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1. SUMMARY / ZUSAMMENFASSUNG 

 

1.1 Summary 

Triple-negative breast cancer is a highly aggressive breast cancer subtype and the treatment 

options are mainly limited to chemotherapy, however, the patients frequently develop resistance. 

As endogenous regulators of gene expression, microRNAs are involved in tumor development, 

progression and treatment resistance. microRNA sequence variants with a shifted seed sequence 

are termed 5’isomiRs and extend the complexity and impact of the miRNome in cancer. A shift in 

the seed sequence by only one nucleotide can drastically alter the target spectrum of a 5’isomiR 

compared to its canonical microRNA. Hence, this study aims at identifying microRNAs and 

5’isomiRs with a potential role in tumorigenesis and chemoresistance and focuses on 

characterizing their functional differences in triple-negative breast cancer. 

I selected microRNAs and 5’isomiRs that were differentially expressed between tumor and normal 

tissue of patients from the TCGA cohort and, thus, potentially involved in tumorigenesis and 

chemoresistance. Growing mammospheres from MDA-MB-231, HCC1806 and SUM-159 cells that 

overexpressed the selected microRNAs as pooled library enriched for cells with increased 

stemness and chemoresistance. Read-out of the library composition by NanoString after several 

sphere generations revealed strong enrichment of pre-miR-103a-1. In validation experiments, pre-

miR-103a-1 overexpression did not influence stemness or chemoresistance.  

In the second part of the project, I focused on the functional characterization of miR-1307-3p I0 

and its 5’isomiR miR-1307-3p I1. Both were selected from the list of differentially expressed 

microRNAs based on their similar expression levels. Phenotypic assays in triple-negative breast 

cancer cell lines showed that both microRNAs reduce migration, miR-1307-3p I0 in a cell line-

specific manner and less pronounced than miR-1307-3p I1. miR-1307-3p I1 repressed proliferation 

in a cell line-dependent context. Target predictions identified genes that might contribute to these 

phenotypes and explain differences between cell lines. The putative targets suggested that miR-

1307-3p I0 plays a role in autophagy. 

In summary, I showed that miR-1307-3p I0 and I1 influence different and similar phenotypes in a 

partially cell line-dependent manner by targeting specific as well as shared putative target subsets. 

This study underlines how complex and context-dependent microRNAs and their 5’isomiRs 

modulate gene expression and that they are of biological relevance. Consequently, diagnostic, 

prognostic and therapeutic approaches should discriminate between 5’isomiRs.  
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1.2 Zusammenfassung 

Triple-negativer Brustkrebs ist eine sehr aggressive Form von Brustkrebs und die 

Behandlungsmöglichkeiten beschränken sich hauptsächlich auf Chemotherapie, gegen welche die 

Patienten jedoch häufig eine Resistenz entwickeln. Als endogene Regulatoren von Genexpression 

sind microRNAs in Entwicklung, Progression und Behandlungsresistenz von Tumoren involviert. 

microRNA Sequenzvarianten mit einer verschobenen Seedsequenz werden 5’isomiRs genannt und 

erweitern die Komplexität und den Einfluss des miRNomes in Krebs. Eine Verschiebung der 

Seedsequenz um nur ein Nukleotid kann das Targetspektrum einer 5’isomiR im Vergleich zur 

kanonischen microRNA drastisch verändern. Daher zielt diese Studie darauf ab microRNAs und 

5’isomiRs mit einer möglichen Beteiligung an Tumorigenese und Chemoresistenz zu identifizieren 

und konzentriert sich darauf die funktionellen Unterschiede in triple-negativem Brustkrebs zu 

charakterisieren.  

Ich wählte microRNAs und 5’isomiRs aus, die in Tumor- und Normalgewebe von Patienten aus der 

TCGA Kohorte differenziell exprimiert werden und daher wahrscheinlich in Tumorigenese und 

Chemoresistenz involviert sind. Die 3D-Kultivierung von MDA-MB-231, HCC1806 and SUM-159 

Zellen, welche die ausgewählten microRNAs als gepoolte Library überexprimierten, reicherte 

Zellen mit Stammzell-Charakter und erhöhter Chemoresistenz an. Die Bestimmung der Library 

Zusammensetzung mit NanoString nach mehreren 3D-Generationen zeigte eine starke 

Anreicherung von pre-miR-103a-1. In Validierungsexperimenten beeinflusste die Überexpression 

von pre-miR-103a-1 Stammzell-Charakter und Chemoresistenz nicht. 

Im zweiten Teil des Projekts konzentrierte ich mich auf die funktionelle Charakterisierung von miR-

1307-3p I0 und ihrer 5’isomiR miR-1307-3p I1. Beide wurden aus der Liste differenziell 

exprimierter microRNAs aufgrund ihrer ähnlich starken Expression ausgewählt. Phäntotypische 

Experimente in triple-negativen Brustkrebszelllinien zeigten, dass beide microRNAs Migration 

reduzieren, miR-1307-3p I0 auf zelllinienspezifische Weise und weniger ausgeprägt als miR-1307-

3p I1. miR-1307-3p I1 unterdrückte die Proliferation in zelllinien-abhängigem Kontext. Mit Hilfe 

von Targetvorhersagen wurden Gene identifiziert, die wahrscheinlich zu diesen Phänotypen 

beitragen und die Unterschiede zwischen den Zelllinien erklären. Zudem deuteten die putativen 

Targets darauf hin, dass miR-1307-3p I0 eine Rolle in Autophagie spielt. 

Zusammenfassend zeigte ich, dass miR-1307-3p I0 und I1 unterschiedliche und ähnliche 

Phänotypen in teilweise zelllinienspezifischer Weise beeinflussen. Dies geschieht über spezifische 

und gemeinsame Teilmengen des Targetspektrums. Diese Studie unterstreicht wie komplex und 
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kontextabhängig microRNAs und ihre 5’isomiRs die Genexpression modulieren und dass sie von 

biologischer Relevanz sind. Infolgedessen sollten diagnostische, prognostische und therapeutische 

Ansätze zwischen 5’isomiRs unterscheiden. 
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2. INTRODUCTION 

 

2.1 Breast cancer 

Breast cancer is a common disease in women1. In 2019, the American Cancer Society reported that 

268,600 women were diagnosed with breast cancer and 41,760 died from breast cancer2. These 

numbers render breast cancer the most common cancer entity in women and the second most 

frequent cancer-related cause of death. The heterogeneity of breast cancer requires the 

discrimination between subtypes in order to recommend a suitable therapeutic strategy. In the 

past, breast cancer was classified mainly based on immunohistological characteristics, for 

instance, the presence of estrogen receptor (ER), progesterone receptor (PR) and human 

epidermal receptor 2 (HER2)3. ER+ breast cancer is the most common receptor status of breast 

tumors and is treated with endocrine therapy, while patients with HER2+ breast cancer receive 

HER2-targeted therapy, for instance, Trastuzumab (Figure 1)4. Both patient groups have a more 

favorable prognosis than triple-negative breast cancer (TNBC) patients that lack ER, PR and HER2 

expression. The lack of receptors that can be targeted explains why there is currently no targeted 

therapy available for the 15-20 % of patients that are diagnosed with TNBC5,6. Approximately 75 % 

of all breast cancer patients, however, have a good prognosis since they are ER+ and, thus, benefit 

from endocrine therapy7,8. 

 

 

Figure 1: Breast cancer subtypes and targeted therapy options. Breast cancer classification based on 

receptor status: ER+, HER2+ and TNBC. These three groups strongly differ in their prognosis and different 

targeted therapy options are available. Each breast cancer type is divided into further subtypes. SERM = 

selective estrogen receptor modulator, AI = aromatase inhibitor. The figure was modified from Ma et al., 

20184. 
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Nowadays, gene expression profiling and RNA sequencing allow to refine this classification by 

taking gene signatures into account and, thus, improve prognostic and therapeutic approaches. 

The PAM50 intrinsic subtype classifier discriminates between five breast cancer subtypes based 

on the mRNA expression pattern of 50 genes: Luminal A, Luminal B, HER2-enriched, Basal-like and 

Normal-like9–11. Luminal A is the most frequent PAM50 subtype (50-60 %), followed by Luminal B 

(15-20 %), HER2 (15-20 %) and Normal-like (5-10 %)12. The abundance of Basal breast cancer (8-

37 %) varies a lot based on the prevalence of poorly differentiated grade 3 cases in the evaluated 

population. Basal and HER2+ breast cancer are the most aggressive subtypes and associated with 

poor prognosis13,14. Luminal A patients have the best prognosis, followed by Luminal B patients12. 

The Normal-like subtype, however, is poorly characterized. 

 

2.1.1 Triple-negative and Basal breast cancer 

In 70-80 % of all cases, Basal breast tumors are also classified as TNBC11. While TNBC lacks ER and 

PR expression as well as HER2 amplification, approximately 20 % of the Basal breast tumors 

overexpress either ER or HER25. Moreover, several other markers including EGFR, c-Kit as well as 

cytokeratins 5, 6, 14 and 17 are associated with Basal tumors15. Basal patients overexpress genes 

related to proliferation, cell cycle and DNA damage response16. TNBC reveals a high frequency of 

TP53 mutations (80 %), while PIK3CA mutations present in 8 % of all cases17,18. The tumor-

suppressors PTEN, RB1 and BRCA1 are frequently lost in TNBC, whereas MYC is commonly 

amplified19. Despite several differences, TNBC and Basal breast cancer also have common 

features: both are highly aggressive, frequently metastasize to lungs and brain and patients with 

residual disease after chemotherapy have a poor overall prognosis since they are more prone to 

relapse than other subtypes5,20–22. 

 

2.1.2 Triple-negative breast cancer subtypes 

Based on gene expression and pathway activities TNBC was originally classified into six subtypes: 

Basal-Like 1 (BL1), Basal-Like 2 (BL2), Immunomodulatory (IM), Luminal Androgen Receptor (LAR), 

Mesenchymal (M) and Mesenchymal Stem-Like (MSL) (Figure 1)23. However, Lehman et al. 

showed that the subtypes IM and MSL originated from tumor-infiltrating lymphocytes and stromal 

cells, respectively24. Thus, the classification was simplified to the four subtypes BL1, BL2, LAR and 

M. BL1 is characterized by an increase in gene expression related to cell cycle and DNA damage 

response, moreover, this subtype represents the most prevalent one and has the best prognosis24. 
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The TNBC subtype M is driven by enhanced EMT and growth factor signaling. The subtypes with 

the worst prognosis, BL2 and LAR, are enriched in growth factor signaling and myoepithelial 

markers or luminal gene expression, respectively. The highly proliferative subtype BL1 responds 

well to therapies targeting mitosis, while M patients might benefit from agents targeting 

angiogenesis and PI3K/mTOR inhibitors based on their enrichment in EMT signatures25. The 

dependence on the androgen receptor renders anti-androgen therapies highly relevant for LAR 

patients26. Since the BL2 subtype is characterized by upregulated growth factor signaling, 

angiogenetic factors, glycolysis and gluconeogenesis, inhibitors targeting the receptors of VEGF, 

PDGF and FGF show some promise27. Overall, the classification of TNBC into subtypes allows a 

more refined treatment strategy and is of high interest to patients who do not respond to 

chemotherapy or relapse after treatment. The distinct molecular signature allows identifying 

potential targets and therapeutically exploiting pathway vulnerabilities. The respective targeted 

therapies, however, still need to be tested with clinical trials. 

 

2.1.3 Chemotherapy as standard care for triple-negative breast cancer patients 

Due to the lack of targeted therapy options, neoadjuvant chemotherapy is the standard of care 

for patients with TNBC28. In 50 % of the patients, neoadjuvant chemotherapy does not result in 

pathological complete response (pCR). The lack of complete response is associated with a high 

rate of recurrence (40-60 %)29. Overall, TNBC patients with less progressed disease respond more 

likely to chemotherapy30. The pCR in the subtype BL1 is around 41-52 %24,28,31, whereas the other 

subtypes have a worse response to chemotherapy. BL2 and LAR show a pCR of 0-18 % and 10-

29 %, respectively24,31. In the subtype M, almost 40 % of the patient have a complete response to 

chemotherapy24. 

Anthracyclines and taxanes are administered as standard chemotherapy regimen in the 

neoadjuvant setting32. Platinum-based regimen have been proposed, but their effectiveness is still 

under research and they are not part of the standard treatment protocol32. Adding cisplatin or 

carboplatin to the chemotherapy regimen increased pCR rates, the improvement of survival, 

however, needs to be determined33. Anthracyclines and platinum agents target DNA synthesis and 

integrity, while taxanes affect cytokinesis34. Patients that receive anthracycline-based 

chemotherapy and relapse can be treated with taxanes and vice versa. For patients with recurrent 

disease after treatment with anthracyclines and taxanes, fluorouracil/capecitabine, eribulin, 

gemcitabine, vinorelbine or ixabepilone represent alternative treatments35.  
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While TNBC patients with residual disease after neoadjuvant chemotherapy but without a relapse 

are characterized by a luminal-like gene signature, patients with recurrent disease reveal a stem 

cell-like gene signature36. Stem cells and stemness-related pathways strongly contribute to 

chemoresistance in TNBC37. However, several other molecular mechanisms play a major role in 

the development of chemoresistance: senescence and autophagy, for instance, circumvent 

apoptosis and thereby allow TNBC cells to escape chemotherapy38. The upregulation of ABC 

transporters helps the cells to get rid of the chemotherapeutic drugs37. In conclusion, insight into 

the mechanisms of chemoresistance of TNBC patients with recurrent disease after chemotherapy 

is urgently required to develop targeted therapies or strategies to overcome treatment resistance. 
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2.2 microRNAs 

 

2.2.1 Biogenesis and function of microRNAs 

MicroRNAs are major regulators of endogenous gene expression and typically regulate hundreds 

of targets39,40. Mammalian microRNA genes are mainly located within introns of protein-coding or 

non-coding genes, a smaller fraction overlaps with exons of protein-coding or non-coding 

transcripts41,42. In several cases it is determined by the splicing pattern whether the microRNA 

gene is located within an exonic or intronic sequence42. microRNA biogenesis starts with the 

primary microRNA (pri-microRNA) being transcribed from the microRNA gene by RNA polymerase 

II43 (Figure 2). The pri-microRNA is composed of 500-3,000 nucleotides, a 7-methylguanosine cap 

at the 5’terminus and a polyadenylated 3’tail44. In the nucleus, the pri-microRNA is cleaved by a 

complex formed by Drosha and DGCR8, which results in a precursor microRNA (pre-microRNA) of 

70-80 nucleotides length45,46. Export of the pre-microRNA into the cytoplasm by Exportin-5 allows 

further processing by the Dicer-TRBP complex, which forms a microRNA duplex consisting of a 

guide strand and a passenger strand43. Usually, the guide strand is characterized by lower stability 

at the 5’terminus or the base uracil at the 5’end47. After the microRNA duplex is loaded into the 

RNA-Induced Silencing Complex (RISC) formed by Argonaute proteins, both strands are unwound 

and the passenger strand is degraded48. The microRNA guide strand, however, remains 

incorporated into the RISC (miRISC) and governs the complex to the respective mRNA targets in 

order to repress their translation49. Alternatively, the target mRNA is degraded 40,50. microRNA 

biogenesis can also occur via Drosha- or Dicer-independent pathways, however, these alternative 

pathways are less well studied51. 

Mature microRNA are comprised of 21-25 nucleotides, of which mainly the seed sequence 

(nucleotides 2-8) determines specific binding to a complementary region within the 3’UTR of 

mRNA targets52,53. The 3’UTRs of microRNA targets often harbor several binding sites for the same 

or other microRNAs39,54, which amplifies the repression of the mRNA target. Moreover, mRNA 

targets may influence the levels of the microRNAs regulating them55, which shows the complexity 

of these bidirectional microRNA-target relations. Overall, more than 60% of all protein-coding 

genes were found to be conserved microRNA targets56. This shows that microRNA-regulated gene 

expression is a global phenomenon and that their deregulation exerts a great impact on cellular 

fate by affecting multiple signaling pathways57, which makes microRNAs crucial players in cancer 

development, therapy resistance and relapse58.  
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Figure 2: microRNA biogenesis. Mammalian microRNA biogenesis starts with pri-microRNA transcription by 

RNA polymerase II from the genome. Cleavage of the pri-microRNA by the microprocessor complex 

consisting of Drosha and DGCR8 results in the pre-microRNA. Subsequently, the pre-microRNA is exported 

to the cytoplasm by Exportin-5. In the cytoplasm, the Dicer-TRBP complex cleaves the pre-miRNA, which 

results in a microRNA duplex. The microRNA guide strand is bound by the RNA-Induced Silencing Complex 

(RISC) formed by Argonaute proteins. The mature miRNA guides the RISC to the mRNA targets, resulting in 

translational repression or degradation of the bound transcripts. During microRNA biogenesis, alternative 

Dicer cleavage sites, post-transcriptional modifications and RNA editing produce microRNA sequence 

variants, so-called isomiRs. The figure was modified from Bajan et al., 201443.  

 

 

 

 



Dissertation      Janine Jung 

23 
 

Different types of binding sites within the 3’UTR determine the impact that microRNAs have on 

their mRNA targets. Canonical binding sites are the most common type and differ in the number 

of bases that are complementary to the seed sequence of the microRNA (Figure 3). The extent to 

which a microRNA represses its target is largely determined by the amount of bases within the 

3’UTR that are complementary to the seed sequence: 8mer binding sites in the 3’UTR consist of 

more base pairs that are complementary to the seed sequence than 7mer-m8, 7mer-A1 or 6mer 

binding sites, which results in a higher binding affinity and, thus, stronger  repression of the mRNA 

target59,60. Besides the canonical binding sites, microRNAs can bind and regulate their targets via 

3’supplementary and 3’compensatory sites. Both target sites provide additional base pairs 

complementary to parts of the microRNA: the 3’supplementary site is characterized by additional 

pairing of 3-4 nucleotides at position 13-16, while the 3’compensatory site reveals additional 

pairing at position 13-16 in order to compensate for discontinuous complementary between 

3’UTR and seed sequence61,62. 

Although microRNAs predominantly target 3’UTRs, they repress mRNA targets by binding to the 

5’UTRs or coding sequences as well63. microRNA-532-5p, for instance, downregulated RUNX3 by 

targeting the 5’UTR64 and let-7 repressed Dicer by binding to the coding sequence65. Moreover, 

targeting of promoters upregulates gene expression. miR-324-3p, for instance, induced expression 

of RelA by binding within the promoter sequence66. 

 

 

Figure 3: Different types of canonical microRNA binding sites. Canonical microRNA binding sites are 

differentiated based on the extent to which the seed sequence of the microRNA is complementary to a 

sequence within the 3’UTR of a mRNA target. The more bases of the 3’UTR are complementary to the 

microRNA seed sequence, the stronger the microRNA:target interaction and the resulting downregulation of 

gene expression. 
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2.2.2 Studying microRNA:target interactions  

microRNA targets are usually identified and validated in a process consisting of multiple steps: 

target prediction tools such as PicTar, MiRanda or TargetScan are employed to detect targets with 

conserved microRNA binding sites60. A microRNA may target around 200 mRNAs, the number of 

predictions, however, often comprises thousands of potential targets containing numerous false 

positives40. To exclude false positives, the predicted targets are overlapped with experimental 

perturbation data that is generated by microRNA overexpression. Typical formats for the 

experimental validation are sequencing or MicroArray-based profiling of all expressed genes, 

whereas qRT-PCR-based validation is carried out for a smaller number of targets that has been 

preselected by literature, for instance. To confirm direct binding of validated mRNA targets by the 

microRNA, the 3’UTRs of the respective mRNA targets are cloned into a luciferase reporter 

construct. Cells are transfected with microRNA mimics together with the luciferase reporter and 

direct binding of the 3’UTR is detected by a reduction in luciferase activity compared to the non-

targeting control67. Mutation of the binding sites within the reporter should abolish the effect of 

the microRNA on luciferase activity, which provides another layer of validation67. 

More advanced approaches to identify microRNA targets focus on determining the targets while 

the miRISC is interacting with them. Cross-linking and immunoprecipitation (CLIP) strategies 

employ UV light for crosslinking of mRNA targets bound by miRISC and immunoprecipitation of 

Ago to pull-down the miRISC complex68,69. Subsequent high-throughput sequencing allows 

identifying the immunoprecipitated targets and microRNAs that were incorporated into the RISC 

(HITS-CLIP)68,70. For photoactivatable-ribonucleoside-enhanced CLIP (PAR-CLIP), cells are fed with 

medium containing the nucleoside analog 4-Thiouridine and RNA:protein interactions are cross-

linked at a different wave length than HITS-CLIP70. Further development of CLIP allows profiling of 

cross-linked sites at individual-nucleotide resolution (iCLIP)71. Although the mentioned techniques 

detect only RNA:protein interactions, intersecting the generated data with predicted targets 

allows to narrow down the number of putative microRNA:target interactions. Transfection of 

biotinylated microRNA mimics allows pull-down of mRNA targets regulated by the respective 

microRNA with streptavidin-coated beads72. Sequencing the precipitated mRNA targets and 

overlapping them with target predictions is another approach to obtain valid target candidates. 

One method that does not depend on intersecting the data with predicted targets to unravel 

putative microRNA:target interactions is crosslinking, ligation and sequencing of hybrids (CLASH). 

CLASH directly identifies the respective microRNA that represses the mRNA target68. While the 

initial steps are similar to CLIP approaches, mRNA 5’ends are modified after immunoprecipitation 
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of Ago-RNA complexes. The modification is required to ligate microRNAs and their mRNA targets 

for subsequent sequencing73. A major benefit of CLASH is the detection of targets harboring 

canonical as well as non-canonical binding sites74. 

 

2.2.3 isomiRs - microRNA sequence variants 

Currently 2675 mature canonical microRNAs are annotated in miRbase75. In recent years, 

however, microRNA sequencing revealed that one locus gives rise to multiple sequence variants, 

which are termed isomiRs76,77. Partially, the variation in microRNA sequence length can be 

explained by alternative Drosha- or Dicer-mediated cleavage during miRNA biogenesis78–81 

(Figure 2). Alternative processing by Drosha or Dicer is a templated process since the isomiR 

sequence still matches the pre-microRNA sequence from which the mature isoform is derived82. 

Moreover, microRNA sequence variants can result from 3’trimming by 3'-to-5' 

exoribonucleases83,84. A non-templated mechanism that generates isomiRs, is the post-

transcriptional addition of nucleotides at the 5’ or 3’ terminus of the microRNA by nucleotidyl 

transferases85. The microRNA sequence variants generated by alternative Drosha/Dicer cleavage, 

3’trimming or post-transcriptional 5’/3’ nucleotide addition differ in their lengths and/or sequence 

at the 5’ and 3’end (Figure 4) and are termed 5’isomiRs or 3’isomiRs, respectively82. Polymorphic 

isomiRs form the third class of isomiRs and differ in their sequence composition by harboring 

single nucleotide mismatches compared to the canonical microRNA82. Literature suggests that 

polymorphic isomiRs are a result of RNA editing86. 

The expression of isomiRs varies across cell and tissue types or developmental stages and reveals 

race- and gender-specific patterns76,87–90. Moreover, the abundance of isomiRs is regulated in a 

dynamic manner and can be modulated by various biological stimuli and different conditions, for 

instance, hypoxia, ischemia or interferon β stimulation91–93. While 3’variants affect microRNA 

stability as well as stability of the microRNA:target duplex by additional pairing with the mRNA 

target at the 3’end59,94, 5’isomiRs are of greater functional relevance since their seed sequence 

differs from the canonical form87. A shift in the seed sequence of 5’isomiRs can drastically alter 

the mRNA target spectrum95, which adds another layer of complexity to gene expression regulated 

by the miRNome. However, many 5’isomiRs still share a large subset of their targets with the 

respective canonical microRNA and thereby might have synergistic functions96.  
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Figure 4: 5’isomiRs and 3’isomiRs - microRNA sequence variants. 5’isomiRs and 3’isomiRs differ in their 

length and/or sequence at the respective end from the canonical microRNA. While 3’variants affect the 

stability of the microRNA and the microRNA:target duplex, 5’isomiRs are shifted in their seed sequence and, 

thus, are of functional relevance. 5’isomiRs are discriminated based on their target spectrum: looking at the 

longer sequence variant when comparing two microRNAs, a U at nucleotide 2 indicates a convergent seed 

sequence. A, C or G at position 2 of the longer microRNA identifies a 5’isomiR with a divergent seed sequence. 

Divergent seed sequences require more extensive seed pairing for both microRNAs to share the binding site 

within a target and, thus, have more likely discrete target spectra. In this project, all microRNA sequences 

with the same 5’ends were summed up and considered as one 5’isomiR. The nomenclature that was used in 

this thesis refers to the 5’end of the sequence only and indicates how many bases the 5’end is shifted 

compared to the canonical microRNA. I1 indicates that the 5’isomiR is shifted by one nucleotide in 

3’direction, I-1 would indicate a shift towards the 5’end. 

 

5’isomiRs are divided into two categories: 5’isomiRs with a convergent seed sequence and 

5’isomiRs with a divergent seed sequence. When comparing two 5’isomiRs, the second nucleotide 

of the longer sequence variant decides whether both 5’isomiRs share a majority of their targets 

or whether they rather regulate distinct target subsets. The nucleotide U at position 2 of the 

microRNA sequence indicates a convergent seed sequence, while A, C or G at position 2 identifies 

a 5’isomiR with a divergent seed sequence96 (Figure 4). A divergent seed sequence of the longer 
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5’isomiR variant requires more nucleotides of the target 3’UTR to be complementary to the seed 

sequence of the microRNA. As a result, 5’isomiRs with a divergent seed sequence have more likely 

less overlapping target spectra. 

To annotate isomiRs, Loher et al. proposed a system that uses the 5’end and 3’end of the canonical 

microRNA annotated in miRbase as reference89. A shift of the 5’end or 3’end in 3’direction by one 

nucleotide is annotated as I+1, whereas I-1 indicates a shift by one nucleotide in 5’direction. In 

this study, microRNA sequences with the same 5’ends were summed up and considered as one 

5’isomiR disregarding the 3’ends (Figure 4). To simplify the nomenclature, a shift by one 

nucleotide in 5’direction is referred to as I1 instead of I+1. 

 

2.2.4 Quantification of isomiR expression 

Commercial qRT-PCR assays do not allow isomiR-specifc quantification of microRNA expression 

levels97, neither do MicroArrays. While microRNA sequencing allows to unravel the isomiR 

expression landscape of the entire cell, the availability of custom-made, isomiR-specific detection 

assays for individual isomiRs of interest is limited. For detection of individual isomiRs and reliable 

discrimination from other isoforms, the specificity of adapters and probes is the limiting factor. 

One method that describes isomiR-specific detection is the Dumbbell-PCR, which employs 

adapters that are ligated to the  5’end or the 3’end of the isomiR of interest by T4 RNA ligase 298,99. 

High specificity of the T4 RNA ligase 2 and subsequent qRT-PCR with TaqMan probes targeting the 

ligation product allows to determine isomiR expression levels. 

Another method uses DNA probes as detection switch for isomiRs. The DNA probe contains a RNA 

hybridization module for the isomiR, a switching module and a restriction site for the nicking 

endonuclease Nt.BstNBI100. The DNA switch is activated upon binding of the respective isomiR to 

the DNA probe and reverse transcription of the assembled molecule. The DNA probe forms a 

hairpin only upon incorporation of nucleotides complementary to the 5’end of the bound isomiR. 

Subsequently, the signal is amplified by multiple cycles of DNA nicking and polymerization in a 

non-linear reaction. 

A two-tailed qRT-PCR approach aims at isomiR detection by using two probes incorporated into a 

primer for reverse transcription101. One probe is located at the 5’end of the primer, the other 

probe is located at the 3’terminus. Binding of both probes to the target isomiR forms a stable 

complex for reverse transcription. In a second step, qRT-PCR primers bind to the target for 

amplification and SYBRGreen-based detection. Overall, assays for quantifying isomiR-specific 
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expression are still under development and there is no straight-forward solution yet. Moreover, 

optimization might be required for each individual isomiR in order to avoid unspecific detection 

of other isoforms or similar microRNA sequences. 

 

2.2.5 microRNAs in triple-negative breast cancer 

microRNAs have been implicated in a wide range of cancer-associated phenotypes and signaling 

pathways involved in tumorigenesis and therapy response. Features modulated by microRNAs 

include proliferation and cell cycle, motility and metastasis, apoptosis, autophagy, metabolism, 

stemness and resistance102–106. Cancer-associated phenotypes can be driven by various pathways 

in different cancer entities and subtypes. Exploiting pathway dependencies of cancer subtypes for 

targeted therapy is a common strategy and of high interest for entities with limited therapeutic 

options, such as TNBC. 

The Notch and Wnt pathways, for instance, have been identified as highly relevant in TNBC, 

especially for the stem cell fraction of TNBC107,108. This renders Notch and Wnt signaling 

particularly relevant considering the association of stem cells and chemoresistance and the fact 

that only 60-70 % of the patients respond to chemotherapy109. And as for the majority of signaling 

pathways, microRNAs strongly affect these pathways: miR-124-3p was  shown to promote TNBC 

cell growth via Wnt signaling110, whereas miR-125b increased proliferation as well as motility via 

the Wnt pathway111.  MiR-6838-5p on the other hand repressed Wnt signaling and, thus, motility 

in TNBC112. miR-105/93-3p affected TNBC stemness and chemoresistance by promoting Wnt 

signaling113. So far, only two microRNAs were associated with Notch signaling in TNBC: miR-106b-

25 enhanced tumorigenesis via Notch signaling114, whereas miR-34a targeted the Notch pathway 

to mediate tumor-suppressive effects115. 

Resulting from the heterogeneity of TNBC and its subtypes a large variety of signaling pathways 

contributes to tumorigenesis, disease progression and patient survival. This provides a lot of 

possibilities for targeted therapies, however, there is still a long way to go considering the 

complexity that microRNAs and isomiRs add to this context. 

 

2.2.6 Clinical application of microRNAs and isomiRs 

Since especially 5’isomiRs are of functional importance, discrimination between isomiRs is highly 

relevant in the context of biomarker discovery and clinical research. While microRNA-based 
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therapeutic approaches are still in the early phases of clinical approval, profiling of isomiRs opens 

extensive new possibilities for biomarker research that are exploited already116,117. 3’isomiRs of 

miR-574-3p and miR-205-5p, for instance, were identified as diagnostic biomarkers for esophageal 

squamous cell carcinoma118. On a larger scale, isomiRs were employed to distinguish between 32 

cancer entities using 11,000 samples from the TCGA patient data117 and to differentiate between 

breast cancer subtypes119 or discriminate breast cancer tissue from normal tissue76. Even in 

patient serum or extracellular vesicles from cell culture supernatant deregulation of specific 

isomiRs allowed to detect breast cancer120. 

microRNA-based therapy works in two different ways: either by microRNA replacement therapy 

using microRNA mimics / precursors or by suppressing microRNAs with inhibitors or sponges121. 

microRNA replacement is a suitable approach for tumor-suppressive microRNAs that are 

downregulated in the tumor, for instance. microRNA inhibition on the other hand, aims at 

quenching oncogenic microRNAs that are highly abundant in the tumor. To date, there are no FDA-

approved therapies based on microRNAs available, whereas some microRNA candidates are in 

clinical development or phase 1 / phase 2 trials. miR-16, for instance, completed a clinical phase 1 

trial as second line or third line treatment for patients with lung cancer or recurrent thoracic 

cancer122. The clinical trial intravenously administered drug delivery vehicles that contained miR-

16 mimics and were tailored to the EGF receptor with an antibody123. Moreover, several phase 2 

trials subcutaneously injected an antisense oligonucleotide targeting miR-122 for the treatment 

of hepatitis C virus infection and were successfully completed122,124,125. 

Overall, there are a lot of promising microRNAs that could be exploited for therapeutic 

approaches. The major problem with their use as a drug, however, is their short half-life that is 

determined by the presence of nucleases and the necessary delivery to the cell via a carrier that 

allows passing membranes121. Two different classes of carriers are employed for microRNA 

delivery: viral vectors and non-viral carriers121. Carrier-free approaches are under development as 

well, for instance, the coupling of microRNAs to folate which allows the uptake into cancer cells 

that overexpress the folate receptor126. This method was refined recently to enhance endosomal 

escape of the microRNAs that were successfully delivered to the cell127. The microRNAs were 

coupled to nigericin in addition to folate, which promoted the swelling and bursting of endosomes 

and released the microRNA into the cytosol. However, folate receptor-mediated uptake of 

microRNAs strongly tailors this therapy to very specific subsets of cells or cancer types and cannot 

be applied as a general therapy concept. 
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microRNA-based therapies provide a lot of potential, especially for cancer entities and subtypes 

that lack targeted therapy options, such as TNBC. miR-708, for instance, was coupled to 

nanoparticles and administered to mice and reduced lung metastasis derived from the TNBC cell 

line MDA-MB-231128. Another study delivered nanoparticles tailored to the CD133 receptor and 

coated with a miR-21 inhibitor to TNBC cells and breast cancer stem cells129. Despite some success 

stories, microRNA-based therapies still have a long way to go until FDA-approval and general use 

in the clinics. Moreover, 5’isomiRs are currently not exploited for clinical studies, which might 

result from the fact that a multitude of studies does not discriminate between isoforms when 

profiling the miRNome in tumor tissue or patient serum. 
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2.3 Aim of the project 

For the highly aggressive breast cancer subtype TNBC, there are currently no targeted therapies 

available and patients treated with chemotherapy frequently develop resistance towards the 

treatment. Thus, unraveling the molecular mechanism of chemoresistance and identifying targets 

for therapeutic approaches is of high interest. Since microRNAs modulate gene expression which 

affects the majority of signaling pathways, they play a crucial role in tumorigenesis and influence 

the cellular response towards chemotherapy. In the past years, our knowledge of the miRNome 

gained more complexity with the discovery of 5’isomiRs, microRNA sequence variants with a 

shifted seed sequence that can affect the target spectrum drastically. The majority of studies, 

however, does not take the functional divergence of microRNAs and their 5’isomiRs into account. 

In conclusion, this study aimed at identifying microRNAs with a key role in tumorigenesis and 

chemoresistance and focused on characterizing the functional differences of particular microRNAs 

and their 5’isomiRs in this context. 

 

To achieve this aim, this study focused on: 

1) Identifying microRNAs and 5’isomiRs of high relevance for breast cancer tumorigenesis 

and with a potential impact on response to chemotherapy. 

2) Establishing an experimental system to identify microRNAs and 5’isomiRs with a major role 

in chemoresistance. 

3) Characterizing the effect of selected microRNAs and their 5’isomiRs on chemoresistance 

and other cancer-associated phenotypes.  

4) Analyzing the functional and mechanistic differences between selected microRNAs and 

their 5’isomiRs with a focus on their direct targets. 
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3. MATERIAL AND METHODS 

 

3.1 Material 

3.1.1 Laboratory equipment 

Bacterial incubator (37°C)    Memmert 

Bacterial shaking incubator (37°C)   HT INFOS Minitron 

Balance      Kern 

CASY cell counter     Roche Innovatis 

Cell culture hood HERA Safe    Thermo Fisher Scientific 

Cell culture incubator (37°C)    Heraeus 

Centrifuges      Eppendorf, Heraeus 

DNA gel apparatus     Bio-Rad 

Electrophoresis power supply    Pharmacia 

Freezer (-20°C)      Liebherr 

Freezer (-80°C)      Eppendorf 

Fridge (4°C)      Liebherr 

Gel documentation system    Herolab 

Glomax Microplate Reader    Promega 

Light microscope     Hund 

Micropipettes       Gilson 

Microwave      Panasonic 

ImageXpress Micro Confocal Microscope  Molecular Devices 

ImageXpress Micro XLS Widefield Microscope Molecular Devices 

Multichannel pipette     Eppendorf 

Multipette plus     Eppendorf 

NanoDrop nd 1000 spectrophotometer  Thermo Fisher Scientific  

nCounter FLEX Analysis System    NanoString 

Pipetboy      Integra Biosciences 

Qubit Fluorometer     Thermo Fisher Scientific    

Real-time PCR Thermocycler     Applied Biosystems 

Rocker Platform     NeoLab 

Thermocycler      Applied Biosystems  
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Thermomixer      Eppendorf 

Tube Rotator      VWR 

Vacuum Aspirator     Integra Biosciences  

Vortex Mixer      NeoLab 

xCELLigence Real-time Cell Analyzer    Roche 

 

3.1.2 Consumables 

10 cm Ø petri dish     TPP 

24-well transwell plates (5.0 μm, 8.0 μm)  Corning 

6-well plate, flat bottom, transparent    Greiner Bio-One 

96-well deep well plate, 2.2 mL    Fischer Scientific 

96-well plate, flat bottom, Black    Greiner Bio-One 

96-well plate, flat bottom, transparent   Greiner Bio-One 

96-well plate, flat bottom, white   Greiner Bio-One 

Adhesive optically clear plate seals    Thermo Fisher Scientific 

Cell culture flasks (25 cm2, T75 cm2)   TPP 

Cell culture flasks (175 cm2)     Greiner Bio-One 

Cell scraper      Corning 

CIM Plate 16      OLS OMNI Life Science 

Combitips advanced (1 mL, 5 mL, 10 mL)  Eppendorf 

Conical tubes (15 mL, 50 mL)    Greiner Bio-One  

Costar Ultra-low attachment plates (24-well, 6-well)  Corning 

Cryovials (1.8 mL)      Nunc 

E Plate 16 (PET)      OLS OMNI Life Science 

Filter tips (10 μL, 20 μL, 200 μL, 1000 μL)  Neptune Scientific 

Inoculation loops (10 μL)     Copan 

Matrigel invasion chamber (8.0 µm)   Corning 

MicroAmp optical 384-well reaction plate   Applied Biosystems 

Microcentrifuge tube (1.5 mL, 2.0 mL)   Eppendorf 

PCR strips      Steinbrenner 

Pasteur capillary pipettes (230 mm)   Waltham 

Serological Pipettes (2.5 mL, 5 mL, 10 mL, 25 mL) Corning 

Sterile filters (0.45 μM)    Sigma 
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Sterile syringes      Sigma 

 

3.1.3 Chemicals and reagents 

Agar       Sigma 

Agarose      Roth 

Ampicillin      Sigma 

B27 supplement (1x)      Gibco 

Bacto Trypton       Difco 

CASYton      Roche Innovatis 

Chloroform      Sigma 

Complete Mini Protease Inhibitor Cocktail  Roche 

DMEM       Gibco 

DMEM/F-12      Gibco 

DMSO       Sigma 

Doxycycline      Takara 

D-PBS       Gibco 

EDTA       Sigma      

EGF, recombinant      Corning 

Epirubicin       Biomol 

Ethanol      Sigma 

Ethidium bromide     Sigma 

Fetal Bovine Serum (FBS)    Gibco 

FGF, recombinant human basic   R&D 

Geniticin      Sigma 

Glycerol      Roth 

Glycine       Gerbu 

Ham's F-12 Nutrient Mix     Gibco 

Heparin sodium salt     Sigma 

HEPES buffer solution      Gibco 

Hoechst 33342      Thermo Fisher Scientific 

Insulin       Sigma 

Isopropanol      Sigma 

Lipofectamine 2000     Invitrogen    
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Methylcellulose      Sigma 

NEAA (non-essential amino acids, 100x)   Gibco 

Nuclease-free water     Ambion 

OptiMEM      Gibco 

Paclitaxel       Biomol 

PeqGold ladder (1 kb)      Thermo Fisher Scientific 

PhosSTOP      Roche 

Polybrene      Merck Millipore 

Poly-L-lysine       Sigma 

primaQUANT qPCR Probe Master Mix   Steinbrenner 

Propidium iodide     Sigma 

Puromycin      Gibco 

Restriction enzymes and buffer   New England Biolabs 

RNase       Qiagen 

RPMI 1640       Gibco 

SOC medium      Invitrogen 

Tris HCl       Sigma 

Tris base       Sigma 

Trypsin-EDTA (0.05 %, 0.25 %)    Sigma 

Tween 20      Sigma 

Yeast extract      Gerbu 

 

3.1.4 Commercial kits 

DNeasy Blood & Tissue Kit     Qiagen 

miRNeasy Kit      Qiagen 

miScript precursor assays    Qiagen 

miScript primer assays     Qiagen 

miScript RT Kit       Qiagen 

miScript SYBR Green PCR Kit    Qiagen 

NEBuilder HiFi DNA Assembly Cloning Kit   New England Biolabs 

NucleoBond Xtra Midi Kit    Macherey-Nagel 

QIAprep Spin Miniprep Kit     Qiagen 

RevertAid H Minus First Strand cDNA Synthesis Kit  Thermo Scientific 
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RNase-free DNase Set      Qiagen 

RNeasy Mini Kit     Qiagen 

Titanium Taq DNA polymerase    CLONTECH 

Universal Probe Library    Roche 

Wizard SV Clean Up System     Promega 

XT Elements Master Kit     NanoString 

XT Elements TagSet-84     NanoString 

 

3.1.5 Solutions and buffers 

LB Medium    10 g Bacto Trypton 

5 g yeast extract 

10 g NaCl 

dissolve in ddH2O up to 1 L, autoclave 

 

LB-Agar    15 g in 1 L of LB medium, autoclave 

 

50x TAE (Tris-acetate-EDTA)  242 g Tris base 

57.1 mL acetic acid 

100 mL 0.5 M EDTA (pH 8.0) 

ad 1 L ddH2O 

 

TE-Tween     10 mM Tris pH 7.5 

1 mM EDTA 

0.1 % Tween 20 

 

DNA precipitation buffer  9 mL ethanol (absolute)   

300 µL 3 M NaAc (pH 5.2)   

1800 µL ddH2O 
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3.1.6 Cell lines and growth medium 

The parental cell lines used in this thesis are listed in Table 1. All parental cell lines were 

authenticated prior to and in the end of the study (Multiplexion, Heidelberg). Parental cell lines 

and stable cell lines derived from the parental cell lines were cultivated in the growth medium 

specified below and tested for potential mycoplasma contamination on a regular basis. 

 

Table 1: Cell lines and growth medium used in this thesis. 

cell line obtained from derived from full growth medium 

HEK293-FT ATCC (PTA-
5077) 

embryonic kidney cells, 
human, transformed with 
SV40 large T-antigen 

DMEM, 10 % FBS, 1 % NEAA, 1 % 
Geneticin 

MDA-MB-231 ATCC (HTB-26) breast adenocarcinoma 
(metastasis), human 

RPMI-1640, 10 % FBS 

HCC1806 ATCC (CRL-
2335) 

breast squamous cell 
carcinoma, human 

RPMI-1640, 10 % FBS 

SUM-159 Roberto Würth 
(A010, DKFZ) 

pleomorphic breast 
carcinoma, human 

Ham's F-12, 5 % FBS, 10 mM HEPES, 1 
ug/mL Hydrocortisone, 5 ug/mL 
Insulin 

 

 

3.1.7 Bacterial strains 

Competent MACH1 (E.coli)  Thermo Fisher Scientific 

 

3.1.8 Mouse lines 

NSG mice    the mice were bred at the DKFZ mouse facility  

 

3.1.9 Primers and oligos 

All primers and oligos used for cloning, sequencing, TaqMan or as NanoString probes were 

purchased from Sigma-Aldrich. All sequences are given in 5' - 3' direction. 

 

Sequencing primers 

The miRseq5 primer (tgtttgaatgaggcttcagtac) published by Fellmann et al130 was used for 

sequencing the pre-microRNA plasmids for the library. 
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TaqMan primers 

TaqMan primers were designed using the online tool 'Assay Design Center' for the 'Universal Probe 

Library' (UPL) of Roche. The primers and the respective UPL probes can be obtained from Table 2. 

 

Table 2: Primers used for TaqMan assays. 

target fw primer rev primer probe 

House-keeping genes   

ACTB  ccaaccgcgagaagatga  ccagaggcgtacagggatag  64 

GAPDH  gcccaatacgaccaaatcc  agccacatcgctcagacac  60 

HPRT1  tgaccttgatttattttgcatacc  cgagcaagacgttcagtcct  73 

Drug efflux pumps and detoxification enzymes  

ABCC1 aatgcgccaagactaggaag ttctgtggggacttgacga 10 

ABCC2 cttttcctggatcacctcca ccatcatcaaggctgaaaaga 1 

CAT ctccggaacaacagccttc atagaatgcccgcacctg 1 

GPX1 caaccagtttgggcatcag gttcacctcgcacttctcg 77 

SOD2 aatcaggatccactgcaagg taagcgtgctcccacacat 3 

Breast cancer stem cell markers   

ALDH1A1 ccaaagacattgataaagccataa cacgccatagcaattcacc 82 

CD24 atgggcagagcaatggtg ccagttgttgtttcactggaat 23 

CD44 gacaccatggacaagttttgg cggcaggttatattcaaatcg 13 

ITGA6 tggcctcttcatttggctat aaaatactgtggggctccaat 77 

ITGB3 catccacgaccgaaaagaa tgaaggtagacgtggcctct 76 

PROM1 ggaaactaagaagtatgggagaaca cgatgccactttctcactgat 86 

NANOG tctccaacatcctgaacctca ttgctattcttcggccagtt 87 

EMT marker    

CDH1 cccgggacaacgtttattac gctggctcaagtcaaagtcc 35 

FN1 gggagaataagctgtaccatcg tccattaccaagacacacacact 25 

CDH2 ggtggaggagaagaagaccag ggcatcaggctccacagt 66 

VIM gaccagctaaccaacgacaaa gaagcatctcctcctgcaat 39 

SNAI1 tacagcgagctgcaggact atctccggaggtgggatg 11 

SNAI2 tggttgcttcaaggacacat gcaaatgctctgttgcagtg 7 

Others    

ATP5MD ctccagctgtgaaagcaaca ttatcacatgatgagttggcatt 80 

PDCD11 gagagggcccttaagacca cacccacacgttcagcttc 68 

MYC caccagcagcgactctga gatccagactctgaccttttgc 34 
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Primers for pre-amplification of the NanoString samples 

The following primer pair was used to pre-amplify the pre-microRNA barcodes that were 

integrated into the genomic DNA. The primers bound to a sequence within the retroviral backbone 

RT3GEPIR130, which was used to generate the parental cell lines with the pre-microRNA library. 

fw aacgagaagcgcgatcacatggt 

rev gggaacttcctgactaggggagga 

 

Oligos for cloning of the pre-microRNAs and probes for subsequent detection by NanoString 

Each pre-microRNA was designed with two or three partially complementary oligos that covered 

the pre-microRNA sequence obtained from miRBase. After annealing, the pre-microRNA construct 

had sticky ends that matched with the EcoRI- and XhoI-digested vector RT3GEPIR. The probe oligos 

that were used to detect the retrovirally integrated pre-microRNAs are listed in Table 3. The 

probes were designed by NanoString. 

 

Table 3: NanoString probes used for pre-microRNA detection. 

target probe sequence 

pre-let-7c A GCTCCAAGGAAAGCTAGAAGGTTGTACAGTTAACTCCCAGGGTGTAAC
TTCCTTCCTGTGTTCCAGCTACAAACTTAGAAAC 

pre-miR-100 A CCTAACAGACACATACCTATAGATACAAGCTTGTGCGGACTAATACCAC
ACATAAAATTGGTTTTGCCTTTCAGCAATTCAACTT 

pre-miR-103a-1 A CAATGCCTTCATAGCCCTGTACAATGCTGCTTGATCCATATGCAACAACT
GGTCAAGACTTGCATGAGGACCCGCAAATTCCT 

pre-miR-103a-2 A TGGTTCTTTCATAGCCCTGTACAATGCTGCTTGACCTGAATGCTACCTTT
CGTTGGGACGCTTGAAGCGCAAGTAGAAAAC 

pre-miR-106b A CCTGCTGGAGCAGCAAGTACCCACAGTGCGGTAGCCCAGCAGACCTGC
AATATCAAAGTTATAAGCGCGT 

pre-miR-10a A AGAGCGGAGTGTTTATGTCAACTACATATTCCCCTAGATACGAATTTGT
GCCTGCCAATGCACTCGATCTTGTCATTTTTTTGCG 

pre-miR-10b A TGAAGTTTTTGCATCGACCATATATTCCCCTAGAATCGAATCTGTGACTA
CAAACTGGAGAGAGAAGTGAAGACGATTTAACCCA 

pre-miR-125b-1 A AGCACGACTCGCAGCTCCCAAGAGCCTAACCCGTGCGATTGCTGCATTC
CGCTCAACGCTTGAGGAAGTA 

pre-miR-125b-2 A TCCCCTCCGCCTAGGTCCCAAGAGCCTGACTTGTGCTGAGGCTGTTAAA
GCTGTAGCAACTCTTCCACGA 

pre-miR-126 A TGCCGTGGACGGCGCATTATTACTCACGGTACGAGCTAGGACGCAAAT
CACTTGAAGAAGTGAAAGCGAG 

pre-miR-127 A GATGATGAGACTTCCGACCAGCCAAGCTCAGACGGATCCACGCGATGA
CGTTCGTCAAGAGTCGCATAATCT 

pre-miR-1307 A TGCATGACCGCCTATCTACCACGACCGACGCCACGCATTTGGAATGATG
TGTACTGGGAATAAGACGACG 
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pre-miR-130b A GACCTGACCGATGCCCTTTCATCATTGCACTGCTTCCACAAGAATCCCTG
CTAGCTGAAGGAGGGTCAAAC 

pre-miR-139 A GTTACTCCAACAGGGCCGCGTCTCCAGCCTCCGAGCTTGACGTAGATTG
CTATCAGGTTACGATGACTGC 

pre-miR-140 A GGTGCCCCGGTATCCTGTCCGTGGTTCTACCCTGTCTTACAGATCGTGT
GCTCATGACTTCCACAGACGT 

pre-miR-141 A GAACCCACCCGGGAGCCATCTTTACCAGACAGTGTCTTGGAGGAGTTG
ATAGTGGTAAAACAACATTAGC 

pre-miR-142 A CACAGTACACTCATCCATAAAGTAGGAAACACTACACCCTCCAGTGCTG
TCCTACGTATATATCCAAGTGGTTATGTCCGACGGC 

pre-miR-143 A GCTGCAGAACAACTTCTCTCTTCCTGAGCTACAGTGCTTCATCTCCAGCA
AGAAGGAGTATGGAACTTATAGCAAGAGAG 

pre-miR-144 A GGCGGTGCCCGGACTAGTACATCATCTATACTGTAGTGTCTCATCCACC
CCTCCAAACGCATTCTTATTGGCAAATGGAA 

pre-miR-145 A AACCATGACCTCAAGAACAGTATTTCCAGGAATCCCCATCTTAGCATCT
ACCCGAAGCAATACTGTCGTCACTCTGTATGTCCGT 

pre-miR-148b A TAGAAAGCTTTCGAGACAAAGTTCTGTGATGCACTGACTTTCAGAGAG
CCCCGGGAATCGGCATTTCGCATTCTTAGGATCTAAA 

pre-miR-151a A GAGGTGAGTATGACCATCCCTGTCCTCAAGGAGCTTCAGTCTAGTACCG
ATCTTCATAACGGACAAACTGAACGGGCCATT 

pre-miR-155 A CTGTTAATGCTAATATGTAGGAGTCAGTTGGAGGCAAAAACCCCTATCA
CCGCTATGCAGACGAGCTGGCAGAGGAGAGAAATCA 

pre-miR-16-1 A GTCAACCTTACTTCAGCAGCACAGTTAATACTGGAGATAATTTTAGAAT
CCATTCGCAACCATGTGAAGTAATGTGAGCGTACTT 

pre-miR-16-2 A GTCACACTAAAGCAGCACAGTAATATTGGTGTTTAATATATATTTCACT
ACACCAGTTAGCGTGGCGTATACCATGTTGTTAACA 

pre-miR-17 A GTCACCATAATGCTACAAGTGCCTTCACTGCAGTAGATGCACATATCAC
TCCTGAATCAATAGAACAATATCAGTTATGGCGGTG 

pre-miR-182 A GTGCCGGCTGAGTCCTCGCCCCATAGTTGGCAAGTCGGTTGTTAATATG
ACAGGCCGCTAAAGACGTTCT 

pre-miR-183 A TCGTGGATCTGTCTCTGCTCTGTTTATGGCCCTTCGGTAATTCCCGTCTC
AGATGAGTGGGTTAATCAATCAAGTATG 

pre-miR-190b A CTGCTGCTGTAAGAATATGTTTGACATTTAGTTGGTTCCTAATTAAACA
ACTGACACATTAGTAACGTCGGCAAGCACTTAGTCG 

pre-miR-191 A AGGCAGGAGAGCAGGGGACGAAATCCAAGCGCAGCCGTGAACCAGAT
TATGTATGGACGCGCAATAGATA 

pre-miR-192 A GCTGGCATTGAGGCGAACATACCTGTGACCTATGGAATTGCATACGAA
ATTTGAGCAAGCAATTGAAGGCTTAGA 

pre-miR-200a A GCGGGTCACCTTTGAACATCGTTACCAGACAGTGTTAGAGTCAAGCTAT
CAGCTAATAGGGTCGGCTCAACAGTGTATCC 

pre-miR-200c A CCTCCATCATTACCCGGCAGTATTAGAGACTCCCAACCGCTATCAATTC
GTGACCCCGATCATCCAGTCCAGAA 

pre-miR-203a A TCGCTGTCGCCGCGCCCGCCGGGTCTAGTGGTCCTCTTGAGCTCTAGGC
CCAAAACGACCTTAATGGTCA 

pre-miR-204 A GCCAGTGATGACAATTGAACGTCCCTTTGCCTTCCCACTAGCCCAGATC
CTACGAGATGAGCTACGTAACTA 

pre-miR-21 A TGTCAGACAGCCCATCGACTGGTGTTGCCATGAGATTCAAATGCACTCT
ATATGGAGGGAGAGTAGCTGGAT 

pre-miR-210 A GGGTCGCGCTGCCCAGGCACAGATCAGCCGCTGTCCCTGGTCTAGGTA
TCTAATTCGTGGGTCGGGTACT 
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pre-miR-22 A GGCAGAGGGCAACAGTTCTTCAACTGGCAGCTTTAGCATTAGCTCGGA
TGCTATCAGCTTGCGCCTATTAT 

pre-miR-29a A ATAACCGATTTCAGATGGTGCTAGAAAATTATATTGACTCTGAACACCA
ACACGATCTGTATTTTGCACCTTTCGCTATGCTGAG 

pre-miR-29b-1 A CCCCCAAGAACACTGATTTCAAATGGTGCTAGACAATCACTATTTAAAT
CCTGTGTCCGTCTATACGCATACTGGTCCACATATA 

pre-miR-29b-2 A CTCCTAAAACACTGATTTCAAATGGTGCTAGATACAAAGATGGAAAAAT
CCATGTTGGAGTTAACGGAGACCCGCCATCGTTTAC 

pre-miR-3065 A CTGTCCTCTCCAACAATATCCTGGTGCTGAGTGATGACTCAGGCGCTCA
TTTTGAACATACGATTGCGATTACGGAAA 

pre-miR-326 A TGAATCCGCCTCGGGGCTGGAGGAAGGGCCCAGAGCCTATGCATCATG
TGCCTCACTAGGACATCATGCT 

pre-miR-337 A TTGAAGGGGATGAAGAAAGGCATCATATAGGAGCTGGATAACTGTGC
ATCCCTAAATTGGGAAAAAAGGTTTTAGCTATTGATGG 

pre-miR-342 A TAAGTAGGCCAAGGTGACGGGTGCGATTTCTGTGTGAGCTTCAGTTAA
AGGCTATCTTGCTCCGCTCGTTCTC 

pre-miR-365a A TGCAAGAGCAATAAGGATTTTTAGGGGCATTATGATAGTGGAATGGAA
ACCTTAAAGCTATCCACGAATGTCAAAAATGTGGTTT 

pre-miR-375 A GCCTCACGCGAGCCGAACGAACAAAACGCTCAGGTCCCGAATGTATAA
TGCTGACGTTCTTGCTTTTGGC 

pre-miR-378a A AGGCCTTCTGACTCCAAGTCCAGTGCTATTTCTAGGTAACACACAGCCT
ATTGAAGCAATCCTCTCCCCAATACTTAAAAA 

pre-miR-379 A AGAGTTAGTGGACCATGTTACATAGGTCAGAAATCATAACGCCTACGTT
CCTACGGTTACCGTCTTTATAAGTGAACAAAACCGG 

pre-miR-381 A TACTCACAGAGAGCTTGCCCTTGTATATTCCATGTCAATAAACCGAATA
TCTCTGTGAACTGTCATCGGTCCGATCAATTAGTCT 

pre-miR-425 A GAAAGAGCACTGGGCGGACACGACATTCCCGATGGCTCCCCTTTCCCA
AGTAAATGTACGGGAATTATCG 

pre-miR-451a A TCTGGGTATAGCAAGAGAACCATTACCATTACTAAACTCAGTAATGGTA
ACGCTTTATTATGTGTTCGTCTAACTCTGTTTCTGT 

pre-miR-452 A GCAAAGCACTTACTTCTTTGCAGATGAGACTGAGACATAGTTACAAAGT
CCCGAGTGCATGAGCTGTCTTTCACATGATACATCG 

pre-miR-455 A GATGACATAGGCCTTGAGGCAAGTGTATATGCCCATGGACTGCATGGT
GCCTATTTCTGTTCACGGATGAAGGCCTATATCAATG 

pre-miR-486-1 A GTATCCTGTACTGAGCTGCCCCGAGCTGGGCAGCACCATCCACTTTCAT
GGAAACAATAAGAGCAGGGAA 

pre-miR-486-2 A CATCCTGTACTGAGCTGCCCCGAGGCCCTTCATGCCACAAACTCACTAC
TACCAACAACCTCACCAAAAA 

pre-miR-497 A CCTCGGCGGTGCCTCCCCCACCCTCGCTCTAACACCTCATGTCCTCTGTT
AATCCAGCCTGAATATGCCA 

pre-miR-551b A TTATTCTCACAGCCTCTGAAACCAAGTATGGGTCGCCTTCCCAGAAATG
TCACTCCCATGGTGGCTGATATAGAAA 

pre-miR-7-1 A CTGTAGAGGCATGGCCTGTGCCATATGGCAGACTGCATGTCGAACCTT
GGATAGGAGCGACCGATTACGT 

pre-miR-92b A GGGCCGGGCGGGCCGGAGGCCGGGACGAGTGCAATCTCAGGTTGTTA
CTTGAAGGGTTCAACACGAGCTC 

pre-miR-93 A CCGGCGGCTCGGGAAGTGCTAGCTCAGCAGTAGGTCAGAAGATCAAA
AAACGATCCCTGTCCATCAATAC 

pre-miR-99a A CACACTGACACAGACCCATAGAAGCGAGCTTGTGCCTTAGGCTACCAA
ATGAATTTAAAGCCAGCTGAAA 
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pre-miR-99b A GACACGGACCCACAGACACGAGCTTGTGTGCGGCGCCAATGCTTGCAG
TATGTATCCTGATCGTGCGTGC 

ctrl0_RT3GEPIR A GCATAGGAATTATAATGCTTATCTATACATCTGTGGCTTCACTATAGATA
CCTGCATTCTCATGGAAATGCAATGGATTCATTCC 

ctrl1_cel-pre-miR-67  A AAGTTTTAAAATCGATCTACTCTTTCTAGGAGGTTGTGATGCTTAATCTG
CCTGTTGCAGTATCACGTAAATACCTACTTCGATA 

ctrl2_cel-pre-miR-239b A AGATAAAAGCAACTTGCCATTTTTGCACACCACAAAAGTGCTGAGCCTA
GCTGTTATGGCTATTGCTGAAACAGCAAAATT 

ctrl3_cel-pre-miR-1022 A AGCCTTGAACAGCTGGATCATCATTGGACTATCATCTTTATATTGCTTCA
CCTTACGACTTCACTGCAATTGACGATTCAGTTAA 

ctrl4_cel-pre-miR-254 A AAAAACTGCATGTTCGCCGCCTACAGTCGCGAAAGATTTGCCTCATACC
AATGTAAAGTATAGTTAACGCCCTGT 

ctrl5_cel-pre-miR-36 A TCCGCGTCGGGGACCCATGCGAATTTTCACCCGGTCATCTCCATGACTG
CTTGAGCGGCTGGAGAATCTG 

ctrl6_cel-pre-miR-71 A TTCCAGGTCACGATCCCGACGGCGAAAAACAGAATAGTGATACCTTTC
GCCACCCATATAAACCCCACTTCGTCCTCA 

ctrl7_cel-pre-miR-800 A ACGGCGGCAGACAATTTCCGAGTTTGGCCACTGATTATAACAAGGCAG
AGCAAATGTGACACTGTCTATCAGTAC 

ctrl8_cel-pre-miR-90 A TGGCATCCAATTCAAGGGGCATTCAAACAACATATCAACACGCAAAAG
TGCCTACATATATAGGAAAAGGGAAGGTAGAAGAGCT 

all constructs B CGAAAGCCATGACCTCCGATCACTCTAAACAAGATAATTGCTCGAATTC
TAGCCCCTTGAAGTCCGAGGCAGTAG 
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3.1.8 siRNAs and microRNA mimics 

All siRNAs and microRNA mimics as well as the respective non-targeting controls used in this thesis 

are listed in Table 4. All sequences are given in 5'-3' direction. The siRNA pools obtained from 

siTools Biotech contained 30 different siRNAs targeting the gene of interest.  

 

Table 4: siRNAs and microRNA mimics used in this study. 

mimic sequence  company 

siAllStars  -  Qiagen 

mimic ctrl2  -  Dharmacon 

miR-1307-3p I0 ACUCGGCGUGGCGUCGGUCGUG  Dharmacon 

miR-1307-3p I1  CUCGGCGUGGCGUCGGUCGUG  Dharmacon 

siRNA sequence  company 

sictrl1 -  siTOOLs Biotech 

sictrl2 -  siTOOLs Biotech 

siMyc GAGAACAGTTGAAACACAA GGACTTGTTGCGGAAACGA siTOOLs Biotech 

 GCCATAATGTAAACTGCCT GAGGAGCAAAAGCTCATTT  

 GGTACTATAAACCCTAATT CAGCATACATCCTGTCCGT  

 GGAAAACGATTCCTTCTAA GAGCTAAAACGGAGCTTTT  

 GGCGAACACACAACGTCTT CTGAAAGATTTAGCCATAA  

 CCCTGGTGCTCCATGAGGA CCTAGTATTATAGGTACTA  

 CTCACAACCTTGGCTGAGT GGGTCAAGTTGGACAGTGT  

 GCATGATCAAATGCAACCT CTCCTACGTTGCGGTCACA  

 CCCAAGGTAGTTATCCTTA CCCTACCCTCTCAACGACA  

 CTGCCTCAAATTGGACTTT GCCACAGCAAACCTCCTCA  

 GCCACGTCTCCACACATCA CAGATCCCGGAGTTGGAAA  

 GACTATCCTGCTGCCAAGA CAGAGGAGGAACGAGCTAA  

 CGGTGCAGCCGTATTTCTA GACATGGTGAACCAGAGTT  

 CCTATGAACTTGTTTCAAA CGACGAGACCTTCATCAAA  

 GTCCTGAGCAATCACCTAT CTGCTCTCCTCGACGGAGT  

 

 

3.1.9 Plasmids 

pHIT60   kindly provided by Yuko Soneoka131 

pMD2.G  Addgene 

RT3GEPIR  kindly provided by Christof Fellmann130  
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3.1.10 Databases and software 

cBioPortal      http://www.cbioportal.org/ 

Cellosaurus     https://web.expasy.org/cellosaurus/ 

COSMIC     https://cancer.sanger.ac.uk/cosmic/ 

GraphPad Prism 5     http://www.graphpad.com/ 

MiRanda     http://www.microrna.org/microrna/home.do 

miRBase     http://www.mirbase.org/ 

Molecular Devices Analysis Software   Molecular Devices 

Molecular Signature Database   Broad Institute 

NCBI      http://www.ncbi.nlm.nih.gov/ 

nSolver Software    NanoString 

QuantStudio Software    Thermo Fisher Scientific 

Roche UPL Design Center   Roche 

UCSC Genome Browser    https://genome.ucsc.edu/ 

SDS 2.2      Applied Biosystems 

TargetScan      http://www.targetscan.org/ 

TCGA       http://cancergenome.nih.gov/ 
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3.2 Methods 

 

3.2.1 Cloning of the pre-microRNA library 

 

Preparation of the vector 

1-2 µg of the vector RT3GEPIR were digested with EcoRI and XhoI in parallel. For the digest, 5 µL 

NEB CutSmart Buffer (10x) were added to the vector and 1 µL of each restriction enzyme (20 units). 

The reaction volume was adjusted to 50 µL with ddH2O and incubated over night at 37°C. This 

step was followed by heat inactivation at 65°C for ten minutes. The linearized plasmid was purified 

with the Wizard SV Clean Up System according to the manufacturer’s instructions. 

 

Preparation of the pre-microRNAs 

To generate pre-microRNA constructs, two or three oligos that were partially complementary to 

each other (15-80 base pairs overlap) were designed. For annealing of individual pre-microRNAs, 

5 µL of each oligo (100 µM) were combined in a well of a 96-well plate. 2 µL NEB ligation buffer 

(10x) were added and the reaction was filled up to 20 µL with ddH2O. The mix was boiled at 95°C 

for five minutes and allowed to cool down slowly at room temperature.  

 

Ligation via NEBuilder reaction 

The linearized vector RT3GEPIR was ligated with the annealed pre-microRNA oligos using the 

NEBuilder HiFi DNA assembly Master Mix. Since 72 pre-microRNAs were selected for the library, 

the constructs were cloned in pools. Ten or eleven of the annealed pre-microRNA oligos from the 

previous step were combined and diluted to a final concentration of 0.5 µM per pre-microRNA. 

The reaction mix was set up as described below and was incubated at 50°C for one hour.   

 

NEBuilder reaction:   30 ng vector (linearized) 

2 µL annealed oligos (0.5 µM, to use 1 µmol per pre-microRNA) 

10 µL NEBuilder HiFi DNA assembly Master Mix (2x) 

up to 20 µL with ddH2O 
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Bacterial transformation and expansion 

The plasmids containing the individual pre-microRNAs for the library were transformed into 

competent Mach1 E.coli cells. Competent Mach1 cells were thawed on ice and 2 µL of NEBuilder 

reaction (containing up to ten different pre-microRNA constructs) from the previous step were 

added to 50 µL of competent cells and incubated on ice for 30 minutes. The mixture received a 

heat pulse at 42°C for 90 seconds and was incubated on ice for three to five minutes. 

Subsequently, 350 µL SOC medium were added to the transformation mix and the bacteria were 

incubated in a shaker at 37°C for one hour. 200 μL of the transformed bacteria were plated on LB 

agar plates supplemented with 100 μg/mL Ampicillin and incubated over night at 37°C. The next 

day, colonies were picked and cultivated in 5 mL LB medium containing 100 μg/mL Ampicillin. The 

cultures were grown over night at 37°C and the bacteria were harvested for plasmid isolation 

(Miniprep) the next day. After the correct sequences were confirmed by Sanger sequencing (GATC, 

Konstanz), larger over-night cultures were inoculated: 500 µL of the 5 mL bacteria suspension 

grown over night were added to 100 mL LB medium supplemented with 100 μg/mL Ampicillin. 

Plasmid isolation was performed (Midiprep) to obtain large plasmid quantities for generation of 

the stable cells harboring the pre-microRNA library. The correct sequence was confirmed again by 

Sanger sequencing.  

  

Plasmid isolation  

For minipreps, the QIAprep Spin Miniprep Kit was used. 4 mL from the over-night culture were 

pelleted in a 2 mL microcentrifuge tube at 3,000x g for ten minutes. The bacteria pellets were 

resuspended in 250 µL P1 buffer and lysed with 250 µL P2 buffer for five minutes. 350 µL of 

neutralization buffer were added and the mix was inverted five times. After centrifugation at 

6,000x g for ten minutes, the supernatant was applied to a column and spun down at 6000x g for 

one minute. After the flow-through was discarded, the column was washed with 500 µL PB buffer 

and centrifuged at 6000x g for one minute. The flow-through was discarded and the column was 

washed with 750 µL PE buffer and then centrifuged at 6,000x g for one minute. The flow-through 

was discarded and the columns were placed into a new collection tube. Residual ethanol was 

removed by centrifuging the tubes at 6,000x g for one minute. To elute the plasmids, the columns 

were placed into 1.5 mL microcentrifuge tubes and 35 µL ddH2O were added.  After one minute 

of incubation, the plasmid DNA was collected by spinning at 6000x g for one minute. Plasmid 

concentration and quality were measured by NanoDrop. 
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Midipreps were performed with the NucleoBond Xtra plasmid purification kit. Bacteria were 

pelleted at 4,000x g for five to ten minutes. The cell pellet was resuspended completely in 8 mL 

resuspension buffer containing RNase A by pipetting the cells up and down or vortexing. Then, 

8 mL lysis buffer were added and the mix was inverted five times and incubated for five minutes. 

In the meantime, filters were inserted into the NucleoBond Xtra Columns and the columns were 

equilibrated with 12 mL equilibration buffer. 8 mL neutralization buffer were added to the lysate 

and invert immediately 10-15 times. The sample was centrifuged at 5,000x g for ten minutes and 

the supernatant was applied to the filter in the column. Subsequent to the lysate, 5 mL 

equilibration buffer were applied to the filter. In the next step, the filter was discarded and the 

column was washed with 8 mL washing buffer.  The plasmids were eluted with 5 mL elution buffer, 

the flow-through was collected in a 50 mL tube. To precipitate the plasmid DNA, 3.5 mL 

isopropanol (room temperature) were added and the sample was vortexed properly. The plasmid 

DNA was pelleted at 5,000x g for 15 minutes. After the supernatant was discarded carefully, the 

pellet was washed with 2 mL 70 % ethanol and spun down at 5,000x g for five minutes. The 

supernatant was discarded and the remaining liquid was carefully removed with a pipette. The 

pellet was dried at room temperature for five to ten minutes with the lid open. The plasmid DNA 

pellet was dissolved in 100-150 µL TE buffer. Remaining ethanol evaporated at 60°C for five 

minutes (lid open). Plasmid concentration and quality were measured by NanoDrop. 

 

Sanger sequencing 

To verify the correct pre-microRNA sequence, the purified plasmid harboring the pre-microRNA 

was Sanger sequenced by GATC using the miRseq5 primer.  

 

3.2.2 General cell culture 

 

Passaging, freezing and thawing 

All cell lines used in this thesis were adherent and were cultivated in 75 cm2 or 175 cm2 flasks at 

37°C with 5 % CO2 in a humidified incubator. In order to provide enough space and nutrients, all 

cell lines were passaged approximately every three to four days and received fresh full growth 

medium (10-15 mL for 75 cm2 and 25-30 mL for 175 cm2 flasks). To allow the trypsin (0.25 %) to 

detach the cells for passaging, they were washed with PBS after the growth medium was 
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aspirated. The cells were incubated with 1.5 mL trypsin at 37°C. The trypsin was inactivated with 

8.5 mL full growth medium after five minutes. For all assays, 50 μL cell suspension were diluted 

with 10 mL CASYton and cells were counted with a CASY cell counter. To have the cells at 70-80 % 

confluency after three or four days, the cell numbers indicated in Table 5 were seeded for the 

individual cell lines. All cell lines were kept in culture no longer than three months, then new vials 

were thawed. 

 

Table 5: Cell numbers seeded for different cell culture flasks. 

cell line 75 cm2 (3 days) 75 cm2 (4 days) 175 cm2 (3 days) 175 cm2 (4 days) 

HEK293-FT 1,000,000 800,000 - - 

MDA-MB-231  800,000 500,000 2,300,000 2,000,000 

HCC1806 600,000 400,000 2,000,000 1,700,000 

SUM-159 250,000 150,000 300,000 175,000 

 

 

Each cell line was expanded at a low passage and aliquots were frozen for long-term storage in 

liquid nitrogen. Per vial, 1-1.5 million cells were pelleted (0.5 million for SUM-159) at 1,500 rpm 

for five minutes. Each cell pellet was resuspended in 1 mL of freezing medium (full growth medium 

supplemented with 10 % FBS and 10 % DMSO) and transferred into 1.8 mL cryotubes. The aliquots 

were slowly frozen in an isopropanol bath at -80°C. After at least 24 hours, the frozen cell stocks 

were transferred to a liquid nitrogen tank for long-term storage. To thaw the cells, the vials were 

put in a 37°C water and diluted with 10 mL full growth medium. As soon as the suspension was 

thawed, the cell suspension was centrifuged at 1,500 rpm for five minutes. The supernatant was 

removed and the cell pellet was resuspended in 15 mL full growth medium, then cells were seeded 

into a 75 cm2 flask. As soon as the cells had attached or latest the next day, the medium was 

replaced by fresh growth medium to remove dead cells and remaining DMSO. 

 

Transient transfection 

For transient transfection, all cell lines were seeded at 70-80 % confluency the day before 

transfection. microRNA mimics or siRNAs were transfected with Lipofectamine 2000 in OptiMEM 

medium. The respective amounts and volumes used for transfection in different cell culture plates 

are listed in Table 6. First, Lipofectamine 2000 was added to OptiMEM and incubated for 15 

minutes. The mix was inverted occasionally. In the meantime, the siRNAs or microRNA mimics 
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were diluted in OptiMEM. The amount of transfected microRNA or mimic controls had a final 

concentration of 30 nM in the well. For the siRNAs and controls from siPools the final 

concentration was 2 nM. After incubation, both mixes were combined and incubated for 

20 minutes. The mix was inverted several times during the incubation. To transfect cells in 96-well 

plates with the mix, the cell culture medium was aspirated and replaced by 100 μL transfection 

mix. For transfections in 6-wells, the medium was aspirated and replaced by 800 μL OptiMEM. 

Then, 200 μL transfection mix were added dropwise. The transfected cells were incubated for five 

hours at 37°C and 5 % CO2 in a humidified atmosphere. The transfection mix was aspirated and 

replaced by 100 µL or 2 mL regular growth medium for 96-well plates or 6-wells plates, 

respectively. For RNA extraction, cells were harvested 48 hours after transfection. The reseeding 

for different functional assays was performed 48 hours after transfection as well.  

 

Table 6: Transfection mixtures for different plate formats. 

 plate/dish 96-well 6-well 

mix 1 Lipofectamine 2000 (μl) 0.4 4 

 in OptiMEM (μL) 50 100 

mix 2 siRNA/microRNA mimics (nM) 2 / 30 2 / 30 

 in OptiMEM (μL) 50 100 

volumes final transfection mix (µL) 100 200 

 OptiMEM (μL) 0 800 

 finale volume per well (µL) 100 1000 

 

 

3.2.3 Stable cell lines 

 

Virus production  

Transient transfection of HEK293-FT for virus production was performed similar to the microRNA 

mimics and siRNA transfections described above. 10 cm cell culture dishes were coated with poly-

L-lysine solution (0.1 mg/mL) since HEK293-FT cells easily detach after transfection. The plates 

were coated for 30 minutes and washed twice with ddH2O before use. The day before 

transfection, 2 million HEK293-FT cells were seeded in 10 mL medium per dish. To produce virus, 

the cells were transfected with an equimolar plasmid pool of the pre-microRNA library and with a 

retroviral packaging system. The respective amounts and volumes are listed in Table 7. 
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Table 7: Transfection of HEK293-FT for virus production. 

 plate/dish 10 cm dish 

mix 1 Lipofectamine 2000 (μl) 10 

 in OptiMEM (μL) 250 

mix 2 plasmid pMD2.G (ng) 800 

 plasmid pHIT60 (ng) 3500 

 plasmid of interest (ng) 3500 

 in OptiMEM (μL) 250 

volumes final transfection mix (µL) 500 

 OptiMEM (μL) 4500 

 finale volume per well (µL) 5000 

 

One day after transfection, the medium was changed to the full growth medium of the target cell 

lines in order to produce the virus into the correct medium since the target cells are not resistant 

to the Geneticin in the medium of the HEK293-FT cells. The second day after transfection, the 

medium in the dish was collected and fresh full growth medium of the target cell line was added. 

The collected medium was centrifuged at 1,500 rpm for five minutes to remove dead HEK293-FT 

cells and cell debris. The supernatant was transferred to a fresh tube and stored at 4°C. The 

supernatant of the virus-producing HEK293-FT cells was collected again three days post 

transfection. After centrifugation at 1,500 rpm for five minutes, the supernatant was mixed with 

the supernatant collected two days after transfection. The virus-containing media was then frozen 

at -80°C. The HEK293-FT cells were trashed at this point. 

 

Stable transduction of the target cell lines 

The target cell lines were seeded in 75 cm2 flasks at a density that allowed them to be confluent 

after three or four days. Moreover, target cells were seeded into 6-well plates to check the 

multiplicity of infection (MOI). The target cells were transduced with the retrovirus one day after 

seeding. For transduction, the virus-containing supernatant was thawed as fast as possible at 37°C 

in the water bath and resuspended. The medium of the cells was aspirated and replaced by 10 mL 

fresh growth medium per 75 cm2 flask. Each dish received 5 mL of the virus-containing 

supernatant supplemented with 12 µL Polybrene (stock concentration: 10 mg/mL). The resulting 

Polybrene concentration in the diluted virus-containing supernatant (1:3) was 8 µg/mL. Target 

cells seeded in 6-wells for MOI evaluation, received 2 mL of the final transduction mix 

supplemented with 2 µg/mL Doxycycline to induce expression of the pre-microRNA library and 

GFP. Two days after transduction, the cells transduced in 6-wells were stained with Hoechst. By 
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microscope, the total cell number (Hoechst) and the number of transduced cells (GFP upon 

Doxycycline-induction) was determined. If the MOI was low enough (<0.1), Puromycin selection 

of the stable cells was performed. 

 

Selection and cultivation of stable cell lines 

For Puromycin selection of the successfully transduced cells, the cells were washed several times 

with PBS to remove dead cells and residual viral particles 48 hours post transduction. Then, fresh 

full growth medium containing 1 µg/mL Puromycin was added. The stable cell lines were 

expanded under Puromycin selection and stocks were generated and stored in liquid nitrogen. 

The stable cell lines were frozen and thawed in medium without Puromycin. Only when cells 

started to proliferate after thawing, Puromycin was added again. For functional assays, 

Puromycin-free medium was used. 

 

3.2.4 Expression analysis 

 

mRNA and microRNA isolation 

Isolation of mRNA was performed with the RNeasy Mini Kit. A maximum of 10 million cells was 

lysed in 350 µL RLT buffer at room temperature for five minutes and was then collected in a 1.5 mL 

microcentrifuge tube. 350 µL of 70 % ethanol were added and mixed with the sample by pipetting. 

The entire sample was loaded on a column and spun down at 13,000 rpm for 30 seconds. After 

discarding the flow-through, 350 µL RW1 buffer were added to the column and spun down at 

13,000 rpm for 30 seconds. The flow through was discarded and 80 µL DNase I dilution (10 μL 

DNase I stock solution and 70 μL RDD buffer) were applied to the column and incubated at room 

temperature for 15 minutes. Afterwards, the column was washed with 350 µL RW1 buffer at 

13,000 rpm for 30 seconds. The flow-through was discarded and 500 µL RPE buffer were added to 

the column. The column was centrifuged at 13,000 rpm for 30 seconds. Another 500 µL of RPE 

buffer were added and centrifuged at 13,000 rpm for two minutes. The column was placed into a 

fresh collection tube and centrifuged dry 13,000 rpm for one minute. To elute the mRNA, the 

column was placed into a 1.5 mL microcentrifuge tube and 35 µL of ddH2O were added. After one 

minute of incubation, the eluted mRNA was collected by centrifugation at 13,000 rpm for one 

minute. The mRNA concentration was determined by NanoDrop. 
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For microRNA isolation, the miRNeasy Mini Kit was used. Cells were lysed in 700 μL Qiazol Lysis 

Reagent at room temperature for five minutes. Then, 140 µL chloroform were added and the 

samples were vortexed thoroughly. After incubation at room temperature for 2-3 minutes, the 

samples were centrifuged with 13,000 rpm at 4°C for 15 minutes. The upper aqueous phase 

(roughly 350 μL) was transferred into a clean 1.5 mL microcentrifuge tube and 1.5 volumes of 

100 % ethanol were added. The samples were mixed by vortexing, 700 μL of the mix were loaded 

on a column and centrifuged at 13,000 rpm for 30 seconds. The following steps were identical to 

the mRNA isolation protocol, starting with washing the column with 350 µL RW1 buffer and the 

DNase digest. 

 

cDNA Synthesis 

For mRNA, reverse transcription into cDNA was performed with the RevertAid RT Reverse 

Transcription Kit. 2-3 μL of mRNA containing approximately 1-1.5 μg were incubated at 72°C for 

two minutes and put on ice afterwards. Then, RT reaction master mix was added and cDNA 

synthesis was performed as described below. 

 

RT reaction:  1.2 μL reaction buffer (5x) 

0.25 μL of oligo-dT-primer (100 pmol/μL) 

0.6 μL dNTPs (10 mM) 

0.3 μL Prime RNase-Inhibitor (20 U/μL) 

0.2 μL RevertAid Reverse Transcriptase (200 U/μL)  

0.55-1.55 μL ddH2O (depending on mRNA input) 

 

RT protocol:  37°C   5 min 

42°C   60 min 

70°C   10 min 

 

The cDNAs were diluted to a final concentration of 2 ng/μL for gene expression analysis by TaqMan 

and were stored at -20°C. 
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For microRNAs expression analysis, cDNA was synthesized with the miScript RT kit as indicated 

below. The HiFlex buffer was used for pre-microRNA assays, the HiSpec buffer for mature 

microRNA. Subsequent to reverse transcription, cDNAs derived from pre-microRNAs were diluted 

appropriately and stored at -20°C. 

 

RT reaction:   12 µL total RNA (10-2000 ng, max. 500 ng for pre-microRNA assays) 

4 μL miScript HiFlex or HiSpec buffer (5x) 

2 μL miScript Nucleics Mix (10x) 

2 μL miScript RT Mix  

 

RT protocol:   37°C   60 min 

95°C   5 min 

 

Quantitative real-time PCR  

mRNA expression analysis was performed with TaqMan assays, probes were obtained from the 

Roche universal probe library (UPL) and primers were designed with the Roche UPL Design Center. 

Each sample was analyzed in technical triplicates in a 384-well plate. The composition of the 

reaction mix and the qRT-PCR protocol are listed below. 

 

qRT-PCR reaction:  5 μL cDNA (2 ng/μL) 

5.5 μL primaQUANT qPCR Probe Master Mix (2x) 

0.11 μL of 20 µM forward primer 

0.11 μL of 20 µM reverse primer 

0.11 μL UPL probe 

0.17 μL ddH2O 

 

qRT-PCR protocol:  1x   50°C   2 min  

1x   95°C   15 min 

45x  95°C   15 sec   

60°C  1 min  
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ACTB, GAPDH and HPRT1 were included as house-keeping genes. Raw data was evaluated with 

SDS or QuantStudio and the cycle threshold was adjusted manually if necessary. For analysis, the 

median of the technical triplicates per sample was used. The fold change in gene expression 

between two conditions was calculated by normalizing the gene of interest to the mean of the 

three house-keeping genes using the 2-ΔΔCT method132. 

 

For microRNA quantification, the miScript SYBR Green PCR kit was used in combination with 

miScript precursor assays or miScript primer assays. The miScript precursor assays or miScript 

primer assays contain primers for the amplification of a specific pre-microRNA or mature 

microRNA, respectively. Quantification of (pre-)microRNAs was performed as indicated below. 

 

qRT-PCR reaction:  3 μL cDNA (20 ng for pre-microRNA detection, 3 ng for microRNAs) 

5 μL SYBR Green Master Mix (2x) 

1 µL miScript primer assay (10x) or miScript precursor assay (10x) 

1 µL miScript universal assay (10x) for (pre-)microRNAs  

up to 7 μL with ddH2O 

 

qRT-PCR protocol:  1x   95°C   15 min  

45x   94°C   15 sec 

55°C   30 sec   

70°C  30 sec    

melt curve: 95°C  15 sec   1.6°C/s  

60°C  1 min   1.6°C/s  

95°C   15 sec  0.075°C/s  

 

SNORD61, SNORD72 and SNORD95 were included as house-keeping genes. The data was analyzed 

as described previously for mRNA-based expression analysis. In addition, the primer specificity 

was evaluated based on the melt curves. 
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3.2.5 Phenotypic assays 

The phenotypic assays for the pre-microRNA-1307 overexpression cell lines were performed by 

Xiaoya Li and are described in her thesis. This includes cell cycle, apoptosis and transwell-based 

migration/invasion assays.  

 

Reseeding for various phenotypic assays 

To seed defined cell numbers of successfully transfected cells for phenotypic assays, the cells were 

reseeded 48 hours after transfection. Transient transfection was performed in 6-wells as 

previously described and the cells were starved (growth medium without FBS) for 16-20 hours 

prior reseeding. The cells were reseeded for proliferation, chemoresistance and migration assays. 

The cell numbers seeded for transfection in 6-wells and reseeded for the different assays can be 

obtained from Table 8. Proliferation, migration and mammosphere assays compared different 

conditions (e.g. microRNA mimics compared to non-targeting control). To account for differences 

in the cell concentration of the individual cell suspensions (e.g. due to differences in pipetting or 

counting), a seeding control was included. For the seeding control, cells were seeded into black 

96-well plates with clear bottom and counted by microscope shortly after they attached. The data 

obtained from the individual assays was normalized to the seeding control. For the 

chemoresistance assay, the response of one condition to different drug concentrations was 

evaluated and, therefore, a seeding control was not necessary. For all assays, each condition was 

analyzed in three to six technical replicates for each biological replicate. 

For phenotypic assays with the stable cell lines, the same cell numbers as for reseeding after 

transfection were used (listed in Table 8). All stable cell lines were induced with 2 µg/mL 

Doxycycline 72 hours before the assay to overexpress the respective pre-microRNAs. Moreover, 

Doxycycline was added to the medium during the assay to maintain pre-microRNA overexpression. 

 

Table 8: Cell numbers seeded for different phenotypic assays. 

cell line 6-wells (transfection) cell count (96 h) migration (RTCA) attachment (RTCA) 

MDA-MB-231  400,000 (coated) 2,000 100,000 10,000 

HCC1806 200,000 1,500 - - 

SUM-159 70,000 400 50,000 5,000 
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Proliferation assay 

For cell proliferation, the read-out was performed 96 hours after reseeding of the transfected 

cells. Proliferation was analyzed by counting the nuclei after 30 minutes of Hoechst 33342 staining 

(20 mM stock, 1:1000 diluted). The plates were scanned with the Molecular Devices Microscope 

IXM XLS using the 4x S Fluor objective and nuclei were counted with the Molecular Devices analysis 

software. 

 

Chemoresistance assay 

The chemoresistance assays were performed similar to the proliferation assays. Cells were 

reseeded after transfection and treated with different drug concentrations of Epirubicin and 

Paclitaxel after they attached. Epirubicin was dissolved in water to a stock concentration of 5 mM, 

whereas Paclitaxel was adjusted to 10 mM in DMSO. The stocks of both drugs were aliquoted and 

stored at -80°C. After 96 hours, the nuclei were stained with Hoechst and counted by microscope 

as described for the proliferation assay. Fitted drug response curves and IC50 concentrations were 

calculated with GraphPad Prism. 

 

Transwell-based migration assay 

For transwell-based migration, the xCELLigence Real-Time Cell Analyzer (RTCA) system was used. 

The RTCA contains golden electrodes that measure electrical impedance. The impedance 

increases upon attachment of cells to the plate surface containing the electrodes. E plates have 

the electrodes at the bottom of the well, whereas CIM plates contain a transwell and the 

electrodes are on a surface right below the transwell. For migration, 100 µL cell suspension in 

serum-free medium was seeded into the upper chamber of a CIM plate. The lower chamber was 

filled with 175 µL of full growth medium, which worked as a chemoattractant. After blanking, the 

device measures the increase in cell index (arbitrary unit for the impedance) every 15 minutes. 

For the CIM plates, this means that the impedance increases for every cell that migrates through 

the transwell pore. To make sure that the transfection of different microRNA mimics or siRNAs did 

not alter attachment strength of the cells compared to the non-targeting controls, I seeded the 

cells also in E plates (in 100 µL full growth medium) to evaluate whether all conditions attached to 

the well bottom with similar strength. The RTCA device was kept in a cell culture incubator (37°C, 

5 % CO2, humidified) through-out the assay.  
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Mammosphere assay 

To grow mammospheres, transfected cells or Doxycycline-induced stable cells were reseeded into 

ultra-low attachment plates. The cells were cultivated in serum-free growth medium that was 

supplemented with specific growth factors required for sphere formation. The medium 

composition and the seeded cell numbers can be obtained from Table 9.  

 

Table 9: Cell numbers and medium composition for mammosphere assays. 

cell line cells/6-well cells/24-well sphere medium 

MDA-MB-231 20,000/2 mL 250/0.5 mL DMEM/F-12, 20 ng/mL EGF, 20 ng/mL bFGF, 1xB27  

HCC1806 20,000/2 mL 250/0.5 mL 4 ug/mL Heparin, 2 µg/mL Doxy., 1 µg/mL Puromycin  

SUM-159 20,000/2 mL 250/0.5 mL see above + 1 µg/mL Hydrocortisone, 5 µg/mL Insulin 

 

For the mammosphere screen, cells were seeded into 6-well ultra-low attachment plates. Prior to 

seeding the first sphere generation, the trypsinized cells were washed with PBS at 1,500 rpm for 

five minutes to remove remaining FBS. The cells were resuspended in sphere medium and counted 

by CASY. Moreover, the cell suspension was checked by microscope to ensure a single cell 

suspension. Each sphere generation was grown in ultra-low attachment plates for seven days, 

then the spheres were dissociated and reseeded for the next generation. For passaging spheres 

from one generation to the next, the spheres were collected by centrifugation at 1,200 rpm for 

five minutes. The spheres were resuspended in 500 µL trypsin to dissociate them to single cells. 

The trypsin was stopped with 500 µL FBS and cells were subsequently washed with PBS to remove 

the FBS again (centrifugation at 1,500 rpm for five minutes). After washing, the cells were 

resuspended in 1 mL mammosphere medium and the cell number was determined. Then, the 

same number of cells as for the previous generation was seeded for the next sphere generation. 

For the validation of pre-microRNA-103a-1, sphere formation was evaluated in 24-well ultra-low 

attachment plates. The cells were seeded according as described for the mammosphere screen. 

The spheres were grown without Puromycin in the medium. Sphere size and number was 

quantified after seven days of sphere formation with the Molecular Devices ImageXpress Micro 

Confocal Microscope. Cell aggregates larger than 70 µM in diameter where counted as spheres. 
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In vivo experiments 

For in vivo experiments, stable MDA-MB-231 cell lines were expanded to a sufficient amount and 

grown without Puromycin in the medium prior injection into NSG mice. At the day of injection, 

cells in exponential growth were trypsinized and washed several times with 50 mL PBS at 

1,500 rpm for five minutes. The cells were counted by CASY and adjusted to the required 

concentration in PBS. The mouse experiments including the cell injection were performed by the 

lab of Karin Müller-Decker. 3 million stable MDA-MB-231 cells were injected into the mammary 

fat pad of each NSG mouse (six mice per group). Doxycycline was administered via the drinking 

water (1 mg/mL Doxycycline, 5 % Saccharose), starting seven days post injection. The tumor size 

was determined on a regular basis, the animals were sacrificed when the tumor had reached a 

diameter of 1 cm (i.e. the ethical limit). 

 

3.2.6 Bioinformatic and statistical analysis 

 

TCGA data analysis 

For analysis of patient data, the sequencing data that is available for the TCGA cohort was used 

since this data set allowed resolving microRNA expression by 5’isomiRs. The microRNA and mRNA 

sequencing data from TCGA was processed by Susanne Ibing, who obtained the data from the 

following website: https://portal.gdc.cancer.gov/projects/TCGA-BRCA. Briefly, the GDC microRNA 

analysis workflow was based on the British Columbia Genome Sciences Centre microRNA profiling 

pipeline133. Re-annotation of isomiR features was performed using an adaptation of miRBase 

version 22.1134. To discriminate only between microRNA sequence variants that differ at their 

respective 5’ends, all isomiRs with the same 5’end were summed regardless of their 3’end. Batch 

effects were corrected with the R package ‘ComBat’.  

The selection of pre-microRNAs for the library was based on differentially expressed 5’isomiRs in 

TCGA breast cancer patients. Initially, the differential expression analysis was performed by 

Subarna Palit. After Cindy Körner had discovered batch effects that severely biased the TCGA data, 

she ran Subarna Palit’s code for the differential expression analysis on the batch-corrected data 

from Susanne Ibing. 

 

 

https://portal.gdc.cancer.gov/projects/TCGA-BRCA
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Statistical analysis with GraphPad Prism 

Data are presented as mean ± standard deviation unless indicated otherwise. All samples were 

analyzed with unpaired two-tailed Student’s t-test using GraphPad Prism version 5.01. For 

matched tumor-normal patients from TCGA, a paired two-tailed Student’s t-test was applied. 

Correlation coefficients were obtained based on Spearman’s correlation and significant 

differences in survival were determined using log-rank test. P-values < 0.05, < 0.01 and < 0.001 are 

indicated with one, two and three asterisks, respectively. 

 

Gene set enrichment analysis 

Gene set enrichment analysis (GSEA) is applied to identify gene signatures that are over- or under-

represented in a large data set (indicated by a positive or negative enrichment score, respectively). 

GSEA for Basal breast cancer patients from the TCGA cohort was performed by Cindy Körner. As 

input, the batch-corrected microRNA or mRNA TCGA data was used. To identify cancer-related 

gene sets that are potentially modulated, the Hallmark gene collection was used135. Spearman 

correlation coefficients between the microRNA or mRNA of interest and the individual genes from 

the gene signature were calculated and used for ranking. Permutation of the data was performed 

by phenotype. The GSEA-P software was executed in the default mode136,137.  

 

3.2.7 Establishment of a customized NanoString assay 

NanoString is a hybridization-based molecule count. Two highly specific probes are designed to 

bind the region of interest (e.g. mRNA or genomic DNA). One probe is coupled to a biotin tag, the 

other probe is labeled with a unique fluorescence tag. After probe hybridization, the target 

complex is immobilized, excess probe is removed by washing and the fluorescence tags are used 

for read-out of the samples. For this project, I developed a customized NanoString assay that 

targeted the region of interest on the genomic level similar to a copy number variation (CNV) 

assay. For my assay, the biotin-coupled probe was universal and targeted a part of the retroviral 

backbone used for generation of the stable cell lines. This allowed discriminating between the 

retrovirally integrated pre-microRNAs and the endogenous pre-microRNAs. Unique probes were 

designed for the individual pre-microRNAs of the library. All probes were designed by NanoString 

and are listed in 3.1.7. 
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Isolation of genomic DNA 

For analysis by NanoString, the genomic DNA of my samples was isolated with the DNeasy Blood 

& Tissue kit. Frozen cell pellets of maximum 5 million cells each were thawed at room temperature 

and were then resuspended in 200 µL PBS. Subsequently, 20 μL proteinase K were added. Since 

NanoString recommends RNA-free genomic DNA, 4 μL RNase A (100 mg/mL) were added to the 

cell suspension. The mix was vortexed and incubated at room temperature for two minutes. After 

adding 200 μL AL buffer, the mix was vortexed again and incubated at 56°C for ten minutes. 

Subsequently, 200 µL ethanol (96-100 %) were added to the sample and vortexed thoroughly. The 

entire mix was pipetted into a column and spun at 8,000 rpm for 1 minute. The flow-through was 

discarded and 500 µL AW1 buffer were added to the column. The sample was centrifuged at 

8,000 rpm for 1 minute and the flow-through was discarded. Then, 500 µL AW2 buffer were 

applied to the column and centrifuged at 13,000 rpm for three minutes. The collection tube 

containing the column was replaced by a fresh one and centrifuged at 13,000 rpm for one minute 

to remove residual ethanol. For elution, the column was placed into a clean 1.5 mL 

microcentrifuge tube and 100 µL AE buffer (prewarmed to 56°C) were added to the column. After 

five minutes of incubation, the column was spun at 8,000 rpm for one minute. 100 µL fresh, 

prewarmed AE buffer were added to the column and the centrifugation step was repeated after 

five minutes incubation. DNA concentration was analyzed by NanoDrop. All genomic DNA samples 

were of high quality as recommended by NanoString: the A260/280 and A260/230 ratios of the 

genomic DNA were in the range of 1.7-1.9 and 1.3-2.0, respectively. 

 

PCR pre-amplification 

For NanoString analysis, the genomic region of interest was pre-amplified with the PCR protocol 

below and yielded a fragment size of approximately 660 base pairs, depending on the length of 

the individual pre-microRNAs. The primer sequences are listed in 3.1.7. For evaluation of the PCR 

specificity, the PCR was also performed on genomic DNA from parental cell lines. Moreover, a 

water control was included to test for contaminated PCR reagents.  

 

PCR reaction:   10 μL Titanium Taq PCR buffer (10x) 

   2 μL 50x dNTPs (10 mM each) 

2 μL primer mix (10 μM each)  

4 μL DMSO  
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2 μL of Titanium Taq DNA polymerase (50x) 

gDNA (400 ng)  

up to 100 μL ddH2O 

 

PCR protocol:  1x   94°C   3 min  

30x  94°C   30 sec   

68°C  30 sec  

1x   68°C  3 min 

  

PCR product purification 

The PCR products were purified with the Wizard SV Clean Up System. The entire PCR volume was 

combined with the same volume of membrane binding solution. The solution was applied to a 

column and spun at maximum speed for one minute. The column was washed with 700 µL of 

membrane wash solution. The wash was removed by spinning at maximum speed for one minute. 

The wash step was repeated with 500 µL membrane wash solution. To remove remaining liquid, 

the column was inserted into a fresh collection tube and was spun empty at maximum speed for 

one minute. The PCR product was eluted in 75 µL prewarmed (56°C) elution buffer from the 

DNeasy Blood & Tissue kit for ten minutes. This step was repeated with 75 µL fresh elution buffer. 

To concentrate the PCR product, 450 µL DNA precipitation buffer were added to 150 µL purified 

PCR product. The solution was vortexed briefly and centrifuged at maximum speed for 15 minutes. 

The supernatant was decanted immediately and the pellet was washed once with 100 µL 80 % 

ethanol at maximum speed for 15 minutes. The supernatant was decanted again and the pellet 

was air-dried until the remaining ethanol evaporated. The pellet was resuspended in 30 µL 

prewarmed (56°C) elution buffer from the DNeasy Blood & Tissue kit.   

 

DNA quantification 

The concentration of the purified PCR products containing the region of interest was determined 

with a Qubit fluorometer according to the manufacturer’s instructions. Qubit measurements were 

also performed for the unpurified PCR products obtained from the parental cell lines as well as 

the water control. This allowed to evaluate whether the PCR primers discriminated the retrovirally 

integrated pre-microRNA from the endogenous pre-microRNAs.  
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Agarose gel electrophoresis 

The dilutions that were prepared for DNA quantification with the Qubit fluorometer were also 

used for agarose gel electrophoroesis. The agarose gel electrophoresis allowed visualizing 

whether the amplified region had the correct size and whether the primers were specific to the 

region of interest. 1 % agarose gels were prepared with TAE buffer and 20-80 ng of the PCR 

product were loaded on the gel. Images of the gel were taken after running the gel at 100 Volt for 

35-40 minutes. The correct size of the PCR product was determined by comparing it to the DNA 

ladder (2 µL of 1kb PeqGold ladder were loaded). For the PCR products from the parental cell lines 

and from the water control, 6-7 µL of the undiluted PCR product were loaded. 

 

Sample input titration for NanoString 

For CNV assays, NanoString recommends to use 150-300 ng of genomic DNA or up to 600 ng for 

small CNVs. In the case of CNV assays, however, at least one copy of the molecule of interest is 

expected per cell. In the stable cell lines harboring the pre-microRNA library, approximately only 

every 72nd cell contained the same pre-microRNA integrate, at least before any selection. I 

determined the ideal input amount by titration and found 7 µg of genomic DNA to be ideal. Using 

7 µg genomic DNA provided a strong signal and did not saturate the NanoString cartridge. Since I 

pre-amplified the region of interest, the input for the customized NanoString assay had to be 

adjusted considering the length of the PCR product. Hence, 1.5 pg of the purified PCR products 

were used (or 20 pg of the pre-microRNA plasmids for the evaluation of a potential PCR bias).  

 

Pooling and dilution of the NanoString probes 

Each probe A was specific for one pre-microRNA integrate and partially complementary to a 

fluorescently labeled reporter tag. Probe B was universal for all pre-microRNAs and hybridized to 

a biotinylated universal capture tag that allowed to anchor the targets to streptavidin-coated 

cartridges. Pooling of the probes was performed by Sigma-Aldrich, the manufacturer of the probe 

oligos. Probe pool A (each probe at 5 nM) and probe pool B (each probe at 25 nM) were stored in 

aliquots at -80°C. For the NanoString assay, working dilution of the pools were generated directly 

before they were used. The working dilutions consisted of 4 µL of the probe stock A or B and 29 µL 

TE-Tween. This resulted in a concentration of 0.6 nM per probe in pool A and 3 nM per probe in 

pool B. 
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Probe hybridization 

For the hybridization, an aliquot of the probe stocks A and B was thawn and working dilution were 

prepared as described before. Moreover, an aliquot of the tag set was thawn and carefully mixed 

by flicking to avoid shearing of the tags. The hybridization buffer and the probe pool A were added 

to the tag set and the mix was inverted and spun down. Subsequently, the probe pool B was added. 

The mix was inverted and spun down, then 8 µL were added to each reaction tube of the tube 

stripe provided by NanoString. The dilutions of the PCR products were denatured at 95°C for five 

minutes and cooled down on ice for two minutes. 7 µL of each sample were added to 8 µL of the 

master mix. The final reaction mix was inverted again and spun down briefly. Hybridization was 

performed at 67°C for 16 hours. The thermal cycler lid was set 5°C above the block temperature 

to minimize evaporation. 

 

Hybridization reaction: 5 µL hybridization buffer 

2 µL tag set   

0.5 µL working dilution of probe pool A (0.6 nM per probe) 

0.5 µL working dilution of probe pool B (3 nM per probe) 

7 µL of sample dilution (containing 1.5 pg purified PCR product) 

up to 15 µL ddH2O 

 

Sample preparation and read-out with the NanoString nCounter FLEX Analysis System 

After hybridization, excess probes were removed with a two-step purification protocol using 

magnetic beads. The washing and immobilization process as well as the data acquisition was done 

automatically by the nCounter FLEX Analysis System. The machine was operated by Martina 

Kirchner. 

    

3.2.8 Analysis of NanoString data 

The nSolver 4.0 software was used for analysis of the data generated with the nCounter FLEX 

Analysis System. Analysis was performed as suggested by the manufacturer with a few 

modifications taking the customized assay design into account. The analysis process is briefly 

described in the following.  
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Quality control 

For each analyzed NanoString cartridge, the nCounter FLEX Analysis System provides four scores 

that allow evaluating the quality of the run: 

1) The imaging QC describes how much of the scanned cartridge lane the instrument was 

able to scan. To obtain robust data this value should be at least 75% and was ≥ 98% for all 

my cartridges. 

2) The binding density score indicates how much of the cartridge surface per lane was 

covered by probe signal and should range between 0.1 and 2.25 spots/micron². For my 

experiments, the value ranged from 0.2 to 0.37. 

3) The positive control linearity QC represents the correlation between the concentrations 

and the absolute counts for the positive control that is spiked into the tag set. A correlation 

of less than 0.95 indicates an issue with the hybridization reaction or assay performance. 

All my cartridges revealed a correlation of at least 0.95. 

4) The positive control limit of detection QC shows whether the absolute counts for the 

positive control with the lowest concentration are above the background. Since this would 

be the parental cell lines in my system, this was not applicable due to the PCR pre-

amplification. 

 

Data normalization and background subtraction 

After the parameters for the quality control are checked, the absolute counts from the parental 

cell lines are normally averaged and subtracted as background from the other samples. The pre-

amplification by PCR made this redundant since there was no background resulting from other 

regions than the target region. Moreover, the data is usually normalized to the invariant region 

controls (INVs) that target invariant regions of the genome. This allows to account for differences 

in sample input. Due to the PCR-based pre-amplification of my assay, this normalization step was 

not possible.  

 

Relative abundance  

For each sample, NanoString detected absolute counts for the individual pre-microRNA targets. In 

order to compare between samples, relative counts were calculated (absolute counts of a 

particular pre-microRNA divided by the absolute counts of all pre-microRNAs in the respective 

sample).  
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4. RESULTS 

4.1 microRNAs and 5’isomiRs in chemoresistance of triple-negative breast 

cancer 

Breast cancer is one of the most common cancer entities in women worldwide138 and 

chemotherapy is the standard of care for patients with the aggressive subtype TNBC28. A 

substantial fraction of TNBC patients responds only partially to the treatment and, consequently, 

has a high rate of recurrence29. Understanding the molecular mechanism and exploiting it for the 

development of biomarkers and targeted therapy is, therefore, highly relevant for this patient 

population. microRNAs modulate the majority of cellular signaling pathways139 and play a key role 

in chemoresistance, especially in TNBC37,140. The multitude of microRNAs and the increase in 

complexity by functionally relevant sequence variants, however, requires more research on this 

topic. Many microRNAs are still poorly characterized and the majority of studies does not 

discriminate between effects from 5’isomiRs when gathering sequencing data. Along this line, the 

aim of this study was to identify and characterize microRNAs and 5’isomiRs that exert a key role 

in promoting or preventing chemoresistance in TNBC cell lines. 

 

4.1.1 Establishment of an in vitro system to study microRNAs in chemoresistance 

 

Selection of microRNAs with a potential role in chemoresistance  

To identify microRNAs that play a key role in chemoresistance of TNBC, I established a functional 

screening for microRNAs and 5’isomiRs modulating chemoresistance of TNBC cell lines. 

Specifically, I hypothesized that microRNAs and 5’isomiRs that were differentially expressed in 

tumor compared to normal breast tissue of patients from the TCGA cohort are functionally 

connected to tumorigenesis and, therefore, might play a role in chemoresistance and patient 

outcome. Due to the limited number of samples from normal breast tissue in the TCGA cohort, 

the selection of differentially expressed 5’isomiRs was performed using data from patients of all 

subtypes (n=100). The annotation of 5’isomiRs in the TCGA data was performed by Subarna Palit, 

differential expression analysis was done by Subarna Palit and Cindy Körner. Based on these data, 

I selected microRNAs for further analysis based on two criteria. First, 5’isomiRs had to be 

differentially expressed in tumor compared to normal samples from the same patients (adjusted 

p value ≤ 0.05, log2 fold change ≥ 1). Second, only microRNAs with a mean expression of at least 

10 reads per million (rpm) across tumor and normal samples were selected. These criteria 
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prioritized the most deregulated microRNAs in breast cancer patients and these microRNAs were 

selected for the microRNA library.  

 

Design and cloning of a pooled pre-microRNA library  

Selection of microRNAs and their 5’isomiRs differentially expressed in tumor tissue compared to 

normal tissue yielded 86 microRNAs that might have tumor-promoting or tumor-suppressive 

features, for instance, in the context of chemotherapy. Since several of the selected microRNAs 

were 5’sequence variants or derived from the other arm of the same pre-microRNA, the library 

complexity was reduced to 63 pre-microRNAs. The selected pre-microRNAs were cloned into a 

Doxycycline-inducible, retroviral vector RT3GEPIR that was kindly provided by Fellmann et al130. 

This vector system allowed embedding the pre-microRNAs of interest into a pri-microRNA-30 

backbone which resembled the endogenous microRNA context. 

All pre-microRNAs were cloned using two or three overlapping oligos (Figure 5A) to create the 

respective pre-microRNA sequence obtained from miRbase. Sanger sequencing of all plasmids was 

performed to confirm that the correct pre-microRNA sequence was inserted into the RT3GEPIR 

vector and did not harbor any mismatches. The pooled microRNA library was generated by 

equimolar pooling of all 63 pre-microRNAs in RT3GEPIR, the unmodified RT3GEPIR vector, and 

eight non-conserved C. elegans pre-microRNAs in the RT3GEPIR backbone. Retroviral integration 

of the pre-microRNA library into the genome allowed biogenesis of mature microRNAs and their 

sequence variants using the endogenous microRNA processing machinery in the cells. 

Moreover, the pre-microRNAs served as barcodes to detect the enrichment or depletion of pre-

microRNA integrates from the cell pool. Mature microRNAs mediating the effect on 

chemoresistance could be validated by qRT-PCR-based approaches. One possibility to validate the 

individual microRNAs is to determine expression of all 5’isomiRs from the 3p arm or from the 5p 

arm with miScript assays from Qiagen. The second option is to optimize 5’isomiR-specific 

detection for the candidate microRNAs by using isoform-specific adapters and probes for the 

detection as described for Dumbbell-PCR98,99. 

 

Establishment of triple-negative breast cancer cell lines harboring the pre-microRNA library 

Since the aim of this project was to identify microRNAs with a role in chemoresistance of TNBC, I 

chose TNBC cell lines that are frequently used for studies in TNBC and belong to the BL2 subtype, 

which has the lowest pCR rate24. Based on these criteria the cell lines MDA-MB-231, HCC1806 and 
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SUM-159 were selected. In order to generate stable TNBC cell lines harboring the microRNA 

library, a retroviral system was used for transduction (Figure 5A). To ensure that each cell received 

and integrated maximum one pre-microRNA construct, I used a MOI of 1-3%. For each cell line, 

three transduction replicates (#A, #B and #C) were generated by preparing independent master 

mixes and transducing independent flasks of the same cell line. The cell lines were named 

accordingly: replicate #A of MDA-MB-231, HCC1806 and SUM-159 received the same transduction 

mix. 

 

Figure 5: Establishment of an in vitro system to study microRNAs in chemoresistance. A) The scheme 

illustrates how the microRNA library was generated. B) Wildtype MDA-MB-231, HCC1806 and SUM-159 cells 

were treated with different concentrations of Puromycin for 72h to identify the ideal concentration to select 

for cells successfully transduced with the microRNA library. The cell number was counted by microscope 

after Hoechst staining. C) Stable MDA-MB-231, HCC1806 and SUM-159 cells harboring the microRNA library 

were treated with different Doxycycline concentrations for 72h to induce expression of GFP and the pre-

microRNAs. The total cell number was determined by microscope after Hoechst staining. GFP-positive cells 

were counted and normalized to the total cell number to select a concentration suitable for induction of the 
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microRNA library. The total cell number was plotted to evaluate potentially cytotoxic effects of different 

Doxycycline concentrations on the cells. D) The stable MDA-MB-231 cell lines harboring different constructs 

were induced with Doxycycline for 72h and treated with Epirubicin or Paclitaxel in the presence of 

Doxycycline for another 72h. Each condition is displayed as mean of six technical replicates +/- standard 

deviation (B-C) or as fitted curve based on the mean of six technical replicates (D). 

 

Cells with an integrated pre-microRNA construct were selected with Puromycin. The ideal 

concentration of Puromycin to deplete wildtype cells from the cell pool was determined with a 

titration curve (Figure 5B). 0.5 - 1.0 µg/mL Puromycin was the minimum effective concentration 

range that killed the majority of wildtype cells, higher concentrations did not increase potency. In 

conclusion, 1 µg/mL Puromycin was chosen for selection of all stable TNBC cell lines. After 

selection with Puromycin, the stable cell lines were induced with different Doxycycline 

concentrations to find the optimal concentration to induce pre-microRNA expression. Doxycycline 

induction of the pre-microRNA integrate induced also GFP expression, which was used as proxy to 

evaluate the fraction of cells in which expression was induced at the respective concentrations 

(Figure 5C). 2 µg/mL Doxycycline were chosen for induction of all three TNBC cell lines since this 

concentration yielded 80-90% GFP-positive cells for MDA-MB-231 and HCC1806. For SUM-159, 

only 70-80% GFP-positive cells were counted after induction with 2 µg/mL Doxycycline. Inducing 

SUM-159 cells with higher Doxycycline concentrations, however, failed to increase the number of 

GFP-positive cells. To exclude potential toxic effects of Doxycycline, the total cell number was 

evaluated upon incubation with the different concentrations of Doxycycline. No effects on cell 

proliferation were observed at the tested Doxycycline concentrations (Figure 5C). In conclusion, 

the pre-microRNA library was induced with 2 µg/mL Doxycycline since this concentration resulted 

in the highest percentage of GFP+ cells for all three cell lines without having cytotoxic effects. 

 

Determining a suitable drug concentration to study microRNAs in chemoresistance 

To study the role of the selected microRNAs in chemoresistance, I chose the taxane Paclitaxel and 

the anthracycline Epirubicin to challenge the TNBC cells harboring the microRNA library. Both of 

these drugs belong to the most commonly administered neoadjuvant regimen in TNBC141 and 

target cytokinesis (taxanes) or DNA synthesis and integrity (anthracyclines)34. I hypothesized that 

drug response curves for a negative and a positive control would provide a concentration range 

suitable for studying the enrichment or depletion of those integrated pre-microRNAs with a role 

in chemoresistance. For this purpose, I selected pre-miR-21 and pre-miR-145 from the library. miR-

21 was previously shown to promote chemoresistance142,143, whereas miR-145 sensitized towards 
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chemotherapeutic drugs 144,145. MDA-MB-231 cells stably overexpressing pre-miR-21 or pre-miR-

145 were compared to two replicates containing the entire microRNA library (#A, #B), the empty 

vector RT3GEPIR or the non-targeting C. elegans pre-microRNA control 2 (Figure 5D). Two 

transduction replicates of the pre-microRNA library were included to evaluate potential 

differences in drug response resulting from a strong variation in the pre-microRNA representation. 

Strong differences in the pre-microRNA composition after transduction might reflect in a different 

drug response. However, there was no difference in resistance between any of the tested 

conditions.  

 

Establishment of an alternative in vitro system to study microRNAs in chemoresistance 

Since the tested cell lines, including the positive and the negative control, showed no difference 

in their response to Epirubicin and Paclitaxel, I chose an alternative approach to identify pre-

microRNAs influencing chemoresistance. It is known that stem cells play an important role in 

chemoresistance and therapy failure: not only are stem cells often resistant to chemotherapy, the 

treatment also increases stemness features in other cancer cells146. In Basal breast cancer, the 

percentage of stem cells is particularly high compared to other subtypes, especially in tumors 

resistant to chemotherapy147. Therefore, I hypothesized that a mammosphere assay should enrich 

for chemoresistant breast cancer stem cells (BCSCs) since stem cells are driving chemoresistance. 

To enrich for potentially chemoresistant cells, I grew mammospheres from the TNBC cell lines 

harboring the pre-microRNA library. Subsequently, the mammospheres were profiled to identify 

pre-microRNAs with a role in chemoresistance. 

The setup for the mammosphere assay consisted of nine cell lines including the three transduction 

replicates #A, #B and #C of the TNBC cell lines MDA-MB-231, HCC1806 and SUM-159. These cell 

lines received Doxycycline to induce the pre-microRNA library and were grown as mammospheres 

for seven days. Ultra-low attachment plates in combination with media containing specific growth 

factors allowed sphere formation (Figure 6A). After seven days, the spheres were dissociated with 

Trypsin and a defined number of cells was reseeded into ultra-low attachment plates for the next 

sphere generation, the rest was harvested for analysis. Passaging of the spheres was repeated 

several times, which allowed profiling the enrichment or depletion of pre-microRNAs over 

multiple sphere generations. I assumed that tracing enrichment over multiple passages should 

identify pre-microRNAs being associated with a very strong stemness phenotype. To account for 

pre-microRNAs that have a strong effect on proliferation or act cytotoxic upon overexpression, all 

Doxycycline-induced cell lines were also grown in 2D under normal growth conditions. Strong 
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enrichment in 3D and 2D, for instance, would be indicative of a proliferation phenotype rather 

than a stemness phenotype.  

 

Enrichment of chemoresistant breast cancer stem cells with a mammosphere assay  

Based on the involvement of BCSCs in chemoresistance, I expected that mammospheres enrich 

for cells that are resistant to chemotherapeutic drugs. As a consequence, growing mammospheres 

from the TNBC cell lines harboring the pre-microRNA library would allow identifying pre-

microRNAs with a role in chemoresistance. I hypothesized that the enrichment of potentially 

chemoresistant stem cells in spheres reflects in enrichment of BCSC and resistance markers. To 

test this hypothesis, the mRNA level of several BCSC and chemoresistance markers was measured 

in time-matched 3D and 2D samples (t6) by TaqMan (Figure 6B). While five sphere generations 

(t1-t5) and their time-matched 2D samples were cultivated to profile pre-microRNA enrichment 

by NanoString, one more time point was collected only for expression analysis (t6). I evaluated the 

most commonly used markers to identify BCSCs: CD44, CD24, ALDH1A, PROM1, ITGA6, ITGB3 and 

NANOG148,149. Tested markers for chemoresistance included ABCC1, ABCC2, SOD2, CAT and GPX1. 

ABCC1 and ABCC2 were analyzed since they are considered to encode the main ABC transporters 

involved in multidrug resistance development in breast cancer150,151. Besides ABC transporters, 

detoxification enzymes are involved in stemness and chemoresistance. BCSCs upregulate SOD2, 

CAT and GPX1, for instance, to scavenge reactive oxygen species (ROS) more efficiently152. High 

levels of SOD2, moreover, were associated with increased chemoresistance in breast cancer cell 

lines153.  
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Figure 6: Mammosphere assay design and proof of principle. A) Three different transduction replicates (#A, 

#B and #C) of MDA-MB-231, HCC1806 and SUM-159 were grown in 3D or 2D after the pre-microRNA library 

had been induced with Doxycycline. Mammospheres were grown in ultra-low attachment plates and 

received serum-free medium supplemented with EGF, FGF, Heparin and B27, while cells in 2D received 

regular growth medium with serum. Spheres were grown for seven days (t1), dissolved with Trypsin and 

reseeded for the next sphere generation (t2-t5). Excess cells were harvested for analysis. Cells in 2D were 

passaged twice per week and samples for analysis were taken the same day as the sphere samples. B) Various 

breast cancer stem cells and chemoresistance markers were analyzed by TaqMan. To evaluate the changes 

in relevant markers, mRNA levels in 3D (t6) were normalized to time-matched 2D samples (t6). Each dot 

represents one biological replicate derived from MDA-MB-231 #B or #C (black dots), HCC1806 #A, #B or #C 

(grey dots). For MDA-MB-231 #A the spheres did not yield enough material for analysis. The mean fold 

change (3D/2D) for the five analyzed cell lines is indicated by a horizontal line. C) Resistance towards 

Paclitaxel and Epirubicin of MDA-MB-231 #A and HCC1806 #A cells grown in 3D or 2D (both t6) was evaluated 

after 72h of drug and Doxycycline exposure in 2D conditions. The cell number was determined by microscope 

after Hoechst staining. Drug response curves are displayed as fitted curve based on the mean of six technical 

replicates from one biological replicate. 
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Comparing the mRNA levels of the tested markers in 3D and 2D, showed similar fold changes 

across all tested replicates for some BCSC markers (CD44 and NANOG), while others were 

regulated more heterogeneously (CD24, ITGA6, PROM1, ITGB3 and ALDH1A1). In some cell line 

replicates the tested markers were not enriched at all in mammospheres. Most striking was CD44, 

where mRNA levels were even slightly decreased in 3D compared to 2D for all of the tested 

samples. NANOG was the only BCSC marker showing a strong and consistent increase in 3D of all 

tested cell lines (19-fold to 51-fold). The main drug efflux pumps in breast cancer, ABCC1 and 

ABCC2, were strongly upregulated in 3D conditions of some replicates, but decreased compared 

to 2D in other replicates. For the three tested detoxification enzymes SOD2, CAT and GPX1, the 

mRNA levels were upregulated 1.5 - 5-fold in 3D for all tested cell line replicates. Overall, 

expression analysis showed that there was a rather a cell line-specific enrichment of certain 

markers in 3D conditions effects (CD24, ITGA6, PROM1, ITGB3, ABCC2), however, this did not apply 

to all tested markers (ALDH1A1, ABCC1). 

To test whether the enrichment of markers associated with resistance would correspond to 

increased drug tolerance, I treated MDA-MB-231 #A and HCC1806 #A with different Paclitaxel and 

Epirubicin concentrations and generated drug response curves from the obtained data (Figure 6C). 

MDA-MB-231 #A cells from mammospheres indicated an increase in resistance to Epirubicin and 

a strong increase in resistance to Paclitaxel compared to cells cultivated in 2D. The changes in 

resistance of HCC1806 #A cells derived from mammospheres compared to 2D were stronger for 

Epirubicin, whereas the increase in resistance to Paclitaxel was minor. In summary, the performed 

experiments showed that the mammosphere assay indeed enriched for chemoresistant BCSCs as 

characterized by different stem cell markers.  

 

4.1.2 Establishment of a NanoString assay to detect microRNAs modulating chemoresistance 

Mammospheres grown from the TNBC cell lines harboring the pre-microRNA library had a higher 

fraction of stem cells and were more resistant to chemotherapeutic drugs than cells grown in 2D. 

Subsequently, I profiled the library composition in the spheres since enrichment or depletion of 

pre-microRNAs would indicate a potential role of the respective pre-microRNA in stemness and 

chemoresistance. For profiling, I chose NanoString based on the high sensitivity, multiplexing 

capability and simple analysis of this assay. This assay combines the benefits of qRT-PCR-based 

approaches and MicroArrays / sequencing and is applied in a variety of settings for research or 

diagnostic purposes. NanoString is a hybridization-based molecule count that uses two specific 

probes binding next to each on the target molecule of interest (Figure 7A). One probe is coupled 
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to a biotinylated universal tag, the other probe is uniquely labeled with a fluorescent tag. After 

hybridization of the probes, the biotinylated tag is used to purify, immobilize and analyze the 

complex of interest. The read-out is performed by scanning the unique reporter tags and 

calculating the read counts for each target. For this project, Prof. Dr. Peter Sinn (Institute of 

Pathology, University Clinics Heidelberg) kindly allowed me to use the NanoString nCounter FLEX 

Analysis System in his lab. The machine purifies the samples after the probe hybridization and 

acquires the data. The nCounter FLEX Analysis System was operated by Martina Kirchner. 

 

Figure 7: Establishment of a NanoString assay to evaluate the pre-microRNA library composition in 

spheres. A) The principle of NanoString assays is based on two specific probes hybridizing to the molecule of 

interest. One probe is linked to a biotinylated universal tag, the other one has a unique fluorescence tag. 

After hybridization, the complex is purified, immobilized and analyzed with the help of the biotin tag, which 

is used to pull-down the molecules of interest. The image was taken from www.nanostring.com. B) To 

determine which pre-microRNAs of the library were enriched in mammospheres, genomic DNA was isolated 

and the region of interest containing the pre-microRNA ‘barcode’ was pre-amplified with a PCR. The primer 

position for amplification of the pre-microRNA integrates is indicated by arrows. C) Evaluation of a potential 

PCR bias caused by pre-amplification of the pre-microRNA sequences was evaluated by NanoString. The pre-

microRNA plasmid pool (n=72) used for generation of the pre-microRNA library was compared before and 

after PCR amplification. Differences in relative abundance of the individual pre-microRNAs are plotted. 

 

The target in my setup was genomic DNA which harbored one individual pre-microRNA integrate 

per cell. To allow efficient probe binding, the genomic DNA needs to be fragmented with AluI 

which yields an average fragment size of 250 base pairs. In my case, the probes had to target the 

specific pre-microRNA as well as a part of the retroviral plasmid backbone in order to discriminate 

the pre-microRNA library from the respective endogenous pre-microRNAs. AluI fragmentation was 

not possible in this case since approximately one third of the pre-microRNA targets would have 

been cleaved by AluI. To solve this problem, I established a PCR to pre-amplify the region of 

interest (Figure 7B). The PCR generated a product with an average size of 660 base pairs, which 
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could be used directly for the NanoString assay without pre-processing by AluI. As another positive 

effect of the PCR step, the NanoString assay required less input material due to the pre-amplified 

DNA. This was an advantage since a comparably low amount of genomic DNA was isolated from 

the mammospheres. 

To make sure that PCR amplification did not create a bias in the abundance of targets, I compared 

the pre-microRNA distribution in the plasmid pool (average size of 9 kb) containing all constructs 

for the pre-microRNA library before and after amplification using the customized NanoString assay 

(Figure 7C). Plasmids are much smaller than genomic DNA and have a less complex secondary 

structure, therefore, accessibility of the target by the probe is much better and AluI digest is not 

necessary. Only for three pre-microRNAs the relative abundance before and after PCR 

amplification differed by more than 1 %. For pre-miR-551b, the relative counts were decreased by 

3.25 % after PCR, while PCR overrepresented pre-miR-200a and pre-miR-125b-2 with a difference 

of 1.08 % and 1.81 %, respectively. In conclusion, NanoString detected no major PCR bias from 

pre-amplification of the region of interest. 

 

4.1.3 NanoString assay detects strong enrichment of pre-miR-103a-1 in 3D 

 

NanoString reveals heterogeneous enrichment of some pre-microRNAs across 3D samples 

Subsequently, the established NanoString assay was used to determine the relative abundance of 

the pre-microRNAs from the library in selected sphere samples. Since the mammospheres were 

cultivated for five generations (t5), I decided to investigate pre-microRNA abundance in 3D (t5) 

and to compare this with data from time-matched 2D samples (t5). The tumor-suppressive 

candidates would most likely drop out quite early, especially if some oncogenic pre-microRNAs 

provided a growth advantage in 3D conditions. In order to evaluate enrichment in 3D in a time-

resolved manner, 3D samples from the earliest time point available (t3) were profiled as well. 

Moreover, to distinguish enrichment based on stem cell features from enrichment due to a 

proliferation advantage, 2D samples at t1 were analyzed as well. Enrichment in 3D and 2D at t5 

compared to 2D at t1 would suggest a proliferation phenotype.  

Analysis of the selected samples showed heterogeneous enrichment of pre-microRNAs between 

different cell lines but also between replicates (Figure 8A). I hypothesized that highly oncogenic 

hits would outcompete other pre-microRNAs and show strong enrichment over multiple sphere 

generations. The majority of strongly enriched pre-microRNAs showed the high relative 

abundance only in one replicate. One striking example was pre-miR-93 (Figure 8B): the majority 
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of cells harvested from MDA-MB-231 #B mammospheres harbored a pre-miR-93 integrate (62 % 

after three sphere generations and 76 % after five generations). The 2D samples excluded the 

possibility that the enrichment was the result of a strong proliferation phenotype (difference of 

5 % in t1 and 7 % in t5 compared to 62 - 76 % in 3D). None of the other sphere samples, however, 

showed even a slight enrichment of pre-miR-93, suggesting that pre-miR-93 conferred a strong 

potentially stemness-related selection advantage in 3D only for MDA-MB-231 #B cells.  

 

NanoString finds pre-miR-103a-1 highly enriched in several mammosphere samples 

Analyzing the pre-microRNA composition of the mammospheres with NanoString revealed 

heterogeneous enrichment across cell lines and replicates for most pre-microRNAs. For pre-miR-

103a-1, however, the relative abundance in 3D was increased in all three cell lines tested 

(highlighted by boxes in Figure 8A and B): MDA-MB-231 #C, HCC1806 #B and SUM-159 #B. In all 

three cases, the 2D samples from t5 did not show a strong enrichment of pre-miR-103a-1 

abundance and thereby suggested that the enrichment was not the result of a general growth 

advantage, but rather the result of a 3D-specific selection advantage (e.g. an increase in 

stemness). In MDA-MB-231 #C, pre-miR-103a-1 was more dominant after three sphere 

generations (67 %) than after five generations (46 %). Most likely, pre-miR-191 had a selection 

advantage in this replicate since this barcode enriched from 14 % relative abundance in t3 to 45 % 

in t5 and, thus, likely outcompeted pre-miR-103a-1. In HCC1806 #B, the relative abundance of pre-

miR-103a-1 increased from 5 % in 3D (t3) to 16 % in 3D (t5). In mammospheres derived from SUM-

159 #B, pre-miR-103a-1 representation was 8 % in t3 and 23 % in t5. Pre-miR-103a was selected 

as hit for further analysis based on the strong enrichment in spheres generated from three 

different transduction replicates that originated from three different parental cell lines, which 

suggests a stemness and chemoresistance promoting role. 
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Figure 8: NanoString-based detection of pre-microRNA enrichment in mammospheres. A) Heatmap of 

NanoString results illustrating fold changes for the relative abundance of pre-microRNAs in 2D (t5) or 3D (t3, 

t5) compared to 2D (t1). Red indicates enrichment, green shows depletion. B) Relative abundance of the 

analyzed 72 pre-microRNAs in samples from nine cell lines harvested at different time points and in different 

conditions with pre-miR-103a-1 and pre-miR-93 highlighted in green and blue, respectively. 

 

 

Evaluation of pre-miR-103a-1 in survival, stemness and chemoresistance 

The pre-microRNAs for the library were selected based on differentially expressed microRNAs and 

5’isomiRs in TCGA patients. I hypothesized that enrichment of a pre-microRNA in a mammosphere 

assay selecting for chemoresistant BCSCs should correspond with an oncogenic role of the 

microRNAs expressed from the respective pre-microRNA in patients. To evaluate this, expression 

analysis in tumor tissue compared to normal tissue was performed for those 5’isomiRs of pre-miR-

103a-1 that were considered expressed in patients (mean >15 rpm). All expressed isoforms of pre-

miR-103a-1 showed significantly higher expression in tumor tissue compared to normal tissue 
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(Figure 9A), which was in line with the putative oncogenic role of pre-miR-103a-1 that I observed 

in the mammosphere-based screen. Furthermore, survival analysis showed that high levels of all 

miR-103a-3p 5’isomiRs were associated with worse prognosis in patients (Figure 9A).  

 

Figure 9: Validation of pre-miR-103a-1. A) Expression of miR-103a-3p 5’isomiRs in matched tumor and 

normal-like samples from breast cancer patients (TCGA). Statistical comparison was based on paired, two-

tailed Student’s t-tests. P-values are represented by asterisks (* ≤ 0.05, ** ≤ 0.01 and *** ≤ 0.001). For 

survival analysis, breast cancer patients (Basal, HER2, LumB and LumA) from TCGA were grouped into low 

(lower quartile) and high microRNA expression (upper quartile). Statistical significance of survival differences 

was determined using log-rank test. P-values are represented by asterisks (* ≤ 0.05, ** ≤ 0.01 and *** ≤ 

0.001). B) Stable MDA-MB-231 cells were generated for functional validation of pre-miR-103a-1 and 

overexpression was induced with Doxycycline. Spheres >70 µM were counted by microscope after seven 

days of sphere formation. Error bars show the standard deviation of three biological replicates. Statistical 

comparison was based on unpaired, two-tailed Student’s t-tests. Moreover, resistance towards Paclitaxel 

and Epirubicin was evaluated after 72h. The cell number was determined by microscope after Hoechst 

staining. Drug response curves are displayed as fitted curve based on the mean of six technical replicates. 
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In the next step, I wanted to validate the phenotype of pre-miR-103a-1. For this purpose, a stable 

MDA-MB-231 cell line for inducible overexpression of pre-miR-103a-1 was generated. I 

hypothesized that overexpression of pre-miR-103a-1 would promote sphere formation and 

chemoresistance since cells with the pre-miR-103a-1 integrate were strongly enriched in several 

3D samples. To test this, sphere formation was assessed after seven days. Surprisingly, no 

significant differences in sphere numbers (Figure 9B) or size (data not shown) were detected in 

comparison to the negative controls. Even challenging the cells with Paclitaxel or Epirubicin (data 

not shown) during sphere formation or drug exposure in 2D (Figure 9B) did not show any 

differences for cells overexpressing pre-miR-103a-1.  

 

Sanger sequencing-based validation of NanoString results 

Despite the strong enrichment of pre-miR-103a in various mammosphere replicates, there was no 

effect of pre-miR-103a overexpression on sphere formation or chemoresistance of MDA-MB-231 

cells. This prompted the question, whether the enrichment detected by the custom NanoString 

assay was reliable. To exclude technical error, I established a SYBR Green-based qRT-PCR approach 

to validate strongly enriched pre-microRNAs. For this purpose, I designed specific qRT-PCR primers 

for each construct of interest. To make sure that the primers did not detect the endogenous pre-

microRNAs, they were designed to span the respective pre-microRNA sequences as well as the 

backbone of the viral vector. To ensure specificity of the primers, they were tested in the parental 

cells as well. For none of the tested pre-microRNAs, however, the primers were specific enough. 

The qRT-PCR always detected the endogenous construct as well (Figure 10A). Since amplification 

of the endogenous pre-microRNA would compete for primers with the region of interest, this 

would affect reliability of the quantification.  

Another option to validate the NanoString results was to perform Sanger sequencing for samples 

in which one pre-microRNA was strongly enriched. Since the strongest enrichment was observed 

for pre-miR-93 in mammospheres formed by MDA-MB-231 #B (62 % in t3 and 76 % in t5), those 

samples were sent for Sanger sequencing. For comparison, the 2D samples in which pre-miR-93 

showed rather low abundance (5 % in t1 and 7 % in t5) were also sent for sequencing. As expected, 

sequencing of the 3D samples resulted in the sequence of the viral pre-miR-93 integrate, whereas 

sequencing of the 2D samples failed starting from the position where the common sequence of 

the vector backbone ended (Figure 10B). In conclusion, Sanger sequencing confirmed strong 

enrichment of pre-miR-93 in the respective mammosphere samples and thereby showed that the 

NanoString assay had performed reliably in this case. As a consequence, the strong enrichment of 
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pre-miR-103a-1 in selected mammospheres was likely detected accurately by NanoString as well. 

Excluding a technical problem of the detection system, this implies that pre-miR-103a-1 was 

enriched, but had no effect on stemness and chemoresistance. Based on the assumption that the 

enrichment of pre-miR-103a-1 as well as other pre-microRNAs in 3D was not connected to 

stemness- and resistance-promoting features, I decided to stop working on this project. 

 

Figure 10: Validation of the NanoString results. A) Validation of the NanoString results by SYBRGreen-based 

qRT-PCR failed as shown exemplary for pre-miR-10a. The melt curves show that the designed primers were 

not specific enough to discriminate the retrovirally integrated pre-microRNA (1 and 2) from the endogenous 

pre-microRNA (3). Amplification of the pre-microRNA plasmid pool resulted in a specific melt curve showing 

only one peak (1). Performing the PCR on genomic DNA from stable cell lines harboring the pre-microRNA 

library resulted in a clear peak for the viral pre-microRNA integrates (2) and a smaller peak (3). Testing 

genomic DNA from the parental cell lines showed that the PCR partially amplified endogenous pre-

microRNAs as well (3). B) Sanger sequencing confirmed the strong enrichment of pre-miR-93 in 

mammospheres from MDA-MB-231 #B (t3 and t5) that was detected by NanoString. 

 

 

4.1.4 Heterogeneous overexpression and selection bias of pre-microRNAs in the library 

NanoString detected strong enrichment of cells with pre-miR-103a-1 integrates in 3D conditions, 

which selected for stem cells and chemoresistant cells. Pre-miR-103a-1 overexpressing cell lines, 

however, did not modulate sphere formation capacity or drug response compared to the controls 

(Figure 9B). After I had confirmed that the NanoString assay performed reliably by Sanger 

sequencing (Figure 10), I hypothesized that the enrichment of pre-miR-103a-1 and other 
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microRNAs did not result from a selection advantage that overexpression of the respective pre-

microRNAs mediated in 3D. To test this, I measured pre-miR-103a and miR-103a-3p levels in 

various SUM-159 samples from the screen. Expression of pre-miR-103a in 2D cell culture increased 

with time in some of the SUM-159 replicates (Figure 11A).  In 3D, however, pre-miR-103a levels in 

t1 and t3 were higher than in t5, which does not correspond with the strong enrichment of the 

pre-miR-103a barcode in SUM-159#B spheres (Figure 8B). Moreover, the pre-miR-103a expression 

in 3D (t5) is even below the initial levels in 2D (t0). Subsequently, I wanted to know how pre-miR-

103a overexpression affects microRNA expression of the mature form. For this purpose, miR-103a-

3p levels were measured in SUM-159 #B, the sample in which 23 % of the cells in 3D (t5) carried 

the pre-miR-103a-1 barcode. Quantification of the mature microRNA levels confirmed the 

impression conveyed by the pre-miR-103a expression data: miR-103a-3p levels in 3D were only 

slightly more abundant than in 2D (Figure 11B). The fold changes for miR-103a-3p in 3D compared 

to 2D (t0) were highest at t1 with a 2.2-fold increase. From one to the next sphere generation, 

miR-103a-3p levels dropped and were lower than the expression in the time-matched 2D sample 

at t5, which is in line with the pre-miR-103a expression data.  

To obtain a more detailed understanding of the overexpression levels, I reviewed data that had 

been generated in the context of another project. Xiaoya Li kindly provided the microRNA 

sequencing results from stable cell lines that overexpressed one pre-microRNA each and used the 

same retroviral backbone that I used for my pre-microRNA library. The data revealed that 

microRNA and 5’isomiR overexpression strongly varied between different pre-microRNAs 

(Figure 11C). The expression levels ranged from no overexpression for pre-miR-21, pre-miR-27a 

and pre-miR-320a to 10-fold, 100-fold or even 1000-fold overexpression for 5’isomiRs derived 

from other pre-microRNA constructs. The diverse overexpression patterns did not only affect the 

different pre-microRNAs, but also the mature microRNA level: the overexpression level of 

microRNAs and 5’isomiRs from the same pre-microRNA differed a lot from each other in several 

cases. In conclusion, qRT-PCR and microRNA sequencing confirmed the hypothesis that the 

enrichment of pre-microRNAs detected by NanoString did not result from a selection advantage 

mediated by overexpression of the individual pre-microRNAs, at least not in the case of pre-miR-

103a-1.  

Cindy Körner recently uncovered that the microRNA expression data from TCGA patients are 

strongly affected by batch effects. The R package ‘ComBat’ was applied by Susanne Ibing to correct 

for this bias. While my library was comprised of 63 pre-microRNAs, applying the same selection 

criteria to the batch-corrected TCGA data resulted in 85 pre-microRNAs (listed in Figure S1). After 
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batch correction, only 47 pre-microRNAs from my library were still included in the selection. The 

potential impact of the altered pre-microRNA library composition was not studied in the context 

of this project. 

 

Figure 11: Pre-microRNA and microRNA overexpression levels in stable cell lines. A) Expression of pre-

miR-103a in 2D and 3D samples of SUM-159 cells was determined by SYBRGreen-based qRT-PCR. microRNA 

levels were detected at different time points during the assay and normalized to the levels in 2D (t0). Each 

dot represents one of the SUM-159 transduction replicates #A, #B or #C. B) miR-103a-3p expression in SUM-

159 #B, the sample in which cells with the pre-miR-103a-1 integrate strongly accumulated in the spheres. 

Expression at the different time points was detected with SYBRGreen-based qRT-PCR and normalized to the 

miR-103a-3p levels in 2D (t0). C) Overexpression of microRNAs and 5’isomiRs in stable MDA-MB-231 cells 

was analyzed by microRNA sequencing. microRNA levels in the cell line overexpressing the respective pre-

microRNA were normalized to the cell lines overexpressing a non-targeting pre-microRNA control. Asterisks 

mark pre-microRNAs that were not included in the library generated for this project. Each dot represents 

one 5’isomiR. D) microRNA sequencing determined endogenous expression of microRNAs and 5’isomiRs in 

cell lines overexpressing a non-targeting pre-microRNA control. Asterisks mark pre-microRNAs that were not 

included in the library generated for this project. Each dot represents one 5’isomiR. Expression levels of 

5’isomiRs with an expression between 0 and 1 rpm was set to 1 rpm to calculate reasonable fold changes in 

C). A), C), D) The horizontal line in each condition represents the mean. 
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4.2 Functional differences of divergent 5’isomiRs in triple-negative breast 

cancer 

The overarching aim of my PhD project was to gain more insights into the role of the miRNome in 

chemoresistance of TNBC. Along these lines, I aimed at characterizing the functional differences 

that 5’isomiRs can mediate in this context. Several studies showed that 5’isomiRs may influence 

different phenotypes and mechanisms compared to their canonical microRNA92,95,96. Especially in 

the case of divergent 5’isomiRs, the target spectra and the resulting phenotypes may differ 

substantially despite a seed sequence that is shifted only by one nucleotide95,96. To study 

microRNAs and 5’isomiRs with an impact on chemoresistance, I described the enrichment of 

selected overexpressed pre-microRNAs in mammospheres with NanoString in the previous 

chapter. The pre-microRNAs were selected based on differentially expressed microRNAs and 

5’isomiRs from TCGA breast cancer patients. The mammosphere assay enriched for 

chemoresistant BCSCs (Figure 6) and, therefore, was considered as ideal setup to enrich for pre-

microRNAs that modulate resistance to chemotherapy. Despite the strong enrichment of pre-miR-

103a-1 (Figure 8), however, I could not show a functional impact of this pre-microRNA on sphere 

formation or chemoresistance (Figure 9). As a result, I could not study potential differences 

between the microRNAs and 5’isomiRs transcribed from pre-miR-103a-1 on chemoresistance and, 

therefore, this project was not pursued further. Instead, I decided for an alternative approach to 

study the functional relevance of 5’isomiRs. 

 

4.2.1 miR-1307-3p I0 and its divergent 5’isomiR are highly abundant in breast cancer 

I selected 5’isomiR pairs that were differentially expressed in tumor compared to normal tissue in 

the TCGA breast cancer data set in order to identify and subsequently characterize 5’isomiRs that 

are relevant for tumor progression or prevention in breast cancer patients. Moreover, I focused 

on 5’isomiRs with divergent seed sequences that were expressed at similar levels and were not 

studied and published yet95. Applying these criteria prioritized three 5’isomiR pairs, which were 

upregulated in tumor compared to normal tissue (Table 10). Since all of them were upregulated 

significantly, I chose miR-1307-3p I0 and miR-1307-3p I1 due to the highest abundance in tumor 

tissue rather than selecting the 5’isomiR pair based on the highest fold change.  
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Table 10: Differentially expressed 5’isomiR pairs in TCGA breast cancer patients. 

 normal (mean rpm) tumor (mean rpm) seed sequence publication status 

miR-1307-3p I0 250 575 divergent unpublished 

miR-1307-3p I1 151 416   

miR-21-5p I2 8 64 divergent unpublished 

miR-21-5p I3 5 47   

miR-425-5p I0 37 183 divergent unpublished 

miR-425-5p I1 47 160   

miR-140-3p I0 515 246 divergent published 

miR-140-3p I1 769 316   

miR-183-5p I0 1341 8827 divergent in preparation 

miR-183-5p I1 821 6582   

miR-192-5p I0 90 260 convergent unpublished 

miR-192-5p I1 47 180   

miR-203a-3p I0 8736 5079 convergent unpublished 

miR-203a-3p I1 4670 2758   

 

 

miR-1307-3p I0 and miR-1307-3p I1 were upregulated in tumor tissue and were found to be 

expressed at similar levels when looking at tumor or normal tissue separately (Figure 12A). 

Moreover, the expression of miR-1307-3p I0 and miR-1307-3p I1 was significantly higher in 

patients diagnosed with the aggressive subtype TNBC compared to patients with tumors of other 

subtypes (Figure 12B). This was also true for the aggressive PAM50 subtypes Basal and HER2 

(Figure 12C). Expression levels in Luminal A, the subtype with the best prognosis, were significantly 

lower for miR-1307-3p I0 as well as for miR-1307-3p I1. Based on the high abundance of both 

isoforms in tumors, especially of the aggressive subtypes, I hypothesized that miR-1307-3p I0 and 

miR-1307-3p I1 have oncogenic functions. To evaluate the role of both isoforms in cancer and to 

identify potential differences between microRNA and 5’isomiR, I next investigated the phenotypic 

consequences of miR-1307-3p overexpression. 
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Figure 12: miR-1307-3p I0 and miR-1307-3p I1 expression in breast cancer. A) Expression of miR-1307-3p 

I0 and miR-1307-3p I1 in matched tumor-normal samples of TCGA breast cancer patients. Statistical 

comparison was based on paired, two-tailed Student’s t-tests. P-values are represented by asterisks (* ≤ 

0.05, ** ≤ 0.01 and *** ≤ 0.001). B), C) Expression of miR-1307-3p I0 and miR-1307-3p I1 in 108 TNBC versus 

592 non-TNBC patients and in the PAM50 subtypes of breast cancer patients from TCGA. The PAM50 

subtypes comprised Basal (n=169), HER2 (n=80), LumB (n=191) and LumA (n=540). Statistical comparison 

was based on unpaired, two-tailed Student’s t-tests. P-values are represented by asterisks (* ≤ 0.05, ** ≤ 

0.01 and *** ≤ 0.001). 

 

4.2.2 pre-miR-1307 reduces mesenchymal traits of MDA-MB-231 

After selection of miR-1307-3p I0 and miR-1307-3p I1, I aimed at identifying cancer-associated 

phenotypes that might be differentially modulated by the 5’isomiR pair with the divergent seed 

sequences. For that purpose, a Doxycycline-inducible pre-miR-1307 overexpression cell line was 

generated using MDA-MB-231 cells. The impact of pre-miR-1307 overexpression on various 

phenotypes was evaluated by me (stemness, chemoresistance) and by Xiaoya Li (proliferation, cell 

cycle, apoptosis, migration, invasion and tumor growth in vivo). Stemness and chemoresistance 

were not altered by pre-miR-1307 compared to two non-targeting pre-microRNA controls 

(Figure S2). Furthermore, pre-miR-1307 overexpression did not affect cell cycle or apoptotic 
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behavior, even when induced with Staurosporine (Figure S2). For migration and invasion, 

however, Xiaoya Li detected a tumor-suppressive effect upon pre-miR-1307 overexpression 

(Figure 13A). Although there was no difference for proliferation in vitro, tumor volume was 

decreased 35 days post injection of the stable pre-miR-1307 cells into the mammary fat pad of 

immunocompromised mice (Figure 13B). Mechanistically, I hypothesized that miR-1307-3p I0 and 

miR-1307-3p I1 can only have a differential impact on migration since pre-miR-1307 

overexpression did not modulate any of the other tested phenotypes. 

 

Figure 13: Cancer phenotypes modulated by pre-miR-1307 overexpression in MDA-MB-231. MDA-MB-231 

cells were retrovirally transduced with pre-miR-1307 or two different non-targeting pre-microRNAs under 

control of a Doxycycline-inducible promoter. A) Migration and invasion were assessed in a transwell-based 

assay (n=3). B) Proliferation was quantified by counting the nuclei with a microscope after Hoechst staining 

(n=3). Moreover, the effect of pre-miR-1307 overexpression was evaluated in vivo. For this purpose, the 

stable cell lines were injected into the mammary fat pad of immunocompromised mice (n=6) and the tumor 

volume of each mouse was quantified at the indicated time points after engraftment. Error bars represent 

the standard deviation of biological replicates. Statistical significance was calculated with an unpaired two-

tailed student’s t-test. P-values are represented by asterisks (* ≤ 0.05, ** ≤ 0.01). 
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4.2.3 miR-1307-3p I1 reduces migration and proliferation  

Phenotypic assays identified reduced migration and invasion upon pre-miR-1307 overexpression. 

Since miR-1307-3p I0 and miR-1307-3p I1 are highly abundant microRNAs processed from pre-

miR-1307 and have divergent seed sequences, I assumed that the two isoforms differ in their 

functional impact on migration. To test this hypothesis, I transiently transfected MDA-MB-231 and 

SUM-159 cells with isoform-specific microRNA mimics. This time, migration was assessed with an 

RTCA system which allows time-resolved profiling of transwell-based migration. Indeed, miR-

1307-3p I1 reduced migration significantly in both TNBC cell lines (Figure 14A). miR-1307-3p I0, 

however, reduced migration only in MDA-MB-231 cells and there much less compared to miR-

1307-3p I1. Next, I assumed that the impact on migration might be accompanied by changes in 

EMT markers. To evaluate this, I quantified mRNA levels of CDH1, CDH2, FN1, VIM, SNAI1 and 

SNAI2 in both cell lines. Both, miR-1307-3p I0 and miR-1307-3p I1, increased CDH1 and decreased 

VIM levels in MDA-MB-231 significantly (Figure 14B). This observation confirmed the more 

epithelial phenotype exerted by miR-1307-3p I0 and miR-1307-3p I1 in MDA-MB-231. For SUM-

159, none of the EMT markers was significantly modulated and CDH1 was not expressed (data not 

shown). Subsequently, I wanted to assess whether the connection between miR-1307-3p I0 / miR-

1307-3p I1 and a more epithelial phenotype is also reflected in patients. For this purpose, Cindy 

Körner performed GSEA using gene expression data from Basal patients of the TCGA cohort. 

Patients with high levels of miR-1307-3p I0 / miR-1307-3p I1 did indeed show a depletion of an 

EMT-related gene signature (Figure 14C). Based on the strong correlation of miR-1307-3p I0 and 

miR-1307-3p I1 (r>0.9) in tumors of TCGA breast cancer patients (Figure 14D), the observed 

depletion of EMT-related genes in this data set could not be attributed to a particular 5’isomiR. 

Since both, miR-1307-3p I0 and miR-1307-3p I1, modulated migration, I next tested a potential 

differential effect the 5’isomiRs might have on proliferation since pre-miR-1307 overexpression 

repressed tumor growth in vivo (Figure 13B). And indeed, proliferation of SUM-159 cells was 

significantly reduced by miR-1307-3p I1, whereas miR-1307-3p I0 did not have an impact 

(Figure 14E). For MDA-MB-231 on the other hand, both 5’isomiRs significantly reduced the cell 

number compared to the negative controls but the effects were minor and in line with the 

proliferation results for pre-miR-1307 (Figure 13B). In conclusion, the data illustrates that miR-

1307-3p I1 has a functionally different impact than miR-1307-3p I0, at least in SUM-159 cells. In 

this cell line, only miR-1307-3p I1 reduces migration and proliferation. Consistently, miR-1307-

3p I1 strongly reduced migration in MDA-MB-231, whereas miR-1307-3p I0 had only a mild effect. 

The differences on the phenotype of the two TNBC cell lines, indicate a context-dependent impact 
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of miR-1307-3p I0 and miR-1307-3p I1. The effect of the individual isoforms might be influenced 

by differentially expressed targets or activated pathways as well as by functionally relevant 

mutations that are present in either MDA-MB-231 or SUM-159 cells. 

 

Figure 14: Different impact of miR-1307-3p I0 and miR-1307-3p I1 on migration and proliferation. Cells 

were transfected with miR-1307-3p I0, miR-1307-3p I1 or non-targeting control mimics. A) Transwell 

migration of MDA-MB-231 (n=2) and SUM-159 (n=3) was detected by RTCA. B) Expression of EMT markers 

in MDA-MB-231 (n=3) was measured with TaqMan. C) GSEA of Basal patients from TCGA ranked by their 

miR-1307-3p I0 or miR-1307-3p I1 expression was performed and revealed significant depletion of an EMT 

gene signature. NES represents the normalized enrichment score indicating negative enrichment. D) 

Correlation of miR-1307-3p I0 and miR-1307-3p I1 in tumors from the TCGA breast cancer cohort. Statistical 

comparison was based on Spearman’s correlation. E) Proliferation assays were performed in MDA-MB-231 

and SUM-159 (each n=3). Cell number was determined by microscope after Hoechst staining of the nuclei. 

A), B), E) Error bars represent the standard deviation of biological replicates. Statistical significance was 

calculated with an unpaired two-tailed student’s t-test. One sample t-tests were performed for comparison 

where one condition lacked a standard deviation due to the way the data was normalized. P-values are 

represented by asterisks (* ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001). 
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4.2.4 pre-miR-1307 is a mirtron of the highly expressed ATP synthase subunit ATP5MD 

In vitro and in vivo experiments revealed a tumor-suppressive phenotype of pre-miR-1307 (Figure 

13) as well as miR-1307-3p I0 or miR-1307-3p I1 (Figure 14) overexpression. These findings are 

surprising considering the high abundance of miR-1307-3p I0 or miR-1307-3p I1 in tumors, 

especially in the more aggressive subtypes (Figure 12). This contradictory data led me to evaluate 

the genomic location of pre-miR-1307. Pre-miR-1307 is located on the minus strand of 

chromosome 10 and a mirtron of the gene ‘ATP Synthase Membrane Subunit DAPIT’ (ATP5MD), 

which codes for a subunit of the mitochondrial ATP synthase (Figure 15A). ATP5MD is a highly 

conserved peptide with 58 amino acids, the particular function and relevance of that peptide is 

unknown. In breast cancer patients, ATP5MD is significantly higher expressed in the aggressive 

subtypes, Basal/TNBC and HER2 (Figure 15B) suggesting an oncogenic role. 

Based on the high abundance of ATP5MD and the microRNAs that are expressed from its mirtron 

pre-miR-1307 in breast tumors, I hypothesized that ATP5MD and pre-miR-1307 are coregulated. 

To test this, I correlated the expression levels of ATP5MD with miR-1307-3p I0 (data not shown) 

or miR-1307-3p I1 (Figure 15C). Looking at all TCGA breast cancer patients, ATP5MD correlated 

moderately with miR-1307-3p I0 or miR-1307-3p I1 (r=0.41 and r=0.38, respectively). In Basal 

patients, the correlation of miR-1307-3p I0 or miR-1307-3p I1 with ATP5MD increased slightly 

(r=0.42 and r=0.41, respectively). Overall, the expression of ATP5MD and its mirtron correlates 

only mildly, suggesting that these transcripts are not strongly co-regulated. 

Based on the mild correlation of ATP5MD and miR-1307-3p, I hypothesized that the encoded 

protein and the microRNAs might be involved in different cellular processes. To confirm this 

hypothesis, Cindy Körner performed GSEA on Basal TCGA patients and I compared gene signatures 

that were significantly enriched or depleted. This analysis, however, showed that gene sets related 

to OXPHOS, ROS and DNA repair were significantly enriched for ATP5MD (Figure 15D), miR-1307-

3p I0 (data not shown) and miR-1307-3p I1 (Figure 15D). The genes enriched in the OXPHOS 

signature of patients with high ATP5MD levels contained many components of the ATP synthase, 

including the ATP Synthase F1 Subunit of which ATP5MD is a part. Moreover, several markers of 

mitochondrial biogenesis and translation, such as MRPS15, MRPS22 and TIMM9, were enriched. 

In summary, ATP5MD seems to be highly relevant to Basal breast tumors in the context of OXPHOS 

signaling and related cellular functions. The exact role and relevance of this subunit, however, is 

not clear yet. Furthermore, no functional studies connect pre-miR-1307 to metabolism. 
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Figure 15: ATP synthase subunit ATP5MD and its mirtron pre-miR-1307. A) Structure of the mammalian 

ATP synthase and localization of ATP5MD (DAPIT). The image was taken from Carroll et al154. B) Expression 

of ATP5MD in 108 TNBC versus 592 non-TNBC and in the PAM50 subtypes of breast cancer patients from 

TCGA. The PAM50 subtypes comprised Basal (n=169), HER2 (n=80), LumB (n=191) and LumA (n=540). 

Statistical comparison was based on unpaired, two-tailed Student’s t-tests. P-values are represented by 

asterisks (* ≤ 0.05, ** ≤ 0.01 and *** ≤ 0.001). C) Correlation of miR-1307-3p I1 and ATP5MD in the TCGA 

breast cancer cohort. Statistical comparison was based on Spearman’s correlation. D) Gene signatures 

significantly enriched by GSEA in Basal TCGA patients ranked by their ATP5MD or miR-1307-3p I1 expression. 

NES represents the normalized enrichment score indicating positive enrichment 

 

4.2.5 Myc as potential regulator of pre-miR-1307 and ATP5MD  

The mapping of pre-miR-1307 within an ATP5MD intron raises the question of a potential 

biological reason. GSEA suggested some functional overlap, but neither the functional role of 

ATP5MD as subunit of the ATP synthase nor its relevance in breast cancer are well understood. I 

assumed that GSEA in breast cancer patients might identify transcription factors that could explain 
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the upregulation of ATP5MD and pre-miR-1307 in breast cancer, especially in the aggressive 

subtypes. Indeed, two different gene signatures related to Myc targets were significantly enriched 

in Basal patients with high levels of miR-1307-3p I0 (data not shown), miR-1307-3p I1 (Figure 16A) 

as well as ATP5MD (Figure 16B). Among the genes contributing to the enrichment of these gene 

sets were MYC itself and the Myc targets NPM1 and FBL155. The amplification and overexpression 

of MYC in breast cancer, especially in the Basal/TNBC subtype156,157, is well established.  

The enrichment of Myc targets in patients with high miR-1307-3p I0 / miR-1307-3p I1 or ATP5MD 

levels, let me assume that ATP5MD and its mirtron pre-miR-1307 might also be regulated by Myc. 

To test this hypothesis, I searched for ChIP-Seq data in proximity to the genomic location of 

ATP5MD in breast cancer cell lines. The ENCODE data base contained ChIP-Seq data from the 

Luminal breast cancer cell line MCF7 (experiment ENCSR000DMM) for the region of interest and 

was visualized with the UCSC Genome Browser (Figure 16C). The results revealed a prominent Myc 

peak upstream of the first exon of ATP5MD, indicating a potential regulation of ATP5MD and also 

of pre-miR-1307 by Myc. To test this hypothesis experimentally, MYC was knocked-down with 

siRNAs in MDA-MB-231 and SUM-159 cells and miR-1307-3p levels as well as ATP5MD mRNA 

levels were measured by TaqMan. Moreover, I determined PDCD11 levels since the Myc peak in 

MCF7 was also located at the beginning of this gene and suggested a potential regulation by Myc 

as well. Upon knock-down, MYC levels were only reduced by 60 % in MDA-MB-231 (Figure 16D) 

and by 25 % in SUM-159 (Figure 16E). Increasing the siRNA concentration from 2 nM to 5 nM 

reduced MYC levels by 30 % in SUM-159 (data not shown). These observations suggested that the 

siRNAs targeting MYC were not very efficient or that the siRNA concentration was not sufficient 

to downregulate the mRNA. miR-1307-3p and ATP5MD levels were not repressed by MYC knock-

down, whereas PDCD11 was reduced by 50 % in MDA-MB-231 and by 30 % in SUM-159. Increasing 

the siRNA concentration for SUM-159 did not repress miR-1307-3p or ATP5MD levels either, 

PDCD11 levels, however, were reduced by 45 % (data not shown). In conclusion, the data suggests 

that miR-1307-3p and ATP5MD are not regulated by Myc, whereas PDCD11 is repressed by MYC 

knock-down even with a knock-down efficiency of only 25-60 %. 
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Figure 16: Potential regulation of ATP5MD and its mirtron pre-miR-1307 by Myc. A), B) Myc targets 

significantly enriched by GSEA in Basal TCGA patients ranked by miR-1307-3p I1 or ATP5MD expression. NES 

represents the normalized enrichment score indicating positive enrichment. C) Genomic location of pre-miR-

1307 and ATP5MD in the UCSC genome browser and ChIP-Seq data in MCF7 for the region of interest 

(ENCODE experiment ENCSR000DMM). D), E) Potential Myc regulation of miR-1307-3p, ATP5MD and 

PDCD11 in MDA-MB-231 (D) and SUM-159 (E). mRNA expression was determined by TaqMan, microRNA 

expression was analyzed by SYBRGreen-based qRT-PCR. Error bars represent the standard deviation of three 

biological replicates, except for ATP5MD in MDA-MB-231 (n=2). Statistical significance was calculated with 

an unpaired two-tailed student’s t-test. P-values are represented by asterisks (* ≤ 0.05, ** ≤ 0.01, *** ≤ 

0.001). 
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4.2.6 miR-1307-5p I0 as driver for high miR-1307-3p levels in breast cancer patients? 

The in vitro and in vivo experiments performed in this study revealed a tumor-suppressive 

phenotype of pre-miR-1307, which contradicted the high abundance in tumor tissue of breast 

cancer patients. Since I could not show a co-regulation of miR-1307-3p and its host gene ATP5MD 

by Myc, I assumed that an oncogenic microRNA might be processed from the 5p arm of pre-miR-

1307 and, thus, could explain the high expression levels in tumors. In TCGA breast cancer patients 

as well as in various breast cancer cell lines that were sequenced by the lab, miR-1307-3p I0, miR-

1307-3p I1 and miR-1307-5p I0 were the only three expressed (> 15 rpm) microRNAs from pre-

miR-1307 (Figure 12A, Figure 17B, data not shown). The reduced migratory potential that we 

observed upon miR-1307-3p I0 or miR-1307-3p I1 overexpression rendered miR-1307-5p I0 the 

only possible microRNA derived from pre-miR-1307 that could exert an oncogenic function. 

However, I did not investigate the functional role of miR-1307-5p I0 in the context of this project 

due to time constraints.  

To evaluate whether it would make sense to look into a potentially oncogenic role of miR-1307-

5p I0, I analyzed miR-1307-5p I0 expression levels in TCGA patient data and compared them to 

miR-1307-3p I0 and miR-1307-3p I1 abundance. miR-1307-5p I0 was well correlated with miR-

1307-3p I0 and miR-1307-3p I1 (Figure 17A). Similar to miR-1307-3p I0 and miR-1307-3p I1, miR-

1307-5p I0 was also significantly differentially expressed between tumor and normal breast tissue 

(Figure 17B) and displayed higher expression levels in aggressive breast cancer subtypes 

(Figure 17C). I hypothesized that there would be a stronger increase in expression levels when 

comparing tumor to normal tissue for miR-1307-5p I0 than for miR-1307-3p I0 and miR-1307-3p 

I1, if miR-1307-5p I0 is the main factor for high pre-miR-1307 abundance in tumors. When looking 

at fold change expression in tumor compared to normal tissue of the same patient, the mean fold 

change was similar for miR-1307-3p I0 and miR-1307-3p I1, but indeed much higher for miR-1307-

5p I0 (Figure 17D). Nevertheless, the data was not completely conclusive since the differences in 

the fold change for all three microRNAs were significant and the spread of the fold change in miR-

1307-5p I0 expression across patients was very high.  
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Figure 17: miR-1307-5p I0 expression in breast cancer. A) Correlation of miR-1307-3p I0 and miR-1307-

3p I1 with miR-1307-5p I0 in tumors from the TCGA breast cancer cohort. Statistical comparison was based 

on Spearman’s correlation. B) Expression of miR-1307-5p I0 in matched tumor-normal samples of TCGA 

breast cancer patients. Statistical comparison was based on paired, two-tailed Student’s t-tests. P-values are 

represented by asterisks (* ≤ 0.05, ** ≤ 0.01 and *** ≤ 0.001). C) Expression of miR-1307-5p I0 in 108 TNBC 

versus 592 non-TNBC patients and in the PAM50 subtypes of breast cancer patients from TCGA. The PAM50 

subtypes comprised Basal (n=169), HER2 (n=80), LumB (n=191) and LumA (n=540). Statistical comparison 

was based on unpaired, two-tailed Student’s t-tests. P-values are represented by asterisks (* ≤ 0.05, ** ≤ 

0.01 and *** ≤ 0.001). D) Fold changes of miR-1307-3p I0, miR-1307-3p I1 and miR-1307-5p I0 between 

tumor and normal tissue from the same patient. The mean fold change for each microRNA across all patients 

is indicated by a horizontal line. Statistical comparison was based on paired, two-tailed Student’s t-tests. P-

values are represented by asterisks (* ≤ 0.05, ** ≤ 0.01 and *** ≤ 0.001).   

 

4.2.7 miR-1307-3p I0 and miR-1307-3p I1 have distinct and shared target subsets  

Phenotypic assays showed partially cell line-dependent, tumor-suppressive effects of miR-1307-

3p I0 or miR-1307-3p I1 overexpression on migration. Moreover, miR-1307-3p I1 reduced 

proliferation in a cell-line dependent manner. I hypothesized that the divergent seed sequences 

of miR-1307-3p I0 and miR-1307-3p I1 might have a substantial impact on the target spectrum 

and, thus, result in differentially modulated target genes and pathways that might explain the 

differences in cancer-associated phenotypes that I observed. This hypothesis was addressed with 

a MicroArray and target predictions. Shashwat Sahay generated target predictions for miR-1307-
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3p I0 and miR-1307-3p I1 by using the target prediction algorithms from TargetScan and MiRanda. 

In addition to the seed matches that are predicted by TargetScan as well, the MiRanda algorithm 

takes secondary structure predictions in form of minimum free energy calculations into account 

and, therefore, is more stringent. The higher stringency of predictions generated with the 

MiRanda algorithm was reflected by a smaller number of predicted targets (Table 11). Consensus 

predictions from two different algorithms thus allowed limiting the number of false positive 

predictions. Since predicted microRNA binding sites are often located in 3’UTRs of mRNAs that are 

not expressed, Shashwat Sahay intersected the predictions with expression data from breast 

cancer cell lines.  

Moreover, a MicroArray overexpressing miR-1307-3p I0 or miR-1307-3p I1 in MDA-MB-231 was 

performed by Neşe Erdem Borgoni in order to identify repressed genes (p<0.05, fold change<0.65) 

that contribute to the phenotypes mediated by miR-1307-3p I0 and miR-1307-3p I1. Regulation of 

genes upon miR-1307-3p I0 or miR-1307-3p I1 overexpression was analyzed in two biological 

replicates per condition. To obtain genes specifically repressed by miR-1307-3p I0 or miR-1307-3p 

I1, the respective condition was compared to cells transfected with the non-targeting control 

siAllStars. The MicroArray data needed to be interpreted with caution, however, since the 

Benjamini-Hochberg corrected p values for all calculated fold changes between two conditions 

were not significant and the uncorrected p values did not deviate from a random distribution. The 

insignificant p values suggest that the genes considered significantly repressed by miR-1307-3p I0 

or miR-1307-3p I1 based on the uncorrected p value might represent artefacts and observed 

differences might be random. For this reason, I decided to focus on the target predictions for 

identifying potentially relevant targets that explain the phenotypic differences between miR-

1307-3p I0 and miR-1307-3p I1. Overall, the target predictions and the MicroArray revealed shared 

as well as specific target subsets for miR-1307-3p I0 and miR-1307-3p I1. 

 

Table 11: Targets predicted for or downregulated by miR-1307-3p I0 or miR-1307-3p I1 

 shared miR-1307-3p I0 miR-1307-3p I1 

TargetScan 346 2,672 138 

MiRanda 54 211 56 

consensus 54 206 52 

MicroArray (p<0.05, FC<0.65) 40 30 89 
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4.2.8 miR-1307-3p I1 might reduce migration and proliferation by targeting NCS1  

To identify pathways that are differentially modulated by miR-1307-3p I0 and miR-1307-3p I1 and 

might explain the phenotypic differences, I used the target predictions to perform functional 

enrichment with WebGestalt. This analysis, however, did not yield any pathway enrichment with 

statistical significance. Most likely the reason for the lack in 5’isomiR-specific enrichment was due 

to the rather small number of predictions (compared to other microRNAs that the lab is working 

with). In order to determine potentially relevant targets nevertheless, I checked the literature for 

predicted targets from the consensus list. Literature search was performed using key words like 

migration and proliferation in combination with the consensus target predictions specific for miR-

1307-3p I1. Another requirement was a tumor-promoting role of the respective targets matching 

the tumor-suppressive function of miR-1307-3p I1. ‘Neuronal Calcium Sensor 1’ (NCS1) met the 

defined criteria: the miR-1307-3p I1-specific target was shown to promote migration and 

metastasis in breast cancer in vitro and in vivo, respectively158. Moreover, NCS1 promoted 

proliferation and migration in breast cancer cells via enhancing AKT activity159.  

Based on the literature, downregulation of NCS1 by miR-1307-3p I1 might explain the changes in 

proliferation and migratory behavior upon overexpression of the 5’isomiR. To confirm the gene 

regulation experimentally, I checked NCS1 levels in the MicroArray and validated its expression in 

an independent set of samples generated in MDA-MB-231 by TaqMan. In the MicroArray, NCS1 

was downregulated by 35 % upon miR-1307-3p I1 overexpression, whereas miR-1307-3p I0 

overexpression modulated NCS1 levels only slightly (Figure 18A). Validation of the target 

repression by TaqMan confirmed the MicroArray results. TaqMan analysis revealed a significantly 

lowered mRNA level of NCS1 upon miR-1307-3p I1 in MDA-MB-231 (Figure 18B). miR-1307-3p I0 

overexpression reduced NCS1 levels as well, but this was only significant in comparison to ctrl2, 

which might originate from the high standard deviation of siAllStars, the second non-targeting 

control. Nevertheless, the impact of miR-1307-3p I1 was stronger (approximately 30 % compared 

to 20 % for miR-1307-3p I0). Since NCS1 was predicted to be a miR-1307-3p I1-specific target in 

the consensus list, but was downregulated upon miR-1307-3p I0 overexpression as well, I looked 

at the target predictions generated by TargetScan and MiRanda. TargetScan predicted NCS1 as a 

shared target, while the more stringent algorithm MiRanda predicted NCS1 as a miR-1307-3p I1-

specific target. As a result, the consensus list contained NCS1 as miR-1307-3p I1-specific target. 

The type of binding sites that were predicted by TargetScan provided an explanation for the extent 

of gene regulation detected by TaqMan: The 3’UTR of NCS1 harbored a 7mer-m8 binding site for 

miR-1307-3p I1 and a 6mer binding site for miR-1307-3p I0 (Figure 18C). A 7mer-m8 binding site 
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requires more base pairs between the seed sequence of the microRNA and the 3’UTR of the mRNA 

target to be complementary than a 6mer binding site. More complementary base pairs between 

a microRNA and its target result in a higher binding affinity that is reflected by a stronger 

downregulation of the target upon microRNA overexpression59. The obtained results suggested 

that for NCS1 the TargetScan-based predictions were more accurate. 

 

Figure 18: NCS1 repression by miR-1307-3p I0 and miR-1307-3p I1. A) MicroArray-based expression 

profiling in MDA-MB-231 upon miR-1307-3p I0 and miR-1307-3p I1 overexpression. The fold changes in 

expression of NCS1 between two conditions are plotted. B) NCS1 mRNA levels in MDA-MB-231 were 

measured with TaqMan after miR-1307-3p I0 and miR-1307-3p I1 overexpression. Error bars represent the 

standard deviation of three biological replicates. Statistical significance was calculated with an unpaired two-

tailed student’s t-test. P-values are represented by asterisks (* ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001). C) Scheme 

illustrating the binding sites that TargetScan predicted for miR-1307-3p I0 and miR-1307-3p I1 within the 

3’UTR of NCS1. 
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4.2.9 miR-1307-3p I0 might reduce migration by targeting LBH  

Although functional enrichment analysis based on the target predictions did not yield significant 

enrichment of any pathway or phenotype, I hypothesized that literature-based evaluation of the 

miR-1307-3p I0-specific targets in the consensus list (n=206) could identify phenotypes that might 

be specifically regulated by miR-1307-3p I0 and that we did not test. Moreover, I assumed that 

screening the literature for the miR-1307-3p I0-specific targets might identify targets that could 

play a role in mediating the effect that miR-1307-3p I0 had on migration of MDA-MB-231 cells. To 

narrow down the number of potential targets, I intersected the consensus predictions for miR-

1307-3p I0 with the genes specifically downregulated by miR-1307-3p I0 in the MicroArray. The 

three remaining targets were LBH, TOR1B and VPS37C. There were no publications showing a 

connection between cancer and TOR1B or VPS37C. For ‘Limb Bud And Heart Development’ (LBH), 

however, literature showed an invasion-promoting role via PI3K/AKT signaling in gastric cancer 

cells160. In glioma, LBH enhanced expression and secretion of VEGF-A in hypoxic conditions, which 

promoted angiogenesis161. According to literature, downregulation of LBH by miR-1307-3p I0 

could explain the less migratory phenotype that I observed in MDA-MB-231 and, moreover, miR-

1307-3p I0 might repress angiogenesis via targeting of LBH. In line with the angiogenesis-

promoting role of LBH, GSEA showed repression of an angiogenesis-related gene signature in Basal 

patients with high miR-1307-3p I0 or miR-1307-3p I1 levels (Figure 19A). 

In the MicroArray, LBH was detected by two probes: one probe showed barely changes in LBH 

expression upon miR-1307-3p I0 or miR-1307-3p I1 transfection (Figure 19B). The other probe 

detected a reduction in LBH by 40 % and 25 % upon miR-1307-3p I0 and miR-1307-3p I1 

overexpression, respectively. Although miR-1307-3p I1 did not repress LBH strong enough to meet 

the pre-defined cut-off (fold change<0.65), probe 1 showed a mild regulation. I assumed that this 

might result from different types of binding sites and, thus, evaluated the target predictions 

produced by TargetScan and MiRanda individually. While MiRanda predicted LBH as a miR-1307-

3p I0-specifc target, TargetScan predicted LBH to be a shared target with an 8mer binding site for 

miR-1307-3p I0 and a 6mer for miR-1307-3p I1 (Figure 19C). The results obtained by probe 1 in 

the MicroArray supported the TargetScan predictions rather than the predictions based on 

MiRanda: strong repression of LBH by miR-1307-3p I0 and a mild reduction in LBH levels upon miR-

1307-3p I1 overexpression. To confirm the regulation of LBH by miR-1307-3p I0 and miR-1307-3p 

I1, I performed expression analysis in an independent set of samples (MDA-MB-231). Validation 

of the results determined no significant changes of LBH abundance upon miR-1307-3p I0 or miR-

1307-3p I1 overexpression (Figure 19D). The standard deviation between the biological replicates 
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of all conditions was high, which might mask a potential effect of miR-1307-3p I0 / miR-1307-3p I1. 

On the other hand, the TaqMan results could confirm the lack of regulation indicated by probe 2 

in the MicroArray.  

 

Figure 19: LBH repression by miR-1307-3p I0 and miR-1307-3p I1. A) GSEA of Basal patients from TCGA 

ranked by their miR-1307-3p I0 or miR-1307-3p I1 expression was performed and revealed significant 

depletion of an angiogenesis-related gene signature. NES represents the normalized enrichment score 

indicating negative enrichment. B) MicroArray-based expression profiling in MDA-MB-231 upon miR-1307-

3p I0 and miR-1307-3p I1 overexpression. The fold changes in expression of LBH between two conditions are 

plotted. C) Scheme illustrating the binding sites that TargetScan predicted for miR-1307-3p I0 and miR-1307-

3p I1 within the 3’UTR of LBH. D) LBH mRNA levels in MDA-MB-231 were measured with TaqMan after miR-

1307-3p I0 and miR-1307-3p I1 overexpression. Error bars represent the standard deviation of three 

biological replicates. Statistical significance was calculated with an unpaired two-tailed student’s t-test. P-

values are represented by asterisks (* ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001).  
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4.2.10 miR-1307-3p I0 targets multiple ATPase subunits and might play a role in autophagy 

Overlapping the consensus target predictions for miR-1307-3p I0 with the genes specifically 

downregulated by miR-1307-3p I0 in the MicroArray did not suggest any phenotypes that might 

be specifically regulated by miR-1307-3p I0. The gene regulation that was determined by 

MicroArray and TaqMan experiments showed that the TargetScan predictions were more accurate 

for the targets NCS1 and LBH than the predictions from MiRanda. Moreover, the TargetScan 

predictions comprised a lot more genes for miR-1307-3p I0 than predictions generated by 

MiRanda. Thus, I hypothesized that overlapping the TargetScan predictions for miR-1307-3p I0 

with the MicroArray could provide more insight into pathways or phenotype specifically repressed 

by miR-1307-3p I0. However, only five genes overlapped between both lists: ATP6V1C1, ELF4, 

RC3H2, SLC7A5 and STK40. Literature did not assign any cancer-related phenotypes with RC3H2. 

For ELF4 and STK40, a role in cancer was shown, however, both proteins were associated with 

phenotypes that we had tested.  

The role of ATP6V1C1, a subunit of the vacuolar H+-ATPase, in cancer did not involve any 

potentially miR-1307-3p I0-specific phenotypes. Inhibition of ATP6V1A, another subunit of the 

vacuolar H+-ATPase, however, has been associated with induction of autophagy162. SLC7A5 is part 

of LAT1, a neutral amino acid transporter that was connected to an increase in autophagy upon 

inhibition163. Both, the vacuolar H+-ATPase and LAT1, play a crucial role in sensing nutrients via 

mTORC1 signaling at the lysosomal membrane164. LAT1 is recruited to the lysosomal membrane, 

where it induces mTORC1 signaling via the vacuolar H+-ATPase165. Thus, mTORC1 signaling 

remains active and blocks autophagy in the presence of nutrients165. Autophagy modulates 

protein secretion, the outcome, however, depends on the involved pathways166. As a result, 

protein secretion can be either increased or decreased upon induction of autophagy. GSEA had 

shown repression of the hallmark gene signature ‘protein secretion’ in Basal patients with high 

miR-1307-3p I0 or miR-1307-3p I1 levels (Figure 20A), which supported the assumption that miR-

1307-3p I0 could play role in autophagy via repression of ATP6V1C1 and SLC7A5, for instance. 

Since ATP6V1C1 and SLC7A5 were predicted to be miR-1307-3p I0-specific targets by TargetScan, 

I wanted to confirm this and looked into the MicroArray data. In line with the predictions, 

ATP6V1C1 was specifically repressed by miR-1307-3p I0 (approximately 35 %) (Figure 20B). While 

miR-1307-3p I0 overexpression decreased SLC7A5 levels even by 50 %, miR-1307-3p I1 

downregulated SLC7A5 as well (by almost 30 %). 
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Figure 20: miR-1307-3p I0 targets various ATPase subunits. A) GSEA of Basal patients from TCGA ranked by 

their miR-1307-3p I0 or miR-1307-3p I1 expression was performed and revealed significant depletion of a 

gene signature related to protein secretion. NES represents the normalized enrichment score indicating 

negative enrichment. B) MicroArray-based expression profiling in MDA-MB-231 upon miR-1307-3p I0 and 

miR-1307-3p I1 overexpression. The fold changes in expression of ATP6V1C1 and SLC7A5 between two 

conditions are plotted. C) A selection of targets that were predicted specifically for miR-1307-3p I0 with the 

TargetScan algorithm. D) MicroArray-based expression profiling in MDA-MB-231 upon miR-1307-3p I0 or 

miR-1307-3p I1 overexpression. The fold changes in expression of ATP5G1 between two conditions are 

plotted. 

 

Based on miR-1307-3p I0-mediated repression of ATP6V1C1, I hypothesized that more subunits of 

the vacuolar H+-ATPase could be regulated by miR-1307-3p I0. I thus screened the target 

predictions and the significantly downregulated genes in the MicroArray specifically for subunits 

of ATPase subunits. I found three more subunits for the vacuolar H+-ATPase to be predicted by 

TargetScan and, interestingly, subunits of several other ATPases (Figure 20C). Some of the 

potential miR-1307-3p I0 targets code for subunits of the mitochondrial ATP synthase, which 

contains a subunit that is encoded by ATP5MD, the host gene of pre-miR-1307. In the MicroArray, 

ATP5G1, another subunit of the mitochondrial ATP synthase was repressed by miR-1307-3p I0 

overexpression (Figure 20D) but was not predicted as direct target of miR-1307-3p I0 or miR-1307-
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3p I1. ATP5G1 levels were mildly affected by miR-1307-3p I1. Overall, this suggests that miR-1307-

3p I0 might target several ATPase subunits and SLC7A5, which might affect protein secretion and 

modulate autophagy. 

Based on the connection of autophagy and the vacuolar H+-ATPase, which contains four subunits 

potentially targeted by miR-1307-3p I0, I hypothesized that miR-1307-3p I0 might target other 

parts of autophagy pathways as well. To test this, I checked whether the TargetScan predictions 

contained key players of autophagy. In fact, the TargetScan algorithm predicted many genes with 

a role in autophagy to be targeted by miR-1307-3p I0 (Figure S3A). Some of the targets that were 

predicted for miR-1307-3p I0 are involved in unfolded protein response (UPR)167, which is not 

surprising considering that UPR is in crosstalk with autophagy and both processes are part of the 

ER stress response168. GSEA did not link high miR-1307-3p I0 / miR-1307-3p I1 levels in Basal breast 

cancer patients with a modulation of an autophagy-related gene signature, however, the analysis 

showed enrichment of an ‘UPR’ gene signature (Figure S3B). In summary, target predictions and 

regulated genes as well as GSEA in patients connected miR-1307-3p I0 with a potential role in 

autophagy and cellular stress response. 
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5. DISCUSSION 

5.1 Mammosphere assay to identify microRNAs in chemoresistance  

Patients diagnosed with the highly aggressive TNBC have limited treatment options: besides 

surgery and radiation, chemotherapy is the standard of care28. Still, TNBC patients frequently show 

only partial response to chemotherapy, which comes with a high risk of recurrence29. The wide-

ranging influence of microRNAs on the cellular signaling landscape139 renders them important 

hubs that guide the fate of a cancer cell. Identifying their targets and understanding their role in 

modulating the cellular phenotype allows to get insight into resistance development and to 

identify weaknesses that can be exploited for targeted therapy. In the past years our knowledge 

of the miRNome has gained increased complexity with the discovery and characterization of 

5’isomiRs, functionally relevant sequence variants. Along this line, the aim of this project was to 

focus on microRNAs and 5’isomiRs differentially expressed in patients, to identify those which 

modulate chemoresistance of TNBC cell lines and to characterize how they modulate the cellular 

response to drugs.  

 

5.1.1 Proof of principle - enrichment for chemoresistant BCSCs in mammospheres 

After having generated a library of selected microRNA and 5’isomiR candidates on the pre-

microRNA level, I determined the dynamic range of chemosensitivity by overexpressing a positive 

and a negative control (pre-miR-21 and pre-miR-145, respectively). As the dynamic range was 

limited when cells were grown in 2D conditions (Figure 5D), I implemented a mammosphere-

based assay to enrich for stem cells, which are a main factor driving chemoresistance146. I could 

indeed show that the cultivation of mammospheres over six generations increased the mRNA 

levels of several BCSC markers, drug efflux pumps as well as detoxification enzymes (Figure 6B). 

Moreover, the sphere-derived cells were more resistant to Paclitaxel and Epirubicin than cells 

grown in 2D (Figure 6C). The drug response curves proved that the mammosphere assay does not 

only modulate markers associated with chemoresistance, but also enriches for cells that have a 

higher tolerance of chemotherapeutic drugs. Concluding, with the mammosphere assay I had 

established an experimental system that was suitable to study the role of microRNAs in 

chemoresistance. 

While BCSC markers are commonly assessed at the protein level, the number of cells that I had 

left for analysis after the mammosphere screen was not sufficient to analyze individual BCSC 

markers by FACS and to isolate genomic DNA for detecting the enrichment of pre-microRNA 
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integrates by NanoString. Another factor rendering analysis at the mRNA level more suitable in 

my project, was the necessary use of Trypsin to dissociate the spheres to single cells prior to 

seeding for the next sphere generation. The protease Trypsin effectively dissociates cells attached 

to each other, however, this comes at the cost of degradation of the extracellular parts of surface 

proteins, including some of the stemness markers that I wanted to detect. Hence, the use of milder 

agents is required to keep the surface markers of interest intact. For cultivation of spheres over 

multiple generations, however, the harsh dissociation with Trypsin is necessary to obtain a single 

cell suspension than can be seeded for the next sphere generation. Some of my stable TNBC cell 

lines formed spheres that showed increased mRNA levels of the BCSC markers ITGA6, PROM1, 

ITGB3 or ALDH1A1. For TNBC, CD44+/CD24-, ALDH1A1 and PROM1169,170 have been described as 

stem cell markers. Furthermore, the transcription factors OCT4, SOX2 and Nanog have been found 

upregulated171. NANOG was indeed consistently upregulated in my samples, while it was not 

possible to design intron-spanning primers targeting OCT4 and SOX2 with the 'Assay Design 

Center' that I used for the TaqMan experiments. In my system, the CD44+/CD24- stem cell markers 

did not seem to be of high relevance. This is not surprising, at least for MDA-MB-231 as this cell 

line is comprised of more than 95 % cells that are CD44+/CD24-172. Additionally, the variety of 

BCSC markers described in the literature is even higher, and the plasticity of stem cells is 

influenced by multiple extrinsic and intrinsic factors173. This implies that stemness needs to be 

assessed at the functional level. Functional assays focus on quantification of sphere number or 

size in vitro or evaluate tumorigenicity and self-renewal in vivo174.  

Based on the project aim to study the impact of the selected pre-microRNAs on chemoresistance, 

I used the cultivation of the stable cell lines in 3D to enrich for potentially chemoresistant stem 

cells. To evaluate chemoresistance on the functional level, I compared the drug response of cells 

grown in 2D versus 3D. For the chemoresistance assay, cells from both conditions were cultivated 

in 2D to compare their response to the drugs in the same condition. As assumed, the 

mammospheres enriched for cells that tolerate higher drug concentrations. Nevertheless, it is 

possible that the highly concentrated growth factors EGF and FGF in the mammosphere medium 

conferred a strong growth advantage compared to 2D culture medium. Consequently, the bias 

generated by the growth factors in the sphere medium might promote a higher drug tolerance. 

The cells grown in 3D were washed with PBS, dissociated and then grown in 2D cell culture 

medium containing the drugs for 96 hours. This procedure should remove remaining growth 

factors from the sphere cultivation and strip the cells derived from 3D culture of any growth 

advantage coming from these factors. Assuming that the growth factors from the sphere medium 

partially remained, it is difficult to estimate how the effect compares to the effect of the growth 
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factors in the FBS that the 2D cell culture received. It is known that FBS contains various growth 

factors as well, for instance, EGF, FGF, Insulin and, most abundantly, PDGF175. The growth factor 

concentrations in FBS, however, are not defined as in case of the sphere medium. Ideally, one 

should determine whether the chemoresistance of cells grown in 3D is a long-term effect that can 

be still observed after several weeks in 2D conditions. It has been shown, however, that MCF7 

spheres cultivated for five generations displayed a stable phenotype when cultured in 2D for an 

extended period176. This included increased chemoresistance, motility and in vivo tumorigenicity. 

Mechanistically, the stable phenotype of mammosphere-derived MCF7 cells in this study was 

accompanied by an EMT rendering the cells more mesenchymal. EMT was shown by evaluating 

the migratory potential as well as detection of EMT markers on the mRNA and protein level. In my 

study, I used the TNBC cell lines MDA-MB-231 and SUM-159 as experimental system. These cell 

lines already have a mesenchymal phenotype and are characterized by the expression of 

mesenchymal markers177. As a consequence, mammosphere culture might not further enhance 

EMT as strongly as it had been observed for MCF7 cells, which are classified as epithelial cell line178. 

Nevertheless, it makes sense to test this in particular for HCC1806, which has the weakest 

migration phenotype of the three TNBC cell lines that I used and is known to lack expression of 

epithelial and mesenchymal markers177. However, I employed 3D culture to enrich for 

chemoresistant cells, which is not necessarily connected to a more mesenchymal phenotype.  

 

5.1.2 Enrichment of pre-miR-103a-1 in spheres is not reflected on the functional level  

In mammospheres grown from TNBC cell lines harboring the library, several pre-microRNAs were 

strongly enriched compared to cells overexpressing the library and grown in 2D (Figure 8). 

However, the enrichment in 3D was limited to one replicate except for pre-miR-103a-1. I thus 

selected pre-miR-103a-1 for functional validation as this was supported by a strong fold-change in 

3D compared to 2D in replicates from all three tested TNBC cell lines (Figure 8B). Interestingly, 

pre-miR-103a-2 did not show enrichment in any of the 3D samples, although both pre-microRNAs 

code for miR-103a-3p (Figure 21). The difference in enrichment between pre-miR-103a-1 and pre-

miR-103a-2 could have been the result of different functions mediated by the microRNAs located 

on the 5p arm (Figure 21): miR-103a-1-5p and miR-103a-2-5p, respectively. miR-103a-2-5p could 

have mediated an effect that counteracts the function of miR-103a-3p, which then prevented 

enrichment of pre-miR-103a-2 in mammospheres. Another possible explanation for the strong 

enrichment of pre-miR-103a-1 is that the enrichment occurred due to a sphere-promoting effect 

of miR-103a-1-5p rather than miR-103a-3p. However, there are no studies supporting this idea. 



Dissertation      Janine Jung 

105 
 

Consequently, expression analysis as well as functional analysis of the microRNAs derived from 

the 5p arms of pre-miR-103a-1 and pre-miR-103a-2 is required to prove that this could have been 

the reason for the strong pre-miR-103a-1 enrichment. 

 

 

Figure 21: Scheme illustrating the possible microRNAs processed from pre-miR-103a. Pre-miR-103a-1 and 

pre-miR-103a-2 were included in my pre-microRNA library and were retrovirally transduced into the genome 

of different TNBC cell lines along with the other pre-microRNAs selected for the library. miR-103a-3p can be 

processed from either pre-miR-103a-1 or pre-miR-103a-2. Both pre-microRNAs, however, give rise to 

different microRNAs on the 5p arm: miR-103a-1-5p and miR-103a-2-5p. 

 

Considering the variation in abundance of many pre-microRNA barcodes when comparing 

different 3D samples as well as different time points (Figure 8), however, the NanoString data 

rather suggests a random enrichment of pre-microRNA integrates. This notion was supported by 

the fact that I could not show an increase in sphere formation or chemoresistance upon pre-miR-

103a-1 overexpression (Figure 9B). To confirm that pre-miR-103a-1 did not enrich in 3D due to 

high miR-103a-3p or miR-103a-5p levels that promote chemoresistance, the respective expression 

levels in the mammospheres should have been determined. Since pre-miR-103a-1 and pre-miR-

103a-2 had been selected for the library based on the differential expression of miR-103a-3p I0 

and miR-103a-3p I1, however, I quantified only pre-miR-103a and miR-103a-3p levels in my 

samples (Figure 11A and B). The comparison of 3D samples to 2D samples showed that pre-miR-

103a and miR-103a-3p levels were similar in both conditions, partially even lower in 3D than in 
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2D. The low pre-miR-103a-1 abundance in 3D compared to 2D culture confirms that the 

enrichment of cells with a pre-miR-103a-1 barcode was not the result of a survival benefit 

mediated by pre-miR-103a-1 in 3D conditions. The enriched cells might have expressed genes that 

were involved in stemness and the pre-miR-103a-1 integrate could have served as a neutral 

barcode. Moreover, there is only one study that links miR-103a-3p to chemoresistance in lung 

cancer179 and thereby supports the assumption that pre-miR-103a-1 does not give rise to mature 

microRNAs that play a major role in chemoresistance.  

Based on the previously described findings, I decided not to continue with the project. As a 

consequence, I did not quantify endogenous expression or overexpression of pre-miR-103a, miR-

103a-5p or miR-103a-3p in the stable cell lines. We considered sequencing the pre-microRNA 

library cell lines after the stable cell lines were generated to obtain the level of overexpression for 

the individual microRNAs and 5’isomiRs. Taking into account, however, that only every 72nd cell 

might harbor the same pre-microRNA integrate and breaking this down to the microRNA variants 

transcribed from each pre-microRNA, the sequencing depth would have not been sufficient. In the 

context of another project, the same retroviral backbone that I used for my pre-microRNA library 

was used to generate various stable cell lines overexpressing single pre-microRNAs. MicroRNA 

sequencing data of these cell lines confirmed that the magnitude of overexpression across 

different pre-microRNAs differed strongly between pre-microRNA constructs as well as between 

5’isomiRs processed from these pre-microRNAs (Figure 11C), and most likely introduced a strong 

bias. The pre-miR-21 construct, for instance, lacked overexpression, but the 5’isomiRs produced 

from pre-miR-145 were increased 100-fold to 1000-fold. Looking at the endogenous expression 

levels, this is not very surprising: pre-miR-21 derived 5’isomiRs have already very high expression 

levels, while the 5’isomiRs processed from pre-miR-145 are endogenously expressed at low levels 

(Figure 11D). Since miR-21 is known to mediate chemoresistance142,143, the lack of overexpression 

might have abolished a selection advantage for these cells compared to the control (Figure 5D). 

Moreover, the increase in expression for 5’isomiRs processed from the same pre-microRNA was 

not proportional for pre-miR-145, pre-miR-183 and pre-miR-29a. Considering that some of the 

generated 5’isomiRs might differ substantially from each other in their function and impact, the 

bias created by the overexpression might favor isoforms that are less relevant for 

chemoresistance. An increase in a particular microRNA without influence on chemoresistance 

would dilute the effect of other 5’isomiRs with a role in chemoresistance and might suppress 

enrichment of cells with the respective pre-microRNAs integrate in mammospheres.   
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The initial decision to work on the pre-microRNA levels was based on the advantage to use the 

pre-microRNAs as barcodes and to allow physiological biogenesis of microRNAs and 5’isomiRs. 

Previous cell line sequencing data generated in the lab showed that the relative microRNA and 

5’isomiR levels in several breast cancer cell lines are similar to those in TCGA patient data 

suggesting conservation of the ratios, at least to some extent. Based on this, we assumed that pre-

microRNA overexpression would maintain the ratios as well. Although overexpression constructs 

are an ideal tool in many cases, the situation turned out to be more difficult for 5’isomiRs than we 

anticipated considering the diversity in 5’isomiR overexpression for different pre-microRNA 

constructs.  

With the knowledge of today, I would choose a completely different experimental design to study 

microRNAs in chemoresistance. I would use the parental TNBC cell lines and generate 

chemoresistant cell lines by constant drug exposure until they have acquired full resistance. 

Throughout the resistance development, I would harvest samples to profile the changes in 

microRNA and 5’isomiR expression shortly after start of the treatment and then roughly every 

three months. Using microRNA sequencing, I would then identify microRNAs that are potentially 

relevant for chemoresistance directly on the 5’isomiR level. Subsequently, I could validate the 

specific isoform without the need to go through the pre-microRNA level first and, moreover, could 

directly exclude that the effect comes from the microRNAs located on the other pre-microRNA 

arm. Another setup for future experiments in this direction could be to sequence the 

mammospheres and compare their endogenous microRNA and 5’isomir expression level to the 

input and to time-matched samples grown in 2D. In addition, sequencing-based approaches would 

have allowed profiling changes in the ratios of different 5’isomiRs to each other. This is of 

particular interest in cases where one isoform modulates chemoresistance, whereas other 

isoforms target different phenotypes. Overall, microRNA sequencing would have been the more 

straight-forward approach for any experimental setup. In theory, 5’isomiR-specific qRT-PCR assays 

would have been another strategy, however, so far they are not commercially available. 

Reproducing published methods for 5’isomiR-specific detection98,99 and establishing our own 

5’isomiR-specific methods was not successful. Even when 5’isomiR-specific quantification 

methods can be established, specific probes for a large number of 5’isomiRs are expensive and 

the development of specific assays is time-consuming and needs to be optimized for each 

microRNA and its 5’isomiRs.  
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5.1.3 Selection bias of microRNAs for the pre-microRNA library due to TCGA batch effects 

Recently, Cindy Körner uncovered that the microRNA expression from the TCGA patient cohort 

was biased by strong batch effects. To understand the impact the selection bias had on my study, 

I compared the lists of differentially expressed microRNAs before and after batch correction of the 

TCGA data (Figure S1). Although there was quite some overlap between the pre-microRNAs, the 

biased selection missed many potentially relevant pre-microRNAs. Several of the pre-microRNAs 

that should have been included in the library based on the selection criteria I had defined in the 

beginning, give rise to mature microRNAs that have been connected to chemoresistance in various 

cancer entities: miR-1, miR-135b, miR-15b, miR-153, miR-184, miR-195, miR-30a, miR-330, miR-

338, miR-429, miR-450b, miR-584, miR-193a, miR-19a, miR-223, miR-744, miR-9 and miR-96180–

198. Other candidates that were missed because of the batch effects, modulate chemoresistance 

in breast cancer: miR-149, miR-200b, miR-205, miR-708, miR-30c and miR-423199–204.   

Some microRNA candidates derived from pre-microRNAs that should have been part of the library 

were shown to modulate stemness and, therefore, might influence chemoresistance as well. So 

far, stemness-modulating roles in breast cancer or other cancer entities have been shown for miR-

1, miR-153, miR-195, miR-205, miR-450b and miR-708185,190,205–208. In many cases, including some 

of the referenced studies, stemness has been evaluated based on stemness markers rather than 

in functional assays. Different studies describing breast cancer stem cells with different markers 

emphasizes the dilemma evolving around the question which markers define stem cell 

populations. The enrichment of different BSCS markers in different studies is not surprising 

considering that even the same conditions cause variable enrichment of markers (Figure 6B). In 

this project I showed the heterogeneity of BCSC markers between cell lines, but also within cell 

line replicates. My findings underline how heterogeneous and dynamic the situation around BCSC 

markers is and that the reliability of markers seems to be very context-dependent. The 

homogenous upregulation of the transcription factor NANOG in my spheres, however, implies that 

evaluating stemness on the basis of transcription factors might be more reliable. The relevance of 

transcription factors such as OCT4, SOX2, KLF4 or NANOG as key players in stemness programs is 

widely accepted209. The so-called Yamanaka factors include OCT4, SOX2 and KLF4 and are 

sufficient for reprogramming terminally differentiated cells to induced pluripotent progenitor 

cells210. Nevertheless, stem cell plasticity underlies intrinsic and extrinsic stimuli211, which may 

lead to a strong variation of BCSC markers as well as differences in their tumorigenic behavior 

between patients212. Overall, BCSCs as well as the cellular miRNome and its target spectrum are 
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highly complex and dynamic, which makes it difficult to enrich for the same microRNAs under 

different experimental conditions. 

Whether the microRNAs that were missed by the TCGA batch effects would have played a role in 

my system is something that I can only speculate about. Those microRNAs that have been shown 

to modulate response to chemotherapy in other cancer entities than breast cancer might repress 

targets that are not expressed in breast cancer. Second, microRNAs can have different interaction 

partners in different cancer entities or under different circumstances, depending on which 

pathways are active and which genes are amplified or mutated. Variation in pathway activity and 

target availability renders cancer entities vulnerable to different therapeutic compounds. Thus, it 

is also not surprising that many studies about the phenotypic impact of microRNAs are conflicting. 

miR-181c, for instance, has been described to reduce chemoresistance in breast cancer213, but to 

rather promote resistance in pancreatic cancer214.  

Looking at the pre-microRNAs that were included in the library and that remained in the selection 

after correction of the batch effects, reveals that my system failed to identify known modulators 

of chemoresistance. miR-139, miR-141, miR-200a, miR-29a, miR-381 have been shown to 

influence chemoresistance in breast cancer215–219. For these microRNAs, the lack of enrichment or 

depletion in my system could be explained by the assumption that the mammosphere assay 

enriched for microRNAs that modulate stem cell features, but not necessarily drug response. miR-

142 and miR-200c, however, suppress stemness of breast cancer cells220,221 and chemoresistance 

in the case of miR-200c222. The study on miR-142, for instance, showed modulation of the BCSC 

markers PROM1 and ALDH1, which were also among the regulated BCSC markers in my system. 

Based on this, a depletion of pre-miR-142 in my assay could be expected and low overexpression 

levels of the stable cells might explain the lack of enrichment in my system. Although 

overexpression for pre-miR-142 was not determined yet, we saw basically no overexpression for 

pre-miR-21, pre-miR-27a and pre-miR-320a (Figure 16C). Considering that pre-miR-145 had no 

effect on drug response in my hands (Figure 5D) despite strong overexpression (Figure 16C) and a 

published role in chemoresistance144,145, suggests that the basal expression level matter. 

Endogenously, 5’isomiRs of miR-145 are almost not expressed and despite approximately 800-fold 

overexpression of miR-145-3p I3, the expression levels are still far below those of 5’isomiRs 

transcribed from pre-miR-21 and pre-miR-27a, pre-miR-29a and pre-miR-320a (Figure 16D). Based 

on this observation, it could make sense to focus only on microRNAs and 5’isomiRs that reach a 

certain expression level after upregulation and, therefore, are likely of higher physiological 

relevance.  
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Several of the pre-microRNAs that would have been excluded from the library after batch 

correction of the TCGA data, give rise to microRNAs associated with chemoresistance or stemness 

as well. miR-125b, miR-130b, miR-155, miR-16, miR-17, miR-29b-1 and miR-7171,223–228 have been 

implicated in chemoresistance and partially in stemness of breast cancer or other entities. These 

examples show that my stringent selection of candidates for the pre-microRNA library is not the 

only approach to obtain potential modulators of chemoresistance and stemness. Different criteria 

might create a list of valid microRNA candidates as well. To study any of the discussed microRNAs, 

however, strong pre-microRNA overexpression is crucial to observe a potential selection 

advantage mediated by the respective pre-microRNA. The presented data, however, shows that 

the overexpression constructs used in this project failed to consistently overexpress pre-

microRNAs and 5’isomiRs across different constructs and at sufficient levels. These unexpected 

findings suggest that future approaches to study the role of microRNAs in chemoresistance should 

focus on modulation of endogenous microRNAs upon treatment with chemotherapeutic drugs or 

at least ensure defined amounts of all studied microRNAs.  
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5.2 Divergent 5’isomiR miR-1307-3p I1 promotes a different phenotype than 

miR-1307-3p I0 

For identification of microRNAs and 5’isomiRs playing a role in chemoresistance of TNBC, 

potentially chemoresistant BCSCs were enriched with a mammosphere assay. Profiling of the 

spheres with NanoString revealed pre-miR-103a-1 as strongly enriched candidate. Since I could 

not validate the role of miR-103a-3p in chemoresistance or stemness, the project was no longer 

pursued. In order to study the functional relevance of 5’isomiRs and characterize phenotypic and 

mechanistic differences, a 5’isomiR pair was selected from microRNAs differentially expressed in 

breast cancer patients. miR-1307-3p I0 and miR-1307-3p I1 were selected as 5’isomiR pair since 

both were differentially expressed in tumor compared to normal tissue of TCGA patients, 

expressed at similar levels in tumor or in normal tissue and had a divergent seed sequence. This 

project focused on a divergent 5’isomiR pair, because this subset of 5’isomiRs is known to differ 

largely in their target spectra and the resulting phenotypes95,96. As a result, this allows confirming 

the impact a seed sequence shifted by one nucleotide can have.  

 

5.2.1 pre-miR-1307 reduces migration and invasion in TNBC 

With a phenotypic screen, Xiaoya Li was able to identify migration and invasion as phenotypes 

repressed by pre-miR-1307 (Figure 13A). Moreover, pre-miR-1307 overexpression reduced tumor 

volume in vivo without influencing proliferation in vitro (Figure 13B). For miR-1307-3p I0, a few 

phenotypic studies have been published. Those publications studying the role of miR-1307-3p I0, 

however, are conflicting: while a tumor-suppressive role was described in colon cancer by one 

study 229, thus supporting our data, other studies have described an oncogenic impact of miR-

1307-3p I0 in breast cancer as well as in other cancer entities230–234. The study in breast cancer 

showed that overexpression of miR-1307-3p I0 in MCF10A cells promoted proliferation, growth in 

soft agar and tumor formation in mice. The oncogenic effect in breast cancer is in line with the 

upregulation of miR-1307-3p I0 and miR-1307-3p I1 in tumor tissue, especially in tumors of 

aggressive subtypes. The study in colon cancer that assigned a tumor-suppressive role to miR-

1307-3p I0 on the other hand, described exactly the opposite phenotype: reduced proliferation 

via G1 arrest and apoptosis229. These contradicting results could partially result from different 

mutation spectra and pathway activities present in the two cancer entities. With regard to EMT, 

miR-1307-3p I0 has been shown to promote migration and invasion in liver cancer cell lines231,232. 

To date, there are no studies addressing the functional role of miR-1307-3p I1. In conclusion, 
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literature assigns an oncogenic role to miR-1307-3p I0, but Xiaoya Li identified migration and 

invasion as phenotypes repressed by pre-miR-1307. Thus, migration was selected as phenotype 

to study the potentially different impact of miR-1307-3p I0 and miR-1307-3p I1.  

 

5.2.2 miR-1307-3p I0 and I1 play divergent functional roles in a cell line-specific manner   

To assess whether the migration phenotype in MDA-MB-231 cells was induced by miR-1307-3p I0 

or miR-1307-3p I1 specifically, I next transfected 5’isomiR-specific mimics into MDA-MB-231 and 

SUM-159 cells to evaluate their respective impact on migration (Figure 14A). miR-1307-3p I1 

repressed migration in both tested TNBC cell lines, while miR-1307-3p I0 reduced migration only 

in MDA-MB-231. Furthermore, the effect of miR-1307-3p I1 on migration in MDA-MB-231 was 

stronger compared to miR-1307-3p I0. The impact of both microRNAs on migration in MDA-MB-

231 was supported by EMT marker changes on mRNA level: both isoforms significantly increased 

CDH1 and decreased VIM levels in MDA-MB-231 (Figure 14B), whereas CDH1 was not expressed 

and VIM was not significantly regulated in SUM-159 (data not shown). In addition, the role of miR-

1307-3p I0 and miR-1307-3p I1 in migration was recapitulated in Basal breast cancer patients: 

patients with high miR-1307-3p I0 / miR-1307-3p I1 levels were significantly depleted in an EMT 

gene signature, which is perfectly in line with my in vitro findings (Figure 14C). From the patient 

data it is not possible to specify which 5’isomiR plays the major role for the migration phenotype 

since both isoforms are highly correlated (Figure 14D). Moreover, miR-1307-3p I1 strongly 

repressed proliferation, but only in SUM-159 cells (Figure 14E).  

The divergent modulation of phenotypes by miR-1307-3p I0 and miR-1307-3p I1 in a cell line-

specific manner might originate from differences in mutation status, the availability of targets 

and/or pathway activities in MDA-MB-231 and SUM-159. Looking at differentially mutated genes, 

MDA-MB-231 cells are characterized by mutations in BRAF, CDKN2A, KRAS and TP53, while SUM-

159 cells harbor mutations in HRAS, PIK3CA and TP53 (information obtained from Cellosaurus). 

Although mutation of KRAS versus HRAS or different TP53 mutations may also differ strongly in 

their impact on the cellular phenotype, the PIK3CA mutation stands out. PIK3CA, the α-catalytic 

subunit of PI3K, is constitutively active in SUM-159235. Knock-down experiments have shown that 

targeting PI3K and AKT strongly affects the growth of SUM-159 compared to MDA-MB-231 cells236. 

In breast cancer in general, activating PIK3CA mutations have been shown to promote 

proliferation237. These findings could explain the exclusive influence of miR-1307-3p I1 on 

proliferation in SUM-159, hypothesizing that the proliferation phenotype is mediated by a 

5’isomiR target required for PI3K signaling. If this assumption holds true, this would mean that 
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miR-1307-3p I1 reduces migration and proliferation via different targets and mechanisms since 

the 5’isomiR affects migration in both TNBC cell lines. A cell line-specific pathway addiction or 

weakness could also be the reason for the effect of miR-1307-3p I0 on migration in MDA-MB-231 

only. Without identifying and validating the respective targets, however, this is only speculation. 

Since the list of targets per microRNA is usually rather long, it would make more sense to use 

PIK3CA or mTOR inhibitors and then confirm that miR-1307-3p I1 overexpression affects the 

proliferation of SUM-159 cells less, for instance. 

Overall, the results show that miR-1307-3p I0 and miR-1307-3p I1 differ in their phenotype as 

expected based on their divergent seed sequences. Despite the context-depending influence of 

both 5’isomiRs, I could show that miR-1307-3p I1 affects the phenotype of a cell differently than 

miR-1307-3p I0. The presented data highlights miR-1307-3p I1 as another example of a 5’isomiR 

with putative functional relevance.  

 

5.2.3 Divergent target spectra provide target genes that might explain the phenotypic and 

mechanistic differences mediated by miR-1307-3p I0 and I1 

The effect of miR-1307-3p I0 and miR-1307-3p I1 seems to be highly cell line-specific, at least for 

MDA-MB-231 and SUM-159. To identify regulated target genes that might mediate the phenotypic 

effects and could explain mechanistic differences, a MicroArray was performed by Neşe Erdem 

Borgoni and target predictions were generated by Shashwat Sahay. The number of potential 

targets differed a lot between the different prediction algorithms (Table 11). Moreover, the 

MicroArray data and the predictions showed that miR-1307-3p I0 and miR-1307-3p I1 share 

subsets of genes that they potentially modulate, but both 5’isomiRs seem to have specific target 

subsets as well. 

Selecting promising targets from the generated data was complicated by several facts: First, the 

MicroArray data needed to be interpreted with caution since the p values suggested that 

differences between conditions might represent artefacts and fold changes might be random. 

Second, miR-1307-3p I0 and miR-1307-3p I1 both repressed migration in a cell line-specific 

manner, which might depend on differential target gene expression or mutational status (e.g. 

PIK3CA). Third, microRNAs are known to repress a large number of targets39 and, thus, it is unlikely 

that the observed phenotypes were the result of only one repressed mRNA target per 5’isomiR. 

Fourth, targets shared by both isoforms might play a role in the modulated phenotypes as well. In 

combination with 5’isomiR-specific targets acting on the same phenotype, this generates a highly 



Dissertation      Janine Jung 
 

114 
 

complex situation. Ideally, predicted targets would be narrowed down by sequencing MDA-MB-

231 and SUM-159 after miR-1307-3p I0 or miR-1307-3p I1 overexpression. Differentially expressed 

genes would allow verifying 5’isomiR-specific targets as well as cell line-specific differences. A 

more advanced approach that allows focusing on directly regulated targets, would be to transfect 

the cells with biotinylated microRNA mimics and pull down the microRNAs as well as the mRNA 

targets bound to them with streptavidin-coated beads. Subsequently, sequencing would identify 

the regulated targets. Timewise, the mentioned experiments were not possible any more in the 

context of this project, therefore, I performed functional enrichment analysis for the 5’isomiR-

specific target predictions with WebGestalt to identify differentially modulated pathways. This 

analysis, however, did not yield any pathway enrichment with statistical significance.  

 

miR-1307-3p I1 might reduce migration and proliferation by targeting the PI3K pathway via NCS1   

The target predictions that were generated for miR-1307-3p I0 and miR-1307-3p I1 were based on 

two predictions algorithms: TargetScan and MiRanda. To limit the number of false positive 

predictions, both target lists were intersected and I used the consensus list to identify miR-1307-

3p I1-specific targets that could explain the migration phenotype in MDA-MB-231 and SUM-159 

and the effect on proliferation in SUM-159. Literature search for the predicted targets showed 

that the potential target NCS1 might be highly relevant for the miR-1307-3p I1-mediated 

phenotypes: NCS1 has been shown to promote migration and proliferation via AKT signaling159. 

Moreover, literature showed that NCS1 is involved in the PI3K/AKT pathway also in the context of 

neurite sprouting, where NCS1 overexpression enhanced AKT1 activity as well238. The connection 

of the potential miR-1307-3p I1 target NCS1 with PI3K/AKT signaling might provide an explanation 

for the cell line-specific proliferation phenotype that might be associated with a PIK3CA mutation 

in SUM-159 cells and that renders PI3K signaling in these cells constitutively active. Based on the 

assumption that SUM-159 strongly depend on the PI3K/AKT pathway for proliferation, inhibition 

of PI3K/AKT signaling could confirm that miR-1307-3p I1 overexpression or NCS1 knock-down 

would affect proliferation less.  

The MicroArray data as well as TaqMan-based validation of gene regulation by miR-1307-3p I1 

showed that for NCS1 the TargetScan prediction was more accurate than the predictions 

generated by MiRanda. MiRanda predicted NCS1 to be a miR-1307-3p I1-specific target, while 

TargetScan detected NCS1 as shared target due to a 7mer-m8 binding site for miR-1307-3p I1 and 

a 6mer binding site for miR-1307-3p I0 in the 3’UTR. The obtained results confirm the complexity 

of microRNA/target interactions and that they are rarely ‘black’ or ‘white’, but rather occur in a 
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dynamic manner. Whether the TargetScan predictions are more reliable in general, however, 

needs to be determined on a larger scale. To confirm NCS1 as miR-1307-3p I1 target, I would first 

knock-down NCS1 to evaluate whether this mimics the effect of miR-1307-3p I1 overexpression 

on migration and proliferation. Next, I would show direct binding of the NCS1 3’UTR by miR-1307-

3p I1 with luciferase reporter assays. This approach would also allow understanding whether NCS1 

levels are repressed by miR-1307-3p I0 as well and whether this is the result of a direct or an 

indirect effect. 

 

miR-1307-3p I0 might reduce migration and angiogenesis by targeting LBH  

I identified LBH as a potential miR-1307-3p I0-specific target by overlapping the consensus 

predictions generated from TargetScan and MiRanda with the significantly downregulated genes 

in the MicroArray. Literature showed that LBH promotes invasion of gastric cancer cells by 

modulating PI3K/AKT signaling160. Moreover, LBH promotes expression and secretion of VEGF-A 

and thereby increases angiogenesis161. Assuming that miR-1307-3p I0 directly targets LBH, the role 

of LBH could explain the migration phenotype that I observed in MDA-MB-231. Modulation of 

angiogenesis-stimulating factors via LBH repression could also explain our in vivo results 

(Figure 13B) since a less pronounced vasculature is known to limit tumor growth239. The smaller 

tumor volume in mice injected with MDA-MB-231 overexpressing pre-miR-1307 could result from 

reduced angiogenesis since at least in vitro proliferation of MDA-MB-231 was not affected, which 

would be in line with the depletion of the hallmark gene set ‘angiogenesis’ in Basal patients with 

high miR-1307-3p I0 levels (Figure 19A).  

The MicroArray results differed a lot for different probes and ranged from 10 % to 40 % repression 

of LBH by miR-1307-3p I0 (Figure 19B). The TaqMan-based validation was inconclusive, mainly due 

to the high standard deviation of all conditions (Figure 19D). Based on the gene regulation 

detected by probe 2 in the MicroArray and the TargetScan predictions, however, LBH might be a 

shared target of miR-1307-3p I0 and miR-1307-3p I1. Repeating the TaqMan-based validation with 

another set of samples including four biological replicates might reveal what the actual situation 

is. Confirmation of LBH as miR-1307-3p I0 / miR-1307-3p I1 target is required before following up 

with phenocopy experiments and luciferase reporter assays.  

In case LBH can be validated as miR-1307-3p I0 / miR-1307-3p I1 target, the following step would 

be to evaluate migration behavior of MDA-MB-231 and SUM-159 upon LBH knock-down. To prove 

that a miR-1307-3p I0 / miR-1307-3p I1-mediated LBH repression might have an impact on 
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angiogenesis via VEGF-A, I would determine VEGF-A mRNA levels by TaqMan and the amount of 

secreted protein by ELISA. Profiling the cell culture supernatant by mass spectrometry might allow 

to identify more factors that influence angiogenesis and are modulated by miR-1307-3p I0 / miR-

1307-3p I1. In general, profiling changes might be especially relevant since GSEA identified that 

high levels of miR-1307-3p I0 / miR-1307-3p I1 in Basal breast cancer patients correspond with 

depletion of a gene set related to protein secretion (Figure 20A). LBH-mediated modulation of 

VEGF-A signaling might not only influence angiogenesis in a paracrine manner, but could also have 

an impact on migratory potential of tumor cells since VEGF-A has acts in an autocrine manner and 

thereby promote survival and migration of breast cancer cells240. Moreover, autocrine VEGF-A 

signaling in breast cancer seems to constitutively activate PI3K signaling241. Keeping in mind that 

the putative miR-1307-3p I1 target NCS1 probably acts via PI3K signaling as well, the PI3K/AKT 

pathway could be targeted by miR-1307-3p I0 / miR-1307-3p I1 through multiple angles. In 

conclusion, screening the target predictions for genes that have been implicated in PI3K/AKT 

signaling might provide more insight into the mechanism of miR-1307-3p I0 / miR-1307-3p I1.  

 

Targeting of various ATPase subunits might connect miR-1307-3p I0 to an autophagy phenotype  

I could show that migration and proliferation are repressed by miR-1307-3p I1 and that migration 

is repressed by miR-1307-3p I0 to some extent. However, the phenotypic assays I performed as 

well as overlapping the consensus target predictions with downregulated genes did not suggest 

any pathways or phenotypes exclusively modulated by miR-1307-3p I0. Since the TargetScan 

predictions were more accurate for NCS1 and LBH when compared with the extent of gene 

regulation, I decided to overlap the miR-1307-3p I0-specific TargetScan predictions with the 

significantly downregulated genes detected by the MicroArray. I could identify two targets that 

have been connected with autophagy to some extent: ATP6V1C1 as part of the vacuolar H+-

ATPase and SLC7A5 as part of the amino acid transporter LAT1163,242. In the MicroArray, ATP6V1C1 

was specifically regulated by miR-1307-3p I0, whereas SLC7A5 was repressed by both 5’isomiRs 

(Figure 20B). The next step would be to confirm the gene regulation by TaqMan. Interestingly,  

literature connected ATP6V1C1 not only with autophagy, but also with a migratory phenotype in 

breast cancer cell lines 243–245. Considering the connection of autophagy and EMT in cancer cells, 

however, this is not surprising: autophagy can provide nutrients to fuel the migratory behavior of 

cancer cells246. 

To obtain more insight into the potential role of miR-1307-3p I0 in regulating the vacuolar ATPase 

and autophagy, I screened the literature for the TargetScan predictions and the genes regulated 
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in the MicroArray separately. The TargetScan predictions contained more subunits of the vacuolar 

H+-ATPase and other ATPases, including the mitochondrial ATP synthase (Figure 20C). The 

MicroArray detected significant repression of another subunit of the mitochondrial ATP synthase: 

ATP5G1 (Figure 20D). Furthermore, the TargetScan predictions  included a multitude of genes that 

have been linked with autophagy and UPR (Figure S3A), which are processes that are connected 

by crosstalk in the context of the cellular stress response168. 

Overall, the putative miR-1307-3p I0-specific targets including subunits of various ATPases, genes 

connected to autophagy/UPR and the migration/angiogenesis-modulator LBH were supported by 

GSEA: Basal breast cancer patients with high miR-1307-3p I0 levels were depleted in gene 

signatures related to angiogenesis (Figure 19A) and protein secretion gene set (Figure 20A) and 

showed enrichment for a UPR-related gene signature (Figure S3B). Protein secretion of particular 

factors like VEGF-A, IL-8, FGF-2 and MMPs is necessary to promote angiogenesis- and migration-

related phenotypes in breast cancer247. Protein secretion, however, has also been linked to 

ATPases. In particular, the vacuolar ATPase as part of secretory vesicles filled with pro-invasive 

growth factors plays an important role in breast cancer aggressiveness248. This connection 

suggests that the ATPase subunits and autophagy genes potentially targeted by miR-1307-3p I0 

could be associated with a reduction in protein secretion of migration-promoting and angiogenic 

factors that might be connected to autophagy.  

To obtain a more general understanding of the potential role that miR-1307-3p I0 plays in 

migration, protein secretion and autophagy, I would collect the supernatant of miR-1307-3p I0-

overexpressing cells and apply it to untransfected cells. Subsequently, I would evaluate a potential 

reduction in migration upon treatment with the supernatant. Once this has been shown, I would 

profile the secreted proteins by mass spectrometry in order to overlap the regulated proteins with 

the targets predicted for miR-1307-3p I0. The mass spectrometry could also assist in identifying 

proteins that are indirectly regulated by the microRNA, but play a crucial role for the miR-1307-3p 

I0-mediated phenotypes as well. After identifying secreted factors of interest, the autocrine 

function on migration needs to be shown experimentally. Moreover, the effect of miR-1307-3p I0 

overexpression on autophagy needs to be assessed, for instance, by quantification of 

autophagosomes using immunofluorescence to stain for LC3 puncta249. 
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5.2.4 Upregulation of a tumor-suppressive microRNA in breast cancer 

All of the performed phenotypic assays revealed a likely tumor-suppressive role upon pre-miR-

1307 as well as miR-1307-3p I0 / miR-1307-3p I1 overexpression (Figure 13 and 14). This raises the 

question why a tumor-suppressive (pre-) microRNA is highly abundant in tumor tissue, especially 

in tumors associated with aggressive subtypes (Figure 12). In TCGA breast cancer patients only 

three microRNAs processed from pre-miR-1307 were expressed (mean > 15 rpm): miR-1307-3p I0, 

miR-1307-3p I1 and miR-1307-5p I0. miR-1307-5p I0 was well correlated with miR-1307-3p I0 / 

miR-1307-3p I1 (Figure 17A), was significantly differentially expressed between tumor and normal 

breast tissue (Figure 17B) and revealed higher levels in the more aggressive subtypes (Figure 17C). 

The fold change between tumor and normal tissue was higher for miR-1307-5p I0 expression 

compared to miR-1307-3p I0 / miR-1307-3p I1 (Figure 17D), which might point in the direction 

that miR-1307-5p I0 has an oncogenic role and might explain the high levels of miR-1307-3p I0 and 

miR-1307-3p I1. Pre-miR-1307 overexpression in MDA-MB-231, however, did not mediate an 

oncogenic effect in our phenotypic screen. This could be explained by low miR-1307-5p I0 

expression or miR-1307-5p I0 promotes phenotypes that we did not test (for instance, autophagy 

or metabolism-related phenotypes). Moreover, targets crucial for an oncogenic phenotype might 

not be expressed in the overexpression cell lines and, therefore, render even high levels of miR-

1307-5p I0 ineffective.  

Opposing roles of microRNAs transcribed from different arms of the pre-microRNA have been 

described already. miR-28-3p, for instance, promotes migration and invasion, whereas miR-28-5p 

represses both phenotypes and proliferation in colorectal as well as in nasopharyngeal 

cancer250,251. Other examples show contrasting roles for miR-34-3p and miR-34-5p, miR-514b-3p 

and miR-514b-5p as well as miR-574-3p and miR-574-5p252–254. However, miR-1307-5p I0 target 

predictions generated by Shashwat Sahay did not contain any well published tumor suppressors 

and there are no functional studies about miR-1307-5p I0 and its impact on cancer-related 

phenotypes. To exclude miR-1307-5p I0 as oncogenic driver of highly abundant, pre-miR-1307-

derived microRNAs, expression levels would need to be determined in the overexpression cells 

and functional assays with miR-1307-5p I0 mimics would need to be performed. 

The mapping of pre-miR-1307 within an intron of ATP5MD (Figure 16C) could be another possible 

explanation for high expression levels of the tumor-suppressive miR-1307-3p, since ATP5MD is 

also upregulated in (aggressive) tumors (Figure 15B). A modest correlation between ATP5MD and 

miR-1307-3p I0 / miR-1307-3p I1 (r=0.38-0.42, Figure 15C) in Basal breast cancer patients supports 

the notion that pre-miR-1307 might be co-regulated with ATP5MD. ATP5MD codes for a subunit 
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of the mitochondrial ATP synthase and, therefore, is involved in mitochondrial OXPHOS154,255, the 

main source of ATP in aerobic organisms256. Besides colocalization with the mitochondrial ATP 

synthase, ATP5MD is also part of the vacuolar ATP synthase in lysosomes of HUVEC and HEK293T 

cells257. This is not surprising since the mitochondrial ATP synthase and the vacuolar ATP synthase 

are structurally and mechanistically related258. So far, however, studies about the functional 

importance of ATP5MD are contradicting or suggest a rather structural relevance of ATP5MD for 

alignment of the mitochondrial ATP synthase along the cristae259.   

The functional role of the mitochondrial ATP synthase matches the significant enrichment of gene 

signatures related to OXPHOS, ROS and DNA repair in Basal patients with high ATP5MD levels 

(Figure 15D). The enriched signatures underline the function of the ATP synthase: the crucial role 

of the ATP synthase for OXPHOS154,255, the high ROS levels that come with this branch of the 

metabolism260 and the importance of DNA repair to cope with ROS-induced DNA damage261. In 

TNBC cell lines, for instance, mitochondria are the main ROS source262. The genes enriched in the 

OXPHOS signature contained many components of the ATP synthase, including the ATP Synthase 

F1 Subunit of which ATP5MD is a part. Moreover, several markers of mitochondrial biogenesis and 

translation, such as MRPS15, MRPS22 and TIMM9, were enriched. MRPS15, MRPS22, TIMM9 as 

well as several ATP Synthase F1 Subunit are upregulated in epithelial breast cancer cells compared 

to stroma adjacent to the tumor263. Significant enrichment of exactly the same signatures for high 

levels of ATP5MD, miR-1307-3p I0 (data not shown) and miR-1307-3p I1 (Figure 15D) suggest that 

miR-1307-3p and ATP5MD might be involved in similar cellular processes, which would justify the 

location of pre-miR-1307 within an ATP5MD intron.  

While the particular relevance of ATP5MD in cancer remains to be discovered, the relevance of 

the mitochondrial ATP synthase and OXPHOS has been studied extensively. In the past years, there 

has been a change in the notion that cancer cells would mainly rely on glycolysis over OXPHOS 

even in the presence of oxygen, the so-called Warburg effect. Now, more and more studies 

indicate that the decision between glycolysis and OXPHOS seems to be a rather delicate balance 

including mixed phenotypes264,265. Hybrid metabolic phenotypes have been shown for the two 

TNBC cell lines that I used, SUM-159 and MDA-MB-231264. Vacuolar ATP synthases, to which 

ATP5MD colocalized, acidify organelles like lysosomes or secreted vesicles266. Moreover, they are 

located within the plasma membrane of specific cell types like kidney cells, macrophages and 

osteoclasts for acidification of the urine, bone resorption and pH homeostasis, respectively267.  

Looking more at the role of ATPases in cancer than in their physiological context shows that several 

ATPases play a crucial role. Localization of vacuolar ATPase in the plasma membrane, for instance, 
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provides a higher tolerance of the cells towards extracellular acidity and, thus, renders tumor cells 

more aggressive and resistant to drugs268. Breast cancer cells with (high) abundance of vacuolar 

ATPase in the plasma membrane display a more migratory and invasive phenotype269,270. Both, the 

mitochondrial ATP synthase as well as the vacuolar ATPase were found in the cell membrane of 

MDA-MB-231271. The presence of ATPases like the mitochondrial ATP synthase in the plasma 

membrane (referred to as ecto-F-ATP synthase) of cancer cells expands the options in cancer 

therapy272–274. Targeting the ecto-F-ATP synthase with inhibitors affects not only the growth of 

endothelial cells275, but also reduces proliferation of several breast cancer and leukemia cell 

lines276–278. Moreover, Angiostatin represses tumor angiogenesis involving ecto-ATP synthase 

metabolism and antibodies targeting subunits of the ATP synthase mimic this effect279. Targeting 

ecto-ATP5B, a subunit of the F-ATP synthase in the plasma membrane, exerts a cytotoxic effect on 

MDA-MB-231 cells injected into mice, while normal cells remain unaffected280. 

Considering the relevance of various ATPases and their subunits in the aggressiveness of tumor 

cells, I assume that the migration phenotype and the possible angiogenesis phenotype mediated 

by miR-1307-3p I0 could result from direct targeting of various ATPase subunits. In fact, inhibition 

of the vacuolar ATPase blocks EMT in MDA-MB-231281. Even overexpression of individual subunits, 

such as ATP6L, modulates EMT markers and enhances migration and invasion of colorectal cancer 

cells282. How targeting of the individual ATPase subunits by miR-1307-3p I0 would affect the entire 

complex and its activity needs to be determined. ATPase abundance in the plasma membrane 

upon miR-1307-3p I0 overexpression could be determined with immunofluorescence and the 

migratory potential of breast cancer cells upon knock-down of individual subunits should be 

evaluated. 

miR-1307-3p I0-mediated targeting of ATPase subunits and genes involved in autophagy and UPR 

might form a negative feedback loop with ATP5MD, the host gene of pre-miR-1307 that is 

upregulated in tumor tissue. An initial test showed that miR-1307-3p I0 (and miR-1307-3p I1) 

overexpression does not repress the mRNA levels of ATP5MD (data not shown). This indicates that 

there is no negative feedback loop on this particular level, but possibly miR-1307-3p I0 

overexpression reduces abundance or activity of the mitochondrial ATP synthase by targeting 

ATP5E, ATP5F1, ATP5G1 and ATP5S (Figure 20C and D). Since the target predictions included 

subunits of other ATPases including the vacuolar ATPase as well, this suggests that miR-1307-3p 

I0 plays a crucial role in modulating mitochondrial and lysosomal ATPase activities and, thus, 

potentially maintains cellular stress response in balance. The answer to the question why a tumor-

suppressive microRNA is upregulated in cancer indeed might be found in the context of cellular 
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stress response since autophagy is tightly linked to degradation of cellular compounds in 

lysosomes upon cellular stress such as ROS or DNA damage283. High ROS levels fuel metabolic 

reprogramming and promote cancer cell growth, on the downside, however, excessive ROS 

induces DNA damage and can result in cell death284. Thus, fine-tuned mechanisms such as 

mitophagy, autophagy of mitochondria, are required to maintain this delicate balance. miR-1307-

3p I0 could play a crucial role in mediating this balance and since mitochondrial stress has been 

shown to promote invasion in breast cancer cells284 the tumor-suppressive effects that I observed 

in vitro upon miR-1307-3p I0 overexpression might be a side effect of the role that miR-1307-3p 

I0 has in balancing cellular stress response. 

 

5.2.5 Conclusion and outlook 

Along the line of this project, the divergent 5’isomiR pair miR-1307-3p I0 and miR-1307-3p I1 was 

selected to characterize the functional importance of 5’isomiRs. I could indeed show that the 

divergent 5’isomiRs miR-1307-3p I0 and miR-1307-3p I1 mediate different phenotypes: miR-1307-

3p I1 reduced proliferation in a cell line-dependent context. Nevertheless, this 5’isomiR pair shows 

how complex and context-dependent the role of microRNAs and their 5’isomiRs can be: miR-1307-

3p I0 and miR-1307-3p I1 share a subset of putative targets and both downregulate migration, 

miR-1307-3p I0 even in a cell line-dependent manner. Although the mechanism of the phenotypes 

mediated by miR-1307-3p I0 and miR-1307-3p I1 is not clear, I identified promising putative targets 

that could contribute to the observed phenotypes. Moreover, target predictions propose 

autophagy as a miR-1307-3p I0-specific phenotype. Overall, target predictions, MicroArray data 

and GSEA with patient data suggest that miR-1307-3p I0 modulates migration through alterations 

in cellular stress response pathways such as autophagy and UPR via repression of various ATPases 

and SLC7A5. Consequently, this might affect protein secretion and could also impact on migration 

and angiogenesis by targeting of LBH, for instance, which might explain the reduced tumor size 

upon pre-miR-1307 overexpression.  

The putative miR-1307-3p I1 target NCS1 and the miR-1307-3p I0 / miR-1307-3p I1 target LBH have 

been implicated in PI3K/AKT signaling. Interestingly, PI3K signaling plays a crucial role in 

autophagy285. The cell line-dependent impact of miR-1307-3p I0 and miR-1307-3p I1 might be 

connected to cell line-specific differences in target availability, pathway activities as well as 

mutation status such as the PIK3CA-activating mutation in SUM-159. Considering the multitude of 

autophagy- and UPR-related targets predicted for miR-1307-3p I0, the cell line-specific effects 
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might also result from differences in copying with cellular stress, which might involve the PI3K 

pathway in the context of autophagy.  

Future experiments should employ a systematic approach to profile the functional impact of miR-

1307-3p I0 or miR-1307-3p I1 and to obtain a more detailed understanding of their mechanistic 

differences. Based on the data gathered in this study, protein secretion of potentially migration-

/angiogenesis-promoting factors, autophagy and stress response seem to play an important role 

for the miR-1307-3p I0- and miR-1307-3p I1-mediated phenotypes. Secretome analysis and 

functional experiments with the cell culture supernatant upon miR-1307-3p I0 / miR-1307-3p I1 

overexpression could be the first step to validate predicted targets that might contribute to the 

observed phenotypes. Moreover, experiments investigating autophagy might identify a miR-1307-

3p I0-specific phenotype. Immunofluorescence of ATPases and autophagy-related targets could 

unravel the impact of miR-1307-3p I0 overexpression on lysosomal trafficking and protein 

secretion. In summary, gaining further insight into the phenotypic and mechanistic differences of 

miR-1307-3p I0 and miR-1307-3p I1 will add to the understanding of the miRNome and underline 

that it is crucial to distinguish between 5’isomiRs, for instance, in terms of diagnostic and 

prognostic purposes. 

 

Figure 22: Schematic overview illustrating the potential role of miR-1307-3p I0 and I1 in breast cancer. 

pre-miR-1307 is located within an intron of ATP5MD, a subunit of the mitochondrial ATP synthase, and gives 
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rise to the mature microRNAs miR-1307-3p I0 and miR-1307-3p I1. miR-1307-3p I0 and miR-1307-3p I1 are 

divergent 5’isomiRs that mediate different tumor-suppressive effects in vitro. miR-1307-3p I1, for instance, 

reduces proliferation of SUM-159. Both microRNAs have been shown to repress migration in a TNBC cell line-

dependent manner, which is in line with a depleted EMT gene set in Basal breast cancer patients (TCGA) with 

high miR-1307-3p I0 / miR-1307-3p I1 expression. Based on target predictions and preliminary MicroArray 

and TaqMan data, individual targets were identified as promising candidates that might explain the 

determined phenotypes. This includes SLC7A5 and several ATPase subunits targeted by miR-1307-3p I0 as 

well as NCS1, a miR-1307-3p I1 target that could contribute to the potentially PI3K-dependent proliferation 

phenotype in SUM-159 cells. Moreover, LBH is likely involved in the potential angiogenesis phenotype and 

might contribute to the migration phenotype, although it is not certain whether this target is a common 

target of the two 5’isomiRs or a miR-1307-3p I0-specific target. GSEA indicated significant enrichment of 

gene signatures related to OXPHOS, ROS and UPR for Basal breast cancer patients with high levels of the 

5’isomiRs. In combination with the multiple ATPase subunits and autophagy-/UPR-related genes potentially 

targeted by miR-1307-3p I0, this suggests that miR-1307-3p might play a crucial role in cellular stress 

response. Furthermore, ATPases have been linked to protein secretion, which could be associated with the 

secretion of migration-promoting and pro-angiogenic factors and would explain miR-1307-3p I0- and miR-

1307-3p I1-mediated repression of migration in response to reduced protein secretion and targeting of 

ATPase subunits. This notion is supported by depletion of gene sets related to angiogenesis and protein 

secretion in patients with high levels of the 5’isomiRs and might explain reduced tumor size upon pre-miR-

1307 overexpression in vivo. The illustration of the breast was obtained from https://smart.servier.com/.  
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6. SUPPLEMENTARY 

 

Figure S1: Comparison of the pre-microRNA selection before and after batch correction of the TCGA data. 

microRNA expression data from TCGA patients is strongly biased by batch effects. Comparing the selection 

of pre-microRNAs for the library based on TCGA data before and after batch correction with the R package 

‘ComBat’ revealed a strong impact of the bias. Pre-microRNAs that remained in the selection after correction 

of the batch effects are highlighted in grey. Blue and red indicate pre-microRNAs that are processed to 

microRNAs which reduce or promote chemoresistance according to literature, respectively. Asterisks mark 

microRNAs that were shown to modulate stemness. 
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Figure S2: Evaluation of various cancer phenotypes upon pre-miR-1307 overexpression in MDA-MB-231. 

MDA-MB-231 cells were retrovirally transduced with pre-miR-1307 or non-targeting pre-microRNAs under 

control of a Doxycycline-inducible promoter. 48 hours post seeding, apoptosis (n=2) and apoptosis after 

Staurosporine-induction (n=2) was evaluated by FACS after Propidium Iodide staining. Cell cycle phases after 

BrdU/7AAD staining (n=2) were determined by FACS 48 hours post seeding as well. The fraction of cells in S 

phase after EdU labeling (n=3) was detected by microscope 48 hours post seeding. Hoechst staining was used 

to stain all cells and calculate the cell fraction in S phase. Spheres >70 µM were counted by microscope after 

seven days of sphere formation (n=2). Resistance towards Paclitaxel and Epirubicin was evaluated after 72h. 

The cell number was determined by microscope after Hoechst staining. Drug response curves are displayed 

as fitted curve based on the mean of six technical replicates. Error bars represent the standard deviation of 

biological replicates unless indicated otherwise. Statistical significance was calculated with an unpaired two-

tailed student’s t-test.  
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Figure S3: miR-1307-3p I0 targets various genes involved in autophagy and UPR. A) A selection of 

autophagy- and UPR-related targets that were specifically predicted for miR-1307-3p I0 with the TargetScan 

algorithm. B) GSEA of Basal patients from TCGA ranked by their miR-1307-3p I0 or miR-1307-3p I1 expression 

was performed and revealed significant enrichment of a gene signature related to UPR. NES represents the 

normalized enrichment score indicating positive enrichment.  
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9. ABBREVIATIONS 

3’UTR   3’ untranslated region 

ABCC1   ATP Binding Cassette Subfamily C Member 1 

ABCC2   ATP Binding Cassette Subfamily C Member 2 

ACTB   Actin Beta 

AKT   AKT Serine/Threonine Kinase 

ALDH1A1  Aldehyde Dehydrogenase 1 Family Member A1 

ATP    Adenosine Triphosphate 

ATP5B   ATP Synthase F1 Subunit Beta 

ATP5G1   ATP Synthase Membrane Subunit C Locus 1 

ATP6V1C1  ATPase H+ Transporting V1 Subunit C1 

BRAF   B-Raf Proto-Oncogene, Serine/Threonine Kinase 

BRCA   Breast Cancer 

BRCA1   BRCA1 DNA Repair Associated 

CAT    Catalase  

ChIP   Chromatin Immunoprecipitation 

CDH1   Cadherin 1, E-cadherin  

CDH2   Cadherin 2, N-cadherin 

CDKN2A  Cyclin Dependent Kinase Inhibitor 2A 

cDNA   complementary DNA 

c-Kit   KIT Proto-Oncogene 

ddH2O   double-distilled water 

DGCR8   DGCR8 Microprocessor Complex Subunit 

DMSO    Dimethylsulfoxide 

DNA    Deoxyribonucleic Acid 

dNTPs   Deoxynucleosidtriphosphate 

Doxy   Doxycycline 

EDTA    Ethylenediaminetetraacetic Acid 

EGF    Epidermal Growth Factor 

EGFR   EGFR receptor 

ELF4   E74 Like ETS Transcription Factor 4 

EMT   Epithelial to Mesenchymal Transition 

ER   Endoplasmic Reticulum 
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FACS   Fluorescence-activated Cell Sorting 

FBL   Fibrillarin 

FC   fold change 

FGF    Fibroblast Growth Factor 

FGFR   FGF receptor 

FN1   Fibronectin 1 

GAPDH   Glyceraldehyde-3-Phosphate Dehydrogenase 

GFP   Green Fluorescent Protein 

GPX1   Glutathione Peroxidase 1  

HER2   Human Epidermal Growth Factor Receptor 2 

HPRT1    Hypoxanthine Phosphoribosyltransferase 1 

HRAS   HRas Proto-Oncogene, GTPase 

IL-8   C-X-C Motif Chemokine Ligand 8 

ITGA6   Integrin Subunit Alpha 6 

ITGB3    Integrin Subunit Beta 3 

kb   kilobase = 1,000 base pairs   

KLF4   Kruppel Like Factor 4 

KRAS    KRAS Proto-Oncogene, GTPase 

LAT1   L amino-acid transporter 1  

LumA   Luminal A 

LumB   Luminal B 

MMP   Matrix Metallopeptidase 

mRNA   messenger RNA 

MRPS15  Mitochondrial Ribosomal Protein S15 

MRPS22   Mitochondrial Ribosomal Protein S22 

MYC   MYC Proto-Oncogene 

NPM1    Nucleophosmin 1 

OCT4   POU Class 5 Homeobox 1 

PAM50   Prediction-Analysis-of-Microarray (based on 50 genes) 

PBS    Phosphate-buffered Saline 

PCR   Polymerase Chain Reaction 

PDCD11  Programmed Cell Death 11 

PDGF   Platelet-derived Growth Factor 

PDGFR   PDGF receptor 
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PIK3CA   Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha 

PTEN   Phosphatase And Tensin Homolog 

pre-microRNA  precursor microRNA 

PROM1  Prominin 1 

QC   quality control 

qRT-PCR  quantitative Real-Time PCR 

RB1   RB Transcriptional Corepressor 1 

RC3H2   Ring Finger And CCCH-Type Domains 2 

RelA   RELA Proto-Oncogene 

RNA    Ribonucleic Acid 

RT   Reverse Transcription  

RUNX3   RUNX Family Transcription Factor 3 

siRNA   small interfering RNA 

SLC7A5   Solute Carrier Family 7 Member 5 

SNAI1   Snail Family Transcriptional Repressor 1 

SNAI2   Snail Family Transcriptional Repressor 2 

SNORD61   Small Nucleolar RNA, C/D Box 61 

SNORD72   Small Nucleolar RNA, C/D Box 72 

SNORD95  Small Nucleolar RNA, C/D Box 95 

SOD2   Superoxid Dismutase 2  

SOX2   SRY-Box Transcription Factor 2 

STK40   Serine/Threonine Kinase 40 

TCGA   The Cancer Genome Atlas 

TIMM9   Translocase Of Inner Mitochondrial Membrane 9  

TOR1B   Torsin Family 1 Member B 

TP53   Tumor Protein P53 

TRBP   TARBP2 Subunit Of RISC Loading Complex 

UNC5B   Unc-5 Netrin Receptor B 

UPR   unfolded protein response 

VEGF-A   Vascular Endothelial Growth Factor A 

VEGFR-1  VEGF receptor 1 

VEGFR-2  VEGF receptor 2 

VIM   Vimentin 

VPS37C   VPS37C Subunit Of ESCRT-I 
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