR), a ferredoxin (Fdx), and two heat-shock like proteins (HscA and HscB). 

 

 

 
Figure 7-1. The E. coli ISC operon (Figure modified from Bandyopadhyay, Chandramouli and Johnson, 2008) 
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The high-resolution structures of almost all the individual E. coli ISC proteins have been 

solved (aside from HscA, which has only its substrate binding domain elucidated), as well as 

some of the interactions (Cupp-Vickery and Vickery, 2000; Kakuta et al., 2001; Cupp-Vickery, 

Peterson, et al., 2004; Cupp-Vickery, Silberg, et al., 2004; Shi et al., 2010; Kim, Tonelli and 

Markley, 2012; Rajagopalan et al., 2013). Solution SAXS provides a quick way of screening for 

novel interactions: the scattering from a complex is markedly different from the sum of 

scattering from the components alone, and this difference can be detected by software tools 

such as OLIGOMER (Konarev et al., 2003). SAXS data can also be used in combination with the 

available high-resolution structures of the individual proteins to construct solution structure 

models of the complexes in the Fe-S biosynthesis apparatus. 

In this work, we measured SAXS data from ISC proteins HscA, HscB, and IscU individually 

and as pairs, screening for pairwise interactions. Solution structures for the monomers IscU, 

HscB, and HscA were obtained and compared to existing high-resolution structures. In 

addition, HscB and IscU heterodimer formation was detected with solution SAXS, and models 

of the HscB-IscU heterodimer were produced from the scattering data. Due to the ubiquity 

and conservation of the ISCU system, coevolution was used to predict heterodimer contacts 

between HscB and IscU, thus reducing SAXS modeling ambiguity. 

 

7.1 Experimental procedures 

7.1.1 SAXS data collection and processing 

The ISC system proteins HscA, HscB, and IscU were produced by Rita Puglisi (Pastore 

group, King’s College London), and described in Table 7-1. SAXS data for each sample were 

collected at the SAXS beamline P12 of the PETRA III storage ring (Deutsches Elektronen-

Synchrotron, Hamburg) (Blanchet et al., 2015). The details of the data collection conditions 

are summarized in Table 7-2. The scattering data in the momentum transfer range 0.003 < s 

< 0.73 Å-1 were collected with a PILATUS 6M pixel detector at a distance of 3.0 m from the 

sample. For HscB and IscU, solute concentrations ranging from 1.25 to 10 mg/ml were 

measured, while for HscA, the concentration range 3.75 - 30 mg/ml was examined. The 

samples were also mixed in a 1:1 molar ratio of all the possible two-protein combinations 

(HscA-HscB, HscA-IscU, and HscB-IscU), then subjected to size-exclusion chromatography 
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(SEC) directly upstream of the SAXS capillary (Graewert et al., 2015). SEC was performed using 

an Agilent 1260 Infinity II Bio-inert LC system, and an analytical Superdex200 increase 5/150 

GL column (GE Healthcare) equilibrated with the sample buffer (20 mM tris, 150 mM NaCl, 2 

mM DTT, pH 8) at 20°C. Forty microliters of 10 mg/ml sample was injected for HscA-HscB and 

HscA-IscU (6 mg/ml for HscB-IscU), with the experiment performed at a flow rate of 0.45 

ml/min. 

The samples were constantly flowed through the capillary during X-ray exposure in 

order to minimize radiation damage. The two-dimensional pixel data from the detector were 

converted to one-dimensional scattering profiles using the automated pipeline SASFLOW, 

which performed radial averaging, outlier removal, data averaging, and buffer subtraction 

(Franke, Kikhney and Svergun, 2012). For the SEC-SAXS data, radially-averaged time course 

data from SASFLOW were viewed with CHROMIXS (Panjkovich and Svergun, 2017), from 

where buffer and sample frames were manually selected.  Data averaging and buffer 

subtraction were then done using Primus (Konarev et al., 2003), to produce the scattering 

profile from the putative complex. The analysis of the SAXS data was performed using the 

ATSAS 2.8 suite (Franke et al., 2017). The concentration series SAXS data for each monomer 

sample were assessed for monodispersity and the absence of repulsive or attractive 

interactions, by checking for linearity in the Guinier region (Figure 7-2). No major 

concentration effects were observed for the monomer samples. The selected scattering 

profiles were HscA at 15 mg/ml, HscB at 10 mg/ml, and IscU at 10 mg/ml. These selected 

scattering profiles were used for further analysis and modeling.  

 

Table 7-1. Sample properties 

 HscA HscB IscU 

Organism P. falciparum 

Source (UniProt ID) P0A6Z1 P0A6L9 P0ACD4 

Protein name (residues in 
construct)  HscA1-616 HscB1-171 IscU1-128 

Solvent 300 mM NaCl, 25 mM tris-HCl pH 7.5, 1 mM DTT 
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For each scattering profile, the 𝐼𝐼(0)  and 𝑅𝑅𝑔𝑔  were obtained from the Guinier 

approximation (Guinier, 1939), following the standard procedures (Konarev et al., 2006). The 

𝑃𝑃(𝑟𝑟) function was computed using the indirect Fourier transformation method implemented 

in GNOM (Semenyuk and Svergun, 1991).  The 𝑃𝑃(𝑟𝑟)  function was used to derive 

alternative estimates of 𝑅𝑅𝑔𝑔 and 𝐷𝐷𝑚𝑚𝑖𝑖𝑚𝑚. Molecular weights in solution were assessed from 

the SAXS data with three methods: (a) using the forward scattering, and comparing against a 

reference solution of bovine serum albumin (Jeffries et al., 2016), (b) from the excluded 

(Porod) volume 𝑉𝑉𝑝𝑝 (given that 𝑉𝑉𝑝𝑝 in nm3 is about 1.6 times the MW in kDa) (Franke et al., 

2012), and (c) a consensus Bayesian MW assessment method (Hajizadeh et al., 2018).  

 

7.1.2 SAXS data analysis and structure modeling 

The scattering curves from available high-resolution models of HscA, HscB, and IscU 

were computed, and their χ2 fits against the experimental SAXS data evaluated using CRYSOL 

(Svergun, Barberato and Koch, 1995). The structures used as reference were the Escherichia 

coli HscB crystal structure (PDB ID: 1fpo), the E. coli IscU structure from solution NMR (PDB 

ID: 2l4x), and a chimeric model of HscA. The HscA model was constructed using the crystal 

structure of the E.coli HscA substrate binding domain (PDB ID: 1u00), with its missing ATPase 

domain taken from cognate protein Hsp70 (PDB ID: 2kho). The Hsp70 structure was also used 

as a reference for the relative orientations of the substrate binding and ATPase domains of 

the HscA model. To obtain models that better fit the experimental scattering data, CNMA and 

TNMA were performed on HscA and HscB using the programs SREFLEX (Panjkovich and 

Svergun, 2016) and NMATOR (discussed in Chapter 2), respectively.  

Complex formation was probed from the SAXS data of each two-protein combination 

(HscA-HscB, HscA-IscU, and HscB-IscU) using OLIGOMER (Konarev et al., 2003). OLIGOMER 

was used to approximate the SAXS data from the two-protein mixtures as a sum of the 

monomer scattering profiles. Inability to fit the mixture data as a combination of monomers 

indicates the presence of another scattering species, which in this case is the protein complex. 

Using this procedure, complex formation was detected for HscB-IscU. 

The structure and proportion in solution of the HscB-IscU dimer was modeled ten 

times using SASREFMX (Petoukhov and Svergun, 2005; Franke et al., 2012; Petoukhov et al., 
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2013). To decrease modeling ambiguity, heterodimer contacts between HscB and IscU were 

predicted using coevolution analysis (discussed in Chapter 3). Homologous sequences to HscB 

and IscU were queried using HMMer (version 3.1b2) (Eddy, 2011). The homologous 

sequences were matched by species-of-origin, with any unmatched sequences discarded. The 

remaining sequences were aligned to the HscB and IscU sequences with Clustal Omega 

(version 1.2.3) (Sievers et al., 2011), and concatenated into a single long multiple sequence 

alignment, which was analyzed for pairwise positional coevolution using direct coupling 

analysis (Morcos et al., 2011). The top scoring heterodimer contact from DCA was used as a 

distance constraint for another ten SASREF modeling runs.  

 

 
Figure 7-2. Concentration series SAXS data and Guinier plots (left inset) for (A) HscA, (B) HscB, and (C) IscU. For 
all three proteins, linear Guinier plots indicate a negligible amount of aggregation or interparticle repulsion, 
while the constant slope indicates that 𝑹𝑹𝒈𝒈 remains constant in the concentration ranges at which SAXS data 
were measured, demonstrating absence of concentration-dependent oligomerization. (D) SEC-SAXS data the 
two-protein combinations HscB-IscU, HscA-IscU, and HscA-HscB. The red overlay is the scattering profile of the 
combination of monomers that best fits the scattering data. For HscA-HscB and HscA-IscU, the difference 
between the OLIGOMER profiles and the SAXS data were insufficient to unambiguously indicate complex 
formation. For HscB-IscU, the combination of monomers noticeably does not account for the observed 
scattering. 
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Table 7-2. Data collection and structure statistics for small angle X-ray scattering analysis 

Data collection parameters HscA HscB IscU HscB-IscU 

    Instrument EMBL P12 (PETRA III, DESY, Hamburg) 

    Beam geometry (mm2) 0.2×0.12 

    Wavelength (Å) 1.24 

    s range (Å-1) 0.003-0.73 

    Exposure time (s) 1 (20×0.05s) 

    Temperature (K) 293 

    Concentration range measured 
      (mg ml-1) 

3.75 - 30 1.25 - 10 1.25 – 10 unknown 
(SEC) 

    Concentration used (mg ml-1) 15 10 10 unknown 
(SEC) 

Structural parameters    

    Rg (Å) (from P(r)) 38±1 23±1 19±1 24±1 

    Rg (Å) (from Guinier plot) 38±1 23±1 18±1 24±1 

    Dmax (Å) 130±10 75±5 70±5 75±5 

    Porod volume estimate (103Å3) 135 29 17 31 

    Excluded volume estimate§ (103Å3)  135 25 17 42 

Molecular weight determination (kDa)     

    From Porod volume, Vp (Vp/~1.6) 84±17 18±4 10±2 19±4 

    From consensus Bayesian assessment  89±7 22±1 14±1 29±1 

    From I(0) 68±7 20±2 12±1 n.a. 

    Calculated monomeric MW from  
    sequence 

66 20 14 34 

Software employed     

    Primary data reduction SASFLOW SASFLOW SASFLOW SASFLOW 

    Data processing PRIMUS PRIMUS PRIMUS CHROMIXS, 
PRIMUS 

    Detection of complex formation n.a. n.a. n.a. OLIGOMER 

    Coevolution analysis n.a. n.a. n.a. DCA 

    Rigid body modelling n.a. n.a. n.a. SASREFMX 

    Flexibility modeling SREFLEX, 
NMATOR 

SREFLEX, 
NMATOR 

n.a. n.a. 

    Computation of model intensities CRYSOL CRYSOL CRYSOL CRYSOL 

    3D graphics representations PyMOL+ PyMOL+ PyMOL+ PyMOL+ 
§excluded volume calculations made with the reference structures, using Mol_volume, Version 1.0, Theoretical 
Biophysics Group, University of Illinois (retrieved from "http://www.ks.uiuc.edu/Development/MDTools/ 
molvolume/") 
+The PyMOL Molecular Graphics System, Version 1.7.2.1, Schrödinger, LLC 
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7.2 Solution characteristics and models for HscA, HscB and IscU 

 The scattering profiles of the monomers HscA, HscB, and IscU are shown on Figure 

7-3A, along with the simulated scattering data from their respective high-resolution 

structures (Figure 7-3B). Unsurprisingly, the solution NMR structure for IscU corresponded 

well to the solution SAXS data. On the other hand, both HscB crystal structure and the HscA 

chimeric model did not have good agreement with the experimental scattering data, 

indicating the need for further modeling.  

 

 

 
Figure 7-3. (A) Scattering data from the HscA, HscB, and IscU monomers. The red overlay in each case 
represents the computed scattering from the corresponding high-resolution models. (B) Full-length, high-
resolution structures of HscB, and IscU, and a chimeric HscA model, built by aligning the HscA SBD with the 
SBD of the homologous protein Hsp70 (PDB ID: 2kho), and using both the ATPase domain and the relative 
domain orientations from the Hsp70 structure. This resulting model does not coincide well with the SAXS data 
from (A), shown by the poor fit between the scattering profiles. (C) The pair distance distribution, and (D) 
normalized Kratky plots show that HscA, HscB, and IscU are largely globular, although HscB shows a subtle 
two-domain structure with a small amount of flexibility between the domains. 
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 The pair distance distribution functions and Kratky plots (Figure 7-3, panels C and D) 

for HscA and IscU indicate mostly compact, rigid structures, but with the tail of the 𝑃𝑃(𝑟𝑟) 

distribution of IscU corresponding well to the “tail” in the solution NMR structure. For HscB, 

both the 𝑃𝑃(𝑟𝑟) function and Kratky plot show a two-domain structure with some hinge-like 

flexibility between them, which could possibly map back to flexible motions in the junction of 

HscB’s L-shaped structure (Figure 7-2B).  

 In order to further characterize the solution structures of HscA and HscB, hybrid 

models were built from the initial, reference structures using Cartesian and torsional NMA. 

Figure 7-4 shows solution structure models for HscA and HscB that fit the experimental 

scattering data. For HscB, both Cartesian and torsional NMA resulted in a swiveling motion of 

one of its helical bundles, originating near the junction of the L-shaped structure. For HscA, 

CNMA resulted in a large domain repositioning, indicating that the domain configuration in 

the Hsp70 crystal structure is significantly different from the domain orientations of HscA in 

solution, even though their sequences are so similar. Interestingly, this might be linked to the 

observation that while HscA is functionally a molecular chaperone like Hsp70, its substrates 

are very specific to the Fe-S biosynthesis pathway (Vickery and Cupp-Vickery, 2007), unlike 

the more promiscuous Hsp70 (Mayer and Bukau, 2005).  

 On the other hand, torsional NMA did not find an HscA model that fit the scattering 

data well. Noticeable conformational change within one of the domains could be seen in the 

TNMA HscA model (Figure 7-2A), since domains are not kept rigid in the currently 

implemented NMATOR. In order to be applicable to large, multidomain proteins, some 

possible features to add to NMATOR could be (1) automatic domain detection, as in SREFLEX, 

and (2) the capacity to keep domains rigid during refinement. Overall, the results obtained in 

Chapters 6-7 indicate that the performance of CNMA on proteins is generally somewhat 

better, and at least not worse than that of TNMA. Therefore, as indicated above, TNMA should 

be largely considered for nucleic acids (see the application in Chapter 5), where CNMA shows 

its limitations. 
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Figure 7-4. Hybrid models of (A) HscA, and (B) HscB from CNMA with SREFLEX (red), and TNMA with NMATOR 
(cyan), along with the fits of the resulting models to the SAXS data. Initial structures are shown in gray, and 
the net movement shown by gray arrows, with the rmsd shown alongside. TNMA found a similar model as 
CNMA for HscB, but did not find a well-fitting model for HscA, suggesting that the RTB approach might better 
describe domain movements for larger proteins. 

 

 

7.3 Detecting and modeling the HscB-IscU interaction 

 The results from OLIGOMER showed that while the scattering data from the HscA-IscU 

and HscA-HscB mixtures could be fully accounted for by the monomers alone, the SAXS data 

from the HscB-IscU mixture could not (Figure 7-5). This unambiguously indicated that another 

scattering species was being formed. From the Porod volume and MW estimates (Table 7-1), 

the complex seems to be a partially-disssociated 1:1 complex. The 𝑃𝑃(𝑟𝑟) function and Kratky 

plot indicates a globular, relatively rigid complex. 
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Figure 7-5. (A) SEC-SAXS data from the 1:1 HscB-IscU, with the associated Guinier plot (inset) (B) The pair 
distance distribution P(r), and (C) the dimensionless Kratky plot from the HscB-IscU SAXS data both indicate a 
compact, globular complex. (D) shows the top contact predicted by coevolution, along with the prediction 
confidence. 

 

Heterodimer models for HscB-IscU were constructed through SAXS-guided rigid body 

modeling. Since the ISC system of proteins is highly conserved, it was deemed a good 

candidate for coevolution-based contact prediction. The top scoring heterodimer contact 

(Figure 7-5D) was used as a distance constraint for another round of rigid body modeling. The 

resulting models that were built with and without coevolution information are shown in 

Figure 7-6. 
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Figure 7-6. Rigid-body models of the HscB-IscU heterodimer from SASREFMX. (A) shows the models from ten 
unconstrained runs, with the best fitting model shown in opaque colors, along with the fit of the model to the 
scattering data. (B) similarly shows the models from ten runs with distance constraints from coevolution 
analysis. Adding a constraint significantly reduces model variability. 

 

The HscB-IscU models consistently placed IscU such that it filled the cavity in the 

corner of the L-shaped HscB. The unconstrained models were highly variable in the 

orientation of IscU, however. The addition of a distance constraint greatly reduced the 

variability of the heterodimer models, since it restricted the possible orientations of IscU to 

those that would preserve the predicted contact. Whether the predicted contact has a 

biological or chemical significance, or is just a statistical artifact picked up by coevolution 

analysis could be validated by site-directed mutagenesis. 

A somewhat surprising result is the lack of interaction detected between HscA and 

IscU. Because of its role as a scaffold protein, IscU was expected to interact with all of the 

proteins. In addition, the HscA has been cocrystallized with a bound IscU peptide (Cupp-

Vickery, Peterson, et al., 2004). However, the size difference between HscA and IscU might 

have made it difficult to distinguish between HscA and HscA-IscU complex at low resolution. 

The OLIGOMER-derived scattering profile consisted around 90% HscA and 10% IscU, 

indicating that just the HscA monomer is mostly sufficient to account for scattering from the 

mixture. Another possibility is that the HscA-IscU dissociated in solution, due to dilution 

during chromatography.  
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7.4 Conclusion and outlook 

SAXS data were measured at the EMBL P12 beamline for the ISC proteins HscA, HscB, 

and IscU, from the individual proteins and their binary complexes. The IscU solution structure 

was found to be consistent with the known high-resolution structure. Models for HscA and 

HscB solution structure were derived through from high-resolution models through normal 

mode analysis. 

HscB and IscU were demonstrated to form a heterodimer in solution. Possible 

structures of the HscB-IscU complex were derived with SAXS-guided rigid-body modeling. The 

ambiguity of the computed models was decreased by applying distance constraints derived 

from coevolution analysis. The derived HscB-IscU models would greatly benefit from 

validation with further lab experiments. 
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Appendix 

List of Abbreviations 

ASAXS anomalous small-angle X-ray scattering 
CAPRI Critical Assessment of Prediction of Interactions 
CNMA normal mode analysis in Cartesian space 
Ct Chaetomium thermophilum 
DCA direct coupling analysis 
DLS dynamic light scattering 
DNA deoxyribonucleic acid 
DTT dithiothreitol 
EMBL European Molecular Biology Laboratory 
ESRF European Synchotron Radiation Facility 
FRET fluorescence resonance energy transfer 
Lrmsd ligand root-mean-square deviation 
MALS multiangle static light scattering 
MD molecular dynamics 
MS mass spectrometry 
MW molecular weight 
NDB Nucleic Acid Database 
NMA normal mode analysis 
NMR nuclear magnetic resonance 
PDB Protein Data Bank 
Pf Plasmodium falciparum 
rmsd root-mean-square deviation 
RNA ribonucleic acid 
RTB rotations-translations of blocks 
SANS small-angle neutron scattering 
SAS small-angle scattering 
SAXS small-angle X-ray scattering 
SEC size exclusion chromatography 
SRP signal recognition particle 
SVD singular value decomposition 
TNMA normal mode analysis in torsion angle space 
UniProt Universal Protein Resource 
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Large RNA dataset for TNMA benchmarking 
initial structure target structure Rg, initial Rg, target rmsd transition 

1anr_12 1anr_18 17.2 13.9 11.6 open-to-closed 
1anr_12 1anr_2 17.2 13.5 11.2 open-to-closed 
1anr_16 1anr_18 17.5 13.9 11.9 open-to-closed 
1anr_16 1anr_9 17.5 13.8 10.9 open-to-closed 
1anr_19 1anr_6 15.8 15.2 10.3 open-to-closed 
1anr_6 1anr_18 15.2 13.9 11.9 open-to-closed 
1anr_6 1anr_2 15.2 13.5 11.3 open-to-closed 
1anr_7 1anr_18 17.0 13.9 11.1 open-to-closed 

1ikd_14 1ikd_2 15.5 11.3 10.7 open-to-closed 
1m5l_3 1m5l_10 20.3 19.2 10.8 open-to-closed 
1m5l_3 1m5l_15 20.3 17.1 10.4 open-to-closed 
1m5l_5 1m5l_10 23.3 19.2 11.9 open-to-closed 
1m5l_5 1m5l_15 23.3 17.1 12.5 open-to-closed 
1s9s_1 1s9s_8 34.6 29.9 14.4 open-to-closed 
1s9s_11 1s9s_20 31.4 31.2 12.3 open-to-closed 
1s9s_11 1s9s_8 31.4 29.9 11.7 open-to-closed 
1s9s_12 1s9s_14 32.0 30.5 26.2 open-to-closed 
1s9s_12 1s9s_19 32.0 31.5 22.7 open-to-closed 
1s9s_12 1s9s_20 32.0 31.2 26.5 open-to-closed 
1s9s_12 1s9s_4 32.0 30.2 24.7 open-to-closed 
1s9s_13 1s9s_12 35.6 32.0 23.7 open-to-closed 
1s9s_13 1s9s_15 35.6 32.8 12.0 open-to-closed 
1s9s_13 1s9s_18 35.6 33.1 30.9 open-to-closed 
1s9s_13 1s9s_20 35.6 31.2 11.6 open-to-closed 
1s9s_13 1s9s_3 35.6 32.7 32.5 open-to-closed 
1s9s_13 1s9s_4 35.6 30.2 13.3 open-to-closed 
1s9s_13 1s9s_8 35.6 29.9 14.1 open-to-closed 
1s9s_16 1s9s_20 33.0 31.2 12.3 open-to-closed 
1s9s_18 1s9s_10 33.1 31.5 30.7 open-to-closed 
1s9s_18 1s9s_14 33.1 30.5 32.4 open-to-closed 
1s9s_18 1s9s_17 33.1 33.0 11.9 open-to-closed 
1s9s_18 1s9s_19 33.1 31.5 29.5 open-to-closed 
1s9s_18 1s9s_20 33.1 31.2 33.2 open-to-closed 
1s9s_19 1s9s_11 31.5 31.4 13.7 open-to-closed 
1s9s_2 1s9s_18 34.9 33.1 13.1 open-to-closed 
1s9s_2 1s9s_3 34.9 32.7 16.3 open-to-closed 
1s9s_20 1s9s_8 31.2 29.9 12.6 open-to-closed 
1s9s_3 1s9s_14 32.7 30.5 34.4 open-to-closed 
1s9s_3 1s9s_19 32.7 31.5 30.8 open-to-closed 
1s9s_3 1s9s_20 32.7 31.2 34.5 open-to-closed 
1s9s_3 1s9s_4 32.7 30.2 33.3 open-to-closed 



initial structure target structure Rg, initial Rg, target rmsd transition 
1s9s_9 1s9s_12 34.6 32.0 27.3 open-to-closed 
1s9s_9 1s9s_18 34.6 33.1 34.0 open-to-closed 
1s9s_9 1s9s_20 34.6 31.2 12.6 open-to-closed 
1s9s_9 1s9s_3 34.6 32.7 36.2 open-to-closed 
1s9s_9 1s9s_5 34.6 33.4 14.5 open-to-closed 
1s9s_9 1s9s_8 34.6 29.9 11.2 open-to-closed 
2m58_1 2m58_4 26.7 19.4 18.1 open-to-closed 
2m58_1 2m58_5 26.7 20.0 18.5 open-to-closed 
2m58_1 2m58_7 26.7 24.6 11.5 open-to-closed 
2m58_1 2m58_8 26.7 23.7 12.1 open-to-closed 
2m58_6 2m58_4 22.7 19.4 11.8 open-to-closed 
2m58_6 2m58_5 22.7 20.0 14.8 open-to-closed 
2m58_7 2m58_10 24.6 19.5 10.5 open-to-closed 
2m58_7 2m58_6 24.6 22.7 13.3 open-to-closed 
2m58_8 2m58_5 23.7 20.0 12.5 open-to-closed 
2n3q_4 2n3q_6 21.7 21.4 11.2 open-to-closed 
2n3q_7 2n3q_6 23.9 21.4 10.9 open-to-closed 
2n3q_9 2n3q_18 22.7 21.0 10.3 open-to-closed 
2n3q_9 2n3q_4 22.7 21.7 10.1 open-to-closed 
2pcv_3 2pcv_1 27.5 23.5 10.7 open-to-closed 
2pcv_3 2pcv_2 27.5 22.0 13.8 open-to-closed 
2pcv_3 2pcv_4 27.5 19.6 17.2 open-to-closed 
2pcv_8 2pcv_4 24.4 19.6 10.4 open-to-closed 
2pcv_9 2pcv_4 26.2 19.6 13.5 open-to-closed 
6hag_1 6hag_8 18.8 16.4 10.5 open-to-closed 
1anr_18 1anr_12 13.9 17.2 11.6 closed-to-open 
1anr_18 1anr_16 13.9 17.5 11.9 closed-to-open 
1anr_18 1anr_6 13.9 15.2 11.9 closed-to-open 
1anr_18 1anr_7 13.9 17.0 11.1 closed-to-open 
1anr_2 1anr_12 13.5 17.2 11.2 closed-to-open 
1anr_2 1anr_6 13.5 15.2 11.3 closed-to-open 
1anr_6 1anr_19 15.2 15.8 10.3 closed-to-open 
1anr_9 1anr_16 13.8 17.5 10.9 closed-to-open 
1ikd_2 1ikd_14 11.3 15.5 10.7 closed-to-open 

1m5l_10 1m5l_3 19.2 20.3 10.8 closed-to-open 
1m5l_10 1m5l_5 19.2 23.3 11.9 closed-to-open 
1m5l_15 1m5l_3 17.1 20.3 10.4 closed-to-open 
1m5l_15 1m5l_5 17.1 23.3 12.5 closed-to-open 
1s9s_10 1s9s_18 31.5 33.1 30.7 closed-to-open 
1s9s_11 1s9s_19 31.4 31.5 13.7 closed-to-open 
1s9s_12 1s9s_13 32.0 35.6 23.7 closed-to-open 
1s9s_12 1s9s_9 32.0 34.6 27.3 closed-to-open 

 

 

 



initial structure target structure Rg, initial Rg, target rmsd transition 
1s9s_14 1s9s_12 30.5 32.0 26.2 closed-to-open 
1s9s_14 1s9s_18 30.5 33.1 32.4 closed-to-open 
1s9s_14 1s9s_3 30.5 32.7 34.4 closed-to-open 
1s9s_15 1s9s_13 32.8 35.6 12.0 closed-to-open 
1s9s_17 1s9s_18 33.0 33.1 11.9 closed-to-open 
1s9s_18 1s9s_13 33.1 35.6 30.9 closed-to-open 
1s9s_18 1s9s_2 33.1 34.9 13.1 closed-to-open 
1s9s_18 1s9s_9 33.1 34.6 34.0 closed-to-open 
1s9s_19 1s9s_12 31.5 32.0 22.7 closed-to-open 
1s9s_19 1s9s_18 31.5 33.1 29.5 closed-to-open 
1s9s_19 1s9s_3 31.5 32.7 30.8 closed-to-open 
1s9s_20 1s9s_11 31.2 31.4 12.3 closed-to-open 
1s9s_20 1s9s_12 31.2 32.0 26.5 closed-to-open 
1s9s_20 1s9s_13 31.2 35.6 11.6 closed-to-open 
1s9s_20 1s9s_16 31.2 33.0 12.3 closed-to-open 
1s9s_20 1s9s_18 31.2 33.1 33.2 closed-to-open 
1s9s_20 1s9s_3 31.2 32.7 34.5 closed-to-open 
1s9s_20 1s9s_9 31.2 34.6 12.6 closed-to-open 
1s9s_3 1s9s_13 32.7 35.6 32.5 closed-to-open 
1s9s_3 1s9s_2 32.7 34.9 16.3 closed-to-open 
1s9s_3 1s9s_9 32.7 34.6 36.2 closed-to-open 
1s9s_4 1s9s_12 30.2 32.0 24.7 closed-to-open 
1s9s_4 1s9s_13 30.2 35.6 13.3 closed-to-open 
1s9s_4 1s9s_3 30.2 32.7 33.3 closed-to-open 
1s9s_5 1s9s_9 33.4 34.6 14.5 closed-to-open 
1s9s_8 1s9s_1 29.9 34.6 14.4 closed-to-open 
1s9s_8 1s9s_11 29.9 31.4 11.7 closed-to-open 
1s9s_8 1s9s_13 29.9 35.6 14.1 closed-to-open 
1s9s_8 1s9s_20 29.9 31.2 12.6 closed-to-open 
1s9s_8 1s9s_9 29.9 34.6 11.2 closed-to-open 

2m58_10 2m58_7 19.5 24.6 10.5 closed-to-open 
2m58_4 2m58_1 19.4 26.7 18.1 closed-to-open 
2m58_4 2m58_6 19.4 22.7 11.8 closed-to-open 
2m58_5 2m58_1 20.0 26.7 18.5 closed-to-open 
2m58_5 2m58_6 20.0 22.7 14.8 closed-to-open 
2m58_5 2m58_8 20.0 23.7 12.5 closed-to-open 
2m58_6 2m58_7 22.7 24.6 13.3 closed-to-open 
2m58_7 2m58_1 24.6 26.7 11.5 closed-to-open 
2m58_8 2m58_1 23.7 26.7 12.1 closed-to-open 
2mtj_13 2mtj_6 17.5 19.5 12.8 closed-to-open 
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initial structure target structure Rg, initial Rg, target rmsd transition 
2mtj_6 2mtj_13 19.5 24.6 12.8 closed-to-open 

2n3q_18 2n3q_9 21.0 22.7 10.3 closed-to-open 
2n3q_19 2n3q_8 21.5 23.9 10.1 closed-to-open 
2n3q_6 2n3q_4 21.4 21.7 11.2 closed-to-open 
2n3q_6 2n3q_7 21.4 23.9 10.9 closed-to-open 
2pcv_1 2pcv_3 23.5 27.5 10.7 closed-to-open 
2pcv_2 2pcv_3 22.0 27.5 13.8 closed-to-open 
2pcv_4 2pcv_3 19.6 27.5 17.2 closed-to-open 
2pcv_4 2pcv_8 19.6 24.4 10.4 closed-to-open 
2pcv_4 2pcv_9 19.6 26.2 13.5 closed-to-open 
6hag_8 6hag_1 16.4 18.8 10.5 closed-to-open 
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Heterodimers used for DCA benchmark 

DIMER 
PDB ID SUBUNIT 1 SUBUNIT 2 

COMBINED 
SEQUENCE 

LENGTH 

# RESIDUES 
IN 

STRUCTURE 
#SEQUENCES 

FOR DCA 
1bh9 TAFII18 TAFII28 335 134 107 

1eud 

SUCCINYL-COA 
SYNTHETASE, ALPHA 
CHAIN 

SUCCINYL-COA 
SYNTHETASE, BETA 
CHAIN 779 698 3210 

1f3u 

TRANSCRIPTION 
INITIATION FACTOR IIF, 
BETA SUBUNIT 

TRANSCRIPTION 
INITIATION FACTOR IIF, 
ALPHA SUBUNIT 766 257 99 

1fm0 

MOLYBDOPTERIN 
CONVERTING FACTOR, 
SUBUNIT 1 

MOLYBDOPTERIN 
CONVERTING FACTOR, 
SUBUNIT 2 231 223 1598 

1fs0 
ATP SYNTHASE 
EPSILON SUBUNIT 

ATP SYNTHASE GAMMA 
SUBUNIT 426 347 2769 

1h32 
DIHEME CYTOCHROME 
C CYTOCHROME C 447 394 139 

1h6k CBP80 
20 KDA NUCLEAR CAP 
BINDING PROTEIN 946 805 186 

1hcn 
HUMAN CHORIONIC 
GONADOTROPIN 

HUMAN CHORIONIC 
GONADOTROPIN 281 195 34 

1jmt 
SPLICING FACTOR U2AF 
35 KDA SUBUNIT 

SPLICING FACTOR U2AF 
65 KDA SUBUNIT 715 121 455 

1ka9 
imidazole glycerol 
phosphate synthase 

imidazole glycerol phosphate 
synthase 452 446 3058 

1mqs Sly1 Protein 
Integral Membrane Protein 
SED5 1006 604 407 

1oo0 Mago nashi protein CG8781-PA 312 236 284 
1ory flagellar protein FliS Flagellin 642 159 136 

1r6o 

ATP-dependent Clp 
protease ATP-binding 
subunit clpA 

ATP-dependent Clp protease 
adaptor protein clpS 864 236 1278 

1rp3 
RNA polymerase sigma 
factor SIGMA-28 (FliA) anti sigma factor FlgM 324 312 369 

1usu 
HEAT SHOCK PROTEIN 
HSP82 AHA1 1059 378 548 

1wpx Carboxypeptidase Y Carboxypeptidase Y inhibitor 751 625 128 

1wui 
Periplasmic [NiFe] 
hydrogenase small subunit 

Periplasmic [NiFe] 
hydrogenase large subunit 884 799 398 

1x3z peptide: N-glycanase 
UV excision repair protein 
RAD23 761 380 239 

1xqs HSPBP1 protein Heat shock 70 kDa protein 1 1003 429 144 
1y96 Gem-associated protein 6 Gem-associated protein 7 298 171 46 

1ykh 

RNA polymerase II 
mediator complex protein 
MED7 

RNA polymerase II 
holoenzyme component 
SRB7 362 209 151 

1z3e Regulatory protein spx 
DNA-directed RNA 
polymerase alpha chain 445 186 2352 

 



DIMER 
PDB ID SUBUNIT 1 SUBUNIT 2 

COMBINED 
SEQUENCE 

LENGTH 

# RESIDUES 
IN 

STRUCTURE 
#SEQUENCES 

FOR DCA 

1z5y 
Thiol:disulfide interchange 
protein dsbD 

Thiol:disulfide interchange 
protein dsbE 750 255 340 

2apo 
Probable tRNA 
pseudouridine synthase B 

Ribosome biogenesis protein 
Nop10 396 356 113 

2bh1 
GENERAL SECRETION 
PATHWAY PROTEIN L 

GENERAL SECRETION 
PATHWAY PROTEIN E, 910 306 226 

2blf 
Sulfite:cytochrome c 
oxidoreductase subunit A 

Sulfite:cytochrome c 
oxidoreductase subunit B 513 454 85 

2byk CHRAC-16 CHRAC-14 268 161 242 

2ejf 

235aa long hypothetical 
biotin--[acetyl-CoA-
carboxylase] ligase 

149aa long hypothetical 
methylmalonyl-CoA 
decarboxylase gamma chain 384 304 958 

2f6m 

Suppressor protein STP22 
of temperature-sensitive 
alpha-factor receptor and 
arginine permease 

Vacuolar protein sorting-
associated protein VPS28 627 172 111 

2f9z chemotaxis protein CheC 
PROTEIN (chemotaxis 
methylation protein) 362 347 518 

2fh5 
Signal recognition particle 
receptor alpha subunit 

Signal recognition particle 
receptor beta subunit 907 312 267 

2gsk 
Vitamin B12 transporter 
btuB protein TONB 853 671 218 

2h6f 

Protein 
farnesyltransferase/geranylg
eranyltransferase type I 
alpha subunit 

Protein farnesyltransferase 
beta subunit 816 729 264 

2hqs Protein tolB 
Peptidoglycan-associated 
lipoprotein 603 520 934 

2hrk 
Glutamyl-tRNA synthetase, 
cytoplasmic 

GU4 nucleic-binding protein 
1 1084 298 282 

2ido 
DNA polymerase III epsilon 
subunit Hot protein 330 247 84 

2o3b Nuclease 
Sugar-non-specific nuclease 
inhibitor 409 376 42 

2ode 
Guanine nucleotide-binding 
protein G(k) subunit alpha 

Regulator of G-protein 
signaling 8 534 447 283 

2pi2 
Replication protein A 32 
kDa subunit 

Replication protein A 14 kDa 
subunit 391 246 167 

2pqr 
Mitochondria fission 1 
protein WD repeat protein YKR036C 798 138 95 

2q1z RpoE, ECF SigE 
Anti-Sigma factor ChrR, 
transcriptional activator ChrR 394 361 333 

2rd7 
Complement component C8 
alpha chain 

Complement component C8 
gamma chain 786 487 79 
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DIMER 
PDB ID SUBUNIT 1 SUBUNIT 2 

COMBINED 
SEQUENCE 

LENGTH 

# RESIDUES 
IN 

STRUCTURE 
#SEQUENCES 

FOR DCA 

2v3b 
RUBREDOXIN 
REDUCTASE RUBREDOXIN 2 439 435 1144 

2v8s 
CLATHRIN 
INTERACTOR 1 

VESICLE TRANSPORT 
THROUGH INTERACTION 
WITH T-SNARES 
HOMOLOG 1B 857 230 97 

2wus 

ROD SHAPE-
DETERMINING PROTEIN 
MREB 

PUTATIVE 
UNCHARACTERIZED 
PROTEIN 527 422 165 

2xjy RHOMBOTIN-2 
LIM DOMAIN-BINDING 
PROTEIN 1 569 166 138 

2xze 
STAM-BINDING 
PROTEIN 

CHARGED 
MULTIVESICULAR BODY 
PROTEIN 3 646 158 127 

2za4 Ribonuclease Barstar 247 197 55 

2zae 
Ribonuclease P protein 
component 1 

Ribonuclease P protein 
component 4 247 203 48 

3a1p 
Ribosome maturation factor 
rimM 30S ribosomal protein S19 255 246 1007 

3a8g 
Nitrile hydratase subunit 
alpha Nitrile hydratase subunit beta 419 407 191 

3a8k Aminomethyltransferase 
Glycine cleavage system H 
protein 493 488 3190 

3ajb 
Peroxisomal biogenesis 
factor 3 

Peroxisomal biogenesis 
factor 19 672 319 92 

3aji 

26S proteasome non-
ATPase regulatory subunit 
10 

Proteasome (Prosome, 
macropain) 26S subunit, 
ATPase, 4 649 301 188 

3aon 
V-type sodium ATPase 
subunit D 

V-type sodium ATPase 
subunit G 313 279 556 

3awu Tyrosinase MelC 399 356 72 

3ayh 
DNA-directed RNA 
polymerase III subunit rpc9 

DNA-directed RNA 
polymerase III subunit rpc8 332 317 293 

3cjs 
Ribosomal protein L11 
methyltransferase 50S ribosomal protein L11 401 130 2533 

3d3b 
N utilization substance 
protein B 30S ribosomal protein S10 242 226 3015 

3dbo Uncharacterized protein Uncharacterized protein 221 160 64 

3dgp 

RNA polymerase II 
transcription factor B 
subunit 2 

RNA polymerase II 
transcription factor B subunit 
5 585 125 100 

3dpl Cullin-5 RING-box protein 1 888 465 532 

3e0j 
DNA polymerase subunit 
delta-2 

DNA polymerase subunit 
delta-3 935 551 94 

3egv 
Ribosomal protein L11 
methyltransferase 50S ribosomal protein L11 401 331 2533 
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DIMER 
PDB ID SUBUNIT 1 SUBUNIT 2 

COMBINED 
SEQUENCE 

LENGTH 

# RESIDUES 
IN 

STRUCTURE 
#SEQUENCES 

FOR DCA 

3fav ESAT-6-like protein esxB 
6 kDa early secretory 
antigenic target 195 146 305 

3fpn 

Geobacillus 
stearothermophilus UvrA 
interaction domain 

Geobacillus 
stearothermophilus UvrB 
interaction domain 225 212 3827 

3gni Protein Mo25 STRAD alpha 772 639 100 

3h7h 
Transcription elongation 
factor SPT4 

Transcription elongation 
factor SPT5 1204 214 445 

3hi2 
HTH-type transcriptional 
regulator mqsA(ygiT) 

Motility quorum-sensing 
regulator mqsR 229 167 64 

3htu 
Vacuolar protein-sorting-
associated protein 25 

Vacuolar protein-sorting-
associated protein 20 377 110 501 

3hzh 
Chemotaxis response 
regulator (CheY-3) 

Chemotaxis operon protein 
(CheX) 307 282 367 

3ixs 
E3 ubiquitin-protein ligase 
RING2 

RING1 and YY1-binding 
protein 564 142 75 

3kmu Integrin-linked kinase Alpha-parvin 824 375 136 
3kse Cathepsin L1 Cystatin-A 431 317 143 

3lcb 
Isocitrate dehydrogenase 
kinase/phosphatase 

Isocitrate dehydrogenase 
[NADP] 994 969 317 

3lpe 
Putative transcription 
antitermination protein nusG 

DNA-directed RNA 
polymerase subunit E 206 143 278 

3mca 
Elongation factor 1 alpha-
like protein Protein dom34 982 718 477 

3mcb 

Nascent polypeptide-
associated complex subunit 
alpha Transcription factor BTF3 421 112 396 

3ml1 Periplasmic nitrate reductase Diheme cytochrome c napB 1000 908 212 

3mp7 
Preprotein translocase 
subunit secY 

Preprotein translocase 
subunit secE 529 441 559 

3n7s 
Calcitonin gene-related 
peptide type 1 receptor 

Receptor activity-modifying 
protein 1 609 178 63 

3nv0 
Nuclear RNA export factor 
2 NTF2-related export protein 558 332 160 

3ny7 Sulfate transporter Acyl carrier protein 637 195 2042 

3o2p 
Defective in cullin 
neddylation protein 1 

Cell division control protein 
53 1084 285 370 

3oss 
TYPE 2 SECRETION 
SYSTEM, GSPC 

TYPE 2 SECRETION 
SYSTEM, SECRETIN 
GSPD 962 222 175 

3p8b 
DNA-directed RNA 
polymerase, subunit e 

Transcription antitermination 
protein nusG 213 207 180 
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DIMER 
PDB ID SUBUNIT 1 SUBUNIT 2 

COMBINED 
SEQUENCE 

LENGTH 

# RESIDUES 
IN 

STRUCTURE 
#SEQUENCE
S FOR DCA 

3pge 

SUMO-modified 
proliferating cell nuclear 
antigen 

Proliferating cell nuclear 
antigen 359 335 642 

3r07 
Lipoate-protein ligase A 
subunit 1 

Putative lipoate-protein 
ligase A subunit 2 356 343 158 

3t5x 
PCI domain-containing 
protein 2 

26S proteasome complex 
subunit DSS1 469 225 379 

3tgo UPF0169 lipoprotein yfiO Lipoprotein 34 589 399 210 

3uz0 
Stage III sporulation protein 
AH Stage II sporulation protein Q 501 252 53 

3v96 Metalloproteinase inhibitor 1 Stromelysin-2 683 323 82 

3vep 
Uncharacterized protein 
Rv3413c/MT3522 

Probable RNA polymerase 
sigma-D factor 511 112 80 

3vrd 
Flavocytochrome c heme 
subunit 

Flavocytochrome c flavin 
subunit 630 572 134 

3vz9 Uncharacterized protein Spc24 protein 307 163 40 

3zeu 
PUTATIVE M22 
PEPTIDASE YEAZ 

PROBABLE TRNA 
THREONYLCARBAMOYL
ADENOSINE 
BIOSYNTHESIS PROTEIN 
GCP 568 569 1534 

4a9a 
RIBOSOME-
INTERACTING GTPASE 1 

TRANSLATION 
MACHINERY-
ASSOCIATED PROTEIN 46 714 462 582 

4c0o TRANSPORTIN-3 
SERINE/ARGININE-RICH 
SPLICING FACTOR 1 1171 994 361 

4c9b 

EUKARYOTIC 
INITIATION FACTOR 4A-
III 

PRE-MRNA-SPLICING 
FACTOR CWC22 
HOMOLOG 1319 666 304 

4cbu ACTIN-1 GELSOLIN 1156 482 227 

4clq 
RIBOSOME BIOGENESIS 
PROTEIN BMS1 

RIBOSOME BIOGENESIS 
PROTEIN BMS1 1550 402 212 

4cvn 
PUTATIVE ADENYLATE 
KINASE 

30S RIBOSOMAL 
PROTEIN S11 317 283 965 

4e6n Metallophosphoesterase Methyltransferase type 12 1335 625 216 

4fou FimX 
Type IV fimbriae assembly 
protein 806 357 187 

4geh 
Programmed cell death 
protein 10 

Serine/threonine-protein 
kinase MST4 628 263 139 

4gzr ESAT-6-like protein 6 ESAT-6-like protein 7 192 135 28 

4hi8 
Integrin-linked protein 
kinase 

LIM and senescent cell 
antigen-like-containing 
domain protein 1 777 242 141 

4i0x 
ESAT-6-like protein 
MAB_3112 

ESAT-6-like protein 
MAB_3113 208 158 65 
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DIMER 
PDB ID SUBUNIT 1 SUBUNIT 2 

COMBINED 
SEQUENCE 

LENGTH 

# RESIDUES 
IN 

STRUCTURE 
#SEQUENCES 

FOR DCA 

4iyp 
Immunoglobulin-binding 
protein 1 

Serine/threonine-protein 
phosphatase 2A catalytic 
subunit alpha isoform 648 317 188 

4jeh Syntaxin-binding protein 1 Syntaxin-1A 882 777 507 
4joi CST complex subunit STN1 CST complex subunit TEN1 491 259 69 

4kbm 
DNA-directed RNA 
polymerase subunit beta 

RNA polymerase-binding 
transcription factor CarD 1340 534 590 

4kbq 
E3 ubiquitin-protein ligase 
CHIP 

Heat shock cognate 71 kDa 
protein 949 221 400 

4kdi 
Transitional endoplasmic 
reticulum ATPase Ubiquitin thioesterase OTU1 1107 222 260 

4l9p 
CaaX farnesyltransferase 
alpha subunit Ram2 

CaaX farnesyltransferase 
beta subunit Ram1 872 792 149 

4lx3 
DNA polymerase III, alpha 
subunit 

Nucleic acid binding, OB-
fold, tRNA/helicase-type 1326 133 2036 

4n6o legumain cystatin-M 582 377 80 

4nqw 
ECF RNA polymerase 
sigma factor SigK Anti-sigma-K factor RskA 419 221 208 

4onm 
Ubiquitin-conjugating 
enzyme E2 variant 2 

Ubiquitin-conjugating 
enzyme E2 N 297 289 658 

4pw9 Putative sulfite oxidase Putative cytochrome C 512 446 73 

4q35 LPS-assembly protein LptD 
LPS-assembly lipoprotein 
LptE 977 908 548 

4qjv 
DNA-directed RNA 
polymerase subunit D 

DNA-directed RNA 
polymerase subunit L 353 354 234 

4qtt 

Multifunctional 
methyltransferase subunit 
TRM112 

Putative methyltransferase 
BUD23 410 306 516 

4rr2 DNA primase small subunit DNA primase large subunit 929 602 502 

4tps 
Sporulation inhibitor of 
replication protein SirA 

Chromosomal replication 
initiator protein DnaA 594 222 98 

4txv 
Thiol:disulfide interchange 
protein TlpA 

Cytochrome c oxidase 
subunit 2 500 317 354 

4ue8 

EUKARYOTIC 
TRANSLATION 
INITIATION FACTOR 4E 

4E-BINDING PROTEIN 
THOR 376 199 52 

4un1 

PUTATIVE 
TRANSCRIPTIONAL 
REGULATOR, ASNC 
FAMILY 

PUTATIVE 
TRANSCRIPTIONAL 
REGULATOR, ASNC 
FAMILY 332 304 255 

4uqz HSIE1 HSIB1 453 282 142 

4uzy 
FLAGELLAR 
ASSOCIATED PROTEIN 

INTRAFLAGELLAR 
TRANSPORT PROTEIN 
IFT52 1101 674 178 

4ww7 
EKC/KEOPS complex 
subunit BUD32 

EKC/KEOPS complex 
subunit CGI121 442 409 290 
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DIMER 
PDB ID SUBUNIT 1 SUBUNIT 2 

COMBINED 
SEQUENCE 

LENGTH 

# RESIDUES 
IN 

STRUCTURE 
#SEQUENCES 

FOR DCA 

4wxa 
EKC/KEOPS complex 
subunit PCC1 

EKC/KEOPS complex 
subunit GON7 211 152 31 

4x33 
Diphthamide biosynthesis 
protein 3 Protein ATS1 415 384 89 

4x8k 
RNA polymerase sigma 
factor SigA 

RNA polymerase-binding 
protein RbpA 639 154 256 

4xax 

DNA-directed RNA 
polymerase subunit beta 
domain 1 CarD 1283 342 581 

4xd9 

Ribosome biogenesis 
protein, putative 
(AFU_orthologue 
AFUA_8G04790) 

Ribosome biogenesis protein 
(Rrs1), putative 
(AFU_orthologue 
AFUA_7G04430) 549 324 458 

4xga 
Outer membrane protein 
assembly factor BamB 

Outer membrane protein 
assembly factor BamA 1202 521 814 

4xwj Regulator of sigma D Phosphocarrier protein HPr 243 236 264 

4xxb 60S ribosomal protein L11 
E3 ubiquitin-protein ligase 
Mdm2 669 193 79 

4ygb Protein ERGIC-53 
Multiple coagulation factor 
deficiency protein 2 656 255 144 

4yh8 
Splicing factor U2AF 23 
kDa subunit 

Splicing factor U2AF 59 kDa 
subunit 733 235 399 

4zgn 
Cell division cycle protein 
123 

Eukaryotic translation 
initiation factor 2 subunit 
gamma 846 382 356 

4zhy YfiR YfiB 358 262 112 

5bw0 
Type II secretion system 
protein J 

Type II secretion system 
protein I 366 241 279 

5by8 Rpf2 Rrs1 549 316 458 

5czd 
Malonyl-CoA-[acyl-carrier-
protein] transacylase Acyl-carrier-protein 409 378 141 

5d6h CsuC CsuA/B 457 317 69 

5dmb 
Flagellar assembly factor 
FliW 

Carbon storage regulator 
homolog 226 212 604 

5dud YbgK YbgJ 528 500 942 

5eb1 YfiR YfiB 358 271 112 

5f5t 
Putative uncharacterized 
protein 

Putative uncharacterized 
protein 708 279 134 

5fvk 

VACUOLAR PROTEIN 
SORTING-ASSOCIATED 
PROTEIN 4 

VPS4-ASSOCIATED 
PROTEIN 1 640 103 173 

5gna Flagellar protein FliT 
Flagellar hook-associated 
protein 2 589 152 156 

5gpy 
General transcription factor 
IIE subunit 1 

Transcription initiation factor 
IIE subunit beta 730 278 159 
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DIMER 
PDB ID SUBUNIT 1 SUBUNIT 2 

COMBINED 
SEQUENCE 

LENGTH 

# RESIDUES 
IN 

STRUCTURE 
#SEQUENCES 

FOR DCA 

5gxg Camphor 5-monooxygenase Putidaredoxin 522 507 629 

5hxg 
Uncharacterized protein 
STM1697 

Flagellar transcriptional 
regulator FlhD 351 276 51 

5hy7 
Putative pre-mRNA splicing 
protein YSF3 1308 1228 461 

5ja1 
Enterobactin synthase 
component F 

Enterobactin biosynthesis 
protein YbdZ 1365 1297 307 

5jca 

NADH-dependent 
Ferredoxin:NADP 
Oxidoreductase (NfnI) 
subunit alpha 

NADH-dependent 
Ferredoxin:NADP 
Oxidoreductase (NfnI) 
subunit beta 752 750 1274 

5jff 

Probable adenosine 
monophosphate-protein 
transferase fic 

Uncharacterized protein 
YhfG 255 239 26 

5jwo 
Circadian clock protein 
kinase KaiC Circadian clock protein KaiB 626 305 195 

5lda JAMM1 SAMP2 209 182 44 

5m72 
Signal recognition particle 
subunit SRP72 

Signal recognition particle 
subunit SRP68 1298 171 377 

5o8w Elongation factor 1-alpha Elongation factor 1-beta 664 537 375 

5o9e 
Putative U3 small nucleolar 
ribonucleoprotein 

Putative U3 small nucleolar 
ribonucleoprotein protein 1082 281 150 

5tdy Flagellar M-ring protein 
Flagellar motor switch 
protein FliG 867 127 861 

5tqb 
60S ribosomal protein L4-
like protein 

Assembly chaperone of 
ribosomal protein L4 (Acl4) 763 572 245 

5u9m 
Superoxide dismutase [Cu-
Zn] 

Superoxide dismutase 1 
copper chaperone 403 379 369 

5uni 
NAD(P) transhydrogenase 
subunit alpha 2 

NAD(P) transhydrogenase 
subunit beta 550 355 1749 

5v8w Integrator complex subunit 9 
Integrator complex subunit 
11 1258 181 130 

5v8z 
Endoplasmic reticulum 
resident protein 29 Calmegin 881 124 101 

5wwo Essential nuclear protein 1 Protein LTV1 946 307 171 

5wxl 
Ribosome biogenesis 
protein RPF2 

Regulator of ribosome 
biosynthesis 547 304 497 

5wy5 
Melanoma-associated 
antigen G1 

Non-structural maintenance 
of chromosomes element 1 
homolog 570 425 60 

5xly 
Chemotaxis protein 
methyltransferase 1 

Cyclic diguanosine 
monophosphate-binding 
protein PA4608 399 388 229 
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