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Abstract  

 

In recent years, hydrogels developed to promising tools for biomedical and industrial 

applications. For biomedical approaches hydrogels, possess the capacity to immobilize and 

release cells, they offer the desired 3D environment to induce cell specific behaviour or serves 

as a drug delivery system. Moreover, they can be used for tissue engineering approaches by 

mimicking the ECM.  

In this thesis, a novel hybrid double cross-linked hydrogel is presented and designed based on 

the bottom-up approach of synthetic biology. It consists of simultaneously formed chemical 

and physical cross-links and made out of two components: (1) thiol functionalized HA (74 kDa) 

(HA-DTPH) and (2) ionic crosslinker (Cl+). HA-DTPH provides the chemical cross-link by forming 

disulphide bonds and the ionic cross-linker forms physical cross-links, such as hydrogen bonds 

and salt bridges. Three different ionic cross-linker were used: (1) deacetylated disaccharide 

unit of HA (dHA+) (2) charged glucosamine (GluA+) and (3) ammonium chloride (NH4
+). These 

ionic cross-linker were chosen due to their biocompatibility and ability to form physical cross-

links, such as hydrogen bonds and salt bridges. The increasing capacity to form hydrogen 

bonds from NH4
+ to dHA+ enabled us to study the influence of the physical cross-link on the 

hydrogel properties. I could show that the disulphide bond formation was enhanced, by 

adding an ionic cross-linker and led to the formation of stable hydrogels. Under the same 

reaction conditions, HA-DTPH without an ionic cross-linker, needed further oxidation with 

hydrogen peroxide to result in a stable hydrogel (HA-DTPH-Ox.). By varying the degree of 

thiolation on HA and additionally by varying the type and concentrations of the used ionic 

cross-linker, the mechanical stiffness, swelling properties and response to external stimuli 

were tuneable. Varying the degree of modification and used ionic cross-linker enables a 

specific adjustment of the hydrogels specifically the hydrogel suitable for cell studies with 

mechanical range of 0.1 Pa to 8 kPa. Furthermore, swelling ratios of HA-DTPH-Cl+ hydrogels 

are highly influenced by the ionic strength and pH. Remarkably HA- DTPH- dHA+ hydrogels 

upon incubation in a solution of pH 7 showed a feedback loop swelling behaviour. At the 

swollen state of the hydrogel, the ionic cross-linker dHA+, leaked out of the hydrogel network, 

acidified the solution, which resulted in shrinking of the hydrogel. Biological properties like 
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enzymatic degradability showed that the half-live of HA-DTPH-Cl+ hydrogels are increasing 

with increasing capacity of the ionic cross-linker to form hydrogen bonds. Moreover, due to 

the absence of any toxic agent during the hydrogel formation the hydrogel system was used 

for live cell applications such as cell encapsulation or cell adhesion studies. To conclude, a 

hybrid double cross-linked hydrogel system could be presented, mimicking the ECM, in a 

minimal model and a critical influence of physical cross-links is observed from results obtained 

by characterizing the physical and biochemical properties by investigating the gels’ swelling 

capability, response to environmental changes and sensitivity to hyaluronidases. Depending 

on the desired biomedical application, these hydrogel systems can be tuned in regards to their 

stiffness, swelling behavior and degradability enabling applications in 3D tissue engineering, 

drug delivery and regenerative medicine. 
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Zusammenfassung  

 

Hydrogele spielen in der heutigen Zeit eine wichtige Rolle sowohl in der biomedizinischen als 

auch in der industriellen Forschung. Sie eigenen sich besonders gut für biomedizinische 

Anwendungen, hinsichtlich ihrer Fähigkeiten Zellen zu immobilisieren und freizusetzen, die 3D 

in vivo Umgebung in vitro nachzuahmen, um Zell-spezifisches Verhalten auszulösen und 

dienen als Wirkstoff Carrier im Körper. Außerdem, werden sie in der Gewebezüchtung 

benutzt, da sie die hydratisierte EZM wiederspiegeln können. In dieser Arbeit wurde ein Hybrid 

Hydrogel System präsentiert und entworfen, welches basierend auf der „bottom 

up“ Anwendung der Synthetischen Biologie aufgebaut wurde. Es besteht aus gleichzeitig 

ausgebildeten chemischen und physikalischen Verknüpfungen und beinhaltet zwei 

Komponenten: (1) eine thiol funktionalisierte HA (74kDa) (HA- DTPH) und einen ionischen 

Vernetzer (Cl+). HA-DTPH bildet hierbei die chemischen Verknüpfungspunkte im Hydrogel, 

basierend auf der Reaktion von freien Thiolgruppen zu Disulfidbrücken. Der Ionische 

Vernetzer, bildet die physikalischen Vernetzungspunkte aus, bestehend aus 

Wasserstoffbrückenbindungen und elektrostatischen Wechselwirkungen. Es wurden 

insgesamt drei verschiedene Vernetzer benutzt, die sich in ihrer Fähigkeit 

Wasserstoffbrückenbindungen auszubilden unterscheiden. Benutzt wurden: (1) deacetylierte 

Disaccharid Einheit von HA (dHA+), (2) positiv geladenes Glukosamin (GluA+) und (3) 

Ammoniumchlorid (NH4
+). Diese Vernetzer wurde vor allem aufgrund ihrer Biokompatibiliät 

und der Fähigkeit physikalische Verknüpfungen auszubilden ausgewählt. Die Zunahme der 

Fähigkeit Wasserstoffbrücken auszubilden von NH4
+ zu dHA+ ermöglichte es uns den Einfluss 

von physikalischen Verknüpfungen auf die Eigenschaften des Hydrogeles zu untersuchen. Ich 

konnte zeigen, dass durch Zugabe des ionischen Vernetzers die Reaktion der Thiolgruppen zu 

Disulfidbrücken beschleunigt wurde und zu einem stabilen Hydrogel geführt hat. Ohne einen 

ionischen Vernetzer mussten die Thiolgruppen des HA-DTPH mit Wasserstoffperoxid oxidiert 

werden, um ein stabiles Hydrogel zu erhalten (HA-DTPH-Ox.). Durch die Veränderung der 

chemischen Modifikation an HA und durch die Veränderung in Art und Konzentration des 

Ionischen Vernetzers, konnte die mechanische Steifheit, die Schwellrate und die Reaktion auf 

externe Stimuli variiert werden. Die Veränderung der chemischen Modifikation und des 
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Ionischen Vernetzers ermöglicht es das Hydrogel so zu variieren, dass es für verschiedene Zell-

Untersuchungen anhand der mechanischen Steifheit von 0.1 Pa bis 8 kPa verwendbar ist. 

Außerdem ist die Schwellrate der HA-DTPH-Cl+ stark durch den pH und der ionischen 

Konzentration aus der Umgebung beeinflusst. Besonders auffällig, ist das Schwellverhalten 

von HA- DTPH- dHA+, während der Inkubation des Hydrogeles in einer Lösung mit pH 7. Hier 

findet ein Rückkopplungseffekt auf das Schwellverhalten statt. Im geschwollenen Stadium des 

Hydrogeles diffundiert ionischer Vernetzer in die Inkubationslösung und säuert die Lösung an, 

was im Umkehrschluss wieder zum Schrumpfen des Hydrogeles führt. Auch wurde festgestellt 

das HA- DTPH-Cl+ Hydrogele eine höhere Halbwertszeit, beim enzymatischen Verdau, mit 

steigender Anzahl an gebildeten Wasserstoffbrückenbindungen haben. Durch die 

Abwesenheit von toxischen Verknüpfungsreagenzien während der Hydrogel Synthese wurde 

das etablierte Hydrogel System auch für Zelluntersuchungen, wie zum Beispiel Zell Adhesion 

und Zell Verkapselung verwendet. Abschließend lässt sich sagen, dass ein Hybrid-Hydrogel 

System erfolgreich etabliert wurde und ein starker Einfluss von physikalischen Verknüpfungen, 

auf die mechanische Steifheit, Schwellrate und Hydrogel Abbau festgestellt wurde. Dieses 

etablierte Hydrogel System ist durch seine Variabilität in Steifheit, Schwellrate und Abbaurate 

besonders gut geeignet für die Nutzung in der 3D Gewebezüchtung, als Wirkstoff Carrier und 

in der Regenerativen Medizin. 
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1 Introduction  

1.1 The Idea of Developing a Novel Biomimetic Hydrogel System 

 

Since the 1960s researchers started to design and build novel biologically based parts, devices 

and systems, as well as re-built existing natural biological systems. Since then, the emerging 

field of synthetic biology gained a lot of popularity. Two main scopes can be distinguished: 

“bottom-up” and “top-down”. “Bottom-up” approaches aim to create artificial life de novo by 

assembling single biological building blocks. “Top-down” approaches design systems based on 

known biological modules to perform a specific task. The “bottom-up” approach is prominent 

in the field of extracellular matrix (ECM) engineering, aiming to mimic the extracellular 

environment in vitro. By this a better understanding of the influence of single components of 

the ECM or defined multi components on cell behavior and function is pursued. One possible 

technique to mimic the ECM is the development of a three-dimensional (3D) network of cross-

linked polymer chains, namely hydrogels. In this thesis, I aim to develop a novel biomimetic 

hybrid double cross-linked hydrogel system, based on the bottom up approach of synthetic 

biology with special emphasis on the influence of chemical and physical cross-linking on the 

chemical and physical properties of the hydrogel system. Therefore, hydrogels are designed 

based on thiol functionalized hyaluronic acid (HA), a natural component of the ECM, which is 

able to form disulphide bonds, resembling the chemically cross-links, and a charged ionic 

cross-linker, providing the physical cross-links. The precise ratio of HA to ionic cross-linker and 

the degree of thiol functionalization enables us to study the influence of chemical and physical 

cross-links on the physicochemical properties of the presented ECM model. The design itself 

of the double cross-linked hydrogel system also allows studies for further plausible biomedical 

applications.  

 

1.2 The Bottom-Up Approach in Synthetic and Engineering Biology 

 

Exploring nature, gaining knowledge about complex living systems and the desire to 

understand is what motivates researchers and drives scientific discoveries forward. However, 
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the guiding question still is: How do these complex systems work? To get the right answer for 

this question one approach is to create and redesign the living system by ourselves. However, 

to rebuild such complex system is not that easy since the function of single building units still 

remains unclear. One way to overcome the challenge to assign specific functions to single 

components is, to first reduce the complexity of the system to a minimal number of 

components and after increase it in a stepwise manner. Moreover, in order to synthetically 

re-design an existing biological system one has to first identify its functional units (Majumder 

and Liu, 2018). This approach is used in several scientific fields, like the “dimension reduction” 

in data science (Wirsch, Cisl and Wirsch, 2014) or the “bottom-up” approach in synthetic 

biology (Andrianantoandro et al., 2006).  

 

 

Figure 1 Applications of the bottom-up approach in synthetic and engineering biology 
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The field of synthetic biology encompasses a broad range of engineering fields, including 

protein, gene, cell and ECM engineering (Fig.1). Each field makes use of the bottom-up 

approach, to get a better understanding of the smallest functional unit of the complex system 

of interest. These functional units are the smallest biological building blocks like base pairs (A-

T or C-G) (gene engineering), amino acids (protein engineering), the cell membrane (cell 

engineering) or single components of the extracellular matrix (ECM) (ECM engineering). In the 

following I will take a closer look on ECM engineering in general and the best way to design 

and mimic the ECM.  

 

1.3 The ECM 

 

In native tissue, the ECM is a mixture of mainly three classes of macromolecules: 

polysaccarides, proteoglycans and fiber-forming proteins. Polysaccharides are mostly linked 

to proteoglycan and fiber-forming proteins like collagen, elastin, fibronectin and laminin and 

are thus called glycosaminoglycans (GAG). In general, GAGs provide structural support and 

anchor points for cells (Fig.2 Theocharis et al., 2016). 

 

 

Figure 2 Composition of the ECM and anchoring points of cells1  

                                                      

1 Theocharis et al., 2016 
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The network of collagen fibers and other molecules such as HA, an important 

glycosaminoglycan, are also mainly responsible for the diffusion of metabolites, hormones 

and signalling molecules within the ECM (Theocharis et al., 2016). Thereby the ECM regulates 

various cell functions such as cell survival, proliferation, differentiation, morphogenesis and 

migration (Yue et al., 2014). The precise regulation of cellular function is controlled by the 

optimized composition of the ECM in each tissue and furthermore, by the interaction of 

specific ECM components with each other (Dicker et al., 2014). Dysregulation of the ECM 

composition and structure often results in the development and progression of several 

physiological and pathological conditions, such as cancer or chronic wounds (Cox and Erler, 

2011). It is known that an aberrant ECM composition supports cancer progression by directly 

promoting cellular transformation and metastasis (Lu, Weaver and Werb, 2012). In wound 

healing the ECM composition plays a key role. The process itself consists of a series of 

physiological events including coagulation, granulation tissue formation, re-epithelialization 

and most important ECM remodelling (Bennett and Schultz, 1993). Each phase of the wound 

healing process is controlled and regulated e.g. the ECM-mediated migration of cells into the 

wound site as well as the ECM-induced expression of growth factors and their subsequent 

retaining in the ECM network. Acute wound healing in adult results in a formation of a scar, 

whereas, healing of fetal wounds occurs scarless (Larson et al., 2014). Several studies showed 

that the composition of the ECM could be responsible for these different outcomes (Chen and 

Thibeault, 2010). One main difference in the ECM composition in fetal skin, is the amount of 

collagen III and HA during the remodelling phase of the wound healing process. It comprises 

∼30–60% of the total collagen compared to 10–20% in adult skin (Middelkoop and Ulrich, 

2010) and contains 4-5 pg/mL HA in adult wound fluid and 15-25 pg/mL in fetal wound fluid 

(West et al., 1997). This is one process amongst other processes and mechanisms in the 

human body, that makes it crucial to get a better understanding of how ECM composition and 

topography are maintained and how their deregulation influences physiological and 

pathological conditions (Cox and Erler, 2011). However, it is still challenging to develop a 

comprehensive understanding of the impact of ECM on cell specific functions because of the 

number of players (a great multitude of ECM proteins) involved in those processes. Making 

the situation even more complex, the exact composition of the ECM varies not only between 

different types of tissue but has been proved to be very heterogeneous even within one 
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specific type of tissue (Hinderer, Lee and Schenke-layland, 2016). Furthermore, each 

component of the ECM can have a different function depending on the surrounding matrix 

and the respective cell type (Chen and Thibeault, 2010). Therefore, identification of a minimal 

combination of ECM components allowing to reproduce in vitro the cell behaviour and 

response observed in vivo remains a challenge. One way to tackle this challenge is the 

development of an ECM mimicking system, which will be presented in the upcoming chapter.  

 

1.4 Designing a ECM mimetic  

 

The following parameters have to be considered in order to design an ECM mimicking system: 

type of biomaterial; biocompatibility; biodegradability, incorporation of variants of ECM, and 

mechanical properties (Ma & Zang 2001). However, the design of a suitable ECM mimetic 

raises the question “How simple is complex enough?” (Kyburz et al., 2015). What minimal 

biological signals are necessary to guide desired cellular functions, and how might temporal 

addition and/or removal of ECM components influence these? In an attempt to answer this 

question several ECM mimicking models have been established.  

 

1.4.1 2D vs. 3D ECM Mimicking System 

 

At the beginning two dimensional (2D) systems were used in order to mimic the ECM. For this 

either cell culture plastic or glass surfaces were coated with ECM proteins such as collagen or 

other biomaterials, like agarose (Fig. 3 a-b).  
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Figure 3 ECM mimicking models. Natural ECM or other biomaterial coated surfaces represent 2D model (a-b) and 

decellularized ECM scaffolds and hydrogels represent 3D model of an ECM mimicking system (adapted from 

Hinderer et al., 2016). 

 

However, Klaus von der Mark et al., showed already in 1977 that 2D mimicking systems have 

many limitations to study the interplay between cell behavior and the surrounding ECM. For 

example, cells cultured on a 2D matrix normally grow as a monolayer attached to the surface. 

Whereas cells in 3D grow in a 3D manner. Thus 2D and 3D ECM systems evidently induce 

changes in the cell morphology and polarity (Weaver et al., 2009) (Mseka, Bamburg and 

Cramer, 2007). Since the shape of the cell is synergistic with its function (Gospodarowicz, 
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Greenburg and Birdwell, 1978), changes in the morphology affect cell response and behavior 

(Highley, Prestwich and Burdick, 2016). It has been shown that cells cultured on a 2D substrate 

failed to express certain tissue-specific genes and proteins at levels comparable to those found 

in tissue (Chen and Thibeault, 2010). In order to resemble the in vivo microenvironment of 

cells, the 2D systems were extended to three dimensional (3D) systems. The main two impact 

factors for the suitability of a 3D mimicking system are: (1) the physical resistance to cell 

movement by the surrounding microenvironment, which also exists in vivo and (2) the ability 

of cells to remodel their surroundings by proteolytic catabolism. For this purpose, scientists 

developed either decellularized ECM scaffolds, mimicking the whole microenvironment in a 

3D manner or hydrogels, made out of either natural ECM components or synthesized 

polymers (Fig.3 c- d). 

 

Decellularized ECM scaffolds are obtained in the process of decellularization of existing tissues 

or organs in which all of the cellular components are enzymatically removed until only the 

ECM scaffold and organ specific ECM remain. After the decellularization process, cells of this 

specific organ or tissues are seeded back and induced a re-cellularization (Gupta, Mishra and 

Dhasmana, 2018). Even though the process of decellularization is a promising method to study 

cell behaviour and function in a 3D system, it brings several draw-backs. Besides the lack of 

tissue source and possible inevitable changes within ECM composition due to the 

decellularization procedure (Fernández-pérez, 2019), the main problem remains which is the 

assignment of single components of the ECM to cell behaviour and function 

(Chaicharoenaudomrung, Kunhorm and Noisa, 2019). Moreover, isolation procedure derived 

changes in the ECM might also affect the stiffness scaffold. As these produced ECM scaffolds 

differ from in vivo and as it has been reported that substrate stiffness has an influence on 

specific cell behaviour, aberrant cell behaviour might be observed (Hoshiba et al., 2019). 

Naturally the tunability of biomechanical properties of decellularized ECM scaffolds is limited. 

To overcome these challenges hydrogels can be employed. Describe hydrogels here Ideally, 

the engineered hydrogels combine the precision and control of the used natural or synthetic 

biomaterial, together with the advantage to specifically incorporate defined bioactive 

proteins. By applying such highly controlled hydrogels single biomaterials can be assigned to 
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certain cell behaviours. Additionally, the use of hydrogels can promote desired cell response, 

behaviour and function in situ. given the benefit. 

 

1.5 Hydrogels – a Promising Biomaterial?  

 

1.5.1 Hydrogel – ECM Mimicking Properties  

 

In recent decades, hydrogels have been developed to serve a variety of biomedical and 

industrial applications such as visual correction through contact lenses, as biosensor or as a 

supercapacitor hydrogel in the development of electronic equipments (Ahmed, 2015). 

Further, hydrogels possess the capacity to immobilize and release cells, drugs, proteins due to 

their porosity. Therefore, hydrogels are also an attractive material as a delivery system, (Mero 

and Campisi, 2014). Different natural polymers can serve as building blocks for the 3D network 

of a hydrogel (Drury and Mooney, 2003). The use of natural polymers is in general 

advantageous due to their known biocompatibility and biodegradability (Alesa et al., 2017). 

By tuning different parameters such as the molecular weight, sequence, and structures of the 

used polymers, hydrogel can widely vary within their mechanical properties where 

viscoelasticity is combined with material stiffness (Ahmed, 2015). This provides the 

opportunity to mimic different extracellular matrices throughout the human body. For 

example, the very soft and viscoelastic brain with a shear modulus of 0.1 kPa to 0.7 kPa 

(Budday et al., 2016), compared to a rigid and stiff bone with an elastic modulus of 15000 kPa 

to 20000 kPa (Barnes, Przybyla and Weaver, 2017). However, hydrogels are not only tuneable 

by the choice of polymer but also by the way of cross-linking.  

 

1.5.2 Hydrogel classification via Polymer Cross-linking 

 

Hydrogels, formed by a polymer chain can be either held together by chemical or physical 

cross-links. In chemically cross-linked networks, the polymer backbones are linked via a 

covalent chemical bond required often assistance of a catalyst (Liu, Shu and Prestwich, 2005). 

In contrast, physically cross-linked hydrogels, called reversible networks are held together by 
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physical interactions such as ionic interactions, hydrogen bonding or hydrophobic interactions 

(Berger et al., 2004).  

 

1.1.1.1 Chemical cross-link – Taking a Closer Look on Disulfide Bond Formation 

 

Chemically cross-linked hydrogels display relatively high mechanical strength owing to the 

covalent bonds within the cross-linked network. Chemical cross-linking can be achieved by a 

variety of different reactions, depending on the polymer backbone. A commonly used method 

utilizes a click-reaction as introduced by Sharpless et al. (2001). Due to its mild reaction 

conditions and applicability to a wide range of reactant (Xu and Bratlie, 2018), it represents 

the most important technique in biomaterial chemistry to from covalent bonds (Wang et al., 

2011). Another widely used method is the radical polymerization of polymers derivatized with 

polymerizable groups such as vinyl groups (Maitra and Shukla, 2014). Other cross-linking 

methods such as condensation reactions between hydroxyl or amine groups with carboxylic 

acids have been reported and were used efficiently for the cross-linking of water soluble 

polymers such as polysaccharides (Parhi, 2017). The established hydrogel system in this thesis 

consists partly of disulfide bonds, which also represents an important type of chemical cross-

link. The disulfide bond formation is mainly controlled by two reaction conditions: (1) the 

environmental pH and (2) the oxidizing agent (Thorpe et al., 2002). The key reaction is the 

deprotonation of the thiol compound, which is induced by an alkaline pH, resulting in the 

thiolate anion (I) (Gyarmati, Némethy and Szilágyi, 2013). Subsequently, after deprotonation 

the thiolate anion can get oxidized by air or by an oxidizing agent, such as hydrogen peroxide 

(Shu et al., 2002). The key step of the oxidation is the formation of thyil radical (II), which 

reacts further to the desired disulfide bond (III) (Fig.4) (Gyarmati, Némethy and Szilágyi, 2013).  

 

 

Figure 4 Reaction Scheme of disulfide bond formation. Deprotonation of thiol compound (I), Oxidation thiolate anion 

(II) and reaction of two thyil radicals to disulfide (III) (adapted from Bergen, Roos, & Proft, 2014). 
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Disulfide bonds are known as the weak link among other covalent bonds. S-S bonds reach only 

40% of the strength of e.g. C-C and C-H bonds (Khoo and Norton, 2012). However, the 

dissociation energy of disulfide bonds is 60 kcal/mol (251 kJ mol-1), which is stronger than 

physical cross-links such as hydrogen bonds or electrostatic interaction (Haworth, George and 

Wouters, 2010). Disulfide bonds play a key role in stabilizing protein structures, their 

disruption is typically connected with the loss of protein function and activity (Wedemeyer et 

al., 2000). Disulfide bonds fulfill also a catalytic role in enzymes such as thioredoxin, which 

acts as a cellular redox sensor based on the oxidation status of its thiol groups (Nakamoto and 

Bardwell, 2004). In vivo thiols are oxidized to disulfide bonds via reactive oxygen species (Baba 

et al., 2019) resulting from hydrogen peroxide, which is also the main oxygen agent in vitro 

(Paoli et al., 2001) (Bergen, Roos and Proft, 2014) (Shu et al., 2002). In both cases, oxidation 

with hydrogen peroxide leads to the formation of several thiol derivatives, including the 

irreversible formed oxidation states: sulfinic - and sulfonic acid (Fig. 5) (Zeida et al, 2013).  

 

 

Figure 5 Oxidation states of thiol groups by H2O2 and reduction by DTT. 

 

In vivo the formation of sulfinic and sulonic acid results in irreversible oxidative damage and 

in the course to cell death (Allen and Mieyal, 2012). To avoid this, cells perform a protecting 

mechanism, the so called S-glutathionylation. Hereby gluthathion reacts in a reversible way 
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with cysteine residues and forms disulfide bonds. Due to this mechanism thiol groups are 

shielded and not available for oxidation processes (Mao and Mooney, 2015). However, in vitro 

hydrogen peroxide induced disulfide bond formation is hard to control. In respect of hydrogels 

the formation of sulfenic -, sulfinic, and sulfonic acid results in destabilization of the network. 

Taken all together, the most important disadvantage of chemically cross-linked hydrogels is 

the need for additional reactants for the cross-linking reaction like hydrogen peroxide. 

Depending on the application, this creates the necessity of additional purification steps, 

especially when used for biomedical application.  

 

1.1.1.2 Physical cross-link – Hydrogen Bond Formation and Salt Bridges 

 

Compared to covalently cross-linked hydrogels, physical cross-linking is eliminating the need 

for additional cross-linking agents and enables in-situ gel formation. Electrostatic interaction, 

such as the coordination of cations like calcium with anionic side groups such as carboxyl 

groups for example in alginate hydrogels (Zhang, Zhang and Wu, 2013) and hydrogen bond 

formation are the most commonly used techniques for physical cross-linking (Ren et al., 2015). 

Physical-cross-linking also includes hydrophobic interactions, dipol-dipol interaction and Van-

der Waals forces. Utilizing physical cross-links, included hydrogen bonds and salt bridges, 

resulted in the established hydrogel system of this thesis. Therefore, I will discuss the 

formation of hydrogen bonds and salt bridges in detail. 

 

Hydrogen bonding is a special type of dipole-dipole attraction between molecules. It results 

from the attractive force between a hydrogen atom covalently bonded to a very 

electronegative atom such as a N, O, or F atom and another very electronegative atom (Daniel, 

2013). Hydrogen bond strengths range from 4 kJ to 50 kJ per mole of hydrogen bond (Desiraju, 

2011). This type of physical cross-link is ubiquitous in many biological system, such as the 

participation in the DNA helix formation or the folding processes of proteins (Coulocheri et al., 

2007). However, hydrogen bonds are not only crucial in biological systems but have been used 

in the development of biomaterials and chemical components (Hu et al., 2015). Figure 6 

highlights the versatile use of hydrogen bonds. 

 



1. INTRODUCTION 

 

12 

 

 

Figure 6 Overview of the role of hydrogen-bonding in biomaterials, dyes and pigments, ionic conductors, and organic 

semiconductors2. 

 

The second participant of the physical cross-link in the established hydrogel, are salt bridges. 

Salt bridges are mainly known to occur between amino acids (Pylaeva, Brehm and Sebastiani, 

2018). It consists of the simultaneous formation of a hydrogen bond and an electrostatic 

interaction, between a carboxyl group and a protonated amine group (Fig.7) (Donald, Kulp and 

Degrado, 2012).  

 

 

Figure 7 Formation of salt bridges. 

 

Salt bridges are known to occur between amino acids and contribute to the stabilization of 

proteins (Jelesarov & Karshikoff, 2009). On the one hand the main drawback of the physical 

cross-linking, is the weak interaction. Physical cross-linked hydrogels are generally weak and 

                                                      

2 Daniel, 2013 
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they tend to break under certain physical stimuli or when stress is applied due to the non-

covalent and reversible nature of the junctions in the network. (Ghobril and Grinstaff, 2015). 

On the other the most important advantage of physically cross-linked hydrogels, are the 

sensitivity to external chemical stimuli, the self-healing property and the injectability under 

room temperature (Hu, Wang and Xiao, 2019). 

 

1.1.1.3 Simultaneous Chemical and Physical Cross-link – Hybrid Double Cross-linked Hydrogel  

 

With the aim to get the best of both worlds, chemically and physically cross-linked hydrogels, 

a new type of hydrogel was developed, the so called hybrid double cross-linked hydrogels 

(Martini et al., 2016). Hybrid double cross-linked hydrogels contain both, chemical cross-

linking points formed by covalent bonding and physical cross-linking points formed by physical 

interaction (Mondal, Das and Nandi, 2020). The advantage of a hybrid hydrogel is the 

maintenance of the integrity of the hydrogel network in aqueous solution caused by the 

chemical cross-linking and the reforming capability maintained by the physical cross-linked. 

One hybrid double cross-linked system was developed and established by Fajardo et al. (2013). 

Here they combined a glycidyl methacrylate functionalized chitosan (CSH-gel) hydrogel, in 

which methacrylates form the chemical cross-links, while the polyanionic polymer chondroitin 

sulfate, forms the physical cross-links inside the CSH-gel (Fajardo et al., 2013). This hybrid 

hydrogel showed different liquid uptake capacities than the chemical hydrogels (CSH-gel) and 

additionally exhibited a great sensitivity towards changes in the pH, which can be attributed 

to the additional physical cross-link inside the network (Fajardo et al., 2013). This developed 

hybrid double cross-linked hydrogel system is an example for a prominent hydrogel category, 

namely “smart”.  

 

1.5.3 “SMART” Hydrogels and Biomedical Applications 

 

Kuhn et al. introduced the word “smart” in 1949 in order to describe a specific type of 

hydrogels. Smart hydrogels were hydrogel systems which held the capability to respond to 

environmental stimuli, which in turn induced subsequently changes in the hydrogel’s structure 

and function (Kuhn, 1949). Environmental changes include changes within physical parameter 



1. INTRODUCTION 

 

14 

 

such as pressure, light and temperature, as well as chemical or biochemical parameters 

including ionic strength, pH and ions (N. N. Ferreira et al., 2018). One of the first smart 

hydrogel was a hydrogel consisting of methacrylic acid, which showed a swelling and shrinking 

behavior depending on the pH of the surrounding solution (Katalachsky et al.,1994). Besides 

the response of swelling and shrinking, hydrogels are also capable to react upon external 

stimuli via sol-gel transition (Lele, 2017). Sol-gel transition describes the process when xxx 

which is often an important characteristic of injectable hydrogels (Takata et al., 2017). Since, 

I will characterize the swelling behavior of the hydrogel, the swelling behavior in water and 

upon external stimuli, the swelling process itself and external stimuli including temperature, 

pH, and ionic strength will be explored in more detail.  

 

1.1.1.4 Swelling Process of Hydrogels  

 

In general the swelling process of hydrogels involves three steps: (1) diffusion of water into 

the hydrogel network, (2) reduced entanglement of the polymer chains upon hydration and 

(3) expansion of the hydrogel network (Ferreira, Vidal and Gil, 2000). The diffusion of water 

into the hydrogel network is induced by the attraction and later adsorption of water molecules 

to hydrophilic and polar groups, such as - OH, - COOH, –COO-, - C=O and - CHNH2. This results 

in the so called primary bound water. Due to this primary bound water hydrogels swell and 

the exposed hydrophobic moieties interact with more water molecules, the secondary bound 

water (Gun, Savina and Mikhalovsky, 2017). Following an osmotic driving force additional 

water molecules will move into the hydrogel, which is controlled by the elastic retractive force 

of the cross-linking density. Owing to this additionally imbibed “free water”, hydrogels reach 

their equilibrium swelling (Gritsch, Motta and Natta, 2015).  

 

1.1.1.5 Temperature-Sensitive Hydrogel  

 

Temperature sensitive hydrogels are changing the swelling behavior in response to the 

changing temperature. Either, the hydrogel swells or shrinks with increasing temperature, the 

first called a positive temperature response and the latter negative temperature response. 

The swelling behavior is not the only reaction towards temperature changes but also a sol-gel 
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transition can occur upon temperature change. This sol – gel transition is especially used for 

injectable hydrogels, which are fluid at room temperature and form with increasing 

temperature (typically up to physiological 37°C) a gel. For example, Tsao et al. (2016) used a 

drug loaded chitosan-PEG hydrogel as an injection into an irregularly-shaped tissue defect 

caused by tumor resection. The hydrogel experienced a sol - gel transition at physiological 

temperature and thus filled the defected tissue. This proved to be a method for implantation 

of tissue-like structures with minimal invasiveness. 

 

1.1.1.6 pH-Sensitive Hydrogel  

 

In general, pH sensitive hydrogels are distinguished by the charge of the applied polymer. For 

example, hydrogels made out of chitosan or poly (ethylene imine) (Xu and Matysiak, 2017), as 

a polycation polymer, swell at acidic pH due to the protonation of amino or imine groups 

(Rizwan et al., 2017). The protonated and thus positively charged moieties on the polymer 

chains cause repulsion and hence are responsible for swelling. Consequently poylanion 

polymers, such as HA, with a negatively charged moiety swell at basic pH (Ourjavadi, Urdtabar 

and Hasemzadeh, 2008). The key factors for controlling the swelling properties of pH sensitive 

hydrogels are a charged moiety and the pH of the surrounding medium. pH sensitive hydrogels 

are often used as drug delivery systems. Since they have the benefit to respond to different 

pH values in the human body and they subsequently release the drug at the desired location 

of the body for example in the stomach at acidic pH or in the intestine at basic pH (Fig.8) 

(Karimi et al., 2018).  
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Figure 8 Drug release upon hydrogel swelling. Swollen cationic hydrogel releases drug at acidic pH in the stomach, 

whereas swollen anionic hydrogel at basic pH in the intestine. 3 

 

1.1.1.7 Ionic Strength Sensitive Hydrogel  

 

Changing salt concentrations of the environment leads to structural changes of some 

hydrogels, resulting in ionic strength sensitive hydrogels (Buenger, Topuz and Groll, 2012). The 

response of the hydrogel can be either induced by changing the salt species or by changing 

the salt concentration of the surrounding medium (Kato, Yamanobe and Takahashi, 1997). The 

underlying mechanism is explained by the increased hydrophobic interactions induced by salt 

concentrations, resulting in a reduction of electrostatic repulsion between the polymers, 

enabling network precipitation (Gil and Hudson, 2004). Such ionic strength sensitive hydrogels 

are important for cellular processes like nerve excitation and muscle contraction which 

involves ionic strength modifications (Horkay, Tasaki and Basser, 2000). Hydrogels can also be 

                                                      

3 J. Liu et al., 2012 
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used as a chelation tool for ions in case of increasing concentration. For example, a great 

application would be the absorption of sodium salt in the blood by a hydrogel as  increasing 

ionic concentrations are linked to tumor malignancy in human brain (Onitilo, 2007).  

 

1.6 Which Biomaterial to use?  

 

Taken all together, to fulfil certain requirements, such as the ECM mimicking ability, 

biocompatibility, ability to form physical cross-links and sensitivity to environmental changes, 

the used biomaterial to develop a ECM mimicking hybrid double cross-linked hydrogel system 

based on the bottom up approach of synthetic biology has to be chosen carefully. Possible 

candidate is the negatively charged GAG, hyaluronic acid. It is one of the most important 

natural polymers in the ECM and due to this provides the necessary biocompatibility for future 

biomedical applications. Furthermore, it consists of repeating saccharide units, providing a 

polyanion backbone, which is able to form physical cross-link with positively charged 

molecules, which I am interested in studying in our synthetic matrix model. Moreover, it is 

degradable (Xu et al., 2012), which is a further important property for my hydrogel system. 

The known ability of HA to bind to certain, receptors such as CD44 and RHAMM, makes it 

further suitable for non-integrin mediated cell adhesion and motility studies. (Kim and Kumar, 

2014) Due to this HA is defined as the best choice of polymer to establish a hybrid double 

cross-linked ECM mimetic. Therefore, an even closer look at its properties, which are 

important for my hydrogel system, will be taken. 

 

1.7 Hyaluronic acid – A rising star  

 

HA was first discovered and isolated 1934 by Karl Meyer and John Palmer from the vitreous 

of a bovine eye. They described HA as an unusual polysaccharide with an extremely high 

molecular weight but recognized the structural similarity to already known GAGs, such as 

chondroitin sulfate and keratin sulfate (Pomin and Mulloy, 2018). What distinguished HA from 

already known GAGs was that the newly discovered polymer had no sulfate group. Over the 

next 10 years HA was found in and extracted from almost all vertebrate tissues. One important 
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finding was the existence of HA in the capsules of streptococci bacteria. This is nowadays the 

main source of synthetic HA and brings the advantage of avoiding animal sources and can be 

produced in vitro in high amounts (Liu et al., 2011). 1943 was the first time that reduced 

amounts of HA in synovial fluid had been connected to damaged joints. This finding already 

indicated a possible role for HA as a lubricant and thus hinted to a high viscosity for HA 

(Selyanin, Boykov and Khabarov, 1934). A later discovery where a HA solution lost its viscosity 

upon radiation showed the dependency of viscosity on HA polymer size, since it was known 

from previous studies that radiation led to degradation of HA (Huang et al., 2019). The first 

medical use of HA occurred in 1943 during the Second World War. Since it was observed 

before that HA might have an effect on cell growth, N.F. Gamaleya developed bandages based 

on extracts of human umbilical cord and called this bandages “factor of regeneration” 

(Selyanin, Boykov and Khabarov, 1934). Given that HA is one of the main components in the 

umbilical cord, HA was apparently responsible for the known healing effect of the used 

bandage. Ever since, HA has been and still is studied to utilize it as a biomaterial for wound 

healing, drug delivery or tissue engineering purposes.  

 

1.7.1 Structure and Properties of HA 

 

HA is a linear, unbranched negatively charged polysaccharide consisting of D-Glucuronic acid 

and N-Acetylglucosamine, which are linked together through alternating β -1,4 and β -1,3 

glycosidic bonds (Papakonstantinou, Roth and Karakiulakis, 2012). HA can reach a length of 

2000 to 25000 disaccharides, corresponding to 2 µm to 25 µm (Fallacara, 2018) and thus a 

molecular mass of 106 Da to 107 Da. The bulky substituents, such as the hydroxyl-, carboxyl- 

and acetamide group and a glycosidic bond occupy an equatorial and sterically more 

favourable position. These groups are responsible for the hydrophilic backbone. Additionally, 

these moieties represent sites for possible chemical modification of HA. The hydrogen atoms, 

are in the axial, less sterically favourable position giving the molecules a hydrophobic 

character (Fig.9). 
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Figure 9 Chemical structure of hyaluronic acid (HA), composed of D-glucuronic acid N-acetyl glucosamine. Monomers 

are linked via β -1,3-glycosidic bonds and disaccharide units themselves are connected through β-1,4-glycosidic 

bonds. HA consists hydrophilic backbone (orange) and hydrophobic moieties (green). The average length of one 

disaccharide unit is estimated to be 2 nm. 

 

Due to this hydrophilic and hydrophobic parts, HA can be found in various conformations, like 

elongated chains, non-condensed helixes, condensed rod shaped structures, helixes as well as 

structures similar to pearl necklaces and clips (Chase, 1999). In physiological solutions, the 

backbone of a HA is stiffened through the formation of internal hydrogen bonds, which also 

contributes to the stability of the taken conformation. Stabilization of the conformation also 

depends on the solvent and the presence of salts (Cowman et al., 2005). HA with divalent 

cations, like Ca2+ are insoluble in water and form intermolecular cross-links, leading also to a 

gel like structure (Napier and Hadler, 1978). The network formation of HA in solution depends 

also on the concentration and molecular weight. It is reported by Beloded, A.B. (2008), that 

HA in concentrations of 1-4 weight % can form pseudo- gels with magnesium and ammonium 

chloride. High molecular weight HA forms networks independently from the concentration 
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and low molecular weight HA has been reformed to island-type structures at low 

concentrations (Kujawa et al., 2005). The network structure determines the diffusion of small 

molecules, such as water, electrolytes and nutrients. Larger molecules, like proteins dwell 

because of their hydrodynamic size. As a consequence HA also provides a polymer mesh which 

protects from penetration of high molecular weight toxins and microbiological invasions 

(Selyanin, Boykov and Khabarov, 1934). Furthermore, the pKa value of the carboxyl groups is 

3-4, which results in complete deprotonation and a negative charge at physiological pH (Kim 

et al., 2012). The high negative charge together with the hydrophilic groups of HA causes its 

affinity to water molecules and represents a crucial function of HA, namely water binding and 

retention (Panagopoulou, Molina and Kyritsis, 2013). The large amount of bound water serves 

among others as a resisting parameter to compression force, which is used for example in 

joints as a shock absorber and lubricant (Wu et al., 2015). However, the structure of HA 

depends also on the pH of the surrounding solution. Maleki et al. (2008) showed that HA 

chains contract and thus have shorter persistence lengths in solutions with high ionic strength 

or low pH. Two additional effects affect HA’s structure and thus its impact within a cellular 

environment: (1) its molecular size and (2) HA-receptor interactions.  

 

1.7.2 HA - Synthesis and Degradation  

 

The synthesis of HA takes place on the cytosolic side of the plasma membrane by three 

hyaluronan synthase (HAS): HAS1, HAS2 and HAS3. HAS enzymes are integral membrane 

proteins with 4–6 transmembrane domains in addition to 1–2 membrane-associated domains 

(Weigel, Hascall and Tammi, 1997). These enzymes add Mg2+ or Mn2+dependent  

monosaccharides of uridine diphosphate (UDP) in a together (Weigel and Deangelis, 2007). 

While the synthesising process is ongoing, the polymer chain is transferred to the extracellular 

space through a trans-membrane pore. By this mechanism it is possible to form extremely 

long polymer chains. HAS1, HAS2 and HAS3 are responsible for the synthesis of specific 

molecular sizes of HA. HAS3 is known to synthesizes the shortest HA polymer sizes (1 × 105 to 

1 × 106 Da), while HAS1 and HAS2 synthesizes larger polymers (2 × 105 to 2 × 106 Da) (Itano et 

al., 1999) (Itano, 2002). As the synthases are only known to produce relatively high molecular 

weight HA smaller polymers are most likely the result of different degradation mechanisms. 
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Three independent mechanisms for HA degradation are known: (1) Degradation by specialized 

hyaluronan degrading enzymes, known as hyaluronidases. In humans six hyaluronidases are 

known to date HYAL1-4, HYALP and HYAL-PH20, all of them acting as hydrolases, belonging to 

the endoglucosaminidases digesting HA at the beta 1,4 glycosidic bond (Buhren et al., 2016). 

This degradation process requires the release of HA from the tissue matrix into the vasculature 

or lymphatic system and occurs inside specific liver, kidney or spleen cells (Göranson et. al, 

2004). (2) In the human body, degradation of HA occurs upon the formation of reactive oxygen 

species, like nitric oxide and superoxide, which destruct the tertiary structure of HA (Mendichi 

et al., 2006).(3) HA can also be cleaved at an acidic pH < 4 or alkaline pH > 11 (Tokita and 

Okamoto, 1995). Interestingly, degradation of HA is linked to pathophysiological incidences. 

Many cellular functions and signaling pathways are shown to be induced by different 

molecular sizes of HA, thus it is important while designing a ECM mimicking system to choose 

the molecular size of HA carefully to get the desired cell behavior, function and signaling. A 

HA based hydrogel system delivers the advantage of specific degradation by local secreted 

hyaluronidases from cells or unspecific by reactive oxygen species, which can be used in the 

biomedical applications for wound dressing and drug delivery (Zhang et al., 2012). Further it 

has the benefit to be used in tissue engineering studies since encapsulated cells are able to 

remodel the surrounding ECM mimetic (Tan et al., 2009).  

 

1.7.3 Non Integrin Mediated Cell Adhesion via HA 

 

Typically, cells interact with the surrounding ECM via integrins, transmembrane structures 

which recognize specific motifs within extracellular proteins. Adhesion and spreading of the 

cells upon binding to an integrin receptor, is known as the integrin mediated adhesion (Bro, 

Friedl and Za, 1998). HA has been reported to be either adhesive or non-adhesive. Two main 

HA receptors are known to play a critical role in non-integrin mediated cell attachment and 

motility (1) cluster designation 44 (CD44) and (2) receptor for hyaluronic acid-mediated 

motility (RHAMM) (Misra and Ghatak, 2015). Both, the CD44 and RHAMM receptor belong to 

the family of HA-binding proteins, known as hyaladherins. CD44 contains a Link module, which 

has been identified to be a general motif for HA binding (Cyphert, Trempus and Garantziotis, 

2015). Link module containing proteins bind to the carboxylate group of the glucuronic acid 
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moiety by the formation of physical cross-links, such as electrostatic interactions and 

hydrogen bonds. Regarding the effect of the HA receptors on cell adhesion, Kouvidi et al. 

(2011) reported an increasing adhesion capacity of fibrosarcoma cells upon binding of HA to 

the RHAMM receptor. HA binding to CD44 and subsequent cell signaling or cell behavior has 

been shown to be HA size dependent. Low molecular weight HA (< 10 kDa) binds in a reversible 

way to CD44, whereas high molecular weight HA is bound stronger (Wolny et al., 2010). 

Depending on the HA size different signals are transmitted and different effects are 

transduced into the cell (Tavianatou et al., 2019). Further, it has been demonstrated by Y. Kim 

et al. (2014), that by blocking CD44 the adhesion of glioblastoma multiforme cells is reduced 

for a short time scale, even if an integrin binding motif is presented. This led to the assumption 

that CD44 enhances integrin function upon HA binding. Therefore, ECM mimicking systems 

hold the potential to unravel the effects of HA on CD44-mediated cell adhesion by designing 

a minimal extracellular environment based on HA building blocks.  

 

1.7.4 Existing Hydrogel Systems 

 

HA-based hydrogels with their above described properties fulfill several requirements as a 

biomedical tool or to analyze specific cell behavior. To illustrate this, the following section 

describes several existing hydrogel systems based on HA and other ECM proteins. A special 

focus will lay on current drawbacks and limitations, in order to emphasize the need for a novel 

HA based hydrogel. For example, using fibrin-based hydrogels, it is required to treat the 

hydrogel system with a protease inhibitor throughout the experiment, as fibrin can be 

degraded within 2 days. Thus, these hydrogels are not suitable for long term cell studies in 

vitro (Hunt and Grover, 2010). Hydrogels based on collagen, are reported to be limited within 

the range of gel stiffness. A range of only 1 to 100 Pa shear modulus G’, makes it less attractive 

for research questions, such as bone engineering where a higher shear modulus is needed 

(Velegol and Lanni, 2001).  
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Extracell4, an already developed HA based hydrogel system, is a chemically cross-linked 

hydrogel. It is based on thiol-modified HA and thiol-modified gelatin, which are cross-linked 

by poly(ethylene glycol) diacrylate (Zheng et al., 2003). Main drawback of this system is the 

possible leakage of unreacted cytotoxic acrylates or their release upon hydrogel degradation. 

Another developed hydrogel based on HA is, Corgel BioHydrogel5. It is formed by the 

conjugation of tyramine to the carboxyl groups of HA and subsequent cross-linking catalyzed 

by hydrogen peroxide (Loebel et al., 2015). As it has been shown that hydrogen peroxide is 

cytotoxic, the usage of this hydrogel as a biomaterial is limited and thus experiments requiring 

e.g. cell encapsulation are not possible (Symons et al., 2001). Another HA-based hydrogel is 

manufactured by combining HA with a polycation. For this, chitosan, which occurs naturally 

as a poylcation, is combined with HA and chitosan-HA fibers are formed via self-assembling. 

However, this formulation based only on electrostatic interaction between the positively 

charged chitosan and negatively charged HA has the disadvantage of thermal instability 

(Maitra and Shukla, 2014). The aim of this thesis was to tackle these challenges. For this, a 

novel hybrid double cross-linked hydrogel system, which is biodegradable and tunable in 

stiffness has been established. This hydrogel system is based only on HA building blocks and 

is therefore biocompatible and thus highly suited to study HA-induced cell behavior and holds 

the capacity to be applied in a wide range of biomedical applications. 

 

. 

                                                      

4 Glykosan BioSystems, Inc., Salt Lake City, UT 

5 Lifecore Biomedical, Chaska, MN  
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2 Materials and Methods 

2.1 Synthesis of Hydrogel Compounds 

 

2.1.1 Synthesis of HA-DTPH  

 

Material 

 

Material Company Cat.- No. 

Sodium hyaluronate (HAm) 

(LOT: 025828) 

Lifecore-

Biomedical, 

Chaska, USA 

- 

DTPH 
Self-made 

2.1.2 
- 

1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimidhydrochloride 

(EDC*HCl) 

Merck, 

Darmstadt, 

Germany 

E7750 

Sodium hydroxide (NaOH) 

Merck, 

Darmstadt, 

Germany 

S8045 

Dithiotreithol (DTT) 

Merck, 

Darmstadt, 

Germany 

D0632 

Hydrochloric acid (HCl) 

Merck, 

Darmstadt, 

Germany 

H1758 

Dialysis tubing 
VWR, 

Pennsylvania, USA 

25218-

016 
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Procedure 

 

For the functionalization procedure 500 mg of sodium hyaluronate (HA) (1.20 mmol of 

disaccharide repeating units) are dissolved in 50 mL MilliQ water. 285.6 mg of synthesized 

DTPH (1.20 mmol) are added and the pH is adjusted to 4.75 with 1 M HCl. 285.6 mg EDCl 

(1.20  mmol) are added to the reaction mixture, to activate the carboxylic group on the HA. 

The solution is then stirred for a definite time to yield various thiolation degrees. By adding 

1M NaOH the reaction is stopped and the pH is adjusted to 8.5. 1.85 g DTT (12  mmol) is added 

and the reaction mixture is stirred for another 5h under pH monitoring at 8.5. After 5 h stirring 

1M HCl is added to prevent the formation of dithiol bonds. The reaction mixture is dialyzed 

against 0.1 M HCl at pH 3.5 overnight and against. MilliQ water pH 3.5 while exchanging the 

dialysis solution every 2h, until no free thiols of unreacted DTP or DTT could be detected in 

the dialysis water anymore. The thiolated HA is purified through freeze drying for 2 d (Shu et 

al., 2002).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. MATERIALS AND METHODS 

 

26 

 

2.1.2 Synthesis of HD-HPH 

 

Material 

 

Material Company Cat.- No. 

Sodium hyaluronate (HAm) 

(LOT: 025828) 

Lifecore-

Biomedical, 

Chaska, USA 

- 

3-hydroxypropanehydrazide (HPH) 
AKos, 

Steinen, Germany 
- 

1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimidhydrochloride 

(EDC*HCl) 

Merck, 

Darmstadt, 

Germany 

E7750 

Sodium hydroxide (NaOH) 

Merck, 

Darmstadt, 

Germany 

S8045 

Hydrochloric acid (HCl) 

Merck, 

Darmstadt, 

Germany 

H1758 

Dialysis tubing 
VWR, 

Pennsylvania, USA 

25218-

016 

 

Procedure 

 

For the functionalization procedure 500 mg of sodium hyaluronate (HA) (1.20 mmol of 

disaccharide repeating units) are dissolved in 50 mL MilliQ water. 285.6 mg of synthesized HPH 

(1.20 mmol) are added and the pH is adjusted to 4.75 with 1 M HCl. 285.6 mg EDCl (1.20 mmol) 

are added to the reaction mixture, to activate the carboxylic group on the HA. The solution is 

then stirred for a 60 min. to yield 60% functionalization degree. By adding 1M NaOH the 

reaction is stopped and the pH is adjusted to 8.5. The reaction mixture is dialyzed against 

MilliQ water while exchanging the dialysis solution every 2h. 
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2.1.3 Synthesis of 3,3 - Dithiopropionic-Hydrazide (DTPH) 

 

Material 

 

Material Company Cat.- No. 

3,3´ -dithiopropionic acid (DTPA) 
Merck, 

Darmstadt, Germany 
109010 

Abs. ethanol (EtOH) 
Carl-Roth, 

Karlsruhe, Germany 
9065.1 

Sulfuric acid (H2SO4) 
Merck, 

Darmstadt, Germany 
339741 

Ethyl acetate (EtOAc) 
Merck, 

Darmstadt, Germany 
270989 

Magnesium sulfate (MgSO4) 
Merck, 

Darmstadt, Germany 
M7506 

hydrazine monohydrate 
Merck, 

Darmstadt, Germany 
207942 

 

Procedure 

 

3,3 - dithiopropionic acid (DTPA) is converted to DTPH according to the protocol described by 

Vercruysse et al. (1997).  10 g of DTPA (47,62 mmol) are dissolved in 100 mL abs. EtOH and 3 

drops of concentrated H2SO4 are added to the solution. The reaction mixture is stirred under 

reflux for 1h and subsequently is concentrated to a volume less than 20 mL under reduced 

pressure. The product is extracted with EtOAc, washed with MilliQ water and dried over 

MgSO4. The Ester is then concentrated under reduced pressure again to yield a yellow oily 

product, which is directly dissolved in 30 ml abs. ethanol. This solution is added dropwise to 

another stirring solution of 30 mL hydrazine-monohydrate in 10 mL abs. Ethanol. After stirring 

for 2h under reflux the reaction mixture is allowed to cool down slowly (Fig. 10).  
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Figure 10 Synthesis of DTPH. Thiol Linker for HA functionalization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. MATERIALS AND METHODS  

 

29 

 

2.1.4 Synthesis of Charged Disaccharide Unit of HA (dHA+) 

 

Material 

 

Material Company Cat.- No. 

Chondroitin sulfate A 
Sigma-Aldrich, 

Deisenhofen, Germany 
C9819 

Amberlite®IR120 

Hydrogen form 

Merck, 

Darmstadt, Germany 
06428 

Sulfuric acid (H2SO4) 
Merck, 

Darmstadt, Germany 
339741 

Abs. ethanol (EtOH) 
Carl-Roth, 

Karlsruhe, Germany 
9065.1 

Bariumhydroxid octahydrat, 

Ba(OH)2 x 8 H2O 

Carl-Roth, 

Karlsruhe, Germany 
HN75.2 

Silica gel 
Carl-Roth, 

Karlsruhe, Germany 
0712.3 

Acetic acid (CH3COOH) 
Carl-Roth, 

Karlsruhe, Germany 
7332.4 

Hydrochloric acid (HCl) 
Merck, 

Darmstadt, Germany 
H1758 

Ninhydrin 
Sigma-Aldrich, 

Deisenhofen, Germany 
BCBT4744 

 

Procedure 

 

In the first step 1 g Chondroitin Sulfate A is dissolved in 10 ml MilliQ water. Amberlite is added 

under pH monitoring to adjust the pH to 1,6. The mixture is filtered and washed four times 

with 20 ml MilliQ water. Concentrated H2SO4 is added to the solution to get an 

endconcentration of 0,5 M. The reaction mixture is stirred for 6h at 100 °C. After cooling to 

RT, Ba(OH)2 x 8 H2O is added under pH monitoring and vigorous stirring to adjust the pH to  3.5. 
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After adjusting the pH, the reaction is allowed to settle down over night. The reaction mixture 

is filtrated over silica gel and the yellow filtrate is concentrated under reduced pressure to 

approximately 10 ml and applied afterwards slowly to an amberlite column. The column is 

washed with 250 ml MilliQ water, AcOH/H2O 3:1 (250 ml) and then with 1M HCl (500 ml). The 

Ninhydrine positive fractions are collected and are concentrated under reduced pressure to 

get the wanted product (Vibert, Lopin-Bon and Jacquinet, 2009). The reaction scheme can be 

seen in Fig. 11.  

 

 

 

 

 

Figure 11 Synthesis of deacetylated and degraded disaccharide unit of HA (dHA+). 
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2.2 Nuclear Magnetic Resonance Spectroscopy (NMR) 

 

Material 

 

Material Company Cat.- No. 

HA-DTPH 
Self-made 

(2.1.1) 
- 

HA-HPH 
Self-made 

(2.1.2) 
- 

Charged Disaccharide Unit of HA (dHA+) 
Self-made 

(2.1.3) 
- 

DTPH 
Self-made 

(2.1.4) 
- 

Deuterated water (D2O) 
Carl-Roth, 

Karlsruhe, Germany 
6672.1 

Deuterated chloroform (CDCl3) 
Merck, 

Darmstadt, Germany 
611778 

 

Procedure 

 

Samples are dissolved in deuterated solvents (D2O or CDCl3) at a concentration of 3 mg/mL 

and filled in an NMR tube. NMR spectra are measured by the NMR-department at the 

University of Heidelberg. Institute of Inorganic Chemistry. Measurements are done at room 

temperature with the Avance III (1H: 600 MHz) from Bruker. Calibration of the spectra is 

carried out in relation to the residual signal of the perspective solvent used (1H: D2O = 

4.79ppm, CDCl3 = 7.26 ppm). The software MestReNova was used for analysis.  
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2.3 Determining the Degree of Thiolation 

 

Material 

 

Material Company Cat.- No. 

HA-DTPH (74 kDa) 
Self-made 

(2.1.1) 
- 

Tris(hydroxymethyl) aminomethane (TRIS) 
Sigma-Aldrich, 

Deisenhof, Germany 
T6791 

5,5 - dithiobis-2-nitrobenzoic acid (DTNB) 
Sigma-Aldrich, 

Deisenhof, Germany 
D8130 

Sodium-acetate (NaAc) 
Sigma-Aldrich, 

Deisenhof, Germany 
W302406 

Cysteamine Hydrochloride 
Sigma-Aldrich, 

Deisenhof, Germany 
C8707 

 

Procedure 

 

The degree of thiolation is analyzed by an adapted Ellman´s assay. Herein, 5,5 - dithiobis-2-

nitrobenzoic acid (DTNB) is converted to 2-nitro-5-thiobenzoate (TNB2-), upon reaction with a 

thiol, see Fig. 12. The reaction is quantitative and can be detected by the yellow color of TNB2-, 

with an absorption maximum at 412 nm.  
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Figure 12 Mechanism of the Ellman´s assay. 

 

For the assay, a 2 mM cysteamine hydrochloride solution in ddH2O and a DTNB solution 

(50  mM NaAc and 2 mM DTNB in ddH2O) are prepared from scratch. The HA-DTPH is dissolved 

in ddH2O at a concentration of 1 mg/mL. Subsequently a concentration range is prepared in 

ddH2O with 0 µM to 100 µM thiols using the 2 mM cysteamine hydrochloride solution for a 

calibration curve. HA- DTPH solutions are diluted to yield three differently concentrated 

samples for the measurements (0,02 mg/mL, 0,05 mg/mL and 0,08 mg/mL). To all samples 

and solutions for the calibration curve 100 µL 1 M TRIS, pH = 8 and 50 µL of DTNB solutions 

are added. All samples are thoroughly mixed and 300 µL each are pipetted in a 96 well plate, 

before the absorbance of each sample is measured at 420 nm (A420) in a plate reader TECAN 

Spark (Männedorf, Switzerland). Data evaluation is preformed using GraphPad Prism7. Values 

for the concentration range of cysteamine hydrochloride are fitted linearly, following Eq. (1.1) 

(with cthiol = concentration of thiols in the sample):  

 

         𝐴420 = (𝑎 𝑥 𝑐𝑡ℎ𝑖𝑜𝑙) + 𝑏                                                             (1.1) 
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Since b represents the y-intercept and a the slope of the linear fit, thiol concentrations of the 

samples can be calculated from the measured absorbance (A420) (see Eq. (1.2)) and the 

molecular mass of the thiol linker (Mlinker): 

 

         𝑐𝑡ℎ𝑖𝑜𝑙 =  
𝐴420−𝑏

𝑎
 𝑥 𝑀𝑙𝑖𝑛𝑘𝑒𝑟                                                              (1.2) 

 

With the volume of the solution (Vsample), mass of thiol in the samples (mthiol) can be calculated 

with Eq. (1.3):  

 

         𝑚𝑡ℎ𝑖𝑜𝑙 = 𝑐𝑡ℎ𝑖𝑜𝑙 𝑥 𝑉𝑠𝑎𝑚𝑝𝑙𝑒                                                                (1.3) 

 

Since the mass of HA-DTPH initially weighted is known (mHam-SHn), the pure mass of HA in the 

samples can be calculated, by subtracting the thiol mass following Eq. (1.4):  

 

         𝑐𝐻𝐴 = 𝑚𝐻𝐴−𝐷𝑇𝑃𝐻 −  𝑚𝑡ℎ𝑖𝑜𝑙                                                        (1.4) 

 

The molar concentration of HA (cHA) in the samples (mHA) can now easily by calculated, with 

the molecular mass of one hyaluronic acid repeating unit (M) and the volume of the samples 

(Vsample) with Eq. (1.5): 

 

         𝑐𝐻𝐴 =

𝑚𝐻𝐴

𝑀
𝑉𝑠𝑎𝑚𝑝𝑙𝑒

⁄                                                                              (1.5) 

From this, the degree of thiolation can be determined as the ratio of thiol and HA 

concentration following Eq. (1.6):  

 

                                       𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑡ℎ𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 =
𝑐𝑡ℎ𝑖𝑜𝑙

𝑐𝐻𝐴
⁄  𝑥 100                                                       (1.6) 
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2.4 Hydrogel formation 

 

2.4.1 Synthesis of HA-DTPH-Ox. Hydrogel 

 

Material 

 

Material Company Cat.- No. 

HA-DTPH (29%, 42%, 58%) 
Self-made 

(2.1.1) 
- 

DPBS (- CaCl2, - MgCl2) Thermo Scientific 14190250 

Sodium hydroxide (NaOH) 
Merck, 

Darmstadt, Germany 
S8045 

 

Procedure 

 

HA-DTPH-Ox. is dissolved at 3% (w/v) in DPBS (- CaCl2, - MgCl2) and poured in a petri dish with 

3 cm diameter. It is then incubated for 3 days under stirring at 300 rpm. After 3 days of 

incubation hydrogels are incubated in 0.3% H2O2 for 1 hours and incubated afterwards for 24 

hours in MilliQ water.  
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2.4.2 Synthesis of HA-DTPH-Cl+ Hydrogel 

 

Material 

 

Material Company Cat.- No. 

HA-DTPH (74 kDa) Self-made 

(2.1.1) 

- 

Charged disaccharide unit of HA 

(dHA+) 

Self-made 

(2.1.4) 

- 

Glucosamine hydrochloride 

(GluA+) 

Merck, 

Darmstadt, Germany 

Y0001406 

Ammonium chloride 

(NH4
+) 

Sigma-Aldrich, 

Deisenhof, Germany 

A9434 

Boric acid (H3BO3) Sigma-Aldrich, 

Deisenhof, Germany 

B6768 

Ethanol 

(EtOH) 

Merck, 

Darmstadt, Germany 

1009831000 

Cylindric teflon mold 

r = 3mm, h = 5mm 

Mechanical workshop 

MPI for intelligent systems 

- 

Sonicator Bandelin Sonorex - 

Parafilm “M” Bemis - 

 

Procedure 

 

HA-DTPH-Cl+ are formed based on an adapted protocol of Hegger et al. (2018). For preparing 

hydrogels an equimolar ratio of ionic crosslinker to remaining negative groups was used. 

HA- DTPH 4% (w/v) is dissolved in borate buffer (150 mM, pH 8.5) by sonication for 15 min. 

Ionic crosslinker is dissolved also in borate buffer (150 mM, pH 8.5) in an equimolar ratio to 

negative groups on the HA-DTPH (table 1). The solutions of HA-DTPH and ionic crosslinker are 

mixed in a 3:7 ratio, yielding a final concentration of 2.8% (w/v) HA-DTPH. After sonication the 

solutions were centrifuged at 1.5 rpm for 2 min and then the ionic crosslinker solution was 
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added to the HA-DTPH solution and mixed by slowly pipetting to get a homogenous mixture. 

The gelation solution was poured into a cylindrical Teflon-mold and covered with a glass slide. 

For gelation of hydrogels with dHA+, hydrogels are incubated over night at RT. For gelation of 

hydrogels with GluA+ and NH4
+ the pH is adjusted to 7.4 and are incubated over night at RT.  

 

Table 1 HA (74 kDa) with three different thiolation degrees and ionic crosslinker concentration. 

Thiolation degree % 
remaining neg. 

groups on HA % 

Concentration 

Crosslinker [g/L] 

Crosslinker Equivalence to 

free neg. groups 

58 42 35,12 0,42 

42 58 44,67 0,58 

29 71 58,55 0,71 

 

2.4.3 HA-DTPH-dHA+- RGD Hydrogel for Cell Adhesion Assay 

 

Material  

 

Material Company Cat.- No. 

HA-DTPH (74 kDa) 
Self-made 

(2.1.1) 
- 

dHA+ 
Self-made 

(2.1.4) 
- 

Peptid 

GRDGSPK(Acrylamide)-amide 

PSL, 

Heidelberg, Germany 
Custom made 

Boric acid (H3BO3) 
Sigma-Aldrich, 

Deisenhof, Germany 
B6768 

Ethanol 

(EtOH) 

Merck, 

Darmstadt, Germany 
1009831000 

Fibroblast Growth Medium 

(FGM2) 

Promocell, 

Heidelberg. Germany 
C-12012 

Syringes Tuberkulin Braun 15N14C8 

Parafilm “M” Bemis - 
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Procedure 

 

For preparing HA-DTPH-dHA+-RGD hydrogels an equimolar ratio of dHA+ to remaining 

negative groups was used. After UV sterilization of HA-DTPH and the dHA+ under the hood, 

HA-DTPH 4% (w/v) is dissolved in sterile borate buffer (150 mM, pH 8.5) under sterile 

condition and subsequently sonicated for 15 min. dHA+ is dissolved also in sterile borate buffer 

(150  mM, pH 8.5) in an equimolar ratio to negative groups on the HA-DTPH (table 1). 5% of 

linear RGD to free thiol groups of HA-DTPH was dissolved in FGM2 and subsequently added 

to the HA-DTPH solution and incubated for 1 hour. The solutions of HA- DTPH- RGD and dHA+ 

are mixed and poured in a cut syringe. For gelation hydrogels are incubate under sterile 

conditions over night.  

 

2.5 Physico-Chemical Characterization of HA Hydrogels 

 

2.5.1 Determination of thiol groups in HA Hydrogel 

 

To detect free thiol groups within the hydrogel an Ellman`s assay (Ellman, 1958) is used on the 

polymerized Hydrogel. HA Hydrogels either prepared as described above in a petri dish or in 

Eppendorf tubes and cut after gelation mechanically into small pieces. To these pieces 784 µL 

1M TRIS buffer (pH 8) are added. After adding 784 µL DTNB solution (50 mM NaAc and 2 mM 

DTNB in MilliQ water) the reaction mixture is incubated at room temperature under shaking 

for 20 min. 100 µL of the supernatants are pipetted in a 96 well plate and absorbance is 

measured at 420 nm in the plate reader. As a reference, containing 100% free thiols, one 

gelation mixture without crosslinker is also analyzed. The ratio of free thiols in the hydrogels 

can then be calculated from the ratio of A420 of the sample and the reference, see eq.2. 

 

free thiols =  
A420 sample

A420 (reference)
 x 100%    (2) 
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2.5.2 Mechanical Properties 

 

Rheological measurements of viscoelastic materials can be used to determine mechanical 

properties of 3D biomaterials, especially hydrogels which resembles the ECM in vitro. 

Rheology studies the deformation and flow of soft matter. Since soft materials show 

characteristics of both solids (elasticity) and fluids (viscosity), they are referred to as 

viscoelastic materials.  

 

Figure 13 Schematic representation of shear and compressive force applied to a hydrogel 6 

 

Fig. 13 shows a schematic representation of two types of forces typically used in rheological 

measurements: shear forces and compression forces. Most commonly, these forces are 

applied uniformly to the sample and stress-strain models can be used to identify material 

properties. The two important parameters measured in rheology are stress σ (Eq.3) and strain 

λ (Eq.4). They respectively describe the forces exerted on the material and the deformation of 

the material due to these forces. Material properties are defined by the ratio of stress and 

strain.  

𝜎 =
𝐹

𝐴
                                              (3) 

 

λ =  
∆𝑙

𝑙
                     (4) 

 

                                                      

6 Cotts et al., 2016 
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For compression rheology, a linear correlation between stress and strain can be observed at 

low stresses. This is called the viscoelastic region. The ratio of stress and strain gives the 

materials elasticity or Young’s modulus E (Eq.5, for compression rheology). 

 

𝐸 =
𝜎

λ
                     (5) 

 

In the viscoelastic region, material deformation is reversible, meaning that the material will 

retain its original shape and size if stress is released. When utilizing shear forces (shear 

rheology), the complex shear modulus G’ is obtained instead of E. While G’ can be converted 

into E, this requires material dependent constants not readily available for novel materials. 

 

2.5.2.1 Determination of Storage and Loss Modulus via Shear Rheology 

 

Material 

 

Material Company Cat.- No. 

Kinexus pro 

Shear rheometer 
Malvern - 

HA-DTPH-Cl+ hydrogel solution 
Self-made 

(2.4.2) 
- 

 

Procedure 

 

The hydrogel formation was monitored with a rotational rheology (Kinexus pro, Malvern). 

Therefore, a parallel plate geometry was used with a set gap of 0.5 mm and the prepared gel 

mixture (80µL) was placed between these plates. An oscillation frequency of 1Hz and an 

amplitude of 0.2% are applied and measurements are carried out for 24h at RT. In this time 

the storage modulus G’ and the loss modulus G’’ are continuously monitored with one data 

point taken every 5 min.  
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2.5.2.2 Determination of Young´s Modulus via Compression Rheology 

 

Material 

 

Material Company Cat.- No. 

NanoBionix 

Compression rheometer 
MTS Systems - 

HA-DTPH-Ox./HA-DTPH-Cl+ 
Self-made 

(2.4.1/2.4.2) 
- 

 

Procedure 

 

Mechanical characterization of the hydrogels was carried out with a NanoBionix Universal 

Testing System in compression mode with a parallel plate geometry. Cylindrical hydrogels 

were measured utilizing a tension trigger of 200 mN at a frequency of 0.001 Hz up to a 

deformation of 10% while monitoring the applied strain and the resulting stress.  

 

2.5.3 Determination of the Swelling Ratio 

 

Material 

 

Material Company Cat.- No. 

HA-DTPH-Ox./HA-DTPH-Cl+ Self-made 

(2.4.1/2.4.2) 

- 

pH solution 3-10 with NaOH and HCl Self-made - 

Ionic solution 50 mM, 150  mM,  300 mM  

(NaCl, CaCl2, MgCl2) 

Self-made - 

24-well plate  Corning,  

Kaiserslautern, Germany 

3526 
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Procedure 

 

The prepared hydrogels were used for equilibrium swelling studies. The swelling behavior of 

these hydrogels were investigated as functions of effect of pH, ionic strength and 

temperature. Swelling studies were performed in pH solutions of varying pH 3 -10, varying 

ionic strength solution 50 mM, 150 mM, 300 mM of NaCl, CaCl2 and MgCl2 and ddH2O at RT 

and 37 °C. Prepared HA hydrogels were incubated on a shaker in different solutions (1 mL) see 

above until reaching the equilibrium in a 24-well plate. After incubation the swollen weight 

was measured and the hydrogel was freeze dried for 48 h. The swelling ratio was determined 

by weighing the swollen gel and the dried hydrogel using eq. 6. 

 

                                            𝑄𝑉 =  
𝐺𝑒𝑙𝑠

𝐺𝑒𝑙𝑑
⁄  

 

   (6) 

 

2.5.4 Acidifying Effect of HA-DTPH-dHA+ 

Material 

 

Material Company Cat.- No. 

HA-DTPH-dHA+ 
Self-made 

(2.4.2) 
- 

aqueous solution (pH = 7) Self-made - 

24-well plate 
Corning, 

Kaiserslautern, Germany 
3526 

pH electrode  
Sigma-Aldrich 

Deisenhofen, Germany 
- 

 

Procedure 

 

HA-DTPH-dHA+ hydrogels were prepared like described in chapter 2.4.2. Each hydrogel was 

placed in a well of a 24 - well plate and covered with aqueous pH solution of 7. The pH was 
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measured at following time points 0 h, 1 h, 3 h, 6 h, 12 h, 24 h. HA hydrogels were placed after 

24 h with fresh pH solution of pH of 7.  

 

2.5.5 Osmolarity measurements of HA-DTPH-dHA+/HA-DTPH-Ox. 

Material 

 

Material Company Cat.- No. 

HA-DTPH-Ox./HA-DTPH-dHA+ 
Self-made 

(2.4.1/2.4.2) 
- 

aqueous solution (pH = 7) Self-made - 

24-well plate 
Corning, 

Kaiserslautern, Germany 
3526 

Osmomat-030 D 
Gonotec, 

Berlin, Germany 
- 

 

Procedure 

 

HA-DTPH-dHA+/HA-DTPH-Ox. hydrogels were prepared like described in chapter 2.4.1/2.4.2. 

Each hydrogel was placed in a well of a 24 - well plate and covered with pH solution of pH 7. 

The osmolarity was measured at following time points 0 h, 1 h, 3 h, 6 h, 12 h, 24 h.  HA 

hydrogels were placed after 24 h with fresh pH solution of pH of 7.  
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2.5.6 Calculation of Mesh size 

 

To estimate the mesh size we used the determined swelling ratio and the measured weight of 

the hydrogel directly after polymerization. The calculation has been done according to eq. 7 

with the method established by Peppas and Merril (Peppas et al., 2000) 

 

 

Mc = molecular weight between two adjacent crosslinks 

Mr = molecular weight of the HA repeating (disaccharide) unit = 415 g/mol 

𝜈 = specific volume of bulk HA = 0,764 cm3/g 

Cn = characteristic ratio of HA = 28  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝜉 (𝑚𝑒𝑠ℎ 𝑠𝑖𝑧𝑒) = (𝜈2,𝑠)
−1

3⁄ −  √
2𝐶𝑛𝑀𝑐

𝑀𝑟
 𝑥 𝑙 

 

(7) 
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2.6 Biological Characterization of HA Hydrogels 

 

2.6.1 Enzymatic degradation of HA-DTPH-dHA+/HA-DTPH-Ox. 

 

Material 

 

Material Company Cat.- No. 

HA-DTPH-Ox./HA-DTPH-Cl+ 
Self-made 

(2.4.1/2.4.2) 
- 

Phosphate buffered saline (PBS) 
Sigma-Aldrich, 

Deisenhofen, Germany 
D8537 

Hyaluronidase from bovine testes 
Sigma-Aldrich, 

Deisenhofen, Germany 
H3506 

Hyaluronidase from Streptomyces hyalurolyticus 
Sigma-Aldrich, 

Deisenhofen, Germany 
H1136 

24-well plate 
Corning, 

Kaiserslautern, Germany 
3526 

 

Procedure  

 

In order to gain information about the degradability of the hydrogels by different enzymes, 

the hydrogels are prepared as described above (see 2.4.1/2.4.2). Hydrogels are put into 24 

well plate in solutions of hyaluronic acid degrading enzymes and PBS as a negative control, 

where the hydrogels shouldn’t get degraded. All enzymes are used at a concentration of 100 

U with a volume of 1 mL for each hydrogel. Hydrogels are incubated with these enzymes at 

37°C and soft shaking 100 rpm, while enzyme and buffer solutions are exchanged every 48 h. 

For calculating the rate of degradation, the weights of the hydrogels are measured at different 

time points; after 1 h, 2 h, 4 h, 6 h, 9 h, 12 h, 36 h, 48 h, 72 h, 5 d and 7 d of degradation. The 

weight measurements at different time points are plotted against weight loss and fitted to an 
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exponential decay phase. From this data, the half-life (t1/2) of each hydrogel is determined, 

corresponding to the time frame in which the hydrogel lost half of its initial weight.  

 

2.6.2 Long-Term Stability of HA-DTPH-dHA+ 

 

Material 

 

Material Company Cat.- No. 

HA-DTPH-dHA+ 
Self-made 

(2.4.2) 
- 

Phosphate buffered saline (PBS) 
Sigma-Aldrich, 

Deisenhofen, Germany 
D8537 

24-well plate 
Corning, 

Kaiserslautern, Germany 
3526 

 

Procedure  

 

To assess the stability of HA-DTPH-dHA+ hydrogels in the absence of HA degrading enzymes, 

prepared hydrogels as described above (see 2.4.2) were incubated in PBS over six months. For 

analyzing the stability, hydrogels were weight each week  
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2.7 Biocompatibility of HA Hydrogel Compounds 

 

2.7.1 Cell culture  

 

Material 

 

Material Company Cat.- No. 

Cell culture flask 

T25, T75 
 - 

Fibroblast Growth medium 
Promocell, 

Heidelberg, Germany 
C-23110 

Fibroblast supplement mix 

(Fibroblast growth factor, Insulin) 

Promocell, 

Heidelberg, Germany 
 

Normal human dermal fibroblast (NHDF) 
Promocell, 

Heidelberg, Germany 
429Z015.1 

Trypsin-EDTA   

 

Procedure 

 

NHDF cells were maintained in culture in T75 cell culture flasks in Fibroblast Growth Medium 

with addition of 2% Supplement Mix, containing Basic Fibroblast Growth Factor (recombinant 

human) and Insulin (recombinant human) (PromoCell, Heidelberg, Germany). The NHDF cell 

line was obtained from juvenile foreskin. The flasks were kept in an incubator at 37 °C and 5% 

CO2. Cells were split upon reaching confluency. For experimental use, cells were washed twice 

with sterile PBS and detached by addition of 1 mL of Trypsin-EDTA (0.05%) (GIBCO, Rockville, 

Maryland). Cell aliquot was centrifuged for 4 min at 0.3 rcf until pellet was formed. The pellet 

was resuspended in fresh medium and cell concentration was determined by counting the cell 

number in a 1:1 mixture with Trypan Blue Solution, 0.4% (GIBCO, Rockville, Maryland) covering 

4 counting squares of a Neubauer chamber. The required cell concentration was achieved 

through dilution of the stock solution. 
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2.7.2 NHDF Viability Assay under Treatment with dHA+/HA-DTPH  

 

Material 

 

Material Company Cat.- No. 

Normal human dermal fibroblast 

(NHDF) 

Promocell, 

Heidelberg 
429Z015.1 

Fibroblast growth media kit 
Promocell, 

Heidelberg 
C-23110 

dHA* 
Self-made 

(2.1.4) 
- 

HA-DTPH58% 
Self-made 

(2.1.1) 
- 

CellTiter 96® Aqueous One solution Cell Proliferation 

Assay Kit 

Promega, 

Madison, Wisconsin 

USA 

L3224 

Phosphate buffered saline (PBS) 
Sigma-Aldrich, 

Deisenhofen, Germany 
D8537 

 

Procedure 

 

The viability assay was performed using the CellTiter 96® AQueous One Solution Cell 

Proliferation Assay kit (Promega Corporation, Madison, Wisconsin). Preliminary 

measurements were conducted to determine the optimal number of cells and crosslinker 

concentration for the experiment as well as the linear range of the assay.  
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Based on the acquired data, cells were seeded in 96-well plates in 50 μl/well volume for 24 h 

and 48 h measurement according to the following Fig. 14. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 Seeding and treatment scheme for cell viability assay. NHDF treatment with dHA+/HA-DTPH58% for 

24/48 hours. 

 

After seeding, the plates incubated at 37 °C and 5% CO2 overnight and are treated then with 

either 1.0, 0.1 or 0.01 mg/mL dHA+/HA-DTPH58% dissolved in 50 μL medium for 24/48 hours. 

Cell viability was measured after 24/48 hours by adding of 5x CellTiter 96® AQueous solution 

to each well and further incubation for 3 hours at 37°C and 5% CO2 followed by absorbance 

measurement at wavelength 490 nm on TECAN Spark (Männedorf, Switzerland).  

 

 

 

 

 

 

 

 No treatment 0.01 [mg/mL] 0.1 [mg/mL] 1 [mg/mL] 

A 10000 cells/well 

1250 cells/well 

B 7500 cells/well 

C 5000 cells/well 

D 3725 cells/well 

E 2500 cells/well 

F 1250 cells/well 

0 cells/well G 625 cells/well 

H 0 cells/well 
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2.8 Cell morphology on HA hydrogel  

 

Material 

 

Material Company Cat.- No. 

Normal human dermal fibroblast 

(NHDF) 

Promocell, 

Heidelberg 
429Z015.1 

Fibroblast growth media kit 
Promocell, 

Heidelberg 
C-23110 

Syringes Tuberkulin Braun 15N14C8 

Parafilm “M” Bemis - 

HA-DTPH-dHA+ 
Self-made 

(2.4.2) 
- 

HA-DTPH-dHA++RGD 
Self-made 

(2.4.3) 
- 

Phosphate buffered saline (PBS) 
Sigma-Aldrich, 

Deisenhofen, Germany 
D8537 

 

Procedure 

 

All steps are carried out under the cell culture hood (HareSafe, Thermo fisher Scientific) in 

sterile conditions. Cells were washed two times with sterile PBS and subsequently treated with 

trypsin-EDTA solution (1 mL/25 cm2) and incubated for 3 min at 37 °C and 5% CO2 

(HeraCell240, Thermo Fisher scientific). Detached cells are checked under a bright field 

microscope (DMi1, Leica Germany). 7 mL cell culture medium are added to inactivate trypsin 

and cell suspension is centrifuged at 0.8 rcf for 5 min to remove trypsin. The cell pellet is re-

suspended in 1 mL of cell culture medium and cells were counted using a hemocytometer 

(Neubauer, Blaubrand Germany). Cells are diluted and 300 µL of cell suspension are added on 

top of each hydrogel, which is prepared under sterile conditions as described in 2.4.1. 

Hydrogels with cells on top were placed in a 24 well-plate and incubated for 24 hours at 37°C 
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and 5%CO2 to allow cell adhesion on HA- DTPH- dHA+ hydrogels. Cell were imaged with a 

bright field microscope and, subsequently stained with DAPI and Phalloidin.  

 

2.9 Cell Encapsulation in HA Hydrogel 

 

Material 

 

Material Company Cat.- No. 

Normal human dermal fibroblast 
Promocell, 

Heidelberg 
429Z015.1 

Fibroblast growth media kit 
Promocell, 

Heidelberg 
C-23110 

Syringes Tuberkulin Braun 15N14C8 

Parafilm “M” Bemis  

HA-DTPH-dHA+ 
Self-made 

(2.4.2) 
- 

Peptid 

GRDGSPK(Acrylamide)-amide 

PSL, 

Heidelberg, Germany 

Custom 
made 

Phosphate buffered saline (PBS) 
Sigma-Aldrich, 

Deisenhofen, Germany 
D8537 

 

Procedure 

 

After UV sterilization of HA-DTPH58% and the dHA+ under the hood, the components are 

dissolved in FGM2 and borate buffer, respectively. Afterwards the crosslinker solution is 

added to the HA- DTPH58% solution by gently pipetting and the mixture left for gelation for 60-

120 minutes until the viscosity is sufficient to prevent fast-flowing/dripping of the mixture 

inside the tube. To gain RGD incorporated hydrogels, RGD is first incubated for 1 hours with 

the dissolved HA under sterile conditions. Then, the gelatinous liquid is slowly pipetted onto 

the previously prepared NHDF cell pellet (FGM2 supernatant was removed carefully) and the 

pellet is gently resuspended (using a cut 200 µl tip) to achieve cell dispersion within the entire 
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pre-gelled liquid. Finally, the liquid-cell mixture is pipetted into several provided containers 

(cut syringes/Teflon cylinders) and left for the remaining gelation reaction under the sterile 

hood overnight (ca. 20 h) covered with parafilm (obviously without mutagenic UV-exposure). 

Additionally, one control hydrogel without cell embedding is prepared. The stable cell-

containing hydrogels and the control are then transferred to a 12-well plate the next day and 

covered with 2 ml FGM2. These hydrogels are stored in the 37 °C CO2-incubator for further 

analysis.  

 

2.9.1 Imaging with Fluorescence Microscopy  

 

2.9.1.1 DAPI/Phalloidin Staining  

 

Material 

 

Material Company 
Cat.- 

No. 

Cell on HA-DTPH-dHA+/HA-DTPH-
dHA++RGD 

Self-made 
(2.4.2/2.4.3/2.8) 

- 

Cell in HA-DTPH-dHA++RGD 
Self-made 

(2.9) 
- 

Phalloidin FITC 
Sigma-Aldrich, 

Deisenhofen, Germany 
P1951 

DAPI 
Sigma-Aldrich, 

Deisenhofen, Germany 
D9542 

Paraformaldehyd (PFA) 
Sigma-Aldrich, 

Deisenhofen, Germany 
158127 

Trtion™ X-100 
Sigma-Aldrich, 

Deisenhofen, Germany 
X100 

Bovine Albumin Serum 
(BSA) 

  

Phosphate buffered saline (PBS) 
Sigma-Aldrich, 

Deisenhofen, Germany 
D8537 
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Procedure 

 

Hydrogels with cells on top and cells inside were first incubated with 4% PFA in PBS for 20 min. 

and subsequently permeabilized with 0.1% Triton X-100 in PBS for 5 min. After the 

permeabilization procedure samples were treated with 1% BSA in PBS for 10 min. 

Subsequently, samples were treated with DAPI (1:1000) and Phalloidin FITC (1:100) and 

imaged.  

 

2.9.1.2 Life/Dead Staining  

 

Material 

 

Material Company 
Cat.- 
No. 

Cell viability/cytotoxicity 
Invitrogen, 

Carlsbad, Kalifornien, Vereinigte Staaten 
L3224 

Phosphate buffered saline (PBS) 
Sigma-Aldrich, 

Deisenhofen, Germany 
D8537 

 

Procedure 

 

After 24 hours incubation of cells inside the hydrogels cell culture medium is removed from 

the wells and hydrogels are gently washed with PBS once. 200 µL of staining solution are added 

on top each hydrogel and incubated for 45 min. Afterwards, staining solution was removed 

and hydrogels were placed on a cover slip and imaged. The staining solution contains cell-

permeable dye calcein AM yielding green fluorescence (excitation maximum: 494 nm; 

emission maximum: 517 nm), to stain live cells and red fluorescent dye ethidium homodimer-

1 (excitation maximum: 517 nm; emission maximum: 617 nm) to stain dead cells.  
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2.9.1.3 Imaging with Leica DMi8 

 

Cells seeded on top of the hydrogel or encapsulated inside of the hydrogel for live cell imaging 

experiments imaged with a Leica DMi8 inverted fluorescent widefield microscope equipped 

with a X-Cite 200DC light source (200 W), a sCMOS camera (Leica DFC9000GT) using either 10x 

objective (HC PL FLUOTAR, NA 0.32, PH1) or 63x objective (HC PL APO CS2, NA 1.40 OIL UV). 

To generate composites and adjust the brightness contrast of the images “Fiji” (ImageJ 1.15h) 

is used. 
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3 Result and Discussion 

 

Designing a 3D biomaterial, like a hydrogel has to fulfill several requirements. In the first place 

the used components have to be biocompatible, non-immunogenic and biodegradable. 

Furthermore, the hydrogel synthesis should avoid toxic coupling agents and harsh reaction 

conditions. Last but not least for the use as a biomaterial it is desired to have a hydrogel, which 

responses to environmental changes, like pH and temperature. 

Due to its properties, such as biocompatibility, biodegradability and its high abundance and 

functionality in the human body, HA is an attractive molecule as a compound for 3D - 

biomaterials. Under physiological conditions, HA is a polyanion associated with extracellular 

cations (Na+, Ca2+, Mg2+, K+) (Mero and Campisi, 2014). A characteristic of HA is the formation 

of several intramolecular hydrogen bonds, which stabilize the macromolecule in aqueous 

solutions. These bonds are formed both within the macromolecule between the neighboring 

hydrocarbon residues and the neighboring polymer chains (Haxaire et al., 2000). Hydrogen 

bonds are formed between the oxygen of the carboxyl group and the hydrogen of the acetyl 

amine group either directly or through an additional molecule of water that serves as a bridge. 

Additional hydrogen bonds are formed between the hydrogen of the hydroxyl group in the 

equatorial plane and the oxygen of the glycosidic bond (Chase, 1999) (Fig.15). 

 

 

 

Figure 15 HA tetrasaccharide structure. A tetrasaccharide fragment of HA comprising of two repeating 

disaccharides. Indicated are the five hydrogen bonds that stabilize the two-fold helix. 

Due to its conformation and molecular weight, HA can form molecular networks in solution. 

However, it is not able to form a structural stable gel by itself. In order to obtain such a 
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physically stable and mechanically robust HA-based hydrogel, a modification on the HA 

molecule structure needs to be inserted. Chemical modifications can be introduced at two 

functional sites of HA: the carboxylic acid group and the hydroxyl group. Additionally, an amino 

group can be recovered by deacetylation of the N-acetyl group. 

 

3.1 Influence of Physical Cross-links on Hydrogel Formation 

 

3.1.1 Chemical Conjugate vs. Chemical Cross-link 

 

HA hydrogels can be formed via chemically and physically cross-linking modified in two 

different ways: cross-linking or conjugation (Gregoritza, Goepferich and Brandl, 2016). Both, 

HA conjugation and HA cross-linking are based on the same reactions. However, for HA 

conjugation a compound is grafted onto one HA chain by a single bond only (Vogus et al., 

2017), which can then form physical cross-linking via hydrogen bonds and electrostatic 

interactions, resulting in a physical cross-linked hydrogel. For HA cross-linking different HA 

chains are linked together by covalent bonds (Dicker et al., 2012) (Fig.16). 
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Figure 16 Scheme of physically cross-linked hydrogel (a) based on chemical conjugate and chemically cross-linked 

hydrogel (b) based on chemical cross-link on polymer chain adapted from Schante, Zuber, & Vandamme, (2011). 

 

In order to develop a HA based hydrogel, which is formed under mild reaction conditions 

without any toxic coupling or toxic side products, I modified HA with hydrazides through 

carbodiimide-mediated coupling resulting in an HA-conjugate and an HA-cross-linking polymer 

chain. For the chemical conjugate (Fig. 17 a) I used 3-hydroxypropanehydrazide (R1) (HPH), 

which is able to form hydrogen bonds but no covalent bonds with another functionalized 

polymer chain, resulting in HA-HPH. For the chemical cross-linking (Fig.17 b) I used 3,3-

dithiobis (propanoic hydrazide) (R2) (DTP) resulting in HA-DTPH, which is able to form disulfide 

bonds with another polymer chain. Successful functionalization was confirmed by NMR 

measurements (see Appendix 6.1.1). 
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Figure 17 Functionalization of HA (74 kDa) with 3-hydroxypropanehydrazide (R1) (HPH) resulting in HA-HPH and 3,3-

dithiobis (propanoic acid) (R2) (DTP) resulting in HA-DTPH. The products were purified via dialysis to yield: HA-HPH 

= 25.1 mg (41%) and HA-DTPH = 18.7 (35%); functionalization degree of HA = 58%. 

 

In an attempt to examine whether functionalized HA-DTPH and HA-HPH are capable to form 

hydrogels, the flow inverted tube method was applied. HA-DTPH and HA-HPH showed no 

hydrogel formation under oxygen nor argon atmosphere at RT within a pH range from 7.5-8.5 

(in PBS or 150 mM borate buffer) within 24 hours. This study has not confirmed previous 

research on hydrogel formation of HA-DTPH of Shu et al. (2002), who showed hydrogel 

formation after 30 min under oxygen atmosphere. One main difference is the molecular size 

used, which might be the cause for the different results. Whereas Shu et al. used HA of 

120  kDa, 74 kDa experiments was used in the experiments reported here. Similarly, 

Hornof et  al. (2003) showed that thiolated chitosan, with a molecular weight of 20 kDa did 

not form a hydrogel, but rapid gel formation was observed when the molecular weight was 

increased to 300 kDa.  
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3.1.2 Introduction of additional Physical Cross-links  

 

3.1.2.1 Physico-Chemical Properties of dHA+ 

 

In an attempt to increase the stability of the network and thereby to increase the viscosity of 

the hydrogel a synthesized positively charged molecule specifically designed for HA networks 

was added. The designed molecule, based on the HA structure is synthesized by deacetylation 

of the acetamide group and acid catalyzed degradation of HA, resulting in a positively charged 

disaccharide unit of HA (dHA+) (Fig.18) (synthesis see 2.1.4; NMR see appendix 6.1.1). This 

synthesized dHA+ includes various advantages: (1) the maintenance of the biocompatibility, 

since the structure is based on HA, (2) it contains several hydroxy groups, which are able to 

form hydrogen bonds (Sintchak, 2000) and thus stabilizes the network and (3) it is positively 

charged and due to that capable to form electrostatic interactions and simultaneously form 

hydrogen bonds with the negatively charged groups on the polymer chain (Deng et al., 2020) 

resulting in a so called salt bridge (Schueler and Margalit, 1995). The advantage of such a 

positively charged molecule is the shielding effect of the remaining negative charge on the 

functionalized HA, resulting in less repulsive interaction and thus stabilizing the whole network 

(Noda et al., 2008). The second advantage of adding such a positively charged molecule is the 

ability to form physical cross-links, such as hydrogen bonds and salt bridges with the polymer 

chain, which also leads to higher stabilization and possible hydrogel network formation 

(Haxaire et al., 2000). Furthermore, by using a charged molecule I expect a higher response to 

environmental changes since charged molecules, for example, depending on the pH can 

associate or dissociate with hydrogen ions (O' Brien et al., 2013). Due to the negative charge 

on the carboxylic group the whole molecule is neutral at physiological pH. The “+” symbol 

indicates throughout the thesis the additional positive charge at the HA disaccharide unit and 

“d” will be used to refer to the disaccharide unit. The acid catalyzed degradation and 

deacetylation was performed based on Vibert et al. (2009).  
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Figure 18 Structure of positively charged disaccharide unit of HA (dHA+). The ionic cross-linker structure is based on 

the disaccharide unit of HA and is synthesized according to Vibert et al. (2009) and was in this process deacetlyated 

to generate a positively charged molecule (a) (see NMR Appendix). The positively charged amine groups were 

detected with a ninhydrin solution, and resulted in a pink color (b), charges of dHA+ at varying acidic, neutral and 

basic pH c) 

 

3.1.2.2 Impact of dHA+ on Hydrogel Formation  

 

In order to investigate the possible interaction of dHA+ with the polymer chain, dHA+ was 

added in a ratio of 1.0 to free remaining negatively charged groups on the functionalized HA 

of HA-HPH and HA-DTPH. Functionalization degree was determined beforehand by using 

Ellman’s assay for HA-DTPH to determine the amount of thiol groups on the polymer chain. 

The functionalization degree for HA-HPH was estimated to be the same as for HA-DTPH due 

to the same reaction conditions and reaction time. To test for potential gel formation a flow 

test utilizing an inverted tube test method was used (Fig.19).  
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Figure 19 Inverted tube test method for HA-HPH-dHA+ (a) and HA-DTPH-dHA+ (b). HA-HPH-dHA+ and HA- DTPH- dHA+ 

showed a solution (flow) – gel (no flow) transition after 24 hours of incubation under argon atmosphere at RT after 

24 hours of incubation. 

 

For both, HA-HPH-dHA+ and HA-DPTH-dHA+, I observed a solution (flow)- gel (no flow) 

transition at RT after 24 hours (Fig.19). This result supports the idea of increasing network 

stability, resulting in an increase in viscosity, due to the formation of physical cross-links 

induced by dHA+.  

 

To resolve the gel formation over time of HA-HPH-dHA+ and HA-DTPH-dHA+, I used shear 

rheology. This method was chosen because it provides information about the cross-linking 

density within the network, by measuring the storage modulus G’ and loss modulus G’’ (Franck 

et al., 2012). G’ represents the stored deformation energy and due to this the elastic portion 

(solid state behavior) of the viscoelastic behavior of the hydrogel sample during a shear 

process. G‘’ is characterized by the dissipated energy and represents the viscous portion of 

the viscoelastic behavior (Yan et al., 2011) (Metzger et.,2017). During the evolution of G’ and 

G’’, G’ and G’’ cross each other, which is defined as the “gel-point”. However, Winter et al. 

(1987) proclaimed that the crossover of G’ and G’’ depending on the used polymer might not 

be the exact “gel point” but still in vicinity. After the crossover G’ exceeding G’’ results in a 

more elastic like behavior. G’ > G’’ occurs due to the formation of cross-links within the 
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hydrogel network. Therefore, monitoring the temporal progress of G’ and G’’ a gelation 

process might be observed (Fig.20). 

 

 

Figure 20 Progression of storage modulus G’ and loss modulus G’’ of HA-HPH-dHA+ (a) and HA-DTPH-dHA+ (b). Data 

are measured over the course of 24 h with a solvent trap to prevent drying of the formed HA-HPH-dHA+ and 

HA- DTPH-dHA+ hydrogels. Both HA functionalities showed an increase of the storage modulus G’ and loss modulus 

G’’, reaching a plateau beyond the crossover point of G’ and G’’. G’ and G’’ are plotted in log10 scale. 

 

These measurements showed an increase in storage modulus G’ and loss modulus G’’ for both 

functionalized polymer samples, HA-HPH-dHA+ and HA-DTPH-dHA+. Starting the reaction, the 

storage modulus G’ exceeded the loss modulus G’’ after a certain time. The measured G’ at 

the plateau for HA-HPH-dHA+ is 8 Pa and for HA-DTPH-dHA+ it is 9 kPa. The measured 

“gel- point” for HA-HPH-dHA+ is 1.2 h and for HA-DTPH-dHA+ 0.6 h. As mentioned above G’ > 

G’’ indicates a more elastic behavior of the hydrogel sample and an increase in cross-links 

within the network. This cross-links as suggested before might be the formation of hydrogen 

bonds and salt bridges. Noda et al. (2008) reported an increase of the elastic modulus of HA 

after adding sucrose. Sucrose, which is also a saccharide, has the ability to form hydrogen 

bonds but in comparison to dHA+, it does not have a charged amine group. Noda et al. claims 

that sucrose increases the statistical interaction between hyaluronan macromolecules, which 

leads to a more rigid HA (Noda et al., 2008). This finding concurs well with the results I have 

gained. However, this might be valid for both hydrogel samples but nevertheless the 

measurements revealed a higher G’ for HA- DTPH- dHA+. This can be explained by different 
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origins of network formation. HA-HPH is a chemical conjugate which, only forms hydrogen 

bonds with another polymer. Only upon the addition of the ionic cross-linker dHA+ additional 

formation of physical cross-links was induced. Thus, increasing storage modulus is mainly 

based on physical cross-links. As for HA-DTPH-dHA+, HA-DTPH is a chemical cross-link with the 

ability to form covalent cross-links, mainly disulfide bonds, via the oxidation of thiol groups. 

Therefore, possible formed disulfide bonds could be the cause of the difference of the storage 

modulus G’ between HA-HPH-dHA+ and HA-DTPH-dHA+. Moreover, the “gel-point” of 

HA- HPH- dHA+ is lower than HA-DTPH-dHA+, which also supports the idea, that 

HA- HPH- dHA+ hydrogel formation is just based on physical cross-links, which cross-links the 

functionalized polymer chains faster than the formation of a possible chemical cross-link, in 

case of HA- DTPH- dHA+ hydrogel formation. 

 

In an attempt, to investigate now the structural stability, caused by the physical cross-links, of 

HA-HPH-dHA+ and HA-DTPH-dHA+ hydrogels over time, gels were prepared as described in 

defined teflon molds (r = 3 mm, h = 3 mm) (Fig. 21 a) (see 2.1.1) and incubated in an oxygen-

free atmosphere for 24 hours.  

 

 

 

Figure 21 HA-DTPH-dHA+ hydrogel. After incubation of HA-DTPH-dHA+ solution in defined teflon molds (a) for 24 

hours a structurally stable hydrogel was obtained. Side view (b); top view (c); diameter of the hydrogels is ~ 7 mm 

to 9 mm.   
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After 24 hours the HA-HPH-dHA+ solution was highly viscous without being able to maintain 

its structural integrity. Contrary to that, HA-DTPH-dHA+ gels maintained their structural 

stability character (Fig.21 b- c). All together, the findings of this experiments indicates that HA-

HPH, as a chemical conjugate, showed with dHA+ an increase in G’, due to the formed physical 

cross-links, but was not able to maintain the structure, supposedly because of its disability to 

form covalent bonds. Adding dHA+ to HA-DTPH lead to a higher G’ compared to HA-HPH-dHA+ 

and afterwards this was supported by the formation of a structurally stable hydrogel. I have 

to highlight that the difference of HA-HPH and HA-DTPH is the capability of HA-DTPH to form 

disulfide bonds via thiol groups, which might be the reason for the higher G’ and stable 

network structure. The most striking result to emerge from this experiments is that HA-DTPH 

is incapable to form hydrogels without dHA+ and adding dHA+ lead to a stiffer structurally 

stable hydrogel, supporting the idea that physical cross-link has an influence on hydrogel 

formation. In his analysis of the influence of especially hydrogen bonds Ballard et al., (2019) 

showed that the formation of honeycomb microstructure formed and given stability by 

hydrogen bonds. So further experimental investigations are needed to estimate the influence 

of the physical cross-link on the hydrogel formation and the physical properties, like 

mechanical stiffness, and possible participation of disulfide bonds in the hydrogel formation 

process.  

 

3.2 Impact of Physical and Chemical Cross-links on Hydrogel 

Formation 

 

Next I investigated the mechanisms underlying the gel formation: physical cross-link via 

hydrogen bond and salt bridge formation, and chemical cross-link via disulfide bond 

formation. To study the influence of the physical cross-link, I used two different ionic cross-

linker, additionally to dHA+, varying the capability of hydrogen bond formation. To examine 

the chemical cross-link, I varied the functionalization degree of the polymer chain.  
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3.2.1 Introduction of GluA+ and NH4
+ 

 

To vary the hydrogen bond formation ability of the ionic cross-linker, I used glucosamine 

hydrochloride (GluA+), which is a positive charged ionic cross-linker like dHA+. Though GluA+ 

is only one building block of the disaccharide unit of HA it forms less hydrogen bonds than 

dHA+. Ammonium chloride (NH4
+), is also positively charged and can form in total only four 

hydrogen bonds. As they all contain a positively charged amine group they are able to form 

salt bridges, leading to stabilizing effect on the network (Fig.22). 

 

 

 

Figure 22 Scheme of the used ionic cross-linkers. dHA+ (disaccharide unit of HA), GluA+ (positively charged 

glucosamine) and NH4
+ (ammonium chloride). The capability to form hydrogen bonds is decreasing from dHA+ to 

GluA+ to NH4
+. All of them can form salt bridges. Additionally, dHA+ is negatively charged on the carboxyl group of 

the glucuronic acid moiety. 
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3.2.2 Impact of GluA+ and NH4
+ on Hydrogel formation 

 

In order to test the ability of the ionic cross-linker GluA+ and NH4
+ to enhance the possible 

hydrogel formation based on HA-DTPH an inverted tube assay was performed. Therefore, 

GluA+ and NH4
+ were added to a HA-DTPH solution.  

 

The solution (flow) -  gel (no flow) transition was tested after 24 hours under argon 

atmosphere at RT (Fig.23).  

 

 

 

Figure 23 Inverted tube assay for HA-DTPH-GluA+ (a) and HA-DTPH-NH4
+ (b). Both hydrogels, showed a solution (flow) 

– gel (no flow) transition under argon atmosphere at RT after 24 hours of incubation. 

 

Addition of GluA+ and NH4
+ to the HA-DTPH solution with subsequent incubation under argon 

atmosphere induces an observable solution (flow)- gel (no flow) transition and thus gel 

formation after 24 hours at RT (Fig.23). These transition confirms the idea that adding an ionic 

cross-linker, which is capable to form physical cross-links enhances the hydrogel formation. 

Regarding, these results it has to be highlighted that NH4
+, which has the lowest capability to 

form hydrogen bonds already has an enhancing effect on the hydrogel formation.  
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3.2.3 Varying the Chemical Cross-link 

 

The number of possible chemical cross-links was modified by varying the degree of 

functionalization on the carboxyl groups of the glucuronic acid moiety of HA. The degree of 

functionalization was determined by the free thiol groups using the Elman´s assay (see in 

2.5.1). 

 

Table 2 Different degrees of thiolation for 74 kDa HA were achieved with longer reaction times. This table summarizes 

the different reaction times, in conjugation with the resulting degrees of thiolation for 74 kDa. HA-DTPH with a 

thiolation degree of 29 ± 4%, 42 ± 2 and 58 ± 5% were used. 

 

Molar ratio of 
HA : DTP : EDCl 

HA batch 
(Lifecore-Biomdical) 

Reaction time Degree of thiolation 
HA-DTPHx 

1:1:1 024367 20 min 29 ± 4% 
1:1:1 024367 40 min 42 ± 2% 
1:1:1 024367 60 min 58 ± 5% 

 

Different degrees in thiolation of HA using DTPH were achieved by increasing the reaction time 

(Tab.2). Throughout this thesis the functionalization degree of the used HA-DTPH will be 

indicated by the superscript number “x” in HA-DTPHx. Varying the amount of free thiols by 

different functionalization degrees, provides the possibility of a changing amount of formed 

disulfide bonds. Breakspear et al. (2019) reported already the influence of the amount of free 

thiol groups on the formation of possible disulfide bonds by establishing a keratin based 

hydrogel based on the amount of formed disulfide bonds. He concludes that increasing 

disulfide bonds leads further to a higher mechanical strength, which I will examine in the 

further experiments.  
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3.2.4 Taking a Closer Look on the Hydrogel Formation 

3.2.4.1 Progress of Hydrogel Formation Depending on Physical and Chemical Crosslinks 

 

To further investigate the hydrogel formation in dependency of physical cross-links, based on 

the used ionic cross-linker, and chemical cross-links, based on the functionalization degree of 

HA- DTPH, the progression of G’ and G’’ was monitored as described in 2.5.2.1 (Fig. 24). 

 

 

Figure 24 Progression of storage modulus G’ and loss modulus G’’ during gelation of HA-DTPH29% -NH4
+ (a), -GluA+ 

(b),- dHA+ (c); HA-DTPH42% -NH4
+ (d), -GluA+ (e),- dHA+ (f); HA-DTPH58% -NH4

+ (g), -GluA+ (h),- dHA+ (i). Ionic cross-linker 

ratio of 1.0 to remaining free negative charged groups on HA-DTPH.G’ and G’’ are plotted in log10 scale.  

 

A typically progress could be observed for most of the hydrogel conditions (Fig.24). Initially G’’ 

is higher than G’. In the course of the polymerization process, G’ is exceeding G’’ and finally 

reaching a plateau. In the beginning, higher G’’ means that the sample behaves as a viscous-

liquid system first. When the sample starts to gel, G’ grows faster as the cross linking reaction 

starts. When G’ is equal to G’’ the "gel point" is reached and with further cross-linking within 

the hydrogel G’ exceeds G’’. The time, when both curves are flattening indicates the end of 
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the cross-linking reaction (Fig.24). However, this method has some unexpected limitations. (1) 

Few hydrogel conditions (Fig.24 a, b, d, g) showed at the beginning of the gel formation 

progress G’ > G’’ with a missing crossover of G’ and G’’, is caused likely, because hydrogel 

formation occurred while loading the sample. (2) Due to the experimental setup the formed 

hydrogels dried out, which is indicated by the decrease of G’ and G’’ after reaching the plateau 

(Fig. 24 d, h). To prevent the evaporation of the solvent, measurements were stopped directly 

after G’ reached the plateau (Fig. 24 b-c, e-f, i). Despite the limitations of this method, and 

consequently the results, however suggests a successful gelation process. To gain a better 

overview and for comparison purposes the “gel-point” and the storage modulus G’ of the 

plateau, for each hydrogel condition respectively, “gel-point” and storage modulus G’ values 

are extracted out of the curves (Fig.24) and listed in Tab.3.  

 

Table 3 Determination of the gelation time t “gel point” and storage modulus G’ at the plateau in dependency of the 

thiolation degree and applied ionic cross-linker. Gelation time defined as t at the time point, when the storage 

modulus G’ is equal to the loss modulus G’’’. This indicates the start of cross-link formation and gelation of the 

solution. Each data point was measured after 5 min, for some hydrogels cross-over time point is before the first 5 

min of measurements, thus visualization was not possible. The storage modulus G’ measured at the plateau is 

increasing with the increasing capability of the used ionic cross-linker and with increasing thiolation degree.  

 

 

 

 

 

 

 

 

 

 

 

Thiolation degree of 

HA-DTPH 

Used ionic 

cross-linker 

t at „gel point“ 

[min] 

Storage modulus G‘ 

[kPa] 

29% 

dHA+ 

GluA+ 

NH4
+ 

15 9.6 

> 5 7.2 

> 5 1.4 

42% 

dHA+ 

GluA+ 

NH4
+ 

270 9.9 

168 8.5 

> 5 7.3 

58% 

dHA+ 

GluA+ 

NH4
+ 

30 13.7 

12 12.3 

> 5 7.2 
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From Tab. 3 it can be noted, that the “gel-point” was decreasing from HA-DTPH-dHA+ to 

HA- DTPH-GluA+, and HA-DTPH-NH4
+ showed the lowest “gel-point”. Further it is increasing 

with increasing thiolation degree, with the exception that HA-DTPH42% has a higher “gel-point” 

than HA-DTPH58%. As for the storage modulus, it was increasing from HA-DTPH-NH4
+ to HA-

DTPH-GluA+ and HA- DTPH-dHA+ showed the highest storage modulus. The same trend was 

observed with increasing thiolation degree. This is consistent with the idea that the possible 

formation of disulfide bonds influences directly the hydrogel formation (Cao et al., 2019).  

The differences of the occurring “gel-point” in dependency of the used ionic cross-linker could 

be caused by the molecule size of the ionic cross-linker. Since, the so called “gel-point” is 

referred to the critical point where the gel first appears (Krog and Version, 2010), it is based 

on the first interaction of the ionic cross-linker and HA-DTPH. Considering the size of the ionic 

cross-linker NH4
+, as the smallest ionic cross-linker, the diffusion within the polymer chain is 

favored and results in a faster first interaction (Sandrin et al., 2016). Additionally, the 

thiolation degree has also an influence on the “gel-point”. This could occur, because of the 

decreasing entanglement of the polymer chain with increasing thiolation degree (Bi et al., 

2010) (Phys and Grest, 2016). Increasing functionalization of the negative charged carboxyl 

group leads to a decrease in repulsion of the polymer chains with each other or also within 

one polymer chain, which could result in an increase in entanglement (Tanaka, Adachi and 

Chujo, 2010). However, these results thus need to be interpreted with caution, due to the 

limitations of the experimental set up. Still, the increasing storage modulus G’ with increasing 

thiolation degree leads to the assumption that the thiol groups may play a key role in the 

hydrogel formation.  

 

3.2.4.2 Disulfide Bond Formation during Hydrogel Formation  

 

To investigate the possible participation of the thiol groups on the hydrogel formation, the 

amount of reacted thiols inside the hydrogels during hydrogel formation is measured with an 

adapted Ellman’s assay as described in 2.5.1 (Fig.25). In total five hydrogel conditions were 

tested: (1) HA-DTPH without an ionic cross-linker (2) HA-DTPH with the three different ionic 

cross-linker HA-DTPH-Cl+, “Cl+” indicates here any positively charged ionic cross-linker (NH4
+, 
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GluA+, dHA+) and (3) HA- DTPH- Ox. The last one (HA-DTPH-Ox.) was established by Zheng et 

al. (2003). It is a disulfide bond based HA hydrogel system, which refers to the oxidized form 

of HA-DTPH. It is synthesized by the incubation of HA-DTPH for 72 hours under oxygen 

atmosphere and subsequently oxidized with 0.3% hydrogen peroxide. In this thesis 

HA- DTPH- Ox. will serve as a comparable hydrogel system, which is just based on chemical 

cross-link, mainly disulfide bonds and helps to distinguish the influence of the physical cross-

link formed by the added ionic cross-linker on the properties of the hydrogel. The abbreviation 

“Ox.” indicates throughout this thesis the oxidized hydrogel form of HA-DTPH. 

 

Figure 25 Detection of free thiol groups of HA-DTPH, HA-DTPH-Cl+ and HA-DTPH-Ox. hydrogels based on Elman’s 

assay. Elman’s were performed at defined time points after preparing the gel solution. For HA-DTPH-Cl+ a rapid 

decrease of free thiol groups occurred within 24 hours. Much slower decrease of free thiol groups were observed 

for HA-DTPH solutions without an ionic cross-linker. Subsequently oxidizing HA-DTPH to HA-DTPH-Ox. lead to a 

decrease of free thiol groups. representative values of one of three independent experiments; icon size exceeds SD; 

mean and standard deviation of triplicate are presented. 
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The Elman’s assay showed a significant difference between the amount of free thiol groups of 

HA- DTPH-Cl+ and HA-DTPH hydrogels. Interestingly a rapid decrease of free thiol groups is 

observed for HA-DTPH-Cl+ hydrogels. In comparison a much slower decrease is observed for 

HA-DTPH. For HA-DTPH29% I measured a decrease from 100% free thiol groups to 36 ± 0.08% 

within 24 hours, whereas for HA-DTPH29%-NH4
+ a decrease from 100% to 33 ± 0.03%, for HA-

DTPH29%-GluA+ from 100% to 10%±0.02 and for HA-DTPH29%-dHA+ from 100% to 7 ± 0.02% 

was observed. The same trend is seen for HA-DTPH42% and HA-DTPH58% with and without 

cross-linker, respectively. The decrease of the amount of free thiol groups within 72 hours gets 

slower. The amount of free thiol groups of HA-DTPH29% decreases within 72 hours from 36 ± 

0.08% to 20 ± 0.03%. Subsequently, incubation of HA-DTPH29% with 0.3% H2O2 lead to a 

decrease of free thiol groups from 20 ± 0.03% to 7.5 ±0.08 %.  

 

The most striking result to emerge from the data is that the free thiol groups reacted rapidly 

to disulfide bonds upon addition of the ionic cross-linker after 24 hours. Considering the 

hypothesis that the used ionic cross-linker stabilizes and tightens the hydrogel network, due 

to the formation of hydrogen bonds and salt bridges, the results are on the same page, 

resulting in an enhancement of the covalent network formation, mainly the disulfide bond 

formation. The ionic cross-linker dHA+ forms the highest amount of hydrogen bonds within 

the tested cross-linker and therefore has the capability to stabilize the system the most and 

thus brings the thiol groups in a close proximity, to enable their reaction with each other 

(Hobert et al., 2014). The less formed disulfide bonds upon using GluA+ and NH4
+, is consistent 

with idea that with decreasing capability to form hydrogen bonds the stabilizing and tightening 

effect is decreasing and free thiol groups are in less proximity to react with each other (Rajpal 

et al., 2013). Additionally, to the effect of the formed hydrogen bonds and salt bridges, some 

examples in the literature revealed that the pKa of thiols can be shifted, induced by 

electrostatic interaction with neighboring ionizable groups and polar residues or both. 

Resulting in the ease of oxidation of the free thiol groups to the corresponding disulfide (Kuo, 

Swann and Prestwich, 1991). Considering the results of HA-DTPH-NH4
+ and HA-DTPH after 72 

hours has further strengthened the idea of the stabilizing effect of physical cross-links. HA-

DTPH is not able to maintain its structural integrity, although the amount of free thiol group 
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of HA-DTPH-NH4
+ and HA-DTPH is almost the same, only upon incubation with H2O2 the 

amount of free thiol groups is reduced. Incubation with 0.3% H2O2 led as reported by 

Weinfurtner et al. (2018) to the oxidation of free thiol groups and results in the formation of 

disulfide bonds. But it should be noted that oxidizing of HA-DTPH is not feasible before 72 

hours, implicating that a certain amount of free thiol groups has to be formed to withstand 

the diffusion of H2O2. This is in good agreement with the work of Rehor et al. (2008), who 

measured, after exposing cysteine thiols to air for 48 hours, 22% of free thiols from the initial 

number.  

 

Taken together, these findings support the idea of utilizing charged positive molecules with 

the capability to form hydrogen bonds, such as dHA+, GluA+ and NH4
+, as ionic cross-linker. 

Two impact factors of dHA+, GluA+ and NH4
+ has to be highlighted: (1) inducing the disulfide 

bond formation and (2) stabilizing and tightening the hydrogel network via formation of 

hydrogen bonds and salt bridges. Resulting in a hybrid double cross-linked hydrogel, HA-

DTPH-Cl+, consisting of chemically and physically cross-links.  

 

A suggested possible structure of the formed HA-DTPH-Ox. and HA-DTPH-Cl+ hydrogels are 

shown in Fig. 26. Main advantage of the developed HA-DTPH-Cl+ hydrogel system is first the 

avoidability of a coupling toxic agent, such as H2O2, like it is needed for HA-DTPH-Ox. This 

makes the hydrogel system suitable for any kind of cell included study. Moreover, it consists 

of just one main component, namely HA, so based on the bottom-up approach of the synthetic 

biology it is suited to study the role of the ECM only concentrated on HA without any 

disturbing site effects of other proteins or components of the ECM. This is a great benefit to 

study cell behavior or by added factors induced cell behavior in a reduced ECM environment. 
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Figure 26 Suggested network formation of HA-DTPH-Ox. hydrogel and HA-DTPH-Cl+ hydrogels (b-d). a Formation of 

HA-DTPH-Ox. hydrogels are based on disulfide formation b-d Formation of HA-DTPH-NH4
+ (b), HA-DTPH-GluA+(c) 

and HA-DTPH-dHA+ hydrogels are based on additional physical cross-links like hydrogen bonds and salt bridges.  
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3.3 Physical and Chemical Cross-link influence on Mechanical 

Stiffness 

 

As mentioned above G’ gives information about the mechanical properties and the influence 

of physical and chemical cross-links within the hydrogel. Moreover, it gives insight into the 

elastic behavior of the hydrogel system. However, by definition the storage modulus G’ 

resembles the stored energy of an applied force but not the exact stiffness of the hydrogel.  

 

Therefore, HA-DTPH-Cl+ and HA-DTPH-Ox. hydrogels were prepared as described in 

2.4.1/2.4.2 and the so called Young’s modulus of fully in water swollen hydrogels was 

measured via compression in bulk rheology (Fig.27). 
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Figure 27 Young’s modulus of HA-DTPH-Cl+ and HA-DTPH-Ox. after being swollen in water. Young’s moduli of 

HA- DTPH- Cl+ are increasing with the capacity to form hydrogen bonds based on the used cross-linker and with 

increasing thiolation degree. Young’s moduli of HA-DTPH-Ox. hydrogels are lower compared to the respective 

thiolation degree of HA-DTPH-Cl+; mean and standard deviation of triplicates are presented. 
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The analysis of the Young’s modulus revealed a significant difference between HA-DTPH-Ox. 

HA-DTPH-CL+ hydrogels. HA-DTPH29%-Ox. hydrogels after being swollen in H2O have the 

lowest Young’s modulus with 0.1 ± 0.06 kPa, increasing with increasing thiolation degree to 

0.4 ± 0.2 kPa for HA-DTPH42% and 1.2 ± 0.3 kPa for HA-DTPH58%. As for HA-DTPH-Cl+ hydrogels 

the Young’s modulus is increasing with increasing capability to form hydrogen bonds of the 

used ionic cross-linker. A common trend for both, HA-DTPH-Ox. and HA-DTPH-Cl+, is the 

increasing Young’s modulus with increasing thiolation degree. The Young’s modulus for 

HA- DTPH29%-NH4
+ is 0.8 kPa, for HA-DTPH42%-NH4

+ 1.5 ± 0.3 kPa and for HA-DTPH58%-NH4
+ 

2.4 ± 0.08 kPa. For HA-DTPH-GluA+ the Young’s modulus is increasing from 1.3 ± 0.2 kPa for 

the lowest thiolation degree, to 3.2 ± 0.06 kPa for HA-DTPH42% and for the HA-DTPH58% it is 

4.0 ± 0.3 kPa. The highest Young’s modulus was measured for HA-DTPH-dHA+. For a thiolation 

degree of 29% it is 2.9 ± 0.6 kPa, for a thiolation degree of 42% it is 4.2 ± 0.3 kPa and for 58% 

thiolated HA it is 7.2 ± 0.7 kPa. The differences of the Young’s modulus between HA-DTPH-Ox. 

and HA-DTPH-Cl+ hydrogels strengthened the hypothesis of the influence of additionally 

formed physical cross-links on the mechanical stiffness. Due to the formation of hydrogen 

bonds and salt bridges the network tightens and get stiffer. The results regarding the used 

ionic ross-linker correlates satisfactorily with the previous findings regarding the storage 

modulus G’. The increasing Young’s modulus from dHA+ to GluA+ and to NH4
+ supported the 

idea of the increasing capability to from hydrogen bonds, hereby stabilizing and tightening the 

network.  
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3.3.1 Disulfide Dependent Mechanical Stiffness 

 

By plotting the amount of free thiol groups within each hydrogel against the Young’s modulus 

the influence of the formed chemical cross-links is highlighted (Fig.28). 

 

 

Figure 28 Young’s modulus of HA-DTPH-Cl+ and HA-DTPH-Ox. for three different thiolation degrees against the 

amount of free thiol groups in % within the hydrogel measured by using the Ellman’s assay. For HA-DTPH-Cl+ the 

Young’s modulus is correlating with the amount of free thiol groups. With increasing free thiol groups the Young’s 

modulus is decreasing. As for HA-DTPH-Ox. a negative correlation can be observed. Less free thiol groups result in 

a very soft hydrogel. 

 

Plotting the Young’s modulus against the amount of free thiol groups reveals an increase in 

free thiol groups for HA-DTPH-Cl+ hydrogels resulting in a decrease of the Young’s modulus. 

In comparison to HA-DTPH-Ox. hydrogels the correlation between Young’s modulus and the 

amount of free thiol groups is negative for all thiolation degrees. Hence, two conclusions can 
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be made for HA-DTPH-Cl+ hydrogels: (1) More reacting thiol groups lead to more disulfide 

bonds which results in a tighter network. This is observed in an increase in the Young’s 

modulus from dHA+ to GluA+ to NH4
+ cross-linkers. (2) An increase of the thiolation degree 

leads to more chemical cross-links within the network and this results in an increase of the 

Young’s modulus. Comparing HA-DTPH-Cl+ hydrogels to HA-DTPH-Ox. hydrogels, the 

influence on the stiffness of the physical cross-link is remarkable. Although HA-DTPH-Ox. has 

less free thiol groups, resulting in more disulfide bonds, HA-DTPH-Ox. hydrogels are a softer. 

It is plausible that one limitation may have influenced the results obtained. Lee et al. (2017) 

showed that mechanical force, like compression and tension, mediates disulfide bond rapture. 

He exposed gels to range of compression strains from 0 to 40% for 30 seconds and observed 

the beginning of the rupture of the disulfide bonds at 10% strain. Since due to technical 

limitations I used a strain of 10% in my measurements, which may have led to the rapture of 

disulfide bonds and resulted in a lower Young’s modulus. However, overall the results 

indicated that the strain-responsive nature of the gels allows accurate control over stiffness 

through thiol density. 
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3.3.2 Varying the Amount of dHA+ 

 

Since, previous results showed that the Young’s modulus can be varied by using different 

thiolation degrees which ends up in different amounts of disulfide bonds leading to varying 

tightening effect of the network. Next, I varied the ratio of dHA+ to the remaining free negative 

charged groups on HA-DTPH58% to analyze the influence of physical cross-links on the Young’s 

modulus (Fig.29). 
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Figure 29 Young’s modulus of HA-DTPH58%-dHA+ in dependency of dHA+. dHA+ was varied from 0.5 to 5 to the free 

remaining negative charged groups on HA-DTPH58%. Young’s modulus of HA-DTPH-dHA+ hydrogels is increasing 

with increasing cross-linker ratio; triplicates are presented. 

 

Adding dHA+ in different concentrations a clear trend occurred. Below the ratio of 1.0 of the 

ionic cross-linker to the negative charged groups on the polymer chain the Young’s modulus 

is 1.4 ± 0.2 kPa. Increasing the cross-linker concentration leads to increase of the Young’s 

modulus up to 30.6 ± 4.5 kPa for cross-linker ratio 5.0.  

 

This result shows that the hydrogel stiffness can be clearly varied by using different ionic cross-

linker, with different abilities to form physical cross-links. Moreover, hydrogel stiffness can be 
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varied by varying the concentration of used ionic cross-linker. This is explained by the fact that 

more hydrogen bonds are be formed and thus the stiffness of the gel is increasing. The main 

conclusion is, that the chemical cross-link is especially responsible for the structural stability 

and mediates the formation of a stable backbone. Upon adding an ionic cross-linker disulfide 

bonds are formed and a structural stable backbone via disulfide bonds is generated. By this 

oxidation of thiol groups with hydrogen peroxide is avoided. The here presented hybrid double 

cross-linked HA-based hydrogels thus present a biocompatible system. Furthermore, the 

usage of ionic cross-linker holds the potential to form hydrogels with tunable stiffness 

depending on the number of physical cross-links, such as hydrogen bonds. Although hydrogen 

bonds are an order of magnitude weaker than ionic and covalent bonds, I have established a 

form stable, dynamic network structure combining physically and chemically cross-links. 

Despite the weakness of each physical cross-link, the multiplicity of such links makes the gel 

network structures quite stable (R. Zhang et. al). Overall, this system has several advantages 

including: (1) simple chemistry, (2) tunable mechanical stiffness, and (3) biocompatible 

hydrogel synthesis. Given the ability to control and tune the mechanical stiffness makes the 

hydrogel system usable for various biomedical application (Hu et al., 2015). This includes cell 

study behavior and differentiation studies of stem cells in a 3D environment. For example, 

mesenchymal stem cells (MSCs) cultured in hydrogels with stiffness of lower (0.1–1 kPa), 

intermediate (8–17 kPa) or higher ranges (34 kPa) can differentiate into neural, myogenic or 

osteogenic phenotypes, respectively (Engler et al., 2006).  

 

3.4 Swelling Behavior of Hybrid Double Cross-linked Hydrogel  

 

One of the most remarkable properties of HA is its high water affinity. Due to the negative 

charge of the carboxylic group within the chain, one HA polymer can bind and retain a high 

amount of water (Papakonstantinou, Roth and Karakiulakis, 2012). Hydration plays a key role 

in all cellular progresses and functions, therefore the characterization of the established 

hydrogel regarding the water uptake ability is indispensable. Especially in respect of future 

biomedical applications field of the designed ECM mimetic. A characteristic of hydrogels built 
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up of polymers is, that they swell but not dissolve when water or a solvent enters it (Kim et 

al., 2012). The swelling properties, which usually use degree of swelling to define hydrogels, 

depend on many factors, such as the network density, nature of the solvent as well as polymer 

solvent interaction parameters. Generally, the degree of cross-linking influences the area 

permitted for diffusion across the hydrogel network and, subsequently, the capacity for 

hydrogels to take up water (Brannon-peppas & Peppas, 1990). 

 

3.4.1 Swelling Ratio in Water  

 

In order to analyze the water uptake capacity of the hydrogels presented in this work, I 

determined the swelling ratio QM of HA-DTPH-Ox. and HA-DTPH-Cl+ hydrogels in water at 

room temperature. Therefore, hydrogels were prepared as described in the 2.4.1/2.4.2 and 

were subsequently placed in water. Equilibrium of swelling was reached within one hour 

(Fig.30).  
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Figure 30 Swelling ratios of HA-DTPH-Cl+ and HA-DTPH-Ox. hydrogels in water at room temperature after reaching 

equilibrium. Swelling ratios of HA-DTPH-Cl+ and HA-DTPH-Ox. hydrogels in water at room temperature show lower 

swelling ratios for HA-DTPH-Ox. in comparison to respective HA-DTPH-CL+ hydrogels and an overall decreasing 

swelling capacity with increasing degree of thiolation. Swelling ratios are calculated by dividing the weight of the 

hydrogels in the respective solution by the dry weight of the hydrogels (determined by freeze-drying), triplicates are 

presented.  
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For HA-DTPH-Cl+ a clear trend of the swelling behavior is observed. Swelling ratio is increasing 

from dHA+ and GluA+ to NH4
+. Oxidized hydrogels HA-DTPH-Ox. show lowest swelling ratios 

compared to hydrogels with ionic cross-linker HA-DTPH-Cl+. This difference is most obvious 

for HA-DTPH29%-NH4
+ hydrogels with 319.1 ± 28.7 and decrease to 40.6 ± 5.2 for 

HA- DTPH29%- Ox. hydrogels. Another interdependence is the increasing swelling ratio with 

decreasing degree of thiolation. For example, when dHA+ is used as a cross-linker, swelling 

ratios are ranging from 43.5 ± 1.5 for HA-DTPH58% to 86.2 ± 8.4 for HA-DTPH29%. As for the 

cross-linker GluA+ swelling ratio is increasing from 133.7 ± 4.6 for HA-DTPH58% to 221.6 ± 8.7 

for HA-DTPH29%. For hydrogels with NH4
+ as a cross-linker swelling ratios are ranging from 

160.7 ± 9.4 for HA-DTPH58% to 319.1 ± 28.7 for HA-DTPH29%. Swelling ratios of HA-DTPH-Cl+ 

are correlating with the used ionic cross-linker and used functionalization degree of HA-DTPH. 

Mainly, swelling ratio is decreasing with (1) increasing capacity to form hydrogen bonds of the 

used ionic cross-linker and (2) increasing number of thiol bridges at higher degrees of 

thiolation. This can be attributed to the rising cross-links within the hydrogel network which 

results in a decreasing capacity of the hydrogels to take up water.  
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By plotting the swelling ratio for each hydrogel against the Young’s modulus the correlation 

between swelling ratio and Young’s modulus is highlighted (Fig.31).  

 

 

Figure 31 Swelling ratios of HA-DTPH-Cl+ and HA-DTPH-Ox. hydrogels against the obtained Young’s modulus in 3.3. 

Swelling ratios of HA-DTPH-Cl+ are decreasing with increasing Young’s modulus. HA-DTPH-Ox. albeit it is softer than 

HA- DTPH-Cl+, HA-DTPH-Ox shows the lowest swelling ratio. 

Swelling ratios obtained for HA-DTPH-Cl+ are in accordance with hydrogel stiffness as swelling 

ratio is lower with higher Young’s modulus based on increasing covalent and/or physical cross-

links. A remarkably surprising result is the swelling ratio of HA-DTPH-Ox. compared to the 

swelling ratio of HA-DTPH-Cl+. Albeit it is according to its Young’s modulus softer, 

HA- DTPH- Ox shows the lowest swelling ratio. The cause for this different swelling behavior 

of HA-DTPH-Cl+ and HA-DTPH-Ox. hydrogel could be ascribed to several different 

mechanisms. By introducing different ionic cross-linkers with several hydrophilic chemical 

residues like hydroxyl groups (-OH) in case of dHA+ and GluA+ the water absorbing properties 
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within the network increases. Another mechanism could be by the so called forward osmosis. 

In this case water molecules diffuse, following the osmotic pressure, from a solution with 

lower osmotic pressure to another solution with higher osmotic pressure. By adding charged 

molecules to the hydrogels, the osmotic pressure inside the hydrogel network increases and 

thus the water diffusion inside the hydrogel. Such a mechanism of osmotic driving forces 

during the hydrogel swelling process, gives the opportunity to tune the dependence between 

stiffness and swelling ratio. This could be further examined by analyzing the swelling ratio with 

increasing ionic cross-linker concentration within the hydrogel. Tuning the dependence of 

hydrogel stiffness and swelling ratio was also described by Cha et al. (2011). He incorporated 

a polymer chain with hydrophobic moieties inside of a poly (ethylene glycol) diacrylate 

(PEGDA) hydrogel and observed a decrease in the Young’s modulus, by tuning the cross-links 

within the hydrogel, which caused just a minimal increase in the swelling ratio, due to the 

hydrophobic moieties. 
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3.2.1.1 Calculated Mesh Size of in Water Swollen Hydrogels 

 

In order to analyze the different swelling behavior in consideration of the mesh sizes of 

HA- DTPH- Cl+ and HA-DTPH-Ox. hydrogels, the mesh sizes are calculated as described in 2.5.5. 

These calculations are based on the swelling ratios of HA-DTPH-Cl+ and HA-DTPH-Ox. 

hydrogels in water (Fig.32).  

 

H
2
O

2

d
H

A
+

G
lu

A
+

N
H

4

+

0

1 0

2 0

3 0

4 0

5 0

m
e

s
h

 s
iz

e
 [

n
m

]

H A-DTPH
58%

H A-DTPH
42%

H A-DTPH
29%

 

 

Figure 32 Mesh sizes for HA-DPTH-Cl+ and HA-DTPH-Ox. calculated from the corresponding swelling ratios QM. Mesh 

sizes of HA-DTPH-Cl+ and HA-DTPH-Ox. in water at room temperature are increasing for HA-DTPH-Cl+ respectively 

for the used ionic cross-linker and its increasing capability to form hydrogen bonds and are decreasing with 

increasing thiolation degree. HA-DTPH-Ox. hydrogels compared to HA-DTPH-Cl+ the mesh sizes are smaller and 

increasing of thiolation degree has a smaller effect on decreasing mesh sizes. Mesh sizes are highly correlated with 

the swelling ratios, triplicates are presented. 

 

In accordance to the swelling ratios, mesh sizes for HA-DTPH-Cl+ hydrogels are increasing with 

decreasing capacity to form hydrogen bonds of the used ionic cross-linker. Additionally, mesh 

sizes are decreasing with increasing thiolation degree. Comparing the mesh size depending on 

the degree of thiolation HA-DTPH-Cl+ are always higher than comparable mesh sizes of HA-

DTPH-Ox. hydrogels (Fig.32). For example, when dHA+ is used as a cross-linker, mesh sizes are 

ranging from 15 ± 3 nm for HA-DTPH58% to 23 ± 2.3 nm for HA-DTPH29%. As for the cross-linker 
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GluA+ mesh size is increasing from 22 ± 1.7 nm for HA-DTPH58% to 27 ± 2.7 nm for HA-DTPH29%. 

For hydrogels with NH4
+ as a cross-linker, mesh sizes are ranging from 23 ± 3 nm for HA-

DTPH58% to 35 ± 5 nm for HA- DTPH29%. Mesh sizes of HA-DTPH-Ox. are increasing from 13 ± 

1.2 nm for HA-DTPH58% to 19 ± 1.5 nm for HA-DTPH29%.  

 

By plotting mesh sizes against the amount of free thiol groups within the network, the 

influence of the formed disulfide bonds on the mesh size is determined (Fig. 33). 

 

 

 

Figure 33 Mesh sizes of HA-DTPH-Cl+ and HA-DTPH-Ox. for three different thiolation degrees against the amount of 

free thiol groups in % within the hydrogel measured by using the Ellman’s assay suggest a strong correlation of the 

amount of formed disulfide bonds with mesh sizes. Mesh sizes are correlating with the amount of free thiol groups 

with increasing amount of disulfide bonds mesh sizes are decreasing since the network has more covalent cross-

links. 
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Figure 33 depicts the correlation of mesh sizes and free thiol groups of HA-DTPH-Cl+ and HA-

DTPH-Ox. hydrogels. The mesh size is increasing with increasing free thiol groups within the 

hydrogel network. Conversely, this means that with increasing number of disulfide bonds the 

mesh size is decreasing. Another observation is the increase of the mesh size with decreasing 

thiolation degree. Typically, more disulfide bonds are equated with more covalent cross-links, 

which is mainly the cause for varying mesh sizes. Since physical cross-links are dynamic and 

reversible the influence on the mesh size is not as crucial as the formation of covalent cross-

links like disulfide bonds (Miwa, Kurachi, Kohbara, & Kutsumizu, 2018).  

 

These findings support the idea of increasing amount of formed disulfide bonds leading to the 

increase of the amount of formed pores. Various biomedical applications are utilizing the 

mesh size. For example, controlled drug delivery is dependent on the mesh size. It determines 

the diffusion of drugs through the hydrogel network and is controlled due to the steric 

interaction between the drug and the polymer network. In case of a larger mesh than the drug, 

the diffusion process is independent from the mesh size and the drug will be released without 

control (Li and Mooney, 2018). When the mesh size approaches the drug size, the diffusion of 

the drug experience a steric hindrance (Lin et al., 2005). Larger drugs than the mesh is 

effectively immobilizing the drug inside the hydrogel network and released upon hydrogel 

degradation. Since, controlled drug delivery is desired, by knowing the mesh size the diffusion 

of molecules in and through the hydrogel network can be predicted.  

 

3.4.2 External stimuli dependent swelling behavior 

 

Biomedical applications, such as drug delivery are not only dependent on the mesh size but 

also on the swelling of the hydrogel upon environmental changes, such as temperature, pH 

and ionic concentration. As a hydrogel swells, the mesh size increases and the entrapped 

molecules are released at the desired target site upon the external stimuli. Therefore, the 

ability to display a measurable change in volume in response to external stimuli is crucial. 

Some hydrogels exhibit this volume change by swelling and shrinking, while others undergo 

transitions between sol and gel phases (Brannon-Peppas & Peppas, 1990) (Jeong, Wan, & Han, 
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2002). Therefore, swelling ratios of HA-DTPH-Cl+ hydrogels and HA-DTPH-Ox. hydrogels are 

analyzed in the presence of different pH values and different ionic concentrations. 

Furthermore, they were exposed to different temperature. As a first step, hydrogels were 

swollen in water at defined temperatures. To contrast the effect of the thiolation degree only 

the smallest (HA-DTPH29%) and the highest (HA-DTPH58%) thiolation degree were used in the 

following experiments. 

 

3.2.1.1 Temperature-Dependent Swelling Behavior  

 

In general, temperature sensitive hydrogels are often used as a drug delivery system and 

therefore need to be designed for the relevant physiological conditions, which include all 

solution conditions exposed to while in transit to the intended anatomical target. In human 

blood plasma, the physiological temperature is 37 °C (Ribeiro et al., 2018). Therefore, hydrogel 

swelling behavior was analyzed at room temperature (22 °C) and 37 °C. HA-DTPH-Cl+ hydrogels 

and HA-DTPH-Ox. hydrogels were prepared as described in 2.4.1/2.4.2 and successively 

incubated in water at 22 °C and 37°C under shaking until reaching equilibrium (Fig.34). 

 

 

 

Figure 34 Swelling ratio QM of HA-DTPH-Cl+ and HA-DTPH-Ox. hydrogels with two different thiolation degrees (29%, 

58%) at two different temperatures 22 °C (light pink) and 37 °C (dark red). Swelling ratio QM is increasing with 

increasing temperature for both hydrogel systems. For HA-DTPH-Cl+ hydrogels an increase of swelling ratio QM with 

increasing capacity to form hydrogen bonds can be observed, triplicates are presented. 
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Increasing the temperature to 37°C led to the same trend for the swelling behavior for both 

hydrogel systems as described in 3.2.1. but resulted in higher swelling ratios QM compared to 

incubation temperature of 22°C. This confirms previous findings in the literature by S. J. Kim 

et al. (2004), who established a polyelectrolyte HA/Chitosan based hydrogel, which increased 

in swelling with increasing temperature.  

 

3.2.1.2 Ionic Solution Dependent Swelling Behavior 

 

The ability of ionic strength sensitive hydrogels to uptake and bind ions is one of the most 

important feature of these. It is used in the biomedical field as well as in the industrial field. 

For example, Javed et al. (2018), showed the successful removal of heavy metal ions from 

aqueous media by using a poly (methacrylic acid) hydrogel. Therefore, I characterized the 

response of the HA-DTPH-Cl+ and HA-DTPH-Ox. hydrogel system towards three different ionic 

solutions. Choosing three different concentrations of NaCl: 50 mM, the physiological value of 

150 mM, and 300 mM. To differentiate the influence of monovalent und divalent cations, I 

used in the same concentrations as for NaCl also for MgCl2 and CaCl2 (Fig. 35). 

 

 

 

Figure 35 HA-DTPH-NH4
+ hydrogels after incubation for 24 h in 300 mM NaCl (a), 300 mM MgCl2 (b) and CaCl2 (c) 

solution for 24 hours. Hydrogel in NaCl and MgCl2 showed no significant change in morphology, but hydrogel in 

CaCl2 showed hardening and whitening. 
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All hydrogel samples at first experienced swelling in all used solutions. Water molecules 

diffused into the hydrogels at the beginning of the swelling tests so that their volume 

underwent expansion. However, hydrogel samples immersed in 300 mM CaCl2 solution 

showed a different swelling morphology. HA-DTPH-NH4
+ hydrogels in NaCl and MgCl2 solution 

were transparent and flexible. However, the hydrogels in CaCl2 solution appeared white and 

more solid (Fig.35). The main reason for this observation is that the formation of complexing 

cross-linking sites increased the network density of the hydrogel. The different reaction of 

MgCl2 and CaCl2 may give a hint that the formation constant of Ca2+ with the carboxyl group 

of HA is higher than the formation constant of Mg2+ with the carboxyl group, which leads to a 

stronger complex formation with CaCl2. However, there has been little discussion about these 

cations and the complex formation with HA. Müller et al. (2017) established an amorphous 

hyaluronic acid cartilage system, where he observed the exchange of Ca2+ against Mg2+. Thus, 

indicating a higher formation constant for Ca2+with HA than Mg2+ with HA.  
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To further characterize this behavior, HA-DTPH-Cl+ and HA-DTPH-Ox. hydrogels were 

incubated in NaCl, MgCl2 and CaCl2 solution with a concentration for each cation of 50 mM, 

150 mM and 300 mM. Thereby the ionic strength dependent swelling ratio was determined 

(Fig.36).  

 

 

 

Figure 36 Swelling ratio QM of HA-DTPH-Cl+ and HA-DTPH-Ox. hydrogels with two different thiolation degrees (29%, 

58%) in different ionic solution. Swelling ratio QM decreases with increasing ionic concentration and increasing 

formation ability of the monovalent NaCl and divalent CaCl2 and MgCl2. Swelling ratio QM of HA-DTPH-NH4
+ and 

HA-DTPH-GluA+ is lower after incubation in MgCl2 and CaCl2 than swelling ratio QM of HA-DTPH-dHA+ and HA-DTPH-

Ox. mean and SD of triplicates are presented. 

 

Figure 36 depicts the swelling ratio of hydrogels in solutions with varying ionic concentrations 

and different cations. A common trend for each hydrogel system is the decreasing swelling 

ratio with increasing ionic concentration. This accounts for all ions tested. The second trend is 

the decreasing swelling ratio from NaCl to MgCl2. The lowest swelling ratio was determined 

for hydrogels incubated with CaCl2. The third feature is the decreasing swelling ratio with 

increasing thiolation degree. Another remarkable observation was the response of HA-DTPH-

NH4
+ and HA-DTPH-GluA+ in MgCl2 and CaCl2 compared to HA-DTPH-dHA+ and HA-DTPH-Ox. 
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Although hydrogels with NH4
+ and GluA+ show the highest swelling ratio in water, the swelling 

ratio for example in 300 mM CaCl2 solution for HA-DTPH29%-NH4
+ is 19 ± 0.8 and for 

HA-  DTPH29%-GluA+ 15 ± 0.8 and for the comparable hydrogel with dHA+ the swelling ratio is 

19 ± 4. The swelling capacity of the hydrogels in dependence of the ionic strength of the 

swelling solution can be explained by the difference in osmotic pressure for intake of solvent 

molecules into the hydrogels. The decrease of the swelling ratio among the ions could be 

caused by the different binding behavior of the ions to the polymer chain. Divalent cations 

such as Ca2+ and Mg2+ in aqueous solutions cross-link with HA polymer bearing carboxylate 

groups. Gao et al. (2018) has been demonstrated that depending on the Ca2+ concentration, 

intramolecular and intermolecular complexation takes place. This complexing ability of the 

carboxylate groups with Mg2+ and Ca2+ leads to the decreasing swelling ratio of the hydrogels. 

These cations can even act as cross-linkers in the network due to the complex formation 

ability. However, the monovalent cation Na+ in aqueous solutions cannot form complex with 

the carboxylate groups so the effect of NaCl on the swelling ratio of the hydrogels is reduced. 

The swelling behavior of hydrogels with NH4
+ and GluA+ could be caused by their decreased 

capacity to form hydrogen bonds. Due to the diffusion of the cations within the hydrogel 

dissociation of physically cross-linked sites could take place and complex formation of 

carboxylate groups with Mg2+ and Ca2+ could occur (Gao et al., 2018). However, these results 

revealed that higher concentrations of salt solutions have a strong influence on swelling 

properties by the complex formation. It was already shown that hydrogel systems with these 

properties can be used, for example, in horticulture. The uptake and absorbance of Ca2+ inside 

the hydrogel led to growth improvement of P. eupharatica (Chen and Zommorodi, 2004). 

Additionally, such a system could also be used in a chelation therapy to treat metal-

interactions by selectively binding metal-ions like shown by Polomoscanic et al. (2005). He 

established hydrogels containing hydroxamic acid groups as chelators for iron in the 

gastrointestinal tract.  
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3.2.1.3 pH Dependent Swelling Behavior 

 

Another important application for hydrogel systems is the controlled drug delivery. In such 

cases, the drug has to be delivered in response to the body at a distinct site and defined time 

point. The specific time patients take their medication is very important as it has significant 

impact on treatment success. If symptoms of a disease display circadian variation, drug release 

should also vary over time (Traitel & Kost, 2004). One possibility to accomplish the controlled 

drug release is the response of hydrogels to certain stimuli in the body, like the pH (Rizwan et 

al., 2017.). 

 

In order to investigate the sensitivity of the HA-DTPH-Cl+ hydrogel system to changing pH in 

the environment, I determined the swelling behavior in different pH solutions. It has been 

shown that degradation of HA occurs at pH < 4 and pH > 11 (Maleki and Nystro, 2008), but 

mostly at alkaline pH. Therefore, I used a pH range from 3 to 10. Hydrogels were incubated in 

each pH solution until reaching the equilibrium, the mass of each replicate was determined 

and the gels were transferred to the next pH solution (Fig.37). 

 

 

 

Figure 37 Swelling ratio QM of HA-DTPH-Cl+ and HA-DTPH-Ox. hydrogels (29%, 58%) in different pH solution ranging 

from 3 to 10. All hydrogel systems showed the same trend: with increasing pH until 7 the swelling ratios increase. 

At pH 8 to 10 the swelling decreases. HA-DTPH-NH4
+ showed the highest swelling ratio and HA-DTPH-Ox. the lowest, 

triplicates are presented.  
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As expected, all hydrogels were sensitive to a pH gradient (Fig.37). HA-DTPH-Ox. hydrogels 

showed the weakest response to the changes in pH. The swelling ratio started to increase at 

a pH of 6 and reached its maximum at pH 7 with a swelling ratio of 55 ± 2 for HA-DTPH29% and 

decreased with increasing thiolation to 37 ± 2 for HA-DTPH58%. For HA-DTPH-Cl+ hydrogels 

swelling ratio QM decreased with increasing capacity to form hydrogen bonds and with 

increasing thiolation degree. The swelling ratio QM for HA-DTPH29%-NH4
+ started to increase 

at a pH 6 (QM = 148 ± 14) until it reached its maximum at a pH 7 to (QM = 208 ± 15) and 

decreased at pH 10 (QM = 67 ± 5). HA-DTPH-GluA+ and HA-DTPH-dHA+ hydrogels showed the 

same pH response as HA-DTPH-NH4
+. Swelling ratio QM started to increase from pH 6 to pH 7 

and then slowly decreased slowly.  

 

In general, pH dependent swelling of hydrogels containing an acidic moiety on the polymer 

chains depends on the pH of the surrounding medium relative to the respective pKa (Rizwan 

et al., 2007). In the case of the carboxylic groups of HA, the ionization of the acidic groups 

occur in the presence of pH medium > pKa 3, which induces the generation of fixed negative 

charges on the polymer chains and mobile positive charges in the solution (Qiu and Park, 

2001). This leads to an increase in hydrophilicity, an increase in the number of immobilized 

negative charges and an increase of the electrostatic repulsion between the chains. All these 

mechanisms taken together result in swelling of the hydrogels (Wang et al., 2012). The hybrid 

double cross-linked hydrogel systems presented here shrink at low pH (pH 3-5) and > 8 and 

start to swell as expected with increasing pH (pH 6 – 7). Swelling at pH 6 can be explained by 

the fact that carboxyl groups are partially ionized and thus influence the swelling behavior. As 

HA-DTPH-NH4
+ hydrogels are according to the Young’s modulus the softest it is expected that 

swelling is increased due to the bigger mesh size. As for HA- DTPH- GluA+ and HA-DTPH-dHA+ 

the network is tighter swelling is reduced compared to HA-DTPH-NH4
+ hydrogels. Such a 

controlled tunable pH responsive hydrogel is optimal as a drug delivery system. Sharpe et al. 

(2015) has successfully established a poly(methacrylic acid) (PMAA) based hydrogel and 

showed the release of the encapsulated drug in the small intestine upon responding to the 

surrounding pH by swelling. By encapsulating the drug inside the hydrogel, it was protected 

from the harsh conditions of the stomach.  
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3.4.2.1 Extraordinary Swelling Behavior of HA-DTPH-dHA+  

 

Reversible Swell ing and Shrinking Behavior of HA -DTPH-dHA+    

 

A remarkable observation in this here presented work was that the pH induced swelling effect 

of the HA-DTPH-dHA+ hydrogels was fully reversible. In order to study this, hydrogels were 

incubated in solutions of pH 7 and pH 3, respectively, until having reached equilibrium, and 

their respective weight was assessed by weighing the hydrogel (Fig.38). 

 

 

 

Figure 38 pH induced shrinking and swelling behavior of HA-DTPH-dHA+ of different thiolation degrees. 

HA- DTPH- dHA+ hydrogels were incubated in an aqueous solution of pH 7 until having reached equilibrium and 

subsequently incubated in a pH solution of pH 3. 

 

A reversible swelling and shrinking behavior could be observed by placing the hydrogels 

alternately in a fresh aqueous solution of pH 7 and pH 3. 
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Acidifying Effect of HA-DTPH-dHA+  

 

Incubation of HA-DTPH-dHA+ hydrogel overnight in a defined aqueous solution of pH 7 led to 

the most striking observation (Fig.39). 
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Figure 39 Influence of HA-DTPH-dHA+ hydrogels on the pH of the incubated solution while swelling. Incubation of HA-

DTPH-dHA+ in an aqueous solution of pH 7 over a certain time led to the acidifying of the solution. Acidifying effect 

of the HA-DTPH-dHA+ hydrogel decreases after each cycle and the effect of HA-DTPH29%-dHA+ is higher than the 

effect observed for HA-DTPH58%-dHA+ hydrogels. triplicates are presented. 

 

Incubation of the HA-DTPH-dHA+ hydrogels in an aqueous solution of pH 7 resulted in a 

decrease of the pH combined with a shrinking of the hydrogel during the swelling process. 

Repeating this process, showed a less decrease of the pH. One possible conclusion is, that the 

ionic cross-linker dHA+ leaked out in the swollen state of HA-DTPH-dHA+, acidified the solution 

and in a feedback loop led to the shrinkage of the hydrogel which in turn stops the leaking 

process. After refreshing the pH solution, the hydrogels swelled again, which could lead again 

to a leaking of dHA+ into the solution and acidification of the solution. Eventually the pH 

change decreased and the cycle ends when no further dHA+ diffused out anymore. This 
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suggests that a certain amount of dHA+ remained in the network. In general, this mechanism 

could be caused by the acidic carboxylic moiety at dHA+.  

Osmolarity of pH solution  

 

To study the correlation between the swelling behavior and the acidification of the incubated 

solution, the osmolarity of the solution was measured (Fig.40). The osmolarity is a general 

measure to determine how concentrated the solute is within one liter of solution. 

 

 

Figure 40 Osmolarity measurement of the solution, in which HA-DTPH-dHA+ hydrogels are incubated. The osmolarity 

of the solution is increased during the hydrogel swelling process. Osmolarity of the solution in which HA- DTPH29%-

dHA+ is incubated was higher than the osmolarity of the solution of HA-DTPH58%-dHA+. HA-DTPH-Ox. showed no 

influence on the osmolarity. The osmolarity was measured after 0 h, 1 h, 3 h, 6 h, 12 h, 24 h, 48 h, 72 h and 96 h. 

triplicates are presented. 

 

Measuring the osmolarity of HA-DTPH-dHA+ and HA-DTPH-Ox., revealed that the osmolarity 

of the solution, in which the HA-DTPH-dHA+ was incubated, increased. Whereas the 

osmolarity of the solution in which HA-DTPH-Ox. was incubated was constant over time. The 

general trend could be observed, that with each cycle of HA-DTPH-dHA+ incubation in pH 7 

solution the increase of the osmolarity decreased and in general the osmolarity increased with 



3. RESULTS AND DISCUSSION 

 

98 

 

decreasing thiolation degree. Whereas the osmolarity of the solution in which HA-DTPH-Ox. 

was incubated stayed constant and did not change over time. These results are consistent with 

the results of the acidifying of the pH solution based on the leakage of dHA+ into the solution. 

These results give the opportunity to use the established hybrid double cross-linked HA 

hydrogel system as a pH dependent controlled drug delivery system, for example for drug 

delivery to the colon. The pH of the colon is alkaline (Koziolek et al., 2015), which would lead 

to the swelling of the hydrogel and subsequently to the drug release. 

 

3.5 HA-DTPH-dHA+ Dependent Biological properties  

 

To fulfill the task of a biomaterial aiming for an application in a biomedical field, certain 

properties have to be fulfilled, such as high biocompatibility, adhesiveness/non-adhesiveness 

and biodegradability. To accomplish the property of biocompatibility hydrogel synthesis 

should avoid toxic components which might be released upon degradation or any toxic 

coupling agents used in order to mediate network formation. To fulfil the property of 

adhesiveness several features have to be kept in mind, such as surface roughness, surface 

charge and stiffness of the biomaterial. And since the hydrogel system is made out of HA, 

which is known to be biodegradable in the ECM in vivo, the hydrogel system should be 

degradable. This attribute is especially crucial for cells, as it enables them to move through the 

highly viscous ECM and to remodel it depending on their needs. The requirements of 

biocompatibility are fully accomplished in the presented HA-DTPH-dHA+ hydrogel system, 

since no toxic coupling agent, such hydrogen peroxide to oxidize the thiol groups, is needed 

for hydrogel formation. Nevertheless, the biocompatibility of the hydrogel system and 

accompanying utilized compounds has to be examined and proofed. Primary normal human 

dermal fibroblasts (NHDF), which are involved in HA synthesis (Acid et al., 2020) (Terazawa et 

al., 2015) and degradation (Stair-nawy, Cso and Stern, 1999) in the human dermis, therefore 

are also interesting for dermatological research as well as wound healing studies. Thus, NHDF 

cells, isolated from juvenile foreskin are employed to study the biocompatibility on the one 
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hand and, regarding future biomedical applications, such as tissue engineering or cell delivery, 

cells were embedded into the hydrogel on the other hand.  

 

3.5.1 Biocompatibility of dHA+ and HA-DTPH 

 

Cell viability assays are widely used to analyze the effect of a compound on cell viability as well 

as conclude on its toxicity, leading to cell death. To analyze the cell viability of NHDF cells upon 

dHA+ and HD-DTPH58% incubation, I utilized a tetrazolium reduction based assay (Fig.41). 3-

(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium 

(MTS) is a water-soluble tetrazolium reagent which can be bioreduced by viable cells to a 

colored formazan product, that is as well soluble in medium. The conversion is assumed to be 

accomplished through NADPH/NADH-mediated reduction by metabolically active, hence live, 

cells. 
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Figure 41 Effect of ionic cross-linker dHA+ and HA-DTPH on NHDF cells. 3750 NHDF/ cm2 were seeded and cultivated 

for 24 hours before being treated with dHA+ (a) and HA-DTPH (b) being solved in fibroblast growth media (FGM2) for 

24 hours/48 hours and subsequently incubated with MTS for 3 hours. After 3 hours the absorbance of reduced MTS 

tetrazolium at 490 nm was measured. Incubation with dHA+ shows a higher reduction of MTS tetrazolium after 48 

hours compared to untreated cells (a). No differences in reduction of MTS tetrazolium could be observed for NHDF 

cells incubated with HA-DTPH after 24 hours and 48 hours (b). The background absorbance was subtracted from 

these data. Each data represents the mean ± SEM of three replicates of three independent experiments. 

The measurement of viability of NHDF cells upon treatment with dHA+ indicated an increased 

metabolic activity in comparison with control under all three chosen treatment 

concentrations, especially 0.1 mg/mL of dHA+ after 48 hours post treatment. dHA+ treatment 

at 0.01 and 0.1 mg/mL resulted in slightly elevated metabolic activity for NHDF cells after 48 

hours post treatment. NHDF viability measurement under HD-DPTH58% treatment showed no 
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differences to the control sample. In summary, viability measurement has not delivered a 

certain result, concerning the enhancement of cell viability under dHA+ / HA-DTPH58%. 

However, it has been determined, that both compounds do not have a cytotoxic effect on 

NHDF cells, which makes HA- DTPH58%-dHA+ hydrogels suitable for cell included studies.  

 

3.5.2 Cell Adhesion on HA-DTPH-dHA+ 

 

Beside the requirement of biocompatibility, the adhesiveness of hydrogels, is also a property 

which distinguishes the biomedical application. On the one hand adhesive hydrogels are 

desired for example in wound dressing models to guarantee a complete closure of the wound 

site to prevent the penetration of bacteria inside the wound. On the other hand, for example, 

the synovial fluid in the joints has to be inert to maintain the agility of the joint. In case of an 

inflammation the synovial fluid granulates and gets adhesive, which results in osteoarthritis. 

In this case, hydrogels are also used as an inert filler, where no adhesiveness is wanted. In 

order to assess the adhesiveness of the established HA-DTPH-dHA+ hydrogel, NHDF cells were 

seeded on the hydrogels as described in 2.8. Two different ionic cross-linker dHA+ eq. 0.5 and 

1.0 to the free remaining negative charge on HA-DTPH58% were used. Since it was above shown 

the by varying the ionic cross-linker amount the mechanical stiffness is tunable, the cell 

adhesion can be analyzed on softer and stiffer hydrogel. As a positive control, to compare cell 

adhesion and spreading behavior on the hydrogels, cells are simultaneously seeded on a HA-

DTPH58%-dHA+ hydrogel system with incorporated linear 5% equivalent linear RGD to free thiol 

groups of HA-DTPH58% inside (Fig.42). The RGD motif consists of three defined amino acids 

arginine, glycine and aspartate and is present in several ECM proteins, such as fibronectin, 

vitronectin and laminin. RGD binding motif serves as ligands for a subset of integrin receptors, 

and guarantee cell adhesion. Adding RGD serves two different intentions: (1) comparison of 

cell adhesion by integrin-RGD interaction with cell attachment via CD44 -HA binding. (2) 

analyzing the tunability of the hydrogel system by increasing the complexity. RGD is 

incorporated by utilizing Thiol-Michael addition click reaction (see 2.4.3). 
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Figure 42 1000/cm2 NHDF cells seeded on hydrogel with varying dHA+ concentration (0.5 eq. and 1 eq. to free 

remaining negative charges of HA-DTPH58%) and on HA-DTPH-dHA+ hydrogel with incorporated linear RGD motive. 

After 24 hours NHDF cells are in clusters on all three hydrogel conditions, on the HA-DTPH-dHA+-RGD hydrogel are 

additionally spindle shaped cells. After 48 hours, NHDF cells are still in formed cluster on HA-DTPH- 0.5/1.0 eq. dHA+, 

yellow arrows indicate a tendency of formation of focal adhesion HA-DTPH- /1.0 eq. dHA+. NHDF cells are fully 

spreaded on HA-DTPH-dHA+-RGD hydrogel. Scale bar = 50 µm 

 

The images of NHDF cells on top of the hydrogel revealed a cluster formation for all hydrogel 

conditions after 24 hours post-seeding. HA-DTPH58%-dHA+ with linear RGD showed, beside 

cluster formation, already after 24 hours spreaded cells with spindle shaped long focal 

adhesions indicated by yellow arrows. After 48 hours NHDF cells on HA-DTPH58%-dHA+ are still 

in formed clusters, however on HA-DTPH58%-1.0 eq dHA+ hydrogels a tendency of filopodia 

formation on the edge of the cluster can be seen (yellow arrow). On the HA-DTPH58%-dHA+-

RGD hydrogels cells are fully spreaded.  
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To support these findings, seeded NHDF cells were fixed and stained with DAPI, which stains 

the nucleus and Phalloidin, which stains the actin cytoskeleton and thereby outlines the cell 

area as described in 2.9.1.1, 48 hours post-seeding (Fig.43).  

 

 

 

Figure 43 Morphology of NHDF cells on HA-DTPH-0.5/1.0 eq. –dHA+ and HA-DTPH-1.0 eq. - 5% RGD. Cells on the 

adhesive control surface HA-DTPH-1.0 eq. dHA+- 5% RGD are much more spreaded and form a confluent cell layer 

after 48 hours. Cells on the hydrogel HA-DTPH-0.5 eq.  – dHA+ hydrogel are round and still in a cluster like formation. 

NHDF cells on HA-DTPH-1.0 eq. –dHA+ are showing a filopodia formation in the hydrogel indicated by yellow arrow. 

Scale bar = 25 µm 

 

Images of stained NHDF cells with DAPI and Phalloidin revealed different adhesion behavior: 

(1) On HD-DTPH-0.5 eq. dHA+ single cells and also cluster formation can be seen. Cells are 

adherent but showed no spreading behavior. (2) More single cells could be observed on the 

HA- DTPH- 1.0 eq.-dHA+ hydrogel, which are attached to hydrogel surface and showing a 

tendency to form filopodia, which are first hint for the spreading behavior. (3) On the hydrogel 

with incorporated RGD NHDF cells are fully spreaded and adherent to the surface. 

Taken all together, NHDF cells are adherent on the HA-DTPH-dHA+ hydrogel, which indicates 

a possible non-integrin mediated cell adhesion. However, it is plausible that a number of 

certain parameters may also cause the adhesion behavior. Cell adhesion and spreading is not 

only occurring by receptor and ligand binding but is influenced by the surface charge, by the 

surface roughness and by the stiffness of the substrate. The latter were supported by the 

results obtained from NHDF cells on hydrogels with varying ionic cross-linker. On the hydrogel 
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with higher ionic cross-linker concentration, thereby stiffer hydrogel, cells were forming 

filopodia, which is a hint for cell spreading. Hence, decreasing of the ionic crosslinker leads to 

softer hydrogels and less cell adhesion or spreading. To further investigate non-integrin 

mediated cell adhesion, experiments have to be performed in which the receptor CD44 or 

RHAMM, which are mainly responsible for cell adhesion and spreading upon HA binding, are 

inhibited. However, NHDF cells on hydrogels with incorporated RGD showed adherent and 

fully spreaded cells, which is most likely integrin mediated. Despite the fact that these results 

contain some uncertainties it can be concluded that the HA-DTPH-dHA+ is tunable regarding 

its adhesiveness, which makes suitable for adhesive and less adhesive studies or biomedical 

applications. Furthermore, adding RGD proved the stability of the system with increasing 

complexity.  

 

3.6 Enzymatic Degradability and Stability of HA Hydrogel 

 

Regarding our system as an ECM mimetic the degradability of the HA-DTPH-dHA+ compared 

to HA-DTPH-Ox. by HA degrading enzymes is interesting for fundamental insights into HA 

degradation in correlation with the stability of additional physical cross-links in case of the HA-

DTPH-dHA+ hydrogel. Degradability and stability is also an important property for various 

biomedical applications. For example, hydrogels used as drug delivery system, should be 

degraded after delivering their cargo whereas hydrogels used as tissue fillers has to be stable 

upon a long time.  

 

3.6.1 Cross-linking Dependent Enzymatic Degradation  

 

To analyze the influence of the physical cross-link on the stability of the hydrogel upon 

enzymatic degradation, two HA degrading enzymes are chosen: (1) hyaluronidase IV and (2) 

hyaluronate lyase. To compare the degradation of different hydrogels in different enzyme 

solutions, the half-life (t1/2) of each hydrogel is calculated. Half-life represents the time frame 
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in which the hydrogel lost half of its initial weight, expecting a first order exponential decay 

(Fig.44).  

 

 

 

Figure 44 Half-lives of HA-DTPH-dHA+ and HA-DTPH-Ox. hydrogels (with 29%, 44% and 58%, respectively thiolation 

degree) in hyaluronidase solution (a) and lyase solution (b) at room temperature show thiolation- and cross-linking 

dependent degradation kinetics. For both enzymes half-lives of HA-DTPH-Ox. hydrogels are shorter than the 

corresponding HA-DTPH-dHA+ hydrogels. Additionally, half-lives are increasing with increasing degree of thiolation. 

Triplicates are presented. 

 

Half-lives of HA-DTPH-dHA+ and HA-DTPH-Ox. hydrogels are increasing with increasing degree 

of thiolation of HA-DTPH. HA-DTPH-Ox. have shorter half-lives than comparable 

HA- DTPH- dHA+ made with the same HA-DTPH (Fig. 45). For hyaluronidase IV half-lives are 

ranging from 2.2 ± 0.3 h for HA-DTPH29%-dHA+ to 0.5 ± 0.03 h for HA-DTPH29%-Ox.. Half-lives 

for hyaluronate lyase are shorter with 1.8 ± 0.3 h for HA-DTPH29%-dHA+ to 0.3 ± 0.03 for HA-

DTPH29%-Ox.. With increasing half-life, stability of hydrogels against enzymatic degradation is 

increasing. Therefore, the two general trends for degradation with both enzymes can be 

attributed to the amount of cross-link within the hydrogel system. With increasing thiolation 

degree the chemically cross-link is increasing and by adding dHA+ additional physical cross-

links are formed, by which the system is further stabilized. In general, this results showed, that 

the HA-DTPH-dHA+ hydrogel system is degradable and thus, fulfills an important property for 

biomedical application. In conclusion, the HA-DTPH-dHA+ hydrogel system enables the tuning 
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of the enzymatic degradation, which makes it more flexible and adjustable. Since, the HA-

DTPH-dHA+ hydrogel system is suitable, for cell studies it was further analyzed upon its 

stability over long time in the absence of HA degrading enzymes.  

 

3.6.2 Long-Term Stability of HA-DTPH-dHA+ 

 

To analyze the stability of the established HA-DTPH-dHA+ hydrogel system in the absence of 

degrading enzymes, hydrogels were prepared as described in 2.4.1 and incubated over a time 

period of six months in a weekly fresh PBS solution (Fig.45).  
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Figure 45 No degradation of HA-DTPH-dHA+ can be observed in PBS. The weight of the hydrogel is constant over the 

course of six months.  

HA-DTPH-dHA+ hydrogels showed a great stability in PBS (Fig.45) and no degrading processes 

were observed, which makes it suitable for long term cell studies or as tissue filler applications, 

where no HA degrading enzymes are present.  
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3.7 Cell encapsulation in HA-DTPH-dHA+ Hydrogel  

 

Biodegradable hydrogels are often used for tissue engineering applications. Therefore, cells 

are encapsulated inside the hydrogel network, which provides either a structural 3D 

environment or additional bioactive molecules are incorporated into the hydrogel to induce 

desired cell behavior and tissue growth (Nicodemus, Bryant and Ph, 2008). In order to embed 

cells into a hydrogel two main strategies are used. Either cells are seeded on top of a pre-

formed porous hydrogel with subsequent migration of cells into the gel, or cells are 

encapsulated directly during hydrogel formation. Such cell encapsulation involves mixing cells 

with precursors in a liquid solution followed by gelation and thus encapsulation of cells. The 

liquid precursor solution as well as the process by which gelation occurs must be mild and cell-

friendly. Considering these requirements HA-DTPH-Ox. hydrogels are not suitable for cell 

encapsulation, since oxidizing with hydrogen peroxide is required to gain a stable hydrogel. 

Hydrogen peroxide is known to be cytotoxic and inducing cell death by producing highly 

reactive hydroxyl radicals (Whittemore, 1995). Whereas the developed HA-DTPH-dHA+ 

hydrogel avoids such cytotoxic cross-linking agents and as already been shown above the ionic 

cross-linker dHA+ proofed to be biocompatible (Fig.42). However, the successful 

establishment of an NHDF cell encapsulation protocol required several changes in the 

hydrogel synthesis. First of all, the before used Teflon molds (Fig.21 a) were not suitable 

anymore, since providing nutrition for the cell were not possible using these molds. To provide 

nutrition for the embedded cells, without taking them out of the cell encapsulation container 

disposable 1 ml syringes (B. Braun Melsungen AG, Germany) were cut at 0.1 ml mark below 

the tip of the syringe to obtain a cylindric well with the syringe plunger serving as a movable 

bottom (based on a technique by Khetan et al.). After transferring the hydrogel solution in the 

syringe, hydrogel was covered with cell culture medium and encapsulated cells were 

cultivated inside of the hydrogel in the syringe. Another setup was used in order to achieve 

sterile embedding conditions and for further optical studies, like the possibility of taking 

microscope images. Here embedding is performed in a cylindric teflon mold (made in the PCI 
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werkstatt) which sits in a FGM2 medium filled small petri dish modified with a glass bottom to 

improve microscopy analysis and nutritional supply (Fig.46) 

 

 

 

 

Figure 46 Scheme of cell encapsulation procedure in two different experimental setups. 
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Another change of the protocol was made regarding the solvent. Instead of borate buffer, 

fibroblast growth medium (FGM2) was tested as a solvent for both HA-DTPH and the ionic 

cross-linker dHA+ to promote biocompatibility on the one hand and to provide nutrition within 

the hydrogel on the other hand (Fig. 47).  

 

 

Figure 47 Cells embedded inside of HA-DTPH58%-dHA+ hydrogel using fibroblast growth medium (FGM2) as a solvent. 

Images were taken of 8 layers of the hydrogel. A small number of cells could be found in different layers of the gel 

(indicated by yellow arrow). However, these hydrogels proved to be unstable in FGM2 at 37 °C releasing the 

embedding cells. Scale bar 100 nm.  

 

However, the hydrogel was not sufficiently stable to retain the cells which resulted in a drop 

of the entire cell-content to the bottom of the gel/plate (Fig. 47-1). A few NHDF cells are found 

in different layers, however the distribution of NHDF cells within the hydrogel was not 

satisfying.  
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Another possible change of the above described preparation (see 2.4.2) was again modified 

regarding the solvent. While the cross-linker was dissolved in FGM2, 150 mM borate buffer 

pH = 8.5 was used to dissolve HA-DTPH58% (Fig.48). 

 

 

Figure 48 Encapsulated NHDF cells after 24 hours incubation in fibroblast growth medium. NHDF cells were 

homogenously distributed within the hydrogel. NHDF cells were rounded and did not showed the spindle like 

morphology. 

 

Hydrogels, thereby dissolving HA-DTPH58% in borate buffer and dHA+ in FGM2 resulted in 

stable gel formation and successful embedding at post-mixture timepoint = 80 min. These cell-

containing hydrogels were stable after transferred to FGM2 in 37 °C. In this setup NHDF cells 

were observed in different layers of the gel (Fig. 50) though without spreading (round 

appearance). Transferring hydrogels out of the syringe in cell culture medium did not lead to 
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cell release from the gel matrix but to stable embedding. Embedding of the cells were also 

confirmed by imagining via SEM (see appendix). After the successful embedding of the NHDF 

cells inside the hydrogel the cell viability was proved with a live/dead staining kit, containing 

calcein AM and ethidium homodimer, after 24 hours post-embedding (Fig.49).  

 

 

 

Figure 49 .Live/Dead staining of NHDF embedded in HA-DTPH58%-dHA+. Homogenous distribution of NHDF cells inside 

the hydrogel. Living cell (green fluorescence) and dead cell (red florescence). Image were taken as a Z-stack and 

max. intensity were performed via ImageJ. Scale bar = 50 µm 

 

Generally, a homogenous distribution of NHDF cells were observed and the life/dead assay 

was able to prove the high viability of NHDF cells inside the HA-DTPH-dHA+ hydrogel. 
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To promote cell attachment inside the hydrogel the before used approach of incorporation of 

linear RGD was carried out and again stained with DAPI and Phalloidin (Fig.50).  

 

 

 

Figure 50 Composite images taken from NHDF embedded in HA-DTPH-dHA+-RGD hydrogel. Spreading of fibroblasts 

(indicated with yellow arrows) was observed 24 hours post-embedding inside the hydrogel. Cell nuclei are stained 

with DAPI. Actin is directly stained with phalloidin. Scale bar = 50 µm 

 

By incorporating RGD inside the hydrogel, spreading of the embedded cells were observable. 

Remarkably the phenotype of the NHDF cells were not resembling the expected spindle shape 

like phenotype, which can be observed on a 2D substrate, but more a star like phenotype. To 

examine further the biocompatibility of the hydrogel cells were again embedded and 

cultivated for five weeks within the hydrogel. Thereby the media was changed every third day 

to provide necessary nutrition (Fig.51).  
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Figure 51 NHDF cells embedded in HA-DTPH-dHA+ hydrogel for five weeks. NHDF cells showed the formation of 

filopodia (indicated by yellow arrow) within five weeks post-embedding. Scale bar = 10 µm  

 

A striking observation were made after incubation of embedded NHDF cells inside the 

HA- DTPH-dHA+ hydrogel without an additional adhesion inducing motif after five weeks post-

embedding (Fig. 51). Cells were not round anymore as seen before (Fig.50) but appeared 

spreaded and formed filopodia like structures (yellow arrow).  

 

Taken all together, it can be concluded that the method of cell encapsulation inside of the 

HA- DTPH-dHA+ was successfully established and furthermore showed a high viability of cells. 

It was also confirmed that incorporating RGD led to cell spreading, which makes the system 

suitable for example tissue engineering or organoid formation. Surprisingly, cells spread even 

without a spreading induced motif, like RGD, which indicates: (1) NHDF cells expressed 

hydrogel degrading enzymes to spread within the gel, (2) the formation of their own 

extracellular matrix, which induced cell spreading or (3) non-integrin mediated cell spreading 

via CD44 and RHAMM. These findings have to be further investigated regarding the 
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CD44/RHAMM expression and ECM protein expression by NHDF cells. Additionally, this 

experiment should be repeated with HA-DTPH-dHA+ with varying cross-linker concentration 

to investigate the influence of stiffness and charge to the NHDF spreading behaviour. 

However, this hydrogel system can be used to study cell migration, general behaviour, 

immobilization and release thereby offering an interesting platform for basic ECM mimicking 

experiments regarding the “purified” role of HA. In future, possible insights from this platform 

could serve as a theoretical basis for developing a material suited for application in wound 

dressing and tissue regeneration in situ. This may imply HA influencing mechanotransduction 

in turn stimulating intracellular response. Also, migration of fibroblasts into the hydrogel could 

be further investigated since this is an interesting aspect to pursue in treating chronic wounds 

by recruiting cells to the damaged tissues. For this purpose, seeding of NHDF on the gels 

surface and subsequent trancing of possible cell migration into the scaffold could be 

performed.  
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4 Conclusion and Outlook  

4.1 Conclusion  

 

In conclusion, this thesis presents a novel hybrid double cross-linked HA based hydrogel 

system, held together by chemical and physical cross-links, and developed under 

consideration of the bottom up approach of synthetic biology. The synthesized hydrogel is 

successfully established under biocompatible conditions for the use in a biomedical field.  

Hydrogel synthesis were performed with 74 kDa HA, thiol functionalized in a range of 

29% - 58% and combined with three different ionic cross-linkers. Considering the maintenance 

of the biocompatibility, ionic cross-linker were chosen accordingly: (1) a HA based ionic cross-

linker, which is synthesized by acidic degradation and further deacetylated to generate a 

positively charged amine group, (2) charged glucosamine (GluA+) and (3) ammonium chloride 

(NH4
+). The used ionic cross-linker were also chosen due to their increasing capacity to form 

hydrogen bonds from NH4
+ to GluA+ and dHA+: Adding the ionic cross-linker resulted in a 

stable, reproducible hydrogel, due to the simultaneously formed disulfide bonds and physical 

cross-links, such as hydrogen bonds and salt bridges. The amount of chemical cross-links is 

further determined by the degree of functionalization of the HA backbone as well as on the 

concentration and type of cross-linker. Hydrogel formation without an ionic cross-linker 

required oxidation of the thiol groups with hydrogen peroxide to gain a stable hydrogel. The 

physico-chemical properties of HA hydrogels prepared with any of the charged cross-linkers 

(Cl+) depend both on chemical and physical cross-links. Thus mechanical stiffness, swelling 

capacity and mesh sizes can be tuned by adjusting the amount of formed chemical and 

physical cross-links by varying: (1) the thiolation degree, (2) the ionic cross-linker, respectively 

regarding its capacity to form hydrogen bonds and (3) the concentration of the used ionic 

cross-linker. Furthermore, the developed hybrid double cross-linked HA based hydrogel 

system showed a higher sensitivity to external stimuli like, temperature, ionic solution and pH, 

than the oxidized HA-DTPH-Ox. hydrogel, this opens up more tunability regarding a 
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biomedical application. Incubating the hydrogel system in different ionic solutions showed the 

impact of monovalent and divalent cations on the swelling behavior. Swelling ratio decreased 

from NaCl to MgCl2 and CaCl2, indicating a stronger interaction of the polymer chain with the 

divalent cations. HA-DTPH-Cl+ in pH solution ranging from pH 4 to 10 showed an increase in 

swelling from pH 4 to 7, reaching the maximum at pH 7 and started to shrink from 8 onwards. 

Moreover, the hydrogel system HA-DTPH-dHA+, showed while incubation in a solution of pH 

7 a negative feedback loop on its swelling behavior. In the swollen state of the hydrogel, ionic 

cross-linker leaked out of the hydrogel, subsequently acidifies the solution, which acts then as 

a feedback to the hydrogel and results in the shrinking of the hydrogel. This shrinking of the 

hydrogel stopped the leakage of the ionic cross-linker dHA+. In addition to the physico 

chemical properties, biological applicability of the presented hydrogel was also confirmed and 

showed a different adhesive behavior of NHDF cells dependent on the physical cross-link and 

thereby resulting stiffness. Especially, the formed physical cross-links stabilized the system 

while incubation with HA degrading enzymes. Thus, HA-DTPH-dHA+ showed a higher half-life 

time than HA-DTPH-Ox. Since non-immunogenicity, biodegradability and non-toxicity was 

already demonstrated for the HA-DTPH-dHA+ the cytocompatibility of the gel was investigated 

in this work by studying more complex interaction of cells in a 3D context. Encapsulation of 

NHDF cells were successfully established and the viability was shown after 24 hours of 

incubation of the NHDF cells inside of the hydrogel. Moreover, NHDF cells showed after five 

weeks of incubation spreading behaviour within the hydrogel, indicating the expression of HA 

degrading enzymes and expression of adhesion and spreading responsible receptors. 

Furthermore, it was shown that the hydrogel system is stable enough to handle an increase in 

complexity by adding RGD. In summary this novel hybrid double cross-linked HA based 

hydrogel could in future make a difference in improving drug delivery strategies in vivo, in 

further promoting our understanding of cell migration and behavior in synthetic scaffolds in 

vitro or in finding yet better treatment options regarding tissue damage in situ. 
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4.2 Outlook  

 

The developed hybrid double cross-linked HA based hydrogel is a great tool to distinguish the 

effect of chemical and physical cross-links in hydrogels with polyanionic polymer backbones. 

To further examine the influence of physical and chemical cross-link the length of HA used for 

the hydrogel synthesis could be varied. The use of longer HA gives the opportunity to also 

determine the impact of the HA structure on the hydrogel synthesis, since longer HA tends to 

entanglements and intermolecular formed physical cross-links. Another possibility to study 

the influence of physical cross-links on the hydrogel formation in an intermolecular manner, 

is the deacetylation of the thiol functionalized HA. By this the positive charged group is 

immobilized on the HA structure and can form physical cross-links within the polymer chain. 

The hybrid double cross-linked HA based hydrogel could also be varied in the used GAG, such 

as chondroitin sulfate and keratin sulfate. Regarding the desired study any other GAG could 

be functionalized and used as the hydrogel backbone. Several biomedical applications are 

suitable for the developed hybrid double cross-linked hydrogel. First of all, it can serve as a 

biosensor under specific pH conditions. For example, an incorporated fluorescence molecule, 

would diffuse out of the hydrogel upon swelling at alkaline pH, together with the ionic cross-

linker dHA+, and thus signalling the alkaline pH. Due to the feedback loop the diffusion of the 

fluorescence molecule would stop after the acidification of the solution. It could also be used 

as a mucosa mimicking system in the gastro intestinal tract. Here glycoproteins with cysteine 

groups bind to the mucosa layer via disulphide bond formation (Bernkop-schnu, 2005). If the 

mucosa gel layer isn’t stable, which occurs in diseases like ulcerative colitis then the wall of 

the gastro intestinal tract is not protected (Johanson et al., 2013). Therefor the established 

hydrogel system could be used as a mucosa mimicking gel layer. Since, I proved that I can 

control the amount of free thiol groups via the added ionic cross-linker it would give the 

possibility with free thiol groups on the surface of the hydrogel to react with the cysteine 

groups of the glycoproteins via disulphide bond formation. The high biocompatibility gives 

also the opportunity to use the hydrogel system as a tissue engineering tool, since it has been 
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shown that NHDF cells can migrate within the hydrogel, thus it can mimic for example the 

dermis of the skin.  

 

Figure 52 shows possible biomedical application for the established HA- DTPH-dHA+ hydrogel. 

 

 

 

Figure 52 Possible Biomedical application for HA-DTPH-dHA+ hydrogel 

 

The developed hydrogel showed also a great potential to use as a controlled drug delivery 

system combined with as wound dressing. During the wound healing process, a switch of pH 

is observed. The pH of the acute wound is alkaline (7-8) and decreases during the healing 

process (4-5). The pH during the wound healing process is essential for a successful healing 

process, thus it has been shown that the pH of chronic wounds does not decrease (Kumar and 

Honnegowda, 2015). Hence, a pH-responsive release of therapeutic drugs or growth factors 

could be beneficial for effective treatment of wounds (Banerjee et al. 2012). Controlled drug 

release in combination with a pH regulating system, like the hybrid double cross-linked HA 

based hydrogel system, established in this thesis, could be valuable.  
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A possible application as a wound dressing is presented in Figure 53. 

 

 

 

Figure 53 Possible application of the hybrid double cross-linked HA based hydrogel as a: (1) pH regulator and (2) pH 

controlled drug release wound dressing. (I) Drug loaded HA-DTPH-dHA+ hydrogel. Hydrogel swelling upon pH 7- 8 

and release of dHA+ and possible incorporated drug a, acidification of wound site lead to shrinking of hydrogel and 

stop of drug release b. (II) Two in size different drug loaded HA-DTPH-dHA+ hydrogel. Hydrogel swelling upon pH 

7- 8 and release of dHA+ and possible incorporated small drug c, acidification of wound site lead to shrinking of 

hydrogel and stop of drug release d, upon enzymatic degradation released bigger drug e. 

 

I) Drug incorporated HA-DTPH-dHA+ hydrogel swells upon responding to the alkaline pH and 

release desired drug and dHA+. Consequently, wound site acidifies, which leads to the stop of 

drug release and dHA+. II) Two, in size different, drugs are incorporated inside HA-DTPH-dHA+ 

hydrogel and the smaller drug and dHA+ would be released upon swelling at alkaline pH and 

result again in acidification. Upon enzymatic degradation the bigger drug could be released. 

To utilize the established hydrogel as a wound dressing model, a few properties such as 

biocompatibility and degradability have to be characterized.  
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5 Appendix  

5.1 Additional Information on the Presented Experiments 

 

5.1.1 NMR Data of Synthesized Compounds 

 

HA-DTPH: 

1H-NMR (600Hz, D2O): δ = 3.18 (m, 5H, H-1/2, SH), 3.15-2.0 (m, Carbohydrate protons), 1.77 

(s, 3H, C(=O) CH3) ppm. 

 

HA-HPH: 

1H-NMR (600Hz, D2O): δ = 3.15-2.0 (m, Carbohydrate protons), 1.77 (s, 3H, C(=O) CH3) ppm. 

 

DTPH: 

1H-NMR (600Hz, D2O): δ = 2.90 (t, 2H, CH2C=O), 2.50 (t, 2H, S-CH2) ppm. 

 

dHA+: 

1H-NMR (600Hz, D2O): δ = 5.48 (d, J1,2 = 3,5 Hz; GaIN H-1α), 4.72 (d, J1,2 = 8,0 Hz; GaIN H-1β), 

4.73, 4.72 (2d, J1,2 = 7,5 Hz, 1H; GlcA H-1α,β), 4.30-4.20 (m; GaIN H-3α, H-4, GlcA H-5), 4.15-

4.06 (m; GaIN H-3β,  GlcA H-4), 3.80-3.70 (m; GaIN H-5, 2H-6), 3.65 (dd, J2,3 = 11,0 Hz; GaIN H-

2α), 3.56 (m; GlcA H-3α,β), 3.45 (m; GlcA H-2α,β), 3.34 (dd, J2,3 = 11,0 Hz; GaIN H-2β) ppm. 
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5.2 Experimental Values of Presented Graphs 

 

In this chapter, all experimental data points presented, following the order they appear in 

chapter three, are summarized  

 

5.2.1 Experimental Values of Ellman’s Assay  

 

Experimental values of free thiol groups of HA-DTPH-Cl+/HA-DTPH/HADTPH-Ox. hydrogels 

determined by using the Ellman’s assay after 24 hours (Tab.4) and 72 hours (Tab.5). 

 

Table 4 Exact values of Ellman´s assay for HA-DTPH-Cl+ and HA-DTPH with three different thiolation degrees after 

24  hours. All values represent mean standard deviation of triplicates. 

 

24 h HA-DTPH29% HA-DTPH42% HA-DTPH58% 

NH4
+ 33.0 ± 0.03 34.3 ± 0.03 37.7 ± 0.3 

GluA+ 10.0 ± 0.02 17.8 ± 0.01 21.3 ± 0.06 

dHA+ 7.0 ± 0.01 7.5 ± 0.06 7.5 ± 0.08 

Without 
Linker 35.9 ± 0.01 98.0 ± 0.01 89.5 ± 0.085 
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Table 5 Exact values of Ellman´s assay for HA-DTPH-Cl+ and HA-DTPH with three different thiolation degrees after 

72  hours. All values represent mean and standard deviation of triplicates. 

 

72 h HA-DTPH29% HA-DTPH42% HA-DTPH58% 

NH4
+ 16.0 ±0.02 8.3 ± 0.04 16.1 ± 0.1 

GluA+ 6.0 ± 0.03 5.4 ± 0.04 15.2 ± 0.05 

dHA+ 6.0 ± 0.02 5.0 ± 0.02 5.0 ± 0.04 

Without 
Linker 20.4 ± 0.03 72.0 ± 0.03 50.0 ± 0.04 

H2O2 7.5 ± 0.01 6.3 ± 0.08 4.5 ± 0.01 

 

5.2.2 Experimental Values of Young’s Moduli 

 

Experimental values of Young’s moduli of fully swollen HA-DTPH-Cl+/HA-DTPH-Ox. hydrogels 

with cross-linker ratio 1.0 to free remaining negative charged groups on the polymer chain 

(Tab.6). 

 

Table 6 Exact values of Young’s moduli of fully swollen HA-DTPH-Cl+/HA-DTPH-Ox. hydrogels with cross-linker ratio 

1.0 to free remaining negative charged groups on the polymer chain. All values represent mean and standard 

deviation of triplicates. 

 

1 equ. 
HA-DTPH29%  

Young’s modulus 
[kPa] 

HA-DTPH42% 
Young’s 

modulus [kPa] 

HA-DTPH58% 
Young’s modulus 

[kPa] 

H2O2 0.13 ± 0.058 0.2 ± 0.2 1.2 ± 0.3 

NH4
+ 0.8 ± 0.05 1.5 ± 0.3 2.4 ± 0.071 

GluA+ 1.16 ± 0.23 3.2 ± 0.06 4.0 ± 0.3 

dHA+ 2.93 ± 0.35 4.2 ± 0.3 7.2 ± 0.7 
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5.2.3 Experimental Values of Swelling Ratio in Water and Calculated Mesh Sizes  

 

Experimental values of swelling ratio of HA-DTPH-Cl+/HA-DTPH-Ox. hydrogels at two defined 

temperatures 22 °C (Tab.7) and 37°C (Tab.8).  

 

Table 7 Experimental values of swelling ratio of HA-DTPH-Cl+/HA-DTPH-Ox. hydrogels at 22 °C. All values represent 

mean standard deviation of triplicates. 

 

22°C HA-DTPH29% HA-DTPH42% HA-DTPH58% 

H2O2 40.5 ± 5.2 44.2 ± 8.6 23.1 ± 1.6 

dHA+ 86.2 ± 8.4 19.5 ± 0.6 43.5 ± 1.4 

GluA+ 221.6 ± 8.7 180.5 ± 4.7 133.7 ± 4.5 

NH4
+ 319.1 ± 28.7 169.8 ± 1.5 160.7 ± 9.4 

 

 

Table 8 Experimental values of swelling ratio of HA-DTPH-Cl+/HA-DTPH-Ox. hydrogels at 37 °C. All values 

represent mean standard deviation of triplicates. 

 

37°C HA-DTPH29% HA-DTPH42% HA-DTPH58% 

H2O2 47.8 ± 4.8 55.1 ± 3.1 28.4 ± 1.8 

dHA+ 106.4 ± 3.5 188.0 ± 8.5 70.5.5 ± 4.4 

GluA+ 264.1 ± 24.1 268.0 ± 2.6 190.4± 2.9 

NH4
+ 339.5 ± 15.7 55.1.8 ± 3.1 23.1 ± 1.6 
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Calculated values of mesh size of HA-DTPH-Cl+/HA-DTPH-Ox. hydrogels based on swelling 

ratio (Tab.9)  

 

Table 9 Calculated values of mesh size of HA-DTPH-Cl+/HA-DTPH-Ox. hydrogels with HA-DTPH29% based on 

swelling ratio. All values represent mean standard deviation of triplicates. 

 

 
HA-DTPH29%  

mesh size[nm] 
HA-DTPH42%  

mesh size[nm] 
HA-DTPH58%  

mesh size[nm] 

H2O2 19.3 ± 1.5 14.6 ± 0.4 13.2 ± 1.2 

dHA+ 22.2 ± 2.3 19.9 ± 2.3 14.9 ± 2.3 

GluA+ 26.8 ± 2.6 23.5 ± 2.8 22.1 ± 1.2 

NH4
+ 34.7 ± 5.0 28.9 ± 3.8 23.4 ± 3.2 
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5.2.4 Experimental Values of Swelling Ratio at pH from 3 to 10 

 

Experimental values of swelling ratio of HA-DTPH-Cl+/HA-DTPH-Ox. hydrogels with 

HA- DTPH29% (Tab.10) HA- DTPH58% (Tab.11) in pH solution ranging from 3-10.  

 

Table 10 Exact values of swelling ratio HA-DTPH-Cl+/HA-DTPH-Ox. hydrogels with HA-DTPH29% in pH solution 

ranging from 3-10. All values represent mean standard deviation of triplicates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pH NH
4

+
 GluA

+
 dHA

+
 H2O2 

3 65.85 ± 9.56 56.36±4.57 29.88 ± 3.17 13.70 ± 2.57 

4 76.62 ± 2.33 68.78 ± 6.26 44.88 ± 11.79 19.02 ± 0.97 

5 81.15 ± 5.29 73.00 ± 8.08 48.82 ± 5.23 20.83 ± 2.17 

6 148.74±14.30 95.79 ± 9.89 72.29 ± 3.25 30.84 ± 4.41 

7 208.04±15.6 163.27±14.98 94.54 ± 0.80 55.28 ± 2.00 

8 70.7 ± 11.5 69.77 ± 3.75 82.03 ± 1.85 44.85 ± 6.85 

9 63.9 ± 2.4 69.64 ± 14.5 72.61 ± 2.29 24.03 ± 3.55 

10 67.06 ± 5.4 58.15 ± 7.13 55.13 ± 2.07 16.91 ± 2.31 
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Table 11 Exact values of swelling ratio HA-DTPH-Cl+/HA-DTPH-Ox. hydrogels with HA-DTPH58% in pH solution 

ranging from 3-10. All values represent mean standard deviation of triplicates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pH NH
4

+
 GluA

+
 dHA

+
 H2O2 

3 70.46 ± 9.6 53.55±4.06 7.64±1.98 12.28±0.95 

4 70.30 ± 2.3 59.52±3.20 34.18±4.54 17.14±1.22 

5 83.98 ± 5.3 69.81±6.90 41.48±5.47 18.83±2.60 

6 108.13±15.8 78.20±1.30 45.96±6.84 23.16±1.49 

7 148.76±7.2 113.14±15.07 57.07±4.18 37.10±1.87 

8 70.03 ± 5.6 68.28±3.36 43.55±3.28 34.79±1.72 

9 58.51 ± 4.1 59.28±1.51 43.16±4.97 30.46±1.01 

10 45.62 ± 3.4 39.25±2.94 28.24±6.02 24.12±0.75 



5. APPENDIX  

 

127 

 

5.2.5 Experimental Values of Swelling Ratio for Varying Ionic Strength Solution 

 

Experimental values of swelling ratio of HA-DTPH-Cl+/HA-DTPH-Ox. hydrogels with 

HA- DTPH29%/58% in different ionic solution and different ionic concentrations (Tab.12). 

 

Table 12 Exact values of swelling ratio of HA-DTPH-Cl+/HA-DTPH-Ox. hydrogels with HA-DTPH29%/58% in different 

ionic solution and different ionic concentrations. All values represent mean standard deviation of triplicates. 

 

Thiolation 
degree 

50 mM 
NaCl 

150 mM 
NaCl 

300 Mm 
NaCl 

29% 162.38±15.47 124.28±12.64 63.72±1.25 

58% 110.72±7.25 87.13±5.48 43.18±0.33 

 
50 mM 
MgCl2 

150 mM 
MgCl2 

300 mM 
MgCl2 

29% 56.33±2.02 38.71±1.71 21.46±2.39 

58% 49.25±3.68 29.88±2.63 16.00±0.72 

 
50 mM 
CaCl2 

150 mM 
CaCl2 

300 mM 
CaCl2 

29% 39.37±0.48 21.06±1.71 18.76±0.82 

58% 33.74±0.27 17.99±1.35 13.30±0.42 
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5.2.6 Experimental Values of Cell Viability Assay 

 

Experimental values of the cell viability assay upon treatment of NHDF cells with dHA+ (Tab.13) 

and HA- DTPH (Tab.14).  

 

Table 13 Exact values of cell viability (Absorbance 490 nm) upon dHA+ treatment of NHDF cells over 

24/48 hours. All values represent mean and SEM values of n = 9. 

 

Incubation time 0.01 mg/mL 0.1 mg/mL 1 mg/mL Untreated 

24 h 0.095 ± 0.014 0.077 ± 0.013 0.112 ± 0.020 0.083 ± 0.013 

48 h 0.273 ± 0.064 0.314 ± 0.043 0.269 ± 0.030 0.211 ± 0.036 

 

 

Table 14 Exact values of cell viability (Absorbance 490 nm) upon HA-DTPH treatment of NHDF cells over 24/48 

hours. All values represent mean and SEM values of n = 9. 

Incubation time 0.01 mg/mL 0.1 mg/mL 1 mg/mL Untreated 

24 h 0.106 ± 0.013 0.088 ± 0.013 0.119 ± 0.018 0.093 ± 0.013 

48 h 0.212 ± 0.021 0.198 ± 0.027 0.195 ± 0.028 0.256 ± 0.036 
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5.2.7 Experimental Values of Enzymatic Degradation  

 

Experimental values of half-lives for enzymatic degradation of HA-DTPH-Cl+/HA-DTPH-Ox. 

hydrogels with HA- DTPH29%/42%/58% with HA degrading enzyme: hyaluronidase (Tab.15) and 

lyase (Tab.16). 

 

Table 15 Exact values of half-lives of HA-DTPH-dHA+/HA-DTPH-Ox. hydrogels with HA- DTPH29%/42%/58% with HA 

degrading enzyme: lyase. All values represent mean standard deviation of triplicates. 

 

lyase 
HA-DTPH-dHA+ 

Half-life [h] 
HA-DTPH-Ox. 
Half-life [h] 

29% 1.8 ± 0.3 0.3 ± 0.03 

42% 2.2 ± 0.1 0.4 ± 0.02 

58%+ 3.3 ± 0.3 0.4 ± 0.04 

 

 

Table 16 Exact values of half-lives of HA-DTPH-dHA+/HA-DTPH-Ox. hydrogels with HA- DTPH29%/42%/58% with HA 

degrading enzyme: hyaluronidase. All values represent mean standard deviation of triplicates. 

 

hyaluronidase 
HA-DTPH-dHA+ 

Half-life [h] 
HA-DTPH-Ox. 
Half-life [h] 

29% 2.2 ± 0.3 0.5 ± 0.03 

42% 3.3 ± 0.03 0.7 ± 0.03 

58%+ 4.2 ± 0.3 0.7 ± 0.04 
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5.3 Additional Information on Enzymatic Degradation of HA 

Hydrogels  

 

Exemplary graph of Exponential Decay with Fit Values for Degradation of HA-DTPH-dHA+ 

Hydrogel in Hyaluronidase  

 

To determine the half-life of HA-DTPH-dHA+ hydrogel in different enzyme solutions, a first 

order exponential decay is fitted to the weight measurements done over time (2.6.1) (Fig.54). 

For HA- DTPH29%- dHA+ one exemplary data set with fit values is shown Tab.17.  
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Figure 54 Degradation of HA- DTPH29%- dHA+ on hyaluronidase follows an exponential decay first order. The weight 

loss of the hydrogel over time can be fitted and half-life can subsequently be calculated from the fit. 

 

Table 17 Fit values for first order exponential decay for HA- DTPH29%- dHA+ degradation in hyaluronidase. 

Values are given after analysis in “Graph Pad Prism7” (version 7.0c, GraphPad Software Inc.).  

 

Best-Fit parameter #1 

Y0 164,1 

NS -0,4538 

K 0,2461 

HalfLife 2,817 

Std. Error  

Y0 2,512 

Goodness of Fit  

Degrees of Freedom 9 

R square 0,9977 
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Absolute Sum of Squares 80,22 

5.4 Additional Information on Swelling behaviour of HA-DTPH-

dHA+ 

 

In an attempt to visualize the swelling behavior HA-DTPH58%-dHA+, it was recorded over time 

during the swelling process in an aqueous solution of pH 7 (Fig.55). 

 

 

 

Figure 55 Swelling behavior of HA-DTPH58%-dHA+ hydrogel over a total recording time of 14 hours. Depicted are 

overviews over the full gel (stitched from 12 single images). Swelling and shrinking of the hydrogel are observable, 

yellow arrows are indicating the change of the hydrogel size upon swelling and shrinking. Scale bar: 50 µm 

 

Imaging the swelling process of HA-DTPH-dHA+ upon responding to the surrounding pH 

confirmed successfully the results, described in 3.4.2.1. The hydrogel starts to swell (pH 7) 

within 24 min until it reaches equilibrium after 288 min. After 440 min it starts to shrink and 

collapses to the center upon acidifying the surrounding solution (pH 4.7). A number of 

limitations may influence the results obtained: (1) As anticipated, there were some 

discrepancies for the equilibrium time, since swell experiments were performed before under 

shaking and this was not possible while imaging, which had an impact on the diffusion of the 

solution through the hydrogel and consequently on the swelling process. (2) While the 



5. APPENDIX 

 

132 

 

shrinking process the hydrogel got smaller and the focus of the microscope got lost, which 

resulted in a blurry image (560 min). (3) The fully swollen state is difficult to image, since it 

increases in the height. (4) Presented are preliminary images, due to the coronavirus this 

experiment could not be repeated. 
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