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ABBREVIATIONS 

A1C   Primary auditory cortex 
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DSM-IV  Diagnostic and Statistical Manual of Mental Disorders IV edition 

EPI  Echo planar imaging 

eQTL  Expression quantitative trait loci 

ESTs   Expressed sequence tags 
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FDR  False Discovery Rate 
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GM  Grey matter 

GO  Gene Ontology 
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ICD10  International Classification of Diseases 10  

IPC  posterior inferior parietal cortex 

ITC   Inferior temporal cortex  

LCLs  Lymphoblastoid cell line 
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NHS   National Health Service 
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OPCRIT  Operational Criteria Checklist 
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PMI  Post-mortem interval 

PMS   Poly-methylation-signature 

PRS  Polygenic risk score 

QC  Quality control 

RDoC/RDC Research Domain Criteria 
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RELN  Reelin 
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1 INTRODUCTION 

1.1 Background 

Mental health is an essential component of human wellbeing, and has a profound impact on 

individual and civil society. With a prevalence of 22.1%, mental illness is one of the predominant 

global disease burdens (Charlson, van Ommeren et al. 2019). These debilitating conditions often have 

a young age-of-onset and long term impairments that lead to a substantial reduction in life-

expectancy. As a consequence, mental illnesses have an enormous socioeconomic cost that has been 

estimated to exceed 600 billion annually in the European Union alone (OECD and Union 2018). The 

clinical management of most mental illnesses is severely hampered by our lack of understanding the 

underlying biology, clinical tools for objective diagnosis and treatment selection, and personalized 

therapy for individual patients.  

Schizophrenia is a severe, highly heritable, mental health disorder with a  lifetime prevalence of 0.5-

1% (Saha, Chant et al. 2005, American Psychiatric Association 2013). Despite the massive clinical and 

socioeconomic burden, process in tackling this devastating illness has been painfully slow with few 

efficacious treatments and many unanswered questions. Moreover, the pharmaceutical industry has 

broadly withdrawn from the psychiatric field, due to a lack of suitable targets and difficulties in 

stratifying patients to address the low response rate in clinical studies. There is an urgent need to 

move biological research in schizophrenia towards clinical applications that facilitate more accurate 

early diagnostics for identifying at-risk subjects and novel pharmaceutical targets. 

1.1.1 Clinical features of schizophrenia 

Schizophrenia is characterized by a broad spectrum of symptoms that include hallucinations and 

delusions, reduced volition, and disorganized speech and behavior (Andreasen 1995). The typical age 

of onset is in adolescence or young adulthood (Messias, Chen et al. 2007) (Leung and Chue 2000, 

Messias, Chen et al. 2007) with meta analytical studies reporting that a higher prevalence in males 

who often experience earlier onsets and a more severe illness course (odds ratio = 1.4 (Aleman, Kahn 

et al. 2003, McGrath, Saha et al. 2008). The prognosis is moreover highly heterogeneous with many 

patients experiencing a poor outcome despite some recent advances in treatment (Häfner and an 

der Heiden 1997, Hafner 1998, Millan, Goodwin et al. 2015, Millan, Andrieux et al. 2016, Häfner 

2019).  

Currently, the diagnosis of schizophrenia is based on two major diagnostic systems: the Diagnostic 

and Statistical Manual of Mental Disorders (DSM-5) (Association 2013) and the International 

Classification of Diseases 10 (ICD-10) (Organization 1992). These systems have heuristic clinical value, 

high inter-rater reliability and are continuously updated. It is noteworthy that these diagnostic 

criteria are remarkably similar to the first classification of mental disorders by Emil Kraeplin in 1898. 

Indeed, the diagnosis of schizophrenia is still purely phenomenological and relies on clinical 

observation and psychological self-reports with limited consideration of biological measures. Given 

the heterogeneous presentation of schizophrenia, whose symptoms overlaps with several other 

mental disorders (Kirkpatrick, Buchanan et al. 2001, Buckley, Miller et al. 2009), there is concern 

about over reliance on categorical systems that do not index patients according to their underlying 

neurobiology.  
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This is particularly pertinent in light of evidence for biological similarities between several 

neuropsychiatric disorders which blur the line between diagnostically separate entities (McDonald, 

Bullmore et al. 2004, International Schizophrenia, Purcell et al. 2009, De Peri, Crescini et al. 2012, 

Consortium 2013, Li, Cai et al. 2016).  

In 2010 the National Institute of Mental Health responded to this unmet need by launching the 

Research Domain Criteria framework (RDoC) (Insel, Cuthbert et al. 2010). RDoC introduced a new 

nosology that uses multidimensional constructs that are guided by neuroscience and behavioral 

science instead of descriptive phenomenology. The RDoC framework is built around 

multidimensional constructs that are better aligned to the underlying neurobiology and can be 

readily assessed on the genetic, behavioral and neural functional level (Morris and Cuthbert 2012). 

However, the RDoC concept has thus far not been translated towards clinical application as further 

effort is needed to characterize the underlying molecular and neurobiological dimensions and turn 

the resulting insights into predictive algorithms for future clinical use.  

1.1.2 Genetic and environmental hypotheses of schizophrenia 

Despite substantial progress in the understanding of the biology underlying schizophrenia, the illness’ 

etiology remains elusive. Gaining a better understanding of complex genetic and environmental risk 

factors is thus considered a top priority (Tsuang 2000, van Os, Rutten et al. 2008). In the next section 

research  strategies for investigating genetic and environmental aspect of schizophrenia are 

discussed. 

 

Genetics 

Over the last few decades deep insights into the genetic basis of schizophrenia have been gained 

through genetic study of schizophrenia patients and their first and second degree relatives. These 

studies have shown schizophrenia is substantially aggregated in families, and that genetic factors 

play a significant role in its development (Aberg, Liu et al. 2013). One meta analyses of twin studies 

produced an estimated heritability of liability of 80% (Sullivan, Kendler et al. 2003). Despite the 

identification of high heritability, such epidemiological approaches, however, provide no direct 

insight into the specific genetic factors contributing to illness risk.  

The completion of the Human Genome Project in 2003 ushered in a new wave of genetic research in 

schizophrenia. This project, sought to map the entire human genetic code, identifying approximately 

22,300 protein-coding genes in the process. This maps of the human genome allowed use of the 

molecular biology technique to establish correlation ‘or linkage’ between proximally located genetic 

markers (which tend to be inherited together during meiosis). Although the linkage approach was 

first used to investigate simple Mendelian traits,  these studies have successfully identified a number 

of genes and chromosomal abnormalities associated with schizophrenia (Kendler and Diehl 1993) 

(Bassett, Chow et al. 2000). However, sample size limitations and the considerable genetic 

heterogeneity of schizophrenia have posed a problem, resulting in comparably low replicability of 

findings (Risch and Merikangas 1996).    

The next generation of research took a markedly different approach: In contrast to linkage analysis, 

which feature an unbiased exploration of potentially relevant genes across the entire genome, 

candidate gene  studies aimed to uncover risk associated genetic variants belonging to genes thought 

to be particularly relevance for the biology of schizophrenia. However, notwithstanding early 

successes, this approach was limited to the a priori selection of plausible genes where some 

information was already known, and did not take into account the complex gene-gene interactions 
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and regulatory elements so important for elucidating underlying causal mechanisms. These 

limitations impacted the biological reproducibility of findings and lead to a shift back towards 

hypothesis free approaches (Gejman, Sanders et al. 2011). However, despite some misgivings, 

candidate gene approaches have been very useful for estimating the plausibility of identified variant-

associations. For instance, the SzGene database resource summarizes findings on over 1,000 genes 

associated with schizophrenia (Allen, Bagade et al. 2008).  

Finally, considerable advances in our understanding of the genetic basis of schizophrenia have been 

gained through genome-wide association study (GWAS). GWAS are facilitated by simultaneous, chip-

based analysis of hundreds of thousands of common genetic variants. These studies have led to 

profound insight into the genetic architecture of schizophrenia. Findings from International consortia 

that have allowed pooling of data resources have been especially bountiful (Visscher, Wray et al. 

2017). These studies have identified more than 100 risk loci congruent with major hypotheses of 

neurobiological basis of schizophrenia, including genes related to dopamine signaling (DRD2), 

glutamatergic neurotransmission (GRM3, GRIN2A, and GRIA1), and voltage-gated calcium signaling 

(CACNA1C, CACNB2, and CACNA1I) (Schizophrenia Working Group of the Psychiatric Genomics 2014).  

Importantly, these large, well powered-studies provide support for the hypothesized polygenic 

nature of schizophrenia (International Schizophrenia, Purcell et al. 2009, Schizophrenia Working 

Group of the Psychiatric Genomics 2014). A summary of the last 10 years’ worth of psychiatric GWAS 

research is given in the ‘GWAS Catalog’ website (https://www.ebi.ac.uk/gwas/) (Horwitz, Lam et al. 

2019). One notable finding from these studies is the observation that many psychiatric disorders 

share common genetic risk loci that are with physical traits or somatic illness. For instance, 

schizophrenia-related GWAS signals have also been identified in studies exploring cholesterol and 

body mass index (Horwitz, Lam et al. 2019), and blood pressure (Andreassen, Djurovic et al. 2013). 

These findings may help to point to the importance of developing personalized medicine approaches 

in schizophrenia interventions.  

 

Environment 

Schizophrenia arises from the complex interplay of genetic predisposition and environmental risk 

factors. These environmental risk factors are categorized into early life, childhood and later life 

stages based on their assumed relevance for the etiology of schizophrenia (Dean and Murray 2005, 

Stilo, Di Forti et al. 2011). The boundary between these stages is, however, blurry and specific factors 

may impact on susceptibility across stages. Studies focusing on environmental risk during early life 

point to the contribution of factors such as obstetric complications, season of birth, maternal 

malnutrition and other stress factors. During childhood, maltreatment, trauma and other adversities 

increase susceptibility to schizophrenia. Relevant environmental risk factors during later life (i.e. 

adolescence and early adulthood) include stress, lifestyle, urbanicity, social adversity, traumatic life 

events, and substance abuse. These environmental risk factors can also be categorized according to 

their specific social, environmental, familial, neurodevelopmental, economic, and other contexts 

(Iyegbe, Campbell et al. 2014).  

 

Gene and environment interplay 

Individual genetic or environmental factors possesses insufficiently large effect sizes to account for a 

major portion of schizophrenia risk. Therefore the study of gene-environment interactions, which  

may explain this so-called ‘missing heritability,’ have therefore received widespread attention 

(Manolio, Collins et al. 2009). By definition, a gene-environment interaction (G x E) is "a different 

effect of environmental exposure on disease risk in persons with different genotypes," or "a different 

https://www.ebi.ac.uk/gwas/
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effect of a genotype on disease risk in persons with different environmental exposures." (Ottman 

1996). Indeed, a meta-analysis of 12 twin studies has strengthened the view that nature and nurture 

are both highly relevant in the development of schizophrenia (Sullivan, Kendler et al. 2003). The 

diverse G x E studies have been systematically reviewed by (Duncan and Keller 2011, Modinos, 

Iyegbe et al. 2013, Iyegbe, Campbell et al. 2014). Findings of these studies are, however, rarely been 

replicated in independent samples due to insufficient sample size and methodological heterogeneity. 

Furthermore, most of the conducted studies have focused on  candidate genes. This knowledge gap 

on genome level effects was first addressed by Børglum  et al (Børglum, Demontis et al. 2013),  found 

the CTNNA3 gene may interact with maternal cytomegalovirus infection, reiterating the importance 

of environmental risk factors in genetic studies of schizophrenia. One way of overcoming some of the 

challenges of G x E studies is the use of integrated, large-scale investigations that combine different 

paradigms and considering the illnesses biological architecture (Modinos, Iyegbe et al. 2013, 

European Network of National Networks studying Gene-Environment Interactions in Schizophrenia, 

van Os et al. 2014, Iyegbe, Campbell et al. 2014). In particular, the strategies adopting polygenic risk 

score in conjunction with well documented environmental factors could help to enhance 

personalized genetic risk stratification  and ensure early detection of high-risk profiles. 

 

1.1.3 Current progress on personalized medicine  

The personalized medicine approach describes the tailoring of medical treatment and health care 

towards a given patient depending on their specific clinical and/or biological characteristics (Schork 

2015). Advances in personalized medicine have been made in many other diseases including cancers 

(Kakimi, Karasaki et al. 2017, Krzyszczyk, Acevedo et al. 2018), HIV (Lengauer, Pfeifer et al. 2014, Mu, 

Kodidela et al. 2018), and cardiovascular disease (Dainis and Ashley 2018, Leopold and Loscalzo 

2018). The psychiatric field has been slow to implement personalized medicine, but it is starting to 

become more commonplace (Dalvie, Koen et al. 2016, Gandal, Leppa et al. 2016). Personalized 

medicine approaches in schizophrenia center on diagnostic and predictive biomarkers, including 

genetic variants (Schizophrenia Working Group of the Psychiatric Genomics 2014, Pardiñas, Holmans 

et al. 2018), omics (Schwarz, Guest et al. 2012, Montano, Taub et al. 2016, Gandal, Zhang et al. 2018) 

neuroanatomical factors (van Erp, Hibar et al. 2016, Van Erp, Walton et al. 2018), and drug discovery 

research (Xu and Wang 2015). One representative example is a genetic study that identified 108 risk 

loci using up to 36,989 schizophrenia cases and 113,075 controls. A polygenic risk score calculated for 

each subject can be used to quantify the individual risk, albeit with a limited prediction accuracy. 

Furthermore, statistical and machine learning models for personalized predictions in schizophrenia 

are being continuously developed (as reviewed by (Chen and Schwarz 2017, Bzdok and Meyer-

Lindenberg 2018)). However, despite the development of high-throughput large-scale screening and 

computational methodologies, personalized medicine for schizophrenia is still in its infancy. It has 

been broadly recognized, however, that personalized medicine approaches are rooted in an 

improved understanding of  schizophrenias underlying biology, and are critical for improved clinical 

management of the illness (DeLisi and Fleischhacker 2016, Buckley and Miller 2017, Zhang, Mao et al. 

2018). 
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1.2 Omics 

Increasing interest in systems-wide exploration of schizophrenia is evidenced by a recent wave of 

studies and funding opportunities. The omics field allows researchers to investigate subtle molecular 

changes within cells or tissues in a holistic manner, enabling researchers to study a complex 

molecular system as a whole. Omics technologies have shown substantial utility in uncovering 

biological factors likely involved in the etiology of schizophrenia across multiple levels of biological 

organization. This thesis focuses on the application of three omics approaches: genomics, 

transcriptomics, and epigenomics, as detailed below. 

1.2.1 Genomics 

Genomics is the comprehensive study of a given organism’s genetic sequence. The genome is defined 

as the complete set of DNA inside a given cell, with the human genome containing tens of thousands 

of genes organized into 23 pairs of chromosomes. There are two primary goals of genomics: 1) to 

sequence and analyze the structure and function of the genome with the help of DNA sequencing 

technologies and bioinformatics methods, and 2) to characterize and quantify all genes of a 

particular organism and the interplay of these genes with each other and with the environment. In 

comparison to genetics, which describes the study of heredity, genetic variation, and individual genes 

(Organization 2002), genomics is the study all genes and their interactions. Genomic approaches 

have thus particular utility for the exploration of biologically complex psychiatric disorders such as 

schizophrenia, which are hallmarked by substantial polygenicity and epistasis. 

Genomic research in psychiatry has been mainly driven by a fluffy of GWAS that identified a number 

of reproducible risk loci from millions of genomic variants (Schizophrenia Working Group of the 

Psychiatric Genomics 2014, Wray, Ripke et al. 2018, Stahl, Breen et al. 2019). In contrast to 

Mendelian disorders where the mutational patterns are predictable, the majority of psychiatric 

disorders are polygenic or multi-factorial (O'Donovan 2015). Moreover, the presence of pleiotropic 

effects in psychiatry has been observed for common (O'donovan, Craddock et al. 2008, Purcell, Wray 

et al. 2009, Lee, Ripke et al. 2013) and rare genetic variants (Malhotra and Sebat 2012, Kirov, Rees et 

al. 2014, Schizophrenia Working Group of the Psychiatric Genomics 2014), which suggested the need 

of new approaches for psychiatric diagnostic delineation (Owen 2014, O'Donovan 2015). Moreover, 

the genetic correlation between schizophrenia, bipolar and major depressive disorder has been 

shown to converge upon genes implicated in biological processes involving histone methylation, and 

immune and neuronal pathways (Network, O'Dushlaine et al. 2015). As individual common variants 

mostly have small effect sizes, a fundamental question is whether the aggregation of variants can 

explain a larger portion of the heritable variance. The predominant approach for performing this 

integration is to sum up effect size weighted allele counts across variants, yielding a poly-genic risk 

score (PRS) (International Schizophrenia, Purcell et al. 2009, Schizophrenia Working Group of the 

Psychiatric Genomics 2014). When determined from large-scale GWAS data, PRS have been shown to 

explain up to  18% of schizophrenia-associated variance. It is notable that the comparatively simple 

PRS have also been shown to outperform more complex machine learning algorithms, such as kernel 

support vector machines (Vivian-Griffiths, Baker et al. 2019) and are still considered the best 

aggregate measure of genetic risk for common genetic variants. While the increasing predictive value 

of PRS scores highlights their potential diagnostic utility (Torkamani, Wineinger et al. 2018), larger 

genetic samples and more studies are  required before schizophrenia PRS can be translated into 

clinical application.  
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A major advance made by the psychiatric research community is the increasing public availability of 

data and summary statistics that can be used for calculating PRS for genotyped samples from large-

scale GWAS analyses. For example, the association-analysis results from thousands of phenotypes 

(diseases and traits)  have been produced by UK Biobank’s rapid GWAS program 

(http://www.nealelab.is/uk-biobank/). Remarkably, many identified schizophrenia-linked GWAS 

signals have been found to be located in non-coding regions that encompass regulatory elements 

(Ripke, O'Dushlaine et al. 2013, Schizophrenia Working Group of the Psychiatric Genomics 2014). 

These findings imply a possible role for gene regulation in the pathophysiology of schizophrenia. 

While the functional impact of most schizophrenia risk loci still remains elusive, a number of large-

scale studies (Fromer, Roussos et al. 2016, Gusev, Mancuso et al. 2018, Jaffe, Straub et al. 2018) 

provide evidence that these chromosomal regions are associated with perturbations in gene 

expression and highlighted the utility of gene expression profiling for providing more mechanistic 

interpretations of genetic liability for schizophrenia. 

1.2.2 Transcriptomics   

Transcriptomics describes the study of the complete set of RNA transcripts that are generated in a 

specific cell or a population of cells at a one time. The first human transcriptomics study was 

conducted in 1991 (Adams, Kelley et al. 1991) and facilitated the discovery of new genes, as well as 

the functional tagging of genomic elements. There are two main procedures to quantify whole-

genome RNA transcripts: Microarrays and RNA-Sequencing (RNA-Seq) (Lowe, Shirley et al. 2017). 

Microarrays determine the abundance of pre-selected transcripts through nucleic acid hybridization 

of transcripts to an ordered array of complementary nucleotide probes. Microarrays allow large 

numbers of transcripts to be measured at the same time, facilitating the generation of 

transcriptome-wide gene expression data. In RNA-Seq, individual transcripts or expressed sequence 

tags (ESTs) are sequenced across the genome, and abundance is determined from the number of 

counts of each transcript. RNA-Seq offers an advantage over microarrays due to its ability to detect 

alternatively spliced, non-coding, and novel transcripts. Moreover, RNA-Seq has higher accuracy and 

more reproducibility compared to  than microarray-based gene expression analysis (Wang, Gerstein 

et al. 2009, Martin, Dehler et al. 2016). On the other hand, due to more mature experimental 

protocols and affordable cost, microarrays are still widely used in the psychiatric field. 

Transcriptome profiling has a wide range of applications which include, the identification of 

differentially expressed genes in a given patient cohort (Sanders, Drigalenko et al. 2017, Wu, 

Bendriem et al. 2017), interrogation of co-expressed genes (Pacifico and Davis 2017, van Dam, Vosa 

et al. 2018), and exploration of regulatory processes important for development (Kang, Kawasawa et 

al. 2011, Shi, Zhang et al. 2016, Semick, Collado-Torres et al. 2018). The investigation of differentially 

expressed transcripts in schizophrenia has been the focus of numerous studies. For instance, 

exploration of abnormal gene regulation has been performed in whole blood (de Jong, Boks et al. 

2012), lymphoblastoid cell line (LCLs) (Sanders, Goring et al. 2013, Sanders, Drigalenko et al. 2017, 

Duan, Goring et al. 2018) post-mortem brain tissue (Roussos, Katsel et al. 2012, Fillman, Cloonan et 

al. 2013, Fromer, Roussos et al. 2016, Ramaker, Bowling et al. 2017), and human-induced pluripotent 

stem cell (hiPSC) (Maschietto, Tahira et al. 2015, Roussos, Guennewig et al. 2016, Hoffman, Hartley 

et al. 2017). Despite substantial inconsistencies in findings (particularly in regard to the most 

differentially expressed genes) some replicable themes have emerged. These are immune system-

related dysregulation  (Fillman, Cloonan et al. 2013, Gardiner, Cairns et al. 2013, Mistry, Gillis et al. 

2013, Sanders, Goring et al. 2013, Bergon, Belzeaux et al. 2015, Hess, Tylee et al. 2016, Sanders, 
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Drigalenko et al. 2017, Duan, Goring et al. 2018, Kos, Duan et al. 2018, Leirer, Iyegbe et al. 2019), 

neural or synaptic function (Mistry, Gillis et al. 2013, Sanders, Goring et al. 2013, Fromer, Roussos et 

al. 2016, Ramaker, Bowling et al. 2017, Sanders, Drigalenko et al. 2017, Duan, Goring et al. 2018, 

Gusev, Mancuso et al. 2018, Jaffe, Straub et al. 2018, Kos, Duan et al. 2018, Pergola, Di Carlo et al. 

2019), and oxidative stress and mitochondrial dysfunction (Torkamani, Dean et al. 2010, Maschietto, 

Tahira et al. 2015, Kos, Duan et al. 2018, Leirer, Iyegbe et al. 2019). Consequently, it has been argued 

that schizophrenia may result from alterations across numerous molecular pathways rather than 

from impairment in a single biological process (Horváth and Mirnics 2015), which is also in line with 

GWAS findings (Network, O'Dushlaine et al. 2015). Lastly, sex-specific gene expression profiling  has 

suggested the possibility of distinct molecular mechanism in males and females (Qin, Liu et al. 2016, 

Tiihonen, Koskuvi et al. 2019). 

Microarray-based expression profiling initially focused on the analysis of postmortem brain tissue, 

and later peripheral samples. Despite the relevance of brain tissue for the investigation of psychiatric 

illness, its analysis is limited by sample size constraints, sample preparation issues and the impact of 

postmortem effects on downstream analysis. In contrast, peripheral samples are more readily 

available and the data is thought to be less heterogeneous as it captures only effects which have a 

systemic manifestation in schizophrenia.  

1.2.3 Epigenomics   

Epigenomics describes an the use of omics profiling to study all possible biochemical modifications of 

DNA inside a cell or a population of cells. Epigenetic changes contribute significantly to the regulation 

of gene expression and activity (Jaenisch and Bird 2003, Gibney and Nolan 2010). Epigenetic 

modifications can be inherited through mitosis and meiosis without involving the alteration of the 

genomic sequence. There are three major types of epigenetic modifications: DNA methylation, 

histone modification, and non-coding RNA interference. In contrast to genetic effects, a notable 

property of epigenetic modifications is their reversibility (Ramchandani, Bhattacharya et al. 1999, Jia, 

Fu et al. 2013, Wu and Zhang 2014) meaning that epigenetic alterations have a significant role in 

regulating  genome function during development through non-mutagenic mechanisms. Of note, it 

allows the engineering of targeted molecular changes and provides the potential for therapeutic 

development (Kelly, De Carvalho et al. 2010).  

DNA methylation describes the addition of a methyl group to DNA with the aid of a family of 

enzymes termed DNA methyltransferases. DNA methylation is one of the best-characterized 

epigenetic mechanisms. The methylome refers to the complete set of DNA methylation events in the 

genome as determined by whole-genome DNA methylation analysis. The first high-resolution DNA 

methylome was reported for the flowering plant Arabidopsis (Zhang, Yazaki et al. 2006) and the first 

human methylome studies were carried out in human embryonic stem cell (hESC) (Lister, Pelizzola et 

al. 2009, Laurent, Wong et al. 2010).    

While the epigenetic landscape of schizophrenia has only been studied only in recent years, 

numerous DNA methylation differences have already been identified (Nishioka, Bundo et al. 2012, 

Pries, Gülöksüz et al. 2017). Analogous to GWAS, unbiased, hypothesis-free DNA methylome profiling 

(also termed Epigenome-Wide Association Study (EWAS)) has been employed to investigate aberrant 

DNA methylation in schizophrenia in blood (Aberg, McClay et al. 2012, Nishioka, Bundo et al. 2013, 

Aberg, McClay et al. 2014, Hannon, Dempster et al. 2016, Montano, Taub et al. 2016), brain (Pidsley, 

Viana et al. 2014, Jaffe, Gao et al. 2016) and saliva (Lin, Chen et al. 2018, Braun, Han et al. 2019). The 

resulting epigenetic signals were compared in terms of CpGs, genes, differentially methylated 
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regions, and biological pathways. While these studies have identified up to thousands of 

schizophrenia-associated differentially methylated CpGs, reproducibility of the illness-relevant CpGs 

across studies has been poor. This is likely due to tissue specificity, as well as methodological and 

disease-related heterogeneity. Nevertheless, more than ten genes with differentially methylated 

sites have been replicated in at least four independent studies (as reviewed by Pries and colleagues 

(Pries, Gülöksüz et al. 2017)). Some of the genes were consistent with those obtained from candidate 

gene methylation profiling including COMT (Murphy, O'Reilly et al. 2005, Nishioka, Bundo et al. 2013, 

Chen, Zhang et al. 2014, Wockner, Noble et al. 2014), RELN (Grayson, Jia et al. 2005, Aberg, McClay et 

al. 2012, Aberg, McClay et al. 2014, Fikri, Norlelawati et al. 2017) and BDNF (Kordi-Tamandani, 

Sahranavard et al. 2012). Although DNA methylation is cell type-specific (Ziller, Gu et al. 2013, Titus, 

Gallimore et al. 2017), there is a degree of overlap between blood, saliva, and brain tissue (Smith, 

Kilaru et al. 2015, Walton, Hass et al. 2016). This facilitates use of the more readily accessible blood 

or saliva samples for exploration of DNA methylation effects with brain-functional relevance for 

schizophrenia.  

Pathway and gene ontology analyses have also highlight some convergent biological processes 

relevant to schizophrenia. Consistent with findings from genomic and transcriptomic data, these are 

primarily immune-related (Liu, Chen et al. 2013, Aberg, McClay et al. 2014, Hannon, Dempster et al. 

2016), neurodevelopmental, or related to synaptic functioning (Mill, Tang et al. 2008, Dempster, 

Pidsley et al. 2011, Aberg, McClay et al. 2014, Pidsley, Viana et al. 2014, Hannon, Dempster et al. 

2016). Importantly, the hypothesized neurodevelopmental component of schizophrenia can be 

probed by mapping DNA methylation changes across brain development and for schizophrenia-

associated GWAS loci (Hannon, Spiers et al. 2015, Jaffe, Gao et al. 2016). 

A present, there have been few attempts to build machine learning models for classification of 

schizophrenia from genome-wide DNA methylation data. Two of these (Richfield, Alam et al. 2016, 

Alam, Lin et al. 2018) which used kernel based machine learning models in conjunction with blood-

based DNA methylation and fMRI data for approximately 200 genotyped subjects (92 schizophrenia 

patients and 116 controls, and 79 patients and 104 controls, respectively), have produced good 

prediction accuracy. However, the models were built without appropriate confounder adjustment 

making the final outcome challenging to interpret. Another recent study (Moghadam, Etemadikhah 

et al. 2019) analyzed post-mortem bulk frontal cortex tissue from 73 schizophrenia cases and 52 

controls to build a machine learning classifier that identified methylation patterns that differentiated 

cases from controls. The classifier was trained using Monte Carlo feature selection and ROSSETA rule-

based modeling consisting of a set of minimal IF-THEN rules. However, no significant patterns were 

identified with these models. Nevertheless, the authors highlighted strategies for improved 

classification, such as use of single-cell methylation data and whole-genome bisulfite re-sequencing 

technologies. We have also developed a machine learning framework termed BioMM (Chen and 

Schwarz 2019) (see also Figure 3) for schizophrenia case-control status classification using genome-

wide DNA methylation data from two independent cohorts (in total 767 cases and 755 controls). The 

prediction accuracy of our model was shown to outperform five conventional machine learning 

models. However, similar to other peripheral studies, brain-functional insight was not gained due to 

exclusive focus on peripheral DNA methylation differences. The lack of meaningful biological 

interpretation and clinically sufficient accuracy in the existing studies has highlighted the need for 

more explainable machine learning models that integrate large-scale datasets (Roscher, Bohn et al. 

2019). 
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1.3 Systems Biology 

On a biological level,  schizophrenia is hallmarked by small, illness-associated changes that can be 

observed across many different data modalities. Therefore, and a systems-wide, integrative 

approach is essential for characterizing the illnesses biology. A core focus of this thesis is use of 

systems level biological knowledge in combination with data science to identify putative biomarker 

candidates for schizophrenia. This section describes the application of pathway analysis and the 

analysis of developmental specificity for the systems-biological exploration of high-dimensional 

omics resources.  

1.3.1 Pathway analysis   

A biological pathway refers to set of linked molecular events in a cell or a tissue that lead to 

alteration of a particular phenotype. The genes that encode the proteins involved in these events can 

be grouped into different sets and analyzed together to identify important biological aspects of a 

dataset. Pathway approaches can be particularly helpful in casting light on hidden trends in high-

throughput omics data. Over the last two decades a number of pathway resources have been 

developed with the view of increasing the explanatory power of omics studies (Khatri, Sirota et al. 

2012, Garcia-Campos, Espinal-Enriquez et al. 2015). The existing methods are broadly classified into 

three classes: over-representation analysis, (Capper, Jones et al.)(Capper, Jones et al.)(Capper, Jones 

et al.)(Capper, Jones et al.)(Capper, Jones et al.)(Capper, Jones et al.)(Capper, Jones et al.)(Capper, 

Jones et al.)(Capper, Jones et al.)(Capper, Jones et al.)(Capper, Jones et al.)(Capper, Jones et 

al.)functional class scoring, and pathway topological analysis. All these methods aim to identify a list 

of pathways significantly associated with a given outcome or disease state. In addition to commercial 

pathway analysis resources such as Ingenuity Pathways Analysis 

(https://www.qiagenbioinformatics.com/), there are many public repositories are available for the 

research community (Bauer‐Mehren 2009, Garcia-Campos, Espinal-Enriquez et al. 2015). Of 

particular note is the Gene Ontology (GO; http://geneontology.org/), which is  the world largest 

resource concerning the functions of genes (Ashburner, Ball et al. 2000, 

The Gene Ontology Consortium 2018). The GO is organized into a tree like structure with three major 

branches (or ontologies). These ‘biological process’, ‘molecular function’ and ‘cellular component’ 

ontologies recursively categorize a given set of genes based on bimolecular functions and cellular 

location. The GO knowledgebase can be used to investigate gene functions  via an enrichment 

analysis. 

Pathway analysis has been extensively applied to explore various complex diseases (Jin, Zuo et al. 

2014). Convergent pathways have been identified across schizophrenia, depression and bipolar 

disorder using five different pathway enrichment analyses of GWAS data from more than 60,000 

adult subjects (Network and Pathway Analysis Subgroup of Psychiatric Genomics 2015). These 

pathways indicate a shared importance for genes linked to immune, neuronal and histone 

methylation processes in these disorders. This finding suggested that pathway analysis is biologically 

informative when integrating association signals therefore providing value insight into disease-

relevant etiological mechanisms. 

 

https://www.qiagenbioinformatics.com/
http://geneontology.org/
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1.3.2 Developmental specificity 

The influential neurodevelopmental hypothesis of schizophrenia dates back to the 1980s 

(Weinberger 1987) and is supported by mounting evidence (Fatemi and Folsom 2009, Andreasen 

2010, Rapoport, Giedd et al. 2012). The neurodevelopmental hypothesis posits that neurological 

insults which occur many years before an illness onset can lead to developmental trajectories which 

sensitize the brain to certain risk factors. These risk factors may, in turn, affect neurodevelopmental 

processes to the point that the overt symptoms of schizophrenia emergence during adolescence or 

early adulthood. The hypothesis of an early risk-associated developmental processes having a 

delayed influence on later-developing brain functions particularly in cortical regions has been 

supported by various studies employing animal models of the disorder (Saunders, Kolachana et al. 

1998, Lipska and Weinberger 2000, Floresco, Geyer et al. 2005, Fung, Webster et al. 2010, Marco, 

Macri et al. 2011).   

The availability of post-mortem brain tissue-derived transcriptomics data, which covers multiple 

developmental stages and brain regions (Colantuoni, Lipska et al. 2011, Kang, Kawasawa et al. 2011, 

Hawrylycz, Lein et al. 2012, Miller, Ding et al. 2014) has afforded new opportunities to study 

schizophrenia-associated developmental trajectories. Despite the complexity of human brain 

development it has been shown the human brains transcriptome has a highly reproducible 

organization (Oldham, Konopka et al. 2008, Hawrylycz, Lein et al. 2012). The developmental 

characterization of schizophrenia risk has mainly investigated by mapping schizophrenia 

susceptibility genes onto developmental networks. For example, trajectories of gene expression 

profiles enriched for SNPs associated for schizophrenia are associated with schizophrenia-relevant 

developmental stages (Clifton, Hannon et al. 2019). Furthermore, relatively higher gene expression 

during the early mid-fetal period and early infancy are correlated with schizophrenia genetic risk. In 

contrast, the expression during late childhood showed a negative correlation with genetic risk and 

then remained steady during adolescence. In addition, a similar gene expression pattern associated 

with schizophrenia in these two critical periods was more pronounced in the prefrontal cortex than 

in non-prefrontal and subcortical regions at any developmental stage. Another study (Huckins, 

Dobbyn et al. 2019) integrated GWAS data with and postmortem brain eQTL information to identify 

schizophrenia risk genes. These genes were then mapped onto developmental transcriptomic data 

obtained from the BrainSpan database (Miller, Ding et al. 2014). The identified risk genes were 

predominantly co-expressed during the early prenatal and postnatal stages. However, the identified 

brain region with significant co-expression does not have good evidence linking to schizophrenia. In 

addition to studies involving common genetic variants, studies have been conducted that focus on 

the 108 risk-associated loci (Birnbaum, Jaffe et al. 2015, Jaffe, Straub et al. 2018), genes harboring de 

novo mutations in schizophrenia (Xu, Ionita-Laza et al. 2012, Gulsuner, Walsh et al. 2013), and a 

combination of schizophrenia-related genetic variants (Gilman, Chang et al. 2012). These mappings 

on the developmental trajectory are predominantly linked to early fetal life through transcriptomic 

profiling. Lastly, temporal gene expression profiling revealed that schizophrenia risk gene expression 

patterns during prenatal neurodevelopmental period largely did not overlap with those for bipolar 

disorder (Clifton, Hannon et al. 2019). While there is substantial genetic overlap between these 

disorders, this is in line with the lower neurodevelopmental impairment seen in bipolar disorder 

(Owen and O'Donovan 2017). Overall, the analysis of developmental specificity is beneficial process 

that may permit a new, more systematic characterization of illness risk.  
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1.4 Machine learning 

1.4.1 Machine learning models 

Over the last few years massive amounts of molecular data have been made available to the 

biomedical research community. To handle this data, contemporary artificial intelligent (AI) 

techniques have been adopted to assess the probability of being affected by specific diseases. In 

conjunction with medical expert opinion, these techniques have enhanced clinical diagnosis and 

decision-making performance (Yu, Beam et al. 2018). Jiang and colleagues, (Jiang, Jiang et al. 2017) 

who surveyed the current status of AI applications for medical diagnostics reported that a large part 

of the AI literature focuses on diagnostic imaging, genetic testing and electro-diagnosis. The 

attention primarily concentrated on three disease areas: cancer, neurology, and cardiology. Due to 

the increasing availability of large-scale omics data, there has also been substantial adoption of AI 

applications in psychiatry (Bzdok and Meyer-Lindenberg 2018). These application aim to integrate 

frequently small biological alterations into classifiers with high predictive value for diagnostic or 

therapeutic applications. 

Machine learning, a sub-field of AI, aims to teach a model to identify patterns, by employing a 

specific input/output paradigm based on the learned model. Generally speaking machine learning 

models typically fall into one of two classes: supervised and unsupervised learning. Supervised 

learning aims to identify a combination of variables (i.e. predictors) that can optimally predict an 

outcome (e.g. diagnostic status), which needs to be specified in advance. It is then possible to 

quantify how accurately the model can perform this prediction when applied to unseen data not 

used for model training. In contrast, unsupervised learning does not require the prior specification of 

an outcome, instead aiming to learn structural properties of the data from the available variables 

only. The most prominent application of unsupervised learning is clustering, i.e. the identification of 

observations that show more similar patterns of variable values compared to observations that are 

part of a different cluster. In contrast to supervised learning, it is more challenging to evaluate the 

performance of these models due to a lack of ‘ground truth’. Furthermore, clustering approaches 

always yield a certain clustering solution, which may not be biologically meaningful and has resulted 

in clustering approaches being frequently considered ‘hypothesis-generating’. Ideally, clustering 

solutions should be evaluated in regard to their association with independent variables, such as 

clinical course or treatment response. This section describes three frequently used supervised 

machine learning models that are applied in this work. 

 

Generalized Linear model. A general linear model is a simple model that forms a linear combination 

of variables to predict the dependent variable. The generalized linear model (GLM) is an extension to 

non-linear forms. Some examples of well-known GLMs are summarized in Table 1 (Nelder and 

Wedderburn 1972). For GLMs, the probability distribution of the response variable is allowed to be 

non-Gaussian which would not be appropriate in a general linear models. For example, when 

modeling a categorical or multinomial distribution for the dependent variable, a logistic regression 

model can be a good choice (a graphical presentation of logistic regression is shown in Figure 1A).  

The objective of logistic regression is to establish the relationship between a binary (in the case of 

two classes) dependent variable and one or more input variables. 
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Table 1. Popular GLM models  

Model Random Link Systematic 

Linear Regression Normal Identity Continuous 

ANOVA Normal Identity Categorical 

ANCOVA Normal Identity Mixed 

Logistic Regression Binomial Logit Mixed 

Loglinear Poisson Log Categorical 

Poisson Poisson Log Mixed 

Multinomial  Multinomial Generalized Logit Mixed 

 

Support Vector Machines. The Support Vector Machine (SVM) identifies a hyperplane separating 

observations into different classes (Cortes and Vapnik 1995). This is represented by single line for 

two-dimensional data, a plane for three-dimensional data, and a hyperplane for data with more than 

three dimensions. The distance between this hyperplane and its nearest observations is maximized, 

leading to a classification ‘margin’. In the frequent scenario where classes are not linearly separable, 

a cost-parameter is optimized to penalize observations falling on the wrong side of the hyperplane. A 

graphical depiction of SVM is provided in Figure 1B. A comprehensive review of the application of 

SVM in the detection of imaging biomarkers in neurological and psychiatric disorders can be found 

elsewhere (Orru, Pettersson-Yeo et al. 2012). 

 
Figure 1 A.) Logistic regression; B.) Support vector machine. 
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Figure 2. Random forest. 

 

Random Forest. The Random Forest algorithm is an ensemble learning method that combines a set 

of weak learners to reduce the overall variance (Breiman 2001). Here each weak learner is a decision 

tree. A random forest comprises a number of random decision trees with two kinds of built in 

randomness. First each tree is built on a random input sample of the training data. Second, at each 

node of the tree, a subset of features are selected at random to yield the best split (Figure 2). In the 

classification setting, the prediction result is determined by the majority vote cast from a committee 

of trees and the averaged predicted result from bootstrapping predictions is used for regression. A 

particular advantage of the random forest is its intrinsic ranking of important predictors. There are 

two popular types of importance scores provided for each feature: accuracy-based importance and 

Gini-based importance. The accuracy-based measure is determined from the decrease in accuracy 

when a given feature is permuted while the Gini-based importance is accessed by the reduction of 

Gini impurity when the feature is selected for a  split at a given node. 

1.4.2 The curse of dimensionality and dimensionality reduction   

The analysis of high-throughput omics data is challenging due to the problem of ‘large p, small n’, 

meaning that the number of variables greatly exceeds that of the observations. This can often result 

in a phenomenon termed “curse of dimensionality” when machine learning models operate on data 

in high-dimensional spaces. In this situation, the dimensionality rapidly increases with the addition of 

input variables with the volume of the space increasing so quickly that the data becomes sparse. Due 

to this sparsity, it is highly difficult to evaluate statistical significance or find a decision boundary for 

any learning methods. Consequently, machine learning models then tend to capture effects that are 

overly specific for a given dataset, and lack of reliability and generalizability, leading to so-called 

‘overfitting’.  A commonly applied strategy to address this issue is the reduction of data 

dimensionality, which also aids the visualization and interpretation of high-dimensional omics 

datasets. Data dimensionality reduction techniques applied in this thesis fall into two broad 

categories: 1) feature selection and II) feature extraction or engineering.  

Feature selection aims to identify useful features directly from a given dataset, while feature 

extraction describes the process of extracting or generating new features from the dataset via 

feature transformation or mapping to reduce dimensionality. Three commonly used feature selection 
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techniques used in the context of classification are filters, wrappers and embedded or hybrid 

methods, which are comprehensively reviewed elsewhere (Saeys, Inza et al. 2007). In the case of 

feature extraction, there are two general approaches: linear and nonlinear feature extraction. 

Principal Component Analysis is the most well-known linear feature extraction method and works by 

projecting the original data into a lower-dimensional feature space such that the variance of the data 

in this set of features is maximized. Non-linear dimension reduction methods are based on manifold 

learning in which the high dimensionality of the data may relate to redundant information or noise. 

Here, relevant information can be condensed into lower dimension manifolds which can be 

especially useful when the data contains nonlinear dependencies. Some popular methods regarding 

the nonlinear dimensionality reduction were systematically discussed by (Van Der Maaten, Postma et 

al. 2009).  

 
Figure 3. The basic architecture of BioMM. From left to right: the input layer consists of genome-

wide CpGs; The stage-1 layer comprises individual CpGs mapped into their corresponding pathways 

by means of the pathway database; The stage-2 layer contains the pathway level features created 

using machine learning; the output layer contains the predicted outcome, which can be either 

probabilistic or binary. BioMM 1st stage describes the learning process to create stage-2 layer 

features. BioMM 2nd stage integrates information from stage-2 layer features using machine learning 

and yields the final prediction. 

1.4.3 Biologically informed machine learning 

Despite high-performing machine learning models holding the promise of revolutionizing the clinical 

management of schizophrenia, their development is hampered by several unresolved challenges. 

One issue is that machine learning models trained on high-dimensional data are often regarded black 

boxes that do not yield an intuitive explanation of their predictive value, limiting biological insight 

and the possibility for further improvement (Ribeiro, Singh et al. 2016). In terms of the development 
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of more explainable machine learning models three descriptive terms are currently being 

distinguished: transparency, interpretability and explainability (Roscher, Bohn et al. 2019). By and 

large, transparency refers to the machine learning model itself, interpretability refers to the model 

together with data, and explainability refers to the model, the data and human involvement. An 

essential part of explainability is the explicit integration of domain knowledge into the machine 

learning framework, which is called informed machine learning (von Rueden, Mayer et al. 2019). On 

the other hand, scientific consistency or reproducibility is another fundamental element for creating 

explainable machine learning approaches (Reichstein, Camps-Valls et al. 2019, Roscher, Bohn et al. 

2019). To this end, there has been a number of biologically informed machine learning models 

developed for different purposes in the context of omics data (Cun and Fröhlich 2012, Chen and 

Schwarz 2017, Kang, Ding et al. 2017, Zarringhalam, Degras et al. 2018). 

An example of these methods are the so-called ‘synthetic feature random forest’ [SF-RF] (Pan, Hu et 

al. 2014), first developed to detect phenotype-associated pathways by taking the gene-gene and 

pathway-pathway interactions into account. Genotyping data from bladder cancer patients and 

healthy controls consisting of 1,303 preselected SNPs were used in this study. It was hypothesized 

that each disease-associated pathway could be represented as a single synthetic feature, which is 

learned by the random forest classifier. High-level interactions between such features that are 

captured by random forest, as well as statistical epistasis networks may better explain illness-

associated genetic mechanisms. A similar strategy  was developed by Liu and colleagues who created 

a pathway-based machine learning framework that identified a subtle overlap of schizophrenia-

associated pathways between patients of three different ancestries using GWAS data (Liu, Bousman 

et al. 2017).  

Pathway-informed machine learning has also been reported for gene-level associations. A Markov 

Random Field approach that incorporated a pathway’s topological information was used to identify a 

set of disease-related genes using both simulated and real SNP data for Crohn’s disease (Chen, Cho et 

al. 2011). The genetic interactions encoded by the topology of a pathway can be explicitly modeled 

so that disease-associated genes can be identified with increased statistical power. In addition to 

genetic association data, these methods have been applied to the analysis of gene expression data. 

For instance, a two-stage machine learning approach has been developed to identify pathways 

associated with traits of interest using three gene expression datasets (Zhang, Emrich et al. 2010). 

The significance of gene sets was investigated using four different machine learning classifiers, 

combined with four different feature selection methods and compared with results from Gene Set 

Enrichment Analysis (GSEA) (Subramanian, Tamayo et al. 2005). This demonstrated that the two-

stage machine learning approach to integrating pathway information outperformed GSEA by 

detecting larger number of active pathways with more statistical power.  

A recent study incorporating gene ontology into deep learning models has shown the improved 

clustering of single-cell RNA-seq data (Peng, Wang et al. 2019). In this study the authors employed 

both supervised and unsupervised models to reduce the dimensionality for the clustering of 

mammalian cell types from two different RNA-seq datasets, and demonstrated better performance 

over eight other dimension reduction methods. The approaches illustrate the potential application of 

explainable machine learning model in omics analyses of schizophrenia. The present thesis describes 

such an application in the context of biologically-informed multi-stage machine learning (BioMM), 

which was used to identify predictive signatures from epigenetic data. 
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1.5 Imaging genetics 

Imaging genetics is concerned with the study of how genetic variation impacts on brain structural 

and functional phenotypes that are captured using neuroimaging. This rapidly evolving field has 

existed for nearly two decades and aims to better characterize risk mechanisms contributing to brain 

disorders. During this time it has provided a fascinating window into potential neurobiological 

processes underlying brain images (Mufford, Stein et al. 2017). Neuroimaging techniques allows 

characterization of brain structure and function in-vivo and have hugely advanced our knowledge of 

brain disorders (Bandettini 2009) such as schizophrenia (Pfefferbaum and Zipursky 1991, Kotrla, J. et 

al. 1995), by providing a map of candidate structural, functional and network alterations in patients 

and at-risk subjects (Meyer-Lindenberg 2010).  

The exploration of genetic effects on imaging phenotypes has progressed from  investigation of 

variants in candidate genes to GWAS and polygenic scores with more recent multivariate machine 

learning approaches being discussed in the  next section.  

1.5.1 From candidate association to GWAS    

Candidate gene approaches offer a more direct path towards mechanistic interpretation compared 

to genome-wide analyses and have been the primary focus of imaging genetics research. As reviewed 

elsewhere (Meyer-Lindenberg 2010, Meyer-Lindenberg 2010), genetic variation in a number of well-

known candidate genes has shown associations with imaging phenotypes, with genes including 

COMT (Egan, Goldberg et al. 2001), NRG1 (Hall, Whalley et al. 2006), DISC1 (Callicott, Straub et al. 

2005), DARPP-32 (Meyer-Lindenberg, Straub et al. 2007), RGS4 (Buckholtz, Meyer-Lindenberg et al. 

2007), DRD2 (Bertolino, Fazio et al. 2008), and BDNF (Ho, Milev et al. 2006). However, candidate 

gene studies frequently produce inconsistent associations across studies (Nickl-Jockschat, 

Janouschek et al. 2015, Bogdan, Salmeron et al. 2017). Beyond variants harbored by candidate genes, 

several SNPs supported by genome-wide significant illness-association have been explored for neural 

associations in a comparatively more hypothesis-free manner. Representative examples include 

ZNF804A (Esslinger, Walter et al. 2009, Rasetti, Sambataro et al. 2011) and CACNA1C (Paulus, 

Bedenbender et al. 2014).  

The intermediate phenotype or endophenotype concept of Gottesman and Shields (Gottesman and 

Shields 1973) refers to a latent biological feature that lies somewhere between gene effects and the 

overt clinical phenotype. Endophenotypes are thought to be closer to underlying molecular 

processes that contribute to an illnesses development and progression and thus show greater 

genetic penetrance than conventional phenotypes. This is particularly relevant for imaging genetics 

which often focus on analysis of heritable aspects of brain related function or structure (Gottesman 

and Gould 2003, Meyer-Lindenberg and Weinberger 2006, Greenwood, Braff et al. 2007, Rasetti and 

Weinberger 2011, Cao, Dixson et al. 2016, Dixson, Tost et al. 2018). The aforementioned, genome-

wide supported variants in ZNF804A and CACNA1C were associated with one of the most well-

established imaging intermediate phenotypes for schizophrenia. This phenotype quantifies the 

decoupling of the dorsolateral prefrontal cortex and the hippocampus (DLPFC-HC) during a working 

memory paradigm (Meyer-Lindenberg, Olsen et al. 2005, Schneider, Walter et al. 2017), and shows 

how schizophrenia patients possess a significantly different connectivity pattern compared to healthy 

controls and unaffected first degree relatives. Although single variant focus study in imaging genetics 

focusing have substantial utility in characterizing the genetic architecture of neural functioning,  
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these studies are limited to  small effect sizes and further do not capture complex epistastic effects 

that likely contribute to the polygenic architecture of schizophrenia.  

1.5.2 Machine learning models - From PRS to multivariate and machine learning  

Due to the low explanatory power of individual common variants, recent imaging genetics research 

has increasingly focused on the analysis of PRS scores in order to aggregate genetic effects (Dima and 

Breen 2015, Bogdan, Salmeron et al. 2017). For example, the association of a schizophrenia PRS with 

neural activity during working memory performance has been explored in a cohort of 79 

schizophrenia cases and 99 healthy controls (Walton, Turner et al. 2012). This PRS summarizes the 

combined effect of variants harbored by 34 schizophrenia risk genes for schizophrenia which were 

correlated with decreased activation in the left DLPFC during working memory. Several other studies 

have observed similar patterns linking higher PRS scores to lower DLPFC activity during working 

memory (Kauppi, Westlye et al. 2014, Whalley, Hall et al. 2015, Miller, Scult et al. 2017). Moreover, 

PRS for schizophrenia has been associated with reduced hippocampal activity during memory 

encoding (Chen, Ursini et al. 2018), increased global cortical thickness (Neilson, Bois et al. 2017), and 

decrease cortical gyrification (Liu, Zhang et al. 2017). Interestingly, a recent study (Alnæ s, Kaufmann 

et al. 2019) reported that there is substantially increased brain structural heterogeneity in cortical 

thickness, and cortical and hippocampal volumes in schizophrenia. In this study, the PRS was 

associated with mean changes in schizophrenia implicated regions, but could not capture the brain 

heterogeneity warranting longitudinal investigations to disentangle the hidden factors underlying 

inter-individual variability. Taken together these findings further supported the utility of polygenic 

score analysis  for characterizing the genetic architecture of schizophrenia.  

It should be noted that the PRS approach has several limitations which are reviewed in detail 

elsewhere. Limitation include the lack of consideration of potential epistatic effects, the restricted 

biological insight into underlying mechanisms (Bogdan, Salmeron et al. 2017), constrained diversity in 

the populations under study (Bogdan, Salmeron et al. 2017, De La Vega and Bustamante 2018), and 

insufficient generalizability (Torkamani, Wineinger et al. 2018).Multivariate or machine learning 

approaches are an alternative to the PRS approaches that can substantially profit from big data 

collected in large-scale collaborations such as the ENIGMA consortium (Thompson, Stein et al. 2014, 

Thompson, Andreassen et al. 2017). However, these approaches have not yet been widely applied in 

the schizophrenia field, likely due to the scarcity of the multimodal data and the lack of well-

developed methodological frameworks. While there are several studies investigate brain disorders 

using multivariate or machine learning techniques these do not primarily focus on schizophrenia (Liu 

and Calhoun 2014, Bogdan, Salmeron et al. 2017, Mufford, Stein et al. 2017). One of these few 

studies using a semi-blind multivariate approach termed parallel ICA with reference (Chen, Calhoun 

et al. 2013).  This study integrated imaging and SNP data with prior knowledge from 140 patients 

with schizophrenia and 160 healthy controls to identify genomic risk variants involved in 

neurotransmission and neural signaling pathways that were significantly associated with 

schizophrenia-linked  grey matter reduction in prefrontal and temporal regions .  

Multivariate or machine learning frameworks should preferably feature under researched factors 

such as epistatic effects, gene-environment interactions, with transcriptomic, epigenetic, clinical and 

environmental data (Bogdan, Salmeron et al. 2017, Mufford, Stein et al. 2017). However, there is 

currently insufficient data to effectively cover this broad spectrum of modalities. That said, the 

ongoing efforts in international collaborations provide opportunities for increasingly sophisticated 
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data analysis that  integrate small-effect changes across modalities to better characterize the risk 

architecture of schizophrenia and its impact on neural functioning.  

 

In summary, the application of machine learning offers promising approaches to characterize the 

molecular risk mechanisms contributing to the polygenetic nature of schizophrenia. The 

characterized effect of molecular perturbations can then be mapped onto the brain imaging space to 

infer systems-level consequences. It is hoped such a strategy it would allow a more precise and 

comprehensive understanding of risk mechanisms and aid in the personalization of precognitive 

therapy.   
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2 EMPIRICAL STUDIES 

2.1 Study 1 - Identification of a reproducible epigenetic risk profile for schizophrenia 
with brain methylation and function1 

 

2.1.1 Key points   

Question  Can a blood marker of epigenetic risk for schizophrenia be derived that is specific for the 

disease and predicts epigenetic changes in brain and disease-associated brain function? 

Findings  In this case-control study, machine learning was used to identify a reproducible 

schizophrenia blood DNA-methylation signature that was associated with functional dorsolateral 

prefrontal cortex hippocampal connectivity, mapped to methylation differences found in dorsolateral 

prefrontal cortex hippocampal connectivity postmortem samples, and indexed biological pathways 

associated with synaptic function. No interactions with polygenic schizophrenia risk were found. 

Meaning  These findings support the presence of a systemic methylation profile in schizophrenia that 

is associated with established intermediate functional phenotypes as well as with epigenetic 

signatures in brain and should thus be useful to capture the biological effects of gene-environment 

interactions. 

2.1.2  Abstract 

Importance: Schizophrenia is a severe mental disorder in which epigenetic mechanisms may 

contribute to illness risk. Epigenetic profiles can be derived from blood cells, but to our knowledge, it 

is unknown whether these predict established brain alterations associated with schizophrenia. 

Objective: To identify an epigenetic signature (quantified as polymethylation score [PMS]) of 

schizophrenia using machine learning applied to genome-wide blood DNA-methylation data; 

evaluate whether differences in blood-derived PMS are mirrored in data from postmortem brain 

samples; test whether the PMS is associated with alterations of dorsolateral prefrontal cortex 

hippocampal (DLPFC-HC) connectivity during working memory in healthy controls (HC); explore the 

association between interactions between polygenic and epigenetic risk with DLPFC-HC connectivity; 

and test the specificity of the signature compared with other serious psychiatric disorders. 

Design, setting, and participants: In this case-control study conducted from 2008 to 2018 in sites in 

Germany, the United Kingdom, the United States, and Australia, blood DNA-methylation data from 

2230 whole-blood samples from 6 independent cohorts comprising HC (1238 [55.5%]) and 

participants with schizophrenia (803 [36.0%]), bipolar disorder (39 [1.7%]), major depressive disorder 

35 [1.6%]), and autism (27 [1.2%]), and first-degree relatives of all patient groups (88 [3.9%]) were 

analyzed. DNA-methylation data were further explored from 244 postmortem DLPFC samples from 

                                            
1
 Published as: Chen, J., Zang, Z., Braun, U., Schwarz, K., Harneit, A., Kremer, T., ... & Schwarz, E. (2020). 

Association of a Reproducible Epigenetic Risk Profile for Schizophrenia With Brain Methylation and Function. 
JAMA psychiatry.  
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136 HC and 108 patients with schizophrenia. Neuroimaging and genome-wide association data were 

available for 393 HC. The latter data was used to calculate a polygenic risk score (PRS) for 

schizophrenia. The data were analyzed in 2019. 

Main outcomes and measures: The accuracy of schizophrenia control classification based on 

machine learning using epigenetic data; association of schizophrenia PMS scores with DLPFC-HC 

connectivity; and association of the interaction between PRS and PMS with DLPFC-HC connectivity. 

Results: This study included 7488 participants (4395 men [58.7%]), of whom 3158 (2230 men [70.6%]) 

received a diagnosis of schizophrenia. The PMS signature was associated with schizophrenia across 3 

independent data sets (area under the curve [AUC] from 0.69 to 0.78; P value from 0.049 to 1.24 × 

10-7) and data from postmortem DLPFC samples (AUC = 0.63; P = 1.42 × 10-4), but not with major 

depressive disorder (AUC = 0.51; P = .16), autism (AUC = 0.53; P = .66), or bipolar disorder (AUC = 

0.58; P = .21). Pathways contributing most to the classification included synaptic processes. Healthy 

controls with schizophrenia-like PMS showed significantly altered DLPFC-HC connectivity (validation 

methylation/magnetic resonance imaging, t < -3.81; P for familywise error, <.04; validation magnetic 

resonance imaging, t < -3.54; P for familywise error, <.02), mirroring the lack of functional decoupling 

in schizophrenia. There was no significant association of the interaction between PMS and PRS with 

DLPFC-HC connectivity (P > .19). 

Conclusions and relevance: We identified a reproducible blood DNA-methylation signature specific 

for schizophrenia that was correlated with altered functional DLPFC-HC coupling during working 

memory and mapped to methylation differences found in DLPFC postmortem samples. This indicates 

a possible epigenetic contribution to a schizophrenia intermediate phenotype and suggests that PMS 

could be of interest to be studied in the context of multimodal biomarkers for disease stratification 

and treatment personalization. 

 

2.1.3 Introduction 

Schizophrenia is a severe brain disorder thought to be caused by a complex interplay of genetic 

predisposition and environmental exposure (Weinberger 1987, Cannon 1998, Sullivan, Kendler et al. 

2003, van Os, Rutten et al. 2008, Bergen, O'Dushlaine et al. 2012). In the context of gene-

environment may account for heritability not captured by other current methods, such as polygenic 

interplay and developmental programming (van Os, Kenis et al. 2010, Brown 2011), epigenetic 

mechanisms, such as DNA methylation, have received substantial attention in schizophrenia(Nishioka 

2012, Aberg, McClay et al. 2014) and other neuropsychiatric disorders (Mill, Tang et al. 2008, Cecil, 

Walton et al. 2015, Teroganova, Girshkin et al. 2016, Zhang and Gelernter 2017). As epigenetic 

mechanisms risk scores (PRS), potential interactions between genetic susceptibility and epigenetic 

changes are of particular interest. To date, much of this work has studied single genes. For example, 

methylation at the Single Nucleotide Polymorphism (SNP) rs6265 within the neurodevelopmentally 

important brain-derived neurotrophic factor (BDNF) gene shows a genotype-dependent association 

with WM, hypoxia-related early life events, and a WM-related schizophrenia intermediate phenotype 

(Ursini, Cavalleri et al. 2016). Similarly, methylation differences in dopamine receptor D4 (DRD4) 

predict WM, suggesting that the dopaminergic methylation status could affect cognitive functions in 

a dissociable manner (Lewis, Henderson-Smith et al. 2019). Likewise, membrane-bound catechol-O-
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methyltransferase (MB-COMT) promoter methylation is associated with DLPFC activity during WM 

(Walton, Liu et al. 2014) and methylation of the COMT Val(158) allele with lifetime stress, WM 

performance and prefrontal activity during WM (Ursini, Bollati et al. 2011).  

While these studies have explored targeted hypotheses, methylation differences in single genes  

(Ursini, Bollati et al. 2011, Ursini, Cavalleri et al. 2016) are only weakly associated with schizophrenia. 

To capture systems-level effects, methylation differences have been explored across the genome in 

whole-blood (Aberg, McClay et al. 2014, Hannon, Dempster et al. 2016) and post-mortem brain 

tissue samples (Pidsley, Viana et al. 2014, Jaffe, Gao et al. 2016). Joint analysis of genome-wide 

methylation and genotyping data provided evidence that the methylation changes found in 

schizophrenia differ from those associated with polygenic risk, but overlap with previously identified 

genetic susceptibility loci (Schizophrenia Working Group of the Psychiatric Genomics 2014, Hannon, 

Dempster et al. 2016, Jaffe, Gao et al. 2016). This supports the notion that the methylation 

differences are indeed associated with schizophrenia and not merely a result of disease-unrelated 

environmental factors (Lim and Song 2012, Zakhari 2013, Voisin 2015). An important question is 

whether, similar to polygenic scores, there is a combined contribution of these methylation 

differences on illness risk. A machine learning study provided evidence for a schizophrenia poly-

methylation signature (PMS) that could be validated in independent data (Chen and Schwarz 2017). 

We do not, however, yet understand whether this PMS is relevant in the brain and how it is 

associated with genomic risk with regard to neural effects.  

Components of the risk architecture of schizophrenia have been successfully interrogated using a 

strategy termed imaging genetics (Meyer-Lindenberg 2010), an approach that has facilitated the 

identification of so called neural ‘intermediate phenotypes’, illness-associated, heritable traits that 

reflect a manifestation of illness liability(Lenzenweger 2013). One of the best established 

intermediate phenotypes of schizophrenia is Dorsolateral-Prefrontal-Cortex–Hippocampus (DLPFC-

HC) connectivity during working memory (Malki, Tosto et al.) performance (Meyer-Lindenberg, Olsen 

et al. 2005, Malki, Tosto et al. , Schneider, Walter et al. 2017). DLPFC-HC connectivity is altered in 

healthy first-degree relatives of patients with schizophrenia and is linked to risk alleles of established 

genome-wide significant schizophrenia gene variants, such as ZNF804A (Rasetti, Sambataro et al. 

2011). WM is impaired in schizophrenia, linked to genetic risk (Schwarz, Tost et al. 2016) and affected 

by environmental factors contributing to illness risk, including childhood trauma and socioeconomic 

status (Evans and Schamberg 2009, Vargas, Lam et al. 2018), strengthening the argument that this 

intermediate phenotype reflects risk-related pathophysiological processes.  

Using this approach, we investigated genome-wide DNA methylation data from 2041 whole-blood 

samples from four independent cohorts comprising 1238 healthy controls (HC) and 803 patients with 

schizophrenia (SCZ). We aimed to identify and validate a PMS differentiating SCZ from HC. 

Subsequently, we assessed whether the PMS reproducibly predicted altered DLPFC-HC connectivity 

in HC and explored potential interactions with a schizophrenia PRS. Finally, we used genome-wide 

DNA methylation data from post mortem DLPFC samples from 136 healthy donors and 108 donors 

with schizophrenia to assess whether the peripheral PMS was mirrored by analogous changes in the 

brain. This investigation aimed at characterizing the systems-level relationship between genetic and 

epigenetic risk for schizophrenia, and to test the effects of these parameters on schizophrenia-

relevant neural functioning.  
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2.1.4 Methods 

Cohorts 

Genome-wide DNA methylation data from 7 cohorts, denoted as discovery methylation, validation 

methylation, validation methylation/magnetic resonance imaging (MRI), validation MRI, validation 

post mortem, specificity methylation, and relatives methylation, were analyzed in this work 

(demographic characteristics are summarized in Table 1 and eTable 1 in the Supplement). All 

participants (or their legal next-of-kin in case of brain tissue donors) gave written or audiotaped 

informed consent and all studies were approved by the local ethics committees (eMethods in 

the Supplement). Discovery methylation and validation methylation consisted of 2 independent 

cohorts 767 patients with schizophrenia [95.5%] and 755 HC [61.0%]). These data sets were used to 

identify and validate a PMS using machine learning. Validation methylation/MRI (36 patients with 

schizophrenia [4.5%] and 331 HC [26.7%]) was used for additional validation of the PMS, while MRI 

data from a subset of the HC (241 [19.5%]; n-back WM functional MRI paradigm (Rasetti, Sambataro 

et al. 2011, Schneider, Walter et al. 2017)) were used to test associations with DLPFC-HC 

connectivity. The MRI data from validation MRI (n = 152 HC) acquired during the Sternberg WM task 

(Geiger, Moessnang et al. 2018) were used to validate the identified DLPFC-HC connectivity 

associations. The functional MRI face-matching task (Cao, Bertolino et al. 2016) was used in 

validation MRI to explore the specificity of findings for WM. Validation post mortem comprised 

genome-wide methylation data from postmortem DLPFC samples 108 schizophrenia [44.3%]; 136 HC 

[55.7%]) and was used to assess the overlap of the PMS with brain methylation changes. Genome-

wide association study (GWAS) data in validation methylation/MRI and validation MRI were used to 

compute a schizophrenia PRS to test associations with the PMS and interactions with PMS on brain 

functional connectivity. For specificity testing, we explored DNA methylation data from a cohort 

(specificity methylation) of patients with bipolar disorder (BD; 39 [1.7%]), major depressive disorder 

(MDD; 35 [1.6%]) and autism (27 [1.2%]). To further characterize the effect of genetic schizophrenia 

risk, a cohort (relatives methylation) of unaffected first-degree relatives of participants with 

schizophrenia (27 [1.2%]), BD (15 [0.7%]), MDD (29 [1.3%]), and autism (17 [0.8%]) were analyzed. 

The machine-learning procedure used here was further applied to GWAS data from GWAS molecular 

genetics of schizophrenia (GWAS MGS) (n = 2718 HC and n = 2296 schizophrenia) to identify risk 

components not captured by the PRS that could potentially explain PMS-associated findings. 

The data, methods, and confounding correction are detailed in the eMethods in the Supplement. 

Most patients were taking medication. Neuroimaging analyses focused on HCs not taking medication 

to demonstrate that PMS associations were not associated with medication. Additionally, we 

explored the association of the PMS and DLPFC-HC connectivity with chlorpromazine equivalents. 

Gene and pathway assignment of genome-wide DNA methylation data 

For each gene, CpGs harbored by the gene with an extended window size of 20 kb downstream and 

upstream were used for analysis. CpG locations and gene annotations used for mapping were 

obtained from the R library IlluminaHumanMethylationEPICanno.ilm10b2.hg19 (R Foundation). 

Genes were binned into biological process categories (denoted as pathways) using the GeneOntology 

database (data freeze in Dec. 2018) (Gene Ontology, Blake et al. 2013). 2846 pathways comprising 

between 10 and 200 genes with at least 10 CpGs per pathway were used for analysis.  

 

 

https://jamanetwork.com/journals/jamapsychiatry/fullarticle/2760514#yoi190101t1
https://jamanetwork.com/journals/jamapsychiatry/fullarticle/2760514#note-YOI190101-1
https://jamanetwork.com/journals/jamapsychiatry/fullarticle/2760514#note-YOI190101-1
https://jamanetwork.com/journals/jamapsychiatry/fullarticle/2760514#note-YOI190101-1
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Machine learning, replication and validation 

An updated biologically informed machine learning (BioMM) approach was used (eMethods in 

the Supplement). (Chen and Schwarz 2017). BioMM is a 2-stage machine-learning approach that first 

builds separate machine learning models for methylation sites mapping to each of the 2846 

pathways, yielding 1 machine-learning model per pathway (first-stage). This procedure compresses 

data from individual methylation sites into a pathway-level feature. Then, a second-stage algorithm 

integrates these pathway-level features into a systems-level classifier. BioMM was trained on 

discovery methylation and the algorithm then applied to all other data sets. In each data set, the 

output of BioMM was a score (PMS) that quantified the likelihood of a given participant being in the 

schizophrenia group. To assess predictive accuracy, we determined the area under the receiver 

operating characteristic curve (AUC) as well as Nagelkerke R2. 

 

Statistical analysis 

Associations between PMS and DLPFC-HC functional connectivity were assessed using a linear 

regression in SPM, version 12, using PMS as covariate of interest and age and sex as covariates of 

noninterest. Statistical significance was set at P < .05. The PMS and DLPFC-HC connectivity 

associations in the imaging space were corrected using a familywise small-volume correction in the 

hippocampus (eFigures 1 and 2 in the Supplement) based on the automated anatomical labeling 

template. Associations between PMS and the schizophrenia PRS, as well as the association of the 

PMS by PRS interaction with DLPFC-HC connectivity, were tested using a multiple linear regression 

that accounted for the effects of sex, age, and (for PRS-associated analyses) 10 genetic principal 

components. For details and analysis of potential confounding, see the eMethods in the Supplement. 

2.1.5 Results 

Determination and validation of a PMS in blood samples 

Genome-wide DNA methylation data from discovery methylation (675 [30.3%]) were used for model 

training. In this data set the model showed a cross-validation accuracy of an AUC of 0.78 

(P = 2.95 × 10−6, corrected for 20 potential confounders; R2 = 21%). The model was then predicted 

into validation methylation (847 [38.0%]), yielding an AUC of 0.69 (P = 1.24 × 10−7; R2 = 10.5%). For 

additional validation, the model was predicted into validation methylation/MRI (367 [16.5%]), 

yielding an AUC of 0.74 (P = .049; R2 = 21.8%). This demonstrates the biological reproducibility of the 

PMS (Table 2 and Figure 1). 

 

Identification of implicated biological pathways  

To identify pathways with methylation changes contributing strongly to the epigenetic signature, 

pathway-level (second-stage) data from BioMM in discovery methylation were used. The 10 

pathways most associated with schizophrenia are shown in Figure 2 (eTable 2 in the Supplement). Of 

the 2846 pathways, 917 (32.2%) were positively associated with diagnosis and 57 (6.2%) of these 

showed significance at P for familywise error <.05. They did not differ significantly from the 

remaining pathways regarding size (determined as the number of CpGs per pathway; 

β = 2.46 × 10−5; P = .61). Individual genes within the 10 pathways harboring methylation differences 

have been previously implicated in schizophrenia (eTables 3 and 4 in the Supplement). 

 

Identifying and validating the association between PMS and functional DLPFC-HC coupling 

https://jamanetwork.com/journals/jamapsychiatry/fullarticle/2760514#note-YOI190101-1
https://jamanetwork.com/journals/jamapsychiatry/fullarticle/2760514#note-YOI190101-1
https://jamanetwork.com/journals/jamapsychiatry/fullarticle/2760514#note-YOI190101-1
https://jamanetwork.com/journals/jamapsychiatry/fullarticle/2760514#yoi190101t2
https://jamanetwork.com/journals/jamapsychiatry/fullarticle/2760514#yoi190101f1
https://jamanetwork.com/journals/jamapsychiatry/fullarticle/2760514#yoi190101f2
https://jamanetwork.com/journals/jamapsychiatry/fullarticle/2760514#note-YOI190101-1
https://jamanetwork.com/journals/jamapsychiatry/fullarticle/2760514#note-YOI190101-1
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The schizophrenia PMS predicted in data from HCs not taking medication from validation 

methylation/MRI (241 [10.8%]) was negatively associated with DLPFC-HC functional connectivity 

during WM (P for familywise error, <.04; F1,237 = 14.55; t237 = −3.81; bilateral hippocampus-corrected, 

peak voxel at 33, −22, −13) in the right posterior hippocampus (Figure 3; eFigure 3 in 

the Supplement). The negative association between PMS and DLPFC-HC connectivity was replicated 

in validation MRI (n = 152), with the Sternberg WM paradigm within right posterior hippocampus 

(P for familywise error = .02; t148 = −3.54; peak voxel at 33, −37, −7) corrected for right posterior 

hippocampus (Figure 3; eFigure 3 in the Supplement). Post hoc 1-sample t tests revealed negative 

connectivity between DLPFC and HC in the validation methylation/MRI (t240 = −14.09; P < .001) and 

the validationMRI (t151 = −6.94; P < .001) sample. Associations between PMS and DLPFC-HC 

connectivity were specific for the WM tasks compared with the faces tasks and were not confounded 

by brain-structural effects (eResults in the Supplement). Association between PMS and PRS and 

interactions on DLPFC-HC coupling 

The DLPFC-HC connectivity was not associated with the schizophrenia PRS in validation 

methylation/MRI (β = 126.6; P = .79) or validation MRI (β = 401.3; P = .67). Similarly, no significant 

interactions between PMS and PRS on DLPFC-HC connectivity were found in validation 

methylation/MRI (β = −7280; P = .19) or validation MRI (β = −10 540; P = .41). The BioMM model was 

used to identify a risk score from GWAS MGS data using the same pathways assignment as used for 

DNA methylation data. The resulting associations with PMS and DLPFC-HC connectivity are described 

in the eResults and eTable 5 in the Supplement. Analysis of relatives methylation demonstrated that 

none of the groups of relatives showed significant PMS differences compared with HC (eFigure 4 in 

the Supplement). 

 

Prediction of PMS in DLPFC post-mortem brain samples 

Predicted PMS in validation post mortem was significantly higher in schizophrenia compared with HC 

(AUC = 0.63; P = 1.42 × 10−4; R2 = 8.3%). Notably, the reverse prediction (i.e., building a PMS from 

postmortem brain data and testing this score in blood data) did not allow case-control differentiation 

(eTable 6 in the Supplement) and showed no association with DLPFC-HC connectivity (validation 

methylation/MRI: P = .89; validation MRI: P = .92). 

 

Assessment of the robustness, diagnostic specificity and residual confounding  

Permutation of diagnostic labels, as well as the random selection of pathways used by BioMM, 

supported the significance and robustness of the PMS finding (eResults and eTables 7 and 8 in 

the Supplement). Analysis of the specificity methylation cohort further showed that the PMS increase 

was specific for schizophrenia (eTable 9 and eFigure 5 in the Supplement). Because despite the 

confounding correction the PMS was associated with some of all potential variables, additional 

analyses regarding confounding can be found in the eResults and eTables 10 and 11 in 

the Supplement. 

2.1.6 Discussion 

In this article, we identified a blood DNA methylation signature that reproducibly 

differentiated schizophrenia from HC and several other major neuropsychiatric 

disorders. The underlying biological pathways implicated several synaptic processes 

as contributing most to the classification. A more schizophrenia-like epigenetic profile 

was associated with an established intermediate phenotype for the disorder, 

https://jamanetwork.com/journals/jamapsychiatry/fullarticle/2760514#yoi190101f3
https://jamanetwork.com/journals/jamapsychiatry/fullarticle/2760514#note-YOI190101-1
https://jamanetwork.com/journals/jamapsychiatry/fullarticle/2760514#yoi190101f3
https://jamanetwork.com/journals/jamapsychiatry/fullarticle/2760514#note-YOI190101-1
https://jamanetwork.com/journals/jamapsychiatry/fullarticle/2760514#note-YOI190101-1
https://jamanetwork.com/journals/jamapsychiatry/fullarticle/2760514#note-YOI190101-1
https://jamanetwork.com/journals/jamapsychiatry/fullarticle/2760514#note-YOI190101-1
https://jamanetwork.com/journals/jamapsychiatry/fullarticle/2760514#note-YOI190101-1
https://jamanetwork.com/journals/jamapsychiatry/fullarticle/2760514#note-YOI190101-1
https://jamanetwork.com/journals/jamapsychiatry/fullarticle/2760514#note-YOI190101-1
https://jamanetwork.com/journals/jamapsychiatry/fullarticle/2760514#note-YOI190101-1
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persistent DLPFC-HC connectivity, in HC during 2 different WM tasks. Notably, the 

epigenetic signature could also differentiate schizophrenia from HC in data from 

DLPFC postmortem samples, supporting the relevance of the identified blood-derived 

epigenetic signature for brain-associated phenotypes associated with schizophrenia 

in vivo and ex vivo. 

The pathways contributing most to the schizophrenia classification comprised synaptic and 

neurodevelopmental processes. This is consistent with previous results showing a co-localization of 

epigenetic changes with genetic susceptibility variants of schizophrenia (Hannon, Dempster et al. 

2016), which are over-represented in synaptic pathways (Network and Pathway Analysis Subgroup of 

Psychiatric Genomics 2015). The important role of synaptic processes in schizophrenia is supported 

by findings from induced pluripotent stem cells (Brennand, Simone et al. 2011, Wen, Nguyen et al. 

2014), and changes in different omics modalities pointing towards a synaptic pathology [e.g.(Osimo, 

Beck et al. 2019)]. Furthermore, schizophrenia-related neurodevelopmental processes show an over-

representation of methylation changes in the schizophrenia prefrontal cortex, and these are enriched 

for sites undergoing epigenetic changes during fetal neocortex brain development (Pidsley, Viana et 

al. 2014). Notably, post-mortem expression and methylation studies support that the neural effects 

of epigenetic and genetic risk factors for schizophrenia already occur during early brain development, 

rather than the typical onset-age of the illness (Birnbaum and Weinberger 2017), highlighting their 

importance for altered neurodevelopment in schizophrenia.  

We show that during two WM tasks, higher, more schizophrenia-like scores of the identified DNA 

methylation signature were associated with stronger negative DLPFC-HC connectivity. DLPFC-HC 

connectivity is altered in the same way in SCZ, unaffected first-degree relatives, as well as HC carrying 

specific risk genetic variants (Meyer-Lindenberg, Olsen et al. 2005, Esslinger, Walter et al. 2009, 

Rasetti, Sambataro et al. 2011, Schneider, Walter et al. 2017), with more negative DLPFC-HC 

connectivity being related to higher risk for schizophrenia. Furthermore, functional and structural 

abnormalities in the hippocampus and prefrontal cortex are at the core of the schizophrenia 

pathophysiology (Weinberger 1987, Bahner, Demanuele et al. 2015) and disease processes of both 

areas are highly interassociated (Lipska and Weinberger 2000, Bahner, Demanuele et al. 2015). For 

example, altered DLPFC-HC microcircuits in post-mortem brains of SCZ influence both excitatory and 

inhibitory cells as well as interneurons (Harrison and Weinberger 2005). Interestingly, while the 

general liability for schizophrenia and specific genetic risk variants do impact this phenotype, 

common polygenic risk for schizophrenia has been repeatedly demonstrated not to (Erk, Mohnke et 

al. 2017, Miller, Scult et al. 2018), suggesting either a restricted set of genes responsible and/or more 

complex gene-environment interactions to shape DLPFC-HC connectivity. We extend these findings 

by demonstrating that an epigenetic risk signature for schizophrenia correlates with DLPFC-HC 

coupling and we did not find sufficient evidence for a direct polygenic and interactive association, 

suggesting that epigenetic analysis provides pathophysiologically relevant information not captured 

by PRS. Also, a BioMM-derived PRS was not associated with PMS or DLPFC-HC and showed no 

interactions with PMS on DLPFC-HC connectivity. This supports that the PMS outperformed classifiers 

identified from genetic association data and the observed PMS effects were not primarily driven by 

underlying genetics. The lack of PMS differences in relatives of patients with schizophrenia, BD, MDD 

and autism supported this finding. Notably, the accuracy a classifier can achieve is limited by the 

clinical and biological heterogeneity of schizophrenia. Applying multimodal subgroup identification 

strategies may aid in deconstructing this heterogeneity and ultimately contribute to an alternative 

disease classification. 
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Epigenetic modifications including DNA methylation are strongly influenced by life-span 

environmental exposures, such as postnatal mother-infant interactions (Fagiolini, Jensen et al. 2009) 

and experiencing of stress-related events (Klengel, Pape et al. 2014), making the poly-epigenetic 

signature a potential proxy on which cumulative environmental risk factors could converge. 

Moreover, studies in animals and humans indicated that several neurobiological processes at 

different stages of development can modify DLPFC-HC connectivity across the life span. This includes 

early neuronal formation (Lee, Dvorak et al. 2012, Phillips, Bartsch et al. 2012) and synaptic plasticity 

related processes (Fagiolini, Jensen et al. 2009, Meadows, Guzman-Karlsson et al. 2015), raising the 

possibility that the neural impact of epigenetic and genetic schizophrenia risk on synaptic processes 

during early development may have a lasting impact on DLPFC-HC connectivity. Such an 

interpretation is also consistent with results from animal studies showing that lesions in the 

hippocampus lead to delayed maturation and dysfunction of the DLPFC (Lipska and Weinberger 

2000, Bahner, Demanuele et al. 2015). Taken together, the present results may suggest that DLPFC-

HC connectivity is influenced by environmental risk accumulation mediated by the association of 

altered DNA methylation with synaptic plasticity (Fagiolini, Jensen et al. 2009, Meadows, Guzman-

Karlsson et al. 2015). 

In this article, the PMS was found to differentiate schizophrenia from HC when predicted in DLPFC 

DNA methylation data, indicating that elements of the signature were represented in the brain and 

may have mediated the observed DLPFC-HC connectivity association. This finding is consistent with 

the previously observed correlation between postmortem brain and blood methylation. (Walton, 

Hass et al. 2016, Edgar, Jones et al. 2017, Braun, Han et al. 2019). Such cross-tissue correlation has 

been hypothesized to result from genetic influences, casting doubt on the added value of peripheral 

epigenome-wide association studies in brain disorders (Hannon, Lunnon et al. 2015). However, the 

association of the PMS with schizophrenia and schizophrenia-relevant neural phenotypes based on 

epigenetic changes in pathophysiologically relevant pathways, as well as the lack of evidence for an 

association with polygenic susceptibility, supports their use for integrative, multimodal approaches 

toward disease stratification and potentially treatment personalization. Notably, a schizophrenia 

PMS derived from DLPFC samples did not predict case-control status in blood samples and was not 

correlated with brain functional connectivity. This may have been due to the larger biological and 

methodologic variability in brain samples (such as cell heterogeneity or postmortem effects) or the 

comparatively smaller sample size. 

The present study has several limitations. First, most investigated patients were taking medication 

and the association of medication with the PMS could not be excluded. However, the association 

between the PMS and DLPFC-HC connectivity in HC not taking medication contradicts the idea that 

the identified methylation signature is a consequence of medication. Second, because of limited 

available data, the associations between DLPFC-HC connectivity and the PMS could not be explored 

in patients. This could have identified a stronger contribution of genetic schizophrenia risk toward 

the PMS associations, which may have been affected by limited statistical power. Third, while the 

PMS replicated in data from postmortem DLPFC samples, the explained variance in the brain data 

was comparatively low. This necessitates further studies to isolate the brain-specific associations of 

methylation differences with brain function. Fourth, despite extensive efforts to correct findings for 

confounding effects, we cannot exclude the potential presence of residual confounding. However, 

the analysis of patients with BD and MDD as well as autism suggested that the PMS increase in 

schizophrenia was not driven by potential confounders with transdiagnostic relevance. These 

findings, and PMS effects in relatives, require validation in larger cohorts. Finally, the machine 

learning approach used was based on the annotation of CpGs to genes and biological pathways, 
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which may be biased and not suitably index biological function and can lead to an overlap of 

annotated genes between pathways. As machine learning isolates the most predictive features 

mapped to a given pathway, this can lead to a loss of biological specificity if the most predictive CpGs 

are shared among different pathways. This necessitates follow-up experiments to more precisely 

characterize the role of the identified pathways for mediating epigenetic risk in schizophrenia.  

2.1.7 Conclusion  

This study shows that a reproducible and specific blood DNA-methylation signature of schizophrenia 

was correlated with functional DLPFC-HC coupling as an intermediate phenotype for schizophrenia, 

mapped to methylation differences found in DLPFC postmortem samples of schizophrenia, and 

indexed biological pathways associated with synaptic function. These results help to characterize the 

systems-level association between genetic, epigenetic, and environmental risk for schizophrenia. 

They further support the use of PMS for multimodal biomarker discovery strategies aimed at disease 

stratification and the development of novel, personalized therapeutic approaches. 

 

Tables  

Table 1. Overview of sample characteristics. The rightmost three columns indicate the sample numbers for 

which the respective data were available (Methylation: DNA-Methylation; Genotypes: whole-genome genetic 

association data; Imaging: functional MRI data [validationMeth/MRI: n-back task; validationMRI: Sternberg task]; 

Case: schizophrenia patients; SubCtl: Subset of healthy controls; AUT: Autism; BP: Bipolar disorder; MDD: 

Major depressive disorder; relSCZ: First-degree relatives of patients with schizophrenia; relAUT: First-degree 

relatives of patients with autism; relBP: First-degree relatives of patients with bipolar disorder; relMDD: First-

degree relatives of patients with major depressive disorder).*40 subjects with missing age information.   

Cohort Tissue Status Sex (m/f) Age Methylation Genotype Imaging 

Discovery 

Methylation 

Whole 
Blood 

Control 142/180 37.7±15.2 322     

 
Case 254/99 43.7±14.7 353     

Validation 

Methylation 
Control 319/114 45.0±12.1 433     

 
Case 283/131 46.6±13.6 414     

Validation 

Methylation/MRI 

Control 168/163 27.8±10.2 331   

SubCtl 126/115 28±10.7 241 241 241 

Case 28/8 33.8±10.4 36   

specificity 

Methylation 

AUT 18/9 33.8±9.6 27   

BP 16/23 36.4±10.5 39   

MDD 11/24 37.2±12.2 35   

Relatives 

Methylation 

relSCZ 8/19 37.2±14.4 27   

relAUT 8/9 44.9±9.1 17   

relBP 8/7 36.9±12.3 15   
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relMDD 11/18 30.3±10.4 29   

validationMRI Control 66/86 26.9±8.8 152 152 152 

validationpostmortem  Brain 
Control 90/46 46.5±16.1 136     

Case 59/49 52.7±14.5 108     

GWASMGS 
Whole 
Blood 

Control 1301/1417 50.6±16.4  2718  

Case 1606/690 43.4±11.7*  2296  

 

Table 2. Prediction performance of BioMM on different cohorts using discoveryMeth as the discovery 
set 

Data sets AUC R
2
 

discoveryMethylation 0.78 0.21 

validationMethylation 0.69 0.105 

validationMethylation/MRI 0.74 0.218 

validationpostmortem 0.63 0.083 

 
 

 

Figures 

 

 
Figure 1. Prediction performance  of Biologically Informed Machine Learning (BioMM) on Different Cohorts 

Using Discovery Methylation as the Training Data 
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Figure 2. Biological pathways contributing most to the PMS and significance of the individual methylation 

sites. GO:0032088: negative regulation of NF-kappaB transcription factor activity; GO:0010977: negative 

regulation of neuron projection development; GO:0030097: hemopoiesis; GO:0000083: regulation of 

transcription involved in G1/S transition of mitotic cell cycle; GO:2000311: regulation of AMPA receptor 

activity; GO:0098962: regulation of postsynaptic neurotransmitter receptor activity; GO:0043154: negative 

regulation of cysteine-type endopeptidase activity involved in apoptotic process; GO:1903427: negative 

regulation of reactive oxygen species biosynthetic process; GO:0031648 protein destabilization; 

GO:1900273: positive regulation of long-term synaptic potentiation; GO:0019395: fatty acid oxidation. The 

immune related pathway is illustrated in yellow, an apoptotic process in purple, synaptic and neural pathways 

in green and the remaining pathways in gray. The dots indicate the significance of individual CpG within these 

pathways. The blue line marks the uncorrected significance level of 0.05. 

 

 
Figure 3. Association between the predicted PMS and DLPFC-HC connectivity in un-medicated, healthy 

controls. A) validationMethylation/MRI (n-back task): uncorrected results (p < 0.05, shown in hippocampus) with 
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peak voxel (F1,237=14.55, T237=-3.81, MNI: [33 -22 -13]) in the right hippocampus significant after bilateral 

hippocampus correction in healthy subjects (n = 241) (PFWE=0.040). B) validationMRI (Sternberg task): 

uncorrected results (p < 0.05, shown in hippocampus) with peak voxel ( T148=-3.54, peak voxel at [33 -37 -7]) in 

the right hippocampus showing a significantly negative association after right posterior hippocampus 

correction in healthy subjects (n = 152) (PFWE=0.016). Age and sex are controlled as covariates of non-interests. 

For presentation purpose, imaging results are shown in p<0.05 uncorrected threshold at similar spatial plane 

(MNI: X=32, Y=-33, Z=-10).  

2.1.8 Supplementary Methods 

eMethods: Genome-wide DNA methylation data 
eMethods: Clinical characteristics of investigated cohorts 
eMethods: Preprocessing of genome-wide DNA methylation data 
eMethods: Genotyping QC and imputation 
eMethods: Population structure and relatedness testing  
eMethods: Polygenic risk score (PRS) determination on genotype data 
eMethods: BioMM framework     
eMethods: Permutation test procedure 
eMethods: Analysis of schizophrenia specificity 
eMethods: Machine learning for case-control prediction based on GWAS data 
eMethods: Working memory and faces matching task - imaging data acquisition and  preprocessing 
eMethods: First-level DLPFC-HC functional connectivity 
eMethods: Structural MRI data acquisition, preprocessing and influence. 
eMethods: Task specificity and structural influences 
eMethods: Medication influences on PMS and DLPFC-HC connectivity 
eMethods: Statistical analysis 
eResults: Task specificity and structural confounding influences on the identified associations between                 

   PMS and DLPFC-HC coupling 
eResults: Analysis of residual confounding effects on the PMS and DLPFC-HC connectivity 
eResults: Associations between PMS, DLPFC-HC connectivity and medication in schizophrenia  

   patients 
eResults: Association between BioMM-derived polygenic risk signature, PMS and DLPFC-HC   

   connectivity 
eResults: Permutation test analysis 
eFigure1: PMS comparision in validationmeth/MRI and relativesMeth 
eFigure2: PMS comparision in validationMeth/MRI and specificityMeth 
eFigure3: Post-hoc partial regression plots of the association between PMS and DLPFC-HC  

    connectivity 
eFigure4: DLPFC ROI and hippocampus mask in the validationMeth/MRI sample  
eFigure5: DLPFC ROI and hippocampus mask in the validationMRI sample  
eTable1: Differences of subject demographics between patients and controls  
eTable2: Overall prediction performance of BioMM on different cohorts and specificity analysis  
eTable3: The association between PMS and DLPFC-HC, PMS and PRS, PMS and PRSBioMM  
eTable4: Permutation of diagnostic label for both machine learning prediction and the subsequent  

  testing of imaging associations  
eTable5: Permutation of pathway level features for both machine learning prediction and subsequent  

  testing of imaging associations  
eTable6: The association between predicted PMS and the confounding variables in controls  
eTable7: Prediction performance of BioMM on different cohorts and specificity analysis following  

  residualization of predicted PMS scores against all potential covariates using linear  
  regression  

eTable8: Top 10 schizophrenia-associated pathways in the discovery sample (discoveryMeth) 
eTable9: 30 most significant CpGs derived from top 10 pathways  
eTable10: The existing evidence for the top genes harboring top CpGs from eTable 9 
eTable11: Prediction performance of BioMM on different cohorts using validationpostmortem as the discovery 
set  
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eMethods 

 

Genome-wide DNA methylation data 

DNA methylation data from discoveryMeth and validationMeth were downloaded from the GEO 

database (GSE80417 and GSE84727, respectively)(Edgar, Domrachev et al. 2002). All samples were 

analyzed using Illumina Infinium HumanMethylation450 BeadChip (450k) arrays. Detailed 

descriptions of cohorts and data acquisition can be found elsewhere(Hannon, Dempster et al. 2016). 

Subjects part of validationMeth/MRI and validationMRI were recruited at the Central Institute of Mental 

Health, Mannheim, Germany and data from these cohorts has partially been described 

previously(Schneider, Walter et al. 2017). Validationpostmortem was obtained from the GEO database 

under accession GSE74193(Jaffe, Gao et al. 2016). A total of 675 samples were scanned on 534 

unique subjects, but after exclusion (as suggested by the authors of the original study) of a 

problematic processing plate and subjects with an age of less than 16, data from 244 subjects were 

used for analysis. Data processing is described in detail below. 

 

Clinical characteristics of investigated cohorts 

Dicoverymeth 

Dicoverymeth case-control samples were obtained from the UK and consist of unrelated ancestrally 

matched cases and controls as described in the original reference (Datta, McQuillin et al. 2010). 

Briefly, National Health Service (NHS) multicentre and local research ethics approval was obtained 

and all subjects signed an approved consent form. Patients with schizophrenia were selected based 

on the International Classification of Diseases 10 (ICD10) criteria and interviewed with the Schedule 

for Affective Disorders and Schizophrenia-Lifetime Version (SADS-L) schedule(Mannuzza, Fyer et al. 

1986). All cases were further interviewed by a second psychiatrist at the probable level of 

schizophrenia with Research Diagnostic Criteria (RDC). Subjects with brain damage were not 

included. The control subjects were also interviewed with the initial clinical screening questions of 

the SADS-L and selected on the basis of not having a family history of schizophrenia, alcoholism or 

bipolar disorder and for having no past or present personal history of any RDC-defined mental 

disorder. 

 

Validationmeth 

Validationmeth case-control samples were self-identified as born in the British Isles (95% in Scotland) 

as originally described in (Stone, O’Donovan et al. 2008). All cases met the Diagnostic and Statistical 

Manual for Mental Disorders-IV edition (DSM-IV) (Sharp, Mefford et al. 2008) and International 

Classification of Diseases 10th edition (ICD-10) (Janca, Ustun et al. 1993) criteria for schizophrenia. 

Diagnosis was made by Operational Criteria Checklist (OPCRIT) (McGuffin, Farmer et al. 1984).  All 

case participants were outpatients or stable inpatients. Detailed medical and psychiatric histories 

were collected. A clinical interview using the Structured Clinical Interview for DSM-IV (SCID) was also 

performed on schizophrenia cases. Controls were volunteers recruited through general practices in 

Scotland. Practice lists were screened for potentially volunteers matched by age and sex and by 

excluding subjects with major mental illness or use of neuroleptic medication. Volunteers who 

replied to a written invitation were interviewed using a short questionnaire to exclude major mental 

illness in individual themselves and first degree relatives. All cases and controls gave informed 

consent. The study was approved by both local and multiregional academic ethics committees. 

 

 



EMPIRICAL STUDIES 

35 
 

Validationmeth/MRI 

We included 367 subjects comprising of 331 healthy volunteers and 36 patients with schizophrenia. 

None of the healthy volunteers had a first-degree relative with a history of mental illness. All subjects 

were recruited at the Central Institute of Mental Health in Mannheim, Germany (Cao, Bertolino et al. 

2016, Schneider, Walter et al. 2017). Patients were recruited from inpatient and outpatient 

treatment facilities and psychiatric diagnoses were confirmed based on DSM-IV criteria(Schwarz, 

Moessnang et al. 2019).  The association between PMS and DLPFC-HC connectivity was assessed in 

241 healthy subjects for which n-back fMRI data was acquired. The same 241 subjects were also used 

for genotyping. All participants provided written informed consent that has been approved by the 

ethical committees of the Universities of Heidelberg.   

 

SpecificityMeth 

We have acquired DNA methylation data from patients with bipolar disorder (n=39), major 

depressive disorder (n=35) and autism (n=27). All patients were obtained at the Central Institute of 

Mental Health in Mannheim, Germany (Cao, Bertolino et al. 2016, Schneider, Walter et al. 2017). 

Patients were recruited from inpatient and outpatient treatment facilities and psychiatric diagnoses 

were confirmed based on DSM-IV and ADOS-G26 (for autism) criteria(Schwarz, Moessnang et al. 

2019). All participants provided written informed consent that has been approved by the ethical 

committees of the Universities of Heidelberg.   

 

RelativesMeth 

We included 88 unaffected first-degree relatives of patients with schizophrenia (n=27), bipolar 

disorder (n=15), major depressive disorder (n=29) and autism (n=17). All subjects were recruited at 

the Central Institute of Mental Health in Mannheim, Germany (Cao, Bertolino et al. 2016, Schneider, 

Walter et al. 2017). For the first-degree relatives, diagnostic assessments were based on ICD-10 and 

DSM-IV criteria. All participants provided written informed consent that has been approved by the 

ethical committees of the Universities of Heidelberg.   

 

Validation MRI 

In the Validation MRI sample, we investigated 152 healthy participants. All subjects had no history of 

psychiatric and neurological illness, prior head trauma, or current alcohol or drug abuse. The samples 

were collected at Central Institute of Mental Health in Mannheim, Germany (Geiger, Moessnang et 

al. 2018, Zang, Geiger et al. 2018). All participants provided written informed consent that had been 

approved by ethics committee of the Universitiy of Heidelberg. 

 

Validationpostmortem 

Validationpostmortem postmortem brain samples were donated through the Offices of the Chief Medical 

Examiners of the District of Columbia and of the Commonwealth of Virginia, Northern District to the 

NIMH Brain Tissue Collection at the National Institutes of Health in Bethesda, MD, according to NIH 

Institutional Review Board guidelines (Protocol #90-M-0142), which is originally described in (Jaffe, 

Gao et al. 2016). All postnatal non-psychiatric control donors (N=300) were free from psychiatric 

and/or neurologic diagnoses and substance abuse according to DSM-IV. All control donors had 

toxicology screening for the exclusion of acute drug and alcohol intoxication/use at time of death. 
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GWASMGS 

GWASMGS comprised genome-wide association data from 2718 healthy controls and 2296 patients 

with schizophrenia. All subjects were of European ancestry. The genotype data was obtained from 

Database of Genotypes and Phenotypes (dbGaP) 

(http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap)(Mailman, Feolo et al. 2007). The samples that 

included subjects with Caucasian origin were collected from (a) GAIN (Genetic Association 

Information Network) dataset [dbGAP accession number: phs000021.v2.p1] genotyped for 906,600 

SNPs(Shi, Levinson et al. 2009); (b) non-GAIN dataset [dbGAP accession number: phs000167.v1.p1] 

genotyped for 909,622 SNPs(Shi, Levinson et al. 2009). Diagnostic assessments were based on the 

Diagnostic and Statistical Manual of Mental Disorders criteria. Approximately 10% of the cohorts 

consisted of patients with schizoaffective disorder who had schizophrenia-like symptoms for at least 

six months. Detailed information on these cohorts has previously been described in (Shi, Levinson et 

al. 2009). 

 

Preprocessing of genome-wide DNA methylation data 

The Infinium MethylationEPIC BeadChip was used to obtain genome-wide DNA methylation profiles 

for validationMeth/MRI and validationMRI from whole blood samples. Raw signal intensities were 

obtained from IDAT files using the minfi Bioconductor R package (Aryee, Jaffe et al. 2014). Both 

background noise subtraction and dye-bias normalization are performed using the function 

preprocessNoob for each sample individually. Red and green intensities were mapped to the M(Cao, 

Bertolino et al.) and U(nmeth) channels, and the log median intensity in both channels was used to 

check for low quality samples  (the cutoff for low quality samples was defined as 10.5 for both 

channels, one subject was removed). Intensities from the sex chromosomes were used to predict sex, 

and we removed 10 samples that had predicted sex distinct from the phenotypic sex. Probes with a 

detection P-value > 0.05 in at least 1% of samples and annotated with SNPs at the target CpG or 

single base extension (SBE) site with minor allele frequency > 5% were filtered out. DNA methylation 

data from the validationpostmortem set were assessed using the Illumina HumanMethylation450 

microarray. Raw signal intensities from IDAT files were preprocessed and normalized same as above 

using the minfi R package. 

The data of four cohorts from the whole blood samples were corrected to account for the influence 

of potential confounders, which comprised cigarette smoking (de Leon and Diaz 2005), population 

structure (Liu, Hutchison et al. 2010), cellular composition, gender and age at  the time of 

recruitment. Smoking was quantified from DNA methylation levels as described previously (Zeilinger, 

Kuhnel et al. 2013, Elliott, Tillin et al. 2014). Population structure was determined from methylation 

data via Principal Components Analysis. Specifically, the first 10 principal components were 

considered as covariates. Cellular composition was quantified using the Epigenetic Clock tool 

(https://dnamage.genetics.ucla.edu/) (Horvath 2013) and included the seven recommended cell 

types: CD8.naive, CD8pCD28nCD45RAn, PlasmaBlast, CD4T, NK, Mono, Gran. The validationpostmortem 

set was corrected to adjust for gender, age, ethnic background and the first four PCs of the negative 

control probes on the microarrays, as well as brain cell types provided by (Jaffe, Gao et al. 2016). All 

covariates were used in a linear model to residualize each given methylation probe. This was 

performed separately for the each cohort and the resulting residuals were used for downstream 

analysis. For all cohorts, we focused on the overlapping set of autosomal methylation sites to limit 

the potential influence of sex on machine learning due to the phenomenon of X chromosome 

inactivation or the existence of an additional X chromosome in female subjects. In total, 389,228 

CpGs were retained for subsequent analysis. 

http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap
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Genotyping QC and imputation 

Infinium PsychArray BeadChip by Illumina (“PsychChip”) was used for genotyping samples from 

ValidationMeth/MRI and ValidationMRI. The initial number of SNPs was 577,832 without considering 

chromosome Y and the mitochondrial DNA. For all given samples, standard quality control (QC) and 

imputation are performed using Gimpute pipeline (Chen, Lippold et al. 2018). The following QC steps 

were applied: 1.) Remove male subjects with more than 10 haploid heterozygous SNPs on 

chromosome X; 2.) Remove SNPs with missing genotyping rate > 5%; 3.) Exclude samples with 

missingness >= 0.02; 4.) Exclude samples with autosomal heterozygosity deviation |Fhet| >= 0.2; 5.) 

Remove SNPs with the proportion of missing genotyping > 2%; 6.) If controls existed in the dataset, 

remove SNPs with difference in SNP missingness between cases and controls >= 0.02;  7.) Remove 

SNPs if the Hardy-Weinberg equilibrium exact test P-value was < 1 x 10-6 in controls. Imputation was 

carried out using IMPUTE2/SHAPEIT (Howie, Donnelly et al. 2009, Howie, Fuchsberger et al. 2012, 

Delaneau, Zagury et al. 2013), which chooses a European reference panel for each study sample in 

each 3 Mb segment of the genome. This imputation reference set is from the full 1000 Genome 

Project dataset (August 2012, 30,069,288 variants, release “v3.macGT1”). The length of buffer region 

is set to be 500 kb on either side of each segment. All other parameters were set to default values 

implemented in IMPUTE2.   
Genome-Wide Human SNP Array 6.0 by Affymetrix was used for GWASMGS genotyping. The same 

genotyping QC and imputation procedure as above was applied for GWASMGS data.  

 

Population structure and relatedness testing  

After imputation, SNPs with high imputation quality (INFO >= 0.6) and successfully imputed in >= 20 

samples were retained. The proportion of alleles shared identity-by-decent estimated using PLINK 

was used to identify relatedness for all pairs of samples (Stevens, Heckenberg et al. 2011). The 

following criteria were used to select a subset of autosomal SNPs for relatedness testing:  1.) SNPs 

from the MHC region were excluded (chr6:28,477,797-33,448,354); 2.) SNPs were pruned based on 

linkage disequilibrium (r2 > 0.02 within 50 variant windows); 3.) SNPs with minor allele frequency 

(MAF) < 0.05 were removed. A threshold of π ̂ > 0.2 was used to identify related pairs of samples and 

exclude one member of each pair at random. Using the same set of autosomal SNPs, we determined 

principal components to be used as covariates during downstream analyses. The final imputed 

dataset comprised of N=7,660,409 autosomal SNPs for ValidationMeth/MRI and ValidationMRI, and N= 

11,798,966 autosomal SNPs for GWASMGS. 

  

Polygenic risk score (PRS) determination on genotype data 

The schizophrenia PRS was computed using Psychiatric Genomics Consortium (PGC) summary 

statistics taken from (Schizophrenia Working Group of the Psychiatric Genomics 2014) following the 

method developed by Purcell and colleagues (International Schizophrenia, Purcell et al. 2009) and 

using the PRSice software (Euesden, Lewis et al. 2015). Briefly, PRSs were calculated by summing 

schizophrenia-associated alleles, weighted by the natural log of the odds ratio. To ensure that SNPs 

were not in high linkage disequilibrium (LD) with one another, clumping was applied on the genotype 

data using an LD r2 threshold of 0.1 and a genomic distance threshold of 250 kb. PRSs were 

constructed based on the P-value threshold 0.05. The PRS score was then transformed into z-scores 

separately for validationMeth/MRI and validationMRI and utilized for subsequent analyses.  
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BioMM framework     

BioMM framework consisted of two major stages which is an updated version of the BioMM (Chen 

and Schwarz 2017) and is publically available as a Bioconductor R package (vs 1.1.11) (Chen and 

Schwarz 2019). Parameters of BioMM were optimized through 100-fold bootstrapping in the training 

data. Feature selection and random forest models with 1000 trees were employed at both stages. At 

the first stage, methylation sites with a case-control difference of P < 0.05, 0.1, 0.5 and 1 (no feature 

selection) using the Wilcoxon test were selected for a given pathway to reduce the impact of non-

predictive features. The best p value threshold was determined by 100 times bootstrapping. When no 

methylation sites passed the significance threshold, the 10% most significant sites determined using 

the Wilcoxon test were selected. At the second stage, the association between pathway-level 

features and diagnosis was tested using Wilcoxon tests and corrected for multiple hypothesis testing 

according to the method of Bonferroni. Then only features that showed a positive association with 

diagnosis were used for building the second-level classifier. This was due to the fact that in random 

data, the machine learning-based compression of methylation sites into pathway-level features can 

yield features that are strongly, but negatively associated with diagnoses (Perlich and Swirszcz 2011). 

The above procedure ensured such features were not used for prediction. Prediction performance 

for the training data was evaluated using 10-fold cross validation. Second-stage analyses were 

repeated 20 times and the predictions were averaged, to reduce the effect of variability intrinsic to 

random forest prediction.  

 

Permutation test procedure 

Two permutation strategies were employed to explore the predictive value of the DNA methylation 

signatures identified by the BioMM procedure: 

1.) Permutation of diagnostic label 

During this procedure, diagnostic labels were permuted prior to application of the BioMM procedure. 

It was expected that BioMM will identify a random DNA methylation ‘signature’ that would lead to 

an AUC of approximately 0.5 when applied in independent test data. Due to the computational 

complexity of the procedure, only 30 permutations were performed. 

2.) Permutation of pathway level features  

This procedure explores the specificity of the DNA methylation signature for the set of pathways 

selected at the second stage of the BioMM procedure. For this, the same number (here 57) of 

pathways were selected randomly and used for building the second stage classifier. It was expected 

that a high biological specificity for the actual pathways would lead to a substantial drop in AUC 

values when applying the classifier that is based on randomly selected pathways to independent 

data. 500 permutations were performed. An empirical P-value was determined as (Good 2013):   

𝑝 =
|{D′ ∈ Ď: e(f, D′)} ≤ 𝑒(𝑓, 𝐷)| + 1

k + 1
 

Where Ď is a set of k permuted versions D’ of the original data D sampled from a given null 

distribution.  
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Analysis of schizophrenia specificity 

To test the specificity of the identified PMS for schizophrenia, predictions were analyzed in other 

related psychiatric conditions including bipolar disorder, major depressive disorder and autism. We 

applied the same BioMM framework on genome-wide DNA methylation data from these conditions. 

Machine learning for case-control prediction based on GWAS data 

We applied the same BioMM framework on GWASMGS but with 50-fold bootstrapping to reduce 

computational running time. Feature selection and random forest models with 1000 trees were 

carried out at both stages. At the first stage, SNPs with a case-control difference of P < 0.05 using the 

Wilcoxon test were picked for each pathway and if no SNPs passed this significance threshold, the 

10% most significant SNPs determined using the Wilcoxon test were selected. At the second stage, 

the association between pathway-level features and diagnosis was tested using Wilcoxon tests and 

corrected for multiple hypothesis testing according to the method of Bonferroni. Only features that 

showed a positive association with diagnosis were used for building the second-level classifier. The 

final prediction performance for the training data was evaluated using 10-fold cross validation. 

 

Working memory and faces matching task - imaging data acquisition and preprocessing 

Whole-brain fMRI was performed on two 3T MR systems (Siemens Trio, Erlangen, Germany) in 

Mannheim, Germany. In the validationMeth/MRI sample, we studied brain function during working 

memory using a well-established n-back fMRI paradigm as previously described (Rasetti, Sambataro 

et al. 2011, Schneider, Walter et al. 2017). In addition, we tested the specificity of the working 

memory imaging phenotype by using the ‘faces matching’ task(Cao, Bertolino et al. 2016). Briefly, for 

the n-back working memory task, subjects were instructed to press the button when a stimulus 

(number 1-4) was presented. For the sensorimotor control condition (0-back), subjects pressed the 

button that was linked to the current number while during the working memory condition (2-back), 

subjects were asked to press the button corresponding to the number presented two stimuli before. 

For the faces matching task, subjects were instructed to respond to the fearful or angry face 

expressions during emotional conditions and simple geometric shapes during the control condition. 

Both the n-back and faces matching tasks were block design and each of the block was 30 seconds. 

Here, all functional data were acquired using echo planar imaging (EPI) sequence with the following 

specifications: 28 axial slices, 4 mm slice thickness, 1 mm gap, TR/TE = 2000/30 ms, 80° flip angle, 192 

mm × 192 mm field of view (FOV), 64 × 64 matrix. In the validationMRI sample, we studied brain 

function during working memory using a well-established Sternberg paradigm as previously 

described(Geiger, Moessnang et al. 2018). Briefly, for the Sternberg task, subjects were trained to 

memorize five letters (e.g. FGMPT) and were asked to press the button if the upcoming presented 

letter belonged to the five trained letters during training condition. For novel conditions, five novel 

letters were presented (e.g. DCKWX) first and subjects were asked to respond to the upcoming 

presented letter if it was shown before. The Sternberg paradigm comprised a sensorimotor control 

condition (where five ‘A’ were presented) and a resting baseline condition (where subjects were 

instructed to only look at the screen). Here, functional images were acquired with an EPI sequence 

with the following specifications: TR = 1790 ms, TE = 28 ms, flip angle = 76°, 34 axial slices, 3 mm slice 

thickness, matrix size: 64 × 64, FOV: 192 × 192 mm. Images were preprocessed using standard 

processing routines in SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). Briefly, preprocessing procedures 

in included realignment to the first image of the time series, then registered to the mean of the 

images, slice time correction. Functional images were then co-registered to 3D T1 weighted 

anatomical images. The 3D T1-weighted anatomical images were segmented into grey matter, white 

matter and cerebrospinal fluid and other non-brain tissues. The computed warps from the 

http://www.fil.ion.ucl.ac.uk/spm/
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segmentation steps then were applied to the functional images for nonlinear normalization to the 

template in Montreal Neurological Institute (MNI) space, resampling to 3 mm isotropic voxels, and 

smoothed with an 8 mm full-width at half-maximum (FWHM) Gaussian Kernel.  

 

First-level DLPFC-HC functional connectivity 

DLPFC ROI definition and calculation of DLPFC-HC functional connectivity were performed consistent 

with our previous study (Schneider, Walter et al. 2017). In short, for each individual, we extracted the 

first eigenvariate of the seed time series from a 6 mm sphere centered on the individual activation 

maximum in the “2-back > 0-back” (n-back task, validationMeth/MRI) or “novel > practice” (Sternberg 

task, validationMRI) contrasts in the right DLPFC (defined by anatomical masks covering Brodmann 

area (BA) 46 and BA 9). Then, individual first-level models were defined with the subject-specific 

DLPFC time series as covariate of interest, and the following covariates of non-interest: (1) 

movement parameters from the realignment step, (2) first eigenvariates derived from cerebral spinal 

fluid and white matter masks, and regressors encoding for the experimental conditions. The model 

estimation step included a high pass filter of 128 seconds and an adjustment for the global brain 

signal. For an illustration of the DLPFC ROI and hippocampus mask used in validationMeth/MRI and 

validationMRI, please see Supplementary Figures 4 and 5, respectively.   

Functional connectivity for the ‘faces matching’ task were computed following the same procedures 

and parameters as the working memory fMRI data. We used individual DLPFC ROIs that were defined 

for the working memory tasks. 

 

Structural MRI data acquisition, preprocessing and influence. 

The high resolution structural MRI data were acquired using the magnetization-prepared rapid 

gradient echo sequence (3D-MPRAGE) and the following parameters: for validationMeth/MRI sample, TR 

1570 ms, TE 2.75 ms, TI 800 ms, 176 slices, 256 mm FOV, and 15° flip angle and 1 mm3 spatial 

resolution (Cao, Bertolino et al. 2016). For validationMRI sample, TR = 2530 ms, TE = 3.8 ms, TI = 1100 

ms, 176 slices, 256 x 256 mm field of view, 7° flip angle, and 1 mm3 spatial resolution (Zang, Geiger et 

al. 2018).  Briefly, the grey matter (GM), white mater (Malki, Tosto et al.) and cerebral spinal fluid 

(CSF) were segmented and spatially normalized linearly and nonlinearly to the standard MNI 

template using the Diffeomorphic Anatomical Registration Through Exponential Lie algebra (DARTEL) 

template and approach. Then the images were modulated with the Jacobian determinants to correct 

for differences in head size. Additionally, gray matter maps were corrected for bias-field 

inhomogeneities and were cleaned up for gray matter partitions. Next, we applied a classical Markov 

random field model and spatial adaptive nonlocal means denoising. We then smoothed the 

preprocessed structural data using a 8mm FWHM Gaussian kernel. 

 

 

Task specificity and structural influences 

To investigate whether the identified association between PMS and DLPFC-HC connectivity, we 

tested the association between PMS and DLPFC-HC connectivity using emotion processing ‘faces 

matching’ task in the sample validationMeth/MRI (Cao, Bertolino et al. 2016). In addition to evaluate the 

structural influences of DLPFC and hippocampus grey matter volume, we extracted mean grey matter 

volume from the individual DLPFC ROIs and the right hippocampus (6 mm sphere ROI MNI [33 -22 -

12] for validationMeth/MRI and MNI [30 -37 -7] for validationMRI). We assessed the task specificity of the 

association between PMS and DLPFC-HC connectivity using post-hoc analyses, treating age and sex as 
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covariates of non-interests. For analyses of evaluating the structural influences on PMS and DLPFC-

HC connectivity association, we further treated grey matter volume of the individual DLPFC ROIs and 

the hippocampus as covariates of non-interests.  

Previous publications have indicated that during working memory processing, the connectivity of 

DLPFC to parietal regions were significantly increased in a population with high genetic risk for 

schizophrenia(Whalley, Simonotto et al. 2005) and interhemispheric DLPFC connectivity was reduced 

in risk gene carriers (ZNF804a rs1344706)(Rasetti, Sambataro et al. 2011). We in addition tested the 

association between PMS and DLPFC-parietal regions (MNI [±42 -48 48], 6mm sphere ROI) and 

interhemispheric DLPFC (left DLPFR ROI at MNI [-48 33 30]) connectivity. 

 

Medication influences on PMS and DLPFC-HC connectivity 

To clarify the potential influence of medication on the  PMS as well as DLPFC-HC connectivity, we 

acquired and calculated chlorpromazine equivalents (for details please refer to our previous 

study(Schwarz, Moessnang et al. 2019)) from 33 out of 36 patients in our validationMeth/MRI. We used 

linear regression model to test the association between chlorpromazine equivalents and PMS as well 

as DLPFC-HC connectivity. 

 

Statistical analysis 

Association between PMS and DLPFC-HC functional connectivity were assessed using linear 

regression in SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/), using PMS as covariate of 

interest and age and sex as covariates of non-interest. An F-test was applied for the discovery sample 

(validationMeth/MRI) and a one-tailed T-test for the replication sample (validationMRI). PMS and DLPFC-

HC connectivity associations in the imaging space were corrected using family-wise small-volume 

correction in the hippocampus based on the Automated Anatomical Labeling (AAL) template. Using 

small-volume correction approach based on the hippocampus mask could allow us to detect location 

within the hippocampus that shows strongest association between DLPFC-HC connectivity and PMS. 

For validationMeth/MRI, we used bilateral hippocampus for small-volume correction. For validationMRI, 

we focused on the anterior or posterior section of the hippocampus (see(Erickson, Voss et al. 2011), 

determined by y coordinate in MNI space of the hippocampus center of gravity) that showed the 

highest correlation between PMS and DLPFC-HC connectivity in validationMeth/MRI. Other post-hoc 

statistics were performed in R using mean DLPFC-HC connectivity extracted from a 6mm sphere ROI 

located at the peak voxel identified by SPM group statistics outlined above. Associations between 

PMS and the schizophrenia PRS, as well as the PMS by PRS interaction on DLPFC-HC connectivity 

were tested using multiple linear regression, accounting for the effects of sex and age. All analyses 

involving PRS additionally incorporated 10 genetic principal components as covariates to account for 

the potential confounding effect of genetic population structure. 

2.1.9 Supplementary Results 

Task specificity and structural confounding influences on the identified associations between PMS and 

DLPFC-HC coupling 

In the validationMeth/MRI sample, we found no significant association between the PMS and DLPFC-HC 

connectivity during emotion processing ‘faces matching’ task (P=0.60). In the validationMeth/MRI 

sample, we did not find significant association between PMS and DLPFC-parietal region and 

interhemispheric DLPFC connectivity (PFDR values > 0.14, Hochberg correction). In the validationMRI 

sample, the association between PMS and DLPFC-parietal region and interhemispheric DLPFC 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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connectivity were not significant (PFDR values > 0.42, Hochberg correction). In addition, we found the 

association between PMS and DLPFC-HC connectivity were still significant after controlling for grey 

matter volume of DLPFC and the hippocampus (t = -3.70, P<0.001 in validationMeth/MRI sample; t = -

3.48, P=0.001 in validationMRI sample). 

 

Analysis of residual confounding effects on the PMS and DLPFC-HC connectivity 

Linear regression was used to explore the association between the PMS and potential confounding 

variables in HC across studies (see Supplementary Table 6). We found that despite the employed 

correction procedure for confounding, the predicted PMS were significantly associated with some of 

all available potential confounders. Since this may have downstream impact on classification 

accuracy, we additionally determined AUC-values for case-control differentiation using PMS 

residualized for the effects of all potential variables (see Supplementary Table 7). The residualized 

predictions showed AUC values of approximately 0.60 across cohorts, which supports the 

reproducibility of the PMS-effects despite potentially present residual confounding.  

We additionally performed linear regression analyses on the association of DLPFC-HC connectivity 

and covariates of non-interests including age, sex, cigarette smoking score, 10 principal components 

determined via principle component analyses of the methylation data and seven cell types: 

CD8.naive, CD8pCD28nCD45RAn, PlasmaBlast, CD4T, NK, Mono, Gran. None of the 20 covariates 

were associated with the DLPFC-HC connectivity (PFDR values > 0.32 for validationMeth/MRI sample; PFDR 

values > 0.30 for validationMRI sample). 

 

Associations between PMS, DLPFC-HC connectivity and medication in schizophrenia patients 

We acquired and calculated chlorpromazine equivalents from 33 out of 36 patients in our 

validationMeth/MRI sample and found no correlation between the predicted PMS and chlorpromazine 

equivalents (p = 0.30). Neither did we observed significant correlation between DLPFC-HC 

connectivity and chlorpromazine equivalents (p = 0.28). 

 

Association between BioMM-derived polygenic risk signature, PMS and DLPFC-HC connectivity 

We used the BioMM procedure to identify a polygenic risk score from GWAS data using the same 

pathways assignment as used for DNA methylation data (PRSBioMM). PRSBioMM was significantly 

predictive of schizophrenia in GWASMGS cohort with a p value of 2.88x10-15 accounting for sex, age 

and 10 PCs (AUC=0.58, R2=0.015). However, DLPFC-HC connectivity was not associated with the 

schizophrenia PRSBioMM in validationMeth/MRI (P=0.299). It was significantly associated in validationMRI 

(P=0.032) but in a wrong direction (t=2.168). Similarly, no significant interactions between PMS and 

PRSBioMM on DLPFC-HC connectivity were found in validationMeth/MRI (P=0.104) or validationMRI 

(P=0.443). Detailed comparative information is shown in Supplementary Table 3. 

 

Permutation test analysis 

Two permutation strategies were employed to characterize the predictive value of the DNA 

methylation signatures identified by the BioMM procedure: I) Permutation of the diagnostic label 

where diagnostic labels were permuted prior to application of the BioMM procedure; II) Permutation 

of pathway level features, where a random set of 57 pathways was selected from stage 2 data to 

build a stage-2 classifier. The results of the permutation tests are shown in Supplementary Tables 4 

and 5. Permutation of the diagnostic label yielded AUC values close to 0.5 for cross-validation in 

discoveryMeth as well as independent prediction in the remaining cohorts. These AUC values were 

significantly lower (empirical P < 0.032, based on 30 permutations due to the high computational 
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demand of the procedure) than those observed in the non-permuted data, with the exception of 

validationpostmortem (P=0.23). The subsequent imaging associations were also significantly weaker 

compared to non-permuted data (P < 0.032).  

For the permutation of pathway level features, the predictions of all datasets but validationpostmortem 

showed an empirical P-value < 0.002 based on 500 permutations, with the exception of 

validationpostmortem (P=0.10), supporting a degree of specificity of the predictive signal for the 57 

originally identified pathways. 

 

2.1.10 Supplementary Tables  

Supplementary Table 1. Differences of subject demographics between patients and controls (P values are 
based on the Wilcoxon signed-rank test (continuous variables) or logistic regression (categorical variables), 
respectively)  

  discoveryMeth* validationMeth# validationMeth/MRI   validationpostmortem 

Covariates whole blood Covariates post-mortem 

Sex 7.44x10
-14

 0.088 3.27x10
-3

 Sex 0.067 

Age 1.50×10
-9

 0.199 1.59×10
-4

 Age 7.63×10
-3

 

PC1 2.82×10
-5

 8.09×10
-13

 0.713 negControl_PC1 0.347 

PC2 9.21×10
-12

 1.85×10
-15

 0.868 negControl_PC2 0.107 

PC3 5.71×10
-2

 0.181 0.613 negControl_PC3 0.969 

PC4 0.357 8.58×10
-4

 0.623 negControl_PC4 0.496 

PC5 2.18×10
-2

 0.615 0.470 race 0.102 

PC6 1.30×10
-2

 2.20×10
-7

 0.031     

PC7 0.701 0.589 0.331     

PC8 6.42×10
-3

 4.29×10
-2

 0.903     

PC9 3.45×10
-2

 1.24×10
-3

 0.574     

PC10 4.65×10
-2

 5.45×10
-2

 0.760     

smokeScore 3.31×10
-42

 1.32×10
-26

 9.750×10
-6

      

  

          Cell types 

CD8.naive 2.86×10
-2

 0.221 0.034 ES 0.286 

CD8pCD28nCD45RAn 0.963 3.80×10
-2

 
0.401 

NPC 0.412 

PlasmaBlast 5.05×10
-3

 9.32×10
-7

 0.964 DA_NEURON 0.359 

CD4T 4.68×10
-3

 3.47×10
-8

 0.410 NeuN_pos 0.190 

NK 2.56×10
-8

 1.57×10
-8

 0.818 NeuN_neg 0.265 

Mono 0.698 2.50×10
-2

 0.956     

Gran 2.34×10
-10

 6.60×10
-20

 0.531     

*age information was missing for 37 subjects and estimated using the Epigenetic Clock tool as described in the 

methods.  

# age information was missing for 182 subjects and estimated using the Epigenetic Clock tool as described in 

the methods.  
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Supplementary Table 2. Overall prediction performance of BioMM on different cohorts and specificity analysis. 

* low statistical power likely due to small sample size in these cohorts. P-value is adjusted for all potential 

confounding variables. 

 

   Cohorts Status Control/Case PMS prediction 

   AUC R2 P value 

DiscoveryMeth SCZ 322/353 0.78 0.21 2.95 x10
-6

 

ValidationMeth SCZ 433/414 0.69 0.10 1.24 x10
-7

 

*ValidationMeth/MRI SCZ 331/36 0.74 0.22 4.95x10
-2

 

*SpecificityMeth 

AUT 331/27 0.526 0.006 0.658 

BP 331/39 0.578 0.015 0.211 

MDD 331/35 0.509 0.004 0.164 

Validationpostmortem  SCZ 136/108 0.63 0.08 4.20x10
-4

 

 

Supplementary Table 3. The association between PMS and DLPFC-HC, PMS and PRS, PMS and PRSBioMM, as well 

as the interaction of these two PRSs and PMS on DLPFC-HC in two different cohorts. ** Significant result was 

observed in the imaging space after family-wise error correction. 

 

Association ValidationMeth/MRI (N=241) ValidationMRI (N=152) 

 
T value P value T value P value 

**PMS vs DLPFC-HC -3.81 0.04 -3.54 0.016 

PRSBioMM vs DLPFC-HC 1.042 0.299 2.168 0.032 

PRS vs DLPFC-HC 0.263 0.793 0.432 0.667 

PRSBioMM vs PMS 0.389 0.698 0.031 0.975 

PRS vs PMS 0.002 0.999 0.252 0.802 

PMSxPRSBioMM vs DLPFC-HC 1.633 0.104 0.769 0.443 

PMSxPRS vs DLPFC-HC -1.312 0.191 -0.835 0.405 
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Supplementary Table 4. Permutation of diagnostic label for both machine learning prediction and the 

subsequent testing of imaging associations. Due to computational complexity, 30 permutations were 

performed. 

Cohorts Prediction/Association Measure Mean/SD P value 

discoveryMeth Cross validation AUC 0.532±0.026 < 0.032 

validationMeth Independent prediction AUC 0.517±0.017 < 0.032 

validationMeth/MRI Independent prediction AUC 0.539±0.03 < 0.032 

validationpostmortem Independent prediction AUC 0.58±0.059 =0.226 

validationMeth/MRI Imaging association T value -0.348±0.852 < 0.032 

validationMRI Imaging association T value -0.243±0.999 < 0.032 

 

 
Supplementary Table 5. Permutation of pathway level features for both machine learning prediction and 

subsequent testing of imaging associations. 500 permutations were performed.  

 

Cohorts Prediction/Association Measure Mean/SD P value 

discoveryMeth Cross validation AUC 0.707±0.017 < 0.002 

validationMeth Independent prediction AUC 0.563±0.041 < 0.002 

validationMeth/MRI Independent prediction AUC 0.572±0.058 < 0.002 

validationpostmortem Independent prediction AUC 0.57±0.045 = 0.1018 

validationMeth/MRI Imaging association T value -1.203±0.982 < 0.002 

validationMRI Imaging association T value -0.486±1.024 < 0.002 

 
Supplementary Table 6. The association between predicted PMS and the confounding variables in controls (P 

values are based on generalized linear regression) 

  discoveryMeth* validationMeth# validationMeth/MRI   validationpostmortem 

Covariates whole blood Covariates post-mortem 

Sex 0.928 0.679 2.81x10
-7

 Sex 0.460 

Age 0.038 0.506 1.11x10
-4

 Age 0.179 

PC1 2.08x10
-13

 0.011 8.26x10
-5

 negControl_PC1 0.052 

PC2 0.134 0.487 3.99x10
-3

 negControl_PC2 0.224 

PC3 0.160 0.340 0.040 negControl_PC3 0.234 

PC4 0.282 0.121 1.99x10
-5

 negControl_PC4 0.006 

PC5 0.068 0.244 1.27x10
-8

 race 0.376 

PC6 0.041 0.243 8.13x10
-4

     

PC7 0.091 0.304 1.83x10
-7

     

PC8 2.81x10
-5

 0.610 0.012     

PC9 0.119 0.981 0.164     

PC10 0.084 0.791 0.691     

smokeScore 4.78x10
-16

 4.89x10
-10

 2.64x10
-7

     

  

          Cell types 

CD8.naive 0.339 0.446 1.98x10
-4

 ES 0.316 

CD8pCD28nCD45RAn 
0.855 0.649 1.53x10

-6
 

NPC 
0.089 

PlasmaBlast 0.804 6.59x10
-3

 0.022 DA_NEURON 0.088 

CD4T 0.361 8.39x10
-3

 1.64x10
-3

 NeuN_pos 0.925 

NK 0.988 0.027 0.086 NeuN_neg 0.964 

Mono 2.54x10
-4

 0.029 0.427     

Gran 0.072 0.014 0.062     
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Supplementary Table 7. Prediction performance of BioMM on different cohorts and specificity analysis 

following residualization of predicted PMS scores against all potential covariates using linear regression. * 

low statistical power likely due to small sample size in these cohorts. P-value is adjusted for all potential 

confounding variables. 

 

Cohorts Status Control/Case PMS prediction 

   AUC P value 

DiscoveryMeth SCZ 322/353 0.60 2.95 x10
-6

 

ValidationMeth SCZ 433/414 0.59 1.24 x10
-7

 

*ValidationMeth/MRI SCZ 331/36 0.62 4.95x10
-2

 

*SpecificityMeth 

AUT 331/27 0.524 0.658 

BP 331/39 0.578 0.211 

MDD 331/35 0.565 0.164 

Validationpostmortem SCZ 136/108 0.62 4.20x10
-4

 

 

 

 

 

Supplementary Table 8. Top 10 schizophrenia-associated pathways in the discovery sample (discoveryMeth). 

(P values are based on the Wilcoxon signed-rank test) 

ID Description 
Z 

score 
Size P value 

GO:0032088 negative regulation of NF-kappaB transcription factor 

activity 

9.188 1623 7.72x10
-23

 

GO:0010977 negative regulation of neuron projection development 8.905 1929 2.41x10
-21

 

GO:0030097 hemopoiesis 8.667 1423 9.01x10
-20

 

GO:0000083 regulation of transcription involved in G1/S transition 

of mitotic cell cycle 

8.557 765 1.01x10
-19

 

GO:2000311 regulation of AMPA receptor activity 7.037 955 1.25 x10
-13

 

GO:0098962 regulation of postsynaptic neurotransmitter receptor 

activity 

6.948 353 3.13x10
-13

 

GO:0043154 negative regulation of cysteine-type endopeptidase 

activity involved in apoptotic process 

7.081 1554 3.33x10
-13

 

GO:0031648 protein destabilization 6.747 986 2.08x10
-12 

GO:1900273 positive regulation of long-term synaptic potentiation 6.637 675 3.94x10
-12

 

GO:0019395 fatty acid oxidation 6.753 372 4.96x10
-12
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Supplementary Table 9. 30 most significant CpGs derived from top 10 pathways. (P values are based on the 

Wilcoxon signed-rank test) 

 

ID CHR pos RefGene island P value Rho 

cg14385231 13 76112274 COMMD6 S_Shore 4.70x10
-11

 -0,023 

cg20227766 1 27998703 IFI6 S_Shelf 3.52x10
-10

 -0,002 

cg22062597 12 1905547 CACNA2D4 Island 4.15x10
-10

 -0,03 

cg21012647 2 201981814 CFLAR N_Shore 3.87x10
-9

 0,008 

cg18316974 1 92947035 GFI1 Island 1.03x10
-8

 0,079 

cg18316974 1 92947035 GFI1 Island 1.03x10
-8

 0,079 

cg18316974 1 92947035 GFI1 Island 1.03x10
-8

 0,079 

cg18316974 1 92947035 GFI1 Island 1.03x10
-8

 0,079 

cg12017057 20 377006 TRIB3 Island 1.27x10
-8

 -0,003 

cg18146737 1 92946700 GFI1 Island 3.84x10
-7

 0,077 

cg18146737 1 92946700 GFI1 Island 3.84x10
-7

 0,077 

cg18146737 1 92946700 GFI1 Island 3.84x10
-7

 0,077 

cg18146737 1 92946700 GFI1 Island 3.84x10
-7

 0,077 

cg25286967 7 75623934 TMEM120A Island 1.60x10
-6

 -0,034 

cg25286967 7 75623934 TMEM120A Island 1.60x10
-6

 -0,034 

cg01415275 7 75624096 TMEM120A Island 4.28x10
-5

 -0,03 

cg01415275 7 75624096 TMEM120A Island 4.28x10
-5

 -0,03 

cg09846458 19 55972646 ISOC2 N_Shore 1.31 x10
-4

 0,02 

cg09846458 19 55972646 ISOC2 N_Shore 1.31 x10
-4

 0,02 

cg09846458 19 55972646 ISOC2 N_Shore 1.31 x10
-4

 0,02 

cg09846458 19 55972646 ISOC2 N_Shore 1.31 x10
-4

 0,02 

cg12195369 19 55972957 ISOC2 Island 1.33 x10
-4

 0,018 

cg12195369 19 55972957 ISOC2 Island 1.33 x10
-4

 0,018 

cg12195369 19 55972957 ISOC2 Island 1.33 x10
-4

 0,018 

cg12195369 19 55972957 ISOC2 Island 1.33 x10
-4

 0,018 

cg06338710 1 92946187 GFI1 Island 1.69 x10
-4

 0,047 

cg06338710 1 92946187 GFI1 Island 1.69 x10
-4

 0,047 

cg06338710 1 92946187 GFI1 Island 1.69 x10
-4

 0,047 

cg06338710 1 92946187 GFI1 Island 1.69 x10
-4

 0,047 

cg02105261 17 1945138 DPH1 Island 1.74 x10
-4

 -0,108 
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Supplementary Table 10. The existing evidence for the top genes harboring top CpGs from Supplementary 

Table 9.  

Gene names Definition Reference 

COMMD6 COMMD6 belongs to a family of NF-kappa-B (Roussos, Katsel et al. 2013) 

CACNA2D4 

Calcium channel, voltage-dependent, alpha 

2/delta subunit 4 

(Cross-Disorder Group of the 

Psychiatric Genomics 2013, Purcell, 

Moran et al. 2014) 

GFI1 Growth Factor Independent Protein 1  (Hannon, Dempster et al. 2016) 

TRIB3 Tribbles Pseudokinase 3 (Duan, Sanders et al. 2015) 

TMEM120A Transmembrane protein 120A (Glatt 2009) 

 

 

 

 
Supplementary Table 11. Prediction performance of BioMM on different cohorts using validationpostmortem as 

the discovery set. 

Data sets AUC R2 

validationpostmortem 0.738 0.17 

discoveryMeth 0.572 0.006 

validationMeth 0.566 0 

validationMeth/MRI 0.52 0.001 
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2.1.11 Supplementary Figures  

 

 
Figure S1. PMS comparision in validationmeth/MRI and relativesMeth. The control group is compared with the 

relscz: first-degree relatives of schizophrenia patients; relbp: first-degree relatives of patients  with bipolar 

disorder; relmdd: first-degree relatives of patients with major depressive disorder; relaut: first-degree relatives 

of patients  with autism. P-values are denoted between comparison groups based on the t-test. 
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Figure S2. PMS comparision in validationMeth/MRI and specificityMeth. The schizophrenia group is compared with 

the healthy control group; bp: bipolar disorder; md: major depressive disorder; aut: autism. P-values are 

denoted between comparison groups based on the t-test. 

 

 

 
Figure S3. Post-hoc partial regression plots of the association between PMS and DLPFC-HC connectivity in the 

n-back (validationMeth/MRI, panel A) and Sternberg (validationMRI, panel B) working memory fMRI data. The post-

hoc partial regression plot from the identified 6mm sphere ROI centered at the peak voxel (Panel A: T = 3.81, 

pFWE = 0.040, MNI [33 -22 -13], bilateral hippocampus corrected; Panel B: T = 3.54, pFWE = 0.016, MNI [33 -37 -

7], right posterior hippocampus corrected). The partial regression plots were adjusted for age and sex and are 

only shown for illustration purpose. No statistical interference was further made based on these plots. 
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Figure S4 DLPFC ROI and hippocampus mask in the validationMeth/MRI sample. Panel A shows the right BA 9 and 

46 area and an overlap of all subjects’ 6mm DLPFC sphere ROIs. Panel B shows the bilateral hippocampus 

masks from AAL. 

 

 

 

 

 
Figure S5 DLPFC ROI and hippocampus masks in validationMRI sample. Panel A shows the right BA 9 and 46 area 

and an overlap of all subjects’ 6mm DLPFC sphere ROIs. Panel B shows the right posterior hippocampus masks 

(determined by the y MNI coordinates of COG and we choose the posterior overlap mask from the AAL 

template) that we have applied for small volume correction analysis. 
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2.2 Study 2 - Male increase in brain gene expression variability is linked to genetic risk 

for schizophrenia2 

2.2.1 Abstract 

Schizophrenia shows substantial sex differences in age of onset, course and treatment response but 

the biological basis of these effects is incompletely understood. Here we show that during human 

development, males show a regionally specific decrease in brain expression similarity compared to 

females. The genes modulating this effect were significantly co-expressed with schizophrenia risk 

genes during prefrontal cortex brain development in the fetal period as well as during early 

adolescence. This suggests a genetic contribution to a mechanism through which developmental 

abnormalities manifest with psychosis during adolescence. It further supports sex differences in brain 

expression variability as a factor underlying the well-established sex differences in schizophrenia.  

 

2.2.2 Introduction 

Schizophrenia is a severe developmental mental illness with an incidence approximately 1.4 times 

higher in men compared to women(Aleman, Kahn et al. 2003). The disorder is substantially heritable 

and a large number of common and rare variants have been associated with illness risk(International 

Schizophrenia, Purcell et al. 2009, Sullivan, Daly et al. 2012, Ripke, O'Dushlaine et al. 2013, 

Schizophrenia Working Group of the Psychiatric Genomics Consortium 2014). A widely accepted 

neurodevelopmental hypothesis posits that genetically determined alterations in early brain 

development interact with developmental changes during adolescence in the prefrontal cortex to 

lead to the manifestation of psychosis(Weinberger 1987, Birnbaum R 2017). Consistent with this, 

developmentally changing prefrontal cortex expression has been found to be linked to neuronal 

differentiation and maturation, as well as genetic schizophrenia risk(Jaffe, Shin et al. 2015).  

In men, the illness has a more severe course characterized by more pronounced negative symptoms 

as well as cognitive impairment(Leung and Chue 2000, Maric, Krabbendam et al. 2003), although 

evidence has been reported that substance abuse in men may confound such clinical 

differences(Abel, Drake et al. 2010). Males with schizophrenia have also, albeit inconsistently, been 

reported to have a lower age of onset, show more pronounced alterations of brain morphology and 

poorer response to antipsychotic medication(Pinals, Malhotra et al. 1996, Leung and Chue 2000, 

Morgan VA 2008, Abel, Drake et al. 2010). Genetic risk associations, as well as molecular profiles, 

contain sex-dependent factors(Goldstein, Cherkerzian et al. 2013, Ramsey, Schwarz et al. 2013) and 

sex hormones are thought to play an important role for illness course(Leung and Chue 2000, 

Markham 2012), but again little is known about the underlying neurobiological mechanisms.  

We pursued a novel strategy to explore how biological sex differences may impact on the 

manifestation of genetic risk and the clinical sex differences of schizophrenia. Inspired by a recent 

study on the human brain connectome(Kaufmann, Alnaes et al. 2017), we tested whether during 

development human brain gene expression is more variable in males than females. We hypothesized 

that such increased expression variability might contribute to a predisposition of males for heritable 

neurodevelopmental disorders. A similar hypothesis has previously been explored for HIV, where 

gene expression variability has been suggested as a modulator for susceptibility to infection(Li, Liu et 

                                            
2
 Published as: Chen, J., Cao, H., Meyer-Lindenberg, A. and Schwarz, E., 2018. Male increase in brain gene 

expression variability is linked to genetic risk for schizophrenia. Translational psychiatry, 8(1), p.140. 
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al. 2010). Our study is further motivated by previous identification of sexual dimorphisms of brain 

expression(Kang, Kawasawa et al. 2011, Trabzuni, Ramasamy et al. 2013, Werling, Parikshak et al. 

2016), protein abundance(Raser and O'Shea 2005), as well as genetic and epigenetic factors 

modulating gene expression noise(Raser and O'Shea 2004, Alemu, Carl et al. 2014), supporting the 

possibility of links between polygenic risk and expression variance. The longitudinal exploration of 

variability differences is further motivated by previous identification of differential variance of 

transcriptional regulators during human embryonic development(Hasegawa, Taylor et al. 2015). 

Analysis of gene expression variability has also been successfully applied to identify genes and 

pathways implicated in several illnesses and highlighted such variability as an informative biological 

signal(Ho, Stefani et al. 2008, Ran and Daye 2017). 

Expression variability as genetic risk mediator can capture polygenic effects beyond sex differences 

of expression. To investigate this, we identified genes driving brain-region and age specific variability 

differences between sexes and tested whether these were associated with expression of 

schizophrenia risk genes.  

 

2.2.3 Materials and Methods 

Data preprocessing. To characterize brain expression throughout the human lifespan, we used data 

from the BrainSpan: Atlas of the Developing Human Brain (funded by ARRA Awards 1RC2MH089921-

01, 1RC2MH090047-01, and 1RC2MH089929-01 and available from: 

http://developinghumanbrain.org), as well as Braincloud microarray data (GSE30272(Colantuoni, 

Lipska et al. 2011), available from the GEO database(Edgar, Domrachev et al. 2002)).  

The primary analysis was performed on BrainSpan exon microarray data (GSE25219, preprocessed as 

described in(Goyal, Hawrylycz et al. 2014)) due to availability of a larger sample number. BrainSpan 

RNA sequencing (RNAseq) data was used for replication and Braincloud data for validation of 

findings. BrainSpan data comprised transcriptome-wide expression information on subjects between 

the 6th post-conceptional week and 40 years of age (Table 1, supplementary Tables 2, 8 and 9). We 

did not consider older subjects, as sex effects on risk are not likely to manifest beyond the typical age 

of onset that ranges between late adolescence and early adulthood. As performed by Willsey et 

al.(Willsey, Sanders et al. 2013), subjects were grouped in age-bins by a windowing approach that 

joins three consecutive age periods into a single group.  

Preprocessing of all datasets followed a similar sequence of steps (Supplementary Figure 1). 

Procedures performed on all datasets comprised: RNA Integrity Number (RIN) filtering (for BrainSpan 

exon microarray data, all donors were removed that had more than 25% of microarray samples with 

RIN < 7.5, as in (Goyal, Hawrylycz et al. 2014); for BrainSpan RNAseq data and Braicloud data, a more 

stringent filtering was performed by removing all samples with RIN <= 7.5); removal of subjects >40 

years; log2 transformation of data; extraction of autosomal genes (without minimum expression 

filter); quantile normalization; surrogate variable determination; covariate adjustment and outlier 

detection. This data contained the respective median values if multiple replicates per subject were 

present. Following a previously described pipeline(Werling, Parikshak et al. 2016), processing of 

RNAseq data included two additional steps: gene-level reads per kilobase million mapped reads 

(RPKM) were normalized for GC content using conditional quantile normalization based on the R 

library cqn(Hansen, Irizarry et al. 2012) and all genes with less than 1 RPKM in more than 50% of 

male or female samples were removed. Surrogate variable analysis was performed to account for the 

potential effects of unobserved confounders(Leek and Storey 2007). The number of surrogate 

http://developinghumanbrain.org/
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variables were automatically determined using the num.sv function of the R package sva(Leek and 

Storey 2007), using the approximation method by Leek(Leek and Storey 2007, Leek 2011). The 

underlying full model matrix contained gender, whose effects on expression variability should be 

preserved, as well as age, PMI, RIN and brain pH (as well as an array indicator for Braincloud data). 

The null-model matrix contained all covariates but gender. Age was used as a covariate, to prevent 

artifactual correlations between genes due to their joint association with age. This is particularly 

important for age-bins covering a broader range of ages, where significant correlations between age 

and expression can be expected. The number of surrogate variables determined for BrainSpan exon 

microarray was 0, 2 for BrainSpan RNAseq and 0 for the Braincloud data. Covariate adjustment was 

performed via residualization against all covariates described above (except for gender) using linear 

models. Missing brain pH values were replaced by the mean of non-missing values. 

Outlier detection. After preprocessing, principal component analysis was used to exclude outliers 

(Supplementary Figure 2). For this, we identified separately for males and females observations that 

deviated more than three  standard deviations from the mean of the respective first two principal 

components. This removed 7 samples in the BrainSpan exon microarray data (6 from male donors), 

11 observations in the BrainSpan RNAseq data (6 from male donors), and 1 outlier (from a female 

donor) in the Braincloud data.   

Schizophrenia risk genes. Schizophrenia risk variants, loci, and associated genes were taken from 

(Schizophrenia Working Group of the Psychiatric Genomics Consortium 2014) (Supplementary Table 

3). Previous analyses have pursued different approaches to identify genes linked to genetic 

schizophrenia risk. Among these approaches is the selection of all genes or those within a certain 

distance from a given locus(Schizophrenia Working Group of the Psychiatric Genomics Consortium 

2014), or genes affected by index variant eQTLs(Gamazon, Wheeler et al. 2015). For the present 

study, we aimed to identify a single gene per locus. This was due to the risk of introducing statistical 

bias from including multiple genes per locus, caused by (1) the undue influence of loci harboring a 

larger number of genes and (2) the gene-gene correlation of genes in close chromosomal proximity. 

Therefore, for loci harboring multiple genes, we here used the gene in closest chromosomal 

proximity to the genome-wide significant index variant. If a locus contained more than one index 

variant, we selected the gene in closest chromosomal proximity to the most significant index variant. 

Chromosomal locations were determined from the R library org.Hs.eg.db., vs. 3.1.2 (genome build 

hg19, assembly GRCh37). Genes within the MHC region were not considered due to their significant 

linkage disequilibrium pattern. Two loci mapped to the genes IMMP2L and TCF4, and these were 

considered only once for subsequent analyses. C10orf32, C12orf79 and VPS14C were not annotated 

by the library org.Hs.eg.db. and not considered for further analysis. The final set of schizophrenia risk 

genes contained 100 genes, of which 97 were autosomal. Of these, 87 were part of the BrainSpan 

dataset (see Supplementary Table 3).  

Analysis of expression similarity. First, all samples were identified for a given brain-regional-cluster 

and age-bin. Based on such data subset, we performed a three stage resampling approach separately 

for males and females. The objective of this resampling was to quantify the expression similarity (and 

its confidence interval) between subjects while accounting for the non-independence of multiple 

samples taken from the same donor:    

1. First, we randomly selected a single sample per subject to prevent an impact of sample non-

independence on results.  

2. Second, we took a bootstrap sample of subjects by sampling with replacement and chose the 

unique set of subjects. This was performed to prevent the perfect correlation between 

multiply selected samples.  
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3. Finally, we subsampled the selected subjects, such that the same number of subjects was 

chosen for males and females. This was aimed at preventing an influence of unequal sample 

numbers on results.  

Then separately for males and females, we determined the pairwise Pearson correlation coefficients 

between all subject pairs using expression values from all genes. The mean of these estimates was 

used as an estimate of expression similarity between subjects for a given regional-cluster age-bin 

combination. Only the upper triangular matrix of a given correlation matrix was used for estimation. 

This entire resampling was repeated 100 times and the mean value (for confidence intervals the 

upper and lower 2.5% percentile) of obtained estimates used to quantify expression similarity.  

The difference between males and females was then quantified as the mean difference between the 

point estimates of each regional-cluster age-bin combination. To assess significance, the resampling 

procedure was repeated 1,000 times. During each repetition, gender information was permuted for a 

given regional-cluster age-bin combination, such that different samples of the same subject were 

always assigned the same gender. The frequency of bootstrapping point estimates at least as high as 

the one obtained from non-permuted data was used as empirical P-value and corrected for multiple 

comparisons according to the method of Bonferroni. To perform two-sided tests, absolute values 

were used for this calculation.  

Identification of genes driving expression similarity differences. We anticipated that genes driving 

the difference of expression similarity between males and females would likely show strong 

differences in expression variance between sexes. For each regional-cluster age-bin combination, we 

therefore performed the same resampling strategy as described above. For a given set of subjects 

(males and females separately), we then determined the standard deviation of expression for a given 

gene. These estimates were averaged over 100 resampling repetitions. We then determined the ratio 

of these averages between males and females and used the 100 genes (arbitrary cut-off) with the 

highest ratio as ‘variability genes’. To test whether these gene sets were also ‘variability genes’ in 

replication (BrainSpan RNAseq data) and validation (Braincloud) data, we determined the difference 

of expression similarity estimates (using the resampling strategy described above) between males 

and females. An empirical P-value was then determined by comparing this estimate against those 

derived from random ‘variability genes’ identified as described below (1000-fold resampling, one-

sided test). 

Testing associations with schizophrenia risk genes. To explore associations between variability 

genes and schizophrenia susceptibility genes, the co-expression between the two gene sets was 

determined for a given regional-cluster age-bin combination, by calculating a matrix of all pairwise 

Pearson correlation coefficients using expression values from both gene sets. The median value of 

this correlation matrix was then used as a measure of co-expression. Again, these calculations were 

determined as part of the resampling procedure described above, with the exception of the third 

step (undersampling to obtain equal numbers of male and female subjects), since calculations were 

performed using males only.  

Significance was determined using 1,000 fold resampling. During each repetition and for each 

regional-cluster age-bin combination, the low number of donors prevented meaningful permutation 

of gender information. Therefore, random ‘variability genes’ were selected such that for each real 

variability gene, one gene with a standard deviation of expression within 5% of the original gene was 

randomly chosen. The resulting co-expression values were then used to form null-distributions. 

Empirical P-values were determined as the frequency of co-expression values at least as high as that 

observed from real data (one-sided test). Since a total of 22 sets of variability genes were tested, P-

values were corrected for the Family Wise Error Rate according to the method of Bonferroni.  
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Analysis of schizophrenia specificity. To test the specificity of the co-expression between variability 

genes and schizophrenia susceptibility genes, five additional analyses were performed, using 

different selections of “susceptibility genes”: (I) random selection of schizophrenia susceptibility 

genes for a given locus (instead of based on physical proximity to the index SNP). (II) Random 

selection of genes from loci with comparable DNA sequence variability compared to the 

schizophrenia loci. For this analysis, the number of common (MAF >=1%) variants recorded in dbSNP 

(GRCh37, available from https://genome.ucsc.edu/) was used as a proxy for DNA sequence 

variability. For each schizophrenia locus, a locus of the same size was selected from the same 

chromosome and retained if the DNA sequence variability was within 10% of the original locus. A 

random gene was then selected from the locus, extended by 20kbp, using the R library 

biomaRt(Durinck, Spellman et al. 2009). (III) Random selection of genes from the same chromosome 

as a given schizophrenia gene, irrespective of DNA sequence variability. (IV) Selection of genes in 

proximity to SNPs associated with major depressive disorder (35 genes; closest gene selected to a 

given index SNP, as described in (Wray, Ripke et al. 2018)). (V) Selection of genes in proximity to SNPs 

associated with a non-psychiatric phenotype (coronary artery disease; 35 genes; random gene 

selected from a given susceptibility locus, as described in (Schunkert, Konig et al. 2011)). 

Exploratory age-windowing. To perform a ‘fine-mapping’ of effects within a set of age-bins, we 

performed separate analyses for subjects within a given age-window (supplementary Table 7). The 

width of the window was determined as four consecutive age-entries among the recorded ages in 

weeks. Differences of expression similarity and co-expression with schizophrenia susceptibility genes 

were determined separately for each age-window as described above. Genes identified as ‘variability 

genes’ of the investigated age-bins were combined and used for this analysis. 

Functional analysis. To explore biological functions of genes contributing to differences of expression 

similarity between sexes, we used the DAVID functional annotation tool using default settings 

(https://david.ncifcrf.gov/home.jsp)(Huang da, Sherman et al. 2009). In this tool, enrichment is 

quantified based on a modified Fisher’s exact test. The 14702 autosomal genes part of the BrainSpan 

exon microarray data were used as background for functional analysis. We retained all functional 

annotation clusters with at least one annotation term passing the False-Discovery-Rate (FDR) 

corrected P-value threshold of 0.05.  

Code availability. Code is available from the corresponding author upon request.  

 

2.2.4 Results 

Expression similarity differences in BrainSpan exon microarray data. The filtered dataset contained 

autosomal, transcriptome-wide expression data on healthy subjects between the 6th post-

conceptional week (PCW) and 40 years of age(Kang, Kawasawa et al. 2011) (42 donors, 23 males, 

14702 autosomal genes; Figure 1). We tested whether gender was confounded by ethnicity, but 

found no association (P = 0.77, Chi-squared test). Subjects were binned into 11 age groups and the 16 

brain areas were aggregated into 4 regional-clusters with similar expression values (Supplementary 

Tables 1 and 2, regional-clustering was taken from(Willsey, Sanders et al. 2013) and based on 

hierarchical clustering of fetal transcriptome profiles; for abbreviations, see Figure 1): (1) the V1C-

STC cluster; (2) the prefrontal and primary motor-somatosensory cortex or PFC-MSC cluster; (3) the 

STR-HIP-AMY cluster; and (4) the MD-CBC cluster.  

Figure 2a shows that despite substantial variability, males had significantly lower expression 

similarity compared to females in three of the four brain regional-clusters (PV1C-STC<0.004, PPFC-

https://genome.ucsc.edu/
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MSC<0.004, PSTR-HIP-AMY=0.003, PMD-CBC=0.080; FWER corrected). Due to the more pronounced 

differences in the regional clusters V1C-STC and PFC-MSC, subsequent analyses focused on these 

areas. Figure 2a further shows that in females, expression similarity tended to decrease across 

developmental time-points, suggesting that inter-subject similarity was lower in adulthood compared 

to younger age. We aimed to explore whether sex differences in expression similarity were 

associated with genetic schizophrenia risk, to pinpoint a potential biological mechanism for the well-

known sex differences of the disorder.  

Identification of genes driving sex differences in expression similarity. For each age-bin-regional-

cluster combination we identified the 100 ‘variability genes’ with the greatest ratio (male divided by 

female) of standard deviations of expression (see Supplementary Figure 3 and Supplementary 

Dataset for a list of all ‘variability genes’). Figure 2b shows that expression similarity determined 

from these genes differed strongly between sexes. 

Co-expression between variability and schizophrenia susceptibility genes. Next, we investigated 

potential relationships between these variability genes and genes harbored by the 108 well-

established schizophrenia susceptibility loci(Schizophrenia Working Group of the Psychiatric 

Genomics Consortium 2014). This analysis was performed in males, since the lack of variance in 

female expression levels would prevent meaningful association analyses. Across 22 sets of variability 

genes (11 age-bins in the 2 regional-clusters V1C-STC and PFC-MSC), we found that variability genes 

derived from both clusters were significantly co-expressed with schizophrenia susceptibility genes in 

age-bins 8 (4 months – 4 years, rhoV1C-STC=0.05, rhoPFC-MSC=0.05),  9 (10 months – 11 years , rhoV1C-

STC=0.10, rhoPFC-MSC=0.12) and 10 (2 years – 19 years , rhoV1C-STC=0.07, rhoPFC-MSC=0.13; all PFWER<0.022, 

Figures 3a and b). Significant co-expression was additionally observed for the PFC-MSC in age-bin 1 

(6 PCW – 13 PCW, rho=0.11) and 2 (9 PCW – 16 PCW, rho=0.08; all PFWER<0.022). 

Age-bin specificity and pathway analysis. Next, we explored whether differences in expression 

similarity were age-bin specific. Figure 2c shows that PFC-MSC variability genes of age-bin blocks 1-2 

and 8-9-10 were also associated, albeit to a lesser extent, with decreased male expression similarity 

in the respectively other age-bin blocks.  

In this brain-regional-cluster, the 257 genes of age-bins 8-9-10 were significantly linked to synaptic 

processes and (calcium-) ion signaling (Supplementary Table 4). Notably, the 138 variability genes 

from age-bins 1 and 2 in the PFC-MSC cluster were associated with similar ontological categories, 

including ‘post-synaptic membrane’ and ‘synapse’ (Supplementary Table 5). Interestingly, the genes 

from age-bins 1-2 and age-bins 8-9-10 showed only a minimal overlap (8 genes shared). These 

ontological associations showed regional specificity for the PFC-MSC cluster, as the V1C-STC 

variability genes (age-bins 8-9-10) that also showed significant co-expression with susceptibility 

genes, were not associated with similar ontological categories (Supplementary Table 6). 

Furthermore, the ontological overlap between age-bins 1-2 and age-bins 8-9-10 in the PFC-MSC 

cluster is consistent with the correlation of the male expression similarity profiles (Figure 2c). 

Schizophrenia specificity. To explore the specificity of co-expression results for schizophrenia, 

analysis was repeated using (I) schizophrenia susceptibility genes randomly selected for a given locus 

(instead of based on physical proximity to the index SNP), (II) genes randomly selected from loci with 

comparable DNA sequence variability compared to the schizophrenia loci, (III) genes randomly 

selected from the same chromosome as a given schizophrenia gene, irrespective of DNA sequence 

variability, (IV) genes in proximity to SNPs associated with major depressive disorder, (V) genes in 

proximity to SNPs associated with a non-psychiatric phenotype (coronary artery disease). Figure 3c 

shows that random and proximity-based selection of genes from schizophrenia loci yielded similar 

results. Despite a similar co-expression profile across age-bins, schizophrenia gene co-expression 
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showed specificity against DNA sequence variability-stratified gene selection in age-bins 8 and 9 

(P=0.05) and a trend towards specificity in age-bins 2 and 10 (P=0.06). Randomly selected genes 

(procedure III) showed substantially lower mean co-expression, leading to specificity of schizophrenia 

results (age-bins 8-9-10, P<=0.05; age-bin 2, P=0.06). For both random selection procedures, 

schizophrenia specificity could not be observed in age bin 1 (P=0.12 and P=0.11, for procedures II and 

III, respectively). Genes in the proximity of SNPs linked to major depression or grip strength led to 

lower co-expression values in age bins 2 and 8-9-10; in age-bin 1, major depression genes showed 

higher co-expression than the schizophrenia genes.  

Age-windowing. Finally, since age-bins 8-9-10 covered a broad age range (4 months – 19 years), we 

performed an exploratory ‘fine-mapping’ of PFC-MSC effects using an age-windowing approach. 

While based on small sample numbers, this analysis suggested that co-expression had a broad 

plateau from a mean age of 4.8 years to 10.9 years (Figure 3d). Differences in expression similarity 

between sexes were consistent across all age windows (Figure 3d).   

Replication in BrainSpan RNAseq data. Preprocessed BrainSpan RNAseq data comprised expression 

information on 11514 autosomal genes in 400 samples (37 subjects, 20 males). The transcriptome-

wide expression similarity showed similar profiles as observed for exon microarray data 

(Supplementary Figure  4a). Similarly, the variability genes identified from exon microarray data 

were also variability genes in RNAseq data (Supplementary Figure 4b, P<0.001). These genes were 

significantly correlated with schizophrenia susceptibility genes in the PFC-MSC regional-cluster for 

age-bins 2 (rho=0.01, P<0.001), 9 (rho=0.05, P<0.001) and 10 (rho=0.03, P<0.001), validating exon 

microarray observations. For the V1C-STC cluster, we found significant associations for age-bins 3 

(rho=0.03, P<0.001), and a trend towards nominal significance in age-bins 8 (P=0.07), and 10 

(P=0.05). 

Validation in Braincloud data. Filtered Braincloud data contained dorsolateral prefrontal cortex 

(DLPFC) expression information on 14773 autosomal genes from 112 subjects (75 males). In 

covariate-corrected data, expression similarity is dependent on expression variance. Therefore, we 

compared the standard deviation of expression across all genes overlapping with BrainSpan exon 

microarray data. We found these estimates to be strongly correlated across datasets (rho=0.40, 

P<2.2·10-16, Spearman correlation), suggesting that preprocessing resulted in high cross-dataset 

comparability. Since the Braincloud data contained no subjects in age groups 1 and 2 (i.e. age-bin 1 

only consisted of subjects in age group 3), age-bin 1 was not used for further analysis. Assessment of 

expression similarity differences using BrainSpan exon microarray PFC-MSC variability genes 

validated the decreased similarity in males (P<0.001, Supplementary Figure 5), which was less 

pronounced in Braincloud data and driven by genes from age-bins 8 and 9. Consistent with BrainSpan 

results, co-expression with schizophrenia susceptibility genes was significant in age-bin 2 (rho=0.03, 

P<0.001), age-bin 9, (rho=0.07, P<0.001) and age-bin 10 (rho=0.03, P<0.001) and showed a trend 

towards significance in age-bin 8 (rho=0.01, P=0.08).  

 

2.2.5 Discussion 

The present results demonstrate that the similarity of gene expression profiles in males shows a 

brain-region specific decrease compared to females. Some of the genes driving this effect were co-

expressed with schizophrenia susceptibility genes, in a regionally specific and age-dependent 

manner. Importantly, co-expression was found in the brain regional-cluster encompassing the 

prefrontal cortex during fetal brain development, confirming a core prediction of the 
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neurodevelopmental hypothesis of schizophrenia(Weinberger 1987). Additionally, and again as 

predicted by this hypothesis, significant co-expression was further found during adolescence. Similar 

differences of expression similarity were found in RNAseq data acquired on a subset of the same 

samples. In this dataset, we further replicated associations between variability and susceptibility 

genes in data from adolescent donors, but found no associations during the fetal period. Expression 

similarity differences were further validated in the independent Braincloud data and significant co-

expression was found in samples from fetal, as well as adolescent donors.  

Co-expression did not depend on how genes were selected from a given susceptibility locus and 

exceeded that observed for major depression (in age-bin 1 by a small margin) and coronary artery 

disease in the early fetal phase, as well as during adolescence. We observed that genes selected from 

randomly chosen loci stratified for DNA sequence variability showed a broadly similar, although less 

pronounced, co-expression trend compared to schizophrenia genes. In contrast, genes selected 

randomly without consideration of DNA sequence variability were not co-expressed with variability 

genes, on average. This may suggest that sequence variability associated with schizophrenia 

susceptibility loci impacted on diversification of gene expression and the sex-differences observed in 

the present study.  

Genes from the fetal and adolescent periods were involved in synaptic processes, which have been 

implicated in schizophrenia by a range of genetic, histopathological, neuroimaging, pharmacological 

and neurotransmitter studies(McGlashan and Hoffman 2000, Tsai and Coyle 2002, Glausier and Lewis 

2013, Network and Pathway Analysis Subgroup of Psychiatric Genomics 2015, Schwarz, Izmailov et al. 

2016). They are affected by genetic and environmental risk in particular during early life, leading to 

subsequent impairments in synaptic plasticity and connectivity(Lewis and Levitt 2002). The lack of 

overlap between variability genes from the fetal period and adolescence may hint at biologically 

divergent risk processes that converge on the same synaptic pathways.  

The main limitation of the present study is sample size. The primary analysis of the BrainSpan data 

reported that brain-region and age are stronger modulators of gene expression compared to sex or 

inter-individual variation(Kang, Kawasawa et al. 2011). Therefore, the present study focused on 

analyses that are stratified by regional clusters and age-bins, with significant impact on sample 

numbers available for a given analysis. In the BrainSpan dataset, data from multiple brain regions 

was available for most donors. We performed a donor-wise bootstrapping procedure during all 

resampling analyses, to account for the non-independence of the samples. This procedure further 

accounted for potential effects arising from differences in donor numbers between sexes, further 

reducing the effective sample size.  The low donor number per regional-cluster age-bin combination 

prevented meaningful permutation of gender. Therefore, random ‘variability genes’ were created by 

randomly sampling genes, stratified by expression variance. This may have led to bias, due to the 

potential correlation among the actual variability genes that is not captured by the procedure 

employed here. The low sample number in all three investigated datasets also limits the power to 

identify and validate significant associations, including expression similarity differences and co-

expression between variability and susceptibility genes. This may have contributed to the partial non-

replication of findings across datasets. 

Another limitation is that we selected a single susceptibility gene per locus to prevent statistical bias, 

but this selection may not accurately reflect genetic schizophrenia risk. By comparison, other studies 

have previously selected susceptibility genes by extracting all genes within a given 

locus(Schizophrenia Working Group of the Psychiatric Genomics Consortium 2014) or by focusing on 

effectors of index variant eQTLs(Gamazon, Wheeler et al. 2015). Another interesting aspect is that 

the present findings may relate to underlying, variable phenotypes, such as personality traits and 
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comorbid psychiatric conditions. Furthermore, we aimed to account for the effects of known and 

unknown confounders during all analyses, but this may not have comprehensively captured 

experimental artefacts that may have influenced between-subject or gene-gene correlations. Finally, 

we did not use genetic association data to correct for potential subject relatedness or population 

structure, due to data availability and sample size limitations.  

In conclusion, this study indicates sex specific genetic mechanisms operating during fetal brain 

development linked to the variability of prefrontal brain gene expression during adolescence, as 

predicted by the neurodevelopmental hypothesis of schizophrenia. These effects may contribute to 

the well-established clinical sex differences of schizophrenia and underlying gene sets may be 

valuable for biologically stratified exploration of the illness’s etiology.  

 
Tables 

Table 1. BrainSpan exon microarray sample numbers for males and females across 11 age bins and 4 

brain regional clusters after data preprocessing (1: V1C-STC, 2: PFC-MSC, 3: STR-HIP-AMY, 4: MD-

CBC, see Supplementary Table 1 for details). Subject numbers are shown in brackets. 

  Males Females 

Age bin 

Regional 

cluster 1 2 3 4 1 2 3 4 

1  12 (3) 21 (4) 11 (4) 1 (1) 20 (4) 24 (4) 12 (4) 7 (4) 

2  23 (5) 31 (6) 16 (6) 5 (4) 20 (4) 24 (4) 12 (4) 7 (4) 

3  23 (5) 27 (5) 14 (5) 5 (4) 33 (7) 39 (7) 20 (7) 13 (7) 

4  23 (5) 27 (5) 14 (5) 8 (5) 27 (6) 31 (6) 16 (6) 12 (6) 

5  15 (3) 18 (3) 9 (3) 6 (3) 27 (6) 31 (6) 16 (6) 12 (6) 

6  30 (6) 36 (6) 18 (6) 12 (6) 14 (3) 16 (3) 8 (3) 6 (3) 

7  24 (5) 29 (5) 12 (4) 10 (5) 5 (1) 6 (1) 3 (1) 2 (1) 

8  24 (5) 28 (5) 12 (4) 10 (5) 10 (2) 9 (2) 6 (2) 4 (2) 

9  19 (4) 20 (4) 8 (3) 7 (4) 15 (3) 15 (3) 8 (3) 5 (3) 

10  20 (4) 21 (4) 10 (4) 7 (4) 20 (4) 21 (4) 11 (4) 7 (4) 

11  36 (8) 42 (8) 19 (7) 14 (8) 33 (7) 39 (7) 19 (7) 12 (7) 
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Figures 

 
Figure 1. Analysis workflow. Transcriptome-wide expression data were extracted from the BrainSpan 

Atlas of the Developing Human Brain for each age-bin – brain regional-cluster combination. Age-bins 

and regional-clusters were taken from (Willsey, Sanders et al. 2013). Using a resampling procedure, 

expression variability was then quantified in males and females as the mean of the pairwise 

correlations of transcriptome-wide expression between samples from the respective subjects. PCW, 

post conceptional week; V1C, primary visual cortex; ITC, inferior temporal cortex; IPC, posterior 

inferior parietal cortex; A1C, primary auditory cortex; STC, superior temporal cortex; M1C, primary 

motor cortex; S1C, primary somatosensory cortex; VFC, ventral prefrontal cortex; MFC, medial 

prefrontal cortex; DFC, dorsal prefrontal cortex; OFC, orbital prefrontal cortex; STR, striatum; HIP, 

hippocampal anlage/ hippocampus; AMY, amygdala; MD, mediodorsal nucleus of the thalamus; CBC, 

cerebellar cortex. 
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Figure 2. Sex differences in expression similarity in BrainSpan exon microarray data. a) Expression 

similarity for four brain regional-clusters: V1C-STC, PFC-MSC, STR-HIP-AMY, and MD-CBC for males 

(blue) and females (orange). The panels display mean estimates (solid lines) and 95% confidence 

intervals (shaded areas). The panels show no values for regional-cluster age-bin combinations 

containing data from only one donor. b) Expression variability for ‘variability genes’, identified 

separately for each given age-bin. In age-bin 7, data from only one donor was available for females. 

c) Expression variability profiles for variability genes derived from age-bins 9 [10 months – 11 years] 

and 10 [2 years – 19 years] in the PFC-MSC cluster. This panel shows variability profiles for male 

subjects only.  

 
Figure 3. Co-expression between variability genes and schizophrenia susceptibility genes. a) 

Significance of median co-expression for variability genes determined for each age-bin in the 

regional-clusters V1C-STC, PFC-MSC and STR-HIP-AMY of male subjects. b) Co-expression in PFC-MSC 

cluster, age-bin 10, for males and females, respectively. Rows and columns were ordered separately 

based on median co-expression. c) Comparison of co-expression between variability genes and 

schizophrenia susceptibility genes chosen based on physical proximity to index SNPs (red), random 

selection within a given susceptibility locus (orange), randomly selected loci with comparable DNA 

sequence variability compared to schizophrenia loci (blue), random genes selected from the same 

chromosomes as schizophrenia susceptibility genes (purple), major depression susceptibility genes 

(green) and genes linked to a non-psychiatric phenotype (coronary artery disease, grey). d) 

Windowing of age-bins 8, 9 and 10 in the PFC-MSC cluster. The panel shows variability difference and 

co-expression for variability genes determined for age-bins 8 to 10. Co-expression was determined 

for males only. 
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2.2.6 Supplementary Tables 

Supplementary Table 1: Brain regions and regional clusters used in the present study.  

Cluster Region Description 

1 V1C primary visual cortex 

1 ITC inferior temporal cortex 

1 IPC posterior inferior parietal cortex 

1 A1C primary auditory cortex 

1 STC superior temporal cortex 

   

2 M1C primary motor cortex 

2 S1C primary somatosensory cortex 

2 VFC ventral prefrontal cortex 

2 MFC medial prefrontal cortex 

2 DFC dorsal prefrontal cortex 

2 OFC orbital prefrontal cortex 

   

3 STR striatum 

3 HIP hippocampal anlage (periods 1–2), hippocampus (periods 3–13) 

3 AMY amygdala 

   

4 MD mediodorsal nucleus of the thalamus 

4 CBC cerebellar cortex 

 

 

Supplementary Table 2: Grouping of subjects into age bins as performed by Willsey et al (Willsey, 

Sanders et al. 2013). Periods of human brain development were taken from Kang et al (Kang, 

Kawasawa et al. 2011).  

Age 

bin 
Period Ages Description 

1 1,2,3 6 PCW – 13 PCW embryonic to early fetal 

2 2,3,4 9 PCW – 16 PCW early fetal to early mid-fetal 

3 3,4,5 12 PCW – 19 PCW early fetal to early mid-fetal 

4 4,5,6 16 PCW – 22 PCW early mid-fetal to late mid-fetal 

5 5,6,7 17 PCW – 37 PCW early mid-fetal to late fetal 

6 6,7,8 21 PCW – 6 months late mid-fetal to neonatal & early infancy 

7 7,8,9 25 PCW – 1 year Late fetal to late infancy 

8 8,9,10 4 months – 4 years neonatal & early infancy to early childhood 

9 9,10,11 10 months – 11 years late infancy to middle and late childhood 

10 10,11,12 2 years – 19 years early childhood to adolescence 

11 11,12,13 11 years – 40 years Adolescence to young adulthood 
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Supplementary Table 3: Schizophrenia susceptibility genes used in the present study. Susceptibility 

loci were taken from a study by the Schizophrenia Working group of the Psychiatric Genomics 

Consortium (Schizophrenia Working Group of the Psychiatric Genomics 2014). Rank: rank of 

significance of case-control difference described in (Schizophrenia Working Group of the Psychiatric 

Genomics 2014). Chr and position: chromosomal position of index SNP. Gene: gene in closest 

chromosomal position to the index SNP of a given locus. If a given locus contained multiple index 

SNPs (annealed locus), the gene in closest proximity to the most significant index SNP was chosen. 

Genes marked with # were not annotated by the R library org.Hs.eg.db. Genes marked with an 

asterisk were not part of the BrainSpan data. 

Rank Index SNP Chr Position Gene 

1 rs115329265 MHC locus position 

2 rs1702294 1 98501984 MIR137* 

3 rs11191419 10 104612335 C10orf32# 

4 rs2007044 12 2344960 CACNA1C 

5 rs4129585 8 143312933 TSNARE1 

6 rs35518360 4 103146890 SLC39A8 

7 chr7_2025096_I 7 2025096 MAD1L1 

8 rs4391122 5 60598543 ZSWIM6* 

9 rs2851447 12 123665113 MPHOSPH9 

10 chr2_200825237_I 2 200825237 C2orf47 

11 rs4702 15 91426560 FURIN 

12 rs75968099 3 36858583 TRANK1* 

13 chr10_104957618_I Annealed with rs11191419 

14 rs12887734 14 104046834 APOPT1* 

15 rs8042374 15 78908032 CHRNA3 

16 rs13240464 7 110898915 IMMP2L 

17 rs10791097 11 130718630 SNX19 

18 rs11693094 2 185601420 ZNF804A 

19 rs1378559 X 21380266 CNKSR2 

20 rs7893279 10 18745105 CACNB2 

21 rs12826178 12 57622371 SHMT2 

22 rs12129573 1 73768366 LRRIQ3 

23 rs6704768 2 233592501 GIGYF2 

24 rs55661361 11 124613957 NRGN 

25 rs9636107 18 53200117 TCF4 

26 chr11_46350213_D 11 46350213 DGKZ 

27 rs7907645 Annealed with rs11191419 

28 chr3_180594593_I 3 180594593 FXR1 

29 rs6065094 20 37453194 PPP1R16B 

30 rs11682175 2 57987593 VRK2 

31 rs950169 15 84706461 ADAMTSL3 

32 rs72934570 18 53533189 TCF4 

33 rs6434928 2 198304577 SF3B1 

34 rs9607782 22 41587556 EP300 

35 rs36068923 8 111485761 KCNV1 

36 rs17194490 3 2547786 CNTN4 
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37 rs2514218 11 113392994 DRD2 

38 rs75059851 11 133822569 IGSF9B 

39 rs2535627 3 52845105 ITIH4 

40 rs12691307 16 29939877 KCTD13 

41 chr22_39987017_D 22 39987017 CACNA1I 

42 rs7432375 3 136288405 STAG1 

43 chr18_52749216_D Annealed with rs9636107 

44 rs111294930 5 152177121 GRIA1 

45 rs2973155 Annealed with rs111294930 

46 rs5937157 X 68377126 PJA1 

47 rs4523957 17 2208899 SRR 

48 rs12704290 7 86427626 GRM3 

49 rs12903146 15 61854663 VPS14C# 

50 rs11210892 1 44100084 PTPRF 

51 rs2905426 19 19478022 MAU2* 

52 rs140505938 1 150031490 VPS45 

53 chr6_84280274_D 6 84280274 SNAP91 

54 rs4648845 1 2387101 PLCH2 

55 rs7405404 16 13749859 ERCC4 

56 rs6466055 7 104929064 SRPK2 

57 chr1_8424984_D 1 8424984 RERE 

58 rs4766428 12 110723245 ATP2A2 

59 rs10520163 4 170626552 CLCN3 

60 rs117074560 6 96459651 FUT9 

61 rs6002655 22 42603814 TCF20 

62 chr2_146436222_I No gene in proximity  

63 rs9420 11 57510294 C11orf31 

64 rs11027857 11 24403620 LUZP2 

65 rs1498232 No gene in proximity  

66 rs3735025 7 137074844 DGKI 

67 rs11139497 9 84739941 TLE1 

68 rs77149735 1 243555105 SDCCAG8 

69 rs56205728 15 40567237 PAK6 

70 rs2053079 19 30987423 ZNF536 

71 rs16867576 5 88746331 MEF2C 

72 rs4330281 3 17859366 TBC1D5 

73 rs3849046 5 137851192 ETF1 

74 rs2693698 14 99719219 BCL11B 

75 rs2332700 14 72417326 RGS6 

76 rs1501357 5 45364875 HCN1 

77 rs6984242 8 60700469 CA8 

78 chr1_243881945_I Annealed with rs77149735  

79 rs79212538 Annealed with rs111294930 

80 rs3768644 2 72361505 CYP26B1 

81 rs77502336 11 123394636 GRAMD1B 

82 rs6704641 2 200164252 SATB2 
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83 rs59979824 2 193848340 PCGEM1* 

84 rs1106568 4 176861301 GPM6A 

85 rs10503253 8 4180844 CSMD1 

86 rs10043984 Annealed with rs3849046 

87 rs11685299 2 225391296 CUL3 

88 rs7819570 8 89588626 MMP16 

89 rs715170 Annealed with rs72934570 

90 rs9922678 16 9946319 GRIN2A 

91 rs78322266 Annealed with rs9636107 

92 rs2068012 14 30190316 PRKD1 

93 rs832187 3 63833050 C3orf49 

94 rs8044995 16 68189340 NFATC3 

95 chr2_149429178_D 2 149429178 EPC2 

96 rs8082590 17 17958402 GID4* 

97 rs12148337 15 70589272 TLE3 

98 rs12325245 16 58681393 CNOT1 

99 rs2239063 Annealed with rs2007044 

100 rs12522290 Annealed with rs111294930 

101 rs10803138 Annealed with rs77149735  

102 rs73229090 8 27442127 CLU 

103 rs324017 Annealed with rs12826178  

104 rs12845396 X 6029533 NLGN4X 

105 rs55833108 Annealed with rs11191419 

106 rs9841616 Annealed with chr3_180594593_I 

107 rs76869799 Annealed with rs1702294  

108 rs1339227 6 73155701 RIMS1 

109 chr7_24747494_D 7 24747494 DFNA5 

110 rs4388249 5 109036066 MAN2A1 

111 rs215411 4 23423603 MIR548AJ2* 

112 rs11740474 5 153680747 GALNT10 

113 rs1023500 Annealed with rs6002655  

114 rs12421382 11 109378071 C11orf87 

115 rs211829 7 110048893 IMMP2L 

116 rs679087 12 29917265 TMTC1 

117 rs75575209 Annealed with rs11682175  

118 rs7801375 7 131567263 PODXL 

119 rs14403 Annealed with rs77149735  

120 rs6670165 1 177280121 BRINP2* 

121 rs7523273 1 207977083 CD46 

122 rs7267348 20 48131036 PTGIS 

123 rs4240748 12 92246786 C12orf79# 

124 rs2909457 2 162845855 DPP4 

125 rs56873913 19 50091199 PRRG2 

126 rs190065944 Annealed with rs8042374  

127 rs10860964 12 103596455 C12orf42 

128 chr5_140143664_I 5 140143664 PCDHA1* 
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Supplementary Table 4: Ontological terms associated with heterogeneity genes of age bins 8, 9 and 

10 in the PFC-MSC cluster, as determined using the DAVID tool (Huang da, Sherman et al. 2009). P-

values were corrected for the False Discovery Rate (FDR) according to the method of Benjamini and 

Hochberg.  

Category P(FDR) 

calcium ion binding 2.60E-04 

Synapse 3.50E-03 

Epilepsy 3.80E-03 

Phosphoprotein 4.00E-03 

Ion channel 4.20E-03 

Parkinson disease 5.10E-03 

Membrane 5.90E-03 

Alternative splicing 1.10E-02 

Glycoprotein 2.50E-02 

Ion transport 2.80E-02 

Parkinsonism 3.20E-02 

Cell membrane 3.40E-02 

Cell adhesion 3.40E-02 

Cell junction 4.10E-02 

plasma membrane 4.90E-02 

 

Supplementary Table 5: Ontological terms associated with heterogeneity genes of age bins 1 and 2 

in the PFC-MSC cluster, as determined using the DAVID tool (Huang da, Sherman et al. 2009). P-

values were corrected for the False Discovery Rate (FDR) according to the method of Benjamini and 

Hochberg. 

Category P(FDR) 

Synapse 3.30E-03 

Postsynaptic cell membrane 5.50E-03 

dendrite 1.90E-02 

cell junction 2.20E-02 

Cell membrane 2.60E-02 

postsynaptic membrane 3.50E-02 

Membrane 4.50E-02 

chemical synaptic transmission 4.60E-02 

 

Supplementary Table 6: Ontological terms associated with heterogeneity genes of age bins 1 and 2 

in the PFC-MSC cluster, as determined using the DAVID tool (Huang da, Sherman et al. 2009). P-

values were corrected for the False Discovery Rate (FDR) according to the method of Benjamini and 

Hochberg. 

Category P(FDR) 

Phosphoprotein 1.60E-07 

CARM1 and Regulation of the Estrogen Receptor 7.70E-03 

Cell division and chromosome partitioning 4.40E-02 
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Supplementary Table 7: Age and sex distribution for donors part of the age-windowing analysis. Age 

is shown as mean ± sd. 

Age-window age sex (m/f) 

1 1.9 ± 1.3 28/9 

2 4.8 ± 3.1 20/9 

3 6.8 ± 3.7 15/15 

4 9.2 ± 3.5 15/15 

5 10.9 ± 3.7 21/12 

6 13.3 ± 3.9 16/18 

 

 

Supplementary Table 8: BrainSpan RNAseq sample numbers for males and females across 11 age 

bins and 4 brain regional clusters after data preprocessing (1: V1C-STC, 2: PFC-MSC, 3: STR-HIP-AMY, 

4: MD-CBC, see Supplementary Table 1 for details). Subject numbers are shown in brackets. 

  Males Females 

Age bin 

Regional 

cluster 1 2 3 4 1 2 3 4 

1  10 (3) 21 (4) 10 (4) 0 (0) 19 (4) 23 (4) 12 (4) 2 (2) 

2  23 (5) 29 (6) 15 (6) 4 (3) 19 (4) 23 (4) 12 (4) 2 (2) 

3  23 (5) 25 (5) 13 (5) 4 (3) 27 (6) 32 (6) 17 (6) 5 (4) 

4  18 (4) 19 (4) 10 (4) 5 (4) 9 (3) 9 (2) 5 (2) 4 (3) 

5  4 (1) 6 (1) 3 (1) 1 (1) 12 (5) 10 (3) 5 (2) 4 (3) 

6  12 (3) 13 (3) 9 (3) 5 (3) 4 (2) 1 (1) 0 (0) 1 (1) 

7  12 (3) 11 (3) 6 (2) 5 (3) 3 (1) 1 (1) 0 (0) 0 (0) 

8  13 (4) 15 (5) 8 (3) 6 (4) 5 (2) 2 (1) 1 (1) 2 (2) 

9  15 (4) 17 (5) 6 (3) 4 (4) 10 (3) 8 (2) 3 (2) 3 (3) 

10  19 (5) 17 (5) 8 (5) 4 (4) 20 (5) 20 (4) 9 (4) 6 (5) 

11  28 (7) 30 (6) 13 (7) 8 (6) 30 (6) 35 (6) 16 (6) 8 (6) 

 

 

Supplementary Table 9: BrainCloud subject numbers for each age-bin after data preprocessing. 

Age bin  Males Females 

1  2 2 

2  8 5 

3  19 19 

4  17 17 

5  11 14 

6  6 1 

7  6 1 

8  10 4 

9  4 4 

10  30 14 

11  46 14 
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2.2.7 Supplementary Figures  

 
Supplementary Figure 1. Schematic overview of the preprocessing steps performed for the 

microarray and RNAseq data used in the present study. 

 

 
Supplementary Figure 2. PCA scores plots of BrainSpan exon microarray (left panel), BrainSpan 

RNAseq (middle panel) and Braincloud (right panel) data. Excluded outliers are shown in red. 
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Supplementary Figure 2. Examples of variability genes in the PFC-MSC cluster, age bin 9. The three 

panels on the left show the three genes with the most significant expression difference between 

males and females. The three panels on the right the genes with the least significant sex-difference in 

expression. Significance was determined using Wilcoxon rank-sum tests, which do, however, not 

account for the non-independence between the multiple samples from a given donor.  

 
Supplementary Figure 3. Sex differences in expression similarity in BrainSpan RNAseq data.  a) 

Expression similarity for four brain regional clusters: V1C-STC, PFC-MSC, STR-HIP-AMY, and MD-CBC 

for males (blue) and females (orange). The panels display mean estimates (solid lines) and 95% 

confidence intervals (shaded areas). b) Differences of expression similarity (male coexpression – 

female coexpression) for BrainSpan exon microarray ‘variability genes’, assessed separately for each 

given age bin in BrainSpan RNAseq data. 
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Supplementary Figure 4. Differences of expression similarity (male coexpression – female 

coexpression) for BrainSpan exon microarray ‘variability genes’, assessed separately for each given 

age bin in Braincloud data. 
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3 DISCUSSION 

Technological advances in the omics and neuroimaging fields and fast-paced progress in the field of 

data science, combined with the establishment of large-scale international research consortia and 

the resulting increase in data availability have led to a substantial improvement of our understanding 

of the biological etiology of schizophrenia. Despite this progress, however, advances made have not 

yet been translated into the improved clinical management of this severe illness. The overarching 

objective of the work described in this thesis was to use contemporary data science methodologies 

to provide a more in-depth characterization of the (epi-)genetic landscape of schizophrenia and its 

relation to neural functioning relevant for the illness. An important basis for this work provided the 

development of a biologically-informed machine learning tool termed BioMM, which we have made 

publicly available in the form of a library for the statistical programming environment R. In 

preliminary previous work we have shown that BioMM outperforms conventional machine learning 

approaches when applied to high-dimensional omics data, providing an ideal foundation for the work 

presented in this thesis. Using this technology, we set out to identify an epigenetic signature 

associated with schizophrenia, characterize the relationship between this epigenetic signature and 

GWAS derived polygenic risk, and explore the impact of the epigenetic signature on schizophrenia-

relevant brain function (Study 1). The possibility to incorporate systems-biological information into 

machine learning approaches and thereby improve the predictive value for complex conditions such 

as schizophrenia also provides the opportunity for an improved understanding of the spatiotemporal 

components underlying illness susceptibility as well as the potential to use this knowledge towards 

future, more personalized therapeutic approaches. Towards this, and based on the well-established 

sex-dimorphisms in onset-age and clinical course, we set out to characterize sex-specific differences 

in brain-region specific gene expression trajectories during human development and characterize 

their relationship with genetic risk for schizophrenia (Study 2). Using advanced, multimodal data 

science methodology, the studies described in this thesis aim to elucidate brain functionally-relevant 

components of the schizophrenia etiology and improve our understanding of how genetic risk 

translates into altered function in a spatiotemporally specific manner.  

3.1 Epigenetic modulation of risk 

In Study 1, we applied the BioMM procedure to identify a peripheral epigenetic risk signature (PMS). 

The signature identified was significantly predictive of schizophrenia case-control status and 

explained 10.5% to 21.8% of the variance across two independent peripheral samples, as well as 

8.3% of the variance in the post-mortem DLPFC samples. These findings demonstrate the presence of 

a reproducible poly-epi-genetic signature associated with schizophrenia that can be detected in 

peripheral samples of patients with schizophrenia, and which is partly mirrored in epigenetic changes 

present in the DLPFC of patients. The presence of such an epigenetic signature is consistent with the 

strong impact of environmental risk factors on illness susceptibility and the notion that epigenetic 

effects may explain part of the missing heritability phenomenon (Harrison 2015). Notably, the 

overlap of the epigenetic differences that led to the significant cross-tissue prediction of 

schizophrenia is in agreement with the previously observed correlation of DNA methylation between 

blood and the brain (Walton, Hass et al. 2016, Edgar, Jones et al. 2017, Braun, Han et al. 2019). An 

important result of Study 1 was that the identified PMS was reproducibly associated with DLPFC-HC 

functional connectivity during two working memory tasks, suggesting a schizophrenia-related brain-
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functional effect of the identified epigenetic differences. These results further support the illness-

relevance of the hippocampal-dorsolateral prefrontal interaction in the pathophysiology of 

schizophrenia (Weinberger 1987, Bahner, Demanuele et al. 2015) and highlight its likely susceptibility 

to environmental risk effects.   

Remarkably, the epigenetic signature did not correlate with a GWAS derived polygenic risk score, and 

no association was found for the interaction of PMS and polygenic risk score on DLPFC-HC 

connectivity. Furthermore, a significant relationship was detected between the polygenic risk score 

and DLPFC-HC connectivity. These findings suggest that I) the identified PMS carried illness- and 

brain-functionally-relevant information that was largely independent of genetic schizophrenia risk, II) 

that the identified epigenetic differences were not secondary to genetic susceptibility and III) that 

epigenetic effects did not amplify genetic schizophrenia risk in terms of its impact on DLPFC-HC 

connectivity. These results were further substantiated by analysis of unaffected first-degree relatives 

of schizophrenia, which also indicated the absence of a strong genetic effect. Notably, it has been 

argued that some patients may be affected by a stronger genetic load leading to psychosis 

irrespective of epigenetic modifications or environmental insult while others may be more affected 

by environmental exposure (Vitale, Matigian et al. 2017). Therefore an interesting focus of future 

studies is the application of multimodal data science approaches to disentangle this biological 

heterogeneity and identify patient subgroups where illness risk is mainly driven by genetic or 

environmental effects.  It is important to consider that environmental risk exposure likely occurs far 

in advance of illness onset, with previously described risk factors including famine, prenatal stress 

and maternal depression, as well as toxicological exposures (Kundakovic and Jaric 2017). Therefore, 

the biological manifestation of environmental risk effects may have spatiotemporal specificity and 

compound genetic risk in brain areas and developmental periods of particular relevance for 

schizophrenia, such as adolescence. Disentangling such effects, including the downstream impact of 

epigenetic effects on gene expression will form an important part of future studies aimed a providing 

a more in-depth characterization of gene-environment interactions in schizophrenia.  

3.2 Spatiotemporal characterization of risk 

The spatiotemporal analysis in Study 2 led to the identification of a set of genes significantly co-

expressed with schizophrenia genetic susceptibility genes particularly in brain regions involving the 

prefrontal cortex during the fetal period and adolescence, two critical periods of vulnerability for 

schizophrenia (Selemon and Zecevic 2015). The genes were identified based on sex-dimorphisms of 

their expression variance, and the risk-associated genes showed a more prominent variation in males 

compared to females. These findings provide deeper insight into the biological basis of sex 

differences in schizophrenia and may underlie the frequently observed clinical differences in onset-

age, clinical course and treatment response. The results are further consistent with previous 

genomics and transcriptomic studies that support the role of molecular perturbations related to early 

brain development for schizophrenia vulnerability (Gilman, Chang et al. 2012, Xu, Ionita-Laza et al. 

2012, Birnbaum, Jaffe et al. 2014, Birnbaum, Jaffe et al. 2015, Jaffe, Straub et al. 2018, Clifton, 

Hannon et al. 2019). It is noteworthy that DNA methylation data from post-mortem cortical tissue 

across the lifespan has also supported this finding (Jaffe, Gao et al. 2016) and has aided in expanding 

knowledge of the biological basis underlying the neurodevelopmental component of schizophrenia.  

Remarkably, the identified genes in Study 2 were strongly associated with synaptic processes in line 

with the pathway finding in Study 1, which is in accordance with the prominent and repeatedly 

described role of synaptic dysfunction in schizophrenia that is supported by numerous postmortem, 
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brain imaging, epidemiological and clinical studies (McGlashan and Hoffman 2000, Stephan, 

Baldeweg et al. 2006, Yin, Chen et al. 2012, Fromer, Roussos et al. 2016, Jaffe, Straub et al. 2018).  

Exposure to most environmental stressors linked to schizophrenia occurs long before the occurrence 

of clinical symptoms, supporting an early, brain functionally-relevant manifestation of biological risk 

that increases illness vulnerability during later life. In the context of synaptic disturbance, two 

possible mechanisms were proposed by (Faludi and Mirnics 2011): less synapse production or over-

pruning. (I) The number of synapses is suppressed in early life such as during the fetal or postnatal 

periods at the time of insult, while the function of these synapses is still maintained during the ‘pre-

pruning’ phase. However, during the late developmental pruning that occurs during late adolescence 

or early adulthood, the symptoms of schizophrenia appear due to an insufficient number of 

functioning synapses. (II) Alternatively, over-pruning that increases susceptibility for schizophrenia 

during late adolescence or early adulthood may have occurred during early life possibly due to the 

abnormal synapse functioning. We observed that the risk-associated gene sets with sex-dimorphisms 

in expression variability identified in Study 2 did not overlap between the fetal and adolescent 

periods but converged at a functional level to synaptic processes. This suggests that the biological 

basis of schizophrenia risk may be better understood and explored on a systems biology basis 

integrating spatiotemporally-specific effects.  

We show that the identified genes co-expressed with schizophrenia susceptibility genes were 

enriched in the prefrontal cortical region, which is a well-studied area of particular relevance for the 

early developmental pathology of schizophrenia (Weinberger 1987, Selemon and Zecevic 2015, 

Birnbaum and Weinberger 2017). Several gene expression studies focussing on the prefrontal cortex 

have reported that schizophrenia-linked genes involved in transcriptional regulation during fetal life 

are significantly co-expressed with susceptibility genes or over-represented among schizophrenia 

susceptibility loci (Birnbaum, Jaffe et al. 2015, Jaffe, Straub et al. 2018). Similarly, schizophrenia-

associated differential CpG sites identified in the prefrontal cortex have been found to be enriched at 

genetic risk loci (Pidsley, Viana et al. 2014, Jaffe, Gao et al. 2016).  

 

3.3 Synaptic and immune pathways 

The application of the BioMM procedure in Study 1 has allowed the identification of pathways that 

contribute most to the epigenetic schizophrenia classification which comprised four pathways 

related to neural and synaptic functions. Pathway and gene set enrichment analyses based on GWAS 

data from more than 60,000 subjects have previously identified multiple immune, neuronal signaling, 

and synaptic pathways as being most enriched for variants linked to schizophrenia (Network, 

O'Dushlaine et al. 2015). Another similar large-scale GWAS summary statistics-based study also 

pointed to pathways linked to synaptic dysregulation reported by (Schijven, Kofink et al. 2018). 

Furthermore, large-scale de novo mutation and copy number variation (CNV) studies have shown the 

enrichment of a synapse-related gene network (Fromer, Pocklington et al. 2014). These studies are in 

good agreement with the synaptic pathways identified here using machine learning models based on 

epigenetic data. 

Notably, the top pathway from Study 1 was “negative regulation of NF-kappaB transcription factor 

activity”, which is of critical relevance to the immune system. The regulation of nuclear factor kappaB 

(NF-kappaB) involves a family of transcription factors that are important for inflammation, immunity, 

and memory, as well as the nervous system (Oeckinghaus and Ghosh 2009, Dresselhaus and Meffert 

2019). This finding may further support the assumed role of the immune system for schizophrenia 
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(Muller and J Schwarz 2010). The identification of immune-related pathways linked to epigenetic 

schizophrenia risk is further consistent with the most extensive common variant genetic study by the 

PGC that highlighted the enrichment of  identified risk loci genes expressed in tissues with vital 

immune functions (Schizophrenia Working Group of the Psychiatric Genomics 2014), as well as with 

the pathway analysis from large GWAS data that pointed to schizophrenia-relevant immune 

processes (Network, O'Dushlaine et al. 2015). Moreover, the role of immunologic dysfunction is also 

supported by a variety of omics studies (van Mierlo, Schot et al. 2019) including transcriptomics 

(Fillman, Cloonan et al. 2013, Gardiner, Cairns et al. 2013, Mistry, Gillis et al. 2013, Sanders, Goring et 

al. 2013, Bergon, Belzeaux et al. 2015, Hess, Tylee et al. 2016, Sanders, Drigalenko et al. 2017, Duan, 

Goring et al. 2018, Kos, Duan et al. 2018, Leirer, Iyegbe et al. 2019),  and proteomics (Schwarz, Guest 

et al. 2012, Schwarz, van Beveren et al. 2013), as well as epigenomics (Liu, Chen et al. 2013, Aberg, 

McClay et al. 2014, Hannon, Dempster et al. 2016).  In line with this, a recent study has investigated 

the bidirectional relationship between schizophrenia and 19 immune-related diseases and identified 

extensively shared genetic risk factors (Pouget, Consortium et al. 2019). Interestingly, NF-kappaB is 

also known to be involved in synaptic plasticity, memory, and navigation (Snow, Stoesz et al. 2014), 

which may be linked to the abnormal working memory observed in schizophrenia (Forbes, Carrick et 

al. 2009).   

Furthermore, the analysis of randomly selected pathway sets performed in the present work further 

supported the robustness and specificity of the identified, top-ranked pathways, suggesting that 

epigenetic changes in schizophrenia converge on a specific set of synaptic and immune-related 

processes.   

 

3.4 Explainable machine learning models 

Machine learning applied to omics data is receiving increasing attention in psychiatric research, 

partially fueled by the growing amount of available omics data. An important aspect of such models 

is their biological interpretability, which may be challenging when models are trained on high-

dimensional data. In this thesis, the critical features of our devised machine learning framework 

BioMM are discussed here.  

First, generalizability is one of the key components of successful machine learning approaches as the 

trained parameters must be applicable to samples outside of the training data. BioMM has a built-in 

resampling procedure (cross-validation) to estimate and select model parameters at the initial model 

training stage. In Study 1, nested cross-validation of BioMM provided a prediction accuracy of 0.78 in 

AUC, which indicates a reasonably high predictive value given the clinical heterogeneity of 

schizophrenia. More importantly, our model was independently validated in two other datasets. 

BioMM performance was additionally compared with an empirical null obtained using permutation 

testing and the result demonstrated that no random models outperformed the real one, 

strengthening the robustness of our model.  

Second, most machine learning applications on epigenetic data for the classification of health status 

generally do not provide a clear understanding of which factors drive these classifications or 

predictions. For example, Capper and colleagues were able to yield high prediction accuracy using 

the random forest algorithm based on thousands of CpGs for tumor classification (Capper, Jones et 

al. 2018) but the most predictive underlying features were not identified. The advantages of applying 

explainable machine learning approaches to genome-wide data instead of the conventional analysis 

of single genes are demonstrated in study 1. A central idea of the BioMM model is that the 
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incorporation of pathway information into model construction improves the predictive value of the 

combined epigenetic changes. Due to the hierarchical procedure that first builds pathway-specific 

models and then integrates these using a meta-learner, BioMM also provides an intrinsic ranking of 

pathway features. Individual pathway features can further be analyzed using univariate statistics and 

used for other, biologically-informed downstream analyses.- Of particular interest in the context of 

work described here is unsupervised learning, where pathways-level features are used to identify 

subgroups of patients that show similar, systems-level alterations. For example, patients may be 

subtyped by either synaptic or immune-related pathways based on multiple omics data. 

 

3.5 Limitations 

The work described here highlights the utility of multivariate, multimodal approaches to explore 

biological determinants of schizophrenia using large-scale omics data. However, there are several 

limitations of the presented studies that are further detailed below. 

 

One potential limitation of our work is the sample size. In Study 1, we did not directly investigate the 

relationship between PMS and DLPFC-HC coupling by including patient samples because only about 

30 schizophrenia cases were available. This prevented meaningful analysis of epigenetic effects and 

the potentially stronger interactions with genetic risk in patients. In Study 2, since we adopted 

stratified analysis by brain regions and age windows, the samples falling into the respective strata are 

limited. However, the result of the donor-wide bootstrapping based resampling strategy supported 

the confidence in our findings.  

The second limitation is the potential presence of residual confounding despite the stringent data 

preprocessing and quality control steps performed in both studies.  One of the most relevant 

potential confounders in Study 1 is antipsychotic treatment, which could not be accounted for in the 

analysis. As a consequence, it cannot be excluded that PMS itself was partially influenced by 

medication effects. However, the fact that the association between the epigenetic signature and 

DLPFCH-HC connectivity was identified in unmedicated healthy controls supports the findings are 

relevant to schizophrenia. In Study 1, we corrected for available and relevant potential confounders 

(20 covariates in the blood sample, and 12 in post-mortem brain sample) to construct the PMS but 

found residual confounding of the PMS by the smoking score, as well as some cellular component 

variables. These effects were a likely consequence of the fact that the random forest machine 

learning model integrated non-linear confounding effects that could not be removed from the data 

using the employed linear adjustment procedure. However, the post-hoc association results were 

still significant after adjusting the PMS for all confounding variables, further supporting the illness- 

relevance of the identified epigenetic changes.   

The third limitation is the likely influence of post-mortem effects as both studies relied on post-

mortem brain data (either gene expression or DNA methylation). The biological and 

environmental processes induced by death, and other factors such as the post-mortem interval 

(PMI), the post-sampling handling are known to be possible confounders (Birdsill, Walker et al. 2011, 

Ferreira, Muñoz-Aguirre et al. 2018, Sjöholm, Ransome et al. 2018), and information on these was 

not always available for adjustment in our present work. In Study 1, we performed a cross-tissue 

prediction of the identified epigenetic signature, showing that the PMS identified from peripheral 

samples could also differentiate schizophrenia patients in data from post-mortem DLPFC samples. 
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This suggests that the PMS captured schizophrenia-relevant epigenetic differences present in the 

brain and circumvented the risk for the PMS to be confounded by post-mortem artifacts.  

Fourth, the choice of targeted CpGs or genes for downstream analysis may need to be improved. In 

Study 2, we concentrated on schizophrenia risk loci mapping to single genes. Although this kind of 

selection may help prevent the statistical bias, it reduced the granted amount of genetic variability 

and it may not be representative of the schizophrenia risk architecture. Therefore, further studies 

with multiple susceptibility genes per locus are needed to account for possible residual bias. In Study 

1, we selected genes harboring CpGs with an extended window of -20 kb upstream and +20 kb 

downstream to cover possible DNA-regulatory elements such as promoters and enhancers. The 

choice of this proposed window size was somewhat arbitrary but, currently no strategy can capture 

all variations within this window. Alternative parameters may be tested to further extend or shorten 

the gene boundary and CpGs falling into non-coding regions can also be informative.  

Lastly, our proposed biologically informed machine learning approach is computationally intensive 

due to the repeated bootstrapping procedure or the need for optimal parameter selection, which 

may become a downside when it is routinely applied to large datasets. In addition to the use of 

clusters with higher performance, more efficient programming languages or environments (such as 

GPU programming with C++) will be of help to substantially reduce the runtime.   
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3.6 Future work 

The merit of systems biology is to cover all the facets of biological processes from molecules to cells, 

circuits, and organs. The integration of multiple types of omics techniques, so-called multi-omics, has 

become increasingly appealing in the recent years (Hasin, Seldin et al. 2017) and may play an 

essential role in systematically studying biological systems involved in psychiatric illness. On the one 

hand, the multi-omics strategy can be more reflective of the complex biological mechanism of 

schizophrenia as it encompasses independent signals from multiple levels. It should be noted that 

each omics type has its own unique conceptualization. Various advantages and disadvantages of 

omics technologies including genomics, transcriptomics and proteomics, as well as metabolomics are 

elaborately summarized by (Karahalil 2016). Identified biomarkers would represent biological 

changes distributed across a variety of data modalities. On the other hand, the identified biomarkers 

in one data type are perhaps the consequence of alterations found in another correlated data type, 

and therefore not be the causative factors underlying schizophrenia. 

Wang and colleagues (Wang, Chen et al. 2019) recently proposed a Bayesian framework named iRIGS 

(integrative Risk Gene Selector), which is able to infer schizophrenia risk genes driving GWAS signals 

by integrating relevant information from multi-omics data (i.e. epigenomics and transcriptomic data) 

and a gene-gene interaction network. Such a framework could estimate a set of risk genes that are 

primarily expressed in brain tissue, explain a significantly higher portion of heritability, and may 

pinpoint novel targets for already approved drugs. The adaptation of such integrative computational 

approaches to schizophrenia research will allow researchers to benefit more and more from the 

increasing availability of multi-omics data in schizophrenia (Ayalew, Le-Niculescu et al. 2012, Wang, 

Shi et al. 2019).   

However, thus far only few studies have explored multi-omics data acquired on the same subject 

cohort, and even less utilizing machine learning. Machine learning is able to perform automated 

learning from pooled multi-omics data for personalized risk prediction as reviewed by (Li, Wu et al. 

2016, Huang, Chaudhary et al. 2017, Lin and Lane 2017, Mirza, Wang et al. 2019). For example, an 

unsupervised machine learning framework entitled multi-omics factor analysis, or MOFA, was 

developed to detect biomarkers based on multi-omics data modalities from 200 chronic lymphocytic 

leukaemia patients (Argelaguet, Velten et al. 2018). The omics data consisting of four different 

modalities: DNA mutations, RNA expression, DNA methylation and ex vivo drug response were used 

as input and the latent factors derived from MOFA were able to capture variation in the data that 

was significantly associated with diagnosis. Besides advances in multimodal factor analysis, deep 

learning models (Angermueller, Pärnamaa et al. 2016) have been applied on a diversity of multi-

omics data albeit not in schizophrenia (Chaudhary, Poirion et al. 2018, Zhang, Lv et al. 2018, Chung, 

Mirza et al. 2019, Huang, Zhan et al. 2019, Sharifi-Noghabi, Zolotareva et al. 2019). Increasing 

predictive accuracy through deep learning usually requires large sample numbers, which is 

challenging particularly in the multi-omics scenario. Therefore it can be expected that deep learning 

approaches for analysis of multi-omics data will particularly profit from the increased availability of 

large sample size, facilitated by the ever increasing degree of international collaboration and data 

sharing.   

Another promising avenue for future work on biologically informed machine learning in 

schizophrenia is for the advanced analysis of time-dependent data. On the one hand, gene 

expression and epigenetic data is more dynamic than DNA sequence information and may capture 

more accurately the intricate and state-dependent etiological factors of the illness. A notable 

example is the well-described disturbance of biological rhythm in patients with schizophrenia. A 
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recent study (Seney, Cahill et al. 2019) reported that patients with schizophrenia show expression of 

a vastly different set of diurnally rhythmic genes using RNA sequencing data in the DLPFC compared 

to control subjects. These genes were enriched for mitochondrial functions and showed maximum 

expression during the day, which subsequently decreased during the night. This finding supported 

that time-dependent data analysis can provide a more precise characterization of molecular changes 

in schizophrenia. Consequently, data capturing biological information at potentially interesting time 

points, such as time-of-death, time-of-birth, or time of sleeping or wake-up, or even time of day 

when symptoms occurs may be integrated into machine learning modeling. The inclusion of such 

omics-based data from a longitudinal perspective is expected to increase the power of identifying 

risk mechanisms and also help the patient subtype identification. Furthermore, it may aid in 

characterizing the transdiagnostic specificity or pleiotropic effects when utilizing developmental 

trajectories in conjunction with data on psychiatric or somatic comorbidities. 

On the other hand, the missing heritability present in genomic data may partially be addressed by 

non-omics data, such as that capturing environmental risk factors or imaging data. Integrating omics 

and non-omics data into machine learning pipelines may therefore yield substantial gains in 

predictive accuracies. Notably, digital data obtained from wearable devices (Tost, Reichert et al. 

2019) that capture illness-relevant, environmental components along with neuroimaging readouts 

may reveal dynamic variations linked to susceptibility and pinpoint protective and modifiable factors. 

The acquisition of large-scale longitudinal samples needed for characterization of developmental 

trajectories using machine learning can be aided by advances in mobile technology, such as the 5G 

technology. 5G technology holds promise for unprecedented speed, coverage and low latency and its 

adaptation may revolutionize the depth of data acquired  from smartphones or other wearables. It 

should further facilitate the real-time, quantitative feedback of susceptibility or treatment-related 

outcomes to doctors, patients or at-risk subjects through cloud computing assisted prediction, 

moving the psychiatric field closer towards personalized medicine and digital health solutions.  

Therefore, the integration of multiple data modalities, combined with adaptation of advanced data 

science and technological developments may not only aid in better characterizing the complex 

biology underlying schizophrenia, but also facilitate the long-needed clinical translation of biological 

insight to improve patient outcomes and, hopefully, reduce incidence.  
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4 SUMMARY  

Extensive efforts in characterizing the biological architecture of schizophrenia have moved 

psychiatric research closer towards clinical application. As our understanding of psychiatric illness is 

slowly shifting towards a conceptualization as dimensional constructs that cut across traditional 

diagnostic boundaries, opportunities for personalized medicine applications that are afforded by the 

application of advanced data science methods on the increasingly available, large-scale and 

multimodal data repositories are starting to be more broadly recognized. A particularly intriguing 

phenomenon is the discrepancy between the high heritability of schizophrenia and the difficulty in 

identifying predictive genetic signatures, for which polygenic risk scores of common variants that 

explain approximately 18% of illness-associated variance remain the gold standard. A substantial 

body of research points towards two lines of investigation that may lead to a significant advance, 

resolve at least in part the ‘missing heritability’ phenomenon, and potentially provide the basis for 

more predictive, personalized clinical tools.  

 

First, it is paramount to better understand the impact of environmental factors on illness risk and 

elucidate the biology underlying their impact on altered brain function in schizophrenia. This thesis 

aims to close a major gap in our understanding of the multivariate, epigenetic landscape associated 

with schizophrenia, its interaction with polygenic risk and its association with DLPFC-HC connectivity, 

a well-established and robust neural intermediate phenotype of schizophrenia. As a basis for this, we 

have developed a novel biologically-informed machine learning framework by incorporating systems-

level biological domain knowledge, i.e., gene ontological pathways, entitled ‘BioMM’ using genome-

wide DNA methylation data obtained from whole blood samples. An epigenetic poly-methylation 

score termed ‘PMS’ was estimated at the individual level using BioMM, trained and validated using a 

total of 2230 whole-blood samples and 244 post-mortem brain samples. The pathways contributing 

most to this PMS were strongly associated with synaptic, neural and immune system-related 

functions. The identified PMS could be successfully validated in two independent cohorts, 

demonstrating the robust generalizability of the identified model. Furthermore, the PMS could 

significantly differentiate patients with schizophrenia from healthy controls when predicted in DLPFC 

post-mortem brain samples, suggesting that the epigenetic landscape of schizophrenia is to a certain 

extent shared between the central and peripheral tissues. Importantly, the peripheral PMS was 

associated with an intermediate neuroimaging phenotype (i.e., DLPFC-HC functional connectivity) in 

two independent imaging samples under the working memory paradigm. However, we did not find 

sufficient evidence for a combined genetic and epigenetic effect on brain function by integrating PRS 

derived from GWAS data, which suggested that DLPFC-HC coupling was predominantly impacted by 

environmental risk components, rather than polygenic risk of common variants. The epigenetic 

signature was further not associated with GWAS-derived risk scores implying the observed epigenetic 

effect did likely not depend on the underlying genetics, and this was further substantiated by 

investigation of data from unaffected first-degree relatives of patients with SCZ, BD, MDD and 

autism. In summary, the characterization of PMS through the systems-level integration of 

multimodal data elucidates the multivariate impact of epigenetic effects on schizophrenia-relevant 

brain function and its interdependence with genetic illness risk.  
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Second, the limited predictive value of polygenic risk scores and the difficulty in identifying 

associations with heritable neural differences found in schizophrenia may be due to the possibility 

that the manifestation of the functional consequences of genetic risk is modulated by spatio-

temporal as well as sex-specific effects. To address this, this thesis identifies sex-differences in the 

spatio-temporal expression trajectories during human development of genes that showed significant 

prefrontal co-expression with schizophrenia risk genes during the fetal phase and adolescence, 

consistent with a core developmental hypothesis of schizophrenia. More specifically, it was found 

that during these two time-periods, prefrontal expression was significantly more variable in males 

compared to females, a finding that could be validated in an independent data source and that was 

specific for schizophrenia compared to other psychiatric as well as somatic illnesses. Similar to the 

epigenetic differences described above, the genes underlying the risk-associated gene expression 

differences were significantly linked to synaptic function. Notably, individual genes with male-specific 

variability increases were distinct between the fetal phase and adolescence, potentially suggesting 

different risk associated mechanisms that converge on the shared synaptic involvement of these 

genes. These results provide substantial support to the hypothesis that the functional consequences 

of genetic risk show spatiotemporal specificity. Importantly, the temporal specificity was linked to 

the fetal phase and adolescence, time-periods that are thought to be of predominant importance for 

the brain-functional consequences of environmental risk exposure. Therefore, the presented results 

provide the basis for future studies exploring the polygenic risk architecture and its interaction with 

environmental effects in a multivariate and spatiotemporally stratified manner. 

 

In summary, the work presented in this thesis describes multivariate, multimodal approaches to 

characterize the (epi-)genetic basis of schizophrenia, explores its association with a well-established 

neural intermediate phenotype of the illness and investigates the spatio-temporal specificity of 

schizophrenia-relevant gene expression effects. This work expands our knowledge of the complex 

biology underlying schizophrenia and provides the basis for the future development of more 

predictive biological algorithms that may aid in advancing personalized medicine in psychiatry.  
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